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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit β-Supergravitation, einer zehn-dimensionalen
Theorie mit nicht-geometrischen Flüssen. Zunächst wird eine Einführung in Verallgemein-
erte Geometrie und Doppelfeldtheorie gegeben, welche Reformulierungen von üblichen
Supergravitationstheorien erlauben. Letztere ist versehen mit einer starken Zwangsbe-
dingung, welche mittels einer unter T-Dualität invarianten zwei-dimensionalen konformen
Feldtheorie untersucht wird. Aufbauend auf früheren Ergebnissen wird β-Supergravitation
in Bezug auf beide Theorien eingeordnet und das Studium des NSNS Sektors ermöglicht
dann die nicht-geometrischen Q- und R-Flüsse exakt zu identifizieren. Unter Verwendung
des Verallgemeinerten Geometrie Formalismus wird der Lagrangian reproduziert und die
Bewegungsgleichungen abgeleitet. Interessanterweise tauchen dabei neue Strukturen auf
und der Q-Fluss geht in eine Nachbildung des Levi-Civita-Zusammenhangs, welcher die
Definition eines zweiten Krümmungsskalar ermöglicht, ein. Dies macht β-Supergravitation
zu einem vielversprechenden Anhebungskandidaten für einige vier-dimensionale geeichte
Supergravitationstheorien.

Geometrische Hintergründe mit nicht-geometrischen Flüssen sind offensichtlich ein An-
wendungsgebiet für β-Supergravitation. Hier zeigt die Besprechung von T-dualen, torus-
förmigen Hintergründen ein konsistentes Supergravitationslimit für die nicht-geometrische
Konfiguration auf. Und die Symmetrien, insbesondere β Eichtransformationen, berechti-
gen die Einführung eines verallgemeinerten kotangential Bündels. Allerdings kann eine
konsistente Klasse von Vakua, welche nicht-geometrisch für gewöhnliche Supergravitation
ist, nur mittels β-Transformationen, die eine Symmetrie des Lagrangian unter Isometrien
darstellen, definiert werden. Weiter liegen diese in einem geometrischen Orbit unter T-
Dualität. Anschließende Untersuchungen überprüfen die Existenz von zehn-dimensionalen
Lösungen der Bewegungsgleichungen, welche auf den NSNS Sektor beschränkt sind.

Eine interessante Anwendung findet β-Supergravitation in der Beschreibung von NS-
Branen und Bianchi Identitäten für NSNS (nicht)-geometrische Flüsse. Dazu gehören die
NS5-Brane, der Kaluza-Klein Monopol und die exotische 52

2- bzw. Q-Brane. Insbesondere
erhalten auf zehn Dimensionen verallgemeinerte Bianchi Identitäten Korrekturen durch
Quellterme von einzelnen NS-Branen. In Abwesenheit von Quellen, können diese Bianchi
Identitäten mittels eines nilpotenten SpinpD,Dq ˆ R` Dirac Operators erzeugt werden.

β-Supergravitation erlaubt es weiter zehn-dimensionale supersymmetrische Vakua mit
NSNS nicht-geometrischen Flüssen zu studieren. Hier können die internen Killing Spinor
Gleichungen, welche die Supersymmetriebedingungen festlegen, mittels sogenannter ein-
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facher Spinoren, welche eine SUp3q ˆSUp3q Struktur in Verallgemeinerter Komplexer Ge-
ometrie definieren, umformuliert werden. Der verallgemeinerte Dirac Operator D, welcher
von nicht-geometrischen Flüssen abhängt und den üblichen Operator d´H^ ersetzt, spielt
dabei eine entscheidende Rolle. Ein allgemeiner Ausdruck für ein Superpotential schließt
ebenfalls diesen Operator mit ein und wird mit der Literatur verglichen. Abschließend er-
folgt eine geometrische Charakterisierung von Hintergründen, welche die Supersymmetrie
erhalten.



Abstract

In this thesis ten-dimensional theory, named β-supergravity, is presented that contains
non-geometric fluxes. Being inspired by Generalized Geometry and Double Field Theory, a
review of both is given with regard to a reformulation of standard supergravities. The latter
has to be equipped with the so-called strong constraint that we trace in a two-dimensional
T-duality invariant conformal field theory. Building on earlier work, β-supergravity is
classified with respect to the two former theories and study its NSNS sector, where the
non-geometric Q- and R-fluxes are precisely identified. Using the Generalized Geometry
formalism, the Lagrangian is reproduced and its equations of motion are derived. Interest-
ingly, new structures appear and the Q-flux is captured in an analogue of the Levi-Civita
spin connection that gives rise to a second curvature scalar. This makes β-supergravity a
promising candidate for uplifting some four-dimensional gauged supergravities.

Evidently, geometric backgrounds with non-geometric fluxes are an interesting field of
applying β-supergravity. Reviewing the toroidal example a consistent supergravity limit for
non-geometric configuration is recovered. The study of the symmetries of β-supergravity,
in particular β gauge transformations, introduces the notion of a generalized cotangent
bundle. However, only β-transforms being a manifest symmetry of the Lagrangian with
isometries allow to determine a well-defined class of vacua that are non-geometric in stan-
dard supergravity, but lie on a geometric T-duality orbit. Further investigations are related
to ten-dimensional purely NSNS solution solving the equations of motion.

An interesting area of application of β-supergravity are NS-branes, including the NS5-
brane, the Kaluza-Klein monopole and the exotic 52

2- or Q-brane, together with Bianchi
identities for NSNS (non)-geometric fluxes. Four-dimensional Bianchi identities are gen-
eralized to ten dimensions with non-constant fluxes and introduce corrections by source
terms in presence of an NS-brane. In the absence of sources, our Bianchi identities are
recovered by squaring a nilpotent SpinpD,Dq ˆ R` Dirac operator.

β-supergravity further allows to study ten-dimensional supersymmetric vacua with
NSNS non-geometric fluxes. Specifying a compactification ansatz, internal Killing spinor
equations providing supersymmetry conditions are reformulated in terms of pure spinors
defining an SUp3qˆSUp3q structure in Generalized Complex Geometry. This involves the
generalized Dirac operator D depending on non-geometric fluxes and replacing the stan-
dard d´H^ acting on pure spinors. A proposed general expression for the superpotential
also involves D and is verified to agree with formulas of the literature. Finally preserving
supersymmetry, a geometrical characterization of backgrounds is presented.
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Chapter 1

Introduction

The perception of space and time moves people in astonishing ways. Throughout history
the modeling determined the faith of man. Whereas for the earliest cultures it was mainly
a question of observing and predicting the movement of celestial objects, already in ancient
Greece astronomy evolved as an independent field of mathematics by adopting geometri-
cal principles. However, it was not before Kepler that physics attributed mathematical
predictions to a cause. The concepts for space and time in which Newton formulated the
law of universal gravitation preceded by the measurements of gravitational acceleration
by Galilei are to the moment under severe discussion. Abandoning absolute space and a
uniformly passing time the concept of an inertial reference frame in special relativity, in
which the laws of physics are invariant and the speed of light is the same for all observers,
introduces the notion of an intertwined space-time. Finally, Einstein’s theory of general
relativity transforms space-time into a dynamical object itself. Matter and energy content
affect the shape and curvature of it and vice versa the motion of a free-falling object follows
a geodesic line in a curved space-time. Interestingly, black holes experience in the form
of the Schwarzschild solution to the classical Einstein field equations a singularity at the
origin that infringes the well-definedness of space-time. This is a first hint at a missing
understanding of space and time.

The elementary particles building up the matter content of the universe are governed
by the electromagnetic, the weak and the strong force described in the Standard Model
of particle physics, a quantum field theory. Its particular gauge group gives rise to the
electroweak theory unifying the photon with the W˘- and Z0-bosons and to Quantum
Chromodynamics governing quarks and gluons. It allows to predict high energy scattering
processes with a high accuracy up to around 100 GeV .

Only recently, the observation of the Higgs particle1 at the Large Hadron Collider
(LHC) at Cern completed the Standard Model. The necessity of a scalar boson is provided
by the Higgs mechanism spontaneously inducing electroweak symmetry breaking at a scale
mew “ 246GeV . This gives rise to masses for gauge fields of the weak force and the different
types of matter particles observed in nature due to a nontrivial vacuum expectation value

1The detection of a new particle with mass mH “ 126 GeV was published by the ATLAS collaboration
in[1].
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of the Higgs field. An open question concerning the quantum correction to the mass of
the Higgs boson is known by the name of Higgs hierarchy problem. In principle, these
corrections which result from fermions running in the loop are of the same order as the
experimentally measured Higgs mass unless an important fine-tuning takes place.

In the same way as the electromagnetic and the weak force are unified in the Stan-
dard Model it is believed that at an energy scale around mGUT “ 1016 GeV the coupling
strength of the strong force joins the one of the electroweak . Theories favoring this kind of
behavior of the coupling constants are called Grand Unified Theories (GUTs) and embed
the Standard Model gauge group into a larger group like SUp5q or SOp10q. Supersym-
metry (SUSY) extends the symmetries of these kinds of theories even further and relates
fermions and bosons which then can be arranged in so-called multiplets containing par-
ticles of different spin. Besides enforcing the coupling constants of the Standard Model
to coincide SUSY is favored for naturally extending the Poincaré group and resolving the
Higgs hierarchy problem. There is hope that the idea of SUSY can be verified at the LHC
in the near future, because the breaking scale of SUSY should not be much higher than
the scale of the Standard Model in order to solve the Higgs hierarchy problem. Following
the scheme of unification it is certainly desirable to find a Theory of Everything (ToE) in
an even higher energy regime that allows the gravitational force to join in.

Yet, gravity is in certain ways different from the three fundamental forces of nature
which might have severe consequence for our understanding of the geometry of space-time.
First, Einstein’s theory of gravity is a classical field theory valid at large distances. Its
coupling strength, the Newton constant GN , is 1033 times weaker than the Fermi constant
GF being responsible for the weak interaction. This certainly explains why gravity plays no
role in the subatomic processes described by the Standard Model. However, for phenomena
like the Planck epoch of the early universe or the vicinity of black hole singularities with
energies up to the Planck scale mP “ 1019 GeV gravity becomes relevant. Here, high cur-
vatures appear in very small regions of space demanding for a proper quantum description
of gravity. On the experimental side energies around the Planck scale are out of range of
any present or future collider experiment and recent excitement about measured imprints
of quantum gravity2 in the observed microwave background predicted by inflation models
turned out to be premature. Unfortunately, also the theoretical access to a quantum the-
ory of gravity is obscure since a consistent quantization method for general relativity has
not been found so far due to its non-renormalisability. Speaking loosely, this has to do
with the modeling of space-time at very tiny length scales. It is commonly believed that a
shift in the perception of space and time might resolve the issue of the incompatibility of
Quantum Mechanics and Einstein gravity at the Planck scale.

Interestingly, standard cosmology as defined by recent experiments holds another puzzle
related to the faith of space-time in our universe. Cosmological measurements of the
expansion of the observed universe indicate that it is actually of de Sitter type with a

2The detection of a B-mode polarization in the BICEP2 experiment arising in inflation models due to
primordial gravitational waves was published in [2]. Yet the signal was traced back to cosmic dust in our
galaxy with new data from the Planck experiment [3, 4].
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positive cosmological constant Λ of mass scale mΛ “
?

Λ « 10´12 GeV . This so-called
cosmological constant problem has to be clearly addressed in any quantum theory modeling
the gravitational force. Moreover, the Standard Model is certainly not able to describe the
nature of the corresponding dark energy and the discrepancies in energy scales with regard
to the Planck scale or even that of the other three distinct forces.

There are several ways to try to accomplish a consistent theory of quantum gravity.
Besides string theory, which we are going to pursue in this thesis, loop quantum gravity,
non-commutative geometry, group field theory or asymptotic safety are favored alternative
approaches. They all teach us of new physics beyond the Standard Model. Distinct from
mentioned features, like SUSY or extended gauge symmetries, additional space-time dimen-
sions and a possible non-commutative structure of the space-time directions themselves,
only to name a few, tell us to stay open minded when thinking about the fundamental
geometry of nature.

1.1 String theory
A promising candidate for a quantum theory of gravity is string theory. Its advent was
in the late 1960s when theoretical physicists were looking for a theory describing the
interaction of hadrons. With the rapid success of Quantum Chromodynamics describing
the strong nuclear force string theory was more and more examined with regard to being
a candidate for a quantum theory of gravity. The reason for this is a spin-2 state in the
spectrum of the string which can be identified with the graviton. Hence, string theory
contains gravity. Further, string theory can incorporate some important properties of the
Standard Model, like gauge interactions, chirality and symmetry breaking. It also naturally
includes the idea of SUSY as an extension of the Standard Model. The underlying idea
of string theory is to develop a quantum description of one-dimensional objects, so-called
strings. This ansatz stands in sharp contrast to usual field theories which consider point-like
particles. Observing space-time through one-dimensional probes will turn out to contribute
to a completely different perception of the fundamental structure of nature.

Bosonic string theory

Moving strings sweep out a two-dimensional surface, known as the world-sheet, embedded
in some bigger space-time, called target space. Their coordinates Xmpσ, τq in target space
can be interpreted as fields living on the world-sheet and provide a map between these two
concepts. An appropriate action, called the Nambu-Goto action, is found by generalizing
the world-line of a relativistic point-particle to a one-dimensional string

S “ ´T

ż

dσ2?
´ deth with hαβ “ BαXm

BβX
nηmn , (1.1.1)

where σα “ pσ, τq denotes the two-dimensional world-sheet coordinates and h is the induced
metric by the pullback of the Minkowski metric η in target space to the world-sheet. We
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further use the abbreviation Bα “ B

Bσα
. T denotes the string tension which is historically

related to the Regge slope α1 by
T “

1
2πα1 . (1.1.2)

A dimensional analysis shows that we can associate with α1 the string scale ls by l2s “ α
1 .

Since we later are going to identify some excitation of the string with the graviton, the
natural energy scale of string theory should be around the Planck scale mP .

The Nambu-Goto action (1.1.1) can be rewritten in the more convenient form of the
Polyakov action

S “ ´
T

2

ż

dσ2?
´ deth hαβηmnBαXm

BβX
n , (1.1.3)

experiencing conformal symmetry. Therefore, the use of two-dimensional conformal field
theory (CFT) techniques is important for observing the string from the world-sheet per-
spective. Now, h is an independent variable determined by its own equation of motion.
Variation of the action with respect to the string coordinates leads to the equations of
motion for Xm with additional boundary conditions for the bosonic string

BαB
αXm

“ 0 , BσX
mδXm|

σ“π,2π
σ“0 “ 0 . (1.1.4)

In addition, we have to consider the variation of the metric hαβ on the world-sheet. It fol-
lows that the stress-energy tensor, which we obtain in this way, imposes further constraints
on the string coordinates

Tαβ “ ηmnBαX
m
BβX

n
´

1
2ηαβη

ρσηmnBρX
m
BσX

n
“ 0 . (1.1.5)

First, we focus on the closed string coordinate with the two ends of the string being
identified

Xm
pσ, τq “ Xm

pσ ` 2π, τq. (1.1.6)

The boundary condition (1.1.4) is satisfied trivially. The solution to the free wave equation
(1.1.4) can be expressed by a factorization of the string coordinate into a left- and right-
moving part

Xm
L pσ ` τq “

1
2x

m
`

1
2α

1

pmpσ ` τq ` i

c

α1

2
ÿ

l‰0

1
l
α̃ml e

´ilpσ`τq ,

Xm
R pσ ´ τq “

1
2x

m
´

1
2α

1

pmpσ ´ τq ` i

c

α1

2
ÿ

l‰0

1
l
αml e

`ilpσ´τq ,

(1.1.7)

where αml and α̃ml denote the oscillator modes at level l respectively. The center of mass
position and momentum are given by xm and pm. We have yet to impose the constraint
(1.1.5) to obtain a classical solution of the string. This constraint is more conveniently
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expressed in the form of vanishing Fourier modes Ln and L̃n

Ln “
1
2
ÿ

lPZ
αn´l ¨ αl,

L̃n “
1
2
ÿ

lPZ
α̃n´l ¨ α̃l,

(1.1.8)

where the zero modes αm0 and α̃m0 are identified with the momentum pm. Of particular
interest is the following constraint at level 0

L0 “ L̃0 “ 0 . (1.1.9)

Sometimes called level-matching condition for relating left- and right-moving oscillators, it
allows to write down an expression for the effective mass of the string in terms of excited
oscillation modes

M2
“

4
α1

ÿ

lą0
α´l ¨ αl “

4
α1

ÿ

lą0
α̃´l ¨ α̃l . (1.1.10)

Next, we take a look at the open bosonic string. Locally, the open string is also governed
by the Polyakov action (1.1.3), but now we have to consider the two endpoints of the string
separately

Xm
pσ, τq, at σ “ 0, π. (1.1.11)

Varying the action (1.1.3) with respect to the string coordinate we observe the boundary
term (1.1.4), which vanishes for the closed string upon identification of the endpoints. For
the open string this leads to two possible boundary conditions:

• Neumann boundary conditions

BσX
m
“ 0, at σ “ 0, π. (1.1.12)

Here, the endpoints of the string are allowed to move freely at the speed of light.

• Dirichlet boundary conditions

δXm “ 0, at σ “ 0, π. (1.1.13)

Here, the endpoints of the string lie at a constant position Xm “ cm in space.

Having Neumann boundary and Dirichlet boundary conditions together the endpoints of
the open string are fixed to some hypersurface of a certain dimension, also known as D-
brane. There are hints that D-branes should be considered as independent dynamic objects
in string theory. The first excited states of the open string describe massless oscillations
within and transversal to the brane. In particular, it is a Up1q gauge theory that one obtains
on a single brane whereas in certain scenarios the Standard Model arises by placing several
stacks of branes in some directions of the target space.
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Superstring theory

Up to now the formulation of the string only includes bosonic coordinates and does not
account for the existence of fermions in target space. Furthermore, the existence of a
tachyonic ground state in bosonic string theory is a major drawback as it points towards
instabilities of the theory. Superstring theory addresses both questions simultaneously
introducing additional fermionic fields on the world-sheet. The action for the superstring
in superconformal gauge then takes the form

S “ ´
T

2

ż

dσ2ηmnpBαX
m
B
αXn

` α
1

iΨ̄mραBαΨn
q (1.1.14)

in Minkowski space-time, where Ψa are two-component Majorana spinors on the world-
sheet and ρα are 2ˆ2-Dirac matrices. However, introducing SUSY on the world-sheet by
adding fermionic degrees of freedom does not right away answer the question of whether
or not we observe fermionic states or SUSY in target space. The equations of motion for
the fermionic string take the form of the two-dimensional Dirac equation and has to be
supplemented by a corresponding boundary condition

ραBαΨm
“ 0 , Ψm

`δΨ`m ´Ψm
´δΨ´m

ˇ

ˇ

σ“π,2π
σ“0 “ 0 . (1.1.15)

The two components of the Majorana spinor Ψm correspond to left- and right-moving
fermionic coordinates Ψm

L and Ψm
R .

We leave out the discussion of the open string and focus on the case of the closed
string. Now, the two possible boundary conditions for the left- and right-moving part of
the fermionic string are given by

Ψm
L pσ, τq “ ˘Ψm

L pσ ` 2π, τq and Ψm
R pσ, τq “ ˘Ψm

R pσ ` 2π, τq . (1.1.16)

Since the boundary conditions can be chosen independently one distinguishes the four
sectors RR, RNS, NSR and NSNS by a periodic Ramond (R) boundary condition, or
anti-periodic Neveu-Schwarz (NS) boundary condition.

Considering the mode expansion of the fermionic string in detail allows to access the
spectrum in the different sectors. It turns out that the ground state in the R sector is
degenerated and lives in the spinor representation of SOp1, 9q. Whereas in the NS sector
we observe a unique tachyonic ground state. Moreover, it appears that the spectrum is
not supersymmetric at first. The proper way to address these problems is a consistent
truncation of the spectrum by the GSO-projection. Fixing a definite chirality in the R
sector then amounts to establishing SUSY in target space which is not obvious, but can
be tracked at every mass level. The spectrum is constructed by tensoring states of the
respective sectors chosen for the left- and right-moving coordinate of the string. The
NSNS sector contains a scalar field called the dilaton φ, an antisymmetric two-form bmn
and a symmetric traceless rank-two tensor gmn. The RNS and NSR sectors in each case
contain a spin 3/2 gravitino and the spin 1/2 dilatino. The RR sector yields a set of
antisymmetric p-forms Cp.
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Depending on choosing the left- and right-moving ground state to be of the opposite or
same chirality in the R sector one distinguishes string theory of type IIA and respectively
type IIB. There exist three more consistent types of string theory. Type I is a string theory
of unoriented strings sweeping out world-sheets such as the Möbius band for open strings
or the Klein bottle in the case of closed strings. Heterotic String theories including the
gauge groups E8 ˆE8 or SOp32q are constructed by allowing only the right-moving string
coordinate to involve fermions.

There are important constraints on these string theories imposed by consistency of the
quantum description. Lifting classical symmetries to the quantum level so-called anomalies
occur. The absence of the Weyl anomaly for example fixes the space-time dimensions to
10 for superstring theories and to 26 for bosonic string theory. This so-called critical
dimension of the string raises questions about the interpretation of the extra dimensions
and the identification of our four dimensional space-time. Also, rather remarkably, dualities
between the distinct string theories and new symmetries can be found.

Stringy symmetries and dualities

String theory provides a variety of new symmetries. T- and S-duality are only two of several
dualities encountered in string theory that form an intricate web between the 5 different
types of string theory. T-duality identifies certain backgrounds which are indistinguishable
for the string. Whereas S-duality relates theories at weak and strong string coupling
constant. These are all signs for an eleven-dimensional non-perturbative theory, called
M-Theory, where branes play the role of the fundamental objects.

M-theory het SOp32q

type I

type IIA

type IIB

het E8 ˆ E8

T

S

T

S

Figure 1.1: Web of dualities between string theories.

In this thesis we are particularly interested in T-duality relating string theories defined
on certain distinguished backgrounds. The fact that T-duality is a stringy symmetry, only
present when probing space-time with a string, is due to the string being an extended
object. Nontrivial winding effects of the string around compactified directions give rise to
this new duality.
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The study of the spectrum of one bosonic string coordinate on a circle of radius R
elucidates the role of the duality transformations3. The compactification of one bosonic
string coordinate to a circle leads to the periodic identification X “ X ` 2πRm, with
m P Z. A consistent mode expansion, respecting (1.1.5), then yields

XLpσ ` τq “ xL `

c

α1

2 pLpσ ` τq ` i
c

α1

2
ÿ

l‰0

1
l
α̃le

´ilpσ`τq ,

XRpσ ´ τq “ xR ´

c

α1

2 pRpσ ´ τq ` i
c

α1

2
ÿ

l‰0

1
l
αle

`ilpσ´τq .

(1.1.17)

The center of mass is x “ xR ` xL and the momenta pL, pR read

pL “
1
?

2
p

?
α1

R
n`

R
?
α1
mq , pR “

1
?

2
p

?
α1

R
n´

R
?
α1
mq . (1.1.18)

In addition to the momentum in the compact direction taking integer values n P Z, the
winding number m P Z accounts for the possibility of the string winding around the circle.

Having a formula for the left- and right-moving momenta at hand we can add 25 non-
compact string coordinates to match with the critical dimension of bosonic string theory.
The mass shell condition (1.1.10) in the compactified theory is then written as

M2
25 “

n2

R2 `
m2R2

α12
`

2
α1
pN ` Ñ ´ 2q , (1.1.19)

where N and Ñ are the number operators counting oscillation modes. The duality sym-
metry can be seen thanks to the following exchange

R
?
α1
Ø

?
α1

R
, nØ m . (1.1.20)

Therefore, T-duality is most easily observed as an exchange of momentum modes with
winding modes of the string. However, the statement that string theory defined on a circle
of radius R is equivalent to defining it on a circle of inverse radius α1{R is more familiar.
Hence, physics at small scales cannot be distinguished from physics at large scales. One
interpretation of this is that string theory implements a natural minimal length scale
Rmin ”

?
α1 .

Based on the work by Narain, the Z2-symmetry which inverts the radius R was recog-
nized to sit inside a larger group for a d-dimensional toroidal background. The 2d vector
ppL, pRq then spans an even self-dual lattice, called Narain lattice. All even self-dual lattices
are related by transformations h forming the group Opd, d,Rq

htηh “ η with η “

ˆ

0 1
1 0

˙

. (1.1.21)

3An exhaustive review on T-duality can be found in [5].
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Furthermore, there exist a subgroup Opd,Rq ˆOpd,Rq providing a symmetry of the trun-
cated Hamiltonian

H0 “
1
2p

2
L `

1
2p

2
R . (1.1.22)

The moduli space is then given by the coset manifold Opd, d,Rq{Opd,RqˆOpd,Rq. Finally,
the discrete duality subgroup Opd, d,Zq leads to physically identical theories. This group
is known as the T-duality group in string theory and corresponds to the enlargement of
the Z2-symmetry. Whereas Opd, d,Rq is the respective symmetry group appearing in low-
energy effective theories of string theory. Analyzing Opd, d,Rq the following elements are
symmetry generators

gΘ “

ˆ

1 Θ
0 1

˙

, gA “

ˆ

A 0
0 pAtq´1

˙

, gDi “

ˆ

1´ ei ei
ei 1´ ei

˙

, (1.1.23)

where Θij is a antisymmetric dˆ d-matrix taking constant values, A P GLpd,Rq and ei is
a dˆ d-matrix where the ii-th entry is one and all other entries are zero. The last element
can be identified with a radial inversion in the i-th toroidal direction.

T-duality can also be derived from a world-sheet approach using a non-linear σ-model.
Buscher showed, see [6] and [7], that T-duality is a symmetry of the path integral if there
exists an abelian isometry in a compactified dimension. The rules for calculating the T-
dual background are known by the name of Buscher rules. This provides a shortcut for
generating new string backgrounds.

The starting point is a σ-model for the string propagating in curved space with an
abelian isometry in one direction, denoted by θ,

S “
1

4πα1
ż

d2σ
a

|h|
´

`

hαβgmnpXq ` iε
αβbmnpXq

˘

BαX
m
BβX

n
` α

1

φpXqRp2q
¯

, (1.1.24)

where hαβ is the world-sheet metric, gmnpXq is the target space metric and bmnpXq is
the B-field. The dilaton field φpXq is coupled to the scalar curvature Rp2q of the world-
sheet. Gauging the abelian isometry direction θ by introducing a gauge field together with
a Lagrange multiplier, arranging for pure gauge and integrating out the gauge field in a
second step yields a dual σ-model. Remarkably, the form of the original σ-model can be
restored if the following substitutions are applied

g̃θθ Ñ
1
gθθ

, g̃θm Ñ
bθm
gθθ

, b̃θm Ñ
gθm
gθθ

, φ̃Ñ φ´
1
2 log gθθ ,

g̃mn Ñ gmn ´
gθmgθn ´ bθmbθn

gθθ
, b̃mn Ñ bmn ´

gθmbθn ´ gθmbθn
gθθ

.

(1.1.25)

These transformations4 and their generalizations to several isometries are called Buscher
rules. Given a string background described by pg, b, φq the dual background pg̃, b̃, φ̃q is

4The transformation of the dilaton φ has to be worked out separately by demanding invariance of the
partition function under T-duality.
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provided by the above fractional linear transformation. Later, the T-duality transformation
take a linear form in the Opd, dq framework.

A further symmetry directly related to the geometry of the internal space of the hidden
dimensions is mirror symmetry. According to this symmetry String theories of type II
should lead to equivalent effective field theories if two mirror Calabi-Yau (CY) manifolds
make up the additional space. In certain situations the transformation between mirror
pairs is a T-duality as stated by the SYZ-conjecture [8].

1.2 Low-energy effective theories
Despite huge progress in understanding the structure behind string theory a lot of open
questions and problems remain a major sign that string theory is one of the most complex
theories encountered in physics. One important direction to follow concerns the arising of
physics at low energies in the limit α1 Ñ 0 from string theory. In one way or another string
theory should incorporate the Standard Model of particle physics and gravity described by
general relativity. Hence, the infinite tower of states in the spectrum of the string should
be truncated to be identified with the finite particle spectrum observed in target space. A
natural choice is to keep the massless modes of the string since higher excitations come with
masses near the Planck scale mP and cannot be produced with current energies. Among
these, the graviton should give rise to Einstein’s theory of gravity. More generally, one could
ask: What are the imprints of string theory that could be observed in experiment? Is it
possible to see any sign for the existence of extra dimensions? Since SUSY is naturally
embedded in string theory we should further find a new scale mSUSY , probably around
1 TeV , where it is spontaneously broken and above which new supersymmetric particles
should be observed. Moreover, the faith of symmetries only present in string theory is
not clear either. Are these in some form present in the low-energy effective theories? By
answering the last question one hope is to reveal a new framework underlying string theory
paving the way to explore novel regions of the vacuum structure of the string.

1.2.1 Supergravity
SUSY plays an important role in going beyond the Standard Model of elementary par-
ticles. Theoretically, this led to the Minimal Supersymmetric Standard Model (MSSM)
which ascribes to each particle a supersymmetric partner.5 A favored characteristic of this
model is the unification of the three fundamental forces at high energies. But SUSY is
also interesting from the point of view of extending gravity theories in various dimensions.
Implementing SUSY as a local symmetry the corresponding theory, called supergravity
(SUGRA), inherits space-time diffeomorphism invariance by the supersymmetric extension
of the Poincaré algebra. Hence, people reflected about SUGRA theories totally indepen-
dent of string theory. The field content of such theories is arranged in supermultiplets,

5So far, SUSY has not been observed at LHC. Simplest natural versions have been ruled out, but more
evolved models have yet a chance.



1.2 Low-energy effective theories 11

representations of the SUSY algebra, and depends on the number of supersymmetries N
and the dimension d.

Another view on SUGRA is based on taking superstring theory as the correct quantum
theory of gravity and considering SUGRA as a low-energy description of the string. In
other words, string theories provide ultraviolet completions of SUGRA theories. However,
a consistent method for integrating out the massive excitations as in conventional quantum
field theories is not an option in string theory. Nevertheless, any construction of the
corresponding SUGRA theory tries to reproduce the massless field content of a particular
superstring theory. Besides this correspondence of both spectra, another hint on the low-
energy effective action is to study string scattering amplitudes at low energies or calculating
the β-functions of string theory. Demanding conformal invariance on the world-sheet for the
non-linear σ-model (1.1.24) the β-functions have to vanish and coincide with the equations
of motion of SUGRA theories.

Surprisingly, eleven dimensions constitute an upper bound for consistent SUGRA the-
ories and additionally give rise to a single unique SUGRA believed to be the low-energy
effective description of M-theory. Of particular interest to us are the ten-dimensional
SUGRA theories of type II. Here, we present the bosonic sector of type IIA which should
be complemented with a fermionic action for the gravitini ψ1,2

m and the dilatini ρ1,2

SIIA “ SNS ` SR ` SCS ,

SNS “
1

2κ2
10

ż

d10x
?
´ge´2φ

pRpgq ` 4|dφ|2 ´ 1
2 |H|

2
q ,

SR “ ´
1

4κ2
10

ż

d10x
?
´gp|F2|

2
` |F̄4|

2
q ,

SCS “ ´
1

4κ2
10

ż

B2 ^ F4 ^ F4 .

(1.2.1)

In these expressions Rpgq is the standard Ricci scalar, the RR fields are denoted by Cp
with the corresponding field strengths Fp`1

6, the NS-NS field is B2 with corresponding
field strength H and a useful redefinition is F̄4 “ dC3´C1^H3. The equations of motion
derived from this action are

0 “´ gmn
2 pRpgq ` 4|dφ|2 ´ 1

2 |H3|
2
´

1
2e

2φ
|F2|

2
´

1
2e

2φ
|F̄4|

2
q

`Rmn ´
1
2ιmH ¨ ιnH ` 2gmnp2|dφ|2 ´∇2φq ` 2∇m∇nφ

´
1
2e

2φιmF2 ¨ ιnF2 ´
1
2e

2φιmF̄4 ¨ ιnF̄4 ,

0 “Rpgq ´ 1
2 |H|

2
` 4p∇2φ´ |dφ|2q ,

0 “dpe´2φ
˚Hq ,

0 “dp˚Fpq .

(1.2.2)

6By Poincaré duality there are the field strengths F̃6 “ ˚F̄4 and F̃8 “ ˚F2. In principle, the field
strength F10 “ dC9 can also be defined, but it does not carry propagating degrees of freedom.
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Conventions for the notation can be found in appendix A.2. The equations of motion
should be supplemented with Bianchi identities (BIs) for the fluxes in the NSNS sector as
well as in the RR sector

dH “ 0 , pd´Hq ^ Fp “ 0 . (1.2.3)

A further important detail of any SUGRA theory are the SUSY variations connecting the
bosonic and fermionic sector. For type IIA and IIB standard SUGRA with two pairs of
chiral fermions the NSNS-flux contributions to their SUSY variations are

δψ1,2
m “

ˆ

∇m ¯
1
8HmnpΓnp

˙

ε1,2 ,

δρ1,2
“ Γm

ˆ

∇m ¯
1
24HmnpΓnp ´ Bmφ

˙

ε1,2 ,

(1.2.4)

where ∇m is the standard covariant derivative, the Γm satisfy a Dirac algebra and ε1,2

denotes the SUSY fermionic parameters, while the sign differs respectively for 1, 2. The
SUSY variations of the bosonic field content are not considered in this thesis and therefore
left out.

Whereas type IIA can be derive in a dimensional reduction of eleven-dimensional
SUGRA the guidelines for constructing a SUGRA theory for string theory type IIB are
solely given by SUSY and gauge invariance. In the same way, it is possible to write down
SUGRA theories for the remaining heterotic and type I string theories. Of particular inter-
est to us is SNS, which coincides for all five string theories, and the corresponding equations
of motion.

The open string sector also allows for a low-energy effective description in target space
which is exact in α

1 in contrast to the effective action (1.2.1) for the closed string. The
so-called Dirac-Born-Infeld (DBI) action7

SDBI “ ´Tp

ż

Σ
dp`1ξe´φpXq

b

´ det pgαβpXq ` 2πα1FαβpXq ` bαβpXqq (1.2.5)

governs the abelian gauge field Am with field strength Fmn on a single D-brane and couples
it to the massless fields gmnpXq, bmnpXq and φpXq of the closed string. The coordinates
Xmpξq embed the surface Σ into ten-dimensional target space and define the pullbacks gαβ,
bαβ and Fαβ onto the D-brane, similar to(1.1.1). The DBI action is a non-linear extension
of Maxwell’s theory.

1.2.2 Compactification
Requiring extra dimensions for string theory to be anomaly free leaves us with the question
of identifying our four-dimensional space-time. There are two distinct ideas on the real-
ization of hidden dimensions adding up to the critical dimension of the string. The first

7In order to respect SUSY the DBI action is complemented by a Chern-Simons action SCSrCps con-
taining the corresponding RR p-form Cp.
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scenario embeds space-time as a four-dimensional hypersurface in ten dimensions. The
second possibility is to consider the extra dimensions to be small enough that we have
not yet been able to observe them in experiment. The latter is known as compactification
where extra dimension coil up to form an additional space. Remarkably, the distinction
into extended and compact directions is to this moment obscure. Applying a simple com-
pactification ansatz by hand ten-dimensional space splits into four extended space-time
directions together with a compact internal manifoldM6 for the extra dimensions

M10 “ K4 ˆM6 . (1.2.6)

This idea is more commonly known under the name of Kaluza-Klein compactifications.
Typically for convenience, one chooses Minkowski space-time R1,3 for the external part.
However, recent cosmological data demands a de Sitter space. More generally, the two
spaces could be connected by a warping meaning that the size of the inner manifold changes
with the position in the four-dimensional space-time. This choice causes ten-dimensional
fields, e.g. the metric g, to split into a four-dimensional part plus additional vector and
scalar degrees of freedom. In particular, the scalar fields in the lower dimensional theory,
known as moduli, are of certain interest because these specify the inner space. For example,
Kähler moduli describe the size and complex structure moduli the shape of the internal
manifold. Unfortunately, a potential fixing a specific vacuum expectation value for these
moduli is missing. Therefore, important properties of the internal space are not fixed.
Hence, a vast number of distinguishable compact internal manifolds are allowed solutions.
This is known as the string landscape problem which reduces the predictivity of string
theory tremendously. A prefered choice for the internal space is a CY threefold defined
by preserving a certain number of SUSY when the external space is maximally symmetric.
Especially in heterotic string theory, this scenario [9] is able to provide prefered four-
dimensional N “ 1 vacuum configurations even if it demands the NS-flux H to vanish.

Despite the huge string landscape the only scalar field observed so far in four dimensions
is the Higgs fields. Therefore, a mechanism is needed that allows to stabilize the moduli.
Switching on non-vanishing vacuum expectation values for the NS-flux and for the fluxes
in the RR sector a scalar potential for the moduli in N “ 1 four-dimensional theories is
generated

V “ eKpKmnDmWD̄nW ´ 3|W |2q , (1.2.7)

where W is the superpotential provided by the Gukov-Vafa-Witten formula [10] and con-
tains the standard fluxes. Moreover, K is the Kähler potential8 andKmn “ BmB̄nK denotes
the Kähler metric. For the standard example of a type IIB compactification on a T 6{Z2
orientifold with three identical 2-tori the superpotential does include H-flux and F3-flux
[11]

W “ P1pτq ` SP2pτq , (1.2.8)
8Additional terms in the superpotential arise due to non-perturbative effects by D-brane instantons and

in the Kähler potential due to world-sheet instantons.
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where τ denotes the complex structure modulus, S the axion-dilaton and the polynomials
P1, P2 are cubic in τ . The Kähler modulus U does not enter the superpotential and is
hence not stabilized. This opens up the wide field of flux compactifications; see [12] for
a review. In certain scenarios some or all moduli gain a nontrivial vacuum expectation
value and hence moduli stabilization is possible [13, 14, 15]. Restrictions to turning on
fluxes in compact spaces result from energy considerations of the configurations. Negative
tension sources, so-called orientifolds, are needed for compensating the positive contribu-
tions of fluxes. The BIs (1.2.3) in the case of a geometric compactification with integrally
quantized fluxes impose further conditions. Of special interest to us are also conditions
from demanding a certain number of SUSY in the compactified theory. When fluxes are
switched on SUSY can be partially broken. Eventually, the lower-dimensional SUSY vari-
ations (1.2.4) including the NSNS H-flux and the geometric f -flux have to be satisfied to
obtain a consistent compactification.

1.3 Non-geometry
Considering string theory as a two-dimensional CFT defined from some world-sheet into
some target space, a conventional geometric description of space-time is not obvious. The
mathematical tools of differential geometry in form of an underlying manifold structure
are not applicable in most cases. These kind of “non-geometric” vacua, however, should be
included in the string landscape if one hopes to achieve a deeper understanding of string
theory itself. Naturally, this brings along the task to identify situations where new effects
beyond standard geometry appear. First hints can of course be found when differential
geometry breaks down, but in the long run one hopes to develop a new appropriate frame-
work in which these new backgrounds fit in consistently. Symmetries only present in string
theory do play a major role in detecting non-geometric string vacua. Following the idea of
observing effects of the string with effective theories one immediately comes up with the
question: What happens to stringy symmetries at low energy? In the following we present
how T-duality applied to well-understood situations in low-energy effective theories gives
us a first handle on a tiny segment of non-geometric vacua in the vast string landscape.

1.3.1 Non-geometric fluxes and backgrounds
In the previous section we briefly mentioned the need for moduli stabilization in any
compactification and the fail of convenient CY manifolds without fluxes in regard to solving
the problem. Including fluxes in the compactification improves the situation, but still makes
it hard to derive models for string phenomenology within the standard set of ingredients.
The recent discovery of so-called non-geometric fluxes led to the observation of backgrounds
with full moduli stabilization [16, 17, 18]. In addition, (metastable) de Sitter solutions have
been found [19, 20, 21, 22, 23, 24, 25]. Finding a few particular backgrounds where also
the issue of stability is resolved remains of great interest. In general, having more freedom
should ease the way to constructing more realistic models imposing further constraints,
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e.g. a correct particle spectrum. A long these lines non-geometric fluxes provide additional
tools for finding phenomenologically interesting solutions. Before we draw the connection
of these non-standard fluxes to the breakdown of geometric concepts in certain backgrounds
we sketch their appearance in four-dimensional compactified theories.

Appearance in the superpotential and gauged supergravity

Although complex structure moduli experience moduli stabilization in a type IIB com-
pactification on a T 6{Z2 orientifold the volume of the inner manifold parametrized by the
Kähler moduli is arbitrary. The situation in type IIA is slightly better. Here, applying an
additional “twisting” to the T 6 which is measured by the so-called geometric f -flux9 allows
to stabilize all moduli [27]. Then, the superpotential includes besides the NSNS H-flux
the even RR fluxes

W “ P1pτq ` SP2pτq ` UP3pτq , (1.3.1)

where now also the Kähler modulus U enters, P1 is still cubic, but P2,3 are linear. It is now
interesting to observe the effect of T-duality on this superpotential since there is an obvious
mismatch with the type IIB side (1.2.8). Eventually, declaring T-duality to be a symmetry
of the four-dimensional theory demands further terms in the superpotential which come
with coefficients representing new non-standard fluxes. The NSNS sector contains besides
the standard H- and f -flux two further non-geometric fluxes labeled Q and R.

Closely related to flux compactification are so-called gauged SUGRA theories10 in lower
dimensions. These theories are based on gauging a subgroup of a global symmetry and
should arise in more complicated compactifications. A first example is SOp8q gauged
SUGRA which descends from eleven-dimensional SUGRA reduced on S7. Here, SOp8q is
considered to be embeded in E7 which is the global symmetry of the ungauged theory after
toroidal compactification. Non-standard fluxes then appear as structure constants in the
T-duality invariant extension of the gauging algebra of four-dimensional gauged SUGRAs
[27, 29, 30]

rZa, Zbs “ HabcX
c
` f cabZc

rZa, X
b
s “ ´f bacX

c
`Qa

bcZc

rXa, Xb
s “ Qc

abXc
´RabcZc ,

(1.3.2)

where the symmetry generatorsX and Z are derived from ten-dimensional diffeomorphisms
and b-field gauge transformations. This further fixes the specific index positions on the
fluxes. More systematically, the embedding tensor encodes all possible gaugings consistent
with SUSY. Besides the standard geometric embeddings describing diffeomorphisms and p-
form gauge transformations other embeddings are possible. From the point of view of flux
compactifications, the embedding tensor allows to group standard fluxes and non-geometric

9Criteria for compactness in the presence of geometric fluxes can be found in the review [26].
10A review can be found in [28].
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fluxes corresponding to the later subset of embeddings consistently. These non-standard
embeddings do not seem to have an uplift to higher-dimensional SUGRA theories and
might indicate compactification on non-geometric backgrounds [31].

3-torus with H-flux and T-dual configurations

T-duality provides us with a way of generating new consistent string backgrounds from
yet discovered ones. On the level of SUGRA theories this is done by properly applying
Buscher’s rules (1.1.25). In the following we track the appearance of non-geometric fluxes
to inconsistencies arising for certain backgrounds. The standard toy model guiding our
intuition is the three-torus with H-flux11 and its T-dual versions [32, 33].

Starting with a rectangular flat three-torus T 3 where the three directions xm for m “

1, 2, 3 are periodically identified xm „ xm ` 1 and switching on a Kalb-Ramond b-field
linearly depending on a single direction leads to a flat metric g and constant H-flux. In
particular, following the monodromies the metric g stays invariant and the shift in the
b-field can be absorbed by a gauge transformation.

The premise of an existing isometry for Buscher’s rules is certainly satisfied and the
transformation can even be applied twice for having two isometry directions. Performing
the transformation once one finds the so-called twisted torus. It is characterized by a
vanishing b-field and hence a zero H-flux. More importantly, the metric g is no longer flat,
but inherits a non-trivial dependency on the direction the b-field previously depended on.
This twist can be described using f -flux. The setup of the twisted torus is still geometric
in the sense that the monodromy of the metric g is a simple diffeomorphism.

A second T-duality transformation in the remaining isometry direction does lead to
an inconsistent global description. Now, the metric g and the b-field both depend non-
trivially on one direction and the monodromies are no longer diffeomorphisms and gauge
transformations but local stringy T-duality transformations. Locally, the fields still de-
scribe a geometry but globally the geometric picture breaks down. Later, we show that
this background can be associated with Q-flux.

Even if there is no isometry left one can speculated about the existence of a third T-dual
version of the three-torus with H-flux. It is usually associated with having R-flux which
can be seen as an indication for the loss of a local geometric description [27].

This sequence of T-dual backgrounds with the corresponding geometric and non-geometric
fluxes can be conveniently summerized by the following T-duality chain of fluxes

Habc
T1
ÐÝÑ fabc

T2
ÐÝÑ Qc

ab T3
ÐÝÑ Rabc . (1.3.3)

This chain also applies to a set of branes in the NSNS sector. Here, the origin is the NS5-
brane and T-duality transformations lead to dual branes with turned-on non-geometric
fluxes.

The lesson of the three-torus with H-flux and its T-dual versions is to put symmetries
only present in string theory on an equal footing with diffeomorphisms and gauge trans-
formations, when one wants to construct non-geometric backgrounds. More generally, this

11In order to provide a consistent string background further ingredients should be added.



1.3 Non-geometry 17

means that we should naturally glue string configurations described on local patches with
the help of stringy symmetries. On each of these patches a generic background consists
of a metric g, a two-form b-field and the dilaton φ. In order to gain the global picture
transition functions are needed for patching local descriptions. Now, for a manifold M
the allowed transition functions are limited to diffeomorphisms and gauge transformations,
but when having a torus bundle with fiber T d stringy extensions become interesting. In
particular, it is interesting to do the gluing between fibers with transition functions lying
in the continuous T-duality group Opd, d,Rq. From this point of view, it is easy to un-
derstand that some string configurations look ill-defined. Transition functions gluing the
torus fibers when going around a loop in the base simply do no longer lie in the geometric
subgroup Ggeom “ GLpdq ˙Λ2 Ă Opd, d,Rq. These kind of new backgrounds are known as
T-folds [34]. Certainly, the notion of a standard manifold is violated in this constructions
and for vanishing b-field one finds configurations that allow the patching of big circles to
small circles. At the level of the string such configurations generically cause a mixing of
momenta and winding numbers.

The observation of non-geometric fluxes and backgrounds is very much linked to start-
ing with a consistent geometric vacuum solution. However, a T-duality invariant superpo-
tential, an embedding tensor in the full T-duality group Opd, dq and transition functions
beyond diffeomorphisms and gauge transformations allow to directly construct configura-
tions where it has to be examined whether these arise from geometric ones by applying
T-duality transformations. In most cases this will not be the case and the question of
consistent uplifts to full string vacua is non-trivial to answer. Additional requirements for
a consistent string background are for example modular invariance at higher order in loops.
T-dual backgrounds of geometric configurations meet all these conditions. The string the-
ory perspective on this is that even if locally there exists a different σ-model on each patch
with a distinct global target space geometry, these all represent one CFT describing the
perturbed string. T-duality may change the geometry of the target space from patch to
patch but it leaves the CFT invariant. Known examples for consistent non-geometric string
configurations are provided by asymmetric orbifolds [35, 36]. Monodromies in this kind of
spaces act asymmetrically on the left and right string coordinate. Besides T-duality, other
stringy symmetries like S-, U-duality and mirror symmetry could be used analogously to
construct even more classes of string backgrounds with exciting new features.

1.3.2 T-duality covariant formalisms
So far T-duality played an important role in the lower-dimensional theories. Non-geometric
fluxes arise solely after compactifying a certain SUGRA theory and demanding T-duality
invariance of the superpotential. Our understanding of them in terms of non-geometric
backgrounds is very limited. A most promising facilitation at this stage would be to have
a theory in ten dimensions that contains and provides expressions for the non-geometric
fluxes right from the beginning. A justified hope is to draw the connection from the ap-
pearance of four-dimensional fluxes to a yet to be determined compactification of this new
theory on certain backgrounds experiencing non-geometric features. In other words, trying
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to find a manifestly T-duality invariant theory is of great interest. Two such formalisms
trying to make use of stringy symmetries led to a fast developing field during the last
decade. Double Field Theory [37, 38] and Generalized Geometry [39] both provide frame-
works that make T-duality manifest and allow to tackle problems of non-geometry directly
in ten dimensions.

Generalized geometry

The idea of Generalized Geometry (GG) heavily relies on previous work in the field of
mathematics. Hitchin and Gualtieri explored generalizations of symplectic and complex
structures and unified these in the framework of Generalized Complex Geometry (GCG)
[40],[41]. Based on a new bundle structure over a standard manifold, called the generalized
tangent bundle, it is possible to deal with standard vectors and one-forms on an equal
footing. In such a framework the group Opd, d,Rq arises naturally as the structure group
by the a bilinear product acting on generalized vectors consisting of a vector and a one-form
part.

Physical motivation for further studying GCG holds the field of supersymmetric flux
compactifications.12 As pointed out before, switched on fluxes enter the SUSY variations
and lead to curved manifolds beyond the CY spaces. It turned out that GCG is valuable in
reformulating SUSY transformations and sometimes allows to solve the SUSY conditions
and BIs instead of the equations of motion when searching for background solutions. In
particular, the notion of a generalized Calabi-Yau condition (GCY) [40, 41] which is nec-
essary but not sufficient for realizing unbroken SUSY on manifolds with fluxes provides a
interesting new class of backgrounds.

However, it was only lately that an associated theory on the generalized tangent bundle
was proposed in [39]. It is a generalization of Einstein gravity based on Riemannian
geometry in the sense of providing a generalized connection in analogy to the Levi-Civita
connection and realizing the bigger structure group Opd, d,Rq as its symmetry group.
Therefore, the framework of GG nicely unifies diffeomorphisms and gauge transformations
governing the field content of any SUGRA theory. The objects that transform under a
generalized Lie derivative associated with the Courant bracket are the so-called generalized
metric, encoding the standard metric and the Kalb-Ramond field, and a generalized dilaton
in the NSNS sector. Including the other sectors GG is able to provide a rewriting for
SUGRA theories of type IIA and type IIB. Eventually, it provides generalized curvature
quantities and allows to rewrite apart from SUSY transformations also the equations of
motion in a remarkable simple form.

Extensions of GG to different situation have recently appeared. In particular, its appli-
cation to the low-energy effective theories of M-theory in several dimensions was discussed
in [43]. Replacing the Opd, d,Rq structure group on the generalized tangent bundle with
exceptional groups Edpdq[44, 45] allows to implement U-duality as symmetry of the new the-
ory [46]. Further interesting work using GG was established with respect to backgrounds

12A review on GCG and its application in the context of supersymmetric flux compactifications can be
found in [42].
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of AdS type [47], preserving a certain amount of SUSY and allowing for generalized special
holonomy [48]. Latest developments try to find an appropriate bundle for treating higher
α
1-corrections to SUGRA theories [49].

