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1. Problemstellung und Zielsetzung 
 

Ein gesundes Kind belastet die Gelenke der unteren Extremität beim Gehen und Laufen jeden 

Tag ca. 10000 bis 15000 Mal [1-4]. Der beim Lastwechsel wirksame funktionelle Reiz modelliert 

hierbei die Gelenke aus. Die Kinder, die aufgrund einer nicht behebbaren Unterschenkel- oder 

Fußdeformität dauerhaft teilentlasten, belasten die zugehörige Hüfte so wenig, dass sich eine 

einseitige Entlastungs-Coxa-valga oder sogar eine operationsbedürftige Entlastungsdysplasie 

entwickelt. 

 

Im klinischen Alltag fiel auf, dass bei primär völlig hüftgesunden Kindern, welche aber jahrelang 

durch eine einseitige Beinverkürzung oder hüftferne Deformität aufgrund eines Defekts am 

Kniegelenk, am Unterschenkel oder am Fuß oder einer Unterschenkelamputation auf Orthesen 

bzw. Prothesen angewiesen waren, eine Coxa valga nachweisbar war [5]. 

 

Außerdem ist in der Theorie durch eine Minderung der Muskelkraft im Rahmen der Entlastung ein 

geringerer Wachstumsdruck an der Trochanterapophyse zu erwarten und somit das Wachstum 

des Trochanters gehemmt [5]. Über eine veränderte Kraftausrichtung der am Hüftgelenk 

wirkenden Muskelkräfte sollte sich die Epiphysenfuge des Hüftkopfes nach den biomechanischen 

Gesetzmäßigkeiten horizontaler ausrichten und die Entwicklung einer Coxa valga die Folge sein 

[6]. 

 

Die gesehenen Verformungen zeigen beispielhaft die Gültigkeit der kausalen Histogenese. Nach 

der Gesetzmäßigkeit „form follows function“ deformiert die veränderte Muskel- und 

Schwerkraftfunktion des einseitig entlastenden Kindes das Hüftgelenk [7]. 

 

Den zahlreichen Erkrankungen, die zur Entlastung und Orthesenversorgung führen können, mit 

den damit verbundenen ungünstigen Auswirkungen auf die Gehfähigkeit der Patienten, können 

sehr unterschiedliche primäre Pathologien zugrunde liegen. Die resultierenden Anomalien der 

Gangmechanik jedoch lassen sich vier funktionellen Kategorien zuordnen: Fehlbildung, 

Muskelschwäche, Störung der motorischen Kontrolle und Schmerz [8]. 

 

Ziel des vorgeschlagenen Projekts sollte es sein, mittels instrumenteller Ganganalyse an  

orthesenpflichtigen Kindern Gangkriterien herauszufiltern, die dazu beitragen, die Pathogenese 

der Entlastungs-Coxa-valga und Entlastungsdysplasie zu beleuchten.  

 

Mit Hilfe der Ergebnisse könnte auch geklärt werden, welche Kinder besonders 

überwachungsbedürftig sind, evtl. ergeben sich auch Hinweise zur besseren Gestaltung von 

Orthesen.  
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2. Literaturüberblick 
 

2.1 Das gesunde Hüftgelenk 
 

2.1.1 Anatomie 
 

Das Hüftgelenk ist ein modifiziertes Kugelgelenk (Abb. 2.1). Die Stabilität dieses Gelenkes erfolgt 

durch seine knöcherne Strukturen, eine das Gelenk umschließende Hüftgelenkskapsel, 

zahlreiche kräftige Bandstrukturen und auch umgebende Muskulatur. Aufgrund seiner Kugelform 

und auch der anatomischen Form befähigt das Hüftgelenk Bewegungen in allen drei Ebenen des 

Raumes. Der Bewegungsumfang des Hüftgelenks setzt sich wie folgt zusammen: 

Streckung/Beugung, Abspreizung/Anspreizung und Außendrehung/Einwärtsdrehung [9].  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Abb. 2.1: Knöcherne Struktur des Hüftgelenks 

(in: Hochschild J: Strukturen und Funktionen begreifen: funktionelle Anatomie, therapierelevante Details. 2. 

LWS, Becken und Hüftgelenk, untere Extremität: Thieme; 2008 [9]) 
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2.1.1.1 Die Hüftgelenkspfanne (Acetabulum) 
 

Die Hüftpfanne wird von allen drei Hüftknochen – Darmbein (Os ilium), Sitzbein (Os ischii) 

und Schambein (Os pubis) – gebildet [10]. Es besteht aus einer halbmondförmigen Gelenkfläche. 

Die Knorpelfläche (der Facies lunata), die den physiologischen Belastungszonen der 

artikulierenden Gelenkkörper entspricht, ist etwa zwei Zentimeter lang und 0,3 Zentimeter dick. In 

der Mitte ist das Acetabulum zur Fossa acetabuli ausgehöhlt. Sie ist mit lockerem Binde- und 

Fettgewebe ausgefüllt, das dünne Blutgefäße enthält und zur Stoßdämpfung des 

Schenkelhalskopfes auf die Pfanne dient (Abb. 2.2). Der Pfannenrand wird durch 

einen Knorpelsaum erhöht, die Pfannenlippe (Labrum acetabulare), sodass der Femurkopf über 

seinen Äquator hinaus umfasst wird. Gelenkpfanne, Gelenkkopf und Bänderkomplex 

gewährleisten eine außerordentlich große Belastbarkeit (Abb. 2.3). Der am unteren Pfannenrand 

verbleibende Einschnitt (Incisura acetabuli) wird durch ein Band (Ligamentum transversum 

acetabuli) verschlossen [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 2.2: Einblick in die Hüftpfanne 

(in: Tönnis DA: Die angeborene Hüftdysplasie und Hüftluxation im Kindes- und Erwachsenenalter. Berlin, 

Heidelberg: Springer-Verlag; 1984 [11]) 

 

Die Hüftpfannenausrichtung wird in der Regel durch zwei Winkel bestimmt: Neigung (Abduktion) 

und Anteversion (Flexion) [12]. Der Pfannenneigungswinkel und der Antetorsionswinkel sind 

alters- [13] und geschlechtsabhängig [14, 15]. Als Maximalwert wurde der 
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Pfannenneigungswinkel in der kindlichen, jugendlichen und erwachsenen Hüfte mit Werten von 

52°, 49° und 45° angegeben [13, 16-18]. Der Anteversionswinkel liegt im Durchschnitt zwischen 

15-20° [14, 18, 19]. Frauen haben signifikant höhere Werte sowohl des Pfannenneigungswinkels 

und als des Anteversionswinkels als Männer [14, 15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 2.3: Rechtes Hüftgelenk von vorn  

(in: Hochschild J: Strukturen und Funktionen begreifen: funktionelle Anatomie, therapierelevante Details. 2. 

LWS, Becken und Hüftgelenk, untere Extremität: Thieme; 2008 [9]) 

 

Die Y-Fuge verknöchert am Wachstumsende. Für die normale Verknöcherung ist eine richtige 

Stellung von Hüftkopf gegen Hüftpfanne notwendig, da die entstehenden Kräfte und Belastungen 

die Verknöcherung reizen. Falls Hüftkopf und Hüftpfanne fehlgestellt sind, kommt es zu einer 

Verknöcherung der Fehlstellung und nachfolgend zur Entwicklung einer Hüftdysplasie [20]. 

 

2.1.1.2 Der Schenkelhalskopf (Caput femoris) 
 

Der Schenkelhalskopf stellt zwei Drittel einer Kugel mit konstantem Radius von ca. 2,5 cm dar. 

Seine Mittelpunktslage entspricht der der Hüftpfanne. Am oberen Pol des Schenkelhalskopfes 

liegt die Fovea capitis vor. Damit erfolgt eine Belastungsverteilung auf einen Ring um den oberen 

Pol. Der Schenkelkopf ist zu zwei Dritteln überknorpelt, ventral und dorsal etwas tiefer als an den 

Seiten. Die Knorpelpartien von Kopf und Pfanne stellen eine anatomische Einheit des gesunden 

Hüftgelenks dar. Im Lig. capitis femoris verläuft ein dünner Zweig der Arteria obturatoria, 

die Arteria capitis femoris. Dieser ist an der arteriellen Versorgung des Hüftkopfes beteiligt und ist 

für seine Frühentwicklung notwendig. In Gelenkneutralstellung liegen sich die Fossa acetabuli, 
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der Ursprung des Lig. capitis femoris und Fovea capitis einander gegenüber. Der 

Kopfepiphysenkern sowie der Kern im Bereich des Trochanter major kontrolliert die 

entwicklungsbedingte Verknöcherung des proximalen Femurendes. Wachstumsstörungen durch 

verspätetes Auftreten der Kerne können zu Dysplasien führen [10]. 

 

2.1.1.3 Der Schenkelhals (Collum femoris) 
 

Der Schenkelhals wird fast vollständig von der Hüftgelenkkapsel umschlossen, die vorn bis zur 

Linea intertrochanterica des Femurs zieht und hinten bereits in der Mitte des Schenkelhalses 

endet. Seine Abwinkelung gegenüber dem Femurschaft wird durch Belastung bedingt. Die 

Antetorsion ermöglicht und limitiert die Innen- und Außenrotationsfähigkeit des 

Oberschenkelknochens [20]. Die Neigung des Schenkelhalses wird durch den Centrum-Collum-

Diaphysenwinkel (CCD-Winkel nach Müller) beschrieben. Er wird von einer Geraden durch den 

Femurschaft und einer Geraden durch das Hüftkopfzentrum und die Mitte des Schenkelhalses 

gebildet. Der CCD-Winkel nimmt mit zunehmendem Alter ab. Der CCD-Winkel beträgt beim 

Neugeborenen etwa 150° und erreicht gemäß den Belastungsverhältnissen des Erwachsenen 

ein Optimum von etwa 120-140°. Im Alter und bei Osteoporose vermindert er sich bis auf 120° 

[10, 17, 21]. Bei einer Verkleinerung des CCD-Winkels unter den physiologischen Wert entwickelt 

sich eine Coxa vara. Eine Vergrößerung des CCD-Winkels über das physiologische Maß hinaus 

wird als Coxa valga bezeichnet. (Abb. 2.4) [10]. 

 

 

 
a.                                          b.                                                          c.     

 

Abb. 2.4: Winkelverhältnisse bei a. Coxa valga, b. Coxa norma, c. Coxa vara 

(In: Pitzen P, Rössler H: Kurzgefaßtes Lehrbuch der Orthopädie, 15. Aufl. edn. München Urban & 

Schwarzenberg; 1984 [22]) 
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2.1.1.4 Der Femurtorsionswinkel 
 

Der Femurtorsionswinkel (Antetorsionswinkel, AT-Winkel) bestimmt die physiologische Drehung 

des Schenkelhalses gegenüber der transversalen Kniekondylenachse (Abb. 2.5). Das distale 

Femurende ist dabei im Vergleich zum proximalen um etwa 12-20 Grad nach einwärts (in 

Richtung Medianebene) gedreht. Der normale Winkel beim Erwachsenen beträgt 14°. 

Rotationsfehler am Femur, die einer unphysiologischen Veränderung der Antetorsion 

entsprechen, können bei Innenrotation bis ca. 10° ohne Beschwerden toleriert werden. Ähnlich 

werden die Außendrehfehler des Oberschenkels bis ca. 15° gut kompensiert. Drehfehlstellungen 

sollen operativ korrigiert werden, wenn 15° für die Innen- und 20° für die Außenrotation 

überschritten werden [19, 23]. Beim Neugeborenen beträgt die Antetorsionswinkel im 

Durchschnitt einen Wert von 31° [10]. Mit zunehmendem Alter bis zum Erwachsenenalter nimmt 

er bis auf 12° ab. Bei einer Hüftdysplasie ist der Winkel häufig vergrößert [19, 23]. 

 

 
 

Abb. 2.5: Der Femurtorsionswinkel  

a. Der normale Winkel, b. Antetorsionsrichtung, c. Retrotorsionsrichtung 

(in: Tönnis DA, Heinecke A: Verringerte Pfannenanteversion und Schenkelhalsantetorsion verursachen 

Schmerz und Arthrose. Teil 1: Statistik und klinische Folgen. Teil 2: Ätiologie, Diagnostik und Therapie. Z 

Orthop 1999, 137:153-159, 160-167 [23]) 

 

2.1.2 Das biomechanische Hüftmodell 
 

2.1.2.1 Hüftmodell nach Pauwels 
 

Das Pauwels’sche Hüftmodell ist zweidimensional und in der Einbeinstandphase des Gangzyklus 

illustriert (Abb. 2.6). 
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Die resultierende Druckkraft R entspricht den physiologischen Belastungen des proximalen 

Femurendes, welche beim Gehen auf den Femurkopf des Standbeins einwirken. Im vorliegenden 

Hüftmodell wurde der Körperschwerpunkt S5 aufgetragen, welcher medial der Körpervertikalen 

liegt. Der Schwerpunkt wurde durch das Gewicht des Oberkörpers sowie des Schwungbeins 

berechnet [24]. 

 

Der mit K bezeichnete Vektor stellt das Körpergewicht ohne dem des Standbeines dar (83 % des 

Körpergewichts), seine Wirkungslinie zieht durch den Schwerpunkt S5 [5]. Da das Lot dieses 

Teilschwerpunktes stark medial liegt, entwickelt sich ein Drehmoment, welches eine 

Beckenabkippung in die Mediale bewirken könnte. Deswegen muss die Abduktorenmuskulatur M 

einen Ausgleich schaffen. Nach Pauwels setzt sich die Muskelkraft M aus der Muskelgruppe der 

pelvitrochantären Muskulatur (Mm. glutaei medii und minimi, M. piriformis) und der spinocruralen 

Muskulatur (M. tensor fasciae latae, M. sartorius und M. rectus femoris) zusammen [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 2.6: Pauwels-Modell der Kräfte am Hüftgelenk im Einbeinstand  

Abduktoren als Gegendreher zum Körpergewicht (in: Pauwels F: Atlas zur Biomechanik der gesunden und 

kranken Hüfte: Prinzipien, Technik und Resultate einer kausalen Therapie. Berlin [u.a.]: Springer; 1973 

[24]) 
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Durch die Gerade ist die Richtung der resultierenden Druckkraft R festgelegt, die durch den 

Schnittpunkt der Wirkungslinien von Körperabschnittsgewicht K und Muskelkraft M sowie das 

Drehzentrum des Schenkelkopfes angegeben ist. Hieraus ergibt sich ein Verlauf von medial oben 

nach lateral unten. Mit der Körpervertikalen schließt diese Gerade einen Winkel von 16° ein [24]. 

 

Für die Größe der Muskelkraft M ist das Verhältnis der Hebelarme besonders wichtig. Deutlich zu 

erkennen ist, dass die Länge des Hebelarmes des Körpergewichtes K (Strecke OC) etwa der 

dreifachen Länge des Hebelarmes der Muskelkraft M (Strecke OB) entspricht. In der Folge ist 

eine Muskelkraft zum Erhalt des Gleichgewichtes über dem Hüftgelenk nötig, welche ca. dreimal 

so groß sein muss wie das Körperabschnittsgewicht. Als Konsequenz entspricht die resultierende 

Druckkraft R ungefähr dem vierfachen des Körperabschnittsgewichtes [5]. Pauwels vergleicht 

diese Anordnung mit einer Waage, welche zur Vereinfachung und Verdeutlichung immer wieder 

verwendet wird. Als Grundvoraussetzung sollte erneut erwähnt werden, dass am Hüftgelenk ein 

Momentgleichgewicht zwischen Teilkörpergewicht (Last) und dessen Lastarm sowie zwischen 

Muskelkraft der Hüftabduktoren (Kraft) und deren Kraftarm besteht [5, 24]. 

 

Pauwels beweist, dass dieses Modell für den Einbeinstand und in der 

Schwungbeinvorwärtsbewegung beim langsamen Gehen angewendet werden kann. Dynamische 

Kräfte wurden in diesem Modell nicht berücksichtigt. 

 

2.1.2.2 Hüftmodell nach Heimkes 
 

Im Pauwels’schen Hüftmodell wurden nur die Hüftresultierende R und die auf die Epiphyse 

einwirkenden Kräfte berücksichtigt, jedoch wurden keine Untersuchungen der auf die trochantäre 

Apophyse einwirkenden Kräfte durchgeführt. Ein biomechanisches Modell der wachsenden Hüfte 

wurde von Heimkes [25] auf der Basis anatomischer und radiologischer Untersuchungen der 

kindlichen Hüftgelenke berechnet. Dieses zweidimensionale Vektormodell beschreibt die im 

Einbeinstand auf den Epiphysenfugen des Femurkopfes und des Trochanter major einwirkenden 

Kräfte. Es konnte nachgewiesen werden, dass die trochantäre Apophyse von lateral-kranial auf 

Druckbelastung beansprucht wird. Somit entspricht sie eine „Druck-Apophyse“. Dieser Druck wird 

durch zwei Zuggurtungssysteme, einem oberflächlichen (Tractus iliotibialis, M. tensor fascie latae 

und Teile des M. gutaeus maximus) und einem tiefen (kleine Glutäen, M. vastus lateralis), 

erzeugt. 

 

Die auf der Trochanterapophyse wirkenden Muskelkräfte könnten als Trochanterresultierende RT 

kombiniert werden. Die Kraftresultierende RT wurde als Summe des Muskelvektors M der Mm. 

glutaei maximus, medius, minimus und dem Muskelvektor Mfsc, geschätzt (Abb. 2.7). Der Vektor 

Mfsc wurde sowohl aus der Traktusspannung als auch den Muskelkräften der 
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Mfsc 

M 
R 

R 

M 
S5 

Kniegelenksstrecker, welche über den M. vastus lateralis mit der Trochanterapophyse verbunden 

sind, erzeugt [5, 25]. 

 

Durch die Resultierende RT wird die Trochanterapophyse zu einem kranio-lateralen Wachstum 

stimuliert. Sowohl die Richtung der Muskelresultierenden M und der Hüftresultierenden R als 

auch der CCD-Winkel wurden durch diesen Mechanismus beeinflusst. Während des Wachstums 

nimmt der Betrag der Trochanterresultierenden zu [26]. Dann entsteht eine Varisierung des 

Schenkelhalses durch die Stimulation der Trochanterapophyse [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            RT 

 

 

 

 
Abb. 2.7: Kräfteverteilung am wachsenden Hüftgelenk nach Heimkes 

Das koxale Femurende wird durch zwei Kraftresultierende R und RT beansprucht. 

(In: Heimkes B, Posel P, Plitz W: Studien zur Biomechanik des kindlichen Hüftgelenkes. Zeitschrift für 

Orthopädie und ihre Grenzgebiete 1995, 133(4):357-363 [25]) 
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2.1.3 Die trabekuläre Struktur des proximalen Femurs 
 

Der lebende Knochen wird laufend erneuert. Dieser Umbauprozess folgt mechanischen Regeln. 

Dadurch hat Knochen die eigene Fähigkeit, sich ändernden mechanischen Anforderungen 

anzupassen [23]. 

 

Als Anpassung auf veränderte mechanische Belastungen, üblicherweise durch regelmäßige 

Sportaktivitäten, ändert der Knochen seine innere Struktur und passt seine äußere Form der 

Funktion an. Dies folgt also auch dem biomechanischen Gesetz „form follows function“ [27, 28].  

 

Ein wirksamer mechanischer Regelkreis im Knochen, der den Umbau des Knochens kontrolliert 

und zusätzlich die Anpassung an sich ändernde mechanische Anforderungen erlaubt, wurde im 

ausgehenden 19. Jahrhundert von Julius Wolff vorgeschlagen [27, 28]. Das Wolff’sche Gesetz 

besagt, dass der Knochen sich aufbaut und an Festigkeit zunimmt, wenn er belastet wird. Wird 

der Knochen hingegen nicht oder nur wenig belastet, baut er sich ab [29]. 

 

In Hinsicht auf die trabekuläre Innenstruktur des coxalen Femurende unterscheiden Singh et al., 

1970 [30] und Kerr et al., 1986 [31] fünf Trabekelbündel (Abb. 2.8): 1. die „principal compressive 

group“ vom oberen Anteil des Femurkopfes bis zur medialen Kortikalis des Femurschaftes, 2. die 

„secondary compressive group“ von der medialen Kortikalis des Schaftes in Richtung Trochanter 

major verlaufend, 3. die „greater trochanter group“ von der Kortikalis des lateralen Schaftes 

unterhalb des Trochanter major in Richtung kranio-lateraler Trochanteroberfläche orientiert, 4. die 

„principal tensile group“ vom infero-medialen Bereich des Femurkopfes bis zur lateralen Kortikalis 

des Schaftes unterhalb des Trochanter major und 5. die „secondary tensile group“ unterhalb der 

principal tensile group, der lateralen Kortikalis des Femurschaftes entspringend und wie ein 

Bogen nach kranio-medial verlaufend [30, 31]. 

 

Nach Martens et al., 1983 [32] besteht die trabekuläre Innenstruktur des proximalen Femurs aus 

drei Haupt-Trabekel-Systemen: das mediale System vom oberen Anteil des Femurkopfes bis zur 

medialen Kortikalis des Femurschaftes, das Trochanter-System von der medialen Kortikalis des 

Schaftes in Richtung Trochanter major verlaufend und das Arcuate-System, das in der Kortikalis 

inferior des Oberschenkelkopfs anfängt, gebogen durch den Oberschenkelhals zur lateralen 

Kortikalis des Femurschaftsverlaufs mit dem Trabekeln die medialen und Trochanter-Systeme 

überschneidet (Abb. 2.9). 
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Abb. 2.8: Die Trabekelstruktur des proximalen Femurs nach Wolff 

(In: Wolff J: Über die innere Architektur der Knochen und ihre Bedeutung für die Frage vom 

Knochenwachstum. Archiv für pathologische Anatomie und Physiologie und für klinische Medizin (Virchows 

Archiv) 1870, 50:389-453 [33]) 

 

 

 

 
 
Abb. 2.9: Die Trabekelstruktur des proximalen Femurs nach Martens  

a. Trochanter-System, b. Mediales System, c. Arcuate System. 

