Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilian-Universität München

# The role of PIP aquaporins in response to various environmental scenarios in *Arabidopsis thaliana*

**Ming Jin** 

aus

Huhehaote, Inner Mongolia, China

2015

## Erklärung

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von PD Dr. Anton R. Schäffner betreut.

### **Eidesstattliche Versicherung**

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.

München,

(Ming Jin)

.....

Dissertation eingereicht am

1. Gutachter: PD Dr. Anton R. Schäffner

2. Gutachter: Prof. Dr. Jörg Durner

Mündliche Prüfung am 15.04.2015

#### ABSTRACT

Plants like all other organisms depend on the uptake of water and the homeostasis of water relations, which, however, are frequently challenged by environmental cues like drought or heat. Plasma membrane intrinsic proteins (PIPs) are aquaporins, which facilitate gradientdriven water permeation across the plasma membrane and are therefore considered to impact plant water relations. PIP2;1 and PIP2;2 represent two major PIPs in Arabidopsis thaliana and are highly expressed mainly in the vascular tissues of roots and leaves. They have been shown to affect cell water permeability as well as hydraulic conductance in roots and rosette leaves. To further study their roles in plant physiology, the loss-of-function pip2;1 pip2;2 double mutant was examined for altered physiological and molecular responses in comparison to wild-type plants under well-watered growth condition and under single and combined drought and heat scenarios. Heat stress was exerted in two different ways, either with a parallel increase of the vapor pressure deficit (lowered relative air humidity) due to the increase of temperature (regular heat stress) or with keeping the vapor pressure deficit constant by supplementing water vapor (high relative air humidity) in order to eliminate the heat-associated water deficit effects. Loss of PIP2;1 and PIP2;2 marginally impacts the plant water relations or transcriptional responses under well-watered condition and water stresses. The transpiration rate and stomatal conductance of water vapor are slightly reduced in pip2;1 pip2;2 double mutant compared to the wild type under wellwatered condition and this tendency is getting more obvious when the relative air humidity is declined and the root water transport is restricted by loss of the root-specific PIP2;4. These data suggest that the impacts of PIP2;1 and PIP2;2 in water relations are dependent on leaf water demand and root water supply. In addition, PIP2;1 and PIP2;2 are downregulated under drought stress, but irrespective of transpirational water loss. Loss of PIP2;1 and PIP2;2 alleviates the drought responses at the transcriptional level. In addition, high relative air humidity aggravates the heat stress responses at the transcriptional level by preventing transpiration cooling as compared to heat stress with low relative air humidity. PIP2;1 and PIP2;2 are upregulated under heat stress, irrespective of differences in relative air humidity. Surprisingly, loss of PIP2;1 and PIP2;2 marginally impacts the heat stress responses either with high relative air humidity or low relative air humidity. These data suggest that the role of the upregulated PIPs under heat stress is not associated to the transpiration-cooling process. PIP2;1 and PIP2;2 are downregulated under combined drought and heat stress with low relative air humidity (DH LrH) when drought stress is predominantly contributing to combined stress responses. Although PIP2;1 and PIP2;2 are not changed under combined stress with high relative air humidity (DH HrH), they are relatively upregulated under DH HrH in comparison to DH LrH. These data indicate that high relative air humidity shifts the combined stress responses towards a predominant heat effect. Loss of PIP2;1 and PIP2;2 alleviates the stress responses under DH LrH, which is similar to the impact in response to drought stress. Then transcriptional responses are not changed in *pip2;1 pip2;2* compared to wild type under DH HrH. The differentially expressed genes in pip2;1 pip2;2 as compared to the wild type under water stresses indicate that regulation of osmotic potential and cell wall modification may compensate the loss of functions of PIP2;1 and PIP2;2, although this compensation is considered to be weak, especially for heat stress responses. In summary, although previous studies have shown that PIP2;1 and PIP2;2 contributed to the cell water permeability and hydraulic conductivity in Arabidopsis thaliana, loss of PIP2;1 and PIP2;2 do not dramatically impair the water relations and growth under well-watered condition as well as water stress responses. However, the regulation of water homeostasis mediated by aquaporins may be critical in the transition after changing the environmental conditions. Therefore, such dynamic changes in response to water stresses will be a focus of future research.

Ш

# CONTENTS

| ABSTRACTI                                                                                         |
|---------------------------------------------------------------------------------------------------|
| CONTENTSIII                                                                                       |
| ABBREVIATIONS VII                                                                                 |
| 1 INTRODUCTION                                                                                    |
| 1.1 Water relations in plants1                                                                    |
| 1.1.1 The role of water in plants1                                                                |
| 1.1.2 Water uptake and transport in plants1                                                       |
| 1.2 Water stress responses in plants2                                                             |
| 1.2.1 Drought stress responses in plants2                                                         |
| 1.2.2 Heat stress responses in plants3                                                            |
| 1.2.3 Combined drought and heat stress responses in plants4                                       |
| 1.3 Aquaporins in plants5                                                                         |
| 1.3.1 Molecular structure of aquaporins5                                                          |
| 1.3.2 Classification of aquaporins in <i>Arabidopsis thaliana</i>                                 |
| 1.3.3 Substrate selectivity of aquaporins of Arabidopsis thaliana7                                |
| 1.3.4 Gating of aquaporins in Arabidopsis thaliana7                                               |
| 1.3.5 Expression profiles and co-regulation of <i>PIPs</i> in <i>Arabidopsis thaliana</i> 7       |
| 1.3.6 Aquaporin-dependent water transport in Arabidopsis thaliana                                 |
| 1.3.7 Regulation of <i>PIPs</i> in response to abiotic stresses in <i>Arabidopsis thaliana</i> 10 |
| 1.4 Aims of this project12                                                                        |
| 2 RESULTS14                                                                                       |
| 2.1 Global variation in transcriptome analysis after drought and heat stress and different VPD15  |

| 2.2 Impact of relative air humidity on water stress responses16                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2.1 Transcriptional responses to heat stress and combined drought and heat stress .18                                                                                                                                 |
| 2.2.2 Impact of high relative air humidity on heat stress responses                                                                                                                                                     |
| 2.2.3 Impact of high relative air humidity on combined drought and heat stress32                                                                                                                                        |
| 2.2.4 Impact on expression of aquaporins under water-deficit stresses                                                                                                                                                   |
| 2.3 Involvement of <i>PIP2;1, PIP2;2</i> and <i>PIP2;4</i> in responses to variable environmental scenarios45                                                                                                           |
| 2.3.1 Phenotypic and physiological characteristics of <i>pip2;1 pip2;2</i> and <i>pip2;1 pip2;2 pip2;4</i>                                                                                                              |
| 2.3.2 Variation of aquaporin expression in <i>pip</i> mutants under variable environmental scenarios                                                                                                                    |
| 2.3.3 Changes of <i>pip</i> mutants in response to variable environmental scenarios                                                                                                                                     |
| 2.3.3.1 Transcriptome profiling of <i>pip</i> mutants under well-watered condition                                                                                                                                      |
| 2.3.3.2 Metabolite profiling of <i>pip2;1 pip2;2</i> under well-watered condition59                                                                                                                                     |
| 2.3.3.3 Integration of transcriptome and metabolome changes in <i>pip2;1 pip2;2</i> under well-watered condition61                                                                                                      |
| 2.3.4 Transcriptome profiling of <i>pip</i> mutants in response to water stresses62                                                                                                                                     |
| 3 DISCUSSION                                                                                                                                                                                                            |
| 3.1 Effect of high relative air humidity on the responses to heat stress and combined drought and heat stress                                                                                                           |
| 3.1.1 High relative air humidity aggravates heat stress responses and induces specific transcriptional changes in response to heat stress                                                                               |
| 3.1.2 High relative air humidity shifts the combined stress responses from a predominant drought effect to a heat effect and induces specific transcriptional changes in response to combined drought and heat stresses |
| 3.2 The role of major <i>PIP2s</i> in leaves under well-watered condition and water stresses92                                                                                                                          |

| 3.2.1 Marginal impact of the loss of major <i>PIP2s</i> in leaves under well-watered condition               |
|--------------------------------------------------------------------------------------------------------------|
| 9                                                                                                            |
| 3.2.2 Marginal impact of loss of major <i>PIPs</i> in leaves in response to water stresses a molecular level |
| 4 MATERIALS AND METHODS102                                                                                   |
| 4.1 Materials102                                                                                             |
| 4.1.1 Plant materials102                                                                                     |
| 4.1.2 Chemicals, buffers and media102                                                                        |
| 4.2 Methods                                                                                                  |
| 4.2.1 Methods of physiological characterization102                                                           |
| 4.2.1.1 Plant growth condition102                                                                            |
| 4.2.1.2 Growth measurements102                                                                               |
| 4.2.1.3 Gas exchange measurements103                                                                         |
| 4.2.1.4 Carbon isotope composition measurements103                                                           |
| 4.2.1.5 Relative water loss measurements104                                                                  |
| 4.2.2 Methods of transcriptome analysis104                                                                   |
| 4.2.2.1 Plant growth conditions and water-deficit stress applications104                                     |
| 4.2.2.2 The arrangement of the replicates and harvest                                                        |
| 4.2.2.3 Isolation of the total RNA106                                                                        |
| 4.2.2.4 RNA quality and quantity control107                                                                  |
| 4.2.2.4.1 RNA 6000 Nano assay107                                                                             |
| 4.2.2.4.2 Nanodrop ND-1000 spectrophotometer108                                                              |
| 4.2.2.5 Agilent microarray analysis108                                                                       |
| 4.2.2.5.1 One-color Spike Mix preparation109                                                                 |

| 4.2.2.5.2 Labeling reaction preparation110          |
|-----------------------------------------------------|
| 4.2.2.5.3 Labeled and amplified RNA purification111 |
| 4.2.2.5.4 cRNA quantification111                    |
| 4.2.2.5.5 Hybridization111                          |
| 4.2.2.5.6 Microarray wash112                        |
| 4.2.2.5.7 Slide scan and figure extraction113       |
| 4.2.3 GC-MS measurements113                         |
| 4.2.4 Statistical analysis113                       |
| 4.2.4.1 Gene expression analysis113                 |
| 4.2.4.2 Metabolomic analysis114                     |
| 4.2.4.3 Integrative analysis114                     |
| 4.2.5 Data mining from public expression data114    |
| 4.2.6 Co-expression analysis115                     |
| SUPPLEMENTARY MATERIALS                             |
| REFERENCE                                           |
| CURRICULUM VITAE                                    |
| ACKNOLEDGEMENT                                      |

### **ABBREVIATIONS**

| ABA           | abscisic acid                                                    |
|---------------|------------------------------------------------------------------|
| adj. <i>P</i> | adjusted P-value                                                 |
| cDNA          | complementary DNA                                                |
| Ci            | intercellular $CO_2$ concentration                               |
| D             | drought stress                                                   |
| DH HrH        | combined drought and heat stress with high relative air humidity |
| DH LrH        | combined drought and heat stress with low relative air humidity  |
| DM            | pip2;1 pip2;2                                                    |
| DNA           | deoxyribonucleic acid                                            |
| E             | transpiration rate                                               |
| FC            | fold change                                                      |
| GC-MS         | gas chromatography-mass spectrometry                             |
| GO            | gene ontology                                                    |
| gs            | stomata conductance of water vapor                               |
| H HrH         | heat stress with high relative air humidity/regular heat stress  |
| H LrH         | heat stress with low relative air humidity                       |
| HSF           | heat shock factor                                                |
| HSP           | heat shock protein                                               |
| LIMMA         | linear models for microarray data                                |
| MIP           | major intrinsic protein                                          |

| ABBREVIATIONS_ |                                   |
|----------------|-----------------------------------|
| MS             | Murashige and Skoog               |
| NIP            | Nodulin-26-like intrinsic protein |
| PC             | principle component               |
| PCA            | principal component analysis      |
| PIP            | plasma membrane intrinsic protein |
| rH             | relative air humidity             |
| RIN            | RNA integrity number              |
| RNA            | ribonucleic acid                  |
| SIP            | small basic intrinsic protein     |
| TIP            | tonoplast intrinsic protein       |
| ТМ             | pip2;1 pip2;2 pip2;4              |
| VPD            | vapor pressure deficit            |
| WT             | wild type                         |

### **1 INTRODUCTION**

#### **1.1 Water relations in plants**

#### 1.1.1 The role of water in plants

Water is the major component contributing 80% – 90% of the mass of plant tissues. It plays essential roles in plant growth and development including maintaining cell turgidity for structure and cell expansion, transporting nutrients and organic compounds throughout the plant as a solvent, serving as an electron donor for photosynthesis, regulating plant temperature through transpiration against environment temperature fluctuations and regulating stomatal aperture for gas exchange (Taiz and Zeiger, 2006).

#### **1.1.2 Water uptake and transport in plants**

In plants, most of the water is taken up by the root system, although water exchange and uptake may also occur on other surfaces. More than 95% of the water taken up from roots is lost to the atmosphere through transpiration, and only less than 5% is retained for cellular physiological functions (Taiz and Zeiger, 2006). Thus, maintaining a balance of water uptake and water loss represents an important challenge for plants.

Soil water first enters the root system through root hairs or fine roots. Water can move across the cortex to the endodermis and then freely enters into xylem cells for long-distance transport in roots. Water in the xylem is driven up by transpiration pull and is then distributed into mesophyll and epidermal cells or transpired through stomata in leaves. The water movement through living plant tissues follows three pathways: the apoplastic pathway, a continuous extracellular system within the cell wall; the symplastic pathway, a cytoplasmic network of intercellular connections *via* plasmodesmata, and the transmembrane pathway from cell to cell across the plasma membrane. Water transport efficiency *via* the transmembrane pathway and the initial entry into the symplastic pathway can be facilitated by aquaporins, which are water-conducting channels integrated into the

plasma membrane (Steudle, 2001). These three pathways coexist and their contribution to water transport varies depending on the composite structures of the tissues and the environmental conditions. For instance, the transmembrane pathway and the symplastic pathway are predominant in water transport in the endodermis when the apoplastic pathway is blocked by the water-impermeable Casparian band. However, the contribution of the transmembrane pathway and the symplastic pathway is alleviated under high transpiration conditions (Steudle, 1994; Steudle and Peterson, 1998).

#### 1.2 Water stress responses in plants

Plants are sessile organisms that cannot escape from environmental constraints. Therefore, they have evolved numerous adaptive responses to cope with environmental stresses. Drought stress and heat stress are two of the most important water stresses and occur in the field simultaneously (Mittler, 2006; Bates *et al.*, 2008). These stress conditions disturb the water homeostasis and in turn induce physiological, molecular and biochemical changes which eventually adversely impact plant growth and development.

#### 1.2.1 Drought stress responses in plants

Drought stress due to water deficit of the soil adversely impacts plant growth. Under drought stress, water lost through transpiration cannot be fully supplemented due to the low water content of the soil and in turn causes a decrease of cell turgor. In addition, the relative water content and the water potential are also reduced (Morgan, 1984; Bray, 1997). As a defense against the water loss, drought stress triggers the production of abscisic acid (ABA) and subsequently results in stomata closure, leading to the reduction of transpiration and photosynthesis (Zhang and Davies, 1990; Chaves *et al.*, 2002; Parent *et al.*, 2009; Shatil-Cohen *et al.*, 2011; Osakabe *et al.*, 2014). On the other hand, drought stress induces the expression of drought-responsive genes encoding functional proteins (transporters, enzymes and protection factors) as well as regulatory proteins (transcription factors and protein kinases) (Seki *et al.*, 2001; Seki *et al.*, 2002; Shinozaki and Yamaguchi-Shinozaki, 2007; Aprile

*et al.*, 2009; Le *et al.*, 2012; Prasch and Sonnewald, 2013). These drought-responsive genes are regulated through both ABA-dependent pathways and ABA-independent pathways (Stockinger *et al.*, 1997; Shinozaki *et al.*, 2003; Sakuma *et al.*, 2006; Nakashima *et al.*, 2009). In addition, drought stress also induces the accumulation of soluble sugars (raffinose and trehalose), amino acids (proline) as well as amines (glycine betaine and polyamines) as osmoprotectants to regulate water potential or as antioxidants to prevent oxidative damage (Seki *et al.*, 2007; Krasensky and Jonak, 2012).

#### **1.2.2 Heat stress responses in plants**

Heat stress due to elevated temperatures of ambient air is accompanied by an enhanced vapor pressure deficit (VPD) without additional water supplement in air. Thus, transpiration is increased to prevent heat damage, known as the transpiration-cooling process, and in turn causes a reduction of leaf water potential (Tsukaguchi et al., 2003; Crawford et al., 2012; Will et al., 2013). In addition, heat stress adversely affects photosynthesis as well as respiration and increases the fluidity of membranes (Salvucci and Crafts-Brandner, 2004; Howarth, 2005; Sharkey, 2005; Wahid et al., 2007; Allakhverdiev et al., 2008). Furthermore, a number of transcriptome studies have revealed that the genes encoding proteins are associated with primary and secondary metabolism, protein degradation and modification, signal transduction as well as transcription regulation are differentially regulated (Lim et al., 2006; Larkindale and Vierling, 2008; Matsuura et al., 2010; Mittler et al., 2012; Yángüez et al., 2013). In particular, heat stress induces the expression of specific transcription factors, heat shock factors (HSFs), and subsequently mediates accumulation of heat shock proteins (HSPs), which act as molecular chaperones to prevent protein misfolding and aggregation (Baniwal et al., 2004; Kotak et al., 2007; von Koskull-Döring et al., 2007; Mittler et al., 2012; Qu et al., 2013). In addition, heat stress also modulates the accumulation of compatible osmolytes and antioxidants, such as sugars, amino acids and polyamines (Kaplan et al., 2004; Rizhsky et al., 2004; Bokszczanin and Fragkostefanakis, 2013). On the other hand, heat stress with low VPD

by supplementing the additional water vapor in air restricts transpiration cooling and in turn increases leaf temperatures which may aggravate heat damage (Taiz and Zeiger, 2006).

#### 1.2.3 Combined drought and heat stress responses in plants

Although drought and heat stresses have been extensively studied independently, relatively little is known about their combined effects on plants. Drought stress induces stomata closure and reduces water loss by transpiration, which in turn restricts transpiration cooling and potentially enhances heat susceptibility. On the other hand, heat stress increases water loss through transpiration, but reduces root growth, thus causes the drought susceptibility (Taiz and Zeiger, 2006). Stomata are closed under combined drought and heat stress. Then photosynthesis is in turn restricted by downregulation of the photosynthetic genes and consequently reduce the plant growth under combined stress (Rizhsky et al., 2004; Prasch and Sonnewald, 2013). Vile et al. (2012) found that the effects of combined drought and heat stress on plant growth traits are globally additive. For example, plant growth is restricted under both drought stress and heat stress and this restriction is getting more severe under combined drought and heat stress. In addition, all of the growth traits, which are varied under combined drought and heat stress, are also changed in response to at least one of them. Thus, there are no growth traits which are specifically affected by combined drought and heat stress (Vile et al., 2012). However, transcriptome studies show a unique response under combined drought and heat stress involving specific changed transcripts that are not altered under individual drought or heat stress (Rizhsky et al., 2004; Prasch and Sonnewald, 2013). In addition, a larger amount of altered genes are overlapping between drought and combined stress as compared to heat and combined stress, which suggests the drought effect predominantly contributes to combined drought and heat stress responses (Rizhsky et al., 2002; Rizhsky et al., 2004; Mittler, 2006). Moreover, the accumulation of metabolites is highly specific and sucrose replaces proline as the major osmolyte under combined drought and heat stress (Rizhsky et al., 2004; Prasch and Sonnewald, 2013).

#### **1.3 Aquaporins in plants**

#### 1.3.1 Molecular structure of aquaporins

Aquaporins belong to the major intrinsic proteins (MIPs) with molecular masses of 23-31 kDa and have conserved structures across kingdoms of organisms (Fujiyoshi *et al.*, 2002; Wallace and Roberts, 2004; Bansal and Sankararamakrishnan, 2007). They assemble as tetramers and each of the monomers defines an individual pore. These monomers comprise six transmembrane  $\alpha$ -helices (1 to 6) tilted along the plane of the membrane and linked by five loops (A to E). Loops B and D as well as the N- and C-terminals protrude to the cytosol, whereas loops A, C and E face to extracellular or intraorganellar side. Loops B and E contain the highly conserved NPA (Asn-Pro-Ala) motifs and form two half-helices that insert into the membrane from opposite sides. This is one of the two major constrictions in the channel (Figure 1). The second major constriction known as aromatic/arginine (ar/R) region is formed by two residues from TM2 and TM5 as well as two residues from loop E and it is localized on the extra-cytoplasmic mouth of the pore. These two constrictions determine the substrate specificity.



**Figure 1.** Schematic presentation of an aquaporin monomer. Six transmembrane  $\alpha$ -helices (1 to 6) are linked by five loops (A to E). Two conserved NPA motifs located at the loop B and E, respectively, fold into the lipid bilayer to form a single aqueous pathway.

#### 1.3.2 Classification of aquaporins in Arabidopsis thaliana

*Arabidopsis thaliana* contains 35 aquaporins that belong to four subfamilies (PIPs, TIPs, SIPs and NIPs) based on sequence homologies and subcellular localization (Johanson *et al.*, 2001; Quigley *et al.*, 2002). The plasma membrane intrinsic proteins (PIPs) and the tonoplast intrinsic proteins (TIPs) represent the most abundant aquaporins of plasma membrane and tonoplast, respectively. PIPs can be subdivided into PIP1s including five isoforms and PIP2s including eight isoforms. Nodulin-26-like intrinsic proteins (NIPs) are homologous to nodulin-26 in soybean (Rivers *et al.*, 1997). NIPs comprise nine isoforms and are localized in the plasma membrane and the endoplasmic reticulum (ER) (Wallace *et al.*, 2006). In addition, small basic intrinsic proteins (SIPs) have three isoforms and are integrated in ER membranes (Ishikawa *et al.*, 2005) (Figure 2).



Figure 2. Phylogenetic tree of the 35 aquaporins grouped into four subfamilies in Arabidopsis thaliana

#### 1.3.3 Substrate selectivity of aquaporins in Arabidopsis thaliana

Aquaporins in *Arabidopsis thaliana* mainly mediate water movement across biomembranes, but also transport small solutes including urea (Klebl *et al.*, 2003; Liu *et al.*, 2003), boric acid (Takano *et al.*, 2006), hydrogen peroxide (Bienert *et al.*, 2007; Dynowski *et al.*, 2008; Hooijmaijers *et al.*, 2012), ammonia (Holm *et al.*, 2005) and carbon dioxide (Heckwolf *et al.*, 2011; Uehlein *et al.*, 2012). Several TIPs including TIP1;1 (Maurel *et al.*, 1993) and TIP3;1 (Daniels *et al.*, 1996) as well as PIPs involving PIP1;1, PIP1;2, PIP1;3, PIP2;1, PIP2;2, PIP2;3 and PIP2;7 have been verified to possess water transport activities (Daniels *et al.*, 1994; Hachez *et al.*, 2014; Kammerloher *et al.*, 1994).

#### 1.3.4 Gating of aquaporins in Arabidopsis thaliana

The gating of aquaporins (opening and closing of the pore) can be regulated by phosphorylation, pH and Ca<sup>2+</sup> (Chaumont *et al.*, 2005a). Mass spectrometry (MS) analysis has shown the presence of phosphorylated forms of both the AtPIP1s (PIP1;1 and PIP1;2) and AtPIP2s (PIP2;1 and PIP2;2) subgroups (Santoni *et al.*, 2003). A role of phosphorylation due to sucrose-induced receptor kinase SIRK1 in activating the AtPIP1s and AtPIP2s has been verified by protoplast swelling assays (Wu *et al.*, 2013). However, the water permeability of plasma membrane vesicles equilibrated with Ca<sup>2+</sup> was reduced and H<sup>+</sup> has been shown to reversibly reduce water channel activity (Gerbeau *et al.*, 2002). The inhibition of aquaporin activity by Ca<sup>2+</sup> and H<sup>+</sup> has further been confirmed by expression of *PIP2;1* in proteoliposomes (Verdoucq *et al.*, 2008).

# **1.3.5** Expression profiles and co-regulation of *PIPs* in *Arabidopsis thaliana*

Aquaporin expression profiles across different organs in *Arabidopsis* provide fundamental information about the possible functions of aquaporins. Semiquantitative slot-blot analysis showed that the *PIPs* are mainly expressed in roots and leaves (Weig *et al.*, 1997).

Furthermore, cDNA microarray and proteomics profiling of *Arabidopsis* aquaporins has revealed highly transcriptional and translational (79% of the total PIPs protein) levels of PIP1;1, PIP1;2, PIP2;1 and PIP2;2 in roots (Santoni *et al.*, 2003; Alexandersson *et al.*, 2005; Monneuse *et al.*, 2011). In addition, PIP1;2 and PIP2;1 are the major isoforms, whereas PIP1;1 and PIP2;2 are the less abundant ones in leaves. These four isoforms represent 80% of the overall PIPs at the protein level of leaves. PIP2;7 is also ubiquitously expressed in roots and leaves, but still less abundant than PIP1;2 and PIP2;1. Although *PIP2;6* exhibits highly transcriptional level in leaves, its protein level is considerably lower than that of PIP1;2 and PIP2;1 (Alexandersson *et al.*, 2005; Monneuse *et al.*, 2011; Prado *et al.*, 2013).

The in situ localization of the  $\beta$ -glucuronidase reporter gene governed by PIP promoters (*proPIP::GUS*) provides additional information regarding the cellular expression of aquaporins. The observations confirm the major expressions of *PIP1;2*, *PIP2;1* and *PIP2;2* in roots and leaves as well as the specific expression of *PIP2;4* in roots (Da Ines, 2008; Postaire *et al.*, 2010). The cross-sections of GUS-stained roots reveal that *PIP1;2*, *PIP2;1* and *PIP2;2* are mainly expressed in the stele. In addition, both *PIP1;1* and *PIP2;2* are expressed in cortical cells, and *PIP1;2* is also expressed in the endodermis (Javot *et al.*, 2003; Postaire *et al.*, 2010; Zhao, 2013). Furthermore, the cross-sections of leaves show that *PIP1;2* is expressed in all leaf tissues, *PIP2;1* is also expressed in vascular tissue and bundle sheath cells as well as that *PIP2;2* is expressed in cells surrounding the veins (Da Ines *et al.*, 2010; Postaire *et al.*, 2010).

The similar expression patterns of *PIPs* at the cellular level suggest potential interactions and co-regulation between them. Co-expression analysis of aquaporins in *Arabidopsis thaliana* predicts that *PIP1;1*, *PIP1;2*, *PIP2;1* and *PIP2;2/2;3* are most strongly correlated with each other (Alexandersson *et al.*, 2010). Interestingly, the repression of PIP1;1 and PIP1;2 in the *pip2;1 pip2;2* mutant was observed at the protein level (Chen Liu's work), suggesting the important role of the mainly expressed *PIPs*, *PIP2;1* and *PIP2;2*, in regulation of other aquaporins and in turn impacting the water relations of *Arabidopsis thaliana*.

8

#### 1.3.6 Aquaporin-dependent water transport in Arabidopsis thaliana

PIPs are thought to represent the major components for transcellular water transport due to their abundance and localization. Mercury is a general aquaporin inhibitor that can reversibly block the water channel activities when PIPs are heterologously expressed in *Xenopus* oocytes. Therefore, the overall contribution of aquaporins to hydraulic conductivity in roots and leaves has been initially examined by employing HgCl<sub>2</sub> in Arabidopsis thaliana. The mercury treatments lead to reduced root hydraulic conductivity by 50% (Sutka et al., 2011) and decreased leaf hydraulic conductivity by 26% (Postaire et al., 2010), indicating the important role of aquaporins in plant water relations. However, the general toxicity of mercury may induce side effects on other physiological processes and the specific functions of aquaporins cannot be exactly defined (Zhang and Tyerman, 1999). Thus, reverse genetic approaches are employed to explore the functions of the individual aquaporins with respect to water relations. Antisense inhibition of PIP1s and PIP2s reduces osmotic hydraulic conductivity of protoplasts isolated from roots and leaves, but only root hydraulic conductivity is decreased by threefold (Martre et al., 2002). Two independent pip2;2 knockout mutants reduce the hydraulic conductivity in root cortex cells by 25% - 30% and the osmotic hydraulic conductivity of entire roots is reduced by 14% in mutants (Javot et al., 2003). Two allelic pip2;1 T-DNA insertion lines show a reduction of 14% in root hydraulic conductivity and a further decrease in the pip2;1 pip2;2 mutant (Péret et al., 2012), suggesting the important role of PIP2s in root water transport. In rosettes, AtPIP1;2, AtPIP2;1 and AtPIP2;6 contribute to rosette water transport and AtPIP2;1 can fully account for rosette hydraulic conductivity under dark condition (Prado et al., 2013), pointing to a predominant contribution to leaf water relations. In addition, relative water flux from root to shoot is evaluated by employing deuterium tracer to assess the water relocation in Arabidopsis thaliana. Both pip2;1 and pip2;2 single mutants show the reduction of water flux by 20% (Da Ines et al., 2010).

# **1.3.7 Regulation of** *PIPs* **in response to abiotic stresses in** *Arabidopsis thaliana*

Water status in plants is challenged by variable abiotic stresses, such as drought, salinity, extreme temperature and anoxia. Therefore, regulation of *PIPs* is considered to be essential for water homeostasis in response to these abiotic stresses.

Salt stress results in a marked decrease in root hydraulic conductivity in *Arabidopsis thaliana* (Martínez-Ballesta *et al.*, 2003; Boursiac *et al.*, 2005; Sutka *et al.*, 2011). This reduction is considered to be associated with transcriptional, translational and post-translational regulations of *PIPs*. All *PIP* transcripts and protein abundances including *PIP1;1*, *PIP1;2*, *PIP2;1* and *PIP2;2* are strongly decreased after exposure to salt stress (Boursiac *et al.*, 2005; di Pietro *et al.*, 2013). The reduction of phosphorylation of *PIP1s* (*PIP1;1* and *PIP1;2*) as well as of *PIP2s* (*PIP2;1*, *PIP2;2*, *PIP2;3*, *PIP2;4* and *PIP2;7*) also contribute to the decreased root hydraulic conductivity under salt stress by inactivating the aquaporins and inducing rapid internalization (Boursiac *et al.*, 2008; Prak *et al.*, 2008; Li *et al.*, 2011; di Pietro *et al.*, 2013). Similarly, the reduction of *PIP* transcripts and closure of the water channels due to cytosol acidosis result in the reduced root hydraulic conductivity under anoxia stress (Tournaire-Roux *et al.*, 2003; Liu *et al.*, 2005).

Similar to other water stresses, drought stress reduces the hydraulic conductivity by regulation of *PIPs* at transcriptional and post-transcriptional levels. *PIPs* transcription are generally downregulated under drought stress, apart from *PIP1;4* and *PIP2;5* which are upregulated, as well as *PIP2;6* which is unresponsive to drought. The alterations of *PIPs* transcription can be restored after rehydration (Alexandersson *et al.*, 2005; Alexandersson *et al.*, 2010). In addition, the reduction of leaf hydraulic conductivity is also determined by ABA-dependent inactivation of *PIPs* in bundle-sheath cells (Shatil-Cohen *et al.*, 2011). *PIP2;1* and

10

*PIP2;2*, which are dephosphorylated by ABA treatment, may be involved in this process (Kline *et al.*, 2010). Moreover, the trafficking of PIP2;1 from ER to plasma membrane is inhibited and the protein level of PIP2;1 is reduced due to degradation of ER-retained PIP2;1 under drought stress (Lee *et al.*, 2009). The important role of PIPs in recovery from drought stress in *Arabidopsis thaliana* was verified in antisense of *PIP1s* and *PIP2s* mutants. After rewatering, the recovery of hydraulic conductance is slower in the *pip* mutants than in the wild-type plants (Martre *et al.*, 2002). In addition, regulation of *PIPs* expression under heat stress is dependent on the plant growth conditions, plant age, temperature and duration used in heat stress. Only *PIP2;2* is generally upregulated under heat (Figure 3). Interestingly, high relative air humidity also reduces the hydraulic conductivity by repression of aquaporins (Levin *et al.*, 2007).



Figure 3. Regulation of *PIPs* expression under heat stress in Genevestigator.

\*Experiment ID: AT-00645. 11-day-old plants were subjected to 40°C for 20 min and 1 h.

\*Experiment ID: AT-00500. Plants were grown at 22°C and then the temperature was gradually increased until photosynthesis was inhibited by 20% and 30%.

\*Experiment ID: AT-00120. 16-day-old plants were treated at 38°C for 0.5 h, 1 h and 3 h.

\*Experiment ID: AT-00402. 8-week-old plants were treated at 37°C for 2 h.

\*Experiment ID: AT-00387. 3-week-old plants were exposed to 37°C for 30 h.

\*Experiment ID: AT-00439. 7-day-old plants grown on ½ MS plates were subjected to 37°C for 1 h.

Taken together, aquaporins play an important role in regulating water homeostasis through modulation of their transcription, translation and modification under abiotic stresses. However, little is known about *PIPs*-dependent changes at transcriptional and metabolism level in response to environmental scenarios.

#### 1.4 Aims of this project

The first aim of this project was to understand the impact of high relative air humidity on heat stress responses and on combined drought and heat stress responses. Regular heat stress results in reduced relative air humidity/enhanced vapor pressure deficit that involves additional air water deficiency. To address the effect on stress responses after eliminating the additional water-deficit stress in the ambient air, heat stress and combined drought and heat stress were employed with supplementing additional ambient humidity to keep the VPD constant at high temperature and without adjusting the air humidity that leads to strongly enhanced VPD at high temperature. The specific transcriptional changes in response to heat stress as well as combined drought and heat stress with high relative air humidity in comparison to the corresponding stresses with low air humidity and their potential functions should be identified.

The second aim of this project was to assess the effects of loss of major *PIPs* (*PIP2;1*, *PIP2;2* and *PIP2;4*) in leaves under well-watered condition and under water stresses including drought stress, heat stress with high/low relative air humidity and combined drought and heat stress with high/low relative air humidity outlined above. Combining physiological characterizations, transcriptomic and metabolic analysis, the differential responses induced by the loss of PIP2;1 and PIP2;2 under well-watered condition should be identified. The transcriptional changes induced by the loss of PIP2;1, PIP2;2 and PIP2;4 under various water stresses should be also explored.

#### 2 RESULTS

Different environmental scenarios exerting water stresses on plants were applied to characterize stress responses at the transcriptome level in *Arabidopsis thaliana*. Although there had been previous studies on similar topics (see 1.2), here two specific aspects and questions were emphasized.

First of all, regular heat stress is accompanied by an increased vapor pressure deficit (VPD)/decreased relative air humidity (rH). This aggravates the water demand in air and induces additional water deficit in the ambient air. To explore the real heat effect on stress responses after eliminating the impact of heat-dependent VPD increase leading to a VPD (LrH) of 3.168 kPa (37%) at 33°C, the regular heat scenarios were compared with environmental conditions eliminating the impact of VPD by keeping it constant at 33°C during heating. This was achieved by supplementing the ambient air with additional humidity, thereby raising the relative air humidity from 70% with a VPD of 0.793 kPa at 22°C to 84% with a VPD of 0.793 kPa at 33°C. Thus, the following scenarios were applied to wild-type plants: drought stress (D; 22°C, drought initiated in soil by stopping watering for seven days), regular heat stress (H LrH, 33°C for 6 h) and their combination (DH LrH; developing drought for seven days and then 6 h at 33°C), heat stress and combined drought and heat stress with additional air humidity supplementation (H HrH & DH HrH) (Figure 4). Then they were analyzed at the transcriptional level (see 4.2.2).

Secondly, since we were interested in the contribution of major *PIPs* to plant water relations and eventually plant growth under well-watered condition and water stresses, two loss of function mutants *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* were also subjected to the same stress conditions in parallel and analyzed at the transcriptional and physiological level (see 4.2.1 and 4.2.2).

14



**Figure 4.** Experiment design for applying the drought stress (D), heat stress (H HrH/H LrH) and a combined drought and heat stress (DH HrH/DH LrH). The black line represents the plant growth and treatment durations. The dark green bars represent well-watered condition. The bars with gradient color from light green to orange represent drought stress. The red bars represent heat stress. The orange frames represent low relative air humidity.

#### 2.1 Global variation in transcriptome analysis after drought and heat

#### stress and different VPD

Three-week-old wild-type plants, *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* mutant plants of *Arabidopsis thaliana* were raised and treated with the different stress scenarios D, H LrH, DH LrH, H HrH and DH HrH and control condition (22°C, well-watered) (See 4.2.2.1). Total RNA was isolated from rosettes and labeled cDNA was then used for hybridization of Agilent microarrays for *Arabidopsis thaliana* (See 4.2.2). Two independent experiments for D, H LrH and DH LrH or three independent experiments for H HrH and DH HrH with three biological replicates each of *pip* mutants and wild type were conducted. Expression data were extracted using Agilent Feature Extraction (FE) software and the data evaluation was based on LIMMA (linear models for microarray data) (done by Dr. Elisabeth Georgii from the Institute of Biochemical Plant Pathology, Helmholtz Zentrum München) (See 4.2.4).

To evaluate the effects of treatments and genotypes on transcriptional variations, principal component analysis (PCA) was conducted on all datasets (See 4.2.4.1). The first two principle components (PCs) could cumulatively explain more than 70% of the variations of the datasets (Figure 5A and 5B). PC1 and PC2 showed a separation according to the treatments. PC1 mainly separated DH HrH and DH LrH from the other treatments and PC2 can separate the high relative air humidity effect from the other treatment effect (Figure 5C). Furthermore, PC3 and PC6 clearly showed a separation of the *pip* mutants from wild type (Figure 5D). These data indicate that treatments exert major effects on transcriptional variations whereas genotypes have only a minor impact.

#### 2.2 Impact of relative air humidity on water stress responses

The need to balance water availability in the soil on the one hand and water demand in the atmosphere on the other hand critically affects water relations and eventually plant growth and development. Drought stress, regular heat stress and their combination as the major water stresses have therefore been well studied with regard to physiological, transcriptional and metabolic aspects (see 1.2). To better understand the responses of wild-type plants to heat stress and combined drought and heat stress, the additional water deficit in ambient air was eliminated by employing heat stress and combined drought and heat stress while maintaining a constant VPD by enhancing air humidity (H HrH & DH HrH). For comparison, regular heat stress (H LrH) and combined drought and regular heat stress (DH LrH) were applied to the wild-type plants (See 4.2.2.1). Transcriptional datasets were derived from Agilent microarrays and transcripts having an absolute  $Log_2$  fold change ( $|Log_2FC|$ )  $\geq$  1 with an adjusted *P*-value (adj.*P*)  $\leq$  0.05 under water stresses compared to the well-watered condition (control) were considered to be significantly changed gene expressions to be further analyzed.

16



**Figure 5.** Principle component analysis (PCA) of the transcriptome of *pip* mutants and wild type under variable environmental scenarios. (A) Cumulatively explained variance of the principle component. (B) Variance explained by all the components of 18 observations. Each bar represents the individual variance explained by the principle component. (C) Projection of observations onto the first two principle components. (D) Projection of observations onto the third and sixth principle components.

# 2.2.1 Transcriptional responses to heat stress and combined drought

#### and heat stress

In total, 361 genes were differentially expressed under H LrH, involving 197 upregulated genes and 164 downregulated genes. Under H HrH, on the other hand, 1318 genes were changed including 524 elevated and 794 reduced genes. In addition, drought stress resulted in 1830 altered genes, 1011 of which were enhanced and 819 were reduced. Under DH LrH, a total of 4561 genes were altered with 2051 upregulated genes and 2510 downregulated genes. Under DH HrH, a total of 3349 genes were differentially expressed including 1499 enhanced genes and 1850 reduced genes (Figure 6). These data suggest that high relative air humidity increases the number of altered gene expressions under heat stress, but alleviates the transcriptional changes under combined drought and heat stress.

Intersections supply an overview for distribution of stress-specific and commonly regulated genes and allow to identify the genes which are important for different stress responses. Our transcriptome data revealed that 43 downregulated genes and 36 upregulated genes were shared under all the water stresses we used (Figure 7; Table 1 and Table 2). Interestingly, 15 genes out of 36 upregulated genes were heat shock transcription factors (*HSFs*) and heat shock proteins (*HSPs*) (Table 2). This suggests that protein misfolding occurs under all of the water stresses we used and the *HSFs*-activated *HSPs* are critical for maintenance or restoration of protein homeostasis as the molecular chaperones (Scharf *et al.*, 2011).



**Figure 6.** Number of differentially expressed genes in wild type under water stresses compared to control condition. Red and green marks represent upregulated and downregulated genes, respectively. Only transcripts with changes in steady-state level of  $|Log_2FC| \ge 1$  and adj.  $P \le 0.05$  are included.



**Figure 7.** Intersections of differentially expressed genes in wild type under water stresses compared to control condition. Only genes with changes in steady-state level of  $|Log_2FC| \ge 1$  and adj.  $P \le 0.05$  are included.

| AGI        | Gene Name                                            |
|------------|------------------------------------------------------|
| AT4G29740  | CKX4                                                 |
| AT5G61160  | AACT1                                                |
| AT5G07100  | WRKY26                                               |
| AT3G57240  | BG3                                                  |
| AT2G26560  | PLP2                                                 |
| AT3G09940  | MDAR3                                                |
| AT1G75040  | PR5                                                  |
| AT2G26400  | ARD3                                                 |
| AT2G04450  | NUDX6                                                |
| AT2G21650  | RSM1                                                 |
| AT1G35230  | AGP5                                                 |
| AT5G44420  | PDF1.2                                               |
| AT2G14610  | PR1                                                  |
| AT1G67810  | SUFE2                                                |
| AT3G44990  | XTH31                                                |
| AT5G62920  | ARR6                                                 |
| AT1G15520  | ABCG40                                               |
| AT3G04570  | AHL19                                                |
| AT2G30770  | CYP71A13                                             |
| AT4G23210  | CRK13                                                |
| AT5G62310  | IRE                                                  |
| AT4G10820  | F-box family protein                                 |
| AT3G15356  | Legume lectin family protein                         |
| AT1G06830  | Glutaredoxin family protein                          |
| AT4G11290  | Peroxidase superfamily protein                       |
| AT1G31690  | Copper amine oxidase family protein                  |
| AT5G24200  | alpha/beta-Hydrolases superfamily protein            |
| AT4G15660  | Thioredoxin superfamily protein                      |
| AT4G15670  | Thioredoxin superfamily protein                      |
| AT4G12490  | Bifunctional inhibitor/lipid-transfer protein        |
| AT4G12500  | Bifunctional inhibitor/lipid-transfer protein        |
| AT3G28510  | P-loop containing nucleoside triphosphate hydrolases |
| A14G29610  | Cytiaine/aeoxycytiayiate aeaminase family protein    |
| A15G54020  | Cysteine/Histidine-rich C1 domain family protein     |
| AT5G43520  | Cysteine/Histiaine-rich C1 aomain Jamily protein     |
| AT1C33640  | unknown protein                                      |
| ATEC22520  |                                                      |
| AT265546   |                                                      |
| A13035040  |                                                      |
| AT1C70022  |                                                      |
| ATEC/16922 | unknown protein                                      |
| A13044300  |                                                      |

 Table 1. Commonly downregulated genes under all of the water stress conditions

#### AT5G57760 unknown protein

| AGI       | Gene Name                                                   |
|-----------|-------------------------------------------------------------|
| AT3G12580 | HSP70                                                       |
| AT3G24500 | MBF1C                                                       |
| AT1G71000 | Chaperone DnaJ-domain superfamily protein                   |
| AT5G62020 | HSFB2A                                                      |
| AT2G20560 | DNAJ heat shock family protein                              |
| AT4G21320 | HSA32                                                       |
| AT2G29500 | HSP20-like chaperones superfamily protein                   |
| AT5G52640 | HSP90.1                                                     |
| AT3G46230 | HSP17.4                                                     |
| AT4G12400 | НОРЗ                                                        |
| AT1G07400 | HSP20-like chaperones superfamily protein                   |
| AT1G53540 | HSP20-like chaperones superfamily protein                   |
| AT5G12030 | HSP17.6A                                                    |
| AT5G51440 | HSP20-like chaperones superfamily protein                   |
| AT2G26150 | HSFA2                                                       |
| AT3G53230 | ATCDC48B                                                    |
| AT2G47180 | GOLS1                                                       |
| AT5G59310 | LTP4                                                        |
| AT4G21650 | SBT3.13                                                     |
| AT5G66110 | HIPP27                                                      |
| AT1G62510 | Bifunctional inhibitor/lipid-transfer protein               |
| AT4G30540 | Class I glutamine amidotransferase-like superfamily protein |
| AT5G25450 | Cytochrome bd ubiquinol oxidase                             |
| AT4G20820 | FAD-binding Berberine family protein                        |
| AT2G37900 | Major facilitator superfamily protein                       |
| AT1G73040 | Mannose-binding lectin superfamily protein                  |
| AT2G29300 | NAD(P)-binding Rossmann-fold superfamily protein            |
| AT4G33420 | Peroxidase superfamily protein                              |
| AT1G72660 | P-loop containing nucleoside triphosphate hydrolases        |
| AT1G30190 | unknown protein                                             |
| AT4G31354 | unknown protein                                             |
| AT4G31351 | unknown protein                                             |
| AT5G54165 | unknown protein                                             |
| AT4G14819 | unknown protein                                             |
| AT4G23493 | unknown protein                                             |
| AT5G10946 | unknown protein                                             |

Table 2. Commonly upregulated genes under all of the water stress conditions

#### 2.2.2 Impact of high relative air humidity on heat stress responses

To identify the alteration of heat stress responses with different relative air humidity in wild type, gene ontology (GO) terms of upregulated and downregulated genes were performed using MapMan 3.5.1R2 and the function categories without the group of not assigned genes were shown in Figure 8 and Figure 9. Either upregulated or downregulated genes were mainly associated with miscellaneous enzyme families, stress responses, RNA related process and protein modification or degradation under both H HrH and H LrH (Figure 8 and Figure 9). For example, upregulated genes were overrepresented in protein folding process and downregulated genes were overrepresented in flavonoid biosynthesis and response to abiotic stimulus under H HrH, which were also detected under H LrH. This indicates that no specific biological processes are influenced under H HrH. On the other hand, to identify how high relative air humidity generally changes the heat stress responses, the differentially expressed genes sorted according to the adjusted P-value under H HrH and the top listed genes showed stronger changes as compared to under H LrH (Table 3). In particular, the heat marker genes including heat shock factors (HSFs) and heat shock proteins (HSPs) also showed stronger changes under H HrH in comparison to under H LrH (Figure 10). These results suggest that high relative air humidity induces the stronger heat stress responses as compared to low relative air humidity.



**Figure 8.** Gene ontology (GO) categories of upregulated genes in wild type under H HrH and H LrH as compared to control condition. MapMan 3.5.1R2 was applied to differentially expressed genes (See 4.2.4.1). The portion of different groups is given in percent.



**Figure 9.** Gene ontology (GO) categories of downregulated genes in wild type under H HrH and H LrH as compared to control condition. MapMan 3.5.1R2 was applied to differentially expressed genes. The portion of different groups is given in percent.
**Table 3.** The top listed differentially expressed genes in wild type under H HrH as compared to control condition. The genes were selected according to adj.*P*. The expression ratios of these genes under H LrH were added along with the expression under H HrH.

| ٨GI       | Log   | g₂FC  | AGI       | Log <sub>2</sub> FC |       | AGI       | Log <sub>2</sub> FC |       |
|-----------|-------|-------|-----------|---------------------|-------|-----------|---------------------|-------|
|           | H HrH | H LrH |           | H HrH               | H LrH |           | H HrH               | H LrH |
| AT3G50970 | -4.6  | -1.7  | AT3G54460 | 1.0                 | 0.4   | AT1G08300 | 1.5                 | 0.6   |
| AT1G09350 | -3.8  | -2.0  | AT2G29260 | 1.0                 | 0.2   | AT2G30480 | 1.5                 | 0.4   |
| AT5G52310 | -3.5  | -1.0  | AT3G10030 | 1.0                 | 0.5   | AT1G65040 | 1.5                 | 0.5   |
| AT2G42540 | -3.4  | -0.8  | AT2G01100 | 1.0                 | 0.5   | AT5G47830 | 1.5                 | 0.5   |
| AT5G08640 | -3.0  | -1.9  | AT4G02210 | 1.0                 | 0.5   | AT3G45420 | 1.5                 | 0.5   |
| AT4G16740 | -2.8  | -0.7  | AT1G48970 | 1.0                 | 0.3   | AT4G30570 | 1.5                 | 0.6   |
| AT4G30650 | -2.6  | -1.1  | AT5G06340 | 1.0                 | 0.3   | AT4G15780 | 1.6                 | 0.6   |
| AT5G48880 | -2.5  | -1.0  | AT1G54250 | 1.0                 | 0.4   | AT1G76065 | 1.6                 | 0.6   |
| AT5G59670 | -2.5  | -0.5  | AT3G53630 | 1.0                 | 0.2   | AT1G72645 | 1.6                 | 0.7   |
| AT1G25422 | -2.5  | -0.8  | AT2G24830 | 1.0                 | 0.4   | AT4G25980 | 1.6                 | 0.7   |
| AT5G45280 | -2.3  | -0.9  | AT2G31890 | 1.0                 | 0.3   | AT1G10960 | 1.7                 | 1.0   |
| AT1G76790 | -2.3  | -0.7  | AT3G43210 | 1.0                 | 0.6   | AT1G09140 | 1.7                 | 1.0   |
| AT1G06000 | -2.2  | -1.0  | AT1G20920 | 1.0                 | 0.5   | AT1G27590 | 1.7                 | 0.7   |
| AT4G31870 | -2.2  | -0.9  | AT3G60910 | 1.0                 | 0.5   | AT2G36950 | 1.7                 | 0.8   |
| AT1G51090 | -2.1  | -0.4  | AT5G16110 | 1.1                 | 0.5   | AT3G59750 | 1.7                 | 0.9   |
| AT4G27570 | -2.1  | -0.7  | AT1G10240 | 1.1                 | 0.6   | AT2G17036 | 1.8                 | 0.8   |
| AT4G21400 | -2.0  | -0.5  | AT2G29400 | 1.1                 | 0.5   | AT1G27420 | 1.8                 | 1.2   |
| AT1G06690 | -2.0  | -0.8  | AT5G56380 | 1.1                 | 0.5   | AT2G17900 | 1.8                 | 0.6   |
| AT5G55570 | -2.0  | -0.8  | AT1G71260 | 1.1                 | 0.3   | AT2G32340 | 1.8                 | 0.8   |
| AT4G27560 | -1.9  | -0.5  | AT5G66090 | 1.1                 | 0.4   | AT1G77880 | 1.8                 | 0.7   |
| AT1G09780 | -1.8  | -1.1  | AT3G17740 | 1.1                 | 0.5   | AT1G14360 | 1.8                 | 0.8   |
| AT4G34950 | -1.8  | -0.9  | AT5G44660 | 1.1                 | 0.6   | AT4G38700 | 1.8                 | 0.7   |
| AT5G46230 | -1.8  | -0.6  | AT3G19508 | 1.1                 | 0.4   | AT2G42330 | 1.9                 | 0.8   |
| AT1G76020 | -1.8  | -0.8  | AT3G26180 | 1.1                 | 0.7   | AT2G21640 | 1.9                 | 0.7   |
| AT5G05580 | -1.7  | -0.9  | AT3G05790 | 1.1                 | 0.3   | AT4G31351 | 1.9                 | 1.1   |
| AT4G23020 | -1.7  | -0.6  | AT1G56200 | 1.1                 | 0.4   | AT4G31354 | 1.9                 | 1.2   |
| AT1G52770 | -1.7  | -0.4  | AT2G46610 | 1.2                 | 0.9   | AT1G03470 | 1.9                 | 0.7   |
| AT1G29720 | -1.7  | -0.6  | AT2G37340 | 1.2                 | 0.6   | AT3G24100 | 2.1                 | 0.9   |
| AT3G23810 | -1.7  | -0.7  | AT5G66240 | 1.2                 | 0.5   | AT5G03720 | 2.1                 | 0.8   |
| AT1G18265 | -1.6  | -0.5  | AT5G59440 | 1.2                 | 0.6   | AT1G64720 | 2.1                 | 1.0   |
| AT5G17780 | -1.6  | -0.8  | AT2G23348 | 1.2                 | 0.4   | AT1G29465 | 2.2                 | 1.0   |
| AT1G79460 | -1.6  | -0.6  | AT2G47420 | 1.2                 | 0.2   | AT2G19310 | 2.2                 | 1.1   |
| AT4G21215 | -1.5  | -1.0  | AT1G13790 | 1.2                 | 0.4   | AT5G46490 | 2.3                 | 1.3   |
| AT2G31390 | -1.5  | -0.6  | AT1G23860 | 1.2                 | 0.9   | AT2G07671 | 2.3                 | 0.5   |
| AT3G09540 | -1.5  | -0.7  | AT2G32920 | 1.2                 | 0.3   | AT4G29770 | 2.3                 | 0.8   |
| AT2G36500 | -1.5  | -0.6  | AT1G58150 | 1.2                 | 0.5   | AT3G29810 | 2.4                 | 1.2   |
| AT5G59130 | -1.4  | -0.4  | AT1G24095 | 1.2                 | 0.5   | AT1G07350 | 2.4                 | 1.5   |
| AT1G14580 | -1.4  | -0.9  | AT1G26580 | 1.3                 | 0.7   | AT5G25280 | 2.4                 | 0.9   |
| AT2G36880 | -1.4  | -0.7  | AT3G58930 | 1.3                 | 0.5   | AT4G23493 | 2.9                 | 1.1   |

| AT1G31190 | -1.3 | -0.6 | AT3G13224 | 1.3 | 0.8 | AT2G32120 | 3.6 | 0.9 |
|-----------|------|------|-----------|-----|-----|-----------|-----|-----|
| AT1G78570 | -1.3 | -0.7 | AT2G33250 | 1.3 | 0.4 | AT5G64510 | 3.8 | 1.7 |
| AT4G15450 | -1.2 | -0.2 | AT1G76080 | 1.3 | 0.8 | AT3G24500 | 4.1 | 2.6 |
| AT1G18360 | -1.2 | -0.6 | AT3G60300 | 1.3 | 0.6 | AT4G19430 | 4.5 | 2.4 |
| AT2G38740 | -1.2 | -0.3 | AT1G78750 | 1.3 | 0.5 | AT5G25450 | 5.0 | 2.0 |
| AT5G15760 | -1.2 | -0.8 | AT3G17460 | 1.4 | 0.6 | AT5G52640 | 5.1 | 2.6 |
| AT5G14570 | -1.2 | -0.5 | AT3G04160 | 1.4 | 0.6 | AT3G12580 | 5.4 | 3.1 |
| AT1G64890 | -1.2 | -0.4 | AT4G27370 | 1.4 | 0.4 | AT5G59720 | 5.5 | 0.4 |
| AT5G15650 | -1.1 | -0.4 | AT3G62600 | 1.4 | 0.3 | AT1G07400 | 6.1 | 3.1 |
| AT5G06060 | -1.1 | -0.4 | AT5G03830 | 1.4 | 0.7 | AT1G72660 | 6.2 | 1.9 |
| AT3G03350 | -1.1 | -0.5 | AT2G45920 | 1.4 | 1.0 | AT5G51440 | 6.4 | 2.8 |
| AT3G13060 | -1.1 | -0.4 | AT1G03410 | 1.4 | 1.2 | AT4G12400 | 6.5 | 3.1 |
| AT4G28550 | -1.0 | -0.5 | AT2G20585 | 1.4 | 0.4 | AT2G29500 | 6.7 | 1.6 |
| AT1G79080 | -1.0 | -0.4 | AT3G01770 | 1.5 | 0.6 | AT5G12030 | 7.1 | 2.4 |
| AT1G13930 | -1.0 | -0.2 | AT1G61970 | 1.5 | 0.7 | AT3G46230 | 7.3 | 2.3 |
| AT2G33740 | 1.0  | 0.5  | AT5G58590 | 1.5 | 0.7 | AT1G53540 | 7.8 | 2.0 |
| AT4G02980 | 1.0  | 0.2  | AT5G24155 | 1.5 | 0.7 |           |     |     |



**Figure 10.** Relative expression levels of heat marker genes including heat shock factors (*HSFs*) and heat shock proteins (*HSPs*) in wild type under H HrH and H LrH as compared to control condition. The values were extracted from Agilent microarray analysis.

RESULTS

A Venn diagram depicted that out of 524 upregulated and 794 downregulated genes under H HrH, 453 enhanced genes and 685 decreased genes were specific to heat stress with high relative air humidity, whereas 71 elevated genes and 109 reduced genes were differentially expressed under both H HrH and H LrH (Figure 11).To better elucidate the specific changes associated with H HrH treatment, exclusively differentially expressed genes under H HrH were compiled excluding genes displaying a tendency of change at the transcriptional level under H LrH ( $0.5 \leq |Log2FC| < 1$  and adj.P  $\leq 0.05$ ). Furthermore, these genes were analyzed whether they had been detected in eight other regular heat stress experiments listed in the Genevestigator database (https://www.genevestigator.com/gv/plant.jsp; May 2014). According to these criteria, 129 upregulated genes and 215 downregulated genes were specific to the H HrH condition (Figure 12). These specifically regulated genes were associated with photosynthesis, carbohydrate metabolism, cell wall, lipid metabolism and other functional classifications (Table 4 and Table S1). Several interesting aspects will be described in the following.



**Figure 11.** Venn diagram of differentially expressed genes in wild type under H HrH and H LrH in comparison to control condition. Only genes with changes in steady-state level of  $|Log_2FC| \ge 1$  and adj. P  $\le 0.05$  are included.



**Figure 12.** Scheme of specifically regulated genes in wild type under H HrH as compared to control condition selected according to the following criteria: I . Exclude the genes that were significantly changed under H LrH ( $|Log_2FC| \ge 1$  & adj.  $P \le 0.05$ ); II . Exclude the genes that had a tendency to change under H LrH ( $0.5 \le |Log_2FC| < 1$  & adj. $P \le 0.05$ ); II. Exclude the genes that significantly changed and had a tendency to change as compared to eight other regular heat stress treatments (\*) in Genevestigator databases ( $|Log_2FC| \ge 0.5$  & adj. $P \le 0.05$ ).

\*Experiment ID: AT-00645. 11-day-old plants were subjected to 40°C for 20 min and 1 h.

\*Experiment ID: AT-00500. Plants were grown at 22°C and then the temperature was gradually increased until photosynthesis was inhibited by 20% and 30%.

\*Experiment ID: AT-00120. 16-day-old plants were treated at 38°C for 0.5 h, 1 h and 3 h.

\*Experiment ID: AT-00402. 8-week-old plants were treated at 37°C for 2 h.

\*Experiment ID: AT-00387. 3-week-old plants were exposed to 37°C for 30 h.

\*Experiment ID: AT-00439. 7-day-old plants grown on ½ MS plates (i.e. also high air humidity) were subjected to 37°C for 1 h.

### 2.2.2.1 Photosynthesis

In our study, the photosynthesis associated gene *LIGHT HARVESTING COMPLEX PHOTOSYSTEM II (LHCB4.2)* was specifically elevated under H HrH (Table 4). As one component of the light-harvesting complex Lhcb4, *LHCB4.2* plays a role in photoprotection and the enhanced *LHCB4.2* may function in repairing the photooxidative damage induced by H HrH (de Bianchi *et al.*, 2011).

#### 2.2.2.2 Carbohydrate metabolism

Carbohydrate metabolism was balanced by both upregulated and downregulated genes under H HrH (Figure 8 and Figure 9). Two suppressed genes *STARCH EXCESS 4 (SEX4)* and *BETA-AMYLASE 5 (BAM5)* may operate to degrade starch in a coordinated manner (Kötting *et al.*, 2009; Hejazi *et al.*, 2010). In addition, *MYO-INOSITOL OXYGENASE 1 (MIOX1)* was downregulated, suggesting the accumulation of *myo*-inositol as a substrate of raffinose biosynthesis and raffinose biosynthesis genes *GALACTINOL SYNTHASE 4 (GolS4)* and *RAFFINOSE SYNTHASE 6 (RS6)* were elevated under H HrH (Table 4). These results suggest their specific roles in regulation of starch degradation as well as raffinose biosynthesis under H HrH.

### 2.2.2.3 Cell wall

Cell wall-related processes include biosynthesis of cell wall components, cell wall degradation and modification. A bi-directional regulation of cell wall processes was found under H HrH (Figure 8 and Figure 9). Among these genes, *MYO-INOSITOL OXYGENASE 1 (MIOX1)* involved in the biosynthesis of a pectin and hemicellulose precursor was downregulated, but *FRA8 HOMOLOG (F8H)* associated with hemicellulose biosynthesis was upregulated. Another two genes encoding cellulose synthase-like proteins, *CSLA14* and *CSLG1*, were elevated and reduced, respectively. In addition, cell wall degradation-associated genes *BETA-XYLOSIDASE 1 (BXL1)* and *AT5G39910* encoding pectin lyase-like proteins were both upregulated, whereas another pectin lyase-like protein encoding gene *AT1G02460* was

downregulated. Cell wall extensibility are dependent on xyloglucan endotransglucosylase /hydrolases (*XTHs*) and expansins (*EXPs*). Interestingly, all specifically regulated *XTHs* and *EXPs* were increased under H HrH (Table 4). Altogether, these data indicate that cell wall biosynthesis and degradation were specifically disturbed under H HrH and cell wall extensibility may be improved mainly by upregulation of *XTHs* and *EXPs*.

#### 2.2.2.4 Lipid metabolism

Genes associated with lipid metabolism were either upregulated or downregulated under H HrH (Figure 8 and Figure 9). 3-Ketoacyl CoA Synthase *KCS12* and carboxyl-CoA ligase *AAE12* may be involved in fatty acid and lipid biosynthetic pathways, but these two genes were oppositely regulated. Another lipid transfer protein encoding gene *A7* was specifically elevated under H HrH, but the function was not clear yet (Table 4). These specific changes in lipid metabolism under H HrH may impact cutin, wax and phospholipid biosynthesis and in turn alter the membrane integrity and plant morphology to deal with the heat stress.

#### 2.2.2.5 Secondary metabolism

Secondary metabolism was mainly restricted under H HrH (Figure 8 and Figure 9). These genes were associated with biosynthesis of isoprenoids, phenylpropanoids and glucosinolates. Genes encoding terpene synthases *TPS10* were reduced, but *1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE 1 (DXS1)* involved in monoterpene biosynthesis was elevated. In addition, *FLAVIN-MONOOXYGENASE GLUCOSINOLATE S-OXYGENASE 4 (FMO GS-OX4)* and *IQ-DOMAIN (IQD1)* were related to glucosinolate accumulation and they were both repressed under H HrH (Table 4). Altogether, the specific changes of genes associated to secondary metabolism may play a role in restriction of terpene biosynthesis, lignin biosynthesis and glucosinolate accumulation under H HrH.

#### 2.2.2.6 Hormone metabolism

The specific changed genes classified into hormone metabolism were associated with auxin responses under H HrH. *NITRILASE 2 (NIT2)* that catalyzes the hydrolysis of indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA) was reduced, but the small auxin upregulated RNAs (*SAURs*) that are involved in early auxin-responsive processes were enhanced. In addition, cytokinin and gibberellin associated genes were also differentially regulated under H HrH by elevating the expression of *CYTOKININ OXIDASE 2 (CKX2)* and *GA-STIMULATED ARABIDOPSIS 1 (GASA1)* (Table 4). This implies their specific roles in regulation of hormone metabolism under H HrH.

#### 2.2.2.7 Transport

Specific genes relevant to transport processes were mainly deregulated under H HrH. Among these genes, sucrose transporter *GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2* (*GPT2*) and cation transporter *CATION/H+ EXCHANGER 7* (*CHX7*) were repressed. In addition, *TONOPLAST INTRINSIC PROTEIN 2;1* (*TIP2;1*) was specifically increased under H HrH (Table 4). The differential regulation of transporters and channels may impact the membrane properties and contribute to osmotic regulation in H HrH treatment.

Last but not least, a large number of the functionally uncharacterized genes were associated with *stress responses, signalling transduction, development* and other functional classifications. These genes, either upregulated or highly expressed (down- or upregulated) in rosettes (Table 4) or lowly expressed and downregulated in rosettes (Table 51), were compiled into a resource for further studies of stress responses (Table 4 and Table S1). Altogether, the specific responses to H HrH involved genes related to modifying the cell wall and cell membrane properties, regulating the carbohydrate and secondary metabolism as well as adjusting the osmosis and hormone metabolism.

**Table 4.** Specifically altered genes that are upregulated or highly expressed (down- or upregulated) in rosettes of wild type under H HrH (red and green values represent fold change of significantly increased and decreased genes, respectively). See also Table S1.

| AGI           | Gene Name                                        | $Log_2FC$ | adj. <i>P</i> |
|---------------|--------------------------------------------------|-----------|---------------|
| Photosynthes  | is                                               |           |               |
| AT3G08940     | LHCB4.2                                          | 1.02      | 9.71E-13      |
| Carbohydrate  | metabolism                                       |           |               |
| AT1G14520     | MIOX1                                            | -1.07     | 2.45E-05      |
| AT4G15210     | BAM5                                             | -1.96     | 1.26E-07      |
| AT3G52180     | SEX4                                             | -1.04     | 4.11E-09      |
| AT5G20250     | RS6                                              | 1.86      | 1.08E-21      |
| AT1G60470     | GolS4                                            | 2.07      | 0.02          |
| Cell wall     |                                                  |           |               |
| AT4G24010     | CSLG1                                            | -1.53     | 2.13E-16      |
| AT3G56000     | CSLA14                                           | 1.40      | 2.74E-12      |
| AT5G22940     | F8H                                              | 1.04      | 1.24E-08      |
| AT5G49360     | BXL1                                             | 2.13      | 2.56E-14      |
| AT1G02460     | Pectin lyase-like superfamily protein            | -1.23     | 3.15E-11      |
| AT5G39910     | Pectin lyase-like superfamily protein            | 2.25      | 8.18E-04      |
| AT5G57560     | XTH22                                            | 1.04      | 0.02          |
| AT1G10550     | ХТН33                                            | 1.07      | 6.93E-07      |
| AT1G32170     | XTH30                                            | 1.21      | 9.99E-13      |
| AT4G37800     | XTH7                                             | 1.54      | 2.38E-08      |
| AT3G25050     | ХТНЗ                                             | 1.77      | 0.01          |
| AT3G45960     | EXPL3                                            | 1.39      | 3.07E-11      |
| AT2G40610     | EXP8                                             | 1.56      | 2.10E-07      |
| Lipid metabol | ism                                              |           |               |
| AT1G65890     | AAE12                                            | -1.41     | 1.86E-08      |
| AT2G28630     | KCS12                                            | 1.43      | 6.55E-16      |
| AT4G28395     | ATA7                                             | 6.16      | 3.76E-04      |
| Secondary me  | etabolism                                        |           |               |
| AT4G15560     | DXS1                                             | 1.04      | 1.26E-25      |
| AT2G24210     | TPS10                                            | -3.32     | 3.64E-10      |
| AT4G23600     | CORI3                                            | -1.67     | 6.70E-10      |
| AT4G37990     | CAD8                                             | -2.36     | 4.22E-09      |
| AT1G62570     | FMO GS-OX4                                       | -1.64     | 5.86E-13      |
| AT3G09710     | IQD1                                             | -1.09     | 9.13E-18      |
| AT3G50280     | HXXXD-type acyl-transferase family protein       | -1.22     | 3.53E-07      |
| AT4G28420     | Tyrosine transaminase family protein             | 1.16      | 5.99E-04      |
| AT2G38240     | 2OG-Fe(II) oxygenase superfamily protein         | -2.28     | 5.25E-05      |
| Hormone met   | tabolism                                         |           |               |
| AT3G44300     | NIT2                                             | -1.14     | 6.11E-04      |
| AT3G25880     | NAD(P)-binding Rossmann-fold superfamily protein | 1.15      | 0.01          |
| AT4G34770     | SAUR1                                            | 1.20      | 1.25E-05      |

|              |                                                           |       | RESULTS  |
|--------------|-----------------------------------------------------------|-------|----------|
| AT1G29490    | SAUR68                                                    | 1.31  | 2.43E-11 |
| AT4G38825    | SAUR13                                                    | 1.46  | 1.05E-10 |
| AT2G19500    | СКХ2                                                      | 1.46  | 1.39E-03 |
| AT1G74670    | GASA6                                                     | 1.87  | 2.60E-13 |
| AT3G10185    | Gibberellin-regulated GASA/GAST/Snakin family protein     | -1.67 | 5.16E-13 |
| Transport    |                                                           |       |          |
| AT1G74810    | BOR5                                                      | -1.42 | 1.51E-07 |
| AT1G61800    | GPT2                                                      | -1.31 | 1.85E-03 |
| AT5G61810    | APC1                                                      | -1.05 | 4.14E-21 |
| AT1G57990    | PUP18                                                     | 1.02  | 4.36E-04 |
| AT3G16240    | TIP2;1                                                    | 1.06  | 9.44E-07 |
| AT4G27420    | ABCG9                                                     | 1.12  | 0.05     |
| RNA          |                                                           |       |          |
| AT1G21910    | DREB26                                                    | 1.19  | 3.16E-06 |
| AT1G36060    | DREB subfamily A-6 of ERF/AP2 transcription factor family | 1.75  | 4.80E-12 |
| AT1G51120    | AP2/B3 transcription factor family protein                | 1.54  | 0.03     |
| AT3G46770    | AP2/B3-like transcriptional factor family protein         | 1.08  | 9.53E-12 |
| AT1G68840    | RAP2.8                                                    | 1.16  | 9.82E-06 |
| AT5G22570    | WRKY38                                                    | -1.95 | 2.69E-10 |
| AT2G25230    | MYB100                                                    | 2.67  | 0.05     |
| AT1G66370    | MYB113                                                    | -1.63 | 4.22E-09 |
| AT1G48000    | MYB112                                                    | -1.01 | 3.59E-04 |
| AT5G24110    | WRKY30                                                    | 1.17  | 1.55E-04 |
| AT2G40740    | WRKY55                                                    | 1.26  | 1.57E-03 |
| AT4G09820    | ТТ8                                                       | -1.81 | 6.01E-07 |
| AT4G20970    | bHLH DNA-binding superfamily protein                      | -1.48 | 2.35E-26 |
| AT4G05170    | bHLH DNA-binding superfamily protein                      | 1.65  | 0.02     |
| AT2G47890    | B-box type zinc finger protein with CCT domain            | -1.07 | 3.76E-16 |
| AT5G25390    | SHN2                                                      | -1.07 | 1.50E-06 |
| AT5G28770    | BZIP63                                                    | 1.20  | 6.90E-12 |
| AT5G15830    | bZIP3                                                     | 1.51  | 7.30E-08 |
| AT2G37060    | NF-YB8                                                    | 1.54  | 1.95E-23 |
| AT1G28450    | AGL58                                                     | 2.54  | 0.02     |
| AT2G06020    | Homeodomain-like superfamily protein                      | 2.65  | 4.33E-03 |
| AT3G27860    | Tudor/PWWP/MBT superfamily protein                        | 1.00  | 1.41E-14 |
| AT5G66270    | Zinc finger C-x8-C-x5-C-x3-H type family protein          | 1.01  | 2.09E-16 |
| Fermentation | 1                                                         |       |          |
| AT1G77120    | ADH1                                                      | -1.10 | 8.40E-07 |
| AT1G23800    | ALDH2B7                                                   | -1.00 | 9.34E-12 |
| Pentose phos | phate pathway                                             |       |          |
| AT1G13700    | PGL1                                                      | 1.28  | 2.35E-06 |
| Amino acid m |                                                           | 4.42  | 0.01     |
| AI3G16150    | ASP6B1                                                    | 1.13  | 0.01     |
|              |                                                           | 2.42  | 2 505 20 |
| AT1G51090    | Heavy metal transport/detoxification superfamily protein  | -2.12 | 3.59E-28 |

| AT3G09390     | MT2A                                                     | -1.07 | 6.88E-11 |
|---------------|----------------------------------------------------------|-------|----------|
| AT5G01600     | FER1                                                     | -1.05 | 1.80E-04 |
| AT4G39700     | Heavy metal transport/detoxification superfamily protein | 1.05  | 4.24E-11 |
| Stress        |                                                          |       |          |
| AT1G73325     | Kunitz family trypsin and protease inhibitor protein     | -1.47 | 2.61E-05 |
| AT1G58602     | Disease resistance protein                               | -1.34 | 2.07E-12 |
| AT4G38410     | Dehydrin family protein                                  | -1.18 | 2.32E-11 |
| AT2G21620     | RD2                                                      | -1.11 | 5.58E-19 |
| AT4G16880     | Leucine-rich repeat family protein                       | -1.05 | 5.69E-12 |
| AT4G36010     | Pathogenesis-related thaumatin superfamily protein       | -1.01 | 9.30E-11 |
| AT1G11000     | MLO4                                                     | 1.03  | 1.03E-16 |
| AT1G71400     | RLP12                                                    | 1.11  | 7.98E-10 |
| AT1G50060     | CAP superfamily protein                                  | 2.25  | 0.02     |
| Nucleotide me | etabolism                                                |       |          |
| AT1G14240     | Nucleoside phosphatase family protein                    | -1.60 | 3.77E-11 |
| AT1G73540     | NUDT21                                                   | 1.02  | 3.58E-03 |
| Miscellaneous | s enzyme families                                        |       |          |
| AT2G39030     | NATA1                                                    | -2.14 | 2.93E-09 |
| AT1G45191     | BGLU1                                                    | -2.02 | 3.03E-16 |
| AT2G29460     | GST22                                                    | -1.58 | 1.42E-07 |
| AT4G39500     | CYP96A11                                                 | 1.39  | 0.03     |
| AT4G15490     | UGT84A3                                                  | -1.04 | 1.51E-15 |
| AT5G61290     | Flavin-binding monooxygenase family protein              | -1.42 | 2.38E-13 |
| AT4G22517     | Protease inhibitor/LTP family protein                    | -1.29 | 1.12E-03 |
| AT4G22513     | Protease inhibitor/LTP family protein                    | -1.63 | 5.80E-05 |
| AT4G22485     | Protease inhibitor/LTP family protein                    | -1.10 | 3.60E-03 |
| AT3G16410     | NSP4                                                     | -1.28 | 1.35E-07 |
| AT4G09750     | Oxidoreductase superfamily protein                       | -1.27 | 6.52E-16 |
| AT1G68470     | Exostosin family protein                                 | -1.12 | 7.98E-13 |
| AT2G48130     | Bifunctional inhibitor/lipid-transfer protein            | 1.02  | 0.04     |
| AT2G45180     | Bifunctional inhibitor/lipid-transfer protein            | 1.07  | 4.83E-08 |
| AT4G22505     | Bifunctional inhibitor/lipid-transfer protein            | -1.08 | 3.89E-03 |
| AT4G28405     | Bifunctional inhibitor/lipid-transfer protein            | 1.13  | 0.01     |
| AT1G33811     | GDSL-like Lipase/Acylhydrolase superfamily protein       | 1.10  | 1.78E-06 |
| AT4G18970     | GDSL-like Lipase/Acylhydrolase superfamily protein       | 1.34  | 3.65E-09 |
| Protein       |                                                          |       |          |
| AT5G25110     | SnRK3.25                                                 | -1.73 | 1.74E-10 |
| AT4G17470     | Alpha/beta-Hydrolases superfamily protein                | -1.48 | 2.85E-04 |
| AT3G50720     | Protein kinase superfamily protein                       | 2.18  | 0.04     |

## 2.2.3 Impact of high relative air humidity on combined drought and heat stress

To identify the alteration of responses to combined drought and heat stresses with different relative air humidity in wild type, GO assignment was performed by MapMan 3.5.1R2 and the functional categories excluding the group of not assigned genes are shown in Figure 13 and Figure 14. Either upregulated or downregulated genes were mainly associated with miscellaneous enzyme families, stress responses, RNA related process and protein modification or degradation under both DH HrH and DH LrH (Figure 13 and Figure 14). In addition, to evaluate the drought effect and heat effect in response to combined drought and heat stress, Venn diagram was applied with the differentially expressed genes under drought stress, heat stress and combined drought and heat stress as compared to control condition (Figure 15). The results showed that out of 1499 upregulated and 1850 downregulated genes under DH HrH, 478 enhanced and 505 reduced genes were changed due to the drought effect as well as 251 increased and 312 decreased genes were changed due to the heat effect. Another 68 upregulated and 117 downregulated genes were regulated by both drought effect and heat effect (Figure 15A). In addition, out of 2051 upregulated and 2510 downregulated genes under DH LrH, 669 enhanced and 621 reduced genes were changed due to the drought effect as well as 40 increased and 50 decreased genes were changed due to the heat effect. Another 77 enhanced and 73 repressed genes were differentially regulated by both drought effect and heat effect (Figure 15B). These results suggest that less drought responsive genes, but more heat responsive genes were differentially regulated under DH HrH than under DH LrH. In particular, the drought marker genes including ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR 2 (ABF2), NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR 3 (ABF3), DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2 (DREB2A) and RESPONSIVE TO DESSICATION 29B (RD29B) were generally less upregulated under DH HrH than under DH LrH (Figure 16A) and the heat marker genes involved in heat shock factors (*HSFs*) and heat shock proteins (*HSPs*) were generally stronger upregulated except *HSFB2A* under DH HrH than under DH LrH (Figure 16B). Altogether, these results indicate that drought effect is alleviated, but heat effect is aggravated under DH HrH as compared to DH LrH.



**Upregulation** 

**Figure 13.** Gene ontology (GO) categories of upregulated genes in wild type under DH HrH and DH LrH in comparison to control condition. MapMan 3.5.1R2 was applied using differentially expressed genes (See 4.2.4.1). The portion of different groups is given in percent.



## **Downregulation**





**Figure 15.** Venn diagram of differentially expressed genes in wild type under (A) drought stress, H HrH and DH HrH; (B) drought stress, H LrH and DH LrH in comparison to control condition. Only genes with changes in steady-state level of  $|Log_2FC| \ge 1$  and adj.  $P \le 0.05$  are included.



**Figure 16.** Relative expression levels of (A) drought marker genes and (B) heat marker genes in wild type under DH HrH and DH LrH as compared to control condition. The values were extracted from Agilent microarray analysis.

A Venn diagram depicted that out of 1499 upregulated and 1850 downregulated genes under DH HrH, 282 enhanced genes and 237 decreased genes were specifically regulated under combined stress with high air humidity, whereas additional 1217 elevated genes and 1613 reduced genes were differentially regulated under both DH HrH and DH LrH (Figure 17).



**Figure 17.** Venn diagram of differentially expressed genes in wild type under DH HrH and DH LrH as compared to control condition. Only genes with changes in steady-state level of  $|Log_2FC| \ge 1$  and adj.  $P \le 0.05$  are included.

To better elucidate the specific changes in response to DH HrH treatment, exclusively altered genes under DH HrH were compiled excluding the genes even with a tendency to change at the transcriptional level under DH LrH (0.5  $\leq$  |Log<sub>2</sub>FC| < 1 and adj.P  $\leq$  0.05) as well as the genes which were significantly changed or tended to be changed ( $|Log_2FC| \ge 0.5$  and adj. $P \le 0.5$ 0.05) in another combined drought and regular heat stress (Prasch and Sonnewald, 2013; Figure 18). Then 80 upregulated genes and 62 downregulated genes were specific to the DH HrH treatment (Figure 18). These specifically regulated genes under DH HrH were associated with carbohydrate metabolism, cell wall, lipid metabolism and other aspects (Table 5 and Table S2). Among these genes, KCS19 was repressed which may play a role in reducing the wax biosynthesis. The genes associated with hormone metabolism were bi-directionally regulated. The auxin-responsive gene SAUR69 was upregulated, but GRETCHEN HAGEN 3.12 (GH3.12) was downregulated. The gene encoding CKX3, which catalyzes the degradation of cytokinins, was elevated. This suggests that the hormone metabolism was specific modified under DH HrH. In addition, a large number of functionally uncharacterized genes specifically under DH HrH were detected and could be compiled as a genetic resource for further studies on stress responses in plants.

Although a strong alteration of transcription was elucidated under DH HrH, most of the genes were commonly regulated in comparison to DH LrH and only a small number of genes were specifically regulated during DH HrH responses. Therefore, in contrast to the findings for heat stress, high relative air humidity has only a slight impact in response to combined drought and heat stress.



**Figure 18.** Scheme of specifically regulated genes in wild type under DH HrH as compared to control condition selected according to the following criteria: I . Exclude the genes that were significantly changed under DH LrH ( $|Log_2FC| \ge 1$  & adj.  $P \le 0.05$ ); II . Exclude the genes that had a tendency to change under DH LrH ( $0.5 \le |Log_2FC| < 1$  & adj. $P \le 0.05$ ); II. Exclude the genes that significantly changed and had a tendency to change as compared to published data ( $|Log_2FC| \ge 0.5$  & adj. $P \le 0.05$ ) (Prasch and Sonnewald, 2013).

**Table 5.** Specifically altered genes that are upregulated or highly expressed (down- or upregulated) in rosettes of wild type under DH HrH (red and green values represent fold change of significantly increased and decreased genes, respectively). See also Table S2.

| AGI          | Gene Name                             | Log <sub>2</sub> FC | adj. <i>P</i> |
|--------------|---------------------------------------|---------------------|---------------|
| Cell wall    |                                       |                     |               |
| AT1G54970    | PRP1                                  | 3.51                | 0.01          |
| AT4G33840    | Glycosyl hydrolase family 10 protein  | 2.58                | 4.68E-04      |
| AT5G48140    | Pectin lyase-like superfamily protein | 1.37                | 0.02          |
| Lipid metabo | lism                                  |                     |               |
| AT4G04930    | DES-1-LIKE                            | 1.47                | 0.03          |
| AT5G04530    | KCS19                                 | -1.02               | 2.33E-07      |
| Secondary m  | etabolism                             |                     |               |
| AT1G32910    | NA                                    | 1.33                | 0.02          |
| AT5G54060    | UF3GT                                 | 1.11                | 0.03          |
| Hormone me   | tabolism                              |                     |               |
| AT5G10990    | SAUR69                                | 2.09                | 1.87E-10      |
| AT5G13320    | GH3.12                                | -1.23               | 3.08E-18      |
| AT5G24140    | SQP2                                  | 2.63                | 6.83E-06      |
| AT5G56970    | СКХЗ                                  | 1.23                | 7.95E-04      |
| Transport    |                                       |                     |               |
| AT4G00350    | MATE efflux family protein            | 3.02                | 0.02          |
| Pentose phos | sphate pathway                        |                     |               |
| AT5G24410    | PGL4                                  | 1.02                | 0.03          |
| Amino acid m | netabolism                            |                     |               |
| AT4G28410    | NA                                    | 1.67                | 6.07E-07      |
| Stress       |                                       |                     |               |
| AT1G33900    | NA                                    | 2.64                | 0.01          |
| AT4G22115    | SCRL14                                | 1.57                | 0.01          |
| AT4G23515    | NA                                    | 1.88                | 9.40E-04      |
| AT5G66890    | NA                                    | 3.21                | 2.51E-04      |
| Miscellaneou | s enzyme families                     |                     |               |
| AT1G33220    | NA                                    | 1.71                | 1.64E-03      |
| AT1G48700    | NA                                    | 1.16                | 1.28E-03      |
| AT1G67110    | СҮР735А2                              | 1.39                | 0.02          |
| AT1G73560    | NA                                    | 2.01                | 1.12E-03      |
| AT3G50990    | NA                                    | 1.04                | 1.07E-03      |
| AT3G55780    | NA                                    | 1.34                | 0.04          |
| AT5G24540    | BGLU31                                | 2.20                | 4.76E-04      |
| AT5G42260    | BGLU12                                | 1.99                | 8.55E-04      |
| AT5G46990    | NA                                    | 1.49                | 0.04          |
| RNA          |                                       |                     |               |
| AT1G18790    | RKD1                                  | 3.04                | 1.61E-03      |
| AT1G49130    | NA                                    | 1.16                | 6.27E-07      |
| AT2G30380    | NA                                    | 4.52                | 3.44E-03      |

|            |         |       | RESULIS  |
|------------|---------|-------|----------|
|            |         |       |          |
| AT3G53600  | NA      | 1.93  | 0.01     |
| AT4G10680  | NA      | 2.46  | 0.01     |
| AT5G27090  | AGL54   | 1.55  | 0.01     |
| DNA        |         |       |          |
| AT4G04402  | NA      | 4.83  | 0.01     |
| AT4G04957  | NA      | 2.19  | 0.02     |
| Protein    |         |       |          |
| AT1G14315  | NA      | 1.66  | 0.01     |
| AT2G03000  | NA      | 1.96  | 0.03     |
| AT2G16450  | NA      | 1.24  | 0.03     |
| AT2G27650  | NA      | 1.82  | 8.44E-04 |
| AT3G09790  | UBQ8    | 3.37  | 0.02     |
| AT3G19890  | NA      | 3.83  | 0.04     |
| AT5G12090  | NA      | 1.67  | 0.03     |
| AT5G17730  | NA      | 1.18  | 3.86E-03 |
| AT5G41440  | NA      | 1.87  | 9.65E-04 |
| AT5G67120  | NA      | 1.37  | 3.13E-03 |
| Signalling |         |       |          |
| AT1G18210  | NA      | -1.21 | 2.95E-17 |
| AT2G04300  | NA      | 1.70  | 0.02     |
| AT2G20660  | RALFL14 | 3.64  | 7.12E-04 |
| AT3G29780  | RALFL27 | 2.25  | 0.01     |
| AT3G46760  | NA      | 2.15  | 0.01     |
| AT5G41300  | NA      | 1.15  | 0.04     |
| AT5G48130  | NA      | 1.70  | 0.04     |
| Cell       |         |       |          |
| AT3G11820  | SYP121  | -1.08 | 1.48E-11 |
| Developmen | t       |       |          |
| AT3G20400  | EMB2743 | 1.83  | 0.01     |

## 2.2.4 Impact on expression of aquaporins under water-deficit stresses

Aquaporins are highly diverse in *Arabidopsis thaliana* (Johanson *et al.*, 2001) and the differential regulation of *PIPs* is considered to be essential for water homeostasis in response to drought stress (Alexandersson *et al.*, 2005). To test the transcriptional alteration of aquaporins in wild-type rosettes under water stresses, expression of all the *PIPs* and *TIPs* were extracted from Agilent microarray data described in the beginning of this chapter. The results showed that *PIPs* were generally repressed under drought stress except that *PIP1;4* and *PIP2;5* tended to be increased, which is in agreement with a previous study (Alexandersson *et al.*, 2005). Interestingly, *PIP2;1* and *PIP2;2*, two major *PIP* isoforms

expressed in leaves, were upregulated under both H HrH and H LrH. This upregulation was unrelevant to the different relative air humidity. Then *PIP2;3, PIP2;7* and *PIP1;5* were also induced by heat, at least in one heat scenario (H LrH and/or H HrH). In addition, the regulation of aquaporins under combined drought and heat stress was different from either heat stress or drought stress. *PIP2;8* was apparently repressed, whereas *PIP1;4, PIP2;3* and *PIP2;5* were induced under combined drought and heat stress (Figure 19). Altogether, differential regulation of aquaporin expressions was exhibited in response to variable water stresses. This implies different roles of aquaporin isoforms in adjusting the water homeostasis during water stress responses.



**Figure 19.** Relative expression levels of *PIPs* in wild type under water stresses as compared to control condition. Values present the integration of microarray data from at least two independent experiments. Significant differences from control condition followed by an asterisk (\*) are based on ANOVA analysis.