Double field theory

Even more inspired by the setup of string theory is Double Field Theory (DFT)13 [37, 54].
The existence of left- and right-moving string coordinates and the possibility of additional
winding in toroidal backgrounds makes it tempting to consider so-called doubled spaces on
which the T-duality group Opd, dq acts by exchanging to sets of coordinates. Loosing the
familiar notion of manifold, necessary for GG, DFT establishes a framework that allows
to learn something about so-called doubled geometries encoding a whole class of T-dual
backgrounds.

The gauge structure of DFT is analogously to GG governed by a bracket, generalizing
the Courant-bracket. The associated generalized Lie derivative now contains furthermore
a dual partial derivative related to a second set of coordinates corresponding to winding.
Therefore, the formalism of DFT is crucially linked to its field content, e.g. a generalized
metric, depending on two coordinate sets. Apart from the questions of how to define
a doubled space beyond the notion of a standard manifold the framework based on a
generalized connection and derived generalized curvature objects [55] matches the one of
GG.

DFT is equiped with a constraint that comes in different strengths and that has to be
imposed for consistency of the theory. The level-matching condition in string theory here
leads to the weak constraint. It is not sufficient for the consistency of DFT whereas the
strong constraint, equivalently called section condition for fixing a section in the doubled
space on which then the theory lives, does the job. In this sense DFT is not a truely dou-
bled theory and coincides with GG for a specific choice of the section. The gauge structure
of DFT, however, is consistent using a weaker form, called the closure constraint. This
triggered the development of the so-called flux formulation of DFT [50, 51] where a gener-
alized flux encodes all standard and non-geometric fluxes present in the lower dimensional
theories. Practically, generalized Scherk-Schwarz compactifications14 [56, 57, 58] provide
a method that allows to reach all gaugings in the embedding tensor of gauged SUGRAs
among which some configurations violate the strong constraint. It is believed that the
DFT flux formulation is able to capture some of the genuinely non-geometric backgrounds
that do not have a T-dual geometric description.

In recent years more and more attention was also paid to other stringy dualities with
regard to manifestly duality invariant formulations. Following earlier work on exceptional
symmetry groups [59], being related to M-theory and U-duality [34, 44], arising in compacti-
fications of eleven dimensional SUGRA on tori, manifestly U-duality covariant formulations
in various dimensions have been formulated and summarized under the name Exceptional

13Review papers can be found in [50, 51, 52, 53]
14Generalized Scherk-Schwarz compactifications are problematic on their own, since the construction of

the twist tensor on a doubled space is not rigorously defined.
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Field Theories (EFT) [60, 61, 62, 63, 64, 65]. Moreover, there has been progress in revealing
new tensor hierarchy structures for these kind of theories [66].

Finally, let us list some further interesting developments. Heterotic versions [67, 68]
of DFT and supersymmetric extensions [69, 70, 71] have been formulated. There has
also been renewed interest in Kaluza-Klein compactification [72, 73] and Scherk-Schwarz
compactification [58] with respect to identifying lifts for some lower-dimensional gauged
SUGRA theories with non-geometric fluxes. And very recently DFT was extended to group
manifolds [74, 75] for non-trivial backgrounds.

Both of these T-duality covariant formalisms are closely related to the authors work
and provide the background for the theory presented in this thesis.

1.4 β-supergravity
Apart from GG being a useful framework for generalizing various SUGRA theories it does
not tell much about the appearance of non-geometric fluxes and backgrounds. DFT was
in principle believed to provide the capacity to include non-geometric fluxes, however, it
was not clear at all in the beginning how non-geometric fluxes should appear in its frame-
work. Moreover, the loss of mathematical rigorousness accompanied with the drop of a
well-defined underlying manifold clearly limits its power in yielding consistent compactifi-
cations for the new class of non-geometric backgrounds. Hence, at that time the relation
between the four- and ten-dimensional perspectives on fluxes was not well established and
a ten-dimensional theory with a consistent mathematical basis relying explicitly on non-
geometric fluxes was a much prefered situation for compactification. This theory is now
known by the name of β-supergravity.

It is based on a ten-dimensional local reformulation of standard SUGRA which gives
non-geometric fluxes a manifest ten-dimensional origin. Even more interestingly, β-supergravity
allows to reformulate a non-geometric background of standard SUGRA into a geometric
one of β-supergravity for which then a consistent compactification method can be ap-
plied. In this way some vacua of four-dimensional gauged SUGRAs with non-geometric
fluxes thus get a clear ten-dimensional uplift. There is justified hope that ten-dimensional
backgrounds with non-geometric fluxes experience moduli stabilization.

A local field redefinition of standard supergravity fields

The main idea behind the appearance of non-geometric fluxes in β-supergravity is a specific
field redefinition inspired by GCG [76, 77, 78]. In the NSNS sector the standard metric
g, the b-field and the dilaton φ are traded for a new set of fields, a new metric g̃, an
antisymmetric bivector β and a new dilaton φ̃. In GCG terms, this field redefinition is a
reparametrization of the generalized metric H

H “
ˆ

g ´ bg´1b ´bg´1

g´1b g´1

˙

“

ˆ

g̃ g̃β
´βg̃ g̃´1 ´ βg̃β

˙

. (1.4.1)
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Then, the field redefinition15 can be read off from the components

g̃´1
“ pg ` bq´1gpg ´ bq´1

β “ ´pg ` bq´1bpg ´ bq´1

+

ô pg ` bq´1
“ pg̃´1

` βq ,

e´2φ̃
a

|g̃| “ e´2φ
a

|g| “ e´2d

(1.4.2)

and can be completed with a new dilaton φ̃ preserving the measure which now includes
the absolute value of the determinant |g̃| of the metric g̃.

This in principle allows a direct rewriting of the standard SUGRA Lagrangian, but is
not very enlightening when it comes to making the non-geometric Q-flux and corresponding
geometric structures appear.

A generalized geometric framework

Instead of applying the field redefinition directly to standard SUGRA and afterwards ob-
serving what kind of new structures appear, GG reverses this procedure and provides the
mathematical tools right from the start. This framework proved successful in reformulat-
ing standard SUGRA theories before [39, 46]. Here, the concept of a generalized tangent
bundle on which the field redefinition can be stated as choosing an alternative generalized
vielbein including the bivector β plays an important role

Ẽ “
ˆ

ẽ ẽβ
0 ẽ´T

˙

. (1.4.3)

The standard vielbein for a Minkowski metric η is denoted by ẽ. Trading the two-form
b for a bivector β results in changing the fibrational structure and should be related to a
generalized cotangent bundle ET˚

TM ãÑ ET˚
Ó

T ˚M
, (1.4.4)

which should be supplemented with a cocycle condition on β.
The standard vielbein ẽ gives rise to the following definitions for standard and non-

geometric fluxes in flat indices, where the new bivector β enters the Q- and R-fluxes

Habc “ 3∇rabbcs , fabc “ 2ẽamBrbẽmcs ,
Qc

ab
“ Bcβ

ab
´ 2βdraf bscd , Rabc

“ 3βdra∇dβ
bcs .

(1.4.5)

Both the geometric f -flux and the Q-flux are not tensorial and the definitions in flat indices,
which had to be deduced previously, appear naturally in this framework and match with
the literature [78, 56, 82].

15An alternative field redefinition was proposed in [79, 80]. Both field redefinitions were then interpreted
in terms of local Opd, dq transformations and Lie algebroids in [81].



22 1. Introduction

The study of the Opd, dq ˆ R` structure on ET˚ given by coupling generalized vectors
allows to identify associated covariant derivatives. In analogy to the standard Levi-Civita
spin connection, generalized metric compatibility and a generalized torsion constraint lead
to a partly unique generalized covariant derivative preserving an Opd´ 1, 1q ˆOp1, d´ 1q
structure

DAW
B
“

$

’

’

’

&

’

’

’

%

Daw
b “ ∇aw

b ´ ηad q∇dwb ` 1
6ηadηcfR

dbfwc ´ 1
9pδ

b
aΛc ´ ηacη

beΛeqw
c

Daw
b “ ∇aw

b ´ ηad q∇dwb ´ 1
2ηadηcfR

dbfwc

Daw
b “ ∇aw

b ` ηad q∇dwb ´ 1
2ηadηcfR

dbfwc

Daw
b “ ∇aw

b ` ηad q∇dwb ` 1
6ηadηcfR

dbfwc ´ 1
9pδ

b
aΛc ´ ηacηbeΛeqw

c

.

(1.4.6)
The quantity Λc is related to the dilaton and the latter has an interesting interpretation
as a conformal weight. More important, the non-geometric fluxes enter differently. The R-
flux simply replaces the former H-flux. However, the Q-flux appears inside a new covariant
derivative related to the bivector β

q∇bVa ” ´β
bd
BdVa ´ ωQ

bc
a Vc with ωQ

bc
a “

1
2
`

Qa
bc
` ηadη

ceQe
db
` ηadη

beQe
dc
˘

. (1.4.7)

The generalized covariant derivatives DA on spinors ε˘ for a Spinpd´1, 1qˆSpinp1, d´1q
structure provide the Killing spinor equations governing a supersymmetric completion of
β-supergravity. Furthermore, they allow to compute a curvature scalar

Sε` “ ´4
´

γaDaγ
bDb ´ ηabDaDb

¯

ε` . (1.4.8)

Analogue to standard SUGRA, S now gives rise to the Lagrangian of β-supergravity up
to a total derivative

L̃β “ e´2d
ˆ

Rpg̃q ` 4pBφ̃q2 ` 4pβabBbφ̃´ T aq2 `RQ ´
1
2R

acdf bcdηab ´
1
2R

2
˙

, (1.4.9)

where T a is related to the new dilaton φ̃ and a new curvature scalar for the Q-flux mimics
the structure of the Ricci scalar

RQ ” 2ηbcβadBdωQbca ` ηbcωQada ωQbcd ´ ηbcωQdba ωQacd

“ 2ηabβadBdQc
bc
´ ηcdQa

acQb
bd
´

1
4
`

2ηcdQa
bcQb

ad
` ηadηbeηcgQa

bcQd
eg
˘

.
(1.4.10)

The Lagrangian of β-supergravity explicitly contains the Q- and R-fluxes and its similarity
with the four-dimensional scalar potential of gauged SUGRAs makes it a good candidate
to uplift four-dimensional gauged SUGRAs. We remark that β-supergravity can also be
derived from a DFT approach [56, 82, 83, 50]. Imposing the condition βmnBn¨ “ 0 and
Bpβ

np “ 0 on the field content, L̃β reduces to the Lagrangian obtained in [84].
The equations of motion for β-supergravity are also provided by the GG framework.

The vanishing of the scalar S in GG is related to the equation of motion for the dilaton.
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The equations of motion for the metric g̃ and the field β follow from another generalized
curvature quantity

1
2Rabγ

aε` “ rγaDa, Dbsε
` . (1.4.11)

The full set of equations of motion for β-supergravity follow then as

R` 4pBφ̃q2 ` 4pβabBbφ̃´ T aq2 `RQ ´
1
2R

acdf bcdηab ´
1
2R

2
“ 0 (1.4.12)

1
2Rba ´

1
2ηepaηbqg

qRge
`

1
8ηaeηbgηifηcdR

igcRdfe (1.4.13)

`∇b∇aφ̃´ ηepaηbqg q∇g
pq∇eφ̃q ´ ηepaηbqg q∇gT e “ 0 ,

1
4ηaeηbgη

df
BdQf

eg
´

1
2ηeraBbsQd

de
´

1
4β

gc
Bcf

e
abηge `

1
2β

gc
Bcf

d
draηbsg (1.4.14)

`
1
4f

g
cdQra

dcηbsg `
1
2ηeraf

h
bsdQi

ecηchη
di
`

1
2ηeraf

h
bscQh

ec

`
1
4ηbgηaeη

chfddcQh
eg
´

1
4ηchQd

dcfhab

´ηera∇bsp
q∇eφ̃q ´ ηera∇bsT e ` ηgrb q∇g∇asφ̃

´
1
2ηaeηbgηfcR

gfeT c ` 1
4ηaeηbgηdfe

2φ̃
q∇d
pe´2φ̃Rgfe

q “ 0 .

These provide the frame for identifying new vacua of β-supergravity.
Finally, β-supergravity can be related to four dimensional gauged SUGRAs by a dimen-

sional reduction of L̃β. Extensions of L̃β to a complete β-supergravity respecting SUSY
are expected. However, the simultaneous inclusion of H-flux seems to be only consistent
under some harsh restrictions.

Vacua of β-supergravity

The study of possible backgrounds of β-supergravity in the NSNS sector is by its own
interesting. The toroidal example allows to obtain a first intuitive picture of the situation.
Using the field content of g̃, β and φ̃ the non-geometric configuration after two T-dualities
can be expressed as a well-defined background of β-supergravity in the sense that it respects
the symmetries of the Lagrangian.16 It is not surprising that this also restores a SUGRA
limit which is lost within the standard SUGRA formulation. Eventually, T-duality should
not alter physics. Another example of such a situation is the Q-brane [85] which we will
address later.

The symmetries of the Lagrangians of standard SUGRA and β-supergravity coincide,
since the former only differ by a total derivative. The appearance of the symmetries how-
ever changes. Among standard diffeomorphisms β-supergravity contains so-called β gauge
transformations. Not surprisingly, these act on both new fields g̃ and β as they are derived

16Formulated differently, a globally consistent configuration should be described by only one theory on
every patch [81].
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by the very same field redefinition. One possibility to observe well-defined backgrounds
is that the transition functions between patches are realized by this new class of gauge
transformation. However, the transformation behavior on the field g̃ collides with the
interpretation of a consistent metric field, since the chances to compensate its transforma-
tion by a standard diffeomorphism are not too promissory. The second possibility includes
declaring a new symmetry of the Lagrangian of β-supergravity for a restricted subcase.
The appearance of the bivector β in the Lagrangian L̃β allows for the following symmetry

βpq Ñ βpq `$pq with @ m, p, q, $pr
Br¨ “ 0 , Bm$pq

“ 0 . (1.4.15)

The constant shift $ can be related to the β-transform of a generic T-duality and moreover
leaves theQ- and R-fluxes invariant. It turns out that this symmetry is equivalent to having
a certain number of isometries and can therefore be seen as a reminiscent of T-duality.
Now, this enables us to define geometric backgrounds of β-supergravity to transform under
diffeomorphisms and β-transforms. Finally, we come up with a more general definition of
geometric and non-geometric backgrounds:

• A field configuration is geometric if the fields are globally defined on the manifold
considered so do not need to be glued, or if the transformations used to glue them
from one patch to the other are symmetries of the theory, and the metric, dilaton
and fluxes glue at most with diffeomorphisms.

• A field configuration is non-geometric if the transformations used to glue the fields
from one patch to the other are symmetries of the theory, and if the metric, dilaton
or fluxes glue with something else than diffeomorphisms.

Clearly, these definitions are theory dependent and bring forward the two biggest achieve-
ments of β-supergravity. As observed for the toroidal example β-supergravity allows to
restore a geometric target space description for non-geometric backgrounds of standard
SUGRA and provides a ten-dimensional uplift to some four-dimensional solutions of gauged
SUGRAs with non-geometric fluxes.

However, since T-duality is at the bottom of the motivation and construction of β-
supergravity by generating non-geometric background of standard SUGRA it is a main
question to clarify the relation of (non)-geometric vacua of standard SUGRA and (non)-
geometric vacua of β-supergravity. Eventually, geometric vacua of β-supergravity do only
give rise to non-geometric vacua of standard SUGRA which are related to geometric T-dual
ones. In other words, this class of vacua lies on a geometric T-duality orbit.

Finally, it is in principle a defined task to look for local solutions in β-supergravity. The
new set of equations of motion of β-supergravity have to be solved in a respective patch.
Naively, the non-geometric fluxes seem to provide more freedom in doing so. Unfortunately,
simple compactification ansätze for finding new backgrounds fail and can be traced back
to conceptional reasons. There is little hope that β-supergravity really holds new physics,
but it nicely restores geometry for some non-geometric examples.
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Bianchi identities and NS-branes

Using β-supergravity, one can now study backgrounds with non-geometric fluxes directly
in ten dimensions. Of particular interest are BIs for the NSNS fluxes bringing constraints
that have to be satisfied by the vacua in addition to the equations of motion. For specific
backgrounds corresponding to NS-branes the BI receive corrections indicating that these
branes actually source those fluxes.

For a vanishing H-flux and non-constant fluxes a ten-dimensional generalization of the
BIs observed in gauged SUGRAs can be written down in β-supergravity

Brbf
a
cds ´ f

a
erbf

e
cds “ 0 , (1.4.16)

BrcQds
ab
´ βeraBef

bs
cd ´

1
2Qe

abf ecd ` 2Qrceraf bsdse “ 0 , (1.4.17)

BdR
abc
´ 3βeraBeQd

bcs
` 3Rerabf csde ´ 3Qd

eraQe
bcs
“ 0 , (1.4.18)

βeraBeR
bcds
`

3
2R

erabQe
cds
“ 0 . (1.4.19)

Interestingly, the above identities were found computing the Lagrangian for β-supergravity
and precisely hold for the flux expressions (1.4.5). More systematically, BIs can be obtained
by the Jacobi identities of some algebra or the square of a nilpotent derivative D17

D2
“ 0 ô BI (1.4.16)´ (1.4.19) ` scalar condition . (1.4.20)

For D to include also non-standard fluxes it is associated with the SpinpD,DqˆR` covari-
ant derivative DA in GG [78, 87, 39, 88, 89, 71, 50]. Moreover, D turns out be a generalized
Dirac operator. It can be represented in terms of forms and contractions on a form Ap
using a Clifford map

for standard supergravity: DAp “ 2eφ pd´H^q
`

e´φAp
˘

(1.4.21)
“ 2 pBa ¨ ea^´f ˛ ´H ^´dφ^qAp , (1.4.22)

for β-supergravity: DAp “ 2eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Ap

¯

(1.4.23)

“ 2
´

Ba ¨ ẽ
a
^`βabBb ¨ ιa ´ f ˛ ´Q ˛ `R _´dφ̃^`pq∇φ̃´ τq_

¯

Ap , (1.4.24)

where a dot in the derivatives indicates an action only on the form coefficient in flat indices.
The convention for the action of fluxes is given in the appendix A.3. Besides allowing to
derive the BI identities including non-geometric fluxes, the Dirac operator D later plays
an important role in the SUSY considerations of β-supergravity.

A set of backgrounds that provides corrections in terms of a source term to the above
BIs are NS-branes. Starting from the NS5-brane, a known vacuum of standard SUGRA,
T-dual backgrounds can be constructed in a two step mechanism of smearing and applying
a T-duality transformation in the gained isometry direction. In this process the Kaluza-
Klein (KK) monopole and the 52

2-brane [90, 91, 92, 50, 93, 94, 95], also called Q-brane [85]
17The nilpotency of a “derivative” D7 built from constant fluxes [16, 86] lead to sourceless BIs.
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were found. In standard SUGRA the latter appears to be a non-geometric background
[90, 92], but a geometric description is restored in β-supergravity [85, 50]. In analogy to
the NS5-brane, the BIs for the two derived backgrounds (see also [96]) get corrected by
source terms

KK-monopole : Brbf
a
cds ´ f

a
erbf

e
cds “

CK
3 ε3Kbcd ε1||e η

ea δp3qpr3q , (1.4.25)

Q-brane : (1.4.26)

BrcQds
ab
´ βeraBef

bs
cd ´

1
2Qe

abf ecd ` 2Qrceraf bsdse “
CQ
2 ε2Kcd ε2||ef η

eaηfb δp2qpr2q ,

which boil down to Poisson equations on warp factors fK and fQ

KK-monopole : ∆3fK “ cK δp3qpr3q , Q-brane : ∆2fQ “ cQ δp2qpr2q . (1.4.27)

All respectively remaining BIs should be satisfied with a vanishing RHS.
In principle, there also exist an R-brane for which we determine the warp factor fR.

However, in this case a smearing process which has to be applied on the β is not established.

Aspects of supersymmetry

SUSY provides technical simplifications when searching for new vacua of a theory. Infor-
mation and constraints on the properties of possible vacua can be formulated geometrically.
For standard ten-dimensional type II SUGRA corresponding methods were illustrated in
[97, 26] to characterize new classes of vacua. Preservation of SUSY in the lower-dimensional
theory demands the fermionic SUSY variations to vanish with regard to a compactification
ansatz for a certain background. This leads to reformulated SUSY conditions [97], the
so-called pure spinors conditions, in terms of GCG [40, 41]. In particular, the internal
six-dimensional manifold can be classified for a Minkowski SUSY vacuum. If further the
four-dimensional cosmological constant is zero the pure spinor conditions generalize the
CY condition for flux-less backgrounds to a twisted generalized Calabi-Yau condition in
the presence of fluxes.

The starting point when considering SUSY for β-supergravity are the SUSY variations
of the fermionic field content governed by the generalized covariant derivative DA (1.4.6)

δψ1,2
m “ẽam

ˆ

∇a ˘ ηad q∇d
´

1
8ηadηbeηcfR

defΓbc
˙

ε1,2 , (1.4.28)

δρ1,2
“

ˆ

Γa∇a ¯ Γaηad q∇d
`

1
24ηadηbeηcfR

defΓabc ´ ΓaBaφ̃¯ ΓaηabpβbcBcφ̃´ T bq
˙

ε1,2 ,

where ρ1,2 ” Γaψ1,2
a ´ λ1,2 and ε1,2 the SUSY fermionic parameters and upper/lower signs

refer to the indices 1, 2. Then, analogous pure spinor conditions18 for β-supergravity can
18Contrary to the standard pure spinor conditions the conditions (1.4.29) and (1.4.30) are necessary but

not sufficient to preserve SUSY which is probably due to the absence of a RR contribution.
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be formulated using a specific compactification ansatz
1
2DΦ1 ` e

´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ1 “ 2ε e´Aµ RepΦ2q (1.4.29)

1
2DΦ2 ` e

´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ2 “ 3ε e´A i ImpµΦ1q ` e

´A
´

d´ q∇a
¨ ιa

¯

peAqΦ2 ,

(1.4.30)

where D is precisely the generalized Dirac operator given in (1.4.23) and the other deriva-
tives act solely on the warp factor e2A incorporated in the compactification. For type II
SUGRAs we list the following convention

IIA : Φ1 “ Φ` , Φ2 “ Φ´ , ε “ `1 , IIB : Φ1 “ Φ´ , Φ2 “ Φ` , ε “ ´1 . (1.4.31)

Φ˘ denote pure spinors in GCG, in particular Op6, 6q spinors, but can be conveniently
interpreted as polyforms.

A geometrical characterization of the class of backgrounds in β-supergravity satisfy-
ing the above pure spinor equations can be established to some extent. In the case of
Mink SUSY vacuum and q∇a ¨ ιaAp “ 0 the first pure spinor condition (1.4.29) provides
a β-twisted GCY condition. The second condition (1.4.30) yields a β-twisted generalized
Kähler condition in the absence of RR fluxes and a constant warp factor.

Finally, pure spinor conditions and the Dirac operator also govern the structure of
the superpotential W for N “ 1 four-dimensional effective theories obtained from ten-
dimensional standard SUGRA in presence of an SUp3q ˆ SUp3q structure. This leads us
to propose the following superpotential for β-supergravity with only NSNS contributions

W̃NS “
C

2

ż

M
xe´φ̃Φ0

1,D Im Φ0
2y , (1.4.32)

Here, the Mukai product enters and the warp factor is taken to be constant. For an SUp3q
structure, the pure spinors are taken in the simple form

Φ0
` “ eiθ`e´iJ , Φ0

´ “ iΩ . (1.4.33)

Typically, superpotentials for standard SUGRA theories are reproduced using the above
formula. However more interestingly, the formula (1.4.32) allows to switch on non-geometric
fluxes in the scalar potential, possibly derived from β-supergravity, and agrees well with
expressions of [98, 86, 99] in type IIA and IIB, corresponding to an O6-plane and an O3-
or O7-plane. We even obtain new expressions in the O5- or O9-plane (or heterotic) case.

A completion of the above Lagrangian L̃β to other sectors should be possible by further
reformulating standard SUGRA. However, it is has not been worked out and we comment
on it in the conclusion 7.

1.5 Structure of the thesis
This thesis is based on the papers [100, 101, 102, 103] where the focus lies on the last three.
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We start with a review of Generalized Geometry (GG) and Double Field Theory (DFT)
in chapter 2. Here, we are interested in providing the basic definitions and notations. We
layout the details on the reformulation of type II supergravities (SUGRAs) within GG
and in DFT using the generalized metric formalism. Finally, we present the results of a
T-duality invariant conformal field theory (CFT) with respect to determining the origin of
the strong constraint in DFT.

Chapter 3 recapitulates earlier work on field redefinitions, inspired by GG and then
starts off presenting in detail the construction of β-supergravity following the GG formal-
ism. In this process new structures for the Q-flux are obtained in the form of a second
covariant derivative involving an analogue of the Levi-Civita connection. The worked out
formalism then features generalized covariant derivatives that enter the definitions of gen-
eralized curvature quantities which allow to compute the Lagrangian and the equations of
motion of β-supergravity.

At length, we provide a discussion on the relation of geometric and non-geometric
backgrounds within standard SUGRA and β-supergravity in chapter 4. We present the
toroidal example, the symmetries of the Lagrangian and investigate a well-defined class of
geometric backgrounds in β-supergravity. Eventually, we turn to the study of the equations
of motion with respect to pure NSNS solutions.

An interesting set of backgrounds are provided by NS-branes in chapter 5. Alongside
the NS5-brane and the Kaluza-Klein (KK) monopole, in particular the Q-brane is studied
and the latter experiences a nice description in terms of the fields of β-supergravity. We also
introduce ten-dimensional Bianchi identities (BIs) involving non-constant (non)-geometric
fluxes that receive corrections from source terms generated by the respective NS-brane.
These BIs are then obtained from a generalized nilpotent Dirac operator.

In chapter 6 we investigate the supersymmetry (SUSY) conditions of β-supergravity us-
ing a generic compactification ansatz. Introducing pure spinors a reformulation is achieved
that makes use of the generalized Dirac operator. In a similar fashion, the pure spinors and
the Dirac operator lead to a generic expression for a superpotential that can be evaluate
for β-supergravity. We end with the proposal of a geometrical characterization, analogue
to a Calabi-Yau (CY) condition, for backgrounds preserving SUSY.

The conclusion 7 summarizes the standing of β-supergravity with respect to its capa-
bility to investigate genuinely non-geometric backgrounds and finishes with an outlook on
a complete supersymmetric version of β-supergravity.



Chapter 2

Generalized Geometry & Double
Field Theory

The development of Opd, dq covariant formalisms describing effects of the string within
low-energy effective theories on the target space has attracted quite some interest in recent
years. Mathematically motivated, Generalized Geometry (GG) has been studied in relation
to string theory and supergravity (SUGRA) theories with background fluxes. On the other
side, Double Field Theory (DFT) was directly constructed from considerations in string
field theory. Both formalisms treat generalized geometric quantities, e.g. a generalized
metric, and construct generalized curvatures by specifying a generalized connection. This
leads to two Lagrangians formulated in terms of these objects which coincide if DFT is
equipped with the strong constraint.1 Their equivalence is also reflected in their agreement
with the standard LNSNS (3.1.5) up to a total derivative.

Beyond the level of the formalism several differences between the GG and DFT occur.
These mostly concern the geometry of the underlying space on which the two theories live.
GG is based on the mathematical concept of the generalized tangent bundle ET defined
in Generalized Complex Geometry (GCG). A doubling in the fiber over a conventional
manifold by the sum of the tangent and cotangent bundle enables us to implement the
group Opd, dq. In particular, the order of the fibration will be of interest to us when we
trade the standard b-field for a new field β. In contrast, DFT introduces a truely doubled
space along two sets of coordinates pxm, x̃mq. The notion of a doubled geometry extends
and contains previous examples of non-geometric backgrounds like the T-fold [34]. In some
cases an ordinary manifold of doubled dimension [30] is expected; however, recent work
[104, 105] indicates that the coordinate transformations are more subtle. Mathematical
investigations on these kind of spaces have been considered in [106, 107, 108]. In this thesis
we are mostly interested in the local formalisms of both T-duality covariant theories with
respect to providing background for constructing β-supergravity.

1The strong constraint is a priori a local condition. For a global equivalence of the two formalisms
the constraint should be solved on each patch in the same way, e.g. B̃ “ 0. This is at least possible for
geometric backgrounds.
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2.1 Generalized Geometry
The foundation of GCG was laid by Hitchin [40] and Gualtieri [41]. The notion of a
generalized complex structure on the generalized tangent bundle allows to unify complex
and symplectic structures and presents an extension. Its relevance to theoretical physics
is based on the fact that the T-duality group Opd, dq naturally appears in this frame-
work. Moreover, supersymmetry (SUSY) can be naturally addressed by falling back on
pure spinors of GCG, which also provide a set of tools for flux compactifications. First
applications of GCG followed in the context of supersymmetric type II backgrounds [42]
and string σ-models. It was only later that the formalism was used in the reformulation
of SUGRA theories of type II [39], which triggered the investigation of further SUGRA
theories and extensions to M-theory.

The presence of the T-duality group raises hope that GG could shed light on the
realization of non-geometric string backgrounds [78] and further aspects of non-geometry
in general.

2.1.1 Structures on the generalized tangent bundle
GG observes basic structures on the generalized tangent bundle E

0 Ñ T ˚MÑ E Ñ TMÑ 0 , (2.1.1)

based on the idea of treating vectors and one-forms on an equal footing. The extension
of the conventional tangent bundle TM by the cotangent bundle T ˚M leads usually to
the above fibration. Then, gluing conditions on the sections of E have to be specified for
moving from patch to patch. On an overlap Uα X Uβ, this is defined in the following way

vα ` ξα “ vβ ` pξβ ´ ivβdΛαβq . (2.1.2)

Hence, vαpβq P TUαpβq globally specifies a vector, while the one-form part ξαpβq P T ˚Uαpβq
allows for two-form shifts dΛ. Mathematically more precise, one speaks of introducing a
gerbe on the manifoldM which is related to the appearance of the b-field in physics terms.
The gerbe brings along a cocycle condition that is possibly curved by the two-form b and
further makes sure that patching around a non-trivial loop in the manifoldM works.

Moreover, there is a natural action of one-forms on vectors and it is therefore reasonable
to define a symmetric bilinear form on the sections of the generalized tangent bundle E

xV,W y “ xv ` ξ, w ` ηy “
1
2pξpwq ` ηpvqq . (2.1.3)

A Lie algebra with T P opd, dq respecting the symmetric bilinear form, given by a metric
η, encodes the symmetries of the bundle

T “

ˆ

α β
ω ´αT

˙

, η “

ˆ

0 1
1 0

˙

, (2.1.4)

where α P glpd,Rq, ωT “ ´ω a two-form and βT “ ´β a bivector. The symmetry
generators of the tangent bundle are then observed by exponentiation:
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• GL`pd,Rq-transformations

eα “

ˆ

eα 0
0 peα

T
q´1

˙

, (2.1.5)

but more generally an element A of the full GLpd,Rq can be embedded by

A ÞÑ

ˆ

A 0
0 A´T

˙

. (2.1.6)

• B-transformations
eω “

ˆ

1 0
ω 1

˙

, (2.1.7)

where v ` ξ ÞÑ v ` pξ ` ivωq.

• β-transformations
eβ “

ˆ

1 β
0 1

˙

, (2.1.8)

where v ` ξ ÞÑ pv ` βpξqq ` ξ.

Another interesting structure in GG is the Opd, dq Clifford algebra

tΓA,ΓBu “ 2ηAB , (2.1.9)

where ηAB denotes the Opd, dq metric in flat generalized indices. Realizing the action of a
generalized vector on a polyform Ψ P Λ˚T ˚M|Uα locally, a natural representation is found

V ¨Ψ “ V AΓA ¨Ψ “ pvα ` ξαq ¨Ψ “ ivαΨ` ξα ^Ψ . (2.1.10)

When we discuss SUSY we are going to make heavy use of the Clifford algebra and the
Clifford map relating pure spinors in GG to polyforms.

Next, we observe that GG replaces the GLpdq freedom to choose a basis in TM by the
enlarged group Opd, dq ˆ R` which acts on

Ẽ “ Lb E , (2.1.11)

where the line bundle L takes care of the dilaton. We can fix a conformal frame te´2dE̊Au

of the generalized tangent bundle Ẽ that satisfies the following orthogonality condition

xE̊A, E̊By “ ηAB , (2.1.12)

where d denotes the generalized dilaton. These frames can be rotated into a distinct frame
te´2dE̊ 1Au by an element M P Opd, dq ˆ R`

E̊ 1A “ E̊BM
B

A, since MC
AM

D
BηCD “ σ2ηAB , (2.1.13)
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for some scalar factor σ.
A specific frame respecting the embedding of the tangent bundle into the generalized

tangent bundle, i.e. defining a map TM Ñ E, is provided by the conformal split frame
tEAu

e´2d EA “

#

e´2d Ea “ e´2φ
a

|g| pBa ` babe
bq for A “ a

e´2d Ea “ e´2φ
a

|g| ea for A “ a` d
, (2.1.14)

where tBau is a basis for TM and teau is the dual basis on T ˚M. In particular, Opd, dqˆR`
gets broken and the class of conformal split frames is preserved by elements of the form

M “ pdetAq
ˆ

1 0
ω 1

˙ˆ

A 0
0 A´T

˙

. (2.1.15)

This group is known as the geometric subgroup Ggeom Ă Opd, dqˆR` and contains exactly
the elements used for gluing generalized vectors along different patches of the generalized
tangent bundle E.

The symmetries of the generalized tangent bundle can be nicely packaged within a
generalized Lie derivative

LVW “ Lvw ` Lvζ ´ iwdλ , (2.1.16)
for two generalized vectors V “ v ` λ and W “ w ` ζ. It incorporates in contrast to the
standard Lie derivative also the b-field gauge transformations besides standard diffeomor-
phisms. The associate bracket for the generalized Lie derivative, the Courant bracket, is
provided by

rV,W sCourant “
1
2pLVW ´ LWV q

“rv, wsLie ` Lvζ ´ Lwλ´
1
2dpivζ ´ iwλq .

(2.1.17)

In contrast to the standard Lie bracket it does not satisfy the Jacoby identity. We will
come upon the Opd, dq notation of these structures in DFT.

In analogy to Riemannian geometry one can introduce a generalized connections on the
generalized tangent bundle. The corresponding generalized covariant derivative acting on
generalized objects in frame indices is denoted by

DMWA
“ BMWA

` Ω̃M
A

BW
B . (2.1.18)

Compatibility with the Opd, dq ˆ R` structure restricts the connection coefficients in the
following way

Ω̃M
A

B “ ΩM
A

B ´ ΛMδA
B , (2.1.19)

where Λ takes care of the line bundle factor and Ω satisfies

ΩM
AB
“ ´ΩM

BA . (2.1.20)
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GG also provides the notion of a generalized torsion defined by using the generalized
Lie derivative and the generalized covariant derivative

T pV q ¨ α “ LDV α ´ LV α , (2.1.21)

where the index D denotes that the partial derivative has been replaced by the generalized
covariant one. Then in the frame tΦ´1E̊Au, the generalized torsion becomes

TABC “ ´3Ω̃rABCs ` Ω̃D
D

BηAC ´ e
4d
xe´2d E̊A, LE̊B

pe´2d E̊Cy . (2.1.22)

The rescaling is due to the generalized Lie derivative encoding non-weighted gauge trans-
formations. Furthermore, we can observe a splitting of the generalized torsion

pT1qMN P “´ 3Ω̃rMN Ps ,

pT2qM “´ 3Ω̃Q
Q

M ,
(2.1.23)

which are related to H-flux and the dilaton φ for the split frame (2.1.14)

T1 “ ´4H, T2 “ ´4dφ . (2.1.24)

Remarkably, generalizing the definition of the Riemannian curvature tensor to

RpU, V,W q “ rDU , DV sW ´DrU,V sW , (2.1.25)

where now the Courant-bracket enters, does not provide a well-defined tensor. However,
we are going to see in the next section that generalized Ricci curvatures do exist.

2.1.2 Preserving an Opp, qq ˆOpq, pq structure
Differential geometry provides the concept of a Riemannian metric g on a manifold M.
In the presence of a metric g the choice of frame is reduced by local Lorentz symmetry
Opdq Ă GLpd,Rq. Further conditions, like metric compatibility and vanishing torsion,
allow to uniquely fix a connection on the tangent bundle TM, namely the Levi-Civita
connection. Together with the definition of the Ricci scalar, these are the ingredients for
Einstein gravity.

In GG the maximal compact subgroup we are interested in is Opp, qq ˆ Opq, pq Ă
Opd, dq ˆ R`. This local symmetry arises due to specifying a generalized metric H in
addition to the Opd, dq metric η. Its construction relies on splitting the generalized tangent
bundle into subbundles C˘ on which η gains positive and respectively negative definiteness

H “ η|C` ´ η|C´ . (2.1.26)
The relation to the field content of standard gravity theories in terms of the metric g and
the b-field is then found by specifying a map from TM and T ˚M into C˘

H “
ˆ

g ´ bg´1b ´bg´1

g´1b g´1

˙

. (2.1.27)



34 2. Generalized Geometry & Double Field Theory

The generalized metric H is symmetric in its indices, squares to the identity, i.e. pηHq2 “
1. Further, it has determinant one and is positive definite if g is. As in Riemannian
geometry the introduction of two sets of the standard vielbein e˘a and their embedding
into a generalized frame E̊A determine the local Opp, qq ˆ Opq, pq structure, which can be
seen as a double Lorentz symmetry. The action of an elementK P Opp, qqˆOpq, pq provides
the transformations between these frames

K “
1
2

ˆ

O` `O´ O` ´O´
O` ´O´ O` `O´

˙

. (2.1.28)

This specific embedding is later decisive in picking an Opp, qq Ă Opp, qq ˆ Opq, pq, done
by aligning the two vielbeine e`a “ e´a . The degrees of freedom then reduce to those of a
standard metric g and a b-field.

Having the generalized metricH at hand we are in the position to construct the analogue
of the Levi-Civita connection in GG. Generalized metric compatibility together with a
condition on the conformal part, related to the dilaton, have to be imposed

DH “ 0 and De´2d
“ 0 . (2.1.29)

These conditions are naturally satisfied by embedding the Levi-Civita connection ∇ in the
following way

D∇
MW a

“

#

∇mw
a
` for M “ m

0 for M “ m` d
, D∇

MW ā
“

#

∇mw
ā
´ for M “ m

0 for M “ m` d
,

(2.1.30)
where wa` and wā´ are related to a vector w P ΓpTMq in the basis e` or e´. This generalized
connection is obviously compatible with an Opp, qq ˆ Opq, pq structure. Unfortunately, it
turns out that the generalized covariant derivativeD∇

M is not generalized torsion free. How-
ever, this can be corrected by adding a part which respects compatibility and compensates
for the generalized torsion

D̃∇
“ D∇

` Σ, where ΣMab “ ´ΣMab, ΣMāb̄ “ ´ΣMāb̄ . (2.1.31)

In this way, we certainly loose the uniqueness of the generalized analogue of the Levi-Civita
connection. Nevertheless, we observe that some parts are fully determined and allow to
define generalized curvature objects. For this we list the following covariant derivatives
respecting a Spinpp, qq ˆ Spinpq, pq structure

Dāε
`
“p∇ā ´

1
8Hābcγ

bc
qε` , (2.1.32)

Daε
´
“p∇ā `

1
8Hab̄c̄γ

b̄c̄
qε´ , (2.1.33)

γaDaε
`
“pγa∇a ´

1
24Habcγ

abc
´ γaBaφqε

`, (2.1.34)
γāDāε

´
“pγā∇∇

ā `
1
24Hāb̄c̄γ

āb̄c̄
´ γāBāφqε

´ , (2.1.35)
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involving Spinpp, qq spinors ε˘ and respective gamma matrices γa and γā. A general-
ized Ricci tensor can be defined by using the above determined parts of the generalized
connection

1
2Rab̄γ

aε` “ rγaDa, Db̄sε
` or 1

2Rābγ
āε´ “ rγāDā, Dbsε

´ . (2.1.36)

Even more pleasant is the existence of a generalized curvature scalar

´1
4Sε

`
“ pγaDaγ

bDb ´D
āDāqε

` or ´ 1
4Sε

´
“ pγāDāγ

b̄Db̄ ´D
aDaqε

´ , (2.1.37)

allowing for the formulation of an action principle in an Einstein-Hilbert like form

SNSNS “
1

2κ2

ż

e´2dS . (2.1.38)

So far, we kept two sets of vielbeine e˘ respecting the Opp, qqˆOpq, pq, which we now align
to find the following curvature expressions in GG

Rab “ Rab ´
1
4HacdHb

cd
` 2∇a∇bφ`

1
2e

2φ∇c
pe´2φHcabq ,

S “ Rpgq ` 4∇2φ´ 4pBφq2 ´ 1
2H

2 ,
(2.1.39)

where Rab is the standard Ricci tensor and R is the standard scalar curvature of Einstein
gravity. In this way, GG presents a reformulation of the NSNS sector of SUGRA of type II
up a total derivative. The equations of motion for the metric g, the b-field and the dilaton
φ in this formalism are packaged into the vanishing of the generalized Ricci tensor and
generalized scalar curvature

Rab̄ “ 0 , S “ 0 . (2.1.40)

Additional findings regarding the SUSY variations involving the Spinpp, qq ˆ Spinpq, pq
covariant derivative (2.1.35) or the RR sector are detailed in the section 6.1.

2.2 Double Field Theory
DFT is a promising low-energy effective candidate theory capturing stringy symmetries,
in particular T-duality, which was developed by Hull and Zwiebach in [37, 38] and later
refined in the work of Hohm. As stated in the Introduction there is hope that DFT provides
substantial extension to standard SUGRA theories and is able to cover all kind of features
of doubled and non-geometric backgrounds.

Earliest developments [109, 110] go back to Siegel who introduced a doubled formalism
for an enlarged group GLpdqˆGLpdq. New attention to T-duality covariant formalisms of
gravity theories came up when the framework of string field theory [111, 112] was used. In
numerous papers different forms of DFT were formulated until the most familiar version
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in terms of the generalized metric [54] arose. Further important formulations2 are based
on a background independent field E “ g ` b [115] combining the metric g and the b field
or the notion of a generalized flux [50, 51] containing in addition to standard fluxes also
non-geometric ones. In the following we present the generalized metric formulation of DFT
and later focus on an underlying geometric concept. Finally, we discuss the origin of the
strong constraint of DFT within a T-duality invariant conformal field theory (CFT).

2.2.1 Generalized metric formulation
This formulation is based on forming objects transforming under the group Opd, dq

XM
”

ˆ

x̃m
xm

˙

, BM ”

ˆ

B̃m

Bm

˙

, ξM ”

ˆ

ξ̃m
ξm

˙

. (2.2.1)

The doubling of the space is respected by introducing x̃i usually taking into account the
possibility of the string to wind around some compact direction. Naturally, there is a
partial derivative B̃i associated to the winding coordinates. Moreover, we combine the
two gauge parameters ξm and ξ̃m to a generalized objects providing infinitesimal double
diffeomorphisms, the generalized gauge transformations in DFT.

The degrees of freedom of DFT are summerized in the generalized metric H and a
generalized dilaton d

HMN
“

ˆ

gmn ´ bmpg
pqbqn ´bmpg

pn

gmpbpn gmn

˙

, d (2.2.2)

depending on the doubled coordinates XM and transforming with the parameters ξM.
The construction of an action in terms of H is based on building Opd, dq scalars out

of the generalized metric H, the dilaton d, the partial derivatives BM and the Opd, dq
metric η by contracting all indices. The implementation of a discrete Z2-symmetry for the
b-field, which is not a T-duality transformation, rules out terms including the metric η or
derivatives with upper index BM. Then, the action in terms of the generalized metric takes
the form

S “

ż

dxdx̃e´2d
´1

8H
MN

BMHKL
BNHKL ´

1
2H

MN
BNHKL

BLHMK

2BMdBNHMN
` 4HMN

BMdBNd
¯

,

(2.2.3)

which is obviously invariant under global T-duality transformations and gauge-invariant
under the following transformations

δξHMN
“ ξP

BPHMN
` pB

MξP ´ BPξ
M
qHPN

` pB
N ξP ´ BPξ

N
qHMP , (2.2.4)

2Stringy differential geometry introduced in [113, 114] is a third formalism based on a projection-
compatible semi-covariant derivative. Its geometric objects coincide after projection with the corresponding
quantities in DFT.
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if additionally the constraint
B

MABMB “ 0 , (2.2.5)
on fields A and B satisfying BMBMA “ BMBMB “ 0 is imposed. This is the so-called
strong constraint derived by demanding that products of fields and gauge parameters of
the theory vanish under BMBM¨ “ 0. It is related to the level-matching condition in string
theory and makes sure that the theory only depends on a section of half the dimension
in the doubled geometry. Therefore, the theory is not really doubled when applying the
strong constraint. In the next section, we clarify the origin of the strong constraint by
means of introducing a T-duality invariant CFT.

The gauge transformation of the generalized metric motivates the introduction of a
generalized Lie derivative for DFT

L̂ξV M
“ ξP

BPV
M
` pB

MξN ´ BN ξ
M
qV N . (2.2.6)

Remarkably, it leaves the Opd, dq metric η invariant which is not possible in standard
Riemannian geometry. Moreover, one finds that the transformed generalized metric H1

“

H ` LξH is again an element of Opd, dq.
The generalized Lie derivative is connected to a bracket structure on the gauge pa-

rameters by calculating the commutator of two generalized Lie derivatives on a general
field [ξ1 , L̂ξ2s “ L̂ξ12 with ξ12 “ rξ1, ξ2sC ,where the C-bracket is the natural bracket on
generalized vector fields or here the Od, dq gauge parameter ξ

rξ1, ξ2s
M
C ” ξN

r1 BN ξ
M
2s ´

1
2η

MNηPKξ
P
r1BN ξ

K
2s . (2.2.7)

It is interesting to observe that (2.2.1) holds only upon using the constraint (2.2.5). How-
ever, the strong form is only sufficient and not necessary to achieve a closed gauge algebra.
There exist possible field configurations that violate the strong constraint [56, 57, 116].
These backgrounds satisfy the closure constraints, taking a weaker form in contrast to the
strong constraint, and are furthermore of truely doubled type.

Furthermore, in [52] it was shown that a weaker constraint can be achieved for the RR
fields of DFT in the sense that in addition to the coordinate dependence on a totally null
subspace a linear dependence on coordinates of an orthogonal space is possible.

Rather surprising is the fact that one can identify a gauge parameter leaving all fields
invariant

ξM
“ ηMN

BNχ . (2.2.8)
We further stress that the Jacobi identity for the C-bracket is violated. Hence, this bracket
coincides in this feature with the Courant-bracket from GG and reduces to it when the
strong constraint is applied in the form B̃m¨ “ 0. Finally, the C-bracket as well as the
Courant-bracket do provide a symmetry algebra since the failure of the Jacobi identity is
precisely a transformation of the form (2.2.8).

A geometric framework underlying DFT can be traced back to the early work of Siegel
based on GLpdq ˆ GLpdq structure [109, 110] and recent work [55]. In principle, the con-
struction of a connection and associated curvature objects follows the description laid out
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in the section 2.1 for GG, except some minor technical differences regarding the doubling
of the coordinate space and the implementation of the strong constraint.

In the end, the action (2.2.3) of DFT is equivalent to a generalized Einstein-Hilbert
form

SR “

ż

dxdx̃ e´2d RpH, dq , (2.2.9)

where the curvature scalar depends on both the generalized metric and the dilaton

R ” 4HMN
BMBNd´ BMBNHMN

´ 4HMN
BMdBNd` 4BMHMN

BNd

`
1
8H

MN
BMHKL

BNHKL ´
1
2H

MN
BNHKL

BLHMK .
(2.2.10)

This quantity was earlier found to be the equation of motion for the dilaton d. In a similar
way, a generalized Ricci tensor encoding the equation of motion for the generalized metric
H can be constructed. Ongoing considerations concern the existence of a generalized
Riemann curvature tensor [117]. So far, no successful construction is known in DFT for
the same reasons as in GG. However, efforts to include higher α1-corrections in DFT seem
to provide further insight into this topic.

2.2.2 T-duality invariant conformal field theory
A promising approach towards α1-corrections in DFT which in addition sheds light on the
origin of the strong constraint is a simple T-duality invariant CFT. Following Tseytlin
[118, 119], T-duality can be realized as a world-sheet symmetry. In particular, the left-
and right-moving components of the string are treated on an equal footing and T-duality
acts as a simple reflection on the right-moving degrees [120]. We present the basic concepts
of this CFT and use it to study the string theoretic origin of the strong constraint which
arises in DFT from the level-matching condition only in the weak form. The relation of this
duality invariant CFT to DFT is reinforced by comparing tree-level scattering amplitudes
of three massless states with the expanded action of DFT [38], reviewed in appendix B.

The free boson and T-duality

Recapitulating the world-sheet sigma model (1.1.24) presented in the Introduction, we are
in the following interested in the free bosonic string coordinate and hence

S “
1

2πα1

ż

Σ
dz dz̄ gmnpXq BX

m
B̄Xn , (2.2.11)

where conformal gauge is fixed and the target space metric g is allowed to depend on
the string coordinate. Then following the reasoning in [118, 119], the splitting of the
string coordinate into left- and right-moving components, given in (1.1.17) on a circle with
additional winding modes, should hold more generally for non-compact directions and not
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only in the case of toroidal compactification.3 This leads us to introduce the T-duality
invariant propagators for the standard and winding coordinates

@

Xm
pz1, z̄1qX

n
pz2, z̄2q

D

“ ´
α1

2 gmn ln |z12|
2 ,

@

rXm
pz1, z̄1q rX

n
pz2, z̄2q

D

“ ´
α1

2 gmn ln |z12|
2 ,

@

Xm
pz1, z̄1q rX

n
pz2, z̄2q

D

“ ´
α1

2 gmn ln z12

z̄12
,

(2.2.12)

where zij “ zi ´ zj. Manifest T-duality apparently follows from exchanging X and rX,
because T-duality simply flips the sign of the right-moving component [120]

Xm
pz, z̄q “ Xm

L pzq `X
m
R pz̄q

T´duality
ÐÝÝÝÝÑ rXm

pz, z̄q “ Xm
L pzq ´X

m
R pz̄q . (2.2.13)

Next, we determine elementary properties of this theory in the absence of compactified
directions.

