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1. INTRODUCTION 

 

1.1 DEFINITIONS & BACKGROUND 

In the literature, there are three ways to define an explosive or nowadays called energetic 

material.[1] 

. 1) An energetic material releases a large amount of heat and pressure during a 

very fast exothermic decomposition with a generated temperature in the range of 

3000–5000 °C. The gaseous products formed produce a volume 12000–15000 

times greater than the original volume in a few microseconds accompanied by a 

shockwave and loud noise.  

. 2) An explosive is a chemical substance or a mixture of chemical substances, 

which decompose readily under release of a large amount of energy and volume 

of gases when exposed to thermal or mechanical stress, detonation or catalysis.  

. 3) An explosive is a substance or device, which releases its potential energy and in 

addition a sudden large amount of gases accompanied with a high pressure 

affecting its surroundings.  

 

The first known explosive, discovered in the seventh century, was black powder. It is a 

mixture of charcoal, potassium nitrate and sulfur. The Chinese used black powder as 

explosive, propellant and even for fireworks. Usually an explosive contains a fuel and an 

oxidizer in a metastable state. After initiation the starting materials decompose rapidly 

with release of energy into small gaseous products without the need of atmospheric 

oxygen for the reaction. Modern explosives were designed to contain fuel and oxidizer 

within the same molecule. The initiation of an explosive can be achieved with 

mechanical, thermal or electrostatic sources.[1] 

To classify the large variety of explosive compounds or mixtures, energetic materials are 

classified nowadays according to their use and properties into primary explosives, 

secondary (high) explosives and pyrotechnics. Also macromolecules with energetic 

properties, used as binders, should be mentioned and therefore an additional fifth class 

may be discussed.[2] 
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1.3.1 SOLID ROCKET PROPELLANTS 

The simple constructed and easy to store rocket motors containing a solid rocket 

propellant are engineered to provide the thrust for launching a carrier system from the 

ground into space, e.g. equipped with a satellite. However, the mixed up fuel and oxidizer 

can be stored in the booster system easily, the once started burning can not be turned off 

or regulated before the fuel has been converted completely. Normally a solid rocket motor 

is made of up to several hundred tons of a composite propellant consisting of a 

heterogeneous mixture of ammonium perchlorate (AP) as solid oxidizer and aluminum as 

fuel. If required, additional additives like polymeric binders, plasticizer, catalysts or burn 

rate modifiers are added to the composite. The burning of such a motor releases enormous 

quantities of carbon and nitrogen oxides as well as hydrochloric acid gas and gaseous 

water, which push the carrier system into space or orbit. Moreover, homogeneous 

mixtures of macroscopic ingredients are called homogeneous propellants. These 

propellants are usually based on nitrocellulose (NC), accompanied with nitroglycerine 

(NG) and/or nitroguanidine (NQ), comparable with gun propellant systems.  

The usual burn out time of a solid rocket can be as much as 100 s to 120 s with a chamber 

temperature between 2400 K and 4400 K, which is a great challenge for the materials 

used to build the combustion chamber and the nozzle. In addition, these materials should 

be low in weight to reduce the dead weight of the carrier system. Solid rockets are 

however considered to be simple, reliable and cheap and therefore solid propulsion is still 

used in the booster stage of orbital launch vehicles.[1] The most prominent use of 

ammonium perchlorate as oxidizer in a solid propulsion system was during the NASA 

Space Shuttle program (1981–2011), officially called SPACE TRANSPORTATION SYSTEM 

(STS). The in this case used SOLID ROCKET BOOSTERS (SRBs) consisted of 69.83 % AP, 

16 % aluminum, 0.17 % iron oxide as catalyst, 12 % of a polymeric binder and 2 % of an 

epoxy curing agent (e.g. bisphenol-A ether).[4] The whole composition was named as 

Ammonium Perchlorate Composition Propellant (APCP). The total amount of propellant 

of one SRB with a weight of approx. 500 t provides a thrust of 11790 kN and is therefore 

the largest solid rocket motor ever flown successfully. During all 135 STS missions this 

composition was used to provide over 80 % of the needed thrust for the lift-off of a Space 

Shuttle with its whole weight of approx. 2000 t (fully equipped Orbiter Vehicle, external 

tank, two SRBs).[3-4] The remaining thrust was produced by the internal liquid propellant 

rocket motor of the Orbiter Vehicle. For launch purposes, fuel and oxidizer for this 

internal engine are stored in the external tank connected to the Orbiter.[3-4] For illustration 
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purposes, a cutaway of a Space Shuttle SRB is shown in Figure 4. The used SRBs as well 

as the external tank are disconnected from the Orbiter vehicle during the staging phase of 

a STS launch (Figure 1.5). The SRB’s are separated at an altitude of 44 km. The SRBs 

can be reused up to 20 times for further launches after equipping with a new solid rocket 

motor.[4] 

 

 
Figure 1.4. Cutaway of a Space Shuttle SRB segments, showing a solid rocket motor including 

the nozzle.[4] 

 

1.3.2 LIQUID ROCKET PROPELLANTS 

Liquid propellants are distinguished into mono- and bipropellants according to the 

number of different ingredients. The class of bipropellants can be further divided into 

hypergolic and non-hypergolic propellants, due to their capability to be self-igniting or 

non-self-igniting, respectively. In the case of liquid propellants the temperature of storage 

leads to a further possible differentiation into cryogenic and storable propellants. 

Monopropellants are normally endothermic compounds, which can decompose 

exothermic without the presence of an external oxidizing agent. The most common 

monopropellant is hydrazine. It decomposes exothermic into nitrogen and hydrogen. 

Further examples for monopropellants are hydrogen peroxide, nitrous oxide or ethylene 

oxide. 
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The more common liquid propellants are bipropellants. For this system, oxidizer and fuel 

have to be injected into a combustion chamber continuously in a controlled manner. 

Therefore, two storage tanks are required for bipropellant systems to separate the fuel 

from the oxidizer to avoid uncontrolled combustion. The fuel and the oxidizer are only 

injected into the chamber when the motor is fired. Therefore, it is possible to control or 

even to shut off the propulsion by manipulating the flow system. In the case of hypergolic 

propellants various combinations are known using hydrazine, or its derivatives 

monomethyl hydrazine (MMH) and unsymmetrical dimethyl hydrazine (UDMH), 

combined with nitric acid or even dinitrogen tetroxide (NTO), sometimes containing a 

small percentage of nitrogen monoxide, called mixed oxides of nitrogen (MON).[1,3] The 

most common and mostly used hypergolic mixture consists of MMH as fuel and NTO as 

oxidizer.[1] It was used for propulsion in the Orbital Maneuvering Subsystem of the 

NASA Orbiter Vehicle.[4] Hypergolic engine systems have many application possibilities 

for upper stage engines, deep space rockets or controlling systems, due to advantages like 

long-term stability of the single components at reasonable temperatures as well as the 

reliability and the improved repetition rate of ignitions. However, the single compounds 

used are difficult to handle due to the extreme toxicity and the known corrosiveness.[1] 

Cryogenic bipropellants usually provide a higher specific impulse. The most common 

cryogenic bipropellant system is liquid hydrogen (LH2) and liquid oxygen (LOX). Due to 

the low boiling temperatures, both chemicals are stored in special facilities and are filled 

into the rocket only shortly before the launch. If a launch has to be postponed for a longer 

period of time, the rocket tanks must be emptied to avoid potential explosive danger. The 

Space Shuttle Main Engine (SSME) was equipped with this system. Due to the high 

specific impulse of 363 s at sea level and 455 s in vacuum, the fluid-engines of the Space 

Shuttle Orbiter were running already at lift-off.[3-4] A complete loop of a standard STS 

mission is illustrated in Figure 1.5. 
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Figure 1.5. Loop of a complete STS mission.[4]  

 

1.4 HIGH ENERGY DENSE OXIDIZERS 

The most important point to get a rocket motor running properly is the supply of an 

adequate amount of oxidizer to a definite amount of fuel. In contrast to a jet engine, 

which uses atmospheric oxygen as oxidizer for a successful combustion of the fuel 

kerosene, a rocket motor has to carry its own oxidizer, owing to the lack of oxygen in the 

upper earth atmosphere and in outer space for an ideal combustion. The modern definition 

of materials as High Energy Dense Oxidizer (HEDO) refers to substances with special 

properties in terms of chemical, physical and energetic facets. New compounds should be 

developed referring to several minimum requirements in terms of energetic performance, 

costs, environmental aspects and safety with the goal to replace the widely used oxidizer 

ammonium perchlorate (AP) in solid rocket motors. New compounds should have 

superior performance to increase the load capacity and simultaneously less incriminating 

the environment.  
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1.4.1 OXYGEN BALANCE AND SPECIFIC IMPULSE 

One of the key factors and the most basic requirement for an oxidizing material, is the 

oxygen balance. It is defined as the relative amount of oxygen provided (positive balance) 

or needed (negative balance) during the combustion of the material without the presence 

of external oxygen. The oxygen balance is simply calculated from an empirical formula, 

assuming a full conversion of the carbon content into carbondioxide (alternatively 

carbonmonoxide) and the hydrogen into water. Furthermore, components like fluorine or 

nitrogen, which are not decomposing into oxygen containing products, affect the oxygen 

balance in several ways. Fluorine atoms of a considered material for example are assumed 

to decompose into hydrogen fluoride and therefore decrease the amount of hydrogen. 

Nitrogen atoms on the other hand increase the molecular weight of the compound and 

decrease the oxygen balance indirectly. The oxygen balance of a CHFNO compound can 

be calculated according to Equation 1. 

 

Ω %[ ] = MO

M
O – a C − 1

2
H − F∑∑( )∑∑

#

$
%

&

'
(×100   (Equation 1) 

   MO = molecular mass of an oxygen atom 

   M = molecular mass of the CH(F)NO compound 

   ΣO = number of oxygen atoms in the sum formula 

   ΣC = number of carbon atoms in the sum formula 

   ΣH = number of hydrogen atoms in the sum formula 

   ΣF = number of fluorine atoms in the sum formula 

   a = 1 for ΩCO, assuming CO as decomposition product 

a = 2 for ΩCO2, assuming CO2 as decomposition product 

The numbers of carbon atoms (ΣC) with the right factor a, depending on whether CO or 

CO2 is the assumed decomposition product, is subtracted from the number of oxygen 
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atoms (ΣO) per molecule. Additionally, half the number of hydrogen atoms (ΣH) is 

subtracted after correction with the number of fluorine atoms per molecule (ΣF) and the 

resulting excess or deficit of oxygen atoms is multiplied with the molecular mass of an 

oxygen atom. To achieve the oxygen balance given in percentage, the result is divided by 

the molecular mass of the compound multiplied by 100. Obviously, besides a high 

amount of oxygen atoms per molecule, a small molecular weight of the compounds leads 

to an increased oxygen balance compulsorily. 

For an example calculation we choose 2-fluoro-2,2-dinitroethanol (FDNE, 

M = 154.05 g mol–1), an often used starting material of several compounds described in 

this work. FDNE theoretically decomposes into the following decomposition products 

(assuming the formation of CO): 

C2H3FN2O5 → 2CO+H2O+HF+N2+O2  

Under these circumstances, one molecule of oxygen is formed during the combustion of 

FDNE and therefore a positive oxygen balance of ΩCO(FDNE) = +20.77 % can be 

determined referring to Equation 1. 

ΩCO(FDNE ) =
16

154.05
5 –1×2 – 1

2
3–1( )

"

#
$

%

&
'×100 = +20.77%  

For a analogous calculation assuming CO2 as decomposition product, a total oxygen 

balance ΩCO2(FDNE) = ±0 % will be received, which means, that the compound is converted 

into its fully oxidized decomposition products without any release of oxygen. Though, an 

exothermic decomposition is accompanied with elevated temperatures of combustion, CO 

is formed besides CO2, as mentioned in the BOUDOUARD EQUILIBRIUM. An almost 

counterbalanced oxygen balance is preferred for CHNO based secondary explosives, to 

gain the maximum release of energy of explosion. 

For high energy dense oxidizers, the main parameter referring to the performance of a 

rocket propellant equipped with the investigated compound, is the specific impulse Is.[5-6] 

Owing to the guided release of gaseous products formed during combustion of the 

propellant within the combustion chamber, a recoil force (thrust F(t)) into the opposite 

direction is generated. Therefore, the specific impulse Isp in m s–1 is defined as the integral 

of the thrust F(t), per definite unit weight of material (m), over the period of combustion 

(Equation 2). [2,6-7] 
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1.4.2 MOTIVATIONS AND REQUIREMENTS FOR NEW HIGH ENERGY DENSE OXIDIZERS 

The widely used oxidizer in solid rocket formulations ammonium perchlorate (AP) has a 

great variety of civil and military applications. The extensive use in the past and 

nowadays as oxidizer and as ingredient in agricultural fertilizers causes a wide 

distribution of AP over the surface and even in the ground water system, owing to the 

high solubility and the chemical persistence. It was investigated, that the incorporation of 

perchlorate anions may cause a malfunction in the thyroids gland of vertebrates affecting 

the normal growth and development of the organism, owing to a biochemical rivalry 

between the iodine and the perchlorate anion, which is comparable in shape and size.[2,9] 

In addition, the normal pigmentation of amphibian embryos is disturbed due to the 

negative influences of AP. Furthermore, the combustion of AP containing propellants 

release a huge amount of hydrogen chlorine gas, which causes also sever problems for the 

environment in terms of acidic rain and acidification of fertile topsoil grounds.  

The replacement of ammonium perchlorate (AP) as oxidizer is urgently needed in terms 

of more environmental friendly and less toxic substituents. In addition, the performance 

of the new compounds should be at least in the range of AP compositions. Highly nitrated 

organic compounds decompose completely into more environmental gaseous products 

and might be one option for the development of AP replacements and became therefore 

more and more an important matter of energetic researches. The development of new 

suitable high energy dense oxidizers (HEDOs) is controlled by many different factors 

like, cost, hazards, performance or safety aspects.  

The general requirements for a new potential HEDO are the following: [2] 

- High oxygen content (ΩCO > 25 %) 

- High density (approx. 2.0 g cm–3) 

- Melting point greater than 150 °C 

- Decomposition temperature above 200 °C 

- Sensitivities not worse than PETN (Impact: 4 J, Friction 80 N, ESD: 0.1 J) 

- Low vapor pressure 

- High enthalpy of formation 

- Compatibility with binders 

- Synthesis with a minimum number of synthesis steps 

- Economic or bulk starting materials 
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1.5 MOTIVATION AND OBJECTIVES 

This dissertation has the objective to investigate molecules, which contain a high amount 

of oxygen. These compounds were investigated for the future use in High Energy Dense 

Oxidizer (HEDO) purposes. Therefore, the new compounds should have chemical, 

physical and energetic properties, which at least achieve as much minimum requirements 

for new potential High Energy Dense Oxidizers as possible. In addition, the research for 

new especially highly nitrated precursors and building blocks in terms of synthesis, 

characterization and investigation of the chemical behavior is of interest in the course of 

the development of new HEDOs. Owing to the influence of intra- and intermolecular 

interactions affecting the energetic properties, an additional analytical and theoretical 

investigation of the compounds made is recommended. The introduction of polynitrated 

building blocks, especially the 2,2,2-trinitro(m)ethyl and the 2-fluoro-2,2-dinitro(m)ethyl 

moieties, with the aim to dramatically increase the oxygen content of appropriate starting 

materials is the main concept of this work.  

Various compounds using this principle were synthesized, characterized and their 

possible application in future applications as HEDO were discussed. This work consists 

of seven chapters, whereas each chapter represents a completed and published research 

project including their discussed results, abstracts, introductions and conclusions as well 

as their experimental sections. Available supplementary information for the 

corresponding chapters is provided in the Appendix of this dissertation.  
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2.2 INTRODUCTION 

Compounds that were derived from 2,2,2-trinitroethanol have been found to be useful in 

the research of high energetic oxidizers because of their high oxygen content.[1] Chlorine-

free, highly nitrated CHNO compounds might overcome the problematic formation of 

hydrogen chloride during the use of ammonium perchlorate as an oxidizer in formulations 

for rocket propellants. In addition, the development of new chlorine-free energetic 

oxidizers that decompose into volatile small molecules is a promising way of increasing 

the specific impulse of solid-state rocket boosters.[1a, 2] The specific impulse (Is) is one of 

the main parameters for specifying the performance of a solid rocket booster. The specific 

impulse is proportional to the temperature inside the combustion chamber (Tc) and to the 

reciprocal of the average molecular mass of the decomposition products (M), according to 

Equation (1). An increase of the value for Is by 20 s empirically leads to a doubling of the 

usual payload.[2a] Feuer et al. were among the first to investigate the suitability of amino 

acids for MANNICH-type reactions with 2,2,2-trinitroethanol.[3] The synthetic strategy in 

Feuer’s work with glycine ethyl ester is shown in Scheme 1. 

Herein, potential high energetic oxidizers with improved sensitivity towards external 

stimuli, such as impact or friction, were prepared based on the work by Feuer et al. 

Various esters, carbamates, and nitrocarbamates were synthesized from the starting 

materials glycine ethyl ester, 2-(nitro-(2,2,2-trinitroethyl)amino)acetyl chloride (4), and 

2-(nitro-(2,2,2-trinitroethyl)amino)acetyl azide (5). Furthermore, additional analytical 

data were provided for the (in most cases) poorly characterized compounds 1–5. 
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2.3 RESULTS AND DISSCUSSION 

Synthesis  

The valuable precursors that were derived from glycine, that is, carbonyl chloride 4 and 

carbonyl azide 5, were synthesized as outlined in Scheme 2.1. 

 

 
Scheme 2.1. Reaction sequence for the synthesis of compounds 4 and 5 as described by Feuer 

et al.[3a] 

 

Esterification of compound 4 with 2,2,2-trinitroethanol led to the new corresponding 

acetate (6, Scheme 2.2). The reaction of azide 5 with 2,2,2-trinitroethanol proceeded 

through an in situ Curtius rearrangement and afforded carbamate 7 (Scheme 2.2). 

Nitration of compound 7 at the NH position resulted in the formation of the target 

molecule, nitro carbamate 8 (Scheme 2.2). Furthermore, glycine ethyl ester was reacted 

with 2,2,2-trinitroethyl chloroformate[4] to afford acetate 9, which could be nitrated to 

form the nitro acetate 10 (Scheme 2.2). 

 

 

Scheme 2.2. Synthesis of compounds 6–10. 
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Compounds 1–10 were soluble in various organic solvents, such as acetone, MeCN, 

CHCl3, and MeOH, but were insoluble in water (except for compounds 3, 4, and 7) and 

other solvents, such as n-hexane. The compounds were found to be sensitive towards both 

impact and friction. 

 

NMR spectroscopy 

The compounds reported herein were thoroughly characterized by 1H, 13C, and 14N NMR 

spectroscopy. The multinuclear NMR spectra were recorded in CD3CN (for compound 1), 

CDCl3 (for compounds 5, 7, and 10), [D6]DMSO (for compounds 2–4 and 6), and 

[D6]acetone (for compounds 8 and 9). In the 1H NMR spectra of compounds 2–10, the 

CH2C(NO2)3 groups appear as singlets within the range δ = 6.36–5.45 ppm. Resonances 

of the ethyl ester protecting groups in compounds 1, 2, 9, and 10 are observed as quartets 

within the range δ = 4.3–4.1 ppm for the OCH2CH3 protons and as triplets within the 

range δ = 1.32–1.21 ppm for the OCH2CH3 protons, with a coupling constant of 7.2 Hz. 

The resonances of the COCH2N protons in compounds 1–7 are observed as singlets 

within the range δ = 4.89–3.42 ppm. The amino hydrogen resonance in compound 1 is 

observed as a broad singlet at δ = 3.8 ppm in CD3CN. In the 1H NMR spectrum of 

compound 7, the NH resonance is found as a broadened triplet at δ = 6.31 ppm, with 
3J(H,H) = 6.4 Hz. The corresponding methylene moiety appears as a doublet at 

δ = 5.20 ppm. A doublet at δ = 3.92 ppm, with a coupling constant of 3J(H,H) = 6.3 Hz, is 

observed in the 1H NMR spectrum of compound 9, which corresponds to the methylene 

moiety that is connected to the NH atom of the vicinal carbamate group. In addition, the 

NH proton of the carbamate moiety in compound 9 is found as a broad resonance at 

δ = 7.38 ppm in [D6]acetone. The resonances of the two methylene moieties of compound 

5 (OCCH2N and NCH2C(NO2)3) at δ = 6.01 and 5.97 ppm could not be assigned 

precisely. 

The carbon atoms of the trinitromethyl moieties in the 13C NMR spectra of compounds 2–

8 always appeared as very broad resonances within the range δ = 124.9–122.2 ppm. In the 

spectra of compounds 1, 5, 9, and 10, these carbon resonances were not detected at all; 

however, in their 14N NMR spectra, the corresponding resonances of the nitrogen atoms 

of the NO2 moieties were positively identified between δ = –27 and –34 ppm in all cases. 

The 14N NMR resonances of the azide moiety of compound 5 were observed at δ = –136 

(γ), –149 (β), and –254 ppm (α) in CDCl3. The nitramine NO2 resonance was detected at 

δ = –50 ppm for compound 8, but was not observed in the spectrum of compound 10.[1a, 5] 
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Vibrational spectroscopy 

The vibrational analyses of compounds 1–10 showed the characteristic asymmetric 

stretching vibrations of the NO2 group, νas(NO2), within the range 1608–1566 cm–1 and 

the symmetric stretching vibrations, νs(NO2), within the range 1306–1288 cm–1 (Table 2.1 

and Table 2.2). The trinitromethyl and nitramino moieties in compound 2–8 may be a 

reason for the observed shift of the νas(NO2) vibrations. Typically, νas(NO2) stretches for 

CNO2 groups appear higher than those of NNO2 moieties.[6] The C=O stretching 

vibrations for compounds 1–10 were found within the range 1807–1703 cm–1. These 

stretching vibrations belonged to the corresponding ester, carbamate, and nitrocarbamate 

moieties. Compared with those for compound 9 (1753 and 1714 cm–1), the C=O 

vibrations for compound 10 were shifted towards higher wavenumbers (1801 and 

1740 cm–1), owing to the introduced nitro group. Thus, it seems that the nitro moiety 

shifts both ν(C=O) vibrations to higher energies. We assumed that the carbamate was 

more influenced by the nitro moiety and, therefore, the signal at 1801 cm–1 was assigned 

to the ν(C=O) stretch of the nitrocarbamate moiety. The characteristic asymmetric 

stretching vibration of the azide moiety of compound 5 was observed at 2196 cm–1 as a 

moderately intense band in the IR spectrum and at 2188 (18) cm–1 in the Raman 

spectrum.[7] The C–N, C–O, and C–C vibrations of compounds 1–10 could be observed 

within the typical ranges for CHNO and CHClNO compounds, respectively.[6–8] 
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Table 2.1. IR and Raman bands of the carbonyl and nitro groups for 1–5 

 1 2 3 4 5 

 IR[a] Raman[b] IR[a] Raman[b] IR[a] Raman[b] IR[a] Raman[b] IR[a] Raman[b] 

ν CO 1724(s) 1732(16) 1743(s) 1754(23) 1729(s) n o  1785(m) 1797(27) 1703(s) 1709(44) 

νas NO2 1600(s) 

1576(vs) 

1587(5) 1620(s) 

1610(s) 

1583(vs) 

1566(s) 

1610(24) 

1586(7) 

1567(10) 

1609(vs) 

1591(s) 

1566(vs) 

1617(46) 

1584(3) 

1568(10) 

1625(m) 

1594(vs) 

1576(vs) 

1621(15) 

1606(22) 

1592(6) 

1573(13) 

1604(s) 

1583(s) 

1563(s) 

1608(5) 

1588(4) 

1566(8) 

νs NO2 1306(m) 1309(37) 1306(m) 

1279(vs) 

1306(8) 

1283(64) 

1276(s) 

1267(s) 

1300(19) 

1275(49) 

1297(s) 

1272(vs) 

1302(20) 

1274(56) 

1278(vs) 1299(20) 

1280(52) 

[a] IR intensities: vs = very strong, s = strong, m = medium, w = weak. [b] in cm–1; Raman 

intensities at 300 mW in brackets; n.o. = not observed. 

 

Table 2.2. IR and Raman bands of the carbonyl and nitro groups for 6–10 

 6 7 8 9 10 

 IR[a] Raman[
b] 

IR[a] Raman[
b] 

IR[a] Raman[
b] 

IR[a] Raman[
b] 

IR[a] Raman[
b] 

ν CO 1772(m) 1786(15) 1745(m) 1750(12) 1759(m) 1759(13) 1753(m) 

1714(s) 

1579(16) 

1719(27) 

1807(m) 

1740(s) 

1807(17) 

1747(17) 

νas NO2 1613(s) 

1590(vs) 

1576(vs) 

1625(24) 

1603(7) 

1576(3) 

1563(3) 

1604(s) 

1588(vs) 

1572(vs) 

1608(25) 

1569(9) 

1593(vs) 

1573(s) 

1621(23) 1605(s) 

1593(s) 

1617(35) 

1596(5) 

1571(2) 

1582(vs) 1617(10) 

1601(31) 

νs NO2 1294(s) 
1276(s) 

1302(15) 
1277(28) 

1288(vs) 1303(31) 
1286(25) 

1299(s) 
1278(s) 

1252(m) 

1301(22) 
1256(6) 

1302(m) 
1269(w) 

1309(33) 
1274(20) 

1289(s) 1292(40) 

[a] IR intensities: vs = very strong, s = strong, m = medium, w = weak. [b] in cm–1; Raman 

intensities at 300 mW in brackets. 

 

X-ray diffraction 

Compounds 3–7, 9, and 10 were investigated by low-temperature single-crystal X-ray 

diffraction. The crystal and structure-refinement data from the structure determinations 

are listed in Table 2.3. Suitable single crystals for X-ray diffraction measurements were 

obtained by the slow evaporation of solutions of the compounds in organic solvents, such 

as 1,2-dichloroethane, EtOAc, tetrachloromethane, and CHCl3. 
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The molecular structure of 2-(nitro-(2,2,2-trinitroethyl)amino)acetic acid (3) is shown in 

Figure 2.1. Compound 3 crystallized in the monoclinic space group P21/c, with four 

formula units per unit cell. The structure of compound 3 shows a density of 1.88 g cm–3 at 

173 K. The bond lengths and angles are comparable to values reported in literature for 

CHNO compounds that contain a trinitromethyl moiety.[1a, 2b, 5, 9] The average N–O bond 

length of the trinitromethyl moiety (1.210(2) Å) is slightly shorter than that of the 

corresponding nitramine moiety (1.224(1) Å), owing to some shared π-electron density 

between the N–N bond and the N–O bonds of the nitramine group.[6] The dihedral angle 

C3–N1–N2–O4 within the nitramine group is –19.3(1)°, which is almost within the range 

of cyclic nitramines RDX and HMX.[10] Although a propeller-type orientation is typical 

of trinitromethyl moieties, the case of C1(NO2)3 is still surprising. It is known in the 

literature that the barrier to rotation about a single C–NO2 bond is quite small. Therefore, 

disturbing effects, such as those provided by a neighboring nitramine group, normally 

sharply distort the preferred C3 geometry.[6] Such compounds show an electrostatic 

attraction between the nitro group of the nitramine and the C(NO2)3 moiety (in compound 

3: N3���O4 2.83 Å), which leads to an atypical conformation with one nitro group (N4O2) 

that is oriented approximately planar to the corresponding C2–C1–N4–O7 plane and one 

nitro group that is oriented almost perpendicular to it (N3O2). Comparing the C2–C1–

N3–O6 (94.4(1)°) dihedral angle in compound 3 with the respective values of nitramine-

affected C(NO2)3 orientations in the literature, such as in 1,1,1,3,6,8,8,8-octanitro-3,6-

diazaoctane (ONDO),[6] it is evident that the C1(NO2)3 moiety interacts with the 

nitramine group.  

An analysis of the intermolecular interactions in compound 3 showed various 

interactions, including weak improper hydrogen-bonding interactions and dipolar N���O 

interactions. In addition, a strong classical intermolecular hydrogen bond with covalent 

character was formed at the carboxylic group, with the following distances and angles: 

O1–H5���O2 1.836(1) Å, O1���O2 2.688(1) Å, and O1–H5���O2 176(2)°. This interaction 

led to a dimeric structure of compound 3 (see the Supporting Information). 
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2,2,2-Trinitroethyl 2-(nitro-(2,2,2-trinitroethyl)amino)acetate (6) crystallized in the 

monoclinic space group P21/c, with four formula units in the unit cell (Figure 2.4). 

Suitable single crystals for X-ray diffraction measurements were obtained by 

recrystallization from EtOAc. The density at 173 K was calculated to be 1.92 g cm–3. The 

bond lengths and angles in compound 6 were comparable with previously discussed 

values for CHNO compounds that contained a trinitromethyl moiety.[1a, 2b, 5, 9] As 

expected, the average N-O bond length in the trinitromethyl moieties (1.211(3) Å) was 

slightly shorter than that in the corresponding nitramine moiety (1.227(3) Å). The C3–O2 

(1.192(3) Å), C3–O1 (1.355(3) Å), and C2–O1 (1.435(3) Å) bond lengths in the bridging 

ester moiety are within the typical range for organic compounds that contain an ester 

group.[14] The two trinitroethyl moieties display a molecular geometry, with a propeller-

type orientation of the nitro groups that are connected to the C6 and C1 atoms. The 

twisted orientation is energetically favorable and leads to several N���O dipolar 

interactions between the geminal NO2 groups (2.59–2.61 Å), which are considerably 

shorter than the sum of the Van der Waals radii for oxygen and nitrogen (about 2.9 Å).[6] 

The shorter distances are caused by the fact that such twisting of the nitro groups 

decreases the intramolecular electrostatic repulsion between the oxygen atoms, whilst at 

the same time optimizing the attractive N���O interactions between the geminal NO2 

groups. Therefore, disturbing effects, which are provided by a vicinal nitramine function, 

typically sharply distort the preferred C3 geometry.[6] Such compounds show an 

electrostatic attraction between the nitro group of the nitramine and the C(NO2)3 moiety. 

In the case of compound 6, this attraction can be observed in the N7���O4 (2.825(3) Å) 

distance,[6] which leads to an atypical conformation with two nitro groups that are 

oriented approximately planar to the C5–C6 axis (N6O2 and N8O2) and one group that is 

almost perpendicular to it (N7O2). The alignments of the nitro groups were characterized 

by the C5–C6–N6–O11 (–1.1(3)°), C5–C6–N8–O15 (7.3(3)°), and C5–C6–N7–O13 

(88.7(2)°) torsion angles.[6] The trinitromethyl moiety that was connected to the C1 atom 

also showed a weak distortion compared to an idealized propeller configuration. Owing to 

the missing interaction with a nitramine group, the C2–C1–N–O dihedral angles in 

compound 5 are roughly within the typical range of propeller-type XC(NO2)3 compounds 

(23–67°).[6] The quite-high density for CHNO compounds is a result of various inter- and 

intramolecular dipolar interactions that affect the large number of nitro groups in 

compound 6.  
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Table 2.3. Crystal and structure refinement data for 3–7, 9–10 
 3 4 5 6 7 9 10 

empirical formula C4H5N5O10 C4H4ClN5O9 C4H4N8O9 C6H6N8O16 C6H7N9O16 C7H10N4O10 C7H9N5O12 

formula mass /g mol–1 283 1 301 6 308 1 446 2 461 2 310 2 355 2 

temperature /K 173(2) 173(2) 173(2) 173(2) 173(2) 173(2) 173(2) 

crystal size /mm 0 25 × 0 19 × 
0 09 

0 24 × 0 15 × 
0 08 

0 31 × 0 24 × 
0 20 

0 25 × 0 05 × 
0 01 

0 15 × 0 15 × 
0 14 

0 18 × 0 06 × 
0 02 

0 25 × 0 15 × 
0 08 

crystal description colorless 
platelet 

colorless 
platelet 

colorless block colorless needle colorless block colorless 
needle 

colorless block 

crystal system monoclinic triclinic monoclinic monoclinic monoclinic monoclinic monoclinic 

space group P21/c P–1 P21/n P21/c P21/c P21/c P21/c 

a /Å 10 9200(4) 6 0538(5) 9 9618(7) 5 9751(1) 9 5960(8) 13 132(3) 12 8990(6) 

b /Å 6 3120(2) 7 9260(5) 5 9327(4) 10 74990(29) 18 7730(13) 5 6826(17) 5 6642(3) 

c /Å 14 9880(5) 11 9001(8) 19 1585(11) 24 01500(50) 9 5200(8) 18 028(6) 19 7870(9) 

α /° 90 82 641(5) 90 90 90 90 90 

β /° 103 984(4) 78 083(6) 100 053(6) 91 7041(14) 100 154(7) 106 28(3) 92 647(5) 

γ /° 90 72 522(7) 90 90 90 90 90 

V /Å3 1002 46(6) 531 56(7) 1114 89(13) 1541 84 1688 1(2) 1291 4(6) 1444 15(12) 

Z 4 2 4 4 4 4 4 

ρcalc /g cm–3 1 87587(11) 1 8841(2) 1 8357(2) 1 92204(1) 1 8146(2) 1 5954(7) 1 63359(14) 

µ /mm–1 0 188 0 420 0 179 0 194 0 182 0 152 0 159 

F(000) 576 304 624 904 936 640 728 

θ range /° 4 28 – 28 00 4 26 – 26 00 4 25 – 26 00 3 17 – 25 35 4 28–25 75 4 23–25 24 4 15–25 75 

index ranges –13 ≤ h ≤ 14 –7 ≤ h ≤ 7 –7 ≤ h ≤ 12 –7 ≤ h ≤ 7 –8 ≤ h ≤ 11 –13 ≤ h ≤ 15 –15 ≤ h ≤ 15 

 –5 ≤ k ≤ 8 –9 ≤ k ≤ 9 –7 ≤ k ≤ 7 –12 ≤ k ≤ 12 –20 ≤ k ≤ 22 –6 ≤ k ≤ 5 –6 ≤ k ≤ 6 

 –19 ≤ l ≤ 9 –14 ≤ l ≤ 14 –23 ≤ l ≤ 23 –28 ≤ l ≤ 28 –11 ≤ l ≤ 7 –21 ≤ l ≤ 21 –24 ≤ l ≤ 24 

reflections collected 5849 5399 5230 10049 8481 6035 13524 

reflections observed 2403 2076 2174 2820 3210 2331 2742 

reflections unique 1756 1509 1222 2026 2482 1485 2088 

R1; wR2 (2σ data) 0 0316; 
0 0705 

0 0326; 0 0729 0 0368; 0 0735 0 0408; 0 0903 0 0330; 
0 00699 

0 0510; 0 1056 0 0391; 0 0906 

R1; wR2 (all data) 0 0451; 
0 0740 

0 0484; 0 0769 0 0798; 0 0812 0 0691; 0 1013 0 0489; 0 0794 0 0903; 0 1267 0 0551; 0 1012 

max ; min  
transmission 

1 00000; 
0 98965 

0 99999; 
0 93162 

1 00000; 
0 65045 

1 00000; 
0 03341 

1 00000; 
0 96187 

1 00000; 
0 50257 

1 00000; 
0 85790 

data; restraints; 
parameters 

2403; 0; 192 2076; 0; 188 2174; 0; 206 2820; 0; 271 3210; 0; 308 2331; 0; 194 2742; 0; 271 

GOOF on F2 0 925 0 936 0 830 1 090 1 022 1 008 1 032 

diff  peak; hole /e Å–3 0 057; –0 319 0 284; –0 309 0 203; –0 177 0 414; –0 319 0 219; –0 200 0 296; –0 275 0 298; –0 237 
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Thermal and energetic properties 

Compounds 2, 3, and 6–10 were stable when exposed to air and moisture. 2-(Nitro-(2,2,2-

trinitroethyl)amino)acetyl azide (5) has to be handled very carefully, owing to its high 

sensitivity towards external stimuli. Reactions that were carried out with this explosive 

compound were performed under the rigorous exclusion of moisture. The thermal 

stabilities of compounds 1–10 were investigated by performing various DSC 

measurements (heating rate: 5 °C min–1). The temperatures at which melting and 

decomposition occurred are shown in Table 2.4. A remarkably high melting point of 

148 °C was observed for compound 3, likely owing to its ability to form strong hydrogen 

bonds through the carboxylic acid moiety. Moreover, compounds 6 (133 °C) as 8 

(132 °C) showed satisfying melting points for applications as high-energy dense oxidizers 

based on CHNO compounds.[1a, 1c, 5] The highest decomposition temperature was 

observed for compound 10 (190 °C), followed by compounds 6 and 9 (183 and 177 °C, 

respectively). The physical and chemical properties of these compounds are listed in 

Table 4. 

