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1 Einleitung

1.1 Das kolorektale Karzinom

Das kolorektale Karzinom (KRK) war im Jahr 2012 weltweit mit über 1,3 Millionen Er-

krankungsfällen die dritthäufigste Krebsart und die vierthäufigste krebsbezogene Todes-

ursache (Ferlay et al. 2013). Hierbei entfielen 746.000 Fälle auf Männer und 614.000 Fälle

auf Frauen. Die Inzidenz variiert je nach Entwicklungsstatus des Landes und geographi-

scher Region stark. Eine deutliche Häufung findet sich insbesondere in den sogenannten

entwickelten Ländern (Ferlay et al. 2013). In Deutschland betrug die alterstandardisierte

Erkrankungsrate im Jahr 2010 57,8 pro 100.000 Männer bzw. 36,8 pro 100.000 Frauen

(Kaatsch et al. 2013).

Mit 694.000 Todesfällen durch das KRK im Jahr 2012 belegt es den vierten Platz in

der weltweiten Mortalitätsstatistik der Krebsarten. Die Todesraten weisen im Vergleich

zur Inzidenz eine geringere geographische Schwankungsbreite auf (Ferlay et al. 2013), das

heißt, die Letalität ist in Industrienationen geringer. In Deutschland war das kolorektale

Karzinom im Jahr 2010 die Krebsart mit der zweithöchsten Mortalität mit einer alters-

standardisierten Sterberate von 22,3 pro 100.000 Männer bzw. 13,9 pro 100.000 Frauen

(Kaatsch et al. 2013). Wie diese Zahlen belegen, handelt es sich also beim KRK trotz

vergleichsweise besserer Überlebenschancen in den sogenannten entwickelten Ländern um

eine weit verbreitete Erkrankung mit zahlreichen Todesfällen.

Zu Beginn der 1980er Jahre betrug die relative 5-Jahres-Überlebensrate des Darmkrebs

ab dem Zeitpunkt der Diagnosestellung in Deutschland noch ca. 45% (Bertz et al. 2010).
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1 Einleitung

Durch Früherkennungsprogramme sowie signifikante therapeutische Verbesserungen in

den letzten Jahren und Jahrzehnten konnte eine Verbesserung der relativen 5-Jahres-

Überlebensraten auf ca. 66 % erreicht werden (Heinemann et al. 2013). Dennoch ist

die Prognose für Patienten mit primär metastasiertem kolorektalem Karzinom weiterhin

ungünstig. Hier liegen die berichteten 5-Jahres-Überlebensraten bei 8-15% (O’Connell,

Maggard und Ko 2004; Heinemann et al. 2013).

Risikofaktoren für die Entwicklung eines kolorektalen Karzinoms sind neben familiärer

Vorbelastung insbesondere ein fortgeschrittenes Alter sowie ein ungünstiger Lebensstil.

Hierzu zählen geringe körperliche Aktivität, falsche Ernährung, Übergewicht und Alko-

holkonsum (Kaatsch et al. 2013; Chan und Giovannucci 2010).

Die kolorektale Karzinogenese ist ein mehrstufiger Prozess, der durch verschiedene

genetische und epigenetische Veränderungen über mehrere Jahre von gesunder Dick-

darmschleimhaut über Adenome zu Karzinomen führt. Diese Abfolge wurde erstmals

in den 1920er Jahren beschrieben (Stewart 1931; Dukes 1932) und erstmals 1951 mit

dem heute gängigen Titel „Adenom-Karzinom-Sequenz“ versehen (Jackman und Mayo

1951). In den darauf folgenden Jahrzehnten wurde diese durch intensive pathologische

Forschung auf eine solide Datenbasis gestellt (Morson 1966; Muto, Bussey und Morson

1975). Einen wichtigen Meilenstein stellt das von Fearon und Vogelstein entwickelte Mo-

dell dar, das typische genetische Mutationen den einzelnen Schritten der Karzinogenese

zuordnet (Fearon und Vogelstein 1990).

Auf dieser Grundlage konnten in den folgenden beiden Jahrzehnten weitere, darüber

hinaus gehende Varianten der kolorektalen Karzinogenese auf molekularbiologischer Ebe-

ne identifiziert werden, so dass aktuell drei wesentliche, zum Teil in Kombination auftre-

tende, molekulare Mechanismen bekannt und allgemein akzeptiert sind: chromosomale

Instabilität (CIN) und Mikrosatelliteninstabilität (MSI) auf genetischer und der CpG-

Methylierungs-Phänotyp (CIMP) auf epigenetischer Ebene (Markowitz und Bertagnolli

2009; Jass 2007; Al-Sohaily et al. 2012).
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Letzterer wurde unter diesem Namen erstmals 1999 von Toyota und Kollegen als Un-

tergruppe des KRK mit einem hohen Anteil an Hypermethylierung von CpG-Inseln in

Promotorregionen beschrieben (Toyota et al. 1999). Diese führt zu einem transkriptio-

nellen „Silencing“ der entsprechenden Gene, was durch die verminderte Expression von

Tumorsuppressor- und DNA-Reparaturgenen einen essentiellen Teil der Karzinogenese

beim KRK und diversen weiteren Tumorentitäten darstellen kann (Jones und Baylin

2007). CIMP findet sich in bis zu 20 % der kolorektalen Karzinome, geht mit typischen

klinischen und pathologischen Charakteristika einher und ist mit BRAF-Mutationen und

dem serratierten Karzinogeneseweg assoziiert (Leggett und Whitehall 2010; Jass 2007;

Weisenberger et al. 2006). Auch wenn die Existenz des CIMP-Subtyps beim KRK nach

anfänglichen Diskussionen mittlerweile unbestritten ist, gibt es bis zum heutigen Tag

keine Übereinkunft über einen methodischen Goldstandard zu dessen Definition und De-

tektion (Hughes et al. 2012).

1.2 Biomarker des kolorektalen Karzinoms

1.2.1 CEA als etablierter Tumormarker des KRK

Das carcinoembryonale Antigen (CEA) beschreibt eine Gruppe von Glykoproteinen aus

der Immunglobulinsuperfamilie und beinhaltet 29 Gene auf Chromosom 19q (Duffy

2001). Es wurde erstmals 1965 von Gold und Freedman als Antigen beschrieben, das

sowohl im fetalen Kolon als auch in Adenokarzinomen des Kolon nachgewiesen werden

konnte (Gold und Freedman 1965). In späteren Studien konnte CEA zwar auch in ge-

sundem Gewebe gefunden werden, allerdings in deutlich geringeren Konzentrationen als

in Tumoren (Boucher et al. 1989).

Da CEA oft auch im Serum von Patienten mit gastrointestinalen Tumoren nachgewie-

sen werden kann, hat es sich als am häufigsten genutzer Tumormarker für diese Entitäten

etabliert. Die CEA-Konzentration im Serum hängt u.a. von Tumorstadium, Grading, Le-
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berfunktion, Tumorlokalisation im Kolon, Nikotinabusus und Darmobstruktion ab (Duffy

2001). In zahlreichen großen klinischen Studien konnte gezeigt werden, dass hohe CEA-

Spiegel bei Diagnosestellung mit einer schlechten Prognose einhergehen (siehe z.B. Duffy

2001; Park et al. 1999; Thirunavukarasu et al. 2011; Sun et al. 2009).

Darüber hinaus scheint CEA als Verlaufsmarker im Rahmen eines intensiven follow-ups

notwendig zu sein, um eine signifikante Verbesserung des Überlebens zu erreichen (Bruin-

vels et al. 1994; Figueredo et al. 2003; Tjandra und Chan 2007). Die European Group

on Tumour Markers (EGTM ) empfiehlt CEA als einzigen Tumormarker beim kolorek-

talen Karzinom insbesondere zur postoperativen Überwachung nach kurativer Resektion,

aber auch mit geringerer Evidenz zur Prognoseabschätzung und zum Therapiemonitoring

(Duffy et al. 2007; Duffy et al. 2014). Die kolorektale Arbeitsgruppe des American Joint

Committee on Cancer (AJCC ) empfiehlt bereits seit Längerem CEA als Tumormarker

im Serum zum etablierten TNM-Staging-System hinzuzufügen (Compton et al. 2000).

Auch wenn dies bislang nicht umgesetzt wurde, so stellt das CEA den Goldstandard dar,

an dem sich jeder neue prognostische Tumormarker für das kolorektale Karzinom messen

muss.

1.2.2 Lactatdehydrogenase (LDH)

Das Enzym Laktatdehydrogenase (LDH) bewirkt die reversible Umwandlung von Py-

ruvat und Laktat und ist somit ein essentielles Element der anaeroben Glykolyse. Die

Expression von LDH wird durch den hypoxia inducible factor HIF-1 beeinflusst (Semenza

et al. 1994; Firth et al. 1994; Firth, Ebert und Ratcliffe 1995; Weidemann und Johnson

2008), einem Bestandteil des HIF-Signalwegs, welcher häufig aktiviert in Krebszellen

gefunden wird (Maxwell, Pugh und Ratcliffe 2001; Keith, Johnson und Simon 2012).

Die im Serum gemessene LDH-Aktivität ist ein gängiger Parameter im klinischen All-

tag. Die Freisetzung geschieht im Rahmen von Zerfall oder Auflösung der Zellmem-

bran und ist somit ein unspezifischer Marker für Gewebeschäden, z.B. durch Nekrose.
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Erhöhte LDH-Spiegel finden sich bei vielen Erkrankungen wie Herzinfarkt, Hämolyse

oder Malignomen (Huijgen et al. 1997). Bei Hodenkrebs oder aggressiven Non-Hodgkin-

Lymphomen werden erhöhte LDH-Spiegel als prognostische Biomarker verwendet (Inter-

national Germ Cell Cancer Collaborative Group. 1997; Krege et al. 2008; Anon 1993).

Auch beim KRK wurden hohe LDH-Spiegel im Serum mit aggressiveren Tumoren und

kürzerem Überleben in Verbindung gebracht (Mekenkamp et al. 2010; de Gramont et

al. 2000; Wu, Ma und Wang 2010; Scartozzi et al. 2012). In den letzten Jahren wurde

auch über LDH als möglicher Prädiktor des Ansprechens auf eine antiangiogenetische

Therapie diskutiert (Hecht et al. 2011; Van Cutsem et al. 2011; Scartozzi et al. 2012).

1.2.3 Helicase-like transcription factor (HLTF)

Das Protein Helicase-like transcription factor (HLTF) gehört zur SWI/SNF-Familie

(SWItch /Sucrose NonFermentable) und ist neben SHPRH eines der beiden humanen

Homologe von Rad5 in Saccharomyces cerevisiae (Unk et al. 2010). Es konnte gezeigt

werden, dass HLTF funktionell durch eine doppelsträngige DNA-Translokase-Aktivität

ein Remodeling der Replikationsgabel bewirken und diese dadurch rückgängig machen

kann (Blastyák et al. 2010). Des Weiteren wurde beschrieben, dass HLTF als Ubiquitin-

Ligase fungiert und die Polyubiquitinilierung von PCNA (proliferating cell nuclear an-

tigen) vermittelt, einem essentiellen Bestandteil der Replikationsmaschinerie (Unk et al.

2008; Motegi et al. 2008). Darüber hinaus kann HLTF als Transkriptionsfaktor mit DNA-

Zielsequenzen interagieren und die Expression von Zielgenen beeinflussen (Debauve et al.

