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Zusammenfassung

Vor über 30 Jahren beschrieb Berry die Effekte, die durch die geometrische Struk-
tur des Hilbertraums auf die adiabatische Bewegung quantenmechanischer Systeme
wirken. Seit dem hat das Konzept der geometrischen Phasen, die mit der adia-
batischen Bewegung verbunden werden sogenannten Berry-Phasen in einer grossen
Anzahl physikalischer Systeme Anwendung gefunden. In der Festkörperphysik sind
analoge topologische Eigenschaften von Bändern für eine Vielzahl von Vielteilch-
eneffekten verantwortlich, zum Beispiel für den ganzzahligen Quanten-Hall-Effekt
und die Existenz robuster leitender Randzustände in topologischen Isolatoren. Die
Berry-Krümmung, jener Parameter der die Geometrie der Eigenzustände der Bänder
beschreibt, ist von fundamentaler Bedeutung für die Charakterisierung physikalis-
cher Eigenschaften von Elektronenzuständen in der Festkörperphysik und bestimmt
die topologische Invariante eines Bandes, die sogenannte Chern-Zahl. Obwohl die
Berry-Phase und die Berry-Krümmung eine zentrale Rolle in der Bestimmung topol-
ogischer Eigenschaften von Bändern spielen, bleibt die Messung der kompletten ge-
ometrischen Struktur eines Bandes eine grosse experimentelle Herausforderung.

Diese Arbeit berichtet über die experimentelle Realisierung eines hexagonalen
optischen Gitters für ultrakalte Atome, dessen Eigenschaften denen von Graphen
ähneln. Diese Gitterstruktur besitzt eigenartige topologische Merkmale, die mit
den konischen Schnittpunkten zweier Bänder, den sogenannten Dirac-Punkten, in
Verbindung stehen. Die topologischen Eigenschaften eines Bloch-Bandes mani-
festieren sich, wenn ein Teilchen adiabatisch in einem geschlossenen Kreis im Im-
pulsraum um einen solchen konischen Schnittpunkt zweier Bänder des Energiespek-
trums bewegt wird. Analog zum Aharonov-Bohm-Effekt, bei dem ein Elektron durch
die Bewegung um eine Zylinderspule einen Phasenversatz erhält, erhält ein Teilchen
bei dieser Bewegung eine geometrische Phase. Diese Arbeit präsentiert eine inter-
ferometrische Technik zur Detektion der topologischen Eigenschaften dieser Kegel
sowie der Verteilung der Berry-Krümmung im reziproken Raum mit einer hohen
Quasiimpulsauflösung.

Im ersten Teil dieser Arbeit werden das hexagonale Gitter sowie der experimentelle
Aufbau zum Erzeugen eines Gases ultrakalter Atome erläutert. Dann wird analog
zum Aharonov-Bohm-Effekt ein interferometrisches Protokoll für ultrakalte Atome
im reziproken Raum entwickelt, mit dem die mit den Dirac-Kegeln assoziierte ge-
ometrische Phase detektiert werden kann. Diese interferometrische Technik kom-
biniert die Bewegung der Atome im Band mit Spin-Echo-Interferometrie und erlaubt
die Charakterisierung topologischer Eigenschaften des untersten Bandes im optis-
chen Gitter durch Bestimmung der räumlichen Verteilung der Berry-Krümmung
eines einzelnen Dirac-Kegels. Der detektierte, scharfe Phasensprung von π und die
starke Reduktion des Interferenzkontrasts am Dirac-Kegel demonstrieren die nicht-
triviale Verwindung der Bandeigenzustände und die starke Lokalisierung der Berry-
Krümmung an den Kegeln. Des Weiteren wird die Interferometrie dazu genutzt



die Bewegung im reziproken Raum und die Annihilation der topologischen Eigen-
schaften durch ein unausgeglichenes Gitter zu detektieren. Das beobachtete Ver-
schwinden der π Berry-Phase demonstriert den übergang zu einer topologisch triv-
ialen Bandstruktur.

Der letzte Abschnitt dieser Arbeit präsentiert vorläufige Ergebnisse zur Interfer-
ometrie in den untersten beiden Bändern des Gitters. Die Stückelberg-Interferometrie,
realisiert durch die diabatische Bewegung der Atome im reziproken Raum, wird dazu
genutzt, die Dispersion der Bänder zu bestimmen und die Symmetrie der Bandeigen-
zustände zu erforschen. Erweiterungen dieser Arbeit würden die Charakterisierung
topologischer Invarianten von Mehrbandsystemen erlauben, wie zum Beispiel die Z2

invariant of the quantum spin Hall effect. Invariante des Quanten-Spin-Hall-Effekts.
Die Ergebnisse, die in dieser Arbeit präsentiert werden, demonstrieren die nicht-

triviale Verwindung der Bandeigenzustände um die Dirac-Kegel eines optischen
Bienenwabengitters für ultrakalte Atome. Durch den hohen Grad an Kontrolle
über die Gitterparameter eignet sich das System um topologische Eigenschaften
von Energiebändern in einer gut kontrollierten Umgebung zu erforschen. Die bei-
den präsentierten interferometrischen Techniken stellen mögliche Wege zur Rekon-
struktion der lokalen topologischen Eigenschaften und dadurch der topologischen
Invarianten eines optischen 2D-Gitters dar.



Abstract

More than thirty years ago, Berry delineated the effects of the geometric structure of
Hilbert space on the adiabatic evolution of quantum mechanical systems. Since then,
the concept of geometrical phases – the Berry phases – associated with adiabatic
evolution has been applied to a large variety of physical systems. In condensed
matter, analogous topological properties of the energy bands are responsible for a
wide range of many-body phenomena, such as the integer quantum Hall effect and
the existence of robust conducting edge states in topological insulators. The Berry
curvature, the parameter which describes the geometry of the band eigenstates,
is of fundamental importance to the characterization of the physical properties of
electronic states in condensed matter systems and it determines the topological
invariant of a band, the Chern number. Despite the central role of Berry phases
and Berry curvature, fully mapping out the geometric structure of an energy band
remains a major challenge for experiments.

This thesis reports on the experimental realization of a honeycomb optical lattice
for ultracold atoms which has properties similar to those of solid state graphene.
This lattice structure presents peculiar topological features associated with conical
intersections of energy bands, the Dirac cones. The topological properties of a Bloch
band can manifest themselves when a particle is adiabatically moved in a closed loop
in reciprocal space around one of the conical intersection of bands present in the
energy spectrum. By doing so, the particle acquires a geometric phase which is
analogous to the phase shift experienced by electrons moving around a solenoid, the
well known Aharonov-Bohm effect. This thesis presents an interferometric technique
to detect the topological properties of such cones and to probe the distribution of
Berry curvature in reciprocal space with high quasimomentum resolution.

The first part of this thesis introduces the honeycomb optical lattice and the
experimental setup for cooling ultracold atoms. Then, an interferometric protocol
for ultracold atoms, analog of the Aharonov-Bohm effect in reciprocal space, is
developed to detect the geometric phase associated with the Dirac cones. The
interferometric technique combines the motion of atoms in the band with spin-echo
interferometry and it allows the topological properties of the lowest band of the
optical lattice to be characterized by probing the localization of the Berry curvature
of an individual Dirac cone. The detected sharp phase jump to π and the strong
reduction in interference contrast at the Dirac cones demonstrate the winding of
the band eigenstates and the strong localization of the Berry curvature at the cones.
Moreover, the interferometry is used to detect the movement in reciprocal space and
the annihilation of the topological features upon lattice imbalance. The observed
disappearance of the π Berry phase confirms the transition to a topologically trivial
band structure.

The last part of this thesis presents preliminary results concerning interferometry
in the two lowest bands of the lattice. The Stückelberg interferometry, realized by



diabatic motion of atoms in reciprocal space, is used to map the dispersion of the
bands and to probe the symmetry of the band eigenstates. Extensions of this work
would allow the characterization of topological invariants of multi-band systems,
like the Z2 invariant of the quantum spin Hall effect.

The results reported in this thesis demonstrate the non-trivial winding of the
band eigenstates around the Dirac cones of an optical honeycomb lattice for ultra-
cold atoms. The high degree of control over the lattice parameters makes the system
suitable for investigating topological properties of energy bands in a well controlled
environment. The two interferometric techniques presented constitute possible ap-
proaches for reconstructing the local topological properties of a 2D optical lattice
and, thereby, of its topological invariant.
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Chapter 1.

Introduction

The concept of topology was first introduced in mathematics to classify manifolds
that can be continuously deformed one into an other [1, 2]. These curved spaces,
despite being very different in shape, have the same total curvature and they are
part of the same topological class which is defined by an integer, the topological
invariant. Deeply connected to topology is the concept of holonomy: a vector which
is parallel transported on a manifold can twist and turn if the surface is curved.
After a motion in a closed loop, it might happen that its final orientation is different
from the initial one. This rotation of the transported vector is of purely geometric
origin. Geometrical properties of curved manifolds were for long just a mathematical
concept. It was not until the end of the 20th century that the idea of topology entered
into the description of physical phenomena thanks to the studies of Berry about the
adiabatic evolution of a quantum mechanical system [3]. As Berry pointed out
more than thirty years ago, when eigenfunctions adiabatically evolve with respect
to a time dependent Hamiltonian in a closed path in the parameter space they can
acquire a phase of geometric origin – the Berry phase. This phase factor might seem
irrelevant as it is just an additional phase multiplying the original state. On the
contrary, it has physical consequences on the adiabatically transported quantum
state. The generality of the geometric phase suggest its depth: its effects have
been observed experimentally in a great variety of systems, from photons [4, 5], to
NMR [6–8] and molecules [9], just to mention a few. A well known example is the
geometrical interpretation of the Aharonov-Bohm effect [10], where a magnetic flux
in a confined region of space influences the eigenstates everywhere via the magnetic
vector potential. Berry’s idea of geometrical phases has been widely generalized [11–
13] and it has become essential to our understanding of the most diverse physical
phenomena.

Topology is of fundamental importance to the understanding of macroscopic prop-
erties of condensed-matter systems as well. As realized by Thouless and coworkers
in their seminal work [14], the physical properties of a solid are encoded not only in
the scalar dispersion of the bands, but also in the geometry of the band eigenstates.
The Berry curvature, a parameter which characterizes such topological features of
an energy band, determines the physical properties of electronic states as well as the
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Chapter 1. Introduction

topological invariant of the band, the Chern number [14]. The Berry curvature is
responsible for a wide range of many-body phenomena such as, the quantized con-
ductivity in the integer quantum Hall effect (IQHE) [14–16], the Hall conductivity of
graphene in a magnetic field [17] and the existence of robust edge and surface states
in 2D and 3D topological insulators [18, 19]. The origin of all these phenomena is
deeply rooted in the topological properties of the bulk and they are well understood
at the single particle level when the geometric properties of the bands are taken
into account. Several works also pointed out that the quantized conductance and
a non-zero Chern number do not necessarily need time reversal symmetry to be
broken with an external magnetic field as for the IQHE. As illustrated by the Hal-
dane model [20], developed for a honeycomb lattice, and subsequently by the Kane
and Mele model [21, 22], the quantized conductance can be an intrinsic property
of the system. This is the case of the quantum spin-Hall effect [23, 24], where the
Hall response is created by spin-orbit interactions in the bulk and described by a
topological invariant, the Z2 invariant, extension of the concept of Chern number for
multi-band systems. The properties of topological bands become even richer when
interactions between particles are added, an example being the fractional quantum
Hall effect [25, 26].

The direct investigation of real materials is often complicated by imperfections
of the lattice structure, anisotropies and strong inter-particle correlations which
make it hard to describe a real solid with a simple theoretical model. Recently,
new experimental techniques, developed in very diverse physical systems, allowed
recreating the physical properties of solid state materials in an environment that
can be well controlled to a great extent. Among these techniques, ultracold atoms
have become of fundamental importance as they proved to be very versatile at
simulating a disparate range of condensed matter systems over the recent years. The
strength of simulations with ultracold atoms relies on the high degree of control over
the system’s parameters and on the essentially defect-free nature of the engineered
potentials. The fundamental building block of this field was the first creation of
a Bose-Einstein condensate (BEC) in atomic gases [27, 28]. After that, the field
developed to study properties of superfluidity in a systematic manner. Vortices
were observed [29, 30] and excitations of the superfluid where studied in depth [31,
32]. Soon after the Bose-Einstein condensation, the quantum degenerate regime
was reached for fermionic alkali metal atoms as well [33]. By combining quantum
degeneracy with the possibility of tuning interactions via Feshbach resonances [34,
35], the study of the BEC to BCS crossover became experimentally accessible [36].

After these results, ultracold atoms experiments soon developed towards the sim-
ulation of the properties of solid state systems with optical lattices. The underlying
idea is to replace the role of electrons in a solid with bosonic or fermionic atoms
in a periodic optical potential formed by interfering laser beams [37]. Even if the
details of the potentials and the energy scales of these systems are quite different,
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the underlying models that describe them are formally equivalent. After the pro-
posal of D. Jaksch and coworkers for realizing the Bose-Hubbard model with cold
atoms [38], the first observation of the quantum phase transition from a superfluid
to a Mott insulating state [39] was a crucial result for the field. It demonstrated the
possibility of entering strongly interacting regimes with ultracold atoms in optical
lattices and, in contrast to condensed matter, the ability to engineer Hamiltoni-
ans in a defect-free environment. Soon after this remarkable result, systems with
lower dimensionalities were studied, like the Tonks-Girardeau gas [40, 41], and Mott
insulators for degenerate fermionic atoms were realized as well [42, 43].

These seminal results further strengthened the field of simulations with ultracold
atoms, which soon diversified in many different directions to investigate a broad
range of condensed matter phenomena, such as: Anderson localization in a disor-
dered potential [44], ultracold ground state molecules and Rydberg atoms for studies
on long-range and anisotropic dipolar interactions [45–47], strong effective magnetic
fields in optical superlattices [48–50], just to mention a few. These results highlighted
the remarkable control over the engineered synthetic materials and the wide range of
possibilities for quantum simulations in well tailored quantum systems. Moreover,
several techniques have been developed to manipulate and probe the properties of
such systems and provide direct information about the quantum states. Some well
known examples are in-situ single-site resolved detection and manipulation [51–53],
few-sites resolved imaging [54], atom interferometry [55–58] and Bragg spectroscopy
[59].

Among the many directions of novel studies with cold atoms, a notable one is
engineering topological band structures. The high tunability of cold atom systems
would allow a rich variety of exotic topological phenomena to be explored, espe-
cially when interactions are added to the systems. Reaching the fractional quantum
Hall regime [60, 61] and studying the interplay of topology and interactions in a
systematic manner [62] are major goals in the cold atoms community. Furthermore,
tailoring the topological features of Bloch bands might enable one to realize systems
which are out of the reach of real solid state materials, a famous example being the
Haldane model [20]. To this end, theoretical and experimental effort has been put
into developing techniques to imprint geometrical phases on cold atomic clouds or
to engineer topological bands in these highly-controllable quantum systems. First
results were realized with rotating BECs [63]. Then, novel schemes were proposed
and implemented to increase the flux of the effective magnetic field or to engineer
spin-orbit coupling by driving the system using external fields [64–66]. Some of these
methods are based on Raman transitions [67–69], which proved to be a promising
research direction as shown by recent experimental results about synthetic Hall ef-
fects [67, 70, 71] and gauge fields in synthetic dimensions [72, 73]. In the context
of standard optical lattices, geometrical features and artificial magnetic fields have
been recently implemented in driven systems [74–76], where complex tunnelings be-
tween the different lattice sites are engineered either by time-periodic modulation
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Chapter 1. Introduction

of the lattice [77], or Raman-assisted tunneling [64, 78]. These complex hoppings
allowed for the creation of such topological bands. Some examples are lattice lad-
ders with a net magnetic flux per plaquette [79], the Hofstadter bands in optical
superlattices [80, 81] and the realization of the Haldane model in brick-wall lattices
[20, 82]. Additionally, artificial magnetic fields can also be created by deformations
of the lattice potential, in analogy to the case of strained graphene [83, 84]. Despite
its fundamental role in describing the physical properties of real and synthetic mate-
rials, fully mapping out the geometric structure of an energy band remains a major
challenge for ultracold atoms experiments, as well as for solid state ones. Experi-
mental techniques capable of revealing and characterizing the topological features
of Bloch bands are under development. Among the ones proposed, like analysis of
transport measurements [81, 82, 85, 86], quench dynamics [87, 88] or edge states
[89, 90], recent results demonstrated how the geometrical properties of bands can be
inferred by using interferometry [57] which allowed the Zak phase to be measured
in a 1D superlattice potential [58].

This thesis presents an experimental apparatus for studying ultracold atoms,
bosons and fermions, in a honeycomb optical lattice. The growing interest in the
properties of such lattice relates to the peculiar geometrical features of its band
structure, the Dirac cones of its energy spectrum, which are linked to the bipartite
nature of the lattice potential. Analogous Dirac cones can be found in a wide variety
of physical systems, like molecules featuring conical intersections of energy surfaces
[91], photonic waveguides [92] and polaritons [93], as well as in optical lattices. While
earlier experiments investigated the Mott insulator transition in honeycomb lattices
[94, 95], only recently experimental results drew attention to the relevance of prob-
ing topological properties of such lattice structure by realizing the Haldane model
with ultracold atoms [82]. The advances in synthetic gauge fields might enable one
to explore a rich variety of exotic topological phenomena in the honeycomb lattice
that remain hard or even impossible to implement in condensed matter systems,
like the Kane-Mele model [22], chiral bosonic superfluid phases [96], the Hofstadter
spectrum [97], and Floquet topological insulators [98, 99].

Large part of this thesis deals with the development of the experimental setup
for studying ultracold atoms, the bosonic 87Rb and the fermionic 40K, in the optical
lattice. The implementation of techniques to cool the atoms to degeneracy and
condensation, the experimental realization of the honeycomb optical lattice and of
techniques to manipulate the state of the atoms via Bloch oscillations were key steps
to start the studies on topological Bloch bands. This involved the development of
an entire apparatus in which the alkali atoms are cooled by standard techniques and
then trapped in a honeycomb lattice potential.

To confirm the topological character of the synthetic lattice potential, the Berry
phase associated with the winding of the eigenfunctions at the individual Dirac cones
of the optical honeycomb lattice has been directly measured. In solid state graphene,

4



the presence of a localized π-flux associated with a Dirac cone has been observed
via the polarization dependence in photoemission spectra [100, 101], measurements
of a half-integer shift in the positions of quantum Hall plateaus and the phase of
Shubnikov-de Haas oscillations [17, 102]. In our experimental realization, we instead
make use of interferometry to directly observe the singular π flux of the cones.
The versatile interferometric technique for a BEC of 87Rb [57, 58] is the analog of
the Aharonov-Bohm effect, as it maps the Berry curvature enclosed by arbitrary
closed paths in reciprocal space. The observed Berry phase of π demonstrates the
winding of the band eigenstate at the Dirac cones and highlights the capability of
the developed interferometric technique to detect local topological features that are
challenging to observe by alternative techniques based on transport measurements.
Furthermore, this thesis reports on the direct observation of the annihilation of the
Dirac points [103, 104]. Here we make use of the cold atoms interferometry to
directly observe the motion of the Berry fluxes and detect the change of topology of
the band. The Aharonov-Bohm interferometry is a key technique for the complete
characterization of 2D topological lattices [57] and for monitoring the change of
topology of an energy band when artificial magnetic fields and complex tunnelings
are engineered in the honeycomb lattice.

Analogous geometrical phase factors can be defined in multi-band systems as well.
In the last part of this thesis we present preliminary results concerning interferom-
etry in the two lowest bands of the lattice as a first step towards the reconstruc-
tion of topological invariants of multi-band systems. Specifically, we implemented
Stückelberg interferometry [105, 106], which allows us to reconstruct the dispersion
of energy bands as well as to provide insight into the symmetries of the topological
features of the two-band model. By combining Stückelberg interferometry with sev-
eral existing techniques topological invariants of multi-band systems could be fully
reconstructed, as suggested in [107].

5



Chapter 1. Introduction

Outline

In Chapter 2, the concepts of topology and geometrical phases associated with
adiabatic transport of quantum systems are introduced. Particular attention is paid
to the topological properties of Bloch bands and of conical intersections of energy
bands.

In Chapter 3, the model of interest, the honeycomb lattice, is presented. First we
derive and discuss its main features, i.e. energy bands and winding of the eigenstates,
from the tight-binding model of the lattice.Then, the optical lattice potential created
by interfering three running waves is described. The interference pattern is set to
realize a time-reversal and inversion symmetric lattice with tunable tunnelings along
three main hopping directions. Finally, the Hamiltonian describing non-interacting
atoms in such optical potential is derived and we illustrate how it simulates the
model of interest.

In Chapter 4, we present the experimental setup which allows the cooling of
bosonic 87Rb and fermionic 40K atoms to condensation and degeneracy. The different
cooling steps and typical clouds parameters at the end of each evaporation cycle are
briefly summarized.

In Chapter 5, the lattice setup is presented. Mapping techniques to detect the
quasimomentum distrubution of the atoms loaded in the lattice are illustrated. We
also describe Bloch oscillations of bosonic atoms in the honeycomb lattice under the
presence of an external force.

In Chapter 6, the interferometric technique used to map the topological features
of the lattice is described. After illustrating the protocol for the Aharonov-Bohm
interferometry and some experimental details, the results are presented. The in-
terferometry is used to detected a sharp phase jump to π at the Dirac cones and
observe the motion of the cones followed by the annihilation of the Berry fluxes.

In Chapter 7 we present preliminary results concerning interferometry in a two-
band model. The Stückelberg interferometry protocol along with experimental re-
sults are described.

Conclusions and future prospects are in Chapter 8. In the appendices, additional
details about the system parameters and the Aharonov-Bohm interferometry are
presented.

Publication

The following reference has been published in the context of this thesis

• An Aharonov-Bohm interferometer for determining Bloch band topol-
ogy
Lucia Duca, Tracy Li, Martin Reitter, Immanuel Bloch, Monika Schleier-
Smith, Ulrich Schneider.
Science 347, 288-292 (2015).
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Chapter 2.

Topological properties of Bloch
bands

The idea of topological properties of energy bands originates from description of
curved manifolds in differential geometry which soon generalized to the description of
generic abstract spaces, including the Hilbert space of quantum mechanical systems.
Many reviews and books cover the subject in detail, we reference to [2, 108–111] for
a more complete introduction to the topic. In this chapter, the concepts of topology
and geometrical phases are briefly introduced. These notions will be needed to
understand the features of the optical lattice we aim at characterizing. In Section
2.1, the concepts of parallel transport and geometric phases on a real and on the
Hilbert space are introduced. In Section 2.2, the effects of the geometric structure
of Hilbert space on the adiabatic evolution of quantum mechanical systems are
presented. Here we introduce the Berry phase [3] and its generalization to degenerate
eigenstates done by Wilczek and Zee [12]. The concept of topology is then translated
to the case of Bloch bands where analogous phase factors can be found which relate
to winding of the band eigenstates, Section 2.3. Finally, we comment on topological
features of a conical intersection that will be needed to understand the features of
the model of solid-state graphene, Section 2.4.

2.1. Introduction on geometrical properties

In differential geometry, manifolds are equivalent if they can be adiabatically de-
formed one into an other [2]. To classify these topologically equivalent manifolds,
one can analyze the parallel transport of a vector v on the surface of a manifold. The
vector is constrained to lie in the plane tangent to the surface of the manifold which
is parametrized by the vector normal to the surface n, so that v · n = 0. Moreover,
the vector v as well as the reference frame of the tangent plane, parametrized by
the orthogonal vectors e1, e2, can not rotate around the normal axis as the vector
moves on the surface of the manifold, i.e. ω · n = 0 where ω is the angular velocity
of the reference frame, ω = n× ṅ. These conditions fix the pointing direction of the
vector as it moves on the surface, v̇ = ω × v [112]. These geometrical constrains
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Chapter 2. Topological properties of Bloch bands

a b

Figure 2.1.: Examples of parallel transport of a vector on different manifolds, a
plane and a sphere. The vector is constrained to lie on the plane tangent to the
surface of the manifold. Few tangent planes are shown for the case of the sphere
to illustrate how the vector tilts together with them. Final vector (red) is rotated
compared to the starting vector (yellow) when moving on a curved manifold.

set the law of parallel transport. As the vector is transported, its orientation can
change only if the orientation of the local tangent plane changes along the path.
After a closed loop C on a surface S, the orientation of the vector might be not
parallel to the original one if the vector moved on a curved manifold, as illustrated
in Fig. 2.1. The angle ϕ by which the transported vector is rotated compared to the
initial orientation is the holonomy [112]

ϕ = Im

∮
C

u∗u̇ dt =

∮
C

A(r)dr (2.1)

where u is a complex unit vector which specifies the local basis of the vector v and
accounts for the local rotation of the reference frame on a curved manifold [112].
The connection A(r), describing how the vector has to rotate to move from one
point to an other on the curved surface, is gauge dependent but the angle ϕ is not
because of the integration on a loop. To understand this gauge independence, we
can imagine to rotate the reference frame at some specific point r by doing the
following gauge transformation u(r)→ u(r)eiχ(r). By doing so, the connection will
also change to account for the different choice of gauge and it transforms as A(r)→
A(r) +∇rχ(r), with an additional term that is not necessarily zero. However, the
integral is

∮
C
∇rχ = 0 when initial and final points coincide and the equation 2.1 is

gauge independent.

For a 2D closed manifold, the angle ϕ can be rewritten in terms of the Gaus-
sian curvature Ω(r) enclosed during the loop by using the Stokes’ theorem, ϕ =∫
S

Ω(r)d2r, where Ω(r) = κ1κ2 and κ1, κ2 are the principle curvatures of the surface.
The integration done over the complete manifold M is an integer multiple of 2π that
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2.2. Manifestations of topology in quantum mechanical systems

measures the total curvaure, or the genus g, of the manifold [2]∫
M

Ω(r)d2r = 2πnC = 2π(2− 2g). (2.2)

The integer nC is the topological invariant that classifies different types of adiabat-
ically connected manifolds. This relation which connects local geometry and global
topology has evolved through mathematical abstraction to generic abstract spaces,
like the Hilbert space of quantum mechanical systems.

2.2. Manifestations of topology in quantum
mechanical systems

Following the discussion given by Berry [3], here we summarize the most impor-
tant parameters and observables that characterize the topological properties of a
quantum mechanical system.

2.2.1. Geometric phase factors related to cyclic adiabatic
transport

We start by considering a quantum system described by a Hamiltonian Ĥ(r) that
depends on a parameter r(t) which can be changed over time. Its discrete spectrum
is given by Ĥ(r)|φn〉 = En(r)|φn〉, |φn〉 being a set of eigenfunctions. The evolution
of the system is described by the Schrödinger equation for the generic wavefunction
|ψ〉

i~
d|ψ〉
dt

= Ĥ(r)|ψ〉. (2.3)

The system, initially prepared in the state |ψ(0)〉 = |φn(0)〉, is adiabatically trans-
ported in the parameter space. The adiabaticity condition requires that the rate of
variation of the Hamiltonian is low enough to make the probability of transition to
an other state |φm〉 vanishingly small [113]

~|〈φm|φ̇n〉| � |En − Em|. (2.4)

This means that the system will remain in the instantaneous eigenstate |φn〉 through-
out the adiabatic motion. During this transport the state will adiabatically evolve
and acquire a phase factor η

|φn(0)〉 → eiη(t)|φn(r)〉. (2.5)
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Chapter 2. Topological properties of Bloch bands

This condition together with the Schrödinger equation for the state |φn〉 defines how
the state evolves during the adiabatic motion and it is the analog of the parallel
transport we already introduced. From eq. 2.3 and eq. 2.5, the accumulated phase
η is obtained which is composed of two terms

η(t)− η(0) = −
∫ t

0

En(t)

~
dt′ + i

∫ r(t)

r0

〈φn|∇rφn〉dr = ϕdyn + ϕgeom. (2.6)

The dynamical phase, ϕdyn, describes the evolution of the particle in a state with a
certain energy En. The second phase term, ϕgeom is purely geometrical as it depends
only on how the state has changed along the path the system followed. The phase
ϕgeom is generally gauge dependent: suppose that we make a different gauge choice,
i.e. φn(r)→ eiχ(r)φn(r). The Berry connection defined by eq. 2.6 as

An(r) = i〈φn|∇rφn〉 (2.7)

will pick an additional contribution: An(r)→ An(r)+∇rχ(r) which does not cancel
in eq. 2.6. As illustrated earlier for the case of parallel transport, the phase ϕgeom is
gauge independent only when a periodic condition is applied, i.e. when the particle
moves in a closed loop C. In this case, this geometric phase is a gauge-invariant
quantity called the Berry phase, quantum mechanical analog of eq. 2.1

ϕB = i

∮
C

〈φn|∇rφn〉dr. (2.8)

By applying Stokes theorem to the integral of eq. 2.8, we introduce the Berry cur-
vature which is analogous to the Gaussian curvature Ω(r)

Ωn(r) = ∇×An(r) = i〈∇rφn| × |∇rφn〉. (2.9)

The Berry phase might seem irrelevant as it is just additional phase factors multi-
plying the original state. On the contrary, this phase has physical consequences on
the quantum mechanical state and its effects have been observed experimentally in
a great variety of physical systems. A well known example is the Aharonov-Bohm
effect [10, 114, 115] where two electron wavepackets moving around a solenoid, on
the left and right of it, pick up a phase difference which is the geometrical phase
associated with the presence of a net flux of magnetic field inside the interferometer
loop. Generalizations of the concept of Berry phase have been carried out in several
works. Aharonov and Anandan focused on non-adiabatic transport [13], Wilczek
and Zee on the transport in degenerate eigenstates [12] and Simon generalized the
concept of geometric phase as a holonomy [11].

The concept of Berry phase can be extended to multilevel systems as well. This
extension can be intuitively understood by considering a particle that has an internal
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2.2. Manifestations of topology in quantum mechanical systems

structure. In this case, the motion in the parameter space may result in a coherent
transformation of its internal states which we need to account for. In this scenario,
the adiabatic evolution has to be described by a unitary transformation instead
of just a phase factor, which describes how all the internal states change during
the adiabatic transport. Wilczek and Zee where the first to generalize the findings
of Berry for multilevel systems by considering Hamiltonians with N -fold degenerate
eigenstates [12]. For each one of them, a new adiabatic condition analogous to eq. 2.4
is defined such that the evolution of the system is restricted to the set of degenerate
states while being adiabatic with respect to all other states. The transformation
which time-evolves the initial state within the degenerate subspace includes the
usual dynamical phase factor and a geometrical term that is a Wilson line [116]. The
generalization of the Berry phase is the Wilson loop matrix, calculated for closed
paths in the parameter space and the gauge invariant quantities are the eigenvalues
of the Wilson loop matrix [116].

Origin of gauge freedom in quantum mechanical systems

The state |ψ〉 of a quantum mechanical system is not uniquely defined as it is possible
to make a change of basis and describe the system in a new reference frame. The
unitary transformation that changes the basis states can not change the physical
properties of the system as they do not depend on an arbitrary choice of gauge. This
arbitrariness in the choice of such frame is a gauge freedom. Since the dynamics
of a state is determined by equation of motion which have the form of differential
equations, we need to find a way of redefining derivatives to preserve the gauge
invariance of the theory.

As a simple illustrative example, we can look at the Schrödinger equation for
the state |ψ(r)〉 of a free particle of mass m, i~∂t|ψ〉 = (−i~∇r)

2/(2m)|ψ〉. The
effect of a local gauge transformation of the state of the following kind |ψ〉 → |ψ′〉 =
eiχ(r)/~|ψ〉 is to change the derivative which becomes∇r|ψ′〉 = ieiχ(r)/~∇rχ(r)/~ |ψ〉+
eiχ(r)/~∇r|ψ〉. The gauge transformation introduces an additional term in the Hamil-
tonian because of the spatial dependence of χ(r). To guarantee the gauge invari-
ance of the equation of motion we need to introduce a gauge potential A(r) in the
Hamiltonian which changes under a gauge transformation of the state according to
A(r) → A′(r) = A(r) + ∇rχ(r). This term allows us to redefine the derivative
∇r in the Hamiltonian by introducing the covariant derivative Dr = ∇r − iA(r)/~
which changes as the wavefunction under a gauge transformation such that Dr|ψ〉 →
D′r|ψ′〉. With this new definition of derivative, the Schrödinger equation is written
as

i~∂t|ψ′〉 =
(−i~∇r −A(r))2

2m
|ψ′〉 (2.10)

and the wavefunction |ψ′〉 is always a solution of the same Schrödinger equation no
matter what gauge we choose. The geometric phases can thereby be interpreted
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Chapter 2. Topological properties of Bloch bands

as a consequence of the local gauge invariance of the system which introduces a
gauge potential A(r) in the equations of motion. In the case of adiabatic motion
considered by Berry, the gauge of the state can be transformed by a U(1) local
gauge transformation as it moves in the parameter space. The U(1) gauge freedom
results in a Berry connection A(r) which can be viewed as a U(1) gauge field. The
non-zero Berry phase is the consequence of the additional non-zero vector potential
A(r). If the state consists of a linear combination of N eigenstates, belonging to one
N-fold degenerate eigenvalue, the state is invariant with respect to a SU(N) gauge
transformation which gives rise to a SU(N) gauge potential.