(In: Martens M, Van Audekercke R, Delport P, De Meester P, Mulier JC: The mechanical characteristics of 

cancellous bone at the upper femoral region. Journal of biomechanics 1983, 16(12):971-983 [32]) 
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Der soeben identifizierte Verlauf des Arcuate-Trabekel-Systems und seinen strukturellen 

Orientierung mit den medialen und Trochanter-Systemen eröffnet neue Einblicke in Bezug auf die 

am proximalen Femur einwirkenden Kräfte, sodass der Vergleich zwischen den biomechanischen 

Modellen von Pauwels und Heimkes ermöglicht ist [6]. Beide Autoren verwendeten den 

Einbeinstand als Grundlage für ihre biomechanischen Modelle. Die beiden Theorien entsprechen 

sich in den Hypothesen zur Hüftkopfbelastung durch die Körpergewichtskraft [34]. Die Analyse 

der auf den Trochanter major einwirkenden Kräfte ist der Hauptunterschied zwischen diesen 

beiden Modellen. Pauwels betrachte nur das auf die Hüfte wirkende Körpergewicht und die 

Muskelkräfte der am Trochanter major ansetzenden Hüftabduktoren [35, 36]. Tatsächlich dient 

der Trochanter major auch als Ursprungsstelle des Kniestreckers (vorwiegend der M. vastus 

lateralis), der zusammen mit den Abduktoren eine gegenziehende Muskelschlinge bildet. Dies ist 

für die biomechanischen Überlegungen besonders relevant, als es erklärt, ob das proximale 

Femur lateral druck- oder zugbelastet ist [34]. 

 

In Bezug auf den Oberschenkelkopf besteht Konsens in der Literatur, dass das mediale 

Trabekel-System, das von Kranio-medial nach Kaudo-lateral verläuft, eine strukturelle 

Konsequenz der Einwirkung des Körpergewichts auf den Oberschenkelkopf aufweist. Daher 

repräsentiert diese Struktur eine Druckbelastung [30, 32, 37, 38]. Das mediale Trabekel-System 

ist ungefähr orthogonal sowohl zum Arcuate-Trabekel-System als auch zur Epiphysenfuge des 

Oberschenkelkopfes ausgerichtet. 

 

Orthogonaler Druck der Knochenoberfläche hat eine zentrifugale zirkuläre Ausbreitung der 

Kompressionskraft zur Folge [39]. Die Kompressionskraft, die auf den Oberschenkelkopf einwirkt, 

ist vertikal zu seiner Richtung. Auf zellulärer Ebene wirkt diese Belastung als ein mechanischer 

Stimulus zur Osteogenese [40, 41].  

 

Die Analyse des trabekulären Systems der lateroproximalen Femurregion (im Bereich des 

Trochanter major), als erstes identifiziert von Skuban et al. 2009 [6], zeigt eine Strukturierung, die 

der innerhalb des Femurkopfes sehr ähnlich ist. Das trochantäre Trabekel-System, das in dieser 

Arbeit erstmals identifiziert und analysiert wurde, ist ebenfalls ungefähr orthogonal zum 

bogenförmigen Trabekel-System ausgerichtet. Die Ähnlichkeit der Spongiosaarchitektur mit der 

des Hüftkopfes deutet auf Kompressionskräfte hin, die vom großen Rollhügel aus in 

mediokaudaler Richtung orientiert sind. Wir gehen wiederum davon aus, dass die Trabekel des 

Bogensystems, die ungefähr orthogonal zu denen des Trochanter-Systems verlaufen, 

fungierende Kompressionskraft widerspiegeln (Abb. 2.10). Diese Kompressionskraft, die auf den 

Trochanter wirkt, dient als mechanischer Stimulus für die Knochenbildung. 
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Abb. 2.10: Trabekelstruktur des proximalen Femurendes und einwirkende Kräfte 

(In: Hert J: A new explanation of the cancellous bone architecture. Functional and developmental 

morphology 1992, 2(1):15-21 [42]) 
 

 

2.2 Die Theorie der kausalen Histogenese nach Pauwels 
 

Die Theorie der kausalen Histogenese besagt, dass die Entstehung und Entwicklung der aus 

Mesenchym stammenden verschiedenen Binde- und Stützgewebe durch die Art der zu 

erwartenden und sich momentan auswirkenden Kräfte (nämlich Dehnung und hydrostatischer 

Druck) entscheidend bestimmt werden [43]. 

 

Dehnung stimuliert die Ausbildung von Kollagenfibrillen. Das von Ektoderm umschlossene 

Mesenchym wird bei einwirkendem äußeren Schub oder Druck (D) in die Länge gezogen; die 

Mesenchymzellen differenzieren dabei zu Fibroblasten und synthetisieren Kollagen (Abb. 2.11) in 

der Dehnungsrichtung [44]. Diese Erkenntnis gilt als erste These der kausalen Histogenese.  

 

Wenn die Kräfte auf das Mesenchym allseitig einwirken würden (dabei generiert sich eben 

hydrostatischer Druck), dann würden sich die mesenchymalen Zellen abrunden und im Rahmen 

einer Stoffwechselumstellung Wasser aufnehmen (Abb. 2.12). Da sich die Einzelzellen dadurch 

vergrößern würden, würde sich ein dem äußeren hydrostatischen Druck entgegen gerichteter 

innerer Quellungsdruck entwickeln. Durch die dadurch erfolgende Dehnung der 

Interzellularsubstanz würde es gemäß der ersten These der kausalen Histogenese zur Bildung 

konzentrischer Kollagenfibrillen um die einzelnen Zellen und Zellgruppen kommen. Pauwels 
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formulierte diese Überlegung als zweite These der kausalen Histogenese. Außerdem geht 

Pauwels davon aus, dass Knorpel bei dauerhafter Deformation nicht erhalten bleiben könne, 

sondern nur bei intermittierendem hydrostatischem Druck. Bei der dauerhaft mechanischen 

Belastung würde die chondrale Ossifikation entstehen [44]. 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 2.11: Druckbeanspruchung der mesenchymalen Zellen 

(in: Kummer B: Biomechanik. Form und Funktion des Bewegungsapparates, 1. Aufl. Köln: Dt. Ärzte-Verl.; 

2005 [44]) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 2.12: Auf Mesenchym allseits einwirkender (hydrostatischer) Druck (H) erzeugt durch Abrundung und 

Wasseraufnahme der Zellen einen dem äußeren Druck entgegen gerichteten inneren Quellungsdruck (Q). 

(in: Kummer B: Biomechanik. Form und Funktion des Bewegungsapparates, 1. Aufl. edn. Köln: Dt. Ärzte-

Verl.; 2005 [44]) 
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Kombinationen aus der Dehnung und dem hydrostatischen Druck führen zur Entstehung der 

Mischformen zwischen Binde- und Knorpelgewebe. Pauwels bezeichnete das Binde- und das 

Knorpelgewebe als primäre Stützgewebe [44]. 

  

Im Gegensatz fasste er Knochen als sekundäres Stützgewebe auf. Knochen entwickelten sich 

aus Knorpel- oder Bindegewebe. Im ersteren Fall erfolge eine chondrale Ossifikation, im zweiten 

Fall eine desmale Ossifikation [24]. Der nach dieser dritten These der kausalen Histogenese 

entstehende Knochen sei dabei stärker belastbar als die ursprünglichen primären Stützgewebe 

[44]. 

 

Die Theorie der kausalen Histogenese nach Pauwels wurde von Benno Kummer in einem 

Übersichtsbild dargestellt (Abb. 2.13) [44]. Demnach stimulieren die Dehnungskräfte die 

Entwicklung von Bindegewebsfasern aus Mesenchym  und Kompressionskräften (allseitiger 

Druck) die Entstehung von Knorpelgrundsubstanz, die später verknöchert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 2.13: Schema der kausalen Histogenese nach Pauwels 

(in: Pauwels F: Atlas zur Biomechanik der gesunden und kranken Hüfte: Prinzipien, Technik und 

Resultate einer kausalen Therapie. Berlin [u.a.]: Springer; 1973 [24]) 
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2.3 Adaptationsfähigkeit des Knochengewebes 
 

Adaptationsfähigkeit des Knochengewebes umfasst Osteogenese, Modeling und Remodeling. 

Das Wolff’sche Gesetz wurde im 19. Jahrhundert aufgestellt. Es besagt, dass der Knochen sich 

aufbaut und an Festigkeit zunimmt, wenn er belastet wird. Wird der Knochen hingegen nicht oder 

nur wenig belastet, baut er sich ab [45]. Dieses generelle Prinzip erweitert Wolff in seinen 

Überlegungen und berichtet: „Every change in the form and function of bones, or of their function 

alone, is followed by certain definite changes in their internal architecture and equally definite 

secondary alteration in their external conformation, in accordance with mathematical laws” [46, 

47]. 

 

Wolff zeigte mit seiner Forschung, dass der Knochen sich in seiner Form an die Funktion anpasst 

und bei dauerhafter Entlastung verformt. Bei der Analyse von Femurköpfen realisierte Wolff eine 

Ausrichtung der Knochentrabekel in Richtung der mechanischen Kräfte und benannte damit die 

mechanischen Kräfte als Ursache für die perfekte Knochenstruktur [33]. 

 

Dieses Prinzip wurde im Laufe der Zeit weiter modifiziert, beispielsweise von Wilhelm Roux oder 

Harold Frost in den 1960er Jahren. Wilhelm Roux formulierte seine Theorie der „funktionellen 

Adaptation des Knochens“ [48]. Seiner Meinung nach entsteht die Knochenstruktur im Rahmen 

von Selbstoptimierungsvorgängen: „A functional structure develops as a consequence of the 

victory of the most qualified elements“ [49]. Apposition und Resorption von Zellen geben 

Änderung von Knochenbau an.  

 

Koch bestätigte im Jahr 1917 die trajektorielle Theorie, die besagt, dass die Knochentrabekel in 

Richtung der mechanischen Kräfte ausgerichtet wurden. Er nahm an, dass die Scherspannungen 

zur Dichtezunahme des Knochens führen können [50, 51].  

 

Frost et al. 1969 berichteten, dass das Bone Remodelling ein Prozess ist, der das synchronisierte 

Vorliegen von Osteoklasten und Osteoblasten benötigt. Man spricht hierbei vom „Coupling“ [52]. 

 

2.4 Coxa valga 
 

Während des Wachstums verändert sich der physiologische Schenkelhalswinkel. Der anfänglich 

große Winkel wird langsam immer kleiner. Normalerweise beträgt dieser Winkel beim 

Neugeborenen 150°, reduziert sich bis zum 10. Lebensjahr auf etwa 138°, um schließlich beim 

Erwachsenen 125° zu erreichen [21, 53]. Als Coxa valga (Abb. 2.4) bezeichnet man eine 

Steilstellung des Schenkelhalses mit Vergrößerung des CCD-Winkels (>140°) [10]. 
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Vielfältige Erkrankungen können einer Coxa valga zugrunde liegen. Muskelimbalancen (z.B. 

Abduktoreninsuffizienz oder Adduktorenspasmus bei Kindern mit infantiler 

spastischer Zerebralparese), Schädigungen im Bereich der Wachstumsfuge des Schenkelhalses 

oder Trochanter majors (durch Unfall, Tumor oder Entzündung) oder auch 

Stoffwechselerkrankungen (Rachitis) können zur Veränderung des Winkels führen. Eine Coxa 

valga führt zu einer vermehrten Beanspruchung der Glutealmuskulatur, Überlastung und 

schließlich ebenfalls zu einer Insuffizienz [54].  

 

Außerdem entwickelt sich eine Unterfunktions-Coxa-valga infolge verminderter Belastung des 

Beines im Wachstumsalter. Mau [55] erklärte, dass neben der geringen Belastung des Beines 

eine Beckenabsenkung aufgrund einer Beinverkürzung vorliegt und zur Verlagerung des 

Körperschwerpunktes nach der erkrankten Seite führt. Infolgedessen werden die Abduktoren 

weniger stimuliert und es entsteht eine Entlastungs-Coxa-valga. Somit wird die Entwicklung einer 

sekundären Pfannendachabflachung durch die vorwiegenden Adduktoren gefördert. Mau [56] 

berichtete weiterhin, dass eine sekundäre Formveränderung des Pfannendachs im Sinne einer 

Dysplasie aufgrund einer zugrunde liegenden Hypotonie, einer Hüftabduktorenschwäche oder 

einer reduzierten Aktivität häufig ist. 

 

Ähnlich erklärte Dihlmann [57], dass die Entwicklung einer Coxa valga im Kindesalter in Folge 

einer Entlastung des verkürzten Beines, einer längeren Bettlägerigkeit, spastischen Lähmungen 

oder örtlichen Störungen begünstigt wird. Auch stellte Heimkes fest, dass ein Gleichgewicht 

zwischen der Einwirkung des Körpergewichts und des Muskelzuges am Hüftgelenk am 

Schenkelhals vorliegt [26]. Eine Störung des Gleichgewichtes führt zur Richtungsänderungen der 

druckresultierenden Kräfte und somit auch des Wachstums am Femurende [11]. Ausführlich 

erklärte Heimkes [26], dass durch Schmerzen oder Schwäche der Glutealmuskulatur eine 

Entlastungshaltung besetzt wird. 

 

Bei Entlastung des Beins berichteten Heimkes et al [26, 58], dass die Muskelgruppe der Mm. 

glutaei maximus, medius, minimus, tensor fasciae latae sowie Anteilen der Kniestreckmuskulatur 

nur wenig beansprucht wird. Dadurch wird die Trochanterresultierende RT verkürzt (Abb. 2.14), 

was wiederum zu einem verringerten lateralen Wachstum der Trochanterapophyse führt. 

Hierdurch kommt es nicht nur zu einem steileren Verlauf der Wirkungslinien der Hüftabduktoren 

(Fmh) und der Hüftgelenksresultierenden (Rh), sondern auch zu einem zunehmenden 

waagerechten Verlauf der Epiphysenfuge, da sich die Wachstumsfuge orthogonal zu der auf sie 

einwirkenden Kraft ausrichtet. Wegen des Wachstums der Epiphysenfuge in einer horizontalen 

Richtung entwickelt sich der Schenkelhals nach kranial, wodurch eine Coxa valga entsteht. Coxa 

valga fördert wiederum die Hüftdezentrierung, weil die Hüftzentrierungskraft (Fh) offensichtlich 

reduziert ist. Das biomechanische Gesetz „form follows function“ hat sich damit bestätigt. Es 
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konnte geklärt werden, dass die Form (die Coxa valga) sich aus der Entlastung und der daraus 

resultierenden Fehlhaltung oder Fehlbelastung ergibt [5]. 

 

 

 
 
Abb. 2.14: Kräfteverteilung am Coxa valga nach Heimkes 

(In: Heimkes B, Martignoni K, Utzschneider S und Stotz S: Soft tissue release of the spastic hip by psoas-

rectus transfer and adductor tenotomy for long-term functional improvement and prevention of hip 

dislocation. J Pediatr Orthop B 2011, 20(4):212-221 [58]) 
 

Friedebold [59] beobachtete, dass durch längere Bettlägerigkeit im Rahmen therapeutischer 

Maßnahmen funktionelle Defizite auftreten. Bei verminderter Belastung einer Extremität kommt 

es zu Kalziumverlusten des Knochens sowie Knorpeldefekten und Muskelatrophien. Eine 

resultierende Veränderung der Muskelkraft führt wiederum zu einer Veränderung des 

Knochenwachstums im wachsenden Knochen [5]. 

 

Bei der Untersuchung der Kinder mit Zerebralparese nach dem GMFCS von Robin et al. [60] 

zeigte der CDD-Winkel eine stufenweise Erhöhung mit abnehmender Funktionsfähigkeit. Dies 
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deutete darauf hin, dass Coxa valga eine erworbene Fehlstellung durch 

Funktionseinschränkungen ist. Außerdem fand Lindemann [61], dass die eingeschränkte 

Hüftgelenksbeweglichkeit bei Kindern, die mit einem Spreizgips behandelt wurden, zu einer 

zunehmenden Coxa valga führt. Somit verändert sich die äußere Form und die innere Struktur 

des Knochens hinsichtlich der Anpassung an eine Bewegungseinschränkung. 

 

Unter den verschiedenen Gehhilfen werden Unterarmgehstützen am häufigsten verwendet. Sie 

werden eingesetzt, um die Extremität ohne Bodenkontakt nach vorne zu bewegen oder mit einem 

vorbestimmten anteiligen Körpergewicht zu belasten [5]. Savvidis und Löer [62] berichteten, dass 

ein einfaches mechanisches Prinzip verwendet wurde, um die am Hüftgelenk wirkenden Kräfte 

bei teilentlastendem und vollständig entlastendem Gang quantitativ zu bestimmen. Als 

Voraussetzung hierfür wurde die Aktivität der in der Schwungbeinphase wirkenden 

Hüftbeugemuskeln durch Elektromyographie erkannt. Im reinen Durchschwunggang (bei 

vollständiger Ausschaltung der Bodenreaktionskräfte), der als entlastend für das Hüftgelenk 

empfohlen wird, entstehen Hüftgelenkkräfte mit 85 % des Körpergewichtes. Im Gegensatz dazu 

führt eine Teilkörperbelastung mit Gliedmaßengewicht (ungefähr 12-15 % des Körpergewichts) 

zu der effizientesten Reduzierung der Hüftekräfte. 

 

Bergmann [63] bestätigte, dass die höchste Hüftentlastung jedoch erfolgt, wenn eine 

Teilbelastung der Extremität mit Bodenreaktionskräften in Höhe des Eigengewichts durchgeführt 

wird. Der Wechsel zwischen Be- und Entlastung fördert das Knochenwachstum. Somit wird das 

Wachstum bei einer dauerhaften Entlastung permanent beeinträchtigt. 

 

Die Compliance des Patienten kann die diagnostischen und therapeutischen Maßnahmen 

beeinflussen [64]. Auch die Compliance gilt als ein wichtiger Risikofaktor für die Entwicklung der 

Coxa valga. Eine unregelmäßige Teilnahme an physiotherapeutischen Übungen kann zu einer 

Schwäche der Hüftmuskeln mit Veränderung der Muskelresultierenden führen [7]. Außerdem 

kann das Tragen einer Orthese oder einer Schuhsohlenerhöhung durch Verminderung der auf 

das Hüftgelenk einwirkenden statischen und dynamischen Kräfte zur Fehlentwicklung am 

Knochen führen [65].  

 

2.5 Das menschliche Gangbild 
 

2.5.1 Voraussetzungen des normalen Gehens 
 

Die grundlegenden Voraussetzungen und Fähigkeiten eines harmonisch fließenden Gangbildes, 

die dem Körper ermöglichen, sich sinnvoll und entsprechend physiologisch sowie kraftsparend zu 

bewegen, werden wie folgt dargestellt [66, 67]. 
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Dies sind: 

- Gesunde Energieversorgung, gesunde biochemische Abläufe und Stoffwechselvorgänge 

im Gehirn 

- Gesunde Gelenke, Knochen und Muskeln 

- Die Fähigkeit, eine aufrechte Haltung einzunehmen und das Gleichgewicht beizubehalten. 

- Die Fähigkeit, rhythmische Schritte einzuleiten und aufrechtzuerhalten  

- Ein gesundes neurologisches System [68], das Nachrichten empfangen und senden 

kann. Diese Nachrichten vermitteln dem Körper, wie und wann er sich zu bewegen hat. 

Dies sind visuelle, vestibuläre, auditive, sensomotorische Eingänge. 

- Motivation: Prof. Umpherd, 2000 [69], hat den Begriff M.O.V.E. geprägt, der für die 

verschiedenen Funktionen des limbischen System steht: 

M: Motivation (Wunsch, etwas zu lernen und zu versuchen oder Umstände zu nutzen) 

und Gedächtnis (Aufmerksamkeit und Erinnern) 

O: Olfaktion (Riechen) 

V: Viszeraler Bereich (Triebe: Durst, Hunger, Temperaturregulierung, endokrine 

Funktionen) 

E: Emotionaler Bereich (Gefühle und Einstellungen), Selbstbild und Selbstwertgefühl, 

emotionales Körperbild; tonische Reaktion des motorischen Systems, Einstellungen, 

soziale Fähigkeiten und Meinungen. 

 

2.5.2 Gangzyklus und seine Phasen 
 

Der menschliche Gang stellt eine sich wiederholende Bewegungsabfolge dar [70]. Der 

Gangzyklus ist als ein Zeitintervall zwischen den exakt gleichen, sich wiederholenden 

Ereignissen des Gehens definiert. Der Fersenkontakt markiert den Beginn des Gangzyklus [8].  

 

Es gibt zwei Phasen des Gangzyklus. Die Standphase (Stance; ca. 62 % des Zyklus) ist der Teil 

des Zyklus, wenn der Fuß auf dem Boden ist. Danach folgt der Fußsohlenkontakt und bei der 

Fußablösung (Ferse und Zehen) endet die Standphase, die den Abrollvorgang des Fußes auf 

dem Boden beschreibt. Die Schwungphase (Swing; ca. 38 % des Zyklus) markiert den Zeitraum, 

in dem der Fuß im Raum ist und den Körper vorwärts bewegt. Dabei werden fünf Stand- und drei 

Schwungteilphasen unterschieden, die kollektiv folgende drei funktionelle Aufgaben erfüllen: 

Gewichtsübernahme, Einbeinstand und Vorwärtsbewegung des Schwungbeins (Abb. 2.18) [8]. 

Die Gewichtsübernahme tritt in der Standphase durch den initialen Kontakt (Initial contact) und 

die Stoßdämpfungsphase (Loading response) auf. Die 2. Aufgabe der Standphase ist der 

Einbeinstand. Er wird durch die mittlere Standphase (Mid stance), die terminale Standphase 

(Terminal stance) und die Vorschwungphase (Pre-swing) vollendet. Die 
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Schwungbeinvorwärtsbewegung geschieht in der initialen, mittleren und terminalen 

Schwungphase [8].  