# 2.3 Involvement of *PIP2;1*, *PIP2;2* and *PIP2;4* in responses to variable environmental scenarios

# 2.3.1 Phenotypic and physiological characteristics of *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4*

Plant aquaporins facilitate transport of water and small neutral solutes such as CO<sub>2</sub>. Therefore, loss of the functions of aquaporins may affect various physiological processes and eventually plant growth. To elucidate the impact of major *PIPs*, *PIP2*;1 and *PIP2*;2 as well as an additional root-specifically expressed *PIP* gene, *PIP2*;4, on plant phenotypic characteristics, the growth of *pip2*;1 *pip2*;2, *pip2*;1 *pip2*;2 *pip2*;4 and wild type was examined using two-week-old seedlings grown on ½ MS agar medium or four-week-old plants grown on well-watered soil. The results showed that there were no visible differences in vegetative growth among *pip* mutants and wild type (Figure 20A and Figure 21A). Also, fresh weight of the rosettes and roots (Figure 20B and Figure 21C) as well as the leaf area (Figure 21B) were not changed in *pip* mutants as compared to the wild type.



**Figure 20.** Vegetative growth of *pip2;1 pip2;2 (DM), pip2;1 pip2;2 pip2;4 (TM)* and wild type (WT) grown on ½ MS medium for two weeks. (A) Growth of *Arabidopsis* seedlings. (B) Fresh weights of the roots and rosettes in *pip* mutants and wild type. Data are the mean ± SD of six biological replicates, each containing five to seven individual seedlings.







**Figure 21.** Vegetative growth of *pip2;1 pip2;2* (*DM*), *pip2;1 pip2;2 pip2;4* (*TM*) and wild-type plants (WT) on well-watered soil for four weeks. (A) Growth of *pip* mutants and wild-type plants. (B) Area of rosettes of *pip* mutants and wild type. (C) Fresh weight of rosettes of *pip* mutants and wild type (Methods 4.2.1.2). Data are the mean ± SD of six individual rosettes.

The alteration of rH/VPD at a given temperature has effects on plant water homeostasis through water-loss modulation. This adaptation may involve the functions of aquaporins (See 1.2). Thus, to explore the effects of loss of *PIP2;1* and *PIP2;2* as well as *PIP2;4* on water relations under variable relative air humidity in intact plants, gas exchange and photosynthesis were assessed at gradually increased rH (20%, 40%, 60% and 75%) in *pip* mutants and wild type (See 4.2.1.3). Overall, the transpiration rate (E) and the stomata conductance of water vapor ( $g_s$ ) of all genotypes were progressively increased with the reduction of rH, whereas the net photosynthesis (A) and intercellular CO<sub>2</sub> concentration (Ci) were not changed (Figure 22). These results are in agreement with a previous study (Ottosen *et al.*, 2002). In particular, no differences were observed with a measurement of gas exchange in *pip2;1 pip2;2* at high relative air humidity, but a slightly reduction was detected in *pip2;1 pip2;2* as compared to the wild type at low rH condition. In addition, transpiration rate, stomatal conductance of water vapor and intracellular CO<sub>2</sub> concentration were slightly 46

inhibited in *pip2;1 pip2;2 pip2;4* in comparison to the wild type at 20%, 40% or 60% rH (Figure 22A-D).

Water use efficiency (WUE) was calculated as a ratio of net photosynthesis and transpiration rate. The results showed that water use efficiency was enhanced with increasing rH in all genotypes which can be explained by the reduction of the transpiration rate. However, water use efficiency was marginally increased in *pip2;1 pip2;2 pip2;4* as compared to the wild type at each rH condition, still there were no changes in *pip2;1 pip2;2* (Figure 22E). On the other hand, the discrimination against <sup>13</sup>CO<sub>2</sub> vs. <sup>12</sup>CO<sub>2</sub> by ribulose-bisphosphate carboxylase/ oxygenase (Rubisco) is associated with the relative magnitudes of net photosynthesis and stomatal conductance. Carbon isotope composition ( $\delta^{13}$ C), which indicates the relative abundance of <sup>13</sup>C and <sup>12</sup>C, will be increased when gas exchange and stomatal conductance are reduced. Thus, this is a useful index for assessing water use efficiency (Seibt *et al.*, 2008). The isotopic ratio was measured using four-week-old rosettes grown on well-watered soil by mass spectrometry (See 4.2.1.4). There were no apparent changes of  $\delta^{13}$ C in *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* as compared to the wild type (Figure 23A). Thus, the slight changes in WUE could not be confirmed by this assessment.

In parallel, the relative water loss of the detached leaves, which is determined by leaf properties such as stomatal aperture, hydraulic conductance and leaf morphology, was examined by measurement of water retention in *pip* mutants and wild type. Interestingly, a decreased water loss was observed in *pip2;1 pip2;2* as compared to the wild type, but not in *pip2;1 pip2;2 pip2;4* (Figure 23B).

Taken together, these data showed that loss of *PIP2;1* and *PIP2;2* reduced the relative water loss of detached leaves, but loss of additional *PIP2;4* eliminated this reduction of relative water loss. In addition, loss of *PIP2;1* and *PIP2;2* tended to reduce the transpiration rate and the stomata conductance of water vapor and this impact was getting more obvious under low relative air humidity or in *pip2;1 pip2;2 pip2;4*. This implies that the impacts of *PIP2;1* 



and *PIP2;2* as well as of *PIP2;4* on leaf physiological characteristics are dependent on the water demand in air and the water transport in root.

**Figure 22.** Gas exchange characteristics in leaves of four-week-old *pip* mutants and wild type at different relative air humidity conditions. (A) Transpiration rate. (B) Stomatal conductance of water vapor. (C) Net photosynthesis. (D) Intercellular  $CO_2$  concentration. (E) Water use efficiency (ratio of net photosynthesis and transpiration rate). Data are mean  $\pm$  SD (n=8). Different letters correspond to significant differences (*P*<0.05) between genotypes based on the Student's *t* test. 48



**Figure 23.** Physiological properties of four-week-old *pip* mutants and wild type under well watered condition. (A) Carbon isotope composition ( $\delta^{13}$ C) of leaves. (B) Relative water loss of detached rosettes assessed *via* percentage of initial fresh weight. Values are displayed as mean ± SD of three biological replicates, each including three to four rosettes. Significant differences of *pip* mutants as compared to the wild type according to Student's *t* test are marked by asterisks (\*\**P*<0.01 and \*\*\**P*<0.001).

### 2.3.2 Variation of aquaporin expression in *pip* mutants under variable

## environmental scenarios

The expression of all the other *PIPs* was assessed in *pip* mutants under variable conditions using Agilent microarrays in order to address the effects of the loss of *PIP2;1*, *PIP2;2* and the additional knockout of *PIP2;4* on the transcription of other aquaporins,. The significantly changed genes in *pip* mutants were defined as the ones having  $|Log_2FC| \ge 1$  and  $adj.P \le 0.05$  as compared to the wild type (See 4.2.4.1). Under well-watered condition, none of the aquaporin genes was apparently changed and only *PIP2;3* showed a slight reduced in both *pip* mutants (Figure 24). The slight reduction of *PIP2;3* was exhibited in *pip2;1 pip2;2* also under D, H LrH and DH LrH stresses (Figure 25A) as well as in *pip2;1 pip2;2 pip2;4* under DH LrH stress (Figure 25B). However, the loci of *PIP2;2* and *PIP2;3* are within 3 kb of the genomic DNA and it cannot therefore be excluded that the T-DNA insertion also effects the expression of *PIP2;3*. Therefore, there were no substantial changes in major *PIPs* expression

levels associated with the loss of the isoforms *PIP2;1*, *PIP2;2* and *PIP2;4*. Importantly, there were no compensating upregulation of other *PIP* isoforms.



**Figure 24.** Relative expression levels of *PIPs* in (A) *pip2;1 pip2;2 (DM)* and (B) *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under well-watered condition. Expression values were obtained from three independent microarray experiments with three biological replicates each and integrated by the limma R package (Smyth *et al.*, 2005). The red and green lines show the selection thresholds for upregulated and downregulated genes, respectively. Significant changes (if any) are marked by an asterisk.



**Figure 25.** Relative expression levels of *PIPs* in (A) *pip2;1 pip2;2* (*DM*) and (B) pip2;1 pip2;2 pip2;4 (*TM*) as compared to the wild type under water stresses. Expression values were obtained from two (D, H LrH and DH LrH) or three (H HrH and DH HrH) independent microarray experiments with three biological replicates each and integrated by the limma R package (Smyth *et al.*, 2005). The red and green lines show the selection thresholds for upregulated and downregulated genes, respectively. Significant changes (if any) are marked by an asterisk.

## 2.3.3 Changes of *pip* mutants in response to variable environmental scenarios

# 2.3.3.1 Transcriptome profiling of *pip* mutants under well-watered condition

To test the transcriptional changes in rosettes induced by loss of the major *PIPs* and additional root specific *PIP* expression under normal growth condition, Agilent microarrays were employed for transcriptome analysis in *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* grown on well-watered soil for four weeks (See 4.2.2.1). Transcripts having  $|Log_2FC| \ge 1$  and  $adj.P \le 0.05$  in *pip* mutants as compared to the wild type were selected as differentially expressed genes and used for further analysis (See 4.2.4.1).

In total, 65 genes were differentially regulated in *pip2;1 pip2;2*. Among these genes, 17 were induced and 48 were repressed. In *pip2;1 pip2;2 pip2;4*, only 18 genes were differentially expressed including six upregulated genes and 12 downregulated genes (Figure 26A; Table 6). Two upregulated genes and 11 downregulated genes were overlapping between the two mutants. Consequently, 15 induced genes and 37 repressed genes were unique to *pip2;1 pip2;2*, but only four upregulated and one downregulated genes were unique to *pip2;1 pip2;2 pip2;4* (Figure 26B; Table 6). These data indicate that greater transcriptional changes as a response to the loss of *PIP2;1* and *PIP2;2* in the presence of *PIP2;4*.

To better understand the functional classification of the differentially expressed genes in *pip* mutants, gene ontology (GO) analysis was employed using MapMan 3.5.1R2. The differentially regulated genes were involved in *major carbohydrates metabolism, cell wall, lipid metabolism, secondary metabolism, RNA transcripts, protein modification and degradation* in both *pip* mutants. In addition, the differential regulations in *signalling, transport, development, miscellaneous enzyme families* as well as *biotic and abiotic stress* 

*responses* were specifically displayed in *pip2;1 pip2;2*. Moreover, a large number of functionally uncharacterized genes were detected in both *pip* mutants (Figure 27; Table 6).

Among the differentially expressed genes of both *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* under well-watered condition, *QUA-QUINE STARCH* (*QQS*), which is a negative regulator of starch accumulation, and *DESULFO-GLUCOSINOLATE SULFOTRANSFERASE 18* (*SOT18*), which is involved in the final step of glucosinolate core structure biosynthesis, were enhanced. Among the transcripts that were specifically decreased in *pip2;1 pip2;2*, two genes encoding cell wall surface modification, *AGP5* and *PME17*, as well as the transporter *CATION EXCHANGER 3* (*CAX3*) was detected. In addition, the protein kinase *CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASE 7* (*CRK7*) was repressed. For specifically regulated genes in *pip2;1 pip2;2 pip2;4*, no clear cellular function could be assigned (Table 6).

To extend the functional interpretation of the unknown genes, co-expressed gene networks of identified differentially expressed genes in *pip* mutants were retrieved from ATTED-II (http://atted.jp) (Figure 28; Table 6). Interestingly, the function unknown genes *AT2G44240*, *AT3G13950*, *AT4G10500* as well as *AT1G26380* were strongly co-expressed with *AGP5*, *CAX3*, two protein kinases *CRK7* and *RLP7* as well as three stress responding genes *SAG13*, *PR1* and *YLS9* (Figure 28A). In addition, the function unknown gene *AT1G30700* was positively co-expressed with *PME17*, *CHX17* and defense responding gene *KUNITZ trypsin inhibitor 1* (*KT11*) (Figure 28B). The extended genes included in the co-expression network also displayed a slight reduction in our data (Table 7). The coexpression networks suggest that these functionally unknown genes may be involved in cell wall modification, ion homeostasis or defense responses. In contrast to *pip2;1 pip2;2*, the transcripts altered in *pip2;1 pip2;2 pip2;4* were not part of specific co-expression networks which could give additional information on their functional implication.

Taken together, the transcriptome data showed that loss of the functional *PIP2;1* and *PIP2;2* induced the alterations associated to *cell wall modification, cell membrane compartments, modulation of membrane transporters* and *starch metabolism* under well-watered condition.

The alterations at the transcriptional levels were more pronounced in *pip2;1 pip2;2* than in *pip2;1 pip2;2 pip2;4*.



**Figure 26.** Global differentially expressed genes in *pip* mutants as compared to the wild type under well-watered condition. (A) Number of differentially expressed genes in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)*. Red and green marks represent upregulated and downregulated genes, respectively. (B) Venn diagrams showing the differentially expressed genes unique or common to *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4*. Only transcripts with steady-state fold change  $|Log_2FC| \ge 1$  and adj.*P*  $\le 0.05$  are included.



**Figure 27.** Gene ontology categories of differentially expressed genes in (A) *pip2;1 pip2;2 (DM*) and (B) *pip2;1 pip2;2 pip2;4 (TM*), respectively, under well-watered condition. The total number of differentially expressed genes assigned to each category and the percentage among all differentially expressed genes are given. The categorization was done by MapMan 3.5.1R2.



**Figure 28.** Co-expression networks obtained from ATTED-II (http://atted.jp) by querying with specifically repressed genes (marked by green squares) in *pip2;1 pip2;2* as compared to wild type under well-watered condition.

**Table 6.** Differentially expressed genes either in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under well-watered condition (red and green values represent fold change of significantly increased and decreased genes, respectively; black values represent non-significant fold changes with adj. $P \ge 0.05$ ; Black dashes "–" represent the low expressed genes that cannot be detected; NA, Not Assigned; The genes in bold are highly expressed in leaves).

| _             | Log        | ₂FC       | -        |                                                            |
|---------------|------------|-----------|----------|------------------------------------------------------------|
| AGI Code      | DM         | ТМ        | Name     | Annotation                                                 |
| Major carboł  | nydrates   | metabo    | lism     |                                                            |
| AT3G30720     | 1.60       | 2.61      | QQS      | Starch metabolism                                          |
| Cell wall     |            |           |          |                                                            |
| AT1G35230     | -1.11      | -0.62     | AGP5     | Arabinogalactan-protein                                    |
| AT2G45220     | -1.07      | -0.63     | PME17    | Pectin methylesterase 17                                   |
| AT5G39280     | -3.90      | -3.10     | EXPA23   | Expansin 23                                                |
| Lipid metabo  | lism       |           |          |                                                            |
| AT3G55180     | -1.80      | -2.13     | NA       | Alpha/beta-Hydrolases superfamily protein                  |
| Secondary m   | etabolisı  | n         |          |                                                            |
| AT3G44300     | -1.12      | -0.45     | NIT2     | Nitrilase 2 that catalyzes the hydrolysis of IAN to IAA    |
| AT3G19160     | 3.46       | -         | PGA22    | ATP/ADP isopentenyl transferases                           |
| AT1G74090     | 1.29       | 1.31      | SOT18    | Desulfoglucosinolate sulfotransferase                      |
| Signalling    |            |           |          |                                                            |
| AT4G23150     | -1.09      | -0.34     | CRK7     | Cysteine-rich receptor-like protein kinase                 |
| AT1G47890     | -1.11      | -0.56     | RLP7     | Receptor like protein 7                                    |
| AT4G18250     | -1.01      | -0.51     | NA       | Transmembrane receptor serine/threonine kinase             |
| AT1G51890     | -1.28      | -0.68     | NA       | Leucine-rich repeat protein kinase family protein          |
| Transport     |            |           |          |                                                            |
| AT3G51860     | -1.00      | -0.51     | CAX3     | Ca <sup>2+</sup> /H <sup>+</sup> antiporter                |
| AT4G23700     | -1.11      | -0.44     | CHX17    | Member of K <sup>+</sup> /H <sup>+</sup> antiporter family |
| AT1G14870     | -1.01      | -0.45     | PCR2     | Membrane protein involved in zinc transport                |
| AT3G23550     | -1.39      | -1.09     | NA       | MATE efflux family protein                                 |
| AT4G08570     | 1.48       | 0.96      | NA       | Heavy metal transport/detoxification superfamily protein   |
| Developmen    | t          |           |          |                                                            |
| AT2G35980     | -1.07      | -0.86     | YLS9     | Similar to tobacco hairpin-induced gene (HIN1)             |
| AT5G07930     | -1.46      | -         | MCT2     | Member of mei2-like gene family                            |
| Miscellaneou  | ıs enzym   | e familie | es       |                                                            |
| AT1G26380     | -1.05      | -0.74     | NA       | FAD-binding Berberine family protein                       |
| AT1G30700     | -1.15      | -0.68     | NA       | FAD-binding Berberine family protein                       |
| AT5G35920     | 4.89       | 0.00      | CYP79A4P | Cytochrome P450 pseudogene                                 |
| AT3G30290     | 1.64       | 0.05      | CYP702A8 | Member of cytochrome P450 gene family                      |
| AT3G48270     | 2.81       | -         | CYP71A26 | Putative cytochrome P450                                   |
| AT5G37940     | 1.04       | 0.90      | NA       | Zinc-binding dehydrogenase family protein                  |
| AT1G73610     | 2.01       | 0.01      | NA       | GDSL-like Lipase/Acylhydrolase superfamily protein         |
| Biotic and ab | iotic stre | ess       |          |                                                            |
| AT2G29350     | -1.00      | -0.42     | SAG13    | Senescence-associated gene 13                              |
| AT2G14610     | -2.10      | -0.75     | PR1      | Pathogenesis-related gene 1                                |

|              |           |         | 17 <b>-</b> 14 |                                                          |
|--------------|-----------|---------|----------------|----------------------------------------------------------|
| AT1G/3260    | -1.64     | -0.52   | K111           | Kunitz trypsin inhibitor 1                               |
| AT1G09260    | -3.27     | -3.37   | NA             | Chaperone DnaJ-domain superfamily protein                |
| RNA.Transcr  | iption    |         |                |                                                          |
| AT3G28470    | -2.59     | -       | MYB35          | Member of the R2R3 factor gene family.                   |
| AT3G04570    | -1.57     | -1.41   | AHL19          | AT-hook motif nuclear-localized protein 19               |
| AT1G53490    | -1.67     | -1.72   | HEI10          | A RING finger-containing protein                         |
| AT4G21010    | 7.10      | 0.73    | NA             | Transcription initiation factor TFIIE, beta subunit      |
| Protein mod  | ification | and deg | radation       |                                                          |
| AT2G03160    | -2.21     | -       | SK19           | SKP1-like 19                                             |
| AT4G21830    | -1.00     | -0.63   | MSRB7          | Methionine sulfoxide reductase B7                        |
| AT4G21840    | -1.53     | -0.70   | MSRB8          | Methionine sulfoxide reductase B8                        |
| AT3G28510    | -1.64     | -0.73   | NA             | P-loop containing nucleoside triphosphate hydrolases     |
| AT4G10820    | -2.14     | -2.03   | NA             | F-box family protein                                     |
| AT1G17545    | -4.19     | -4.98   | NA             | Protein phosphatase 2C family protein                    |
| AT5G39560    | -3.33     | -3.07   | NA             | Galactose oxidase/kelch repeat superfamily protein       |
| AT2G02660    | 5.90      | -       | NA             | F-box associated ubiquitination effector family protein  |
| AT5G04010    | 4.20      | -       | NA             | F-box family protein                                     |
| AT1G33910    | 2.33      | -       | NA             | P-loop containing nucleoside triphosphate hydrolases     |
| AT1G07430    | 1.11      | 0.78    | HAI2           | AKT1 interacting protein phosphatase                     |
| Not assigned | I         |         |                |                                                          |
| AT1G67270    | -1.00     | -1.00   | NA             | Zinc-finger domain of monoamine-oxidase A repressor      |
| AT4G00700    | -1.23     | -0.37   | NA             | C2 calcium/lipid-binding plant phosphoribosyltransferase |
| AT4G08097    | -4.05     | -3.27   | NA             | Best protein match is myosin heavy chain-related         |
| AT4G10500    | -1.33     | -0.27   | NA             | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase      |
| AT1G67670    | -1.91     | -       | NA             | Unknown protein                                          |
| AT2G44240    | -1.55     | -0.63   | NA             | Unknown protein                                          |
| AT3G13950    | -1.01     | -0.42   | NA             | Unknown protein                                          |
| AT3G28320    | -1.56     | -1.27   | NA             | Unknown protein                                          |
| AT3G63020    | -3.29     | -       | NA             | Unknown protein                                          |
| AT4G33390    | -1.59     | -1.54   | NA             | Unknown protein                                          |
| AT4G35837    | -2.52     | -       | NA             | Unknown protein                                          |
| AT4G33905    | 1.10      | 0.69    | NA             | Peroxisomal membrane 22 kDa family protein               |
| AT5G05430    | 1.12      | -0.07   | NA             | Unknown protein                                          |
| AT3G09110    | 3.41      | 0.67    | NA             | Unknown protein                                          |
| AT1G53480    | -5.46     | -5.31   | MRD1           | <i>mto 1</i> responding down                             |
| AT5G03090    | -2.52     | -2.49   | NA             | Best Arabidopsis thaliana protein match is MRD1          |
| AT1G68680    | -1.41     | -1.40   | NA             | Unknown protein                                          |
| AT1G75870    | -2.28     | -2.32   | NA             | Unknown protein                                          |
| AT1G78922    | -1.46     | -1.47   | NA             | Unknown protein                                          |
| AT5G26290    | -2.78     | -2.36   | NA             | TRAF-like family protein                                 |
| AT5G54020    | -1.75     | -1.69   | NA             | Cysteine/Histidine-rich C1 domain family protein         |
| AT1G29180    | 0.15      | 1.39    | NA             | Cysteine/Histidine-rich C1 domain family protein         |
| AT5G15690    | -0.62     | 2.80    | NA             | zinc ion binding                                         |
| AT4G18500    | 0.03      | 1.60    | NA             | Unknown protein                                          |
| AT5G60650    | 0.10      | 1.73    | NA             | Unknown protein                                          |

## RESULTS \_\_\_\_\_

| AGI Code  | Log₂FC | adj. <i>P</i> | Name   | Annotation                                         |
|-----------|--------|---------------|--------|----------------------------------------------------|
| AT1G26420 | -0.94  | 0.01          | NN     | FAD-binding Berberine family protein               |
| AT1G74590 | -0.98  | 0.00          | GSTU10 | Glutathione transferase                            |
| AT2G25440 | -0.70  | 0.14          | RLP20  | Receptor like protein 20                           |
| AT2G29110 | -0.96  | 0.02          | GLR2.8 | Member of Putative ligand-gated ion channel family |
| AT2G32680 | -0.94  | 0.08          | RLP23  | Receptor like protein 23                           |
| AT2G43570 | -1.00  | 0.06          | CHI    | Putative chitinase                                 |
| AT3G18250 | -0.96  | 0.00          | NN     | Putative membrane lipoprotein                      |
| AT3G24900 | -0.72  | 0.13          | RLP39  | Receptor like protein 39                           |
| AT3G57260 | -0.70  | 0.45          | PR2    | Beta 1,3-glucanase                                 |
| AT4G04490 | -0.62  | 0.10          | CRK36  | Cysteine-rich receptor-like protein kinase         |
| AT4G11650 | -0.73  | 0.08          | OSM34  | Osmotin-like protein                               |
| AT4G23310 | -0.90  | 0.07          | CRK23  | Cysteine-rich receptor-like protein kinase         |
| AT5G43580 | -0.42  | 0.59          | UPI    | Unusual serine protease inhibitor                  |
| AT2G26560 | -0.85  | 0.00          | PLP2   | Lipid acyl hydrolase                               |

Table 7. Co-expression partners of downregulated genes in *pip2;1 pip2;2* from ATTED- II networks.

## 2.3.3.2 Metabolite profiling of *pip2;1 pip2;2* under well-watered condition

To determine the accumulation of genotype-associated metabolites in rosettes under wellwatered condition, gas chromatography-mass spectrometry (GC-MS) measurements were performed using both the *regular mode* for normal or highly accumulated metabolites and the *upconcentrated mode* for lowly accumulated metabolites in *pip2;1 pip2;2* and wild type (See 4.2.3). In total, 138 unknown compounds and 65 annotated metabolites including 11 amino acids, 23 sugars, 27 organic acids and four other organic chemical compounds were detected with the *regular mode*. The metabolites with  $|Log_2FC| \ge 0.5$  and *P* value  $\le 0.1$  were considered as being altered in their abundance. The results showed that one amino acid (proline) was decreased, whereas three sugars (maltitol, maltose and raffinose) and one other organic chemical compound (similar to glycerolaldopyranosid) were increased in *pip2;1 pip2;2* as compared to wild-type extracts (Table 8).

Furthermore, additional 51 unknown compounds and 70 annotated metabolites involving 15 amino acids, 16 sugars, 25 organic acids and 14 other chemical metabolites were detected with the *upconcentrated mode*. Out of these 70 metabolites, two amino acids (N-

Carboxyglycine and lysine) and two sugars (erythrose and arabitol) were reduced, whereas the amino acid leucine, the organic acid malonic acid and one other chemical compound, succinic semialdehyde, were enhanced in *pip2;1 pip2;2* as compared to the wild type (Table 8).

Altogether, marginal changes of metabolite accumulation in *pip2;1 pip2;2* collectively suggest a subtle impact of the loss of these two major *PIPs* on plant metabolism.

**Table 8.** Changed metabolites *via* the *regular mode* or *upconcentrated mode* in *pip2;1 pip2;2* under well-watered condition (<sup>1</sup> Metabolites measured using the *regular mode;* <sup>2</sup> Metabolites measured using the *upconcentrated mode*)

| Metabolites                                   | Log <sub>2</sub> FC | P Value |
|-----------------------------------------------|---------------------|---------|
| Amino acids                                   |                     |         |
| Proline <sup>1</sup>                          | -2.08               | 0.03    |
| N-Carboxyglycine <sup>2</sup>                 | -0.92               | 0.00    |
| Lysine <sup>2</sup>                           | -0.52               | 0.08    |
| Leucine <sup>2</sup>                          | 0.59                | 0.06    |
| Sugars                                        |                     |         |
| Maltitol <sup>1</sup>                         | 0.72                | 0.04    |
| Maltose <sup>1</sup>                          | 0.51                | 0.09    |
| Raffinose <sup>1</sup>                        | 1.21                | 0.02    |
| Erythrose <sup>2</sup>                        | -0.68               | 0.00    |
| Arabitol <sup>2</sup>                         | -0.51               | 0.04    |
| Other compounds                               |                     |         |
| similar to Glycerolaldopyranosid <sup>1</sup> | 0.53                | 0.03    |
| Malonic acid <sup>2</sup>                     | 0.60                | 0.03    |
| Succinic semialdehyde <sup>2</sup>            | 0.61                | 0.01    |
| Unknown compounds                             |                     |         |
| UNKNOWN 35 <sup>1</sup>                       | 1.41                | 0.02    |
| UNKNOWN 70 <sup>1</sup>                       | 1.01                | 0.09    |
| UNKNOWN 71 <sup>1</sup>                       | 1.08                | 0.06    |
| UNKNOWN ANALYTE LIBRARY 42 <sup>1</sup>       | 0.78                | 0.04    |
| UNKNOWN ANALYTE LIBRARY 44 <sup>1</sup>       | 0.67                | 0.07    |
| UNKNOWN ANALYTE LIBRARY 48 <sup>1</sup>       | 0.76                | 0.02    |
## 2.3.3.3 Integration of transcriptome and metabolome changes in *pip2;1 pip2;2* under well-watered condition

To identify co-regulatory relationships between transcripts and metabolites derived in the *normal mode*, a correlation analysis of the two datasets was performed and the networks were displayed from a gene-centered perspective (See 4.2.4.3). The results showed that overaccumulation of maltitol and raffinose was highly correlated to the upregulation of *QQS*, which could be in line with the gene function in negative regulation of the starch accumulation. In addition, this network also included another six increased unknown metabolites, which suggests that these compounds could be involved in the altered carbohydrates metabolism (Figure 29).



**Figure 29.** Changed metabolites exhibiting correlated changes with the upregulated *QQS* in *pip2;1 pip2;2* as compared to the wild type under well-watered condition. The network visualization was done by Cytoscape 3.1.1.

# 2.3.4 Transcriptome profiling of *pip* mutants in response to water stresses

To examine how *Arabidopsis thaliana* that lost *PIP2;1* and *PIP2;2* as well as *PIP2;4* responses to water stresses at the transcriptional level, RNA samples isolated from rosettes subjected to D, H LrH, H HrH, DH LrH and DH HrH were analyzed using Agilent microarrays. To address how loss of PIPs generally impacts the water stress responses, the water-stress responsive genes in wild type, which were defined as the genes with  $|Log_2FC| \ge 1$  and  $adj.P \le 0.05$  under stress conditions in comparison to control condition, were sorted according to adj.P and the changes of the top listed differentially expressed genes were representatively assessed in *pip* mutants under water stresses as compared to control condition. More importantly, to investigate the specifically responses to water stress after loss of *PIPs*, genes that were differentially expressed in *pip* mutants in comparison to wild type under a certain stress condition were identified as the transcripts with  $|Log_2FC| \ge 1$  and  $adj.P \le 0.05$ .

The results showed that the drought-responsive genes and the DH LrH stress-responsive genes in wild type were generally less deregulated in *pip2;1 pip2;2* and in *pip2;1 pip2;2* pip2;4 (Table 9 and Table 13). However, the heat-responsive genes and the DH HrH stress-responsive genes in wild type were similarly regulated in both *pip2;1 pip2;2* and *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* (Table 10, Table 11 and Table 12).

**Table 9.** The top listed differentially expressed genes in wild type under drought stress as compared to control condition. The genes were selected according to adj.*P*. The expression ratios of these genes in wild type were added along with the expression in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)*.

| AGI Log <sub>2</sub> FC |      |      | AGI  |           | Log <sub>2</sub> FC |     | AGI | Log <sub>2</sub> FC |     |     |     |
|-------------------------|------|------|------|-----------|---------------------|-----|-----|---------------------|-----|-----|-----|
| AGI                     | WT   | DM   | ТМ   | Adi       | WT                  | DM  | ТМ  | AUI                 | WT  | DM  | ТМ  |
| AT3G16530               | -4.4 | -4.5 | -4.5 | AT3G15780 | 1.4                 | 1.2 | 1.4 | AT1G68500           | 2.6 | 2.1 | 2.2 |
| AT5G44020               | -3.5 | -2.7 | -2.8 | AT5G22860 | 1.5                 | 1.2 | 1.1 | AT3G11410           | 2.6 | 1.9 | 2.1 |
| AT1G74670               | -3   | -2.6 | -2.8 | AT1G01580 | 1.5                 | 1.2 | 1.3 | AT1G67856           | 2.6 | 1.7 | 1.9 |
| AT1G16390               | -2.9 | -2.2 | -2.2 | AT4G17550 | 1.5                 | 1.2 | 1.2 | AT1G16515           | 2.6 | 2   | 2.3 |
| AT2G27402               | -2.8 | -2.6 | -2.5 | AT4G22820 | 1.6                 | 1.2 | 1.2 | AT3G61890           | 2.7 | 2   | 2.2 |
| AT4G29740               | -2.8 | -2.2 | -2.3 | AT1G73390 | 1.6                 | 1.2 | 1.2 | AT3G22560           | 2.7 | 2.2 | 2.1 |
| AT1G75750               | -2.7 | -2.1 | -2.2 | AT3G20300 | 1.6                 | 1.3 | 1.5 | AT3G14440           | 2.7 | 1.8 | 2.1 |
| AT3G50560               | -2.6 | -1.9 | -2.1 | AT1G20160 | 1.6                 | 1.3 | 1.4 | AT3G29575           | 2.7 | 2   | 2   |
| AT2G06850               | -2.6 | -1.9 | -2   | AT3G25870 | 1.6                 | 1.1 | 1.3 | AT5G37300           | 2.7 | 2   | 2.1 |
| AT4G30610               | -2.5 | -2   | -2   | AT5G07920 | 1.6                 | 1.2 | 1.3 | AT3G28270           | 2.7 | 1.9 | 2   |
| AT4G11290               | -2.3 | -2.1 | -2.1 | AT1G15310 | 1.6                 | 1.3 | 1.2 | AT1G77450           | 2.8 | 1.9 | 2.2 |
| AT4G16980               | -2.1 | -1.9 | -1.7 | AT4G23450 | 1.7                 | 1.4 | 1.5 | AT1G07500           | 2.8 | 2   | 2.2 |
| AT4G38850               | -2   | -1.8 | -1.6 | AT2G04240 | 1.7                 | 1.2 | 1.3 | AT3G24520           | 2.8 | 2   | 2.3 |
| AT1G14430               | -1.9 | -1.4 | -1.4 | AT1G45249 | 1.7                 | 1.4 | 1.4 | AT3G03170           | 2.8 | 2.3 | 2.3 |
| AT3G22210               | -1.8 | -1.3 | -1.4 | AT4G21570 | 1.7                 | 1.3 | 1.2 | AT4G30460           | 2.9 | 2.1 | 2.4 |
| AT3G30180               | -1.5 | -1.1 | -1.2 | AT1G20440 | 1.7                 | 1.1 | 1.2 | AT1G62570           | 2.9 | 2   | 2.2 |
| AT3G14310               | -1.5 | -1.1 | -1.2 | AT3G55940 | 1.7                 | 1.2 | 1.3 | AT1G49450           | 2.9 | 1.9 | 2.1 |
| AT5G38430               | -1.4 | -1.2 | -1.1 | AT3G23920 | 1.8                 | 1.3 | 1.5 | AT5G53870           | 2.9 | 2.5 | 2.5 |
| AT1G31200               | -1.4 | -0.8 | -1   | AT1G01470 | 1.8                 | 1.3 | 1.3 | AT3G48240           | 3   | 2.7 | 3   |
| AT4G30190               | -1.2 | -1   | -1.1 | AT1G27200 | 1.8                 | 1.3 | 1.4 | AT1G30190           | 3   | 2.2 | 2.3 |
| AT5G21930               | -1.2 | -0.9 | -0.8 | AT4G18280 | 1.8                 | 1.2 | 1.2 | AT2G47780           | 3   | 2.4 | 2.4 |
| AT4G33360               | -1.1 | -0.9 | -1   | AT4G24960 | 1.8                 | 1.4 | 1.5 | AT1G79900           | 3   | 2.2 | 2.4 |
| AT3G26490               | -1.1 | -0.7 | -0.9 | AT4G34230 | 1.8                 | 1.4 | 1.4 | AT2G46270           | 3   | 2.5 | 2.5 |
| AT2G21080               | -1   | -0.8 | -0.6 | AT1G73040 | 1.8                 | 1.6 | 1.6 | AT3G48510           | 3   | 2.5 | 2.6 |
| AT3G04240               | 1    | 0.7  | 0.8  | AT2G39050 | 1.8                 | 1.2 | 1.2 | AT1G69260           | 3   | 2.6 | 2.5 |
| AT4G00440               | 1    | 0.8  | 0.8  | AT4G04020 | 1.8                 | 1.5 | 1.6 | AT3G28007           | 3   | 2.1 | 2.3 |
| AT5G57040               | 1    | 0.8  | 0.9  | AT3G19620 | 1.9                 | 1.5 | 1.5 | AT1G24600           | 3.1 | 2.1 | 2.2 |
| AT4G13010               | 1    | 0.8  | 0.9  | AT3G15280 | 1.9                 | 1.1 | 1.5 | AT4G02360           | 3.1 | 2.2 | 2   |
| AT5G12840               | 1    | 0.8  | 0.9  | AT5G37550 | 1.9                 | 1.5 | 1.6 | AT4G25433           | 3.1 | 2   | 2.2 |
| AT1G04830               | 1.1  | 0.8  | 0.7  | AT1G79270 | 1.9                 | 1.3 | 1.5 | AT3G13672           | 3.3 | 2.8 | 3   |
| AT1G75400               | 1.1  | 0.7  | 0.8  | AT5G02640 | 1.9                 | 1.5 | 1.4 | AT1G24580           | 3.3 | 3.1 | 3.2 |
| AT4G29070               | 1.1  | 0.8  | 0.8  | AT4G34000 | 2                   | 1.5 | 1.5 | AT1G30220           | 3.3 | 2.5 | 3   |
| AT5G12140               | 1.1  | 0.9  | 0.8  | AT1G79520 | 2                   | 1.5 | 1.6 | AT5G15500           | 3.3 | 2.5 | 2.8 |
| AT4G23630               | 1.1  | 0.9  | 0.9  | AT1G20450 | 2                   | 1.4 | 1.5 | AT2G35070           | 3.3 | 2.5 | 2.6 |
| AT1G52920               | 1.2  | 0.9  | 1.1  | AT4G11350 | 2                   | 1.8 | 1.6 | AT4G02280           | 3.4 | 2.6 | 2.8 |
| AT5G09620               | 1.2  | 0.9  | 0.9  | AT4G40010 | 2                   | 1.6 | 1.6 | AT5G63350           | 3.4 | 2.3 | 2.7 |
| AT5G65830               | 1.2  | 0.7  | 0.8  | AT5G23750 | 2.1                 | 1.6 | 1.8 | AT3G12580           | 3.4 | 2.7 | 3   |

| AT5G66052 | 1.2 | 1   | 1   | AT1G62620 | 2.1 | 1.6 | 1.5 | AT5G28080 | 3.4 | 2.5 | 2.7 |  |
|-----------|-----|-----|-----|-----------|-----|-----|-----|-----------|-----|-----|-----|--|
| AT4G31351 | 1.2 | 1   | 1.1 | AT2G16990 | 2.1 | 1.5 | 1.6 | AT3G50970 | 3.4 | 2.5 | 2.5 |  |
| AT1G69295 | 1.2 | 0.9 | 0.9 | AT5G03190 | 2.1 | 1.5 | 1.7 | AT5G03210 | 3.5 | 2.4 | 2.9 |  |
| AT4G31354 | 1.2 | 1   | 1.1 | AT1G64660 | 2.1 | 1.9 | 2   | AT4G17030 | 3.5 | 2.9 | 3.1 |  |
| AT1G20030 | 1.2 | 0.9 | 1   | AT3G62090 | 2.1 | 1.6 | 1.5 | AT1G60190 | 3.6 | 2.5 | 2.9 |  |
| AT1G67850 | 1.2 | 1   | 1.1 | AT2G12400 | 2.2 | 1.6 | 1.7 | AT2G46680 | 3.7 | 2.9 | 2.9 |  |
| AT1G06430 | 1.2 | 1.1 | 1.2 | AT5G01520 | 2.2 | 1.4 | 1.7 | AT5G40790 | 3.7 | 2.9 | 3.1 |  |
| AT5G17460 | 1.3 | 0.9 | 0.9 | AT3G14560 | 2.2 | 1.6 | 1.8 | AT1G16850 | 3.8 | 2.9 | 3   |  |
| AT3G26290 | 1.3 | 1   | 1   | AT2G28500 | 2.2 | 1.6 | 1.6 | AT5G66400 | 3.8 | 3.1 | 3.3 |  |
| AT3G14595 | 1.3 | 1   | 0.9 | AT5G57050 | 2.2 | 1.7 | 1.9 | AT5G53710 | 4   | 3.4 | 3.5 |  |
| AT5G04760 | 1.3 | 0.9 | 1   | AT5G61820 | 2.2 | 1.5 | 1.6 | AT1G07430 | 4   | 2.9 | 3.4 |  |
| AT5G53120 | 1.3 | 1.1 | 1   | AT1G54100 | 2.2 | 1.8 | 1.9 | AT4G33905 | 4.2 | 3   | 3.3 |  |
| AT4G22270 | 1.3 | 1   | 1   | AT1G01250 | 2.3 | 1.7 | 1.9 | AT5G15190 | 4.4 | 3.2 | 3.7 |  |
| AT1G32860 | 1.3 | 0.9 | 1   | AT5G19875 | 2.3 | 1.8 | 2.1 | AT2G41190 | 4.5 | 3.4 | 3.4 |  |
| AT2G04350 | 1.3 | 0.9 | 0.9 | AT1G04220 | 2.3 | 1.8 | 1.7 | AT4G33550 | 4.7 | 4   | 4.2 |  |
| AT3G01350 | 1.3 | 1.1 | 1.2 | AT4G05100 | 2.3 | 2.1 | 2   | AT5G59330 | 4.7 | 3.8 | 3.9 |  |
| AT5G17210 | 1.3 | 1   | 1   | AT5G16600 | 2.3 | 1.7 | 1.8 | AT5G62040 | 4.9 | 4   | 4.1 |  |
| AT5G57790 | 1.3 | 1.1 | 1.2 | AT1G17940 | 2.3 | 1.8 | 1.7 | AT5G59320 | 5.1 | 4   | 4.1 |  |
| AT3G11420 | 1.3 | 1   | 1.1 | AT5G66460 | 2.3 | 1.9 | 1.9 | AT1G22990 | 5.2 | 4.2 | 4.2 |  |
| AT4G36900 | 1.4 | 1   | 1.2 | AT1G21400 | 2.4 | 1.9 | 2   | AT3G53980 | 5.3 | 4.4 | 4.7 |  |
| AT5G56160 | 1.4 | 1   | 1.1 | AT1G02390 | 2.4 | 1.8 | 2.1 | AT5G13170 | 5.6 | 5.2 | 5.3 |  |
| AT5G50240 | 1.4 | 0.9 | 1.2 | AT3G15534 | 2.5 | 2   | 2.1 | AT4G01985 | 5.6 | 4.7 | 4.8 |  |
| AT4G23670 | 1.4 | 1.1 | 1   | AT1G72770 | 2.5 | 1.8 | 2   | AT5G50360 | 5.6 | 4.5 | 4.8 |  |
| AT4G22240 | 1.4 | 1.1 | 1.1 | AT4G30830 | 2.5 | 2   | 2.3 | AT2G47770 | 5.7 | 4.6 | 4.7 |  |
| AT4G26080 | 1.4 | 1   | 1   | AT3G14590 | 2.5 | 1.9 | 2.1 | AT5G59310 | 5.7 | 4.2 | 4.4 |  |
| AT5G42570 | 1.4 | 1   | 1   | AT1G04570 | 2.5 | 2   | 2.2 | AT5G59220 | 6   | 4.6 | 4.8 |  |
| AT1G71360 | 1.4 | 1.3 | 1.4 | AT2G34850 | 2.5 | 2   | 2.2 | AT4G08570 | 6.2 | 4.7 | 5.2 |  |
| AT5G13820 | 1.4 | 1.2 | 1.1 |           |     |     |     |           |     |     |     |  |
|           |     |     |     |           |     |     |     |           |     |     |     |  |

**Table 10.** The top listed differentially expressed genes in wild type under H HrH as compared to control condition. The genes were selected according to adj.*P*. The expression ratios of these genes in wild type were added along with the expression in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)*.

| AGI Log <sub>2</sub> FC |      | AGI  |      | Log <sub>2</sub> FC |     | AGI | Log₂FC |           |     |     |     |
|-------------------------|------|------|------|---------------------|-----|-----|--------|-----------|-----|-----|-----|
| Adi                     | WT   | DM   | ТМ   | AGI                 | WT  | DM  | ΤM     | AGI       | WT  | DM  | ТМ  |
| AT3G50970               | -4.6 | -4.9 | -5   | AT3G54460           | 1   | 1   | 1      | AT1G08300 | 1.5 | 1.5 | 1.4 |
| AT1G09350               | -3.8 | -4   | -3.9 | AT2G29260           | 1   | 1   | 0.9    | AT2G30480 | 1.5 | 1.5 | 1.5 |
| AT5G52310               | -3.5 | -3.6 | -3.4 | AT3G10030           | 1   | 1   | 0.9    | AT1G65040 | 1.5 | 1.6 | 1.5 |
| AT2G42540               | -3.4 | -3.5 | -3.4 | AT2G01100           | 1   | 1   | 0.9    | AT5G47830 | 1.5 | 1.5 | 1.4 |
| AT5G08640               | -3   | -3.2 | -3   | AT4G02210           | 1   | 1   | 1      | AT3G45420 | 1.5 | 1.5 | 1.2 |
| AT4G16740               | -2.8 | -2.6 | -2.3 | AT1G48970           | 1   | 1   | 1      | AT4G30570 | 1.5 | 1.5 | 1.3 |
| AT4G30650               | -2.6 | -2.7 | -2.7 | AT5G06340           | 1   | 1.1 | 1      | AT4G15780 | 1.6 | 1.5 | 1.4 |
| AT5G48880               | -2.5 | -2.7 | -2.5 | AT1G54250           | 1   | 1.1 | 1      | AT1G76065 | 1.6 | 1.5 | 1.6 |
| AT5G59670               | -2.5 | -2.5 | -2.3 | AT3G53630           | 1   | 1   | 1      | AT1G72645 | 1.6 | 1.5 | 1.5 |
| AT1G25422               | -2.5 | -2.7 | -2.7 | AT2G24830           | 1   | 1   | 1      | AT4G25980 | 1.6 | 1.4 | 1.3 |
| AT5G45280               | -2.3 | -2.4 | -2.4 | AT2G31890           | 1   | 1   | 1.1    | AT1G10960 | 1.7 | 1.7 | 1.6 |
| AT1G76790               | -2.3 | -2.6 | -2.3 | AT3G43210           | 1   | 1   | 0.9    | AT1G09140 | 1.7 | 1.6 | 1.6 |
| AT1G06000               | -2.2 | -2.6 | -2.2 | AT1G20920           | 1   | 0.9 | 1.1    | AT1G27590 | 1.7 | 1.7 | 1.8 |
| AT4G31870               | -2.2 | -2.2 | -2   | AT3G60910           | 1   | 1.1 | 1.1    | AT2G36950 | 1.7 | 1.8 | 1.9 |
| AT1G51090               | -2.1 | -2.3 | -1.9 | AT5G16110           | 1.1 | 1   | 1      | AT3G59750 | 1.7 | 1.6 | 1.6 |
| AT4G27570               | -2.1 | -2.2 | -1.9 | AT1G10240           | 1.1 | 1.1 | 1.1    | AT2G17036 | 1.8 | 1.7 | 1.6 |
| AT4G21400               | -2   | -2.1 | -2   | AT2G29400           | 1.1 | 1.1 | 1.1    | AT1G27420 | 1.8 | 1.7 | 1.5 |
| AT1G06690               | -2   | -2.1 | -1.8 | AT5G56380           | 1.1 | 1.1 | 1.1    | AT2G17900 | 1.8 | 1.8 | 1.7 |
| AT5G55570               | -2   | -2.1 | -1.9 | AT1G71260           | 1.1 | 1.1 | 1.1    | AT2G32340 | 1.8 | 1.8 | 1.9 |
| AT4G27560               | -1.9 | -2.1 | -1.9 | AT5G66090           | 1.1 | 1.1 | 1.1    | AT1G77880 | 1.8 | 1.8 | 1.7 |
| AT1G09780               | -1.8 | -1.9 | -1.9 | AT3G17740           | 1.1 | 1.2 | 1.2    | AT1G14360 | 1.8 | 1.9 | 1.7 |
| AT4G34950               | -1.8 | -1.9 | -1.7 | AT5G44660           | 1.1 | 1.1 | 1      | AT4G38700 | 1.8 | 1.8 | 1.8 |
| AT5G46230               | -1.8 | -1.8 | -1.6 | AT3G19508           | 1.1 | 1   | 1.1    | AT2G42330 | 1.9 | 1.7 | 1.8 |
| AT1G76020               | -1.8 | -1.8 | -1.7 | AT3G26180           | 1.1 | 1.2 | 1.1    | AT2G21640 | 1.9 | 1.8 | 1.6 |
| AT5G05580               | -1.7 | -1.7 | -1.7 | AT3G05790           | 1.1 | 1.2 | 1.1    | AT4G31351 | 1.9 | 1.9 | 1.9 |
| AT4G23020               | -1.7 | -1.7 | -1.7 | AT1G56200           | 1.1 | 1   | 1      | AT4G31354 | 1.9 | 1.9 | 1.9 |
| AT1G52770               | -1.7 | -1.8 | -1.8 | AT2G46610           | 1.2 | 1.1 | 1.1    | AT1G03470 | 1.9 | 1.9 | 1.9 |
| AT1G29720               | -1.7 | -1.6 | -1.6 | AT2G37340           | 1.2 | 1.2 | 1.2    | AT3G24100 | 2.1 | 1.7 | 1.7 |
| AT3G23810               | -1.7 | -1.8 | -1.8 | AT5G66240           | 1.2 | 1.2 | 1.2    | AT5G03720 | 2.1 | 1.9 | 2.1 |
| AT1G18265               | -1.6 | -1.7 | -1.5 | AT5G59440           | 1.2 | 1.1 | 1.1    | AT1G64720 | 2.1 | 2.1 | 2.2 |
| AT5G17780               | -1.6 | -1.5 | -1.6 | AT2G23348           | 1.2 | 1.2 | 1.1    | AT1G29465 | 2.2 | 2.3 | 2.2 |
| AT1G79460               | -1.6 | -1.7 | -1.8 | AT2G47420           | 1.2 | 1.2 | 1.1    | AT2G19310 | 2.2 | 2.1 | 2.1 |
| AT4G21215               | -1.5 | -1.6 | -1.5 | AT1G13790           | 1.2 | 1.2 | 1.1    | AT5G46490 | 2.3 | 2.2 | 2.4 |
| AT2G31390               | -1.5 | -1.5 | -1.5 | AT1G23860           | 1.2 | 1.1 | 1.1    | AT2G07671 | 2.3 | 2.1 | 2.3 |
| AT3G09540               | -1.5 | -1.5 | -1.4 | AT2G32920           | 1.2 | 1.1 | 1.1    | AT4G29770 | 2.3 | 2.2 | 2.1 |
| AT2G36500               | -1.5 | -1.3 | -1.4 | AT1G58150           | 1.2 | 1.2 | 1.2    | AT3G29810 | 2.4 | 2.4 | 2.4 |
| AT5G59130               | -1.4 | -1.2 | -1.2 | AT1G24095           | 1.2 | 1   | 0.9    | AT1G07350 | 2.4 | 2.6 | 2.1 |
| AT1G14580               | -1.4 | -1.3 | -1.3 | AT1G26580           | 1.3 | 1.3 | 1.2    | AT5G25280 | 2.4 | 2.3 | 2.5 |
| AT2G36880               | -1.4 | -1.5 | -1.4 | AT3G58930           | 1.3 | 1.2 | 1.1    | AT4G23493 | 2.9 | 2.8 | 2.4 |

65

| AT1G31190 | -1.3 | -1.4 | -1.3 | AT3G13224 | 1.3 | 1.2 | 1.1 | AT2G32120 | 3.6 | 3.5 | 3.4 |
|-----------|------|------|------|-----------|-----|-----|-----|-----------|-----|-----|-----|
| AT1G78570 | -1.3 | -1.4 | -1.3 | AT2G33250 | 1.3 | 1.1 | 1.2 | AT5G64510 | 3.8 | 4.1 | 3.7 |
| AT4G15450 | -1.2 | -1.2 | -1.1 | AT1G76080 | 1.3 | 1.2 | 1.4 | AT3G24500 | 4.1 | 4   | 3.7 |
| AT1G18360 | -1.2 | -1.3 | -1.4 | AT3G60300 | 1.3 | 1.2 | 1.2 | AT4G19430 | 4.5 | 4.6 | 4.3 |
| AT2G38740 | -1.2 | -1.2 | -1.1 | AT1G78750 | 1.3 | 1.2 | 1.3 | AT5G25450 | 5   | 5.1 | 4.9 |
| AT5G15760 | -1.2 | -1.2 | -1.2 | AT3G17460 | 1.4 | 1.3 | 1.3 | AT5G52640 | 5.1 | 4.9 | 4.9 |
| AT5G14570 | -1.2 | -1.4 | -1.1 | AT3G04160 | 1.4 | 1.3 | 1.3 | AT3G12580 | 5.4 | 5.1 | 5.2 |
| AT1G64890 | -1.2 | -1.3 | -1.2 | AT4G27370 | 1.4 | 1.3 | 1.1 | AT5G59720 | 5.5 | 5   | 5.2 |
| AT5G15650 | -1.1 | -1.3 | -1.2 | AT3G62600 | 1.4 | 1.4 | 1.3 | AT1G07400 | 6.1 | 5.8 | 5.7 |
| AT5G06060 | -1.1 | -1.1 | -1.2 | AT5G03830 | 1.4 | 1.3 | 1.1 | AT1G72660 | 6.2 | 6   | 6.1 |
| AT3G03350 | -1.1 | -1.1 | -1   | AT2G45920 | 1.4 | 1.3 | 1.2 | AT5G51440 | 6.4 | 6.1 | 5.7 |
| AT3G13060 | -1.1 | -1   | -1   | AT1G03410 | 1.4 | 1.4 | 1.4 | AT4G12400 | 6.5 | 6.4 | 6.4 |
| AT4G28550 | -1   | -1.1 | -1.2 | AT2G20585 | 1.4 | 1.5 | 1.4 | AT2G29500 | 6.7 | 6.7 | 6.7 |
| AT1G79080 | -1   | -1.1 | -1   | AT3G01770 | 1.5 | 1.4 | 1.4 | AT5G12030 | 7.1 | 5.9 | 6.7 |
| AT1G13930 | -1   | -1.1 | -1   | AT1G61970 | 1.5 | 1.4 | 1.3 | AT3G46230 | 7.3 | 7.3 | 7.5 |
| AT2G33740 | 1    | 0.9  | 0.9  | AT5G58590 | 1.5 | 1.5 | 1.4 | AT1G53540 | 7.8 | 7.4 | 7.9 |

RESULTS \_\_\_\_\_\_

**Table 11.** The top listed differentially expressed genes in wild type under H LrH as compared to control condition. The genes were selected according to adj.*P*. The expression ratios of these genes in wild type were added along with the expression in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)*.

|           |      | Log <sub>2</sub> FC |      |           |     | Log₂FC |      |           | L   | .og₂FC |     |
|-----------|------|---------------------|------|-----------|-----|--------|------|-----------|-----|--------|-----|
| AGI       | WT   | DM                  | ΤM   | AGI       | WT  | DM     | ΤM   | AGI       | WT  | DM     | ΤМ  |
| AT5G61160 | -3.3 | -3.3                | -3.2 | AT2G18890 | -1  | -1     | -0.9 | AT1G52720 | 1.2 | 1.1    | 1.2 |
| AT3G15356 | -3   | -2.4                | -3.2 | AT4G21215 | -1  | -1     | -1   | AT3G45680 | 1.3 | 1.1    | 1.2 |
| AT4G14690 | -2.5 | -2.8                | -2.5 | AT1G08840 | -1  | -1     | -1.1 | AT5G25140 | 1.3 | 1.4    | 1.4 |
| AT4G16260 | -2.2 | -1.9                | -2   | AT1G29465 | 1   | 0.9    | 0.9  | AT5G46490 | 1.3 | 1.4    | 1.5 |
| AT5G57220 | -2.2 | -1.5                | -1.9 | AT1G10960 | 1   | 1.1    | 1.1  | AT1G73040 | 1.5 | 1.2    | 1.2 |
| AT1G09350 | -2   | -2.3                | -2.4 | AT1G51440 | 1   | 0.7    | 0.9  | AT1G07350 | 1.5 | 1.5    | 1.5 |
| AT3G44990 | -2   | -1.8                | -1.8 | AT1G64720 | 1   | 1.1    | 1.2  | AT1G65490 | 1.5 | 1.9    | 1.7 |
| AT5G08640 | -1.9 | -2                  | -2   | AT1G09140 | 1   | 1      | 0.9  | AT4G21930 | 1.6 | 1.2    | 1.1 |
| AT1G78410 | -1.8 | -1.2                | -1.4 | AT2G45920 | 1   | 1      | 1    | AT5G57785 | 1.6 | 1.6    | 1.2 |
| AT3G21460 | -1.8 | -1.3                | -1.3 | AT3G47360 | 1   | 0.9    | 0.9  | AT2G29500 | 1.6 | 2.2    | 2.3 |
| AT3G59480 | -1.6 | -1.4                | -1.7 | AT4G11960 | 1   | 1.1    | 1.2  | AT2G46270 | 1.7 | 1.6    | 1.4 |
| AT3G19350 | -1.5 | -1.8                | -1.5 | AT1G15960 | 1   | 0.9    | 0.9  | AT2G37900 | 1.7 | 1.1    | 1.3 |
| AT4G11290 | -1.3 | -1.3                | -1.4 | AT4G23670 | 1.1 | 1.1    | 0.9  | AT2G37180 | 1.8 | 1.9    | 2   |
| AT1G24530 | -1.3 | -1.1                | -1   | AT5G10946 | 1.1 | 1.2    | 1.2  | AT1G72660 | 1.9 | 2      | 2.2 |
| AT5G02260 | -1.3 | -1                  | -1   | AT4G31351 | 1.1 | 1.2    | 1.4  | AT5G25450 | 2   | 2.2    | 2.2 |
| AT5G18290 | -1.1 | -0.8                | -0.8 | AT2G19310 | 1.1 | 1.3    | 1.3  | AT5G52640 | 2.6 | 2.7    | 3   |
| AT5G46600 | -1.1 | -1.1                | -1.3 | AT1G27420 | 1.2 | 1      | 1    | AT3G24500 | 2.6 | 2.7    | 2.7 |
| AT4G30650 | -1.1 | -1.1                | -1.4 | AT3G29810 | 1.2 | 1.1    | 1.3  | AT5G51440 | 2.8 | 2.7    | 3   |
| AT5G52940 | -1.1 | -1                  | -1.2 | AT1G13080 | 1.2 | 1.3    | 1.3  | AT1G07400 | 3.1 | 3.1    | 3.2 |
| AT1G09780 | -1.1 | -1.2                | -1.1 | AT4G31354 | 1.2 | 1.1    | 1.4  | AT3G12580 | 3.1 | 2.9    | 3.3 |
| AT5G48880 | -1   | -1.1                | -1.2 | AT1G03410 | 1.2 | 1.3    | 1.3  | AT4G12400 | 3.1 | 3.3    | 3.6 |

**Table 12.** The top listed differentially expressed genes in wild type under DH HrH as compared to control condition. The genes were selected according to adj.*P*. The expression ratios of these genes in wild type were added along with the expression in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)*.

| ٨GI       | Log <sub>2</sub> FC |      | AGI  |           | Log₂F | С   | ٨GI | Log <sub>2</sub> FC |     |     |     |
|-----------|---------------------|------|------|-----------|-------|-----|-----|---------------------|-----|-----|-----|
| Au        | WT                  | DM   | ΤM   |           | WT    | DM  | ΤM  |                     | WT  | DM  | ΤM  |
| AT5G59870 | -4.2                | -4   | -4.2 | AT5G62575 | 1.2   | 1.1 | 1.1 | AT2G11891           | 2   | 1.7 | 2   |
| AT2G26560 | -3.9                | -3.2 | -3.6 | AT2G41440 | 1.2   | 1.1 | 1.1 | AT2G17036           | 2   | 2   | 1.8 |
| AT3G46320 | -3.7                | -3.4 | -3.8 | AT3G03330 | 1.2   | 1.2 | 1.3 | AT2G30480           | 2   | 2   | 2.2 |
| AT5G12910 | -3.6                | -3.5 | -3.7 | AT4G02980 | 1.2   | 1.1 | 1.2 | AT5G05400           | 2.1 | 2   | 2   |
| AT5G10390 | -3.4                | -3.3 | -3.5 | AT4G28370 | 1.3   | 1.1 | 1.1 | AT4G11220           | 2.1 | 1.8 | 1.9 |
| AT4G19410 | -3                  | -2.6 | -3   | AT3G43210 | 1.3   | 1.1 | 1.2 | AT1G74860           | 2.1 | 1.9 | 2.1 |
| AT1G19940 | -2.9                | -2.9 | -2.8 | AT5G58470 | 1.3   | 1.2 | 1.3 | AT3G45420           | 2.1 | 2   | 1.9 |
| AT2G35970 | -2.9                | -2.5 | -2.6 | AT5G59440 | 1.3   | 1.2 | 1.3 | AT1G27590           | 2.1 | 2.1 | 2.2 |
| AT5G05580 | -2.7                | -2.3 | -2.4 | AT5G66240 | 1.3   | 1.3 | 1.3 | AT2G32340           | 2.2 | 2.2 | 2.2 |
| AT1G63220 | -2.6                | -2.3 | -2.4 | AT4G15090 | 1.3   | 1.2 | 1.2 | AT5G24155           | 2.2 | 2   | 2.1 |
| AT5G39320 | -2.5                | -2.4 | -2.5 | AT4G12560 | 1.3   | 1.3 | 1.4 | AT2G45920           | 2.2 | 1.9 | 2   |
| AT5G19250 | -2.4                | -2.2 | -2.5 | AT2G33740 | 1.3   | 1.2 | 1.2 | AT5G47830           | 2.2 | 1.9 | 2.1 |
| AT5G44110 | -2.3                | -2.3 | -2.3 | AT3G46920 | 1.3   | 1.2 | 1.3 | AT5G57790           | 2.2 | 1.8 | 2   |
| AT3G53730 | -2.2                | -2.1 | -2.1 | AT1G06110 | 1.3   | 1.1 | 1.3 | AT4G16280           | 2.2 | 1.9 | 2   |
| AT3G23810 | -2.2                | -2.2 | -2.2 | AT3G43520 | 1.3   | 1.1 | 1.2 | AT5G49990           | 2.2 | 1.9 | 2.1 |
| AT5G07110 | -2.1                | -1.9 | -2   | AT5G16110 | 1.3   | 1.3 | 1.3 | AT1G44414           | 2.4 | 2   | 2.2 |
| AT5G46230 | -2.1                | -2.1 | -2.1 | AT1G10240 | 1.3   | 1.3 | 1.4 | AT2G17900           | 2.4 | 2   | 2   |
| AT5G07720 | -2                  | -1.9 | -2   | AT5G62090 | 1.4   | 1.1 | 1.3 | AT1G27420           | 2.4 | 2.3 | 2.3 |
| AT5G24850 | -2                  | -1.7 | -1.8 | AT4G02210 | 1.4   | 1.4 | 1.4 | AT1G71330           | 2.4 | 2.2 | 2.1 |
| AT1G29720 | -2                  | -1.9 | -1.9 | AT5G56600 | 1.4   | 1.2 | 1.3 | AT2G42330           | 2.4 | 2.3 | 2.5 |
| AT2G36470 | -2                  | -2   | -2   | AT1G19980 | 1.4   | 1.2 | 1.5 | AT1G09140           | 2.4 | 2.2 | 2.4 |
| AT4G33360 | -1.9                | -1.7 | -1.9 | AT5G08230 | 1.4   | 1.3 | 1.3 | AT3G24100           | 2.5 | 2.1 | 2.2 |
| AT2G36880 | -1.8                | -1.9 | -1.8 | AT4G36910 | 1.4   | 1.4 | 1.4 | AT5G10946           | 2.5 | 2.4 | 2.5 |
| AT3G45980 | -1.7                | -1.6 | -1.7 | AT1G72650 | 1.4   | 1.4 | 1.5 | AT4G18280           | 2.5 | 1.8 | 2.2 |
| AT3G59970 | -1.7                | -1.5 | -1.6 | AT3G17740 | 1.4   | 1.5 | 1.5 | AT4G31354           | 2.6 | 2.4 | 2.5 |
| AT1G53040 | -1.6                | -1.5 | -1.6 | AT5G63830 | 1.4   | 1.4 | 1.5 | AT4G31351           | 2.6 | 2.5 | 2.6 |
| AT5G62630 | -1.6                | -1.3 | -1.4 | AT1G26580 | 1.5   | 1.5 | 1.5 | AT1G49405           | 2.6 | 2.2 | 2.4 |
| AT4G13930 | -1.6                | -1.6 | -1.6 | AT1G20920 | 1.5   | 1.5 | 1.5 | AT1G64561           | 2.7 | 2.7 | 2.7 |
| AT3G51160 | -1.6                | -1.6 | -1.7 | AT1G72090 | 1.5   | 1.4 | 1.4 | AT2G19310           | 2.7 | 2.6 | 2.7 |
| AT1G34010 | -1.5                | -1.3 | -1.4 | AT5G56380 | 1.5   | 1.5 | 1.5 | AT1G34042           | 2.8 | 2.6 | 2.8 |
| AT3G61440 | -1.5                | -1.3 | -1.4 | AT1G17460 | 1.5   | 1.4 | 1.6 | AT2G07671           | 2.9 | 2.7 | 3   |
| AT1G31190 | -1.4                | -1.4 | -1.4 | AT3G60300 | 1.5   | 1.3 | 1.4 | AT1G56170           | 2.9 | 2.6 | 2.7 |
| AT5G05820 | -1.4                | -1.2 | -1.4 | AT3G53630 | 1.5   | 1.5 | 1.5 | AT3G14560           | 2.9 | 2.3 | 2.6 |
| AT1G79080 | -1.4                | -1.3 | -1.4 | AT1G01710 | 1.6   | 1.4 | 1.4 | AT1G67265           | 3.1 | 2.7 | 2.8 |
| AT3G11800 | -1.4                | -1.4 | -1.4 | AT1G71260 | 1.6   | 1.6 | 1.6 | AT1G07350           | 3.1 | 2.8 | 3   |
| AT5G64290 | -1.3                | -1.2 | -1.1 | AT4G17440 | 1.6   | 1.5 | 1.6 | AT3G07150           | 3.2 | 3   | 3.2 |
| AT3G46030 | -1.3                | -1.2 | -1.3 | AT5G03830 | 1.6   | 1.4 | 1.3 | AT3G48830           | 3.3 | 3.4 | 3.4 |
| AT3G03350 | -1.3                | -1.2 | -1.2 | AT5G62200 | 1.6   | 1.4 | 1.6 | AT4G29770           | 3.3 | 3   | 3.2 |
| AT2G36320 | -1.3                | -1.2 | -1.3 | AT3G01770 | 1.6   | 1.5 | 1.6 | AT5G25280           | 3.5 | 3.2 | 3.6 |

67

RESULTS \_\_\_\_\_

| AT3G13060 | -1.2 | -1.1 | -1.1 | AT1G24095 | 1.6 | 1.3 | 1.4 | AT5G19875 | 3.6 | 3.1 | 3.4 |
|-----------|------|------|------|-----------|-----|-----|-----|-----------|-----|-----|-----|
| AT5G03040 | -1.2 | -1.1 | -1.1 | AT2G46610 | 1.7 | 1.4 | 1.5 | AT2G46270 | 3.6 | 3   | 3.3 |
| AT4G27720 | -1.2 | -1.1 | -1.2 | AT4G38020 | 1.7 | 1.7 | 1.8 | AT4G14819 | 3.7 | 2.8 | 3.2 |
| AT5G26667 | -1.2 | -1.2 | -1.2 | AT1G29465 | 1.7 | 1.9 | 1.8 | AT5G47610 | 3.7 | 3.2 | 3.6 |
| AT5G46800 | -1.1 | -1.1 | -1.1 | AT4G15780 | 1.7 | 1.6 | 1.6 | AT1G03070 | 3.7 | 3.1 | 3.4 |
| AT4G26910 | -1.1 | -1   | -1.1 | AT2G37340 | 1.7 | 1.6 | 1.7 | AT4G23493 | 4.2 | 3.6 | 3.7 |
| AT3G07170 | -1.1 | -1.1 | -1.2 | AT3G04160 | 1.7 | 1.5 | 1.6 | AT1G30190 | 4.6 | 3.9 | 4.4 |
| AT5G63060 | -1.1 | -1.2 | -1.1 | AT2G26860 | 1.7 | 1.5 | 1.6 | AT4G33550 | 4.7 | 3.9 | 4.4 |
| AT5G36890 | -1   | -1   | -1   | AT2G20585 | 1.7 | 1.7 | 1.6 | AT3G24500 | 5.1 | 4.6 | 4.8 |
| AT4G31430 | 1    | 0.9  | 0.9  | AT2G46800 | 1.7 | 1.5 | 1.8 | AT2G32120 | 5.1 | 4.6 | 4.9 |
| AT5G51730 | 1    | 0.9  | 1    | AT3G17460 | 1.7 | 1.6 | 1.6 | AT1G07500 | 5.1 | 4.5 | 4.8 |
| AT4G21860 | 1    | 1    | 1.1  | AT4G32450 | 1.7 | 1.6 | 1.7 | AT4G21320 | 5.5 | 4.9 | 5.1 |
| AT3G60910 | 1    | 1.1  | 1.1  | AT5G51170 | 1.7 | 1.6 | 1.6 | AT5G25450 | 5.7 | 5.4 | 5.6 |
| AT1G48970 | 1    | 1    | 1.1  | AT5G66090 | 1.7 | 1.6 | 1.8 | AT5G52640 | 5.8 | 5.5 | 5.8 |
| AT2G48100 | 1.1  | 1    | 1    | AT4G11960 | 1.8 | 1.5 | 1.7 | AT5G59320 | 5.9 | 4.4 | 5.1 |
| AT3G12300 | 1.1  | 1    | 1    | AT3G54000 | 1.8 | 1.7 | 1.7 | AT3G12580 | 6.3 | 5.7 | 6.1 |
| AT1G01160 | 1.1  | 1.1  | 1.1  | AT5G03560 | 1.8 | 1.6 | 1.8 | AT5G51440 | 6.4 | 5.8 | 6   |
| AT3G62560 | 1.1  | 1    | 1.1  | AT3G13224 | 1.8 | 1.6 | 1.7 | AT4G12400 | 6.8 | 6.5 | 6.7 |
| AT3G62330 | 1.2  | 1.1  | 1.2  | AT4G36900 | 1.8 | 1.4 | 1.6 | AT1G72660 | 7   | 6.7 | 7.2 |
| AT1G05970 | 1.2  | 1.1  | 1    | AT3G62770 | 1.9 | 1.9 | 1.9 | AT1G07400 | 7.2 | 6.5 | 6.9 |
| AT1G45976 | 1.2  | 0.9  | 1.1  | AT1G23860 | 2   | 1.7 | 1.8 | AT2G29500 | 7.8 | 7.6 | 7.7 |
| AT3G21740 | 1.2  | 1.1  | 1.2  | AT5G58590 | 2   | 1.8 | 1.9 | AT5G59720 | 8.1 | 7.6 | 7.8 |
| AT5G42820 | 1.2  | 1    | 1.1  | AT4G30570 | 2   | 1.9 | 2   | AT3G46230 | 9   | 8.8 | 9.2 |
| AT1G20890 | 1.2  | 1    | 1.1  | AT1G76065 | 2   | 1.8 | 2.1 | AT1G53540 | 9.6 | 9   | 9.8 |
| AT3G10030 | 1.2  | 1.1  | 1.2  |           |     |     |     |           |     |     |     |

**Table 13.** The top listed differentially expressed genes in wild type under DH LrH as compared to control condition. The genes were selected according to adj.*P*. The expression ratios of these genes in wild type were added along with the expression in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)*.

| AGI       |      | Log <sub>2</sub> FC |      | AGI —     |     | Log <sub>2</sub> F( | 2   | ٨GI       |     | Log <sub>2</sub> FC | 2   |
|-----------|------|---------------------|------|-----------|-----|---------------------|-----|-----------|-----|---------------------|-----|
| Au        | WT   | DM                  | ΤM   |           | WT  | DM                  | ΤM  |           | WΤ  | DM                  | ΤM  |
| AT1G29660 | -3.9 | -3.4                | -3.5 | AT5G37720 | 1.1 | 0.9                 | 0.9 | AT5G04250 | 2.5 | 1.7                 | 2.1 |
| AT5G12910 | -3.8 | -3.5                | -3.6 | AT1G17680 | 1.1 | 1.1                 | 1   | AT5G49990 | 2.5 | 2.3                 | 2.4 |
| AT2G26560 | -3.7 | -3.5                | -3.8 | AT4G34370 | 1.2 | 0.9                 | 1.1 | AT1G71330 | 2.6 | 2.1                 | 2.2 |
| AT3G44450 | -3.7 | -3.3                | -3.5 | AT3G12300 | 1.2 | 1                   | 1   | AT1G09140 | 2.6 | 2.2                 | 2.4 |
| AT3G46320 | -3.7 | -3.3                | -3.7 | AT3G10030 | 1.2 | 1.1                 | 1.2 | AT1G15960 | 2.6 | 2.3                 | 2.1 |
| AT5G10390 | -3.6 | -3.2                | -3.5 | AT5G58470 | 1.2 | 1.1                 | 1.2 | AT5G60580 | 2.6 | 2.2                 | 2.4 |
| AT3G22142 | -3.3 | -3.3                | -3.3 | AT1G10240 | 1.3 | 1.1                 | 1.3 | AT4G18280 | 2.6 | 2.2                 | 2.2 |
| AT2G35970 | -3.3 | -2.9                | -3   | AT2G41440 | 1.3 | 1.2                 | 1.1 | AT5G11090 | 2.7 | 2.4                 | 2.6 |
| AT4G19410 | -3.2 | -2.8                | -3.1 | AT1G72090 | 1.3 | 1.3                 | 1.4 | AT2G07671 | 2.8 | 2.5                 | 2.9 |
| AT3G21950 | -3.2 | -2.7                | -3   | AT4G15780 | 1.3 | 1.3                 | 1.3 | AT5G10946 | 2.8 | 2.5                 | 2.5 |
| AT5G05580 | -3   | -2.6                | -2.8 | AT1G29465 | 1.3 | 1.4                 | 1.5 | AT4G31354 | 2.8 | 2.5                 | 2.9 |
| AT1G19940 | -2.8 | -2.7                | -3.1 | AT3G62330 | 1.4 | 1.3                 | 1.4 | AT4G30470 | 2.8 | 2.4                 | 2.8 |
| AT2G28740 | -2.7 | -2.4                | -2.7 | AT3G01770 | 1.4 | 1.2                 | 1.3 | AT4G31351 | 2.8 | 2.6                 | 3   |
| AT1G63220 | -2.7 | -2.3                | -2.5 | AT5G59440 | 1.4 | 1.3                 | 1.3 | AT4G34230 | 2.8 | 2.3                 | 2.5 |
| AT5G39320 | -2.6 | -2.5                | -2.7 | AT2G34730 | 1.4 | 1.2                 | 1.4 | AT4G30490 | 2.8 | 2.5                 | 2.7 |
| AT5G19250 | -2.5 | -2.3                | -2.6 | AT3G43520 | 1.4 | 1.3                 | 1.3 | AT1G07350 | 2.9 | 2.8                 | 2.7 |
| AT5G49215 | -2.5 | -2                  | -2.3 | AT4G03230 | 1.4 | 1                   | 1.4 | AT3G23920 | 2.9 | 2.3                 | 2.8 |
| AT5G11420 | -2.4 | -2.1                | -2.3 | AT1G72650 | 1.4 | 1.3                 | 1.4 | AT1G17940 | 2.9 | 2.4                 | 2.5 |
| AT5G44340 | -2.4 | -2.2                | -2.2 | AT1G45976 | 1.4 | 1.2                 | 1.3 | AT1G04220 | 3.1 | 2.7                 | 2.8 |
| AT3G14310 | -2.4 | -1.9                | -2.1 | AT1G26580 | 1.4 | 1.3                 | 1.4 | AT3G48830 | 3.2 | 3.1                 | 3.2 |
| AT3G28180 | -2.3 | -2.1                | -2.2 | AT1G06110 | 1.4 | 1.4                 | 1.3 | AT3G11410 | 3.2 | 2.5                 | 2.8 |
| AT5G07110 | -2.3 | -2.1                | -2.2 | AT5G16110 | 1.4 | 1.4                 | 1.5 | AT4G23493 | 3.2 | 2.8                 | 2.8 |
| AT4G33360 | -2.3 | -2.1                | -2.4 | AT3G17740 | 1.5 | 1.3                 | 1.5 | AT4G40010 | 3.4 | 2.8                 | 3.1 |
| AT5G44110 | -2.3 | -2.2                | -2.2 | AT3G17460 | 1.5 | 1.3                 | 1.4 | AT3G63060 | 3.4 | 2.4                 | 2.8 |
| AT2G04780 | -2.3 | -1.9                | -2.2 | AT3G46920 | 1.5 | 1.2                 | 1.5 | AT1G80320 | 3.5 | 3                   | 3.3 |
| AT5G04160 | -2.2 | -2.1                | -2.2 | AT1G04970 | 1.5 | 1.3                 | 1.3 | AT1G70300 | 3.5 | 3.2                 | 3.4 |
| AT2G03350 | -2.2 | -1.7                | -2   | AT3G04240 | 1.5 | 1.3                 | 1.5 | AT3G14560 | 3.5 | 3.1                 | 3.3 |
| AT1G52290 | -2.2 | -1.6                | -2.1 | AT3G04160 | 1.5 | 1.4                 | 1.4 | AT4G14819 | 3.7 | 2.9                 | 3   |
| AT2G36470 | -2.2 | -2.1                | -2.2 | AT3G43210 | 1.6 | 1.3                 | 1.4 | AT1G03070 | 3.7 | 3                   | 3.3 |
| AT1G01790 | -2.2 | -2                  | -2.1 | AT5G62200 | 1.6 | 1.4                 | 1.4 | AT4G05100 | 3.8 | 3                   | 3.3 |
| AT5G26670 | -2.1 | -1.8                | -1.9 | AT1G58470 | 1.6 | 1.4                 | 1.5 | AT5G62150 | 3.9 | 3.6                 | 3.8 |
| AT1G62790 | -2.1 | -1.8                | -2   | AT4G28370 | 1.6 | 1.3                 | 1.5 | AT5G25280 | 4   | 3.7                 | 4   |
| AT5G41140 | -2   | -1.8                | -1.7 | AT5G62090 | 1.6 | 1.4                 | 1.5 | AT3G02140 | 4.3 | 3.3                 | 4   |
| AT3G45980 | -2   | -1.7                | -1.9 | AT1G01710 | 1.7 | 1.4                 | 1.4 | AT1G67920 | 4.3 | 4.2                 | 4.4 |
| AT2G36880 | -2   | -1.9                | -2   | AT5G25560 | 1.7 | 1.6                 | 1.6 | AT1G49450 | 4.3 | 2.9                 | 3.5 |
| AT1G29720 | -2   | -1.8                | -2   | AT2G37340 | 1.7 | 1.7                 | 1.8 | AT3G03170 | 4.3 | 3.7                 | 3.8 |
| AT5G07590 | -1.9 | -1.5                | -1.8 | AT2G46610 | 1.7 | 1.5                 | 1.6 | AT2G46270 | 4.3 | 3.9                 | 4   |
| AT5G48830 | -1.9 | -1.6                | -1.8 | AT3G13224 | 1.8 | 1.6                 | 1.6 | AT5G47550 | 4.4 | 3.9                 | 3.9 |
| AT3G59970 | -1.8 | -1.7                | -1.9 | AT5G51170 | 1.8 | 1.6                 | 1.7 | AT5G02020 | 4.5 | 3.9                 | 4.3 |

RESULTS \_\_\_\_\_\_

| 3.9<br>4.5<br>3.9 | 4.3<br>4.6<br>4.6                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.5<br>3.9        | 4.6<br>4.6                                                                                                                                                                  |
| 3.9               | 4.6                                                                                                                                                                         |
| 17                |                                                                                                                                                                             |
| 4./               | 4.9                                                                                                                                                                         |
| 4.6               | 4.7                                                                                                                                                                         |
| 3.9               | 4.4                                                                                                                                                                         |
| 3.8               | 4.4                                                                                                                                                                         |
| 4.7               | 5.4                                                                                                                                                                         |
| 4.9               | 4.8                                                                                                                                                                         |
| 4.9               | 5.3                                                                                                                                                                         |
| 5.3               | 5.5                                                                                                                                                                         |
| 5.4               | 5.6                                                                                                                                                                         |
| 5.1               | 5.3                                                                                                                                                                         |
| 5.4               | 5.8                                                                                                                                                                         |
| 4.8               | 5.2                                                                                                                                                                         |
| 5.3               | 5.9                                                                                                                                                                         |
| 5.1               | 5.6                                                                                                                                                                         |
| 5.4               | 5.3                                                                                                                                                                         |
| 5.7               | 6.1                                                                                                                                                                         |
| 5.5               | 5.9                                                                                                                                                                         |
| 6.2               | 6.3                                                                                                                                                                         |
| 7.2               | 7.4                                                                                                                                                                         |
| 6.7               | 8                                                                                                                                                                           |
| 7.4               | 7.9                                                                                                                                                                         |
| 6.6               | 7                                                                                                                                                                           |
| 7.1               | 7.5                                                                                                                                                                         |
|                   |                                                                                                                                                                             |
|                   | 4.6<br>3.9<br>3.8<br>4.7<br>4.9<br>5.3<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.3<br>5.1<br>5.4<br>5.3<br>5.1<br>5.4<br>5.7<br>5.5<br>6.2<br>7.2<br>6.7<br>7.4<br>6.6<br>7.1 |

On the other hand, a larger number of genes were significantly changed in *pip2;1 pip2;2* than in *pip2;1 pip2;2 pip2;4* under each treatment, but only a small portion of these genes overlapped between the two mutants (Figure 30). Among these genes, only four genes, *QQS*, *MRD1*, *AT5G03090* and *HEI10*, were differentially regulated in both *pip* mutants under all the treatments (Figure 31). Genes specifically altered due to a certain stress in *pip2;1 pip2;2* or in *pip2;1 pip2;2 pip2;4* were examined to understand the exclusive responses to water stresses in *pip* mutants. Interestingly, there was almost no overlap between the different stresses for each *pip* mutant (Figure 32). On the other hand, GO assignment by MapMan 3.5.1R2 showed that a large amount of the differentially expressed genes were *not assigned* in both *pip* mutants under water stresses. The rest of the genes were associated to *carbohydrate metabolism*, *cell wall*, *secondary metabolism*, *biotic and abiotic stresses*, *protein modification and degradation* as well as other functional classifications under water stresses (Figure 33 and Table 14-18), suggesting at least partly common responses in terms of the affected biological processes.



**Figure 30.** Number of differentially expressed genes in *pip* mutants as compared to the wild type under water stresses. The total number (In total), number of specifically changed genes (Specific) in either *pip2;1 pip2;2 (DM*) and *pip2;1 pip2;2 pip2;4 (TM*) under each stress condition and the number of common elements in both mutants (Common) are shown ( $|Log_2FC| \ge 1 \& adj. P \le 0.05$ ).



**Figure 31.** Relative expression levels of four differentially expressed genes in common between *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)* as compared to wild type under all the water stresses D, H LrH, H HrH, DH LrH and DH HrH. The values were extracted from Agilent microarray analysis.



**Figure 32.** Venn diagram of specifically altered genes in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to wild type under water stresses ( $|Log_2FC| \ge 1 \& adj$ .  $P \le 0.05$ )







**Figure 33.** Gene ontology categories of differentially expressed genes in *pip2;1 pip2;2 (DM)* and *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under water stresses. The categorization was done by MapMan 3.2.1R2 and the percentages among all differentially expressed genes are given.

Several specifically altered genes associated to cell wall in *pip* mutants in response to water stresses were particularly interesting in the context of plant water relations. Under drought stress, FUCOSYLTRANSFERASE 4 (FUT4), which functions in fucosylation of arabinogalactan proteins (Tryfona et al., 2014), was downregulated in both pip mutants, whereas one pectin lyase-like protein, POLYGALACTURONASE 4 (PGA4) was specifically upregulated in pip2;1 pip2;2 pip2;4 (Table 14). Under DH HrH, one transcript encoding a pectate lyase protein was specifically enhanced in pip2;1 pip2;2 (Table 17). Under DH LrH, LEUCINE-RICH REPEAT/EXTENSIN 1 (LRX1) and CELLULOSE SYNTHASE-LIKE A1 (CSLA01) were enhanced in pip2;1 pip2;2, whereas one plant invertase/pectin methylesterase inhibitor superfamily protein encoding gene, AT2G47050, and one pectin lyase-like superfamily protein gene, AT2G43870, were specifically upregulated in pip2;1 pip2;2 pip2;4 (Table 18). But no cell wall related genes were changed under H HrH and H LrH (Table 15 and Table 16). In addition, more than 30% of the differentially expressed genes under Drought, H LrH, DH LrH and DH HrH and 15% of the differentially expressed genes under H HrH in both pip mutants were functional uncharacterized genes (Table 14-18). To better understand the functions of uncharacterized genes in pip mutants under water stresses, co-expression analysis was applied via ATTED-II (http://atted.jp). However, no co-expressed networks between these differentially expressed genes were detected.

Taken together, loss of *PIP2;1*, *PIP2;2* and loss of additional *PIP2;4* marginally impacted the water stress responses at transcriptional level. The differentially expressed genes in *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* under water stresses shared the same regulatory pathways, although the individual genes were mostly not regulated in common and were highly dependent on the treatments.