Vertex operators and descendants

We write down the manifest duality-invariant primary field, solely depending on X and rX

Vp,wpz, z̄q “:eipmXmpz,z̄q eiwm
rXmpz,z̄q : . (2.2.14)

For later reasons, it can be interpreted as a tachyonic state in this CFT. Its weight is
determined by

ph, h̄q “

ˆ

α1

4 pp` wq
2,
α1

4 pp´ wq
2
˙

(2.2.15)

and its mass given by

M2
“ ´

2
α1
ph` h̄q “ ´pp2

` w2
q . (2.2.16)

Interestingly, the operator product expansion of two such fields

Vp1,w1pz1, z̄1qVp2,w2pz2, z̄2q “|z12|
α1pp1¨p2`w1¨w2q

´z12

z̄12

¯
α1

2 pp1¨w2`w1¨p2q

ˆ Vp1`p2,w1`w2pz2, z̄2q ` . . . ,

(2.2.17)

experiences a logarithmic branch point which vanishes under the quantization condition

α1pp1 ¨ w2 ` w1 ¨ p2q P Z , (2.2.18)

that is used to restore locality.
From (2.2.14), we can derive the first descendant states in this T-duality invariant CFT:

3The resulting theory is no longer governed by the sigma model (2.2.11).
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• The first excited level yields a form field Ap,w and its complex conjugate Āp,w

Ap,wpz, z̄q “ Am :BXm
pzqVp,wpz, z̄q : ,

Āp,wpz, z̄q “ Ām : B̄Xm
pz̄qVp,wpz, z̄q :

(2.2.19)

with A and Ā one-forms. Here, A is primary with conformal weight ph, h̄q “ p1 `
α1

4 pp` wq
2, α

1

4 pp´ wq
2q if it is transversely polarized in the sense Amppm ` wmq “ 0.

Similarly, Ā is primary with ph, h̄q “ pα14 pp`wq
2, 1` α1

4 pp´wq
2q for Āmppm´wmq “ 0.

These states lead to the well-known enhancement of the gauge group for heterotic
torus compactification.

• At the next level one finds a p0, 2q-tensor field Ep,w

Ep,wpz, z̄q “ Emn :BXm
pzq B̄Xn

pz̄qVp,wpz, z̄q : (2.2.20)

with the polarization Emn. It is a primary field with ph, h̄q “ p1` α1

4 pp`wq
2, 1` α1

4 pp´
wq2q for transverse polarization in the sense Emnppm`wmq “ 0 “ Emnpp

n´wnq. It is
precisely the scattering amplitude of three (2.2.20) that allows to relate this duality
invariant CFT to DFT, as shown in the appendix B.

The Virasoro constraints, which are quantum analogues of the vanishing of the classical
energy momentum tensor, determine the physical states to be primary fields with conformal
weight ph, h̄q “ p1, 1q. Consequently, level-matching is established if for the above states
additional constraints hold, as summarized in table 2.1. We see that both Vp,w and the

state level-matching primary mass
Vp,w p ¨ w “ 0 — M2 “ ´ 4

α1

Ap,w p ¨ w “ ´ 1
α1

Ampp
m ` wmq “ 0 M2 “ ´ 2

α1

Āp,w p ¨ w “ 1
α1

Āmpp
m ´ wmq “ 0 M2 “ ´ 2

α1

Ep,w p ¨ w “ 0 Emnpp
m ` wmq “ 0 “ Emnpp

n ´ wnq M2 “ 0

Table 2.1: The physical state condition requires the operators to be level-matched primaries
of conformal weight p1, 1q. This fixes the mass of the states.

two states Ap,w and Āp,w are tachyonic and that Ep,w is the first massless state which
corresponds to the graviton, the b-field or the dilaton depending on the polarization.

Next, we will consider the one-loop partition function whose modular invariance imposes
additional constraints relating the holomorphic with the anti-holomorphic sector.

The one-loop partition function

We start by computing the torus partition function for the above CFT and analyze its
modular properties. On a torus parametrized by τ we have

Zpτ, τ̄q “ trH
`

qL0´
c

24 q̄L̄0´
c

24
˘

, (2.2.21)
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where the trace is over all states in the Hilbert space H and we denote q “ e2πiτ . As
usual, the trace splits into a trace over the oscillators and an integral over the continuous
momenta and windings

Zpτ, τ̄q “
fpτ, τ̄q

|ηpτq|2d
, (2.2.22)

where the Dedekind eta function ηpτq keeps track of the oscillator part and

fpτ, τ̄q “ xp, w|p, wy
1
2

ˆ
ż

ddpL
p2πqd e

iπ2 α
1 p2
L τ

˙ˆ
ż

ddpR
p2πqd e

´iπ2 α
1 p2
R τ̄

˙

. (2.2.23)

Analyzing modular invariance for (2.2.22), we note that |ηpτq| is invariant under the mod-
ular T -transformation τ Ñ τ ` 1, but the integral for Impτq ą 0 is not. Therefore,
T -invariance yields the level matching condition

α1 p ¨ w P Z ðñ
α1

4 pp
2
L ´ p

2
Rq P Z , (2.2.24)

i.e. the two integrals are not independent. We can incorporate this constraint in the
integration by inserting the delta function δpp2

L ´ p2
R ´

4
α1
mq in (2.2.23). Evaluating the

remaining integral for Impτq ą 0, we obtain up to constant factors

fpτ, τ̄q „ e2πimτ

ż

ddpL
p2πqd |pL|

d´1 e´πα
1 p2
L Impτq

„
Γ
`

d´ 1
2

˘

Impτq d2
e2πimτ

Impτq d´1
2
. (2.2.25)

This is now T -invariant, however modular invariance of (2.2.22) under the S-transformation
τ Ñ ´ 1

τ
is spoiled by the factor e2πimτ Impτq 1´d

2 . The absence of the former factor demands
the second integral to be

ż

ddpR
p2πqd e

´iπ2 α
1 p2
R τ̄ δppL, pRq “ gpτ̄q e´i

π
2 α
1 p2
L τ̄ . (2.2.26)

This can be achieved by setting p2
L ´ p

2
R “

4
α1
m to zero and by introducing a relation

pR “M pL with M P Opdq (2.2.27)

between the left- and right-moving momentum. The delta function is then δdppR ´MpLq.
Altogether, the torus partition function, denoting xp, w|p, wy “ Vd, reads

Zpτ, τ̄q “
Vd{2

p2π
?
α1qd Impτq d2 |ηpτq|2d

. (2.2.28)

Let us make some remarks on the results of this section. First, T -invariance only
required α1p ¨ w P Z, whereas additional S-invariance finally led to the weak constraint
p¨w “ 0. We see from this, that the spectrum only contains states with matching number of
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left- and right-oscillators.4 Eventually, the strong constraint does not follow from modular
invariance and locality just implies α1ppi ¨ wj ` wi ¨ pjq P Z. In the next section, we will
analyze string diagrams containing momenta and winding of several states in contrast to
the one-loop partition function. In particular, we determine the strong constraint using
the scattering amplitude of four tachyons.

Tachyons scattering

The correlation function of N tachyon vertex operators Vpi,wipzi, z̄iq ” Vi (2.2.14) of the
T-duality invariant CFT is given by

@

V1 . . . VN
D

“
ź

1ďiăjďN
|zij|

α1ppi¨pj`wi¨wjq
´zij
z̄ij

¯
α1

2 ppi¨wj`wi¨pjq

δ
´

ř

pi

¯

δ
´

ř

wi

¯

. (2.2.29)

The difference to the standard tachyon correlator is the zij
z̄ij
-factor 5. In particular, it is the

pole structure of the Virasoro-Shapiro amplitude that encodes the on-shell physical states
and provides further constraints.

The duality invariant Virasoro-Shapiro amplitude

The full string scattering amplitude of N tachyons is given by

ANppi, wiq “ gNs CS2

ż N
ź

i“1
d2zi

ś3
j“1 δpzj ´ z

0
j q |z12z13z23|

2

ˆ
@

V1 . . . VN
D

pz1, . . . zNq .

(2.2.30)

Here, the conformal group PSLp2,Cq allowed to fix three of the N insertion points on the
sphere, i.e. z1 “ 0, z2 “ 1 and z3 Ñ 8. Moreover, the factor |z12 z23 z13|

2 is related to
the correlator of three c-ghost vertices

ˇ

ˇ

@

cpz1q cpz2q cpz3q
Dˇ

ˇ

2. The prefactors are a factor
of the closed string coupling constant gc for every closed string vertex operator and CS2

accounting for various normalizations.6
The three-tachyon amplitude is given by

A3ppi, wiq “ g3
c CS2

@

pc c̄ V1qpc c̄ V2qpc c̄ V3q
D

“ g3
c CS2 , (2.2.31)

where the δ-distributions implementing momentum and winding conservation have to be
understood as implicit. The three-point amplitude is therefore identical to the standard
one for three tachyons without a winding dependence.

4Ap,w and its complex conjugate listed in table 2.1 do not contribute to the spectrum.
5SLp2,Cq-invariance can be checked explicitly.
6More details on the conventions can be found in [121].
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With the help of (2.2.29), the four-point amplitude reads

A4ppi, wjq “ g4
c CS2

ż

d2z
@

pc c̄ V1q pc c̄ V2q pc c̄ V3qV4
D

“ g4
c CS2

ż

d2z
!

zα
1pp1¨w4`w1¨p4qp1´ zqα1pp2¨w4`w2¨p4q

ˆ |z|α
1pp1´w1q¨pp4´w4q |1´ z|α1pp2´w2q¨pp4´w4q

)

.

(2.2.32)

At this point, we introduce two sets of Mandelstam variables respectively for left- and
right-moving momenta

s “ ´ppL3 ` pL4q
2 , s “ ´ppR3 ` pR4q

2 ,

t “ ´ppL2 ` pL4q
2 , t “ ´ppR2 ` pR4q

2 ,

u “ ´ppL1 ` pL4q
2 , u “ ´ppR2 ` pR4q

2 .

(2.2.33)

Level-matching and the mass-shell condition further yield s` t` u “ s` t` u “ ´16
α1

and
the difference between these sets is given by an integer

ppLi ` pLjq
2
´ ppRi ` pRjq

2
“ 4ppi ¨ wj ` wi ¨ pjq P

4
α1

Z . (2.2.34)

The amplitude can be conveniently rewritten using the function αpsq “ ´1´ α1

4 s

A4ppi, wjq “ 2π g4
c CS2

Γ
`

αpsq
˘

Γ
`

αptq
˘

Γ
`

αpuq
˘

Γ
`

αptq ` αpuq
˘

Γ
`

αpsq ` αpuq
˘

Γ
`

αpsq ` αptq
˘ . (2.2.35)

In order to be able to make a statement on the symmetries between the different channels
s, t and u, we use the relation (2.2.34) and αpsq “ αpsq ´ n34, where

nij “ α1ppi ¨ wj ` wi ¨ pjq with n14 ` n24 ` n34 “ 0 , (2.2.36)

in order write the amplitude in terms of left-moving variables only

A4ppi, wjq “
2π g4

c CS2 Γ
`

αpsq
˘

Γ
`

αptq
˘

Γ
`

αpuq
˘

Γ
`

αptq`αpuq`n34
˘

Γ
`

αpsq`αpuq`n24
˘

Γ
`

αpsq`αptq`n14
˘ . (2.2.37)

Clearly, a similar expression in terms of right-moving variables exists.
Now, we recognize that channel duality for (2.2.37) requires n14 “ n24 “ n34 and

consequently implies nij “ 0 through (2.2.36). We argue in the following more rigorously
that this constraint is identical to the strong constraint.

Pole structure and the strong constraint

We are now interested in the intermediate states of the four tachyon amplitude in the
different channels and the question whether these are physical. In particular, the poles of
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this amplitude determine where the physical states become on-shell and encode the mass
spectrum of the theory. For example, the nth pole7 in the s-channel is located at

s “
4
α1
pn´ 1q ðñ s “

4
α1
pn` n34 ´ 1q . (2.2.38)

Then, a physical intermediate state has mass and level-matching condition

pM int
q
2
“ ´

`

ppint
q
2
` pwint

q
2˘
“

4
α1
`

n`
n34

2 ´ 1
˘

and pint
¨ wint

“
n34

α1
, (2.2.39)

where the momentum and winding of this state are determined by s “ ´ppL3 ` pL4q
2 ”

´ppint
L q

2 and kint
L{R “ pint ˘wint. Hence, the level-matching condition allows for asymmetri-

cally excited states which violate the condition (2.2.27), derived from modular invariance.
Including the t- and u-channel, the physical spectrum is required to satisfy nij “ 0 and we
derived the strong constraint

pi ¨ wj ` pj ¨ wi “ 0 @i, j . (2.2.40)

The better known form (2.2.5) [37, 115]

Bmfi B̃
mfj ` B̃

mfi Bmfj “ 0 (2.2.41)

arises by defining the functions fipx, x̃q “ exppipi ¨ x` iwi ¨ x̃q.
To summarize, while modular invariance of the partition function determined the phys-

ical spectrum, consistency with the pole structure of the Virasoro-Shapiro amplitude al-
lowed to derive the strong constraint. Let us now combine the condition (2.2.27) with the
constraint (2.2.40). In terms of left- and right-moving momenta Ki “ pkLi, kRiq

t the strong
constraint reads xKi, Kjyd “ 0 @i, j. Combining it with kRi “MikLi, we obtain the joint
condition

kLi
t
`

1´Mt
iMj

˘

kLj “ 0 (2.2.42)

which for fixed i, j must hold for all left-moving momenta. This impliesMi “Mj for all
i, j so that both constraints can be summarized by the consistency condition

kRi “M kLi with M P Opdq @i . (2.2.43)

Constraints from torus compactifications

So far, we considered continuous momentum and winding in non-compact spaces which
yield the strong constraint. However, Scherk-Schwarz reductions of DFT [116] allow to
work with the weaker closure constraint. Here, momentum and winding are quantized

7The function Γpxq develops single poles at x “ ´n for n P N with residue p´1qn
n! and has no zeros.
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due to compact directions. We summarize the results of the previous analysis for torus
compactification, detailed in [100], in the following.

Modular invariance of the partition function under T - and S-transformations demands
the lattices representing the toroidal compactification to be even and self-dual, which is
a well-known result [122]. Hence, the spectrum in the internal sector is less constrained.
For the external non-compact part left- and right-moving momenta have to be related by
and OpD´dq rotation. The analogue analysis of the pole structure is reducible to internal
and external components of momenta and winding since contractions do not mix. In the
external direction we derive the previous result of the strong constraint (2.2.40). However,
we find that asymmetric excitations in the internal directions are indeed valid.

One-loop modular invariance and the pole structure of the four tachyon amplitude do
clarify the need for the strong constraint in non-compact directions and are in agreement
with a weaker constraint in the internal sector, as proposed for Scherk-Schwarz reductions.8
We recall that this T-duality invariant CFT matches with DFT at the two derivative level
which makes this theory interesting for studying possible higher α1-corrections to DFT.

8In the presence of fluxes additional constraints are required.
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Chapter 3

β-supergravity

In the following we present a ten-dimensional theory that contains non-geometric Q- and
R-fluxes. Motivations for constructing such a theory are laid out in the Introduction. This
theory can be thought of as a reformulation of the standard ten-dimensional supergravity
(SUGRA) theories and we name it β-supergravity for containing the new field variable
β. We are going to study here its NSNS sector, which is common to all standard ten-
dimensional SUGRA theories. Questions towards β-supergravity are posed with regard to
an underlying geometric framework and its capability to providing new insight into matters
of non-geometry. We start a general discussion on background solutions of β-supergravity
and their relations to non-geometric configurations in standard SUGRA in the next chapter
4. In particular, the set of NS5-branes, including the Q-brane, is chosen as an application
of the formalism of β-supergravity in the context of Bianchi identities (BIs) and possible
corrections to these when observing branes with non-geometric fluxes in chapter 5. Finally,
we use in chapter 6 ideas present in Generalized Complex Geometry (GCG) to classify
vacua of β-supergravity by means of writing down the supersymmetry (SUSY) variations
in form of pure spinor conditions. This chapter focuses on earlier constructions using a field
redefinition that involves a bivector β, the relation of the theory to Double Field Theory
(DFT) and presents a derivation of β-supergravity using the Generalized Geometry (GG)
formalism.

3.1 First steps towards β-supergravity

Inspired by [76, 77, 78], where GCG tools were used to study non-geometry, in [84] a spe-
cific field redefinition was considered which was performed on the standard NSNS fields.
The metric gmn, the Kalb-Ramond field bmn, and the dilaton φ, get replaced by a new
set of fields, given by a new metric g̃mn, an antisymmetric bivector βmn, and a new dila-
ton φ̃. This field redefinition is an Op2d ´ 2, 2q transformation (more precisely here an
Opd´ 1, 1q ˆOp1, d´ 1q, as detailed in appendix C.2) taking us from one generalized viel-
bein E to another one Ẽ , while preserving the generalized metric H, i.e. a change of



48 3. β-supergravity

generalized frame

E “
ˆ

e 0
e´T b e´T

˙

, Ẽ “
ˆ

ẽ ẽβ
0 ẽ´T

˙

, I “
ˆ

ηd 0
0 η´1

d

˙

, (3.1.1)

H “
ˆ

g ´ bg´1b ´bg´1

g´1b g´1

˙

“ ET I E “ ẼT I Ẽ “
ˆ

g̃ g̃β
´βg̃ g̃´1 ´ βg̃β

˙

. (3.1.2)

Here, the vielbeins e and ẽ correspond to metrics g “ eTηde and g̃ “ ẽTηdẽ, where ηd
denotes the flat metric. The field redefinition1 can be read from (3.1.2) and rewritten in
various manners, in particular

g̃´1
“ pg ` bq´1gpg ´ bq´1

β “ ´pg ` bq´1bpg ´ bq´1

+

ô pg ` bq´1
“ pg̃´1

` βq . (3.1.3)

Additionally, the new dilaton φ̃ is chosen such that the following measure is preserved

e´2φ̃
a

|g̃| “ e´2φ
a

|g| “ e´2d , (3.1.4)

where |g̃| denotes the absolute value of the determinant of the metric g̃.
The main idea was then to directly apply the field redefinition to the standard ten-

dimensional NSNS Lagrangian

LNSNS ” e´2φ
a

|g|

ˆ

Rpgq ` 4pBφq2 ´ 1
2H

2
˙

, (3.1.5)

where R denotes the Ricci scalar corresponding to the Levi-Civita connection (A.3.1), the
H-flux isHmnp ” 3Brmbnps, and the squares are defined in (A.3.28). The actual computation
is rather involved and has been performed in two steps. To obtain the new Lagrangian L̃
two simplifying assumptions βpqBq¨ “ 0 and Bqβpq “ 0 were implemented in [84]. Then,
the final Lagrangian L̃ contains a Ricci scalar of the new metric Rpg̃q, a standard kinetic
term for the new dilaton φ̃, and a square of the quantity Bmβpq, which was identified with
a ten-dimensional flux Qm

pq. This specific identification was first motivated by the correct
index structure and secondly was able to generate the four-dimensional Q-flux term in the
potential in a dimensional reduction. Later in section 4.1.1, the use of this formula on the
toroidal example will provide the expected value for the Q-flux. The full computation of L̃
without simplifying assumption was finally performed in [82, 83]. The direct computation,
starting from LNSNS and applying the field redefinition results in a new Lagrangian denoted

1An alternative field redefinition was proposed in [79, 80]. Both field redefinitions were then interpreted
in terms of local Opd, dq transformations and Lie algebroids in [81].
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here L̃0 which is equal to LNSNS up to a total derivative

L̃0 “ e´2φ̃
a

|g̃|

ˆ

Rpg̃q ` 4pBφ̃q2 ´ 1
2R

2 (3.1.6)

` 4g̃mnβmpβnqBpd Bqd´ 2Bpd Bq pg̃mnβmpβnqq

´
1
4 g̃mpg̃nqg̃

rs
Brβ

pq
Bsβ

mn
`

1
2 g̃mnBpβ

qm
Bqβ

pn

` g̃nqg̃rsβ
nm

`

Bpβ
qr
Bmg̃

ps
` Bpg̃

qr
Bmβ

ps
˘

´
1
4 g̃mpg̃nqg̃rs

`

βruβsvBug̃
pq
Bvg̃

mn
´ 2βmuβnvBug̃qr Bvg̃ps

˘

˙

“ LNSNS ´ Bm
`

e´2d`g̃mng̃pqBng̃pq ´ g
mngpqBngpq ` Bnpg̃

mn
´ gmnq

˘˘

.

Indeed, the simplified Lagrangian of [84] is equal to the first two terms, and the first
term of the third line. Besides, several new terms appear, in particular the square of a
ten-dimensional R-flux

Rmnp
” 3βqrmBqβnps “ 3βqrm∇qβ

nps , (3.1.7)

as in [56]. Since ∇m denotes the standard covariant derivative with Levi-Civita connection
defined in (A.3.1) the R-flux above is a tensor. We come back to discuss the structure of
the terms involving β two second order.

The Lagrangian (3.1.6) can also be obtained from an alternative method [83, 82] which
relies on DFT [37, 38, 115, 54]. It is known that by applying the strong constraint in the
form B̃ “ 0 to the Lagrangian LDFT allows to recover the standard NSNS Lagrangian LNSNS,
up to a total derivative. Hence, performing similar steps after applying the field redefinition
in terms of the reparametrization (3.1.2) leads also to L̃0, up to a total derivative. These
two methods are depicted by the two left columns and lines of the diagram (3.1.8). The
plain equalities of this diagram were established in [84, 83, 82] and the dashed ones have
been presented in [101].

LDFTpg, b, φq LDFTpg̃, β, φ̃q LDFTpR, qRq ` Bp. . . q ` B̃p. . . q

LNSNS ` Bp. . . q

B̃“0

L̃0 ` Bp. . . q

B̃“0

L̃β ` Bp. . . q

B̃“0 (3.1.8)

The ten-dimensional theory given by the Lagrangian L̃0 was also proposed to yield
an uplift to some four-dimensional gauged SUGRA theories. In particular in [82], a par-
tial dimensional reduction showed that the Q- and R-flux non-geometric terms of the
four-dimensional scalar potential could be reproduced. This cannot be achieved from the
standard LNSNS. The precise identification of the fluxes is nevertheless unclear in this re-
duction. Observing the scalar potential being quadratic in the fluxes is not sufficient in
order to clarify the identification of fluxes. More information is usually provided by the
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superpotential. Fortunately, the R-flux term in the four-dimensional scalar potential only
resulted from the R2 term in L̃0, which makes the above identification rather likely. On
the contrary, the structure of the last three lines of L̃0 in (3.1.6) does not allow for a simple
identification of ten-dimensional Q-flux and naive suggestions like ∇β failed to produce a
squared expression for the Q-flux.

Some progress in the structure of the Lagrangian was nevertheless obtained in [83,
82], at the level of DFT. Indeed, as depicted in the first line of the diagram (3.1.8),
the DFT Lagrangian, expressed in terms of the new fields g̃, β, φ̃, was reformulated in
a covariant manner with respect to the standard diffeomorphisms. The key ingredient of
this reformulation was a new covariant derivative q∇m involving the derivative B̃m ´ βmnBn
and a connection qΓmnp . It enters various DFT quantities, i.e. a Ricci-like tensor qRmn

and an associated scalar qR. The latter appears in the reformulated DFT Lagrangian,
together with the standard Ricci scalar Rpg̃q. Applying the constraint B̃ “ 0 on this last
DFT Lagrangian LDFTpR, qRq a first expression of L̃β at the SUGRA level, which formally
inherits the structure of LDFTpR, qRq, was obtained

L̃β “ e´2φ̃
a

|g̃|

ˆ

Rpg̃q ` qRpg̃q ` 4pBφ̃q2 ´ 1
2R

2
` 4pβmpBpφ̃´ T mq2

˙

. (3.1.9)

The squares are defined in (A.3.28), and further objects involving the new covariant deriva-
tive q∇ on a (co)-vector V are defined as

qR “ g̃mn qRmn , qRmn
“ ´βpqBqqΓmnp ` βmqBqqΓpnp ` qΓmnp qΓqpq ´ qΓqmp qΓpnq , (3.1.10)

qΓmnp “
1
2 g̃pq p´β

mr
Brg̃

nq
´ βnrBrg̃

mq
` βqrBrg̃

mn
q ` g̃pqg̃

rpm
Brβ

nqq
´

1
2Bpβ

mn , (3.1.11)

T n ” qΓpnp “ Bpβ
np
´

1
2β

nmg̃pqBmg̃
pq
“ ∇pβ

np , (3.1.12)

q∇mV p
“ ´βmnBnV

p
´ qΓmpn V n , q∇mVp “ ´β

mn
BnVp ` qΓmnp Vn . (3.1.13)

As noticed in [83, 82], the trace T n of the connection is hence obviously a tensor. Moreover,
the definition of q∇ can be naturally extended for tensors with more indices. The above
definitions enter in the derivation of the equations of motion from (3.1.9) in curved indices,
which was done in[101].

By construction, L̃β should be equal to L̃0, and to LNSNS, up to total derivatives. This
is depicted in the second line of the diagram (3.1.8). The explicit verification can be found
in the appendix of [101]. A first advantage of the reformulated L̃β compared to L̃0 is its
manifestly diffeomorphism covariance. In addition, as noticed already at the level of DFT
in [82], qR captures most of the terms of the last three lines of L̃0 providing some structure
for the four-dimensional Q-flux terms. Still, this interesting repackaging does not allow
to identify directly the Q-flux. In [83, 82] it was noticed that the Bβ essentially appear
within the new connection qΓ and thus the Q-flux was believed to be part of a connection
coefficient. We investigate the question of the Q-flux not being a tensor in more detail in
the next section.
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3.2 Generalized Geometry derivation
In order to compute the Lagrangian L̃β we develop an underlying geometric concept with
corresponding quantities. We essentially follow the GG paper [39] that treats the gener-
alized vielbein Epe, bq in standard parameterization. An analogous DFT formalism with
similar objects was developed before in [55], and its relation to [39] has been established
in [69]. These three papers are, to some extent, based on the early work [109, 110]. Previ-
ous constructions of geometric objects in terms of generalized vielbeins can also be found
in [78, 114]. More recent related work for the Opd, dq covariant formalisms appeared in
[117, 123, 124, 50, 125], where a specific form of the generalized connection is sometimes
chosen. Most of this recent work remains however at the generalized or doubled level,
without specifying a generalized vielbein for reasons of preserving Opd, dq.2

As explained, the field redefinition considered here corresponds to a change of general-
ized vielbein, from Epe, bq to Ẽpẽ, βq. Such a change in the two above formalisms should
thus lead to L̃β (3.1.9). Although this result is already known for DFT as depicted in the
diagram (3.1.8), it has not been established in a formulation where one relies solely on
generalized geometric objects. Hence, in the following we show how choosing the gener-
alized vielbein Ẽpẽ, βq in the GG formalism leads to a scalar S “ e2d pL̃β ` Bp. . . qq that
allows us to identify the Lagrangian L̃β. We explicitly construct the geometric objects
corresponding to the choice Ẽ and enlighten the structures appearing. For instance, the
derivative q∇ and the connection ωQ (1.4.7) appear naturally. The role of the trace of the
connection T m (3.1.12) gets clarified and finally we obtain specific derivatives on spinors
which will be useful in the study of SUSY in chapter 6.

3.2.1 The Opd, dq ˆ R` structure
We start by considering a manifoldM of dimension d. Then, associated with the tangent
space over each patch of the manifold comes a frame that we denote here Ba for convenience.
When going from one patch to the next, the frames transform into each other with elements
of GLpd,Rq acting on the flat index a. Globally, the union of tangent spaces forms the
tangent bundle TM, whose structure group is then GLpd,Rq. It is common to introduce
a globally preserved metric ηd on these tangent spaces which then reduces the structure
group to Opd´1, 1q.3 In GG a 2d-dimensional generalization of the tangent bundle, that we
call here generalized bundle E, mimics the standard construction with generalized frames
that transform according to the structure group Opd, dq. The latter arises due to a 2dˆ 2d
metric

ηpu{dq “
1
2

ˆ

0 1

1 0

˙

, (3.2.1)

with components denoted by ηAB, where we introduce a generalized flat index A. The
metric above also reflects the natural coupling of vectors and one-forms pBa, ebq leading to

2One exception is [50] and we recover some of their generalized connection components.
3We use in this paper standard Minkowski signature for clarity, but there is actually no restriction on

it, as indicated in [39].
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Opd, dq. A simple local realization of E is given by the direct sum TM‘ T ˚M.
In order to implement the dilaton present in any SUGRA, the bundle E has to be

extended by a conformal weight, following [39]. The corresponding structure group of
the extended bundle is Opd, dq ˆ R`, and the different objects involved get weighted by
a conformal factor related to the dilaton. In particular, we now talk of a generalized
conformal frame, that we denote e´2d E̊A.4

In the following, we are interested in a particular type of generalized frames that allow
a splitting of the generalized bundle. Here, splitting means that an isomorphism E »

TM‘ T ˚M can be found and refers to a local relation, which might be difficult to define
globally. In particular, the isomorphism locally realizes a map from a generalized frame
to pBa, eaq. Choosing locally a set of coordinates the vielbein e̊ relates Ba “ e̊maBm and
similarly one-forms with dxm. For completeness, we also introduce matrix notation e̊´TB
for Ba, detailed in appendix A.3. Then, a generalized conformal split frame e´2d E̊A can be
denoted

e´2d E̊´T
ˆ

B

dx

˙

, (3.2.2)

where the matrix E̊ of components E̊AM is a generalized vielbein. This notation leads to
d-dimensional blocks in matrices and we thus clarify the index placement for vectors and
one-forms by fixing the following up/down (u/d) notation

UA “

ˆ

ua
ua

˙

, V A
“

ˆ

va

va

˙

, ηAB “
1
2

ˆ

0 δba
δab 0

˙

, (3.2.3)

and indicate the indices for the Opd, dq metric ηpu{dq.5

Local expressions for a generalized conformal frame are provided by the two generalized
vielbeins E and Ẽ of (3.1.1)

e´2d E´T “ e´2φ
a

|g|

ˆ

e´T e´T b
0 e

˙

, pE´T qAM “ EMA “

ˆ

ema enabnm
0 eam

˙

, (3.2.4)

e´2d Ẽ´T “ e´2φ̃
a

|g̃|

ˆ

ẽ´T 0
ẽβ ẽ

˙

, pẼ´T qAM “ ẼMA “

ˆ

ẽma 0
ẽanβ

nm ẽam

˙

. (3.2.5)

4To distinguish the standard generalized frame from generic quantities we denote the later by using a
ring on top.

5The Opd, dq structure group considered here is a priori different from the T-duality group. Indeed, our
Opd, dq acts on the flat index A, i.e. “on the left” of a generalized vielbein E̊ , while a standard T-duality
acts on the “generalized curved space” indexM, i.e. “on the right” of E̊ , also observed from the generalized
H in (3.1.2). The two groups may however be related. From our Opd, dq metric ηAB, one can define a
“curved space” metric ηMN “ E̊A

M ηAB E̊B
N . The vielbeins considered in (3.1.1) are elements of Opd, dq

and for those, ηMN is then equal to the Opd, dq metric. One can thus consider Opd, dq transformations on
the curved space index. We come back to this idea in section 4.1.
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A third notation in terms of up and down indices is given by

e´2d EA “

#

e´2d Ea “ e´2φ
a

|g| pBa ` babe
bq

e´2d Ea “ e´2φ
a

|g| ea
, (3.2.6)

e´2d ẼA “

#

e´2d Ẽa “ e´2φ̃
a

|g̃| Ba

e´2d Ẽa “ e´2φ̃
a

|g̃| pẽa ` βabBbq
. (3.2.7)

The standard example (3.2.6) was studied in [39], while the second (3.2.7) was left for
investigation. We now focus on the latter and work out corresponding generalized geometric
structures.

Locally on each patch, these frames clearly provide an isomorphism to TM ‘ T ˚M.
However, the existence of a consistent global splitting requires more attention and depends
on the transformation behavior of a frame from one patch to another. In the case of the
frame (3.2.6) a global meaning is provided by gauge transformations of the b-field, that can
be defined properly in this context [39]. Whether a similar global completion can be found
for (3.2.7) is less straightforward and possibly involves well-defined β gauge transformation.
We discuss this point in section 4.1.2. In what follows, we consider all objects to be local
quantities and push questions of an underlying global geometry aside. Stated differently,
we work out the consequence of the conformal frame (3.2.7) formally.

Furthermore, we remark that a splitting reduces the structure group to a subgroup
Gsplit preserving the form of the splitting. For (3.2.6), the subgroup contains b-field gauge
transformations and diffeomorphisms. The reduction of the structure group of the gen-
eralized bundle E also manifests itself in a refinement of the bundle itself. For (3.2.6),
E becomes the generalized tangent bundle ET of GCG and (3.2.7) in principle should be
associated with a group Gsplit and a proposed generalized cotangent bundle ET˚ , discussed
in section 4.1.2.

Let us now define various generalized geometric objects, that are compatible with the
Opd, dqˆR` structure of the extended generalized bundle. We mostly follow [39]. To start
with, we introduce the bilinear product of two generalized vectors V and W

xE̊A, E̊By ” ηAB , xV,W y “ V AηABW
B for V “ V AE̊A ,W “ WBE̊B , (3.2.8)

where also a conformal factor can be inserted. Furthermore, we define a generalized co-
variant derivative acting on a generalized vector component V B in flat indices

DAV
B
“ BAV

B
` Ω̂A

B
CV

C , (3.2.9)

where BA denotes a generalized partial derivative and Ω̂A
B

C is a generalized spin connection.
Demanding compatibility of the latter with Opd, dq ˆ R` requires to separate it into two
pieces

Ω̂A
B

C “ ΩA
B

C ´ ΛAδ
B
C , (3.2.10)

where Ω is the spin connection for E, and Λ is related to the conformal weight. Further-
more, the Opd, dq structure, or equivalently compatibility with the metric (3.2.1), yields
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the antisymmetry property analogous to the standard spin connection in (A.3.13)

ηDCΩA
B

C “ ´η
BCΩA

D
C . (3.2.11)

On the tangent bundle, there exists a uniquely fixed torsion-free connection compatible
with a Opd ´ 1, 1q structure called the Levi-Civita connection. Our goal is to impose
analogue requirements on the generalized objects. We start with the definition of the gen-
eralized torsion T . The standard torsion is obtained by the difference of two Lie derivatives,
where for one of them, the partial derivative is replaced by the covariant derivative. The
generalized torsion is then defined similarly [39] in terms of the generalized Lie derivative
L [78] with the covariant derivative D (3.2.9)

T pV,W q ” LDVW ´ LVW . (3.2.12)

This definition is bilinear in V and W and its components on a generic frame are then
defined using (3.2.8) as

TA
BC ” ηAD

xE̊D, T pE̊B, E̊Cqy . (3.2.13)
We find the following result in terms of the generalized connection using (3.2.12)

TABC “ ´3Ω̂rABCs ` Ω̂D
D

BηAC ´ e
4d
xe´2d E̊A, LE̊B

pe´2d E̊Cqy , (3.2.14)

where certain indices are lowered with ηAB. Setting to zero the generalized torsion then
fixes some components of the generalized connection in terms of a given frame. In the
following we work this out for the frames (3.2.6) and (3.2.7).

In case of a splitting, we can specify the generalized partial derivative6

BM “

#

Bm

Bm ” 0
, BA “ E̊M

A BM . (3.2.15)

While BA is simply Ba for the frame with b-field (3.2.6), we find Ba “ βabBb for the frame
(3.2.7) with β, as can be seen from the generalized vielbeins in the form (3.2.4) and (3.2.5).
This gives a natural origin to βB and it will lead to the new covariant derivative q∇ defined
in (3.1.13).

Using the u/d notation (3.2.3) the antisymmetry (3.2.11) on the components takes the
form

ΩAc
b
“ ´ΩA

b
c , ΩA

bc
“ ´ΩA

cb , ΩAbc “ ´ΩAcb . (3.2.16)
We can then work out more concretely the generalized derivative (3.2.9) of a generalized
vector expanded on a conformal frame

pDAV
B
qe´2d E̊B “ e´2d

ppBAv
b
` ΩA

b
cv
c
` ΩA

bcvcqE̊b
`pBAvb ´ ΩA

c
bvc ` ΩAbcv

c
qE̊b ´ ΛAV

BE̊B .
(3.2.17)

6In principle one could introduce the abstract derivative Bm which is set to zero in [39]. It could serve
as the B̃m of DFT.
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For the frame (3.2.6), another natural requirement [39] is that DA reproduces the standard
covariant derivative ∇a (A.3.8). More precisely, given the generalized derivative (3.2.15)
Da should reproduces ∇a while Da should not get any contribution. Within Da, there are
three types of connection coefficients involved. Ωa

b
c presents a standard spin connection

and its antisymmetric part matches that of the Levi-Civita connection after imposing the
torsion-free condition. The symmetric part should then be fixed such that the full ωbac
is reproduced. Hence, one finds the standard ∇a on both contravariant and covariant
objects, namely ∇av

b and ∇avb. The second component Ωa
bc is a non-standard term and

we set it to zero. The third type of connection coefficient Ωabc will be later related to the
H-flux for the frame (3.2.6). For Da we find the component Ωa

bc analogue to Ωa
bc in Da.

Consequently, we set it to zero as well

Ωa
bc “ 0 , Ωa

bc
“ 0 . (3.2.18)

Most of the other contributions to Da for the frame (3.2.6) vanish thanks to the torsion-free
condition. The fixing indicated then realizes the requirement of reproducing the standard
∇a with DA. For the frame (3.2.7) the torsion condition will be different for Da, however
we stick here to the same fixing
$

&

%

pDaV
Bqe´2d E̊B “ e´2d

´

pBav
b ` Ωa

b
cv
cqE̊b ` pBavb ´ Ωa

c
bvcqE̊b ` Ωabcv

cE̊b ´ λaV BE̊B

¯

pDaV Bqe´2d E̊B “ e´2d
´

pBavb ´ Ωa
c
bvcqE̊b ` pBavb ` Ωa

b
cvcqE̊b ` ΩabcvcE̊b ´ ξaV BE̊B

¯

(3.2.19)
where we denote

Λa ” λa , Λa
” ξa . (3.2.20)

On the contrary to the frame (3.2.6), the Ba is non-trivial for the frame (3.2.7). The form of
the derivatives in (3.2.19) suggests that the antisymmetric part of Ωa

b
c should be given by

that of ωQ (A.3.21). In order to reproduce the full ωQ we then fix accordingly its symmetric
part. This will lead to the new covariant derivative q∇a (A.3.20) being reproduced by Da.7

Let us now work out the torsion-free condition for the frame (3.2.7). We first compute

e4d
xe´2d ẼA, LẼB

e´2d ẼCy “
1
2pf

a
bc ` f

c
ab ` f

b
ca `Qa

bc
`Qb

ca
`Qc

ab
´Rabc

q

` pfddb ´ 2Bbφ̃`Qd
bd
` βdgf bdg ´ 2βbdBdφ̃qηAC ,

(3.2.21)

where the right-hand side lists the components according to up or down indices on the
left-hand side. The fluxes f , Q and R appearing here are precisely those defined in
(1.4.5). Then, using the connection coefficients of (3.2.19), and setting the torsion to
zero in (3.2.14), one first obtains8

fabc “ 2Ωrbacs , f cab “ 2Ωracbs , f bca “ 2Ωrcbas ,
Qa

bc
“ 2Ωrbacs , Qb

ca
“ 2Ωrcbas , Qc

ab
“ 2Ωracbs ,

Rabc
“ 3Ωrabcs , Ωrabcs “ 0 .

(3.2.22)

7For the frame (3.2.6), the symmetric part of Ωabc should rather be set to zero to get Da “ 0.
8These results as well as (3.2.24) are in agreement with those of [50].
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As discussed below (3.2.17) and (3.2.19), and given the properties (A.3.13) and (A.3.23)
compared to the relations just derived, we identify for the frame (3.2.7)

Ωb
a
c “ ωabc , Ωb

a
c
“ ωQ

bc
a . (3.2.23)

From those, we deduce fddb “ Ωd
d
b and Qd

db “ Ωd
d
b. The torsion-free condition then

finally gives
λb “ 2Bbφ̃ , ξb “ ´2Qd

bd
´ βcdf bcd ` 2βbdBdφ̃ . (3.2.24)

The sign of Qd
bd in (3.2.21) looks rather surprising, as it differs from that of fddb when

viewed as the trace of a connection, and leads to the ´2Qd
bd in ξb. It is however the

correct result, and one accomplishes a better understanding by noticing that the tensor
T m (3.1.12) can be expressed in flat indices as

T a “ ´Qb
ba
`

1
2β

cdfacd . (3.2.25)

One can then rewrite
λa “ 2Baφ̃ , ξa “ 2pβadBdφ̃´ T aq , (3.2.26)

which give precisely the two dilaton terms in the Lagrangian L̃β in (3.1.9). T a plays the
role of the conformal weight together with the dilaton, and appears in the corresponding
combination given by ξa. This is the non-standard conformal weight, obtained with the
frame (3.2.7), that matches with the non-standard dilaton term in the Lagrangian. The
standard term for the frame (3.2.6) is λa, corresponding to the standard dilaton kinetic
term.

There are further components of the connection which are unfixed by the torsion-free
condition. Those do not appear when computing ´3ΩrABCs ` ΩD

D
BηAC, i.e. the parts

of Ωabc or Ωabc that are not fully antisymmetric. For (3.2.6) in [39], these undetermined
components eventually do not contribute to the scalar S respectively the Lagrangian.
Inspired by this situation, we choose here for simplicity to set them to zero for the frame
(3.2.7). In the end, we recover L̃β from S, despite this restriction.

Finally, we obtain for the frame (3.2.6)9

#

pDaV
Bqe´2d EB “ e´2d `p∇av

bqEb ` p∇avbqEb ´ 1
3Habcv

cEb ´ λaV BEB
˘

pDaV Bqe´2d EB “ 0
, (3.2.27)

while the frame (3.2.7) leads to
#

pDaV
Bqe´2d ẼB “ e´2d ` p∇av

bqẼb ` p∇avbqẼb ´ λaV BẼB
˘

pDaV Bqe´2d ẼB “ e´2d
´

´pq∇avbqẼb ´ pq∇avbqẼb ` 1
3R

abcvcẼb ´ ξaV BẼB

¯ , (3.2.28)

where we introduced a new covariant derivative with connection coefficients (3.2.23)

q∇avb “ ´βacBcv
b
` ωQ

ab
c v

c , q∇avb “ ´β
ac
Bcvb ´ ωQ

ac
b vc . (3.2.29)

9The torsion-free condition has been worked out in [39] with λa “ 2Baφ.



3.2 Generalized Geometry derivation 57

3.2.2 Preserving an Opd´ 1, 1q ˆOp1, d´ 1q structure
After having presented the Opd, dq ˆR` structure group of the extension of E, the associ-
ated generalized geometric objects, and given some concrete examples for those, we are now
interested in a specific Opd´1, 1qˆOp1, d´1q subgroup. This structure was considered for
N “ 1 SUSY [69, 70], but also allowed to reproduce type II SUGRAs [55, 39, 89, 71]. Pre-
serving such a structure brings in more constraints. For instance, the metric and dilaton
are fixed by this structure, meaning that the conformal weight is globally defined, and one
then only focuses on the bundle E. Another example is that the two orthogonal groups
lead to two Spinpd´1, 1q groups, and associated spinors turned out to be related to the two
supersymmetries of type II theories. Finally, the generalized curvature scalar S defined in
terms of these spinors was shown to be related to the standard NSNS Lagrangian (3.1.5).
Here, we are interested in the frame (3.2.7) with β and the new derivative obtained in
(3.2.28). Analogously, the Opd´ 1, 1qˆOp1, d´ 1q structure leads eventually to a scalar S
related to the Lagrangian L̃β (1.4.9). In chapter 6 we study SUSY of β-supergravity using
former results.

We define the subgroup Opd ´ 1, 1q ˆ Op1, d ´ 1q as follows. The Opd, dq metric ηpu{dq
(3.2.1), preserved on the generalized bundle E, has positive and negative eigenvalues. It is
possible to form two sets of signature pd´ 1, 1q and p1, d´ 1q, as given by the diagonalized
Opd, dq metric η

η “

ˆ

ηd 0
0 ´ηd

˙

, ηAB “

ˆ

ηab 0
0 ´ηab

˙

, (3.2.30)

where we consider ηab and ηab to be the same in value, with pd´ 1, 1q signature. The two
sets are distinguished by an unbarred/barred notation. A conformal generalized frame can
then locally be separated into these two sets, and denoted accordingly e´2d E̊a , e´2d E̊a.
Whether these two sets remain separated spaces globally is however not guaranteed by
the Opd, dq structure group. Preserving such a frame is equivalent to reducing Opd, dq
to Opd ´ 1, 1q ˆ Op1, d ´ 1q, since the metric (3.2.30) is left invariant. In that case, the
generalized bundle E is isomorphic to the direct sum of two sub-bundles, denoted as

E » C` ‘ C´ . (3.2.31)

Opd´ 1, 1q and Op1, d´ 1q act on these spaces respectively and the corresponding indices
are unbarred respectively barred.

Of the various quantities defined in section 3.2.1, we would now like to consider those
that preserve this Opd´ 1, 1q ˆOp1, d´ 1q structure. In order to do so, we first rotate the
previous Opd, dq representation to a new one where the embedding of Opd´1, 1qˆOp1, d´1q
is diagonal. In particular, this means switching from the up/down basis with metric ηpu{dq
to the unbarred/barred basis with metric η. Secondly, we project out quantities that do
not respect the Opd´ 1, 1q ˆOp1, d´ 1q structure.

We will perform this procedure for the frame (3.2.7) with β introducing two different
sets of vielbeins, namely ẽam respectively ẽam on the sub-bundles C˘. Nevertheless, these
give rise to the same metric g̃mn [39]. Eventually, we consider an alignment of vielbeins, i.e.
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that ẽam “ ẽam for a “ a in value, in order to reduce to the standard degrees of freedom
of a SUGRA theory.

The described procedure is based on introducing a matrix P transforming the previous
up/down ηu{d (3.2.1) into the unbarred/barred diagonal η (3.2.30). More details on this
can be found in the appendix C.1.

η “ Pηu{dP
T , P “

ˆ

1 ηd
1 ´ηd

˙

, P´1
“

1
2

ˆ

1 1

η´1
d ´η´1

d

˙

. (3.2.32)

Any object in the fundamental representation of Opd, dq carrying an indexA is then rotated
as follows

VB “ PB
AVpu{dqA , V B

“ V A
pu{dqpP

´1
qA

B
“ pP´T qBAV

A
pu{dq (3.2.33)

with PB
A
“

ˆ

δab ηbcδ
c
a

δa
b
´ηbcδ

c
a

˙

, pP´T qBA “
1
2

ˆ

δba ηbcδac
δba ´ηbcδac

˙

(3.2.34)

so that bilinears are preserved. In particular, the δ’s in P and P´T allow to pass from
the up/down to the unbarred/barred indices, however we leave them out in order simplify
formulas in the following. A first important example of this rotation is obtained by acting
on the frames (3.2.6) and (3.2.7) which then take the form

e´2d EA “

#

e´2d Ea “ e´2φ
a

|g|pBa ` babe
b ` ηabe

bq

e´2d Ea “ e´2φ
a

|g|pBa ` babe
b ´ ηabe

bq
, (3.2.35)

e´2d ẼA “

#

e´2d Ẽa “ e´2φ̃
a

|g̃|pBa ` ηabβ
bcBc ` ηabẽ

bq

e´2d Ẽa “ e´2φ̃
a

|g̃|pBa ´ ηabβ
bcBc ´ ηabẽ

bq
, (3.2.36)

where we did not write out the δ’s.
Next, we redefine a covariant derivative DApW

Bqe´2d E̊B, where A,B are now un-
barred/barred indices. A priori, one would have for the unbarred A “ a

DapW
B
qe´2d E̊B “ e´2d

´

Bapw
b
qE̊b ` BapwbqE̊b ` Ω̂a

B
CW

CE̊B

¯

, (3.2.37)

where Ba, respectively Ω̂a
B

C are defined as the unbarred component obtained from the
rotation of the up/down B, respectively Ω̂. As mentioned earlier, one could also start from
quantities D, B and Ω̂ with a generalized curved index M and contract these with the
proper generalized vielbein. In any case, the last term in (3.2.37) splits into four terms,
according to the unbarred or barred choices for B, C. Preserving the Opd´1, 1qˆOp1, d´1q
structure Ω̂M

b
c and Ω̂M

b
c transforming in the bi-fundamental representation of Opd, dq are

easily seen to be off-diagonal with respect to the Opd´1, 1qˆOp1, d´1q diagonal structure.
Such a component in the covariant derivative (3.2.37) would introduce mixed contributions
from C˘ and the components on E̊b would additionally contain wc thanks to Ω̂M

b
c. These

have to be projected out in order to preserve the Opd ´ 1, 1q ˆ Op1, d ´ 1q structure and
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are thus set to zero. Separating the components on E̊b and E̊b, one obtains the following
Opd´ 1, 1q ˆOp1, d´ 1q derivative

DAW
B
“

$

’

’

’

&

’

’

’

%

Daw
b “ Baw

b ` Ω̂a
b
cw

c

Daw
b “ Baw

b ` Ω̂a
b
cw

c

Daw
b “ Baw

b ` Ω̂a
b
cw

c

Daw
b “ Baw

b ` Ω̂a
b
cw

c

, (3.2.38)

where again all indices are unbarred or barred.
We leave the details of the determination of the derivative B, the connection Ω, and

the piece due to the conformal weight for the frame (3.2.7) to the appendix C.1.10 The
definition of the latter is slightly changed [39] with respect to (3.2.10) and we discuss this
in the appendix. In particular, this involves rotating the contributions to the Opd, dqˆR`
derivative obtained in (3.2.28) and leaves us with

DAW
B
“

$

’

’

’

&

’

’

’

%

Daw
b “ ∇aw

b ´ ηad q∇dwb ` 1
6ηadηcfR

dbfwc ´ 1
9pδ

b
aΛc ´ ηacη

beΛeqw
c

Daw
b “ ∇aw

b ´ ηad q∇dwb ´ 1
2ηadηcfR

dbfwc

Daw
b “ ∇aw

b ` ηad q∇dwb ´ 1
2ηadηcfR

dbfwc

Daw
b “ ∇aw

b ` ηad q∇dwb ` 1
6ηadηcfR

dbfwc ´ 1
9pδ

b
aΛc ´ ηacηbeΛeqw

c

(3.2.39)

as given in (1.4.6), where

ΛC “

#

Λc “ λc ` ηcdξ
d

Λc “ λc ´ ηcdξ
d

, (3.2.40)

with λ and ξ given in (3.2.24).

