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Zusammenfassung 

 

ür alle Lebewesen ist es vorteilhaft ein bedeutsames Ereignis, wie Bestrafung 

oder Belohnung, mit unterschiedlichen sensorischen Reizen aus der Umwelt zu 

verbinden. Ein einzelnes Ereignis kann dabei zur Bildung von mehreren 

sensorischen Gedächtnissen führen, zum Beispiel basierend auf visuellen, 

olfaktorischen oder gustatorischen Reizen. Wie die grundlegenden neuronalen 

Mechanismen solcher verschiedener sensorischer Gedächtnisse dabei interagieren ist 

jedoch unklar. Zwei alternative Mechanismen sind möglich. Die verschiedenen 

sensorischen Eindrücke könnten über ein geteiltes Netzwerk mit dem gleichen 

Verstärker assoziiert werden. Andererseits könnten aber auch unterschiedliche 

neuronale Netzwerke benutzt werden um Gedächtnisse mit verschiedenen sensorischen 

Reizen zu bilden. Das neuronale Netzwerk das für das Duft-Lernen in Drosophila 

gebraucht wird wurde schon detailliert beschrieben. Wie Fliegen jedoch visuelle Reize 

wie Farben oder Lichtintensitäten lernen ist noch nicht bekannt. Die für visuelles Lernen 

meist benutzten Verhaltensapparaturen unterschieden sich zudem sehr von der 

Apparatur die für olfaktorisches Lernen benutzt wird besonders in Bezug auf die 

Aufgabenstellung und die applizierten Reize. Dies erschwert den direkten Vergleich der 

vorhergehenden Ergebnisse für visuelles und olfaktorisches Gedächtnis. Durch das 

Konstruieren einer neuen Apparatur für visuelles Lernen, die die gleiche Aufgabe von 

den Fliegen verlangt und in der die gleichen Belohnungs- (Zucker) und Bestrafungsreize 

(elektrischer Schock) appliziert werden wie im olfaktorischen Lernen, wird jedoch ein 

Vergleich zwischen den beiden Modalitäten möglich. Ziel meiner Doktorarbeit war es das 

grundlegende neuronale Netzwerk für visuelles Lernen darzulegen und dieses mit dem 

bereits bekannten neuronalen Netzwerk für olfaktorisches Lernen zu vergleichen. Ich 

fand heraus dass ein prominentes Neuropil im Fliegengehirn, der Pilzkörper, eine 

zentrale Rolle in der Bildung und Abfrage des visuellen Gedächtnisses spielt, wie auch 

beim olfaktorischen Gedächtnis. Eine spezielle Untereinheit des Pilzkörpers, die γd 

Kenyon-Zellen, wird dabei spezifisch für das Assoziieren visueller Reize benötigt. Die 

gleichen Dopamin-Nervenzellen, die die Bestrafungsinformation weiterleiten, und auch 

die gleichen Ausgangs-Nervenzellen werden jedoch von beiden Modalitäten benutzt zur 

Gedächtnisbildung. Visuelle Information wird von spezifischen Projektionsneuronen 

bereitgestellt. Diese stellen eine direkte Verbindung zwischen der Medulla in den 

optischen Loben der Fliege und den γd Kenyon-Zellen im Pilzkörper her. Verschiedene 

solcher Projektionsneurone werden dabei benötigt um unterschiedliche visuelle 

F 
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Informationen wie Farbe oder Lichtintensität zu übermitteln. Aufgrund des sehr ähnlichen 

Netzwerkaufbaus zwischen visuellem und olfaktorischem Gedächtnis schlage ich 

deshalb den Pilzkörper von Drosophila als ein Zentrum für multi-sensorische 

Gedächtnisbildung vor.  
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Abstract 

 

or animals it is advantageous to associate various sensory stimuli in their 

environment with a meaningful event, e.g., punishment or reward. A single event 

should thus lead to formation of sensory memories across several modalities, for 

example, based on olfactory, visual or gustatory cues. However, the underlying 

mechanisms of such memories are unclear. Two scenarios are possible: different 

modalities can be associated with the same reinforcement via a shared neural circuit or 

different neuronal circuits are employed when learning about different modalities. In 

Drosophila, the olfactory learning circuit is already well described; however, how flies 

learn visual stimuli like color or intensity is not known so far. Therefore it is not clear what 

mechanism is employed for the two different sensory memories. Also, existing setups for 

visual learning are very different in terms of behavioral task and stimuli application to the 

commonly used olfactory conditioning paradigm, which makes comparison difficult. In my 

PhD I aimed to identify the neural basis of the visual learning circuit and compare it to 

the olfactory learning circuit. Establishing a new visual learning paradigm that uses same 

appetitive (sucrose) and aversive (electric shock) reinforcers and requires similar task 

from flies as in olfactory conditioning has allowed comparison between the two 

modalities. The mushroom bodies (MBs) are a prominent neuropil in the fly brain and 

they are known for being the coincidence detector in classical olfactory conditioning. I 

found the MBs to be as pivotal in visual memory formation and retrieval as they are in 

olfactory conditioning. A specific sub-compartment of the MB, the γd Kenyon cells, is 

specifically required for visual conditioning. However, at least aversive reinforcement and 

output neurons seem to be shared between visual and olfactory conditioning. Visual 

input to the MBs is provided by visual projection neurons that provide direct neural 

connection between optic lobes and the MBs and project to the γd KC dendritic region. 

There are differential pathways mediating intensity and color information from the 

medulla in the optic lobes to the MB calyx. Due to this very similar circuit assembly in 

visual and olfactory learning, I suggest the MB as a center for multi-modal memory 

formation in Drosophila. 

  

F 
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1. Introduction 

 

1.1  Classical associative conditioning in Drosophila melanogaster 

 

To optimally exploit resources in the environment, it is highly advantageous for 

animals to associate different sensory stimuli in their environment with meaningful 

experiences. In the early 20th century, this principle of the classical conditioning was 

established (Pavlov 1927). Pavlov showed that a dog can associate the ring of a bell, a 

normally neutral stimulus (Conditioned Stimulus = CS), with a food reward 

(Unconditioned Stimulus = US) when they were presented together. In such a classical 

conditioning experiment the animal cannot influence the exposure of CS or US. 

Naturally, administration of food reward elicits salivation of the dog (Unconditioned 

response = UR). After CS-US pairing, CS alone led to salivation (Conditioned response), 

thus the dog adjusted his behavior accordingly. There is also such an example in fruit 

flies; a ripe apple is sweet, contains nutrients and can get associated with reward. 

Drosophila melanogaster could extract different attributes (CS) of the apple, like color, 

shape, taste or smell to associate them with the same rewarding value (US) of the apple.  

 

The more stimuli it is able to associate, the faster and better the fly can recognize the 

reward in future (Figure 1, color as an example). However, the underlying mechanism of 

A B

Figure 1: Color perception adds critical information to the environment. 

(A) Picture containing color and brightness information. (B) Picture containing only brightness 

information. (Modified from fruitipedia.com) 
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how they learn to approach this appetitive stimulus by associating different attributes is 

not fully understood. The neural circuit involved in olfactory memory formation is already 

well described (McGuire et al. 2005); however, less is known about underlying neural 

mechanisms of memory formation in other sensory modalities.  

Drosophila melanogaster is a particularly handy model organism for neural circuit 

dissection. Not only are the flies easy to raise and to maintain, but are also fast in their 

generation cycle, which makes it possible to collect many experimental flies in a short 

time. Furthermore their brain, consisting of 100.000 neurons, is relatively small 

compared to mammalian model organisms, as for example mouse (4.000.000 neurons). 

Identification of neural circuits in such rather simple brains is easier (Olsen & Wilson 

2008) and even though they possess less neurons, they still can perform various 

elaborate and significant behaviors. For example, they can show aggressive behavior 

(Chen et al. 2002), courtship learning (Siegel & Hall 1979), different kinds of classical 

associative conditioning (gustatory (Masek & Scott 2010), olfactory (Quinn et al. 1974), 

visual (Spatz et al. 1974), operant conditioning in the heat box (Wustmann et al. 1996) 

and even social learning (Sarin & Dukas 2009).  

A variety of visual conditioning paradigms that employ different visual stimuli like 

patterns or colors have been established to train fruit flies (Guo et al. 1996; Wolf & 

Heisenberg 1991; Menne & Spatz 1977; Spatz et al. 1974)(Table 1). However, only few 

details of the classical visual learning circuit are known. In my thesis I aimed to 

investigate the underlying circuit for visual memory formation in Drosophila by using a 

newly established visual conditioning paradigm and compare it to the well described 

circuit underlying olfactory conditioning.  

 

1.2  Olfactory Conditioning 

 

The behavioral paradigm 

 

The fruit fly Drosophila melanogaster is capable of performing complex 

behavioral tasks, including classical associative learning. After association of a neutral 

sensory stimulus in the environment with a rewarding or punishing stimulus, the fly 

adapts its behavior relating to the learned stimulus. Thus, later on, it can avoid harmful 
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stimuli and approach rewarding stimuli. The first studies of this kind of associative 

learning had been done in Drosophila in the 1970s, where a mass of flies was trained to 

associate an odor with electric shock, which served as strong punishment (Quinn et al. 

1974). A simple manually operated setup was built consisting of vertical tubes containing 

the odors and a shock grid made of copper wire. With the help of a fluorescent lamp flies 

were attracted to enter the training tube. However, the setup yielded rather low learning 

scores, probably because overcoming the naïve phototaxis response prevented some 

flies from walking up into the shock grid tube and receiving punishment. Later on, using 

the same behavioral setup, one could also reward the flies with sucrose on a filter paper 

while presenting them an odor (Tempel et al. 1983). In 1985 the assay got further 

modified and it became possible to aversively train and test flies with high throughput in 

the so called T-maze with purely classical training (Figure 2A)(Tully & Quinn 1985)). 

Application of sugar paper is also possible in this improved setup (Schwaerzel et al. 

2003; Colomb et al. 2009). Since then the most widely used paradigm for olfactory 

learning is the T-maze also because it is possible to apply either appetitive or aversive 

reinforcer in the same setup where flies are performing the same behavioral task. This is 

a big advantage of the olfactory learning setup since one can now compare appetitive 

and aversive memory within one training modality. Further modifications of the olfactory 

assay including automatic application of odors and electric shock led to facilitation of 

high-throughput and multiplication of experiments (Figure 2B) (Murakami et al. 2010). 

Thus, these latest upgrades also make the setup highly suitable for extensive screening 

of libraries of various genetic drivers. 

 

Conditioning procedure 

 

Briefly, a mass of freely walking flies gets successively trained with two odors 

whereas one of them is paired with reinforcement (CS+). Duration of CS presentation is 

one minute. The CS usually precedes the US for a few seconds (Delay conditioning). In 

appetitive conditioning sucrose is used as reward and presented during whole CS+ 

presentation. In aversive conditioning electric shock is used as punishment and flies 

receive 12 electric shocks of 90/100 Volt during CS+ exposure (one second shock every 

5 seconds). To test the flies’ memory they are released into a choice point between two 

horizontal tubes filled with the paired and control odor, respectively (Figure 2A). For two 

minutes they are allowed to choose between the two odors. Then, flies in the two tubes 
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are counted and approach or avoidance of the paired odor is measured to assess 

memory performance. Flies can go through several training trials in very short time. They 

can already form an association even after one training trial, meaning a single exposure 

of CS and US together is sufficient to induce significant learning in appetitive and 

aversive olfactory learning. Overall memory formation in this setup is highly reproducible 

and robust, but also remains flexible since various different behavioral protocols can be 

trained. 

 

Timing makes a difference in olfactory learning 

 

Another essential task for animals is to associate non overlapping stimuli 

(Rescorla 1988). In nature, coincidence of CS and US is not always given, such as with 

food poisoning or when the nutritional value of food serves as reinforcer. Pavlov could 

already show that dogs are able to associate a preceding CS with a following US even 

when the two stimuli were separated by a gap of several minutes (Pavlov 1927). Also 

Drosophila and even their larvae are capable to form such kind of memory with olfactory 

stimuli (Tully & Quinn 1985; Tanimoto et al. 2004; Khurana et al. 2009; Shuai et al. 2011; 

Galili et al. 2011). Even when the odor precedes the US for seconds, such as in trace-

conditioning, flies are still able to form an association between the two stimuli and thus 

Figure 2: Commonly used olfactory conditioning paradigm. 

(A) Scheme of olfactory setup. On top, single training tube that can be electrified. Two odors are 

presented during training consecutively via odor cups. On the bottom, flies can choose between 

two tubes with the two trained odors attached during test, respectively. (Modified from Tully & 

Quinn, 1985.) (B) Photograph of olfactory conditioning revolver. Four experiments can be 

performed in parallel. (Modified from Yarali et al., 2008). 

Training

Test

Odor A/B

Odor A Odor B

A B
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avoid the paired CS in test. However, the longer the interval (gap) between CS and US 

the worse flies are able to make the association. When training with stimuli in the 

reversed order, in the so called relief learning, where the odor follows the electric shock 

presentation, flies approach the paired stimuli later in test (Tanimoto et al. 2004; Yarali et 

al. 2008). They associate the odor with the beginning of a safety period (Sutton & Barto 

1990; Chang et al. 2003) or the end of electric shock punishment (relief learning 

(Wagner 1981; Solomon & Corbit 1974). These two learning phenomena, trace and relief 

conditioning, have been rather well tested and described in Drosophila olfactory learning 

yet (Galili et al. 2011; Shuai et al. 2011; Yarali et al. 2008; Yarali & Gerber 2010). These 

conditioning tasks however can also be tested in mammals (Rogan et al. 2005), 

monkeys (Belova et al. 2007) and humans (Andreatta et al. 2010). Here, usually visual or 

auditory stimuli are employed. 

 

The olfactory learning circuit 

 

By using a technically simple and flexible setup, the “T-maze” (Figure 2), it was 

already possible to find out many details about the underlying neural pathways for 

olfactory sensory processing (Figure 3), reinforcement processing and coincidence 

detection in appetitive and aversive classical olfactory memories in the last decades. 

Therefore, the most well studied learning circuit in Drosophila until now is by far the one 

for olfactory conditioning.  

Olfactory information is perceived via ~1300 olfactory receptor neurons in the 

antennae and the maxillary palps (Stocker 1994). Each olfactory receptor neuron 

expresses one of ~60 specific membrane receptors (Clyne et al. 1999). The ones 

containing the same receptors convey odor information to ~ 50 specific glomeruli in the 

antennal lobe (Couto et al. 2005). Here the information can be modulated by > 1500 

mostly inhibitory local interneurons (Chou et al. 2010). From the antennal lobe ~ 150 

olfactory projection neurons (OPNs) project the odor information to higher brain centers 

like lateral horn and/or the mushroom bodies (MBs)(Wong, Wang, and Axel 2002; for 

review; Liang and Luo 2010)(Figure 3). The lateral horn seems to be more involved in 

mediating naïve behavior (Wang et al. 2003), whereas the MB is needed for associative 

memory (de Belle & Heisenberg 1994; Zars et al. 2000; Heisenberg et al. 1985). The MB 

comprises of ~2.000 MB intrinsic neurons (Aso et al. 2009) that were first described via 
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Golgi staining by Kenyon (Kenyon 1896), thus they are called Kenyon cells (KCs). Their 

dendritic region forms the calyx, closely situated below the cell bodies in the posterior 

region of the brain (Figure 4). Here, olfactory information is received via OPNs from the 

antennal lobe. The MB axons further penetrate into the anterior central brain, where they 

bifurcate and form a vertical and a medial lobe. The KCs can be divided into three 

subtypes (Crittenden et al. 1998). There are ~980 α/β neurons and ~360 α’/β’ neurons 

that innervate the vertical and the medial lobes but also ~660 γ lobe neurons that only 

innervate the medial lobe (Aso et al. 2009)(Figure 4). There is differential requirement of 

the lobes for different phases during memory formation. The ү-lobe is especially required 

during short term memory formation (2 minute memory; (Zars et al. 2000)) whereas the 

other lobes are rather involved in formation of longer lasting memories (Krashes et al. 

2007; Blum et al. 2009).  

Figure 3: Olfactory sensory circuit 

Open head of a fly. The prominent structures of the central brain are visible. Odors are perceived 

via olfactory receptor neurons inside the antennae that project to the antennal lobe (red). 

Projection neurons further mediate the olfactory information to higher brain centers, such as the 

MB or the Lateral Horn. MB is depicted in blue showing the dendritic region, the primary calyx, on 

top and the peduncle and lobes. (Modified from Heisenberg, 2003). 
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All lobes receive input from extrinsic MB neurons, e.g. neuromodulatory neurons 

like the dopamine neurons (Tanaka et al. 2008). Different clusters of dopamine neurons 

in the central brain were shown to convey information about appetitive and aversive 

reinforcement to the MB, respectively (Figure 4). In olfactory conditioning mostly sucrose 

is used as reward (Schwaerzel et al. 2003) and electric shock as punishment (Tully & 

Quinn 1985). Dopamine neurons from the PAM cluster mediate appetitive sugar 

information (C. Liu et al. 2012; Burke et al. 2012); whereas dopamine neurons from the 

PPL1 cluster mediate aversive information about electric shock to the lobes (Aso et al. 

2010; Claridge-Chang et al. 2009). Hence both inputs, US and CS, reach the MB lobes 

and calyx, respectively. Thus, olfactory information can be modulated in the MB, which is 

the center for coincidence detection in olfactory classical learning, by the reinforcement 

information provided. Several output neurons that are projecting into the surrounding 

brain areas could then mediate for example approach or avoidance of the paired 

stimulus in olfactory classical conditioning (Ito et al. 1998; Dubnau & Tully 2001; Tanaka 

et al. 2008)(Figure 4).  

 

PAM

(reward)

Sugar Electric

Shock

PPL1

(punishment)

Odor

OPN

γ-lobe α’β’-lobe αβ-lobe

Approach Avoidance

CA

Figure 4: The olfactory learning circuit inside the mushroom body of Drosophila 

Odor is mediated from the antennal lobe to the MB primary calyx (CA) via OPNs. Information 

about appetitive and aversive reinforcement is mediated via PAM and PPL1 dopamine neurons 

to the MB medial and horizontal lobes, respectively. Output of the MB KCs is necessary for 

behavioral execution (Approach/Avoidance). 
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Coincidence detection 

 

To achieve neuronal plasticity, information about CS and US has to coincide and 

activate two different signaling pathways inside a single cell. Only if this activation 

happens at the same time, the synaptic output will get modified (Hawkins et al. 1983). 

The first steps in describing this signaling pathway in Drosophila were made possible by 

further analyzing mutants that had impairments specifically in learning (for example: 

Phosphodiesterase dunce; (Dudai et al. 1976; Byers et al. 1981), adenylate cyclase 

rutabaga (rut); (Aceves-Pina et al. 1983; Livingstone et al. 1984; Levin et al. 1992)). All 

these mutants have defects in genes required in the cAMP (cyclic adenosine 

monophosphate) signaling pathway (Figure 5). rut gets activated by calcium influx 

dependent on CS exposure as well as through a G-Protein-coupled-transmitter-receptor 

activated by US application. Once activated, rut then catalyzes the conversion of 

adenosine triphosphate (ATP) to cAMP. Increased cAMP levels lead to activation of the 

cAMP-dependent protein kinase A (PKA) that might act on downstream synapse proteins 

via phosphorylation (CREB, (Yin et al. 1994)) and in this way can induce neuronal 

plasticity.  

Figure 5: The coincidence detection mechanism inside the Kenyon cells 

The rutabaga protein (red) gets activated by parallel Ca
2+

-influx caused by CS application and 

activation of a G-protein-receptor coupled cascade caused by US application. Thus, the catalyzed 

cAMP can activate PKA which acts on downstream synapse proteins to induce neuronal 

plasticity. (Modified from Heisenberg, 2003). 
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Mutation of the catalytic subunit of the PKA also leads to impairment in olfactory 

learning (DCO = PKA mutant; (Skoulakis et al. 1993; Lane & Kalderon 1993)). Also in 

other animals, cAMP was shown to be a crucial player of the learning and memory 

mechanism (Lechner & Byrne 1998; Kandel 2001). Interestingly, all these proteins are 

highly enriched inside the Drosophila MB (Nighorn et al. 1991; Han et al. 1992; Skoulakis 

et al. 1993), suggesting this neuropil to be important for memory formation. Indeed 

rescue experiments in the rut mutant background showed that restoring activity in the 

MB is sufficient to overcome the olfactory learning and memory impairment (Zars et al. 

2000; McGuire et al. 2003; Schwaerzel et al. 2002). Since the memory impairment is not 

complete, other biochemical mechanisms must account for the remaining memory, such 

as via the Gilgamesh protein pathway (Tan et al. 2010). 

 

1.3  Visual conditioning 

 

Visual conditioning setups 

 

A variety of paradigms were established to classically train fruit flies with visual 

stimuli such as colors (see Table 1). Most of them were used the first time in the 1970s 

and are rarely used nowadays. In 1974, a setup was employed presenting visual stimuli 

(spatial discrimination learning with blue and yellow) paired with electric shock in a 

training alley (Spatz et al. 1974). The flies passed through illuminated funnels and 

reached a choice point after training. However, practicability was affected since the 

duration of a single run was five hours. Other paradigms employed various other color 

stimuli (see Table 1, always differential conditioning with two colors) paired with different 

aversive reinforcers, like quinine (Quinn et al. 1974) or shaking (Menne & Spatz 1977; 

van Swinderen et al. 2009). However, these studies showed that flies can perform color 

discrimination tasks and color learning, and therefore possess true color vision (Menne & 

Spatz 1977).  
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The most commonly used paradigm nowadays for visual conditioning is the flight 

simulator (Wolf & Heisenberg 1991). Here, a single fly is tethered on a hook inside a 

cylindrical flight arena (Figure 6). A torque-meter is used to measure the yaw movements 

of flies. In closed loop experiments, the information about yaw movement of the fly is 

processed and fed back onto the screen were the visual stimuli are shown in the flight 

arena, allowing the fly to steer through an artificial environment. For visual learning 

experiments flies are trained with either two different patterns (upright T vs. downright T, 

bars with different elevation, etc. (Wolf & Heisenberg 1991)) or color stimuli (green vs. 

blue (Wolf & Heisenberg 1997)), one of them paired with laser punishment (CS+). During 

test the flies can again choose between two patterns or two colors, and approach or 

avoidance of a pattern or color during flight is used as measurement for memory. In the 

commonly used closed loop learning protocol, the fly can actively avoid the punishment 

by flying towards the non-punished stimuli during the training phase. Since the fly can 

learn about the influence on the reinforcer of its own action, this protocol includes an 

operant component (Brembs & Heisenberg 2000). In contrast, during purely classical 

conditioning, animals are not able to influence the duration of exposure or strength of the 

CS or US.  

Figure 6: The flight simulator paradigm used for visual conditioning. 

A single fly is tethered on a hook inside an arena. From the walls of the arena different visual 

stimuli (e.g. T patterns or colors) are presented. Punishment can be applied by a laser diode. The 

flies turning reaction is measured by a torque meter above and the signal is transmitted to a 

computer. The turning signal of the fly can be integrated with the shown visual stimulus and thus 

the fly can steer through an artificial environment (closed loop). (From Brembs & Wiener, 2006). 
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Visual Stimuli Reinforcer Setup Reference 

Yellow/Blue Electric shock 
Freely walking flies in a 

tunnel 
(Spatz et al. 1974) 

Blue/Green 

UV/Blue 
Quinine 

Freely walking flies in a Y-

maze 
(Quinn et al. 1974) 

Yellow/Blue Shaking 
Freely walking flies in a 

container 

(Menne & Spatz 

1977) 

Colors Sucrose 
Freely walking flies in an 

arena 
(Heisenberg 1989) 

Blue/Green Laser 
Tethered flying fly in an 

arena 

(Wolf & Heisenberg 

1991) 

Light/Dark Quinine 
Freely walking flies in a Y-

maze 

(Le Bourg & 

Buecher 2002) 

Cyan/Purple Shaking 
Freely walking flies in a 

container 

(van Swinderen et 

al. 2009) -

Supplementary 

Blue/Green 

Sucrose 

Formic acid 

Freely walking flies in an 

arena 

(Schnaitmann et al. 

2010) 

 

Table 1: Paradigms for visual conditioning that employ a classical learning protocol. 

Various different combinations of visual stimuli (wavelength/intensities) have been trained with 

different appetitive and aversive reinforcers since the 1970’s. Most commonly used assay is by far 

the flight simulator, however usually a partly operant protocol is applied. 

 

Recently I, along with Christopher Schnaitmann, developed a new visual 

conditioning assay using sucrose or formic acid as appetitive or aversive chemical 

reinforcer, respectively (see Table 1)(Schnaitmann et al. 2010). Visual stimuli and 

reinforcers on a filter paper were presented to flies from beneath in a cylindrical arena. 

Appetitive conditioning produced rather high and very robust learning scores. However, 



30 

 

aversive reinforcement with formic acid led to significant but not very high memory 

scores.  

 

Does timing make a difference in visual learning? 

 

Relief and trace conditioning are well established in olfactory conditioning (see above). 

However, when studying the temporal dynamics of conditioning, a problem in using 

odorants can be that residual odors stick to the experimental setup and therefore distort 

the learning results (Galili et al. 2011). Using a different sensory modality, like visual 

stimuli that are also used for conditioning with mammals and humans in trace or relief 

learning, not only facilitates stimulus application, but also residual stimuli cannot be held 

to be accountable for significant learning values. Indeed there are already several 

studies that suggest that insects can possibly perform at least trace conditioning with 

visual stimuli. The first report is from the early 1930s in honeybees (Opfinger 1931). 