**Table 14.** Differentially expressed genes either in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under drought stress (red and green values represent fold change of significantly increased and decreased genes, respectively; black values represent non-significant fold changes with adj. $P \ge 0.05$ ; Black dashes "–" represent the low expressed genes that cannot be detected; NA, Not Assigned; The genes in bold are highly expressed in leaves).

|                      | Log <sub>2</sub> FC |          |        |                                                       |
|----------------------|---------------------|----------|--------|-------------------------------------------------------|
| AGI Code             | DM                  | ТМ       | Name   | Annotation                                            |
| Major carbo          | nhydra              | te metab | olism  |                                                       |
| AT3G30720            | 2.19                | 2.89     | QQS    | Starch metabolism                                     |
| Cell wall            |                     |          |        |                                                       |
| AT2G15390            | -1.03               | -1.03    | FUT4   | Predicted fucosyltransferase                          |
| AT1G02790            | -                   | 2.35     | PGA4   | Exopolygalacturonase                                  |
| AT3G07850            | -                   | 2.13     | NA     | Pectin lyase-like superfamily protein                 |
| AT3G59850            | -                   | -1.18    | NA     | Pectin lyase-like superfamily protein                 |
| Secondary m          | netabol             | ism      |        |                                                       |
| AT1G74090            | 1.01                | 1.09     | SOT18  | Desulfoglucosinolate sulfotransferase                 |
| AT5G24140            | -2.13               | -        | SQP2   | Similarity to squalene monoxygenases                  |
| AT3G55970            | -1.31               | -1.36    | JRG21  | Jasmonate-regulated gene 21                           |
| AT1G23320            | 3.38                | -        | TAR1   | Similarity to the TAA1 trytophan aminotransferase     |
| <b>Biotic stress</b> |                     |          |        |                                                       |
| AT1G33910            | -3.33               | -        | NA     | P-loop containing nucleoside triphosphate hydrolase   |
| AT2G35980            | -1.15               | -        | YLS9   | Similar to tobacco hairpin-induced gene (HIN1)        |
| AT4G30430            | -1.06               | -        | TET9   | Tetraspanin                                           |
| AT3G52400            | -                   | -1.01    | SYP122 | Syntaxin protein                                      |
| AT3G51560            | -                   | 2.72     | NA     | Disease resistance protein (TIR-NBS-LRR class) family |
| Miscellaneo          | us enzy             | me famil | ies    |                                                       |
| AT5G56470            | -4.43               | -        | GULLO7 | FAD-dependent oxidoreductase family protein           |
| AT1G26420            | -1.06               | -        | NA     | FAD-binding Berberine family protein                  |
| AT1G69240            | -2.54               | -2.51    | MES15  | Act as a carboxylesterase                             |
| AT2G29350            | -1.37               | -        | SAG13  | Senescence-associated gene                            |
| AT2G29460            | -1.55               | -1.27    | GSTU4  | Glutathione transferase                               |
| AT3G26830            | -1.67               | -1.38    | PAD3   | Conversion of dihydrocamalexic acid to camalexin      |
| AT2G18980            | -1.42               | -1.20    | NA     | Peroxidase superfamily protein                        |
| AT5G06730            | -1.75               | -1.72    | NA     | Peroxidase superfamily protein                        |
| AT5G35950            | -1.53               | -1.42    | NA     | Mannose-binding lectin superfamily protein            |
| AT1G64235            | -1.35               | -        | NA     | lipid-transfer protein                                |
| AT3G13390            | -                   | 2.23     | SKS11  | SKU5 similar 11                                       |
| AT3G13400            | -                   | 2.30     | SKS13  | SKU5 similar 13                                       |
| AT3G53070            | -                   | 3.59     | NA     | Putative membrane lipoprotein                         |
| RNA.Transcr          | iption              |          |        |                                                       |
| AT5G67060            | -1.81               | -1.54    | HEC1   | DNA binding transcription factor activity             |
| AT4G21080            | -2.34               | -        | DOF4.5 | Dof-type zinc finger domain-containing protein        |
| AT3G01030            | -1.51               | -        | NA     | C2H2 and C2HC zinc fingers superfamily protein        |
| AT5G17320            | -1.38               | -1.40    | HDG9   | Homeobox-leucine zipper family protein                |
| 76                   |                     |          |        |                                                       |

| AT1G53490    | -1.82     | -1.79    | HEI10     | A RING finger-containing protein                                                          |
|--------------|-----------|----------|-----------|-------------------------------------------------------------------------------------------|
| AT3G10815    | -1.07     | -        | NA        | RING/U-box superfamily protein                                                            |
| AT5G22380    | -1.37     | -        | NAC090    | NAC domain containing protein 90                                                          |
| AT2G33710    | -         | -2.18    | NA        | ERF subfamily B-4 of ERF/AP2 transcription factor                                         |
| AT2G15660    | -         | 3.50     | AGL95     | AGAMOUS-like 95                                                                           |
| AT1G66550    | -         | 2.85     | WRKY67    | WRKY Transcription Factor                                                                 |
| AT1G28300    | -         | 1.19     | LEC2      | Transcription factor that contains a B3 domain                                            |
| DNA.Repair   |           |          |           |                                                                                           |
| AT3G32330    | -         | -1.60    | NA        | DNA repair protein-related                                                                |
| Protein mod  | lificatio | n and de | gradation |                                                                                           |
| AT2G33010    | -3.74     | -        | NA        | Ubiquitin-associated (UBA) protein<br>F-box and associated interaction domains-containing |
| AT4G19940    | -1.64     | -        | NA        | protein                                                                                   |
| AT5G55150    | -1.37     | -        | NA        | NA                                                                                        |
| AT1G56030    | -1.08     | -        | NA        | RING/U-box superfamily protein                                                            |
| AT3G46240    | -         | 2.75     | NA        | Best protein match is: receptor protein kinase-related                                    |
| AT4G05250    | -         | 2.05     | NA        | Ubiquitin-like superfamily protein                                                        |
|              |           |          |           | F-box and associated interaction domains-containing                                       |
| AT1G58090    | -         | -1.09    | NA        | protein                                                                                   |
| AT3G59230    | -         | -1.99    | NA        | RNI-like superfamily protein                                                              |
| Signalling   |           |          |           |                                                                                           |
| AT2G29110    | -1.27     | -1.31    | GLR2.8    | Putative ligand-gated ion channel subunit                                                 |
| AT1G79680    | -1.26     | -1.14    | WAKL10    | Twin-domain, kinase-GC signaling molecule                                                 |
| AT3G15050    | -1.27     | -1.28    | IQD10     | IQD10 and functions in calmodulin binding                                                 |
| AT5G26920    | -1.00     | -        | CBP60G    | Calmodulin-binding protein CBP60G                                                         |
| AT4G03156    | -2.08     | -        | NA        | Small GTPase-related                                                                      |
| Cell.Vesicle | transpo   | rt       |           |                                                                                           |
| AT5G13990    | -         | -3.02    | EXO70C2   | Putative exocyst subunits                                                                 |
| Developmen   | nt        |          |           |                                                                                           |
| AT3G43660    | -3.13     | -2.94    | NA        | Putative nodulin-like21 protein                                                           |
| Transport    |           |          |           |                                                                                           |
| AT3G48850    | -1.03     | -        | PHT3;2    | Mitochondrial phosphate transporter                                                       |
| AT1G17810    | -2.06     | -2.07    | TIP3;2    | Beta-tonoplast intrinsic protein (beta-TIP)                                               |
| Not assigned | ł         |          |           |                                                                                           |
| AT1G53480    | -5.01     | -5.15    | MRD1      | mto 1 responding down                                                                     |
| AT1G54095    | -3.80     | -        | NA        | NA                                                                                        |
| AT1G59590    | -1.06     | -        | ZCF37     | ZCF37 mRNA, complete cds                                                                  |
| AT1G68680    | -1.20     | -1.25    | NA        | NA                                                                                        |
| AT2G07215    | -2.07     | -        | NA        | NA                                                                                        |
| AT2G18690    | -1.33     | -1.26    | NA        | NA                                                                                        |
| AT3G01290    | -1.20     | -        | HIR2      | Membrane-associated protein                                                               |
| AT3G11405    | -2.26     | -1.64    | NA        | NA                                                                                        |
| AT3G13950    | -1.23     | -        | NA        | NA                                                                                        |
| AT3G15518    | -1.16     | -1.14    | NA        | NA                                                                                        |
| AT3G16432    | -2.19     | -2.17    | NA        | NA                                                                                        |
| AT3G26855    | -1.85     | -2.03    | NA        | Reverse transcriptase-related family protein                                              |

RESULTS \_\_\_\_\_\_

| AT3G29033 | -1.99 | -2.02 | NA | NA                                                     |
|-----------|-------|-------|----|--------------------------------------------------------|
| AT3G42990 | -2.29 | -1.97 | NA | NA                                                     |
| AT4G17505 | 3.00  | -     | NA | NA                                                     |
| AT4G19095 | -2.50 | -2.49 | NA | NA                                                     |
| AT4G29103 | -1.06 | -1.15 | NA | NA                                                     |
| AT4G29250 | -2.23 | -     | NA | HXXXD-type acyl-transferase family protein             |
| AT5G03090 | -2.69 | -2.66 | NA | Best protein match is: mto 1 responding down 1         |
| AT5G05300 | -1.09 | -     | NA | NA                                                     |
| AT5G08240 | -1.01 | -     | NA | NA                                                     |
| AT5G35050 | -1.06 | -1.09 | NA | NA                                                     |
| AT5G36100 | -1.96 | -     | NA | NA                                                     |
| AT4G03480 | 2.13  | -     | NA | Ankyrin repeat family protein                          |
| AT1G52810 | -     | -1.72 | NA | 2OG and Fe(II)-dependent oxygenase superfamily protein |
| AT1G25400 | -     | -1.06 | NA | NA                                                     |
| AT1G27610 | -     | -1.79 | NA | NA                                                     |
| AT1G34400 | -     | -1.22 | NA | NA                                                     |
| AT2G41640 | -     | -1.03 | NA | Glycosyltransferase family 61 protein                  |
| AT3G50130 | -     | -1.49 | NA | NA                                                     |
| AT4G33320 | -     | -2.38 | NA | NA                                                     |
| AT5G60650 | -     | 1.23  | NA | NA                                                     |

**Table 15.** Differentially expressed genes either in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under H HrH (red and green values represent fold change of significantly increased and decreased genes, respectively; black values represent non-significant fold changes with  $adj.P \ge 0.05$ ; Black dashes "—" represent the low expressed genes that cannot be detected; NA, Not Assigned; The genes in bold are highly expressed in leaves).

|                                | Log                  | <sub>2</sub> FC |            |                                                           |  |  |  |  |
|--------------------------------|----------------------|-----------------|------------|-----------------------------------------------------------|--|--|--|--|
| AGI Code                       | DM                   | ТМ              | Name       | Annotation                                                |  |  |  |  |
| Major carbonhydrate metabolism |                      |                 |            |                                                           |  |  |  |  |
| AT3G30720                      | 1.67                 | 2.54            | QQS        | Starch metabolism                                         |  |  |  |  |
| Secondary m                    | Secondary metabolism |                 |            |                                                           |  |  |  |  |
| AT4G27550                      | -                    | -2.72           | TPS4       | Putative enzyme involved in trehalose biosynthesis        |  |  |  |  |
| Biotic and ab                  | biotic st            | tress           |            |                                                           |  |  |  |  |
| AT2G32680                      | -1.22                | -               | RLP23      | Receptor like protein 23                                  |  |  |  |  |
| AT1G11040                      | 3.04                 | -               | NA         | HSP40/DnaJ peptide-binding protein                        |  |  |  |  |
| AT2G42885                      | -                    | 2.08            | NA         | Defensin-like (DEFL) family protein                       |  |  |  |  |
| Miscellaneo                    | us enzy              | me fan          | nilies     |                                                           |  |  |  |  |
| AT4G16260                      | -1.22                | -               | NA         | Putative beta-1,3-endoglucanase                           |  |  |  |  |
| AT1G26380                      | -1.21                | -               | NA         | FAD-binding Berberine family protein                      |  |  |  |  |
| AT1G02920                      | -1.02                | -               | GST11      | Glutathione transferase                                   |  |  |  |  |
| AT3G11980                      | 4.30                 | -               | FAR2       | Similar to fatty acid reductases                          |  |  |  |  |
| AT4G29580                      | 3.42                 | -               | NA         | Cytidine/deoxycytidylate deaminase family protein         |  |  |  |  |
| AT5G09290                      | -1.07                | -               | NA         | Inositol monophosphatase family protein                   |  |  |  |  |
| <b>RNA.Transcr</b>             | iption               |                 |            |                                                           |  |  |  |  |
| AT1G30455                      | -1.72                | -4.50           | NA         | Transcription regulators                                  |  |  |  |  |
| AT1G53490                      | -1.71                | -1.80           | HEI10      | A RING finger-containing protein                          |  |  |  |  |
| AT5G52170                      | 2.53                 | -               | HDG7       | Homeobox-leucine zipper family protein                    |  |  |  |  |
| AT2G40740                      | -1.36                | -               | WRKY55     | Member of WRKY Transcription Factor                       |  |  |  |  |
| AT5G10760                      | -1.15                | -               | NA         | Eukaryotic aspartyl protease family protein               |  |  |  |  |
| AT1G18710                      | -                    | 1.03            | MYB47      | Member of the R2R3 factor gene family.                    |  |  |  |  |
| AT3G28470                      | -                    | -6.01           | MYB35      | Member of the R2R3 factor gene family.                    |  |  |  |  |
| Protein mod                    | ificatio             | n and c         | legradatio | n                                                         |  |  |  |  |
| AT4G25110                      | -1.30                | -               | MC2        | Type I metacaspase 2                                      |  |  |  |  |
| AT2G18080                      | 3.48                 | -               | EDA2       | Embryo sac development arrest 2                           |  |  |  |  |
| AT3G28580                      | -1.55                | -               | NA         | P-loop containing nucleoside triphosphate hydrolase       |  |  |  |  |
| AT5G39440                      | -                    | 3.51            | SnRK1.3    | SNF1-related protein kinase 1.3                           |  |  |  |  |
| Signalling                     |                      |                 |            |                                                           |  |  |  |  |
| AT2G29110                      | -1.01                | -               | GLR2.8     | Putative ligand-gated ion channel                         |  |  |  |  |
| AT4G11460                      | -1.02                | -               | CRK30      | Cysteine-rich receptor-like protein kinase                |  |  |  |  |
|                                |                      |                 |            | ABA- and osmotic-stress-inducible receptor-like cytosolic |  |  |  |  |
| AT4G11890                      | -1.11                | -               | ARCK1      | kinase                                                    |  |  |  |  |
| AT4G23150                      | -1.21                | -               | CRK7       | Cysteine-rich receptor-like protein kinase                |  |  |  |  |
| AT1G51890                      | -1.00                | -               | NA         | Leucine-rich repeat protein kinase family protein         |  |  |  |  |
| AT3G21945                      | 1.39                 | -               | NA         | Receptor-like protein kinase-related family protein       |  |  |  |  |

#### RESULTS \_\_\_\_\_

| AT2G41100    | -1.04 | -     | ТСНЗ   | Calmodulin-like protein                          |
|--------------|-------|-------|--------|--------------------------------------------------|
| AT5G39670    | -1.03 | -     | NA     | Calcium-binding EF-hand family protein           |
| AT4G03156    | -     | -2.90 | NA     | small GTPase-related                             |
| Transport    |       |       |        |                                                  |
| AT4G18790    | -2.72 | -     | NRAMP5 | Member of Nramp2 family                          |
| Not assigned | ł     |       |        |                                                  |
| AT1G53480    | -4.90 | -5.67 | MRD1   | mto 1 responding down                            |
| AT1G68680    | -1.09 | -1.12 | NA     | NA                                               |
| AT2G18690    | -1.03 | -     | NA     | NA                                               |
| AT2G44195    | -1.73 | -1.52 | NA     | CBF1-interacting co-repressor CIR                |
| AT3G01290    | -1.16 | -     | HIR2   | Hypersensitive induced reaction 2                |
| AT3G15578    | -1.69 | -1.90 | NA     | NA                                               |
| AT3G30350    | -2.77 | -2.28 | RGF4   | Root meristem growth factor                      |
| AT4G26920    | 3.47  | -     | NA     | StAR-related lipid-transfer lipid-binding domain |
| AT5G03090    | -2.58 | -2.62 | NA     | Best protein match is mto 1 responding down 1    |
| AT5G27370    | 1.15  | -     | NA     | NA                                               |
| AT4C29405    | _     | -1 57 | NA     | ΝΛ                                               |

**Table 16.** Differentially expressed genes either in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under H LrH (red and green values represent fold change of significantly increased and decreased genes, respectively; black values represent non-significant fold changes with  $adj.P \ge 0.05$ ; Black dashes "—" represent the low expressed genes that cannot be detected; NA, Not Assigned; The genes in bold are highly expressed in leaves).

|                      | Log       | g₂FC     |          |                                                         |  |  |  |  |
|----------------------|-----------|----------|----------|---------------------------------------------------------|--|--|--|--|
| AGI Code             | DM        | ТМ       | Name     | Annotation                                              |  |  |  |  |
| Major carbo          | nhydra    | te metal | bolism   |                                                         |  |  |  |  |
| AT3G30720            | 1.73      | 2.26     | QQS      | Starch metabolism                                       |  |  |  |  |
| Secondary metabolism |           |          |          |                                                         |  |  |  |  |
| AT5G51420            | -2.48     | -        | NA       | Long-chain-alcohol O-fatty-acyltransferase              |  |  |  |  |
| AT5G60510            | -         | 1.82     | СРТ9     | cis-prenyltransferase 9                                 |  |  |  |  |
| Biotic and ab        | piotic st | ress     |          |                                                         |  |  |  |  |
| AT1G52660            | 1.98      | -        | NA       | P-loop containing nucleoside triphosphate hydrolase     |  |  |  |  |
| AT5G37760            | -1.53     | -        | NA       | Chaperone DnaJ-domain superfamily protein               |  |  |  |  |
| Miscellaneo          | us enzy   | me fami  | lies     |                                                         |  |  |  |  |
| AT3G01620            | -1.66     | -        | NA       | Beta-1,4-N-acetylglucosaminyltransferase                |  |  |  |  |
| AT1G27140            | 1.37      | -        | GSTU14   | Glutathione transferase                                 |  |  |  |  |
| AT2G16730            | -         | 4.60     | BGAL13   | Putative beta-galactosidase                             |  |  |  |  |
| AT4G02250            | -         | -13.32   | NA       | Plant invertase/pectin methylesterase                   |  |  |  |  |
| Signalling           |           |          |          |                                                         |  |  |  |  |
| AT2G22290            | -         | 2.29     | RABH1d   | RAB GTPase homolog 6                                    |  |  |  |  |
| <b>RNA.Transcr</b>   | iption    |          |          |                                                         |  |  |  |  |
| AT4G10240            | -3.43     | -        | BBX23    | B-box zinc finger family protein                        |  |  |  |  |
| AT5G07100            | -1.05     | -        | WRKY26   | WRKY DNA-binding protein 26                             |  |  |  |  |
| AT1G53490            | -2.03     | -1.96    | HEI10    | A RING finger-containing protein                        |  |  |  |  |
| AT5G46660            | -         | 1.33     | NA       | Protein kinase C-like zinc finger protein               |  |  |  |  |
| DNA.Synthes          | sis/chro  | omatin s | tructure |                                                         |  |  |  |  |
| AT5G16850            | -2.03     | -        | TERT     | Catalytic subunit of telomerase reverse transcriptase   |  |  |  |  |
| Protein targe        | eting ar  | nd degra | dation   |                                                         |  |  |  |  |
| AT3G05720            | -2.65     | -        | IMPA-7   | Putative importin alpha isoform                         |  |  |  |  |
| AT2G38900            | 1.49      | -        | NA       | PR (pathogenesis-related) peptide                       |  |  |  |  |
| Developmen           | nt        |          |          |                                                         |  |  |  |  |
| AT3G20400            | 4.66      | -        | EMB2743  | Embryo defective 2743                                   |  |  |  |  |
| AT3G18518            | -         | -1.76    | RTFL20   | ROTUNDIFOLIA like 20                                    |  |  |  |  |
| Not assigned         | ł         |          |          |                                                         |  |  |  |  |
| AT1G53480            | -4.90     | -5.27    | MRD1     | <i>mto 1</i> responding down                            |  |  |  |  |
| AT1G27260            | -4.29     | -        | NA       | Paired amphipathic helix superfamily protein            |  |  |  |  |
| AT5G03090            | -2.50     | -2.59    | NA       | Best protein match is mto 1 responding down 1           |  |  |  |  |
| AT5G44920            | -1.13     | -        | NA       | Toll-Interleukin-Resistance (TIR) domain family protein |  |  |  |  |
| AT5G33898            | -1.99     | -        | NA       | NA                                                      |  |  |  |  |
| AT1G68680            | -1.30     | -1.40    | NA       | NA                                                      |  |  |  |  |
| AT1G48740            | 2.25      | -        | NA       | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase     |  |  |  |  |

#### AT1G16025 1.24 -NA NA AT2G26865 --1.49 NA A Plant thionin family protein HSP20-like chaperones superfamily protein AT4G27890 1.89 NA -AT5G09430 2.19 NA Alpha/beta-Hydrolases superfamily protein -AT5G52730 -1.90 NA Copper transport protein family -Polynucleotidyl transferase AT2G13980 1.42 NA -AT2G18270 2.28 NA NA -AT3G30770 3.08 NA Eukaryotic aspartyl protease family protein -AT4G02090 1.41 NA NA -AT4G04650 2.75 NA **RNA-directed DNA polymerase** -AT5G60650 1.13 NA NA \_

RESULTS \_\_\_\_

**Table 17.** Differentially expressed genes either in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under DH HrH (red and green values represent fold change of significantly increased and decreased genes, respectively; black values represent non-significant fold changes with  $adj.P \ge 0.05$ ; Black dashes "—" represent the low expressed genes that cannot be detected; NA, Not Assigned; The genes in bold are highly expressed in leaves).

|                      | Log₂FC   |          |        |                                                   |
|----------------------|----------|----------|--------|---------------------------------------------------|
| AGI Code             | DM       | ТМ       | Name   | Annotation                                        |
| Major carbo          | hydrate  | es metab | olism  |                                                   |
| AT3G30720            | 1.78     | 2.74     | QQS    | Starch metabolism                                 |
| Cell wall            |          |          |        |                                                   |
| AT4G33840            | -2.71    | -        | NA     | Glycosyl hydrolase family 10 protein              |
| AT4G14365            | -1.04    | -        | XBAT34 | XB3 ortholog 4 in Arabidopsis thaliana            |
| AT3G24230            | 1.95     | -        | NA     | Pectate lyase family protein                      |
| Amino acid r         | netabo   | lism     |        |                                                   |
| AT4G28410            | -1.47    | -1.59    | RSA1   | Tyrosine transaminase family protein              |
| Secondary m          | netaboli | ism      |        |                                                   |
| AT5G36150            | 3.34     | -        | PEN3   | Putative pentacyclic triterpene synthase 3        |
| AT5G24140            | -2.38    | -        | SQP2   | Squalene monoxygenases 2                          |
| AT5G10990            | -        | -2.24    | SAUR69 | SAUR-like auxin-responsive protein family         |
| AT1G23320            | -        | 2.20     | TAR1   | Similar to the TAA1 trytophan aminotransferase    |
| AT1G04370            | -        | 2.53     | ERF14  | ERF subfamily B-3 of ERF/AP2 transcription factor |
| <b>Biotic stress</b> |          |          |        |                                                   |
| AT2G32680            | -1.12    | -        | RLP23  | Receptor like protein 23                          |
| AT2G33080            | -1.33    | -        | RLP28  | Receptor like protein 28                          |
| AT2G43570            | -1.30    | -        | CHI    | Putative chitinase                                |
| Redox                |          |          |        |                                                   |
| AT1G69880            | -1.00    | -        | TH8    | Thioredoxin H-type 8                              |
| Miscellaneo          | us enzy  | me fami  | ies    |                                                   |
| AT5G37940            | 1.00     | -        | NA     | Zinc-binding dehydrogenase family protein         |
| AT2G29350            | -1.29    | -        | SAG13  | Senescence-associated gene 13                     |
| AT2G29460            | -1.27    | -        | GSTU4  | Glutathione transferase                           |
| AT3G26830            | -1.15    | -        | PAD3   | Phytoalexin deficient 3                           |
| 82                   |          |          |        |                                                   |

| AT3G52970    | 2.60     | -        | CYP76G1   | Member of CYP76G                                         |
|--------------|----------|----------|-----------|----------------------------------------------------------|
| AT5G02900    | 2.46     | -        | CYP96A13  | Member of CYP96A                                         |
| AT1G61230    | 2.60     | -        | NA        | Mannose-binding lectin superfamily protein               |
| AT1G01590    | 1.00     | -        | FRO1      | Ferric-chelate reductase 1                               |
| AT5G18470    | -1.01    | -        | NA        | Curculin-like (mannose-binding) lectin family protein    |
| RNA.Transcr  | iption   |          |           |                                                          |
| AT1G30455    | -2.26    | -2.82    | NA        | Transcription regulators                                 |
| AT1G53490    | -1.77    | -1.98    | HEI10     | A RING finger-containing protein                         |
| AT5G22380    | -1.28    | -        | NAC090    | NAC domain containing protein 90                         |
| AT3G49950    | 1.91     | -        | NA        | GRAS family transcription factor                         |
| AT5G56960    | 1.76     | -        | NA        | bHLH DNA-binding family protein                          |
| Protein mod  | ificatio | n and de | gradation |                                                          |
| AT4G05250    | 2.07     | -        | NA        | Ubiquitin-like superfamily protein                       |
| AT3G16555    | -        | -1.13    | NA        | F-box family protein                                     |
| Signalling   |          |          |           |                                                          |
| AT4G11890    | -1.12    | -        | ARCK1     | ABA- and osmotic-stress-inducible receptor-like kinase 1 |
| AT4G23140    | -1.11    | -        | CRK6      | Cysteine-rich receptor-like protein kinase 6             |
| AT4G23150    | -1.06    | -        | CRK7      | Cysteine-rich receptor-like protein kinase 7             |
| AT5G41300    | -4.00    | -        | NA        | Receptor-like protein kinase-related family protein      |
| Not assigned | ł        |          |           |                                                          |
| AT1G14780    | -1.12    | -        | NA        | Membrane attack complex                                  |
| AT1G53480    | -5.30    | -5.37    | MRD1      | <i>mto</i> 1 responding down                             |
| AT1G58225    | -1.14    | -        | NA        | NA                                                       |
| AT1G73810    | -1.02    | -        | NA        | NA                                                       |
| AT2G04037    | 3.47     | -        | NA        | NA                                                       |
| AT2G04680    | -1.77    | -2.18    | NA        | Cysteine/Histidine-rich C1 domain family protein         |
| AT2G16225    | 3.75     | -        | NA        | Maternally expressed gene (MEG) family protein           |
| AT2G19300    | 1.11     | -        | NA        | NA                                                       |
| AT2G19320    | 4.49     | -        | NA        | NA                                                       |
| AT2G25482    | -1.55    | -        | NA        | ECA1 gametogenesis related family protein                |
| AT3G28310    | -1.56    | -1.76    | NA        | NA                                                       |
| AT3G29034    | 1.51     | -        | NA        | NA                                                       |
| AT3G48209    | -1.71    | -2.22    | NA        | Plant thionin family protein                             |
| AT3G49796    | -1.29    | -        | NA        | NA                                                       |
| AT4G00700    | -1.26    | -        | NA        | C2 calcium/lipid-binding plant phosphoribosyltransferase |
| AT4G09775    | 2.22     | -        | NA        | Ribonuclease H-like superfamily protein                  |
| AT4G16807    | -1.36    | -1.35    | NA        | NA                                                       |
| AT4G31740    | -1.57    | -        | NA        | Sec1/munc18-like (SM) proteins superfamily               |
| AT5G03090    | -2.63    | -2.81    | NA        | Best protein match is mto 1 responding down 1            |
| AT5G08240    | -1.04    | -        | NA        | NA                                                       |
| AT5G22545    | -1.05    | -        | NA        | NA                                                       |
| AT5G46140    | -1.02    | -        | NA        | NA                                                       |
| AT5G52760    | -1.19    | -        | NA        | Copper transport protein family                          |
| AT2G41640    | -        | -1.00    | NA        | Glycosyltransferase family 61 protein                    |
| AT5G14020    | -        | 3.28     | NA        | Targeting BRO1-like domain-containing protein            |

| RESULTS   |      |      |    |                               |  |  |
|-----------|------|------|----|-------------------------------|--|--|
|           |      |      |    |                               |  |  |
| AT3G59260 | -    | 2.12 | NA | Putative pirin                |  |  |
| AT1G55230 | -    | 3.70 | NA | NA                            |  |  |
| AT1G07710 | 3.13 | -    | NA | Ankyrin repeat family protein |  |  |

**Table 18.** Differentially expressed genes either in *pip2;1 pip2;2 (DM)* or *pip2;1 pip2;2 pip2;4 (TM)* as compared to the wild type under DH LrH (red and green values represent fold change of significantly increased and decreased genes, respectively; black values represent non-significant fold changes with  $adj.P \ge 0.05$ ; Black dashes "—" represent the low expressed genes that cannot be detected; NA, Not Assigned; The genes in bold are highly expressed in leaves).

|                           | Log                            | ₂ <b>FC</b> | <u>-</u> |                                                         |  |  |  |
|---------------------------|--------------------------------|-------------|----------|---------------------------------------------------------|--|--|--|
| AGI Code                  | DM                             | тм          | Name     | Annotation                                              |  |  |  |
| Major carbor              | Major carbonhydrate metabolism |             |          |                                                         |  |  |  |
| AT3G30720                 | 1.72                           | 2.24        | QQS      | Starch metabolism                                       |  |  |  |
| TCA/Organic               | acid tra                       | ansform     | nations  |                                                         |  |  |  |
| AT5G04180                 | -                              | 4.16        | ACA3     | Alpha carbonic anhydrase 3                              |  |  |  |
| Cell wall                 |                                |             |          |                                                         |  |  |  |
| AT1G12040                 | 1.27                           | -           | LRX1     | Leucine-rich repeat/extensin 1                          |  |  |  |
| AT4G16590                 | 1.44                           | -           | CSLA01   | Cellulose synthase-like 1                               |  |  |  |
| AT3G08900                 | -1.54                          | -           | RGP3     | Reversibly glycosylated polypeptide 3                   |  |  |  |
| AT2G14620                 | -1.33                          | -           | XTH10    | Xyloglucan endotransglucosylase/hydrolase 10            |  |  |  |
| AT1G74010                 | -1.11                          | -           | NA       | Calcium-dependent phosphotriesterase                    |  |  |  |
| AT2G47050                 | -                              | 1.19        | NA       | Plant invertase/pectin methylesterase inhibitor         |  |  |  |
| AT5G25310                 | -                              | 3.23        | NA       | Exostosin family protein                                |  |  |  |
| AT1G23760                 | -                              | 2.68        | PG3      | Polygalacturonase 3                                     |  |  |  |
| AT2G43870                 | -                              | 4.32        | NA       | Pectin lyase-like superfamily protein                   |  |  |  |
| Lipid metabo              | lism                           |             |          |                                                         |  |  |  |
| AT1G68620                 | -1.38                          | -           | NA       | Alpha/beta-Hydrolases superfamily protein               |  |  |  |
| AT3G12545                 | -                              | 2.99        | NA       | Lipid-transfer protein                                  |  |  |  |
| Amino acid n              | netabol                        | ism         |          |                                                         |  |  |  |
| AT5G14760                 |                                | 1.02        | AO       | L-aspartate oxidase                                     |  |  |  |
| Hormone me                | tabolis                        | m           |          |                                                         |  |  |  |
| AT4G18350                 | -1.21                          | -           | NCED2    | 9-cis-epoxycarotenoid dioxygenase                       |  |  |  |
| AT5G54510                 | -1.05                          | -           | DFL1     | IAA-amido synthase                                      |  |  |  |
| AT1G68765                 | -1.01                          | -           | IDA      | Inflorescence deficient in abscission                   |  |  |  |
| AT5G07200                 | -4.18                          | -           | GA20OX3  | Gibberellin 20-oxidase                                  |  |  |  |
| AT2G43820                 | -1.01                          | -           | SAGT1    | Salicylic acid glucosyltransferase 1                    |  |  |  |
| Biotic and abiotic stress |                                |             |          |                                                         |  |  |  |
| AT4G19820                 | -1.05                          | -           | NA       | Glycosyl hydrolase family protein                       |  |  |  |
| AT1G57630                 | -1.46                          | -           | NA       | Toll-Interleukin-Resistance (TIR) domain family protein |  |  |  |
| AT4G14368                 | 1.12                           | -           | NA       | Regulator of chromosome condensation family protein     |  |  |  |
| AT5G62627                 | -3.74                          | -           | NA       | Encodes a defensin-like (DEFL) family protein.          |  |  |  |
| AT3G01420                 | -1.79                          | -           | DOX1     | Plant alpha dioxygenase 1                               |  |  |  |
| AT1G33930                 | -                              | 3.06        | NA       | P-loop containing nucleoside triphosphate hydrolases    |  |  |  |
| Nucleotide m              | netaboli                       | ism         |          |                                                         |  |  |  |

| AT4G29710                     | -         | -2.11   | NA         | Alkaline-phosphatase-like family protein             |  |  |
|-------------------------------|-----------|---------|------------|------------------------------------------------------|--|--|
| Miscellaneous enzyme families |           |         |            |                                                      |  |  |
| AT2G46480                     | -3.19     | -       | GAUT2      | Galacturonosyltransferase 2                          |  |  |
| AT1G31670                     | -1.50     | -1.93   | NA         | Copper amine oxidase family protein                  |  |  |
| AT4G12270                     | -2.32     | -       | NA         | Copper amine oxidase family protein                  |  |  |
| AT2G29350                     | -1.62     | -       | SAG13      | Senescence-associated gene 13                        |  |  |
| AT2G29460                     | -1.33     | -       | GSTU4      | Glutathione S-transferase 22                         |  |  |
| AT1G34540                     | -4.08     | -       | CYP94D1    | Member of CYP94D                                     |  |  |
| AT4G37430                     | -1.04     | -       | CYP81F1    | Member of the CYP81F                                 |  |  |
| AT3G52780                     | -1.33     | -       | PAP20      | Protein serine/threonine phosphatase                 |  |  |
| AT3G53080                     | 1.60      | -       | NA         | D-galactoside/L-rhamnose binding SUEL lectin protein |  |  |
| AT1G61050                     | -         | 2.09    | NA         | Alpha 1,4-glycosyltransferase family protein         |  |  |
| AT5G37170                     | -         | -1.58   | NA         | O-methyltransferase family protein                   |  |  |
| AT1G53990                     | -         | 2.53    | GLIP3      | Contains lipase signature motif and GDSL domain      |  |  |
| <b>RNA.Transcri</b>           | ption     |         |            |                                                      |  |  |
| AT2G22750                     | 1.15      | -       | NA         | bHLH DNA-binding superfamily protein                 |  |  |
| AT4G38000                     | -1.15     | -       | DOF4.7     | DNA binding with one finger 4.7                      |  |  |
| AT1G80730                     | 1.95      | -       | ZFP1       | Zinc finger protein 1                                |  |  |
| AT3G29340                     | -2.23     | -       | NA         | zinc finger (C2H2 type) family protein               |  |  |
| AT5G33210                     | -1.47     | -       | SRS8       | A member of SHI gene family                          |  |  |
| AT3G15500                     | -1.40     | -       | NAC3       | NAC-domain containing protein 3                      |  |  |
| AT5G46310                     | -1.92     | -       | NA         | WRKY family transcription factor                     |  |  |
| AT5G18270                     | -1.07     | -       | ANAC087    | NAC domain containing protein 87                     |  |  |
| AT4G31610                     | -1.44     | -1.85   | REM1       | Reproductive meristems1                              |  |  |
| AT1G53490                     | -2.11     | -1.99   | HEI10      | A RING finger-containing protein                     |  |  |
| AT4G08990                     | -         | -2.05   | NA         | DNA (cytosine-5-)-methyltransferase family protein   |  |  |
| AT5G56960                     | -         | 2.06    | NA         | bHLH DNA-binding family protein                      |  |  |
| AT5G49200                     | -         | 3.10    | NA         | WD-40 repeat family protein                          |  |  |
| DNA.Repair                    |           |         |            |                                                      |  |  |
| AT3G32330                     | -2.71     | -2.45   | NA         | DNA repair protein-related                           |  |  |
| AT3G02680                     | 1.71      | -       | NBS1       | DNA repair and meiotic recombination protein         |  |  |
| Protein modi                  | ificatior | n and d | egradation |                                                      |  |  |
| AT5G45810                     | -1.03     | -       | SnRK3.5    | Member of the SNF1-related kinase (SnRK) 3.5         |  |  |
| AT5G40000                     | 2.70      | -       | NA         | P-loop containing nucleoside triphosphate hydrolases |  |  |
| AT4G03360                     | 1.63      | -       | NA         | Ubiquitin family protein                             |  |  |
| AT4G01023                     | -         | 2.20    | NA         | RING/U-box superfamily protein                       |  |  |
| AT4G12810                     | -         | 2.44    | NA         | F-box family protein                                 |  |  |
| Signalling                    |           |         |            |                                                      |  |  |
| AT1G51870                     | 2.34      | -       | NA         | protein kinase family protein                        |  |  |
| AT4G04490                     | -1.15     | -       | CRK36      | Cysteine-rich receptor-like protein kinase           |  |  |
| AT4G03156                     | -2.12     | -2.28   | NA         | small GTPase-related                                 |  |  |
| Developmen                    | t         |         |            |                                                      |  |  |
| AT3G53040                     | -1.59     | -       | NA         | Putative late embryogenesis abundant protein         |  |  |
| AT1G28330                     | -1.74     | -       | DRM1       | dormancy-associated protein                          |  |  |
| AT4G35783                     | -1.05     | -       | RTFL6      | ROTUNDIFOLIA like 6                                  |  |  |

| Transport    |       |       |        |                                                      |
|--------------|-------|-------|--------|------------------------------------------------------|
| AT1G73220    | -1.27 | -     | OCT1   | organic cation/carnitine transporter1                |
| AT3G10600    | -1.48 | -1.65 | CAT7   | Member of the cationic amino acid transporter        |
| AT1G28220    | -1.90 | -1.55 | PUP3   | Proteins related to PUP1, a purine transporter       |
| AT1G04560    | -1.56 | -     | NA     | AWPM-19-like family protein                          |
| AT3G02960    | -2.02 | -     | NA     | Heavy metal transport                                |
| AT5G55410    | -1.49 | -     | NA     | lipid-transfer protein                               |
| Not assigned |       |       |        |                                                      |
| AT1G12451    | 2.09  | -     | NA     | NA                                                   |
| AT1G13520    | -1.17 | -     | NA     | NA                                                   |
| AT5G35830    | -2.60 | -     | NA     | Ankyrin repeat family protein                        |
| AT1G53480    | -5.38 | -5.00 | MRD1   | <i>mto</i> 1 responding down                         |
| AT1G68450    | -1.08 | -     | PDE337 | VQ motif-containing protein                          |
| AT1G72620    | -3.08 | -     | NA     | Alpha/beta-Hydrolases superfamily protein            |
| AT2G05420    | 1.29  | -     | NA     | TRAF-like family protein                             |
| AT2G10260    | -1.62 | -1.47 | NA     | NA                                                   |
| AT2G17740    | -2.00 | -     | NA     | Cysteine/Histidine-rich C1 domain family protein     |
| AT2G27389    | -1.24 | -     | NA     | NA                                                   |
| AT2G31945    | -1.25 | -     | NA     | NA                                                   |
| AT3G09950    | -1.19 | -     | NA     | NA                                                   |
| AT3G12410    | -2.85 | -2.68 | NA     | Polynucleotidyl transferase                          |
| AT3G13950    | -1.29 | -     | NA     | NA                                                   |
| AT3G15760    | -1.04 | -     | NA     | NA                                                   |
| AT3G21520    | -2.13 | -     | DMP1   | DUF679 domain membrane protein 1                     |
| AT3G25950    | -1.05 | -     | NA     | TLC lipid-sensing domain containing protein          |
| AT3G48344    | -1.94 | -     | NA     | NA                                                   |
| AT3G61930    | -1.91 | -     | NA     | NA                                                   |
| AT4G00140    | -3.72 | -     | EDA34  | embryo sac development arrest 34                     |
| AT4G32080    | 4.07  | -     | NA     | NA                                                   |
| AT4G39670    | -1.32 | -     | NA     | Glycolipid transfer protein                          |
| AT5G03090    | -2.72 | -2.73 | NA     | Best protein match is <i>mto</i> 1 responding down 1 |
| AT5G64190    | -1.25 |       | NA     | NA                                                   |
| AT5G44540    | -     | -2.08 | NA     | Tapetum specific protein TAP35/TAP44                 |
| AT4G32785    | -     | -1.62 | NA     | NA                                                   |
| AT4G28005    | -     | -1.27 | NA     | NA                                                   |
| AT1G23610    | -     | -1.29 | NA     | NA                                                   |
| AT3G43420    | -     | -1.17 | NA     | NA                                                   |
| AT2G46840    | -     | 1.41  | DUF4   | Member of the plant-specific DUF724 protein family   |
| AT4G35025    | -     | 1.11  | NA     | NA                                                   |
| AT1G07330    | -     | 1.93  | NA     | NA                                                   |
| AT5G66340    | -     | 2.13  | NA     | NA                                                   |
| AT5G53205    | -     | -2.40 | NA     | NA                                                   |
| AT5G41390    | -     | 1.00  | NA     | PLAC8 family protein                                 |

#### RESULTS \_\_\_\_\_

#### **3 DISCUSSION**

## 3.1 Effect of high relative air humidity on the responses to heat stress and combined drought and heat stress

Heat stress lowers the relative air humidity if there is no water supplemented to the ambient atmosphere. This scenario is frequently occurring in natural climate conditions and is exerted in regular heat-stress studies in plant research. Consequently, plants suffer not only from heat stress, but also from the additional water deficit stress in air. To separate temperature and ambient water-deficit impacts, heat stress responses of *Arabidopsis* were explored in this study in both "classical" setting and by eliminating the additional water deficit stress, as one of the most important water deficit stresses, occurs simultaneously with heat stress in the field. Therefore, the same strategy was used to explore the effect of high *vs.* regular low relative air humidity in response to combined drought and heat stresses.

#### 3.1.1 High relative air humidity aggravates heat stress responses and

#### induces specific transcriptional changes in response to heat stress

High temperature enhances transpiration to minimize the heat damage by transpirationmediated leaf cooling (Crawford *et al.*, 2012). However, high relative air humidity prevents the transpiration-cooling and in turn aggravates the heat damage (Taiz and Zeiger, 2006). Transcriptome analysis revealed that heat stress with high relative air humidity (H HrH) resulted in a larger number of differentially expressed genes as compared to heat with low relative air humidity (H LrH) (Figure 6). Among these genes, 342 out of 1318 differentially expressed genes (26%) under H HrH were also detected in response to other more severe heat stress experiments at higher temperature or longer duration (data from Genevestigator) (Figure 12). In addition, the regular heat-responsive genes showed stronger changes in response to H HrH (Table 3). The heat responsive marker genes *HSFs* and *HSPs* in particular also showed stronger changes under H HrH than under H LrH (Figure 10). These results indicate that high relative air humidity aggravates the heat stress responses also at the transcriptional level.

Previous studies have shown that regular heat stress induced transcriptional changes involved in various functional categories: *cellular metabolism, signal transduction, stress responses* and *transcription factors* (Lim *et al.*, 2006; Matsuura *et al.*, 2010; Mittal *et al.*, 2012; Zhang *et al.*, 2012). Similarly, heat stress with high relative air humidity also resulted in differentially expressed genes associated with these biological processes (Figure 8 and Figure 9). Although no specific functional categories were enriched under H HrH, high relative air humidity specifically deregulated 344 genes (26%) which were not related to regular heat stress in this or other published studies in response to heat stress (Table 4 and Table S1).

Among these genes, seven were associated with carbohydrate metabolism including sucrose degradation, raffinose biosynthesis and starch degradation. Inositol oxygenases (MIOXs) catalyze the oxidation of myo-inositol (Alford et al., 2012) and the specific reduction of *MIOX1* indicates an overaccumulation of *myo*-inositol under H HrH. Raffinose biosynthesis is initiated by GolSs using UDP-galactose and myo-inositol as substrates. The activated galactose moieties donated by galactinol are subsequently added to sucrose by RSs to produce the trisaccharide raffinose and liberating myo-inositol. Thus the overaccumulation of myo-inositol may enhance raffinose biosynthesis (Panikulangara et al., 2004; Egert et al., 2013). In line with these changes, the genes encoding GolS4 and RS6 were exclusively upregulated under H HrH, suggesting their specific roles in overaccumulation of raffinose as a signaling molecule, a potential osmolyte or an antioxidant under H HrH. On the other hand, the starch metabolism was also disturbed. Two genes, BAM5 and SEX4, involved in starch degradation were detected to be specifically downregulated under H HrH. Starch is the major carbohydrate reserve in plants and the starch granules are composed of the glucose homopolymers amylose and amylopectin. Two enzymes,  $\alpha$ -amylase, but primarily  $\beta$ -amylase could potentially produce maltose through hydrolysis of amylopectin and amylose. In

88

*Arabidopsis*, *BAM5* was a catalytically active cytosolic enzyme (Monroe and Preiss, 1990; Monroe *et al.*, 1991; Wang *et al.*, 1995). It has been shown that expression of *BAM5* is induced by sugars and the activity of BAM5 is modulated under various light conditions (Caspar *et al.*, 1989). In addition, the glucan phosphatase *STARCH EXCESS4* (*SEX4*) is a starch phosphatase which is essential for reversible starch phosphorylation in order to allow progressive starch degradation and its absence leads to a dramatic accumulation of starch in *Arabidopsis* (Kötting *et al.*, 2009; Silver *et al.*, 2014). Thus, downregulation of *BAM5* and *SEX4* suggests their specific role in reducing the starch degradation under H HrH. Altogether, these exclusively transcriptional changes associated with carbohydrate metabolism suggest their specific roles in leading to the upregulation of free carbohydrates including *myo*-inositol and raffinose, but downregulation of the condensed form starch. In fact, similar changes are known from metabolic studies in regular heat stress experiments (Kaplan *et al.*, 2004) or were predicted from the transcriptional profiles in response to regular heat stress (Table S3 and Table S4; Lim *et al.*, 2006), although invoking different genes than by H HrH conditions (e.g. *MIOX2, GolS1* and *RS2*).

The plant cell wall is mainly composed of polysaccharides including cellulose, hemicelluloses and pectins. Cellulose synthase and cellulose synthase-like proteins are responsible for cell wall synthesis. In *Arabidopsis*, cellulose synthase-like genes are classified into six subfamilies based on the sequence similarity to cellulose synthase genes (*CSLA-E* and *CSLG*) (Richmond and Somerville, 2000). Among them, *CSLAs* have mannan synthase activity and synthesize the backbone of mannan, which is proposed to crosslink with cellulose and hemicellulose in the context of cell wall architecture. Therefore, exclusively upregulated *CSLA14* and downregulated *CSLG1* indicate their specific roles in modulating the cell wall components. In addition, the most abundant hemicellulose is xyloglucan which can crosslink to cellulose to restrain cell expansion. *XTHs* catalyze the cleavage of xyloglucan-cellulose crosslinks and are proposed to function in cell expansion and in turn impact plant growth and development (Campbell and Braam, 1999). It has been shown that repression of *XTH22* and *XTH30* causes

a reduction of the organ size (Claisse *et al.*, 2007) and overexpression of *XTH33* results in bigger leaves and wider stems (Ndamukong *et al.*, 2009). Together with the expansin genes and expansin-like genes which are known to have a cell wall-loosening activity and to be involved in cell expansion (Sampedro and Cosgrove, 2005), the exclusively upregulated *XTHs*, *EXP8* and *EXPL3* as well as the downregulated *EXP23* suggest their specific roles in modulating the cell wall properties and cell expansion under H HrH, which would be altered towards loosening the cell wall according to these transcriptional changes. Actually, cell wall modification was predicated from the transcriptional profiles in response to regular heat stress by invoking different genes (e.g. *EXPA10*, *EXPA15* and *XTH17*) (Table S3 and Table S4; Lim *et al.*, 2006; Prasch and Sonnewald, 2013).

Transcription factors play important regulatory roles in response to adverse environmental conditions. High relative air humidity results in specific changes of transcription factors *AP2/ERF*. As one of the largest transcription factor families, the *AP2/ERF* gene family can be classified into four subfamilies: *AP2*, *RAV*, *DREB* and *ERF*. It has been shown that the expression of *DREB26* is decreased in response to regular heat stress. Overexpression of DREB26 results in early death at the vegetative stage and it is therefore impossible to further characterize their stress tolerance (Krishnaswamy *et al.*, 2011). In contrast, *DREB26* was specifically upregulated under H HrH, suggesting its specific regulatory role in response to H HrH.

In addition, other specific changed genes involved in stress responses, protein modification and other biological processes under H HrH are not well characterized, but these changes indicate their specific contributions in response to H HrH.

90

## 3.1.2 High relative air humidity shifts the combined stress responses from a predominant drought effect to a heat effect and induces specific transcriptional changes in response to combined drought and heat stresses

Previous studies have shown that drought effects predominantly contribute to combined drought and heat stresses. High relative air humidity suppresses transpiration and in turn alleviates the drought effect, but aggravates the heat effect in response to combined drought and heat stresses. Accordingly, a smaller number of drought-responsive genes, but a larger number of heat-responsive genes were detected under DH HrH than that under DH LrH in our study (Figure 15). In addition, the drought-responsive marker genes showed weaker changes, but heat-responsive marker genes showed stronger changes under DH HrH than that under DH HrH than tha

It has been shown that combined drought and regular heat stress induces transcriptional changes in various functional categories: *cellular metabolism, signal transduction, stress responses* and *transcription factors* (Rizhsky *et al.*, 2002; Rizhsky *et al.*, 2004; Prasch and Sonnewald, 2013). Similarly, combined drought and heat stress with high relative air humidity also resulted in differentially expressed genes associated with these biological processes (Figure 13 and Figure 14). Although no specific function categories were enriched under DH HrH, high relative air humidity specifically results in 142 differentially expressed genes (4%) in response to combined drought and heat stresses (Table 5 and Table S2). Among these changes, one gene encoding *KCS19* is associated with very long chain fatty acid biosynthesis. In plants, very long chain fatty acids are important biological components of lipids, such as phospholipids present in cell membranes and cuticular waxes deposited on leaf surfaces. The 3-ketoacyl-CoA synthases (*KCSs*) catalyze the first rate-limiting step of the fatty acid chain elongation. *KCS19* is specifically involved in very long fatty acid synthesis in

siliques and was differentially regulated under cold stress and osmotic stress (Joubès *et al.*, 2008). In contrast to previous studies, the expression of *KCS19* was also detected in rosettes and exclusively downregulated under DH HrH. This suggests a specific restriction of fatty acid chain elongation and may in turn reduce the wax component of leaf surfaces to improve the non-stomatal water loss in response to DH HrH. Actually, fatty acid elongation was also modified under DH LrH by invoking the different isoforms, such as *KCS3* and *KCS8* (Rizhsky *et al.*, 2004; Prasch and Sonnewald, 2013). In addition, a number of exclusively responsive genes under DH HrH were identified, but not well characterized, which may lead to specific responses to combined drought and heat stress with high relative air humidity.

In conclusion, high relative air humidity aggravates heat stress responses and in turn enhances the contribution of heat effects, but alleviates the contribution of drought effects in response to combined drought and heat stresses in comparison to low relative air humidity. In addition, high relative air humidity induces exclusively changed genes under H HrH and DH HrH. Further studies involving *Arabidopsis* mutants or overexpression lines with these genes may lead to a better understanding of specific effects of high relative air humidity in response to heat stress and combined drought and heat stresses.

### 3.2 The role of major *PIP2s* in leaves under well-watered condition

#### and water stresses

Aquaporins facilitate water transport through membranes and show a high multiplicity of isoforms with 35 homologs, which can be further divided into four classes on the basis of their sequence homologies and subcellular localization in *Arabidopsis*. The plasma membrane intrinsic proteins *PIPs* with the two phylogenetic subfamilies *PIP1s* and *PIP2s* are localized in the plasma membrane and are considered to be important for transcellular water transport as well as water homeostasis in plants. Among these *PIPs*, *PIP2;1* and *PIP2;2* are extensively expressed in leaves and roots. They represent 39% and 34% of the total PIPs at the protein level in leaves and roots, respectively (Monneuse *et al.*, 2011). In *pip2;1 pip2;2*,

microarray-based transcriptome analysis revealed that there was no significant changes of the retained *PIPs* in comparison to wild type at the transcriptional level (Figure 24 and Figure 25), yet Western blot analysis revealed an additional, up to 50% repression of PIP1s at the protein level in both leaves and roots (Da Ines, 2008). Taking together these repression and the relative amount of PIPs estimated from a proteomic study of three-week-old leaves and seven-week-old roots (Monneuse *et al.*, 2011), around 60% and 40% of the total PIP proteins were expected to be repressed in leaves and roots, respectively, in *pip2;1 pip2;2*. Preliminary proteomic studies also indicated that no other *PIP* isoforms were significantly upregulated (Jin Zhao and Chen Liu, unpublished results from our laboratory). Therefore, there was no significant effect on *PIPs* expression and abundance as compensation for the loss of *PIP2;1* and *PIP2;2*. Activation of PIPs through phosphorylation or any other posttranslational modification (Chaumont *et al.*, 2005b; Luu and Maurel, 2005) could be another way to compensate the loss of PIP2;1 and PIP2;2. However, it is unlikely that the function of these two major PIPs and other repressed isoforms in roots was fully compensated, since the root hydraulic conductivity was decreased in *pip2;1 pip2;2* (Péret *et al.*, 2012).

The functions of PIP2;1 and PIP2;2 for cell water permeability have been demonstrated by measurements of bursting rates in *Xenopus* oocytes (Kammerloher *et al.*, 1994). Both *pip2;1* and *pip2;2* T-DNA insertion mutations have resulted in reduction of hydraulic conductivity in roots and root cortex cells, respectively (Javot *et al.*, 2003; Péret *et al.*, 2012). The hydraulic conductivity of rosettes is also reduced in *pip2;1* single mutant under darkness (Prado *et al.*, 2013). However, the impact of the loss of *PIP2;1* and *PIP2;2* in leaves was surprisingly weak when physiological and molecular parameters were assessed in detail.

### 3.2.1 Marginal impact of the loss of major *PIP2s* in leaves under wellwatered condition

The leaf water status is determined by root water transport (input) and transpiration demand (loss). In leaves, water is radially transported from the xylem to the mesophyll

across the bundle sheath cells. Bundle sheath cells constitute a layer with suberin deposits encircling the entire vascular tissue of the leaf, except at the leaf edges, to render the apoplast impermeable to xylem sap. They are suggested to play a critical role in the regulation of leaf hydraulic conductivity via the activity or abundance of aquaporins (Sack and Holbrook, 2006; Leegood, 2008; Buckley, 2015). It has been shown that the bundle sheath cells sensed the stress signalling within the xylem sap and in turn reduced leaf hydraulic conductivity mediated by downregulation of their aquaporin activity that consequently resulted in the decline of leaf water potential, which may lead to stomatal closure and reduction of transpiration rates (Shatil-Cohen et al., 2011). In Arabidopsis, PIP2;1 and PIP2;2 are highly expressed in veins, especially PIP2;1 is expressed in bundle sheath cells (Da Ines, 2008; Da Ines et al., 2010; Prado et al., 2013). Therefore, loss of functions of PIP2;1 and PIP2;2 in Arabidopsis may eventually reduce the leaf gas exchange. However, the transpiration rate and the stomatal conductance to water vapor were not significantly reduced in *pip2;1 pip2;2* in comparison to the wild type, but had a tendency to be reduced under well-watered condition (Figure 22). This tendency was getting more obvious when the root hydraulic conductivity was further restricted by the additional knockout of the rootspecifically expressed PIP2;4 or when the transpiration demand was further enhanced by reducing the relative air humidity to 20% (Figure 22). Similarly, Ehlert et al. (2009) had shown that reduction in root hydraulic conductivity had no effect on transpiration rates and stomatal conductance under conditions with low transpiration demand, but induced stomatal closure after increasing the evaporation demand (Ehlert et al., 2009). Several other studies have also shown that antisense plants with decreased NtAQP1 or AtPIP1s expression reduced the transpiration rate and leaf water potential at well-watered condition with high transpiration demand (Siefritz et al., 2002; Sade et al., 2014). In addition, the antisense plants with reduced AtPIP1s and AtPIP2s displayed no effect on stomatal conductance, transpiration rate, plant hydraulic conductance and leaf water potential under well-watered condition with low transpiration demand (Martre et al., 2002). In agreement with these studies, our studies have demonstrated that PIP2;1 and PIP2;2 as two ubiquitously and

highly expressed aquaporins play a role in leaf water relations, but their contribution to the leaf water status is dependent on both the transpiration demand and root water transport. To substantiate this hypothesis, more gas exchange measurements should be performed to confirm the tendency of different transpiration rates and stomatal conductance of water vapor in *pip2;1 pip2;2* in comparison to the wild type under well-watered condition, yet dependent on the relative air humidity. In addition, the leaf water potential and the leaf hydraulic conductance should be measured, which are expected to be reduced in *pip2;1 pip2;2* in comparison to the functional interpretation of the role of PIP2;1 and PIP2;2 were correct.

The water taken up from roots is not only lost to the atmosphere through transpiration of leaves (Sack and Holbrook, 2006), but a small portion of leaf water is also used to support expansion growth (Pantin et al., 2012). Therefore, loss of PIP2;1 and PIP2;2 may impact the plant growth. However, our experiments indicated that leaf growth was not hampered in pip2;1 pip2;2. Kaldenhoff et al. (1998) also found that antisense plants that reduced the PIP1s had no effect on leaf growth, but root growth was enhanced (although this was not reproduced in other instances of knockdown or knockout plants) (Kaldenhoff et al., 1998). These authors had suggested that the enhanced root growth compensated the reduced cellular water permeability to further support normal leaf growth. In contrast to this study, loss of PIP2;1 and PIP2;2 had no impact on root growth, but other impacts in pip2;1 pip2;2 were indicated by transcriptional and metabolic analyses. Leaf expansion growth is driven by cell turgor. Thus, water transmembrane transport into expanding cells is required (Nonami and Boyer, 1993). To maintain the normal expansion growth in pip2;1 pip2;2, osmotic water potential could be reduced by depositing solutes to sustain water influx into expanding cells (Fricke and Peters, 2002). Transcriptional analysis showed that QQS was upregulated in *pip2;1 pip2;2*, which indicated that soluble sugars might overaccumulate in the cytosol (Li et al., 2009). Zhao (2013) found a number of putative overaccumulated disaccharides and trisaccharides in *pip2;1 pip2;2* by non-targeted FT-ICR-MS (Zhao, 2013).

However, only a twofold enhancement of raffinose and of three unknown metabolites, which were co-regulated with QQS, had been detected by targeted GC-MS (Figure 29). Thus, the overaccumulation of these metabolites might not be so efficient in osmotic regulation, yet other molecules may have escaped the detection by these methods. In addition, leaf expansion growth is also dependent on cell wall relaxation. Transcriptional analysis found that genes associated with the functional category cell wall (AGP5, EXPA23 and PME17) were downregulated in *pip2;1 pip2;2* in comparison to the wild type. Among these genes, *PME17* functions in demethylation of esterified homogalacturonan, a primary cell wall component, to allow the formation of a rigid gel by intermolecular Ca<sup>2+</sup> bonds linking the free carboxylic acid groups. Thus, PMEs play an important role in cell wall stiffening (Hongo et al., 2012). In turn, downregulation of PME17 may result in cell wall relaxation. In addition, both AGPs and EXPs function in cell expansion. In particular, EXPs exerts acid-dependent wall-loosening for cell elongation (Willats and Knox, 1996). Thus, downregulation of AGP5 and EXPA23 may induce the cell wall rigidity. Although the final consequence of the cell wall plasticity is still obscure due to the potentially antagonistic effects of these differentially expressed genes, these changes indicate that the cell wall plasticity may be remodeled to support the normal growth in *pip2;1 pip2;2*.

In conclusion, loss of function of PIP2;1 and PIP2;2 marginally impacts the leaf water relations, but has no effect on leaf growth under well-watered condition. However, it is possible that these two major PIPs are relevant in the context of water stresses.

## 3.2.2 Marginal impact of loss of major *PIPs* in leaves in response to

#### water stresses at molecular level

During drought stress and heat stress, two of the most important water stresses, plant water relations are regulated through changes in abundance of aquaporins (Maurel *et al.*, 2008). The expression of *PIPs* is generally downregulated in leaves under drought stress except for *PIP1;4* and *PIP2;5* (Figure 19), which is in agreement with previous studies (Alexandersson *et*
*al.*, 2005; Alexandersson *et al.*, 2010). The downregulation of *PIPs* in leaves, especially in bundle sheath cells, would lead to stomata closure to avoid excess water loss when the root water supply is restricted under drought stress in accordance to the consideration of Shatil-Cohen *et al.* (2011). However, Martre *et al.* (2002) and our results showed that the repression of expression of *PIPs* is not sufficient to reduce the transpiration rate and stomata aperture under well-watered condition or drought stress with low transpiration demand as compared to the wild type (Martre *et al.*, 2002). This suggests that the repression of PIPs is a strategy of plants in response to drought stress, but not related to transpiration regulation. Furthermore, our results showed that the drought-responsive genes in wild type as compared to control condition were generally less deregulated in *pip2;1 pip2;2* (Table 9), suggesting loss of PIP2;1 and PIP2;2 alleviated the drought responses at transcriptional level.

Rae et al. (2011) found that the transcription factor RAP2.4B positively regulated the expression of PIPs. RAP2.4B was induced by heat stress, which indicated that PIPs may be upregulated in response to heat (Rae et al., 2011). In agreement with this study, the expression of PIPs were generally upregulated under regular heat stress except for PIP1;4, PIP2;5 and PIP2;8. In addition, PIPs were also generally induced to a similar expression level at H HrH, when the additional water deficit in air was eliminated and the transpiration was restricted (Figure 19). These results suggest that the heat effect predominantly contributes to the upregulation of *PIPs* and the upregulation of *PIPs* is irrespective to the transpiration under heat stress. To further explore the functions of upregulated major PIPs under heat stress, transcriptional changes in response to heat stress in *pip2;1 pip2;2* were examined. PIP2;1 and PIP2;2 are highly expressed in leaves and loss of these two major PIPs were expected to aggravate the heat stress responses. Surprisingly, heat-responsive genes of the wild type were changed to a similar extent in pip2;1 pip2;2 under either H LrH or H HrH as compared to control condition (Table 10 and Table 11). Thus, the role of upregulation of PIP2;1 and PIP2;2 in response to heat stress cannot be deduced from this finding. One possibility is that the excited activities of the remained PIPs (e.g. PIP1;2, PIP2;6 and PIP2;7),

which are expressed in veins, may partially complement the loss-of-function of PIP2;1 and PIP2;2. On the other hand, loss of PIP2;1 and PIP2;2 may only delay the optimal adjustment of leaf water relations, but not determine the final leaf water status. To support this hypothesis, several studies have shown that the regulation of *PIPs* expression responded quickly to changing environmental conditions (Siefritz *et al.*, 2004; Levin *et al.*, 2007; Caldeira *et al.*, 2014b; Caldeira *et al.*, 2014a). Rae *et al.* (2011) also showed that transcription factor *RAP2.4B*, which is targeted to *PIP* promoters, was highly induced after heating for 2 h, but started to decrease after heating for 6 h. So the dynamic changes of the water relations after heating could be more interesting to evaluate the PIPs functions. Therefore, regulation of *PIPs* along with the time after heating should be measured in *pip* mutants and wild type to assess the functions of *PIPs* in regulation of water relations under heat stress. Furthermore, the dynamic changes at transcriptional and metabolic levels along with the time after heating to evaluate other impacted biological processes due to loss of *PIPs* in response to heat stresses.

Drought stress and heat stress have opposite effects on the regulation of expression of *PIPs*. Therefore, it was interesting to study the regulation of *PIPs* under combined drought and heat stresses. Previous studies have shown that drought effects predominantly contributed to the response to a combined drought and regular heat stress scenario (Rizhsky *et al.*, 2004). In agreement with these studies, differential regulation of *PIPs* under DH LrH was similar to that under drought stress (Figure 19). However, high relative air humidity enhanced the heat stress responses and in turn aggravated the heat effect, but alleviated the drought effect (see 3.1). Therefore, the differential regulation of *PIPs* under DH HrH generally tended to be shifted from drought-related, suppressive effects to heat-related inductive responses (Figure 19). Among these *PIPs*, *PIP2;1* and *PIP2;2* were downregulated under DH LrH, similar to the situation under drought stress. Therefore, loss of PIP2;1 and PIP2;2 under DH LrH was expected to have impacts similar to those under drought stress. In agreement with our

expectation, the DH LrH-responsive genes were generally less deregulated in *pip2;1 pip2;2* than in the wild type, which was also found in the *pip* double mutant under drought stress (Table 9 and Table 13). In addition, *PIP2;1* and *PIP2;2* were not changed under DH HrH (Figure 19) and the DH HrH-responsive genes of the wild type showed similar changes in *pip2;1 pip2;2* (Table 12). Taken together, the regulation of *PIPs* under combined drought and heat stresses is determined by the predominant effect to allow optimal adjustment of the leaf water status under combined, yet antagonizing effects (Guyot *et al.*, 2012).

On the other hand, marginal changes were detected at the transcriptional level in *pip2;1* pip2;2 as compared to the wild type under various water stresses (Figure 30 and Table 14-18). Among these genes, QQS was upregulated in pip2;1 pip2;2 under all water stresses, suggesting that soluble sugars might be overaccumulated in the cytosol to regulate the osmotic potential (Li et al., 2009). In addition, cell wall modification was regulated by invoking different genes under various water stresses. The gene encoding FUCOSYLTRANSFERASE 4 (FUT4) functions in fucosylation of arabinogalactan proteins in leaves (Tryfona et al., 2014) and was downregulated under drought stress, suggesting a reduced mechanical strength of the cell wall (Reiter et al., 1993). The cell wall-associated genes CELLULOSE SYNTHASE-LIKE A1 (CSLA01), which is involved in biosynthesis of mannan polysaccharides in the plant cell wall (Liepman et al., 2007) and LEUCINE-RICH *REPEAT/EXTENSIN 1 (LRX1)*, which functions in cell expansion (Baumberger *et al.*, 2003) were upregulated under DH LrH. These results suggest that the reduction of osmotic potential by overaccumulation of soluble sugars may enhance the driving force of water influx into cells and in turn support normal cell growth assisted with enhanced cell extensibility by modification of cell wall components in response to water stresses when loss of PIP functions.

In conclusion, our results revealed that loss of PIP2;1 and PIP2;2 slightly reduce the transpiration water loss in leaves under well-watered condition and this reduction is dependent on root water supply as well as leaf water demand. These findings were

consistent with previous studies which showed that low relative air humidity increased the leaf hydraulic conductivity (Levin et al., 2007) and that drought stress mimicked by xylem-fed ABA reduced the leaf hydraulic conductivity (Shatil-Cohen et al., 2011) mediated by regulation of aquaporins. In addition, loss of PIP2;1 and PIP2;2 had no impact on leaf growth. Kaldenhoff et al. (1998) had found that improved root growth compensated the reduced root hydraulic conductance to support the normal growth in Arabidopsis PIP1-antisense plants. In contrast, root growth was not impacted in *pip2;1 pip2;2*, but the cellular osmotic potential and cell wall plasticity could be modified to support the normal growth. On the other hand, PIPs were deregulated under various water stresses. Our results showed that the expression of PIPs were downregulated under drought stress as well as DH LrH when drought stress is the predominant effect, and loss of PIP2;1 and PIP2;2 alleviated the stress responses based on the lowered transcriptional deregulation in comparison to wild type. In contrast, the expression of PIPs was upregulated under heat stress, irrespective of differences in relative air humidity. But the regulation of *PIP* expression was relatively shifted towards a heat effect along with the aggravated heat stress under combined drought and heat stress with high relative air humidity. Surprisingly, loss of PIP2;1 and PIP2;2 had no impact on the response to heat stress and combined drought and heat stress with high relative air humidity. Furthermore, loss of PIP2;1 and PIP2;2 may result in osmotic potential regulation and cell wall modification to regulate the water status under water stresses, and these changes may compensate the loss of the functions of PIP2;1 and PIP2;2. However, this compensation was still weak, especially under heat stress responses when the two major PIPs were upregulated. We speculate that the upregulation of PIPs may be a fast response to heat stress and play a critical role in speed up the water homeostasis after heating. Therefore, the dynamic changes in response to heat should be a focus of future research.

100

## **4 MATERIALS AND METHODS**

## 4.1 Materials

#### 4.1.1 Plant materials

Insertion lines and wild-type plants used in this study were Arabidopsis thaliana ecotype Columbia (Col-0). Information of AtPIP2;1, AtPIP2;2 and AtPIP2;4 T-DNA insertion lines were obtained by screening the publicly accessible SIGnAL T-DNA Express database of the SALK Institute (http://signal.salk.edu/cgi-bin/tdnaexpress) (Alonso et al., 2003). The seeds were purchased from the Nottingham Arabidopsis Stock Center (NASC) or from the Arabidopsis Ohio USA, Biological Resource Center (ABRC, state University, http://www.biosci.ohiostate.Edu/pcmb/Facilities/abrc/abrchome.htm). The loss-of-function mutants pip2;1-2, pip2;2-3 and pip2;4-1 were verified by RT-PCR at the cDNA level (Das Ines, 2008). The double mutant pip2;1 pip2;2 and the triple mutant pip2;1 pip2;2 pip2;4 used in this study were generated by crossing and verified by genotyping at the DNA level and by RT-PCR at the cDNA level (Da Ines, 2008).

## 4.1.2 Chemicals, buffers and media

Chemicals were purchased from Sigma and Roth at the highest purity available. Typical solutions, buffers and media were prepared according to common protocols used in molecular biology. The preparation of special media and solutions is described in the corresponding methods.

## 4.2 Methods

## 4.2.1 Methods of physiological characterization

## **4.2.1.1 Plant growth condition**

Arabidopsis thaliana plants (Col-0, *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4*) were grown on soil or *in vitro* cultures in a growth chamber with the following environmental parameters: 11 h/13 h light/dark cycle, 150-200  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> light intensity, 22-23°C temperature and 60% relative air humidity.

For plant growth on soil, seeds were placed on the pots (TO6D, 6 × 4.6 cm, Pöppelmann, Germany) filled with a 8 : 1 soil (Floragard B seeds, Germany) : quartz sand (Interseroh, Germany) mixture. For plant growth on *in vitro* cultures, seeds were surface-sterilized with 90% ethanol on filter papers in the sterile hood. This procedure was repeated twice after the seeds got completely dry. Then the sterile seeds were placed on the square Petri dishes (120 mm x 120 mm x 17 mm, Greiner bio-one, Germany) containing 70 ml ½ MS (Murashige & Skoog Medium including Vitamins, Duchefa Biochemie, Germany) medium with 1% sucrose and 0.5% (w/v) Gelrite (Duchefa Biochemie, Germany). The plates were arranged vertically in a rack to ensure root growth along the medium surface. In all cases, seeds were then placed in the growth chamber.

#### **4.2.1.2 Growth measurements**

Plant growth was observed and photographed after two weeks growth on ½ MS medium or after four weeks growth on soil. Five to seven detached rosettes and roots grown on ½ MS medium were pooled as one replicate and six biological replicates of fresh weight were measured. The areas of six individual rosettes grown on soil were measured by Image J (Version 1.46). Means ± standard deviation (SD) were calculated.

#### 4.2.1.3 Gas exchange measurements

Gas exchange measurements of four-week-old plants grown on soil were assayed using GFS-3000 portable gas-exchange system fitted with a special cuvette for *Arabidopsis* 3010-A (WALZ, Germany) in collaboration with Barbro Winkler (Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany). The air flow to the cuvette was set at 700 mmol s<sup>-1</sup>. During the measurements, the absolute CO<sub>2</sub> concentration, cuvette temperature, and light intensity in the cuvette were set at 390 ppm, 23°C and 350 µmol m<sup>-2</sup> s<sup>-1</sup>, respectively. The relative air humidity was progressively changed at 20%, 40%, 60% and 75%. The transpiration rate, stomata conductance of water vapor, net photosynthesis and the internal CO<sub>2</sub> concentration in rosettes were recorded every 30 s for 8 min and the values of at last 3 min at each rH setting were averaged. Means ± SD were calculated (n = 8) and *p*values were determined by the Student's *t* test.

#### 4.2.1.4 Carbon isotope composition measurements

The measurements of carbon isotope composition were performed in collaboration with Franz Buegger (Institute of Soil Ecology, Helmholtz Zentrum München, Germany). Three four-week-old rosettes grown on soil were pooled and ground in the liquid nitrogen at 30 frequency s<sup>-1</sup> for 2 min 30 s using the mixer mill MM 400 (Retsch, Germany). The leaf powder was aliquoted into 2 ml Eppendorf tubes and was freeze-dried for 24 h using a Christ Alpha I – 5 Freeze drier (SciQuip, UK). Aliquots of 1.5 mg – 2.0 mg dry weight were transferred into tin capsules (3.3 × 5 mm, IVA Analysentechnik, Germany). Two replicates were required for each sample. Determination of total carbon and of <sup>13</sup>C was performed in duplicates with an isotope ratio mass spectrometer (Delta V Advantage, Thermo Electron, Dreieich, Germany) coupled to an elemental analyzer (Euro EA, Eurovector, Milan, Italy). For calibration, a lab standard (acetanilide) and different international standards IAEA-CO-9 ( $\delta^{13}C_{V-PDB} = -47.32\%$ ), IAEA-CH-7 ( $\delta^{13}C_{V-PDB} = -32.15\%$ ) and IAEA-600 ( $\delta^{13}C_{V-PDB} = -27.77\%$ ) were used. Means ± SD of three independent experiments including two to five biological

replicates for each experiment were calculated and p-values were determined by the Student's t test.

#### 4.2.1.5 Relative water loss measurements

The relative water loss of rosettes was evaluated by measurements of the fresh weight of the detached rosettes. Whole rosettes were detached from four-week-old plants grown on soil, weighed and then left at room temperature ( $25^{\circ}C$ , 55% rH) in a laminar flow bench with continuous ventilation. The rosettes were weighed every hour after being detached for five hours. The decline of the fresh weight was represented in percentage of the initial fresh weight. Three independent experiments were performed including measurements of three or four rosettes of each genotype for each experiment. Means  $\pm$  SD of three independent experiments were determined by the Student's *t* test.

#### 4.2.2 Methods of transcriptome analysis

#### 4.2.2.1 Plant growth conditions and water-deficit stress applications

For plant growth, the soil (Floragard B seeds, Germany) was mixed with quartz sand (Interseroh, Germany) in a ratio of 8:1 and poured into six-well packs (PL2838/48, 38 × 28 × 6 cm, Pöppelmann, Germany). The soil-sand mixture was pre-wetted with water and the seeds of three genotypes (Col-0, *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4*) were sown on the surface of the soil. The seeds were vernalized at 4°C in the darkness for two days to synchronize germination and then were placed in the identical climate simulation chambers with well-defined operation and accurate climatic conditions including 11 h/13 h light/dark cycle, 200  $\mu$ E m<sup>-2</sup> s<sup>-1</sup> light intensity, 22°C temperature and 0.793 kPa vapor pressure deficit (in collaboration with the Environmental Simulation Research Unit, Helmholtz Zentrum München, Germany). Three-week-old plants were flooded with water up to 60% of the pot height for 15 min by an automatic flooding system (Zhao, 2013). After flooding, the plants used for drought stress (D) and combined drought and heat stresses (DH) were stopped

being watered and the soil moisture was regularly monitored. When the soil water content was decreased to 20.7 ± 2.7% of the initial water content after one week, heat stress was applied to both well-watered plants used for heat stress and drought-treated plants used for combined drought and heat stresses by increasing the temperature to 33°C for 6 hours from 11:00 a.m. to 5:00 p.m. (H LrH and DH LrH). In addition, increased temperature dramatically enhanced the vapor pressure deficit (VPD). In order to eliminate the effects of additional VPD enhancement associated with the increased temperature, additional air humidity supplementation accompanied by heat stress (84% rH at 33°C) was applied to both well-watered plants used for heat stress and drought-treated plants used for combined drought and heat stresses (H HrH and DH HrH). The plants used for control conditions were continuously watered (Control) (Table 19).

|                        | Control                                | H HrH                                  | DH HrH                                 |  |
|------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|
| Water status           | regular watering                       | regular watering                       | no watering                            |  |
| Temperature            | 22°C                                   | 33°C                                   | 33°C                                   |  |
| Relative air humidity  | 70%                                    | 84%                                    | 84%                                    |  |
| Vapor pressure deficit | 0.793 kPa                              | 0.793 kPa                              | 0.793 kPa                              |  |
| Light/dark cycle       | 11 h/ 13h                              | 11 h/13 h                              | 11 h/13 h                              |  |
| Light intensity        | 200 µE m <sup>-2</sup> s <sup>-1</sup> | 200 µE m <sup>-2</sup> s <sup>-1</sup> | 200 µE m <sup>-2</sup> s <sup>-1</sup> |  |
|                        |                                        |                                        |                                        |  |
|                        | D                                      | H LrH                                  | DH LrH                                 |  |
| Water status           | no watering                            | regular watering                       | no watering                            |  |
| Temperature            | 22°C                                   | 33°C                                   | 33°C                                   |  |
| Relative air humidity  | 70%                                    | 37%                                    | 37%                                    |  |
| Vapor pressure deficit | 0.793 kPa                              | 3.168 kPa                              | 3.168 kPa                              |  |
| Light/dark cycle       | 11 h/13 h                              | 11 h/13 h                              | 11 h/13 h                              |  |
| Light intensity        | 200 µF m <sup>-2</sup> s <sup>-1</sup> | 200 µF m <sup>-2</sup> s <sup>-1</sup> | 200 µF m <sup>-2</sup> s <sup>-1</sup> |  |

Table 19. Details of control condition and water stress conditions

## 4.2.2.2 The arrangement of the replicates and harvest

Five replicates of each genotype were generated for each environmental scenario and were randomly distributed to exclude the position effects (Zhao, 2013). All of the samples were harvested after one-week drought stress (D) or/and six-hour heat stress (H and DH). The samples under control conditions (Control) were also harvested at the same time. During harvesting, eight rosettes were pooled as one replicate, collected into plastic bags (4 oz. 118 ml, Whirl-Pak), immediately frozen in liquid nitrogen, and then stored at -80°C until use.

## 4.2.2.3 Isolation of the total RNA

The rosette samples were ground at 30 frequency s<sup>-1</sup> for 2 min 30 s using the mixer mill MM 400 (Retsch, Germany) and then 90 mg – 100 mg powder were aliquoted into 2 ml Eppendorf tubes. The total RNA was extracted using the RNeasy plant mini kit (Qiagen, Hilden, Germany) applying a modified procedure. First, 900  $\mu$ l RLC Buffer were added into the sample tube immediately mixed well by vortexing. Then the homogenous solution was incubated at 600 rpm at 56°C for 3 min in a thermomixer. The mixture was transferred to QIAshredder (lilac) and centrifuged at 13000 rpm for 2 min. Then 600 µl supernatant were transferred to a new 2 ml Eppendorf tube without disturbing the pellet and mixed well with 300 µl ethanol by pipetting. The lysate was transferred into an RNeasy spin column (pink), centrifuged at 10000 rpm for 30 s and the flow-through was discarded. Then 350  $\mu$ l RW1 Buffer were added to the RNeasy spin column, centrifuged at 10000 rpm for 30s and the flow-through was again discarded. To avoid DNA contamination, DNase digestion was performed by applying 120 µl DNase I stock solution (15 µl DNase mixed with 105 µl RDD Buffer) to the RNeasy spin column at room temperature for 25 min. Then 350 µl RW1 Buffer were added to the RNeasy spin column and centrifuged at 10000 rpm for 30 s. Afterwards, 500 μl RPE Buffer were added to the RNeasy spin column and centrifuged at 10000 rpm for 30 s. The flow-through was discarded and another 500 μl RPE Buffer were added to the RNeasy spin column and centrifuged at 10000 rpm for 2 min. The RNeasy spin column was placed onto a new collection tube and then centrifuged at 10000 rpm for 1 min to remove the retained RPE Buffer. Afterwards, the RNeasy spin column was moved to a new 1.5 ml RNeasy-free tube and 30  $\mu$ l RNase-free H<sub>2</sub>O were pipetted directly on the spin column membrane and centrifuged at 500 rpm for 10 s. The column was incubated at room temperature for 5 min and then centrifuged at 10000 rpm for 1 min. Another 30 µl RNasefree  $H_2O$  were pipetted to the spin column membrane and then centrifuged at 10000 rpm for 1 min. Finally, approximately 60  $\mu$ l total RNA sample were collected.

#### 4.2.2.4 RNA quality and quantity control

The quality and quantity of the total RNA was evaluated using an Agilent Bioanalyzer 2100 (Agilent Technologies, USA) and a Nanodrop ND-1000 spectrophotometer (Kisker-Biotech, Germany).

#### 4.2.2.4.1 RNA 6000 Nano assay

All of the reagents including Agilent RNA 6000 Nano gel matrix, RNA 6000 Nano dye concentrate and RNA 6000 Nano marker were equilibrated to room temperature before use. In particular, the RNA 6000 Nano dye was protected from light. Several preparations needed to be done before experiments. Firstly, 500  $\mu$ l Agilent RNA 6000 Nano gel matrix were added into a spin filter and centrifuged at 4000 rpm at room temperature for 10 min and then 65  $\mu$ l filtered gel was aliquoted into a 0.5 ml RNase-free microfuge tube. Secondly, to avoid the decomposition of the RNA samples, the electrodes were cleaned by applying the electrode cleaner with 350  $\mu$ l RNaseZAP for 1 min followed by 350  $\mu$ l RNase-free H<sub>2</sub>O for 5 min and then were left in air for 10 s for water evaporation on the electrodes before closing the lid. Thirdly, the base plate of the chip priming station was adjusted to position (C) and the adjustable clip was set to the top position and the plunger was positioned at 1 ml. Finally, the RNA ladder and the RNA samples were heat denatured at 70°C for 2 min before use.

Afterwards, the RNA 6000 Nano dye concentrate was vortexed for 10 s and spinned down in the microcentrifuge. Then 1  $\mu$ I RNA 6000 Nano dye concentrate was added to the 65  $\mu$ I filtered gel, mixed well by vortexing thoroughly and centrifuged at 14000 rpm at room temperature for 10 min. The new RNA Nano chip was placed on the chip priming station and 9.0  $\mu$ I gel-dye mix was pipetted to the bottom of the well which was marked with **G**. The chip priming station was closed and the plunger of the syringe was pressed down until it was

held by the clip. Thirty seconds later, the plunger was released and moved back to at least the 0.3 ml mark. After 5 s, the plunger was pulled back to the 1 ml position and the chip priming station was opened. Then 9.0  $\mu$ l gel-dye mix was pipetted to another two wells marked with **G**. Afterwards, 5  $\mu$ l RNA 6000 Nano marker was pipetted into each of the sample wells and also the well which was marked with the ladder symbol. Then 1  $\mu$ l RNA ladder was pipetted into the well which was marked with the ladder symbol and 1  $\mu$ l RNA sample was pipetted into each of the sample wells. The samples were mixed well horizontally using the bioanalyzer chip vortexer (IKA, Germany) at 2400 rpm at room temperature for 60 s. The chip was inserted into the Agilent 2100 Bioanalyzer and ran with the assay settings of Plant RNA Nano. After the assay was finished, the chip was immediately removed and the electrodes were cleaned by applying electrode cleaner with 350  $\mu$ l RNasefree H<sub>2</sub>O for 5 min. The RNA samples with rRNA Ratio [25s/18s] values of 1.6 ± 0.2 and RNA Integrity Number (RIN) values of 7 ± 0.5 were chosen as good quality samples which were used for the microarray.

#### 4.2.2.4.2 Nanodrop ND-1000 spectrophotometer

The Nanodrop ND-1000 spectrophotometer was chosen for checking RNA quality and quantity. Firstly, 1.5  $\mu$ l nuclease-free H<sub>2</sub>O were pipetted on the loading area for initialization. RNA-40 was selected as the sample type and recording button was selected to save the results. After Blanking with 1.5  $\mu$ l nuclease-free H<sub>2</sub>O, 1.5  $\mu$ l total RNA sample were loaded and measured. The RNA samples with both 260/230 ratio and 260/280 ratio more than two were selected as good quality samples and used for microarray analysis.

## 4.2.2.5 Agilent microarray analysis

Transcriptome analysis was performed using Agilent 8×60 K microarrays followed the workflow of sample preparation and array processing (Figure 34).



Figure 34. Scheme of sample preparation and array processing

## 4.2.2.5.1 One-color Spike Mix preparation

One-Color Spike Mix stock solution was vigorously mixed by a vortex mixer and was heated at 37°C for 5 min. The One-Color Spike Mix stock solution was vigorously mixed once again using a vortex mixer and was then briefly centrifuged. The first dilution was generated by mixing 2  $\mu$ l of One-Color Spike Mix stock solution with 38  $\mu$ l of Dilution Buffer, mixed thoroughly using a vortex mixer and then briefly centrifuged. The second dilution was generated by mixing 2  $\mu$ l of the first dilution with 48  $\mu$ l of Dilution Buffer, mixed thoroughly using a vortex mixer and again briefly centrifuged. The third dilution was created by mixing 2  $\mu$ l of the second dilution with 38  $\mu$ l of Dilution Buffer, mixed thoroughly using a vortex mixer and again briefly centrifuged. The third dilution was created by mixing 2  $\mu$ l of the second dilution with 38  $\mu$ l of Dilution Buffer, mixed thoroughly using a vortex mixer and again briefly centrifuged.

## 4.2.2.5.2 Labeling reaction preparation

Two microliter of the third dilution of One-Color Spike Mix was pipetted into 100 ng of each total RNA sample. Then 1.8  $\mu$ l of T7 Promoter Primer Mix containing 0.8  $\mu$ l of T7 Promoter Primer and 1  $\mu$ l of Nuclease-free water were pipetted into the mix of spike dilution and total RNA. The mix was incubated in a circulating water bath at 65°C for 10 min to denature the primers as well as the templates and then was incubated on ice for 5 min. Afterwards, the 5 × first strand buffer was prewarmed at 80°C for 5 min until the buffer components were resuspended. Then 4.7  $\mu$ l of cDNA Master Mix containing 2  $\mu$ l of 5 × first strand buffer, 1  $\mu$ l of 0.1 M DTT, 10 mM dNTP mix and 1.2  $\mu$ l of AffinityScript RNase Block Mix were added into each sample tube and were gently mixed by pipetting. The mix was incubated in a circulating water bath at 40°C for 2 h followed by incubation at 70°C for 15 min and was then placed on ice for 5 min. Finally, 6  $\mu$ l of Transcription Master Mix containing 0.75  $\mu$ l of Nuclease-free water, 3.2  $\mu$ l of 5 × Transcription Buffer, 0.6  $\mu$ l of 0.1 M DTT, 1  $\mu$ l of NTP mix, 0.21  $\mu$ l of T7 RNA Polymerase Blend and 0.24  $\mu$ l of Cyanine 3-CTP were added into each sample tube, gently mixed by pipetting in a circulating water bath at 40°C for 2 h (Table 20).

|                                                                                                                                                                                                                                                                                              | Component                                                                                                                                                                                                                                                                           | Volume per reaction (μl) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| TZ Duomoton Drimon Min                                                                                                                                                                                                                                                                       | T7 Promoter Primer                                                                                                                                                                                                                                                                  | 0.8                      |
| 17 Promoter Primer Wix                                                                                                                                                                                                                                                                       | Nuclease-free water                                                                                                                                                                                                                                                                 | 1                        |
|                                                                                                                                                                                                                                                                                              | 5×First Strand Buffer                                                                                                                                                                                                                                                               | 2                        |
| ComponentVolume per reaction7 Promoter Primer MixT7 Promoter Primer0.8Nuclease-free water15×First Strand Buffer20.1 M DTT110 mM dNTP mix0.5AffinityScript RNase Block Mix1.2Nuclease-free water0.1 M DTT3.20.1 M DTT0.6Transcription Master Mix1T7 RNA Polymerase Blend0.21Cyanine 3-CTP0.24 | 1                                                                                                                                                                                                                                                                                   |                          |
| cDNA Master Mix                                                                                                                                                                                                                                                                              | ComponentVolume per reaction (μ)noter Primer MixT7 Promoter Primer0.8Nuclease-free water15×First Strand Buffer20.1 M DTT110 mM dNTP mix0.5AffinityScript RNase Block Mix1.2Nuclease-free water0.755×Transcription Buffer3.20.1 M DTT0.6T7 RNA Polymerase Blend0.21Cyanine 3-CTP0.24 |                          |
|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     | 1.2                      |
|                                                                                                                                                                                                                                                                                              | ComponentVolume perT7 Promoter Primer0Nuclease-free water05×First Strand Buffer0.1 M DTT0.1 M DTT010 mM dNTP mix0AffinityScript RNase Block Mix1Nuclease-free water05×Transcription Buffer30.1 M DTT05×Transcription Buffer30.1 M DTT0T7 RNA Polymerase Blend0Cyanine 3-CTP0        | 0.75                     |
|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     | 3.2                      |
| ComponentVolume per realT7 Promoter Primer0.8Nuclease-free water1S×First Strand Buffer20.1 M DTT110 mM dNTP mix0.5AffinityScript RNase Block Mix1.2Nuclease-free water0.755×Transcription Master Mix0.1 M DTTTranscription Master Mix0.1 M DTTT7 RNA Polymerase Blend0.21Cyanine 3-CTP0.24   | 0.6                                                                                                                                                                                                                                                                                 |                          |
| Transcription Master Mix                                                                                                                                                                                                                                                                     | ComponentVolume per reaction (µomoter Primer MixT7 Promoter Primer0.8Nuclease-free water15×First Strand Buffer20.1 M DTT110 mM dNTP mix0.5AffinityScript RNase Block Mix1.2Nuclease-free water0.755×Transcription Buffer3.20.1 M DTT0.6T7 RNA Polymerase Blend0.21Cyanine 3-CTP0.24 | 1                        |
| T7 Promoter Primer MixT7 Promoter Primer0.8Nuclease-free water15×First Strand Buffer20.1 M DTT110 mM dNTP mix0.5AffinityScript RNase Block Mix1.2Nuclease-free water0.755×Transcription Buffer3.20.1 M DTT0.6T7 RNA Polymerase Blend0.21Cyanine 3-CTP0.24                                    | 0.21                                                                                                                                                                                                                                                                                |                          |
|                                                                                                                                                                                                                                                                                              | Cyanine 3-CTP                                                                                                                                                                                                                                                                       | 0.24                     |

Table 20. Preparation of Mix

## 4.2.2.5.3 Labeled and amplified RNA purification

RNeasy mini spin columns (Qiagen) were used for purification of the labeled and amplified cRNA samples. Firstly, 84 µl of nuclease-free water were added into each cRNA sample. Then 350 µl of RLT Buffer and 250 µl of ethanol were added into each sample tube and mixed thoroughly by pipetting. In total 700 µl of the cRNA sample were transferred into the RNeasy mini column and were centrifuged at 13000 rpm at 4°C for 30 s. Then 500 µl of RPE buffer were as added into the RNeasy mini column after discarding the flow-through and were centrifuged at 13000 rpm at 4°C for 30 s. Another 500 µl of RPE buffer were added into the RNeasy mini column after discarding the flow-through at 13000 rpm at 4°C for 60 s. To remove the remaining RPE buffer, the RNeasy mini column was transferred to a new collection tube and was centrifuged at 13000 rpm at 4°C for 30 s. Finally, 30 µl of RNase-free water were directly pipetted onto the RNeasy filter membrane and centrifuged at 13000 rpm at 4°C for 60 s after waiting for 60 s at room temperature to collect the cRNA sample.