Following [39, 69], we introduce for the Opd´1, 1qˆOp1, d´1q structure an associated
Spinpd´ 1, 1q ˆ Spinp1, d´ 1q structure with respective spinors ε` and ε´. The definition
of spinorial derivatives for (3.2.38) is the standard one

DMε` “ BMε` `
1
4Ω̂M

b
cηbdγ

dcε` , (3.2.41)

DMε´ “ BMε´ `
1
4Ω̂M

b
cηbdγ

dcε´ , (3.2.42)

where the γ matrices and their properties are discussed in appendix A.2. Interestingly,
one can build from these derivatives the generalized curvature scalar S mentioned in the
Introduction which is related to the Lagrangian LNSNS up to a total derivative in the
standard NSNS case. As in (1.4.8), the scalar S is defined by

´
1
4Sε

`
“

´

γaDaγ
bDb ´ ηabDaDb

¯

ε` , (3.2.43)

10The same procedure applied to the frame (3.2.6) reproduces the result of [39].
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or equivalently for the spinor ε´ with unbarred and barred indices exchanged. Our goal is
to compute the scalar S for the frame (3.2.7) with β, i.e. using the spinorial forms (3.2.41)
and (3.2.42) of the derivatives (3.2.39). In particular, the derivatives needed to compute
S are given by

γaDaε
`
“

ˆ

γa∇a ´ γ
aηad q∇d

`
1
24ηadηbeηcfR

defγabc ´
1
2γ

cΛc

˙

ε` , (3.2.44)

Daε
`
“

ˆ

∇a ` ηad q∇d
´

1
8ηadηbeηcfR

defγbc
˙

ε` , (3.2.45)

Daw
a
“ ∇aw

a
` ηad q∇dwa ´ Λaw

a , (3.2.46)

where we used (A.2.7). Here,∇ and q∇ on the spinors are now the naturally defined spinorial
covariant derivatives obtained from (3.2.39) and (3.2.41). The last expression (3.2.46) is
needed in order to determine the non-spinorial part of the connection of the covariant
derivative acting on ηabDbε

`. To present details of the computation more conveniently we
rewrite the above derivatives

γaDaε
`
“
`

γaBa ` γ
aηadβ

dc
Bc `Xabcγ

abc
`Xaγ

a
˘

ε` , (3.2.47)

Daε
`
“

´

Ba ´ ηadβ
dc
Bc ` Yabcγ

bc
¯

ε` , (3.2.48)

Da

´

ηabDbε
`
¯

“

´

Ba ´ ηadβ
dc
Bc ` Yabcγ

bc
` Za

¯

ηab
´

Bb ´ ηbeβ
ef
Bf ` Ybefγ

ef
¯

ε` (3.2.49)

with abbreviations

Xabc “
1
4ηbe

ˆ

ωeac ´ ηadωQ
de
c `

1
6ηadηcfR

def

˙

, (3.2.50)

Xa “
1
2
`

ωdda ` ηacωQ
dc
d ´ Λa

˘

, (3.2.51)

Yabc “
1
4ηbe

ˆ

ωeac ` ηadωQ
de
c ´

1
2ηadηcfR

def

˙

, (3.2.52)

Za “ ωd
da
´ ηacωQ

dc
d
´ Λa , (3.2.53)

where (A.2.7) and the antisymmetry properties of ω and ωQ were used. With these conve-
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nient notations we compute S from (3.2.43) and obtain at first

´
1
4Sε

`
“

«

γaγbpBa ` ηadβ
de
BeqpBb ` ηbcβ

cf
Bf q ´ ηabpBa ´ ηadβ

de
BeqpBb ´ ηbcβ

cf
Bf q

` 6ηabγcfXrbcf spBa ` ηadβdeBeq ` 2ηacXcpBa ` ηadβ
de
Beq

´ 2ηabYadeγdepBb ´ ηbcβcfBf q ´ ZaηabpBb ´ ηbcβcfBf q
` γaγbcf pBa ` ηadβ

de
BeqpXbcf q ` γ

aγcpBa ` ηadβ
de
BeqpXcq (3.2.54)

`
1
2XadeXbcftγ

ade, γbcfu `XadeXctγ
ade, γcu `XaXcγ

aγc

´ ηabpBa ´ ηadβ
de
BeqpYbcf qγ

cf
´

1
2η

abYadeYbcftγ
de, γcfu ´ ZaηabYbcfγ

cf

ff

ε` ,

where we used (A.2.7).
The first three lines of (3.2.54) are acting on the spinor and have to vanish since we

expect S to be a scalar. Moreover, the last three lines of (3.2.54) containing various orders
of fully antisymmetrized products of γ matrices should vanish either. The scalar S of the
above expression simply represents the zeroth order in γ. We detail the verification in
appendix C.3. This leaves us with only a scalar multiplying ε` as in (C.3.20), namely

´
1
4Sε

`
“´

1
4

˜

Rpg̃q `RQ ´
1
2R

acdf bcdηab ´
1
2R

2

´ 4pBφ̃q2 ` 4∇2φ̃´ 4pβabBbφ̃´ T aq2 ´ 4ηab q∇a
pβbcBcφ̃´ T bq

¸

ε` .

(3.2.55)

Remarkably, this scalar contains only an even number of β in each term, i.e. all odd orders
get canceled. Using (A.3.17) and the Leibniz rule, we rewrite the second line of (3.2.55)
and get eventually

S “Rpg̃q ` 4pBφ̃q2 ` 4pβabBbφ̃´ T aq2 `RQ ´
1
2R

acdf bcdηab ´
1
2R

2

` e2d
Bp
`

4e´2dg̃pqBqφ̃´ 4e´2dβpmg̃mqpβ
qr
Brφ̃´ T qq

˘

.
(3.2.56)

Using the analogue relation of the scalar S to the Lagrangian LNSNS given in [39], we can
write

S “ e2d
pL̃β ` Bp. . . qq , (3.2.57)

and recover the Lagrangian L̃β for β-supergravity, as presented in (1.4.9). This is indeed,
the correct Lagrangian as shown in [101] by a direct rewriting of the Lagrangian L0 in flat
indices.

In addition, it was shown in [39] that such a curvature scalar encodes the dilaton
equation of motion for standard supergravity, by considering S “ 0. Here, we obtain the
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analogous result reproducing the dilaton equation of motion (1.4.12) of β-supergravity.
Besides the scalar curvature (3.2.43), generalized geometry allows for the definition of an
analogue of the Ricci tensor. To derive the two other equations of motion in analogy to the
standard Ricci scalar encoding the Einstein equation, we calculate the generalized Ricci
tensor

1
2Rabγ

aε` “ rγaDa, Dbsε
` , (3.2.58)

that depends on the spinorial form of the derivatives (3.2.39).11 For standard SUGRA, it
was shown in [39] that setting the symmetric part to zero, Rpabq “ 0, corresponds to the
Einstein equation, while the antisymmetric part Rrabs “ 0 yields the equation of motion for
the b-field. In analogy, we obtain the equations of motion for g̃ and β taking respectively the
symmetric or antisymmetric part of Rab. Using additionally to the generalized covariant
derivative expressions (3.2.44),(3.2.45) and (3.2.46) defined above,

Daw
b
“ ∇aw

b
´ ηad q∇dwb ´

1
2ηadηcfR

dbfwc , (3.2.59)

the generalized Ricci tensor (3.2.58) becomes
1
2Rabγ

aε` “
`

γaBa ` γ
aηadβ

dc
Bc `Xacdγ

acd
`Xaγ

a
˘ `

Bb ´ ηbgβ
ge
Be ` Ybghγ

gh
˘

ε` (3.2.60)

´ γaωc
ab

`

Bc ´ ηcgβ
ge
Be ` Ycghγ

gh
˘

ε` ` γaηadω
dc
Q b

`

Bc ´ ηcgβ
ge
Be ` Ycghγ

gh
˘

ε`

´
1
2γ

aηadηbfR
dfc

`

Bc ´ ηcgβ
ge
Be ` Ycghγ

gh
˘

ε`

´
`

Bb ´ ηbgβ
ge
Be ` Ybghγ

gh
˘ `

γaBa ` γ
aηadβ

dc
Bc `Xacdγ

acd
`Xaγ

a
˘

ε` .

We leave the computational details of the above expression to appendix C.4, and give here
the result. After aligning the vielbeins, and considering only the first order in γ-matrices,
1
2Rabγ

a gives
´1

2Rba ´
1
2ηepaηbqg

qRge
`

1
8ηaeηbgηifηcdR

igcRdfe

`∇b∇aφ̃´ ηepaηbqg q∇g
pq∇eφ̃q ´ ηepaηbqg q∇gT e

`
1
4ηaeηbgη

df
BdQf

eg
´

1
2ηeraBbsQd

de
´

1
4β

gc
Bcf

e
abηge `

1
2β

gc
Bcf

d
draηbsg

`
1
4ηbgηaeη

chfddcQh
eg
´

1
4ηchQd

dcfhab

`
1
4f

g
cdQra

dcηbsg `
1
2ηeraf

h
bsdQi

ecηchη
di
`

1
2ηeraf

h
bscQh

ec

´ ηera∇bsp
q∇eφ̃q ´ ηera∇bsT e ` ηgrb q∇g∇asφ̃

´
1
2ηaeηbgηfcR

gfeT c ` 1
4ηaeηbgηdfe

2φ̃
q∇d
pe´2φ̃Rgfe

q

¯

γa .

(3.2.61)

11Analogous quantities to S and Rab were considered before in [109, 110, 54, 126, 55, 113, 114]. Their
relations to the Lagrangian and the equations of motion were as well studied. The DFT quantities were
shown in [69] to match those of (3.2.43) and (3.2.58) for standard SUGRA.
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The first order in γa will be enough to recover the equations of motion, i.e. the higher
orders in γa vanish, as they did for S.

As explained above, setting Rab “ 0 and therefore demanding the expression (3.2.61)
to vanish, we should obtain the equations of motion for g̃ and β. More precisely, setting
the symmetric part of (3.2.61) to vanish gives the Einstein equation (1.4.13)

1
2Rba ´

1
2ηepaηbqg

qRge
`

1
8ηaeηbgηifηcdR

igcRdfe

`∇b∇aφ̃´ ηepaηbqg q∇g
pq∇eφ̃q ´ ηepaηbqg q∇gT e “ 0 .

(3.2.62)

Similarly, the antisymmetric part of (3.2.61) gives

1
4ηaeηbgη

df
BdQf

eg
´

1
2ηeraBbsQd

de
´

1
4β

gc
Bcf

e
abηge `

1
2β

gc
Bcf

d
draηbsg

`
1
4ηbgηaeη

chfddcQh
eg
´

1
4ηchQd

dcfhab

`
1
4f

g
cdQra

dcηbsg `
1
2ηeraf

h
bsdQi

ecηchη
di
`

1
2ηeraf

h
bscQh

ec

´ηera∇bsp
q∇eφ̃q ´ ηera∇bsT e ` ηgrb q∇g∇asφ̃

´
1
2ηaeηbgηfcR

gfeT c ` 1
4ηaeηbgηdfe

2φ̃
q∇d
pe´2φ̃Rgfe

q “ 0 .

(3.2.63)

This last result denotes the equation of motion for β (1.4.14). In [101], further verifications
for the presented equations of motion of β-supergravity are given by following the standard
procedure of varying the Lagrangian L̃β with respect to the fields g̃, β and φ̃. The resulting
equations of motion have then been transformed and matched to the set (1.4.12), (1.4.13)
and (1.4.14) in flat indices. In particular, the equation of motion for β takes here a
more convenient form since the Q-flux appears explicity. A further interesting observation,
discussed in the appendix C.5, is a slight mismatch between the equations of motion
derived from the simplified Lagrangian in [84] and the reduced equations of motion of β-
supergravity. Hence, deriving the equations of motion and implementing the simplifying
assumption is not a commutative procedure.

The spinorial derivatives given in (3.2.41) and (3.2.42), and their explicit expressions,
such as (3.2.44) and (3.2.45), serve further purposes. As mentioned previously, it has been
noticed that these quantities, for the frame (3.2.6) with b-field, are those entering the SUSY
variations of the fermions in type II SUGRAs. In other words, these quantities lead to the
Killing spinor equations. The expressions worked out here therefore play the analogous,
important, role in β-supergravity and we come back to these questions in chapter 6

This concludes our derivation of the NSNS part of the Lagrangian L̃β and its equations
of motion for g̃, β and φ̃ for β-supergravity from generalized curvature quantities within
the GG formalism.
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Chapter 4

Geometric vacua of β-supergravity

In this chapter, we address questions of non-geometry and how β-supergravity provides a
geometric description for a certain set of backgrounds despite encountering the problem of
detecting vacua covering truely new physics. In particular, we come back to the toroidal
example and how a geometry can be restored for the non-geometric configuration that
leads again to a consistent supergravity (SUGRA) limit within β-supergravity. More gen-
erally, we observe the symmetries of β-supergravity and relate them to transition function
patching possible vacuum solutions. Hence, we first study the gauge symmetries of the
Lagrangian and possible distinct symmetries that might arise in certain constrained situ-
ations. While the former are believed to add nothing new to the situation with regard to
the global consistency of backgrounds, the latter allow to establish β-supergravity as a use-
ful framework for recovering an underlying geometry for specific previously non-geometric
backgrounds. We then analyze the relation of this class with respect to being T-dual or
not to geometric vacua in standard SUGRA and the associated hope of finding genuinely
non-geometric classes with new physical effects. Finally, we discuss the task of directly
identifying new solutions within β-supergravity from its equation of motion.

4.1 From non-geometry to geometry
The previous derivation of the Lagrangian L̃β was based on either working locally or
assuming that the underlying differential geometry is governed by the metric g̃mn and
possible non-geometric fluxes. The relation of the latter situation to a non-geometry in the
sense of [127, 29, 128] has been discussed further in [84, 82, 129] and is certainly the most
interesting for applications. Here, we focus on the toroidal example [32, 33] that nicely
illustrates various aspects of such a discussion and how a SUGRA limit can be restored in
the case of non-geometric configurations. Then, more generally, we address the underlying
gauge symmetries of L̃β and answer the question of whether these realize the transition
functions used for patching non-geometric backgrounds. Eventually, we try to relate this
discussion to a new generalized bundle structure that we would like to call generalized
cotangent bundle.
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4.1.1 The toroidal example and the supergravity limit
In the Introduction we started discussing the toroidal example with its three T-dual NSNS
field configurations related by Buscher transformations. These configurations alone do
not provide consistent SUGRA solutions [130], but have to be completed with further
ingredients of other sectors or should be considered as backgrounds within a dilute flux
approximation [131].1 We list the toroidal example in terms of the standard field content in
table 4.1. First, we have the standard three-torus with constant H-flux and the dilaton φ0
along the directions x1 “ x, x2 “ y, x3 “ z with radii Rm“1,2,3, where the b-field is linear.
The second configuration is known as the twisted torus and is described by a fibration of
a circle along x over the base torus with directions y, z. Moreover, due to its fibration,
further discussed in section 4.1.2, it falls into the class of nilmanifolds and is also known
as the Heisenberg manifold. Interestingly, the b-field is vanishing and instead a non-zero
structure constant f can be computed using (4.1.8) and (A.3.10). The duality with the first
configuration arises by performing a Buscher transformation along the isometry direction
x. A further transformation along the isometry in y, then leads to the interesting non-
geometric configuration. In order to observe the non-geometry of the latter, one should
study the patching of fields around the base circle along z. This is most conveniently
done computing the generalized metric H given in (3.1.2) on two different patches. These
configurations are then related as follows

T TC H
ˇ

ˇ

z“0 TC “ H
ˇ

ˇ

z“2π , where TC “

ˆ

13 $
0 13

˙

, $ “

¨

˝

0 2πH 0
´2πH 0 0

0 0 0

˛

‚ . (4.1.1)

We see that the transition matrix TC P Op3, 3q needed for this kind of patching does not
take the form of a diffeomorphism or a b-field gauge transformation. Therefore, such a
situation where the gluing, needed for global consistency of the background, happens due
to a purely stringy symmetry are said to be non-geometric. Although we are able to
identify the transition matrices as being stringy, for now the situation for compactifying
such a background is still unsatisfying. Since the notion of a standard manifold does no
longer apply to these kind of spaces it is not known how to use them in the compact
internal directions. This is also reflected in the dilaton and the volume form related to
a

|g| being globally ill-defined as these depend on a non single-valued function f0.
These properties of the non-geometric field configuration are also known to be problem-

atic for the SUGRA limit. The function f0 makes the radii go from below the string scale
to above, spoiling a possible large volume limit. Indeed, for f0pz “ 0q “ 1 and choosing for
convenience the two fiber radii to be of the same order such that R1 „ R2 ! 1, a large vol-
ume limit g11 „ g22 " 1 can be achieved. However, on a second patch we have f0pz “ 2πq “
1
M

ˆ

1`
´

2πH
R1R2

¯2
˙

, where 2πH is quantized, when going around the base circle, leading to

1Interestingly, the study of the quantum properties of the closed string on these approximated back-
grounds leads to non-commutativity found for the non-geometric configuration in [131]. We also stick to
the conventions α1 “ 1

2 and 2πH being quantized.
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Configuration Fields Flux

H-flux torus g “

¨

˝

R2
1 0 0

0 R2
2 0

0 0 R2
3

˛

‚ , b “

¨

˝

0 Hz 0
´Hz 0 0

0 0 0

˛

‚ , H123 “
H

R1R2R3

e´2φ “ e´2φ0 ,

Twisted torus g “

¨

˚

˝

1
R2

1
´Hz
R2

1
0

´Hz
R2

1
R2

2 `
´

Hz
R1

¯2
0

0 0 R2
3

˛

‹

‚

, b “ 0 , f 1
23 “ ´

H
R1R2R3

e´2φ “ e´2φ0R2
1 ,

Non-geometry g “ f0

¨

˚

˝

1
R2

1
0 0

0 1
R2

2
0

0 0 R2
3
f0

˛

‹

‚

, b “ f0

¨

˚

˝

0 ´ Hz
R2

1R
2
2

0
Hz
R2

1R
2
2

0 0
0 0 0

˛

‹

‚

,

e´2φ “ e´2φ0R2
1R

2
2 f

´1
0 , with f0 “

ˆ

1`
´

Hz
R1R2

¯2
˙´1

Table 4.1: The toroidal example, with the standard NSNS fields and fluxes

the violation g11 „ g22 „
`

R1
2πH

˘2
! 1 of the previous large volume limit. Furthermore,

this variation of f0 within the dilaton prevents us from defining a small string coupling
constant. Note that despite these two issues with the SUGRA limit, this non-geometric
configuration is thought to lead to an admissible string background, because it is T-dual
to standard geometric situations [34].

The field redefinition (3.1.3) and (3.1.4) have been proposed [84] to cure the above
problems of non-geometry, by restoring a standard geometry and introducing new fluxes.
For the toroidal example, the new fields, computed from the standard NSNS ones of the
non-geometric configuration, are given by

g̃ “

¨

˚

˝

1
R2

1
0 0

0 1
R2

2
0

0 0 R2
3

˛

‹

‚

, β “

¨

˝

0 Hz 0
´Hz 0 0

0 0 0

˛

‚ , e´2φ̃
“ e´2φ0R2

1R
2
2 , (4.1.2)

where the Q-flux takes the value Q3
12 “ H

R1R2R3
. A standard geometry of a three-torus

is restored, together with a well-defined dilaton. When going around the circle along z,
the field β patches with a constant shift which provides a globally well-defined Q-flux.
There are further non-trivial checks indicating that this field configuration is a good one
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to consider. The dependence in radii of the metric and the dilaton are the expected ones
from T-duality. Also, the ten-dimensional Q-flux, computed from (1.4.5), has the same
value as the fluxes of the other field configurations, as expected from the four-dimensional
T-duality chain [27]. Additionally, it is worth emphasizing that we restore, together with
a standard geometry and the well-definedness of fields, a SUGRA limit. A large volume
limit is certainly possible in the regime R1 „ R2 ! 1, which is the expected T-dual
regime to the other two geometric field configurations. This regime is also compatible
with a small string coupling constant given by the new dilaton. There is reason to believe
that such properties are more general. An indication for this can be observed from the
field redefinition (3.1.3) from g to g̃ which involves two inverse powers of the metric and
hence corrects the dependence on radii such that a large volume limit is possible. This
toroidal example therefore illustrates the role of L̃β, and β-supergravity, in providing a
ten-dimensional geometric description of some non-geometries.2 We address the question
whether our formalism may describe more throughout this chapter.

We have discussed how a large volume limit can be restored using L̃β and its fields. For
a complete SUGRA limit, one should though consider all higher order corrections in α1 to
such an effective theory, and verify that they are subdominant. This could be worked out
from a world-sheet perspective. Performing the field redefinition (3.1.3) on the standard
bosonic string σ-model (1.1.24) gives the following action

1
4πα1

ż

d2σ
a

|h| hαβ
´

`

g̃´1
` β

˘´1
pXq

¯

mn
BαX

m
BβX

n , (4.1.3)

where we use the conventions of [131]. This action may play a role in such a verification.
Also, the vanishing β-functionals are usually given by the standard SUGRA equations of
motion. As LNSNS and L̃β only differ by a total derivative, their equations of motion should
be the same, up to the field redefinition. Therefore, the vanishing β-functionals of (4.1.3),
completed with the dilaton φ̃, should be given by the equations of motion derived in this
paper, namely (1.4.12) - (1.4.14).

4.1.2 β gauge transformation and generalized cotangent bundle
Let us now discuss the symmetries of L̃β and some related aspects. Among its gauge
symmetries we find diffeomorphisms that leave L̃β invariant. The field redefinition (3.1.3)
and (3.1.4) simply relates tensors and therefore the notion of a diffeomorphism remains
the same through this procedure. The other gauge symmetry of the standard LNSNS, given
by the b-field gauge transformation, written for convenience with a shift matrix s

#

g Ñ g

bÑ b` s
, where smn “ Brmξns , (4.1.4)

2In [84, 82, 129] the role of the total derivative difference between LNSNS and the new Lagrangian was
underlined. This Bp. . . q being ill-defined would allow to have only one of the two Lagrangians well-defined,
and thus a preferred description.
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and ξm is subject to further constraints, as seen in [39]. By performing the field redefinition
(3.1.3) on (4.1.4), we can rewrite this transformation, using matrix notation, in terms of
the new fields

#

g̃ Ñ p1` pg̃´1 ` βqsq
T
g̃ p1` pg̃´1 ` βqsq

β Ñ p1` pg̃´1 ` βqsq
´1 `

β ´ pg̃´1 ` βqspg̃´1 ` βqT
˘

p1` pg̃´1 ` βqsq
´T . (4.1.5)

As L̃β differs only by a total derivative from LNSNS, the transformation (4.1.5) should be a
gauge symmetry of our Lagrangian L̃β and we call it β gauge transformation. The novelty,
with respect to (4.1.4), is that g̃ changes as well as β under this gauge transformation.
This is somehow expected, as the redefinition (3.1.3) mixes the two fields. Although not
problematic for the theory, this behavior of g̃ is troublesome for the interpretation of this
field, that we called so far a metric. A metric of a standard manifold should only transform
under diffeomorphisms and consequently the underlying geometry may differ from a con-
ventional one if it has an additional transformation. We come back to this point further
down.

Let us now turn to transition functions and the comparison with the symmetries of the
theory. This is crucial to distinguish geometry from non-geometry, as recently discussed in
[81]. We introduced with the Generalized Geometry (GG) formalism in section 3.2.1 the
notion of generalized bundle E defined over a set of patches. Its structure group Opd, dq
is by definition made of transition functions that relate the generalized frames when going
from one patch to the other. An element of the structure group, viewed as a transition
matrix, therefore acts on the generalized flat index A. For a generalized frame allowing for
a splitting, one can consider locally a generalized vielbein, as given in (3.2.2). A transition
matrix T then relates two generalized vielbeins on patches ζ and ϑ as

TB
A E̊A

M
ˇ

ˇ

ζ
“ E̊B

M
ˇ

ˇ

ϑ
. (4.1.6)

As discussed in section 3.2.1, preserving a specific form of the generalized frame, in par-
ticular the splitting, reduces generically the structure group to Gsplit. The bundle then
should reduce accordingly.3 Preserving the form of the frame with b-field (3.2.6) amounts
to maintaining the block structure of the generalized vielbein E given in (3.1.1). The re-
duced structure group is then Gsplit “ GLpd,Rq ˙Rdpd´1q{2, where schematically GLpd,Rq
gives the diagonal transformation on the vielbein e, and Rdpd´1q{2 is the antisymmetric
lower off-diagonal block shifting the b-field in E [39]. The bundle gets reduced to the gen-
eralized tangent bundle ET , that can be viewed as a fibration of the cotangent bundle over
the tangent bundle, denoted as

T ˚M ãÑ ET
Ó

TM
. (4.1.7)

3More precisely, as discussed in section 3.2.1, Gsplit is a subgroup of Opd, dqˆR` and it is the conformal
extension of E that gets reduced.
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This particular ordering in the fibration can be understood when comparing with a stan-
dard fibration, such as the one of the twisted torus considered in section 4.1.1. The Cartan
one-forms of the latter can be read from the metric in table 4.1, and correspond to the
co-frame. These and the frame are given for that example by

ea “ eamdxm “

$

’

&

’

%

e1 “ 1
R1
pdx´Hzdyq

e2 “ R2 dy
e3 “ R3 dz

, Ba “ pe
´T
qa
m
Bm “

$

’

&

’

%

B1 “ R1 Bx

B2 “
1
R2
pBy `HzBxq

B3 “
1
R3
Bz

(4.1.8)
The non-trivial one-form e1 is given by the sum of a local one-form dx along the fiber and
the connection one-form living typically on the base. This changes for the frame, where
the non-trivial one is now B2, given by the sum of a local base vector By, and the fiber
vector Bx multiplied by the connection one-form component. If we compare this frame
structure to that of the generalized frame with b-field (3.2.6), we deduce for the latter
that the one-forms ea are along the fiber, and the base directions are given by Ba. The
connective structure is given by the b-field bab. Hence, we recover the structure (4.1.7) of
the generalized tangent bundle.

The same comparison holds for the generalized frame with β (3.2.7) and we obtain
the opposite situation where vectors Ba are fibered over one-forms ẽa in the base by the
connective structure βab. This formula (3.2.7) is only a local expression, but if there is
a global completion that preserves this local form of the frame, then the corresponding
bundle should be a generalized cotangent bundle ET˚ , i.e.

TM ãÑ ET˚
Ó

T ˚M
. (4.1.9)

The associated structure group Gsplit should by definition preserve the form of the frame
(3.2.7). Therefore, it is again given byGLpd,Rq˙Rdpd´1q{2, with the difference that Rdpd´1q{2

now matches the antisymmetric upper off-diagonal block shifting β in the generalized
vielbein Ẽ of (3.1.1). First hints on such a bundle and its structure group were given in
[78].

Having presented bundles and structure groups, we now study the corresponding tran-
sition matrices. To ease their comparison to the symmetries discussed above, it is useful
to go to generalized curved indices. Having at least locally generalized vielbeins, one can
define from (4.1.6) a transition matrix TC with curved indices

pTCq
M

N ” pE̊´1
q

M
B
ˇ

ˇ

ζ
TB

A E̊A
N
ˇ

ˇ

ζ
“ E̊M

B
ˇ

ˇ

ζ
E̊B

N
ˇ

ˇ

ϑ
. (4.1.10)

The generalized vielbein, and metric H “ E̊T I E̊ as in (3.1.2), then transform as

E̊A
M
ˇ

ˇ

ζ
pTCq

M
N “ E̊A

N
ˇ

ˇ

ϑ
, T TC H

ˇ

ˇ

ζ
TC “ H

ˇ

ˇ

ϑ
, (4.1.11)
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an example of which was thus given in (4.1.1). If the form of the vielbein Ẽ in (3.1.1) is
preserved by T as it should be for ET˚ , then we can write TC as follows

Ẽ “
ˆ

ẽ ẽβ
0 ẽ´T

˙

“

ˆ

ẽ 0
0 ẽ´T

˙ˆ

1 β
0 1

˙

, Ẽ´1
“

ˆ

ẽ´1 ´βẽT

0 ẽT

˙

, (4.1.12)

TC “ Ẽ´1ˇ
ˇ

ζ
Ẽ
ˇ

ˇ

ϑ
“

ˆ

∆ 0
0 ∆´T

˙ˆ

1 $β

0 1

˙

with ∆ “ ẽ´1ˇ
ˇ

ζ
ẽ
ˇ

ˇ

ϑ
, $β “ β

ˇ

ˇ

ϑ
´∆´1 β

ˇ

ˇ

ζ
∆´T .

It is worth noting that TC has the same form as Ẽ , in particular with $β being antisym-
metric. We can now compare these transition functions with the symmetries of the theory.

We consider a field configuration given by g̃ and β on a set of patches, together with the
transition functions relating them on the overlaps. For instance, going from ζ to ϑ, ∆ and
$β can be read from (4.1.12). For this configuration to be a geometric one in the sense of
L̃β, these transition functions have at least to be realized as symmetries of β-supergravity.
This would hold in either of the following two cases:

• The first possibility is that the transition functions are realized by the gauge sym-
metries discussed above. For example, if an s exists such that

∆ “ 1` pg̃´1
` βq

ˇ

ˇ

ζ
s ,

$β “ ´∆´1
pg̃´1

` βq
ˇ

ˇ

ζ
s pg̃´1

` βqT
ˇ

ˇ

ζ
∆´T

“ ´

´

pg̃´1
` βq´1ˇ

ˇ

ζ
` s

¯´1
s
´

pg̃´1
` βq´1ˇ

ˇ

ζ
` s

¯´T

,

(4.1.13)

then the transition function is completely realized by the β gauge transformation
(4.1.5). Diffeomorphisms could as well be considered to realize parts of the transition
functions. There is actually an interesting combination of a β gauge transformation
and a diffeomorphism. Suppose that on the overlap of two patches, given a matrix s
and the local expressions of g̃ and β, one finds a diffeomorphism such that

Bx1

Bx
“

´

1` pg̃´1
` βq

ˇ

ˇ

ζ
s
¯

pxq . (4.1.14)

Then, transforming the fields under the β gauge transformation (4.1.5) and further
under the inverse of the diffeomorphism (4.1.14) would give on that overlap of two
patches the effective transformation

#

g̃ Ñ g̃

β Ñ β ´ pg̃´1 ` βqspg̃´1 ` βqT
. (4.1.15)

For the concrete field configuration, the transformation of g̃ under the β gauge trans-
formation is compensated by a diffeomorphism, while β is only shifted.4 This effective

4This effective transformation could be related to the β-diffeomorphism of [80], that acts in a similar
fashion. The study of the analogue to the condition (4.1.14) would be interesting.
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transformation has the advantage of avoiding an undesired transformation of the met-
ric discussed below (4.1.5). If the transition functions are realized in that manner, not
only the field configuration is geometric in the sense of L̃β, but we have a standard
differential geometry described by the metric g̃. The differential conditions (4.1.14)
could be an important constraint for any field configuration that should be used in
a compactification for instance.
The constraint (4.1.14) may also be a condition to construct a generalized cotangent
bundle ET˚ over a standard manifold with metric g̃. Restricting transition functions
to be part of the set of gauge transformations already allows a priori to construct the
bundles corresponding to the theory. For the generalized vielbein E with b-field, the
elements of the transition matrix can be restricted to give only diffeomorphisms and
gauge transformations (4.1.4), i.e. the symmetries of the theory, and the generalized
tangent bundle ET then provides a geometric picture of it. Similarly here for Ẽ and
L̃β, we have just discussed how the transition functions of ET˚ could be restricted to
the symmetries of the theory, for instance through (4.1.13). The difference however
with the b-field case is the transformation of the metric. To define a generalized
cotangent bundle ET˚ over a manifold with metric g̃, the restriction discussed around
(4.1.14) might be necessary.
Even if a field configuration g̃ and β is patched as discussed above through the
gauge symmetries, so well described by the Lagrangian L̃β, there is a drawback to
such a situation, pointed out in [81]. It is then easy to translate this whole set-up
back into the standard g and b. The transition functions, initially realized by the
symmetry (4.1.5) and diffeomorphisms, then translate into the symmetry (4.1.4) and
diffeomorphisms, i.e. the gauge symmetries of the standard LNSNS. This implies that
the field configuration is also geometric in standard NSNS terms. Such a situation is
not what was aimed at while introducing the field redefinition. Rather, an interesting
case would be a field configuration that is non-geometric in one set of fields becoming
geometric in the other set, as in the toroidal example. Therefore, a situation where
transition functions are realized by the two gauge symmetries of L̃β could occur, but
would not be of physical interest.
The toroidal example is not realized this way, as it is non-geometric for standard
NSNS fields. More precisely, cutting the base circle into two patches, one can study
the transition functions of g and b given in table 4.1 on the overlaps. One sees that no
diffeomorphism on the metric can reproduce the change in the function f0. A reason
for this is that f0 is not periodic in z. It follows that even if the new fields g̃ and β
of (4.1.2) are simpler, their transition functions are not realized by diffeomorphisms
and β gauge transformation. Interestingly, the generalized metric H is generically
unchanged by our field redefinition (see (3.1.2)), so the transition matrix TC patching
H as in (4.1.11) is the same for both choices of generalized vielbein and fields. It
is given here by (4.1.1). This TC has the same form as the ones (4.1.12) admissible
with Ẽ , since it simply shifts β by a constant. As argued above, this constant shift
cannot be realized by the gauge symmetries of the theory. This brings us to the
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second option.

• A second possibility is the presence of an additional symmetry, through which the
transition functions are realized. The symmetries of LNSNS, so of L̃β, are known to be
only the gauge symmetries. Another symmetry would then appear only if we specify
to a subcase, as a symmetry enhancement. A good example is the case studied in
[84], where an additional constraint on any field βmnBn¨ “ 0 was imposed. This
restricts the set of field configurations that can be described and further reduces
the Lagrangian L̃β to a simpler expression where β enters only through Bβ. A
new symmetry of the theory is then present in the form of constant shifts of β.
The toroidal example fits well with that subcase, as it satisfies automatically the
constraint. This allows to use the restricted L̃β to describe it. Moreover, we just
explained that its transition functions are given by a constant shift of β, which are
then a symmetry of the theory. This example can be considered as geometric, in the
sense of L̃β. It would be interesting to generalize the situation of [84] via a more
general constraint on the fields, e.g. in the form of T a “ 0 or Bianchi identities
on the fluxes [27, 132, 133]. The consequences on the construction of a generalized
cotangent bundle are also interesting.

4.1.3 A new symmetry of β-supergravity
We are now going to analyze in detail how a new symmetry of β-supergravity might arise
and in which sense it helps to realize the transition functions. We start by considering
a field configuration in target space as given by a set of fields defined locally on several
patches and glue these from one to the other by some transformations. In order for this
field configuration to be described by a single theory, as it should be to provide a good
description of the physics, or in other words, in order to use only one Lagrangian over the
whole space, the gluing transformations should be symmetries of that theory [81]. It is
therefore important to first identify these symmetries, as we now turn to. In section 4.2,
we will then look at what type of background the symmetries lead to when used as gluing
transformations.

We present here a new symmetry of β-supergravity, present under some conditions,
that we will later relate to the β-transforms of T-duality. The Lagrangian L̃β (3.1.9) only
contains β through either Bmβpq or βprBr¨, where the dot stands for any field or derivatives
thereof. Therefore, the following holds

βpq Ñ βpq `$pq

with @ m, p, q, $prBr¨ “ 0 , Bm$pq “ 0 is a symmetry of L̃β . (4.1.16)

In others words, a constant shift of β by an antisymmetric part $pq satisfying $prBr¨ “ 0
leaves L̃β invariant. Unfortunately, it does not seem possible to relax the two requirements
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on $ in (4.1.16) in such a way that $ is not required to be constant.5 The relation we
will establish to T-duality suggests that there is no such generalization. Hence, it is now
important to understand the two conditions on $ in (4.1.16), i.e. how this symmetry can
be concretely realized. To that end, let us consider the following equivalence, given a field
configuration and an integer N ą 1

D N isometries generated by
N independent constant
Killing vectors Vι, ι P t1 . . . Nu .

ô

Any constant $pq being
only non-zero along a
specific N ˆN (diagonal) block
satisfies $prBr¨ “ 0 .

(4.1.19)

A rigorous proof of this equivalence is provided in the appendix of [103]. As shown there,
the left-hand side of (4.1.19) is found to be equivalent to the independence of the fields
on N coordinates, as is expected for standard Killing vectors. In addition, the right-hand
side of (4.1.19) gives conditions on the $ that are precisely those needed to realize the
symmetry (4.1.16), up to the restriction of having a non-zero block. So this equivalence
can be translated in particular into the implication6

The fields are independent
of N coordinates . ñ

The shift βpq Ñ βpq `$pq,
with non-zero constant $pq

only along the N ˆN block,
is a symmetry of L̃β .

(4.1.20)

The symmetry is thus realized by constant shifts along the isometry directions provided
the fields are independent of N coordinates. The new symmetry (4.1.16) is therefore tied
to having isometries. It is not a symmetry of general β-supergravity, but requires to focus
on the subcases in which backgrounds provide additional isometries. In this sense, it is

5It is tempting to consider the conditions

@ m, p, q, $prBr g̃
mq ` g̃prBr$

mq “ 0 , (4.1.17)
$prBrβ

mq ` βprBr$
mq “ 0 . (4.1.18)

(4.1.17) implies the invariance of qΓmnp under the shift, and so of T n “ qΓpnp . In addition, (4.1.18) makes the
linear terms in $ in the variation of the R-flux vanish. One could then hope for a more general symmetry.
However, using the (anti)symmetry of m, q in (4.1.17), one obtains that this condition and (4.1.18) are
actually equivalent to the two of (4.1.16), at least for g̃ and β instead of the dot.

6The reverse can only be formulated with the $prBr¨ “ 0 condition, because it is not clearly the same
as the constant shift being a symmetry.



4.1 From non-geometry to geometry 75

reminiscent of T-duality for string theory. The actual relation will be the topic in the
following.

4.1.4 Elements of the T-duality group
We now turn to T-duality. When the target-space fields are independent of N coordinates
in a d-dimensional space-time, the bosonic string σ-model experiences an additional sym-
metry, namely T-duality7. This symmetry translates in the NSNS sector into the action
of a constant OpN,Nq group on the fields. Therefore, if the latter are independent of N
coordinates, the target-space theory, namely LNSNS inherits this symmetry in form of an
invariance under the OpN,Nq transformation up to a total derivative.8 Since one usually
considers a full SUGRA, for instance type IIA/B, that also contains a RR sector which is
not preserved by T-duality, such an invariance of the NSNS sector is not often mentioned.
Further details are given in the appendix of [103].

Let us now present the action of the T-duality group OpN,Nq. Its action on the fields is
better characterized by considering the generalized metric H as a 2dˆ2d matrix depending
on the metric g and b-field, and the quantity d related to the dilaton. In addition, one
should consider elements O P Opd, dq in their fundamental representation preserving the
2dˆ 2d matrix

η “
1
2

ˆ

0 1

1 0

˙

, OTηO “ η . (4.1.21)

The T-duality transformations then consist in taking a trivial embedding of OpN,Nq into
Opd, dq, and acting with the corresponding elements on H. For completeness, the trans-
formed dilaton is defined such that d remains invariant

ˆ

a c
f h

˙

P OpN,Nq , O “

¨

˚

˚

˝

a c
1d´N 0d´N

f h
0d´N 1d´N

˛

‹

‹

‚

P Opd, dq , (4.1.22)

H1 “ OTHO , e´2d
“ e´2φ

a

|g| “ e´2φ1
a

|g1| . (4.1.23)

Only the components along the N directions are then transformed. A particular example is
the Buscher transformation [6, 7] along all N directions given by a “ h “ 0N , c “ f “ 1N .

Next, we list the generating elements [5, 134] of the group OpN,Nq which reduces in
the context of string theory to OpN,N,Zq:

• the GLpN,Zq subgroup: for a P GLpN,Zq, one considers9

Oa “

ˆ

a 0N
0N a´T

˙

P OpN,N,Zq . (4.1.24)

7Reviews on T-duality can be found in [5, 134, 135] and references therein.
8Its regime of validity as an effective theory might however be changed accordingly to the transforma-

tion.
9This subgroup can be further decomposed into generators, see e.g. [5] and references therein.
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• the b-transforms: for $ an N ˆN antisymmetric integer matrix, one considers

O$ “

ˆ

1N 0N
$ 1N

˙

P OpN,N,Zq . (4.1.25)

• the Buscher transformations [6, 7]: for ci the N ˆN matrix with only one non-zero
entry, equal to 1 and placed in the pi, iq position, one considers

Oti “

ˆ

1N ´ ci ci
ci 1N ´ ci

˙

P OpN,N,Zq . (4.1.26)

There is yet another set of elements which can be generated from the above elements

• the β-transforms: for an integer N ˆN antisymmetric matrix $, one considers
ˆ

1N $
0N 1N

˙

“

ˆ

0N 1N
1N 0N

˙ˆ

1N 0N
$ 1N

˙ˆ

0N 1N
1N 0N

˙

“ OT
t O$Ot , (4.1.27)

where we denote by Ot the Buscher transformation along all N directions

Ot “ Ot1 . . . OtN “

ˆ

0N 1N
1N 0N

˙

. (4.1.28)

At the level of SUGRA, the stringy T-duality group just discussed is extended toOpN,N,Rq.
We then consider the natural extensions of the above elements towards the GLpN,Rq sub-
group, the real b- and β-transforms, where a and $ are now real. Those three sets form
three independent subgroups of SOpN,N,Rq with determinant equal to 1. Therefore, they
do not generate the whole OpN,N,Rq, in particular no combination can reproduce an
Ot with detOt “ ´1. In the following we will mainly focus on these three subgroups of
SOpN,N,Rq, but we can keep in mind the possibility of further T-duality transformations.

We now look at the action of these three subgroups on the NSNS fields. We explained
above that when fields are independent of N coordinates, the OpN,Nq T-duality group
is a symmetry of the Lagrangians. So each of these three transformations should then
correspond to a symmetry. The action of the three subgroups of interest can be read from
(4.1.22) and (4.1.23), but also from the corresponding action on a generalized vielbein E̊
up to Lorentz transformations

E̊ 1 “ E̊O . (4.1.29)
By considering E and Ẽ of (3.1.1), b-transforms, respectively β-transforms, simply consist
in shifting the b-field, respectively β

b-transform: e1 “ e, b1 “ b`

ˆ

$
0d´N

˙

, (4.1.30)

β-transform: ẽ1 “ ẽ, β1 “ β `

ˆ

$
0d´N

˙

, (4.1.31)
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along the N directions. In addition, the GLpN,Rq action on either set of fields yields

Oa : e1 “ e

ˆ

a
1d´N

˙

, b1 “

ˆ

a
1d´N

˙T

b

ˆ

a
1d´N

˙

, (4.1.32)

ẽ1 “ ẽ

ˆ

a
1d´N

˙

, β1 “

ˆ

a
1d´N

˙´1

β

ˆ

a
1d´N

˙´T

.

Having observed the transformations, we now identify the corresponding symmetries. The
b-transforms (4.1.30) are an obvious symmetry of LNSNS. Constant shifts of b certainly
leave the Lagrangian invariant, as the latter only depends on Bb and moreover such a shift
symmetry is a subcase of the known b-field gauge symmetry, since a constant shift can
be brought to the form of a dΛ. The GLpNq subgroup is also clearly a symmetry. The
action (4.1.32) on the fields is a particular example of diffeomorphisms in matrix notation,
that are known to be a gauge symmetry of both LNSNS and L̃β. Being more precise, a
diffeomorphism generically transforms the b-field as bmnpx1q “ bpqpxq

Bxp

Bx1m
Bxq

Bx1n
. Then, for an

Oa transformation to be a diffeomorphism we have to satisfy the following set of differential
equations

ˆ

a
1d´N

˙p

m

“
Bxp

Bx1m
. (4.1.33)

This can easily be achieved since a is constant. For that reason, bmnpx1q “ bpqpxq
Bxp

Bx1m
Bxq

Bx1n

can be realized by the action of Oa.
Eventually, the β-transforms (4.1.31) should also be a symmetry when fields are in-

dependent of N coordinates. This may look surprising from the LNSNS point of view, as
it does not seem to match a known symmetry. In particular, translated on the standard
SUGRA fields, this transformation acts both on b and g.10 However, in view of (4.1.20),
β-transforms clearly correspond to the new symmetry of L̃β discussed in section 4.1.3. It
follows then that it is a symmetry of LNSNS up to a total derivative. In conclusion, the new
symmetry of section 4.1.3 can be viewed as the β-transforms being a specific subgroup of
the T-duality group.

Let us finally recall the main idea of this section on the symmetries of LNSNS and L̃β.
Considering a restriction, the symmetries of the theory get enhanced and the new symme-
tries can be used to build interesting geometric vacua of the constrained β-supergravity.
We considered here the subcase when fields are independent of N coordinates and obtained
the subgroup of β-transforms which is a manifest symmetry of L̃β. We will see in the fol-
lowing that the β-transforms will play a crucial role in the construction of geometric vacua
of β-supergravity.

10The two other subgroups of the T-duality group have been shown to correspond to subcases of gauge
transformations, so one may wonder whether the same could happen for the β-transforms. We remark that
such transformation would act on both g and b. This is related to the footnote 5, and it looks unlikely. It
may still be doable in the broader set-up of DFT, when considering B̃ ‰ 0.
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4.2 To be or not to be geometric
We discussed above the different symmetries of LNSNS and L̃β in general, but also when
restricting to the presence of some isometries. We now study the effect of using these various
symmetries to glue fields of these theories between patches. After proposing a precise
definition of geometry and non-geometry, we discuss whether using a given symmetry
leads to a geometric or non-geometric field configuration.

4.2.1 Symmetries and (non)-geometry
The original idea of non-geometry [127, 29, 128] can be summerized as looking for field
configurations that need transition functions, used to glue them from one patch to the other,
that are not among diffeomorphisms and gauge transformations making up the standard
symmetries of a geometric configuration. Yet, the transformations have to be symmetries
of string theory. We recall that for consistency of a certain theory the transformations
must correspond to its symmetries [81], since otherwise one ends up with a distinct theory
on every patch.

Keeping this idea in mind, we extend here the notion of a geometric or non-geometric
field configuration to our target space theories. In particular, the gluing of fields should then
be done by symmetries of the latter. Since working with a certain theory means specifying
the available symmetries, the distinction between a geometry and a non-geometry is theory
dependent and we thus reformulate and generalize the original idea stated above into the
following proposed definitions

Definitions of geometric and non-geometric field configurations

• A field configuration is geometric if the fields are globally defined on the manifold
considered so do not need to be glued, or if the transformations used to glue them
from one patch to the other are symmetries of the theory, and the metric, dilaton
and fluxes glue at most with diffeomorphisms.

• A field configuration is non-geometric if the transformations used to glue the fields
from one patch to the other are symmetries of the theory, and if the metric, dilaton
or fluxes glue with something else than diffeomorphisms.

In this way the notion is certainly theory dependent. In particular, since the metric de-
scribing the manifold may change from one theory to the other in the case of LNSNS and
L̃β, the notion of (non-)geometry changes accordingly. This is precisely the interest in
changing the theory to describe a background. For one theory a configuration might be
non-geometric, but in another theory the geometry gets restored. We exactly observed this
behavior for the toroidal example and also the Q-brane, as discussed below (5.2.39), falls
into this class.
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These definitions also involve the notion of fluxes. In LNSNS, respectively L̃β, the H-flux
and respectively the R-flux are tensors and hence their transformation under diffeomor-
phisms is clear. But one also faces the structure constant or geometric flux, and the Q-flux,
which are not tensors. Their transformation under diffeomorphisms can still be considered,
as they correspond to building blocks of the spin connections ω and ωQ. For a geometric
configuration, it is important that the flux remains invariant under the other symmetries.
The H-flux is invariant under the b-field gauge transformations, and the Q- and R-flux
are invariant under the β-transform discussed above. The latter is obvious for the R-flux
given its definition and for the Q-flux when rewritten as

Qc
ab
“ ẽqcẽ

a
mẽ

b
n

`

Bqβ
mn
` 2ẽdqβprmBpẽnsd

˘

. (4.2.1)

We summarize the previous discussion of symmetries and how they give rise to geometric
(G) or non-geometric (NG) field configurations in different theories in the table 4.2, where
we implicitly assume that the fields are independent of N coordinates.

Symmetry used as gluing transformation LNSNS L̃β Example
diffeomorphism G G twisted torus

b-field gauge transfo. G NG (or ˆ) T 3 ` constant H
β-transform NG (or ˆ) G toroidal example

b-field gauge transfo. and β-transform NG (or ˆ) NG (or ˆ)
Buscher transformation NG NG radial inversion

more combinations ? ?

Table 4.2: Geometric (G) or non-geometric (NG) field configuration, according to the sym-
metry used to glue its fields, and to the theory

We note that diffeomorphisms can certainly be added to all configurations listed in the
table as these do not alter the classification as geometric or non-geometric for the two
considered theories and therefore are implicit here. Furthermore, we denote by a ˆ in
table 4.2 a tiny possibility for a field configuration to be geometric, as discussed in section
4.1.2. The b-field gauge transformation, translated after field redefinition into a β gauge
transformation, also acts on the new metric g̃ as expected from the non-linearity of the
field redefinition. Depending on the transformation and the background, the transforma-
tion of g̃ could be compensated by a diffeomorphism. In that case, the field configuration
would be geometric, provided the fluxes also transform properly. Such a situation is rather
unlikely, but we cannot fully exclude it at the moment. A similar reasoning holds for the
β-transform, that would act not only on the b-field but also on the metric g, as can be seen
from the field redefinition. Moreover, we mentioned in section 4.1.4 the possibility of other
elements of the T-duality group OpN,Nq that we have not considered. These could be
built for instance by further combinations of the elements already studied here. The effect
of such a generic element is not easy to guess, so we cannot conclude in full generality.
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This explains the meaning of the last line of table 4.2.

To conclude this study, we refer to the reasoning detailed in the Introduction, and one
can see that the results of table 4.2 are in good agreement with it. In particular, it is
worth considering a subcase that gives rise to more symmetries, and allows to go beyond
the situations of the first two lines of table 4.2. Considering the independence on N
coordinates gives the new symmetry of β-transforms. The latter allows, as indicated in the
third line, to get field configurations that are geometric for L̃β while being non-geometric
for LNSNS. In that case, it is worth changing theory and we established a well-defined
class of backgrounds for which β-supergravity provides a better description than standard
supergravity.

4.3 Geometric backgrounds of β-supergravity and T-
duality orbits

As explained in the Introduction, backgrounds that are geometric for L̃β and non-geometric
for LNSNS are the most interesting ones for β-supergravity. In the previous section we just
realized such backgrounds by restricting fields to be independent of N coordinates and
using β-transforms as gluing transformations. Such a situation is also the topic of this
section. The additional isometries allow to perform T-duality transformations and we
analyze the T-duality orbit of these backgrounds in general and then in a compact case.

4.3.1 Always on a geometric orbit?
We consider a geometric background for L̃β in terms of the fields g̃, β, φ̃. Through the
field redefinition, it is expressed with g, b, φ and is then non-geometric for LNSNS.11 As it
is independent of N coordinates, one can further T-dualize along these directions. Using
the Buscher rules along all N directions the fields g, b, φ are transformed to the T-dual
fields g1, b1, φ1, as depicted in table 4.3.