2.3. Geometric phases in Bloch bands

Analogous geometric factors can be introduced for Bloch bands of a solid where
the manifold is now the Brillouin zone (BZ). In this systems, the distribution of
Berry curvature over the Brillouin zone characterizes the energy bands and uniquely
determines their topological invariants.

2.3.1. Single particle in a periodic potential

To understand the main features of the lattice we can solve the Schrödinger equation
for a single particle in a periodic potential VL(r), which we assume to be two dimen-
sional. A generic lattice is described by the following non-interacting Hamiltonian

ĤL =
p̂2

2m
+ VL(r) (2.11)

with a potential periodic in r, VL(r) = VL(r + R), and p̂ = −i~∇r the momentum
operator. Given the periodicity of the potential in real space, the eigenstates are
the Bloch waves [117]

ψnk(r) = eikrunk(r) (2.12)

product of a plane wave and the cell-periodic part of the wave-function, unk(r) =
unk(r + R), which inherits the periodicity of the lattice potential. The index n
indicates the band number and k the quasimomentum that can be chosen to be
periodic by making a periodic gauge choice. The periodicity of k reads k = k + G,
G being a reciprocal lattice vector that describes the periodicity of the Hamiltonian
in the reciprocal space. The k-vector can be restricted to the first Brillouin zone
[117]. The Schrödinger equation for the Bloch wave is(

p̂2

2m
+ VL(r)

)
ψnk(r) = En

kψ
n
k(r). (2.13)
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2.3. Geometric phases in Bloch bands

The eigenvalues En
k are the Bloch bands that compose the discrete energy spectrum

of the single-particle in the periodic potential. By inseting the ansatz of eq. 2.12 into
the Schrödinger equation 2.13, the eigenvalue equation for the waves uk is derived

ĤL(k)unk(r) = En
ku

n
k(r) (2.14)

where

ĤL(k) =
(p̂ + ~k)2

2m
+ VL(r). (2.15)

The Bloch waves of eq. 2.12 have a fixed quasimomentum and they are completely
delocalized in real space. This representation is not convenient when one wants to
describe the system in terms of localized states on the different lattice sites. In this
case one could use an alternative representation in real space by transforming the
Bloch basis into an new orthonormal one, the Wannier basis [118, 119]. This basis
choice is particularly suited to describe deep lattices where the particles are localized
on a lattice site and decoupled from particles in neighboring wells. The Wannier
function of a particle localized at a lattice site r0 in the band n is defined as the
following combination of Bloch waves

wn(r− r0) =
1√
N

∑
k∈BZ

e−ikr0ψnk (r), (2.16)

where N is the number of lattice sites.

2.3.2. Topological properties of a single band

In analogy to what we did in Section 2.2.1 for particles in real space, we can define
the Berry connection in reciprocal space for particles in a Bloch band.

First of all, we should note that the Berry connection and curvature of a band
are a property of the periodic part of the Bloch waves, unk. This is because the
Schrödinger equation for unk is explicitly dependent on the quasimomentum k, see
eq. 2.14 and 2.15. This is not the case for the Schrödinger equation of a Bloch wave,
eq. 2.13, where the quasimomentum k is just labeling the eigenvalues. While the
Bloch waves at different k-points are orthogonal to each other by definition, this is
not necessarily true for the eigenfunctions unk calculated at different quasimomenta
as they are solutions of different eigenvalue equations. The Berry connection of a
band n is thus defined as

An(k) = i〈unk|∇k|unk〉 (2.17)

and it describes how to change the eigenfunctions unk when moving from one point
to the next in the reciprocal space. The corresponding Berry curvature is

Ωn(k) = ∇×An = i〈∇ku
n
k| × |∇ku

n
k〉 (2.18)
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Chapter 2. Topological properties of Bloch bands

which is analogous to a synthetic magnetic field with vector potential An in re-
ciprocal space. By using eq. 2.14, the Berry curvature can also be rewritten as
[3]

Ωn(k) = i
∑
n6=m

〈unk| ∇ĤL(k) |umk 〉 × 〈umk | ∇ĤL(k) |unk〉
(En − Em)2

(2.19)

which is a useful expression to calculate Berry phases. These geometrical concepts
can also be extended to three dimensional lattices, but the Berry curvature must be
treated vectorially in this case.

In analogy to the case of adiabatic motion in real space, we can now imagine to
move a particle in an arbitrary closed loop in our new parameter space which is the
reciprocal space of the lattice. At the end of the motion the particle has acquired a
geometric phase which is

ϕBerry =

∮
C

An(k) dk =

∫
S

Ωn(k) d2k (2.20)

where S is the area of the Brillouin zone enclosed by the path C = ∂S [120]. Although
the Berry connection is not uniquely defined, see Section 2.2.1, the geometric phase
is gauge independent, and is therefore an observable that encodes information on
the geometrical properties of a Bloch band. We should also point out that, since the
reciprocal space can be chosen to be periodic by making a periodic gauge choice, a
closed loop can also be performed by moving straight in the Brillouin zone, i.e. when
the quasimomentum changes by one reciprocal lattice vector as k−G/2→ k+G/2.
The geometrical phase in this scenario is called Zak phase [121] that is specific to
the case of systems with periodic boundary conditions and it is defined as

ϕZak =

∫ k+G/2

k−G/2

An(k) dk. (2.21)

This geometric phase is not completely gauge-independent as it depends on the
choice of the origin of the coordinate system which changes the Bloch waves as
ψnk(r) → ψnk(r + r′) and the eigenvectors as unk(r) → eikr′unk(r + r′) [58]. The
geometrical phases of a band are linked to its topological invariant, analog of the
invariant of eq. 2.2. For a 2D lattice, the invariant is the Chern number nC defined
as the Berry phase acquired for a loop which covers the entire Brillouin zone, nC =∫
BZ

Ωn(k)/(2π) d2k [14]. The Chern number is an integer which characterizes the
topology of the energy band.

It is natural to extend the notion of geometric phases and topological invariants to
the case of multiple degenerate bands by using the notion of Wilson loops and lines
which depend on diagonal and off-diagonal Berry connections [121]. For multiple
bands the variety of topological classes can become very rich. One important exam-
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ple is the Z2 invariant of topological systems with time-reversal (TR) symmetry, e.g.
the quantum spin Hall effect (QSHE) [21, 22]. In this systems the winding of the
phase of the eigenfunctions is different for spin up and down particles. This infor-
mation is encoded in the Z2 invariant, which has been mathematically formulated in
different ways depending on the observable [22, 122–124]. One of these [124] relates
it to the difference in the Zak phase of each band and the difference between eigen-
values of the Wilson loop for specific paths along time-reversal invariant momenta
which cover only half of the Brillouin zone [107].

2.3.3. Role of symmetries

The distribution of Berry curvature of a band and the value of the Chern number
are linked to symmetries of the lattice. Particularly important are time-reversal and
inversion symmetries which dictate the form of Berry curvature.

Time-reversal symmetry is a transformation that reverses the arrow of time,
T : t → −t. For spinless particles T commutes with the position operator but
not with the momentum operator, T x̂T −1 = x̂ and T p̂T −1 = −p̂. Thereby, we
have that T [x̂, p̂]T −1 = −i~ and the operator T is an anti-unitary operator corre-
sponding to the complex-conjugation [111]. For the case of particles in a lattice,
the operator T changes the Bloch Hamiltonian of a spinless particles according to
T ĤL(k)T −1 = ĤL(−k) while the eigenfunctions transform as T unk = un,∗−k [111]. By
using these relations and the definition of the Berry curvature, eq. 2.18, it directly
follows that the Berry curvature is an odd function of the quasimomentum k under
time invariance, i.e. Ωn(k) = T Ωn(k) = −Ωn(−k). As a result, the Chern number
has to be zero for time reversal symmetric Hamiltonians and it can only be changed
if time reversal symmetry is broken. This is what happens in the Hall effect, for
example, where the time reversal symmetry is broken by the presence of an external
magnetic field [14].

Inversion symmetry is, instead, a unitary operator which reverses the spatial di-
rection, I : r→ −r, thereby it changes both position and momentum. For particles
in a lattice, the effect of this operator is to change the eigenvectors according to
Iunk = un−k [111]. If the lattice is inversion symmetric, the Berry curvature is an
even function of k, Ωn(k) = Ωn(−k).

When a lattice has both inversion and time-reversal symmetries, Ωn has to be
zero or a delta function singularity to fulfill the symmetries conditions and Ωn(k) is
robust against deformations that preserve these symmetries of the lattice. Moreover,
when there is T I invariance, the eigenfunctions unk transform as T Iunk = un,∗k and
they can be chosen to be purely real by making the appropriate gauge choice. As a
result of T I invariance, the state can only have a phase factor which is an integer
multiple of π to maintain the reality of the eigenstates. This can also be seen by
noting that the factors from the adiabatic evolution must coincide when we reverse
the arrow of time or of space, i.e. eiϕBerry = e−iϕBerry . Since a phase is well-defined
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Chapter 2. Topological properties of Bloch bands

up to modulo 2π, the Berry phase transforms as T IϕBerry = −ϕBerry + 2nπ and the
Berry phase ϕBerry has to be an integer multiple of π.

2.4. Conical intersection of energy bands

Not all the bands with time-reversal invariance and inversion symmetry have a
vanishing Berry curvature. Berry flux singularities are allowed by T I-symmetry and
they can be found, as an example, in a time-inversion symmetric lattice with conical
intersections of energy bands [125]. These degeneracy points of the energy spectrum
commonly arise in bipartite lattices, e.g. hexagonal lattices [126], superlattices [64]
or dimers in the case of molecules [9].

For a two dimensional system, a conical intersection in a two-band model is most
generally described by an Hamiltonian of the kind

ĤC(k) = h · σ (2.22)

which resembles the Hailtonian of a spin-1/2 particle in a magnetic field. In the
definition, σ are the Pauli matrices σ = (σ̂x, σ̂y, σ̂z) and h(k) = (hx, hy, hz) is
a vector function of k. For simplicity we parametrize the conical intersection by
setting hx = αkx and hy = αky. We can allow for a finite gap at the intersection
point between the two bands by introducing hz 6= 0. The vector h is conveniently
written in spherical coordinates as

h(k) =

hxhy
hz

 = |h|

sin Φk cos Θk

sin Φk sin Θk

cos Φk

 (2.23)

where we introduced the azimuthal Θk an polar Φk angles

tan Θk =
hy
hx

=
ky
kx

cos Φk =
hz
|h|

. (2.24)

The eigenstates of ĤC with eigenenergies E± = ±|h| are the spinors u±k , which can
be written in spherical coordinates and with a specific gauge choice as

u−k =

(
sin(Φk/2)

cos(Φk/2)eiΘk

)
, u+

k =

(
− cos(Φk/2)

sin(Φk/2)eiΘk

)
. (2.25)

The Berry connections of eq. 2.17, describing the change of the eigenvectors’ orien-
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tation, are derived from the definition of u±k and they are

A−(k) = ∇kΘk cos2(Φk/2) and A+(k) = ∇kΘk sin2(Φk/2). (2.26)

The winding of the phases Φk and Θk indicates the non-trivial Berry connection of
the cone. The Berry curvature Ω± is directly calculated from eq. 2.26 and it relates
to the winding of the polar and azimuthal angle according to

Ω±(k) = ∓sin Φk

2
∇kΘk ×∇kΦk. (2.27)

When both T and I symmetries are present, the Hamiltonian commutes with the
T I operators and the σ̂z term has to be zero. ĤC(k) reduces to the Dirac form

ĤC(k) = α(kxσ̂x + kyσ̂y). (2.28)

Since the mass term hz is zero, the energy gap between first and second band vanishes
at intersection point between the two conical bands. The crossing point is called
Dirac point. Given the new form of the Hamiltonian 2.28, the eigenfunctions of the
two bands simplify to

u±k =
1√
2

(
∓1
eiΘk

)
(2.29)

Correspondingly, the Berry connections 2.17 reduce to

A+(k) = A−(k) = i 〈u±k | ∇k |u±k〉 =
1

2
∇kΘk. (2.30)

The winding of the phase Θk by 2π when moving in a loop C of arbitrary size around
the conical intersection results in the following Berry phase

ϕB =

∮
C

1

2
∇kΘkd

2k = ±π, (2.31)

as we expect from the symmetry constrains analyzed in the previous section. It
follows that the Berry curvature associated with the degeneracy point of a conical
intersection has the following singular form when the system has T I-symmetry

Ω±(k) = ±πδ(k). (2.32)

The degeneracy point and its π Berry flux are stable against perturbations that
preserve the T I-symmetry, i.e. which do not add a σ̂z term in the Hamiltonian,
because of the constrains that the symmetries impose. The effect of such perturba-
tion is to shift the location of the crossing point by a certain vector κ. The new
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Figure 2.2.: Adiabatic transport around a gapped (a) or ungapped (b) cone results
in different solid angles (shaded area) enclosed by the winding of the pseudospin
S (red arrow) on a unitary sphere.

Hamiltonian with this additional perturbation becomes

Ĥ ′(k) = ĤC(k) + κxσx + κyσy. (2.33)

2.4.1. Interpretation in terms of rotation of a pseudospin

The meaning of Berry curvature and connection can be better understood by pic-
turing the winding of the eigenvectors as the winding of a pseudospin on a unitary
sphere. The spinors u±k may be visualized in terms of the expectation value of the
Pauli operator σ [3, 126]. According to our definitions of u±k and h, eq. 2.23-2.25,
the pseudospin is

S(k) = ±〈u±k |σ |u
±
k〉 = ± h

|h|
(2.34)

and the angles Θk and Φk parametrize the orientation of the vector S(k) on a
unitary sphere. The rotation of this vector is pictured in Fig. 2.2 for a particle
moving around the cone. When hz = 0, i.e. Φk = π/2, the pseudo-spin S is confined
to the equatorial plane. As it moves in a loop, the azimuthal angle Θk rotates by
2π and S(k) undergoes a full rotation in the Sz = 0 plane. If hz 6= 0, S(k) is not
constrained to the equatorial plane and it will undergo a rotation around some axis
defined by ĤC(k) enclosing a smaller solid angle on the sphere.

To better understand the relation between the winding of S(k) and the Berry
curvature, we can make use of the eq. 2.19 for the Berry curvature, the definition
of the Hamiltonian 2.33 and the commutation properties of the Pauli matrices to
rewrite the curvature as a function of the pseudospin [3]. The winding of S(k) gives
rise to the following Berry curvature

Ω±(k) = i∇k × 〈u±k | ∇k |u±k 〉 =
S

2
·
(
∂S

∂kx
× ∂S

∂ky

)
. (2.35)

It is thus clear that the Berry phase ϕB measures half of the solid angle enclosed by
the rotation of the pseudospin S(k) when the k-vector wraps in a loop around the
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conical intersection of bands. Consequently, the Chern number can be interpreted
as an integer counting the number of times the pseudospin wraps around the unit
sphere when the loop encloses the entire Brillouin zone.
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Chapter 3.

The optical honeycomb lattice and
its topological features

In the previous chapter, Section 2.3, the generic Hamiltonian describing a particle in
a periodic potential has been introduced and the Berry connection and curvature of
an energy band have been derived. In this chapter, the lattice model of our interest,
the honeycomb lattice, is presented. The peculiarity of this model is the presence
of conical intersections in the energy spectrum. In Section 3.1, the honeycomb
lattice model is introduced. Its energy bands and topological features associated
with the Dirac cones, both essential to the full characterization of a Bloch band, are
described for the most relevant configurations of the lattice: with/without AB offset
and with imbalanced hoppings. In Section 3.2, the properties of the optical potential
created by three interfering waves are discussed and we present how the honeycomb
interference pattern is experimentally realized. Starting from it, the single-particle
Hamiltonian is derived and the properties of non-interacting particles in such lattice
potential are described, Section 3.3.

3.1. The honeycomb lattice model

Here the specific model of our interest, a honeycomb lattice, is introduced. This
two-dimensional lattice structure has been extensively investigated over the past
years both theoretically and experimentally [17, 102, 127, 128]. We reference to
the following reviews [126, 129] for a more detailed description of the properties of
graphene-like lattices and recent experimental results obtained in solid state systems.
In this section, we will illustrate how this model relates to the features of conical
intersections of bands and which are its topological properties.

3.1.1. Lattice symmetries and useful definitions

The minima of the honeycomb lattice potential are arranged as illustrated by the
scheme in Fig. 3.1a. The peculiarity of this lattice structure is that its unit cell is
composed of two inequivalent sites, A and B. The lattice can thus be decomposed
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B

a b

x

y

kx

ky

d1d2

d3

a1

a2dL
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A

Figure 3.1.: Lattice in real (a) and reciprocal (b) space. The unit cell, dashed
rectangle in (a), composed by two lattice sites A and B is illustrated. The primitive
lattice vectors a1, a2, the reciprocal lattice vectors b1,b2 and the nearest-neighbor
hopping directions di (green arrows) connecting A and B sites are shown. The
three high symmetry points (Γ, M, K(′)) of the first Brillouin zone are depicted
in (b).

into two triangular sublattices connecting the equivalent sites. The primitive lattice
vectors connecting the sites of the A sublattice can be defined as

a1 = dL

(
3

2
,

√
3

2
, 0

)
, a2 = dL

(
3

2
,−
√

3

2
, 0

)
(3.1)

where dL is the distance between the neighboring A-B sites composing the unit cell.
The lattice constant is given by aL = |ai| =

√
3dL. The A and B sites are connected

via the vectors dj = dL(cos(jπ/3), sin(jπ/3)) with j = 1, 2, 3, describing the three
possible hopping directions as illustrated in Fig. 3.1a. The positions of the A and B
sites can be chosen to be written as

ra = na1 +ma2, rb = na1 +ma2 + d3, n,m ∈ Z. (3.2)

As we have seen in the previous chapter, a periodic potential in real space results in
a periodic quasimomentum due to the periodicity of the Bloch wavefuncitons. The
reciprocal lattice vectors bj describing the periodicity of the reciprocal space are
defined by the well known relation aibj = 2πδi,j as

b1 =
4π

3
√

3dL

(√
3

2
,
3

2
, 0

)
, b2 =

4π

3
√

3dL

(√
3

2
,−3

2
, 0

)
. (3.3)
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3.1. The honeycomb lattice model

Important points in reciprocal space are the K and K′ points, corners of the Brillouin
zone which are depicted in Fig. 3.1b. Their location is given by

K(′) =
4π

3
√

3dL

(
cos

(
±π

2
+

2nπ

3

)
, sin

(
±π

2
+

2nπ

3

))
with n ∈ Z, n ∈ [0, 3[.

(3.4)
These two sets of points are inequivalent as they are not connected by a reciprocal
lattice vector.

Here some definitions have been introduced for the honeycomb lattice structure,
this notation will be used throughout the rest of this thesis.

3.1.2. The model

The origin of the Berry fluxes in the honeycomb lattice can readily be understood in
the tight-binding limit. The main features of this model and its physical properties
are briefly presented in this section. By analyzing the eigenenergies and eigenstates
we will relate the features of the lattice with those of a conical intersection, described
in Sec. 2.4.

The honeycomb lattice is modeled by the following Hamiltonian in the tight-
binding limit

Ĥtb = −
∑
〈ra,rb〉

Jra,rb(ĉ
†
ra ĉrb + h.c.) +

∆

2

∑
ra,b

ĉ†ra ĉra − ĉ
†
rb
ĉrb . (3.5)

The first term describes the hopping of a particle between two neighboring sites
connected by the vectors di, illustrated in Fig. 3.1a. We consider only the hopping
between neighboring sites and assume that all the other higher hopping terms are
negligible. The hopping amplitudes Jra,rb can be different along the three hopping
directions di. The operators ĉ†ra and ĉ†rb create a particle in the sublattice site A or
B in the Wannier orbital centered at a certain position ra and rb defined by eq. 3.2.
For our purposes we can consider them to be bosonic operators. The second term
describes an energy offset of magnitude ∆ between the two sublattices.

From the symmetry of the Hamiltonian, which has a unit cell composed by two
inequivalent lattice sites A and B, we can write an ansatz for the eigenstates of the
Hamiltonian as a superposition of Bloch waves of the two sublattices and they are

ψk(r) =
∑
ra

ake
ikraw(r− ra) +

∑
rb

bke
ikrbw(r− rb). (3.6)

The w(r − ra,b) are the Wannier functions at site ra and rb, see eq. 2.16, and k
is the quasimomentum restricted to the first Brillouin zone which is defined by the
reciprocal lattice vectors b1, b2 defined by eq. 3.3. With this ansatz, the cell-periodic
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Figure 3.2.: (a) Dispersion relation of the honeycomb lattice, showing the ar-
rangement of the conical intersections between the first and second band in the
reciprocal space. (b) Energy spectrum along a straight path connecting Γ, K and
K(′) points. An energy gap opens at the Dirac points when an energy offsets ∆ is
introduced. The gap increases with increasing ∆, from dark to bright green.

wavefunction uk is a two-component spinor uk = (ak, bk)T . By using the ansatz of
eq. 3.6 and the lattice Hamiltonian defined by eq. 3.5, the Schrödinger equation for
the wave ψk(r) is solved. From the Schrödinger equation, an eigenvalue equation
for the coefficients ak and bk is derived and it reads

Ĥtb(k)(ak, bk)T = E(k)(ak, bk)T . (3.7)

The Hamiltonian Ĥtb(k) is the following 2×2 matrix

Ĥtb(k) =

(
∆/2 −tk
−t∗k −∆/2

)
(3.8)

where ∆ is an energy offset between the sublattices and the parameter tk is given
by

tk = J1e
ik·d1 + J2e

ik·d2 + J3e
ik·d3 = |tk| eiθk , (3.9)

Ji being the hopping amplitudes along the three hopping directions di which are
equal if the lattice potential has C3 symmetry. The Hamiltonian of eq. 3.8 has the
following form Ĥtb = h(k) · σ, where the vector h can be parametrized in spherical
coordinates as done in the previous chapter, see eq. 2.23.

Eigenvalues

The matrix 3.8 is diagonalized to find the eigenenergies of the two bands

E2,1(k) = ± |h| = ±
√

(∆/2)2 + |tk|2. (3.10)
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3.1. The honeycomb lattice model

If the lattice has inversion and time-reversal symmetries, i.e. ∆ = 0, and equal
tunnelings along the three hopping directions, Ji = J , the dispersion can be further
simplified. By using the definition of the parameter tk, eq. 3.9, and the one of the
eigenvalues, eq. 3.10, the eigenenergies are written as

E±(k) = ±J
√

3 + 4 cos(3kxdL/2) cos(
√

3kydL/2) + 2 cos(
√

3kydL). (3.11)

In this case the bandwidth of each band is 3J . The bands are periodic with the
periodicity given by the reciprocal lattice vectors bi, as it can also be seen from the
plots of the energy bands in Fig. 3.2a. Moreover, when ∆ = 0 and Ji = J , there
are degeneracy points between the bands that are located at the K and K(′) points,
corners of the Brillouin zone. In this scenario, the Hamiltonian reduces to massless
case in proximity of the Dirac points, see eq. 2.28. The linear dispersion of the bands
can be calculated by expanding eq. 3.11 to first order in k −K(′), distance to the
crossing point. The dispersion is given by

E±(k−K(′)) ≈ ±vF
∣∣∣k−K(′)

∣∣∣ , (3.12)

with a slope of vF = 3JdL/2. If ∆ 6= 0, instead, the degeneracy is lifted at the
Dirac points. The resulting bands are shown in Fig. 3.2b where they are plotted
for different energy offsets ∆ and equal tunnelings Ji. It can be seen that the effect
of the energy offset is to open a gap of size ∆. This is not surprising since the
Hamiltonian has the form of the Hamiltonian of a conical intersection presented
Section 2.4 with mass term hz = ∆/2.

Imbalanced tunnelings

A relative change in the tunneling rates along the three hopping directions (J1 6=
J2 6= J3) results in a modification of the energy bands [97, 104, 130]. The imbalanced
tunneling breaks the rotational symmetry of the lattice potential but it does not
introduce an energy offset between the A and B sites. Its effect is analogous to the
perturbation for a conical intersection which preserves time-reversal and inversion
symmetry, see eq. 2.33, and it results in a shift of the position of the Dirac cones.
This can be readily understood by looking at the dispersion of the energy bands
when the hoppings are imbalanced. By using eq. 3.9 and eq. 3.10, the bands with
arbitrary hoppings Ji are given by

E±(k) = ± | J1e
ikd1 + J2e

ikd2 + J3e
ikd3 |, (3.13)

in the tight binding limit. Here ∆ is set to zero for simplicity. The three terms can
be interpreted as vectors of lengths J1, J2, J3. The bands will have degeneracies
in the energy spectrum only when E±(k′) = 0, which means that the three vec-
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Chapter 3. The optical honeycomb lattice and its topological features

tors need to add up to zero at a certain k′. By using triangle inequalities for the
norm of the vectors, the following condition for the tunneling amplitudes is derived:
|| J1 | − | J2 ||≤| J3 |≤| J1 | + | J2 |. If this condition is met, the imbalanced hop-
ping amplitudes do not open a gap at the Dirac point but only shift the zeros of
eq. 3.13 to a different k point in the Brillouin zone. If the inequality is violated,
instead, the degeneracy between the first and second band is lifted. This happens
when two Dirac points meet.

Eigenstates and topological features

We have seen that the bipartition of the lattice results in a spectrum which presents
conical intersection of bands and, depending on the system parameters, degeneracy
points in the energy spectrum. As discussed earlier, these features result in a non-
trivial winding of the phase of the eigenstates of the two bands u2,1

k in proximity of
the conical intersection.

The eigenstates u±k of Ĥtb are obtained from eq. 3.7 and they are superpositions
of the states of the A and B sublattices

u±k =
∆
2
± |h|√

2(|h| ± ∆
2

) |h|

(
−1
t∗k

∆/2±|h|

)
, (3.14)

which are more and more localized to the A or B sites with increasing ∆. In the
case of ∆ = 0 they reduce to an equal superposition of the wavefunctions of the A
and B sites, analogous to the eigenfunctions that we have presented for a conical
intersection, see eq. 2.25.

Following the treatment of the conical intersection done in Section 2.4, the spinors
u±k may be visualized in terms of the pseudospin S(k), see eq.s 2.25 and 2.34. The
orientation of S(k) is parametrized by the azimuthal Θk an polar Φk angles 2.24,
with

tan Θk =
Im(t∗k)

Re(t∗k)
and cos Φk =

∆

2εk
. (3.15)

These angles vary with the parameters of the Hamiltonian and the position in the
Brillouin zone. The Dirac points correspond to the phase Arg(t∗k) being ill-defined.
The rotation of Θk and Φk is illustrated in the plots of Fig. 3.3a-b for a specific path
in the Brillouin zone. When ∆ = 0, the angle Φk is constant, i.e. Φk = π/2. In this
case, the pseudospin S is confined to the equatorial plane at an angle Θk = Arg(t∗k).
This is not true when ∆ 6= 0. The spinor can wind anywhere on the unitary sphere
and it is not confined to the equator, see the plot in Fig. 3.3a.

The angle Θk is changed by modifying the hopping amplitudes along the three
hopping directions. As shown in the plots of Fig. 3.3b-c, the discontinuity in the
phase associated with the Dirac cones and the crossing point between the two bands
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 M
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ky
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b c

Figure 3.3.: Orientation of the pseudospin. (a) Winding of the angle Φk (eq. 3.15)
along the path depicted as an inset. Curves are calculated for different AB offsets
∆, ∆/J = 0, 0.05, 0.1 − 0.4, 2. When ∆ = 0 the angle is fixed anywhere along
the path and the pseudospin lies on the equatorial plane. The bigger ∆ the more
it will precess away from the equatorial plane in proximity of the K point. The
eigenstate acquires more and more the character of the bare states on the A and
B sites with increasing ∆, approaching Φk = 0. (b) Angle Θk and (c) energy
difference between first and second band along the same path for ∆ = 0. A
discontinuity of the angle Θk and a vanishing energy difference between first and
second band indicate the presence of a Dirac cone. By changing the tunnelings J1,2

relative to the third the angle and the location of the band crossing is modified.
The Dirac cone moves closer to the M point with decreasing J1,2/J3. Balanced
hopping case is in dark blue in (b) and (c). When the Dirac point lies inside the
area of the path taken – light blue curve calculated for J1/J3 6= J2/J3 in (b) – the
spinor undergoes a full rotation in the x-y plane.

move when the hoppings J1,2 are changed relative to the third, J3. The Dirac point
moves along the path towards the M point for decreasing ratios J1,2/J3. From the
plot in Fig. 3.3b it can be seen that the angle Θk changes by 2π when the Dirac
point lies inside the area of the path, which corresponds to the following parameters
J1/J3 = 0.7 and J2/J3 = 0.6 in the graph. This indicates that the pseudospin
undergoes a complete a full rotation when a closed path encircles a single Dirac
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Figure 3.4.: (a) Berry curvature of the first band for ∆ = 0.5J , for visualization
purposes. The curvature spreads over a finite area and it alternates in sign at
the K and K′ points. White arrows are a pseudospin representation of the Bloch
states with orientation indicating the phase of the coupling between sublattices
according to the definition in 3.15. Lengths of the arrows indicate the energy gap
in the two-band model, i.e. |h|. (b) Distribution of Berry curvature with different
energy offsets ∆/J . The distribution spreads over a larger area with increasing
∆.

cone. The momentum-dependent orientation of the pseudospin S(k) on the entire
Brillouin zone is also depicted in Fig. 3.4a.

When ∆ = 0 the Berry connections of the two bands are obtained from eq.s 2.17
and 3.14

A1,1(k) = A2,2(k) =
1

2
∇kθk. (3.16)

while the off-diagonal Berry connections are

A1,2(k) = A2,1(k) = i〈unk|∇k|un
′

k 〉 = −1

2
∇kθk (3.17)

with 1(2) labeling the E−(+) band. The topological features of first and second band
are the same because of symmetry of the two bands in the tight-binding limit. The
vector S(k) undergoes a full rotation in the Sz = 0 plane in an infinitesimal loop
around a Dirac point and the Berry curvature takes the following singular form
Ωn(k) = ±πδ(k − K±), which is imposed by the time-reversal T and inversion I
symmetries of the lattice potential. As shown in Fig. 3.4a, the Berry curvature
alternates in sign at the K and K′ points such that the Chern number of the band
is zero. Despite this fact, the winding of the vector S(k) produces a sign change
in the wave function of a particle that adiabatically encircles a single Dirac point.
This phase factor of π is the Berry phase ϕB defined by eq. 2.31 and it is related to
the singular Berry flux of the conical intersection.

When the energy offset is ∆ 6= 0, both angles Θk and Φk vary in proximity of the
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3.2. Implementation with ultracold atoms in an optical lattice

Dirac point and the spinor is not constrained to the equatorial plane anymore. The
less trivial winding of the spinor is described by the Berry connection of eq. 2.26,
introduced in the previous chapter. The Berry curvature can also be calculated
from the rotation of the spinor, eq. 2.35. For the honeycomb lattice with nearly
degenerate sublattices (∆/J � 1), as in the case of our experiment, Ω± is well
localized at the K,K′ points. By using the expression for the Berry curvature of
eq. 2.19, the curvature is approximated by first order perturbation theory in the
vicinity of each Dirac point as

Ω±(k) ≈ i
〈u±| ∇kHtb |u∓〉 × 〈u∓| ∇kHtb |u±〉

(E+ − E−)2
. (3.18)

By using the definition of the Hamiltonian, eq. 3.8, and the one of its eigenstates,
eq. 3.14, the distribution for the Berry curvature of a single Dirac cone at the K(′)

point is directly derived from eq. 3.18

Ω±(k) ≈ ± 1

2γ2

(
1 +

∣∣∣∣k−K(′)

γ

∣∣∣∣2
)− 3

2

, (3.19)

where γ = 1
3dL

∆
J

parametrizes the distribution of Berry curvature. We quantify
the spread in Berry curvature in terms of the half-width at half maximum of the
distribution Ωn(k), the parameter δkΩ = (γ2/3 − γ2)1/2, throughout the rest of this
thesis. The distribution of eq. 3.19 of a cone is preserved for a small imbalance
of the hopping amplitudes Ji up to when the Dirac points overlap and annihilate.
The distribution of Berry curvature in the reciprocal space is illustrated in Fig. 3.4a
where it can be seen that Ω− has a finite extent and it alternates in sign at the K
and K′ points, as described by eq. 3.19. The Berry curvature spreads over a larger
area in reciprocal space when the offset ∆ is increased, as illustrated by the graph
in Fig. 3.4b.

