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Zusammenfassung 

Die extrakapilläre proliferative Glomerulonephritis ist durch eine glomeruläre Nekrose 

gekennzeichnet. Sterbende Zellen setzen intrazelluläre Proteine frei, die als damage-

associated molecular patterns agieren, um das angeborene Immunsystem zu aktivieren. Im 

Vorfeld haben wir bereits gezeigt, dass sterbende Tubuluszellen Histone freisetzen, welche 

Endothelzellen zerstören und den TLR2/4 Rezeptor aktivieren können. Dies führt zu einer 

tubulären-interstitiellen Entzündungsreaktion bei septischem oder post-ischämischem akuten 

Nierenversagen (ANV). Weiterhin haben andere Arbeitsgruppen bereits gezeigt, dass 

extrazelluläre Histone Organversagen bei akuter Lungenschädigung, Schlaganfall, Peritonitis 

und retinaler Dysfunktion verursachen können, und dass die Blockade von extrazellulären 

Histonen sich als ein vorteilhaftes Herangehen für das Fortschreiten der Erkrankung 

präsentiert. In dieser Doktorarbeit haben wir die pathogenen Effekte extrazellulärer Histone 

während nektorisierender Glomerulonephritis untersucht. Dies wurde unter Verwendung 

eines Tiermodells, welches auf einen nekrotisierenden Typ der schweren Glomerulonephritis 

basiert, erforscht. Nekrotisierende Glomerulonephritis wurde mittels einer einzigen 

intravenösen Injektion von 100μl Schaf GBM Antiserum induziert. Um den Einfluss der 

Histon-Neutralisierung zu untersuchen, haben wir einen Antikörper verwendet, der von dem 

BWA-3 Klon isoliert wurde. Dieser Antikörper besitzt die Fähigkeit, extrazelluläre Histone 

in-vitro und in-vivo zu neutralisieren. Nach 7 Tagen wurden die Nieren zur weiteren Analyse 

entnommen. 

Anti-GBM-behandelte Mäuse wiesen eine ansteigende Proteinurie (Albumin/Kreatinin 

Verhältnis), Plasma-Kreatinin und Harnstoff Werte auf. Dies war mit einer reduzierten 

Anzahl von Podozyten, ansteigender halbmondförmiger Glomeruli und infiltrierender 

Neutrophilen und Makrophagen in der Niere verbunden. Interessanterweise wurde die 

Proteinurie durch die Neutralisierung extrazellulärer Histone reduziert, was zu einem 

verminderten Podozytenschaden führte. Weiterhin war dies mit einer verbesserten renalen 

Funktionfähigkeit verbunden im Sinne von niedrigen Plasma-Kreatinin und Harnstoff 

Werten, und mit einer Abnahme der Neutrophilen und Makrophagen Infiltration und 

Aktivierung in der Niere. Die Blockade von Histonen reduzierten auch die renale mRNA 

Expression von TNF-α und Fibrinogen in den glomerulären Kapillaren signifikant, was mit 

geringeren Glomerulosklerose, Halbmonden und einer tubulären Atrophie assoziiert war. In-

vitro Studien zeigten, dass extrazelluläre Histone und NETs-verbundene Histone glomeruläre 
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Endothelzellen, Podozyten und parietale Epithelzellen in einem Dosis-abhängigen 

Zusammenhang zerstören können. Histon-neutralisierende Mittel, wie Anti-Histon IgG, 

aktives Protein C oder Heparin unterdrückten diese zytotoxischen Effekte. Die Stimulation 

von BMDCs mit Histonen regulierte die Expression von Aktivierungsmarkern, einschließlich 

MHC-II, CD48, CD80 und CD86 hoch sowie steigerte die Produktion von TNF-α und IL-6. 

Bisherig wurde von anderen sowie uns berichtet, dass es in Patienten mit ANCA-assoziierter 

Vaskulitis zu einer Überexpression des TLR2/4 Rezeptors im Vergleich zu gesunden 

Glomeruli kommt. Die Histon Toxizität bei Glomeruli ex-vivo war abhängig von der TLR2/4 

Rezeptor Achse, da das Ausschalten von TLR2/4 zur Abschwächung der Histon-induzierten 

renalen thrombotischen Angiopathie und glomerulären Nekrose in Mäusen führte. Anti-GBM 

Glomerulonephritis involviert NET Formation und vaskuläre Nekrose, während die Blockade 

von NETs durch PAD Inhibierung oder präventive Anti-Histon IgG Injektion signifikant alle 

Parameter der Glomerulonephritis reduzierten, einschließlich vaskuläre Nekrose, 

Podozytenverlust, Albuminurie, Produktion von Zytokinen, Rekrutierung und Aktivierung 

von glomerulären Leukozyten, und glomerulärer Halbmondformation. Um Histone als 

therapeutisches Ziel zu evaluieren, wurden Mäuse mit bereits etablierter Glomerulonephritis 

mit drei verschiedenen Histon-neutralisierenden Mitteln, wie Anti-Histon IgG, aktiviertes 

Protein C und Heparin, behandelt. Interessanterweise, weisen alle drei Mittel eine 

gleichwertige Effektivität auf, was zur reduzierten Glomerulonephritis beitrug, wohingegen 

die Kombinationstherapie keinen additiven Effekt hatte. 

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass NET-verbundene Histone, 

welche während der Glomerulonephritis freigesetzt werden, zytotoxische und 

immunostimulierende Effekte hervorrufen, und dass die Neutralisierung extrazellulärer 

Histone als potentielle Therapie bei bestehender Glomerulonephritis eingesetzt werden 

könnte.  
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Summary 

Crescentic glomerulonephritis is characterized by glomerular necrosis. Dying cells release 

intracellular proteins that act as danger-associated molecular patterns to activate the innate 

immune system. Previously, we have demonstrated that dying tubular cells release histones, 

which can kill endothelial cells and activate the toll-like receptor 2/4 (TLR2/4). This drives 

tubulointerstitial inflammation in septic or post-ischemic acute kidney injury (AKI). 

Furthermore, other groups have also reported that extracellular histones cause organ damage 

during acute lung injury, stroke, peritonitis and retinal dysfunction, and that blocking 

extracellular histones represents a beneficial approach during the disease progression. In this 

thesis, we investigated whether extracellular histones can elicit similar pathogenic effects 

during necrotizing glomerulonephritis. To do so, we used an animal model based on the 

necrotizing type of severe glomerulonephritis. Necrotic glomerulonephritis was induced in 

mice by a single intravenous injection of 100µl sheep anti-GBM antiserum. The impact of 

histone neutralization was studied by using an antibody isolated from the BWA-3 clone, 

which had the capacity to neutralize released extracellular histones in-vivo and in-vitro. After 

7 days, mice were sacrificed and kidneys were collected for further data analysis. Proteinuria 

was assessed in spot urine samples. 

Anti-GBM treated mice showed increased proteinuria (albumin/creatinine ratio), plasma 

creatinine and BUN levels. This was associated with a reduced number of podocytes, 

increased crescentic glomeruli and the infiltration of neutrophils and macrophages into the 

kidney. Interestingly, neutralization of extracellular histones significantly reduced proteinuria 

leading to less podocyte damage. This was linked to an improved renal function defined by 

lower plasma creatinine and BUN levels, and with a decrease in neutrophil and macrophage 

infiltration and activation in kidney. Histone blockade also significantly reduced renal mRNA 

expression of TNF-α and fibrinogen in the glomerular capillaries, which was associated with 

less glomerulosclerosis, crescents and tubular atrophy. In-vitro studies demonstrated that 

extracellular histones and NETs-related histones kill glomerular endothelial cells, podocytes 

and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as 

anti-histone IgG, activated protein C or heparin prevented this cytotoxic effect. Stimulation of 

BMDCs with histones upregulated the expression of the activation marker including MHC-II, 

CD48, CD80 and CD86 significantly as well as increased the production of TNF-α and IL-6. 
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It has been previously reported by others including us that in biopsies from patients with 

ANCA-associated vasculitis showed an over-expression of the TLR2/4 receptor compared to 

the healthy glomeruli. Histone toxicity on glomeruli ex-vivo was also dependent on the 

TLR2/4 receptor axis given that the lack of TLR2/4 attenuated histone-induced renal 

thrombotic microangiopathy and glomerular necrosis in mice. Anti-GBM glomerulonephritis 

involved NET formation and vascular necrosis, while blocking NET formation via PAD 

inhibitor or pre-emptive anti-histone IgG injection significantly reduced all parameters of 

glomerulonephritis including vascular necrosis, podocyte loss, albuminuria, cytokine 

induction, recruitment and activation of glomerular leukocytes, and glomerular crescent 

formation. Finally, to evaluate histones as a therapeutic target, mice with established 

glomerulonephritis were treated with three different histone-neutralizing agents such as anti-

histone IgG, recombinant activated protein C and/or heparin. Interestingly, all agents were 

equally effective in abrogating severe glomerulonephritis, while combination therapy had no 

additive effect. 

In summary, the results of this thesis indicate that NET-related histones released during 

glomerulonephritis elicit cytotoxic and immunostimulatory effects and that neutralizing 

extracellular histones, therefore, represents a potential therapeutic approach when applied 

during already established glomerulonephritis. 
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1. Introduction 

1.1. Sterile inflammation 

Inflammation is vital for host defence against invasive pathogens1. In response to an 

infection, a cascade of signals leads to the recruitment of inflammatory cells by activating 

pattern recognition receptors (PRRs), particularly in innate immune cells such as neutrophils 

and macrophages. These cells, in turn, phagocytose infectious agents and produce additional 

cytokines and chemokines that lead to the activation of lymphocytes and adaptive immune 

responses. It is now evident that PRRs also recognize non-infectious material that can cause 

tissue damage and endogenous molecules that are released during cellular injury and death. 

These endogenous molecules have been termed damage-associated molecular patterns 

(DAMPs) (Table 1), as these host-derived non-microbial stimuli are released following tissue 

injury or cell death and have similar functions as pathogen-associated molecular patterns 

(PAMPs) in terms of their ability to activate pro-inflammatory pathways2. 

In 1994, Polly Matzinger proposed that the immune system is more concerned with ‘danger’ 

or ‘damage’ than with the distinction between self and non-self3. The model starts with the 

idea that the immune system defines danger as anything that causes tissue stress or 

destruction4,5. In this model, antigen-presenting cells are activated by DAMPs from stressed 

and/or damaged tissues. Matzinger’s ‘danger model’ suggests why potent immune responses 

are initially elicited in the setting of sterile inflammation5. 

DAMPs are cell-derived molecules that can initiate and perpetuate immunity in response to 

trauma, ischemia, cancer, and other settings of tissue damage in the absence of overt 

pathogenic infection. DAMPs are localized within the nucleus and cytoplasm (HMGB1), 

cytoplasm alone (S100 proteins), exosomes [heat shock proteins (HSP)], the extracellular  

matrix (hyaluronic acid), and in plasma components such as complement (C3a, C4a and 

C5a). Examples of non-protein DAMPs include ATP, uric acid, heparin sulfate, RNA, and 

DNA. DAMPs can also be mimicked by release of intracellular mitochondria consisting of 

formyl peptides and mitochondrial DNA (with CpG DNA repeats) to activate human 

polymorphonuclear neutrophils through activation of TLR96. 
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Table: 1. List of the sterile inflammatory signals, its receptors and associated pathology2. (The 

table is adapted from Chen et al. Nature Reviews Immunology, 2010) 

Sterile inflammatory 
signal 

Putative sensor Associated pathology 

Endogenous  
  

HMGB1 
TLR2, TLR4, TLR9, RAGE 
and CD24 

Cellular injury and necrosis 

HSPs 
TLR2, TLR4, CD91, CD24, 
CD14 and CD40 

Cellular injury and necrosis 

S100 proteins RAGE Cellular injury and necrosis 

SAP130 CLEC4E Cellular injury and necrosis 

RNA TLR3 Cellular injury and necrosis 

DNA TLR9 and AIM2 Cellular injury and necrosis 

Uric acid and MSU 
crystals 

NLRP3 Gout 

ATP NLRP3 Cellular injury and necrosis 

Hyaluronan TLR2, TLR4 and CD44 Cellular injury and necrosis 

Biglycan TLR2 and TLR4 Cellular injury and necrosis 

Versican TLR2 Cellular injury and necrosis 

Heparan sulphate TLR4 Cellular injury and necrosis 

Formyl peptides 
(mitochondrial) 

FPR1 Cellular injury and necrosis 

DNA (mitochondrial) TLR9 Cellular injury and necrosis 

CPPD crystals NLRP3 Pseudogout 

β-amyloid NLRP3, CD36 and RAGE Alzheimer's disease 

Cholesterol crystals NLRP3 and CD36 Atherosclerosis 

IL-1α IL-1R Cellular injury and necrosis 

IL-33 ST2 Cellular injury and necrosis 

Exogenous  
  

Silica NLRP3 
Silicosis and pulmonary 
interstitial fibrosis 

Asbestos NLRP3 
Asbestosis and pulmonary 
interstitial fibrosis 
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1.2.  Mechanism of sterile inflammation 

Despite the growing list of sterile immune stimuli, the mechanisms by which these stimuli 

trigger an inflammatory response are still not fully understood. Even though endogenously 

generated DAMPs are structurally heterogeneous, the outcome of inflammatory responses to 

these stimuli is generally uniform. The release of DAMPs from dying cells is illustrated in the 

Figure 1. 

 

  

Figure: 1. During homeostasis most commonly cells in the body undergo apoptosis and they are 
removed by phagocytosis without any injury to the targeted organ and replaced by new cells of the 
same phenotype. When there is irreversible stress or toxin exposure, the cells undergo a pathogenic 
form of cell death such as necrosis that results in the release of cellular contents called damage-
associated molecular patterns (listed in table 1). These damage-associated molecular patterns will be 
recognized by pattern recognition receptors on immune cells to activate the release of pro-
inflammatory cytokines and chemokines. The released DAMPs can also kill cells within the targeted 
organs to cause severe inflammatory responses leading to organ failure.    

Apoptosis

Necrosis and 

release of DAMPS

Activation of Ag-presenting cells

Inflammation

Normal cell

Necrosis of epithelial

cells and DAMP release

Removal by phagocytosis
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Moreover, inflammatory responses during infection are very similar to responses induced by 

sterile stimuli including the recruitment of neutrophils and macrophages, the production of 

inflammatory cytokines and chemokines, and the induction of T cell-mediated adaptive 

immune responses7. This suggests that both infectious and sterile stimuli may function 

through common receptors and pathways. Based on the current understanding, there are three 

proposed mechanisms by which sterile endogenous stimuli trigger inflammation: (1) the 

activation of PRRs by mechanisms similar to those used by microorganisms and PAMPs, (2) 

the release of intracellular cytokines and chemokines, such as interleukin (IL)-1α, that 

activates common pathways downstream of PRRs, and (3) the direct activation of receptors 

that are not typically associated with microbial recognition2. 

 

1.3. DAMPs and kidney diseases 

Currently, most of the experimental data provide information about DAMPs playing an 

important role in the progression of kidney diseases. Indirect evidence from animal model, 

where mice lacking specific DAMP receptors showed protection of kidney diseases that will 

be further discussed within this section.   

1.3.1. Acute kidney injury 

Tubular necrosis 

Compared to all other forms of kidney diseases, acute kidney injury (AKI) always linked to 

cells with abundant amounts of necrosis, which leads to inflammatory DAMPs release and 

activation of innate and adaptive immunity triggering inflammation with aggravated AKI. 

The injury is mainly caused due to the activation of DAMP receptors like toll-like receptors 

(TLRs) and receptor for advanced glycation end-products (RAGE).8 For example high-

mobility group protein B1 (HMGB1), heat shock proteins (HSPs) and histones are well-

known DAMPs that are released during tubular necrosis as in the case of septic, ischemic, or 

toxic forms of tubular necrosis. This further drives sterile inflammatory and immune 

pathologies that regulate organ failure9-15. Reports have shown that death during sepsis is 

mainly due to the release of DAMPs like HMGB1, histones, decorin, or biglycan10,13,16,17. 

The lethality is based on DAMP-mediated endothelial dysfunction, which involves TLR2/4 

receptors leading to increased vascular permeability and hypovolemic shock18. HSP and gp96 
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regulate the TLR2-mediated ERK pathway and inflammation during hypoxia or ischemic 

kidney conditions19. Geldanamycin, an inhibitor of Hsp90 and gp96, protects mice from 

IRI20. Non-pathogenic and non-cellular DAMPs like high concentrations of uric acid 

accumulate during the ischemic kidney and activate the immune system leading to the severe 

inflammation in the kidney21. 

Glomerulonephritis 

Glomerular cells undergoing necrosis also release DAMPs during the necrotizing type of 

glomerulonephritis leading to AKI and glomerulonephritis (GN)22. Serum and tissue 

expression levels of HMGB1 are reported during experimental models of glomerulonephritis. 

Like in tubular necrosis, TLR2/4 deficiency reduces the complications of 

glomerulonephritis23,24. Histones on the other hand are released from NETting neutrophils in 

necrotizing GN25.  

1.3.2. Chronic kidney injury 

Diabetic nephropathy 

Inflammatory responses mediated by activation of TLR2, TLR4 and the NLRP3 

inflammasome play key roles in the progression of diabetic nephropathy (DN)26,27. Reactive 

oxygen species or extracellular ATP can activate the NLRP3 inflammasome during diabetic 

conditions26,28. The ATP receptor P2X4 is over expressed on renal TECs from patients with 

type 2 DN conditions; this is mainly due to the hyperglycaemic complications of diabetes, 

which correlates with the release of IL-1 cytokines26. Biglycan and decorin are overexpressed 

in diabetic kidneys and may trigger inflammation by activating the TLR2/TLR4 receptors and 

the NLRP3 inflammasome29-31. An increase in renal biglycan promotes LDL cholesterol, 

which leads to the infiltration of macrophages and upholds kidney injury30.  

There is expansive literature on the involvement of AGE and RAGE in podocytes, diabetes, 

and DN 32-37. S100, a pro-inflammatory RAGE ligand, is involved in a novel pathway for 

leukocyte recruitment during inflammatory disorders and diabetic conditions in mice38. 

RAGE and S100 are over-expressed in the podocytes of db/db mice, which contributes to 

both renal pathology and inflammation with increased infiltration of mononuclear phagocytes 

to the glomeruli. These effects can be blocked with the anti-RAGE antibody39. 
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Lupus nephritis 

Lupus nephritis is an inflammatory kidney disease caused by the autoimmune disorder 

systemic lupus erythematosus (SLE), which involves immune activation by nuclear DAMPs 

that share autoantigen and adjuvant qualities40. The disease is mainly characterized by 

hyperproliferation of autoreactive lymphocytes, which enhance the autoantigen presentation. 

The effect is due to the activation of TLR7 and TLR9 receptor activating DAMPs like 

Ribonucleoproteins and hypomethylated dsDNA, respectively41. In addition, these TLR7- and 

TLR9-specific DAMPs trigger plasmacytoid dendritic cells to release IFN-α, which initiates 

antiviral gene transcription accounting for many of the unspecific (viral infection-like) 

symptoms of lupus42 and IFN-related glomerular pathology43. TLR7 and TLR9 activation 

also leads to the generation and maturation of M1 type  macrophages, which further activates 

the pathogenicity of lupus nephritis44-46. Biglycans has been shown to trigger lupus nephritis 

by activating TLR2 and TLR4 leading to the over expression of chemokines including CCL2, 

CCL3 and CCL5, and aggravated murine lupus nephritis47. 

Pathogenic effects of HMGB1 have been linked to a variety of pro-inflammatory and 

autoimmune diseases including SLE. Reports have shown that SLE patients have high levels 

of circulating HMGB1, which is also the case in mouse models of SLE48-50. The pathogenic 

effect of HMGB1 is mainly due to the antibody-induced immune complex deposition, a type 

of kidney damage in SLE51. In lupus-prone MRL-Fas(lpr) mice, p38 MAPK activation 

induced infiltration and maturation of dendritic cells (DCs) and secretion of HMGB1 from 

DCs has been implicated in autoimmune kidney diseases52. 

 

1.4. Extracellular histones 

Histones are important structural elements of the nuclear chromatin and can regulate gene 

transcription. In contrast, outside the cell histones elicit toxic and immunostimulatory effects. 

