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Abstract v

In this thesis, we establish the scaling limit of several models of random trees
and graphs, enlarging and completing the now long list of random structures that
admit David Aldous’ continuum random tree (CRT) as scaling limit. Our results
answer important open questions, in particular the conjecture by Aldous [Ald91Db)
p. 55| for the scaling limit of random unlabelled unrooted trees. We also show
that random graphs from subcritical graph classes admit the CRT as scaling limit,
proving (in a strong from) a conjecture by Marc Noy and Michael Drmota [DN13],
remark after Thm. 3.2], who conjectured a scaling limit for the diameter of these
graphs. Furthermore, we provide a new proof for results by Bénédicte Haas and
Grégory Miermont [HM12, Thm. 9] regarding the scaling limits of random Pélya
trees, extending their result to random Podlya trees with arbitrary vertex-degree
restrictions.






Kurzzusammenfassung vii

In dieser Arbeit ermitteln wir die Skalierungslimes mehrerer Modelle zufélliger
Baume und Graphen. Hierbei erweitern und vervollstindigen wir die nun lange
Liste zufalliger Strukturen, deren Skalierungslimes der Continuum Random Tree
(CRT) von David Aldous ist. Unsere Resultate beantworten wichtige offene Fra-
gen, insbesondere die Vermutung von David Aldous [AId91bl p. 55] beziiglich des
Skalierungslimes zufilliger Isomorphieklassen entwurzelter Baume. Desweiteren be-
weisen wir, dass der CRT als Skalierungslimes zufélliger Graphen von subkritischen
Klassen auftritt. Dies beweist (in einer starken Form) eine Vermutung von Marc Noy
und Michael Drmota [DN13, Bemerkung nach Thm. 3.2], die einen Skalenlimes fiir
den Durchmesser dieser Graphen vermuteten. Desweiteren geben wir einen neuen
Beweis fiir Resultate von Bénédicte Haas und Grégory Miermont [HMI12, Thm. 9]
beziiglich des Skalierungslimes zufalliger Pélya Baume. Hierbei erweitern wir dieses
Resultat auf Pélya Baume mit beliebigen Knotengrad Restriktionen.
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Introduction and main results



2 1. Introduction and main results

1.1 Preliminaries

The continuum random tree (CRT) was constructed by David Aldous [Ald91al,
Ald91bl [Ald93] and shown to be the scaling limit of critical Galton-Watson trees
conditioned to be large, if the offspring distribution has finite (nonzero) variance.
Since Aldous’s pioneering work, the CRT has been identified as the limiting object
of many different classes of discrete structures, in particular trees, see e.g. Marck-
ert and Miermont [MM11], Haas and Miermont [HM12] and references therein, and
planar maps, see e.g. Albenque and Marckert [AMOS], Bettinelli [Bet15], Caraceni
[Car], Curien, Haas and Kortchemski [CHK14] and Janson and Stefansson [JS15].

The preliminaries Chapter [2]intends to make our results accessible to a broad au-
dience by recalling relevant notions and known results. More precisely, Section [2.1
gives a brief introduction to Aldous’ scaling limit of conditioned Galton-Watson
trees, recalling the notion of Gromov-Hausdorff convergence and the construction
of the continuum random tree from Brownian excursion. Here we follow Le Gall
and Miermont [LGMI12|, and the books by Burago, Burago and Ivanov [BBIOI]
and Diestel [Diel(]. In Section we give a concise introduction to the theory
of combinatorial species, an algebraic framework for the systematic enumeration
and decomposition of combinatorial objects. This section follows the original work
by Joyal [Joy81] and the book [BLLI8| by Bergeron, Labelle and Leroux. Section
discusses the cycle pointing operator, which is a valuable tool in the study of
combinatorial structures up to symmetry. Here we follow the work by Bodirsky,
Fusy, Kang and Vigerske [BEKV1I1]. In Section we briefly set up the framework
of Boltzmann samplers. It allows us to "mechanically” translate decompositions of
combinatorial objects in the language of combinatorial species to random algorithms,
that produce random objects following certain Boltzmann distributions. In the sub-
sequent chapters we are going to make heavy use of this bridge from combinatorial
species to random algorithms, in order study random trees and graphs. We empha-
size the importance of Pdlya-Boltzmann samplers introduced in [BEKV1I1], which
generalize previous work by Duchon, Flajolet, Louchard and Schaeffer in [DELS02]
and [DFLS04], and the work [FFP07] by Flajolet, Fusy and Pivoteau. In Section [2.5]
we close the preliminaries chapter by recalling a frequently used deviation inequal-
ity, found in almost any textbook on the subject. We advise that Subsection [2.2.4]
and Section [2.3| are extended versions of some parts of the preliminaries section of
the author’s work [Stuld], and that Subsections [2.1.1} [2.1.2] [2.2.1] [2.2.3| and [2.2.5|
follow closely certain parts of the preliminary section the author wrote for the work
[PSW14] by Konstantinos Panagiotou, Kerstin Weller and the author.

1.2 Unlabelled (unrooted) trees

One of the main contributions of this thesis concerns random trees that are unordered
and unlabelled. Here one distinguishes between Pdlya trees, which have a root, and
unlabelled (unrooted) trees, see Figure It has been a long-standing conjecture
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Figure 1.1: All unlabelled (unrooted) trees with 6 vertices.

by Aldous [AId91D, p. 55] that the models ”all Pélya trees with n-vertices equally
likely” and ”all unlabelled trees with n-vertices equally likely” admit the CRT as
scaling limit. The convergence of binary Pdlya trees, i.e. where the vertex outdegrees
are restricted to the set {0,2}, was shown by Marckert and Miermont [MM11] using
an appropriate trimming procedure on trees. Later, Haas and Miermont [HMI2]
proved the conjecture for Pdlya trees by establishing a general result on the scaling
limits of random trees satisfying a certain Markov branching property and using
these trees to approximate random Pélya trees. In this way, they established the
convergence for Pdélya trees without degree restrictions or with vertex outdegrees
in a set of the form {0,1,...d} or {0,d} for d > 2, remarking that the conjecture
regarding unlabelled unrooted trees was still open. Chapter [3|settles this conjecture
in the affirmative. It is an extended version of the the author’s work [Stul4]. Our
main result reads as follows.

Theorem 1.2.1. Let T,, denote the uniform random unlabelled unrooted tree with
n vertices. There is a constant a > 0 such that

d
(Tp, an~2dr,) D (T2, dr)

with respect to the Gromov-Hausdorff metric. Here we use the normalization by

Le Gall and let Te denote the continuum random tree constructed from Brownian

excursion (e(t))o<t<1-

The scaling constant a is precisely the same as for the case of Pdlya-trees, i.e. it
is given by a = \/7/2ks With ks denoting the constant such that the number of
Pélya trees with n vertices is asymptotically given by keon™3/2p~" for some p > 0
[HM12]. The techniques of our proofs are based on the cycle-pointing decomposition
developed by Bodirsky, Fusy, Kang and Vigerske [BEKV11]. A direct consequence
is that the diameter D(T,,) admits the scaling limit

P(D(T,) > a tzn'/?) — P(D(Te) > ).
The distribution of the diameter is known and given by

D(7)?  sup (e(ts) +e(ts) —2 inf e(t)) (1.2.1)
0<t1<t2<1 t1<t<ts
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and

P(D(Te) > z) = i(k‘2 —1) (§k4x4 —4k%x% + 2) exp(—k:2z2/2). (1.2.2)
k=1

Equations (1.2.1)) and (1.2.2]) the first moment E[D(7.)] = 4/34/7/2 have been
known since the construction of the CRT by Aldous [Ald91b, Ch. 3.4], who used

the convergence of random labelled trees to the CRT together with results by Szek-
eres [Sze83] regarding the diameter of these trees. Expression was recently
recovered directly in the continuous setting by Wang [Wanl5]. We also provide
exponential tailbounds for the diameter of the tree T,,:

Lemma 1.2.2. Let T,, denote the uniform random unlabelled unrooted tree with n
vertices. Then there are constants C,c > 0 such that for all n and x > 0 we have
the following tail bound for the diameter:

P(D(T,) > x) < Cexp(—caz?/n).

Given the limit distribution in ([1.2.2)) we may check that our tail-bound is es-
sentially optimal. Lemma implies that the rescaled diameter aD(T,)//n is
p-uniformly integrable for any p > 1. Hence it convergences towards the diameter
D(7e) of the CRT not only in distribution, but also in arbitrarily high moments.
Since E[D(Te)] = 4/31/7/2 it follows in particular that

4
E[D(T,)] ~ o—n'/?
DT ~ g
asymptotically as n tends to infinity. If we consider trees with constraints on the
vertex degrees we also have to deal with restrictions on the size of the tree:

Proposition 1.2.3. Let Q) be a set of positive integers such that 1 € Q and there
is a k > 3 such that k € Q. We let d denote the greatest common divisor of the
nonzero elements of the shifted set Q* = Q — 1. Then the following holds

i) If there is a tree with n vertices and vertex degrees in (2, then n = 2 mod d.
Conversely, if n = 2 mod d is large enough, then there always exists such a
tree with n vertices.

it) If there is a rooted tree with m vertices and verter outdegrees in Q*, then m =1
mod d. Conversely, if m =1 mod d is large enough, then there always exists
such a tree with m vertices.

The proof of this well-known fact is by Schur’s lemma, see for example Wilf
[Wil06, Thm. 3.15.2]. For each subset 2* C Ny containing 0 and at least one integer
equal or larger than 2 there exists a constant cq, such that the uniformly drawn
random unlabelled rooted tree A, _1 with n — 1 vertices and vertex outdegrees in 2*
satisfies

CQ*n71/2An_1 ﬂ Te
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as n = 2 mod ged(2*) tends to infinity. For Q* = {0,2} this was established by
Marckert and Miermont [MMI11]. Haas and Miermont [HM12] treated the cases
0" = Np, @ = {0,b} and Q* = {0,1,...,b} for b > 2. The remaining cases are
treated in Theorem below. We provide the following extension of our main
result:

Theorem 1.2.4. Let ) be a set of positive integers containing 1 and at least one
integer equal or larger than 3, and set Q* = Q — 1. Given an integer n with n = 2
mod d we may consider the uniform random unlabelled unrooted tree T, with n
vertices and vertex-degrees in 2. Then

(Toscan™2dy,) <5 (Te, dr.)
in the Gromov-Hausdorff sense as n =2 mod ged(2*) becomes large.

Let us fix the notation of Theorem [1.2:4] i.e. let Q be a set of positive integers
satisfying 1 € Q2 and k € Q) for at least one k£ > 3, and set Q* = Q2 — 1. In order to
ensure convergence of higher moments of extremal parameters, we show the following
tail bound for the diameter.

Lemma 1.2.5. Let T,, denote the uniform random unlabelled unrooted tree with n
vertices and vertex-degrees in Q). Then there are constants C,c > 0 such that for all
x >0 and n with n =2 mod ged(2*) we have that

P(D(T,) > x) < Cexp(—cz?/n).

As an important ingredient in our proof we show a similar tail bound for the
height of uniform random Pdlya trees with arbitrary vertex-degree restrictions.

Lemma 1.2.6. Let A, denote the uniform random Pdlya tree with m vertices and
verter out-degrees in the set 0*. Then there are constants C,c > 0 such that for all
x >0 and m with m =1 mod ged(*) we have that

P(H(A,,) > ) < Cexp(—cz?/m).

The tail-bounds imply that the rescaled height m~'/2H(A,,) and diameters
n~Y2D(T,) and m~/2D(A,,) of unlabelled trees are arbitrarily high uniformly in-
tegrable. Together with the convergence towards the CRT, this implies

E[D(T,)] ~ E[DP(7e)Jn/? /chy-,
E[D?(An-1)] ~ E[DP(Te)n"/? /by,
E[H?(An-1)] ~ E[HP(To)]n?/? /cf,.,
as n = 2 mod d tends to infinity. Parts of this result have already been obtained

using analytic methods: Broutin and Flajolet performed a precise study of the height
of unlabelled rooted binary trees and diameter of unlabelled unrooted ternary trees
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(i.e. the case Q" = {0,2} and Q = {1,3}) in [BEO§| and [BF12], showing among
other results convergence of arbitrarily high moments with exact expressions for
their limit. Drmota and Gittenberger [DG10, Thm. 2] obtained the limit behaviour
of the height of unlabelled rooted trees with precise expressions for the limits of
arbitrarily high moments.

The distribution of the height H(7¢) is known and given by

(d)

H(Te)= sup  e(t) (1.2.3)
0<t1<t2<1
and
P(H(Te) > z) =2 (4k2z2 —1) exp(—2k2x2), (1.2.4)
k=1

see [AId91b, Ch. 3.1]. Its moments are also known are known and given by
E[H(Te)] = V7/2,  E[H(T)¥] = 272k(k — )T(k/2)¢(k) for k > 2.

This holds by standard results for Brownian excursion by Chung [Chu76], and Biane,
Pitman and Yor [BPY(I] for a proof using Equation (1.2.3), or by results of Rényi
and Szekeres [RS67, Eq. (4.5)]) who calculated the moments of the limit distribution
of the height of a class of trees that converges towards the CRT (by [Ald91a]). The
moments of the diameter are also known:

7r2
BT = 52 ED(RP) =3 (1+7). EDT)Y - 2vEn, (129)
E[D(Te)"] = 21;/2/-6(/% —1)(k = 3)T(k/2)(¢(k —2) — ((k)) for k> 4. (1.2.6)

The expression E[D(7¢)] = 2 1/7/2 may be obtained as described in Aldous [AIJ91D)
Sec. 3.4] by results of Szekeres [Sze83|, who proved the existence of a limit distri-
bution for the diameter of rescaled random unordered labelled trees. The higher
moments could be obtained in the same way by elaborated calculations, or, we can
deduce them by building on results by Broutin and Flajolet, who studied in [BF12]
the random tree T,, that is drawn uniformly at random among all unlabelled trees
with n leaves in which each inner vertex is required to have degree 3. Using analytic
methods [BF12, Thm. 8], they computed asymptotics of the form

E[D(T,)"] ~ e, A™"n"/?
with A an analytically given constant, and the constants ¢, given by

8 16 2

o= oV, 0225(1+%)a c3 = 64/T,

¢ = —=r(r—=1)(r=3)T(r/2)({(r—2)—((r) ifr>4.
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Figure 1.2: All Pélya trees with 5 vertices.

Since E[D(T,,)"] ~ E[D(ﬁ)T]C{_OT’Q}HT/Q it follows that E[D(7e)"] = cr(cqo,23/N)"- All
that remains is to calculate the ratio cfg9y/A, which is given by

cro21/A = E[D(Te)l/e1 = 1/(2V2),
since E[D(7e)] = 4/3+/7/2. This yields Equations and (1.2.6).

1.3 Polya trees

Pélya trees are trees that are rooted, unordered and unlabelled, see Figure They
are named after George Poélya, who developed a framework based on generating
functions in order to study their properties [P6137]. The main difficulty of analysing
these objects in a random setting is that they do not fit into well-studied models of
random trees such as simply generated trees, a fact that was widely believed and
which has been rigorously established by Drmota and Gittenberger [DGI0, Thm.
1].

Marckert and Miermont [MMII] established the scaling limit of binary Pdlya
trees. Haas and Miermont [HM12] extended this result by using different methods,
showing that the CRT is the scaling limit of random Pdlya trees without degree
restrictions or with vertex-outdegrees in a set of the form {0,d} or {0,...,d} for
d > 2. However, the question about the convergence of Pélya trees with arbitrary
degree restrictions has remained open since.

Chapter 4} which is an extended version of the work [PS15] by Konstantinos
Panagiotou and the author of the present thesis, settles this question by presenting
a proof of the fact that uniform random Pélya trees with arbitrary degree restrictions
converge towards the CRT.

Theorem 1.3.1. Let Q* be an arbitrary set of nonnegative integers containing zero
and at least one integer greater than or equal to two. Let A, denote the uniform
random Pdlya tree with n vertices and vertex outdegrees in 0*. Then there exists a
constant cqo+ > 0 such that

_ d
(An, coon~2dp,) D (T2, drs)
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with respect to the Gromov-Hausdorff topology, as n = 1 mod ged(Q*) tends to
nfinity.

Our proof is very short, almost elementary, and reveals a striking structural
property. Roughly speaking, the idea is to draw random pairs (T},, 0y,) of a labelled
rooted tree T;, with n vertices and an automorphisms o, of T, in such a way, that
the isomorphism class corresponding to 7T, is distributed like the uniform random
Pélya tree. The fixpoints of ¢ then form a subtree 7, of T,, which is distributed
like a critical Galton-Watson tree conditioned on having a random size which con-
centrates around a constant multiple of n. In particular, the rescaled fixpoint tree
n~Y2T,, converges weakly towards a constant multiple of the CRT. Moreover, the
non-fixpoints of o, form small subtrees (typically of order O(logn)), that are at-
tached to the fixpoints. Hence they do not contribute much to the geometric shape of
T,, yielding that the Gromov-Hausdorff distance between the rescaled trees n=/2T,
and n~ Y27, converges in probability to zero, completing the proof.

1.4 Random graphs from subcritical classes

Chapter [5| (except for Section which has not been published previously) is an
extended version of the work [PSW14] by Konstantinos Panagiotou, Kerstin Weller
and the author of the present thesis. Our motivation is that although the CRT was
identified as the scaling limit in various settings, little is known about the limiting
behaviour of random graphs from complex graph classes. In this chapter we study
in a unified way the asymptotic distribution of distances in random graphs from
so-called subcritical classes.

Informally speaking, a class C of labelled, connected (simple) graphs is called
subcritical, if for a typical graph with n vertices the largest block (i.e. inclusion
maximal 2-connected subgraph) has O(logn) vertices. See Section for a formal
definition. Prominent examples of classes that are subcritical are outerplanar and
series-parallel graphs. Subcritical graph classes have been the object of intense
research in the last years, especially because of their close connection to the class of
planar graphs. See for example Drmota and Noy [DN13], Bernasconi, Panagiotou
and Steger [BPS09], Drmota, Fusy, Kang, Kraus and Rué [DFK™11], and Panagiotou
and Steger [PS10]. However, with the notable exception of [DN13], most research on
such random graphs has focused on additive parameters, like the number of vertices
of a given degree; the fine study of global properties, like the distribution of the
distances, poses a significant challenge.

Let C,, denote a random graph drawn uniformly from the set of connected graphs
with n vertices of an arbitrary but fixed subcritical class C. In [DN13, Thm. 3.2],
Michael Drmota and Marc Noy established the following bound for the diameter

c1vn < E[D(Cp)] < e2y/nlogn,

and conjectured a universal limit law for D(C,,)//n. We prove this conjecture in a
strong sense by showing convergence towards the CRT 7.
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Graph Class C Numerical approximation of ¢(c)
Trees = Forb(C3) 0.5

Forb(Cy) 0.58778

Forb(C5) 0.66433

Cacti Graphs 0.62973

Outerplanar Graphs | 0.96038

Table 1.1: The scaling constant of several examples of subcritical graph classes.

Theorem 1.4.1. Let C be a subcritical class of connected graphs and let C,, denote
the random graph drawn uniformly from the graphs in C with n vertices. Then there
exists a constant c¢cy such that

_ d
(Cay ceyn™%dc,) 9, (72, dr,)

with respect to the Gromov-Hausdorff metric, as n becomes large. Here we restrict
ourselves to values of n for which the graphs with n vertices in the class C exist.

In order to ensure convergence of higher moments of the diameter D(C,,) (or the
height with respect to a uniformly at random chosen root), we also show exponential
tail-bounds.

Theorem 1.4.2. Let C be a block-stable class of connected graphs and let C,, denote
the random graph drawn uniformly from graphs in C with n vertices. Then there are
constants C,c > 0 such that for alln and x >0

P(D(C,) > ) < Cexp(—cx?/n).

We also give explicit analytic expressions and numeric approximations for the
scaling constant c(c) for various examples of subcritical graph classes, including the
class O of outerplanar graphs for which we obtain ¢y ~. See Table for an
overview. The scaling limit of outerplanar maps, i.e. embeddings of outerplanar
graphs on the sphere considered up to orientation preserving homeomorphisms, was
established by Caraceni [Car] using different methods. See also the author’s recent
work [Stul5b] (not included in this thesis) for an alternative proof and the scaling
limit of bipartite outerplanar maps.

We extend our result for the convergence towards the CRT to random graphs
with independent link weights. That is, we fix a random variable w > 0 having
finite exponential moments and assign an independent copy of w to each edge of the
random graph C,. The first-passage percolation distance dppp(z,y) of two points
2 and y is then given by the minimum of all sums of weights along paths joining x
and y.
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Proposition 1.4.3. Let C be a subcritical class of connected graphs and let C,, denote
the random graph drawn uniformly from the graphs in C with n vertices. Then there
exists a constant d(cy such that

_ d
(Cnsdieyn Y2dppp) LGN (Te,d7)
with respect to the Gromov-Hausdorff metric, as n becomes large.

A further extension is to the largest component of a random graph that is not
necessarily connected:

Proposition 1.4.4. Let C be a subcritical class of connected graphs and let G,
denote the random graph drawn uniformly from all labelled graphs with n vertices
whose connected components lie in C. Let H, denote the largest component of Gy,.
Moreover, for simplicity assume that C contains all trees. Then

_ d
(Hn, ceyn™2dppp) CN (Te, d72)

with respect to the Gromov-Hausdorff metric, as n becomes large. Here ccy is the
same scaling constant as in Theorem |1.4.1).

As a conclusion, we remark that it is natural to ask whether random graphs
in the unlabelled setting also admit the CRT as scaling limit. Such graphs have
been studied by Drmota, Fusy, Kang, Kraus and Rué¢ [DFK™11] and Bodirsky, Fusy
and Kang [BEKVO0T7]. The scaling limit of rooted unlabelled graphs from subcritical
classes was established by the author of the present thesis in the work [Stulbal
(which is not included in this thesis). The scaling limit of unlabelled unrooted
graphs is current work in progress by the author. Moreover, besides the scaling limit
it is also interesting to ask whether random graphs from subcritical classes admit a
Benjamini-Schramm limit. A paper that addresses this question (and answers it in
the affirmative) is also in preparation by the author.

Including a work with several coauthors in a thesis obliges the author to clarify
that his contribution to the project was substantial. In the early stages during the
preparation of [PSW14] on which Chapter [5|is based, the three authors of [PSW14]
devised a proof sketch of the scaling limit Theorem which the author extended
to a complete proof that is included in this thesis in Section Having finished that,
the author independently discovered a new proof of Theorem by constructing
a size-biased R-enriched tree. The new proof, described in Sections [5.2] and
fully replaces the old, as it is simpler, much shorter, and may easily be extended
to the first-passage percolation setting (see Section . Furthermore, the author
independently obtained the exponential tail bounds in Theorem|[1.4.2] In Section[5.6
the author carried out most of the calculations and writing.
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2.1 The continuum random tree

We briefly recall classical results regarding the convergence of random plane trees
towards the continuum random tree.

2.1.1 Graph theoretic notions

All graphs considered in the present work are undirected and simple. That is, a
graph G consists of a non-empty set V(G) of vertices and a set F(G) of edges that
are two-element subsets of V(G). The cardinality |V (G)| of the vertex set is termed
the is the size of G. Following the graph theory book by Diestel [Diel(], we recall and
fix basic definitions and notations. Two vertices v, w € V(G) are said to be adjacent
if {v,w} € E(G). An edge e € E(G) is adjacent to v if v € e. The cardinality of the
set of all edges adjacent to a vertex v is termed its degree and denoted by dg(v). A
path P is a graph such that

V(P) = {vo,..., v}, E(P) = {vov1,...,vp_10¢}

with the v; being distinct. The number of edges of a path is its length. We say P
connects or joins its endvertices vg and v, and we often write P = vgvy...vp. If
P has length at least two we call the graph Cy, = P 4 vguy obtained by adding the
edge vgvy a cycle. The complete graph with n vertices in which each pair of distinct
vertices is adjacent is denoted by K.

We say the graph G is connected if any two vertices u,v € V(G) are connected
by a path in G. The length of a shortest path connecting the vertices u and v is
called the graph distance of u and v and it is denoted by dg(u,v). Clearly dg is
a metric on the vertex set V(G). A graph G together with a distinguished vertex
v € V(G) is called a rooted graph with root-vertex v. The height h(w) of a vertex
w € V(G) is its distance from the root. The height H(G) of the entire graph is the
supremum of the heights of the vertices in G. A tree T is a non-empty connected
graph without cycles. Any two vertices of a tree are connected by a unique path. If
T is rooted, then the vertices w’ € V(T') that are adjacent to a vertex w and have
height h(w’) = h(w) + 1 form the offspring set of the vertex w. Its cardinality is the
outdegree d*(w) of the vertex w.

2.1.2 Plane trees and contour functions

The Ulam-Harris tree is an infinite rooted tree with vertex set U,>oN" consisting
of finite sequences of natural numbers. The empty string () is the root and the
offspring of any vertex v is given by the concatenations vl,v2,v3,.... In particular,
the labelling of the vertices induces a linear order on each offspring set. A plane
tree is defined to be a subtree of the Ulam-Harris tree that contains the root such
that the offspring set of each vertex v is of the form {v1,v2,...,vk} for some integer
k > 0 depending on v.
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Given a plane tree T of size n we consider its canonical depth-first search walk
(’Ui)ogiSQ(n_l) that starts at the root and always traverses the leftmost unused edge
first. That is, vg is the root of T" and given vy, . .., v; walk if possible to the leftmost
unvisited son of v;. If v; has no sons or all sons have already been visited, then try
to walk to the parent of v;. If this is not possible either, being only the case when v;
is the root of T and all other vertices have already been visited, then terminate the
walk. The corresponding heights c(i) := h(v;) define the search-depth function ¢ of
the tree T'. The contour function C : [0,2(n — 1)] — R4 is defined by C(i) = ¢(i)
for all integers 0 < i < 2(n — 1) with linear interpolation between these values, see
Figure for an example.

Figure 2.1: The contour function of a plane tree.

A typical model for random plane trees is that of Galton-Watson trees. The
following result concerning the contour functions of conditioned Galton-Watson trees
is due to Aldous [Ald93, Thm. 23], who stated it for aperiodic offspring distributions.
See also Le Gall [LGI10, Thm 6.1] (who stated it without aperiodicity requirements),
as well as Duquesne [Duq03] and Kortchemski [Korl3| for further extensions.

Theorem 2.1.1. Let T, be a critical £-Galton-Watson tree conditioned on having
n vertices, with the offspring distribution & having finite non-zero variance o?. Let
C, denote the contour function of T,. Then

Cr (t2(n — 1))> LN

0<t<1

7
2\/n
in C([0,1],Ry), where e = (et)o<t<1 s a normalized Brownian excursion.

2.1.3 Gromov-Hausdorff convergence

Theorem [2.1.1] can be formulated as a convergence of random trees with respect to
the Gromov-Hausdorff metric, which is a distance between compact metric spaces.
We introduce the required notions following Burago, Burago and Ivanov [BBIO1
Ch. 7] and Le Gall and Miermont [LGM12]

2.1.3.1 The Hausdorff metric

Recall that given subsets A and B of a metric space (X, d), their Hausdorff-distance
is given by

du(A,B) =inf{e > 0| A CU(B),B C U(A)} € [0, ],
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where U (A) = {x € X | d(z,A) < €} denotes the e-hull of A. In general, the
Hausdorff-distance does not define a metric on the set of all subsets of X, which is
why we restrict ourselves to compact subsets.