Here, color presented during the approach of a food source is learned better than the 

color presented during feeding. In the past 50 years, several more visual trace 

conditioning studies have been carried out with honeybees (Menzel 1968; Grossmann 

2010) showing that visual stimuli are well suited to study this learning form. Also 

Drosophila is probably able to form a memory trace of visual stimuli, e.g. flies can 

remember the position of a vanished visual object and use this information later on for 

navigation (Neuser et al. 2008). Employing the newly established setup I first aimed to 

investigate if Drosophila is capable of mastering trace and relief conditioning with visual 

stimuli like color cues and if similar effects as in olfactory conditioning can be found. 

Such result would suggest that trace and relief conditioning is a common learning 

phenomenon in Drosophila that can be learned independent of the sensory modality 

used. 

 

Visual processing in the optic lobe 

 

Visual stimuli like moving objects, colors and patterns are perceived by the 

photoreceptors in the ommatidia of the fly eye. Each eye contains ~800 ommatidia in the 

retina. Inside each single ommatidia, eight photoreceptors R1-8 are housed (Review: 

(Wolff & Ready 1993),Figure 7). R1-6, the outer photoreceptors, are tuned to broad 
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chromatic stimuli and were therefore thought not to be involved in color discrimination 

(Troje 1993) but only in motion vision (Review: (Hardie 1985; Borst 2009)). However, 

several studies claim that these broadband receptors can definitively be used for color 

discrimination (Fischbach 1979; Schnaitmann et al. 2013). R7 and R8 respond to more 

specific wavelengths and could therefore be relevant for color discrimination (Harris et al. 

1976; Heisenberg & Buchner 1977; Fischbach 1979; Troje 1993; Fukushi 1994). 30% of 

the fly ommatidia contain the photoreceptor-pigment Rh3 in R7 (355nm, UV) and Rh5 

(460nm, blue) in R8 and are called pale ommatidia. The other 70% contain Rh4 in R7 

(335nm, UV) and Rh6 in R8 (530nm, green) and are called yellow ommatidia. Both types 

of ommatidia are stochastically distributed in the retina (Franceschini et al. 1981; Wernet 

& Desplan 2004). Overall, the optic lobe of Drosophila consists of ~60,000 cells and can 

be further divided into four information processing neuropiles, the lamina, the medulla, 

the lobula and the lobula plate (Fischbach & Dittrich 1989), review: (Morante & Desplan 

2004)). All photoreceptor axons project to deeper neuropiles in the fly optic lobe. R1-6 

Retina

Lamina

Inner Medulla
M8-10

Lobula Plate
Outer 
Lobula

Outer Medulla
M1-6

Inner 
Lobula

R1-6R7/R8

L1-5

Serpentine layer

Figure 7: Visual sensory circuit. 

Visual stimuli are perceived via eight different photoreceptors in the retina. R1-6 project to the 

lamina, from where L1-5 transmit the perceived signal to the medulla layers M1-5. R7-8 directly 

project to the medulla layer M3/4 and M6. Inside the medulla, several extrinsic and intrinsic 

transmedullar neurons (Mi, Mt, Tm, Tmy) modulate the visual information and also mediate it to 

further neuropiles like lobula and/or lobula plate. 
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already harbor in the lamina where they connect with different large monopolar cells (L1-

3) and one amacrine cell (amc). L1 and L2 in the lamina form the major input for the 

motion detection circuitry (Rister et al. 2007; Joesch et al. 2010). The following medulla 

is the biggest neuropil in the optic lobe containing ~40.000 cells (Hofbauer & Campos-

Ortega 1990) and is comprised of layers M1-10 orthogonal to the photoreceptor 

projection (Figure 7)(Fischbach & Dittrich 1989). The more distal layers M1-6 receive 

direct and indirect input from receptor neurons; however, the inner layers M7-10 do not 

receive direct input from photoreceptors. The different lamina neurons L1-5 connect to 

the corresponding outer medulla layers M1-5. R7 and R8 directly project further down 

from the retina to the medulla. Here, R7 innervates Medulla layer M6, whereas R8 

innervates Medulla layer M3/M4. Several transmedullar neurons (Tm) collect information 

from the different layers M1-10 and are connected to further downstream neuropiles like 

lobula, lobula plate or the protocerebrum. To be able to see different colors, color-

opponent cells that process input from different photoreceptors are necessary. Tm5 and 

Tm9 in the medulla were suggested as such, since they receive direct input from R7/R8 

and also indirect input from R1-6 in the medulla and provide output not only to the lobula 

but also to layer M8 in the medulla (Gao et al. 2008). Also projections from lobula and 

lobula plate expand into the protocerebrum of the fly. Specific visual projection neurons 

have been described to project from the lobula to the central brain (Otsuna & Ito 2006). A 

similar glomerular architecture in the protocerebrum has been suggested (Mu et al. 

2012) as described in the olfactory sensory pathway with the antennal lobes (Couto et al. 

2005). 

  

Visual processing in the central brain 

 

Thus, a possible pathway for color perception in the optic lobe of the fly can 

already be followed in detail with the help of anatomical studies; however, description 

about function of distinct neuropiles and cells is missing for the most parts. Also the 

visual memory formation pathway is only poorly described. What was shown so far is 

that, in contrast to the olfactory learning circuit, the Central Complex (CC), another 

prominent neuropil in the fly central brain is critical for visual pattern learning in the flight 

simulator (Pan et al. 2009; Liu et al. 2006; Wang et al. 2008). Mutation of the rutabaga 

protein also leads to impairment of different kinds of visual pattern memory. Restoration 

in the CC fully rescues the memory impairment. Interestingly, different subdivisions of 
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the CC fan shaped body seem to represent information about different kinds of such 

learned patterns (Pan et al. 2009; Liu et al. 2006).  

The role of the MB in visual processing and learning is contradictory. Even 

though the MB was shown not to be involved in classical visual learning tasks in 

Drosophila (Heisenberg et al. 1985), there are several studies showing that visual 

information must be processed in the Drosophila mushroom body to some extent (van 

Swinderen et al. 2009; Barth & Heisenberg 1997). Also performing different experiments 

that demand more complex visual memory tasks in the flight simulator assay revealed a 

requirement of the MBs. One example is the ‘context generalization’ training, where the 

flies learn to associate a specific pattern with punishment while the background color 

between training and test situation is changed from white to monochromatic lights (Liu et 

al. 1999). Wild-type flies can master this task; flies lacking functional MB however, 

cannot recognize the pattern in the changed background and are thus not able to 

generalize between the different backgrounds. In another flight simulator experiment it 

was shown that MB-blocked flies possess altered decision making behavior. When 

asked to decide between one of two trained visual stimuli with different saliency, like 

color contrast and height of a bar (Zhang et al. 2007), wild-type flies abruptly change 

their preference upon saliency change. MB-block flies however, show linear choice and 

slowly change their preference. Another task in the flight simulator is operant learning 

where flies learn about the influence of their own action on the reinforcer (Brembs & 

Heisenberg 2000). Wild-type flies, trained with mixed operant/classical conditioning, 

need to execute a large amount of training trials to learn the isolated operant component. 

Here, blocking the MB facilitates formation of the operant learning component and flies 

are able to establish the operant memory trace only after a few training trials (Brembs 

2009). These studies clearly indicate that MBs are at least necessary to modulate visual 

information processing in different conditioning tasks. However, although many 

experiments with such different visual stimuli had been performed, especially by 

employing the flight simulator, it has not been understood yet how flies learn about color 

or intensity information of a visual stimulus. 
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1.4  Drawing a comparison between conditioning setups using different 

sensory modalities 

 

To summarize, so far different neuropiles in the Drosophila brain were shown to 

be required for memory formation with different sensory modalities, such as visual and 

olfactory cues. However, comparing results obtained with these diverse behavioral 

assays is not reasonable, since these assays employ very specific and different 

behavioral tasks (e.g. flight orientation, binary choice by walking flies, etc.) and apply 

mostly different conditioning or protocol designs (Pitman et al. 2009; Neuser et al. 2008; 

Brembs 2008; Brembs & Wiener 2006). One-to-one comparison of paradigms used for 

behavioral learning experiments in visual and olfactory conditioning reveals tremendous 

differences concerning reinforcement, fly maintenance, amount of flies and protocol.  

 

 
Visual learning in the 

Flight Simulator 

Olfactory learning in 

the T-maze 

New visual learning 

assay 

Flies Single fly Mass assay Mass assay 

Task Flying, tethered Freely walking Freely walking 

Reinforcement 

Aversive: laser beam 

 

Aversive: electric 

shock 

Appetitive : sucrose 

Aversive: electric 

shock 

Appetitive : sucrose 

Protocol 
Mixed 

classical/operant 
Purely classical Purely classical 

High-

throughput 
No Yes Yes 

 

Table 2: Comparison between the flight simulator, the olfactory conditioning assay and the 

newly established visual paradigm. 

Points of comparison are amount of flies, task the fly has to perform, reinforcement that can be 

applied, training protocol and if the assays are high-throughput compatible. All in all, the new 

visual conditioning paradigm shares more similarities with the olfactory paradigm than with the 

flight simulator paradigm. 
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Especially the flight simulator stands out when comparing visual and olfactory 

paradigms and is therefore the least compatible assay in comparison with the common 

olfactory conditioning setup (see Table 2). However, learning paradigms should be 

designed to be comparable when contrasting memories of different sensory modalities 

(Guo & Guo 2005; Zhang et al. 2013; Scherer et al. 2003; Gerber, Scherer, et al. 2004; 

Hori et al. 2006; Mota et al. 2011). Only by employing similar conditioning assays will it 

be possible to discover common neural circuits between modalities, otherwise one 

cannot clearly state that found defects are due to a difference in the paradigm used or 

the modality used. An interesting attempt to compare visual and olfactory conditioning 

was done by Yadin Dudai and colleagues (Dudai & Bicker 1978). They tested flies in the 

visual shaking assay (Menne & Spatz 1977) and the olfactory conditioning assay (Tully & 

Quinn 1985): However, especially in visual classical learning they could not obtain 

consistent results testing different wild type strains. Their results suggest that a more 

salient and potent aversive reinforcer than shaking is necessary to obtain stable memory 

scores in visual aversive learning. In the olfactory conditioning paradigm electric shock 

was used as reinforcer and indeed it was possible for them to obtain stable memory 

scores testing all wild-type strains. Overall electric shock seems to be a more potent 

reinforcer than shaking the flies or present quinine or acid as punishment (Table 1) 

(Schnaitmann et al. 2010). Another advantage of the olfactory conditioning assay is that 

it is possible to train flies with appetitive and aversive reinforcers employing the same 

setup (Table 2). However, none of the previous used visual conditioning paradigms 

allows such simple application and switching of appetitive and aversive reinforcers.  

 

Therefore, we aimed to establish a new visual paradigm that includes all the 

advantages of the olfactory paradigm and would allow us to compare appetitive and 

aversive visual learning with appetitive and aversive olfactory conditioning. Critical 

features such as the conditioning design, binary choice between two conditioned stimuli 

in the test, appetitive and aversive reinforcer and altered distribution of flies as an 

indicative of memory performance should be kept similar. A visual appetitive assay 

(Schnaitmann et al. 2010) employing same reinforcer, sucrose as reward, as in olfactory 

conditioning (Tempel et al. 1983; Schwaerzel et al. 2003) was already established a few 

years ago. Here, a group of freely walking flies receives subsequent presentation of two 

visual stimuli (green/blue) from beneath, where one of the colors is paired with sucrose 

reward, presented on filter paper. Having similar setups for different modalities allows 

direct comparisons of mechanisms underlying appetitive visual and olfactory memories. 
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To be also able to compare aversive visual and olfactory memory, we developed an 

associative learning assay where electric shock punishment can be paired with visual 

stimuli (Vogt, Schnaitmann, et al. n.d.). Constructing a 'transparent' shock grid we can 

present visual stimuli from beneath as in the appetitive setup. This now allows 

comparisons of appetitive and aversive visual memories since we can apply the same 

visual stimulation. With this paradigm, flies have to perform the same behavior task in 

appetitive and aversive visual learning and the only variable between the two protocols is 

the nature of the US. This is important for being successful in finding differential 

neuromodulator circuits underlying appetitive and aversive memories for one modality 

(Schwaerzel et al. 2003; Honjo & Furukubo-Tokunaga 2009; Vergoz et al. 2007; von 

Essen et al. 2011; Gerber, Scherer, et al. 2004). Furthermore, only now can we compare 

both kinds of visual and olfactory memories, because so far there were no visual learning 

paradigms available that could be contrasted to both, appetitive and aversive, olfactory 

memories in adult Drosophila. 

 

1.5 The role of the MB in insect behavior 

 

The MB as a center for multi-modal memory formation in Drosophila 

 

The MB of Drosophila clearly plays a pivotal role in olfactory memory formation. 

However, meaningful experiences like food reward or punishment should drive animals 

to form different associative memories of a sensory-rich environment. Thus, the induced 

memory should usually not be restricted to a single sensory cue in the environment like 

an olfactory stimulus. Not much is known about how animals associate different sensory 

cues like olfactory and visual stimuli with a single positive or negative experience, 

respectively. There are two possible alternative mechanisms how such multi-modal 

memories could be processed: On the one hand, distinct neuropil could host memory 

traces of different sensory stimuli and therefore information about same reinforcement 

must be processed in different regions in the brain for example as in the MB and CC of 

the fruit fly (Zars 2010). On the other hand, a single circuit could be shared and same 

reinforcement neurons could be employed for learning about different sensory stimuli, for 

example as inside the MBs. The latter circuit was found to be employed in mammals. 
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During fear conditioning in rats, auditory and visual stimuli information converges in the 

amygdala, where association takes place for both stimuli (Campeau & Davis 1995). In 

insects no such circuit has been described. Pharmacological experiments in crickets 

however showed that dopaminergic neurons are required for both, olfactory and visual 

learning (Unoki et al. 2005; Unoki et al. 2006; Mizunami et al. 2009), but circuit 

mechanisms underlying such multi-modal memories driven by a single appetitive or 

aversive stimulus remained unknown.  

In other insects it was already shown that the MB indeed receives input from 

different sensory stimuli (Honeybee (Mobbs 1982), Ants (Ehmer & Gronenberg 2004; 

Gronenberg & Lopez-Riquelme 2004), Cockroach (Li & Strausfeld 1997)). Since the MBs 

are highly conserved structures across many insect species, having a closer look on the 

anatomy and the overall behavioral impact of MBs in different insect groups can probably 

give a hint on the general function of this prominent neuropil. 

 

Sensory processing in the MB across insect species 

 

The MBs in insects have been first described in 1850 (Dujardin 1850). From early 

experiments (Faivre 1857) one could conclude that the MBs are less involved in 

performing simple motor action since even decapitated insects can still walk and survive. 

However, they were unable to perform complex movement patterns. This was confirmed 

by a study in Drosophila showing that flies have prolonged walking activity after blocking 

MBs (Martin et al. 1998). They do not show locomotion deficits, but seem to be unable to 

perform pausing. Other defects also have been found when testing flies for shock 

habituation but not initial shock response (Acevedo et al. 2007) or sleep rhythm (Joiner 

et al. 2006). Therefore, the MB was thought to provide a certain degree of performing 

voluntary actions. Across insect species, the MB is known to be mainly involved in 

modulation of olfactory information since the PNs provide most prominent input to the 

MB calyx (Ehmer & Gronenberg 2004; Li & Strausfeld 1997; Liang & Luo 2010). The 

MBs not only show strong response when applying olfactory stimuli during whole cell 

recordings in vivo (Drosophila (Turner et al. 2008)), but additionally olfactory memory is 

strongly impaired when ablating or blocking the output of the Drosophila MBs via genetic 

modifications (Heisenberg et al. 1985; Zars et al. 2000). Also in the honeybee, localized 

cooling of the MB impairs olfactory learning (Erber et al. 1980).  
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However, some insect species possess not only olfactory, but also multimodal 

afferents projecting to the calyx or the lobes of the MB (Kenyon 1896; Li & Strausfeld 

1997). These inputs provide information about different sensory stimuli, like gustatory, 

visual, olfactory or mechano-sensory cues. Different insect groups indeed possess 

olfactory and also prominent visual projection neurons to the MB calyx such as ants 

(Ehmer & Gronenberg 2004) or honeybees (Grünewald 1999; Mobbs 1982). Even 

though Drosophila probably needs to perform less complex behaviors than e.g. 

honeybees, they have a similar lifestyle with similar diurnal activity rhythm and 

requirement in flexibility when searching for food patches or mating partners. Thus, 

Drosophila would gain an advantage from flexibility in processing visual cues related to 

such elemental behaviors that can be provided by a connection between MB and optic 

lobes. Taken together the already performed studies with visual stimuli in the flight 

simulator (see 1.3) with the anatomical data from other insects, it would be reasonable to 

search for a visual memory trace in the Drosophila MBs. 

 

1.6 Drosophila melanogaster as a model organism to study the neural 

circuit underlying visual memory 

 

A big advantage in working with Drosophila is, of course, the enormous variety of 

genetic tools that are currently available. Using these highly specific tools it is possible to 

detect and dissect underlying neural circuits of different behaviors in the relatively small 

brain of a fly, even up to a level of single neuron manipulation. 

 

A classical approach to study the function of a neuronal circuit 

 

Already in the early 1970s, genetic tools were used to find specific important 

neuropiles and genes that are important for classical olfactory conditioning in the fly. By 

chemical mutagenesis, phenotypic mutants were produced bearing single gene deficits. 

Testing mutants revealed impairments specifically in olfactory learning for the 

phosphodiesterase dunce (Dudai et al. 1976; Byers et al. 1981) and the adenylate-

cyclase rutabaga (rut) (Aceves-Pina et al. 1983). Other chemically induced mutants with 
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perturbed MBs were employed to detect the significance of this neuropil for different 

learning paradigms (mbm, mbd (Heisenberg et al. 1985)). However, in these structural 

mutants, every individual fly had to be dissected and checked for actual depletion since 

the effect was varying. Another approach, however with the same problem, was 

chemical ablation of specific neuropil such as the MB, by feeding hydroxyurea to larvae 

(de Belle & Heisenberg 1994). However, some of the mutants were still used to identify 

specific roles of genes. 

 

Binary expression systems as genetic tools for dissecting neuronal 

circuits 

 

Introduction of binary transcription factor systems in Drosophila clearly enhanced 

the possibilities of genetic dissections. The GAL4-UAS system is probably the most 

widely used method (Figure 8)(Fischer et al. 1988; Brand & Perrimon 1993). Briefly, in 

one fly, an endogenous promotor or enhancer controls the expression of an inserted P-

element including the GAL4-protein-sequence (driver line). The expressed GAL4-protein 

itself has no effect since it originates from yeast and is not interacting with the fly 

genome. In another fly, an inserted upstream activation sequence (UAS) controls the 

expression of the favored transgene (effector line). The UAS can only be activated by the 

expressed GAL4-protein and no other endogenous proteins of the fly. Only by crossing 

these two flies and having both p-element insertions present, is the transgene expressed 

under the control of the endogenous promotor or enhancer. This technique enables 

endless pairings of GAL4-driver line and UAS-effector line modules. Another component 

specific to this system is the GAL80-protein (Lee et al. 1999) which blocks the activation 

domain of the GAL4 protein. Thus, overlapping expression of GAL4 and GAL80 leads to 

non-functionality of the whole system. Employing this method one can further specify the 

expression pattern by expressing both, the GAL4 and the GAL80 proteins, under the 

control of distinct promotors. A further new method to specify expression patterns was 

developed by splitting the GAL4 protein, the so called Split-GAL4 system (Figure 8)(Luan 

et al. 2006). Split-GAL4-lines have high specificity in expression pattern, since here the 

DNA-binding domain (DBD) and the activation domain (AD) of the GAL4-protein are 

independently targeted by two different promotors. With this system, the transgene is 

only expressed in the intersection of the expression patterns where the functional GAL4-

protein can be formed (Luan et al. 2006). Like that, higher specificity in the expression 
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pattern of the GAL4 protein can be achieved. It is even possible to have only a single 

neuron labeled in the brain of the fly. Other systems that can be combined for example to 

achieve double staining of different driver lines are the Q system (Potter et al. 2010) and 

the LexAop-system (Szuts et al. 2000; Lai & Lee 2006). 

 

Different transgenic effectors can be expressed via these binary systems. 

Fluorescent markers, like green or red fluorescent proteins (e.g. UAS-GFP/UAS-RFP) 

can be used to visualize the expression pattern of the GAL4-driver lines. Combining two 

different binary systems (e.g., LexAop and GAL4/UAS) gives the possibility to express 

two halves of a split GFP protein under the control of two different promotors (Split-GFP). 

GAL4
P/E

UAS
Gene X

Expression of Gene X

A

Expression of Gene X

P/E

UAS
Gene X

DBD

P/E
AD

B

Figure 8: Functional mechanism of the GAL4 and Split-GAL4 technique 

(A) A GAL4-P-element is inserted after an endogenous promotor or enhancer (in this case the P-

element contains a promotor sequence) in the driver line. The expressed GAL4-protein acts on 

the UAS-sequence of a second insertion in the genome provided by the effector line. The UAS 

sequence controls the expression of an effector gene X. Thus, the expression pattern of the gene 

X resembles the one of the endogenous protein controlled by the promotor or enhancer that 

drives the GAL4-protein. (B) When using the Split-GAL4 technique, the DBD-domain of the GAL4 

protein is expressed under a different enhancer/promotor than the AD-domain. By additionally 

expressing a Zink-finger protein sequence the two protein-halves can bind and form a functional 

GAL4-protein that activates the UAS sequence when both are present. Thus, the expression 

pattern of the Gene X resembles the overlap of expression of the two selected 

promotors/enhancers. 
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Reconstituted GFP thus only gives visible fluorescence signal where the marked cells 

connect very close, as for example in synapses (Feinberg et al. 2008; Pech et al. 2013).  

A variety of different tools also exist to manipulate neural activity. In this study I 

mostly employed shibirets1 (shits1, (Kitamoto 2001)), a temperature sensitive mutant 

dynamin protein, that is functional in permissive temperature (<30°C) but blocks synaptic 

transmission in restrictive temperature (>30°C). Activation of neurons can be achieved 

by employing dTrpA1 (Hamada et al. 2008), a heat-activated Transient Receptor 

Potential (TRP) family ion channel. The dTRPA1-channel opens at temperatures higher 

than 29°C. These temperature sensitive tools also have the advantage that their 

functionality is reversible by bringing flies back to colder temperatures and that they are 

not active during development.  
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1.7 Aim of the thesis 

 

Anatomical data in other insects suggests the MB as a conserved higher brain 

center for memory formation and storage of different kinds of sensory stimuli and even 

higher cognitive functions in insects. In Drosophila, the MB was already shown to be 

involved in different sensory conditioning tasks. Olfactory conditioning, as well as 

gustatory conditioning (Masek & Scott 2010) and courtship conditioning (Keleman et al. 

2012) are all MB dependent. In my thesis I want to investigate the role of the MB for 

visual classical learning in Drosophila and compare it to the well described role in 

olfactory learning. Therefore, I and my colleague developed a new classical visual 

learning setup that uses sucrose and electric shock as appetitive and aversive 

reinforcers, respectively, similar as in olfactory conditioning. Also a similar task is 

demanded from the flies even though different sensory stimuli are used as CS. Thus, 

flies are trained and tested under similar conditions as in olfactory conditioning, which 

will allow a direct comparison of the two modalities. Employing genetically modified flies, 

I will block the synaptic output of MB-specific GAL4 lines to find neurons necessary for 

the visual conditioning task. Specific requirements of neurons during behavioral training 

and test, respectively, will additionally reveal functional implications. Using even more 

specific Split-GAL4 lines will allow me to further dissect functions of single cell types 

extrinsic or intrinsic to the MB. Additionally I will describe in detail anatomical structures 

required for visual memory formation.  
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2. Materials & Methods 

 

2.1 Flies and genetic crosses 

 

Drosophila melanogaster were reared in mass culture at 25°C, at 60% relative 

humidity, under a 12-12-hour light-dark cycle on a standard cornmeal-based food. The 

Canton-Special (CS) wild type strain was used for all experiments that did not include 

genetically modified flies and for control crosses including WT flies. For experiments, 1-3 

day old flies were collected in fresh food vials and kept overnight at 25°C and 60% 

relative humidity.  

All used transgenes are inserted in the w- mutant background if not otherwise 

stated. F1 progenies of crosses between females of UAS-shits (Kitamoto 2001), MB247-

GAL80;UAS-shits (Krashes et al. 2007), UAS-mCD8::GFP (Lee & Luo 1999) or WT-

females and males of MB247-GAL4 (Schulz et al. 1996), +c305a-GAL4 (Krashes et al. 

2007), 17D-GAL4 (Martin et al. 1998), 201y-GAL4 (Yang et al. 1995), c205-GAL4 (Li et 

al. 2009), GH146-GAL4 (Stocker et al. 1997), VT8475-GAL4 (VDRC, Vienna, Austria), 

GMR28F07-GAL4 (Janelia Gen1 line, Ashburn, Virginia, USA) or Canton-S males were 

used. Further, I tested w+,rut1;UAS-rut mutant lines with defect adenylate cyclase 

protein kindly provided by Li Liu (Pan et al. 2009). rut1;UAS-rut were crossed with c205-

GAL4 and MB247-GAL4 to induce rescue in specific neuropiles.  

To specify requirement of MB input neurons, such as dopaminergic neurons, 

requirement of specific KCs of the MB and MB output neurons in visual learning we 

utilized specific Split-GAL4 lines manufactured in Janelia Farm Research Campus. For 

generation of Split-GAL4 lines the two GAL4 halves (DBD and AD) were inserted in 

specific sites in the fly genome; attp40 and attP2 on second and third chromosome, 

respectively (Table 10, Table 11 and Table 12). F1 progenies of crosses between 

females of UAS-shits (Kitamoto 2001), 20XUAS-IVS-Shibire[ts1]-p10 (Pfeiffer et al. 