This becomes obvious when infectious organisms trigger granulocytes (and macrophages) to 

undergo a particular type of programmed cell death that catapults the chromatin outside the 

cell to cover and kill pathogens, e.g. NETosis. Pro-inflammatory cytokines also have the 

ability to induce the process of NETosis, which contributes to sterile forms of inflammation 
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and tissue injury. As illustrated in figure 2, which describes in more detail how the histone 

component of extracellular chromatin mediates injury and triggers innate immunity including 

activation of TLRs or inflammasomes (Figure 2). Furthermore, we discuss how to target 

extracellular histones to improve disease outcomes using different histone blocking agents. 

 

 

 

 

Figure: 2. How histones trigger tissue injury and inflammation. Various forms of cell necrosis release 
chromatin into the extracellular space. Histone-specific effects and their consequences for the disease. 
A number of molecules inhibit histone effects such as, Activated protein C degrades histones in the 
extracellular space. Other elements can also neutralize the specific effects without degrading the 
histone structure like heparin, albumin and neutralizing histone antibody 53. 
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1.5. Structure and functions of histones  

The eukaryotic cell nucleus maintains DNA and histones in a highly organized chromatin 

format, which is conserved across species. There are five classes of histones: H2A, H2B, H3 

and H4 that are known as ‘core histones’, while H1 represent ‘linker histones’54. Structurally, 

all core histones share a common structural motif consisting of a long central helix flanked by 

a helix-strand-helix motif on each end. This “histone fold” exhibits high hydrophobic 

interactions to form dimers and tetramers within the core histones (Figure 3). The 

organizational unit of chromatin, the nucleosome consists of one H3/H4 tetramer and two 

H2A/H2B dimers also called the “histone octamer”, coiling 147bp of DNA in approximately 

two parallel strands, while H1 binds to non-nucleosomal DNA to form higher-order 

chromatin structures. These octamers are stabilized by C-terminal helices of core histones. 

The basic nature of the histone proteins neutralizes the acidic residues of the DNA. Each 

histone has its N-terminal tail rich in lysine and arginine residues that extend out from the 

core structure. These amino-terminal sites are flexible and undergo numerous post-

translational modifications such as acetylation, phosphorylation, methylation, ubiquitination, 

sumoylation, and ADP ribosylation, which play a key role in gene replication and 

regulation55.  

Histone methylation, phosphorylation and acetylation serve as markers for the transcriptional 

state of genes in several diseases and distinct post-translational modification patterns are 

linked to certain inflammatory diseases56. While histones are completely inert within the 

nucleus, they elicit pathogenic effects outside the cell. Histones are released from dying cells 

and contribute to antimicrobial defence responses during infection10,57.  

However, extracellular histones are a double-edged sword because they also damage host 

tissue and may cause death. But when and how histones access the extracellular space? This 

is discussed in the next section. 
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Figure: 3. Structure of histone octamer with the core histones H2A, H2B, H3 and H4 and the linker 
histone H1. Coiled dsDNA surrounds the histones, which forms the complete nucleosome. 

 

1.6. Mode of histone release into the extracellular space 

Releasing chromatin requires rupture of the nuclear and outer cell membrane, e.g. during cell 

death58. Apoptosis avoids membrane disintegration, therefore apoptosis was considered a 

‘silent death’ that rather contributes to cell turnover and lymphocyte selection during 

homeostasis59. However, histones have been reported to accumulate in and leak also from 

membrane blebs of apoptotic cells60. In contrast, disruption of the outer plasma membrane, as 

it occurs during necrotic cell death, massively releases intracellular components that have the 

capacity to activate innate immunity, referred to as danger/damage-associated molecular 

patterns (DAMPs) or alarmins. Later the histones reach the extracellular space and act as 

DAMPs to activate innate immunity61. The forms of necrosis that exist in the biological 

system will be described in more detail within this section. 

1.6.1. Necrosis 

Necrosis is an active form of cell death and occurs predominantly due to the irreversible 

stress on tissue cells, e.g. hypoxia, radiation, changes in pH or toxic chemicals. Necrosis 

leads to the complete destruction of the cell integrity resulting in the release of DAMPs 

followed by the loss of function. 
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1.6.2. Passive necrosis 

Mechanical trauma or charge- or detergent-related toxicity passively disrupt the plasma 

membrane59. In view of recent data on regulated forms of necrosis, it is fair to speculate that 

passive necrosis is a rather rare event in clinical medicine62. Regulated necrosis is defined as 

a genetically controlled cell death process that eventually results in cellular leakage, and it is 

morphologically characterized by cytoplasmic granulation, as well as organelle and/or 

cellular swelling ('oncosis')62. The different forms of regulated necrosis are as follows. 

NETosis/ETosis 

NETosis/ETosis is a regulated form of necrosis that is restricted to immune cells like 

neutrophils (NETosis) and other granulocytes or macrophages (ETosis)62. Pro-inflammatory 

cytokines such as IL-8 or TNF-α can activate neutrophils to undergo regulated burst, a 

process that takes up to 6 hours and spreads all chromatin to the outside of the cells in a net-

like structure NETs (neutrophil extracellular traps)63. Akt- and NOX2-dependent reactive 

oxygen species facilitate and trigger NETosis 64 as well as the activation of TLR2, TLR4, 

complement, and platelet 65,66. NETosis results in the release of histones from cells that are 

present at sites of infection as well as during sterile inflammation25,62. 

Pyroptosis 

Pyroptosis is mechanistically distinct from other forms of cell death. Caspase 1 dependence is 

a defined feature of pyroptosis, and caspase 1 is the enzyme that mediates this process of cell 

death67,68. However, caspase 1 is not involved in apoptotic cell death that was confirmed in 

caspase 1-deficient mice, which had no defects in apoptosis and developed normally. 

Pyroptosis also involves the involvement of a Caspase 11-dependent form of regulated 

necrosis downstream of inflammasome activation69. Until now, pyroptosis has mainly been 

described in infected macrophages and as being responsible for the loss of T cells in patients 

with AIDS70,71. Its role in tissue necrosis remains to be explored. The apoptotic caspases 

including caspase 3, caspase 6 and caspase 8 are not involved in pyroptosis72,73, and 

substrates of apoptotic caspases including poly (ADP-ribose) polymerase and inhibitor of 

caspase-activated DNase (ICAD) do not undergo proteolysis during pyroptosis67,68,74,75. 
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Necroptosis 

Necroptosis is a mechanism of necrotic cell death induced by external stimuli leading to the 

engagement of death domain receptors (DRs) with their respective ligands such as TNF-α, 

Fas ligand (FasL) and TRAIL. This happens under conditions when apoptotic cell death 

execution is prevented, e.g. by caspase inhibitors. Although it occurs under regulated 

conditions, necroptotic cell death is characterized by the same morphological features as 

unregulated necrotic death. RIP1 kinase activity is a key step in the necroptosis pathway, 

followed by the activation of RIP3 kinase and phosphorylation of MLKL, which form a 

complex known as the necroptosome. Necroptosis may be a central mode of regulated 

necrosis under inflammatory conditions76-78. 

Cyclophilin D-mediated regulated necrosis 

Cyclophilin D-mediated regulated necrosis disrupts the mitochondrial transmembrane 

potential, which opens mitochondrial membranes and translocates NAD+ to the cytosol79,80. 

Mitochondrial dysfunction is the first step in ischemia-associated forms of regulated 

necrosis81. 

Ferroptosis 

The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent 

form of non-apoptotic cell death, called ferroptosis. Ferroptosis is dependent on intracellular 

iron, but not other metals, and is morphologically, biochemically and genetically distinct 

from apoptosis, necrosis and autophagy82. Oxidative stress is also a trigger for ferroptosis, a 

recently described iron-dependent form of regulated necrosis. Under normal conditions, 

glutathione peroxidase 4 levels inhibit ferroptosis, and its depletion during oxidative stress 

can set off the cell death event83. 

Podoptosis 

Podoptosis is another regulated cell death pathway occurs mainly in non-dividing cells like 

podocytes, it is mainly due to the p53-overactivation-dependent cell death, thus, referred as 

podoptosis. Podoptosis is associated with cytoplasmic vacuolization, endoplasmic reticulum 

stress, and dysregulated autophagy leading to the release of DAMPs84. 
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1.7. Pathogenic effects of extracellular histones 

Some of the reported pathogenic effects of released extracellular histone are illustrated in the 

Figure 4 and will be further discussed in this section. 

1.7.1. Bactericidal effects  

In late 1950s, James G. Hirsch first reported that the arginine-rich fraction of calf thymus 

histone (histone B) exerts bactericidal activity on various coliform bacilli and micrococci 

under certain conditions in-vitro57. Concentrations less than 1µg/ml histones kill susceptible 

microbes without detectable morphological alteration or lysis. This was later confirmed by 

other groups63,85-87. Microorganisms which are highly susceptible to histone toxicity are 

Escherichia, Salmonella, Shigella, Pseudomonas, Klebsiella, and Micrococcus pyogenes var. 

albus. Less susceptible or completely resistant are Proteus, Serratia, Micrococcus pyogenes 

var. aureus, and various types of hemolytic streptococci. but the mode of this bactericidal 

effect remained unknown57. It has been suggested that their basic charge and their capacity to 

bind strongly to anionic moieties of the bacterial cell wall damage the osmotic barrier57.  

 

Figure: 4. Release and activity of histones in response to stress88 and its pathogenic effects on 
different organs 
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1.7.2. Cellular toxicity 

Xu et al. reported for the first time that the unspecific cytotoxic effects of extracellular 

histones on the host leading to lethal effects during sepsis10. Histone release in sepsis or 

major trauma primarily affects endothelial cells that can cause fatal organ dysfunction10,89. 

Intravenous injection of recombinant histones kills healthy mice within a few minutes due to 

severe endothelial damage in the microvasculature of the lungs10. Similarly, injection of 

histones into the renal artery causes microvascular injury and ischemic renal necrosis9. 

Histone-induced endothelial permeability and death is a non-regulated form of necrosis that is 

mediated through a charge-dependent mechanism resulting in disruption of junctional protein 

expression and cell death90. In fact, the anionic molecule polysialic acid can abrogate NET-

mediated alveolar epithelial injury91. However, despite having a similar charge only histone 

H1, but not H2A, H2B, H3, and H4 is neurotoxic92, which suggests cell type-specific effects. 

For example, histone H1 kills neurons but not astrocytes or microglia92. In addition, it is 

currently not known whether histones trigger any of the recently described forms of regulated 

necrosis62. 

1.7.3. TLR activation 

Xu et al. has recently shown that histones specifically induce TLR2- and TLR4-mediated 

reporter gene expression in a cell line overexpressing different classes of TLRs10. Histones 

can also bind and activate the TLR2 and TLR4 receptors leading to the activation of the 

Myd88 pathway, which further results in an inflammatory response by activating NF-κB and 

mitogen activated protein kinase target gene expression9,93,94. Furthermore, histone-induced 

tissue injury is partially dependent on TLR2/49,94 that is to other cell-derived extracellular 

DAMPs, which activate predominantly TLR2/4 receptors and show immunogenic actions95. 

Whereas, Huang et al. reported that extracellular histones activate TLR9 and contribute to 

postischemic liver failure in a TLR9-dependent manner96. In this study, anti-histone IgG had 

almost a comparable protective effect on organ function as TLR9 gene deletion, yet in gene-

deleted mice. These antibodies did not show any additional effect96. However, in our in-vitro 

studies, Allam et al. could not confirm the data from Huang and colleagues that TLR9 acts as 

a receptor for histones9, possibly this maybe because of residual TLR9-agonistic DNA 

complexes within histones, which normally occur in-vivo. 
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1.7.4. NLRP3 inflammasome activation 

The Nod-like receptor (NLR) family is characterized by the presence of a central nucleotide-

binding and oligomerization (NACHT) domain, which is commonly flanked by C-terminal 

leucine-rich repeats (LRRs) and N-terminal caspase recruitment (CARD) or pyrin (PYD) 

domains. LRRs are believed to function in ligand sensing and autoregulation, whereas CARD 

and PYD domains mediate homotypic protein-protein interactions for downstream 

signaling97. The NACHT domain, which is the only domain common to all NLR family 

members, enables activation of the signaling complex via ATP-dependent oligomerization. 

The NLRP3 inflammasome is a cytosolic platform, activated upon cellular infection or stress 

that integrates various danger signals into the caspase-1-dependent maturation of pro-

inflammatory cytokines such as IL-1β to initiate innate immune defences97. 

Allam R et al. has recently reported that cytosolic uptake of necrotic cell-derived histones 

trigger mechanisms of sterile inflammation, which involve NLRP3 inflammasome activation 

and IL-1β secretion via oxidative stress98. This may be due to the existence of histones in its 

particle nature, as it is observed by many crystals and microparticles that are capable of 

activating NLRP3 inflammasome complexes99,100. Intraperitoneal injection of histones into 

Nlrp3 gene deficient mice significantly reduces IL-1β production and recruitment of 

neutrophils causing attenuated histone-induced peritonitis98. 

1.7.5. Platelet activation 

Fuchs et al. has published for the first time an interactions of extracellular histones with 

platelets. Histones that have bound to platelets induced calcium influx and recruited plasma 

adhesion proteins such as fibrinogen to induce platelet aggregation93,101-103. Hereby, 

fibrinogen cross-linked histone-bearing platelets and triggered micro-aggregation. Whereas 

the interaction of fibrinogen with αIIbβ3 integrins were not required for this process, but were 

necessary for the formation of large platelet aggregates. Intravenous administration of 

histones caused the profound thrombocytopenia within minutes after administration in-

vivo101. Mice lacking platelets or αIIbβ3 integrins were protected from histone-induced death 

but not from histone-induced tissue damage. In contrast, heparin and albumin prevented 

histone interactions with platelets and protected mice from histone-induced 

thrombocytopenia, tissue damage and death101,103. Extracellular histones also induced platelet 
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aggregation and clotting that was dependent on the presence of TLR2/4 and downstream 

signaling via ERK, p38, AKT and NF-κB93,104. 

1.7.6. Protecting DNA degradation 

DNA in chromatin is arranged in form of arrays of nucleosomes, highly conserved 

nucleoprotein complex. The X-ray crystal structure of the nucleosome core particle of 

chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 

base pairs of DNA are organized into a superhelix around it105. Von Hahn et al. reported that 

histones stabilize the extracellular DNA against the thermal degradation in-vitro106. Histones 

in form of nucleosomes protect the DNA from further degradation by nucleases, which leads 

to the stabilization of DNA within the system and contributes to autoimmune complications. 

For example, in SLE, where genetic variants often compromise phagocytic dead cell and 

chromatin clearance and the persistence of extracellular chromatin fosters immunization 

against DNA and histones107,108. SLE patients who cannot dismantle NETs might be a useful 

indicator of the renal involvement108. To be protected from lupus, autoantigens such as 

dsDNA from degradation inside injured organs will need to remain accessible to circulating 

anti-dsDNA antibodies, a process that is involved in the pathogenesis of lupus nephritis40,109. 

However, this mechanism can explain the (transient) occurrence of anti-nuclear antibodies in 

numerous forms of tissue injury. As mentioned before, the TLR9 agonistic activity of 

histones might relate to residual DNA components96. Finally, histones can even act as a DNA 

transfectant by shuttling DNA inside cells110. 

 

 

 

 

 

 



Introduction                                                                                                                            16 

1.8. Contributions of extracellular histones in the disease setting 

The pathogenic roles of extracellular histones are demonstrated in both infectious and non-

infectious disease conditions, as illustrated in Figure 5 and Table 2, and are described in more 

detail within this section. 

 

 

 

 

Figure: 5. The diagram represents the different pathogenic effects of extracellular histone on variety 
of internal organs like lungs: acute lung injury and COPD; kidneys: acute kidney injury; liver: 
ischemia reperfusion and toxic liver injury; brain: stroke; pancreases: pancreatitis; GIT: peritonitis 
and appendicitis; eye: retinal injury. 
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Table: 2. Current evidence for a functional role of extracellular histones in disease53. 

 

 

Disorder Pathomechanism Ref. 
Infectious disease 
  Sepsis 
 
  Peritonitis/Appendicitis 

 
Histone release promotes sepsis-related endothelial 
dysfunction, tissue hypoxia and death. 
Histones trigger peritoneal inflammation directly by 
activating PRRs and indirectly by inducing cell necrosis 
causing local cytokine production.   

 

10,111 

 

63,112 

Non-infectious disease   

  Trauma Dying cells release histones that injure lung endothelial 
cells causing microvascular thrombosis and haemorrhage. 

89,113,114 

  Thrombosis/embolism Histones trigger thrombosis by inducing endothelial 
activation and by directly inducing thrombin generation 
and platelet aggregation via TLR2 and TRL4. 

93,101,115 

Brain  
    Stroke 

 
Histone neutralization reduces infarct size, while histone 
infusion increases infarct size. 

 

116 

Atherogenesis     Histones bind to LDL. 117 

Lung  
    Acute lung injury 
 
    COPD 

 
Histones from NETting neutrophils that injure endothelial 
cells cause microvascular thrombosis and haemorrhage. 
Hyperacetylated H3 resists degradation and causes injury. 

 

91,113,118 

 

119 

Liver 
   Toxic liver injury     

 
TLR9-mediated hepatotoxicity. 

 

94,120,121 

Kidney  
    Acute kidney injury 
    
    Glomerulonephritis  

 
Microvascular endothelial injury and TLR2/4-mediated 
inflammation leading to acute tubular necrosis. 
NETosis leading to vascular injury in glomeruli. 

 

9,122 

 

25 

Autoimmunity 
    Rheumatoid arthritis/  
    Felty`s syndrome     

 
Citrullinated/deiminated histones serve as autoantigens 
within joint immune complexes. 

 

123,124 

125 

    Systemic lupus Extracellular histones protect self-DNA from degradation, 
promote auto-immunization together with genetic dead 
cell clearance deficits. 

108,126 

Others   

    Blood transfusion NETosis leading to transfusion of histones, DNA and 
other DAMPs that may cause reactions in recipients. 

127 

    Sickle cell disease  NETs and its componants involved in the pathogenesis 
vaso-occlusive painful sickle cell crisis  

128 

    Hair growth Histones kill hair follicle progenitor cells. 129 
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1.8.1. Sepsis 

Sepsis is a systemic inflammatory response syndrome primarily caused by bacterial 

infections. In 1958, Hirsch et al. observed that histones have a stronger ability to kill bacteria 

than many canonical antimicrobials57. Hyper-inflammatory responses can lead to a variety of 

diseases including sepsis. Esmon CT group reported that extracellular histones released in 

response to inflammatory challenges contribute to endothelial dysfunction, organ failure and 

death during sepsis10. Significant amounts of the histone H3 were increased when E.coli was 

injected into Baboons intravenously, which was associated with septic kidney injury10. In the 

same way, lipopolysaccharide (LPS)-induced AKI also involves the contribution of histones 

because this effect can be completely reversed by the administration of the neutralizing 

histone antibody or activated protein c (aPC)9. Antibodies for histones can reduce the 

mortality of mice in LPS, TNF or cecal ligation and puncture models of sepsis10. 

1.8.2. Thrombosis and intravascular coagulopathy 

Coagulation is the biological process by which blood forms clots. A control mechanism, 

which fails to coagulate blood results in an increased risk of bleeding (haemorrhage) or 

obstructive clotting (thrombosis). Several studies report that extracellular histones were 

cytotoxic to endothelial cells, which further contributes to the formation of clots and 

thrombosis in the microvasculature during many disorders. This was confirmed when 

histones were intravenously injected into mice, which resulted in complications such as 

thrombocytopenia, prolonged prothrombin time, decreased fibrinogen, fibrin deposition in the 

microvasculature and bleeding101,115. Histone-induced TLR2/4 receptor activation is one of 

the main reasons by which platelets aggregate and plasma thrombin is generated93. This 

process can be inhibited by recombinant thrombomodulin that binds to histones and protects 

against thrombosis115. It is possible that in platelets histones raise the intracellular calcium 

concentrations triggering the activation of αIIbβ3, which further activates the aggregation of 

platelets101. As, because histones are able to bind the platelet adhesion molecules fibrinogen 

and vWF, they are well equipped to stimulate platelet aggregation101. Platelet-deficient mice 

are protected from histone-induced indicating that platelet thrombi contribute to fatal lung 

injury upon intravenous injection of histones101. 
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1.8.3. Lung diseases 

Approximately half of the patients with ALI/ARDS show the presence of histones in their 

bronchial alveolar fluid (BALF). Ward PA group showed that injection of calf thymus 

histones directly into the lungs via the intratracheal route activates the complement system 

leading to increased histone levels in ALI. They further reported that histones outside of cells 

were highly cytotoxic for alveolar epithelial cells promoting tissue damage and inflammation; 

such effects were reversed by the blockade of histones in-vivo118. A recent study has linked 

circulating histones with trauma-associated ALI/ARDS and mortality113. These findings were 

consistent with mouse trauma models that displayed pulmonary oedema, haemorrhage, 

microvascular thrombosis and neutrophil congestion113. The dying airway cells also release 

extracellular histones, which further contributes to the development of chronic obstructive 

pulmonary disease. Several nuclear proteins that are known to affect gene expression are 

elevated in the lungs of subjects with COPD, the most notable being those that belong to the 

core histones, especially H3.3. Relative to control subjects, the lung samples from subjects 

with COPD showed increased H3.3 in the extracellular spaces, cellular debris, airway lumen 

mucous, BALF and plasma119. 