Proposition 2.1.2 ([BBIOI, Prop. 7.3.3]). The Hausdorff distance dg defines a
metric on the set of compact subsets of X.

Proof. The triangle inequality is easily seen to be satisfied for arbitrary subsets of
X. If A and B are closed subsets of X, then di(A, B) = 0 implies that A = B.
Moreover, if A and B are bounded, then dy(A, B) < oc. O

2.1.3.2 The Gromov-Hausdorff distance

The Gromov-Hausdorff distance allows us to compare arbitrary metric spaces, in-
stead of only subsets of a common metric space. It is defined by the infimum of
Hausdorff-distances of isometric copies in a common metric space. We are also go-
ing to consider a variation of the Gromov-Hausdorff distance given in [LGMI12] for
pointed metric spaces, which are metric spaces together with a distinguished point.

Given metric spaces (X,dx), and (Y,dy), and distinguished elements zy € X
and yo € Y, the Gromov-Hausdorff distances of X and Y and the pointed spaces
X® = (X,z9) and Y* = (Y, yo) are defined by

dGH(X,Y) = L}i{I}LfY dH(Lx(X),Ly(Y)) € [0, OO],

dGH(X.,Y.) = inf max {dH<Lx(X),Ly(Y)),dE(Lx(a}(]),Ly(@/o))} S [0,00]

LXHly

where in both cases the infimum is taken over all isometric embeddings tx : X — E
and ty : Y — FE into a common metric space (E,dg), compare with Figure

Figure 2.2: The Gromov-Hausdorff distance.

We will make use of the following characterisation of the Gromov-Hausdorff
metric. Given two metric spaces (X,dyx) and (Y,dy) a correspondence between
them is a relation R C X X Y such that any point x € X corresponds to at least
one point y € Y and vice versa. If X and Y are pointed, we additionally require
that the roots correspond to each other. The distortion of R is given by

dis(R) = sup{|dx (21, 72) — dy (y1,92)| | (z1,91), (v2,2) € R}.
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Proposition 2.1.3 ([BBIO1, Thm. 7.3.25] and [LGMI12, Prop. 3.6]). Given two
metric spaces X,Y and pointed metric spaces X*®,Y*® we have that

1 1
don(X.Y) = Jinfdis(R), and dau(X*,Y*) = 7 inf dis(R),

where R ranges over all correspondences between X and Y (or X® and Y*).

Proof. We will only show the pointed case, as the (easier) regular case may be
treated analogously.

In order to show ”>”, it suffices to show that dgu(X,Y’) < r implies dis(R) < 2r
for some correspondence R. So, suppose that we are given r > 0 with dgu(X,Y) < r.
Then there exists a metric space (E,dg) and pointed subspaces A® = (A4, ap) and
B*® = (B, by) of E which are isometric copies of X*® and Y'*, such that dg(A, B) < r
and dg(ag,bp) < r. Let R be the correspondence given by (a,b) € R if and only if
dg(a,b) < r for each a € A and b € B. Note that the distinguished vertices ag and
by correspond to each other. Moreover, for each (a,b), (a/,b’) € R it holds that

dE(av a/) < dE(av b) =+ dE(b7 b,) + dE(bla a/) <2r+ dE(b> b/)
and similarly
dp(b,b') < 2r +dg(a,d).

Hence
dis(R) < 2r.

In order to show ”<”, let R be an arbitrary correspondence between X°® and
Y*® and set r = %dis(R). It suffices to show that there is a pseudo-metric d on
the disjoint union X LI'Y such that d|xxx = dx, dlyxy = dy, du(X,Y) < r and
d(zo,yo) < r. We define this by setting

d(z,y) = inf{dx(z,2') +r +dy(y,y) | («/,y) € R}

for each x € X and y € Y. Note that this implies that d(z,y) = r if (z,y) € R. In
particular, d(zg,yo) = r. Moreover, it follows that Y C U,4(X) and X C U,4(Y)
for each € > 0. Thus du(X,Y) < r holds. It remains to check that the triangle
inequality holds. To this end, suppose that x1,22 € X and y € Y. For each points
x’ and 3/ that correspond to each other, we have that

(dx(z1,2") +7+dy(y,y) + (dx(x2,2") + 7+ dy (v, y)) > dx(21,22) = d(1, 22)

and consequently
d(z1,y) + d(2,y) > d(z1,22).

Similarly,
d(z1, 22) + (dx (z2,2") + 7+ dy (v, y)) > dx(x1,2") +r+dy(y',y) > d(z1,y)

and hence
d(z1,z2) +d(x2,y) > d(x1,y).

The remaining cases are symmetric to the cases considered or trivial. O
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Using this reformulation of the Gromov-Hausdorff distance, we may check that
it satisfies the following properties.

Lemma 2.1.4 ([BBIOI, Thm. 7.3.30] and [LGM12, Thm. 3.5]). Let X, Y, and Z
be (pointed) metric spaces. Then the following assertions hold.

i) deu(X,Y) =0 if and only if X and Y are isometric.
i) dep(X, 7)) < dgu(X,Y)+deu(Y,Z).

i) If X and'Y are bounded, then dgu(X,Y) < cc.

2.1.3.3 The space of isometry classes of compact metric spaces

In Section 2.1.3.1] we saw that the Hausdorff-distance defines a metric on the set
of all compact subsets of a metric space. By Lemma the Gromov-Hausdorff
distance satisfies in a similar way the axioms of a (finite) pseudo-metric on the class
of all compact metric spaces, and two metric spaces have Gromov-Hausdorff distance
0 if and only if they are isometric. Informally speaking, this yields a metric on the
collection of all isometry classes of metric spaces, and in a similar way we may endow
the collection of isometry classes of pointed metric spaces with a metric.

Note that from a formal viewpoint this construction is a bit problematic, since
we are forming a collection of proper classes. A solution is presented as an exercise
in [BBIOI, Rem. 7.2.5):

Proposition 2.1.5. Any set of pairwise non-isometric (pointed) metric spaces has
cardinality at most 280, and there are specific examples of 2% many non-isometric
(pointed) spaces.

Proof. The lower bound is easily checked, as the intervals [0,«a], « > 0 equipped
with the restriction of the euclidian metric are pairwise non-isometric.

For the upper bound, note that any compact metric space has a countable basis
and its isometry type is determined by the restriction of the metric to this basis.
If the metric space is pointed, we may encode the distinguished root vertex either
by distinguishing a vertex of the basis (if the root vertex happens to belong to the
basis) or, if the root vertex does not belong to the basis, by an infinite subset of
the basis whose unique accumulation point is the distinguished vertex. e Hence,
the cardinality of any set M of pairwise non-isomorphic (pointed) metric spaces is
bounded by the cardinality of RV*N x 2N which equals 2. O

We may thus fix a representative of each isometry class of (pointed) metric spaces
and let K (resp. K*®) denote the resulting sets of spaces. Lemma now reads as
follows.

Corollary 2.1.6 ([BBIO1, Thm. 7.3.30]). The Gromov-Hausdorff distance defines
a finite metric on the set K (resp. K®) of representatives of isometry classes of
(pointed) compact metric spaces.
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The metric spaces K and K® have nice properties, which make them very suitable
for studying random elements:

Proposition 2.1.7 ([LGMI2, Thm. 3.5] and [BBIOI, Thm. 7.4.15]). The spaces K
and K*® are separable and complete, i.e. they are Polish spaces.

2.1.4 The continuum random tree

An R-tree is a metric space (X, d) such that for any two points z,y € X the following
properties hold

1. There is a unique isometric map from the interval ¢, , : [0,d¢(z,y)] = X
satisfying ¢, ,(0) = z and ¢, (df(x,y)) = y.

2. If ¢:[0,ds(x,y)] = X is a continuous injective map, then
Q([07 df(l‘, y)]) - ‘Px,y([oa df(xv y)])

We may construct R-trees as follows. Let f : [0,1] — [0,00[ be a continuous
function satisfying f(0) = f(1) = 0. Consider the pseudo-metric d on the interval
[0, 1] given by

d(u,v) = f(u) + f(v) —2 inf f(s)

u<s<v

for u <wv. Let (Tf,d7;) = ([0,1]/~,d) denote the corresponding quotient space. We
may consider this space as rooted at the equivalence class 0 of 0.

Proposition 2.1.8 ([LGMI12, Thm. 3.1]). Given a continous function f :[0,1] —
[0, 00[ satisfying f(0) = f(1) the corresponding metric space Ty is a compact R-tree.

Hence, this construction defines a map from a set of continuous functions to the
space K®. It can be seen to be Lipschitz-continuous:

Proposition 2.1.9 ([LGMI2] Cor. 3.7]). The map
({f € C(0,1],R>0) | f(0) = f(1) = O}, [lloc) = (K*,dgr), [Ty
is Lipschitz-continous.

Hence we may define the continuum random tree as a random element of the
polish space K°.

Definition 2.1.10. The random pointed metric space (Te, d7;,0) coded by the Brow-
nian excursion of duration one e = (et)o<t<1 is called the Brownian continuum
random tree (CRT).
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Note that the Lipschitz-continuity (and hence measurability) of the above map
ensures that the CRT is a random variable.

Any plane tree is a pointed metric space with respect to the graph-metric and the
root vertex (). Hence a random plane trees may be considered as random elements
of the metric space K*. The following invariance principle giving a scaling limit
for certain random plane trees is due to Aldous [Ald93] and there exist various
extensions. See for example Duquesne [Duq03], Duquesne and Le Gall [DLGO5], Le
Gall [LG10, p. 740], and Haas and Miermont [HM12].

Theorem 2.1.11. Let T, be a critical £-Galton- Watson tree conditioned on having
n vertices, where & has finite non-zero variance o2. As n tends to infinity, T, with
edges rescaled to length ﬁ converges in distribution to the CRT, that is

d _
(T, %dﬁ”@) 9D, (T, dr.0)

in the metric space (K®, dgp).

Proof. Let (Cp(t))o<t<2(n—1) denote the contour function of the random plane tree
Tn- Then the random plane Ty, with f,(t) = Cp(t2(n—1)) may, informally described,
be obtained from the tree 7, by replacing each discrete edge by a copy of the
unit-interval [0,1]. In particular, in this coupling the Gromov-Hausdorff distance
dcu(Tn, Ty, ) is bounded by a constant. Hence

dau(n™* T, n™V2T7,) = n 2 dau(Tn, Ty,) =20

g

Moreover, by Theorem we have that NG fn(t) converges weakly to Brownian
excursion e and hence ﬁ ., converges weakly to the CRT 7¢. Thus

97

o
3n

2.2 Combinatorial species

Combinatorial species were developed by Joyal [Joy81] and allow for a systematic
study of a wide range of combinatorial objects. We are going to make heavy use
of this framework and recall the required theory and notation following Bergeron,
Labelle and Leroux [BLLI8] and Joyal [Joy8I]. The language of combinatorial
classes used in the monumental book on analytic combinatorics by Flajolet and
Sedgewick [FS09] is essentially equivalent in many aspects, although less emphasis
is put on studying objects up to symmetry.
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2.2.1 The category of combinatorial species

A combinatorial species may be defined as a functor F that maps any finite set U
of labels to a finite set F[U| of F-objects and any bijection o : U — V of finite
sets to its (bijective) transport function Flo| : F[U] — F[V] along o, such that
composition of maps and the identity maps are preserved. Formally, a species is a
functor from the groupoid of finite sets and bijections to the category of finite sets
and arbitrary maps. We say that a species G is a subspecies of F, and write G C F,
if G{U] C F[U] for all finite sets U and Glo| = F[o]|y for all bijections ¢ : U — V.
Given two species F and G, an isomorphism « : F == G from F to G is a family of
bijections a = (ay : F[U] — G[U])y where U ranges over all finite sets, such that
for all bijective maps o : U — V the following diagram commutes.

Flu1-22 Fv
[

giv] 2% g

In other words, « is a natural isomorphism between these functors. The species F

and G are isomorphic if there exists and isomorphism from one to the other. This is

denoted by F ~ G or, by an abuse of notation committed frequently in the literature,

just F = G. Formally, we may form the groupoid of combinatorial species with its

objects given by species and its morphisms by natural isomorphisms.

An element Fyy € F[U] has size |Fy| := |U| and two F-objects Fiy and Fy are
termed isomorphic if there is a bijection o : U — V such that Flo](Fy) = Fy. We
will often just write o.Fy = Fy instead, if there is no risk of confusion. We say o is
an isomorphism from Fy to Fy. If U =V and Fyy = Fy then o is an automorphism
of Fy. An isomorphism class of F-structures is called an unlabelled F-object or an
isomorphism type.

2.2.1.1 Examples

We will mostly be interested in subspecies of the species of finite simple graphs such
as the species of trees. Moreover, we will make use of standard species such as the
species of linear orders SEQ or the SET-species given by SET[U] = {U} for all U.
Moreover let 0 denote the empty species, 1 the species with a single object of size 0
and X the species with a single object of size 1.

2.2.2 Symmetries and generating power series

The exponential generating series of a species F is defined as the formal power series

Flx) = faz" € Q[a]
n=0



20 2. Preliminaries

with f,, denoting the cardinality of the set of F-objects F[n| with [n] := {1,...,n}.
Letting f,, denote the number of unlabelled F-objects of size n, the ordinary gener-
ating series of F is defined by

n=0

A pair (F,o0) of an F-object together with an automorphism is called a symmetry.
Its weight monomial is given by

W(Fo) = ﬁxl Lo~ - 'x’(rftn € Q[[mhx% e H

with n denoting the size of F' and o; denoting the number of i-cycles of the permu-
tation o. In particular o; denotes the number of fixpoints. We may form the species
Sym(F) of symmetries of F. The cycle index sum of F is given by

Zr =) W)
(Fo)

with the sum index (F, o) ranging over the set |J,cxn, Sym(F)[n]. The reason for
studying cycle index sums is the following remarkable property. Due to its impor-
tance, we provide a short proof.

Lemma 2.2.1 ([Joy81]). Let U be a finite n-element set. For any unlabelled F-
object m of size n there are precisely n! symmetries (F,o) € Sym(F)[U] having the
property that F has isomorphism type m.

Proof. The symmetric group G := S(U) of the set U operates (from the left) via
relabelling on the set F[U]. The automorphisms of any object F' are given by its
stabilizer group G and its isomorphism class corresponds to its orbit G.F'. Fix any
F € F[U] and let m denote its isomorphism type. By standard results on group
actions, the map

G/Grp — G.F, 9Gp — g.F

is well-defined and bijective. Let T" C G denote a (left) transversal of Gr in G,
that is T' contains precisely one element of each left coset with respect to Gg. Then
the (distinct) F-objects t.F, t € T are precisely the labelled F-objects over U with
isomorphism type m. Clearly, for any group element g € (G, the stabilizer of ¢g.F is
given by its conjugated image

Gg.F = gGngl'

Hence the set of symmetries corresponding to the isomorphism type m is given by
the distinct pairs (t.F,0),t € T, o € tGrt~!. Hence the total number of symmetries
is given by

|G.F x Gp| = |G| =nl.
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F F(x) F(x) Zr(x1,2,...)
SET | exp(z) exp(oi2y a'/i)  exp(3o72, xi/i)
SEQ | 1/(1—2z) 1/(1—=x) 1/(1 — 1)
X T T T
0 0 0 0

1 1

Table 2.1: Generating series of some examples of combinatorial species.

From a probabilistic viewpoint, Lemma [2.2.1| guarantees that the isomorphism
type of the first coordinate of a uniformly at random drawn element from Sym(F)([n])
is uniformly distributed among all n-element unlabelled F-objects. This is crucial,
as symmetries may be decomposed fairly systematically using the theory of species.

Moreover, it follows that the generating series and cycle index sum are related
by

F(2) = Z5(2,0,0,...) and F(z) = Zr(z,22,2,...).

2.2.2.1 Examples

The generating series and cycle index sums of the examples of species mentioned
so far are summarized in Table The only non-trivial entry we need to check is
the expression for the cycle index sum Zggt, but this is easily established: For any
integer n > 0 let S,, denote the symmetric group of order n. Then

Zon =30 S e

n= 0 T oeS,

For any permutation o let (o1, 09,...) € (Ng)Y denote its cycle type. Then to each
element m = (m;); € NJ correspond only permutations of order n := > 2 im; and
their number is given by n!/ 72, (m;!i™). Hence we have

[e.9]

ZSET - Z H ™m; |ZmZ H Z m; 'Zmz Hexp - exp( %)

N(N)z 1 i=1m;= i=1

If (x;); would denote a sequence of sufficiently fast decaying positive real-numbers,
then this calculation could easily be justified. But they denote a countable set of
formal variables, and hence one has every right to ask for a rigorous justification
of this argument, in particular why the involved infinite products of formal vari-
ables vanish. We refer the inclined reader to [FS09, Appendix A.5] for an adequate
discussion of these questions.
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2.2.3 Operations on combinatorial species

The framework of combinatorial species offers a large variety of constructions that
create new species from others. In the following let F, (F;);cny and G denote species
and U an arbitrary finite set. The sum F + G is defined by the disjoint union

(F+9U] = FlUJUG[U].

More generally, the infinite sum (>, ;) may be defined by (>, F;)[U] = ||; (U]
if the right hand side is finite for all finite sets U. The product F - G is defined by
the disjoint union

(F- @] = | Fltn] x G[Ue]

(U1,U2)
UlﬂUQZ(Z),UlUUQ:U

with componentwise transport. Thus, n-sized objects of the product are pairs of

F-objects and G-objects whose sizes add up to n. If the species G has no objects of
size zero, we can form the substitution F o G by

(Fog)[U] = |Fixl x T] 9lQ-

7 partition of U~ Q€m

An object of the substition may be interpreted as an F-object whose labels are
substituted by G-objects. The transport along a bijection ¢ is defined by applying
the induced map 7 : 7 — 7T = {0(Q) | @ € 7} of partitions to the F-object and
the restriced maps o|g with @ € 7 to their corresponding G-objects. We will often
write F(G) instead of F o G. The rooted or pointed F-species is given by

FlU] = FIU] x U

with componentwise transport. That is, a pointed object is formed by distinguishing
a label, named the root of the object, and any transport function is required to
preserve roots. The derived species F' is defined by

FU] = FIU U {+v}]

with *p referring to an arbitrary fixed element not contained in the set U. (For
example, we could take x;; = U.) The transport along a bijective map o : U — V' is
done by applying the canonically extended bijection o' : UU{*y} — V U {*y} with
o'(xy) = *y to the object. Derivation and pointing are related by an isomorphism
Fe~X-F.

Note that F’® and F* are in general different species. In F*' objects, the root
and x-label may coincide, since

FU)=FlU U {xu}]

implies that a F*'-object over U is a F-object over U U {xy} together with a distin-
guished element from U U {*y}. On the other hand, F'*-objects are always rooted
at non-x*-labels, since

FrU) = F U] x U
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EGF OGF Cycle index sum
Yok | i Film) | 2 Nz(l') > ZF (T, 22, )
F-G | F(x)G(z) .7:"(1:)g~(:z) Zr(x1,x2,...)Zg(x1, 22, . ..)

FoG | F(G() | Zr(G(x),G(a?),...) | Zr(Zg(1, 22, ...), Zg(wa, 24, .. .), )
F* x%]—'(x) x(a%Z}- z,r2,..)) xla%lZ]:(:nl,xQ,...)
2

(
P &F@) | @zt | )

Table 2.2: Relation between combinatorial constructions and generating series.

implies that a F'®*-object over U is a F-object over U U {*y} together with a distin-
guished element from U.

Explicit formulas for the generating series and cycle index sums of the discussed
constructions are summarized in Table The notation is quite suggestive: up
to (canonical) isomorphism, each operation considered in this section is associa-
tive. Roughly described, this means that for each operation u € {+,-,0} there is a
“natural choice” for an isomorphism

(flu]:g)ufg ~ flu(fgpfg).

But this is only half of the story: for example, we may apply these isomorphisms
in different orders in order to obtain an isomorphism from ((FyuFa)pFs)uFs to
Fip(Fop(FsuFy)). But why should we end up with the same isomorphism, re-
gardless of which order we choose? In order to answer this question adequately,
the concept of monoidal categories is required, and we refer the inclined reader to
[Joy81, Sec. 7] for a thorough discussion.

The sum and product are commutative operations (up to canonical isomor-
phisms) and satisfy the distributive law

FG1+G)=F -G +7F G (2.2.1)

for any two species G; and Gs. The operation of deriving a species is additive and
satisfies a product rule and a chain rule, analogous to the derivative in calculus:

(F-G)~F - G+F-G and F(G) ~F(G)- G. (2.2.2)

Recall that for the chain rule to apply we have to require G[(}] = (0, since otherwise
F(G) is not defined.

The species 0, 1, X are neutral elements in a certain sense, that is there are
canonical isomorphisms

FeF+0xF- -1~ FX).



24 2. Preliminaries

2.2.4 Decomposition of symmetries of the substitution operation

We are going to need detailed information on the structure of the symmetries of
the composition F o G. The following is a standard decomposition given in [Joy81],
BLL98, BFKVII]. Let U be a finite set. Any element of Sym(F o G)[U] consists of
the following objects: a partition 7 of the set U, a F-structure F' € F|rx], a family
of G-structures (Gg)ger with Gg € G[Q] and a permutation o : U — U. We require
the permutation o to permute the partition classes and induce an automorphism
o : ™ — w of the F-object F. Moreover, for any partition class () € m we require
that the restriction o|g : @ — o(Q) is an isomorphism from Gg to G, (g). For any
cycle 7 = (Q1,...,Qy) of & it follows that for all i we have o(Q;) = @Q; and the
restriction of lg; © @i — Q; is an automorphism of Gg,. Conversely, if we know
(Go,,0%g,) and the maps o|g, = (0]g,)! for 1 <i < ¢ — 1, we can reconstruct the
G-objects Gq,, ..., G, and the restriction o|g,u..ug,. Here any k-cycle (a1, ..., ax)
of the permutation o*|q, corresponds to the kf-cycle

Z—l(

(al, J(al), .. ,O’E_l(al), as, U(CLQ), ey O a2>, e, Ak, O’(ak), ... ,Jg_l(ak))

of o]g,u..ug,- Thus any cycle v of o corresponds to a cycle of the induced permu-
tation & whose length is a divisor of the length of v.

2.2.5 Combinatorial specifications

In this section we briefly recall Joyal’s implicit species theorem that allows us to
define combinatorial species up to unique isomorphism and construct recursive sam-
plers that draw objects of a species randomly (see Section below). In order to
state the theorem we need to introduce the concept of multisort species. As it is
sufficient for our applications, we restrict ourselves to the 2-sort case.

A 2-sort species H is a functor that maps any pair U = (U, Us) of finite sets to
a finite set H[U]| = H[U1,Us] and any pair o = (01, 02) of bijections o; : U; — V; to
a bijection H[o]| : H[U] — H[V] in such a way, that identity maps and composition
of maps are preserved. The operations of sum, product and composition extend
naturally to the multisort-context. Let H and K be 2-sort species and U = (Uy, Us)
a pair of finite sets. The sum is defined by

(H + K)[U] = H[U] U K[U].

We write U = V +W if U; = V; UW; and V; N W; = 0 for all i. The product is
defined by

(H-KU= || HV]IxKW].
V+W=U

The partial derivatives are given by

81H[U] = H[Ul U {*U1}7 UQ] and 82H[U] = H[Ul,Ug U {*UQ}]'
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In order state Joyal’s implicit species theorem we also require the substitution op-
eration for multisort species; this will allow us to define species “recursively” up to
(canonical) isomorphism. Let F; and F2 be (1-sort) species and M a finite set. A
structure of the composition H(Fi, F2) over the set M is a quadrupel (7, x,a, )
such that:

1. 7 is partition of the set M.

2. x: 7™ — {1,2} is a function assigning to each class a sort.

3. a a function that assigns to each class Q € 7 a F () object a(Q) € Fy(q)[Q]-
4. B a H-structure over the pair (x (1), x1(2)).

This construction is functorial: any pair of isomorphisms (or natural transforma-
tions) a, ag with o : F; =2 G; induces an isomorphism (or natural transformation)
H[a1, ag] : H(Fl, fg) %H(gl, g2)

Let H be a 2-sort species and recall that X denotes the species with a unique
object of size one. A solution of the system ) = H(X,)) is pair (A, a) of a species
A with A[0] = 0 and an isomorphism « : A =5 H(X,.A). An isomorphism of two
solutions (A, «) and (B, ) is an isomorphism of species u : A -5 B such that the
following diagram commutes:

A H (X, A)

J{u l?—[(idm)
B

B—— H(X,B)
We may now state Joyal’s implicit species theorem.

Theorem 2.2.2 ([Joy81], Théoreme 6). Let H be a 2-sort species satisfying H(0,0) =
0. If (0eH)(0,0) = 0, then the system Y = H(X,)) has up to isomorphism only
one solution. Moreover, between any two given solutions there is exactly one iso-
morphism.

We say that an isomorphism F ~ H(X,F) is a combinatorial specification for a
species F with F[0] = 0, if the 2-sort species H satisfies the requirements of Theo-
rem [2.2.2] i.e. if 7(0,0) = 0.

Remark 2.2.3. [t is important to note how the solution is constructed in the proof
|Joy81, Proof of théoréme 6, p.52] of Theorem . Let ‘H satisfy the requirements
of Theorem . Define a sequence of (1-sort) species by

Ao=0 and Api1 =H(X,A).

We have a trivial “empty” natural transformation Aoﬂmh and may define re-
cursively the natural transformation i, = H(id,ip—1) from H(id, A,—1) = A, to
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H(id, Ay) = Ap+1. The solution in Theorem 18 then obtained as the direct
limit of the sequence

Ap2r A5 Ay
This is possible, as Joyal argues in his proof, since for each integer k > 0 there is
an N such that for all n > N the natural transformation i, induces an isomorphism

from ALSIC] to A[n%fl}, the species obtained by restricting to objects of size equal or less
than k.

2.3 Cycle pointing

Cycle pointing is a technique introduced by Bodirsky, Fusy, Kang and Vigerske
[BEKVII] as means to study unlabelled graphs and trees. One of their main ap-
plication is to the enumeration of unlabelled unrooted trees, providing a new proof
for their asymptotic enumeration formula, that does not require the dissymmetry
theorem.

2.3.1 The cycle pointing operator

Bodirsky, Fusy, Kang and Vigerske [BEKV11] introduced the cycle pointing operator
which maps a species G to the species G° such that the G°-objects over a set U are
pairs (G,7) with G € G[U] and 7 a marked cycle of an arbitrary automorphism
of G. Here we count fixpoints as 1-cycles. The transport is defined by o.(G,7) =
(0.G o010~ 1). Any subspecies S C G° is termed cycle-pointed. The symmetric cycle-
pointed species G¥ C G° is defined by restricting to pairs (G,7) with 7 a cycle of
length at least 2.
A rooted c-symmetry of the cycle-pointed species S C G° is a quadruple ((G, 1), 0, v)

such that (G, 7) is a S-object, o is an automorphism of G, 7 is a cycle of o and v is
an atom of the cycle 7. Its weight monomial is given by

t
w(@,r),ov :inU(ShS?u”')
(Grow) = 3 W(G)

with wg ) denoting the weight of the symmetry (G,o) and ¢ the length of the
marked cycle 7. We may form the species RSym(S) of rooted c-symmetries of S.
The pointed cycle index sum of S is given by

Zs(s1,t1;82,t05...) = Z WG r o) € Ql[s1,115 82,25 - - -]
(G’T7J7U)

with the index ranging over the set |, <, RSym(S)[n].