 

2.5.2.1 Initialer Kontakt 
Diese Phase beginnt und endet mit dem initialen Bodenkontakt der Ferse des 

Referenzbeins. Der Körperschwerpunkt nimmt graduell auf das Referenzbein zu. Beim 

Fersenkontakt befindet sich das Hüftgelenk in Flexionsstellung. Das Knie ist gestreckt und der 

Fuß steht in Neutralstellung oder leicht dorsalflektiert. Die Zeitspanne beträgt 0 % eines 

Gangzyklus [8]. 

 

2.5.2.2 Stoßdämpfungsphase  
Diese beginnt mit dem initialen Kontakt und endet mit der Zehenablösung des kontralateralen 

Beines. Das Referenzbein übernimmt abrupt einen Teil des Körpergewichtes. Dies ist als die 

erste doppelt unterstützte Standphase (Initial double limb support) bezeichnet. Im Verlauf dieser 

Phase wird das Hüftgelenk gestreckt. Das Knie ist auch gestreckt. Das Sprunggelenk flektiert 

nach dorsal weiter. Die Zeitspanne beträgt in etwa 0-12 % eines Gangzyklus [8].  

 

2.5.2.3 Mittlere Standphase  
Nachdem das Standbein das Körpergewicht vollständig übernommen hat, beginnt die mittlere 

Standphase. Diese trifft das Abheben des kontralateralen Fußes (Toe-off). Die Hüfte und das 

Knie des Standbeins werden weiter gestreckt. Um die Beckenabkippung zur Schwungbeinseite 

zu vermeiden, werden die Hüftabduktoren auf der Standbeinseite aktiv. Das Sprunggelenk steht 

wieder in Neutralstellung. Abheben der Ferse und Vorwärtsbewegung der Extremität erfolgen, 

wenn die Plantarflexoren konzentrisch kontrahieren. Die Phase endet mit der Fersenabhebung 

des Referenzbeins (der Körperschwerpunkt befindet sich senkrecht über dem Vorfuß). Die 

Zeitspanne beträgt in etwa 12-31 % eines Gangzyklus [8]. 

 

 2.5.2.4 Terminale Standphase 
Um die Vorwärtsbewegung des Beins über dem feststehenden Fuß zu steuern, sind die M. 

gastrocnemii und M. solei des Standbeins aktiv. Das kontralaterale Bein bereitet sich auf den 

initialen Kontakt vor. Die Fersenabhebung des Referenzbeins erfolgt. Die terminale Standphase 

endet mit dem Bodenkontakt des kontralateralen Beins. Der Körper wird bis über den 

kontralateralen unterstützenden Fuß graduell verschoben. Die Zeitspanne beträgt in etwa 31-50 

% eines Gangzyklus [8]. 

 

2.5.2.5 Vorschwungphase 
Diese Phase beginnt mit kontralateralem Fersenkontakt und endet mit Zehenablösung des 

Referenzbeins. Diese Phase wird als die zweite doppelt unterstützte Standphase (Terminal 
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double limb support) bezeichnet. Das Sprunggelenk wird immer stärker plantarflektiert. Die 

Dorsal-Flexoren des Fußes werden nun tätig. Das Knie beginnt sich zu beugen. Die 

Hüftadduktoren und die Hüftbeuger sind aktiv. Kurz vor Beginn der Schwungphase erfolgt die 

Beugung des Hüftgelenkes. Die Zeitspanne beträgt in etwa 50-62 % eines Gangzyklus. Die 

Vorschwungphase bereitet den Übergang zur Vorwärtsbewegung des Schwungbeins vor [8]. 

 

 
 

 

Abb. 2.15: Unterteilung des Gangzyklus  

(in: Perry J, Burnfield JM: Gait analysis: normal and pathological function, 2nd edn. Thorofare, NJ: SLACK; 

2010 [7] und Götz-Neumann K: Gehen verstehen: Ganganalyse in der Physiotherapie, 3. Aufl. edn. 

Stuttgart u.a.: Thieme; 2011 [8]) 
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2.5.2.6 Initiale Schwungphase 
In diesem Teil des Gangzyklus wird das Schwungbein vorwärts bewegt, um eine ausreichenden 

Höhe vom Boden zu erreichen. Er beginnt mit der Abhebung des Referenzbeins. Das 

Sprunggelenk ist maximal plantarflektiert. Durch Flexion im Hüftgelenk und zunehmende Flexion 

des Knies wird das Bein nach vorne gebracht. Gegen Ende dieser Phase erreicht der 

Körperschwerpunkt seine Spitzenhöhe auf dem kontralateralen Bein. Am Ende dieser Phase wird 

sich das Sprunggelenk sowohl des Stand- als auch des Referenzbeins überkreuzen. Die 

Zeitspanne beträgt in etwa 62-75 % eines Gangzyklus [8]. 

 

2.5.2.7 Mittlere Schwungphase 
Während der mittleren Schwungphase wird das Referenzbein weiter vorwärts bewegt. Sie 

beginnt mit dem Überkreuzen des Stand- und Referenzbeins und endet, wenn der Unterschenkel 

des Schwungbeins (Referenzbein) vertikal zum Boden steht. Die Zeitspanne beträgt in etwa 75-

87 % eines Gangzyklus [8]. 

 

2.5.2.8 Terminale Schwungphase  
Diese Phase vollendet den Gangzyklus. Der Beginn der Standphase wird dann vorbereitet.  Am 

Ende dieser Phase erreicht der Körperschwerpunkt den niedrigsten Stand. Die Hüfte wird 

flektiert, das Knie wird extendiert und das obere Sprunggelenk wird in Neutralstellung durch 

aktive Dorsalflexoren gebracht. Die Hüftextensoren sind am Ende dieser Phase aktiv, um den 

Schwung zu bremsen. Die Zeitspanne beträgt in etwa 87-100 % eines Gangzyklus [7, 71]. 

 

Zusammenfassend, befindet sich der Körperschwerpunkt bei den doppelt unterstützten 

Standphasen auf seinem niedrigsten Stand. Weiterhin erreicht er seine Spitzenhöhe beim 

Einbeinstand [8, 72]. 

 

2.5.3 Normales Gehen bei Kleinkindern 
 

Das Gehen fängt im Alter von etwa 12-15 Monaten an. In diesem Alter ist die Spurbreite deutlich 

erkennbar groß. Die kleinen Kinder haben noch keinen Fersenkontakt auf den Boden. Deswegen 

erfolgt der initiale Kontakt durch flach aufgesetzten Fuß oder durch Vorfußkontakt. Außerdem 

liegt kein reziproker Armschwung vor [73, 74].  

 

Aufgrund der kürzeren Beine bei Kindern ist eine höhe Kadenz (Schritte/min) auffällig. Sie liegt 

bei den einjährigen Kindern bei etwa 170 Schritten/min und nimmt bei siebenjährigen auf etwa 

140 Schritte/min ab. Die Doppelschrittlänge entspricht etwa der Körpergröße. Zum Beispiel hat 

ein 0,6 m großes Kind eine Doppelschrittlänge von etwa 0,6 m. Zusätzlich entspricht die 
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Körpergröße annähernd der Gehgeschwindigkeit. Zum Beispiel hat ein 0,6 m großes Kind eine 

Gehgeschwindigkeit von etwa 0,6 M/Sek. [8]. 

 

Das Gangbild von Kleinkindern weist größere Flexion als das erwachsener Personen auf, und die 

Beine sind in Schwungphasen mehr außenrotiert. Bei einem siebenjährigen Kind verändert sich 

die Hüft- und Kniebeugung und liegt annähernd gleich den Werten von Erwachsenen. Beim Alter 

von 16-18 Jahren, wenn die normale Erwachsenengangbild erreicht wird, treten feinere 

Anpassungen des Gangbilds auf [75]. 

 

2.5.4 Krafteinwirkung am Hüftgelenk während des Gangzyklus 
 

Die größte Kraftübertragung erfolgt nach Baumann [76] beim Auffangen des Schrittes in der 

initialen Stand- und Vorschwungphase. Am Ende des Gangzyklus verursacht die Verzögerung 

der Trägheitsmassen von Ober- und Unterschenkel einen kräftigen vorwärts gerichteten Druck 

des Femurkopfes, dies wiederum führt zu einer rückwärts gerichteten Reaktionskraft, welche vom 

antro-medialen Teil der Hüftpfanne und von Weichteilen übertragen wird.  

 

Während des ersten Teils der Standphase prallt das Körpergewicht abzüglich des Standbeines 

gegen das Schwungbein, wodurch ein Vorwärtsschub mit etwa 39 % des Körpergewichtes 

erstellt wird. In der Standphasenmitte gibt es keine ventro-dorsalen Schubkräfte. In den 

folgenden Zeiträumen formieren sowohl die Massenträgheit des Körpers als auch der aktive 

Schub der Beinmuskulatur ein Kraft und ein Gegenkraft, wodurch eine Rückwärtsreaktionskraft 

auf den Femurkopf entsteht. Hier ergibt sich nur eine Krafteinwirkung von 17 % des 

Körpergewichtes [76]. Im doppelten unterstützten Stand liegt aufgrund überwiegender statischer 

Belastung beinahe keine Druckbelastung durch Muskelanspannung auf die Hüfte vor. Der 

Körperschwerpunkt befindet sich senkrecht über der Mitte der Hüftachse [77]. 

 

2.6 Ganganalyse 
 

Die Ganganalyse ist ein technisch-wissenschaftliches Verfahren, die ein Teilgebiet der 

Bewegungsanalyse ist, mit dessen Hilfe das normale und auch pathologische Gehen 

beschrieben und auf seine Eigenschaften hin bewertet wird [7, 8]. Die Ganganalyse bietet 

allgemeine Informationen über die Bewegungsabläufe des Gangbilds und ermöglicht es dadurch, 

Rückschlüsse auf dessen neurologische und mechanische Entwicklung zu ziehen. Insbesondere 

kann sie dann beschreiben, wie weit das Gangbild dem normalen entspricht oder ob es davon 

abweicht. Es ist dann zu bestimmen, ob diese Abweichungen zugrunde liegende pathologische 

Erkrankungen haben und wie diese gegebenenfalls durch therapeutische (z. B. chirurgisch oder 
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physiotherapeutisch) oder technische Maßnahmen (durch Orthesen oder Prothesen) behandelt 

werden können [78].  

 

Die Ganganalyse erfolgt hauptsächlich durch die Aufnahme der Weg-Zeit-Parameter sowie das 

Verfahren der Kinematik (Aufzeichnung des sichtbaren Bewegungsablaufs), der Kinetik 

(Kraftmessung) und der dynamischen Elektromyographie (Innervationsmuster der Muskeln). Die 

Leistungsfähigkeit des Gangs kann durch eine Energieverbrauchsmessung beurteilt werden [7, 

8]. 

 

2.6.1 Weg-Zeit-Parameter 
 

Die Weg-Zeit-Parameter umfassen die Kadenz, die Schrittlänge, die Schrittbreite (Abb. 2.16), die 

Doppelschrittlänge, die Zyklusdauer und die Gehgeschwindigkeit. Die Kadenz/Schrittfrequenz ist 

durch die Anzahl der Schritte pro Minute definiert. Der Abstand zwischen dem initialen 

Bodenkontakt des Referenzbeins bis zum nächsten Kontakt des gleichen Beins wird als die 

Doppelschrittlänge (Abb. 2.17) bezeichnet. Die Schrittlänge beschreibt den Abstand zwischen 

Fersenkontakt des Referenzbeins und Fersenkontakt des kontralateralen Beins. Die 

Gehgeschwindigkeit (m/s) wird als die zurückgelegte Strecke pro Zeiteinheit definiert [7, 8, 79]. 

Doppelschrittlänge und Kadenz geben die Gehgeschwindigkeit an. Bei einer physiologischen 

Erhöhung der Gehgeschwindigkeit nehmen sowohl die Schrittlänge als auch die Schrittkadenz 

proportional zu. Im Gegensatz dazu nehmen bei einer Verlangsamung die Schrittlänge und 

Kadenz entsprechend proportional ab. Die Gehgeschwindigkeit zeigt somit einen Überblick für 

die allgemeine Funktionalität an [80]. 

 

 

 

 
 
 
Abb. 2.16: Schrittbreite und Schrittlänge 

(in: Marquardt M: Laufen und Laufanalyse [medizinische Betreuung von Läufern], 1. edn. Stuttgart u.a.: 

Thieme; 2012 [79]) 
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Abb. 2.17: Doppelschritt 

(in: Marquardt M: Laufen und Laufanalyse [medizinische Betreuung von Läufern], 1. edn. Stuttgart u.a.: 

Thieme; 2012 [79]) 

 

2.6.2 Kinematik 
 

Die kinematische Ganganalyse wird zur Erfassung von Gelenksbewegungsabläufen im zwei- 

oder dreidimensionalen Raum, unabhängig von Kraft und Körpermasse, herangezogen. Damit 

wird eine ausführliche Beschreibung der Lageveränderungen von verschiedenen Körperteilen 

zueinander quantitativ in allen drei Ebenen des Raumes zu jeder Gangphase in Winkelgraden 

erläutert [81]. Die Winkel an Becken, Hüfte, Knie und oberem Sprunggelenk können durch direkte 

oder indirekte Methoden gemessen werden. Die indirekten Methoden umfassen eine optische 

Aufnahme oder den Ultraschall. Die optische Aufnahme wird hauptsächlich durch die 

Videotechnik durchgeführt [82]. 

 

Grundvoraussetzung für die Aufnahme ist ein Bewegungsmodell des menschlichen Körpers. Ein 

häufig verwendete Modell basiert auf sieben Segmenten, mit denen die Bewegungen der unteren 

Extremität analysiert werden [82, 83]. Das Becken wird durch ein Segment angegeben und 

jeweils zwei Segmente beschreiben den Ober- und Unterschenkel, der Fuß wird als eine Linie 

modelliert. Die Stellung des Beckensegmentes wird hinsichtlich eines Raumkoordinatensystems 

festgelegt. Mit Verwendung von Markern, die auf bestimmte Punkte der Haut geklebt werden, 

können die Segmente berechnet und so von den Bewegungen der Marker auf die Bewegungen 

der betreffenden Segmente geschlossen werden. 

 

2.6.3 Kinetik 
 

Die Kinetik beschreibt die Wirkung und Messung von Kräften sowie Gelenkmoment und 

Leistungen. Bei der Ganganalyse sind die Bodenreaktionskraft, die auf dem Boden durch die 
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Füße übertragen werden, bestimmbar. Diese Bodenreaktionskraft wird durch die 

Mehrkomponentenkraftmessplattform bzw. die Druckmesssohle gemessen. Bei den 

Mehrkomponentenplattformen erfolgt eine summative Messung der Kräfte, die vom Fuß 

ausgehen, in den drei Raumkoordinaten. Zusätzlich sind die rotatorischen Kräfte und 

Drehmomente durch dieses Instrument messbar. Zwei Kraftmessplattformen sind nötig, dadurch 

werden die Kräfte an beiden Beinen synchron gemessen. Im Gegensatz dazu ist eine örtlich 

aufgelöste Messung der Kraftverhältnisse unter dem Fuß durch die Druckmesssohlen machbar. 

Allerdings ermöglichen sie nur die Ermittlung des Betrages der räumlichen Druckwirkung. Diese 

Messungen sind besonders wichtig, um die Fehlbelastungen und Verläufe von 

Druckangriffspunkten zu bestimmen [84].  

 

2.6.4 Elektromyographie 
 

Elektromyographie (EMG) weist die Aktivität der Beinmuskeln während eines Gangzyklus auf. 

Bei den Muskelkontraktionen entstehen elektrische Potenziale, die über der Haut über den 

betreffenden Muskel durch Sensoren (Elektroden) aufgenommen werden. Dadurch kann die 

Dauer der Innervation angegeben werden. Mit Verwendung der Elektroden sind die 

Aktionspotenziale der aktiven Muskelfasern genau messbar. Dadurch wurde ein 

Summenpotenzial gewonnen, das in seiner Signalstärke von der Anzahl der aktivierten 

Muskelfasern und deren Entfernung von der Elektrode abhängig ist. Zur richtigen Ganganalyse 

ist es nur wichtig, einzuschätzen, ob und wann ein Muskel aktiv ist. Das kann über eine 

Schwellenermittlung für das EMG-Signal erreicht werden [75]. 
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3. Fragestellung und Ziele dieser Arbeit 
 

Nach biomechanischen Gesetzen führt die Entlastung der unteren Extremität bei ipsilateraler 

Beindeformität zu Hüftverformung. Diese Veränderungen erfolgen biomechanisch nach dem 

Gesetz „form follows function“. Um die Belastungsgröße in vivo zu bestimmen, kann nur auf die 

Kräfte, die beim Gehen auf den Boden übertragen werden, zurückgegriffen werden [84]. Ein 

anderes Messverfahren, das praktisch einfach durchführbar ist, ist die Bestimmung des 

Fußdrucks auf den Boden. Dadurch ist es möglich, die Gesamtbelastung an der unteren 

Extremität schätzungsweise zu erfassen. 

 

Ziel des vorgeschlagenen Projekts sollte es sein, mittels instrumenteller Ganganalyse an  

orthesenpflichtigen Kindern Gangkriterien herauszufiltern, die dazu beitragen, die Pathogenese 

der Entlastungs-Coxa-valga und Entlastungsdysplasie zu beleuchten. Mit Hilfe der Ergebnisse 

könnte auch geklärt werden, welche Kinder besonders überwachungsbedürftig sind, evtl. 

ergeben sich auch Hinweise zur besseren Gestaltung von Orthesen. 

 

 

 

 

4. Hypothesenbildung  
 

Die aufgestellten Hypothesen sollen zunächst auf die entsprechende Nullhypothese (Ho) 

überprüft werden, die Alternativhypothesen (Hx) werden jeweils ausformuliert. Als Testniveau 

wird Alpha = 0,05 festgelegt. Die Nullhypothese (zweiseitig getestet) wird auf dem 5-%-Niveau 

verworfen. 

 

Wenn ein kindliches Hüftgelenk entlastet (vertreten durch die auf den Boden reduzierten Kräfte 

und Druck), dann richtet sich der Schenkelhals steiler aus, die Hüftpfanne verläuft steiler und der 

Hüftkopf dezentriert sich etwas. Als mögliche pathogenetische Faktoren, die zu einer 

Entlastungs-Coxa-valga führen, muss eine verlängerte Schrittlänge, eine verminderte Belastung 

des Beines oder auch ein Duchenne-Hinken aufgrund veränderter statischer Verhältnisse an der 

unteren Extremität in Betracht gezogen werden. 
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5. Patientengut und Methodik 
 
5.1 Studiendesign 
 

Die Studie ist eine retrospektive, nicht randomisierte klinische und radiologische Studie mit aktuell 

ergänzter ganganalytischer Studie. Die gesunde Seite der Kinder wurde zum Vergleich mit der 

entlasteten Seite untersucht. Die Studie war von der Ethikkommission des Fachbereiches 

Humanmedizin der Ludwig-Maximilians-Universität München genehmigt worden (Antrag Nr. 487-

13).  

 

5.2 Aufklärung der Patienten 
 

Im Rahmen der Studie erfolgte die Patientenaufklärung: Zuerst erhielten die Eltern in einem 

ausführlichen Aufklärungsgespräch ein Informationsblatt und gaben die Einverständniserklärung 

zur Teilnahme an der Studie ab. Die Aufklärung erfolgte somit mündlich und schriftlich über die 

Inhalte, den Ablauf und Zweck der Studie.  

 

Anschließend wurde nochmals anhand der Ein- und Ausschlusskriterien vom behandelnden Arzt 

geprüft, ob das Kind für die Studie in Frage kommt.  

 

5.3 Studienaufbau 
 
5.3.1 Patienten 
 

Aus dem Datenarchiv der orthopädischen Poliklinik sollten alle zwischen 1995 und 2009 

geborenen Kinder herausgefiltert werden, die hüftgesund und dauerhaft einseitig orthesenpflichtig 

sind. Die hier untersuchten Kinder suchten die Klinik aufgrund Erkrankungen distal des 

Kniegelenks auf. Bei Diagnosestellung befanden die Kinder sich im Alter zwischen Geburt und 

9,75 Jahren. Das Hüftgelenk war primär gesund, jedoch wurde die Röntgendiagnostik des 

Beckens aufgrund z.B. der Hüftschmerzen oder des Duschenne-Hinkens angefordert. Eine 

operative Therapie aufgrund der sich darstellenden Veränderungen am Hüftgelenk war nicht 

erforderlich. 

 

Die Patienten wurden telefonisch kontaktiert und dann gebeten, sich einer Ganganalyse mittels 

des an unserer Klinik etablierten Ganganalyse-Systems (Zebris Medical GmbH, Isny im Allgäu, 

FDM-T System mit CMS-HS System zur Stand- und Ganganalyse) zu unterziehen, wobei die 

gewonnenen Ergebnisse dem in der Regel vorliegenden Röntgenbefund (Beckenübersicht) der 

Hüften und Beinlänge zugeordnet wurden sollten.  
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5.3.2 Auswahlkriterien zur Studienaufnahme  
 
5.3.2.1 Einschlusskriterien 

- Alle Patienten im Kindesalter 

- Beide Geschlechter 

- Kinder mit intakter neurologischer Steuerung und gesunder Energieversorgung 

(Funktionierender Stoffwechsel der Muskulatur) 

- Kinder mit primär gesunder Hüfte 

- Laufen mit Hilfsmittel möglich 

 
5.3.2.2 Ausschlusskriterien 

- Kinder mit neuromuskulären Erkrankungen 

- Kinder mit Hüfterkrankungen 

- Kinder mit Stoffwechselkrankheiten 

- Krücken, Gangunsicherheit, frische Operationen 

 

5.3.2.3 Fallzahlanalyse 
 

Zur Fallzahlabschätzung wurden die von Schumann et al. erhobenen Daten herangezogen. Die 

minimalen Fallzahlen wurden mit den folgenden Angaben berechnet: 

 

Alpha (α) Fehler: 0.05 

Beta (β) Fehler: 0.8 

Differenz des mittleren pCCD-Winkels beider Gruppen: 11,5° 

Standardabweichung: 9,12° 

 

Laut der Analyse mit der nQuery Advisor Software (Statistical Solutions, Boston, USA) sollte die 

Probenanzahl von zehn Kindern pro Gruppe zu signifikanten Ergebnissen führen.  