1.8.4. Brain, liver and kidney disease 

The mechanisms of histone release into the circulation is a consequence of cell death of 

neurons, liver cells or kidney parenchymal cells, either due to the ischemia reperfusion or 

toxic injury of the organs. The locally released histones further promote the microvascular 

and parenchymal injury. Blocking released extracellular histones using the neutralizing 

histone antibody or other histone blocking agents protects from post ischemic injury in the 

brain, liver and kidney9,96,116,130. Histones released through NETs formation usually cause 

microvascular complications in organs such as liver, brain and kidneys, but a direct effect has 

not been proven yet122. Previous experiments have demonstrated a role for NETs-associated 

toxicity during glomerulonephritis, a mechanism that has been shown for ANCA-associated 

small vessel vasculitis affecting the glomerular compartment of the kidney25. In these organs 

histones mediate their toxic effects by partially activating TLRs and alos mediate it’s 

immunopathology via the activation of NLRP3 inflammasome9,98.  
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1.8.5. Autoimmune disorders 

A recent report has shown the involvement of NETs and its components in activating 

plasmacytoid dendritic cells during the pathogenesis of SLE131. In SLE patients, NETs that 

are released following infection do not rapidly get degraded and cleared from the circulation, 

which could further lead to increased lupus precipitations108,132. NETting neutrophils also 

induce endothelial damage, infiltrate tissues and release immunostimulatory molecules during 

SLE133. Persistent chromatin particles in the extracellular space not only provide 

immunostimulatory DAMPs but also act as autoantigens. Histones are important lupus 

autoantigens, mainly within the nucleosomes; hence, extracellular histones enforce 

autoantigen-presentation and activation of autoreactive lymphocyte clones42,131. Histone H1 

constitutes a major B cell and T cell autoantigens in SLE triggering a pro-inflammatory Th1 

response and driving autoantibody production134. Histones have also been reported to 

stimulate and accelerate the progression of rheumatoid arthritis, whereby protein microarray 

and tandem mass spectrometry analysis of the synovial joint tissue from patients with 

rheumatoid arthritis identified histone H2A and H2B within immune complex deposits along 

the cartilage surface125. Deimination and citrullination of hisones by the hydrolase family of 

enzymes like protein arginine deiminases present in the NETs increase the antigenicity of 

NETosis-derived histones123,135,136. Elevated levels of TNF-α drive the citrullination of 

histone H3, which plays an important role in multiple sclerosis137. Besides acting as direct 

autoantigens in autoimmune disorders, extracellular histones can prevent DNA degradation 

through formation of histone–DNA complex, which enhance autoimmune responses108. 

 

1.9. Extracellular histones as therapeutic target 

Amongst many DAMPs, histones represent one of the major danger signals during tissue 

injury and disease progression. However, their potential to amplify tissue injury by killing 

other cells in addition to their agonistic activity on TLRs and the NLRP3 inflammasome 

provides a rationale to target histones for therapy. Three histone-neutralizing agents have 

been identified to degrade and neutralize extracellular histone toxicity and of being able to 

prevent histone-related pathologies in-vitro and in-vivo: the histone-neutralizing antibody 

BWA39,10,90,91,138, the serum protease activated protein C (aPC) 9,10,90 and heparin93,101,139,140.  
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1.9.1. Histone-neutralizing antibody BWA3 

A histone neutralizing monoclonal antibody was obtained by culturing BWA3 hybridoma 

cells that was first described and confirmed by M. Monestier in 1993141. Since then several 

experimental studies were carried out using the neutralizing antibody from the BWA3 clone 

and showed its effect in several disease models. BWA3 binds to an epitope corresponding to 

a region of high sequence similarity between H2A and H4. The therapeutic effect of the 

histone antibody was first reported by Xu J et al. during sepsis10. Since then other groups 

have reported the therapeutic property of BWA3 in many other diseases, which have been 

discussed in section 1.8. 

1.9.2. Activated protein C  

aPC is classified as a serine protease because it contains a residue of serine at its active 

site142. aPC is a vitamin K-dependent plasma protein zymogen that is synthesized in the liver, 

whose genetic, mild or severe deficiencies are linked with a risk for venous thrombosis or 

neonatal purpura fulminans, respectively142-144. Over the past decades, studies have shown 

that aPC inactivates factor Va and VIIIa to down-regulate thrombin generation. More 

recently, basic and preclinical research on aPC has characterized the direct cytoprotective 

effects that involve gene expression profile alterations, anti-inflammatory and anti-apoptotic 

activities and endothelial barrier stabilization145,146. These protective functions of aPC are 

mainly due to the activation of the angiopoietin/Tie2 axis and the modulation of EPCR-bound 

lipids145,146. Many studies reported that aPC has the capacity to cleave the released 

extracellular histones indicating that aPC has cytoprotective and anti-inflammatory 

actions89,90,147, for example, during sepsis10 and ischemic injury in the brain, liver and 

kidney9,96,116. However, the activity of aPC in-vivo seems limited in blocking NETosis-

induced histone toxicity, even though this protease has certainly additional biological 

effects91. A clinical trial in children with meningococcal sepsis, histone plasma levels 

correlated with the disease severity, but recombinant aPC therapy did not affect these 

levels148. Although recombinant aPC had first been approved by the FDA for the treatment of 

human sepsis, it was later withdrawn from the market due to a lack of efficacy in reducing 

sepsis mortality in a subsequent randomized controlled trial149. 
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1.9.3. Heparin 

Heparin is a highly sulphated glycosaminoglycan that is widely used as an injectable 

anticoagulant and has the highest negative charge density of any known biological molecule. 

As histones carry a strong positive charge, it is possible that histones have a strong affinity to 

the negatively charged heparin triggering the formation of a complex due to the electrostatic 

interactions of the high affinity150. It is, however not known whether binding of heparin to 

histones also protects against the cytotoxic effect of histones on endothelial cells. In this 

thesis and this was reported before by several groups that, heparin has beneficial effects on 

histone neutralization and elicits cytoprotective effects. Only moderate doses of heparin can 

attenuate injuries, whereas high doses of heparin are harmful due to the complication of 

disseminated hemorrhage151-153. It is reasonable to suggest that chemically modified heparin 

derivatives, devoid of anticoagulant activity, may be more useful than heparin for controlling 

inflammation caused by histones. 

 

1.10. Rapid progressive glomerulonephritis 

Rapidly-progressive glomerulonephritis (RPGN) encompasses a heterogeneous group of 

disorders resulting in severe glomerular inflammation and injury. Clinically, RPGN is 

characterized by a rapid loss of glomerular filtration rate, haematuria and proteinuria caused 

by characteristic glomerular lesions such as capillary necrosis and hyperplasia of the parietal 

epithelial cells (PEC) along Bowman`s capsule forming crescents. The pathogenesis of 

RPGN involves autoantibodies, immune complex-mediated activation of complement, the 

local production of cytokines and chemokines, and glomerular leukocyte recruitment154. 

RPGN often manifests as necrotizing and crescentic GN, such as seen in anti-neutrophil 

cytoplasmic antibody (ANCA)-associated renal vasculitis or anti-GBM disease (e.g. 

Goodpasture syndrome). All these forms are associated with neutrophil-induced glomerular 

injury24,155-157. In situations where the stimuli persistently trigger inflammation, an increasing 

number of leucocytes and neutrophils will infiltrate into the injured area158. In the presence of 

local cytokines released due to the inflammatory or infectious stimuli, these infiltrated 

neutrophils gets activated and form NETs, these are comprised of extracellular fibrillary 

material containing chromatin and granule proteins and numerous DAMPs including histones 

will be released159,160.  
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Necrotizing injury to vessel walls results in haemorrhage and the release of plasma proteins 

into the vessel walls and adjacent extravascular tissue161 (Figure 6). These proteins include 

coagulation factors, which are activated by thrombogenic cellular and tissue debris, and tissue 

factors, which result in the formation of fibrin within areas of fibrinoid necrosis162. This leads 

to severe platelet activation and fibrotic clot formation within the microvasculature causing 

hypoxia in the local areas of the glomeruli, which can further lead to cell death-associated 

release of DAMPs and continues during the necrotizing or crescentic glomerulonephritis. It is 

possible that the fibrin formation is facilitated by tissue factors present in NETs in glomeruli. 

Foci of segmental fibroid necrosis develop adjacent cellular reactions (as in crescents) 

composed predominantly of monocytes, macrophages and activated epithelial cells157. 

 

 

 

Figure: 6. Leukocytoclastic venulitis caused due to the infiltrating leukocytes cause endothelial 
damage by fibrinoid necrosis resulted in thrombotic vascular occlusions this further leads to the 
hypoxia and organ failure (left image). Necrotizing glomerulonephritis involves vascular damage and 
sclerosis (right image)  
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1.10.1. Anti-GBM glomerulonephritis 

Anti-GBM disease also called “Goodpasture's disease” is one of the three major forms of 

RPGN. Here, the loss of tolerance with production of GBM autoantibodies described against 

the noncollagenous-1 (NC1) domain of type 4 collagen of GBM membrane and kill the 

glomerular cells in a complement-dependent manner163,164. Although some patients present 

initially with relatively mild renal insufficiency, the disorder is typically associated with 

severe renal injury that, if left untreated, progresses quickly to end-stage renal disease 

(ESRD)165,166. 

1.10.2. Epidemiology 

It’s been reported that, the disease has an estimated incidence of one case per 2 million per 

year in European caucasian populations. It is responsible for 1 to 5% of all types of GN and is 

the cause in 10 to 20% of patients with crescentic GN. All age groups are affected but the 

peak incidence is in the third decade in young men with a second peak in the sixth and 

seventh decades affecting men and women equally. Lung haemorrhage is more common in 

younger men, while isolated renal disease is more frequent in the elderly with near equal 

gender distribution. 

1.10.3. Diagnosis 

• The diagnosis of Goodpasture's disease is dependent on the detection of anti-GBM 

antibodies either in the circulation or in kidney tissue. 

• Renal biopsy to detect the severity of the lesions. The antibodies can also be detected 

on renal biopsy specimens with characteristic linear staining for IgG and frequently 

C3 detected along the GBM 

1.10.4.  Treatment 

It has been observed that neither steroids nor immunosuppressive drugs had an influence on 

the renal outcome. However, the recommended treatment approaches are listed in the table 

below (Table: 3). 
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Table: 3. Recommended treatment approaches for GN167 

Treatment Description 
Plasma exchange 4-L exchanges daily with human albumin as replacement solution. Where 

there is risk of hemorrhage FFP should be given at the end of the 
procedure.  

Corticosteroids Prednisolone 1 mg/kg for first week then reduce at weekly intervals to 45, 
30, 25, 20, 15, 10, and 5 mg. 

Cytotoxic drugs Cyclophosphamide 3 mg/kg rounded down to nearest 50 mg. In patients 
over 55 yr of age, use 2 mg/kg rounded down to nearest 25 mg 

aFFP, fresh frozen plasma.  
 

There have been many studies that have explored the functional role of the immune complex 

deposition and/or chemokines and cytokines involved in the progression of severe 

glomerulonephritis168-170. However, limited research has been undertaken to establish new 

and effective methods to control the progression of glomerulosclerosis. This thesis will 

addresses novel pathomechanisms involved in the progression of glomerulosclerosis and 

provide important insights into the development of effective and safe treatments.  
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2. Hypotheses 

An important characteristic feature of severe GN is necrosis of the glomerular tuft cells, so 

we hypothesized that there will be extensive release of DAMPs including histones. The 

disease is also characterized by infiltration of neutrophils and release of cytokines, in this 

condition we speculated the formation of NETs and release of more histones in to the 

extracellular space. 

Accordingly, the specific objectives and aims of this study were: 

 

1. To investigate, whether extracellular histones elicit toxic effects on glomerular 

endothelial cells (GEnC) and whether they promote truft necrosis, proteinuria and 

crescent formation during experimental glomerulonephritis. 

 

2. To investigate the effect of extracellular histones using histone blocking agents such 

as neutralizing anti-histone antibody, heparin and aPC during severe 

glomerulonephritis. 

 
3. To evaluate NETs-related histones and to determine the efficacy of blocking NETosis 

using the Peptidylarginine deiminase (PAD)-4 inhibitor during the progression of 

severe glomerulonephritis. 
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3. Materials and Methods 

3.1 Instruments and Chemicals 

3.1.1 Instruments 

Balance:  

Analytic Balance, BP 110 S Sartorius, Göttingen, Germany 

Mettler PJ 3000 Mettler-Toledo, Greifensee, Switzerland 

 

Cell Incubator: 

 

Type B5060 EC-CO2 Heraeus Sepatech, München, Germany 

 

Centrifuges: 

 

Heraeus, Minifuge T VWR International, Darmstadt, Germany 

Heraeus, Biofuge primo Kendro Laboratory Products GmbH, Hanau, 

Germany 

Heraeus, Sepatech Biofuge A Heraeus Sepatech, München, Germany 

 

ELISA-Reader: 

 

Tecan, GENios Plus Tecan, Crailsheim, Germany 

 

Fluorescence Microscopes: 

 

Leica DC 300F Leica Microsystems, Cambridge, UK 

Olympus BX50 Olympus Microscopy, Hamburg, Germany 

 

Spectrophotometer: 
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Beckman DU® 530 Beckman Coulter, Fullerton, CA, USA 

TaqMan Sequence Detection 

System: 

 

ABI prism ™ 7700 sequence 

detector 

qRT-PCR syber green  LC-480                                                          

PE Biosystems, Weiterstadt, Germany 

 

Roche, Mannheim, Germany 

 

Other Equipments: 

 

Nanodrop PEQLAB Biotechnology GMBH, Erlangen, Germany 

Cryostat RM2155 Leica Microsystems, Bensheim, Germany 

Cryostat CM 3000 Leica Microsystems, Bensheim, Germany 

Homogenizer ULTRA-TURRAX 

T25 

IKA GmbH, Staufen, Germany 

Microtome HM 340E Microm, Heidelberg, Germany 

pH meter WTW WTW GmbH, Weilheim, Germany 

Thermomixer 5436 Eppendorf, Hamburg, Germany 

Vortex Genie 2™ Bender & Hobein AG, Zürich, Switzerland 

Water bath HI 1210 Leica Microsystems, Bensheim, Germany 

 

3.1.2 Chemicals and Reagents 

RNeasy Mini Kit Qiagen GmbH, Hilden, Germany 

RT-PCR primers Metabion, Munich, Germany 

 

Cell culture: 

 

DMEM-medium Biochrom KG, Berlin, Germany 

RPMI-1640 medium GIBCO/Invitrogen, Paisley, Scotland, UK 
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FCS Biochrom KG, Berlin, Germany 

Dulbecco’s PBS (1×) PAN Laboratories GmbH, Cölbe, Germany 

Trypsine/EDTA (1×) PAN Laboratories GmbH, Cölbe, Germany 

CD hybridoma media GIBCO/Invitrogen, Paisley, Scotland, UK 

FBS, ultralow IgG PAN Laboratories GmbH, Cölbe, Germany 

Glutamine  PAN Laboratories GmbH, Cölbe, Germany 

Penicillin/Streptomycin (100×) PAN Laboratories GmbH, Cölbe, Germany 

Matrigel BD biosciences, Heidelberg, Germany 

  

Drugs and treatment:  

Heparin Ratiopharma, Ulm, Germany 

Cl-amide (PAD inh) Millipore, Darmstadt, Germany 

aPC Lilly, UK 

 

Antibodies: 

 

Anti-histone antibody Homemade BWA3 clone 

Neutrophil elastase Abcam, Cambridge, UK 

MPO Abcam, Cambridge, UK 

Fibrinogen Abcam, Cambridge, UK 

TNF-α Abcam, Cambridge, UK 

WT-1 Cell signaling, Danvers, MA 

Mac-2 Cedarlane, ON, Canada 

HRP linked Anti-Rabbit secondary 

Ab 

Cell signaling, Danvers, MA 

HRP linked Anti-Mouse secondary 

Ab 

Cell signaling, Danvers, MA 
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HRP linked Anti-Goat secondary Ab Dianova, Hamburg, Germany 

β-Actin Cell signaling, Danvers, MA 

α-tubulin Cell signaling, Danvers, MA 

Tamm–Horsfall protein Santa Cruz Biotechnology, Santa Cruz, CA 

Lotus tetragonolobus lectin Vector Labs, Burlingame, CA 

rat anti-mouse neutrophils Serotec, Oxford, UK 

CD3+ AbD Serotec, Düsseldorf, Germany 

F4/80+ AbD Serotec, Düsseldorf, Germany 

Claudin Bioworld technology, CB8 7SY England 

Nephrin Acris Antibodies GmbH, Herford, Germany 

Ki-67 Dako Deutschland GmbH, Hamburg, Germany 

α-SMA Dako Deutschland GmbH, Hamburg, Germany 

 

Elisa and assay Kits: 

 

mouse IL-6 R &D Systems, Minneapolis, MN, USA 

mouse TNF-α Biolegend, San Diego, CA 

mouse Albumin Bethyl Laboratories, TX, USA 

Creatinine FS DiaSys Diagnostic System, GmBH, Holzheim, 

Germany 

Urea FS DiaSys Diagnostic System, GmBH, Holzheim, 

Germany 

 

Chemicals: 

 

Acetone Merck, Darmstadt, Germany 

AEC Substrate Packing Biogenex, San Ramon, USA 

Bovines Serum Albumin Roche Diagnostics, Mannheim, Germany 
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Skim milk powder Merck, Darmstadt, Germany 

DEPC Fluka, Buchs, Switzerland 

DMSO Merck, Darmstadt, Germany 

Diluent C for PKH26 dye Sigma-Aldrich Chemicals, Germany 

EDTA Calbiochem, SanDiego, USA 

30% Acrylamide Carl Roth GmbH, Karlsruhe, Germany 

TEMED Santa Cruz Biotechnology, Santa Cruz, CA 

Eosin Sigma, Deisenhofen, Germany 

Ethanol Merck, Darmstadt, Germany 

Formalin Merck, Darmstadt, Germany 

Hydroxyethyl cellulose Sigma-Aldrich, Steinheim, Germany 

HCl (5N) Merck, Darmstadt, Germany 

Isopropanol Merck, Darmstadt, Germany 

Calcium chloride Merck, Darmstadt, Germany 

Calcium dihydrogenphosphate Merck, Darmstadt, Germany 

Calcium hydroxide Merck, Darmstadt, Germany 

MACS-Buffer Miltenyl Biotec, Bergisch Gladbach, Germany 

Beta mercaptoethanol Roth, Karlsruhe, Germany 

Sodium acetate Merck, Darmstadt, Germany 

Sodium chloride Merck, Darmstadt, Germany 

Sodium citrate Merck, Darmstadt, Germany 

Sodium dihydrogenphosphate Merck, Darmstadt, Germany 

Penicillin Sigma, Deisenhofen, Germany 

Roti-Aqua-Phenol Carl Roth GmbH, Karlsruhe, Germany 

Streptomycin Sigma, Deisenhofen, Germany 

Tissue Freezing Medium Leica, Nussloch, Germany 
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Trypan Blue Sigma, Deisenhofen, Germany 

Oxygenated water DAKO, Hamburg, Germany 

Xylol Merck, Darmstadt, Germany 

 

Miscellaneous: 

 

Cell death detection (TUNEL) kit Roche, Mannheim, Germany 

Microbeads Miltenyl Biotech, Germany 

Cell Titer 96 Proliferation Assay  Promega, Mannheim, Germany 

LS+/VS+ Positive selection columns Miltenyl Biotec, Bergish Gladbach, Germany 

Preseparation Filters Miltenyl Biotec, Bergish Gladbach, Germany 

Super Frost® Plus microscope slides  Menzel-Gläser, Braunschweig, Germany 

Needles BD Drogheda, Ireland 

Pipette’s tip 1-1000μL Eppendorf, Hamburg, Germany 

Syringes Becton Dickinson GmbH, Heidelberg, Germany 

Plastic histocasettes NeoLab, Heidelberg, Germany 

Tissue culture dishes Ø 100x20mm TPP, Trasadingen, Switzerland 

Tissue culture dishes Ø 150x20mm TPP, Trasadingen, Switzerland 

Tissue culture dishes Ø 35x10mm Becton Dickinson, Franklin Lakes, NJ, USA 

Tissue culture flasks 150 cm2 TPP, Trasadingen, Switzerland 

Tubes 15 and 50 mL TPP, Trasadingen, Switzerland 

Tubes 1.5 and 2 mL TPP, Trasadingen, Switzerland  

All other reagents were of analytical grade and are commercially available from Invitrogen, 

SIGMA or ROCH. 