2008). In Vorarbeiten zur vorliegenden Dissertation wurde Methylierung von HLTF im

Serum von Patienten mit KRK als unabhängiger prognostischer Marker und als Prädiktor

für Krankheitsrezidive beschrieben (Wallner et al. 2006; Herbst et al. 2009).
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1.2.4 Hyperplastic polyposis 1 (HPP1)

Das Gen HPP1 codiert ein Transmembran-Protein, welches epidermal growth factor-

sowie Follistatin-Domänen enthält und ist auch unter den Bezeichnungen TPEF (trans-

membrane protein containing epidermal growth factor and follistatin domain) oder

TMEFF2 (transmembrane protein with EGF-like and two follistatin-like domains 2) be-

kannt. Die Expression von HPP1 kann regelhaft in gesunder Kolonmucosa festgestellt

werden (Young et al. 2001). Die Hypermethylierung des Gens, assoziert mit einer Min-

derexpression, kann bereits frühzeitig in der kolorektalen Karzinogenese nachgewiesen

werden und wurde in hyperplastischen Polypen sowie Colitis-ulcerosa-assoziierten Dys-

plasien festgestellt (Young et al. 2001; Sato et al. 2002; Saito et al. 2011). Auch in anderen

Tumorentitäten wie Ösophagus(-Barrett-)- und Magenadenokarzinom sowie Blasen- und

nichtkleinzelligem Lungenkarzinom wurde eine Hypermethylierung von HPP1 beschrie-

ben (Eads, Lord et al. 2000; Ivanauskas et al. 2008; Hellwinkel et al. 2008; Lee, Park und

Kim 2012).

Für HPP1 wurde eine Tumorsupressorfunktion beschrieben, die durch die Aktivierung

des STAT1-Signalwegs vermittelt wird (Elahi et al. 2008), allerdings konnte in HPP1-

mutierten Mäusen kein gehäuftes Auftreten von Tumoren beobachtet werden (Chen et

al. 2012). In den Vorarbeiten für die vorliegende Arbeit konnte gezeigt werden, dass

auch Methylierung von HPP1 ein unabhängiger prognostischer Marker für das KRK ist

(Wallner et al. 2006).

1.2.5 Neurogenin 1 (NEUROG1)

NEUROG1 ist ein Helix-loop-helix-Transkriptionsfaktor, welcher bei der neurosensori-

schen Entwicklung, insbesondere des Innenohrs, eine wichtige Rolle spielt (Pan et al.

2012). Beim kolorektalen Karzinom findet sich häufig eine Hypermethylierung von NEU-

ROG1 (Ogino, Cantor et al. 2006). Darüber hinaus wurde es von Weisenberger und

Kollegen als Teil eines Markerpanels zur Klassifizierung des CpG-Insel-Methylierung-
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Phänotyps (CpG island methylator phenotype, CIMP) vorgeschlagen (Weisenberger et

al. 2006). Zudem wurde der Nachweis von NEUROG1-Methylierung der frei im Blut

zirkulierenden DNA als potentieller Screeningmarker vorgeschlagen (Herbst et al. 2011).

1.3 Zielsetzungen

1.3.1 Prognose des Krankheitsverlaufes

Ziel der vorliegenden Studien war es, frei zirkulierende methylierte DNA als Biomarker

des kolorektalen Karzinoms zu untersuchen, insbesondere in Hinblick auf ihre prognosti-

sche Bedeutung. Ein besonderer Schwerpunkt wurde hierbei auf die Marker HLTF und

HPP1 gelegt, die bereits in einer kleineren Pilotstudie als prognostische Marker des KRK

identifiziert wurden. In einem größeren Patientenkollektiv sollten nun die Korrelationen

mit klinisch-pathologischen Parametern sowie insbesondere die prognostische Aussage-

kraft validiert werden. Darüber hinaus wurde mit CEA der einzig relevante vorbeschriebe-

ne Blutbiomarker des KRK als Vergleichsparameter in die Auswertungen eingeschlossen.

Des Weiteren war es Ziel, Subgruppen zu identifizieren, in denen die untersuchten Mar-

ker eine besonders hohe prognostische Aussagekraft haben, was erstmals durch die hohe

Patientenzahl ermöglicht wurde.

1.3.2 Charakterisierung der Marker

Ein weiteres Ziel war es, durch Analyse von Gewebeproben aus dem Primärtumor in einer

Subgruppe des Kollektivs die Herkunft der frei zirkulierenden methylierten DNA aus dem

Tumor zu verifizieren. Des Weiteren war hierdurch die Untersuchung der Korrelation mit

dem CpG-Insel-Methylierungsphänotyp (CIMP) als molekularbiologische Eigenschaft des

Tumors möglich.

In weiteren Auswertungen wurde ein Schwerpunkt auf einen möglichen Zusammen-

hang von frei zirkulierender methylierter DNA und Tumorzerfall als möglichem Frei-
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setzungsmechanismus gelegt. Auch wenn Zelluntergang, insbesondere durch Nekrose, als

wahrscheinliche Quelle der frei zirkulierenden DNA angesehen wird, sind die genauen Me-

chanismen aktuell noch unklar (Jung, Fleischhacker und Rabien 2010; Schwarzenbach,

Hoon und Pantel 2011). In einer Substudie wurde die Korrelationen der Marker HLTF,

HPP1 und NEUROG1 mit LDH als Surrogatmarker für Zellzerfall untersucht.

1.4 Material und Methodik

1.4.1 Patientenkollektiv

Es wurden insgesamt Serumproben von 311 Patienten mit kolorektalem Karzinom ana-

lysiert, die am Klinikum München-Großhadern untersucht und behandelt wurden. Alle

Analysen wurden verblindet und ohne Kenntnis der Patientendaten durchgeführt. Die

Verwendung der Proben wurde durch die Ethikkommission der Medizinischen Fakultät

der Ludwig-Maximilians-Universität München genehmigt. Im Kollektiv befanden sich Pa-

tienten aller Tumorstadien. Die genaue Verteilung der klinisch-pathologischen Parameter

ist in den angehängten Publikationen detailliert dargestellt. Von 54 der 103 Patienten mit

KRK im Stadium IV wurden zudem Gewebeproben aus dem Primärtumor untersucht.

1.4.2 Tumormarkeranalysen

Material

Sämtliche 311 Blutproben wurden vor Therapiebeginn gewonnen und mit einem stoßge-

dämpften Rohrpostsystem in das Zentrallabor transportiert. Dort erfolgte eine Weiter-

verarbeitung nach standardisiertem Verfahren mit anschließender Lagerung des Serums

bei -80° C. Von 54 der 103 Patienten mit metastasiertem kolorektalem Karzinom lagen

formalin-fixierte, in Paraffin eingebettete Gewebeproben vor, die zur Analyse zur Verfü-

gung standen und von denen Schnittserien erstellt wurden. Auf einem mit Hämatoxylin

und Eosin gefärbten Schnitt (HE-Färbung) wurde von einem Facharzt für Pathologie
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die Tumorregion markiert. Von einem deparaffinierten benachbarten Schnitt wurde das

Tumorgewebe dann abgekratzt.

DNA-Aufreinigung und Bisulfit-Behandlung

Aus den Serumproben wurde mittels des High Pure Viral Nucleic Acid Kit (Roche App-

lied Science, Mannheim) gemäß Protokoll des Herstellers DNA extrahiert. Diese wurde in

einem standardisierten Verfahren mit Bisulfit behandelt, um eine Umwandlung von un-

methyliertem Cytosin in Uracil und somit eine Unterscheidbarkeit von methylierten und

unmethylierten DNA-Sequenzen zu erreichen. Im Anschluss erfolgte eine Aufreinigung

der DNA unter Verwendung des Wizard DNA Clean-up System (Promega, Mannheim)

gemäß Instruktionen des Herstellers.

Die DNA aus den Tumorgewebeproben wurde mit Hilfe des QIAamp DNA FFPE Tis-

sue Kit (Qiagen, Hilden) nach einer leicht modifizierten Version des Herstellerprotokolls

extrahiert. Die Bisufitbehandlung erfolgte im Falle der Gewebeproben mit dem EZ DNA

Methylation-Gold Kit (Zymo Research, Freiburg) gemäß den Instruktionen des Herstel-

lers.

Analyse der DNA-Methylierung von HLTF, HPP1 und NEUROG1

Die bisulfitbehandelte DNA wurde mittels eines erstmalig von Eads und Kollegen be-

schriebenen MethyLight-Assays untersucht, der auf fluoreszenz-basierter quantitativer

real-time Polymerase-Kettenreaktion (qPCR) beruht (Eads, Danenberg et al. 2000). Kurz

zusammengefasst erfolgt der Nachweis der Methylierung der Zielgene (HLTF, HPP1,

NEUROG1) durch methylierungsspezifische Primer und Sonden. Durch Messung von

methylierungsunabhängigen Alu-Sequenzen, die hochrepetitiv im gesamten menschlichen

Genomen vorkommen (Batzer und Deininger 2002), erfolgte eine Kontrolle der DNA-

Amplifikation und eine Normalisierung auf die Menge der eingesetzten DNA (Weisenber-

ger et al. 2005). Als Positivkontrolle wurde vollmethylierte DNA (Chemicon, Temecula,
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CA) verwendet.

Für jede Probe und jedes Zielgen wurde die percentage of fully methylated reference

(PMR) berechnet, indem das Gen-Alu-Verhältnis einer Probe durch jenes der voll-

methylierten, bisulfitbehandelten DNA dividiert und anschließend mit 100 multipliziert

wurde (Eads, Danenberg et al. 2000). Bei den Serumproben wurde eine PMR > 0 als

methylierungspositiv gewertet. Für die Gewebeproben wurde eine Grenz-PMR von 4

gewählt, für die die beste Unterscheidung zwischen normalem und Tumorgewebe be-

schrieben wurde (Eads, Lord et al. 2000; Ogino, Kawasaki et al. 2006).

Weitere Messparameter (CEA, LDH, CIMP)

Die Konzentration des carcinoembryonale Antigens (CEA) wurde mittels eines immu-

noenzymometrischen Mikropartikel-Assays bestimmt (AxSYM, Abbott Laboratories, Chi-

cago, IL). Die Aktivität der Laktatdehydrogenase (LDH) wurde mittels eines UV-

kinetischen Tests auf dem Beckman Coulter AU 2700 analyser (Beckman Coulter GmbH,

Krefeld) bestimmt.

In den oben beschriebenen Gewebeproben wurde der CpG-Insel-Methylierungs-

Phänotyp (CIMP, CpG island methylator phenotype) mit dem von Weisenberger et. al

vorgeschlagenemMarkerpanel bestimmt (Weisenberger et al. 2006). Hierzu wurde der Me-

thylierungsstatus der Zielgene CACNA1G, IGF2, NEUROG1, RUNX3 und SOCS1 mit

dem bereits beschriebenen MethyLight-Assay bestimmt. Wenn mindestens drei der Mar-

ker methylierungspositiv waren, wurden die entsprechenden Tumoren als CIMP-positiv

klassifiziert.

1.4.3 Statistik

Alle statistischen Auswertungen wurden mit Hilfe der Software SAS 9.2 bzw 9.3 durch-

geführt (SAS Institute Inc., Cary, NC). Korrelationen zwischen klinisch-pathologischen

Parametern und kategorialen Messwerten wurden mit Pearson’s χ2-Test bestimmt. Für
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Assoziationen zwischen kategorialen und kontinuierlichen Variablen wurde der Wilcoxon-

Mann–Whitney-Test, für solche zwischen kontinuierlichen Variablen wurden Spearman

Korrelationskoeffizienten verwendet.

Das Gesamtüberleben wurde als Differenz zwischen Datum der Erstdiagnose bis zum

Zeitpunkt des Todes oder des Endes des follow-ups berechnet. Die Überlebenskurven wur-

den mittels Kaplan-Meier-Methode erstellt. Unterschiede zwischen den Kurven wurden

mittels log-rank-Test ermittelt. Bei allen Analysen wurden p-Werte < 0,05 als signifikant

erachtet.

1.5 Ergebnisse

Insgesamt konnte Methylierung von HLTF, HPP1 und NEUROG1 in je 48, 64 und 81 der

insgesamt 311 Proben nachgewiesen werden. Für HLTF und HPP1 zeigte sich ein Zusam-

menhang mit größeren Tumoren, Tumorstadium, Tumorgrad und Fernmetastasierung.

HPP1-Methylierung korrelierte darüber hinaus mit Lymphknotenfiliae. Für NEUROG1

ergaben sich keine Korrelationen mit klinischen oder pathologischen Parametern.