2012), UAS-mCD8::GFP (Lee & Luo 1999), mb247-DsRed; mb247-splitGFP11, UAS-

splitGFP1-10 (MB-split-GFP-line (Pech et al. 2013)), UAS-myr-CD8::Cherry, 13F02-

LexA/Cyo; LexAop-GFP/TM2 (for double labeling of VPNs and MB calyx), UAS-

Denmark::mCherry; UAS-Syt::GFP (Nicolaï et al. 2010), y-w-, hsp70-flp [X]; UAS>CD2 

y+>mCD8::GFP (Wong et al. 2002), or WT-females and males of specific Split-GAL4 
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lines (kindly provided by Gerry Rubin, Janelia Farm, Ashburn, Virginia, USA) or Canton-

S males were used. Further Split-GAL4 lines tested beyond the screening were 

generated by inserting 52B07-p65ADZp into attP40 and 52H01-ZpGdbd into attP2 

(MB262B), 19B03-p65ADZp into attP40 and 39A11-ZpGdbd into attP2 (MB607B), 

28F07-p65ADZp into attP40 and 10E05-ZpGdbd into attP2 (425B) and 52G04-p65ADZp 

into attP40 and 49F03-ZpGdbd into VK00027 (334C). In two effectors (UAS-shits, 

20XUAS-IVS-Shibire[ts1]-p10) used, the X chromosomes of strains were replaced with 

that of wild-type Canton-S (w+) since white mutation could have some effect on the 

synapses of the visual systems (reviewed by (Bicker 2001)). 

Flies with the correct genotypes were sorted under CO2 anesthesia at least two 

days before experiments. For rut-rescue only males of the F1-progeny were used to 

perform behavioral experiments. For appetitive conditioning experiments 2-4 days old 

flies were starved in moistened empty vials to the mortality rate of approximately 20% 

(Schnaitmann et al. 2010). For aversive conditioning, starvation was not applied. For 

each behavioral experiment I used 30-40 mixed male and female flies. All experiments 

were performed in dim red light and in a custom made plastic box, containing a heating 

element on the bottom and a fan for air circulation. 

 

2.2 Visual conditioning setups 

 

Visual stimulation and behavioral recording 

 

We designed exchangeable conditioning arenas for reward and punishment 

application (Figure 9A-C). For both modules light-emitting diode (LED) arrays were used 

to apply visual stimuli (Green/Blue light) from beneath the flies (Figure 9B,E). We 

constructed a stimulation module using computer-controlled high-power LEDs with peak 

wavelengths 452 nm and 520 nm (Seoul Z-Power RGB LED) or 456 nm and 520 nm (H-

HP803NB, and H-HP803PG, 3W Hexagon Power LEDs, Roithner Lasertechnik) for blue 

and green stimulation, respectively. LEDs were housed in a base (144 mm below the 

arena), which allowed homogeneous illumination of a filter paper as a screen. Using a 

custom made software and controlling device we were able to illuminate four quadrants 

of the arena independently. For separate illumination of each quadrant, the light paths of 
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LEDs were separated by light-tight walls in a cylinder with air ducts (Figure 9A-C). The 

intensities were controlled by current and measured using a luminance meter BM-9 

(Topcon Technohouse Corporation) or a PR-655 SpectraScan® Spectroradiometer: 14.1 

Cd/m2 s (blue) and 70.7 Cd/m2 s (green). Each quadrant was equipped with an Infrared-

LED (850 nm), which was used for background illumination, e.g. during 

preference/avoidance test. 

 

SUGAR

LEDs
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SHOCK

A

+ + --

FD E

Figure 9: Modular appetitive and aversive visual learning 

(A-C) Experimental setups used for appetitive and aversive visual conditioning. Scheme shows 

single components (B) of exchangeable conditioning arenas for sugar reward (A) and electric 

shock punishment (C) that share the same light source and video camera (B). (B) Appetitive 

setup: cylindrical Fluon-coated arena closed from top with opaque lid during training or 

transparent lid during test. Exchangeable Petri dish on the bottom to present sugar or water 

soaked filter paper during training and neutral filter paper during test. Filter paper is clamped in 

the dish by a plastic ring. Aversive setup: the circular arena consists of a transparent electric 

shock grid, removable Fluon-coated plastic ring and transparent lid. The cylinder on top isolates 

each setup from the others and creates a similar closed visual scene as in the appetitive setup. 

(D) Petri dishes containing either dried sugar solution or water for training and neutral filter paper 

for test. (E) Visual stimulus source with one blue and one green high power LED per quadrant. (F) 

The conditioning arena with the transparent electric shock grid and a magnification with visual 

stimulation and a fly. Alternating stripes marked by + and – symbols indicate electric shock 

application. 
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To analyze behavioral experiments I recorded the distribution of the flies during 

test phase from above with a CMOS camera (Figure 9A-C)(Firefly MV, Point Grey, 

Richmond, Canada) controlled by custom made software (Schnaitmann et al., 2010). 

Four setups were run in parallel unless otherwise stated.  

Apparatus for appetitive conditioning 

 

For appetitive sugar conditioning, I used an apparatus module containing a 

cylinder closed on both sides with Petri dishes (Figure 9A,B,D)(Schnaitmann et al. 2010). 

A filter paper was clamped in the bottom dish with a plastic ring with which I was able to 

present sugar reward in training. This dish could be exchanged during training to either 

contain filter papers with dried sugar reward or water control. On top, either an opaque 

lid was present during training or a transparent lid during test. The transparent lid 

enabled video recording in test. Cylinder walls and lid were covered with Fluon (Fluon 

GP1, Whitford Plastics Ltd., UK), so that flies were not able to hang on them and were 

forced to walk on the bottom petri dish. 

 

Apparatus for aversive conditioning  

 

For aversive electric shock conditioning, I used an apparatus module containing 

an arena with a transparent shock grid (Figure 9B,C,F). The arena itself consisted of the 

transparent shock grid on the bottom, a plastic ring as a wall and a glass lid. The shock 

grid was a custom made glass plate (9x9 cm) covered with ITO (indium tin oxide), a 

conductive transparent substance. A grid was laser-structured onto the ITO glass in 

order to insulate the positive and negative electrodes (1.6 mm width with 0.1 mm of 

gaps). The width of the lasered lanes was chosen in a way that flies always close the 

electric circuit and receive punishment. Alternating current was applied to protect 

electrodes from a biased pigmentation. The two halves of the grid can be independently 

controlled. The plastic ring (wall) and the glass lid were coated with diluted Fluon (10%; 

Fluon GP1, Whitford Plastics Ltd., UK) to prevent flies from walking on the lid and wall. 

Consequently, flies were forced to stay on the shock grid on the bottom of the arena. A 

filter paper was clamped on the backside of the shock grid and served as a screen. The 

aversive setup was designed by Christopher Schnaitmann and built with the help of 

Stephan Prech (Electronics workshop, MPI of Neurobiology). 
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2.3 Behavioral protocols for appetitive and aversive learning 

 

The design of conditioning (differential conditioning followed by the binary choice 

without reinforcement) and visual stimulation are the same in appetitive and aversive 

conditioning (Figure 11; (Schnaitmann et al. 2010)). Briefly, approximately 40 flies were 

subjected to a single conditioning experiment and introduced into the arena using an 

aspirator. During the training the whole arena was illuminated for one minute alternately 

with green and blue light, one of which was paired with reinforcement (CS+).  

For appetitive conditioning, high concentration of sucrose was presented as a 

reward (Schnaitmann et al. 2010). The sucrose solution (2 molar (M)) was soaked in 

filter paper and subsequently dried. During an inter-CS-interval (ICSI) of 12 s, training 

petri dishes on the bottom were exchanged. The cylinder was turned and the flies were 

gently tapped onto the lid, then the training petri dish, now on top, was exchanged in a 

quick way and the whole cylinder was turned back onto the LED array.  

For aversive conditioning, one second of electric shock (AC 60 V) was applied 12 

times in 60 s during CS+ presentation. The two consecutive CS+ and CS- presentations 

are intermitted by 12 s of an interval without any illumination (Schnaitmann et al. 2010).  

Such a training trial was repeated four times if not otherwise stated (Figure 13). 

The test started 60 s after the end of the last training session. Unlike in the training 

phase, only two diagonal quadrants of the arena were illuminated with the same color 

(unless otherwise stated) to allow flies to choose between the two visual stimuli. In the 

test, the distribution of the flies was video recorded for 90 s at 1 frame per second 

(Schnaitmann et al. 2010). No US was presented in the test period with visual stimuli. 

For aversive conditioning, a 1 s shock pulse (90V) was applied 5 s before the beginning 

of the test to arouse the flies (Figure 17A). However, when testing flies in high 

temperature (33°C) this additional shock was dispensable for aversive memory retrieval 

(Figure 17B). Two groups undergoing reciprocal CS–US contiguity (Green+/Blue− and 

Blue+/Green−) were trained in the same setup consecutively. A green preference index 

(PI) was calculated for both groups. If all flies sit on the green visual cue during test, the 

PI has a value of 1. A PI of 0 indicates that flies are evenly distributed on the two visual 

cues. 

 



48 

 

    
(                          )  (                          )

             
 

 

The difference in PI of these two groups in visual stimulus preference was then 

used to calculate a learning index for each video frame. Half of the trained groups 

received reinforcement together with the first presented visual stimulus and the other half 

with the second visual stimulus to cancel the effect of the order of reinforcement 

(Schnaitmann et al. 2010). 
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2.4 Sensory controls 

 

Control responses to sugar or shock were performed with the same arena 

modules as those for appetitive and aversive conditioning. To be able to record 

distribution of the flies, but not disturb the choice behavior, the arenas were backlit only 

with infrared-LEDs. Flies were given a choice between the US presented as in the 

training and no US in the two halves of the arena. The choice was recorded 60 s using 

also the same video setup as for conditioning. A preference index was calculated by 

subtracting the numbers of flies on the half with a stimulus and on the control half of the 

arena, which was divided by the total number of flies. 
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2.5 Protocol modifications in visual learning 

 

ISI conditioning 

 

To train flies with non-overlapping CS and US stimuli, meaning different inter-stimulus-

intervals (ISIs), the conditioning protocol was changed. The CS duration was shortened 

to 15s and also shock presentation was reduced to three shocks of 1 s every 5 s (Figure 

12). Due to shorter CS and US presentation, amount of training trials was increased to 

eight (Figure 13). Time interval between CS presentations (ICSI) was prolonged to 2 min 

to be able to exclude any effect of the control color on the formed memory (Figure 13). 

Using this protocol flies were then trained with different ISIs, negative numbers indicating 

that the CS+ preceded the US, positive numbers indicating that the US preceded the 

CS+ for the specific amount of seconds. 

 

Neuronal output required during 

conditioning 
Possible function in neuronal circuit 

Training US pathway 

Test 
site of coincidence detection or memory 

storage 

Training & Test CS Pathway 

 

Table 3: Temporal shi
ts

-block either during training or test can reveal several functional 

requirements of neurons within a neural circuit 

 

Temperature manipulation 

 

By use of a heating element and fan I was able to raise the temperature 

surrounding the apparatus up to steady 33°C. Like this, induction of temperature 

sensitive tools such as shits1 or TrpA1 was possible. In temperature shift experiments 

with shits1, flies were transferred into moistened empty vials during temperature switch 
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from permissive (25/26°C) to restrictive (31/33°C) temperature or vice versa (Table 3). 

Behavioral test was performed 40-45 minutes after training, so that flies could acclimate 

to the temperature switch.  

 

Aversive conditioning without context change 

 

Unlike the standard classical conditioning protocol, CS+ and CS- were 

simultaneously presented in the two halves of the arena during training and test (Figure 

18). Only one half of the arena displaying CS+ was electrified. Flies were allowed to 

choose one of the differently cued two halves for 20 s, and such a training trial was 

repeated eight times with an inter-trial interval of 20 s of no stimulus. The sides of CS/US 

presentation were pseudo-randomized to avoid potential association with the regularity 

of the to-be-shocked side. During the test, the two halves were illuminated as in training, 

but without shock, allowing no visual context change between training and test. 

 

Green intensity conditioning protocol 

 

To train flies with different light intensities, exactly the same electric shock 

application protocol was used as for aversive color conditioning (Figure 41,Figure 42). 

Blue and green visual cues were replaced by presenting dark and light green (1:10 ratio) 

as CS, thus the flies could only use the intensity difference as indicator for punishment. 

The intensities were controlled by current and calibrated using a luminance meter BM-9 

(Topcon Technohouse Corporation) or a PR-655 SpectraScan® Spectroradiometer: 

101.0 Cd/m2 s (bright-green), and 10.1 Cd/m2 s (dark-green).  
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2.6 Split-GAL4 MB Screening 

 

Setups 

 

For the MB-Split-GAL4 screening performed in collaboration with the Janelia 

Farm Research Campus (HHMI, Ashburn, Virgina, USA), appetitive conditioning 

experiments were performed in Munich with the same control as explained above. 

Aversive conditioning experiments were performed at the Janelia Farm Research 

Campus (JFRC) in Ashburn, Virginia, USA. Therefore, the aversive conditioning setup 

was slightly modified and expanded (Design by Christopher Schnaitmann and Stephan 

Prech). 20 single shock grids could be used in parallel so that a throughput level of n = 

80-100 per day could be reached (see Figure 10 for 10 of the 20 arrays). Full automation 

of the setup was achieved by controlling all applied electric shock and visual stimuli by a 

single PC for all 20 setups.  

 

 

Figure 10: Modular aversive visual learning assay used during the screening in JFRC 

One half of the experimental setup for aversive visual conditioning screening project; twenty 

setups were used in total. The cylinders on the top rack isolate each setup from the others 

and create a similar closed visual scene. 
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Screening lines and protocol 

 

The Split-GAL4 lines were assembled by ~400 different lines containing either an 

activation domain (p65ADZp) or a DNA-binding domain (ZpGdbd), respectively, 

controlled by a specific promotor in JFRC. From ~2,500 different intersection 

combinations, 80 Split-GAL4-lines were selected for the MB-screening project by 

Yoshinori Aso (JFRC). The lines specifically labeled intrinsic (18 lines, Table 10), input 

(33 lines, Table 11) or output (29 lines, Table 12) neurons of the MB. For visual 

conditioning I crossed the lines with w+;;20XUAS-IVS-Shibire[ts1]-p10 (Pfeiffer et al. 

2012), to block synaptic output during training and test. Flies were tested 2 min after 

training in appetitive and aversive conditioning. During primary screening the 

experimental group was tested in parallel with the shi/w- control (n = 8). Lines that 

showed significant phenotype or strong tendency for impairment were retested in the 

secondary screening together with shi/w- control and +/Split-GAL4 control (n = 8) unless 

otherwise stated. Lines that showed consistent significant phenotype over both 

screening phases were additionally tested for visual memory in permissive temperature 

and for sensory defects in restrictive temperature unless otherwise stated. Primary and 

secondary screening for aversive visual conditioning could be finished within 6 weeks at 

the Janelia Farm Research Campus. Control tests for phenotypic lines in aversive 

conditioning were performed in Munich. For appetitive conditioning, primary screening, 

secondary screening and control tests could be finished in Munich for MB output lines. 

For input and KC lines most of the primary appetitive screening could be finished in 

Munich. However, no secondary screening and control tests could be performed due to 

time limitations for experiments.  

 

2.7 Olfactory conditioning 

 

Standard olfactory conditioning was applied as performed previously (Tully & 

Quinn 1985; Schwaerzel et al. 2002). Differential conditioning design (odors: 3-

octanol/Benzaldehyd for MB-block, 3-octanol/4-methylcyclohexanol for rut-rescue) 

followed by the binary choice without reinforcement was similarly as in visual 

conditioning. During training, flies were exposed to 60 s of an odor paired with 12 pulses 
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of electric shock (CS+, 100 V/90 V) and subsequently to a control odor that also lasted 

60s (CS-). Memory performance was tested 3 min after training. 

 

2.8 Statistics 

 

Statistical analyses were performed with Prism5 software (GraphPad). Groups 

that did not violate the assumption of normal distribution (Shapiro-Wilk test) and 

homogeneity of variance (Bartlett’s test) were analyzed with parametric statistics: one-

sample t-test or one-way analysis of variance (one-way ANOVA) followed by the planned 

pairwise multiple comparisons (Bonferroni). Experiments with data that were significantly 

different from the assumptions above were analyzed with non-parametric tests, such as 

Mann-Whitney test or Kruskal–Wallis test followed by Dunn’s multiple pair-wise 

comparison. The significance level of statistical tests was set to 0.05. 

 

Screening statistics 

 

In the primary screening, shi/w- control data was pooled over all tested lines. During 

analysis, experimental lines shi/Split-GAL4 were compared to pooled control data and 

analyzed with non-parametric statistics: Mann-Whitney test followed by the planned 

pairwise multiple comparisons (Benjamini Hochberg). For secondary screening, 

selectively tested experimental lines (shi/Split-GAL4) were compared to pooled shi/w- 

control data and +/Split-GAL4 control data. They were analyzed with non-parametric 

statistics: Kruskal Wallis test followed by Dunn’s multiple pair-wise comparisons or 

parametric statistics: one-way ANOVA followed by the planned pairwise multiple 

comparisons (Bonferroni). The significance level of statistical tests was set to 0.05. 
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2.9 Immunohistochemistry 

 

Antibodies 

 

Adult fly brains were dissected, fixed and stained using standard protocols (Aso 

et al. 2010). Synapsin antibody (AB) staining, discs large AB staining or N-cadherin AB 

staining was used to visualize the neuropil. Anti-GFP AB was used to increase the 

intensity of the GFP signal. Dsred AB was used to increase the mCherry/DsRed signal. 

Staining Primary Antibodies Secondary Antibodies 

GFP 
α-GFP (rabbit, 1:1000) 

Invitrogen 

α-rabbit Alexa 488 (1:1000) 

Invitrogen 

Synaptotagmin (GFP) α-GFP (rat, 1:100) α-rat Alexa 488 (1:250) 

GRASP (GFP) 
α-GFP (mouse, 1:100) 

neuromab 

α-mouse Alexa 488 (1:200) 

Invitrogen 

Discs large background α-dskl (mouse, 1:50) α-mouse Cy3 (1:250) 

Synapsin background 

α-synapsin (mouse, 
1:100) 

(Klagges et al. 1996) 

α-mouse Cy3 (1:250) 

Dianova 

Synapsin background 

α-synapsin (mouse, 
1:100) 

(Klagges et al. 1996) 

α-mouse Alexa 633 (1:250) 

Denmark (dsred) α-dsred (rabbit, 1:100) α-rabbit Alexa 568 (1:250) 

GRASP (dsred) α-dsred (rabbit, 1:100) α-rabbit Cy3 (1:200) 

n-Cad background 
α-nCad (rat, 1:100) 

DSHB 

α-rat Alexa 633 (1:200) 

Invitrogen 

DCO (PKA-C1) 
α-DCO (rabbit, 1:2000) 

(Skoulakis et al. 1993) 

α-rabbit Cy3 (1:200) 

Jackson Immunoresearch 

R7/R8 

α-MAb24B10 (mouse 
1:50), DSHB 

(Zipursky et al. 1984) 

α-mouse Cy3 (1:250) 

Jackson Immunoresearch 

 

 

Table 4: Antibodies used for immunostaining 
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Cell polarity  

 

Polarity of VPNs and γd KCs was analyzed by crossing VPN Split-GAL4 lines 

425B, 334C and MB419B with w-; UAS-Denmark::mCherry; UAS-Syt::GFP (Nicolaï et al. 

2010), respectively. Thus, synaptotagmin-GFP staining marks the axonal regions of the 

neurons, whereas Denmark-mCherry staining marks the dendritic regions of the 

neurons. 

 

Connectivity between VPNs and the MB 

 

To characterize and show connectivity between VPNs and γd dendrites (ventral 

accessory calyx, VACA) we performed several anatomical experiments. DCO antibody 

labels preferentially the MB (Crittenden et al. 1998). Antibody staining in parallel with 

expression of MB419B-GFP expression shows that γ-lobes are also strongly labeled 

(Figure 38). To show connectivity, DCO antibody staining was performed in parallel with 

expression of GFP in VPNs (425B-Split-GAL4, 334C-Split-GAL4). In a second 

experiment, to perform double labeling between VPNs and MB calyx I recombined w-

;UAS-myr-CD8::Cherry/CyO;LexAop-GFP/TM2 with w-;13F02LexA. The resulting line 

was then crossed with specific Split-GAL4 lines for VPNs (425B-Split-GAL4, 334C-Split-

GAL4). Thirdly, to visualize connections between VPNs and the VACA I crossed w-; 

mb247-DsRed; mb247-splitGFP11, UAS-splitGFP1-10 (Pech et al. 2013) with Split-

GAL4 lines for VPNs (425B-Split-GAL4, 334C-Split-GAL4). Reconstituted GFP will be 

expressed in the fly brain where the neurons come very close or even form synapses 

during development and in adult flies. 

 

Heat shock Flip-out protocol 

 

To obtain single-cell flp-out staining, males of the 425B-Split-GAL4 were crossed with 

females of y-w-, hsp70-flp [X]; UAS>CD2 y+>mCD8::GFP/CyO; TM2/TM6b (Wong et al. 

2002) to obtain F1 progeny carrying GAL4 insertion, hsp70-flp and 

UAS>rCD2,y+>mCD8-GFP. Crosses were raised at 25 °C. One to six days before 

eclosion a mild heat shock was given by placing the vial into a 32°C incubator to remove 
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the FLP-out cassette (rCD2, y+) in a subset of the neurons, thereby allowing the 

expression of mCD8-GFP in these neurons and CD2 expression in the remaining 

neurons. The duration of the heat shock was 60–90 min. The eclosed flies were then 

transferred into a fresh vial and 2- to 5-day-old flies were used for dissection.  

 

Double labeling with photoreceptor neurons 

 

To specify the medulla input region in the VPN lines we performed double 

labeling of 425B-Split-GAL4/UAS-GFP and 334C-Split-GAL4/UAS-GFP with a specific 

antibody for inner photoreceptors R7/R8 (mouse mAb24B10, (Zipursky et al. 1984)), 

respectively.  

 

Analysis of confocal data 

 

Frontal optical sections of whole-mount brains were sampled with a confocal microscope 

(Olympus FV1000). Images of the confocal stacks were analyzed with the open-source 

software Fiji (Schindelin et al. 2012). Confocal pictures of all 80 tested Split-GAL4 lines 

were provided by the Janelia Farm Research Campus Flylight team. Background is 

stained with nc82. Split-lines are stained with 5xUAS-myr-sm::GFP inserted in VK0005. 

Neuronal transmitter was assigned by double staining with either glutamine (dVGluT), 

gamma-aminobutyric acid (GABA; GAD1) or acetylcholine (ChAT) antibodies. Specific 

expression patterns of the Split-GAL4 lines inside and outside the MB were assigned by 

Yoshinori Aso (Janelia Farm Research Campus, Table 10, Table 11 and Table 12). 

  



57 

 

3. Results 

 

3.1 Visual conditioning paradigm 

 

By employing a newly established visual setup containing two exchangeable 

modules for reward and punishment, respectively, it was possible to train flies with both 

reinforcers under same visual stimulation and applying the same protocol. Both modules 

are built in a way that allows illumination from beneath the flies, either through sucrose 

soaked filter paper or a translucent electric shock grid. Also the same reinforcers, sugar 

and electric shock, are employed as in the well tested olfactory conditioning paradigm. 

Therefore a comparison between the two learning setups with different modalities is 

possible. 

 

Green preference and memory formation 

 

During training flies are differentially conditioned with green and blue stimuli, 

respectively. One of the stimuli is paired with either punishment or reward during the 

training phase (+, Figure 11A). In the test both stimuli are presented simultaneously to 

the flies and they are free to make a choice. Flies show a clear bias in towards the green 

stimulus in test when trained with no voltage or low voltage in both reciprocals (pooled 

green preference over 90s of test; Figure 11B). When training with higher voltages (15-

120V) the green preference is shifted and flies show significant aversive memory (Figure 

11B-C). Video recording allows analysis of the distribution of the flies on the visual 

stimuli at every second during test. After roughly 20-30 s of the test the flies reach a 

stable distribution between the two stimuli. When trained with sucrose flies approach the 

rewarded color in test (Figure 11D), whereas when trained with electric shock flies avoid 

the punished color in the test (Figure 11E (Schnaitmann et al. 2010)). All bar graphs in 

further figures represent the pooled data of calculated learning indices from both 

reciprocal green preferences during 90s of the test. Overall the memory scores for visual 

learning are stable and reproducible so that further experiments can be performed. 
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Figure 11: Flies shift their naïve bias for visual stimuli after appetitive and aversive 

conditioning. 

(A) Differential conditioning protocol with chromatic stimuli. Two reciprocals (+ represents punished or 

rewarded color during training) are performed to obtain one learning index. (B) Pooled green preference 

after aversive conditioning with different voltages (0-30V) at 25 °C. Flies show naïve bias for the green 

stimulus after training with 0V in both reciprocals (Blue+/Green+ represent punished color during 

training), n = 15. (C) Aversive visual memory depends on shock intensity (One-way ANOVA, p<0.001). 

Flies show significant memory from 15 V (One sample t-test, p<0.001) n = 15. No difference in 

performance is found among training with 30-120 V (post-hoc pairwise comparisons p>0.05) n = 16-30. 