Let Q(OZ) C G° denote the subspecies given by all cycle pointed objects whose
marked cycle has length ¢. It follows from the definition of the pointed cycle index
sum that

- 0
Zg&) — gtgaisﬁzg
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Since G° =2, G(y it follows that

= > 0 - > 0
Zgo = lty— 2 d Zge = g lty—Zg.
g ; ZaSg ¢ an c® v Zasz g

Lemma 2.3.1 ([BEKV11, Lem. 14]). Let U be a finite set with n elements and fix
an arbitrary linear order on U.

1) The following map is bijective:
RSym(S)[U] — Sym(S)[U],
M = (G, 7),0,0) = (40D @, 1), o D1

with £(M) defined as follows: let k denote the length of the cycle T and u
its smallest atom. Let 0 < ¢(M) < k — 1 be the unique integer satisfying

(M)

V=T u.

2) Any unlabelled cycle-pointed S-object m of size n corresponds to precisely n!
rooted c-symmetries from RSym(S)[U] having the property that the isomor-
phism type of the underlying S-object equals m.

Proof. 1) The inverse map is given as follows. Any symmetry ((G,7),0) € Sym(S)[U]
satisfies o070~ = 7. Letting k denote the lengths of the marked cycle, this implies
that there exists a unique integer 0 < ¢ < k — 1 such that 7¢ is one of the disjoint
cycles of o. In order to see this, note first that if c70~! = 7 then o fixes the set of
atoms V of the cycle 7, i.e. there exists a permutation v of V' which is a product of
disjoint cycles of o with v7v~! = 7. The symmetric group over V acts transitively
on the (k — 1)!-element set of k-cycles on V. Hence the stabilizer group of 7 has k
elements and must therefore agree with the powers id, 7, ..., 7% ! of 7. Hence v = ¢
for some integer 0 < ¢ < k — 1.

Let u denote the smallest atom of V. Then ((7*~1.G,7), 7' ‘o, 7t.u) forms a
rooted c-symmetry, i.e. an element of the set RSym(S)[U].

The two maps are inverse to each other and clearly preserve isomorphism types.

2) The bijection clearly preserves the isomorphism type of the S-object corre-
sponding to the symmetry. Hence the number of rooted c-symmetries corresponding
to an unlabelled S-object m of size n agrees with the numbers of symmetries corre-
sponding to m, which by Lemma [2.2.1] equals n!. O

In particular, the pointed cycle index sum relates to the ordinary generating

series by
S(x) = Zs(x,x; 2%, 2%;..).

Moreover, if we draw an element from RSym(S)[n]| uniformly at random, then the
isomorphism class of the corresponding cycle pointed structure is uniformly dis-
tributed among all unlabelled S-objects of size n.

The main point of the cycle-pointing construction is evident from the following
fact.
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Lemma 2.3.2 ([BFKV11 Thm. 15]). Any unlabelled G-structure m of size n may be
cycle-pointed in precisely n ways, i.e. there exist precisely n unlabelled G°-structures
with corresponding G-structure m.

Proof. Any rooted c-symmetry over [n] whose G-object has type m may be obtained
in a unique way by choosing a symmetry over [n] whose G-object has type m, se-
lecting one of its atoms and marking the corresponding cycle. In particular, the
numbers A and B of rooted c-symmetries and symmetries from RSym(G°)[n| and
Sym(G) satisfy A =nB. By Lemma we have that B = n! and hence A = nln.
On the other hand, Lemma [2.3.1] implies that A = Cn! with C the number of
unlabelled cycle pointed structures corresponding m. Hence C' = n. O

Considered from a probabilistic viewpoint, this means that if we draw an unla-
belled G°-structure of size n uniformly at random, then the underlying G-object is
also uniformly distributed. And studying the random G°-object might be easier due
to the additional information given by the marked cycle. Moreover, Lemma [2.3.2
implies that

2.3.1.1 Example
The pointed cycle index sum of the species SET is given by
_ e 0 e e
ZgETe = ZEU@ZSET(M, $2,...) = eXP(Z sifi) Y ti
=1 i=1 =1
2.3.2 Operations on cycle pointed species

Cycle pointed species come with a set of new operations introduced in [BFKVTII].
If § C G° is a cycle-pointed species and H a species, then the pointed product S x H
is the subspecies of (G- H)° given by all cycle-pointed objects such that the marked
cycle consists of atoms of the G-structure and the G-structure together with this
cycle belongs to S. The corresponding pointed cycle index sum is given by

Zsan = ZsZy.
The cycle-pointing operator obeys the following product rule
(G-H)°~G°«xH+H *G.
If H[}] = 0 we may form the pointed substitution S © H C (G o H)° as follows.

Any (G o H)°-structure P has a marked cycle 7 of some automorphism o. By the
discussion in Section [2.2.4] this cycle corresponds to a cycle on the G-structure of
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P which does not depend on the choice of 0. Hence the G-structure of P is cycle-
pointed and we say P belongs to S ® H if and only if this cycle pointed G-structure
belongs to §. The corresponding pointed cycle index sum is given by

Zsomn = Zs(Zu(s1,52,...), Zue (s1,t15 82, t2; .. .);
Z3((82, 54, - - -), Z3go (52,123 84,145 ..)5 .. ).

2.4 (Pdlya-)Boltzmann samplers

Boltzmann samplers were introduced in [DFLS02, [DFLS04, [FFP07] and generalized
to Pélya-Boltzmann samplers in [BEKV1I]. They form our main tool in the anal-
ysis of random discrete objects and we discuss the required notions and properties
following these sources.

2.4.1 Boltzmann models

Given a species F and a real number z > 0 satisfying 0 < F(z) < oo we may
consider the corresponding Boltzmann model for labelled objects. It is a probability
measure on the set | J;2 , F[n] that assigns the probability weight

n

—F ()

for each n to each F-structure F' € F[n]. Expressing F in terms of other species
via the operations discussed aids in the construction of Boltzmann samplers, i.e.
random generators that produce objects according to a Boltzmann model. We let
I'F(z) denote a Boltzmann sampler for labelled objects with parameter x. Note
that I'’F(z) conditioned on having size n has the uniform distribution on F[n].
The Boltzmann model for unlabelled objects is defined similarly: For any integer
n, let F [n] denote the set of unlabelled F-objects with size n. Given a number
z > 0 with 0 < F(x) < oo, the Boltzmann distribution for unlabelled objects is a
probability distribution on the set [ Jo- F[n] that assigns the probability weight

93"]:(3:)71

for each n to each unlabelled F-structure of size n. The corresponding Boltzmann
sampler is denoted by I'F(x).

The Pdélya-Boltzmann model was introduced in [BEKV11]: Suppose that we are
given a sequence of real numbers si, s9,... > 0 such that 0 < Zz(sq1,$2,...) < 0.
Then we may consider the probability distribution on the set |, , Sym(F)[n] that
assigns the probability weight
-1 ST1S2

o Z]:(Sl,SQ,...)_l.

W) ZF (51,52, - - -
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for each n and symmetry (F, o) € Sym(F)[n]. Here o; denotes the number of i-cycles
of the permutation o. The corresponding Pdlya-Boltzmann sampler is denoted by
I'Zr(s1,82,...).

Lemma directly implies the following crucial property, that shows how
Boltzmann samplers for labelled and unlabelled objects are special cases of Pdlya
Boltzmann samplers.

Lemma 2.4.1 ([BEFKV1I] Lem. 36]). Consider a species F having a Pélya-Boltzmann
sampler TZz(s1,s2,...). Then, for any parameter & > 0 with 0 < F(z) < oo a
Boltzmann sampler F]:"(J:) for unlabelled F-objects is given by taking the isomor-
phism type of the F-structure of the random symmetry

T Zr(x,22,...).

Given a parameter y > 0 with 0 < F(y) < oo, a Boltzmann sampler T F(y) for
labelled F-objects is given by taking the F-structure of the random symmetry

I'Zx(y,0,0,...).

A Pélya-Boltzmann model for random cycle pointed species is given by a prob-
ability measure on random rooted c-symmetries: Let S be a cycle-pointed species.
Given real nonnegative numbers (s;,#;);>1 such that 0 < Zs(s,t1; 82,t2;...) < 00
we may consider the probability measure on the set [ ;7 RSym(S)[n] that assigns
probability weight

-1 0¢—1 Oet1 Oet2

_ tesit -5, ts s, tts
1 1 -1 5¢ 041 S0+2
w Zs(s1,t1;82,t9;. .. = =

(@mo)Zs(sn s s, ;- ) n!Zs(s1,t1;82,t2;...)

for each n to each rooted c-symmetry ((G,7),0,v) € RSym[n]. Here ¢ denotes the
lengths of the marked cycle 7. The corresponding Pélya-Boltzmann sampler of this
model is denoted by I'Zs(s1, t1; s2,to; .. .).

2.4.2 Rules for the construction of Boltzmann samplers

Boltzmann samplers are traditionally denoted using some Pseudo-code notation. We
are going to deviate from this tradition, by providing more detailed explanations
of each step using words rather than improvised code. By this the author hopes
to make the material more accessible to a larger audience. In the following we
are always going to suppose that F is a species and z,x1,2,... are nonnegative
numbers such that sums F(z), and Zr(z1,x2,...) are positive and finite. If F is
cycle-pointed, then we also assume that si,t1, so,t2,... are nonnegative numbers
such that Zr(s1,t1; 89,%2;...) is positive and finite.
Suppose that we are given a decomposition

F=AuB
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with p € {+,-,0} one of the discussed operations of sum, product and substitu-
tion. In order to construct a (Pdlya-)Boltzmann-sampler for the species F, we may
apply certain construction rules in order to obtain a sampler in terms of samplers
for the species A and B. In the following we summarize these construction rules
for (Pélya-)Boltzmann samplers, following [DFLS04], [FEP0O7] and [BFKV11]. A
treatment for (Pélya-)Boltzmann samplers in the more general context of weighted
multisort species is currently in preparation by the author of this thesis.

2.4.2.1 The labelled case

Sums

Suppose that F =Y >°, F;. Then the following procedure is Boltzmann sampler for
F.

1. Draw an integer £ > 1 with probability

P(l = i) = Fi(z)/ F ().

2. Return I'F;(z). That is, the result is a random Boltzmann-distributed F;-
object.

Products

Suppose that F = Hle Fi. Then the following procedure is a Boltzmann sampler
for F.

1. Foreach 1 <7 <k let

That is, let F;, 1 < ¢ < k be independent random variables such that F;
follows a Boltzmann-distribution for F; with parameter x.

2. Let U denote the exterior disjoint union of the label-sets of the F;. Hence,
by a slight abuse of notation,

(Fl,...,Fk) S f[U]
Make a uniformly at random choice of a bijection v from U to the set of
integers [n] with n denoting the size of U. Return the relabelled object v.F.
Substitution

Suppose that F = G o H with H[D] = 0. The following procedure is a Boltzmann
sampler for F.
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1. Set
G+ TG(y) withy=H(z).

That is, let G denote a random G-object that follows a Boltzmann distribu-
tion with parameter #H(x).

2. Let V denote the label set of G. For each atom ¢ € V set

and let U; denote the label set of H;. Let U denote the exterior disjoint
union of the label sets U;. Hence, by a slight abuse of notation,

m:={U;|ieV}
is a partition of U. Setting

oV —=m iU
and Hy, := H; for each ¢ € V we have that

(0.G, (HQ)qer) € (G o H)[U].

3. Make a uniformly at random choice of a bijection v from U to the set of
integers [n] with n denoting the size of U. Return the relabelled object

v.(0.G, (Hg)qger)-

2.4.2.2 Polya-Boltzmann samplers
Sums

Suppose that F = > 2, F;. Then the following procedure is a Pélya-Boltzmann
sampler for F.

1. Draw an integer £ > 1 with probability

P(f == l) == Zfi(81,82, .. .)/Z]_‘(Sl,SQ,. . )

2. Return I'Zr,(s1, $2,...). That is, the result is a random Fy-symmetry fol-
lowing a Pélya-Boltzmann distribution with the parameters (s, s2,. . .).
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Products

Suppose that F = Hle Fi. Then for any finite set U there is a bijection between
the set Sym(F)[U] and tuples (Si,...,Sk) such that S; is a F;-symmetry for all
and the label sets of the S; partition the set U. This is due to the fact, that given
a F-symmetry ((F1,...,Fy),0) € Sym(F)[U] the permutation o must leave the
label set Q; of the Fj-object Fj invariant and satisfy o|g,.F; = Fj, i.e. (Fj,0|g,) €
Sym(F;)[Qs]-

The following procedure is a Pélya-Boltzmann sampler for F.
1. For each 1 <7 <k set
(FZ', O'i) — FZ]:Z.(Sl, S92, .. )

That is, let S; := (Fj,04), 1 < i < k be independent random variables
such that S; follows a Pélya-Boltzmann distribution for F; with parameters
51,82y ...

2. By the bijection for the symmetries of products, the tupel (Si,...,Sg) cor-
responds to an F-symmetry (F,o) over the (exterior) disjoint union U of
the label-sets of the S;. Make a uniformly at random choice of a bijection v
from U to the set of integers [n] with n denoting the size of U. Return the
relabelled symmetry

v.(F,0) = (v.F,vov™!).

Substitution

Suppose that F = G o H with H[0] = (. The symmetries of the substitution were
discussed in detail in Section The following procedure is a Pdlya-Boltzmann
sampler for F.

1. Set
(Gy0) « T Zg(Zy (51,82, -), Z3(S2, 84y -)s---).

That is, let (G, o) denote a random G-symmetry that follows a Pélya-Boltzmann
distribution with parameters Zy(s1, s2,...), Z# (82,84, +)s- - ..

2. For each cycle 7 of o let |7| denote its lengths and set
(HT, 0'7—) — FZH(S|7—|, 897y - - )

That is, the symmetries (H;,0.), T cycle of o, are independent (conditional
on o) and follow Pélya-Boltzmann distributions.

3. For each cycle 7, make || identical copies copies of (H,,o,) and assemble a
F-symmetry (F,~y) out of (G,0) and the copies of the (H,, o) as described

in Section 2.2.4]
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4. Choose bijection v from the vertex set of (F,7) to an appropriate sized set
of integers [n] and return the relabelled symmetry

v.(F,v) = (v.F,uyw™ ).

The Set construction

The following procedure is a Pélya-Boltzmann sampler for 7 = SET.

1. Let (m;);en be an independent family of integers m; > 0 such that m; follows
a Poisson-distribution with parameter s;/i.

2. The sequence drawn in the previous step belongs almost surely to N§. Let
o be a permutation with cycle type (m;);.

3. Make a uniformly at random choice of a bijection v from the label set of o
to an appropriate sized set of integers [n] and return the SET-symmetry

(F,vov™1)

with F' = [n] the unique element from SET[n] = {[n]}.

2.4.2.3 Podlya-Boltzmann samplers for cycle-pointed species

In the following, we suppose that F is a cycle pointed species.

Sums

Suppose that F = > 2, F; with cycle-pointed species F;. Then the following pro-
cedure is a Pélya-Boltzmann sampler for F.

1. Draw an integer £ > 1 with probability
P(ﬁ = 2) = Z]:i(sl,tl; So,t9; . . .)/Z}'(sl,tl; So,to; . . )
2. Return I'Zg, (s1,t1; 82, t2; .. .).

Products

Suppose that F = GxH with G a cycle-pointed species and H a species. Then for any
finite set U there is a canonical choice for a bijection between the set RSym(F)[U]
and tuples (S7,S52) with S a rooted c-symmetry of G, Sy a symmetry of G, such
that the label sets of S; and S5 form a partition of U. The following procedure is a
Pélya-Boltzmann sampler for F.

1. Set ~
Sl — FZg(Sl,tl; So,t9;. . )
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2. Set
So FZH(Sl, S92, .. )

3. Let U denote the exterior disjoint union of the label sets of S7; and S5. The
tupel (S, S2) corresponds to a rooted c-symmetry S over the set U.

4. Make a uniformly at random choice of a bijection v from U to the set of
integers [n] with n denoting the size of U. Return the relabelled rooted
c-symmetry v.S.

Substitution

Suppose that F = G ©H with G cycle-pointed and H[}] = (). The symmetries of the
substitution were discussed in detail in Section [2.2.4] The following procedure is a
Pélya-Boltzmann sampler for F.

1. Set B ) B
((G, 7'[)),0',’0) < FZg(hl, hl; hg,hg; .. )

with parameters

hi = ZH(Si,SQi, .. ) and hl = ZHo(Si,ti;Sgi,tQi; . )

2. For each unmarked cycle 7 # 79 of o let |7| denote its lengths and set

(H-,-, O‘T) — FZH(S|7_|, 8275 - - )

3. For the marked cycle 79 set
((Hry, €ro)s 0ry, Ur0) 4= T Z340 (S 1mg s o3 S20mo) > 2o - - -)-

4. For each cycle 7 of o (including the marked cycle 7y), make |7| identical copies
copies of (H;, o), one for each atom of 7. Assemble a F-symmetry (F,~)
out of (G, o) and the copies of the (H,, o) as described in Section Let
¢ denote the cycle that gets composed out of the |rp| copies of the cycle cy,.
The marked vertex v, has || copies (one for each atom of 7p) and we let u
denote the copy that corresponds to the marked atom vy of 79. Thus

((F,¢),v,u)
is a rooted c-symmetry of F.

5. Choose bijection v from the vertex set of ((F,c),~,u) to an appropriate sized
set of integers [n] and return the relabelled rooted c-symmetry

v.((F,c),v,u) = (v.F,ver™), vywt va).
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Cycle pointed Set constructions

The following procedure is a Pélya-Boltzmann sampler for F = SET®.

1. Choose an integer K > 1 with distribution
o
P(K =k) =1t/ )t
i=1

2. Set
(G,0) < I'Zggr(s1, s2,...).

3. Add a disjoint cycle of length K to the permutation o. Mark one of the
atoms of this cycle uniformly at random.

4. Relabel the resulting rooted c-symmetry uniformly at random.

The sampler for the symmetrically cycle pointed species SET® is identical, only
step 1. needs to be replaced with:

1’. Choose an integer K > 2 with distribution

P(K = k) :tk/iti.
=2

2.4.3 Recursive Boltzmann samplers

The rules for the construction of (Pélya-)Boltzmann samplers may applied recur-
sively in order to obtain a recursive procedure that is guaranteed to terminate almost
surely. We are going to make this precise, following closely [BFKV11, Ch. 2.5].

Definition 2.4.2 ([BEKVII, Def. 7]). A (standard) recursive specification with
formal variables z1, ...,z over species Gi,...,Gy s a system 1 of equations

1 —€1,y...,T — €L
where each e; is of the form
e a+bora-bwithabe{xy,...,2,G1,...,Ge}, or

e aob witha€{G,...,Gi} and b € {x1,...,2,G1,...,G¢}.

We would like to recursively define a vector of species (fl("), e F ,En)) by starting

with ]_-i(o) = 0 for each ¢ and letting ]-"Z-(nﬂ) be the result of replacing each occurence

of a formal variable z;, 1 < j < k in the expression e; by ]:](n). This is only possible
if by doing so we never form a composition of species A o B with B[] # (. If this
never happens, then the specification is termed well-founded.
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Given species A, B,C and D with A C C and B C D we have that AuB C CuD
for any operator p € {+,-,0}. If ¢ is well-founded, then it follows that for each
finite set U and all 1 < ¢ <k

If for each i and every finite set U this sequence stabilizes, i.e. if there is a number
N(U,i) such that fi(n) U] = E(N) [U] for each n > N(U,1i), then we may define
species Fi, ..., Fi by Fi[U] = FZ-(N(U”)) [U] and F;[o] = .Fi(N(U’Z)) [o] for each bijection

o : U — V. We say that each of the species Fi,..., Fi is decomposable over the
species G1, ..., Gy.

Theorem 2.4.3 ([BEKV11, Thm. 40]). Suppose that the species F is decomposable
over the species Gi,...,Gp. Then we may obtain a (recursive) Pdlya-Boltzmann

sampler I'Zx in terms of samplers I'Zg,,...,I'Zg, from any corresponding well-
founded system by applying the random generation rules from Section|2.4.2.

Combining this with Lemma [2.4.1] we may thus build recursive Boltzmann sam-
plers in the labelled and unlabelled setting by applying the corresponding construc-
tion rules to recursive specifications.

2.4.3.1 Examples

As an example, we are going to demonstrate this for the species A of rooted trees.
It satisfies the combinatorial specification

A=~ X SET(A). (*)

Setting F©) = 0 and F"*+) = X . SET(F™), we have that for each finite set
U the sequence
FOw) c FOU c FOWU] ...

stabilizes. This may be checked directly, but also follows from Remark as (x)
satisfies the requirements of Theorem [2.2.2]

By Theorem [2.4.3|we may apply the rules for the construction of Pélya-Boltzmann
samplers, obtaining the following Boltzmann sampler F/Nl(a;) for unlabelled rooted
trees.

1. Start with a single root vertex v.

2. Let (m;);en be an independent family of integers m; > 0 such that m; follows
a Poisson distribution with parameter A(x")/i.

3. For each i € N and each 1 < 5 < m; set
Ai,j — F.A(.Zz)

Make 7 identical copies A; j, 1 < k <4 and attach them to the root-vertex
v by adding an edge between v and the root of A; ;. for each k.
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A Boltzmann-sampler for T'A(z) is also described in [BFKVTI, Fig. 14, (1)]. How-
ever, the procedure given there seems to contain a typo, since it corresponds to
attaching only copies of A; 1 in step 3. (The paper is otherwise carefully written and
contains amazing results, the author of this thesis would like to add.)

2.5 Deviation inequalities

We are going to make frequent use of the following deviation inequality for one-
dimensional random walk, found in most textbooks on the subjects.

Lemma 2.5.1. Let (X;)ien be an i.i.d. family of real-valued random variables with
E[X1] = 0 and E[e’M1] < oo for all X in some interval around zero. Then there are
constants §,c > 0 such that for allmn € N, x > 0 and 0 < X\ < § it holds that

P(X; 4 ...+ X, > z) < exp(enA? — \x).

Proof. Let X denote a random variable that has the same distribution as all the
X!s. Since E[e*¥] < 0o for [A| <6, § > 0, we have that

[e.e]

D%

k=0

E [1X1*] = E[eMN¥)] < E[eM] + Ele ] < o0.

w‘»

Since E[X] = 0, it follows that there is a constant ¢ > 0 such that

AP K 2
PUEIXF < 1+ X2

E[eM] = E[eM —AX] <1+ I

WE

B
||

2
Applying Markov’s inequality we obtain for 0 < A< d and = > 0
P(X1+4...+ X, >2) <Plexp(A(X1 + ...+ X)) > exp(A\x))
< E[eM )" exp(—Ax)
< (14 A" exp(—Az)

Using
log(1 + eA?)™ = nlog(1 4 cA?) < neA?

for A small enough (depending only on c¢), it follows that

P(X1 4 ...+ X, > z) < exp(neA? — \x).
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Y =

Figure 3.1: Two unlabelled cycle-pointed trees. The marked cycle is depicted in
blue, connecting paths in red, and the cycle-pointing centers in green.

3.1 Proof of the main theorems

Throughout this section, let 2 be a set of positive integers containing the number
1 and at at least one integer equal or greater than 3. We let F denote the species
of unrooted trees and JFq its subspecies of trees with vertex degrees in the set ).
Analogously, we let A denote the species of rooted trees and Aq~ the subspecies of
rooted trees with vertex outdegrees in the shifted set Q* = Q2 — 1. In the following we
will always assume that n denotes an integer satisfying n =2 mod ged(Q*) and n
large enough such that trees with n vertices and vertex degrees in the set §) exist, see
Proposition [1.2.3. Let p denote the radius of convergence of the generating series
.AQ* (2) .

We let (Ty,T,) denote a random cycle-pointed tree drawn uniformly from the
unlabelled Fg-objects of sizen. As discussed in the preliminaries section, this implies
that T, is the uniform random unlabelled unrooted tree with n vertices and vertex
degrees in the set Q. Moreover, let A,,_1 a random rooted tree drawn uniformly from
the unlabelled Aq+-objects of size n — 1.

Given a cycle pointed tree (7', 7) such that the marked cycle 7 has length at least
2 we may consider its connecting paths, i.e. the paths in T that join consecutive
atoms of 7. Any such path has a middle, which is either a vertex if the path has
odd length, or an edge if the path has even length. All connecting paths have the
same lengths and by [BFKVII, Claim 22] they share the same middle, called the
center of symmetry. See Figure [3.1] for an illustration.

Figure 3.2: Any unlabelled £ = SET%} ® Agq~ object corresponds
to two identical copies of a cycle-pointed Pélya tree.
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X,
>

HH

LiLA

Figure 3.3: Unlabelled S = X° x (SETq o Aq-) objects correspond
to Pdlya trees.

The cycle pointing decomposition given in [BEKVT1I1] Prop. 25] splits the species
F¢ into three parts,

F§ = X°% (SETq 0 Ag-) + SET(, ® Ag- + (SETG © Ag-) * X
Here
S := X° x (SETq 0 Ag-)

corresponds to the trees with a marked fixpoint (compare with Figure and
the other summands to trees with a marked cycle of length at least two. More
specifically,

£ = SET%} © Ag-

corresponds to the symmetric cycle pointed trees whose center of symmetry is an
edge (see Figure [3.2]) and
V= (SET§ © Ag-) x X

to those whose center of symmetry is a vertex (compare with Figure |3.4). We are
going to use this decomposition in order to show convergence of a rescaled uniform
unlabelled Fn-object towards the continuum random tree.

o

Figure 3.4: Decomposition of unlabelled V = (SET§ ® Ag+) * X
objects into a Poélya tree and a number of identical copies of a
cycle-pointed Pdlya tree.
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3.1.1 A proof of Theorem and Lemma m

Of course, Theorem [I.2.1 and Lemma are special cases of Theorem [I.2.4) and
Lemma [1.2.5] respectively. Hence a separate treatment is not strictly necessary.
However, we may take significant shortcuts in the unrestricted case 2 = N, which
justify a redundant treatment.

Proof of Theorem . Let cn, denote the scaling constant for the uniform unla-
belled Podlya tree, i.e.

C&An@y];

Vn
with respect to the Gromov-Hausdorff metric. Let f : K — R be a bounded

Lipschitz-continous function defined on the space of compact metric spaces equipped
with the Gromov-Hausdorff metric. We are going to show the following three claims:

i) P((Ty, ) € &) converges to 0.

ii) E[f(c%Tn) | (Tn, ) € S] converges to E[f(7e)].

iii) E[f(cNTng) | (Ty, ™) € V] converges to E[f(Te)].