3.2. Implementation with ultracold atoms in an
optical lattice

An optical lattice for neutral atoms is created by interfering running waves: the spa-
tially dependent intensity pattern realizes a periodic potential for the atoms which
simulates the periodic potential experienced by electrons in a solid [37]. This sec-
tion focuses on how the honeycomb lattice potential has been realized by interfering
three running waves.
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Chapter 3. The optical honeycomb lattice and its topological features

3.2.1. The optical dipole potential

Alkali atoms can be trapped and manipulated by their interaction with light which is
off resonance from the D1 and D2 transitions [131]. The optical dipole force, arising
from dispersive interactions with far-off-resonant light, allows for optical trapping
of particles. The effect of this interaction is well understood in the dressed-state
picture [132, 133] where the energy shift of the new dressed states arising from the
coupling of two, or more, energy levels is modeled by an optical potential Udip. When
the detuning of the light of frequency ωL is large compared to the splitting between
the hyperfine levels of an alkali atom in the |F,mF 〉, the hyperfine transitions of
the multi-level atom are not resolved. Therefore, the light shifts of all possible
transitions are summed up to obtain the following dipole potential [134]

Udip(r) = U0I(r) (3.20)

=
3πc2

2

(
Γ1

ω3
1

1− PgFmF

∆1

+
Γ2

ω3
2

2 + PgFmF

∆2

)
I(r)

where we have defined an effective detuning which is

1

∆i

=
1

ωi − ωL
+

1

ωL + ωi
. (3.21)

The parameters ω1,2 are the resonance frequencies of the center of the D1 and D2

hyperfine manifolds and Γ1,2 are the corresponding spontaneous decay rate of the
excited states. The dependence on the mF -state and on polarization, P = 0,±1 for
π, σ± polarizations, is explicit. Since the intensity profile I(r) is generally position
dependent, the spatially dependent energy shift gives rise to a dipole force acting on
the atoms which is Fdip(r) = −∇rUdip(r) and it is used to trap the particles. The
sign of the potential and, consequently, the direction of the dipole force depend on
the sign of the effective detunings ∆i and on polarization. For linearly polarized
light, the atoms will be attracted and trapped at the maxima of the intensity profile
I(r) when the light is red detuned, i.e. 1/∆1 + 2/∆2 < 0. For blue detuning,
1/∆1 + 2/∆2 > 0, the atoms will be repelled by the maxima and trapped at the
minima of the intensity pattern.

Gaussian beams as an harmonic trap

The harmonic traps needed for the experiment are created by tightly focused Gaus-
sian beams, red-detuned from the atomic transition. The intensity profile of a
focused Gaussian beam propagating along the x-axis is described by

I(x, y, z) =
2P

πwywz
e
− 2y2

w2
y
− 2z2

w2
z , (3.22)
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Figure 3.5.: (a) Configuration of the lattice beams (purple arrows) in real space.
Their polarizations (black arrows) are also illustrated. (b) Plot of the intensity
pattern (eq. 3.27-3.28) along y = 0 created by the three interfering beams with a
tilt in polarization of θi = π/6 and φi = 0. I0 is the intensity of each beam. The
periodic potentials from the s-component (blue) and the p-component (dashed)
of the polarization are shown separately. Dark and bright green represent the
intensity patterns of the σ± components which create the p-polarized lattice.

where, the 1/e2 radii wy and wz are a function of the distance x from the focal

point and their dependence is wy,z(x) = w0

√
1 + x2/x2

R, xR = πw2
y,z/λL being the

Rayleigh length characterizing the focused beam. If the spatial extend of the atomic
cloud along x is much smaller than xR, the waists can be assumed to be constant
along the x-axis. P is the total power of the laser beam. Assuming that the atoms
are trapped at the intensity maxima due to the dipole potential of eq. 3.20, the trap
is approximated by an harmonic trap by expanding the Gaussian intensity profile
of eq. 3.22 about its maximum to first order. The trapping frequencies ωy,z are
obtained from this approximation and they are given by

ωy,z =

√
4U0I0

mw2
y,z

(3.23)

where m is the mass of the trapped atoms, I0 = 2P/(πwywz) is the intensity maxima
and U0 is defined by eq. 3.20.

3.2.2. The periodic potential from three interfering beams

Thanks to the intensity dependence of the dipole force, a periodic potential for the
atoms is generated by interfering laser beams. In our experimental realization, the
interference pattern that realizes the honeycomb lattice is created by superimposing
three running waves which have the same frequency and which are interfering on
a plane at a 120(1)◦ angle from each other, as illustrated in Fig. 3.5a. The wave-
vectors of the three beams are lying on the xy-plane and are described by the
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following vectors

k1 = kL

(√
3

2
,−1

2
, 0

)
, k2 = kL

(
−
√

3

2
,−1

2
, 0

)
, k3 = kL (0, 1, 0) , (3.24)

where kL = 2π/λL = ωL/c = |ki| is the wavenumber of the lattice beams. Lets as-
sume next that our quantization axis, given by a magnetic field offset, is pointing
along the z-direction. This will define the polarizations of the three interfering
waves. Most generally each running wave is described by a combination of s and p
polarizations, where s is the component out of plane of intersection, i.e. along the
z-axis, and p is the in-plane component. The electric field of a running wave is given
by

Ei(r) =
√
Iie

ikir−iωLt(cos(θi)ẑ + sin(θi)e
iφi(ẑ× k̂i)), (3.25)

where Ii is the beam’s intensity, the parameter θi sets the angle of the polarization
relative to the z-axis, thereby fixing the ratio between the s and p components of
the polarization vector of the wave. The parameter φi, instead, sets the phase shift
between the s and p components in case of elliptical polarizations. In eq. 3.25, the
overall global phase of the beam has been set to zero since it does not affect the
shape of the potential and the properties of the lattice. Choosing a different global
phase results only in a shift of the interference pattern.

The total electric field, combination of the electric fields of the s and p polarization
components of the three waves, is E(r) =

∑3
i=1 Ei = Es+Ep. The component Ep of

the electric field can also be decomposed into σ+ and σ− polarizations components
by making the following basis transformation ê+ = 1√

2
(x̂ + iŷ), ê− = 1√

2
(x̂ − iŷ).

The corresponding electric fields can be written in this new basis as

Eσ± =
1√
2
e−iωLt

(
sin θ1e

ik1r+iφ1 + sin θ2e
ik2r±i4π/3+iφ2 + sin θ3e

ik3r±i2π/3+iφ3
)
.

(3.26)
The electric fields of the σ± polarizations are spatially shifted relative to each other,
as well as relative to the s-polarized component of the total electric field. The
polarization decomposition is particularly important if the atoms are not in amF = 0
state, as the polarization dependent light shift of the dipole potential might be
significant depending on the detuning of the light, see eq. 3.20.

The total intensity pattern generated by the three interfering waves is given by
the interference patterns of the s and p polarization components, I(r) = Is + Ip,
where

Is(r) = |Es|2 =
3∑
i=1

Ii cos2 θi +
3∑

i,j=1

√
IiIj cos(θi) cos(θj) cos((ki − kj)r) (3.27)
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Figure 3.6.: Total intensity patterns created by setting the beams’ polarizations at
the same angle θi = θ, with θ = 0, π/4, π/2 from left to right. Angles φi are fixed
to φ = (0, 2π/3, 4π/3), settings that maximize the energy offset between the A
and B sites (see eq.s 3.27 and 3.28). The minima of the intensity pattern create a
honeycomb potential (a) when polarizations are out-of-plane, θ = 0, or triangular
for in-plane polarizations θ = π/2 (c). The two minima, the A and B sites (black
and white dots), of the honeycomb potential and the single minima (grey dot)
of the triangular one compose the unit cell. (b) Intermediate tilts can create a
honeycomb lattice with AB offset.

Ip(r) = |E+|2 + |E−|2 =

=
3∑
i=1

Ii sin
2 θi −

1

2

3∑
i,j=1

√
IiIj sin θi sin θj cos((ki − kj)r + φi − φj). (3.28)

The optical lattice potential is given by VL =
∑

i U0,iIi(r), where the sum runs over
the three possible polarizations, π and σ±, and U0,i is the polarization dependent
dipole potential of eq. 3.20. If the σ± polarizations terms contributing to the inter-
ference pattern are not negligible, the total the optical lattice potential has to be
separated into a state-independent part, proportional to |E+|2 + |E−|2 + |Es|2, and
a state-dependent part, proportional to |E+|2 − |E−|2. The complete derivation of
the state-dependent optical potential can be found in the appendix A. As we will
see later on, the state-dependent part of the potential can be safely neglected for
the results presented in this thesis because of the choice of wavelength, i.e. large
detuning, and of beams’ polarizations.

The intensity patterns created by the different polarization components are plot-
ted in Fig. 3.5b and the total interference pattern is illustrated in Fig. 3.6. For the
case of tilted and linear polarizations, i.e. φi = 0 in eq. 3.26, the minima of the
s-component create a pattern that has a honeycomb symmetry while the maxima
are arranged in a triangular pattern. The opposite happens for the p-polarized com-
ponent and its maxima are overlapped with the minima of the s-polarized potential
when φi = 0, as in the example presented in Fig. 3.5b. Depending on the tilts θi and
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Chapter 3. The optical honeycomb lattice and its topological features

on the wavelength, triangular or honeycomb lattices can be implemented. When
the phases φi of the electric fields Ei are different for the three beams, the two
potentials created by the interferences Is and Ip are shifted relative to each other.
This adds an energy offset between the A and B sites, minima of the honeycomb
lattice potential, as illustrated by the plots of the interference pattern in Fig. 3.6b.
The control of the s and p polarization components of the lattice beams allows for
a precise tuning of the energy offset between the A and B sublattices, as suggested
in [95], and, consequently, of the spread in Berry curvature. The good control on
polarization tilts could also be used for creating flux lattices, as proposed in [68,
135], or dynamic optical superlattices [136].

3.2.3. The honeycomb optical lattice

In order to create a honeycomb lattice potential with no energy offset between the
lattice sites, the frequency of the lattice beams is far detuned from the D-lines of
the alkali atoms (87Rb and 40K) that we are using in our experimental realization.
The light is blue detuned from the atomic transitions (λL=755nm) and the beams’
polarizations are linear and pointing along the z-axis, i.e. θi = φi = 0. With
this settings, the atoms will be trapped in the minima of the honeycomb potential
described by eq. 3.27 due to the optical dipole force. The optical lattice potential is
given by

VL(r) =U0

∣∣∣∣∣
3∑
i=1

√
Iie
−iki·r

∣∣∣∣∣
2

=V1 + V2 + V3 + 2
√
V1V2 cos((b1 − b2)r)

+ 2
√
V1V3 cos (b2r) + 2

√
V3V2 cos (b1r) , (3.29)

where the Vi ∝ Ii is the ac Stark shift produced by the ith beam. The reciprocal
lattice vectors of the honeycomb optical lattice are given by b1 = k2 − k3 and
b2 = k1 − k3. From this definition and eq. 3.3, the distance between the A and B
sites is obtained, dL = 2

3
√

3
λL. The values of the potentials Vi are typically given in

unit of the recoil energy, Er = ~2k2
L/(2m), which is about Er ∼ 4 kHz for 87Rb. If

the intensities of the beams are all the same, I1,2,3 = I0, and ∆ = 0 the lattice is
a perfect hexagon. The corresponding intensity pattern is illustrated in Fig. 3.6a.
In this case, the lattice depth is set by the barrier height between neighboring sites
which is given by the single beam light shift V0. If the lattice beams have different
intensities, instead, the rotational symmetry of the lattice potential is broken and
the resulting potential looks stretched, as illustrated by the schematics of Fig. 3.7a
and as explained in Section 3.1.2. In the graph, the intensities of two lattice beams
are changed relative to the third by setting I2,3 = fI1 in eq. 3.29. The lower the
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Figure 3.7.: (a) A relative intensity imbalance between the lattice beams (I1,2/I3)
modifies the separation between between two wells ∆x0 along a certain direction.
The insets illustrate how the real space lattice potential is modified by the imbal-
ance. (b) Lattice potential for different energy offsets ∆ between the A and B
sites (∆ = 0− 1.5 Er, from dark to light blue), introduced via the potential of eq.
3.30.

imbalance factor f , the smaller the separation between two lattice sites will be
along the merging direction. As the imbalance gets stronger (f � 1), two lattice
sites move towards each other and merge, and the lattice becomes a rhomboid, as
illustrated in figure. In the other limit, when I3 = 0, the lattice is a 1D lattice.

Effect of imperfect polarizations

In practice, experimental imperfections, such as the birefringence of the glass cell or
imperfect polarizers, can break the inversion symmetry of the lattice by introduc-
ing an additional potential created by the p-polarized component of the light. As
described by equations 3.27 and 3.28, a tilt of the polarization angles θ and φ in at
least two beams is enough to introduce an energy offset ∆ between the A and B
sites. To allow for a small energy offset, and therefore for a finite Berry curvature
in our model, we add to the potential of eq. 3.29 a 1D lattice potential created by
two running waves that have imperfect polarizations. This potential is modeled,
without loss of generality, using the following equation

Vp(x) =
∆√

3
sin(
√

3kLx) (3.30)

where ∆ depends on the polarizations’ angles θi and φi. The eq. 3.30 is derived
in appendix A. The effect of this additional 1D lattice on the A and B wells is to
add an energy offset between the two sites, as illustrated in the plot of Fig. 3.7b.
The potential of eq. 3.30 is not the most homogeneous way of introducing an AB
offset as it also introduces a distortion of the lattice geometry. If one is interested
in maximizing the offset between the A and B sites, it would be best to add not a
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Chapter 3. The optical honeycomb lattice and its topological features

1D lattice but a triangular one, which has the same periodicity of the honeycomb
potential by construction.

3.3. Single particle in the honeycomb optical lattice

In this section, the Schrödinger equation is solved numerically for a non-interacting
particle in the optical potential. As our experiments are performed outside the
tight-binding regime, all theoretical modeling of the system is based on ab initio
band-structure calculations which incorporate the full lattice potential described by
the equations 3.29 and 3.30. The corresponding energy spectrum and the topological
features are then derived from it.

3.3.1. Solving the Schrödinger equation

Given the periodic potential of eq. 3.29, the Hamiltonian of a non-interacting particle
is

Ĥ0(r) =
p̂2

2m
+ VL(r). (3.31)

According to the Bloch theorem, the eigenfunction of the nth band with quasimo-
mentum k are the Bloch waves, see eq. 2.12. The eigenfunction unk(r) has the same
translational symmetry as the honeycomb lattice potential: unk(r) = unk(r+R) with
R =

∑
i niai. By making this ansatz for the wavefunctions, the Schrödinger equa-

tion is simplified to derive the eigenvalue equation for the periodic part of the Bloch
waves, see eq. 2.14 and eq. 2.15. The potential VL(r) and the periodic part of the
Bloch functions unk(r) can be written as the following Fourier series

VL(r) =
∑
j

vje
iGjr and unk(r) =

∑
j

cn,kj eiGjr. (3.32)

Contrary to the case of a square lattice, the Hamiltonian for the honeycomb lattice
is not separable and the summations in equations 3.32 run over all combinations
of reciprocal lattice vectors Gj =

∑
j∈Z njb1 + mjb2, where nj,mj are integers

and nj + mj = j. We keep the short notation for the sake of clarity. Using this

expansions, the Schrödinger equation results in an equation for the coefficients cn,kj

En
k c

n,k
j =

~2(Ĝj + k)2

2m
cn,kj +

∑
j′

vj−j′c
n,k
j′ . (3.33)

Finally, the Schrödinger equation is further simplified by noting that the expansion
of the potential has few nonzero terms due to the simple form of the lattice potential
described by eq. 3.29. These non-vanishing terms correspond to j = ±1, 0. As an
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Figure 3.8.: (a) Potential (black) with the corresponding Bloch wavefunctions
(blue) for the first six bands calculated at the Γ-point, i.e. k = 0. Bloch waves are
ordered by their energies, increasing from bottom to top. (b) Wannier functions
localized on the A and B sites, wA(r), wB(r), (blue) together with the potential
(black). With a 10 Er lattice depth there is a small but finite overlap between the
two localized functions.

example, the coefficients for a balanced honeycomb lattice are v±1 = v±k1 = v±k2 =
v±k1∓k2 and v0/v±1 = 3. The equation 3.33 is therefore rewritten in a simple matrix
form as En

k c
n,k
j =

∑
j′ Hj,j′c

n,k
j′ . The matrix elements Hj,j′ are given by

Hj,j′(k) =

(
~2(Ĝj + k)2

2m
+ v0

)
δj,j′ + v±1 δj,j′±1. (3.34)

where one has to remember that the index j labels a combination of reciprocal
lattice vectors. The eigenenergies and eigenvectors are numerically evaluated by
diagonalizing such matrix which is truncated to some finite n. This truncation
corresponds to the number of bands that we need to include to make a good enough
approximation of the Hamiltonian, eq. 2.15, or, equivalently, the high frequency
components of the Fourier series which can be truncated because they have small
enough weights cn,kj .

3.3.2. Wannier functions and tight-binding limit

The Bloch basis is not always the most convenient one. The Wannier basis can also
be used to describe the properties of the lattice and it is particularly convenient when
we want to rewrite the Hamiltonian of eq. 3.34 in terms of local operators acting
on the different lattice sites, as we have seen in Section 3.1. The Wannier function
of a particle localized at a lattice site ra,b of the A or B sublattice in the band n
is defined by eq. 2.16. For a symmetric honeycomb configuration and deep lattice
potential, the Wannier functions localized on the A or B sites can be constructed
as an equal superposition of the Wannier functions of the first and second band, w1
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Chapter 3. The optical honeycomb lattice and its topological features

and w2, according to

wA(r) =
1√
2

(w1(r)− w2(r)) (3.35)

wB(r) =
1√
2

(w1(r) + w2(r)). (3.36)

For an asymmetric potential, instead, the Wannier functions need to be found by
maximizing the localization of the functions numerically [137]. Plots of the localized
Wannier functions and of the delocalized Bloch wavefunctions are shown in Fig. 3.8
for the honeycomb lattice with balanced beams’ intensities.

The Bloch states on the A or B sublattice are rewritten as

ψn,ka,b (r) =
1√
N

∑
ra,b

eikra,bwn(r− ra,b). (3.37)

By making an ansatz for the field operator, which is generally given by a superpo-
sition of field operators for particles in the A and B sites, the Hamiltonian can be
rewritten in terms of the creation and annihilation operators ĉ†ra,b , ĉra,b of an atom in

the Wannier state w(ra,b) localized at the site ra,b. By increasing the lattice depth,
the Wannier functions get more and more localized to a lattice site. The tight-
binding limit is reached when the Wannier functions have a significant overlap only
with the ones of the nearest neighboring lattice sites. In this case, only the hopping
between nearest neighboring sites is relevant and the Hamiltonian will reduce to the
one of the the tight-binding model of the hexagonal lattice, eq. 3.5. The tunnelings
Jra,rb , describing the hopping between neighboring A-B sites, are defined as

Jra,rb = −
∫ ∞
−∞

w∗(r− ra)

(
− ~2

2m
∇2

r + VL(r)

)
w(r− rb)dr. (3.38)

Finally, it is interesting to note that there is a relation between the topological fea-
tures of a band and the center of mass position defined via the Wannier functions of
that band. This connection becomes clear when we write down the matrix elements
of the position operator in reciprocal space. By making use of the definition of the
Wannier functions and of Bloch waves, see eq. 2.12 and 2.16, and the definition of
the position operator r̂ = i~∇r, we can note that

r̂ |wn(r− r0)〉 =
1√
N

∑
k

i∇k(eik(r−r0) |unk〉). (3.39)

By writing the Wannier functions in an explicit form, the matrix elements of the

38



3.3. Single particle in the honeycomb optical lattice

position operator simplify to [137, 138]

〈wn(r− r0)| r̂ |wn(r)〉 =
1√
N

∑
k

eikr0An
k, (3.40)

where the Wannier functions are calculated at different lattice sites r0 and An
k is

the Berry connection. We can thus describe the Berry connection in terms of these
matrix elements according to

An
k =

1√
N

∑
r

e−ikr 〈wn(r)| r̂ |wn(0)〉 . (3.41)

These relations illustrate the close connection between the localization of the Wan-
nier functions and the topological properties of bands which can be seen as a way of
mapping of the density distribution of particles in the lattice. If the Wannier states
can be chosen to be exponentially localized in real space, the only non-zero element
of the position operator would be the one with r0 = 0, see eq. 3.40. In this case the
Berry connection is trivial because it is independent on k and the Chern number of
that band is zero. This is not true when the off-diagonal elements of the position
operator cannot be set to zero, i.e. when the Wannier states can not be simulta-
neous eigenstates of the band projected coordinate operators in all three directions
and thus can not be exponentially localized to a lattice site. This relation between
localization of Wannier states and topological properties of bands has been derived
in the context of polarization of crystalline solids [120, 137, 139] where the charge
polarization is given by the sum of the center of charge of the Wannier states, see eq.
3.40, summed up over all contributing bands [139]. The change of polarization for
loops covering the entire Brillouin zone gives an intuitive understanding of how the
quantized Hall response relates to the Chern number of a band and to the properties
of its Wannier functions.

3.3.3. Energy bands from the full model

The energy bands can be calculated directly from the Hamiltonian described by
eq. 3.34 for any lattice depth. Since the wavefunctions repeat themselves by a re-
ciprocal lattice vector b1,b2, it is enough to restrict the bands and the states to
quasimomenta within the first Brillouin zone, which can be chosen to have honey-
comb symmetry. In the case of no energy offset between the sublattices and equal
tunnelings, Ji = J , the energy bands present degeneracy points between two consec-
utive bands as a direct consequence of the bipartite nature of the honeycomb lattice.
For the example, the first and second band touch at the K and K′ points, corners
of the Brillouin zone, the third and fourth touch at the Γ-point and so on. This
degeneracies are shown in the plots of the energy bands of Fig. 3.9. It is important
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Figure 3.9.: Plots of the first six bands along the path in the BZ depicted in red
in the inset. The lattice depths are 2-5-10 Er from left to right.

to note that the degeneracy points, consequence of the symmetries of the lattice, are
present at any lattice depth. When the lattice depth increases the energy difference
between the first and the second band decreases, as we expect from the Hamiltonian
of eq. 3.8 since the tunneling J between the A and B sites sets the energy difference
between the first and second band. The same happens for any pair of ’mirror’ bands
with higher energies. For a deep enough lattice the Hamiltonian reduces to the one
of the tight-binding limit. The system is deeply in the tight binding regime when the
ratio of nearest-neighbor and next-nearest-neighbor tunneling is Jn.n.n./Jn.n. ∼ 10−2,
corresponding to a lattice depth of ∼ 15 Er for the honeycomb lattice, as illustrated
by the graph in Fig. 3.10a. The dispersion of two lowest bands approaches the
tight-binding solution with increasing lattice depth, as the plot in Fig. 3.10b shows.

The degeneracy at the Dirac points is a consequence of the combined time-reversal
and inversion symmetry of the lattice potential. The introduction of any asymmetry
between the A and B sublattices is liable to open an energy gap of size ∆ at the
degeneracy points. This can occur when the beams’ polarizations have some in-plane
polarization component, which can be set on purpose or can be introduced when
the beams’ polarizations are imperfect. Such imperfection can add the potential of
equation 3.30 which breaks inversion symmetry of the lattice. An energy gap at
the Dirac points can also be introduced by breaking time-reversal symmetry. This
has been done in cold-atoms experiments by circularly shaking the lattice potential
[82], which adds complex next-nearest-neighbor tunnelings and realizes the Haldane
model [20].

Moving and merging the Dirac cones

As we have seen in Section 3.1.2, the location of the Dirac points in the Brillouin
zone can be changed by modifying the nearest-neighbor tunnelings along the three

40



3.3. Single particle in the honeycomb optical lattice

-0.5 0.0 0.5
-1

0

1

2

k(k  )L

E
/∆

E
1

2Er

18Er

0 10 20 30 40

0.001

0.01

0.1

1 r

E
r

Tu
nn

el
lin

g 
J/

Effective lattice depth 0

a b
Nearest neighbor
Next-nearest neighbor

V  /E

1

Figure 3.10.: Tight binding limit for the honeycomb lattice. Plots of (a) the
nearest-neighbor and next-nearest-neighbor tunnelings and (b) first and second
bands along a path connecting the two Dirac points and for different lattice depths
V0. Energy bands are in units of the bandwidth of the first band ∆E1(V0). The
tight binding solution, dashed line in (b), is plotted.

hopping directions. In solid state graphene this can be done by strain [140], but
moving and merging the Dirac points is not easily achieved in solid state systems due
to fracture under tensile stress of the samples [126]. Ultracold atoms in a honeycomb
lattice are, instead, a favorable setup for observing the effect of strain thanks to the
high degree of control on the optical potential, as the experimental work in [141]
showed. In our setup, the distortion of the lattice structure is introduced via a
relative imbalance of the beams’ intensities which modifies the lattice potential, see
Section 3.2.3. The power imbalance results in a modification of the tunneling rates
along the three hopping directions and, consequently, of the energy bands which are
obtained from the ab initio calculations described in Section 3.3.1.

For simplicity, we assume that the intensities of two lattice beams are changed
relative to the third, setting V1,2 = fV3. The lower the power imbalance factor f ,
the smaller the separation between the Dirac points along the y direction becomes,
as illustrated in the sequence of plots of Fig. 3.11. At a critically low imbalance
factor fc, the Dirac points merge and a gap opens at the M point for f < fc. For
the lattice depth of 1 Er, which is considered in Fig. 3.11, fc ' 0.25. As illustrated
by the graph of Fig. 3.11c, this critical imbalance fc depends on the chosen lattice
depths Vi that set the tunneling rate Ji. This dependence indicates that the merging
of the Dirac points does not relate to the change of symmetry in real space: the
lattice is still a honeycomb lattice but it has no degeneracy points when the hopping
rates are strongly imbalanced. From the graph of Fig. 3.11c one can also note that
the deeper the lattice the more crucial it is to stabilize the relative intensities of
the lattice beams, since a small relative change of powers can lead to a substantial
modification of the energy bands.
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Figure 3.11.: Energy spectrum and movement of the Dirac points. (a) 2D plots of
the lowest energy band for a 1 Er lattice from ab initio calculations as a function
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is normalized to the band width Emax. The dashed lines indicate the merging
direction for this specific choice of power imbalances. (b) Energy splitting between
the two lowest bands for a cut along the merging direction (kfin

x =0) which shows
the motion of the Dirac points. (c) Distance between two Dirac points, ∆kDirac,
versus lattice imbalance f for different lattice depths.

3.3.4. Topological features

The Berry curvature and Berry connection can be computed from the eigenvectors
of the full model presented in Section 3.3.1 even away from the tight-binding limit.
The distribution of Berry curvature in the Brillouin zone and the winding of the
Berry connection are illustrated in Fig. 3.12 for different lattice imbalances f . It
can be seen from the plot in Fig. 3.12a that the distribution of the Berry curvature
obtained from ab initio calculations resembles the one we derived in Section 3.1. The
Berry fluxes move together with the degeneracy points when the lattice balance is
changed, as illustrated in Fig. 3.12b. At a critically low imbalance factor fc the
Dirac points merge and the corresponding Berry fluxes of opposite sign annihilate,
leaving a gapped spectrum with no topological features for f < fc, as it can be
seen from the last plot of Fig. 3.12 which illustrates that there is no winding of the
spinor’s phase anywhere in the reciprocal space. In this last scenario, we expect to
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Figure 3.12.: Berry curvature Ω1 and Berry connection A1 (white arrows). Lattice
depth is 1 Er and ∆ = 0.5 J for visualization purposes. The power imbalance
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When the Dirac points have merged (c), the topological features related to the
winding of the spinor are lost.

measure a Berry phase of zero for any closed loop in the Brillouin zone.
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Chapter 4.

Ultracold atoms: the experimental
setup

Since the first realization of Bose-Einstein condensation [27, 28] there has been an
increasing number of experiments with ultracold atoms studying bosonic or fermionic
species at ultracold temperatures. The techniques for cooling and manipulating
alkali metal atoms are quite standard by now. A comprehensive description of the
physical processes behind the different cooling schemes can be found in numerous
references [142–144]. In our experimental realization, we cool bosonic Rubidium
(87Rb) and fermionic Potassium (40K) atoms to condensation and degeneracy. Since
the cooling techniques for this particular mixture have been studied in depth in the
past, we reference to previous works for a comprehensive description of the cooling
processes and of the challenges to face [145–149]. In this chapter, our experimental
setup is presented focusing on specific details of our apparatus. Many technical
details regarding our new setup can be found in the following theses [150–152] which
mostly focus on the early stage of the building process: the design of vacuum setup
and transport coils [150], the characterization of the MOTs [151] and the dipole trap
design [152]. These details are briefly summarized here. After a short intorduction
on ultracold atoms and on the techniques to manipulate them, Section 4.1, the setup
and the different cooling stages for 40K and 87Rb are presented, Sections 4.2 and
4.3. Finally, standard detection techniques are introduced, Section 4.4.

4.1. Ultracold atoms

4.1.1. Bosons and fermions

Indistinguishability of particles is a fundamental concept in quantum theory as
quantum statistics determines how the many-particle wavefunctions should be con-
structed. The behavior of an ideal gas of N indistinguishable bosonic atoms differs
fundamentally from the fermionic case because of their different exchange statistics
[153–158]. For N non-interacting spinless bosons, the many-body ground state is
the one where all the particles occupy a single-particle ground state. In the case of
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fermions, instead, each single-particle state can only be occupied by a single fermion,
thus the many-particle ground state is realized when the lowest N single-particle
states are completely filled up to the Fermi energy εF , energy of the last occupied
single-particle state. In reality, the systems we are studying have always a finite
temperature. It is thus necessary to take into account the statistical distribution of
the particles in the different energy levels εi when describing the properties of the
system. At finite temperature, the mean occupation of a single particle eigenstate
εi for a thermalized system of non-interacting bosons and fermions is described by
the distributions

fB,F (εi) =
1

e(εi−µ)/kBT ∓ 1
(4.1)

where kB is the Boltzmann constant, T the temperature of the gas and µ the chemical
potential. Reaching condensation and degeneracy depends on all the properties of
the system, as temperature, dimensionality, densities and atom numbers as they
determine the single particle density of states and the chemical potential.

Here we consider the gases to be confined in a three-dimensional harmonic trap-
ping potential

Vho(x, y, z) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (4.2)

where ωi denote the trap frequencies along the three directions and m the mass of
the particles. The energy levels are given by eigenenergies of the harmonic oscillator
and the properties of the system can be calculated analytically since the density
of states takes the simple form g(εi) = ε2i /(2~3ω̄3), with ω̄ = (ωxωyωz)

1/3 being
the geometrical mean of the trap frequencies. The most relevant distributions for
harmonically trapped fermions and bosons are summarized in the appendix B.

Some parameters of the trapped gases are particularly important when conden-
sation or degeneracy has to be reached. For fermions, the important energy scale
is the Fermi energy εF . In the case of a harmonic trap [144, 159, 160], εF is easily
derived from the density of states g(εi) and the statistical distribution for particles
at zero temperature. The Fermi energy for N particles is described by

εF = ~ω̄(6N)1/3 (4.3)

and the corresponding Fermi temperature is given by TF = εF/kB. When the tem-
perature of fermionic gas decreases, more and more atoms will occupy the lowest
energy states in an ordered manner and the Fermi-Dirac distribution will approach
a step function. We can infer the degeneracy of the gas by the ratio T/TF which is
indicative of the amount of particles with energy above the Fermi level and of their
Fermi-Dirac distribution.