(D) Green preference of flies after aversive conditioning with 60 V at 25 °C. During every second of the 

test green preference is calculated independently for both reciprocals (Blue+/Green+ represent 

punished color during training), n = 16. (E) Green preference of flies after appetitive conditioning with 2M 

sucrose on filter paper at 25 °C. During every second of the test green preference is calculated 

independently for both reciprocals (Blue+/Green+ represent rewarded color during training), n = 6. Bars 

and error bars represent mean and SEM, respectively. 
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3.2 ISI conditioning 

 
In ISI conditioning the time interval between the CS+ and the US (Inter-stimulus-

interval) is varied. The CS+ usually precedes and at least partly overlaps with the US in 

the commonly applied delay conditioning protocol (Figure 12A). However, it is also 

possible to train the flies with the CS+ either preceding the US (negative ISI) or following 

the US (positive ISI) without temporal overlap. In olfactory conditioning, varying the ISI 

leads to different conditioning effects such as relief and trace learning (Tanimoto et al. 

2004; Galili et al. 2011; Yarali et al. 2008). It is not known if flies can perform similarly 

when training with visual stimuli. 
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Figure 12: Delay conditioning in relation to different protocol parameters. 

(A) Training protocol for normal delay conditioning of adult flies with two visual stimuli (CS = green/blue 

(15s)) and electric shocks (US). Inter-CS-Interval (ICSI) is always 12 s. The to-be-learned visual stimulus 

precedes the US application for 4 s (Inter-stimulus-interval (ISI) = -4). (B) To find best conditions for delay 

conditioning I varied amount of training trials. All experimental groups received same amount of US (12 

shocks) and CS (60 s). Visual delay memory depends on variation in protocol (Kruskal-Wallis test, p<0.01). 

Flies showed significant memory with 1, 2, 4 and 6 trials (One sample t-test, p<0.001). Applying 12 Trials 

with 5 s CS and 1 shock did not reveal significant learning (One sample t-test, p<0.05). Significant difference 

in memory performance was found between 4 trials and 12 trials (post-hoc pairwise comparisons p>0.05), n 

= 15-20. Bars and error bars represent mean and SEM, respectively. 
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Adjusting the conditioning protocol 

 

To find the best parameters for ISI conditioning with visual stimuli, I tested 

different CS durations and matched shock applications (Figure 12). All tested 

experimental groups received the same amount of CS exposure and shock, however in 

different amount of trials. Worst performance was found when training flies with 5 s of CS 

and one electric shock per trial, even though 12 trials were performed (Figure 12B). Best 

memory scores were found with CS duration of 15 s and application of 3 electric shocks, 

presented to the flies in 4 trials. Using this protocol flies showed significant memory 

performance with even a single training trial (Figure 13A-B). However, comparing 

between training with one, two, four and eight training trials revealed that there is a 

tendency for improved delay conditioning with higher amount of training trials performed 

(Figure 13B). Thus, for all further experiments within the ISI-project I applied eight 

training trials with the CS duration of 15 s and three electric shocks each.  

 

When conditioning with different ISIs the CS+ and US are presented with a 

temporal gap. Thus, it is critical to be able to exclude any associations of the US with a 

control CS-. Increasing the temporal period between presentation of US/CS+ and CS- 

should prevent such association. Therefore I tested if a prolongation of the inter-CS-

interval (ICSI) influences the delay conditioning performance (Figure 13C-D, 30s, 60s or 

120s). No significant difference was found in memory performance among all tested 

groups. Thus, the longest interval was chosen to be applied also in ISI conditioning 

experiments. Within these conditions the CS- and US are always presented with a 

temporal gap of 120s and no association should be formed between these stimuli. 
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Figure 13: Delay conditioning in relation to amount of training trials and Inter-CS-Interval. 

(A) Training conditions for delay conditioning. 15s CS/ICSI12s/ISI = -4. (B) Every amount of training trials 

leads to significant learning (Mann-Whitney test, p<0.05). Significant difference in memory performance was 

found between conditioning with one trial and 8 trials (Kruskal Wallis test, post-hoc pairwise comparisons 

p>0.05), n = 16. (C) Training conditions for delay conditioning. 15s CS/8 Trials/ISI = -4, Duration of ICSI was 

varied. (D) Variation in ICSI from 30 s to 120s. Delay memory does not depend on duration of Inter-CS-

Interval (One-way ANOVA, p>0.6) All groups show significant memory performance (One sample t-test, 

p<0.001), n = 20. Bars and error bars represent mean and SEM, respectively. 
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Visual trace and relief learning 
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Figure 14: Timing dependent memory formation in Drosophila. 

(A) Timeline of a single training trial. The inter stimulus interval (ISI) is the interval between onset of US and 

onset of CS+ in seconds. Eight training trials were applied with varying ISI values (B) Conditioned behavior 

as a function of the ISI. Red stripes indicate electric shock application. Memory performance depends on 

stimulus timing (One-way ANOVA, p<0.001). Flies show significant aversive memory in delay conditioning 

(One sample t-test, p<0.001, ISI = -4,-14) and when there is a gap introduced between preceding CS+ and 

US presentation (One sample t-test, p<0.01; trace learning, ISI = -19,-34). Flies show significant appetitive 

memory when CS+ follows US presentation with a gap (One sample t-test, p<0.01; relief learning, ISI = +66). 

If the US preceded the CS, but still overlapped (One sample t-test, p>0.05; ISI = +4, +11), no significant 

memory was found. If the two stimuli were too far apart in time (ISI = -64, +96) flies showed no conditioned 

behavior (One sample t-test, p>0.5), n =16-40. Marker and error bars represent mean and SEM, 

respectively. 
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Using the modified protocol I tested flies with ISIs varying from -66 (CS+ 

precedes US for 66 s) to +96 (US precedes CS+ for 96s)(Figure 14B). Changing the 

presentation timing of the paired CS led to aversive memory formation when the CS 

preceded the punishment with a temporal overlap (delay conditioning, Figure 14B). This 

was even true when the two stimuli did not overlap in their presentation (trace 

conditioning = aversive ISI, Figure 14B). If the US preceded the CS presentation with an 

overlap flies showed weak aversive or no memory. However, when the CS followed the 

electric shock without temporal overlap the flies approached the paired CS in the test 

(relief conditioning = positive ISI, Figure 14B). Thus, flies are capable to form both kinds 

of associative memory, relief and trace conditioning, not only with olfactory but also with 

visual stimuli.  

 

Dissecting visual delay and trace conditioning 

 

Shorter presentation of CS (5s) does not lead to strong memory formation in 

delay conditioning even with application of three electric shocks (Figure 15B; compare to 

Figure 12B = 1 shock/5s CS). By increasing the CS duration to 25s I wanted to test 

whether prolonged presentation could improve learning. However, no significant 

improvement was found (Figure 15). Earlier onset and prolonged presentation of CS 

does not improve delay conditioning memory. 

 

To understand the precise mechanism for trace conditioning, I tested shorter 

intervals of negative ISIs. Flies showed significant aversive memory up to an ISI of -34 

(gap of 19s between CS+ and US, Figure 14). Therefore I tested six ISI-combinations 

ranging from -4 to -34 (Figure 15C; -4/-14/-16/-19/-34). The learning index linearly 

decreased with increasing gap between the stimuli. Overall, introducing a gap between 

the two stimuli leads to a decrease in learning, but the effect is not significant with rather 

short gap (1s). Increasing the gap leads to significant decrease in performance 

compared to delay conditioning (Figure 15C. Thus, it could be possible that the saliency 

of the stimulus decreases with increasing temporal gap between CS+ and US. 
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Figure 15: Further dissection of delay and trace conditioning 

(A) Timeline of a single training trial. The inter stimulus interval (ISI) is the interval between onset of US and 

onset of CS+. Eight training trials were applied with varying ISI values. (B) CS duration (5s, 15s, 25s) and 

onset of CS was varied (ISI = -4,-14). Delay memory depends on CS duration (one-way ANOVA, p< 0.001). 

All groups show significant memory performance (One sample t-test, p< 0.001). Prolonged CS presentation 

(15 s, 25 s) leads to significantly better memory performance than short CS presentation (5 s) (post-hoc 

pairwise comparisons p>0.05), n = 20-36. (C) ISI value was varied across negative values for trace 

conditioning (ISI = -4 to -34). Trace memory depends on ISI value (Kruskal-Wallis test, p<0.0001). Flies were 

able to perform significant memory with all selected ISI values (Mann-Whitney test, p<0.05). Linear decrease 

in learning with increasing gap size (post-hoc pairwise comparisons p<0.05 for -34/-14, -34/-4, -26/-4), n = 

16-24. Red stripes indicate electric shock application. Grey stripes indicate CS duration. Marker and error 

bars represent mean and SEM, respectively. 
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Visual conditioning experiments with WT-flies reveal similar learning 

effects 

 

The previous data sets show that flies perform trace and relief conditioning with 

similar effects in the presented visual conditioning paradigm and the commonly used 

olfactory conditioning paradigm. Thus, it should be possible to compare results obtained 

in both assays, although flies have overall lower memory scores in the visual task as in 

the olfactory task. The memory scores for visual learning are stable and reproducible, 

thus further experiments have been performed with genetically modified flies to dissect 

the underlying neural circuit for this visual learning task.  

 

3.3 Requirements of Kenyon cells for visual memories 

 

In olfactory conditioning, the MB plays a pivotal role in memory formation. 

Information about CS and US coincide and lead to formation of an associative memory. 

If also the visual information is modulated in the MBs, the output of KCs should be 

essential for visual appetitive and aversive memories. To block the output of KCs, two 

distinct GAL4 drivers labeling α/β and γ neurons (201y (Yang et al. 1995), MB247 (Zars 

et al. 2000)) were used to express shits achieving a continuous block of the neuronal 

output during training and test. Appetitive and aversive memories of the experimental 

groups were significantly impaired (Figure 16A). Discriminability of visual stimuli was 

intact (Figure 16B) and the learning phenotype could only be found in restrictive 

temperature but not permissive (Figure 16C). By blocking GAL4 transactivation of 201y 

in the MB using MB247-GAL80 it is possible to control for the influence on memory 

formation of the expression outside the MBs. Additional expression of MB247-GAL80 

revealed full restoration of the impaired memories (Figure 16A). Thus, we conclude that 

visual memories also require the output of Kenyon cells.  
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Figure 16: MB is required for appetitive and aversive visual memories. 

(A) Blocking output of KCs labeled with 201y-GAL4 and MB247-GAL4 leads to significant impairment in both 

appetitive and aversive memories (one-way ANOVA, post-hoc pairwise comparisons, p<0.05). n = 10-14. 

MB247-GAL80 restores impaired memory with 201y-GAL4 (post-hoc pairwise comparisons, p>0.05). n = 10-

14. (B) Visual stimulus preference in the memory test after aversive conditioning. The blue and green bars 

represent the punished color during training in both reciprocals (Blue+ and Green+). Deviation from zero 

shows bias in visual choice, thus animals are able to discriminate visual stimuli in test. (C) Aversive learning 

performance is not impaired when testing flies at permissive temperature (26 °C) (one-way ANOVA, p>0.05), 

n = 13-14. Bars and error bars represent mean and SEM, respectively. 
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At permissive temperatures, an additional pulse of electric shock shortly before 

testing of at least 30V is required to perform significant visual memory display (Figure 

17A). At restrictive temperatures, this additional shock pulse is not required for significant 

memory scores (Figure 17B), probably due to increased arousal of the flies by the 

elevated temperature. To keep the protocol consistent I applied the extra shock in all 

aversive conditioning experiments. The requirement of the MB was not dependent on 

increased arousal of flies prior to the test by a pulse of electric shock (Figure 17B). 
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Figure 17: Shock before test is necessary at low temperature but dispensable at high 
temperature. 

(A) A single shock (1 s) before test of at least 30 V is needed in 25 °C to obtain significant learning (0V; One 

sample t-test, p>0.05, 30-120V; One sample t-test, p<0.001), n = 16. (B) Conditioning in 33 °C does not 

require shock before test. (Control groups: One sample t-test, p<0.01). n = 10-11. Visual memories without 

shock before test require intact MBs (one-way ANOVA, post-hoc pairwise comparison, p<0.05). n = 10-11. 

Bars and error bars represent mean and SEM, respectively. 
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3.4 Partly operant training protocol 

 

The MBs have been suggested to be dispensable for some forms of basic visual 

learning, especially ‘flight simulator’ learning (Wolf et al. 1998). They are required for 

instance when the learning context is changed between training and test (Liu et al. 1999; 

Brembs & Hempel de Ibarra 2006). The newly established conditioning design actually 

also involves a change in the context of visual stimulation: the entire conditioning arena 

is homogeneously illuminated during training, whereas green and blue lights are 

simultaneously presented in the four quadrants of the arena in the test (Figure 16A). 

Thus, a modified conditioning design was applied in which both visual cues were 

simultaneously presented throughout training and test (Figure 18). This necessarily 

introduced an operant component in the training similar as in the standard flight simulator 

learning; flies can avoid to be electrified by staying away from the associated color. 

Using this conditioning design control flies significantly avoided the punished color; 

however, flies with the blocked MBs had strong impairment in visual memory (Figure 18). 

Thus, we conclude that the new visual learning assay requires the MBs independently of 

the conditioning design (classical vs. operant) and of context changes between training 

and test.  
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Figure 18: MB is necessary for visual aversive conditioning with partly operant 
component. 

Conditioning protocol with operant component and with visual context maintained between training and test. 

Visual memories with the modified protocol require intact MBs (one-way ANOVA, post-hoc pairwise 

comparisons, p<0.05). n = 14-15. Bars and error bars represent mean and SEM, respectively. 
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3.5 Requirement of the central complex for visual aversive learning 

 

The CC has been found to be important for some forms of basic visual learning, 

especially for pattern learning in the flight simulator (Liu et al. 2006; Pan et al. 2009). It 

was shown to be necessary and sufficient for establishing a memory trace of different 

patterns (elevation, angle). Blocking the output of a specific CC-GAL4-line c205 either 

during training or test revealed that the CC seems to play a different role in the new 

visual conditioning paradigm. Here, the intact CC is required for classical visual memory 

acquisition, but not retrieval (Figure 19). This stands in contrast to the results in the flight 

simulator where blocking the output during test leads to impairment of pattern memory. 

In flight simulator tests, flies were not impaired in perceiving sensory stimuli such as 

punishment and colors (Table 8) (Brembs 2009). 
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Figure 19: Output of central complex neurons is required only during aversive visual 
memory acquisition. 

(A-B) Scheme of the temperature shift protocol to block the output of corresponding neurons during training 

(A) or test (B). (C-D) Output of neurons labeled with c205-GAL4 is only necessary during appetitive training 

(one-way ANOVA, post-hoc pairwise comparison, p<0.05) but not test (one-way ANOVA, p>0.05). n = 5-7. 
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3.6 MB as a coincidence detector for visual classical learning 

 

Requirement of rut in visual classical conditioning 
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Figure 20: rut mutation leads to impairment in aversive visual conditioning that cannot be 
rescued by restoring rut inside the MB or CC. 

(A) In visual conditioning, rut mutant phenotype (one-way ANOVA, post-hoc pairwise comparisons, p<0.001) 

cannot be rescued by expressing the rut-protein only in the CC (one-way ANOVA, p>0.05) or by expressing 

the rut-protein only in the MB (one-way ANOVA, p>0.05), n = 11-27. (B) Visual stimulus preference in the 

memory test after aversive conditioning. The blue and green bars represent the punished color during 

training in both reciprocals (Blue+ and Green+). Deviation from zero shows bias in visual choice, thus 

animals are able to discriminate visual stimuli in test. (C) In olfactory learning rut mutant phenotype can be 

rescued by expressing the rut-protein only in the MB (Kruskal-Wallis-test, post-hoc pairwise comparisons, 

p<0.05, data acquisition by Stephan Knapek), n = 8. 
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The rut protein is described as the so called coincidence detector in olfactory 

learning in the MB (Zars et al. 2000). Also, in visual learning in the flight simulator this 

protein is critical for intact pattern memory formation and retrieval, however not in the MB 

but in the CC (Liu et al. 2006; Pan et al. 2009). Whether the rut protein is needed for 

learning about visual cues like color or intensity is not clear so far. Therefore, I tested rut 

mutant flies for aversive visual conditioning. The mutants showed strong impairment in 

visual conditioning (Figure 20A) similar to the effect found in the flight simulator 

paradigm, yet discriminability of visual stimuli remained intact (Figure 20B). To further 

specify the rut requirement for the new visual paradigm, I performed rut-rescue 

experiments either in the MB or the CC of Drosophila. In line with published results, 

rescue of rut in the MB could fully restore olfactory memory (Zars et al. 2000); however 

rescuing rut in neither the MB nor the CC could restore the visual learning ability in the 

new assay (Figure 20A,C). Thus, even though the MB is required for this kind of visual 

learning, rescuing the rut protein in this neuropil is not sufficient to restore visual 

memory.  

 

MB output is required during training and test 

 

Exploration of the temporal requirement of the MB output for the formation and/or 

the retrieval of visual memory was performed by transiently blocking the MB output with 

different GAL4-Lines (Figure 21A-B, Figure 22A-B). Blocking output of neurons labeled 

by 201y-GAL4 (α/β, ү-neurons) revealed selective requirement for the retrieval but not 

the formation of aversive visual memory (Figure 21C-D). Interestingly, the transient block 

of a broader population of KCs using MB247-GAL4 (α/β, ү-neurons) and MB010B-Split-

GAL4 (α/β, α’/β’, ү-neurons) (Bräcker et al. 2013) revealed additional requirement in 

memory acquisition (Figure 21E-F, Figure 22E-F). Acquisition and retrieval of appetitive 

memory were similarly impaired (Figure 22C-D). As in olfactory memory (Krashes et al. 

2007; Dubnau et al. 2001) different KCs may mediate acquisition and retrieval of visual 

memories. 
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Figure 21: Requirement of MB output during aversive visual memory formation and 
retrieval depends on expression of GAL4 driver line. 

(A-B) Scheme of the temperature shift to block the output of corresponding neurons during visual training (A) 

or test (B). (C-D) Output of 201y-GAL4 is dispensable during training (one-way ANOVA, p>0.05), n = 20-22, 

however necessary during aversive test (one-way ANOVA, post-hoc pairwise comparisons, p<0.01) n = 12-

17. (E-F) Output of MB010B-GAL4 is necessary in aversive training and test (one-way ANOVA, post-hoc 

pairwise comparisons, p<0.05), n = 7-13. Bars and error bars represent mean and SEM, respectively. 
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Figure 22: MB output is needed during visual memory acquisition and retrieval. 

(A-B) Scheme of the temperature shift to block the output of corresponding neurons during training (A) or 

test (B). (C-D) Output of neurons labeled with MB247-GAL4 is necessary during appetitive training and test 

(one-way ANOVA, post-hoc pairwise comparison, p<0.05). n = 10-16. (E-F) Similarly, output of MB247-

labeled neurons is needed during aversive training and test (one-way ANOVA, post-hoc pairwise 

comparison, p<0.05). n = 10-28. Bars and error bars represent mean and SEM, respectively. 
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Different Kenyon cell subsets are required for visual and olfactory 

memories 

 

By comparing the requirement of different KC subsets in aversive visual and 

olfactory memories using c305-GAL4, 17D-GAL4 and 201y-GAL4 I could show that 

specific KC subsets are required for visual and olfactory conditioning, respectively. 

Blocking the α'/β' neurons with c305a selectively impaired olfactory memory (Figure 23), 

whereas the pattern of defects were the same in blockades with 201y (α/β, ү neurons) 

and 17D (α/β neurons). Using 17D/shits1 did not significantly affect either memory, while 

using 201y/shits1 strongly impaired both visual and olfactory memories (Figure 23). 

Hence, visual and olfactory memories surely recruit partly different KC subsets. The 

requirement of the ү-lobe neurons seems to be shared among both modalities. Given the 

preferential olfactory representation in the α'/β'-neurons (Turner et al. 2008), specific 

contribution to olfactory learning is in order with previous publications.  
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Figure 23: Overlapping, yet distinct sets of MB-lobes are needed for aversive visual and 
olfactory learning. 

(A) Only blocking output of neurons labeled with 201y-GAL4 (α/β/γ-lobes) during visual conditioning leads to 

memory impairment (one-way ANOVA, post-hoc pairwise comparison, p<0.01), n = 12-19. (B) In contrast, in 

aversive olfactory memory, blocking output of neurons labeled with 201y-GAL4 (α/β/γ-lobes) and c305-GAL4 

(α’/β’-lobes) leads to significant memory impairment (one-way ANOVA, post-hoc pairwise comparison, 

p<0.001). n = 10-22. Bars and error bars represent mean and SEM, respectively. Olfactory conditioning was 

performed by Kristina Dylla. 
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3.7 MB-Screening 

 

Previous results already presume that the MB plays a pivotal role not only in 

appetitive and aversive olfactory conditioning but also in visual conditioning. Especially 

the ү-lobe neurons seem to be important for both kinds of conditioning. To further identify 

the specific function and required cell types of the MB I screened ~ 80 MB intrinsic and 

extrinsic Split-GAL4 lines (see Appendix; Table 10, Table 11 and Table 12) in visual 

appetitive and aversive conditioning. The selection covered lines for all lobes, dopamine 

and octopamine input lines and several described (Tanaka et al. 2008) and not yet 

described output lines. In parallel the same lines were tested by my colleague Toshiharu 

Ichinose for 2h appetitive and aversive olfactory conditioning. Thus, comparison not only 

to already published olfactory data but also to results of the new Split-GAL4 lines tested 

for olfactory conditioning is possible. 

 

The γd lobe KCs are important for visual conditioning 
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Figure 24: MB γd-lobes are required for visual appetitive memory. 

Blocking output of specific MB-lobe subsets during appetitive conditioning showed that γd-lobes are 

specifically required (Mann Whitney-test, p<0.05). n = 4-36. Bars and error bars represent mean and SEM, 

respectively. 
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In olfactory memories, different lobes of the MBs perform specific functions. By 

testing the Split-GAL4 selection for MB lobes in visual conditioning it was possible to 

precisely contrast the lobe requirement in visual learning (see Appendix, Table 10 for 

tested lines) (Bräcker et al. 2013). Blocking the output of the үd neurons (MB355B, 

MB419B), the ү-lobe neurons (MB009B) as well as the entire KC population (MB010B, 

MB364B, MB152B) impaired both appetitive and aversive visual memories (Figure 24, 

Figure 25, Table 5). Blocking the lines labeling α'/β' neurons or α/β neurons did not 
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Figure 25: MB γd-lobes are required for visual aversive memory. 

(A) Blocking output of specific MB-lobe subsets during aversive conditioning showed that γd-lobes are 

specifically required (Mann Whitney-test, p<0.01). n = 8-68. Bars and error bars represent mean and SEM, 

respectively. (B) Secondary screening of phenotypic lines with +/Split-GAL4 control (Kruskal-Wallis test, 

post-hoc pairwise comparisons, p<0.05), n = 7-119. 
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significantly reduce the performance compared to the controls (Figure 24, Figure 25). 

The requirements of the KC subsets for appetitive and aversive memories were strikingly 

similar as already found in olfactory conditioning (Kim et al. 2007; Trannoy et al. 2011; 

Qin et al. 2012), suggesting the commonality of the circuit mechanism between visual 

and olfactory memories. 
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Table 5: Expression of MB intrinsic lines that were tested during screening and showed 

impaired appetitive and aversive learning 

MB152B was only tested for aversive conditioning. On top is the expression pattern inside the MB 

depicted. Grey intensity reflects expression strength in different MB subsets (e.g. darker grey = 

stronger expression). 

 

I tested two other lines that label the γd-lobe but did not show any impairment in 

visual learning (see Table 10, Appendix). MB131B preferentially labels γmain-lobe and 

only stochastically the γd-lobe, thus probably some flies possess intact γd-lobes. 

MB028B indeed labels the γd-lobe; however, the intensity of the expression is very low 

compared to the lines that showed phenotype. It seems as if only strong neural block 

leads to phenotype. An additional role for the γmain-lobe seems to be possible; however, 

only testing a specific line for this neuropil can reveal the requirement. To see if there is 

a general requirement for short-term-memory formation and retrieval, the output of the 

specific γd Split-GAL4-line MB419B was blocked during training and test for 2 min. 

aversive olfactory memory (Figure 26, experiment performed by Toshiharu Ichinose). 

Blocking the neural output with shits did not impair olfactory memory. Thus, the γd-lobe of 

the MB could be specifically required for non-olfactory stimuli processing or even only for 

processing of visual stimuli. 
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Figure 26: MB γd-lobes are required for visual but not aversive olfactory memory. 

(A) MB010B-Split-GAL4 labels all lobes of the MB. (B-C) MB152B-Split-GAL4 and MB364B-Split-GAL4 label 

α/β and γ-lobes of the MB. (D) MB009B-Split-GAL4 labels γ-lobes of the MB. (E-F) MB335B-Split-GAL4 and 

MB419B-Split-GAL4 label γd-lobes of the MB. Pictures from Flylight, JFRC. (G) Blocking output of neurons 

labeled by MB419B-Split-GAL4 did not lead to impairment in aversive olfactory conditioning (one-way 

ANOVA, p>0.05), n = 8-10. Data acquisition by Toshiharu Ichinose. Bars and error bars represent mean and 

SEM, respectively. (H) Circuit model of olfactory and visual short-term memories in the MB-lobes. Visual and 

olfactory information is probably conveyed to distinct sets of KCs. (CA = Calyx). 
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Differential requirement of dopamine neurons for appetitive and 

aversive learning 

 

Requirement and sufficiency of different dopamine neurons for appetitive and 

aversive visual memories are strikingly similar to those in olfactory memories. The 

blockade of dopamine neurons of the PPL1 cluster with TH-GAL4 (data not shown) or 

MB504B-Split-GAL4 (data not shown, Figure 28) selectively reduced aversive visual 

memory similar to what was found in olfactory learning (Claridge-Chang et al. 2009; Aso 

et al. 2012). The blockade with DDC-GAL4 or R58E02-GAL4 (data not shown) that label 

different dopamine neurons of the PAM-cluster substantially impaired appetitive memory 

similar to what was found in olfactory learning (C. Liu et al. 2012). Employing more 

specific lines during the screening I could narrow down the requirement of neurons for 

appetitive and aversive visual learning.  
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Figure 27: Specific dopamine neurons of the PAM Cluster are required for appetitive visual 
conditioning. 