All the FACS antibodies were used from BD Biosciences, eBiosciences or BIO-RAD.  
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3.2 Experimental procedures 

3.2.1 Animals 

C57BL/6N wild-type mice obtained from Charles River (Sulzfeld, Germany). All mice were 

housed in poly-propylene cages under standard conditions with the temperature of 22±20C 

with 12 hours light and dark cycle. Water and standard chow diet (Sniff, Soest, Germany) 

were available ad libitum for the complete duration of the study. Cages, bedding, nestles, 

food, and water were sterilized by autoclaving before use. All the aspects of animal handling 

and experiments were approved by the Regierung von Oberbayern. 

 

3.2.2 Animal models 

GBM anti-serum induced glomerulonephritis168 

Glomerulonephritis was induced in the wild type C57BL/6N mice by a single intravenous 

injection of 100 µl of GBM anti-serum (Probetex, San Antonio, TX). The induction of the 

disease can be seen by increased albuminuria within 24 hours after anti-serum injection. All 

the animals were sacrificed on day 7, urine and blood were collected for the analysis of 

functional parameters and kidneys were harvested for histology, protein, mRNA and FACS 

analysis. Anti-serum contains antibodies against the GBM, this directly binds GBM and 

micro-vasculature in the glomeruli leading to the activation of the complement system 

followed by glomerular and endothelial cell death, as illustrated in Figure 7. This leads to the 

release of abundant amounts of intracellular contents including DAMPs like histones and 

results in the infiltration of immune cells especially neutrophils and macrophages leading to 

the secretion of inflammatory cytokines and chemokines168.  

 

 

 

 



Materials and Methods                                                                                                          34 

 

 

Figure: 7. Schematic represents of stages of GBM antiserum induced glomerulonephritis and DAMPs 
release. 

 

3.2.3 Experimental design 

To study the effect of histone neutralization in the anti-GBM glomerulonephritis model, we 

used anti-histone IgG as a potential therapy, which has capacity to neutralize extracellular 

histones. To do so we used different strategies:  

a) Prophylactic of anti-histone IgG 

b) Therapeutic administration of anti-histone IgG   

c) Other histone neutralizing agents such as heparin, aPC or blocking NETosis with Cl-amide 

d) A combination of anti-histone IgG, heparin and aPC.  

The therapeutic and prophylactic administration schedules are illustrated in figure 8. 
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a) Prophylactic administration with anti-histone IgG 

 

In this experimental setting, mice received an i.p. injection of 20 mg/kg anti-histone IgG or 

control IgG 24h prior to the administration of anti-GBM serum followed by treatment with 

anti-histone IgG on day 1 and 3 (Figure 8). On day 7, urine and blood were collected to 

analyze the functional parameters, like BUN, plasma creatinine and albuminuria, later mice 

were sacrificed and kidneys harvested for histology, mRNA and FACS analysis. 

 

b) Therapeutic administration with anti-histone IgG 

 

For the therapeutic treatment, mice were injected with anti-GBM serum (100 μl/animal) and 

treatment with anti-histone IgG was initiated only after the onset of GN (i.e., after induction 

of proteinuria) on day 2, 4 and 6. On day 7, urine and blood were analyzed for functional 

parameters as well as albuminuria, and the kidneys harvested for histology, mRNA and 

FACS analysis.  

 

c) Therapeutic administration with heparin, aPC or Cl-amide 

 

Mice received an injection of 100 µl anti-GBM serum prior to the daily administration of 

heparin (50 IU/mice, i.p.), aPC (5 mg/kg, i.p.) or Cl-amide (10 mg/kg, i.p.)  for up to 7 days. 

Sample analysis was performed as stated in the Prophylactic treatment of anti-histone IgG 

regime (section 3.2.3 a).   

 

d) Combination of anti-histone IgG, heparin and aPC 

 

Here, mice were treated with a combination of anti-histone IgG (20 mg/kg, i.p. on day 2, 4 

and 6), heparin (50 IU/mice, i.p., daily) and/or aPC (5 mg/kg, i.p., daily) 48 hours after the 

injection of  anti-GBM serum (100 µl). Samples were collected on day 7 and prepared like in 

section 3.2.3 a).   
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Prophylactic treatment :
α-Histone IgG 20 mg/kg, i.p.

α-Hist. IgG

Day    -1 0 1 3 7

Anti-GBM @
100µl/Animal

Sacrifice the animals , Histo and FACS

α-Hist. IgG α-Hist. IgG

 

Prophylactic administration (n=6) 

 

 

 

 

Therapeutic administration (n=6) 

 

 

Figure: 8. Schematics showing the treatment schedules for prophylactic and therapeutic treatment 
with anti-histone IgG 

 

3.3 Blood and urine sample collection 

Mice were anesthetized using isoflurane at a rate of 2.5 % with an oxygen flow of 2 l/h and 

blood was drawn from the facial vein using micro lancet and blood collected into centrifuge 

tubes containing EDTA (10 μl of 0.5 M solution per 200 μl of blood). Blood samples were 

centrifuged at 8000 rpm for 5 min and plasma collected and stored at -200C until further use.  

Urine samples were collected at different times during the experimental time course as well 

as at the end of the study. All samples were stored at -200C until used for further analysis.  

 

Therapeutic treatment :
α-Histone IgG 20 mg/kg, i.p.

α-Hist. IgG

Day    0 1 2                         4                                 6                 7

Anti-GBM @
100µl/Animal

Sacrifice the animals , 
Histo and FACS

α-Hist. IgG α-Hist. IgG
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3.4 Urinary albumin to creatinine ratio 

3.4.1 Urinary albumin 

Urinary albumin levels were determined using an albumin ELISA kit from Bethyl 

Laboratories according to manufacturer’s instructions. One hallmark of the glomerular 

disease is the abundant amount of protein excreted through the urine due to the loss of 

endothelial cells and glomerular basement membrane barrier leading to increased excess 

levels of albumin in the urine. In this study, urine samples were diluted 104 to 106 times with 

the assay diluent before estimation. Briefly, capture antibody (goat anti-mouse albumin, 

1:100) was diluted in coating buffer (carbonate-bicarbonate, pH 9.6) and coated with 100µl 

of diluted antibody onto a Nunc Maxisorb flat bottom 96-well plate and incubated overnight 

at 40C. Plate was then washed 3 times with wash buffer (Tris NaCl with Tween 20) and 

blocking solution (Tris, NaCl with 1% BSA, pH 8) added for 1 hour at room temperature. 

Following blocking, the plate was washed 3 to 5 times with wash buffer and diluted 

samples/standards were then added in the respective wells and incubated for 1 hour. After 

incubation, each well was washed 5 times with wash buffer and HRP-conjugated detection 

antibody (dilution of 1:75000) was added and the plate was incubated in dark for 1 hour. 

After HRP-conjugate incubation, each well was washed 5 to 7 times with wash buffer and 

TMB reagent (freshly prepared by mixing equal volumes of two substrate reagents) was 

added and the samples incubated in dark until color reaction was completed (for 5 minutes) 

followed by addition of the stop solution (2 M H2SO4). The absorbance was read at 450 nm 

within 10 minutes following addition of the stop solution. The albumin content in each 

sample was determined using the equation of regression line generated by plotting 

absorbance of different standards against their known concentrations.  

 

3.4.2 Urinary creatinine, plasma creatinine and plasma BUN 

Urinary creatinine and plasma creatinine levels were measured by Jaffe´s enzymatic reaction 

using a Creatinine FS kit (DiaSys Diagnostic system, GmBH, Holzheim, Germany). Urine 

samples were diluted 10 times with distilled water, whereas plasma samples were used 

undiluted. Serial dilutions of the standard were prepared using the stock provided in the kit. 

Working monoreagent was prepared by mixing 4 part of reagent 1 (R1) and 1 part of reagent 

2 (R2). Then, 10 μl of each of the diluted samples and standards were added to a 96-well flat 
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bottom plate (Nunc maxisorb plate). The monoreagent (200 µl) was added to each well and 

the reaction mixture incubated for one minute before measuring the absorbance at 492 nm 

immediately (1 (A1) and 2 (A2) minutes after addition) using an ELISA plate reader. The 

change in absorbance (Δ A) was calculated as Δ A = [(A2 – A1) sample or standard] – [(A2 – 

A1) blank]. And creatinine content in the samples was calculated as: 

Creatinine (mg/dl) = ΔA sample /ΔA standard x Concentration of standard (mg/dl) 

Plasma BUN levels were measured using a Urea FS kit (DiaSys Diagnostic system, GmBH, 

Holzheim, Germany). Serial dilutions of standard were prepared using the stock provided 

with the kit. Working monoreagent was prepared by mixing 4 part of reagent 1 (R1) and 1 

part of reagent 2 (R2) provided in the kit. Then, 2 μl of each of the sample and standards were 

added to a 96-well flat bottom plate (Nunc maxisorb plate). The monoreagent (200µl) was 

added to each well and the reaction mixture incubated for one minute before measuring the 

absorbance  at 360 nm immediately after 1 (A1) and 2 (A2) minutes using an ELISA plate 

reader. The change in absorbance (Δ A) was calculated as Δ A = [(A1 – A2) sample or 

standard] – [(A1 – A2) blank]. And BUN content in the samples was calculated as: 

BUN (mg/dl) = ΔA sample /ΔA standard x Concentration of standard (mg/dl)x0.467 

The urinary albumin to creatinine ratio was calculated after converting values for albumin 

and creatinine to similar units (mg/dl). Albumin content for each sample calculated (mg/dl) 

was divided by creatinine content (mg/dl) for the same sample. 

 

3.5 Cytokines ELISA 

All cytokine levels in the supernatants collected from in-vitro cell stimulation assays were 

measured using ELISA kits in accordance with the manufacturer’s instructions. Briefly, the 

NUNC ELISA plates were captured with the capture antibody in coating buffer overnight at 

4°C. On the next day, the plates were washed 3 times with washing buffer and non-specific 

binding blocked with either the blocking solution or assay diluent for 1 hour. Following 

washing, the standards, samples and sample diluent (blank) were added into the wells and 

incubated at RT for 2 hours. After 2 hours, plates were washed 5 times and the HRP/AP 

conjugated secondary antibody diluted in assay diluent was added and incubated for 1 hour. 

The plates were washed 5-7 times and incubated with 100 μl of substrate A and B (1:1 
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mixture) for 25-30 minutes in the dark. The reaction was stopped by addition of 100 μl of 1 

M H2SO4. The absorbance was measured at 450 nm and the reference wavelength was 620 

nm using a spectrophotometer (TECAN-Genios Plus). 

 

3.6 Immunostaining and confocal imaging 

For immunohistological analysis, the middle part of the kidney from each mouse was fixed in 

formalin (10 % in PBS or Saline) over night, than processed using tissue processors (Leica) 

and the paraffin blocks prepared. 2 µm thick paraffin-embedded sections were cut. De-

paraffinization was carried out using xylene (3x 5 minutes) followed by re-hydration, which 

was carried out by incubating the sections in 100% absolute ethanol (3x 3 minutes), 95% 

ethanol (2x 3 minutes) and 70% ethanol (1x 3 minutes) followed by washing with PBS (2x 5 

minutes). Blocking of endogenous peroxidase was carried out by incubating sections in H2O2 

and methanol mixture (20 ml of 30% H202 in 180 ml of methanol) for 20 minutes in dark 

followed by washing in PBS (2x 5 minutes). For unmasking of antigen, sections were dipped 

in antigen unmasking solution (3 ml of antigen unmasking solution + 300 ml of distilled 

water) and cooked in the microwave for 10 minutes (4x 2.5 minutes, every 2.5 minutes water 

level was checked and made up to the initial levels with distilled water every time). After 

microwave cooking, the sections were cooled to room temperature for 20 minutes and then 

washed with PBS. Blocking endogenous biotin, we incubated the sections with one drop of 

Avidin (Vector) for 15 minutes followed by incubation with Biotin (Vector) for an additional 

15 minutes. After incubation, sections were washed with PBS (2x 5 minutes). 

Next, sections were incubated with different primary antibodies either for 1 hour at room 

temperature or overnight at 40C in a wet chamber followed by wash steps with PBS (2x 5 

min). After washing, sections were incubated with the appropriate biotinylated secondary 

antibodies (1:300, dilution in PBS) for 30 minutes followed by wash steps with PBS (2x 5 

minutes). Substrate solution (ABC solution, Vector) was added and sections were incubated 

for 30 minutes at room temperature in a wet chamber followed by wash steps with PBS (1x 5 

minutes). Tris buffer saline (1x 5 minutes) and sections were stained for DAB followed by 

counter staining with methyl green (Fluka). Then sections were washed with alcohol (96 %) 

to remove excess stain and xylene and then dried and mounted with VectaMount (Vector). 
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The primary antibodies used in the study are mentioned above (section 3.1.2). For each 

immunostaining, negative controls were performed by incubation with the respective isotype 

antibody instead of the primary antibody. 

For confocal imaging, the sections, prepared as described above, were incubated with the 

following primary antibodies: pig anti-mouse nephrin (1:100, Acris Antibodies, Herford, 

Germany), rabbit anti-mouse WT1 (1:25, Santa Cruz Biotechnology, Santa Cruz, CA) and 

rabbit anti-mouse MDM2 (1:100, Abcam, Cambridge, UK) and biotinylated lotus 

tetragonolobus lectin (Vector Labs, CA, USA) for 1 hour in PBS or 0.1 % milk solution at 

room temperature. After washing, the sections were incubated with the secondary antibodies: 

guinea pig Alexa Fluor 488 (1:100, Invitrogen, Carlsbad, CA) or rabbit Cy3 (1:200, Jackson 

ImmunoResearch Laboratories, West Grove, PA) for 30 minutes at room temperature. The 

antibody staining of the sections were evaluated using the confocal microscope LSM 510 and 

the LSM software (Carl Zeiss AG). 

3.7 Periodic acid-Schiff staining 

Formalin-fixed tissues were processed using tissue processors (Leica) and the paraffin blocks 

were prepared. 2 µm thick paraffin-embedded sections were cut. De-paraffinization was 

carried out using xylene (3x 5 minutes) followed by re-hydration by incubating the sections 

in 100% absolute ethanol (3x 3 minutes), 95% ethanol (2x 3 minutes) and 70% ethanol (1x 3 

minutes) followed by washing with distilled water (2x 5 minutes). Re-hydrated sections were 

incubated with Periodic acid (2 % in distilled water) for 5 minutes followed by washing with 

distilled water (1x 5 minutes). Then sections were incubated with Schiff solution for 20 

minutes at room temperature followed by washing with tap water (1x 7 minutes) and counter 

staining with Hematoxylin solution (1x 2 minutes). This was followed by washing with tap 

water (1x 5 minutes) and finally sections were dipped in 90% alcohol, dried and the sections 

closed with cover slips. 

 

3.8 Histopathological evaluations 

3.8.1 PAS staining 

All kidney sections were quantified for PAS scoring and values were expressed as mean ± 

SEM. Glomerular sclerotic lesions were assessed using a semi quantitative score (as in figure 

9) by a blinded observer as follows, after assessing 50 glomeruli from each section: 
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Figure: 9. Representative images of glomerular lesions  

 

Score Lesion in Glomeruli  

No lesion (0)  None 

Segmental Lesion (1) ≤ 50 %  

Global Lesion (2) ≥ 50 % 

All sections in each group were quantified as percentage of glomeruli with each score (mean 

± SEM). 

 

Tubular injury also was scored in the PAS sections, percentage of tubules in the 

corticomedullary junction that displayed cell necrosis, loss of brush border, cast formation, 

and tubular dilatation as follows:  

Score Injury level 

0 None 

1 ≤ 10% 

2 21 % to 40 % 

3 41 % to 60 % 

4 61 % to 80 % 

5 81 % to 100 % 
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3.8.2  Mac-2 staining 

The number of infiltrated macrophages into the glomeruli was counted in the sections stained 

with Mac-2 (pan marker for macrophage) antibodies. Mac-2 positive cells were counted 

manually in 50 glomeruli from each kidney section and reported as the percentage of Mac-2 

positive cells in each group. 

 

3.8.3 Neutrophils 

The number of infiltrated neutrophils in the glomeruli was counted in the sections stained 

with the Ly-6B.2 antibody. Positive cells were counted manually in 50 glomeruli from each 

kidney section and reported as percentage Ly-6B.2 positive cells per group. 

3.8.4 Podocytes 

Kidney sections were staining with the WT-1/Nephrine antibody, which were labeled with 

Alexa and FITC conjugated secondary antibodies respectively. Double positive cells were 

counted manually in 50 glomeruli and the average number of podocytes was reported in each 

group. Representative pictures were taken on the confocal microscope to support the 

counting. 

 

3.8.5 Myeloperoxidase and CD31 

Kidney sections were stained with Myeloperoxidase (MPO) and CD31 antibody to show the 

presence of NETs within the MPO positive area, which was in close association with 

endothelial cells (CD31 positive area). This staining method shows the cytotoxicity 

associated with NETs on endothelial cells. 

 

3.9 Immunohistochemistry in human tissues  

Formalin-fixed paraffin-embedded sections of renal biopsies from five subjects with ANCA-

positive RPGN, newly diagnosed in 2013, were drawn from the files of the Institute of 

Pathology at the Ludwig-Maximilians-University of Munich. Informed consent was obtained 

in all cases before renal biopsy. The renal biopsies were fixed in 4 % PBS-buffered formalin 
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solution and embedded in paraffin. Biopsies contained normal glomeruli and glomeruli 

exhibiting cellular, fibrocellular or fibrous crescents. Controls consisted of normal kidney 

tissue from tumor nephrectomies. TLR2 and TLR4 expression was assessed by using specific 

antibodies (TLR2-LS Bio, Seattle, WA, TLR4- Novus, Littleton, CO). 

 

3.10 Electron microscopy 

Kidney tissues and endothelial cell monolayers were fixed in 2.0 % paraformaldehyde/ 2.0 % 

glutaraldehyde, in 0.1 M sodium phosphate buffer, pH 7.4 for 24 hours, followed by 3 washes 

x15 min in 0.1 M sodium phosphate buffer, pH 7.4 and distilled water.  For transmission EM 

kidneys were post-fixed, in phosphate cacodylate-buffered 2 % OsO4 for 1h, dehydrated in 

graded ethanols with a final dehydration in propylene oxide and embedded in Embed-812 

(Electron Microscopy Sciences, Hatfield, PA). Ultrathin sections (~90-nm thick) were stained 

with uranyl acetate and Venable's lead citrate. For scanning EM, after rinsing in distilled 

H2O, cells on coverslips were treated with 1 % thiocarbohydrazide, post-fixed with 0.1 % 

osmium tetroxide, dehydrated in ethanol, mounted on stubs with silver paste and critical-

point dried before being sputter coated with gold/palladium. Specimens were viewed with a 

JEOL model 1200EX electron microscope (JEOL, Tokyo, Japan). 