 

Aufgrund dieser Fallzahlanalyse wurden zwölf Kinder (24 Hüften: 12 entlastete Hüften und 12 

gesunde Hüften), die die Einschlusskriterien erfüllten und auf die kein Ausschlusskriterium zutraf, 

in die Studie aufgenommen. 

 

Zur Durchführung unserer klinischen und radiologischen Untersuchungen erklärten sich 

insgesamt zwölf Kinder (24 Hüften) einverstanden, davon waren drei weibliche und neun 

männliche Kinder. Nur zehn Kinder (10 Hüften) erklärten sich mit der Durchführung der 

Ganganalyse einverstanden, davon waren zwei weibliche und acht männliche Kinder. 
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5.4 Strukturmerkmale der Patienten 
 
5.4.1 Demografische Daten 
 

Unsere einseitig gehbehinderten Kinder und Jugendlichen leiden an folgenden 

Grunderkrankungen: Crus varum congenitum oder Tibiapseudarthrosen 5, Fehlbildungsklumpfuß 

1, kongenitaler tibialer Längsdefekt 2, kongenitaler fibulärer Längsdefekt 3, 

Unterschenkeldeformität nach Ewingsarkom 1. Die Altersstruktur wurde zwischen vier und 19 

Lebensjahren dokumentiert, der Median des Kinderalters lässt sich auf 12,5 (4,33-18,5) Jahre 

berechnen. Der Median des gesamten Entlastungszeitraums beträgt 11 (3,25-16,33) Jahre. Neun 

Kinder leiden von Deformität des linken Beins und drei Kinder leiden von Deformität des rechten 

Beins. 

 

5.4.2 Assessmentsystem (UCLA Activity-Level Rating) 
 

Zur Aufnahme des individuellen Aktivitätsniveaus wurde das Zehn-Punkte Activity-Level Rating 

der University of California Los Angeles benutzt [85, 86]. Die Patienten wurden danach gemäß 

den möglichen Bemühungen im Alltag bzw. den möglichen sportlichen Aktivitäten eingestuft. Das 

Score-System hat zehn verschiedene Aktivitätsstufen. Der Patient ordnete sich selbst 

entsprechend der Skala einem Level zu. Die Abstufung reicht von absoluter Inaktivität bzw. 

Bettlägerigkeit (1. Stufe) über moderate Aktivitäten, wie regelmäßige Teilnahme an Hausarbeiten 

und gelegentlichem Freizeitsport (5.-6. Stufe), bis hin zur regelmäßigen Partizipation an 

gelenkbelastenden Sportarten und Leistungssport. Je niedriger die Stufe, umso weniger sind 

jeweils die von den Patienten durchgeführten Aktivitäten (Siehe Anhang IV, S. 128). 

 

5.5 Die Untersuchungen 
 

Die Patienten wurden initial mehreren diagnostischen Tests unterzogen. Dazu zählten die 

Anamnese und die körperliche Untersuchung, die von dem behandelnden Arzt vorgenommen 

wurde. Die Untersuchungen umfassten klinische und radiologische Untersuchungen sowie 

instrumentelle Ganganalyse. 

 

5.5.1 Klinische Untersuchung 
 

Sämtliche Kinder wurden klinisch untersucht. Dabei wurden folgende Parameter erfasst: 

- Größe, Gewicht, BMI (nach WHO–Bericht 2007) [87] (siehe Anhang VI, S. 

127), Beinlänge, Fußlänge  
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- Goniometrische Beweglichkeitsmessung im Hüftgelenk (Flexion/Extension, 

Abduktion/Adduktion, Innen- und Außenrotation in Hüftflexion/Extension nach der Neutral-Null-

Methode [88], Abb. 5.1).  

- Umfangmaße 

Umfangsmessungen (Abb. 5.2) erfolgen an definierten Stellen im Bereich der unteren 

Extremität zur Quantifizierung und Verlaufsbeurteilung von Schwellungen oder 

Muskelatrophien. 

Referenzlinie = Gelenkspalt Knie  

Messpunkte Oberschenkel: 20 cm und 10 cm proximal von Kniegelenkspalt 

Messpunkt Unterschenkel: 15 cm distal von Kniegelenkspalt 

Messpunkt Fessel 

Messpunkt Knöchel 

Messpunkt Mittelfuß 

Messpunkt Vorfuß 

 
Abb. 5.1: Bewegungen des Hüftgelenks nach Neutral-Null 

(In: Ryf C, Weymann A: Range of motion: AO Neutral-0 Method: measurement and documentation = AO 

Neutral-0 Methode: Messung und Dokumentation. Stuttgart, New York: Thieme; 1999 [88]) 
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Abb. 5.2: Standardisierte Umfangs- und Längenmessungen an den Beinen 

(In: Ryf C, Weymann A: Range of motion: AO Neutral-0 Method: measurement and documentation = AO 

Neutral-0 Methode: Messung und Dokumentation. Stuttgart; New York: Thieme; 1999 [88]) 
 

5.5.2 Radiologische Untersuchung 
 

Ursprünglich wurden alle Röntgenbilder nach demselben Verfahren hergestellt, um vergleichbare 

Ausgangsbedingungen zu bekommen. Hierzu lag der Patient auf dem Rücken, die Beine lagen 

gestreckt und parallel, die Kniescheiben waren genau ventodorsal ausgerichtet. Außerdem lagen 

die Innenknöchel aneinander. 

 

Als wesentliche Voraussetzung zur Vermessung diverser Winkel am Hüftgelenk galt die Definition 

der Hilgenreiner’schen Linie. Diese Beckenhorizontale verbindet die beiden Y-Fugen [89]. Die 

unteren äußeren Ecken des vom Os ilium gebildeten Acetabulums wurden miteinander 

verbunden. 
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5.5.2.1 Die verwandten Winkel und Messstrecken am Schenkelhals 
Der projekzierte CCD-Winkel wurde gemessen (Abb. 5.3). Die Messung des pCCD-Winkels 

erfolgt mittels einer „a.p.“-Aufnahme des Hüftgelenks. Er wurde von der Schenkelhalsachse und 

der Femurschaftachse gebildet.  Hierbei wurde ebenso um das Femurkopfzentrum ein Kreis 

gezogen. Dieser Kreis schneidet die Schenkelhalskanten. Eine Linie zwischen diesen 

Schnittpunkten wurde verbunden. Die Gerade durch die Mittelpunkte dieser Verbindungslinie und 

des Hüftkopfes ergab die Schenkelhalsachse. Zur Ermittlung der Femurschaftachse wurden zwei 

Querdurchmesser des Femurschafts unterhalb des Trochanter minor gezogen. Die Mittelpunkte 

dieser Querdurchmesser wurden verbunden, wodurch sich die Femurschaftachse ergab. Hefti [90] 

beschrieb Werte von 150° bis 120° von der Geburt bis zur Pubertät. 

Abb. 5.3: Der Centrum-Collum-Winkel 

(in: Dihlmann W: Gelenke - Wirbelverbindungen klin. Radiologie einschl. Computertomographie - Diagnose, 

Differentialdiagnose, 3., © bearb. u. erw. Aufl. edn. Stuttgart u.a.: Thieme; 1987 [57]) 

Die Lesser Trochanter to Articular Surface Distance (LTA), die die Strecke zwischen der Spitze 

der Gelenkfläche des Femurkopfes und dem Trochanter minor entspricht, wurde gemessen (Abb. 

5.4). Die normalen Werte des EY-Winkels nach McCarthy und Weiner [91] wurden in dieser 

Studie als Referenzwerte verwendet.  

Abb. 5.4: Lesser Trochanter to Articular Surface Distance 

(In: McCarthy JJ, Weiner DS: Greater trochanteric epiphysiodesis. International orthopaedics 2008, 

32(4):531-534 [91]) 
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5.5.2.2 Die verwandten Winkel an der Epiphyse  
Der Kopfepiphysen-Y-Fugen-Winkel (EY-Winkel) (Abb. 5.5) wurde durch die Hilgenreiner’sche 

Linie und die Epiphysenfugenlinie bestimmt. Thiele [92] gab Normwerte von 8-30° bei ein- bis 

elfjährigen Kindern an. In dieser Studie wurden die Normwerte des EY-Winkels nach Birkenmaier, 

2010 [21] verwendet. 

Abb. 5.5: Der Kopfepiphysen-Y-Fugen-Winkel 

(modifiziert nach Jorysz G: Die physiologische Entwicklung des kindlichen Hüftgelenks – eine 

planimetrische Röntgen-Querschnittsuntersuchung. Ludwig-Maximilians-Universität-München; 1990 [93]) 

Der KE-Winkel (Kopfepiphysenwinkel) wurde von Jäger und Refior [94] beschrieben. Dieser 

Winkel wurde durch das von einem beliebigen Punkt der Epiphysenfugenlinie auf die 

Schenkelhalsachse gefällte Senklot und die Epiphysenfugenlinie gebildet.  Zur Bestimmung der 

Epiphysenfugenlinie wurde eine Verbindungslinie zweier auf der proximalen Metaphyse liegender 

Punkte eingezeichnet. Diese Linie vertrat eine Verbindung zwischen dem untersten möglichst weit 

lateral liegenden Punkt und dem untersten möglichst weit medial liegenden Punkt der knöchernen 

Kopfepiphyse (Abb. 5.6).  

Abb. 5.6: Der Kopfepiphysen-Schenkelhals-Winkel 

(modifiziert nach Jorysz G: Die physiologische Entwicklung des kindlichen Hüftgelenks – eine 

planimetrische Röntgen-Querschnittsuntersuchung. Ludwig-Maximilians-Universität-München; 1990 [93]) 
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Der Kopfepiphysen-Femurschaft-Winkel (KF-Winkel) beschreibt die Beziehung der Epiphysenfuge 

zur Schenkelhalsachse (Abb. 5.7). Dieser Winkel wird gebildet von einer Geraden durch den 

Femurschaft und einer Geraden durch die Kopfepiphysenfuge. Bei Jorysz, 1990 [93] sind 

Normwerte von 68-71° berichtet. Für den KF-Winkel wurden die Normwerte aus der Arbeit von 

Birkenmaier, 2010 [21] benutzt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 5.7: Der Kopfepiphysen-Femurschaft-Winkel 

(modifiziert nach Jorysz G. (1990) Die physiologische Entwicklung des kindlichen Hüftgelenks – eine 

planimetrische Röntgen-Querschnittsuntersuchung, S. 53, Dissertation, LMU-München [93]) 

 

 

5.5.2.3 Die verwandten Winkel und Messstrecken am Acetabulum 
Der Sharp-Ullmann-Winkel (Abb. 5.8) als Pfannenöffnungswinkel zur Hilgenreiner’schen Linie 

dient eine Beurteilung der Neigung des Pfannendaches in der Frontalebene. Er wurde 

folgendermaßen aufgebaut: Eine Grundgerade wurde durch die distalsten Punkte der beiden 

Köhler-Tränenfiguren (unterster Punkt der Incisura acetabuli) eingezeichnet. Eine zweite Gerade, 

welche die äußersten knöchernen Pfannenerker mit der Tränenfigur verbindet, schneidet die 

Grundgerade und zeigt somit den konstruierenden Winkel an. Diese Grundlagen wurden nach 

den Angaben von Ullmann [95] und Sharp [96] beschrieben.  

 

Ullmann [95] beschrieb bei Kindern bis zu zehn Jahren einen Maximalwert von 45°, Stuhlberg und 

Harris [97] berichteten einen Sharp-Ullmann-Winkel von 43° als normal. Die normalen Werte des 

Sharp-Ullmann-Winkels, die in dieser Studie verwendet wurden, sind in Tabelle 5.1 

zusammengefasst. 
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Abb. 5.8: Messung des Pfannenneigungswinkels zur Horizontalebene nach Ullmann und Sharp. 

(in: Tönnis DA: Die angeborene Hüftdysplasie und Hüftluxation im Kindes- und Erwachsenenalter. Berlin, 

Heidelberg: Springer-Verlag; 1984 [11]) 

 

 
Tab. 5.1: Pfannenöffnungswinkel nach Ullmann und Sharp nach Tönnis 

(in: Tönnis DA: Die angeborene Hüftdysplasie und Hüftluxation im Kindes- und Erwachsenenalter. Berlin 

Heidelberg: Springer-Verlag; 1984 [11]) 

Alter (Jahre) 
Normalwert 

(Mittelwert) 

Grad 1 

(Normal) 

Grad 2 

(Leicht 

pathologisch) 

Grad 3 

(Schwer 

pathologisch) 

Grad 4 

(Extrem 

pathologisch) 

1-11 46 ≤ 49 50–52 53–55 ≥ 56 

11-13 44 ≤ 47 48–51 52–54 ≥ 55 

13-14 42 ≤ 45 46–49 50–52 ≥ 53 

Ab 14 40 ≤ 34 44–46 47–49 ≥ 50 

 

Der AC-Winkel (Abb. 5.9) wurde nach Hilgenreiner bezeichnet. Der AC-Winkel beurteilt die 

Steilstellung des Hüftpfannendaches. Dieser Winkel wurde von Hilgenreiner [89] wie folgt 

beschrieben. Eine Gerade von dem seitlichen knöchernen Pfannenerker auf die Hilgenreiner’sche 

Linie bildet den AC-Winkel. Hierbei ist es notwendig, den äußersten Punkt des Pfannendaches 

genau festzusetzen [98]. Die Normalwerte von 28-35° wurden von Hilgenreiner angegeben [89]. 

Bei der vorliegenden Studie wurden die Normwerte des AC-Winkels aus der Arbeit von 

Birkenmaier, 2010 [21] und Tönnis, 1997 (Tab. 5.2) [99] verwendet. 
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Abb. 5.9: Acetabulum Winkel (AC-Winkel) 

(in: Tönnis D: Röntgenuntersuchung und Arthrographie des Hüftgelenks im Kleinkindesalter. Orthopädie, 

Springer-Verlag 1997, 26:49-58 [99]) 

 

 

Tab. 5.2: Normalwerte des AC-Winkels und ihre Abweichungsgrade  

(Klassifizierungssystem des Arbeitskreises für Hüftdysplasie der DGOT) [99] 

Alter (Jahre) 
Normalwert 

(Mittelwert) 

Grad 1 

(Normal) 

Grad 2 

(Leicht 

pathologisch) 

Grad 3 

(Schwer 

pathologisch) 

Grad 4 

(Extrem 

pathologisch) 

0/3+0/4 25 < 30 ≥ 30–< 35 ≥ 35–< 40 ≥ 40 

0/5–2/0 20 < 25 ≥ 25–< 30 ≥ 30–< 35 ≥ 35 

2–3 18 < 23 ≥ 23–< 28 ≥ 28–< 33 ≥ 33 

3–7 15 < 20 ≥ 20–< 25 ≥ 25–< 30 ≥ 30 

7–14 10 < 15 ≥ 15–< 20 ≥ 20–< 25 ≥ 25 

 

Der CE-Winkel (der Zentrum-Ecken-Winkel) wurde nach Wiberg bestimmt (Abb. 5.10) [100]. Er 

ergibt sich aus einer Geraden zwischen dem Hüftkopfmittelpunkt und dem äußerstem 

Pfannendacherker und einer zweiten Geraden durch das Hüftkopfzentrum, welcher zur 

Körperlängsachse parallel ist. Somit verändert sich der CE-Winkel bei Veränderungen der Breite 

des Hüftpfannendaches und der Lagebeziehung des Femurkopfes zur Hüftpfanne, womit er ein 

Indikator sowohl für die Verknöcherung des Pfannendaches wie für eine Femurkopffehlbildung ist 

[57]. Wiberg [101] beschreibt einen Wert von 20° als pathologisch, Werte von über 25° als normal 

(Tab. 5.3). Die Normwerte des CE-Winkels wurden von Birkenmaier, 2010 [21] und Jorysz, 1990 

[93] angegeben und in der vorliegenden Arbeit verwendet. 
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Abb. 5.10: Der Zentrum-Ecken-Winkel nach Wiberg bzw. der Pfannendachwinkel nach Hilgenreiner 

(In: Reid GD, Reid CG, Widmer N, Munk PL: Femoroacetabular impingement syndrome: an 

underrecognized cause of hip pain and premature osteoarthritis? The Journal of rheumatology 2010, 

37(7):1395-1404 [102]) 

 
Tab. 5.3: Normalwerte des CE-Winkels 

(in: Tönnis DA: Die angeborene Hüftdysplasie und Hüftluxation im Kindes- und Erwachsenenalter. Berlin, 

Heidelberg: Springer-Verlag; 1984 [11]) 

Alter (Jahre) 
Normalwert 

(Mittelwert) 

Grad 1 

(Normal) 

Grad 2 

(Leicht 

pathologisch) 

Grad 3 

(Schwer 

pathologisch) 

Grad 4 

(Extrem 

pathologisch) 

≥ 0-≤ 8 25 ≥ 20 ≥ 15-< 20 ≥ 0-< 15 < 0 

≥ 8-≤ 18 32 ≥ 25 ≥ 20-< 25 ≥ 5-< 20 < 5 

≥ 18-50 35 ≥ 30 ≥ 20-< 30 ≥ 5-< 20 < 5 

 

Die Tear Drop Distance (TDD) stellt den Abstand zwischen dem am weitesten medial liegenden 

Punkt des Hüftkopfes und des lateralen Bereichs der Beckentränenfigur dar (Abb. 5.11). Der 

Durchschnittswert betrug nach Tönnis 8,8 ± 1,3 mm [99]. Für Kleinkinder hat Erlacher [103] einen 

Abstand zum Sitzbeinrand von 4-5 mm ermittelt. Pathologisch sind Werte von über 7,5 mm.  

 

Schließlich wurde der Instabilitätsindex nach Reimer, auch Migration Percentage genannt, (Abb. 

5.12) in der vorliegenden Studie berechnet, um die Tiefeinstellung des Hüftkopfes in der Pfanne 

zu beurteilen. Die Berechnung des Instabilitätsindex erfolgte wie folgend: Es wurde der 

Durchmesser des Hüftkopfes parallel zur Hilgenreiner-Linie als Abstand b gemessen, sowie der 

Abstand a von der seitlichen Hüftkopfbegrenzung zur Perkins-Linie [104]). Der Abstand a 

entspricht dem Teil des Hüftkopfes, der nicht von der Hüftpfanne überdacht ist. Der 

Instabilitätsindex ergab sich aus dem Quotienten a/b multipliziert mit 100. Reimers [105] 
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berichtete für 0-14-jährige Kinder einen Wert von 0 % und im Alter von vier bis 16 Jahren Werte 

von unter 10 % als normal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 5.11: Tränenfigurabstand (Tear Drop Distance) 

(In: Sweeney JP, Helms CA, Minagi H, Louie KW: The widened teardrop distance: a plain film indicator of 

hip joint effusion in adults. AJR American journal of roentgenology 1987, 149(1):117-119 [106]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 5.12: Instabilitätsindex nach Reimers (MP, Migration Percentage)  

(In: Wynter M, Gibson N, Kentish M, Love S, Thomason P, Kerr Graham H: The Consensus Statement on 

Hip Surveillance for Children with Cerebral Palsy: Australian Standards of Care. Journal of pediatric 

rehabilitation medicine 2011, 4(3):183-195 [107]) 
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5.6 Instrumentelle Ganganalyse 
Für die Untersuchung der Pathogenese der Entlastungs-Coxa-valga und der Entlastungsdysplasie 

wurde eine instrumentelle Ganganalyse durchgeführt. Zu den Messmethoden dieser Arbeit zählte 

die Ganganalyse mit dem Zebris-Ganganalysesystem. Die kinematischen und kinetischen Daten 

in allen drei Ebenen des Raumes sowie die Weg-Zeit-Parameter wurden erfasst. 

 

5.6.1 Messverfahren der Ganganalyse 
Das Zebris-System ist ein Ultraschalmesssystem zur Ganganalyse. Die Messschritte wurden wie 

folgt durchgeführt: 

 

5.6.1.1 Aufbau und Anordnung der Hardware-Komponenten 
 

Das Zebris-System besteht aus einer Messeinheit mit Stativ (bzw. zwei Messeinheiten mit 

Stativen für beidseitige Messung), Ultraschall-Dreifachmarkern, Kabeladapter mit Gürteltasche 

sowie einem CMS-HS-Grundgerät. Die Anlage wird an einem handelsüblichen Personal-

Computer angeschlossen. Über einen Drucker können die Messergebnisse ausgegeben werden. 

Das Messsystem kann komplett mit Rechner und Drucker geliefert werden (Abb. 5.13 und 5.14). 

Es funktioniert wie folgt: Das Messverfahren basiert auf der Laufzeitbestimmung von 

Schallimpulsen, die von kleinen Ultraschallsendern im Messaufnehmer zu den Mikrofonen der 

Dreifachmarker abgegeben werden. Die exakte Raumposition der Marker wird durch Triangulation 

bestimmt. Hieraus erfolgen eine Darstellung der Markerbewegung in der Transversalebene sowie 

die Berechnung der weiteren Kenngrößen [108]. 

 

 
 
Abb. 5.13: Komponenten und Messprinzip des Zebris-Systems 

(in: Zebris Medical: WinGait 3.1.x für Windows Bedienungsanleitung. In: Isny im Allgäu, Deutschland: © 

Copyright Zebris Medical GmbH; Text Release 02/2007 [108]) 

Messeinheit 
MA-HS 

Kabeladapter 

grau 
grau 

Marker 
(Mikrofon) 

Messeinheit 
MA-HS 

PC 

parallele 
Schnittstelle 

Grundgerät 
CMS-HS 
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Abb. 5.14: Das Zebris-System: Messung auf dem Laufband 

(in: Zebris Medical: WinGait 3.1.x für Windows Bedienungsanleitung. In: Isny im Allgäu, Deutschland: © 

Copyright Zebris Medical GmbH; Text Release 02/2007 [108]) 

 

Wie im Bild Abb. 5.14 dargestellt, wurden zwei Empfangseinheiten (Messaufnehmer) mit jeweils 

drei Ultraschallmikrofonen beidseits des Laufbandes aufgestellt. Die Messaufnehmer sollten 

gegenüber und parallel zueinander aufgestellt werden. Dabei wird auf gleiche Seitenabstände und 

Höhen geachtet. Diese werden in der Auswertesoftware hinterlegt. Der Neigungswinkel 

(empfohlen 80-90 Grad) und die Höhe der beiden Messaufnehmer sollten gleich sein. Der 

Abstand zwischen den Aufnehmern sollte 1,5-2 m betragen. 