This implies that

Em%m — E[f(T:)]

and we are done. Claim i) follows from the fact that

P((Tn, ) € €) = ([2"€(2))/(["] F°(2))

and by Propositions [3.1.6/ and [3.1.6| the radius of convergence of the series £ (2) is
strictly larger than the radius of convergence of F°(z). Claim ii) follows directly
from the convergence

since {2 = N implies that
S=X°x(SEToA)~ A

and hence (T,,7,) conditioned on belonging to S is distributed like the uniform
random Pdlya tree A,,. Claim iii) follows from Lemma below. O

The proof for the tail bound of the diameter uses the same decomposition:

Proof of Lemma[1.2.9. We have to show that there are constants C, ¢ > 0 such that
for all n and = > 0 we have that

P(D(T,) > x) < Cexp(—cz?/n).
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We may replace C' by any larger constant and ¢ by any smaller constant, hence it
suffices to consider the case v/n <z < n. Clearly we have that

PD(Ty) >a2) < > P((Ta,7) € BIPD(T,) =z | (Ta,7) € B)
Be{€,S,V}
By Lemma [3.1.1] there are constants C1,¢; > 0 such that the summand for B =V is
bounded by Cy exp(—ci2?/n). The tree T,, conditioned on (T, 7,) € S is distributed

like the uniform Pélya tree A,,. Hence by Lemma there are constants Ca,co > 0
such that the summand for B = S is bounded by Cy exp(—cax?/n). It follows from

Propositions and and the expression
P((Tn, ) € €) = ([Z"1€(2))/([")F°(2))

that there are constants C3 > 0 and 0 < v < 1 with P((T,,7,) € £) < C37". Since
z < n we have that
7" < exp(—c3z?®/n)

for some c3 > 0. Hence the summand for B = £ is bounded by C3exp(—c3z?/n).
Thus

3
P(D(T,) > z) < Z C; exp(—ciz?/n) < Cexp(—cz?/n)
i=1

for some C,c > 0. O
It remains to show the following lemma which was used in both proofs.

Lemma 3.1.1. Let V,, be a uniformly at random chosen unlabelled
V=(SET* @ A) x X

object with size n. Then
C&Vn ), Tz

Vn
with respect to the Gromov-Hausdorff metric. Moreover, there are constants C,c > 0
such that for all n we have the following tail bound for the diameter

P(D(V,) > z) < Cexp(—cx?/n)
for all x > 0 and n.

Proof. We are first going to prove convergence towards the CRT. Let p denote the
radius of convergence of F (z). By the rules for Pélya-Boltzmann samplers in Sec-
tion refsec:pobosa, the following procedure draws a random Boltzmann distributed
unlabelled V-object with parameter p, i.e. each object with size k gets drawn with
probability p¥/V(p). Compare with Figure
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B! BK

Figure 3.5: The Boltzmann distributed (SET® © A) x X object.

1. Draw a random unlabelled rooted tree X from A according to the Boltzmann
distribution with parameter p.

2. Choose a random integer K > 2 with distribution given by
PIK = k) = &4/ Y0 &)
i=2

3. Select a random Boltzmann distributed cycle-pointed rooted tree (B, ) from the
unlabelled A°-objects with parameter p¥.

4. Connect the root of X with the roots of K identical copies (B',v1),..., (B, vk)
of (B,v) by adding edges.

5. Compose the marked cycle 7 out of atoms of the cycles v; = (a} K

FNN
follows (compare with Figure :

_ (1 K 1 K 1 K
T=(a1,...,0] ,03,..., Q% 4. Qfcy ., Q).

Let V denote the resulting cycle-pointed tree. By definition of the Boltzmann distri-
bution we have that V conditioned on having size n is distributed like the uniform
unlabelled V-object V,,. The probability generating function of the total size of the
K identical copies of B is given by

QD A((p2)*)/ Y A ().

k>2 i>2

We have that p < 1 by Proposition [3.1.4] hence this series has radius of convergence
strictly greater than 1. By Proposition [3.1.5] we know that P(|V| = n) ~ dg-n~3/?
for some constant dg+ > 0. Hence there is some constant C' > 0 such that

P(K[B| > Clog(n) | |V| = n) = O(n**)P(K|B| > C'log(n)) = o(1).

Let X,;, denote the random variable X conditioned on the event |V| = n. Consider
the correspondence R,, between the discrete metric spaces X,, and V,, given by

Rp={(z,2) |z € Xy} U({zo} x (BLU...UBK)
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with z¢ denoting the root of X,,. Then we have
dis(R,) = O(log(n))
with high probability. This implies that
dan(Xn/vV/n, Vi /v/70) = 0.
Hence it suffices to show that

oy D 7.

vn

For any positive integer ¢ we have that X,, conditioned on the event |X,|
distributed like the uniform random unlabelled rooted tree A; with £ vertices.
for any bounded Lipschitz-continuous function f : K — R defined on the

space (K, dgn) of isometry classes of compact metric spaces we have that

E[f(Z2X,)] = o(1) + E[f(ZR A P(X] = 0)
\/ﬁ n—C 10gz(n)<€<n \/ﬁ '

Moreover, the average value of the diameter D(A) is known to satisfy
E[D(A))] = O(V),
see e.g. Lemma below or [DG10, Thm. 2]. Hence

c c 1
&/_\e7 &/_\g)] < ey (—=

1
v Vi Vi Vi

uniformly for all n — C'log(n) < ¢ < n. Since

Eldau( JE[D(A)] = o(1)

E[f(%m)] — E[f(Te))
it follows that

Em%xn)} — E[f(72)].

This proves convergence towards the CRT.

=/ is
Hence
metric

It remains to show the tail bounds for the diameter of V,,. Let H denote the
maximum length of a path in V that starts from the root of X and let H,, denote

the corresponding random variable conditioned on the event |V| = n. Since

D(Vy) < 2H,
it suffices to show that there are constants C,c > 0 with

P(H, > ) < C exp(—ca?/n)

for all x > 0 and n. Since we may substitute C' by any larger constants and ¢ by any
smaller constant it suffices to show this for the case /n < x <n. The event H,, > =
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implies that H(X,,) > x or |B| > z. Since X,, conditioned on the event |X,| = ¢ is
distributed like the uniform Pélya tree Ay, it follows by Lemmal[I.2.6|below that there
are constants C1, c; > 0 such that for all y > 0 and n the probability P(H(X,,) > y)
is bounded by

Y P(Xal = OP(H(A) 2 y) < D P(IXa| = £)Crexp(—c1y® /1)
(=1 /=1

<™ exp(—cly2/n).

Moreover, by Propositions and we know that there are constants C3 > 0
and 0 < v < 1 such that for all y > 0 and n we have that

P(|B| > y | [V] = n) < Csn®/*4Y.
It follows that there are constants C4,cs > 0 such that we have uniformly for all
x>4\/n
P(H, > z) < Cyexp(—c1y?/n) + Csn®/?4" < Cyexp(—coa?/n).

This concludes the proof. O

3.1.2 A proof of Theorem and Lemma m
We start straight-away with the proof:

Proof of Theorem[1.2.7) Let cq+ > 0 denote the constant such that the uniformly
drawn unlabelled rooted tree A,,_; satisfies

A 1@>7E

Vn—1 "
with respect to the Hausdorff-Gromov metric.

The proof of Theorem follows closely the proof of Theorem in Sec-
tion [3.1.2l The only difference lies in how we show convergence for the unlabelled
S = X° % (SETgq o Ag+) objects and the unlabelled V = (SETE © Ag-) x X objects.
We treat these cases separately in Lemma and Lemma below. O

Proof of Lemmal1.2.5. The proof is analogous to the proof of Lemma [1.2.2] The
only difference lies in how we show the tail bounds for the unlabelled V-objects and
unlabelled S-objects. This is carried in out in Lemmas and below. ]

Lemma 3.1.2. Let S, be drawn uniformly from the unlabelled
S§=X°%(SETgq o Ag~)
objects of size n. Then we have

‘s, DT

NG
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with respect to the Gromov-Hausdorff metric. Moreover, there are constants C,c > 0
such that for all n and x > 0 we it holds that

P(D(T,) > x) < Cexp(—cx?/n).

Proof. We have that
S~X-(SETq o Ag+)

, hence we do not require cycle pointing techniques in this case. Let (S,,0,) be
drawn uniformly at random from the set Sym(S)[n]. Let 7, denote the corresponding
partition. By the discussion in Section [2.2.4] o,, induces an automorphism

Op @ Ty, — Ty,

of the SETq-object. Moreover, let F,, C m, denote the fixpoints of 7, f, = |F,|
their number and for each fixpoint @ € F, let (Ag,0g) denote the corresponding
symmetry from Sym(Aq+)(Q). Let H, denote the total size of the trees dangling
from cycles with length at least 2. We are going to show the following claims.

1) There are constants C; > 0 and 0 < v < 1 such that for all n and x > 0 we have
that
P(H, > x) < C1n3/2'yx

and
P(f,>x) < C’ln?’/Q*y‘”.

2) For any ¢ > 0 the maximum size maxqecr, |Ag| of the trees corresponding to the
fixpoints of &, satisfies

P Aol <n—n®) = o(1).
(glea;fllcz!_n n°) = o(1)

3) There is a constant Cy > 0 such that
for all n.

We may deduce the tail bound for the diameter as follows. First, it suffices to show
such a bound for all \/n < z < n. If D(S,,) > z, then we have H, > z/2 or
maxqer, H(Ag) > z/2 — 1. By 1), we have

P(H, > x/2) < Cin3/?4*/?
and there are constants Cy, ¢4 > 0 such that

C1n®*y*/2 < Oy exp(—csz? /n)
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for all n and /n < z < n. Let &, denote the event maxg H(Ag) > /2 —1. It holds
that
P(¢,) <Y P(F, = F)P(€&, | F, =F).
F

with F' ranging over all subsets of partitions of [n] with P(F,, = F') > 0. By the
discussion of symmetries in Section 2.2.4) we have that given F,, = F', the symmetries
(AQ,0Q)qer are independent and for each Q € F' we have that (Ag,0g) gets drawn
uniformly at random from the set Sym(Aq-)[Q]. That is, Ag gets drawn uniformly
at random from all unlabelled Pélya trees with outdegrees in the set 2*. By Lemma
1.2.6|it follows that there are positive constants Cs, c; such that uniformly for all n
and x

P(€, | F,=F) < Cs > exp(—caz?/|Q|) < |F|Cyexp(—c5z”/n).
QeF
It follows that

P(E,) < Csexp(—csx?/n) Z]P’(Fn = F)|F| < E[f,,]C5 exp(—csa?/n).
F

By 3) we have that
E[fn] < Co

for all n. Thus, for some Cg, cg > 0, it holds that
P(D(S,) > z) < Cyexp(—csx?/n) + CoCs exp(—csz®/n) < Cgexp(—cez?/n)

uniformly for all n and y/n < x < n. Thus the claims 1) and 3) imply the tail bound
for the diameter.

We may deduce the convergence towards the CRT as follows. Select one of the
partition classes from F;, with maximal size uniformly at random and let X,, denote
the corresponding tree. By claim 2) we have

P(X,] < n —nt/) = o(1)
and thus
P(dgu(Xn,Sn) > n'/) = o(1).
It follows that
dan(casSn /v, co-Xn /1) == 0.
Hence it suffices to show .
CQ*Xn/\/ﬁ Q Te.

Let f: K — R denote a bounded Lipschitz-continuos function defined on the space
(K, dgm) of isometry classes of compact metric spaces equipped with the Gromov-
Hausdorff metric. By claim 2) it follows that

E[f(i%xn)] = o(1) + > P(|Xa| = OELf(
l

co*
X)Xl = 1.
NG ) | Xn| = 1]
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with the index of the sum ranging over all integers n —n'/* < ¢ < n satisfying

P(|X,| = ¢) > 0, in particular ¢ = 1 mod ged(2*). Since ¢ > n/2 we have by
the discussion of the structure of symmetries in Section [2.2.4] that X,, conditioned
|Xy| = ¢ is distributed like a uniformly drawn Pdlya tree Ay of size ¢ with outdegrees
in Q*. Hence

E[f(%xn) || Xn| = €] = Em%\m = Em%w + R

with
1 1

Vo Vi

for a fixed constant C' > 0 that does not depend on ¢. We have by Lemma
that

[Re| < C [E[D(A)]

E[D(A)] = O(VY),

hence

By assumption,

and hence it follows that

ElcaXn/v/n] = E[f(7e)].
Thus claim 2) implies that
c0-Sn/vi L Te.
It remains to verify claims 1) - 3). The probability generating function of H,, is
given by

(2" Zserg (Aq- (pZ),~AQ* ((PWf)2)7 Ag-((pw2)?),...)
[z ZseTg (Aq- (p2), Aa: ((p2)?), .. )

E[w!] =

Since 1 € Q we may bound the denominator from below by [2"~!].Aq-(pz) and by
Proposition [3.1.5| we have that

(2" Y Ag-(pz) ~ Cn=3/?

for some constant C' > 0 as n =2 mod ged(Q2*) tends to infinity. Moreover, for all
n the polynomial in the indeterminate w in the numerator is dominated coefficient
wise by the series

Zsprg (Aa-(p), Ao+ ((pw)?), . ..)



50 3. The CRT is the scaling limit of unlabelled unrooted trees

which by Proposition has radius of convergence strictly greater than 1. In
particular we have that

> [k Zser, (Ao (p), Aas ((pw)?), ...) = O(y")

k>x

for some constant 0 < 7 < 1. Hence there is a constant C’ such that P(H, >
x) < C n3/24% for all n and z. The probability generating function for the random
number f, is given by

[Zn_l]ZSETQ (wiiQ* (pz), iZlQ* ((pz)Q)’ .- )
(271 ZseT, (Aqx (p2), Aa: ((p2)?), - - )

and the corresponding bound for the event f,, > x follows by the same arguments.
This proves claim 1).

E[w/"] =

We proceed with showing claim 2). Let z, be a given sequence of positive
numbers. The event

max |Ap| < z
Qan| Q|— n

would imply that

n—1=H,+ Z |Ag| < Hp + @ fo-
QeFy,

In particular it holds that H, > (n —1)/2 or f,, > (n —1)/(2x,). Thus, for
xn = cn/log(n)
with ¢ > 0 a sufficiently small number, it follows by the tail bounds of claim 1) that

P Aol < z,) = o(1).
(&Egil ol <) =o(1)

Thus, setting

Yp =1 — n2/3+e

for any small € > 0, we have that

P Aol < un) = o(1 P Aol = k).
(ax Aol S w) =o()+ 3 Plmax |Agl = k)

Tn<k<yn

We can form any unlabelled S-object by taking an ordered pair of unlabelled Aq+-
objects, connecting their roots by an edge, and declaring the root of the first object
as the new root of the resulting tree. It follows that the number of unlabelled S-
objects with size n having the property that at least one of the subtrees dangling
from the root has size k is bounded by apa,,_; with a; = [z’]fig* (z) for all i. Hence

P(max [Ag| = k) < aran-1/[2"]5(2).
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By Proposition we know that a; ~ Ci~%/2p~% as i =1 mod ged(Q*) tends to
infinity. Thus

P(max |Aq| < yn) <o(1)+C" > (k(n—k)/n)3/?
QEFn
Tn<k<yn
for some C’ > 0. Writing k = n/2+t we obtain k(n—k)/n = ((n/2)?—t%)/n and this
quantity strictly decreases as |t| grows. Hence we have (k(n—k)/n)=3/2 < n?/3+¢(1+
0(1)) uniformly for all z,, < k < y,,, and thus P(maxger, |Ag| < yn) = o(1). Setting
Zn=n— n3G+O+ for a small € > 0 we may repeat the same arguments to obtain

—3/2
P(max [Aql < 20) <o(1) +C" 37 (k(n—k)/n)™
yngkgzn
< o(1) + O(1) (20 — yn) (n3 GO+ )=3/2

and this quantity tends to zero. We may repeat the same argument arbitrarily many
times and hence obtain that for any é > 0 we have that

0
P(max [Ag| < n —n) = o(1).
This proves claim 2).

It remains to prove claim 3), i.e. we have to show that E[f,] = O(1). If Q C N
is bounded, then this is trivial. Otherwise it seems to require some work. We have
that oz B 3
[ (5155, %) (Aa- (2), Aa- (27), - )

(21 ZseT,, (Aq: (2), Ag=(22), . ..)

Since 1 € Q we have that the denominator is bounded from below by [2" 1] Aq-(2).
By Proposition it follows that

(2" 1A (2)) ™" = O(n*2p").

E[fn] =

The power series in z in the numerator is bounded coefficient wise by

(31agifT)(ﬂm(z),flg*(zz), ) = Ao (2) exp(Y_ Aq- (2)/i) = h(Aa-(2))9(2)
i=1

with
h(w) = wexp(w)

analytic on C and

g(w) = exp(Y_ A+ (2')/i)

i>2
having radius of convergence strictly larger than p since p < 1. By a singularity
analysis using results from [BBYO06] and [FS09, Thm. VIL5] it follows that

=" 'h(Ag- (2))g(2) = O(n~?p ™).
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The detailed arguments are identical as in the proof of Proposition below. This
concludes the proof.
O

Lemma 3.1.3. Let V,, be drawn uniformly from the unlabelled
V = (SET¢ ® Ag+) * X

objects of size n. Then we have

CQO* d
\;%VnQ)Te.

Moreover, there are constants C,c > 0 such that for all x > 0 and n we have the tail
bound

P(D(V,) > x) < Cexp(—cx?/n).

Proof. The proof is analogous to the proof of Lemma [3.1.2] only with pointed cycle
index sums replacing the role of cycle index sums. Let (V,, 7, 0n,v,) be a rooted
c-symmetry drawn uniformly at random from the set RSym(S)[n]. In particular, V,,
is distributed like the uniformly at random chosen unlabelled V-object with size n.
Let m, denote the corresponding partition. By the discussion in Section [2.2.4] o,
induces an automorphism

Op @ Ty —> Ty,

of the SETq-object. Moreover, let F,, C m, denote the fixpoints of 7, f, = |F,|
their number and for each fixpoint @ € F, let (Ag,og) denote the corresponding
symmetry from Sym(Aq+)(Q). Let H, denote the total size of the trees dangling
from cycles with length at least 2. We are going to show the following claims.

1) There are constants C; > 0 and 0 < v < 1 such that for all n and = > 0 we have
that
P(H, > z) < Cin®/?y®

and
P(f, > x) < Cin®/?%y®.

2) For any ¢ > 0 the maximum size maxger, |Ag| of the trees corresponding to the
fixpoints of 7,, satisfies

P Aol <n —n®) = o(1).
(&%|Q|—n n°) = o(1)

3) There is a constant Cy > 0 such that

for all n.
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From these claims we may deduce the tail bounds for the diameter and the conver-
gence towards the CRT in an identical manner as in the proof of Lemma It
remains to verify claims 1)-3). We start with claim 1). The probablity generating
function of H,, is given by

2" Zsre (Aa- (p2), A (p2); Ag- ((pw2)?), A ((pw2)?); ..)
(271 Zgrg (A (p2), Ay (p2); Aq- ((02)2), Ag- ((p2)2); )

E[w!r] =

Since 1 € Q and there is a number £ > 3 with k € € it follows that the denominator
is bounded from below by

(2" 2R A (p2) = [V M Ag- (p2).

We have that
n—k=1 mod ged(Q¥)

and thus, by Proposition we have that
(2" * Aqs (pz) ~ Cn~%/?

as n = 2 mod ged(2*) tends to infinity. The polynomial in the numerator with
indeterminate w is bounded coefficient wise by the series

Zsgrs (A (p), A (p); Ao- ((pw)?), A (pw)?); . .)

which does not depend on n and, by Proposition has radius of convergence
strictly larger than 1. It follows that there is a constant C’ such that

P(H, > z) < C'n®/?y"

for all n and z. The probability generating function for the random number number
fn is given by
(2" N Zgpre (wAq- (p2), wAG. (p2); Aa-((p2)%), Ag- ((p2)%); - )

Efwf"] = = = = = =
O o Zgra (e (92), gy (92 A (07)%), i (9225

and the corresponding bound for the event f,, > = follows by the same arguments.
This proves claim 1).
We proceed with showing claim 2). Let z, be a given sequence of positive
numbers. The event
max |[Ag| <z
Qan| Ql <

would imply that

n—1=H,+ Z |Ag| < Hp + xn fn.
QeFy,
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In particular it holds that H,, > (n —1)/2 or f,, > (n —1)/(2x,). Thus, for
xn = cn/log(n)
with ¢ > 0 a sufficiently small number, it follows by the tail bounds of claim 1) that

P Agl < =o(1).
(ax [Aql < ) = o(1)

Setting
Yp =1 — n2/3+e

for any small € > 0, we have that

P(max |[Ap| < y,) = o(1) + P(max |Ag| = k).
(gupelAal )=o)+ 3 Blgxlacl =

Any unlabelled V-object with a tree of size k dangling from the root that does not
contain any vertex of the marked cycle can be formed by connecting the roots of
an unlabelled Ag+-object of size k and an unlabelled SET{. ® Ag- object of size
n — k. By a singularity analysis similiar to the proof of claim 3) in Lemma
we have that the number b; of unlabelled SET%* © Aq=-objects of size i is at most
O(i=3/2p=%). It follows that

P(max Al = k) < ([z"] A0~ (2)bn—1/(["]V(2)) = O((k(n — k) /n)~*?)
uniformly for all z,, < k <y, and thus

P(max Aol < ) = o(1) +0(1) 3 (k(n—k)/m) ™",
Tn<k<yn

In order to finish the proof of claim 2) we may now follow precisely the same argu-
ments as in the proof of claim 2) in Lemma

Claim 3) follows by similar arguments as in the proof of claim 3) in Lemma
This completes the proof. O

3.1.3 A proof of Lemma m

We have to show that there are constants C, ¢ > 0 such that for all x > 0 and m > 1
with m =1 mod ged(2*) it holds that

P(H(A,,) > ) < Cexp(—cz?/m).

Proof of Lemma[1.2.6, Since we may replace C' by any larger constant and ¢ by any
smaller constant, it suffices to pick a fixed constant M and show the claim for all
m > M and /m < x < m. By the rules governing Pélya-Boltzmann samplers in
Sections [2.4.2.2| and [2.4.3| the following recursive procedure I'Ag« () terminates al-
most surely and draws a random unlabelled Agq+-object according to the Boltzmann
distribution with parameters « for any 0 < x < p.
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1. Start with a root vertex v.

2. Draw a random permutation o(v) with size |o(v)| in the set Q* such that o(v)
gets drawn with probability proportional to its weight

1 - .
oty @7 g (@)

Here 0;(v) denotes the number of i-cycles of the permutation o(v).

3. For each i draw o;(v) independent copies A% (v),..., Affi(,u) (v) of the recursively

called sampler T'A(z") and for each 1 < j < 0;(v) attach the roots of i identical
copies of Aé- (v) to the root vertex v by adding edges.

Let A be a random tree drawn according to T'\Aq.(p) and consider the subtree T given
by the root-vertices of the trees generated by a call to the sampler with parameter
p (as opposed to p’ for some i > 2). Then T is distributed like the result of drawing
a Galton-Watson tree and discarding the orderings on the offspring sets, with the
offspring distribution £ given by the number of fixpoints of the random permutation
drawn in step 2. The probability generating function of ¢ is given by

E[2%] = Zsprg,. (zAa-(p), Aa-(p*), Ao (p°), .. ) p/ Aa-(p).

Note that E[¢] = 1 and, by Proposition E[2¢] has radius of convergence strictly
larger than 1.
For any vertex v of T, the sum of vertices

oi(v)

S() =YY ilAl(v)]

i>2 j=1

of the attached subtrees corresponding to cycles of lengths at least 2 has probability
generating function

E[ZS(U)] = ZSETQ* (AQ* (P), AQ* ((Zp)2), AQ* ((Zp)3)7 . ),O/AQ* (p)

Again, by Proposition this series has radius of convergence strictly larger than
1 and hence there is a constant 0 < v < 1 with

uniformly for all y > 0.

Given m = 1 mod ged(Q*) let A, Ty, and (S, (v))peT,, denote the random
variables A, T and (S(v))yet conditioned on the event |A| = m. In particular, A,,
is uniformly distributed among all Pélya trees of size m with outdegrees in the set
Q*. If the height H(A,,) of the tree A,, satisfies H(A,,) > x then H(T,,) > z/2 or
Sm(v) > x/2 for at least one vertex v € T,,. By the tail bounds for conditioned
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Galton-Watson processes given in Addario-Berry, Devroye and Janson [ABD.J13]
there exist constants C1, ¢y > 0 such that for all £ and y > 0 we have that

P(H(T) >y | [T| =€) < Crexp(—c1y?/0).
Moreover, T,, conditioned on having size ¢ is distributed like T conditioned on having

size £. Thus the probability for the event H(T,,) > z/2 is bounded by

Y Pl = OPMH(T) 2 2/2|[T| =€) < Cy eXp(—%wz/m)'

m
(=1

By Proposition and the definition of the Boltzmann-distribution, we have that
asymptotically
P(|A| = m) ~ dg=m™3/?

for some constant dgo+. In particular, there is a constant C5 > 0 such that
P(|A| = m) < Com™>/?

for all m. Hence there is a constant C3 > 0 such that for all  and m the probability
for the event S, (v) > x/2 for at least one vertex v € T,, is bounded by

Com3?P(S(v) > /2 for some v € T, |A| = m) < Csm®/247/2.
We assumed that \/m < z < m, hence
mP2y®1? < Oy exp(—caz?/m)
for some constants Cy, co > 0. Thus there are constants Cs, cg > 0 such that

P(H(A,) > z) < C) exp(—%xz/m) + Cyrexp(—coz? /m) < Csexp(—csz?/m).

3.1.4 Enumerative properties

In this section we collect basic facts regarding the number of unordered unlabelled
trees, which are frequently used in the proofs of the main theorems. Most of these
are well-known (at least under less general assumptions), but we do provide proofs
for the readers convenience.

Proposition 3.1.4. The radius of convergence p of the series flg*(z) satisfies 0 <
p <1 and Ag-(p) < oco.

Proof. The series Aq-(z) is dominated coefficentwise by the generating series A(z)
of all rooted trees and it is known that A(z) is analytic at the origin (see e.g. Otter
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[Ott48], Pélya [P4l37], Flajolet and Sedgewick [ES09]). Hence p > 0. As formal
power series we have that

Ao (X) = X Zspr,,. (Aq+ (X), Ao (X?),...).

The coefficients of all involved series are nonnegative, hence we may lift this identity
of formal power series to a identity of real numbers. By assumption, 0 € Q* and
there is an integer ¢ > 2 such that ¢ € Q*. Thus, for all 0 < # < p it holds that

AQ* () > z(1+ % Z AQ* (l‘)alftg* (1,2)02 .. _,Z[Q* (wﬁ)w) (%)

’ UES@

with Sy denoting the symmetric group of degree ¢ and o; denoting the number of
cycles of length ¢ of the permuation ¢. In particular, by considering the summand
for o = id, we have that

Aq-(x) > z(Ag- ()" /0.

Since ¢ > 2 this implies that the limit lim,, A(x) is finite and hence Aqg-«(p) is finite.
Moreover, considering the summand in (x) for o a cycle of length ¢ yields that

00 > Aq+(p) = p(Aa-(p")/L.

This implies that p < 1 because otherwise A(pe) = oo. If p = 1, then Inequality
(%) would imply that Ag«(1) > 1. Applying (%) again would then yield the clearly
impossible inequality

Ag-(1) > 14 Ag-(1).

Hence our premise cannot hold and thus p < 1. O

From this we obtain detailed information on the number of Pdlya trees of a given
size with outdegrees in ©*. This is a special case of [BBY06, Thm. 75]. See also
[FS09, Thm. VIIL4] for the aperiodic case.