The behavior of gas of bosonic particles at low temperatures is very different from
the fermionic one [155, 156, 161]. When the temperature decreases, the ground
state of the system of energy ε0 becomes macroscopically occupied. The origin of
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this phase transition is deeply linked to the Bose-Einstein distribution. Since the
distribution fB can not be negative, the chemical potential is bounded, µ < ε0.
The upper bound of µ results in a saturation of the thermal distribution when the
number of particles is increased and µ reaches its maximum value. The critical
temperature Tc of this phase transition is given by [142]

Tc ≈ 0.94~ω̄(N)1/3 (4.4)

for non interacting particles in a harmonic trap. From a semiclassical approximation,
one can also derive a value for the density at which the phase transition occurs which
is nc = 2.612λ3

dB, λdB is the de Broglie wavelength. Below Tc, the occupation of the
ground state N0 becomes macroscopic. The many-body ground state is described by
a macroscopic wavefunction, or order parameter, proportional to the ground state
wavefunction of the harmonic oscillator ψ0(r) [142]

φ0(r) =
√
Nψ0(r). (4.5)

4.1.2. The contact potential

The scattering between two particles is a standard quantum mechanical textbook
problem [162], here we focus on the case of collisions with low scattering energies,
i.e. ultracold temperatures. In this case, the mean distance between the particles
is typically much larger than the range of the interaction and the details of the
molecular potential are not resolved. Consequently, the collisional properties, that
generally involve calculating a very complex interatomic potential, can be simplified
by taking into account incoming waves with small wave-vector, k → 0. To solve
the scattering problem it is enough to consider s-wave collisions [163]. The entire
scattering problem is modeled by a single parameter, the s-wave scattering length
as, and the interaction potential UI is described by an effective contact interaction
which is a delta-function

UI = gδ(r) (4.6)

where r is the interparticle distance, g is the scattering amplitude which is

g =
2π~2as
µ1,2

(4.7)

for collisions between particles with mass m1 and m2 with reduced mass of the two
colliding particles µ1,2 = m1m2/(m1 +m2). The scattering length as depends on the
atomic species and the states involved in the collision process. A final important
aspect to consider is the symmetry. The spatial part of the two-body scattering
wavefunction, solution of the two-body scattering problem, is radially symmetric
for s-wave scattering. Therefore, fermions in the same spin state have a vanish-
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ing s-wave scattering length due to their quantum statistics and the lowest partial
wave contributing to the scattering problem is the p-wave term that is negligible
at ultracold temperatures. This means that a single component Fermi gas is non-
interacting. The situation is different for a mixture of fermions in different hyperfine
states [144, 160].

4.1.3. Weakly interacting Bose gas

The exchange of energy and momentum due to collisions between ground-state atoms
can excite particles to higher energy levels, out of the condensate. Due to the
interaction term, the ground state can not be the same as the ground state of the
non-interacting Hamiltonian, eq. 4.5, but it has to include the finite overlap with
the excited states. A weakly interacting BEC is modeled by the Gross-Pitaevskii
equation. An in depth review of interaction effects in a Bose gas can be found in
[143, 164, 165]. To derive the Hamiltonian of the interacting system, the bosonic
field operator ψ̂(r)† that creates a particle at the position r is introduced. The
Hamiltonian with the interaction term given by the potential of eq. 4.6 is

H =

∫
ψ̂†(r, t)

(
−~2∇2

2m
+ Vho(r, t)

)
ψ̂(r, t) +

g

2
ψ̂†(r, t)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t) dr.

(4.8)
For simplicity we considered a single component Bose gas and dropped the spin
dependence of the field operator. For a dilute weakly interacting system, the
Schrödinger equation is solved with a mean field approximation of the field operator,
which is decomposed in a mean field condensate contribution and a correction term
describing atoms in excited states, i.e. ψ̂(r, t) = 〈ψ̂(r, t)〉 + δψ̂(r, t). By neglect-
ing the perturbation term, the Gross-Pitaevskii equation for the order parameter,
〈ψ̂(r, t)〉 = φ0(r, t), is derived

i~ ∂tφ0(r, t) =

(
−~2∇2

2m
+ Vho(r) + g|φ0(r, t)|2

)
φ0(r, t). (4.9)

This differential equation can be further simplified for the stationary case to obtain
an approximated solution for the many-body wavefunction as well as the density pro-
file of atoms in the trap, n(r) = |φ0|2, that takes the well known inverted parabola
profile for an harmonic trapping potential [166, 167]. More on the Thomas-Fermi
profile and distributions of atoms in a harmonic trap can be found in the appendix
B. By including the perturbation term δψ̂(r, t), a set of differential equations for
the excitations, the Bogoliubov modes, is derived to study the stability of the con-
densate and to find the collective modes and elementary excitations that can be
populated during its dynamics [164, 168]. Depending on the system parameters, the
superfluidity can even be lost. One well known example is the loss of superfluidity
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for particles moving at a constant velocity v greater than the critical velocity of the
superfluid, v > vc = min|ε(p)/p| where ε(p) is the spectrum of the excitations [164,
169]. This is only one example of possible types of excitations that can be activated
by collisions and dynamics. For most of the results presented in this thesis the effects
of weak interactions can be safely neglected. However, we will see in the following
chapters concerning the lattice that superfluidity and, consequently, the coherence
of the many-body wavefunction can be lost when the condensate is moving with a
finite velocity in the lattice potential. This effect will put a limit on experimental
timescales. Properties of the weakly interacting gas in the honeycomb lattice are
derived in the appendix C.

4.1.4. Tuning interactions with a magnetic field

Magnetic fields are a valuable tool for ultracold atoms’ experiments as they can be
used as a trapping potential or as a homogeneous energy offset to tune interactions
between atoms. Given the electronic configuration of alkali-atoms, the interaction
of a weak magnetic field B(r) with the total atomic angular momentum F lifts the
degeneracy between the mF sublevels. The Zeeman energy shift is

EZ(r) = µBgFmF |B(r)| (4.10)

where µB is the Bohr magneton, gF is the Landé g-factor for the specific hyperfine
state mF of an alkali-atom. For stronger magnetic fields the Breit-Rabi formula has
to be used to compute the correct energy shifts. Depending on their mF state the
atoms will lower or rise their energy in presence of the external field.

Coils in anti-Helmholtz configuration create an inhomogeneous magnetic field of
the kind B(r) ∝ B′|r| which is used to magnetically trap atoms in a low-field seeking
state at the minimum of the magnetic field. Coils in Helmholtz configuration can be
used, instead, to apply a constant and homogeneous field offset which allows to tune
the contact potential of eq. 4.6 by tuning the magnitude and sign of the scattering
length as when a Feshbach resonance is available. The basic idea is to approach a
scattering resonance between an open channel, constituted by two incoming atoms
in the hyperfine states |F1,mF1〉 and |F2,mF2〉, and one (or more) closed channels,
|F3,mF,3〉 and |F4,mF,4〉, with mF,1 +mF,2 = mF,3 +mF,4. The channels can couple
thanks to the additional spin-dependent interaction term present in the interatomic
potential at short distances. Open and closed channels are offset in energy and
this energy difference is tuned with an external magnetic field which shifts the
energy of each state according to eq. 4.10. The open channel is thus tuned close to
resonance with the last molecular bound state of the closed channel [170, 171]. By
approaching this Fano-Feschbach resonance the scattering length can be adjusted at
will [172, 173], from attractive to repulsive. In proximity of the resonance of width
∆F happening at a magnetic field offset of magnitude B0, the scattering length is
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given by

a(B) = abg

(
1− ∆F

B −B0

)
(4.11)

where abg is the background scattering length far away from resonance, for B = 0.
We reference to [35] for a complete overview on Feshbach resonances in ultracold
gases.

4.2. Experimental setup

4.2.1. 87Rb and 40K

In our setup the bosonic 87Rb and the fermionic 40K species are the alkali-metal
atoms we want to cool down to condensation and degeneracy. The details of their
atomic properties and optical transitions can be found in the following references
[174, 175]. The lowest hyperfine manifolds are shown in Fig. 4.1 together with
the relevant optical transitions that are used to manipulate and cool the atoms.
The 87Rb-40K mixture has good collisional properties that allow 87Rb to be used
as a coolant for the fermions, even without tuning interactions via a Feshbach
resonance. In particular, the interspecies scattering length for the true ground-
states, |F = 1,mF = +1〉 for 87Rb and |F = 9/2,mF = −9/2〉 for 40K, is attractive,
aK,Rb = −184 a0 [176, 177], a0 = 0.0529 nm being the Bohr radius. The colli-
sional properties between the states |F = 2,mF = +2〉 and |F = 9/2,mF = +9/2〉
are also favorable for sympathetic cooling, aK,Rb ∼ −300 a0 [178]. The attractive
interactions with a fairly large scattering length ensure a good spatial overlap of
the clouds in the traps during the different stages of evaporation and, consequently,
good thermalization. The background scattering length for the groundstate of 87Rb
is instead repulsive, aRb,Rb = 100.4 a0 [179, 180]. This prevents the collapse of the
condensate once the temperature goes below the critical temperature Tc [181, 182].
The 87Rb Feshbach resonances are not experimentally accessible, nonetheless con-
densation can be reached without tuning interactions thanks to the good scattering
rate. Several Feshbach resonances are instead available for 87Rb-40K mixtures [177,
183, 184] and for different mixtures of hyperfine states of 40K [185–188].

4.2.2. Vacuum setup

The vacuum setup consists of three different chambers in which three different cool-
ing stages are performed, see Fig. 4.2. The first part of the setup is a self made
chamber for the 2D+ MOT pre-cooling stage, details on the design can be found
in [150]. The atomic sources consist of Rubidium and Potassium (4% enriched)
vials placed in separate bellows connected to the rest of the apparatus via valves
so that the flux of atoms and the pressure in the 2D chamber can be adjusted at
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Figure 4.1.: Level structure of the D2 lines of 87Rb and 40K. The most important
optical transitions used in the experiment for the MOT cooling and repumping,
spin-polarization and absorption imaging are shown. We reference to [151, 152] for
the precise value of the detuning during the cooling in the MOTs. The reference
lasers are locked to the crossover lines of the F = 2 → F ′ = 1, 3 transitions of
87Rb and the crossover F = 1, 2→ F ′ of 39K.

will. This chamber is connected to the rest of the setup via a differential pump-
ing tube which keeps a difference in pressure between the two chambers of about
two orders of magnitude. The background vapor pressure in the 3D MOT cham-
bers is ∼ 9 × 10−11 mbar. The 3D MOT chamber connects to the science cell via
a differential pumping section (6mm in diameter) which keeps a constant pressure
gradient between the chambers and, combined with the ion getters pumps, it al-
lows us to reach ∼ 5 × 10−12 mbar in the last section of the vacuum setup. To
obtain a rather low vacuum pressure we also pre-baked the stainless steel parts at
about 400◦C which reduced the outgassing rate of hydrogen from the stainless steel
and improved the final vacuum pressure. The rather long distance from the MOT to
the science cell has been designed to keep a large optical access around the glass cell.

Experimental coils

The experimental coils have been designed to provide a strong trapping potential
when set in anti-Helmholtz configuration (gradient of 3 G/(A cm) along z-axis) and
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Figure 4.2.: (a) Full vacuum setup. The system is pumped via two ion-getter
pumps. Titanium sublimation pumps (TSP) are also used to coat part of the
chambers with titanium which absorbs residual gas in the system. (b) Zoom on
the 2D+ MOT chamber. The different beams (red) used for pre-cooling the atoms
are sketched.

a homogeneous offset field when they are in Helmholtz configuration (field offset of
11.8 G/A and curvature of 0.7× 10−6mG/Aµm2), suitable for tuning 40K Feshbach
resonances [150]. The experimental coils’ design is determined by the glass cell
dimensions, the 250 G/cm gradient necessary for evaporative cooling, and the large
aperture at the center needed to place a high resolution objective close to the glass
cell. To improve the thermal contact with the cooling block, the coils have been
made out of ribbon wire. One side of each coils has been milled flat and pressed on
the cooling block with a layer of thermally conducting paste (Duralco 134, Polytec
PT) in between to ensure a good heat exchange with the cooling block.

4.3. Cooling steps

In this section we will briefly summarize the different cooling steps performed to
reach ultracold temperature regimes.

4.3.1. Pre-cooling in the 2D+ MOT and 3D MOT

Double species 2D+ MOT

The cooling sequence starts with a pre-cooling stage in a 2D+ MOT where 40K
and 87Rb are cooled together. The setup is illustrated in Fig. 4.2b. The working
principle of a 2D+ MOT is no different from the well known 3D MOT setup [131] as
it combines the slowing down of atoms due to radiation pressure force, arising from
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absorption and emission cycles of near-resonant light, with the spatial-dependence of
the optical force due to a magnetic field gradient. Four rectangular coils create a 2D
quadrupole field such that the cooling from the MOT occurs only in the transversal
direction. An additional axial beam is used for axial colling via optical molasses
which increases the efficiency of the transversal cooling, as also observed in [189–
191], and decreases the mean velocity as well as the width of the velocity distribution
of the atoms. Additionally, we superimpose a push beam which pushes the colder
atoms into the next chamber. The differential pumping section connecting the two
chambers acts as an additional velocity filter for the atoms, selecting only the ones
with low enough transversal velocity. The atomic flux strongly depends on the
parameters of the axial cooling beam and on the vapor pressure of the two species
which indicates that K-Rb collisions between trapped K and background Rb atoms
are the dominant loss processes, as reported in detail in [151]. This did not prevent
us from having a good flux of cold atoms out of the double species 2D+ MOT.

3D MOT

In the 3D MOT we load to saturation ∼ 1010 87Rb atoms and 2 ∼ 108 40K atoms.
These are typical parameters for cooling 40K to degeneracy. For the experiments
described in the following chapters, instead, only ∼ 109 87Rb atoms are loaded in
the MOT. Due to the large intensities needed for the Doppler cooling of 40K, a large
percentage of 40K atoms are in the excited state during the cooling in the 3D MOT.
Atoms can exchange energy via collisions between ground and excited state atoms
and these collisions put a limit on density and temperature of the 40K MOT. We
added a dark spot (9 mm diameter at the atoms’ position) to the repumping beam
[192] to reduce the collisional losses between K-K* at the center of the trap where
the densities are highest. The dark-spot MOT increased the 40K atom number by
a factor of two [152]. Spin changing collision between 40K and 87Rb atoms are
not suppressed by the dark-spot [193, 194] therefore the cold clouds are spatially
displaced in the trap by few millimeters to reduce the detrimental effect of 87Rb on
the 40K MOT.

After the MOT loading, the atoms are released from the trap and 87Rb is further
cooled via an optical molasses. During this stage, the cooling laser is detuned by
-90 MHz from resonance and the intensity is reduced to about 10% of the total power
to reach a sub-Doppler temperature for 87Rb of about 40µK. The molasses phase is
crucial for the transport and evaporation, especially when working with 40K where
efficient sub-Doppler cooling is harder to achieve [195–197]. Since molasses cooling
is not efficient for 40K, its temperature is mostly lowered by thermalization with the
colder 87Rb cloud when the atoms are recaptured and trapped in a strong quadrupole
trap. We experimentally found an optimal detuning of -30 MHz from resonance for
40K during the molasses phase. With this setting we observed moderate colling and
no atoms’ loss during the molasses phase.
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Spin polarization

After molasses the atoms are spin polarized. A perfectly polarized sample is im-
portant not only for a good transfer of the cold sample into a magnetic trap but
also for an efficient sympathetic cooling. In fact, hyperfine changing collisions can
happen in a mixture of alkali atoms in different hyperfine states. The energy gained
after the spin-changing collision is stored by 40K and the 87Rb atoms as kinetic
energy and it causes heating as well as losses in the sample. During the polar-
ization sequence we apply a homogeneous field offset along the z-direction to lift
the degeneracy between the hyperfine states. The atoms are then polarized with
pulse of σ+ light resonant with the |2S1/2, F = 2〉 → |2P3/2, F

′ = 2〉 for 87Rb and
|2S1/2, F = 9/2〉 → |2P3/2, F

′ = 9/2〉 for 40K. A σ+-polarized repumper light is also
applied during the spin polarization for a more efficient pumping. The pulse pumps
all the atoms in the low-field seeking states in the 2S1/2 manifold, |F = 2,mF = +2〉
for 87Rb and |F = 9/2,mF = +9/2〉 for 40K. These atoms are magnetically trans-
ported to the science cell. The spin-polarization pulse is quite efficient: ∼ 80− 70%
of the atoms are pumped in the correct hyperfine states and recaptured in the mag-
netic trap. This recapture efficiency is limited by the cloud density in the case of
87Rb. For 40K, instead, the main limitation is temperature: not all the atoms spend
enough time in the spin-polarization light to be pumped in the correct state and
they either fly out of the trap or they are pumped in a high-field seeking state. No
spurious hyperfine states are captured and transported to the science cell.

4.3.2. Transport and evaporation in a plugged quadrupole trap

The transport of the atoms to the science cell is done magnetically. The transport
coils are designed such that the trap geometry is not affected during the transport
sequence to avoid parametric heating [150, 198]. Given the size of the differential
pumping section and the gradients we can achieve with the transport coils, we found
that the pumping section acts as a temperature filter for the atomic clouds. As a
result, we typically transport only the ∼20% colder 87Rb atoms and ∼10% of the 40K
cloud while removing the hot atoms which are located further away from the zero
of the quadrupole trap according to their Boltzmann distribution. By transporting
the atoms back and forth through the pumping section, we observed a narrowing of
the distribution of atoms in the trap which is indicative of a selective removal of hot
atoms. The measured temperature is decreased by a factor of two after crossing the
pumping section. This evaporation is not harmful as we reached condensation and
degeneracy with good atom numbers in the end.

The first stage of evaporation in the glass cell happens in an optically plugged
quadrupole trap [142]. Here a blue-detuned plug beam of wavelength λ=760 nm
and beam waist 30 µm at the atoms position, prevents Majorana spin flips at the
center of the quadrupole trap where the field is zero [199]. The plug beam is not
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Figure 4.3.: (a): Trapping potential for 87Rb atoms in the |F = 2,mF = +2〉
state along the direction of magnetic transport together with the plug potential.
The displacement from the center of the experimental coils along the transport
direction increases from 0 cm to 1 cm (steps of 2 mm) from the light to dark blue
curve. The tightly focused plug has a moderate effect on the trapping potential of
the magnetic transport as its barrier falls down rapidly away from the focal point
of the plug. (b): Working principle of the RF evaporation. Energy splitting of
the hyperfine levels (mF number on the side) of the F = 2 manifold of 87Rb as
a function of magnetic field offset B0. An RF wave resonantly couples atoms in
the |2,+2〉 state sitting at a specific trap position, i.e. at a certain field B0, (gray
sphere) to anti-trapped states.

coming along the symmetry axis of the coils, as most standard setups, but it travels
along the direction of the transport. Since the beam is tightly focus at the atoms’
position, its barrier height decreases away from the center of the experimental coils
and it does not significantly affect the trapping potential of the magnetic transport,
as shown in the plot of Fig. 4.3a.

The RF-evaporation works by selective removal of the hotter 87Rb atoms via a ra-
dio frequency (RF) sweep which transfers the atoms from a trapped to an untrapped
state, |F = 2,mF = 2〉 → |F = 2,mF = 0〉, in an energy-selective way. The selec-
tion in energy is given by the spatially dependent Zeeman shift of the quadrupole
trap (gradient of ∼ 240 G/cm) combined with the thermal distribution of atoms in
the trap by which hotter atoms are located further away from the center. When
the RF frequency matches the energy difference between different hyperfine states,
atoms with a certain temperature T are transferred to anti-trapped states and re-
moved from the trap, see Fig. 4.3b. The 40K atoms are unaffected by the RF sweep
because of their different magnetic moment. As the 87Rb cloud thermalizes to colder
temperatures, the 40K atoms are sympathetically cooled by thermal contact with
the bosonic cloud. At the end of the evaporation ramp (from 30 MHz to 2 MHz)
we typically reach a temperature of 6 µK with ∼ 1× 107 87Rb atoms and ∼ 5× 106

40K atoms. Typical lifetimes in the plugged trap (gradient of 240 G/cm) are on the
order of 30 s after the evaporation.
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Figure 4.4.: (a) Crossed dipole trap created by overlapping three red detuned
beams. The strong aspect ratio of the beams X and Y creates a pancake-like
trapping potential. (b) Orientation of the dipole beams relative to the glass cell.

4.3.3. Crossed dipole trap

After the RF-evaporation, the quadrupole gradient is lowered and the atoms are
loaded in an optical dipole trap to continue the evaporation. The crossed optical
dipole trap is composed of two main beams and a vertical pinning beam, as illus-
trated in Fig. 4.4. Red-detuned light of wavelength 1064 nm (Nufern fiber laser) is
used to trap the atoms at the intensity maxima, as discussed in Section 3.2.1. The
two main axis of the crossed dipole trap, dipole X and Y, have a waist of ∼ 300 µm
in the horizontal direction and ∼ 35 µm in the vertical one. The strong aspect
ratio creates a pancake-like trap that can potentially be used for studies of two di-
mensional systems [152]. The vertical beam, which has more moderate intensities,
provides additional confinement in the xy-plane which is used to increase the clouds’
density during evaporation and to better pin the atoms in the trap when experi-
ments are performed in a shallow dipole trap. The dipole Z is radially symmetric
with a waist of 180µm. Maximum total trapping frequencies are on the order of
ωx,y ∼ 2π×60 Hz and ωz ∼ 2π×600 Hz for 87Rb. They have been calibrated by
monitoring the center of mass motion of the BEC after a displacement in the trap.
The experimental results are summarized in Fig. 4.5. When the dipole trap is weak,
the gravitational potential can not be neglected as its magnitude is comparable to
the dipole trap potential. The total potential Utot = Udip + mgz and the vertical
gravitational sag of the atoms in the spatially inhomogeneous trapping potential
modify the trap frequencies, as illustrated in the graphs. Given the different masses
of the two atomic species, the dipole trapping potential is higher for 40K compared
to 87Rb by a factor of ∼ (mRb/mk)1/2 which means that for low dipole powers the
two atomic species will experience a different gravitational sag. The tight confine-
ment along z of our trap geometry reduces the relative sag almost up to the end of
the 87Rb evaporation down to a BEC, ensuring a good spatial overlap between the
clouds for the sympathetic cooling of 40K.
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Figure 4.5.: (a) Horizontal (ωx,y) and (b) vertical (ωz) total dipole trap frequencies
for 87Rb as a function of the power of dipole X and Y. Dipole Z intensity is
set to zero. Frequencies are measured by monitoring the center of mass motion
of the BEC after a sudden displacement from the trap center. Expected trap
frequencies for the combined dipole and gravitational potentials (thick lines) and
trap frequencies without gravitational potential (dashed lines) are shown. The
effect of the gravity becomes relevant at low dipole powers. Due to the vertical sag
in the spatially inhomogeneous dipole potential both horizonatal and vertical trap
frequencies are affected by the presence of gravity. (c) Calculated and measured
horizontal dipole trap frequencies for 87Rb as a function of dipole Z intensity.
Dipole X and Y are set to ∼ 300mW. (d) Calculated total trap frequencies for
different powers of dipole X and Y, from 0 W (light gray) to 750 mW (dark gray).
The effect of the additional dipole Z is more pronounced when dipole X and Y
powers are low.

4.3.4. Forced evaporation in the dipole trap

To continue the evaporation in the dipole trap, the atoms are transfered to the
ground states, |1,+1〉 for 87Rb and |9/2,−9/2〉 for 40K, by rapid adiabatic passage.
The evaporation ramp is sketched in Fig. 4.6a, typical density profiles during the
evaporation are plotted in Fig. 4.6b. The evaporation in the dipole trap works
similarly to the one in the magnetic quadrupole trap: hot atoms are removed by
lowering the trap depth. The colder atoms that remain trapped rethermalize, if the

57



Chapter 4. Ultracold atoms: the experimental setup

Rb

K

t

87

40

12s8s7s5s

O
p

tical D
ensity 

max

min
100

-100

0

-100 0 100
x (µm)

y 
(µ

m
)

x 

y

100

-100

0

-100 0 100
x (µm)

y 
(µ

m
)

x 

y

x 

y

x 

y

x 

y

x 

y

t

Tr
ap

 d
ep

th

dipole X-Y

dipole Z

states 
preparation

Rb
dropping

point

TOF

BEC
starts K mixture

evap.

12s

a b

Figure 4.6.: (a) Schematic of the evaporation ramp performed in the dipole trap
together with the most important steps of the evaporation sequence. (b) Ab-
sorption images of 40K and 87Rb atoms after TOF taken at different stages of the
evaporation in the dipole trap. The sympathetic cooling ends after 8 s, after that
the bosonic cloud is removed from the trap and cooling proceeds with a 40K spin
mixture.

collision rates are favorable, and the velocity distribution narrows. A disadvantage
of this scheme is that by decreasing the trap depth the trap frequencies decrease and
so does the collision rate. Given the different mass of the two species, the bosonic
specie is the one that is directly evaporated out of the trap and cooled by the forced
evaporation, while the 40K atoms see a deeper trap and they are sympathetically
cooled by collisions with the colder 87Rb atoms. By increasing the phase space
density of 87Rb, the condensation is reached for the bosonic specie with typically
a maximum of N ∼ 3 × 105 atoms in an almost pure BEC (condensate fraction of
& 90%). Lifetimes of the ultracold atoms in the dipole trap are on the order of 20 s.

Thermalization of 40K with 87Rb is efficient thanks to the favorable background
scattering length. At the end of the 8 s evaporation ramp with final trap frequencies
of ωz ∼ 2π×200 Hz and ωx,y ∼ 2π×15 Hz for 87Rb, we have 5× 105 40K atoms at a
T ∼ 100 nK. We experimentally found that, as observed in other works [147], sym-
pathetic cooling is more efficient when the bosonic cloud is only partially condensed,
since the heat capacity of the bosonic species is still higher than the fermionic one
[200]. The sympathetic cooling ramp ends before pure condensation is reached for
87Rb, after that the BEC is released from the trap and the evaporation proceeds
further with a 50/50 mixture of 40K atoms in the hyperfine states |9/2,−9/2〉 and
|9/2,−7/2〉. To enhance the collision rate between the two states, a constant mag-
netic field is applied to increase the scattering length to about as ∼ +250 a0. At
the end of the evaporation ramp (4 s) we typically reach a degenerate Fermi gas
with T = 0.13(2) TF and N ∼ 3× 105 atoms in the spin mixture. Lifetime of the
degenerate mixture in the trap is typically 20 s, while it is 80 s long for a single
component Fermi gas.
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Figure 4.7.: Some relevant Feshbach resonances of 40K [188]. Gray data correspond
to the overlapping s and the p resonances of the mixture |9/2,−9/2〉+|9/2,−5/2〉.
Light blue data are taken for a mixture of |9/2,−9/2〉 and |9/2,−7/2〉,
the overlapping loss features correspond to the resonances for the mixtures
|9/2,−9/2〉+|9/2,−7/2〉 and |9/2,−7/2〉+|9/2,−7/2〉. Both mixtures can be
used for sympathetic cooling. Dark blue points correspond to the resonance
for |9/2,+5/2〉+|9/2,+7/2〉 which can be potentially used for optical flux lat-
tice scheme [201]. Lines are bimodal Gaussian fits as guides to the eye. Atom
numbers of the data sets have been scaled for visualization purposes.

4.3.5. Tuning interactions

Several Feshbach resonances are available for the 87Rb-40K mixture and for mixtures
of hyperfinestates of 40K. To prove the capability of our setup of studying cold atoms
with tunable interactions, we probed the Feshbach resonances of 40K for different
input channels. Some relevant Feshbach resonances of 40K are shown in Fig. 4.7. By
approaching a resonance the scattering rate is enhanced and the fraction of atoms
lost from the trap increases. The Feshbach resonance is detected by measuring the
loss of atoms at different magnetic field offsets. The measured position of the differ-
ent loss features associated with the resonances agrees with the positions reported
in literature to better than 1% [188]. The resonance for the mixture |9/2,−9/2〉,
|9/2,−7/2〉 is used to increase the scattering rate during the last evaporation stage
of 40K.
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4.4. Detection techniques

4.4.1. Absorption imaging

Absorption imaging is one of the most standard techniques in ultracold atoms ex-
periments. To obtain the density distribution of the cloud, light resonant with an
atomic transition is shine onto the the atoms. For a beam of intensity I0 propagating
along z which samples a medium of density n(x, y, z), its intensity is reduced by the
absorption of the medium according to the Beer-Lambert law

I(x, y) = I0e
−OD(x,y) (4.12)

with an optical density OD(x, y)

OD(x, y) = σ0

∫
n(x, y, z)dz. (4.13)

Here we assumed the light to be on resonance with an atomic transition that has
a polarization-averaged scattering cross section of σ0 = 3λ2/(2π). The intensity
of the imaging beam is also assumed to be weaker than the saturation intensity
of the chosen transition, I � Is. As our atomic clouds are three dimensional,
when the imaging beam is recorded on a CCD camera we obtain an intensity profile
which carries the information about the column density nc(x, y) =

∫
n(x, y, z)dz.

To correctly evaluate the spatial distribution of density of the atomic cloud, we also
take an image without atoms, Ibg, so that the spatially dependent intensity profile of
the imaging beam is removed. From the images we extract the following distribution

nc(x, y) = −CCG
σ0

ln

(
I(x, y)

Ibg

)
(4.14)

CCG being an average of the squared Clebsh-Gordan coefficients of all the transitions
which can be excited by the polarized light. By calibrating the CCD, the measured
intensity per pixel is related to an atom number.

Images of the atomic clouds can be taken in situ or at a certain time of flight
(TOF) during which the atomic clouds freely expand. By performing long enough
TOF, the momentum distribution of atoms in the harmonic trap is directly mapped
onto real space density distribution. The column density nc is thereby used to discern
a thermal gas from a condensed Bose gas or a degenerate Fermi gas. The density
distribution of atoms after TOF can be obtained from a semiclassical approximation.
As they are well known for the case of an harmonic trapping potential [142–144] they
are summarized in appendix B. For a thermal cloud following Maxwell-Boltzmann
statistic, the density profile is a Gaussian which expands isotropically according to
its temperature. This is not the case for a gas at ultracold temperatures. Some
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Figure 4.8.: (a): Images of a pure 87Rb BEC during TOF. The inversion of the
aspect ratio of the cloud during the free fall is a clear indication of condensation.
(b): Plot shows the azimuthally averaged density profile of the degenerate Fermi
gas of 40K (inset image) after ballistic expansion together with Gaussian and
Dirac-Fermi fits (distribution for degenerate fermions, see appendix B for details).
The column density of the degenerate gas is better fitted by the Fermi-Dirac
distribution with T/TF ∼ 0.15 and N ∼ 3× 105.

examples of measured density profiles of bosons and fermions are shown in Fig.
4.8. For a BEC, the free-fall expansion depends on the ground state energy and,
thereby, it is significantly affected by the shape of the trap: the cloud expands
faster along the axis where the harmonic confinement is stronger. For a degenerate
Fermi gas, instead, the density distribution is not well described by a Gaussian
distribution at such low temperatures. The distribution is best fit by a Fermi-
Dirac distribution which models a degenerate Fermi gas trapped in an harmonic
potential. For decreasing temperatures, the Fermi-Dirac distribution does not differ
much from the distribution at zero temperature, thereby the fitting is not reliable
for temperatures below ∼ 0.1TF as it relies on minimal changes on the wings of
the distribution. Finally, it is important to note that for short TOF the density
distribution nc is always a convolution of the in situ size and momentum distribution,
no matter what the state of the atomic cloud is.

High resolution objective

A high resolution objective (Special optics Inc.) placed below the glass cell is used
to image the atoms along the z-axis. The objective has a NA=0.5, f-number fN = 1,
and focal length f = 25 mm. It is AR coated for a range of 532-1064 nm wavelengths.
It can be moved for focusing via a motorized stage (Custom Micro-Z Objective
Positioner MCL) in a range of about 5.3 mm. A protection ring fixes the highest
position of the stage.