Blocking output of specific dopamine neuron subsets that project to the MBs during appetitive 

conditioning in primary screening led to potential impairment in various different split-GAL4 lines 

(Mann Whitney-test, p<0.05). n = 7-105. Bars and error bars represent mean and SEM, 

respectively. 
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Appetitive MB-input 

 

Only selected MB-input lines were tested in appetitive conditioning during primary 

screening. No secondary screening could be performed due to time constraints within 

the screening project. Interestingly the lines with strongest impairment indeed label cells 

of the dopamine PAM-cluster (Figure 27). Consistent impairment or tendency for 

impairment was found in lines labeling ү5-output (Table 6: MB040B, MB042B, MB315C) 

and ү4-output (Table 6: MB040B, MB042B, MB316B). One line labeling neurons of the 

PPL1 cluster showed tendency for impairment (MB065B); however, no consistent 

expression of a specific cell type could be found here (see Appendix; Table 11). Thus, 

strongest candidates for sugar information output are dopamine PAM-cluster neurons 

that project to ү4 and ү5 compartments of the MB. 

 

Aversive MB-input 

 

All Split-GAL4 lines labeling potential afferent connections to the MB were tested 

during primary and secondary screening. The Split-GAL4 line MB504B which had 

already been shown to be impaired in visual aversive conditioning could be confirmed as 

phenotypic also within the screening (Figure 28). Another line, MB438B that also 

specifically labels neurons from the PPL1 cluster, was also found to be impaired (Figure 

28). Both lines strongly label the MP1 neurons, which project to the ү1 lobe compartment 

of the MB (Table 6). These neurons are also labelled by MB502B-Split-GAL4, however 

during secondary screening the WT-control showed similar impairment as the 

experimental group during primary screening (Figure 28B). 
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Figure 28: Specific dopamine neurons of the PPL1 Cluster are required for aversive visual 
conditioning. 

(A) Blocking output of specific dopamine neuron subsets that project to the MBs during aversive conditioning 

in primary screening led to impairment in various different Split-GAL4 lines (Mann Whitney-test, p<0.005), n 

= 8-119. (B) In secondary screening when additionally testing +/Split-GAL4 control two phenotypes could be 

confirmed. Blocking output of MB504B-Split-GAL4 and MB438B-Split-GAL4 led to memory impairment (one-

way ANOVA, post-hoc pairwise comparisons, p<0.05), n = 7-119. Bars and error bars represent mean and 

SEM, respectively. 
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Table 6: Expression of dopamine lines that were tested during screening and showed 

impaired appetitive and aversive learning, respectively 

On top is the expression pattern depicted (red label = impaired in aversive conditioning; blue label = 

impaired in appetitive conditioning). Grey intensity reflects expression strength in different dopamine 

neuron subsets (e.g. darker grey = stronger expression). 

 

 

Differential requirement of potential MB-output neurons for appetitive 

and aversive conditioning 

 

So far, no MB-output neurons have been described as necessary for visual short 

term memory. Thus, with the screening it was possible for the first time to find specific 

requirement of potential MB-output neurons that could be involved in memory formation 

or retrieval. One of the MB-output Split-GAL4 lines showed impairment for appetitive and 

aversive conditioning, MB298B (Figure 29A, Figure 30A). This line was however 

excluded after primary screening since the flies seemed not to be able to differentiate 

between the trained visual stimuli. Indeed this line shows strong expression in the optic 

lobes in addition to the MB-output neurons (data not shown). 
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MB-output neurons required for appetitive conditioning 

 

Since no previous results existed to allow selection of output neurons, all 

available MB-output Split-GAL4-lines were tested during primary and secondary 

screening in visual appetitive conditioning. 
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Figure 29: Several potential MB-output neurons are required for appetitive visual memory 
formation. 

(A) Blocking output of specific MB-output neurons during appetitive conditioning in primary screening led to 

impairment in various different Split-GAL4 lines (Mann-Whitney-test, p<0.05). n = 7-40. (B) In secondary 

screening when additionally testing +/Split-GAL4 control five of the previously phenotypic lines could be 

confirmed (Kruskal-Wallis test, post-hoc pairwise comparisons, p<0.05) n = 8-73. Bars and error bars 

represent mean and SEM, respectively. 
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 In line with the results for the input neurons, output neurons receiving information 

from the ү4 and ү5 lobe compartment of the MB are also required (Figure 29B, Table 7, 

GluT-positive neurons: MB434B, MB011B, MB210B). Additionally, blocking output from a 

specific region of the vertical lobes also impairs appetitive memory (Figure 29B, Table 7, 

V2α2, ChAT-positive neurons = MB052B, MB542B). Thus, information about sugar 

reward could modulate visual information in the ү4/5 compartment of the medial lobe and 

from here provide behavioral output through connected neurons. 
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Figure 30: A specific MB-output neuron is required for aversive visual memory formation. 

(A) Blocking output of potential MB-output neurons during aversive conditioning in primary screening led to 

impairment in various different Split-GAL4 lines (Mann-Whitney-test, p<0.005). n = 8-119. (B) In secondary 

screening when experimental lines were tested together with all controls one phenotype could be confirmed. 

Blocking output of MB112C-Split-GAL4 led to memory impairment (one-way ANOVA, post-hoc pairwise 

comparisons, p<0.05) n = 8-25. (C) An additional line MB262B-Split-GAL4 that labels a similar neuron 

showed impaired aversive visual memory (one-way ANOVA, post-hoc pairwise comparisons, p<0.05), n = 9-

13.  Bars and error bars represent mean and SEM, respectively. 
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MB-output neurons required for aversive conditioning 

 

All MB-output Split-GAL4 lines were tested during primary and secondary 

screening in visual aversive conditioning. Also here in line with the results for input 

neurons, a single inhibitory output neuron was found to be required receiving input from 

the ү1 lobe compartment (Figure 30B, Table 7, MVP2, GABA-positive neuron: MB112C). 

The requirement could additionally be shown by testing a different Split-GAL4 line 

labeling the same neuron (Figure 30C, MB262B). The MVP2 neuron was already 

described anatomically but not functionally (Tanaka et al. 2008).  

 

Summary Screening 

 

Different sub-compartments of the MB γ-lobe were found to be required for 

different visual memory tasks. The γ4 and γ5 sub-compartment seem to be specifically 

required for appetitive short term memory processing (Figure 31), whereas the γ1 sub-

compartment is specifically required for aversive short term memory processing (Figure 

32).  

However, it seems to be possible that the two different pathways could also 

interact with each other via feedback loops provided by MB-output neurons (Figure 33). 

The γ4 output neuron, required in appetitive conditioning, projects back to the γ1/2 sub-

compartment (Figure 31G). Here, it could modulate visual aversive memory (Figure 

33A). The MVP2 output neuron, required in aversive conditioning, projects back to the 

α/β-lobes (Figure 32C). Here, it could modulate appetitive memory output (Figure 33B). 
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Table 7: Expression of potential MB-output lines that were tested during the screening and 

showed impaired appetitive and aversive learning, respectively 

On top is the expression pattern depicted (red label = impaired in aversive conditioning; blue label = 

impaired in appetitive conditioning). Grey intensity reflects expression strength in different output 

neuron subsets (e.g. darker grey = stronger expression). 
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CA
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(approach)
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Figure 31: MB-sub-compartments γ4-5 seem to be important for appetitive conditioning. 

(A-B) Expression pattern of dopamine Split-GAL4-lines that show impairment in appetitive visual 

conditioning. (A) MB315C-Split-GAL4 labels dopamine neurons of the PAM cluster innervating the γ5-lobe 

sub-compartment. (B) MB042B-Split-GAL4 labels dopamine neurons of the PAM Cluster innervating the γ1-

5-lobe sub-compartments. (C-G) Expression pattern of potential output Split-GAL4-lines that show 

impairment in appetitive visual conditioning. (C-D) MB210B-Split-GAL4 and MB011B-Split-GAL4 label γ5 

and β’2 output neurons. (E-F) MB052B-Split-GAL4 and MB542B-Split-GAL4 label V2 (α2) output neurons. 

(G) MB434B-Split-GAL4 labels a γ4 output neuron. (H) Circuit model of appetitive visual short-term memory. 

Visual information is conveyed to the γd-lobe neurons of the MB KCs. Output of these KCs is locally 

modulated by a specific subset of dopamine neurons (PAM: γ4/5) to form aversive memories. γ4/5 and V2 

neurons mediate output to the surrounding protocerebrum and back to the γ1 lobe sub-compartment of the 

MBs. (CA = Calyx). 
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Figure 32: MB-sub compartment γ1 is important for aversive conditioning. 

(A-B) Expression pattern of dopamine and output Split-GAL4-lines that show impairment in aversive visual 

conditioning, respectively. MB504B-Split-GAL4 labels MP1, MV1, V1 and the neuron projecting to the tip of 

the a-lobe. MB438B-Split-GAL4 labels the MP1 and the V1 neuron. (C) Expression pattern of MB-output 

Split-GAL4-line that shows impairment in aversive visual conditioning. MB112C-Split-GAL4 labels the MVP2 

neuron. (D) Circuit model of aversive visual short-term memory. Visual information is conveyed to the γd-

lobe neurons of the MB KCs. Output of these KCs is locally modulated by a specific subset of dopamine 

neurons (PPL1: MP1 (V1)) to form aversive memories. MVP2 neurons mediate memory output to the 

surrounding protocerebrum and back to the α/β lobes of the MBs. (CA = Calyx). 
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Figure 33: Possible MB feedback loops in visual appetitive and aversive memory circuits. 

(A) Appetitive γ4 output neurons could possibly modulate KCs and output neurons involved in the aversive 

learning circuit in the γ1 sub-compartment. (B) MVP2 output neurons that are required for aversive learning 

could modulate V2 output neurons that are required for appetitive memory. (CA = Calyx). 
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3.8 Visual information representation in the MB 

 

γd KCs form a ventral accessory calyx (VACA) 

 

The γd-lobe of the MB labeled by 419B-Split-GAL4 and 355B-Split-GAL4 is required 

for visual aversive learning (Figure 25, Figure 34B,D,E). To further confirm the 

requirement, an additional line was tested, that very specifically and strongly labels the 

γd-lobe, MB607B-Split-GAL4 (Figure 34A,C). Blocking the output of these neurons 

revealed again a strong impairment in visual learning. Thus, the γd-lobes play a major 

role in visual conditioning with aversive stimuli. Since no phenotype was found with 

olfactory conditioning (Figure 26), the γd-lobe neuron could be specifically required for 

processing of non-olfactory stimuli or even only for processing of visual stimuli.  

Interestingly the γd KCs possess a special protrusion anterio-ventral to the primary 

calyx. This protrusion possesses typical claw-like structures (Figure 34F) and is stained 

by a postsynaptic marker (Figure 34G,H), thus this region marks the ventral accessory 

calyx (VACA, (Aso et al. 2009; Butcher et al. 2012)). Possessing such an exceptional 

input-region further supports the idea that input from sensory systems other than 

olfactory reach through it to the MB. Similar arrangement was shown for accessory 

calyces in other insects (Farris 2008).  
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Figure 34:  γd KCs possess a specific ventral accessory calyx (VACA). 

(A) Expression pattern of MB607B-Split-GAL4 that specifically labels үd neurons. (B) Expression pattern of 

MB419B-Split-GAL4 that specifically labels γd neurons. (C) Blocking output of MB607B-Split-GAL4 with shi
ts
 

reveals impairment in aversive visual conditioning (one-way ANOVA, post-hoc pairwise comparisons, 

p<0.05), n = 8-12. (D) Blocking output of MB419B-Split-GAL4 reveals impairment in aversive visual 

conditioning (one-way ANOVA, post-hoc pairwise comparisons, p<0.05), n = 18-60. (E) 3D reconstruction of 

γd neurons in Split-GAL4 line MB419B. Green color labels expression pattern of MB419B, blue and grey 

colors label other lobes of MB, calyx and protocerebral bridge, respectively. (F) Dendritic claw in the VACA 

of the γd KCs. Overlap with presynaptic terminals is indicated with white arrows. (G-H) Split-GAL4 line 

MB419B; presynaptic terminals are labeled by Syt-GFP; postsynaptic terminals are labeled by Denmark-

RFP. (G) γd- lobes preferentially contain presynaptic terminals. MB medial and part of vertical lobes is 

outlined. (H) γd ventral accessory calyx preferentially contains dendrites. Primary calyx is outlined. Scale-bar 

represents 50 µm if not otherwise stated. Bars and error bars represent mean and SEM, respectively. 
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VPNs project to the үd accessory calyx– Anatomy 

 

The identification of the specific dendritic ventral output region of the γd-lobes 

allowed anatomical screening for possible visual projection neurons among specific Split-

GAL4 lines (Figure 35).  

 

 

Two promising candidate lines with expression in optic lobe neurons had been 

detected based on anatomical expression: MB425B-Split-GAL4 and MB334C-Split-GAL4 

(Figure 35, Figure 36). They possess projections to the central brain region around the 

ventral accessory calyx. Double staining with Denmark-RFP (labels postsynaptic 

regions) and Synaptotagmin GFP (labels presynaptic regions) revealed that the VPNs 

receive their main input inside the medulla of the optic lobe and that they provide output 

to the central brain and potentially to the үd VACA. If the VPNs indeed connect with the 

VACA, this would be the first time that direct connection between the optic lobes and the 

MB could be shown. Split-
GFP/MB247-
RFP

GMR28F07

A

GMR28F07-GFP 425B-GFP

B

Figure 35: Generation of specific Split-GAL4 lines labeling VPNS from Generation1-GAL4 
lines. 

(A) Unspecific GAL4-line GMR28F07 expresses in different types of VPNs and other cells in the optic lobes. 

(B) More specific 425B-Split-GAL4 labels only few types of VPNs in the optic lobes. Background is stained 

with Synapsin. Scale-bar represents 50 µm. 
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The axons of the VPNs and the dendrites of the үd-lobe both project to a similar 

region in the protocerebrum. To see if they indeed could be connected a few different 

approaches were employed. To form synaptic connections the axons and dendrites have 

to come very close together. By expressing one half of a Split-GFP protein under the 

control of a MB-driver and the other half of the Split-GFP protein under the control of a 

VPN driver I could visualize such potential connections (Figure 37A,B). Only at sites 

where the neurons come very close together a functional GFP-protein can be formed. 

Indeed performing this method with both VPN-lines, respectively, I detected a 

reconstituted GFP-signal in the expected region in the protocerebrum (Figure 37C-F). 

This result is a first hint that the neurons indeed connect at some time point during 

development and/or adulthood.  
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425B-GFP
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334C-GFP

425B/Syt-GFP, Denmark-RFP

C

B

334C/Syt-GFP,Denmark-RFP

D

Figure 36: VPNs receive information in the optic lobes and provide output to the central 
brain. 

(A) Expression pattern of 425B-Split-GAL4 (B) Expression pattern of 334C-Split-GAL4. (C) 425B-Split-GAL4 

possesses prominent dendritic regions in the medulla and presynaptic terminals in the protocerebrum close 

to the γd accessory calyx. (D) 334C-Split-GAL4 possesses prominent dendritic regions in the medulla and 

presynaptic terminals in the protocerebrum close to the үd accessory calyx. Background is stained with 

Synapsin. Scale-bar represents 50 µm. 
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To collect further evidence for a possible connection I performed double labeling with 

a specific protein that is highly enriched in the MB (DCO = catalytic subunit of the PKA, 

Figure 38A-C). Therefore I visualized the VPN neurons with an UAS-GFP-effector. The 

DCO-antibody was visualized via RFP-channel. The DCO protein shows very prominent 

expression in the ventral accessory calyx and possible overlap between VPNs and the 

DCO staining can be found in the region of interest, the VACA (Figure 38F-K). 
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Figure 37: Reconstituted GFP expression reveals close contact between VPN axons and 
VACA dendrites. 

(A) Specific Split-GAL4 line 425B labeling only few types of VPNs. (B) Specific Split-GAL4 line 334C labeling 

only a single type of VPNs. Background is stained with Synapsin. (C+E) Split-GFP labeling of MB247 and 

425B leads to reconstituted GFP signal in the γd-accessory calyx region. (D+F) Split-GFP labeling of MB247 

and 334C leads to reconstituted GFP signal in the γd-accessory calyx region. Background is stained with n-

Cad. Scale-bar represents 50 µm. 
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 In a third approach to test for connection between VPNs and the үd calyx, double 

labeling of the VPN Split-GAL4s and a MB-LexA lines was performed (Figure 39A-B, 

13F02-LexA). The Split-GAL4 lines were visualized via a RFP-effector, respectively, 

whereas the LexA-line was visualized by expressing a GFP protein. Also here overlap in 

expression pattern in the VACA region can be found in single slices of the confocal 

recording (Figure 39C-D). All these results strongly suggest that there is a possible 

connection between the VPNs and the ventral accessory calyx. Thus, the MB could 

receive direct visual input from the optic lobes. 
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Figure 38: VPN axons overlap with DCO staining in the VACA. 

(A-C) DCO antibody preferentially labels the MBs including the γd-KCs stained by 419B-Split-GAL4. (F-G) 

DCO antibody staining overlaps with the VPN expression in 425B-Split-GAL4. (I-K) DCO antibody staining 

overlaps with the VPN expression in 334C-Split-GAL4. Scale-bar represents 50 µm. 
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Figure 39: VPN axons overlap with MB-dendrites of the VACA. 

(A) Expression pattern of 425B-Split-GAL4. (B) Expression pattern of 334C-Split-GAL4. (C) Double labeling 

of 425B-Split-GAL4 and MB-LexA (13F02) reveals potential overlap in the VACA region. (D) Double labeling 

of 334C-Split-GAL4 and MB-LexA (13F02) reveals potential overlap in the VACA region. Scale-bar 

represents 50 µm if not otherwise stated. 
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Functional properties of the VPNs 

 

To perform olfactory conditioning, olfactory input that is conveyed to the primary 

calyx by described olfactory projection neurons is critical (Pitman et al. 2011). These 

olfactory projection neurons are not required for aversive visual color learning (Figure 

40AB). Thus, specific VPNs should convey visual information to the MB. The anatomical 

data already suggests a role of the here presented VPNs in mediating visual stimuli from 

the optic lobes to the MBs. Thus, the VPN neurons could contain visual information for 

formation of associative memory formation inside the MBs.  

 

Color conditioning 

 

I blocked the output of the VPN-Split-GAL4 lines with expressing shits and tested 

them with different visual conditioning protocols. Testing flies with the normal color 

learning protocol, where they have to discriminate between green and blue stimuli 

(Figure 40A), revealed a strong impairment when blocking the output of the neurons 

expressed in the Split-GAL4 line 425B (Figure 40C). Visual stimulus discrimination 

remained intact (Figure 40). Blocking the output of neurons expressed in Split-GAL4 line 

334C under the same conditions did not lead to a decrease in memory formation (Figure 

40D). 
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Figure 40: Specific subsets of VPNs but not OPNs are required for visual color memories. 

(A) Scheme of aversive color conditioning protocol. (B) Olfactory projection neurons labeled by GH146-

GAL4 are not required for visual color learning (one-way ANOVA, p>0.05), n = 8. (C) VPNs labeled by 425B-

Split-GAL4 are required for color learning (one-way ANOVA, post-hoc pairwise comparisons, p<0.01), n = 

10-12. (D) VPNs labeled by 334C-Split-GAL4 are not required for color learning (one-way ANOVA, p>0.05), 

n = 9. (E) The green and blue bars represent the punished stimulus during training in both reciprocals 

(Green+ and Blue+). Blocking VPNs labeled by 425B-Split-GAL4 does not impair green preference in test. 

Deviation from zero shows bias in visual choice, thus animals are able to discriminate visual stimuli in test. 

Bars and error bars represent mean and SEM, respectively. 
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Intensity conditioning 

 

Our visual stimulus tested can not only contain information about color cues but also 

information about light intensity. These two distinct features of our stimulus are 

commonly processed in parallel neural systems and mediate different perceptual 

functions (Livingstone & Hubel 1988; Gegenfurtner & Kiper 2003; Osorio & Vorobyev 

2005). A previous study showed that conditioning WT flies with differential intensities of 

either blue or green (1:10 ratio) resulted in significant intensity discrimination in sugar 

conditioning (Schnaitmann et al. 2013). 
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Figure 41: γd lobes of the MB are required for green intensity conditioning. 

(A) Scheme of aversive green intensity conditioning protocol. (B) Blocking output of several MB lobes 

impairs green intensity learning. (MB247-GAL4, one-way ANOVA, post-hoc pairwise comparisons, p<0.05, n 

= 5-9). (C) Blocking output of MB γd-lobes impairs green intensity learning. (MB419B-Split-GAL4, one-way 

ANOVA, post-hoc pairwise comparisons, p<0.05, n = 9-11). (D) Visual stimulus preference after aversive 

intensity conditioning. The green dark and bright bars represent the punished stimulus during training 

(Bright+ and Dark+). Blocking γd-lobes leaves dark preference intact. Deviation from zero shows bias in 

visual choice, thus animals are able to discriminate visual stimuli in test. Bars and error bars represent mean 

and SEM, respectively. 
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 I could show that this kind of visual intensity learning is also MB-dependent (Figure 

41A). Blocking the output of several MB-GAL4-lines (201y/MB247) led to strong 

impairment in green intensity memory (Figure 41B). Interestingly blocking the output of 

the үd-lobe is also sufficient to impair the memory (Figure 41C, MB419B), however, 

leaving discriminability of visual stimuli intact (Figure 41D).  

 

Therefore I also tested the VPN-candidate lines for intensity conditioning. Blocking 

the output of neurons labeled by 425B-Split-GAL4 did not impair the intensity memory 

(Figure 42A-B). However, blocking the output of the neurons labeled by 334C-Split-GAL4 

led to strong impairment in green intensity memory (Figure 42C) but not visual stimulus 

discrimination (Figure 42D). 334C-Split-GAL4 additionally labels the MB α1 output 

neuron. To exclude that the phenotype in intensity conditioning is due to the expression 

outside the optic lobe I tested a Split-GAL4 line specific for this MB-output neuron 

(MB310C). Blocking the output of this neuron had no effect on intensity conditioning 

(Figure 43).Thus, there seems to be a functional segregation in requirement of the VPN 

neurons. Probably different cell types are labeled by the different candidate lines. The 

VPN cell type included in 425B-Split-GAL4 seems to be preferentially required for 

processing chromatic information, whereas the VPN cell type labeled by 334C-Split-

GAL4 seems to be preferentially required to process achromatic stimuli. 
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Figure 42: Differential requirement of VPNs for green intensity conditioning. 

(A) Scheme of aversive green intensity conditioning protocol. (B) Blocking output of VPNs labeled by 425B-

Split-GAL4 does not impair green intensity conditioning (one-way ANOVA, p>0.05), n = 11-13). (C) Blocking 

output of VPNs labeled by 334C-Split-GAL4 impairs green intensity conditioning (one-way ANOVA, post-hoc 

pairwise comparisons, p>0.05), n = 8-10). (D)  The dark and bright green bars represent the punished 

stimulus during training in both reciprocals (Bright+ and Dark+). Blocking VPNs labeled by 334C-Split-GAL4 

does not impair dark preference in test. Deviation from zero shows bias in visual choice, thus animals are 

able to discriminate visual stimuli in test. Bars and error bars represent mean and SEM, respectively. 
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Figure 43: The α1 output neuron is not required for aversive green intensity learning. 

(A) MB310C-Split-GAL4 shares expression of the α1 MB-output neuron with VPN line 334C-Split-GAL4. (B) 

Scheme of aversive green Intensity conditioning protocol. (C) Blocking output of neurons labeled by 

MB310C-Split-GAL4 does not impair green intensity conditioning (one-way ANOVA, p>0.05), n = 8-11). Bars 

and error bars represent mean and SEM, respectively. 
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Input properties of VPNs 
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Figure 44: Differential dendritic input and projections to the central brain for different VPN 
cell types. 

(A-B) Expression pattern of 425B-Split-GAL4. In the optic lobe, prominent expression in different layers of 

the medulla can be seen. The ventral part of the medulla shows most abundant expression. Background is 

stained with Synapsin. (C) Double labeling of 425B-Split-GAL4 and antibody for R7/R8 axons. Neurons 

labeled in 425B-Split-GAL4 seem to receive input preferentially in layer M8 of the medulla, but also layer 

M3/4. Background is stained with n-Cad. (D-G) Single neurons of 425B-Split-GAL4 (heat-shock flip-outs). 

Two different cell types were found in medulla (D-E) and lobula (F-G), respectively. Background is stained 

with n-Cad. (D) Medulla type I neuron that has clear projection to the VACA region possesses a relatively 

small receptive field and innervates a single layer in the medulla (probably M8). (E) Medulla type II neuron 

that shows weak projection to the central brain and receives input from several layers in the medulla. (F) 

Lobula type I neuron that has projections to the central brain however anterior to the VACA. (G) Lobula type 

II neurons that are intrinsic to the lobula. (H-I) 334C-Split-GAL4 contains a single VPN cell type that expands 

its dendrites over the ventral half of the medulla. Background is stained with Synapsin. (J) Double labeling of 

334C-Split-GAL4 and antibody for R7/R8 axons. VPNs labeled by 334C-Split-GAL4 show prominent 

projection to the VACA and seem to innervate preferentially layer M7 (and M6) in the medulla. Background is 

stained with n-Cad. Scale-bar represents 50 µm. 
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The results from the conditioning experiments strongly suggest that different cell 

types are labeled by the two candidate VPN lines. Therefore comparing the anatomy of 

the dendrites in the optic lobes of the two lines could endorse such claim.  