 

5.6.1.2 Vorbereitung der Kinder 
Es wurden seitlich, über folgenden Gelenken bei beiden Beinen Ultraschallmarker befestigt (Tab. 

5.4).  
Tab. 5.4: Anbringen der Marker am Patienten 

(in: Zebris Medical: WinGait 3.1.x für Windows Bedienungsanleitung. In: Isny im Allgäu, Deutschland: 

© Copyright Zebris Medical GmbH; Text Release 02/2007 [108]) 

 

Marker Ort Befestigung 
1-3 Linker Mittelfuß Mit Klebeetiketten 

4-6 
Linker 

Oberschenkel 
Mit Klettband 

7-9 Rechter Mittelfuß Mit Klebeetiketten 

10-12 
Rechter 

Oberschenkel 
Mit Klettband 

13-15 Sakrum Mit Klettband 
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Dabei wurde auf sichere Befestigung und Signalisierung in Richtung der seitlichen Mikrofone 

geachtet. Der Kabeladapter wird mit Hilfe der beiliegenden Gürtelschnalle auf der Hüfte befestigt. 

Die Marker wurden mit dem Kabeladapter verbunden und der Kabeladapter mit dem 

Verbindungskabel an das HS-Grundgerät angeschlossen (Abb. 5.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

     

 (a) 

 
 

                (b) 

 
Abb. 5.15: Ganganalyse, Zebris: (a) Die Messaufnehmer bei gleichen Seitenabständen und Höhen, (b) 

Markerfixierung an der unteren Extremität.  

 

 

5.6.1.3 Kalibrierung der Fußbodenebene 
 

Der Taststift (Pointer) wurde über Marker 23, 24 (Fußbodenebene) mit dem Grundgerät 

verbunden. Mit dem Pointer müssen nun nacheinander vier verschiedene Punkte auf dem 

Fußboden oder auf dem Laufband eingegeben werden. 

 

5.6.1.4 Eingabe der anatomischen Punkte 
 

Die Bestimmung der anatomischen Punkte mit dem Taststift (Pointer) erfolgte immer in Bezug zu 

den am Körper befestigten Markern. Für die Eingabe der anatomischen Punkte positionierte sich 
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das Kind so, dass die Marker zum Messaufnehmer zeigen. Das Kind sollte eine möglichst 

neutrale Stellung einnehmen, da während der Punkteeingabe gleichzeitig die Neutralposition 

definiert wurde. Die Reihenfolge der anatomischen Punkte wurde wie folgt aufgeführt: 
 

1- Sakrum  

2- rechter Darmbeinstachel 

3- Knierotationsachse außen/rechts 

4- Knierotationsachse innen/rechts 

5- Knöchelrotationsachse außen/rechts 

6- Knöchelrotationsachse innen/rechts 

7- rechter Vorfuß 

8- linker Darmbeinstachel 

9- Knierotationsachse außen/links 

10- Knierotationsachse innen/links 

11- Knöchelrotationsachse außen/links 

12- Knöchelrotationsachse innen/links 

13- linker Vorfuß 

 

5.6.1.5 Überprüfung  
 

Es wurde geprüft, ob Ultraschallsignale störungsfrei empfangen wurden. War dies nicht der Fall, 

konnte eine optimale Datenerhebung durch Veränderung der Position der Messaufnehmer bzw. 

Marker erzielt werden. Anschließend begannen wir wieder bei Schritt (5.6.1.3). 

 

5.6.1.6 Messdurchgang und Aufzeichnung der Schrittzyklen 
 

Die Software auf die Datenaufnahme wurde parallel vorbereitet. Wenn die Kalibrierung und die 

Eintragung der anatomischen Punkte abgeschlossen waren, wurden die Patientendaten 

„Gehgeschwindigkeit und Koordinaten“ der am Patientenbein fixierten Ultraschallsender erhoben. 

Die Rohdaten-Speicherung erfolgt mit der Software WinGait 2. 

 

Es konnten ständig Daten über längere Abstände aufgenommen werden. Dadurch standen zu 

jeder Einzelmessung etwa 50-100 Schritte der Auswertung zur Verfügung. Nach der 

Datenerhebung war eine manuelle Nachbearbeitung bei der Software erforderlich. Zum 

Berechnen der allgemeinen Ganganalyseparameter musste per Marker der Zeitpunkt des 

Bodenkontaktes und -verlustes definiert werden. Dies lässt sich durch eine graphische 

Vektordarstellung im Einzelbilderaufruf gut definieren (Abb 5.16). Die Berechnung aller weiteren 

Parameter erfolgte mittels Software markerunabhängig. 

 

5.6.1.7 Beliebiges Wiederholen des Schrittes 5.6.1.6  

 

Die Position der Marker und der Messaufnehmer dürfen sich nicht verändern. Andernfalls ist eine 

neue Kalibrierung erforderlich. 
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         (C) 

           

 
       (a) 
 
             (b) 

 

 

 

 

 

 

 
Abb. 5.16: Der View-Bildschirm 

(a) Darstellung der Messgrößen in Echtzeit. Hierbei sind die Winkelverläufe dargestellt, (b) Darstellung der 

Strichfigur in 3D. Die farbige Darstellung entspricht den Kurvenfarben (links = rot, rechts = grün). Das Gitter 

zeigt den Untergrund, wie er bei der Kalibrierung definiert wurde. Die Positionen der Dreifachmarker werden 

als weiße Dreiecke gekennzeichnet, (c) Symbolleiste 

 

 

5.6.2 Die gebräuchlichsten Messparameter 
 

Der mittels Zebris-Software ausgedruckte Bericht beschreibt die Messergebnisse der allgemeinen 

Ganganalyseparameter (Weg-Zeit-Parameter und Gangphasen) und der maximalen 

Winkelauslenkungen der einzelnen Gelenke der unteren Extremität beidseits sowohl als 

Nominalwert als auch graphisch. 

 

5.6.2.1 Die Weg-Zeit-Parameter 
 

Hier waren einige allgemeine Schrittparameter (Anzahl der Schritte, Schrittlängen, Dauer der 

Doppelunterstützungsphase, die Kadenz und die Geschwindigkeit) für die linken und rechten 

Beine zusammengefasst. Beim freien Gehen wurde in der Regel von den Kindern die 

Gehgeschwindigkeit bestimmt. Die durchschnittliche Gehgeschwindigkeit entspricht dem Produkt 

aus Schrittlänge und Schrittfrequenz. In der Praxis wird die Schrittfrequenz bzw. die Kadenz 

meistens in Anzahl an Schritten pro Minute aufgenommen. Bei einer physiologischen Zunahme 

der Gehgeschwindigkeit nehmen sowohl die Schrittlänge wie die Schrittkadenz proportional zu, 

bei einer Verlangsamung nehmen Schrittlänge und Kadenz entsprechend proportional ab [109].  
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5.6.2.2 Der Gangzyklus 
 

Es wurde jeweils der prozentuale Anteil der durchschnittlichen Dauer der Stand- und 

Schwungphase beider Beinen erfasst. Ein Gangzyklus beginnt mit dem ersten Bodenkontakt des 

Aufsetzens eines Fußes und endet mit dem folgenden Bodenkontakt desselben Fußes. Der 

Zyklus (Doppelschritt) beinhaltet somit eine Stand- und eine Schwungphase beider Beinen. Nach 

dem Aufsetzen des Fußes sind bis zur Zehenablösung des kontralateralen Beins beide Füße am 

Boden. Dies ist die erste Zweibeinstandphase. Darauf folgt die Einbeinstandphase und mit dem 

Fersenkontakt des kontralateralen Beins beginnt die zweite Zweibeinstandphase, während der 

das Referenzbein die Schwungphase vorbereitet [7]. Die verfügbaren Ganganalysemuster 

umfassen Schrittweite, Schrittlänge, Schrittzeit, Standphase, Stoßdämpfungsphase, Mittlere 

Standphase, Abstoßphase, Schwungphase, Doppelstandphase, Doppelschrittlänge, 

Doppelschrittzeit und Kadenz. 

 

5.6.2.3 Kinetik 
 

Zusätzlich zu den allgemeinen Ganganalyseparametern wurden die Kräfte und der Druck 

gemessen. Maximaldruck ist die maximale Druckbelastung in N/cm². Die Maximalkraft gibt die 

gesamte Kraft, die auf den Boden übertragen wurde, in N an. 

  

5.6.2.4 Kinematik 
 

Jedes Gelenk durchläuft während des Gehens ein typisches Bewegungsmuster, das mit 

kinematischen Messmethoden quantifiziert werden kann [110, 111]. Die Gelenkbewegungen 

wurden in den drei Ebenen des Raums beurteilt. Streckung, Beugung und Rotationsbewegungen 

der Gelenke der unteren Extremität und des Beckens wurden durch die Bewegung der Marker 

zueinander aufgenommen. Es wurden die Winkelgrade der Maximalauslenkungen berichtet. Die 

erhobenen Messwerte waren wie folgend zusammengefasst: Beckenabsenkung, Beckenrotation, 

Beckenkippung, Flexion Hüfte li/re, Extension Hüfte li/re, Adduktion Hüfte li/re, Abduktion Hüfte 

li/re, Flexion Knie li/re, Extension Knie li/re, Dorsalextension OSG li/re, Plantarflexion OSG li/re, 

Innenrotation Fuß li/re und Außenrotation Fuß li/re. 

 

5.7 Datenanalyse und statistische Methoden 
 

Die demografischen, klinischen und radiologischen Daten der Patienten wurden in einen 

Erhebungsbogen übertragen. Diese wurden mit dem Tabellenkalkulations-Programm Excel 

(Microsoft Office 2010 für Windows) in Tabellenform aufgearbeitet und es wurde eine deskriptive 

statistische Analyse der Werte vorgenommen. 
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Für die Datenauswertung wurde entsprechend dem internationalen Standard ein Gangzyklus auf 

100 % normalisiert. Rechte und linke Gangzyklen wurden für das Patientenkollektiv separat 

analysiert. Die kinematischen und kinetischen Daten wurden in allen drei Raumebenen (Sagittal-, 

Frontal- und Transversalebene) beurteilt. Es erfolgte jeweils ein Vergleich der Daten der 

erkrankten mit denen der gesunden Seite. Die Angabe der kinematischen Daten erfolgte in 

Winkelgraden, die der Kräfte in Newton und die des Drucks in Newton/cm2. 

 

Unter der Nullhypothese (kein relevanter Unterschied) erwartet man eine durchschnittliche 

Differenz nahe bei Null. Für alle verwandten statistischen Testverfahren gilt eine statistische 

Signifikanz für p-Werte kleiner 0,05. Zur Ausführung des Testes und zur graphischen Darstellung 

der Ergebnisse wurde das Programm IBM SPSS Statistics 20 für Windows verwendet. 

 

Neben den tabellarischen Übersichten und den Balkendiagrammen wurde die graphische 

Darstellung der Daten mittels der Boxplot-Graphik genutzt. Dadurch könnten Zentrum, Streuung 

und Spannweite der Verteilung inklusive möglicher Ausreißer graphisch zusammengefasst 

werden. Weiterhin wurden Trendlinienbilder verwendet, um die langfristige Entwicklung der 

radiologischen Messungen an den entlasteten (pathologisch veränderten) und gesunden Hüften 

graphisch zu vergleichen. Zur Beschreibung der kinematischen Ganganalyse wurden die 

Kursdiagramme erstellt.  

 

5.7.1 Deskriptive Statistik 
 

Die deskriptive Beschreibung der untersuchten Kinder erfolgte anhand von Mediane und 

Spannweite der demografischen, klinischen, radiologischen und ganganalytischen Variablen. Die 

Datenanalyse hatte zum Ziel, die Unterschiede zwischen der erkrankten und der gesunden Hüfte 

aufzuzeigen. Da sich bei den untersuchten Werten keine Normalverteilung ergab, wurde zur 

statistischen Auswertung der Mann-Whitney-U-Test angewandt. Zusätzlich zum T-Test wird hier 

auf die nicht-parametrische Variante (Mann-Whitney-U-Test für unabhängige Stichproben) hin 

untersucht. Er prüft, ob die zentrale Tendenz in zwei unabhängigen Stichproben signifikant 

unterschiedlich ist. Beim Mann-Whitney-U-Test handelt es sich um einen Rangtest. Die 

Berechnung der Teststatistik basiert auf der Bildung einer Rangreihe aus Paardifferenzen. Die 

beiden  Stichproben sollen nicht den gleichen Umfang anzeigen. Aus den Werten der beiden 

Stichproben wird eine gemeinsame Reihe in aufsteigender Folge gebildet. Dahinter steht die 

Überlegung, dass sich die Daten zweier unabhängiger Stichproben in einer gemeinsamen 

Rangreihe gleichmäßig verteilen, wenn sie die gleiche zentrale Tendenz anzeigen [112]. 
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Zur Überprüfung, ob die zentrale Tendenz in mehr als zwei unabhängigen Stichproben signifikant 

unterschiedlich ist, wurde der Kruskal-Wallis-Test verwendet. Er ist auch ein nicht-parametrischer 

statistischer Test. Der Kruskal-Wallis-Test stellt eine Erweiterung des Mann-Whitney-U-Tests für 

zwei unabhängige Stichproben dar [112]. 

 

5.7.2 Korrelationen 
 

Zur Messung der Stärke und Richtung des Zusammenhangs zwischen zwei Variablen wurden 

Korrelationskoeffizienten berechnet. Die Darstellung der Korrelationen erfolgte in 

Streudiagrammen. 

 

Der Spearman-Korrelationskoeffizient, der auch als Rangkorrelationskoeffizient genannt wird und 

dessen Wert als Spearman’s Rho angegeben wird, wurde bei nicht-normalverteilten und 

ordinalskalierten Variabeln hinzugezogen [113, 114]. Der Spearman-Korrelationskoeffizient ist ein 

Spezialfall des Pearsons-Korrelationskoeffizienten, bei dem an Stelle der Originaldaten die 

Rangpaare verwendet werden. Das bedeutet, dass die Daten für die Berechnung des Spearman-

Rangkorrelationskoeffizienten in Ränge konvertiert werden, bevor der Korrelationskoeffizient 

berechnet wird. Mit der Datenkonvertierung in Ränge ist die Spearman-Rang-Korrelation robust 

gegen Ausreißer [115].  
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6. Ergebnisse 
 
6.1 Ergebnisse der klinischen Untersuchung  
 

Es wird in Tabelle 6.1 gezeigt, dass es einen signifikanten Unterschied zwischen der 

minderbelasteten und der gesunden Seite bezüglich Fußlänge und Umfangmaßen distal des 

Kniegelenks gibt. Außerdem zeigt sich ein signifikanter Unterschied bezüglich 

Innenrotationsfähigkeit der Hüfte in Bauch- und Rückenlage. 

 

Tab. 6.1: Beinlängendifferenz (BLD), Beinlänge, Hüftbeweglichkeit, Fußlänge und 

Umfangmaße der untersuchten Kinder 

 

 
Erkrankte Seite Gesunde Seite 

p-Wert Median 
(Spannweite) 

Median 
(Spannweite) 

BLD, cm (im Stehen) 4 (1-32) --------------------- ----- 
Beinlänge, cm (im Liegen) 72 (44-89) 81,5 (46-98) 0,178 
Oberschenkellänge, cm 45 (29-54) 47,75 (29-52) 0,799 
Unterschenkellänge, cm 29,25 (0-38) 34 (18-36) 0,114 
Hüftgelenke, Grad    
Streckung 20 (10-20) 20 (10-20) 1,00 
Beugung 135 (130-160) 142,5 (135-160) 0,101 
Abspreizen 55 (20-60) 45 (20-65) 0,551 
Anführen 32,5 (30-55) 37,5 (30-55) 0,755 
Drehung auswärts (in Bauchlage, 
Hüfte gestreckt) 20 (0-50) 40 (0-60) 0,319 

Drehung einwärts (in Bauchlage, 
Hüfte gestreckt) 60 (50-90) 47,5 (40-80) 0,028 

Drehung auswärts (in Rückenlage, 
Hüfte gebeugt) 20 (0-50) 42,5 (0-60) 0,319 

Drehung einwärts (in Rückenlage, 
Hüfte gebeugt) 60 (50-90) 47,5 (30-80) 0,028 

Fußlänge, cm 18,5 (0-23) 22,5 (14-27,5) 0,017 
Umfangmaße, cm    
20 cm oberhalb Kniegelenkspalt 38 (0-45) 42,5 (26-51) 0,128 
10 cm oberhalb Kniegelenkspalt 34,5 (0-45) 38 (22-50) 0,319 
Kniescheibenmitte 30 (0-36) 32 (21-42) 0,219 
15 cm unterhalb Kniegelenkspalt 21,25 (0-72) 30,5 (19-72) 0,028 
Fessel 17,75 (0-24) 21,5 (15-25,5) 0,017 
Knöchel 21,75 (0-25) 24,5 (16-30) 0,010 
Mittelfuß 19 (0-24) 22,5 (15-31) 0,020 
Vorfußballen 18 (0-25) 23 (16-25) 0,008 
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Wie in Tabelle 6.2 gezeigt, liegt der Median des Kinderalters bei 12,5 (4,33-18,5) Jahren. Der 

Median des gesamten Entlastungszeitraums ist elf (3,25-16,33) Jahre und des Aktivitätsscores 5,5 

(2-10). 

 

Tab. 6.2: Demografische Daten der untersuchten Kinder 

 

 Median Minimum Maximum 

Alter bei Untersuchung, Jahre 12,5 4,33 18,5 

Entlastungszeitraum, Jahre 11 3,25 16,33 

UCLA-Aktivitätsscore 5,5 2 10 

 

Der UCLA-Aktivitätsscore ist wie in Abbildung 6.1 verteilt. In dem dargestellten Streudiagramm 

(Abb. 6.2) stellt sich kein signifikanter Zusammenhang von Erkrankungszeitraum und 

Aktivitätsscore dar (p-Wert >0,05). 

 
 

 
 

Abb. 6.1: Deskriptive Darstellung des UCLA-Aktivitätsscores 
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Abb. 6.2: Korrelation zwischen dem Entlastungszeitraum und dem UCLA-Aktivitätsscore (Rho= -0,201; 

p=0,53; n=12). 
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6.2 Ergebnisse der radiologischen Untersuchung  
 

6.2.1 Messwerte den Schenkelhals betreffend 
 
6.2.1.1 pCCD-Winkel 
 

Im Trendlinienbild (Abb. 6.3) zeigen sich höhere pCCD-Winkel der entlasteten Seite im Vergleich 

zu denen der Belastungsseite. Die Werte der gesunden Seite sind im Bereich der in der Literatur 

angegebenen Normwerte [21, 90]. Eine leichte Abnahme des pCCD-Winkels tritt im 

Wachstumsverlauf auf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 6.3: Werte des pCCD-Winkels zum Zeitpunkt der Nachuntersuchung. Vergleich der entlasteten Seite 

(n=12) mit der Gegenseite (n=12) nach Alter dargestellt. 
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Der Median des pCCD-Winkels der entlasteten Hüfte (150,86º - Spannweite: 131,05-166,37º) ist 

14,71º größer als der Median der gesunden Hüfte (136,15º - Spannweite: 125,85-146,98º). Der p-

Wert beträgt 0,002 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter 

Unterschied (Abb. 6.4). 

 

 
 

 
 
Abb. 6.4: Boxplot nach Daten des CCD-Winkels an der entlasteten (pathologischen) und der gesunden 
Hüfte 
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6.2.1.2 Lesser Trochanter to Articular Surface Distance (LTA) 
 

Alle Werte der entlasteten (pathologisch veränderten) Hüften zeigen einen größeren Wert als die 

gesunde Seite im Trendlinienbild (Abb. 6.5). Es stellt sich somit eine Vergrößerung des Abstands 

zwischen der Mitte des Trochanter minors und dem kranialsten Punkt des Femurkopfes dar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 6.5: Werte der Lesser Trochanter to Articular Surface Distance (LTA) zum Zeitpunkt der 

Nachuntersuchung. Vergleich der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des LTA der entlasteten Hüfte (8,99 cm - Spannweite: 5-11,61 cm) ist 1,58 cm größer 

als der Median der gesunden Hüfte (7,41 cm - Spannweite: 3,76-9,61 cm). Der p-Wert beträgt 

0,039 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter Unterschied 

(Abb. 6.6). 

 

 

 
 

 
Abb. 6.6: Boxplot nach Daten des LTA an der entlasteten (pathologischen) und der gesunden Hüfte  
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6.2.2 Messwerte die Epiphyse betreffend 
 

6.2.2.1 Kopfepiphysen-Femurschaft-Winkel (KF) 
 

Im Trendlinienbild (Abb. 6.7) sind die Werte der erkrankten Seite noch höher als die der 

gesunden. Der KF-Winkel stellt sich auf der entlasteten Seite steiler dar. Eine Abnahme des AC-

Winkels tritt im Wachstumsverlauf auf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.7: Werte des Kopfepiphysen-Femurschaft-Winkels (KF) zum Zeitpunkt der Nachuntersuchung.  

Vergleich der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des KF-Winkels der entlasteten Hüfte (75,23º - Spannweite: 60,84-89,83º) ist 13,52º 

größer als der Median der gesunden Hüfte (61,71º - Spannweite: 51,94-84,85º). Der p-Wert 

beträgt 0,005 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter 

Unterschied (Abb. 6.8). 