The sensitivities of compounds 2–10 towards impact, friction, and electrostatic discharge 

were experimentally determined according to standards of the Federal Institute for 

Materials Research and Testing (BAM);[17] the results are displayed in Table 2.5. 

Compound 1 could not be measured properly, owing to its tendency to hydrolyze at 

ambient temperature, whereas compounds 3 and 4 showed moderate impact sensitivities 

of 15 and 30 J, respectively. Compounds 2 and 9 turned out to be insensitive towards 

impact stimuli, probably because of the ethyl-ester protecting group. Compounds 2, 3, 8, 

and 10 showed moderate friction sensitivities. In addition, the flame test of compounds 1–

10 showed smoke- and residue-less burning with a yellow flame in all cases. 



CHAPTER 2____________________________________________________________________ 

32 | 

Table 2.4. Physical and chemical properties of 1–10 

 1 2 3 4 5 6 7 8 9 10 

formula C6H10N4O8 C6H9N5O10 C4H5N5O10 C4H4ClN5O9 C4H4N8O9 C6H6N8O16 C6H7N9O16 C6H6N10O18 C7H10N4O10 C7H9N5O12 

mol mass /g mol–

1 

266 17 311 16 283 11 301 56 308 12 446 16 461 17 506 17 310 18 355 17 

Tm /°C [a] -- 72 148 79 69 133 96 132 59 26 

Td /°C [b] 123 172 167 174 89 183 170 161 177 190 

N /% [c] 21 05 22 51 24 74 23 22 36 37 25 12 27 33 27 67 18 06 19 72 

N + O /% [d] 69 14 73 93 81 25 70 97 83 10 82 50 82 84 84 57 69 64 73 78 

ΩCO /%[e] –18 03 –2 57 19 78 18 57 15 58 25 10 22 55 28 45 –46 4 –29 3 

ΩCO2 /% [f] –54 10 –33 42 –2 83 –2 65 –5 19 3 59 1 73 9 48 –10 3 2 2 

ρ /g cm–3 [g] 1 53 1 40 1 82 1 83 1 80 1 87 1 79 1 90 1 54 1 58 

–ΔU°f /kJ kg–1 [h] 1607 13 1163 04 1413 00 719 85 515 42 790 84 831 22 519 12 2711 11 2092 51 

–ΔH°f /kJ kg–1 [i] 1709 57 1258 63 1500 56 797 94 599 89 874 18 917 22 602 38 2806 90 2183 24 

[a] Melting (Tm) and [b] decomposition temperatures (Td) as determined by DSC measurement at 

a heating rate of 5 °C min–1. [c] Nitrogen content. [d] Combined nitrogen and oxygen content. 

[e] Oxygen balance, assuming the formation of CO; the oxygen balance of ammonium 

perchlorate is 34.0 %. [f] Oxygen balance, assuming the formation of CO2. [g] Experimentally 

determined density from pycnometer experiments. [h] Energy of formation. [i] Heat of formation. 

 

Predictions of the detonation parameters by using the EXPLO5 code[18] have been 

performed based on the heats of formations that were obtained from ab initio calculations 

by using the Gaussian 09 program package[12, 19] at the CBS-4M level of theory. The 

energetic parameters were attributed to the density of the corresponding compound. The 

resulting heats of detonation (Qv), detonation temperatures (T), pressures (p), and 

velocities (D) for compounds 1–10 are shown in Table 2.5, as well as the oxygen 

balances (Ω). The densities that were needed to estimate the detonation parameters with 

the EXPLO5 code[18] were derived from the single-crystal X-ray structures of compounds 

3–10. The densities of compounds 1 and 2 were determined experimentally by 

performing gas pycnometer measurements. 
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Table 2.5. Predicted detonation and combustion parameters (using the EXPLO5 code) and 

sensitivity data for 1–10 

 1 2 3 4 5 6 7 8 9 10 

–Qv /kJ kg–1 [a] 4941 5478 5763 5508 6342 5922 5882 5479 4169 4882 

Tex /K [b] 3378 3960 4330 4575 4823 4566 4535 4345 3098 3642 

V0 /L kg–1 [c] 721 716 684 647 684 675 689 684 690 677 

p /kbar [d] 200 184 323 302 342 345 319 340 181 214 

D /m s–1 [e] 7259 7036 8351 8022 8591 8518 8340 8491 6890 7255 

impact /J [f] -- >40 15 30 <1 3 5 2 40 7 

friction /N [f] -- 192 144 64 48 64 72 120 54 144 

ESD /J [g] -- 0 035 0 036 0 17 0 03 0 25 0 035 0 035 0 2 0 2 

grain size /µm [h] -- <100 100–500 100–500 100–500 <100 <100 <100 <100 100–500 

thermal shock [i] burns burns burns burns burns  

violently 

burns burns burns burns burns 

Is /sec [j] 210 242 241 234 250 240 241 237 192 227 

Is /sec [k] -- -- 250 239 -- 258 256 262 -- -- 

Ωcomp /% [l] -- -- –55 95 –55 82 -- –51 45 –52 75 –47 32 -- -- 

Is(20%Al) /sec [m] -- -- 254 250 -- 254 255 253 -- 254 

Ω(20%Al) /% [n] -- -- –20 05 –19 91 -- –14 92 –16 00 –10 20 -- –41 27 

[a] Heat of explosion. [b] Temperature of the explosion gases. [c] Volume of the explosion gases 

(assuming only gaseous products). [d] Detonation pressure. [e] Detonation velocity. [f] Impact 

and friction sensitivities, according to standard BAM methods.[17] [g] Sensitivity towards 

electrostatic discharge. [h] Grain size of the samples that were used for the sensitivity tests. 

[i] Response to fast heating in the "flame test". [j] Specific impulse for a pure compound by using 

the EXPLO5 code.[18] [k] Specific impulse for compositions with 70 % oxidizer, 16 % aluminum, 

6 % polybutadiene acrylic acid, 6 % polybutadiene acrylonitrile, and 2 % bisphenol-A ether by 

using the EXPLO5 code (chamber pressure: 70.0 bar).[18] The specific impulse for a similar 

composition with ammonium perchlorate was also calculated (Is(AP)=258 s, Ωcomp(AP)=–

30.13 %). [l] Oxygen balance for the composition that was used in the combustion calculations; 

the oxygen balance for a comparable composition with ammonium perchlorate is –30.13 %. 

[m] Specific impulse for compositions with 80 % oxidizer and 20 % aluminum at by using the 

EXPLO5 code (chamber pressure: 70.0 kbar).[18] The specific impulse for a similar composition 
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with ammonium perchlorate was also calculated (Is(20 %Al)(AP)=232 s, Ω(20 %Al)(AP)=9.44 %). 

[n] Oxygen balance for 80 % oxidizer and 20 % Al in the combustion calculations. 

The specific impulses of compounds 3, 4, and 6–8 were calculated for compositions of 

70 % oxidizer, 16 % aluminum, 6 % polybutadiene acrylic acid, 6 % polybutadiene 

acrylonitrile, and 2 % bisphenol-A ether, as modeled on rocket motor compositions for 

solid-state rocket boosters that are used in the NASA Space Shuttle Program.[20] These 

impulses were compared with the calculated impulse of ammonium perchlorate (AP) in 

an analogous composition. The chosen mixture with AP as an oxidizer provided a 

specific impulse of 258 s. The impulses for compounds 3, 6, and 7 (250–258 s) were 

within the range of AP. The specific impulse of a composition with compound 6 as an 

oxidizer (Is=258 s) was comparable to that with AP. Compound 8 showed an increased 

specific impulse of 262 s. The lower oxygen balance of compounds 3, 4, 6, and 7 versus 

AP also led to a decreased oxygen balance for the calculated formulations, varying 

between –55.95 % and –51.47 %. The composition with compound 8 as an oxidizer led to 

an oxygen balance of –47.32 %. A similar composition with AP as an oxidizer had an 

oxygen balance of –30.13 %. In addition, the specific impulses were also calculated for 

compositions of 80 % oxidizer (3–8 and 10) with 20 % neat aluminum. The calculated 

impulses varied from 250–255 s and were significantly higher than that for a similar AP 

formulation (232 s). Moreover, the specific impulses were also calculated for the neat 

compounds. Calculations of the other compounds were omitted, owing to the insufficient 

resulting oxygen balance of the considered compositions or the missing stability data of 

the desired compound. The results of the calculations are shown in the Table 2.5. 
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2.4 CONCLUSION 

Based on the previous work of Feuer et al.,[3a] new energetic glycine-based polynitro 

compounds with a positive oxygen balance were synthesized. All of the compounds were 

characterized by using multinuclear NMR spectroscopy, vibrational spectroscopy, 

elemental analysis, and mass spectrometry; in addition, most compounds were also 

characterized by single-crystal X-ray crystallography. The thermal stability of these 

compounds was investigated by performing DSC measurements. The sensitivities 

(according to BAM standards) of these compounds were determined and their energetic 

parameters were estimated from theoretical calculations. With respect to a possible 

application as high-energy dense oxidizers in solid rocket boosters, the specific impulses 

(Is) of the most-promising compounds (3, 6, 7, and 8) were calculated in formulations 

with fuel and additives. In particular, compounds 6 and 8 might be promising oxidizers 

with equal or even superior specific impulses (Is(6)=258 s, Is(8)=262 s) compared to 

similar formulations with ammonium perchlorate (AP, Is(AP)=258 s) as an oxidizer. In 

addition, the sensitivities of compounds 6 and 8 were almost within the range of 

pentaerythritol tetranitrate (PETN), thereby fulfilling the minimum requirements of an 

oxidizer in terms of sensitivity. 
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2.5 EXPERIMENTAL SECTION 

General Procedures 

The syntheses and manipulation of air- and moisture-sensitive materials were performed 

under an inert atmosphere of dry argon (purity: 5.0, Air Liquide) by using flame-dried 

glassware and Schlenk techniques.[21] Glycine, thionyl chloride, aluminum(III) chloride, 

sodium hydroxide, acetic anhydride, sodium azide, magnesium sulfate, and all of the 

acids and solvents were purchased from Sigma-Aldrich and used as received. Ethyl 2-

aminoacetate hydrochloride, 2,2,2-trinitroethanol, and 2,2,2-trinitroethyl chloroformate 

were prepared according to literature procedures.[1c, 3b, 4b] 

Raman spectra were recorded on a Bruker FT-Raman-MultiRAM Spectrometer that was 

equipped with a Klaastech DENICAFC LC-3/40 laser source at 300 mW laser power; IR 

spectra were recorded on a Perkin-Elmer Spectrum BX-FTIR spectrometer that was 

equipped with a Smiths DuraSamplIR II ATR device. All of the spectra were recorded at 

ambient temperature as neat samples. Densities were determined at ambient temperature 

on a Quantachrome Ultrapyc1200e gas pycnometer that was equipped with helium gas 

(purity: 5.6, Air Liquide). NMR spectra were recorded on a JEOL Eclipse 400 

spectrometer and the chemical shifts were determined with respect to external references 

Me4Si (1H: 399.8 MHz, 13C: 100.5 MHz) or MeNO2 (14N: 28.9 MHz). Mass spectrometry 

data were recorded on a JEOL MStation JMS 700 spectrometer (DEI+/DCI+). Elemental 

analysis was performed on an Elementar Vario EL Analyzer. Melting points were 

measured on a Perkin-Elmer Pyris6 DSC at a heating rate of 5 °C min–1 and checked by 

using a Büchi Melting Point B-540 apparatus and are uncorrected. The sensitivity data 

were performed by using a BAM drop hammer and a BAM friction tester.[17] 

 

Computational details 

All of the quantum-chemical calculations were carried out by using the Gaussian 09 

(Revision B.03)[12] program package and visualized by using Gaussview 5.08.[19] 

Structure optimizations and frequency analyses were performed by using Becke's B3 

three-parameter hybrid functional with the LYP correlation functional (B3LYP). For the 

C, H, N, and O atoms, a correlation-consistent polarized double-zeta basis set was used 

(cc-pVDZ). The structures were optimized without symmetry constraints and the energies 

were corrected by using the zero-point vibrational energies.[22] 
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The enthalpies (ΔH°) and free energies (ΔG°) were calculated by using the complete basis 

set method (CBS-4M), based on ab initio optimized structures or on X-ray diffraction 

data to obtain accurate values.[22a] The CBS models use the known asymptotic 

convergence of a pair of natural orbital expressions to extrapolate from calculations by 

using a finite basis set to the estimated complete basis-set limit. CBS-4 starts with a 

HF/3-21G(d) structure optimization, which is the initial guess for the following SCF 

calculations as a base energy and final MP2/6-31+G calculations with a CBS 

extrapolation to correct the energy in second order. The re-parameterized CBS-4M 

method also implements MP4(SDQ)/6-31+(d,p) calculations to approximate higher-order 

contributions and includes some additional empirical corrections.[22b,c] The enthalpies of 

the gas-phase species were estimated according to the atomization energy method.[22a, 23] 

All of the calculations that affected the detonation parameters were carried out by using 

the EXPLO5 V5.05 program package.[18, 24] The detonation parameters were calculated at 

the CJ point with the aid of the steady-state detonation model by using a modified 

Becker-Kistiakowski-Wilson equation of state for modeling the system. The CJ point was 

determined from the first derivative of the Hugoniot curve of the system.[24–25] The 

specific impulses were also calculated by using the EXPLO5 V5.05 program, assuming 

the isobaric combustion of a composition of 70 % oxidizer, 16 % aluminum as the fuel, 

6 % polybutadiene acrylic acid, 6 % polybutadiene acrylonitrile as a binder, and 2 % 

bisphenol-A as the epoxy-curing agent.[20] A chamber pressure of 70.0 bar and an ambient 

pressure of 1.0 bar with frozen expansion conditions were estimated for the calculations. 

 

X-ray crystallography 

For the compounds measured, an Oxford Xcalibur3 diffractometer with a CCD area 

detector was employed for the data collection by using MoKα radiation (λ=0.71073 Å). 

The structures were solved by using direct methods (SIR97)[26] and refined by full-matrix 

least-squares on F2 (SHELXL).[27] All non-hydrogen atoms were refined anisotropically. 

The hydrogen atoms were located in a difference Fourier map and placed with a C-H 

distance of 0.99 Å for CH2 groups. ORTEP plots are shown with thermal ellipsoids at the 

50 % probability level. 

CCDC-916793 (6), CCDC-916794 (9), CCDC-916795 (10), CCDC-916796 (5), CCDC-

916797 (4), CCDC-916798 (3), and CCDC-916799 (7) contain the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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CAUTION! All compounds with high nitrogen and oxygen content are potentially 

explosive energetic materials, although no hazards were observed during our preparation 

and handling of these compounds. Nevertheless, this property necessitates the meticulous 

use of additional safety precautions (earthed equipment, Kevlar gloves, Kevlar sleeves, 

face shield, leather coat, and ear plugs). In addition, 2,2,2-trinitroethanol has shown 

significant levels of toxicity,[28] including in own recent results.[29] Therefore, particular 

care should be exercised in the handling of those materials and their derivatives. 

 

Ethyl 2-(2,2,2-trinitroethylamino)acetate (1) 

Compound 1 was prepared according to a literature procedure.[3a, 30] Owing to its low 

stability, compound 1 was converted into compound 2 immediately after drying. 
1HNMR (CD3CN): δ = 4.14 (q, 3J(H,H)=7.0 Hz, 2 H; OCH2CH3), 3.80 (br s, 1 H; NH), 

3.77 (s, 2 H; NCH2C(NO2)3), 3.43 (s, 2 H; COCH2N), 1.23 ppm (t, 3 H; CH3); 13C{1H} 

NMR (CD3CN): δ = 171.1 (COO), 73.5 (OCCH2N), 61.8 (OCH2), 54.0 (NCH2C(NO2)3), 

14.4 ppm (CH3); 14N NMR (CD3CN): δ = –29 ppm (br; C(NO2)3); IR: ν = 3433 (w), 

2989 (vw), 1724 (s), 1600 (s), 1576 (vs), 1482 (vw), 1467 (vw), 1447 (vw), 1413 (vw), 

1392 (vw), 1373 (vw), 1347 (vw), 1330 (vw), 1306 (m), 1204 (m), 1134 (vw), 1097 (vw), 

1015 (w), 961 (w), 872 (vw), 855 (vw), 803 (w), 777 (vw), 734 (vw), 697 cm–1 (vw); 

Raman: ν = 2988 (9), 2962 (71), 2948 (2), 2898 (3), 2859 (3), 1732 (16), 1616 (2), 1602 

(18), 1587 (5), 1484 (17), 1455 (18), 1438 (4), 1418 (8), 1388 (13), 1357 (22), 1309 (37), 

1182 (3), 1129 (3), 1098 (11), 1016 (6), 976 (3), 898 (28), 857 (100), 807 (8), 775 (5), 

703 (4), 665 (6), 553 (12), 503 (3), 465 (2), 418 (20), 401 (7), 369 (37), 273 (28), 248 (2), 

208 cm–1 (10); MS (DEI+): m/z (%): 267 (3) [M+H]+, 220 (38) [M–NO2]+, 193 (100) [M–

COOC2H5]+, 147 (68) [M–COOC2H5–NO2]+, 116 (7) [M–C(NO2)3]+. 

 

Ethyl 2-(nitro-(2,2,2-trinitroethyl)amino)acetate (2) 

Compound 2 was prepared by the nitration of compound 1.[3a] 
1H NMR ([D6]DMSO): δ = 6.01 (s, 2 H; NCH2C(NO2)3), 4.73 (s, 2 H; COCH2N), 4.17 

(q, 3J(H,H)=7.1 Hz, 2 H; OCH2CH3), 1.21 ppm (t, 3 H; CH3); 13C{1H} NMR 

([D6]DMSO): δ = 166.6 (COO), 123.7 (br; C(NO2)3), 61.6 (OCH2CH3), 55.0/53.7 

(OCCH2N/NCH2C(NO2)3), 13.9 ppm (CH3); 14N NMR ([D6]DMSO): δ = –32 (br; NO2), 

–34 ppm (br; NO2); 1H NMR (CD3CN): δ = 5.64 (s, 2 H; NCH2C(NO2)3), 4.60 (s, 2 H; 

COCH2N), 4.21 (q, 3J(H,H)=7.2 Hz, 2 H; OCH2CH3), 1.24 ppm (t, 3 H; CH3); 13C{1H} 

NMR (CD3CN): δ = 62.9 (OCH2CH3), 55.5/54.7 (OCCH2N/NCH2C(NO2)3), 14.0 ppm 
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(CH3); 14N NMR (CD3CN): δ = –32 (NO2), –34 ppm (NO2); IR: ν = 3007 (m), 2969 (w), 

2911 (w), 1743 (s), 1620 (s), 1610 (s), 1583 (vs), 1566 (s), 1475 (vw), 1434 (w), 1399 

(m), 1378 (m), 1354 (w), 1333 (vw), 1306 (m), 1279 (vs), 1221 (vs), 1138 (vw), 1100 

(vw), 1021 (m), 945 (w), 890 (vw), 868 (w), 853 (w), 804 (m), 787 (w), 766 (w), 719 

(vw), 640 (vw), 610 cm–1 (vw); Raman: ν = 3024 (8), 3007 (24), 2984 (91), 2979 (14), 

2946 (17), 2932 (3), 2881 (7), 2785 (4), 2738 (2), 1754 (23), 1632 (5), 1610 (24), 1586 

(7), 1567 (10), 1455 (16), 1434 (9), 1400 (11), 1348 (38), 1306 (8), 1283 (64), 1138 (4), 

1102 (10), 1014 (4), 991 (10), 945 (7), 933 (2), 891 (54), 871 (8), 858 (100), 806 (4), 789 

(5), 769 (3), 723 (7), 670 (3), 641 (15), 611 (8), 555 (10), 445 (4), 432 (23), 388 (30), 364 

(54), 345 (8), 283 cm–1 (24); MS (DEI+): m/z (%): 312 (<1) [M+H]+, 266 (2) [M–

OC2H5]+, 238 (14) [M–COOC2H5]+, 219 (13) [M–2 NO2]+, 173 (11) [M–3 NO2]+, 147 

(23) [H5C2OOCCH2NNO2]+, 145 (16) [M–3 NO2–C2H4]+, 119 (8) [HOOCCH2NNO2]+, 

46 (90) [NO2]+, 29 (100) [C2H5]+; sensitivities: impact: >40 J, friction: 192 N, grain size: 

<100 µm. 

 

2-(Nitro-(2,2,2-trinitroethyl)amino)acetic acid (3) 

Compound 3 was prepared according to a literature procedure.[3a] 
1H NMR (CD3CN): δ = 5.64 (s, 2 H; NCH2C(NO2)3), 4.61 ppm (s, 2 H; COCH2N); 
13C{1H} NMR (CD3CN): δ = 168.1 (COO), 55.4/54.9 ppm (CH2); 14N NMR (CD3CN): 

δ = –32 (br; NNO2), –34 ppm (C(NO2)3); 1H NMR ([D6]DMSO): δ = 5.99 (s, 2 H; 

NCH2C(NO2)3), 4.64 ppm (s, 2 H; COCH2N); 13C{1H} NMR ([D6]DMSO): δ = 168.1 

(COO), 123.8 (br; C(NO2)3), 55.1/53.7 ppm (CH2); 14N NMR ([D6]DMSO): δ = –33 ppm 

(br; NO2); IR: ν = 3011 (w), 2970 (w), 2866 (w), 2650 (vw), 2584 (vw), 2362 (vw), 2336 

(vw), 1729 (s), 1609 (vs), 1591 (s), 1566 (vs), 1447 (m), 1428 (m), 1391 (m), 1345 (vw), 

1276 (s), 1267 (s), 1198 (vw), 1138 (vw), 1098 (vw), 1016 (vw), 945 (w), 897 (w), 878 

(vw), 866 (w), 854 (w), 804 (w), 787 (vw), 770 (w), 714 cm–1 (vw); Raman: ν = 3030 

(11), 3013 (27), 2990 (63), 2973 (28), 2859 (4), 1662 (3), 1617 (46), 1584 (3), 1568 (10), 

1452 (6), 1429 (18), 1393 (25), 1385 (6), 1346 (55), 1319 (9), 1300 (19), 1275 (49), 1138 

(7), 1098 (4), 1016 (3), 998 (8), 945 (11), 894 (41), 880 (23), 855 (100), 806 (4), 789 (6), 

771 (5), 724 (6), 669 (3), 627 (16), 607 (9), 558 (11), 466 (3), 451 (8), 436 (27), 389 (63), 

365 (23), 348 (10), 288 (29), 247 (18), 235 cm–1 (9); MS (DCI+): m/z (%): 284 (1) 

[M+H]+, 220 (1) [M–OH–NO2]+, 178 (2) [M–CH2COOH–NO2]+, 146 (8) [M–COOH–

2 NO2]+, 99 (61) [M–4 NO2]+; MS (DEI+): m/z (%): 238 (8) [M–COOH]+, 193 (18) [M–

CO2–NO2]+, 147 (10) [M–CO2–2 NO2]+, 118 (10) [CH2C(NO2)3]+, 101 (4) [M–CO2–
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3 NO2]+, 46 (46) [NO2]+, 30 (100) [NO]+; sensitivities: impact: 15 J, friction: 144 N, grain 

size: 100–500 µm. 

 

2-(Nitro-(2,2,2-trinitroethyl)amino)acetyl chloride (4) 

In contrast to the procedure reported in ref. [3a], compound 3 (2.73 g, 9.64 mmol) was 

dissolved in thionyl chloride (40 mL, 66 g, 550 mmol) and the mixture was heated at 

reflux (80–85 °C) for 4.5 h. The volatile materials were removed under reduced pressure 

and the residue was dissolved in refluxing CCl4 (10 mL), filtered whilst hot, and allowed 

to crystallize at 4 °C to obtain compound 4 as colorless crystals (2.34 g, 80 % yield). 
1H NMR (CD3CN): δ = 5.66 (s, 2 H; NCH2C(NO2)3), 5.09 ppm (s, 2 H; COCH2N); 
13C{1H} NMR (CD3CN): δ = 170.4 (CO), 63.6 (OCCH2N), 54.4 ppm (NCH2C(NO2)3); 
14N NMR (CD3CN): δ = –32 (br; NNO2), –34 ppm (C(NO2)3); 1H NMR ([D6]DMSO): 

δ = 6.01 (s, 2 H; NCH2C(NO2)3), 4.65 ppm (s, 2 H; COCH2N); 13C{1H} NMR 

([D6]DMSO): δ = 168.0 (CO), 123.8 (br; C(NO2)3), 55.1 (CH2), 53.7 ppm (CH2); 14N 

NMR ([D6]DMSO): δ = –34 ppm (br; NO2); IR: ν = 3008 (vw), 2964 (vw), 1785 (m), 

1729 (vw), 1625 (m), 1594 (vs), 1576 (vs), 1427 (w), 1383 (w), 1350 (vw), 1297 (s), 

1272 (vs), 1204 (w), 1135 (vw), 1100 (w), 967 (m), 952 (m), 926 (m), 878 (vw), 860 (m), 

854 (m), 807 (s), 788 (s), 776 (s), 754 (m), 719 (vw), 670 cm–1 (vw); Raman: ν = 3009 

(30), 2974 (55), 1797 (27), 1621 (15), 1606 (22), 1592 (6), 1573 (13), 1516 (3), 1428 (8), 

1392 (20), 1351 (44), 1324 (15), 1302 (20), 1274 (56), 1207 (4), 1135 (4), 1102 (5), 999 

(7), 969 (3), 927 (5), 879 (32), 855 (100), 808 (7), 793 (36), 759 (22), 721 (4), 673 (3), 

633 (11), 613 (6), 552 (11), 461 (95), 447 (6), 425 (18), 409 (29), 388 (37), 373 (24), 289 

(13), 266 (32), 246 (14), 222 cm–1 (12); MS (DCI+): m/z (%): 302 (11) [M+H]+, 266 (91) 

[M–Cl]+, 238 (55) [M–Cl–CO]+, 208 (6) [M–Cl–CO–NO]+, 193 (22) [M–Cl–CO–

NO2+H]+, 117 (16) [M–4 NO2]+, 99 (15) [HOOCCH2NCH2C]+; sensitivities: impact: 30 

J, friction: 64 N, ESD: 0.17 J, grain size: 100–500 µm. 

 

2-(Nitro-(2,2,2-trinitroethyl)amino)acetyl azide (5) 

Compound 5 was prepared according to a literature procedure.[3a] Compound 5 must be 

handled with extreme caution and further conversion is recommended, owing to its high 

tendency for decomposition.  
1H NMR ([D6]DMSO): δ = 6.00 (s, 2 H; NCH2C(NO2)3), 4.85 ppm (s, 2 H; COCH2N); 
13C{1H} NMR ([D6]DMSO): δ = 174.2 (CO), 123.6 (br; C(NO2)3), 56.8 (COCH2N), 53.6 

ppm (NCH2C(NO2)3); 1H NMR (CDCl3): δ = 5.46 (s, 2 H; NCH2C(NO2)3), 4.61 ppm (s, 
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2 H; COCH2N); 13C{1H} NMR (CDCl3): δ = 173.4 (CO), 122.0 (br; C(NO2)3), 55.3 

(CH2), 53.9 ppm (CH2); 14N NMR (CDCl3): δ = –36 (br; C(NO2)3) –136 (br; OCNNN), –

149 (br; OCNNN), –254 ppm (br; OCNNN); IR: ν = 3015 (vw), 2972 (vw), 2862 (vw), 

2248 (w), 2196/2129 (m, ν N3), 1734 (vw), 1703 (s), 1604 (s), 1583 (s), 1563 (s), 1436 

(w), 1397 (m), 1359 (w), 1330 (w), 1278 (vs), 1229 (vw), 1183 (vs), 1096 (w), 1075 

(vw), 1009 (vw), 940 (m), 876 (vw), 861 (m), 854 (m), 806 (s), 786 (w), 774 (s), 750 

(vw), 722 (w), 675 cm–1 (vw); Raman: ν = 3017 (34), 2984 (71), 2973 (3), 2873 (4), 2245 

(4), 2188 (18), 2127 (7), 1709 (44), 1623 (18), 1608 (5), 1588 (4), 1566 (8), 1434 (19), 

1397 (13), 1345 (41), 1299 (20), 1280 (52), 1135 (7), 1099 (5), 941 (4), 926 (61), 878 

(10), 855 (100), 806 (3), 787 (7), 749 (25), 725 (5), 676 (5), 643 (9), 604 (3), 548 (14), 

504 (13), 451 (3), 430 cm–1 (40); MS (DEI+): m/z (%): 309 (<1) [M+H]+, 262 (<1) [M–

NO2]+, 238 (30) [CH2N(NO2)C(NO2)3]+, 216 (12) [M–2 NO2]+, 118 (28) [CH2C(NO2)2]+, 

70 (20) [OCNCH2N]+, 56 (32) [OCNCH2]+, 46 (100) [NO2]+, 30 (100) [NO]+, 28 (50) 

[N2]+; sensitivities: impact: <1 J, friction: 48 N, ESD: 0.03 J, grain size: 100–500 µm. 

 

2,2,2-Trinitroethyl 2-(nitro-(2,2,2-trinitroethyl)amino)acetate (6) 

2,2,2-Trinitroethanol (0.75 g, 4.1 mmol) and compound 4 (1.00 g, 3.32 mmol) were 

dissolved in boiling CCl4 (10 mL). Dry aluminum(III) chloride (0.5 g, 3.7 mmol) was 

added slowly to prevent extensive gas evolution and the reaction mixture was heated at 

reflux for 1 h. Then, the mixture was filtered, washed with cold hydrochloric acid (2 M, 

50 mL) and water (50 mL), and dried in vacuo to afford compound 6 as a colorless solid 

(0.72 g, 49 % yield). 
1H NMR ([D6]DMSO): δ = 6.06 (s, 2 H; CH2C(NO2)3), 5.97 (s, 2 H; CH2C(NO2)3), 4.89 

ppm (s, 2 H; COCH2N); 13C{1H} NMR ([D6]DMSO): δ = 164.9 (CO), 124.3 (br; 

C(NO2)3), 61.3 (OCH2C(NO2)3), 55.0 (CH2), 53.8 ppm (CH2); 14N NMR ([D6]DMSO): 

δ = –31 (br; NO2), –34 ppm (br; NO2); IR: ν = 3020 (vw), 2978 (vw), 2890 (vw), 1772 

(m), 1613 (s), 1590 (vs), 1576 (vs), 1435 (w), 1392 (m), 1366 (vw), 1326 (vw), 1294 (s), 

1276 (vs), 1195 (s), 1139 (vw), 1099 (vw), 1035 (vw), 1011 (vw), 939 (w), 915 (vw), 878 

(vw), 863 (m), 854 (w), 805 (s), 780 (m), 768 (w), 727 (vw), 711 (vw), 664 cm–1 (vw); 

Raman: ν = 3009 (27), 2964 (51), 2864 (3), 1786 (15), 1625 (24), 1603 (7), 1576 (3), 

1563 (3), 1525 (2), 1440 (12), 1396 (20), 1374 (13), 1347 (35), 1302 (15), 1277 (28), 

1217 (2), 1186 (5), 1131 (3), 1095 (10), 1054 (14), 1020 (3), 997 (6), 954 (7), 923 (14), 

881 (26), 857 (100), 807 (7), 780 (4), 755 (4), 722 (4), 671 (4), 649 (2), 600 (5), 546 (11), 

457 (4), 433 (22), 378 (53), 360 (13), 329 (6), 304 (6), 282 (27), 240 (13), 220 cm–1 (2); 



CHAPTER 2____________________________________________________________________ 

42 | 

MS (EI+): m/z (%): 399 (<1) [M–NO2–H]+, 354 (1) [M–2 NO2]+, 308 (<1) [M–3 NO2]+, 

238 (7) [CH2N(NO2)C(NO2)3]+, 118 (29) [CH2C(NO2)2]+, 46 (100) [NO2]+; elemental 

analysis calcd (%) for C6H6N8O16: C 16.2, H 1.4, N 25.1; found: C 16.5, H 1.1, N 24.4; 

sensitivities: impact: 3 J, friction: 64 N, ESD: 0.25 J, grain size: <100 µm. 

 

2,2,2-Trinitroethyl (nitro-(2,2,2-trinitroethyl)amino)methyl carbamate (7) 

2,2,2-Trinitroethanol (0.47 g, 2.6 mmol) and compound 5 (0.50 g, 1.6 mmol) were 

dissolved in dry CHCl3 (5 mL) and a catalytic amount of anhydrous aluminum(III) 

chloride was added. The reaction mixture was heated at reflux under an inert atmosphere 

for 5 h. CH2Cl2 (10 mL) was added and the reaction mixture was washed with HCl (2 M, 

5×100 mL) and water (5×100 mL). The organic layer was dried with magnesium sulfate 

and concentrated under reduced pressure to give a mixture of a colorless solid and a 

yellow oil. Complete solidification was achieved by ultrasound treatment of the mixture 

in water. Carbamate 7 was obtained after recrystallization from CCl4 as colorless crystals 

(0.45 g, 61 % yield). 
1H NMR ([D6]acetone): δ = 8.49 (br t, 1 H; NH), 6.01 (s, 2 H; OCH2C(NO2)3), 5.81 (s, 

2 H; NCH2C(NO2)3), 5.38 ppm (d, 3J(H,H)=6.4 Hz, 2 H; NHCH2N); 13C{1H} NMR 

([D6]acetone): δ = 155.1 (CO), 124.9 (br; C(NO2)3), 124.4 (br; C(NO2)3), 62.0 

(OCH2C(NO2)3), 59.6 (NCH2N), 54.0 ppm (CH2C(NO2)3); 14N NMR ([D6]acetone): δ = –

34 ppm (br; NO2); 1H NMR (CDCl3): δ = 6.31 (t, 3J(H,H)=6.4 Hz, 1 H; NH), 5.67 (s, 

2 H; OCH2C(NO2)3), 5.46 (s, 2 H; NCH2C(NO2)3), 5.20 ppm (d, 2 H; NHCH2N); 
13C{1H} NMR (CDCl3): δ = 154.4 (CO), 122.6 (br; C(NO2)3), 62.4 (OCH2C(NO2)3), 58.3 

(NCH2N), 52.9 ppm (CH2C(NO2)3); 14N NMR (CDCl3): δ = –35 (br; NO2), –36 ppm (br; 

NO2); IR: ν = 3381 (w), 3002 (vw), 2963 (vw), 2886 (vw), 1745 (m), 1623 (m), 1604 (s), 

1588 (vs), 1572 (vs), 1531 (s), 1444 (m), 1410 (w), 1397 (w), 1346 (vw), 1288 (vs), 1227 

(vs), 1195 (s), 1171 (m), 1124 (w), 1047 (m), 1004 (m), 954 (m), 907 (w), 875 (m), 851 

(s), 803 (m), 784 (s), 775 (s), 738 (w), 720 (w), 679 cm–1 (w); Raman: ν = 3379 (2), 3059 

(10), 3013 (34), 3003 (21), 2965 (37), 2887 (4), 1750 (12), 1629 (17), 1608 (25), 1569 

(9), 1447 (21), 1412 (11), 1399 (15), 1378 (21), 1342 (40), 1303 (31), 1286 (25), 1232 

(7), 1161 (5), 1125 (8), 1103 (5), 1041 (13), 1003 (9), 953 (7), 908 (10), 871 (16), 857 

(100), 803 (10), 787 (7), 722 (7), 642 (8), 604 (9), 570 (11), 539 (16), 453 (12), 416 (44), 

397 (41), 376 (61), 289 (32), 272 cm–1 (25); MS (DCI+): m/z (%): 462 (<1) [M+H]+, 266 

(32) [CH2NCH2NHCO2CH2C(NO2)3]+, 237 (34) [CH2NHCO2CH2C(NO2)3]+, 57 (100) 

[CH2NCO+H]+, 43 (15) [NCO+H]+; elemental analysis calcd (%) for C6H7N9O16: C 
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15.63, H 1.53, N 27.33; found: C 15.79, H 1.46, N 27.15; sensitivities: impact: 5 J, 

friction: 72 N, ESD: 0.035 J, grain size: <100 µm. 