Patienten mit Nachweis von HLTF-Methylierung zeigten ein medianes Überleben von

36,3 Monaten im Vergleich zu 80,2 Monaten für HLTF-negative Fälle. Für HPP1 ergibt

sich mit 12,6 Monaten bei positiven und 104,7 Monaten bei negativen Fällen ein noch

deutlicherer Unterschied. In beiden Fällen war der Unterschied zwischen den Gruppen

hochsignifikant (p=0,0001 bzw. p<0,0001). Keine Korrelation bestand dagegen zwischen

NEUROG1-Methylierung und dem Überleben. Wie erwartet gingen auch hohe CEA-

Spiegel mit einer schlechteren Prognose einher (151,9 vs. 42,3 Monate medianes Überle-

ben bei Cutoff 2,5 ng/ml).

In der Subgruppenanalyse zeigte sich, dass HLTF- und HPP1-Methylierung im Stadium

IV mit deutlich schlechterer Prognose einhergehen (19,7 Monate für HLTF+, 10,0 Mona-

te für HLTF-, p=0,0005. 10,5 Monate für HPP1+, 23,2 Monate für HPP1-, p=0,0003),

während dies für die Stadien I bis III nicht der Fall war. Im metastasierten Stadium zeigte
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1 Einleitung

sich bei Verwendung des üblichen Cutoffs von 2,5 ng/ml für CEA kein Unterschied zwi-

schen den beiden Gruppen. Erst bei Verwendung von höheren Cutoff-Werten konnte ein

signifikanter Unterschied im Gesamtüberleben erreicht werden (bei Cutoff am Median [27

ng/ml] 26,8 Monate für CEA ≤ 27 ng/ml, 12,9 Monate für CEA > 27 ng/ml, p=0,002).

Durch eine multivariate Analyse konnte gezeigt werden, dass HLTF und HPP1 auch

unabhängig voneinander und unabhängig von CEA prognostische Marker sind (HLTF:

Hazard Ratio 1.8 [95% Konfidenzintervall 1.0–3.0], p = 0,0438; HPP1 Hazard Ratio 1.6

(95% Konfidenzintervall 1.0–2.7), p=0,0495].

In der Analyse der Gewebeproben aus Primärtumor von 54 der Patienten mit meta-

stiertem KRK konnte HLTF- bzw. HPP1-Methylierung in 24 bzw. 50 Fällen nachgewiesen

werden. Bei allen Patienten mit Nachweis von HPP1-Methylierung im Serum konnte die-

se auch im Primärtumor nachgewiesen. Für HLTF war das Bild bis auf eine Ausnahme,

bei der Methylierung nur im Serum, aber nicht im Primärtumor nachgewiesen werden

konnte, ähnlich. Zwischen CIMP-Status, der in fünf Proben nachgewiesen werden konnte,

bestand kein signifikanter Zusammenhang mit den untersuchten Markern.

In die Korrelationsanalyse mit LDH konnten 259 Sera eingeschlossen werden. In dieser

wurde Methylierung sowohl von HLTF als auch von HPP1 signifikant häufiger in Sera von

Patienten mit erhöhten LDH-Spiegeln gefunden (32% vs. 12% [p = 0.0005] bzw. 68% vs.

11% [p < 0.0001]). Zudem korrelierten auch höhere Methylierungsgrade, gemessen durch

den Prozentsatz einer vollmethylierten Referenz (percentage of a fully methylated refe-

rence, PMR), signifikant mit höherer LDH-Aktivität (Spearman-Korrelationskoeffizient

0.18 für HLTF [p = 0.004]; 0.49 [p < .0001] für HPP1). Im untersuchten Kollektiv konnte

kein Zusammenhang zwischen LDH und Methylierung von NEUROG1 gefunden werden.
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2 Zusammenfassung

Ziel der Studien war die Untersuchung der prognostischen Aussagekraft der methylierten

Gene HLTF, HPP1 und NEUROG1. Bislang wird eine Prognoseabschätzung hauptsäch-

lich über radiologische und pathologische Kriterien erreicht. Im Blut bestimmte Marker

haben den Vorteil einer relativ unaufwändigen, nichtinvasiven Gewinnung und könnten

eine wertvolle Ergänzung der etablierten Faktoren darstellen. Als Vergleichsmarker wurde

mit dem CEA der einzige für das KRK relevante Tumormarker, für den eine prognostische

Wertigkeit beschrieben wurde, gewählt.

Anhand der vorliegenden Daten konnte gezeigt werden, dass HLTF- und HPP1-

Methylierung am häufigsten im Serum von Patienten mit fortgeschrittenen, insbesondere

metastasierten, Erkrankungen zu finden sind und Marker für eine deutlich schlechtere

Prognose sind. Dieser hochsignifikante Effekt zeigte sich insbesondere bei den Patienten

mit Metastasen, bei denen jeweils eine Subgruppe mit einer deutlich schlechteren Pro-

gnose identifiziert werden konnte. Im Vergleich mit CEA zeigten HLTF und HPP1 eine

mindestens gleichwertige prognostische Bedeutung im vorliegenden Kollektiv. Auch in

der multivariaten Analyse blieben HLTF, HPP1 und CEA als voneinander unabhängige

prognostische Faktoren im Stadium IV bestehen, wobei der Vorteil von HLTF und HPP1

darin liegt, dass diese weiter als binäre Parameter verwendet werden können, während

für CEA erst ein passender Grenzwert innerhalb der Population definiert werden muss.

Das Vorliegen von korrespondierenden Gewebeproben zu den untersuchten Blutproben

ermöglichte die erstmalige Untersuchung der Korrelation von Methylierung von HLTF,
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2 Zusammenfassung

HPP1 und NEUROG1 in Serum und Primärtumor. Alle positiven Serumproben zeig-

ten bis auf eine Ausnahme auch Methylierung der entsprechenden Gene im Gewebe.

Damit konnte diese Untersuchung die angenommene Herkunft der frei zirkulierenden

methylierenden DNA aus dem Tumor bestätigen. Ein Zusammenhang mit dem Methy-

lierungsphänotyp CIMP ergab sich im Kollektiv nicht.

In einer weiteren Untersuchung wurde der Zusammenhang der drei Zielparameter mit

LDH im Blut als Surrogatmarker für einen hohen Zellzerfall untersucht. Die hohe Korre-

lation von HLTF und HPP1 mit erhöhten LDH-Spiegeln legt den Zerfall der Tumorzellen

als möglichen Mechanismus der Freisetzung der Tumor-DNA in die Blutbahn nahe. Auf

der anderen Seite bestand kein Zusammenhang von LDH und Methylierung von NEU-

ROG1. Somit müssen neben tumorassoziiertem Zelltod weitere Mechanismen bei der

Freisetzung von methylierter Tumor-DNA eine Rolle spielen, die aktuell noch ungeklärt

sind.

Zusammenfassend wurde frei zirkulierende methylierte HLTF- und HPP1-DNA als un-

abhängiger prognostischer Marker des metastasierten kolorektalen Karzinoms untersucht

und charakterisiert. Diese vielversprechenden Ergebnisse stellen wertvolle Ansatzpunkte

für die weitere Erforschung der Marker in Folgestudien dar, um klinische Anwendungs-

gebiete zu evaluieren, beispielsweise in der prätherapeutischen Risikostratifizierung, im

Therapiemonitoring oder auch zur Prädiktion des Ansprechens auf spezifische Tumor-

therapien.
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3 Summary

The aim of these studies was to evaluate the prognostic value of methylated genes HLTF,

HPP1, and NEUROG1. To date, the assessment of prognosis was typically done via

radiological or pathological criteria. The significant advantage of blood-based markers lies

in the relatively easy, non-invasive retrieval and could therefore prove a useful addition

to the established markers. CEA was chosen as a comparative tumor marker for being,

until now, the only one with a proven prognostic relevance for colorectal carcinoma.

The conducted measurements demonstrated that methylated DNA of HLTF and HPP1

genes was found more frequently in blood samples of patients with advanced, and speci-

fically, metastasized colorectal cancer (CRC) and is a marker for worse prognosis. This

highly significant effect appeared specifically among the group of patients with meta-

stases, within which a subgroup with a notably worse prognosis could be identified.

Compared with CEA, the prognostic relevance of HLTF and HPP1 was at least equal in

the collective studied. Likewise, in multivariate analysis HLTF, HPP1 and CEA remained

independent prognostic factors in stage IV, the advantage of HLTF and HPP1 being that

these markers can continue to be used as binary parameters, whereas a suitable cutoff

value for CEA within the population needs to be defined first.

The availability of tissue samples corresponding to the examined blood samples allowed

for the first study of the correlation between methylation of HLTF, HPP1 and NEUROG1

in serum and primary tumor. All positive serum samples, with one exception, also showed

methylation of the respective genes in the tissue samples. Hence this study was able to
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3 Summary

confirm the hypothesized provenance of circulating cell-free methylated DNA from the

tumor. An interrelation with methylation phenotype CIMP was not evident in the study

population.

In a subsequent study the correlation of the three target parameters with LDH in

blood as a surrogate marker for cell disintegration was examined. The high correlation of

HLTF and HPP1 with elevated LDH levels suggests the decomposition of tumor cells as a

possible mechanism by which tumor DNA is released into the bloodstream. On the other

hand, no correlation between LDH and methylation of NEUROG1 existed. Therefore

mechanisms other than tumor associated cell death have to play a role in the release of

methylated tumor DNA, which are unexplained yet.

In summary, methylated circulating cell-free HLTF and HPP1 DNA was analyzed and

characterized as an independent prognostic marker for metastasized CRC. The promising

results provide valuable groundwork for further examination of these markers in subse-

quent studies in order to evaluate potential clinical use for example in pretherapeutic risk

stratification, therapy monitoring or prediction of response to specific tumor therapies.
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Prognostic role of methylated free circulating DNA in
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Andreas Herbst1 and Frank T. Kolligs1
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DNA hypermethylation is frequently found in colorectal cancer (CRC). Methylation of helicase-like transcription factor (HLTF)

and hyperplastic polyposis 1 (HPP1) are potential and carcinoembryonic antigen (CEA) is an established prognostic factor in

serum of patients with CRC. The aim of this study was to perform a direct comparison of the prognostic roles of these

markers. Methylation status of HLTF and HPP1 was examined in pretherapeutic sera of 311 patients with CRC and matched

primary tissues of 54 stage IV patients using methylation-specific quantitative PCR. CEA was determined using an

immunoenzymometric assay. Methylation of HLTF and HPP1 DNA in serum significantly correlated with tumor size, stage,

grade and metastatic disease. HPP1 methylation correlated with nodal status. Overall survival was shortened in case of

methylation of HLTF or HPP1 or elevated levels of CEA (p < 0.0001 for all). In stage IV, patients survival was impaired if HLTF

(p 5 0.0005) or HPP1 (p 5 0.0003) were methylated or CEA was above the median of 27 ng/ml (p 5 0.002). Multivariate

analysis revealed that methylation of HLTF [hazard ratio (HR) 1.8, p 5 0.0438], HPP1 (HR 1.6, p 5 0.0495) and CEA >27 ng/

ml (HR 1.7, p 5 0.0317) were independent prognostic factors in stage IV. The combination of any two or all three of these

factors outperformed each marker on its own. In conclusion, the presence of methylated DNA of the genes HLTF or HPP1 in

serum are independent prognostic factors in metastasized CRC. Prospective validation is required to determine their

usefulness in clinical routine along with the established marker CEA.

Introduction
Colorectal cancer (CRC) is the third most common cancer
and the fourth most frequent cause of death from cancer
worldwide with about 1.2 million cases and 633,000 deaths in
2008.1 Five-year survival rates vary from approximately 93%
for patients with UICC (Union for International Cancer Con-
trol) stage I disease to 8% for patients with stage IV CRC.2

Although important advances in treating metastatic CRC
have been made in the last decade and survival rates are ris-
ing,3 there is still need for prognostic and predictive markers
to optimize therapeutic decisions.

Aberrant hypermethylation of CpG islands is a common
epigenetic DNA modification in human cancers leading to
transcriptional silencing and can already be detected in early
stages of carcinogenesis.4 Genes found hypermethylated in
CRC have functions in mismatch repair, cell-cycle regulation
and cell differentiation.5 A subset of colorectal tumors which
exhibits an exceptionally high frequency of hypermethylated
genes is referred to as CpG island methylator phenotype
(CIMP),6 of which two types with different grades of hyper-
methylation have been described.7–9 Both, CIMP1 (or CIMP-
high) and CIMP2 (or CIMP-low) cancers have been reported
to have distinct clinicopathologic, morphological and molecu-
lar features and can be used for the classification of CRCs
into five distinct subtypes.10 Different marker panels for the
detection of CIMP have been proposed,6,11 but so far no con-
sensus regarding the optimal panel has been found.