 

Possible color input: 425B 

 

The neurons in the Split-GAL4 line 425B receive strong input from several Medulla 

layers in the optic lobe. Double staining with R7/R8 antibody (mouse mAb24B10 

(Zipursky et al. 1984)) shows that strongest input is provided by layer M8, however 

additional input could be received from layers M3/M4 and M1. Such differential input 

could also be required for chromatic information processing. Since the Split-line 425B 

labels not only a single cell type in the optic lobe, we performed a heat-shock flip out 

(hsflp-out) during development to be able to stain single cells (average amount of cells 

stained in 47 optic lobes: 1.5). Indeed at least 3 different neuronal cell types were found 

in the optic lobes; weakly labeled lobula intrinsic and extrinsic neurons and the strongly 

labeled medulla neurons projecting into central brain. Variation in the dendritic input 

region of the medulla neurons could even suggest that there are two different cell types 

labeled.  
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Figure 45: 425B-Split-GAL4 preferentially labels a specific medulla VPN neuron. 

Different cell types that are labelled by 425B-Split-GAL4 receive input either from ventral or dorsal part of the 

optic lobe. Performing single cell (1-2 cells labeled) staining via heat shock flip-out during development led to 

preferential labeling of medulla extrinsic neurons that receive input from a single medulla layer, n = 47 (optic 

lobes analyzed). 
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Final analysis of the heat-shock flip out experiments shows that medulla extrinsic 

neurons that receive input from a single layer seem to be most abundant. These neurons 

preferentially receive input from the ventral part of the medulla. The other three cell types 

were less abundant and also did not show preference for ventral expression. The lobula 

extrinsic neuron only receives input from the dorsal part of the optic lobe. Single cell 

staining of the most prominent medulla extrinsic neurons further showed that their 

dendritic region is rather small, suggesting that they are probably receiving input from ~5 

columns (20° of the visual field) in the medulla. Together the neurons in 425B extend 

over the whole visual field, however the most prominent expression can be found in the 

ventral region of the medulla. Testing a different GAL4-line (VT8475, VDRC Vienna; 

Figure 46) that seems to label anatomically similar neurons as in 425B that express 

uniformly across the medulla did not impair color memory. Thus, it could be possible that 

specific ventrally expressing neurons provide the visual input to the MB. The neurons 

labeled by VT8475 do also not project to the MB. Their axonal protrusions invade the 

protocerebrum but do not extend until the ventral accessory calyx region.  

 

Possible intensity input: 334C 

 

The Split-GAL4 line 334C labels one cell type that also has its dendritic regions inside 

the medulla. Double staining with R7/R8 antibody (mouse mAb24B10 (Zipursky et al. 

1984)) shows that strongest input is provided by layer M6/M7. Interestingly the dendritic 

region of this neuron covers only the ventral half of the optic lobe. 

 

Thus, there are several differences in the anatomy of the different VPNs that could 

lead to functional segregation in visual information processing such as receiving input 

from different layers in the medulla and size of dendritic region of a single neuron. 

However, there are also similarities such as strong ventral expression, which could be a 

requirement for visual processing in our specific behavioral paradigm. 
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Figure 46: A different type of VPNs is not required for color learning. 

(A) VT8475-GAL4 expression pattern. Specific VPNs are labelled that do not possess connection to the MB 

calyx nor preferential ventral expression. (B) Scheme of aversive color conditioning protocol. (C) Blocking 

output of neurons labeled by VT8475-GAL4 does not impair color conditioning (one-way ANOVA, p>0.05), n 

= 8). Bars and error bars represent mean and SEM, respectively. 
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4. Discussion 

 

4.1 Summary of results 

 

Using a single training device for visual learning with exchangeable modules for 

electric shock as punishment (Schnaitmann et al. 2010) and sucrose as reward 

(Schnaitmann et al. 2010), respectively, allows to contrast appetitive and aversive visual 

memories (Figure 9). In both visual setups the conditioned stimulus is applied via the 

same LED light source to a group of freely walking flies, comparable to the odor 

application in both olfactory conditioning paradigms (Tully & Quinn 1985; Schwaerzel et 

al. 2003). For memory assessment in olfactory and visual conditioning, distribution of 

flies is taken as measurement. Therefore, the only variable in both setups is the 

presentation of either electric shock as punishment or sucrose as reward, respectively, 

which again allows high comparability between both of them. I found different afferent 

and efferent MB neurons are employed for visual aversive and appetitive conditioning, 

respectively (Figure 27, Figure 28, Figure 29, Figure 30). However, the same lobe 

requirement inside the MB applies for both visual training procedures (Figure 24, Figure 

25). Contrasting the required MB learning circuit for visual learning to the olfactory 

learning circuit I found that shared dopamine neurons mediate at least aversive 

reinforcement information between the two modalities, whereas distinct roles apply for 

defined sets of Kenyon Cells (KCs). Visual input is conveyed to a specific subset of KCs, 

the γd-lobe. These cells have a specific dendritic region ventral to the primary calyx of 

the MB (Figure 34). Information about color and intensity of the visual stimulus is 

mediated via different visual projection neurons (VPNs) from the medulla to the ventral 

accessory calyx of the үd KCs, respectively (Figure 40, Figure 42). Therefore, in my 

thesis I present a new visual learning circuit that includes the MB as a pivotal element. 

For the first time I can show that the MB is involved in classical visual conditioning in 

Drosophila and that visual information is directly conveyed via specific VPNs from the 

medulla to the MB. 
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4.2 Advantages of the newly established visual conditioning assay 

 

Visual vs. Olfactory setup: A parametric comparison 

 

Earlier parametric studies using the visual conditioning paradigm already showed 

similar conditioning effects compared to studies in the olfactory conditioning paradigm. In 

appetitive conditioning, increasing the amount of training trials improves memory 

performance (Schnaitmann et al. 2010). The same is true for olfactory conditioning (Kim 

et al. 2007). In aversive conditioning, application of increasing shock intensities leads to 

an increase in memory performance and reaches a plateau around 30-40V (Tully & 

Quinn 1985) (Figure 11C) (Diploma thesis Katrin Vogt, 2009). Also the persistence of the 

acquired memory seems to be longer after appetitive conditioning than after aversive 

conditioning in both paradigms (Tempel et al. 1983; Schnaitmann et al. 2010) (data not 

shown (Diploma Thesis, Katrin Vogt, 2009)). Thus, applying the same reinforcers 

revealed similar properties of memory acquisition and retention in visual and olfactory 

conditioning.  

 

High throughput 

 

Establishing an aversive visual learning paradigm that employs electric shock as 

punishment not only allows comparison with the aversive olfactory conditioning assay 

but also automation of the conditioning procedure. Visual and electric shock stimuli can 

be controlled by a single software application. Therefore high throughput in experiments 

can be reached by multiplication of the setups (Figure 10). Especially during the MB 

screening project, for which I performed experiments with the aversive setup at the 

Janelia Farm Research Campus (HHMI, Ashburn, Virgina, USA) it was very helpful to be 

able to use an automated setup. In Janelia, 20 setups could be run in parallel and up to 

100 experiments could be performed during a single day. This throughput rate is rather 

unique for a Drosophila learning paradigm. In the new visual setups, the task that the 

flies have to perform is rather simple compared to the flight simulator where the fly has to 
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fly continuously. With this setup, a large amount and variety of flies can be tested, also at 

high temperature. Additionally, it is possible to vary the visual conditioning task, in terms 

of protocol (operant vs. classical, see 2.5, 3.4) or visual stimulus presented (color vs. 

intensity, see 2.5, 3.8). 

 

4.3 Conditioning with variable ISI 

 

 

The presented classical visual aversive conditioning paradigm in Drosophila 

allows application of color and electric shock stimuli automatically during experiments. 

Thus, exact timing of CS and US exposure is possible, which is an enormous advantage 

when training flies with different inter-stimulus intervals (ISIs). Furthermore, in the recent 

visual learning assay we can exclude that any CS residuals in the experimental setup 

can manipulate learning results as for example in olfactory conditioning (Galili et al. 

2011). Exposing flies to visual learning protocols with variable ISIs revealed that they are 

indeed able to form positive and negative memories with aversive reinforcement; similar 

to what was found in olfactory conditioning (Tanimoto et al. 2004). Notably, both kinds of 

visual conditioning regimen can be performed within the same behavioral setup similar to 

olfactory conditioning; however, using the visual learning paradigm I can employ a 

further CS modality that is also widely used in studies with mammals and humans. 

Mostly visual stimuli are used when training mammals, monkeys or humans in trace or 

relief conditioning (mammals (Rogan et al. 2005); monkeys (Belova et al. 2007); humans 

(Seymour et al. 2005; Andreatta et al. 2010)). 

 

Trace conditioning 

 

Flies form an association and significantly avoid the CS+, even if it precedes the 

US in the training, leaving a gap of around twenty seconds between the two stimuli. 

Thus, flies can not only keep a sensory trace about olfactory stimuli, but also about 

visual stimuli. Using the same reinforcing stimuli and an almost identical stimulus 

application protocol it is possible to compare trace conditioning in both modalities. The 
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underlying mechanism could be very similar since similar CS/US requirements apply; the 

duration of the gap matters and prolonged duration of the gap further impaired memory 

formation in a linear way (Figure 14, Figure 15)(Galili et al. 2011). Overlap of the CS+ 

and US is important; however, the CS+ should always precede the US (Burman & 

Gewirtz 2004; Rescorla 1988). It is necessary to extend the length of CS application over 

a critical duration (more than 5s). Prolonged CS application however does not affect 

memory score (15s versus 25s) also similar as in olfactory conditioning (Figure 15)(Galili 

et al. 2011). The fact that flies are able to learn about a visual stimuli trace although the 

stimulus probably becomes less salient if presented with a gap, leads to the conclusion 

that such visual information seems to be indeed very important for flies. If flies would 

preferentially rely on sensory cues from the environment other than visual stimuli, one 

would expect that they should not be able to keep a visual information trace and thus 

would be not able to perform the trace learning task. To keep a sensory information trace 

is probably rather costly since it can require prolonged activation of neural circuits (Niven 

& Laughlin 2008; Chittka & Niven 2009). Thus, my results imply that fruit flies heavily use 

visual information from the environment to adapt their behavior in future events. 

 

Relief conditioning 

 

Employing the same setup but reversing the order of CS and US, now the US 

preceding the CS+, leads to significant positive memory scores also in visual 

conditioning. Flies associate the CS+ with the end of punishment and a positive 

experience as in olfactory relief conditioning (Figure 14)(Tanimoto et al. 2004; Yarali et 

al. 2008; Murakami et al. 2010). Thus, I am the first one to show that flies can perform 

relief conditioning also with visual stimuli. As suggested from results in olfactory 

conditioning (Yarali et al. 2008) I applied few electric shocks (three shocks of 1 s 

duration) with rather low intensity (60 V AC) per trial during training. Higher shocks seem 

to increase positive valence of the CS+, but do not lead to diminished negative valence 

whereas less exposure to shocks implies lower positive valence but it is also easier to 

overcome the negative valence. Thus, the right balance between positive and negative 

valence should be found to detect the relief learning effect (Franklin et al. 2013). Also 

high number of training trials seems to be preferable to induce relief learning, at least 4-6 

trials (Tanimoto et al. 2004; Yarali et al. 2008), thus applying eight training trials indeed 

not only gave good performance in visual delay, but also trace conditioning (Figure 13).  
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ISI conditioning 

 

The sensory pathways underlying trace and relief conditioning should depend on the 

stimulus modality. Also saliency of the CS+ is probably not only affected by duration of 

the gap but probably also by the identity of the conditioned stimulus (Pavlov 1927). Thus, 

trace and relief conditioning studies using different CS are not necessarily comparable. 

However, overall ISI learning effects look similar when comparing visual and olfactory 

conditioning results in Drosophila. This could be the case because both paradigms 

employ the same US application of electric shock. Going a step further and comparing 

the ISI effect across different phyla; insects, mammals, primates and humans (Bitterman 

et al. 1983; Rogan et al. 2005; Belova et al. 2007; Seymour et al. 2005; Andreatta et al. 

2010), reveals that also here similar effects were found even though different CS and US 

were used. Thus, the cellular mechanisms for keeping the CS+ trace may be related 

across different modalities and animals. To identify the underlying mechanisms of trace 

and relief conditioning in Drosophila could help us to further understand how we process 

traumatic experiences. 

 

A similar trace and relief learning effect in visual and olfactory conditioning 

already supports the idea of a common neural mechanism underlying these two tasks, 

respectively. MBs were suggested to play a role in keeping the trace in olfactory 

conditioning (Shuai et al. 2011). Since I can show that MBs are also involved in visual 

delay conditioning (Figure 16) and indeed seem to receive information about visual 

stimuli (Figure 40, Figure 42), they could represent a common relay station for different 

sensory stimuli. Information about both stimuli is mediated to the calyx and further 

processed in specific lobes of the MB (Figure 23, Figure 26 Figure 40). The same 

dopamine neurons are required to modulate visual and olfactory cues in the MB lobes 

(Figure 28)(Aso et al. 2012). Thus, a similar mechanism could be applied across 

modalities inside the MBs of the fly. 
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4.4 Visual conditioning with wild-type flies 

 

Performing different parametric and wild-type studies in the new visual learning 

paradigm revealed that there are similar memory acquisition effects comparing appetitive 

and aversive visual and olfactory conditioning, respectively (Tully & Quinn 1985; Tempel 

et al. 1983; Schnaitmann et al. 2010; Vogt, Schnaitmann, et al. n.d.). Furthermore, 

comparing trace and relief memories in both modalities gives a hint that there is high 

similarity in stimulus application and memory formation between visual and olfactory 

conditioning assays. Thus, I am confident to further compare these two paradigms in the 

following studies. 

 

4.5 Visual classical learning circuit vs olfactory classical learning circuit 

 

MB is also required for formation of visual memories 

 

In olfactory conditioning it is clearly shown that the MB plays a pivotal role in 

memory formation and storage. In contrast, in classical visual conditioning until now MBs 

were shown to be dispensable (Wolf et al. 1998). I can clearly show that MBs indeed are 

important for the new classical visual learning task. In both visual assays, appetitive and 

aversive conditioning, blocking the output of the MBs with rather broadly labeling GAL4-

lines (α/β/γ-lobes) strongly impaired visual short-term memories (Figure 16). Flies were 

not able to form significant memory. Necessity of the overall MB output during training 

and test further implies that visual memory formation and storage could be implemented 

in the MBs (Figure 21, Figure 22). In olfactory conditioning it was also shown that MB 

output is necessary during memory formation and retrieval; however, different 

subdivisions of the MB mediate these different tasks. A feedback loop between α/β and 

α’/β’-lobes was suggested to stabilize memory (Krashes et al. 2007; Dubnau et al. 2001; 

McGuire et al. 2001). However, it needs to be further investigated if a similar feedback 

loop mechanism exists in visual conditioning. Blocking output of neurons labeled by the 

more specific MB-GAL4 line 201y revealed that these neurons are only required during 

test (Figure 21). Thus, indeed there seems to be different cell populations required for 
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memory formation and retrieval also in visual conditioning. Interestingly, presynaptic 

terminals in the calyx were only found for α/β/γ-lobes neurons but not for α’/β’-lobes 

neurons (Christiansen et al. 2011). Thus, one possibility to form a recurrent network 

within the α/β/γ -lobes could be via a KC:KC interaction in the calyx. 

 

4.6 Visual classical learning circuit vs visual learning circuit in the flight 

simulator 

 

Comparison of the behavioral protocol 

 
Using a parallel experimental design identified the common requirement of the 

MBs in visual and olfactory memories. Performing conditioning experiments in the flight 

simulator paradigm, the central complex (CC) (Liu et al. 2006; Pan et al. 2009) and not 

the MB (Wolf et al. 1998) was shown to involved in visual learning. Several differences 

between our paradigm and the flight simulator could account for these results (Table 2), 

for instance different protocols were used to train the flies. In the flight simulator flies 

need to perform a training regime that includes an additional operant component, namely 

they can avoid punishment during training. This is different to our new paradigm which 

does not involve a choice during training and flies are trained purely classical. Thus, we 

wanted to exclude that solely changing the training task could lead to requirement of 

MBs. Another difference in protocol is that flies in the flight simulator are exposed to 

same stimuli in training and test. It was shown that changing the background color of 

visual stimuli between training and test leads to requirement of the MB for learning (Liu 

et al. 1999). In our paradigm we have a change in visual stimulus since we subsequently 

present a single color in training, but two colors at a time in parallel during test which 

could possibly account as context change (Figure 11). We controlled for these 

differences like inclusion of an operant component in training and context (CS) change 

between training and test and could exclude that they are responsible for requirement of 

the MB in our learning task (Figure 18). Interestingly, inclusion of an operant component 

did not improve overall memory scores, what would have been expected from a former 

study (Heisenberg et al. 2001). Operant behavior was shown to facilitate the formation of 

classical associations in the flight simulator. An explanation could be that the test 

situation in the new paradigm was changed from four choice points (four quadrants) to 
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one choice point in the arena (2 halves). Fewer encounters with a choice point could 

have made it harder for the flies to choose between the two visual stimuli in test. Since 

the operant component during training also allows flies to escape the reinforcer, most of 

them were probably less exposed to the punishment and therefore not able to form a 

strong association (Quinn et al. 1974).  

Even though we controlled for context change and operant component of the 

flight simulator protocol, other differences that could lead to differential results are; 

distinct conditioned stimuli (pattern vs. color learning), different presentation of the visual 

stimuli (ventral vs. frontal) or usage of different reinforcers (laser vs. electric shock). A 

very substantial difference between the two visual conditioning paradigms is also the 

behavioral task the fly has to perform (single flying fly vs. walking mass assay). 

Therefore, memory paradigms have to be as similar as possible to allow circuit 

comparisons and comparisons between the newly established visual paradigm and the 

flight simulator should be avoided. 

 

Requirement of the central complex 

 

The CC was shown to be required and sufficient for pattern memory formation in 

visual aversive conditioning in the flight simulator (Liu et al. 2006; Pan et al. 2009). 

However, in the new color learning paradigm a functional CC is only required to form 

associations during training but not to retrieve them during test (Figure 19). Thus, the CC 

does not seem to be the place of memory storage such as it is possibly the case in 

pattern learning (Zhang et al. 2013; Pan et al. 2009; Liu et al. 2006). Since blocking the 

output of these cells during test did not impair memory retrieval, one can also exclude 

that CS information is presented in the CC (Table 3). The phenotype would rather 

suggest that the US-pathway could be impaired; however, shock avoidance is intact (see 

Appendix, Table 8). Interestingly the GAL4-line employed, c205, labels a specific neuron 

that could have direct connection to the MB vertical lobes, and is innervating the upper 

layer of the fan shaped body (F5 neuron (Young & Armstrong 2010; Li et al. 2009)). 

Thus, possible interaction during training between MB and CC could be necessary for 

memory formation. The CC was also shown to affect sleep rhythm (Q. Liu et al. 2012) 

and fixation in flies (Xiong et al. 2010). Therefore, blocking CC output during training 

could probably have led to an attention deficit in flies such that they were not able to 

master the association task. Such attention mechanism could be dispensable once the 

memory is formed. 
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rut requirement 

 

In olfactory memory the adenylatecyclase rut is thought to be the coincidence detection 

protein for olfactory and reinforcement cues. Testing flies with the rut1 mutation leads to  

decreased memory scores (Zars et al. 2000). This implies that memory formation with 

olfactory cues not fully depends on the rut pathway but can also be achieved via other 

biochemical pathways (Gilgamesh protein (Tan et al. 2010)). In the classical visual 

conditioning paradigm the memory impairment employing the same rut1 flies is complete, 

thus it seems as if other biochemical mechanisms are probably not exploited for memory 

formation as in olfactory learning (Figure 20). A similar effect was found in visual pattern 

conditioning in the flight simulator (Pan et al. 2009). Rescuing the mutant defect in the 

MBs restores the memory formation in olfactory conditioning but not visual conditioning 

(Figure 20). However, rescuing the mutant defect in the CC also does not recover the 

visual color memory defect as found for visual pattern learning. These results could 

suggest that the rut-protein pathway could be additionally employed in other neuropiles, 

such as the optic lobes, for processing visual stimuli such as color or intensity. Thus, one 

cannot exclude that rut, amongst other functions, also acts as a coincidence detector in 

the MB similarly as in olfactory conditioning or in the central complex. In the үd-lobe of 

the MB, the catalytic subunit of the PKA-protein (DCO), which is part of the cAMP-

cascade, is indeed highly enriched. Further experiments should be done to identify 

additional neuropiles that are enriched in rut pathway proteins and also are necessary for 

visual learning.  

 

4.7 Evolutionary function of the MBs 

 

Especially in Drosophila the MB is mostly known for processing olfactory 

information, even though it is involved in many other tasks the fly has to perform. 

However, in other protostomes, the widespread function of this neuropil is more 

accepted. MBs or MB-like structures can be found in different phyla and subphyla of the 

Protostomia, as for example in Annelida (Heuer & Loesel 2008; Loesel & Heuer 2010; 

Tomer et al. 2010), Chelicerata (horseshoe crab (Fahrenbach 1979)), Onychophora 
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(Velvet worms (Strausfeld et al. 2006)), Myriapoda (Diplopoda (Strausfeld 1998)) and of 

course Hexapoda (insects). However, due to the many temporal gaps in the protostomes 

pedigree, it is not clear if MBs evolved several times independently or if many other 

phyla and subphyla secondarily lost them. Amongst insects, most recent studies suggest 

that already the Zygentoma possessed MBs with calyces (Farris 2005), whereas more 

ancient insects, like Crustacea and Archaeognatha only possessed olfactory glomeruli 

which supplied the lateral protocerebrum, however lacked MBs (Strausfeld et al. 2009). 

Thus, MBs indeed seemed not to have originated as special olfactory processing 

Figure 47: Phylogenetic tree of the class Insecta. 

Numbers indicate modification, innovation or loss during evolution: 1. Olfactory glomeruli. 2. Glomeruli 

supply lateral protocerebrum. 3. Mushroom body with calyx. 4. Calyx supplied by olfactory and gustatory 

glomeruli. 5. Double calyx. 6. Parallel subdivisions of the lobes. 7. Visual inputs to calyx. 8. Modality 

substitution at calyces. 9. Loss of olfactory glomeruli. 10. Loss or diminution of calyces. From Strausfeld, 

2009 
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neuropiles, they probably allowed better processing of sensory stimuli overall. Although 

the dendritic region of the KCs, the calyx, seems to be highly important for odor detection 

and processing in most species, evolutionary pressure should also have been highly 

selective for sensation of other senses, such as tactile and vibration information (Hill 

2001). In Odonata, that do not possess antennal lobes, visual input is perceived by a 

reduced calyx. Thus, modality substitution, subtraction and probably also expansion at 

the calyx were possible and happened probably several times during evolution.  

Indeed many insects (Neoptera and Zygentoma (Farris 2005)) possess different 

afferent inputs to the calyx, either via non-directional connections from proto-, 

deutocerebrum or tritocerebrum (Farris 2008) or directly from antennal lobe or even optic 

lobes. In addition to sensory afferents, even neuromodulatory input and feedback 

elements can project to the calyx (Mobbs 1982; Hammer 1993; Grünewald 1999; Li & 

Strausfeld 1999). Such representation of different modalities inside the calyx is probably 

rather costly but can be advantageous since it could allow multi-modal-processing. 

Another interesting point is that in anosmic insects that lost their calyces or never 

possessed them, different sensory inputs can be processed in the MBs via afferents to 

peduncle and lobes (Strausfeld et al. 2009). Here modulation of local circuits between 

afferents and efferent neurons on the KC lobes is possible. The lobe projections of the 

KCs were indeed shown to be pre- and postsynaptic to extrinsic neurons and to one 

another (Schuermann & Klemm 1973; Ito et al. 1998; Strausfeld 2002). Overall these 

different afferents connecting to the lobes and the calyces can contain sensory 

information about visual (Gronenberg 1986; Mobbs 1982; Gronenberg & Lopez-

Riquelme 2004), tactile (Schildberger 1984), acoustic (Li & Strausfeld 1997), gustatory 

(Schröter & Menzel 2003; Farris 2008) and olfactory information (Ito et al. 1998; 

Strausfeld 2002; Yasuyama et al. 2002). Thus, from evolutionary origin until now, the MB 

indeed rather seems to be a collection and modulation center of multi-sensory stimuli 

than a simple olfactory sensory processing center. 
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4.8 The visual learning circuit 

 

Due to the usage of specific Split-GAL4 lines it is possible to further describe the 

intrinsic and extrinsic neurons of the MB that are employed for the visual learning task.  

 

Intrinsic neurons 

 

Subdivision of the MB into different longitudinal lobe structures suggests that 

MBs may comprise of several parallel and isolated networks that may support different 

computational functions (Yang et al. 1995; Crittenden et al. 1998; Strausfeld et al. 1998). 

Comparing requirement of such different KC subsets for immediate aversive and 

appetitive visual and olfactory conditioning showed that most probably γ-lobes are 

employed for formation of these memories (Figure 23)(Blum & Dubnau 2010; Trannoy et 

al. 2011; Isabel et al. 2004; Qin et al. 2012; Vogt, Schnaitmann, et al. n.d.). Thus, overall 

the γ-lobes of Drosophila seem to support rather basic memory functions (olfactory STM 

(Zars et al. 2000)), courtship conditioning (15min (Keleman et al. 2012)). Interestingly, 

during the development of the fly, these KCs are born first, already in the embryo. 