Any imaging system has an intrinsic resolution limit which is due to its finite
aperture. As a result, some frequency components of the imaged object are filtered
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Figure 4.9.: (a): Schematic of the vertical imaging setup. (b): Example of one
data set used to extract the diffraction limit of the objective by imaging a sharp
object. Line is an errorfunction fit to the sharp change in intensity.

out. The effect of the aperture is modeled by the point spread function (PSF)
which describes how a point source is imaged by the system. An image OI(r) of
any object O(r) is described by a convolution of the PSF and the object itself,
OI(r) =

∫
O(r0)PSF(r0 − r)dr0 [202]. For a circular aperture, as in the case of our

objective, the PSF is an Airy disk whose width depends on the wavelength of light
and on the NA. The resolution limit of the imaging system, the minimum distance
at which two point-like objects can be distinguished, is σDL = 1.22 λfN according
to the Rayleigh criterion. By imaging a test target (razor blade) the resolution of
the objective has been tested. The image is a convolution of a step function with
the PSF and the sharpness of the imaged razor edge gives information about the
width of the Airy disk directly. From the images, we estimate an average diffraction
limit of σDL = 1.0(3)σspecs = 0.92(29) µm for a 780 nm imaging wavelength which
agrees with the specified value σspecs and it is on the order of three lattice sites. The
resolution can also be tested by imaging a thermal cloud of atoms and by computing
its autocorellation function [203] which carries information about the PSF and the
aberrations of the optical setup. Calibrating them is particularly important when
the high resolution imaging system is used for correlation measurements.

4.4.2. Stern-Gerlach imaging

To extract information about the hyperfine state composition of the atomic sample,
a state dependent force is applied during the TOF which spatially separates the
different state components before imaging them. This Stern-Gerlach imaging, is
realized with a field gradient created by a single coil described by B(r) = B0 +B′SGr.
The spatially dependent magnetic field results in a spatially dependent Zeeman shift,
eq. 4.10, and, therefore, in a force of different strength for atoms in different mF
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Figure 4.10.: A Stern-Gerlach pulse spatially separates atoms in different hyperfine
states. Here 40K in the state |F = 9/2,mF 〉 is imaged, labels correspond to the
mF level.

states. Its magnitude is
FSG = µBgFmFB

′
SG (4.15)

and it points along r. In our setup we use two identical Stern-Gerlach coils placed
orthogonally to each other. The coils have a conical geometry which is less obstruc-
tive so that they can be placed closer to the atoms. They have been designed to
produce a rather homogeneous field gradient, B′SG=0.5 G/(A cm), over the exten-
sion of the atomic cloud. The curvature, B′′SG ∼ 2 × 10−3mG/(Aµm2) results in a
change of gradient of . 1% across the cloud, which can be safely neglected. The
force acting on the atoms is well approximated by eq. 4.15. By adding the fields
of the two coils, the direction of the combined gradient can be adjusted at will.
Examples of Stern-Gerlach images of different hyperfine states of 40K are shown in
Fig. 4.10.

4.5. Final remarks

In this chapter we have introduced the experimental setup which allows us to cool
87Rb to condensation and 40K to degeneracy. A possible improvement would be to
perform a more efficient sub-Doppler cooling for 40K [195, 197] which would increase
the atom number after transport and, consequently, the efficiency of the evaporation
ramps. Moreover, adding a gradient to the dipole potential can help in keeping the
densities high throughout the cooling sequence since the trap can be tilted during
the evaporation instead of being lowered in depth [204, 205].

Given that bosonic and fermionic species are available, both of them can be loaded
in an optical lattice depending on the features that we aim at studying. Particularly
interesting is the possibility of using the Feshbach resonances of 40K to study the
effect of interactions for atoms in topological bands, which is still mostly unknown
for both bosons and fermions in a honeycomb lattice [95, 96, 206, 207]. In the
following chapters we will focus on bosonic atoms in the honeycomb lattice as they
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are an ideal local probe for mapping out the local topological features of a Bloch
band.
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Chapter 5.

Lattice setup, detection and
manipulation techniques

In this chapter, the setup for creating the honeycomb lattice potential is presented
and the experimental techniques used to manipulate and to detect the properties of
the atoms loaded in the lattice are introduced. The setup is described in Section
5.1 and standard mapping techniques are presented in Section 5.2. In Section 5.3,
we describe Bloch oscillations which are used to manipulate the state of atoms in
the lattice. Finally, in Section 5.3.4 we comment on the effect of weak interactions
which can result in instabilities as the atoms move in an energy band and which set
a limit on the experimental timescales for such motion. All the results presented
here and in the following chapters are obtained with a 87Rb BEC.

5.1. The experimental setup for the optical lattice

The honeycomb optical lattice is created by interfering three laser beams. The
optical setup for the lattice is schematized in Fig. 5.1. A MBR110 single-frequency
Ti:Sapphire Laser (Coherent) pumped by a 10W Verdi laser (Coherent) at 532nm
provides the laser light for the optical potential. The total output power is about
1.4W, the linewidth is ∼500 kHz when the Ti:Sa cavity is locked. The etalon
locking electronics for this specific laser design also introduces a ∼1% intensity
noise peak to peak, mostly at 88 kHz and higher harmonics. The advantage of
the Ti:Sa system compared to other types of lasers is that the wavelength can be
tuned over a rather wide range. This allows us to have a flexible setup in which
the detuning can be tuned to be red or blue for 40K and 87Rb. Thanks to the
absence of amplified spontaneous emission, main issue for tampered amplifier lasers,
this setup could be used for addressing the Raman transitions required for the
optical flux lattices scheme [68] where resonant scattering needs to be avoided given
the already prohibitive scattering rate of the nearly resonant Raman beams. For
the experiments described in the following chapters, the wavelength of the light is
set to λL = 755 nm, blue-detuned from 87Rb transitions. The laser light is split
into three beams controlled by acousto-optical modulators (AOMs) and sent to the
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Figure 5.1.: Simplified lattice setup. (a) Schematic of the laser setup on the
experimental table where each lattice beam is separately prepared and controlled
via AOMs. (c) Schematic of the optical setup of each beam on the experimental
table. (b) Orientation of the lattice beams (purple) relative to the glass cell.
Dipole (dashed red) and plug (dashed blue) beams overlapping with the ones of
the lattice (violet) are also shown.

experimental table via separate fibers, as depicted in Fig. 5.1a. The AOMs are
driven by separate synthesizers (Agilent MXG N5182A, at 198 MHz) such that the
frequency and intensity of each beam can be tuned independently. The synthesizers
are locked to a common reference local oscillator (LO) to reduce relative frequency
and phase noise among the beams related to the use of separate drivers. The beams’
intensity is stabilized via a standard closed loop controller (PID controller) which
actively regulates the AOM RF-power.

The geometric arrangement of the beams on the experimental table is illustrated
in Fig. 5.1b. Two lattice beams are overlapped with, respectively, a dipole beam
(lattice beam number 2) and the plug beam (nr. 3), the third one is independent (nr.
1). The schematics of optical setups in Fig. 5.1c illustrate how each beam is prepared
and how the overlap with the dipole and plug beams is realized on the experimental
table. The polarizations of the beams are first set with a Glan−Thompson polarizer
and then controlled via polarizers to be linear and out of plane of intersection to
create a interference pattern with honeycomb symmetry.
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Figure 5.2.: Comparison between the power spectrum of the AOM driver (light
blue) and the beat signal between the light before and after the fiber of one lattice
beam (dark blue). Phase noise appears as a broadening of the original spectrum.
Powers are referenced to the corresponding carrier peaks.

The lattice is created by interfering beams with a Gaussian intensity profile
described by eq. 3.22 which are focused onto the atomic cloud. The beams are
shaped by telescopes and the horizontal and vertical waists at the atoms position
are w1 = (35 µm, 430 µm), w2 = (36 µm, 480 µm) and w3 = (41 µm, 490 µm) for
each beam respectively. The aspect ratio is chosen to match the one of the dipole
trap potential. This choice of waists gives a rather homogeneous lattice potential
over the extension of the cloud and, at the same time, gives a broad range of lattice
depths, up to ∼ 12Er for a 10W pump power. Since the atoms are trapped at
the minima of the periodic potential, the only effect of the Gaussian envelope is to
spatially vary the lattice depth away from the crossing point of the lattice beams.
This inhomogeneity of the optical potential introduces, in first approximation, an
effective anti-trapping harmonic potential superimposed with the one of the dipole
trap. The spatially varying on-site frequencies depend on the intensities of the three
lattice beams and can even be radially asymmetric when the lattice potential is
imbalanced. Typical measured anti-trapping frequencies for a 1Er lattice are on the
order of ωacxy ∼ 2π×10Hz and ωacz ∼ 2π×80 Hz.

The optical potential has no additional periodic confinement along the z-axis and
it results in a periodic array of 1D tubes instead of a single 2D plane as in solid state
graphene. During the experimental runs, the cloud of ∼ 5 × 104 atoms populates
∼ 7000 tubes with an average of ∼ 7 atoms per tube and a peak of ∼ 30 atoms in
the central tube. More details on the tubes’ parameters can be found in appendix
C.

Even if the lattice beams are generated by the same optical source and their
AOM drivers have a common reference, noise on the laser source, on the optical
fibers and mechanical vibrations can introduce phase and intensity noise on the
three interfering beams that generate the optical potential. This would result in
parametric heating and in an exponential increase of energy over time [208, 209].
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Figure 5.3.: (a) Image of a condensate loaded in the honeycomb lattice in a super-
fluid state after a sudden switch off of the trapping potentials and TOF. Lattice
depth is 5Er. (b) Image of BEC after pulsing the lattice and TOF. The momen-
tum distribution after the expansion presents many orders of diffraction peaks
separated by multiples of the reciprocal lattice vectors.

To this end, a Phase-Locked Loop (PLL) [210, 211] has been developed to reduce
the phase noise coming from the use of separate fibers. The main idea is to use
the beat between the light before and after the optical fiber as an input signal for
the feedback loop. In the ideal noiseless case, the beat has a power spectral density
which is a delta function. Phase noise composed of many frequency components,
usually low in frequency, effectively broadens the spectrum of the beat signal, as
illustrated in Fig. 5.2. By feedbacking this noise signal onto the AOM frequency,
the phase noise can be reduced. More details on our Phase-Locked Loop can be
found in the following thesis [211]. We experimentally found that this PLL has a
negligible effect on the atoms’ lifetime because of the intensity noise ('1%) of the
Ti:Sa etalon lock. This is the most important source of noise in our setup and it
also couples to the input signal of the PLL lock. When the Ti:Sa cavity is locked,
the condensate lifetime decreases with increasing lattice depth from .5 s to .100ms
for a range of 1− 10Er. In comparison, when the laser is running single-mode with
the locking electronics turned off the lifetimes are longer, ∼6 s to ∼500 ms.

5.2. Measurement techniques

5.2.1. Interference pattern after time-of-flight

The Bloch wavefunctions of eq. 2.12 reflect the periodicity of the lattice in real
space. If we let the atoms freely expand, the resulting real-space density distribution
carries information about the quasimomentum distribution of the atoms loaded in
the lattice and the symmetry of the reciprocal space [198, 212, 213]. This mapping
technique is realized by an instantaneous switch off of the lattice potential followed
by free expansion of the atomic cloud in the gravitational potential. The real space
density distribution after TOF directly maps on the quasimomentum distribution
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Figure 5.4.: Interference peaks and lattice balancing: The population imbalance
of the first order peaks relates to the relative imbalance of the lattice beams, i.e.
to the intensities Ii. (a) Images from 1-3 show examples of TOF pictures taken at
different relative imbalances of the lattice beams, as illustrated by the schematics
on the side. Each pair of peaks relates to the interference of a pair of lattice beams,
numbered in the image 2. (b) Fraction of atoms in each pair of peaks as a function
of lattice imbalance, 1/f = I3/I1,2, theory lines are calculated for different lattice
depths from ab initio calculations which incorporate the full lattice potential, eq.
3.29. Data are taken at a 5Er lattice depth and follow the expected trend for
the populations of the different interference peaks. The balancing of the lattice is
inferred from the balancing of the interference peaks.

and it reads [212]

n(r) =
(m
~t

)3

|w̃(k)|2
∑
i,j

eik(ri−rj)〈Ψ|ĉ†i ĉj|Ψ〉, (5.1)

where the envelope is given by w̃(k), which is the Fourier transform of the Wannier
function, and Ψ is the many-body wavefunction describing the state of the atoms
loaded in the lattice. The operator ĉ†i is the bosonic operator which creates a particle
at the site i. The summation in eq. 5.1 gives the quasimomentum distribution and,
since it depends on a two-point correlation function, it also carries information
about the coherence between particles at different lattice sites. For bosons in a
superfluid state, as an example, the interference pattern presents sharp interference
maxima which directly reflect the high degree of phase coherence of the system. A
typical image taken with this mapping technique for condensed atoms loaded in the
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honeycomb lattice is shown in Fig. 5.3a. It can be seen that the resulting density
pattern, composed of sharp density peaks, repeats itself after a reciprocal lattice
vector because of the periodicity of the Bloch waves. The optical potential can also
be pulsed on to reveal the symmetries of the lattice. As a result, the BEC diffracts
as radiation does when it is shone onto a crystalline solid [214]. The interference
pattern after TOF is composed of many diffraction orders as illustrated in Fig. 5.3b
which are periodically spaced according to the periodicity of the lattice potential.

As illustrated in Fig. 5.4, the populations of the first order diffraction peaks are
linked to the balancing of the lattice as they depend on the depth of the potential
crated by each pair of interfering beams. The peaks are labeled in Fig. 5.4a accord-
ing to the corresponding pair of lattice beams that generates them. If one beam
is stronger (weaker) than the others the corresponding peaks will be more (less)
populated because of the increased (lowered) coupling strength, as illustrated by
the examples in Fig. 5.4. We typically monitor only the first order diffraction peaks
to infer the balance of the lattice potential.

5.2.2. Band mapping technique

The drawback of the previous detection scheme is that the atomic population of
the different bands, if populated, cannot be resolved. To obtain this information
together with the quasimomentum distribution a different mapping technique has to
be employed which is called band mapping technique [198]. To realize it, the lattice
depth is ramped down to zero instead of being suddenly turned off before the ballistic
expansion of the cloud takes place. Some conditions apply for the duration of the
ramp to ensure a correct mapping of the quasimomentum: To avoid excitations
to other bands during the mapping sequence, the ramp has to be adiabatic with
respect to the energy difference with the higher bands. Moreover, the ramp has to
be fast compared to the band width to avoid the redistribution of the atoms in the
bands during the ramp. If these conditions are met, the Bloch waves of the nth band
with quasimomentum k are adiabatically mapped onto plane waves with free-space
momentum p in the nth Brillouin zone. The geometry of the zones for our lattice
configuration are illustrated in Fig. 5.5b. The occupations of the different bands and
the quasimomentum distribution of the particles are obtained from the expansion
images. An example of an image taken after band mapping and TOF is shown in
Fig. 5.5a. In a honeycomb lattice, the conditions on the ramp timescales are harder
to fulfill with increasing lattice depth for atoms in the lowest energy band because
the separation between the first and second band decreases with increasing lattice
depth, as discussed in Section 3.3.3.

Finally, it is important to mention the effect of the finite size of the weakly in-
teracting BEC on these mapping techniques. As already mentioned, weakly inter-
acting bosons at T=0 in a harmonic trap spatially redistribute compared to the
non-interacting case where the particles are localized at the minima of the trapping
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Figure 5.5.: Images after band mapping: (a) Thermal atoms loaded in the lattice
and imaged after band mapping and TOF. First (hexagon) and second bands are
completely filled. (b) Schematic of the first three Brillouin zones which correspond
to different bands being populated. (c) Relevant high-symmetry points in the first
Brillouin zone.

potential with a spatial distribution given by the ground state of the harmonic trap.
This in-situ density distribution of interacting atoms, described by the Thomas-
Fermi parabolic profile, cannot be neglected for short TOF. This is the case in our
experiment where the observed density distribution is a convolution of the quasimo-
mentum and real-space distributions. The real quasimomentum distribution can be
extracted by extrapolating the cloud’s density profile to long TOF durations.

5.2.3. Lattice calibration via parametric heating

The lattice depth can be calibrated by exciting the atoms via a periodic modulation
of the intensity of the lattice beams [208, 209]. When the modulation Vmod is weak
compared to the energy difference between the bands, its effect can be treated as a
perturbing periodic potential which is added to the one of the static lattice

V (t, r) = VL(r) + Vmod cos(ωt). (5.2)

The effect of the modulation is to add a coupling between two different bands.
When the frequency ω matches the energy difference between the bands the atoms
are resonantly excited and energy is pumped into the system. Atoms can therefore
be lost from the trap after some long waiting time. The resonance feature associated
with the enhancement of the atomic loss due to parametric heating gives an estimate
of the energy difference between two bands. A comparison between the resonance
frequencies and the band structure calculation gives an estimate of the lattice depth,
as the plot in Fig. 5.6b shows. The broadening of the resonance feature is given by
the transitions bandwidths and the inhomogeneity of the lattice over the extension
of the cloud. As long as the modulation is weak, the measured resonance frequency
will correspond to the energy difference between the bands. If that is not the case,
deformations of the lattice potential can broaden and shift the resonance.
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Figure 5.6.: (a) Example of a resonance feature measured by amplitude modulation
together with a Gaussian fit. The experimental sequence is depicted in the inset.
(b): Measured resonance frequencies for transitions from the first band to higher
bands for atoms loaded at k = 0. Data are overlapped with calculated theory
lines to estimate the lattice depth.

5.3. Bloch oscillations

When atoms of a weakly interacting BEC are adiabatically loaded in a lattice they
will macroscopically populate the k = 0 state which has the lowest energy. Anal-
ogously to electrons in a solid under the influence of an electric field, the addition
of a force results in a change of the atoms’ quasimomentum and in a motion of the
atoms in the Brillouin zone. For strong enough forces, interband tunneling becomes
possible. Bloch oscillations are by now a standard technique to probe properties of
band structures with cold atoms [215, 216]. In this section, we focus on our experi-
mental realization via lattice acceleration and field gradient and on the specifics of
Bloch oscillations in a honeycomb lattice.

5.3.1. Force from a field gradient

A standard way of introducing an external force acting on the atoms is to add a
potential gradient via a magnetic field. The spin-dependent potential for an atom
of magnetic moment µ in a magnetic field gradient described by B(r) = B0 + r ·∇B
is

VB = µB(r) = µB0 + F · r. (5.3)

The force F = µ · ∇B experienced by the atoms can be considered constant if the
curvature of the magnetic field is negligible at the atoms’ position. This is the case
in our experiment where the homogeneous gradient is created by the pair of Stern-
Gerlach coils presented in Section 4.4. The two coils also allow to fine tune the
direction of the force, if needed.
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Figure 5.7.: (a) Sketch of the honeycomb lattice in real space. A linear frequency
sweep of the third lattice beam creates a uniform lattice acceleration along the
y-direction. A magnetic field gradient can create an additional spin-dependent
force along the x direction. (b) Schematic of the motion of the particles (blue
circles) in the first BZ (hexagons) when the lattice is accelerated. In the lab frame
of reference, the BZ is moving relative to the atoms. The opposite happens in the
frame co-moving with the lattice. (c) Schematic motion of the particles in the
lowest band in the adiabatic case. The quasimomentum of particles changes in
time according to eq. 5.11.

5.3.2. Force from lattice acceleration

A force can also be realized by moving the lattice potential relative to the atoms.
This motion is implemented experimentally by controlling the relative phase of the
lattice beams that generate the optical potential. The effect of a phase difference
between the lattice beams is to create a spatial displacement of the lattice potential.
As an illustrative example, we can consider a 1D lattice created by two counter-
propagating lattice beams with electric fields E1 ∝ eikLr and E2 ∝ e−ikLr which
generate the following optical potential VL = U0I(r) ∝ cos2(kLr). If the phase of
one lattice beam is changed relative to the other, e.g. E1 → E1e

i∆φ, the optical
potential becomes VL ∝ cos2(kLr+∆φ/2) and the additional phase results in a shift
of the periodic pattern along r. The same effect happens in the honeycomb optical
lattice when the phase of one lattice beam is changed relative to the other two.

The phase difference between the beams is experimentally tuned by changing the
frequency of a lattice beam relative to the others, i.e. by making the following sub-
stitution ωL → ωL + ∆ω for one of them. If the change of the frequency ∆ω is
small, it will not affect the k-vector in first approximation and we can model its
effect by adding the term ∆ω to the electric field of one running wave generating
the honeycomb potential defined by eq. 3.29. If ∆ω is time-independent, the electric
field of the lattice beam which is modified becomes Ei ∝ eikir−i(ω+∆ω)t. The phase
difference ∆φ between the beams is given by ∆φ(t) = ∆ω t, hence the optical poten-
tial moves with a constant velocity proportional to ∆ω. If the frequency difference
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is time-dependent, instead, the lattice is accelerated. The phase shift ∆φ(t) is given
by the following equation in this case

∆φ(t) =

∫ t

0

∆ω(t′)dt′. (5.4)

If ∆ω(t) is linearly ramped over time, the lattice has a constant acceleration and a
constant inertial force acts on the atoms in the reference frame co-moving with the
lattice. We parametrize this linear ramp as

∆ω(t) = 2π
δν

δt
t (5.5)

where δν
δt

= const. is the constant rate of frequency change and ν = 2πω. The effect
of the additional time-dependent phase ∆φ(t) is to move the lattice potential along
the direction of the running wave which is frequency shifted. For example, if the
beam with wave-vector k3, see the labeling in Fig. 5.7a, is changed, we obtain the
following displacement along the the y-axis from the definition of the honeycomb
potential, eq. 3.29,

y(t) = y0 +
2

3kL
∆φ(t). (5.6)

The interference pattern moves as illustrated in Fig.5.7a. Given this displacement,
we can directly infer the magnitude of the acceleration of the lattice from eq. 5.5 and
eq. 5.6 and derive the force experienced by an atom of mass m. The acceleration is
described by

|aL| =
2

3
λL
δν

δt
=
|F|
m
. (5.7)

By tuning the parameter δν
δt

, the strength of the force can be adjusted at will. The
direction of the force is given by the pointing direction of the lattice beam which
is changed, i.e. by the k-vectors defined in Section 3.2. Moreover, if more than one
lattice beam is frequency-shifted, the total inertial force experienced by the atoms
will be given by the vector sum of the individual forces and it can point in any ar-
bitrary direction. Furthermore, non-constant forces can also be easily implemented.
For example, circular motion can be realized with a sinusoidal modulation of the fre-
quency of two lattice beams, appropriately phase shifted relative to each other. The
circular motion can be used to break time-reversal symmetry of the lattice potential
[82].

5.3.3. Time dependent Hamiltonian

To understand the effect of the forces we can now derive the time-dependent Hamil-
tonian in the lab frame describing the evolution of the atoms when the magnetic
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field gradient of equation 5.3 and an orthogonal acceleration of the lattice aL ⊥ ∇B
are combined. In the lab frame of reference, the resulting Hamiltonian for an atom
of magnetic moment µ and mass m is

H(t) =
p2

2m
+ VL [r−R (t)]− µ r · ∇B − µB0, (5.8)

where VL(r) describes the lattice potential at t = 0, see eq. 3.29, and R(t) = aLt
2/2

is the time-dependent displacement given by the lattice acceleration defined by eq.
5.7. Here we neglect the presence of the external harmonic trapping potential as we
are interested in small spatial displacements of the atoms about the center of the trap
where the trapping potential can be considered as constant in first approximation.
For larger displacements, the presence of a trap can not be neglected and one needs
to account for the restoring force of the harmonic potential as well. The dynamics of
the Hamiltonian 5.8 can be most conveniently analyzed in a frame co-moving with
the lattice by making a unitary transformation U(t) = e−ir·maLt/~eip·aLt

2/(2~). This
transformation takes into account the real space displacement R(t) as well as the
finite velocity of the atoms in the accelerated lattice, v = maLt. The time-dependent

Schrödinger equation for the wavefunciton ψ is then equivalently expressed as i~ ˙̃Ψ =
H̃Ψ̃ in the co-moving frame, where Ψ̃ = Uψ. The new hamiltonian is

H̃ = UHU † + i~U̇U † =
p2

2m
+ VL(r)−Fµ · r + εµ(t) + εcm(t). (5.9)

The total force
Fµ = µ∇B −maL (5.10)

includes both the force from the field gradient and the fictitious force experienced
by the atoms in the non-inertial lattice frame. The factor εcm = 1

2
m|aLt|2 describes

an additional kinetic energy offset which takes into account the fact that the atoms
are moving at a finite velocity in the lab frame. The term εµ(t) = −µ[R(t) · ∇B +
B0] describes the Zeeman energy due to the presence of a magnetic field. The R-
dependent Zeeman contribution in εµ is set to zero whenever the acceleration of the
lattice is orthogonal to the magnetic field gradient.

The effect of the constant force Fµ on the Bloch wavefunctions is to induce a
time-dependent translation in reciprocal space which is given by

k(t) = k0 +
Fµt

~
. (5.11)

Because of the periodicity of the lattice, the quasimomentum k(t) is restricted to the
first Brillouin zone and the motion is periodic with a Bloch period tB which depends
on the direction and strength of the force applied. For example, the Bloch period
for a force pointing from the Γ-point through the M-point is tB =

√
3~kL/ |Fµ|
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Figure 5.8.: Adiabatic motion of atoms in the lowest band. (a) Schematic periodic
motion of the particles (blue circles) in the first BZ for a force F pointing as illus-
trated (red arrow). (b) Corresponding images of the quasimomentum distribution
of the atoms during the adiabatic Bloch oscillation. Images of the condensed 87Rb
atoms loaded in the lattice are taken in the lab frame after band-mapping and
TOF. Atoms are restricted to the first Brillouin zone (hexagons) because only the
first band is populated during the adiabatic motion, as illustrated in (c). Bands
are plotted in a repeated zone scheme.

in the honeycomb lattice, while the Bloch period for a force pointing through the
K-point is tB = 3~kL |Fµ|, simply because of the geometry of the Brillouin zone. It
is important to note that the images we get after band mapping and TOF are taken
in the lab frame. This means that we observe the BZ moving with respect to the
atoms while the opposite happens in the co-moving frame as depicted in Fig. 5.7b.
Given that the choice of reference frame does not affect the physics, the result of
the forces is to move the atoms in the band according to eq. 5.11, as illustrated in
Fig. 5.7c.

Phase factors from the adiabatic motion

If the force is sufficiently weak to restrict the dynamics to a single band n, the form
of the Bloch wavefunctions is preserved, up to a phase factor, by substituting the
quasimomentum with the time-dependent one, k(t)

Ψ̃(t) = eiη(t)ψnk(t), (5.12)

where ψnk(r) are Bloch wavefunctions of the bare Hamiltoninan H0 = p2/(2m) +
VL(r) for the nth band. By substituting the ansatz 5.12 into the time-dependent
Schrödinger equation for H̃, eq. 5.9, the phase factor η(t) is derived. This is given
by η(t) = ϕdyn(t) + φg that generically includes both a dynamical contribution

ϕdyn(τ) = −1

~

∫ τ

0

[E1 (k + Fµt) + εµ + εkin (t)] dt (5.13)
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Figure 5.9.: Diabatic motion of atoms in the first and second band. (a) Images of
the quasimomentum distribution of the atoms after band-mapping and TOF for
the same motion illustrated in Fig. 5.8a. Due to the presence of a strong force,
the motion of the atoms is non-adiabatic: Atoms outside the first Brillouin zone
(hexagons) are populating higher bands. Their motion in the two lowest bands is
illustrated in (b).

and a geometric contribution

φg = i

∫ τ

0

〈u1
k(t)| ∇k |u1

k(t)〉 ·Fµ dt = i

∫
C

〈u1
k| ∇k |u1

k〉 · dk (5.14)

which depends only on the path C taken in the reciprocal space and corresponds to
the Berry phase for any closed loop. An example of adiabatic motion of atoms in
the hexagonal lattice is illustrated in Fig. 5.8.

Non-adiabatic motion

Transitions into higher bands occur when a strong external force is acting on the
particles. In the context of electrons in solids this effect is known as the Landau-
Zener breakdown, occurring if the applied electric field is strong enough for the
electrons to be excited from the valence to the conduction bands [217]. In our case,
we can not describe our system as a linear crossing of energy levels, as Landau
and Zener do, but we can derive equivalent equations of motion that describe the
evolution of the atoms in the two lowest bands of the honeycomb lattice. To find the
equation of motion from the time-dependent Hamiltonian of eq. 5.9, we can make
an ansatz for the wavefunction like Ψ(t) = α1(t)ψ1

k(t) + α2(t)ψ2
k(t). Analogously to

what we have done before for a single band, we can derive the equation of motion
for the coefficients α1 α2 from the Schrödinger equation

i~Ψ̇ = (H0 −Fµ · r)Ψ (5.15)

where the common energy offsets εµ and εkin, not relevant for the dynamics, have
been neglected. The equations of motion for atoms in the two lowest bands are
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described by

i~
(
α̇1(t)
α̇2(t)

)
=

(
E1

k(t) − 〈u1
k(t)|Fµ · r |u1

k(t)〉 − 〈u1
k(t)|Fµ · r |u2

k(t)〉
− 〈u2

k(t)|Fµ · r |u1
k(t)〉 E2

k(t) − 〈u1
k(t)|Fµ · r |u1

k(t)〉

)(
α1(t)
α2(t)

)
.

(5.16)
When the force is strong, first and second band are coupled and atoms which are
initially prepared in the lowest band can populate the second band during their
motion in the Brillouin zone, as illustrated by the example in Fig. 5.9.

5.3.4. Effects of weak interactions

In the experiments described in this thesis we are studying weakly interacting bosons
in a superfluid state where the interactions are repulsive. Their effects are not
always negligible, as we already mentioned in Section 4.1.3. Weak interactions can
result in instabilities when the particles move in the energy bands and have a non-
zero quasimomentum. These instabilities put a limit on the timescales of coherent
evolution of the wavefunction when particles are subjected to a force. The most
significant sources of instability are summarized here, for a more detailed discussion
we reference to the following experimental and theoretical studies [143, 218–223].

Dynamical and energetic instabilities

Dynamical and Landau instabilities are the two main sources of dephasing of the
weakly interacting BEC. Both instabilities can occur in a lattice and depend on the
quasimomentum of the condensate.

Energetic (Landau) instabilities are a common dissipative process for superfluids
and they occur whenever the system can lower its energy by emitting phonons.
Whether that is the case is determined by the energy dispersion of the excitation
modes. If the spectrum has negative eigenvalues, the population of these modes will
grow and the excitations will break the superfluidity. In free space, this instability
corresponds to the criterion for superfluidity given by Landau, where the condensate
with a group velocity larger than the sound velocity is energetically unstable to the
presence of perturbations [224]. In a periodic potential, an analogous sound velocity
can be derived from the excitation spectrum. In the tight binding limit and in
absence of trapping potential the excitation spectrum is calculated analytically [219,
220, 225] and the sound velocity is approximated by c2 ≈ Un0E0(k)/k2 where E0(k)
is single particle energy spectrum in absence of interactions, k the quasimomentum
of the excitations, U the interaction strength and n0 is the population of each lattice
site. The greater the interactions the less important the Landau instability will be.

While Landau instability is closely related to the thermal component of the gas
and occurs only at finite temperatures, dynamical instability is instead a collective
excitation of the condensate and it can happen even at T = 0 [221]. This instability
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Figure 5.10.: (a) Evolution of the BEC (∼ 5 × 104 atoms) in the lattice with
increasing hold time. The initial quasimomentum of the condensate is represented
in the schematic (red dot). Images are taken after band mapping with a short time-
of-flight. Instabilities can deplete the condensate and modify the quasimomentum
distribution on long timescales. (b) Log plot of typical lifetimes for a BEC of
∼ 5 × 104 atoms in a 1Er lattice measured by monitoring the decrease of the
maximum optical density over time. They are measured at different k-points
along a path thoward the K or M point, k values are renormalized to the distance
from the Γ point to the band edge, kBand edge. Note that lifetimes close to the edge
of the band are typically ≤1ms.

occurs only for weakly interacting particles in a periodic potential as a result of the
interplay between the dispersion relation and nonlinearity of the Gross-Pitaevskii
equation. The dynamical instabilities arise for a quasimomenta above a threshold
kc, where the frequency of the excitation spectrum of the Bogoliubov modes has
an imaginary component [219, 222, 226]. When this happens, an arbitrary small
perturbation can grow exponentially in time. The growth of these unstable modes
drives the system far away from the initial state, as observed and studied in 1D
lattice experiments [221, 227, 228]. In the tight binding limit for a 1D lattice the
instability sets in at the quasimomentum where the effective mass changes sign [219,
226]. Intuitively, this can be understood by noting that a sign inversion corresponds
to the case of an effective attractive interaction which makes the system unstable.