 

2,2,2-Trinitroethyl (nitro-(2,2,2-trinitroethyl)amino)methyl nitrocarbamate (8) 

Carbamate 7 (0.30 g, 0.64 mmol) was slowly added at 0 °C into a mixture of acetic 

anhydride (8.0 mL) and fuming nitric acid (8.0 mL, 100 %). The reaction mixture was 

stirred at 0 °C for 15 min then at ambient temperature for 3 h, before being poured onto a 

large excess of ice. The colorless precipitate was filtered, washed with water, and dried in 

vacuo to obtain compound 8 (0.24 g, 73 % yield) as a colorless powder. 
1H NMR ([D6]acetone): δ = 6.36 (s, 2 H; OCH2C(NO2)3), 6.22 (s, 2 H; NCH2C(NO2)3), 

6.12 ppm (s, 2 H; NCH2N); 13C{1H} NMR ([D6]acetone): δ = 64.2 (OCH2C(NO2)3), 64.0 

(NCH2N), 54.1 ppm (NCH2C(NO2)3); 14N NMR ([D6]acetone): δ = –34 (br; 

OCH2C(NO2)3), –35 (br; NCH2C(NO2)3), –50 ppm (br; NNO2); IR: ν = 3017 (vw), 2967 

(vw), 2893 (vw), 1759 (m), 1593 (vs), 1573 (s), 1518 (w), 1437 (w), 1409 (w), 1396 (w), 

1363 (vw), 1341 (vw), 1299 (s), 1278 (vs), 1252 (m), 1228 (m), 1171 (w), 1160 (w), 1125 

(w), 1064 (w), 999 (w), 983 (w), 924 (w), 878 (w), 868 (w), 855 (m), 851 (m), 801 (s), 

784 (m), 761 (w), 735 (w), 719 (vw), 662 cm–1 (vw); Raman: ν = 3062 (4), 3020 (18), 

2971 (29), 1759 (13), 1621 (23), 1440 (8), 1397 (11), 1344 (37), 1301 (22), 1256 (6), 

1127 (4), 1093 (3), 1032 (6), 927 (9), 870 (12), 856 (101), 803 (7), 787 (3), 637 (7), 609 

(3), 547 (16), 487 (9), 413 (14), 401 (9), 377 (59), 331 (15), 291 (7), 260 cm–1 (11); MS 

(DEI+): m/z (%): 507 (<1) [M+H]+, 283 (3) [M–N(NO2)CH2C(NO2)3]+, 268.2 (2) [M–

CH2N(NO2)CH2C(NO2)3]+; elemental analysis calcd (%) for C6H6N10O18: C 14.24, H 

1.19, N 27.67; found: C 14.86, H 1.29, N 27.00; sensitivities: impact: 2 J, friction: 120 N, 

ESD: 0.035 J, grain size: <100 µm. 

 

Ethyl 2-((2,2,2-trinitroethoxy)carbamato)acetate (9) 

Ethyl 2-aminoacetate hydrochloride (0.89 g, 6.37 mmol) and 2,2,2-trinitroethyl 

chloroformate (2.0 g, 8.21 mmol) were dissolved in MeCN (25 mL) and heated at reflux 

for 40 min at 85 °C. The reaction mixture was poured onto a large excess of ice water and 

stirred vigorously. The then formed colorless precipitate was filtered, washed with water 

(500 mL), and dried in vacuo to obtain acetate 9 as a colorless solid (1.08 g, 55 % yield). 
1H NMR ([D6]acetone): δ = 5.77 (s, 2 H; OCH2C(NO2)3), 4.16 (q, 3J(H,H)=7.1 Hz, 2 H; 

OCH2CH3), 3.92 (s, 2 H; OCOCH2N), 1.22 ppm (t, 2 H; OCH2CH3); 13C{1H} NMR 

([D6]acetone): δ = 169.3 (CH2COOCH2), 154.0 (NHCOOCH2), 61.5 (OCH2C(NO2)3), 
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60.9 (NHCH2COO), 42.6 (OCH2CH3), 13.7 ppm (OCH2CH3); 14N NMR ([D6]acetone): 

δ = –33 ppm (C(NO2)3); IR: ν = 3327 (w), 3040 (vw), 2998 (vw), 2958 (vw), 2905 (vw), 

1753 (m), 1714 (s), 1605 (s), 1593 (vs), 1529 (m), 1476 (vw), 1445 (vw), 1420 (w), 1404 

(vw), 1382 (w), 1354 (vw), 1302 (m), 1269 (w), 1216 (m), 1156 (m), 1100 (vw), 1058 

(m), 1017 (m), 937 (vw), 906 (w), 868 (w), 856 (w), 804 (m), 783 (m), 730 (w), 694 

(vw), 663 cm–1 (vw); Raman: ν = 3323 (4), 2999 (18), 2960 (100), 2877 (5), 2834 (2), 

2735 (3), 1759 (16), 1719 (27), 1617 (35), 1596 (5), 1571 (2), 1449 (17), 1422 (15), 1384 

(22), 1355 (37), 1309 (33), 1274 (20), 1227 (5), 1148 (5), 1113 (10), 1060 (3), 1037 (24), 

1011 (3), 938 (4), 908 (19), 868 (11), 858 (85), 805 (10), 787 (7), 734 (4), 649 (7), 575 

(5), 536 (12), 410 (53), 372 (72), 299 (19), 282 (3), 229 cm–1 (6); MS (DEI+): m/z (%): 

310 (1) [M]+, 281 (1) [M–CH2CH3]+, 266 (1) [M–OCH2CH3]+, 265 (7) [M–CH3CH2O]+, 

237 (100) [M–COOCH2CH3]+, 147 (1) [M–CH2C(NO2)3+H]+, 118 (<1) [CH2C(NO2)2]+; 

elemental analysis calcd (%) for C7H10N4O10: C 27.11, H 3.25, N 18.06; found: C 26.98, 

H 3.16, N 17.89; sensitivities: impact: 40 J, friction: 54 N, grain size: <100 µm. 

 

Ethyl 2-(nitro-((2,2,2-trinitroethoxy)carbamato)acetate (10) 

Acetate 9 (1.08 g, 3.49 mmol) was dissolved in fuming nitric acid (1.5 mL, 100 %) at 

0 °C and stirred for 30 min at 0 °C and then for 2 h at ambient temperature. The mixture 

was poured onto a large excess of ice (600 g) and the as-obtained colorless precipitate 

was filtered and dried to obtain compound 10 as a colorless solid (0.61 g, 49 % yield). 
1H NMR (CDCl3): δ = 5.56 (s, 2 H; OCH2C(NO2)3), 4.71 (s, 2 H; OCOCH2N), 4.28 (q, 
3J(H,H)=7.1 Hz, 2 H; OCH2CH3), 1.32 ppm (t, 2 H; OCH2CH3); 13C{1H} NMR (CDCl3): 

δ = 165.7 (CH2COOCH2), 148.0 (NHCOOCH2), 63.2 (OCH2C(NO2)3), 62.9 

(NCH2COO), 49.6 (OCH2CH3), 14.0 ppm (OCH2CH3); 14N NMR (CDCl3): δ = –36 (br; 

C(NO2)3), –51 ppm (br; NNO2); IR: ν = 3021 (vw), 2986 (vw), 2902 (vw), 1796 (m), 

1740 (s), 1592 (vs), 1466 (vw), 1439 (w), 1414 (w), 1380 (m), 1357 (vw), 1290 (s), 1220 

(s), 1145 (vs), 1094 (s), 1071 (m), 1015 (m), 927 (w), 884 (m), 872 (w), 851 (m), 801 

(m), 782 (m), 736 (m), 663 cm–1 (w); Raman: ν = 3012 (17), 2971 (100) 2948 (24), 2934 

(6), 2875 (5), 1807 (17), 1747 (17), 1617 (10), 1601 (31), 1475 (2), 1444 (17), 1421 (9), 

1382 (27), 1362 (14), 1351 (7), 1322 (11), 1292 (40), 1228 (9), 1157 (5), 1135 (3), 1112 

(17), 1017 (14), 993 (8), 941 (6), 893 (47), 871 (21), 857 (83), 803 (8), 785 (4), 761 (5), 

716 (5), 660 (8), 626 (4), 568 (3), 547 (20), 485 (13), 413 (23), 372 (57), 316 (7), 273 

(28), 232 cm–1 (16); MS (DEI+): m/z (%): 356 (<1) [M+H]+, 310 (19) [M–OCH2CH3]+, 

282 (8) [M–COOCH2CH3]+, 264 (2) [M–2 NO2+H]+, 237 (100) [M–COOCH2CH3–
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NO2 ]+, 191 (100) [M–CH2C(NO2)3]+, 119 (38) [CH2C(NO2)2+H]+, 102 (14) 

[CH3CH2OCOCH2N+H]+, 74 (21) [CH3CH2OCO+H]+; elemental analysis calcd (%0 for 

C7H9N5O12: C 23.67, H 2.65, N 19.72; found: C 23.71, H 2.65, N 19.37; sensitivities: 

impact: 7 J, friction: 144 N, grain size: 100–500 µm. 
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3.2 INTRODUCTION 

The 1,1,1-trinitroethyl moiety is a widely-used building block in the chemistry of high 

energetic explosives, especially if performing as a high energy dense oxidizer (HEDO).[1] 

Such compounds can be used as high performance, halogen-free propellants. These might 

overcome the environmental problems of hydrogen chloride formation during the use of 

ammonium perchlorate as oxidizer in rocket propellant formulations.[2] Furthermore, the 

perchlorate anion has negative health effects, scientific research indicates that perchlorate 

contaminated water can disrupt the thyroid’s ability to produce hormones needed for 

normal growth and development.[3]  

There are three synthesis routes for the chemical transfer of a 1,1,1-trinitroethyl 

functionality known. The most common way is the nucleophilic substitution of halogen 

atoms in reactive organic compounds like haloalkanes, acid halides and esters of the 

formic acid with the easy available alcohol 2,2,2-trinitroethanol.[4] An alternative to this is 

the widespread Mannich reaction, which is a multi component condensation between a 

nitroalkane, an aldehyde and a primary or secondary amine. The mechanism of the 

reaction starts with the formation of an iminium ion from the amine and formaldehyde. 

This cationic intermediate can be attacked from the trinitromethanide anion to form the 

2,2,2-trinitroethylamine unit.[1b, 5] The third and less applied route, is the transfer of the 

1,1,1-trinitroethyl moiety by a chloroformate.[6] 
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withdrawing effect of the hydrogen bond acceptor on the proton. As a result the proton 

becomes more shielded and its resonance is shifted upfield.[11] 

 

 

 

Table 3.1. Multinuclear NMR resonances of 1–3 (ppm) in acetone-D6 

 1 2 3 
1H 5.51 (CH2) 6.77 (s, NH) 

6.49 (s, NH) 

5.68 (CH2) 

10.07 (s, NH) 

5.53 (CH2) 

13C 149.5 (CO2Cl) 

121.4 [C(NO2)3] 

63.3 (CH2) 

154.5 (CO2N) 

125.7 [C(NO2)3] 

61.8 (CH2) 

145.2 (CO2N) 

122.2 [C(NO2)3] 

62.1 (CH2) 
14N –36 (NO2) –33 (NO2) 

−310 (NH2) 

–36 (NO2) 

−55 (NNO2) 

−292 (NNO2) 
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Figure 3.1. 1H NMR resonance of the NH2 group of 2 at variable temperatures in [D6]DMSO. 

 

The NH resonance of the nitrocarbamate 3 compared to the NH2 of 2 is shifted downfield 

to 10.70 ppm. In the 13C{1H} NMR spectra the resonances of the carbon atoms of the 
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methylene groups were observed at 63.3–61.8 ppm, those of the trinitromethyl groups 

broadened at 125.7–121.4 ppm and the carbonyl groups at 149.5 (1), 154.5 (2) and 

145.2 ppm (3). The nitro resonances in the 14N NMR of the trinitromethane moiety were 

found for 1–3 between –33 and –36 ppm and in addition, that of the nitrocarbamate of 3 

was observed at −55 ppm. For compounds 2 and 3 a very broad resonance for the amide 

nitrogen atom was detected at −310 (2) and −292 ppm (3). 

 

 

VIBRATIONAL SPECTROSCOPY 

The vibrational analysis of 1–3 showed the characteristic asymmetric NO2 stretching 

vibrations in the range of 1615 to 1588 cm–1 and the symmetric stretching vibrations at 

1304 to 1271 cm–1 (Table 3.2). All vibrations of the nitro groups for 1–3 are in a close 

range, explained by the similarity of the functional groups. The carbonyl stretching 

vibration was observed in the typical range between 1785 and 1721 cm–1. The N−H 

stretching vibrations for 2 and 3 were found in the range of 3447–3062 cm–1. 

 

Table 3.2. Characteristic IR and Raman vibrations a) /cm–1 of 1–3 

 1 2 3 

 Raman IR Raman IR Raman IR 

ν NH   3300 (4) 3447 w 

3352 m 

3302 w 

3170 (9) 

 

3168 w 

3062 w 

ν CO 1785 (14) 1777 m 1721 (17) 1729 m 1768 (49) 1772 m 

νas NO2 1615 (26) 1598 s 1622 (31) 1590 s 1609 (46) 1588 s 

νs NO2 1301 (32) 1293 m 1304 (31) 1300 m 1303 (55) 1271 w 

a) Raman intensities in brackets. IR intensities: s = strong, m = medium, w = weak.  

 

SINGLE CRYSTAL STRUCTURAL ANALYSIS  

Single crystals of 2 and 3 were obtained from tetrachloromethane at ambient temperature 

(Table 3.3). Both compounds crystallize in the monoclinic space group P21/c with four 

formula units per unit cell. The asymmetric unit with selected bond lengths and angles are 

shown in Figure 3.2 (2) and Figure 3.3 (3). 
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Table 3.3. X-ray data and parameters of 2 and 3 

 2 3 

Formula C3H4N4O8 C3H3N5O10 

FW /g mol–1 224.09 269.08 

Temperature /K 173(2) 243(2) 

Crystal size /mm 0.28 × 0.10 × 0.05 0.25 × 0.02 × 0.02 

Crystal system monoclinic monoclinic 

Crystal description colorless needle colorless needle 

Space group P21/c P21/c 

a /Å 12.838(1) 10.784(2) 

b /Å 6.572(1) 11.527(2) 

c /Å 9.869(1) 8.752(2) 

β /° 103.57(1) 108.20(2) 

V /Å3 809.34(1) 1033.5(7) 

Z 4 4 

ρcalc. /g cm–3 1.839(3) 1.730(2) 

µ /mm–1 0.186 0.178 

F(000) 456 544 

θ range /° 4.28–25.99 4.30–26.00 

Index ranges –7 ≤ h ≤ 15 –13 ≤ h ≤ 13 

 –8 ≤ k ≤ 7 –13 ≤ k ≤ 14 

 –12 ≤ l ≤ 12 –7 ≤ l ≤ 10 

Reflections collected 3596 5001 

Reflection observed 1572 1945 

Independent reflections 1082 681 

Rint 0.0234 0.0526 

R1, wR2 (2σ data) 0.0292, 0.0574 0.0612, 0.1277 

R1, wR2 (all data) 0.0485, 0.0610 0.1759, 0.1633 

GOOF on F2 0.883 0.806 

Resd. dens. /e Å3 −0.165/0.188 −0.198/0.362 
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The molecular structure of the carbamate 2 shows a large part with nearly planar 

arrangement. This planar range comprised the carbamate, the C2 carbon of the methylene 

group and C3 of the trinitromethyl moiety. The conformation of the substituents at C2 

and C3 is nearly staggered [N2−C3−C2−H3A 43.3(1)°, N3−C3−C2−H3B 42.6(1)°, 

N4−C3−C2−O2 42.7(1)°]. The C−N bond lengths of the trinitromethyl moiety are in the 

range of 1.52 Å, which is significantly longer than a regular C−N bond (1.47 Å).[12] This 

is typical for molecules with the trinitromethyl moiety and is due to steric repulsion 

effects.[1b, 4a] The three nitro groups arrange in a propeller like constitution, which 

optimize the non-bonded intramolecular attractions [partial charge distribution of nitrogen 

(δ+) and oxygen (δ−) atom in the nitro group] and electrostatic repulsion of two 

neighboring nitro groups. The N···O attractions (N2···O6, N3···O8, N4···O3) can be 

found in 2 with distances in the range of 2.55–2.67 Å, which are much shorter than the 

sum of the van der Waals radii for nitrogen and oxygen (3.07 Å).[13] In addition, another 

strong attractive intramolecular N···O interaction with 2.60 Å, is observed between the 

nitrogen atom N4 of the trinitro functionality and the oxygen O2. The carbamate group 

with a short C−NH2 bond (1.333 Å) and shortened N−H bonds (0.87 and 0.91 Å) shows 

typical values for carbamates.[14] 
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Table 3.4. Hydrogen-bond distances /Å and angles /° of 2 

D–H···A D–H H···A D···A ∡(D–H···A) 

N1–H1···O1i 0.91 2.160 3.012 156.0 

N1–H2···O5ii 0.87 2.709 3.189 116.3 

N1–H2···O1iii 0.87 2.310 3.152 163.9 

C2–H3A···O7iv 0.99 a) 2.634 3.379 132.1 

a) Normalized C–H length 0.99 Å. Symmetry codes of acceptor molecules: (i) −x, 1−y, −z; (ii) −x, 

−½+y, ½−z; (iii) x, 1½−y, ½+z; (iv) x, 1½−y, −½+z. 

 

The data collection of 3 had to be performed at higher temperature, because the 

compound showed a phase transition at about −62 °C. This phase transition leads to 

microfracture of the single crystal, which made a measurement impossible. Thus, the data 

collection was carried out at −30 °C, causing much greater thermal vibrations of the 

atoms, especially of the trinitromethyl group. 
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to N1 to two oxygen atoms (O1i, O4i), of symmetry related nitrocarbamate functionality. 

Here, the interaction between the carbonyl (O1) and the NH group is significantly the 

strongest. Also an improper hydrogen bond with carbon as donor (CH···O) can be 

observed, between the methylene (C2−H2A/B) and neighboring nitro groups (Table 

3.5).[16] This extensive hydrogen-bonding may help to explain the good thermal 

stability.[17] 

 

Table 3.5. Hydrogen-bond distances /Å and angles /° of 3 

D–H···A D–H H···A D···A ∡(D–H···A) 

N1–H1···O1i 0.82 2.015 2.797 159.8 

N1–H1···O4i 0.82 2.634 3.117 119.3 

C2–H2B···O3ii 0.99 2.711 3.635 154.1 

C2–H2B···O4ii 0.99 2.516 3.424 157.2 

C2–H2A···O10iii 0.99 2.607 3.448 143.9 

a) Normalized C−H length 0.99 Å. Symmetry codes of acceptors molecules: (i) x, ½−y, −½+z; (ii) 

1−x, −½+y, 1½−z; (iii) −x, −y, 1−z.  

 

 

THERMAL AND ENERGETIC PROPERTIES 

2,2,2-trinitroethyl carbamate (2) melts at 91 °C (onset) and is thermally stable up to a 

temperature of 169 °C (onset) (Table 3.6). It burns residue-free with a smokeless flame 

due to a balanced amount of oxygen and shows no sensitivity towards impact, but it is 

very sensitive to friction. 
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Table 3.6. Physical and chemical properties of 2 and 3 

 2 3 

Formula C3H4N4O8 C3H3N5O10 

FW /g mol–1 224.09 269.08 

Tm /°C (onset) a) 91 109 

Tdec /°C (onset) b) 169 153 

N /% c) 25.00 26.03 

N + O /% d) 82.12 85.49 

ΩCO /% e) +21.4 +32.7 

ΩCO2 /% f) +0.0 +14.9 

ρ /g cm–3 g) 1.84 (173 K) 1.73 (243 K) 

ΔU°f /kJ mol–1 h) −459 −366 

ΔH°f /kJ kg–1 i) −1960 −1278 

a) Melting (Tm) and b) decomposition (Td) point from DSC measurement carried out at a heating 

rate of 5 °C min–1. c) Nitrogen content. d) Combined nitrogen and oxygen content. e) Oxygen 

balance assuming the formation of CO. f) Oxygen balance assuming the formation of CO2. g) 

Calculated density from X-ray measurement. h) Energy of formation and i) Heat of formation 

calculated with CBS-4M method. 

 
By a low temperature DSC measurement of 2,2,2-trinitroethyl nitrocarbamate (3) an 

endothermic solid phase transformation can be observed at −62 °C (onset). Upon further 

heating, the compound showed a melting point at 109 °C (onset) and decomposition starts 

at 153 °C (onset). The sensitivities of 3 are in the range of RDX, and therefore it is 

sensitive to friction, impact and electrostatic discharge. 

For the calculation of the performance parameters using the EXPLO5 program, the cell 

parameters of 2 and 3 were determined at 25 °C in order to obtain the density of the 

substances at standard conditions (Table 3.7). The performance data of 2 and 3 are 

summarized in Table 3.8. 

 

 

 

 

 

 



____________________________________________________________________CHAPTER 3 

65 | 

Table 3.7. Cell parameters of 2 and 3 at 25 °C 

 2 3 

Temperature /K 298(1) 298(1) 

Crystal system monoclinic monoclinic 

Space Group P21/c P21/c 

a /Å 12.91(4)  10.79(4)  

b /Å 6.59(2)  11.540(3)  

c /Å 9.88(4)  8.76(4)  

β /° 103.5(3) 108.2(4) 

V /Å3 817(3)  1037(4)  

Z 4 4 

ρcalc. /g cm–3 1.821 1.722 

 
Table 3.8. Predicted detonation, combustion parameters (using EXPLO5 V5.05) and sensitivity 

data for 2 and 3 

 2 3 

Qv /kJ kg–1 a) −5261 −4420 

Tex /K b) 4081 3832 

V0 /L kg–1 c) 696 687 

PCJ /kbar d) 309 242 

VDet /m s–1 e) 8224 7541 

IS /J f) >40 10 

FS /N g) 64 96 

ESD /J h) 0.15 0.10 

grain size /µm i) <500 500-1000 

a) Heat of combustion. b) Temperature of the combustion gases. c) Volume of the explosion 

gases. d) Detonation pressure. e) Detonation velocity. f) Impact and g) Friction sensitivities. h) 

Sensitivity towards electrostatic discharge. i) Grain size of the samples used for sensitivity tests. 
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           (1) 

 

The determining parameter for high energy dense oxidizers (HEDO) is the specific 

impulse Is. It is used to evaluate the performance of solid rocket propellants and the used 

high energy dense oxidizers. An expression for Is is given in Equation (1), were γ is the 

ratio of specific heats for the combustion gases, R the ideal gas constant, Tc the burning 

temperature in the combustion chamber and M the molecular weight of the gaseous 

combustions products at the nozzle.[1a] Is is therefore dependent on the burning 

temperature proportional and the molecular weight of the combustions products 

reciprocal. The heat of combustion can be increased by adding a high performing fuel, 

which has an increased heat of combustion ΔHc. 

 

 

1½O2 (g) + 2Al (s) → Al2O3 (s)    ΔHc = −1590 kJ  (2) 

3CO2 (g) + 2Al (s) → 3CO (g) + Al2O3 (s)  ΔHc = −741 kJ  (3) 

3H2O (g) + 2Al (s) → 3H2 (g) + Al2O3 (s)  ΔHc = −866 kJ  (4) 

3CO (g) + 2Al (s) → 3C (s) + Al2O3 (s)   ΔHc = −1251 kJ  (5) 

 

Aluminum has a very high heat of combustion ΔHc and the combustion products (Al2O3) 

are not harmful to the environment. The oxidation of aluminum with oxygen is highly 

exothermic and produces a lot of heat [Equation (2)[18]], which increases Tc. In the case of 

an oxygen deficit, the aluminum reacts further with the gaseous products water and 

carbon dioxide, to form hydrogen and carbon monoxide. Also, these two reactions in an 

oxygen-deficient composition produce a great amount of heat [Equation (3) and Equation 

(4)[18]] and no change in the volume of produced gas. However, there is a limit to the 

amount of aluminum that can be added, because aluminum can also react with carbon 

monoxide to form carbon and alumina. This reaction also causes an increase of heat but 

the gas volume decreases radically from 3 to 0 moles for this reaction [Equation (5)[18]]. 

An increase of the value for Is by 20 s leads empirically to a doubling of the usual 

payload.[1a] Therefore, the development of new energetic oxidizers based on CHNO 

compounds decomposing into small aerialy molecules is a promising way to increase the 

specific impulse of solid rocket boosters. 
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The specific impulse of 2 in a mixture of 20 % of aluminum as fuel is 249 s. The specific 

impulse of 3 achieved with an admixture of 25 % aluminum, is a specific impulse of 

247 s and is therefore in the range of the standard mixture of ammonium perchlorate 

(Table 3.9). 

 

Table 3.9. Predicted specific impulse Is of mixtures with aluminum (using EXPLO5 V5.05) and 

sensitivity data for 2 and 3 

 2 3 AP 

Is /s a) 234 223 153 

Is /s (30 % Al) b) - d) 244 243 

Is /s (25 % Al) b) 249 247 242 

Is /s (20 % Al) b) 249 247 232 

Is /s (15 % Al) b) 248 247 234 

Is /s (10 % Al) b) 245 239 181 

Is /s (5 % Al) b) 240 233 178 

Is /s (15 % Al, 14 % binder) c) - d) 257 257 

Is /s (10 % Al, 14 % binder) c) - d) 251 253 

Is /s (5 % Al, 14 % binder) c) - d) 244 247 

a) Specific impulse. b) Specific impulse for mixtures with the compound 2, 3 and ammonium 

perchlorate (AP) as oxidizer with different values of aluminum. c) Specific impulse for mixtures 

with different values of aluminum and binder (6 % polybutadiene acrylic acid, 6 % polybutadiene 

acrylonitrile and 2 % bisphenol-A ether) at 70.0 kbar chamber pressure and isobaric combustion 

condition (1 bar) d) too low oxygen balance of the composition to calculate. 
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3.4 CONCLUSION 

The facile synthesis route of choice for 2,2,2-trinitroethyl chloroformate (1) is a direct 

chloroformulation of 2,2,2-trinitroethanol with phosgene. This route has compared to the 

known route several advantages. The reaction with aqueous ammonia gives 2,2,2-

trinitroethyl carbamate (2) and nitration furnishes 2,2,2-trinitroethyl nitrocarbamate (3). 

By a low temperature DSC measurement an endothermic solid phase transformation of 3 

was observed at −62 °C. On further heating melting occurs at 109 °C and decomposing at 

153 °C. The nitrocarbamate 3 has a very high positive oxygen balance (CO2) Ω of 

+14.9 %. Thus, the molecule consists of 59.5 % of oxygen and 26.0 % of nitrogen. These 

examples demonstrate that the 2,2,2-trinitroethylformate group is a very promising 

energetic moiety, which combines very high oxygen content and relative high stability. 

The specific impulse Is of compositions with 3 is comparable with compositions using 

ammonium perchlorate as oxidizer. Advantageously, the burning of 3 with aluminum 

produces no toxic substances such as hydrogen chloride. 
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3.5 EXPERIMENTAL SECTION 

General Procedures 

Raman spectra were recorded on a Bruker Multi-RAM Raman Sample Compartment 

D418 equipped with a Nd-YAG-Laser (1064 nm) and a Ge diode detector. Infrared 

spectra were measured with a Perkin–Elmer Spectrum BX-FTIR spectrometer equipped 

with a Smiths DuraSamplIR II ATR device. All spectra were recorded at ambient 

temperature. NMR spectra were recorded with a JEOL Eclipse 400 instrument and 

chemical shifts were determined with respect to external Me4Si (1H, 399.8 MHz; 13C, 

100.5 MHz) and MeNO2 (14N, 28.9 MHz). Mass spectrometric data were obtained with a 

JEOL MStation JMS 700 spectrometer (DCI+, DEI+). Elemental analyses of C/H/N were 

performed with an Elementar Vario EL analyzer. Melting points were measured with a 

Linseis DSC-PT10 instrument, using a heating rate of 5 °C min–1 and checked by a Büchi 

Melting Point B-540 apparatus and are not corrected. The sensitivity data (impact, 

friction, and electrostatic discharge) were performed with a drophammer, friction tester, 

and electrostatic discharge device conform to the directive of the Federal Institute for 

Materials Research and Testing (BAM).[1b]  

 

Computational Details 

All ab initio calculations were carried out using the program package Gaussian 03 

(Revision B.03)[19] and visualized by GaussView 5.0.8.[20] Structure optimizations and 

frequency analyses were performed with Becke's B3 three parameter hybrid functional 

using the LYP correlation functional (B3LYP). For C, H, N and O a correlation consistent 

polarized double-zeta basis set was used (cc-pVDZ). The structures were optimized 

without symmetry constraints and the energy is corrected with the zero point vibrational 

energy.[21]  

The enthalpies (H) and free energies (G) were calculated using the complete basis set 

(CBS) method in order to obtain accurate values.[21a] The CBS models use the known 

asymptotic convergence of pair natural orbital expressions to extrapolate from 

calculations using a finite basis set to the estimated complete basis set limit. CBS-4 starts 

with a HF/3-21G(d) geometry optimization, which is the initial guess for the following 

SCF calculation as a base energy and a final MP2/6-31+G calculation with a CBS 

extrapolation to correct the energy in second order. The used reparametrized CBS-4M 

method additionally implements a MP4(SDQ)/6-31+(d,p) calculation to approximate 
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higher order contributions and also includes some additional empirical corrections.[22] The 

enthalpies of the gas-phase species were estimated according to the atomization energy 

method.[23]  

All calculations affecting the detonation parameters were carried out using the program 

package EXPLO5 V5.05.[24] The detonation parameters were calculated at the CJ point 

with the aid of the steady-state detonation model using a modified Becker-Kistiakowski-

Wilson equation of state for modeling the system. The CJ point is found from the 

Hugoniot curve of the system by its first derivative. The specific impulses were also 

calculated with the EXPLO5 V5.05 program, assuming an isobaric combustion of a 

composition of 2 and 3 as oxidizer, aluminum as fuel, 6 % polybutadiene acrylic acid, 

6 % polybutadiene acrylonitrile as binder and 2 % bisphenol-A as epoxy curing agent. A 

chamber pressure of 70.0 bar and an ambient pressure of 1.0 bar with frozen expansion 

conditions were estimated for the calculations.  

 

X-ray Crystallography 

For all compounds, an Oxford Xcalibur3 diffractometer with a CCD area detector was 

employed for data collection using Mo-Kα radiation (λ = 0.71073 Å). The structures were 

solved by direct methods (SIR97)[25] and refined by full-matrix least-squares on F2 

(SHELXL-97).[26] All non-hydrogen atoms were refined anisotropically. The hydrogen 

atom positions were calculated, except for the N-terminal hydrogen which were located in 

a difference Fourier map and then refined freely. Crystallographic data (excluding 

structure factors) for the structures reported in this paper have been deposited with the 

Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, 

UK. Copies of the data can be obtained free of charge on quoting the depository numbers 

CCDC-923988 (2) and CCDC-923989 (3) (fax.: + 44 1223/336-033; e-mail: 

deposit@ccdc.cam.ac.uk). 

 

Synthesis 

CAUTION! All of the described compounds are energetic with sensitivities towards heat, 

impact and friction. Although no hazards occurred during preparation and manipulation, 

additional proper protective precautions (face shield, leather coat, earthened equipment 

and shoes, Kevlar® gloves and ear plugs) should be used when undertaking work with 

these compounds. 
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CAUTION! Phosgene is a highly toxic, irritating and corrosive gas. Inhalation can 

cause fatal respiratory damage. Phosgene reacts violently and decomposes to toxic 

compounds on contact with moisture, including chlorine and carbon monoxide. 

 

2,2,2-Trinitroethyl chloroformate (1) 

In a four-necked, 250 mL round-bottomed flask cooled in a dry-ice/ethanol bath and 

equipped with a magnetic stirrer, gas inlet, septum, dry-ice/ethanol cooled reflux 

condenser with gas outlet, and a thermometer, phosgene (14.0 g, 13.9 mmol) was 

condensed at −70 °C. A solution of 2,2,2-trinitroethanol (5.0 g, 27.6 mmol) in 

dichloromethane (100 mL) was added, while the temperature was maintained below 

−50 °C. A solution of triethylamine (2.9 g, 4.0 mL, 29.0 mmol) diluted in 

dichloromethane (50 mL) was added dropwise within 1 h, still maintaining the 

temperature below –50 °C. Afterwards, the mixture and the reflux condenser were 

allowed to warm up and were stirred for 12 h at ambient temperature. The organic solvent 

was removed and the light yellow residue was extracted with diethyl ether (3 × 50 mL). 

The insoluble triethylammonium chloride was filtered off and the combined organic 

phase was washed with ice-cold water (200 mL) and dried with magnesium sulfate. All 

volatiles were removed in vacuo and the residue was distilled (oil bath 65 °C, 0.03 mbar) 

yielding 8.9 g of 1 (86 %) as a colorless liquid. 

 

IR: ν = 3024 (w), 2974 (w), 2893 (w), 1777 (m), 1598 (s), 1438 (w), 1384 (w), 1347 (w), 

1293 (m), 1124 (s), 1088 (s), 979 (w), 853 (w), 826 (w), 796 (s), 778 (m), 721 (w), 676 

(m) cm−1. Raman (200 mW): ν = 3020 (16), 2972 (56), 1785 (14), 1615 (26), 1439 (14), 

1384 (25), 1349 (42), 1301 (32), 1170 (6), 1091 (8), 1034 (24), 892 (21), 856 (100), 827 

(10), 800 (16), 777 (9), 723 (7), 641 (8), 549 (14), 531 (14), 501 (55), 462 (14), 398 (45), 

374 (75), 338 (17), 285 (46), 234 (31) cm−1. 1H NMR ([D6]acetone) δ = 5.51 (s, 

CH2) ppm. 13C{1H} NMR ([D6]acetone) δ = 149.5 (CO2Cl), 121.4 (C(NO2)3), 63.3 (CH2) 

ppm. 14N NMR ([D6]acetone) δ = −36 (C(NO2)3) ppm. EA (C3H2N3O8Cl, 243.52) calcd.: 

C 14.80, H 0.83, N 17.26, Cl 14.56 %; found: C 15.01, H 0.73, N 17.01, Cl 14.16 %. 

 

2,2,2-Trinitroethyl carbamate (2) 

Into a stirring solution of 1 (0.50 g, 2.1 mmol) in dichloromethane (5 mL), chilled to 

−30 °C, concentrated ammonia (30 %, 0.5 mL, 8.0 mmol) was added dropwise. The 
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mixture was stirred for 1 h at −30 °C. The precipitate formed was filtered off and 

recrystallized from hot water, to obtain 0.38 g (83 %) colorless needles of the carbamate 

2. 

 

DSC (5 K min–1): 91 °C (onset mp.) (Ref.[8] 92–93 °C)), 169 °C (onset dec.); IR: ν = 

3447 (w), 3352 (w), 3302 (w), 2962 (m), 1729 (m), 1590 (s), 1441 (w), 1399 (m), 1367 

(w), 1325 (m), 1300 (m), 1248 (w), 1167 (w), 1138 (w), 1105 (m), 1027 (w), 910 (w), 

873 (w), 858 (w), 804 (m), 784 (m), 772 (m), 741 (w), 673 (w), 646 (w), 606 (w), 546 

(m), 527 (m) cm−1. Raman (200 mW): ν = 3300 (4), 3004 (23), 2964 (51), 2828 (3), 1721 

(17), 1622 (31), 1608 (28), 1587 (18), 1445 (17), 1404 (8), 1369 (54), 1304 (31), 1250 

(15), 1171 (10), 1145 (10), 1112 (9), 1091 (9), 1027 (17), 910 (19), 878 (10), 859 (100), 

802 (14), 786 (12), 745 (10), 674 (10), 647 (12), 549 (18), 524 (9), 426 (55), 397 (46), 

377 (72), 305 (53), 265 (17), 212 (30) cm−1. 1H NMR ([D6]acetone) δ = 6.77 (s, 1H, 

NH2), 6.49 (s, 1H, NH2), 5.68 (s, 2H, CH2) ppm. 13C{1H} NMR ([D6]acetone) δ = 154.5 

(CO2N), 125.7 (C(NO2)3), 61.8 (CH2) ppm. 14N NMR ([D6]acetone) δ = −33 (C(NO2)3), 

−310 (NH2) ppm. MS (DEI+) m/z (%): 225 (15) [(M + H)+], 59 (13) [CHNO2
+], 46 (59) 

[NO2
+], 44 (100) [(M − OCH2(NO2)3)+, CONH2

+], 43 (31) [CHNO+], 30 (71) [NO+]. EA 

(C3H4N4O8, 224.10) calc.: C 16.08, H 1.80; N 25.00 %; found: C 15.89; H 1.78; N 

24.50 %. BAM drophammer: >40 J; friction tester: 64 N; ESD: 0.15 J (grain size 

<500 µm). 