Methylated tumor DNA cannot only be found in primary
CRC tissue, but can also be detected in remote media like se-
rum or stool.12,13 For example, several serum methylation
markers have been described as potential screening markers
for early stages of CRCs in asymptomatic patients.14–16 Other
markers have been linked to clinicopathologic features, and
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prognostic significance has been described when found
methylated in serum. We previously reported helicase-like
transcription factor (HLTF) and hyperplastic polyposis 1/
transmembrane protein containing epidermal growth factor
and follistatin domains (HPP1/TPEF) to be found only in se-
rum samples of patients with CRC, not in healthy controls,
and to be significantly correlated with tumor size, metastatic
disease and tumor stage.17 CRC patients with serum methyla-
tion of HLTF and/or HPP1 had an unfavorable prognosis in
this study.17 Furthermore, HLTF hypermethylation in serum
is an independent predictor of disease recurrence.18

HLTF is a transcription factor and a member of the SWI/
SNF family of chromatin-remodeling factors. Few data are
available on the normal function of HLTF; however, it seems
to be linked to the genesis and progression of cancer.19

HLTF is commonly hypermethylated in all stages of CRC as
well as in adenomas.20,21 Methylation of HLTF has also been
detected in stool samples of patients with colorectal carcino-
mas.22,23 HPP1 encodes a TPEF whose function is largely
unknown. HPP1 methylation has been described to occur rel-
atively early in colorectal carcinogenesis 24,25 as well as in
hyperplastic polyps.25

Carcinoembryonic antigen (CEA) is the only serum
marker that has been recommended to be added to the estab-
lished tumor-node-metastasis (TNM) staging system.26 Still,
CEA is used for postoperative surveillance and therapy moni-
toring rather than pretherapeutic determination of prognosis
or treatment planning.27,28 This study aimed at validating the
significance of methylation of HLTF and HPP1 DNA in se-
rum regarding correlation with clinicopathologic features and
patients’ prognosis in a large cohort. In addition, we sought
to correlate methylation of these genes with CEA serum lev-
els and to compare their prognostic significance. A subset of
cases was further validated for the presence of methylation in
the primary tumors.

Materials and Methods
Patients and serum samples

Serum samples from 311 patients with CRC drawn before ini-
tiation of therapy were selected by availability of clinicopatho-
logic and long term follow-up data. Characteristics of the
cohort are shown in Table 1. All analyses of the serum sam-
ples were performed blinded to patient data. Blood samples
were obtained pre-therapeutically and were transported by a
shock absorbed tube mailing system within 15–30 min after
blood drawing to the central laboratory. All specimens were
centrifuged at 2,000g at 4"C for 10 min. The supernatant was
transferred into polypropylene cryotubes and stored frozen at
#80"C. The study was approved by the ethical committee of
the Medical Faculty of the University of Munich.

DNA isolation and bisulfite conversion of serum samples

The frozen serum samples were thawed at room temperature
and homogenized by smoothly flipping the tube containing

the serum. Genomic DNA from 200 ll of each serum sample
was isolated using the High Pure Viral Nucleic Acid Kit
(Roche Applied Science, Mannheim, Germany) according to
the manufacturer’s instructions and eluted in 50 ll of Elution
Buffer. As a carrier to the eluted DNA, 2 lg of salmon sperm
DNA (Agilent Technologies, Waldbronn, Germany) was
added. DNA was denatured by 0.2 mol/l NaOH for 15 min
at 37"C. A total of 30 ll of 10 mmol/l hydroquinone (Sigma-
Aldrich, Munich, Germany) and 520 ll of 3 mol/l sodium
bisulfite (Sigma-Aldrich, Munich, Germany) at pH 5.1 were
added, and the samples were incubated for 16 hr at 55"C. Af-
ter bisulfite treatment, DNA was purified using the Wizard
DNA Clean-up System (Promega, Mannheim, Germany) fol-
lowing the manufacturer’s protocol, and incubated for 5 min
at room temperature with 0.3 mol/l NaOH. Then, DNA was
ethanol-precipitated and resuspended in 30 ll of Tris-HCl [1
mmol/l (pH 8.0)].

DNA isolation and bisulfite conversion of tissue samples

Of the 103 patients with UICC stage IV disease, formalin
fixed and paraffin-embedded (FFPE) samples were available
in 54 cases. Serial sections were performed of these tissue
samples. One slide was stained with hematoxylin and eosin
(H&E), which was then inspected by a pathologist (JN) who
marked the tumor region. Tumor tissue was scraped from a
deparaffinized, adjacent slide using the H&E stained slide as
blueprint. DNA was purified using the QIAamp DNA FFPE
Tissue Kit (Qiagen). Proteinase K incubation at 56"C was
done overnight. The following incubation step at 90"C was
omitted. Subsequent steps were performed following the
manufacturer’s protocol. Sodium bisulfite conversion of DNA
was performed using the EZ DNA Methylation-Gold Kit
(Zymo Research, Freiburg, Germany) according to the manu-
facturer’s protocol.

Analysis of DNA methylation

Bisulfite-treated DNA was analyzed by a fluorescence-based,
real-time PCR assay, described previously as MethyL-
ight.17,29,30 Dispersed Alu repeats were used to control for
DNA amplification and to normalize for input DNA. Primer
and probe sequences are listed in Supporting Information Ta-
ble S1. For the analysis of serum samples, PCRs were done in
20 ll volumes containing 1$ PCR buffer (Qiagen, Hilden,
Germany), 4 mmol/l MgCl2, 250 lmol/l deoxynucleotide tri-
phosphate mixture, 4 ll bisulfite-treated DNA, 0.05 units/ll
Taq DNA polymerase (HotStar Taq, Qiagen) along with a
pair of primers and probes according to Supporting Informa-
tion Table S1. PCRs were conducted in a MastercyclerVR ep
realplex4 (Eppendorf, Hamburg, Germany) using the follow-
ing conditions: 95"C for 900 s followed by 50 cycles of 95"C
for 30 s, 60"C for 120 s and 84"C for 20 s. For the analysis
of tissue samples, only 1 ll of bisulfite-treated DNA was
used for each reaction and the annealing step was shortened
to 60 s. For CACNA1G, IGF2, RUNX3 and SOCS1, Q-Solu-
tion (Qiagen) was added to the reaction mixture according to
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the manufacturer’s instructions. For CACNA1G and RUNX3
the annealing temperature was 64"C. The specificity of all
reactions for methylated DNA was confirmed by separately
amplifying completely methylated and unmethylated human

control DNA (Chemicon, Temecula, CA) with each set of
primers and probes. The percentage of fully methylated refer-
ence (PMR) at a specific locus was calculated as described
previously 29 by dividing the gene/Alu ratio of a sample by

Table 1. Clinical features of the patient population and frequency of methylated genes and high CEA levels according to
clinicopathologic data

Clinical
feature

No.
patients Percentage

HLTF HPP1 CEA > 2.5 ng/ml

No.
positive

%
Positive p1

No.
positive

%
Positive p1

No.
positive

%
Positive p1

Total number of patients 311 100 38 12 – 64 21 – 177 57 –

Age2

%63 years 134 43 21 16 30 22 76 57

>63 years 177 57 27 15 0.920 34 19 0.492 101 57 0.951

Sex

Male 171 55 26 15 39 23 97 57

Female 140 45 22 16 0.902 25 18 0.283 80 57 0.941

Localization

Colon 147 47 28 19 37 25 86 59

Sigmoid 58 19 10 17 10 17 36 62

Rectum 106 34 10 10 0.103 17 16 0.163 55 52 0.392

Tumor Size3

T1 18 6 2 11 1 6 1 6

T2 64 21 4 6 4 6 24 38

T3 184 59 30 16 37 20 116 63

T4 44 14 12 27 0.027 21 48 <0.0001 35 80 <0.0001

Nodal status4

N0 164 53 19 12 16 10 77 47

N1 80 26 16 20 26 33 47 59

N2 60 19 11 18 0.169 18 33 <0.0001 47 78 0.0001

Metastatic disease

M0 208 67 23 11 11 5 91 44

M1 103 33 25 24 0.002 53 51 <0.0001 86 84 <0.0001

UICC stage

I 64 21 5 8 2 3 15 23

II 78 25 12 15 4 5 41 53

III 66 21 6 9 5 8 35 53

IV 103 33 25 24 0.012 53 51 <0.0001 86 83 <0.0001

Tumor grade5

G1 and G2 162 52 18 11 19 12 81 50

G3 and G4 136 44 27 20 0.036 39 29 0.0002 87 64 0.015

CEA

CEA % 2.5 ng/ml 134 43 17 13 12 9

CEA > 2.5 ng/ml 177 57 31 18 0.243 52 29 <0.0001

CEA % 27 ng/ml 246 79 31 13 28 11

CEA >27 ng/ml 65 21 17 26 0.007 36 55 <0.0001

HLTF: Helicase-like transcription factor. HPP1: Hyperplastic polyposis 1. CEA: Carcinoembryonic antigen.
1p-Values were calculated by means of the v2-test. 2Mean age: 64.5 years 6 10.9 years. 3Tumor size was unknown in one case. 4Nodal status was
unknown in seven cases. 5Tumor grade was unknown in 13 cases.
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the gene/Alu ratio of fully methylated, bisulfite-treated DNA
(CpGenomeTM Universal Methylated DNA, Millipore, Biller-
ica, MA) and multiplying by 100. A gene was considered
methylated if the percentage of the fully methylated reference
value was >0.

Determination of CEA

CEA was quantified using a microparticle immunoenzymo-
metric assay (AxSYM, Abbott Laboratories, Chicago, IL).

Statistical analysis

All statistical analysis was done using SAS 9.2 (SAS Institute,
Cary, NC). Pearson’s v2-test was used to explore associations
between clinicopathologic features. Overall survival was cal-
culated from the date of diagnosis of the primary tumor to
the date of death or end of follow-up. Overall survival curves
were calculated with the Kaplan–Meier method. Univariate
analysis of overall survival according to clinicopathologic
data and gene methylation status was performed using the
Kaplan–Meier method and log-rank tests. Hazard ratios
(HRs) were estimated using Cox’s regression model. We used
the Akaike information criterion (AIC) 31 to compare the vi-
ability of different models.

Results
Correlation of HLTF and HPP1 methylation status in serum

samples with clinicopathologic data

The methylation status of HLTF and HPP1 was analyzed in
the sera of 311 patients with CRC. An overview of the clino-
copathologic characteristics can be found in Table 1. Methyl-
ation of HLTF was found in 48 samples (15.4%), methylation
of HPP1 in 64 samples (20.6%). All samples with a PMR > 0
were considered as methylation positive. The mean PMR val-
ues of the positive cases were 19.2 for HLTF and 14.75 for
HPP1. Serum methylation of HPP1 was significantly corre-
lated with serum methylation of HLTF (p < 0.0001). The
methylation status of HLTF and HPP1 was analyzed for asso-
ciation with clinicopathologic data (Table 1). No correlation
with methylation status of these genes and age or sex was
found. Methylation of HLTF was detected significantly more
often in patients with colon cancer than in patients with rec-
tal cancer (p ¼ 0.0352), whereas no correlation between
localization and methylation status of HPP1 was found.
Methylation of HLTF and HPP1 significantly correlated with
tumor size (p ¼ 0.0267 and p < 0.0001, respectively) and
presence of distant metastases (p ¼ 0.0024 and p < 0.0001,
respectively). Also, methylation of both genes correlated with
high tumor grade (p ¼ 0.0358 and p ¼ 0.0002, respectively).
Only methylation of HPP1 was detected more frequently in
nodal positive patients (p < 0.0001). In accordance with
these findings, methylation of HLTF and HPP1 was found
significantly more often in patients with advanced UICC
stages (p ¼ 0.0115 and p < 0.0001, respectively). High CEA
levels above a cutoff value of 2.5 ng/ml significantly corre-
lated with depth of tumor infiltration (p < 0.0001), positive

nodal status (p ¼ 0.0001), metastasized disease (p < 0.0001),
advanced tumor stage (p < 0.0001) and high tumor grade
(p ¼ 0.015).