### 4.2.2.5.4 cRNA quantification

The quantification of cRNA was assessed by the NanoDrop ND-1000 Spectrophotometer. Microarray measurement was selected and measured following the procedure described in 4.2.2.4.2. The yield and the specific activity of cRNA was calculated according to the formula of (Concentration of cRNA) × 30  $\mu$ l (elution volume) / 1000 =  $\mu$ g of cRNA and (Concentration of Cy3 / Concentration of cRNA) × 1000 = pmol Cy3 per  $\mu$ g cRNA, respectively. The cRNA samples with more than 0.825  $\mu$ g of the yield and at least 6 pmol Cy3 per  $\mu$ g cRNA of the specificity activity were used for hybridization.

### 4.2.2.5.5 Hybridization

The 10 × Blocking Agent was incubated at 37°C for 5 min and then the Fragmentation mix was prepared for 8-pack microarray formats by mixing 600 ng of cRNA, 5  $\mu$ l of 10 × Blocking

Agent, Nuclease-free water to bring the volume to 24  $\mu$ l and 1  $\mu$ l of 25 × Fragmentation Buffer. The Fragmentation mix was incubated at 60°C in a circulating water bath for exactly 30 min and was then cooled on ice immediately for 1 min. Then the hybridization mix was prepared by adding 25  $\mu$ l of 2 × GE × Hybridization Buffer HI-RPM into fragmentation mix, mixing well by pipetting, and then centrifuging at 13000 rpm at room temperature for 1 min. Afterwards, a new gasket slide was loaded into the Agilent SureHyb chamber base with the label facing up and 40  $\mu$ l of Hybridization mix were slowly dispensed in the middle of the gasket well. The array was slowly placed onto the gasket slide with the active side facing down. The cover of the SureHyb chamber was placed on the slides and hand-tightened using the clamps to assemble the chamber. The assembled chamber was vertically rotated to wet the gasket and assess the mobility of the bubbles and then incubated at 10 rpm at 65 °C for 17 h in the hybridization oven.

#### 4.2.2.5.6 Microarray wash

The staining dishes, racks and stirs used for microarray wash should be carefully washed by rinsing with double-distilled water (ddH<sub>2</sub>O) for five times. In particular, the staining dishes, racks and stirs used for Agilent Stabilization and Drying Solution were needed to be washed with acetonitrile for 5 min and then rinsed with ddH<sub>2</sub>O for five times. The staining dishes, racks and stirs were left at room temperature for drying before use. Five staining dishes were filled in order with Wash Buffer 1 (Dish 1), Wash Buffer 1 (Dish 2), prewarmed Wash Buffer 2 (37°C, overnight; Dish 3), acetonitrile (Dish 4), and Stabilization and Drying Solution (Dish 5). Then the hybridization chamber was took out of the oven and disassembled. The array-gasket sandwich was separated by grabbing the slides from their ends in Wash Buffer 1 (Dish 1). Then the array was immediately transferred to Wash Buffer 1 (Dish 2) and placed into the slide rack. One minute later, the slide rack was transferred to Wash Buffer 2 (Dish 3) for 1 min followed by washing in Acetonitrile for 10 s. Then the slide rack was transferred into Stabilization and Drying Solution (Dish 5) and was slowly moved out of the solution after 30 s.

### 4.2.2.5.7 Slide scan and figure extraction

The slides were scanned using the Agilent Microarray Scanner. The slides were placed into the slide holder with the Agilent barcode facing up. The slot number and Profile AgilentG3\_GX\_1Color were set for  $8 \times 60$  K microarray scan. The scan settings were verified with the dye channel green, scan area ( $61 \times 21.6$  mm), scan resolution 3 µm as well as tiff 20 bit and then the scan was performed. Microarray data extraction was performed using the Agilent Feature Extraction Software with the extract set of GE1\_1010\_Sep10.

#### 4.2.3 GC-MS measurements

Metabolite measurements using GC–TOF–MS were performed in collaboration with Dr. Martin Lehmann (Faculty of Biology, Ludwig-Maximilians-Universität München). The metabolites for measurements were extracted and derivatized using a modified method described by Roessner *et al.* (2001), Lisec *et al.* (2006) and Erban *et al.* (2007). 50 mg and 100 mg fresh weight of the rosettes were used for regular mode and concentrated mode measurement, respectively.

#### 4.2.4 Statistical analysis

The gene expression analysis was done together with Dr. Elisabeth Georgii (Institute of Biochemical Plant Pathology, Helmholtz Zentrum München). Further analyses on data from targeted metabolome measurements and the integrative analysis were done by Dr. Elisabeth Georgii (Institute of Biochemical Plant Pathology, Helmholtz Zentrum München).

#### 4.2.4.1 Gene expression analysis

The computational analysis of gene expression was done with the Bioconductor 2.13 software package limma, version 3.18.13 (Smyth, 2005). Firstly, the data were preprocessed by background correction and quantile normalization. Secondly, linear models were applied for all genes simultaneously to analyze treatment effects and genotype effects, respectively,

and to compute differential expression statistics for specific comparisons. For this purpose, transcriptomic measurements using microarrays from all three independent experiments were combined, accounting for the independent experiments as a random effect in the linear models. The knockout genes *PIP2;1*, *PIP2;2* and *PIP2;4* (AT3G53420, AT2G37170 and AT5G60660) were excluded from further analysis. For gene set enrichment analysis, differentially expressed genes with adjusted p-value smaller than 0.05 and absolute log2 fold change greater than 1 were checked using MapMan3.5.1R2. For visualization, the fixed effects from the linear models (means of specific genotype-condition combinations) were subjected to dimension reduction *via* principal component analysis in R.

## 4.2.4.2 Metabolomic analysis

The targeted metabolomic data derived from GC-MS measurements were preprocessed by log2 transformation and quantile normalization. Then a linear model analysis with LIMMA (Smyth, 2005) was performed, analogously to the gene expression analysis.

### 4.2.4.3 Integrative analysis

Samples applied for both transcriptomic and metabolomic measurements were selected and the corresponding data were corrected for batch effects of the independent experiments using LIMMA (Smyth, 2005). Then Spearman correlation tests between transcript and metabolite abundances were computed and FDR-adjusted in R. The significant associations (adjusted p-value<0.05) around specific genes of interest were visualized with Cytoscape, version 3.1.1.

## 4.2.5 Data mining from public expression data

The expression of heat stress with high relative air humidity responsive genes under regular heat stress was extracted *via* Genevestigator database (https://www.genevestigator.com/gv/plant.jsp). Eight regular heat stresses were selected

and their Genevestigator experiment IDs were AT-00645, AT-00500, AT-00120, AT-00402, AT-00387 and AT-00439.

## 4.2.6 Co-expression analysis

Differentially expressed genes with adjust p-value smaller than 0.05 and absolute log2 fold change greater than 1 in *pip2;1 pip2;2* and *pip2;1 pip2;2 pip2;4* under various environmental scenarios were applied for co-expression analysis to explore the functions of uncharacterized genes *via* ATTED-II databases (http://atted.jp).

# SUPPLEMENTARY MATERIALS

**Table S1.** Specifically altered genes that were lowly expressed and even downregulated in rosettes of wild type under H HrH compared to control condition (green values represent fold change of significantly decreased genes)

| AGI           | Gene Name                                                           | Log <sub>2</sub> FC | adj. <i>P</i> |
|---------------|---------------------------------------------------------------------|---------------------|---------------|
| Carbohydrate  | e metabolism                                                        |                     |               |
| AT4G02280     | SUS3                                                                | -1.50               | 0.00          |
| AT5G49190     | SUS2                                                                | -1.07               | 0.00          |
| Cell wall     |                                                                     |                     |               |
| AT4G02250     | Plant invertase/pectin methylesterase inhibitor superfamily protein | -14.12              | 0.00          |
| AT5G39280     | EXP23                                                               | -3.63               | 0.00          |
| AT1G60760     | Plant invertase/pectin methylesterase inhibitor superfamily protein | -3.58               | 0.00          |
| Secondary m   | etabolism                                                           |                     |               |
| AT2G19070     | SHT                                                                 | -3.92               | 0.00          |
| AT4G35160     | O-methyltransferase family protein                                  | -2.32               | 0.00          |
| AT5G38120     | 4CL8                                                                | -1.92               | 0.00          |
| AT4G15870     | TS1                                                                 | -1.84               | 0.00          |
| AT4G23590     | Tyrosine transaminase family protein                                | -1.36               | 0.00          |
| AT1G18140     | LAC1                                                                | -1.20               | 0.00          |
| Hormone me    | tabolism                                                            |                     |               |
| AT3G23240     | ERF1                                                                | -1.20               | 0.00          |
| Transport     |                                                                     |                     |               |
| AT3G05960     | STP6                                                                | -1.95               | 0.02          |
| AT3G45700     | Major facilitator superfamily protein                               | -1.87               | 0.01          |
| AT1G34580     | Major facilitator superfamily protein                               | -1.81               | 0.00          |
| AT2G28170     | CHX7                                                                | -1.79               | 0.03          |
| AT3G09990     | Nucleoside transporter family protein                               | -1.30               | 0.02          |
| AT1G54720     | Major facilitator superfamily protein                               | -1.28               | 0.02          |
| AT1G27940     | PGP13                                                               | -1.16               | 0.00          |
| AT4G04760     | Major facilitator superfamily protein                               | -1.14               | 0.00          |
| AT2G25810     | TIP4;1                                                              | -1.13               | 0.00          |
| RNA           |                                                                     |                     |               |
| AT1G66390     | MYB90                                                               | -1.72               | 0.00          |
| AT3G62610     | MYB11                                                               | -1.41               | 0.00          |
| AT5G64810     | WRKY51                                                              | -1.24               | 0.00          |
| AT2G37260     | WRKY44                                                              | -1.20               | 0.00          |
| AT4G00540     | MYB3R2                                                              | -1.05               | 0.01          |
| N-metabolism  | n                                                                   |                     |               |
| AT3G03910     | GDH3                                                                | -1.27               | 0.00          |
| Amino acid m  | netabolism                                                          |                     |               |
| AT2G13810     | ALD1                                                                | -1.11               | 0.00          |
| Metal handlin | ng                                                                  |                     |               |
| AT5G23980     | FRO4                                                                | -1.03               | 0.00          |
| Stress        |                                                                     |                     |               |
| AT5G38350     | Disease resistance protein                                          | -3.23               | 0.00          |
| AT5G60553     | Defensin-like family protein                                        | -2.59               | 0.02          |
| AT5G25530     | DNAJ heat shock family protein                                      | -1.42               | 0.03          |
| AT5G23950     | Calcium-dependent lipid-binding family protein                      | -1.40               | 0.00          |
| AT2G21490     | LEA                                                                 | -1.29               | 0.00          |
| AT5G46871     | Defensin-like family protein                                        | -1.29               | 0.00          |
| AT2G43580     | Chitinase family protein                                            | -1.10               | 0.01          |
| Miscellaneou  | s enzyme families                                                   |                     |               |
| AT3G11825     | Protease inhibitor/LTP family protein                               | -2.36               | 0.00          |
| AT5G53610     | Carbohydrate-binding X8 domain superfamily protein                  | -2.11               | 0.03          |
| AT3G22620     | Bifunctional inhibitor/lipid-transfer protein                       | -1.79               | 0.00          |
| AT4G12825     | Protease inhibitor/LTP family protein                               | -1.70               | 0.04          |

| AT20 40000 |                                                           | 4 50  | 0.00 |
|------------|-----------------------------------------------------------|-------|------|
| A13G46660  | UG1/6E12                                                  | -1.59 | 0.00 |
| A15G07475  | Cupredoxin superfamily protein                            | -1.47 | 0.00 |
| AT5G59580  | UGT76E1                                                   | -1.26 | 0.00 |
| AT1G62620  | Flavin-binding monooxygenase family protein               | -1.22 | 0.00 |
| AT5G55410  | Bifunctional inhibitor/lipid-transfer protein             | -1.22 | 0.00 |
| AT4G01380  | plastocyanin-like domain-containing protein               | -1.14 | 0.00 |
| AT5G17030  | UGT78D3                                                   | -1.13 | 0.01 |
| AT1G02940  | GSTF5                                                     | -1.11 | 0.00 |
| AT3G20140  | CYP705A23                                                 | -1.09 | 0.01 |
| RNA        |                                                           |       |      |
| AT3G50330  | HEC2                                                      | -3.74 | 0.01 |
| AT4G13610  | MEE57                                                     | -1.82 | 0.02 |
| AT5G39540  | F-box associated ubiquitination effector family protein   | -1.67 | 0.04 |
| AT5G21960  | DREB subfamily A-5 of ERF/AP2 transcription factor family | -1.38 | 0.04 |
| AT5G53040  | RKD4                                                      | -1.26 | 0.01 |
| AT2G27220  | BLH5                                                      | -1.18 | 0.00 |
| AT1G34410  | ARF21                                                     | -1.10 | 0.04 |
| AT3G03260  | HDG8                                                      | -1.02 | 0.00 |
| AT5G17490  | RGL3                                                      | -1.02 | 0.00 |
| AT5G41315  | GL3                                                       | -1.00 | 0.00 |
| DNA        |                                                           |       |      |
| AT2G05642  | Nucleic acid-binding, OB-fold-like protein                | -2.72 | 0.00 |
| Protein    |                                                           |       |      |
| AT2G27535  | ribosomal protein L10A family protein                     | -1.95 | 0.01 |
| AT2G17890  | CPK16                                                     | -1.91 | 0.04 |
| AT2G32510  | МАРККК17                                                  | -1.27 | 0.00 |
| AT5G28080  | WNK9                                                      | -1.25 | 0.00 |
| AT4G17480  | alpha/beta-Hydrolases superfamily protein                 | -1.21 | 0.00 |
| AT5G26010  | Protein phosphatase 2C family protein                     | -1.09 | 0.00 |

**Table S2.** Specifically altered genes that were lowly expressed and even downregulated in rosettes of wild type under DH HrH compared to control condition (green values represent fold change of significantly decreased genes)

| AGI           | Gene Name                                | Log <sub>2</sub> FC | adj. <i>P</i> |
|---------------|------------------------------------------|---------------------|---------------|
| Carbohydrate  | metabolism                               |                     |               |
| AT1G72000     | A/N-InvF                                 | -1.09               | 0.00          |
| AT3G28340     | GolS8                                    | -1.30               | 0.00          |
| Cell wall     |                                          |                     |               |
| AT1G49490     | Leucine-rich repeat (LRR) family protein | -1.01               | 0.00          |
| AT5G39280     | EXPA23                                   | -4.05               | 0.00          |
| AT5G44840     | Pectin lyase-like superfamily protein    | -2.50               | 0.01          |
| Hormone meta  | abolism                                  |                     |               |
| AT4G21340     | B70                                      | -1.04               | 0.00          |
| Transport     |                                          |                     |               |
| AT1G16370     | OCT6                                     | -1.32               | 0.00          |
| AT2G13620     | CHX15                                    | -1.51               | 0.00          |
| AT4G19680     | IRT2                                     | -1.49               | 0.04          |
| Stress        |                                          |                     |               |
| AT1G09260     | NA                                       | -3.40               | 0.00          |
| AT1G77093     | NA                                       | -1.11               | 0.02          |
| Miscellaneous | enzyme families                          |                     |               |
| AT1G30700     | NA                                       | -1.05               | 0.00          |
| AT4G02250     | NA                                       | -11.84              | 0.00          |
| AT4G38310     | NA                                       | -1.48               | 0.03          |
| RNA           |                                          |                     |               |
| AT1G10585     | NA                                       | -1.52               | 0.00          |
| AT3G28470     | МҮВ35                                    | -5.83               | 0.00          |

| AT4G15250   | NA      | -3.34 | 0.00 |
|-------------|---------|-------|------|
| AT4G39250   | RL1     | -2.34 | 0.00 |
| AT5G04150   | BHLH101 | -1.16 | 0.00 |
| Protein     |         |       |      |
| AT2G17890   | СРК16   | -1.74 | 0.04 |
| AT5G11940   | NA      | -2.64 | 0.01 |
| AT5G17140   | NA      | -1.69 | 0.02 |
| AT5G38386   | NA      | -1.84 | 0.03 |
| AT5G39560   | NA      | -2.35 | 0.00 |
| AT5G56820   | NA      | -2.01 | 0.01 |
| Signalling  |         |       |      |
| AT1G01560   | MPK11   | -1.19 | 0.00 |
| AT3G05310   | MIRO3   | -2.85 | 0.02 |
| Cell        |         |       |      |
| AT5G58180   | ҮКТ62   | -4.27 | 0.01 |
| Development |         |       |      |
| AT2G36985   | ROT4    | -1.35 | 0.00 |
| AT5G07930   | MCT2    | -1.61 | 0.00 |
| AT5G37900   | NA      | -3.71 | 0.00 |
| AT5G52250   | EFO1    | -1.02 | 0.00 |

Table S3. Differentially expressed genes under H HrH excluding the really specifically altered genes in

Table 4 and Table S1

| AGI       | Gene Name | Log <sub>2</sub> FC | adj. <i>P</i> | AGI       | Gene Name | Log <sub>2</sub> FC | adj.P |
|-----------|-----------|---------------------|---------------|-----------|-----------|---------------------|-------|
| AT1G01190 | CYP78A8   | -1.66               | 0.00          | AT3G57700 | NA        | -1.02               | 0.00  |
| AT1G01305 | NA        | -1.67               | 0.00          | AT3G57780 | NA        | -1.09               | 0.00  |
| AT1G01680 | ATPUB54   | -1.94               | 0.00          | AT3G62700 | ABCC14    | -1.00               | 0.00  |
| AT1G02820 | NA        | -3.14               | 0.00          | AT3G62740 | BGLU7     | -1.01               | 0.00  |
| AT1G02930 | ATGST1    | -2.60               | 0.00          | AT3G62780 | NA        | -1.13               | 0.00  |
| AT1G05680 | UGT74E2   | -1.48               | 0.00          | AT3G62950 | NA        | -1.00               | 0.00  |
| AT1G06000 | NA        | -2.24               | 0.00          | AT3G62960 | NA        | -1.53               | 0.00  |
| AT1G06540 | NA        | -1.20               | 0.00          | AT3G63160 | NA        | -1.24               | 0.00  |
| AT1G06830 | NA        | -2.48               | 0.00          | AT4G01390 | NA        | -1.07               | 0.00  |
| AT1G09350 | AtGolS3   | -3.76               | 0.00          | AT4G01700 | NA        | -1.32               | 0.00  |
| AT1G09780 | iPGAM1    | -1.84               | 0.00          | AT4G02110 | NA        | -1.51               | 0.00  |
| AT1G15520 | ABCG40    | -2.07               | 0.00          | AT4G02360 | NA        | -1.06               | 0.00  |
| AT1G17170 | ATGSTU24  | -1.70               | 0.00          | AT4G02850 | NA        | -2.34               | 0.00  |
| AT1G17545 | NA        | -4.42               | 0.00          | AT4G04450 | AtWRKY42  | -1.01               | 0.00  |
| AT1G19050 | ARR7      | -1.89               | 0.00          | AT4G07820 | NA        | -1.04               | 0.00  |
| AT1G23640 | NA        | -1.20               | 0.00          | AT4G08770 | Prx37     | -1.49               | 0.00  |
| AT1G31690 | NA        | -2.85               | 0.00          | AT4G08870 | ARGAH2    | -1.89               | 0.00  |
| AT1G35230 | AGP5      | -1.95               | 0.00          | AT4G09510 | A/N-Invl  | -1.01               | 0.00  |
| AT1G57630 | NA        | -2.13               | 0.00          | AT4G10290 | NA        | -1.49               | 0.00  |
| AT1G67670 | NA        | -2.17               | 0.00          | AT4G10500 | NA        | -1.29               | 0.00  |
| AT1G67810 | SUFE2     | -1.08               | 0.00          | AT4G11310 | NA        | -1.28               | 0.00  |
| AT1G73810 | NA        | -2.76               | 0.00          | AT4G11320 | NA        | -1.84               | 0.00  |
| AT1G75040 | PR-5      | -2.07               | 0.00          | AT4G11370 | RHA1A     | -1.27               | 0.00  |
| AT1G78922 | NA        | -1.27               | 0.00          | AT4G11521 | NA        | -1.18               | 0.00  |
| AT1G79400 | ATCHX2    | -1.36               | 0.00          | AT4G13210 | NA        | -1.46               | 0.00  |
| AT2G04450 | ATNUDT6   | -1.80               | 0.00          | AT4G13410 | ATCSLA15  | -1.77               | 0.00  |
| AT2G14610 | ATPR1     | -1.51               | 0.00          | AT4G13930 | SHM4      | -1.11               | 0.00  |
| AT2G17680 | NA        | -4.26               | 0.01          | AT4G14090 | NA        | -3.59               | 0.00  |
| AT2G18328 | ATRL4     | -1.25               | 0.00          | AT4G14400 | ACD6      | -1.10               | 0.00  |
| AT2G18690 | NA        | -1.46               | 0.00          | AT4G16000 | NA        | -2.18               | 0.00  |
| AT2G21650 | ATRL2     | -1.35               | 0.00          | AT4G16590 | ATCSLA01  | -1.19               | 0.00  |
| AT2G25130 | NA        | -1.59               | 0.00          | AT4G16740 | ATTPS03   | -2.77               | 0.00  |
| AT2G26400 | ARD       | -1.65               | 0.00          | AT4G16750 | NA        | -1.06               | 0.00  |
| AT2G26560 | PLA       | -1.59               | 0.00          | AT4G17090 | BAM3      | -1.68               | 0.00  |
|           |           |                     |               |           |           |                     |       |

118

| AT2G30040 | ΜΑΡΚΚΚ14 | -2.60          | 0.01 | AT4G17695 | KAN3                | -1.05 | 0.00 |
|-----------|----------|----------------|------|-----------|---------------------|-------|------|
| AT2G30770 | CYP71A13 | -1.89          | 0.00 | AT4G18170 | ATWRKY28            | -1.54 | 0.00 |
| AT2G35970 | NA       | -1.75          | 0.00 | AT4G19120 | ERD3                | -1.05 | 0.00 |
| AT2G35980 | ATNHL10  | -1.26          | 0.00 | AT4G21200 | ATGA2OX8            | -1.03 | 0.00 |
| AT2G43590 | NA       | -1.74          | 0.00 | AT4G21215 | NA                  | -1.52 | 0.00 |
| AT3G04570 | AHL19    | -1.90          | 0.00 | AT4G21380 | ARK3                | -1.08 | 0.00 |
| AT3G09940 | ATMDAR3  | -2.41          | 0.00 | AT4G21400 | CRK28               | -2.00 | 0.00 |
| AT3G15356 | NA       | -1.96          | 0.00 | AT4G21760 | BGLU47              | -1.23 | 0.00 |
| AT3G17609 | НҮН      | -1.22          | 0.00 | AT4G21830 | ATMSRB7             | -1.35 | 0.00 |
| AT3G19350 | MPC      | -2.00          | 0.00 | AT4G22470 | NA                  | -1.02 | 0.00 |
| AT3G21460 | NA       | -1.98          | 0.00 | AT4G22530 | NA                  | -1.10 | 0.00 |
| AT3G22421 | NA       | -2.93          | 0.00 | AT4G22870 | NA                  | -4.92 | 0.00 |
| AT3G26830 | CYP71B15 | -1.74          | 0.00 | AT4G22880 | ANS                 | -4.16 | 0.00 |
| AT3G28510 | NA       | -2.30          | 0.00 | AT4G23020 | NA                  | -1.71 | 0.00 |
| AT3G28580 | NA       | -1 12          | 0.00 | AT4G23200 | CRK12               | -1.00 | 0.00 |
| AT3G32050 | NΔ       | -1 28          | 0.00 | AT4G23430 | AtTic32-IVa         | -1.03 | 0.00 |
| AT3G/3630 | NΔ       | -3.18          | 0.01 | AT/G23/96 | SP115               | -1.04 | 0.00 |
| AT3G43050 | NACO61   | -1 09          | 0.00 | AT/G23990 |                     | -1 57 | 0.00 |
| AT2C44000 | ATVTD0   | -1.05<br>2 1 2 | 0.00 | AT4G23990 |                     | 1 10  | 0.00 |
| AT3G44990 |          | -2.15          | 0.00 | AT4G24900 | ATTIVAZZU<br>A+NACO | -1.10 | 0.00 |
| AT3G49540 |          | -1.55          | 0.00 | AT4G25110 |                     | -1.00 | 0.00 |
| AT3G50510 |          | -1.33          | 0.01 | AT4G25480 | AICBES              | -1.00 | 0.00 |
| AT3G50970 | LII30    | -4.58          | 0.00 | A14G26960 | NA                  | -1.00 | 0.00 |
| AT3G51240 | F3'H     | -3.08          | 0.00 | A14G27520 | AtENODL2            | -1.22 | 0.00 |
| A13G53260 | ATPAL2   | -1.51          | 0.00 | A14G27560 | NA                  | -1.93 | 0.00 |
| AT3G55120 | A11      | -1.83          | 0.00 | AT4G27570 | NA                  | -2.08 | 0.00 |
| AT3G55646 | NA       | -1.30          | 0.00 | AT4G27820 | BGLU9               | -1.14 | 0.00 |
| AT3G57240 | BG3      | -1.81          | 0.00 | AT4G28250 | ATEXPB3             | -1.67 | 0.00 |
| AT3G57260 | AtPR2    | -1.49          | 0.00 | AT4G28550 | NA                  | -1.04 | 0.00 |
| AT3G59480 | NA       | -2.36          | 0.00 | AT4G29110 | NA                  | -1.18 | 0.00 |
| AT3G62930 | NA       | -1.03          | 0.00 | AT4G29690 | NA                  | -2.04 | 0.00 |
| AT4G00280 | NA       | -1.52          | 0.00 | AT4G29700 | NA                  | -1.38 | 0.00 |
| AT4G10190 | NA       | -3.01          | 0.01 | AT4G31870 | ATGPX7              | -2.19 | 0.00 |
| AT4G10820 | NA       | -2.23          | 0.00 | AT4G32870 | NA                  | -2.00 | 0.00 |
| AT4G11290 | NA       | -1.34          | 0.00 | AT4G34930 | NA                  | -1.03 | 0.00 |
| AT4G12490 | NA       | -1.69          | 0.00 | AT4G34950 | NA                  | -1.79 | 0.00 |
| AT4G12500 | NA       | -1.00          | 0.01 | AT4G35180 | LHT7                | -1.26 | 0.00 |
| AT4G13790 | NA       | -2.14          | 0.00 | AT4G35320 | NA                  | -1.42 | 0.00 |
| AT4G14690 | ELIP2    | -1.83          | 0.00 | AT4G37400 | CYP81F3             | -1.56 | 0.00 |
| AT4G15660 | NA       | -1.50          | 0.00 | AT4G39030 | EDS5                | -1.56 | 0.00 |
| AT4G15670 | NA       | -1.44          | 0.00 | AT4G39380 | NA                  | -1.19 | 0.00 |
| AT4G15680 | NA       | -1.81          | 0.00 | AT4G39780 | NA                  | -1.34 | 0.00 |
| AT4G19810 | ChiC     | -1.26          | 0.00 | AT4G39795 | NA                  | -2.13 | 0.00 |
| AT4G23210 | CRK13    | -1.01          | 0.00 | AT5G01170 | NA                  | -1.18 | 0.00 |
| AT4G29610 | NA       | -1.09          | 0.00 | AT5G01500 | TAAC                | -1.07 | 0.00 |
| AT4G29740 | ATCKX4   | -1.08          | 0.00 | AT5G01790 | NA                  | -1.32 | 0.00 |
| AT4G30650 | NA       | -2.62          | 0.00 | AT5G01900 | ATWRKY62            | -1.77 | 0.00 |
| AT4G33390 | NA       | -1.56          | 0.00 | AT5G02270 | ABCI20              | -1.18 | 0.00 |
| AT4G34550 | NΔ       | -2 51          | 0.00 | AT5G02350 | ΝΔ                  | -1.00 | 0.00 |
| AT5G02570 | NΔ       | -1 16          | 0.00 | AT5G03210 |                     | -1 23 | 0.00 |
| AT5G07100 | WRKV26   | -1 40          | 0.00 | AT5G03350 | NA                  | -2.37 | 0.00 |
| AT5G07930 | MCT2     | -1.07          | 0.00 | AT5G04160 | NA                  | _1 1/ | 0.00 |
| AT5G07930 | CVD75R1  | -1.07          | 0.00 | AT5G04100 |                     | -1.14 | 0.00 |
| AT5C08640 |          | 2.40           | 0.00 | AT5004020 |                     | -1.20 | 0.00 |
| AT5008040 |          | -5.00          | 0.00 | ATEC05540 |                     | -1.10 | 0.00 |
| ATEC12020 |          | -1.01          | 0.00 | AT5005560 |                     | -1.74 | 0.00 |
| ATEC19300 |          | -5.27          | 0.00 | A15005840 |                     | -1.0Z | 0.00 |
| A15G18290 | SIP1;Z   | -1.10          | 0.00 |           |                     | -1.13 | 0.00 |
| A15G22520 | NA       | -1.40          | 0.00 | A15G06570 |                     | -1.56 | 0.00 |
| A15G24200 | NA       | -2.48          | 0.00 | A15G0/010 | AISIZA              | -2.52 | 0.00 |
| A15G26220 | NA       | -1.//          | 0.00 | A15G0//20 |                     | -1.11 | 0.00 |
| A15G26290 | NA       | -2.84          | 0.00 | A15G08020 | ATRPA/0B            | -1.34 | 0.00 |
| A15G39670 | NA       | -1.36          | 0.00 | AI5G08100 | ASPGA1              | -1.12 | 0.00 |
| AT5G40070 | NA       | -5.27          | 0.01 | AT5G08570 | NA                  | -1.12 | 0.00 |

|           |          |       |      | 1         |           |       |      |
|-----------|----------|-------|------|-----------|-----------|-------|------|
| AT5G43520 | NA       | -1.19 | 0.00 | AT5G10390 | NA        | -2.26 | 0.00 |
| AT5G44420 | LCR77    | -2.38 | 0.00 | AT5G10400 | NA        | -1.30 | 0.00 |
| AT5G44565 | NA       | -1.62 | 0.00 | AT5G10760 | NA        | -1.21 | 0.00 |
| AT5G44568 | NA       | -1.27 | 0.00 | AT5G11590 | TINY2     | -1.79 | 0.00 |
| AT5G46600 | NA       | -1.44 | 0.00 | AT5G11610 | NA        | -1.14 | 0.00 |
| AT5G48880 | KAT5     | -2.48 | 0.00 | AT5G12340 | NA        | -1.36 | 0.00 |
| AT5G52940 | NA       | -1.00 | 0.00 | AT5G12420 | NA        | -1.04 | 0.00 |
| AT5G54020 | NA       | -2.30 | 0.00 | AT5G12470 | NA        | -1.54 | 0.00 |
| AT5G57760 | NA       | -1.58 | 0.00 | AT5G12910 | NA        | -2.17 | 0.00 |
| AT5G61160 | AACT1    | -1.70 | 0.00 | AT5G13170 | AtSWEET15 | -1.13 | 0.02 |
| AT5G62310 | IRE      | -1.48 | 0.00 | AT5G13320 | GDG1      | -1.45 | 0.00 |
| AT5G62920 | ARR6     | -1.55 | 0.00 | AT5G13650 | SVR3      | -1.12 | 0.00 |
| AT5G63087 | ΝΔ       | -2 54 | 0.00 | AT5G14570 | ΔTNRT2 7  | -1 20 | 0.00 |
| AT1G01250 | ΝΔ       | -1.62 | 0.00 | AT5G14700 | ΝΔ        | -1.01 | 0.00 |
| AT1601200 | NΛ       | _1 50 | 0.00 | AT5G15100 | NΛ        | -1 44 | 0.00 |
| AT1G01390 |          | -1.39 | 0.00 | AT5G15150 |           | -1.44 | 0.00 |
| AT1G01500 |          | -1.29 | 0.00 | AT5015050 |           | -1.14 | 0.00 |
| AT1G01000 |          | -1.05 | 0.00 | AT5G15700 |           | -1.20 | 0.00 |
| AT1G01790 |          | -1.17 | 0.00 | AT5G16350 |           | -1.08 | 0.00 |
| AT1G02450 | NIMIN-1  | -1.40 | 0.00 | A15G17050 | UGT/8D2   | -2.05 | 0.00 |
| AT1G03495 | NA       | -3.29 | 0.00 | A15G1/220 | AIGSTF12  | -3.49 | 0.00 |
| AT1G03940 | NA       | -3.34 | 0.00 | AT5G17780 | NA        | -1.59 | 0.00 |
| AT1G04020 | ATBARD1  | -1.14 | 0.00 | AT5G18550 | NA        | -1.15 | 0.00 |
| AT1G04110 | SDD1     | -1.18 | 0.00 | AT5G18840 | NA        | -1.45 | 0.00 |
| AT1G04570 | NA       | -2.00 | 0.00 | AT5G19250 | NA        | -1.17 | 0.00 |
| AT1G06690 | NA       | -1.98 | 0.00 | AT5G19470 | NUDT24    | -1.43 | 0.02 |
| AT1G06960 | NA       | -1.06 | 0.00 | AT5G19800 | NA        | -1.39 | 0.00 |
| AT1G07180 | ATNDI1   | -1.38 | 0.00 | AT5G22300 | AtNIT4    | -1.88 | 0.00 |
| AT1G07270 | NA       | -1.09 | 0.00 | AT5G22390 | NA        | -1.19 | 0.00 |
| AT1G07450 | NA       | -1.65 | 0.00 | AT5G22630 | ADT5      | -1.05 | 0.00 |
| AT1G07610 | MT1C     | -1.85 | 0.00 | AT5G22880 | H2B       | -1.45 | 0.00 |
| AT1G08165 | NA       | -1.39 | 0.00 | AT5G24470 | APRR5     | -1.08 | 0.00 |
| AT1G08890 | NA       | -1.05 | 0.00 | AT5G24850 | CRY3      | -1.12 | 0.00 |
| AT1G09200 | NA       | -1.58 | 0.00 | AT5G24880 | NA        | -1.37 | 0.00 |
| AT1G09240 | ATNAS3   | -2.14 | 0.00 | AT5G25250 | NA        | -1.39 | 0.00 |
| AT1G09500 | ΝΔ       | -1.09 | 0.00 | AT5G25260 | NΔ        | -1.89 | 0.00 |
| AT1G10070 | ΔΤΒΟΔΤ-2 | -2.22 | 0.00 | AT5G26170 | ΔΤWRKY50  | -1 31 | 0.00 |
| AT1G10585 | NA       | -1 41 | 0.00 | AT5G26690 | NΔ        | -2.24 | 0.00 |
| AT1G11210 | NΔ       | _1 11 | 0.00 | AT5G26731 | NΔ        | -1 57 | 0.00 |
| AT1G11210 | NΛ       | -1.04 | 0.00 | AT5G27/20 | ΛTI 21    | -1.06 | 0.02 |
| AT1G11220 |          | -1.04 | 0.00 | AT5G27420 | VCD1      | 1.00  | 0.00 |
| AT1G12370 |          | -1.20 | 0.00 | AT5G33230 |           | -1.07 | 0.00 |
| AT1G13470 |          | -1.51 | 0.00 | AT5055570 |           | -1.10 | 0.00 |
| AT1G13750 |          | -1.11 | 0.00 | AT5G35970 |           | -1.10 | 0.00 |
| AT1G14170 | NA       | -1.09 | 0.00 | A15G36220 |           | -1.09 | 0.00 |
| AT1G14250 | NA       | -2.21 | 0.00 | A15G38690 | NA        | -1.14 | 0.00 |
| AT1G14580 | NA       | -1.36 | 0.00 | A15G38930 | NA        | -1.31 | 0.00 |
| AI1G14870 | AtPCR2   | -1.32 | 0.00 | A15G38940 | NA        | -1.58 | 0.00 |
| AT1G14880 | AtPCR1   | -2.09 | 0.00 | AT5G39240 | NA        | -1.12 | 0.00 |
| AT1G17190 | ATGSTU26 | -1.07 | 0.00 | AT5G39520 | NA        | -2.30 | 0.00 |
| AT1G18150 | ATMPK8   | -1.07 | 0.00 | AT5G39610 | ANAC092   | -1.37 | 0.00 |
| AT1G18265 | NA       | -1.60 | 0.00 | AT5G40780 | LHT1      | -1.52 | 0.00 |
| AT1G18360 | NA       | -1.21 | 0.00 | AT5G41880 | POLA3     | -1.12 | 0.00 |
| AT1G18710 | AtMYB47  | -1.26 | 0.00 | AT5G41900 | NA        | -1.17 | 0.00 |
| AT1G19200 | NA       | -1.33 | 0.00 | AT5G42070 | NA        | -1.27 | 0.00 |
| AT1G19640 | JMT      | -1.04 | 0.00 | AT5G42800 | DFR       | -4.42 | 0.00 |
| AT1G19940 | AtGH9B5  | -1.97 | 0.00 | AT5G42860 | NA        | -1.36 | 0.00 |
| AT1G19960 | NA       | -1.50 | 0.00 | AT5G43250 | NF-YC13   | -1.10 | 0.00 |
| AT1G20450 | ERD10    | -1.38 | 0.00 | AT5G43860 | ATCLH2    | -1.49 | 0.00 |
| AT1G20490 | NA       | -1.86 | 0.00 | AT5G44110 | ABCI21    | -1.49 | 0.00 |
| AT1G20693 | HMG      | -1.08 | 0.00 | AT5G44390 | NA        | -1.07 | 0.00 |
| AT1G21520 | NA       | -1.64 | 0.00 | AT5G45280 | NA        | -2.28 | 0.00 |
| AT1G23140 | NA       | -1.18 | 0.00 | AT5G45470 | NA        | -1.26 | 0.00 |
| AT1G23200 | NA       | -1.34 | 0.00 | AT5G45700 | NA        | -1.02 | 0.00 |
|           | •        |       |      | 1         | •         |       |      |

| 474 02 4070 |            | 4.25          | 0.00 | 475646220 |           | 4 77  | 0.00 |
|-------------|------------|---------------|------|-----------|-----------|-------|------|
| AT1G24070   | ATCSLATU   | -1.35         | 0.00 | A15G46230 | NA        | -1.// | 0.00 |
| AT1G24470   | ATKCR2     | -2.25         | 0.00 | AT5G46830 | ATNIG1    | -1.47 | 0.00 |
| AT1G25422   | NA         | -2.46         | 0.00 | AT5G50200 | ATNRT3.1  | -1.08 | 0.00 |
| AT1G26770   | AT-EXP10   | -1.24         | 0.00 | AT5G50560 | NA        | -1.22 | 0.00 |
| AT1G27760   | ATSAT32    | -1.07         | 0.00 | AT5G50800 | AtSWEET13 | -1.10 | 0.00 |
| AT1G28480   | GRX480     | -1.14         | 0.00 | AT5G52310 | COR78     | -3.49 | 0.00 |
| AT1G28680   | NA         | -1.15         | 0.00 | AT5G52810 | NA        | -1.54 | 0.00 |
| AT1G29395   | COR413-TM1 | -1.46         | 0.00 | AT5G54060 | UF3GT     | -3.70 | 0.00 |
| AT1G29720   | NA         | -1.67         | 0.00 | AT5G54970 | NA        | -1.12 | 0.00 |
| AT1G30620   | HSR8       | -1 15         | 0.00 | AT5G55340 | NΔ        | -1.03 | 0.00 |
| AT1G30700   | NA         | -1 51         | 0.00 | AT5G55400 | NA        | _1.05 | 0.00 |
| AT1G20700   |            | 1.51          | 0.00 | AT5G55570 |           | 1.20  | 0.00 |
| AT1G31190   |            | -1.54         | 0.00 | AT5G55570 |           | -1.50 | 0.00 |
| AT1G32900   | GBSSI      | -1.29         | 0.00 | A15G57050 | ABIZ      | -1.11 | 0.00 |
| AT1G33960   | AIGI       | -1.//         | 0.00 | A15G5/123 | NA        | -1.56 | 0.00 |
| AT1G35720   | ANNAT1     | -1.06         | 0.00 | AT5G58700 | ATPLC4    | -1.28 | 0.00 |
| AT1G43800   | NA         | -1.06         | 0.01 | AT5G58830 | NA        | -1.23 | 0.00 |
| AT1G52030   | F-ATMBP    | -1.55         | 0.00 | AT5G59090 | ATSBT4.12 | -1.05 | 0.00 |
| AT1G52040   | ATMBP      | -1.76         | 0.00 | AT5G59130 | NA        | -1.37 | 0.00 |
| AT1G52290   | AtPERK15   | -1.11         | 0.00 | AT5G59670 | NA        | -2.48 | 0.00 |
| AT1G52530   | NA         | -1.02         | 0.00 | AT5G59690 | NA        | -1.04 | 0.00 |
| AT1G52770   | NA         | -1.68         | 0.00 | AT5G59870 | HTA6      | -2.09 | 0.00 |
| AT1G52890   | ANAC019    | -2.17         | 0.00 | AT5G59970 | NA        | -1.52 | 0.00 |
| AT1G53040   | NA         | -1.05         | 0.00 | AT5G60540 | ATPDX2    | -1.12 | 0.00 |
| AT1G53542   | NA         | -1.01         | 0.00 | AT5G60900 | RI K1     | -1.35 | 0.00 |
| AT1G54000   | GIL22      | -1.02         | 0.00 | AT5G61000 | ATRPA70D  | -1 29 | 0.00 |
| AT1655110   |            | _1 22         | 0.00 | AT5G61/12 | NA        | -1.61 | 0.00 |
| AT1656020   | NA         | _1.22         | 0.00 | AT5G62210 | NA        | -1.01 | 0.00 |
| AT1G50020   |            | -1.05         | 0.00 | AT5002210 |           | 1.50  | 0.00 |
| AT1G50120   |            | -1.10         | 0.00 | AT5004050 |           | -1.05 | 0.00 |
| AT1G56430   | ATNA54     | -1.07         | 0.00 | AT5G65020 | ANNATZ    | -1.02 | 0.00 |
| AT1G56600   | AtG0IS2    | -1.16         | 0.00 | A15G65360 | NA        | -1.39 | 0.00 |
| AT1G57560   | AtmyB50    | -1.83         | 0.00 | AI5G6/210 | IRX15-L   | -1.31 | 0.00 |
| AT1G57590   | NA         | -1.75         | 0.00 | AT1G03410 | 2A6       | 1.40  | 0.00 |
| AT1G58270   | ZW9        | -1.37         | 0.00 | AT1G07350 | SR45a     | 2.40  | 0.00 |
| AT1G61120   | GES        | -2.26         | 0.00 | AT1G07400 | NA        | 6.10  | 0.00 |
| AT1G63220   | NA         | -1.09         | 0.00 | AT1G09140 | ATSRP30   | 1.70  | 0.00 |
| AT1G63580   | NA         | -1.07         | 0.00 | AT1G13080 | CYP71B2   | 1.49  | 0.00 |
| AT1G63710   | CYP86A7    | -1.93         | 0.00 | AT1G15960 | ATNRAMP6  | 1.03  | 0.00 |
| AT1G64170   | ATCHX16    | -1.11         | 0.00 | AT1G27420 | NA        | 1.79  | 0.00 |
| AT1G64390   | AtGH9C2    | -1.19         | 0.00 | AT1G30190 | NA        | 1.44  | 0.00 |
| AT1G64890   | NA         | -1.20         | 0.00 | AT1G34792 | NA        | 1.02  | 0.02 |
| AT1G64910   | NA         | -1.78         | 0.00 | AT1G53540 | NA        | 7.81  | 0.00 |
| AT1G65450   | NA         | -1 34         | 0.00 | AT1G59860 | NA        | 4 90  | 0.00 |
| AT1G65470   | FAS1       | -1.26         | 0.00 | AT1G62510 | NΔ        | 2 72  | 0.00 |
| AT1665690   | NA         | -1.26         | 0.00 | AT1G65486 | NA        | 1 5 8 | 0.00 |
| AT1G65050   |            | -1.30         | 0.00 | AT1005480 |           | 2.14  | 0.00 |
| AT1600030   |            | -1.24         | 0.00 | AT1G03490 |           | 2.14  | 0.00 |
| AT1G07330   | NA         | -1.07         | 0.00 | AT1G71000 |           | 2.10  | 0.00 |
| AT1G67800   |            | -1.16         | 0.00 | AT1G72660 | NA        | 6.24  | 0.00 |
| AT1G67940   | ABCI17     | -1.09         | 0.00 | AI1G/3040 | NA        | 1.11  | 0.00 |
| AT1G70580   | AOAT2      | -1.10         | 0.00 | AT1G74310 | ATHSP101  | 4.51  | 0.00 |
| AT1G70640   | NA         | -1.96         | 0.00 | AT2G19310 | NA        | 2.22  | 0.00 |
| AT1G72000   | A/N-InvF   | -1.25         | 0.00 | AT2G20560 | NA        | 2.85  | 0.00 |
| AT1G72700   | NA         | -1.10         | 0.00 | AT2G21560 | NA        | 1.19  | 0.00 |
| AT1G73805   | SARD1      | -1.03         | 0.00 | AT2G22770 | NAI1      | 1.47  | 0.00 |
| AT1G74000   | SS3        | -1.20         | 0.00 | AT2G26150 | ATHSFA2   | 4.43  | 0.00 |
| AT1G74010   | NA         | -1.31         | 0.00 | AT2G29300 | NA        | 1.45  | 0.00 |
| AT1G74290   | NA         | -1.11         | 0.00 | AT2G29500 | NA        | 6.72  | 0.00 |
| AT1G74300   | NA         | -1.16         | 0.00 | AT2G37180 | PIP2:3    | 1.91  | 0.00 |
| AT1G74640   | NA         | -1 04         | 0.00 | AT2G37900 | NA        | 1 24  | 0.00 |
| ΔΤ1G7/200   | ARR15      | -1 61         | 0.00 | ΔT2G38255 | NΔ        | 1.80  | 0.00 |
| AT1675150   | NA         | -1 16         | 0.00 | AT2C45020 | NA        | 1 20  | 0.00 |
| AT1075150   |            | -1.10<br>1 EE | 0.00 | AT2G45920 |           | 1.39  | 0.00 |
| AT1070000   |            | -1.33         | 0.00 | A1204/180 |           | 1./Z  | 0.00 |
| AT10/0020   | INA        | -1.//         | 0.00 | A13012580 | AIDSP/U   | 5.41  | 0.00 |

|           |           |       |      | I         |             |      |      |
|-----------|-----------|-------|------|-----------|-------------|------|------|
| AT1G76690 | ATOPR2    | -1.36 | 0.00 | AT3G24500 | ATMBF1C     | 4.10 | 0.00 |
| AT1G76790 | IGMT5     | -2.28 | 0.00 | AT3G29810 | COBL2       | 2.40 | 0.00 |
| AT1G77760 | GNR1      | -1.48 | 0.00 | AT3G45680 | NA          | 1.65 | 0.00 |
| AT1G78210 | NA        | -1.07 | 0.00 | AT3G46230 | ATHSP17.4   | 7.31 | 0.00 |
| AT1G78370 | ATGSTU20  | -1.16 | 0.00 | AT3G47340 | ASN1        | 1.63 | 0.00 |
| AT1G78440 | ATGA2OX1  | -2.63 | 0.00 | AT3G47360 | ATHSD3      | 1.10 | 0.00 |
| AT1G78570 | ATRHM1    | -1.26 | 0.00 | AT3G53230 | NA          | 1.60 | 0.00 |
| AT1G79080 | NA        | -1.03 | 0.00 | AT4G00670 | NA          | 1.29 | 0.00 |
| AT1G79410 | AtOCT5    | -1.44 | 0.00 | AT4G10240 | NA          | 1.72 | 0.03 |
| AT1G79460 | ATKS      | -1.59 | 0.00 | AT4G11960 | PGRL1B      | 1.13 | 0.00 |
| AT1G80160 | GLYI7     | -1.19 | 0.00 | AT4G12400 | Нор3        | 6.48 | 0.00 |
| AT2G01830 | AHK4      | -1.32 | 0.00 | AT4G14819 | NA          | 1.31 | 0.00 |
| AT2G02990 | ATRNS1    | -2.73 | 0.00 | AT4G18550 | AtDSEL      | 1.40 | 0.00 |
| AT2G03090 | ATEXP15   | -1.03 | 0.00 | AT4G19430 | NA          | 4.50 | 0.00 |
| AT2G04032 | 7IP7      | -1.53 | 0.00 | AT4G20820 | NA          | 1.06 | 0.00 |
| AT2G04080 | NA        | -1.10 | 0.00 | AT4G21320 | HSA32       | 3.73 | 0.00 |
| AT2G14560 | LURP1     | -1.88 | 0.00 | AT4G21650 | NA          | 1.06 | 0.00 |
| AT2G15620 | ATHNIR    | -1.03 | 0.00 | AT4G23493 | NΔ          | 2.86 | 0.00 |
| AT2G15020 |           | -1.00 | 0.00 | AT4G20540 | NΛ          | 2.00 | 0.00 |
| AT2G15970 |           | 1 10  | 0.00 | AT4G30340 |             | 1 00 | 0.00 |
| AT2G10000 |           | -1.19 | 0.00 | AT4031331 |             | 1.90 | 0.00 |
| AT2G10450 |           | -1.11 | 0.00 | AT4051554 |             | 1.90 | 0.00 |
| AT2G16890 | NA        | -1.22 | 0.00 | A14G33420 |             | 2.49 | 0.00 |
| AT2G17280 |           | -1.03 | 0.00 | A14G39675 | NA          | 1.27 | 0.00 |
| AT2G17470 | ALIVITO   | -1.60 | 0.00 | A15G10946 |             | 1.30 | 0.00 |
| AT2G18210 | NA        | -1.07 | 0.00 | A15G12030 | AI-HSP17.6A | 7.10 | 0.00 |
| AT2G19190 | FRK1      | -1.29 | 0.00 | AT5G18065 | NA          | 1.22 | 0.00 |
| AT2G19800 | MIOX2     | -1.34 | 0.00 | AT5G18340 | NA          | 1.86 | 0.00 |
| AT2G19990 | PR-1-LIKE | -1.03 | 0.00 | AT5G25450 | NA          | 5.00 | 0.00 |
| AT2G20290 | ATXIG     | -1.08 | 0.00 | AT5G42965 | NA          | 1.55 | 0.00 |
| AT2G22590 | NA        | -1.69 | 0.00 | AT5G46490 | NA          | 2.27 | 0.00 |
| AT2G23910 | NA        | -1.91 | 0.00 | AT5G47600 | NA          | 2.59 | 0.00 |
| AT2G24850 | TAT       | -1.82 | 0.00 | AT5G51440 | NA          | 6.36 | 0.00 |
| AT2G24970 | NA        | -1.14 | 0.00 | AT5G52570 | B2          | 1.20 | 0.00 |
| AT2G25510 | NA        | -1.19 | 0.00 | AT5G52640 | ATHS83      | 5.06 | 0.00 |
| AT2G25625 | NA        | -1.33 | 0.00 | AT5G54165 | NA          | 1.79 | 0.00 |
| AT2G26440 | NA        | -1.45 | 0.00 | AT5G57785 | NA          | 1.61 | 0.00 |
| AT2G27402 | NA        | -1.12 | 0.00 | AT5G59310 | LTP4        | 1.48 | 0.00 |
| AT2G28740 | HIS4      | -1.42 | 0.00 | AT5G62020 | AT-HSFB2A   | 1.47 | 0.00 |
| AT2G28900 | ATOEP16-1 | -1.15 | 0.00 | AT5G64510 | TIN1        | 3.78 | 0.00 |
| AT2G29090 | CYP707A2  | -1.89 | 0.00 | AT5G66110 | HIPP27      | 2.33 | 0.00 |
| AT2G29170 | NA        | -1.01 | 0.00 | AT1G01750 | ADF11       | 1.59 | 0.01 |
| AT2G30420 | ETC2      | -1.00 | 0.00 | AT1G02980 | ATCUL2      | 2.19 | 0.00 |
| AT2G30540 | NA        | -1.22 | 0.00 | AT1G05820 | ATSPPL5     | 1.26 | 0.00 |
| AT2G30830 | NA        | -1.01 | 0.00 | AT1G10455 | NA          | 1.12 | 0.01 |
| AT2G31270 | ATCDT1A   | -1.10 | 0.00 | AT1G10550 | XFT         | 1.07 | 0.00 |
| AT2G31390 | NA        | -1.51 | 0.00 | AT1G11000 | ATMI 04     | 1.02 | 0.00 |
| AT2G32590 | FMB2795   | -1 13 | 0.00 | AT1G11740 | NA          | 1 17 | 0.00 |
| AT2G33380 |           | -1 13 | 0.00 | AT1G12080 | NΔ          | 1 43 | 0.00 |
| AT2G3/930 | NA        | -2 12 | 0.00 | AT1G12000 | PGI 1       | 1.45 | 0.00 |
| AT2G35070 | NA        | -1 36 | 0.00 | AT1G13700 | NA          | 1.20 | 0.00 |
| AT2G35070 |           | 1.30  | 0.00 | AT1G10020 |             | 1.22 | 0.00 |
| AT2G30470 |           | -1.20 | 0.00 | AT1G21910 |             | 1.19 | 0.00 |
| AT2030500 |           | -1.40 | 0.00 | AT1G22890 |             | 1.27 | 0.00 |
| AT2G50590 | AIPROIS   | -1.70 | 0.00 | AT1G24095 |             | 1.25 | 0.00 |
| A12G3688U |           | -1.35 | 0.00 | AT1G28450 |             | 2.54 | 0.02 |
| A12G37040 | ATPALI    | -1./5 | 0.00 | AT1629418 | NA          | 1.13 | 0.00 |
| A12G3/560 | ATURC2    | -1.12 | 0.00 | AT1629490 | NA          | 1.31 | 0.00 |
| AT2G37710 |           | -1.29 | 0.00 | AI1G32170 | X1H30       | 1.21 | 0.00 |
| A12G37720 | IBL15     | -2.06 | 0.00 | AI1G33811 | NA          | 1.10 | 0.00 |
| AT2G37770 | AKR4C9    | -1.31 | 0.00 | AT1G34315 | NA          | 1.49 | 0.00 |
| AT2G37960 | NA        | -1.49 | 0.00 | AT1G34930 | NA          | 1.21 | 0.02 |
| AT2G38740 | NA        | -1.21 | 0.00 | AT1G36060 | NA          | 1.75 | 0.00 |
| AT2G39240 | NA        | -1.25 | 0.00 | AT1G36940 | NA          | 1.12 | 0.00 |

|           |            |       |      | 1         |          |      |      |
|-----------|------------|-------|------|-----------|----------|------|------|
| AT2G39710 | NA         | -1.10 | 0.00 | AT1G50060 | NA       | 2.25 | 0.02 |
| AT2G40080 | ELF4       | -1.14 | 0.00 | AT1G50080 | NA       | 1.47 | 0.03 |
| AT2G40130 | NA         | -1.36 | 0.00 | AT1G51120 | NA       | 1.54 | 0.03 |
| AT2G40390 | NA         | -1.61 | 0.00 | AT1G51920 | NA       | 1.30 | 0.00 |
| AT2G40670 | ARR16      | -1.85 | 0.00 | AT1G57990 | ATPUP18  | 1.02 | 0.00 |
| AT2G40750 | ATWRKY54   | -1.52 | 0.00 | AT1G60470 | AtGolS4  | 2.07 | 0.02 |
| AT2G40840 | DPE2       | -1.08 | 0.00 | AT1G64561 | NA       | 1.70 | 0.00 |
| AT2G42530 | COR15B     | -2.10 | 0.00 | AT1G65040 | AtHrd1B  | 1.52 | 0.00 |
| AT2G42540 | COR15      | -3.38 | 0.00 | AT1G65200 | NA       | 1.34 | 0.01 |
| AT2G45080 | cycp3;1    | -1.04 | 0.00 | AT1G68840 | AtRAV2   | 1.16 | 0.00 |
| AT2G45220 | NA         | -1.13 | 0.00 | AT1G70985 | NA       | 1.26 | 0.00 |
| AT2G45760 | BAL        | -1.51 | 0.00 | AT1G70990 | NA       | 1.43 | 0.00 |
| AT2G46400 | ΔΤ.W.RKY46 | -1.08 | 0.00 | AT1G71400 | ΔtRI P12 | 1 11 | 0.00 |
| AT2G47190 | ΔΤΜΥΒ2     | -1.35 | 0.00 | AT1G72060 | NA       | 1.11 | 0.00 |
| AT2G47150 |            | 1.55  | 0.00 | AT1G72540 |          | 1.00 | 0.00 |
| AT2G47400 |            | -1.05 | 0.00 | AT1G73540 | CASAG    | 1.02 | 0.00 |
| AT2G47070 |            | -1.21 | 0.00 | AT1G74070 | GASAO    | 1.07 | 0.00 |
| AT2G47780 |            | -1.10 | 0.00 | AT2G01300 |          | 1.58 | 0.00 |
| AT2G47870 | NA         | -1.86 | 0.00 | AT2G01860 | EIVIB975 | 1.21 | 0.00 |
| A12G47880 | NA         | -2.55 | 0.00 | A12G05540 | NA       | 1.62 | 0.00 |
| AT3G01550 | ATPPT2     | -1.01 | 0.00 | A12G06020 | NA       | 2.65 | 0.00 |
| AT3G01920 | NA         | -1.02 | 0.00 | AT2G19500 | ATCKX2   | 1.46 | 0.00 |
| AT3G01960 | NA         | -1.25 | 0.00 | AT2G23348 | NA       | 1.16 | 0.00 |
| AT3G02230 | ATRGP1     | -1.21 | 0.00 | AT2G23690 | NA       | 1.17 | 0.00 |
| AT3G03250 | AtUGP1     | -1.34 | 0.00 | AT2G25230 | AtMYB100 | 2.67 | 0.05 |
| AT3G03350 | NA         | -1.13 | 0.00 | AT2G26860 | NA       | 1.07 | 0.00 |
| AT3G03480 | CHAT       | -1.22 | 0.00 | AT2G28630 | KCS12    | 1.43 | 0.00 |
| AT3G03780 | ATMS2      | -1.47 | 0.00 | AT2G31083 | AtCLE5   | 1.26 | 0.04 |
| AT3G05640 | NA         | -1.08 | 0.00 | AT2G31110 | TBL40    | 1.22 | 0.00 |
| AT3G05660 | AtRLP33    | -1.31 | 0.00 | AT2G31150 | NA       | 1.15 | 0.00 |
| AT3G05800 | AIF1       | -1.40 | 0.00 | AT2G33250 | NA       | 1.27 | 0.00 |
| AT3G05980 | NA         | -1.45 | 0.00 | AT2G37060 | NF-YB8   | 1.54 | 0.00 |
| AT3G06035 | NA         | -1.37 | 0.00 | AT2G40610 | ATEXP8   | 1.56 | 0.00 |
| AT3G06890 | NA         | -1.40 | 0.00 | AT2G40740 | ATWRKY55 | 1.26 | 0.00 |
| AT3G07195 | NA         | -1.39 | 0.00 | AT2G44195 | NA       | 1.54 | 0.00 |
| AT3G08870 | NA         | -1.09 | 0.00 | AT2G45180 | NA       | 1 07 | 0.00 |
| AT3G09270 | ATGSTU8    | -1 51 | 0.00 | AT2G46220 | NA       | 1 42 | 0.00 |
| AT3G09540 | NΔ         | -1 47 | 0.00 | AT2G48130 | NΔ       | 1.02 | 0.00 |
| AT3G103/0 | ΡΔΙΛ       | -1 1/ | 0.00 | AT3G02380 |          | 1.02 | 0.04 |
| AT2G11/80 |            | -1 16 | 0.00 | AT3G02500 | NA       | 1 11 | 0.00 |
| AT3G11480 |            | -1.10 | 0.03 | AT3G07000 |          | 1.11 | 0.00 |
| AT3G12170 |            | -1.14 | 0.00 | AT3008940 | LITCD4.2 | 1.02 | 0.00 |
| AT3G13000 |            | -1.09 | 0.00 | AT3G10405 |          | 1.03 | 0.00 |
| AT3G13650 |            | -1.23 | 0.00 | AT3G15578 |          | 1.91 | 0.00 |
| AT3G14000 | AIBRALZ    | -1.05 | 0.00 | AT3G16150 | ASPGBI   | 1.13 | 0.01 |
| AT3G14280 | NA         | -1.35 | 0.00 | AT3G16240 | AQP1     | 1.06 | 0.00 |
| AT3G14395 | NA         | -1.25 | 0.00 | AT3G16580 | NA       | 1.40 | 0.04 |
| AT3G14440 | AINCED3    | -1.14 | 0.00 | AI3G18//3 | NA       | 1.08 | 0.00 |
| AT3G14720 | ATMPK19    | -1.00 | 0.00 | AT3G19508 | NA       | 1.11 | 0.00 |
| AT3G14740 | NA         | -1.70 | 0.00 | AT3G22060 | NA       | 1.07 | 0.00 |
| AT3G14890 | NA         | -1.16 | 0.00 | AT3G23637 | DVL21    | 1.00 | 0.00 |
| AT3G15030 | MEE35      | -1.11 | 0.00 | AT3G24715 | NA       | 1.07 | 0.00 |
| AT3G19660 | NA         | -1.31 | 0.00 | AT3G25050 | XTH3     | 1.77 | 0.01 |
| AT3G20370 | NA         | -1.35 | 0.00 | AT3G25880 | NA       | 1.15 | 0.01 |
| AT3G21560 | UGT84A2    | -1.42 | 0.00 | AT3G26800 | NA       | 1.27 | 0.00 |
| AT3G21950 | NA         | -1.12 | 0.00 | AT3G27027 | NA       | 1.08 | 0.00 |
| AT3G22142 | NA         | -1.21 | 0.00 | AT3G27030 | NA       | 1.06 | 0.00 |
| AT3G22160 | NA         | -1.00 | 0.00 | AT3G27860 | NA       | 1.00 | 0.00 |
| AT3G22231 | PCC1       | -2.09 | 0.00 | AT3G30350 | RGF4     | 2.24 | 0.00 |
| AT3G22600 | NA         | -1.71 | 0.00 | AT3G42800 | NA       | 1.55 | 0.00 |
| AT3G23810 | ATSAHH2    | -1.66 | 0.00 | AT3G45960 | ATEXLA3  | 1.39 | 0.00 |
| AT3G23870 | NA         | -1.24 | 0.00 | AT3G46770 | NA       | 1.08 | 0.00 |
| AT3G24982 | ATRLP40    | -1.49 | 0.00 | AT3G50190 | NA       | 1.20 | 0.00 |
| AT3G25100 | CDC45      | -1.24 | 0.00 | AT3G50720 | NA       | 2.18 | 0.04 |
|           |            |       |      |           |          | -    |      |

| AT3G25180 | CYP82G1  | -2.56 | 0.00 | AT3G52480 | NA       | 1.02 | 0.00 |
|-----------|----------|-------|------|-----------|----------|------|------|
| AT3G25760 | AOC1     | -1.02 | 0.00 | AT3G52670 | NA       | 1.05 | 0.00 |
| AT3G25882 | NIMIN-2  | -2.34 | 0.00 | AT3G56000 | ATCSLA14 | 1.40 | 0.00 |
| AT3G26960 | NA       | -1.14 | 0.00 | AT3G57958 | NA       | 1.06 | 0.03 |
| AT3G27300 | G6PD5    | -1.06 | 0.00 | AT4G01330 | NA       | 1.14 | 0.00 |
| AT3G27360 | NA       | -1.20 | 0.00 | AT4G03156 | NA       | 1.08 | 0.00 |
| AT3G27400 | NA       | -1.49 | 0.00 | AT4G03566 | NA       | 2.85 | 0.01 |
| AT3G27640 | NA       | -1.16 | 0.00 | AT4G05170 | NA       | 1.65 | 0.02 |
| AT3G28007 | AtSWEET4 | -1.76 | 0.00 | AT4G08250 | NA       | 1.03 | 0.00 |
| AT3G28220 | NA       | -2.42 | 0.00 | AT4G10910 | NA       | 1.15 | 0.00 |
| AT3G28540 | NA       | -1.21 | 0.00 | AT4G14100 | NA       | 1.04 | 0.00 |
| AT3G29575 | AFP3     | -1.68 | 0.00 | AT4G15560 | AtCLA1   | 1.04 | 0.00 |
| AT3G29590 | AT5MAT   | -3.54 | 0.00 | AT4G18970 | NA       | 1.34 | 0.00 |
| AT3G44450 | NA       | -1.20 | 0.00 | AT4G19080 | NA       | 1.26 | 0.00 |
| AT3G44860 | FAMT     | -1.59 | 0.00 | AT4G19620 | NA       | 2.98 | 0.00 |
| AT3G44870 | NA       | -1.54 | 0.00 | AT4G26280 | NA       | 5.84 | 0.00 |
| AT3G44970 | NA       | -1.27 | 0.00 | AT4G27420 | ABCG9    | 1.12 | 0.05 |
| AT3G45140 | ATLOX2   | -1.62 | 0.00 | AT4G27654 | NA       | 1.02 | 0.05 |
| AT3G45410 | NA       | -1.06 | 0.00 | AT4G28395 | A7       | 6.16 | 0.00 |
| AT3G45930 | NA       | -1.37 | 0.00 | AT4G28405 | NA       | 1.13 | 0.01 |
| AT3G46320 | NA       | -1.85 | 0.00 | AT4G28420 | NA       | 1.16 | 0.00 |
| AT3G46880 | NA       | -1.04 | 0.00 | AT4G34770 | NA       | 1.20 | 0.00 |
| AT3G46940 | DUT1     | -1.62 | 0.00 | AT4G37610 | BT5      | 1.02 | 0.00 |
| AT3G46970 | ATPHS2   | -1.08 | 0.00 | AT4G37800 | XTH7     | 1.54 | 0.00 |
| AT3G47480 | NA       | -1.43 | 0.00 | AT4G38825 | NA       | 1.46 | 0.00 |
| AT3G48020 | NA       | -1.26 | 0.00 | AT4G39500 | CYP96A11 | 1.39 | 0.03 |
| AT3G48080 | NA       | -2.32 | 0.00 | AT4G39700 | NA       | 1.05 | 0.00 |
| AT3G48490 | NA       | -1.12 | 0.00 | AT5G02000 | NA       | 2.43 | 0.00 |
| AT3G48990 | NA       | -1.03 | 0.00 | AT5G03020 | NA       | 1.19 | 0.00 |
| AT3G49110 | ATPCA    | -1.12 | 0.00 | AT5G10250 | DOT3     | 1.22 | 0.00 |
| AT3G49120 | АТРСВ    | -1.38 | 0.00 | AT5G14730 | NA       | 1.18 | 0.00 |
| AT3G50760 | GATL2    | -1.48 | 0.00 | AT5G15830 | AtbZIP3  | 1.51 | 0.00 |
| AT3G51470 | NA       | -1.10 | 0.00 | AT5G18404 | NA       | 1.04 | 0.00 |
| AT3G52310 | ABCG27   | -1.54 | 0.00 | AT5G20250 | DIN10    | 1.86 | 0.00 |
| AT3G52630 | NA       | -1.18 | 0.00 | AT5G22940 | F8H      | 1.04 | 0.00 |
| AT3G53650 | NA       | -1.41 | 0.00 | AT5G24110 | ATWRKY30 | 1.17 | 0.00 |
| AT3G53730 | NA       | -1.49 | 0.00 | AT5G26800 | NA       | 1.04 | 0.00 |
| AT3G54560 | HTA11    | -1.13 | 0.00 | AT5G28770 | AtbZIP63 | 1.20 | 0.00 |
| AT3G54750 | NA       | -1.10 | 0.00 | AT5G39910 | NA       | 2.25 | 0.00 |
| AT3G54950 | PLA      | -1.02 | 0.00 | AT5G48530 | NA       | 1.03 | 0.00 |
| AT3G55970 | ATIRG21  | -1.15 | 0.00 | AT5G49360 | ATBXI 1  | 2.13 | 0.00 |
| AT3G56170 | CAN      | -1.05 | 0.00 | AT5G57560 | TCH4     | 1.04 | 0.02 |
| AT3G56260 | NA       | -1.87 | 0.00 | AT5G58360 | ATOFP3   | 1.30 | 0.00 |
| AT3G56380 | ARR17    | -1.43 | 0.00 | AT5G66270 | NA       | 1.01 | 0.00 |
| AT3G56710 | SIB1     | -1.13 | 0.00 | AT5G67610 | NA       | 1.39 | 0.00 |
| AT3G56870 | NA       | -1.25 | 0.00 |           |          | 1.00 | 0.00 |
|           | · ·· •   | 2.20  | 0.00 | 1         |          |      |      |

Table S4. Specifically changed genes under H LrH

| AGI       | Gene Name | Log <sub>2</sub> FC | adj. <i>P</i> | AGI       | Gene Name | Log <sub>2</sub> FC | adj. <i>P</i> |
|-----------|-----------|---------------------|---------------|-----------|-----------|---------------------|---------------|
| AT1G02390 | ATGPAT2   | 1.15                | 0.00          | AT4G33550 | NA        | 1.49                | 0.00          |
| AT1G07430 | HAI2      | 1.53                | 0.00          | AT4G36950 | MAPKKK21  | 1.15                | 0.01          |
| AT1G11080 | scpl31    | 1.35                | 0.01          | AT5G03210 | AtDIP2    | 1.38                | 0.00          |
| AT1G12940 | ATNRT2.5  | 1.78                | 0.00          | AT5G07260 | NA        | 1.59                | 0.00          |
| AT1G17010 | NA        | 1.05                | 0.00          | AT5G07330 | NA        | 1.38                | 0.04          |
| AT1G20160 | ATSBT5.2  | 1.01                | 0.00          | AT5G08090 | NA        | 1.15                | 0.01          |
| AT1G22480 | NA        | 1.02                | 0.00          | AT5G13210 | NA        | 1.05                | 0.00          |
| AT1G22990 | HIPP22    | 1.36                | 0.00          | AT5G13620 | NA        | 3.48                | 0.02          |
| AT1G29230 | ATCIPK18  | 1.47                | 0.00          | AT5G14490 | NAC085    | 2.10                | 0.01          |
| AT1G31520 | NA        | 2.22                | 0.00          | AT5G15500 | NA        | 1.50                | 0.00          |
| AT1G43160 | RAP2.6    | 1.56                | 0.01          | AT5G16850 | ATTERT    | 1.75                | 0.00          |
| AT1G47915 | NA        | 1.71                | 0.01          | AT5G17540 | NA        | 1.08                | 0.00          |
| 124       |           |                     |               |           |           |                     |               |

|           |          |      |      | . <del></del> |          |       |      |
|-----------|----------|------|------|---------------|----------|-------|------|
| AT1G49450 | NA       | 1.02 | 0.00 | A15G19470     | NUD124   | 1.49  | 0.05 |
| AT1G52720 | NA       | 1.24 | 0.00 | AT5G20260     | NA       | 2.66  | 0.00 |
| AT1G53680 | ATGSTU28 | 3.55 | 0.00 | AT5G25140     | CYP71B13 | 1.28  | 0.00 |
| AT1G57650 | NA       | 2.64 | 0.02 | AT5G26140     | ATLOG9   | 1.18  | 0.02 |
| AT1G57670 | NA       | 1.12 | 0.00 | AT5G28237     | NA       | 1.28  | 0.00 |
| AT1G60190 | AtPUB19  | 1.71 | 0.00 | AT5G37060     | ATCHX24  | 1.66  | 0.03 |
| AT1G60450 | AtGolS7  | 2.77 | 0.00 | AT5G37760     | NA       | 1.18  | 0.00 |
| AT1G64590 | NA       | 1 56 | 0.00 | AT5G38760     | NA       | 1 18  | 0.02 |
| AT1G65352 | NA       | 2.20 | 0.00 | AT5G39640     | NΛ       | 1.10  | 0.02 |
| AT1003332 |          | 2.20 | 0.03 | AT5033040     |          | 1.00  | 0.00 |
| AT1G67960 | PODI     | 1.54 | 0.01 | AT5G40790     |          | 1.06  | 0.01 |
| AT1G68040 | NA       | 1.47 | 0.02 | A15G43690     | NA       | 1.38  | 0.01 |
| AI1G68270 | NA       | 2.78 | 0.04 | A15G45810     | СІРК19   | 1.09  | 0.00 |
| AT1G69100 | NA       | 2.18 | 0.04 | AT5G46040     | NA       | 1.59  | 0.00 |
| AT1G72770 | HAB1     | 1.01 | 0.00 | AT5G48605     | NA       | 1.86  | 0.00 |
| AT1G75160 | NA       | 1.57 | 0.03 | AT5G50050     | NA       | 1.18  | 0.05 |
| AT2G05330 | NA       | 2.92 | 0.02 | AT5G52730     | NA       | 1.68  | 0.00 |
| AT2G10920 | NA       | 1.50 | 0.01 | AT5G53710     | NA       | 1.25  | 0.00 |
| AT2G15130 | NA       | 1.30 | 0.02 | AT5G55440     | NA       | 1.12  | 0.02 |
| AT2G18140 | NA       | 2.41 | 0.01 | AT5G59220     | HAI1     | 2.07  | 0.00 |
| AT2G20880 | AtERF53  | 1.19 | 0.00 | AT5G59320     | LTP3     | 2.22  | 0.00 |
| AT2G24610 | ATCNGC14 | 1.34 | 0.01 | AT5G59330     | NA       | 1.93  | 0.00 |
| AT2G27690 | CYP94C1  | 1 17 | 0.00 | AT5G63450     | CYP94R1  | 2 5 2 | 0.00 |
| AT2G27050 | NA NA    | 1.17 | 0.00 | AT5G64750     |          | 1 20  | 0.00 |
| AT2020700 |          | 1.01 | 0.05 | AT3G04730     |          | 1.50  | 0.02 |
| AT2G29820 | NA       | 1.22 | 0.00 | AT1G02920     |          | -1.57 | 0.00 |
| ATZG30830 | NA       | 1.11 | 0.00 | ATIGUEIEU     | UKA59    | -1.37 | 0.00 |
| A12G33380 | AtCLO3   | 1.29 | 0.00 | AT1G09080     | BIP3     | -1.34 | 0.00 |
| AT2G34600 | JAZ7     | 1.47 | 0.01 | AT1G21110     | IGMT3    | -1.17 | 0.00 |
| AT2G36650 | NA       | 1.08 | 0.00 | AT1G22690     | NA       | -1.29 | 0.03 |
| AT2G36750 | UGT73C1  | 1.01 | 0.01 | AT1G24530     | NA       | -1.27 | 0.00 |
| AT2G37170 | PIP2;2   | 1.01 | 0.00 | AT1G25340     | AtMYB116 | -2.93 | 0.01 |
| AT2G38600 | NA       | 1.15 | 0.01 | AT1G25550     | NA       | -1.08 | 0.00 |
| AT2G38823 | NA       | 1.43 | 0.00 | AT1G26380     | NA       | -1.21 | 0.00 |
| AT2G39640 | NA       | 1.37 | 0.04 | AT1G27020     | NA       | -1.26 | 0.00 |
| AT2G41480 | NA       | 1.25 | 0.00 | AT1G50040     | NA       | -1.06 | 0.01 |
| AT2G42760 | NA       | 1.19 | 0.00 | AT1G55230     | NA       | -1.79 | 0.02 |
| AT2G46270 | GBF3     | 1 73 | 0.00 | AT1G66090     | NA       | -1 12 | 0.03 |
| AT3G01620 | NΔ       | 1 70 | 0.00 | AT1G66100     | NΔ       | -1 12 | 0.04 |
| AT3G05720 | IMPA-7   | 2 29 | 0.00 | AT1G66700     |          | -1 27 | 0.00 |
| AT2C09960 |          | 1 22 | 0.00 | AT1600700     |          | 1.27  | 0.00 |
| AT3G08800 |          | 1.22 | 0.01 | AT1078410     |          | -1.70 | 0.00 |
| AT3G11460 |          | 1.45 | 0.01 | AT2G02950     | AIGSIES  | -1.40 | 0.00 |
| AT3G15280 | NA       | 1.01 | 0.00 | AT2G05380     | GRP3S    | -1.25 | 0.00 |
| AT3G18518 | DVL7     | 1.46 | 0.02 | A12G07774     | NA       | -1.09 | 0.00 |
| A13G20590 | NA       | 1.41 | 0.00 | A12G11810     | ATMGD3   | -1.06 | 0.03 |
| AT3G21890 | NA       | 1.01 | 0.00 | AT2G14700     | NA       | -1.96 | 0.02 |
| AT3G22740 | HMT3     | 1.04 | 0.00 | AT2G18190     | NA       | -1.16 | 0.01 |
| AT3G24517 | NA       | 1.08 | 0.03 | AT2G18890     | NA       | -1.01 | 0.00 |
| AT3G28270 | NA       | 1.60 | 0.00 | AT2G22810     | ACC4     | -1.05 | 0.00 |
| AT3G28600 | NA       | 1.54 | 0.03 | AT2G30750     | CYP71A12 | -1.04 | 0.00 |
| AT3G28870 | NA       | 2.88 | 0.05 | AT2G31540     | NA       | -1.03 | 0.02 |
| AT3G42990 | NA       | 1.09 | 0.03 | AT2G36970     | NA       | -1.08 | 0.02 |
| AT3G44210 | NA       | 3.61 | 0.00 | AT2G38940     | ATPT2    | -1.08 | 0.00 |
| AT3G44718 | NA       | 1.12 | 0.05 | AT3G02040     | AtGDPD1  | -1.35 | 0.00 |
| AT3G46340 | NA       | 3.38 | 0.01 | AT3G04720     | HFI      | -1.51 | 0.00 |
| AT3G48520 | CYP94B3  | 2 31 | 0.00 | AT3G15720     | NΔ       | -1 18 | 0.00 |
| AT3G48630 | NΔ       | 2.31 | 0.00 | AT3G16530     | NΔ       | -2 /2 | 0.00 |
| AT2C40460 |          | 2.72 | 0.03 | AT3010550     |          | 2.42  | 0.00 |
| AT3049400 |          | 3.07 | 0.00 | AT3G23330     |          | -2.00 | 0.00 |
| A13G5272U | ACAL     | 1.02 | 0.00 | A13G4830U     |          | -1.00 | 0.00 |
| A13053980 |          | 1.31 | 0.01 | A13G54150     | INA      | -1.22 | 0.00 |
| A13G54260 | I BL30   | 1.04 | 0.00 | A13G55180     | NA       | -1.65 | 0.01 |
| AT3G54870 | AKK1     | 2.80 | 0.00 | AT3G56980     | BHLH039  | -2.44 | 0.01 |
| AT3G55590 | NA       | 1.25 | 0.02 | AT3G63110     | ATIPT3   | -1.07 | 0.00 |
| AT3G56920 | NA       | 2.56 | 0.02 | AT4G02520     | ATGSTF2  | -1.32 | 0.00 |

| AT3G60790 | NA       | 4.42 | 0.00 | AT4G06746 | DEAR5   | -2.07 | 0.00 |
|-----------|----------|------|------|-----------|---------|-------|------|
| AT4G02360 | NA       | 1.03 | 0.00 | AT4G15700 | NA      | -1.11 | 0.03 |
| AT4G08570 | NA       | 1.88 | 0.00 | AT4G16260 | NA      | -2.24 | 0.00 |
| AT4G08990 | NA       | 1.52 | 0.00 | AT4G19380 | NA      | -1.03 | 0.00 |
| AT4G09775 | NA       | 1.83 | 0.01 | AT4G21840 | ATMSRB8 | -1.18 | 0.02 |
| AT4G10700 | NA       | 1.38 | 0.01 | AT4G25630 | ATFIB2  | -1.03 | 0.00 |
| AT4G13580 | NA       | 1.07 | 0.03 | AT4G32090 | NA      | -1.63 | 0.02 |
| AT4G19690 | ATIRT1   | 1.07 | 0.00 | AT5G02260 | ATEXP9  | -1.25 | 0.00 |
| AT4G21930 | NA       | 1.57 | 0.00 | AT5G15430 | NA      | -1.80 | 0.01 |
| AT4G23670 | NA       | 1.05 | 0.00 | AT5G18470 | NA      | -1.22 | 0.00 |
| AT4G26288 | NA       | 1.02 | 0.01 | AT5G20150 | ATSPX1  | -1.14 | 0.00 |
| AT4G28365 | Atenodl3 | 1.74 | 0.00 | AT5G20790 | NA      | -1.95 | 0.00 |
| AT4G29930 | NA       | 1.08 | 0.00 | AT5G41300 | NA      | -3.06 | 0.01 |
| AT4G30270 | MERI-5   | 1.14 | 0.00 | AT5G52760 | NA      | -1.04 | 0.02 |
| AT4G30450 | NA       | 1.00 | 0.00 | AT5G55565 | NA      | -1.97 | 0.02 |
| AT4G30460 | NA       | 1.32 | 0.00 | AT5G57220 | CYP81F2 | -2.24 | 0.00 |
| AT4G31760 | NA       | 1.25 | 0.03 |           |         |       |      |