 

2,2,2-Trinitroethyl nitrocarbamate (3) 

Into concentrated sulfuric acid (1 mL) was dropped red fuming nitric acid (>99.5 %, 

1 mL) at 0 °C. To this chilled nitration mixture, 2,2,2-trinitroethyl carbamate (2) (0.25 g, 

1.1 mmol) was added in small portions. The solution was stirred for 2 h at 0 °C and for 

2 h at ambient temperature. The mixture was poured onto ice-water (200 mL), extracted 

with ethyl acetate (3 x 50 mL) and the combined organic phase was dried with 

magnesium sulfate. The solvent was removed under reduced pressure and the crude solid 

product was recrystallized from carbon tetrachloride to obtain 0.30 g (99 %) colorless 

needles of 3. 
 

DSC (5 K min–1): 109 °C (onset mp.), 153 °C (onset dec.); IR: (cm−1): ν = 3168 (w), 

3062 (w), 3013 (w), 2900 (w), 1772 (m), 1588 (s), 1466 (m), 1444 (w), 1390 (w), 1351 

(w), 1326 (m), 1398 (s), 1271 (w), 1170 (s), 990 (m), 972 (s), 882 (w), 856 (w), 826 (m), 
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792 (m), 777 (m), 760 (m), 745 (m), 710 (w) 668 (w) cm−1. Raman (200 mW): ν = 3170 

(9), 3013 (33), 2966 (48), 2868 (9), 1768 (49), 1609 (46), 1468 (23), 1442 (23), 1393 

(32), 1353 (46), 1324 (75), 1303 (55), 1272 (26), 1183 (19), 1095 (16), 1050 (51), 998 

(62), 883 (21), 859 (100), 794 (17), 781 (18), 761 (19), 657 (18), 542 (25), 461 (58), 377 

(72), 407 (85), 376 (92), 271 (69) cm−1. 1H NMR ([D6]acetone) δ = 10.70 (s, 1H, NH), 

5.53 (s, 2H, CH2) ppm. 13C{1H} NMR ([D6]acetone) δ = 145.2 (CO2N), 122.2 (C(NO2)3), 

62.1 (CH2) ppm. 14N NMR ([D6]acetone) δ = −36 (C(NO2)3), −55 (NNO2), −292 (NNO2) 

ppm. MS (DCI+) m/z (%): 270 (1) [(M + H)+], 225 (2) [(M−NO2)+]. EA (C3H3N4O10, 

269.08) calc.: C 13.39; H 1.12; N 26.03 %; found: C 13.54; H 1.09; N 25.70 %. BAM 

drophammer: 10 J; friction tester: 96 N; ESD: 0.10 J (grain size 500–1000 µm).
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4.1 ABSTRACT 

The energetic polynitro compounds 2,2,2-trinitroethyl 2,2,2-trinitroethylcarbamate, 2-

fluoro-2,2-dinitroethyl 2,2,2-trinitroethylcarbamate, 2,2,2-tinitroethyl 2-fluoro-2,2-

dinitroethylcarbamate and 2-fluoro-2,2-dinitroethyl 2,2,2-trinitroethylcarbonate were 

synthesized and investigated as potential high energy dense oxidizers. Due to their 

structural similarity, the compounds have been compared with each other by using 

various analytical methods, like single-crystal X-ray diffraction, vibrational spectroscopy 

(IR and Raman), multinuclear NMR spectroscopy, elemental analysis, mass spectrometry 

and multi-temperature DSC measurements. The suitability of the compounds as potential 

oxidizers in energetic formulations has been investigated. In addition, the heats of 

formation of the products were calculated with the program package Gaussian 09. Several 

detonation parameters such as the detonation pressure, velocity, energy and temperature 

were computed using the EXPLO5 code. Furthermore, the sensitivity toward impact, 

friction and electrical discharge was tested using a BAM drop hammer, a friction tester as 

well as a small-scale electrical discharge device.  
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4.2 INTRODUCTION 

The widely used oxidizer in solid-rocket propellants is ammonium perchlorate (AP). This 

cheap and oxygen rich substance comes along with several problems for the environment. 

Especially the large amount of hydrogen chloride produced is an undesirable side effect. 

A solid-rocket motor consists of about >70% oxidizer besides fuel and additives.[1,2] 

Therefore, it is important to drive research towards environmental friendly chlorine free 

compounds with a great excess of oxygen.  

The relative amount of oxygen excess is calculated as oxygen balance. For high energy 

dense oxidizers, this value should be positive and preferable greater than AP with 34%. 

For calculating the oxygen balance of a CHFNO compound, it is assumed that the 

compounds are converted into H2O, N2, CO2 and HF during the combustion. 

Alternatively, due to the high temperature of combustion, CO can be assumed to be 

formed instead of CO2. The oxygen balance is defined according to Eqs. (1) and (2) for a 

general formula CaHbFcNdOe while M is the molecular mass of the compound.[3] 

 

ΩCO2
=
e− 2a− ((b− c) / 2)

M
×1600  

Eq (1): Oxygen balance for a CHFNO compound assuming CO2 as product of combustion in %. 

ΩCO =
e− a− ((b− c) / 2)

M
×1600  

Eq (2): Oxygen balance for a CHFNO compound assuming CO as product of combustion in %. 

 

Based on previous investigations, compounds derived from 2,2,2-trinitroethanol as well 

as 2-fluoro-2,2-dinitroethanol (though containing the halogen fluorine) might be useful as 

starting materials for preparing chlorine free possible high energy dense oxidizers.[1,4-6] In 

order to improve the thermal stability of polynitrated CH(F)NO-compounds, we focused 

on molecules containing the carbamate and the carbonate moiety. 

The specific impulse Is is one of the main parameters specifying the performance of solid-

rocket boosters. It is proportional to the reciprocal of the molecular weight of the 

decomposition products and the temperature inside the combustion chamber during 

combustion of the composite.[3,7,8] An increase of the value for Is by 20 s leads empirically 

to a doubling of the usual payload.[3,7] Therefore, the development of new energetic 

oxidizers based on CH(F)NO compounds decomposing into small volatile molecules and 
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achieving an increase of the temperature of combustion is a promising way to increase the 

specific impulse of solid-rocket boosters. 

A detailed study of the synthesis and characterization of some fluorine containing 

energetic materials is presented in this work. Potential high energy dense oxidizers with 

comparable sensitivities toward PETN were prepared and additional analytical data were 

given for those compounds, which were only poorly described.[9-11] 
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4.3 RESULTS AND DISSCUSSION 

SYNTHESIS 

The important precursor S-ethyl N-(2,2,2-trinitroethyl)thiocarbamate (1) was synthesized 

via the reported reaction pathway from S-ethyl thiocarbamate and 2,2,2-trinitroethanol 

using a Mannich like reaction in a buffered aqueous solution (Scheme 4.1).[9] 

Compound 1 was further reacted with chlorine gas in a one-pot reaction together with 

2,2,2-trinitroethanol or 2-fluoro-2,2-dinitroethanol (without isolation of the isocyanate 

intermediate), yielding 2,2,2-trinitroethyl 2,2,2-trinitroethylcarbamate (2) or 2-fluoro-2,2-

dinitroethyl 2,2,2-trinitroethylcarbamate (3), previously prepared by Sitzmann and 

Gilligan[9] (Scheme 4.1).  

 

 
Scheme 4.1. Synthesis of the compounds 2–3 via 1. 

 

2,2,2-Trinitroethyl 2-fluoro-2,2-dinitroethylcarbamate (4) and 2-fluoro-2,2-dinitroethyl 

2,2,2-trinitroethylcarbonate (5) were synthesized from 2,2,2-trinitroethyl chloroformate 

and the corresponding starting materials 2-fluoro-2,2-dinitroethyl amine or 2-fluoro-2,2-

dinitroethanol, respectively (Scheme 2). The reaction has to take place under inert gas 

conditions. Due to the tendency to spontaneous and violent decomposition at ambient 

temperature, 2-fluoro-2,2-dinitroethyl amine should only be handled highly diluted in 

chloroform or dichloromethane. The existence of 5 was previously only noted in a patent, 

but no further details given.[10] 
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Scheme 4.2. Synthesis of the compounds 4–5. 

 

NMR SPECTROSCOPY 

The compounds were thoroughly characterized by 1H, 13C, 14N and 19F NMR 

spectroscopy. The multinuclear NMR spectra were recorded in CDCl3 (1, 3, 4), or 

acetone-D6 (2, 5) as solvent. In the 1H NMR spectra of 2, 4 and 5 the singlets for the 

CH2C(NO2)3 groups can be observed at 6.07–5.43 ppm. The corresponding resonances 

for 1, 2 and 3 were observed as doublets at 4.93 ppm (3J(H,H) = 6.8 Hz), 5.25 ppm 

(3J(H,H) = 6.8 Hz) and 4.84 ppm (3J(H,H) = 6.6 Hz) due to the coupling with the adjacent 

NH moiety, respectively. The NH resonances for the compounds 1–4 were observed in 

the range of 8.21–5.52 ppm as a broad resonance, appearing as triplets. The compounds 

3–5 have a CH2CF(NO2)2 moiety in common, which shows up in the 1H NMR spectra as 

a doublet due to a 3J(H,F) coupling (15.2–14.4 Hz) in the range of 5.76–4.55 ppm. The 

corresponding resonance of 4 shows an additional 3J(H,H) = 6.7 Hz coupling with a 

connected NH group and therefore, a doublet of doublets was observed. Resonances of 

the ethyl ester group of 1 were determined as quartet at 2.96 ppm for OCH2CH3 and as 

triplet at 1.29 ppm with a coupling constant of 7.4 Hz. The carbon atoms of the 

trinitromethyl moieties in the 13C NMR spectra were always identified as very broad 

resonances in the range 126.4–124.4 ppm for 1, 2 and 4. In the case of 3 and 5 these 

carbon resonances were not detected at all. But in the 14N NMR spectra, between –33 and 

–35 ppm the corresponding resonances of the nitrogen atoms of the NO2 moieties were 

positively identified in all cases. The carbamate moieties of 2–4 were observed as weak 

resonances in the 13C NMR spectra in the range of 155.8–152.8 ppm. The resonances of 

the thiocarbamate 1 and the carbonate group of 5 were identified at 169.5 and 152.4 ppm, 

respectively. The carbon resonance of the fluorodinitromethyl moiety of 4 was observed 

as a doublet at 120.9 ppm (1J(C,F) = 289.4 Hz). Additionally, the resonances of the 

(O2N)2FC O O
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(O2N)2FC OH
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CH2CF(NO2)2 moieties of 3–5 were also observed as doublets in the range of 65.6–

643.2 ppm with a 2J(C,F) coupling constant of 20.1–19.2 Hz. The 14N NMR spectra also 

show resonances of the fluorodinitromethyl moieties of 3–5 between –22 and –26 ppm. 

The 19F NMR spectra showed the resonances of the fluorodinitromethyl moieties of 3–5 

as broadened triplets between –110 and –112 ppm, because of the quadrupolar influence 

of the 14N nucleus of the nitro groups. 

 

VIBRATIONAL SPECTROSCOPY 

The vibrational analyses of 1–5 showed the characteristic asymmetric stretching 

vibrations νas(NO2) in the range of 1620–1583 cm–1 and the symmetric stretching 

vibrations νs(NO2) at 1310–1295 cm–1 (Table 4.1). C=O stretching vibrations for 2–5 

were found in the range of 1776–1738 cm–1. These stretching vibrations belong to the 

corresponding carbamate and carbonate moieties. The thiocarbamate moiety of 

compound 1 causes a decrease of the C=O stretching vibration towards lower energies 

(1662 cm–1). For compound 1–4 the N–H stretching vibration of the carbamate, 

respectively thiocarbamate, moieties were observed in the range of 3434–3286 cm–1. The 

C–N, C–O, C–F and C–C vibrations of 1–5 could be observed in the typical ranges for 

CHNO and CHFNO compounds, respectively.[12-14] 

 

Table 4.1. IR and Raman bands of carbonyl and nitro groups for 1–5 

 1 2 3 4 5 

 IRa Ramanb IRa Ramanb IRa Ramanb IRa Ramanb IRa Ramanb 

ν NH 3286 (w) 3290 (7) 3434 (w) n o  3399 (w) 3399 (6) 3337 (w) 3349 (4)   

ν CO 1662 (m) 1661 (35) 1764 (m) 1765 (12) 1770 (s) 1770 (29) 1738 (m) 1740 (20) 1772 (s) 1776 (12) 

νas NO2 1583 (vs) 1609 (27) 1587 (vs) 1607 (28) 1590 (vs) 1612 (45) 

1594 (29) 

1588 (vs) 1620 (21) 

1606 (26) 

1590 (vs) 1614 (26) 

1598 (27) 

νs NO2 1295 (s) 1306 (25) 1306 (m) 1310 (24) 1309 (m) 1310 (42) 1304 (m) 1307 (30) 1302 (s) 1310 (29) 

a in cm–1; IR intensities: vs = very strong, s = strong, m = medium, w = weak. b in cm–1; Raman 

intensities at 300 mW in brackets; n.o. = not observed. 

 

X-RAY DIFFRACTION 

The compounds 1–5 were investigated by low-temperature, single crystal X-ray 

diffraction. Crystallographic data for all compounds are summed up in Table 4.2. Suitable 

single crystals for X-ray diffraction were obtained by slow evaporation of chloroform. 

Additional data on intermolecular interactions of 1–5 are given as supplementary 

information. 
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The molecular structure of S-ethyl N-(2,2,2-trinitroethyl)thiocarbamate (1) is shown in 

Fig. 4.1. Compound 1 crystallizes in the monoclinic space group P21/c with eight formula 

units per unit cell and a density of 1.59 g cm–3 at 173 K. The bond lengths and angles of 1 

are comparable with values reported in literature for CHNO compounds containing a 

trinitromethyl moiety.[8,15-19] The average N–O bond lengths of the trinitromethyl moieties 

are 1.21(3) Å for the two molecules in the asymmetric unit. For the top molecule, a 

typical propeller-type orientation of the trinitromethyl moiety with C–C–N–O torsion 

angles between –41.3(3) ° and –49.4(3) ° was observed. Amazingly, the trinitromethyl 

group of the bottom molecule shows an atypical conformation with an approximately 

planar oriented nitro group (N7O2) according to the corresponding C6–C7 bond and one 

perpendicular to it (N5O2). Comparing the dihedral angle C6–C7–N7–O13 (–7.4(3) °) 

and C6–C7–N5–O9 (89.2(3) °) confirm this observation. Though a propeller-type 

orientation is typical for trinitromethyl moieties, the case of C7(NO2)3 is surprising. It is 

known to literature that the barrier of rotation about a single C–NO2 bond is quite small. 

Therefore, disturbing effects, caused by interactions with nearby moieties, normally 

sharply distort the preferred C3 symmetry.[14] This leads to this atypical conformation of 

the C7(NO2)3 moiety. The weak improper H-bond between C2H2B and O10 

(O10⋅⋅⋅H2B = 2.418(2) Å) might be one interaction, for example. Besides the described 

interactions, there are various intermolecular attractions in terms of further weak 

improper hydrogen bonds and N⋅⋅⋅O dipolar interactions.  
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Table 4.2. Crystal and structure refinement data for 1–5 
 1 2 3 4 5 

Empirical formula C5H8N4O7S C5H5N7O14 C5H5FN6O12 C5H5FN6O12 C5H4FN5O13 

Formula mass /g mol–1 268.21 387.13 360.13 360.13 361.11 

Temperature /K 173(2) 173(2) 173(2) 100(2) 173(2) 

Crystal size /mm3 0.22 × 0.05 × 

0.03 

0.14 × 0.12 × 

0.09 

0.28 × 0.03 × 

0.02 

0.15 × 0.10 × 0.02 0.30 × 0.02 × 

0.01 

Crystal description Colorless needle Colorless block Colorless needle Colorless needle Colorless needle 

Crystal system Monoclinic Orthorhombic Monoclinic Monoclinic Monoclinic 

Space group P21/c (no. 14) Pnn2 (no. 34) P21/c (no. 14) P21/c (no. 14) Pn (no. 7) 

a /Å 13.0367(5) 11.1356(5) 11.414(8) 20.1316(11) 5.9437(6) 

b /Å 18.1953(7) 10.3757(5) 11.021(5) 6.7612(4) 10.9783(9) 

c /Å 9.4523(3) 5.8534(4) 11.645(9) 9.6063(5) 9.8638(9) 

β /  93.746(3) 90 117.099(9) 100.823(5) 95.752(8) 

V /Å3 2237.36(14) 676.30(6) 1304.1(2) 1284.29(12) 640.4(1) 

Z 8 2 4 4 2 

ρcalc /g cm–3 1.59249(10) 1.90110(17) 1.8342(14) 1.86254(17) 1.8727(3) 

µ /mm–1 0.322 0.193 0.190 0.193 0.197 

F(000) 1104 392 728 728 364 

θ range /  4.24–26.00 4.14–32.47 4.24–25.40 4.25–25.99 4.15–26.50 

Index ranges –16 ≤ h ≤ 16 –16 ≤ h ≤ 16 –7 ≤ h ≤ 13 –24 ≤ h ≤ 24 –7 ≤ h ≤ 7 

 –22 ≤ k ≤ 22 –15 ≤ k ≤ 15 –11 ≤ k ≤ 13 –8 ≤ k ≤ 7 –13 ≤ k ≤ 13 

 –11 ≤ l ≤ 11 –8 ≤ l ≤ 8 –14 ≤ l ≤ 13 –11 ≤ l ≤ 11 –12 ≤ l ≤ 12 

Reflections collected 22191 9909 4429 5787 6512 

Reflections observed 4380 1545 2370 2516 2656 

Reflections unique 3458 1414 1998 2116 2127 

R1, wR2 (2σ data) 0.0488, 0.1537 0.0284, 0.0517 0.0442, 0.1040 0.0342, 0.0816 0.0416, 0.0875 

R1, wR2 (all data) 0.0637, 0.1679 0.0344, 0.0544 0.0543, 0.1120 0.0427, 0.0875 0.0578, 0.0982 

Max. / min. transmission 1.00000/0.93150 1.00000/0.93407 1.00000/0.97703 1.00000/0.95536 1.00000/0.61978 

Data/restraints/parameters 3458/0/311 1545/1/119 2370/0/237 2516/0/218 22656/2/217 

GOOF on F2 1.225 1.066 1.088 1.046 1.001 

Larg. diff. peak/hole /e Å–

3 

0.815/–0.407 0.218/–0.157 0.646/–0.256 0.298/–0.218 0.195/–0.168 

CCDC entry 937512 937513 937514 937515 937516 
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THERMAL AND ENERGETIC PROPERTIES 

The compounds 1–5 are stable when exposed to air and moisture. The thermal stabilities 

for 1–5 were investigated with various DSC measurements (heating rate: 5 °C min–1). The 

results are shown in the Table 4.3. Relatively high and satisfying melting points of 164 °C 

and 161 °C were observed for compound 2, respectively 4.[5,8,17] Above 180 °C, 

decomposition for 2–5 becomes significant. The highest decomposition temperature 

showed 3 and 4 with 191 °C. The physical and chemical properties of the compounds 

described are shown in the Table 4.3.[11] 

The sensitivities toward impact, friction and electrostatic discharge for 1–5 were 

determined experimentally according to standards of the Federal Institute for Materials 

Research and Testing (BAM),[23] and the results displayed in Table 4.4. The compounds 

3–5 showed the same sensitivity values due to their chemical similarity. The impact 

sensitivity was determined with 3 J. With 360 N, 3–5 were found to be insensitive 

towards friction and an energy of 0.4 J of an electrostatic discharge was needed to initiate 

decomposition. Compound 2 is more sensitive toward friction (96 N), but has comparable 

impact sensitivity (4 J). The precursor 1 showed improved impact sensitivity due to the S-

ethyl thiocarbamate moiety. In summary, all compounds are more sensitive towards 

impact than AP. Additionally, the flame test of 1–5 showed a smoke- and residue-less 

burning with a yellow flame. 

Predictions of the detonation parameters using the EXPLO5 code[24] have been performed 

based on heats of formations calculated ab initio using the Gaussian 09 program 

package[25,26] at the CBS-4M level of theory. Energetic parameters are attributed to the 

density of the corresponding compound. The resulting heats of detonation (Qv), 

detonation temperatures (T), pressures (p) and velocities (D) for 1–5 are shown in the 

Table 5, as well as the oxygen balances (Ω). The ambient temperature densities needed 

for the estimation of the detonation parameters with the EXPLO5 code[24] were derived 

from experimental determinations via pycnometer measurements for 2–5. 

The specific impulses of the compounds 2–5 were calculated for compositions of 70% 

oxidizer, 16% aluminum, 6% polybutadiene acrylic acid, 6% polybutadiene acrylonitrile 

and 2% bisphenol-A ether modeled on rocket-motor compositions for solid-rockets 

boosters used by the NASA Space Shuttle program.[27,28] These impulses were compared 

with the calculated impulse of AP in an analogous composition. The chosen mixture with 

AP as oxidizer provides a specific impulse of 258 sec. The impulses for 2–5 (248–257 s) 

are slightly below a comparable mixture with AP as oxidizer. Compound 2 shows a high 
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impulse with 257 s. The lesser oxygen balance of the compounds 2–5 according to AP, 

also leads to a decreased oxygen balance for the calculated formulations varying between 

–54.0% and –49.3%. A similar composition with AP as oxidizer has an oxygen balance of 

–30.1%. Due to the sulfur content of 1 the energetic properties could not be estimated 

with the program EXPLO5. The results of the calculations are shown in Table 4.4. 

 

Table 4.3. Physical and chemical properties of 1–5 

 1 2 3 4 5 

Formula C5H8N4O7S C5H5N7O14 C5H5FN6O12 C5H5FN6O12 C5H4FN5O13 

Mol mass /g mol–1 268.20 387.13 360.13 360.13 361.11 

Tm /°C a) 62 164 113 161 59 

Td /°C b) 167 186 191 191 189 

N /% c) 20.89 25.33 23.34 23.34 19.39 

N + O /% d) 62.65 83.19 76.65 76.65 76.99 

ΩCO /% e) –23.9 +26.9 +22.2 +22.2 +28.8 

ΩCO2 /% f) –53.7 +6.2 0.0 0.0 +6.6 

ρ /g cm–3 g) 1.60 1.87 1.80 1.81 1.83 

–ΔU°f /kJ kg–1 h) --- 1108.2 1793.2 1772.8 2114.5 

–ΔH°f /kJ mol–1 i) --- 461.1 675.5 668.7 792.1 

a, b) Melting (Tm) and decomposition (Td) point from DSC measurement carried out at a heating 

rate of 5 °C min–1. c) Nitrogen content. d) Combined nitrogen and oxygen content. e) Oxygen 

balance assuming the formation of CO. The oxygen balance of ammonium perchlorate is 34.0% f) 

Oxygen balance assuming the formation of CO2. g) Experimental density from pycnometer 

measurement. h) Calculated energy of formation. i) Calculated heat of formation. 
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Table 4.4. Predicted detonation and combustion parameters (using the EXPLO5 code) and 

sensitivity data for 1–5 

 1 2 3 4 5 

–Qv /kJ kg–1 --- 5338 5170 5177 4763 

Tex /K a) --- 3954 4001 3999 3817 

V0 /L kg–1 b) --- 740 730 729 719 

p /kbar c) --- 331 345 350 329 

D /m s–1 d) --- 8661 8517 8553 8369 

Impact /J e) 10 4 3 3 3 

Friction /N e) 160 96 360 360 360 

ESD /J f) 0.18 0.4 0.4 0.4 0.4 

Grain size /µm g) 100–500 100–500 <100 <100 <100 

Thermal shock h) burns burns burns burns burns 

Is /s i) --- 257 248 249 251 

Ωcomp /% j) --- –49.62 –53.96 –53.96 –49.3 

a) Temperature of the explosion gases. b) Volume of the explosion gases (assuming only gaseous 

products). c) Detonation pressure. d) Detonation velocity. e) Impact and friction sensitivities 

according to standard BAM methods.[23] f) Sensitivity towards electrostatic discharge. g) Grain 

size of the samples used for sensitivity tests. h) Response to fast heating in the “flame test”. i) 

Specific impulse for compositions with 70% oxidizer, 16% aluminum, 6% polybutadiene acrylic 

acid, 6% polybutadiene acrylonitrile and 2% bisphenol-A ether at 70.0 bar chamber pressure 

using the EXPLO5 code.[24] j) Oxygen balance for the composition used for combustion 

calculations.  
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4.4 CONCLUSION 

Based on the previous work of Adolph, Gilligan & Sitzmann, the new energetic polynitro 

compound 4 containing a fluorodinitromethyl moiety with a positive oxygen balance was 

synthesized. For compounds 1–3 and 5, which were previously synthesized in the 

1980ies, additional analytical data and calculations of the energetic parameters are now 

provided. The compounds were characterized using multinuclear NMR, vibrational 

spectroscopy, elemental analysis and mass spectrometry and X-ray methods. The crystal 

structures revealed a typical propeller-type orientation of the trinitromethyl moiety for all 

compounds. Relatively high crystal densities for 2–5 in the range of 1.83–1.90 g cm–3 

were determined. The thermal stability was investigated by DSC measurements. The 

sensitivities according to BAM standards were determined and the energetic parameters 

calculated. The sensitivities of 2–5 are comparable with pentaerythritol tetranitrate 

(PETN).[2] The structural similarities of 3–5 imply the same values for the sensitivities 

against impact (3 J), friction (360 N) and electrostatic discharge (0.4 J). The surprising 

insensitivity toward friction (> 360 N classified as insensitive) are positive parameters in 

the case of a possible application in (chlorine-free) solid-rocket compositions. 

Unfortunately, the impact sensitivity of the neat compounds might be too sensitive for the 

desired application. The precursor 1 even shows an improved impact sensitivity of 10 J. 

With respect to a possible application as high energy dense oxidizer in solid-rocket 

boosters, the specific impulses (Is) of 2–5 were calculated in formulations with fuel, 

oxidizer & additives. Especially 2 turned out to be a promising oxidizer with an almost 

equal specific impulse (Is(2) = 257 sec, Is(5) = 251 sec) compared to similar formulations 

with ammonium perchlorate (AP) (Is(AP) = 258 sec) as oxidizer.  
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4.5 EXPERIMENTAL SECTION 

General Procedures 

The syntheses and manipulations of air- and moisture-sensitive materials were performed 

in an inert atmosphere of dry argon (purity 5.0 Air Liquide) using flame-dried glass 

vessels and Schlenk techniques.[29] Commercially available chemicals (all Sigma Aldrich) 

were used as received. S-Ethyl thiocarbamate, 2-fluoro-2,2-dinitroethylamine, 2-fluoro-

2,2-dinitroethanol, 2,2,2-trinitroethanol and 2,2,2-trinitroethyl chloroformate were 

prepared according to literature known procedures.[5,6,9,10,17,30–35] 

Raman spectra were recorded with a Bruker FT-Raman-MultiRAM Spectrometer 

equipped with a Klaastech DENICAFC LC-3/40 laser source at 300 mW laser power; 

infrared spectra were measured with a Perkin–Elmer Spectrum BX-FTIR spectrometer 

equipped with a Smiths DuraSamplIR II ATR device. All spectra were recorded at 

ambient temperature as neat samples. Densities were determined at ambient temperature 

using a Quantachrome Ultrapyc1200e gas pycnometer equipped with helium (purity 5.6 

Air Liquide). NMR spectra were recorded with a JEOL Eclipse 400 instrument and 

chemical shifts were determined with respect to external Me4Si (1H, 399.8 MHz; 13C, 

100.5 MHz), MeNO2 (14N, 28.9 MHz) and CCl3F (19F, 376.5 Hz). Mass spectrometric 

data were obtained with a JEOL MStation JMS 700 spectrometer (DEI+/DCI+). Analyses 

of C/H/N were performed with an Elementar Vario EL Analyzer. Melting points were 

measured with a Perkin-Elmer Pyris6 DSC, using a heating rate of 5 °C min–1 and 

checked by a Büchi Melting Point B-540 apparatus and are not corrected.  The sensitivity 

data were performed using a BAM drophammer and a BAM friction tester.[23] 

 

Computational Details 

All ab initio calculations were carried out using the program package Gaussian 09 

(Revision B.03)[26] and visualized by GaussView 5.08.[25] Structure optimizations and 

frequency analyses were performed with Becke's B3 three parameter hybrid functional 

using the LYP correlation functional (B3LYP). For C, H, F, N and O a correlation 

consistent polarized double-zeta basis set was used (cc-pVDZ). The structures were 

optimized without symmetry constraints and the energy is corrected with the zero point 

vibrational energy.[36-38] 

The enthalpies (H°) and free energies (G°) were calculated using the complete basis set 

method (CBS-4M) based on ab initio optimized structures or X-ray diffraction data, in 
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order to obtain accurate values.[36] The CBS models use the known asymptotic 

convergence of pair natural orbital expressions to extrapolate from calculations using a 

finite basis set to the estimated complete basis set limit. CBS-4 starts with a HF/3-21G(d) 

structure optimization, which is the initial guess for the following SCF calculation as a 

base energy and a final MP2/6-31+G calculation with a CBS extrapolation to correct the 

energy in second order. The used reparametrized CBS-4M method additionally 

implements a MP4(SDQ)/6-31+(d,p) calculation to approximate higher order 

contributions and also includes some additional empirical corrections.[37,38] The enthalpies 

of the gas-phase species were estimated according to the atomization energy method.[36,39-

41] 

All calculations affecting the detonation parameters were carried out using the program 

package EXPLO5 V6.01.[24,42] The detonation parameters were calculated at the CJ point 

with the aid of the steady-state detonation model using a modified Becker-Kistiakowski-

Wilson equation of state for modeling the system. The CJ point is found from the 

Hugoniot curve of the system by its first derivative.[42,43] The specific impulses were also 

calculated with the EXPLO5 V5.05 program, assuming an isobaric combustion of a 

composition of 70% oxidizer, 16% aluminum as fuel, 6% polybutadiene acrylic acid, 6% 

polybutadiene acrylonitrile as binder and 2% bisphenol-A ether as epoxy curing 

agent.[27,28] A chamber pressure of 70.0 bar and an ambient pressure of 1.0 bar with 

frozen expansion conditions were estimated for the calculations.  

 

Crystal structure determination 

For all compounds, an Oxford Xcalibur3 diffractometer with a CCD area detector was 

employed for data collection using Mo-Kα radiation (λ = 0.71073 Å). The structures were 

solved by direct methods (SIR97)[44,45] and refined by full-matrix least-squares on F2 

(SHELXL).[46–49] All non-hydrogen atoms were refined anisotropically. The hydrogen 

atoms were located in a difference Fourier map and placed with a C–H distance of 0.99 Å 

for CH2 groups and a N–H distance of 0.88 Å for NH groups. ORTEP plots are shown 

with thermal ellipsoids at the 50% probability level. Crystallographic data for the 

structures reported in this paper have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication no. CCDC-937512 – CCDC-

937516. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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CAUTION! All high nitrogen and oxygen containing compounds are potentially 

explosive energetic materials, although no hazards were observed during preparation and 

handling these compounds. Nevertheless, this necessitates additional meticulous safety 

precautions (earthed equipment, Kevlar® gloves, Kevlar® sleeves, face shield, leather 

coat, and ear plugs). In addition, especially 2,2,2-trinitroethanol show significant degrees 

of toxicity,[50,51] including own recent results.[52] Particular care should be exercised in 

handling of those materials and derivatives. 

 

S-Ethyl N-(2,2,2-trinitroethyl)thiocarbamate (1) 

Prepared according to Refs. [9,33]. 

DSC: Tm = 62 °C, Tdec = 167 °C. NMR 1H NMR (CDCl3): δ 6.01 (s, br, 1 H, NH), 4.93 

(d, 3J(H,H) = 6.8 Hz, 2 H, CH2C(NO2)3), 2.96 (q, 3J(H,H) = 7.4 Hz, 2 H, SCH2CH3), 1.29 

(t, 2H, SCH2CH3). 13C{1H} NMR (CDCl3): δ 169.5 (NHCOS), 124.6 (C(NO2)3), 43.5 

(CH2C(NO2)3), 25.0 (SCH2CH3), 15.2 (SCH2CH3). 14N NMR (CDCl3): δ –33 (NO2). IR: 

3286 (w), 2937 (vw), 1662 (m), 1583 (vs), 1512 (s), 1448 (w), 1412 (w), 1375 (w), 

1295 (s), 1185 (vs), 1125 (w), 1104 (w), 1051 (m), 1040 (m), 968 (w), 903 (w), 853 (w), 

802 (m), 769 (w), 713 (w) cm–1. Raman (300 mW): 3290 (7), 2976 (7), 2940 (81), 

2880 (10), 2738 (6), 1661 (35), 1609 (27), 1458 (14), 1419 (20), 1377 (21), 1344 (35), 

1306 (25), 1271 (3), 1251 (3), 1189 (4), 1107 (11), 1064 (9), 1044 (3), 972 (7), 910 (24), 

855 (100), 823 (13), 804 (4), 773 (4), 716 (3), 670 (40), 540 (10), 495 (17), 478 (3), 

404 (9), 372 (47), 275 (16), 225 (6) cm–1. MS (DEI+) m/z (rel. Int.): 268 (11) [M+], 119 

(1) [M+ – C(NO2)3], 118 (6) [CH2C(NO2)3
+], 62 (100) [HSCH2CH3

+], 61 (15) 

[SCH2CH3
+]. Anal. calcd. for C5H8N4O7S: C, 22.39; H, 3.01; N, 20.89. Found: C, 22.42; 

H, 3.01; N, 20.88. BAM drophammer: 10 J. Friction tester: 160 N. ESD: 0.18 J. Grain 

size: 100–500 µm. 

 

2,2,2-Trinitroethyl 2,2,2-trinitroethylcarbamate (2) 

In contrast to reference [9], compound 1 (0.58 g, 2.16 mmol) was dissolved in 

tetrachloromethane (20 mL) and the solution was treated with a weak stream of chlorine 

gas for 15 min. After removing the volatiles in vacuo, the oily residue was diluted with 

1,2-dichloroethane (15 mL), 2,2,2-trinitroethanol (0.469 g, 2.59 mmol) and iron(III) 

acetylacetonate (5 mg) were added and the reaction mixture was stirred for 3 h at 80 °C. 

The volatiles were removed in vacuo and the red residue was washed with water. 
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Recrystallization from chloroform (20 mL) gave 0.64 g (76%, 1.64 mmol) colorless 

crystals of 2. 

DSC: Tm = 164 °C, Tdec = 186 °C. NMR 1H NMR (acetone-D6): δ 8.21 (t, br, 
3J(H,H) = 6.8 Hz, 1 H, NH), 5.85 (s, 2 H, OCH2C(NO2)3), 5.25 (d, 2 H, NCH2C(NO2)3). 
13C{1H} NMR (acetone-D6): δ 154.8 (CO), 126.4 (br, C(NO2)3), 125.2 (br, C(NO2)3), 

62.7 (OCH2C(NO2)3), 45.9 (NCH2C(NO2)3). 14N NMR (acetone-D6): δ –32 (NO2), –33 

(NO2). IR: 3434 (w), 3012 (vw), 2961 (vw), 2898 (vw), 1764 (m), 1587 (vs), 1510 (s), 

1438 (w), 1422 (w), 1383 (w), 1345 (w), 1306 (m), 1280 (m), 1213 (s), 1170 (m), 

1120 (w), 1096 (w), 1061 (w), 1002 (vw), 940 (vw), 888 (vw), 856 (m), 806 (s), 801 (s), 

781 (m), 760 (m), 735 (w), 676 (vw), 659 (vw) cm–1. Raman (300 mW):  3012 (11), 

2961 (31), 2879 (2), 2832 (2), 1765 (12), 1618 (2), 1607 (28), 1424 (6), 1379 (36), 

1345 (15), 1310 (24), 1280 (7), 1216 (4), 1151 (3), 1135 (5), 1064 (7), 1016 (8), 941 (17), 

891 (4), 859 (101), 804 (4), 784 (3), 738 (3), 644 (9), 543 (18), 411 (55), 377 (98), 

318 (4), 281 (18), 231 (4), 216 (20) cm–1. MS (DEI+) m/z (rel. Int.): 387 (12) [M+], 295 

(2) [M+ – 2 NO2], 249 (2) [M+ – 3 NO2], 203 (2) [M+ – 4 NO2], 224 (<1) [M+ –

 CH2C(NO2)3 + H]. Anal. calcd. for C5H5N7O14: C; 15.51; H, 1.30; N, 25.33. Found: 

C, 16.05; H, 1.29; N, 25.73. BAM drophammer: 4 J. Friction tester: 96 N. ESD: 0.4 J. 