Analysis of prognostic significance of DNA methylation in

serum

The association of clinicopathologic data and serum methyla-
tion status of the genes HLTF and HPP1 with overall patient
survival was analyzed in all 311 patients. Statistical analysis
revealed prognostic significance of tumor size, the presence
of nodal or distant metastases, tumor grade and higher UICC
stages (p < 0.0001 for all parameters; Table 2 and Fig. 1a).
Similarly, presence of methylation of HLTF or HPP1 was sig-
nificantly correlated with poorer prognosis (p < 0.0001 for
both; Figs. 1b and c and Table 2). Additionally, the prognos-
tic significance of elevated levels of CEA in serum was tested
using two different cutoff values. The lower cutoff value (2.5
ng/ml) marks the 95th percentile of healthy individuals based
on the assay used in our study, whereas the higher cutoff
value (27 ng/ml) is based on the median of UICC stage IV
cases in our cohort. In both cases, values above the respective
threshold were associated with shorter overall survival (p <
0.0001 for both; Fig. 1d and Table 2) when analyzing all tu-
mor stages together.

In patients with UICC stage I disease, HLTF methylation
in serum correlated with shorter survival (p ¼ 0.0007),
whereas no significant difference was found for HPP1 in
UICC stage I (p ¼ 0.2629). No prognostic relevance of the
serum methylation status of HLTF and HPP1 was found in
UICC stages II and III (HLTF: p ¼ 0.7415 and p ¼ 0.6742,
and HPP1: p ¼ 0.8687 and p ¼ 0.9258, respectively). Simi-
larly, in the combined stages I–III HLTF and HPP1 did not
provide prognostic information. In stages I–III CEA was
prognostically significant when the cutoff value was set above
2.5 ng/ml (p ¼ 0.001; Table 2). However, this was not the
case when analyzing each stage by itself (p ¼ 0.114, p ¼
0.629 and p ¼ 0.107, respectively) or when the median of
stage IV patients was used as a cutoff value.

A notable difference in median overall survival was found
in the UICC IV subset for HLTF as well as for HPP1 methyl-
ation. Patients in this subgroup showed a median survival of
10.0 months (95% CI 5.9–12.9) if serum methylation of
HLTF was found, compared to 19.7 months (95% CI 14.8–
26.8) if no methylation of HLTF could be detected (p ¼
0.0005; Fig. 2a and Table 2). If HPP1 methylation in serum
was detected, the median overall survival in the UICC stage
IV subgroup was 10.5 months (95% CI 7.5–14.8) compared
to 23.2 months (95% CI 15.5–30.3) if the HPP1 methylation
status was negative (p ¼ 0.0003; Fig. 2b and Table 2). High
CEA levels turned out to be a prognostic factor in the UICC
stage IV patient subset only when using the median of 27
ng/ml (P ¼ 0.002; Fig. 2d and Table 2). Therefore, CEA cut-
off concentrations between >0 and 100 ng/ml were tested.
Cutoff values from 14 to 21 ng/ml revealed statistically highly
significant prognostic information (all with p < 0.001). No
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significant difference was seen when using the low threshold
value of 2.5 ng/ml (p ¼ 0.4109; Fig. 2c and Table 2). Further-
more, the combination of HLTF and/or HPP1 methylation as
well as the combination of HLTF methylation and high CEA
values (> 27 ng/ml) and the combination of HPP1 methyla-
tion and high CEA values showed prognostic significance in
the UICC stage IV group (p ¼ 0.0002, p ¼ 0.0003 and p ¼
0.0008, respectively).

In correlation analysis, we found serum methylation of
HPP1 in the UICC stage IV subgroup to be significantly cor-
related with serum methylation of HLTF (p < 0.0001) and
high CEA values (>27 ng/ml; p ¼ 0.0023). Likewise, the
presence of methylation of HLTF and/or HPP1 correlated
with high CEA values (p ¼ 0.0012), whereas methylation of
HLTF alone showed no correlation with high CEA values (p
¼ 0.1493). Therefore, we performed a multivariate analysis to
test if there are any dependencies between these three param-
eters in UICC stage IV. In this analysis, the methylation of
HLTF [HR 1.8 (95% CI 1.0–3.0); p ¼ 0.0438] and the meth-
ylation of HPP1 [HR 1.6 (95% CI 1.0–2.7); p ¼ 0.0495] as
well as high CEA values [HR 1.7 (95% CI 1.1–2.7); p ¼
0.0317] appeared as independent prognostic factors. Using
the AIC, we evaluated the performance of this model com-
pared to models either combining any two of the three pa-
rameters or testing parameters alone (Supporting Information
Table S2). The combination of any two of the three markers
yielded a better AIC than any marker alone. The best AIC of
648 was reached when all three markers were combined.
AIC-ranking revealed HPP1 (AIC ¼ 652) as the best single
marker compared to either HLTF or CEA (both AIC ¼ 655).

Comparison of methylation status in tissue and serum

To find out whether the HLTF and HPP1 methylation status
of the serum matched the HLTF and HPP1 methylation sta-
tus of the primary colorectal carcinoma, tissue samples of 54
primary CRCs of patients from the UICC stage IV subgroup
were analyzed. The PMR values were dichotomized at a
threshold value of 4%, which has been described to give the
best discrimination between normal and malignant tis-
sues.32,33 DNA methylation of HLTF was found in 24 cases
(44%) of which ten also showed serum methylation of HLTF
(42%). HPP1 methylation was observed in 50 tumors (93%)
which could also be detected in 28 sera (56%). In one case,
HLTF methylation could only be found in serum, but not in
tissue. In none of the cases, HPP1 methylation in serum
without methylation in the matched tumor tissue was found
(Fig. 3). Serum methylation of HLTF (p ¼ 0.001) and HPP1
(p ¼ 0.031) significantly correlated with tissue methylation of
the respective genes. There was no significant correlation
between tissue methylation of HLTF or HPP1 and tumor
size, nodal status, tumor grade, localization, age or CEA val-
ues above 27 ng/ml (Table 3). Tissue methylation of HLTF
but not of HPP1 was found significantly more often in men
(p ¼ 0.024). Although all HLTF positive tissues also showedTa

b
le

2
.
U
n
iv
ar
ia
te

an
al
ys
is

o
f
o
ve
ra
ll
su

rv
iv
al

(C
o
n
ti
n
u
ed

)

V
ar
ia
b
le

N
o
.
p
at
ie
n
ts

w
h
o
d
ie
d
/

to
ta
l
n
o
.

U
IC
C
st
ag

e
IV

p
1

N
o
.
p
at
ie
n
ts

w
h
o
d
ie
d
/

to
ta
l
n
o
.

U
IC
C
st
ag

es
I–
II
I

p
1

N
o
.
p
at
ie
n
ts

w
h
o
d
ie
d
/

to
ta
l
n
o
.

A
ll
st
ag

es

p
1

M
ed

ia
n
su

rv
iv
al

in
m
o
n
th
s

(9
5
%

C
I)

M
ed

ia
n
su

rv
iv
al

in
m
o
n
th
s

(9
5
%

C
I)

M
ed

ia
n
su

rv
iv
al

in
m
o
n
th
s

(9
5
%

C
I)

H
LT
F
6

H
P
P
1
2
,3

H
LT
F#

an
d
H
P
P
1
#

3
4
/4

7
2
6
.8

(1
5
.5
–
3
9
.1
)

8
6
/1

7
7

1
3
8
.0

(1
0
8
.4
–
n
.d
.)

1
2
0
/2

2
4

1
0
8
.4

(7
5
.4
–
1
3
8
.0
)

H
LT
Fþ

an
d
/o
r
H
P
P
1
þ

5
0
/5

6
1
1
.0

(8
.0
–
1
4
.8
)

0
.0
0
0
2

2
0
/3

1
9
0
.3

(6
2
.3
–
1
6
2
.5
)

0
.2
1
0

7
0
/8

7
2
3
.8

(1
2
.9
–
3
7
.1
)

<
0
.0
0
0
1

H
LT
F
6

C
EA

2
,4

H
LT
F#

an
d
C
EA

#
2
9
/4

1
2
8
.0

(1
5
.0
–
4
2
.7
)

8
1
/1

7
4

1
4
1
.3

(1
1
4
.9
–
n
.d
.)

1
1
0
/2

1
5

1
1
6
.8

(8
0
.3
–
1
4
5
.6
)

H
LT
Fþ

an
d
/o
r
C
EA

þ
5
5
/6

2
1
2
.6

(1
0
.0
–
1
6
.4
)

0
.0
0
0
3

2
5
/3

4
9
0
.3

(5
1
.6
–
1
1
9
.4
)

0
.0
0
9

8
0
/9

6
2
0
.7

(1
4
.8
–
2
9
.5
)

<
0
.0
0
0
1

H
P
P
1
6

C
EA

3
,4

H
P
P
1
#

an
d
C
EA

#
2
2
/3

2
2
8
.7

(2
0
.1
–
4
5
.8
)

9
1
/1

8
6

1
3
8
.0

(1
0
4
.7
–
n
.d
.)

1
1
3
/2

1
8

1
1
6
.8

(9
0
.3
–
1
4
5
.6
)

H
P
P
1
þ

an
d
/o
r
C
EA

þ
6
2
/7

1
1
2
.4

(1
0
.0
–
1
6
3
.9
)

0
.0
0
0
8

1
5
/2

2
7
5
.6

(3
4
.1
–
1
8
1
.7
)

0
.0
5
9

7
7
/9

3
1
8
.1

(1
2
.4
–
2
2
.5
)

<
0
.0
0
0
1

C
EA

:
C
ar
ci
n
o
em

b
ry
o
n
ic

an
ti
ge

n
.
H
LT
F:

H
el
ic
as
e-
lik

e
tr
an

sc
ri
p
ti
o
n
fa
ct
o
r.
H
P
P
1
:
H
yp

er
p
la
st
ic

p
o
ly
p
o
si
s
1
.
n
.d
.:
u
p
p
er

lim
it
o
f
9
5
%

C
I
co
u
ld

n
o
t
b
e
ca
lc
u
la
te
d
d
u
e
to

in
su

ffi
ci
en

t
n
u
m
b
er

o
f
ev
en

ts
in

th
is

gr
o
u
p
.

1
p
-V
al
u
es

w
er
e
ca
lc
u
la
te
d
b
y
th
e
lo
g-
ra
n
k
te
st
.
2
H
LT
Fþ

in
d
ic
at
es

m
et
h
yl
at
io
n
o
f
H
LT
F,

H
LT
F#

in
d
ic
at
es

n
o
m
et
h
yl
at
io
n
.
3
H
P
P
1
þ

in
d
ic
at
es

m
et
h
yl
at
io
n
o
f
H
P
P
1
,
H
P
P
1
#

in
d
ic
at
es

n
o
m
et
h
yl
at
io
n
.

4
C
EA

þ
in
d
ic
at
es

C
EA

va
lu
es

h
ig
h
er

th
an

th
e
m
ed

ia
n
o
f
al
l
U
IC
C
IV

p
at
ie
n
ts

(2
7
n
g/
m
l)
,
C
EA

#
in
d
ic
at
es

C
EA

va
lu
es

lo
w
er

th
an

th
e
m
ed

ia
n
.

Ea
rl
y
D
et
ec
ti
on

an
d
D
ia
gn

os
is

Int. J. Cancer: 131, 2308–2319 (2012) VC 2012 UICC

Philipp et al. 2313



HPP1 methylation, the correlation between HLTF and HPP1
was not significant.

In addition, we determined the CIMP status of this 54 tu-
mor samples using the marker panel proposed by Weisen-
berger et al.11 to examine the relationship between HLTF and
HPP1 methylation and CIMP. Tumors were deemed CIMP
positive if at least three of the five markers CACNA1G,
IGF2, NEUROG1, RUNX3 and SOCS1 were hypermethy-
lated. In our cohort, five of 54 stage IV tumors (9%) showed
CIMP. However, neither serum methylation nor tissue meth-
ylation of HLTF or HPP1 showed a significant correlation
with CIMP.