 

3.11 RNA analysis 

3.11.1 RNA isolation 

Another part of the kidney from each mouse was preserved in RNA-later immediately after 

kidney isolation and stored at -200C until processed for RNA isolation. RNA isolation was 

carried out using RNA isolation kit from Ambion (Ambion, CA, USA). In short, tissues (30 

mg) preserved in RNA-later were homogenized using blade homogenizer for 30 seconds at 

speed 4 in lysis buffer (600 μl) containing β-mercaptoethanol (10 μl/ml). The homogenate 

was centrifuged at 6000 rpm for 5 minutes and 350 μl of supernatant was transferred into a 

fresh DEPC-treated tube and 70 % ethanol was added and mixed gently. The whole mixture 

was then loaded on a RNA column and processed for RNA isolation as per manufacturer’s 

instruction. Isolated RNA was measured, checked for purity as follows and stored at -800C. 
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3.11.2 RNA quantification and purity check 

The isolated RNA samples were quantified using a Nano drop (PEQLAB Biotechnology 

GMBH, Erlangen, Germany). The ratio of optical densities at 260 nm and 280 nm is an 

indicator for RNA purity (indicative of protein contamination in the RNA samples). Only 

samples with a ratio of 1.8 or more were considered to be of acceptable quality. 

3.11.3 RNA integrity check 

A further quality check (if necessary) was performed using a denaturing RNA gel. Briefly, 

2% Agarose gel with Ethidium-bromide was casted, RNA samples were mixed with RNA 

loading buffer (4:1 ratio) (Sigma Aldrich, Germany) and the samples were loaded onto the 

gel. Electrophoresis was carried out at constant volt (70-100 V) using MOBS running buffer 

for 1 hour and the gel was imaged on a gel documentation apparatus under a UV lamp. RNA 

samples that show a single bright band were considered to be of good quality. Loss of RNA 

integrity could be detected as smear formation in the Agarose gel (Figure 10). 

 

 

 

Figure: 10. RNA integrity check 

 

3.11.4 cDNA synthesis and real-time RT-PCR (SYBR Green) 

The isolated RNA samples were quantified and processed for cDNA conversion using reverse 

transcriptase II (Invitrogen, Karlsruhe, Germany). RNA samples were diluted in DEPC 

treated tubes containing water to get a final concentration of 2 μg / 30 μl. To the diluted RNA 

samples, 13.9 μl of master mix* was added and the tubes were incubated at 420C for 1 hour 
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and 30 minutes on a thermal shaker. Upon completion of incubation, cDNA samples were 

stored at -200C until used for RT-PCR analysis using SYBR green. The cDNA samples 

prepared as described above were diluted 1:10 for the real-time RT-PCR. 2 μl of diluted 

cDNA samples were mixed with SYBR green master mix (10 μl), forward primer (0.6 μl) and 

reverse primer (0.6 μl), that are specific for the gene of interest, Taq polymerase (0.16 μl) and 

distilled water (6.64 μl). The real-time RT-PCR was performed using Light Cycler480. 

*The master mix was prepared by mixing 9 μl of 5x buffer (Invitrogen, Karlsruhe, Germany), 

1 μl of 25 mM dNTP mixture (Amersham Pharmacia Biotech, Freiburg, Germany), 2 μl of 

0.1 M DTT (Invitrogen, Karlsruhe, Germany), 1 μl of 40U/ μl RNAsin (Promega, Mannheim, 

Germany), 0.5 μl of Hexanucleotide (Roche, Mannheim, Germany), 1 μl of Superscript 

(Invitrogen, Karlsruhe, Germany) or ddH2O in the case of the control cDNA (RT minus).  

 

3.11.5 Real time PCR 

SYBR Green Dye detection system (SYBR Green I 96 protocol LC480 Roche running 

program) was used for amplification. Quantitative real-time PCR was performed on Light 

Cycler 480 (Roche, Mannheim, Germany). Each amplification step included initiation phase 

95°C, annealing phase 60°C and amplification phase 72°C and was repeated 45 times. Gene-

specific primers (300 nM, Metabion, Martinsried, Germany) were used as listed in table 4. 

Controls consisting of ddH2O were negative for target and housekeeper genes. Primers were 

designed to be cDNA specific and to target possibly all known transcripts of genes of interest. 

In silico specificity screen (BLAST) was performed. The lengths of amplicons were between 

80 and 130 bp. The kinetics of the PCR amplification (efficiency) was calculated for every 

set of primers. The efficiency-corrected quantification was performed automatically by the 

LightCycler 480 based on extern standard curves describing the PCR efficiencies of the target 

and the reference gene [ratio = EtargetΔCPtarget (control − sample)/ErefΔCPref (control − 

sample)]. To reduce the risk of false positive Cp the high confidence algorithm was used. All 

the samples that during the amplification reaction did not rise above the background 

fluorescence (crossing point Cp or quantification cycle Cq) of 40 cycles were described as 

not detected (n.d. = not detected in the figures). Crossing points between 5 and 40 cycles 

were considered as detectable. The melting curves profiles were analyzed for every sample to 

detect unspecific products and primer dimers. Products were visualized on agarose gels, 

extracted and analyzed for sequence. 
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3.11.6 Oligonucleotide primers used for SYBR-Green RT-PCR 

The following oligonucleotide primers were used in this thesis. 

 

Table: 4. Oligonucleotide primer sequences used in the study 

Gene Sequence 

18s Forward: GCAATTATTCCCCATGAACG 

Reverse: AGGGCCTCACTAAACCATCC 

Ccl2 Forward: CCTGCTGTTCACAGTTGCC 

Reverse: ATTGGGATCATCTTGCTGGT 

Cxcl10 Forward: GGCTGGTCACCTTTCAGAAG 

Reverse: ATGGATGGACAGCAGAGAGC 

IL-6 Forward: TGATGCACTTGCAGAAAACA 

Reverse: ACCAGAGGAAATTTTCAATAGGC 

Nphs1 

(Nephrin) 

Forward: TTAGCAGACACGGACACAGG 

Reverse: CTCTTTCTACCGCCTCAACG 

Nphs2 

(Podocin) 

Forward: TGACGTTCCCTTTTTCCATC 

Reverse: CAGGAAGCAGATGTCCCAGT 

Nos2 

(iNos) 

Forward: TTCTGTGCTGTCCCAGTGAG 

Reverse: TGAAGAAAACCCCTTGTGCT 

Tnf-α Forward: CCACCACGCTCTTCTGTCTAC 

Reverse: AGGGTCTGGGCCATAGAACT 

Wt-1 Forward: CATCCCTCGTCTCCCATTTA 

 Reverse: TATCCGAGTTGGGGAAATCA 

CXCL2 Forward: CGGTCAAAAAGTTTGCCTTG 

 Reverse: TCCAGGTCAGTTAGCCTTGC 

CD44 Forward: AGCGGCAGGTTACATTCAAA 
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 Reverse: CAAGTTTGGTGGCACACAG 

BAD Forward: GTACGAACTGTGGCGACTCC 

 Reverse: GAGCAACATTCATCAGCAGG 

FGL-2 Forward: AGGGGTAACTCTGTAGGCCC 

 Reverse: GAACACATGCAGTCACAGCC 

BID Forward: GTGTAGCTCCAAGCACTGCC 

 Reverse: GCAAACCTTTGCCTTAGCC 

NOXA Forward: ACTTTGTCTCCAATCCTCCG 

 Reverse: GAAGTCGCAAAAGAGCAGGA 

PUMA Forward: CACCTAGTTGGGCTCCATTT 

 Reverse: ACCTCAACGCGCAGTACG 

 

3.12 Flow cytometry 

Flow cytometric analysis of cultured and renal immune cells was performed on a FACS 

Calibur flow cytometer (BD) as described 52. Every isolate was incubated with binding 

buffer containing either anti-mouse CD11c, CD11b, CD103, F4/80, and CD45 antibodies 

(BD) for 45 min at 40C in dark were used to detect renal mononuclear phagocyte 

populations. Anti-CD86 (BD) was used as activation marker. Anti-CD3 and CD4 (BD) were 

used to identify the respective T-cells population. 

 

3.13 In-vitro methods 

3.13.1 Cell freezing and thawing 

At earlier passages, large amounts of cells were grown under standard culture conditions and 

were frozen for future use. For freezing cells, cells were detached from the culture plates and 

spun down under sterile conditions for 3 minutes at 1000 rpm. The cell pellet was maintained 

on ice and carefully re-suspended in cold freezing medium (90 % FCS and 10 % DMSO) by 
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pipetting the suspension repeatedly up and down. 1.5 ml aliquots were quickly dispensed into 

freezing vials (40C) and the cells were slowly frozen at –200C for 1 hour and then at –800C 

overnight. The next day, all aliquots were transferred into liquid nitrogen. 

In order to thaw cells, a frozen vial was removed from liquid nitrogen and put into the water 

bath at 370C. The cells were then dispensed in 5 ml of warm complete growth medium and 

spun down at 1000 rpm for 5-7 minutes. The old medium was then removed and the cells 

were re-suspended in fresh medium and transferred into a new culture plate. The medium was 

changed once more after 24 hours. 

3.13.2 Cell culture 

GEnCs were cultured using standard cell culture techniques. Briefly, cells were thawed from 

liquid nitrogen and immediately seeded into 150c m2 cell culture plates containing 20 ml of 

complete RPMI media with 10 % FCS and 1 % PS. Cells were allowed to grow until they 

became confluent, fresh media was supplied every 2 days. For growing podocytes and 

mPECs specified media was used, in which RPMI containing 1 % P/S and 5 % FCS and if 

required for controlling pH we used 1% Sodium pyruvate, 1 % HEPES and 1 % Sodium 

Bicarbonate. When cells reached 80-90% confluence, they were split or detached from the 

plate by adding 2 ml of trypsin solution and the cells incubated at 370C for 2-3 minutes. Once 

the cells were detached from the plate, trypsin was neutralized by adding complete media, 

and then the cells were centrifuged at 1200 rpm for 5 minutes. The cells were re-suspended in 

normal media and exact number of cells counted using a Neubauer chamber. The required 

number of cells was used for the different experiments like cytotoxicity assay using MTT 

dye, angiogenesis assay etc. 

 

3.13.3 Assessment of histone induced toxicity on GEnC 

For cytotoxicity experiments, 10 to 15x104 GEnCs were seeded in 96-well plates andallowed 

to adhere overnight. Once the cells adhered to the plates, different concentrations of histones 

were added to the cells in the absence or presence of anti-histone IgG, whereas control groups 

were only stimulated with Control IgG for 18 to 24 hours. Cytotoxicity was detected by non-

radioactive cell proliferation assay kit. Briefly, after the stimulation cells were supplemented 



Materials and Methods                                                                                                          49 

with 15 µl of the MTT dye solution and incubated at 370C for 4-6 hours. During this time, 

live cells were converting the MTT dye into colored formazon crystals and these crystals 

were then dissolved using 100 µl of stop solution. The color change can be detected using a 

photometer at λ=570 nm. The color is directly proportional to the live cells. 

 

3.13.4 Podocyte culture and detachment assay 

Podocytes are terminally differentiated highly specialized cells with a complex cellular 

architecture. Podocytes do not have the ability 

to divide and multiply, therefore we used 

immortalized podocytes (from H-2Kb-tsA58 

mice) that were cultured in the presence of 

recombinant mouse IFN-γ (100 U/ml) at 330C 

in collagen-1 coated plates using DMEM media 

containing 1% of HEPEs, sodium bicarbonate 

and sodium pyruvate (to maintain the pH of the 

medium). The cells were trypsinized once they 

were 80% confluent. For the differentiation of 

podocytes, cells were grown in collagen-I 

coated plates at 370C without IFN-γ for 14 days 

and then used for experiments. For detachment 

assays, a specific number of podocytes were 

plated in 10 cm dishes and allowed to 

differentiate. These differentiated cells were 

stimulated with histones (100 µg/ml) for 24 

hours with or without anti-histone IgG. In the 

case, podocytes detach from the plate, it is a 

sign that these cells are dead. This was 

determined by counting the detached cells in the 

supernatants and the ratio was reported as live 

and detached cells (Figure 11). Further results 

were also confirmed by an MTT assay. Figure: 11. Schematic diagram showing the 
procedure employed to perform the podocyte 
detachment assay. 
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3.13.5 Neutrophil isolation and NETs formation and cytotoxicity assay 

Neutrophils were isolated from mouse the peripheral blood. Whole blood was collected into 

heparin tubes from the facial vein and mixed with 1,25% of high molecular weight dextran 

(molecular weight 450K-650K), and RBCs were allowed to settle at 40C. The upper clear 

yellowish leucocyte rich layer was separated and lysed for the remaining RBCs using 

hypnotic lysis (ddH2O) and tonicity was maintained by adding 0,15M KCl. Resultant 

leucocytes were enriched for neutrophils by gradient centrifugation with Biocoll solution 

(density of 0,177). As the neutrophils were very sensitive to the external stimuli, care was 

taken not to activate them by aggressive shaking and all the procedure were performed at 

40C. No glass material was used as neutrophils sticks to the glass surface.  

Once the pure neutrophils were isolated, suspended in plane RPMI media and then incubated 

at 370C in CO2 incubator for 30 minutes to rest, the NETosis experiments were carried out. 

We hypothesized that NETs can kill endothelial cells, therefore we performed co-culture 

experiments with GEnC and neutrophils followed by in-situ NETs formation using TNF-α or 

PMA (known agonists for NETs formation, concentrations used did not have any direct 

killing effect on GEnC). The cytotoxicity of NETs was analyzed by MTT assay, in which 

only survived GEnC were able to convert the MTT salt. The results were confirmed by 

immuno-fluorescence staining and scanning electron microscopy (SEM).  

3.13.6 Intra-renal administration of histones 

To check the cytotoxic effect of histones on glomerular cells, histones were injected directly 

into the renal artery of WT and Tlr2/4 KO mice as illustrated in figure 12. One group of mice 

received histones after treating with anti-histone IgG, whereas the control mice were 

administered with Control IgG. In the case of Tlr2/4 KO mice, histones were only injected to 

check the cytotoxic effects compared to WT mice. After 24 hours, mice were sacrificed and 

kidneys fixed in formalin and taken for histological evaluation using PAS and fibrinogen 

staining to check the effect on glomerular cells and endothelial cell damage. 
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Figure: 12. Histone injection into the renal artery, the abdominal aorta and the left renal artery was 
prepared and a microcannula was placed into the left renal artery (left) for histone injection. The 
puncture site was mounted with glue before closure of the wound (right)9. 

 

3.13.7 Isolation of glomeruli 

To further confirm the cytotoxic effects of histones on glomerular cells, we isolated pure 

glomeruli from WT and Tlr2/4 KO mice. The glomerular fraction was isolated by using 

magnetic isolation using perfusion of paramagnetic beads. Briefly, animal were anesthetized 

by an intraperitoneal injection of narcosis mix. Animals were cut open by midline incision 

and kidneys excised along with the intact arteries and veins and then taken for microsurgery 

using Leica, WILD M10 microscope with the help of micro scissors and forceps. Renal 

arteries were cut open to locate the arterial entrance into the kidney. Using a 1 ml syringe 

containing paramagnetic, beads were slowly administered into the kidney containing 2x106 

magnetic beads (Dnabeads, M-450 Epoxy). Successful perfusion will turn the kidney pale. 

After completion of the perfusion, kidneys were minced into fine pieces. Kidney samples 

were then digested with collagenase A for 30 minutes at 370C and the digested tissue was 

passed through a 100 µm cell strainer on ice. Digested and filtered tissue was passed though 

cell separation magnet (BD IMagnet, BD) and washed 5 times to isolate the glomeruli 

fractions. The first wash elutes the tubulointerstitial part of the kidney, the second wash 

eluted predominantly the tubular fraction and the remaining fractions were washed carefully 

until a 95 % to 98 % purity of glomeruli was obtained upon microscopic observation. The 

uniform glomeruli were seeded in 96-well plates and stimulated with histones to check the 

cytotoxic effects on the entire glomeruli, which can be measured by the release of LDH. The 

results were compared between WT and Tlr2/4 KO glomeruli. In another set of experiment, 
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following histone stimulation with or without α-Histone IgG for 6 hours all fractions were 

lysed using RNA lysis buffer to prepare mRNA and stored at -200C until further use. 

3.13.8 In-vitro tube formation assay 

To study the cytotoxic effects of histones on formed microvasculature, we setup the tube 

formation assay in which the cells were grown on 3D-matrix made of basement membrane 

protein called matrigel.  Matrigel was thawed overnight at 400C to make it liquid and 10 µl 

was added into each well of the µ-slide angiogenesis (ibidi, Munich, Germany) allowing 

solidifying at 370C. GEnCs were seeded at 1x104 cells/well and stimulated with VEGF and b-

FGF as positive control or with histones in the absence or presence of histone antibody. Tube 

formation as a marker of angiogenesis was assessed by light microscopy by taking series of 

pictures at 0 hour, 4 hours, 8 hours and 24 hours. The cell covered area was calculated using 

the software photoshop. Angiogenic score was determined by blinded technique. 

 

3.14 BWA3 hybridoma culture and anti-histone IgG purification 

Anti-histone IgG was isolated from the culture supernatants of monoclonal BWA-3 

hybridoma cells. Initially BWA-3 cells were revived from liquid nitrogen and cultured in 

normal growth medium (DMEM) containing 10 % FBS and 1 % PS until the cells attain 

confluence. Cells were collected by centrifugation and seeded in CD hybridoma media 

containing 5 % ultra-low IgG serum, 1 % PS and 2 mM glutamine into cell culture flasks 

(Monestier et al, 1993). Cells were allowed to grow and during this time, hybridoma cells 

secreted α-Histone IgG in the supernatants. After 7-8 days, the supernatant was centrifuged to 

separate the cells and debris, and suspension was filter through 0.22 µm membranes and 

stored at 40C in SCOTH bottles. To purify and concentrate anti-histone IgG, hybridoma 

culture supernatants were passed through high trap protein GHP columns. Initially, columns 

were activated by passing 20 mM sodium phosphate buffer (pH 7.0) through followed by the 

hybridoma culture supernatant. During this process, antibodies bind to protein GHP columns 

and this can be eluted using low pH  (0,1M glycine hydrochloride buffer (pH 2,7)) into 2 mL 

Eppendorf tubes and the acidic pH can be neutralized to 7 using the appropriate amount of 

1M Tris-HCl buffer (pH 9,0). 
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The obtained antibody can be quantified for its concentration by measuring the absorbance 

(optical density O.D) using a UV-visible spectrophotometer at a wave length of 280 nm for 

total protein concentration. For determining the actual concentration of the anti-histone IgG, 

the O.D values were multiplied with the factor 0.7 and the antibody was then stored at -200C 

until further use. Binding efficiency of the antibody was confirmed by western blotting using 

total histones as positive control.  

Note: avoid repeated freezing and thawing of anti-histone IgG 

 

3.15 Statistical analysis 

Data are presented as mean ± SEM. For multiple comparisons of groups one way ANOVA 

was used with post-hoc test using GraphPad prism (CA, USA). Paired Student`s t-test was 

used for the comparison of single groups. A value of p < 0.05 was considered to indicate 

statistical significance. 
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4. Results 

 

4.1. Glomerular expression of TLR2 and TLR4 in human severe glomerulonephritis 

Allam et.al have previously shown that extracellular histones can acts as ligands for TLR2 

and TLR4 leading to the tubular injury after AKI9. Therefore we studied the expression of 

these receptors in the glomeruli of both healthy and severe glomerulonephritis in human 

kidneys. To investigate this, we performed immunohistological staining using TLR2 and 

TLR4 antibodies in healthy human kidney (Biopsy taken during kidney transplantation) and 

kidney biopsies from patients with ANCA-vasculitis, a severe form of glomerulonephritis.  

TLR2/4 immunostaining of normal human kidney showed only a weak granular positivity in 

all glomerular cells, whereas TLR4 positivity was clearly observed in the glomerular 

endothelial cells (Figure 13A). In addition, TLR2 was strongly expressed in the cytoplasm of 

epithelial cells of the proximal and distal tubule, while the TLR4 expression was less 

prominent (Figure 13A).  

However, immunostaining of kidney biopsies from patients with ANCA-associated 

necrotizing and crescentic GN revealed a strong expression of TLR2 and TLR4 also in 

parietal epithelial cells (PECs) along the inner aspect of the Bowman`s capsule (Figure 13B). 