Grain size: 500–1000 µm. 

 

2-Fluoro-2,2-dinitroethyl 2,2,2-trinitroethylcarbamate (3) 

In contrast to reference [9], 2,2,2-trinitroethylcarbamoyl chloride (0.523 g, 2.16 mmol) 

was dissolved in CCl4 (15 mL) and stirred at 75 °C for 2 h. The solvent was removed in 

vacuo and the residual yellow oil was dissolved in 1,2-dichloroethane (15 mL). 2-Fluoro-

2,2-dinitroethanol (0.40 g, 2.60 mmol) and catalytic amounts of Fe(acac)3 were added. 

The mixture was stirred at 80 °C for 3 h. The solvent was removed, the residue was 

washed with water (50 mL) and the cream-colored solid was filtered off. After 

recrystallization from chloroform (20 mL), 0.64 g (76%) colorless crystals of 3 were 

obtained. 

DSC: Tm = 112 °C, Tdec = 191 °C. 1H NMR (CDCl3): δ 5.70 (t, br, 1 H, NH), 5.24 (d, 
3J(H,F) = 15.4 Hz, 2 H, OCH2CF(NO2)2), 4.84 (d, 3J(H,H) = 6.6 Hz, 2 H, 

NCH2C(NO2)3). 13C {1H} NMR (CDCl3): δ 152.8 (CO), 61.9 (d, 2J(C,F) = 20.1 Hz, 

OCH2CF(NO2)2), 44.8 (NCH2C(NO2)3). 14N NMR (CDCl3): δ –34 (OCH2C(NO2)3), –26 

(OCH2CF(NO2)2) ppm. 19F NMR (CDCl3): δ –110.4 (t, br, OCH2CF(NO2)2). IR: 

3399 (w), 2999 (vw), 2961 (vw), 2903 (vw), 1770 (s), 1590 (vs), 1518 (s), 1448 (w), 
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1429 (w), 1386 (w), 1348 (w), 1309 (m), 1288 (m), 1251 (w), 1227 (s), 1167 (m), 

1127 (w), 1094 (m), 1053 (w), 1018 (w), 1002 (vw), 922 (vw), 866 (w), 858 (w), 851 (w), 

803 (s), 780 (w), 763 (w), 725 (vw), 667 (w) cm−1. Raman (300 mW): 3407 (6), 3399 (6), 

3060 (5), 3029 (15), 3002 (39), 2962 (97), 1770 (29), 1677 (4), 1612 (45), 1594 (29), 

1430 (27), 1382 (51), 1350 (47), 1310 (42), 1281 (13), 1255 (8), 1229 (13), 1171 (4), 

1138 (7), 1096 (10), 1056 (10), 1017 (29), 977 (6), 937 (16), 924 (16), 859 (100), 

853 (57), 809 (8), 781 (8), 732 (5), 669 (5), 640 (8), 600 (5), 591 (5), 542 (21), 413 (68), 

400 (35), 376 (62), 341 (12), 314 (24), 275 (9), 254 (9), 226 (14), 212 (15) cm−1. MS 

(DEI+) m/z: 361 (<1) [M++H], 313 (92) [M+ – NO2], 268 (18) [M+ – 2 NO2], 210 (8) 

[(M+ – C(NO2)3 + H], 207 (11) [M – OCH2CF(NO2)2], 46 (65) [NO2], 30 (100) [NO]. 

Anal. calcd. for C5H5N7O14: C, 16.68; H, 1.40; N, 23.34. Found: C, 16.78; H, 1.36; 

N, 23.23. BAM drophammer: 3 J. Friction tester: 360 N. ESD: 0.4 J. Grain size: 

< 100 µm. 

 

2,2,2-Trinitroethyl 2-fluoro-2,2-dinitroethylcarbamate (4) 

2,2,2-Trinitroethyl chloroformate (0.44 g, 1.80 mmol) was slowly added to a solution of 

2-fluoro-2,2-dinitroethylamine[35] (0.25 g, 1.63 mmol) dissolved in dichloromethane 

(15 mL) at 0 °C. The yellow solution was allowed to warm up and the reaction mixture 

was stirred for 12 h at ambient temperature. The volatiles were removed in vacuo, the 

solid residue washed with water, filtrated, dried and recrystallized in chloroform to obtain 

0.38 g colorless crystals of 4 (65%). 

DSC: Tm = 94 °C, Tdec = 188 °C. NMR 1H NMR (CDCl3): δ 5.52 (t, br, 1 H, NH), 5.43 (s, 

2 H, CH2C(NO2)3), 4.55 (dd, 3J(H,H) = 6.7 Hz, 3J(H,F) = 14.2 Hz, 2 H, 

NHCH2CF(NO2)2). 13C{1H} NMR (CDCl3): δ 152.8 (NHCOO), 118.0 (CF(NO2)2), 62.1 

(CH2C(NO2)3), 43.2 (d, 2J (C,F) = 20.8 Hz, CH2CF(NO2)2). 14N NMR (CDCl3): δ –35 

(C(NO2)3), –24 (CF(NO2)2). 1H NMR (acetone-D6): δ 5.79 (s, 2 H, CH2C(NO2)3), 4.79 (d, 
3J(H,F) = 16.2 Hz, 2H, NHCH2CF(NO2)2). 13C{1H} NMR (acetone-D6): δ = 154.0 

(NHCOO), 124.4 (br, C(NO2)3), 120.9 (d, 1J(C,F) = 289.4 Hz, CF(NO2)2), 61.8 

(CH2C(NO2)3), 43.2 (d, 2J (C,F) = 20.1 Hz, CH2CF(NO2)2). 14N NMR (acetone-D6): δ –

34 (C(NO2)3), –22 (CF(NO2)2). 19F NMR (acetone-D6): δ –110.1 (t, br, 3J(H,F) = 15.7 Hz, 

CF(NO2)2). IR: 3337 (w), 3053 (vw), 3015 (vw), 2966 (vw), 2895 (vw), 1764 (w), 1738 

(m), 1588 (vs), 1537 (s), 1439 (w), 1417 (m), 1390 (w), 1304 (m), 1260 (m), 1237 (s), 

1176 (m), 1120 (m), 1099 (w), 1063 (w), 1000 (w), 961 (vw), 898 (vw), 868 (vw), 850 

(w), 802 (s), 784 (m), 764 (m), 735 (w) cm–1. Raman (300 mW): 3349 (4), 3016 (20), 
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2970 (41), 1740 (20), 1620 (21), 1606 (26), 1441 (11), 1416 (18), 1384 (27), 1354 (37), 

1307 (30), 1266 (15), 1161 (5), 1120 (6), 1064 (7), 1028 (16), 963 (7), 900 (17), 857 

(100), 807 (11), 786 (6), 628 (7), 551 (9), 499 (8), 421 (48), 398 (33), 377 (58), 356 (17), 

318 (17), 277 (11), 256 (11), 223 (10) cm–1. MS (DEI+) m/z: 361 (<1) [M++H], 313 (9) 

[M+ – NO2], 268 (2) [M+ – 2 NO2], 191 (1) [M+ – F – C(NO2)3], 180 (1) 

[OCNHCH2CF(NO2)2
+], 164 (2) [CNHCH2CF(NO2)2

+], 133 (2) [NHCH2C(NO2)2
+], 118 

(6) [CH2C(NO2)2
+], 104 (1) [C(NO2)2

+], 87 (9) [CH2OCNHCH2
+], 59 (5) [OCONH+], 58 

(3) [CNO2
+], 46 (43) [NO2], 30 (100) [NO]. Anal. calcd. for C5H5FN6O12: C, 16.68; 

H, 1.40; N, 23.34. Found: C, 16.78; H, 1.37; N, 23.11. BAM drophammer: 3 J. Friction 

tester: 360 N. ESD: 0.4 J. Grain size: < 100 µm. 

 

2-Fluoro-2,2-dinitroethyl 2,2,2-trinitroethyl carbonate (5) 

2,2,2-Trinitroethyl chloroformate (0.35 g, 1.43 mmol) was dissolved in CH2Cl2 (5 mL) 

and 2-fluoro-2,2-dinitroethanol (0.25 g, 1.62 mmol) with catalytic amounts of SbCl5 were 

added. The reaction mixture was stirred at 85 °C for 24h.[35] The solvent was removed in 

vacuo and the residual yellow oil was diluted with hydrochloric acid (1 m, 15 mL) at 0 °C 

in an ultrasonic bath. The colorless precipitate was filtered, washed with water and dried 

in vacuo. After recrystallization from CHCl3 (20 mL), 0.12 g (23%) colorless crystals of 5 

were obtained. 
 
DSC: Tm = 59 °C, Tdec = 189 °C; 1H NMR (acetone-D6): δ 6.07 (s, 2 H, OCH2C(NO2)3), 

5.76 (d, 3J(H,F) = 15.4 Hz, 2 H, OCH2CF(NO2)2). 13C {1H} NMR (acetone-D6): δ 152.4 

(CO), 65.6 (d, 3J(C,F) = 19.2 Hz, OCH2CF(NO2)2), 65.4 (OCH2C(NO2)3). 14N NMR 

(acetone-D6): δ –35 (C(NO2)3), –25 (CF(NO2)2). 19F NMR (acetone-D6): δ –111.9 (t, br, 

OCH2CF(NO2)2). IR: 3024 (w), 2982 (w), 2902 (w), 1772 (s), 1590 (vs), 1446 (m), 

1405 (m), 1302 (s), 1267 (s), 1237 (s), 1154 (w), 1125 (w), 1098 (w), 1039 (w), 996 (m), 

971 (w), 918 (w), 881 (w), 856 (w), 812 (m), 797 (m), 782 (m), 772 (m), 703 (w) cm−1. 

Raman (300 mW): 3025 (25), 2981 (33), 2966 (37), 2881 (4), 1776 (12), 1614 (26), 

1598 (27), 1446 (17), 1392 (19), 1356 (42), 1310 (29), 1172 (3), 1151 (3), 1126 (7), 

1099 (7), 1044 (29), 973 (9), 917 (8), 882 (8), 859 (100), 801 (7), 783 (4), 767 (3), 

646 (6), 544 (14), 501 (6), 416 (42), 374 (64), 313 (17), 290 (13), 241 (13), 221 (6) cm−1. 

MS (DCI+) m/z: 362 (2) [M+ + H], 328 (6) [M+ + H – O2], 299 (6) [M+ – NO2 – O], 146 

(1) [M+ – OCOCH2CF(NO2)2], 117 (25) [CH3NO2
+], 88 (62) [CH2OCOCH2

+], 57 (100) 

[CHNO2
+], 30 (2) [NO+]. Anal. calcd. for C5H4FN5O13: C, 16.63; H, 1.12; N, 19.39. 
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Found: C, 16.74; H, 1.06; N, 19.40. BAM drophammer: 3 J. Friction tester: 360 N. ESD: 

0.4 J. Grain size: < 100 µm. 



____________________________________________________________________CHAPTER 4 

101 | 

4.6 ACKNOWLEDGEMENT 

Financial support of this work by the Ludwig Maximilian University of Munich (LMU), 

the U.S. Army Research Laboratory (ARL) under grant no. W911NF-09-2-0018, the 

Armament Research, Development and Engineering Center (ARDEC) under grant no. 

W911NF-12-1-0467, and the Office of Naval Research (ONR) under grant nos. 

ONR.N00014-10-1-0535 and ONR.N00014-12-1-0538 is gratefully acknowledged. The 

authors acknowledge collaborations with Dr. Mila Krupka (OZM Research, Czech 

Republic) in the development of new testing and evaluation methods for energetic 

materials and with Dr. Muhamed Suceska (Brodarski Institute, Croatia) in the 

development of new computational codes to predict the detonation and propulsion 

parameters of novel explosives. Camilla Evangelisti is also thanked for the support with 

the quantum chemical calculations. We are indebted to and thank Drs. Betsy M. Rice and 

Brad Forch (ARL, Aberdeen, Proving Ground, MD) for many inspired discussions.



CHAPTER 4____________________________________________________________________ 

102 | 

4.7 REFERENCES 

[1] T. M. Klapötke, S. F. Rest, New Trends Res. Energ. Mater., Proc. Semin., 13th Pt. 

 2 (2010) 642–651. 

[2] J. P. Agrawal, High Energy Materials Propellants, Explosives and Pyrotechnics, 

 1st Ed., Wiley-VCH, Weinheim, 2010. 

[3] T. M. Klapötke, Chemistry of High-Energy Materials, 2nd Ed., de Gruyter, Berlin, 

 2012. 

[4] M. E. Hill, US3306939 (1967). 

[5] M. Göbel, T. M. Klapötke, Adv. Funct. Mater. 19 (2009) 347–365. 

[6] T. M. Klapötke, B. Krumm, R. Moll, Chem. Eur. J. 2013, 19, 12113–12123. 

[7] T. M. Klapötke, Chemie der hochenergetischen Materialien, 1 Ed., de Gruyter, 

 Berlin, 2009. 

[8] T. M. Klapötke, B. Krumm, R. Moll, S. F. Rest, Z. Anorg. Allg. Chem. 637 

 (2011) 2103–2110. 

[9] M. E. Sitzmann, W. H. Gilligan, J. Org. Chem. 50 (1985) 5879–5881. 

[10] W. H. Gilligan, S. L. Stafford, US4332744 (1982). 

[11] Q. J. Axthammer, M. A. Kettner, T. M. Klapötke, R. Moll, S. F. Rest, New Trends 

 Res. Energ. Mater., Proc. Semin., 16th Pt. 1 (2013) 29–39. 

[12] A. B. Sheremetev, I. L. Yudin, Mendeleev Commun. 15 (2005) 204–205. 

[13] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and 

 Charts, 3rd Ed., John Wiley & Sons, Chichester, 2004. 

[14] Y. Oyumi, T. B. Brill, A. L. Rheingold, J. Phys. Chem. 89 (1985) 4824–4828. 

[15] M. Göbel, B. H. Tchitchanov, J. S. Murray, P. Politzer, T. M. Klapötke, Nature 

 Chem. 1 (2009) 229–235. 

[16] M. Göbel, T. M. Klapötke, Z. Anorg. Allg. Chem. 633 (2007) 1006–1017. 

[17] M. Göbel, T. M. Klapötke, Acta Crystallogr. 63C (2007) o562–o564. 

[18] M. Göbel, T. M. Klapötke, P. Mayer, Z. Anorg. Allg. Chem. 632 (2006) 1043–

 1050. 

[19] S. K. Bhattacharjee, H. L. Ammon, Acta Crystallogr. 38B (1982) 2503–2505. 

[20] H. L. Ammon, S. K. Bhattacharjee, Acta Crystallogr. 38B (1982) 2718–2721. 

[21] H. L. Ammon, S. K. Bhattacharjee, S. R. Hall, B. Skelton, Acta Crystallogr. 39C 

 (1983) 1565–1568. 



____________________________________________________________________CHAPTER 4 

103 | 

[22] H. L. Ammon, S. K. Bhattacharjee, Acta Crystallogr. 40C (1984) 487–490. 

[23] Laying down test methods pursuant to Regulation (EC) No 1907/2006 of the 

 European Parliament and of the Council on the Evaluation, Authorisation and 

 Restriction of Chemicals (REACH), ABl. L 142, 2008. 

[24] M. Sućeska, EXPLO5 V6.01, Brodarski Institute, Zagreb, Croatia, 2012. 

[25] R. Dennington, T. Keith, J. Millam, GaussView, Version 5, Semichem Inc., 

 Shawnee Mission KS, 2009. 

[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 

 Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. 

 Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, 

 N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. 

 Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. 

 Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. 

 Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. 

 Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. 

 J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. 

 Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, 

 Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. 

 Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-

 Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, 

 W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Rev. B.03, 

 Gaussian, Inc., Wallingford CT, 2003. 

[27] NASA, Space Shuttle News Reference, 2–20–22–21, 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810022734_1981022734.pdf. 

[28] NASA, press release: STS-122 The Voyage of Columbus, 2008, 82–84, 

 http://www.nasa.gov/pdf/203212main_sts122_presskit2.pdf. 

[29] D. F. Shriver, M. A. Drezdzon, The Manipulation of Air-Sensitive Compounds, 

 2nd Ed., John Wiley & Sons, New York, 1986. 

[30] W. H. Gilligan, S. L. Stafford, Synthesis 08 (1979) 600–602. 

[31] H. Feuer, T. Kucera, J. Org. Chem. 25 (1960) 2069–2070. 

[32] V. Grakauskas, A. M. Guest, J. Org. Chem. 43 (1978) 3485–3488. 

[33] M. E. Sitzmann, W. H. Gilligan, US4849540 (1989). 

[34] H. Adolph, J. Org. Chem. 37 (1972) 747–751. 

[35] H. G. Adolph, M. J. Kamlet, J. Org. Chem. 34 (1969) 45–50. 



CHAPTER 4____________________________________________________________________ 

104 | 

[36] T. M. Klapötke, J. Stierstorfer, Phys. Chem. Chem. Phys. 10 (2008) 4340–4346. 

[37] J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. 

 Phys. 112 (2000) 6532–6542. 

[38] J. W. Ochterski, G. A. Petersson, J. A. Montgomery Jr., J. Chem. Phys. 104 

 (1996) 2598–2619. 

[39] E. F. C. Byrd, B. M. Rice, J. Phys. Chem. A 110 (2005) 1005–1013. 

[40] B. M. Rice, S. V. Pai, J. Hare, Combust. Flame 118 (1999) 445–458. 

[41] L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, J. Chem. Phys. 106 

 (1997) 1063–1079. 

[42] M. Sućeska, Propellants, Explos., Pyrotech. 16 (1991) 197–202. 

[43] T. M. Klapötke, B. Krumm, F. X. Steemann, K. D. Umland, Z. Anorg. Allg. 

 Chem. 636 (2010) 2343–2346. 

[44] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. 

 Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 

 (1999) 115–119. 

[45] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, M. 

 C. Burla, G. Polidori, M. Camalli, R. Spagna, SIR97, 1997. 

[46] A. L. Spek, Acta Crystallogr. 65D (2009) 148–155. 

[47] G. M. Sheldrick, Acta Crystallogr. 64A (2008) 112–122. 

[48] L. J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837–838. 

[49] G. M. Sheldrick, SHELX-97, University of Göttingen, Göttingen (Germany), 

 1997. 

[50] A. L. Fridman, O. B. Kremleva, V. S. Zalesov, Z. V. Platonova, F. A. Gabitov, L. 

 A. Rubinshtein, A. N. Plaksina, Pharm. Chem. J. 11 (1977) 64–67. 

[51] M. B. Frankel, G. L.; Grant, L. R.; Kistner, R. L.; Lecce, J. V.; Wilson, E. R.; 

 Woolery, D. O. I., Process studies on nitroform and related compounds: Final 

 report for period January 30 1984 – March 31 1987,  UCRL-15908, Rockwell 

 International Corp., Rocketdyne Division, Canoga Park, CA (USA), 1987, 1–66. 

[52] R. Scharf, T. M. Klapötke, Private communication, LMU Munich September 

 2012. 

 

 

 

 





CHAPTER 5____________________________________________________________________ 

106 | 

was tested using the BAM drop hammer, BAM friction tester as well as a small-scale 

electrical discharge device, respectively.  
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5.2 INTRODUCTION 

The readily available cheap compound ammonium perchlorate (AP) is widely used as 

oxidizer in solid rocket compositions. Solid rocket boosters equipped with AP produce a 

very large amount hydrogen chloride during combustion. This fact causes severe 

problems for the environment.[1] Therefore, environmental friendly alternative materials 

are desired for modern propellant composites and research is driven towards 

environmental friendly chlorine free compounds, which provide a great excess of oxygen 

for the combustion of the used fuel aluminum. The relative amount of oxygen excess is 

calculated as oxygen balance. This value should be at least greater than zero to deliver 

free oxygen for the oxidation of the fuel during its own decomposition. The most difficult 

challenge in the course of the development of new potential high energy dense oxidizers 

is to overcome the oxygen balance of AP with 34.0%. For calculating the oxygen balance 

of a CHFNO compound, it is assumed that the compounds are converted into H2O, N2, 

CO2 and HF during the combustion in the combustion chamber. Alternatively, due to the 

high temperatures of combustion, CO can be assumed to be formed instead of CO2. The 

oxygen balance is defined according to equation 1 and 2 for a general formula 

CaHbFcNdOe while M is the molecular mass of the compound.[2]  

 

ΩCO2
=
e− 2a− b− c

2
M

•1600  

Equation (1): Oxygen balance for a CHFNO compound assuming CO2 as product of combustion 

in %. 

 

ΩCO =
e− a− b− c

2
M

•1600  

Equation (2): Oxygen balance for a CHFNO compound assuming CO as product of combustion 

in %. 

 

Apart from the oxygen balance, the specific impulse is one of the most important 

parameters for the performance of solid-rocket boosters. It is proportional to the 

reciprocal of the molecular weight of the decomposition products M and the temperature 

inside the combustion chamber Tc during combustion of the composite.[2,3] An increase of 
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the value for Is by 20 s leads empirically to a doubling of the usual payload.[2] Therefore, 

the development of new oxidizers is based on compounds decomposing into small 

volatile molecules as well as an increase of the temperatures of combustion. Highly 

nitrated CH(F)NO compounds were found to be interesting as potential oxidizers because 

of their high oxygen content.[1a,4] 

During the course of our investigations the interesting precursor carbonyldiisocyanate 

was examined, which is highly reactive towards nucleophiles.[5] Based on our previous 

work, compounds derived from 2,2,2-trinitroethanol and 2-fluoro-2,2-dinitroethanol 

might be useful as starting materials for preparing new chlorine free potential high energy 

dense oxidizers, which decompose more environmental friendly, though they contain the 

halogen fluorine.[1a,4,6] The reaction of carbonyldiisocyanate with the fore-mentioned 

alcohols lead to interesting polynitrated molecules with improved thermal stabilities and a 

positive oxygen balance. Furthermore, two polynitro compounds derived from 2,2-

dinitropropane-1,3-diol as the starting material were examined and studied in detail. 

  



____________________________________________________________________CHAPTER 5 

109 | 

5.3 RESULTS AND DISCUSSION 

 

SYNTHESIS 

The important precursor carbonyldiisocyanate was synthesized by reaction of isocyanuric 

acid with phosgene gas at elevated temperatures.[5] Due to the use of phosgene gas as well 

as the production of chlorine gas and hydrogen chloride, proper safety equipment should 

be used for the reaction. It turned out to be helpful to set up a closed apparatus, which can 

manage the reaction to the crude product as well as the purification via distillation under 

inert gas conditions. Due to the high tendency of hydrolysis, reaction and storage must be 

kept free of moisture. 

Bis-(2,2,2-trinitroethyl)carbonyl N,N-dicarbamate (1), as well as bis-(2-fluoro-2,2-

dinitroethyl)carbonyl N,N-dicarbamate (2) were synthesized via the reaction of 

carbonyldiisocyanate with 2,2,2-trinitroethanol or 2-fluoro-2,2-dinitroethanol under 

anhydrous conditions (Scheme 5.1).  

 

 
Scheme 5.1. Polynitro containing compounds based on carbonyldiisocyanate. 

 

The starting material 2,2-dinitropropane-1,3-diol was reacted with 2,2,2-

trinitroethylisocyanate, freshly prepared according to reference,[7] yielding satisfying 

amounts of 2,2-dinitropropane-1,3-diyl bis(2,2,2-trinitroethylcarbamate) (3). With 2,2,2-

trinitroethyl chloroformate in the presence of catalytic amounts of triethylamine the 2,2-

dinitropropane-1,3-diyl bis(2,2,2-trinitroethyl) dicarbonate (4) was prepared 

(Scheme 5.2).[8] Because of the moisture sensitivity of both reagents, as above it is also 

strongly advisable to work under anhydrous conditions. 
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Scheme 5.2. Polynitro containing materials based on 2,2-dinitropropane-1,3-diol. 

 

NMR SPECTROSCOPY 

In the 1H NMR spectrum of 1 the resonances of the amino hydrogen and methylene 

hydrogen atoms were detected as singlets at δ = 10.29 ppm (NH) and 5.96 ppm, 

respectively. In the 13C{1H} NMR spectrum at δ = 150.7 ppm the resonance of the 

carbamoyl carbon atoms was found, and at δ = 147.3 ppm that of the NHCONH moiety. 

A broadened resonance at δ = 124.8 ppm is assigned for the trinitromethyl carbon atoms, 

the methylene carbon atoms were assigned to the resonances at δ = 62.6 ppm 

[OCH2C(NO2)2], respectively. In the 15N NMR spectrum the nitro groups of the 

trinitromethyl moieties appear as triplets at δ = –33.8 ppm with a 3JN,H coupling constant 

of 2.0 Hz and the amino nitrogens at δ = –260.7 ppm as a doublet (1JN,H = 91.9 Hz). For 

compound 2, the resonance of the amino hydrogens appeared at δ = 10.19 ppm (NH) and 

the methylene hydrogen atoms were determined as doublets at δ = 5.63 ppm 

[CH2CF(NO2)2, 3JH,F = 15.8 Hz] in the 1H NMR spectrum. A resonance at  

δ = –111.7 ppm, appearing as triplet, was observed for the fluorodinitromethyl fluorine 

atom in the 19F NMR spectrum. At δ = 150.6 ppm in the 13C{1H} NMR spectrum the 

resonance of the carbamoyl carbons and at δ = 146.7 ppm the NHCONH group was 

detected. A broadened doublet signal at δ = 119.8 ppm (1JC,F = 291.3 Hz) was found for 

the fluorodinitromethyl carbon. Another doublet signal at δ = 62.0 ppm with a 3JC,F 

coupling of 19.6 Hz was assigned to the methylene carbons. In the 15N NMR spectrum a 

doublet of multiplet signal was observed at δ = –24.4 ppm [CF(NO2)2, 2JN,F = 15.2 Hz] 

for the nitro groups. The amine nitrogen was detected as doublet at δ = –261.0 ppm (NH, 
1JN,H = 92.1 Hz). In the 1H NMR spectrum of 3 the resonances of the methylene 
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hydrogens were detected as a doublet signal at δ = 5.18 ppm (CH2NH) with a 3JH,F 

coupling of 6.9 Hz and as a singlet signal at δ = 5.12 ppm [OCH2C(NO2)2]. The amine 

hydrogens appeared as a broadened triplet at δ = 7.98 ppm. At δ = 154.7 ppm the 

carbamate carbons were detected in the 13C{1H} NMR spectrum. A broadened resonance 

at δ = 125.7 ppm was found for the trinitromethyl carbon atoms. The two different 

methylene carbon atoms were assigned to the resonances at δ = 62.1 ppm 

[OCH2C(NO2)2] and δ = 45.1 ppm [NHCH2C(NO2)3], respectively. The nitro groups were 

determined as broadened resonances at –18 ppm for the dinitromethylene moiety and at 

δ = –32 ppm for the trinitromethyl functionality. For compound 4 the methylene 

hydrogens appeared at δ = 6.01 ppm [CH2C(NO2)3] and δ = 5.44 ppm [CH2C(NO2)2] in 

the 1H NMR spectrum, respectively. At δ = 151.6 ppm in the 13C{1H} NMR spectrum the 

carbonate carbons were detected. A broadened resonance at δ = 120.4 ppm was found for 

the trinitromethyl carbon. In the 14N NMR spectrum the two different nitro groups were 

found as broadened resonances at δ = –20 ppm for the dinitromethylene moiety and at 

δ = –35 ppm for the trinitromethyl functionality. 

 

VIBRATIONAL SPECTROSCOPY 

The vibrational spectra of 1–3 showed the NH stretching vibrations between 3418 cm–1 

and 3260 cm–1. In the range of 1824–1732 cm–1 the C=O stretching vibrations were 

observed. The multiple appearance of these vibration bands could be explained by the 

diversity of the neighbored functionalities (O or NH). In the range of 1603–1583 cm–1 

and at 1316–1284 cm–1 the characteristic asymmetric stretching vibrations νas(NO2) and 

the symmetric stretching vibrations νs(NO2) were determined, respectively (Table 5.1). 

The C–N, C–O, C–F (for 2 only) and C–C vibrations could be observed in the typical 

ranges for CHFNO compounds, respectively.[9] 

 

 

 

 

 



CHAPTER 5____________________________________________________________________ 

112 | 

Table 5.1. IR and Raman bands of carbonyl and nitro groups for 1–4 

 1 2 3 4 
 IRa) Ramanb) IRa) Ramanb) IRa) Ramanb) IRa) Ramanb) 
ν (NH) 3296 (w) 3296 (2) 3275 (w) 

3166 (w) 
3260 (4) 
3149 (4) 

3418 (m) n.o.   

ν (CO) 1824 (s) 
1809 (m) 
1732 (s) 

1823 (27) 
1803 (13) 
1740 (12) 

1819 (s) 
1756 (s) 

1808 (44) 
1757 (33) 

1758 (s) 1761 (20) 1785 (s) 1782 (11) 

νas (NO2) 1603 (vs) 
1589 (vs) 

1601 (22) 1600 (vs) 
1588 (s) 

1590 (30) 1583 (vs) 1601 (30) 1589 (vs) 1613 (24) 

νs (NO2) 1306 (s) 
1289 (s) 

1307 (32) 
1293 (29) 

1311 (s) 
1294 (s) 

1316 (22) 1310 (s) 
1290 (s) 

1309 (20) 1284 (s) 1304 (26) 

a) In cm–1; IR intensities: vs = very strong, s = strong, m = medium, w = weak. b) In cm–1; Raman 

intensities at 300 mW in brackets. 

 

X-RAY DIFFRACTION 

Suitable single crystals for X-ray diffraction experiments of the compounds 1–3, were 

obtained by crystallization from chloroform at ambient temperature. The crystal and 

structure refinement data of the structure determinations are given in Table 5.2. 

Additional data on intermolecular interactions of 1 and 2 are given in the Supporting 

Information. 

Bis-(2,2,2-trinitroethyl)carbonyl N,N-dicarbamate (1) crystallizes in the triclinic space 

group P1 with eight formula units per unit cell and a calculated density of 

1.8991(2) g cm–1 at 173(2) K. The asymmetric unit consists of four molecules with 

different orientations. For clear view reasons, only one molecule of the asymmetric unit 

of 1 with selected bond lengths and angles is shown in Figure 5.1 exemplarily. A figure 

with all four molecules of the asymmetric unit is presented in the Supporting Information. 

The bond lengths and angles of 1 are in the typical range for CHNO-compounds 

containing a trinitromethyl moiety.[3,6,10] The molecular structure of 1 shows a large 

planar arrangement area. This planar range consists of two carbamoyl moieties around C3 

and C5, as well as a carbonyl functionality at C4. This planarity is proven by the dihedral 

angles O7–C3–O8–N4 178.7(6), N4–C4–O9–N5 177.6(6) and N5–C5–O10–O11 

178.8(6) of almost 180 °.[11] The average C–N bond of all trinitromethyl units in the 

asymmetric unit is 1.518(4) Å and is significantly longer than a normal C–N bond 

(1.47 Å).[12] Due to steric reasons, this is typically for molecules containing a 

trinitromethyl moiety.[3,4b,9b] A propeller-type orientation of three nitro groups connected 

to one carbon atom is a second typical attribute for trinitromethyl moieties. The C–C–N–

O torsion angles of all trinitromethyl units are between 20 and 62 °, which implements a 

real propeller-type orientation.[9b] The average N–O bond length of the nitro moieties is 









CHAPTER 5____________________________________________________________________ 

116 | 

Table 5.2. Crystal and structure refinement data for 1–3 

 1 2 3 
Empirical formula C7H6N8O17 C7H6F2N6O13 C9H10N10O20 
Formula mass /g mol–1 474.168 420.152 578,23 
Temperature /K 173(2) 173(2) 173(2) 
Crystal size /mm 0.28 × 0.16 × 0.04 0.23 × 0.11 × 0.08 0.23 × 0.16 × 0.03 
Crystal description triclinic triclinic triclinic 
Crystal system colorless block colorless block colorless platelet 
Space group P–1 P–1 P–1 
a /Å 14.6462(9) 5.4261(8) 5.9824(2) 
b /Å 14.7794(9) 10.0136(14) 11.0183(5) 
c /Å 17.7372(11) 14.166(2) 16.7482(9) 
α /° 70.738(6) 103.369(12) 73.844(2) 
β /° 72.133(6) 97.361(12) 86.558(3) 
γ /° 69.630(6) 92.313(12) 86.136(3) 
V /Å3 3316.9(4) 740.70(18) 1056.98(8) 
Z 8 2 2 
ρcalc /g cm–3 1.8991(2) 1.8839(5) 1.81685(14) 
µ /mm–1 0.191 0.196 0.18 
F(000) 1920 424 588 
θ range /° 4.19–25.50 4.19–25.50 3.42–25.38 
Index ranges –17 ≤ h ≤ 15 –6 ≤ h ≤ 5 –6 ≤ h ≤ 7 
 –17 ≤ k ≤ 17 –12 ≤ k ≤ 11 –13 ≤ k ≤ 13 
 –21 ≤ l ≤ 13 –17 ≤ l ≤ 16 –20 ≤ l ≤ 10 
Reflections collected 16694 4510 6936 
Reflections observed 11856 2725 3824 
Reflections unique 8503 1910 2623 
R1, wR2 (2σ data) 0.0627, 0.1401 0.0571, 0.1292 0.0452, 0.0987 
R1, wR2 (all data) 0.0899, 0.1612 0.0841, 0.1491 0.0809, 0.1144 
Max. / min. transmission 1.00000/0.71722 1.00000/0.70421 1.00000/0.9995 
Data/restraints/parameters 11856/0/1185 2725/0/261 3824/0/360 
GOOF on F2 1.014 1.016 1.039 
Larg. diff. peak/hole /e Å–3 0.618/–0.419 0.570/–0.315 0.348/–0.309 

 

THERMAL AND ENERGETIC PROPERTIES 

The compounds 1–4 are air-stable, despite the fact that they must be synthesized under 

inert gas conditions. The exclusion of moisture is necessary to avoid side reactions and 

decomposition of the starting materials. For 1–4 the thermal stability was determined 

using DSC experiments (heating rate: 5 °C min–1). Compound 1 starts to melt at 129 °C 

and decomposition occurs at 169 °C (onset). In contrast, the melting point of compound 2 

was found at 159 °C and noticeable decomposition started above 211 °C. The melting 

point of compound 3 was found at 169 °C with subsequent decomposition of the 

substance. For compound 4 a melting point at 153 °C was detected and noticeable 

decomposition occurred above 176 °C. The investigated physical and chemical properties 

are shown in Table 5.3.  

The sensitivities toward external stimuli for 1–4 were determined according to standards 

of the Federal Institute for Materials Research and Testing (BAM) [13] and the results are 

displayed in Table 5.4. The compounds 1 and 2 are moderate sensitive towards impact 
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with 7 J for 1 and 10 J for 2, respectively. Both compounds are less sensitive than 

pentaerythritol tetranitrate (PETN) (4 J), which is a minimum requirement for new 

possible high energy dense oxidizers. Compounds 3 and 4 turned out to be sensitive 

towards impact with 3 J for 3 and 5 J for 4, respectively. Values of 288 N (1) and 240N 

(2) show that both compounds are moderate sensitive towards friction. In contrast, the 

compounds 3 and 4 are sensitive towards friction with values of 160 N (3) and 144 N (4).  