There was no significant difference in overall survival
between the patients with tissue methylation of HLTF (me-
dian survival 17.1 months) and those without (median sur-
vival 16.1 months; p ¼ 0.9284). Because of the small number

of HPP1 methylation negative cases the difference in overall
survival for HPP1 (median survival 27.7 for negative vs. 14.9
month) was not significant (p ¼ 0.3291). Furthermore, the
prognostic influence of the combination of serum and tissue
methylation was analyzed. Patients with HLTF methylation
in tissue and serum (median survival 11.6 months) showed
shorter survival than patients with methylation only in tissue
(median survival 24.3 months) or no methylation at all (me-
dian survival 17.4 months; p ¼ 0.019). The combination of
tissue and serum methylation of HPP1 was not analyzed due
to the small number of tissue-negative cases. To test whether
availability of tissue samples could introduce potential bias,
we also analyzed overall survival according to only the serum
parameters. Methylation of HLTF (p ¼ 0.006) and HPP1
(p ¼ 0.0118) significantly correlated with worse prognosis
similarly as in the full UICC stage IV population; however,

Figure 1. Kaplan–Maier plots of overall survival according to (a) UICC stage (p < 0.0001) as well as methylation status of (b) HLTF (p ¼
0.0001) and (c) HPP1 (p < 0.0001) and (d) CEA values above 2.5 ng/ml (p < 0.0001). All p-values were calculated using the log-rank test.
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high CEA values above 27 ng/ml did not reach the required
level of significance in this subset of cases.

Discussion
DNA hypermethylation in serum of patients has been
reported to have prognostic and predictive value in many dif-
ferent types of cancer.34 As we previously reported, methyla-
tion of HLTF and HPP1 is found most frequently in serum
of patients with advanced CRC.17,18 Moreover, we demon-
strated HLTF and HPP1 to be independent prognostic factors
for survival 17 and HLTF to be an independent prognostic
factor for disease recurrence.18 We conducted this study to
validate these findings in a larger patient population. As
expected, we were able to confirm that serum methylation of
HLTF and/or HPP1 DNA is a marker for a worse prognosis
when examining all tumor stages. Subgroup analysis revealed
their prognostic role being mainly limited to UICC stage IV.

The median overall survival in stage IV was substantially
shorter in case of HLTF or HPP1 methylation in serum. To
our knowledge, this is the first study to systematically evalu-
ate prognostic significance of HLTF and HPP1 methylation
status in serum of patients with metastasized CRC and to
correlate as well as compare the methylation status with se-
rum CEA levels and tissue methylation status of HLTF and
HPP1.

The phenomenon of free circulating DNA (fcDNA) in
plasma or serum samples of cancer patients has been an
established fact for several decades 35 and its tumorous origin
has been substantiated through detection of cancer specific
alterations in the fcDNA.36,37 Still, the underlying mecha-
nisms are not yet fully understood whereas involvement of
active DNA release as well as apoptotic and necrotic proc-
esses have been reported.38 To ascertain that the DNA meth-
ylation detected in serum derives from CRC cells, we

Figure 2. Kaplan–Maier plots of overall survival in UICC stage IV according to methylation status of (a) HLTF (p ¼ 0.0005) and (b) HPP1
(p ¼ 0.0003) as well as according to CEA values above (c) 2.5 ng/ml (p ¼ 0.4109) and (d) 27 ng/ml (p ¼ 0.0020). All p-values were
calculated using the log-rank test.
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determined the methylation status of HLTF and HPP1 in 54
matched primary tissue samples. Tissue DNA methylation
was found in 44% of the samples for HLTF and 93% for
HPP1 which is similar to published results from other
groups.20,21,24,25 With one exception, all cases with positive
serum methylation status of HLTF or HPP1 also showed cor-
responding tissue methylation status. The reasons for this
mismatch showing only a low frequency of methylated HLTF
DNA in the serum samples can only be speculated about. It
might be caused by a heterogeneous distribution of methyla-
tion within the tumor itself – like it has been described for
allelic loss by Lindforss et al.39– provoking false results when
analyzing a fraction of the tumor only. In 14 and 22 cases,
respectively, methylated HLTF or HPP1 DNA was only de-
tectable in cancer tissue, not in serum, which might be
explained by low DNA turnover or little vascularization lim-
iting the amount of tumor DNA in the blood. Independently
of serum methylation status, we could not identify any rele-
vant correlation between tissue methylation of HLTF or
HPP1 and clinicopathologic features or prognosis.

As no information about the relation between HLTF or
HPP1 and the CpG island methylator phenotype in CRC has
been published, we additionally determined the CIMP status
in these tissue samples using a marker panel first established
by Weisenberger et al.11 Although a correlation between
HLTF methylation and CIMP has been described in gastric
cancer,40 in our cohort of stage IV tumors HLTF or HPP1

methylation neither in tissue nor in serum was correlated
with CIMP.

The current gold standard for determining prognosis in
patients with CRC is the extent of disease at time of diagno-
sis as defined by the TNM staging systems.27 Recently, many
different molecular markers in tissue, blood and other media
have been reported, e.g., loss of heterozygosity on chromo-
some 18q 41 or microsatellite instability42 but no recommen-
dations for routine use of these parameters exist yet.27,28

Thus far, while many protein serum markers have been stud-
ied, the only serum marker of prognostic significance sug-
gested to be added to the established staging systems is
CEA.26 We earlier reported methylation of HPP1 but not
methylation of HLTF to be correlated with high CEA val-
ues.17 This data was reproduced in our current study. Fur-
thermore, we analyzed the prognostic value of CEA in
patients with metastatic CRC. In this tumor stage, various
cutoff values for CEA have been described in the past 26 but
– at least partly due to different measurement methods – so
far no consensus has been reached nor has any cutoff value
been defined. First, we tested all concentrations between 0
and 100 ng/ml for their prognostic significance when used as
cutoff value. Additionally, we used a cutoff value of 2.5 ng/
ml, which marks the 95th percentile in a healthy population
for the test method applied and is commonly used in clinical
routine. However, no significant difference in overall survival
was found with this cutoff value for patients with

Figure 3. Methylation status of HLTF and HPP1 and CIMP status in 54 matched tissue and serum samples of UICC stage IV patients. The
color of the box indicates the PMR according to the following code: white PMR ¼ 0, light gray PMR > 0 and < 10, dark gray PMR ' 10 and
< 50, black ' 50.
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metastasized disease. When using higher cutoff values, – in
our case the median of the UICC stage IV subgroup (27 ng/
ml) – the prognosis for the CEA positive cases was similarly
unfavorable as when HLTF and/or HPP1 methylation was
detected.

Multivariate analysis revealed all three markers to be
prognostic markers independent of each other with similar
HRs. Additionally, the comparison of different models by its
AIC value revealed that adding the methylation markers
HLTF and HPP1 to a model improves its goodness of fit.
Hence, HLTF and HPP1 methylation contribute independ-
ently to the determination of patients’ prognosis and could
supplement the current standard CEA as a prognostic serum
marker in stage IV CRC. However, as it has been shown that

the prognostic significance of CEA corresponds to the loga-
rithmic function of its serum concentration,43,44 defining a
single cutoff value for all patients is at least difficult, if not
even useless for personalized treatment decisions. In contrast,
the mere detection of methylated HLTF or HPP1 DNA in se-
rum already indicated worse prognosis in our population of
patients with distant metastases. Further studies in large-sized
populations have to clarify, if patient groups with specific
characteristics can be stratified using a combination of
markers, e.g., through a prognostic score.

Beyond the prognostic significance of HLTF methylation
in the serum of patients with metastatic CRCs, patients with
very early disease, UICC stage I, showed shorter survival
when HLTF methylation could be detected in serum.

Table 3. Frequency of methylated genes in primary tissue according to clinicopathologic data

No. patients

HLTF

% Positive p1
HPP1

% Positive p1No. positive No. positive

Age

%63 years 20 7 35 18 90

>63 years 34 17 50 0.284 32 94 0.577

Sex

Male 29 17 59 28 97

Female 25 7 28 0.024 22 88 0.232

Localization

Colon 17 8 47 16 94

Sigmoid 13 9 69 13 100

Rectum 24 7 29 0.062 21 88 0.367

Tumor size

T2 2 1 50 2 100

T3 34 12 35 30 88

T4 17 11 65 0.137 17 100 0.299

Nodal status

N0 10 4 40 9 90

N1 18 7 39 16 89

N2 23 12 52 0.654 22 96 0.698

Tumor grade

G1 and G2 16 5 31 15 94

G3 and G4 38 19 50 0.206 35 92 0.833

Serum methylation

HLTF# 43 14 33 39 91

HLTFþ 11 10 91 0.001 11 100 0.293

HPP1# 26 9 35 22 85

HPP1þ 28 15 54 0.161 28 100 0.031

CEA

CEA % 27 ng/ml 27 11 41 25 93

CEA > 27 ng/ml 27 13 48 0.584 25 93 1.000

HLTF: Helicase-like transcription factor. HPP1: Hyperplastic polyposis 1. CEA: Carcinoembryonic antigen.
1p-Values were calculated by means of the v2-test.
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Potentially, HLTF methylation in serum might indicate more
aggressive tumors or even the presence of micrometastasis.
However, it is confusing that HLTF methylation does not
also identify high risk groups in the UICC II and III sub-
groups. The reason for this remains obscure and needs fur-
ther evaluation in larger cohorts of stage UICC I to III
patients.

Determination of DNA methylation in serum might have
advantages over tissue-based prognostic factors, as serum can
easily be gained in a noninvasive way. For our measurements
only, 200 ll of serum were necessary to detect even small
amounts of methylated DNA. Moreover, patients with distant
metastases frequently suffer from unresectable disease and
gaining tumor biopsies is usually burdensome. As biopsies
are usually only gained from the primary tumor or a meta-

static lesion they only provide information about the biopsied
tissue. Serum-based markers, in contrast, represent a ‘‘cross
section’’ of all tumor sites.

In conclusion, the present study demonstrates that meth-
ylation of the genes HLTF and HPP1 is frequently detected
in serum of patients with metastatic CRC and that both of
them are significant markers for shorter survival in this stage,
showing at least equal significance to that of the current
standard prognostic marker CEA. Moreover, analysis of pri-
mary tissue revealed that methylation of HLTF and HPP1
indicates prognosis independently of the CIMP status of the
primary tumor. Prospective studies have to further evaluate
the role of serum methylation of HLTF and HPP1 alone and
in combination with CEA in the clinical management of
patients.
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Abstract

Background: Hypermethylation of DNA is an epigenetic alteration commonly found in colorectal cancer (CRC) and
can also be detected in blood samples of cancer patients. Methylation of the genes helicase-like transcription factor
(HLTF) and hyperplastic polyposis 1 (HPP1) have been proposed as prognostic, and neurogenin 1 (NEUROG1) as
diagnostic biomarker. However the underlying mechanisms leading to the release of these genes are unclear. This
study aimed at examining the possible correlation of the presence of methylated genes NEUROG1, HLTF and HPP1
in serum with tissue breakdown as a possible mechanism using serum lactate dehydrogenase (LDH) as a surrogate
marker. Additionally the prognostic impact of these markers was examined.

Methods: Pretherapeutic serum samples from 259 patients from all cancer stages were analyzed. Presence of
hypermethylation of the genes HLTF, HPP1, and NEUROG1 was examined using methylation-specific quantitative PCR
(MethyLight). LDH was determined using an UV kinetic test.

Results: Hypermethylation of HLTF and HPP1 was detected significantly more often in patients with elevated LDH
levels (32% vs. 12% [p = 0.0005], and 68% vs. 11% [p < 0.0001], respectively). Also, higher LDH values correlated
with a higher percentage of a fully methylated reference in a linear fashion (Spearman correlation coefficient 0.18
for HLTF [p = 0.004]; 0.49 [p < .0001] for HPP1). No correlation between methylation of NEUROG1 and LDH was
found in this study. Concerning the clinical characteristics, high levels of LDH as well as methylation of HLTF and
HPP1 were significantly associated with larger and more advanced stages of CRC. Accordingly, these three markers
were correlated with significantly shorter survival in the overall population. Moreover, all three identified patients
with a worse prognosis in the subgroup of stage IV patients.