Let us now show that g1, b1, φ1 provide a geometric background of LNSNS. The fields
g̃, β, φ̃ glue with a β-transform and possibly a diffeomorphism A. These transformations
can be decomposed into blocks along the N directions. Here, we introduce a for the NˆN
block. We denote by zp the d ´ N coordinates on which the fields depend and by yr the

11Despite its similarity with a Buscher T-duality along all d directions, let us stress that the field
redefinition (3.1.3) is not such a transformation. The indices of g̃´1 ` β are up, while those of a T-dual
metric and b-field are down. In particular, T-duality relates a b-field to a b-field, there is no notion of
bivector appearing. Another way to see this is by considering the subcase b “ β “ 0, giving g “ g̃, while
a T-duality along all directions would invert the metric. This difference is crucial for the large volume
limit, as discussion in 4.1.1. Additionally, in SUGRA, a T-duality along all directions would require the
fields to be constant, while the field redefinition can be performed without restriction. In DFT, such a T-
duality would replace the coordinates xm by x̃m, but the field redefinition does not change the coordinate
dependence.
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Theories L̃β LNSNS

T-duality frames

g̃, β, φ̃ (G) oo field redef. // g, b, φ (NG)
OO

T-d. {{ N dir.

��
g1, b1, φ1 (G)

Table 4.3: Different descriptions of a geometric background of L̃β

N coordinates on which they don’t. Then, a generic diffeomorphism Amn “
Bxm

Bx1n
becomes

here
A “

ˆ

a j
i k

˙

,

ˆ

dy
dz

˙

“

ˆ

a j
i k

˙ˆ

dy1
dz1

˙

. (4.3.1)

The independence of the fields on N coordinates yr leads to a constraint on the possible
diffeomorphisms. The z and z1 should mix at most among themselves, i.e. should not
involve any y or y1 dependence and therefore we have to demand Bzp

By1r
“ 0, i.e. ipr “ 0.

As a cross-check, one should have B

By1r
kpq “

B

By1r
Bzp

Bz1q
“ 0. As A is a diffeomorphism, this

equals B2zp

Bz1qBy1r
“ B

Bz1q
ipr, that indeed vanishes for i “ 0. So A is restricted as follows12

A “

ˆ

a j
0 k

˙

, A´T “

ˆ

a´T 0
´k´T jTa´T k´T

˙

. (4.3.2)

We now consider the gluing of the fields g̃, β, φ̃. This is best observed using the generalized
metric

Hpz2q “ OTHpz1qO , (4.3.3)

O “

¨

˚

˚

˝

1N $
1d´N 0d´N

0N 1N
0d´N 1d´N

˛

‹

‹

‚

¨

˚

˚

˝

a j 0N
k 0d´N

0N a´T

0d´N ´k´T jTa´T k´T

˛

‹

‹

‚

(4.3.4)

with $T “ ´$ giving the β-transform. As already mentioned, the field redefinition does
not change H, so the gluing of the fields g, b, φ is expressed in the same manner. Let us

12The restriction on the dependence on coordinates enforces i “ 0, and this will allow us to obtain a
geometric T-dual. This is a crucial point, as i ‰ 0 would have lead to a non-trivial β-transform block
after the T-duality, which would have implied a non-geometric T-dual. Another take on this is to consider
the Maurer-Cartan one-forms that are globally defined, ẽapx1q “ ẽapxq. This provides the diffeomorphism
matrix, as dxn “ ẽnapxqẽ

a
mpx

1qdx1m. Considering a multiple step fibration, such as the nilmanifold n 3.14,
one may think that it is possible to find a vielbein leading to i ‰ 0. But this involves a dependence on
coordinates that are not well-defined, namely those corresponding to fibered directions. In addition,these
make the fields depend on the wrong coordinates after gluing. Considering a correct coordinate dependence
restores i “ 0.
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now perform the Buscher T-duality along the N directions. Following (4.1.22) and (4.1.23),
we use again H to get the T-dual H1 as

H1 “ T THT , (4.3.5)

where T is given below (4.1.23). By T-dualizing H on each patch, i.e. on both sides of
(4.3.3), we deduce the gluing of H1

H1pz2q “ pTOT q
TH1pz1qTOT , (4.3.6)

where we used that T T “ T´1 “ T . This gluing is therefore given by

TOT “

¨

˚

˚

˝

1N 0N
1d´N 0d´N

$ jk´1 1N
´pjk´1qT 0N 1d´N

˛

‹

‹

‚

¨

˚

˚

˝

a´T 0N
k 0d´N

0N a
0d´N k´T

˛

‹

‹

‚

. (4.3.7)

We recognize the combination of a b-shift and a diffeomorphism, where the former is due
to the initial β-transform and the off-diagonal piece j of the diffeomorphism. We conclude
that the fields g1, b1, φ1 form a geometric background for LNSNS.

We have shown that the backgrounds that glue with β-transform and diffeomorphism,
i.e. geometric for L̃β and non-geometric for LNSNS, are T-dual to geometric ones for LNSNS.
Hence, these geometric backgrounds of L̃β are in a sense not new, or do not reveal new
physics. These backgrounds lie always on a geometric orbit from the point of view of
a four dimensional gauged SUGRA theory. The converse claim may still be of interest.
Consider a geometric background of a four-dimensional gauged SUGRA. On its T-duality
orbit, there are geometric and possibly non-geometric backgrounds. If one geometric point
on this orbit can be lifted to a ten-dimensional background that glues as in (4.3.7), then we
know that there exists on that orbit a non-geometric one that can be lifted and described
by β-supergravity.

It is disappointing that the backgrounds of β-supergravity considered above do not lead
to new physics. However, we can at least list some possible circumventions:

• As indicated in table 4.2, there might be other T-duality elements that could be used
to glue fields. They may, as for the β-transform, allow geometric backgrounds for L̃β
and non-geometric for LNSNS. Then, if a study as the above on the T-duals does not
give rise to any geometric point, the corresponding backgrounds would be fully new.

• We only studied the NSNS sector and considering backgrounds involving other sec-
tors, such as RR, may alter the above conclusion.

• One may find another restriction than the independence of coordinates, that would as
well enhance the symmetries. The new symmetries could then be used again for gluing
fields, possibly in the desired way. In particular, if there is no assumption on the
coordinate dependence anymore, then the T-duality can a priori not be performed,
preventing from the above conclusion.
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• LNSNS contains a discrete symmetry, namely Z2 transforming bÑ ´b. This alters the
sign on the H-flux and could therefore lead to a non-geometric field configuration,
following the definitions of section 4.2.1. This Z2 translates for L̃β into a sign on β
only. The effect on the fluxes is a sign on the Q-flux, but not on the R-flux. Then,
with a vanishing Q-flux, such a field configuration would be geometric for L̃β.

• The notion of geometry used above is close to that of standard differential geometry
and smooth manifolds. If singularities are present, the conclusions may be altered.
Nevertheless, in the case of the Q-brane and NS5-brane, the previous reasonings can
be applied everywhere away from the singularity, and the latter is treated in the same
way for both g̃, β, φ̃ and g1, b1, φ1.

4.3.2 Pure NSNS solutions
Having discussed the general situation for geometric and non-geometric field configurations
in β-supergravity we now turn to the question of finding new ten-dimensional solutions,
satisfying a standard compactification ansatz. Interestingly, having a theory in ten dimen-
sions expressed in terms of Q- and R-fluxes allows, for the first time, to look directly there
for solutions with non-geometric fluxes. Such vacua would be geometric for L̃β and take
the form of a given compactification ansatz. Interestingly, this ansatz is not too restrictive
and the equations of motion indicate the possibility of getting non-trivial solutions. This
stands in harsh contrast to the case for LNSNS and hence justifies the interest in getting
such vacua of L̃β. Indeed, considering a standard compactification ansatz together with
the standard ten-dimensional NSNS Lagrangian LNSNS (3.1.5) only leads to trivial solu-
tions. In other words, leaving out Ramond-Ramond or gauge flux contributions, branes
or orientifold planes and setting the dilaton to be constant, leads to a solution with a
vanishing H-flux, a flat internal manifold and a flat four-dimensional space-time. A way
to reach this conclusion is to follow the analogous reasoning [136] to the one made below,
where we essentially combine conditions obtained from the Einstein and dilaton equations
of motion. The more general framework of [137] gives the same result. The NSNS sector
of β-supergravity alone may though turn out to be too restricted to get new non-trivial
solutions either. Finally, we layout a distinct argumentation along the T-dual relation of
geometric vacua of L̃β to geometric ones of LNSNS that additionally lends credence to the
observation.

Let us now indicate a possibility to get pure NSNS solutions of β-supergravity. Such
solutions should satisfy the equations of motion given in (1.4.12), (1.4.13) and (1.4.14).
We consider the following compactification ansatz. Ten-dimensional space-time is splitted
in an four-dimensional external and a six-dimensional compact internal part. Accordingly,
the metric factorizes into two parts g̃p4q and g̃p6q, where the four-dimensional metric g̃p4q
depends only on the four-dimensional coordinates and we do not take a warp factor into
consideration. This structure is certainly reflected in the vielbeins. Furthermore, we pick
β to depend only on internal coordinates and to have only components along the internal
space, such that the non-geometric fluxes are purely internal as well. We also impose
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unimodularity conditions, i.e. the vanishing of the traces faab “ 0, Qa
ab “ 0, for both

the geometric flux and the Q-flux for reasons of preserving the compactness of the internal
manifold. Finally, we choose to have a constant dilaton φ̃ and additionally set T a “ 0.13

These two conditions simplify the ten-dimensional equations of motion to

R` qR´ 1
2R

2
“ 0 , (4.3.8)

Rba ´ ηepaηbqg qRge
`

1
4ηaeηbgηifηcdR

igcRdfe
“ 0 , (4.3.9)

ηaeηbgη
df
BdQf

eg
´ βgcBcf

e
abηge ` ηaeηbgηdf q∇dRgfe (4.3.10)

`f gcdQra
dcηbsg ` 2ηerafhbsdQi

ecηchη
di
` 2ηerafhbscQh

ec
“ 0 .

The compactification ansatz leads to a vanishing four-dimensional Ricci tensor from the
Einstein equation and thus we have

Rp4q “ 0 . (4.3.11)

For a maximally symmetric four-dimensional space-time, this condition makes it Minkowski.
Taking the ten-dimensional trace of the Einstein equation (4.3.9), one obtains

Rp4q `Rp6q ´ qR` 3
2R

2
“ 0 . (4.3.12)

These two conditions, together with the dilaton equation of motion (4.3.8), are solved by
the following constraints on the internal quantities

´2Rp6q “ R2
“ qR . (4.3.13)

On the contrary to the situation with standard NSNS fields as in (3.1.5), the internal
quantities here can a priori be found non-vanishing! This is essentially due to the presence
of three types of fluxes, instead of two for the standard NSNS case. This asymmetry may
look surprising when simply counting the degrees of freedom from the fundamental fields,
since b and β have the same number. An asymmetry nevertheless appears when looking
at the placement of indices of these two fields, with respect to that of the derivative Bm.
This difference allows at the SUGRA level to define two fluxes from β and only one from b,
as clearly seen from their definitions. A related question is that of the independence of Q
and R. At least, we see from (A.3.7) that an R-flux can be present without a Q-flux. The
other way is obvious. Thanks to the three fluxes and associated quantities in (4.3.13), the
system is not over constrained. On the contrary to the standard NSNS case, we conclude
that interesting pure NSNS solution could in principle be found in β-supergravity.

13The condition T a “ ∇bβab “ 0 is not too constraining for the fluxes. Indeed, this trace of ∇β does
not appear directly in the fluxes. There is also no combination of components of the fluxes that gives T a.
Hence, it appears like an independent quantity, that we then fix to a desired value. This is consistent with
its interpretation as a conformal weight. Note also that T a “ 0 is an interesting intermediate condition
between no assumption and the simplifying assumption of [84]. The latter implied not only T a “ 0, but
also a vanishing R-flux, while we can still have here a non-zero R-flux.
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Solving the condition (4.3.13) is nevertheless not simple. As R2 ě 0, a non-trivial
solution would have a negatively curved internal manifold, Rp6q ă 0. All nilmanifolds
except the torus, as well as some solvmanifolds, verify this requirement. They additionally
satisfy by definition the unimodularity condition on f . So this is an interesting set to
look for solutions.14 A larger set of interesting Lie group based manifolds is described in
[140]. The condition (4.3.13) however implies as well that qR ě 0. Imposing in addition
the tracelessness condition for the Q-flux gives, from (A.3.25) and (A.3.27),

qR “ ´1
4
`

ηadηbeηcgQa
bcQd

eg
` 2ηcdQa

bcQb
ad
` 2Racdf bcdηab

˘

. (4.3.14)

Getting the above positive is not easy, as the first term is negative. The last term in
Racdf bcd could certainly help, so it should better be non-vanishing. This simple analysis
already leads to non-trivial constraints on the field configuration. We tried to solve the
qR ą 0 condition on a few manifolds of [136], namely one or two Heisenberg manifolds, i.e.
the twisted torus of section 4.1.1, denoted by the algebra g3.1, and those associated to g´1

3.4,
g0

3.5, as well as g
0,0,r
5.17 also called s 2.5.15 With reasonable ansätze for the fluxes, the sum of

the last two terms in (4.3.14) was either zero or negative, or when it was not the case, qR
still failed to be positive. Finding pure NSNS solutions with this compactification ansatz
therefore looks difficult, even if a priori possible.

For completeness we mention the equation of motion of β (4.3.10), which would bring
additional constraints. It is in principle, convenient to have (4.3.10) with explicit non-
geometric fluxes present where β only appears implicit. We did not take it into considera-
tion here, since all attempts to non-trivially satisfy the equations (4.3.8) and (4.3.9) failed
so far.

Now we turn to an argumentation that points in the same directions as the results that
we found for observing the equations of motion with regard to possible non-trivial NSNS
vacua of β-supergravity. In the above, we worked out a well-defined class of backgrounds
that are geometric for L̃β, and could thus serve as candidates for the vacua we are now
interested in. However, we have also shown that these backgrounds are T-dual to geometric
ones of LNSNS, as described by the chain of relations in table 4.3. Let us now study how the
compactification ansatz evolves through that chain. In this way we will constrain further
the possibility of getting geometric vacua of L̃β that are suited for compactification.

We recall that due to L̃β and LNSNS differing only by a total derivative, and to T-
duality being a symmetry of the equations of motion, a vacua of L̃β given by g̃, β, φ̃ leads
to g, b, φ and g1, b1, φ1 of table 4.3 being as well vacua of LNSNS. Let us now look at
the consequence of the compactification ansatz described above. The field redefinition and
the T-duality certainly respect the splitting and the coordinate dependence and thus the
fields g1 and b1 show the same structure. Finally, we had φ̃ “ constant in our ansatz and
are interested in whether this is the case for φ1. For this, we recall that the dilaton goes

14A review on solvmanifolds can be found in [136], and more examples are present in [138, 139].
15The last two manifolds can be negatively curved for appropriately chosen radii.
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through the following chain of equalities

e´2φ̃
a

|g̃| “ e´2φ
a

|g| “ e´2φ1
a

|g1| . (4.3.15)

Having φ1 constant would put a severe constraint on the possibility of getting g̃, β, φ̃ as
the type of vacua we are interested in. Indeed, one can show that a constant φ1 only leads
to a trivial solution of LNSNS, namely a flat space-time and manifold with vanishing H-flux.
The corresponding background in terms of g̃, β, φ̃ is then most likely trivial as well. For
instance, constant g1, b1, φ1 or even a pure gauge b1, do not allow for much freedom to get
interesting g̃, β, φ̃. Therefore, φ1 should better be non-constant. However, we are going
to see that this is not compatible with φ̃ being constant. We would require the ratio

a

|g̃|
a

|g1|
(4.3.16)

to be non-constant. Note that g̃ and g1 being part of geometric backgrounds, they are
globally well-defined. For φ̃ being constant, we deduce that φ1 is also globally well-defined.16

It looks rather a difficult to get (4.3.16) non-constant.17

The ratio (4.3.16) can in principle be computed in terms of one or the other set of
fields, since we know how the fields are related in table 4.3. A difficulty however comes
from the fact that the field redefinition involves the whole fields while the T-duality only
acts on certain blocks. That makes a generic computation not possible, as the inverse and
the determinant of a matrix divided in blocks cannot generically be expressed in terms of
those blocks. Hence, we consider the following subcase

g̃ “

ˆ

g̃N
g̃d´N

˙

, β “

ˆ

βN
βd´N

˙

, (4.3.17)

where these fields do not have off-diagonal components. One then computes g, b and g1, b1.
Using some freedom of sign in the field redefinition [84], g1 can be simplified to

g1 “

ˆ

g̃´1
N

pg̃´1
d´N ` βd´Nq

´1g̃´1
d´Npg̃

´1
d´N ´ βd´Nq

´1

˙

. (4.3.18)

This result can easily be understood. The field redefinition is similar to a T-duality in
all directions, although the indices are placed differently. This is an important distinction
between the former two which is crucial for the existence of the large volume limit. Yet,

16We also note that g is part of a non-geometric background. Because of the equalities (4.3.15), if |g|
is ill-defined, then so is φ. A good SUGRA limit is then lost in the non-geometric background, but β-
supergravity can restore it, as argued before. In addition, an ill-defined φ is likely to be non-constant, so
the compactification ansatz cannot be used for this set of fields. Then, g, b, φ does not allow to conclude
on the (non-)existence of solutions of L̃β , on the contrary here to g1, b1, φ1.

17One could also deviate from the compactification ansatz by considering warp factors and a non-constant
dilaton. Compact NSNS solutions with these features exist, such as wrapped NS-branes, or non-Kähler
backgrounds of heterotic string. The SUGRA limit of those is nevertheless more delicate.
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the similarity explains why the block along the N directions is barely changed by the
combination of the field redefinition and the T-duality, while the other block only goes
through the field redefinition. Interestingly, βN does not contribute. From this result, we
deduce

a

|g̃|
a

|g1|
“ |g̃N | ˆ |1d´N ` g̃d´Nβd´N | . (4.3.19)

Although not impossible, having this quantity non-constant is rather unlikely, at least in
usual set-ups where we look for solutions. First, βd´N is likely to be constant, as it does
not transform under gluing. Secondly, the metric g̃d´N is usually constant, as for instance
that of a base circle. This makes the second factor constant. The metric g̃N can certainly
be non-constant: for twisted tori, it goes through a non-trivial gluing. Its determinant is
however usually constant, giving for instance a constant internal volume.18 This implies
that the above ratio is constant.

We conclude that, even though we made some assumptions such as (4.3.17), it looks
unlikely to get a non-constant φ1. As explained above, purely NSNS solutions of β-
supergravity that are geometric, non-trivial, and satisfy the compactification ansatz, are
thus out of reach, at least in the usual set-ups. This holds despite the apparent possibility
offered by the equations of motion of L̃β. It would be interesting to reach the same con-
clusion using only those equations.

In summary, we found that the framework of β-supergravity establishes geometric de-
scriptions of backgrounds which have been non-geometric in standard SUGRA. However,
we experienced two major drawbacks when working out the details. First, we noticed
that such geometric solutions in β-supergravity are linked to geometric ones in standard
SUGRA via the field redefinition and the Buscher rules. Possibilities to avoid lying on
the geometric T-duality orbit seem to be scare, but nevertheless should be worked out.
And secondly, we lack interesting backgrounds beyond the toroidal example. This will
then actually be the topic of the next chapter, where we present another class of T-dual
backgrounds which can be conveniently described with β-supergravity.

18One may wonder whether a constant internal volume can be thought of as unimodularity, faab “ 0,
related to the compactness of the internal manifold. One has Bm ln |e| “ ´ẽanBmẽna, which is faab up to
a term in Bpẽpb. In our context, the only non-trivial Bp are those along the d ´ N directions. However,
the inverse vielbein ẽpb along those is most likely constant, as is g̃d´N . So Bm|e| “ 0 indicating constant
volume and faab “ 0 would be equivalent.
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Chapter 5

Bianchi identities and NS-branes

In this section we consider a particular type of backgrounds, known as NS-branes. As
motivated in the Introduction, starting from the NS5-brane T-duality generates certain
brane configurations that are associated with non-geometric fluxes, like the Q-flux or even
R-flux. We discuss here in the following the NS5-brane, the Kaluza-Klein (KK) monopole
and finally the 52

2-brane [90, 92], also known as Q-brane [85] for carrying non-geometric
Q-flux. Moreover, we are interested in the Bianchi Identities (BIs) for these backgrounds
and how these get corrected by possible source terms. Another important aspect is the
introduction of a Dirac-like derivative for β-supergravity that leads to the BIs with non-
geometric fluxes turned on based on a nilpotency condition.

5.1 NSNS Bianchi identities without sources

We start by reviewing the appearance of NSNS BIs through the literature. BIs in the
NSNS sector arise in different ways, as mentioned in the Introduction. We recall here
various approaches. In general, the Jacobi identities of algebras with associated brackets
lead to BIs. Less known is the use of a nilpotency condition on a generalization of the
standard exterior derivative including both geometric and non-geometric fluxes. We follow
in particular the second approach by squaring a Spinpd, dq ˆR` derivative and derive the
BIs (1.4.16) - (1.4.19).
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5.1.1 Sourceless NSNS Bianchi identities in the literature
We start by making a few remarks on the BIs for the NSSN fluxes in the absence of sources
(1.4.16) - (1.4.19)

Brbf
a
cds ´ f

a
erbf

e
cds “ 0 , (5.1.1)

vBrcQds
ab
´ βeraBef

bs
cd ´

1
2Qe

abf ecd ` 2Qrceraf bsdse “ 0 , (5.1.2)

BdR
abc
´ 3βeraBeQd

bcs
` 3Rerabf csde ´ 3Qd

eraQe
bcs
“ 0 , (5.1.3)

βeraBeR
bcds
`

3
2R

erabQe
cds
“ 0 . (5.1.4)

These conditions are actual identities, as they are fulfilled by inserting the definitions
of fluxes. Remarkably, we obtained them through direct computation in the first place
in appendix C.3. Equation (5.1.1) corresponds to the first BI of the Riemann tensor,
respectively known as the torsionless Cartan equation

1
2R

a
rbcds “ Brcω

a
dbs ´

1
2ω

a
erbf

e
cds ` ω

e
rcdω

a
bse “

1
2
`

Brcf
a
dbs ` f

e
rcdf

a
bse

˘

, (5.1.5)

which also follows from dpdẽaq. Analogously, (5.1.3) should be interpreted as the BI for
the Riemann tensor associated to qR, given in (3.44) or (3.47) of [82]. (5.1.4) also arises
as the BI for the R-flux q∇rmRnpqs “ 0 obtained in [83, 82]. We come back to the second
equation (5.1.2) around (5.1.39). In the following we review the appearance of NSNS BIs
in the literature and comment on the relations to the above set of BIs.

Algebraic interpretation
In this approach the geometric and non-geometric fluxes appear as structure constants of
a certain algebra. In particular the NSNS BIs follow then from the Jacobi identities of
the algebra. For four-dimensional gauged supergravity (SUGRA) theories such algebras
control the possible gaugings in standard geometric backgrounds. Here, the generators
Z and X entering the algebra descend from ten-dimensional diffeomorphisms and b-field
gauge transformations [141, 142, 143, 144]. Expecting T-duality covariance, extensions
with non-geometric fluxes [27, 30]1 became interesting and lead to the famous algebra
(1.3.2).2 Then, the Jacobi identities of (1.3.2) generate the following set of NSNS BIs [27]

f erabHcdse “ 0 (5.1.6)
HerbcQds

ae
` faerbf

e
cds “ 0 (5.1.7)

1
2HecdR

abe
´

1
2Qe

abf ecd ` 2Qrceraf bsdse “ 0 (5.1.8)

Rerabf csde ´Qd
eraQe

bcs
“ 0 (5.1.9)

RerabQe
cds
“ 0 . (5.1.10)

1Our conventions differ by a minus sign for the R-flux with those of [27].
2Further interesting generalizations to other sectors of SUGRA are found in [145].
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For vanishing H-flux and constant fluxes, these BIs exactly match our relations (5.1.1) -
(5.1.4). Hence, the latter present a generalization for non-constant fluxes.3

A similar generalization has already been given in [133].4 Based on a quasi-Poisson
structure β, a Lie bracket on the generators Za “ Ba, Xa “ βabBb is able to reproduce
the algebra (1.3.2) for H “ 0.5 Including additionally H-flux then reduces to a simple
deformation of the algebra. In the end, the derived NSNS BIs for H “ 0 with non-
constant fluxes are provided by the Jacobi identities and match with (5.1.1) - (5.1.4) as
verified in the appendix of [102]. Thus our BIs can be interpreted as ten-dimensional
identities derived from Lie brackets.

Finally, let us list further brackets leading to similar results. In Generalized Complex
Geometry (GCG) [78] the algebra (1.3.2) for H “ 0 arises from the Courant bracket on
generalized Opd, dq frames. The Courant bracket on standard frames and co-frames in [133]
and in [146] for Dirac structures yields also the respective algebra. In particular, the Jaco-
biators in [133] encode the respective BIs. In Double Field Theory (DFT) the C-bracket
[110, 38], which reduces to the Courant bracket after using the strong constraint, presents
a further Opd, dq covariant extension [50] of the algebra. In [147], the Roytenberg bracket,
generalizing the Courant bracket, also allows to write the algebra (1.3.2). Furthermore,
Exceptional Field Theory provides a generalized Lie derivative, introduced in [148], leading
to BIs including (5.1.1). Finally, in [36] a conformal field theory (CFT) approach allows
to obtain the algebra (1.3.2) directly from the actions of (asymmetric) orbifolds.

Nilpotent derivative
An alternative to evaluating the Jacobi identities for a certain bracket is related to a
generalization of the standard exterior derivative. In this case the nilpotency condition on
this derivative leads to constraints that equal the BIs. This idea is most easily illustrated
by squaring the derivative d ´ H^ on a p-form A. A generalization of such an exterior
derivative including all NSNS geometric and non-geometric fluxes was proposed in [16]

DstwA “ p´H ^´f ¨ ´Q ¨ `R_qA , (5.1.11)

f ¨ “
1
2!f

a
bc ẽ

b
^ ẽc ^ ιa , Q¨ “

1
2!Qc

ab ẽc ^ ιa ιb , R_ “
1
3!R

abc ιa ιb ιc ,

where ιa and _ denote contractions on forms, and we refer to appendix A.2 for more con-
ventions.6 The four-dimensional perspective explains the absence of a standard derivative,
since fluxes are considered to be integrated over an internal space. Then, the nilpotency

3It was argued in [27] that the BIs (5.1.6)-(5.1.10) could be obtained from one another by applying
T-duality in four dimensions as described there. It would be interesting to study the behavior of (5.1.1) -
(5.1.4) under such a transformation.

4Relations similar to (5.1.1) - (5.1.4) were also obtained in [132], although they do not match exactly,
as the Q-flux defined there is different, and there is no geometric flux turned on.

5The definitions of fluxes match ours except a sign for the R-flux.
6The derivative here is presented in our conventions with numerical coefficients.
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condition D2
stw “ 0 was claimed to reproduce the NSNS BIs for constant fluxes (5.1.6) -

(5.1.10). In [86] the previous derivative was completed7 to

D7A “
´

´
1
3!Habcẽ

a
^ ẽb ^ ẽc ^´

1
2!f

a
bc ẽ

b
^ ẽc ^ ιa ´

1
2!Qc

ab ẽc ^ ιa ιb `
1
3!R

abc ιa ιb ιc

´
1
2f

a
ab ẽ

b
^`

1
2Qa

ab ιb

¯

A . (5.1.12)

Later, the terms involving the traces of f and Q will reappear inside a Spinpd, dq ˆ R`
derivative. Here, they lead in an explicit calculation of the nilpotency condition for the
derivative (5.1.12) to

D2
7 “ 0 ô BI (5.1.6)´ (5.1.10) and 1

3HabcR
abc
`

1
2f

a
abQa

ab
“ 0 . (5.1.13)

Interestingly, the BIs are supported by an extra scalar constraint.

For the discussed generalizations of the derivative d´H^, there exists a nice interpreta-
tion in terms of Opd, dq quantities. The former derivative constrains the RR fluxes for type
II SUGRA through the BI pd´H^qF “ 0 in the sourceless case, as mentioned in [16, 149].
The sum of RR fluxes F together with their gauge potential C actually are polyforms and
further have an interpretation as Opd, dq spinors, pointed out in [150, 151, 152, 153, 154]
and seen from the supersymmetry (SUSY) conditions of [97]. Consequently at the level
of the DFT in [87, 50], the RR fluxes F “ DC were written down using a Dirac operator
D “ ΓADA associated to a Spinpd, dqˆR` covariant derivative DA with Spinpd, dq Clifford
matrices ΓA.8

In section 5.1.2, we consider a generic GG definition of such a spinorial derivative for
standard SUGRA and β-supergravity. Then, the vanishing of the square of this spinorial
derivative should lead to the NSNS BIs. In particular, we generalize in this way the above
derivative D7.

5.1.2 The Spinpd, dq ˆ R` covariant derivative
Following the previous argument, we introduce here a Spinpd, dqˆR` covariant derivative
at the level of the GG formalism. Our aim is then to reduce it on the two generalized
frames (3.2.6) and (3.2.7) for either standard SUGRA or β-supergravity. In a first step,
we determine the connection coefficients of this covariant derivative along our previous
discussion in section 3.2.1 and verify in a second step that the BIs together with scalar
conditions are reproduced using the nilpotency condition on it. We further clarify the
relation to the above D7 of [86].

7More precisely, we again rewrite a formula that was given on form components, namely (B.3) of [86],
using forms and contractions. Further, our conventions differ by a minus sign for the H-flux.

8A related derivative has already appeared in [78, 89, 71].
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Considering the Opd, dq ˆR` generalized covariant derivative of (3.2.9) we write down
the corresponding spinorial derivative DA

9, as well as the Dirac operator D, on a spinor
Ψ P ΓpS˘

p1{2qq [39]

DΨ “ ΓADAΨ “ ΓA
´

BA `
1
4ΩABCΓBC

´
1
2ΛA

¯

Ψ . (5.1.14)

Here, the Γ-matrices satisfy the Clifford algebra

tΓA,ΓB
u “ 2ηAB, η “

1
2

ˆ

0 1
1 0

˙

, η´1
“ 2

ˆ

0 1
1 0

˙

(5.1.15)

and ηAB denotes the Opd, dq metric. A particular representation of this algebra is given by
the Clifford map

ΓA
“

#

Γa “ 2ẽa ,
Γa “ 2ιa ,

with tẽa, ẽbu “ 0 , tẽa, ιbu “ δab , tιa, ιbu “ 0 . (5.1.16)

This allows us to rewrite the fluxes, forms and contractions, as a generalization of the
standard exterior derivative acting on a p-form A. Correspondingly, the spinor Ψ is then
understood as a polyform [97]. A first simplification for (5.1.14) is provided by the identity
ΓAΓBC “ ΓABC ` ηABΓC ´ ηACΓB that relates antisymmetrized products of Γ-matrices

DΨ “ ΓADAΨ “

´

ΓA
BA `

1
4ΩABCΓABC

`
1
2pΩD

D
C ´ ΛCqΓC

¯

Ψ (5.1.17)

“

´

ΓA
ByA `

1
4Ω̂ABCΓABC

`
1
2Ω̂D

D
CΓC

¯

Ψ

”

´

D1 `D2 `D3

¯

Ψ .

We remark that D3 denotes the trace part due to the extension of the Opd, dq by the
conformal factor R` that usually combines the determinant of the metric and the dilaton.

We now determine these three terms for the two choices of generalized frames. As
outlined in section 3.2.1, this fixes BA, ΩA

B
C and ΛA. In particular, the Clifford map

(5.1.16) allows us to express Γ-matrices as forms and contractions on a one-form in A
while we note that a derivative Ba¨ solely acts on the component of A in flat indices.
Details on the computation of D2 are given in appendix D.1.

• Standard supergravity:
Using the generalized frames with b-field, we obtain

D1 “ 2Ba ¨ ea^ (5.1.18)

D2 “ ´f
c
abe

a
^ eb^ ιc ´ f

d
dce

c
^´

1
3Habce

a
^ eb^ ec^ (5.1.19)

D3 “ faab e
b
^´2Baφ ea^ , (5.1.20)

9In (5.1.14), the index B of the generalized connection coefficient has been lowered with the Opd, dq
metric.
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which sums up to D given by

1
2DA “

ˆ

Ba ¨ e
a
^´

1
2f

c
abe

a
^ eb^ ιc ´

1
6Habce

a
^ eb^ ec^´Baφ e

a
^

˙

A (5.1.21)

“ eφ pd´H^q pe´φAq . (5.1.22)

• β-supergravity:
Using the generalized frames with β, we obtain

D1 “ 2Ba ¨ ẽa^`2βabBb ¨ ιa (5.1.23)

D2 “ ´f
c
abẽ

a
^ ẽb^ ιc ´ f

d
dcẽ

c
^´Qa

bcẽa^ ιb ιc `Qd
dcιc `

1
3R

abcιa ιb ιc (5.1.24)

D3 “ faab ẽ
b
^´2Baφ̃ ẽa ^`Qa

ab ιb ´ 2pβabBbφ̃´ T aq ιa . (5.1.25)

Adding up these various pieces, we find

D “2Ba ¨ ẽa^`2βabBb ¨ ιa ´ f cab ẽa^ ẽb^ ιc ´ 2Baφ̃ ẽa^

´Qa
bc ẽa^ ιb ιc ` 2Qd

dc ιc ´ 2pβabBbφ̃´ T aq ιa `
1
3R

abc ιa ιb ιc ,
(5.1.26)

where the second row could be further simplified using the definition of T a. We can
rewrite this result differently, using the following relations for a 2-form A

1
2ιa

q∇a
pAbdqẽ

b
^ ẽd “ p´βacBcAad `Qa

acAdc ´
1
2Qd

acAacqẽ
d , (5.1.27)

Qa
bc ẽa^ ιb ιcp

1
2Aef ẽ

e
^ ẽf q “ ´Qa

efAef ẽ
a , Qc

caιap
1
2Abdẽ

b
^ ẽdq “ Qc

caAadẽ
d .

(5.1.28)

These relations are derived using the definitions and properties of q∇, Q, and conven-
tions of appendices A.2 and A.3. From them, we deduce an analogue expression as
(5.1.22), as given in (1.4.23),

1
2DA “ eφ̃p∇a ¨ ẽ

a
^´q∇a

¨ ιa ` T _`R_qpe´φ̃Aq , (5.1.29)

where ∇a ¨ ẽ
a^ “ d is the standard exterior derivative. The second term gives an

interesting counterpart to the exterior derivative.

The resulting D for standard SUGRA is a known spinorial derivative [97], and its
square gives the standard NSNS BIs. We are now going to show the analogous result for
the β-supergravity derivative and our BIs (5.1.1) - (5.1.4). A first hint is given by the
comparison to the above derivative D7 of [86] given in (5.1.12). For constant forms and
fluxes, we recognize that in both cases (β or b vanishes), one has

D7 “
1
2D2 . (5.1.30)
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The natural completion of D7 in the case of non-constant fluxes would have been by deriva-
tives, as given by D1. Interestingly, the additional traces and dilaton terms of D3 are also
needed in order to recover the full set of BIs. Therefore, we now turn to the study of the
nilpotency condition for the above derivative D of (5.1.26)

D2A “ 0 . (5.1.31)

We leave the details of the computation to appendix D.1 and end up with the following
set of seven equations

´
1
2Braf

d
bcs `

1
2f

d
graf

g
bcs “ 0 (5.1.32)

´
1
2Qd

daf gga “ 0 (5.1.33)

´
3
2β

de
Bref

b
das `

3
2β

def bhraf
h
eds “ 0 (5.1.34)

´
1
2pBraQcs

de
´ βgrdBgf

es
acq `

1
4p´4f rdgraQcs

esg
` f gacQg

de
q “ 0 (5.1.35)

´
1
2β

dc
BcQd

ab
´

1
2β

cdβgraBgf
bs
cd ´ β

dcQc
graf bsdg `

1
4β

dcQg
abf gcd “ 0 (5.1.36)

1
6pBaR

bcd
´ 3βerbBeQa

cds
q ´

1
2p´R

grbcfdasg `Qa
grdQg

bcs
q “ 0 (5.1.37)

´
1
6β

gra
BgR

bcds
´

1
4Qg

rabRcdsg
“ 0 . (5.1.38)

Rather remarkably, the dilaton terms completely cancel out. Furthermore we notice the
following relations among the above equations. (5.1.34) is a contraction of (5.1.32) by
β, and similarly (5.1.36) is a contraction of (5.1.35). We are then left with a set of five
independent identities. These are exactly the four BIs listed before: (5.1.32) matches
(5.1.1), (5.1.35) matches (5.1.2), (5.1.37) matches (5.1.3), (5.1.38) matches (5.1.4). So the
square of the spinorial derivative (5.1.26) precisely produces the BIs. In addition, we find
the scalar condition derived in [86], and given in (5.1.13), from the fully contracted terms
(5.1.33).

At this point we come back to the interpretation of (5.1.2). Given the results above,
and the expression of D given in (5.1.29), we deduce on a two-form A

!

∇a ¨ ẽ
a
^ , q∇b

¨ ιb ´ T _
)

A “ ´
1
2
`

3 βebSaebc Aad ` Sabcd Aab
˘

ẽc ^ ẽd , (5.1.39)

where the quantities S are defined in section 5.2.3 and correspond to the LHS of the BI
(5.1.1) and (5.1.2). This gives a tensorial form to (5.1.2), since such a form for (5.1.1) was
already mentioned around (5.1.5). The cases of (5.1.3) and (5.1.4) were discussed below
the latter.
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5.2 T-dual NS-branes sourcing the Bianchi identities
As presented in the Introduction, the BIs for certain brane configurations receive correc-
tions in the form of source terms. We show in this section that the BIs (5.1.1)-(5.1.4) just
studied get corrected for NS-branes, namely for the NS5-brane, the KK-monopole and
the Q-brane. These are vacua of standard SUGRA and β-supergravity. Up to smearing,
they are T-dual to the NS5-brane. We first present these solutions following the literature.
We then focus on the smearing procedure that allows to perform T-dualities along isome-
try directions. This clarifies how the different warp factors can be the appropriate Green
functions in the Poisson equations of each brane. We finally verify how the branes are
related by T-duality. We further show that the above BIs on the brane vacua boil down to
the Poisson equations, allowing the emergence of the source term. This study establishes
β-supergravity as a convenient framework for describing Q-branes.

5.2.1 NS-branes solutions
We present here the various NS-branes, starting with the NS5-brane sourcing H-flux.
The NS5-brane solution was first given in the limit of zero size instanton in [155], and
presented in a broader context in [156] corresponding to the case where the gauge field
vanishes. More generalizations and references can be found in [157, 158]. Smearing and
T-dualizing this brane along one direction leads to the KK-monopole, which was first
discovered as a solution to pure five-dimensional general relativity10. It can be associated
with geometric flux. A further smearing and T-duality along another direction leads to
a new brane known as the 52

2-brane [90, 92] or Q-brane [85]. It belongs to the class of
exotic branes [90, 91, 92, 85, 161, 162, 163] which have recently received much attention
for being related to standard branes by different U-dualities. Remarkably, the Q-brane,
being non-geometric in standard SUGRA, becomes a geometric vacuum in β-supergravity
[85, 50], where it sources Q-flux.

In the following we list these three brane configurations:

• The NS5-brane, being the magnetic counterpart of the fundamental string, is phys-
ically a codimension four object, i.e. it is located in four dimensions. The original
solution takes the following form11

ds2
“ ds2

6 ` fH dŝ2
4 , Hmnp “ ´

a

|g4|ε4mnpqg
qr
Br ln fH , e2φ

“ fH (5.2.1)

where dŝ2
4 “

ÿ

m“1...4
pdxmq2 , r2

4 “
ÿ

m“1...4
pxmq2 , fH “ e2φH `

q

r2
4
,

where ds2
6 is the Minkowski metric and dŝ2

4 denoting the flat Euclidian metric gives
the transverse directions. The warp factor fH depends on the radius r4 and on two

10[159, 160], and [96] provide more references.
11We have a factor of 2 difference for the H-flux with respect to the conventions of [156]. Note that

the warp factor given here is not considered in [164, 50], as only the KK-monopole and T-duals are used
there. In particular, only the smeared warp factor of the NS5-brane is present there.
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constants, the value of the dilaton φH at 8, and q, which is related to the tension of
the brane. The H-flux is proportional to the volume form coefficient of the transverse
four-dimensional space

a

|g4|ε4mnpq
12. Given the transverse metric, we can simplify

the expression for the H-flux to

Hmnp “ ´ε4mnpqδ
qr
BrfH . (5.2.2)

• The KK-monopole can be considered as a codimension three brane

ds2
“ ds2

6 ` fK dŝ2
3 ` f

´1
K pdx` adyq2 , Hmnp “ 0 , e2φ

“ 1 (5.2.3)

where dŝ2
3 “ dρ2

` ρ2dϕ2
` ρ2 sin2 ϕ dy2 , fK “ e2φK ´

qK
ρ
.

The metric ds2
6 is still of Minkowski type, and the metric dŝ2

3 denotes the flat trans-
verse space which we prefer here to express using spherical coordinates tρ, ϕ, yu. The
radius ρ will sometimes be denoted r3 below. The warp factor fK depends on two
constants, φK and qK that we will relate to the above q in section 5.2.2.13 Finally,
the quantity a mimics a connection one-form coefficient and is a priori not gauge-
invariant. Away from the singularity, one has

apϕq “ qK cosϕ for ρ ą 0 . (5.2.5)

A reasonable completion reads

apρ, ϕq “ cosϕ ρ2
BρfK , (5.2.6)

as detailed in section 5.2.3. We later deduce a corresponding geometric flux given by

fxϕy “ f
´ 3

2
K BρfK . (5.2.7)

• The Q-brane is a codimension two brane and has a proper description only in terms
of β-supergravity

ds̃2
“ ds2

6 ` fQ dŝ2
2 ` f

´1
Q pdx2

` dy2
q , only βxy “ ´βyx ‰ 0 , e2φ̃

“ f´1
Q

where dŝ2
2 “ dρ2

` ρ2dϕ2 , fQ “ e´2φ̃Q ´ qQ ln ρ .
(5.2.8)

Its expression in terms of standard SUGRA is given below in (5.2.39). The metric ds2
6

is again Minkowski and dŝ2
2 is the flat metric which we express in polar coordinates

12Conventions can be found in appendix A.2.
13A warp factor for the KK-monopole depending on x was considered in [165, 166], and related to

world-sheet instantons corrections [167], see also [162]. One can verify that it matches ours far away from
the brane

fKpρ, xq “
1
g2 `

1
2ρ

sinh ρ
cosh ρ´ cosx . (5.2.4)
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tρ, ϕu for the transverse directions this time. The radius ρ will sometimes be denoted
r2 below. The warp factor fQ depends on two constants, φ̃Q and qQ that we will relate
to q in section 5.2.2. φ̃Q may contain a cutoff when ρÑ 8, as mentioned in [90, 92]
and we rediscuss this point in section 5.2.2. Finally, analogously to a for the KK-
monopole, the field β is not a well-defined

βxy “ ´ϕ ρBρfQ ñ βxy “ qQ ϕ forρ ą 0 . (5.2.9)

Instead, the Q-flux turns out to be the better defined quantity and is given in flat
indices as14

Qϕ
xy
“ ´f

´ 3
2

Q BρfQ . (5.2.11)

We verify explicitly in appendix D.2 that the Q-brane is a solution to the equations of
motion of β-supergravity. In [85], using a different method, this result was obtained
away from the singularity.

5.2.2 Smearing warp factors and Poisson equations
The brane solutions that we have just presented are related by smearing and T-dualizing
along transverse directions. We focus here on the different warp factors, and show how
smearing relates one warp factor to the other. This explains how each of them can satisfy
the appropriate Poisson equation. We first review the well-known case of p-branes solutions,
before turning to NS-branes.

A p-brane is a type II SUGRA background that provides an effective description of a
Dp-brane in some regime. This solution contains in particular a dilaton that depends on
the warp factor Zpprq, and the metric is given by

ds2
“ Z

´ 1
2

p ds2
|| ` Z

1
2
p ds2

K , (5.2.12)

where ds2
|| denotes the Minkowski space-time along the brane and ds2

K is the flat Euclidean
space transverse to the brane. Then, the warp factor depends on r, the Euclidean radius
for the latter,

Zpprq “ 1` qp
r7´p , for p ď 6 , (5.2.13)

14As usual, the three fluxes are the same in flat indices, up to a sign for the structure constant. For
the H-flux, one can choose coordinates that isolate the coordinate r4. The corresponding metric element
would still only be given by a warp factor, so one would get

Hmnp “ ´
a

|g3|ε4mnppr4qf
´ 3

2
H Br4fH . (5.2.10)

The remaining volume factor is then removed when going to flat indices. Useful conventions for ε can be
found in appendix A.1. So the three fluxes are the same in flat indices, although one needs to take the
same warp factor. This only happens when there is smearing, i.e. in the case of T-duality, as we will show
below. It is definitely in that case that we expect the equality of the fluxes, as given in the T-duality chain
of [27].
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where the constant qp is related to the tension of the brane. The RR flux F of this
background verifies typically a BI of the form

dF “ Q δpxKq . (5.2.14)

This flux is sourced by the brane, localized in its 9 ´ p transverse directions by δ,15 and
carries charge Q. Using for instance the transverse Hodge star ˚K, one can extract the
forms to leave only coefficients, in particular the density δp9´pqpxKq. The BI then typically
boils down to the scalar equation

∆9´pZp “ δp9´pqprq , (5.2.16)

where ∆9´p is the Laplacian of the unwarped metric ds2
K. This scalar equation is known

as a Poisson equation and a solution with possible boundary conditions is provided by the
Green function for the Laplacian which is known in two dimensions as ln r, and for dK ě 3
as 1

rdK´2 . For dK “ 3, this is the well-known electrostatic potential. As expected, the radial
dependence in the transverse space directions dK “ 9 ´ p coincides precisely with that of
Zp (5.2.13).

We now consider T-dualities on these branes. T-dualizing along a transverse direction
is known to extend a Dp-brane to a Dp`1-brane. The correct powers of the warp factor
are obtained by applying Buscher rules. However, the warp factor itself should also be
changed from Zp to Zp`1. This is done by a smearing procedure explained in [170] that
also takes care of picking the proper radial dependence r9´pp`1q. In this step we gain the
necessary isometry direction x for performing a T-duality, since a priori Zp depends on x

Zp`1pr9´pp`1qq „

ż

dx Zppr9´pq , r2
9´p “ x2

` r2
9´pp`1q . (5.2.17)

The smeared p-brane is then T-dual to the pp` 1q-brane. Interestingly, the Poisson equa-
tions are also consistent under this procedure

∆9´pZp “
`

pBxq
2
`∆9´pp`1q

˘

Zp “ δp9´pqpr9´pq

ñ

ż

dx
`

pBxq
2
`∆9´pp`1q

˘

Zp “

ż

dx δp9´pqpr9´pq

ô

ˆ

0`∆9´pp`1q

ż

dx
˙

Zp “ δp9´pp`1qq
pr9´pp`1qq

ô ∆9´pp`1qZp`1 “ δp9´pp`1qq
pr9´pp`1qq .

(5.2.18)

In the last but one line, we use conditions on the warp factor and its derivatives that will
be verified in the examples below. In this derivation, we actually only need the warp factor

15The p9´ pq-form δpxKq of (5.2.14) can also be viewed as a current, and is defined through
ż

||

Ap`1 “

ż

10
Ap`1 ^ δpxKq (5.2.15)

for any pp` 1q-form Ap`1, as in [168, 169].
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without its pure constant part, since only its derivatives are involved. So that is what we
meant in (5.2.17), and what will be used in the following.

The NS-branes share many features with the p-brane solutions. They both have warp
factors that determine the transverse directions. The constants in the warp factors are re-
lated to the tension of the brane, although they scale differently in eφ0 “ gs. Finally, these
warp factors take analogous forms, corresponding to the various Green functions in differ-
ent codimensions and consequently the NS-branes will satisfy as well Poisson equations.
Moreover, they are also T-dual up to smearing. We will verify explicitly the T-duality
relations and derive the Poisson equations from the BIs in section 5.2.3. Next, we relate
their warp factors by smearing as just explained for the p-branes.

• The BI for the H-flux of the NS5-brane is given by dH

BrmHnpqs “ ´Brmε4npqsrδ
rs
BsfH 9 ε4mnpqδ

rs
BrBsfH , (5.2.19)

where we used the expression of the H-flux (5.2.2). One therefore finds that

dH 9 v̂ol4 ∆4fH , ∆4 “
ÿ

m“1...4
pBmq

2 , (5.2.20)

with the four-dimensional volume form v̂ol4. The BI in presence of a source is given
by dH 9 v̂ol4 δp4qpr4q, so the warp factor has to solve the Poisson equation

∆4fH “ cH δp4qpr4q , (5.2.21)

with a constant cH . In other words, fH{cH should be a Green function for the four-
dimensional Laplacian ∆4. A known Green function for this problem is 1

r2
4
, so fH

given in (5.2.1) certainly solves the Poisson equation. A cross check of this result
is that away from the singularity r4 “ 0, the Poisson equation boils down to the
Laplace equation, meaning

∆4fH “ 0 for r4 ą 0 . (5.2.22)

One can verify that this holds for fH of (5.2.1).

• We turn to the KK-monopole. According to the procedure explained above, we
smear the NS5-brane along the direction x. For this purpose we introduce the new
three-dimensional radius r2

3 “ r2
4´x

2 and smear the warp factor without its constant
fH ´ e

2φH to get the new fK up to its constant e2φK

fKpr3q ´ e
2φK “

ż `8

´8

dx pfHpr4q ´ e
2φH q “

„

q

r3
arctan

ˆ

x

r3

˙`8

´8

“
qπ

r3
. (5.2.23)

This new warp factor matches the one given in (5.2.3) with qK “ ´πq. In addition,
it is a known solution to the three-dimensional Poisson equation

∆3fK “ cK δp3qpr3q , (5.2.24)
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the well-known electrostatic potential. One can straightforwardly verify that

∆3fK “ 0 for r3 ą 0 . (5.2.25)

This result was expected from the discussion around (5.2.18). One condition for this
procedure to work is that the derivative of the warp factor vanishes on the boundary.
Here this holds, as BmfH “ ´2q xm

r4
4
„8 ´

2q
pxmq3

. The same will be true for the other
warp factors as the power of xm in the denominator decreases by one at each step.