Proposition 3.1.5. The following two statements hold.
i) There is a positive constant do+ such that
(™) Age (2) ~ dg=m ™32 p™™
as the number m =1 mod ged(Q*) tends to infinity.

it) For any subset A C N the series

EA(Z, w) = zZsET, (W, Aqs (22), Aqx (23), o)

satisfies )
EMp+ e, Aq-(p) +¢) < o0

for some € > 0.
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Proof. We have that 3 3
Aqx(2) = EY (2, Ag+(2))

and for any A the series E(z,w) is dominated coefficient-wise by
e ~ .
zexp(w + Z Aq-(2") /7).
i=2
Since p < 1 it follows that there is an € > 0 such that
EMp+ €, Ag+(p) + €) < o0.

By a general enumeration result given in Bell, Burris and Yeats [BBY06, Thm. 28]
it follows that

. o | PEE (0, Aa-(p) s )
2" Aqx(2) ~ ged(Q - = p "m % m=1 mod ged(Q).
A e )\/QWng(PaAQ*(P)) ()

O]

In [BFKVIIL Prop. 24] the cycle-pointing decomposition was used in order to
provide a new method for determining the asymptotic number of free trees. The
argument used there can easily be extended to the case of vertex degree restrictions.

Proposition 3.1.6. The series Fq(z) and Aq-(z) both have the same radius of
convergence p. Moreover, the following statements hold.

i) There is a constant dg,. such that
(2" Falz) ~ dip~"n
as n =2 mod ged(Q*) tends to infinity.

i1) For any set A C N the series

FNzw) = Zggys (w, A (2): Age (22), A0 (22): Ao (), A3 (2%): )

satisfies F™p + €, Aq-(p) + €) < 0 for some € > 0.

i11) The power series

> _ i 2
ZSET%}@AQ* (2) = A (27)
has radius of convergence greater than p.

Proof. Let p denote the radius of convergence of Aq-«(z). Claim iii) follows from the
fact that p < 1 and the series
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also has radius of convergence p. We proceed with claim ii). The series ZSET% is
dominated coefficient-wise by the series

Zgpre(s1,t1; 82,195 . ..) = eXp(Z si/k) Zti
k=1 =2
and hence F*(z,w) is dominated by
exp(w+ Y A« () /k) Y Aq. (21).
=2

k=2

Since p < 1 this series is finite for z = p+¢ and w = Ag+(p) + € if € > 0 is sufficiently
small. In order prove claim i) we are going to perform a singularity analysis of the
series ¢ (2). The cycle pointing decomposition

.7:6 ~ X° x (SETQ o AQ*) + SETC{%} © AQ* + (SET% © AQ*) * X
yields that the series F5(2) = z%]:"gz(z) can be written in the form
Fo(z) = zh(z, Ag-(2))
with 3
h(z,w) = B (z,w) + F(z,w) + A (%) /2.

Here we let E be defined as in Proposition Set d = ged(2*). We have
that Aq- (z) satisfies the prerequisites of the type of power series studied in Jason,
Stanley and Yeats [BBY06, Thm. 28]: Its dominant singularities (all of square-root
type) are given by the rotated points

U={*p|k=0,...,d—1}

with

Moreover } 3
Ao+ (wz) = wAg+(2)
for all 2 in a generalized A-region with wedges removed at the points of U. We have
that h(z,w) is a power series with nonnegative coefficients and by claim i) and ii)
and Proposition we have
h(Aq=(p) +€,p+€) < oo

for some € > 0. Hence the dominant singularities and their types are driven by
the series Aq-(z). We may apply a standard result for the singularity analysis of
functions with multiple dominant singularities [FS09, Thm. VI.5] and obtain that

(2, A (2)) ~ dgem =27

for m =1 mod ged(2*) and d. > 0 a constant. O






Chapter 4

Scaling limits of random Pdlya
trees



62 4. Scaling limits of random Pdlya trees

4.1 Proof of the main theorem

In the following Q* will always denote a set of nonnegative integers containing zero
and at least one integer greater than or equal to two. Moreover, n will always denote
a natural number that satisfies n = 1 mod ged(Q*) and is large enough such that
rooted trees with n vertices and outdegrees in Q* exist. We define the subspecies
SETq+ C SET by restricting to objects whose size lies in the set Q*. We let Ag+
denote the species of Pdlya trees with vertex-outdegrees in the set Q*. Clearly it
satisfies an isomorphism of combinatorial species

Our starting point is constructing a Boltzmann-sampler for Pélya trees. We may
apply the rules for the construction of Pélya-Boltzmann samplers in Sections|2.4.2.2
and in order to obtain the following procedure.

Lemma 4.1.1. The following recursive procedure T Aq- () terminates almost surely
and draws a random Pdlya tree with outdegrees in 2* according to the Boltzmann
distribution with parameter 0 < xz < pqo~x, i.e. any tree with n vertices gets drawn
with probability ") Aq- ().

1. Start with a root vertezx v.

2. Draw a random permutation SET g« -symmetry according to a (Pdlya)-Boltzmann
distribution with parameters (x%);>1. That is, let o(v) be a random permutation
drawn from the union of permutation groups Jicq- Sk with distribution given by

P(O’(’U) =v)= jlg:(x)kl'jﬂ* (q:)le/{g* ($2)V2 .. _,LIQ* (xk)uk

for each k € Q* and v € S. Here v; denotes the number of cycles of length i of
the permutation v. In particular, 11 is the number of fixpoints of v.

3. If o(v) € Sy return the tree consisting of the root only and stop. Otherwise,
for each cycle T of o(v) let £; > 1 denote its length and draw a Polya tree A,
by an independent call to the sampler L Ag- (acef). Make ¢, identical copies of
the tree A; and connect their roots to the vertex v by adding edges. Return the
resulting tree and stop.

The Boltzmann distribution is a measure on Pdlya trees with an arbitrary num-
ber of vertices. However, any tree with n vertices has the same probability, i.e.,
the distribution conditioned on the event that the generated tree has n vertices is
uniform. This will allow us to reduce the study of properties of a random Pélya tree
with exactly n vertices to the study of T'Ag-.
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Proof of Theorem[1.3.11 We begin the proof with a couple of auxiliary observations
about the sampler Fflg*(ac) from Lemma Let us fix x = pg+ throughout. We
may do so, since by Proposition We have that 0 < po~ < 1 and Aq- (pax) < oo.

Suppose that we modify Step 1 to ”Start with a root vertex v. If the argument
of the sampler is po+ (as opposed to pa* for some i > 2), then mark this vertex
with the color blue.”. Then the resulting tree is still Boltzmann-distributed, but
comes with a colored subtree which we denote by 7. If we construct the sampler
['Ag«(x) from a Pélya-Boltzmann sampler I'Z 4, (z,22,...), then by the discussion
in Section the subtree 7 corresponds precisely to the fixpoints of the symmetry.

Note that 7T is distributed like a Galton-Watson tree without the ordering on
the offspring sets. By construction, the offspring distribution £ of T is given by
the number of fixpoints of the random permutation drawn in Step 2. Thus, the
probability generating function of & is

E[Zé] = LZSETQ* (ZAQ* (PQ*)7 AQ* (p%l*)a AQ* (,0:(32*); .- ) (412)
Ag+ (par)

Moreover, for any blue vertex v we may consider the forest F'(v) of the trees dangling
from v that correspond to cycles of the permutation o(v) with length at least two.
Let ¢ denote a random variable that is distributed like the number of vertices |F'(v)]
in F(v). Then the probability generating function of  is

E[2¢] = JLZSETQ* (Aa-(pa+), Ag ((zpa)?), Ag= ((zpa+)?)...).  (4.1.3)
Aq-(por)

Using Proposition it follows from Equations (4.1.2)) and (4.1.2) that the gen-

erating functions E[2¢] and E[2¢] have radius of convergence strictly larger than
one. Hence £ and ¢ have finite exponential moments. In particular, there are con-
stants ¢, ¢ > 0 such that for any s > 0

P(¢ > s),P(C > s) < ce . (4.1.4)

Moreover, as we argue below, £ has average value

0

El¢] = ((%ZSETQ*) (Aq-(pa-), A= (p&-), .. )pa = 1.

This can be shown as follows. Recall that the ordinary generating series satisfies the
identity Aq+(z) = E(z, Aq+(z)) with the series F(z,w) given by

E(z,w) = 2Zsp1,. (w0, Ag- (2%), Ao~ (%), .. ).

In particular, we have that F(z, Ag+(z)) = 0 with F(z,w) = E(z,w) — w. Sup-
pose that (:2F)(p, Aq+(p)) # 0. Then by the implicit function theorem the func-
tion Aq- (z) has an analytic continuation in a neighbourhood of pg«. But this contra-
dicts Pringsheim’s theorem [FS09, Thm. IV.6], which states that the series Agq«(2)
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must have a singularity at the point po~ since all its coefficients are nonnegative real
numbers. Hence we have (a%F)(p, Aq-(p)) = 0 which is equivalent to E[¢] = 1.

With all these facts at hand we proceed with the proof of the theorem. Slightly
abusing notation, we let A, denote the colored random tree drawn by conditioning
the (modified) sampler I'Ag«(po-+) on having exactly n vertices. That is, if we ignore
the colors, A, is drawn uniformly among all Pélya trees of size n with outdegrees
in 2*. Moreover, let T, denote the colored subtree of A, and for any vertex v of T,
let F},(v) denote the corresponding forest that consists of non-blue vertices. We will
argue that with high probability there is a constant C' > 0 such that |F},(v)| < C'logn
for all v € T,. Indeed, note that by Proposition [3.1.5

P&

= = Zn A * * )] = 77,73/2 L.
T Ao (o) = 0007, (4.L5)

P(IT Ao+ (par)

=n)

i.e. the probability is (only) polynomially small. Thus, for any s > 0, if we denote
by (1,2, ... independent random variables that are distributed like ¢

P(3v € Ty : |Fu(v)] > 8) =P(Fv e T : |F(v)| > s | [T Ag:(pa+)| = n)
<OmPPPEL<i<n:( > s).

Using (4.1.4) and setting s = Clogn we get that P((; > s) = o(n°/?) for an
appropriate choice of C' > 0. Thus, by the union bound

P(Vv € Ty : |Frn(v)] < Clogn) =1—o0(1). (4.1.6)

The typical shape of A,, thus consists of a col-
ored tree with small forests attached to each of
its vertices, compare with Figure In par-
ticular, we have that the Gromov-Hausdorff
distance between the rescaled trees A, /\/n
and T,/+/n converges in probability to zero.
We are going to show that there is a con-
stant co+ > 0 such that co«T, / \/ﬁ converges
weakly towards the Brownian continuum ran- Fu(d) Fu(e)

dom tree 7. This immediately implies that Figure 4.1: The typical shape of the

random Pdlya tree with n vertices.

ca-An /v T

and we are done.

We are going to argue that the number of vertices in 7, concentrates around a
constant multiple of n. More precisely, we are going to show that for any expo-
nent 0 < s < 1/2 we have with high probability that

n

Tn| € (1 in_S)TE[C]'

(4.1.7)



4.1 Proof of the main theorem 65

To this end, consider the corresponding complementary event in the unconditioned
setting
[T Aq-(po-)|

TI¢ (1n~) T

If this occurs, then we clearly also have that

Y (L+[F@)]) =T Aa-(pe-)| ¢ (1% O(n™*))(1 +E[(])|T]-

veT

Let £ denote the corresponding event. From (4.1.6) we know that with high prob-
ability |F,(v)] = O(logn) for all vertices v of 7,. Hence, with high probability,
say, |Tu| > n/logn. Using again (1)

n

P(E | [T Aq+(pa-)| = n) = O(n*/*)P(

<|T| <n, &)+ o(1).

log“n
By applying the union bound, the latter probability is at most

L

Y. PQo(1+G) ¢ (1£6(n %) (1 +EL)e).

n/log? n<é<n =1

Since the random variable ¢ has finite exponential moments, we may apply the
deviation inequality in Lemma in order to bound this by

> exp(f(ch? = AO(n*)))

n/log? n<<n

for all 0 < A < § for some § > 0. Taking A = n~*/2, this may be bounded further by

nl—s

nexp(- (e — O(n*/2))) = o(1).

log“n

Hence, (4.1.7) holds with probability tending to 1 as n becomes large. We are now
going to prove that

VOATEQo . 418)

N Tn—Te

with o2 denoting the variance of the random variable ¢. This implies that

CQ*An/\/ﬁﬂ% with ¢« = W (4.1.9)

and we are done. Note that o and E[(] may be computed explicitly from the ex-
pression of the probability generating functions in (4.1.2)) and (4.1.3]), in particular
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we obtain that o2 is given by

ot = (LB + 2B - (ZEE)?) )

= pa-Aq- (PQ*)(%;E%TW(AQ* (pa+), Aar (p&), - - )
+ PQ*aZSZTm(AQ*(PQ*)’AQ*(P?)*), )
s (aZ;ZTQ*(AQ*(PQ*%AQ*(P?N%---))2

and

Bl = (52B6) ()

PO 0 > ~ 9 P .
= = —7 * A * * 7_,4 * w)ye e *A N ),
Aq-(pa-) ; <88i SETo. | (Aa-(par), Aa-(p-), - ) ipg- Ao (Po-)

where ./Nl’Q* = %flg*. Note that this expression is well-defined, since 0 < po~ < 1.

In order to show , let f: K — R denote a bounded, Lipschitz-continous
function defined on the space K of isometry classes of compact metric spaces. Note
that the tree 7, conditioned on having ¢ vertices is distributed like the tree 7T
conditioned on having ¢ vertices. In particular, it is identically distributed to a &-
Galton-Watson tree T¢ conditioned on having ¢ vertices, which we denote by 72)5.
Since holds with high probability it follows that

Elf(co-Ta/VR) =0(1)+ 3. Elf(ca:T/V)P(T| = 0).

fE(l:l:n—s)ﬁE[q

Let D(T') denote the diameter of T, i.e., the number of vertices on a longest path in
T. Since f was assumed to be Lipschitz-continuous it follows that

ELf (co- T /V)] = ELf (0T /2VD)| < an BID(TE) V1]

for a sequence a, ¢ with sup,(a,¢) — 0 as n becomes large. Moreover, the average

rescaled diameter E[D(ﬁf) /V/€] converges to a multiple of the expected diameter of
the CRT 7 as ¢ tends to infinity, see e.g. [ABDJ13]. In particular, it is a bounded
sequence. Since

E[f(oT; /2VE)] — E[f(Te)]

as ¢ — oo, it follows that

E[f(caTn/v/n)] = E[f(7e)]

as n becomes large. This completes the proof. O
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5.1 Preliminaries

5.1.1 Block-stable graph classes

Any graph may be decomposed into its connected components, i.e. its maximal con-
nected subgraphs. These connected components allow a block-decomposition which
we recall in the following. Let C be a connected graph. If removing a vertex v (and
deleting all adjacent edges) disconnects the graph, we say that v is a cutvertez of C.
The graph C'is 2-connected, if it has size at least three and no cutvertices.

A block of an arbitrary graph G is a maximal connected subgraph B C G that
does not have a cutvertex (of itself). It is well-known, see for example [Diel(], that
any block is either 2-connected or an edge or a single isolated point. Moreover, the
intersection of two blocks is either empty or a cutvertex of a connected component
of G. If GG is connected, then the bipartite graph whose vertices are the blocks and
the cutvertices of G and whose edges are pairs {v, B} with v € B is a tree and called
the block-tree of G.

Let G denote a subspecies of the species of graphs, C C G the subspecies of
connected graphs in G and B C C the subspecies of all graphs in C, that are 2-
connected or consist of only two vertices joined by an edge. We say that G or C
is a block-stable class of graphs, if B # 0 and G € G if and only if every block
of G belongs to B or is a single isolated vertex. Block-stable classes satisfy the
following combinatorial specifications that can be found for example in Joyal [Joy81],
Bergeron, Labelle and Leroux [BLLI§| and Harary and Palmer [HP73]:

G~SEToC and C(C*~X-(SEToB oC*). (5.1.1)

The first correspondence expresses the fact that we may form any graph on a given
vertex set U by partitioning U and constructing a connected graph on each partition
class. The specification for rooted connected graphs, illustrated in Figure is
based on the construction of the block-tree. The idea is to interpret B’ o C*-objects
as graphs by connecting the roots of the C® objects on the partition classes and
the *-vertex with edges according to the B’-object on the partition. An object of
SET o (B’ o C®) can then be interpreted as a graph by identifying the x-vertices of
the B’ oC® objects. This construction is compatible with graph isomorphisms, hence
C' ~ SET o B o C*® and the second specification in follows. By the rules for
computing the generating series of species we obtain the equations

G(z) = exp(C(x)) and C*(z) = zexp(B'(C*(x))). (5.1.2)

The following lemma was given in Panagiotou and Steger [PS10] and Drmota et
al. [DFK™11] under some minor additional assumptions.

Lemma 5.1.1. Let C be a block-stable class of connected graphs, B # 0 its subclass
of all graphs that are 2-connected or a single edge. Then the exponential generating
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Figure 5.1: Decomposition of a rooted graph from C® into a X - (SET o B’ o C*)
structure. Labels are omitted and the roots are marked with squares.

series C(z) has radius of convergence p < oo and the sums y := C*(p) and X := B'(y)
are finite and satisfy

y = pexp(A). (5.1.3)

Proof. 1t suffices to consider the case p > 0. By assumption we have B # 0 and
hence there is a k € N such that [2¥]B'(z) # 0. Thus, by we have, say,
C*(z) = c2C*(2)%* + R(z) for some constant ¢ > 0 and R(z) a power series in z with
nonnegative coefficients. This implies lim,,C®*(x) < oo and thus p and C*(p) are
both finite. The coefficients of all power series involved in are nonnegative,
and so it follows that y = pexp(A) and thus A < occ. O

We will only be interested in the case where C is analytic. The following obser-
vation (made for example also in [DN13]) shows that this is equivalent to requiring
that B is analytic. We include a short proof for completeness.

Proposition 5.1.2. Let C be a block-stable class of connected graphs, B # 0 its
subclass of all graphs that are 2-connected or a single edge. Then C is analytic if
and only if B is analytic.

Proof. By nonnegativity of coefficients we see easily that p > 0 implies that B is
analytic. Conversely, suppose that B(z) has positive radius of convergence R > 0.
By the inverse function theorem, the block-stability equation f(z) = zexp(B'(f(2)))
has an analytic solution whose expansion at the point 0 agrees with the series C*(z)
by Lagrange’s inversion formula. Hence C is an analytic class. O

5.1.2 R-enriched trees

The class T* of rooted tree{] is known to satisfy the decomposition

T* ~ X -SET(T*).

L Arborescence is the French word for rooted tree, hence the notation A.
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This is easy to see: in order to form a rooted tree on a given set of vertices, we
choose a root vertex v, partition the remaining the vertices, endow each partition
class with a structure of a rooted tree and connect the vertex v with their roots.
More generally, given a species R the class Ag of R-enriched trees is defined by the
combinatorial specification

Ar ~ X - R(AR).

In other words, an R-enriched tree is a rooted tree such that the offspring set of
any vertex is endowed with an R-structure. Natural examples are labeled ordered
trees, which are SEQ-enriched trees, and plane trees, which are unlabeled ordered
trees. Ordered and unordered tree families defined by restrictions on the allowed
outdegree of internal vertices also fit in this framework. 7TR-enriched trees were
introduced by Labelle [Lab81] in order to provide a combinatorial proof of Lagrange
Inversion. They have applications in various fields of mathematics, see for example
[ML14, [DLLK2. Lab10].

The combinatorial specification together with Theorem allows us to
identify a block-stable graph class C* with the class R-enriched trees where R =
SET(B'), that is, rooted trees from 7°® where the offspring set of each vertex is
partitioned into nonempty sets and each of these sets carries a B'-structure. Compare
with Figure |5.2

Figure 5.2: Correspondence of the classes C* and SET(B’)-enriched trees.

Corollary 5.1.3. Let C be a block-stable class of connected graphs, B # 0 its sub-
class of all graphs that are 2-connected or a single edge. Then there is a unique
isomorphism between C* and the class Asgrop of pairs (T, o) with T € T* and « a
function that assigns to each v € V(T') a (possibly empty) set a(v) € (SET oB')[M,]
of derived blocks whose vertex sets partition the offspring set M, of v.

Proof. By the isomorphism given in the classes Aggprop and C® are both
solutions of the system Y = H(X,)) with H(X,)) = X -SET o B o Y. Joyal’s
Implicit Species Theorem yields that there is a unique isomorphism between
any two solutions. O

5.1.3 The classical Boltzmann sampler for block-stable classes

Let C be a block-stable class of connected graphs such that the radius of convergence
p of the generating series C(z) is positive. The rooted class C* has a combinatorial
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specification given in in terms of the subclass B of edges and 2-connected
graphs. By Lemma we know that y = C*(p) and A = B/(y) are finite.

Since p is an admissible parameter for the Boltzmann-distribution of C*, we may
apply the rules for the construction of Boltzmann samplers given in Sections [2.4.2.2
and in order to obtain an explicit sampler I'C*(p). By the rule concerning
products of species, we have to start with independent calls to the samplers T'X(p)
and I'(SET o B’ o C*)(p), and relabel uniformly at random afterwards. The sampler
I'X(p) generates (deterministically) a single root-vertex. The rule for compositions
states that a Boltzmann sampler for (SET o B') o C* is obtained by starting with
I'(SET o B')(y), and making independent calls to I'C*(p) for each atom (i.e. non-x*-
vertex) of the result. Putting everything together, we obtain the following recursive
procedure.

Corollary 5.1.4. Let C be a block-stable class of connected graphs, B # 0 its subclass
of all graphs that are 2-connected or a single edge. The following recursive procedure
terminates almost surely and samples according to the Boltzmann distribution for
C*® with parameter p.

I'C*(p): ~ < a single root vertex
M + T'(SET o B')(y)
for each derived block B in M
merge the x-vertex of B with ~y
for each non x-vertex v of B
C +TC*(p)
merge v with the root of C
return the resulting graph, relabeled uniformly at random

This procedure was used before in the study of certain block-stable graph classes,
see for example [PS10]. Using the rules for the composition and the SET-species, we
also obtain an explicit description of a Boltzmann sampler for the species SET o 5.

[(SET o B')(y): m + Pois(\)

fork=1...m
Bk — FB’(y)
return {By,..., B, }, relabeled uniformly at random

5.1.4 Subcritical graph classes

Let C be a block-stable class of connected graphs and B its subclass of all graphs
that are 2-connected or a single edge. Assume that B is nonempty and analytic,
hence C is analytic as well by Proposition [5.1.2] Denote by p and R the radii of
convergence of the corresponding exponential generating series C(z) and B(z). By
Lemma we know that p, y = C*(p) and A = B/(y) are finite quantities. The
following proposition provides a coupling of a Boltzmann-distributed random graph
drawn from the class C with a Galton-Watson tree. This will play a central role in
the proof of the main theorem.
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Proposition 5.1.5. Let (T, «) denote the enriched tree corresponding to the Boltz-
mann Sampler T'C®(p) given in Corollary|5.1.4l Then the rooted labeled unordered

tree T is distributed like the outcome of the following process:

1. Draw a Galton-Watson tree with offspring distribution & given by the proba-
bility generating function p(z) = exp(B'(yz) — ).

2. Distribute labels uniformly at random.

3. Discard the ordering on the offspring sets.

Proof. The sampler I'C*(p) given in Corollary starts with a single root-vertex
and a set M of B'-objects drawn according to I'(SET o B’)(y). Each non--vertex of
the blocks in M corresponds to an offspring vertex of the root in the tree T. Thus
the root receives total offspring with size distributed according to [I'(SET o B')(y)|,
which by definition of the Boltzmann distribution has probability generating function
exp(B'(yz) — \). For any offspring vertex, the sampler proceeds with a recursive call
to I'C*(p). After this recursive procedure terminates, the vertices of the resulting
graph are relabeled uniformly at random. Thus T is distributed like a Galton-Watson
tree with offspring distribution given by the pgf ¢(z), except that we neglect all
orderings on the offspring sets and relabel the vertices uniformly at random after
constructing the tree. O

Let & denote the offspring distribution given in Proposition As discussed
above, the rules governing Boltzmann samplers guarantee that the sampler I'C*(p)
terminates almost surely. Hence we have 1 > E[¢] = ¢)(1) = yB"(y) = B*(y) and
in particular y < R. We define subcriticality depending on whether this inequality
is strict.

Definition 5.1.6. A block-stable class of connected graphs C is termed subcritical if
y < R.

Prominent examples of subcritical graph classes are trees, outerplanar graphs and
series-parallel graphs; the class of planar graphs does not fall into this framework
[DFK™11, BPS09], i.e. it satisfies y = R. The following lemma was proved in
Panagiotou and Steger [PS10, Lem. 2.8] by analytic methods.

Lemma 5.1.7. If B*(R) > 1, then B'*(y) = 1. If B*(R) < 1, theny = R. In
particular, C is subcritical if and only if B'*(R) > 1.

Thus, if B*(R) > 1, then the offspring distribution ¢ has expected value 1 and
variance
o =1+ B"(y)y* = E[ITB" (y)|

with T'B’*(y) denoting a Boltzmann sampler for the class B’® with parameter y. By
Proposition the size of the outcome of the sampler I'C®(p) is distributed like
the size of a £-Galton-Watson tree. Hence, by a standard asymptotic expression
[Jan12, Thm. 18.11] , we obtain the following result, which was shown in [DFK™11]
under stronger assumptions.
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Corollary 5.1.8. Let C be an analytic block-stable class of graphs, and let € be the
distribution from Proposition [5.1.5, Suppose that B*(R) > 1 and B"'(y) < oo, i.e.
& has finite variance. Let d = span(§). Then, as n =1 mod d tends to infinity,

o d n=3/2
P(|TC*(p)| = n) 2rE[[TB" (y)]] ’
yd

2rE[[TB" (y)]]

n_5/2p_”n!.

|Cn| ~

5.2 A size-biased random R-enriched tree

Let C be an analytic block-stable class of connected graphs and B # 0 its subclass
of graphs that are 2-connected or a single edge. As before we let p denote the radius
of convergence of the exponential generating series C(z) and set y = C*(p). Recall
that by Corollary the class C* may be identified with the class of R-enriched
trees with R := SET o B, i.e. pairs (T, «) with T' € T* a rooted labeled unordered
tree and « a function that assigns to each v € V(T') a (possibly empty) set a(v) of
derived blocks whose vertex sets partition the offspring set of v.

An important ingredient in our forthcoming arguments will be an accurate de-
scription of the distribution of the blocks on sufficiently long paths in random graphs
from C. In order to study this distribution we will make use of a special case of a size-
biased random R-enriched tree. The use of size-biased structures to study distances
for large random trees is a fruitful approach used in classic and recent literature (see
e.g. Lyons, Pemantle and Peres [LPP95], and Addario-Berry, Devroye and Janson
[ABDJ13]), and applying it to R-enriched trees allows for a particular short and
elegant proof of our main result.