Both instabilities occur in our case since the almost pure BEC is weakly inter-
acting. Typical working parameters, like average particle number, densities and
interaction strength for the array of tubes are derived and summarized in the ap-
pendix C. As illustrated in Fig. 5.10, we observed instabilities which decrease the
lifetime of the condensate in the lattice when the atoms are prepared at a quasi-
momentum k 6= 0. The images in Fig. 5.10a show an example of such growth of
excitation modes which alters the initial state and destroys the condensates after
some long hold time. We observed that the timescale for the growth of instabilities is
strongly dependent on the quasimomentum and it changes by more than four orders
of magnitude from the bottom of the first band to the zone edge, as illustrated in the
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graph of Fig. 5.10b. The continuous decrease in lifetime indicates that both ener-
getic and dynamical instabilities are present in our experimental realization. These
instabilities put a limit on timescales for the motion of the atoms in the band.

In the experimental results of the following chapters, the atoms are in a super-
fluid state as they are loaded in shallow lattices (1− 5Er) and interactions are weak
and repulsive. When we apply a force to move the atoms in reciprocal space, we
purposely employ oscillations which are fast enough to avoid the loss of coherence
caused by the exponential growth of the instabilities. The most relevant effect of
weak interactions that we need to account for is the initial quasimomentum spread
of the weakly interacting BEC loaded in the lattice at k = 0. In the following
chapter, we will model it with a distribution n(k) which represents the normalized
quasimomentum distribution of the atoms in the lattice, approximated by a Gaus-
sian with standard deviation σk whose spread depends on density and interaction
strength.

5.4. Final remarks

In this chapter, we have introduced the experimental setup of the honeycomb lattice
and we have illustrated standard techniques to probe and manipulate the state of
atoms loaded into it. We have shown how atoms subjected to an external force
can be moved in the energy band along a certain path in the Brillouin zone which
we can choose experimentally. In the following chapters we will make use of Bloch
oscillations to probe the topological properties of the lattice by probing how the
eigenstates change when particles are moved in the Brillouin zone.
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Chapter 6.

Aharonov-Bohm interferometry in
the honeycomb lattice

As reviewed in Chapter 2, the physical properties of a lattice are encoded not only in
the scalar dispersion of the bands, but also in the geometry of the band eigenstates.
The ability to map the distribution of Berry curvature of an energy band is essential
to its characterization as it determines its topological invariant. In this chapter
we present the interferometric technique, extension of the Zak phase measurement
technique presented in [57, 58], which we use to probe the topological properties
associated with individual cones of the optical honeycomb lattice.

In Section 6.1.1, the interferometry around the Dirac cones is introduced and the
analogy with the celebrated Aharonov-Bohm effect is illustrated. The experimental
sequence is described in general terms in Section 6.1.2, then the details of the exper-
imental realization are briefly presented in Section 6.2. Here, we also comment on
the sources of systematic errors that can introduce non-negligible dynamical phases
to the interferometric signal and we illustrate the theoretical model used to interpret
the experimental results, Section 6.2.3. In Section 6.3, the experimental results of
the measured Berry phases associated with the Dirac cones are presented. In Section
6.3.2, a self-referenced interferometry allows us to reduce systematic errors and to
estimate an upper bound for the spread in Berry curvature. In Section 6.3.3, the
interferometry is used to directly observe the motion of the fluxes in the Brillouin
zone and their annihilation upon lattice imbalance. In Section 6.4, conclusions and
future applications of this interferometric technique are briefly summarized. Addi-
tional details on eperimental parameters and numerical simultaions can be found in
appendix D.

6.1. An interferometer to characterize Bloch bands’
topology

To locally map the topological features of a Bloch band of the honeycomb lattice, we
realize an atomic interferometer in momentum space. This experimental technique
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Figure 6.1.: In the Aharonov-Bohm effect (a), electrons encircle a magnetic flux
in real space, whereas in our interferometer (b), the particles encircle the π-Berry
flux of a Dirac point in reciprocal space. In both cases, the flux through the
interferometer loop gives rise to a measurable phase difference.

is presented in this section.

6.1.1. The analogy with the Aharonov-Bohm effect

The Aharonov-Bohm effect [10] is one well known example of how a geometric phase
can manifest itself when particles move adiabatically in a closed loop in the param-
eter space. In the specific example considered by Aharonov and Bohm, charged
particles are moving around an infinite solenoid, source of a magnetic field. Even
if the particles travel in a zero-field region where no force is acting on them, the
magnetic flux confined inside the solenoid influences the eigenstates of the charged
particles everywhere via the magnetic vector potential A(r). As a result, parti-
cles with charge q acquire a path-dependent phase shift due to the presence of a
vector potential extending outside the coil. If two particles are moving along dif-
ferent paths, on the left and on the right of the solenoid (Fig. 6.1a), they acquire a
phase difference due to the magnetic flux, ΦB, through the enclosed area S. This
measurable phase difference between particles is

∆ϕ =
q

~

∮
C

A(r)dr = 2π
ΦB

Φ0

(6.1)

where C is the contour of the enclosed area, Φ0 = h/q is the flux quantum and
ΦB =

∫
S
B(r)dS.

The topological features of an energy band can be viewed as the analog of a
magnetic field in reciprocal space generated by the Berry connection An(k), that
plays the role of the vector potential A(r) for the neutral atoms in the optical
lattice. The Berry curvature Ωn(k) is thus equivalent to a magnetic field B. The
Dirac cones of the honeycomb lattice with their singular Berry fluxes correspond to
the infinite and narrow solenoid. In analogy to an Aharonov-Bohm interferometer
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that measures the total magnetic flux in real space, we can thus realize an atomic
interferometer to measure the Berry flux of a certain energy band in momentum
space. By adiabatically moving a condensate, our (ideally) point-like probe, in the
lowest energy band of the honeycomb lattice, we can directly measure the topological
properties associated with a Dirac cone, which have been presented in Chapter 3.
Information on their distribution in reciprocal space can be gained by changing the
area of the loop, i.e. the total flux going through the interferometer.

6.1.2. The sequence for the Aharonov-Bohm interferometry

The Aharonov-Bohm interferometry for ultracold atoms combines the motion due
to a spin-dependent force, presented Section 5.3, with a spin-echo sequence [57, 58].
The protocol measures the phase difference picked up by the two spin components
as they move in a loop in the Brillouin zone.

In our experimental realization, the spin-echo sequence employs two internal states
of 87Rb, |↑〉 = |F = 2,mF = 1〉 and |↓〉 = |F = 1,mF = 1〉 that have opposite mag-
netic moment. The interferometer sequence is illustrated in Fig. 6.2. It begins with
the preparation of an almost pure 87Rb BEC in the state |↑〉 at quasimomentum
k = 0 in the lowest band of a V0 = 1.0(1)Er deep lattice. The lattice depth has been
chosen to be able to move the atoms adiabatically in the energy band on timescales
on the order of few milliseconds.

Subsequently, the atoms are exposed to a microwave (MW) field resonant with the
transition |↑〉 → |↓〉 of frequency ωr which is described by following field VMW(t) =
~Ω cos(ωrt), Ω being the Rabi frequency. The effect of the microwave is to coherently
couple the two states. In the rotating frame, a π/2-microwave pulse will transform
the spin states according to

|↓〉 → 1√
2

(|↑〉+ |↓〉) (6.2)

|↑〉 → 1√
2

(|↑〉 − |↓〉) (6.3)

while a π-pulse will flip the states as | ↑〉 → −| ↓〉 and | ↓〉 → | ↑〉. As illustrated
in Fig. 6.2, in the step (i) a resonant π/2-microwave pulse creates a coherent super-
position of |↑〉 and |↓〉 states. After this pulse each atom will be in the following
state

|ψ〉 =
1√
2

(|↑,k = 0〉 − |↓,k = 0〉) (6.4)

where |k〉 indicates the Bloch wave of the first band with quasimomentum k. Since
we are working with N particles loaded in the lattice, we need to remember that
product of these single particle states constitutes the many-body state. After the
state preparation, a state-dependent force from a magnetic field gradient and an
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Figure 6.2.: Interferometer sequence. Hexagons indicate the first Brillouin zone
and red (blue) spheres are atoms in the |↓〉 (|↑〉) state. The sequence of microwave
pulses and the motion of particles in the energy band due to the applied forces
are illustrated. The different steps of the protocol are described in the main text.

orthogonal state-independent force from the lattice acceleration move the atoms
adiabatically along state-dependent paths in reciprocal space, which are described
by the time-dependent quasimomentum k(t) of equation 5.11, (ii). The evolution of
each atom is described by the time-dependent Hamiltonian for Bloch oscillations, see
eq. 5.9, and the total state-dependent force F is described by eq. 5.10. In the ideal
case, the direction of the force is chosen such that the two spin components move
symmetrically about a symmetry axis of the dispersion relation, i.e. kx,↑ = −kx,↓
and ky,↑ = ky,↓, as shown in figure. This ensures that two spin states of opposite
magnetic moment sample the same dispersion relation at each point in time

E1
(
k(0) + F |µ|t

)
= E1

(
k(0) + F−|µ|t

)
. (6.5)

If that is the case, there is no energy difference between the spin states anywhere
along the path. This means that after an evolution time t the dynamical phase
ϕdyn(t) =

∫ t
0
E1(k(0) + F t′)dt′ arising from the motion of each atom in the energy

band is identical for both spin states and it will have no influence on the final
measurement of the Berry phase. In this case the state of a particle reads

|ψ〉 =
eiϕdyn(t)

√
2

(
|↑,k−F |µ|t〉 − |↓,k + F |−µ|t〉

)
. (6.6)

If the orthogonality between the forces is imperfect, instead, the atoms in the two
spin states will evolve differently and they will acquire different dynamical phases
during the motion. These additional terms will contribute to the phase one measures
at the end of the interferometry.

After an evolution time τ , a microwave π-pulse swaps the states |↓〉 and |↑〉
(iii). The two atomic wavepackets now experience a magnetic force pointing in
the opposite direction along x, such that both spin components arrive at the same
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6.1. An interferometer to characterize Bloch bands’ topology

quasimomentum kfin after an additional evolution time τ (iv). At this point, the
state of the atoms is given by the following superposition of |↑〉 and |↓〉 states

|ψfin〉 ∝ |↑,kfin〉+ eiϕ|↓,kfin〉 (6.7)

with relative phase ϕ. Ideally, all the dynamical phases accumulated by the two
spin states should be common because of the symmetry of the paths and the use
of the spin-echo pulse, which eliminates the contribution to the dynamical phase
related to the motion in the inhomogeneous magnetic field. In this case the phase
ϕ consists of the geometric phase ϕB only. In reality experimental imperfections
can introduce a difference in the dynamical phases accumulated by the two spin
components, ϕdyn,↓, ϕdyn,↑. The final phase ϕ is given by

ϕ = ϕB + (ϕdyn,↓ − ϕdyn,↑). (6.8)

Finally, a read-out π/2-microwave pulse with a variable phase ϕMW is applied at the
end of the motion (v). The microwave field changes as VMW(t) = ~Ω cos(ωrt−ϕMW)
and the π/2-pulse rotates the states according to

|↓〉 → eiϕMW/2

√
2

(
eiϕMW/2|↑〉+ e−iϕMW/2|↓〉

)
(6.9)

|↑〉 → e−iϕMW/2

√
2

(
eiϕMW/2|↑〉 − e−iϕMW/2|↓〉

)
(6.10)

and closes the interferometer. The final state becomes

|ψfin〉 ∝ ei
ϕ+ϕMW

2

(
cos
(ϕMW

2
+
ϕ

2

)
|↑,kfin〉+ i sin

(ϕMW

2
+
ϕ

2

)
|↓,kfin〉

)
. (6.11)

The phase information is converted into spin population fractions that are given by

n↑,↓ =
N↑,↓
N

=
1

2
(1± cos(ϕ+ ϕMW)) (6.12)

where N is the total atom number and N↑,↓ the atoms in a certain spin state. The
accumulated phase ϕ can be measured by varying the phase ϕMW. It is important
to note that, given the form of eq. 6.12, we can only measure the phase ϕ modulo
π. This means, for example, that we can not distinguish the sign of the Berry phase
when it is exactly ±π.

In order to independently estimate any possible dynamical phase contribution
and extract only the one of geometric origin, we additionally employ a ’zero-area’
reference interferometer, comprising a V-shaped path (Fig. 6.2 (v)) realized by re-
versing the lattice acceleration after the π-microwave pulse in (iii). In this case,
the measured phase consists only of a small dynamical phase difference introduced,
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Chapter 6. Aharonov-Bohm interferometry in the honeycomb lattice

eventually, by the experimental imperfections.

6.2. Experimental details

Here, the experimental parameters and possible sources of residual systematic errors
for the Aharonov-Bohm interferometry are summarized. We also comment on the
effect of weak interactions on the interference fringes and present a simple theory
model which we use to interpret the experimental results obtained in the weakly
interacting case. Additional experimental details can be found in the appendix D.

6.2.1. Experimental parameters

The interferometry is performed in a 1.0(1) Er lattice in which we load a Rubidum
cloud of ∼ 4 × 104 condensed atoms. The lattice depth was chosen to have a
large separation between the two lowest bands (∼ 8 kHz at the Γ-point) such that
the atoms can move adiabatically during the entire duration of the interferometer
sequence which is fixed at 2τ = 1.6 ms. We quantify the adiabaticity of the motion
for this range of forces by checking that the occupation of higher bands is negligible
at the end of the interferometry. For interferometer paths ending near the Dirac
point where the adiabaticity condition is hardest to fulfill, the population in the
second band is ∼ 20% of the total atom number. The value of τ has been chosen
so that the effect of instabilities of the weakly interacting BEC can be neglected in
first approximation. The trap frequencies of the combined blue-detuned lattice and
dipole potential are ωx,y/2π=26.5(7) Hz and ωz/2π=183(2) Hz. Typical parameters
for the array of tubes are summarized in appendix C.

To move the atoms in reciprocal space we combine the forces from field gradients
and lattice acceleration. A magnetic field gradient B′ = 9.0(1) G/cm produces a
fixed acceleration |µ∇B| /m= 2.9(1) m/s2 and creates a spin-dependent force along
the x-axis. An orthogonal lattice acceleration aL is realized by sweeping the fre-
quency of the lattice beam three, as described in Section 5.3. The magnitude of this
acceleration varies from 1 to 11 m/s2 in the experimental runs. The atoms’ final
quasimomentum is set by the lattice acceleration according to

kfin
x = 0 and kfin

y = 2maLτ/~. (6.13)

As illustrated by the schematics of Fig. 6.3, different kfin
y result in loops of different

geometry that probe different portions of the Brilloiun zone. The absorption images
in the bottom row show examples of the quasimomentum distribution detected after
the interferometry. The detection sequence combines band-mapping with a Stern-
Gerlach pulse that spatially separates the |↑〉 and |↓〉 states during time of flight.

As explained earlier, the spin-dependent motion of the atoms is created by a field
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Figure 6.3.: Examples of band-mapped images taken after the interferometry and
the detection sequence, as described in the main text. Schemes on top illustrate
the paths taken in the Brillouin zone for each example. Atoms in the ↓ and ↑
internal states of 87Rb are spatially separated (left and right in the images) by the
Stern-Gerlach pulse to measure the populations n↑,↓. The red regions of interest
(ROI) highlight the ↓ atoms which have been addressed by all the microwave
pulses and are counted in the final data analysis. The atoms outside the ROIs,
e.g. see atoms in (b), are the ones not addressed by all the microwave pulses due
to the inhomogeneous magnetic field. Since they move along different paths in the
Brillouin zone they are not analyzed. Depending on the end point of the loop we
analyze one (a), three (b) or two (c) clouds since the edge of the Brillouin zone
(hexagons) Bragg reflects a fraction of the weakly interacting cloud. More details
on the effect on the BZ edge and on weak interactions are in Sec. 6.2.3.

gradient. As a result, the microwave pulses of the protocol will not be resonant
for the entire atomic cloud which has a finite size. This results in a fraction of
atoms, about 10% in our case, which is not properly addressed by all the microwave
pulses. These atoms travel along paths which are different from the ones of the
interferometer loop and they will end at different locations in the Brillouin zone, as
one can clearly note from the image in Fig. 6.3b. Moreover, the spatially varying
detuning across the cloud reduces the maximum contrast of the interference fringes
since atoms participating in the protocol will experience slightly different microwave
rotations depending on their position in the inhomogeneous gradient.

To extract the phase after the interferometry, we count only the populations of
atoms that have been addressed by all the microwave pulses of the interferometric
protocol, i.e. atoms in the red boxes in Fig. 6.3. This selective analysis enhances
our resolution since large part of the incoherent background is removed from the
interference signal. The interference fringe for the fraction of atoms in the two spin
states, n↑,↓, is fitted with a sine function.

87
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6.2.2. Canceling dynamical phases

As mentioned in Sec. 6.1.2, canceling the dynamical phase difference between the
two spin states is necessary if we want to extract a quantitative estimate on the
spread in Berry curvature from the phase of the interference fringes. Imperfections
in alignment of the magnetic field gradient relative to the lattice, errors in the
relative angles or intensities of the lattice beams, can introduce small path-dependent
dynamical phases that contribute to our experimental uncertainty. Here these effects
are briefly reviewed. More details on the different optimization procedures and on
the system parameters can be found in the appendix D.

The dynamical phase difference between the two states for each half of the inter-
ferometer sequence is

∆ϕdyn =
1

~

∫ τ

0

[
E1 (k + Fµt)− E1

(
k + F−|µ|t

)
+ εµ (t)− ε−µ (t)

]
dt (6.14)

where the dynamical phase is defined by eq. 5.13. This contribution cancels when
all of the following conditions are met:

• the magnetic field that enters in the definition of Fµ and of the Zeeman term
εµ, have negligible time-dependent noise. To minimize the effect of magnetic
field fluctuations, we use a low-noise power supply for the coil’s current corre-
sponding to a peak-to-peak field noise of dB ' 240 µG, mostly at 50 Hz. To
reduce the effect of background AC-noise, mostly at 50 Hz and reproducible
from shot to shot, the beginning of the interferometer sequence is synchronized
to the mains voltage. Furthermore, we keep the duration of the interferometer
sequence fixed to probe the same portion of the 50-Hz cycle in each experi-
mental run which thus adds a fixed dynamical phase contribution.

• the atoms travel along paths where the energy band is symmetric, which elim-
inates the first term in eq. 6.14. The symmetry of the energy bands about
the symmetry axis of the interferometry has been checked with the Aharonov-
Bohm sequence by comparing the measured phases along ideally symmetric
paths, e.g. ending at kfin

y or -kfin
y . The phase difference between the two types

of loops should vanish when the dispersion is symmetric. Moreover, the angles
between the lattice beams are measured to be 120(1)◦ and therefore introduce
negligible systematic errors.

• the acceleration from lattice and gradient are orthogonal such that the mag-
nitude of force Fµ is the same for the two spin-components and εµ is zero, i.e.
the two spin states experience the same Zeeman energy shift along the path.
The effect of the misalignment of the magnetic field gradient is reduced by
the use of a spin-echo π-pulse which reverses the direction of motion of the
atoms in the inhomogeneous magnetic field. In addition, the alignment of the
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Figure 6.4.: Effect of the geometry of the loop combined with quasimomentum
spread. (a-b) Examples of Interferometer loops ending at the K point with rhom-
bic (a), or rectangular (b) geometry, illustrating how the shape of the loops affects
the fraction of the atoms that acquire a phase shift (green sectors of the circles).
Light (dark) dashed green lines represent paths which have (have not) enclosed the
Dirac point. For the interferometer loop given in (a), only a minority of the atoms
that cross the edge of the BZ is phase shifted. (c) Curves calculated for different
quasimomentum spreads and fixed spread in Berry curvature, δkΩ = 0.7×10−4kL,
from the theory model, eq. 6.15-6.16.

gradient is fine-tuned by changing the current in the two Stern-Gerlach coils.
For orthogonal gradient and lattice accelerations, the phase measured by the
zero-area reference interferometer should be the same for loops ending at kfin

y

and −kfin
y . Hence, a vanishing phase difference between the two types of loops

sets the correct value of the current in the coils. From our calibrations, we
estimate an error on the gradient alignment of at most 2◦.

6.2.3. Effects of atomic quasimomentum distribution

Due to the diluteness of the atomic cloud and the short timescales for the motion
of the atoms in the band, the system can be considered as non-interacting in first
approximation. The effects of dynamical instabilities are neglected in our modeling.
We only account for the quasimomentum spread of the weakly interacting cloud to
accurately relate the measured interferometer phases to the location and spread of
the Berry flux in reciprocal space.

If the interferometric protocol is performed with a single particle in the peri-
odic potential, the interferometric signal would be exactly described by eq. 6.12.
In our experimental realization, instead, we need to account for the quasimomen-
tum distribution of the particles in a lattice, which we parametrize by n(K), with∫
n(K) d2K = 1. If there were no interactions, the distribution of the condensed

atoms in reciprocal space would be a well localized Gaussian distribution where
the widths of it are given by the frequencies of the harmonic trapping potential for
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Figure 6.5.: Expected phase differences. Curves are calculated for different spreads
in Berry curvature δkΩ and σk = 0.14kL. Note that for large spreads δkΩ the phase
difference does not reach the maximum value of π since a significant portion of the
Berry curvature extends outside the area of the interferometer (b). Zoom on the
first phase jump (a). (c) Effect of the quasimomentum spread on the decrease in
contrast in proximity of a Dirac cone. Curves are calculated for different quasi-
momentum spreads and fixed spread in Berry curvature, δkΩ = 0.7× 10−4kL. (d)
Expected contrast C in proximity of a Dirac cone calculated for different spreads
in Berry curvature δkΩ and a σk = 0.14kL.

atoms in the lattice with effective mass m∗ = ~2(d2E1/dk2)−1. This distribution can
be broadened by the presence of weak repulsive interactions. In order to account
for the quasimomentum distribution of the atoms in the lattice and correctly model
the experimental results, we need to average the interference fringe over the entire
extension of the cloud, see the schematic of Fig. 6.4a for a visualization of the effect
of momentum spread. We assume n(K) to be Gaussian distribution of rms width
σk. The value of σk is measured before the start of the interferometer sequence and
it is σk = 0.14(1)kL. To estimate the interference signal, we can consider an atom
that has an initial quasimomentum K 6= 0. In a loop that encloses a region S for
atoms initially at k(0) = Γ, this atom acquires the following Berry phase

Φ(K) =

∫
S

Ω1(k + K) d2k (6.15)
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where Ω1 is the Berry curvature of the lowest band, described by eq. 2.35 and 3.19.
The spread in Berry curvature δkΩ is quantified by the half width at half maximum of
the distribution of Berry curvature, eq. 3.19. By averaging the population fractions
of the ↑ ↓ states over the entire quasimomentum distribution of the cloud we get
the total interference signal

n↑ − n↓ =

∫
cos [ϕMW + Φ(K)]n(K) d2K

= C cos(ϕMW + ϕ). (6.16)

The actual interference contrast in the experiment is imperfect due to inhomoge-
neous broadening of the microwave transition, population transfer to the second
band in proximity of the Dirac point, and the heating associated with dynamical
instability of the Gross-Pitaevskii equation. In modeling the data, we therefore glob-
ally rescale the predicted contrast C according to the maximum observed contrast
for loops ending close to the Dirac point, i.e. Cexp =Cmax × C .

The main effect for a highly localized localized Berry curvature and a relatively
modest momentum spread is to shift the position of the phase jump along ky, as
shown in the graph of Fig. 6.4c, but not to change its sharpness, which relates,
instead, to the spread of Berry curvature as the theory curves in Fig. 6.5a-b show.
This is due to the fact that the Berry curvature is extremely well localized – essen-
tially point-like when compared to the broader atomic quasimomentum distribution.
If these two distributions have similar extents, instead, the smoothness of the phase
jump will depend both on Berry curvature and atomic quasimomentum distribu-
tions.

The shift of the phase jump location (Fig. 6.4c) can be understood using simple
geometric arguments, as it depends only on the distribution of the cloud in reciprocal
space and the geometry of the interference loop. The phase jump and the minimum
in the interference contrast occur when at least half of the particles have enclosed
the Dirac point at the end of the loop. Because of the momentum spread, each atom
has sampled a slightly different path in momentum space and may therefore have
acquired a different geometric phase. If the interferometer loop has a rectangular
shape and its extension is larger than the quasimomentum spread of the cloud, for
example, the phase jump will occur exactly at the Dirac point (see Fig. 6.4b). For
our rhombic paths, however, when the interferometry ends at the K(K′) point, only
the atoms in the shaded sector of Fig. 6.4a have performed a loop which enclosed
the Dirac point. The shape of this sector of the atomic cloud is given by the opening
angle of the loop α, which is about α ∼ 75◦ at the first Dirac point, and the fraction
of atoms in the sector is determined by the distribution n(K). The condition on the
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Figure 6.6.: Schematic: Changing the lattice acceleration realizes loops with dif-
ferent geometries (shaded areas, hexagon depicts the first Brillouin zone). The
measured interference fringes for loops 1-3 are shown. The fractions of atoms in
the state | ↓〉, n↓, are plotted as a function of the phase ϕMW. Measurement loop
data are shown in blue and zero-area reference data are shown in gray with cor-
responding sinusoidal fits. The contrast is limited by inhomogeneous broadening
of the microwave transition, the finite momentum spread of the condensate and,
for large final quasimomenta, by dynamical instabilities.

phase jump at the K-point than reads∫
sector

n(K)d2K =

∫ +∞

−∞

∫
ky>kx cot(α/2)

1

2πσ2
e−(k2

x+(ky−kfin
y )2)/(2σ2)dkxdky = 0.5 .

(6.17)
The position of the phase jump happens at a kfin

y that is slightly shifted from the
ideal case of σk = 0. Regarding the smoothness of the phase jump, this is indicative
of the spread in Berry curvature: a larger the spread results in a smoother change
in the geometrical phase acquired along loops of increasing size, see Fig. 6.5. When
the Berry curvature extends outside the area of the interferometer the maximum of
the geometrical phase is lower than π, as it can be seen from the graph of Fig. 6.5.

6.3. Measurement of the Berry phase associated with
the Dirac cones

In this section we present the experimental results obtained with the Aharonov-
Bohm interferometry where we directly measured the Berry phase associated with
the Dirac cones of a honeycomb optical lattice which has time-reversal symmetry.

6.3.1. Detecting the Berry fluxes

To detect the Berry fluxes and to locate them in the Brillouin zone, we perform a
sequence of interferometric measurements in which we vary the region enclosed by
the interferometer loop, as illustrated in the schematic of Fig. 6.6. This is achieved
by varying the lattice acceleration to control the quasimomentum of the atoms at
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Figure 6.7.: Summary of phase shifts measured relative to the zero-area reference
interferometer for loops of different final quasimomenta kfin

y , as depicted in the inset
on the right. Error bars denote fit uncertainties or standard deviations in case of
averages. Lines are ab initio theory using a full band structure calculation with:
no momentum spread σk = 0 and perfectly localized Berry curvature δkΩ = 0
(black); σk=0.21kL and δkΩ ' 10−4kL (blue). δkΩ is the HWHM of the Berry
curvature distribution, see eq. 3.19. As explained in the main text, the shift in the
phase jump results from the momentum spread σk, while the broadening of the
edges is caused by δkΩ. The shaded area accounts for a variation in σk = 0.14–
0.28kL. Insets show the fraction of atoms n↓ detected in state | ↓〉 as a function
of the phase ϕMW for selected quasimomenta. Measurement loop data (blue) and
zero-area reference data (gray) are plotted.

the end of the loop, i.e. the parameter kfin
y defined by eq. 6.13. Some examples

of the interference fringes obtained after the Aharonov-Bohm interferometry are
presented in Fig. 6.6 and 6.7 together with the sinusoidal fits from which the phase
is extracted. For each loop geometry, the measured phase is compared with the phase
obtained with the zero-area reference interferometry to extract the geometrical phase
contribution. It can be seen from the graph 2 of Fig. 6.6 that we observe a clear
phase difference of ϕ ' π when one Dirac point is enclosed in the measurement loop.
In contrast, we find a vanishing phase difference when zero or two Dirac points are
enclosed in the loop, corresponding to the plots 1 and 3 in Fig. 6.6.

The interferometry is repeated for many different loops to map the change of the
geometrical phase in proximity of the Dirac points. The resulting phase differences
between measurement and reference loops are shown in Fig. 6.7. Here it can be seen
that there’s a clear jump of the phase from 0 to π for loops enclosing either the K
or K′ point. This phase goes back to zero when two fluxes are enclosed in the loop.
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Small deviations of the phases from 0 or π can be attributed to shot to shot noise
and residual systematic errors in the cancellation of dynamical phases. In fact, these
contributions are generally different for the measurement and reference sequences as
atoms move along different paths in the two cases. Additionally, magnetic field noise
can change from shot to shot resulting in a different contribution to the dynamical
phase for the two sets of data. Systematic errors are particularly relevant close to
the phase jump, where the contrast is minimal, and small errors can influence the
perceived direction of the phase jump. Nonetheless, given the sharpness of the phase
change which goes to π, the data are fully consistent with the behavior expected
for an inversion-symmetric lattice, where it is impossible to identify the sign of the
singular Berry flux (±π) at the K and K′ points.

The results are in good agreement with the theoretical predictions of our model,
see eq. 6.16. In comparing data with theory, we account for heating during the
sequence, more severe for longer traveled distance in the reciprocal space, by allowing
a range of momentum spread of the BEC, σk = 0.14–0.28kL. Here the minimum
value corresponds to the independently measured momentum spread of the cloud
before the beginning of the interferometer sequence (at k = 0).

6.3.2. Auxiliary analysis near the Dirac point: characterizing the
Berry curvature

As we have seen, systematic errors and small dynamical phases can still be present
in the value of the phase obtained when comparing measurement and zero-area ref-
erence loop. To improve our measurement precision, we performed self-referenced
interferometry in the vicinity of a Dirac point which eliminates the need for a sepa-
rate reference measurement and thus minimizes systematic errors.

This self-referencing exploits the periodicity of the Brillouin zone and works as
follows. As Fig. 6.8 illustrates, when the interferometry ends close to the edge of
the Brillouin zone, some atoms will have crossed the edge of the zone and some
will have not due to their finite momentum spread. Due to the periodicity of the
reciprocal space, atoms ending the loop with a quasimomentum outside the first
Brillouin zone are Bragg reflected and the quasimomentum k is shifted by one or
more reciprocal lattice vectors to be restricted to the first Brillouin zone (left and
right sectors in Fig. 6.8). Therefore, the effect of the edges of the three zones
that touch at K is to “slice” the atomic cloud into sectors: atoms that have (left,
right) or have not (bottom) crossed the edge of the zone, L,R,B, as labeled in
Fig. 6.9. These slices are projected onto three different corners of the first BZ by
the band-mapping technique and are well spatially separated in the pictures after
time-of-flight expansion, as illustrated by the images in Fig. 6.3 and Fig. 6.8. The
acquired phases of each sector of the cloud, ϕL, ϕR and ϕB, can thus be measured
independently. As atoms in the bottom cloud will always be last to go past the
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Figure 6.8.: Self-referenced interferometry at the Dirac point. Left: Interferometer
path closing at the K point. Because of the initial momentum spread, the cloud
(circle with colored sectors, not to scale) is split by the edges of the BZ. Middle:
Band-mapping spatially separates the three different parts of the cloud onto three
corners of the first BZ (schematic and image, where cloud sizes are dominated by
in-situ size). Right: The fraction of atoms for which the Dirac point lies within
the interferometer loop (green sectors) increases with final quasimomentum kfin.