Predictions of the detonation parameters using the EXPLO5 code[14] were performed 

based on heats of formations calculated ab initio using Gaussian 09 revision C.01[15] at 

the CBS-4M level of theory. Energetic parameters are attributed to the density of the 

corresponding compound at ambient temperature. The resulting heats of detonation (Qv), 

detonation temperatures (T), pressures (p) and velocities (D) for 1 and 2 are shown in the 

Table 5.4, as well as the oxygen balances (Ω) in Table 5.3. The densities needed for the 

estimation of the detonation parameters with the EXPLO5 code[14] were derived from 

pycnometer measurements for compound 1–4. The calculated detonation velocities of 1 

(8363 m s–1) and 2 (7620 m s–1) are comparable with literature known values for PETN 

(8400 m s–1) and nitroglycerine (NG) with 7700 m s–1, respectively.[16] However, the 

velocities of 3 (8050 m s–1) and 4 (8083 m s–1) are comparable with literature known 

values for erythritol tetranitrate (ETN, 8100 m s–1).[16] 

The specific impulses of the compounds 1–4 were calculated for the combustion of the 

neat compounds as well as for compositions of 70 % oxidizer, 16 % aluminum, 6 % 

polybutadiene acrylic acid, 6 % polybutadiene acrylonitrile and 2 % bisphenol-A ether 

modeled on rocket-motor compositions for solid-rocket boosters used by the NASA 

Space Shuttle program[17] and have been compared with the calculated impulse of AP in 

an analogous composition. The chosen mixture with AP as oxidizer has a specific 

impulse of 258 sec. The impulses for 1–4 in the modeled compositions were estimated 

with 249 s for 1, 230 s for 2 and 223 s for 3 as well as for 4, respectively. All values are 

below the predicted value for an AP composition and even decrease from compound 1 to 

4. A reason might be the lack of oxygen within the mixture of 1 to 4, in comparison with 

AP (Ωcomp, AP = –30.13 %). The specific impulses for the neat compounds 1 (233 s) and 2 

(221 s) show a similar tendency compared with the calculated compositions. Surprisingly, 

the impulses for the neat compounds 1 (234 s) and 2 (227 s) are greater compared with 

the chosen mixtures. Unfortunately, owing the estimated specific impulses, the 

compounds 1–4 are rather unlikely for use as oxidizers in solid rocket propellants. But, 
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due to the moderate sensitivities, the compounds 1 and 2 might be useful for other 

applications. 

Table 5.3. Physical and chemical properties of 1–4 
 1 2 3 4 
formula C7H6N8O17 C7H6F2N6O13 C9H10N10O20 C9H8N8O22 
mol mass /g mol–1 474.17 420.15 578.23 580.20 
Tm /°C a) 129 159 169 153 
Td /°C b) 169 211 169 176 
N /% c) 23.63 20.00 24.22 19.31 
N + O /% d) 80.99 69.50 79.56 79.98 
�CO /% e) +23.6 +15.2 +16.6 +24.8 
�CO2 /% f) 0 –11.4 –8.3 0 
ρ /g cm–3 g) 1.86 1.76 1.79 1.81 
–ΔU°f /kJ kg–1 h) 970.07 3304.26 1439.25 1886.16 
–ΔH°f /kJ mol–1 i) 1964.83 1421.75 881.80 1144.45 

a, b) Melting (Tm) and decomposition (Td) point from DSC measurement carried out at a heating 

rate of 5 °C min–1. c) Nitrogen content. d) Combined nitrogen and oxygen content. e) Oxygen 

balance assuming the formation of CO. The Oxygen balance of ammonium perchlorate is 34.0 % 

f) Oxygen balance assuming the formation of CO2. g) Experimentally determined density from 

pycnometer experiments. h) Calculated Energy of formation. i) Heat of formation. 

 

Table 5.4. Predicted detonation and combustion parameters and sensitivity data for 1–4 
 1 2 3 4 
–Qv /kJ kg–1 a) 4580 3833 4414 4427 
Tex /K b) 3521 3112 3332 3415 
V0 /L kg–1 c) 740 683 728 715 
p /kbar d) 298 245 276 274 
D /m s–1 e) 8363 7620 8050 8083 
impact /J f) 7 10 3 5 
friction /N f) 288 240 160 144 
ESD /J f) 0.1 0.18 -- -- 
grain size /µm g) <100 <100 100–500 <100 
thermal shock h) burns burns burns burns 
Is /sec i) 233 221 234 227 
Is(comp) /sec j) 249 230 223 223 
Ωcomp /% k) –49.1 –62.0 –55.7 –49.5 

a) Heat of detonation. b) Temperature of the explosion gases. c) Volume of the explosion gases 

(assuming only gaseous products). d) Detonation pressure. e) Detonation velocity. f) Impact and 

friction sensitivities according to standard BAM methods[13] and sensitivities against electrostatic 

discharge (ESD). g) Grain size of the samples used for sensitivity tests. h) Response to fast 

heating in the “flame test”. i) Specific impulse of the neat compound using the EXPLO5 code[14]. 

j) Specific impulse for compositions using the EXPLO5 code[14]. The specific impulse for similar 

composition with ammonium perchlorate (Is AP = 258 s, Ωcomp, AP = –30.13 %) has been calculated. 

k) Oxygen balance for the composition used for combustion calculations. 
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5.4 CONCLUSION 

The herein presented reactions of carbonyldiisocyanate with two polynitro substituted 

ethanoles lead to new energetic materials containing a carbonyl biscarbamate moiety 

(compounds 1 and 2). Furthermore, starting from 2,2-dinitropropane-1,3-diol, the 

synthesis of the dicarbamate 3 and the dicarbonate 4 was accomplished. Single crystal X-

ray diffraction experiments of compounds 1–3 showed a total planarity of the carbonyl 

biscarbamate moiety as well as a propeller-type orientation of the polynitromethyl 

moieties. The compounds 3 and 4 turned out to be more sensitive towards impact, but all 

compounds 1–4 achieve the minimum requirement of new possible high energy dense 

oxidizers, with an impact sensitivity not worse than PETN. In the case of thermal 

stabilities and sensitivities, the compounds 1 and 2 might be interesting for certain 

energetic applications. In addition, the use of carbonyldiisocyanate as starting material 

might be interesting for the development of new energetic molecules or even polymers. 

Metal free combustion purposes for the compounds 3 and 4 might be worth to consider, 

owing the increased specific impulse as neat compound compared to the calculated 

compositions.  
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5.4 EXPERIMENTAL SECTION 

General Procedures 

The syntheses and manipulation of air- and moisture-sensitive materials were performed 

in an inert atmosphere of dry argon (purity 5.0 Air Liquide) using flame-dried glass 

vessels and Schlenk techniques.[18] Commercially available chemicals (all Sigma Aldrich) 

were used as received. Carbonyldiisocyanate, 2-fluoro-2,2-dinitroethanol, 2,2,2-

trinitroethylchloroformate, 2,2,2-trinitroethylisocyanate, 2,2-dinitropropane-1,3-diol and 

2,2,2-trinitroethanol were prepared according to literature known procedures.[5a,7,19] 

Raman spectra were recorded with a Bruker FT-Raman-MultiRAM Spectrometer 

equipped with a Klaastech DENICAFC LC-3/40 laser source at 300 mW laser power; 

infrared spectra were measured with a Perkin–Elmer Spectrum BX-FTIR spectrometer 

equipped with a Smiths DuraSamplIR II ATR device. All spectra were recorded at 

ambient temperature as neat samples. Densities were determined at ambient temperature 

using a Quantachrome Ultrapyc1200e gas pycnometer equipped with helium (purity 5.6 

Air Liquide). NMR spectra were recorded with a JEOL Eclipse 400 instrument and 

chemical shifts were determined with respect to external Me4Si (1H, 399.8 MHz; 13C, 

100.5 MHz), MeNO2 (14N, 28.9 MHz; 15N, 40.6 MHz) and CCl3F (376.5 MHz). Mass 

spectrometric data were obtained with a JEOL MStation JMS 700 spectrometer 

(DEI+/DCI+). Analyses of C/H/N were performed with an Elementar Vario EL Analyzer. 

Melting points were measured with a Perkin-Elmer Pyris6 DSC, using a heating rate of 5 

°C min–1 and checked by a Büchi Melting Point B-540 apparatus and are not corrected. 

The sensitivity data were performed using a BAM drophammer and a BAM friction 

tester.[13] 

 

Computational Details 

All ab initio calculations were carried out using the program package Gaussian 09 

(Revision C.01)[15] and visualized by GaussView 5.08.[20] Structure optimizations and 

frequency analyses were performed with Becke's B3 three parameter hybrid functional 

using the LYP correlation functional (B3LYP). For C, H, N and O a correlation consistent 

polarized double-zeta basis set was used (cc-pVDZ). The structures were optimized 

without symmetry constraints and the energy is corrected with the zero point vibrational 

energy.[21] 
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The enthalpies (H°) and free energies (G°) were calculated using the complete basis set 

method (CBS-4M) based on ab initio optimized structures or X-ray diffraction data, in 

order to obtain accurate values.[21a] The CBS models use the known asymptotic 

convergence of pair natural orbital expressions to extrapolate from calculations using a 

finite basis set to the estimated complete basis set limit. CBS-4 starts with a HF/3-21G(d) 

structure optimization, which is the initial guess for the following SCF calculation as a 

base energy and a final MP2/6-31+G calculation with a CBS extrapolation to correct the 

energy in second order. The used reparametrized CBS-4M method additionally 

implements a MP4(SDQ)/6-31+(d,p) calculation to approximate higher order 

contributions and also includes some additional empirical corrections.[21b,21c] The 

enthalpies of the gas-phase species were estimated according to the atomization energy 

method.[21a,22] 

All calculations affecting the detonation parameters were carried out using the program 

package EXPLO5 V6.01.[14,23] The detonation parameters were calculated at the CJ point 

with the aid of the steady-state detonation model using a modified Becker-Kistiakowski-

Wilson equation of state for modeling the system. The CJ point is found from the 

Hugoniot curve of the system by its first derivative.[23-24] The specific impulses were also 

calculated with the EXPLO5 V6.01 program, assuming an isobaric combustion of a 

composition of 70% oxidizer, 16% aluminum as fuel, 6% polybutadiene acrylic acid, 6% 

polybutadiene acrylonitrile as binder and 2% bisphenol-A ether as epoxy curing agent.[17] 

A chamber pressure of 70.0 bar and an ambient pressure of 1.0 bar with equilibrium 

expansion conditions were estimated for the calculations. 

 

Crystal structure determination 

For all compounds, an Oxford Xcalibur3 diffractometer with a CCD area detector was 

employed for data collection using Mo-Kα radiation (λ = 0.71073 Å). The structures were 

solved by direct methods (SIR97)[25] and refined by full-matrix least-squares on F2 

(SHELXL).[26] All non-hydrogen atoms were refined anisotropically. The hydrogen atoms 

were located in a difference Fourier map and placed with a C–H distance of 0.99 Å for 

CH2 groups. ORTEP plots are shown with thermal ellipsoids at the 50% probability level. 

Crystallographic data for the structures reported in this paper have been deposited with 

the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-

956223 (1), CCDC-956224 (2) and CCDC-951974 (3). These data can be obtained free of 
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charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

Synthesis 

CAUTION! All high nitrogen and oxygen containing compounds are potentially 

explosive energetic materials, although no hazards were observed during preparation 

and handling these compounds. Nevertheless, this necessitates additional meticulous 

safety precautions (earthed equipment, Kevlar® gloves, Kevlar® sleeves, face shield, 

leather coat, and ear plugs). In addition, especially 2,2,2-trinitroethanol and 2-fluoro-

2,2-dinitroethanol show significant degrees of toxicity,[27] including own recent 

results.[28] Particular care should be exercised in handling of those materials and 

derivatives. 

 

Bis(2,2,2-trinitroethyl) carbonyl-N,N-dicarbamate (1) 

The reaction has to take place under inert gas conditions. Carbonyldiisocyanate (0.21 g, 

1.8 mmol) was slowly added to a solution of 2,2,2-trinitroethanol (0.73 g, 4.1 mmol) in 

dry diethyl ether (15 mL) and stirred at ambient temperature for 12 h. The solvent was 

removed in vacuo and the residue was washed with water with the aid of ultra sonic 

yielding a colorless solid. After recrystallization from chloroform, 0.59 g (68 %) of 1 

were obtained as colorless platelets.  

DSC: Tm = 129 °C, Tdec = 169 °C. 1H NMR ([D6]acetone): δ = 10.29 (s, H, NH), 5.96 [s, 

2H, OCH2C(NO2)3], ppm. 13C{1H} NMR ([D6]acetone): δ = 150.7 (OCONH), 147.3 

(NHCONH), 124.8 [br, C(NO2)3), 62.6 (CH2C(NO2)3] ppm. 15N NMR ([D6]acetone): 

δ = –33.8 [t, C(NO2)3, 3JN–H = 2.0 Hz], –260.7 (d, NH, 1JN–H = 91.9 Hz) ppm. IR: ν = 3296 

(w), 3250 (w), 3012 (vw), 2969 (vw), 2885 (vw), 1824 (s), 1809 (m), 1732 (s), 1717 (m), 

1603 (vs), 1589 (vs), 1532 (s), 1523 (s), 1478 (s), 1437 (m), 1384 (w), 1352 (w), 1306 (s), 

1289 (s), 1272 (m), 1208 (vs), 1168 (vs), 1129 (s), 1111 (m), 1096 (w), 1071 (s), 951 (w), 

882 (w), 855 (w), 828 (w), 805 (m), 783 (s), 765 (vs), 719 (w), 680 (w) cm−1. Raman 

(300 mW): ν = 3296 (2), 3017 (6), 2973 (16), 1823 (27), 1803 (13), 1752 (8), 1740 (12), 

1618 (21), 1601 (22), 1534 (3), 1481 (5), 1437 (12), 1387 (14), 1353 (43), 1307 (32), 

1293 (29), 1205 (6), 1157 (2), 1133 (2), 1096 (3), 1073 (6), 1026 (14), 993 (15), 961 (19), 

886 (10), 857 (100), 809 (3), 790 (5), 744 (3), 717 (2), 638 (6), 548 (9), 498 (6), 416 (46), 

398 (38), 375 (74), 349 (13), 268 (17), 227 (6) cm−1. EA (C7H6N8O17, 474.17 g mol−1) 

calcd: C 17.73 H 1.28 N 23.63, found: C 17.59 H 1.33 N 23.00. MS (DEI+) m/z (rel. Int.): 
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475 (2) [M+H]+, 339 (11) [M – HOCH2C (NO2)2]+, 294 (15) [M – OCH2C (NO2)3]+, 251 

(9) [M – NHCOOCH2C(NO2)3]+, 204 (9) [CONCOOCH2C(NO2)3]+, 135 (12) 

[HOCH2C(NO2)2]+, 113 (10) [HOCONHCONH]+, 70 (70) [NHCONHC]+, 46 (23) 

[NO2]+, 30 (100) [NO]+.  Impact sensitivity: 7 J. Friction sensitivity: 288 N. ESD: 0.1 J. 

Grain size: < 100 µm. 

 

Bis(2-fluoro-2,2-diinitroethyl) carbonyl-N,N-dicarbamate (2) 

The reaction has to take place under inert gas conditions. Carbonyldiisocyanate (0.34 g, 

3.0 mmol) was slowly added to a solution of 2-fluoro-2,2-dinitroethanol (1.0 g, 

6.6 mmol) in freshly distilled diethyl ether (20 mL) and stirred at ambient temperature for 

6 h. The solvent was removed in vacuo and the residue was washed with water with the 

aid of ultra sonic yielding a colorless solid. After recrystallization from chloroform, 0.82 

g (65 %) of 2 were obtained as colorless platelets.  

DSC: Tm = 159 °C, Tdec = 221 °C. 1H NMR ([D6]acetone): δ = 10.19  (s, H, NH), 5.63 [d, 

2H, OCH2CF(NO2)2, 3JH–F = 15.8 Hz] ppm. 13C{1H} NMR ([D6]acetone): δ = 150.5 

(OCONH), 146.7 (NHCONH), 119.8 [br, d, CF(NO2)2, 1JC–F = 291.3 Hz], 62.0 [d, 

CH2CF(NO2)2, 3JC–F = 19.6 Hz] ppm. 15N NMR ([D6]acetone): δ = –24.4 [dm, CF(NO2)2, 
1JN–F = 15.2 Hz], –261 (d, NH, 1JN–H = 92.1 Hz) ppm. 19F NMR ([D6]acetone): δ = –111.7 

[t, CF(NO2)2] ppm. IR: ν = 3275 (w), 3166 (w), 3031 (w), 2985 (w), 1819 (s), 1756 (s), 

1710 (m), 1614 (s), 1600 (vs), 1588 (s), 1503 (vs), 1444 (m), 1387 (w), 1329 (m), 1311 

(s), 1294 (s), 1246 (m), 1224 (m), 1161 (s), 1133 (m), 1109 (m), 1069 (s), 1032 (w), 998 

(w), 961 (w), 923 (w), 851 (w), 815 (m), 776 (s), 759 (vs), 735 (w), 677 (w) cm−1. Raman 

(300 mW): ν = 3260 (4), 3149 (4), 3138 (4), 3122 (4), 3034 (16), 2987 (45), 1808 (44), 

1757 (33), 1713 (10), 1590 (30), 1525 (6), 1483 (13), 1446 (22), 1387 (26), 1361 (49), 

1316 (22), 1248 (22), 1230 (12), 1067 (12), 1033 (44), 999 (9), 963 (29), 922 (20), 853 

(100), 777 (6), 748 (4), 641 (4), 578 (8), 518 (17), 458 (10), 436 (20), 421 (24), 403 (26), 

373 (10), 338 (40), 286 (7), 267 (4), 211 (29) cm−1. EA (C7H6F2N6O13, 420.17 g mol−1) 

calcd: C 20.01 H 1.44 N 20.00, found: C 19.89 H 1.43 N 20.18. MS (DEI+) m/z (rel. Int.): 

421 (3) [M+H]+, 374.1 (7) [M – NO2]+, 328 (2) [M – 2 NO2]+, 267.1 (38) [M –

 OCH2CF(NO2)2]+, 224 (15) [M – NHCOOCH2CF(NO2)2]+, 70 (100) [NHCONHC]+, 46 

(23) [NO2]+, 30 (86) [NO]+. Impact sensitivity: 10 J. Friction sensitivity: 240 N. ESD: 

0.18 J. Grain size: < 100 µm. 
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2,2-Dinitropropane-1,3-diyl bis(2,2,2-trinitroethylcarbamate) (3)  

2,2-Dinitropropane-1,3-diol (100 mg, 0.6 mmol) was diluted in dry dichloromethane 

(25 mL) under argon atmosphere and 2,2,2-trinitroethylisocyanate (273 mg, 1.3 mmol) 

was added. The reaction mixture was refluxed for 4 h. The volatile materials were 

removed in vacuo, the resulting brownish solid was washed with water with the aid of 

ultrasonic and dried. Recrystallization from chloroform gave 155 mg (45 %) colorless 

crystals of 3. 

 

DSC: Tm = 169 °C (dec.). 1H NMR ([D6]acetone): δ = 7.98 (t, br, 1H, NH), 5.18 (d, 2H, 

CH2NH, 3JH–H = 6.9 Hz), 5.12 [2H, CH2C(NO2)3] ppm 13C{1H} NMR ([D6]acetone): δ = 

154.7 (OCONH), 125.7 [C(NO2)3], 114.5 [(CH2)2C(NO2)2], 62.1 (CH2), 45.1 

[CH2C(NO2)3] ppm. 14N NMR ([D6]acetone): δ = –18 (br, NO2), –32 [br, C(NO2)3] ppm. 

IR: ν = 3418 (m), 3018 (w), 2972 (w), 2896 (w), 1758 (s), 1622 (w), 1583 (vs), 1517 (s), 

1449 (m), 1416 (w), 1386 (w), 1349 (w), 1334 (w), 1310 (s), 1290 (s), 1226 (s), 1168 

(m), 1133 (m), 1099 (m), 1034 (m), 997 (w), 955 (w), 874 (w), 855 (s), 805 (s), 780 (m), 

763 (m), 686 (w), 664 (w) cm–1. Raman: ν = 3017 (17), 2974 (41), 2859 (5), 1761 (20), 

1618 (14), 1601 (30), 1452 (3), 1417 (10), 1388 (16), 1349 (32), 1309 (20), 1265 (7), 

1234 (5), 1132 (8), 1064 (4), 1008 (9), 955 (17), 858 (100), 807 (6), 666 (6), 638 (5), 541 

(13), 412 (41), 378 (39), 335 (9), 273 (8), 227 (6) cm–1. MS (DCI+) m/z (%): 579 (11) [M 

+ H]+, 532 (2) [M – NO2 + H]+, 484 (32) [M – 2 HNO2]+, 428 (25) [M – C(NO2)3]+, 355 

(5) [M – OCONHCH2C(NO2)3]+, 310 (3) [C6H8N5O10]+, 220 (9) 

[OCOCH2C(NO2)2CH2OCO]+, 191 (13) [CNHCH2C(NO2)3]+, 134 (10), 

[CH(NO2)2CH2NH]+, 46 (1) [NO2]+, 30 (57) [NO]+. EA (C9H10N10O20, 578,23) calcd.: C 

18.69, H 1.74, N 24.22 found: C 18.71, H 1.68, N 24.00. impact sensitivity: 3 J; friction 

sensitivity: 160 N; grain size: 100–500 µm. 

 

2,2-Dinitropropane-1,3-diyl bis(2,2,2-trinitroethyl) dicarbonate (4) 

Prepared according to reference [7]. 

DSC: Tm = 153 °C, Tdec = 176 °C. 1H NMR (acetone–D6): δ = 6.01 (CH2), 5.44 

[CH2C(NO2)3] ppm 13C{1H} NMR (acetone–D6): δ = 151.6 (OCOO), 123.7 [C(NO2)3], 

113.2 [(CH2)2C(NO2)2], 65.2 (CH2), 64.5 [CH2C(NO2)3] ppm. 14N NMR (acetone–D6): 

δ = –20 (br, NO2), –35 [br, C(NO2)3] ppm. IR: ν = 3021 (w), 2972 (w), 2898 (w), 1785 

(s), 1589 (vs), 1459 (w), 1441 (w), 1391 (m), 1284 (s), 1230 (vs), 1152 (w), 1095 (w), 

1033 (m), 992 (m), 881 (w), 859 (w), 856 (m), 803 (s), 784 (s), 772 (s), 735 (w), 681 



____________________________________________________________________CHAPTER 5 

125 | 

(w) cm–1. Raman: ν = 3022 (20), 2974 (47), 2899 (4), 2859 (5), 1782 (11), 1613 (24), 

1457 (10), 1446 (13), 1392 (15), 1378 (10), 1351 (33), 1304 (26), 1137 (6), 1093 (4), 

1071 (7), 1044 (16), 1001 (10), 972 (6), 942 (9), 881 (10), 858 (100), 787 (6), 748 (5), 

650 (5), 545 (9), 418 (24), 375 (46), 320 (10), 292 (14), 254 (12), 230 (6) cm–1. MS 

(DCI+) m/z (%): 581 (86) [M + H]+, 534 (1) [M – NO2]+, 356 (1) [C7H6N4O13]+, 280 (3) 

[M – 2 C(NO2)3]+, 222 (11) [C5H6N2O8]+, 193 (20) [CHOCH2C(NO2)3]+, 164 (4) 

[CH2C(NO2)3]+, 46 (2) [NO2]+, 30 (2) [NO]+. EA (C9H8N8O22, 580.20) calcd.: C 18.63, H 

1.39, N 19.31 found: C 18.74, H 1.38, N 19.05. impact sensitivity: 5 J; friction sensitivity: 

144 N; grain size: < 100 µm. 
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6.2 INTRODUCTION 

In our current investigations we have focused our research towards highly nitrated CHNO 

compounds derived from 2,2,2-trinitroethanol as new potential chlorine free high energy 

dense oxidizers.[1-7] Especially the interesting compound tetrakis(2,2,2- trinitroethyl) 

ortho-carbonate seemed to be a promising candidate in replacing ammonium perchlorate 

(AP) as the widely used oxidizer in solid rocket propellants. AP comes along with known 

problems for the environment, like the large amount of hydrogen chlo- ride produced 

during combustion. Additionally, scientific research indicates that perchlorate-

contaminated water can disrupt the thyroid’s ability to produce hormones needed for 

normal growth and development.[8-9] Unfortunately, tetrakis(2,2,2-trinitroethyl) ortho-

carbonate is very sensitive towards mechanical stimuli, which makes a future application 

rather un- likely. 

A very important parameter for the development of new potential high energy dense 

oxidizers is the oxygen balance (Ω). It represents the relative amount of oxygen excess 

(or deficit) of a molecule, which can be used for further oxidation of an added fuel. For 

high energy dense oxidizers, this value should be positive and preferable greater than that 

of AP (34%). For calculating the oxygen balance of a CHFNO compound, it is assumed 

that the compounds are converted into H2 O, N2 , CO2 and HF during the combustion. 

Alter- natively, due to the high temperatures of combustion, CO can be assumed to be 

formed instead of CO2. The oxygen balance can be calculated according to Eqs. 1 and 2 

for a general formula CaHbFcNdOe, were M is the molecular mass of the compound.[9] 

 

  ΩCO2
=
e− 2a− b− c

2
M

•1600   (Equation 1) 

  ΩCO =
e− a− b− c

2
M

•1600   (Equation 2) 

 

The specific impulse (Is) is a key parameter for assessing the performance of a solid 

rocket propellant. It is proportional to the temperature inside the combustion chamber Tc 

and the reciprocal of the molecular weight of the decomposition products M (Eq. 3).[9] 
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6.3 RESULTS AND DISCUSSION 

Synthesis 

The reaction of 2,2,2-trinitroethanol with carbon tetrachloride, respectively chloroform, 

with catalytic amounts of a Lewis acid is the literature known synthesis for 2,2,2-

trinitroethyl ortho-carbonate and the corresponding ortho-formate, which has also been 

investigated in our group.[1,14] By using 2-fluoro- 2,2-dinitroethanol instead of 2,2,2-

trinitroethanol for this type of reaction, tetrakis(2-fluoro-2,2-dinitroethyl) ortho-carbonate 

(1) and tris(2-fluoro-2,2-dinitroethyl) ortho-formate (2) were synthesized with anhydrous 

iron(III) chloride as Lewis acid (Scheme 6.1). 

 

 
Scheme 6.1. Synthesis of ortho-carbonate 1 and -formate 2. 

 

NMR Spectroscopy 

In the 1H NMR spectra of 1 and 2 the resonances for the methylene hydrogen atoms were 

found as doublets at 5.24 and 5.15 ppm with 3JH−F coupling constants of 16.2 and 

16.7 Hz, respectively; the ortho-formate hydrogen atom was found at 6.11 ppm. The 19F 

NMR resonances were detected as broadened multiplets at −112.1 (1) and 

−112.2 (2) ppm, due to overlapping effects of the quadrupolar influence of the 14N 

nucleus and coupling with nitrogen and hydrogen. The 13C NMR resonances for the 

ortho-carbonate and -formate carbon atoms were detected at 119.1 (1) and 112.2 (2) ppm. 

The fluorodinitromethyl carbon atoms were found as doublets at 119.7 (1) and 120.4 (2) 

ppm, both with 1JC−F couplings of 293.3 Hz, and broadened by the quadrupolar influence 

of the 14N nucleus. The methylene carbon atoms appeared as doublets both at 62.9 ppm 

(2JC−F = 20.1 (1), 18.8 (2) Hz). The 14N NMR resonances of the nitro groups were found 

at −25 (1) and −24 (2) ppm.. 

HO CF(NO2)2 + CCl4
ah. FeCl3

– 4 HCl O

OO

O(O2N)2FC

CF(NO2)2(O2N)2FC

CF(NO2)2

4

HO CF(NO2)2 + CHCl3
ah. FeCl3

– 3 HCl OO

O

CF(NO2)2

(O2N)2FC CF(NO2)2

3

1

2
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Vibrational spectroscopy 

In the vibrational spectra of 1 and 2 the characteristic asymmetric NO2 stretching 

vibrations were assigned in the range of 1611 – 1592 cm−1, and the symmetric stretching 

vibrations at 1324 – 1311 cm−1 (Table 6.1). The C–H stretching vibrations for 1 and 2 

were found in the range of 3016 – 2859 cm−1. C–N, C–O, C–F and C–C vibrations of 1 

and 2 were observed in the expected ranges.[15-16]  

 

Table 6.1. IR and Raman bands of 1 and 2, characteristic vibrations and their assignments[a] 

 1 2 

 Raman IR Raman IR 

ν CH 3010 (25) 

2969 (71) 

2888(10) 

3012 (w) 

2969 (w) 

2897 (w) 

2960 (42) 

2890 (8) 

2859 (9) 

3016 (w) 

2957 (w) 

2893 (w) 

νas NO2 1593 (40) 1592 (vs) 1611 (14) 

1590 (24) 

1606 (vs) 

νs NO2 1317 (30) 1311 (s) 1324 (14) 1311 (vs) 

δ CNO2 /ν chain 8592(100) 851 (m) 854 (100) 850 (m) 

a) in cm–1; Raman intensities in brackets; IR intensities: vs = very strong, s = strong, m = medium, 

w = weak.  
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Single Crystal Structural Analysis  

Because of an observed phase transition of 1 (α-1 ⇆ β-1, for more details see below), 

only single crystals of β-1 could be obtained by crystallization from chloroform. The 

modification β-1 crystallizes in the tetragonal space group !42!! with two formula units 

per unit cell and a calculated maximum density of 1.84 g cm−3 at 258(2) K. The density is 

slightly higher compared to tetrakis(2,2,2-trinitroethyl) ortho-carbonate (1.81 g cm−3 at 

258(2) K)[1], which also crystallizes in a tetragonal space group. All bond lengths and 

angles were found in the typical range for polynitro CH(F)NO compounds.[17-18] The 

structure of β-1 is shown in Fig. 6.1. The displacement vectors of β-1 are shown only at 

the 30 % probability level owing to the measurement temperature of 258 K. Below 247 K 

(−26 °C), α-1 is the preferred conformation of 1, which unfortunately could not be 

obtained as single crystals. The crystal structure and refinement data for β-1 are given in 

Table 6.2. 

The average N–O bond length of the fluorodinitromethyl moieties 1.20(3) Å. C1 is 

surrounded by four symmetry-equivalent oxygens (O1) in a tetrahedral coordination. In 

contrast to tetrakis(2,2,2- trinitroethyl) ortho-carbonate[1], the structure of β-1 does not 

show attractive intramolecular interactions between the nitro groups. This structure motif 

is also found in the starting material 2-fluoro-2,2-dinitroethanol and further derivatives.[6] 

The C–F distance with 1.38(3) Å is comparable with a C–F single bond and in the usual 

range for a fluorodinitromethyl moiety.[6,7,13] 
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Table 6.2. Crystal and structure refinement data for β-1 

 β-1 

empirical formula C9H8F4N8O20 

formula mass /g mol–1 624.20 

temperature /K 258(2) 

crystal size /mm 0.10 × 0.05 × 0.04 

crystal description colorless block 

crystal system tetragonal 

space group P–421c 

a /Å 11.027(3) 

b /Å 11.027(3) 

c /Å 9.254(6) 

β /° 90.0 

V /Å3 1125.3(9) 

Z 2 

ρcalc /g cm–3 1.842 

µ /mm–1 0.199 

F(000) 628 

θ range /° 4.13–25.21 

index ranges –13 ≤ h ≤ 9 

 –13 ≤ k ≤ 13 

 –11 ≤ l ≤ 11 

reflections collected 5203 

reflections observed 1005 

reflections unique 645 

R1, wR2 (2σ data) 0.0897, 0.1257 

R1, wR2 (all data) 0.2538, 0.2950 

max. / min. transmission 0.9921/0.9803 

data/restraints/parameters 1005/0/93 

GOOF on F2 1.037 

larg. diff. peak/hole /e Å–3 0.398/–0.247 
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Thermal and Energetic Properties 

The investigated physical and chemical properties of compound 1 and 2 are shown in 

Table 6.3. Even though compound 1 has to be prepared under inert gas conditions, the 

pure compound is stable towards moisture and air. DSC measurements of compound 1 

have shown that the product melts at 133 °C. The compound starts to boil at 193 °C 

(onset), an exothermic decomposition was not detected at higher temperatures. Additional 

measurements at low temperatures revealed a phase transition (exothermic peak) between 

the α- and β-configuration of 1 starting at −26 °C (onset) during cooling the compound to 

−80 °C. Upon reheating the sample an endothermic signal appeared at −22  °C (onset), 

which indicates the phase transition reversibility. The rate of heating was ±5 °C. 

Therefore, the α-configuration of 1 is metastable above −22 °C. Between −26 and −22 °C 

both phases of 1 are coexistent (Fig. 6.2). 2,2-Dinitroethene-1,1-diamine (FOX-7) and 

tetrakis(2,2,2-trinitroethyl) ortho-carbonate show a comparable behavior between two 

different phases at a temperature of 116 °C for the former and with hysteresis between 

−16 and 33 °C for the latter one.[1,19] 
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detonation velocity of 1 (8440 m s−1) is comparable with that of pentaerythritol 

tetranitrate (PETN, 8400 m s−1) and tetrakis(2,2,2-trinitroethyl) ortho-carbonate 

(8419 m s−1).[1,23] The predicted velocity of 2 (8404 m s−1) is only slightly below that of 

compound 1. 