**Table S5.** Differentially expressed genes under DH HrH excluding the really specifically altered genesin Table 5 and Table S2

| AGI       | Gene      | Log <sub>2</sub> FC | adj. <i>P</i> | AGI       | Gene      | Log <sub>2</sub> FC | adj. <i>P</i> |
|-----------|-----------|---------------------|---------------|-----------|-----------|---------------------|---------------|
| AT1G01190 | CYP78A8   | -1.63               | 0.00          | AT5G66590 | NA        | -1.27               | 0.00          |
| AT1G01200 | ATRAB-A3  | -1.55               | 0.00          | AT5G66640 | DAR3      | -1.19               | 0.00          |
| AT1G01300 | NA        | -1.20               | 0.00          | AT5G66770 | NA        | -1.08               | 0.00          |
| AT1G01390 | NA        | -2.77               | 0.00          | AT5G67100 | ICU2      | -1.28               | 0.00          |
| AT1G01600 | CYP86A4   | -1.91               | 0.00          | AT5G67260 | CYCD3;2   | -1.04               | 0.00          |
| AT1G01790 | ATKEA1    | -1.83               | 0.00          | AT5G67270 | ATEB1C    | -1.43               | 0.00          |
| AT1G02360 | NA        | -2.19               | 0.00          | AT5G67385 | NA        | -1.67               | 0.00          |
| AT1G02450 | NIMIN-1   | -2.17               | 0.00          | AT5G67390 | NA        | -1.51               | 0.00          |
| AT1G02730 | ATCSLD5   | -1.43               | 0.00          | AT5G67460 | NA        | -1.40               | 0.00          |
| AT1G02920 | ATGST11   | -2.51               | 0.00          | AT1G01090 | PDH-E1    | -1.02               | 0.00          |
| AT1G02930 | ATGST1    | -2.74               | 0.00          | AT1G01180 | NA        | -1.11               | 0.00          |
| AT1G02950 | ATGSTF4   | -1.44               | 0.00          | AT1G01340 | ACBK1     | -1.61               | 0.00          |
| AT1G03020 | NA        | -1.53               | 0.00          | AT1G01680 | ATPUB54   | -1.35               | 0.00          |
| AT1G03230 | NA        | -1.26               | 0.00          | AT1G02820 | NA        | -1.81               | 0.00          |
| AT1G03780 | AtTPX2    | -1.98               | 0.00          | AT1G04280 | NA        | -1.33               | 0.00          |
| AT1G03870 | FLA9      | -2.07               | 0.00          | AT1G05020 | NA        | -1.09               | 0.00          |
| AT1G04020 | ATBARD1   | -2.50               | 0.00          | AT1G05620 | NSH2      | -1.04               | 0.00          |
| AT1G04040 | NA        | -2.08               | 0.00          | AT1G05770 | NA        | -1.03               | 0.00          |
| AT1G04110 | SDD1      | -2.38               | 0.00          | AT1G07180 | ATNDI1    | -1.16               | 0.00          |
| AT1G04430 | NA        | -1.38               | 0.00          | AT1G07610 | MT1C      | -2.12               | 0.00          |
| AT1G04520 | PDLP2     | -2.24               | 0.00          | AT1G10060 | ATBCAT-1  | -1.32               | 0.00          |
| AT1G04640 | LIP2      | -1.26               | 0.00          | AT1G11310 | ATMLO2    | -1.23               | 0.00          |
| AT1G04680 | NA        | -1.23               | 0.00          | AT1G11330 | NA        | -1.11               | 0.00          |
| AT1G04760 | ATVAMP726 | -1.29               | 0.00          | AT1G12090 | ELP       | -1.06               | 0.00          |
| AT1G04800 | NA        | -3.17               | 0.00          | AT1G12850 | NA        | -1.10               | 0.00          |
| AT1G05010 | ACO4      | -1.14               | 0.00          | AT1G13670 | NA        | -1.00               | 0.00          |
| AT1G05210 | NA        | -1.35               | 0.00          | AT1G14080 | ATFUT6    | -1.12               | 0.00          |
| AT1G05440 | NA        | -2.12               | 0.00          | AT1G14170 | NA        | -1.30               | 0.00          |
| AT1G05575 | NA        | -1.92               | 0.00          | AT1G17890 | GER2      | -1.02               | 0.00          |
| AT1G05680 | UGT74E2   | -2.01               | 0.00          | AT1G18990 | NA        | -1.25               | 0.04          |
| AT1G05760 | RTM1      | -1.11               | 0.00          | AT1G20070 | NA        | -1.31               | 0.00          |
| AT1G05805 | NA        | -1.26               | 0.00          | AT1G20480 | NA        | -1.12               | 0.00          |
| AT1G06000 | NA        | -1.76               | 0.00          | AT1G21540 | NA        | -1.10               | 0.00          |
| AT1G06080 | ADS1      | -1.98               | 0.00          | AT1G22360 | AtUGT85A2 | -1.10               | 0.00          |
| AT1G06160 | ORA59     | -3.67               | 0.00          | AT1G22400 | ATUGT85A1 | -1.14               | 0.00          |
| AT1G06350 | NA        | -1.40               | 0.00          | AT1G23140 | NA        | -1.18               | 0.00          |
| AT1G06360 | NA        | -1.54               | 0.00          | AT1G24530 | NA        | -1.09               | 0.00          |
| AT1G06690 | NA        | -1.24               | 0.00          | AT1G25422 | NA        | -1.45               | 0.00          |
| AT1G06830 | NA        | -4.53               | 0.00          | AT1G28480 | GRX480    | -1.15               | 0.00          |

|           |           |       |      | 1         |             |       |      |
|-----------|-----------|-------|------|-----------|-------------|-------|------|
| AT1G06960 | NA        | -1.45 | 0.00 | AT1G29630 | NA          | -1.03 | 0.00 |
| AT1G07070 | NA        | -1.14 | 0.00 | AT1G31670 | NA          | -1.21 | 0.00 |
| AT1G07090 | LSH6      | -1.03 | 0.00 | AT1G33790 | NA          | -1.11 | 0.00 |
| AT1G07240 | UGT71C5   | -1.17 | 0.00 | AT1G33960 | AIG1        | -3.10 | 0.00 |
| AT1G07260 | UGT71C3   | -1.38 | 0.00 | AT1G43800 | NA          | -1.61 | 0.00 |
| AT1607270 | NA        | -1 51 | 0.00 | AT1G/3010 | NA          | -1.04 | 0.00 |
| AT1007270 |           | -1.51 | 0.00 | AT1043910 |             | -1.04 | 0.00 |
| AT1G07370 | ATPCNAL   | -2.03 | 0.00 | AT1G52530 | NA          | -1.10 | 0.00 |
| AT1G07450 | NA        | -2.07 | 0.00 | AT1G52770 | NA          | -1.15 | 0.00 |
| AT1G07650 | NA        | -1.04 | 0.00 | AT1G53625 | NA          | -1.20 | 0.00 |
| AT1G08160 | NA        | -1.87 | 0.00 | AT1G56720 | NA          | -1.03 | 0.00 |
| AT1G08165 | NA        | -1.53 | 0.00 | AT1G57630 | NA          | -2.65 | 0.00 |
| AT1G08260 | ABO4      | -1.02 | 0.00 | AT1G57990 | ATPUP18     | -1.88 | 0.00 |
| AT1G08550 | AVDE1     | -1.40 | 0.00 | AT1G64980 | NA          | -1.01 | 0.00 |
| AT1G08560 | ATSYP111  | -1.74 | 0.00 | AT1G65930 | cICDH       | -1.02 | 0.00 |
| AT1G08810 | AtMYB60   | -1 63 | 0.00 | AT1G67180 | NA          | -1 22 | 0.00 |
| AT1G08840 | emb2/11   | -1 73 | 0.00 | AT1667800 | NA          | _1 13 | 0.00 |
| AT1008840 |           | -1.75 | 0.00 | AT1007800 |             | -1.15 | 0.00 |
| AT1G06950 |           | -2.55 | 0.00 | AT1009890 |             | -1.10 | 0.00 |
| AT1G09080 | BIP3      | -1.25 | 0.00 | AT1G/1030 | ATIVIYBLZ   | -1.13 | 0.00 |
| AT1G09200 | NA        | -2.72 | 0.00 | AI1G/33/0 | ATSUS6      | -1.22 | 0.00 |
| AT1G09340 | CRB       | -1.20 | 0.00 | AT1G73760 | NA          | -1.02 | 0.00 |
| AT1G09350 | AtGolS3   | -3.08 | 0.00 | AT1G73805 | SARD1       | -1.19 | 0.00 |
| AT1G09390 | NA        | -1.43 | 0.00 | AT1G74300 | NA          | -1.25 | 0.00 |
| AT1G09450 | AtHaspin  | -1.87 | 0.00 | AT1G76690 | ATOPR2      | -1.21 | 0.00 |
| AT1G09470 | NA        | -1.16 | 0.00 | AT1G77700 | NA          | -1.03 | 0.00 |
| AT1G09630 | ATRAB-A2A | -1.40 | 0.00 | AT1G78830 | NA          | -1.10 | 0.00 |
| AT1G09750 | NA        | -1 98 | 0.00 | AT1G79340 | AtMC4       | -1 03 | 0.00 |
| AT1G09780 | iPGAM1    | -2.00 | 0.00 | AT1G79680 | ΔΤ\Λ/ΔΚΙ 10 | -1 25 | 0.00 |
| AT1600032 | NA        | -1.60 | 0.00 | AT1G80340 | ATGA30X2    | -1.26 | 0.00 |
| AT1600000 |           | 2 20  | 0.00 | AT1000040 |             | 1.20  | 0.02 |
| AT1G10020 |           | -2.20 | 0.00 | AT2002990 |             | -1.00 | 0.00 |
| AT1G10340 |           | -1.15 | 0.00 | AT2000233 |             | -1.00 | 0.00 |
| AT1G10470 |           | -1.47 | 0.00 | AT2G15390 | FU14        | -1.21 | 0.00 |
| AT1G10780 | NA        | -1.19 | 0.00 | AT2G16280 | KUS9        | -1.15 | 0.00 |
| AT1G10850 | NA        | -1.27 | 0.00 | AT2G17620 | CYCB2;1     | -1.16 | 0.00 |
| AT1G10990 | NA        | -3.01 | 0.00 | AT2G19570 | AT-CDA1     | -1.29 | 0.00 |
| AT1G11112 | NA        | -1.01 | 0.00 | AT2G19590 | ACO1        | -1.46 | 0.00 |
| AT1G11350 | CBRLK1    | -1.26 | 0.00 | AT2G19880 | NA          | -1.05 | 0.00 |
| AT1G11450 | NA        | -1.24 | 0.00 | AT2G22920 | SCPL12      | -1.07 | 0.00 |
| AT1G11545 | XTH8      | -3.13 | 0.00 | AT2G22990 | SCPL8       | -1.05 | 0.00 |
| AT1G11580 | ATPMEPCRA | -1.26 | 0.00 | AT2G23290 | AtMYB70     | -1.20 | 0.00 |
| AT1G11670 | NA        | -1.80 | 0.00 | AT2G23620 | ATMES1      | -1.16 | 0.00 |
| AT1G11850 | NA        | -2.87 | 0.00 | AT2G25450 | NA          | -1.34 | 0.00 |
| AT1G12080 | NA        | -1.73 | 0.00 | AT2G26080 | AtGLDP2     | -1.08 | 0.00 |
| AT1G12110 | ATNRT1    | -1.65 | 0.00 | AT2G27430 | NA          | -1.00 | 0.00 |
| AT1G12310 | NA        | -1.18 | 0.00 | AT2G30040 | ΜΑΡΚΚΚ14    | -2.95 | 0.00 |
| AT1G12370 | PHR1      | -1.57 | 0.00 | AT2G31390 | NA          | -1.65 | 0.00 |
| AT1G12500 | NΔ        | -1 20 | 0.00 | AT2G32960 | ΔτΡΕΔ-ΠSΡ2  | -1 75 | 0.00 |
| AT1G12900 | GAPA-2    | -1 11 | 0.00 | AT2G33600 | NΔ          | -1 13 | 0.00 |
| AT1G12110 |           | 2.24  | 0.00 | AT2G26500 | NA          | 1.13  | 0.00 |
| AT1G13110 |           | 1.25  | 0.00 | AT2G30300 |             | -1.47 | 0.00 |
| AT1G13170 |           | -1.25 | 0.00 | AT2037430 |             | -1.24 | 0.00 |
| AT1G13210 | ACA.I     | -1.20 | 0.00 | AT2G37710 |             | -1.11 | 0.00 |
| AT1G13260 | EDF4      | -2.27 | 0.00 | AT2G37720 | IBL15       | -2.31 | 0.00 |
| AT1G13420 | AISI4B    | -1.03 | 0.00 | A12G38240 | NA          | -2.16 | 0.00 |
| AT1G13470 | NA        | -1.64 | 0.00 | AT2G39200 | ATML012     | -1.03 | 0.00 |
| AT1G13750 | NA        | -1.38 | 0.00 | AT2G40390 | NA          | -1.45 | 0.00 |
| AT1G14250 | NA        | -1.40 | 0.00 | AT2G42580 | TTL3        | -1.03 | 0.00 |
| AT1G14290 | SBH2      | -1.20 | 0.00 | AT2G42900 | NA          | -1.15 | 0.00 |
| AT1G14390 | NA        | -1.51 | 0.00 | AT2G44450 | BGLU15      | -1.04 | 0.00 |
| AT1G14430 | NA        | -2.30 | 0.00 | AT2G44930 | NA          | -1.05 | 0.00 |
| AT1G14870 | AtPCR2    | -2.07 | 0.00 | AT2G45750 | NA          | -1.01 | 0.00 |
| AT1G14880 | AtPCR1    | -4.30 | 0.00 | AT2G47000 | ABCB4       | -1.12 | 0.00 |
| AT1G15125 | NA        | -2.68 | 0.00 | AT2G47880 | NA          | -1.94 | 0.00 |
| AT1G15140 | NA        | -1.27 | 0.00 | AT3G02600 | ATLPP3      | -1.03 | 0.00 |

| 471015500    | 400040   | 1.00  | 0.00 | ATACAACOA   | <b>DDC3</b> | 1.05  | 0.00 |
|--------------|----------|-------|------|-------------|-------------|-------|------|
| AT1G15520    | ABCG40   | -1.96 | 0.00 | A13G03600   | KP52        | -1.05 | 0.00 |
| AI1G15570    | CYCA2;3  | -1.09 | 0.00 | A13G08630   | NA          | -1.09 | 0.00 |
| AT1G15660    | CENP-C   | -1.16 | 0.00 | AT3G11800   | NA          | -1.37 | 0.00 |
| AT1G15690    | ATAVP3   | -1.11 | 0.00 | AT3G11840   | PUB24       | -1.23 | 0.00 |
| AT1G16070    | AtTLP8   | -1.02 | 0.00 | AT3G14770   | AtSWEET2    | -1.37 | 0.00 |
| AT1G16330    | CYCB3;1  | -1.33 | 0.00 | AT3G14790   | ATRHM3      | -1.06 | 0.00 |
| AT1G16390    | ATOCT3   | -3.68 | 0.00 | AT3G19680   | NA          | -1.06 | 0.00 |
| AT1G16630    | NA       | -1.65 | 0.00 | AT3G20270   | NA          | -1.02 | 0.00 |
| AT1G16640    | NA       | -1.47 | 0.00 | AT3G23550   | NA          | -4.38 | 0.00 |
| AT1G17170    | ΔΤGSTU24 | _1 99 | 0.00 | AT3G25670   | NΔ          | -1.03 | 0.00 |
| AT1G17100    | ATGSTU26 | -1 23 | 0.00 | AT3G26080   | NA          | -1.05 | 0.00 |
| AT1G17130    | AIGST020 | -1.25 | 0.00 | AT3G20080   |             | -1.05 | 0.00 |
| AT1G17430    |          | -1.57 | 0.00 | AT3G20210   | CTF71B25    | -1.11 | 0.00 |
| AT1G17600    |          | -1.15 | 0.00 | AT3G20830   |             | -1.// | 0.00 |
| ATIGI//00    | PRALEI   | -1.07 | 0.00 | AT3G2/120   | NA          | -1.02 | 0.00 |
| AI1G1/860    | NA       | -1.64 | 0.00 | A13G28320   | NA          | -1.54 | 0.00 |
| AT1G18140    | ATLAC1   | -1.28 | 0.00 | AT3G46130   | ATMYB48     | -1.31 | 0.00 |
| AT1G18150    | ATMPK8   | -1.24 | 0.00 | AT3G48260   | WNK3        | -1.29 | 0.00 |
| AT1G18250    | ATLP-1   | -1.53 | 0.00 | AT3G49620   | DIN11       | -2.58 | 0.00 |
| AT1G18265    | NA       | -1.37 | 0.00 | AT3G50140   | NA          | -1.22 | 0.00 |
| AT1G18370    | ATNACK1  | -3.04 | 0.00 | AT3G51330   | NA          | -1.03 | 0.00 |
| AT1G18400    | BEE1     | -1.41 | 0.00 | AT3G52110   | NA          | -1.26 | 0.00 |
| AT1G18810    | NA       | -1.53 | 0.00 | AT3G57700   | NA          | -1.19 | 0.00 |
| AT1G19050    | ARR7     | -1.91 | 0.00 | AT3G59140   | ABCC10      | -1.05 | 0.00 |
| AT1G19450    | NA       | -1.94 | 0.00 | AT3G60130   | BGLU16      | -1.14 | 0.00 |
| AT1G19670    | ATCLH1   | -1.73 | 0.00 | AT3G62720   | ATXT1       | -1.10 | 0.00 |
| AT1G19710    | ΝΔ       | -1.08 | 0.00 | AT3G62960   | NΔ          | -1.26 | 0.00 |
| AT1G19720    | NΔ       | -1 27 | 0.00 | AT/G00330   | CBCK2       | -1 12 | 0.00 |
| AT1G10720    |          | 2.04  | 0.00 | AT4G00550   | NA          | 1.12  | 0.00 |
| AT1G19940    |          | -2.94 | 0.00 | AT4G04743   |             | -1.38 | 0.00 |
| AT1G19950    |          | -1.14 | 0.00 | AT4G10500   |             | -1.19 | 0.00 |
| AT1G19960    |          | -2.25 | 0.00 | AT4G13790   | NA          | -1.29 | 0.00 |
| AT1G19990    |          | -1.06 | 0.00 | A14G14390   | NA          | -1.17 | 0.00 |
| AT1G20010    | TUB5     | -1./3 | 0.00 | A14G16000   | NA          | -1.18 | 0.00 |
| AT1G20190    | ATEXP11  | -1.91 | 0.00 | AT4G18470   | SNI1        | -1.11 | 0.00 |
| AT1G20330    | CVP1     | -1.10 | 0.00 | AT4G19420   | NA          | -1.05 | 0.00 |
| AT1G20693    | HMG      | -1.20 | 0.00 | AT4G19810   | ChiC        | -1.03 | 0.00 |
| AT1G20840    | AtTMT1   | -1.43 | 0.00 | AT4G21400   | CRK28       | -1.33 | 0.00 |
| AT1G21060    | NA       | -1.45 | 0.00 | AT4G22530   | NA          | -1.36 | 0.00 |
| AT1G21070    | NA       | -1.47 | 0.00 | AT4G26470   | NA          | -1.05 | 0.00 |
| AT1G21100    | IGMT1    | -1.75 | 0.00 | AT4G26910   | NA          | -1.14 | 0.00 |
| AT1G21110    | IGMT3    | -1.71 | 0.00 | AT4G28550   | NA          | -1.14 | 0.00 |
| AT1G21120    | IGMT2    | -2.16 | 0.00 | AT4G28720   | YUC8        | -1.03 | 0.00 |
| AT1G21130    | IGMT4    | -1.98 | 0.00 | AT4G30310   | NA          | -1.03 | 0.00 |
| AT1G21270    | WAK2     | -1 53 | 0.00 | AT4G30340   | ATDGK7      | -1 10 | 0.00 |
| AT1G21520    | NΔ       | -1 91 | 0.00 | AT/G30670   | NA          | -1 24 | 0.00 |
| AT1G21520    |          | -1.45 | 0.00 | AT4G30070   | CTE7        | -1.04 | 0.00 |
| AT1022130    | NA       | 2 20  | 0.00 | AT4G31400   |             | -1.04 | 0.00 |
| AT1022550    |          | -2.30 | 0.00 | AT4G33000   |             | -1.04 | 0.00 |
| AT1G22690    |          | -3.43 | 0.00 | A14G34610   |             | -1.07 | 0.00 |
| AT1G23030    | NA       | -1.42 | 0.00 | A14G35160   |             | -1.37 | 0.00 |
| AT1G23110    | NA       | -1.50 | 0.01 | A14G37260   | ATMYB73     | -1.33 | 0.00 |
| AT1G23170    | NA       | -1.47 | 0.00 | A14G39270   | NA          | -1.25 | 0.00 |
| AT1G23390    | NA       | -2.09 | 0.00 | AT4G39810   | NA          | -1.02 | 0.00 |
| AT1G23640    | NA       | -1.17 | 0.00 | AT5G01830   | NA          | -1.08 | 0.00 |
| AT1G23790    | NA       | -2.15 | 0.00 | AT5G04270   | NA          | -1.38 | 0.00 |
| AT1G24120    | ARL1     | -1.03 | 0.00 | AT5G04930   | ALA1        | -1.01 | 0.00 |
| AT1G24147    | NA       | -2.20 | 0.00 | AT5G06980   | NA          | -1.15 | 0.00 |
| AT1G24170    | GATL8    | -1.56 | 0.00 | AT5G11950   | LOG8        | -1.02 | 0.00 |
| AT1G24180    | IAR4     | -1.16 | 0.00 | AT5G12340   | NA          | -1.54 | 0.00 |
| AT1G24575    | NA       | -1.51 | 0.00 | AT5G12420   | NA          | -1.46 | 0.00 |
| AT1G24610    | NA       | -1.01 | 0.00 | AT5G15650   | ATRGP2      | -1.01 | 0.00 |
| AT1G25230    | NA       | -1.72 | 0.00 | AT5G16570   | GI N1:4     | -1.10 | 0.04 |
| AT1G25275    | NA       | -1.59 | 0.00 | AT5G20150   | ATSPX1      | -1.05 | 0.00 |
| ΔT1G25/25    | CI F43   | -1 20 | 0.00 | AT5G22920   | NΔ          | -1 01 | 0.00 |
| , (1 ±020+20 | SEL-TJ   | 1.20  | 0.00 | 1.1.5022520 |             | 1.01  | 0.00 |

| AT1G25450 | CER60      | -1.24 | 0.00 | AT5G25930  | NA         | -1.56 | 0.00 |
|-----------|------------|-------|------|------------|------------|-------|------|
| AT1G26290 | NA         | -1.16 | 0.00 | AT5G33290  | XGD1       | -1.24 | 0.00 |
| AT1G26380 | NA         | -1.11 | 0.00 | AT5G34830  | NA         | -1.13 | 0.00 |
| AT1G26570 | ATUGD1     | -1.58 | 0.00 | AT5G36220  | CYP81D1    | -1.02 | 0.00 |
| AT1G26760 | ATXR1      | -1.65 | 0.00 | AT5G37010  | NA         | -1.20 | 0.00 |
| AT1G26770 | AT-EXP10   | -1.51 | 0.00 | AT5G37600  | ATGLN1;1   | -1.15 | 0.00 |
| AT1G26945 | KDR        | -1.08 | 0.00 | AT5G40780  | LHT1       | -1.74 | 0.00 |
| AT1G27020 | NA         | -3.65 | 0.00 | AT5G43170  | AZF3       | -1.31 | 0.00 |
| AT1G27130 | ATGSTU13   | -1.54 | 0.00 | AT5G44070  | ARA8       | -1.07 | 0.00 |
| AT1G27460 | NPGR1      | -1 43 | 0.00 | AT5G45530  | NA         | -1 36 | 0.00 |
| AT1G27880 | NA         | -1 12 | 0.00 | AT5G/15830 | ATDOG1     | -1.05 | 0.00 |
| AT1G28010 | ABCB1/     | -1 28 | 0.00 | AT5G50560  | NA         | -1.05 | 0.00 |
| AT1C20010 | NA         | -1.20 | 0.00 | ATECEE190  |            | -1.00 | 0.00 |
| AT1C20280 |            | -1.10 | 0.00 | AT5055160  |            | -1.56 | 0.00 |
| AT1G29280 |            | -1.70 | 0.00 | AT5000280  |            | -1.01 | 0.00 |
| AT1G29430 | NA         | -1.47 | 0.00 | A15G61412  | NA         | -1.95 | 0.00 |
| AT1G29440 | NA         | -1.27 | 0.00 | A15G61590  | NA         | -1.63 | 0.00 |
| AT1G29450 | NA         | -1.80 | 0.00 | A15G62280  | NA         | -2.27 | 0.00 |
| AT1G29460 | NA         | -1.11 | 0.00 | A15G62680  | NA         | -1.00 | 0.00 |
| AT1G29660 | NA         | -2.18 | 0.00 | AT5G62865  | NA         | -1.49 | 0.00 |
| AT1G29720 | NA         | -1.95 | 0.00 | AT5G63060  | NA         | -1.12 | 0.00 |
| AT1G30250 | NA         | -1.37 | 0.00 | AT5G64110  | NA         | -1.17 | 0.00 |
| AT1G30420 | ABCC11     | -1.09 | 0.00 | AT1G01160  | GIF2       | 1.13  | 0.00 |
| AT1G30455 | NA         | -2.63 | 0.00 | AT1G01250  | NA         | 1.12  | 0.00 |
| AT1G30520 | AAE14      | -1.09 | 0.00 | AT1G01480  | ACS2       | 1.31  | 0.02 |
| AT1G30530 | UGT78D1    | -1.25 | 0.00 | AT1G01710  | NA         | 1.57  | 0.00 |
| AT1G30690 | NA         | -1.07 | 0.00 | AT1G01720  | ANAC002    | 1.47  | 0.00 |
| AT1G31190 | IMPL1      | -1.44 | 0.00 | AT1G01810  | NA         | 1.25  | 0.00 |
| AT1G31200 | ATPP2-A9   | -1.74 | 0.00 | AT1G02050  | LAP6       | 1.15  | 0.00 |
| AT1G31490 | NA         | -1.57 | 0.00 | AT1G02205  | CER1       | 2.68  | 0.00 |
| AT1G31550 | NA         | -1.22 | 0.00 | AT1G02310  | MAN1       | 1.37  | 0.00 |
| AT1G31580 | CXC750     | -1.92 | 0.00 | AT1G02390  | ATGPAT2    | 2.78  | 0.00 |
| AT1G31690 | NA         | -3.79 | 0.00 | AT1G02700  | NA         | 2.78  | 0.00 |
| AT1G32080 | AtlrøB     | -1 10 | 0.00 | AT1G02770  | NA         | 1 82  | 0.00 |
| AT1G33240 | AT-GTI 1   | -1 20 | 0.00 | AT1G03070  | NA         | 3 74  | 0.00 |
| AT1G33590 | NA         | -1.63 | 0.00 | AT1603/10  | 246        | 1 59  | 0.00 |
| AT1G33600 | NΔ         | -1.82 | 0.00 | AT1603470  | NΔ         | 1.55  | 0.00 |
| AT1G33610 | NΔ         | -1.60 | 0.00 | AT1G03550  | NΔ         | 1.55  | 0.00 |
| AT1G33670 | NA         | -1 /1 | 0.00 | AT1603350  | NA<br>NA   | 1.33  | 0.00 |
| AT1C22020 |            | -1.41 | 0.00 | AT1C04220  | NG<br>VCS2 | 2.60  | 0.00 |
| AT1G33930 |            | -1.10 | 0.02 | AT1004220  | NG52       | 2.09  | 0.00 |
| AT1C24255 |            | -1.49 | 0.00 | AT1004300  |            | 1.09  | 0.00 |
| AT1G34355 | ATPSI CELA | -1.20 | 0.00 | AT1G04970  |            | 1.10  | 0.00 |
| AT1G34760 |            | -1.10 | 0.00 | AT1G05100  |            | 2.42  | 0.00 |
| AT1G35230 | AGP5       | -1.75 | 0.00 | AT1G05340  | NA         | 4.63  | 0.00 |
| AT1G35580 | A/N-INVG   | -1.54 | 0.00 | AT1G05870  | NA         | 1.56  | 0.00 |
| AT1G36940 | NA         | -1.16 | 0.00 | AT1G05894  | NA         | 1.04  | 0.00 |
| AT1G3/130 | AINR2      | -1.47 | 0.00 | AT1G06090  | NA         | 1.08  | 0.00 |
| AT1G43670 | Atcfbp     | -1.49 | 0.00 | AT1G06110  | SKIP16     | 1.31  | 0.00 |
| AT1G44000 | NA         | -1.18 | 0.00 | AT1G06430  | FTSH8      | 1.27  | 0.00 |
| AT1G44830 | NA         | -1.62 | 0.00 | AT1G06570  | HPD        | 1.10  | 0.00 |
| AT1G44900 | ATMCM2     | -1.25 | 0.00 | AT1G06790  | NA         | 2.72  | 0.00 |
| AT1G45130 | BGAL5      | -1.04 | 0.00 | AT1G07120  | NA         | 1.59  | 0.00 |
| AT1G45180 | NA         | -1.30 | 0.00 | AT1G07230  | NPC1       | 1.39  | 0.00 |
| AT1G45191 | BGLU1      | -1.52 | 0.00 | AT1G07350  | SR45a      | 3.12  | 0.00 |
| AT1G45474 | Lhca5      | -1.16 | 0.00 | AT1G07380  | NA         | 1.36  | 0.00 |
| AT1G47210 | CYCA3;2    | -1.55 | 0.00 | AT1G07390  | AtRLP1     | 1.16  | 0.00 |
| AT1G47395 | NA         | -2.74 | 0.00 | AT1G07400  | NA         | 7.18  | 0.00 |
| AT1G47400 | NA         | -2.44 | 0.00 | AT1G07430  | HAI2       | 4.06  | 0.00 |
| AT1G47480 | NA         | -1.32 | 0.00 | AT1G07500  | NA         | 5.13  | 0.00 |
| AT1G47485 | NA         | -1.48 | 0.00 | AT1G07720  | KCS3       | 1.51  | 0.00 |
| AT1G47760 | AGL102     | -1.17 | 0.00 | AT1G07870  | NA         | 1.43  | 0.00 |
| AT1G47840 | НХКЗ       | -1.12 | 0.00 | AT1G07900  | LBD1       | 2.85  | 0.00 |
| AT1G48480 | RKL1       | -2.04 | 0.00 | AT1G07985  | NA         | 1.80  | 0.00 |

| AT1C40220 | NIA     | 1 24          | 0.00 | AT1C09200  | NIV/I     | 1 71         | 0.00 |
|-----------|---------|---------------|------|------------|-----------|--------------|------|
| AT1G49220 |         | -1.54         | 0.00 | AT1G08500  |           | 1.71         | 0.00 |
| AT1G49730 | NA      | -1.25         | 0.00 | AT1G08460  |           | 1.22         | 0.00 |
| AT1G49870 | NA      | -1.35         | 0.00 | AT1G09070  | (AT)SRC2  | 1.27         | 0.00 |
| AT1G49975 | NA      | -1.21         | 0.00 | AT1G09140  | ATSRP30   | 2.45         | 0.00 |
| AT1G50010 | TUA2    | -1.02         | 0.00 | A11G09500  | NA        | 1.44         | 0.00 |
| AT1G50040 | NA      | -1.60         | 0.00 | AT1G09530  | PAP3      | 1.49         | 0.00 |
| AT1G50240 | FU      | -1.68         | 0.00 | AT1G09950  | RAS1      | 1.54         | 0.00 |
| AT1G50490 | UBC20   | -1.15         | 0.00 | AT1G10240  | FRS11     | 1.35         | 0.00 |
| AT1G51070 | bHLH115 | -1.19         | 0.00 | AT1G11100  | NA        | 1.45         | 0.00 |
| AT1G51790 | NA      | -1.34         | 0.00 | AT1G11170  | NA        | 1.13         | 0.00 |
| AT1G51800 | IOS1    | -1.58         | 0.00 | AT1G11190  | BFN1      | 1.10         | 0.00 |
| AT1G51805 | NA      | -1.89         | 0.00 | AT1G11270  | NA        | 1.06         | 0.00 |
| AT1G51820 | NA      | -1.55         | 0.00 | AT1G11910  | APA1      | 1.03         | 0.00 |
| AT1G51890 | NA      | -1.47         | 0.00 | AT1G12064  | NA        | 2.89         | 0.00 |
| AT1G51940 | NA      | -1.05         | 0.00 | AT1G12210  | RFL1      | 1.30         | 0.00 |
| AT1G52190 | NA      | -1.27         | 0.00 | AT1G12290  | NA        | 1.38         | 0.00 |
| AT1G52200 | NA      | -3.17         | 0.00 | AT1G12950  | RSH2      | 1 59         | 0.00 |
| AT1G52270 | NΔ      | -1.07         | 0.00 | AT1G13050  | NΔ        | 1.03         | 0.00 |
| AT1652270 |         | 1.07          | 0.00 | AT1G13030  |           | 1.05         | 0.00 |
| AT1G52290 |         | -1.90         | 0.00 | AT1G13990  |           | 1.45         | 0.00 |
| AT1052542 |         | -1.50         | 0.00 | AT1G14500  |           | 1.10         | 0.00 |
| AT1G52510 |         | -1.24         | 0.00 | AT1G14890  |           | 1.25         | 0.00 |
| AT1G52910 | NA      | -1.54         | 0.00 | AT1G15230  | NA        | 1.30         | 0.00 |
| AT1G53040 | NA      | -1.64         | 0.00 | AT1G15240  | NA        | 1.33         | 0.00 |
| AT1G53140 | DRP5A   | -2.19         | 0.00 | AT1G15340  | MBD10     | 1.09         | 0.00 |
| AT1G53230 | TCP3    | -1.95         | 0.00 | AT1G15510  | ATECB2    | 1.45         | 0.00 |
| AT1G53290 | NA      | -1.11         | 0.00 | AT1G15550  | ATGA3OX1  | 2.55         | 0.00 |
| AT1G53310 | ATPEPC1 | -1.32         | 0.00 | AT1G15960  | ATNRAMP6  | 2.07         | 0.00 |
| AT1G53350 | NA      | -1.23         | 0.00 | AT1G16030  | Hsp70b    | 3.69         | 0.00 |
| AT1G53430 | NA      | -2.17         | 0.00 | AT1G16515  | NA        | 2.32         | 0.00 |
| AT1G53440 | NA      | -1.45         | 0.00 | AT1G16850  | NA        | 2.72         | 0.00 |
| AT1G53520 | NA      | -1.49         | 0.00 | AT1G17020  | ATSRG1    | 2.61         | 0.00 |
| AT1G53542 | NA      | -1.10         | 0.00 | AT1G17460  | TRFL3     | 1.47         | 0.00 |
| AT1G53700 | РКЗАТ   | -1.92         | 0.00 | AT1G17744  | NA        | 3.17         | 0.00 |
| AT1G54000 | GLL22   | -1.65         | 0.00 | AT1G17830  | NA        | 1.98         | 0.00 |
| AT1G54010 | NA      | -2.86         | 0.00 | AT1G17870  | ATEGY3    | 4 71         | 0.00 |
| AT1G54385 | NΔ      | -2.03         | 0.00 | AT1G17940  | NΔ        | 2 24         | 0.00 |
| AT1G54410 | ΝΔ      | -1 15         | 0.00 | AT1G17950  | ΔΤΜΥΒ52   | 1.04         | 0.00 |
| AT1654820 | NA      | -1 /0         | 0.00 | AT1G17550  | AGI 65    | 1.04         | 0.00 |
| AT1054820 |         | 1 96          | 0.00 | AT1G10750  | AGLOJ     | 1.05         | 0.00 |
| AT1055120 |         | -1.80         | 0.00 | AT1G19000  |           | 1.25         | 0.00 |
| AT1G55160 |         | -1.09         | 0.00 | AT1G19490  |           | 1.41         | 0.00 |
| AT1G55260 | NA      | -1.06         | 0.00 | AT1G19530  | NA        | 1.09         | 0.00 |
| AT1G55330 | AGP21   | -2.66         | 0.00 | AT1G19630  | CYP/22A1  | 1.33         | 0.00 |
| AI1G55450 | NA      | -1.49         | 0.00 | AT1G19980  | NA        | 1.38         | 0.00 |
| AT1G56120 | NA      | -1.74         | 0.00 | AT1G20160  | ATSBT5.2  | 2.15         | 0.00 |
| AT1G56430 | ATNAS4  | -2.40         | 0.00 | AT1G20225  | NA        | 1.20         | 0.00 |
| AT1G57560 | AtMYB50 | -2.38         | 0.00 | AT1G20350  | ATTIM17-1 | 2.05         | 0.00 |
| AT1G57770 | NA      | -1.41         | 0.00 | AT1G20850  | XCP2      | 1.29         | 0.00 |
| AT1G58370 | ATXYN1  | -1.08         | 0.00 | AT1G20890  | NA        | 1.20         | 0.00 |
| AT1G58602 | NA      | -2.37         | 0.00 | AT1G20920  | NA        | 1.47         | 0.00 |
| AT1G59710 | NA      | -1.64         | 0.00 | AT1G21000  | NA        | 1.11         | 0.00 |
| AT1G59870 | ABCG36  | -1.60         | 0.00 | AT1G21400  | NA        | 1.80         | 0.00 |
| AT1G59960 | NA      | -1.05         | 0.00 | AT1G21410  | SKP2A     | 1.65         | 0.00 |
| AT1G60010 | NA      | -1.03         | 0.00 | AT1G21460  | AtSWEET1  | 1.65         | 0.00 |
| AT1G60060 | NA      | -1.10         | 0.00 | AT1G21550  | NA        | 2.88         | 0.00 |
| AT1G60760 | NA      | -3.40         | 0.00 | AT1G21580  | NA        | 1.28         | 0.00 |
| AT1G60870 | MFF9    | -1.07         | 0.00 | AT1G21670  | NA        | 1.00         | 0.00 |
| AT1661070 | LCR66   | -1 15         | 0.00 | AT1G21800  | NΔ        | 1.20         | 0.00 |
| ΔT1G61120 | GES     | -2.24         | 0.00 | AT1G221030 | NΔ        | 1.24         | 0.00 |
| AT1661170 | NA      | 2.24<br>_1 50 | 0.00 | AT1G22100  |           | 1 27         | 0.00 |
| AT1661450 |         | -1.35         | 0.00 | AT1C22230  |           | 1.27         | 0.00 |
| AT1001450 |         | -1.52         | 0.00 | AT1C22200  |           | 1.33<br>1.17 | 0.00 |
| AT10015/5 |         | -1.02         | 0.00 | AT1022380  |           | 1.1/         | 0.00 |
| AT1G62200 | ΑΓΡΙΚΌ  | -1.25         | 0.00 | AT1622480  | NA        | 3.12         | 0.00 |

130

| 47400000  | 1000     | 4.05  | 0.00 | 474022005  | 0057      | 1.20 | 0.00 |
|-----------|----------|-------|------|------------|-----------|------|------|
| AT1G62380 | ACO2     | -1.95 | 0.00 | AT1G22985  |           | 1.39 | 0.00 |
| AT1G62480 | NA       | -2.15 | 0.00 | AT1G22990  | HIPP22    | 6.42 | 0.00 |
| AT1G62640 | KAS      | -1.11 | 0.00 | AT1G23040  | NA        | 1.15 | 0.00 |
| AT1G62780 | NA       | -1.42 | 0.00 | AT1G23050  | NA        | 1.41 | 0.00 |
| AT1G62790 | NA       | -1.67 | 0.00 | AT1G23330  | NA        | 1.02 | 0.00 |
| AT1G63000 | NRS/ER   | -1.08 | 0.00 | AT1G23550  | SRO2      | 1.02 | 0.00 |
| AT1G63100 | NA       | -2.07 | 0.00 | AT1G23860  | At-RSZ21  | 1.97 | 0.00 |
| AT1G63220 | NA       | -2.59 | 0.00 | AT1G24095  | NA        | 1.64 | 0.00 |
| AT1G63260 | TET10    | -1 60 | 0.00 | AT1G24265  | NA        | 1 23 | 0.00 |
| AT1G63310 | NA       | -1 13 | 0.00 | AT1G2/1330 | NΔ        | 1.08 | 0.00 |
| AT1662590 | NA       | 1.15  | 0.00 | AT1G24550  | NA<br>NA  | 2.00 | 0.00 |
| AT1003380 |          | -1.24 | 0.00 | AT1024580  |           | 2.55 | 0.00 |
| AT1003710 |          | -2.19 | 0.00 | AT1G24000  |           | 2.95 | 0.00 |
| AT1G63940 |          | -1.34 | 0.00 | AT1G25211  | NA        | 1.44 | 0.00 |
| AT1G64170 | AICHX16  | -2.30 | 0.00 | AT1G25530  | NA        | 1.03 | 0.00 |
| AT1G64450 | NA       | -1.08 | 0.00 | AT1G25540  | MED25     | 1.24 | 0.00 |
| AT1G64640 | Atenodl8 | -1.36 | 0.00 | AT1G26580  | NA        | 1.45 | 0.00 |
| AT1G64650 | NA       | -1.03 | 0.00 | AT1G26800  | NA        | 1.57 | 0.00 |
| AT1G64770 | NDF2     | -1.21 | 0.00 | AT1G27170  | NA        | 1.11 | 0.00 |
| AT1G65060 | 4CL3     | -1.03 | 0.00 | AT1G27200  | NA        | 1.15 | 0.00 |
| AT1G65295 | NA       | -1.49 | 0.00 | AT1G27385  | NA        | 1.08 | 0.00 |
| AT1G65470 | FAS1     | -2.11 | 0.00 | AT1G27420  | NA        | 2.40 | 0.00 |
| AT1G65570 | NA       | -4.75 | 0.00 | AT1G27590  | NA        | 2.09 | 0.00 |
| AT1G65590 | ATHEX1   | -1.55 | 0.00 | AT1G27650  | ATU2AF35A | 1.10 | 0.00 |
| AT1G65710 | NA       | -1.50 | 0.00 | AT1G28260  | NA        | 1.38 | 0.00 |
| AT1G65960 | GAD2     | -1.20 | 0.00 | AT1G28330  | DRM1      | 1.82 | 0.00 |
| AT1G65985 | NA       | -1 98 | 0.00 | AT1G28370  | ΔTERE11   | 1 31 | 0.00 |
| AT1G66050 |          | -2.25 | 0.00 | AT1G20370  |           | 1.51 | 0.00 |
| AT1000000 |          | -2.2J | 0.00 | AT1C20419  |           | 1.10 | 0.00 |
| AT1000100 |          | -5.11 | 0.00 | AT1G29416  |           | 1.90 | 0.00 |
| AT1G00150 |          | -1.14 | 0.00 | AT1G29465  | NA        | 1.07 | 0.00 |
| AT1G66200 | AIGSKZ   | -1.19 | 0.00 | AT1G29640  | NA        | 2.72 | 0.00 |
| AT1G66350 | RGL      | -1.14 | 0.00 | AT1G29680  | NA        | 2.39 | 0.02 |
| AT1G66370 | AtmyB113 | -1.31 | 0.00 | AT1G30190  | NA        | 4.58 | 0.00 |
| AT1G66620 | NA       | -1.59 | 0.00 | AT1G30220  | ATINT2    | 3.72 | 0.00 |
| AT1G66700 | PXMT1    | -1.48 | 0.00 | AT1G30500  | NF-YA7    | 1.52 | 0.00 |
| AT1G66940 | NA       | -3.40 | 0.00 | AT1G30970  | SUF4      | 1.16 | 0.00 |
| AT1G67260 | TCP1     | -1.28 | 0.00 | AT1G31600  | AtTRM9    | 1.15 | 0.00 |
| AT1G67330 | NA       | -1.89 | 0.00 | AT1G31750  | NA        | 1.21 | 0.00 |
| AT1G67630 | EMB2814  | -1.39 | 0.00 | AT1G31760  | NA        | 1.58 | 0.00 |
| AT1G67670 | NA       | -2.01 | 0.00 | AT1G31820  | NA        | 1.43 | 0.00 |
| AT1G67790 | NA       | -1.55 | 0.00 | AT1G31835  | NA        | 1.23 | 0.00 |
| AT1G67810 | SUFE2    | -3.45 | 0.00 | AT1G32100  | ATPRR1    | 1.29 | 0.00 |
| AT1G68590 | NA       | -1.25 | 0.00 | AT1G32560  | Atl FA4-1 | 2.06 | 0.00 |
| AT1G68780 | NA       | -1 30 | 0.00 | AT1G32583  | ΝΔ        | 2.05 | 0.00 |
| AT1G69040 | ACR/     | -1.01 | 0.00 | AT1G32870  |           | 1.28 | 0.00 |
| AT1G60520 | NA       | -1 22 | 0.00 | AT1G32070  | NA NA     | 1.20 | 0.00 |
| AT1G60520 |          | 1.25  | 0.00 | AT1G22102  | NA        | 1.05 | 0.00 |
| AT1009550 |          | -1.75 | 0.00 | AT1033102  |           | 1.15 | 0.00 |
| AT1G69770 |          | -1.11 | 0.00 | AT1G33260  |           | 1.11 | 0.00 |
| AT1G69780 | ATHB13   | -1.16 | 0.00 | AT1G33640  | NA        | 1.31 | 0.00 |
| AT1G69900 | NA       | -1.51 | 0.00 | AT1G33700  | NA        | 1.59 | 0.00 |
| AT1G70090 | GATL9    | -1.48 | 0.00 | AT1G33800  | NA        | 1.08 | 0.00 |
| AT1G70270 | NA       | -3.64 | 0.00 | AT1G34042  | NA        | 2.76 | 0.00 |
| AT1G71140 | NA       | -3.36 | 0.00 | AT1G34630  | NA        | 1.25 | 0.00 |
| AT1G71760 | NA       | -1.10 | 0.00 | AT1G34792  | NA        | 1.00 | 0.02 |
| AT1G71880 | ATSUC1   | -1.16 | 0.00 | AT1G35660  | NA        | 1.80 | 0.00 |
| AT1G72250 | NA       | -1.32 | 0.00 | AT1G36060  | NA        | 1.16 | 0.00 |
| AT1G72416 | NA       | -1.75 | 0.00 | AT1G36070  | NA        | 1.20 | 0.00 |
| AT1G72450 | JAZ6     | -1.53 | 0.00 | AT1G36980  | NA        | 1.18 | 0.00 |
| AT1G72610 | ATGER1   | -2.87 | 0.00 | AT1G42980  | NA        | 1.21 | 0.00 |
| AT1G72670 | iad8     | -1.71 | 0.00 | AT1G44414  | NA        | 2.35 | 0.00 |
| AT1G72730 | NA       | -1.38 | 0.00 | AT1G45249  | ABF2      | 1.52 | 0.00 |
| AT1G72910 | NA       | -1.25 | 0.00 | AT1G45616  | Atri P6   | 2.57 | 0.00 |
| AT1G72920 | NA       | -1 24 | 0.00 | AT1G45976  | SBP1      | 1 18 | 0.00 |
|           | · · · ·  |       | 2.00 |            |           | 1.10 | 2.00 |

| AT1G72930 | TIR         | -1.67 | 0.00 | AT1G46768 | RAP2.1    | 1.13 | 0.00 |
|-----------|-------------|-------|------|-----------|-----------|------|------|
| AT1G73110 | NA          | -1.10 | 0.00 | AT1G47510 | 5PTASE11  | 1.52 | 0.00 |
| AT1G73325 | NA          | -1.69 | 0.00 | AT1G47960 | ATC/VIF1  | 3.94 | 0.00 |
| AT1G73620 | NA          | -1.43 | 0.00 | AT1G48000 | AtMYB112  | 1.82 | 0.00 |
| AT1G73830 | BEE3        | -1.10 | 0.00 | AT1G48020 | ATPMEI1   | 1.51 | 0.00 |
| AT1G74000 | SS3         | -1.20 | 0.00 | AT1G48320 | NA        | 1.14 | 0.00 |
| AT1G74290 | NA          | -1.19 | 0.00 | AT1G48430 | NA        | 1.05 | 0.00 |
| AT1G74440 | NA          | -1.39 | 0.00 | AT1G48750 | NA        | 2.27 | 0.00 |
| AT1G74690 | IQD31       | -1.12 | 0.00 | AT1G48840 | NA        | 1.17 | 0.00 |
| AT1G74710 | ATICS1      | -1.37 | 0.00 | AT1G49170 | NA        | 1.32 | 0.00 |
| AT1G74730 | NA          | -1.13 | 0.00 | AT1G49200 | NA        | 1.14 | 0.00 |
| AT1G74790 | NA          | -1.09 | 0.00 | AT1G49405 | NA        | 2.62 | 0.00 |
| AT1G74890 | ARR15       | -2.35 | 0.00 | AT1G49450 | NA        | 2.57 | 0.00 |
| AT1G75030 | ATLP-3      | -1.86 | 0.00 | AT1G49530 | GGPS6     | 1.30 | 0.00 |
| AT1G75040 | PR-5        | -2.95 | 0.00 | AT1G50260 | NTMC2T5.1 | 1.14 | 0.00 |
| AT1G75150 | NA          | -1.93 | 0.00 | AT1G50400 | NA        | 2.10 | 0.00 |
| AT1G75190 | NA          | -1.83 | 0.00 | AT1G50520 | CYP705A27 | 1.57 | 0.00 |
| AT1G75250 | ATRL6       | -1.83 | 0.00 | AT1G50590 | NA        | 1.09 | 0.00 |
| AT1G75600 | NA          | -2.03 | 0.00 | AT1G51130 | NA        | 1.26 | 0.00 |
| AT1G75640 | NA          | -1.20 | 0.00 | AT1G51200 | NA        | 1.52 | 0.00 |
| AT1G75690 | LQY1        | -1.33 | 0.00 | AT1G51380 | NA        | 1.81 | 0.00 |
| AT1G75960 | NA          | -1.69 | 0.00 | AT1G51402 | NA        | 1.56 | 0.00 |
| AT1G76020 | NA          | -1.25 | 0.00 | AT1G52080 | AR791     | 1.06 | 0.00 |
| AT1G76090 | SMT3        | -1.21 | 0.00 | AT1G52560 | NA        | 5.71 | 0.00 |
| AT1G76160 | sks5        | -1.35 | 0.00 | AT1G52690 | LEA7      | 6.41 | 0.00 |
| AT1G76190 | NA          | -1.83 | 0.00 | AT1G52720 | NA        | 1.04 | 0.00 |
| AT1G76240 | NA          | -3.28 | 0.00 | AT1G52790 | NA        | 1.05 | 0.05 |
| AT1G76310 | CYCB2·4     | -1 58 | 0.00 | AT1G52827 | ATCDT1    | 1 13 | 0.00 |
| AT1G76680 | ATOPR1      | -2.06 | 0.00 | AT1G52920 | GCR2      | 1.51 | 0.00 |
| AT1G76740 | NA          | -1.02 | 0.00 | AT1G52990 | NA        | 1.30 | 0.00 |
| AT1G76790 | IGMT5       | -1 30 | 0.00 | AT1G53080 | NA        | 1.86 | 0.00 |
| AT1G77330 | NA          | -1.60 | 0.00 | AT1G53100 | NA        | 1.81 | 0.00 |
| AT1G77690 | LAX3        | -1.37 | 0.00 | AT1G53280 | AtDJ1B    | 1.06 | 0.00 |
| AT1G77760 | GNR1        | -2.73 | 0.00 | AT1G53540 | NA        | 9.64 | 0.00 |
| AT1G78210 | NA          | -1.32 | 0.00 | AT1G54050 | NA        | 3.04 | 0.00 |
| AT1G78270 | AtUGT85A4   | -2.52 | 0.00 | AT1G54100 | ALDH7B4   | 1.77 | 0.00 |
| AT1G78300 | 14-3-30MEGA | -1.13 | 0.00 | AT1G54120 | NA        | 1.10 | 0.00 |
| AT1G78370 | ATGSTU20    | -1.43 | 0.00 | AT1G54160 | NF-YA5    | 1.36 | 0.00 |
| AT1G78410 | NA          | -1.19 | 0.00 | AT1G54575 | NA        | 1.36 | 0.00 |
| AT1G78430 | RIP2        | -1.87 | 0.00 | AT1G54830 | NF-YC3    | 1.02 | 0.00 |
| AT1G78450 | NA          | -1.30 | 0.00 | AT1G55040 | NA        | 1.11 | 0.00 |
| AT1G78460 | NA          | -1.56 | 0.00 | AT1G55280 | NA        | 1.14 | 0.00 |
| AT1G78530 | NA          | -1.66 | 0.00 | AT1G55530 | NA        | 1.23 | 0.00 |
| AT1G78570 | ATRHM1      | -1.21 | 0.00 | AT1G55760 | NA        | 1.41 | 0.00 |
| AT1G78820 | NA          | -1.31 | 0.00 | AT1G56170 | АТНАР5В   | 2.87 | 0.00 |
| AT1G78890 | NA          | -1.24 | 0.00 | AT1G56280 | ATDI19    | 1.01 | 0.00 |
| AT1G78922 | NA          | -1.53 | 0.00 | AT1G56440 | TPR5      | 1.75 | 0.00 |
| AT1G78995 | NA          | -1.14 | 0.00 | AT1G56600 | AtGolS2   | 1.81 | 0.00 |
| AT1G79080 | NA          | -1.44 | 0.00 | AT1G57590 | NA        | 1.39 | 0.00 |
| AT1G79400 | ATCHX2      | -1.77 | 0.00 | AT1G58340 | BCD1      | 1.78 | 0.00 |
| AT1G79410 | AtOCT5      | -2.10 | 0.00 | AT1G58360 | AAP1      | 1.15 | 0.00 |
| AT1G79770 | NA          | -1.30 | 0.00 | AT1G58470 | ATRBP1    | 1.32 | 0.00 |
| AT1G79790 | AtcpFHv1    | -1.92 | 0.00 | AT1G58520 | RXW8      | 1.17 | 0.00 |
| AT1G80050 | APT2        | -1.56 | 0.00 | AT1G59640 | BPE       | 1.28 | 0.00 |
| AT1G80560 | ATIMD2      | -1.35 | 0.00 | AT1G59740 | NA        | 1.00 | 0.00 |
| AT2G02930 | ATGSTF3     | -3.14 | 0.00 | AT1G59860 | NA        | 5.73 | 0.00 |
| AT2G02950 | PKS1        | -1.65 | 0.00 | AT1G60190 | AtPUB19   | 4.00 | 0.00 |
| AT2G03350 | NA          | -1.44 | 0.00 | AT1G60470 | AtGolS4   | 1.55 | 0.03 |
| AT2G03420 | NA          | -1.52 | 0.00 | AT1G60970 | NA        | 4.16 | 0.00 |
| AT2G03760 | ATST1       | -1.54 | 0.00 | AT1G61255 | NA        | 1.06 | 0.00 |
| AT2G03980 | NA          | -1.79 | 0.00 | AT1G61340 | NA        | 1.17 | 0.00 |
| AT2G04032 | ZIP7        | -1.64 | 0.00 | AT1G61580 | ARP2      | 1.81 | 0.00 |
| AT2G04450 | ATNUDT6 | -2.64 | 0.00 | AT1G61800 | ATGPT2    | 1.43 | 0.00 |
|-----------|---------|-------|------|-----------|-----------|------|------|
| AT2G04650 | NA      | -1.34 | 0.00 | AT1G61970 | NA        | 1.36 | 0.00 |
| AT2G04780 | FLA7    | -1.96 | 0.00 | AT1G62290 | NA        | 2.88 | 0.00 |
| AT2G05160 | NA      | -1.35 | 0.00 | AT1G62510 | NA        | 4.84 | 0.00 |
| AT2G05380 | GRP3S   | -1.58 | 0.00 | AT1G62700 | ANAC026   | 1.02 | 0.00 |
| AT2G05642 | NA      | -2.87 | 0.00 | AT1G63840 | NA        | 1.34 | 0.00 |
| AT2G05810 | NA      | -1.16 | 0.00 | AT1G64110 | DAA1      | 4 28 | 0.00 |
| AT2G06850 | EXGT-A1 | -2.68 | 0.00 | AT1G6/561 | ΝΔ        | 2.67 | 0.00 |
| AT2G00030 |         | -1 60 | 0.00 | AT1664660 |           | 2.07 | 0.00 |
| AT2000925 |         | 1.05  | 0.00 | AT1C65000 |           | 2.50 | 0.00 |
| AT2G07170 |         | -1.05 | 0.00 | AT1005000 |           | 1.05 | 0.00 |
| AT2G10940 |         | -1.30 | 0.00 | AT1G65890 | AAE1Z     | 1.10 | 0.00 |
| AT2G11810 | ATMGD3  | -2.09 | 0.00 | AT1G65980 | IPX1      | 1.44 | 0.00 |
| AT2G12462 | NA      | -1.48 | 0.00 | AT1G66080 | NA        | 2.22 | 0.00 |
| AT2G13820 | Atxyp2  | -1.27 | 0.00 | AT1G66390 | АТМҮВ90   | 1.21 | 0.01 |
| AT2G14247 | NA      | -2.84 | 0.00 | AT1G66500 | NA        | 2.65 | 0.00 |
| AT2G14560 | LURP1   | -3.53 | 0.00 | AT1G66510 | NA        | 1.59 | 0.00 |
| AT2G14610 | ATPR1   | -2.80 | 0.00 | AT1G67120 | NA        | 1.46 | 0.00 |
| AT2G15042 | NA      | -1.09 | 0.00 | AT1G67265 | DVL3      | 3.07 | 0.00 |
| AT2G15080 | AtRLP19 | -1.16 | 0.00 | AT1G67360 | NA        | 1.33 | 0.00 |
| AT2G15090 | KCS8    | -1.52 | 0.00 | AT1G67370 | ASY1      | 1.47 | 0.00 |
| AT2G15620 | ATHNIR  | -1.17 | 0.00 | AT1G67856 | NA        | 2.25 | 0.00 |
| AT2G15760 | NA      | -1.41 | 0.00 | AT1G67920 | NA        | 3.45 | 0.00 |
| AT2G16060 | AHB1    | -2.87 | 0.00 | AT1G68360 | NA        | 1.16 | 0.00 |
| AT2G16380 | NA      | -1 43 | 0.00 | AT1G68490 | NA        | 1 25 | 0.00 |
| AT2G16430 | ΔΤΡΔΡ1Ο | -1 24 | 0.00 | AT1G68500 | NΔ        | 1.83 | 0.00 |
| AT2G16440 | MCMA    | _1 10 | 0.00 | AT1668570 | NΛ        | 1.05 | 0.00 |
| AT2G10440 |         | 1 21  | 0.00 | AT1660260 |           | 2.06 | 0.00 |
| AT2010050 |         | -1.21 | 0.00 | AT1009200 |           | 2.90 | 0.00 |
| AT2G10000 |         | -2.82 | 0.00 | AT1G09280 |           | 1.38 | 0.00 |
| AT2G16850 |         | -1.18 | 0.00 | AT1G69295 |           | 1.06 | 0.00 |
| AT2G17230 | EXL5    | -1.93 | 0.00 | AT1G69410 | ATELF5A-3 | 1.12 | 0.00 |
| AT2G1/4/0 | ALM16   | -1.39 | 0.00 | AI1G69430 | NA        | 1.16 | 0.00 |
| AT2G17630 | NA      | -1.60 | 0.00 | AT1G69480 | NA        | 2.52 | 0.00 |
| AT2G17880 | NA      | -1.22 | 0.00 | AT1G69490 | ANAC029   | 1.30 | 0.00 |
| AT2G18190 | NA      | -1.24 | 0.00 | AT1G69540 | AGL94     | 1.07 | 0.00 |
| AT2G18210 | NA      | -1.79 | 0.00 | AT1G69790 | NA        | 1.46 | 0.00 |
| AT2G18300 | NA      | -2.71 | 0.00 | AT1G70300 | KUP6      | 2.81 | 0.00 |
| AT2G18328 | ATRL4   | -2.76 | 0.00 | AT1G70510 | ATK1      | 1.27 | 0.00 |
| AT2G18670 | NA      | -1.01 | 0.00 | AT1G70720 | NA        | 1.65 | 0.00 |
| AT2G18690 | NA      | -2.18 | 0.00 | AT1G70920 | ATHB18    | 2.44 | 0.00 |
| AT2G18890 | NA      | -1.49 | 0.00 | AT1G71000 | NA        | 4.83 | 0.00 |
| AT2G18969 | NA      | -1.23 | 0.00 | AT1G71260 | ATWHY2    | 1.58 | 0.00 |
| AT2G19190 | FRK1    | -1.73 | 0.00 | AT1G71330 | ATNAP5    | 2.43 | 0.00 |
| AT2G19680 | NA      | -1.39 | 0.00 | AT1G71340 | AtGDPD4   | 1.58 | 0.00 |
| AT2G19800 | MIOX2   | -1.83 | 0.00 | AT1G71960 | ABCG25    | 1.46 | 0.00 |
| AT2G20290 | ATXIG   | -1.67 | 0.00 | AT1G72040 | NA        | 1 09 | 0.00 |
| AT2G20562 | NΔ      | -1 12 | 0.00 | AT1G72090 | NΔ        | 1.05 | 0.00 |
| AT2G20502 | NΔ      | -1.85 | 0.00 | AT1G72000 | ΝΔ        | 1 30 | 0.00 |
| AT2G20530 |         | 1.05  | 0.00 | AT1G72100 |           | 1.30 | 0.00 |
| AT2G20010 |         | -1.24 | 0.00 | AT1G72240 |           | 1.49 | 0.00 |
| AT2G20950 |         | -1.20 | 0.00 | AT1072050 |           | 1.45 | 0.00 |
| AT2G20980 |         | -1.26 | 0.00 | AT1G72660 |           | 7.03 | 0.00 |
| AT2G21140 | ATPRP2  | -1.95 | 0.00 | AT1G/2//0 | HAB1      | 2.33 | 0.00 |
| AT2G21540 | ATSFH3  | -1.25 | 0.00 | AT1G/2840 | NA        | 1.13 | 0.00 |
| AT2G21650 | ATRL2   | -4.56 | 0.00 | AT1G73010 | ATPS2     | 1.56 | 0.00 |
| AT2G21790 | ATRNR1  | -1.27 | 0.00 | AT1G73040 | NA        | 2.47 | 0.00 |
| AT2G22122 | NA      | -1.30 | 0.00 | AT1G73066 | NA        | 1.92 | 0.00 |
| AT2G22170 | NA      | -1.18 | 0.00 | AT1G73210 | NA        | 1.11 | 0.00 |
| AT2G22425 | NA      | -1.13 | 0.00 | AT1G73220 | AtOCT1    | 1.76 | 0.00 |
| AT2G22610 | NA      | -1.76 | 0.00 | AT1G73330 | ATDR4     | 1.47 | 0.00 |
| AT2G22795 | NA      | -1.00 | 0.00 | AT1G73680 | ALPHA     | 1.33 | 0.00 |
| AT2G22810 | ACC4    | -2.25 | 0.00 | AT1G73690 | AT;CDKD;1 | 1.70 | 0.00 |
| AT2G22890 | NA      | -1.04 | 0.00 | AT1G73780 | NA        | 1.30 | 0.00 |
| AT2G23130 | AGP17   | -1.83 | 0.00 | AT1G73880 | UGT89B1   | 1.06 | 0.00 |

| 472022500 | ATN 4567  | 4.05  | 0.00 | 474 674400 |               | 1.02 | 0.00 |
|-----------|-----------|-------|------|------------|---------------|------|------|
| AT2G23560 | ATIVIES/  | -1.05 | 0.00 | AT1G74180  | ATRLP14       | 1.03 | 0.00 |
| A12G23600 | ACL       | -1.41 | 0.00 | AT1G74310  | ATHSP101      | 5.31 | 0.00 |
| A12G23680 | NA        | -1.46 | 0.00 | AI1G/4860  | NA            | 2.07 | 0.00 |
| AT2G23770 | NA        | -1.43 | 0.00 | AT1G75400  | NA            | 1.07 | 0.00 |
| AT2G24210 | TPS10     | -3.32 | 0.00 | AT1G75860  | NA            | 1.09 | 0.00 |
| AT2G24490 | ATRPA2    | -1.78 | 0.00 | AT1G76065  | NA            | 2.02 | 0.00 |
| AT2G24600 | NA        | -1.19 | 0.00 | AT1G76080  | ATCDSP32      | 1.03 | 0.00 |
| AT2G24850 | TAT       | -1.90 | 0.00 | AT1G76820  | NA            | 1.97 | 0.00 |
| AT2G24970 | NA        | -1.95 | 0.00 | AT1G77000  | ATSKP2;2      | 1.04 | 0.00 |
| AT2G25060 | AtENODL14 | -2.44 | 0.00 | AT1G77010  | NA            | 1.03 | 0.00 |
| AT2G25130 | NA        | -1.93 | 0.00 | AT1G77450  | NAC032        | 1.94 | 0.00 |
| AT2G25200 | NA        | -1.21 | 0.00 | AT1G77520  | NA            | 1.64 | 0.00 |
| AT2G25510 | NΔ        | -1 58 | 0.00 | AT1G77570  | NΔ            | 1 11 | 0.00 |
| AT2G25510 | NΔ        | -2 1/ | 0.00 | AT1G77880  | NΔ            | 2.03 | 0.00 |
| AT2G25755 |           | 1 25  | 0.00 | AT1C79070  |               | 2.05 | 0.00 |
| AT2G25610 |           | 1.55  | 0.00 | AT1078070  |               | 1.10 | 0.00 |
| AT2G26040 |           | -1.20 | 0.00 | AT1G78340  | AIGSTUZZ      | 2.27 | 0.00 |
| AT2G26180 | IQD6      | -1.05 | 0.00 | AT1G78610  | IVISLO        | 1.51 | 0.00 |
| AT2G26190 | NA        | -1.17 | 0.00 | AT1G/86/0  | AIGGH3        | 1.21 | 0.00 |
| AT2G26360 | NA        | -1.14 | 0.00 | AT1G78780  | NA            | 1.42 | 0.00 |
| AT2G26400 | ARD       | -3.02 | 0.00 | AT1G78930  | NA            | 1.97 | 0.00 |
| AT2G26440 | NA        | -2.63 | 0.00 | AT1G79260  | NA            | 1.20 | 0.00 |
| AT2G26520 | NA        | -1.64 | 0.00 | AT1G79270  | ECT8          | 1.52 | 0.00 |
| AT2G26530 | AR781     | -1.96 | 0.00 | AT1G79520  | NA            | 1.84 | 0.00 |
| AT2G26560 | PLA       | -3.86 | 0.00 | AT1G79900  | ATMBAC2       | 2.47 | 0.00 |
| AT2G26650 | AKT1      | -1.12 | 0.00 | AT1G80110  | ATPP2-B11     | 1.55 | 0.00 |
| AT2G26710 | BAS1      | -1.07 | 0.00 | AT1G80130  | NA            | 1.68 | 0.00 |
| AT2G26730 | NA        | -1.03 | 0.00 | AT1G80160  | GLYI7         | 2.70 | 0.00 |
| AT2G26760 | CYCB1:4   | -1.68 | 0.00 | AT1G80320  | NA            | 2.89 | 0.00 |
| AT2G27030 | ACAM-2    | -1.05 | 0.00 | AT1G80660  | ΔΗΔ9          | 2.08 | 0.00 |
| AT2G27030 | ΝΔ        | -1.05 | 0.00 | AT1G80670  | RAF1          | 1 01 | 0.00 |
| AT2G27130 |           | 1.20  | 0.00 | AT1000070  |               | 1.01 | 0.00 |
| AT2G27402 |           | -4.00 | 0.00 | AT1G80970  |               | 1.00 | 0.00 |
| AT2G27420 |           | -2.20 | 0.00 | AT2G01008  |               | 1.84 | 0.00 |
| AT2G28085 |           | -1.97 | 0.00 | AT2G01100  |               | 1.07 | 0.00 |
| AT2G28160 | ATBHLH029 | -1.07 | 0.00 | A12G02350  | Atpp2-B9      | 1.64 | 0.00 |
| AT2G28620 | NA        | -1.87 | 0.00 | AT2G02750  | NA            | 1.40 | 0.00 |
| AT2G28720 | NA        | -1.08 | 0.00 | AT2G03200  | NA            | 1.29 | 0.00 |
| AT2G28740 | HIS4      | -2.34 | 0.00 | AT2G03570  | NA            | 1.06 | 0.00 |
| AT2G28950 | ATEXP6    | -1.01 | 0.00 | AT2G03890  | ATPI4K        | 1.16 | 0.00 |
| AT2G29170 | NA        | -2.04 | 0.00 | AT2G04030  | AtHsp90.5     | 1.67 | 0.00 |
| AT2G29550 | TUB7      | -1.36 | 0.00 | AT2G04240  | XERICO        | 1.97 | 0.00 |
| AT2G29570 | ATPCNA2   | -1.28 | 0.00 | AT2G05540  | NA            | 1.31 | 0.00 |
| AT2G29980 | AtFAD3    | -1.37 | 0.00 | AT2G05580  | NA            | 1.32 | 0.01 |
| AT2G30010 | TBL45     | -2.88 | 0.00 | AT2G05630  | ATG8D         | 1.03 | 0.00 |
| AT2G30420 | ETC2      | -1.64 | 0.00 | AT2G07671  | NA            | 2.86 | 0.00 |
| AT2G30424 | TCL2      | -1.83 | 0.00 | AT2G07706  | NA            | 1.71 | 0.00 |
| AT2G30600 | NA        | -1.45 | 0.00 | AT2G11891  | NA            | 2.03 | 0.00 |
| AT2G30620 | NA        | -1.35 | 0.00 | AT2G12400  | NA            | 1.50 | 0.00 |
| AT2G30766 | NΔ        | -2 79 | 0.00 | AT2G13960  | NΔ            | 1 69 | 0.00 |
| AT2G30770 | CVD71A13  | -1 59 | 0.00 | AT2G15240  | NΔ            | 1.05 | 0.00 |
| AT2G30870 |           | -1.66 | 0.00 | AT2G15240  |               | 1.02 | 0.00 |
| AT2030020 |           | 2.00  | 0.00 | AT2010720  |               | 1.20 | 0.00 |
| AT2G30930 |           | -2.02 | 0.00 | AT2G16990  |               | 1.57 | 0.00 |
| AT2G30942 |           | -1.48 | 0.00 | AT2G17036  | NA<br>NA CODE | 2.04 | 0.00 |
| AT2G31230 | ATERF15   | -1.26 | 0.00 | A12G17040  | NAC036        | 1.20 | 0.00 |
| AT2G31270 | ATCDT1A   | -2.00 | 0.00 | AT2G17787  | NA            | 1.13 | 0.00 |
| AT2G31360 | ADS2      | -1.16 | 0.00 | AT2G17900  | ASHR1         | 2.37 | 0.00 |
| AT2G31750 | UGT74D1   | -1.74 | 0.00 | AT2G17975  | NA            | 1.21 | 0.00 |
| AT2G32100 | ATOFP16   | -1.31 | 0.00 | AT2G18050  | HIS1-3        | 1.85 | 0.00 |
| AT2G32200 | NA        | -1.07 | 0.00 | AT2G18370  | NA            | 1.20 | 0.00 |
| AT2G32380 | NA        | -1.27 | 0.00 | AT2G18550  | ATHB21        | 1.45 | 0.00 |
| AT2G32590 | EMB2795   | -1.64 | 0.00 | AT2G18780  | NA            | 1.19 | 0.00 |
| AT2G32690 | ATGRP23   | -1.00 | 0.00 | AT2G19240  | NA            | 1.00 | 0.00 |
| AT2G33050 | AtRLP26   | -1.08 | 0.00 | AT2G19310  | NA            | 2.74 | 0.00 |

|           |           |       |      | 1         |           |       |      |
|-----------|-----------|-------|------|-----------|-----------|-------|------|
| AT2G33330 | PDLP3     | -2.29 | 0.00 | AT2G19350 | NA        | 1.02  | 0.00 |
| AT2G33400 | NA        | -1.06 | 0.00 | AT2G19810 | AtOZF1    | 1.32  | 0.00 |
| AT2G33520 | NA        | -3.18 | 0.00 | AT2G19930 | NA        | 1.22  | 0.00 |
| AT2G33560 | BUBR1     | -1.96 | 0.00 | AT2G20400 | NA        | 1.41  | 0.00 |
| AT2G34010 | NA        | -1.55 | 0.00 | AT2G20560 | NA        | 4.00  | 0.00 |
| AT2G34060 | NA        | -1 78 | 0.00 | AT2G20585 | NEDA      | 1.00  | 0.00 |
| AT2G34000 |           | 1.78  | 0.00 | AT2020303 |           | 1.70  | 0.00 |
| AT2G34190 |           | -1.08 | 0.00 | AT2G20770 | GCLZ      | 1.03  | 0.00 |
| AT2G34300 |           | -1.04 | 0.00 | AT2G21130 | NA        | 1.02  | 0.00 |
| A12G34430 | LHB1B1    | -1.15 | 0.00 | AT2G21710 | EMB2219   | 1.32  | 0.00 |
| AT2G34510 | NA        | -1.12 | 0.00 | AT2G21820 | NA        | 4.47  | 0.00 |
| AT2G34530 | NA        | -1.17 | 0.00 | AT2G22345 | NA        | 1.62  | 0.01 |
| AT2G34930 | NA        | -3.56 | 0.00 | AT2G22420 | NA        | 1.89  | 0.00 |
| AT2G34940 | BP80-3;2  | -1.30 | 0.00 | AT2G22470 | AGP2      | 2.30  | 0.00 |
| AT2G35190 | ATNPSN11  | -1.70 | 0.00 | AT2G22680 | WAVH1     | 1.18  | 0.00 |
| AT2G35970 | NA        | -2.91 | 0.00 | AT2G22850 | AtbZIP6   | 1.11  | 0.00 |
| AT2G35980 | ATNHL10   | -1.64 | 0.00 | AT2G24540 | AFR       | 1.20  | 0.00 |
| AT2G36050 | ATOFP15   | -1.28 | 0.00 | AT2G24960 | NA        | 1.32  | 0.00 |
| AT2G36200 | NA        | -2.15 | 0.00 | AT2G25090 | CIPK16    | 1 74  | 0.00 |
| AT2G36310 |           | -1 /1 | 0.00 | AT2G25030 |           | 2 / 8 | 0.00 |
| AT2030310 | NA        | 1.41  | 0.00 | AT2025140 |           | 2.40  | 0.00 |
| AT2030320 |           | -1.27 | 0.00 | AT2025400 |           | 1.07  | 0.00 |
| AT2G36470 |           | -1.95 | 0.00 | A12G25820 | ESEZ      | 1.49  | 0.00 |
| A12G36590 | ATPROT3   | -1.93 | 0.00 | AT2G25910 | NA        | 1.27  | 0.00 |
| AT2G36880 | MAT3      | -1.83 | 0.00 | AT2G26030 | NA        | 1.07  | 0.00 |
| AT2G36881 | NA        | -1.27 | 0.00 | AT2G26150 | ATHSFA2   | 5.40  | 0.00 |
| AT2G36970 | NA        | -2.37 | 0.00 | AT2G26860 | NA        | 1.70  | 0.00 |
| AT2G37025 | TRFL8     | -1.11 | 0.00 | AT2G27550 | ATC       | 3.09  | 0.00 |
| AT2G37100 | NA        | -1.02 | 0.00 | AT2G27580 | NA        | 1.10  | 0.00 |
| AT2G37130 | NA        | -2.12 | 0.00 | AT2G27830 | NA        | 1.11  | 0.00 |
| AT2G37460 | NA        | -1.67 | 0.00 | AT2G28110 | FRA8      | 1.09  | 0.00 |
| AT2G37470 | NA        | -1.17 | 0.00 | AT2G28400 | NA        | 1.80  | 0.00 |
| AT2G37560 | ATORC2    | -1.95 | 0.00 | AT2G28500 | IBD11     | 2.05  | 0.00 |
| AT2G37620 |           | -1.05 | 0.00 | AT2G20300 |           | 1 37  | 0.00 |
| AT2037020 |           | 1.05  | 0.00 | AT2029130 | ATLACZ    | 1.52  | 0.00 |
| AT2037040 | ATEAPS    | -1.01 | 0.00 | AT2029205 |           | 1.01  | 0.01 |
| AT2G37950 |           | -2.04 | 0.00 | AT2G29300 | NA        | 2.04  | 0.00 |
| A12G37960 | NA        | -2.12 | 0.00 | A12G29500 | NA        | 1.11  | 0.00 |
| AT2G38120 | AUX1      | -1.00 | 0.00 | A12G30480 | NA        | 2.04  | 0.00 |
| AT2G38310 | PYL4      | -1.81 | 0.00 | AT2G30540 | NA        | 1.28  | 0.00 |
| AT2G38620 | CDKB1;2   | -2.02 | 0.00 | AT2G30550 | NA        | 1.16  | 0.00 |
| AT2G38700 | ATMVD1    | -1.02 | 0.00 | AT2G31083 | AtCLE5    | 1.16  | 0.04 |
| AT2G38750 | ANNAT4    | -1.02 | 0.00 | AT2G31350 | GLX2-5    | 1.20  | 0.00 |
| AT2G38810 | HTA8      | -1.35 | 0.00 | AT2G31970 | ATRAD50   | 1.15  | 0.00 |
| AT2G38860 | YLS5      | -1.09 | 0.00 | AT2G32090 | NA        | 1.23  | 0.00 |
| AT2G39180 | ATCRR2    | -1.08 | 0.00 | AT2G32120 | HSP70T-2  | 5.07  | 0.00 |
| AT2G39220 | PLA       | -1.14 | 0.00 | AT2G32130 | NA        | 1.66  | 0.00 |
| AT2G40150 | TBI 28    | -1.37 | 0.00 | AT2G32140 | NA        | 1.32  | 0.00 |
| AT2G/0230 | NA        | -1.04 | 0.00 | AT2G32340 | NΔ        | 2.15  | 0.00 |
| AT2G40250 | NA        | -1.04 | 0.00 | AT2G32870 | NΛ        | 1 15  | 0.00 |
| AT2C40220 |           | 2.02  | 0.00 | AT2032070 |           | 1.15  | 0.00 |
| AT2G40330 |           | -2.03 | 0.01 | AT2G32880 |           | 1.05  | 0.00 |
| AT2G40490 | HEIVIE2   | -1.19 | 0.00 | A12G33000 | NA        | 1.25  | 0.00 |
| A12G40550 | EIGI      | -1.08 | 0.00 | A12G33060 | AtrlP27   | 1.60  | 0.00 |
| AT2G40610 | ATEXP8    | -1.85 | 0.00 | AT2G33070 | ATNSP2    | 1.00  | 0.00 |
| AT2G40670 | ARR16     | -2.62 | 0.00 | AT2G33280 | NA        | 1.80  | 0.00 |
| AT2G40750 | ATWRKY54  | -2.89 | 0.00 | AT2G33380 | AtCLO3    | 1.49  | 0.00 |
| AT2G41100 | ATCAL4    | -1.44 | 0.00 | AT2G33590 | NA        | 1.68  | 0.00 |
| AT2G41450 | NA        | -1.58 | 0.00 | AT2G33735 | NA        | 1.57  | 0.00 |
| AT2G41560 | ACA4      | -1.40 | 0.00 | AT2G33740 | CUTA      | 1.30  | 0.00 |
| AT2G41730 | NA        | -1.24 | 0.00 | AT2G34730 | NA        | 1.20  | 0.00 |
| AT2G41880 | AGK1      | -1.29 | 0.00 | AT2G34850 | MEE25     | 1.81  | 0.00 |
| AT2G42110 | NA        | -1.74 | 0.00 | AT2G35060 | KUP11     | 1.09  | 0.00 |
| AT2G42200 | AtSPI 9   | -1 19 | 0.00 | AT2G35070 | NA        | 2 78  | 0.00 |
| ΔΤ2G42200 | PYM       | -1.67 | 0.00 | ΔΤ2G25200 | Δ†Ι ΕΔΔ-2 | 1 92  | 0.00 |
| AT2G42200 |           | -1 27 | 0.00 | AT2G35500 |           | 1 27  | 0.00 |
| A12042300 | AIDLIF J4 | 1.37  | 0.00 | AI2033330 |           | 1.37  | 0.00 |

| AT2G42610 | LSH10   | -1.45 | 0.00 | AT2G35750 | NA          | 1.42         | 0.00 |
|-----------|---------|-------|------|-----------|-------------|--------------|------|
| AT2G42770 | NA      | -1.02 | 0.00 | AT2G35950 | EDA12       | 1.59         | 0.00 |
| AT2G42870 | HLH1    | -1.39 | 0.00 | AT2G36030 | NA          | 1.68         | 0.00 |
| AT2G42990 | NA      | -1.08 | 0.00 | AT2G36053 | NA          | 1.60         | 0.00 |
| AT2G43040 | NPG1    | -1.25 | 0.00 | AT2G36261 | NA          | 1.25         | 0.00 |
| AT2G43150 | NA      | -1.31 | 0.00 | AT2G36460 | NA          | 1.16         | 0.00 |
| AT2G43360 | BIO2    | -1.29 | 0.00 | AT2G36640 | ATECP63     | 2.93         | 0.00 |
| AT2G43520 | ATTI2   | -1.35 | 0.00 | AT2G36730 | NA          | 1.23         | 0.00 |
| AT2G43535 | NA      | -1.58 | 0.00 | AT2G36750 | UGT73C1     | 3.24         | 0.00 |
| AT2G43550 | NA      | -1.93 | 0.00 | AT2G36780 | NA          | 1.15         | 0.00 |
| AT2G44230 | NA      | -1.60 | 0.00 | AT2G36854 | NA          | 1.18         | 0.00 |
| AT2G44240 | NA      | -1.53 | 0.00 | AT2G36900 | ATMEMB11    | 1.08         | 0.00 |
| AT2G44490 | BGLU26  | -1.26 | 0.00 | AT2G36950 | NA          | 1.19         | 0.00 |
| AT2G44580 | NA      | -2.02 | 0.00 | AT2G37090 | IRX9        | 1.14         | 0.00 |
| AT2G44740 | CYCP4;1 | -2.67 | 0.00 | AT2G37150 | NA          | 1.88         | 0.00 |
| AT2G44790 | UCC2    | -1.47 | 0.00 | AT2G37200 | NA          | 1.47         | 0.00 |
| AT2G45080 | cycp3;1 | -1.32 | 0.00 | AT2G37340 | AT-RS2Z33   | 1.68         | 0.00 |
| AT2G45300 | NA      | -1.15 | 0.00 | AT2G37530 | NA          | 1.15         | 0.00 |
| AT2G45470 | AGP8    | -1.58 | 0.00 | AT2G37760 | AKR4C8      | 1.47         | 0.00 |
| AT2G45970 | CYP86A8 | -1.21 | 0.00 | AT2G37770 | AKR4C9      | 1.56         | 0.00 |
| AT2G46330 | AGP16   | -2.31 | 0.00 | AT2G37900 | NA          | 2.86         | 0.00 |
| AT2G46870 | NGA1    | -1 04 | 0.00 | AT2G38255 | NA          | 2.61         | 0.00 |
| AT2G47130 | AtSDR3  | -1.25 | 0.00 | AT2G38340 | DRFB19      | 2.15         | 0.00 |
| AT2G47240 | CER8    | -1.67 | 0.00 | AT2G38530 | IP2         | 1.05         | 0.00 |
| AT2G47240 | NΔ      | -1 20 | 0.00 | AT2G38600 | NΔ          | 1 19         | 0.00 |
| AT2G47910 | CRR6    | -1 1/ | 0.00 | AT2G38800 | NA          | 1.13         | 0.00 |
| AT2G47910 |         | -1.14 | 0.00 | AT2G38800 |             | 1.42         | 0.00 |
| AT2G47930 | AGF 20  | 1.00  | 0.00 | AT2G38820 |             | 1.00         | 0.00 |
| AT2G48020 |         | -1.91 | 0.00 | AT2G39020 |             | 1.1J<br>2.19 | 0.00 |
| AT2G46050 |         | -1.45 | 0.00 | AT2G39110 |             | 2.10         | 0.00 |
| AT3G01290 |         | -1.89 | 0.00 | AT2G39230 |             | 1.09         | 0.00 |
| AT3G01480 | ATCIPSO | -1.08 | 0.00 | AT2G39570 | ACR9        | 1.29         | 0.00 |
| AT3G01550 |         | -2.72 | 0.00 | AT2G39800 | ATPSCS      | 2.34         | 0.00 |
| AT3G01680 |         | -1.27 | 0.00 | AT2G40170 |             | 1.04         | 0.00 |
| AT3G01690 |         | -1.17 | 0.00 | AT2G40320 | IBL33       | 1.08         | 0.00 |
| AT3G01750 | NA      | -1.51 | 0.00 | AT2G40350 | NA<br>AGL44 | 1.21         | 0.00 |
| AT3G01920 | NA      | -1.09 | 0.00 | AT2G40470 | ASLII       | 1.33         | 0.00 |
| AT3G01960 |         | -1.18 | 0.00 | AT2G40711 |             | 1.78         | 0.00 |
| AT3G02040 | Atgupui | -1.45 | 0.00 | AT2G41070 | AIBZIPIZ    | 1.60         | 0.00 |
| AT3G02120 | NA      | -3.17 | 0.00 | AT2G41150 | NA          | 1.00         | 0.00 |
| A13G02230 | AIRGP1  | -1.50 | 0.00 | AT2G41190 | NA          | 3.86         | 0.00 |
| AT3G02570 | MEE31   | -1.49 | 0.00 | AT2G41200 | NA          | 1.48         | 0.00 |
| AT3G02640 | NA      | -2.74 | 0.00 | AT2G41210 | PIP5K5      | 1.83         | 0.00 |
| AT3G02820 | NA      | -1.15 | 0.00 | AT2G41330 | NA          | 1.49         | 0.00 |
| AT3G03000 | NA      | -2.29 | 0.00 | AT2G41410 | NA          | 1.30         | 0.00 |
| AT3G03130 | NA      | -2.32 | 0.00 | AT2G41440 | NA          | 1.22         | 0.00 |
| AT3G03250 | AtUGP1  | -1.16 | 0.00 | AT2G41480 | NA          | 1.27         | 0.00 |
| AT3G03260 | HDG8    | -1.64 | 0.00 | AT2G41870 | NA          | 1.45         | 0.00 |
| AT3G03350 | NA      | -1.27 | 0.00 | AT2G41905 | NA          | 1.95         | 0.00 |
| AT3G03780 | ATMS2   | -1.73 | 0.00 | AT2G42270 | NA          | 1.35         | 0.00 |
| AT3G03820 | NA      | -1.38 | 0.00 | AT2G42330 | NA          | 2.44         | 0.00 |
| AT3G03840 | NA      | -1.27 | 0.00 | AT2G42395 | NA          | 1.79         | 0.00 |
| AT3G03850 | NA      | -2.18 | 0.00 | AT2G42560 | NA          | 3.09         | 0.00 |
| AT3G03910 | GDH3    | -1.40 | 0.00 | AT2G42920 | NA          | 1.11         | 0.00 |
| AT3G03990 | NA      | -1.46 | 0.00 | AT2G43570 | CHI         | 1.49         | 0.00 |
| AT3G04210 | NA      | -2.92 | 0.00 | AT2G43580 | NA          | 2.04         | 0.00 |
| AT3G04290 | ATLTL1  | -2.61 | 0.00 | AT2G43800 | NA          | 1.76         | 0.00 |
| AT3G04570 | AHL19   | -1.70 | 0.00 | AT2G43840 | UGT74F1     | 1.04         | 0.00 |
| AT3G04720 | HEL     | -3.89 | 0.00 | AT2G43930 | NA          | 1.45         | 0.00 |
| AT3G04780 | NA      | -1.08 | 0.00 | AT2G45360 | NA          | 1.20         | 0.00 |
| AT3G04790 | EMB3119 | -1.48 | 0.00 | AT2G45380 | NA          | 1.47         | 0.00 |
| AT3G04910 | ATWNK1  | -1.40 | 0.00 | AT2G45610 | NA          | 1.31         | 0.00 |
| AT3G05020 | ACP     | -1.12 | 0.00 | AT2G45680 | NA          | 1.17         | 0.00 |

| AT3G05140 | RBK2       | -1.26 | 0.00 | AT2G45920 | NA        | 2.17  | 0.00 |
|-----------|------------|-------|------|-----------|-----------|-------|------|
| AT3G05330 | ATN        | -1.59 | 0.00 | AT2G46240 | ATBAG6    | 3.17  | 0.00 |
| AT3G05470 | NA         | -1.07 | 0.00 | AT2G46270 | GBF3      | 3.60  | 0.00 |
| AT3G05600 | NA         | -2.17 | 0.00 | AT2G46610 | At-RS31a  | 1.65  | 0.00 |
| AT3G05625 | NA         | -1.22 | 0.00 | AT2G46680 | ATHB-7    | 3.14  | 0.00 |
| AT3G05727 | NA         | -1.63 | 0.00 | AT2G46760 | NA        | 1.17  | 0.00 |
| AT3G05730 | NA         | -3.23 | 0.00 | AT2G46800 | ATCDF1    | 1.71  | 0.00 |
| AT3G05740 | RECOI1     | -1 28 | 0.00 | AT2G46830 | ΔτCCΔ1    | 1 39  | 0.00 |
| AT3G05800 |            | -1.68 | 0.00 | AT2G46940 | ΝΔ        | 2.24  | 0.00 |
| AT3C05000 |            | 1.00  | 0.00 | AT2C460E0 |           | 1.07  | 0.00 |
| AT2C06070 |            | -1.31 | 0.00 | AT2G40550 | AtColS1   | 2.07  | 0.00 |
| AT3G06070 |            | -2.37 | 0.00 | AT2G47180 | ALGUIST   | 3.38  | 0.00 |
| AT3G06080 | IBLIU      | -1.23 | 0.00 | A12G47560 |           | 1.39  | 0.00 |
| AT3G06145 | NA         | -1.37 | 0.00 | A12G4/770 | ATTSPO    | 5.85  | 0.00 |
| A13G06740 | GATA15     | -1.70 | 0.00 | A12G47780 | NA        | 2.67  | 0.00 |
| AT3G06750 | NA         | -1.11 | 0.00 | AT2G47950 | NA        | 1.11  | 0.00 |
| AT3G06770 | NA         | -1.68 | 0.00 | AT2G48100 | NA        | 1.08  | 0.00 |
| AT3G06840 | NA         | -1.61 | 0.00 | AT3G01100 | ATHYP1    | 1.12  | 0.00 |
| AT3G06868 | NA         | -1.23 | 0.00 | AT3G01210 | NA        | 1.22  | 0.00 |
| AT3G06880 | NA         | -1.23 | 0.00 | AT3G01350 | NA        | 1.48  | 0.00 |
| AT3G06890 | NA         | -1.44 | 0.00 | AT3G01520 | NA        | 1.23  | 0.00 |
| AT3G06985 | LCR44      | -1.21 | 0.00 | AT3G01570 | NA        | 1.12  | 0.00 |
| AT3G07010 | NA         | -2.49 | 0.00 | AT3G01770 | ATBET10   | 1.62  | 0.00 |
| AT3G07170 | NA         | -1.12 | 0.00 | AT3G02140 | AFP4      | 1.90  | 0.00 |
| AT3G07195 | NA         | -1.17 | 0.00 | AT3G02210 | COBI 1    | 1.59  | 0.00 |
| AT3G07390 | AIR12      | -1.04 | 0.00 | AT3G02390 | NA        | 1.29  | 0.00 |
| AT3G07/60 | NΔ         | -1.81 | 0.00 | AT3G02/90 | NΔ        | 1 21  | 0.00 |
| AT3G07400 | NA         | -2.07 | 0.00 | AT3G02430 | NA        | 1 1 / | 0.00 |
| AT2C07490 |            | 1 10  | 0.00 | AT2C02170 |           | 2 16  | 0.00 |
| AT3C07F3F |            | -1.10 | 0.00 | AT3G03170 |           | 5.10  | 0.00 |
| AT3G07525 |            | -1.17 | 0.00 | AT3G03230 |           | 1.95  | 0.00 |
| AT3G08580 | AACI       | -1.11 | 0.00 | AT3G03270 |           | 1.24  | 0.00 |
| A13G08600 | NA         | -1.12 | 0.00 | AT3G03310 | AILCAI3   | 1.47  | 0.00 |
| A13G08770 | LTP6       | -1.23 | 0.00 | A13G03330 | NA        | 1.22  | 0.00 |
| AT3G08920 | NA         | -1.07 | 0.00 | AT3G03341 | NA        | 1.94  | 0.00 |
| AT3G09010 | NA         | -1.26 | 0.00 | AT3G03470 | CYP89A9   | 1.40  | 0.00 |
| AT3G09020 | NA         | -2.12 | 0.00 | AT3G03480 | CHAT      | 1.52  | 0.00 |
| AT3G09270 | ATGSTU8    | -1.68 | 0.00 | AT3G03520 | NPC3      | 1.11  | 0.00 |
| AT3G09480 | NA         | -1.75 | 0.00 | AT3G03950 | ECT1      | 1.22  | 0.00 |
| AT3G09580 | NA         | -1.43 | 0.00 | AT3G04000 | NA        | 2.38  | 0.00 |
| AT3G09780 | ATCRR1     | -1.08 | 0.00 | AT3G04070 | NAC047    | 1.11  | 0.00 |
| AT3G09940 | ATMDAR3    | -2.07 | 0.00 | AT3G04160 | NA        | 1.69  | 0.00 |
| AT3G09990 | NA         | -1.36 | 0.01 | AT3G04240 | SEC       | 1.08  | 0.00 |
| AT3G10050 | OMR1       | -1.47 | 0.00 | AT3G04710 | TPR10     | 1.50  | 0.00 |
| AT3G10260 | NA         | -1.17 | 0.00 | AT3G05165 | NA        | 1.23  | 0.00 |
| AT3G10520 | AHB2       | -1.91 | 0.00 | AT3G05640 | NA        | 1.26  | 0.00 |
| AT3G10610 | NA         | -1 38 | 0.00 | AT3G05650 | AtRI P32  | 1.86  | 0.00 |
| AT3G10660 | ΔΤΟΡΚ2     | -1 22 | 0.00 | AT3G05790 |           | 1 38  | 0.00 |
| AT3G10000 | NA         | _1 80 | 0.00 | AT3G06400 | CHR11     | 1.03  | 0.00 |
| AT2C11110 |            | 1.05  | 0.00 | AT2C06520 |           | 1.05  | 0.00 |
| AT3G11110 |            | -1.50 | 0.00 | AT3G00520 |           | 1.41  | 0.00 |
| AT3G11210 | NA<br>OVC2 | -1.12 | 0.00 | AT3G07090 | NA        | 1.39  | 0.00 |
| AT3G11520 |            | -1.// | 0.00 | AT3G0/150 | NA        | 3.24  | 0.00 |
| AT3G12110 | ACTII      | -1.24 | 0.00 | A13G07273 | NA        | 1.17  | 0.00 |
| AT3G12145 | FLOR1      | -1.52 | 0.00 | AT3G07350 | NA        | 1.06  | 0.00 |
| AT3G12150 | NA         | -1.09 | 0.00 | AT3G07770 | AtHsp90-6 | 1.81  | 0.00 |
| AT3G12170 | NA         | -2.37 | 0.00 | AT3G08020 | NA        | 1.05  | 0.00 |
| AT3G12610 | DRT100     | -1.82 | 0.00 | AT3G08690 | ATUBC11   | 1.16  | 0.00 |
| AT3G12700 | NA         | -1.33 | 0.00 | AT3G08860 | PYD4      | 2.21  | 0.00 |
| AT3G12710 | NA         | -1.14 | 0.00 | AT3G08970 | ATERDJ3A  | 2.84  | 0.00 |
| AT3G12870 | NA         | -2.13 | 0.00 | AT3G09100 | NA        | 1.10  | 0.00 |
| AT3G13060 | ECT5       | -1.24 | 0.00 | AT3G09350 | Fes1A     | 1.95  | 0.00 |
| AT3G13110 | ATSERAT2;2 | -1.16 | 0.00 | AT3G09720 | NA        | 1.22  | 0.00 |
| AT3G13650 | NA         | -1.23 | 0.00 | AT3G09770 | LOG2      | 1.01  | 0.00 |
| AT3G13750 | BGAL1      | -1.51 | 0.00 | AT3G10020 | NA        | 2.42  | 0.00 |