Furthermore, glomerular crescents are known to be predominantly formed by PECs171,172. As 

shown in Figure 13C, glomerular crescents were positive for both receptors TLR2 and TLR4, 

and the isotype IgG staining confirmed the specificity as this control staining was negative in 

all tissues (Figure 14). Together, TLR2 and TLR4 expression was observed in the cells of the 

normal glomerulus and ligands for the TLR2/4 can activate PECs proliferation and 

responsible for the induction of crescentic GN. 
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Figure: 13. TLR2 and TLR4 expression in human crescentic glomerulonephritis. Toll-like receptor 
(TLR)-2 and -4 immunostaining was performed on healthy kidney tissue (A) or on kidney biopsies 
from patients with recently diagnosed ANCA vasculitis and clinical signs of glomerulonephritis (B 
and C). (B) Glomeruli were unaffected by loop necrosis or crescent formation, while glomeruli 
affected by such lesions are shown in (C). Original magnification x400. 
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Figure: 14. Isotype staining were negative in both control and ANCA kidney sections. 
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4.2. Extracellular histones drive glomerular cell necrosis in-vitro 

4.2.1. Anti-histone IgG prevents histone toxicity on glomerular cells 

It has been previously reported that extracellular histones can cause toxicity and kill different 

types of cells including tubular epithelial cells and pulmonary endothelial cells in-vitro and 

in-vivo9. To confirm the cytotoxic effect of extracellular histones on cultured glomerular 

endothelial cells (GEnCs), we cultured GEnCs in 96 well plates at a cell density of 10.000 to 

15.000 cells/well in the presence of different concentration of histones and with or without 

the neutralizing histone antibody to block the action of histones. The cells were stimulated for 

24 hours and the OD measured via a photospectrometer at 570nm. As shown in Figure 15A, 

treatment of GEnCs with the histone preparation resulted in a decrease in the absorbance 

(OD) indicating that histones were cytotoxic on GEnCs. This cytotoxic effect of histones on 

GEnCs occurred in a dose-dependent manner. Previously, anti-histone IgG derived from 

BWA3 hybridoma has been demonstrated to be able to neutralize the cytotoxic and 

immunstimulatory effect of extracellular histones10,94,141. To test this, GEnCs were incubated 

with anti-histone IgG (at 100µg/ml concentration) following treatment with different 

concentration of histones. The data show that anti-histone IgG almost entirely prevented 

histone toxicity in glomerular endothelial cells up to a histone concentration of 30μg/ml 

(Figure 15A).  

Next, we wanted to investigate whether histones had a cytotoxic effect on other glomerular 

cells such as PECs and podocytes. To do so, these cells were cultured with different histone 

concentration in the absence or presence of anti-histone IgG. Histones also induced toxicity 

in cultured PECs and podocytes, but occurred at much higher histone concentrations (Figure 

15B and 15C) compared to the toxic dose required for killing endothelial cells (Figure 15A). 

Neutralization of histones with anti-histone IgG prevented the killing action of histones on 

PECs and podocytes in an efficient manner (Figure 15B and 15C). The findings confirmed 

the cytotoxic effects of histones on glomerular cells that were inhibited following treatment 

with anti-histone IgG. 
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                      A 

B  

C  

 

Figure: 15. (A) Murine glomerular endothelial cells (GEnC), (B) podocytes, and (C) parietal 
epithelial cells (PECs) were incubated with increasing doses of histones together with either control 
IgG or anti-histone IgG. Cell viability was determined after 24 hours by MTT assay. Values are the 
mean ± SEM of three independent experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 
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4.2.2. Anti-histone IgG prevents histone toxicity on neovascularization and microtubules 

Endothelial cells have been shown to grow on matrigel surface, which resembles the 

microvasculature of the glomeruli. Therefore, this model seemed to be suitable to mimic the 

in-vivo conditions of glomerular capillary system and to study the cytotoxic effects of 

histones on the microvasculature. 

In our next in-vitro experiments, GEnCs were grown on a Matrigel surface to form 

neovascularization or microtubules, which resembles the microvasculature similar to that 

observed in the glomerular tuft. The addition of histones (40µg/ml) induced destruction of a 

microtubule formation within 12 hours, whereas treatment with anti-histone IgG prevented 

histone-induced GEnC microtubule destruction after 8 and 24 hours, as illustrated in Figure 

16A. Treatment of endothelial cells with anti-histone IgG resulted in an increase in the cell 

covered area (Figure 16B) and a significant high angiogenesis score (Figure 16C) compared 

to control IgG. 

 

Figure: 16. Histones and endothelial cell microtubes in vitro. (A) Murine glomerular endothelial cells 
were seeded into a matrigel matrix for angiogenesis experiments as described in methods (section 
3.10.8 treated with histones, with or without anti-histone IgG. After 8 hours and 24 hours of 
stimulation, the control IgG group shows complete GEnC death, whereas the anti-histone IgG group 
shows a well preserved microvasculature. (B) Cell covered area and (C) angiogenic score are 
demonstrated. Values are the mean ± SEM of two independent experiments. ** = P < 0.01, *** = P < 
0.001. 
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Next, we allowed the formation of microtubules for 12 hours on a matrigel surface. After the 

microtubule formation was completed, we stimulated the microtubules with histone 

(40µg/ml) in the presence or absence of anti-histone IgG after 8 hours (as 0 hour control). 

The data in Figure 5 demonstrate that prior to the stimulation with histone both groups 

showed well-formed microtubules with the same percentage of cell covered area and 

angiogenesis score. After 12 hours of histone treatment, the microtubule structure was 

destroyed in the control IgG groups (Figure 17A) and the percentage of the cell covered area 

and the angiogenesis score decreased (Figure 17B and 17C), which was completely rescued 

by treatment with anti-histone IgG. The data confirmed that histones also had the ability to 

kill already formed microtubules, which is most likely to occur in in-vivo settings as well. 

Therefore, neutralization of histones was beneficial to protect the microvasculature.  

 

 

 

Figure: 17. Histones and endothelial cell microtubes in-vitro. (A) Murine glomerular endothelial cells 
were seeded into a matrigel matrix for angiogenesis experiments as described in methods (section 
3.10.8) treated with histones, in the presence or absence of anti-histone IgG. After 0 hour and 12 
hours of stimulation, control IgG showed GEnC death, whereas treatment with anti-histone IgG 
preserved the microvasculature. (B) The percentage of cell covered area and (C) angiogenic score. 
Values are the mean ± SEM of two independent experiments. * = P < 0.05, *** = P < 0.001. 
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4.3. Neutrophil extracellular traps kill glomerular endothelial cells through histone 

release 

4.3.1. Histones were released during NETosis  

Previously, it has been reported that during severe GN neutrophils can undergo NETosis173.  

NETosis is a form of programmed cell death that occurs in the presence of cytokines released 

from dying cells due to a severe inflammatory insult160,174. As a consequence nuclear 

chromatin including histones and DNA are released from NETting neutrophils within the 

glomerular capillaries25. We hypothesized that histones present within the chromatin structure 

were functionally pathogenic during GN. To investigate this in more detail, we performed in-

vitro experiments to demonstrate the formation of NETs from isolated neutrophils. 

Neutrophils were stimulated or left untreated for 8 hours and then stained for elastase (red) 

and histones (green). Fluorescent microscopy showed that PMA-activated neutrophils 

released chromatin material including histones compared to unstimulated cells (Figure 18) 

indicating that activated neutrophils were forming NETs and released their nuclear material 

including histones. 

 

 

Figure: 18. Non-activated neutrophils did not form NETs (left image). Right image, neutrophils 
formed NETs following activation with PMA and released nuclear material including the granular 
protein elastase (red) and the nuclear proteins histones (green) into the extracellular space. 

 

Elastase + Histones

Non-activated neutrophils                    Activated neutrophils forming NETs
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4.3.2. Histones in the formed NETs kill GEnC in-vitro 

To further investigate the killing action of histones, we set up an experiment where we added 

neutrophils onto a monolayer of GEnCs and incubated the cells in the presence of TNF-α or 

PMA in 4 well permonax microslides to induce NETosis. The killing action of NET related 

histones was evaluated by scanning electron microscopy (SEM). After inducing NETs on a 

monolayer of GEnC using TNF-α in the absence of presence of anti-histone IgG, the cells 

were fixed using electron microscopic fixative (2 % glutaraldehyde and 2 % 

paraformaldehyde) and analyzed for the pathogenic changes induced by NETs on GEnC. The 

SEM results showed that TNF-α treatment alone did not affect the morphology of GEnC 

(Figure 19, left). However, TNF-α activated neutrophils formed NETs that killed the 

monolayer of GEnC as illustrated by blebs formation on the cell surface (Figure 19, middle). 

In the group where anti-histone IgG was added to the cells, the GEnC were completely 

protected from the cytotoxic effects exhibited by the NETs (Figure 19, right), whereby the 

GEnC showed normal cell morphological features similar to the control group (Figure 19, 

left). 

 

 

Figure: 19. Scanning electron microscopy was performed on monolayers of glomerular endothelial 
cells, which appeared flat and evenly laid out (left image). However, neutrophil ETosis caused severe 
injury and death of endothelial cells appearing as bulging white balls with corrugated surfaces 
adjacent to TNFα-activated NETs (middle image). This effect was almost entirely prevented by anti-
histone IgG treatment demonstrated by a significant reversal of the structural integrity of the 
endothelial cell monolayer (right image). 
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The killing actions of NETs-related histones were further investigated by immunostaining of 

fixed cells. The data showed that neutrophils that were undergoing TNF-α-induced NETosis 

destroyed the monolayer of glomerular endothelial cells by inducing endothelial cell death, 

which can be seen by reduced DAPI staining (Figure 8A, middle) compared to treatment with 

TNF-α alone (Figures 20A, left). Interestingly, the observed NETosis-related endothelial cell 

toxicity was entirely prevented by anti-histone IgG treatment (Figure 20A, right) that did not 

affect NET formation as illustrated by clumping of elastase (red) and histones (green) and 

preserved DAPI staining (blue). Together, we conclude that NETting neutrophils damage 

glomerular endothelial cells via the release of histones. These findings were confirmed using 

a colorimetric MTT assay to measure endothelial cell viability. As shown in Figure 20B, 

addition of anti-histone IgG resulted in a significant increase in the O.D values compared to 

the control IgG-treated group when neutrophils were stimulated with the NETosis inducing 

stimuli TNF-α or PMA indicating that anti-histone IgG prevented death of GEnC. Non-

activated neutrophils did not induce GEnC death that was independent of anti-histone IgG 

treatment. 

 

Figure: 20. Anti-histone IgG prevents cell death in glomerular endothelial cells. Glomerular 
endothelial cells were co-cultured with TNF-α-activated neutrophils in the presence of anti-histone 
IgG or control IgG. (A) Immunostaining for elastase, histone, and DAPI. (B) Neutrophils were 
activated with the NETosis stimulus TNF-α and PMA and the MTT assay analysis of endothelial cell 
viability was used to measure the O.D at 570 nm. Values are the mean ± SEM of two independent 
experiments. ** = P < 0.01. 

O
.D

57
0

nm

0.0

0.1

0.2

0.3

0.4

0.5
Cont. IgG

α-Hist. IgG
**

**

Non
activated

TNF-a PMA

E
la

st
a

se
H

is
to

n
e

D
A

P
I

GEnC +

non-activated neutrophils

GEnC + neutrophils

TNF-α + Cont. IgG

GEnC + neutrophils

TNF-α + α-Hist. IgG

A

B



Results                                                                                                                                    64 

4.4. Histones need TLR2/4 to trigger glomerular necrosis and microangiopathy  

Allam R et al has previously reported that extracellular histones mediate its cytotoxic effects 

in a TLR2/4-dependent manner in tubular epithelial cells9. Currently, it is unknown whether 

glomerular toxicity of extracellular histones occurs in a TLR2/4-dependent manner. To 

answer this question we have setup ex-vivo and in-vivo experiments using glomeruli that were 

isolated from Tlr2/4-deficient mice. 

4.4.1.  Histones are cytotoxic to wild-type but not Tlr2/4-deficient glomeruli ex-vivo 

To determine the cytotoxic effect of extracellular histones, we isolated glomeruli from wild-

type (Figure 21, picture) and Tlr2/4-deficient mice and incubated the glomeruli with histones 

at a concentration of 50 μg/ml ex-vivo for 12 hours. Following incubation, we performed a 

lactate dehydrogenase (LDH) assay to measure the cytotoxic effect of extracellular histones. 

We found that histone exposure of glomeruli isolated from wt mice resulted in a significant 

increase in the LDH levels confirming the cytotoxicity of histones on glomeruli (Figure 21, 

graph). Interestingly, the LDH levels were significantly reduced when glomeruli from Tlr2/4-

deficient mice were treated with histones compared to glomeruli from wt mice (white bars). 

This indicated that the cytotoxic effect of extracellular histones on glomeruli occurred in a 

TLR2/4 dependent manner.  

 

 

 

 

 

 

 

 

Figure: 21. (Left image) Representitive image of isolated glomeruli from wild-type (wt) mice. (Right 
graph) Glomeruli were isolated from wt and Tlr2/4-deficient mice and incubated ex-vivo with histones 
(30 µg/ml). After 12 hours, LDH release in the supernatants was measured as a marker of glomerular 
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cell injury. Data represent mean OD ± SEM of three experiments measured at a wavelength of 492 
nm. ** = P < 0.01, *** = P < 0.001. 

4.4.2. Extracellular histones stimulate inflammation in wild-type glomeruli ex-vivo 

After showing that extracellular histones were cytotoxic to glomeruli isolated from wt mice, 

we wanted to investigate the pro-inflammatory effects of extracellular histones. Therefore, 

we exposed glomeruli that were isolated from both wt and Tlr2/4-deficient mice with 

histones (50 µg/ml) and measured the mRNA values of pro-inflammatory cytokines via real 

time RT-PCR. As shown in Figure 10, glomeruli isolated from wt mice that were stimulated 

with histones significantly increased the mRNA expression of pro-inflammatory mediators 

such as TNFα (Figure 22A) and IL-6 (Figure 22B). In contrast, glomeruli from Tlr2/4-

deficient mice, when exposed to histones, did not trigger the expression of IL-6 and TNF 

mRNA indicating that the pro-inflammatory effect of histones also occurred in a TLR2/4-

dependent manner (Figure 22A and 22B). 

 

Figure: 22. Induction of cytokines in isolated glomeruli ex-vivo that were exposed to histones. 
Glomeruli were isolated from wild type (wt) and Tlr2-/4 double knockout mice, and exposed to 
histones (50μg/ml). After 12 hours, the mRNA levels of TNF-α (A) and IL-6 (B) were determined by 
real-time RT-PCR. Values are the mean ± SEM of two independent experiments. * = P < 0.05, ** = P 
< 0.01. 

 

4.4.3. Extracellular histones need involvement of TLR2/4 to show its toxic effects in-vivo 

Finally, we wanted to look at the toxic effect of histones on glomeruli in-vivo. Reports have 

previously shown that an intravenous injection of histones can cause pulmonary 

microvascular injury, which is lethal in mice10. Therefore, we injected histones 10 mg/kg 

directly into the left renal artery in both wt and Tlr2/4-deficient mice that were anesthetized. 

R
el

at
iv

e 
m

R
N

A/
18

s 
rR

N
A

Wt TLR2/4 DKO 
0

1××××10- 0 2

2××××10- 0 2

3××××10- 0 2

4××××10- 0 2

Control
Histones 50µg/ml

TNF-α mRNA

**

NS

R
el

at
iv

e 
m

R
N

A/
18

s 
rR

N
A

wt TLR2/4 DKO 
0

2××××10- 0 3

4××××10- 0 3

6××××10- 0 3

Control
Histones 50µg/ml

IL-6 mRNA

*

NS

A B



Results                                                                                                                                    66 

After 24 hours, kidneys were harvested and photon microscopy carried out to look at the 

structures of glomeruli. As shown in Figure 23A, treatment of histones in-vivo destroyed the 

structure of glomeruli (glomerular lesions) in wt mice that was well preserved in Tlr2/4-

deficient mice. Unilateral histone injection caused glomerular lesions in wt mice that showed 

characteristics of minor endothelial fibrinogen positivity (Figure 23B), capillary obstruction 

and thrombotic microangiopathy (Figure 23C) and global glomerular necrosis (Figures 23D). 

Histone injection into the renal artery of Tlr2/4-deficient mice caused not only reduced 

glomerular lesions but also significantly less fibrinogen positivity (endothelial positivity, 

capillary obstruction and loop necrosis), as demonstrated in Figures 23E. These in-vivo 

results confirmed that extracellular histones induce glomerular injury occurs in a TLR2/4-

dependent manner. 

 

Figure: 23. (A) For intra-arterial histone injection the abdominal aorta was prepared and a micro-
cannula was placed into the left renal artery to inject histones directly into the kidney. Images show 
hematoxylin-eosin staining of isolated glomeruli from saline and histone-treated wt mice as well as 
from histone-treated Tlr2/4-deficient mice. (B-D) Fibrinogen immunostaining of glomeruli isolated 
from wt mice displaying three different staining patterns: diffuse positivity of glomerular endothelial 
cells, entire luminal positivity indicating microthrombus formation, and global positivity of 
glomerular loop indicating loop necrosis. Original magnification x400. (E) Quantitative analysis of 
these lesions (glomeruli injury score). Values are the mean ± SEM of two independent experiments. 
** = P < 0.01, *** = P < 0.001. 

Saline                                           Hi stones  Histones Tlr2/4 -/-

Endothelial positivity Capillary obstruction Loop necrosis

G
lo

m
in

ju
ry

sc
o

re

Saline Histones Tlr2/4 DKO 
0.0

0.5

1.0

1.5

2.0 Endothelial positivity

Capillary obstruction
Loop necrosis

***

**

***

##

#

##

0,25

0,1
0,02 0,83

0,44

0,35

0,49

0,26

0,19

A

B C D E



Results                                                                                                                                    67 

4.5. Extracellular histones contribute to severe glomerulonephritis 

4.5.1. Inhibition of NETs using Cl-amide in-vivo prevents glomerulonephritis 

We hypothesized that extracellular histones released from NETs may also play an important 

role during the progression of severe GN173. To address our theory, we blocked NET 

formation by using the peptidylarginine deiminase (PAD) inhibitor102,175,176 Cl-amide at the 

dose of 10mg/kg in an in-vivo model of severe GN. Mice were injected with heterologous 

sheep anti-rat GBM serum (100µl per mouse) to induce severe GN prior to a daily 

intraperitoneal (i.p.) injection of the PAD inhibitor (Cl-amide in 25 % DMSO). Control mice 

received only vehicle (25 % DMSO). After 7 days, mice were sacrificed and the glomeruli 

lesions of the treated kidneys analyzed for extracellular myeloperoxidase (MPO) and CD31 

expression. As shown in Figure 12, treatment with the PAD inhibitor Cl-amidine prevented 

glomerular NET formation as evidenced by reduced MPO immunostaining (red) and 

quantitative measurement of the fluorescence area. In contrast, the blockade of glomerular 

NET formation preserved glomerular CD31+ endothelial cells, as demonstrated by a 

significant increase in the fluorescence intensity (Figure 24, green) and the fluorescent area 

(graph).  

 

 

 

 

 

 

 

Figure: 24. (A) CD31 (green) and myeloperoxidase (MPO) (red) immumostaining representing NETs 
formation in the glomeruli in close association with the endothelial cells, vehicle group shows focal 
loss of endothelial cell positivity compare to treatment with the PAD inhibitor (PAD.inh). (B) 
Quantification of mean fluorescence area for MPO and CD31 positivity in glomeruli. 

 

 

Vehicle                                  PAD.inh

M
P

O
/C

D
3

1

Fl
uo

re
sc

en
ce

 a
re

a

MPO+ve CD31+ve
0

10000

20000

30000

40000

50000 Vehicle
PAD.inh***

***



Results                                                                                                                                    68 

The previous data have shown the protective effect of the PAD inhibitor Cl-amide leading to 

a preserved endothelial microvasculature in the glomeruli during anti-GBM induced GN. We 

further measured the proteinuria in terms of the albumin to creatinine (A/C) ratio by ELISA. 

The results demonstrated that Cl-amide treatment significantly reduced the A/C ratio 

compare to the vehicle group (Figure 25A). This was also the case for the functional 

parameter including BUN levels (Figure 25B). Within this thesis we have shown that the 

main cause of proteinuria in the necrotizing GN model was due to the loss of podocytes 

within the glomeruli. Here, we wanted to evaluated this in more detail on histological 

sections using immunostaining of nephrin and WT-1 positive podocytes. Following Cl-amide 

treatment, we found a normal or maintained number of podocytes compare to the vehicle 

group (Figure 25C). PAS staining of sections were analyzed for glomerular morphology in 

healthy, segmental and global lesions in glomeruli. The results showed that Cl-amide 

treatment significantly increased the number of normal glomeruli and significantly decreased 

the global sclerotic lesions compare to the vehicle group (Figure 25D). Furthermore, one 

characteristic features of necrotizing GN are vibrant crescentic glomeruli that were 

significantly reduced upon Cl-amide treatment in comparison to the vehicle group (Figure 

25E).  