 

 

 

 
 

 

 

Abb. 6.8: Boxplot nach Daten des KF-Winkels an der entlasteten (pathologischen) und der gesunden Hüfte  
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6.2.2.2 Kopfepiphysen-Y-Fugen Winkel (EY) 
 

Im Trendlinienbild (Abb. 6.9) sind die Werte des EY-Winkels an den beiden Hüften nahe 

beieinander.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.9: Werte des Kopfepiphysen-Y-Fugen Winkels (EY-Winkel) zum Zeitpunkt der Nachuntersuchung. 

Vergleich der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des EY-Winkels der entlasteten Hüfte (17,86º - Spannweite: 8,02-25,72º) ist kleiner 

als der Median der gesunden Hüfte (19,54º - Spannweite: 5,42-27,96º). Der p-Wert beträgt 0,63 

(Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied (Abb. 

6.10). 

 

 

 

 

 
 

 
 

  
Abb. 6.10: Boxplot nach Daten des EY-Winkels an der entlasteten (pathologischen) und der gesunden 

Hüfte 
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6.2.2.3 Kopfepiphysen-Schenkelhalswinkel (KE) 
 

Die Werte der entlasteten (pathologisch veränderten) Hüften zeigen einen kleineren Wert als die 

gesunde Seite im Trendlinienbild (Abb. 6.11). Es stellt sich somit eine Verkleinerung des KE-

Winkels dar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.11: Werte des Kopfepiphysen-Schenkelhalswinkels (KE-Winkel) zum Zeitpunkt der Nachunter-

suchung. Vergleich der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des KE-Winkels der entlasteten Hüfte (15,17º - Spannweite: 5,28-24,67º) ist kleiner 

als der Median der gesunden Hüfte (16,33º - Spannweite: 7,26-27,44º). Der p-Wert beträgt 0,478 

(Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied (Abb. 

6.12). 

 

 

 

 
 

 
 
Abb. 6.12: Boxplot nach Daten des KE-Winkels an der entlasteten (pathologischen) und der gesunden 

Hüfte 
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6.2.3 Messwerte das Acetabulum betreffend 
 
6.2.3.1 Sharp-Ullmann-Winkel 
 

Die Trendlinie der pathologischen Seite verläuft über der der gesunden Seite (Abb. 6.13). Es gibt 

eine Wertzunahme der entlasteten Hüfte in den Röntgenbildern. Mit Wachstum nimmt der Sharp-

Ullmann-Winkel ab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.13: Werte des Sharp-Ullmann-Winkels zum Zeitpunkt der Nachuntersuchung. Vergleich der 

entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des Sharp-Ullmann-Winkels der entlasteten Hüfte (47,49º - Spannweite: 39,51-

52,41º) ist 5,01º größer als der der gesunden Hüfte (42,48º - Spannweite: 29,85-49,16º). Der p-

Wert beträgt 0,024 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter 

Unterschied (Abb. 6.14). 

 

 

 

 

 
 

 
 

 
Abb. 6.14: Boxplot nach Daten des Sharp-Ullmann-Winkels an der entlasteten (pathologischen) und der 

gesunden Hüfte 
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6.2.3.2 Acetabulum-Winkel (AC) 
 

Auch hier zeigen sich deutlich höhere Werte der pathologischen (entlasteten) Hüften im Vergleich 

zu den gesunden (Abb. 6.15). Der AC-Winkel ist steiler, die Pfanne ist somit steiler ausgebildet. 

Eine Abnahme des AC-Winkels tritt im Wachstumsverlauf auf.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.15: Werte des Acetabulum-Winkels (AC-Winkel) zum Zeitpunkt der Nachuntersuchung. Vergleich 

der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des AC-Winkels der entlasteten Hüfte (18,5º - Spannweite: 10,47-22,54º) ist 3,52º 

größer als der Median der gesunden Hüfte (14,98º - Spannweite: 7,24-19,34º). Der p-Wert beträgt 

0,039 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter Unterschied 

(Abb. 6.16). 

 

 

 
 

 
 

 
Abb. 6.16: Boxplot nach Daten des AC-Winkels an der entlasteten (pathologischen) und der gesunden 

Hüfte  
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6.2.3.3 Zentrum-Ecken-Winkel (CE) 
 

Die Trendlinie der pathologischen Seite verläuft unter der der gesunden Seite (Abb. 6.17). Der 

CE-Winkel nimmt auf entlasteter und nicht entlasteter Seite im Altersverlauf gleichermaßen zu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.17: Werte des Zentrum-Ecken-Winkels (CE-Winkel) zum Zeitpunkt der Nachuntersuchung. Vergleich 

der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des CE-Winkels der entlasteten Hüfte (33,25º - Spannweite: 11,24-45,77º) ist 1,68º 

kleiner als der der gesunden Hüfte (34,93º - Spannweite: 15,72-59,56º). Der p-Wert beträgt 0,443 

(Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied (Abb. 

6.18). 

 

 

 

 
 

 
 
Abb. 6.18: Boxplot nach Daten des CE-Winkels an der entlasteten (pathologischen) und der gesunden 

Hüfte  
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6.2.3.4 Tear Drop Distance (TDD) 
 

Im Trendlinienbild (Abb. 6.19) ergibt sich ein Werteanstieg der gesunden in Richtung der 

pathologischen Hüften. Die Werte der Entlastungsseite ähneln den Gesundwerten.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.19: Werte der Tear Drop Distance (TDD) zum Zeitpunkt der Nachuntersuchung. Vergleich der 

entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des TDD der entlasteten Hüfte (0,78 cm - Spannweite: 0,59-1,26 cm) ist größer als 

der Median der gesunden Hüfte (0,74 cm - Spannweite: 0,52-0,92 cm). Der p-Wert beträgt 0,443 

(Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied (Abb. 

6.20). 

 

 

 

 
 

 
 

 
Abb. 6.20: Boxplot nach Daten des Tränenfigur-Abstands (TDD) an der entlasteten (pathologischen) und 

der gesunden Hüfte  
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6.2.3.5 MP-Quotient 
 

Im Trendlinienbild gibt es keine Korrelation zwischen Werten der beiden Hüften (Abb. 6.21). Der 

MP-Quotient erlaubt eine prozentuale Beurteilung der Überdachung bzw. Tiefeinstellung des 

Hüftkopfes, bei den 4/12-Röntgenbildern zeigt sich somit ein verringertes Eindringen des 

Hüftkopfes in die Pfanne.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb. 6.21: Werte des Migration Percentage Quotienten (MP) zum Zeitpunkt der Nachuntersuchung. 

Vergleich der entlasteten Seite (n=12) mit der Gegenseite (n=12) nach Alter dargestellt 
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Der Median des MP-Quotienten der entlasteten Hüfte (13,63 % - Spannweite: 4,81-27,2 %) ist 

2,77 % kleiner als der Median der gesunden Hüfte (16,4 % - Spannweite: 11,45-30,94 %). Der p-

Wert beträgt 0,128 (Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter 

Unterschied (Abb. 6.22). 

 

 

 

 

 
 
 
 
 
Abb. 6.22: Boxplot nach Daten des MP-Quotienten an der entlasteten (pathologischen) und der gesunden 

Hüfte  
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6.3 Ergebnisse der instrumentellen Ganganalyse 
 

6.3.1 Kinetik 
 
6.3.1.1 Weg-Zeit-Parameter und Gangzyklus 
 

Der Median der Schrittweite beträgt 13,5 (8-20) cm. Der Median der Doppelstandphase stellt sich 

34,3 % (26-69,7 %) eines ganzen Gangzyklus dar. Der Median der Doppelschrittlänge ist 50,5 

(31-86) cm. Die Doppelschrittzeit hat etwa 1,35 (0,96-2,78) Sek. gedauert. Der Median der 

Kadenz beträgt 89,5 (44-426) Schritte/Min. Der Median der Gehgeschwindigkeit auf dem 

Laufband ist 1,25 (0,5-2,3) Km/Stunde. 

 

Die Tabelle 6.3 veranschaulicht, dass der Median der Schrittlänge und der Schrittzeit der 

entlasteten Hüfte (34 cm; Spannweite: 17-61 cm, 1,59 Sek.; Spannweite: 0,5-2,88 Sek.) größer 

als die der gesunden Hüfte (27 cm; Spannweite: 14-42 cm, 0,65 Sek.; Spannweite: 0,46-1,26 

Sek.) ist. Der p-Wert beträgt 0,022 und 0,029 (Durchführung des Mann-Whitney-U-Testes), somit 

besteht ein signifikanter Unterschied. 

 

Bezüglich des Gangzyklus zeigt sich die entlastete Seite wie folgt verändert. Die Standphase 

(Median: 65,75 %; Spannweite: 56-78 %) ist deutlich kürzer und die Schwungphase (Median: 

34,25 %; Spannweite: 21,9-44 %) ist länger. Der p-Wert beträgt 0,023 und 0,023 (Durchführung 

des Mann-Whitney-U-Testes), somit besteht ein signifikanter Unterschied.  

 

Der Median der Stoßdämpfungsphase an der entlasteten Hüfte liegt bei (19,95 %; Spannweite: 

14,4-39,2 %) und ist länger als der der gesunden Hüfte (18 %; Spannweite: 8,8-32 %). Der p-Wert 

beträgt 0,529 (Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter 

Unterschied. 

 

Die mittlere Standphase der entlasteten Hüfte (Median: 27,55 %; Spannweite: 8,3-34,1 %) ist im 

Vergleich zu der der gesunden Hüfte (Median: 34,2 %; Spannweite: 18-44,4 %) verkürzt. Der p-

Wert beträgt 0,043 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter 

Unterschied. 

 

Die Abstoßphase ist auf der erkrankten Seite (Median: 17,3 %; Spannweite: 9,2-32,1 %) im 

Vergleich zu der der gesunden Seite (Median:19,9 %; Spannweite: 14,4-37,9 %) verkürzt. Der p-
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Wert beträgt 0,353 (Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter 

Unterschied. 

 

 

 

 
Tab. 6.3: Vergleich der entlasteten Seite mit der gesunden Gegenseite nach der Schrittlänge, 

der Schrittzeit und den Phasen des Gangzyklus 

 

 
Entlastete Seite Gesunde Gegenseite 

p-Wert 
Median (Spannweite) Median (Spannweite) 

Schrittlänge, cm 34 (17-61) 27 (14-42) 0,022 
Schrittzeit, Sek. 1,59 (0,5-2,88) 0,65 (0,46-1,26) 0,029 
Standphase, % 65,75 (56-78) 72,1 (65,9-91,6) 0,023 
    Stoßdämpfungsphase, % 19,95 (14,4-39,2) 18 (8,8-32) 0,529 

    Mittlere Standphase, % 27,55  (8,3-34,1) 34,2% (18-44,4) 0,043 
    Abstoßphase, % 17,3 (9,2-32,1) 19,9% (14,4-37,9) 0,353 

Schwungphase, % 34,25 (21,9-44) 34,25 (21,9-44) 0,023 
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6.3.1.2 Druck 

Bei der Standphase ist der Maximaldruck auf den Boden an der entlasteten Hüfte im Vergleich mit 

der gesunden signifikant vermindert (Abb. 6.23). Außerdem ist die Standphase auf der gesunden 

Seite viel länger. Nur bei einem Kind mit Unterschenkelamputation gab es ein anderes Bild. Das 

Kind ging mit einer Prothese auf dem Laufband, die fürs Gehen nicht gut geeignet war. Deswegen 

hielt es am Ende der Standphase des gesunden Beins das Bein länger auf dem Boden.  
 
 
 
 
 
 
 
 
 
 
 
Abb. 6.23: Vergleich des Maximaldrucks, der auf den Boden überträgt wurde, an der entlasteten 

(erkrankten) und gesunden Seite 

Der Median des Maximaldrucks an der entlasteten Hüfte (11.67 N/cm2; Spannweite: 10,17-18,16 

N/cm2) ist weniger als der der gesunden Hüfte (17.92 N/cm2; Spannweite: 6,97-54,98 N/cm2). Der 

p-Wert beträgt 0,014 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter 

Unterschied (Abb. 6.24). 

 
 
Abb. 6.24: Boxplot nach Daten des Maximaldrucks an der entlasteten (pathologischen) Hüfte und der 

gesunden Hüfte 
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6.3.1.3 Kraft 

Die Maximalkraft, die auf den Boden übertragen wurde, ist an der entlasteten Hüfte im Vergleich 

mit der gesunden Seite während der Standphase signifikant vermindert (Abb. 6.25).  
 
 
 
 
 
 
 
 
 
 
 

 

Abb. 6.25: Vergleich der Maximalkraft, die auf den Boden übertragen wurde, an der entlasteten (erkrankten) 

und gesunden Seite 

 

Der Median der Maximalkraft der entlasteten Hüfte (277,5 N; Spannweite: 129,5-526,6 N) ist 

kleiner als der der gesunden Hüfte (405,2 N; Spannweite: 167,7-608,7 N). Der p-Wert beträgt 

0,023 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter Unterschied 

(Abb. 26). 
 

 
 

Abb. 6.26: Boxplot nach Daten der Maximalkraft an der entlasteten (pathologischen) Hüfte und der 

gesunden Hüfte 
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6.3.2 Kinematik 
6.3.2.1 Becken 
Die Analyse der Kinematik-Daten zeigt keine makroskopisch auffälligen Veränderungen der 

Beckenbewegungen in der frontalen, sagittalen und transversalen Ebene (Abb. 6.27). Die 

Beckenabsenkung, -kippung und -rotation sind annähernd gleich auf der entlasteten und der 

gesunden Seite. 

  

  

 

 

a. Pathologische (entlastete) Seite                                              b. Gesunde Seite 

Abb. 6.27: Kinematik Becken 
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Tabelle 6.4 veranschaulicht, dass keine statistisch signifikanten Unterschiede zwischen beiden 

Seiten in Hinsicht auf Beckenbewegungen in Frontal-, Sagittal- und Transversalebene bestehen 

(Durchführung eines verbundenen t-Testes beträgt der p-Wert >0,05.). 

 
 
 
 

Tab. 6.4: Vergleich der entlasteten Seite mit der gesunden Gegenseite nach Beweglichkeit des 

Beckens 

 

 
Entlastete Seite Gesunde Gegenseite 

p-Wert 
Median (Spannweite) Median (Spannweite) 

Maximalbeckenabsenkung, Grad 6,29 (0,97-23,35) 6,37 (0,9-23,44) 1,00 
Maximalbeckenkippung, Grad 8,18 (0,29-19,69) 8,17 (0,26-19,63) 1,00 

Maximalbeckenrotation, Grad 9,92 (0,61-26,82) 9,99 (0,41-25,72) 1,00 
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6.3.2.2 Hüfte 

Obwohl die gesunde Hüfte mehr flektiert (größerer Bewegungsumfang), zeigte die Analyse der 

Kinematik-Daten der Hüfte in der Frontalebene keine auffälligen Veränderungen bezüglich 

Flexion/Extension (Abb. 6.28). In der Sagittalebene ist die entlastete Hüfte ausschließlich 

abduziert und die gesunde mehr adduziert. In der Transversalebene ist die maximale 

Hüftinnenrotation auf der erkrankten Seite beim Gehen zum Vergleich mit der gesunden 

insignifikant vermindert. 

 

 

 

 

 

 

a. Pathologische (entlastete) Seite                                     b. Gesunde Seite 

Abb. 6.28: Kinematik Hüfte 
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Die Tabelle 6.5 fasst die Median-Werte der Hüftbewegungen zusammen. Der Median der 

maximalen Hüftflexion an der entlasteten Hüfte (22,29º; Spannweite: 0-48,61º) ist größer als der 

der gesunden Hüfte (21,28º; Spannweite: 9,4-45,68º). Der p-Wert beträgt 0,853 (Durchführung 

des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied. 
 

Der Median der maximalen Hüftextension der entlasteten Hüfte liegt um (3º; Spannweite: 0-

25,79º) und ist größer als der der gesunden Hüfte (3,67º; Spannweite: 0-29,62º). Der p-Wert 

beträgt 1,00 (Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter 

Unterschied. 

 

Die Untersuchungen ergaben, dass die entlastete Hüfte mehr abduziert (16,81º; Spannweite: 0-

24,13º) und die gesunde mehr adduziert (11,27º; Spannweite: 0-21,84º). 

 

Der Median der maximalen Innenrotation der entlasteten Hüfte (11,26º; Spannweite: 0-34,68º) ist 

größer als der der gesunden (5,35º; Spannweite: 0-87,11º). Der p-Wert beträgt 0,912 

(Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied. 

 

Der Median der maximalen Außenrotation an der entlasteten Hüfte (0,9º; Spannweite: 0-43,13º) 

ist kleiner als der der gesunden Hüfte (1,29º; Spannweite: 0-20,23º). Der p-Wert beträgt 0,796 

(Durchführung des Mann-Whitney-U-Testes), somit besteht kein signifikanter Unterschied. 
 

 

Tab. 6.5: Vergleich der entlasteten Seite mit der gesunden Gegenseite nach Beweglichkeit der 

Hüfte 

 

 
Entlastete Seite Gesunde Gegenseite 

p-Wert 
Median (Spannweite) Median (Spannweite) 

Flexion, Grad 22,29 (0-48,61) 21,28 (9,4-45,68) 0,853 
Extension, Grad 3 (0-25,97) 3,68 (0-29,62) 1,00 
Adduktion, Grad 1,37 (0-18,67) 11,27 (0-21,84) 0,089 
Abduktion, Grad 16,81 (0-24,13) 0 (0-13,69) 0,007 
Innenrotation, Grad 11,26 (0-34,68) 5,35 (0-87,11) 0,912 
Außenrotation, Grad 0,9 (0-43,13) 1,29 (0-20,23) 0,796 
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6.3.2.3 Knie- und Sprunggelenk 

Die Analyse der Kinematik-Daten des Kniegelenks und des Sprunggelenks verweist darauf, dass 

auf dem gesunden Bein das Knie mehr flektiert und der Fuß mehr dorsal flektiert und weniger 

nach außen rotiert (Abb. 6.29). 

  

  

 

 

a. Pathologische (entlastete) Seite                                     b. Gesunde Seite 

Abb. 6.29: Kinematik Knie- und Sprunggelenk 
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6.3.3 Standanalyse 

 
6.3.3.1 Center of Pressure (COP) 

Überwiegend weicht der COP in der Horizontalebene zur gesunden Seite ab. Der Median des 

Abstands, den der COP vom Zentrum in Richtung der gesunden Hüfte verschoben ist (22,85 mm; 

Spannweite: 0-45,6 mm), ist größer als der an der entlasteten Hüfte (0 mm; Spannweite: 0-

14,8mm). Der p-Wert beträgt 0,019 (Durchführung des Mann-Whitney-U-Testes), somit besteht 

ein signifikanter Unterschied (Abb. 6.30). 
 

 
 

 
 
 

 
Abb. 6.30: Boxplot nach Daten des COP-Abstands nach der entlasteten (pathologischen) Hüfte und der 

gesunden Hüfte 
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6.3.3.2 Gesamtbelastung 

Bei der Standanalyse belasten die meisten Kinder die gesunden Hüften mehr als die erkrankten. 

Der Median der Gesamtbelastung an der entlasteten Hüfte (42,4 %; Spannweite: 16,9-49,7 %) ist 

kleiner als der an der gesunden Hüfte (57,6 %; Spannweite: 50,3-83,1 %). Der p-Wert beträgt 

0,000 (Durchführung des Mann-Whitney-U-Testes), somit besteht ein signifikanter Unterschied 

(Abb. 6.31). 

 

 

 
 

 
 
 

 
Abb. 6.31: Boxplot nach Daten der Gesamtbelastung an der entlasteten (pathologischen) Hüfte und der 

gesunden Hüfte 
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7. Diskussion 
 

7.1 Diskussion der Ergebnisse 
In dieser Studie formulierten wir aufgrund theoretischer Überlegungen die Hypothese, dass sich 

das coxale Femurende und die Hüftpfanne bei Kindern, die dauerhaft einseitig orthesenpflichtig 

sind und daher die betroffene Extremität minderbelasten, steiler ausbildet. In den 

entsprechenden Hüftgelenksvermessungen führt die steilere Hüftresultierende bei einer stabilen 

Trochanterresultierenden zu einem steileren Verlauf des CCD-Winkels und der Hüftpfanne. 

Deswegen zielte diese Studie darauf ab, mittels instrumenteller Ganganalyse Gangkriterien 

herauszufiltern, um dadurch die möglichen pathogenetischen Faktoren, die zu der Entlastungs-

Coxa-valga und Entlastungsdysplasie führen, zu identifizieren. Im Folgenden sollen die 

erhaltenen Messwerte in Zusammenschau mit der Literatur einer Erklärung und Interpretation 

unterzogen werden. 

 

7.1.1 Diskussion der Ergebnisse der klinischen Untersuchungen 
 

Die Beinlänge und Unterschenkellänge sowie -umfangsmaße sind in dieser Arbeit aufgrund der 

Beindeformität unterschiedlich. An dieser Stelle sollen eventuelle Erkrankungen Erwähnung 

finden. Die untersuchten Kinder leiden an folgenden Grunderkrankungen; Crus varum 

congenitum oder Tibiapseudarthrosen, Fehlbildungsklumpfuß, kongenitaler tibialer Längsdefekt, 

kongenitaler fibulärer Längsdefekt und Unterschenkeldeformität nach Ewingsarkom. 

 

Auf der Entlastungsseite zeigt sich eine vermehrte Hüftinnenrotation (Median: 60º; Spannweite: 

50-90º) und verminderte Außenrotation (Median: 20º; Spannweite: 0-50º) sowohl in Bauchlage 

mit gestreckter Hüfte als auch in Rückenlage mit gebeugter Hüfte im Vergleich mit der 

Gegenseite (Median der Innenrotation; 47º (Spannweite: 40-80º), 47,5º (Spannweite: 30-80º) und 

Median der Außenrotation; 40º (Spannweite: 0-60º), 42,5º (Spannweite: 0-60º)).  