 
Table 6.3. Physical and chemical properties of 1 and 2 

 1 2 

formula C9H8F4N8O20 C7H7F3N6O15 

mol mass /g mol–1 624.20 472.16 

Tm /°C a) 133 110 

Td /°C b) 193 (boiling) 211 

N /% c) 17.95 17.80 

N + O /% d) 69.21 68.63 

ΩCO /% e) 23.1 20.3 

ΩCO2 /% f) 0 –3.4 

ρ /g cm–3 g) 1.84 1.80 

–ΔU°f /kJ kg–1 h) 2548.7 2512.3 

–ΔH°f /kJ kg–1 i) 1640.5 1224.6 

a, b) Melting (Tm) and decomposition (Td) point from DSC measurement carried out at a heating 

rate of 5 °C min–1. c) Nitrogen content. d) Combined nitrogen and oxygen content. e) Oxygen 

balance assuming the formation of CO. The Oxygen balance of ammonium perchlorate is 34.0 %. 

f) Oxygen balance assuming the formation of CO2. g) Experimentally determined density from X-

ray diffraction experiments at ambient temperature (1) or pycnometer measurements (2). h) 

Energy of formation at 298 K. i) Heat of formation at 298 K. 
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Table 6.4. Predicted detonation and combustion parameters and sensitivity data for 1 and 2 

 1 2 

–Qv /kJ kg–1 4539 4826 

Tex /K a) 3800 3906 

V0 /L kg–1 b) 700 702 

p /kbar c) 372 362 

D /m s–1 d) 8440 8405 

impact /J e) 9 25 

friction /N e) 192 360 

ESD /J f) 0.25 0.45 

grain size /µm g) 100–250 100–250 

thermal shock h) burns burns 

Is /sec i) 249 252 

Is(comp) /sec j) 246 246 

Ωcomp /% k) –53.96 –56.33 

a) Temperature of the explosion gases. b) Volume of the explosion gases (assuming only gaseous 

products). c) Detonation pressure. d) Detonation velocity. e) Impact and friction sensitivities 

according to standard BAM methods.[24] f) Sensitivity towards electrostatic discharge. g) Grain 

size of the samples used for sensitivity tests. h) Response to fast heating in the “flame test”. i) 

Specific impulse of the neat compound using the EXPLO5 code[22]. j) Specific impulse for 

compositions. The specific impulse for similar composition with ammonium perchlorate (Is AP = 

258 s, Ωcomp, AP = –30.13 %) has been calculated. k) Oxygen balance for the composition used for 

combustion calculations. 
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The specific impulses of the compounds 1 and 2 were calculated for compositions of 

70 % oxidizer (compound 1 or 2), 16 % aluminum, 6 % polybutadiene acrylic acid, 6 % 

polybutadiene acrylonitrile and 2 % bisphenol A ether modeled on rocket motor 

compositions for solid rockets boosters used by the NASA Space Shuttle program.[25-26] 

These impulses were compared with the calculated impulse of ammonium perchlorate 

(AP) in an analogous composition. The chosen mixture with AP as oxidizer provides a 

specific impulse of 258 s. The impulses for 1 and 2 in the modeled compositions were 

calculated with a value of 246 s for both, which is below the predicted value for an AP 

composition. A reason might be the decreased oxygen balance within the mixture of 

−53.96 % for 1 and −56.33 % for 2, respectively (Ωcomp(AP) = −30.13 %). Interestingly, 

the impulses for the neat compounds 1 (249 s) and even 252  s for 2 are greater compared 

with the chosen mixtures and are therefore in the range of a typical composition using AP 

as oxidizer. 
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6.4 CONCLUSION 

Tetrakis(2-fluoro-2,2-dinitroethyl) ortho-carbonate (1) and tris(2-fluoro-2,2-dinitroethyl) 

ortho-formate (2) were synthesized and fully characterized using multinuclear NMR, IR 

and Raman spectroscopy, as well as mass spectrometry and elemental analysis. These 

compounds were also examined in terms of sensitivity, compared with tetrakis(2,2,2-

trinitroethyl) ortho-carbonate, and found to be less sensitive. Both materials might be of 

potential interest for application in metal-free propulsion systems.  
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6.5 EXPERIMENTAL SECTION 

General Procedures 

The synthesis and manipulation of air- and moisture- sensitive materials were performed 

under an inert atmosphere of dry nitrogen in flame-dried glass vessels by SCHLENK 

techniques.[27] The solvents carbon tetrachloride and chloroform (both Sigma Aldrich) 

were dried by standard methods and freshly distilled prior to use. Anhydrous iron(III) 

chloride and 2-fluoro-2,2-dinitroethanol were prepared according to literature known 

procedures.[6,28-29] Raman spectra were recorded with a BRUKER MultiRAM FT- Raman 

instrument equipped with a KLASTECH DENICAFC LC-3/40 Nd:YAG laser source 

(λ = 1064 nm, 300 mW) and a liquid nitrogen-cooled germanium detector. Infrared (IR) 

spectra were measured with a PERKIN-ELMER Spectrum BX- FTIR spectrometer equipped 

with a SMITHS DuraSamplIR II ATR device. All spectra were recorded at ambient 

temperature, the samples were neat solids. Densities were determined at ambient 

temperature using a QUANTACHROME Ultrapyc1200e gas pycnometer equipped with 

helium gas (AIR LIQUIDE, purity 5.6). NMR spectra were recorded at 25 °C with a JEOL 

ECLIPSE 400 instrument, and chemical shifts were determined with respect to external 

Me4Si (1H, 399.8 MHz; 13C, 100.5 MHz), MeNO2 (14N, 28.9 MHz) and CCl3F (19F, 

376.5 MHz). Mass spectrometric data were obtained with a JEOL MStation JMS 700 

spectrometer (DEI+). Elemental analyses (C/H/N) were performed with an ELEMENTAR 

VARIO EL analyzer. Melting points were measured with a PERKIN-ELMER Pyris6 DSC 

instrument, with a heating rate of 5 °C min−1 and checked by a BÜCHI Melting Point B-

540 apparatus. Sensitivity data (impact, friction and electrostatic discharge) were 

performed with a drophammer, friction tester and electrostatic discharge device conform 

to the directive of the Federal Institute for Materials Research and Testing (BAM).[24] 

 

Computational Details 

All quantum-chemical calculations were carried out using the program package 

GAUSSIAN 09 (revision C.01)[21], visualized with GAUSSVIEW 5 (version 5.0.8).[20] 

The initial geometries of the structures were taken from the experimentally determined 

crystal structure (1) or from the previously calculated ab initio-optimized structure (2). 

The enthalpies (H) and free energies (G) were calculated by the complete basis set (CBS) 

method in order to obtain very accurate values.[30-32] The CBS model uses the known 
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asymptotic convergence of pair natural orbital expressions to extrapolate from 

calculations using a finite basis set to the estimated complete basis set limit. CBS-4 starts 

with a HF/3-21G(d) structure optimization, which is the initial guess for the following 

SCF calculation as a base energy and a final MP2/6-31+G calculation with a CBS 

extrapolation to correct the energy in second order. The used re-parametrized CBS-4M 

method additionally implements a MP4(SDQ)/6-31+(d,p) calculation to approximate 

higher-order contributions and also includes some additional empirical corrections.[37-38]  

The solid-state enthalpies and energies of formation were calculated from the 

corresponding enthalpy derived from these quantum chemical CBS-4M calculations 

(HCBS-4M). Therefore, the enthalpies of formation of the gas-phase species were computed 

according to the atomization energy method.[30,33-35] All calculations affecting the 

detonation parameters were carried out using the program package EXPLO5 V6.01.[22,36] 

The detonation parameters were calculated at the CJ point with the aid of the steady-state 

detonation model using a modified Becker-Kistiakowski-Wilson equation of state for 

modeling the system. The CJ point is found from the Hugoniot curve of the system by its 

first derivative.[36-37] The specific impulses were also calculated with the EXPLO5 V6.01 

program, assuming an isobaric combustion of a composition of 70 % oxidizer, 16 % 

aluminum (as fuel), 6 % polybutadiene acrylic acid, 6 % polybutadiene acrylonitrile (both 

as binder) and 2 % bisphenol A ether (as epoxy curing agent).[25-26] A chamber pressure 

of 70.0 bar and an ambient pressure of 1.0 bar with equilibrium expansion conditions 

were estimated for the calculations. 

 

X-ray structure determination 

For compound 1, an Oxford Xcalibur3 diffractometer with a CCD area detector was 

employed for data collection using MoKα radiation(λ=0.71073A ̊). The structures were 

solved by Direct Methods (SIR97)[41-42] and refined by full-matrix least-squares on F2 

(SHELXL-97).[43-46] All non-hydrogen atoms were refined anisotropically. The hydrogen 

atoms were located in difference Fourier maps and placed with a C–H distance of 0.99 Å 

for CH2 groups. Table 6.2 summarizes the most important crystal structure data. 

CCDC 951973 contains the supplementary crystallographic data for this paper. These 

data can be obtained free of charge from The Cambridge Crystallographic Data Centre 

via www.ccdc.cam.ac.uk/data request/cif. 
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Synthesis 

CAUTION! All nitrogen- and oxygen-rich compounds are potentially explosive 

energetic materials, although no hazards were observed during preparation and handling 

these compounds. Nevertheless, this necessitates additional meticulous safety precautions 

(earthed equipment, Kevlar® gloves, Kevlar® sleeves, face shield, leather coat, and ear 

plugs). In addition, especially 2-fluoro-2,2-trinitroethanol shows significant degrees of 

toxicity,[38-39] including own recent results.[40] Particular care should be exercised in 

handling of those materials and derivatives. 

 

Tetrakis(2-fluoro-2,2-dinitroethyl) orthocarbonate (1) 

2-Fluoro-2,2-dinitroethanol (1.54 g, 10.0 mmol) and anhydrous iron(III) chloride (0.15 g, 

0.92 mmol) were diluted in carbon tetrachloride (4.2 mL) under careful exclusion of 

moisture. The mixture was heated up in an oil bath (85 °C) and refluxed for 24 h. The 

solvent was removed in vacuo. To remove the remaining iron(III) chloride, the residue 

was washed with iced dilute hydrochloric acid (25 mL, 1 M) and the product was filtered 

off. After crystallization of the crude product from chloroform, 0.89 g of 1 (57 %) was 

obtained. 

DSC: Tm = 133 °C, Tdec = 193 °C. – Raman: ν = 3010 (25), 2969 (71), 2888 (10), 2794 

(5), 1593 (40), 1455 (37), 1395 (18), 1359 (79), 1317 (30), 1255 (16), 1171 (6), 1116 

(15), 1068 (21), 1025 (16), 930 (21), 859 (89), 852 (100), 815 (5), 806 (6), 775 (5), 747 

(6), 579 (8), 518 (13), 468 (9), 421 (49), 377 (54), 351 (29), 306 (14), 266 (6), 213 

(23) cm–1. – IR: ν = 3012 (w), 2969 (w), 2897 (w), 1740 (w), 1592 (vs), 1449 (w), 1402 

(w), 1358 (w), 1311 (s), 1252 (w), 1159 (s), 1133 (s), 1109 (vs), 1067 (s), 1009 (m), 919 

(w), 851 (m), 803 (s), 776 (w), 764 (w), 745 (w), 678 (w) cm–1. – 1H NMR (acetone–D6): 

δ = 5.24 (d, CH2, 3JH–F = 16.2 Hz). – 13C{1H} NMR (acetone–D6): δ = 119.7 (d, 
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CF(NO2)2, 1JC–F = 293.3 Hz), 119.1 (C(OCH2)4), 62.9 (d, OCH2, 2JC–F = 20.1 Hz). – 19F 

NMR (acetone-D6): δ = –112.1 (m, br, CF(NO2)2). – 14N NMR (acetone–D6): δ = –25 (br, 

NO2). – MS (DEI+): m/z (%) = 471 (5) [M – OCH2CF(NO2)2]+, 395 (2) [M –

 CH2CF(NO2)2 – 2 NO2]+, 319 (4) [M – 2 OCH2CF(NO2)2 + H]+, 137 (18) 

[CH2CF(NO2)2]+, 46 (35) [NO2]+, 30 (100) [NO]+. – EA for C9H8F4N8O20 (624.20) calcd. 

C 17.32, H 1.29, N 17.95; found C 17.39, H 1.24, N 17.72 %. – Sensitivities (grain size: 

100–500 µm): impact: 9 J; friction: 192 N; electrostatic: 0.25 J. 

 

Tris(2-fluoro-2,2-dinitroethyl) formate (2) 

2-Fluoro-2,2-dinitroethanol (2.5 g, 16.2 mmol) and anhydrous iron(III) chloride (0.2 g, 

1.23 mmol) were dissolved in dry chloroform (5 mL) under careful exclusion of moisture. 

The mixture was heated up in an oil bath (85 °C) and refluxed for 120 h. Upon cooling, 

the reaction mixture was poured into diethyl ether (60 mL). The ether phase was washed 

with water (3 × 60 mL) and dried over sodium sulfate. Removing the solvent left a cream 

colored crude product, which was re-crystallized from dichloromethane/pentane (50:50). 

1.9 g (74 %) of 2 as colorless crystals was obtained. 

DSC: Tm = 110 °C, Tdec = 211 °C. – Raman: ν = 2960 (42), 2890 (8), 2859 (9), 2427 (3), 

1611 (14), 1590 (24), 1456 (18), 1397 (11), 1375 (20), 1358 (35), 1324 (14), 1246 (9), 

1118 (10), 1079 (8), 1025 (11), 969 (5), 924 (8), 854 (100), 760 (4), 725 (3), 625 (4), 542 

(10), 421 (28), 380 (37), 361 (23), 300 (5), 221 (5) cm–1. – IR: ν = 3016 (w), 2957 (w), 

2893 (w), 1606 (vs), 1452 (w), 1399 (w), 1311 (vs), 1250 (w), 1172 (w), 1134 (s), 1114 

(s), 1074 (s), 1026 (m), 1010 (m), 928 (w), 850 (m), 817 (w), 801 (vs), 761 (w) cm–1. – 
1H NMR (acetone–D6): δ = 6.11 (CH), 5.15 (d, CH2, 3JH–F = 16.7 Hz). – 13C{1H} NMR 

(acetone–D6): δ = 120.4 (d, CF(NO2)2, 1JC–F = 293.3 Hz), 112.2 (CH(OCH2)3), 62.9 (d, 

OCH2, 2JC–F = 18.8 Hz). – 19F NMR (acetone-D6): δ = –112.2 (m, br, CF(NO2)2). – 14N 

NMR (acetone–D6): δ = –24 (br, NO2). – MS (DEI+): m/z (%) = 471 (1) [M – H]+, 319 
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(10) [M – OCH2CF(NO2)2]+, 137 (16) [CH2CF(NO2)2]+, 91 (4) [CH2CFNO2]+, 46 (23) 

[NO2]+, 30 (100) [NO]+. – EA for C7H7F3N6O15 (472.16) calcd. C 17.81, H 1.49, N 17.80; 

found C 17.88, H 1.47, N 17.60 %. – Sensitivities (grain size: 100–250 µm): impact: 

25 J; friction: 360 N; electrostatic: 0.45 J. 
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7.2 INTRODUCTION 

Ammonium perchlorate (AP) is a widely used oxidizer in solid-rocket propellants for 

civil applications. Unfortunately, this readily available and cheap compound comes along 

with several problems for the environment, such as the formation of large amounts of 

hydrogen chloride gas during the combustion of a solid rocket composite.[1] Therefore, it 

is important to drive research towards environmental friendly chlorine free compounds 

and to provide a large excess of oxygen for the combustion of the used aluminum fuel. 

Highly nitrated CHNO compounds were found to be useful as high energetic materials 

because of their good oxygen content.[1a,2] 

The performance of solid-rocket boosters depends on the specific impulse as one of the 

most important parameters. It is proportional to the reciprocal of the molecular weight of 

the decomposition products M and the temperature inside the combustion chamber Tc 

during combustion of the composite.[3] An increase of the value for the specific impulse 

(Is) by 20 s leads empirically to a doubling of the usual payload.[3a] Therefore, the 

development of new energetic oxidizers based on CHNO compounds decomposing into 

small volatile molecules as well as an increase of the temperature of combustion should 

enhance the specific impulse of modern solid rocket motors. 

On the basis of previous investigations, compounds derived from 2-fluoro-2,2-

dinitroethylamine and 2,2,2-trinitroethanol might be useful as starting materials for 

preparing new chlorine free potential high-energy dense oxidizers, which decompose  in a 

more environmental friendly way, even though they contain the halogen fluorine.[1a,2a-c] 

The chemistry of 2,2,2-trinitroethanol is different to that of other alcohols due to the 

electron-withdrawing effect of the trinitromethyl group.[4] As a result the basicity of the 

hydroxyl group is decreased and it behaves acidic (pKa= 6.1). At pH values above 6, the 

equilibrium is shifted towards the starting materials nitroform and formaldehyde.[2b,5] The 

amine 2-fluoro-2,2-dinitroethylamine shows also a decreased basicity due to the electron-

withdrawing fluorodinitromethyl functionality (σ* = 4.4).[6] The σ* parameter indicates 

the influence of a substituent during a reaction through polar (inductive, field, and 

resonance) effects of organic compounds.[4,7] The most common way for synthesizing 

new compounds using 2,2,2-trinitroethanol as precursor is a Mannich-type reaction with 

amine moieties.  

A detailed study of the synthesis and characterization of (2-fluoro-2,2-dinitroethyl)-2,2,2-

trinitroethylnitramine and precursors is presented in this work. The compounds were 
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investigated as potential high-energetic oxidizers based on the starting material 2-fluoro-

2,2-dinitroethylamine, which is known since the 1960ies.[8] 
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7.3 RESULTS AND DISCUSSION 

 
Synthesis 

The amine 2-fluoro-2,2-dinitroethylamine (1) was synthesized from 2-fluoro-2,2-

dinitroethanol with aqueous ammonia[8a] (Scheme 1). After distillation, the amine 1 must 

be handled very carefully. Therefore, an unexpected sudden deflagration occurs as a neat 

liquid within several hours at room temperature. Storage of 1 as solution in chloroform is 

recommended.  

 

 
Scheme 7.1. Synthesis of 2-fluoro-2,2-dinitroethylamine (1). 

 

The MANNICH-type reaction of 1 with 2,2,2-trinitroethanol leads to the mixed secondary 

amine (2-fluoro-2,2-dinitroethyl)-2,2,2-trinitroethylamine (2). The reaction was carried 

out in chloroform, assisted by the use of molecular sieves (4 Å). Further nitration of 

compound 2, using a mixture of nitric and sulfuric acid, gave the corresponding nitramine 

(2-fluoro-2,2-dinitroethyl)-2,2,2-trinitroethylnitramine (3) in good yields (Scheme 2). 

 

 
Scheme 7.2. Synthesis of compound 2 and 3 from 2-fluoro-2,2-dinitroethylamine (1). 

 

Multinuclear NMR Spectroscopy 

The compounds were thoroughly characterized by 1H, 13C{1H}, 15N and 19F NMR 

spectroscopy. The 1H NMR spectrum of compound 1 revealed the resonance of the CH2 

group as a doublet at δ = 3.92 ppm caused by the coupling with the adjacent fluorine atom 

(3JF,H = 17.6 Hz). The amino resonance was observed broadened at δ = 1.49 ppm. In the 
13C NMR the resonance for the fluorodinitromethyl group was identified as a doublet at 

δ = 123.0 ppm with a coupling constant of 1JC,F = 287.5 Hz. The methylene carbon 

resonance occurred also as doublet at δ = 44.5 ppm (2JC,F = 19.6 Hz). The amino nitrogen 
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resonance of 2-fluoro-2,2-dinitroethylamine was observed at δ = –377.2 ppm in the 15N 

NMR spectrum. Additionally, the nitrogen atoms of the nitro groups appeared at  

δ = –20.8 ppm as a doublet due to the 2J coupling with fluorine (2J15N,F = 15.0 Hz). The 
19F NMR spectrum showed a broadened resonance at δ = –111.1 ppm, because of the 

quadrupolar influence of 14N in the nitro groups. 

The 1H NMR spectrum of (2-fluoro-2,2-dinitroethyl)-2,2,2-trinitroethylamine (2) showed 

different resonances for the two methylene groups. The doublet at δ = 4.31 ppm 

(3JH,H = 7.8 Hz), which was caused by a 3J coupling with the adjacent NH moiety, was 

assigned to the trinitroethyl group of 2. The resonance of the CH2CFC(NO2)2 moiety 

appeared as a doublet of doublets at δ = 4.10 ppm owing to an additional 3JH–F coupling 

with coupling constants of 3JH,H = 7.3 Hz and 3JH,F = 16.6 Hz. The NH resonance was 

observed as a quintet at δ = 2.55 ppm. In the 13C NMR spectrum the resonance of the 

trinitromethyl carbon was typically found as a broadened resonance at δ = 126.2 ppm. 

The fluorodinitromethyl carbon resonance was found at δ = 121.3 ppm as doublet with a 
1JC–F coupling constant of 288.3 Hz. As expected, the resonances of the CH2 moieties 

were observed as a singlet at δ = 52.5 ppm [CH2C(NO2)3], and as a doublet at 

δ = 50.8 ppm [CH2CF(NO2)2; 2JC,F = 19.2 Hz], respectively. The 15N NMR spectrum 

showed the nitro resonances of two different polynitromethyl moieties as a doublet of 

multiplets at δ = –22.9 ppm [CF(NO2)2; 2JN,F = 14.9 Hz] for the fluorodinitromethyl 

moiety and the trinitromethyl functionality as triplet a at δ = –32.3 ppm [C(NO2)3; 
3JN,H = 2.0 Hz] ppm. The amine resonance appeared as a doublet at δ = –373.0 ppm 

owing to the direct 1JN,H coupling with 83.0 Hz.  

 The resonances of the two methylene groups in the 1H NMR spectrum of 3 were 

identified as a singlet at δ = 6.14 ppm for the trinitroethyl moiety and at δ = 5.80 ppm as 

doublet with a 3JH,F coupling constant of 9.5 Hz for the fluorodinitroethyl group. Similar 

to 2, at δ = 124.2 ppm a broadened singlet appears in the 13C NMR spectrum for the 

trinitromethyl carbon and the fluorodinitromethyl carbon was identified as a doublet at 

δ = 118.6 ppm (1JC,F = 294.0 Hz). The methylene carbon connected to the trinitromethyl 

moiety was found as a singlet at δ = 55.2 ppm, and a doublet at δ = 55.0 ppm was 

assigned to the second methylene group adjacent to the fluorodinitromethyl group with a 
2JC,F coupling constant of 16.1 Hz. The 19F NMR spectrum showed a broadened 

resonance appearing as triplet at δ = –107.1 ppm. In the 15N NMR spectrum the different 

polynitro moieties as well as the newly introduced nitramine functionality were detected 

(Figure 1). The resonance at δ = –22.5 ppm was assigned to the nitrogen atoms of the 



CHAPTER 7____________________________________________________________________ 

160 | 

fluorodinitromethyl group. As a result of the 3JN,H = 1.7 Hz coupling with the attached 

methylene hydrogen and an additional 2JN,F = 15.2 Hz coupling, this resonance is split 

into a doublet of triplets. Owing to the 3JN,H coupling of 2.0 Hz, the resonance of the 

C(NO2)3 moiety was found as a triplet at δ = –33.7 ppm. The nitramine group showed two 

resonances, a quintet at δ = –33.4 ppm for the nitro group (3JN–H = 3.2 Hz, coupling to 

four hydrogen atoms of the two methylene groups), and the amine nitrogen resonance 

was identified as a singlet at δ = –217.2 ppm.  

 

 
Figure 7.1. 15N NMR spectrum of 3 in [D6]acetone. 

 

Vibrational spectroscopy 

The vibrational spectra of 1–3 showed the characteristic asymmetric stretching vibrations 

νas(NO2) in the range of 1614–1579 cm–1 and the symmetric stretching vibrations νs(NO2) 

at 1316–1270 cm–1 (Table 1). The two different polynitro moieties 

(trinitromethyl/fluorodinitromethyl moiety) might cause the observed spread of the 

νas(NO2) vibration energies. For compounds 1 and 2 the N–H stretching vibrations of the 

amine moieties were observed in the range of 3428–3361 cm–1. The C–N, C–O, C–F and 

C–C vibrations of 1–3 could be observed in the typical ranges for CHFNO compounds, 

respectively.[9] 
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Table 7.1. IR and Raman bands of carbonyl and nitro groups for 1–3 

 1 2 3 

 IR[a] Raman[b] IR[a] Raman[b] IR[a] Raman[b] 

ν NH 3428 (w) 

3364 (w) 

3361 (9) 3368 (w) 3368 (4)   

νas NO2 1581 (vs) 1588 (18) 1579 (vs) 1612 (23) 

1601 (22) 

1585 (18) 

1591 (vs) 1614 (22) 

1589 (10) 

1566 (5) 

νs NO2 1281 (m) 1310 (18) 1305 (s) 

1245 (m) 

1311 (30) 

1247 (12) 

1316 (m) 

1270 (w) 

1300 (16) 

1271 (44) 

[a] IR intensities in [cm–1]; vs = very strong, s = strong, m = medium, w = weak. [b] Raman 

intensities [cm–1] at 300 mW in brackets. 

 

X-Ray Diffraction  

The compounds 2 and 3 were investigated by low-temperature single-crystal X-ray 

diffraction. The crystal and structure refinement data of the structure determinations are 

given in Table 2. Suitable single crystals for X-ray diffraction measurements were 

obtained by slow evaporation of chloroform. The bond lengths and angles of compound 2 

and 3 are comparable with previously discussed values for CHNO-compounds containing 

a trinitromethyl moiety.[3b,10] Additional data on intermolecular interactions of 2–3 are 

given in the Supporting Information.  

The molecular structure of (2-fluoro-2,2-dinitroethyl)-2,2,2-trinitroethylamine (2) is 

shown in Figure 2. Compound 2 crystallizes in the orthorhombic space group Pna21 with 

eight formula units per unit cell and a density of 1.89 g cm–1 at 173 K. The average N–O 

bond lengths of the trinitromethyl and the fluorodinitromethyl moieties are 1.217 Å for 

the two molecules in the asymmetric unit. For the top molecule, there is a typical 

propeller-type orientation of the trinitromethyl moiety with C2–C1–N–O torsion angles 

between 31.0(3) ° and 51.7(3) °. The bottom molecule shows a comparable structure of 

the trinitromethyl moiety with a contrary sense of rotation [C6–C5–N–O: –55.8(3) ° to –

35.5(3) °]. The orientation of the fluorodinitromethyl moieties also indicates a propeller-

like structure.[9c] The C–C–N–O torsion angles of these four nitro groups [26.2(3) °/–

27.5(3) °/–36.7(3) °/65.9(3) °] are within the typical range for a propeller like structure of 
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(2-Fluoro-2,2-dinitroethyl)-2,2,2-trinitroethylnitramine (3) also crystallizes in the 

orthorhombic space group Pna21 with four formula units in the unit cell (Figure 3). The 

density at 173 K was calculated with 1.95 g cm–1. The average N–O bond length of the 

trinitromethyl moiety is 1.209 Å. The trinitromethyl moiety displays a molecular 

geometry with a propeller-type orientation of the nitro groups connected to C1.[9c] The 

twisted orientation is energetically favorable and leads to several N⋅⋅⋅O-dipolar 

interactions between the geminal NO2 groups (range of 2.56−2.62 Å), which are 

considerably shorter than the sum of the van der waals radii for nitrogen and oxygen (ca. 

2.9 Å).[9c] The shorter distances are caused by the fact that such twisting of the nitro 

groups reduces the intramolecular electrostatic repulsion between the oxygen atoms, 

while at the same time optimizing the attractive N⋅⋅⋅O interactions between the geminal 

NO2 groups.[9c] The average fluorodinitromethyl moiety C1F1(NO2)2 N–O bond length 

[1.214(4) Å] is comparable to that of the trinitromethyl group. The C2–C1–N–O torsion 

angles [–37.6(2) °/38.9(2) °] are also in the typical range (23–67 °) of a propeller-type 

orientation of the nitro groups attached.[9c] At 1.226(3) Å, the averaged N–O distance of 

the nitramine moiety is slightly longer than the previously described polynitro groups. 

This might be caused by some shared π-electron density between the N–N bond and the 

N–O bonds of the nitramine moiety.[9c] The C3–N3–N4–O dihedral angles (–20.7 °/1.3 °) 

are in the typical range for cyclic nitramines like hexogen (RDX).[11] The C–F distance 

with 1.324(3) Å is comparable with a C–F single bond and typical for a 

fluorodinitromethyl moiety.[12]  
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Table 7.2. Crystal and structure refinement data for 2 and 3 

 2 3 

Empirical formula C4H5FN6O10 C4H4FN7O12 

Formula mass [g mol–1] 316.12 361.11 

Temperature [K] 173(2) 173(2) 

Crystal size [mm] 0.40 × 0.18 × 0.03 0.20 × 0.06 × 0.02 

Crystal description colorless platelet colorless needle 

Crystal system orthorhombic orthorhombic 

Space group Pna21 Pna21 

a [Å] 18.5686(10) 16.8034(5) 

b [Å] 5.9732(4) 6.1707(2) 

c [Å] 20.0793(15) 11.8499(4) 

β [°] 90 90 

V [Å3] 2227.1(3) 1228.70(7) 

Z 8 4 

ρcalc [g cm–3] 1.8856(3) 1.9522(1) 

µ [mm–1] 0.195 0.204 

F(000) 1280 728 

θ range [°] 4.12–30.00 4.21–30.07 

index ranges –19 ≤ h ≤ 26 –23 ≤ h ≤ 23 

 –7 ≤ k ≤ 8 –8 ≤ k ≤ 8 

 –28 ≤ l ≤ 27 –16 ≤ l ≤ 16 

Reflections collected 14438 15575 

Reflections observed 6265 3599 

Reflections unique 5149 3119 

R1, wR2 (2σ data) 0.0410, 0.0856 0.0346, 0.0719 

R1, wR2 (all data) 0.0576, 0.0952 0.0450, 0.0778 

max. / min. transmission 1.00000/0.89677 1.00000/0.93078 

Data/restraints/parameters 6265/1/387 3599/0/217 

GoF on F2 1.042 1.030 

Largest diff. peak/hole [e Å–3] 0.310/–0.253 0.332/–0.317 
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Thermal and Energetic Properties 

The compounds 2 and 3 are stable when exposed to air and moisture. As indicated earlier, 

amine 1 decomposes violently within hours as neat compound at ambient temperature. 

Thermal stabilities for 1–3 were investigated with various DSC measurements (heating 

rate: 5 °C min–1). The melting point of compound 1 was determined roughly at –11 °C. 

Decomposition starts at 80 °C. The melting points were rising from 37 °C for 2 to 87 °C 

for 3. Decomposition becomes significant for compound 2 at 121 °C and 162 °C for 3. 

The investigated physical and chemical properties are shown in Table 7.3.  

The sensitivities towards impact, friction and electrostatic discharge for 2 and 3 were 

determined experimentally according to standards of the Federal Institute for Materials 

Research and Testing (BAM)[13] and the results displayed in Table 7.4. The compounds 2 

and 3 showed comparable impact sensitivity values with 6 J for 2 and 5 J for 3, 

respectively. The friction sensitivity was determined with 360 N for compound 2. 

Nitration to 3 decreased the stability towards friction to 144 N. Amine 1 was omitted 

from the determination of the sensitivities owing to its instability as neat liquid. 

Predictions of the detonation parameters using the EXPLO5 code[14] were performed 

based on heats of formations calculated ab initio using the Gaussian 09 program 

package[15] at the CBS-4M level of theory. Energetic parameters are attributed to the 

density of the corresponding compound at ambient temperature. The resulting heats of 

detonation (Qv), detonation temperatures (T), pressures (p) and velocities (D) for 1–3 are 

shown in the Table 7.4. The densities needed for the estimation of the detonation 

parameters with the EXPLO5 code[14] were derived from experimental determinations via 

pycnometer measurements for 2 and 3. The calculated detonation velocities of 2 

(8719 m s–1) and 3 (8673 m s–1) are in the range of the known value for RDX  

(8750 m s–1), and therefore both compounds might useful as high-performing oxygen rich 

energetic materials.[16] The thermal stability rises from 80 °C (compound 1) through 

121 °C (compound 2) to 162 °C for compound 3. 

The specific impulses of the compounds 1–3 were calculated for compositions of 70 % 

oxidizer, 16 % aluminum, 6 % polybutadiene acrylic acid, 6 % polybutadiene 

acrylonitrile and 2 % bisphenol-A ether modeled on rocket-motor compositions for solid-

rocket boosters used by the NASA Space Shuttle program.[17] These impulses were 

compared with the calculated impulse of AP in an analogous composition. The chosen 

mixture with AP as oxidizer provides a specific impulse of 258 sec. The impulses for 1–3 

were increasing with increasing oxygen content (249–266 s). Nitramine 3 shows a 
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superior specific impulse of 266 s relative to an analogous mixture with AP as oxidizer. 

The lesser oxygen balance of the compounds 1–3, according to AP, also leads to a 

decreased oxygen balance for the calculated formulations that varies between –64.94 % 

and –46.21 %. A similar composition with AP as oxidizer has an oxygen balance of  

–30.1 %.  

 

Table 7.3. Physical and chemical properties of 1–3 

 1 2 3 

Formula C2H4FN3O4 C4H5FN6O10 C4H4FN7O12 

Mol mass [g mol–1] 153.07 316.12 361.11 

Tm [°C][a] –11 37 82 

Td [°C][b] 80 121 162 

N [%][c] 27.45 26.59 27.15 

N + O [%][d] 69.26 77.2 80.32 

ΩCO [%][e] 5.2 20.2 28.8 

ΩCO2 [%][f] –15.7 0 11.1 

ρ [g cm–3][g] 1.80 1.79 1.85 

–ΔU°f [kJ kg–1][h] 1631.8 821.7 575.9 

–ΔH°f [kJ mol–1][i] 264.7 287.0 238.8 

[a] Melting (Tm) point from DSC measurement carried out at a heating rate of 5 °C min–1. [b] 

Decomposition (Td) point from DSC measurement carried out at a heating rate of 5 °C min–1. [c] 

Nitrogen content. [d] Combined nitrogen and oxygen content. [e] Oxygen balance assuming the 

formation of CO. The oxygen balance of ammonium perchlorate is 34.0 % [f] Oxygen balance 

assuming the formation of CO2. [g] Experimental density from pycnometer measurement. [h] 

Calculated energy of formation at 298 K. [i] Calculated heat of formation at 298 K. 
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Table 7.4. Predicted detonation and combustion parameters (using the EXPLO5 code) and 

sensitivity data for 1–3 

 1 2 3 

–Qv [kJ kg–1] 5136 5733 5210 

Tex [K][a] 3535 4310 4104 

V0 [L kg–1][b] 750 752 748 

p [kbar][c] 315 368 354 

D [m s–1][d] 8496 8719 8637 

Impact [J][e] n.d. 6 5 

Friction [N][e] n.d. 360 144 

ESD [J][f] n.d. 0.1 0.1 

Grain size [µm][g] liquid < 100 < 100 

Thermal shock[h] burns burns burns 

Is [s][i] 249 257 266 

Ωcomp [%][j] –64.94 –53.96 –46.21 

[a] Temperature of the explosion gases. [b] Volume of the explosion gases (assuming only 

gaseous products). [c] Detonation pressure. [d] Detonation velocity. [e] Impact and friction 

sensitivities according to standard BAM methods.[13] n.d. = not determined. [f] Sensitivity towards 

electrostatic discharge. n.d. = not determined. [g] Grain size of the samples used for sensitivity 

tests. [h] Response to fast heating in the “flame test”. [i] Specific impulse for compositions with 

70 % oxidizer, 16 % aluminum, 6 % polybutadiene acrylic acid, 6 % polybutadiene acrylonitrile 

and 2 % bisphenol-A ether at 70.0 bar chamber pressure using the EXPLO5 code[14]. The specific 

impulse for similar composition with ammonium perchlorate (Is AP = 258 s, Ωcomp, AP = –30.13 %) 

has been calculated. [j] Oxygen balance for the composition used for combustion calculations. 
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7.4 CONCLUSION 

Two new energetic polynitro compounds containing a fluorodinitromethyl moiety derived 

from 2-fluoro-2,2-dinitroethylamine (1) with a high positive oxygen balance were 

synthesized and characterized using multinuclear NMR, vibrational spectroscopy, 

elemental analysis and mass spectrometry and single-crystal X-ray crystallography. The 

single-crystal X-ray structures revealed a typical propeller like orientation of the 

trinitromethyl moiety for both the secondary amine 2 and the nitramine 3. A rather high 

crystal density for 3 was found with 1.95 g cm–3, which is comparable with hexogen 

(RDX).[1b] The calculated detonation velocities of 2 (8719 m s–1) and 3 (8673 m s–1) are 

slightly below the literature known value for RDX (8750 m s–1).[16] The thermal stability 

rises from 80 °C (compound 1) through 121 °C (compound 2) to 162 °C for compound 3. 