Drosophila larvae are already capable of learning olfactory cues employing this minimal 

subset of embryonic born KCs (Pauls et al. 2010; Lee et al. 1999). During pupae stadium 

ү-KCs undergo reorganization and only provide a medial lobe in the adult fly, suggesting 

a simpler processing circuit than the other MB subdivisions which comprise of a medial 

and vertical lobe structure. Moreover, the γ-KCs possess higher amount of synaptic 

connections (claws) per neuron in the calyx than the other types of KCS and the γ lobes 

are more intensely invaded by extrinsic neurons than the other lobes (Ito et al. 1998), 

suggesting that they receive massive input, undergo strong modulation and could 

provide most output.  

 

Especially for visual learning, a specific subset of the MB γ-lobe is required to 

form appetitive and aversive memory, the үd-lobe (Figure 24, Figure 25 Figure 26.). This 

specific subset is comprised of about 70 KCs (Aso et al. 2009). Their dendrites form a 

distinct input region outside the main calyx of the MB, the ventral accessory calyx 

(VACA). For olfactory memory formation this KC subset is not required, however the 

remaining γmain-lobe needs to be intact (data not shown). Thus, both, olfactory and visual 

information, are present in the γ-lobes, however probably in different compartments. One 
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cannot surely exclude that visual information is present in the үmain-lobe. Interestingly, 

most of the flight simulator experiments employed MB mutants or flies with chemically 

ablated MBs (HU). Since we found a specific, rather small sub-compartment of the MB γ-

lobe to be necessary for visual learning, there is the possibility that ablation and mutation 

did not affect this KC subset. γd KCs were shown to be amongst the first, embryonic 

born KCs that are not affected by chemical HU ablation, since this substance is fed in 

larval state (Pauls et al. 2010; Lee et al. 1999). Also structural defects by mutation varied 

between flies and often did not fully ablate MB lobes. Using the GAL4/UAS system it is 

possible to obtain reproducible and strong blockade or activation of specific cell subsets.  

 

Parallel processing of different modalities is an efficient solution, since both 

modalities can be modulated by common neurons, but still can be processed 

independently and more rapidly. Hence, functional segregation of different MB-lobes 

could be a conserved mechanism, since it is also found for the α´/β´-lobes, which are 

clearly dispensable for visual learning but highly important for olfactory conditioning in 

Drosophila (Figure 23, (Blum & Dubnau 2010; Trannoy et al. 2011)). Response of α´/β´-

lobes KCs is the strongest among all KC subsets when presenting olfactory stimuli 

during electrophysiological recording (Turner et al. 2008). Interestingly, also in 

honeybees, ants and cockroaches, olfactory and visual sensory modalities are 

represented in two separate domains of the calyx, the collar and lip, respectively 

(Grünewald 1999; Ehmer & Gronenberg 2002; Nishino et al. 2012).  

 

Formation of α/β- lobes only takes place rather late during fly development, 

during pupae stadium (Lee et al. 1999) and therefore they form the core of the peduncle 

(Tanaka et al. 2008). Thus, their effect on basic STM learning would be expected to be 

minor, which is at least the case for visual conditioning, where no consistent defect was 

found (Figure 23). The role in visual learning of α/β -lobes of adult Drosophila could 

entail further modulation of different sensory memories, as several studies in the flight 

simulator suggest (blocking fast formation of operant memory (Brembs & Wiener 2006; 

Brembs 2009); saliency discrimination (Tang & Guo 2001; Zhang et al. 2013); context 

chang: (Liu et al. 1999)). This hypothesis is also supported by their role in olfactory 

conditioning where α/β lobes are preferentially needed for memory consolidation and 

long term memory formation (Krashes et al. 2007). α/β lobes thus could be the place 

where presentations of different sensory stimuli overlap and multi modal memories could 

be formed.  
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Identification of a specific subset of KCs required especially for visual memory 

formation provides a starting point in the search for the complete visual appetitive and 

aversive visual learning circuits including corresponding input and output neurons.  

 

Extrinsic neurons 

 

In addition to the subdivision into different lobe structures in the fly, one can also 

detect further sub-compartments along the lobes, leading to transverse divisions defined 

by dendrites and axons belonging to extrinsic neurons (Strausfeld et al. 2003; Tanaka et 

al. 2008). For example, aminergic neuromodulatory cells providing information to the 

lobes have already been described in many insects (Honey bee (Schuermann & Klemm 

1973), Locust (Homberg 2002)). Even such sub-compartments, sometimes innervated 

by single neurons of a cell type, can serve a specific computational function. During the 

MB-Screening project visual and olfactory memories were tested using the same 

extrinsic Split-GAL4 lines (Table 10, Table 11 and Table 12). The application of the same 

appetitive and aversive reinforcers and the similar task requirement for olfactory and 

visual memories allows comparing underlying reinforcement and output circuits. For 

olfactory memory middle term memory (MTM, retention of 2h) was tested whereas for 

visual learning short term memory (STM, retention of 2min) was tested.  

 

Aversive learning circuit 

 

The same clusters of dopamine neurons are required and sufficient for driving 

aversive visual memories and olfactory memories, respectively (Vogt, Schnaitmann, et 

al. n.d.). Similar to olfactory learning (Aso et al. 2012; Claridge-Chang et al. 2009), 

neurons in the PPL1 cluster are necessary and sufficient for aversive visual memory 

formation. Rescue of dopamine receptor in the MB showed that these dopamine neurons 

project to the MB (Vogt, Schnaitmann, et al. n.d.). Further specific dissection revealed 

that especially the two MP1 neurons seem to be necessary for short term memory 

formation in both modalities (Figure 28)(Aso et al. 2012; Vogt, Schnaitmann, et al. n.d.). 
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These neurons innervate a subsection of the γ-lobe of the MB in the medial lobe 

heel, called γ1 (Figure 48). Also potential aversive memory retrieval in visual and 

olfactory conditioning could be mediated via a specific MB-output neuron that actually 

receives input from the same γ1 region in the γ-lobes as the MP1 input-neuron (Figure 

30). Interestingly, this neuron, called MVP2, not only projects outside the MB but also 

back to the α/β lobes inside the MB (Tanaka et al. 2008). This anatomical aspect indeed 

could support a feedback circuit inside the MB that could be used for consolidation of 

aversive memories or modulation of other memory components (Figure 33). 

The aversive conditioning circuit is shared amongst two different modalities; even 

though different memories were tested, 2h vs. 2min, exactly the same input and output 

neurons are required in olfactory and visual memory. Since electric shock is a very 

potent but not naturally occurring aversive reinforcer, one would not expect a specifically 

evolved memory circuit for the different sensory modalities. Probably only different 

reinforcers can lead to requirement of different neurons, as for example laser, heat, 

chemical or shaking stimuli. 
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Figure 48: Circuit model of appetitive and aversive visual short-term memories. 

Output of γd KCs is locally modulated by specific subsets of dopamine neurons (PAM: γ4/5, PPL1: MP1) to 

form appetitive or aversive memories, respectively. MVP2, γ4/5 and V2 neurons mediate output to the 

surrounding protocerebrum and provide potential feedback loops to the MBs. Olfactory information is 

conveyed to the primary calyx by OPNs. Visual information is conveyed to the VACA via specific VPNs. 
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Appetitive learning circuit 

 

In appetitive conditioning, dopamine PAM cluster neurons play crucial roles in 

both olfactory and visual memories (C. Liu et al. 2012; Burke et al. 2012; Vogt, 

Schnaitmann, et al. n.d.). Rescue of dopamine receptor in the MB showed that these 

dopamine neurons project to the MB (Vogt, Schnaitmann, et al. n.d.). Further analysis in 

visual aversive learning suggests that specific sub-compartments of the γ-lobe, the γ5/ү4 

compartments, are responsible for STM memory formation (Figure 27, Figure 48). 

However, the input candidate-lines were only tested in primary screening and no further 

control experiments had been performed. For olfactory middle-term-memory (MTM) 

conditioning different sub-compartments seem to be necessary (data not shown). Since 

sucrose is a natural stimulus there could have evolved specific circuits for different 

modalities. However, the fly brain is rather small and it is rather costly to develop 

different learning circuits for a single reinforcer across different modalities. Another study 

can indeed show that in olfactory STM (2 min) input to the γ4,γ5 sub-compartments also 

seems to be employed, whereas other compartments found to be necessary during the 

olfactory screening are rather involved in long-term memory (LTM) formation (data not 

shown; Yamagata et al., in prep.). Thus, also for visual and olfactory STM a shared 

circuit could exist. The differential requirement of input and potential output neurons for 

appetitive visual and olfactory memory in the screening can be explained by employing 

parallel memory formation circuits for olfactory STM and LTM. One trial conditioning, as 

it was performed in the olfactory screening in appetitive learning can indeed lead to 

formation of LTM in olfactory learning (Krashes & Waddell 2008). The γ4 output neuron 

that was found to be required in visual appetitive learning interestingly projects back into 

the γ-lobe of the MB (Figure 29). Interestingly the output of this neuron overlaps with the 

γ1 compartment that is required for aversive learning. Thus, modulation of the aversive 

learning pathway inside the MB is possible here (Figure 33, Figure 48). 

 

Afferents to and efferents from the KC axonal region in Drosophila indeed 

segregate specific compartments that seem to have also functional segregation in visual 

learning inside the MB lobes (γ1 = aversive conditioning, γ4/ γ5 = appetitive 

conditioning). Overall, this data further strongly supports that the MB is the center for 

coincidence detection also in visual learning. I could show that information about both 

appetitive and aversive reinforcements are conveyed via specific dopaminergic neurons. 
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Also in humans, dopamine neurons are involved in information processing of appetitive 

and aversive stimuli (Matsumoto & Hikosaka 2009).  

 

Partially shared output circuits 

 

Such specific subdivisions inside the lobes make it possible to perform many 

different computations in a very densely packed and rather small insect neuropil. In other 

insects, MB output neurons were already shown to provide different kinds of information. 

Multimodal information is provided by efferents with dendrites inside and also outside the 

MB lobes (honey bee (Erber 1978), cricket (Schildberger 1984), cockroach (Li & 

Strausfeld 1997; Li & Strausfeld 1999)). In cockroach, other efferents were found that 

connect to protocerebral regions with few providing descending collaterals (Li & 

Strausfeld 1997). The honeybee possesses a unique output neuron (Pe1 (Mauelshagen 

1993; Rybak & Menzel n.d.)) which shows response plasticity during learning and 

memory. In Drosophila there seem to be two protocerebral regions close to the MB-lobes 

where several efferent neurons target preferentially (data not shown). However, the 

functions of these output clusters are not clear yet. There seems to be no direct 

connections to descending neurons (Ito et al. 1998). Specification of MB-output neurons 

required for different sensory memories could help to identify target neurons further 

downstream of MB-output neurons in the future. Not only subdivision into lobes and sub-

compartments allows a huge variety of combinatorial outputs, but also there seems to be 

different feedback loops of output neurons projecting back to the MB lobes (e.g. γ4 -> 

γ1/2 in line MB434B, Figure 33). Such KC-KC or feedback connections could be 

important elements for circuits that are capable of processing multiple complex 

behavioral tasks (Arena et al. 2013). 
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4.9 Visual information circuit 

 

Results from the MB screening project strongly suggest that the MB is the 

convergence center of US-information and visual information in our visual conditioning 

task. Thus, visual input should be provided to and represented in the required intrinsic 

cell population, the үd KCs. 

 

Input to the γd ventral accessory calyx (VACA) 

 

The newly described ventral accessory calyx is formed by a small subpopulation 

of the γ-lobe KCs, ~70 γd-KCs (Aso et al. 2009; Butcher et al. 2012; Vogt, Knapek, et al. 

n.d.). γ-lobe KCs were shown to consist of a specific class of neurons, the clawed class 

II KCs in the primary calyx (honeybee (Strausfeld 2002), Drosophila (Butcher et al. 2012; 

Lee et al. 1999)). However, it is not clear if the γd-KCs subpopulation provide the same 

type II KCs, since the VACA was only poorly described so far (Aso et al. 2009; Butcher 

et al. 2012). In contrast to the γd VACA, the dorsal accessory calyx of Drosophila was 

already described in detail in terms of anatomy (Tanaka et al. 2008; Aso et al. 2009; 

Butcher et al. 2012). A subset of late born α/β KCs, α/βp, forms this specific accessory 

calyx that does not receive direct olfactory input from projection neurons like the primary 

calyx. In other insects, physically separated calyx sub-regions termed accessory calyces, 

have been described consisting of another specific subtype of neurons, the class III KCs 

(Farris 2005; Farris 2008). Common features of these cells that often perceive gustatory 

input form the tritocerebrum are the following; they are smaller than the primary calyx, 

they are located posto-ventral to the primary calyx, sometimes also integrated in the 

primary calyx (Lepidoptera: (Pearson 1971), specific Y-tract (Ali 2009)) and they have an 

early birthdate. Since they are born early in development they often have their cell-

bodies and axons at the outer perimeter of the primary calyx, peduncle or lobes, 

respectively (Schuermann & Klemm 1973; Malaterre et al. 2002; Farris & Strausfeld 

2003).  
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Almost all these points also account for the newly described ventral accessory 

calyx in Drosophila. The γd KCs cover probably less than 5% of the total amount of KCs 

and thus form a rather small accessory calyx (Figure 34). Their cell bodies indeed form 

the outer layer in the mass of Kenyon cell bodies and their projections wrap around the 

peduncle and the anterior part of the medial lobes as found in other insects (Malaterre et 

al. 2002; Farris & Strausfeld 2003; Sjöholm et al. 2005), suggesting that they were first 

born KCs, even earlier than the γmain KCs (Figure 34, Figure 49). Thus, one could 

conclude that also Drosophila possesses class III KCs that receive input from the optic 

lobes. If they also receive input from the tritocerebrum still has to be investigated. MBs 

are necessary for gustatory learning (Masek & Scott 2010), thus gustatory information 

input could probably be mediated to the KCs also via an accessory calyx. Since several 

different insect lineages possess these characteristic class III KCs it is suggested that all 

insects possess the genetic information to form these accessory calyces, however not all 

of them make use of it (Farris 2008). Establishing an accessory calyx could be the first 

step to integrate sensory information other than olfactory in the MB. In several insects 

that belong to the infraclass Neoptera, direct connection from the optic lobes to the MB 

calyces could be detected via anatomical studies in social Hymenoptera (Ehmer & 
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α’β’-lobe: olfaction
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Figure 49: Circuit model of visual information processing in the central brain. 

Visual and olfactory information is probably conveyed to distinct sets of KCs. Olfactory input to the primary 

calyx via OPNs is well characterized. Visual input is conveyed from different layers in the medulla to the MB 

VACA formed by the γd KCs. Output of KCs, representing olfactory and visual information is locally 

modulated by the different subsets of dopamine neurons (PAM, PPL1) in the MB lobes to form appetitive and 

aversive memories. 
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Gronenberg 2002; Gronenberg & Lopez-Riquelme 2004; Paulk & Gronenberg 2008) 

cockroach (Strausfeld & Li 1999; Nishino et al. 2012) or Coleoptera (Lin & Strausfeld 

2012). By identifying similar direct visual input from optic lobes to the MB calyx in 

Drosophila, which also belongs to the infraclass Neoptera, one could suggest that the 

ancestral organization of at least the Neopteran MB could also have consisted of visual 

and olfactory input from antennal lobes and optic lobes, perhaps supported by the 

genetic bauplan of accessory calyces. Expansion of the brain is however rather costly 

(Niven & Laughlin 2008; Chittka & Niven 2009) and would not be maintained if not 

needed. Some members of the Neopteran could have secondarily lost either both inputs 

or only one of them. There is e.g. the water-living whirligig beetle (Lin & Strausfeld 2012) 

that still has similar MB and calyx structure as found in terrestrial species but lacks 

antennal lobes. This beetle only possesses connections between calyx and optic lobes. 

Other Neoptera only possess olfactory input provided to the calyx, just as previously 

thought in Drosophila (Ito et al. 1998). Thus, many insects that do not heavily rely on 

visual or olfactory information do not possess specific visual or olfactory projection 

neurons to the MB calyx. Although olfactory information processing is very prominent in 

the Drosophila MB, the flexible modulation of visual input thus also seems to be highly 

important. 

 

Visual information pathway 

 

Reinforcement signals are projected to the MBs which are required during 

training and test in visual conditioning (Figure 22, Figure 48). The missing piece of the 

puzzle is the visual input to the MBs. By identifying that the γd-lobe of the MB is 

especially needed for visual learning, a starting point for searching for visual projection 

neurons was set (Figure 26). γd-KCs form a specific dendritic region outside the main 

calyx, the so-called ventral accessory calyx (VACA). Indeed I could show that there are 

visual projection neurons that are directly connecting the medulla in the optic lobe with 

this ventral region of the MB calyx (Figure 36, Figure 37, Figure 38 and Figure 39). 

These connections are required for different kinds of visual aversive memory, 

respectively. A previous study showed that in visual appetitive conditioning flies can 

discriminate stimuli that not only differ in their wavelength but also stimuli that only differ 

in their intensity (Bright Green/Blue vs. Dark Green/Blue (Schnaitmann et al. 2013)). The 

stimuli that are presented during the standard color conditioning protocol probably 
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include both properties. However, when introducing intensity inversion between training 

and test during color learning; training with dark-blue/bright-green and test with bright-

blue/dark-green, and vice versa, the choice priority still resides on the color cue 

(Schnaitmann et al. 2013). These results demonstrate that discrimination in the classical 

visual learning paradigm with chromatic stimuli is based on spectral composition of 

conditioned stimuli and not solely on achromatic stimuli. According to this I found 

separate VPNs required for intensity and color conditioning (Figure 40, Figure 42). 

 

4.10 Visual stimuli processing in the optic lobe 

 

Both newly descried types of VPNs receive their input in the medulla of 

Drosophila and project directly in to the central brain, to the ventral accessory calyx of 

the MB (Figure 36). In the medulla they innervate specific layers and thus probably 

receive different kind of information from upstream neurons (Figure 44).  

 

Visual information processing in the Medulla  

 

Most visual information processing is possibly happening in the most prominent 

optic neuropil, the medulla. Overall the more superficial layers of the medulla (outer) 

contain less processed information (Morante & Desplan 2008). Motion information is 

received from the lamina; color information however is directly received from 

photoreceptors R7/8 to the outer medulla (M1-M6). R8 axons from the retina innervate 

medulla layers M3/M4, whereas R7 axons from the retina innervate M6. Thus, VPN 

neurons labeled by Split-GAL4 line 334C could receive direct input from R7 in medulla 

layer M6 (Figure 44). Since they are not required for learning of chromatic stimuli this 

less processed information from the outer medulla could be sufficient to discriminate 

intensity differences. L3 neurons from the lamina overlap and could possibly interact with 

R8 neurons in medulla layer M3 (Jacob et al. 1977). L3 possesses wide-field medulla 

efferent terminals endowing broad-band input from R1-6 (Strausfeld & Lee 1991; Gao et 

al. 2008).  
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Even though the medulla receives only small amount of input from retina, many 

inter- and output-neurons per column are present (Morante & Desplan 2008). Several 

transmedullar (Tm) neurons connect inner and outer medulla, thus these neurons could 

be involved in early processing of color information (Figure 50; Tm16, Tm20, Tm28, 

TmY9 and TmY4 are connecting M3 with M8, whereas TmY13 and TmY14 connect M4 

to M8 (Takemura et al. 2013). Like this, medulla layers M3, M4 and M6 are all connected 

to M8 (inner Medulla). Similar as in the antennal lobe in the olfactory pathway these 

interneurons could also provide inhibitory or excitatory modulation (Chou et al. 2010). To 

be able to differentiate colors, color-opponent cells that process input from different 

photoreceptors are necessary. Tm5 and Tm9 were suggested as such since they receive 

direct input from R7/R8 and also indirect input from R1-6 in the medulla and provide 

Retina

Lamina

Inner Medulla
M8-10

Lobula Plate
Outer 
Lobula

Outer Medulla
M1-6

Inner 
Lobula

R1-6R7/R8

L1-5

γd-Calyx

Serpentine layer

Figure 50: Visual sensory circuit in the optic lobe and projections to the central brain for 
visual conditioning. 

Visual signals are perceived via eight different photoreceptors in the retina. R1-6 project to the lamina, from 

where L1-5 transmit the perceived signal to the medulla layers M1-5. R7-8 directly project to the medulla 

layer M3/4 and M6. Inside the medulla, several extrinsic and intrinsic transmedullar neurons (Mi, Mt, Tm, 

Tmy) modulate the visual information and also mediate it to further neuropiles like lobula and/or lobula plate. 

Additionally, VPNs mediate color and intensity information for visual conditioning from different medulla 

layers (M3/4/8 or M6/7, respectively) to the VACA of the γd-KCs, respectively. 
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output not only to the lobula but also to layer M8 in the medulla (Gao et al. 2008). Thus, 

M8 is a possible site of trichromatic interaction. Also VPN Split-GAL4 line 425B receives 

strongest input from the medulla layer M8, therefore it could indeed be possible that 

these neurons convey processed information about chromatic stimuli to the MB (Figure 

44). Also in other insects like honeybee and bumblebee (review (Dyer et al. 2011)) a 

similar mechanism can be found. In the medulla of the optic lobes of honeybees, several 

neurons have been described that respond differentially to different wavelength stimuli 

and thus allow the description of a color opponency model in the honeybee (Medulla 

(Hertel & Maronde 1987; Kien & Menzel 1977) Model (Backhaus 1991)). Hence, the 

inner deeper layers of the medulla contain more processed information (Morante & 

Desplan 2008) and the overall complex neuronal architecture of the medulla suggests 

that already further processed information can be provided at a very early stage in the 

visual processing pathway.  

 

Anatomy of medulla intrinsic neurons 

 

Generally, neurons in the medulla vary strongly in their anatomy and based on 

this can be classified to being either part of a vertical (columnar) or horizontal (non-

columnar) pathway. The size of visual field inputs differs between such interneurons, for 

example in columnar and non-columnar transmedullar neurons (Tm cells in Diptera, 

(Strausfeld & Lee 1991; Takemura et al. 2013)). Overall, columnar interneurons (e.g 

Tm1) have very small, dense and homogenous dendritic fields. Non-columnar 

interneurons however have broad and very fine arborizations extending into many 

neighboring columns. Thus, they possess less spatial resolution, but collect information 

from different ommatidia (pale and yellow) and could retain better color differentiation 

(Morante & Desplan 2008). Testing the VPN candidate lines, I found not only color 

specific projection neurons but also intensity specific neurons. Interestingly, the anatomy 

of these neurons could reflect their function. Most of the neuron candidates for conveying 

color information indeed receive input from a rather large visual field compared to 

columnar neurons. The dendrites seem to expand over ~5 ommatidia (20° of the visual 

field). Thus, the spatial resolution provided would probably not be sufficient for motion 

vision or small object detection, however fine color discrimination should be possible. All 

the color VPNs in the medulla at least receive input inside the inner medulla layer M8, 

where already processed and integrated color information is available. Also in 
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honeybees, neurons projecting from the inner medulla to the MB possess strong 

response to color stimuli and even contain color opponency neurons (see review (Dyer 

et al. 2011)). The VPNs necessary for intensity conditioning possess an even larger 

dendritic field; they receive information from the whole ventral half of the medulla. Such 

input pattern does not provide high spatial resolution which however should also not be 

required for light intensity detection. The input layers occupied in the medulla seem to be 

M6-M7. Less processed information is available in the outer medulla e.g. in the 

honeybee outer medulla no color opponency neurons were found. Interestingly, in the 

honeybee, VPNs from outer medulla do not project to the MB, but mainly directly to the 

posterior protocerebrum ((Paulk et al. 2009) for review see (Dyer et al. 2011)). Such 

differential processing of different attributes of a visual stimulus (e.g. color and intensity) 

can also be found in the primate visual system (Livingstone & Hubel 1988).  

 

The first descriptions of the different cell types in the fly optic lobe were done by 

applying Golgi staining (Figure 52, Cajal & Sanchez 1915; Fischbach & Dittrich 1989). A 

more recent study focused on the medulla and reconstructed different cell types from 

electron microscopy data (Takemura et al. 2013). A few cell types have been described 

in the medulla that could resemble the ones possibly responsible for conveying color and 

intensity information to the MB. Already Cajal y Sanchez (1915) described neurons 

connecting the medulla and the central brain in insects (Figure 51). The VPN cells 

described in this project could be similar to medulla tangential neurons (Mt cells) from 

the outer optic anlage (Meinertzhagen 1973; Hofbauer 1979). They are established first 

and differentiate earlier than columnar neurons. Their cell bodies are outside and 

anterior to the medulla, similar as in the VPNs, e.g. Mt4 with the cell body anterior to 

lobula, covers a big part of the visual field and gets most input from M8 (also Mt7, Mt8, 

Mt10 and Mt11; (Fischbach & Dittrich 1989; Takemura et al. 2013)). Even though there is 

already such detailed description of many types of neurons, the newly described VPNs 

could not have been reliably identified in previous studies. Unfortunately, less interest 

was devoted to the projection of the different output neurons into the central brain of the 

fly. Especially medulla output neurons are understudied, probably since lobula and 

lobula plate are rather thought to provide major output connections to the protocerebrum 

(Otsuna & Ito 2006), and to the anterior optic tract (AOT (Fischbach & Lyly-Huenerberg 

1983; Strausfeld 1976)). Thus, it could likely be that the new VPNs in Drosophila have 

been described before concerning their expression in the medulla but not in the central 

brain.  