 

Staheli et al. (1985) untersuchten 500 Kinder und fanden Innenrotationswerte von 50º bei 

männlichen und 40º bei weiblichen Kindern sowie Außenrotationswerte von 45º bei beiden 

Geschlechtern [116]. Später beschrieben Rao und Joseph (2001) altersabhängig abnehmende 

(von 5 bis 14 Jahre) Hüftinnenrotationwerte von 55,6 auf 37,7º mit gebeugten Hüften und von 

52,4 auf 35,8º mit gestreckter Hüfte sowie Außenrotationswerte von 59,7 auf 49,3º mit gebeugter 

Hüfte und von 54,7 auf 46,9º mit gestreckter Hüfte [117]. Außerdem berichteten Sankar et al. 

(2012) altersabhängige Hüftinnenrotationswerte mit gebeugten Hüften von 40º (6 bis 10 Jahre) 

und 35º (11 bis 17 Jahre) und Außenrotationswerte von 44º (6 bis 10 Jahre) und 40º (11 bis 17 

Jahre). Mit gestreckten Hüften sind dies Werte von 42º (6 bis 10 Jahre) und 36º (11 bis 17 Jahre) 

und Außenrotationswerte von 42º (6 bis 10 Jahre) und 39º (11 bis 17 Jahre) [118].  
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Es konnte geklärt werden, dass die vermehrte Hüftinnenrotation und verminderte Außenrotation 

aufgrund einer vergrößerten Schenkelhalsantetorsion möglich sind. In der Literatur ist es klar, 

dass sich die Schenkelhalsantetorsion durch biomechanischen Kräfte und Muskelaktivität 

während des Gehens und Laufens verändert [119-121]. Robin et al. (2008) bestätigten, dass die 

Vergrößerung der Schenkelhalsantetorsion eine anhaltende fetale Ausrichtung repräsentiert [60]. 

Außerdem zeigten Brien et al. (1995), dass nach der chirurgischen Entfernung von 

Weichteiltumoren der Glutealmuskulatur eine zunehmende Coxa valga und eine zunehmende 

Schenkelhalsantetorsion binnen 15 Monaten aufgrund der Kraftveränderungen im Bereich des 

Hüftgelenkes entwickelt wurden [120]. 

 

7.1.2 Diskussion der radiologischen Messungen 
 

7.1.2.1 pCCD-Winkel 
 

In dieser Studie konnte ein signifikant vergrößerter Median des pCCD-Winkels der entlasteten 

Hüfte (150,86º) im Vergleich mit der gesunden Gegenseite (136,15º) gefunden werden. Eine 

Übereinstimmung mit diesen Daten fand Schuhmann 2007 [5]. Sie untersuchte die kindlichen 

Hüften bei ipsilateraler Beindeformität und berichtete, dass der projezierte CCD-Winkel sich auf 

der entlasteten Seite 1,5 - 20,5° steiler darstellt, und somit zeigt der Schenkelhals eine Coxa 

valga an. Außerdem beschrieb Schuhmann einen abnehmenden Ablauf des pCCD-Winkels mit 

Wachstum vom Kindesalter bis zur Pubertät. Tönnis [11] berichtete 1985 über einen CCD-Winkel 

von 150° beim Säugling, im Laufalter mit Beginn der Belastung betrug der CCD-Winkel 140º 

sowie 133º bei 15-Jährigen. Hefti [122] fand im Jahr 2000 abnehmende Werte von 150º auf 120º 

von der Geburt bis zur Pubertät. Zippel [123] untersuchte 400 Kinder (800 Hüften) und beschrieb 

einen Wert von 136,2º beim Säugling und auf 127, 3° abnehmende Werte bei 18-Jährigen. Diese 

Daten stimmen mit der Arbeit von Bobroff überein [124]. Im Gegensatz dazu beobachteten 

Birkenmaier et al. [21] keinen klaren Verlauf des pCCD-Winkels während der ersten zwei 

Lebensjahre. Ab dem Laufalter zwischen zwei und drei Jahren, wenn ein reifes Gangbild 

ausgebildet ist, nimmt er bis zum Alter von zehn Jahren ab und verändert sich dann minimal. 

Dieser abnehmende Verlauf des pCCD-Winkels bestätigt sich durch die Trendlinien auch in 

unseren Daten. Die erhaltenen Messwerte sind auf beiden Seiten, ebenso wie bei Tönnis [11] 

und Joryzx [93], mit steigendem Alter rückläufig. Heimkes [26] erklärte, dass dies als ein 

Ergebnis des verbesserten Lastarm-/Kraftarm-Verhältnisses zugunsten des Kraftarmes gewertet 

werden könne. Dadurch ist weniger Muskelkraft erforderlich und die Hüfte wird weniger belastet. 

Mit zunehmendem Alter werden sowohl der Hüftabduktorenverlauf als auch die Hüftresultierende 

flacher, was zu einer steileren Ausrichtung der Epiphysenfuge führt. Der Betrag der 

Trochanterresultierenden nimmt zu, aber die Richtung bleibt konstant. Auch die 

Muskelresultierende bleibt in ihrer Richtung konstant. Die Apophyse des Trochanter major ist in 

Kranio-lateraler Richtung verschoben und wirkt daher varisierend. 
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Die Vergrößerung des pCCD-Winkels auf der entlasteten Seite, die sich in dieser Studie 

bestätigt, deckt sich mit der Beobachtung mehrerer Autoren. Lauenstein, 1890 [125]; Albert, 1899 

[126] und Bade, 1920 [127] verwiesen auf die Valgisierung des Schenkelhalses bei Kindern mit 

verminderter Belastung beim Hydrocephalus, bei Myotonia congenita, bei fetaler Amputation des 

Oberschenkels, bei Amputationsstümpfen, nach spinaler Kinderlähmung und bei Erkrankungen, 

die zu Funktionsunfähigkeit hinführen (z.B. Knietuberkulose, Osteomyelitis, Osteomalazie). 

Turner erklärte 1904 die Ursachen der beobachteten Entlastungs-Coxa-valga. Er berichtete, dass 

alle wirkenden Momente nicht nur die Last vom Femurkopf entfernen, sondern auch einen Zug 

auf die entlastete untere Extremität nach unten ausüben. Die Theorie von Humphry über die 

Entwicklung der CCD-Winkel [128], die nach Brandes [129] modifiziert wurde, bestätigte diese 

Zugwirkung. 

 

Reich, 1910 [130] und Hackenbroch, 1927 [131] führten den Beweis, dass auch im Kindesalter 

eine Unterschenkelamputation durch Beeinflussung der Muskulatur am Beckengürtel und 

Oberschenkel sowie der Änderung der Statik nebst Störung der muskulären Koordination zu 

einer Coxa valga führen kann. 

 

Lindemann, 1930 [132] untersuchte in seiner Arbeit sieben tuberkulös erkrankte Kinder, die seit 

längerem in stationärer Behandlung sind. Er fand bei röntgenologischen Untersuchungen eine 

Vergrößerung des Schenkelhalsneigungswinkels im Verlauf des Wachstums unter Verminderung 

der Belastung. Er schlussfolgerte, dass bei der Entlastung die Aufrichtung des coxalen 

Femurendes in Folge einer Richtungsänderung der Wachstumszone entsteht. Diese 

Richtungsänderung der Wachstumszone beruhe auf einer Störung des muskulären 

Gleichgewichtes der Becken- und Oberschenkelmuskulatur. 

 

Simons, 1932 [133] fasste die Ergebnisse der o.g. Arbeiten zusammen: Die Entlastungs-Coxa-

valga stelle eine regelmäßige Folge der dauerhaften Entlastung im Laufe des Wachstums dar. Er 

stellte fest, dass durch verminderte Belastung der auf den Wachstumszonen lastende Druck 

abnehme und dadurch die Coxa valga entstünde. Am wichtigsten ist es, dass er die Möglichkeit 

der Entstehung der Entlastungs-Coxa-valga ohne eine Vorbedingung der Lähmung der 

Hüftmuskulatur klärte. 

 

7.1.2.2 Lesser Trochanter to Articular Surface Distance (LTA) 
 

Gage und Cary beschrieben als erste diesen Abstand im Jahre 1980 [134]. McCarthy und Weiner 

(2008) beschrieben zunehmende Normwerte der LTA von 4,2 auf 7,7 cm bei gesunden drei- bis 

13-Jährigen [91]. In dieser Arbeit zeigt sich ein signifikant vergrößerter Median des LTA der 

entlasteten Hüfte (7,84 cm) im Vergleich mit der gesunden Gegenseite (7,52 cm). Die 
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vorliegenden Ergebnisse begründen sich damit, dass durch die Entwicklung einer Coxa valga an 

der entlasteten Hüfte mit Steilstellung des Schenkelhalses ein vergrößerter Abstand des 

Trochanter minors zur Spitze des Hüftkopfes entsteht. Compere et al., 1940 [135] und Mau 1957 

[55] fanden eine Vertiefung und Verbreiterung der Basis des Trochanter minors. Dies findet als 

zunehmendes kompensatorisches enchondrales Längenwachstum statt, sodass das proximale 

Femur am Längenwachstum des verkürzten Beines teilnimmt. 

 

7.1.2.3 Kopfepiphysen-Femurschaft-Winkel (KF-Winkel) 
 

Im Vergleich zu den publizierten Normwerten von 60º-71º nach Jorysz, 1990 [93] und nach 

Birkenmaier et al., 2010 [21] lassen sich in dieser Arbeit Werte von 75,23º auf der pathologischen 

(entlasteten) Seite und 61,71º auf der gesunden Seite darstellen. Der KF-Winkel ist auf der 

pathologischen Seite immer signifikant größer als auf der Gegenseite. Dieser abnehmende 

Verlauf des KF-Winkels wird durch die Trendlinien auch von uns bestätigt. Die hier gewonnenen 

Daten stimmen mit der Arbeit von Schuhmann [5] überein. Sie berichtete, dass der KF-Winkel 

durch seine vergrößerten Werte auf der entlasteten Seite einen zunehmend waagerechten 

Verlauf der Epiphysenfuge aufweist. Der KF-Winkel betrug 73,5º auf der entlasteten Seite und 

63,5º auf der gesunden Gegenseite. 

 

Inman, 1947 [136] erklärte, dass die reagierende Kraft im Femurkopf nicht nur dem Druck des 

Körpergewichts, sondern auch der Kraft der Abduktoren und der Spannung des Tractus iliotibialis 

widersteht. Die Abduktoren und der Tractus iliotibialis sind notwendig, um das Becken im 

Gleichgewicht zu halten. Normalerweise wirkt diese Kraft nicht senkrecht, sondern in einem 

Winkel von etwa 165-170° von der Vertikalen und in Übereinstimmung mit dem medialen 

Trabekel-System des Schenkelhalses. Eine genaue Betrachtung von Röntgenbildern des 

proximalen Femurendes bei Kindern unterschiedlichen Alters zeigt, dass die Epiphysenfugenlinie 

immer im rechten Winkel zur Richtung des medialen Trabekel-Systems des Schenkelhalses liegt. 

Dies wurde auch von Skuban et al., 2009 [6], bestätigt. Die einzige Kraft an der Epiphysenfuge 

ist dann eine Druckkraft. Der Zusammenhang dieser Kräfte wird in Fällen von Lähmung der 

Abduktoren verändert. Zuerst verhindert der Verlust der Muskelkraft die 

Gleichgewichtseinstellung des Körpers in einer normalen Position. Um das Becken auf der 

Schwungbeinseite nicht absinken zu lassen, wird der Körperschwerpunkt durch Körperkippung 

auf die erkrankte Seite verschoben. Die Hüftresultierende wird dadurch senkrechter. In der Folge  

wird die Epiphysenfuge waagrechter, um orthogonal zur Hüftresultierende zu bleiben. Somit 

entsteht die Coxa valga mit Vergrößerung des KF-Winkels. 

 

Bemmerl, 1993 [137] untersuchte Kinder mit Myelomeningocele und fand Werte von 

durchschnittlich 78º bei hohen Lähmungen und bis zu 68º bei tiefer gelegenen Lähmungen. 
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Folglich bestätigte er, dass durch die vorhandene Schwäche der Hüftabduktoren die 

Epiphysenfuge waagrechter wird und sich damit der KF-Winkel vergrößert. 

 

7.1.2.4 Der Epiphysenfuge-Y-Winkel (EY-Winkel) 
 

Haike et al. beschrieben 1969 erstmals den Epiphysenfuge-Y-Winkel, der die Epiphysenfugen-

neigung zur horizontalen Körperlinie beschreibt [138]. In dieser Arbeit finden sich durch 

Trendlinien auf der gesunden Seite mit dem Alter ansteigende Werte des EY-Winkels. Es zeigen 

sich hier Übereinstimmungen mit der Arbeit von Heimkes et al. (1993) [121] und von Birkenmaier 

et al. (2010) [21]. Der Median beträgt auf der gesunden Seite 19,54º und auf der entlasteten 

Seite 17,86º.  

 

Thiele, 1978 berichtete einen Normwert des EY-Winkels von 8-30º bei Ein- bis Elf-Jährigen [92]. 

Siffert [139] fand 1981 im Rahmen einer verminderten Belastung oder einer Abduktorenlähmung 

eine Entwicklung einer Coxa valga mit waagerecht ausgerichteter Epiphysenfuge. Auch hier zeigt 

sich eine Übereinstimmung mit der Arbeit von Heimkes et al., 1993 [121]. Diese schätzten mittels 

biomechanischer Modellrechnung, dass eine Coxa valga mit horizontal stehender Epiphyse dann 

entsteht, wenn im Rahmen der Entlastung die Trochantermuskulatur geschwächt wird und 

folglich der Kraftvektor RT verkleinert und richtungsgeändert ist. Dadurch vermindert sich das 

kranio-laterale Wachstum des Trochanter majors. Somit richtet sich die Wirkungslinie der 

Abduktoren zunehmend senkrecht aus, was zu oben genannten Veränderungen am Femur führt 

[5]. In der vorliegenden Arbeit ist es deutlich, dass sich durch Entlastung der unteren Extremität 

die Femurkopfepiphysenfuge horizontaler ausrichtet und der EY-Winkel verkleinert. Dies bestätigt 

das biomechanische Modell von Heimkes et al. (1993) [121]. 

 

Birkenmaier et al. schlussfolgerten, dass die Verkleinerung des pCCD-Winkels und des KF-

Winkels sowie die Vergrößerung des EY-Winkels mit zunehmendem Alter bedeuten, dass mit 

dem Wachstum das femorale Offset zunimmt, die Adduktorenresultierende flacher wird und dann 

beide Faktoren folglich zu einer guten Hüftzentrierung führen. Diese Winkelveränderungen sind 

von einer entsprechenden Zunahme des Muskelhebelarms begleitet [21]. 

 

7.1.2.5 Der Kopfepiphysen-Schenkelhalswinkel (KE-Winkel) 
 

In unserem Patientengut ergibt sich ein Median von 15,17º auf der entlasteten Seite und von 

16,33º auf der gesunden Seite. Die Normwerte nach Glogowski und Lange, 1962 [140], gehen 

von 7-17º vom 1. bis zum 16. Lebensjahr. Jäger und Refior, 1974 [94] gaben einen Normwert von 

25º vom Säuglings- bis zum Schulkindesalter an. 
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Durch die Entlastung entwickelt sich die Coxa valga. Der Schenkelhals wird steiler und die 

Epiphysenfuge wird zunehmend waagerechter. Die Schenkelhalsachse und die Epiphysenlinie 

können den KE-Winkel beeinflussen. In der vorliegenden Studie ist der KE-Winkel an der 

entlasteten Hüfte insignifikant kleiner. Da ungleichmäßig entwickelte Veränderungen am coxalen 

Femurende auftreten, kann sich auch auf der Seite der geringeren Belastung durch die 

Steilerstellung des Schenkelhalses bei noch nicht deutlich waagerechter Epiphysenfuge ein 

verkleinerter KE-Winkel ergeben [5]. 

 

7.1.2.6 Der Sharp-Ullmann-Winkel  
 

Es zeigt sich in der vorliegenden Studie ein signifikant vergrößerter Median des Sharp-Ullmann-

Winkels auf der entlasteten Hüfte (47,49º) im Vergleich zur gesunden Gegenseite (42,48º). Der 

Median der entlasteten Hüfte lässt sich nach Tönnis und Legal als leicht pathologisch 

klassifizieren [11]. Schuhmann [5] beschrieb eine größere Neigung der Hüftpfanne bei der 

entlasteten Seite. Der Sharp-Ullmann-Winkel war zwischen 0,5 und 13° vergrößert. Ullmann 

[141] beschrieb in seiner Arbeit über die röntgenologische Beurteilung des knöchernen 

Pfannendaches einen Wert von 45º bis zu einem Alter von zehn Jahren als Normwert. Stuhlberg 

und Harris [142] befanden Werte von 43° als normal. Agus et al., 2002 [143] untersuchten 66 

Hüften und stellten einen Normmittelwert von 44,8º fest. Umer et al., 2006 [144] untersuchten ein 

Patientengut von 522 Hüften und erachteten einen Wert größer als 43º als Dysplasie.  

 

Exner und Kern, 1994 [145] nützten den Sharp-Ullmann-Winkel zur Nachuntersuchung 

dysplastischer Hüften vom Kleinkindes- bis ins Erwachsenenalter. Sie fanden, dass primär als 

dysplastisch eingestufte Hüften sich im Verlauf des Wachstums in normale bis leicht 

dysplastische Hüften entwickelten.  

 

Mau, 1957 [55] bezeichnete die Entlastungs-Coxa-valga, die durch verminderte Beanspruchung 

des verkürzten Beines auftritt, als Unterfunktions-Coxa-valga. In seiner Arbeit listete er die 

möglichen Hüftgelenksveränderungen bei Kindern auf, die eine einseitige Beinverkürzung hatten. 

Die Entwicklung einer Coxa valga wurde durch die Schwächung der Hüftabduktoren aufgrund 

verminderter Beanspruchungen des erkrankten Beines und die Verlagerung des 

Körperschwerpunkts beim Gehen verursacht. Er fand heraus, dass im Rahmen einer 

Minderbeanspruchung des Hüftgelenks der Hüftkopf, auch durch eine Adduktorenschwächung, 

nicht vollständig tief in der Pfanne positioniert wird. Deswegen entwickelt sich ein 

Überdachungsdefizit und folglich eine sekundäre Abflachung der Pfanne (Dysplasie). In der 

Trendbeurteilung unseres Patientenguts zeigt sich auf der entlasteten Seite eine leichte 

Dysplasie. Die beginnende Dezentrierung des Hüftkopfes und Steilerstellung des Schenkelhalses 

im Rahmen einer Muskelschwächung und Veränderung der Kraftverteilung an entlasteter Hüfte 
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führt somit zu einer vermehrten Belastung am lateralen Pfannenrand und ebenso zu 

zunehmender Hüftpfannendysplasie [5]. 

 

7.1.2.7 Der Acetabulum-Winkel (AC-Winkel) 
 

Unsere Ergebnisse zeigen, dass der altersentsprechende Median des AC-Winkels auf der 

entlasteten Hüfte (18,5º) signifikant größer als auf der gesunden Gegenseite (14,98º) ist. Dieses 

Ergebnis bestätigt die Steilstellung der Hüftpfanne auf der entlasteten Seite bei unseren Kindern 

(4,33-18,5 Jahre alt). Dieser Wert muss nach Tönnis und Legal als leicht pathologisch eingestuft 

werden [11]. Schuhmann [5] bestätigte die Steilerstellung der Pfanne auf der entlasteten Seite. 

Sie beschrieb, dass der AC-Winkel etwa 2,5º steiler ausgebildet war. Nach Tönnis und Legal 

ergeben sich für den AC-Winkel bei Kindern im vom Alter sieben bis 14 Jahren Normwerte von 

kleiner 15º (Mittelwert, 10º). Massie und Howorth [146] erachteten Werte von über 21º als 

pathologisch.  

 

Caffey [147] beschrieb eine Verkleinerungstendenz mit zunehmendem Alter. Ebenso fand Jorysz 

[93] in seiner Arbeit aus dem Jahre 1990 im Rahmen des weiteren Wachstums eine 

Verkleinerung der Werte des AC-Winkels auf beinahe 0º heraus. Birkenmaier et al. [21] 

berichteten, dass der AC-Winkel ab dem 2. Lebensjahr zunehmend horizontaler wird. Dies 

verläuft parallel zur Verkleinerung des pCCD-Winkels, um die Hüftzentrierung zu behalten. Der 

AC-Winkel verkleinert sich bis zum Wachstumsende weiter. Dieser abnehmende Verlauf des AC-

Winkels konnte auch von uns durch die entsprechenden Trendlinien beobachtet werden. 

Schuhmann bestätigte, dass sich durch die Entlastung einer unteren Extremität ein steilerer 

Verlauf des AC-Winkels ergibt. Dies kann in Kombination mit der Valgisierung des 

Schenkelhalses zu einer schlechten Hüftzentrierung führen [5]. 

 

7.1.2.8 Der Zentrum-Ecken-Winkel (Center Edge Angle, CE-Winkel) 
 

In dieser Studie zeigten sich die Mediane des CE-Winkels beider Hüften im Normalbereich. 

Fredensborg wertete bei Kindern CE-Winkel unter 15º als pathologisch [148]. Der Normwert des 

CE-Winkels wurde von Tönnis und Legal [11], Massie und Howorth [146] und Birkenmaier et al. 

[21] im Bereich von größer als 20º angesiedelt. Die letztgenannten Autoren fanden, dass der CE-

Winkel im Alter von zwei bis drei Jahren zunehmend horizontaler wird. Dies läuft parallel zur 

Verkleinerung des pCCD-Winkels, um die Hüftzentrierung zu erhalten. Obwohl sich der pCCD-

Winkel im Alter von zehn Jahren minimal verändert, verkleinert sich der CE-Winkel bis zum 

Wachstumsende weiter. 
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7.1.2.9 Der Tränenfigur-Abstand (Tear Drop Distance, TDD) 
 

In der Literatur ist es klar, dass, wenn der Hüftkopf nicht tief genug in der Pfanne sitzt, die TDD 

breit anstatt schmal ist [149, 150]. Eyring et al., 1965 [151] maßen an 1.070 Hüften die TDD im 

Alter von Kindern zwischen sechs und elf Jahren. Der Median betrug 8,8 mm. Für Kleinkinder 

ermittelte Erlacher, 1950 [152] einen Abstand von 4-5 mm. Tönnis, 1997 gab pathologische 

Werte von über 7,5 mm an [99]. In dieser Arbeit war der Median des TDD der entlasteten Hüfte 

(0,78 cm) insignifikant größer als der der gesunden (0,74 cm). Somit gab es keinen 

Dezentrierungshinweis. 