|           |           |       |      | 1         |             |              |      |
|-----------|-----------|-------|------|-----------|-------------|--------------|------|
| AT3G13790 | ATBFRUCT1 | -2.71 | 0.00 | AT3G10030 | NA          | 1.20         | 0.00 |
| AT3G13930 | NA        | -1.08 | 0.00 | AT3G10190 | NA          | 1.23         | 0.00 |
| AT3G14020 | NF-YA6    | -1.12 | 0.00 | AT3G10250 | NA          | 1.01         | 0.00 |
| AT3G14220 | NA        | -1.10 | 0.00 | AT3G10815 | NA          | 1.53         | 0.00 |
| AT3G14310 | ATPME3    | -1.89 | 0.00 | AT3G10985 | ATWI-12     | 1.16         | 0.00 |
| AT3G14740 | NA        | -2.55 | 0.00 | AT3G11020 | DREB2       | 1.03         | 0.00 |
| AT3G14760 | NA        | -1.22 | 0.00 | AT3G11410 | AHG3        | 2.17         | 0.00 |
| AT3G14820 | NA        | -2.58 | 0.00 | AT3G11420 | NA          | 1.20         | 0.00 |
| AT3G14840 | NA        | -1.42 | 0.00 | AT3G11690 | NA          | 2.04         | 0.00 |
| AT3G14850 | TBI 41    | -1.77 | 0.00 | AT3G11930 | NA          | 1.05         | 0.00 |
| AT3G14890 | NA        | -1 14 | 0.00 | AT3G12050 | NA          | 1 95         | 0.00 |
| AT3G15030 | MFF35     | -1 33 | 0.00 | AT3G12300 | NΔ          | 1.08         | 0.00 |
| AT2G15050 |           | 1.55  | 0.00 | AT2G12510 |             | 1.00         | 0.00 |
| AT3G15000 | NA        | 1.05  | 0.00 | AT2G12520 |             | 1.40         | 0.00 |
| AT3G15350 |           | 1 70  | 0.00 | AT3G12530 |             | 1.24<br>6 20 | 0.00 |
| AT3G15450 |           | -1.70 | 0.00 | AT3G12560 |             | 0.20         | 0.00 |
| AT3G15540 |           | -1.38 | 0.00 | AT3G12770 |             | 1.28         | 0.00 |
| AT3G15550 | NA        | -1.75 | 0.00 | AT3G12860 | NA          | 1.67         | 0.00 |
| AT3G15570 | NA        | -1.74 | 0.00 | AT3G12915 | NA          | 1.16         | 0.00 |
| AT3G15620 | UVR3      | -1.38 | 0.00 | AT3G12955 | NA          | 2.05         | 0.00 |
| AT3G15630 | NA        | -2.21 | 0.00 | AT3G13020 | NA          | 1.24         | 0.00 |
| AT3G15680 | NA        | -1.35 | 0.00 | AT3G13130 | NA          | 1.61         | 0.00 |
| AT3G15720 | NA        | -1.21 | 0.00 | AT3G13224 | NA          | 1.82         | 0.00 |
| AT3G15820 | ROD1      | -1.02 | 0.00 | AT3G13672 | NA          | 2.51         | 0.00 |
| AT3G15850 | ADS3      | -1.03 | 0.00 | AT3G13784 | AtcwINV5    | 5.04         | 0.00 |
| AT3G16070 | NA        | -1.19 | 0.00 | AT3G14200 | NA          | 1.05         | 0.00 |
| AT3G16180 | NA        | -1.02 | 0.00 | AT3G14360 | NA          | 2.83         | 0.00 |
| AT3G16240 | AQP1      | -1.81 | 0.00 | AT3G14440 | ATNCED3     | 1.85         | 0.00 |
| AT3G16410 | NSP4      | -2.62 | 0.00 | AT3G14560 | NA          | 2.89         | 0.00 |
| AT3G16420 | JAL30     | -1.63 | 0.00 | AT3G14590 | NTMC2T6.2   | 2.43         | 0.00 |
| AT3G16460 | JAL34     | -1.08 | 0.00 | AT3G14595 | NA          | 1.08         | 0.00 |
| AT3G16530 | NA        | -5.99 | 0.00 | AT3G15000 | NA          | 1.05         | 0.00 |
| AT3G16660 | NA        | -1.78 | 0.00 | AT3G15280 | NA          | 1.82         | 0.00 |
| AT3G16670 | NA        | -4.13 | 0.00 | AT3G15340 | PPI2        | 2.43         | 0.00 |
| AT3G16690 | AtSWFFT16 | -1.20 | 0.00 | AT3G15350 | NA          | 1.17         | 0.00 |
| AT3G16700 | NA        | -1 16 | 0.00 | AT3G15357 | NA          | 1 34         | 0.00 |
| AT3G17390 | ΜΔΤΔ      | -1 70 | 0.00 | AT3G15400 | ΔΤΔ2Ο       | 1.26         | 0.00 |
| AT3G17609 | НҮН       | -1.06 | 0.00 | AT3G15500 |             | 1.02         | 0.00 |
| AT3G17640 | NΔ        | -1 49 | 0.00 | AT3G15534 | ΝΔ          | 2 50         | 0.00 |
| AT3G17680 | NΛ        | -1 25 | 0.00 | AT3G15670 | NΛ          | 1 / 2        | 0.00 |
| AT3G17000 | NA        | -1.03 | 0.00 | AT3G15070 | NA          | 1.42         | 0.00 |
| AT3G17780 |           | -1.05 | 0.00 | AT3G15780 |             | 1.07         | 0.00 |
| AT3G18030 |           | -1.01 | 0.00 | AT3G15790 |             | 1.07         | 0.00 |
| AT3G16060 |           | -1.50 | 0.00 | AT3G15990 | 30LIN3,4    | 1.04         | 0.00 |
| AT3G18130 |           | -1.14 | 0.00 | AT3G10030 |             | 2.90         | 0.00 |
| AT3G18730 | BRUI      | -1.27 | 0.00 | AT3G16400 | ATIVILP-470 | 1.23         | 0.00 |
| AT3G18780 | ACIZ      | -1.09 | 0.00 | AT3G16650 |             | 1.14         | 0.00 |
| AT3G19010 | NA        | -1.10 | 0.00 | AT3G16920 | AICILZ      | 1.39         | 0.00 |
| AT3G19050 | POK2      | -1.53 | 0.00 | AT3G17180 | scp133      | 1.91         | 0.00 |
| AT3G19350 | MPC       | -1.98 | 0.00 | AT3G17460 | NA          | 1.72         | 0.00 |
| AT3G19360 | NA        | -1.01 | 0.00 | AT3G17520 | NA          | 6.23         | 0.00 |
| AT3G19400 | NA        | -1.08 | 0.00 | AT3G17611 | ATRBL14     | 1.99         | 0.00 |
| AT3G19480 | NA        | -1.19 | 0.00 | AT3G17630 | ATCHX19     | 1.48         | 0.00 |
| AT3G19550 | NA        | -1.40 | 0.00 | AT3G17740 | NA          | 1.43         | 0.00 |
| AT3G19660 | NA        | -1.86 | 0.00 | AT3G17790 | ATACP5      | 1.10         | 0.00 |
| AT3G19850 | NA        | -1.18 | 0.00 | AT3G17800 | NA          | 1.39         | 0.00 |
| AT3G19930 | ATSTP4    | -1.21 | 0.00 | AT3G17980 | AtC2        | 1.40         | 0.00 |
| AT3G20150 | NA        | -1.64 | 0.00 | AT3G18280 | NA          | 1.58         | 0.00 |
| AT3G20370 | NA        | -1.68 | 0.00 | AT3G19100 | NA          | 1.28         | 0.00 |
| AT3G20450 | NA        | -1.57 | 0.00 | AT3G19580 | AZF2        | 1.13         | 0.00 |
| AT3G20570 | AtENODL9  | -1.38 | 0.00 | AT3G19620 | NA          | 2.02         | 0.00 |
| AT3G20670 | HTA13     | -1.28 | 0.00 | AT3G20100 | CYP705A19   | 1.32         | 0.00 |
| AT3G20790 | NA        | -1.09 | 0.00 | AT3G20250 | APUM5       | 1.19         | 0.00 |
| AT3G21080 | NA        | -1.57 | 0.00 | AT3G20300 | NA          | 1.41         | 0.00 |
|           |           |       |      | •         |             |              |      |

| AT3G21510 | AHP1        | -1.20         | 0.00 | AT3G20310 | ATERF-7      | 1.86  | 0.00 |
|-----------|-------------|---------------|------|-----------|--------------|-------|------|
| AT3G21950 | NA          | -2.44         | 0.00 | AT3G20500 | ATPAP18      | 1.10  | 0.00 |
| AT3G22142 | NA          | -2.71         | 0.00 | AT3G20660 | AtOCT4       | 1.05  | 0.00 |
| AT3G22210 | NA          | -2.07         | 0.00 | AT3G20810 | JMJ30        | 2.09  | 0.00 |
| AT3G22231 | PCC1        | -3.90         | 0.00 | AT3G21150 | BBX32        | 1.21  | 0.00 |
| AT3G22235 | NA          | -3.53         | 0.00 | AT3G21240 | 4CL2         | 1.27  | 0.00 |
| AT3G22400 | ATLOX5      | -1 35         | 0.00 | AT3G21250 | ABCC8        | 1.03  | 0.00 |
| AT3G23172 | NA          | -1.60         | 0.00 | AT3G21250 | GLTP3        | 1 50  | 0.00 |
| AT3C23300 | NA          | -1.03         | 0.05 | AT3G21200 | NA           | 1.50  | 0.00 |
| AT2C22530 |             | 1.05          | 0.00 | AT3021000 |              | 2.40  | 0.00 |
| AT3C23510 |             | -1.20         | 0.00 | AT3G21000 |              | 2.40  | 0.00 |
| AT3G23530 |             | -1.40         | 0.00 | AT3G21740 | APU4         | 1.18  | 0.00 |
| A13G23670 | KINESIN-12B | -2.31         | 0.00 | AT3G21890 | NA           | 1.46  | 0.00 |
| AT3G23730 | XTH16       | -3.02         | 0.00 | AT3G22560 | NA           | 2.81  | 0.00 |
| AT3G23740 | NA          | -1.09         | 0.00 | AT3G22830 | AT-HSFA6B    | 4.11  | 0.00 |
| AT3G23805 | RALFL24     | -1.36         | 0.00 | AT3G22840 | ELIP         | 2.71  | 0.00 |
| AT3G23810 | ATSAHH2     | -2.15         | 0.00 | AT3G22910 | NA           | 1.02  | 0.00 |
| AT3G23880 | NA          | -1.06         | 0.00 | AT3G22942 | AGG2         | 1.03  | 0.00 |
| AT3G23890 | ATTOPII     | -1.91         | 0.00 | AT3G23000 | ATSR2        | 1.64  | 0.00 |
| AT3G24420 | NA          | -1.77         | 0.00 | AT3G23020 | NA           | 1.21  | 0.00 |
| AT3G24503 | ALDH1A      | -1.13         | 0.00 | AT3G23260 | NA           | 2.15  | 0.00 |
| AT3G25100 | CDC45       | -2.65         | 0.00 | AT3G23920 | BAM1         | 1.67  | 0.00 |
| AT3G25180 | CYP82G1     | -2.31         | 0.00 | AT3G24100 | NA           | 2.50  | 0.00 |
| AT3G25600 | ΝΔ          | -1 36         | 0.00 | AT3G24500 | ATMRF1C      | 5.06  | 0.00 |
| AT3G25700 | NΔ          | -1 13         | 0.00 | AT3G24520 |              | 2 40  | 0.00 |
| AT2G25700 |             | 1.13          | 0.00 | AT2G24520 | NA           | 1.62  | 0.00 |
| AT3023717 |             | -1.52         | 0.00 | AT3024730 |              | 1.05  | 0.00 |
| AT3G25882 |             | -2.90         | 0.00 | AT3G25290 | NA<br>ADCC24 | 1.80  | 0.00 |
| AT3G25980 |             | -1.75         | 0.00 | A13G25620 | ABCG21       | 1.05  | 0.00 |
| A13G26200 | CYP/1B22    | -3.09         | 0.00 | A13G25870 | NA           | 1.64  | 0.00 |
| AT3G26320 | CYP71B36    | -1.42         | 0.00 | AT3G26350 | NA           | 2.00  | 0.00 |
| AT3G26490 | NA          | -1.30         | 0.00 | AT3G26510 | NA           | 1.57  | 0.00 |
| AT3G26520 | GAMMA-TIP2  | -1.17         | 0.00 | AT3G26742 | NA           | 2.37  | 0.00 |
| AT3G26680 | ATSNM1      | -1.15         | 0.00 | AT3G26790 | FUS3         | 1.21  | 0.00 |
| AT3G26700 | NA          | -1.18         | 0.00 | AT3G26800 | NA           | 1.57  | 0.00 |
| AT3G26780 | MEF14       | -1.23         | 0.00 | AT3G26920 | NA           | 1.04  | 0.00 |
| AT3G27050 | NA          | -1.07         | 0.00 | AT3G27025 | NA           | 3.43  | 0.00 |
| AT3G27060 | ATTSO2      | -2.52         | 0.00 | AT3G27170 | ATCLC-B      | 1.76  | 0.00 |
| AT3G27360 | NA          | -2.19         | 0.00 | AT3G27200 | NA           | 1.10  | 0.00 |
| AT3G27500 | NA          | -1.15         | 0.00 | AT3G27210 | NA           | 2.00  | 0.00 |
| AT3G27640 | NA          | -2.29         | 0.00 | AT3G27250 | NA           | 1.58  | 0.00 |
| AT3G27690 | LHCB2       | -1 74         | 0.00 | AT3G27860 | NA           | 1 17  | 0.00 |
| AT3G27750 | EMB3123     | -1.03         | 0.00 | AT3G28007 | Λ+\$\M/FFT/  | 1 55  | 0.00 |
| AT2C29120 |             | 1.00          | 0.00 | AT2C28007 |              | 2.12  | 0.00 |
| AT3G20130 |             | -1.00         | 0.00 | AT3G20270 |              | 3.13  | 0.00 |
| AT3G20100 | ATCSLC04    | -2.02         | 0.00 | AT3G29140 |              | 1.47  | 0.00 |
| AT3G28220 | NA          | -2.41         | 0.00 | AT3G29575 | AFP3         | 2.58  | 0.00 |
| AT3G28510 | NA          | -3.00         | 0.00 | AT3G29810 | COBLZ        | 2.13  | 0.00 |
| A13G28580 | NA          | -2.22         | 0.00 | AT3G30210 | AIMYB121     | 1./1  | 0.00 |
| AT3G28910 | ATMYB30     | -1.28         | 0.00 | AT3G42860 | NA           | 1.42  | 0.00 |
| AT3G28930 | AIG2        | -2.29         | 0.00 | AT3G43210 | ATNACK2      | 1.28  | 0.00 |
| AT3G29034 | NA          | -1.24         | 0.00 | AT3G43520 | NA           | 1.33  | 0.00 |
| AT3G30180 | BR6OX2      | -1.78         | 0.00 | AT3G44290 | NAC060       | 1.19  | 0.00 |
| AT3G30775 | AT-POX      | -1.20         | 0.00 | AT3G44440 | NA           | 2.10  | 0.00 |
| AT3G32050 | NA          | -1.41         | 0.00 | AT3G45420 | NA           | 2.08  | 0.00 |
| AT3G42725 | NA          | -1.52         | 0.00 | AT3G45680 | NA           | 1.92  | 0.00 |
| AT3G42800 | NA          | -1.07         | 0.00 | AT3G46230 | ATHSP17.4    | 9.00  | 0.00 |
| AT3G43720 | NA          | -1.68         | 0.00 | AT3G46450 | NA           | 1.30  | 0.00 |
| AT3G43800 | ATGSTU27    | -1 33         | 0.00 | AT3G46920 | NΔ           | 1 31  | 0.00 |
|           | ΝΔ          | -1.35         | 0.00 | AT3G47090 | ΝΔ           | 1 22  | 0.00 |
| AT2C44030 | NAC061      | _1.20         | 0.00 | AT2G47000 | NA<br>NA     | 1 1 2 | 0.00 |
| A13044330 | NACOUL      | -⊥.∠U<br>2 00 | 0.00 | AT304/110 |              | 1.12  | 0.00 |
| A13044450 |             | -2.88         | 0.00 | A1304/36U |              | 1.04  | 0.00 |
| AI3G44/55 | NA          | -1.49         | 0.00 | A13G4/580 |              | 1.31  | 0.00 |
| A13G44970 | NA          | -1.66         | 0.00 | A13G47600 | ATMYB94      | 1.50  | 0.00 |
| AT3G44990 | ATXTR8      | -1.14         | 0.00 | AT3G48020 | NA           | 2.25  | 0.00 |

|           |         |       |      | 1         |               |      |      |
|-----------|---------|-------|------|-----------|---------------|------|------|
| AT3G45140 | ATLOX2  | -2.05 | 0.00 | AT3G48240 | NA            | 3.27 | 0.00 |
| AT3G45260 | NA      | -1.18 | 0.00 | AT3G48330 | ATPIMT1       | 1.13 | 0.00 |
| AT3G45640 | ΑΤΜΑΡΚ3 | -1.03 | 0.00 | AT3G48390 | NA            | 1.67 | 0.00 |
| AT3G45650 | NAXT1   | -1.02 | 0.00 | AT3G48510 | NA            | 2.15 | 0.00 |
| AT3G45810 | NA      | -1.82 | 0.00 | AT3G48520 | CYP94B3       | 1.29 | 0.03 |
| AT3G45850 | NA      | -1.30 | 0.00 | AT3G48580 | XTH11         | 1.13 | 0.00 |
| AT3G45860 | СВКА    | -1 18 | 0.00 | AT3G48790 | ΝΔ            | 1 54 | 0.00 |
| AT2C45020 |         | 1.10  | 0.00 | AT2C40920 |               | 2.76 | 0.00 |
| AT3G43930 |         | -2.57 | 0.00 | AT3048830 |               | 3.20 | 0.00 |
| A13G45980 | HZB     | -1.73 | 0.00 | A13G49130 | NA            | 3.02 | 0.00 |
| A13G46030 | HIB11   | -1.31 | 0.00 | A13G49320 | NA            | 1.90 | 0.00 |
| AT3G46110 | NA      | -1.57 | 0.00 | AT3G49570 | LSU3          | 1.37 | 0.00 |
| AT3G46320 | NA      | -3.74 | 0.00 | AT3G49580 | LSU1          | 1.45 | 0.00 |
| AT3G46650 | NA      | -1.42 | 0.00 | AT3G49760 | AtbZIP5       | 1.59 | 0.01 |
| AT3G46820 | TOPP5   | -1.54 | 0.00 | AT3G50410 | OBP1          | 1.17 | 0.00 |
| AT3G46940 | DUT1    | -2.62 | 0.00 | AT3G50540 | NA            | 1.48 | 0.00 |
| AT3G47380 | NA      | -2.22 | 0.00 | AT3G50770 | CML41         | 1.74 | 0.00 |
| AT3G47480 | NΔ      | -1 72 | 0.00 | AT3G50910 | NΔ            | 1 30 | 0.00 |
| AT3G/7800 | NΔ      | -1 33 | 0.00 | AT3G50940 | NΔ            | 1.30 | 0.00 |
| AT3C47000 |         | 1.55  | 0.00 | AT3CE0090 |               | 2.70 | 0.00 |
| AT3047820 |         | -1.21 | 0.00 | AT3G30380 | AT2           | 2.41 | 0.00 |
| AT3G47830 |         | -1.08 | 0.00 | AT3G51810 | ATS<br>ATSANS | 1.05 | 0.00 |
| A13G48080 | NA      | -2.62 | 0.00 | A13G51860 | ATCAX3        | 1.89 | 0.00 |
| AT3G48100 | ARR5    | -1.39 | 0.00 | AT3G52780 | ATPAP20       | 1.10 | 0.00 |
| AT3G48160 | DEL1    | -1.27 | 0.00 | AT3G53100 | NA            | 1.28 | 0.00 |
| AT3G48360 | ATBT2   | -2.50 | 0.00 | AT3G53160 | UGT73C7       | 1.24 | 0.00 |
| AT3G48490 | NA      | -1.84 | 0.00 | AT3G53230 | NA            | 2.57 | 0.00 |
| AT3G48540 | NA      | -1.47 | 0.00 | AT3G53370 | NA            | 1.46 | 0.00 |
| AT3G48720 | DCF     | -2.85 | 0.00 | AT3G53630 | NA            | 1.54 | 0.00 |
| AT3G49110 | ATPCA   | -2.31 | 0.00 | AT3G53690 | NA            | 1.32 | 0.00 |
| AT3G49260 | igd21   | -1.67 | 0.00 | AT3G53960 | NA            | 1.08 | 0.00 |
| AT3G49670 | BAM2    | -1.51 | 0.00 | AT3G53970 | NA            | 1.17 | 0.00 |
| AT3G49720 | NA      | -1.28 | 0.00 | AT3G53980 | NA            | 5.55 | 0.00 |
| AT3G49930 | NA      | -1.65 | 0.00 | AT3G54000 | NA            | 1.77 | 0.00 |
| AT3G49940 | IBD38   | -1 84 | 0.00 | AT3G54390 | NA            | 1 78 | 0.00 |
| AT3G49960 | NA      | -1 32 | 0.00 | AT3G55840 | NA            | 2 20 | 0.00 |
| AT2650010 | NA      | 1.52  | 0.00 | AT2655010 | NA            | 2.20 | 0.00 |
| AT3G50010 |         | -1.41 | 0.00 | AT3G55510 |               | 2.40 | 0.00 |
| AT3G30000 |         | -1.00 | 0.00 | AT3G30270 |               | 1.27 | 0.00 |
| AT3G50120 | NA      | -1.// | 0.00 | AT3G56320 | NA            | 1.27 | 0.00 |
| A13G50270 | NA      | -1.61 | 0.00 | A13G56470 | NA            | 1.07 | 0.00 |
| A13G50280 | NA      | -1.03 | 0.00 | A13G56880 | NA            | 1.05 | 0.00 |
| AT3G50480 | HR4     | -1.05 | 0.00 | AT3G56960 | PIP5K4        | 1.44 | 0.00 |
| AT3G50560 | NA      | -1.69 | 0.00 | AT3G57010 | NA            | 1.02 | 0.00 |
| AT3G50740 | UGT72E1 | -1.05 | 0.00 | AT3G57360 | NA            | 1.12 | 0.00 |
| AT3G50750 | BEH1    | -1.35 | 0.00 | AT3G57520 | AtSIP2        | 1.78 | 0.00 |
| AT3G50900 | NA      | -1.46 | 0.00 | AT3G57590 | NA            | 1.21 | 0.00 |
| AT3G51080 | GATA6   | -1.07 | 0.00 | AT3G57810 | NA            | 1.01 | 0.00 |
| AT3G51160 | GMD2    | -1.61 | 0.00 | AT3G57880 | NA            | 2.03 | 0.00 |
| AT3G51230 | NA      | -2.10 | 0.00 | AT3G58150 | NA            | 1.25 | 0.00 |
| AT3G51280 | NA      | -2.87 | 0.00 | AT3G58270 | NA            | 1.22 | 0.00 |
| AT3G51290 | NA      | -1.05 | 0.00 | AT3G58810 | ATMTP3        | 1 31 | 0.00 |
| AT3G51470 | NΔ      | -2.18 | 0.00 | AT3G58930 | NΔ            | 1.26 | 0.00 |
| AT3651720 | NΛ      | _1 70 | 0.00 | AT3G50150 | NA            | 1.12 | 0.00 |
| AT3G51720 |         | -1.75 | 0.00 | AT3G59150 |               | 1.12 | 0.00 |
| AT3G51740 |         | -2.15 | 0.00 | AT3G39280 |               | 1.07 | 0.00 |
| AT3G51930 |         | -1.15 | 0.00 | AT3G59350 |               | 1.07 | 0.00 |
| AT3G52290 | IQD3    | -1.08 | 0.00 | AT3G59440 | NA            | 1.04 | 0.00 |
| A13G52370 | FLA15   | -1.02 | 0.00 | A13G59530 | LAP3          | 1.73 | 0.00 |
| AT3G52430 | ATPAD4  | -1.54 | 0.00 | AT3G59750 | NA            | 1.67 | 0.00 |
| AT3G52630 | NA      | -2.22 | 0.00 | AT3G59820 | NA            | 1.24 | 0.00 |
| AT3G52690 | NA      | -3.21 | 0.01 | AT3G60300 | NA            | 1.51 | 0.00 |
| AT3G53010 | NA      | -1.21 | 0.00 | AT3G60670 | NA            | 1.18 | 0.00 |
| AT3G53190 | NA      | -1.47 | 0.00 | AT3G60690 | NA            | 1.09 | 0.00 |
| AT3G53232 | DVL20   | -1.10 | 0.00 | AT3G61420 | NA            | 1.37 | 0.00 |
| AT3G53260 | ATPAL2  | -1.86 | 0.00 | AT3G61450 | ATSYP73       | 1.44 | 0.00 |

| AT3G53650 | NA        | -1.67         | 0.00 | AT3G61630 | CRF6        | 1.46 | 0.00 |
|-----------|-----------|---------------|------|-----------|-------------|------|------|
| AT3G53730 | NA        | -2.18         | 0.00 | AT3G61830 | ARF18       | 1.06 | 0.00 |
| AT3G54120 | NA        | -1.72         | 0.00 | AT3G61890 | ATHB-12     | 2.44 | 0.00 |
| AT3G54150 | NA        | -2.89         | 0.00 | AT3G61900 | NA          | 1.04 | 0.00 |
| AT3G54250 | NA        | -1.20         | 0.00 | AT3G62090 | PIF6        | 1.72 | 0.00 |
| AT3G54400 | NA        | -1.48         | 0.00 | AT3G62190 | NA          | 1.10 | 0.00 |
| AT3G54560 | HTA11     | -2 42         | 0.00 | AT3G62260 | NA          | 1.62 | 0.00 |
| AT3G5/630 | NA        | -1 12         | 0.00 | AT3G62330 | NΔ          | 1 16 | 0.00 |
| AT3G54640 | TRD2      | -1 35         | 0.00 | AT3G62430 | NA          | 1.10 | 0.00 |
| AT2CE46E0 |           | 1.55          | 0.00 | AT2C62720 |             | 1.52 | 0.00 |
| AT3G54050 |           | -1.95         | 0.00 | AT3002750 |             | 1.09 | 0.00 |
| AT3G54090 |           | -1.25         | 0.00 | AT3G62770 | AIGI8d      | 1.91 | 0.00 |
| AT3G54750 |           | -1.81         | 0.00 | AT3G62990 |             | 2.21 | 0.00 |
| A13G54920 | PMR6      | -1.00         | 0.00 | AT3G63010 | AIGIDIB     | 1.26 | 0.00 |
| AT3G55130 | ABCG19    | -1.59         | 0.00 | A13G63060 | EDL3        | 1.38 | 0.00 |
| AT3G55330 | PPL1      | -1.03         | 0.00 | AT3G63530 | BB          | 1.37 | 0.00 |
| AT3G55520 | NA        | -1.09         | 0.00 | AT4G00040 | NA          | 1.20 | 0.00 |
| AT3G55646 | NA        | -1.48         | 0.00 | AT4G00700 | NA          | 1.05 | 0.00 |
| AT3G55660 | ATROPGEF6 | -1.37         | 0.00 | AT4G00820 | iqd17       | 1.02 | 0.00 |
| AT3G56060 | NA        | -1.76         | 0.00 | AT4G00940 | NA          | 1.25 | 0.00 |
| AT3G56090 | ATFER3    | -1.09         | 0.00 | AT4G01060 | CPL3        | 1.71 | 0.00 |
| AT3G56100 | IMK3      | -1.64         | 0.00 | AT4G01120 | ATBZIP54    | 1.64 | 0.00 |
| AT3G56300 | NA        | -1.18         | 0.00 | AT4G01280 | NA          | 1.24 | 0.00 |
| AT3G56380 | ARR17     | -1.74         | 0.00 | AT4G01610 | NA          | 1.34 | 0.00 |
| AT3G56650 | NA        | -1.62         | 0.00 | AT4G01870 | NA          | 1.12 | 0.00 |
| AT3G56870 | NA        | -2.20         | 0.00 | AT4G01985 | NA          | 5.12 | 0.00 |
| AT3G56970 | BHI H038  | -1.32         | 0.00 | AT4G01990 | NA          | 1.11 | 0.00 |
| AT3G57060 | NA        | -1 21         | 0.00 | AT4G02140 | NA          | 1 46 | 0.00 |
| AT3G57240 | BG3       | -1 74         | 0.00 | AT4G02210 | NΔ          | 1 36 | 0.00 |
| AT3G57780 | NA        | -1 / 2        | 0.00 | AT/G02280 | ΔΤΩΠΩ       | 1.56 | 0.00 |
| AT2G58120 |           | -1.92         | 0.00 | AT4G02260 | NA NA       | 2.75 | 0.00 |
| AT2CE96E0 |           | 1 57          | 0.00 | AT4002300 |             | 2.22 | 0.00 |
| AT3G38030 |           | -1.57         | 0.00 | AT4002380 |             | 1.54 | 0.00 |
| A13G58850 |           | -1.51         | 0.00 | AT4G03030 | NA          | 1.09 | 0.00 |
| AT3G58990 |           | -1.49         | 0.00 | AT4G03230 |             | 1.11 | 0.00 |
| A13G59220 | ATPIRINI  | -1./1         | 0.00 | A14G03320 | At IIC20-IV | 2.33 | 0.00 |
| A13G59480 | NA        | -2.61         | 0.00 | A14G03430 | EMB2770     | 1.20 | 0.00 |
| AT3G59550 | ATRAD21.2 | -1.24         | 0.00 | AT4G03820 | NA          | 1.22 | 0.00 |
| AT3G59760 | ATCS-C    | -1.36         | 0.00 | AT4G04020 | FIB         | 1.80 | 0.00 |
| AT3G59900 | ARGOS     | -1.39         | 0.00 | AT4G04180 | NA          | 1.12 | 0.00 |
| AT3G59970 | MTHFR1    | -1.66         | 0.00 | AT4G04810 | ATMSRB4     | 1.13 | 0.00 |
| AT3G60200 | NA        | -1.07         | 0.00 | AT4G05100 | AtMYB74     | 2.01 | 0.00 |
| AT3G60245 | NA        | -1.01         | 0.00 | AT4G05170 | NA          | 1.89 | 0.01 |
| AT3G60290 | NA        | -2.01         | 0.00 | AT4G06676 | NA          | 1.00 | 0.00 |
| AT3G60840 | MAP65-4   | -1.17         | 0.00 | AT4G08250 | NA          | 1.62 | 0.00 |
| AT3G61440 | ATCYSC1   | -1.47         | 0.00 | AT4G08570 | NA          | 6.37 | 0.00 |
| AT3G61610 | NA        | -1.34         | 0.00 | AT4G10250 | ATHSP22.0   | 9.41 | 0.00 |
| AT3G61840 | NA        | -1.53         | 0.00 | AT4G10925 | NA          | 1.12 | 0.00 |
| AT3G62110 | NA        | -1.90         | 0.00 | AT4G11220 | BTI2        | 2.07 | 0.00 |
| AT3G62150 | ABCB21    | -2.23         | 0.00 | AT4G11350 | NA          | 1.94 | 0.00 |
| AT3G62160 | NA        | -1.22         | 0.00 | AT4G11660 | AT-HSFB2B   | 2.35 | 0.00 |
| AT3G62780 | NA        | -1.42         | 0.00 | AT4G11845 | NA          | 1.02 | 0.00 |
| AT3G63110 | ΑΤΙΡΤ3    | -2 41         | 0.00 | AT4G11910 | NA          | 1 02 | 0.00 |
| AT3G63160 | NA        | -1 24         | 0.00 | AT4G11960 | PGRI 1B     | 1 77 | 0.00 |
| AT/G00020 | BRCA2(IV) | -1.40         | 0.00 | AT/G12005 | NA          | 1.77 | 0.00 |
| AT4G00280 | NA        | -1.40         | 0.00 | AT4G12005 |             | 1 15 | 0.00 |
| AT4G00230 |           | 1.40          | 0.01 | AT4G12080 | NA          | 1.15 | 0.00 |
| AT4G00570 |           | -1.07         | 0.00 | AT4G12562 | INA<br>Hon2 | 1.09 | 0.00 |
| AT4000400 |           | -1.75<br>1.72 | 0.00 | AT4G12400 | мл          | 2.00 | 0.00 |
| A14G00890 |           | -1.23         | 0.00 | A14G12410 |             | 2.09 | 0.00 |
| A14G00950 |           | -1.08         | 0.00 | A14G12560 |             | 1.29 | 0.00 |
| A14G00960 | NA        | -1.3/         | 0.00 | A14G12580 | NA          | 3.06 | 0.00 |
| A14G00970 | CRK41     | -2.34         | 0.00 | A14G13560 | UNE15       | 1.06 | 0.00 |
| A14G01270 | NA        | -1.11         | 0.00 | A14G13750 | EMB2597     | 1.21 | 0.00 |
| AT4G01380 | NA        | -1.77         | 0.00 | AT4G13800 | NA          | 1.08 | 0.00 |

| AT4G01390 | NA          | -1.66 | 0.00 | AT4G14010 | RALFL32     | 1.26 | 0.00 |
|-----------|-------------|-------|------|-----------|-------------|------|------|
| AT4G01690 | HEMG1       | -1.16 | 0.00 | AT4G14250 | NA          | 1.35 | 0.00 |
| AT4G01700 | NA          | -2.02 | 0.00 | AT4G14270 | NA          | 1.83 | 0.00 |
| AT4G01730 | NA          | -1.97 | 0.00 | AT4G14716 | ARD1        | 1.18 | 0.00 |
| AT4G01950 | ATGPAT3     | -1.02 | 0.00 | AT4G14819 | NA          | 3.73 | 0.00 |
| AT4G02060 | MCM7        | -1.82 | 0.00 | AT4G15090 | FAR1        | 1.29 | 0.00 |
| AT4G02110 | NΔ          | -2.47 | 0.00 | AT4G15570 | ΜΔΔ3        | 1 17 | 0.00 |
| AT4602110 |             | _1 21 | 0.00 | AT4G15730 | NA<br>NA    | 1.17 | 0.00 |
| AT4G02530 | ATENILFUND  | -1.21 | 0.00 | AT4G15750 |             | 1.22 | 0.00 |
| AT4G02520 | AIGSIFZ     | -3.20 | 0.00 | A14G15780 | ATVAIVIP724 | 1.08 | 0.00 |
| AT4G02800 | NA          | -1.90 | 0.00 | AT4G15910 | ATDIZI      | 2.03 | 0.00 |
| A14G02850 | NA          | -3./3 | 0.00 | A14G16190 | NA          | 1.11 | 0.00 |
| AT4G03100 | NA          | -1.78 | 0.00 | AT4G16215 | NA          | 1.00 | 0.00 |
| AT4G03140 | NA          | -1.63 | 0.00 | AT4G16280 | FCA         | 2.21 | 0.00 |
| AT4G03150 | NA          | -1.29 | 0.00 | AT4G16444 | NA          | 1.41 | 0.00 |
| AT4G03210 | XTH9        | -1.73 | 0.00 | AT4G16600 | NA          | 1.40 | 0.00 |
| AT4G03450 | NA          | -1.66 | 0.00 | AT4G16680 | NA          | 1.62 | 0.00 |
| AT4G04210 | PUX4        | -1.04 | 0.00 | AT4G17030 | AT-EXPR     | 3.77 | 0.00 |
| AT4G04450 | AtWRKY42    | -1.06 | 0.00 | AT4G17230 | SCL13       | 1.12 | 0.00 |
| AT4G04570 | CRK40       | -1.63 | 0.00 | AT4G17250 | NA          | 1.43 | 0.00 |
| AT4G04695 | CPK31       | -1 36 | 0.00 | AT4G17280 | NΔ          | 1 38 | 0.00 |
| AT4G04000 |             | -1.16 | 0.00 | AT4G17410 | NΛ          | 1.30 | 0.00 |
| AT4004700 |             | -1.10 | 0.00 | AT4017410 |             | 1.13 | 0.00 |
| AT4G04840 | ATIVISKBO   | -4.23 | 0.00 | A14G17440 |             | 1.60 | 0.00 |
| A14G05190 | AIK5        | -1.87 | 0.00 | A14G17550 | AtG3Pp4     | 1.09 | 0.00 |
| A14G06746 | DEAR5       | -3.86 | 0.00 | AI4G1//30 | ATSYP23     | 1.09 | 0.00 |
| AT4G08097 | NA          | -4.36 | 0.00 | AT4G17840 | NA          | 1.03 | 0.00 |
| AT4G08555 | NA          | -1.17 | 0.00 | AT4G18280 | NA          | 2.55 | 0.00 |
| AT4G08870 | ARGAH2      | -1.68 | 0.00 | AT4G18490 | NA          | 1.53 | 0.00 |
| AT4G09060 | NA          | -1.48 | 0.00 | AT4G18550 | AtDSEL      | 1.25 | 0.00 |
| AT4G09420 | NA          | -1.21 | 0.00 | AT4G18660 | NA          | 1.26 | 0.00 |
| AT4G09510 | A/N-Invl    | -1.09 | 0.00 | AT4G18780 | ATCESA8     | 1.07 | 0.00 |
| AT4G10120 | ATSPS4F     | -1.58 | 0.00 | AT4G18980 | AtS40-3     | 1.56 | 0.00 |
| AT4G10190 | NA          | -2.55 | 0.02 | AT4G19080 | NA          | 1.66 | 0.00 |
| AT4G10820 | NA          | -2 11 | 0.00 | AT4G19090 | NΔ          | 1.08 | 0.00 |
| AT/G11080 | 3xHMG-box1  | -2.14 | 0.00 | AT/G19220 | NΔ          | 1.00 | 0.00 |
| AT4G11000 |             | 1 47  | 0.00 | AT4G10220 |             | 1.01 | 0.00 |
| AT4G11190 |             | -1.47 | 0.00 | AT4G19250 |             | 1.54 | 0.00 |
| AT4G11290 |             | -2.95 | 0.00 | AT4G19430 |             | 2.32 | 0.00 |
| AT4G11320 | NA          | -1.19 | 0.00 | A14G20060 | EIVIB1895   | 1.10 | 0.00 |
| AT4G11521 | NA          | -1.97 | 0.00 | A14G20480 | NA          | 1.01 | 0.00 |
| AT4G11530 | CRK34       | -1.04 | 0.00 | AT4G20820 | NA          | 2.53 | 0.00 |
| AT4G12300 | CYP706A4    | -1.09 | 0.00 | AT4G21320 | HSA32       | 5.54 | 0.00 |
| AT4G12310 | CYP706A5    | -1.10 | 0.00 | AT4G21410 | CRK29       | 1.07 | 0.00 |
| AT4G12320 | CYP706A6    | -1.69 | 0.00 | AT4G21440 | ATM4        | 1.13 | 0.00 |
| AT4G12330 | CYP706A7    | -1.17 | 0.00 | AT4G21550 | VAL3        | 1.31 | 0.00 |
| AT4G12420 | SKU5        | -1.59 | 0.00 | AT4G21570 | NA          | 1.33 | 0.00 |
| AT4G12490 | NA          | -1.93 | 0.00 | AT4G21650 | NA          | 3.04 | 0.00 |
| AT4G12500 | NA          | -1.78 | 0.00 | AT4G21930 | NA          | 2.95 | 0.00 |
| AT4G12620 | ATORC1B     | -1.08 | 0.00 | AT4G22220 | ATISU1      | 1.03 | 0.00 |
| AT4G12730 | FLA2        | -3.28 | 0.00 | AT4G22280 | ΝΔ          | 1 17 | 0.00 |
| AT/G12810 | NΔ          | -2.94 | 0.00 | AT/G22200 | ΝΔ          | 1.17 | 0.00 |
| AT4G12010 |             | 1 70  | 0.00 | AT4G22550 |             | 1.37 | 0.00 |
| AT4G12070 |             | -1.70 | 0.00 | AT4G22740 |             | 1.42 | 0.00 |
| AT4G12980 |             | -1.// | 0.00 | A14G22780 | ACK7        | 1.07 | 0.00 |
| AT4G13210 | NA          | -2.18 | 0.00 | A14G22950 | AGL19       | 1.28 | 0.00 |
| AT4G13340 | LRX3        | -1.20 | 0.00 | A14G23420 | NA          | 1.01 | 0.00 |
| AT4G13370 | NA          | -1.53 | 0.00 | AT4G23493 | NA          | 4.19 | 0.00 |
| AT4G13410 | ATCSLA15    | -1.76 | 0.00 | AT4G23520 | NA          | 1.03 | 0.00 |
| AT4G13690 | NA          | -1.07 | 0.00 | AT4G23670 | NA          | 1.80 | 0.00 |
| AT4G13930 | SHM4        | -1.63 | 0.00 | AT4G23680 | NA          | 2.04 | 0.00 |
| AT4G14120 | NA          | -1.11 | 0.00 | AT4G23870 | NA          | 1.38 | 0.00 |
| AT4G14150 | KINESIN-12A | -1.24 | 0.00 | AT4G23880 | NA          | 1.80 | 0.00 |
| AT4G14310 | NA          | -1.46 | 0.00 | AT4G24000 | ATCSLG2     | 2.88 | 0.00 |
| AT4G14330 | NA          | -1.34 | 0.00 | AT4G24050 | NA          | 1.18 | 0.00 |
| AT4G14400 | ACD6        | -2.32 | 0.00 | AT4G24910 | NA          | 1.20 | 0.00 |
|           |             |       |      |           |             |      |      |

|           |             |       | 0.00 | 474005000 |                | 2.04 | 0.00 |
|-----------|-------------|-------|------|-----------|----------------|------|------|
| AT4G14650 | NA          | -1.41 | 0.00 | A14G25000 | AMY1           | 2.04 | 0.00 |
| AT4G14680 | APS3        | -1.05 | 0.00 | AT4G25200 | ATHSP23.6-MITO | 9.08 | 0.00 |
| AT4G14690 | ELIP2       | -1.39 | 0.00 | AT4G25433 | NA             | 1.17 | 0.00 |
| AT4G14770 | ATTCX2      | -1.16 | 0.00 | AT4G25580 | NA             | 1.28 | 0.00 |
| AT4G14940 | A01         | -1.54 | 0.00 | AT4G25850 | ORP4B          | 1.39 | 0.00 |
| AT4G15210 | AT-BETA-AMY | -1.39 | 0.00 | AT4G26080 | ABI1           | 1.36 | 0.00 |
| AT4G15500 | LIGT84A4    | -1.62 | 0.00 | AT4G26220 | NA             | 1 97 | 0.00 |
| AT4G15510 | NA          | -1.02 | 0.00 | AT4G26220 | NA             | 1.04 | 0.00 |
| AT4015510 |             | 1.04  | 0.00 | AT4020000 |                | 1.04 | 0.00 |
| A14G15030 | NA          | -1.85 | 0.00 | AT4G27130 | NA             | 1.28 | 0.00 |
| A14G15660 | NA          | -1.// | 0.00 | A14G27390 | NA             | 1.20 | 0.00 |
| AT4G15670 | NA          | -1.19 | 0.01 | AT4G27410 | ANAC072        | 2.78 | 0.00 |
| AT4G15690 | NA          | -1.29 | 0.00 | AT4G27580 | NA             | 1.51 | 0.00 |
| AT4G15760 | MO1         | -1.14 | 0.00 | AT4G27654 | NA             | 2.19 | 0.00 |
| AT4G15830 | NA          | -1.96 | 0.00 | AT4G27657 | NA             | 1.57 | 0.00 |
| AT4G15870 | ATTS1       | -2.29 | 0.00 | AT4G27670 | HSP21          | 8.16 | 0.00 |
| AT4G15960 | NA          | -1.27 | 0.00 | AT4G27990 | ATYLMG1-2      | 1.21 | 0.00 |
| AT4G16120 | ATSEB1      | -1 44 | 0.00 | AT4G28150 | NA             | 1 47 | 0.00 |
| AT/G16260 | NA          | -3.01 | 0.00 | AT/G28200 | NΔ             | 1 12 | 0.00 |
| AT4G16200 |             | 1 45  | 0.00 | AT4020200 |                | 1.12 | 0.00 |
| AT4G10570 |             | -1.45 | 0.00 | AT4G26570 |                | 1.20 | 0.00 |
| AT4G16740 | ATTPS03     | -1.98 | 0.00 | A14G28590 | WIKL7          | 1.29 | 0.00 |
| AT4G16880 | NA          | -2.22 | 0.00 | A14G28703 | NA             | 1.24 | 0.00 |
| AT4G16980 | NA          | -2.03 | 0.00 | AT4G29070 | NA             | 1.06 | 0.00 |
| AT4G16990 | RLM3        | -1.34 | 0.00 | AT4G29400 | NA             | 1.14 | 0.00 |
| AT4G17000 | NA          | -1.69 | 0.00 | AT4G29770 | NA             | 3.30 | 0.00 |
| AT4G17090 | BAM3        | -1.22 | 0.00 | AT4G29980 | NA             | 1.22 | 0.00 |
| AT4G17100 | NA          | -1.12 | 0.00 | AT4G30450 | NA             | 2.18 | 0.00 |
| AT4G17240 | NA          | -1.50 | 0.00 | AT4G30460 | NA             | 3.69 | 0.00 |
| AT4G17810 | NA          | -1.31 | 0.00 | AT4G30470 | NA             | 2.02 | 0.00 |
| AT4G18195 | ATPUP8      | -1.53 | 0.00 | AT4G30490 | NA             | 1.62 | 0.00 |
| AT4G18197 | ATPUP7      | -2.27 | 0.00 | AT4G30540 | NA             | 1.04 | 0.01 |
| AT4G18205 | NA          | -2 59 | 0.00 | AT4G30570 | NA             | 1 99 | 0.00 |
| AT4G18250 | NA          | -1.93 | 0.00 | AT4G30630 | NA             | 1 22 | 0.00 |
| AT4G18440 | NΔ          | -1 10 | 0.00 | AT4G30830 | NΔ             | 1 42 | 0.00 |
| AT4G18480 | CH_42       | -1.06 | 0.00 | AT4G30050 |                | 1 27 | 0.00 |
| AT4G10400 | A+DLDE1     | 1.00  | 0.00 | AT4G30500 |                | 1.57 | 0.00 |
| AT4G10700 |             | -1.55 | 0.00 | AT4G51290 |                | 1.15 | 0.00 |
| AT4G18790 | ATNRAIVIPS  | -3.19 | 0.00 | AT4G31351 | NA             | 2.60 | 0.00 |
| A14G18970 | NA          | -1.15 | 0.00 | A14G31354 | NA             | 2.59 | 0.00 |
| A14G19120 | ERD3        | -1.68 | 0.00 | A14G32295 | NA             | 1.31 | 0.00 |
| AT4G19380 | NA          | -2.53 | 0.00 | AT4G32450 | NA             | 1.72 | 0.00 |
| AT4G19410 | NA          | -3.04 | 0.00 | AT4G32850 | PAP(IV)        | 1.16 | 0.00 |
| AT4G19530 | NA          | -1.32 | 0.00 | AT4G32920 | NA             | 1.90 | 0.00 |
| AT4G19985 | NA          | -1.07 | 0.00 | AT4G33040 | NA             | 1.15 | 0.00 |
| AT4G20230 | NA          | -1.25 | 0.00 | AT4G33150 | LKR            | 1.51 | 0.00 |
| AT4G20760 | NA          | -1.13 | 0.00 | AT4G33420 | NA             | 2.10 | 0.00 |
| AT4G20780 | CML42       | -2.08 | 0.00 | AT4G33550 | NA             | 4.75 | 0.00 |
| AT4G20970 | NA          | -1.63 | 0.00 | AT4G33905 | NA             | 2.19 | 0.00 |
| AT4G21070 | ATBRCA1     | -1.21 | 0.00 | AT4G33940 | NA             | 1.07 | 0.00 |
| AT4G21200 | ATGA2OX8    | -1 47 | 0.00 | AT4G34000 | ABE3           | 2 27 | 0.00 |
| AT4G21210 | ATRP1       | -1 19 | 0.00 | AT4G34060 | DMI 3          | 1 28 | 0.00 |
| AT/G21210 | NA          | _1 10 | 0.00 | AT4G34000 |                | 1.20 | 0.00 |
| AT4021215 |             | 1.15  | 0.00 | AT4C24270 |                | 1.45 | 0.00 |
| AT4G21270 |             | -1.55 | 0.00 | AT4G54570 |                | 1.05 | 0.00 |
| A14G21380 | ARK3        | -1.05 | 0.00 | AT4G34710 |                | 1.58 | 0.00 |
| AT4G21760 | BGLU47      | -1.63 | 0.00 | A14G34860 | A/N-INVB       | 1.57 | 0.00 |
| AT4G21840 | ATMSRB8     | -1.26 | 0.00 | A14G34990 | AtmyB32        | 1.33 | 0.00 |
| AT4G21850 | ATMSRB9     | -2.30 | 0.00 | AT4G35190 | LOG5           | 1.07 | 0.00 |
| AT4G21870 | NA          | -1.29 | 0.00 | AT4G35280 | DAZ2           | 1.40 | 0.00 |
| AT4G22010 | sks4        | -2.28 | 0.00 | AT4G35295 | NA             | 1.58 | 0.00 |
| AT4G22485 | NA          | -2.94 | 0.00 | AT4G35560 | DAW1           | 1.19 | 0.00 |
| AT4G22490 | NA          | -1.32 | 0.00 | AT4G36600 | NA             | 3.48 | 0.00 |
| AT4G22505 | NA          | -1.94 | 0.00 | AT4G36690 | ATU2AF65A      | 1.13 | 0.00 |
| AT4G22513 | NA          | -2.48 | 0.00 | AT4G36740 | ATHB40         | 1.57 | 0.00 |
| AT4G22517 | NA          | -2.69 | 0.00 | AT4G36900 | DEAR4          | 1.83 | 0.00 |

|           |              |       |      | 1         |            |       |      |
|-----------|--------------|-------|------|-----------|------------|-------|------|
| AT4G22520 | NA           | -1.53 | 0.00 | AT4G36925 | NA         | 1.50  | 0.00 |
| AT4G22690 | CYP706A1     | -1.02 | 0.00 | AT4G36930 | SPT        | 1.81  | 0.00 |
| AT4G22710 | CYP706A2     | -1.38 | 0.00 | AT4G37150 | ATMES9     | 1.15  | 0.00 |
| AT4G23030 | NA           | -1.19 | 0.00 | AT4G37180 | NA         | 1.00  | 0.00 |
| AT4G23210 | CRK13        | -1.34 | 0.00 | AT4G37730 | AtbZIP7    | 2.22  | 0.00 |
| AT4G23290 | CRK21        | -2.34 | 0.00 | AT4G37970 | ATCAD6     | 2.05  | 0.00 |
| AT4G23320 | CRK24        | -1.14 | 0.00 | AT4G38010 | NA         | 1.27  | 0.00 |
| AT4G23470 | NA           | -1 30 | 0.00 | AT4G38020 | NA         | 1.67  | 0.00 |
| AT/G23/96 | SP115        | -1 53 | 0.00 | AT/G38060 | NΔ         | 1 12  | 0.00 |
| AT4G23430 |              | 1.55  | 0.00 | AT4G30000 |            | 1.12  | 0.00 |
| AT4G23010 |              | -1.10 | 0.00 | AT4038080 |            | 1.55  | 0.00 |
| AT4G25710 |              | -1.54 | 0.00 | A14036250 | AICPNZO    | 1.02  | 0.00 |
| AT4G23800 | 3XHIVIG-DOX2 | -1.18 | 0.00 | A14G38380 | NA         | 1.58  | 0.00 |
| A14G23820 | NA           | -2.69 | 0.00 | A14G38440 | IYO        | 1.51  | 0.00 |
| A14G24265 | NA           | -2.15 | 0.00 | A14G39210 | APL3       | 1.27  | 0.00 |
| AT4G24275 | NA           | -1.38 | 0.00 | AT4G39360 | NA         | 2.04  | 0.00 |
| AT4G24340 | NA           | -1.66 | 0.00 | AT4G39700 | NA         | 1.63  | 0.00 |
| AT4G24350 | NA           | -2.91 | 0.00 | AT4G39800 | ATIPS1     | 1.15  | 0.00 |
| AT4G24620 | PGI          | -1.05 | 0.00 | AT4G39952 | NA         | 1.19  | 0.00 |
| AT4G24780 | NA           | -1.59 | 0.00 | AT4G39955 | NA         | 1.39  | 0.00 |
| AT4G24930 | NA           | -1.33 | 0.00 | AT4G40010 | SNRK2-7    | 2.61  | 0.00 |
| AT4G25030 | NA           | -1.42 | 0.00 | AT5G01200 | NA         | 1.97  | 0.00 |
| AT4G25050 | ACP4         | -1.57 | 0.00 | AT5G01360 | TBL3       | 1.05  | 0.00 |
| AT4G25110 | AtMC2        | -3.00 | 0.00 | AT5G01520 | AIRP2      | 1.76  | 0.00 |
| AT4G25260 | NA           | -1.43 | 0.00 | AT5G01600 | ATFER1     | 1.24  | 0.00 |
| AT4G25900 | NA           | -1.13 | 0.00 | AT5G01760 | NA         | 1.19  | 0.00 |
| AT/G26530 | NΔ           | -1 60 | 0.00 | AT5G01820 | ΔΤΟΙΡΚ1/   | 1 11  | 0.00 |
| AT4G26540 | NA           | -1 57 | 0.00 | AT5G01020 |            | 1.11  | 0.00 |
| AT4G26540 |              | 2.00  | 0.00 | AT5C02020 |            | 2.02  | 0.00 |
| AT4G20000 |              | -2.90 | 0.00 | AT5002020 |            | 3.02  | 0.00 |
| AT4G26690 | GDPDL3       | -1.19 | 0.00 | AT5G02320 | ATIVITESKS | 1.15  | 0.00 |
| AT4G26860 |              | -1.31 | 0.00 | AT5G02430 |            | 1.08  | 0.00 |
| AT4G26960 | NA           | -2.02 | 0.00 | A15G02550 | NA         | 1.16  | 0.00 |
| A14G27230 | HIAZ         | -1.12 | 0.00 | A15G02640 | NA         | 1.70  | 0.00 |
| AT4G27270 | NA           | -1.19 | 0.00 | AT5G03190 | CPUORF47   | 2.25  | 0.00 |
| AT4G27300 | NA           | -1.39 | 0.00 | AT5G03210 | AtDIP2     | 3.50  | 0.00 |
| AT4G27310 | NA           | -1.47 | 0.00 | AT5G03560 | NA         | 1.78  | 0.00 |
| AT4G27440 | PORB         | -1.39 | 0.00 | AT5G03830 | NA         | 1.60  | 0.00 |
| AT4G27550 | ATTPS4       | -1.29 | 0.00 | AT5G03970 | NA         | 1.12  | 0.00 |
| AT4G27595 | NA           | -1.36 | 0.00 | AT5G03990 | NA         | 1.68  | 0.00 |
| AT4G27720 | NA           | -1.18 | 0.00 | AT5G04000 | NA         | 1.08  | 0.00 |
| AT4G27740 | NA           | -1.24 | 0.00 | AT5G04010 | NA         | 2.02  | 0.00 |
| AT4G27820 | BGLU9        | -1.18 | 0.00 | AT5G04200 | AtMC9      | 1.12  | 0.00 |
| AT4G28000 | NA           | -2.12 | 0.00 | AT5G04210 | NA         | 1.21  | 0.00 |
| AT4G28080 | NA           | -1.02 | 0.00 | AT5G04250 | NA         | 1.14  | 0.00 |
| AT4G28190 | ULT          | -1.61 | 0.00 | AT5G04370 | NAMT1      | 1.87  | 0.00 |
| AT4G28310 | NA           | -2.21 | 0.00 | AT5G04410 | NAC2       | 1.27  | 0.00 |
| AT4G28430 | NA           | -1.57 | 0.00 | AT5G04760 | NA         | 1.60  | 0.00 |
| AT4G28560 | RIC7         | -1 15 | 0.00 | AT5G05110 | NA         | 1 51  | 0.00 |
| AT/G28660 | PSB28        | -1 12 | 0.00 | AT5G05130 | NΔ         | 1 / 3 | 0.00 |
| AT4G28780 | NA           | _2 78 | 0.00 | AT5G05130 | NΛ         | 1.45  | 0.00 |
| AT4028780 |              | -2.78 | 0.00 | AT5G05220 |            | 4.10  | 0.00 |
| AT4G29050 |              | -1.24 | 0.00 | AT5G05400 |            | 2.00  | 0.00 |
| AT4G29050 |              | -2.25 | 0.00 | AT5G05410 |            | 2.77  | 0.00 |
| AT4G29110 | NA           | -1.28 | 0.00 | A15G05480 |            | 1.33  | 0.00 |
| AT4G29140 | ADS1         | -1.30 | 0.00 | A15G05490 | ATREC8     | 1.90  | 0.00 |
| AT4G29270 | NA           | -1.30 | 0.00 | AT5G05960 | NA         | 1.36  | 0.00 |
| AT4G29310 | NA           | -2.09 | 0.00 | AT5G06510 | NF-YA10    | 1.65  | 0.00 |
| AT4G29610 | NA           | -2.24 | 0.00 | AT5G06540 | NA         | 1.26  | 0.00 |
| AT4G29690 | NA           | -2.03 | 0.00 | AT5G06760 | AtLEA4-5   | 4.65  | 0.00 |
| AT4G29700 | NA           | -1.91 | 0.00 | AT5G06820 | SRF2       | 1.28  | 0.00 |
| AT4G29740 | ATCKX4       | -3.50 | 0.00 | AT5G06990 | NA         | 1.17  | 0.00 |
| AT4G29905 | NA           | -1.01 | 0.00 | AT5G07080 | NA         | 1.10  | 0.00 |
| AT4G30010 | NA           | -1.18 | 0.00 | AT5G07330 | NA         | 6.63  | 0.00 |
| AT4G30020 | NA           | -1.14 | 0.00 | AT5G07500 | PEI1       | 1.12  | 0.00 |

| AT4G30110 | ATHMA2    | -1.02 | 0.00 | AT5G07880  | ATSNAP29    | 1.31                 | 0.00 |
|-----------|-----------|-------|------|------------|-------------|----------------------|------|
| AT4G30140 | CDEF1     | -1.95 | 0.00 | AT5G07920  | ATDGK1      | 1.32                 | 0.00 |
| AT4G30190 | AHA2      | -1.29 | 0.00 | AT5G08230  | NA          | 1.40                 | 0.00 |
| AT4G30270 | MERI-5    | -1.32 | 0.00 | AT5G08400  | NA          | 1.19                 | 0.00 |
| AT4G30280 | ATXTH18   | -1.44 | 0.00 | AT5G09480  | NA          | 1.80                 | 0.00 |
| AT4G30610 | BRS1      | -2.44 | 0.00 | AT5G09530  | PELPK1      | 1.32                 | 0.00 |
| AT4G30650 | NA        | -1.70 | 0.00 | AT5G09930  | ABCF2       | 1.85                 | 0.00 |
| AT4G30860 | ASHR3     | -1.58 | 0.00 | AT5G10080  | NA          | 1.47                 | 0.00 |
| AT4G31500 | ATR4      | -2.19 | 0.00 | AT5G10100  | ТРРІ        | 1 36                 | 0.00 |
| AT/G31590 |           | -1.25 | 0.00 | AT5G101/0  | ΔGI 25      | 1.06                 | 0.00 |
| AT/G31805 | NA        | -1.23 | 0.00 | AT5G10300  | ATMESS      | 1.00                 | 0.00 |
| AT4G31803 |           | -1.23 | 0.00 | AT5G10605  | NA NA       | 1.00                 | 0.00 |
| AT4031040 | ATCOVZ    | -3.10 | 0.00 | AT5G10035  |             | 1.77                 | 0.00 |
| AT4G31870 | AIGPX/    | -1.43 | 0.00 | AT5G10930  |             | 2.45                 | 0.00 |
| A14G32000 | NA        | -1.18 | 0.00 | A15G10946  | NA          | 2.52                 | 0.00 |
| A14G32090 | NA        | -1.47 | 0.01 | A15G11090  | NA          | 2.13                 | 0.00 |
| AT4G32280 | IAA29     | -1.76 | 0.00 | AT5G11100  | ATSYTD      | 1.16                 | 0.00 |
| AT4G32800 | NA        | -1.14 | 0.00 | AT5G11110  | ATSPS2F     | 1.22                 | 0.00 |
| AT4G32890 | GATA9     | -1.47 | 0.00 | AT5G12020  | HSP17.6II   | 6.92                 | 0.00 |
| AT4G33220 | ATPME44   | -1.24 | 0.00 | AT5G12030  | AT-HSP17.6A | 8.90                 | 0.00 |
| AT4G33270 | AtCDC20.1 | -1.12 | 0.00 | AT5G12840  | ATHAP2A     | 1.37                 | 0.00 |
| AT4G33360 | FLDH      | -1.95 | 0.00 | AT5G12870  | ATMYB46     | 1.41                 | 0.00 |
| AT4G33390 | NA        | -1.38 | 0.00 | AT5G13170  | AtSWEET15   | 5.69                 | 0.00 |
| AT4G33470 | ATHDA14   | -1.15 | 0.00 | AT5G13330  | Rap2.6L     | 1.58                 | 0.00 |
| AT4G33625 | NA        | -1.15 | 0.00 | AT5G13820  | ATBP-1      | 1.50                 | 0.00 |
| AT4G34220 | NA        | -1.09 | 0.00 | AT5G13880  | NA          | 1.42                 | 0.00 |
| AT4G34550 | NA        | -2.43 | 0.00 | AT5G14800  | AT-P5C1     | 1.55                 | 0.00 |
| AT4G34730 | NA        | -1.47 | 0.00 | AT5G15190  | NA          | 2.93                 | 0.00 |
| AT4G34740 | ASE2      | -1 40 | 0.00 | AT5G15250  | ATETSH6     | 8 52                 | 0.00 |
| AT4G34750 | NΔ        | -1.80 | 0.00 | AT5G15254  | ΝΔ          | 1.62                 | 0.00 |
| AT/G3/760 | ΝΔ        | -1 18 | 0.00 | AT5G15270  | NΔ          | 1.02                 | 0.00 |
| AT4624770 | NA        | 1.10  | 0.00 | AT5G15270  | NA          | 2 17                 | 0.00 |
| AT4C24700 |           | 2.20  | 0.00 | AT5G15620  |             | 3.17<br>1 2 <i>1</i> | 0.00 |
| AT4G54790 |           | -2.20 | 0.00 | AT5015050  |             | 1.54                 | 0.00 |
| AT4G34810 |           | -1.44 | 0.00 | AT5G15800  | ATPCIVIE    | 1.88                 | 0.00 |
| A14G34881 |           | -1.33 | 0.00 | AT5G16110  | NA          | 1.34                 | 0.00 |
| A14G34930 | NA        | -1.90 | 0.00 | A15G16200  | NA          | 2.10                 | 0.00 |
| A14G34950 | NA        | -1.67 | 0.00 | A15G16550  | NA          | 1.02                 | 0.00 |
| A14G35030 | NA        | -1.27 | 0.00 | A15G16600  | AtmyB43     | 2.91                 | 0.00 |
| AT4G35060 | HIPP25    | -1.32 | 0.00 | AT5G16960  | NA          | 1.17                 | 0.00 |
| AT4G35180 | LHT7      | -1.53 | 0.00 | AT5G17220  | ATGSTF12    | 1.17                 | 0.01 |
| AT4G35250 | NA        | -1.33 | 0.00 | AT5G17420  | ATCESA7     | 1.22                 | 0.00 |
| AT4G35350 | XCP1      | -1.26 | 0.00 | AT5G17850  | NA          | 1.10                 | 0.00 |
| AT4G35620 | CYCB2;2   | -1.39 | 0.00 | AT5G18065  | NA          | 1.42                 | 0.00 |
| AT4G35630 | PSAT      | -1.58 | 0.00 | AT5G18340  | NA          | 2.57                 | 0.00 |
| AT4G35770 | ATSEN1    | -2.27 | 0.00 | AT5G18930  | BUD2        | 1.35                 | 0.00 |
| AT4G36030 | ARO3      | -1.87 | 0.00 | AT5G18980  | NA          | 1.16                 | 0.00 |
| AT4G36110 | NA        | -1.77 | 0.00 | AT5G19470  | NUDT24      | 3.32                 | 0.00 |
| AT4G36230 | NA        | -1.10 | 0.00 | AT5G19740  | NA          | 1.53                 | 0.00 |
| AT4G36250 | ALDH3F1   | -1.15 | 0.00 | AT5G19875  | NA          | 3.60                 | 0.00 |
| AT4G36410 | UBC17     | -1.52 | 0.00 | AT5G19890  | NA          | 1.35                 | 0.00 |
| AT4G36500 | NA        | -2.32 | 0.00 | AT5G20520  | WAV2        | 1.13                 | 0.00 |
| AT4G36540 | BFF2      | -1 90 | 0.00 | AT5G20930  | TSI         | 1 07                 | 0.00 |
| AT4G36570 |           | -1 51 | 0.00 | AT5G22000  | RHF2A       | 1.63                 | 0.00 |
| AT/G36670 |           | -2 11 | 0.00 | AT5G222000 | FSO6        | 1 36                 | 0.00 |
| AT4G27240 |           | 2.11  | 0.00 | AT5G22460  | NA          | 1.50                 | 0.00 |
| AT4G37240 |           | -3.29 | 0.00 | AT5G22400  |             | 1.55                 | 0.00 |
| AT4G57400 |           | -1.40 | 0.00 | AT5022540  |             | 1.11                 | 0.00 |
| A1403/45U | AUPIO     | -1.47 | 0.00 | ATE C220C0 |             | 1.55                 | 0.00 |
| A14G37490 |           | -1.03 | 0.00 | A15G22860  |             | 1.05                 | 0.00 |
| A14G3/610 | B15       | -1./3 | 0.00 | A15G23050  | AAE1/       | 1.30                 | 0.00 |
| A14G37630 | CYCD5;1   | -1.55 | 0.00 | A15G23230  |             | 1.45                 | 0.00 |
| AT4G37700 | NA        | -1.38 | 0.00 | AT5G24090  | ATCHIA      | 1.48                 | 0.00 |
| AT4G37800 | XTH7      | -1.58 | 0.00 | AT5G24155  | NA          | 2.16                 | 0.00 |
| AT4G38420 | sks9      | -1.94 | 0.00 | AT5G24770  | ATVSP2      | 1.82                 | 0.00 |

|            |            |               |      | 1         |           |               |      |
|------------|------------|---------------|------|-----------|-----------|---------------|------|
| AT4G38510  | NA         | -1.13         | 0.00 | AT5G24800 | ATBZIP9   | 1.36          | 0.00 |
| AT4G38540  | NA         | -1.51         | 0.00 | AT5G25110 | CIPK25    | 1.71          | 0.00 |
| AT4G38620  | ATMYB4     | -1.26         | 0.00 | AT5G25220 | KNAT3     | 1.56          | 0.00 |
| AT4G38660  | NA         | -1.27         | 0.00 | AT5G25240 | NA        | 1.20          | 0.00 |
| AT4G38770  | ATPRP4     | -1.11         | 0.00 | AT5G25280 | NA        | 3.55          | 0.00 |
| AT4G38781  | NA         | -1.67         | 0.01 | AT5G25390 | SHN3      | 2.15          | 0.00 |
| AT4G38850  | ATSAUR15   | -1.91         | 0.00 | AT5G25450 | NA        | 5.72          | 0.00 |
| AT4G38860  | NA         | -1.83         | 0.00 | AT5G25560 | NA        | 1.47          | 0.00 |
| AT4G39030  | EDS5       | -2.32         | 0.00 | AT5G25610 | ATRD22    | 1.52          | 0.00 |
| AT4G39050  | NA         | -1.13         | 0.00 | AT5G25620 | YUC6      | 1.30          | 0.00 |
| AT4G39120  | HISN7      | -1.09         | 0.00 | AT5G25754 | NA        | 1.11          | 0.00 |
| AT4G39320  | NA         | -1.70         | 0.00 | AT5G26180 | NA        | 1.34          | 0.00 |
| AT/G39380  | NΔ         | -1 52         | 0.00 | AT5G27460 | NΔ        | 1.07          | 0.00 |
| AT46305300 | NA         | _1.92         | 0.00 | AT5G27660 | NA        | 1.67          | 0.00 |
| AT4039030  | CCT1       | -1.02         | 0.00 | AT5G27000 |           | 2.07          | 0.00 |
| AT4G59040  |            | -2.10         | 0.00 | AT5G28080 |           | 2.07          | 0.00 |
| AT4G39710  |            | -1.30         | 0.00 | AT5G30500 | GOISTO    | 2.14          | 0.00 |
| AT4G39770  |            | -1.81         | 0.00 | A15G35320 | NA        | 2.08          | 0.00 |
| A14G39780  | NA         | -2.42         | 0.00 | A15G35560 | NA        | 1.62          | 0.00 |
| A14G39795  | NA         | -2.46         | 0.00 | A15G35660 | NA        | 3.70          | 0.00 |
| AT4G39940  | AKN2       | -1.14         | 0.00 | AT5G37260 | CIR1      | 1.58          | 0.00 |
| AT4G39950  | CYP79B2    | -2.01         | 0.00 | AT5G37300 | WSD1      | 2.14          | 0.00 |
| AT4G39960  | NA         | -1.12         | 0.00 | AT5G37340 | NA        | 1.64          | 0.00 |
| AT4G39970  | NA         | -1.16         | 0.00 | AT5G37440 | NA        | 1.14          | 0.00 |
| AT4G39990  | ATGB3      | -1.10         | 0.00 | AT5G37478 | NA        | 1.02          | 0.00 |
| AT5G01015  | NA         | -2.62         | 0.00 | AT5G37540 | NA        | 1.49          | 0.00 |
| AT5G01170  | NA         | -1.43         | 0.00 | AT5G37550 | NA        | 1.09          | 0.00 |
| AT5G01240  | LAX1       | -1.10         | 0.00 | AT5G37670 | NA        | 4.04          | 0.00 |
| AT5G01420  | NA         | -1.21         | 0.00 | AT5G38730 | NA        | 1.15          | 0.00 |
| AT5G01500  | TAAC       | -1.50         | 0.00 | AT5G39330 | NA        | 1.20          | 0.00 |
| AT5G01790  | NA         | -1.37         | 0.00 | AT5G39520 | NA        | 1.57          | 0.00 |
| AT5G01870  | NA         | -1.72         | 0.00 | AT5G39640 | NA        | 1.03          | 0.00 |
| AT5G01900  | ATWRKY62   | -1.80         | 0.00 | AT5G39740 | OLI7      | 2.06          | 0.00 |
| AT5G01910  | NA         | -1.72         | 0.00 | AT5G39850 | NA        | 1.91          | 0.00 |
| AT5G02090  | NA         | -1.26         | 0.00 | AT5G39940 | NA        | 1 24          | 0.00 |
| AT5G02540  | NΔ         | -1.60         | 0.00 | AT5G40020 | NΔ        | 1 39          | 0.00 |
| AT5G02570  | NΔ         | -1 51         | 0.00 | AT5G/0382 | NΔ        | 3.60          | 0.00 |
| AT5002370  |            | 2 72          | 0.00 | AT5G40570 |           | 3.00<br>1 / 2 | 0.00 |
| AT5G02700  |            | -3.73         | 0.00 | AT5G40370 |           | 1.43          | 0.00 |
| AT5G02820  |            | -1.08         | 0.00 | AT5G40790 |           | 4.07          | 0.00 |
| AT5G02890  | NA<br>ind2 | -2.78         | 0.00 | AT5G40800 |           | 2.31          | 0.00 |
| AT5G03040  | Iquz       | -1.24         | 0.00 | AT5G41360 | ATXPBZ    | 1.00          | 0.00 |
| AT5G03120  | NA         | -1.55         | 0.00 | A15G42180 | PER64     | 1.05          | 0.00 |
| AT5G03300  | ADK2       | -1.12         | 0.00 | AT5G42200 | NA        | 1.00          | 0.00 |
| AT5G03350  | NA         | -3.80         | 0.00 | AT5G42290 | NA        | 2.91          | 0.01 |
| AT5G03390  | NA         | -1.56         | 0.00 | AT5G42370 | NA        | 1.44          | 0.00 |
| AT5G03545  | AT4        | -1.05         | 0.03 | AT5G42820 | ATU2AF35B | 1.19          | 0.00 |
| AT5G03670  | NA         | -2.10         | 0.00 | AT5G42900 | COR27     | 1.53          | 0.00 |
| AT5G03870  | NA         | -2.10         | 0.00 | AT5G42965 | NA        | 2.53          | 0.00 |
| AT5G03995  | NA         | -1.64         | 0.00 | AT5G43150 | NA        | 1.98          | 0.00 |
| AT5G04160  | NA         | -1.90         | 0.00 | AT5G43290 | ATWRKY49  | 1.62          | 0.00 |
| AT5G04230  | ATPAL3     | -1.15         | 0.00 | AT5G43300 | AtGDPD3   | 2.21          | 0.00 |
| AT5G04310  | NA         | -1.54         | 0.00 | AT5G43400 | NA        | 1.22          | 0.00 |
| AT5G04620  | ATBIOF     | -1.55         | 0.00 | AT5G43620 | NA        | 1.74          | 0.00 |
| AT5G04820  | ATOFP13    | -1.11         | 0.00 | AT5G43660 | NA        | 1.08          | 0.00 |
| AT5G05240  | NA         | -1.69         | 0.00 | AT5G43730 | NA        | 1.10          | 0.00 |
| AT5G05250  | NA         | -2.59         | 0.00 | AT5G43840 | AT-HSFA6A | 3.91          | 0.00 |
| AT5605300  | NA         | -1.45         | 0.00 | AT5G43850 | ARD4      | 1.67          | 0.00 |
| AT5G05///0 | PYI 5      | -1 30         | 0.00 | AT5G43920 | NA        | 1 22          | 0.00 |
| ΔΤ5605510  | NΔ         | -1 15         | 0.00 | ΔΤ5G4/210 | NΔ        | 1 90          | 0.00 |
| ΔΤ5605510  | ΔτΕΔΠΧ     | -2 67         | 0.00 | ΔΤ5G1/660 | NΔ        | 1 21          | 0.01 |
| ΔΤ5605720  | ΔMT1       | _1 10         | 0.00 | AT5G1/000 | NA        | 1 35          | 0.00 |
| AT5605730  |            | -1 //         | 0.00 | AT5G/E210 |           | 1.55          | 0.00 |
| ATECOERCO  |            | -1.44<br>1.21 | 0.00 | AT5045510 |           | 1.10          | 0.00 |
| UDACODCIN  | 001/002    | -1.21         | 0.00 | A13043030 | INA       | 4.33          | 0.00 |

| AT5G05890 | NA         | -2.05 | 0.00 | AT5G45690 | NA       | 2.39 | 0.02 |
|-----------|------------|-------|------|-----------|----------|------|------|
| AT5G05940 | ATROPGEF5  | -1.03 | 0.00 | AT5G46460 | NA       | 1.55 | 0.00 |
| AT5G06060 | NA         | -1.32 | 0.00 | AT5G46490 | NA       | 1.94 | 0.00 |
| AT5G06570 | NA         | -1.71 | 0.00 | AT5G47020 | NA       | 1.02 | 0.00 |
| AT5G06870 | ATPGIP2    | -2.00 | 0.00 | AT5G47160 | NA       | 2.37 | 0.00 |
| AT5G07000 | ATST2B     | -1.34 | 0.00 | AT5G47530 | NA       | 1.47 | 0.00 |
| AT5G07010 | ATST2A     | -2.33 | 0.00 | AT5G47550 | NA       | 3.68 | 0.00 |
| AT5G07100 | WRKY26     | -2.96 | 0.00 | AT5G47560 | ATSDAT   | 1.35 | 0.00 |
| AT5G07110 | PRA1.B6    | -2.14 | 0.00 | AT5G47590 | NA       | 1.04 | 0.00 |
| AT5G07460 | ΔΤΜSRΔ2    | -1 19 | 0.00 | AT5G47600 | NΔ       | 2 97 | 0.00 |
| AT5G07570 | NΔ         | -2.86 | 0.00 | AT5G47610 | NΔ       | 3 7/ | 0.00 |
| AT5G07580 | NA         | _1.84 | 0.01 | AT5G47640 |          | 1 1/ | 0.00 |
| ATEC07500 |            | -1.04 | 0.00 | AT5047040 |          | 1.14 | 0.00 |
| AT5G07590 |            | -1.42 | 0.00 | AT5G47070 |          | 1.09 | 0.00 |
| AT5G07720 |            | -2.01 | 0.00 | A15G47830 | NA       | 2.18 | 0.00 |
| A15G08000 | E13L3      | -1.17 | 0.00 | A15G48470 | NA       | 1.82 | 0.00 |
| A15G08020 | ATRPA/0B   | -2.64 | 0.00 | A15G48480 | NA       | 1.26 | 0.00 |
| AT5G08050 | NA         | -1.13 | 0.00 | AT5G48650 | NA       | 1.61 | 0.00 |
| AT5G08100 | ASPGA1     | -1.17 | 0.00 | AT5G48850 | ATSDI1   | 1.25 | 0.00 |
| AT5G08260 | scpl35     | -1.56 | 0.00 | AT5G49290 | ATRLP56  | 1.14 | 0.00 |
| AT5G08570 | NA         | -1.28 | 0.00 | AT5G49700 | NA       | 1.21 | 0.00 |
| AT5G08640 | ATFLS1     | -2.32 | 0.00 | AT5G49990 | NA       | 2.24 | 0.00 |
| AT5G09240 | NA         | -1.37 | 0.00 | AT5G50240 | AtPIMT2  | 2.00 | 0.00 |
| AT5G09470 | DIC3       | -2.91 | 0.00 | AT5G50260 | CEP1     | 1.02 | 0.00 |
| AT5G09870 | CESA5      | -1.02 | 0.00 | AT5G50360 | NA       | 4.96 | 0.00 |
| AT5G10170 | ATMIPS3    | -1.03 | 0.00 | AT5G51170 | NA       | 1.72 | 0.00 |
| AT5G10220 | ANN6       | -1.23 | 0.00 | AT5G51440 | NA       | 6.42 | 0.00 |
| AT5G10260 | AtRABH1e   | -2.11 | 0.00 | AT5G51620 | NA       | 1.30 | 0.00 |
| AT5G10390 | NA         | -3 45 | 0.00 | AT5G51680 | NA       | 2 42 | 0.00 |
| AT5G10/00 | NΔ         | -2.03 | 0.00 | AT5G51890 | NΔ       | 2.42 | 0.00 |
| AT5G10760 | NA         | -1.86 | 0.00 | AT5G52200 | 1 1165   | 2.10 | 0.00 |
| ATEC10770 |            | -1.00 | 0.00 | AT5G52500 |          | 2.04 | 0.00 |
| AT5G10770 |            | -1.55 | 0.00 | AT5052590 |          | 2.52 | 0.00 |
| AT5G10840 |            | -1.23 | 0.00 | AT5G52570 |          | 2.31 | 0.00 |
| A15G11000 | NA         | -1.07 | 0.00 | A15G52640 | ATHS83   | 5.81 | 0.00 |
| A15G11230 | NA         | -1.02 | 0.00 | A15G53090 | NA       | 1.60 | 0.00 |
| AI5G11410 | NA         | -1.40 | 0.00 | A15G53120 | ATSPDS3  | 1.27 | 0.00 |
| AT5G11420 | NA         | -1.33 | 0.00 | AT5G53710 | NA       | 4.47 | 0.00 |
| AT5G11610 | NA         | -1.46 | 0.00 | AT5G53730 | NA       | 1.33 | 0.00 |
| AT5G11670 | ATNADP-ME2 | -1.13 | 0.00 | AT5G53870 | AtENODL1 | 2.98 | 0.00 |
| AT5G11920 | AtcwINV6   | -1.12 | 0.00 | AT5G54080 | HGO      | 1.46 | 0.00 |
| AT5G12130 | ATTERC     | -1.14 | 0.00 | AT5G54165 | NA       | 4.58 | 0.00 |
| AT5G12470 | NA         | -2.18 | 0.00 | AT5G54870 | NA       | 1.02 | 0.00 |
| AT5G12860 | DiT1       | -1.13 | 0.00 | AT5G54950 | NA       | 1.02 | 0.00 |
| AT5G12910 | NA         | -3.60 | 0.00 | AT5G55750 | NA       | 1.02 | 0.04 |
| AT5G12940 | NA         | -2.22 | 0.00 | AT5G56160 | NA       | 1.03 | 0.00 |
| AT5G13060 | ABAP1      | -2.05 | 0.00 | AT5G56380 | NA       | 1.47 | 0.00 |
| AT5G13430 | NA         | -1.08 | 0.00 | AT5G56520 | NA       | 1.22 | 0.00 |
| AT5G14120 | NA         | -1.30 | 0.00 | AT5G56540 | AGP14    | 1.28 | 0.00 |
| AT5G14200 | ATIMD1     | -1.10 | 0.00 | AT5G56600 | PFN3     | 1.38 | 0.00 |
| AT5G14330 | NA         | -1.46 | 0.00 | AT5G57040 | NA       | 1.08 | 0.00 |
| AT5G14360 | NΔ         | -1.80 | 0.00 | AT5G57050 | ARI2     | 1.68 | 0.00 |
| AT5G14570 | ATNET2 7   | -1 10 | 0.00 | AT5G57100 | NA       | 1 10 | 0.00 |
| AT5G14570 | NA         | -1.10 | 0.00 | AT5G57150 |          | 1.15 | 0.00 |
| ATEC14740 |            | -1.40 | 0.00 | AT5G57150 |          | 1.70 | 0.00 |
| AT5014740 |            | -1.00 | 0.00 | ATSG57500 |          | 1.00 | 0.02 |
| A1501535U |            | -1.51 | 0.00 | A1303/305 |          | 1.00 | 0.00 |
| A15G15530 | BUUPZ      | -2.20 | 0.00 | A15657785 | INA      | 1.07 | 0.00 |
| A15G15/60 | NA         | -1.36 | 0.00 | A15G5//90 | NA       | 2.21 | 0.00 |
| AI5G15770 | AtGNA1     | -1.28 | 0.00 | A15G57900 | SKIP1    | 1.25 | 0.00 |
| AT5G16030 | NA         | -1.99 | 0.00 | AT5G57910 | NA       | 1.33 | 0.00 |
| AT5G16080 | AtCXE17    | -1.43 | 0.00 | AT5G58070 | ATTIL    | 1.29 | 0.00 |
| AT5G16170 | NA         | -1.53 | 0.00 | AT5G58110 | NA       | 1.91 | 0.00 |
| AT5G16190 | ATCSLA11   | -1.20 | 0.00 | AT5G58470 | TAF15b   | 1.28 | 0.00 |
| AT5G16230 | NA         | -1.38 | 0.00 | AT5G58590 | RANBP1   | 1.97 | 0.00 |