Dirac points, they provide a new phase reference within the same shot, significantly
reducing sensitivity to drifts in the experiment. We determine the phase shift of the
L, R clouds, first to pass the first Dirac point, relative to atoms in the bottom cloud
B according to

ϕ =
ϕL + ϕR

2
− ϕB. (6.18)

The experimental results for the measured phase ϕ detected in proximity of the
Brillouin zone’s edge and around the K and K′ points are illustrated in Fig. 6.9.
The data show a sudden jump from 0 to π that occurs within a very small quasi-
momentum range of < 0.01 kL. An arctangent fit to the experimental data gives a
phase step of

ϕ = 0.95(10)π. (6.19)

Both results are indicative of an extremely well localized π Berry flux. In order
to give an estimate on the spread in Berry curvature, the results are compared
with the theoretical model where we apply eq. 6.16 to calculate the phase of each
interference fringe, substituting for the distribution n(K) the distribution of one
of the three slices of the full quasi-momentum distribution. The position of the
phase jump is in excellent agreement with the model that includes the estimated
momentum spread of σk = 0.15(1)kL. The steepness of the phase jump suggests a
spread in Berry curvature on the order of

δkΩ ' 10−4kL, (6.20)

corresponding to an energy offset between the A and B sites of ∆ ' h×3 Hz and of
a ratio of energy gap at the Dirac cone to bandwidth of ≤ 3× 10−4.
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Figure 6.9.: Results from self-referenced interferometry at the Dirac point. Phase
differences between atoms that have crossed the band edge (sectors L,R) and those
that have not (sector B) versus final quasimomentum kfin

y for paths close to the K
(K′) point in red (blue). The shaded region indicates a range δkΩ = 0−12×10−4kL
for the spread in Berry curvature, whereas the line is calculated for δkΩ ' 10−4kL
using the model described in the main text, corresponding to an A-B offset of
∆ ' h× 3 Hz. All theory curves are computed at a fixed momentum spread,
σk = 0.15kL.

Analysis of the interference contrast

The location of the Dirac cone manifests itself not only through a sharp phase
jump but also through a pronounced minimum in the interference contrast. All the
measured contrasts of the full cloud are plotted in Fig. 6.10 together with the theory
line calculated for the same parameters as the phase jump data in Fig. 6.9. First of
all, the reduction in contrast at the first Dirac point agrees well with theory while
the one at the second Dirac point has a worse agreement with our simple model.
This is most likely due to instabilities that are more pronounced for paths ending
close to the second Dirac point, as it can be seen from the images of the momentum
distribution of the BEC in Fig. 6.11b and from the measured increase in cloud size
plotted in Fig. 6.11a which is indicative of an increased momentum spread.

To constrain the possible spread in Berry curvature we analyze the contrast of
the interference fringes close to the first phase jump since it is the one that is less
affected by instabilities. The data of the contrast close to the first phase jump are
presented in Fig. 6.10b. By comparing it with our theoretical model we extract an
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Figure 6.10.: (a) Full interference contrasts C = (nmax
↓ − nmin

↓ )/(nmax
↓ + nmin

↓ ) of
the interference fringes of the full cloud for all measured final quasimomenta kfin

y . K
K′ points are at 1kL and 2kL. Red (blue) data points represents contrast measured
at positive (negative) kfin

y , as in Fig. 6.9. Theory line is calculated for δkΩ ' 10−4kL
and a fixed momentum spread σk = 0.15kL. The agreement with the reduction of
contrast at the second Dirac cone is worse since the spread σk of the theory curve
is fixed and the model does not account for effects of dynamical instabilities. (b)
Zoom on the contrast at the first Dirac point. Shaded region indicates a range
δkΩ = 0 − 12 × 10−4kL, green theory line is calculated for δkΩ ' 10−4kL, same
parameters of Fig. 6.9. Dashed line is calculated for δkΩ ≤ 6 × 10−4kL, our
conservative estimate. All calculations assume σk = 0.15 kL.

upper bound for the spread of the Berry curvature around the Dirac cone of

δkΩ ≤ 6× 10−4kL (6.21)

which is our conservative estimate. This corresponds to a maximal A-B site offset of
∆ ≤ h×12 Hz and a ratio of energy gap at the Dirac cone to bandwidth of ≤ 1×10−3.
The sharpness of the phase jump and the strong reduction of contrast down to our
detection limit demonstrate that the interferometric protocol can map the Berry
curvature with very high resolution.

Finally we would like to comment on the second band population for loops ending
close to the Dirac point. Although the vanishing band gap precludes performing
a perfectly adiabatic measurement in the immediate proximity of the Dirac point,
the population in the second band is constrained by independent measurements to
be ≤ 20% of the total atom number. Numerical simulations of the full dynamics,
which can be found in appendix D, showed that for a well localized Berry flux the
effect of second band population is to shift of the position of the phase jump and
of the reduced contrast. We find a moderate broadening of the contrast due to the
second band population for small AB offsets ∆. These numerical results indicate
that the comparison with our model gives us an upper bound on the localization of
Berry curvature.
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Figure 6.11.: Observed increase in quasimomentum spread. (a) Plot of rms cloud
sizes from Gaussian fits to the atomic cloud after band mapping and short TOF.
Data are averages and errors are standard deviations. An increase in cloud size
is indicative of an increase in momentum spread. (b) Examples of images taken
after band mapping and short TOF for some selected points.

6.3.3. Detecting the motion and annihilation of Dirac points

To verify the method’s sensitivity to changes in Berry flux, we performed interfer-
ometry in a modified lattice potential. As explained in Section 3.2.3, we can change
the position of the Berry fluxes in the Brillouin zone by imbalancing the powers of
the lattice beams. In the experimental realization we change the power of two lattice
beams (I1, I2) relative to the third (I3). With this choice, the Dirac points move
along the symmetry axis of the interferometer loop as illustrated in Fig. 6.12 and the
condition on the symmetry of the paths in the energy band, eq. 6.5, is still satisfied.
It follows that the lattice imbalance does not add any additional dynamical phase
to the measured interference signal.

By using a fixed measurement loop that encloses only one Dirac point in the
intensity-balanced case, we can measure the change of the geometric phase upon
imbalancing the lattice beam’s intensities. The motion of the Dirac points in and out
of the area of the loop results in a geometrical phase which jumps from π to 0. The
experimental results are presented in Fig. 6.12 where the observed phase is obtained
by comparing the measurement and zero-area reference loops. The measured phases
are in good agreement with theoretical predictions which take the value of δkΩ from
our best estimate, coming from the self-referenced data presented in the previous
section.

Since the location of the fluxes can be controlled at will, we can now probe the
modification of the topological features upon annihilation of the Berry fluxes. To
observe the relative motion of the fluxes, the location of two Dirac points in the
imbalanced lattice is mapped by using the self-referenced interferometry with paths
ending near the K and the K′ point and enclosing up to two Dirac points. For the
data in the vicinity of the second Dirac point we use the B cloud as a reference,
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Figure 6.12.: Observing the movement of the Berry fluxes: Measured phase differ-
ence between the zero-area reference loop and measurement loop is plotted versus
lattice imbalance around K (red) and K′ (blue). Final quasimomentum is fixed at
kfin
y = ±1.2 kL. Red and blue dots in the insets give the location of Dirac points for

the indicated imbalances. Theory curve is calculated for lattice depth V0 = 1 Er,
momentum spread σk=0.15 kL, and δkΩ ' 10−4kL. Shaded area corresponds to
δkΩ = 0− 12× 10−4kL.

with the label B now referring to the fraction of atoms in the front part of the cloud,
ky > kfin

y , that are the first to sample the Berry flux of both Dirac points. We again
apply eq. 6.18 to extract the geometrical phase. The results are shown in figure 6.13
where the measured phase jumps for different imbalance factors, f = I1,2/I3 are
plotted. With decreasing imbalance I1,2/I3 < 1, the Dirac points and the associated
fluxes move toward each other while preserving their distribution of Berry curvature.
As a result, the range of final quasimomenta for which the interferometer encloses a
single π flux narrows and both the upward and downward phase jumps shift towards
the M point, as we observed. For a strong imbalance (I1,2/I3=0.2), the two Dirac
points have annihilated at the M point, and no phase jump is detected for any loop
size. This indicates the change of topology of the band.

At an intermediate imbalance (I1,2/I3=0.7), the position of the phase jump at
kfin
y = 1.2kL is in very good agreement with theory. The position of the second

phase jump, instead, deviates by a '10% from the calculated value. This can
likely be attributed to a combination of geometric imperfections of the imbalanced
lattice potential that introduce additional dynamical phases, the second band pop-
ulation that shifts the location of the phase jump and of the minimum in contrast,
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Figure 6.13.: Moving and merging the Berry fluxes: Self-referenced phase near
K and K′ for an imbalance I1,2/I3 = 1.0 and I1,2/I3 = 0.7 in light and dark
blue, highlighting the shift in the location of Berry flux. For a stronger imbalance
of I1,2/I3 = 0.2 the Berry fluxes annihilate at the M point and no phase shift
is observed (orange data). The orange data are phase differences between the
measurement and reference loops for an imbalance of I1,2/I3 = 0.2. Curves are
guides to the eye obtained by fitting the observed phase jump with an arctangent
of slope fixed by our best estimate of the HWHM of the Berry curvature, δkΩ '
10−4kL, from the data of Fig. 6.9. The inset shows the calculated Berry phase for
loops with various final kfin

y and lattice imbalances using the same σk and δkΩ as
above. Colored lines indicate parameters explored in the measurements.

and the increase in momentum spread due to instabilities which has been observed
experimentally, as the results plotted in Fig. 6.11a illustrate. The inhomogeneous
broadening of the quasimomentum distribution may play a major role for these loops
since the position of the phase jump is quite sensitive to changes of the atomic dis-
tribution n(K), especially when the opening angle of the interferometer is small. In
our experimental realization the opening angle is α ∼ 42◦ when two Dirac points are
enclosed by the interferometer loop. The observed shift is compatible with the one
expected from the model of eq. 6.17 when we approximate the effect of the instabili-
ties with an asymmetric Gaussian distribution with standard deviations σkx = 0.1kL
and σky = 2.5 σkx.
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Figure 6.14.: Mapping the distribution of Berry curvature and measuring the
Chern number of a band via Aharonov-Bohm interferometry: the interferomet-
ric protocol is performed along different small loops (gray rhombic paths) which
cover the entire area of the Brillouin zone.

6.4. Final remarks and prospects

The results presented in this chapter demonstrate a versatile interferometric tech-
nique which allows us to measure local geometric phases along arbitrary closed paths
in reciprocal space and to directly map the Berry curvature of an energy band with
high quasimomentum resolution thanks to the use of a Bose-Einstein condensate.

We applied the Aharonov-Bohm interferometry to an optical honeycomb lattice
which constitutes the extreme test case for this technique due to the Berry flux
singularities imposed by the symmetries of the lattice potential. The measured π
Berry phase demonstrates the winding of the band eigenstate around a Dirac cone of
the lowest Bloch band. The sharpness of the observed phase jumps and the strong
reduction of contrast down to our detection limit demonstrate the capability of the
atom interferometry to detect extremely well localized topological features. More-
over, the Aharonov-Bohm interferometer allowed us to detect how the topological
features are changed when the lattice is imbalanced. We directly observed the anni-
hilation of the Berry fluxes which indicates the transition to a topologically trivial
band structure.

The limitation to the present setup are dynamical instabilities which put a limit
on the timescales of the interferometry and make it hard to be fully adiabatic in
proximity of the Dirac points. Reducing these effects might be important when one
wants to probe a less localized Berry curvature, where the effect of quasimomentum
spread and second band population can modify the phase jump and the interference
contrast in a non-trivial way. In future experiments these effects of interactions
could be reduced by combining slower ramps with the use of a Feshbach resonance
in an atomic species such as 39K [229].

Despite this limitation, the interferometric technique proved to be suitable to
resolve the distribution of Berry curvature of a single band by combining local mea-
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surements of the geometric phases along small Aharonov-Bohm loops, as illustrated
in Fig. 6.14. Since these local measurements would not be symmetric about a
symmetry axis of the energy band, it would also be necessary to reconstruct the dy-
namical phases picked up by the two spin states during their motion in the Brillouin
zone to subtract them from the signal. This can be done if the dispersion of the
band can be precisely reconstructed by spectroscopic techniques. In this case, the
interferometry would enable the full reconstruction of topological invariants such as
Chern numbers [57].

In the present setup the interferometry could be used to observe the change of
spread in Berry curvature and detect the sign of the Berry curvature at the inequiva-
lent Dirac cones when an AB offset is introduced by tilting the beams’ polarizations.
Even more interesting would be to apply it to the honeycomb lattice when time-
reversal symmetry is broken by periodic modulation [74, 82] of the lattice potential,
to measure its non-zero Chern number and the change of sign of the Berry phase
at the K(K′) points. The interferometry could potentially be applied to even more
exotic modifications of the bands, like the one predicted for the Floquet spectrum
of radiated graphene [230].

Multiband extensions of this work can enable measurements of Wilson loops and
off-diagonal (non-Abelian) Berry connections and thus allow to fully reconstruct the
complete geometric tensor of Bloch bands, as suggested in [107]. Extending outside
the realm of cold atoms simulations, the highly non-linear phase jump we observed
at the Dirac point may find application in precision force sensing when interactions
are under control, as our sensitivity is comparable to the results presented in the
following reference [231].
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Chapter 7.

Stückelberg interferometry in the
honeycomb lattice

In the previous chapter, the characterization of the geometrical features of a single
Bloch band has been presented. In this chapter, we start to develop interferometric
techniques for characterizing multi-band systems by looking at the non-adiabatic
dynamics of atoms in the optical lattice. In Section 7.1, the non-adiabatic motion
of atoms in the two lowest bands of the lattice is introduced. In Section 7.2, the
Stückelberg interferometry is presented. As suggested in several proposals, this
technique can allow the topological properties of the two bands to be extracted
[232–234] as well as the dispersion of the honeycomb lattice to be precisely mapped
[105, 106, 235]. In Section 7.2.2 the preliminary results of Stückelberg interferometry
are presented. Conclusions and prospects are in Section 7.3. An extended discussion
on topological properties of multi-band systems and their relation to non-adiabatic
motion will be found in the thesis of Tracy Li [236].

7.1. Non-adiabatic motion in the two lowest bands

As discussed in Section 5.3.3, atoms can populate higher bands when they are sub-
jected to a strong force and their motion in the first energy band is non-adiabatic.
If other bands are separated from the lowest two by a large energy gap, the non-
adiabatic transitions into the higher bands can be neglected. The equations of
motion for the generic state ψ(k(t)) = α1(t)ψ1

k +α2(t)ψ2
k, linear combination of first

and second band Bloch states, are described by the differential equations 5.16, in
short notation

i~∂t
(
α1(t)
α2(t)

)
= Ĥdy(k)

(
α1(t)
α2(t)

)
. (7.1)

For the results presented in the following section, the force is realized only via the
lattice acceleration and it simplifies to Fµ = −maL = −F in Ĥdy. The unitary that

evolves a state from k(0) to k(t) along a specific path C is the operator Ûk(0)→k(t) =

exp(−
∫ t

0
Ĥdydt/~) in this two-band model.
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Figure 7.1.: Schematic sequence for the Stückelberg interferometry. It illustrates
the motion of the atoms (red circles) in the Brillouin zone (schemes on top, arrows
indicate the path) as well as their evolution in the two lowest energy bands for
the main steps of the sequence described in the text.

7.2. Stüeckelberg interferometry

This interferometric protocol has been used in past works to measure energy differ-
ence between bands of an optical lattice [105, 235]. The precise calibration of the
lattice depth is essential for reconstructing dynamical phases accumulated during
the motion of atoms in the Brillouin zone and for measuring the Chern number of
a band via the Aharonov-Bohm interferometry.

7.2.1. The experimental sequence

The general idea behind this interferometric protocol is to create a superposition
state between the eigenstates of two bands which is used to probe the phases accumu-
lated by the atoms during their time-evolution. In a simplified picture, Stückelberg
interferometry consists of two partial Landau-Zener transitions and it can be viewed
as the analogous of a Mach-Zehnder interferometer for particles populating the two
lowest energy bands of a lattice. The role of the beam-splitter is played by the edge
of the band, where the gap between first and second band is smaller and probability
of exciting particles to the other band is higher. The result of the non-adiabatic
motion is to create the desired coherent superposition of particles in the first and
second band. To close the interferometer, the particles are moved across the edge
of the band once more where they undergo an other ’beam splitter’ operation.

Our experimental sequence is illustrated in Fig. 7.1. As for the Aharonov-Bohm
interferometry, we start by loading a weakly interacting BEC in the lowest band of
the lattice at k = 0. Then, a strong force is applied onto the atoms by accelerating
the lattice potential as described in Section 5.3.3, (i). The magnitude of the force is
chosen so that only the first and second bands can be populated during the motion.
The atoms are moved along a desired path in the Brillouin zone and their state
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coherently evolves into a superposition of first and second band eigenstates (ii).
The movement in reciprocal space is then stopped at a certain point k1 (iii) where
the atoms are held for a variable amount of time, thold. During this hold time the
eigenstates of the first and second band time evolve according to their eigenenergies
and accumulate a different dynamical phase. After that, the force is applied again
to transport the superposition state to a final quasimomentum k2 (iv). The atoms
cross the edge of the Brillouin zone an other time to close the interferometer and to
read out the phase difference between atoms in the first and second band. To detect
the bands’ populations, the atoms are released from the trap after band mapping
and then imaged after 10 ms of TOF.

The evolution of the wavefunction is obviously more complicated than the sim-
plified sequence we just described as it is governed by the differential equations 7.1
and mixing between the two band eigenstates happens all along the path. We can
now describe the evolution of the states during the Stückelberg sequence in a more
formal way. The time-evolution along a path is given by an operator Ûk(0)→k(t). The
time-evolution of the states during the full Stückelberg interferometry sequence is
described by the following product

ÛS = Û2D̂(k1, thold)Û1, (7.2)

where Û1 and Û2 describe the effect of the two movements: k0 → k1 from Γ to
the hold point k1, and k1 → k2 from k1 to the detection point k2. The unitary
transformation D̂(k1, t) describes the evolution during the hold at k1 when the
atoms accumulate a dynamical phase. The operator D̂ is given by the following
matrix

D̂(k1, t) =

(
exp

(
−iE1

k1
thold/~

)
0

0 exp
(
−iE2

k1
thold/~

)) . (7.3)

The protocol starts with atoms in the lower band at k0 = 0, thus the initial state is
ψk0(0) = ψ1

k0
= (1, 0)T and the state at the end of the full sequence is given by(

α1

α2

)
= Û2D̂(k1, thold)Û1

(
1
0

)
. (7.4)

The probability to remain in the first band is most generally described by

P1(thold) = | 〈ψ1
k2
| ÛS |ψ1

k0
〉 |2 = aC + bC cos((E1

k1
− E2

k1
)thold/~ + ϕdyn) (7.5)

where we introduced the parameters aC and bC that depend on the probability of
exciting atoms from the first to the second band along the specific path C taken in
the Brillouin zone, and a dynamical phase ϕdyn accumulated during the motion in
the two non-degenerate bands, ϕdyn =

∫
(E1

k(t) − E2
k(t))/~ dt. The probability of eq.

7.5 oscillates at a frequency given by the energy difference between the two bands
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at the hold point k1 as a function of the hold time. This oscillating signal is used
to precisely measure the energy difference between the bands.

Since we are using a weakly interacting BEC with a momentum spread σk '
0.14kL and fast accelerations, we can treat the effect of the momentum spread simi-
larly to what has been done for the measurements of the Berry phase (see equation
6.16), and calculate theory curves by averaging the interference signal of eq. 7.5 over
the initial quasimomentum distribution n(K) as

P1(thold) =

∫
| 〈ψ1

k2+K| ÛS |ψ1
k0+K〉 |2 n(K) d2K. (7.6)

7.2.2. Mapping the energy difference between first and second
band

By holding the atoms at different quasimomenta during the Stückelberg sequence,
the energy difference between first and second band is mapped along a specific path
in the Brillouin zone. The results are presented in Fig. 7.2. Thanks to the nar-
row initial quasimomentum distribution of the BEC, we were able to observe clear
Stückelberg oscillations as a function of hold time, some examples are presented as
insets in the figure. The contrast of these oscillations is limited by the probabil-
ity of transferring atoms to the second band, i.e. the parameters aC , bC of eq. 7.5
which depend on the specific path taken in the Brillouin zone. For long holds, the
contrast is also reduced by instabilities of the weakly interacting BEC and by the
quasimomentum spread of the cloud according to which a range of frequencies is
contributing to the observed oscillatory signal, see eq. 7.6. The energy difference
between the first and second band is extracted from the oscillatory signal by fitting
the data with a damped cosine function.

The experimental results of the measured energy differences are summarized in
the main graph of Fig. 7.2. The frequencies of the observed oscillations agree very
well with the energy differences we expect from the full band structure calculation
combined with the quasimomentum averaging of eq. 7.6. By comparing the results
with the predictions from theory, we observed that the effect of the momentum
spread is to under (over) estimate the gap frequency where the band has positive
(negative) curvature. Even if the energy difference in proximity of the K point can-
not be measured because of a combination of momentum spread and instabilities
setting in at a timescale comparable to the gap frequency, we find the energy dif-
ference close to the Dirac point to be <10% of the lattice bandwidth. This result
is compatible with the presence of a small gap at the Dirac cone that has been
measured via Aharonov-Bohm interferometry, see Section 6.3.2.

As one can notice from the theory curves in Fig. 7.2 obtained with and without
averaging over the quasimomentum distribution, the effect of this spread is found
to be minimal where the slopes of the energy bands are approximately linear. The

106
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Figure 7.2.: Mapping of the dispersion relation via Stückelberg interferometry.
The energy difference (E1

k −E2
k)/h between first and second band is measured at

different quasimomenta k along the path depicted in the bottom inset (red trian-
gle, hexagon is the first Brillouin zone). Error bars denote fit uncertainties. The
accelerations used are aL =44 m/s2 and aL =38 m/s2, depending on the lattice
depth and energy gap along the path taken. With these accelerations only the
first and second band can be populated during the fast motion in the BZ. The
observed Stückelberg oscillations are shown as insets for selected points of the
main graph. The corresponding fits (solid lines) and scaled theory lines (dashed)
are shown. The hold position in the BZ is also sketched. The contrast of the oscil-
latory signal is limited by the path-dependent transition probabilities and by the
quasimomentum spread which damps the oscillatory signal for long holds. In the
main graph the lines are ab initio theory using a full band structure calculation for
the indicated lattice depths and no momentum spread. Dashed lines are calculated
by accounting for an initial momentum spread of the BEC of σk = 0.14 kL.

lattice depth can be precisely estimated by comparing the energy gap at these loca-
tions with value obtained from the full band structure calculation. The Stückelberg
interferometry is routinely used to calibrate the lattice depth and to carefully bal-
ance the lattice potential by comparing oscillation frequencies at different points in
the Brillouin zone. Despite the current limitations due to interactions, Stückelberg
interferometry is also a valuable technique to detect and characterize the energy
gap at the Dirac points when a large AB offset is introduced (≥ 1 kHz), as recently
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Figure 7.3.: Initial phase of Stückelberg oscillations for interferometry along differ-
ently angled paths. (a) Example of Stückelberg oscillations for two backtracked
curves (0◦ and 180◦) obtained in a 3 Er lattice with an acceleration of aL =80 m/s2.
Paths are shown as insets. (b) Summary of the measured phase differences refer-
enced to the 0◦ path. Data are taken in a 3 Er lattice. Schematic illustrates the
paths taken during the interferometry.

realized in our experiment by tuning the polarizations of the lattice beams [237].

Initial phase of the Stückelberg oscillations

So far we neglected the information carried by the initial phase of the Stückelberg
oscillatory signal. Without a hold time in the Stückelberg sequence, the following
probability of remaining in the first band is measured at the end of the interferometry
P1 = | 〈ψ1

k2
| Û2Û1 |ψ1

k0
〉 |2 = | 〈ψ1

k2
|ψk2(t)〉|2. By comparing the initial phase of the

oscillations along different paths we can gain information about the symmetries of
the band eigenstates. We specifically looked at the Stückelberg oscillations when
moving by two reciprocal lattice vectors, from Γ-point to Γ-point, as illustrated in
Fig. 7.3. The final quasimomentum is k2 = k0 + 2G, G being a reciprocal lattice
vector. We accelerate by one reciprocal lattice vector into the next Brillouin zone,
hold at Γ for a variable thold and accelerate again at different angles, ending at the
Γ point in a neighboring Brillouin zone.

Even if the dispersion is the same along all the paths taken and it results in
the same accumulated dynamical phase at the end of the motion, we observed a
clear π phase shift between paths ending in neighboring zones. An example of such
oscillations is presented in Fig. 7.3a where we compare paths at an angle of 0◦ and
180◦. This phase shift indicates that the evolution and the final states reached
are actually different not because of the energy probed along the path but because
of the winding of the bands eigenstates is different in neighboring zones, feature
which is also linked to the presence of two inequivalent Dirac points. The different
orientation of the eigenstates of neighboring zones is also illustrated in chapter 3, see
the plot in Fig. 3.4a. By comparing the phases of the oscillations along differently
angled paths connecting Γ points the C3 symmetry of the lattice is manifest since
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the initial state evolves to the same final state for paths that are symmetric under
120◦ rotations, as the results in Fig. 7.3c illustrate.

The close connection between the phase of the Stückelberg oscillations and the ge-
ometric properties of the two bands has been recently derived and the non-adiabatic
dynamics of particles in the lattice has been interpreted in terms of Wilson lines
[237, 238]. Moreover, the topological properties of the two-band model have been
extracted by studying the dynamical evolution of particles subjected to a strong
force. We reference to the following work [237] for a more complete overview on
such topic.

7.3. Final remarks

In this chapter, results of Stückelberg interferometry in the honeycomb lattice have
been presented. It has been illustrated how the interferometry can be used to
map the dispersion of the lattice along a specific path in the Brillouin zone. By
comparing the measured oscillation frequencies with the ones expected from theory
we can accurately estimate the lattice depth and map the dispersion of the lattice
potential. This technique allows the dynamical phases acquired by particles moving
in the energy band to be precisely reconstructed. This information is necessary to
extend the Aharonov-Bohm interferometry to arbitrary paths in the Brillouin zone
in order to measure the Chern number of a band.

Furthermore, we have shown that the phase of the oscillatory signal reveals the
three-fold rotational symmetry of the lattice potential. Recent results from our lab
taken in the strong force limit allowed the Wilson loop matrix to be reconstructed
and they demonstrated the less trivial winding of the band eigenstates when the
inversion symmetry is broken by a large energy offset between the A and B sites
[237]. Stückelberg interferometry constitutes one possible and promising approach
among the many proposed recently [86–88, 107, 239] to probe the topological fea-
tures of multi-band systems without using state-dependent interferometric schemes.
This would allow the invariants of such models to be reconstructed by combining
measurements along different paths in the Brillouin zone.
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Chapter 8.

Conclusion and outlook

This thesis presented a new experimental setup in which a honeycomb optical lattice
has been implemented to study topological Bloch bands with ultracold atoms. The
apparatus allows to cool bosons (87Rb) and fermions (40K) to condensation and
degeneracy and it favors systematic studies of topological properties of bands with
and without interactions between the particles thanks to the available Feshbach
resonances for 40K. In this thesis we described the honeycomb optical lattice for the
cold atoms and we presented the geometrical features of its energy bands associated
with the Dirac cones, which are analogous to the ones of solid state graphene.
Contrary to the solid state case where there is little room to tune system parameters,
the potential landscape can be adjusted at will. This enables us to engineer a band
structure with or without offset between the two inequivalent sites of the unit cell
as well as to tune the hopping amplitudes along the three tunneling directions. The
high degree of control on the system parameters allows the geometrical features
to be carefully tuned: The position of the Berry fluxes associated with the Dirac
points and their spread in quasimomentum are controlled experimentally. This
tunability facilitated the observation of the annihilation of the Dirac points upon
lattice imbalance and it is a feature that one could take advantage of in future
studies. In this thesis, we have also introduced techniques to detect and manipulate
the state of the state of the atoms in the lattice. In particular, Bloch oscillations
are a key ingredient for the detection of the topological properties of a Bloch band.

To probe the topological properties of the individual Dirac cones and to extract
quantitative information about the spread in Berry curvature, an interferometric
technique, the natural follow-up to the pioneering works carried out for cold atoms
in 1D optical superlattices [57, 58], was studied. The key feature of this interferom-
etry is the ability to measure the Berry phases associated with adiabatic motion of
atoms in a band along arbitrary closed loops in reciprocal space. This Aharonov-
Bohm interferometry allowed us to directly observe the π Berry phase associated
with the Dirac cones of the lowest band of the lattice. Our results demonstrated
the winding of the band eigenstate and the topological character of the conical in-
tersections of the optical lattice. Moreover, the combined use of a Bose-Einstein
condensate and the Bragg reflection at the edge of the zone greatly enhanced the
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quasimomentum resolution of the interferometer, allowing us to give a quantitative
upper bound on the spread in Berry curvature of the extremely narrow Berry flux of
a cone. Furthermore, we exploited the local mapping of this technique and the high
degree of control over the lattice structure to directly observe the topological phase
transition associated with moving and merging Dirac cones. The annihilation of the
fluxes of the cones is beyond the applicable strain levels in graphene [126, 140] but
is universal to any honeycomb lattice potential, as demonstrated in several other
wave systems in which this behavior has been observed, e.g. in photonic graphene
[92]. In our experimental realization, the motion of the cones was detected with
the interferometry, and the geometric phase associated with the cones was observed
to disappear when the lattice was strongly imbalanced. The results of the inter-
ferometry presented in this thesis illustrate the capability of the protocol to locally
detect geometrical features that are challenging to observe in real [17, 100–102] and
synthetic [81, 82] materials by alternative techniques, like transport measurements.

In the last part of this thesis, preliminary results concerning interferometry be-
tween atoms in the two lowest bands of the lattice, possible extensions of the
Aharonov-Bohm interferometry, have been introduced. The results from the Stückelberg
interferometry illustrate how this technique can be used to precisely reconstruct the
dispersion of the energy bands, a necessary information for reconstructing the Chern
number via Aharonov-Bohm interferometry, as well as to gain information about the
symmetries of the band eigenstates. Recently, Stückelberg interferometry combined
with the analysis of population transfer has been used in our experimental setup to
reconstruct Wilson loops in the presence of an energy offset between the A-B sites,
and its eigenvalues have also been obtained [237].

Outlook

The observed winding of the band eigenstate around the Dirac cone and the high
degree of control over the lattice structure highlight the potential of ultracold atoms
as a versatile system to engineer topological bands and study them in a systematic
manner. In the context of this thesis, we presented results obtained with a time-
reversal and inversion symmetric lattice. By making use of the tunable honeycomb
lattice potential one of these symmetries can be broken and novel topological bands
can potentially be studied. The optical flux lattice, with its lowest flat band, is
one prominent example [68, 135] as its properties are equivalent to those of charged
particle in a uniform and strong magnetic field. Engineering strain as an effective
source of strong pseudo-magnetic field is also an interesting direction for future
studies on artificial magnetic fields in a honeycomb lattice [83, 84, 240]. Another
intriguing direction of research consists of adding a periodic drive which would break
the time-reversal symmetry of the system, as recently realized in several works [81,
82, 241]. The modulation of the potential would permit the implementation of
novel topological Floquet bands with non-zero Chern number [74, 76, 136, 230] and,
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possibly, spin-orbit coupling [21, 242], allowing a rich variety of topological bands
to be explored.

For the results presented in this thesis, interactions between the particles were
weak and they could be safely neglected to interpret the experimental results. The
high degree of control over the lattice potential and interactions, advantages of
cold atoms compared to other systems, can facilitate systematic studies on the
interplay of topology and interactions with our experimental apparatus. It would
be interesting to study the phase diagram of our lattice structure which has not been
investigated in detail yet [94] but it is rich in novel exotic phases when interactions
between different states and complex next-nearest-neighbors tunnelings are added,
as pointed out in several works concerning both fermions and bosons [62, 95, 96,
206, 207, 243]. Interacting atoms prepared in p-bands of the honeycomb lattice are
also an intriguing direction for future studies [244, 245].

Our results also highlighted the potential of the interferometric protocol for prob-
ing geometrical features with high quasimomentum resolution. The Aharonov-Bohm
interferometry is suitable to fully resolve the distribution of Berry curvature over
the entire Brillouin zone by combining local measurements of the geometric phases
along small loops in reciprocal space. This would enable the full reconstruction of
the topological invariants [57] in a large variety of lattice structures. Particularly
interesting would be to apply it to bands with non-zero Chern number and, for ex-
ample, detect a change of sign of the Berry phase at a Dirac point when time-reversal
symmetry is broken in the honeycomb lattice. This technique could potentially be
applied to even more exotic modifications of the bands, like the ones predicted for
the Floquet spectrum of radiated graphene [246], to map out the local distribution
of Berry curvature in the Brillouin zone. Moreover, as the results from the anni-
hilation of the Dirac points demonstrate, the protocol facilitates the observation of
topological phase transitions in such bands upon a controlled modification of the
system parameters.