The infiltration of inflammatory cell represents another complication of necrotizing GN. To 

look at the infiltration of inflammatory cells in the glomeruli, we used immunostaining to 

identify Mac-2+ macrophages. The data showed that Cl-amide treatment significantly 

reduced the number of infiltrating macrophages in the glomeruli compare to the vehicle 

group (Figure 25F). These findings were further confirmed by flow cytometry analysis of 

single cell kidney suspension using a combination of fluorescent surface antibodies. The 

obtained results demonstrated that treatment with the PAD inhibitor significantly reduced the 

number of activated inflammatory cells including CD11c+ MHCII+ double positive dendritic 

cells, F4/80+ MHCII+ positive macrophages and total CD11c+ CD11b+ cells and CD3+ CD4- 

CD8- T cells in the kidney (Figure 25G). These findings indicated that blocking NETosis 

using the PAD inhibitor Cl-amide during a necrotizing form of GN not only protected the 

endothelial microvasculature but also abrogated the key features of GN including 

inflammatory cell recruitment. 
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Figure: 25. In an in-vivo model of antiserum-induced GN, treatment with the Cl-amide (PAD.inh) 
following antiserum injection attenuated the disease burden. (A and B) Levels of proteinurea (A) and 
BUN (B) measured in the urine on day 7. (C) Podocytes were quantified as nephrin/WT-1+ cells on 
renal sections on day 7. (D and E) PAS staining to determine the percentage of glomeruli (D) and  
crescentic glomeruli (E). (F) Number of Macrophages per glomeruli determined by immunostaining 
using a Mac-2 antibody. (G) Flow cytometry analysis of kidney suspension. Data represent mean ± 
SEM from five to six mice per group. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 
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4.5.2. Anti-Histone IgG treatment prevents complication of GN 

We have previously shown that anti-histone IgG treatment can prevent the cytotoxic effect of 

histones on glomeruli in-vitro. To test whether these findings can be translated into an in-vivo 

model of GN, first we injected mice intravenously with 100 µl GBM antiserum that was 

either raised in sheep or in mice to induce necrotizing types of GN. After 7 days, histology 

staining showed that only sheep IgG deposits were found in the glomeruli but not mouse IgG 

(Figure 26) demonstrating that excess autologous anti-sheep IgG did not stimulate the 

immune response to induce its own effect in the progression of GN. Furthermore, in these 

experiments we excluded possible non-specific actions of sheep-IgG and have shown that the 

disease pathology is mainly caused by direct killing or necrotizing action of sheep anti-GBM 

serum on different glomerular cells leading to the pathological conditions without any 

autoimmune or autologous reaction against the sheep antiserum during the disease.    

 

 

Figure: 26. Day 7 after injection of anti-GBM serum the kidneys were positively stained for sheep 
IgG, whereas mouse IgG was negative excluding the autologous sheep IgG response. 
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Next, mice were injected i.p. with 20 mg/kg anti-histone IgG or with 20 mg/kg control IgG 

24 hours prior (prophylactic treatment) to the intravenous injection of 100 µl GBM antiserum 

that was raised in sheep. The treatment with anti-histone IgG or control IgG was continued on 

alternative days up to 7 days after sheep GBM antiserum injection. During the experiment, 

urine and blood was collected to analyze functional parameters. After 7 days of antiserum 

injection, mice were sacrificed and kidneys removed for histology, FACS and qRT-PCR 

analysis. As shown in Figure 27A, treatment with anti-histone IgG significantly reduced the 

BUN levels following GBM antiserum injections compared to the control IgG treatment 

group. Anti-histone IgG not only increased the number of healthy glomeruli but also 

significantly reduced the percentage of global glomeruli as demonstrated by PAS histological 

staining of sections (Figure 27B-27C). The decrease in the severity of GN following anti-

histone IgG treatment was further confirmed by the significant reduction in the percentage of 

crescentic glomeruli with less severe lesions on 7 days after antiserum injection in 

comparison to the control IgG treated group (Figure 27D).  

To investigate the effect of NET related histone blockade by the anti-histone IgG treatment, 

histological sections were stained for NET-related MPO staining and endothelial CD31 

markers to look at the effect on the maintenance of glomerular microvasculature. A focal loss 

of endothelial CD31 positivity, a marker of glomerular vascular injury, was observed in 

glomeruli isolated from control IgG treated mice (Figure 27E). However, anti-histone IgG did 

not affect extracellular positivity of MPO but maintained CD31+ vasculature indicating a 

protective effect on NET-related vascular injury. These results were further strengthened by 

quantifying the area of MPO+ and CD31+ showing that anti-histone IgG significantly 

increased the number of CD31 positivity compared to control IgG, whereas the MPO 

positivity remained unaffected (Figure 27F). Consistent with our in-vitro data, the in-vivo 

data now showed that anti-histone IgG treatment prevented the disease pathogenesis of sheep 

GBM antiserum-induced severe GN and clearly implied the importance of anti-histone IgG 

regarding the maintenance of the glomerular microvasculature and the number of podocytes 

present within the glomeruli.  
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Figure: 27. Neutralizing of histones protects severe GN. (A) Blood urea nitrogen (BUN) levels were 
determined 1 and 7 days after intravenous injection of GBM antiserum. Mice were either treated with 
control IgG or anti-histone IgG prior to the injection with antiserum. (B) Representative HE staining 
of glomeruli are shown at an original magnification of 400x. (C and D) Morphometrical analysis of 
segmental and global glomerular lesions (left) and of glomeruli with crescents (right) as described in 
methods (section 3.8.1). (E) CD31 and MPO immunostaining representing NETs formation in the 
glomeruli close association with the endothelial cells, control IgG group shows focal loss of 
endothelial cell positivity compare to anti-histone IgG group. (F) Quantification of the mean 
fluorescence area for MPO and CD31 positivity in glomeruli. Data are means ± SEM from five to six 
mice in each group. * = P < 0.05, ** = P < 0.01, *** = P < 0.001 versus control IgG. 
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4.5.3. Neutralizing histones protects the glomerular filtration barrier in glomerulonephritis 

Because histones were shown to be toxic in glomerular endothelial cells and podocytes in-

vitro, we assessed the effect of anti-histone IgG treatment on the glomerular capillary 

ultrastructure during severe GN in-vivo via transmission electron microscopy. As illustrated 

in Figure 28, mice that received only control IgG treatment showed severe glomerular 

damage with fibrin deposits replacing large glomerular segments (fibrinoid necrosis). The 

capillary loops showed extensive GBM splitting and thinning, prominent endothelial cell 

nuclei, massive subendothelial edema with closure of the endothelial fenestrae, and 

obliteration of the capillary lumina (Figure 28, upper panel, left). Subendothelial transudates 

(leaked serum proteins) and luminal platelets and neutrophils were also noted (Figure 28, 

upper panel, right). Severe podocyte injury with diffuse foot process effacement, reactive 

cytoplasmic changes and detachment from the GBM were apparent (Figure 28, both pictures 

upper panel).  In contrast, glomeruli from mice injected with anti-histone IgG showed 

restored endothelial fenestrations, flat appearing endothelial cells and preserved podocytes 

with intact foot processes (Figure 28, lower panel). 
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Figure: 28. Transmission electron microscopy of antiserum-induced GN revealed extensive 
glomerular injury with fibrinoid necrosis (upper left), endothelial cell swelling, luminal thrombosis, 
and intraluminal granulocytes (upper middle and right). Podocytes show foot process effacement (all 
upper images). Pre-emptive treatment with anti-histone IgG decreased most of these abnormalities in 
particular the endothelial cell and podocyte ultrastructure (lower images). 
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4.5.4.  Anti-Histone IgG treatment maintains podocytes intact 

A hallmark of glomerular diseases is an increase in proteinuria. This is mainly due to the loss 

of podocytes. To further investigate the cytotoxic effect of histones on in-vitro cultured 

podocytes, we stimulated the cultured monolayer of differentiated podocytes with histones in 

the absence or presence of anti-histone IgG. After 24 hours, we measured the detached 

podocytes by counting the floating (detached) podocytes manually in the culture 

supernatants. We found that addition of histones was leading to a significant increase in the 

percentage of detached podocytes in the control IgG group (Figure 29, black bars). In the 

presence of anti-histone IgG, the percentage of detached podocytes significantly decreased 

indicating the killing action of histones on cultured podocytes (Figure 29, white bars). 

 

 

 

 

 

 

 

 

Figure: 29. Anti-histone IgG and podocyte detachment in-vitro. Murine podocytes were exposed to 
histones with or without anti-histone IgG. Data show the mean percentage ± SEM of podocytes that 
were detached from the culture dish within 24 hours. *** = P < 0.001 versus control IgG.  

 

Next, to confirm the effect of histone neutralization on podocyte counts in our in-vivo 

antiserum-induced GN model, we have used a co-immunostaining of WT-1 and nephrine to 

locate the podocytes in the glomerular turf. WT-1 (red) and nephrin (green) co-

immunostaining revealed that anti-histone IgG largely prevented podocyte loss in antiserum-

induced GN (Figure 30A), which was consistent with an increased number of WT-1/nephrin+ 

podocytes compared to control IgG (Figure 30B). On day 7, we also noticed a significant 

reduction of the albuminuria following injection with anti-histone IgG in GBM antiserum-
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treated mice, which was not observed on day 1 (Figure 30C). These results demonstrated that 

extracellular histones induced severe GN by causing glomerular vascular injury and podocyte 

loss. Furthermore, anti-histone IgG also showed a significant decrease in the proteinuria 

compare to the control group, which further confirms the maintenance of podocytes and 

endothelial barriers in anti-histone IgG treated mice.  

 

 

 

Figures: 30. (A) Immunostaining for WT-1 (red) and nephrin (green) was used to quantify podocytes. 
(B) The number of nephrin/WT-1+ podocytes following anti-histone IgG treatment on day 7 during 
antiserum-induced GN. (C) Urinary albumin/creatinine ratio was determined on day 1 and day 7 after 
antiserum injection. Data represent mean ± SEM from five to six mice per group. * = P < 0.05, *** = 
P < 0.001 versus control IgG. 
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We further analyzed the urinary albumin/creatinine ratios and the number of podocytes by 

immunostaining for nephrin and WT-1 in PAD inhibitor-treated mice. The blockade of 

NETosis using the PAD inhibitor resulted in a decrease in the albumin/creatinine ratio but in 

an increase in the number of podocytes similar to that observed with anti-histone IgG (Figure 

31A and 31B) 

 

Figure: 31. (A) Urinary albumin/creatinine ratio and (B) number of podocytes after blocking NETs 
with the PAD inhibitor. Data represent mean ± SEM from five to six mice of each group. * = P < 
0.05, *** = P < 0.001 versus vehicle group. 

 

4.5.5. Extracellular histones drive glomerular leukocyte recruitment and activation 

Infiltrating leukocytes are a key source of extracellular histones during severe GN25 and exert 

important effector functions including the production of chemokines during the pathogenesis 

of GN177. One such chemokine is Chemokine (C-X-C motif) ligand 2 (CXCL2), a small 

molecule belonging to the CXC chemokine family that is also known as macrophage 

inflammatory protein-2 (MIP-2). CXCL2 is mainly secreted by monocytes and macrophages, 

and functions as a chemoattractant for polymorph nuclear leukocytes (neutrophils) and 

hematopoietic stem cells178-180. To investigate whether GEnC also express CXCL2, cultured 

GEnC were stimulated in-vitro with GBM antiserum at a concentration of 30µl/ml for 6 

hours and mRNA isolated from those samples were analyzed for the expression of CXCL-2 

by qRT-PCR. The results showed that stimulation of glomerular endothelial cells with GBM 

antiserum triggered the expression of CXCL2 (Figure 32) indicating that CXCL2 may well 

be the major chemokine for neutrophil infiltration into the glomeruli and further pathogenic 

effects.  
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Figure: 32. CXCL2 mRNA expression in glomerular endothelial cells. Exposure of GEnC to 
glomerular basement membrane (GBM) antiserum (30μl/ml) induced the expression of MIP-
2/CXCL2 mRNA, as determined by qRT-PCR. Data are the mean ± SEM from three independent 
experiments. ** = P < 0.01 (Student’s t-test). 

 

Finally, we investigated the effect of leukocyte infiltration in the in-vivo setting of severe GN. 

Immunostaining and manually counting of the number of neutrophils and macrophages per 

glomeruli showed that anti-histone IgG treatment in-vivo significantly reduced the numbers 

of glomerular neutrophils (Ly-6B.2) and macrophages (Mac-2) during severe GN (Figure 

33A). Furthermore, flow cytometry analysis of renal cell suspensions was used to unravel the 

distinct renal mononuclear phagocyte populations during severe GN. As shown in Figure 

33B, we have identified 5 distinct cell populations, whereby the F4/80+ cells, F4/80+ 

MHCII+ cells and CD11b+ CD103+ cells were predominantly present in the kidney. Upon 

treatment with anti-histone IgG, the number of all cell populations was significantly reduced 

(Figure 33B).  

  



Results                                                                                                                                    79 

 

Figure: 33. Leukocyte recruitment and activation during glomerulonephritis. (A) Glomerular 
neutrophil (Ly-6B.2) and macrophage (Mac-2) infiltrates were quantified by immunostaining. 
Representative images are shown at an original magnification of 400x. (B) Leukocyte activation was 
quantified by flow cytometry of renal cell suspensions harvested 7 days after antiserum injection. 
Data represent mean ± SEM from five to six mice of each group. * = P < 0.05, ** = P < 0.01, *** = P 
< 0.001. 
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In an in-vitro experiment we also showed that histones are able to induce the upregulation of 

activation markers such as MHCII, CD40, CD80, and CD86 in cultured bone marrow-derived 

dendritic cells (BMDCs) in a dose-dependent manner that were significantly reduced 

following anti-histone IgG administration (Figure 34). Taken together, the in-vitro and in-

vivo data in this section demonstrated that extracellular histones triggered glomerular 

leukocyte recruitment and activation that can be blocked with anti-histone IgG. 

 

 

Figure: 34. Cultured bone marrow-derived dendritic cells were exposed to increasing doses of 
histones as indicated. After 24 hours, flow cytometry was used to determine the percentage of cells 
that expressed the activation markers MHCII, CD40, CD80 and CD86. Data are means ± SEM from 
three independent experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 
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4.5.6. Extracellular histones trigger intraglomerular TNF-α release and thrombosis 

Activated mononuclear phagocytes have been shown to be an important source of pro-

inflammatory cytokine production during glomerular disease. Among these, TNF-α 

particularly contributes to the loss of podocytes, proteinuria, and glomerulosclerosis181. To 

investigate whether histones can trigger the production of TNF-α in mononuclear phagocytes, 

we cultured J774 macrophages and bone marrow derived dendritic cells (BMDCs) in the 

presence of different concentrations of histones in-vitro and measured the secreted level of 

TNF-α via ELISA. As shown in Figure 35A, histone-stimulated J774 macrophages and 

BMDCs produced TNF-α that was completely inhibited following addition of anti-histone 

IgG. We next assessed the glomerular TNF-α expression in-vivo on day 7 after antiserum 

injection. Immunostaining displayed a robust TNF-α positivity within the glomerular tuft that 

was not only expressed by the infiltrating cells but also present in the inner and outer aspect 

of the glomerular capillaries (Figure 35B). Interestingly, anti-histone IgG treatment 

significantly reduced the glomerular TNF-α positivity, which was consistent with the 

corresponding renal mRNA expression levels (Figure 35C). TNF-α is not only an inducer of 

NETosis but can also trigger the prothrombotic activity of (glomerular) endothelial cells and 

intravascular fibrin formation182-184. In our GN model, the glomerular capillaries were 

expressing global fibrinogen that was significantly decreased with anti-histone IgG (Figure 

35D). This was also the case for the fibrinogen mRNA levels in the presence of anti-histone 

IgG (Figure 35E). These results highlighted the importance of extracellular histones in 

triggering intraglomerular TNF-α production and microthrombi formation within the 

glomerular capillaries. 
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Figure: 35. Histones activate TNF-α production. (A) J774 macrophages and bone marrow dendritic 
cells (BMDCs) were cultured in the presence of different concentrations of histones with or without 
anti-histone IgG and secreted TNF-α levels determined by ELISA. Data are means ± SEM from three 
independent experiments. *** = P < 0.001 by two-way ANOVA with Bonferroni’s post test. (B and 
D) TNF-α and fibrinogen immunostaining on renal sections from both treatment groups taken on day 
7 after antiserum injection. Representative images are shown at an original magnification of 400x. (C 
and E): Real time RT-PCR for TNF-α and fibrinogen mRNA on renal tissue on day 7 after antiserum 
injection. Data are means ± SEM from at least five to six mice in each group. * = P < 0.05. 
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4.5.7. Extracellular histones activate parietal epithelial cells via TLR2/4 

Mitogenic plasma proteins that are leaking from the injured glomerular capillaries can cause 

PEC hyperplasia and glomerular crescent formation171,172,185. To investigate whether released 

DAMPs and leaked serum proteins as a result of endothelial damage and during the GN are 

responsible for the activation of PECs and crescent formation, PECs were first fluorescently 

stained with claudin-1 and the activation marker WT-1. As shown in Figure 36A, PECs were 

identified as claudin-1/WT-1 positive during antiserum-induced GN glomerular 

crescents186,187. However, in the presence of anti-histone IgG, PECs were less positive for 

WT-1 indicating that histones can induce the activation of PECs. Secondly, we performed in-

vitro experiments, where cultured and fully differentiated PECs were stimulated with a low 

dose of histones (20µg/ml) in the presence of different concentration of serum. The data 

showed that PECs significantly increased their proliferative capacity when treated with 

histones in the presence of different concentrations of serum (Figure 36B) that was 

significantly abolished following addition of anti-histone IgG or anti-TLR2/4 antibodies 

(Figure 36C). Thirdly, the blockade of TLR2/4 reduced histone-induced mRNA expression of 

activation markers like CD44 and WT-1 in PECs (Figure 36D). Besides the effect of anti-

histone IgG and anti-TLR2/4 antibodies to block the toxic effect of extracellular histone, the 

same capability was attributed to heparin and recombinant activated protein C (aPC) 10,140. As 

such, the protective effect on PEC activation was confirmed by heparin, activated protein C 

(aPC), anti-TLR2/4 as well as anti-histone IgG treatment (Figure 36D).  

Finally, heparin and aPC were shown to be able to suppress the cytotoxic actions of histones 

on glomerular endothelial cells in the same way like anti-histone IgG did (Figure 37A-37B). 

Thus, extracellular histones can activate PECs in a TLR2/4-dependent manner, a process that 

may act synergistically with other triggers of PEC hyperplasia during crescent formation and 

that can be blocked by anti-histone IgG, aPC or heparin. 
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Figures: 36. (A) Renal sections were stained with claudin-1 (red, marker for parietal epithelial 
cells/PECs and some tubular cells), WT-1 (green, marker for podocytes and activated PECs), and 
DAPI (blue, DNA marker) in the absence or presence of anti-histone IgG during severe GN crescents. 
Original magnification: x200. (B) Cell viability (MTT assay) was determined by cultured PECs in the 
presence of different serum concentrations together with a low concentration (20μg/ml) of histones 
that without serum reduces PEC viability. (C) PECs viability was measured by MTT assay following 
treatment with anti-TLR2 and anti-TLR4 antibodies and anti-histone IgG to neutralize the histone 
effect on PEC growth. Data are mean OD ± SEM of three experiments measured at a wavelength of 
570 nm. (D) RT-PCR analysis of PECs stimulated with histones and various neutralizing compounds 
(anti-histone IgG, 50μg/ml heparin, 500nM activated protein C, 1ng/ml anti-TLR2 or -4). Note that all 
these interventions blocked histone-induced CD44 and WT-1 mRNA expression. Data are means ± 
SEM of three experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001.  
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Figure: 37. Heparin and activated protein C block histone toxicity on glomerular endothelial cells. 
Glomerular endothelial cells were exposed to increasing doses of histones with or without heparin (A) 
or aPC (B) as indicated and PEC viability determined via MTT assay. Data represent mean OD ± 
SEM of three MTT assay experiments measured at a wavelength of 492 nm. * = P < 0.05, ** = P < 
0.01, *** = P < 0.001. 
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4.6. Delayed onset of histone neutralization still improves severe glomerulonephritis 

The results within this thesis have shown that pre-emptive histone neutralization contributes 

to the amelioration of the pathogenesis of severe GN. This has let us to the question: Could 

histone neutralization be a potential therapeutic approach for treating already established 

severe GN?  