131 

 

 

Visual information processing beyond Medulla 

 

Third order neurons that collect more elaborate visual information already 

integrated by other Tm cells carry this processed visual information to downstream 

targets outside the medulla. M8 as potential part of the color pathway is further 

connected to the inner layer of the lobula. In the potential motion-pathway, M9 and M10 

are connected to outer lobula layers or lobula plate. Thus, there is again a segregation 

happening at the output of the medulla to lobula and lobula plate (Strausfeld & Lee 

1991). In contrast to the described color pathway via the lobula to the central brain, the 

newly described VPNs are conveying information already from the outer and inner 

medulla to the central brain (M7, M8; see Figure 50). This suggests that there could be 

two separate pathways for color processing. In honey bees and ants, there are also 

different tracts conveying information from different sub-compartments of the optic lobes 

to the protocerebrum (Ehmer & Gronenberg 2002; Gronenberg & Lopez-Riquelme 

Figure 51: Horizontal section of the medulla and a small part of the lobula of the dragonfly. 

(A) Lobula, (B) Medulla, (K) inner optic chiasm, (a) first layer of neurons originating in the protocerebrum, (b) 

and (c) second and third layer of such neurons, (d) strand of neurons that arrive from the protocerebrum and 

continue in the referred layers of the medulla, (e) cell bodies of neurons connecting medulla and 

protocerebrum. From Cajal y Sanchez, 1915; p.90 
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2004). A more complex processing mechanism could be necessary for pattern 

discrimination learning, the most used visual stimulus in the flight simulator other than 

color discrimination learning. Additional computation of the visual information according 

to the task could thus recruit the CC as a higher brain center after further modulations in 

the lobula. Also in human working memory there is a differentiation in brain region 

requirement between different attributes of a visual stimulus. Information processing 

about recognition (“What”) and location (“Where”) of an object is performed in different 

brain regions (Rottschy et al. 2012).  

 

4.11 Advantage of an early visual information pathway to the central brain 

 

The VPNs that provide visual information to the MB receive their information at 

an early point in the visual processing pathway, in the medulla. This is an interesting 

point that could make them especially suitable for association learning. A probably 

minimal amount of synapses is actually employed for processing the visual information 

(2-3 synapses), similarly as in olfactory conditioning (2-3 synapses; (Heisenberg 2003)). 

In vertebrates, information that passes from retina to cortex is contaminated along the 

way with increasing noise, thus decreasing the temporal precision of the signal 

(Kumbhani et al. 2007). In invertebrates, the information provided by VPNs that bypass 

the lobula, etc., should contain less noise and would therefore be more suitable for 

establishment of an associative memory. The connection between the medulla and the 

MB via the VPNs in Drosophila seems to be similar to the more prominent medulla-calyx 

connections that are found in honeybees (Ehmer & Gronenberg 2002), bumble bees 

(Paulk & Gronenberg 2008) and ants (Gronenberg 1999; Ehmer & Gronenberg 2004). 

Indeed, in honeybees the VPNs that project from inner medulla to the MBs not only 

respond to specific chromatic stimuli, but additionally possess a specific temporal 

response pattern (Paulk et al. 2008; Dyer et al. 2011). Also medulla recordings in the 

locust reported highly precise spike timing (Osorio 1987). Such high spike timing 

precision that was found in the medulla of locusts and bees is a prerequisite for spike 

timing dependent plasticity (STDP, found in KCs of locusts (Cassenaer & Laurent 2007) 

and honeybees: (Szyszka et al. 2005)). Thus, VPNs that could provide a direct 

connection between medulla and the MB could be especially equipped to support 
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learning mechanisms since they could be able to convey an increased amount of precise 

information.  

 

Different pathway for naïve visual preference 

 

The visual projection neurons do not seem to provide information that is needed 

for naïve behavioral performance in Drosophila. Even when the output of the VPNs or 

the MB is blocked, flies can still differentiate between different intensities and colors, but 

are not able to form an association with the US (Figure 16, Figure 40 and Figure 42). 

Similarly, cockroaches that are trained in a maze are not able to find a hidden target 

when blocking the MBs, but still can see and detect a visible target. Thus, in insects 

there seem to be different pathways providing information for naïve visual behavior and 

learned visual behavior, similar as in the olfactory sensory system (Tanaka et al. 2004). 

In flies, there are two pathways that seem to be involved in color perception. The 

connection from medulla to MBs seems to be responsible for providing visual information 

for associative conditioning, whereas the other pathway from medulla to lobula and then 

later to the central brain, optic glomeruli or descending neurons could be used for 

mediating naïve behavior. One neuron, collecting information about dim UV light was 

indeed shown to be necessary for naïve UV preference (Dm8 (Gao et al. 2008)). Dm8 is 

an amacrine-like intrinsic neuron in the medulla that is pooling information from several 

R7 inputs in M6 and giving output to Tm (5/9) neurons which project to the lobula. 

Further VPN cell types were described to be specifically required for phototaxis 

responses of light with different wavelengths (Otsuna et al. 2014). The MC61 neurons 

are specially required for response to violet and green light, whereas the LT11 neurons 

are specifically required for response to blue light. These neurons receive input from 

medulla and lobula and project to the AOT and the protocerebrum, respectively. 

 

4.12 Effect of ventral presentation of visual stimuli  

 

In the newly established visual conditioning setups, the trained visual stimulus is 

presented to the flies from beneath. Interestingly, the VPNs that I found necessary for 
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both intensity and color learning have either exclusively or preferably strong expression 

in the ventral part of the medulla. Thus, these VPNs could be especially required to 

collect information about ventral stimuli, such as they are presented in the new visual 

conditioning setups, and project it to the central brain. The ventral VPNs for color 

learning indeed form connections with the γd-calyx dendrites (VACA). In the 425B-Split-

GAL4 line impaired in color learning, there are also VPNs labeled that project from the 

dorsal medulla to the protocerebrum (Figure 44). Employing the additional GAL4-line 

VT8475 that uniformly labels a different kind of VPNs over the whole medulla however 

did not lead to impairment in color learning (Figure 46). This implies that the specific 

enrichment of VPNs in the ventral area of the medulla could indeed be responsible for 

color information collection in this specific paradigm. Additionally the neurons that project 

from the dorsal part of the medulla to the central brain labelled in the MB425B-Split-

GAL4 do not possess as prominent connections to the MB VACA as the ventrally 

projecting neurons.  

Not only during development there is a differentiation in dorso-ventral growth in 

insects (for review see (De Robertis 2008)), also during adulthood there seems to be 

ventral-dorsal differentiation in the optic lobes. In Drosophila polarization vision, there is 

different and independent functions of the photoreceptors in the ventral and dorsal optic 

lobe (Wernet et al. 2012). Flies respond to direct polarized light when presented dorsally 

via specialized photoreceptors in the dorsal rim area. Interestingly colored polarized light 

can be hardly detected via these dorsal receptors but a strong response is seen to 

ventral stimulation of colored polarized light perceived by unspecialized photoreceptors. 

In nature, the ventral area probably receives indirect polarized light from shiny surfaces 

such as leaves or water. Furthermore flies can associate visual stimuli depending on the 

height of the stimulus in their frontal visual field (Yang & Guo 2013). Best learning 

performance was found when stimuli were presented in the lower or upper part of a 

screen depending on the background illumination, respectively. This could suggest that 

there are two independent ventral and dorsal systems for visual stimulus processing, 

respectively. During normal visual conditioning in the flight simulator, stimuli are mostly 

presented in the frontal field, thus the identified ventral VPNs could either not be 

activated by these stimuli or the visual information could still be processed by a dorsal 

color pathway. In honeybees, visual stimuli that are presented ventrally seem to be 

processed differently. Color cues can be learned when presented ventrally, however 

pattern cues cannot (Giger & Srinivasan 1997). Also honeybees mastered to recognize 

colored landmarks on the floor that marked a sucrose reward (Cheng et al. 1986).  
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On the anatomical level, the provided visual input from lobula and medulla is 

separately presented not only in specific calyx regions in the honeybee MB, but also 

there is further distinction between lower and upper medulla regions (Ehmer & 

Gronenberg 2002). Same is also true for ants (Ehmer & Gronenberg 2004; Gronenberg 

& Lopez-Riquelme 2004). Another very extreme example is the aquatic whirligig beetle; it 

possesses four eyes, two dorsal eyes, above the water surface, and two ventral eyes 

below the water surface (Lin & Strausfeld 2012). The dorsal and ventral optic lobe is 

separated into two laminae and two medullae, but shares the same lobula (Lin & 

Strausfeld 2013). Thus, in this insect, specific selective pressure could have led to strong 

differentiation between the dorsal and ventral system.  

All these findings could lead to the assumption that insects possess a common 

pattern of ventral and dorsal differentiation inside the optic lobes. A specific but not 

exclusive requirement of the ventral visual field for color perception could be reasonable 

since in nature information about colors can be available beneath the insect such as e.g 

flowers for foraging bees or fruits for feeding flies. 
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5. Summary 

 

5.1 Functional advantages of a multi-sensory integration center 

 

Walking flies can perform classical visual learning tasks, like appetitive and 

aversive color and intensity learning, respectively. For visual memory formation and 

storage, they use the same neuropil, the MB, as already described in olfactory 

conditioning (Figure 52). Visual input to the MB is provided by a direct neural connection 

with the optic lobes. All my findings strongly suggest the MBs as a site of convergence of 

reinforcement and conditioned visual stimuli, similar as in olfactory STM formation (Qin 

et al. 2012; Gerber, Tanimoto, et al. 2004). Furthermore, MB requirement is not 

restricted to olfactory and visual classical conditioning, but there is also requirement e.g. 

for gustatory STM (Masek & Scott 2010) and courtship conditioning (15 min (Keleman et 

al. 2012)). Thus, in Drosophila, I suggest the MB as a site for coincidence detection 

across several different sensory modalities. Employing one neuropil across associative 

conditioning tasks with different modalities could not only allow modulation of a specific 

sensory stimulus by a reinforcer, but probably also modulation amongst different sensory 

information. It would indeed be interesting to also test MB requirement with further 

sensory stimuli in a simple association paradigm (e.g. auditory conditioning (Menda et al. 

2011) or magnetic sense conditioning (Gegear et al. 2008)). Such centralization of 

similar brain functions (appetitive/ aversive immediate associative memory) across 

different sensory modalities (visual/ olfactory/ gustatory, etc.) indeed is a widely used 

and economic circuit design. During fear conditioning in rats different visual and auditory 

memories are established in the amygdala, respectively (Campeau & Davis 1995). 

Converging inputs of different stimuli into one multisensory area also have been well 

described in humans and primates (Beauchamp et al. 2008; Schroeder & Foxe 2002). 

These multisensory areas could at least provide information necessary to form multi-

modal concepts. A shared circuit architecture, as I propose it for the Drosophila MBs, is a 

huge advantage since costs for establishing similar circuits in different brain areas can 

be avoided and multi-modal memories could be formed easily. Especially in insects, 

which possess a limited amount of cells in the brain, neural reuse should be an efficient 

mechanism to still be able to perform many complex tasks (Arena et al. 2013). 
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Figure 52: Comparison between the visual and the olfactory learning pathway. 

Sensory stimuli are perceived via receptor neurons. Odors are perceived via olfactory receptor neurons in 

the antenna whereas visual stimuli are perceived via photoreceptors in the retina. Sensory information is 

mediated to and processed in second order neuropiles. Olfactory information is conveyed to the antennal 

lobe and modulated by local interneurons. Visual information is conveyed to the medulla and can be 

modulated by diverse intrinsic or transmedullar interneurons. Sensory information for associative learning is 

conveyed to the MBs. Visual and olfactory information is conveyed to the MB either via VPNS or OPNS, 

respectively, where both can be modulated by the same appetitive and aversive reinforcement neurons. 

Output neurons of the MB provide information for behavioral output. 
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5.2 Parallel evolution of vertebrate higher brain centers and invertebrate 

higher brain centers 

 

MBs can be involved in computation of various sensory inputs, in relaying 

information to the protocerebrum and in comparison of ongoing and past stimuli (Erber et 

al. 1987). Many insect species probably secondarily lost MBs or just possess vestigial 

MBs due to the costly maintenance of such higher brain centers (Chittka & Niven 2009; 

Niven & Laughlin 2008). Modulation of visual information inside the MB also seems to be 

a rather costly task since rather few members of the Neoptera still possess or developed 

direct neural connection to the optic lobes. However, although this specific ability for 

visual processing seems to come along with some cost, it also seems to provide the 

insects with new advantageous possibilities (Farris 2013). Hymenoptera, Periplaneta 

(Bell et al. 2007) and Drosophila (Lachaise et al. 1988) have in common that they have a 

generalist lifestyle. Such a generalist or even parasitoid lifestyle indeed requires 

performance of more complex tasks with higher flexibility and faster adaptation than 

living an inflexible specialist lifestyle. Drosophila probably relies on chromatic or 

achromatic visual cues like color and intensity to find and explore new food sources. In 

other insects it was shown that there is indeed an advantage by integrating not only 

olfactory or tactile information, but also visual information when for example foraging 

across different food patches (grasshoppers (Bernays & Wrubel 1985), blowfly (Conlon & 

Bell 1991; Fukushi 1985)). Thus, for Drosophila, as a generalist feeder (Lachaise et al. 

1988), increased flexibility in finding new food sources due to additional sensory 

integration can only be an advantage. Comparing the MB of Drosophila with these of 

other insects indeed shows that the MB architecture resembles their lifestyle. For 

example ants that mostly stay in their nest receive less visual input and possess a 

reduced visual input area in the MB since they rather rely on odor cues. On the other 

hand, honeybees that possess very large and differentiated visual input areas in the MBs 

need to be able to remember specific landmarks during flight to identify different foraging 

areas and thus probably also require more storage space for visual information (see 

review: (Chittka & Niven 2009)). Also for longer living insects, like cockroaches, 

possessing a large MB (175,000 KCs = 20% of all neurons (Bell et al. 2007)) to store 

visual information about a food source could be an advantage compared to relatively 

short-living Drosophila which possesses smaller MBs (2,000 KCs = 2% neurons (Aso et 

al. 2009)). The size of the MBs could thus not only reflect the complexity of the task an 
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insect has to perform but the amount of information that it needs to store. The larger and 

more complex brains probably also were the prerequisite for sociality in honeybees or 

ants (Farris 2013). Drosophila thus seems to be an intermediate in insect evolution 

between rather ancient insects possessing diminished calyces with restricted sensory 

input and advanced insects like hymenoptera with increased calyces and prominent 

multi-sensory input. Fruit flies possess high complexity inside their brain with different 

sub-compartments and are able to perform multi-modal or even social learning (Sarin & 

Dukas 2009; Zhang et al. 2013); however they also have a short life and rather simple 

generalist lifestyle that does not require complex memory tasks as in Hymenoptera or 

Periplaneta. Thus, it is indeed interesting to study Drosophila in the way to understand 

how more complex behaviors evolved in insects and what mechanisms are employed 

and exploited. The overall factors that played a role in establishing higher brain 

complexity in invertebrates could have been; novel food gathering behaviors across 

multiple or patchy food sources, a greater reliance upon vision (as a part of food 

acquisition) and a general capacity for learning, innovation and behavioral flexibility 

(Farris 2013). Interestingly, these are the same evolutionary pressures that apply for 

vertebrates.  

Figure 53: Phylogenetic distribution of mushroom body in Protostomes and pallium in 
Deuterostomes with a less complex hypothetical common precursor form in Bilateria. 

From Turner et al., 2010 



140 

 

There is already some evidence that indeed the MBs of insects and the 

vertebrate higher brain centers could have evolved from a common and rather advanced 

neuropil in their protostome-deuterostome ancestor (Prebilateria). It was shown that the 

different higher brain centers have conserved brain topology, meaning they employ a 

conserved pattern mechanism and built up similar neuron types during development 

(Tomer et al. 2010, Figure 54). The same evolutionary pressure could have brought up 

similar processing steps in homologous brain regions across vertebrates and 

invertebrates. For example, KC subpopulations could be the functional equivalent of 

cortical areas that get modulated by specific afferents (cortex (Kaas 1995; Finlay 2001)). 

Also the increased brain size due to more folding of the vertebrate brain could have 

functional similarity with double calyces in the MB. MBs were also compared to the 

thalamus in fish, which is important in attention and decision making (Hanstroem 1928), 

with hippocampus in mammals, since same learning related molecules have elevated 

expression (for review see (Kandel & Abel 1995)), with olfactory cortex, due to the 

position of the MB being the next relay station after the antennal lobe or with the 

cerebellum, due to similar architecture of intrinsic and extrinsic cells (Farris 2011). Thus, 

by understanding the relatively simple brain circuit architecture in insects that evolved 

under shared evolutionary pressures as vertebrates, we could also get a step closer to 

understand how the human brain circuit solves similar processing steps. 
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7. Appendix 

Controls 

Crosses 
Sugar preference 

Mean +/- SEM 

Shock avoidance 

Mean +/- SEM 

shi/+ 0.569 +/- 0.039 -0.359 +/- 0.034 

shi/201y 0.444 +/- 0.039 -0.401 +/- 0.033 

+/201y 0.649 +/- 0.064 -0.353 +/- 0.033 

shi/+ 0.569 +/- 0.039 -0.387 +/- 0.029 

shi/MB247 0.535 +/- 0.018 -0.297 +/- 0.038 

+/MB247 0.575 +/- 0.048 -0.384 +/- 0.028 

CS Not tested in conditioning -0.501 +/- 0.033 

rut Not tested in conditioning -0.607 +/- 0.051 

shi/+ Not tested in conditioning -0.508 +/- 0.048 

shi/c205 Not tested in conditioning -0.383 +/- 0.056 

+/c205 Not tested in conditioning -0.478 +/- 0.046 

shi/+ 0.548 +/- 0.024 -0.366 +/- 0.031 

shi/MB010B 0.526 +/- 0.061 -0.393 +/- 0.052 

+/MB010B 0.591 +/- 0.048 -0.353 +/- 0.040 

shi/- 0.569 +/- 0.039 -0.493 +/- 0.0312 

shi/MB010B 0.526 +/- 0.061 -0.483 +/- 0.0590 

+/MB010B 0.591 +/- 0.048 -0.451 +/- 0.0173 

shi/MB364B Not tested for preference -0.379 +/- 0.0494 

+/MB364B Not tested for preference -0.486 +/- 0.0357 

shi/MB152B Not tested in conditioning -0.454 +/- 0.0484 

+/MB152B Not tested in conditioning -0.385 +/- 0.0693 

shi/M009B 0.689 +/- 0.0667 -0.503 +/- 0.0644 

+/MB009B 0.738 +/- 0.0169 -0.362 +/- 0.0439 

shi/M355B Not tested for preference -0.388 +/- 0.0408 

+/MB355B Not tested for preference -0.376 +/- 0.0864 

shi/M419B Not tested for preference -0.291 +/- 0.0264 

+/MB419B Not tested for preference -0.354 +/- 0.0568 
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Crosses 
Sugar preference 

Mean +/- SEM 

Shock avoidance 

Mean +/- SEM 

shi/M504B No conditioning phenotype -0.403 +/- 0.0669 

+/MB504B No conditioning phenotype -0.344 +/- 0.0619 

shi/M438B No conditioning phenotype -0.434 +/- 0.0344 

+/MB438B No conditioning phenotype -0.399 +/- 0.0822 

shi/M112C No conditioning phenotype -0.489 +/- 0.0367 

+/MB112C No conditioning phenotype -0.489 +/- 0.0400 

shi/M262B No conditioning phenotype -0.493 +/- 0.0783 

+/MB262B No conditioning phenotype -0.453 +/- 0.0202 

shi/- 0.380 +/- 0.0275 No conditioning phenotype 

shi/MB210B 0.498 +/- 0.0415 No conditioning phenotype 

+/MB210B 0.573 +/- 0.0372 No conditioning phenotype 

shi/M011B 0.394 +/- 0.0576 No conditioning phenotype 

+/MB011B 0.519 +/- 0.0469 No conditioning phenotype 

shi/M434B 0.355 +/- 0.0495 No conditioning phenotype 

+/MB434B 0.499 +/- 0.0526 No conditioning phenotype 

shi/M052B 0.293 +/- 0.0331 No conditioning phenotype 

+/MB052B 0.660 +/- 0.0514 No conditioning phenotype 

shi/M542B 0.273 +/- 0.0487 No conditioning phenotype 

+/MB542B 0.688 +/- 0.0347 No conditioning phenotype 

shi/- Not tested in conditioning -0.360 +/- 0.0575 

shi/MB607B Not tested in conditioning -0.370 +/- 0.0522 

+/MB0607B Not tested in conditioning -0.362 +/- 0.0488 

 

Table 8: Sugar preference and shock avoidance of lines with impaired visual memories. 

No significant defect in naïve sugar preference is detected among the experimental groups and the 

corresponding control groups (one-way ANOVA, p>0.05), n = 4-8. No significant defect in naïve shock 

avoidance is detected among the experimental groups and the corresponding control groups (one-way 

ANOVA, p>0.05), n = 4-10. 
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Crosses 

Appetitive conditioning in 

permissive temperature 

Mean LI +/- SEM 

Aversive conditioning in 

permissive temperature 

Mean LI +/- SEM 

shi/- 
Not tested in permissive 

temperature 
-0.173 +/- 0.0181 

shi/MB010B 
Not tested in permissive 

temperature 
-0.181 +/- 0.0569 

shi/MB364B 
Not tested in permissive 

temperature 
-0.127 +/- 0.0217 

shi/MB152B 
Not tested in restrictive 

temperature 
-0.158 +/- 0.0343 

shi/M009B 
Not tested in permissive 

temperature 
-0.185 +/- 0.0442 

shi/M355B 
Not tested in permissive 

temperature 
-0.183 +/- 0.0283 

shi/M419B 
Not tested in permissive 

temperature 
-0.185 +/- 0.0389 

shi/M504B No conditioning phenotype -0.236 +/- 0.0381 

shi/M438B No conditioning phenotype -0.138 +/- 0.0233 

shi/M112C No conditioning phenotype -0.208 +/- 0.0525 

shi/M262B No conditioning phenotype -0.263 +/- 0.0416 

shi/- 0.114 +/- 0.0258 No conditioning phenotype 

shi/MB210B 0.161 +/- 0.0459 No conditioning phenotype 

shi/M011B 0.161 +/- 0.0386 No conditioning phenotype 

shi/M434B 0.133 +/- 0.0170 No conditioning phenotype 

shi/M052B 0.163 +/- 0.0505 No conditioning phenotype 

shi/M542B 0.123 +/- 0.0262 No conditioning phenotype 

shi/- 
Not tested in restrictive 

temperature 
-0.117 +/- 0.0264 

shi/MB607B 
Not tested in restrictive 

temperature 
-0.124 +/- 0.0360 

+/MB0607B 
Not tested in restrictive 

temperature 
-0.150 +/- 0.0282 

 

Table 9: Appetitive and aversive conditioning at permissive temperature 

No significant defect in appetitive memory performance at permissive temperature could be detected among 

the experimental groups and the corresponding control group (one-way ANOVA, p>0.05), n = 4-25. No 

significant defect in aversive memory performance in permissive temperature could be detected among the 

experimental groups and the corresponding control group (one-way ANOVA, p>0.05), n = 7-13. 
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Description of MB Split-GAL4 lines 
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MB010B 13F02 attP40 52H09                       

MB152B 19B03 attP40 26E07                       

MB364B 13F02 attP40 21B06                       

MB009B 13F02 attP40 45H04                       

MB028B 26E07 attP40 16H11                       

MB355B 12E03 attP40 26E07                       

MB419B 26E07 attP40 39A11                       

MB131B 13F02 attP40 89B01                       

MB417B 26E07 attP40 29G11                       

MB005B 13F02 attP40 34A03                       

MB370B 13F02 attP40 41C07                       

MB461B 35B12 attP40 26E07                       

MB418B 26E07 attP40 30F02                       

MB463B 35B12 attP40 34A03                       

MB008B 13F02 attP40 44E04                       

MB371B 13F02 attP40 85D07                       

MB185B 52H09 attP40 18F09                       

MB477B 44E04 attP40 26E07                       

MB465C 37D04 VK00027 51B02                       

MB460B 34E09 attP40 45E06                       

MB380B 17A04 attP40 65D07                       

 

Table 10: Split-GAL4 lines labeling KCs and calyx associated neurons 
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Table 11: Split-GAL4 lines labeling dopamine MB-input neurons 
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08 attP40 

53C
10                                   

MB 
074C 

30E
11 attP40 

82C
10                                   

MB 
399B 

82C
10 attP40 

50B
03                                   

MB 
002B 

21D
02 attP40 

22C
12                                   

MB 
057B 

33E
02 VK00027 

50A
05                                   

MB 
310C 

20G
03 attP40 

19F
09                                   

MB 
077B 

58E
02 attP40 

11A
03                                   

MB 
051B 

58E
02 attP40 

31F
06                                   

MB 
082C 

71D
01 attP40 

58F
02                                   

MB 
018B 

52G
04 VK00027 

17C
11                                   

MB 
093C 

70B
10 attP40 

19F
09                                   

MB 
052B 

71D
08 attP40 

11F
03                                   

MB 
552B 

61H
03 VK00027 

28E
09                                   

MB 
549C 

76F
05 attP40 

23C
12                                   

MB 
050B 

24E
12 attP40 

52H
01                                   

MB 
080C 

58E
02 attP40 

37E
10                                   

MB 
542B 

93D
10 VK00027 

13F
04                                   

MB 
027B TH attP40 

26F
01                                   

MB54
3B 

76F
05 attP40 

32G
08                                   

 

Table 12: Split-GAL4 lines labeling potential MB-output neurons 
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