Consider the species A%, of pointed enriched trees, that is of enriched trees
A = (T, ) together with a distinguished vertex u of T'. In order to avoid confusion,
we call u the outer root, and the root of T' the inner root. The directed path in T
from the inner root to the outer root is termed the spine of the pointed enriched
tree. The species A% admits the following classical decomposition due to Labelle
[Lab81, Thm. A]. First, we split the species into summands

° - 4
A =AY
=0

with A%) denoting the subspecies of all pointed R-enriched trees whose spine has
length /. Here the subspecies .Agg) corresponds to the case in which the inner and

outer root coincide, yielding Agg) ~ Agr. For £ > 1 we are going to argue that there
is an isomorphism

AY ~ X R(Ag) - ALY, (5.2.1)
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as illustrated in Figure Indeed, suppose that we are given an arbitrary A%)—
object. The maximal (enriched) subtree rooted at the successor v of the inner root
along the spine is an .A%fl)—object, as the length of its spine is decreased by 1. If
we cut this tree away and replace v with a x-vertex we are left with the inner root,
accounting for the factor X in , together with an R’-object whose non-x-labels
are the roots of Ag-objects, accounting for the factor R'(Ag).

Figure 5.3: The decomposition of A%), with the squares marking the vertices on the
spine.

By iterating (5.2.1]) we arrive at
o ’ ¢
Ayl ~ (X -R(AR)) Ar. (5.2.2)

Our size-biased R-enriched tree will be given by a Boltzmann sampler FA%) (p) of the

species A%). Recall that p > 0 denotes the radius of convergence of the exponential
generating series C*(z) = Ag(z) and that y = Ar(p) < oo by Lemma Of
course, we have to check whether p is an admissible parameter for the Boltzmann
distribution, i.e. if A%)(p) < oo. This is easily confirmed, as the isomorphism in

yields
A5 (0) = (R (AR(0)) AR (p) = (5R' (1)) y = (pB" (1) R(v))"y.

Using that R(y) = P @) and applying Lemmas |5.1.1| and |5.1.7| we infer that the
latter quantity is finite. Hence the Boltzmann distribution for A% with parameter

p is well-defined and for any pointed enriched tree (A, u) from A%) with k vertices
it is given by

P(LAY (p) = (A,1)) = p* /AR (p) = p"(pR' ()~ / AR (p).

Moreover, letting I'Ar (p) denote a Boltzmann sampler for Ag, we have that

P(T Ar(p) = A) = p*/ Ar(p)
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and hence
PTAR (p) = (A1) = (/R (1)) ™ P(TAR(p) = A). (5.2.3)

Equation (5.2.3) allows us to relate properties of the size-biased R-enriched tree

FA%) (p) to properties of a uniformly at random chosen enriched tree of a given size.
We are going to apply the following general lemma in Section [5.3|in order to show
that the blocks along sufficiently long paths in random graphs behave asymptotically
like the spine of I‘Ag) (p) for a corresponding integer /.

Lemma 5.2.1. Let £ be a property of pointed R-enriched trees (i.e. a subset of A% )
and let n € N be such that Ar[n] is nonempty. Consider the function

fiAR[n] > R, A Z Liaw)ee

vEn]

counting the number of “admissible” outer roots with respect to €. Let A,, € Ar[n]
be drawn uniformly at random. Then

n—1
E[f(A,)] = P(T AR (p)| = n)~* Z (pR/(y))gP(F.A%) (p) has size n and satisfies &).
£=0

Proof. First, observe that

> P((Anv) €E) = i Y PA=A).

=0 (4,u)een Al [n]

By we have for all (A,u) € EN A%) [n] that
P(CAR(p) = A| [T A=(p)| = n) = (pR'(y)) BCAR (p) = (A, u))P(T AR (p)] = n) ",
This proves the claim. ]

In order for Lemma to be useful, we need information about the spine
of the size-biased R-enriched tree I'Az(p). We are going to argue that the R-
structures along the spine are (up to relabelling of vertices) independent and follow
a Boltzmann distribution for the pointed species R® with parameter y. We do this
by constructing the Boltzmann sampler step by step following the corresponding
rules.

We may apply the rules for products to the isomorphism in in order to

obtain the following sampling procedure for FA%) (p):

1. Draw a tuple of objects according to (independent) Boltzmann samplers
/—
X (p), TR (AR)(p) and TAR " (p).
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2. Relabel uniformly at random.

3. Apply the isomorphism in 1) in order to obtain an A®-structure from
the resulting X - R'(Ag) -.Aé_l -structure.

The rule for the composition yields the following description for T'R’(Ax)(p).
1. Call I'R'(y) and let R’ denote the result.
2. For each non-*-label v of R call T A (p) and let A, denote the result.
3. Relabel (R, (Ry)y) uniformly at random.

Note that since R®* ~ R - X the sampler I'R®(y) is given by sampling I'R’(y) and
relabelling all vertices including the x-vertex uniformly at random. Together with
the sampler I'A (p) described in Section we obtain the following procedure for

the Boltzmann sampler I’.A%) (p) which we call the size-biased R-enriched tree (see
also Figure [5.4):

Consider two kinds of vertices termed normal and mutant. We start with a sin-
gle mutant root. Normal vertices have an independent copy of I'R(y) as offspring.
Mutant nodes have an independent copy of I'R*®(y) as offspring and the root in the
R*® object is declared mutant, unless its the ¢th copy of I'R*®(y). By the theory of
recursive Boltzmann samplers obtained from combinatorial specifications this pro-
cedure terminates almost surely. The sampler PA%) (p) is obtained by additionally
distributing labels uniformly at random.

Figure 5.4: Illustration of the sampler for the size-biased R-enriched tree.

Note that the R-objects along the spine of the random enriched tree F.A%)(p)
are drawn according to ¢ independent copies of 'R®(y). In our setting we have that
R = SET o B/, where B # 0 denotes the subclass of blocks of the block-stable class
C. Using the chain rule for the derivative of species, we obtain

R*~ (SEToB)-B"

and the sampler I'R*(y) is given by independent calls of I'(SEToB’)(y) and I'B’*(y).
Hence, up to relabelling of vertices, the blocks along the spine are drawn according
to ¢ independent copies of ' (y).
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5.3 Convergence towards the CRT

Let C be an analytic subcritical class of connected graphs and B # 0 its subclass
of all graphs that are 2-connected or a single edge. We let p > 0 denote the radius
of convergence of the exponential generating series C(z) and set y = C*(p). As
before we identify C* with the class Az of R-enriched trees with R = SET o B’.
By Proposition we know that if we draw an R-enriched tree (T, «) according
to the Boltzmann distribution with parameter p, then T is distributed like a &-
Galton-Watson tree with & := [T'(SET o B')(y)|, relabelling uniformly at random
and discarding the ordering on the offspring sets.

Throughout this section let n = 1 mod span(§) denote a large enough integer
such that the probability of a &-GWT having size n is positive. Let C, € C, be
drawn uniformly at random and generate C? € C; by uniformly choosing a root
from [n]. We let (T,,, ay,) be the corresponding enriched tree.

For any pointed derived block B € B'® we let d(B) := dg(*,root) denote the
length of a shortest path connecting the x-vertex with the root. In this section we
prove our main result, Theorem More precisely, we are going to show that

7 D7 and —2_c, AT (5.3.1)

2ky/n " 2K/

with respect to the (pointed) Gromov-Hausdorff metric. The constants are given
by 02 = E[|B|] and k = E[|d(B)|] with B € B’® a random block drawn according
to the Boltzmann distribution with parameter y = C®(p), and in particular o2 =

14 B”(y)y?. To this end, we require a second metric on connected graphs:

Definition 5.3.1. Let C € C. For any z,y € V(C) set do(x,y) := dr(z,y) with
(T, ) the enriched tree corresponding to (C,x), i.e. C rooted at the vertex x.

Less formally speaking, dc(z,y) denotes the minimum number of blocks required
to cover the edges of a shortest path linking  and y. As the example illustrated in
Figure [5.5) shows, the distance between = and y in the tree corresponding to a root
z # x,y might differ from do(z,y). The following lemma ensures that this difference
is bounded.

Figure 5.5: The trees T" and S correspond to the rooted graph (C,z) and (C, z).
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Lemma 5.3.2. Let C' € C be a connected graph and x,y, z vertices of C. Let S be
the tree corresponding to the graph C rooted at z. Then

JC('Ia y) < dS('Za y) < JC’(‘T? y) + 1.
Moreover, dc is a metric on the vertex set V(C).

Proof. Let T and S denote the trees corresponding to the graph C' rooted at z
and z. Consider the lowest common ancestor w of x and y in the tree S. We
let P = (p1,...,pk) and Q@ = (qi1,...,qe¢) denote the paths joining the vertices
r=p1=q and y = pr = ¢¢ in T and S, respectively. If w lies on P, then P = Q
and consequently dg(z,y) = dr(z,y). If w does not lie on P, then there is an index
i with @ = (p1,...,Pi, W, Dit1,---,pk) and hence dg(x,y) = dp(z,y) + 1. Thus

ds(x,y) = do(2,y) + Liwgpy-

The case z = y yields that d¢o is symmetric. The triangle inequality follows from
this fact and

JC(‘Ta y) < dS(xa y) < dS(.I, Z) + dS(Za y) = JC(Za x) + CZC'<Z7 y)
Clearly d¢ is also reflexive and hence a metric. O

In the following lemma we apply the results on pointed enriched trees of Sec-
tion

Lemma 5.3.3. Let C denote a subcritical class of connected graphs and set Kk =
E[d(I'B"*(y))]. Then for all s > 1 and 0 < € < 1/2 with 2es > 1 we have with a
probability that tends to 1 as n becomes large that all x,y € V(Cy,,) with dc, (z,y) >
log®(n) satisfy
‘dcn (xa y) - HCZCn (‘Ta y)| < gcn (JZ, y)1/2+6‘

Proof. We denote L,, = log®(n) and t, = ¢/2%¢. Let £ C A% ~ C** with R
SEToB’ denote the set of all bipointed graphs or pointed enriched trees ((C, ), y) ~
(T, «),y), where we call = the inner root and y the outer root, such that

dr(z,y) > Lipp and  |de(z,y) — kdr(2,9)] > tay(a,y)-
We will bound the probability that there exist vertices  and y with ((C,,z),y) € £.
First observe that
Y P((Cua)y)eéd)= > PC,=C)=n) P(C,y)€&).
y=1

z,y€(n] ((Cx)y)e€

By assumption we may apply Corollary to obtain P(|TC*(p)| = n) = ©(n=%/2).
Moreover, Lemma asserts that B'*(y) = 1 and thus, with Lemma

PR (y) = pB"(y)e?' W) = yB"(y) = 1.
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Hence, by applying Lemma we obtain that

n—1
P(((Cpn, z),y) € & for some z,y) < O(n®/?) Z IP(FA%) (p) has size n and satisfies £).
{=Ln

The height of the outer root in the bipointed graph corresponding to I’A%) (p) is

distributed like the sum of ¢ independent random variables, each distributed like
the distance of the %-vertex and the root in the corresponding derived block of
I'(SET o B')*(y). Since (SET o B')® ~ (SET o B’) - B’®, these variables are actually
d(I'B’*(y))-distributed. Hence

P(CAY (p) € £, LAY (p) = n) <P + ... + ne — LE[m]| > 1)

with (n;); i.i.d. copies of 7 := d(I'B'*(y)). Clearly we have that n < |I'B*(y)|. Since
C is subcritical it follows that there is a constant § > 0 such that E[e"] < oo for all
0 with |0] < 0. Hence we may apply the standard moderate deviation inequality for
one-dimensional random walk stated in Lemma 2.5.7] to obtain for some constant
c>0

P(((Cn, ), y) € & for some x,y) < O(n"/?) exp(—c(logn)?*) = o(1).
O

It remains to clarify what happens if dc, is small. We prove the following state-
ment for random graphs from block-stable classes that are not necessarily subcritical.

Proposition 5.3.4. Let C be a block-stable class of connected graphs. Suppose that
B'*(y) = 1 and the offspring distribution & has finite second moment, i.e. B" (y) <
oo. Let Ib(C,,) denote the size of the largest block in C,,

1. For any x,y € C,, we have dc, (z,y) < dc, (x,y)Ib(Cy).

2. If the offspring distribution £ is bounded, then so is Ib(Cy,). Otherwise, for any
sequence K,, we have P(Ib(C,,) > K,,) = O(n)P(¢§ > K,,).

Proof. We have that dc, < dc,(Ib(C,) — 1) and Ib(C,,) = Ib(C?) < A(T,) + 1 with
A(T,) denoting the largest outdegree. Recall that A(T,) is distributed like the
maximum degree of a &-Galton-Watson tree conditioned to have n vertices. By
assumption, the offspring distribution £ has expected value E[¢] = B*(y) = 1 and
finite variance.

If ¢ is bounded, then so is the largest outdegree of T,,. Otherwise, as argued in
the proof of |[Janl2, Eq. (19.20)], for any sequence K,

P(A(T,) > K,,) < (1+ o(1))nP( > Ko). (5.3.2)

Applying (5.3.2) yields P(Ib(C,) > K,) < (1 + o(1))nP({ > K,,) for any sequence
K,. 0
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Note that if C is subcritical then this implies that Ib(C,,) = O(logn) with a
probability that tends to 1: the definition of the Boltzmann model and the fact that
y is smaller than the radius of convergence of 3(z) guarantee that there is a constant
B < 1 such that

P(¢ = k) =P(L(SET o B')(y)| = k) = O(8").

Combined with the bounds of Lemma this yields the following concentration
result.

Corollary 5.3.5. Let C be a subcritical class of connected graphs. Then for all s > 1
and 0 < € < 1/2 with 2es > 1 we have with a probability that tends to 1 as n becomes
large that for all vertices x,y € V(Cy,)

lde,, (z,y) — kdc, (z,y)| < dc, (z,y)*™ + O(log* (n)).

We may now prove the main theorem.

Proof of (5.3.1). Lemma implies that dc, < dt, < dc,+1. By Corollary

and considering the distortion of the identity map as correspondence between the
vertices of T,, and C?, it follows that with a probability that tends to 1 as n becomes
large

dn(Ch/(rv/n), Tn/vV/n) < D(T0)**/ Vi + o(1).

Using the tail bounds given in [ABDJI3| Thm. 1.2] for the diameter D(T,) we

obtain that dgu(C?/(kv/n), Tn/+/n) converges in probability to zero. Recall that

the variance of the offspring distribution ¢ is given by 0% = E[|[TB*(y)|]. We have
(d)

that 52T, <% 7 and thus 5.2-C, AT, O

5.4 Exponential tail bounds for the height and diameter

In this section we provide a proof for Theorem Our proof builds on results
obtained in [ABDJ13|. Recall that (T,,a;,) denotes the enriched tree correspond-
ing to the graph C? and that T, has a natural coupling with a {-Galton-Watson
conditioned on having size n, see Proposition With (slight) abuse of notation
we also write T,, for the conditioned &-Galton-Watson tree within this section. We
prove Theorem [I.4.2] by showing the following more general result for random graphs
from block-stable classes that are not necessarily subcritical.

Theorem 5.4.1. Let C be a block-stable class of connected graphs. Suppose that C
satisfies B'*(y) = 1 and the offspring distribution & has finite variance, i.e. B" (y) <
1. Then there are C,c > 0 such that for all n,x > 0

P(D(C,) > ) < Cexp(—cx?/n) and P(H(C) > z) < Cexp(—ca?®/n).
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As a main ingredient in our proof we consider the lexicographic depth-first-search
(DFS) of the plane tree T,, by labeling the vertices in the usual way (as a subtree of
the Ulam-Harris tree) by finite sequences of integers and listing them in lexicographic
order vg,v1,...,vn_1. The search keeps a queue of Q? nodes with Qg =1 and the
recursion

QY =Q%, —1+d} (vi1).
The mirror-image of T,, is obtain by reversing the ordering on each offspring set and
the reverse DFS Q' is defined as the DFS of the mirror-image. Then (Q%)o<i<n
and (Q] )o<i<n are identically distributed and satisfy the following bound given in
[ABDJ13], Ineq. (4.4)]:

P(max Q;l > ) < Cexp(—caz?/n) (5.4.1)
j

with C, ¢ > 0 denoting some constants that do not depend on x or n.

Proof of Theorem[5.4.1 Since D(C,,) < 2H(C?) it suffices to show the bound for the
height. Let h > 0. If H(C?) > h then there exists a vertex whose height equals h.
Consequently, we may estimate P(H(C?) > h) < P(&;) + P(&) with & (resp. &)
denoting the event that there is a vertex v such that hce (v) = h and ht,(v) > h/2
(resp. ht,(v) < h/2). By the tail bound [ABDJI3l Thm. 1.2] for the height of

Galton-Watson trees we obtain
P(&1) <P(H(Tn) > h/2) < Caexp(—cah?/(4n))

for some constants Cy, co > 0. In order to bound P(&3) suppose that there is a vertex
v with height hce (v) = h and ht,(v) < h/2. If a is a vertex of T,, and b one of its
offspring, then dcs (a,b) < dJTrn (a). Hence

> df (u) = he(v) = h

u=v
with the sum index w ranging over all ancestors of v. Consider the lexicographic

depth-first-search (Q¢); and reverse depth-first-search (QF); of T,,. Let j (resp. k)

(2
denote the index corresponding to the vertex v in the lexicographic (resp. reverse

lexicographic) order. It follows from the definition of the queues that if & occurs

Qf + Q=2+ df (u)—hr,(v) > h/2

uv

and hence max(Q?, Q}.) > h/4. Since Q? and @}, are identically distributed it follows

by that
P(&;) < P(max(Qf) > h/4) + P(max(Q;) > h/4)

< 2P(max(Q%) > h/4)
< 2C exp(—ch?/(16n)).

This concludes the proof. O
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5.5 Extensions

In the following we use the notation from Section

5.5.1 First passage percolation

Let w > 0 be a given random variable such that there is a § > 0 with E[¢?*] < oo for
all # with || <. For any graph G we may consider the random graph G obtained
by assigning to each edge e € E(G) a weight w, that is an independent copy of w.
The ds-distance of two vertices a and b is then given by

de(a,b) = inf{ Z we | P a path connecting a and b in G}.
ecE(P)

We are going to prove Proposition as follows. Let C be a subcritical class of
connected graphs and B its subclass of graphs that are 2-connected or a single edge
with its ends. Let C,, € C, and C}, € C; denote the uniform (rooted) random graphs.
Form the link-weighted versions C, and C' by assigning to each edge an independent
copy of a random variable w > 0 having finite exponential moments. Then

¢ D1 and ¢, DT (5.5.1)

o
2ﬁ\f 2k\/n
with respect to the (pointed) Gromov-Hausdorff metric. The scaling constant & is

given by & := E[d(B)] with B drawn according to the Boltzmann sampler I'B’*(y)
and d(B) denoting the dg-distance from the *-vertex to the root vertex.

Proof of - For any n let K, denote the complete graph with n vertices. The
idea is to generate C, by drawing C,, and K, independently and assign the weights
via the inclusion E(C,) C E(K,). By considering subsets £ C C*® x RUnF(En) we
may easily prove a weighted version of Lemma [5.2.1] i.e. the probability that the
random pair (C*, K,,) has some property £ is bounded by

n—1
0n*?) S B(rC*(p)| = n, (TC*O(p), Ky) € £).
/=0

This implies that the blocks along sufficiently long paths in the random graphs C,,
behave like independent copies of the weighted block B with B drawn according
to the Boltzmann sampler I'B”*(y). Hence, weighted versions of Lemma and
Proposition may be deduced analogously to their original proofs with & replac-
ing x and only minor modifications otherwise. Thus the scaling limit follows in the
same fashion. O
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5.5.2 Random graphs given by their connected components

We study the case of an arbitrary graph consisting of a set of connected components.
Let G ~ SET oC denote a subcritical graph class given by its subclass C of connected
graphs. For simplicity we are going to assume that all trees belong to the class C.

Consider the uniform random graph G,, € G,,. Of course we cannot expect G, to
converge to the Continuum Random Tree since it is disconnected with a probability
that is bounded away from zero. Instead we study a uniformly chosen component
H,, of maximal size. We are going to prove Proposition by showing

o (d)
2I{\/ﬁHn 5 Te (5.5.2)

with respect to the Gromov-Hausdorff metric, where o, x are as in .

We are going to use the known fact that with a probability that tends to 1
as n becomes large the random graph G, has a unique giant component with size
n + Op(1). This follows for example from [MSWO06, Thm. 6.4].

Lemma 5.5.1. If C contains all trees, then the size of a largest component satisfies
|Hn| =n+ 0p(1).

Proof of . Let f : K — R be a bounded Lipschitz-continuous function de-
fined on the space of isometry classes of compact metric spaces. We will show that
E[f(ﬁHn)] — E[f(7e)] as n tends to infinity. Set €, := logn. By Lemma
we know that |H,| = n + Op(1). Hence with a probability that tends to 1 as n
becomes large we have that n — |H,| < €, and thus

B i 1N [P EEAY

The conditional distribution of G,, given the sizes (s;); of its components is given by
choosing components K; € Cls;] independently uniformly at random and distributing
labels uniformly at random. In particular, as a metric space, H,, conditioned on
|H,,| = n — k is distributed like the uniform random graph C,,_x. Thus, given € > 0
we have for n sufficiently large by Lipschitz-continuity

B |1 (gmte) |l =n - k| =E[7 (57=Co )| e BLAT 26

forall 0 < k < ,,. Thus [E[f (2nf n)] — [f(Te)” < ¢ for sufficiently large n. Since
€ > 0 was chosen arbitrarily it follows that E[f(5-%~Hn)] — E[f(7¢)] as n tends to
infinity. O

5.6 The scaling factor of specific classes

In this section we apply our main results to several specific examples of subcritical
graph classes. The notation that will be fixed throughout this section is as follows:
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Graph Class K H c P Yy A o2
Trees = Forb(C3) 1 2.50662 0.39894 0.36787 1 1 1
Forb(C4) 1 2.13226 0.20973 0.23618 0.27520 0.80901 1.38196
Forb(C's) 1.10355 1.88657 0.10987 0.06290 0.40384 1.85945 2.14989
Cacti Graphs 1.20297 1.99021 0.12014 0.23874 0.45631 0.64779 2.29559
Outerplanar Graphs 5.08418 1.30501 0.00697 0.13659 0.17076 0.22327 95.3658

Table 5.1: Numerical approximations of constants for examples of subcritical classes
of connected graphs.

C denotes a subcritical class of connected graphs and B its subclass of 2-connected
graphs and edges. The radius of convergence of C(z) is denoted by p. The constant
y = C*(p) is the unique positive solution of the equation

yB'(y) =1
By Lemma this determines p = yexp(—B'(y)). Moreover, we set
k =E[d(TB"(y))],

i.e. the expected distance from the x-vertex to the root in a random block chosen
according to the Boltzmann distribution with parameter y. We call x the scaling
factor for C. The offspring distribution £ of the random tree corresponding to the
sampler T'C*(y) has probability generating function ¢(z) = exp(B'(yz) — \) with
A = B'(y), see Proposition Its variance is given by

o? =1+ B"(y)y* = E[|TB"*(y)].

We let d denote the span of the offspring distribution. By applying our main results
Theorems [[.4.7] and [[L4.7] we obtain

E[H(C)]/vn — k\/21 /0?2 = H asn— oo withn=1 modd

with C? € C» drawn uniformly at random. We call H the expected rescaled height.
Moreover, Corollary yields that

ICp| ~ cn*5/2p5"n! asn —oowithn=1 modd

with ¢ = yd/v27mo?. In this section we derive analytical expressions for the relevant
constants k, H, ¢, p,y, \, 02 for several graph classes; Table provides numerical
approximations. For a set of graphs M, we denote by Forb(M) the class of all
connected graphs that contain none of the graphs in M as a topological minor; if M
contains only 2-connected graphs, then it is easy to see that Forb(M) is block-stable,
cf. [Diel0]. For n > 3 we denote by C,, a graph that is isomorphic to a cycle with n
vertices.
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Remark 5.6.1. The average blocksize b(C,,) (i)b(C;L) is concentrated around one

plus the average size of TB'(y). With high probability as n = 1 mod d tends to
infinity we have

b(Cn) € 1 +E[ITB'(y)|] £ Ollogn/v/n) with E[TB(y)]]=1/X.  (5.6.1)

Proof of . The random graph C3, is distributed like the Boltzmann-sampler
I'C*(p) conditioned on having size n. We may interpret the sampler T'C*(p) as
a deterministic procedure reading from an infinite ii.d. list (A4;);en of random
SET o B’-objects drawn according to the corresponding Boltzmann distribution with
parameter y. The procedure starts by identifying the x-vertices of the blocks of the
object A; with the root and marks the root as ”touched”. Then it recurses for every
still untouched vertex, always using the leftmost unused SET o B’-object from the
list. After k > 1 steps, the total size 1 + Zle |A;| is greater or equal to k and the
process stops if this sum is equal to n. Hence

n

k

{Ires(p)| =n} = {Z |A;| =n— 1’2Ai >k for all k < n}
i=1 i=1

Each A; is generated by drawing a Pois (\¢)-generated number m; and sampling

accordingly many i.i.d. blocks Bgﬂ, e BT[%]Z. using the sampler I'B’(y). If the proce-

dure I'C*(p) terminates with an object of size n, then the total size of the derived
blocks sum up to n — 1. Hence the average block size b is given by

b=1+(n—-1)/N

where N = >""" | m; denotes the number of blocks. With foresight, let £ denote the
event N ¢ n\c(1 £ ay,,) with a,, = logn//n. Using Corollary we get

n k
P(E | ITC*(p)| = n) = OM**)P(E,D |Ail =n—1,>_ A; >k for all k <n).
i=1 i=1
The number of blocks does not depend on the order of the A;’s. We may apply the
standard rotation argument to obtain

P(E | ITC*(p)| = n) = O(V/n) P(E, 3 |Ai] = n— 1),
i=1
Applying the well-known Chernoff bounds yields that

P(Z mi ¢ A\o(1£ay,)) < 2exp(—ainic/3) = O(n—l/Q).
i=1
By monotonicity it follows that N € nAc(1 £ a,) with high probability. Hence it

holds that
b(Ch)el+1/A+ta,

with high probability. Moreover 1/\ = E[|T'B(y)|] since B'*(y) = 1, and the proof
is complete. O
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5.6.1 Trees

Let C be the class of trees, i.e. B consists only of the graph Ks. It is easy to see
that the offspring distribution follows a Poisson distribution with parameter one.
We immediately obtain:

Proposition 5.6.2. For the class of trees we have k = 1 and 0? = 1.

5.6.2 Forb(Cy)

Let C denote the connected graphs of the class Forb(C4). Then each block is either
isomorphic to Ky or K3. Hence B(z) = 22/2 + 23/6. Moreover, for any B € B and
any two distinct vertices in B their distance is one. A simple computation then
yields:

Proposition 5.6.3. For the class Forb(Cy) we have k = 1 and 0 = (5 —/5)/2.

5.6.3 Forb(Cs)

Recall that the class Forb(C5) consists of all graphs that do not contain a cycle with
five vertices as a topological minor. Hence, a graph belongs to this class if and only
if it contains no cycle of length at least five as subgraph.

Proposition 5.6.4. For the class Forb(C5) the constant y is the unique positive
solution to zB"(z) = 1, where B'(z) is given in (5.6.4). Moreover, we have

k= (2y*+4y+3)ye’ — (3y* + 12y +4) y/2 ~ 1.10355.
and 02 =1+ B" (y)y? ~ 2.14989.

Before proving Proposition we identify the unlabeled blocks of this class.
This result (among extensions to Forb(Cg) and Forb(C7)) was given by Giménez,
Mitsche and Noy [GMN13].