• Next, we obtain the warp factor fQ of the Q-brane by smearing the previous one
along a further direction y. We introduce the two-dimensional radius r2

2 “ r2
3 ´ y2,

and the boundary constant e´2φ̃Q . We introduce further ε, which will be sent to 8,
and the function arsinhx “ lnpx`

a

px2 ` 1qq. Then

fQpr2q ´ e
´2φ̃Q “

ż `ε

´ε

dy pfKpr3q ´ e
2φK q “ qπ

«

ln
˜

y `
a

py2 ` r2
2q

r2

¸ff`ε

´ε

(5.2.26)

“ qπ
”

ln
´

y `
a

py2 ` r2
2q
¯ı`ε

´ε
.

The function arsinhx is odd, from which we get the property

ln
´

´y `
a

py2 ` r2
2q
¯

“ ´ ln
´

y `
a

py2 ` r2
2q
¯

` 2 ln r2 .

We deduce

fQpr2q ´ e
´2φ̃Q “ 2qπ ln

´

ε`
a

pε2 ` r2
2q
¯

´ 2qπ ln r2 .

This quantity diverges when taking the limit εÑ 8. We therefore need a cutoff, as
argued in [92], to remove the divergence.16 Up to a redefinition of the constant φ̃Q
to absorb it, one obtains

fQpr2q “ e´2φ̃Q ´ 2qπ ln r2 . (5.2.27)

This warp factor matches the solution (5.2.8) with qQ “ 2πq. In addition, it is a
known solution to the two-dimensional Poisson equation

∆2fQ “ cQ δp2qpr2q (5.2.28)

and one straightforwardly verifies that

∆2fQ “ 0 for r2 ą 0 . (5.2.29)
16It would be interesting to study whether the divergence is related to non-geometry, and thus whether

the field redefinition could avoid it, by for instance including volume factors in the integral relation (5.2.17).
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• It is tempting to consider a hypothetical R-brane with warp factor fR by smearing
also along the direction z. We introduce the one-dimensional radius r2

1 “ r2
2´z

2 “ w2

and again an ε that will be sent to 8. Then

fRpr1q ´ e
2φ̃R “

ż `ε

´ε

dz pfQpr2q ´ e
´2φ̃Qq

“ ´qπ

ż `ε

´ε

dz lnpz2
` r2

1q

“ ´qπ
“

z lnpz2
` r2

1q
‰`ε

´ε
` qπ

ż `ε

´ε

dz z 2z
z2 ` r2

1

“ ´2qπε lnpε2 ` r2
1q ` 2qπ

ż `ε

´ε

dz
ˆ

1´ r2
1

z2 ` r2
1

˙

“ ´2qπ
`

ε lnpε2 ` r2
1q ´ 2ε

˘

´ 2qπr1

„

arctan
ˆ

z

r1

˙`ε

´ε

.

(5.2.30)

As for the Q-brane, the first term diverges. We consider again a cutoff and absorb it
in a redefinition of the constant. For εÑ 8 we are then left with

fRpr1q “ e2φ̃R ´ 2qπ2r1 “ e2φ̃R ´ 2qπ2
|w| . (5.2.31)

The absolute value is known to be a solution of the one-dimensional Poisson equation

∆1fR “ cR δ
p1q
pr1q , (5.2.32)

and one can again verify that away from the singularity,

∆1fR “ 0 for r1 ą 0 . (5.2.33)

Although smearing the warp factor seems to work and yields a consistent result,
performing a T-duality along z is more challenging. It would require to smear as well
the b-field or the β, for which there is no clear procedure. Maybe, one could rather
consider a direct T-duality transformation of the flux, as proposed in [171], since the
flux is a better defined quantity that does not depend on z.17

5.2.3 Smeared branes, T-duality and sourced Bianchi identities
Now that we have the correct warp factors related by smearing at hand for the different
branes, we T-dualize the smeared NS-branes into one another and show how the BIs (5.1.1)
- (5.1.4) lead to the corresponding Poisson equations. We start with the Q-brane, as it
involves most of the ingredients needed for the others and also present the procedure for
the KK-monopole. Finally, we come back to the NS5-brane.

17Note that it should be different from the one proposed in [85], which instead involves a dual coordinate.
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We are going to obtain the Q-brane by T-dualizing the NS5-brane along two directions.
In a first step we need to smear the latter and thus consider the smeared warp factor fQ
of (5.2.8) rather than the standard fH of (5.2.1). The most appropriate coordinates for
T-duality are then the cylindrical ones ρ “ r2 and ϕ and the Cartesian x, y for the two
smeared directions. Unless one uses a procedure like the one of [171], T-duality requires
a b-field. Given the expression of the H-flux in (5.2.2) and the relation Hmnp “ 3Brmbnps,
it is much simpler to obtain a b-field that respects the isometries using those coordinates.
Then, starting with (5.2.1), the twice smeared NS5-brane is given by

ds2
“ ds2

6 ` f dŝ2
4 , Hmnp “ ´ρ ε4mnpρBρf , e

2φ
“ f

where dŝ2
4 “ dρ2

` ρ2dϕ2
` dx2

` dy2 , f “ fQ ,
(5.2.34)

in curved cylindrical indices. Fixing ε4ρϕxy “ `1, see appendix A.2, the only non-trivial
component of the H-flux away from the singularity yields

Hϕxy “ qQ for ρ ą 0 , (5.2.35)

in curved indices. We then choose the gauge

bxy “ ´byx “ qQ ϕ for ρ ą 0 , (5.2.36)

for the b-field, which respects the isometries. To include the singularity, it is tempting to
define

bmn “ ε4ρϕmn apρ, ϕq , with a “ ´ϕ ρBρf , (5.2.37)
which gives the correct expression when acting with Bϕ. But it leads to undesired H-
flux components at the singularity when acting with Bρ. The same ambiguity will appear
below for the KK-monopole and the Q-brane. It is important to note that this b-field is
ambiguous and for good fluxes we should set Bρa “ 0.

We start by T-dualizing along the x direction. Applying the Buscher rules18 we get
vanishing b-field and

ds2
“ ds2

6 ` f dŝ2
3 ` f

´1
pdx` adyq2 , Hmnp “ 0 , e2φ

“ 1
where dŝ2

3 “ dρ2
` ρ2dϕ2

` dy2 .
(5.2.38)

This solution corresponds to theKK-monopole (5.2.3) smeared along y, as can be seen from
the warp factor and the coordinates. In this case the smeared a can only be understood
through the T-duality procedure. Finally, we T-dualize along y and get

ds2
“ ds2

6 ` f dŝ2
2 ` f

´1
p1` a2

f 2 q
´1
pdx2

` dy2
q , e2φ

“ f´1
p1` a2

f 2 q
´1 ,

bxy “ ´byx “ ´af
´2
p1` a2

f 2 q
´1 , where dŝ2

2 “ dρ2
` ρ2dϕ2 ,

(5.2.39)

18In [131] Buscher rules in terms of g and b have been used that are equivalent to the transformation
(4.1.23). We use those, with a minus sign difference for the b-field, due to conventions.
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which has been argued in [90] to be non-geometric. Using the field redefinition (3.1.3), we
get precisely the Q-brane solution (5.2.8)

ds̃2
“ ds2

6 ` f dŝ2
2 ` f

´1
pdx2

` dy2
q , βxy “ ´βyx “ a , e2φ̃

“ f´1

where dŝ2
2 “ dρ2

` ρ2dϕ2 .
(5.2.40)

Going around the singularity, i.e. moving along ϕ at ρ ą 0, the constant shift of β along
the isometry directions can be compensated by a β-transform. Hence the Q-brane is part
of the class studied in sections 4.2 and 4.3. The T-dual background given by the smeared
NS5-brane also has a linear b-field. As described in those sections, such a situation leads
typically to a non-geometry, as in (5.2.39).

Let us now determine the fluxes of this solution using the following vielbein

ẽ “

¨

˚

˚

˚

˝

f
1
2

f
1
2ρ

f´
1
2

f´
1
2

˛

‹

‹

‹

‚

, (5.2.41)

from which we deduce the non-zero structure constants or geometric flux (A.3.10)

fϕρϕ “ ´
1
2f

´ 3
2Bρf ´ f

´ 1
2ρ´1 , fxρx “ f yρy “

1
2f

´ 3
2Bρf , f

a
bc “ ´f

a
cb , (5.2.42)

where we slightly abuse our notation. On the LHS we denote flat indices with corresponding
curved space coordinate and on the RHS the derivative has a curved index. Next, we
compute the Q-flux. It is worth noticing that the Q-brane solution verifies the condition
βmnBn¨ “ 0, as pointed out in [85] which leads to

Qc
ab ” Bcβ

ab ´ 2βdraf bscd
βmnBn¨“0

ẽpcẽ
a
mẽ

b
nBpβ

mn , (5.2.43)

as can be seen from (4.2.1), while Rabc “ 0. Recalling the ambiguity of the b-field and a
in the NS5-brane discussed around (5.2.37), one obtains the only non-trivial component
of the Q-flux

Qϕ
xy
“ ´f´

3
2Bρf , (5.2.44)

where we again use the above mentioned notation for flat indices. The Q-flux takes exactly
the same value as the smearedNS5 H-flux in flat indices and thus gives credit to the applied
procedure.

Finally, we turn to the BIs. Given the fluxes just determined and using some antisym-
metry arguments, one can see that (5.1.1), (5.1.3) and (5.1.4) are satisfied. Let us instead
focus on (5.1.2), and the quantity

Sabcd “ BrcQds
ab
´ βeraBef

bs
cd ´

1
2Qe

abf ecd ` 2Qrceraf bsdse . (5.2.45)
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The second term vanishes here and we fix pc, d, a, bq to the only non-trivial choice pρ, ϕ, x, yq
up to antisymmetries

Sxyρϕ “
1
2f

´ 1
2BρQϕ

xy
´

1
2Qϕ

xy
pfϕρϕ ´ f

y
ρy ´ f

x
ρxq

“ ´
1
2f

´2 `
B

2
ρf ` ρ

´1
Bρf

˘

“ ´
1
2f

´2∆2f ,
(5.2.46)

where ∆2 is the two-dimensional Laplacian using polar coordinates since f does not depend
on ϕ. As argued in (5.2.28), f is here the Green function for ∆2 up to a constant cQ. So
we propose the following correction of the BI (5.1.2) due to a source

Sabcd “ ´
cQ
2 f

´2 ε2Kcd ε2||ef η
eaηfb δp2qpρq , (5.2.47)

where we took into account the constraints on the indices. This results in the BI (1.4.26),
and we have just shown that the Q-brane solves it.19

Next, we apply a similar procedure that yields the KK-monopole from T-dualizing
the NS5-brane along one direction.The NS5-brane gets smeared along x and we use the
smeared warp factor fK of (5.2.3) instead of fH . Here, spherical coordinates ρ “ r3, ϕ, y
are most appropriate and the smeared NS5-brane is given by

ds2
“ ds2

6 ` f dŝ2
4 , Hmnp “ ´ρ

2 sinϕ ε4mnpρBρf , e
2φ
“ f

where dŝ2
4 “ dρ2

` ρ2dϕ2
` ρ2 sin2 ϕ dy2

` dx2 , f “ fK .
(5.2.48)

Similarly to the discussion for the Q-brane, we introduce in curved indices

bmn “ ε4ρϕmn apρ, ϕq , with a “ cosϕ ρ2
Bρf ,

bxy “ qK cosϕ , Hϕxy “ ´qK sinϕ , for ρ ą 0 .
(5.2.49)

Then, performing the T-duality along x we find

ds2
“ ds2

6 ` f dŝ2
3 ` f

´1
pdx` adyq2 , Hmnp “ 0 , e2φ

“ 1
where dŝ2

3 “ dρ2
` ρ2dϕ2

` ρ2 sin2 ϕ dy2 ,
(5.2.50)

and recover the KK-monopole with f and a precisely those of (5.2.3).
In order to determine the corresponding geometric flux, we consider the following viel-

bein and its inverse in the basis pρ, ϕ, y, xq

ẽ “

¨

˚

˚

˚

˝

f
1
2

f
1
2ρ

f
1
2ρ sinϕ
f´

1
2a f´

1
2

˛

‹

‹

‹

‚

, ẽ´1
“

¨

˚

˚

˚

˝

f´
1
2

f´
1
2ρ´1

f´
1
2ρ´1 sin´1 ϕ

´f´
1
2aρ´1 sin´1 ϕ f

1
2

˛

‹

‹

‹

‚

.

19A BI with a Q-brane source term was proposed in [172] and we conclude on a mismatch with our
proposal (1.4.26) in the appendix of [102].
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The non-trivial structure constants (A.3.10) are then found to be

fϕρϕ “ f yρy “ ρ Bρpf
´ 1

2ρ´1
q , fxρx “ f´1

Bρf
1
2 , f yϕy “ f´

1
2ρ´1 sinϕ Bϕpsin´1 ϕq ,

fxϕy “ ´f
´ 3

2ρ´2 sin´1 ϕ Bϕa “ f´
3
2Bρf , fabc “ ´f

a
cb . (5.2.51)

As above, we mean flat indices on the LHS, and the derivatives carry curved indices on
the RHS. Due to the ambiguity of the b-field of the NS5-brane and of a discussed around
(5.2.37), we do not consider an fxρy that would have been non-zero at the singularity.
This way all T-dual branes carry one coinciding flux component in flat indices pϕ, x, yq as
they arise from the potential a. In particular, the value matches up to a sign. The other
geometric components of f are mostly artefacts of the metric.

Finally the BIs (5.1.2) - (5.1.4) are trivially satisfied, since the KK-monopole does not
give rise to other fluxes than geometric ones. The only interesting equation is then (5.1.1)
and involves the quantity

Sabcd “ Brbf
a
cds ´ f

a
erbf

e
cds . (5.2.52)

By antisymmetry, Sϕbcd “ 0. In addition, one can verify

Syρϕy “
1
3

´

f´
1
2Bρf

y
ϕy ` f

y
yϕf

ϕ
ρϕ

¯

“ 0 . (5.2.53)

Therefore, the only non-zero Sabcd is given by

Sxρϕy “
1
3

´

f´
1
2Bρf

x
ϕy ´ f

x
ϕy pf

x
xρ ` f

y
ρy ` f

ϕ
ρϕq

¯

“ ´
1
3 sin´1 ϕf´2ρ´2

BρBϕa

“
1
3f

´2
ˆ

B
2
ρf `

2
ρ
Bρf

˙

“
1
3f

´2∆3f ,

(5.2.54)

where ∆3 is the three-dimensional Laplacian used in spherical coordinates, since f only
depends on ρ. We mentioned that f is the Green function for ∆3 up to a constant cK
(5.2.24). Therefore, we propose the following correction of the BI (5.1.1) by a source term

Sabcd “
cK
3 f´2 ε3Kbcd ε1||e η

ea δp3qpρq , (5.2.55)

where the constraints on indices were taken into account, and ε1||e is only non-zero and
equal to one if e is the direction along the brane. This finally shows that the KK-monopole
solves the BI (1.4.25).

For completeness, let us come back to the BI of the H-flux for the NS5-brane. We
showed below (5.2.19) how this BI in curved indices leads to the Poisson equation. Going
to flat indices by simple multiplication with vielbeins we obtain the quantity

Sabcd “ ẽmaẽ
n
bẽ
p
cẽ
q
dBrmHnpqs “ BraHbcds ´

3
2f

e
rabHcdse . (5.2.56)
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In Cartesian coordinates, the vielbeins are just given by f 1
2 .20 So from (5.2.19), (5.2.21),

and the above, we propose the following contribution of the source

Sabcd “ ´
cH
4 f´2 ε4Kabcd δ

p4q
pr4q , (5.2.57)

where only the numerical factor should be verified, and the convention for ε4 is in appendix
A.2. This results in the BI for the NS5-brane

NS5-brane : BraHbcds ´
3
2f

e
rabHcdse “

cH
4 ε4Kabcd δ

p4q
pr4q . (5.2.58)

In summary, we described a set of T-dual brane configurations beginning with the NS5-
brane and work out their BIs that get corrected by source terms. We presented a consistent
smearing procedure which is need to perform the T-duality transformation on the respective
NS-branes. In particular, the Q-brane receives an underlying geometric picture and turns
out to be a solution to β-supergravity. Hypothetically, there are hints for the existence of
another brane sourcing R-flux, called R-brane. However, the corresponding T-duality on
the Q-brane is not a standard one. Hence, we could only determine its respective warp
factor.

20For the three branes, we obtained a factor f´2 next to the δ in the source contributions to the BI.
It would be better to have a generic formula that reproduces this factor, for instance with volumes or
vielbeins, but we did not find any.
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Chapter 6

Aspects of supersymmetry

So far, our main focus laid on the NSNS sector of β-supergravity and its relation to standard
supergravity (SUGRA) theories. However, the latter experience manifest supersymmetry
(SUSY) by containing in addition a RR sector with various p-form fields depending on
the type of SUGRA theory considered and a specific set of fermionic fields. Despite the
naming, it is an open task to introduce these sectors for β-supergravity. In this section,
we are rather considering two minor aspects of SUSY instead of trying to complete the
full picture. First, we observe that the SUSY variations restricted to only including NS-
fluxes are provided by the previously defined Spinpd ´ 1, 1q ˆ Spinp1, d ´ 1q derivatives
and can be reformulated in terms of pure spinor equations. This allows, to some extent,
to specify supersymmetric vacuum solutions of β-supergravity. A second interesting field
with respect to uplifting four-dimensional gauged SUGRA theories is the determination
of a proper superpotential in β-supergravity that contains in addition to the standard
fluxes also the non-geometric ones. It turns out that the Dirac operator D defined in the
previous chapter plays an important role. We further note that we slightly change the
notation provided in the appendix A.1 in the following since the focus of this section is
now on six-dimensional objects associated with an internal space.

6.1 From SUSY variations to pure spinor conditions

In [26], the SUSY conditions for four-dimensional N “ 1 SUSY were reformulated in terms
of Generalized Complex Geometry (GCG) as pure spinor equations. Here, we follow their
approach by first specifying the SUSY variations in β-supergravity, then introducing a
consistent compactification ansatz and rewriting the former on pure spinors. In this way,
we hope to characterize, in particular geometrically, the allowed backgrounds and find
analogue classes of internal spaces that satisfy a respective modification of the generalized
Calabi-Yau (GCY) condition.
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6.1.1 Fermionic supersymmetry variations
As explained, β-supergravity is a local reformulation of standard SUGRA and thus it
is expected to possess a supersymmetric completion which has yet to be constructed.
For this reason we can not read off the SUSY variations of the field content leaving a
the supersymmetric version of the Lagrangian L̃β invariant. Nevertheless, we gain here
the fermionic SUSY variations in an indirect way by observing their appearance in the
Generalized Geometry (GG) formulation of standard SUGRA. Some structures appearing
in the GG formalism and in Double Field Theory (DFT), namely the Spinpd ´ 1, 1q ˆ
Spinp1, d ´ 1q derivatives [109, 110, 55, 114, 39, 69] or generalizations, were noticed to
give these variations for standard SUGRA [39, 69, 70, 71, 46, 173, 64, 49]. Moreover,
these quantities enter the Lagrangian and the equations of motion. Since we showed in
section 3.2 that the corresponding derivatives in β-supergravity exactly play the same role,
we naturally assume that the derivatives give analogously in β-supergravity the SUSY
variations.

Type IIA and IIB standard SUGRA have two pairs of chiral fermions. We repeat here
for convenience the NSNS contribution to their SUSY variations, given by

δψ1,2
M “eAM

ˆ

∇A ¯
1
8HABCΓBC

˙

ε1,2 ,

δρ1,2
“ΓA

ˆ

∇A ¯
1
24HABCΓBC ´ BAφ

˙

ε1,2 ,

(6.1.1)

where we use a different index notations from now on as listed in appendix A.1. The
SUSY fermionic parameters ε1,2 are the same as before with 1, 2 refering respectively to
the upper/lower sign. In [39], the above variations1 have been rephrased in terms of the
following Spin(9,1)ˆSpin(1,9) derivatives

DAε
2
“

ˆ

∇A `
1
8HABCΓBC

˙

ε2 ,

DAε
1
“

ˆ

∇A ´
1
8HABCΓBC

˙

ε1 ,

ΓADAε
1
“

ˆ

ΓA∇A ´
1
24HABCΓABC ´ ΓABAφ

˙

ε1 ,

ΓADAε
2
“

ˆ

ΓA∇A `
1
24HABCΓABC ´ ΓABAφ

˙

ε2 ,

(6.1.2)

where the indices A, A and spinors ε1, ε2 correspond to each Spin group respectively. Then,
the SUSY variations in [39] for standard SUGRA take the following form

δψ1
M “ eAMDAε

1 , δψ2
M “ eAMDAε

2 ,

δρ1
“ ΓADAε

1 , δρ2
“ ΓADAε

2 ,
(6.1.3)

1These conventions match those of [39], except for the ˘ there denoted 1, 2 here, and the use here of
flat indices.
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using (A.2.7) and aligned vielbeins. The fermionic SUSY variations of β-supergravity
should be as well given by (6.1.3), where we replace the vielbein e by ẽ, as argued before,
and we use the following derivatives determined in section 3.2

DAε
2
“

ˆ

∇A ´ ηAD q∇D
´

1
8ηADηBEηCFR

DEFΓBC
˙

ε2 ,

DAε
1
“

ˆ

∇A ` ηAD
q∇D

´
1
8ηADηBEηCFR

DEFΓBC
˙

ε1 ,

ΓADAε
1
“

ˆ

ΓA∇A ´ ΓAηAD q∇D
`

1
24ηADηBEηCFR

DEFΓABC ´ ΓABAφ̃´ ΓAηABpβBCBC φ̃´ T Bq
˙

ε1 ,

ΓADAε
2
“

ˆ

ΓA∇A ` ΓAηAD q∇D
`

1
24ηADηBEηCFR

DEFΓABC ´ ΓABAφ̃` ΓAηABpβBCBC φ̃´ T Bq
˙

ε2 ,

(6.1.4)

where the covariant derivatives ∇A and q∇A, defined in appendix A.3, on spinors are

∇Aε “ BAε`
1
4ω

B
ACηBDΓDCε ,

q∇Aε “ ´βABBBε`
1
4ωQ

AB
C ηBDΓDCε ,

(6.1.5)

and ωQ is the spin connection of q∇, related to the Q-flux as in (E.1.6). Then from (6.1.3)
and (6.1.4), with aligned vielbeins, we deduce the NSNS contribution to the fermionic
SUSY variations of both type IIA and IIB β-supergravity, given by (1.4.28), which we
repeat here for convenience

δψ1,2
M “ẽAM

ˆ

∇A ˘ ηAD q∇D
´

1
8ηADηBEηCFR

DEFΓBC
˙

ε1,2

δρ1,2
“

ˆ

ΓA∇A ¯ ΓAηAD q∇D
`

1
24ηADηBEηCFR

DEFΓABC ´ ΓABAφ̃¯ ΓAηABpβBCBC φ̃´ T Bq
˙

ε1,2 .

(6.1.6)

6.1.2 Compactification ansatz and conditions on SUSY vacua
We now specify an ansatz for the fields, suited to the compactification of a ten-dimensional
background on a compact internal six-dimensional manifoldM. Then, we will study the
decomposition of the previous SUSY variations accordingly, and deduce conditions for a
SUSY vacuum. To start with, we consider the following ten-dimensional metric

ds̃2
“ e2Apyqg̃µνpxqdxµdxν ` g̃mnpyqdymdyn , (6.1.7)

where Latin indices denote internal indices, Greek indices denote four-dimensional ones,
as listed in appendix A.1, and e2A is the warp factor. The ten-dimensional vielbeins are
then decomposed into

ẽA“αM“µ “ ẽαµ “ eApyqẽ 9α
µpxq , ẽA“aM“m “ ẽampyq . (6.1.8)
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The ten-dimensional βAB is chosen a priori non-trivial only along the internal directions,
i.e.

βαβ “ βαb “ βaβ “ 0 , βabpyq . (6.1.9)
This ansatz allows to compute the various components of the ten-dimensional fluxes f, Q, R,
and those of the spin connections ω and ωQ. Details can be found in appendix E.1.

We now turn to the spinors, in particular to the ten-dimensional SUSY parameters. In
agreement with the above metric, the Lorentz group and its spinorial representation splits
into two factors. Accordingly, ε1,2 should be decomposed on a basis of internal spinors.
However, since we restrict ourselves to backgrounds with N “ 1 SUSY in four dimensions,
we only consider one external spinor ζ`. The decomposition with two internal spinors η1,2

`

yields then

IIA
#

ε1 “ ζ` b η
1
` ` ζ´ b η

1
´

ε2 “ ζ` b η
2
´ ` ζ´ b η

2
`

, IIB
#

ε1 “ ζ` b η
1
` ` ζ´ b η

1
´

ε2 “ ζ` b η
2
` ` ζ´ b η

2
´

. (6.1.10)

The distinct theories are specified by their chiralities denoted by ˘. The six-dimensional
and four-dimensional spinors are Weyl, and Euclidian respectively Lorentzian. This implies
the complex conjugations pηi`q˚ “ ηi´ and pζ`q˚ “ ζ´. We also consider ηi`pyq and ζ`pxq.
The ten-dimensional spinors are Majorana-Weyl, hence real, as given by the sum of the
two terms in εi. The ten-dimensional Γ-matrices are decomposed similarly, in terms of the
six-dimensional γa and four-dimensional γα. The properties of the latter, together with
the components of the spin connections, allow to obtain the various components of the two
spinorial covariant derivatives ∇A and q∇A. This is detailed in appendix E.1.

Finally, let us further specify the external part for a four-dimensional maximally sym-
metric space-time. The three possibilities Mink, AdS and de Sitter forbid to single out a
vector, implying Bαφ̃ “ 0 in the background. In addition, the four-dimensional covariant
derivative ∇αζ˘, generically decomposed on a spinor basis, is then at most given by

∇αζ˘ “
1
2µ˘e

´Aηαβγ
βζ¯ . (6.1.11)

Let us comment on the coefficient. The covariant derivative ∇α carries a factor e´A which
can be seen by multiplication of th standard derivative Bµ by the vielbein ẽµα. Similarly
the relation for the spin connection ωβαγ “ e´Aω

9β
9α 9γ holds. The matrices γα do not carry

such a factor, since they satisfy the Clifford algebra. Therefore, we get ∇α “ e´A∇ 9α.
This factor, manifest on the RHS of (6.1.11), then carries the whole dependence on the
internal coordinates. Furthermore, the generic µ˘ is restricted to be a complex function
of the external coordinates.2 For Mink and AdS 3, the value |µ˘|2 is actually known to
be related to the scalar curvature,4 i.e. to the cosmological constant. We thus restrict µ˘

2The factor µ˘, defined in (6.1.11), can a priori change according to the theory IIA or IIB, although we
do not denote it differently here. In [174], this quantity is related to the vacuum value of the superpotential,
with a sign change between the theories. Here, we will rather introduce the sign ε.

3De Sitter does not allow to consider such a spinorial equation.
4This is probably derived considering the commutator of two ∇.
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to be complex constants, differing at most by a phase. SUSY will impose µ` to be the
complex conjugate of µ´ ” µ.

We are now interested in vacua satisfying the compactification ansatz described above
and preservingN “ 1 SUSY.While not strictly necessary for SUSY, we make the additional
helpful assumption that the internal spinors ηi` are globally defined and non-vanishing.
Given a metric and an orientation on M, this further assumption reduces the structure
group of the tangent bundle, for one spinor to SUp3q, and for two generic ones to SUp2q.
Then, the existence of a reduced structure group is a useful topological constraint allowing
to equivalently consider specific globally defined forms onM. In GCG, the structure group
of TM‘ T ˚M is reduced to SUp3q ˆ SUp3q by the existence of globally defined ηi`. This
equivalently defines the pure spinors Φ˘ that can be viewed as polyforms, as described
in section 6.1.3. In addition to this topological condition, the spinors will have to satisfy
differential conditions. These are derived from the fermionic SUSY variations, that have
to vanish in a SUSY background. We obtain these conditions in the following, by setting
(6.1.6) to zero for the above compactification ansatz.

We start with the vanishing variation of the gravitini (6.1.6). In type IIB, it gives on
the internal directions

ζ` b

ˆ

∇a ˘ ηad q∇d
´

1
8ηadηbeηcfR

defγbc
˙

η1,2
`

`ζ´ b

ˆ

∇a ˘ ηad q∇d
´

1
8ηadηbeηcfR

defγbc
˙

η1,2
´ “ 0 ,

(6.1.12)

and in type IIA one should change the chirality on η2. Projecting by chirality imposes
both lines to vanish and since the two lines are complex conjugate to each other, the only
conditions, in type IIB, left is

ˆ

∇a ˘ ηad q∇d
´

1
8ηadηbeηcfR

defγbc
˙

η1,2
` “ 0 . (6.1.13)

On the external directions, we obtain in type IIB
ˆ

∇α b 1`
1
2ηαβγ

βγp4q b γ
d
BdA˘

1
2ηαδγ

δγp4q b γ
cηcdβ

de
BeA

˙

ε1,2 “ 0

ô
1
2ηαβγ

βζ` b
`

µ´e
´Aη1,2

´ ` pγdBdA˘ γ
cηcdβ

de
BeAqη

1,2
`

˘

`
1
2ηαβγ

βζ´ b
`

µ`e
´Aη1,2

` ´ pγdBdA˘ γ
cηcdβ

de
BeAqη

1,2
´

˘

“ 0 ,

(6.1.14)

and for type IIA one should change the chirality of the η2. Again, both lines should vanish
and we deduce µ˚` “ µ´ ” µ. Then, the only conditions left in type IIB are

µ η1,2
´ ` eAγd pBdA˘ ηdcβ

ce
BeAq η

1,2
` “ 0 . (6.1.15)
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We note here that having Mink, i.e. vanishing µ, is equivalent to a constant warp factor
which is due to the fact we only have NSNS contributions.5

We finally turn to the variation δρ1,2 in (6.1.6). A few computations, using in particular
γαηαβγ

β “ 4, lead to

δρ1,2
“

˜

γα∇α b 1` γp4q b
1
24ηadηbeηcfR

defγabc

` γp4q b γ
a
´

∇a ` Bap2A´ φ̃q ¯ ηad q∇d
¯ ηadβ

de
Bep2A` φ̃q ˘ ηadT d

¯

¸

ε1,2

“ ζ` b

ˆ

2µ´e´Aη1,2
´ `

´ 1
24R

abcγabc ` γ
a
´

∇a ` Bap2A´ φ̃q ¯ ηad q∇d
¯ ηadβ

de
Bep2A` φ̃q ˘ ηadT d

¯¯

η1,2
`

˙

` ζ´ b

ˆ

2µ`e´Aη1,2
` ´

´ 1
24R

abcγabc ` γ
a
´

∇a ` Bap2A´ φ̃q ¯ ηad q∇d
¯ ηadβ

de
Bep2A` φ̃q ˘ ηadT d

¯¯

η1,2
´

˙

for type IIB, while for type IIA one should change the chirality on the η2. We further
lowered indices on the fully antisymmetric γ using the metric η. Setting this variation to
zero imposes both lines to vanish, from which we deduce again µ˚` “ µ´ “ µ, and the two
lines are then complex conjugates. We are left with

2µ η1,2
´ `e

A
´ 1

24R
abcγabc`γ

a
´

∇a`Bap2A´φ̃q¯ηad q∇d
¯ηadβ

de
Bep2A`φ̃q˘ηadT d

¯¯

η1,2
` “ 0 .

In summary, we look for backgrounds that satisfy the above compactification ansatz,
admit an SUp3qˆSUp3q structure and verify in type IIB6 the following three Killing spinor
equations or SUSY conditions

µ η1,2
´ ` eA

`

{BA˘ {β
B
A
˘

η1,2
` “ 0 , (6.1.16)

∇aη
1,2
` “

ˆ

¯ηad q∇d
`

1
8ηadηbeηcfR

defγbc
˙

η1,2
` , (6.1.17)

{∇η1,2
` “ ´2µe´Aη1,2

´ ´

´1
4
{R ` {Bp2A´ φ̃q ¯ {q∇¯ {β

B
p2A` φ̃q ˘ {T

¯

η1,2
` , (6.1.18)

where we introduced the notations

{B “ γaBa , {∇ “ γa∇a , {βB “ γaηabβ
bc
Bc , {q∇ “ γaηab q∇b ,

{T “ γaηabT b , {R “
1
6ηadηbeηcfR

defγabc .
(6.1.19)

5We reached the same conclusion in [101], using the equations of motion and a few more assumptions,
such as a constant dilaton. Here, it comes from SUSY.

6For type IIA, one should change the chirality on η2.
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6.1.3 Supersymmetry conditions in terms of pure spinors
Now, we reformulate the previous SUSY conditions using pure spinors Φ˘. We follow
closely the procedure described in the appendix of [26] and first define Φ˘ as the following
bispinors

Φ` “ η1
` b η

2:
` , Φ´ “ η1

` b η
2:
´ . (6.1.20)

The product can be expressed thanks to the Fierz identity given in six dimensions by

η1
` b η

2:
˘ “

1
8

6
ÿ

k“0

1
k!

`

η2:
˘ γak...a1η

1
`

˘

γa1...ak , (6.1.21)

where indices are lowered by the flat metric. In addition, the Clifford map relates anti-
symmetric products of γ-matrices and differential forms

C “
ÿ

k

1
k!C

pkq
a1...ak

ẽa1 ^ . . .^ ẽak ÐÑ {C “
ÿ

k

1
k!C

pkq
a1...ak

γa1...ak . (6.1.22)

Thanks to this map, the above pure spinors can be viewed as polyforms, i.e. sums of
forms of different degrees. Further, we note here that Φ˘ in (6.1.20), expressed with the
Fierz identity, should be understood as slashed following the notation of (6.1.22). Φ˘ are
examples of Spinp6, 6q spinors on TM ‘ T ˚M, as considered in GCG. Being bispinors,
they are as well Spinp6q ˆ Spinp6q spinors. They are additionally pure because they are
built from two pure spinors.7 As mentioned in the previous section, we require them to
be globally defined which reduces the structure group of TM‘ T ˚M to SUp3q ˆ SUp3q.
On the tangent bundle, this reduces the structure group to SUp3q or SUp2q. For example,
Φ˘ for an SUp3q structure are given as polyforms in (6.2.3) in a simplified case. More
details on such examples are provided in section 6.2.1. The pure spinors are acted on by
Cliffp6, 6q Γ-matrices, from which one can construct a chirality operator. Through the
Clifford map, their chirality is simply related to the degree of the forms, i.e. the summation
runs only over forms of even, respectively odd, degree, for positive, respectively negative,
chirality. Respectively, Φ` or Φ´ are of positive or negative chirality through the number
of γ-matrices via the Fierz identity.

Reformulating the SUSY conditions on the ηi (6.1.16) as polyform equations on the
pure spinors essentially amounts to compute the exterior derivative

dΦ˘ ” ẽa ^∇aΦ˘ . (6.1.23)

In particular, we write (6.1.23) with γ-matrices acting on the ηi, thanks to the Clifford map
and the bispinor expressions. We then use the above SUSY conditions, and finally rewrite
the resulting expression in terms of forms, using the Clifford map backwards. The whole
procedure, with the required properties of the Clifford map, are detailed in appendix E.2.
We note here the following subtlety. We obtain at first expressions for dΦ˘ that are simpler

7In six dimension any spinor is pure.
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than the final ones (1.4.29) and (1.4.30). This is due to the absence of a RR contribution.
We nevertheless follow further the procedure of [26] for standard SUGRA, and construct
from (6.1.18) another form expression, that should be given by the RR fluxes but is here
vanishing. We add this quantity to one of the dΦ˘ obtained, as was done in [26]. This
eventually results in (1.4.29) and (1.4.30), that we repeat here for convenience

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ1

¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ1 “ 2ε e´Aµ RepΦ2q

(6.1.24)

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ2

¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ2

“ 3ε e´A i ImpµΦ1q ` e
´A

´

d´ q∇a
¨ ιa

¯

peAqΦ2 ,

(6.1.25)

where Φ1,2 and ε depend on the theory (1.4.31).8 The sign ε can be viewed as a change of
µ in between the two theories, see footnote 2.

Let us comment on these pure spinor conditions, and compare them to those of standard
SUGRA

eφ pd´H^q
`

e´φΦ1
˘

` e´2Adpe2A
q ^ Φ1 “ 2ε e´Aµ RepΦ2q (6.1.26)

eφ pd´H^q
`

e´φΦ2
˘

` e´2Adpe2A
q ^ Φ2 “ 3ε e´A i ImpµΦ1q ` e

´AdpeAq ^ Φ2 ` RR ,
(6.1.27)

where RR denotes a contribution from the RR sector. The NSNS sector of the two theories
are known to match for vanishing b and β. Here, one can verify that the pure spinor
conditions do agree in that case, which is a non-trivial check of our result. More generally,
it is remarkable that the differential operator acting on the pure spinors in both theories
is precisely the Dirac operator D (1.4.21) and (1.4.23).

Next, we focus on the particular case of a Mink space-time (µ “ 0). In standard SUGRA
this provides an interesting characterization of the background, as already discussed in the
Introduction. Here, (6.1.24) and (6.1.25) reduce to

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ1

¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ1 “ 0 (6.1.28)

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃ Re Φ2

¯

` e´A
´

d` 3q∇a
¨ ιa

¯

peAqRe Φ2 “ 0 (6.1.29)

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃ Im Φ2

¯

` e´A
´

3d` q∇a
¨ ιa

¯

peAq Im Φ2 “ 0 . (6.1.30)

8The conditions for a vacuum to preserve SUSY in various theories have been reformulated into ana-
logues of the pure spinor conditions, applying similar techniques to space(-time)s of dimension d where
the external part is either Minkowski or Anti de Sitter. For type II and M-theory, such conditions were
obtained for d from 11 down to 3 in [175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186]. Rewritings
of the previous conditions were worked out in [187, 188, 189]. The heterotic case for N “ 1 Mink vacuum
was treated in [190]. Finally conditions for type II Mink vacua were also written in terms of Exceptional
Generalized Geometry (EGG) in [191, 192, 193].



6.2 The superpotential 117

In contrast to standard SUGRA, the warp factor terms can not be factorized with the
dilaton, because of the sign in front of q∇ape2Aqιa. In other words, the condition (6.1.28)
cannot be written as a pure spinor closed under the Dirac operator D of (1.4.23). Although
an analogue of the GCY condition is thus not provided, we still have the analogous to the
generalized complex structure condition, as discussed in section 6.3. Since these warp fac-
tor terms cannot be absorbed within D, they can be understood as an effect due to the
compactification, that goes beyond the manifoldM and the Spin(6,6)ˆR` structure of D.
Nevertheless, in the particular case of backgrounds for which βabBbA “ 0, e.g. when β is
only non-zero along isometry directions, the warp factor terms can be factorized. We are
then back to a situation analogous to standard SUGRA, where the pure spinor conditions
are expressed purely in terms of D and additional RR contributions. The corresponding
background characterization is discussed in section 6.3.

The pure spinor conditions (6.1.24) and (6.1.25) have been derived using the three
SUSY conditions (6.1.16)-(6.1.18), meaning that the former are necessary for SUSY to
be preserved in the backgrounds considered. It is important to study whether they are
also sufficient. In addition, this would allow us to solve form equations, which is more
convenient, instead of the Killing spinor equations. Following the method of [26], we
address this question in appendix E.3. We conclude from there that (6.1.24) and (6.1.25)
are not sufficient and contain a remaining freedom or ambiguity with respect to the SUSY
conditions. However, we argue that this ambiguity should be fixed in presence of RR
fluxes. Moreover, the RR contribution is expected to simply consist in an addition to
the RHS of (6.1.25), in analogy to standard SUGRA with (6.1.27). Therefore, the results
established above remain useful. The discussion on the structures appearing, such as the
Dirac operator and the related background characterization, which we address later, are
in any case relevant.

6.2 The superpotential
In this section, we come back to pure spinors defining an SUp3q ˆ SUp3q structure and
discuss their properties. These allow to write down an expression for the NSNS part of the
superpotential obtained from standard SUGRA, as reviewed. The appearance of the Dirac
operator leads us to propose a corresponding expression ensuing from β-supergravity, that
includes non-geometric fluxes. This proposal is compared to the literature and further
discussed.

6.2.1 SUp3q ˆ SUp3q structure pure spinors for N “ 1 SUSY
The pure spinors Φ˘ have been defined as bispinors (6.1.20) in terms of the internal spinors
η1,2
˘ . For globally defined ηi`, one obtains an SUp3qˆSUp3q structure group on TM‘T ˚M,
as noted in the sections 6.1.2 and 6.1.3. The corresponding structure group of the tangent
bundle then depends on the two internal spinors η1

` and η2
`. If these are parallel, i.e.
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proportional, one obtains an SUp3q structure and otherwise one has an SUp2q structure.
For the latter, the differential conditions on the pure spinors impose to distinguish further
two cases. Orthogonality between η1

` and η2
`, i.e. a relation by a γ-matrix, leads to an

orthogonal or static SUp2q structure. More general, if the two spinors are neither parallel
nor orthogonal, one finds an intermediate SUp2q structure. If the angle between the spinors
is actually varying on M, one talks of a dynamical SUp2q structure. Further references
and a discussion can be found in [103].

Thanks to the Fierz identity and the Clifford map, the pure spinors can be viewed as
polyforms. The corresponding formulas for Φ˘ vary accordingly to the above cases and
different expressions can be found e.g. in [194]. For an SUp3q structure one finds

Φ` “
|a|2

8 eiθ`e´iJ , Φ´ “ ´ieiθ´ |a|
2

8 Ω , (6.2.1)

where J is a real (1,1)-form and Ω is a (3,0)-form, with respect to an almost complex
structure. On a Calabi-Yau (CY) manifold these forms satisfying additional constraints
are known as the Kähler form and the holomorphic 3-form. The quantity |a| is related to
the norm of the internal spinors which we take here to be equal, as is the case in presence
of an orientifold plane. This will also allow us to set |a|2 “ eA. In the following we will
consider a constant warp factor and constant phases θ˘, as done for most of the formulas
for the superpotential in the literature. The orientifold when present then fixes the phase
θ`, while θ´, not being physical, is left free [195]. We thus choose for convenience θ´ “ π,
while θ` will be fixed as

O3 or O7 : eiθ` “ ˘i , O5 or O9 : eiθ` “ ˘1 , O6 : eiθ` is free. (6.2.2)

Note that O4- or O8-planes do not allow for an SUp3q structure. Also, for an O6-plane, eiθ`

is sometimes taken to be 1 in the literature. Given the fixing of these various parameters,
we will consider in the following the simpler SUp3q structure pure spinors (1.4.33)

Φ0
` “ eiθ`e´iJ , Φ0

´ “ iΩ . (6.2.3)

With the above assumptions, the pure spinor conditions for SUSY in standard SUGRA
(6.1.26) and (6.1.27) simplify to

eφ pd´H^q
`

e´φΦ0
1
˘

“ 2ε e´Aµ RepΦ0
2q (6.2.4)

eφ pd´H^q
`

e´φΦ0
2
˘

“ 3ε e´A i ImpµΦ0
1q ` RR . (6.2.5)

In general, two pure spinors Φ1 and Φ2 of GCG defining an SUp3q ˆ SUp3q structure
satisfy some compatibility conditions. Those include conditions on the norms, that need
not be specified here, and

xΦ1, pv _`ξ^qΦ2y “ xΦ1, pv _`ξ^qΦ2y “ 0 , @pv ` ξq P TM‘ T ˚M , (6.2.6)

where the Mukai product is defined as taking the top form, here the six-form,

xΨ1,Ψ2y “ Ψ1 ^ λpΨ2q|top , (6.2.7)
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and λ brings a sign by reversing all the form indices. The compatibility condition (6.2.6)
can also be formulated with matrices ΓA. In the case of an SUp3q structure, this leads to
the condition

J ^ Ω “ 0 , (6.2.8)

which can also be understood from the almost complex structure.

We now turn to the superpotential for which we will use the various properties just
described. The superpotential W of the N “ 1 four-dimensional effective theory obtained
from standard ten-dimensional SUGRA has been formulated in terms of GCG pure spinors
for SUp3q structure in [196, 197] and also [198], and then for an SUp3q ˆ SUp3q in [199,
174, 200, 42]. Up to the RR contribution, this superpotential can be written for a constant
warp factor as

WNS “ C

ż

M
xΦ0

1, pd´H^q
`

e´φ Im Φ0
2
˘

y , (6.2.9)

with a constant C and the Mukai product defined in (6.2.7). One finds that for a super-
symmetric Mink vacuum without RR, pd´H^q

`

e´φ Im Φ0
2
˘

vanishes. And in the case of
RR fluxes, their contribution to the superpotential is precisely canceled through (6.2.5).
Therefore, the formula (6.2.9) gives W “ 0 as expected. Another way to see this is to use
[26]

ż

M
xΨ1, pd´H^qΨ2y “

ż

M
xpd´H^qΨ1,Ψ2y , (6.2.10)

to rather get pd´H^qΦ0
1: the other condition (6.2.4) makes again the superpotential

vanish for a Mink vacuum, up to a derivative of the dilaton. This last derivative should
however not contribute because of the compatibility condition (6.2.6), as we will see below.9
Finally, for an AdS vacuum, one obtains from (6.2.4) or (6.2.5) that W is related to µ,
thus to the cosmological constant, as expected [174].

6.2.2 Proposed superpotential and comparison to the literature
The formula (6.2.9) was extended in [17, 86, 200] to include non-geometric fluxes. Per-
forming a dimensional reduction, these papers further compared their W to corresponding
four-dimensional superpotentials expressed in terms of moduli [27, 98]. To include Q- and
R-fluxes, the idea was to replace d ´ H^ by a more general derivative operator, such as
the D7 of [86] discussed in details in section 5.1.2. So we naturally propose here for the
NSNS part of the superpotential with constant warp factor

W̃NS “
C

2

ż

M
xe´φ̃Φ0

1,D Im Φ0
2y , (6.2.11)

as already presented in the Introduction (1.4.32), where D is the Dirac operator. Picking
for the latter the standard SUGRA one (1.4.21), the general formula (6.2.11) reproduces

9Note also that a constant warp factor typically leads to a constant dilaton in the (SUSY) vacuum.
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the standard W (6.2.9). Doing the same in β-supergravity leads to an expression for W
with non-geometric fluxes. A difference with previous papers is that Q and R have here
a ten-dimensional interpretation. We now compute this superpotential more explicitly for
an SUp3q structure, and compare our results to formulas of the literature.

We use the expression (1.4.24) for the Dirac operator in β-supergravity with its various
definitions of contractions for the fluxes. We also consider that the coefficients in flat indices
of the SUp3q structure forms, Jab and Ωabc, do not depend on internal coordinates. These
coefficients are usually replaced by moduli, that only have a four-dimensional dependence.
Finally, we recall that J is a real two-form. In type IIB, we obtain at first

W̃NS “ iC
ż

M
e´φ̃

´

cθ f ˛ J `
sθ
2 Q ˛ pJ ^ Jq `

cθ
3! R _ pJ ^ J ^ Jq

` cθ dφ̃^ J ` sθ
2 pτ ´ q∇φ̃q _ pJ ^ Jq

¯

^ Ω ,

(6.2.12)

with cθ “ pθ`q, sθ “ sinpθ`q. More explicitly,

f ˛ J “
1
2f

c
abJce ẽ

a
^ ẽb^ ẽe

1
2 Q ˛ pJ ^ Jq “

1
2Qa

bc

ˆ

1
2JcbJef ´ JceJbf

˙

ẽa^ ẽe^ ẽf

1
3! R _ pJ ^ J ^ Jq “

1
2R

abc

ˆ

1
2JcbJaeJfg ´

1
3JceJbfJag

˙

ẽe^ ẽf^ ẽg

1
2 pτ ´

q∇φ̃q _ pJ ^ Jq “ 1
2

ˆ

´
1
2β

bcfabc ` β
ab
Bbφ̃

˙

JaeJfg ẽ
e
^ ẽf^ ẽg .

(6.2.13)

The last equation indicates that pτ ´ q∇φ̃q _ pJ ^ Jq is proportional to J . This implies
that the second row of (6.2.12) is proportional to J ^ Ω. Requiring an SUp3q structure,
i.e. enforcing the compatibility condition (6.2.8), then makes this second row vanish.10 We
note that this property needs to remain true despite the moduli fluctuations. Using further
(6.2.8), only some terms remain from the Q- and R-fluxes contributions

1
2 Q ˛r pJ ^ Jq “ ´

1
2Qa

bcJceJbf ẽ
a
^ ẽe^ ẽf

1
3! R _r pJ ^ J ^ Jq “ ´

1
3!R

abcJceJbfJagẽ
e
^ ẽf^ ẽg .

(6.2.14)

Finally, let us distinguish between the possible phases according to the choice of orientifold.
However, we note that the notion of orientifold is not really defined in the context of β-
supergravity, since the RR sector has not been studied so far. The distinction between

10This reasoning could be generalized to a generic SUp3q ˆ SUp3q structure with the condition (6.2.6),
allowing to discard the dilaton terms, or more precisely the terms due to the R` factor. The corresponding
terms at the level of DFT are also truncated in [99] thanks to the orientifold projection which is considered
to be odd on the winding. Interestingly, we do not need this projection so far here.
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O3, O7, and O5, O9, should then be viewed more formally as a choice on the phase θ`.11

Absorbing the possible minus sign of (6.2.2) in a redefinition of C, we get

O3 or O7: W̃NS “ iC
ż

M
e´φ̃

ˆ

1
2 Q ˛r pJ ^ Jq

˙

^ Ω , (6.2.15)

O5 or O9: W̃NS “ iC
ż

M
e´φ̃

ˆ

f ˛ J `
1
3! R _r pJ ^ J ^ Jq

˙

^ Ω . (6.2.16)

Let us compare these formulas to those in the literature. The first superpotential with
non-geometric fluxes was proposed in [27] based on duality arguments, and was given in
terms of moduli of an STU model. This expression was recovered in [98] for type IIB
with an O3-plane from an expression in terms of internal forms. We compare the latter to
(6.2.15). Forgetting about the H-flux, we find an exact agreement, fixing C “ ´1

3 . The
same type of contraction as Q˛ appears in the superpotential of [98], as well as in [99]. For
the case of an O5- or O9-plane, we have not found in the literature an expression in terms
of forms to be compared to (6.2.16). To the best of our knowledge this expression is then
new. It could be used as well for heterotic (see footnote 11). One should still perform the
expansion and integration on a form basis to get the expression in terms of moduli. This is
however beyond the scope of this work. From T-duality arguments, the expression (6.2.16)
looks in any case very plausible.

We now turn to type IIA, that should be compared in the literature to the case of
an O6-plane. The formula (6.2.11) leads to a DRe Ω. This quantity however does not
appear in the literature, except in [196] but without non-geometric fluxes, and in [200]
where it is only implicitly proposed. On the contrary, D is rather acting on Φ0

` in [98] and
[86]. Such a situation could only be reached after integrating by parts with D, similarly to
(6.2.10). While the latter holds for standard SUGRA thanks to the absence of boundary
on the compact M and the H-flux acting with a wedge, the analogous result for D in
β-supergravity is not obvious to derive, because of the contractions on forms. In any case,
let us assume here that this property holds, i.e.