| ATEC162E0 |            | 2.02  | 0.00 |           |           | 1 22         | 0.00 |
|-----------|------------|-------|------|-----------|-----------|--------------|------|
| AT5G16250 | NA         | -2.93 | 0.00 | A15G58000 | NA        | 1.32         | 0.00 |
| AT5G16350 | NA<br>LDD1 | -1.67 | 0.00 | A15G58770 | NA        | 2.03         | 0.00 |
| AT5G16590 | LKK1       | -1.40 | 0.00 | A15G58860 | Сүрөб     | 1.05         | 0.00 |
| A15G16940 | NA         | -1.12 | 0.00 | A15G58920 | NA        | 1.10         | 0.00 |
| AT5G17030 | UGT78D3    | -1.07 | 0.01 | AT5G59220 | HAI1      | 6.41         | 0.00 |
| AT5G17160 | NA         | -2.24 | 0.00 | AT5G59310 | LTP4      | 7.60         | 0.00 |
| AT5G17630 | NA         | -1.10 | 0.00 | AT5G59320 | LTP3      | 5.86         | 0.00 |
| AT5G17670 | NA         | -1.24 | 0.00 | AT5G59330 | NA        | 5.81         | 0.00 |
| AT5G17920 | ATCIMS     | -1.46 | 0.00 | AT5G59440 | ATTMPK.1  | 1.29         | 0.00 |
| AT5G18020 | NA         | -1.38 | 0.00 | AT5G59570 | BOA       | 1.55         | 0.00 |
| AT5G18030 | NA         | -1.23 | 0.00 | AT5G59720 | HSP18.2   | 8.06         | 0.00 |
| AT5G18050 | NA         | -1.03 | 0.00 | AT5G59845 | NA        | 2.79         | 0.00 |
| AT5G18060 | NA         | -1.01 | 0.00 | AT5G60360 | AALP      | 1.21         | 0.00 |
| AT5G18080 | SAUR24     | -1.01 | 0.00 | AT5G60580 | NA        | 1.74         | 0.00 |
| AT5G18280 | APY2       | -1.32 | 0.00 | AT5G60610 | NA        | 1.40         | 0.00 |
| AT5G18430 | NA         | -2.57 | 0.00 | AT5G60650 | NA        | 1.17         | 0.00 |
| AT5G18470 | NA         | -1.36 | 0.00 | AT5G60910 | AGL8      | 1.34         | 0.00 |
| AT5G18600 | NA         | -1.15 | 0.00 | AT5G61510 | NA        | 1.00         | 0.00 |
| AT5G19110 | NA         | -2.00 | 0.00 | AT5G61820 | NA        | 1 39         | 0.00 |
| AT5G19190 | NΔ         | -2 56 | 0.00 | AT5G61880 | NΔ        | 1.33         | 0.00 |
| AT5G19220 |            | -1 2/ | 0.00 | AT5G61990 | NΔ        | 1.42         | 0.00 |
| AT5G10220 | NA         | 1.24  | 0.00 | AT5G62020 |           | 2.02         | 0.00 |
| AT5G19230 |            | -1.50 | 0.00 | AT5G02020 |           | 5.05<br>E 17 | 0.00 |
| AT5G19240 |            | -1.52 | 0.00 | AT5G62040 |           | 5.17<br>1.25 | 0.00 |
| AT5G19250 |            | -2.43 | 0.00 | AT5G62090 |           | 1.35         | 0.00 |
| AT5G19750 |            | -1.40 | 0.00 | AT5G62130 | NA        | 1.30         | 0.00 |
| AT5G19770 | TUA3       | -1.96 | 0.00 | A15G62150 | NA        | 2.20         | 0.00 |
| AT5G19780 | TUA5       | -1.31 | 0.00 | A15G62190 | PRH75     | 1.22         | 0.00 |
| AT5G19800 | NA         | -1.77 | 0.00 | AT5G62200 | NA        | 1.61         | 0.00 |
| AT5G20030 | NA         | -1.32 | 0.00 | AT5G62470 | ATMYB96   | 1.13         | 0.00 |
| AT5G20110 | NA         | -1.42 | 0.00 | AT5G62480 | ATGSTU9   | 1.23         | 0.00 |
| AT5G20340 | BG5        | -2.78 | 0.01 | AT5G62520 | SRO5      | 1.73         | 0.00 |
| AT5G20630 | ATGER3     | -1.67 | 0.00 | AT5G62575 | SDH7      | 1.20         | 0.00 |
| AT5G20790 | NA         | -2.98 | 0.00 | AT5G63130 | NA        | 1.57         | 0.00 |
| AT5G20820 | NA         | -1.63 | 0.00 | AT5G63160 | BT1       | 1.59         | 0.00 |
| AT5G22110 | ATDPB2     | -1.25 | 0.00 | AT5G63350 | NA        | 3.44         | 0.00 |
| AT5G22140 | NA         | -1.22 | 0.00 | AT5G63370 | NA        | 1.14         | 0.00 |
| AT5G22300 | AtNIT4     | -1.52 | 0.00 | AT5G63830 | NA        | 1.44         | 0.00 |
| AT5G22310 | NA         | -1.13 | 0.00 | AT5G63930 | NA        | 1.08         | 0.00 |
| AT5G22390 | NA         | -1.69 | 0.00 | AT5G64180 | NA        | 1.36         | 0.00 |
| AT5G22520 | NA         | -1.86 | 0.00 | AT5G64430 | NA        | 1.09         | 0.00 |
| AT5G22530 | NA         | -1.03 | 0.00 | AT5G64450 | NA        | 1.39         | 0.00 |
| AT5G22570 | ATWRKY38   | -3.11 | 0.00 | AT5G64510 | TIN1      | 3.54         | 0.00 |
| AT5G22580 | NA         | -1.92 | 0.00 | AT5G64710 | NA        | 1.54         | 0.00 |
| AT5G22880 | H2B        | -2.74 | 0.00 | AT5G64870 | NA        | 1.51         | 0.00 |
| AT5G22940 | F8H        | -1.02 | 0.00 | AT5G65040 | NA        | 1.27         | 0.00 |
| AT5G23020 | IMS2       | -1.18 | 0.00 | AT5G65140 | TPPI      | 1.45         | 0.00 |
| AT5G23210 | SCPI 34    | -1 19 | 0.00 | AT5G65380 | NΔ        | 1.06         | 0.00 |
| AT5G23400 | NA         | -1 69 | 0.00 | AT5G65850 | NΔ        | 1 39         | 0.00 |
| AT5G23400 | HMGR6      | -1.05 | 0.00 | AT5G66052 |           | 1.39         | 0.00 |
| AT5G23420 |            | 1.31  | 0.00 | AT5G66000 |           | 1.72         | 0.00 |
| AT5025550 | NA         | 1.20  | 0.00 | ATEC66110 |           | 2.75         | 0.00 |
| AT5G25640 |            | -1.05 | 0.00 | AT5G00110 |           | 3.05         | 0.00 |
| AT5G23910 |            | -2.29 | 0.00 | AT5G66240 |           | 1.29         | 0.00 |
| AT5G24105 | AGP41      | -1.60 | 0.00 | AT5G66400 |           | 3.50         | 0.00 |
| A15G24200 |            | -3.43 | 0.00 | A15G66460 | Ativian / | 2.49         | 0.00 |
| A15G24420 | PGL5       | -1.69 | 0.00 | A15G66480 | NA        | 1.98         | 0.00 |
| A15G24570 | NA         | -1.16 | 0.00 | A15G66690 | UGT/2E2   | 1.64         | 0.00 |
| AT5G24640 | NA         | -1.06 | 0.00 | AT5G66960 | NA        | 1.65         | 0.00 |
| AT5G24655 | LSU4       | -1.45 | 0.00 | AT5G67110 | ALC       | 1.99         | 0.00 |
| AT5G24850 | CRY3       | -1.96 | 0.00 | AT5G67310 | CYP81G1   | 1.15         | 0.00 |
| AT5G25090 | AtENODL13  | -2.58 | 0.00 | AT5G67610 | NA        | 1.57         | 0.00 |
| AT5G25190 | ESE3       | -1.76 | 0.00 | AT1G01660 | NA        | 1.30         | 0.00 |
| AT5G25250 | NA         | -1.69 | 0.00 | AT1G01725 | NA        | 1.14         | 0.00 |

| AT5G25370 | PLDALPHA3     | -1.06 | 0.00 | AT1G01920 | NA          | 1.12 | 0.00 |
|-----------|---------------|-------|------|-----------|-------------|------|------|
| AT5G25460 | NA            | -1.05 | 0.00 | AT1G02300 | NA          | 1.00 | 0.00 |
| AT5G25980 | BGLU37        | -1.00 | 0.00 | AT1G03170 | FAF2        | 1.40 | 0.00 |
| AT5G26000 | AtTGG1        | -1.07 | 0.00 | AT1G03360 | ATRRP4      | 1.16 | 0.00 |
| AT5G26170 | ATWRKY50      | -1.39 | 0.00 | AT1G04130 | AtTPR2      | 1.06 | 0.00 |
| AT5G26220 | NA            | -1.32 | 0.00 | AT1G04980 | ATPDI10     | 1.13 | 0.00 |
| AT5G26230 | MAKR1         | -1 48 | 0.00 | AT1G05730 | NA          | 1 23 | 0.00 |
| AT5G26290 | NΔ            | -3.00 | 0.00 | AT1G05970 | NΔ          | 1 18 | 0.00 |
| AT5G26667 | DVR6          | _1 17 | 0.00 | AT1607830 | NΛ          | 1.10 | 0.00 |
| ATEC26670 |               | -1.17 | 0.00 | AT1C07830 |             | 1.09 | 0.00 |
| AT5G20070 |               | -1.00 | 0.00 | AT1G09710 |             | 1.14 | 0.00 |
| A15G26690 | NA            | -2.55 | 0.00 | AT1G10800 |             | 1.04 | 0.00 |
| A15G26850 | NA            | -1.49 | 0.00 | AT1G10960 | AIFDI       | 1.45 | 0.00 |
| A15G27290 | NA            | -1.28 | 0.00 | AT1G11230 | NA          | 1.08 | 0.00 |
| AT5G27380 | GSH2          | -1.55 | 0.00 | AT1G11475 | NRPB10      | 1.15 | 0.00 |
| AT5G27780 | NA            | -1.05 | 0.00 | AT1G13080 | CYP71B2     | 1.05 | 0.00 |
| AT5G28050 | NA            | -1.08 | 0.00 | AT1G14360 | ATUTR3      | 1.33 | 0.00 |
| AT5G28290 | ATNEK3        | -1.05 | 0.00 | AT1G15830 | NA          | 1.14 | 0.00 |
| AT5G28630 | NA            | -1.56 | 0.00 | AT1G15850 | NA          | 1.03 | 0.00 |
| AT5G28770 | AtbZIP63      | -1.08 | 0.00 | AT1G18800 | NRP2        | 1.17 | 0.00 |
| AT5G33370 | NA            | -2.79 | 0.00 | AT1G19160 | NA          | 1.02 | 0.02 |
| AT5G35735 | NA            | -1.15 | 0.00 | AT1G19610 | LCR78       | 1.24 | 0.00 |
| AT5G35740 | NA            | -2.67 | 0.00 | AT1G21140 | NA          | 1.08 | 0.00 |
| AT5G35970 | NA            | -1.69 | 0.00 | AT1G28290 | AGP31       | 1.01 | 0.00 |
| AT5G36120 | CCB3          | -1.03 | 0.00 | AT1G28430 | CYP705A24   | 1.06 | 0.00 |
| AT5G36890 | BGI U42       | -1.03 | 0.00 | AT1G28760 | NA          | 1 14 | 0.00 |
| AT5G38020 | NA            | -1.05 | 0.00 | AT1G20030 | ΝΛ          | 1.14 | 0.00 |
| AT5G28110 |               | -1.90 | 0.00 | AT1G24160 |             | 1.07 | 0.00 |
| AT5G58110 | ASFID         | -1.24 | 0.00 | AT1034100 |             | 1.04 | 0.00 |
| A15G38430 |               | -1.06 | 0.00 | AT1G48970 |             | 1.03 | 0.00 |
| A15G38520 | NA            | -1.07 | 0.00 | AT1G49940 | NA          | 1.01 | 0.00 |
| A15G38690 | NA            | -1.62 | 0.00 | AT1G51670 | NA          | 1.04 | 0.00 |
| A15G38930 | NA            | -1.89 | 0.00 | AT1G54250 | ATRPABC16.5 | 1.27 | 0.00 |
| AT5G38940 | NA            | -2.19 | 0.00 | AT1G54310 | NA          | 1.21 | 0.00 |
| AT5G38970 | ATBR6OX       | -1.01 | 0.00 | AT1G56650 | ATMYB75     | 1.27 | 0.00 |
| AT5G39240 | NA            | -1.79 | 0.00 | AT1G58150 | NA          | 1.20 | 0.00 |
| AT5G39320 | NA            | -2.46 | 0.00 | AT1G58170 | NA          | 1.66 | 0.00 |
| AT5G39550 | ORTH1         | -1.75 | 0.00 | AT1G61620 | NA          | 1.03 | 0.00 |
| AT5G39670 | NA            | -1.95 | 0.00 | AT1G62975 | NA          | 1.10 | 0.00 |
| AT5G39760 | AtHB23        | -1.08 | 0.00 | AT1G64600 | NA          | 1.13 | 0.00 |
| AT5G39860 | BHLH136       | -2.37 | 0.00 | AT1G64720 | CP5         | 1.17 | 0.00 |
| AT5G40070 | NA            | -5.46 | 0.01 | AT1G65040 | AtHrd1B     | 1.14 | 0.00 |
| AT5G40180 | NA            | -1.26 | 0.00 | AT1G65490 | NA          | 1.83 | 0.00 |
| AT5G40450 | NA            | -2.14 | 0.00 | AT1G65560 | NA          | 1.09 | 0.00 |
| AT5G40610 | NA            | -1.32 | 0.00 | AT1G68930 | NA          | 1.07 | 0.00 |
| AT5G40730 | AGP24         | -1.67 | 0.00 | AT1G69100 | NA          | 3 98 | 0.00 |
| AT5G41140 | NΔ            | -1 52 | 0.00 | AT1G71790 | NΔ          | 1.09 | 0.00 |
| AT5G/1880 |               | -1 75 | 0.00 | AT1G72645 | NΔ          | 1.05 | 0.00 |
| AT5C42070 |               | 2.75  | 0.00 | AT1G74560 | NDD1        | 1.25 | 0.00 |
| ATEC42240 | ina<br>conl42 | -2.20 | 0.00 | AT1074300 |             | 1.10 | 0.00 |
| AT5G42240 | SCP14Z        | -1.06 | 0.00 | AT1075120 |             | 1.25 | 0.00 |
| A15G42250 | NA            | -1.34 | 0.00 | AT1G76460 |             | 1.10 | 0.00 |
| A15G42530 | NA            | -1.02 | 0.00 | AT1G76610 | NA          | 1.07 | 0.00 |
| A15G42860 | NA            | -1.67 | 0.00 | AT1G76955 | NA          | 1.13 | 0.00 |
| AT5G43250 | NF-YC13       | -1.83 | 0.00 | AT1G77480 | NA          | 1.04 | 0.00 |
| AT5G43520 | NA            | -1.12 | 0.00 | AT1G77885 | NA          | 1.22 | 0.00 |
| AT5G43580 | UPI           | -1.43 | 0.00 | AT1G78680 | ATGGH2      | 1.23 | 0.00 |
| AT5G43630 | TZP           | -1.25 | 0.00 | AT1G78750 | NA          | 1.36 | 0.00 |
| AT5G43745 | NA            | -1.20 | 0.00 | AT1G79310 | AtMC7       | 1.00 | 0.00 |
| AT5G43910 | NA            | -1.25 | 0.00 | AT1G80890 | NA          | 1.04 | 0.00 |
| AT5G44020 | NA            | -3.67 | 0.00 | AT2G02770 | NA          | 1.11 | 0.00 |
| AT5G44110 | ABCI21        | -2.28 | 0.00 | AT2G02810 | ATUTR1      | 1.16 | 0.00 |
| AT5G44130 | FLA13         | -1.55 | 0.00 | AT2G04860 | NA          | 1.01 | 0.00 |
| AT5G44340 | TUB4          | -2.12 | 0.00 | AT2G07772 | NA          | 1.61 | 0.00 |
| AT5G44390 | NA            | -1.41 | 0.00 | AT2G07779 | NA          | 1.53 | 0.00 |

| ATEC 44420 |          | c 22  | 0.00 | 472017525 | N1.0               | 1 1 1 | 0.00 |
|------------|----------|-------|------|-----------|--------------------|-------|------|
| A15G44420  |          | -0.23 | 0.00 | AT2G17525 |                    | 1.11  | 0.00 |
| A15G44520  | NA       | -1.02 | 0.00 | AT2G1/8/0 | ATCSP3             | 1.05  | 0.00 |
| A15G44565  | NA       | -2.26 | 0.00 | AT2G18510 | emb2444            | 1.07  | 0.00 |
| A15G44568  | NA       | -3.64 | 0.00 | AT2G21320 | NA                 | 1.63  | 0.00 |
| AT5G44578  | NA       | -2.08 | 0.00 | AT2G21560 | NA                 | 1.19  | 0.00 |
| AT5G44582  | NA       | -1.17 | 0.00 | AT2G21640 | NA                 | 1.42  | 0.00 |
| AT5G44585  | NA       | -1.12 | 0.00 | AT2G22410 | SLO1               | 1.04  | 0.00 |
| AT5G44620  | CYP706A3 | -1.37 | 0.00 | AT2G23348 | NA                 | 1.24  | 0.00 |
| AT5G44635  | MCM6     | -1.24 | 0.00 | AT2G24100 | ASG1               | 1.21  | 0.00 |
| AT5G44680  | NA       | -1.23 | 0.00 | AT2G24830 | NA                 | 1.05  | 0.00 |
| AT5G45000  | NA       | -2.18 | 0.00 | AT2G29660 | NA                 | 1.05  | 0.00 |
| AT5G45280  | NA       | -2.21 | 0.00 | AT2G30000 | NA                 | 1.00  | 0.00 |
| AT5G45470  | NA       | -1.81 | 0.00 | AT2G30790 | PSBP-2             | 1.09  | 0.00 |
| AT5G45480  | NA       | -1.12 | 0.00 | AT2G31150 | NA                 | 1.32  | 0.00 |
| AT5G45490  | NA       | -1.76 | 0.00 | AT2G31600 | NA                 | 1.10  | 0.00 |
| AT5G45540  | NΔ       | -1 04 | 0.00 | AT2G31830 | NΔ                 | 1 47  | 0.00 |
| AT5G45700  | NA       | -7.88 | 0.00 | AT2G31890 | ΔΤΡΔΡ              | 1 17  | 0.00 |
| AT5G45750  |          | _1 17 | 0.00 | AT2G31050 |                    | 1.17  | 0.00 |
| AT5045750  |          | -1.17 | 0.00 | AT2G32550 |                    | 1.10  | 0.00 |
| AT5G45620  |          | -1.45 | 0.00 | AT2G52650 |                    | 1.10  | 0.00 |
| AT5G45930  |          | -1.12 | 0.00 | AT2G32920 | AIPDIS             | 1.11  | 0.00 |
| A15G45940  | AtNUDXII | -1.40 | 0.00 | AT2G33250 | NA                 | 1.08  | 0.00 |
| A15G45950  | NA       | -1.45 | 0.00 | A12G35430 | NA                 | 1.04  | 0.00 |
| A15G46230  | NA       | -2.13 | 0.00 | AT2G3/180 | PIP2;3             | 1.82  | 0.00 |
| AT5G46240  | KAT1     | -1.36 | 0.00 | AT2G39120 | WTF9               | 1.02  | 0.00 |
| AT5G46330  | FLS2     | -2.07 | 0.00 | AT2G39580 | NA                 | 1.06  | 0.00 |
| AT5G46570  | BSK2     | -1.00 | 0.00 | AT2G41160 | NA                 | 1.25  | 0.00 |
| AT5G46600  | NA       | -1.70 | 0.00 | AT2G42760 | NA                 | 1.05  | 0.00 |
| AT5G46800  | BOU      | -1.15 | 0.00 | AT2G44460 | BGLU28             | 1.19  | 0.00 |
| AT5G46810  | NA       | -1.18 | 0.04 | AT2G44510 | NA                 | 1.04  | 0.00 |
| AT5G47220  | ATERF-2  | -1.23 | 0.00 | AT2G44810 | DAD1               | 2.62  | 0.01 |
| AT5G47360  | NA       | -1.06 | 0.00 | AT2G45510 | CYP704A2           | 1.16  | 0.00 |
| AT5G47380  | NA       | -1.69 | 0.00 | AT2G45900 | NA                 | 1.21  | 0.00 |
| AT5G47910  | ATRBOHD  | -1.24 | 0.00 | AT2G47420 | DIM1A              | 1.11  | 0.00 |
| AT5G48375  | BGLU39   | -1.01 | 0.00 | AT2G47790 | NA                 | 1.09  | 0.00 |
| AT5G48460  | NA       | -1.69 | 0.00 | AT3G01820 | NA                 | 1.08  | 0.00 |
| AT5G48540  | NA       | -1.87 | 0.00 | AT3G05780 | LON3               | 1.09  | 0.00 |
| AT5G48830  | NA       | -1.64 | 0.00 | AT3G05810 | NA                 | 1.10  | 0.00 |
| AT5G48880  | KAT5     | -1 90 | 0.00 | AT3G06710 | NA                 | 1 12  | 0.00 |
| AT5G48900  | NΔ       | -1 44 | 0.00 | AT3G07860 | NΔ                 | 1 23  | 0.00 |
| AT5G/9160  |          | _1 17 | 0.00 | AT3G09700 | NΔ                 | 1.25  | 0.00 |
| AT5G49170  | NA       | _1.27 | 0.00 | AT3G10120 | NA                 | 1.05  | 0.00 |
| AT5C49170  |          | -1.04 | 0.00 | AT3G10120 |                    | 1.10  | 0.00 |
| AT5G49213  |          | -1.80 | 0.00 | AT3G10430 |                    | 1.20  | 0.00 |
| AT5G49400  | ACLD-2   | -1.20 | 0.00 | AT3G10940 | LJFZ<br>Can(Obota) | 1.24  | 0.00 |
| AT5G49470  |          | -1.09 | 0.00 | AT3G13470 |                    | 1.40  | 0.00 |
| A15G49630  |          | -2.23 | 0.00 | AT3G15590 |                    | 1.01  | 0.00 |
| A15G50335  | NA       | -1.09 | 0.00 | AT3G17668 | ENA                | 1.09  | 0.00 |
| A15G50740  | NA       | -1.88 | 0.00 | AT3G19508 | NA                 | 1.19  | 0.00 |
| A15G50915  | NA       | -1.21 | 0.00 | AT3G20180 | NA                 | 1.46  | 0.00 |
| AT5G51560  | NA       | -1.49 | 0.00 | AT3G20440 | BE1                | 1.06  | 0.00 |
| AT5G51850  | NA       | -1.76 | 0.00 | AT3G23637 | DVL21              | 1.91  | 0.00 |
| AT5G52220  | NA       | -1.60 | 0.00 | AT3G23930 | NA                 | 1.25  | 0.00 |
| AT5G52810  | NA       | -1.68 | 0.00 | AT3G24000 | NA                 | 1.02  | 0.00 |
| AT5G52882  | NA       | -2.06 | 0.00 | AT3G25190 | NA                 | 1.15  | 0.00 |
| AT5G52940  | NA       | -1.56 | 0.00 | AT3G25230 | ATFKBP62           | 1.57  | 0.00 |
| AT5G52950  | NA       | -1.23 | 0.00 | AT3G28740 | CYP81D11           | 1.01  | 0.00 |
| AT5G53490  | NA       | -1.40 | 0.00 | AT3G29680 | NA                 | 1.09  | 0.00 |
| AT5G53592  | NA       | -1.09 | 0.00 | AT3G44950 | NA                 | 1.19  | 0.00 |
| AT5G53880  | NA       | -1.34 | 0.00 | AT3G45940 | NA                 | 1.78  | 0.00 |
| AT5G54020  | NA       | -1.86 | 0.00 | AT3G46770 | NA                 | 1.41  | 0.00 |
| AT5G54130  | NA       | -1.23 | 0.00 | AT3G51500 | NA                 | 1.02  | 0.00 |
| AT5G54190  | PORA     | -1.23 | 0.00 | AT3G51910 | AT-HSFA7A          | 1.06  | 0.00 |
| AT5G54330  | NA       | -2.06 | 0.01 | AT3G52670 | NA                 | 1.19  | 0.00 |
|            | · -      |       |      |           |                    |       |      |

| AT5G54490 | PBP1       | -1.48         | 0.00 | AT3G53830 | NA          | 1.46  | 0.00 |
|-----------|------------|---------------|------|-----------|-------------|-------|------|
| AT5G54610 | ANK        | -1.36         | 0.00 | AT3G53940 | NA          | 1.08  | 0.00 |
| AT5G54630 | NA         | -1.17         | 0.00 | AT3G60360 | EDA14       | 1.07  | 0.00 |
| AT5G54670 | ATK3       | -1.07         | 0.00 | AT3G60910 | NA          | 1.01  | 0.00 |
| AT5G54710 | NA         | -2.44         | 0.00 | AT3G62200 | NA          | 1.03  | 0.00 |
| AT5G54720 | NA         | -1.45         | 0.00 | AT3G62560 | NA          | 1.14  | 0.00 |
| AT5G54970 | NA         | -2.15         | 0.00 | AT4G00335 | RHB1A       | 1.09  | 0.00 |
| AT5G55340 | NA         | -1.50         | 0.00 | AT4G00670 | NA          | 1.13  | 0.00 |
| AT5G55460 | NA         | -1.76         | 0.00 | AT4G02980 | ABP         | 1.24  | 0.00 |
| AT5G55480 | GDPDI 4    | -1.08         | 0.00 | AT4G08590 | ORI 1       | 1.03  | 0.00 |
| AT5G55510 | NΔ         | -1.04         | 0.00 | AT/G09150 | NA          | 1.05  | 0.00 |
| AT5G55520 |            | 2 20          | 0.00 | AT4G09150 | NA<br>NA    | 1.12  | 0.00 |
| ATECEEZO  |            | -2.33         | 0.00 | AT4009890 |             | 1.27  | 0.00 |
| A15G55570 |            | -2.27         | 0.00 | AT4G09920 |             | 1.02  | 0.00 |
| A15G55820 |            | -1.41         | 0.00 | AT4G10330 |             | 1.09  | 0.00 |
| A15G55830 | NA         | -1.78         | 0.00 | A14G11240 | 10007       | 1.09  | 0.00 |
| A15G56580 | ANQ1       | -1.90         | 0.00 | A14G12740 | NA          | 1.05  | 0.00 |
| AT5G56720 | c-NAD-MDH3 | -1.47         | 0.00 | AT4G12750 | NA          | 1.10  | 0.00 |
| AT5G56840 | NA         | -2.07         | 0.00 | AT4G13195 | CLE44       | 1.26  | 0.00 |
| AT5G56870 | BGAL4      | -1.75         | 0.00 | AT4G19560 | CYCT1;2     | 1.19  | 0.00 |
| AT5G57123 | NA         | -1.43         | 0.00 | AT4G20020 | NA          | 1.05  | 0.00 |
| AT5G57220 | CYP81F2    | -2.91         | 0.00 | AT4G20140 | GSO1        | 1.08  | 0.00 |
| AT5G57490 | ATVDAC4    | -1.05         | 0.00 | AT4G24260 | ATGH9A3     | 1.03  | 0.00 |
| AT5G57760 | NA         | -3.94         | 0.00 | AT4G25470 | ATCBF2      | 1.07  | 0.00 |
| AT5G57770 | NA         | -1.03         | 0.00 | AT4G25980 | NA          | 1.42  | 0.00 |
| AT5G57780 | P1R1       | -1.14         | 0.00 | AT4G26780 | AR192       | 1.28  | 0.00 |
| AT5G58670 | ATPLC      | -1.31         | 0.00 | AT4G27370 | ATVIIIB     | 1.30  | 0.00 |
| AT5G58890 | AGL82      | -1.72         | 0.01 | AT4G28040 | NA          | 1.02  | 0.00 |
| AT5G58900 | NA         | -1 15         | 0.00 | AT4G29340 | PRF4        | 1 24  | 0.00 |
| AT5G59080 | NΔ         | -1 13         | 0.00 | AT4G32150 | ΔΤ\/ΔΜΡ711  | 1.06  | 0.00 |
| AT5G50240 | NA         | -1 1/         | 0.00 | AT4G32130 |             | 2.08  | 0.00 |
| AT5G50590 |            | 1 72          | 0.00 | AT4G32400 |             | 1 / 2 | 0.00 |
| ATECE0612 |            | -1.72         | 0.00 | AT4G30910 |             | 1.45  | 0.00 |
| AT5059015 |            | -1.08         | 0.00 | AT4G57140 | ATIVIESZU   | 1.17  | 0.00 |
| A15G59670 |            | -2.77         | 0.00 | A14G39550 |             | 1.20  | 0.00 |
| A15G59680 | NA         | -1.27         | 0.00 | A15G01110 |             | 1.01  | 0.00 |
| A15G59690 | NA         | -1.80         | 0.00 | A15G01920 | SIN8        | 1.03  | 0.00 |
| AT5G59870 | HTA6       | -4.16         | 0.00 | AT5G03455 | ACR2        | 1.01  | 0.00 |
| AT5G59970 | NA         | -2.66         | 0.00 | AT5G03720 | AT-HSFA3    | 1.28  | 0.00 |
| AT5G60270 | NA         | -1.34         | 0.00 | AT5G03780 | TRFL10      | 1.08  | 0.00 |
| AT5G60540 | ATPDX2     | -1.18         | 0.00 | AT5G09225 | NA          | 1.00  | 0.00 |
| AT5G60860 | AtRABA1f   | -1.37         | 0.00 | AT5G09570 | NA          | 1.23  | 0.00 |
| AT5G60880 | BASL       | -1.18         | 0.00 | AT5G10530 | NA          | 1.32  | 0.00 |
| AT5G60930 | NA         | -1.81         | 0.00 | AT5G13270 | RARE1       | 1.02  | 0.00 |
| AT5G61000 | ATRPA70D   | -2.74         | 0.00 | AT5G15450 | APG6        | 1.14  | 0.00 |
| AT5G61160 | AACT1      | -4.86         | 0.00 | AT5G17540 | NA          | 1.15  | 0.00 |
| AT5G61440 | ACHT5      | -2.19         | 0.00 | AT5G18820 | Cpn60alpha2 | 1.16  | 0.00 |
| AT5G61570 | NA         | -1.18         | 0.00 | AT5G19473 | NA          | 1.03  | 0.00 |
| AT5G61660 | NA         | -1.07         | 0.00 | AT5G23480 | NA          | 1.35  | 0.00 |
| AT5G62310 | IRE        | -1.37         | 0.02 | AT5G23690 | NA          | 1.03  | 0.00 |
| AT5G62360 | NA         | -3.92         | 0.00 | AT5G24110 | ATWRKY30    | 1.22  | 0.00 |
| AT5G62630 | HIPI 2     | -1.63         | 0.00 | AT5G25475 | NA          | 1.08  | 0.00 |
| AT5G62920 | ARR6       | -1.26         | 0.00 | AT5G26310 | LIGT72E3    | 1 11  | 0.00 |
| AT5G62087 | NA         | -3 10         | 0.00 | AT5G26800 | NA          | 1.11  | 0.00 |
| AT5G62140 |            | -3.10         | 0.00 | AT5G26880 |             | 1.02  | 0.00 |
| ATEC62190 | NA         | -1.50<br>2.6E | 0.00 | ATEC27400 | AGE20       | 1.15  | 0.00 |
| ATEC62690 |            | -2.05         | 0.00 | AT5G57400 |             | 1.04  | 0.00 |
| A15G63680 |            | -1.08         | 0.00 | A15G37970 | NA          | 1.44  | 0.01 |
| A15G63810 | BGALIU     | -1.31         | 0.00 | A15G3/990 | INA         | 1.41  | 0.00 |
| A15G63850 | AAP4       | -1.65         | 0.00 | A15G38070 | NA          | 1.03  | 0.00 |
| A15G63980 | ALX8       | -1.03         | 0.00 | A15G38565 | NA          | 1.07  | 0.00 |
| AT5G64050 | ATERS      | -1.11         | 0.00 | AT5G41400 | NA          | 1.24  | 0.00 |
| AT5G64120 | NA         | -1.81         | 0.00 | AT5G42060 | NA          | 1.22  | 0.00 |
| AT5G64290 | DCT        | -1.32         | 0.00 | AT5G42580 | CYP705A12   | 1.09  | 0.00 |
| AT5G64410 | ATOPT4     | -1.34         | 0.00 | AT5G44780 | NA          | 1.07  | 0.00 |

| AT5G64460 | NA       | -1.11 | 0.00 | AT5G47090 | NA        | 1.12 | 0.00 |
|-----------|----------|-------|------|-----------|-----------|------|------|
| AT5G64630 | FAS2     | -1.32 | 0.00 | AT5G49390 | NA        | 1.10 | 0.00 |
| AT5G64810 | ATWRKY51 | -1.20 | 0.00 | AT5G53920 | NA        | 1.24 | 0.00 |
| AT5G65010 | ASN2     | -1.71 | 0.00 | AT5G56030 | AtHsp90.2 | 1.11 | 0.00 |
| AT5G65020 | ANNAT2   | -1.36 | 0.00 | AT5G57140 | ATPAP28   | 1.04 | 0.00 |
| AT5G65310 | ATHB-5   | -1.16 | 0.00 | AT5G58140 | NPL1      | 1.07 | 0.00 |
| AT5G65360 | NA       | -2.52 | 0.00 | AT5G62370 | NA        | 1.04 | 0.00 |
| AT5G65390 | AGP7     | -1.04 | 0.00 | AT5G63670 | SPT42     | 1.19 | 0.00 |
| AT5G65683 | WAVH2    | -1.12 | 0.00 | AT5G63760 | ARI15     | 1.05 | 0.00 |
| AT5G65730 | XTH6     | -3.36 | 0.00 | AT5G64280 | DiT2.2    | 1.00 | 0.00 |
| AT5G65810 | CGR3     | -1.39 | 0.00 | AT5G65300 | NA        | 1.04 | 0.00 |
| AT5G66000 | NA       | -1.03 | 0.00 | AT5G65490 | NA        | 1.05 | 0.00 |
| AT5G66230 | NA       | -2.77 | 0.00 | AT5G66270 | NA        | 1.14 | 0.00 |
| AT5G66280 | GMD1     | -1.45 | 0.00 | AT5G67290 | NA        | 1.06 | 0.00 |
| AT5G66330 | NA       | -1.48 | 0.00 |           |           |      |      |
|           |          |       |      |           |           |      |      |

# Table S6. Specifically changed genes under DH LrH

| AGI       | Gene Name | Log <sub>2</sub> FC | adj. <i>P</i> | AGI       | Gene Name | Log <sub>2</sub> FC | adj. <i>P</i> |
|-----------|-----------|---------------------|---------------|-----------|-----------|---------------------|---------------|
| AT1G01110 | IQD18     | -1.04               | 0.00          | AT5G60210 | RIP5      | -1.17               | 0.00          |
| AT1G01420 | UGT72B3   | -1.34               | 0.00          | AT5G60720 | NA        | -1.05               | 0.00          |
| AT1G01430 | TBL25     | -1.19               | 0.00          | AT5G60770 | ATNRT2.4  | -1.46               | 0.05          |
| AT1G01590 | ATFRO1    | -1.28               | 0.00          | AT5G60800 | NA        | -1.92               | 0.00          |
| AT1G02180 | NA        | -1.12               | 0.00          | AT5G61270 | PIF7      | -1.11               | 0.00          |
| AT1G02230 | ANAC004   | -1.21               | 0.00          | AT5G61340 | NA        | -1.07               | 0.00          |
| AT1G02460 | NA        | -1.11               | 0.00          | AT5G61420 | AtMYB28   | -1.58               | 0.00          |
| AT1G03010 | NA        | -1.07               | 0.00          | AT5G61720 | NA        | -1.88               | 0.04          |
| AT1G03160 | FZL       | -1.12               | 0.00          | AT5G61740 | ABCA10    | -1.09               | 0.00          |
| AT1G03660 | NA        | -1.12               | 0.00          | AT5G62730 | NA        | -1.83               | 0.00          |
| AT1G04160 | ATXIB     | -1.10               | 0.00          | AT5G63780 | SHA1      | -1.70               | 0.00          |
| AT1G04250 | AXR3      | -1.46               | 0.00          | AT5G64040 | PSAN      | -1.31               | 0.00          |
| AT1G05205 | NA        | -1.09               | 0.00          | AT5G64620 | ATC/VIF2  | -1.01               | 0.00          |
| AT1G05300 | ZIP5      | -1.08               | 0.00          | AT5G64800 | CLE21     | -1.27               | 0.00          |
| AT1G05810 | ARA       | -1.35               | 0.00          | AT5G64900 | ATPEP1    | -1.79               | 0.00          |
| AT1G05835 | NA        | -1.39               | 0.00          | AT5G65165 | SDH2-3    | -1.20               | 0.00          |
| AT1G06420 | NA        | -1.01               | 0.00          | AT5G65420 | CYCD4;1   | -1.37               | 0.00          |
| AT1G07050 | NA        | -1.77               | 0.00          | AT5G65440 | NA        | -1.10               | 0.00          |
| AT1G07490 | DVL9      | -1.46               | 0.00          | AT5G65700 | BAM1      | -1.45               | 0.00          |
| AT1G07880 | ATMPK13   | -1.20               | 0.00          | AT5G65970 | ATMLO10   | -1.20               | 0.00          |
| AT1G09415 | NIMIN-3   | -1.06               | 0.00          | AT5G65980 | NA        | -1.27               | 0.03          |
| AT1G10030 | ERG28     | -1.11               | 0.00          | AT5G66005 | NA        | -1.01               | 0.00          |
| AT1G10200 | WLIM1     | -1.20               | 0.00          | AT5G66260 | NA        | -1.01               | 0.00          |
| AT1G10770 | NA        | -1.10               | 0.00          | AT5G66310 | NA        | -1.68               | 0.00          |
| AT1G11220 | NA        | -1.10               | 0.00          | AT5G66510 | GAMMA     | -1.15               | 0.00          |
| AT1G11440 | NA        | -1.17               | 0.00          | AT5G66520 | NA        | -1.59               | 0.00          |
| AT1G11740 | NA        | -1.41               | 0.00          | AT5G66750 | ATDDM1    | -1.03               | 0.00          |
| AT1G11860 | NA        | -1.55               | 0.00          | AT5G66800 | NA        | -1.16               | 0.00          |
| AT1G12000 | NA        | -1.26               | 0.00          | AT5G66920 | sks17     | -1.48               | 0.00          |
| AT1G12020 | NA        | -1.28               | 0.00          | AT5G67280 | RLK       | -1.54               | 0.00          |
| AT1G12960 | NA        | -1.01               | 0.00          | AT5G67420 | ASL39     | -1.49               | 0.00          |
| AT1G13250 | GATL3     | -1.47               | 0.00          | AT3G63000 | NPL41     | 1.00                | 0.00          |
| AT1G13430 | ATST4C    | -1.09               | 0.03          | AT1G01240 | NA        | 1.86                | 0.00          |
| AT1G14150 | PQL1      | -1.27               | 0.00          | AT1G01280 | CYP703    | 1.17                | 0.00          |
| AT1G14190 | NA        | -1.07               | 0.00          | AT1G01453 | NA        | 2.24                | 0.00          |
| AT1G14210 | NA        | -1.06               | 0.00          | AT1G01470 | LEA14     | 1.97                | 0.00          |
| AT1G14240 | NA        | -1.06               | 0.00          | AT1G01570 | NA        | 1.09                | 0.00          |
| AT1G14345 | NA        | -1.32               | 0.00          | AT1G01580 | ATFRO2    | 1.79                | 0.00          |
| AT1G14380 | IQD28     | -1.03               | 0.00          | AT1G01640 | NA        | 1.12                | 0.00          |
| AT1G14440 | AtHB31    | -1.04               | 0.00          | AT1G02220 | ANAC003   | 1.29                | 0.00          |
| AT1G14460 | NA        | -1.19               | 0.00          | AT1G02400 | ATGA2OX4  | 1.30                | 0.00          |
| AT1G14580 | NA        | -1.00               | 0.00          | AT1G02470 | NA        | 1.90                | 0.00          |
| AT1G15000 | scpl50    | -1.40               | 0.00          | AT1G02610 | NA        | 1.40                | 0.00          |
| 152       |           |                     |               |           |           |                     |               |

| AT1G15410 | NA       | -1.30 | 0.00 | AT1G02660 | NA        | 2.65 | 0.00 |
|-----------|----------|-------|------|-----------|-----------|------|------|
| AT1G15820 | CP24     | -1.07 | 0.00 | AT1G02816 | NA        | 1.13 | 0.00 |
| AT1G16410 | BUS1     | -1.39 | 0.00 | AT1G02860 | BAH1      | 1.02 | 0.00 |
| AT1G16880 | ACR11    | -1.14 | 0.00 | AT1G03200 | NA        | 1.31 | 0.00 |
| AT1G17140 | ICR1     | -1.16 | 0.00 | AT1G03990 | NA        | 1.83 | 0.00 |
| AT1G17220 | FUG1     | -1.02 | 0.00 | AT1G04390 | NA        | 1.01 | 0.00 |
| AT1G17/55 | FLEA-LA  | -1.02 | 0.00 | AT1G0/830 | ΝΔ        | 1 35 | 0.00 |
| AT1G17545 |          | -1 11 | 0.00 | AT1605330 | NA        | 1.55 | 0.00 |
| AT1017545 |          | -4.14 | 0.00 | AT1005350 |           | 1.15 | 0.00 |
| AT1G17500 |          | -1.01 | 0.00 | AT1G05400 |           | 1.09 | 0.00 |
| AT1G17650 | GLYKZ    | -1.13 | 0.00 | AT1G05510 | NA        | 2.13 | 0.00 |
| AT1G18090 | NA       | -1.43 | 0.00 | AT1G05530 | UGIZ      | 1.21 | 0.00 |
| AI1G18650 | PDCB3    | -1.29 | 0.00 | AI1G05560 | UGI1      | 1.44 | 0.00 |
| AT1G19920 | APS2     | -1.12 | 0.00 | AT1G05890 | ARI5      | 1.18 | 0.00 |
| AT1G20020 | ATLFNR2  | -1.12 | 0.00 | AT1G05940 | CAT9      | 1.07 | 0.00 |
| AT1G20950 | NA       | -1.13 | 0.00 | AT1G06148 | NA        | 1.02 | 0.00 |
| AT1G21050 | NA       | -1.44 | 0.00 | AT1G06180 | ATMYB13   | 1.27 | 0.00 |
| AT1G21500 | NA       | -1.42 | 0.00 | AT1G06520 | ATGPAT1   | 1.42 | 0.00 |
| AT1G21810 | NA       | -1.00 | 0.00 | AT1G06810 | NA        | 1.02 | 0.00 |
| AT1G22170 | NA       | -1.20 | 0.00 | AT1G07040 | NA        | 1.51 | 0.00 |
| AT1G22630 | NA       | -1.22 | 0.00 | AT1G07520 | NA        | 1.10 | 0.00 |
| AT1G22650 | A/N-InvD | -1.37 | 0.00 | AT1G07590 | NA        | 1.16 | 0.00 |
| AT1G23000 | NA       | -1.03 | 0.00 | AT1G08210 | NA        | 1.01 | 0.00 |
| AT1G23060 | NA       | -1 11 | 0.00 | AT1G08315 | NA        | 1 23 | 0.00 |
| AT1G23080 | ΔΤΡΙΝ7   | -1 34 | 0.00 | AT1G08340 | NΔ        | 1.06 | 0.00 |
| AT1G23205 | NΔ       | -1 98 | 0.00 | AT1G08500 |           | 1.00 | 0.00 |
| AT1023203 |          | 1.50  | 0.00 | AT1000500 |           | 1.05 | 0.00 |
| AT1G23300 |          | -1.12 | 0.00 | AT1008370 | ACITI4    | 1.40 | 0.00 |
| AT1G23410 |          | -1.57 | 0.00 | AT1G08920 |           | 1.07 | 0.00 |
| AT1G23480 | ATCSLAU3 | -1.27 | 0.00 | AT1G09400 | NA        | 1.34 | 0.00 |
| AT1G23830 | NA       | -1.06 | 0.00 | AT1G09510 | NA        | 2.41 | 0.00 |
| AT1G23840 | NA       | -1.36 | 0.00 | AI1G10040 | NA        | 1.46 | 0.00 |
| AT1G24020 | MLP423   | -1.66 | 0.00 | AT1G10050 | NA        | 1.06 | 0.00 |
| AT1G24625 | ZFP7     | -1.04 | 0.00 | AT1G10070 | ATBCAT-2  | 2.11 | 0.00 |
| AT1G26100 | NA       | -1.06 | 0.00 | AT1G10740 | NA        | 1.02 | 0.00 |
| AT1G26200 | NA       | -1.09 | 0.01 | AT1G11210 | NA        | 1.27 | 0.00 |
| AT1G26540 | NA       | -1.10 | 0.00 | AT1G11710 | NA        | 1.02 | 0.00 |
| AT1G26600 | CLE9     | -1.22 | 0.00 | AT1G11925 | NA        | 1.05 | 0.00 |
| AT1G26960 | AtHB23   | -1.26 | 0.00 | AT1G11960 | NA        | 1.08 | 0.00 |
| AT1G27120 | NA       | -1.04 | 0.00 | AT1G12420 | ACR8      | 2.13 | 0.00 |
| AT1G27210 | NA       | -1.13 | 0.00 | AT1G12805 | NA        | 1.04 | 0.00 |
| AT1G27710 | NA       | -3.42 | 0.00 | AT1G13140 | CYP86C3   | 1.23 | 0.00 |
| AT1G28110 | SCPL45   | -1.61 | 0.00 | AT1G13360 | NA        | 1.25 | 0.00 |
| AT1G28510 | NA       | -1.03 | 0.00 | AT1G13520 | NA        | 1.45 | 0.00 |
| AT1G28600 | NA       | -1.07 | 0.00 | AT1G13700 | PGI 1     | 1.03 | 0.00 |
| AT1G28670 | ARAR-1   | -1.26 | 0.00 | AT1G13740 | AFP2      | 1 30 | 0.00 |
| AT1G29070 | NA       | -1.05 | 0.00 | AT1G14490 | NA        | 1.68 | 0.00 |
| AT1G29310 | NΔ       | -1 12 | 0.00 | AT1G1/720 | ΔΤΧΤΗ28   | 1.00 | 0.00 |
| AT1G29310 | NA       | _1.12 | 0.00 | AT1G14720 | NA NA     | 1.02 | 0.00 |
| AT1G29470 |          | 1 52  | 0.00 | AT1G14730 |           | 1.30 | 0.00 |
| AT1G29510 | SAUROO   | -1.55 | 0.00 | AT1G14600 |           | 1.41 | 0.00 |
| AT1G29530 |          | -1.13 | 0.00 | AT1G15310 | ATTSKP54A | 1.08 | 0.00 |
| AT1G29670 |          | -1.35 | 0.00 | AT1G15330 | NA        | 2.20 | 0.00 |
| AT1G29920 | AB165    | -1.09 | 0.00 | AT1G15430 | NA        | 1.05 | 0.00 |
| AT1G31180 | ATIMD3   | -1.23 | 0.00 | AT1G15540 | NA        | 1.14 | 0.00 |
| AT1G31335 | NA       | -1.14 | 0.00 | AT1G15800 | NA        | 1.15 | 0.00 |
| AT1G31420 | FEI1     | -1.02 | 0.00 | AT1G16120 | WAKL1     | 1.22 | 0.00 |
| AT1G31710 | NA       | -1.19 | 0.00 | AT1G16130 | WAKL2     | 2.28 | 0.00 |
| AT1G32060 | PRK      | -1.35 | 0.00 | AT1G16950 | NA        | 1.07 | 0.00 |
| AT1G32470 | NA       | -1.66 | 0.00 | AT1G17230 | NA        | 1.14 | 0.00 |
| AT1G32780 | NA       | -1.74 | 0.00 | AT1G17240 | AtRLP2    | 1.01 | 0.00 |
| AT1G33170 | NA       | -1.43 | 0.00 | AT1G17550 | HAB2      | 1.58 | 0.00 |
| AT1G33811 | NA       | -2.14 | 0.00 | AT1G17680 | NA        | 1.14 | 0.00 |
| AT1G34065 | SAMC2    | -1.07 | 0.00 | AT1G18100 | E12A11    | 1.56 | 0.00 |
| AT1G34570 | NA       | -1.12 | 0.00 | AT1G19180 | JAZ1      | 1.94 | 0.00 |

| AT1G34580 | NA         | -1.35          | 0.00 | AT1G19190 | NA         | 1.88         | 0.00 |
|-----------|------------|----------------|------|-----------|------------|--------------|------|
| AT1G35260 | MLP165     | -1.47          | 0.00 | AT1G19200 | NA         | 1.34         | 0.00 |
| AT1G35625 | NA         | -2.44          | 0.02 | AT1G19470 | NA         | 1.11         | 0.00 |
| AT1G35680 | RPL21C     | -1.04          | 0.00 | AT1G19660 | NA         | 1.18         | 0.00 |
| AT1G42970 | GAPB       | -1.01          | 0.00 | AT1G19970 | NA         | 1.12         | 0.00 |
| AT1G43610 | NA         | -1.10          | 0.00 | AT1G20180 | NA         | 1.85         | 0.00 |
| AT1G43710 | emb1075    | -1.04          | 0.00 | AT1G20440 | AtCOR47    | 1.76         | 0.00 |
| AT1G44318 | hemb2      | -1.20          | 0.00 | AT1G21790 | NA         | 1.67         | 0.00 |
| AT1G44920 | NA         | -1.18          | 0.00 | AT1G22080 | NA         | 1.58         | 0.00 |
| AT1G45010 | NA         | -1 38          | 0.00 | AT1G22490 | NA         | 1 10         | 0.00 |
| AT1G45207 | ΝΔ         | -1 14          | 0.00 | AT1G22570 | NΔ         | 1.10         | 0.00 |
| AT1G/7380 | NΔ         | -1 09          | 0.00 | AT1G226/0 |            | 1.27         | 0.00 |
| AT1G47740 | NA         | -1.03          | 0.00 | AT1G22040 | NA         | 1.50         | 0.00 |
| AT1G47740 | NA         | -1.05          | 0.00 | AT1G22930 | NA         | 1.55         | 0.00 |
| AT1G48010 |            | -1.55          | 0.00 | AT1023070 |            | 1.14         | 0.00 |
| AT1G49010 |            | -1.01          | 0.00 | AT1G23120 |            | 1.50         | 0.00 |
| AT1G49250 |            | -1.55          | 0.00 | AT1G23200 |            | 1.44         | 0.00 |
| AT1G49430 |            | -1.49          | 0.00 | AT1G23010 |            | 1.32         | 0.00 |
| AT1G49580 | NA         | -1.15          | 0.00 | AT1G23710 | NA         | 1.06         | 0.00 |
| AT1G50110 | NA         | -1.09          | 0.00 | AT1G23850 | NA         | 1.01         | 0.00 |
| AT1G50575 | NA         | -1.18          | 0.00 | AT1G23960 | NA         | 1.02         | 0.00 |
| AT1G50732 | NA         | -1.08          | 0.00 | AT1G24140 | NA         | 1.13         | 0.00 |
| AT1G51060 | HIA10      | -1.08          | 0.00 | AT1G24145 | NA         | 1.07         | 0.00 |
| AT1G51080 | NA         | -1.08          | 0.00 | AT1G24480 | NA         | 1.23         | 0.00 |
| AT1G51405 | NA         | -1.12          | 0.00 | AT1G25560 | EDF1       | 1.16         | 0.00 |
| AT1G52140 | NA         | -1.01          | 0.00 | AT1G27150 | NA         | 1.02         | 0.00 |
| AT1G52220 | NA         | -1.04          | 0.00 | AT1G27461 | NA         | 1.25         | 0.00 |
| AT1G52830 | IAA6       | -1.18          | 0.00 | AT1G27670 | NA         | 1.20         | 0.00 |
| AT1G53180 | NA         | -1.02          | 0.00 | AT1G27730 | STZ        | 2.22         | 0.00 |
| AT1G53240 | mMDH1      | -1.44          | 0.00 | AT1G28220 | ATPUP3     | 1.79         | 0.00 |
| AT1G53300 | TTL1       | -1.24          | 0.00 | AT1G28360 | ATERF12    | 1.32         | 0.00 |
| AT1G53633 | NA         | -1.19          | 0.00 | AT1G28650 | NA         | 1.06         | 0.00 |
| AT1G53840 | ATPME1     | -1.32          | 0.00 | AT1G29050 | TBL38      | 1.14         | 0.00 |
| AT1G54020 | NA         | -1.20          | 0.00 | AT1G29230 | ATCIPK18   | 1.17         | 0.00 |
| AT1G54450 | NA         | -1.06          | 0.00 | AT1G29620 | NA         | 1.90         | 0.00 |
| AT1G54690 | G-H2AX     | -1.15          | 0.00 | AT1G29760 | NA         | 1.03         | 0.00 |
| AT1G55200 | NA         | -1.30          | 0.00 | AT1G30100 | ATNCED5    | 1.08         | 0.00 |
| AT1G55480 | ZKT        | -1.10          | 0.00 | AT1G30135 | JAZ8       | 1.09         | 0.00 |
| AT1G55910 | ZIP11      | -1.16          | 0.00 | AT1G30640 | NA         | 1.23         | 0.00 |
| AT1G56670 | NA         | -1.40          | 0.00 | AT1G30820 | NA         | 1.52         | 0.00 |
| AT1G57800 | ORTH3      | -1.44          | 0.00 | AT1G32375 | NA         | 1.22         | 0.00 |
| AT1G57820 | ORTH2      | -1.21          | 0.00 | AT1G32450 | NRT1.5     | 1.50         | 0.00 |
| AT1G58080 | ATATP-PRT1 | -1.07          | 0.00 | AT1G32690 | NA         | 1.34         | 0.00 |
| AT1G58160 | NA         | -1.35          | 0.00 | AT1G32920 | NA         | 1.56         | 0.00 |
| AT1G58290 | AtHEMA1    | -1.03          | 0.00 | AT1G33055 | NA         | 1.33         | 0.00 |
| AT1G60550 | DHNS       | -1.11          | 0.00 | AT1G33480 | NA         | 1.11         | 0.00 |
| AT1G60600 | ABC4       | -1.08          | 0.00 | AT1G33560 | ADR1       | 1.24         | 0.00 |
| AT1G60660 | ATCB5LP    | -1.57          | 0.00 | AT1G34060 | NA         | 1.12         | 0.00 |
| AT1G60950 | ATFD2      | -1.19          | 0.00 | AT1G34180 | NAC016     | 1.33         | 0.00 |
| AT1G62400 | HT1        | -1.24          | 0.00 | AT1G35720 | ANNAT1     | 1.04         | 0.00 |
| AT1G62520 | NA         | -1.31          | 0.00 | AT1G43160 | RAP2.6     | 2.81         | 0.00 |
| AT1G62560 | FMO        | -1.15          | 0.00 | AT1G43245 | NA         | 1.09         | 0.00 |
| AT1G62630 | NA         | -1.10          | 0.00 | AT1G43700 | SUF3       | 1.05         | 0.00 |
| AT1G63470 | NA         | -1 07          | 0.00 | AT1G44800 | NA         | 1 54         | 0.00 |
| AT1G63650 | ATMYC-2    | -1 23          | 0.00 | AT1G47128 | RD21       | 1.01         | 0.00 |
| ΔT1G6/090 | RTNI B3    | -1.06          | 0.00 | AT1647915 | NΔ         | 1 20         | 0.00 |
| ΔΤ166/300 |            | _1 <i>1</i> 0  | 0.00 | ΔT1G/8270 | YSIR       | 1.20         | 0.00 |
| ΔT1G64520 | NΔ         | _1 1 C         | 0.00 | AT1G48500 | 1074       | 1 1 2        | 0.00 |
| AT1665010 |            | -1.13<br>_1 5/ | 0.00 | AT1G40300 | J724<br>NA | 1.12         | 0.00 |
| AT1665100 | NA         | -1.04<br>_1 // | 0.00 | AT1049550 |            | 1.19         | 0.00 |
| AT1665450 |            | -1.44<br>1 10  | 0.00 | AT1652505 |            | 3.10<br>1 DE | 0.00 |
| AT1665620 |            | -1.10          | 0.00 | AT1052050 |            | 1.20         | 0.00 |
| AT106502U | A32        | -1.02          | 0.00 | AT1052855 |            | 1.05         | 0.00 |
| A11005845 | INA        | -1.43          | 0.00 | A11052890 | ANACU19    | 2.98         | 0.00 |

| AT1G65860  | FMO       | -1.19 | 0.00 | AT1G53110 | NA       | 1.16 | 0.00 |
|------------|-----------|-------|------|-----------|----------|------|------|
| AT1G66570  | ATSUC7    | -1.71 | 0.00 | AT1G53170 | ATERF-8  | 1.27 | 0.00 |
| AT1G66970  | GDPDL1    | -1.25 | 0.00 | AT1G53210 | NA       | 1.22 | 0.00 |
| AT1G66980  | GDPDL2    | -1.03 | 0.00 | AT1G53470 | MSL4     | 1.56 | 0.00 |
| AT1G67050  | NA        | -1.42 | 0.00 | AT1G53580 | ETHE1    | 1.20 | 0.00 |
| AT1G67090  | RBCS1A    | -1.16 | 0.00 | AT1G53680 | ATGSTU28 | 1.77 | 0.00 |
| AT1G67350  | NA        | -1.10 | 0.00 | AT1G53780 | NA       | 1.10 | 0.00 |
| AT1G67470  | NA        | -1.03 | 0.00 | AT1G54130 | AT-RSH3  | 1.03 | 0.00 |
| AT1G67700  | NA        | -1.20 | 0.00 | AT1G54560 | ATXIE    | 1.13 | 0.00 |
| AT1G67740  | PSBY      | -1.21 | 0.00 | AT1G54570 | NA       | 1.27 | 0.00 |
| AT1G67750  | NA        | -1.30 | 0.00 | AT1G54775 | NA       | 1.00 | 0.00 |
| AT1G67830  | ATFXG1    | -1.34 | 0.00 | AT1G54860 | NA       | 1.19 | 0.00 |
| AT1G67910  | NA        | -1.17 | 0.00 | AT1G55510 | BCDH     | 1.31 | 0.00 |
| AT1G67940  | ABCI17    | -1.01 | 0.00 | AT1G55600 | ATWRKY10 | 2.25 | 0.00 |
| AT1G67980  | CCOAMT    | -1.10 | 0.00 | AT1G55740 | AtSIP1   | 1.06 | 0.00 |
| AT1G68060  | ATMAP70-1 | -1.18 | 0.00 | AT1G56320 | NA       | 1.32 | 0.00 |
| AT1G68330  | NA        | -1.43 | 0.00 | AT1G57780 | NA       | 1.81 | 0.00 |
| AT1G68520  | NA        | -1.10 | 0.00 | AT1G58030 | CAT2     | 1.03 | 0.00 |
| AT1G68560  | ΔΤΧΥΙ 1   | -1 33 | 0.00 | AT1G58270 | 7\//9    | 2.03 | 0.00 |
| AT1G68585  | ΝΔ        | -1 40 | 0.00 | AT1G61890 | NΔ       | 1 39 | 0.00 |
| AT1G68650  | NΔ        | -1 08 | 0.00 | AT1662000 | NΔ       | 1.02 | 0.00 |
| AT1668840  | Λ+ΡΛ\/2   | _1 28 | 0.00 | AT1662305 | NA       | 1.02 | 0.00 |
| AT1G08840  |           | -1.20 | 0.00 | AT1G02303 |          | 1.41 | 0.00 |
| AT1660220  |           | -1.10 | 0.00 | AT1G02570 |          | 1.52 | 0.00 |
| AT1660225  |           | -1.10 | 0.00 | AT1G02570 |          | 2.05 | 0.00 |
| AT1009525  |           | -1.04 | 0.00 | AT1G02020 |          | 2.33 | 0.00 |
| AT1009420  |           | -1.04 | 0.00 | AT1G62700 |          | 1.94 | 0.00 |
| AT1009525  |           | -1.17 | 0.00 | AT1002810 |          | 1.40 | 0.00 |
| AT1C609050 |           | -1.13 | 0.03 | AT1G63010 |          | 1.24 | 0.00 |
| AT1G69810  |           | -1.03 | 0.00 | AT1G63720 |          | 1.40 | 0.00 |
| AT1G09910  |           | -1.20 | 0.00 | AT1G64107 |          | 1.52 | 0.00 |
| AT1G70410  | ATBCA4    | -1.34 | 0.00 | AT1G64810 | APU1     | 1.06 | 0.00 |
| AT1G70560  |           | -1.25 | 0.00 | AT1G64990 | GIGI     | 1.00 | 0.00 |
| AT1G70710  | AIGH9BI   | -1.24 | 0.00 | AT1G65090 |          | 1.42 | 0.00 |
| AT1G72070  | NA        | -1.11 | 0.00 | AT1G65690 | NA       | 1.75 | 0.00 |
| AT1G72430  | NA        | -1.20 | 0.00 | AT1G65720 |          | 1.03 | 0.00 |
| AT1G72940  |           | -1.25 | 0.00 | AT1G65840 | ATPAU4   | 1.04 | 0.00 |
| AT1G72970  | EDA17     | -1.34 | 0.00 | AT1G67300 | NA       | 1.36 | 0.00 |
| AT1G73020  | NA        | -1.03 | 0.00 | AT1G67340 | NA       | 1.// | 0.00 |
| AT1G73630  | NA        | -1.33 | 0.00 | AT1G67650 |          | 1.45 | 0.00 |
| AT1G74070  | NA        | -1.40 | 0.00 | AT1G68020 | ATTPS6   | 1.41 | 0.00 |
| AI1G/46/0  | GASA6     | -1./1 | 0.00 | AT1G68340 | NA       | 1.29 | 0.00 |
| AT1G75500  | WAI1      | -1.83 | 0.00 | AI1G68440 | NA       | 1.47 | 0.00 |
| AT1G75590  | NA        | -1.07 | 0.00 | AT1G68450 | PDE337   | 1.14 | 0.00 |
| AI1G/5680  | AtGH9B7   | -1.03 | 0.00 | AT1G68530 | CER6     | 1.08 | 0.00 |
| AI1G/5/50  | GASA1     | -2.56 | 0.00 | AT1G68620 | NA       | 2.04 | 0.00 |
| AT1G75780  | TUB1      | -1.45 | 0.00 | AT1G68690 | AtPERK9  | 1.14 | 0.00 |
| AT1G75820  | ATCLV1    | -1.10 | 0.00 | AT1G68765 | IDA      | 2.42 | 0.00 |
| AT1G75880  | NA        | -1.39 | 0.00 | AT1G68795 | CLE12    | 1.66 | 0.00 |
| AT1G76450  | NA        | -1.12 | 0.00 | AT1G68850 | NA       | 1.28 | 0.00 |
| AT1G76870  | NA        | -1.41 | 0.00 | AT1G69270 | RPK1     | 1.60 | 0.00 |
| AT1G76880  | NA        | -1.09 | 0.00 | AT1G69360 | NA       | 1.15 | 0.00 |
| AT1G76890  | AT-GT2    | -1.25 | 0.00 | AT1G69610 | NA       | 1.75 | 0.00 |
| AT1G76952  | IDL5      | -1.45 | 0.00 | AT1G69800 | NA       | 1.13 | 0.00 |
| AT1G76990  | ACR3      | -1.43 | 0.00 | AT1G69840 | NA       | 1.41 | 0.00 |
| AT1G77460  | NA        | -1.18 | 0.00 | AT1G70130 | NA       | 1.77 | 0.00 |
| AT1G77730  | NA        | -1.61 | 0.05 | AT1G70140 | ATFH8    | 1.33 | 0.00 |
| AT1G77750  | NA        | -1.09 | 0.00 | AT1G70500 | NA       | 1.11 | 0.00 |
| AT1G77940  | NA        | -1.06 | 0.00 | AT1G71050 | HIPP20   | 1.44 | 0.00 |
| AT1G77990  | AST56     | -1.04 | 0.00 | AT1G71090 | NA       | 1.03 | 0.00 |
| AT1G78770  | APC6      | -1.18 | 0.00 | AT1G71110 | NA       | 1.30 | 0.00 |
| AT1G78970  | ATLUP1    | -1.57 | 0.00 | AT1G71240 | NA       | 1.01 | 0.00 |
| AT1G80280  | NA        | -1.85 | 0.00 | AT1G71360 | NA       | 1.24 | 0.00 |

| AT1G80640 | NA        | -1.12 | 0.00 | AT1G71910 | NA       | 1.19 | 0.00 |
|-----------|-----------|-------|------|-----------|----------|------|------|
| AT1G80850 | NA        | -1.44 | 0.00 | AT1G72120 | NA       | 1.39 | 0.00 |
| AT2G01420 | ATPIN4    | -1.24 | 0.00 | AT1G72125 | NA       | 1.51 | 0.00 |
| AT2G01670 | NUDT17    | -1.25 | 0.00 | AT1G72620 | NA       | 2.84 | 0.00 |
| AT2G01755 | NA        | -1.22 | 0.00 | AT1G73000 | PYL3     | 1.96 | 0.00 |
| AT2G01910 | ATMAP65-6 | -1.14 | 0.00 | AT1G73165 | CLF1     | 1.17 | 0.00 |
| AT2G01910 |           | -1 // | 0.00 | AT1G73390 | NΔ       | 1 19 | 0.00 |
| AT2G01010 |           | 1 22  | 0.00 | AT1G73930 |          | 1.15 | 0.00 |
| AT2002020 |           | -1.35 | 0.00 | AT1G73010 |          | 2.10 | 0.00 |
| AT2G02070 |           | -1.47 | 0.00 | AT1G74010 |          | 2.10 | 0.00 |
| AT2G02100 |           | -1.04 | 0.00 | AT1G74020 | 55Z      | 1.89 | 0.00 |
| A12G02450 | ANAC034   | -1.25 | 0.00 | AT1G74740 | АТСРКЗО  | 1.35 | 0.00 |
| A12G02850 | ARPN      | -1.23 | 0.00 | AT1G76070 | NA       | 1.34 | 0.00 |
| AT2G03550 | NA        | -1.02 | 0.00 | AT1G76130 | AMY2     | 1.59 | 0.00 |
| AT2G04845 | NA        | -1.09 | 0.00 | AT1G76590 | NA       | 1.30 | 0.00 |
| AT2G05070 | LHCB2     | -1.22 | 0.00 | AT1G76650 | CML38    | 1.53 | 0.00 |
| AT2G05100 | LHCB2     | -1.49 | 0.00 | AT1G76705 | NA       | 1.07 | 0.00 |
| AT2G05790 | NA        | -1.06 | 0.00 | AT1G77120 | ADH      | 1.98 | 0.00 |
| AT2G05990 | ENR1      | -1.09 | 0.00 | AT1G77145 | NA       | 1.59 | 0.00 |
| AT2G06904 | NA        | -2.15 | 0.01 | AT1G77200 | NA       | 1.18 | 0.00 |
| AT2G07340 | PFD1      | -1.26 | 0.00 | AT1G77290 | NA       | 1.04 | 0.00 |
| AT2G07690 | MCM5      | -1.04 | 0.00 | AT1G78310 | NA       | 1.27 | 0.00 |
| AT2G14580 | ATPRB1    | -1.28 | 0.00 | AT1G78380 | ATGSTU19 | 1.35 | 0.00 |
| AT2G14660 | NA        | -1 30 | 0.00 | AT1G79250 | AGC1 7   | 1 50 | 0.00 |
| AT2G14700 | NΔ        | -1 72 | 0.00 | AT1G79360 | ΔΤΟCΤ2   | 1.05 | 0.00 |
| AT2G14750 | ΔΚΝ1      | -1 22 | 0.01 | AT1G79370 | CVP79C1  | 1.00 | 0.00 |
| AT2G14750 |           | -1.22 | 0.00 | AT1G79370 |          | 1.11 | 0.00 |
| AT2015050 |           | -1.47 | 0.00 | AT1G79450 | ALISS    | 1.54 | 0.00 |
| AT2G15280 |           | -1.04 | 0.00 | AT1G80120 |          | 1.02 | 0.00 |
| AT2G15300 | NA        | -1.21 | 0.00 | AT1G80570 | NA       | 1.19 | 0.00 |
| AT2G16535 | NA        | -1.00 | 0.00 | AT1G80610 | NA       | 1.48 | 0.00 |
| AT2G18620 | NA        | -1.43 | 0.00 | AT1G80820 | ATCCR2   | 1.79 | 0.00 |
| AT2G18650 | MEE16     | -1.51 | 0.00 | AT1G80840 | ATWRKY40 | 2.07 | 0.00 |
| AT2G18730 | ATDGK3    | -1.13 | 0.00 | AT2G01340 | At17.1   | 1.79 | 0.00 |
| AT2G18940 | NA        | -1.09 | 0.00 | AT2G01890 | ATPAP8   | 2.05 | 0.00 |
| AT2G19460 | NA        | -1.30 | 0.00 | AT2G02390 | ATGSTZ1  | 1.03 | 0.00 |
| AT2G19550 | NA        | -1.01 | 0.00 | AT2G02710 | PLP      | 1.14 | 0.00 |
| AT2G19690 | PLA2-BETA | -1.18 | 0.00 | AT2G03160 | ASK19    | 1.15 | 0.00 |
| AT2G19780 | NA        | -1.01 | 0.00 | AT2G03240 | NA       | 1.14 | 0.00 |
| AT2G19970 | NA        | -1.02 | 0.00 | AT2G03850 | NA       | 1.22 | 0.00 |
| AT2G19990 | PR-1-LIKE | -1.74 | 0.00 | AT2G04350 | LACS8    | 1.41 | 0.00 |
| AT2G20240 | NA        | -1.07 | 0.00 | AT2G05360 | NA       | 1.62 | 0.00 |
| AT2G20515 | NA        | -1.33 | 0.00 | AT2G07215 | NA       | 2.29 | 0.00 |
| AT2G20570 | ATGLK1    | -1 23 | 0.00 | AT2G10260 | NA       | 1 53 | 0.00 |
| AT2G20680 | Δ†ΜΔΝ2    | -1 04 | 0.00 | AT2G10200 | NΔ       | 1 23 | 0.00 |
| AT2G20000 | FDE1      | -1 66 | 0.00 | AT2G14160 | NΛ       | 1.23 | 0.00 |
| AT2G20075 |           | -1.08 | 0.00 | AT2G14100 |          | 1.74 | 0.00 |
| AT2G21200 |           | -1.00 | 0.00 | AT2G14020 |          | 1.00 | 0.00 |
| AT2G21210 |           | -1.51 | 0.00 | AT2G15900 |          | 1.25 | 0.00 |
| AT2G21220 |           | -1.27 | 0.00 | AT2G10770 |          | 1.01 | 0.00 |
| AT2G21530 | NA        | -1.08 | 0.00 | AT2G17520 | ATIRE1-2 | 1.09 | 0.00 |
| A12G22230 | NA        | -1.13 | 0.00 | AT2G1/5/0 | NA       | 1.04 | 0.00 |
| A12G22250 | AAT       | -1.08 | 0.00 | AT2G17860 | NA       | 2.78 | 0.00 |
| AT2G22930 | NA        | -1.02 | 0.00 | AT2G18090 | NA       | 1.11 | 0.00 |
| AT2G23010 | SCPL9     | -1.75 | 0.00 | AT2G18260 | ATSYP112 | 1.09 | 0.00 |
| AT2G23360 | NA        | -1.09 | 0.00 | AT2G18340 | NA       | 2.00 | 0.00 |
| AT2G23670 | YCF37     | -1.16 | 0.00 | AT2G20320 | NA       | 1.08 | 0.00 |
| AT2G23690 | NA        | -1.40 | 0.00 | AT2G20784 | NA       | 1.05 | 0.00 |
| AT2G23700 | NA        | -1.19 | 0.00 | AT2G21490 | LEA      | 1.50 | 0.00 |
| AT2G24060 | NA        | -1.12 | 0.00 | AT2G22690 | NA       | 1.01 | 0.00 |
| AT2G24090 | NA        | -1.30 | 0.00 | AT2G22770 | NAI1     | 1.63 | 0.00 |
| AT2G24170 | NA        | -1.18 | 0.00 | AT2G22860 | ATPSK2   | 1.79 | 0.00 |
| AT2G24395 | NA        | -1.16 | 0.00 | AT2G23110 | NA       | 2.53 | 0.00 |
| AT2G24560 | NA        | -1.11 | 0.00 | AT2G23450 | NA       | 1.30 | 0.00 |
| AT2G24645 | NA        | -1.13 | 0.00 | AT2G23810 | TET8     | 1.30 | 0.00 |
|           |           | -     |      |           |          | -    |      |

| AT2G24700 | NA          | -1.09        | 0.00 | AT2G24550  | NA         | 1.07 | 0.00 |
|-----------|-------------|--------------|------|------------|------------|------|------|
| AT2G25000 | ATWRKY60    | -1.09        | 0.00 | AT2G24610  | ATCNGC14   | 1.47 | 0.00 |
| AT2G25480 | NA          | -1.71        | 0.00 | AT2G24615  | NA         | 1.08 | 0.00 |
| AT2G25840 | OVA4        | -1.10        | 0.00 | AT2G25240  | NA         | 1.14 | 0.00 |
| AT2G26550 | HO2         | -1.30        | 0.00 | AT2G25344  | LCR14      | 1.42 | 0.00 |
| AT2G26640 | KCS11       | -1 01        | 0.00 | AT2G25625  | NA         | 1 14 | 0.00 |
| AT2G26040 | ABCG32      | -1.01        | 0.00 | AT2G25620  | NA         | 1.14 | 0.00 |
| AT2G20910 | ADCO32      | -1.00        | 0.00 | AT2025050  |            | 1.10 | 0.00 |
| AT2020975 |             | -1.21        | 0.00 | AT2G25760  |            | 1.12 | 0.00 |
| AT2G27050 |             | -1.12        | 0.00 | AT2G25890  |            | 1.79 | 0.00 |
| AT2G27380 | ATEPRI      | -1.53        | 0.00 | A12G25940  | ALPHA-VPE  | 1.40 | 0.00 |
| A12G27590 | NA          | -1.06        | 0.00 | AT2G26310  | NA         | 1.29 | 0.00 |
| AT2G27820 | ADT3        | -1.22        | 0.00 | AT2G26940  | NA         | 1.24 | 0.00 |
| AT2G27970 | CKS2        | -1.16        | 0.00 | AT2G27389  | NA         | 2.01 | 0.00 |
| AT2G28080 | NA          | -1.29        | 0.00 | AT2G27500  | NA         | 1.41 | 0.00 |
| AT2G28140 | NA          | -1.61        | 0.00 | AT2G28200  | NA         | 1.48 | 0.00 |
| AT2G28630 | KCS12       | -1.14        | 0.00 | AT2G28840  | XBAT31     | 1.41 | 0.00 |
| AT2G28660 | NA          | -1.52        | 0.00 | AT2G29120  | ATGLR2.7   | 1.26 | 0.00 |
| AT2G28900 | ATOEP16-1   | -1.14        | 0.00 | AT2G29140  | APUM3      | 1.15 | 0.00 |
| AT2G28930 | APK1B       | -1.08        | 0.00 | AT2G29350  | SAG13      | 1.56 | 0.00 |
| AT2G29180 | NA          | -1.36        | 0.00 | AT2G29380  | HAI3       | 3.44 | 0.00 |
| AT2G29290 | NA          | -1.22        | 0.00 | AT2G29450  | AT103-1A   | 1.12 | 0.00 |
| AT2G29890 | ATVI N1     | -1.26        | 0.00 | AT2G29460  | ATGSTU4    | 1 90 | 0.00 |
| AT2G29940 | ABCG31      | -1 11        | 0.00 | AT2G30020  | NA         | 2.06 | 0.00 |
| AT2G20605 | NA          | -1.07        | 0.00 | AT2G30140  | NA         | 1 12 | 0.00 |
| AT2G30033 |             | -1.67        | 0.00 | AT2G30140  |            | 1.15 | 0.00 |
| AT2G31030 |             | -1.02        | 0.05 | AT2G30210  | LACS       | 1.14 | 0.00 |
| AT2G31730 |             | -1.49        | 0.00 | AT2G30300  |            | 1.12 | 0.00 |
| AT2G31790 | NA          | -1.34        | 0.00 | AT2G30690  | NA         | 1.14 | 0.00 |
| A12G32220 | NA          | -1.00        | 0.00 | AT2G31260  | APG9       | 1.00 | 0.00 |
| AT2G32280 | NA          | -1.26        | 0.00 | AT2G31470  | DOR        | 1.43 | 0.00 |
| AT2G32390 | ATGLR3.5    | -1.11        | 0.00 | AT2G31945  | NA         | 3.38 | 0.00 |
| AT2G32487 | NA          | -1.27        | 0.00 | AT2G31960  | ATGSL03    | 1.06 | 0.00 |
| AT2G32500 | NA          | -1.33        | 0.00 | AT2G32510  | ΜΑΡΚΚΚ17   | 2.43 | 0.00 |
| AT2G32540 | ATCSLB04    | -1.13        | 0.00 | AT2G32800  | AP4.3A     | 2.09 | 0.00 |
| AT2G32810 | BGAL9       | -1.03        | 0.00 | AT2G33080  | AtRLP28    | 2.20 | 0.00 |
| AT2G33370 | NA          | -1.04        | 0.00 | AT2G33460  | RIC1       | 1.30 | 0.00 |
| AT2G33750 | ATPUP2      | -1.19        | 0.00 | AT2G33700  | NA         | 1.03 | 0.00 |
| AT2G33850 | NA          | -1.31        | 0.00 | AT2G33775  | RALFL19    | 1.75 | 0.00 |
| AT2G34620 | NA          | -1.27        | 0.00 | AT2G34123  | NA         | 1.54 | 0.00 |
| AT2G34670 | NA          | -1.26        | 0.00 | AT2G34500  | CYP710A1   | 1.37 | 0.00 |
| AT2G35370 | GDCH        | -1.09        | 0.00 | AT2G34600  | JAZ7       | 2.16 | 0.00 |
| AT2G35410 | ΝΔ          | -1.07        | 0.00 | AT2G34810  | NΔ         | 1.63 | 0.00 |
| AT2G35612 | ΝΔ          | -1 5/        | 0.00 | AT2G35600  |            | 1.05 | 0.00 |
| AT2G35700 | ATERE38     | -1 30        | 0.04 | AT2G35730  | NA         | 1.10 | 0.00 |
| AT2G35700 |             | 1.09         | 0.00 | AT2G35750  |            | 1.40 | 0.00 |
| AT2G35800 | FLAIU<br>NA | -1.08        | 0.00 | AT2G353900 |            | 2.40 | 0.00 |
| AT2055660 |             | -1.00        | 0.00 | AT2G30770  |            | 2.40 | 0.00 |
| AT2G35960 |             | -1.40        | 0.00 | AT2G30800  | DUGII      | 1.80 | 0.00 |
| AT2G36400 | ALGRE3      | -1.02        | 0.00 | A12G37670  | NA         | 1.10 | 0.00 |
| A12G36430 | NA          | -1.38        | 0.00 | A12G37750  | NA         | 1.76 | 0.00 |
| AT2G36570 | NA          | -1.25        | 0.00 | AT2G37970  | SOUL-1     | 1.16 | 0.00 |
| AT2G36620 | RPL24A      | -1.18        | 0.00 | AT2G38250  | NA         | 1.59 | 0.00 |
| AT2G36885 | NA          | -1.27        | 0.00 | AT2G38380  | NA         | 1.13 | 0.00 |
| AT2G37080 | RIP3        | -1.05        | 0.00 | AT2G38400  | AGT3       | 1.41 | 0.00 |
| AT2G37230 | NA          | -1.11        | 0.00 | AT2G38490  | CIPK22     | 1.26 | 0.00 |
| AT2G37380 | MAKR3       | -1.99        | 0.00 | AT2G38540  | ATLTP1     | 1.16 | 0.00 |
| AT2G37390 | NAKR2       | -1.27        | 0.00 | AT2G39050  | ArathEULS3 | 1.93 | 0.00 |
| AT2G37450 | NA          | -1.03        | 0.00 | AT2G39400  | NA         | 1.29 | 0.00 |
| AT2G37585 | NA          | -1.10        | 0.00 | AT2G40000  | ATHSPRO2   | 1.58 | 0.00 |
| AT2G37925 | COPT4       | -1.21        | 0.00 | AT2G40370  | LAC5       | 1.14 | 0.00 |
| AT2G38110 | ATGPAT6     | -1.05        | 0.00 | AT2G40990  | NA         | 1.58 | 0.00 |
| AT2G381/0 | PSRP4       | -1 16        | 0.00 | AT2G41220  | GLU2       | 1.05 | 0.00 |
| AT2G38140 | NA          | -1 <i>44</i> | 0.00 | AT2G42620  | MAX2       | 1 17 | 0.00 |
| AT2G38230 |             | -1 12        | 0.00 | AT2G42890  | AMI 2      | 1 17 | 0.00 |
|           |             |              | 0.00 | 112072050  | , \\¥!EZ   | 1.14 | 0.00 |

|           |            |       |      | 1         |            |       |      |
|-----------|------------|-------|------|-----------|------------|-------|------|
| AT2G39390 | NA         | -1.12 | 0.00 | AT2G43420 | NA         | 1.01  | 0.00 |
| AT2G39470 | PPL2       | -1.09 | 0.00 | AT2G43500 | NA         | 1.06  | 0.00 |
| AT2G39705 | DVL11      | -1.10 | 0.00 | AT2G43590 | NA         | 1.53  | 0.00 |
| AT2G39880 | AtMYB25    | -1.32 | 0.00 | AT2G43710 | FAB2       | 1.08  | 0.00 |
| AT2G39900 | WLIM2a     | -1.47 | 0.00 | AT2G43820 | ATSAGT1    | 1.04  | 0.00 |
| AT2G40400 | NA         | -1.60 | 0.00 | AT2G44770 | NA         | 1.29  | 0.00 |
| AT2G41510 | ATCKX1     | -1.13 | 0.00 | AT2G45210 | NA         | 1.78  | 0.00 |
| AT2G41680 | NTRC       | -1.27 | 0.00 | AT2G45500 | NA         | 1.19  | 0.00 |
| AT2G41940 | ZFP8       | -1.31 | 0.00 | AT2G45570 | CYP76C2    | 2.52  | 0.00 |
| AT2G42220 | NA         | -1.59 | 0.00 | AT2G45600 | NA         | 1.42  | 0.00 |
| AT2G42320 | NA         | -1.03 | 0.00 | AT2G46020 | ATBRM      | 1.01  | 0.00 |
| AT2G42530 | COR15B     | -1.23 | 0.00 | AT2G46140 | NA         | 1.41  | 0.00 |
| AT2G42690 | ΝΔ         | -1.03 | 0.00 | AT2G46480 | GAUT2      | 2 57  | 0.00 |
| AT2G43000 | NAC042     | -1 04 | 0.00 | AT2G46510 | AIR        | 1 31  | 0.00 |
| AT2G43030 | NA NA      | _1 1/ | 0.00 | AT2G46520 | NA         | 1 1 2 | 0.00 |
| AT2G43030 |            | -1.14 | 0.00 | AT2G40320 | CVD7946    | 1.12  | 0.00 |
| AT2G43030 |            | -1.30 | 0.00 | AT2G40000 |            | 1.55  | 0.00 |
| AT2G45100 |            | -1.51 | 0.00 | AT2G47190 |            | 2.02  | 0.00 |
| AT2G43440 |            | -1.10 | 0.00 | AT2G47410 |            | 1.21  | 0.00 |
| AT2G43510 | ATTI       | -1.73 | 0.00 | A12G47600 | ATMHX      | 1.00  | 0.00 |
| AT2G44210 | NA         | -1.60 | 0.00 | A12G47670 | NA         | 1.32  | 0.00 |
| A12G44690 | ARAC9      | -1.23 | 0.00 | A12G47870 | NA         | 1.39  | 0.00 |
| AT2G44830 | NA         | -1.08 | 0.00 | AT2G48090 | NA         | 1.06  | 0.00 |
| AT2G44940 | NA         | -1.58 | 0.00 | AT3G01320 | SNL1       | 1.20  | 0.00 |
| AT2G45180 | NA         | -1.53 | 0.00 | AT3G01420 | ALPHA-DOX1 | 1.77  | 0.00 |
| AT2G45190 | AFO        | -1.22 | 0.00 | AT3G01590 | NA         | 1.00  | 0.00 |
| AT2G45310 | GAE4       | -1.19 | 0.00 | AT3G01830 | NA         | 1.04  | 0.00 |
| AT2G45850 | NA         | -1.07 | 0.00 | AT3G01961 | NA         | 1.23  | 0.00 |
| AT2G46160 | NA         | -1.11 | 0.00 | AT3G02150 | PTF1       | 1.07  | 0.00 |
| AT2G46570 | LAC6       | -1.18 | 0.00 | AT3G02370 | NA         | 1.03  | 0.00 |
| AT2G46650 | ATCB5-C    | -1.28 | 0.00 | AT3G02410 | ICME-LIKE2 | 1.38  | 0.00 |
| AT2G46740 | NA         | -1.01 | 0.00 | AT3G02800 | AtPFA-DSP3 | 1.42  | 0.00 |
| AT2G46820 | PSAP       | -1.32 | 0.00 | AT3G02850 | SKOR       | 1.15  | 0.00 |
| AT2G46880 | ATPAP14    | -1.56 | 0.03 | AT3G02875 | ILR1       | 1.19  | 0.00 |
| AT2G46970 | PIL1       | -1.04 | 0.00 | AT3G02910 | NA         | 1.09  | 0.00 |
| AT2G47010 | NA         | -1.35 | 0.00 | AT3G02960 | NA         | 1.20  | 0.00 |
| AT2G47440 | NA         | -1.08 | 0.00 | AT3G02990 | ATHSFA1F   | 1.75  | 0.00 |
| AT2G47840 | AtTic20-II | -1.00 | 0.00 | AT3G03272 | NA         | 2.64  | 0.00 |
| AT2G48070 | RPH1       | -1.07 | 0.00 | AT3G03460 | NA         | 1 23  | 0.00 |
| AT3G01120 | AtCGS1     | -1 12 | 0.00 | AT3G03650 | FDA5       | 1 30  | 0.00 |
| AT3G01120 | AtMVB106   | -1 /7 | 0.00 | AT3G04050 | NΔ         | 1.50  | 0.00 |
| AT3G01140 | NA         | _1 /3 | 0.00 | AT3G04060 | NACO/6     | 1.10  | 0.00 |
| AT3G01130 |            | -1.45 | 0.03 | AT3G04000 |            | 1.07  | 0.00 |
| AT3G01330 |            | -1.30 | 0.00 | AT2C04520 |            | 1.00  | 0.00 |
| AT3G01440 |            | -1.40 | 0.00 | AT3004330 |            | 2.04  | 0.00 |
| AT3G01450 |            | -1.45 | 0.00 | AT3G05200 |            | 2.04  | 0.00 |
| AT3G01500 |            | -1.01 | 0.00 | AT3G05390 |            | 1.12  | 0.00 |
| AT3G01510 |            | -1.00 | 0.00 | AT3G05400 |            | 1.12  | 0.00 |
| AT3G01516 |            | -1.17 | 0.00 | AT3G05580 | 10449      | 1.07  | 0.00 |
| AT3G01810 | NA         | -1.14 | 0.00 | AT3G05630 | PDLZZ      | 1.24  | 0.00 |
| AT3G01860 | NA         | -1.30 | 0.00 | AT3G06170 | NA         | 1.29  | 0.00 |
| AT3G01940 | NA         | -1.14 | 0.00 | A13G06420 | AIG8H      | 1.51  | 0.00 |
| AT3G02170 | LNG2       | -1.24 | 0.00 | AT3G06480 | NA         | 1.00  | 0.00 |
| AT3G02180 | SP1L3      | -1.11 | 0.00 | AT3G06500 | A/N-InvC   | 1.15  | 0.00 |
| AT3G02250 | NA         | -1.22 | 0.00 | AT3G07700 | NA         | 1.14  | 0.00 |
| AT3G02870 | VTC4       | -1.19 | 0.00 | AT3G07970 | QRT2       | 1.53  | 0.00 |
| AT3G02920 | ATRPA32B   | -1.00 | 0.00 | AT3G08040 | ATFRD3     | 1.03  | 0.00 |
| AT3G02930 | NA         | -1.38 | 0.00 | AT3G09060 | NA         | 1.35  | 0.00 |
| AT3G03190 | ATGSTF11   | -1.10 | 0.00 | AT3G09390 | ATMT-1     | 1.35  | 0.00 |
| AT3G04140 | NA         | -1.33 | 0.00 | AT3G09450 | NA         | 1.05  | 0.00 |
| AT3G04630 | WDL1       | -1.29 | 0.00 | AT3G09950 | NA         | 2.28  | 0.00 |
| AT3G05980 | NA         | -1.57 | 0.00 | AT3G10200 | NA         | 1.12  | 0.00 |
| AT3G06035 | NA         | -1.35 | 0.00 | AT3G10320 | NA         | 1.80  | 0.00 |
| AT3G06120 | MUTE       | -1.21 | 0.00 | AT3G10340 | PAL4       | 2.08  | 0.00 |