Conclusions: We were able to provide evidence that methylation of HLTF and especially HPP1 detected in serum is
strongly correlated with cell death in CRC using LDH as surrogate marker. Additionally, we found that prognostic
information is given by both HLTF and HPP1 as well as LDH. In sum, determining the methylation of HLTF and HPP1
in serum might be useful in order to identify patients with more aggressive tumors.

Keywords: Colorectal cancer, Dna methylation, Hltf, Hpp1, Neurog1, Ldh

Background
Colorectal cancer (CRC) is the third most common cancer
and the fourth most frequent cause of death from cancer
worldwide with about 1.2 million cases and about 633,000
deaths in 2008 [1]. Despite significant advances in the last
decades, especially patients with metastatic disease suffer
from poor prognosis [2]. In addition to new therapeutic

options, biomarkers are needed that allow the identifica-
tion of different subgroups of patients potentially benefit-
ting from different treatment regimens and intensity.
In many human cancers aberrant hypermethylation of

CpG islands is a common epigenetic DNA modification
leading to transcriptional silencing of genes that is
already detectable in early stages of carcinogenesis [3].
Genes found hypermethylated in colorectal cancer have
many functions, including mismatch repair, cell-cycle
regulation and cell differentiation [4]. Methylated tumor
DNA cannot only be found in primary colorectal cancer

* Correspondence: Frank.Kolligs@med.uni-muenchen.de
1Department of Medicine II, Ludwig-Maximilians-Universität München,
Marchioninistr. 15, 81377 Munich, Germany
Full list of author information is available at the end of the article

© 2014 Philipp et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Philipp et al. BMC Cancer 2014, 14:245
http://www.biomedcentral.com/1471-2407/14/245



tissue, but can also be detected in remote media like
serum or stool and potentially be used as biomarkers for
various purposes [5-7]. We have previously described
methylation of the genes neurogenin 1 (NEUROG1) in
serum and HIC1 in stool as diagnostic markers [8,9] and
helicase-like transcription factor (HLTF) and hyperplastic
polyposis 1 (HPP1), also known as transmembrane protein
with EGF-like and two follistatin-like domains 2 (TMEFF2),
as prognostic serum markers [10,11].
NEUROG1 is a basic helix-loop-helix transcription fac-

tor which has been identified as one of the main players in
neurosensory evolution and development, especially of the
inner ear [12]. Moreover NEUROG1 has been described
to be frequently hypermethylated in colorectal cancers
and has been proposed as a marker to classify the CpG-
island methylator phenotype in colorectal cancers [13,14].
HLTF is a transcription factor and a member of the

SWI/SNF family of chromatin-remodeling factors [15].
The physiological function of HLTF has not yet been
fully understood, but evidence for its association with
genesis and progression of cancer exists [16]. Recently
HLTF deficiency has been reported to significantly in-
crease the formation of small intestinal adenocarcinoma
and colon cancer in mice on a Apcmin/+ mutant back-
ground and to be associated with chromosomal instability
[15]. Hypermethylation of HLTF can commonly be found
in all stages of CRC as well as in adenomas and is associ-
ated with tumor size, stage and poor prognosis [17-20].
Besides its occurrence in serum, methylated HLTF has also
been detected in stool samples of CRC patients [21,22].
HPP1 encodes a transmembrane protein containing

epidermal growth factor and follistatin domains. While
reported to function as a tumor suppressor related to
the STAT1 pathway earlier [23], a recently published
study failed to identify tumors in HPP1 mutant mice
[24]. Hypermethylation of HPP1 can be detected already
early in colorectal carcinogenesis [25-27]. Hyperplastic
polyps and ulcerative colitis associated dysplasias as well
as a several other tumor entities, including Barrett’s-
associated esophageal adenocarcinoma, gastric adenocar-
cinoma, bladder cancer, non-small cell lung cancer and
others, frequently showed HPP1 methylation [26-32].
Lactate dehydrogenase (LDH) is essential for anaerobic

glycolysis and reversably converts pyruvate to lactate. Its
expression has been shown to be related to the hypoxia
inducible factor HIF-1 [33-36]. Activation of the HIF
pathway is a common finding in cancers [37,38]. LDH in
serum is a frequently used parameter in clinical routine
and is released upon cell membrane disintegration. Thus,
it is an unspecific marker for tissue damage, e.g. caused by
necrosis. Elevated LDH levels can be found in numerous
diseases including myocardial infarction, hemolysis and
malignancies [39]. Additionally LDH has been reported to
be associated with more aggressive tumors and shorter

survival [40-43] in CRC. In other cancer entities like tes-
ticular cancer [44,45] and aggressive non-hodgkin lymph-
oma [46] elevated LDH levels are used as prognostic
biomarkers. Recently, LDH has been discussed as a pre-
dictive biomarker for anti-angiogenic therapies in colorec-
tal cancer [43,47,48].
Cell death, especially necrosis, is considered to be the

source of circulating cell-free DNA (cfDNA) in cancer
patients [49,50]. However, the exact mechanisms leading
to the release of the tumor markers discussed here with
prognostic (HLTF and HPP1) or diagnostic (NEUROG1)
information have not been examined so far. This study
aimed at investigating a possible correlation of the pres-
ence of the methylated genes NEUROG1, HLTF and HPP1
in serum with tissue breakdown as a possible release
mechanism using serum lactate dehydrogenase (LDH) as
a surrogate marker. Additionally, the prognostic informa-
tion given by these markers was examined.

Methods
Patients and serum samples
Pretherapeutic serum samples from 259 patients with
colorectal cancer were included in the study. For these
cases clinicopathologic and follow-up data as well as
pretherapeutic lactate dehydrogenase values were avail-
able. Characteristics of the cohort are shown in Table 1.
All measurements were performed blinded to patient data.

Table 1 Clinical features of the patient population

Clinical feature Number of
patients (%)

Clinical
feature

Number of
patients (%)

Total number of patients 259

Agea Metastatic disease

≤ 65 years 129 (50) M0 170 (66)

> 65 years 130 (50) M1 89 (34)

Sex Tumor graded

Male 145 (56) G1 & G2 132 (51)

Female 114 (44) G3 & G4 117 (45)

Tumor sizeb Localization

T1 15 (6) Colon 122 (47)

T2 48 (19) Sigmoid 47 (18)

T3 153 (59) Rectum 90 (35)

T4 42 (16) UICC stage

Nodal statusc I 51 (20)

N0 137 (53) II 68 (26)

N1 66 (25) III 51 (20)

N2 50 (19) IV 89 (34)
aMean age: 64.8 years.
bTumor size was unknown in 1 case.
cNodal status was unknown in 6 cases.
dTumor grade was unknown in 10 cases.
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Blood samples were obtained pretherapeutically and under-
went the following standardized preanalytical procedure:
All specimens were transported by a shock absorbed tube
mailing system within 15 to 30 minutes after blood drawing
to the central laboratory, followed by centrifugation at
2,000 g at 4°C for 10 minutes. The supernatant serum was
transferred into polypropylene cryotubes and stored frozen
at −80°C. In each case, DNA methylation and lactate de-
hydrogenase levels were determined in the same blood
sample. The study was approved by the ethical committee
of the Medical Faculty of the University of Munich.

DNA isolation and bisulfite conversion
The frozen serum samples were thawed at room temperature
and homogenized by smoothly flipping the tube con-
taining the serum. Genomic DNA from 200 μL of each
serum sample was isolated using the High Pure Viral
Nucleic Acid Kit (Roche Applied Science, Mannheim,
Germany) according to the manufacturer’s instructions
and eluted in 50 μl of Elution Buffer. Bisulfite conver-
sion was performed as described previously [11].

Analysis of DNA methylation
Bisulfite-treated DNA was analyzed by a fluorescence-
based, real-time PCR assay, described previously as Methy-
Light [51]. Dispersed Alu repeats were used to control for
DNA amplification and to normalize for input DNA.
Primer and probe sequences are listed in Additional file 1:
Table S1. PCRs were done in 20 μL volumes containing 1x
PCR buffer (Qiagen, Hilden, Germany), 4 mmol/L MgCl2,
250 μmol/L deoxynucleotide triphosphate mixture, 4 μL
bisulfite-treated DNA, 0.05 units/μL Taq DNA polymerase
(HotStar Taq, Qiagen) along with a pair of primers and
probes according to Additional file 1: Table S1. PCRs
were conducted in a Mastercycler® ep realplex4 (Eppendorf,
Hamburg, Germany) using the following conditions: 95°C
for 900 s followed by 50 cycles of 95°C for 30 s, 60°C for
120 s, and 84°C for 20 s. The specificity of all reactions for
methylated DNA was confirmed by separately amplifying
completely methylated and unmethylated human control
DNA (Chemicon, Temecula, CA) with each set of primers
and probes. The percentage of fully methylated reference
(PMR) at a specific locus was calculated as described previ-
ously [51] by dividing the gene/Alu ratio of a sample by
the gene/Alu ratio of fully methylated, bisulfite-treated
DNA (CpGenome™ Universal Methylated DNA, Millipore,
Billerica, MA) and multiplying by 100. A gene was consid-
ered methylated if the percentage of the fully methylated
reference value was > 0.

Determination of LDH
LDH values were determined by a UV kinetic test using
the Beckman Coulter AU 2700 analyser (Beckman

Coulter GmbH, Krefeld, Germany) by the central labora-
tory of the university hospital of Munich. The upper
limit of normal for this assay applied in everyday clinical
routine is 250 U/l in our hospital. LDH levels above this
value were defined as elevated in this study.

Statistical analysis
All statistical analysis was done using SAS 9.3 (SAS
Institute Inc., Cary, NC). Pearson’s χ2 test was used to
explore associations between clinicopathologic features
and categorized variables. Associations between catego-
rized and continuous variables were tested by means of
the Wilcoxon-Mann–Whitney test and correlations be-
tween continuous variables were examined using Spearman
Correlation Coefficients. For evaluation of simultaneous
influence of clinicopathologic features and methylation
markers on LDH values a multivariate logistic regres-
sion model was developed. Overall survival was calcu-
lated from the date of diagnosis of the primary tumor
to the date of death or end of follow-up. Univariate
analysis of overall survival according to gene methyla-
tion status and LDH values was performed using the
Kaplan–Meier method and log-rank tests.

Results
Clinicopathologic features and DNA methylation in serum
A total number of 259 serum samples were analyzed. An
overview of the clinocopathologic characteristics is shown
in Table 1. Methylation of HLTF was detected in 41 cases
(16%), methylation of HPP1 in 57 cases (22%) and methy-
lation of NEUROG1 in 66 cases (25%). The distribution of
PMR values is demonstrated in Additional file 2: Table S2.
HLTF methylation in the serum was significantly corre-
lated with metastatic diseases (p = 0.013) and advanced
tumor stages (p = 0.0489) as well as T4 tumors (T1-3 vs.
T4, p = 0.046). A non-significant trend towards spread to
lymph nodes was observed (N0 vs. N1-2, p = 0.050). HPP1
methylation in serum was significantly correlated with lar-
ger tumor size (p < 0.001), positive nodal status (p < 0.0001),
metastatic disease (p < 0.0001), tumor stage (p < .0001)
as well as higher tumor grades (p = 0.0002). No signifi-
cant correlation between NEUROG1 methylation and
clinicopathologic features existed. The complete distri-
bution of the markers among the clinicopathologic fea-
tures is presented in Table 2.
LDH values ranged from 100 to 1730 U/l with a mean

value of 238 U/l (standard deviation 202 U/l) and a me-
dian value of 185 U/l. A cutoff of 250 U/l, representing
the upper limit of normal of the assay used, was chosen,
resulting in 50 patients (19%) with elevated LDH levels.
These patients suffered more frequently from T4 tu-
mors (T1-3 vs. T4, p = 0.038), nodal and distant metas-
tases (p = 0.0006 and p < 0.0001, respectively) as well as
higher tumor stages (p < 0.0001). Additionally, a non-
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significant trend towards higher LDH levels in younger
patients was found (p = 0.055).