ż

M
xΨ1,DΨ2y “

ż

M
xDΨ1,Ψ2y , (6.2.17)

allowing us to start in type IIA with

W̃NS “
C

2

ż

M
xDpe´φ̃Φ0

1q, Im Φ0
2y . (6.2.18)

Pursuing the same reasoning as in type IIB, we derive from (6.2.18)

W̃NS “ ´e
iθ`C

ż

M
e´φ̃

´

i f ˛ J ` 1
2 Q ˛r pJ ^ Jq `

i
3! R_r pJ ^ J ^ Jq

¯

^Re Ω . (6.2.19)

11The O5, O9, case is also sometimes discussed, in the literature on superpotentials, with heterotic, as
the two are simply related by S-duality.
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This formula agrees completely with the proposal of [86], up to fixing C. The same goes for
the comparison to [99], up to a redefinition of Ω, and a conventional minus sign difference
in the R-flux. Finally, our formula agrees with that of [98], up to C and numerical factors
in the contractions.

The comparison of our proposed W and formulas of the literature implicitly considers
that the ten-dimensional non-geometric fluxes of β-supergravity are the same as the four-
dimensional ones. This has worked well so far, but in type IIA, we did not reach formulas
with explicit moduli dependence.12 Indeed, a derivation of the moduli formula of [27]
does not seem to have been performed directly in the literature, its comparison to other
expressions is usually rather done thanks to duality arguments. In [99], an oxidation is
made in type IIA, instead of a reduction, and ends with a comparison and matching of
the DFT Lagrangian of [50]. Since β-supergravity fluxes and the Lagrangian agree with
the DFT ones, upon the strong constraint and setting b “ 0 [101], we would conclude
on a matching with [99]. In the latter however a difference is indicated between ten-
dimensional and four-dimensional fluxes, on the contrary to what we have considered so
far. This discrepancy might be related to the way four-dimensional scalar fields, loosely
called here moduli, are defined. Following STU models, the authors of [99] include the
fluctuation of the b-field in a modulus. In β-supergravity, we would obviously not get such
a modulus when expanding our superpotential. It is unclear whether the b-field modulus
would simply be traded for us into a β modulus, because there is actually no explicit
dependence in β in (6.2.15), (6.2.16) and (6.2.19). An expansion of our superpotential
may then only include the geometric moduli and dilaton, and the comparison should thus
be done at that level. These points deserve in any case more study. Still, we conclude
that the general formulas proposed here for the superpotential, depending on the Dirac
operator, reproduces remarkably well expressions in the literature in terms of structure
forms and non-geometric fluxes.

6.3 Geometrical characterization of the backgrounds
As discussed in the Introduction, the b-field and its counterpart β can be viewed as twists
on TM ‘ T ˚M by looking at the generalized vielbein E or Ẽ (3.1.1) corresponding to
each theory. We discuss this point in more details in the following, and argue how this
is crucially related to the geometrical characterization of supersymmetric backgrounds of
β-supergravity.

Conditions for preserving SUSY usually provide a geometrical characterization of the
manifold M. The prime example is here the CY condition. As mentioned in the Intro-
duction, the formulation in terms of GCG [40, 41] has provided such a characterization in
presence of background fluxes.13 We analyze in this section the situation for β-supergravity.
Let us first recall some terminology, and the results for standard SUGRA. To each pure

12Doing so would allow a comparison to [201, 202] where new non-geometric terms were obtained from
M-theory. They are however unlikely to be reproduced here, due to the assumption of an SUp3q structure.

13Reviews can be found in [26, 42].
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spinor Φ corresponds a generalized complex structure (GCS). Then, if a pure spinor satisfies

dΦ “ pv _`ξ^qΦ , (6.3.1)
for some pv ` ξq P TM ‘ T ˚M the GCS is integrable andM generalized complex. Fur-
thermore, if Φ is closed, M is a GCY manifold. Finally, having a generalized Kähler
manifold requires two distinct closed pure spinors. For standard SUGRA, a SUSY Mink
background with H “ 0 asks for M to be a GCY [97, 26]: the pure spinor e2A´φΦ1 in
(6.1.26) is closed for µ “ 0 and H “ 0. In absence of RR fluxes, with a constant warp
factor, the second condition (6.1.27) further constrainsM to be generalized Kähler.14 The
GCY characterization was proven useful, leading for instance to an extensive search for
solutions on six-dimensional nilmanifolds, as those are all GCY [206]. In presence of a
closed H-flux, the corresponding b-field induces a twist and a pure spinor closed under
d ´ H^, as in (6.1.26) with µ “ 0, then characterizes a twisted GCY. The twist by the
b-field can be seen through the rewriting d´H^ “ eb^de´b^, or in the off-diagonal block
of the generalized vielbein E (3.1.1), as discussed in the Introduction. It twists the local
TM‘ T ˚M into the, globally non-trivial, generalized tangent bundle ET .

We now turn to β-supergravity and the pure spinor conditions (6.1.24) and (6.1.25),
to study whether an analogous characterization can be obtained.15 We focus on the Mink
case µ “ 0 and the first condition (6.1.24). We thus look at (6.1.28), written in terms of
the Dirac operator (1.4.23) as

DΦ1 “ ´4
´

dA^`q∇A_
¯

Φ1 . (6.3.2)

This equation is analogous to the case of a b-twisted integrable GCS, as in (6.3.1). As
mentioned in section 6.1.3, whenever q∇A “ 0, the warp factor can be absorbed in the
LHS, to get e2AΦ1 closed under D, precisely as for standard SUGRA. We now consider
this case in more details, i.e.

DΦ “ 0 . (6.3.3)
This is the analogue to the b-twisted GCY condition. It is thus natural in β-supergravity
to talk of a twist by β, and to consider (6.3.3) as a β-twisted GCY condition; for β “ 0, we
recover a GCY condition. If we can make sense of it, the geometrical characterization of
M is then this β-twisted GCY. Furthermore, in absence of RR fluxes and with a constant
warp factor16, we get from (6.1.25) a second pure spinor closed under D, analogously to
a twisted generalized Kähler M. It is traditionally considered that non-geometric back-
grounds cannot be described by GCG and ET , e.g. discussed in [207, 78, 39], but the
construction just mentioned now seems to provide a description within GG, understanding
this formalism in a slight extended sense though.

14Reviews on this case can be found in [203, 204, 205].
15For an SUp3q structure, an alternative might be to study the conditions in terms of the SUp3q torsion

classes, and compare them to the fluxes, as e.g. in [12].
16A constant warp factor automatically follows for a SUSY solution from (6.1.16).
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Chapter 7

Conclusion & Outlook

In this thesis, we developed an effective field theory, named β-supergravity, for the specific
goal of investigating non-geometric backgrounds at the level of ten-dimensional supergrav-
ity (SUGRA). Our focus has been on the classification of this theory with regard to the
frameworks of Generalized Geometry (GG) and Double Field Theory (DFT). Whereas ear-
lier constructions relied on a specific field redefinition in order to directly reformulate the
standard SUGRA action, we studied here a consistent set of tools and geometric structures
heavily inspired by GG. This led us to the action of β-supergravity which features besides
a new covariant derivative also non-geometric Q- and R-fluxes. The latter, up to then only
present in lower-dimensional gauged SUGRAs and being an indication for non-geometric
phenomena, were given in this way ten-dimensional expressions and explicitly appear in
the action of β-supergravity in contrast to other approaches, e.g. DFT. Moreover, the ac-
tion experiences invariance under standard diffeomorphisms and β gauge transformations
which have been investigated with respect to being helpful in constructing new geometric
background solutions within β-supergravity. These properties make this theory a promis-
ing framework for studying aspects of non-geometry directly in ten dimensions. However,
it turned out that only in the presence of isometries consistent glueing transformations
for geometric backgrounds of β-supergravity are provided in the form of β-transforms in
contrast to the expected β gauge transformations. The construction of a well-defined gen-
eralized cotangent bundle ET˚ , which was argued to be the correct bundle on which the
generalized frames Ẽpβq should live, is closely related to mentioned transformations. In
particular, it would be interesting to have one concrete construction of ET˚ at hand.

A major goal of this thesis has been the analysis of vacua of β-supergravity. Especially,
the relation of geometric backgrounds in β-supergravity and non-geometric ones in standard
SUGRA have been considered. In this process, a class of consistent geometric backgrounds
of β-supergravity has been identified which however have been shown to lie on a geometric
T-duality orbit and hence is not able to provide new physics. This is consistent with the
analysis of the equations of motion of β-supergravity for a simple compactifications ansatz
with regard to pure NSNS solutions. In particular, the usage of certain solvmanifolds for
the internal space failed. Reductions from DFT to some SUGRA theories produced similar
results [31]. Nevertheless, suggestions for how to find truely new vacua and physics have
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been made in [36, 146, 208, 58] and we proposed some possibilities to circumvent the lack
in β-supergravity so far.

Apart from the sobering results, the reformulation of standard SUGRA offered a useful
description of some backgrounds. First hints were previously found by studying the toroidal
example and here we applied an extended analysis to the set of NS-branes. Detailed
account has been given for the NS5-brane, the Kaluza-Klein monopole and the Q-brane
in section 5.2. In particular, the latter experiences a clearer brane picture in terms of
β-supergravity fields and the non-geometric fluxes lead to corresponding Bianchi identities
(BIs) which get corrected by source terms. Having presented convenient descriptions at the
level of SUGRA, it would be interesting to study this set of branes as stringy respectively
M-theory objects. This might also give hints on a world-volume action for these NS-branes
that then would lead to possible source contributions to the equations of motion and BIs.
These could be compared to the results of the Q-brane derived within β-supergravity, as we
have obtained corrections to the dilaton equation of motion (D.2.4), the Einstein equation
(D.2.15) - (D.2.18) and the BIs. Interestingly, we did not observe the expected modification
for the β equation of motion. Further thoughts concern the relation of the Q-brane and the
D7-brane as these are both codimension two objects. Since there exists a non-perturbative
description of the latter within F-theory, a similar construction might be interesting for
the Q-brane [92]. Finally, the possibility of an R-brane has been discussed.1 Performing
a further standard T-duality problematic for the lack of an isometry. Nevertheless, we
derived a constant warp factor and consider the BI (1.4.18) to be a natural candidate
corrected by this codimension 1 NS-brane. Hypothetically, we expected a codimension
zero NS-brane being related to the last BI (1.4.19).

We close with an outlook on the complete supersymmetric framework of β-supergravity.
The analysis of SUSY in this thesis has been restricted to SUSY conditions and the proposi-
tion of a superpotential for β-supergravity in terms of pure spinors. It would be interesting
to derive the SUSY variations from a SUSY completion of the bosonic NSNS Lagrangian
at hand. This raises the question whether the respective fermions and a RR sector for
β-supergravity should also be obtained via field redefinitions of the standard ones. First,
let us also mention that the SpinpD,Dq ˆ R` covariant derivative D, used to derive the
NSNS BIs, might play a role in determining a set of non-geometric RR fluxes F by acting
on a standard polyform potential C, analogue to F “ pd ´ H^qC in standard SUGRA.
This would introduce contractions among non-geometric fluxes and standard RR poten-
tials which may lead to new types of RR fluxes. A second distinct possibility would be
to introduce polyvectors instead of forms. Such a proposal was sketched in [209] and
would clearly provide new types of fluxes. In the end consistency of a supersymmetric ver-
sion of β-supergravity should be the decisive criterion for choosing the correct RR-fluxes.
More generally, RR fluxes of β-supergravity may provide uplifts to some of the known
four-dimensional non-geometric RR fluxes [98, 145, 210]. Finally, we remark that the
pure spinor conditions despite from providing a classification of certain backgrounds are of
practical use when looking for possible vacua of any given theory. For a standard N “ 1

1A different object was also named R-brane in [85].
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Minkowski vacua without NS5-brane these conditions together with the BI for the fluxes
are equivalent to solving the equations of motion [211, 212, 26, 195]. This provides massive
technical simplification and it would be interesting to observe whether in β-supergravity
an analogue statement holds.
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Appendix A

Conventions

A.1 Space-Time and index conventions
In this thesis, we use a wide range of indices of different kind. To clarify our notation at
various places, we give here an overview of the use of indices for space-time directions of
certain dimensions. In particular, we distinguish the use of two sets of notations depending
on whether we are dealing with a generic framework or theory or whether we take a
certain compactification ansatz that allows us to split space-time directions into external
and internal parts. In any given chapter or section, this distinction should be clear to the
reader by the respective context.

We introduce a first set of indices to deal with quantities in a generic d-dimensional
space-time

A, . . . ,L P 1, . . . , 2d flat Opd, dq indices
M, . . . ,Z P 1, . . . , 2d curved Opd, dq indices
a, . . . , l P 1, . . . , d flat (tangent space) indices
m, . . . , z P 1, . . . , d curved space-time indices

(A.1.1)

We use this set throughout most chapters of this thesis.
However, in section 6 we will encounter the situation that the above set is not sufficient

to maintain a convenient notation and we proceed using a second set of indices

A, . . . ,L P 1, . . . , 2d flat OpD,Dq indices
M, . . . ,Z P 1, . . . , 2d curved OpD,Dq indices
A, . . . , L P 1, . . . , D flat (tangent space) indices
M, . . . , Z P 1, . . . , D curved space-time indices
a, . . . , l P 1, . . . , d flat internal indices
m, . . . , z P 1,. . . , d curved internal indices

α, β, γ, δ, ε, ζ, η P 1 . . . D ´ d flat external indices
λ, µ, ν, ρ, σ, ξ P 1 . . . D ´ d curved external indices

(A.1.2)

This set is more suited to the situation of compactification with respect to a prefered
background where we need to distinguish between external space-time directions and inter-
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nal directions. The starting point is now a certain D-dimensional background, that splits
into d internal coordinates and D´d external ones. In this way, we manage to lay the focus
on the d-dimensional quantities and are able to present the results of the compactification
with Latin indices, as before. Further, we refer the reader to appendix (E.1), where we
layout the explicit compactification ansatz and make heavy use of the above set of indices.

A.2 Differential forms and Clifford algebra
A p-form A is given by

A “
1
p!Am1...mpdxm1 ^ . . .^ dxmp “ 1

p!Aa1...ap ẽ
a1 ^ . . .^ ẽap . (A.2.1)

For a p-form A and a q-form B we deduce the coefficient

pA^Bqm1...mp`q “
pp` qq!
p!q! Arm1...mpBmp`1...mp`qs . (A.2.2)

Further, the contraction of a vector V “ V mBm “ V aBa on A is defined by

V _ A “
1

pp´ 1q!V
m1Am1...mpdxm2 ^ . . .^ dxmp . (A.2.3)

It is also denoted by ιa “ ẽmaιm, that satisfies the following commutation relations

V _ A “ V aιaA , tẽa, ιbu “ δab , tιa, ιbu “ 0 , (A.2.4)

while a contraction on a scalar vanishes. Here we used the notation ιmA “ ιdxmA which
denotes the contraction of a k-form A by the one-form dxm by use of the metric g. The
full contraction of two k-forms A and B using a metric g is given by

A ¨B “
Am1¨¨¨mkBn1¨¨¨nkg

m1n1 ¨ ¨ ¨ gmknk

k! . (A.2.5)

In the case of multiple contractions, such as Qc
abιaιb, one should be careful with their

order, that may generate signs when acting on a form.
Finally, we introduce the totally antisymmetric quantity ε, given by εm1...mn “ `1{ ´ 1

for pm1 . . .mnq being an even/odd permutation of p1 . . . nq, and 0 otherwise. The one with
flat indices εa1...an has the same value, i.e. ε is not a tensor. This can be seen by preserving
the volume form.

Finally, we consider (constant) matrices γa with flat indices, satisfying the standard
Clifford algebra and the following associated properties [213]

tγa, γbu “ 2ηab , rγa, γbs “ 2γab with γa1a2...ap ” γra1γa2 . . . γaps (A.2.6)
γaγb “ ηab ` γab , γaγbc “ γabc ` 2ηarbγcs , γaγbcd “ γabcd ` 3ηarbγcds (A.2.7)
rγab, γcds “ ´8δrc

rgγhs
dsηagηbh, tγab, γcdu “ 2γabcd ´ 4ηcraηbsd (A.2.8)

tγa, γbcdu “ 6ηarbγcds , tγabc, γdefu “ 18δrd
rgγhis

ef sηagηbhηci ´ 12δdrgδehδ
f
isη

agηbhηci . (A.2.9)
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A.3 Curvatures and fluxes
For a generic metric g̃mn with Levi-Civita connection, the connection coefficients, covariant
derivative, and Ricci scalar, are given by

Γmnp “
1
2 g̃

mq
pBng̃qp ` Bpg̃qn ´ Bqg̃npq , (A.3.1)

∇mV
n
“ BmV

n
` ΓnmpV p , ∇mVn “ BmVn ´ ΓpmnVp , (A.3.2)

∇pV
p
“

1
a

|g̃|
Bp

´

a

|g̃| V p
¯

, (A.3.3)

Rpg̃q “ g̃mnRmn , Rmn “ BpΓpmn ´ BnΓqqm ` ΓpmnΓqqp ´ ΓpmqΓqnp . (A.3.4)

The Riemann tensor is generically given as follows; for the Levi-Civita connection, it
satisfies the following properties

Rn
rms “ BmΓnsr ´ BsΓnmr ` ΓqsrΓnmq ´ ΓqmrΓnsq , Rrs “ Rn

rns , (A.3.5)
g̃npRn

rms “ g̃nmRn
spr “ ´g̃nsRn

mpr “ g̃nsRn
mrp , Rn

rrmss “ 0 .

The vielbein ẽam and its inverse ẽnb, associated to the metric g̃ by g̃mn “ ẽam ηab ẽ
b
n,

allow to go from curved to flat indices. Going to flat indices, we use the vielbein ẽam and its
inverse ẽnb, associated to the metric g̃mn “ ẽamẽ

b
nηab, with ηab the components of the flat

metric ηD. Tensors with flat indices are obtained after multiplication by the appropriate
(inverse) vielbein(s), e.g. βab “ ẽamẽ

b
nβ

mn, and we also denote Ba “ ẽmaBm. Going to
matrix notation, one should be careful that the matrix product reproduces the correct index
contraction. With the line index always on the left and the column on the right, whatever
up or down, one then has sometimes to take the transpose. For instance, g̃ “ ẽTηdẽ,
βflat “ ẽβẽT and bflat “ e´T be´1, where pẽT qma “ pẽqam “ ẽam and pẽ´T qbn “ pẽ´1qnb “ ẽnb.
The above quantities lead to the definition of geometric and non-geometric fluxes

Habc “ 3Brabbcs , fabc “ 2ẽamBrbẽmcs ,
Qa

bc “ Baβ
bc ´ 2βdrbf csad , Rabc “ 3βdraBdβbcs ´ 3βdraf bdeβcse .

(A.3.6)

We further give some interesting rewritings of the R-flux

Rabc
“ 3βdra∇dβ

bcs
“ 3βdraQd

bcs
` 3βdraf bdeβcse . (A.3.7)

The spin connection coefficient ωabc are defined in analogy to the Levi-Civita connection,
but for flat indices. The covariant derivative in flat indices on a vector V is then given by

∇aV
b
“ BaV

b
` ωbacV

c , ∇aVb “ BaV
b
´ ωcabVc . (A.3.8)

We can deduce from this the relation to the standard connection coefficients

∇bpBcq ” ωabcBa , ω
a
bc ” ẽnbẽ

a
m

`

Bnẽ
m
c ` ẽ

p
cΓmnp

˘

“ ẽnbẽ
a
m∇nẽ

m
c , (A.3.9)
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The structure constant fabc (or so-called geometric flux) are defined as

fabc “ 2ẽamBrbẽmcs “ ´2ẽmrcBbsẽam , 2BraBbs “ f cabBc , (A.3.10)

For the Levi-Civita connection, one has the relation between ω and f and the Ricci scalar
in flat indices

ωabc “
1
2
`

fabc ` η
adηcef

e
db ` η

adηbef
e
dc

˘

, (A.3.11)

Rpg̃q “ 2ηbcBaωabc ` ηbcωaadωdbc ´ ηbcωadbωdac (A.3.12)

as in (A.3.24). In addition one has the following properties

ηdcωabc “ ´η
acωdbc , f

a
bc “ 2ωarbcs , faab “ ωaab . (A.3.13)

The new covariant derivative on a (co)-vector V and the derived new curvature scalar
are defined as

qΓmnp “
1
2 g̃pq p´β

mr
Brg̃

nq
´ βnrBrg̃

mq
` βqrBrg̃

mn
q ` g̃pqg̃

rpm
Brβ

nqq
´

1
2Bpβ

mn , (A.3.14)

T n ” qΓpnp “ Bpβ
np
´

1
2β

nmg̃pqBmg̃
pq
“ ∇pβ

np , (A.3.15)

q∇mV p
“ ´βmnBnV

p
´ qΓmpn V n , q∇mVp “ ´β

mn
BnVp ` qΓmnp Vn , (A.3.16)

q∇pVp “
1

a

|g̃|
Bp

´

a

|g̃| βpm Vm

¯

` 2T pVp , (A.3.17)

qR “ g̃mn qRmn , qRmn
“ ´βpqBqqΓmnp ` βmqBqqΓpnp ` qΓmnp qΓqpq ´ qΓqmp qΓpnq . (A.3.18)

We also use this covariant derivative q∇ whose action on a vector V in flat indices is
given by

q∇aV b
“ ´βacBcV

b
` ωQ

ab
c V

c , q∇aVb “ ´β
ac
BcVb ´ ωQ

ac
b Vc . (A.3.19)

Proceeding similarly for the new q∇ leads us to introduce ωQ, (the opposite of) the flat
connection associated to qΓ

ẽmaẽ
b
n
q∇nVm “ q∇bVa ” ´β

bd
BdVa ´ ω

bc
Q aVc ô ´ωbcQ a ” ẽbnẽ

m
a

´

´βnqBqẽ
c
m ` ẽ

c
p
qΓnpm

¯

(A.3.20)
From it, we can define a quantity RQ analogous to the standard Ricci scalar Rpg̃q

ωQ
bc
a “

1
2
`

Qa
bc
` ηadη

ceQe
db
` ηadη

beQe
dc
˘

, (A.3.21)

RQ ” 2ηbcβadBdωQbca ` ηbcωQada ωQbcd ´ ηbcωQdba ωQacd . (A.3.22)

where (A.3.21) is obtained by using the definition (3.1.11) of qΓ and the Q-flux given by
the proposal (A.3)! This ωQ enjoys similar properties as those of (A.3.13)

ηdcωQ
bc
a “ ´ηacωQ

bc
d , Qa

bc
“ 2ωQrbcsa , ωQ

ad
a “ Qa

ad , ηbcωQ
bc
a “ ηadQb

db . (A.3.23)
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We then mimic the definition of the Ricci scalar in terms of ω or f and introduce the
analogous quantity RQ

Rpg̃q “ 2ηbcBaωabc ` ηbcωaadωdbc ´ ηbcωadbωdac (A.3.24)

“ 2ηabBaf cbc ´ ηcdfaacf bbd ´
1
4
`

2ηcdfabcf bad ` ηadηbeηcgfabcfdeg
˘

,

RQ ” 2ηbcβadBdωQbca ` ηbcωQ
ad
a ωQ

bc
d ´ ηbcωQ

db
a ωQ

ac
d (A.3.25)

“ 2ηabβadBdQc
bc
´ ηcdQa

acQb
bd
´

1
4
`

2ηcdQa
bcQb

ad
` ηadηbeηcgQa

bcQd
eg
˘

.

Another curvature tensor related to the new covariant derivative q∇ takes the form

qRab
“ βcdBdωQ

ab
c ´ β

ad
BdωQ

cb
c ` ωQ

ab
c ωQ

dc
d ´ ωQ

ca
d ωQ

db
c ´

1
2R

adcf bdc , (A.3.26)

and one finds the following relation between RQ and qR

qR “ RQ ´
1
2R

acdf bcdηab . (A.3.27)

Finally, we list for completeness our conventions used in writing down the Lagrangians
(3.1.5) and (3.1.9). |g| and |g̃| denote the absolute value of the determinant of the metrics
g and respectively g̃. The squares introduced are defined as

pBφq2 ” gmnBmφ Bnφ , H
2
”

1
3!HmnpHqrsg

mqgnrgps , R2
”

1
3!R

mnpRqrsg̃mqg̃nrg̃ps ,

(A.3.28)
pBφ̃q2 ” g̃mnBmφ̃ Bnφ̃ , pβ

mp
Bpφ̃´ T mq2 ” g̃mnpβ

mp
Bpφ̃´ T mqpβnqBqφ̃´ T nq .
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Appendix B

Graviton scattering and the DFT
action

In the first part of this appendix we rederive the on-shell three graviton scattering am-
plitude for vertex operators which do explicitly depend on winding modes in addition to
momenta, given in [119]. In the second part we are going to expand the Double Field
Theory (DFT) action into third order in fluctuations and show that these interactions
precisely match with the above string scattering amplitude. This computation is meant to
provide evidence for the relevance of this T-duality invariant conformal field theory (CFT)
for DFT.

B.1 3-Graviton scattering from CFT
Calculating anN -point function of insertions of graviton vertex operators (2.2.20) Ep,wpz, z̄q
is combinatorially more involved than a tachyon amplitude. For taking care of that one
conveniently defines

Vipzi, z̄iq “ :eκi¨BXpziq´λi¨B̄ rXpz̄iqeipi¨Xpzi,z̄iq eiwi¨ rXpzi,z̄iq : (B.1.1)

with I labeling the winding and momenta and κi, λi auxiliary parameters. One can derive
the vertex operators corresponding to the first excited states simply by acting on (B.1.1)
with derivatives with respect to both κi and λi. This operator is related to a massless
graviton vertex operator Epi,wi by

Epi,wipzi, z̄iq “ Eiab
B

Bκia

B

Bλib
Vi
ˇ

ˇ

ˇ

κi“λi“0
. (B.1.2)

The N point correlation function can be written as

@

N
ź

i“1
Vipzi, z̄iq

D

“
ź

1ďiăjďN
|zi ´ zj|

α1ppi¨pj`wi¨wjq
´zi ´ zj
z̄i ´ z̄j

¯
α1

2 ppi¨wj`wi¨pjq

ˆ Fijpzij, z̄ijq δ
´

ř

pi

¯

δ
´

ř

wi

¯

(B.1.3)
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with

Fijpzij, z̄ijq “ exp
ˆ

´
α1

2

” κi ¨κj
pzi ´ zjq2

` 2i
ppri ` wriq¨κjs

zi ´ zj

`
λi ¨λj

pz̄i ´ z̄jq2
` 2i

ppri ´ wriq¨λjs

z̄i ´ z̄j

ı

˙

.

(B.1.4)

The full 3-graviton amplitude is then given by

A3ppi, wi,Eiq “ g3
c CS2

@

3
ź

i“1
pc c Epi,wiq

D

“g3
c CS2 Ap~z, ~̄zq

3
ź

k“1
Ekab

B

Bκka

B

Bλkb

ź

1ďiăjď3
Fijpzij, z̄ijq|κi“λi“0 ,

(B.1.5)

where Ap~z, ~̄zq collects the contractions of the remaining exponentials (2.2.29). Notice that
we can treat the derivatives with respect to κ and the ones with respect to λ separately.
Denoting F p~z, ~̄zq :“

ś

1ďiăjď3 Fijpzij, z̄ijq and taking three derivatives with respect to κ,
we find

3
ź

k“1

B

Bκka
F |κi“λi“0 “

α
12

4
ηacpb1L ` η

bcpa3L ` η
abpc2L

z12z13z23

`
α
1

2

ˆ

pa1L
z12

´
pa3L
z23

˙ˆ

pb2L
z12

`
pb3L
z13

˙ˆ

pc1L
z13

`
pc2L
z23

˙

,

(B.1.6)

where we made use of momentum and winding conservation as well as the transverse po-
larization of Emn. The λ-derivatives can be worked out analogously. We can now contract
the two parts with the corresponding polarization tensors of the massless vertex operators
to get the full 3-point amplitude. We restrict ourselves to second order in momentum
and winding and we consider the correct normalization of the graviton vertex operator
which makes it necessary to include a factor of 2

α1
in each E . Then we find the 3-graviton

scattering amplitude to be

A3ppi, wi, Eiq “ 4πgcE1adE2beE3cf t
abct̃def `Opp4, p3w, . . . , w4

q , (B.1.7)

with

tabc “ ηcapb1L ` η
bapc2L ` η

cbpa3L

t̃abc “ ηcapb1R ` η
bapc2R ` η

cbpa3R .
(B.1.8)

Here we used CS2 “ 8π
α1g2

c
which can be determined from unitarity by factorizing the 4-point

amplitude (2.2.37) over the tachyonic pole. This result was first presented in [119] and
consistently reduces to the well-known 3-graviton scattering amplitude [214] for vanishing
B-field and zero winding.
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B.2 3-point interaction from DFT
For our purposes, it is convenient to consider DFT theory formulated in terms of the field
Eij “ Gij `Bij and the dilaton field d [115]:

S “

ż

dx dx̃ e´2d
”

´
1
4g

ikgjlDpEklDpEij `
1
4g

kl
pDjEikDiEjl ` D̄jEkiD̄iEljq

`pDidD̄jEij ` D̄idDjEijq ` 4DidDid
ı

.

(B.2.1)

Despite the fact that T-duality is no longer a manifest symmetry, this description nicely
covers momenta and winding modes in the derivatives Di “ Bi´EikB̃k and D̄i “ Bi`EkiB̃k.
The inverse metric gij is used to raise indices and we set 2κ2

d “ 1. The construction of this
action from string field theory made use of a field redefinition establishing the link to the
low-energy effective field theories [215]. As given in [37], at zeroth order in α

1 this field
redefinition is

Eij “ Eij ` fijpe, dq , fijpe, dq “ eij `
1
2ei

kekj `Ope3
q . (B.2.2)

Using (B.2.2), we now expanding the action (B.2.1) around Minkowski space to cubic
order in the fluctuation eij (see [115]). Here Eij denotes the constant background, which
for vanishing B-field reduces to the Minkowski metric ηij. It is important to take the higher
order fluctuation into account in the expansion of the different objects. The metric gij is
simply given by gij “

1
2pEij ` Ejiq and hence, for example, the expansion of the inverse

metric takes the following form

gij “ ηij ´ epijq `
1
4e

ikejk `
1
4e

kiek
j
`Ope3

q . (B.2.3)

Then, up to a total derivative, the action to cubic order in the fluctuation reads

S “

ż

dx dx̃

„

1
4eijle

ij
`

1
4pD

ieijq
2
`

1
4pD̄

jeijq
2
´ 2dDiD̄jeij ´ 4dld

`
1
4eij

`

pDieklpD̄
jeklq ´ pDieklqpD̄

lekjq ´ pDkeilqpD̄jeklq
˘

`
1
2d

`

pDieijq
2
` pD̄jeijq

2
`

1
2pD

keijq
2
`

1
2pD̄

keijq
2

`2eijpDiD
kekj ` D̄jD̄

keikq
˘

` 4eijdDiD̄jd` 4d2ld
ı

,

(B.2.4)

which was first derived in [37]. The derivatives are given by

Di “ Bi ´ EikB̃
k ,

D̄i “ Bi ` EkiB̃
k ,

l “
1
2pD

iDi ` D̄
jD̄jq . (B.2.5)

In order to compare with the 3-point amplitude from the CFT side, we introduce κd by
modifying the fluctuation to 2κdeij. In this way we get a match with the expansion of the
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standard Einstein-Hilbert action to third order in the metric fluctuation hij. Then, from
the second line in (B.2.4) and after a partial integration, we identify the interaction term
for three eij’s to be

κdeij

´

pDieklpD̄
jeklq ´ pDieklqpD̄

lekjq ´ pDkeilqpD̄jeklq
¯

“´ κdeij

´

eklDiD̄jekl ` pD
ieklqpD̄

lekjq ` pDkeilqpD̄jeklq
¯

` ptot. der.q .
(B.2.6)

The missing term from the partial integration vanishes because of Dieij “ 0, following
from the polarization constraint as listed in table 2.1. Next, we can read off the value of
the 3-graviton vertex in momentum space by using Bi Ñ ipi and B̃i Ñ iwi, which translates
derivatives to momenta and winding modes. Moreover, we have to keep track of possible
permutations and obtain

Aeee “ 4πgc
´

pi3Re1ijp
j
3Le

kl
2 e3kl ` p

i
3Re1ijpe

kj
2 q

T e3klp
l
2L ` p

k
3Re1klpe

il
3 q
T e2ijp

j
1L

` pcyclic permutationsq
¯

,
(B.2.7)

where gc “ κd
2π . This result nicely matches with the string scattering amplitude (B.1.7).The

slight difference in the left- and right-moving momenta can be cured by switching the sign
of the B-field.



Appendix C

GG derivation of L̃β and its equation
of motion

In this appendix, we provide details on computations mentioned in section 3.2.2. These
allow eventually to derive the Lagrangian L̃β given in (1.4.9) using the Generalized Ge-
ometry (GG) formalism. We also detail the claim that the field redefinition is an Opd ´
1, 1q ˆOp1, d´ 1q transformation.

C.1 Determination of the Opd´1, 1qˆOp1, d´1q deriva-
tive

In section 3.2.2, we explain how preserving an Opd ´ 1, 1q ˆ Op1, d ´ 1q structure leads
generically to the derivative (3.2.38). We determine here the various pieces of this derivative
for the frame (3.2.7) and derivative (3.2.28), following the procedure described in that
section. To start with, the derivatives BA in the unbarred/barred notation can be read
after a simple rotation (3.2.33) from the up/down one

BA “

#

Ba “ Ba ` ηabβ
bcBc

Ba “ Ba ´ ηabβ
bcBc

, (C.1.1)

where in the right-hand sides we do not write the δ’s and use the alignment of vielbeins.
We now consider the connection. Ω̂ is made of the Opd, dq piece Ω, and a piece due to the
conformal weight; let us start with Ω alone. Its fully unbarred component is given by a
rotation from up/down components, as follows

Ωa
b
c “ Pa

DPc
F
pP´T qbE Ωpu{dqDE

F

“
1
2
`

δdapΩd
b
c ` η

beηcfΩde
f
q ` ηadpΩdb

c ` η
beηcfΩd

e
f
q ` ηadηcfδ

b
eΩdef

˘

,
(C.1.2)
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where we used the fixing discussed in section 3.2.1 Ωd
ef “ Ωd

ef “ Ωdef “ 0, that lead
eventually to the derivative (3.2.28). We also identified there

Ωa
b
c “ ωbac , Ωa

b
c
“ ωQ

ac
b , Ωabc

“ Ωrabcs “ 1
3R

abc . (C.1.3)

We recall as well that ΩDe
f “ ´ΩD

f
e. Using these results and the antisymmetry properties

of ω and ωQ, we conclude

Ωa
b
c “ ωbac ´ ηadωQ

db
c `

1
6ηadηcfδ

b
eR

def . (C.1.4)

One proceeds similarly for the other unbarred - barred components of Ω. A subtlety
occurs for the mixed components, because of the projection to the Opd´1, 1qˆOp1, d´1q
structure. For instance, in Ωa

b
c, one obtains a piece given by ´1

2ηagηchδ
g
dδ
b
eδ
h
fΩdef (we

write all δ’s to clarify the discussion). Ωdef has been identified in section 3.2.1 with its
fully antisymmetrized part related to the R-flux. However, because of the projection, one
should be careful in the placement of unbarred and barred indices. As discussed above
(3.2.38), the two indices on the right should be of the same type. Therefore, out of the
decomposition Ωrdef s “ 3pΩdref s`Ωf rdes`Ωerfdsq, one should only keep the contribution of
the first term. This leads to ´1

2ηagηchδ
g
dδ
b
eδ
h
fR

def .
Finally, let us consider the other piece of Ω̂, namely the contribution to be added due

to the conformal weight. In [39], it is changed from (3.2.10) in the up/down notation to
the following in the unbarred/barred1

Ω̂A
B

C “ ΩA
B

C ´
1
9pδ

B
AΛC ´ ηACη

BEΛEq , (C.1.5)

where we believe that the normalization factor 9 can be understood as δaa ´ 1 “ δaa ´ 1.
The trace of the above remains the same as that of (3.2.10), i.e. given by

Ω̂D
D

C “ ΩD
D

C ´ ΛC . (C.1.6)

This implies that the identification of Λ (3.2.24) made thanks to the torsion-free condition
is in any case valid. So we follow here the same prescription (C.1.5), and should only define
the unbarred/barred components of Λ from the up/down ones (3.2.20). This is done again
by a rotation

ΛC “

#

Λc “ λc ` ηcdξ
d

Λc “ λc ´ ηcdξ
d

. (C.1.7)

Combining all these contributions to (3.2.38), we obtain eventually the Opd´1, 1qˆOp1, d´
1q derivative as given in (3.2.39).

1It is worth noting that this term Ω̂A
B

C ´ΩA
B

C in (C.1.5) is automatically compatible with the metric
ηAB, on the contrary to the one in (3.2.10). This is consistent with the fact that Ω̂ is the Opd ´ 1, 1q ˆ
Op1, d´ 1q connection, and that there is no conformal factor in the structure group anymore.
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C.2 The field redefinition is an Opd´ 1, 1q ˆOp1, d´ 1q
transformation

We make here a short digression to comment on the transformation relating the generalized
vielbeins E and Ẽ in (3.1.1). Let us first consider formally a 2d ˆ 2d matrix K given in
terms of generic dˆ d matrices O1 and O2 or the combinations O˘ as

K “

ˆ

O1 O2 η
´1
d

ηd O2 ηd O1 η
´1
d

˙

, O˘ “ O1 ˘O2 . (C.2.1)

Then, one can show the equivalence between the four following sets of conditions

K P Op2d´ 2, 2q
KT I K “ I ô

K P Opd, dq
KT ηpu{dq K “ ηpu{dq

ô
O` P Opd´ 1, 1q , O´ P Op1, d´ 1q

OT
˘ p˘ηdq O˘ “ ˘ηd

ô
OT

1 ηd O1 `O
T
2 ηd O2 “ ηd

OT
1 ηd O2 `O

T
2 ηd O1 “ 0 , (C.2.2)

with I defined in (3.1.1) and ηpu{dq in (3.2.1).
Let us now show that such a matrix K is the one allowing to transform one generalized

vielbein into the other

E “ KẼ ô K “ EẼ´1
“

ˆ

eẽ´1 ´eβẽT

e´T bẽ´1 e´T ẽT ´ e´T bβẽT

˙

. (C.2.3)

To do so, we need the information that the fields in (C.2.3) are not independent but related
by the field redefinition (3.1.3). We rewrite the latter in a more convenient way2

eTηde “ ẽTF´TηdF
´1ẽ

b “ ´ẽTF´Tηdẽβẽ
TηdF

´1ẽ
, with F “ 1` ẽβẽTηd

ô e “ kF´1ẽ , e´T be´1
“ ´k´Tηdẽβẽ

Tηdk
´1 , with kTηdk “ ηd .

(C.2.5)

A little algebra then allows to show that K defined in (C.2.3) can be written as in (C.2.1),
with

O1 “ kF´1 , O2 “ kpF´1
´ 1q . (C.2.6)

Interestingly, the field redefinition that we used to obtain this result is equivalent to having
K P Op2d´ 2, 2q. Therefore, the properties (C.2.2) should be automatically satisfied with
(C.2.6). It is indeed the case: when using (C.2.6), they boil down to the condition

2F´TηdF´1
“ ηdF

´1
` F´Tηd ô 2ηd “ F Tηd ` ηdF , (C.2.7)

2The starting point to get (C.2.5) is to rewrite (3.1.3) as

g “ pg̃´1 ´ βq´1g̃´1g̃g̃´1pg̃´1 ` βq´1 , b “ ´pg̃´1 ´ βq´1βpg̃´1 ` βq´1 , (C.2.4)

where the change of sign in front of β in the brackets with respect to (3.1.3) is actually allowed: this sign
can be chosen freely without affecting the field redefinition [84].
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which is true given the definition of F . To conclude, we have shown that the transformation
taking us from E to Ẽ and realizing the field redefinition is given by the matrix K in (C.2.1)
with the entries (C.2.6), and it satisfies the properties (C.2.2).

The fact that K P Opd, dq is also important as it acts on the Opd, dq index of the
generalized vielbeins. As such, it can then be rotated as described in (3.2.33). One obtains
the simple result

P´TKP T
“

ˆ

O` 0
0 O´

˙

. (C.2.8)

This result makes it obvious that this transformation is an Opd ´ 1, 1q ˆ Op1, d ´ 1q [78],
thanks to the equivalence (C.2.2). Additionally, it coincides with the Opd´1, 1qˆOp1, d´1q
structure we want to preserve in section 3.2.2. As a side remark, note though that it does
not survive the alignment of vielbeins we impose there, as O` ‰ O´ a priori. This is
expected because this transformation does not even preserve the form of the generalized
vielbeins (by definition), i.e. one has K R Gsplit for either of the two frames (3.2.6) and
(3.2.7). More precisely for this particular K,

O` “ O´ ô F “ 1 ô β “ 0 ô b “ 0 , (C.2.9)

which is indeed the only case where the form of the generalized vielbeins is preserved (they
are actually the same, up to K).

C.3 Computation of S
In this appendix, we compute explicitly the quantity S as given in (3.2.54), using the
definitions of section 3.2.2, analogously to [69]. As explained below (3.2.54), the first three
lines of this expression should vanish: let us first detail the verification of this point. To
start with, we compute, using (A.3.10), (A.2.6), and the alignment of vielbeins

γaγbpBa ` ηadβ
de
BeqpBb ` ηbcβ

cf
Bf q ´ ηabpBa ´ ηadβ

de
BeqpBb ´ ηbcβ

cf
Bf q (C.3.1)

“γab

˜

1
2f

f
ab ` ηadβ

def f eb ´ ηadBbpβ
df
q ` ηadηbcβ

de

ˆ

Bepβ
cf
q `

1
2β

cgf f eg

˙

¸

Bf ` 2Bcpβcf qBf .

One should then verify that

0 “ 2Bcpβcf qBf ` 2ηacXcpBa ` ηadβ
de
Beq ´ ZaηabpBb ´ ηbcβ

cf
Bf q , (C.3.2)

0 “ γab

˜

1
2f

f
abBf ` ηadβ

def f ebBf ´ ηadBbpβ
df
qBf ` ηadηbcβ

de

ˆ

Bepβ
cf
q `

1
2β

cgf f eg

˙

Bf

` 6ηceXreabspBc ` ηcdβdfBf q ´ 2ηdeYdabpBe ´ ηecβcfBf q
¸

. (C.3.3)
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To prove (C.3.2), it is useful to recall that Λ was given in (3.2.40), and that one can rewrite
ξ from (3.2.26) as

ξd “ βdeλe ´ 2T d . (C.3.4)

Using (A.3.23), (3.2.25), and (A.3.13), one then verifies (C.3.2). To prove (C.3.3), one can
decompose it into the terms having no, one, two, or three β, and show that they vanish
separately. The antisymmetry of the a, b indices and the properties of ω and ωQ are useful,
together with the alignment of vielbeins and (A.3.7), to prove the cancellation in (C.3.3).

We are then left with the last three lines of (3.2.54). Using the identities (A.2.7),
(A.2.9) and (A.2.8), one can rewrite these lines, and therefore S, as

´
1
4Sε

` (C.3.5)

“

«

pγabcf ` 3ηarbγcf sqpBa ` ηadβdeBeqpXbcf q ` γ
aγcpBa ` ηadβ

de
BeqpXcq

`
1
2XadeXbcf p18δrb

rgγhis
cf sηagηdhηei ´ 12δbrgδchδ

f
isη

agηdhηeiq `XadeXcp6ηcraγdesq `XaXcγ
aγc

´ ηabpBa ´ ηadβ
de
BeqpYbcf qγ

cf
´

1
2η

abYadeYbcf p2γdecf ´ 4ηcrdηesf q ´ ZaηabYbcfγcf
ff

ε` .

To compute this expression, we decompose it into the various orders of antisymmetric
products of γ matrices. The zeroth order will give the scalar of interest, while the higher
orders (two and four γ’s) will vanish. This is consistent with the idea of S being a scalar.
The following identities will be helpful to show the vanishing of the terms at order γab, and
γabcd

Braf
e
bf s “f

e
draf

d
bf s , (C.3.6)

BraQf s
de
´ βgrdBgf

es
af “

1
2Qg

def gaf ´ 2Qragrdf esf sg , (C.3.7)

BaR
ghi
´ 3βdrgBdQa

his
“´ 3Rdrghf isad ` 3Qa

drgQd
his , (C.3.8)

βgrdBgR
abcs

“´
3
2R

grdaQg
bcs . (C.3.9)

Let us start with the terms at order γab. We proceed by using the explicit expressions
for Xade, Xa, Ybcf and Za, the alignment of vielbeins, and computing separately the terms
at each order in β. At zeroth order in β the following equation holds thanks to (C.3.6)
with two indices contracted

0 “3
4η

arbγcf sηceBaω
e
bf `

1
2γ

ac
Bapω

g
gc ´ λcq `

3
4ηdhω

h
aepω

g
gc ´ λcqη

craγdes (C.3.10)

´
1
4η

abηceBaω
e
bf
γcf ´

1
4pω

g
ga ´ λaqη

abηceω
e
bf
γcf .
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At first order in β, we make use of (C.3.6) and (C.3.7) with two indices contracted to show

0 “3
4η

arbγcf sp´ηceηbhBaωQ
he
f ` ηadηcgβ

de
Beω

g
bf q (C.3.11)

`
1
2γ

ac
pηceBapωQ

de
d ´ ξ

e
q ` ηadβ

de
Bepω

g
gc ´ λcqq

`
3
4pηdhω

h
aeηcgpωQ

dg
d ´ ξ

g
q ´ ηdgηahωQ

hg
e pω

g
gc ´ λcqqη

craγdes

´
1
4pηceBaωQ

ae
f ´ ηceβ

be
Beω

e
bf
qγcf

´
1
4pω

g
ga ´ λaqηceωQ

ae
f γ

cf
`

1
4pωQ

db
d
´ ξbqηceω

e
bf
γcf .

At second order in β, we verify using (C.3.7) and (C.3.8) with two indices contracted

0 “ 3
24η

arbγcf spηbeηcgηfhBaR
egh
´ 6ηcgηbhηadβdeBeωQhgf q (C.3.12)

`
1
2γ

acηadβ
de
BeηcgpωQ

dg
d ´ ξ

g
q

´
1
8p6ηdgηahωQ

hg
e ηcf pωQ

bf
b ´ ξ

f
q ´ ηafηdgηehR

fgh
pωbbc ´ λcqqη

craγdes

`
1
8pηcgηfhBaR

agh
` 2ηcgηadβdeBeωQagf qγcf

`
1
8pω

d
da
´ λaqηcgηfhR

aghγcf `
1
4ηagpωQ

dg

d
´ ξgqηceωQ

ae
f γ

cf .

The terms at third order in β vanish without using any of the above identities

0 “ 3
24η

arbγcf sηbgηchηfiηadβ
de
BeR

ghi
`

1
8ηafηdgηehR

fghηcipωQ
bi
b ´ ξ

i
qηcraγdes (C.3.13)

´
1
8ηchηfiηadβ

de
BeR

ahiγcf ´
1
8ηagpωQ

dg

d
´ ξgqηcgηfhR

aghγcf ,

which concludes our verification that all terms in γab vanish.
We now turn to the terms coming with an antisymmetric product of four γ matrices.

For these, we first use

XabcXdef9δrdrgγhis
ef sηagηbhηci “ XabcXdef pη

adγbcef ` 4ηaeγbcfd ` 4ηbeγcafdq , (C.3.14)

and the explicit expressions of Xbcf and Ybcf . We then show that the resulting expression
vanishes order by order in β, using the alignment of vielbeins. Starting at zeroth order in
β, we have to prove

0 “ 1
4ηceBaω

e
bfγ

abcf (C.3.15)

`
1
16ηbgω

g
acηehω

h
df pη

adγbcef ` 4ηaeγbcfd ` 4ηbeγcafdq ´ 1
16η

adηbgω
g
acηehω

h
df
γbcef .
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This can be verified, thanks to (C.3.6). At first order in β, we use (C.3.7) to show that

0 “ ´1
4ηcepηbgBaωQ

ge
f ´ ηadβ

dg
Bgω

e
bf qγ

abcf
´

1
16pηbgω

g
acηehωQ

dh
f ` ηbhωQ

ah
c ηegω

g
af qγ

bcef

´
1
16pηbgω

g
acηehηdiωQ

ih
f ` ηbhηaiωQ

ih
c ηegω

g
df qpη

adγbcef ` 4ηaeγbcfd ` 4ηbeγcafdq . (C.3.16)

At second order in β, we verify using (C.3.8)

0 “ 1
24pηbgηchηfiBaR

ghi
´ 6ηchηbgηadβdeBeωQghf qγabcf (C.3.17)

`
1
96

´

6ηbhηagωQghc ηejηdiωQ
ij
f

` ηbgω
g
acηdhηeiηfjR

hij
` ηagηbhηciR

ghiηejω
j
df

¯

pηadγbcef ` 4ηaeγbcfd ` 4ηbeγcafdq

´
1
32p2ηadηbgωQ

ag
c ηehωQ

dh
f ´ ηbgω

g
acηehηfiR

ahi
´ ηbgηchR

aghηeiω
i
af qγ

bcef .

At third order in β, we show using (C.3.9) that

0 “ 1
24ηbeηciηfhηadβ

dg
BgR

eihγabcf (C.3.18)

´
1
96pηbhηagωQ

gh
c ηdiηejηfkR

ijk
` ηagηbhηckR

ghkηejηdiωQ
ij
f qpη

adγbcef ` 4ηaeγbcfd ` 4ηbeγcafdq

`
1
32ηadpηbhωQ

ah
c ηejηfgR

djg
` ηbhηcgR

ahgηejωQ
dj
f qγ

bcef .

Finally, the forth order in β vanishes as follows

0 “ 1
576ηagηbhηciR

ghiηdjηekηflR
jkl
pηadγbcef ` 4ηaeγbcfd ` 4ηbeγcafdq (C.3.19)

´
1
64ηadηbhηciR

ahiηegηfjR
dgjγbcef .