We used the aforementioned three therapeutic interventions including anti-histone IgG, 

heparin, and aPC due to their capability to completely block histone toxicity on glomeruli ex-

vivo (section 4.3.1 and 4.6). To investigate the therapeutic effect of the histone blocking 

agents (anti-histone IgG, heparin and aPC), we stimulated first isolated glomeruli with 

histones at a concentration of 50 µg/ml 24 hour prior to the treatment with agents and 

performed the lactate dehydrogenase (LDH) release assay to check the cytotoxic effect of 

histone on isolated glomeruli. As shown in Figure 38A, all histone blocking agents 

significantly reduced the LDH release compare to the control IgG or vehicle group.   

To further test the effect of histone neutralization therapeutically, a number of in-vivo 

experiments were performed, whereby 100 µl of GBM antiserum was injected 24 hours prior 

to treatment with anti-histone IgG, heparin, and aPC. On day 2, increased proteinuria and 

elevated BUN levels were observed in all groups independent of the therapeutic intervention 

with histone blocking agents (Figures 38B and 38C). However, on day 7 after establishing 

GN, all treatment approaches significantly reduced plasma creatinine levels, proteinuria, and 

podocyte compared to control IgG (Figures 38B-D). Furthermore, the therapeutic blockade of 

histones not only significantly reduced the percentage of glomeruli with global lesions or 

halted damage (Figure 39A-B) but also the percentages of glomerular crescents by 80% 

(Figure 39C) and the percentage of hpf of cast deposition, which features secondary tubular 

injury (Figure 39D).  
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Figure: 38. Delayed histone blockade still improves glomerulonephritis. (A) Glomeruli were isolated 
from wild type mice and incubated with histones in the presence or absence of anti-histone IgG, 
heparin or aPC. LDH release was measured in the supernatants as a marker of glomerular cell injury. 
(B) In the model of antiserum-induced GN, anti-histone IgG, heparin or recombinant aPC were 
injected 24 hours following disease onset and the urinary albumin/creatinine ratio was determined. 
(C) Plasma creatinine levels determined on day 7 and albuminuria also on day 2. (D) Podocytes were 
quantified as nephrin/WT-1+ cells on renal sections on day 7. Data represent the means ± SEM of 
three experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001.   
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Figure: 39. (A) Periodic acid-Shiff staining (B) Glomerular lesions (C) and the percentage of 
crescentic glomeruli (D) and hpf as tubular injury score measured on day 7. Data represent the means 
± SEM of three experiments. * = P < 0.05, ** = P < 0.01, *** = P < 0.001.   
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Next, we determined the number of infiltrating neutrophils and macrophages within the 

glomeruli by histology as well as looked at the percentage of immune cells in GN-induced 

mice. As demonstrated in Figure 40A and 40B, less neutrophils and macrophages infiltrated 

the glomeruli following treatment with the histone blocking agent anti-histone IgG, heparin 

or aPC. Flow cytometry analysis of kidneys from anti-histone IgG, heparin or aPC-treated 

GN mice showed a significant reduction in the percentage of all intrarenal leukocyte 

subpopulations including neutrophils, macrophages, dendritic and T cells as well as their 

status of activation compared to control IgG-treated mice (Figure 41A and 41B). 

 

 

Figure: 40. Therapeutic histone blockade and renal leukocytes. Renal sections were obtained on day 
7 and stained for neutrophils (A) and Mac2 (macrophages, B). Data represent mean glomerular cell 
counts ± SEM of 5-6 mice in each group.  * = P < 0.05, ** = P < 0.01, *** = P < 0.001 versus control 
IgG or vehicle. 
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Figure: 41. (A and B) Flow cytometry data of various leukocyte subsets from kidneys of anti-histone 
IgG, heparin or aPC treated GN mice. * = P < 0.05, ** = P < 0.01, *** = P < 0.001 versus control 
IgG or vehicle. 
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4.7. Delayed onset of histone neutralization using combination of histone blocking agents 

improves severe glomerulonephritis but had no additive effects 

Finally, we investigated the effect of histone neutralization using a combination therapy of 

the previously used histone blocking agent anti-histone IgG, heparin and aPC in a GBM 

antiserum induced severe GN model. Although combination therapy using all three agents 

resulted in a reduction in the urinary albumin/creatinine ratio and creatinine levels (Figure 42 

upper and lower), it did not further decrease proteinuria and creatinine levels compared to the 

individual treatments. Taken together, therapeutic histone blockade with anti-histone IgG, 

heparin or aPC and in combination protected from renal dysfunction and structural injury 

during severe GN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 42. (A) Effect of different treatments and combination of anti-histone IgG, heparin and aPC 
on proteinurea of anti-GBM induced glomerulonephritis on day 7 and (B) the creatinine levels. * = P 
< 0.05. 
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5.  Discussion 

There have been many studies that have explored the involvement of DAMPs in association 

with GN. This thesis provides further insights into the novel pathomechanisms involved in 

the progression of GN and CKD, in particular the source, release and toxic effects of 

extracellular histones and the beneficial outcomes of blocking released extracellular histones 

using anti-histone IgG and histone neutralizing agents like heparin and aPC during the 

pathogenesis and progression of necrotizing and crescentic GN. 

The foremost questions we wanted to answer by this research are: Do dying glomerular cells 

and NETting neutrophils release extracellular histones? Are they contributing to the 

development of crescentic GN? Dying glomerular cells and NETs formation within the 

glomerulus have been shown to release cellular componants, which act as DAMPs to elicit 

cytotoxic and immunostimulatory effects on glomerular cells leading to the progression of 

crescentic GN22,25. The data presented in this thesis also confirm that extracellular histones 

released from dying glomerular cells and NETs exhibited cytotoxic and immunostimulatory 

effects causing the development of crescentic GN. Furthermore, neutralizing extracellular 

histones was effective during both treatment approaches, prophylactically and therapeutically 

indicating that histone neutralizing agents have the potential to serve as therapeutics during 

severe GN. 

As mentioned above, NETosis is a regulated form of neutrophil death and was first 

discovered in 2004 in the context of being a neutrophil-specific mechanism required for 

killing of extracellular bacteria63. Reports have shown that NETosis is not only an 

antibacterial host defense mechanism but can also occur during sterile inflammation because 

NETosis can be triggered via pro-inflammatory cytokines such as TNF-α. Our in-vitro studies 

showed that a sublethal dose of TNF-α is sufficient to trigger NETosis-driven injury in 

glomerular endothelial cells, as illustrated in Figure 43B. The ability of NETs to kill 

glomerular endothelial cells was solely dependent on the presence of histones generated 

within the NETs structure. This killing effect of NETs could be reversed by the addition of 

anti-histone IgG antibody (Figure 43C). Interestingly, blocking NETs in-vivo using the PAD 

inhibitor Cl-amide, which blocks the citrulination of histone H3, prevented NETs formation 
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by neutrophils and resulted in the protection of mice from developing GN. This is consistent 

with previous findings in a mouse model of lupus nephritis188. 

 

 

 

Figure: 43. Diagram representing the formation of NETs in-vitro and killing action of NETs when 
neutrophils get activated in the presence of TNF-α. A) Normal endothelial monolayer with 
unstimulated neutrophils. B) Endothelial monolayer co-cultured with NETs forming neutrophils 
following stimulation with TNF-α. C) Endothelial monolayer with TNF-α-activated neutrophils in the 
presence of anti-histone IgG.   

 

NETosis causes the release of many aggressive proteases, oxygen radicals and potentially 

DAMPs into the extracellular space that drive vascular injury in the glomerulus. For example, 

DAMPs can activate TLRs and other pattern recognition receptors of the innate immune 

system leading to sterile inflammation. Our data now demonstrate an essential role for 

DAMPs in particular extracellular histones. Extracellular histones have been reported to 

contribute to endothelial dysfunction, organ failure and death during sepsis as a result of 
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microvascular endothelial cell injury in the lung10. Reports have further explored the 

thrombogenic potential of extracellular histones that exert their action via direct activation of 

endothelial cells and platelets91,93,101,113,139,147. Similarly, in experimental infection and sepsis 

models, NETosis is most likely the source of extracellular histones, whereas in mechanical 

trauma, toxic liver injury, cerebral stroke and post-ischemic renal tubular necrosis histones 

are also released from dying tissue cells9,53. 

The data herein show that injection of extracellular histones in-vivo into healthy mice through 

the renal artery clearly triggered the killing action of histones in glomerular cells, which 

resulted in the progression of glomerulosclerosis. This was the case for anti-GBM-induced 

glomerulosclerosis, as illustrated in Figure 30. The mechanisms involved in histone toxicity 

are not entirely understood. However, there is evidence indicating that histones exert their 

killing activity due to their strong basic charge, a TLR-independent form of cytotoxicity90. 

While the basic charge of histones is required within the nucleus to neutralize acidic residues 

of the DNA, the basic charge outside the cell has the capacity to damage the cell membrane90. 

Reports have shown that the polyanion heparin can block this charge effect of histones, 

which may well explain its antagonistic effect on histone toxicity in-vitro and in-vivo. 

However, we and others discovered that histones elicit also DAMP-like immunostimulatory 

activity by activating TLR2, TLR4, and the NLRP3 inflammasome in dendritic cells and 

possibly other immune cell types9,93,94,98,121. This represents another pathway of how 

extracellular histones trigger sterile inflammation. Because TLR2 and TLR4 (but not NLRP3) 

are known to induce glomerular injury in the heterologous anti-GBM GN model and are 

expressed inside the glomerulus in human ANCA vasculitis, we further explored the 

association of the histone-TLR2/4 axis22,168,189-191. The data herein show that Tlr2/4-deficient 

glomeruli were protected from histone-induced injury ex-vivo and in-vivo implying that 

histone-related glomerular injury occurs in a TLR2/4-dependent DAMP manner. However, in 

the presence of serum the cytotoxic effect of histones on PECs can be reversed leading 

instead to PEC proliferation, which was entirely TLR2/4 dependent. Although PEC necrosis 

can be followed by excessive PEC recovery leading to PEC hyperplasia and crescent 

formation192, concomitant plasma leakage and histone release provide additional mitogenic 

stimuli during severe GN185 (Figure 44).  
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Figure: 44. Schematic representation of normal glomeruli and sclerotic glomeruli with capillary 
necrosis, hyperproliferation of PECs leading to crescents and podocytes detachment and death that 
further aggravates to proteinuria. 

 

To explore the potential efficacy of histone blockade during severe GN, we applied three 

different treatment agents of histone inactivation. The experimental therapeutic approaches of 

histone neutralization were based on pre-emptive or post-induced GN using anti-histone IgG. 

Both therapeutic approaches with anti-histone IgG had a protective effect on the GN 

pathogenesis in accordance with reduced glomerular injury, proteinuria, and serum creatinine 

levels. A similar effect on the pathogenesis of GN by blocking histones was observed 

following heparin treatment, which was consistent with previously published findings in GN 

models193. Furthermore, we have also demonstrated that heparin can inhibit the direct toxic 

effects of histones on glomerular endothelial cells, which is in line with reports investigating 

other cell types57,93,139,140,147. Previously, aPC has been reported to be able to degrade 

extracellular histones10. Like anti-histone IgG and heparin, aPC was equally effective in 

abrogating extracellular histone toxicity in-vitro and severe GN in-vivo. The fact that 

combination therapy of all three agents did not show any additive effect supports the concept 
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that their protective effect on GN occurs via histone neutralization and not via unrelated 

mechanisms. 

The anti-GBM induced severe GN model mimics the human GN conditions. However, the 

main limitations of this study are that the anti-GBM model is an artificial condition to induce 

GN by using antiserum against the collagen present in the GBM membrane and that the 

pathogenesis is short and severe with a high number of heterologous antibodies, which have 

direct killing effect on glomerular cells unlike in human GN. The disease severity might 

differ between the dose and batch of the serum used. Further studies are required to confirm 

the histone neutralization in human disease condition to make an effective treatment of 

blocking histones during GN in humans. 

Taken together, NETosis releases histones into the extracellular space where they exert their 

toxic effects on glomerular endothelial cells and podocytes. Extracellular histone-induced 

glomerular injury depends on signaling through both receptors TLR2 and 4. In contrast, 

histone neutralization either by anti-histone IgG, recombinant aPC or heparin abrogates the 

pathogenesis of GBM antiserum-induced severe GN in both the pre-emptive and post-

established model. In summary, extracellular histones represent a novel therapeutic target in 

severe GN. 
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6. Conclusion 

The research presented within this thesis focused on the functional role of extracellular and 

NETs-related histones during the pathogenesis of severe GN and provides new insights into a 

potential anti-histone therapy in targeting histones to prevent severe GN and CKD. 

The findings of the current study have multiple implications that are listed as followed and 

summarized in Figure 43: 

• Extracellular histones released from dying cells and NETs contribute to glomerular 

cells death, mainly in GEnC. 

• Extracellular histones are pro-inflammatory and activate dendritic cells and 

macrophages to release inflammatory cytokines. 

• Extracellular histones show its toxic effects by activating TLR2/4 receptors. 

• Extracellular histones activate PECs both in-vitro and in-vivo leading to crescent 

formation. 

• Blockade of NETs by using a PAD inhibitor ameliorates all aspects of GBM 

antiserum-induced glomerulosclerosis. 

• Pre-emptive as well as delayed onset of histone neutralization either by anti-histone 

IgG, recombinant aPC or heparin abrogates all aspects of GBM antiserum-induced 

severe GN. 

Taken together, our research highlights the importance of extracellular histones as crucial 

mediators of severe GN. 
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Figure: 45. Schematic representation of mechanism involved in the pathogenesis of 
glomerulonephritis and involvement of extracellular histones release from dying glomerular cells and 
NETing neutrophils.   
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7. Future Direction 

It has been reported that histones show their cytotoxicity due to the strong positive charge 

present on their surface, but not much information is currently available regarding the 

specific cell death pathways. Future studies could be undertaken to determine the mechanism 

by which histones show their cytotoxicity. It would also be interesting to know whether 

histones exert cytotoxic effect via special regulated necrosis pathways or by simple apoptosis 

of cells. 

Histones have been demonstrated to be involved in the pathogenicity of GN by killing 

endothelial cells and other glomerular cells. It would be interesting to study the effect of 

different cell death inhibitors in the GBM antiserum-induced GN, for example using 

inhibitors for necroptosis, ferroptosis or Cyclophilin D-mediated necrosis. 

GBM antiserum-induced GN resulted in the infiltration of macrophages and blocking of 

histones reduced both infiltrating cells and cytokine production during the disease. Here it 

would be of interest to investigate the role of histone neutralization and differentiation of 

macrophages into an anti-inflammatory M2-like macrophage phenotype or a wound 

healing/fibrotic-like macrophage phenotype and to look at the functional role of these 

macrophage phenotypes during GBM antiserum-induced GN. 

In our GBM antiserum-induced GN in-vivo model, we have reported heparin as a therapeutic 

histone neutralizing agent and showed a good protection of the disease progression in regards 

to reducing proteinuria, BUN levels and decreasing inflammation. Therefore, it would be of 

great importance to study the effect of heparin in patients who have severe GN to show its 

valuable clinical efficacy.  
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9. Abbreviations 

AKI Acute kidney injury 

 

PAMPs 
Pathogen-associated molecular 
patterns  

ANCA 
Anti-neutrophil cytoplasmic 
antibody 

 

PAS 
Periodic acid Schiff 

staining 
aPC Activated protein C 

 

PECs Parietal Epithelial Cells 

  
 

PRRs pattern recognition receptors  
BUN Blood urea nitrogen 

   

  
 

RAGE 
Receptor for advanced  
glycation end-products  

DAMPs 
Damage-associated molecular 
patterns  

 

RNA Ribonucleic acid 

DCs Dendritic cells 
 

ROS Reactive oxygen species  

DN Diabetic nephropathy  

 

RPGN 
Rapidly-progressive 
glomerulonephritis  

DNAA Deoxyribonucleic acid 
 

  
  

 

SLE Systemic lupus erythematosus  

ELISA 
Enzyme linked immunosorbent 
assay 

 

  
GBM Glomerular basement membrane 

 

TLRs Tool like receptors 
GEnC Glomerular endothelial cells 

 

TNF Tumor necrosis factor  
GN Glomerulonephritis 

   
  

   HMGB1 High mobility group box-1 
   HSP Heat shock proteins 
   

  
   IFN-γ Interferon-gamma 
   IL Interleukins 
   

  
   LRRs leucine-rich repeats  
   

  
   MPO Myeloperoxidase 
   

  
   NET Neutrophils extracellular traps 
   NLR Nod-like receptor  
   

NLRP3 
NOD-like receptor family,  
pyrin domain containing 3) 

   
  

   O.D. Optical density 
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10.  Appendix 

Composition of buffers used 

FACS buffer :  

Sterile DPBS    500 ml  

Na Azide    500 mg (0.1 % )  

BSA     1 g (0.2 %)  

 

10X HBSS (Hank’s Balanced Saline Solution) with Ca, Mg:  

For 1000 ml  

KCl     4 g  

KH
2
PO

4    
0.6 g  

NaCl     80 g  

Na
2
HPO

4
.2H

2
O   0.621 g  

NaHCO
3    

3.5 g  

CaCl
2     

1.4 g (or CaCl
2
.2H

2
O 1.854 g)  

MgCl
2
.6H

2
O   1 g  

MgSO
4
.7H

2
O    1 g  

D-Glucose    10 g  

Dissolve in 900 ml of distilled water and adjust to pH 7.4 with 1N HCl or 1N NaOH. 
Make up the volume with distilled water to 1000 ml.  

 

 

 

10X HBSS (Hank’s Balanced Saline Solution) without Ca, Mg:  

For 1000 ml  

KCl     4 g  

KH2PO4    0.6 g 

NaCl     80 g  

Na
2
HPO

4
.2H

2
O   0.621 g  

Dissolve in 1000 ml and autoclave.  

 

DNAse stock solution (1 mg/ml):  
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DNAse (type III) 15000 U/6 mg (Sigma D5025)  

To prepared 1 mg/ml solution: 

Add 6 ml of 50 % (w/v) Glycerol in 20 mM Tris-HCl (pH 7.5), 1 mM MgCl2. 

Can be kept at – 20 
0
C for several weeks.  

Caution: Solution is stable only for 1 week at 4
0
C.  

 

50 % Glycerol in 20 mM Tris-HCl (pH 7.5), 1 mM MgCl
2
:  

a. 0.48 g of Tris-HCl in 100 ml of distilled water, adjust pH to 7.4 (= 40 mM)  

b. 50 ml of Glycerol 100 % + 50 ml of 40 mM Tris-HCl (20 mM)  

c. Add 100 ul of 1M MgCl
2 
solution.  

 

Collagenase / DNAse solution:  

1 mg/ml Collagenase, 0.1 mg/ml DNAse in 1X HBSS (with Ca, Mg)  

For 10 ml:  

Collagenase (type I) (Sigma C0130)  10 mg  

1 mg/ml DNAse stock solution   1 ml  

HBSS (with Ca, Mg)    9 ml  

To be preheated in 37 
0
C water bath before use.  

Caution: Prepare freshly every time (Stable only for few days)  

 

Collagenase solution:  

1 mg/ml Collagenase in 1X HBSS (with Ca, Mg)  

For 10 ml:  

Collagenase (type I)    10 mg  

HBSS (with Ca, Mg)    10 ml  

To be preheated in 37 
0
C water bath before use.  

Caution: Prepare freshly every time (Stable only for few days)  

 

 

 

EDTA 2 mM: 

EDTA 7.44 mg in 10 ml HBSS (without Ca, Mg) 

To be preheated in 37 0C water bath before use. 
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Citrate buffer 10X: 

110 mM Sodiumcitrate in ddH2O 

with 2N NaOH to pH 6 

 

PBS: 

2.74 M NaCl 

54 mM KCl 

30 mM KH2PO4 

130 mM Na2HPO4 

in ddH2O 

Adjust pH to 7.5 with HCl 

 

 

TBS (10x): 

  Tris        24.23g 

  NaCl       80.06g 

  Conc. HCL around 17.5ml 

 Make up volume to 1000ml (pH 7.6) 
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