Proposition 5.6.5. The unlabeled blocks of the class Forb(Cs) are given by
K27 K47 (KQ,m)mZIa (K;:m)mZZ (562)

Here K, denotes the complete graph and K,,, the complete bipartite graph with
bipartition {Ap,, By }. The graph K;rn is obtained from Ko, by adding an additional
edge between the two vertices from As.

Proof. We may verify by considering the standard decomposition of 2-connected
graphs: an arbitrary graph G is 2-connected if and only if it can be constructed from
a cycle by adding H-paths to already constructed graphs H [Diel(]. If G € Forb(Cs5),
then so do all the graphs along its decomposition. In particular we must start with
a triangle or a square. Since every edge of a 2-connected graph lies on a cycle, we
may only add paths of length at most two in each step. In particular, for m > 3 a
K5, may only become a K;m or Ko my1, and a Kim may only become a K;

) m~+1
Thus (5.6.2)) follows by induction on the number of vertices. O
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Proof of Proposition[5.6.4. With foresight, we use the decomposition
B=S+H+P (5.6.3)

with the classes of labeled graphs S, H and P defined by their sets of unlabeled
graphs S = {Ky, K3, K4, Cy}, H = {Ka, | m >3} and P = {K;m | m > 2}. Any
unlabeled graph from H or P with n vertices has exactly (g) different labelings,
since any labeling is determined by the choice of the two unique vertices with degree
at least three. Hence

n n
S(z)=2%/2+23/6 + z1/6, H(z)= Z (Z)i' and P(z)= Z (Z)x

n!
n>5 n>4

and thus
B'(z) = z(xz +2)e” —z (152 + 227 + 6) /6. (5.6.4)

Solving the equation B'*(y) =1 yields
y ~ 0.40384.

First, let H,, € H® with n > 4 be drawn uniformly at random. We say that a vertex
lies on the left if it has degree at least three, otherwise we say it lies on the right.
There are n(";rl) graphs in the set H/® and precisely n? of those have the property
that the *-vertex lies on the left. The distance of the root and the x-vertex equals

two if they lie on the same side and one otherwise. Hence

E[d(Hn)]:(ngl)<711-2+nnl-1>+<1—(n221)> <Z'1+”n2.2).

For any n let P, € P/* and S,, € S,, be drawn uniformly at random. Analogously to
the above calculation we obtain

E[d(Pn)]:(nnﬂ1+<1—(nZl)) <2~1+”;2-2)
2 2

and

E[d(S)] = Bd(S:)] =1, Efd(Sy) = 1+ <§ asl 2> 2

Since B’*(y) = 1 we have for any class F € {S'*,H'*, P'*} that

E[d(IB"(y)).'B"(y) € F1 =) ([z"1F(y2) E[d(Fn)]:

n

Summing up yields

E[d(TB"*(y))] = (2y2 +4y+ 3) ye¥ — (3y2 + 12y + 4) y/2 ~ 1.10355.
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5.6.4 Cacti graphs

A cactus graph is a graph in which each edge is contained in at most one cycle.
Equivalently, the class of cacti graphs is the block-stable class of graphs where every
block is either an edge or a cycle. In the following C denotes the class of cacti graphs.

Proposition 5.6.6. For the class of cacti graphs the constant y is the unique positive
solution to zB"(z) = 1, where B'(z) is given in (5.6.5). Moreover, we have

_ yt =29y +2y -2
(v*—2y+2)(1+y)(y—1)

and 0% =1+ B" (y)y? ~ 2.29559.

~ 1.20297.

Proof. By counting the number of labelings of a cycle, we obtain |B,| = n!/2 for

n > 2. It follows that

22

(5.6.5)

and hence B*(z) = 2z + 1 S opsanz" = % Solving the equation B*(y) = 1

yields
1 2 4
y=—307+3 V3313 4 S(7+3 V33)718 4 5 ~ 0.45631.

Let T'B’*(y) denote a Boltzmann-sampler for the class B’® with parameter y and for
any n > 1 let B,, € B/? be drawn uniformly at random. Since B'*(y) = 1, it follows
that

k= E[E[(TB"*(y)) | ITB*(y)[]] = > _ d(B,)[z"1B"(yz) = d(B1)y + > Z d(B

n>1 n>2

Clearly d(B;) = 1 and for n > 2 we have that d(B,,) is distributed like the dis-
tance from the *-vertex to a uniformly at random chosen root from [n] in the cycle
(%,1,2,...,n). Hence

d(B,) EZ?/?Z:”“ ) n is even
n) — .
ntl 4 2 Zlnll = (nznl) , nis odd
Summing up over all possible values of n yields the claimed expression for . ]

5.6.5 Outerplanar graphs

An outerplanar graph is a planar graph that can be embedded in the plane in such
a way that every vertex lies on the boundary of the outer face. Any such embedding
(considered up to continuous deformation) is termed an outerplanar map. The
scaling limit of the model ”all outerplanar maps with n vertices equally likely” was
studied by Caraceni [Car|, who established convergence to the CRT using a bijection
by Bonichon, Gavoille and Hanusse [BGHO05]. Our results allow us to study the
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model ”all outerplanar graphs with n vertices equally likely”, which is a different
setting. Note also that the scaling factor obtained in the following differs from the
one established for outerplanar maps.

Let C denote the class of connected outerplanar graphs and B the subclass con-
sisting of single edges or 2-connected outerplanar graphs.

Proposition 5.6.7. For the class of outerplanar graphs the constant y is the unique
positive solution to zB"(z) = 1, where B'(z) = (z4+D(z))/2 and D is given in (5.6.6)).
Moreover,

8w —16w® + 4w —1
Y (1_y>( w wetAw ~ 5.0841 with w = D(y)

et U ) G 6w — 2w+ D Qu—1)

and 0? =1+ B"(y)y? ~ 95.3658.

Following [BPS10] we develop a specification of B’® that eventually will enable
us to prove the above expressions of the relevant constants. Any 2-connected out-
erplanar graph has a unique Hamilton cycle, which corresponds to the boundary of
the outer face in any drawing having the property that all vertices lie on the outer
face. The edge set of a 2-connected outerplanar graph can thus be partitioned in
two parts: the edges of the Hamilton cycle, and all other edges, which we refer to as
the set of chords. Let D denote the class obtained from B’ by orienting the Hamilton
cycle of each object of size at least three in one of the two directions and marking
the oriented edge whose tail is the x-vertex. The block consisting of a single edge
is oriented in the unique way such that the x-vertex is the tail of the marked edge.
We start with some observations.

Lemma 5.6.8. We have that B'(z) = (z + D(2))/2 and

X X

E[d(TB" ()] = 2B (z) (1- 2B'*(z)

JE[d(I'D*(x))].

Proof. We have an isomorphism B’ + B’ =: 2B’ ~ X + D. Consequently, the classes
B’* and D*® obtained by additionally rooting at a non-*-vertex satisfy

2B'* ~ X +D°.

Hence the following procedure is a Boltzmann sampler for the class B’® with param-
eter x.
2N

/
ID)

T~ ,7 7N
/ N \
D ~ x> + l\ ng\;l-) )+ 7 \*—u—(/"\\
/ /
S A - \ DI {D )
\ —_— %

~_~7 -~

Figure 5.6: Recursive specification of the class D.
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2 1
6 %
6 3 2 1
R\ /e
5 7 3
%
3 4
4

Figure 5.7: Decomposition of a D®-object into a D x D®* x D-object. The root is
marked with a square.

IB*(z): s+ Bern(ﬁ.(m))

if s =1 then return a single edge {*,1} rooted at 1
else return I'D*(z) without the orientation

This concludes the proof. ]

Hence it suffices to study the class D*, see also Figures [5.6] and
Lemma 5.6.9. The classes D and D® satisfy

D =X+ DxD+DxDxD + ...
D* = X + (D**D + DxD*) + (D*xDxD + DxD*xD + DxDxD*) + ...

Their exponential generating functions are given by

v D) - 1) P
D)= spr i e1 ™ PR =gt VR 64D, (566

Proof. Let B € D with |B| > 2 be a derived outerplanar block, rooted at an oriented
edge @ of its Hamilton cycle C such that the x-vertex is the tail of ¢. Given a
drawing of B such that C' is the boundary of the outer face, the root face is defined
to be the bounded face F whose border contains €. Then B may be identified
with the sequence of blocks along F', ordered in the reverse direction of the edge

@. This yields the decompositions illustrated in Figures and Solving the
corresponding equations of generating functions yields (5.6.6)). O

The equation determining y = C*(p) is 1 = B'*(y) = 1(y + D*(y)). We obtain that
y ~ 0.17076 is the unique root of the polynomial 3 z* — 28 23 4+ 7022 — 58 z + 8 in
the interval [0, 1] and hence 0 = 1+ B"(y)y? ~ 95.3658. It remains to compute x.

Lemma 5.6.10. We have that E[d(TD*(y))] = (4w§3§;21§1;;141§(;;_1) ~ 5.46545
with w := D(y) =~ 0.27578.

Since B’*(y) = 1 this implies with Lemma that

k= E[d(TB"*(y))] = % + (1 - g) E[d(TD*(y))] ~ 5.08418,

and the this completes the proof of Proposition [5.6.7]
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Proof of Lemma5.6.10} The rules for Boltzmann samplers translate the specifica-
tion of D*® given in Lemma [5.6.9|into the following sampling algorithm.
° . . Doi(m)) =2
I'D*(z): s« drawn with P(s =1i) = .y
(i-=1DD)"" i=3

if s =2 then
return a single directed edge (x*,1)
else
v < a cycle {v1,ve}, {va,v3}, ..., {vs,v1} with v; = %

t <— a number drawn uniformly at random from the set [s — 1]
v < identify (v, v¢41) with the root-edge of v, < I'D*(x)
for each i € [s — 1] \ {t}
v < identify (v, v;y+1) with the root-edge of 7; <— I'D(x)
end for
root «y at the directed edge (*,vs)
return v relabeled uniformly at random
endif

Given a graph H in D* let S(H), S'(H) denote the length of a shorted past in H from
the root-vertex to the tail v; = * or head v, of the directed root-edge, respectively.
Clearly, S(H) and S’(H) differ by at most one. It will be convenient to also consider
their minimum M (H). Let S, S’ and M denote the corresponding random variables
in the random graph D drawn according to the sampler I'D®(x). For any integers
0,k > 0 with £+Fk > 11let Dy, be the random graph D conditioned on the event that
the graph is not a single edge and that in the root face {vi,va}, {va,v3} ..., {vs,v1}
the length of the path vivs...v; equals £ and the length of the path vy 1v449 ... vs
equals k. Note that the probability for this event equals

Pk =Pls =L+ k+2P(t=C+1]s=L+k+2) = (D(x)""".

We denote by Sp, Sé’k and My the corresponding distances in the conditioned
random graph Dy ;. Summing over all possible values for k£ and ¢ we obtain

z
E[S] = D‘(x) + Z E[Sg’k]pg,k,
k+£>1
E[S]= > E[S;ilpes,
k+0>1
E[M] = > E[Mglpes.
k+0>1

Any shortest path from * or vy to the root-vertex of a B’*-graph H (# a single edge)
must traverse the boundary of the root-face in one of the two directions until it
reaches the root-edge of the attached B'®*-object H'. From there it follows a shortest
path to the root in the graph H’. Hence for all k,¢ > 0 with k+ ¢ > 1 the following
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equations hold.

Ser? min{f + S,k + 1+ 5},

S @ min{f+1+ 8 k+ 5,

My 2 min{e + 8,k + S').

Since S and S’ differ by at most one, this may be simplified further depending on
the parameters k and ¢ as follows:

£+ S, <k

0+ M, (=k+1,
E+1+S5, £>k+2

d
Sk @

k+ 9, k<t
ka(i) k+M7 k:£+17
0C4+1+S, k>0+2

(4S8, (<k-1
d
M Do M, 0=k
E+S', (>k+1

Using this and (5.6.6]), we arrive at the system of linear equations with parameter
w = D(x) and variables pug = E[S], ugr = E[S'] and pps = E[M]

k
MS:ZZ(€+MS)wZ+k+Z(€+MM)1U2Z_1+Z Z (k+1 4 pg )w'*

k>14=0 >1 k>0 0>k+2
n 2w? — 4w + 1
w1
= TS0 S a4 S 5 (6 1
£>1 k=0 k>1 >0 k>0+2
k—1
par = Y Y+ ps)w Y (4 pan)w* Y Y (kA pg)wtE
k>2 /=0 >1 k>040>k+1

Simplifying the equations yields the equivalent system A - (E[S], E[S'|,E[M])T = b

with
2wt — 4w 4+ 3w — 1 —w?3 + w? wd —2w? +w
A= —w3 + w? 2wt — 4w + 3w —1 w3 —2w? +w
—w? +w —w? +w 2wt — 4w + w2 + 2w —1
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and
I (2w4—4w3—w2+3w—1 —w —w2).

For x = y =~ 0.17076 we obtain w = 0.27578 and det(A) ~ —0.00799 # 0. Solving
the system of linear equations yields

8wt — 16w + 4w — 1

E[S] = ~ 5.4654
15] (4w3 — 6w? — 2w + 1) (2w — 1) 546545,
4w — Sw? + 1) w
E[S] = ( ~ 5.314
5] (2w? — 3w + 1) (4w3 — 6w? — 2w + 1) 531469
E[M] = — v ~ 5.01279.

4wt — 10w3 4+ 4w? + 3w —1

and the proof is complete. O
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5.7 An alternative proof of the main theorem

In this chapter we describe an alternative proof of the scaling limit in Theorem [I.4.T]
without the size-biased random R-enriched tree.

5.7.1 A size-biased random labelled Tree

In this section we derive a concentration inequality for the number of vertices of a
given degree along a sufficiently long path in a random tree. We give an upper bound
for the number of vertices whose degree exceed a certain limit. In the following we
let ¢ denote a random variable taking values in Ny with expected Value E¢] =1
and finite nonzero variance 0 < 0% < co. We let ¢(z) = > od>0 @qz? denote its
probability generating function and span(§) its span. Moreover, n always denotes
an integer with n =1 mod span(§).

Lemma 5.7.1. Let I'T® denote the procedure that draws from the class T* of labeled
rooted trees as follows:

I'T*: 7 <« a single "untouched” vertex (which will be the root)

while there are untouched vertices left
v 4 an arbitrary untouched vertex
m < a nonnegative integer drawn according to an i.i.d. copy of £
attach m new untouched vertices to v
declare v "touched”

end while

return v relabeled uniformly at random

Then each tree T € T* with size n gets chosen with probability

P(LT* =T H d™(0)! gt ()
: veV(T)

We denote by I'T); the sampler conditioned on output size n.
Proof. Let T € T* be a labeled rooted tree of size n and T be drawn according to
I'T"*. We may endow the tree T with an ordering on each offspring set given by the

order in which the vertices where declared ”touched” by the procedure. Hence we
may rephrase the sampler I'T® as follows:

1. Draw a Galton-Watson tree U, with offspring distribution given by &.
2. Form the labeled plane tree T, by distributing labels uniformly at random.

3. Forget about the orderings on the offspring sets.
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Clearly we have T = T' if and only if T, is an embedding of the tree 7. Thus,
let T}, be one of the Hvev(T) d*(v) embedded versions of the tree T and U, its
corresponding unlabeled plane tree. Then

P(Tp = Tp) = P(Up = Up)P(Tp =1, ’ Up = Up)~

The event U, = U, depends only on the inpendent choices of the outdegrees, hence

P(Up = 11 90d+(v

veV (T
Any labeling of the plane tree U, corresponds to exactly one appropiate sized per-
mutation, thus

]P)(TPZTP|UPZUP):7

Combining the above equations yields

P(T H d*(0)! gt (v)-

'vEV (T)
O

We follow the notation from [Joy81) [BLLI8] and term a doubly rooted tree V' € T°**
a vertebrate. The directed path from the inner to the outer root is called the
backbone. As illustrated in Figure any vertebrate may be identified with the
sequence of trees along its backbone, giving an isomorphism

oo

T*® ~ Z(T.)k ~T. SEQ(T.)

k=1

See [Joy81] for details on the proof. We let 7°*) denote the class of vertebrates
whose backbone has length £.

inner
root P
~ X X X

outer
ro0ot

Figure 5.8: Correspondence of vertebrates and sequences of rooted
trees. The roots are marked with squares.

The following lemma is a labeled nonplane version of a result given in [ABDJI13|
Sec. 3.
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Lemma 5.7.2. Consider the following sampler that draws a random vertebrate from

T.o(@) )
I'7**®:  ~ « a directed path vy, ..., vey1 of length ¢

(the first vertex will be the inner root, the last vertex the outer root)
(di)1<i<e < an i.i.d family of integers drawn according to the PGF ¢'(z)

dy+1 < an integer drawn according to the PGF ¢(z)

(T j)1<i<e+1,1<j<d; < an i.i.d family of rooted trees drawn according to I'T*

for each1 <i</+1and1<j<d;
add an edge between the vertex v; and the root of the tree T; ;
return v relabeled uniformly at random

Then for each vertebrate (T, v, w) € T**Y) we have that
PIT**") = (T,v,w)) = P(I'T* = (T,v)).

Proof. We may rephrase the procedure of the sampler as follows.

1. Draw a sequence (U7, ..., UZH) of independent unlabeled plane trees. Each

tree U; is generated like a Galton-Watson tree with offspring distribution given
by ¢(z), except that the outdegree of the root is chosen according to ¢'(2)
instead.

2. Let (T},...,T},;) denote the sequence of labeled plane trees obtained by dis-
tributing labels uniformly at random. Each labeling of the sequence corre-
sponds to exactly one appropiate sized permutation.

3. Forget about the order on the offspring sets. The resulting sequence (T1,..., Tsy1)

corresponds to a doubly rooted tree.

Let V € T**® be a vertebrate whose backbone P has length £. Then V corresponds
to a sequence (7171, ...,Ty+1) of subtrees such that the root of the tree T; is the ith
vertex of the backbone. For each i fix an arbitrary plane tree T? corresponding to
the tree T; and let U} denote the corresponding unlabeled plane tree. By considering
the number of possible orderings of the offspring sets, we obtain

+1
P(T; =T, for all i) =P(T? =17 for all i) [[ [ 4 (v)"
i=1 veV(T})

Since any labeling of a sequence of plane trees corresponds to exactly one appropiate
sized permutation, we have that

1
P(T? = T? for all i) = —']P’(Uf = U? for all 7).
n:

The vertebrate V may be considered as a rooted tree in two ways and we let T denote
the version whose root is the inner root of V. Then the multiset of outdegrees in U, f 1
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and V(Ty11) C V(T) coincide. Since Uy, is a Galton-Watson tree with offspring
distribution given by the PGF ¢(z), it follows that

PUy = Upyy) = H P (v):
vEV (To41)

Let 1 < i < ¢ and w; denote the root of the tree T;. We have df(w;) = d. (wi) +1
and df(v) = df. .(v) for all vertices v € V(T;)\ {w;}. The degree of the root of U? was
chosen according to ¢'(z), and the remaining outdegrees according to ¢(z). Slnce
[2¥]!(2) = (k 4 1)@g41, it follows that

PV} =UF) =di(w) ] eare)
’UGV(TZ‘)

We obtain that

/+1
P(U? = U? for all i) H]P’ (U? = (H d( wz)) H Pt (v)

veV(T)
Combining the above equations yields
P(rTee® = H df(0)lp i,y = B(CT* =T).
nl veV(T)
O

Lemma 5.7.3. Let £ be a property of vertebrates (i.e. a subset of T**) that is
mwvariant under relabeling and consider the map

B:T*— NO, T— Z [(T,v) satisfies ]
veV(T)

Then we have the following bound for the expected value of B(I'Ty)

n—1
E[B(I'T?)] = ©(n?/?) Z P(IT**") has size n and satisfies €)
1=0

Proof. Let I'Ty* denote a random vertebrate obtained by sampling I'T)y and choosing
an outer root uniformly at random. Then

B(I'T?)] ZP (PT2,v) € £) = nP(I'T® € &)

Clearly, for any vertebrate (T,v) € £N 7}:'(6) with [ > 0 we have that

P(IT* = (T, v)) — %IP’(I‘TT: _T) = %IP(FT' — TYP(TT*| = n)~!
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and Lemma yields that
P(IT® =T) = PIT**Y = (T,v))
Since P(|TT®| = n) = 8(n=3/?), it follows that

n—1
E[B(I'T?)] = ©(n*/?) Z P(I'T**®) has size n and satisfies &)
=0

O

Corollary 5.7.4. The following holds with high probability as n tends to infinity:
all paths P in I'Ty that start from the root satisfy

{v e V(P)|d"(v) = d}| € £(P)dpa £ \/{(P)dpglogn

for all integers 1 < d < n with £(P)dpgq > log(n)? or pg = 0. Here {(P) denotes the
length of the path P.

Proof. If ¢4 = 0 then with probability 1 the random tree I'T); has no vertex of
outdegree d. Hence it suffices to consider only integers d with ¢4 # 0. For any
such d let £; C T°*°® denote the set of all vertebrates T" whose backbone P satisfies
I(P)dpg > log(m)3 with m := |V(T)| and

{v e V(P) | d"(v) = d}| ¢ L(P)dpa = v/ {(P)dpqlogm.

Let £ = Ug€y where the union is over all integers d with ¢4 # 0. Consider the map

B:T*=No, T Y Lir) satisties £
veV(T)

By Markov’s inequality it suffices to show that E[B(I'T)] tends to zero. Lemma
yields

E[B(I'T?)] = ©(n*/?) ZP(FT"(@ has size n and lies in ). (%)
0<f<n—1

Applying the union bound yields

P(I'T**® has size n and lies in &) < ZP(FT“(Z) has size n and lies in £;). (%)

1<d<n—1
tdipg>log(n)?

Recall that the sampler T'T**®) starts by drawing integers dy, ..., d, independently
according to the PGF ¢'(z) and dy;1 according to ¢(z). The outdegrees of the
vertices of the backbone vy, ...,vp,1 are then given by d*(v;) =d; +1 for 1 < i </
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and d*(vey1) = dpy1. In particular P(d¥(v;) = d) = dpg for 1 < i < £ and
P(d* (ve41) = d) = @4. The event that IT**®) has size n and lies in £; implies that

+1

Z ]ld+(vi):d ¢ fd(pd + \V fd(pd logn
i=1

The expected value of the sum is given by p = fdpg + pq. Since £dpg > log(n)?® a
short calculation shows that for large n

logn
20

Using monotonicity and Chernoff’s bounds we obtain that the probabilty for the
event (%) is bounded by

uw(l£9) Cldpg £/ ldpglogn  with § =

/+1
P> Loy & (1 £ 6)) < 2exp(—82p1/3) = 20~ oEm/A
=1

Hence Equations (x) and (%) imply that
E[B(FT;L)] < 9(n3/2)n22n— log(n)/4 _ n—@(logn)
This completes the proof. O

In the following we assume additionally that the PGF ¢(z) has radius of convergence
r > 1. Note that limsup,,_,., /@, = = implies

on < (% +o(1))".

Clearly the same inequality also holds for the coefficients of arbitrary derivatives
()
©'9(2).

Corollary 5.7.5. Suppose that the PGF ¢(z) has radius of convergence strictly
greater than one. Given € > 0 we may choose D > 1 large enough such that with high
probability all paths P in T'T* that start from the root and have length £(P) > log(n)?
satisfy
1
) > A )z <€

veV(P)

Proof. Given 0 < € < 1, let £ C T*® denote the set of all vertebrates T" whose
backbone P has length at least log(m)? with m := |V(T)| and satisfies the inequality

> dT(0)lgr)sp) > U(P)e (%)
veV(P)
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Consider the map

B- 7—. N N()’ T — Z ]].[(T,U) satisfies £]-
veV(T)

By Markov’s inequality it suffices to show that E[B(I'T)] tends to zero. Lemma
0.7.3| yields

E[B(I'T?)] < ©(n/?) ZP(the backbone P of TT**) satisfies inequality (x)).
£>log(n)?

()
Recall that the sampler T'T**® starts by drawing integers dy, ..., d, independently
according to the PGF ¢'(z) and dy41 according to ¢(z). The outdegrees of the
vertices of the backbone vy, ...,vp,1 are then given by d™(v;) =d; +1 for 1 <i </
and d*(vey1) = der1. In particular P(dt(v;) = d) = dpg for 1 < i < £ and
P(d* (vpy1) = d) = 4. By assumption on the offspring distribution we may choose
the constant D large enough such that there is a constant 0 < v < 1 with dypg < v?
for all d > D. Let A > 0 be a constant that is small enough such that e*v < 1. The
probability that the backbone P of the vertebrate IT**() satisfies inequality (x) can
be bounded using Markov’s inequality by

Elexp (A > dT (v) 1ig+ (p)> ex (v ‘
[exp (A ) ee(,\e)]l[d (z)_D])] _ (E[ P(::i ( 1))]) E[exp()\d+(vz+1))]

Since e*v < 1 by our choice of the constant A, we get

Elexp(Ad* (v1))] = Z Mdpg +P(dt (v1) < D) < 1(ejye),\DV +1
d>D

A similar calculation shows that E[exp(Ad™(vey1))] obeys the same upper bound.
Since e* > 1 we may choose D large enough such that

Elexp(Ad*t(v1))]
es>\

<6 and E[exp(AdT (vey1))] <2

for some constant 6 < 1. Applying this to Equation (xx) yields

E[B(ITS)] < O(n*?) 3" 6" = §(n?/?)5losM” = yy=00ogm)
£>log(n)?

This completes the proof. O

5.7.2 Alternative Boltzmann sampler

Let C be a nontrivial block stable class of connected graphs such that its exponential
generating function C(z) has positive radius of convergence p. Let B its subclass of
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all graphs that are biconnected or a single edge with its ends. Recall that we always
let y = C*(p) and A\c = B'(y).

In the following we will construct a nonrecursive Boltzmann Sampler for the class
C*®* which allows us to apply the results on random trees of the previous section.
Recall that the class C* may be identified with the class A of SET o B’-enriched
trees, i.e. pairs (T,«) with 7' € T* and « a function that assigns to each vertex
v € V(T) a (possibly empty) set a(v) of derived blocks whose vertex sets partition
the offspring set of the vertex v.

Lemma 5.7.6. Let C be drawn according to the Boltzmann sampler T C®(p) and let
(T, «) denote the corresponding enriched tree. Then the random tree T is distributed
according to the sampler I'T'® with offspring distribution given by the probability
generating function

p(2) = exp(B'(yz) — Ao) = Y _ a2’

d>0
Let D denote the root degree of the tree T. Consider the sequence vi,va,...,Vp
where v; counts the number of blocks of size i + 1 in C that contain the root. Then
for any d > 1 with ¢4 # 0, and nonnegative integers ni,...,nqg with ). in; = d, we
have
L7 B )
IP’(z/l:nl,ygzng,...,yd:nd]D:d): .
exp(Ac)gd = n;!

=1

We will denote this probability distribution on N by PSeq(d).