We thus have shown that all terms in γabcd vanish. From (C.3.5), we are then left only
with terms without any γ. We compute them and finally get

´
1
4Sε

`
“

«

1
2η

ac
Baω

g
gc `

1
4η

acωddaω
g
gc ´

1
4η

ebωhaeω
a
bh ´

1
2η

ac∇aλc `
1
4η

acλaλc (C.3.20)

`
1
2ηacβ

ae
BeωQ

gc
g `

1
4ηhgωQ

fh
e ωQ

eg
f `

1
4ηcgωQ

dc
d ωQ

fg
f `

1
4ηfgω

f
aeR

aeg

`
1
2ηab

q∇aξb `
1
4ηabξ

aξb ´
1
48ηecηbhηfgR

bfcRheg

ff

ε`

“´
1
4

˜

Rpg̃q `RQ ´
1
2R

acdf bcdηab ´
1
2R

2

´ 4pBφ̃q2 ` 4∇2φ̃´ 4pβabBbφ̃´ T aq2 ´ 4ηab q∇a
pβbcBcφ̃´ T bq

¸

ε` ,

where the last line, given also in (3.2.55), is obtained using (A.3.24), (A.3.25) and (3.2.24).
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C.4 Computation of Rab̄

We explain at the end of section 3.2.2 the main procedure to derive the equations of motion
in flat indices from the GG formalism. Here, we give some details on the computation of
the generalized Ricci tensor (3.2.58). We start from its expression (3.2.60). We observe
that all derivatives acting on the spinor ε` should vanish, since the generalized Ricci tensor
only acts on the spinor via a multiplication by a γ-matrix. One can therefore verify that

´

γaBaBb ´ γ
aηbgBaβ

ge
Be ´ γ

aηbgβ
ge
BaBe ` γ

aγghYbghBa (C.4.1)

` γaηadβ
dc
BcBb ´ γ

aηadηbgβ
dc
Bcβ

ge
Be ´ γ

aηadηbgβ
dc
Bcβ

ge
BcBe ` γ

aγghYbghηadβ
dc
Bc

`Xacdγ
acd
Bb ´Xacdγ

acdηbgβ
ge
Be ` γ

aXaBb ´ γ
aXaηbgβ

ge
Be

´ γaωc
ab
Bc ` γ

aωc
ab
ηcgβ

ge
Be ` γ

aηadω
dc
Q bBc ´ γ

aηadω
dc
Q bηcgβ

ge
Be

´
1
2γ

aηadηbfR
dfc
Bc `

1
2γ

aηadηbfR
dfcηcgβ

ge
Be

´ γaBbBa ´ γ
aηadBbβ

dc
Bc ´ γ

aηadβ
dc
BbBc ´ γ

acdXacdBb ´ γ
aXaBb

` γaηbgβ
ge
BeBa ` γ

aηadηbgβ
ge
Beβ

dc
Bc ` γ

aηadηbgβ
geβdcBeBc ` γ

acdXacdηbgβ
ge
Be ` γ

aXaηbgβ
ge
Be

´ γghγaYbghBa ´ γ
ghγaYbghηadβ

dc
Bc

¯

ε` “ 0 .

We are then left with γ-matrices acting on ε`. Using several identities on γ-matrices listed
in the appendix of [101], we obtain

1
2Rabγ

aε` “
`

pγagh ` 2ηargγhsqBaYbgh ` pγagh ` 2ηargγhsqηadβdcBcYbgh (C.4.2)

` rγacd, γghsXacdYbgh ` rγ
a, γghsXaYbgh

´ pγagh ` 2ηargγhsqωc
ab
Ycgh ` pγ

agh
` 2ηargγhsqηadωdcQ bYcgh

´
1
2pγ

agh
` 2ηargγhsqηadηbfRdfcYcgh

´ γacdBbXacd ´ γ
a
BbXa ` γ

acdηbgβ
ge
BeXacd ` γ

aηbgβ
ge
BeXa

˘

ε`

Similarly to the calculation of the scalar S in [101], we should then distinguish the different
orders in γ-matrices. Here, we only consider the lowest order in γa, and assume that all
higher orders vanish: this would be analogous to the computation of S, where the BI
(C.3.6) - (C.3.9) played an important role; we expect the same here. In addition, the
lowest order will be enough to obtain the equations of motion. Then at first order in γa,
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1
2Rabγ

a gives

ˆ

1
2Rba ´

1
2ηaeηbg

qRge
`

1
8ηaeηbgηifηcdR

igcRdfe
´

1
4ηaeηbge

2φ̃∇dpe
´2φ̃Rgde

q (C.4.3)

`∇b∇aφ̃´ ηaeηbg q∇g
pq∇eφ̃q ´ ηaeηbg q∇gT e

`
1
4ηbgBdQa

gd
`

1
4ηaeηbgBdQf

egηdf `
1
4ηaeηbgBdQf

edηgf ´
1
2ηaeBbQd

de

´
1
4ηaeβ

gc
Bcf

e
bg ´

1
4β

gc
Bcf

e
abηge ´

1
4β

gc
Bcf

e
agηbe `

1
2ηbgβ

gc
Bcf

d
da

`
1
4ηbgf

d
dcQa

gc
`

1
4ηaef

d
dcQb

ec
`

1
4ηbgηaeη

chfddcQh
eg

´
1
4ηaeQd

dcf ebc ´
1
4ηbhQd

dcfhac ´
1
4ηchQd

dcfhab

`
1
8ηbgf

g
cdQa

dc
`

1
8ηchf

h
bdQa

dc
`

1
8ηdhf

h
bcQa

dc

`
1
8ηaeηbgη

cff gcdQf
ed
`

1
8ηaef

h
gdQh

ed
`

1
8ηaeηdhη

cifhbcQi
ed

`
1
8ηaeηbgη

dff gcdQf
ec
`

1
8ηaeηchη

difhbdQi
ec
`

1
8ηaef

h
bcQh

ec

´
1
8ηaef

e
cdQb

dc
´

1
8ηaeηbgη

dhf ecdQh
gc
´

1
8ηaeηbgη

chf ecdQh
gd

´
1
8ηdef

e
acQb

dc
´

1
8ηbgf

e
acQe

gc
´

1
8ηbgη

chηdef
e
acQh

gd

´
1
8ηcef

e
adQb

dc
´

1
8ηbgη

dhηcef
e
adQh

gc
´

1
8ηbgf

e
adQe

gd

´ ηae∇bp
q∇eφ̃q ´ ηae∇bT

e
` ηbg q∇g∇aφ̃

´
1
2ηaeηbgηfcR

gfeT c ` 1
4ηaeηbgηdfe

2φ̃
q∇d
pe´2φ̃Rgfe

q

˙

γa .
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By considering aligned vielbeins, the previous expression reduces to

ˆ

1
2Rba ´

1
2ηaeηbg

qRge
`

1
8ηaeηbgηifηcdR

igcRdfe
´

1
4ηaeηbge

2φ̃∇dpe
´2φ̃Rgde

q (C.4.4)

`∇b∇aφ̃´ ηaeηbg q∇g
pq∇eφ̃q ´ ηaeηbg q∇gT e

`
1
2BdQpa

gdηbqg `
1
4ηaeηbgη

df
BdQf

eg
´

1
2ηaeBbQd

de

´
1
4β

gc
Bcf

e
abηge `

1
2β

gc
Bcf

e
gpaηbqe `

1
2ηbgβ

gc
Bcf

d
da

`
1
2f

d
dcQpa

gcηbqg `
1
4ηbgηaeη

chfddcQh
eg
`

1
2Qd

dcf ecpaηbqe ´
1
4ηchQd

dcfhab

`
1
4f

g
cdQra

dcηbsg `
1
2ηeraf

h
bsdQi

ecηchη
di
`

1
2ηeraf

h
bscQh

ec

´ ηae∇bpq∇eφ̃q ´ ηae∇bT e ` ηbg q∇g∇aφ̃

´
1
2ηaeηbgηfcR

gfeT c ` 1
4ηaeηbgηdfe

2φ̃
q∇d
pe´2φ̃Rgfe

q

˙

γa .

We can further simplify the above using the following identities. First, one can show

ηgpa q∇g∇bqφ̃´ ηgpa∇bqp
q∇gφ̃q “ 0 , ´ηeraηbsg q∇g

pq∇eφ̃q “
1
2ηeraηbsgR

ged∇dφ̃ , (C.4.5)

where the second one cancels the term coming from ´1
4ηaeηbge

2φ̃∇dpe
´2φ̃Rgdeq. In addition,

three terms antisymmetric in pa, bq at second order in β vanish thanks to the following
identity using (C.3.7) and (C.3.8)3

´
1
2ηeraηbsg

qRge
´ ηeraηbsg q∇gT e ´ 1

4ηaeηbg∇dR
gde
“ 0 , (C.4.6)

and the seven terms symmetric in pa, bq at linear order in β cancel using (C.3.6) and (C.3.7)

1
2BdQpa

gdηbqg ´
1
2ηepaBbqQd

de
`

1
2β

gc
Bcf

e
gpaηbqe `

1
2β

gc
Bcf

d
dpaηbqg (C.4.7)

´ηepa∇bqT e `
1
2f

d
dcQpa

gcηbqg `
1
2Qd

dcf ecpaηbqe “ 0 .

3One also has the identity 2 qRrabs “ ´∇cRcab [82], related to (C.3.8).
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Using all those, we are finally left with the following expression for 1
2Rabγ

a at first order in
γ-matrices, that we give also in (3.2.61)

´1
2Rba ´

1
2ηepaηbqg

qRge
`

1
8ηaeηbgηifηcdR

igcRdfe (C.4.8)

`∇b∇aφ̃´ ηepaηbqg q∇g
pq∇eφ̃q ´ ηepaηbqg q∇gT e

`
1
4ηaeηbgη

df
BdQf

eg
´

1
2ηeraBbsQd

de
´

1
4β

gc
Bcf

e
abηge `

1
2β

gc
Bcf

d
draηbsg

`
1
4ηbgηaeη

chfddcQh
eg
´

1
4ηchQd

dcfhab

`
1
4f

g
cdQra

dcηbsg `
1
2ηeraf

h
bsdQi

ecηchη
di
`

1
2ηeraf

h
bscQh

ec

´ ηera∇bsp
q∇eφ̃q ´ ηera∇bsT e ` ηgrb q∇g∇asφ̃

´
1
2ηaeηbgηfcR

gfeT c ` 1
4ηaeηbgηdfe

2φ̃
q∇d
pe´2φ̃Rgfe

q

¯

γa .

C.5 Relation to the subcase with the simplifying as-
sumption

A simplifying assumption was considered in [84], given by the conditions βmnBn¨ “ 0,
where the dot stands for any field, and Bpβnp “ 0. This provided a simple Lagrangian,
corresponding to a subcase of β-supergravity: one can reduce L̃β to the former upon the
assumption. Let us study here the simplification of the equations of motion. First, the
assumption leads to Rabc “ 0 and T a “ 0. In addition, the Q-flux gets reduced as in
(5.2.43), implying that Qa

ab “ 0 and Qc
haf bha “ 0. The dilaton equation of motion

(1.4.12) and the Einstein equation (1.4.13), boil down to
1
4

´

Rpg̃q ` qRpg̃q
¯

´ pBφ̃q2 `∇2φ̃ “ 0 , (C.5.1)

Rab ´ ηcpaηbqd qRcd
` 2∇a∇bφ̃ “ 0 , (C.5.2)

where qR and qRab can be further simplified using (A.3.27) and (D.2.8). The β equation of
motion (1.4.14) becomes

Qa
gffagrcηesf `

1
2ηefηcdη

gkQg
fdfaak ` ηgiη

abQa
dgf ibreηcsd (C.5.3)

“ ´
1
2ηefηcdη

ab
BaQb

fd
` ηabηcdηef∇bβ

fd
Baφ̃` 2βabηarc∇esBbφ̃ ,

where the last term does not vanish due to the connection terms. Using for the penultimate
term (??) and for the last term the different definitions, one can show that all explicit
dependence on β vanishes with the assumption, leaving the β equation of motion as

ηefηcdη
gkQg

fdfaak ` 2ηgiηabQa
dgf ibreηcsd ` e

2φ̃ηefηcdη
ab
Bape

´2φ̃Qb
fd
q (C.5.4)

` 2Qa
gffagrcηesf “ 0 .
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The last term can be simplified further by the assumption towards 2Qa
gf ẽamηf rcBesẽ

m
g. It

is interesting to compare this equation (C.5.4) to the one obtained in [84]:

Bmpe
´2φ̃

a

|g̃| g̃mng̃pqg̃rsBnβ
qs
q “ 0 . (C.5.5)

This comparison was initiated in curved indices in [84]. Here, we turn (C.5.5) into flat
indices and get, using the assumption,

ηefηcdη
gkQg

fdfaak ` 2ηgiηabQa
dgf ibreηcsd ` e

2φ̃ηefηcdη
ab
Bape

´2φ̃Qb
fd
q (C.5.6)

` 2Qa
gfηgdη

ab ẽdmηf reBcsẽ
m
b “ 0 .

We see that (C.5.4) and (C.5.6) do not match: they differ by their second rows, i.e. their
last term. This fact can be understood as follows: applying the simplifying assumption to
the Lagrangian and deriving the β equation of motion do not commute. This can be seen
for instance on a Lagrangian term like βmnBng̃pqBqg̃mp, that would contribute to (C.5.4)
but not to (C.5.6). This problem does not affect the other equations of motion (one can
verify directly the matching) because the assumption does not involve the other fields.
So to conclude, the correct β equation of motion for field configurations satisfying the
simplifying assumption of [84] is (C.5.4) and not (C.5.5). Note though that for the toroidal
example and the Q-brane, the two differing terms vanish.



Appendix D

Bianchi identities and NS-branes

D.1 Derivation of BI from the Spinpd, dqˆR` covariant
derivative

In section 5.1.2, we introduced a Spinpd, dqˆR` derivative and its associated Dirac operator
in (5.1.17). Before studying its nilpotency condition (5.1.31), let us first give some details
on how to compute a piece of it, namely D2. This piece is given by

D2 “
1
4ΩABCΓABC

“
1
4ΩrABCsΓAΓBΓC , (D.1.1)

where the index B is lowered by an Opd, dq metric. To compute this antisymmetry, we use

ΩABCΓB
” ΩA

D
C ηDBΓB

“
1
2
`

ΩA
b
CΓb ` ΩAbCΓb

˘

. (D.1.2)

One then obtains for instance

pΩABC ´ ΩACBqΓAΓBΓC
“ ΓA

pΩAbcΓbΓc ` ΩA
bcΓbΓc ` ΩA

b
cΓbΓc ´ ΩA

c
bΓbΓcq , (D.1.3)

using the antisymmetry properties of the connection coefficient [101]. The six terms from
ΩrABCs can be grouped two by two to use the above formula, and further combinations give

D2 “
8
24

´

3Ωrabcsẽa^ ẽb^ ẽc^ (D.1.4)

` 2Ωrabcsẽa^ ιb ẽc^`2Ωrbcasẽa^ ẽb^ ιc ` 2Ωrcabsιa ẽb^ ẽc^

` 2Ωrabcsιa ẽb^ ιc ` 2Ωrbcasιa ιb ẽc^`2Ωrcabsẽa^ ιb ιc

` 3Ωrabcsιa ιb ιc
¯

,

where we also set some connection coefficients to zero following [101], and the Γ-matrices
have been rewritten with the Clifford map of section 5.1.2. Using the commutation proper-
ties of forms and contractions, and the value of the connection coefficients derived in [101],
one obtains eventually the two D2 given in section 5.1.2.
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We now turn to the derivation of the Bianchi identities using the nilpotency condition
(5.1.31) on the Dirac operator D (5.1.17). We focus only on the β-supergravity case, and
use the expressions for the three parts D1, D2 and D3 given in section 5.1.2. We start with
D2, that we showed to be related to the derivative D7 of [86]. As mentioned in (5.1.13), the
vanishing square of this last derivative is known to reproduce the BI for constant fluxes,
together with an additional constraint. So this piece should be a good starting point. That
square, acting on a p-form A, was computed explicitly in [86] and can be translated here
as follows (we use conventions of appendix A.1)

1
4D

2
2A “ D2

7A “`
1
4f

g
gdf

d
abẽ

a
^ ẽb ^ A (D.1.5)

`
1
2f

d
gaf

g
bcẽ

a
^ ẽb ^ ẽc ^ ιdA

`
1
4f

g
gdQa

daA

´
1
2pf

b
cdQa

cd
` f ccdQa

db
` f bdaQc

cd
qẽa ^ ιbA

`
1
4

´

4f cgaQb
gd
` f gabQg

cd
¯

ẽa ^ ẽb ^ ιcιdA

´
1
2

´

facdR
cdb
`

1
2f

c
cdR

dab
`

1
2Qc

cdQd
ab
¯

ιaιbA

´
1
2

´

fdgaR
gbc
`Qg

bcQa
gd
¯

ẽa ^ ιbιcιdA

´
1
4Qg

abRgcdιaιbιcιdA .

Let us now add to D2 the derivative part D1

1
4

´

D2
1 `D1D2 `D2D1

¯

A “´
1
2Baf

d
dbẽ

a
^ ẽb ^ A´

1
2Baf

d
bcẽ

a
^ ẽb ^ ẽc ^ ιdA (D.1.6)

`
1
2

´

βacfdcaBd ´ β
def ggdBe `Qd

db
Bb ´ β

de
Bef

g
gd

¯

A

`

´

´ βdeBef
b
da `

1
2pBaQd

db
` βbeBef

d
daq

¯

ẽa ^ ιbA

´
1
2

´

BaQb
cd
´ βgcBgf

d
ab

¯

ẽa ^ ẽb ^ ιcιdA

`
1
6

´

´ 3βdcBcQd
ab
` 3βacBcQd

db
¯

ιaιbA

`
1
6

´

BaR
bcd
´ 3βebBeQa

cd
¯

ẽa ^ ιbιcιdA

´
1
6β

ga
BgR

bcdιaιbιcιdA .

Bringing indices in the right order and writing out antisymmetries, we obtain a set of
identities by adding the above to 1

4D
2
2. Among those are already present our four BI

(5.1.1) - (5.1.4). However the additional identities are independent and non-trivial; they
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contain in particular derivatives acting on A. To get rid of those, the missing part D3 of
the Dirac operator is then necessary. Note that this last part contains terms that include
the dilaton. So the additional terms to the square are

1
4

´

D1D3 `D3D1 `D2D3 `D3D2 `D2
3

¯

A (D.1.7)

“

´

´
1
4f

g
gdf

d
ab `

1
2f

c
abBcφ̃`

1
2Baf

d
db ´ BaBbφ̃

¯

ẽa ^ ẽb ^ A

`

´1
4Qd

daf gga ´
1
2f

d
dapβ

ab
Bbφ̃´ T aq ´

1
2Qd

da
Baφ̃` Baφ̃pβ

ab
Bbφ̃´ T aq `

1
2Qd

da
Ba

` T aBa `
1
2β

ac
Bcf

d
da `

1
2β

acfddaBc ´ β
ac
BcBaφ̃`

1
2f

g
gdpβ

dc
Bcφ̃´ T dq ´

1
2Qd

da
Baφ̃

¯

A

`

´1
2BaQd

db
´ Bapβ

bc
Bcφ̃´ T bq ´

1
2β

bc
Bcf

d
da ´ β

bc
BcBaφ̃

` f bdapβ
dc
Bcφ̃´ T dq `Qa

bc
Bcφ̃`

1
2f

b
adQg

gd
´

1
2f

g
gcQa

bc
¯

ẽa ^ ιbA

`
1
2

´

βacBcQd
db
´ 2βacBcpβbdBdφ̃´ T bq

`
1
2f

g
gdR

abd
´Rabd

Bdφ̃´
1
2Qd

abQg
gd
`Qd

ab
pβdcBcφ̃´ T dq

¯

ιaιbA .
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All these contributions add-up to the following identities

1
2Braf

d
bsd `

1
4f

g
gdf

d
ab ´

1
4f

g
gdf

d
ab `

1
2f

c
abBcφ̃´

1
2Braf

d
bsd ´ BraBbsφ̃ “ 0 (D.1.8)

´
1
2Braf

d
bcs `

1
2f

d
graf

g
bcs “ 0 (D.1.9)

1
2pβ

acfdcaBd ´ β
def ggdBe `Qd

db
Bb ´ β

de
Bef

g
gdq `

1
4f

g
gdQa

da
`

1
4Qd

daf gga

´
1
2f

d
dapβ

ab
Bbφ̃´ T aq ´

1
2Qd

da
Baφ̃` Baφ̃pβ

ab
Bbφ̃´ T aq `

1
2Qd

da
Ba ` T aBa

`
1
2β

ac
Bcf

d
da `

1
2β

acfddaBc ` β
ac
BcBaφ̃`

1
2f

g
gdpβ

dc
Bcφ̃´ T dq ´

1
2Qd

da
Baφ̃ “ 0 (D.1.10)

´βdeBef
b
da `

1
2pBaQd

db
` βbeBef

d
daq ´

1
2pf

b
cdQa

cd
` f ccdQa

db
` f bdaQc

cd
q

`
1
2BaQd

db
´ Bapβ

bc
Bcφ̃´ T bq ´

1
2β

bc
Bcf

d
da ´ β

bc
BcBaφ̃

`f bdapβ
dc
Bcφ̃´ T dq `Qa

bc
Bcφ̃`

1
2f

b
adQg

gd
´

1
2f

g
gcQa

bc
“ 0 (D.1.11)

´
1
2pBraQcs

de
´ βgrdBgf

es
acq `

1
4p´4f rdgraQcs

esg
` f gacQg

de
q “ 0 (D.1.12)

1
6p´3βdcBcQd

ab
` 3βcraBcQd

bsd
q ´

1
2pf

ra
cdR

bscd
`

1
2f

c
cdR

dab
`

1
2Qc

cdQd
ab
q

`
1
2pβ

ac
BcQd

db
´ 2βacBcpβbdBdφ̃´ T bq

`
1
2f

g
gdR

abd
´Rabd

Bdφ̃´
1
2Qd

abQg
gd
`Qd

ab
pβdcBcφ̃´ T dqq “ 0 (D.1.13)

1
6pBaR

bcd
´ 3βerbBeQa

cds
q ´

1
2p´R

grbcfdasg `Qa
grdQg

bcs
q “ 0 (D.1.14)

´
1
6β

gra
BgR

bcds
´

1
4Qg

rabRcdsg
“ 0 . (D.1.15)

Using in particular the expression of T a in terms of the other fluxes, (D.1.10), (D.1.11)
and (D.1.13) can be simplified respectively to

´
1
2Qd

daf gga “ 0 (D.1.16)

´
3
2β

de
Bref

b
das `

3
2β

def bhraf
h
eds “ 0 (D.1.17)

´
1
2β

dc
BcQd

ab
´

1
2β

cdβgraBgf
bs
cd ´ β

dcQc
graf bsdg `

1
4β

dcQg
abf gcd “ 0 . (D.1.18)

In addition, (D.1.8) simply vanishes. We are then left with seven identities, namely (D.1.9),
(D.1.16), (D.1.17), (D.1.12), (D.1.18), (D.1.14) and (D.1.15), that we respectively give in
(5.1.32) - (5.1.38). As we show there, only five of those are independent and give our four
BI (5.1.1) - (5.1.4) together with the expected scalar condition.
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D.2 The Q-brane background
TheNS5-brane and theKK monopole are known vacua of standard supergravity (SUGRA).
We verify explicitly in this appendix that the Q-brane, given in sections 5.2.1 and 5.2.3,
satisfies the equations of motion of β-supergravity. We recall that this makes the Q-brane
a vacuum of standard SUGRA as well. As discussed in section 3.1 and appendix C.5, for a
field configuration satisfying βmnBn¨ “ 0 and Bpβnp “ 0, β-supergravity gets simplified to
the theory worked out in [84]. These two conditions turn out to be verified by the Q-brane,
even at the singularity. Using this property, the Q-brane was verified in [85] to solve the
simple equations of motion of [84]. We show however in appendix C.5 that the β equation
of motion of [84] is a priori not correct. In addition, the warp factor was considered in
[85] to be harmonic, which only holds away from the singularity. Here we will get some
new information at the singularity. So we start with the full equations of motion of β-
supergravity, obtained in this paper in flat indices. Using the two above conditions, the
three equations of motion have been simplified towards (C.5.1), (C.5.2), and (C.5.4).

For the Q-brane, given the non-zero components of the fluxes, each term of the β
equation of motion (C.5.4) simply vanishes because of the indices contractions: it is trivially
satisfied. So let us turn to the dilaton equation of motion (C.5.1). One computes

R “ ´5
2f

´3
pBρfq

2
` f´2∆2f , qR “ ´1

2f
´3
pBρfq

2 , (D.2.1)

pBφ̃q2 “
1
4f

´3
pBρfq

2 , ∇2φ̃ “ f´3
pBρfq

2
´

1
2f

´2∆2f . (D.2.2)

Note that in these expressions and the following ones, the LHS is given in flat indices,
whereas the RHS involves derivatives in curved indices. One way to compute ∇2φ̃ is to
use

ηab∇aVb “ ηabBaVb ` η
cdf bbcVd . (D.2.3)

This leads to
1
4

´

Rpg̃q ` qRpg̃q
¯

´ pBφ̃q2 `∇2φ̃ “ ´
1
4f

´2∆2f . (D.2.4)

So away from the singularity, (C.5.1) is satisfied, since ∆2f “ 0 for ρ ą 0. At the
singularity, we get a δ, which is expected. Indeed, one should in principle add a source
action to the bulk action, and the former would contribute to the equations of motion by
a δ within the energy-momentum tensor. This is what we obtain here.

Finally, we focus on the simplified Einstein equation (C.5.2). The only non-zero com-
ponents of the Ricci tensor in flat indices are

Rxx “ Ryy “ ´f
´3
pBρfq

2
`

1
2f

´2∆f (D.2.5)

Rρρ “ ´
3
2f

´3
pBρfq

2
`

1
2f

´2
B

2
ρf ´

1
2f

´2ρ´1
Bρf (D.2.6)

Rϕϕ “ f´3
pBρfq

2
´

1
2f

´2
B

2
ρf `

1
2f

´2ρ´1
Bρf . (D.2.7)
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The other curvature tensor takes the form

qRab
“ βcdBdωQ

ab
c ´ β

ad
BdωQ

cb
c ` ωQ

ab
c ωQ

dc
d ´ ωQ

ca
d ωQ

db
c ´

1
2R

adcf bdc » ´ωQ
ca
d ωQ

db
c ,

(D.2.8)

where the last equality is obtained thanks to the aforementioned simplifications verified by
the Q-brane. The non-zero components are

qRxx
“ qRyy

“ ´
1
2pQϕ

yx
q
2
“ ´

1
2f

´3
pBρfq

2 (D.2.9)

qRϕϕ
“

1
2f

´3
pBρfq

2 , qRρρ
“ 0 . (D.2.10)

In addition the dilaton terms in flat indices yield

∇x∇xφ̃ “ ´ω
ρ
xxf

´ 1
2Bρφ̃ “

1
4f

´3
pBρfq

2 (D.2.11)

∇y∇yφ̃ “ ´ω
ρ
yyf

´ 1
2Bρφ̃ “

1
4f

´3
pBρfq

2 (D.2.12)

∇ρ∇ρφ̃ “ f´
1
2Bρpf

´ 1
2Bρφ̃q “ ´

1
2f

´ 1
2Bρpf

´ 3
2Bρfq “

3
4f

´3
pBρfq

2
´

1
2f

´2
B

2
ρf (D.2.13)

∇ϕ∇ϕφ̃ “ ´ω
ρ
ϕϕf

´ 1
2Bρφ̃ “ ´

1
4f

´3
pBρfq

2
´

1
2f

´2ρ´1
Bρf , (D.2.14)

from which we eventually deduce

Rxx ´ qRxx
` 2∇x∇xφ̃ “

1
2f

´2∆f (D.2.15)

Ryy ´ qRyy
` 2∇y∇yφ̃ “

1
2f

´2∆f (D.2.16)

Rρρ ´ qRρρ
` 2∇ρ∇ρφ̃ “ ´

1
2f

´2∆f (D.2.17)

Rϕϕ ´ qRϕϕ
` 2∇ϕ∇ϕφ̃ “ ´

1
2f

´2∆f . (D.2.18)

As explained for the dilaton equation of motion (D.2.4), the above equations vanish away
from the singularity as (C.5.2), and receive at the singularity an energy-momentum tensor
contribution in the form of a δ, due to the Q-brane action to be added.



Appendix E

Compactification and pure spinors
conditions

E.1 Consequences of the compactification ansatz
From the compactification ansatz of the ten-dimensional fields given in section 6.1.2, we
compute here the various components of the fluxes; we recall they are defined as

fABC “ 2ẽAMBrB ẽMCs , QA
BC
“ BAβ

BC
´2βDrBfCsAD , RABC

“ 3ẽAM ẽBN ẽCPβQrMBQβNP s .

We get

fαβγ “ 2ẽαµBrβ ẽµγs , fabc “ 2ẽamBrbẽmcs , fαbγ “ ´δαγ BbA , fαβc “ δαβBcA , (E.1.1)
faβγ “ faβc “ fabγ “ fαbc “ 0 ,
Qa

bc
“ Baβ

bc
´ 2βdrbf csad , Qα

bγ
“ ´δγαβ

db
BdA , Qα

βc
“ δβαβ

dc
BdA , (E.1.2)

Qα
βγ
“ Qa

βγ
“ Qa

βc
“ Qa

bγ
“ Qα

bc
“ 0 ,

Rabc
“ 3βdra∇dβ

bcs , any other component of RABC
“ 0 . (E.1.3)

From those we obtain the components of the two ten-dimensional spin connections (in flat
indices)

ωBAC ηBD “
1
2pηBDf

B
AC ` ηCEf

E
DA ` ηAEf

E
DCq , (E.1.4)

ωβαγ ηβδ “
1
2pηβδf

β
αγ ` ηγεf

ε
δα ` ηαεf

ε
δγq , (E.1.5)

ωbac ηbd “
1
2pηbdf

b
ac ` ηcef

e
da ` ηaef

e
dcq ,

ωbαγ ηbd “ ´ηαγBdA , ωα
β
c ηβδ “ ηαδBcA ,

ωbαc “ ωβaγ “ ωbaγ “ ωβac “ 0 ,



158 E. Compactification and pure spinors conditions

ωQ
AD
B ηDC “

1
2pηCDQB

AD
` ηBDQC

DA
` ηBDηCEη

AFQF
DE
q , (E.1.6)

ωQ
ad
b ηdc “

1
2pηcdQb

ad
` ηbdQc

da
` ηbdηceη

afQf
de
q , (E.1.7)

ωQ
αδ
b ηδγ “ ´δ

α
γ ηbdβ

ed
BeA , ωαQβ

d ηdc “ δαβηcdβ
ed
BeA ,

ωQ
αγ
β “ ωQ

αc
b “ ωQ

aγ
b “ ωQ

ac
β “ ωQ

aγ
β “ 0 .

As discussed in section 6.1.2, the ten-dimensional Γ-matrices satisfying the Clifford
algebra tΓA,ΓBu “ 2ηAB are decomposed as follows

ΓA “
#

Γα “ γα b 1, α “ 0, . . . , 3
Γa “ γp4q b γ

a, a “ 4, . . . , 9
. (E.1.8)

The six-dimensional γa and four-dimensional γα satisfy as well the Clifford algebra, and
are constant. In addition, the γa are purely imaginary and Hermitian: γa: “ γa. The
chirality operators are given by γp6q “ ´iγ4...9 and γp4q “ iγ0...3; they square to the identity
and anticommute with the other γ-matrices. γp6q is also Hermitian.

Given this decomposition, we compute the following combinations

Γαβ “γαβ b 1 , Γab “ 1b γab , (E.1.9)

Γaβ “1
2
`

pγp4q b γ
a
qpγβ b 1q ´ pγβ b 1qpγp4q b γ

a
q
˘

“ ´γβγp4q b γ
a .

Together with the above components of spin connections, this leads to the following com-
ponents of the spinorial covariant derivatives

∇A“a “ 1b∇a , q∇A“a
“ 1b q∇a , (E.1.10)

∇A“α “ ∇α b 1`
1
2ωα

b
γηbdΓdγ “ ∇α b 1`

1
2ηαβγ

βγp4q b γ
d
BdA , (E.1.11)

q∇A“α
“

1
2ω

α
Qc

βηβδΓδc “
1
2γ

αγp4q b γ
cηcdβ

de
BeA . (E.1.12)

These are used in the SUSY variations in section 6.1.2.

E.2 Reformulation of the supersymmetry conditions
with pure spinors

We introduce in section 6.1.3 the pure spinors Φ˘ in terms of which we want to reformulate
the supersymmetry (SUSY) conditions (6.1.16) - (6.1.18). To do so, we will use the Clifford
map (6.1.22), and some of its properties that we first detail here, before starting the
reformulation. For a k-form Ak, the Clifford map gives the following rules

γa {Ak “ ((((
((((pẽa ^`ηabιbqAk , {Akγ

a
“ p´1qk((((((

((
pẽa ^´ηabιbqAk , (E.2.1)
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that come from identities on γ-matrices, such as

tγb, γa1...aku “ 2γba1...ak for k even , rγb, γa1...aks “ 2γba1...ak for k odd . (E.2.2)

One subtlety in the Clifford map is due to the fact that the ẽa are real while the γa are
purely imaginary. This makes a difference when considering a complex conjugation on
forms of odd degree: one has

η1
´ b η

2:
´ “ {Φ` “ ��Φ` , η1

´ b η
2:
` “ {Φ´ “ ´ ��Φ´ , (E.2.3)

implying
Repµ {Φ´q “ i ����

�ImpµΦ´q . (E.2.4)
We now use these properties, as well as the hermitian conjugation of γ-matrices

γa: “ γa ,
`

γab
˘:
“ ´γab ,

`

γabc
˘:
“ ´γabc , (E.2.5)

to compute the exterior derivative on the pure spinors (6.1.23). We also use the bispinor
expressions, and the SUSY conditions (6.1.17) and (6.1.18) in type IIB. We obtain

2��dΦ` “tγa,∇a {Φ`u (E.2.6)
“ {∇η1

` b η
2:
` ` γ

aη1
` b

`

∇aη
2
`

˘:
`∇aη

1
` b η

2:
` γ

a
` η1

` b
`

{∇η2
`

˘:

“

ˆˆ

{q∇´ 1
4
{R ´ {B

`

2A´ φ̃
˘

` {β
B

`

2A` φ̃
˘

´ {T
˙

η1
` ´ 2e´Aµη1

´

˙

b η2:
`

`γaη1
` b

ˆ

ηab q∇bη2
` `

1
8ηadηbeηcfR

defγbcη2
`

˙:

`

ˆ

´ηab q∇bη1
` `

1
8ηadηbeηcfR

defγbcη1
`

˙

b η2:
` γ

a

`η1
` b

ˆˆ

´ {q∇´ 1
4
{R ´ {B

`

2A´ φ̃
˘

´ {β
B

`

2A` φ̃
˘

` {T
˙

η2
` ´ 2e´Aµη2

´

˙:

“ {q∇η1
` b η

2:
` ` ηabγ

aη1
` b

´

q∇bη2
`

¯:

´ ηab q∇bη1
` b η

2:
` γ

a
´ η1

` b

´

{q∇η2
`

¯:

´
1
4
{Rη1
` b η

2:
` `

1
4η

1
` b η

2:
`
{R ´

1
8ηadγ

aη1
` b η

2:
` γ

bcηbeηcfR
def
`

1
8ηadηbeηcfR

defγbcη1
` b η

2:
` γ

a

´t{B
`

2A´ φ̃
˘

, {Φ`u ` r{βB
`

2A` φ̃
˘

´ {T , {Φ`s ´ 4e´A Repµ {Φ´q .

We rewrite the R-flux terms via the above rules: denoting ẽa ^˘ηabιb by ẽ˘ ι, we get

´
1
4r
{R, {Φ`s ´

1
8ηadγ

a {̃Φ`γbcηbeηcfRdef
`

1
8ηadηbeηcfR

defγbc {Φ`γa (E.2.7)

“´
1
8ηadηbeηcfR

def

ˆ

1
3
`

pẽ` ιq3 ´ pẽ´ ιq3
˘

` pẽ` ιqpẽ´ ιq2 ´ pẽ` ιq2pẽ´ ιq

˙abc

Φ`

“´
1
3R

abcιaιbιcΦ` ,
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where the last two lines should be overall slashed. ẽ and ι with different indices anticom-
mute, and the R-flux is antisymmetric, so maintaining the indices a, b, c fixed allows to
commute ẽ and ι in the second line. With notations of the Introduction and appendix A.2,
we finally obtain

2��dΦ` “rγa, q∇a {Φ`s ´ t{B
`

2A´ φ̃
˘

, {Φ`u ` r{βB
`

2A` φ̃
˘

´ {T , {Φ`s ´ 2�����R _ Φ` ´ 4e´A i ����
�ImpµΦ´q

“2
´

q∇a
¨ ιa ´ Ba

`

2A´ φ̃
˘

ẽa ^`
`

βabBb
`

2A` φ̃
˘

´ T a
˘

ιa ´R_
¯

Φ` ´ 4e´A i ImpµΦ´q ,

where the last line should be overall slashed. We compute similarly

2��dΦ´ “rγa,∇a {Φ´s (E.2.8)
“ {∇η1

` b η
2:
´ ` γ

aη1
` b

`

∇aη
2
´

˘:
´∇aη

1
` b η

2:
´ γ

a
´ η1

` b
`

{∇η2
´

˘:

“

ˆˆ

{q∇´ 1
4
{R ´ {B

`

2A´ φ̃
˘

` {β
B

`

2A` φ̃
˘

´ {T
˙

η1
` ´ 2e´Aµη1

´

˙

b η2:
´

`γaη1
` b

ˆ

ηab q∇bη2
´ `

1
8ηadηbeηcfR

defγbcη2
´

˙:

´

ˆ

´ηab q∇bη1
` `

1
8ηadηbeηcfR

defγbcη1
`

˙

b η2:
´ γ

a

´η1
` b

ˆˆ

´ {q∇´ 1
4
{R ´ {B

`

2A´ φ̃
˘

´ {β
B

`

2A` φ̃
˘

` {T
˙

η2
´ ` 2e´Aµη2

`

˙:

“tγa, q∇a {Φ´u ´
1
8
`

2t {R, {Φ´u ` ηadγa {Φ´γbcηbeηcfRdef
` ηadηbeηcfR

defγbc {Φ´γa
˘

´r{B
`

2A´ φ̃
˘

, {Φ´s ` t{βB
`

2A` φ̃
˘

´ {T , {Φ´u ´ 4e´AµRe
`

{Φ`
˘

,

and as above

´
1
8
`

2t {R, {Φ´u ` ηadγa {Φ´γbcηbeηcfRdef
` ηadηbeηcfR

defγbc {Φ´γa
˘

(E.2.9)

“´
1
8ηadηbeηcfR

def

ˆ

1
3
`

pẽ` ιq3 ´ pẽ´ ιq3
˘

` pẽ` ιqpẽ´ ιq2 ´ pẽ` ιq2pẽ´ ιq

˙abc

Φ´

“´
1
3R

abcιaιbιcΦ´ ,

where the last two lines should be slashed, as well as the following resulting one

2dΦ´ “2
´

q∇a
¨ ιa ´ Ba

`

2A´ φ̃
˘

ẽa ^`
`

βabBb
`

2A` φ̃
˘

´ T a
˘

ιa ´R_
¯

Φ´ ´ 4e´AµRe pΦ`q .

Using the Clifford map backwards, we finally get for type IIB two equations on forms

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ`
¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ` “ ´2e´A i ImpµΦ´q

(E.2.10)

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ´
¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ´ “ ´2e´AµRepΦ`q .

(E.2.11)
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This calculation can be done as well in type IIA: the difference comes from the SUSY
conditions (6.1.17) and (6.1.18) where one has to change the chirality of η2. The above
computation can be reproduced almost identically considering dΦ` in place of dΦ´ and
vice versa: this replaces η2

˘ into one another, and the type IIA SUSY conditions can
then be used, leading simply to an exchange of Φ` and Φ´ in the computation. Doing so,
commutators and anti-commutators get exchanged because of the even/odd degree change,
but this goes through without issue; in particular we get eventually the same R-flux term,
since (E.2.7) and (E.2.9) give the same resulting action on the pure spinors. The only
difference in the process may appear in the µ-terms, because of (E.2.3), and in the signs
induced by the (anti)-commutators. In the end, we obtain in type IIA

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ´
¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ´ “ 2e´A i ImpµΦ`q

(E.2.12)

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ`
¯

` e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ` “ 2e´Aµ RepΦ´q .

(E.2.13)

The above computation should in principle be completed by RR contributions, that
we do not have here; we would still like to obtain the result as if they were present. We
thus follow closely the analogous computation done for standard SUGRA with RR fluxes
in [26] (the result is even specified there not to hold without RR), and we perform an
additional step, which in absence of RR may not look required. It involves the SUSY
condition (6.1.16), that has not been used so far. From that condition in type IIB, we
obtain

0 “ η1
´ b

`

µ η2
´ ` e

A
`

{BA´ {β
B
A
˘

η2
`

˘:˚
“ µ {Φ´ ´ eA {Φ`

`

{BA´ {β
B
A
˘

(E.2.14)
0 “

`

µ η1
´ ` e

A
`

{BA` {β
B
A
˘

η1
`

˘˚
b η2:

´ “ µ {Φ´ ´ eA
`

{BA` {β
B
A
˘

{Φ` , (E.2.15)

from which we deduce

0 “ 2 Repµ {Φ´q ´ eAt{BA, {Φ`u ´ eAr{βBA, {Φ`s (E.2.16)

ÐÑ 0 “ e´A i ImpµΦ´q ´ e´A
´

d´ q∇a
¨ ιa

¯

peAqΦ` . (E.2.17)

We subtract this quantity on the RHS of (E.2.10) and get

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ`
¯

`e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ` (E.2.18)

“ ´3e´A i ImpµΦ´q ` e´A
´

d´ q∇a
¨ ιa

¯

peAqΦ` .

In type IIA, we proceed similarly with the SUSY condition (6.1.16)

0 “ η1
´ b

`

µ η2
` ` e

A
`

{BA´ {β
B
A
˘

η2
´

˘:˚
“ µ {Φ` ´ eA {Φ´

`

{BA´ {β
B
A
˘

(E.2.19)
0 “

`

µ η1
´ ` e

A
`

{BA` {β
B
A
˘

η1
`

˘˚
b η2:

` “ µ {Φ` ´ eA
`

{BA` {β
B
A
˘

{Φ´ , (E.2.20)
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to get

0 “ 2 i Impµ {Φ`q ´ eAr{BA, {Φ´s ´ eAt{βBA, {Φ´u (E.2.21)

ÐÑ 0 “ e´A i ImpµΦ`q ` e´A
´

d´ q∇a
¨ ιa

¯

peAqΦ´ . (E.2.22)

We add this quantity to the RHS of (E.2.12) to obtain

eφ̃
´

d´ q∇a
¨ ιa ` T _`R_

¯´

e´φ̃Φ´
¯

`e´2A
´

d` q∇a
¨ ιa

¯

pe2A
qΦ´ (E.2.23)

“ 3e´A i ImpµΦ`q ` e´A
´

d´ q∇a
¨ ιa

¯

peAqΦ´ .

There is a priori no RR contribution to the other pure spinor condition, so we do not
modify (E.2.11) or (E.2.13). Our final pure spinors conditions are then given by (E.2.11)
and (E.2.18) in type IIB, and (E.2.13) and (E.2.23) in type IIA, as summarized in (6.1.24)
and (6.1.25).

E.3 On the sufficiency of the pure spinors conditions
In section 6.1.3 and appendix E.2, we have derived the pure spinors conditions (6.1.24)
and (6.1.25) using the SUSY conditions (6.1.16), (6.1.17) and (6.1.18); in other words,
we have shown that (6.1.24) and (6.1.25) are necessary for the backgrounds of interest to
preserve SUSY. We study here whether these two conditions are also sufficient. Following
[26], this amounts to considering a generic expansion of ∇aη

i
` and of further quantities

appearing in (6.1.16), (6.1.17) and (6.1.18) on a complete basis of six-dimensional spinors.
One then checks whether the coefficients in these expansions are determined by the pure
spinors conditions to be those of the SUSY conditions. It will turn out not to be the case,
implying that the conditions (6.1.24) and (6.1.25) are not sufficient. We argue that this is
due to the absence of RR fluxes.

We start by expanding the following combinations on a complete basis of spinors tη1,2,
γaη1,2, γp6qη1,2u. Taking chiralities into account, we get in type IIB

´

γa
´

∇a ¯ ηad q∇d
¯

`
1
24ηadηbeηcfR

defγabc
¯

η1,2
` “

´

T 1,2
` iU1,2γp6q

¯

η1,2
´ ` V 1,2

a γaη1,2
` (E.3.1)

ˆ

∇a ˘ ηad q∇d
´

1
8ηadηbeηcfR

defγbc
˙

η1,2
` “

´

P 1,2
a ` iQ1,2

a γp6q

¯

η1,2
` ` iS1,2

ad γ
dη1,2
´ ,

where the coefficients V 1,2
a , P 1,2

a and Q1,2
a must be real. A more generic situation would be

to consider only ∇ on the internal spinors. However (6.1.24) and (6.1.25) impose without
ambiguity these particular combinations of ∇, q∇ and R-flux to act on the spinors, so there
is actually no restriction here. From these generic expansions, we compute the exterior
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derivative of the pure spinors as in (E.2.6) and (E.2.8)

2��dΦ` “tγa,∇a {Φ`u (E.3.2)
“ {∇η1

` b η
2:
` ` γ

aη1
` b

`

∇aη
2
`

˘:
`∇aη

1
` b η

2:
` γ

a
` η1

` b
`

{∇η2
`

˘:

“

ˆˆ

{q∇´ 1
4
{R ` {V

1
˙

η1
` `

´

T 1
` iU1γp6q

¯

η1
´

˙

b η2:
`

`γaη1
` b

ˆ

ηab q∇bη2
` `

1
8ηadηbeηcfR

defγbcη2
` `

´

P 2
a ` iQ2

aγp6q

¯

η2
` ` iS2

adγ
dη2
´

˙:

`

ˆ

´ηab q∇bη1
` `

1
8ηadηbeηcfR

defγbcη1
` `

´

P 1
a ` iQ1

aγp6q

¯

η1
` ` iS1

adγ
dη1
´

˙

b η2:
` γ

a

`η1
` b

ˆˆ

´ {q∇´ 1
4
{R ` {V

2
˙

η2
` `

´

T 2
` iU2γp6q

¯

η2
´

˙:

“rγa, q∇a {Φ`s ´ 2�����R _ Φ`
`γa {Φ`

´

P 2
a ´ iQ2

a

¯

´ iS2
adγ

a {Φ´γd `
´

P 1
a ` iQ1

a

¯

{Φ`γa ` iS1
adγ

d {Φ´γa

` {V
1
{Φ` ` {Φ` {V

2
`

´

T 1
´ iU1

¯

{Φ´ ` {Φ´
´

T 2 ` iU2
¯

,

2��dΦ´ “rγa,∇a {Φ´s (E.3.3)
“ {∇η1

` b η
2:
´ ` γ

aη1
` b

`

∇aη
2
´

˘:
´∇aη

1
` b η

2:
´ γ

a
´ η1

` b
`

{∇η2
´

˘:

“

ˆˆ

{q∇´ 1
4
{R ` {V

1
˙

η1
` `

´

T 1
` iU1γp6q

¯

η1
´

˙

b η2:
´

`γaη1
` b

ˆ

ηab q∇bη2
´ `

1
8ηadηbeηcfR

defγbcη2
´ `

´

P 2
a ` iQ2

aγp6q

¯

η2
´ ` iS2

adγ
dη2
`

˙:

´

ˆ

´ηab q∇bη1
` `

1
8ηadηbeηcfR

defγbcη1
` `

´

P 1
a ` iQ1

aγp6q

¯

η1
` ` iS1

adγ
dη1
´

˙

b η2:
´ γ

a

´η1
` b

ˆˆ

´ {q∇´ 1
4
{R ` {V

2
˙

η2
´ ´

´

T 2 ` iU2γp6q

¯

η2
`

˙:

2��dΦ´ “tγa, q∇a {Φ´u ´ 2�����R _ Φ´
`γa {Φ´

´

P 2
a ` iQ2

a

¯

´ iS2
adγ

a {Φ`γd ´
´

P 1
a ` iQ1

a

¯

{Φ´γa ´ iS1
adγ

d {Φ`γa

` {V
1
{Φ´ ´ {Φ´ {V

2
`

´

T 1
´ iU1

¯

{Φ` ` {Φ`
´

T 2
´ iU2

¯

.

We then use the Clifford map on these equations. We first compare the result from (E.3.3)



164 E. Compactification and pure spinors conditions

to (6.1.24) and deduce

S1
ad “ S2

ad “ 0, Q1
a “ Q2

a “ 0 (E.3.4)
P 2
a ` V

1
a “ ´Ba

`

2A´ φ̃
˘

` ηab
`

βbdBd
`

2A` φ̃
˘

´ T b
˘

P 1
a ` V

2
a “ ´Ba

`

2A´ φ̃
˘

´ ηab
`

βbdBd
`

2A` φ̃
˘

´ T b
˘

T 1
´ iU1

“ T 2
´ iU2

“ ´2e´Aµ .

Fixing this way the coefficients reproduces (6.1.17) and (6.1.18), provided one sets P 1
a “

P 2
a “ 0; we will come back to that point. We turn to (E.3.2): comparing it to (6.1.25), tak-

ing into account the identifications (E.3.4), one obtains precisely (E.2.17) as a constraint.
The latter should allow to reproduce the remaining SUSY condition (6.1.16). To verify
this, we introduce a generic expansion of the following quantity

BaAγ
aη1,2
` “ γapR1,2

a ` iW 1,2
a γp6qqη

1,2
` ´X1,2η1,2

´ , (E.3.5)

where R1,2
a and W 1,2

a are real. Then, we consider the sum

0 “η1
´ b pX

2η2
´ ` BaAγ

aη2
` ´ γ

a
pR2

a ` iW 2
a γp6qqη

2
`q
:˚ (E.3.6)

` pX1η1
´ ` BaAγ

aη1
` ´ γ

a
pR1

a ` iW 1
a γp6qqη

1
`q
˚
b η2:

´

“´ t{BA, {Φ`u ` pR2
a ` iW 2

a q {Φ`γa ` pR1
a ´ iW 1

a qγ
a {Φ` ` {Φ´X2

` {Φ´X1 .

Using the Clifford map on the last equation, and comparing the result to the obtained
constraint (E.2.17), we get

W 1
a “ W 2

a “ 0 , R1
a “ ´R

2
a “ ´β

ab
BbA , X1

“ X2
“ µe´A . (E.3.7)

This reproduces precisely the SUSY condition (6.1.16).
To conclude, the SUSY conditions (6.1.16), (6.1.17) and (6.1.18) are reproduced starting

from the pure spinors conditions (6.1.24) and (6.1.25) in type IIB, provided one fixes
P 1
a “ P 2

a “ 0. The ambiguity or freedom in the P 1,2
a is in our opinion related to the

absence of RR fluxes: those would otherwise bring more constraints. The P 1,2
a could also

be related to the norms of the internal spinors, so far not needed. These norms are fixed
in [26] thanks to the RR contributions; this may explain the ambiguity we get here. We
conclude that the pure spinors conditions (6.1.24) and (6.1.25) are not sufficient, but the
remaining ambiguity should be fixed by considering the RR sector. We expect the same
situation in type IIA.
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