| AT3G06130 | NA      | -1.29  | 0.00 | AT3G10410 | CPY         | 1.04 | 0.00 |
|-----------|---------|--------|------|-----------|-------------|------|------|
| AT3G06140 | NA      | -1.11  | 0.00 | AT3G10500 | NAC053      | 1.47 | 0.00 |
| AT3G06470 | NA      | -1.21  | 0.00 | AT3G10600 | CAT7        | 1.26 | 0.00 |
| AT3G06680 | NA      | -1.13  | 0.00 | AT3G10740 | ARAF        | 1.39 | 0.00 |
| AT3G07270 | NA      | -1.10  | 0.00 | AT3G10780 | NA          | 1.24 | 0.00 |
| AT3G07510 | NA      | -1.34  | 0.00 | AT3G10800 | BZIP28      | 1.13 | 0.00 |
| AT3G07990 | SCPL27  | -1.41  | 0.00 | AT3G11430 | ATGPAT5     | 1.10 | 0.00 |
| AT3G08660 | NA      | -1.23  | 0.00 | AT3G11480 | ATBSMT1     | 1.91 | 0.00 |
| AT3G08680 | NA      | -1.29  | 0.00 | AT3G11773 | NA          | 1.05 | 0.00 |
| AT3G09050 | NA      | -1.16  | 0.00 | AT3G11880 | NA          | 1.07 | 0.00 |
| AT3G09162 | NA      | -1.08  | 0.00 | AT3G12410 | NA          | 2 35 | 0.00 |
| AT3G09730 | NΔ      | -1 14  | 0.00 | AT3G12830 | NΔ          | 1 48 | 0.00 |
| AT2C10090 |         | 1 1 2  | 0.00 | AT2G12050 | NA          | 2.40 | 0.00 |
| AT2C10185 |         | 1.13   | 0.00 | AT2G12000 |             | 1.02 | 0.00 |
| AT3G10183 |         | -1.01  | 0.00 | AT3G13050 | ABCCU<br>NA | 1.05 | 0.00 |
| AT3G10230 |         | -1.11  | 0.00 | AT3G13657 |             | 1.05 | 0.00 |
| AT3G10570 |         | -1.15  | 0.00 | AT3G13950 | NA          | 1.15 | 0.00 |
| AT3G10840 |         | -1.46  | 0.00 | AT3G14067 | NA          | 1.11 | 0.00 |
| AT3G11090 | LBD21   | -1.21  | 0.00 | AT3G14070 | ATCCX3      | 1.34 | 0.00 |
| AI3G11630 | NA      | -1.03  | 0.00 | A13G14280 | NA          | 1.00 | 0.00 |
| AT3G11720 | NA      | -1.10  | 0.00 | AT3G14570 | ATGSL04     | 1.16 | 0.00 |
| AT3G13437 | NA      | -1.07  | 0.00 | AT3G14880 | NA          | 1.82 | 0.00 |
| AT3G13690 | NA      | -1.15  | 0.00 | AT3G15290 | NA          | 1.09 | 0.00 |
| AT3G13960 | AtGRF5  | -1.17  | 0.00 | AT3G15740 | NA          | 1.13 | 0.00 |
| AT3G14190 | NA      | -1.03  | 0.00 | AT3G15760 | NA          | 2.17 | 0.00 |
| AT3G14210 | ESM1    | -1.79  | 0.00 | AT3G16030 | CES101      | 1.69 | 0.00 |
| AT3G14260 | NA      | -1.53  | 0.00 | AT3G16150 | ASPGB1      | 1.06 | 0.00 |
| AT3G14930 | HEME1   | -1.28  | 0.00 | AT3G16340 | ABCG29      | 1.18 | 0.00 |
| AT3G15520 | NA      | -1.24  | 0.00 | AT3G16640 | ТСТР        | 1.03 | 0.00 |
| AT3G16250 | NDF4    | -1.25  | 0.00 | AT3G16940 | NA          | 1.05 | 0.00 |
| AT3G16560 | NA      | -1.03  | 0.00 | AT3G16990 | NA          | 1.65 | 0.00 |
| AT3G16780 | NA      | -1.23  | 0.00 | AT3G17000 | UBC32       | 2.12 | 0.00 |
| AT3G16870 | GATA17  | -1.21  | 0.00 | AT3G17010 | NA          | 1.02 | 0.00 |
| AT3G17120 | NA      | -1.24  | 0.00 | AT3G17770 | NA          | 1.08 | 0.00 |
| AT3G17360 | POK1    | -1.08  | 0.00 | AT3G18560 | NA          | 1 46 | 0.00 |
| AT3G17840 | RI K902 | -1 21  | 0.00 | AT3G18700 | NΔ          | 2 50 | 0.00 |
| AT3G18010 | WOX1    | -1.02  | 0.00 | AT3G19150 |             | 1.03 | 0.00 |
| AT3G18460 | ΝΔ      | -1 15  | 0.00 | AT3G19240 | NA          | 1.05 | 0.00 |
| AT3G18710 |         | -1 16  | 0.01 | AT3G19240 |             | 1.00 | 0.00 |
| AT2C10715 |         | 1.10   | 0.00 | AT2C10200 |             | 1.00 | 0.00 |
| AT3010713 |         | -1.24  | 0.00 | AT3G19290 |             | 1.59 | 0.00 |
| AT3G10775 |         | -1.40  | 0.00 | AT3G19500 |             | 1.30 | 0.00 |
| AT3G18890 | ATTIC62 | -1.06  | 0.00 | AT3G20910 | NF-YA9      | 1.23 | 0.00 |
| AT3G19880 | NA      | -13.88 | 0.00 | AT3G21120 | NA          | 1.39 | 0.00 |
| AT3G20015 | NA      | -1.59  | 0.00 | AT3G21270 | ADOF2       | 1.83 | 0.00 |
| AT3G20470 | ATGRP-5 | -1.15  | 0.00 | AT3G21520 | AtDMP1      | 3.41 | 0.00 |
| AT3G21055 | PSBTN   | -1.48  | 0.00 | AT3G21710 | NA          | 1.05 | 0.00 |
| AT3G21190 | NA      | -1.09  | 0.00 | AT3G21790 | NA          | 1.07 | 0.00 |
| AT3G21330 | NA      | -1.24  | 0.01 | AT3G22370 | AOX1A       | 1.40 | 0.00 |
| AT3G21870 | CYCP2;1 | -1.21  | 0.00 | AT3G22420 | ATWNK2      | 1.10 | 0.00 |
| AT3G22120 | CWLP    | -1.26  | 0.00 | AT3G22460 | OASA2       | 1.43 | 0.00 |
| AT3G22790 | NA      | -1.34  | 0.00 | AT3G22600 | NA          | 1.51 | 0.00 |
| AT3G23010 | AtRLP36 | -1.01  | 0.00 | AT3G22620 | NA          | 2.80 | 0.00 |
| AT3G23760 | NA      | -1.11  | 0.00 | AT3G23240 | ATERF1      | 1.47 | 0.00 |
| AT3G24850 | NA      | -1.37  | 0.01 | AT3G25719 | NA          | 1.21 | 0.00 |
| AT3G25070 | RIN4    | -1.17  | 0.00 | AT3G25950 | NA          | 1.51 | 0.00 |
| AT3G25130 | NA      | -1.09  | 0.00 | AT3G26280 | CYP71B4     | 1.23 | 0.00 |
| AT3G25500 | AFH1    | -1.23  | 0.00 | AT3G26290 | CYP71B26    | 1.02 | 0.00 |
| AT3G25730 | EDF3    | -1.09  | 0.00 | AT3G26855 | NA          | 1.85 | 0.00 |
| AT3G25900 | ATHMT-1 | -1.05  | 0.00 | AT3G26910 | NA          | 1.40 | 0.00 |
| AT3G25905 | CLE27   | -1.24  | 0.00 | AT3G27440 | UKL5        | 1.38 | 0.00 |
| AT3G26470 | NA      | -1.35  | 0.00 | AT3G27870 | NA          | 1.15 | 0.00 |
| AT3G26570 | ORF02   | -1.30  | 0.00 | AT3G28210 | PM7         | 1.99 | 0.00 |
| AT3G26650 | GAPA    | -1 13  | 0.00 | AT3G29000 | NA          | 2.08 | 0.00 |
|           |         | 1.10   | 0.00 |           | · •• •      | 2.00 | 0.00 |

| AT3G26960 | NA       | -1.04         | 0.00 | AT3G29090 | ATPME31   | 1.04         | 0.00 |
|-----------|----------|---------------|------|-----------|-----------|--------------|------|
| AT3G27400 | NA       | -1.59         | 0.00 | AT3G29250 | AtSDR4    | 1.76         | 0.00 |
| AT3G27830 | RPL12    | -1.04         | 0.00 | AT3G29340 | NA        | 1.93         | 0.00 |
| AT3G28040 | NA       | -1.06         | 0.00 | AT3G29390 | RIK       | 1.03         | 0.00 |
| AT3G28500 | NA       | -1.20         | 0.00 | AT3G32330 | NA        | 2.22         | 0.00 |
| AT3G28550 | NA       | -1.35         | 0.00 | AT3G43420 | NA        | 1.23         | 0.00 |
| AT3G28857 | PRE5     | -1.75         | 0.00 | AT3G44540 | FAR4      | 1.01         | 0.00 |
| AT3G28860 | ABCB19   | -1.58         | 0.00 | AT3G44880 | ACD1      | 1.94         | 0.00 |
| AT3G28960 | NA       | -1.66         | 0.00 | AT3G45010 | scpl48    | 1.14         | 0.00 |
| AT3G29375 | NA       | -1.08         | 0.00 | AT3G45730 | NA        | 1.19         | 0.00 |
| AT3G30320 | NA       | -1.29         | 0.02 | AT3G45880 | NA        | 1.27         | 0.00 |
| AT3G43148 | NA       | -4.38         | 0.00 | AT3G45970 | ATFXI A1  | 1.78         | 0.00 |
| AT3G43600 | AAO2     | -1 18         | 0.00 | AT3G46660 | LIGT76F12 | 4 05         | 0.00 |
| AT3G43630 | NA       | -3 51         | 0.00 | AT3G46700 | NA        | 1.89         | 0.00 |
| AT3G/3960 | NΔ       | -1 18         | 0.00 | AT3G/6930 | NΔ        | 1.00         | 0.00 |
| AT3G43300 |          | -1 28         | 0.00 | AT3G40330 |           | 1.50         | 0.00 |
| AT3G44310 |          | -1 27         | 0.00 | AT3G47340 |           | 1.20         | 0.00 |
| AT3G44320 | NA       | -1.27         | 0.00 | AT3G47790 |           | 1.21         | 0.00 |
| AT3C44780 |          | -3.37         | 0.01 | AT3G48000 |           | 2.02         | 0.00 |
| AT3044690 | NPL9     | -1.07         | 0.00 | AT3G46544 |           | 2.05         | 0.00 |
| AT3G45050 |          | -1.05         | 0.00 | AT3G48090 |           | 1.27         | 0.00 |
| AT3G45230 |          | -1.35         | 0.00 | AT3G49160 |           | 1.10         | 0.00 |
| AT3G45430 | NA       | -1.18         | 0.00 | AT3G49210 | NA        | 1.47         | 0.00 |
| AT3G45780 | JK224    | -1.16         | 0.00 | A13G49530 | ANACU62   | 1.16         | 0.00 |
| A13G46550 | FLA4     | -1.21         | 0.00 | AT3G49590 | AIG13     | 1.00         | 0.00 |
| A13G46900 |          | -1.04         | 0.00 | AT3G49790 | NA        | 1.02         | 0.00 |
| A13G46970 | ATPHS2   | -1.13         | 0.00 | A13G50390 | NA        | 1.85         | 0.00 |
| AT3G47010 | NA       | -1.17         | 0.00 | AT3G50400 | NA        | 1.65         | 0.00 |
| AT3G47070 | NA       | -1.16         | 0.00 | AT3G50970 | LTI30     | 1.64         | 0.00 |
| AT3G48550 | NA       | -1.66         | 0.00 | AT3G51130 | NA        | 1.02         | 0.00 |
| AT3G48730 | GSA2     | -1.05         | 0.00 | AT3G51895 | AST12     | 1.08         | 0.00 |
| AT3G48970 | NA       | -1.96         | 0.00 | AT3G51960 | ATBZIP24  | 1.67         | 0.00 |
| AT3G49680 | ATBCAT-3 | -1.23         | 0.00 | AT3G51990 | NA        | 1.10         | 0.00 |
| AT3G49900 | NA       | -1.26         | 0.00 | AT3G52350 | NA        | 1.18         | 0.00 |
| AT3G50022 | NA       | -1.53         | 0.01 | AT3G52790 | NA        | 1.09         | 0.00 |
| AT3G50240 | KICP-02  | -1.07         | 0.00 | AT3G52820 | ATPAP22   | 2.06         | 0.00 |
| AT3G50450 | HR1      | -1.22         | 0.00 | AT3G52850 | ATELP     | 1.12         | 0.00 |
| AT3G50470 | HR3      | -1.26         | 0.00 | AT3G53040 | NA        | 4.72         | 0.00 |
| AT3G50510 | LBD28    | -1.47         | 0.01 | AT3G54020 | AtIPCS1   | 1.13         | 0.00 |
| AT3G50570 | NA       | -1.43         | 0.00 | AT3G54200 | NA        | 1.37         | 0.00 |
| AT3G50630 | ICK2     | -1.01         | 0.00 | AT3G54680 | NA        | 1.37         | 0.00 |
| AT3G50790 | NA       | -1.08         | 0.00 | AT3G54820 | PIP2;5    | 1.11         | 0.00 |
| AT3G51400 | NA       | -1.73         | 0.00 | AT3G55430 | NA        | 1.40         | 0.00 |
| AT3G52500 | NA       | -1.33         | 0.00 | AT3G55440 | ATCTIMC   | 1.06         | 0.00 |
| AT3G52720 | ACA1     | -1.38         | 0.00 | AT3G55610 | P5CS2     | 1.54         | 0.00 |
| AT3G53530 | NAKR3    | -1.24         | 0.00 | AT3G55640 | NA        | 1.21         | 0.00 |
| AT3G53850 | NA       | -1.00         | 0.00 | AT3G55880 | SUE4      | 1.91         | 0.00 |
| AT3G54180 | CDC2B    | -1.34         | 0.00 | AT3G55940 | NA        | 1.14         | 0.00 |
| AT3G54350 | emb1967  | -1.13         | 0.00 | AT3G55980 | ATSZF1    | 1.53         | 0.00 |
| AT3G54470 | NA       | -1.03         | 0.00 | AT3G56080 | NA        | 1.06         | 0.00 |
| AT3G54600 | NA       | -1.44         | 0.00 | AT3G56530 | NAC064    | 3.44         | 0.00 |
| AT3G55230 | NA       | -1 12         | 0.00 | AT3G56780 | NA        | 1 12         | 0.00 |
| AT3G55515 | DVI 8    | -1 10         | 0.00 | AT3G56790 | NΔ        | 1.52         | 0.00 |
| AT3G55630 |          | -1 28         | 0.00 | AT3G57020 | ΝΔ        | 2.12         | 0.00 |
| AT3655800 | SRDASE   | -1.40         | 0.00 | AT3G57380 | NΛ        | 1 17         | 0.00 |
| AT2656020 |          | -1.40         | 0.00 | AT3G37380 |           | 1.47         | 0.00 |
| AT2656270 |          | -1.04         | 0.00 | AT3657690 |           | 1.74<br>2.56 | 0.00 |
| AT2656400 |          | -1.24<br>1.20 | 0.00 | AT2CE04F0 |           | 2.30         | 0.00 |
| AT2656010 |          | -1.20<br>1.72 | 0.00 | AT2C50460 |           | 1.43         | 0.00 |
|           |          | -1./Z         | 0.00 | A13039400 |           | 1.05         | 0.00 |
| A13050910 | r3Kr3    | -1.34         | 0.00 | A13059580 |           | 1.25         | 0.00 |
| A13G56950 | 51PZ     | -1.13         | 0.00 | A13G60040 | INA<br>NA | 1.20         | 0.00 |
| AI3G5/130 | BONT     | -1.25         | 0.00 | AT3G60110 | NA        | 1.02         | 0.00 |
| AI3G5/160 | NA       | -1.07         | 0.00 | A13G60280 | ULLS      | 2.09         | 0.00 |

| AT3G57500 | NA         | -1.22 | 0.00 | AT3G60570 | ATEXPB5    | 1.19 | 0.00 |
|-----------|------------|-------|------|-----------|------------|------|------|
| AT3G57860 | GIG1       | -1.37 | 0.00 | AT3G61060 | AtPP2-A13  | 1.97 | 0.00 |
| AT3G59980 | NA         | -1.19 | 0.00 | AT3G61290 | NA         | 1.32 | 0.00 |
| AT3G60320 | NA         | -1.26 | 0.00 | AT3G61400 | NA         | 1.71 | 0.00 |
| AT3G60380 | NA         | -1.09 | 0.00 | AT3G61930 | NA         | 1.92 | 0.00 |
| AT3G60440 | NΔ         | -1 2/ | 0.00 | AT3G61980 | NΔ         | 1 01 | 0.00 |
| AT2C60540 |            | 1.24  | 0.00 | AT2662040 | NA         | 1.01 | 0.00 |
| AT3C60540 |            | -1.01 | 0.00 | AT3002040 |            | 1.01 | 0.00 |
| ATSCOUSO  |            | -1.07 | 0.00 | AT3G02590 |            | 2.22 | 0.00 |
| A13G60630 | ATHAIVIZ   | -1.05 | 0.00 | A13G62660 | GAIL/      | 1.08 | 0.00 |
| A13G60700 | NA         | -1.17 | 0.00 | A13G63040 | NA         | 1./1 | 0.00 |
| AT3G60900 | FLA10      | -1.26 | 0.00 | AT3G63050 | NA         | 1.40 | 0.00 |
| AT3G61820 | NA         | -1.46 | 0.00 | AT4G00050 | UNE10      | 1.22 | 0.00 |
| AT3G62030 | CYP20-3    | -1.28 | 0.00 | AT4G00140 | EDA34      | 2.36 | 0.00 |
| AT3G62060 | NA         | -1.05 | 0.00 | AT4G00220 | JLO        | 1.13 | 0.00 |
| AT3G62390 | TBL6       | -1.11 | 0.00 | AT4G00305 | NA         | 1.55 | 0.00 |
| AT3G62610 | ATMYB11    | -1.28 | 0.00 | AT4G00430 | PIP1;4     | 1.46 | 0.00 |
| AT3G63300 | FKD1       | -1.16 | 0.00 | AT4G00440 | NA         | 1.03 | 0.00 |
| AT3G63510 | NA         | -1.00 | 0.00 | AT4G00695 | NA         | 1.02 | 0.00 |
| AT4G00165 | NA         | -1 38 | 0.00 | AT4G00900 | ATFCA2     | 1 01 | 0.00 |
| AT/G00180 | VAR3       | -1 17 | 0.00 | AT/G01026 | PVI 7      | 1 10 | 0.00 |
| AT4G00180 |            | -1.20 | 0.00 | AT4G01020 | A+\A/RKV22 | 1.10 | 0.00 |
| AT4000480 | ATIVITCI   | -1.50 | 0.00 | AT4G01250 |            | 1.05 | 0.00 |
| AT4G00770 |            | -1.59 | 0.00 | A14G01360 | NA         | 2.34 | 0.00 |
| A14G01080 | TBL26      | -1.74 | 0.00 | A14G01430 | NA         | 1.80 | 0.00 |
| AT4G01460 | NA         | -1.03 | 0.00 | A14G01910 | NA         | 1.04 | 0.00 |
| AT4G01895 | NA         | -1.04 | 0.00 | AT4G02090 | NA         | 1.27 | 0.00 |
| AT4G02100 | NA         | -1.18 | 0.00 | AT4G02190 | NA         | 1.14 | 0.00 |
| AT4G02270 | RHS13      | -1.35 | 0.00 | AT4G02390 | APP        | 1.24 | 0.00 |
| AT4G02290 | AtGH9B13   | -1.32 | 0.00 | AT4G03420 | NA         | 1.34 | 0.00 |
| AT4G02530 | NA         | -1.22 | 0.00 | AT4G04490 | CRK36      | 2.23 | 0.00 |
| AT4G03190 | AFB1       | -1.13 | 0.00 | AT4G04710 | CPK22      | 1.18 | 0.00 |
| AT4G03270 | CYCD6:1    | -1.07 | 0.00 | AT4G05020 | NDB2       | 1.13 | 0.00 |
| AT4G03330 | ATSYP123   | -1.15 | 0.00 | AT4G05091 | NA         | 1.04 | 0.00 |
| AT4G04220 | AtRI P46   | -1.06 | 0.00 | AT4G05497 | NA         | 1.32 | 0.00 |
| AT4G04630 | NA         | -1 04 | 0.00 | AT4G06534 | NA         | 1 01 | 0.00 |
| AT4G04640 |            | -1.03 | 0.00 | AT4G07408 | NA         | 1.01 | 0.00 |
| AT4G04040 |            | -1.03 | 0.00 | AT4G07408 |            | 1.00 | 0.00 |
| AT4005050 |            | -1.13 | 0.02 | AT4G07740 |            | 1.13 | 0.00 |
| AT4G05090 |            | -1.00 | 0.00 | AT4G08990 |            | 2.40 | 0.00 |
| A14G07820 | NA         | -1.48 | 0.00 | A14G09030 | AGPIU      | 1.18 | 0.00 |
| A14G08400 | NA         | -1.33 | 0.00 | A14G09965 | NA         | 1.39 | 0.00 |
| A14G08950 | EXO        | -1.69 | 0.00 | A14G10845 | NA         | 1.01 | 0.00 |
| AT4G09160 | NA         | -1.32 | 0.00 | AT4G10910 | NA         | 1.07 | 0.00 |
| AT4G09650 | ATPD       | -1.47 | 0.00 | AT4G12000 | NA         | 1.11 | 0.00 |
| AT4G10740 | NA         | -2.12 | 0.02 | AT4G12270 | NA         | 2.14 | 0.00 |
| AT4G11310 | NA         | -1.02 | 0.00 | AT4G12570 | UPL5       | 1.07 | 0.00 |
| AT4G11820 | FKP1       | -1.12 | 0.00 | AT4G13010 | NA         | 1.03 | 0.00 |
| AT4G12030 | BASS5      | -1.73 | 0.00 | AT4G13110 | NA         | 1.23 | 0.00 |
| AT4G12390 | PME1       | -1.35 | 0.00 | AT4G14000 | NA         | 1.03 | 0.00 |
| AT4G12480 | EARLI1     | -1.42 | 0.00 | AT4G14290 | NA         | 1.39 | 0.00 |
| AT4G12540 | NA         | -1.21 | 0.00 | AT4G14370 | NA         | 1.06 | 0.00 |
| AT4G12830 | NA         | -1.65 | 0.00 | AT4G14500 | NA         | 1.03 | 0.00 |
| AT/G12880 |            | -1.03 | 0.00 | AT/G1/860 |            | 2.05 | 0.00 |
| AT4G12880 | ALLINODE15 | -1.07 | 0.00 | AT4014800 |            | 2.20 | 0.00 |
| AT4G13300 |            | -1.13 | 0.00 | AT4G15050 |            | 2.50 | 0.00 |
| AT4G13840 |            | -1.09 | 0.00 | A14G15248 |            | 1.95 | 0.00 |
| A14G14040 | EDA38      | -1.66 | 0.00 | A14G15610 | NA         | 1.25 | 0.00 |
| A14G14300 | NA         | -1.09 | 0.00 | A14G16195 | NA         | 2.76 | 0.00 |
| AI4G15160 | NA         | -1.27 | 0.00 | A14G16620 | NA         | 1.18 | 0.00 |
| AT4G15620 | NA         | -1.52 | 0.00 | AT4G16750 | NA         | 1.38 | 0.00 |
| AT4G15680 | NA         | -1.97 | 0.00 | AT4G16760 | ACX1       | 1.45 | 0.00 |
| AT4G16140 | NA         | -1.34 | 0.00 | AT4G16960 | NA         | 1.04 | 0.00 |
| AT4G16380 | NA         | -1.21 | 0.00 | AT4G17020 | NA         | 1.19 | 0.00 |
| AT4G16515 | RGF6       | -1.55 | 0.00 | AT4G17850 | NA         | 3.15 | 0.00 |
| AT4G16563 | NA         | -1.73 | 0.00 | AT4G18050 | ABCB9      | 1.07 | 0.00 |

| AT4G16590  | ATCSLA01      | -1.29 | 0.00 | AT4G18350 | ATNCED2 | 1.09 | 0.00 |
|------------|---------------|-------|------|-----------|---------|------|------|
| AT4G16807  | NA            | -1.35 | 0.00 | AT4G18425 | NA      | 1.17 | 0.00 |
| AT4G16820  | PLA-I{beta]2  | -1.01 | 0.00 | AT4G18580 | NA      | 1.14 | 0.00 |
| AT4G16860  | RPP4          | -1.20 | 0.00 | AT4G18830 | ATOFP5  | 1.28 | 0.00 |
| AT4G17160  | ATRAB2B       | -1.23 | 0.00 | AT4G18940 | NA      | 1.71 | 0.00 |
| AT4G17360  | NA            | -1.03 | 0.00 | AT4G19390 | NA      | 1.53 | 0.00 |
| AT4G17460  | HAT1          | -1.67 | 0.00 | AT4G19720 | NA      | 1.20 | 0.00 |
| AT4G17480  | NA            | -1.24 | 0.00 | AT4G19810 | ChiC    | 1.41 | 0.00 |
| AT4G17490  | ATERF6        | -1.34 | 0.00 | AT4G20390 | NA      | 1.07 | 0.00 |
| AT4G17600  | LIL3:1        | -1.35 | 0.00 | AT4G21323 | NA      | 1.07 | 0.00 |
| AT4G17695  | KAN3          | -1.07 | 0.00 | AT4G21490 | NDB3    | 1.03 | 0.00 |
| AT4G17870  | PYR1          | -1.01 | 0.00 | AT4G21620 | NA      | 1.03 | 0.00 |
| AT4G18030  | NA            | -1.40 | 0.00 | AT4G21680 | NRT1.8  | 2.04 | 0.00 |
| AT4G18080  | NA            | -1.96 | 0.01 | AT4G22240 | NA      | 1.53 | 0.00 |
| AT4G18370  | DEG5          | -1.17 | 0.00 | AT4G22820 | NA      | 2.04 | 0.00 |
| AT4G18670  | NA            | -1.25 | 0.00 | AT4G22920 | ATNYE1  | 1.53 | 0.00 |
| AT4G18740  | NA            | -1.08 | 0.00 | AT4G23120 | NA      | 2.23 | 0.00 |
| AT4G19030  | AT-NLM1       | -1.12 | 0.00 | AT4G23450 | AIRP1   | 1.70 | 0.00 |
| AT4G19170  | CCD4          | -1.16 | 0.00 | AT4G23630 | BTI1    | 1.01 | 0.00 |
| AT4G19830  | NA            | -1.06 | 0.00 | AT4G23750 | CRF2    | 1.13 | 0.00 |
| AT4G20430  | NA            | -1.02 | 0.00 | AT4G23882 | NA      | 1.99 | 0.00 |
| AT4G20890  | TUB9          | -1.03 | 0.00 | AT4G24380 | NA      | 1.25 | 0.00 |
| AT4G21280  | PSBO          | -1.43 | 0.00 | AT4G24400 | ATCIPK8 | 1.11 | 0.00 |
| AT4G21366  | NA            | -1.04 | 0.00 | AT4G24450 | ATGWD2  | 1.02 | 0.00 |
| AT4G21445  | NA            | -1.05 | 0.00 | AT4G24800 | FCIP1   | 1.17 | 0.00 |
| AT4G21970  | NΔ            | -1 07 | 0.00 | AT4G24960 |         | 1 70 | 0.00 |
| ΔT4G221370 | SRE8          | -1 12 | 0.00 | AT4G25180 | NΔ      | 1.70 | 0.00 |
| AT4G22230  | ΝΔ            | -1 31 | 0.00 | AT4G25390 | NΔ      | 1 34 | 0.00 |
| AT4G22560  | ΝΔ            | -1 33 | 0.00 | AT4G25790 | NΔ      | 1.54 | 0.00 |
| AT4G22500  | NA            | -1 11 | 0.00 | AT4G25800 | NA      | 1.45 | 0.00 |
| AT4G22000  | NA            | -1.07 | 0.00 | AT4G25810 | VTH22   | 1.00 | 0.00 |
| AT4G23020  |               | -1 /3 | 0.00 | AT4G25010 | ACS7    | 1.52 | 0.00 |
| AT4G23000  | CRKS          | -1.43 | 0.00 | AT4G26250 | AC37    | 1.55 | 0.00 |
| AT4G23130  | TRI 2/        | -1 29 | 0.00 | AT4G26580 | NA      | 1.15 | 0.00 |
| AT4G23730  |               | _1 21 | 0.00 | AT4G26500 | NA      | 1.00 | 0.00 |
| AT4G24030  | NA            | -1.21 | 0.00 | AT4G20701 | GH3 5   | 1.04 | 0.00 |
| AT4G24810  |               | -1.27 | 0.00 | AT4G27200 | NA      | 1.05 | 0.00 |
| AT4G25000  | SKS1          | -1 /1 | 0.00 | AT4G27520 |         | 1.00 | 0.00 |
| AT4G25240  | SHB1          | -1.02 | 0.00 | AT4G27800 |         | 1.00 | 0.00 |
| AT4G25350  | AT2201        | -1.02 | 0.00 | AT4G28005 |         | 1.11 | 0.00 |
| AT4G25420  |               | -1.72 | 0.00 | AT4G28003 |         | 1.51 | 0.00 |
| AT4G25050  |               | -1.13 | 0.00 | AT4G28110 |         | 1.10 | 0.00 |
| AT4G25870  | NA            | -1.08 | 0.00 | AT4G28550 |         | 1.45 | 0.00 |
| AT4G25850  |               | -1.20 | 0.00 | AT4029190 |         | 1.50 | 0.00 |
| AT4G20700  | MAP 05-2      | -1.37 | 0.00 | AT4G29303 |         | 1.02 | 0.00 |
| AT4G27240  | ABCGQ         | -1.29 | 0.00 | AT4G29710 |         | 1.27 | 0.00 |
| AT4G27420  |               | -1.00 | 0.02 | AT4G29780 |         | 1.00 | 0.00 |
| AT4G27750  | CDEA          | -1.11 | 0.00 | AT4G29930 |         | 1.45 | 0.00 |
| AT4G27950  |               | -1.01 | 0.00 | AT4G50120 |         | 1.14 | 0.00 |
| AT4G27970  |               | -1.37 | 0.00 | AT4G30710 |         | 1.01 | 0.00 |
| AT4G26060  |               | -1.11 | 0.00 | AT4G51100 | DCAFI   | 1.04 | 0.00 |
| AT4G28790  | NA<br>omb2726 | -1.18 | 0.00 | AT4G31240 |         | 1.54 | 0.00 |
| AT4G29060  |               | -1.06 | 0.00 | AT4G31010 |         | 1.58 | 0.00 |
| AT4G29240  |               | -1.04 | 0.00 | AT4G51600 |         | 1.22 | 0.00 |
| A14G29360  | NA            | -1.03 | 0.00 | A14G32050 | NA      | 1.02 | 0.00 |
| A14G29480  |               | -1.06 | 0.00 | A14G32250 |         | 1.34 | 0.00 |
| A14G29/20  | ATPAU5        | -1.20 | 0.00 | A14032810 | AICCUS  | 1.06 | 0.00 |
| A14030130  |               | -1.10 | 0.00 | A14G328/U |         | 1.95 | 0.00 |
| A14G3U23U  |               | -1.04 | 0.00 | A14033020 |         | 1.08 | 0.00 |
| A14G30410  |               | -1.54 | 0.00 | A14033280 |         | 1.06 | 0.00 |
| A14G30680  |               | -1.11 | 0.00 | A14G3346/ | NA      | 4.16 | 0.00 |
| A14G30980  |               | -1.16 | 0.00 | A14G33910 | NA      | 1.26 | 0.00 |
| A14G30993  | NA            | -1.05 | 0.00 | A14633950 | AIUSII  | 1.16 | 0.00 |

| AT4G31620 | NA              | -1.52 | 0.00 | AT4G34131 | UGT73B3    | 1.31         | 0.00 |
|-----------|-----------------|-------|------|-----------|------------|--------------|------|
| AT4G31890 | NA              | -1.63 | 0.00 | AT4G34135 | UGT73B2    | 1.00         | 0.00 |
| AT4G32330 | NA              | -1.28 | 0.00 | AT4G34180 | NA         | 1.02         | 0.00 |
| AT4G32710 | PERK14          | -1.14 | 0.00 | AT4G34410 | RRTF1      | 3.03         | 0.00 |
| AT4G33130 | NA              | -1.07 | 0.00 | AT4G34940 | ARO1       | 1.36         | 0.00 |
| AT4G33530 | KUP5            | -1.08 | 0.00 | AT4G35300 | TMT2       | 1.18         | 0.00 |
| AT4G34138 | UGT73B1         | -1.19 | 0.00 | AT4G35420 | DRL1       | 1.02         | 0.00 |
| AT4G34160 | CYCD3           | -1.29 | 0.00 | AT4G35500 | NA         | 1.52         | 0.00 |
| AT4G34800 | NA              | -1.07 | 0.00 | AT4G35783 | DVL17      | 1.29         | 0.00 |
| AT4G35900 | FD              | -1.10 | 0.00 | AT4G35790 | ATPLDDELTA | 1.41         | 0.00 |
| AT4G36470 | NA              | -1.27 | 0.00 | AT4G35985 | NA         | 1.26         | 0.00 |
| AT4G36550 | NA              | -1.39 | 0.00 | AT4G36610 | NA         | 1.60         | 0.00 |
| AT4G36770 | NA              | -1.19 | 0.00 | AT4G36700 | NA         | 1.79         | 0.00 |
| AT4G37040 | MAP1D           | -1.10 | 0.00 | AT4G36730 | GBF1       | 1.18         | 0.00 |
| AT4G37080 | NA              | -1.09 | 0.00 | AT4G36950 | ΜΑΡΚΚΚ21   | 2 49         | 0.00 |
| AT4G37110 | NΔ              | -1 15 | 0.00 | AT4G36980 | NΔ         | 1 02         | 0.00 |
| AT4G37300 | MFF59           | -1 17 | 0.00 | AT4G37030 | NΔ         | 1 38         | 0.00 |
| AT4G37520 | NΔ              | -1 29 | 0.00 | AT4G37220 | NΔ         | 1.05         | 0.00 |
| AT4G37520 |                 | -1.25 | 0.00 | AT4G37220 |            | 1.05         | 0.00 |
| AT4G37540 | NACS2           | -1.27 | 0.00 | AT4G37370 | NA         | 1.01         | 0.00 |
| AT4G37070 | NAG32<br>A+CDE2 | -1.02 | 0.00 | AT4G37420 |            | 2.20         | 0.00 |
| AT4037740 | ALGREZ          | -1.27 | 0.00 | AT4037430 |            | 2.70         | 0.00 |
| A14G37750 |                 | -1.44 | 0.00 | A14G37470 |            | 1.08         | 0.00 |
| A14G37770 | ACS8            | -1.14 | 0.00 | A14G37790 | HAIZZ      | 1.24         | 0.00 |
| A14G37810 | NA              | -1.10 | 0.00 | AT4G37990 | ATCAD8     | 1.36         | 0.00 |
| A14G38520 | NA              | -1.14 | 0.00 | A14G38000 | DUF4.7     | 1.28         | 0.00 |
| A14G38840 | NA              | -1.49 | 0.00 | A14G38730 | NA         | 1.28         | 0.00 |
| A14G38970 | FBA2            | -1.23 | 0.00 | A14G39670 | NA         | 3.67         | 0.00 |
| AT4G39010 | AtGH9B18        | -1.03 | 0.00 | A15G01225 | NA         | 1.79         | 0.00 |
| AT4G39190 | NA              | -1.06 | 0.00 | AT5G01380 | NA         | 1.46         | 0.00 |
| AT4G39840 | NA              | -1.35 | 0.00 | AT5G01720 | NA         | 1.32         | 0.00 |
| AT5G01370 | ACI1            | -1.12 | 0.00 | AT5G02000 | NA         | 1.33         | 0.00 |
| AT5G01410 | ATPDX1          | -1.18 | 0.00 | AT5G02420 | NA         | 2.01         | 0.00 |
| AT5G02220 | NA              | -1.56 | 0.00 | AT5G02490 | AtHsp70-2  | 1.51         | 0.00 |
| AT5G02830 | NA              | -1.01 | 0.00 | AT5G02502 | NA         | 1.17         | 0.00 |
| AT5G02940 | NA              | -1.14 | 0.00 | AT5G02880 | UPL4       | 1.13         | 0.00 |
| AT5G03150 | JKD             | -1.34 | 0.00 | AT5G02970 | NA         | 1.11         | 0.00 |
| AT5G03850 | NA              | -1.06 | 0.00 | AT5G03100 | NA         | 1.20         | 0.00 |
| AT5G03960 | IQD12           | -1.04 | 0.00 | AT5G03230 | NA         | 1.18         | 0.00 |
| AT5G04190 | PKS4            | -1.07 | 0.00 | AT5G04340 | C2H2       | 1.02         | 0.00 |
| AT5G04430 | BTR1            | -1.13 | 0.00 | AT5G04660 | CYP77A4    | 1.59         | 0.00 |
| AT5G04690 | NA              | -1.08 | 0.00 | AT5G05230 | NA         | 1.01         | 0.00 |
| AT5G04950 | ATNAS1          | -2.80 | 0.00 | AT5G05260 | CYP79A2    | 1.33         | 0.00 |
| AT5G04960 | NA              | -1.82 | 0.02 | AT5G05350 | NA         | 1.19         | 0.00 |
| AT5G05180 | NA              | -1.25 | 0.00 | AT5G06230 | TBL9       | 1.34         | 0.00 |
| AT5G06290 | 2-Cys           | -1.36 | 0.00 | AT5G06320 | NHL3       | 1.01         | 0.00 |
| AT5G06790 | NA              | -1.38 | 0.00 | AT5G06370 | NA         | 1.47         | 0.00 |
| AT5G06930 | NA              | -1.15 | 0.00 | AT5G07380 | NA         | 1.04         | 0.00 |
| AT5G06940 | NA              | -1.10 | 0.00 | AT5G07680 | ANAC079    | 1.30         | 0.00 |
| AT5G07240 | IQD24           | -1.03 | 0.00 | AT5G07850 | NA         | 1.21         | 0.00 |
| AT5G07630 | NA              | -1.03 | 0.00 | AT5G08240 | NA         | 1.25         | 0.00 |
| AT5G07990 | CYP75B1         | -1.06 | 0.00 | AT5G08350 | NA         | 1.48         | 0.00 |
| AT5G08280 | HEMC            | -1.04 | 0.00 | AT5G09620 | NA         | 1.20         | 0.00 |
| AT5G08330 | AtTCP11         | -1 36 | 0.00 | AT5G10625 | NA         | 2 26         | 0.00 |
| AT5G08760 | NA              | -1.09 | 0.00 | AT5G10650 | NΔ         | 1 18         | 0.00 |
| AT5G09650 | AtPPa6          | -1 39 | 0.00 | AT5G11680 | NΔ         | 1.10         | 0.00 |
| ΔΤ5G10020 | NΔ              | -1 18 | 0.00 | AT5G12020 | NΔ         | 1 10         | 0.00 |
| AT5G10150 | NA              | -1 60 | 0.00 | AT5G12000 |            | 1.1.7        | 0.00 |
| AT5010150 |                 | -1.00 | 0.00 | ATEC12200 |            | 1.07         | 0.00 |
| AT5G10520 |                 | -1.00 | 0.00 | ATEC12210 |            | 1.33<br>2.00 | 0.00 |
| ATEC10720 |                 | -1.54 | 0.00 | ATEC12500 |            | 2.00         | 0.00 |
| A15G10/20 |                 | -1.81 | 0.02 | A15G13580 |            | 2.34         | 0.00 |
| A15G11370 | INA             | -1.64 | 0.04 | A15G13/00 | APAU       | 2.04         | 0.00 |
| AI5G11550 | NA              | -1.42 | 0.00 | AI5G14130 | NA         | 1.04         | 0.00 |

| AT5G11790 | NDL2          | -1.17 | 0.00 | AT5G14995  | NA       | 2.21 | 0.00 |
|-----------|---------------|-------|------|------------|----------|------|------|
| AT5G11810 | NA            | -1.04 | 0.00 | AT5G15260  | NA       | 1.34 | 0.00 |
| AT5G12050 | NA            | -1.44 | 0.00 | AT5G16360  | NA       | 2.50 | 0.00 |
| AT5G12060 | NA            | -1.17 | 0.04 | AT5G16370  | AAE5     | 1.24 | 0.00 |
| AT5G12170 | CLT3          | -1.12 | 0.00 | AT5G16380  | NA       | 1.08 | 0.00 |
| AT5G12250 | TUR6          | -1 10 | 0.00 | AT5G17210  | NΔ       | 1 13 | 0.00 |
| AT5G12250 | NA            | -1.36 | 0.00 | AT5G17210  | NA       | 1.15 | 0.00 |
| AT5G12000 |               | -1.50 | 0.00 | AT5G17400  |          | 1.14 | 0.00 |
| AT5G13000 | ATG5L12       | -1.01 | 0.00 | AT5G17490  |          | 1.20 | 0.00 |
| AT5G15140 |               | -1.55 | 0.00 | AT5G17800  |          | 1.57 | 0.00 |
| AT5G13510 | EIVIB3130     | -1.03 | 0.00 | A15G18130  |          | 1.02 | 0.00 |
| AT5G14090 | NA            | -1.30 | 0.00 | A15G18270  | ANAC087  | 2.89 | 0.00 |
| A15G14230 | NA            | -1.04 | 0.00 | A15G18370  | NA       | 1.03 | 0.00 |
| AT5G14790 | NA            | -1.06 | 0.00 | AT5G20010  | ATRAN1   | 1.21 | 0.00 |
| AT5G14920 | NA            | -1.78 | 0.00 | AT5G20430  | NA       | 1.27 | 0.00 |
| AT5G14970 | NA            | -1.10 | 0.00 | AT5G22380  | NAC090   | 2.04 | 0.00 |
| AT5G15050 | NA            | -1.17 | 0.00 | AT5G22510  | A/N-InvE | 1.03 | 0.00 |
| AT5G15310 | ATMIXTA       | -1.25 | 0.00 | AT5G22545  | NA       | 1.69 | 0.00 |
| AT5G15320 | NA            | -1.06 | 0.00 | AT5G22550  | NA       | 1.06 | 0.00 |
| AT5G15580 | LNG1          | -1.29 | 0.00 | AT5G22850  | NA       | 1.18 | 0.00 |
| AT5G16000 | NIK1          | -1.08 | 0.00 | AT5G23190  | CYP86B1  | 2.00 | 0.00 |
| AT5G16340 | NA            | -1.19 | 0.00 | AT5G23750  | NA       | 1.76 | 0.00 |
| AT5G16530 | PIN5          | -1.07 | 0.00 | AT5G23950  | NA       | 1.61 | 0.00 |
| AT5G16810 | NA            | -1.08 | 0.00 | AT5G24030  | SLAH3    | 1.05 | 0.00 |
| AT5G17700 | NA            | -1.23 | 0.00 | AT5G24080  | NA       | 2.70 | 0.00 |
| AT5G17870 | PSRP6         | -1.10 | 0.00 | AT5G24352  | NA       | 1.03 | 0.00 |
| AT5G18010 | SALIR19       | -1 57 | 0.00 | AT5G24590  |          | 1 16 | 0.00 |
| AT5G18290 | SID1.2        | -1 11 | 0.00 | AT5G24860  |          | 1.10 | 0.00 |
| AT5G10250 | 511 1,2<br>NA | 1.11  | 0.00 | AT5G24800  |          | 1.20 | 0.00 |
| AT5G18550 |               | -1.20 | 0.00 | AT5024870  |          | 1.27 | 0.00 |
| AT5G18050 |               | -1.07 | 0.00 | AT5G25770  |          | 1.00 | 0.00 |
| AT5G18000 | PCBZ          | -1.05 | 0.00 | A15G26340  | AISIPIS  | 1.08 | 0.00 |
| A15G18840 |               | -1.46 | 0.00 | A15G26673  | NA       | 1.38 | 0.00 |
| AT5G18970 | NA            | -1.02 | 0.00 | A15G26770  | NA       | 1.27 | 0.00 |
| AT5G19090 | NA            | -1.19 | 0.00 | A15G28237  | NA       | 1.80 | 0.00 |
| AT5G19120 | NA            | -1.38 | 0.00 | AT5G29613  | NA       | 1.70 | 0.00 |
| AT5G19160 | TBL11         | -1.21 | 0.00 | AT5G37170  | NA       | 1.18 | 0.00 |
| AT5G19170 | NA            | -1.02 | 0.00 | AT5G37570  | NA       | 1.08 | 0.00 |
| AT5G19340 | NA            | -1.27 | 0.00 | AT5G37720  | ALY4     | 1.14 | 0.00 |
| AT5G19810 | NA            | -1.36 | 0.01 | AT5G38240  | NA       | 1.56 | 0.00 |
| AT5G20635 | AGG3          | -1.20 | 0.00 | AT5G38850  | NA       | 1.03 | 0.00 |
| AT5G20710 | BGAL7         | -1.15 | 0.00 | AT5G39050  | PMAT1    | 1.12 | 0.00 |
| AT5G20740 | NA            | -1.94 | 0.00 | AT5G39610  | ANAC092  | 3.27 | 0.00 |
| AT5G20850 | ATRAD51       | -1.12 | 0.00 | AT5G39660  | CDF2     | 1.06 | 0.00 |
| AT5G20950 | NA            | -1.13 | 0.00 | AT5G40390  | RS5      | 1.05 | 0.00 |
| AT5G20970 | NA            | -1.07 | 0.00 | AT5G40690  | NA       | 1.38 | 0.00 |
| AT5G21060 | NA            | -1.13 | 0.00 | AT5G41040  | NA       | 1.24 | 0.00 |
| AT5G21430 | CRRL          | -1.10 | 0.00 | AT5G41700  | ATUBC8   | 1.03 | 0.00 |
| AT5G21920 | ATYLMG2       | -1.16 | 0.00 | AT5G41800  | NA       | 1.33 | 0.00 |
| AT5G21930 | ATHMA8        | -1.31 | 0.00 | AT5G42010  | NA       | 1.19 | 0.00 |
| AT5G21960 | NA            | -1 94 | 0.03 | AT5G42050  | NA       | 1 85 | 0.00 |
| AT5G22930 | NA            | -1 48 | 0.00 | AT5G42380  | CMI 37   | 1 29 | 0.00 |
| AT5G22010 | IMS3          | -1 13 | 0.00 | AT5G42500  | NA       | 2.40 | 0.00 |
| AT5G23060 | CaS           | -1.15 | 0.00 | AT5G42020  | NA       | 2.40 | 0.00 |
| AT5G23000 |               | -1.40 | 0.00 | AT5C42930  | NA       | 1.10 | 0.00 |
| AT5023200 | NA NA         | 1 00  | 0.00 | ATEC 43190 |          | 1.01 | 0.00 |
| ATEC22040 |               | -1.03 | 0.00 | A15043180  |          | 1.09 | 0.00 |
| A15G23940 |               | -1.44 | 0.00 | A15G43450  |          | 1.06 | 0.00 |
| A15G25810 |               | -1.33 | 0.00 | A15G43650  | BHLH92   | 2.32 | 0.00 |
| A15G25880 | ATNADP-ME3    | -1.11 | 0.00 | A15G43770  | NA       | 1.// | 0.00 |
| A15G26630 | NA            | -1.21 | 0.00 | A15G43950  | NA       | 1.00 | 0.00 |
| A15G2/330 | NA            | -1.20 | 0.00 | A15G44540  | NA       | 2.04 | 0.00 |
| AT5G27390 | NA            | -1.06 | 0.00 | AT5G44670  | NA       | 1.33 | 0.00 |
| AT5G27550 | NA            | -1.14 | 0.00 | AT5G45240  | NA       | 1.58 | 0.00 |
| AT5G28030 | DES1          | -1.12 | 0.00 | AT5G45340  | CYP707A3 | 1.53 | 0.00 |

| AT5G35480  | NA         | -1.01 | 0.00 | AT5G45640 | NA        | 1.53 | 0.00 |
|------------|------------|-------|------|-----------|-----------|------|------|
| AT5G35490  | ATMRU1     | -1.59 | 0.00 | AT5G45810 | CIPK19    | 2.87 | 0.00 |
| AT5G35670  | iqd33      | -1.15 | 0.00 | AT5G46180 | DELTA-OAT | 1.24 | 0.00 |
| AT5G36920  | NA         | -1.28 | 0.00 | AT5G46250 | NA        | 1.04 | 0.00 |
| AT5G37940  | NA         | -1.42 | 0.00 | AT5G46295 | NA        | 1.72 | 0.00 |
| AT5G38010  | NA         | -1.67 | 0.00 | AT5G46720 | NA        | 1.01 | 0.00 |
| AT5G38420  | NA         | -1 14 | 0.00 | AT5G47180 | NA        | 1 12 | 0.00 |
| AT5G38530  | TSBtype2   | -1.05 | 0.00 | AT5G47740 | NΔ        | 1.12 | 0.00 |
| AT5G30000  | NA         | -1.05 | 0.00 | AT5G47810 |           | 1.24 | 0.00 |
| ATEC40010  |            | -1.05 | 0.00 | AT5047810 |           | 2.69 | 0.00 |
| AT5G40010  |            | -1.15 | 0.04 | AT5G47980 |           | 2.00 | 0.00 |
| A15G40150  | NA         | -1.61 | 0.00 | A15G48180 | NSP5      | 1.89 | 0.00 |
| A15G40460  | NA         | -1.20 | 0.00 | A15G48410 | AIGLR1.3  | 1.32 | 0.00 |
| A15G40630  | NA         | -1.35 | 0.00 | A15G48510 | NA        | 1.29 | 0.00 |
| AT5G40820  | ATATR      | -1.24 | 0.00 | AT5G49190 | ATSUS2    | 1.15 | 0.00 |
| AT5G40830  | NA         | -1.35 | 0.00 | AT5G49270 | COBL9     | 1.20 | 0.00 |
| AT5G41050  | NA         | -1.25 | 0.00 | AT5G49280 | NA        | 1.59 | 0.00 |
| AT5G41060  | NA         | -1.47 | 0.00 | AT5G49520 | ATWRKY48  | 1.32 | 0.00 |
| AT5G41070  | DRB5       | -1.32 | 0.00 | AT5G49525 | NA        | 1.05 | 0.00 |
| AT5G42100  | ATBG_PPAP  | -1.17 | 0.00 | AT5G49600 | NA        | 1.58 | 0.00 |
| AT5G42110  | NA         | -1.40 | 0.00 | AT5G49690 | NA        | 1.86 | 0.00 |
| AT5G42720  | NA         | -1.37 | 0.00 | AT5G49780 | NA        | 1.65 | 0.00 |
| AT5G42760  | NA         | -1.38 | 0.00 | AT5G50170 | NA        | 1.16 | 0.00 |
| AT5G42880  | NA         | -1.45 | 0.00 | AT5G50720 | ATHVA22E  | 1.26 | 0.00 |
| AT5G43020  | NA         | -1 19 | 0.00 | AT5G50780 | NA        | 1.04 | 0.00 |
| AT5G43700  | ΔΤΔΙΙΧ2-11 | -1 12 | 0.00 | AT5G51070 | CIPD      | 1.60 | 0.00 |
| AT5G43750  |            | _1 22 | 0.00 | AT5G51760 |           | 3.06 | 0.00 |
| AT5C42070  |            | -1.25 | 0.00 | AT5G51000 |           | 2.00 | 0.00 |
| AT5G43970  |            | -1.10 | 0.00 | AT5G51990 | CBF4      | 2.23 | 0.00 |
| A15G44600  |            | -1.12 | 0.00 | AT5G52290 | SHUCI     | 1.01 | 0.00 |
| A15G45590  | NA         | -1.01 | 0.00 | A15G52730 | NA        | 1.04 | 0.00 |
| A15G45650  | NA         | -1.69 | 0.00 | A15G53010 | NA        | 1.08 | 0.00 |
| A15G45670  | NA         | -1./4 | 0.00 | AI5G53130 | ATCNGC1   | 1.09 | 0.00 |
| AT5G45850  | NA         | -1.17 | 0.00 | AT5G53220 | NA        | 1.54 | 0.00 |
| AT5G46110  | APE2       | -1.25 | 0.00 | AT5G53360 | NA        | 1.17 | 0.00 |
| AT5G46220  | NA         | -1.27 | 0.00 | AT5G53660 | AtGRF7    | 1.02 | 0.00 |
| AT5G46450  | NA         | -1.06 | 0.00 | AT5G54225 | LCR83     | 1.52 | 0.00 |
| AT5G46710  | NA         | -1.25 | 0.00 | AT5G54230 | AtMYB49   | 1.21 | 0.00 |
| AT5G46780  | NA         | -1.07 | 0.00 | AT5G54510 | DFL1      | 1.14 | 0.00 |
| AT5G46790  | PYL1       | -1.69 | 0.00 | AT5G54585 | NA        | 1.66 | 0.00 |
| AT5G46930  | NA         | -1.55 | 0.01 | AT5G54650 | ATFH5     | 2.20 | 0.00 |
| AT5G47250  | NA         | -1.22 | 0.00 | AT5G55410 | NA        | 1.12 | 0.00 |
| AT5G47500  | PME5       | -1.69 | 0.00 | AT5G56420 | NA        | 1.13 | 0.00 |
| AT5G47770  | FPS1       | -1.13 | 0.00 | AT5G57310 | NA        | 1.20 | 0.00 |
| AT5G48450  | sks3       | -1.01 | 0.00 | AT5G57480 | NA        | 2.39 | 0.00 |
| AT5G48490  | NA         | -1.62 | 0.00 | AT5G57610 | NA        | 1.33 | 0.00 |
| AT5G48545  | HINT3      | -1.05 | 0.00 | AT5G57670 | NA        | 1 19 | 0.00 |
| AT5G48660  | NΔ         | -1 22 | 0.00 | AT5G57810 | TET15     | 1 13 | 0.00 |
| AT5G/8790  | NΔ         | _1 39 | 0.00 | AT5G57840 | NΔ        | 1.15 | 0.00 |
| ATEC 48010 |            | -1.55 | 0.00 | ATECE9290 |           | 1.10 | 0.00 |
| AT5G46910  |            | -1.01 | 0.00 | AT5050500 |           | 1.52 | 0.00 |
| AT5G49030  | UVAZ       | -1.10 | 0.00 | AT5G58050 | PSTI      | 1.73 | 0.00 |
| A15G49480  | AICPI      | -1.41 | 0.00 | A15G59820 | RHL41     | 1.14 | 0.00 |
| A15G49770  | NA         | -1.01 | 0.00 | A15G60530 | NA        | 1.15 | 0.00 |
| AT5G50375  | CPI1       | -1.41 | 0.00 | AT5G60600 | CLB4      | 1.10 | 0.00 |
| AT5G50450  | NA         | -1.12 | 0.00 | AT5G60945 | NA        | 1.69 | 0.00 |
| AT5G50880  | NA         | -1.04 | 0.03 | AT5G61120 | NA        | 2.71 | 0.00 |
| AT5G51470  | NA         | -1.23 | 0.00 | AT5G61430 | ANAC100   | 1.08 | 0.00 |
| AT5G51720  | NA         | -1.17 | 0.00 | AT5G61560 | NA        | 1.18 | 0.00 |
| AT5G52320  | CYP96A4    | -1.02 | 0.00 | AT5G61600 | ERF104    | 1.64 | 0.00 |
| AT5G52830  | ATWRKY27   | -1.52 | 0.00 | AT5G62100 | ATBAG2    | 1.17 | 0.00 |
| AT5G52900  | MAKR6      | -1.26 | 0.00 | AT5G62620 | NA        | 1.62 | 0.00 |
| AT5G52930  | NA         | -1.53 | 0.00 | AT5G62627 | NA        | 3.03 | 0.00 |
| AT5G53160  | PYL8       | -1.19 | 0.00 | AT5G63190 | NA        | 1.13 | 0.00 |
| AT5G53200  | TRY        | -1.43 | 0.00 | AT5G63450 | CYP94B1   | 2.31 | 0.00 |

| AT5G53500 | NA      | -1.03 | 0.00 | AT5G63640 | NA       | 1.38 | 0.00 |
|-----------|---------|-------|------|-----------|----------|------|------|
| AT5G53980 | ATHB52  | -1.29 | 0.00 | AT5G64190 | NA       | 2.25 | 0.00 |
| AT5G54200 | NA      | -1.12 | 0.00 | AT5G64230 | NA       | 1.39 | 0.00 |
| AT5G54270 | LHCB3   | -1.45 | 0.00 | AT5G64310 | AGP1     | 2.86 | 0.00 |
| AT5G54380 | THE1    | -1.30 | 0.00 | AT5G64750 | ABR1     | 1.80 | 0.00 |
| AT5G55620 | NA      | -1.45 | 0.00 | AT5G65110 | ACX2     | 2.16 | 0.00 |
| AT5G55730 | FLA1    | -1.49 | 0.00 | AT5G65230 | AtMYB53  | 1.24 | 0.00 |
| AT5G56670 | NA      | -1.06 | 0.00 | AT5G65280 | GCL1     | 1.62 | 0.00 |
| AT5G57440 | GPP2    | -1.27 | 0.00 | AT5G65990 | NA       | 1.52 | 0.00 |
| AT5G57660 | ATCOL5  | -1.24 | 0.00 | AT5G66631 | NA       | 1.01 | 0.00 |
| AT5G57700 | NA      | -1.46 | 0.00 | AT5G66650 | NA       | 1.04 | 0.00 |
| AT5G58310 | ATMES18 | -1.64 | 0.00 | AT5G66780 | NA       | 6.15 | 0.00 |
| AT5G58390 | NA      | -1.70 | 0.00 | AT5G67080 | ΜΑΡΚΚΚ19 | 2.62 | 0.00 |
| AT5G58500 | LSH5    | -1.38 | 0.00 | AT5G67090 | NA       | 1.02 | 0.00 |
| AT5G58550 | EOL2    | -1.49 | 0.00 | AT5G67140 | NA       | 1.10 | 0.00 |
| AT5G59770 | NA      | -1.32 | 0.00 | AT5G67340 | NA       | 1.08 | 0.00 |
| AT5G59850 | NA      | -1.04 | 0.00 |           |          |      |      |

### REFERENCE

- Alexandersson, E., Danielson, J.A., Råde, J., Moparthi, V.K., Fontes, M., Kjellbom, P., and Johanson,
  U. (2010). Transcriptional regulation of aquaporins in accessions of *Arabidopsis* in response to drought stress. Plant J 61, 650-660.
- Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson,
  U., and Kjellbom, P. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59, 469-484.
- Alford, S.R., Rangarajan, P., Williams, P., and Gillaspy, G.E. (2012). myo-Inositol Oxygenase is Required for Responses to Low Energy Conditions in *Arabidopsis thaliana*. Front Plant Sci **3**, 69.
- Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., and Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res **98**, 541-550.
- Aprile, A., Mastrangelo, A.M., De Leonardis, A.M., Galiba, G., Roncaglia, E., Ferrari, F., De Bellis, L., Turchi, L., Giuliano, G., and Cattivelli, L. (2009). Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10, 279.
- Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J., Weber, C., Zielinski, D., and von Koskull-Döring, P. (2004). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29, 471-487.
- **Bansal, A., and Sankararamakrishnan, R.** (2007). Homology modeling of major intrinsic proteins in rice, maize and *Arabidopsis*: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol **7**, 27.
- Bates, B., Kundzewicz, Z.W., Wu, S., and Palutikof, J. (2008). Climate change and water. (Intergovernmental Panel on Climate Change (IPCC)).
- Baumberger, N., Doesseger, B., Guyot, R., Diet, A., Parsons, R.L., Clark, M.A., Simmons, M.P., Bedinger, P., Goff, S.A., Ringli, C., and Keller, B. (2003). Whole-genome comparison of leucine-rich repeat extensins in *Arabidopsis* and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol **131**, 1313-1326.
- Bienert, G.P., Møller, A.L., Kristiansen, K.A., Schulz, A., Møller, I.M., Schjoerring, J.K., and Jahn, T.P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282, 1183-1192.
- **Bokszczanin, K.L., and Fragkostefanakis, S.** (2013). Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci **4**, 315.
- Boursiac, Y., Chen, S., Luu, D.T., Sorieul, M., van den Dries, N., and Maurel, C. (2005). Early effects of salinity on water transport in *Arabidopsis* roots. Molecular and cellular features of aquaporin expression. Plant Physiol **139**, 790-805.

- Boursiac, Y., Boudet, J., Postaire, O., Luu, D.T., Tournaire-Roux, C., and Maurel, C. (2008). Stimulusinduced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56, 207-218.
- Bray, E.A. (1997). Plant responses to water deficit. Trends Plant Sci 2, 48-54.
- **Buckley, T.N.** (2015). The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ **38**, 7-22.
- **Caldeira, C.F., Jeanguenin, L., Chaumont, F., and Tardieu, F.** (2014a). Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nat Commun **5,** 5365.
- Caldeira, C.F., Bosio, M., Parent, B., Jeanguenin, L., Chaumont, F., and Tardieu, F. (2014b). A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. Plant Physiol **164**, 1718-1730.
- **Campbell, P., and Braam, J.** (1999). Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci **4**, 361-366.
- Caspar, T., Lin, T.P., Monroe, J., Bernhard, W., Spilatro, S., Preiss, J., and Somerville, C. (1989). Altered regulation of beta-amylase activity in mutants of *Arabidopsis* with lesions in starch metabolism. Proc Natl Acad Sci U S A 86, 5830-5833.
- Chaumont, F., Moshelion, M., and Daniels, M.J. (2005b). Regulation of plant aquaporin activity. Biology of the Cell **97**, 749-764.
- Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P., Osório, M.L., Carvalho, I., Faria, T., and Pinheiro, C. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89 Spec No, 907-916.
- **Claisse, G., Charrier, B., and Kreis, M.** (2007). The *Arabidopsis thaliana* GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion. Plant Mol Biol **64,** 113-124.
- Crawford, A.J., McLachlan, D.H., Hetherington, A.M., and Franklin, K.A. (2012). High temperature exposure increases plant cooling capacity. Curr Biol **22**, R396-397.
- **Da Ines, O.** (2008). Functional analysis of PIP2 aquaporins in *Arabidopsis thaliana*. *Ludwig-Maximilians-Universität, München*.
- Da Ines, O., Graf, W., Franck, K.I., Albert, A., Winkler, J.B., Scherb, H., Stichler, W., and Schäffner, A.R. (2010). Kinetic analyses of plant water relocation using deuterium as tracer - reduced water flux of *Arabidopsis pip2* aquaporin knockout mutants. Plant Biol (Stuttg) **12 Suppl 1**, 129-139.
- Daniels, M.J., Mirkov, T.E., and Chrispeels, M.J. (1994). The plasma membrane of *Arabidopsis thaliana* contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol **106**, 1325-1333.
- **Daniels, M.J., Chaumont, F., Mirkov, T.E., and Chrispeels, M.J.** (1996). Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell **8**, 587-599.
- de Bianchi, S., Betterle, N., Kouril, R., Cazzaniga, S., Boekema, E., Bassi, R., and Dall'Osto, L. (2011). Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23, 2659-2679.
- di Pietro, M., Vialaret, J., Li, G.W., Hem, S., Prado, K., Rossignol, M., Maurel, C., and Santoni, V. (2013). Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in *Arabidopsis* roots. Mol Cell Proteomics **12**, 3886-3897.
- **Dynowski, M., Schaaf, G., Loque, D., Moran, O., and Ludewig, U.** (2008). Plant plasma membrane water channels conduct the signalling molecule H<sub>2</sub>O<sub>2</sub>. Biochem J **414**, 53-61.
- Egert, A., Keller, F., and Peters, S. (2013). Abiotic stress-induced accumulation of raffinose in Arabidopsis leaves is mediated by a single raffinose synthase (RS5, At5g40390). BMC Plant Biol 13, 218.
- **Ehlert, C., Maurel, C., Tardieu, F., and Simonneau, T.** (2009). Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol **150**, 1093-1104.
- **Erban, A., Schauer, N., Fernie, A.R., and Kopka, J.** (2007). Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. In Metabolomics (Springer), pp. 19-38.
- Fricke, W., and Peters, W.S. (2002). The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol **129**, 374-388.
- Fujiyoshi, Y., Mitsuoka, K., de Groot, B.L., Philippsen, A., Grubmüller, H., Agre, P., and Engel, A. (2002). Structure and function of water channels. Curr Opin Struct Biol **12**, 509-515.
- Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., and Maurel, C. (2002). The water permeability of *Arabidopsis* plasma membrane is regulated by divalent cations and pH. Plant J **30**, 71-81.
- Guyot, G., Scoffoni, C., and Sack, L. (2012). Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant Cell Environ 35, 857-871.
- Hachez, C., Laloux, T., Reinhardt, H., Cavez, D., Degand, H., Grefen, C., De Rycke, R., Inzé, D., Blatt, M.R., Russinova, E., and Chaumont, F. (2014). *Arabidopsis* SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26, 3132-3147.
- Heckwolf, M., Pater, D., Hanson, D.T., and Kaldenhoff, R. (2011). The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO<sub>2</sub> transport facilitator. Plant J **67**, 795-804.
- Hejazi, M., Fettke, J., Kötting, O., Zeeman, S.C., and Steup, M. (2010). The Laforin-like dualspecificity phosphatase SEX4 from *Arabidopsis* hydrolyzes both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans. Plant Physiol **152**, 711-722.
- Holm, L.M., Jahn, T.P., Moller, A.L., Schjoerring, J.K., Ferri, D., Klaerke, D.A., and Zeuthen, T. (2005). NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> permeability in aquaporin-expressing *Xenopus* oocytes. Pflugers Arch **450**, 415-428.
- Hongo, S., Sato, K., Yokoyama, R., and Nishitani, K. (2012). Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the *Arabidopsis* stem. Plant Cell 24, 2624-2634.

- Hooijmaijers, C., Rhee, J.Y., Kwak, K.J., Chung, G.C., Horie, T., Katsuhara, M., and Kang, H. (2012). Hydrogen peroxide permeability of plasma membrane aquaporins of *Arabidopsis thaliana*. J Plant Res **125**, 147-153.
- **Howarth, C.** (2005). Genetic improvements of tolerance to high temperature. Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York.
- Ishikawa, F., Suga, S., Uemura, T., Sato, M.H., and Maeshima, M. (2005). Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in *Arabidopsis thaliana*. FEBS Lett **579**, 5814-5820.
- Jang, J.Y., Kim, D.G., Kim, Y.O., Kim, J.S., and Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in *Arabidopsis thaliana*. Plant Mol Biol **54**, 713-725.
- Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güclü, J., Vinh, J., Heyes, J., Franck, K.I., Schäffner, A.R., Bouchez, D., and Maurel, C. (2003). Role of a single aquaporin isoform in root water uptake. Plant Cell 15, 509-522.
- Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., Weig, A.R., and Kjellbom, P. (2001). The complete set of genes encoding major intrinsic proteins in *Arabidopsis* provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol **126**, 1358-1369.
- Joubès, J., Raffaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J., Moreau, P., Domergue, F., and Lessire, R. (2008). The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol **67**, 547-566.
- Kaldenhoff, R., Grote, K., Zhu, J.J., and Zimmermann, U. (1998). Significance of plasmalemma aquaporins for water-transport in *Arabidopsis thaliana*. The Plant Journal **14**, 121-128.
- Kammerloher, W., Fischer, U., Piechottka, G.P., and Schäffner, A.R. (1994). Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6, 187-199.
- Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., and Guy, C.L. (2004). Exploring the temperature-stress metabolome of *Arabidopsis*. Plant Physiol **136**, 4159-4168.
- Klebl, F., Wolf, M., and Sauer, N. (2003). A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana delta-TIP or gamma-TIP. FEBS Lett 547, 69-74.
- Kline, K.G., Barrett-Wilt, G.A., and Sussman, M.R. (2010). In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U S A 107, 15986-15991.
- Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., and Scharf, K.D. (2007). Complexity of the heat stress response in plants. Curr Opin Plant Biol **10**, 310-316.
- Kötting, O., Santelia, D., Edner, C., Eicke, S., Marthaler, T., Gentry, M.S., Comparot-Moss, S., Chen, J., Smith, A.M., Steup, M., Ritte, G., and Zeeman, S.C. (2009). STARCH-EXCESS4 is a laforinlike Phosphoglucan phosphatase required for starch degradation in *Arabidopsis thaliana*. Plant Cell **21**, 334-346.

- Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., Shulaev, V., and Mittler,
  R. (2008). Ascorbate peroxidase 1 plays a key role in the response of *Arabidopsis thaliana* to stress combination. J Biol Chem 283, 34197-34203.
- **Krasensky, J., and Jonak, C.** (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot **63**, 1593-1608.
- Krishnaswamy, S., Verma, S., Rahman, M.H., and Kav, N.N. (2011). Functional characterization of four APETALA2-family genes (*RAP2.6, RAP2.6L, DREB19* and *DREB26*) in *Arabidopsis*. Plant Mol Biol 75, 107-127.
- Larkindale, J., and Vierling, E. (2008). Core genome responses involved in acclimation to high temperature. Plant Physiol 146, 748-761.
- Le, D.T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Ham le, H., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7, e49522.
- Lee, H.K., Cho, S.K., Son, O., Xu, Z., Hwang, I., and Kim, W.T. (2009). Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic *Arabidopsis* plants. Plant Cell **21**, 622-641.
- Lee, S.H., Chung, G.C., Jang, J.Y., Ahn, S.J., and Zwiazek, J.J. (2012). Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in *Arabidopsis*. Plant Physiol **159**, 479-488.
- Leegood, R.C. (2008). Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot 59, 1663-1673.
- Levin, M., Lemcoff, J.H., Cohen, S., and Kapulnik, Y. (2007). Low air humidity increases leaf-specific hydraulic conductance of *Arabidopsis thaliana* (L.) Heynh (Brassicaceae). J Exp Bot 58, 3711-3718.
- Li, L., Foster, C.M., Gan, Q., Nettleton, D., James, M.G., Myers, A.M., and Wurtele, E.S. (2009). Identification of the novel protein QQS as a component of the starch metabolic network in *Arabidopsis* leaves. Plant J 58, 485-498.
- Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.T., Maurel, C., and Lin, J. (2011). Singlemolecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of *Arabidopsis* plasma membrane aquaporin regulation. Plant Cell **23**, 3780-3797.
- Liepman, A.H., Nairn, C.J., Willats, W.G., Sorensen, I., Roberts, A.W., and Keegstra, K. (2007). Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol **143**, 1881-1893.
- Lim, C.J., Yang, K.A., Hong, J.K., Choi, J.S., Yun, D.J., Hong, J.C., Chung, W.S., Lee, S.Y., Cho, M.J., and Lim, C.O. (2006). Gene expression profiles during heat acclimation in *Arabidopsis thaliana* suspension-culture cells. J Plant Res **119**, 373-383.
- Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A.R. (2006). Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc **1**, 387-396.
- Liu, F., Vantoai, T., Moy, L.P., Bock, G., Linford, L.D., and Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in *Arabidopsis*. Plant Physiol **137**, 1115-1129.

- Liu, L.H., Ludewig, U., Gassert, B., Frommer, W.B., and von Wirén, N. (2003). Urea transport by nitrogen-regulated tonoplast intrinsic proteins in *Arabidopsis*. Plant Physiol **133**, 1220-1228.
- Luu, D.T., and Maurel, C. (2005). Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28, 85-96.
- Martínez-Ballesta, M.C., Aparicio, F., Pallás, V., Martínez, V., and Carvajal, M. (2003). Influence of saline stress on root hydraulic conductance and *PIP* expression in *Arabidopsis*. J Plant Physiol 160, 689-697.
- Martre, P., Morillon, R., Barrieu, F., North, G.B., Nobel, P.S., and Chrispeels, M.J. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130, 2101-2110.
- Matsuura, H., Ishibashi, Y., Shinmyo, A., Kanaya, S., and Kato, K. (2010). Genome-wide analyses of early translational responses to elevated temperature and high salinity in *Arabidopsis thaliana*. Plant Cell Physiol **51**, 448-462.
- Maurel, C., Reizer, J., Schroeder, J.I., and Chrispeels, M.J. (1993). The vacuolar membrane protein gamma-TIP creates water specific channels in *Xenopus* oocytes. EMBO J **12**, 2241-2247.
- Maurel, C., Verdoucq, L., Luu, D.T., and Santoni, V. (2008). Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol **59**, 595-624.
- Mittal, D., Madhyastha, D.A., and Grover, A. (2012). Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 7, e40899.
- Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci 11, 15-19.
- Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem Sci 37, 118-125.
- Monneuse, J.M., Sugano, M., Becue, T., Santoni, V., Hem, S., and Rossignol, M. (2011). Towards the profiling of the *Arabidopsis thaliana* plasma membrane transportome by targeted proteomics. Proteomics **11**, 1789-1797.
- Monroe, J.D., and Preiss, J. (1990). Purification of a beta-Amylase that Accumulates in *Arabidopsis thaliana* Mutants Defective in Starch Metabolism. Plant Physiol **94**, 1033-1039.
- Monroe, J.D., Salminen, M.D., and Preiss, J. (1991). Nucleotide Sequence of a cDNA Clone Encoding a beta-Amylase from *Arabidopsis thaliana*. Plant Physiol **97**, 1599-1601.
- Morgan, J.M. (1984). Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35, 299-319.
- Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in *Arabidopsis* and grasses. Plant Physiol **149**, 88-95.
- Ndamukong, I., Chetram, A., Saleh, A., and Avramova, Z. (2009). Wall-modifying genes regulated by the Arabidopsis homolog of trithorax, ATX1: repression of the XTH33 gene as a test case. Plant J 58, 541-553.
- **Nonami, H., and Boyer, J.S.** (1993). Direct Demonstration of a Growth-Induced Water Potential Gradient. Plant Physiol **102**, 13-19.
- Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L.S. (2014). Response of plants to water stress. Front Plant Sci 5, 86.

- Ottosen, C.-O., Mortensen, L., and Gislerød, H. (2002). Effect of relative air humidity on gas exchange, stomatal conductance and nutrient uptake in miniature potted roses. Gartenbauwissenschaft 67, 143-147.
- Panikulangara, T.J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H., and Schöffl, F. (2004). Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in *Arabidopsis*. Plant Physiol **136**, 3148-3158.
- Pantin, F., Simonneau, T., and Muller, B. (2012). Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol **196**, 349-366.
- Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F., and Tardieu, F. (2009). Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol **149**, 2000-2012.
- Péret, B., Li, G., Zhao, J., Band, L.R., Voß, U., Postaire, O., Luu, D.T., Da Ines, O., Casimiro, I., Lucas, M., Wells, D.M., Lazzerini, L., Nacry, P., King, J.R., Jensen, O.E., Schäffner, A.R., Maurel, C., and Bennett, M.J. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14, 991-998.
- Postaire, O., Tournaire-Roux, C., Grondin, A., Boursiac, Y., Morillon, R., Schäffner, A.R., and Maurel,
  C. (2010). A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of *Arabidopsis*. Plant Physiol 152, 1418-1430.
- Prado, K., Boursiac, Y., Tournaire-Roux, C., Monneuse, J.M., Postaire, O., Da Ines, O., Schäffner, A.R., Hem, S., Santoni, V., and Maurel, C. (2013). Regulation of *Arabidopsis* leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25, 1029-1039.
- Prak, S., Hem, S., Boudet, J., Viennois, G., Sommerer, N., Rossignol, M., Maurel, C., and Santoni, V. (2008). Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of *At*PIP2;1 in response to salt stress. Mol Cell Proteomics **7**, 1019-1030.
- Prasch, C.M., and Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162, 1849-1866.
- Qu, A.L., Ding, Y.F., Jiang, Q., and Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432, 203-207.
- Quigley, F., Rosenberg, J.M., Shachar-Hill, Y., and Bohnert, H.J. (2002). From genome to function: the *Arabidopsis* aquaporins. Genome Biol **3**, Research0001.
- **Rae, L., Lao, N.T., and Kavanagh, T.A.** (2011). Regulation of multiple aquaporin genes in *Arabidopsis* by a pair of recently duplicated DREB transcription factors. Planta **234**, 429-444.
- Reiter, W.D., Chapple, C.C., and Somerville, C.R. (1993). Altered growth and cell walls in a fucosedeficient mutant of *Arabidopsis*. Science **261**, 1032-1035.
- Richmond, T.A., and Somerville, C.R. (2000). The cellulose synthase superfamily. Plant Physiol 124, 495-498.
- Rivers, R.L., Dean, R.M., Chandy, G., Hall, J.E., Roberts, D.M., and Zeidel, M.L. (1997). Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272, 16256-16261.

- **Rizhsky, L., Liang, H., and Mittler, R.** (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol **130**, 1143-1151.
- Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. (2004). When defense pathways collide. The response of *Arabidopsis* to a combination of drought and heat stress. Plant Physiol **134**, 1683-1696.
- Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., and Fernie, A.R. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell **13**, 11-29.
- Sack, L., and Holbrook, N.M. (2006). Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361-381.
- Sade, N., Shatil-Cohen, A., Attia, Z., Maurel, C., Boursiac, Y., Kelly, G., Granot, D., Yaaran, A., Lerner,
  S., and Moshelion, M. (2014). The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiol 166, 1609-1620.
- Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an *Arabidopsis* transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell **18**, 1292-1309.
- Salvucci, M.E., and Crafts-Brandner, S.J. (2004). Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant **120**, 179-186.
- Sampedro, J., and Cosgrove, D.J. (2005). The expansin superfamily. Genome Biol 6.
- Santoni, V., Vinh, J., Pflieger, D., Sommerer, N., and Maurel, C. (2003). A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. Biochem J **373**, 289-296.
- Seibt, U., Rajabi, A., Griffiths, H., and Berry, J.A. (2008). Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155, 441-454.
- Seki, M., Umezawa, T., Urano, K., and Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol **10**, 296-302.
- Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression pattern of 1300 *Arabidopsis* genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell **13**, 61-72.
- Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K. (2002). Monitoring the expression pattern of around 7,000 *Arabidopsis* genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2, 282-291.
- Sharkey, T.D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28, 269-277.
- Shatil-Cohen, A., Attia, Z., and Moshelion, M. (2011). Bundle-sheath cell regulation of xylemmesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67, 72-80.
- Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58, 221-227.

- Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6, 410-417.
- Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., and Kaldenhoff, R. (2002). PIP1 plasma membrane aquaporins in tobacco from cellular effects to function in plants. Plant Cell **14**, 869-876.
- Siefritz, F., Otto, B., Bienert, G.P., van der Krol, A., and Kaldenhoff, R. (2004). The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37, 147-155.
- Silver, D.M., Kötting, O., and Moorhead, G.B. (2014). Phosphoglucan phosphatase function sheds light on starch degradation. Trends Plant Sci **19**, 471-478.
- Smyth, G.K., Michaud, J., and Scott, H.S. (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics **21**, 2067-2075.
- Steudle, E. (1994). Water transport across roots. Plant and Soil 167, 79-90.
- **Steudle, E.** (2001). The Cohesion-Tension Mechanism and the Acquisition of Water by Plant Roots. Annu Rev Plant Physiol Plant Mol Biol **52**, 847-875.
- Steudle, E., and Peterson, C.A. (1998). How does water get through roots? J Exp Bot 49, 775-788.
- Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94, 1035-1040.
- Sutka, M., Li, G., Boudet, J., Boursiac, Y., Doumas, P., and Maurel, C. (2011). Natural variation of root hydraulics in *Arabidopsis* grown in normal and salt-stressed conditions. Plant Physiol 155, 1264-1276.
- Taiz, L., and Zeiger, E. (2006). Plant physiology (2006). Sunderland, MA: Sinaur Associates Inc.
- Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wiren, N., and Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18, 1498-1509.
- Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.T., Bligny, R., and Maurel, C. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature **425**, 393-397.
- Tryfona, T., Theys, T.E., Wagner, T., Stott, K., Keegstra, K., and Dupree, P. (2014). Characterisation of FUT4 and FUT6 alpha-(1 --> 2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases Arabidopsis root growth salt sensitivity. PLoS One 9, e93291.
- Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., and Egawa, Y. (2003). Water Status of Flower Buds and Leaves as Affected by High Temperature in Heat-Tolerant and Heat-Sensitive Cultivars of Snap Bean (*Phaseolus vulgaris L.*). Plant Prod Sci **6**, 24-27.
- **Uehlein, N., Sperling, H., Heckwolf, M., and Kaldenhoff, R.** (2012). The *Arabidopsis* aquaporin PIP1;2 rules cellular CO<sub>2</sub> uptake. Plant Cell Environ **35**, 1077-1083.
- **Verdoucq, L., Grondin, A., and Maurel, C.** (2008). Structure-function analysis of plant aquaporin *At*PIP2;1 gating by divalent cations and protons. Biochem J **415**, 409-416.

- Vile, D., Pervent, M., Belluau, M., Vasseur, F., Bresson, J., Muller, B., Granier, C., and Simonneau, T. (2012). *Arabidopsis* growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ **35**, 702-718.
- von Koskull-Döring, P., Scharf, K.D., and Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends Plant Sci 12, 452-457.
- Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61, 199-223.
- Wallace, I.S., and Roberts, D.M. (2004). Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135, 1059-1068.
- Wallace, I.S., Choi, W.G., and Roberts, D.M. (2006). The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758, 1165-1175.
- Wang, Q., Monroe, J., and Sjölund, R.D. (1995). Identification and characterization of a phloemspecific beta-amylase. Plant Physiol **109**, 743-750.
- Weig, A., Deswarte, C., and Chrispeels, M.J. (1997). The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol 114, 1347-1357.
- Will, R.E., Wilson, S.M., Zou, C.B., and Hennessey, T.C. (2013). Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol 200, 366-374.
- Willats, W.G., and Knox, J.P. (1996). A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J 9, 919-925.
- Wu, X.N., Sanchez Rodriguez, C., Pertl-Obermeyer, H., Obermeyer, G., and Schulze, W.X. (2013). Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in *Arabidopsis*. Mol Cell Proteomics **12**, 2856-2873.
- Yángüez, E., Castro-Sanz, A.B., Fernández-Bautista, N., Oliveros, J.C., and Castellano, M.M. (2013). Analysis of genome-wide changes in the translatome of *Arabidopsis* seedlings subjected to heat stress. PLoS One 8, e71425.
- Zhang, J., and Davies, W. (1990). Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ 13, 277-285.
- Zhang, W.H., and Tyerman, S.D. (1999). Inhibition of water channels by HgCl<sub>2</sub> in intact wheat root cells. Plant Physiol **120**, 849-858.
- Zhang, X., Li, J., Liu, A., Zou, J., Zhou, X., Xiang, J., Rerksiri, W., Peng, Y., Xiong, X., and Chen, X. (2012). Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One 7, e49652.
- **Zhao, J.** (2013). Roles of *PIP* aquaporins in lateral root development and stress responses in *Arabidopsis thaliana. Ludwig-Maximilians-Universität, München.*

# **CURRICULUM VITAE**

Name: Ming Jin

Date of birth: Nov. 07, 1984

Place of birth: Huhehaote, Inner Mongolia, P.R. China

Nationality: Chinese

Gender: Female

### **EDUCATION & RESEARCH EXPERIENCE**

Since 10/2010 Graduate student in Biochemistry at Ludwig-Maximilians Universität München, Germany

Research topic: The Role of PIP aquaporins in response to various environmental scenarios in *Arabidopsis thaliana* 

Supervisor: PD Dr. Anton Schäffner, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany

09/2007 - 07/2010 Master in Plant Molecular Biology at Lanzhou University, China

Research topic: Construction of the cold resistance genomic library for *Chorispora bungeana* and isolated the full length of a transcription Factor, *FZF*, which is up regulated under cold stress

Supervisor: Prof. Lizhe An, College of Life Science, Lanzhou University, China

09/2003 - 07/2007 Bachelor in Biology at Lanzhou University, China

### **FELLOWSHIP**

09/2010 - 09/2014 Chinese Scholarship Council (CSC)

### **PROFESSIONAL TRAINING**

28 - 29/02/2014 Statistische Datenanalyse mit R, Helmholtz Zentrum
 17 - 21/03/2012 12th Spring School of Bioinformatics for Molecular Biologists, Helmholtz Zentrum
 03 -07/10/2011 Thematic School on Transmembrane Water Transport in Plants, Montpellier, France

## ACKNOLEDGEMENT

Foremost, I would like to express my sincere gratitude to my supervisor PD Dr. Anton Schäffner for providing me the opportunity to pursue my scientific career abroad, for his patient and continuous encouragement of my Ph.D study, for his systematic guidance and valuable advices in my research, for his critical comments and careful correction of my thesis. His scientific enthusiasm and stringency to science have set a good example for me and will deeply influence my future work.

I would like to especially thank Prof. Dr. Jörg Durner for his good ideas, helpful advices during my thesis committee meetings, and for his willingness to review this work. My thanks are extended to the other committee members for reading and commenting this dissertation.

I would like to express my sincere thanks to Dr. Elisabeth Georgii for her smart ideas and great contributions on the statistical analysis of the microarray data, for her patient correction and valuable suggestions of my thesis writing. My thanks are also extended to Dr. Christine Gläßer of the Institute of Bioinformatics and Systems Biology and to Theresa Faus-Keßler of the Institute of Developmental Genetics for their strong support on the statistical analysis of the microarray data and kind introduction to statistics.

My sincere thanks also go to all the other collaborators of this project. I would like to thank Dr. J. Barbro Winkler of the Research Unit Environmental Simulation for her kind guidance with the gas exchange measurements and valuable advices for the data analysis. I wish to express my deep thanks to Dr. Andreas Albert, Peter Bader and Andreas Glaser of the Research Unit Environmental Simulation for their strong support on the climate simulation chambers during water stress treatments. I am so grateful to Franz Buegger of the Institute of Soil Ecology for his help with carbon isotope measurements and Dr. Martin Lehmann of the Faculty of Biology of the Ludwig-Maximilians-Universität for his kind help with the GC-MS measurements. My great thanks also go to Dr. Ruben Ispiryan for his help with photographic data collection. I am also deeply thankful to my colleagues of the Institute of Biochemical Plant Pathology. My sincere thanks go to Dr. Günther Bahnweg for his kind help with correcting and proofreading the English writing of my thesis. I am grateful to Dr. Jin Zhao for her nice cooperation with this project and brilliant suggestions on structuring and correcting my thesis. My deep thanks also go to Chen Liu for her good advices during discussions and her kind encouragement all the time. I also would like to thank Birgit Geist and Susanne Stich for their excellent assistance and kind help with a variety of sophisticated techniques. My special thanks also go to the other members of Dr. Schäffner's group including Dr. Malay Das, Dr. Ruohe Yin, Dr. Veronica von Saint Paul, Dr. Stephan Dräxl, Dr. Wei Zhang, Kerstin Schuster, Rafal Maksym and Jessica Lutterbach, for their kind help with the material harvesting of this project and their insightful discussion. I also would like to give my thanks to all the other colleagues of BIOP.

I would like to sincerely thank the "Chinese Scholarship Council" (CSC) for their financial support.

Finally, I would like to offer my deep thanks to my parents for their selfless love and strong support during my Ph.D study. They are always there to cheer me up when I am down and stand by me through the bad times.