The sensitivities of 2–3 with 6 J for 2 and 5 J for 3 are slightly less than pentaerythritol 

tetranitrate (PETN), which is a basic requirement for new compounds to be meant as 

potential high energy dense oxidizers.[1b,3a] Surprisingly, compound 2 turned out to be 

insensitive towards friction. With respect to a possible application as high-energy dense 

oxidizer in solid rocket boosters, the specific impulses (Is) of 1–3 were calculated in 

formulations with fuel, oxidizer & additives. Compound 3 in particular turned out to be a 

quite promising oxidizer with a superior specific impulse of 266 sec relative to similar 

formulations with ammonium perchlorate (AP) [Is(AP) = 258 s] and acceptable 

sensitivities as a neat compound. Apart from the high specific impulse of 3, compound 2 

showed a comparable value to an AP composite. This promising result makes secondary 

amine 2 interesting as potential precursor for further reactions in the course of developing 

new potential high-energy dense oxidizers. 
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7.5 EXPERIMENTAL SECTION 

General Procedures 

The syntheses and manipulation of air- and moisture-sensitive materials were performed 

in an inert atmosphere of dry argon (purity 5.0 Air Liquide) using flame-dried glass 

vessels and SCHLENK techniques.[18] Commercial available chemicals (all Sigma Aldrich) 

were used as received. 2,2,2-Trinitroethanol and 2-fluoro-2,2-dinitroethanol were 

prepared according to literature known procedures.[2b,2c,8a,10c,19] 

Raman spectra were recorded with a Bruker FT-Raman MultiRAM Spectrometer 

equipped with a Klaastech DENICAFC LC-3/40 laser source at 300mW laser power; 

infrared spectra were measured with a Perkin–Elmer Spectrum BX-FTIR spectrometer 

equipped with a Smiths DuraSamplIR II ATR device. All spectra were recorded at 

ambient temperature as neat samples. Densities were determined at ambient temperature 

using a Quantachrome Ultrapyc1200e gas pycnometer equipped with helium (5.6 Air 

Liquide). NMR spectra were recorded with a JEOL Eclipse 400 instrument and chemical 

shifts were determined with respect to external Me4Si (1H, 399.8 MHz; 13C, 100.5 MHz), 

MeNO2 (15N, 40.6 MHz) and CCl3F (376.5 MHz). Mass spectrometric data were obtained 

with a JEOL MStation JMS 700 spectrometer (DEI+/DCI+). Analyses of C/H/N were 

performed with an Elementar Vario EL Analyzer. Melting points were measured with a 

Perkin-Elmer Pyris6 DSC using a heating rate of 5 °C min–1 and checked by a Büchi 

Melting Point B-540 apparatus; they are not corrected. The sensitivity data were 

performed using a BAM drophammer and a BAM friction tester.[13] 

 

Computational Details 

All ab initio calculations were carried out using the Gaussian 09 (Revision B.03) program 

package[15b] and visualized by GaussView 5.08.[15a] Structure optimizations and frequency 

analyses were performed with Becke's B3 three parameter hybrid functional using the 

LYP correlation functional (B3LYP). For C, H, N and O a correlation consistent 

polarized double-zeta basis set was used (cc-pVDZ). The structures were optimized 

without symmetry constraints and the energy is corrected with the zero point vibrational 

energy.[20] 

 

The enthalpies (H°) and free energies (G°) were calculated and finally corrected to a 

temperature of 298 K using the complete basis set method (CBS-4M) on the basis of ab 
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initio optimized structures or X-ray diffraction data to obtain accurate values.[20a] The 

CBS models use the known asymptotic convergence of a pair of natural orbital 

expressions to extrapolate from calculations using a finite basis set to the estimated 

complete basis set limit. CBS-4 starts with a HF/3-21G(d) structure optimization, which 

is the initial guess for the following self-consistent field (SCF) calculation as a base 

energy and a final MP2/6-31+G calculation with a CBS extrapolation to correct the 

energy in second order. The used reparametrized CBS-4M method additionally 

implements a MP4(SDQ)/6-31+(d,p) calculation to approximate higher order 

contributions and also includes some additional empirical corrections.[20b,20c] The 

enthalpies of the gas-phase species were estimated according to the atomization energy 

method.[20a,21] 

 

All calculations affecting the detonation parameters were carried out using the program 

package EXPLO5 V6.01.[14,22] The detonation parameters were calculated at the CJ point 

with the aid of the steady-state detonation model using a modified Becker-Kistiakowski-

Wilson equation of state for modeling the system. The CJ point is found from the 

Hugoniot curve of the system by its first derivative.[22-23] The main detonation products 

for the calculations of the energetic parameters were assumed with N2, H2O, CO2 and HF 

for a CHFNO-compound. In addition, compounds with a positive oxygen balance provide 

O2 as combustion product. The specific impulses were also calculated with the EXPLO5 

program, assuming an isobaric combustion of a composition of 70 % oxidizer, 16 % 

aluminum as fuel, 6 % polybutadiene acrylic acid, 6 % polybutadiene acrylonitrile as 

binder and 2 % bisphenol-A as epoxy curing agent.[17] A chamber pressure of 70.0 bar 

and an ambient pressure of 1.0 bar with frozen expansion conditions were estimated for 

the calculations.  

 

X-ray Crystallography 

For all compounds, an Oxford Xcalibur3 diffractometer with a CCD area detector was 

employed for data collection using Mo-Kα radiation (λ = 0.71073 Å). The structures were 

solved by direct methods (SIR97)[24] and refined by full-matrix least-squares on F2 

(SHELXL).[25] All non-hydrogen atoms were refined anisotropically. The hydrogen atoms 

were located in a difference Fourier map and placed with a C–H distance of 0.99 Å for 

CH2 groups. ORTEP plots are shown with thermal ellipsoids at the 50 % probability 

level.  
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CCDC-946430 (for 2) and CCDC-946431 (for 3) contains the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from the 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

Synthesis 

CAUTION! All high-nitrogen- and -oxygen-containing compounds are potentially 

explosive energetic materials. In particular, 2-fluoro-2,2-dinitroethylamine (1) was 

proven to be a dangerous unstable material, when handled as neat compound. Especially 

with this compound, this necessitates additional meticulous safety precautions (earthed 

equipment, Kevlar gloves, Kevlar sleeves, face shield, leather coat, and ear plugs). In 

addition, 2,2,2-trinitroethanol and 2-fluoro-2,2-dinitroethylamine show significant 

degrees of toxicity,[26] including own recent results.[27] Particular care should be exercised 

in handling of those materials and derivatives. 

 

2-Fluoro-2,2-dinitroethylamine (1)  

Prepared according to the literature.[8a,28]. 

DSC: Tm = approx. –11 °C, Tdec = 80 °C. 1H NMR (CDCl3): δ = 3.92 [d, 2 H, 

CH2CF(NO2)2, 3JH,F = 17.6 Hz], 1.49 (s, br, 2 H, NH2) ppm. 13C{1H} NMR (CDCl3): 

δ = 123.0 [d, CF(NO2)2, 1JC,F = 287.5 Hz], 44.5 [d, CH2CF(NO2)3, 2JC,F = 19.6 Hz] ppm. 
15N{1H} NMR (CDCl3): δ = –20.77 [d, CF(NO2)2, 2JN,F = 15.0 Hz], –377.20 (s, 

NH2) ppm. 19F NMR (CDCl3): δ = –111.1 [br. s, CF(NO2)2] ppm. IR ν = 3428 (w), 3364 

(w), 2916 (w), 1581 (vs), 1434 (w), 1318 (m), 1281 (m), 1193 (w), 1088 (w), 1052 (w), 

990 (w), 849 (w), 786 (m), 686 (w) cm–1. Raman (300 mW) ν = 3361 (9), 3003 (15), 2942 

(33), 2860 (4), 2202 (3), 1588 (18), 1436 (13), 1310 (18), 1190 (4), 978 (5), 852 (100), 

564 (7), 504 (7), 418 (18), 381 (56), 320 (7), 282 (8) cm–1. MS (DEI+): m/z (%) = 154 (1) 

[M + H]+, 106 (1) [M + H – NO2]+, 61 (1) [M+ – 2NO2]. C2H4FN3O4 (153.07): C 15.69, H 

2.63, N 27.45; found: C 15.82, H 2.59, N 227.35 

 

2-Fluoro-2,2-dinitroethyl 2,2,2-trinitroethylamine (2) 

2,2,2-Trinitroethanol (0.59 g, 3.2 mmol) and 2-fluoro-2,2-dinitroethylamine (0.50 g, 

3.2 mmol) were diluted in chloroform (10 mL) under argon. Molecular sieves (4 Å, 0.5 g) 

was added and the reaction mixture was stirred at ambient temperature for 24 h. The 

reaction mixture was filtered, and the volatile materials were removed under vacuum 
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yielding 2 as slightly orange colored oil. The crude product was recrystallized in 

chloroform giving colorless crystals of 2 (0.81 g, 78 %). 

DSC: Tm = 37 °C, Tdec = 121 °C. 1H NMR (CDCl3): δ = 4.31 [d, 2 H, CH2C(NO2)3, 
3JH,H = 7.8 Hz], 4.10 [dd, 2 H, CH2CF(NO2)2, 3JH,H = 7.3 Hz, 3JH–F = 16.6 Hz], 2.55 [qi, 

1 H, NH] ppm. 13C{1H} NMR (CDCl3): δ = 126.2 [br., C(NO2)3], 121.3 [d, CF(NO2)2, 
1JC,F = 288.3 Hz], 52.5 [CH2C(NO2)3], 50.8 [d, CH2CF(NO2)3, 2JC,F = 19.2 Hz] ppm. 15N 

NMR (CDCl3): δ = –22.9 [dm, CFNO2)2, 2JN,F = 14.9 Hz], –32.3 [t, C(NO2)3, 3JN,H = 

2.0 Hz], –373.0 (d, NH, 1JN–,H = 83.0 Hz) ppm 19F NMR (CDCl3): δ = –109.6 [br. t, 

CF(NO2)2, 3JF,H = 15.6 Hz] ppm. IR ν = 3368 (w), 2933 (w), 2895 (w), 1579 (vs), 

1479 (m), 1443 (m), 1403 (w), 1371 (w), 1358 (w), 1338 (w), 1305 (s), 1243 (m), 

1154 (m), 1138 (m), 1063 (w), 999 (w), 981 (w), 879 (w), 857 (w), 850 (m), 799 (m), 

780 (m), 757 (m), 725 (m), 667 (w) cm–1. Raman (300 mW) ν = 3368 (4), 3024 (10), 

3012 (11), 2983 (16), 2937 (74), 2886 (6), 1612 (23), 1601 (22), 1585 (18), 1483 (4), 

1447 (18), 1405 (12), 1373 (20), 1359 (53), 1311 (30), 1247 (12), 1148 (11), 1037 (10), 

995 (7), 911 (11), 881 (9), 859 (100), 851 (27), 809 (4), 783 (5), 763 (7), 668 (5), 642 (9), 

576 (9), 523 (15), 471 (8), 440 (20), 421 (48), 399 (49), 381 (65), 368 (47), 330 (26), 

281 (20), 263 (35), 210 (36) cm–1. MS (DEI+): m/z (%) = 316.1 (1) [M+], 269 (1) [M+ –

 HNO2], 224 (1) [M+ – 2NO2], 193 (29) [NHCH2C(NO2)3]+, 166 (29) 

[NHCH2CF(NO2)2]+, 115 [C4H4FN2O]+, 147 (29) [NHCH2C(NO2)2]+, 85 [C4H4FN]+, 

46 (100) [NO2]+, 30 (100) [NO]+. C4H5FN6O10 (316.12): calcd. C 15.20, H 1.59, N 26.59; 

found: C 15.50, H 1.61, N 26.29. Impact sensitvity: 6 J; friction sensitvity: 360 N; ESD: 

0.1 J; grain size: < 100 µm. 

 

2-Fluoro-2,2-dinitroethyl 2,2,2-trinitroethylnitramine (3) 

Compound 2 (0,68 g, 2.2 mmol) was added slowly into a mixture consisting of sulfuric 

acid (96 %, 4 mL) and nitric acid (100 %, 2 mL) at 0 °C. The reaction mixture was stirred 

at ambient temperature for 4 h and poured onto a large excess of ice (200 g). The 

colorless precipitate was filtered, washed with water and dried in vacuo to obtain a 

colorless powder of 3 (0.59 g, 76 %). Alternatively, crude 2 (yellow oil) is sufficient and 

can be used for the nitration without loss of product.  

DSC: Tm = 85 °C, Tdec = 165 °C. 1H NMR ([D6]acetone): δ = 6.14 [s, 2 H, CH2C(NO2)3], 

5.80 [d, 2 H, CH2CF(NO2)2, 3JH,F = 9.5 Hz] ppm. 13C{1H} NMR ([D6]acetone): δ = 124.2 

[s, C(NO2)3], 118.6 [d, CF(NO2)2, 1JC,F = 294.0 Hz], 55.2 [s, CH2C(NO2)3], 55.0 [d, 

CH2CF(NO2)3, 2JC,F = 16.1 Hz] ppm. 15N NMR ([D6]acetone): δ = –22.5 [dt, CF(NO2)2, 
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2JN,F = 15.2 Hz, 3JN,H = 1.7 Hz], –33.4 [q, NNO2, 3JN,H = 3.2 Hz], –33.7 [t, C(NO2)3, 
3JN,H = 2.0 Hz], –217.2 (s, NNO2) ppm. 19F NMR ([D6]acetone): δ = –107.1 [t, CF(NO2)2, 
3JF–H = 9.1 Hz] ppm. IR ν = 3371 (vw), 2965 (vw), 2926 (vw), 1707 (w), 1591 (vs), 

1492 (vw), 1465 (w), 1444 (vw), 1359 (w), 1316 (s), 1270 (w), 1229 (w), 1182 (vw), 

1052 (vs), 949 (vw), 905 (w), 849 (m), 800 (s), 763 (w), 737 (m), 701 (vw), 686 (w) cm–1. 

Raman (300 mW) ν =        3024 (24), 2978 (53), 1614 (24), 1589 (10), 1566 (5), 1439 (5), 

1407 (6), 1391 (14), 1358 (50), 1340 (15), 1300 (16), 1271 (44), 1228 (3), 1128 (3), 

1058 (4), 1002 (2), 978 (11), 878 (3), 868 (15), 854 (102), 804 (2), 784 (5), 755 (2), 

723 (4), 626 (10), 545 (12), 442 (8), 425 (18), 402 (31), 388 (17), 369 (11), 341 (9), 

324 (49), 247 (14), 221 (11), 209 (6) cm–1. MS (DEI+): m/z (%) = 361 (1) [M+], 269 (1) 

[M+ – 2 NO2], 211 (1) [M+ – C(NO2)3], 118 (29) [CH2C(NO2)2]+, 46 (100) [NO2]+. 

C4H4FN7O12 (361.11): calcd. C 13.30, H 1.12, N 27.15; found: C 13.40, H 1.20, N 26.3. 

Impact sensitivity: 5 J; friction sensitivity: 192 N; ESD: 0.1 J; grain size: < 100 µm. 
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The readily available simple amino acid glycine, accompanied with 2,2,2-trinitroethanol, 

was the starting material for an interesting reaction cascade including eight intermediates 

and three new potential high energy dense oxidizers, described in chapter 2. Compound A 

turned out to be an interesting precursor for the development of new potential high energy 

dense materials. The synthesis is simple, and low sensitivities make manipulation and 

handling less dangerous. At the end of the reaction cascade described in chapter 2, the 

potential material 2,2,2-trinitroethyl 2-(nitro-(2,2,2-trinitroethyl)amino)acetate2,2,2-

Trinitroethyl 2-(nitro-(2,2,2-trinitroethyl)amino)acetate (B) was prepared. The compound 

showed a thermal stability above 180 °C, moderate sensitivities towards mechanical 

stimuli and a satisfying oxygen balance Ω(B)CO = 25.1 %. Furthermore starting from A, 

in another reaction pathway including a CURTIUS rearrangement, the resulting 2,2,2-

trinitroethyl (nitro-(2,2,2-trinitroethyl)amino)methyl nitrocarbamate (C) showed an 

improved oxygen balance of 28.5 % (calculated to CO) compared with B. 

 

In chapter 3, the synthesis and the characterization of 2,2,2-trinitroethyl-N-nitrocarbamate 

(D) is presented in addition with a new synthesis route of the precursor 2,2,2-trinitroethyl 

chloroformate. Compound D shows an oxygen balance with Ω(D)CO = 32.7 % really close 

to ammonium perchlorate (AP) Ω(AP) = 34.0 %. Along with the oxygen balance, the 

moderate sensitivities make the compound a quite promising candidate for future use as 

high energy dense oxidizer. 

 

Furthermore, the carbamate as well as the carbonate group as a quite stable conjunction 

for polynitro containing moieties was investigated in chapter 4. Several 

carbamates/carbonates containing a 2,2,2-trinitroethyl and/or a 2-fluoro-2,2-dinitroethyl 

group were prepared and characterized successfully (E–G). All of the compounds 

presented in this part, turned out to be temperature stable above 180 °C in addition with 

impact sensitivities around 3–4 J. 

 

Knowing the improved thermal stability of a carbamate conjunction, chapter 5 

investigates with the reactions of the very reactive starting material carbonyl isocyanate 

with 2,2,2-trinitroethanol or 2-fluoro-2,2-dinitroethanol, yielding the corresponding 

carbonyl-biscarbamates (H–I). The resulting materials show improved sensitivities in 

addition with thermal stabilities comparable with the final products showed in chapter 3. 

Furthermore, the polynitro compounds 2,2-dinitropropane-1,3-diyl bis(2,2,2-



CHAPTER 8_____________________________________________________________________ 

182 | 

trinitroethylcarbamate) (J) and 2,2-dinitropropane-1,3-diyl bis(2,2,2-trinitroethyl) 

dicarbonate, derived form 2,2-dinitropropane-1,3-diol were investigated for future 

applications as HEDO. 

 

 After introducing the 2-fluoro-2,2-dinitroethyl moiety (compare chapter 4 and 5), 

tetrakis(2-fluoro-2,2-dinitroethyl) orthocarbonate (K) as well as tris(2-fluoro-2,2-

dinitroethyl) orhoformate were synthesized and characterized in chapter 6. The compound 

K turned out to be as powerful as PETN and less sensitive. Compared with tetrakis(2,2,2-

tinitroethyl) orthocarbonate, a phase transition in the range of –22 °C was also observed 

during the investigation of the compound.  

 

During our investigations, the starting material 2-fluoro-2,2-dintroethylamine was used 

for the Mannich type of reaction with 2,2,2-trinitroethanol yielding the secondary amine 

2,2,2-trinitroethyl-2-fluoro-2,2-dintroethylamine. Further nitration leads to the 

corresponding nitramine 2,2,2-trinitroethyl-2-fluoro-2,2-dintroethylnitramine (L) with an 

oxygen balance of 28.8 % (assuming CO as decomposition product). The compound 

showed interesting energetic properties and turned out to be more powerful than PETN. 

The whole work is described in chapter 7. 
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9.2 SUPPORTING INFORMATION FOR ASYMMETRIC FLUORODINITRO-

METHYL DERIVATIVES OF 2,2,2-TRINITROETHYL N-(2,2,2-TRINITROETHYL) 

CARBAMATE 

Selected weak improper hydrogen bonds for compounds 1–5. 

The hydrogen atoms were located in a difference Fourier map and placed with a C–H 

distance of 0.99 Å for CH2 groups and a N–H distance of 0.88 Å for NH groups. 

 

Table 9.1: Hydrogen bonds of S-ethyl N-(2,2,2-trinitroethyl)thiocarbamate (1) 

symmetry operation distances [Å] und angels [°] 
i x, 0.5–y, –0.5+z H1–N4 0.880(2) 
ii x, 0.5–y, 0.5+z H2–N8 0.881(2) 
iii 1–x, 1–y, 1–z H2A–C2 0.989(2) 
  H2B–C2 0.990(2) 
  H4A–C4 0.990(3) 
  H7B–C7 0.990(2) 
    
  H1⋅⋅⋅O7(i) 2.122(2) 
  H2⋅⋅⋅O14(i) 1.957(2) 
  H2A⋅⋅⋅S1(ii) 2.811(2) 
  H4A⋅⋅⋅O3(ii) 2.520(2) 
  H7B⋅⋅⋅O6(iii) 2.497(2) 
  H2B⋅⋅⋅O10 2.418(2) 
    
  C2⋅⋅⋅O10 3.109(3) 
  C2⋅⋅⋅S1(ii) 3.769(2) 
  C4⋅⋅⋅O3(ii) 3.449(4) 
  C7⋅⋅⋅O6(iii) 3.430(3) 
  N4⋅⋅⋅O7 2.883(2) 
  N8⋅⋅⋅O14 2.826(2) 
    
  C2–H2A⋅⋅⋅S1(ii) 163.3(1) 
  C2–H2B⋅⋅⋅O10 126.4(1) 
  C4–H4A⋅⋅⋅O3(ii) 156.2(2) 
  C7–H7B⋅⋅⋅O6(iii) 156.9(1) 
  N4–H1⋅⋅⋅O7(i) 144.4(1) 
  N8–H2⋅⋅⋅O14(i) 168.9(1) 
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Table 9.2: Hydrogen bonds of 2,2,2-trinitroethyl 2,2,2-trinitroethylcarbamate (2) 

symmetry operation distances [Å] und angels [°] 
i x, y, 1+z H2A–C2 0.967(2) 
ii 0.5+x, 1.5–y, 0.5+z H2B–C2 0.970(1) 
    
  H2A⋅⋅⋅O6(ii) 2.745(1) 
  H2B⋅⋅⋅O5(i) 2.480(1) 
    
  C2⋅⋅⋅O5(i) 3.350(2) 
  C2⋅⋅⋅O6(ii) 3.092(2) 
    
  C2–H2A⋅⋅⋅O6(ii) 101.8(1) 
  C2–H2B⋅⋅⋅O5(i) 149.6(1) 

 
 

Table 9.3: Hydrogen bonds of 2-fluoro-2,2-dinitroethyl 2,2,2-trinitroethylcarbamate (3) 

symmetry operation distances [Å] und angels [°] 
i 2–x, –y, 1–z H2B–C2 0.991(2) 
ii 1–x, –y, –z H3–N4 0.880(2) 
    
  H2B⋅⋅⋅O7(i) 2.379(2) 
  H3⋅⋅⋅O9(iI) 2.338(2) 
    
  C2⋅⋅⋅O7(i) 3.350(2) 
  N4⋅⋅⋅O9(ii) 3.092(2) 
    
  C2–H2B⋅⋅⋅O7(i) 140.2(1) 
  N4–H3⋅⋅⋅O9(ii) 144.3(1) 

 
 

Table 9.4: Hydrogen bonds of 2,2,2-trinitroethyl 2-fluoro-2,2-dinitroethylcarbamate (4) 

symmetry operation distances [Å] und angels [°] 
i x, 0,5–y, 0.5+z H1–N4 0.880(1) 
ii x, 0,5–y, –0.5+z H2B–C2 0.990(2) 
iii X, –1+y, z H4A–C4 0.990(2) 
    
  H1⋅⋅⋅O8(i) 2.175(1) 
  H2B⋅⋅⋅O5(ii) 2.470(1) 
  H4A⋅⋅⋅O9(iii) 2.583(1) 
    
  C2⋅⋅⋅O5(ii) 3.219(2) 
  C4⋅⋅⋅O9(iii) 3.127(2) 
  N4⋅⋅⋅O8(i) 3.050(2) 
    
  C2–H2B⋅⋅⋅O5(ii) 132.1(1) 
  C4–H4A⋅⋅⋅O9(iii) 114.58(9) 
  N4–H1⋅⋅⋅O8(i) 172.74(9) 
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Table 9.5: Hydrogen bonds of 2-fluoro-2,2-dinitroethyl 2,2,2-trinitroethyl carbonate (5) 

symmetry operation distances [Å] und angels [°] 
i –0.5+x, 1–y, –0.5+z H2A–C2 0.991(3) 
ii 0.5+x, 1–y, –0.5+z H2B–C2 0.991(3) 
iii 1+x, y, z H4B–C4 0.990(3) 
iv –1+x, y, z   
  H2A⋅⋅⋅O5(i) 2.471(2) 
  H2B⋅⋅⋅O4(iii) 2.391(2) 
  H2B⋅⋅⋅O6(ii) 2.607(2) 
  H4B⋅⋅⋅O10(iv) 2.597(3) 
    
  C2⋅⋅⋅O4(iii) 3.296(3) 
  C2⋅⋅⋅O5(i) 3.341(3) 
  C2⋅⋅⋅O6(ii) 3.330(4) 
  C4⋅⋅⋅O10(iv) 3.425(4) 
    
  C2–H2A⋅⋅⋅O5(i) 146.4(2) 
  C2–H2B⋅⋅⋅O4(iii) 151.5(2) 
  C2–H2B⋅⋅⋅O6(ii) 129.9(2) 
  C4–

H4B⋅⋅⋅O10(iv) 141.3(2) 
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9.3 SUPPORTING INFORMATION FOR POLYNITRO CONTAINING ENERGETIC 

MATERIALS BASED ON CARBONYLDIISOCYANATE AND 2,2-DINITROPROPANE-

1,3-DIOL 

Selected weak improper hydrogen bonds for compound 1–3. 

The hydrogen atoms were located in a difference Fourier map and placed with a C–H distance 

of 0.99 Å for CH2 groups. 

 
Table 9.6: Hydrogen bonds of bis(2,2,2-trinitroethyl) carbonyl-N,N-dicarbamate (1) 

symmetry operation distances [Å] und angels [°] 
i –1+x, y, z H2A–C2 0.991(3) 
ii –1+x, 1+y, z H2B–C2 0.990(4) 
iii 1+x, –1+y, z H6A–C6 0.990(3) 
iv 1+x, y, z H6B–C6 0.990(3) 
v 1–x, 1–y, –z H9A–C9 0.989(3) 
vi 2–x, 1–y, –z H13B–C13 0.991(2) 
vii x, –1+y, z H16A–C16 0.990(4) 
viii x, 1+y, z H16B–C16 0.990(4) 
  H20–N4 0.74(4) 
  H20A–C20 0.991(4) 
  H20B–C20 0.990(3) 
  H22–N12 0.75(4) 
  H23–N13 0.83(3) 
  H23A–C23 0.990(2) 
  H23B–C23 0.990(3) 
  H25–N21 0.83(3) 
  H26–N28 0.67(3) 
  H27A–C27 0.990(5) 
  H27B–C27 0,991(4) 
    
  H2A⋅⋅⋅O27 2.569(2) 
  H2B⋅⋅⋅O20 2.497(4) 
  H6A⋅⋅⋅O46 2.553(3) 
  H6B⋅⋅⋅O25(iv) 2.432(2) 
  H9A⋅⋅⋅O10(i) 2.250(2) 
  H13B⋅⋅⋅O17 2.544(2) 
  H13B⋅⋅⋅O18 2.551(3) 
  H16A⋅⋅⋅O43(v) 2.605(3) 
  H16B⋅⋅⋅O61(ii) 2.238(4) 
  H20⋅⋅⋅O60 2.23(4) 
  H20A⋅⋅⋅O63(viii) 2.444(5) 
  H20B⋅⋅⋅O59(viii) 571(2) 
  H22⋅⋅⋅O1 2.60(3) 
  H23⋅⋅⋅O32(v) 2.35(3) 
  H23⋅⋅⋅O43 2.51(4) 
  H23A⋅⋅⋅O22(v) 2.454(3) 
  H23A⋅⋅⋅O37(vii) 2.681(3) 
  H23B⋅⋅⋅O44(vii) 2.620(2) 
  H25⋅⋅⋅O26 2.14(3) 
  H26⋅⋅⋅O9(vi) 2.27(3) 
  H27A⋅⋅⋅O42(iii) 2.618(3) 
  H27B⋅⋅⋅O33(iii) 2.555(2) 
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  C2⋅⋅⋅O20 3.362(6) 
  C2⋅⋅⋅O27 3.409(3) 
  C6⋅⋅⋅O25(iv) 3.173(4) 
  C6⋅⋅⋅O46 3.326(5) 
  C9⋅⋅⋅O10(i) 3.230(3) 
  C13⋅⋅⋅O17 3.494(3) 
  C13⋅⋅⋅O18 2.971(5) 
  C16⋅⋅⋅O43(v) 3.514(5) 
  C16⋅⋅⋅O61(ii) 3.162(5) 
  C20⋅⋅⋅O59(viii) 3.469(3) 
  N4⋅⋅⋅O60 2.908(3) 
  C20⋅⋅⋅O63(viii) 3.407(6) 
  N12⋅⋅⋅O1 3.083(3) 
  N13⋅⋅⋅O32(v) 3.136(5) 
  N13⋅⋅⋅O43 3.032(3) 
  C23⋅⋅⋅O22(v) 3.182(4) 
  C23⋅⋅⋅O37(vii) 3.493(4) 
  C23⋅⋅⋅O44(vii) 3.486(3) 
  N21⋅⋅⋅O26 2.941(3) 
  N28⋅⋅⋅O9(vi) 2.893(3) 
  C27⋅⋅⋅O42(iii) 3.365(6) 
  C27⋅⋅⋅O33(iii) 3.348(5) 
    
  C2–H2A⋅⋅⋅O27 142.6(2) 
  C2–H2B⋅⋅⋅O20 145.8(2) 
  C6–H6A⋅⋅⋅O46 143.9(2) 
  C6–H6B⋅⋅⋅O25(iv) 131.2(2) 
  C9–H9A⋅⋅⋅O10(i) 170.7(2) 
  C13–H13B⋅⋅⋅O17 160.6(2) 
  C13–H13B⋅⋅⋅O18 105.4(2) 
  C16–H16A⋅⋅⋅O43(v) 152.6(2) 
  C16–H16B⋅⋅⋅O61(ii) 154.6(2) 
  N4–H20⋅⋅⋅O60 152(5) 
  C20–H20A⋅⋅⋅O63(viii) 163.8(2) 
  C20–H20B⋅⋅⋅O59(viii) 150.8(2) 
  N12–H22⋅⋅⋅O1 125(3) 
  N13–H23⋅⋅⋅O32(v) 133(3) 
  N13–H23⋅⋅⋅O43 139(3) 
  C23–H23A⋅⋅⋅O22(v) 130.0(2) 
  C23–H23A⋅⋅⋅O37(vii) 147.4(2) 
  C23–H23B⋅⋅⋅O44(vii) 146.1(2) 
  N21–H25⋅⋅⋅O26 156(4) 
  N28–H26⋅⋅⋅O9(vi) 156(4) 
  C27–H27A⋅⋅⋅O42(iii) 132.3(2) 
  C27–H27B⋅⋅⋅O33(iii) 136.9(2) 
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Table 9.7: Hydrogen bonds of bis(2-fluoro-2,2-diinitroethyl) carbonyl-N,N-dicarbamate (2) 

symmetry operation distances [Å] und angels [°] 
i –x, 1–y, 1–z H2–N4 0.76(4) 
ii –1+x, y, z H2A–C2 0.990(3) 
iii 2–x, 2–y, 2–z H2B–C2 0.989(3) 
iv 1–x, 1–y, 1–z H6A–C6 0.990(3) 
v x, y, 1+z H6B–C6 0.990(3) 
    
  H2⋅⋅⋅O7(iii) 2.10(4) 
  H2A⋅⋅⋅O6(ii) 2.467(2) 
  H2B⋅⋅⋅O11(v) 2.531(3) 
  H6A⋅⋅⋅O3(i) 2.571(3) 
  H6B⋅⋅⋅O10(iv) 2.605(3) 
    
  C2⋅⋅⋅O6(ii) 3.455(4) 
  C2⋅⋅⋅O11(v) 3.361(4) 
  C6⋅⋅⋅O3(i) 3.420(4) 
  C6⋅⋅⋅O10(iv) 3.481(4) 
  N4⋅⋅⋅O7(iii) 3.847(4) 
    
  C2–H2A⋅⋅⋅O6(ii) 176.7(2) 
  C2–H2B⋅⋅⋅O11(v) 141.4(2) 
  C6–H6A⋅⋅⋅O3(i) 144.8(2) 
  C6–H6B⋅⋅⋅O10(iv) 147.5(2) 
  N4–H2⋅⋅⋅O7(iii) 167(4) 
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Table 9.8: Hydrogen bonds of 2,2-dinitropropane-1,3-diyl bis(2,2,2-trinitroethylcarbamate) (3) 

symmetry operation distances [Å] und angels [°] 
i –1+x, y, z H2A–C2 0.990(2) 
ii –x, –y, –z H2B–C2 0.990(2) 
iii 1–x, –y, –z H3–N4 0.85(3) 
iv 1+x, y, z H4B–C4 0.990(3) 
v –x, 1–y, –z H6A–C6 0.990(3) 
  H6B–C6 0.990(3) 
  H8A–C8 0.990(2) 
  H8B–C8 0.990(2) 
    
  H2A⋅⋅⋅O1(i) 2.469(2) 
  H2A⋅⋅⋅O10(ii) 2.620(3) 
  H2B⋅⋅⋅O14(iii) 2.375(2) 
  H3⋅⋅⋅O15(v) 2.28(3) 
  H4B⋅⋅⋅O7(iii) 2.546(2) 
  H6A⋅⋅⋅O7(iii) 2.451(2) 
  H6B⋅⋅⋅O11(iv) 2.559(2) 
  H8A⋅⋅⋅O4(iii) 2.503(2) 
  H8B⋅⋅⋅O3(ii) 2.595(2) 
  H8B⋅⋅⋅O20(i) 2.490(3) 
    
  C2⋅⋅⋅O1(i) 3.386(3) 
  C2⋅⋅⋅O10(ii) 3.044(4) 
  C2⋅⋅⋅O14(iii) 3.252(3) 
  N4⋅⋅⋅O15(v) 3.113(3) 
  C4⋅⋅⋅O7(iii) 3.300(4) 
  C6⋅⋅⋅O7(iii) 3.246(4) 
  C6⋅⋅⋅O11(iv) 3.368(3) 
  C8⋅⋅⋅O4(iii) 3.463(3) 
  C8⋅⋅⋅O3(ii) 3.122(3) 
  C8⋅⋅⋅O20(i) 3.438(3) 
    
  C2–H2A⋅⋅⋅O1(i) 154.1(1) 
  C2–H2A⋅⋅⋅O10(ii) 105.9(2) 
  C2–H2B⋅⋅⋅O14(iii) 147.3(1) 
  N4–H3⋅⋅⋅O15(v) 167(3) 
  C4–H4B⋅⋅⋅O7(iii) 132.8(2) 
  C6–H6A⋅⋅⋅O7(iii) 136.9(2) 
  C6–H6B⋅⋅⋅O11(iv) 138.8(2) 
  C8–H8A⋅⋅⋅O4(iii) 163.1(2) 
  C8–H8B⋅⋅⋅O3(ii) 113.3(2) 
  C8–H8B⋅⋅⋅O20(i) 160.2(2) 
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9.4 SUPPORTING INFORMATION FOR 2-FLUORO-2,2-DINITROETHYL 2,2,2-

TRINITROETHYLNITRAMINE, A POSSIBLE HIGH ENERGY DENSE OXIDIZER 

Selected weak improper hydrogen bonds for compounds 2 and 3. 

The hydrogen atoms were located in a difference Fourier map and placed with a C–H 

distance of 0.99 Å for CH2 groups. 

Table 9.9: Hydrogen bonds of 2-fluoro-2,2-dinitroethyl 2,2,2-trinitroethylamine (2) 

symmetry operation distances [Å] und angles [°] 
i 1–x, –y, 0.5+z H2–N10 0.831(3) 
ii 0.5–x, 0.5+y, 0.5+z H2B–C2 0.991(2) 
iii x, –1+y, z H3A–C3 0.989(2) 
iv 1–x, –y, –0.5+z H3B–C3 0.990(2) 
v 0.5–x, 0.5+y, –0.5+z H6A–C6 0.989(2) 
vi x, 1+y, z H7A–C7 0.990(2) 
  H7B–C7 0.991(2) 
    
  H2⋅⋅⋅O10 2.588(3) 
  H2B⋅⋅⋅O20(i) 2.485(2) 
  H3A⋅⋅⋅O12(ii) 2.480(2) 
  H3B⋅⋅⋅O4(iii) 2.364(2) 
  H6A⋅⋅⋅O6(iv) 2.578(2) 
  H6A⋅⋅⋅O7(v) 2.558(2) 
  H7A⋅⋅⋅O14(vi) 2.463(2) 
  H7B⋅⋅⋅O6(iv) 2.414(2) 
    
  N10⋅⋅⋅O10 3.327(3) 
  C2⋅⋅⋅O20(i) 3.260(3) 
  C3⋅⋅⋅O12(ii) 3.457(3) 
  C3⋅⋅⋅O4(iii) 3.155(3) 
  C6⋅⋅O6(iv) 3.483(3) 
  C6⋅⋅⋅O7(v) 3.302(3) 
  C7⋅⋅⋅O14(vi) 3.169(3) 
  C7⋅⋅⋅O6(iv) 3.347(3) 
    
  N10–H2⋅⋅⋅O10 148.8(1) 
  C2–H2B⋅⋅⋅O20(i) 134.8(1) 
  C3–H3A⋅⋅⋅O12(ii) 169.2(1) 
  C3–H3B⋅⋅⋅O4(iii) 136.2(1) 
  C6–H6A⋅⋅⋅O6(iv) 152.2(1) 
  C6–H6A⋅⋅⋅O7(v) 131.9(1) 
  C7–H7A⋅⋅⋅O14(vi) 127.9(1) 
  C7–H7B⋅⋅⋅O6(iv) 156.9(1) 
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Table 9.10: Hydrogen bonds of 2-fluoro-2,2-dinitroethyl 2,2,2-trinitroethylnitramine (3) 

symmetry operation distances [Å] und angles [°] 
i –0.5+x, –0.5–y, z H2A–C2 0.990(2) 
ii 0.5–x, –0.5+y, 0.5+z H3A–C3 0.990(2) 
    
  H2A⋅⋅⋅O11(i) 2.543(2) 
  H3A⋅⋅⋅O2(ii) 2.482(1) 
    
  C2⋅⋅⋅O11(i) 3.373(2) 
  C3⋅⋅⋅O2(ii) 3.179(2) 
    
  C2–H2A⋅⋅⋅O11(i) 141.2(1) 
  C3–H3A⋅⋅⋅O2(ii) 127.1(1) 

 

Additionally a short dipolar N⋅⋅⋅O interaction was observed between the nitramine 

nitrogen N4 with oxygen O4 of a neighbored nitro group. The distance N4⋅⋅⋅O4 with 

2.912(2) Å is shorter than sum of the VAN DER WAALS radii of nitrogen and oxygen 

(3.07 Å).[a] 

____________ 
 a. Bondi, J. Phys. Chem. 1964, 68, 441. 