Multiband extensions of this work [107] would enable measurements of Wilson
loops and off-diagonal Berry connections in systems with quantum spin-Hall effect
[21, 22], as an example, and thus allow the complete geometric tensor of Bloch bands
to be fully reconstructed. These techniques would therefore constitute a way of
characterizing complex systems, e.g. measuring the Z2 invariant of the quantum spin-
Hall effect [122], and reconstructing non-Abelian Berry connections. To conclude,
the apparatus for cold atoms in a honeycomb optical lattice presented in this thesis
is good playground for new studies on topological properties of Bloch bands.
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Appendix A.

Complete derivation of the optical
potential

Here the complete derivation of the optical potential is summarized. The potential
is calculated in the most general way, considering polarization tilts and power im-
balances. At the end we simplify the general results to the specific potentials cited
and used in the main text.

The electric field of each wave, as parametrized in Chapter 3, is

Ei(r) =
√
Iie

ikir−iωLt(cos(θi)ẑ + sin(θi)e
iφi(ẑ× k̂i)) = Es + Ep. (A.1)

Because of the vector product (ẑ × k̂i) and of the orientations of the beams ki
defined in the main text (3.24) we get that the p-polarized (polarization in the
plane of intersection, the x-y plane)

Ep = e−iωLt(sin(θ1)eik1r+iφ1x̂+ sin(θ2)eik2r+iφ2(x̂ cos(4π/3), ŷ sin(4π/3))

+ sin(θ3)eik3r+iφ3(x̂ cos(2π/3), ŷ sin(2π/3))) (A.2)

By transforming each component of the electric field in the σ± basis, as done in the
main text, we get

Eσ+ =
1√
2
e−iωLt(− sin(θ1)eik1r+iφ1x̂+ sin(θ2)eik2r+iφ2(x̂ cos(π/3) + iŷ sin(π/3))

+ sin(θ3)eik3r+iφ3(x̂ cos(−π/3)− iŷ sin(−π/3))) (A.3)

and analogously for Eσ− . In a compact notation:

Eσ± =
1√
2
e−iωLt+iπ

(
sin(θ1)eik1r+iφ1 + sin(θ2)eik2r±i4π/3+iφ2 + sin(θ3)eik3r±i2π/3+iφ3

)
.

(A.4)

Now we can derive the interference patterns which define our periodic lattice
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potential. The intensity pattern of the polarization out of plane of intersection is

Is(r) = |Es|2 =
3∑

i,j=1

√
IiIj cos θi cos θje

i((ki−kj)r) (A.5)

=
3∑
i=1

Ii cos2 θi +
3∑

i,j=1

√
IiIj cos θi cos θj cos((ki − kj)r). (A.6)

The arrangement of the minima of this pattern has a honeycomb symmetry. Simi-
larly, we can derive the intensity pattern from the polarization decomposition of eq.
A.3 for in-plane component of the polarization. Defining ηi = (0, 4π/3, 2π/3) we get

Ip(r) = |Ep|2 = |E+|2 + |E−|2 (A.7)

=
1

2

3∑
i,j=1

√
IiIj sin(θi) sin(θj)e

i((ki−kj)r+i(φi−φj)+iηi) (A.8)

+
1

2

3∑
i,j=1

√
IiIj sin(θi) sin(θj)e

i((ki−kj)r+i(φi−φj)−iηi). (A.9)

Note that intensities of σ± polarizations are spatially displaced because the electric
fields Eσ± are out of phase. The sums in eq. A.7 can be simplified further to cancel
out some terms. We then obtain

Ip(r) =
3∑
i=1

Ii sin
2 θi −

1

2

3∑
i,j=1

√
IiIj sin θi sin θj cos((ki − kj)r + φi − φj). (A.10)

When the polarizations are laying in the plane of intersection, the interference has
the minima arranged in a triangular pattern and has a maximum intensity of 9/2I0

in the balanced case (Ii = I0), half of the honeycomb one. Plots of these intensity
profiles can be found in the main text, Chapter 3.

To calculate the optical potential we have to multiply by the dipole potential Udip
of eq. 3.20 which is dependent on polarization and mF state. We write it in a short
notation as

Udip = (U1 + 2U2 − gFmFP(r)(U1 − U2))I(r) (A.11)

where we introduced the effective dipole potentials U1,2 of the D1,2 transitions for
readability, which are

U1,2 =
πc2Γ1,2

2ω3
1,2

(
1

ω1,2 − ωL
+

1

ωL + ω1,2

) (A.12)

and the polarization P is spatially dependent in our lattice configuration. Thus the
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potential is decomposed in a state-independent and a state-dependent part

VL =(U1 + 2U2)Is + (U1 + 2U2 − gFmFP(r)(U1 − U2))Ip (A.13)

=(U1 + 2U2)(Is + |E+|2 + |E−|2)− gFmF (U1 − U2)(|E+|2 − |E−|2). (A.14)

The state-dependent part of the potential, linear in mF number, can be mapped
onto an effective magnetic field whose magnitude depends on the detuning of the
optical potential from the D-lines, which defines the factor U1 − U2. The strength
of this term can be tuned with a polarization tilt or a field offset tilt. Given our
geometry and detunings, the state-dependent part can be further simplified as

VL = (U1 + 2U2)(Is + |E+|2 + |E−|2)−
√

3gFmF (U1 − U2)

2

3∑
i,j=1

cos((ki − kj)r).

(A.15)

In our experimental realization, the state-dependent term can be neglected because
of the large detuning from both lines which results in U1−U2 ≈ 0 and also because
of the choice of out of plane linear polarizations which sets Ip to zero in the ideal
case. Other schemes, like the flux lattice, make use of this state-dependent and
spatially-dependent term to purposely create artificial spin-orbit coupling [65, 68].
The different configurations of the lattice associated with different state-dependent
potentials could be probed by, e.g., driving band-selective microwave transitions
between different hyperfine states of the atoms loaded in the lattice.

If only two beams have imperfect polarizations, i.e. θ1 = θ2 = θ 6= 0, the potential
is created by the interference pattern Ip of eq. A.7 which is

Ip = 2I0 sin2 θ(1 + cos((k1 − k2)r + φ1 − φ2)). (A.16)

To model small imperfections of the beams’ polarizations, we can thus define the 1D
lattice potential as A sin((k1 − k2)r). The energy offset ∆/2 of an A or B well can
be calculated from this expression at one of the minima of the honeycomb potential,
i.e. rA, rB. It follows that ∆/2 = A

√
3/2, equation which defines the amplitude A

and thus the potential of eq. 3.30 quoted in the main text.
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Appendix B.

Density distributions of atoms in a
harmonic trap

Here we consider a gas trapped in a three-dimensional harmonic trap

Vho(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (B.1)

The real space and momentum distribution of an atomic gas are determined by its
statistical distribution. The calculation of finite temperature properties is consider-
ably simplified by taking a semi-classical approach, the Thomas-Fermi approxima-
tion, valid for large atom numbers [142, 143]. Here, the real-space density distribu-
tion in the harmonic potential is calculated by integrating over all momenta. For
example, starting from a Fermi gas with a semiclassical statistical distribution given
by

fF (r,p) =
1

e( p2

2m
+Vho−µ)/kBT + 1

, (B.2)

the Fermi-Dirac density distribution nF (r) can be obtained by averaging over all
momenta p to get [144, 159]

nF (r) = − 1

λ3
dB

Li3/2
(
−e−(Vho(r)−µ)/kBT

)
, (B.3)

with λdB =
√

2π~2/(mkBT ) is the de Broglie wavelength, µ the chemical poten-
tial and Li3/2 the polylogarithm of order 3/2. In the high temperature limit, this
distribution reduces to the Gaussian Boltzmann distribution

nMB(r) =
N

π3/2σxσyσz
e−x

2/σ2
x−y2/σ2

y−z2/σ2
z (B.4)

with σ2
i = kBT/mωi. For the case of bosons with semiclassical statistical distribution

given by

fB(r,p) =
1

e( p2

2m
+Vho−µ)/kBT − 1

(B.5)
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Appendix B. Density distributions of atoms in a harmonic trap

the atoms start to macroscopically occupy the single-particle ground state. The dis-
tribution of atoms in the trap nB is thus composed of two different distributions, the
one of condensed atoms and the one of thermal atoms [142]. The role of weak repul-
sive interactions is also important in determining the distribution of the condensed
atoms. Due to scattering the atoms will redistribute in the harmonic trap. The
density distribution nB of the BEC is modified and is given by the Thomas-Fermi
parabolic distribution [142]

nB(r) =
1

g
(µ− Vho(r)) (B.6)

where g is the amplitude of the contact potential.
The real space distribution of atoms in the trap as well as the ballistic expansion

of atoms during TOF, that maps momentum into position according to ri(t) =
ri(0)(1 + ω2

i t
2)−1/2, are markedly different for a thermal gas, degenerate fermions

and condensed bosons. To correctly relate the density distribution measured by
absorption imaging with the distributions we just mentioned, we should remember
that we detect the column density ncol(x, y) defined in Chapter 4 and we actually
integrate the distributions along the z direction to derive the fitting functions from
which we extract temperatures and atom numbers.
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Appendix C.

System parameters for weakly
interacting bosons in the lattice

As mentioned in Chapter 5, interactions, even when weak, can play an important
role in determining the ground state wavefunction, the excitation spectrum and the
stability of the condensate. As described in the main text, the 2D lattice without ad-
ditional vertical confinement results in a periodic array of elongated tubes with high
filling factors. Here we summarize the tubes’ parameters from which we infer mean
atom numbers, densities and interaction strengths in the weakly interacting regime,
i.e. na3

s � 1. These results are derived from Gross-Pitaevskii (see eq. 4.9) with the
lattice in the tight-binding limit, where each lattice site can be approximated by an
harmonic trapping potential. In this case, the stationary Gross-Pitaevskii equation
(GPE) can be treated analytically. Of course this is a coarse approximation which
can give us a qualitative idea about the energy scales and the relevant system’s
parameters. If the particles in the lattice are strongly correlated and the filling fac-
tors are low, the Bose-Hubbard model [247–250] is more suitable for describing the
properties of the system.

We consider weakly interacting 87Rb atoms in a harmonic trap with chemical po-
tential µ. We assume the lattice to be in the x-y plane, while along z the atoms
are confined only by the harmonic trap. Following the standard derivation of the
GPE for particles in a lattice [143], we can subtitute the field operators in the
many-body Hamiltonian with complex numbers and make the usual ansatz for
the manybody wavefunction of condensed atoms loaded in each tube of the kind
Ψ(xi, yi) =

∑
iwi(xi, yi)φi(z) where wi(x, y) is the Wannier function of the tube i

located at position (xi, yi) which defines the radial part of the wavefunction, and
φi(z) is the interaction broadened wavefunction along the z-direction, where there
is no periodic potential. From this approximation, one derives a stationary Gross-
Pitaevskii equation for interaction broadened wavefunction φi of each tube which
is (

g̃|φi|2 +
1

2
m(ω2

zz
2 + ω2

xx
2
i + ω2

yy
2
i )− µ

)
φi(z) = 0 (C.1)

with ωi being the trap frequencies. Here we approximated each lattice well with an
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harmonic trap for simplicity. We also assume ωx = ωy = ωr, which is the case in
the experimental realization. The renormalized 1D scattering length is g̃ defined as
g̃ = g

∫
|w(x, y)|4dxdy and it can be found by approximating the Wannier function of

the atoms at a site i with the ground state of the harmonic oscillator that describes
the lattice potential [251]. The harmonic oscillator length is given by l2r = ~/mωr
and it depends on the lattice depth through the on-site trap frequency ωr. We find
a value of g̃ ≈ 2g~/(ml2L) = g × 5.5 µm−2 for 87Rb in a 1 Er lattice. Moreover,
given our trapping parameters lr � as, this means that, even if we are more tightly
confined along the radial direction compared to the axial one, the system is still
fully three-dimensional.

The profile of the broadened wavefunction is derived from eq. C.1

|φi(z)|2 =
µ− 0.5m

(
ω2
zz

2 + ω2
xx

2
i + ω2

yy
2
i

)
g̃

. (C.2)

The Thomas-Fermi boundary along z is found to be

zTF (xi, yi) =

√
2µ− 0.5mω2

r(x
2
i + y2

i )

mω2
z

. (C.3)

The number of particles in each tube Ni is calculated from the following integral

Ni(xi, yi) =

∫ zTF

−zTF

|φi(z)|2dz =
2m

3g̃
zTF (xi, yi)

3ω2
z . (C.4)

The number of particles in each tube defines the chemical potential via the equation
NT =

∑
iNi, with NT being the total atom number. For a large system, N �

1, the chemical potential can be estimated within the continuum approximation
by calculating the following integral analytically: NT = V −1

∫
Nidxdy where the

volume V is the unit cell volume V = 3
√

3d2
L/2. The resulting chemical potential is

µ =
~ω̄ho

2

(
15NTmg̃V

4π~2l̄ho

)2/5

(C.5)

with ω̄ho = (ω2
rωz)

1/3 being the geometrical mean of the trap frequencies and l̄2ho =
~/(mω̄ho) the corresponding oscillator length.

For NT = 4× 104 particles in a 1 Er lattice combined with a harmonic trap with
frequencies ωi = 2π (24 Hz, 24 Hz, 180 Hz), typical for the experiments, we get a
value of µ/h ∼500 Hz. For these parameters we evaluate a Thomas-Fermi boundary
along the radial direction of rTF ∼ 20 µm by computing the minimum distance at
which the atom number in a tube is zero, i.e. setting Ni(rTF ) = 0. This value of
the radius rTF for the parameters cited above is comparable to the cloud size we
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measure experimentally for atoms imaged in situ. The number of populated tubes is
Ntubes ∼7000, with a peak of 36 atoms in the central tube. The interaction parameter
of each tube is evaluated from the integral UI,i = g̃

∫ zTF

−zTF
|φi(z)|4/Ni(z)2dz where we

have normalized the wavefunction φi to one. Within the continuum approximation
the integral is solved analytically to find UI,i = 3g̃/(5zTF (xi, yi)). The average
density, tube lengths and interaction strengths of our array of tubes are estimated
by using the ratio Ni/NT as a weight

ltubes =
∑

2NizTF/NT ∼ 8 µm (C.6)

UI,tubes =
∑

UI,iNi/NT ∼ h× 14 Hz = 3.5 · 10−3 Er (C.7)

n1D =
∑

N2
i /(2zTFNT ) ∼ 6 µm−1. (C.8)

This small value of the average interaction strength UI,tubes justifies the assumption
of weakly interacting regime for the 87Rb atoms loaded in the optical lattice. Finally,
we can compare the average interaction strength with the hopping in a 1 Er lattice:
UI,tubes/J ∼ 1× 10−2 � 1.

For the 3 Er lattice we used for the results presented in Chapter 7, we find
similar tubes’ parameters, specifically: ltubes ∼ 5 µm, n1D ∼ 5 µm−1 and UI,tubes ∼
h× 21 Hz = 5 · 10−3 Er and U/J ∼ 0.1.

123





Appendix D.

Additional details on the
Aharonov-Bohm interferometry

D.1. Experimental parameters

Lattice calibration and acceleration parameters

The interferometry is performed in a shallow lattice of 1.0(1) Er and has been
calibrated by using the Stückelberg interferometry introduced in the last chapter.
The lattice depth has been chosen to have a large separation between the two bands
away from the Dirac point such that the atoms can move adiabatically during the
sequence of duration 2τ = 1.6 ms. This value has been chosen to avoid instabilities of
weakly interacting BEC while being slow enough to fulfill the adiabaticity condition
in a 1 Er lattice. We quantify the adiabaticity of the motion for this range of
forces by checking that the occupation of higher bands is negligible at the end of
the interferometry. This is done by bringing the atoms back to the Γ-point, followed
by a band-mapping sequence to extract the population of the atoms in the different
bands. For interferometer paths ending near the Dirac point, where the adiabaticity
condition is hardest to fulfill, the population in the second band is at most ∼ 20% of
the total atom number. We have verified that the excited-band population near the
Dirac point does not appreciably affect our measurement by numerically integrating
the Schrödinger equation for the two-band model. More on this numerics can be
found in Section D.4.

Detection

The fractions of atoms in the two spin states, n↑,↓, are measured by standard ab-
sorption imaging. After band-mapping (410 µs of ramp duration), a Stern-Gerlach
pulse of 9.5 ms is applied to spatially separate the |↑〉 and |↓〉 states during time of
flight. While this imaging can perfectly distinguish atoms that occupy opposite sides
of the Brillouin zone, due to the short TOF of 10ms the imaged size of the atomic
cloud is still a convolution of the quasimomentum and real-space distributions.
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Microwave pulses

To simplify the interpretation of the results, the microwave pulses need to be short
compared to the evolution time τ . To this end, we use 40W of microwave power
to drive the transitions between the different hyperfine states, this results in a Rabi
frequency of 2π×33 kHz and in a 15 µs π-pulse for the |1, 0〉 → |2, 1〉 transition,
and in a 2π×21 kHz Rabi frequency with a 24 µs π-pulse for the |1, 1〉 ↔ |2, 1〉.
Thanks to the high power, the microwave π-pulse transfers most of the atoms, about
90%, to the desired state despite the broadening of the microwave transition in the
inhomogeneous potential. The atoms that are not addressed by all the microwave
pulses travel along different paths in reciprocal space and can thus be separated
from the rest of the signal, as shown in the examples of Fig. 6.3 in the main text.

D.2. Minimizing dynamical phases and systematic
errors

In order to reduce the dynamical phase contribution to the observed interference
signal we investigated all the possible sources of systematic errors.

Magnetic field noise

Time-dependent fluctuations of the magnetic field are the dominant source of noise
in the interferometry sequence and contribute to the dynamical phase and to shifts
of the resonance for the microwave pulses that will result in an imperfect spin-echo
sequence. To minimize the effect of magnetic field fluctuations, we use a low-noise
power supply for the coil’s current (FUG supply, type NTN750M-15) which has
a residual ripple of dI/I ' 3 × 10−4 at 20A the set current in the experimental
runs. This corresponds to a peak-to-peak field noise of dB ' 240 × µG, mostly
at 50 Hz. We add a inductive load in series to the coil to reduce high frequency
noise. Since the current needs ∼ 2s to stabilize to this noise level and we don’t
want to oscillate the atoms in the energy bands for this long as the condensate will
be depleted by instabilities, the experimental sequence begins with atoms in the
internal state |F = 1,mF = 0〉. The magnetic field gradient is turned on 2s before
the interferometer sequence starts and a 15 µs microwave π-pulse transfers the atoms
in |1, 0〉 to |2, 1〉 to start the spin-echo sequence.

The ambient AC-noise is '4 mG peak-to-peak close to the science cell, corre-
sponding to ∼5 kHz noise on the microwave resonance frequency. To reduce it, the
beginning of the interferometer sequence is synchronized to the 50 Hz-line and we
keep the duration of the interferometer sequence fixed to probe the same portion of
the 50 Hz noise in each experimental run. With this choice, the dynamical phase
associated with the 50 Hz noise is a fixed contribution that cancels out when we
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Figure D.1.: Effect of lattice imbalance. Plot of the phases measured with the
interferometry for zero-area reference loops performed upwards (red) and down-
wards (blue), as illustrated by the schemes on the left. By changing the lattice
imbalance (I2/I1,3) different dynamical phases are measured. Theory lines that
account for the distortion of the energy band upon imbalance are also plotted.

compute the phase difference between measurement and reference curves.

Optimizing the lattice balance

The lattice balance along the symmetry axis of the interferometer loop is checked
with the Stückelberg interferometry and with the Aharonov-Bohm sequence by com-
paring the measured phases along two ’zero-area’ loops performed in opposite di-
rections, i.e. with the first part of the motion ending at ky or −ky as the scheme in
Fig. D.1 illustrates. A lattice imbalance can add a path-dependent dynamical phase
which is different for the particles moving along the left or the right path of the
interferometer loop. Since E1(k) = E1(−k) because of time-reversal symmetry, the
difference in dynamical phase picked up by the two spin components has opposite
sign for the upwards and downwards loops (red and blue in Fig. D.1). This can be
seen by writing down the dynamical phases in a more explicit form

∆ϕdyn,+ky = ϕdyn,↓,+ky − ϕdyn,↑,+ky

=

∫ τ

0

E1(|Fx|t, |Fy|t)dt−
∫ τ

0

E1(−|Fx|t, |Fy|t)dt

=

∫ τ

0

E1(−|Fx|t,−|Fy|t)dt−
∫ τ

0

E1(|Fx|t,−|Fy|t)dt = −∆ϕdyn,−ky . (D.1)

A vanishing phase difference between the phases measured for the two sequences
with upwards and downwards paths corresponds to the balanced case. An example
of a balancing curve is presented in Fig. D.1.
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Γ Γ-ϕ =

a b

) )

Figure D.2.: Alignment of the magnetic field gradient. (a) A current through a
second Stern-Gerlach (SG) coil fine-tunes the direction of the spin-dependent force,
i.e. the angle ζ(ISG) relative to ζ(ISG = 0) which sets the 0◦ angle. Examples of
imaged ↑, ↓ atoms at selected currents ISG are shown. (b) Example of alignment
curves: phase difference between zero-area reference loops performed upwards and
downwards (see inset) is measured at different ISG for loops of different lengths.
Total distances traveled along y, kfin

y , are kfin
y = 2.7kL (dark blue), kfin

y = 1.5kL
(light blue). The phase difference vanishes for orthogonal gradient and lattice
acceleration. Interferometry for long paths, i.e. large kfin

y , is more sensitive on
imperfect alignment of the forces.

Alignment of the B-field gradient

An imperfect orthogonality between the force from the gradient and the one from
the lattice modifies not only the trajectories of the two states in the Brillouin zone
but also the magnitude of the total force, i.e. all the terms in the dynamical phase of
eq. 6.14. The effect of this systematic error is diminished by the use of a spin-echo
π-pulse which reduces the the Zeeman term contribution in the dynamical phase
ϕdyn to the following path-dependent term∫ 2τ

0

∆εµ = µ |aL| τ 3 cos(γ)∇B (D.2)

which arises from the differential motion of the two spin states in the inhomogeneous
field gradient. Here γ is the angle between the force from the gradient and the one
from the lattice acceleration aL. This is likely a dominant source of systematic error
at large

∣∣kfin
y

∣∣, i.e. large lattice accelerations. In addition, we fine-tune the alignment
of the force from the gradient relative to the one from the lattice acceleration. This
is done by tuning the current in the two Stern-Gerlach coils. For orthogonal gradient
and lattice accelerations, the phase measured by the zero-area reference interferom-
eter should be independent of the length of the path, kfin

y . Hence, to optimize the
direction of the gradient, we measure the phase of the ’zero-area’ reference loop for
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a b

c

Figure D.3.: Results from the numerical simulation of the interferometry sequence
in the two-band model in proximity of the Dirac point. The results are obtained
with a momentum spread of σk = 0.14kL and three different A-B offsets, ∆ = 0,
∆ = 3 Hz and ∆ = 12 Hz from a to c. Blue points are the results obtained when
only the population in the first band is analyzed, the red ones include both first
and second band signals. The sharpness of the features is not significantly affected
by the second band population, especially when the Berry curvature is extremely
well localized.

opposite lattice accelerations and different currents of the fine-tuning coil, the re-
sults are presented in Fig. D.2. The phase difference between the loops performed in
opposite directions, kfin

y and −kfin
y , should vanish for orthogonal gradient and lattice

acceleration. By comparing them, we set the current in the second Stern-Gerlach
coil to 1A. From our calibrations we estimate an error on the gradient alignment of
at most 2◦.

D.3. Effect of second band population

In proximity of the Dirac point it is hard to fulfill the adiabaticity condition because
of the extremely small energy gap. We observed a partial transfer of atoms to the
second band for loops ending close to the Dirac point, where the first and second
band populations are detected together at the end of the interferometry. In order
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Figure D.4.: Comparison of the numerical results for ∆ = 12 Hz with the data of
the interference contrast. The theory curve has been only shifted to match the
position of the observed minimum in contrast which depends on the spread σk.
No scaling is applied to the curve.

to check that the effect of the second band population is not to sharpen the phase
jump and the contrast feature, we numerically evolved the states of the ↑ and ↓
particles according to the equation of motion for the non-adiabatic case, which we
have introduced in the main text, see eq. 5.16. The full contrast of the interference
fringes are calculated by averaging over the quasimomentum distribution n(k). The
simulations are done for an AB offset of ∆ = 0 Hz, ∆ = 3 Hz and ∆ = 12 Hz, and
the numerical results are illustrated in the graphs of Fig. D.3 where the contrast
obtained by analyzing only the first band population or the first and second band
together are plotted. It can be seen that detecting both first and second band mostly
results in a shift of the position of minimum contrast in all three cases. Moreover,
the second band population results in a less pronounced contrast in the case of a
larger energy gap ∆ and larger spread in Berry curvature. From these simulations
we can conclude that comparing the data in proximity of the Dirac point to theory
does give an upper bound on the spread in curvature. Finally, it is interesting
to note that the numerical simulation captures quite well the observed decrease in
contrast, see Fig. 6.10b in the main text. Specifically, it predicts the decreased
contrast which has been observed in proximity of the Dirac point and it matches
the data remarkably well without any additional rescaling, as illustrated in Fig. D.4
where the data are overlaid with the curve obtained for ∆ = 12 Hz. This seem
to indicate that the decrease in contrast is mostly due to second band population
rather than imperfections in the spin-echo sequence and instabilities, which seem to
play a minor role.
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D.4. Effect of finite size and harmonic trapping
potential

The discrete translational symmetry of the optical lattice can be broken by the pres-
ence of an harmonic trap. In order to understand the effect of the harmonic potential
on the Aharonov-Bohm results, the harmonic trap is added to the Hamiltonian of
the lattice which becomes

Ĥtb = −
∑
〈i,j〉

J(ĉ†i ĉj + h.c.) + κ
∑
i

ĉ†i ĉi i
2. (D.3)

The spring constant κ is defined as κ = mω2
rd

2
L/2 = h × 1.8 10−4J , where ωr is

the radial harmonic trap frequency and J ∼ h × 1.3 kHz. The Hamiltonian is
diagonalized to find the energy spectrum and the eigenstates of this system. With
the discrete translational symmetry broken, we can expect to find both delocalized
states with a well-defined quasimomentum and localized states consisting of many
quasimomentum components. Therefore, we look at the single-particle density of
states (DOS) to check for the presence of a gap at the Dirac cones and to analyze
the energy spectrum of the system. The DOS is DOS(E) = N

∑
i δ(E−Ei) and we

normalize it to the total number of counts such that
∑

i DOS(Ei) = 1. The DOS
is obtained numerically by binning the eigenvalues into small energy intervals. The
results for system of ∼2400 lattice sites and J = h×1.3 kHz, as in the experimental
realization, are presented in Fig. D.5. The graphs a-b show that a gap opens at
the Dirac point due to the finite system’s size in absence of a harmonic confinement
and that the density of states resembles the one for the tight binding model of a
honeycomb lattice, with van Hove singularities at ±J and the DOS approaches zero
for E ∼ 0 [126]. Note also the presence of zero energy modes in the spectrum due
to finite system size. When the harmonic potential is added, the DOS does not
drop to zero as in the non-trapped case. The spectrum, plot in Fig. D.5d, shows
the presence of small gaps in proximity of E = 0 which appear due to the broken
spatial symmetry of the potential. These gaps are at most ∼ h× 15 Hz for the trap
parameters and the number of sites we used. Since the system size is smaller than
the actual one, this value is giving us an order of magnitude for the value of the gaps
opened by the broken translational symmetry. A very similar value is extracted for
the lattice with an additional next-nearest neighbor hopping term, J ′ = 0.1J .

Since the harmonic potential is varying slowly compared to the lattice spacing,
it is reasonable to assume that lattice is locally homogeneous. In order to better
understand the effect of the harmonic trap, we therefore made use of local density
approximation and compared the DOS calculated analytically with the numerical
result. The local density of states of atoms in the trap corresponds locally to the
density of states (LDS) of the homogeneous lattice, ρ0(E). The analytic form of ρ0

for a hexagonal lattice can be found for example in [126]. The local density of states
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a b

c d

Figure D.5.: Single particle energy spectrum without (hard-wall boundary condi-
tions) (a) and with harmonic trapping potential (c), calculated for ∼ 2400 sites,
∆ = 0 and J = h × 1.3 kHz. (b)-(d) corresponding DOS. In (d) the solid line is
obtained by local density approximation, as explained in the text.

is solely shifted by the energy of the harmonic potential, ρLDA(E, i) = ρ0(E − κi2)
and the global density of states is found by summing the local density of states over
all lattice sites, DOSLDA(E) = N

∑
i ρLDA(E, i) where N is a normalization constant

such that DOS is normalized to one and can be compared with the numerical results.
The global DOS calculated with the local density approximation is shown in Fig.
D.5d. Its behavior (solid line) is very similar to the one of the numerics: the DOS
increases in the middle of the spectrum and no large gap is opened on a global
scale. Similar results have been obtained in the following reference [252] where
it is shown that local density approximation captures quite well the effect of a
weak harmonic trapping potential, and moreover, that the characteristic spectrum
survives locally in the trap, provided the confining potential varies over a length
scale much larger than the extent of a unit cell. This is certainly our scenario
given the small value of κ. To compare our results with the ones in [252], we also
numerically estimated the radially averaged local density of states away from the
trap center, defined as LDOS(ri) = N

∑
n

∑
i |ψn(i)|2δ(E−En), ψn(i) being the nth

eigenstate at position ri. The LDOS calculated for 10, 20 and 50 sites away from the
center of the harmonic potential is plotted in Fig. D.6. The behavior of the LDOS
is in qualitative agreement with the one in [252]: the van Hoove singularities are
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Figure D.6.: Normalized local density of states for 10, 20 and 50 sites away from
the trap center, from light to dark gray respectively. Curves are shifted for visu-
alization purposes, dashed lines represent the zero of the DOS for each set. The
LDOS resembles the shape of the density of states of the homogeneous lattice case.
At larger distances away from the center its features are smoothened.

smoothen and the shape of the DOS close to E = 0 starts to be modified only far
away from the trap center. The binning of our numerics does not allow to extract a
quantitative measure of the local energy gap between the two bands but it indicates
the qualitative agreement with local density approximation, at least in the center of
the harmonic trap where the density is highest.

To better visualize the effect of the harmonic trap, we also computed the Hamil-
tonian of eq. D.3 on a cylindrical geometry: we keep periodic-boundary conditions
along x and open boundaries along y. The harmonic trapping potential is only
along y. By doing so, we can still Fourier transform the creation and annihilation
operators along the x-direction

ĉxj ,yj =
1

Nx

∑
kx

e−ikxxĉkx,yj (D.4)

while keeping open boundary conditions along y. By using this expansion for the
operators ĉxj ,yj , the tight binding Hamiltonian of the hexagonal lattice is rewritten
as

ĤL = −J
∑
j

(ĉ†kx,2iĉkx,2i+1 + h.c.)− J
∑
j

(ĉ†kx,2iĉkx,2i−1(eikxdL/2 + e−ikxdL/2) + h.c.)

(D.5)
where we made a distinction between even and odd sites to distinguish the A and
B sites along the y-direction. This Hamiltonian is analogous to a zigzag chain
for a graphene monolayer [111, 126]. The dispersion along kx is directly found
by diagonalizing such Hamiltonian with or without a harmonic potential of the
kind Hho = κ

∑
i ĉ
†
kx,i
ĉkx,i i

2. The results are illustrated in Fig. D.7. In absence
of harmonic trap, the system has two distinct bands with edge modes at E = 0.
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a b

Figure D.7.: (a) Numerical results for a cylindrical geometry with 40 sites along x
and without harmonic trap. When the trap is added (b), the bands start to mix
close to E = 0.

The larger the system size the denser the spectrum will become, approaching the
tight binding limit of the hexagonal lattice with vanishing gap at the Dirac points
(kxdL = 2π/3). When the harmonic trap is added, the bands start to mix and small
gaps open in proximity of E = 0. With increasing system size, the upper and lower
bands will mix more, up to the point where there is no clear separation in energy
between the two and many states will have energy close to zero, increasing the DOS
in the middle of the spectrum. The results of this model qualitatively agree with
what we see with the full numerics. The gaps we get in proximity of the Dirac
point with our system size (∼ 90 sites along the radial direction) are on the order
of h×10 Hz with this model.
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[195] G. Modugno, C. Benkő, P. Hannaford, G. Roati, and M. Inguscio, “Sub-
Doppler laser cooling of fermionic 40K atoms”, Phys. Rev. A 60, R3373–
R3376 (1999) (cit. on pp. 53, 63).
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