Correlation between LDH and DNA methylation in serum
First we analyzed the correlation of methylation of
HLTF, HPP1 and NEUROG1 with LDH in a binary way.
For this purpose we used a cutoff of LDH at 250 U/l as
mentioned above. For the methylation markers we consid-
ered a PMR > 0 as methylation positive which has been
shown previously to be reasonable for serum methylation
analysis by our and other groups [10,52,53]. In the 50

samples with elevated LDH levels, methylation of HLTF,
HPP1, or NEUROG1 was detected in 16 (32%), 34 (68%),
or 12 cases (24%), respectively, compared to 25 (12%), 23
(11%), or 54 (26%) in those 209 samples with normal
LDH levels. Patients with elevated LDH levels revealed
significantly more often methylation of HLTF or HPP1
(p = 0.0005 or p < 0.0001, respectively), whereas no cor-
relation between NEUROG1 methylation and elevated
LDH was found.
We also examined the relation of the methylation

markers between each other. Methylation of HLTF was

Table 2 Distribution of LDH and methylation of HLTF, HPP1 and NEUROG1 among clinicopathologic features

Clinical feature LDH ≥ 250 U/l HLTF methylation HPP1 methylation NEUROG1 methylation

n (%) P n (%) P n (%) P n (%) p

Total positive 50 (19) 41 (16) 57 (22) 66 (25)

Agea

≤ 65 years 31 (24) 18 (14) 31 (24) 36 (28)

> 65 years 19 (15) 0.055 23 (18) 0.410 26 (20) 0.434 30 (23) 0.372

Sex

Male 26 (18) 22 (15) 34 (23) 34 (23)

Female 24 (21) 0.528 19 (17) 0.744 23 (20) 0.528 32 (28) 0.397

Tumor sizea

T1 0 (0) 2 (13) 1 (7) 4 (27)

T2 9 (19) 3 (6) 3 (6) 12 (25)

T3 28 (18) 25 (16) 32 (21) 39 (25)

T4 13 (31) 0.062 11 (27) 0.080 20 (48) <.0001 11 (26) 0.999

Nodal statusb

N0 14 (10) 16 (12) 13 (9) 37 (27)

N1 19 (29) 13 (20) 23 (35) 13 (20)

N2 15 (30) 0.0006 11 (22) 0.139 18 (36) <.0001 16 (32) 0.307

Metastatic disease

M0 13 (8) 20 (12) 10 (6) 48 (28)

M1 37 (42) <.0001 21 (24) 0.013 47 (53) <.0001 18 (20) 0.160

Localization

Colon 25 (20) 22 (18) 33 (27) 38 (31)

Sigmoid 9 (19) 10 (21) 8 (17) 8 (17)

Rectum 9 (19) 0.884 9 (10) 0.151 16 (18) 0.180 20 (22) 0.114

Tumor gradec

G1 & G2 22 (17) 16 (12) 16 (12) 37 (28)

G3 & G4 25 (21) 0.344 23 (20) 0.102 37 (32) 0.0002 27 (23) 0.372

UICC stage

I 6 (12) 4 (8) 2 (4) 16 (31)

II 4 (6) 11 (16) 4 (6) 19 (28)

III 3 (6) 5 (10) 4 (8) 13 (25)

IV 37 (42) <.0001 21 (24) 0.049 47 (53) <.0001 18 (20) 0.486
aTumor size was unknown in 1 case.
bNodal status was unknown in 6 cases.
cTumor grade was unknown in 10 cases.
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found significantly more often in HPP1 positive samples
(51% vs. 17%, p < 0.0001). No significant difference in the
frequency of either HLTF or HPP1 methylation was ob-
served between NEUROG1 positive and NEUROG1 nega-
tive cases (32% vs. 24% and 26% vs. 25%, respectively).
In a second step, correlations were analyzed using LDH

as a continous variable without cutoff. In HPP1 positive
samples significantly higher LDH levels were measured
(median 298 U/l vs. 173 U/l, p < 0.0001). Patients with
methylation of HLTF had slightly, but still significantly
higher LDH levels (median 208 U/l vs. 180 U/l, p = 0.0050),
while no difference was found in LDH levels between
NEUROG1 positive and negative samples (median 187 U/L
vs. 184 U/l, p = 0.95). Figure 1 provides a more detailed
view on the distribution of LDH levels among the three
methylation markers.
Additionally, we tested HLTF, HPP1 and NEUROG1 as

continuous variables without cutoff using the PMR values
and calculated univariate Spearman correlation coeffi-
cients. As in the analyses before, HLTF and HPP1 showed
significant correlation with LDH, while NEUROG1 did
not. All linear correlation coefficients and p-values are
presented in Table 3.

Multivariate model
Next, a multivariate model was developed using logistic
regression analysis with LDH values higher than 250 U/l
as target variable. HPP1 and HLTF methylation as binary
parameters, i.e. with a PMR > 0, as well as clinicopatho-
logical features were entered as independent variables.
Only presence of distant metastases and HPP1 corre-
lated significantly and independently with elevated LDH
levels higher than 250 U/l. The odds ratios were 3.1 for

metastatic disease (95% CI 1.3-7.2, p = 0.009) and 9.5 for
HPP1 methylation (95% CI 4.2-21.9, p < 0.0001).

Survival analysis
We earlier reported methylation of HLTF and HPP1 to
be independent prognostic markers in metastastatic
colorectal cancer [11]. On the other hand, elevated LDH
levels have been described to be linked to shorter
survival [54]. Thus we compared methylation of HLTF
and HPP1 with LDH as prognostic factors in our patient
population.
As reported earlier [11] methylation of HLTF and HPP1

was associated with a higher mortality. In the current
study, the median survival was 6.4 years (95% CI 4.9-9.0)
and 8.0 years (95% CI 6.1-11.2) for HLTF- and HPP1-
negative cases compared to 3.7 years (95% CI 1.1-5.2) and
1.2 years (95% CI 0.9-1.9) in case of positivity for HLTF or
HPP1 methylation (p = 0.0008 and p < 0.0001), respect-
ively (Figure 2A, 2B). LDH levels above a cutoff of 250 U/l
were associated with shorter overall survival (median
survival 1.1 years, 95% CI 0.9-2.0) compared to low
LDH levels (median survival 7.2 years, 95% CI 5.6-9.6)
(p < 0.0001) (Figure 2C).
Next, we evaluated the prognostic significance strati-

fied by tumor stage. For patients with UICC stage I-III
no significant difference in overall survival, neither for
LDH (p = 0.41) nor for HLTF and HPP1 (p = 0.41 and
p = 0.08, respectively), was found. However, in stage IV
HLTF methylation positive patients showed a median
survival of 0.86 years (95% CI 0.5-1.2) versus 1.6 years
(95% CI 1.2-2.3) for HLTF negative cases (p = 0.0081;
Figure 2D). For HPP1 positive and negative cases the
median survival was 1.0 years (95% CI 0.6-1.4) and

Figure 1 LDH values and methylation status of HLTF, HPP1 and NEUROG1 (as binary variables, cutoff PMR > 0).
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1.8 years (95% CI 1.2-3.3), respectively (p = 0.0005;
Figure 2E). For LDH, elevated levels > 250 U/l were as-
sociated with shorter median survival (1.0 years, 95%
CI 0.6-1.2, vs. 1.8 years, 95% CI 1.3-2.5; p = 0.0002;
Figure 2F).

Discussion
In this study we examined the correlation between cell
damage using LDH as a surrogate marker and the
methylation status of three genes which have previ-
ously been proposed as prognostic (HLTF, HPP1)
[10,11] or diagnostic (NEUROG1) [8] biomarkers for
patients with CRC.
Our data confirm our previous findings that methyla-

tion of HLTF or HPP1 in serum is found more often in

Table 3 Linear Spearman correlation coefficients for the
percentage of fully methylated reference (PMR) of HLTF,
HPP1 and NEUROG1, and LDH levels among each other

PMR HLTF PMR HPP1 PMR NEUROG1 LDH

PMR HLTF 1.0 - - -

PMR HPP1 0.32 (p < .0001) 1.0 - -

PMR
NEUROG1

0.05 (p = 0.41) −0.00 (p = 0.97) 1.0 -

LDH 0.18 (p = 0.004) 0.49 (p < .0001) 0.01 (p = 0.85) 1.0

A

B

C

D

E

F

Figure 2 Kaplan-Meier plots of overall survival. A-C: Overall survival for all patients according to methylation status of HLTF (A), HPP1 (B) and
high LDH levels > 250 U/l (C), respectively. D-F: Overall survival for stage IV patients patients according to methylation status of HLTF (D), HPP1
(E) and high LDH levels > 250 U/l (F), respectively.
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patients with advanced stages of colorectal cancer, espe-
cially in those with distant metastases, whereas no cor-
relation between methylation of NEUROG1 and any
clinicopathologic data was found. While methylation of
HLTF was only correlated with metastastatic disease,
methylation of HPP1 was also associated with local
tumor extent and nodal status as well as tumor grade
with high statistic significance.
It is well known that patients with elevated serum

levels of LDH tend to have more aggressive tumors and
a shorter survival time [40-43]. Consistent with the lit-
erature high LDH levels in our data were significantly
correlated with advanced tumor stages as well as nodal
and distant metastases. Trends towards larger tumor size
and younger age were observed but did not reach statis-
tical significance.
Cell death associated mechanisms like apoptosis or, es-

pecially in cancer, necrosis have been suggested as main
sources for cell-free DNA (cfDNA) in the blood, but
other mechanisms like physiological active release have
been described as well (for reviews see refs. [49,50]). In
this study we found methylation of HLTF and, even to a
higher degree, HPP1 to be correlated with elevated LDH
levels. This finding was robust, as it was confirmed by
different statistical methods. Given that elevated LDH
indicates cell membrane damage, this observation might
be a hint that methylated HLTF and HPP1 DNA is re-
leased by tumor cells undergoing cell death. The fact
that necrosis tends to be found more often in larger,
more aggressive tumours and advanced cancer stages
[55,56], which was likewise the case for LDH as well as
methylated HLTF and HPP1 in our data, also suggests
an interrelation.
For NEUROG1, on the other hand, hypermethylation

in serum was detectable independently of LDH levels
and tumor stage. This is consistent with earlier analyses
revealing methylation of NEUROG1 in primary tissue
not to be associated with tumor stage (A.P. and F.K.,
data not published). Hence the observed correlation be-
tween DNA methylation in serum and LDH seems not
to be linked to global methylation levels and cell death
alone. Besides the methylation status of distinct genes,
other parameters influencing this observation might in-
clude DNA integrity and stability of the respective seg-
ments as well as still unknown factors. Therefore it
seems likely that tumor cell death might not be the only
mechanism by which methylated tumor DNA is released
to the blood.
In addition to the correlation analysis we examined

the prognostic significance of the methylation markers
HPP1 and HLTF as well as of LDH. All three markers
were significantly associated with worse overall survival.
This could be attributed to the fact that all three
markers are found more frequently in advanced cancer

stages. However, earlier analyses [11] as well as the sur-
vival data presented here furthermore divide patients
with already metastasized disease into two subgroups
with better or worse prognosis, respectively.

Conclusion
In conclusion we were able to provide evidence that methy-
lation of HLTF and especially HPP1 detected in serum is
strongly correlated with cell death in colorectal cancer using
LDH as surrogate marker. However, this finding was specific
for those two genes and did not occur for NEUROG1, sug-
gesting that mechanisms other than release by membrane
disintegration could be responsible for the occurrence of
cell-free DNA in blood of CRC patients. Additionally, we
found that prognostic information is given by both HLTF
and HPP1 as well as LDH. In sum, determining the methy-
lation of HLTF and HPP1 in serum might be useful in order
to identify patients with more aggressive tumors. Future re-
search needs to further clarify the underlying biological
mechanisms and to validate methylated cell-free circulating
DNA as a biomarker for colorectal cancer.

Additional files

Additional file 1: MethyLight Reaction Details.

Additional file 2: Distribution of the percentage of fully methylated
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