Proof. Recall that the sampler I'C*(p) starts by drawing the number of blocks at-
tached to the root according to the Poisson distribution with parameter Ao, and
proceeds by sampling m derived blocks By, ..., B, according to I'8’(y). The degree
D of the root in T is the sum of the sizes of these blocks. The PGF of the size of
I'B'(y) is given by B'(yz)/Ac. Hence the probability generating function for D is
given exp(B'(yz) — A¢) = ¢(z). After drawing the blocks the sampler marks the
root as touched and repeats the steps for all untouched vertices. In other words
the tree T is drawn by generating a unlabeled nonplane tree with offspring distribu-
tion corresponding to the PGF ¢(z) and distributing labeles uniformly at random
afterwards. Hence T is distributed according to I'T™.

Now, consider the sequence vy, Vs, ..., vp where v; counts the number of blocks
of size ¢ + 1 in C that contain the root. This means v; is the number of indices
1 < j < m such that the derived block B; has size i and D = ZZ iv;. Hence for any
d > 1 and nonnegative integers ni,...,ng with ). in; = d we have

P(vy =ni,vo =ng,...,vg=nq | D =4d) =

30;11?(1/1 =N,V =Ng,...,Vq = ng,v; =0 for i > d).
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We may calculate the probability on the right hand side by considering the formal
probability generating series

f(z1,22,...) = Z P(v; = k; for all i)zlflzé” e
(ki)iEN(gN)

=exp | Ac(D_P(TB'(y)| = i)z — 1)

i>1

Clearly

(211252 - 204 f (21, 22, - . .) = exp(—Ac) [ 252 - - - 2] H exp(z[2']B' (yz))
i>1

= exp(=Ac) | [la™] exp(z[2'] B (y2))

=~

s
I
—

(1B (y2)"

=~

= exp(—A¢)

s
I
-

This concludes the proof. O

Lemma 5.7.7. The following procedure I'A is a Boltzmann-Sampler for the class
A of SET o B'-enriched trees at the singularity p. We let T'A,, denote the sampler
conditioned on output size n.

TA:

T+ TT*

for each v € V(T)
d <+ d*(v)
M <« the offspring set of the vertex v in the tree T
(v1,...,vq) < PSeq(d)
(my,ma,...,mq) < a uniformly at random chosen ordering of the set M
(M; j)1<i<d,1<j<v; < the partition of the offspring set M given by

M; ;= {mti,j"‘l’ i 'mti,j-i-i}f tij = Zlé;ll e + Z(] - 1)

(Bij)i<i<di<j<v; < @ sequence of independently u.a.r. drawn blocks B; j € B
a(v) «{05;.Bi; |1 <i<d,1<j<u} the set of relabeled blocks

endfor

return (T, «)

Proof. Note that by Lemma the sampler PSeq(d) is well-defined if ¢4 # 0.
Hence I'A is almost surely well-defined, since the random tree I'T"® has almost surely
no vertices with outdegree d satisfying ¢4 = 0. Let (T, «) be drawn according to
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the sampler I'A and (7, 3) € A an enriched tree of size n. We have to show that
P(T,a) =(T,5)) = yil%. Clearly we have that
P(T,a) =(T,0)) =P(T=T)P(a=8|T=1T)
and Lemma yields
P(T H d*(0)! gt (v)-

nt veV (T

The sampler I'A chooses the SET o B’-structures on the offspring sets independently,
hence
Pla=8|T=T7)= [] P« ()| T=T).
veV(T)
Let v € V(T) be a vertex and d = d-(v) its outdegree. Let P and Q denote the
partition of the offspring set M of v given by « and S, respectively. Clearly

Pla(v) =) | T=T)=P(P=Q | T=T)P(a(v)=B(v) | P=Q,T=T).

For all 1 < i < d let v; and n; denote the number of blocks of size ¢ in the set «(v)
and the set 5(v), respectively. Then

PP=Q|T=T)=Py;=n;foralli | T=T)P(P=Q | T =1T,v; =n, for all i)

and .
1 iBI n;
Py =mn;foralli| T=T)= H (1B () .
exp(Ac)ed -5 nil
Given T = T and v; = n; for all 1 < ¢ < d, we have that P = @ if and only if
the ordering (mj,...,mq) of the offspring set M drawn uniformly at random by

the sampler is among one of the H?Zl n;!(i1)™ possible choices corresponding to the
partition ). The probability for this is given by

P(P=Q|T=T,v;, =n,; forall i) = Hnl

It remains to calculate P(a(v) = B(v) | P = Q,T = T). Let £ denote the event
P=CQ and T =T. Applying the law of total probability yields

Pla(v) =5Ww) | €) = Z P(a(v) = B(v) | € and m; = k; for all i)P(m; = k; for all i | £)
(k1,...,kq)
where (ki,...,kq) ranges over all possible choices for the ordering (mi,...,mg).

Given any such, suppose that P = @, T = T and m; = k; for all i. Let o;; de-
note the corresponding bijections used in the sampler. Then we have a(v) = 5(v)
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if and only if the sequence (B ;)i<i<d,1<j<n, Of derived blocks drawn uniformly at
random by the sampler satisfies

Bv) ={0i;-Bij|1<i<d,1<j<n}

There is precisely one possible choice for the blocks since we already fixed the labels
and bijections, hence
1
P = & and m; = k; for all 7) = —_—.
(a(v) = B(v) | € and m; ; for all 7) ||1 B[

This holds for all multiindices (ki, ..., kq), thus

S
U Im_zlﬂﬂﬂ@wf

Combining the equations above yields that the probability P((T,a) = (T,03)) is
given by

E&
z&

B(a(v) = B(v) | P= Q. T=T) =

: di_(f) ([z']B'(yz))"™ na! (i)™ 1
exp(Ac)Pa+(v) i n;! d*t(v)! (=] B (2))"

1
— H d* (0)! o+ ()

n:
veV(T)

This simplifies to

d*t (v)
H I v = 1 Suever d* (0)
exp( n)\o Vi) i exp(nic)n!

Clearly the sum ZUEV(T) dr (U) of all outdegrees of the rooted tree T is equal to
n — 1. Recall that we have y = pexp(A¢). Hence

1

P(T,a) = (T,8)) = my

This concludes the proof. O

Corollary 5.7.8. Let C be a random graph drawn from the class C® according to the
Boltzmann distribution at the singularity p and (T, a) be the corresponding enriched
tree. LetT € T* be a tree with P(I'T* =T) > 0. If we condition on the event T =T
then « is drawn as an independent family of SET o B'-structures on the offspring
sets of the tree T. Letv € V(T') be a vertex with outdegree d = d;(v) > 1 and w one
of its offspring. Let B denote the unique block of C containing the vertices v and w
and B the unique B'-structure in a(v) containing w. Then |B| = |B’|+1 and for all
s > 1 we have that

P(B|=s|T=T)= Y P(PSeq(d)=(n1,...,nq))
(ni)»LEN(()N)
> ini=d

SN

d

=: Ds.d- (5.7.1)
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Thus psq is defined for all d with g4 # 0. We have that

B'*(yz) = Z(Z deaps,d)z°. (5.7.2)

s>1 d>1

Here we set ps g = 0 whenever 4 = 0. For any block B € B'® we let d(B) denote the
length of a shortest path connecting the x-vertex and the root. The distance d(v,w)
1s the length of a shortest path connecting the vertices v and w in the block B or,
equivalently, in the graph C. Given an integer s > 1 with psq > 0 and a uniformly

at random chosen block B from the class B, we have that

P(d(v,w) =t ||B'|=s,T=T)=P(d(B?)=t) (5.7.3)
for all integers t > 1.

Proof. First we prove Equations (5.7.1) and (5.7.3)). Let M denote the offspring set
of the vertex v in the tree T and d = d.(v) its outdegree. The sampler I'A generates
the SET o B'-structure on the set M as follows:

1. Draw the partition sequence vy, ..., vy according to the distribution PSeq(d).
2. Forall 1 <i<d,1<j <w;choose B;; € Bg uniformly at random.

3. Choose a matching of the set M and the disjoint union | |; ;(V(B;;) \ {*}) =
L; ;[{] uniformly at random.

4. Relabel according to the matching.

If there is no sequence ny, ..., ng € No with ), in; = d and P(PSeq(d) = (n1,...,nq)) >
0 then
P(IB'| = s|T=T) =0=psa.

Otherwise, let (n;); be such a sequence and suppose that T = T and v; = n; for all
i. Then w is matched to a uniformly at random chosen vertex from | |, ; V(B ;) =
Ll; ;[]. Hence we have |B’| = s if and only if w gets matched to a vertex from
Lli<j<n.[s]. The probability for this is given by

P(‘B,‘ =s|T=T,v;, =n; for all i) = sns'
It follows that
SNis
P(B|=s|T=T)= > P(PSeq(d) = (ni,...,ng)) " = paa
(ns);eNgV
> ing=d

Thus Equation (5.7.1]) holds. Now, suppose that ps 4 > 0. Then there are sequences
ni,...,nqg be with Y. n; = dng > 0 and P(PSeq(d) = (n1,...,nq)) > 0. Let
(n;); be such a sequence and suppose that T = T, |B'| = s and v; = n; for all i.
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Then the vertex w gets matched to a uniformly at random chosen non-x-vertex of
Bs1,...,Bsn,. Let 1 <k <n, denote the index of the corresponding block. Hence
the distance d(v,w) is equal to length of a shortest path from the %-vertex of B
to a uniformly at random chosen root r. The rooted graph (B, r) is distributed
like a uniformly at random chosen graph B/® € B/*. Thus we have for all ¢ > 1

P(d(v,w) =t | |B'| =5, T =T,v; =n; for all i) = P(d(BY?) = t).

It follows that Equation (5.7.3)) holds. It remains to prove that for all s > 1 we have
that [2°]B'(yz) = > 451 dpaps.a- For any d with ¢4 = 0 we have that

d ; )
SB (1y2))
a0 T TEEE,
(Tli)iENéN) =1 v

> ing=d

Note that

p(2) = exp(B'(yz) — Ac) = exp(=Ac) [ [ exp ('] B (y2))
i>1

implies that for all d > 1 with ¢4 = 0 and ny,...,ng > 0 with ), in; = d we have

that
d

[1(=18'(y=))™ = 0.

=1

Hence equality (x) also holds for ¢4 = 0. It follows that

d iR/ 2) )i
stf’dps,d = sexp(—Ac) Z Z H ([Z]Bng/))ns

d>1 d20 () N i=1
>, ing=d
= sexp(—A¢) Z ([ZS]B;((?'JZ))TLS”S H Z ([Zl]BT/L(‘yZ))m
ns>1 5 iEN\{s} 7;>0 v
= sexp(—Ao) ([2°]B'(y2)) [ [ exp([2] B (y2)).
€N

Since A\c = B'(y) we have that

Y deapsa = s[2°|1B'(y2) = [2°]B" (y2).
d>1
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5.7.3 Number of blocks along a path

Given an enriched tree (T, o) € A and a path P = vy,...,v;41 in T emanating from
the root, we may count the number of blocks of a given size s along that path. We
denote it by

b(s, P) :=|{1 <i < /] vt lies in a derived block of size s in a(v;)}|.

Suppose that the class C is subcritical. Then the probability generating function
©(2) = exp(B'(yz) — A\¢) is analytic at the point z = 1 and has expected value
¢'(1) = 1. In particular we may apply the results of Section to random trees
drawn by the sampler I'T®.

Lemma 5.7.9. Suppose that the class C is subcritical. Let (Ty,a) be an enriched
tree of size m drawn according to U'A,. Let € > 0 and an integer S > 1 be given.
Then the following holds with high probability as n tends to infinity. For every path
P =w,...v41 in T, emanating from the root with length £ > log*(n) we have that

b(s, P) € (1 £€)[2°]B"(yz)
for all integers 1 < s < S.

Proof. Let (T,,a) be an enriched tree of size n drawn according to I'4,,. Clearly
it suffices to show that for any given ¢ > 0 and s > 1 the above holds with high
probability. If [z°]B’*(yz) = 0 then [2°]B’(yz) = 0 and in particular P(|[T'B’(y)| =
s) = 0. It follows that the random graph I'C'*(p) has almost surely no blocks of size
s 4+ 1 and the claim holds trivially. Hence we may suppose that [25]B’*(yz) > 0.
Let 0 < €1,€9,€e3 < 1 be some constants depending only on € and s. We will choose
convenient values later on. Let n > 1. For any D > 1 call a tree T' € 7,7 D-good,
if P('Ty = T) > 0 and for any path P = v;...vs41 in T emanating from the root
with length ¢ > log(n)* we have that

’{1 <i</ ‘ d}L(v,) = d}‘ S (1 :tel)fdgpd and |{1 <i</ ‘ d}L(vl) > D}’ < el

for all 1 < d < D. Since C is subcritical by assumption, it follows by Corollaries
5.7.4] and [5.7.5] that there is a constant Dg > 1 such that for all D > Dy we have
that

lim P(T, is D-good) = 1.

n—oo

By Corollary we know that

2|B"*(yz) = Y dpapsa
d>1
with sy
_ P(P Vs
Psd > P(PSeq(d) = (v1,...,va)) 7
(nl)ZENéN)
> ivi=d
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for g # 0 and ps q = 0 if ¢4 = 0. Choose some constant D > Dy such that

D

[2°]B" (y2) = > dpapsa < €s.
d=1

We will show that for every D-good tree T' € 7,* and P a path in 7" emanating from
the root with length £(P) > log(n)* we have that
P(b(s, P) ¢ (14 €)l[z°]B"*(yz) | T, = T) < exp(—Clog(n)*) (%)

for some constant C' > 0 depending only on € and s. This suffices to prove the claim:
The probability

P(b(s, P) ¢ (1 % €)¢[2°] B"*(yz) for some path P with £(P) > log(n)?)
is bounded by

P(T,, is not D-good) + Z P(b(s, P) ¢ (1 +€)l[2°|B"*(yz) | T, = T)P(T, =T).
TeTn D-good
P path in T with £(P)>log(n)*

A tree of size n has n different paths emanating from the root. By applying inequality
(%) we thus obtain the upper bound

P(T,, is not D-good) + n exp(—Clog(n)")P(T, is D-good) = o(1).

This proves the claim. Hence it remains to show that inequality (%) holds. Let T' €
T be a D-good tree and suppose that T,, = T Note that the family (a(v))yev (1)
of SET o B'-structures on the offspring sets of the tree T is independent with respect
to the conditioned probability measure P(- | T,, = T). Let P = v;...vp41 be a path
in 7' emanating from the root with length ¢ > log(n)*. We have that

b(87 P) = Z Xa with  Xg:= Z H{vi_H lies in a B’-object of size s in a(v;)}+
a>1 1<i<t
d(v;)=d

Since the tree T is D-good, it follows by Corollary that
]E[Xd] S (1 + 61)€dg0dp57d ford <D

and

Z Xy < el

d>D

Let 1 <d < D. If pgpsq = 0 then Xgq = 0 holds P(- | T = T')-almost surely. Suppose
that pgps.q # 0. We have that

P(Xq ¢ (1te)ldpgpsa | Tn=T) <P(Xq¢ (1+te/3)E[Xq4] | Tn=T).
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Applying the Chernoff bounds yields that this probability is bounded by
exp(—E[X4]e]/36) < exp(—e€; (1 — €1)dpaps,a/36).

Since £ > log(n)? it follows that

D

P(b(s, P) ¢ (1 £ )ty dpapsa+exl) < Y exp(—€i(1 —er)log(n) dpaps.a/36)
=1 1<d<D
Pdps,d7#0

< exp(~C'log(n)*)

with C' > 0 depending only on €; and D. By choice of D we have that

D
0 < [2°]|B"(yz) = > dpapsa < €3.
d=1
Hence
D
P(b(s, P) ¢ (14 €)lB"(yz)) <P(b(s,P) ¢ (1 £ 1)l > dipaps.q + ()
d=1

for a suitable choice of €1, € and e3. (For example, we could choose €1 = 2¢, €3 =
€[z°]B’*(yz) and €3 = €[2°] B’*(yz)/(1 + 2¢).) This proves inequality (x). O

5.7.4 Expansion of path length

Given a vertex v of an enriched tree (T, ) € A we may consider the distance from
the root to the vertex v in the corresponding graph C. We denote this length by
rI(P) where P is the unique path in the tree T' connecting the root and v. Let
C, € C? be a uniformly at random chosen graph and (T,,a) the corresponding
SET o B’-enriched tree. Recall that for any B’*-object B the number d(B) denotes
the distance of the *-vertex from the root.

Lemma 5.7.10. Suppose that the graph class C is subcritical. Then for any € > 0
the following holds with high probability. For every path P in the tree T, starting
from the root with length £ > log(n)* we have that

rfl(P) € (1 £ e)/E[d(TB"*(y))]
with TB'®(y) denoting a Boltzmann sampler for the class B'® at the point y.

Proof. Note that

E[d(I'B"(y)] =) _ps with ps=E[dT'B"(y)) | (TB"(y))| = s][z*] B"(y=)
s>1
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is finite, since ps < s[z°]B’*(yz) and the class C*® is subcritical. Let (T,,a) be an
enriched tree drawn according to the sampler I'4,, and C,, denote the corresponding
graph. Let T' € T, be a tree with P(T,, = T') > 0 and for any vertex v € V(T
let M(v) denote its offspring set. If we condition on T, = T then the familiy
((v))yev(r) is independent and each SET o B’ structure a(v) on the set M(v) is
generated by the following independent steps.

1. Draw the partition sequence v1(v),...,v4(v) according to the distribution

PSeq(df(v)).
2. Choose a bijection f, : M(v) — |; ;[¢] uniformly at random.
3. For all 4,j > 1 choose a derived block B; j(v) € B] uniformly at random.

The final structure is obtained by selecting the blocks B; j(v) with 1 < i < d*(v),
1 < j < vj(v) according to the choices made in step 1 and relabeling them according
to the matching chosen in step 2. Let S(v) = ((v;(v))s, fv) denote the pair of random
choices made in steps 1 and 2. Note that for any path P in the tree T' emanating
from the root the number b(s, P) of derived blocks of size s along that path depends
only on the family 8. For any possible outcome (T,7) with v(v) = ((n;(v)):, g,) we
have P((T,,8) = (T,v)) > 0 if and only if P(T,, = T') > 0 and n;(v) = 0 whenever
[2/]B'(z) = 0. Now, let € > 0 be given and 0 < ¢€1,¢€2,€3 < 1 be some constants
depending only on e. We will choose convenient values later on. By Corollary
there exists S > 1 such that with high probability all paths P = vq,...,vj41 in I'T;
that start from the root and have length £ > log(n)? satisfy

Z d*(v;) < €. (*)
1</
d+(v¢)>S

This also holds for all constants bigger than S, hence according to Corollary
we may choose S large enough such that additionally

Zps < e.

s>S

We say the pair (7,7v) is S-good, if P((T,,5) = (T,7)) > 0 and for all paths
P = vy,...,vp11 emanating from the root with length ¢ > log(n)* we have that
equation () holds and additionally b(s, P) € (1 £ €3)l[z°]B"*(yz) for all 1 < s < S.
By Corollary and Lemma it follows that the pair (T, ) is S-good with
high probability as n tends to infinity. We will show that for every S-good pair
(T,~) and P a path in T emanating from the root with length £(P) > log(n)* we
have that

P(rl(P) ¢ (1+ e)¢(P)E[d(TB"*(y))] | (Tn, 8) = (T,7)) < exp(—=Clog(n)!)  (x%)
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for some constant C' > 0 depending only on €. This suffices to prove the claim: The
probability

P(r(P) ¢ (1 + ¢)IE[d(I'B"(y))] for some path P with I(P) > log(n)*)

is bounded by the sum of the probability P((T,, 3) is not S-good) and

> P(A(P) ¢ (1£ )ETB W) | (T, 8) = (T,7)P((Ta, 8) = (T,7)).
(Tyy) S-good
P path in T with £(P)>log(n)*

A tree of size n has n different paths emanating from the root. By applying inequality
(%*) we thus obtain the upper bound

P((T,, 3) is not S-good) + nexp(—Clog(n))P((T,, 8) is S-good) = o(1).

This proves the claim. Hence it remains to show that inequality (%*) holds. Let
(T,~) be S-good and suppose that (T,,5) = (T,v). Let P =wv1,...,vs41 be a path
in the tree 7' emanating from the root with length ¢ > log(n)*. For all 1 <4 < £ let
d(vi,vi+1) denote the length of a shortest path connecting the vertices v; and v
in the graph C,,. Then the distances d(v;, v;+1) are independent and

14

A(P) = d(vi, vig1). (% % %)

i=1

Given an index 1 <4 < ¢ let B denote the derived block containing the vertex v; 41
and s its size. Then s is determined by (more precisely, P(- | (Tn,3) = (T,7))-
almost surely equal to a constant determined by) the pair (7',7). The derived block
B is generated by drawing a block By uniformly at random from the set B, and
relabeling by a fixed bijective function o : [s] = M determined by ~. Hence the
distance d(v;,v;11) is equal to the length of a shortest path from the *-vertex to
the vertex v := o !(v;11) € [s] in the derived block Bs. Since B was chosen
uniformly at random and the set By is closed under relabeling, this distance d(x,v)
is distributed like the distance d(x,7) from the *-vertex to a independently and
uniformly at random chosen non-x-vertex r € [s]. In particular, it is distributed like
the distance from the x-vertex to the root in a uniformly chosen block B? € B!*. See
Lemma [5.7.11] below for details. Hence

d(vi, vi1) L d(BL (y)).

For each 1 < s < S let I denote the set of all indices 1 < ¢ < ¢ such that v;11 lies in
a derived block of size s. Since d(v;,v;+1) < df.(v;) it follows by equations (x) and
(% % %) that

S
A(P) =" d(vi,vis1) + R

s=1 ’ieIs
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with 0 < R < €. Clearly |I5| = b(s, P) for all s. Since the pair (T, 7) is S-good, we
have that b(s, P) € (1 £ €3)¢[2°]| B"*(yz) for all s < S. In particular, b(s, P) # 0 if
and only if [2°]B’*(yz) # 0. Suppose that b(s, P) # 0. Then

E[Z d(vi,vig1)] € (1 £ €3)lps.
1€l

For convenience, let £ denote the event (T,,3) = (T,~). By monotonicity we have
that

P> d(vi,vip1) ¢ (1es) fps | €) <P d(viyvigr) € (1es/3) B> d(vi, viga)] | €).
i€l i€l i€l

We have that d(v;,vi41) € [s] for all i@ € Iy. Hence we may apply Hoeffding’s
inequality to bound this probability by

9 exp (_2(E[Ziels d(w,w+1)]e3/3)2> e <_2€§(1 ) psE[d(B;>]g> |

b(s, P)s? 9 (1+e€3)? s2

Since [ > log(n)?, it follows that

S S
PO Y d(vi,vig1) & (1£€3)l > ps | €) < exp(—Clog(n)*)

s=14€l, s=1

for some constant C' > 0 depending only on the ¢; and S. By choice of S we have
that

0 <E[d(I'B"*(y ZpSSEQ

Hence
S
(1+€3)0 Y ps+ R C (1+e)(E[dTB"(y))]
s=1

for a suitable choice for the ¢;. (For example, we could choose €3 = 5and € = €3 =

min(3, $E[d(I'B"*(y))]~!).) By monotonicity we get
P(rl(P) ¢ (1 £ €)IE[d(T'B"(y))] | €) < exp(—Clog(n)").
This proves inequality (xx). O

Lemma 5.7.11. Let s > 1 and v € [s]. Let B € B, and B®* € B.* be drawn uniformly
at random. Then

(4)
dB(*,U) = dB’(*7.)7
i.e. the length of a shortest path connecting the x-vertex and the verter v in the

derived block B is distributed like the distance from the x-vertex to the root in the
block B®.
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(d)

Proof. Given v, w € [s] take a permuation 7 € S5 with 7(v) = w. Then 7.B = B and
hence

dg(*,v) = d;g(*,w) ) dg(*,w).
If we choose a vertex r € [s| independently and uniformly at random, then the

rooted block (B,r) € B'® is uniformly distributed, i.e (B,r) @ ge We have that

P(dg(x,r) =t) = »_ P(dg(x,w) = t)P(r = w) = P(d(x,v) = t).
wE|s]
Hence dg(*,v) @ dpe(*, ). O

Lemma 5.7.12. Suppose that the graph class C is subcritical. Then Ib(C,) =
O(log(n)) with high probability.

Proof. Clearly we have that
Ib(Cp,) < A(Tp) +1

where A(T,,) denotes the maximum out-degree of the tree T,. By assumption, the
probability generating function ¢(z) of the offspring distribution is analytic at the
point 1. By [MM90, lJan12] the maximum outdegree satisfies

A(Ty) = O(log(n))
with high probability. This proves the claim. O

Proofs for the logarithmic bound of the largest block are also given in [PS10,
DN13J.

Theorem 5.7.13. Let C,, € Cy be a uniformly at random chosen rooted graph of
size n from a subcritical class and (T, «) the corresponding SET o B'-enriched tree.
Then for any ¢ > 0 the following holds with high probability. For every path P in
the tree T,, we have that

rl(P) € (1 £ €)¢(P)E[d(I'B"(y))] + O(log(n)®)
with TB®(y) denoting a Boltzmann sampler for the class B'® at the point y.

Proof. Let € > 0 be given. Let P be a path in the tree T, connecting the vertices
x and y. We let r denote the root of T,, and a the last common ancestor of the
vertices « and y. Clearly we have that

U(P) =dt,(r,x) +d1,(r,y) — 2d1, (T, 0).

A shortest path connecting the vertices x and y in the graph C,, might take a shortcut
in a single block to avoid the vertex a. Thus the corresponding path lengths in the
graph C,, satisfy

r(P) = dc, (r, ) + dc, (r,y) = 2dc, (r,a) + R
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with |R| < 2Ib(C,,). By Lemmata [5.7.12f and [5.7.10| we have with high probability
for any vertex z

dc, (r,2) € (1 £ €)E[d(TB"(y))]dT, (1, 2)

if dt, (r, z) > log(n)* and otherwise
dc,, (r,z) = O(log(n)°) = E[d(T'B"(y))]dr, (r, z) + O(log(n)®).
Thus it follows that in this case we have that

rl(P) € (1+ €)¢(P)E[d(TB"*(y))] + O(log(n)®).

5.7.5 The scaling limit

Let C,, and C3, denote the labeled unrooted and rooted random graph drawn uni-
formly from the graphs of size n of the subcritical class of connected graphs C.
Recall that p denotes the radius of convergence of the generating series C(z). Let
k = E[d('B*(y))] denote the expected distance between the two roots of a doubly
rooted block drawn from the class B’® according to the Boltzman distribution with
parameter y = C*(p). We may thus obtained an alternative proof of Theorem

Theorem 5.7.14. The rescaled graph ﬁC; converges in distribution to the con-
tinuum random tree Te with respect to the (pointed) Gromov-Hausdorff metric.

Since C? and C,, are identically distributed as metric spaces, the same holds for
labeled unrooted graphs.

Proof. Consider the coupling with the conditioned GWT T,,. Given any bounded
Lipschitz-continuous function f : K — R with upper bound M and Lipschitz-
constant L we have that

g g g

s o] ~ L (Ta)) < B (5,7 =)~ Elf (57

By Theorem [5.7.13] and considering the distortion of the natural correspondence
between the vertices of T,, and C?, we know that with high probability

dan(C/(kv/n), Tn/V/n) = o(1).

IELf(

T+ o(1)

Call this event &,. Then

o o
2K/ 2v/n

This concludes the proof. O

IELf( G —Elf (=TIl < Lo(1) + MP(E;) = o(1).
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