 

7.1.2.10 MP-Quotient 
 

Unsere Ergebnisse zeigten keinen signifikanten Unterschied zwischen entlasteten und gesunden 

Hüfte bezüglich des MP-Quotienten, sich also kein Hinweis auf eine relevante Dezentrierung 

ergibt. Reimers, 1980 gab für Null bis 14-jährige Kinder einen Normwert von 0 %, für Kinder im 

Alter von vier bis 16 Jahren von unter 10 %, für Subluxation von 33 % und für Luxation von 100 

% an. Miller et al. [153] bestimmten Werte von 25 % als normal. Soo et al., schätzten Werte über 

30 % als Subluxation ein [154]. Nach dem „Consensus Statement on Hip Surveillance for 

Children with Cerebral Palsy: Australian Standards of Care (2008)“ wird bei einem MP zwischen 

10 % und 99 % von einer Hüftsubluxation gesprochen. Hüftluxation bezieht sich auf den Zustand 

der Hüfte, wenn der Hüftkopf komplett außerhalb der Pfanne steht (MP = 100 %) [107]. 

Cooperman et al., 1987 [155] betrachteten MP-Werte zwischen 30 und 80 % als Zeichen von 

Subluxation und Werte größer als 80 % als Zeichen von Luxation. Umer, 2006 gab einen Wert 

von 22 % als normal bei Kindern zwischen zehn und19 Jahren an [144].  

 

Ein großer MP-Quotient bedeutet eine geringe Überdachung des Femurkopfes. Das 

Überdachungsdefizit kann auch durch die Entlastung verursacht sein. Die Entlastung einer 

unteren Extremität führt, wie vorher erklärt, zu Steilstellung des Schenkelhalses und der 

Hüftpfanne. Es findet sich überwiegend ein verringertes Eindringen des Hüftkopfes in die Pfanne. 

Somit nimmt der MP-Quotient zu [5]. Im Gegensatz dazu waren in dieser Arbeit alle Werte auf 

beiden Hüften trotz ihrer Vergrößerung im normalen Bereich verteilt. Dies kann durch einen 

breiten Normbereich erklärt werden. Auffällig war, dass die Werte eine Pseudoverbesserung auf 

der Seite der entlasteten Hüfte und eine Vergrößerung in Richtung Dezentrierung der Hüfte auf 

der gesunden Seite zeigten. Dies könnte durch die Abduktionshaltung der entlasteten Hüfte, die 

bei der Ganganalyse erschien, erklärt werden. 
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7.1.3 Ganganalyse 
 

Um die Veränderungen des Gangbildes bei Kindern, die unter einer einseitigen dauerhaften 

Beindeformität leiden, zu analysieren, werden unsere Ergebnisse mit dem Gangbild gesunder 

Kinder aus der Literatur verglichen. 

 

7.1.3.1 Weg-Zeit-Parameter  
 

Bezüglich der Weg-Zeit-Parameter war in dieser Arbeit die von den zehn Kindern (Alter 6-19 

Jahre) selbst gewählte Durchschnittsgehgeschwindigkeit 1,25 (0,5-2,3) Km/Stunde (≈ 0,35 

M/Sek.). Der Median des Kadenz betrug 89,5 (44-426) Schritte/Min. Ounpuu et al. [83] 

untersuchten im Jahr 1991 den Gang von 31 gesunden Kindern (Durchschnittsalter 9,6 ± 2,9 J.) 

mit der dreidimensionellen Ganganalyse. Sie berichteten eine Durchschnittsgehgeschwindigkeit 

von 1,19 ± 0,14 M/Sek. und eine Durchschnittskadenz von 127,8 ± 12,1 Schritte/Min. Außerdem 

untersuchten Steinwender et al., 2000 [156] den physiologischen Gang im Kindesalter (7-15 

Jahre). Sie gaben eine Durchschnittsgehgeschwindigkeit von 1,33 ± 0,104 M/Sek. und eine 

Durchschnittskadenz von 131,8 ± 7,4 Schritte/Min an. Eine Übereinstimmung mit diesen Daten 

fanden Westhoff et al. 2004 [157]. Hier war die Durchschnittsgehgeschwindigkeit der Kinder 

(Durchschnittsalter 8,1 ± 1,2 Jahre) 1,17 ± 0,19 M/Sek. und die Durchschnittskadenz 132 ± 17 

Schritte/Min. Kramers et al., 2008 [80] erhoben eine freie Ganggeschwindigkeit von 1,2-1,5 

M/Sek. und Kadenz von 105-130 Schritte/Min. Hunter et al., 2004 [158] stellten fest, dass die 

durchschnittliche Gehgeschwindigkeit dem Produkt aus Schrittlänge und Schrittfrequenz 

entspricht. Bei einer zunehmenden Gehgeschwindigkeit nehmen sowohl die Schrittlänge als 

auch die Kadenz proportional zu, bei einer Verlangsamung nehmen Schrittlänge und Kadenz 

entsprechend proportional ab. Dies gilt nur für normales Gehen. Im Vergleich dieser Normdaten 

mit den hier gewonnenen Ergebnissen wurden weniger Schrittfrequenz (Kadenz) und weniger 

Gehgeschwindigkeit im Rahmen der verminderten Belastung beobachtet. Dies spiegelt den 

Einfluss der Orthesen, Gelenkfunktionsstörungen und der muskulären Hypotrophie wider.   

 

Öberg et al., 1993 [159], beschrieben die Grundgangparameter von 233 gesunden Probanden 

verschiedener Altersgruppen. Sie beobachteten, dass sich mit zunehmendem Alter bei Kindern 

beiderlei Geschlechts im Zusammenhang mit einer verlängerten Schrittlänge die 

Gehgeschwindigkeit vermehrt und die Kadenz verkleinert. Sie gaben eine 

Durchschnittsgehgeschwindigkeit bei zehn- bis 14-jährigen männlichen Kindern von 1,32 ± 0,2 

und bei weiblichen von 1,08 ± 0,11 M/Sek. sowie eine Durchschnittskadenz bei den männlichen 

Kindern von 128,4 ± 11,4 und bei den weiblichen von 118,2 ± 10,2 Schritte/Min. an. Die 

Durchschnittsgehgeschwindigkeit der 15- 19-jährigen männlichen Kinder war 1,35 ± 0,13 und der 
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weiblichen 1,23 ± 0,18 M/Sek. Die Durchschnittskadenz war 120 ± 12 Schritte/Min- für männliche 

und 102,05 ± 10,8 Schritte/Min. für weibliche Kinder. 

 

Der Median der Doppelschrittlänge liegt in dieser Arbeit bei 50,5 (31-86) cm. Die 

Doppelschrittzeit hat einen Median von etwa 1,35 (0,96-2,78) Sek. Zum Vergleich mit den 

Normwerten gaben Kramers et al., 2008 [80], Perry 2010 [7] und Sutherland et al., 2005 [160] die 

Doppelschrittlänge mit 130-150 cm an. Somit sind unsere Werte erheblich kleiner als normal. 

Dies spiegelt einen zusätzlichen Beweis des Einflusses der Orthesen, Gelenkfunktionsstörungen 

und der muskulären Hypotrophie wider. 

 

Hinsichtlich der Schrittlänge war der Median auf der erkrankten Seite (34 cm; Spannweite: 17-61 

cm) signifikant länger als der auf der gesunden Gegenseite (27 cm; Spannweite: 14-42 cm) und 

beide sind kürzer als der Normwert nach Kramers et al., 2008 [80] (65-75 cm). In ihrer Arbeit 

bestimmten Öberg et al., 1993 [159] eine Durchschnittsschrittlänge der zehn- bis 14-jährigen 

männlichen Kinder von 61,5 ± 3,9 cm und der weiblichen von 54,2 ± 2,9 cm. Die 

Durchschnittsschrittlänge der 15- 19-jährigen männlichen Kinder war 66 ± 4,8 und der weiblichen 

59,3 ± 4,3 M/Sek. Das gleiche gilt auch für die Schrittzeit, die signifikant länger auf dem 

erkrankten Bein (1,25 ± 0,82 Sek.) als auf dem gesunden Gegenbein (0,8 ± 0,3 Sek.) war. Dies 

kann dadurch begründet sein, dass durch die Deformität und/oder die Orthesenversorgung die 

Propriozeption des erkrankten Beins erheblich eingeschränkt ist. Außerdem ist die Kraft im 

betroffenen Bein vermindert, sodass die zusätzliche Belastung durch das Gewicht der Orthese zu 

einer verlängerten Schwungphase führt. Somit verlängert sich die Schrittlänge und -zeit, um die 

Kräfte zu übernehmen. 

 

In Hinsicht auf die Schrittweite berichteten Stolze et al. 1998 [161], dass mit dem Wachstum 

durch die Ausreifung des Gleichgewichtsorgans der kindliche Gang reift und die Schrittweite 

schmaler wird. Adolph et al., 2003 [162] gaben abnehmende Werte der Schrittweite von 11,68 bis 

8,95 cm mit zunehmendem Alter, und zwar vom Säuglingsalter bis zur Pubertät, an. Im Vergleich 

dazu waren die in dieser Arbeit gewonnenen Werte der Schrittweite (Median: 13,5 cm; 

Spannweite: 8-20 cm) größer als normal. Die Breite wird durch Unsicherheit und den Versuch der 

Vergrößerung der Standfläche erklärt.  

 

7.1.3.2 Gangzyklus  
 

In dieser Arbeit zeigt sich eine signifikant kürzere Standphase und eine längere Schwungphase 

des Gangzyklus auf der erkrankten Seite gegenüber der gesunden Gegenseite. Dies bestätigt 

eine kürzere Belastungsphase, was zu einer verminderten Krafteinwirkung auf der erkrankten 

Seite führen kann. In der Unterteilung der Standphasen wurde deutlich, dass die 
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Stoßdämpfungsphase auf der erkrankten Seite länger als auf der gesunden Gegenseite dauert. 

Dazu korrespondierend dauerten die mittlere Standphase und Abstoßphase auf der erkrankten 

Seite kürzer.  

 

Im Vergleich mit den Normwerten nach Pietraszewski et al., 2012 [163] zeigt sich, dass die 

Doppelstandphase (Median: 34,3 %; Spannweite: 26-69,7 %) in unserem Patientengut länger als 

normal (28,8 %) dauert. Im Gangablauf werden funktionelle oder strukturelle Störungen, die die 

Schwungphase unsicher machen, mit einer möglichst kurzen Schwungphase auf der gesunden 

Seite kompensiert. Die verlängerte Standphase der gesunden Seite und eine verlängerte 

Doppelstandphase geben Sicherheit und sind Phasen mit größerer Stabilität [164]. 

 

7.1.3.3 Druck 
 

In Hinsicht auf den Maximaldruck zeigten die Ergebnisse dieser Arbeit auf, dass der Median des 

Maximaldrucks auf den Boden an der erkrankten Seite (11,67 N/cm2; Spannweite: 10,17-18,16 

N/cm2) signifikant geringer als der an der gesunden Gegenseite (17,92 N/cm2; Spannweite: 6,97-

54,98 N/cm2) ist. Dies kann durch Entlastung erklärt werden. Zusätzlich war die Orthese in einem 

einzigen Fall nicht genau passend und dadurch war das Auftreten schmerzhaft. Einige Kinder 

waren auch mit der Maximalbelastung sehr sorgfältig, weil sie auf der Orthesenseite weniger 

sicher waren und vielleicht schon einmal weggerutscht sind. Auffällig ist, dass die Werte des 

Maximaldrucks auf der Orthesenseite kaum Streuung zeigten. Dies könnte durch harte Stellen an 

der Orthese geklärt werden. Außerdem kann das am Orthesendesign liegen. 

 

7.1.3.4 Kraft 
 

Die Kräfte, die beim Gehen auf den Boden übertragen werden, können in unserem 

Versuchsaufbau erfasst werden. Normwerte wurden durch Kadaba et al., 1989 [82]; Winter, 2009 

[110] und Stacoff et al., 2005 [165], 2007 [166] festgestellt. Die Messwerte werden entweder 

absolut angegeben (in N) oder auf das Körpergewicht normiert. 

 

Bezüglich der Maximalkraft, die auf den Boden übertragen wurde, zeigten unsere Ergebnisse in 

dieser Arbeit auf, dass der Median auf der erkrankten Seite (277,5 N; Spannweite: 129,5-526,6 

N) signifikant weniger als an der gesunden Gegenseite ist (405,2 N; Spannweite: 167,7-608,7 N). 

Dies bedeutet eine ipsilaterale Minderbelastung. 

 

Unsere Ergebnisse stimmen mit den von Zernicke et al. 1985 erhobenen Daten überein. Sie 

untersuchten die Bodenreaktionskräfte bei fünf Kindern; drei mit Knieexartikulation und zwei mit 

Oberschenkelamputation. Sie fanden, dass die Kräfte, die an dem prothetisch versorgten Bein 
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wirken, deutlich kleiner als die entsprechenden Kräfte am gesundem Bein sind [167]. In ihrem 

Patientengut von 175 Probanden mit einseitiger Beinverkürzung fanden Pereira et al., 2005, dass 

die Patienten mit symptomatischer Beinlängendifferenz im Vergleich mit denen mit 

asymptomatischen BLD und der Kontrollgruppe nicht nur kleinere Kraftpeaks zeigten, sondern 

auch längere Zeit benötigten, um diese Peaks zu erreichen [168]. Schuit et al., fanden heraus, 

dass die Schuherhöhung und die Orthese, die zur Behandlung der Patienten mit einer 

strukturellen BLD verwendet wurden, die von der Ferse des verkürzten Beins auf den Boden 

übertragenen Kräfte signifikant vergrößerten [169]. 

 

7.1.4 Instrumentelle Ganganalyse: Kinematik 
 

7.1.4.1 Kinematik: Becken 
 

In der vorliegenden Arbeit gab es keinen signifikanten Unterschied zwischen beiden Hüften in 

Bezug auf Beckenabsenkung, -kippung und -rotation. Die Medianwerte sind annährend gleich. 

Dies kann durch Orthese und Prothese, die im Rahmen des Ausgleichs der Beinlängen den 

Beckenbeweglichkeitsunterschied zwischen beiden Hüften vermindern, durchgeführt werden. 

Pietraszewski et al., 2012 [163] fanden in ihrer Arbeit keine signifikante Unterschiede beim 

normalen Gehen und Laufen zwischen den Gelenken der beiden unteren Extremitäten bezüglich 

den Bewegungsumfänge. Dann wird tatsächlich davon ausgegangen, dass die Beckenbewegung 

beidseitig symmetrisch ist. 

 

Wichtig zu erwähnen sind die Beckenbewegungsveränderungen im Fall einer BLD. Walsh et al., 

2000 [170] untersuchten in ihrer Arbeit die kinematischen Veränderungen bei gesunden 

Probanden, bei denen künstlich eine BLD mit unterschiedlichen Schuherhöhungen erzeugt 

wurde. Die resultierende maximale Beckenabsenkung betrug durchschnittlich 6,1º. Dies kann 

eine BLD von bis zu 2,2 cm kompensieren. Eine größere BLD kann nicht durch Veränderungen 

der Beckenbewegung, sondern durch vermehrte Hüft- und Kniebeugung und vergrößere dorsale 

Flexion des Sprunggelenks des längeren Beines und Kniestreckung und Zehenspitzengang des 

kürzeren Beines kompensiert werden. Dies wird von Menelaus 1991 [171] und Kaufman et al., 

1996 [172] bestätigt. 

 

Song et al., 1997 [173] untersuchten 35 Kinder mit BLD ohne neurologische oder muskuläre 

Störungen und fanden, dass acht Kinder eine Beckenabsenkung von durchschnittlich 7,8 ±1,4º 

auf dem kürzeren Bein hatten.  

 

Nach von Saunders et al., 1953 [174] und Murray et al., 1964 [175] angegebenen Normwerten 

kippt sich das Becken in der Sagittalebene um je etwa 4° nach ventral und dorsal. In der 
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Transversalebene rotiert das Becken nach posterior und nach anterior gleichermaßen um etwa 

10°. Biden et al., 1987 bestimmten einen Wert der Beckenrotation von 7,7° als normal [176]. 

 

7.1.4.2 Kinematik: Hüfte 
 

Hinsichtlich der Hüftbewegung in der Frontalebene berichtete Perry, 2003 [72], dass das Becken 

normalerweise Adduktion und Abduktion während des Gangzyklus in einer kleinen 

Bewegungsspannweite durchläuft. Beim initialen Kontakt ist die Hüfte wenig adduziert. Die 

Hüftadduktion nach Saunders, 1953 erfolgt in etwa 5º [174]. In der mittleren Standphase und der 

Abstoßphase wird die Hüfte wieder auf neutral zurückgestellt. Während der initialen 

Schwungphase abduziert die Hüfte geringgradig (5º). Diese Angaben wurden von Muray et al., 

1964 und 1970 als durchschnittlicher Wert beschrieben und gelten gleichermaßen für Männer 

und Frauen [175, 177].  

 

Anhand der vorliegenden Daten abduziert ausschließlich die Hüfte an der erkrankten Seite auf 

16,81º (Spannweite: 0-24,13º). Dies kann durch ein Verkürzungs- oder Duchenne-Hinken geklärt 

werden.  

 

Beim konventionellen Verkürzungs- oder Duchenne-Hinken senkt sich während der kurzzeitigen 

Standphase auf dem verkürzten Bein der Körperschwerpunkt beim Gehen ab und wird zum 

Gewichtsausgleich über das Standbein verlagert. Der Rumpf neigt sich in der Standphase des 

Gehens zum Standbein. Das Becken sinkt auf dem verkürzten Standbein ab (Abb. 7.1) [178, 

179].  

 

Bei unserem Untersuchungsgut zeigte sich, dass während der Standphase des erkrankten 

Beines die Hüfte zunehmend abduziert wurde, um eine ipsilaterale Beckenabsenkung zu 

verhindern. Die seitliche Neigung des Rumpfes zum erkrankten Bein vergrößert sich, indem der 

Körperschwerpunkt soweit zur Seite verschoben wird, bis er über dem Hüftgelenk liegt (Abb. 7.2).  

 

In Bezug auf die Hüftbewegung in der Transversalebene rotiert die Hüfte, wie von Perry, 2003 

beschrieben [72], gleichermaßen (um etwa 8°) bei jeden Doppelschritt zunächst nach innen und 

danach nach außen. Am Ende der initialen Standphase des Referenzbeins (Zehenablösung des 

kontralateralen Beines) findet die maximale Hüftinnenrotation statt. Dazu korrespondierend tritt 

die maximale Hüftaußenrotation am Ende der Vorschwungphase (Zehenablösung) des 

Referenzbeins auf.  

 

An der erkrankten Seite zeigen die Kinder in dieser Arbeit während des Ganges eine vermehrte 

Innenrotation (Median: 11,26º; Spannweite: 0-34,68º) und eine verminderte Außenrotation 
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(Median: 0,9º; Spannweite: 0-43, 13º) der Hüfte im Vergleich zur gesunden Gegenseite, wo der 

Median der Innenrotation 5,35º (Spannweite 0-87,11º) und der Außenrotation 1,29º (Spannweite 

0-20,23º) war. Dies kann durch eine verlängerte Schrittlänge erklärt werden. Um für das 

erkrankte Bein einen größeren Schritt zu ermöglichen und den Körperschwerpunkt zu verlagern, 

wiesen die Kinder eine zunehmende Tendenz in Richtung mehr Außenrotation – weniger 

Innenrotation der Hüfte auf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Abb. 7.1: Konventionelles Duchenne-Hinken 

(Abbildung von Schröter et al., 1999 [179], modifiziert) 

 

 

Schrittbreite 

- 96 - 



Diskussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abb. 7.2: Modifiziertes Duchenne-Hinken  

(Abbildung von Schröter et al., 1999 [179], modifiziert) 

 

 

Die Hüfte kommt in der Sagittalebene zur Flexion in der Schwungphase und Extension in der 

Standphase des Gehens. Es wurde von Dettmann et al., 1987 [180]; Kadaba et al., 1989 [82] und 

Skinner et al., 1985 [181] ein Bewegungsradius des Hüftgelenks von 40º angegeben. Für 

normales Gehen wurde eine maximale Hüftextension gleich Null und maximale Flexion von 40º 
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angesetzt. Im Hinblick auf die klinische Praxis wurden 10º Extension und 30º Flexion als 

Maximalwerte der Hüftbewegung von Perry, 2003 bestimmt [72]. 

 

Bei einseitigen Beinverkürzungen gaben Walsh et al., 2000 [170] Gurney 2002 [182] und 

Kaufmann et al., 1996 [172] an, dass die gesunde Gegenhüfte beim Gehen mehr als die 

ipsilaterale Hüfte beugt, um die Verkürzung zu kompensieren. In dieser Arbeit lag ein Median von 

22,29º (Spannweite: 0-48,61º) an der erkrankten Seite vor, was annähernd gleich der gesunden 

Gegenseite war. Der Flexionsunterschied zwischen beiden Hüften wird vermutlich durch gut 

sitzende Orthesen und Prothesen, die die BLD fast komplett ausgleichen, minimiert. 

 

7.1.5 Standanalyse 
 

Es wurde in dieser Arbeit beobachtet, dass beim Stand der COP (Center of Pressure) zumeist in 

der Horizontalebene zur gesunden Seite verschoben ist. Unsere Ergebnisse stimmen mit denen 

von Zernicke et al., 1985 überein. Sie untersuchten die Bodenreaktionskräfte und COP bei fünf 

Kindern; drei mit Knieexartikulation und zwei mit Oberschenkelamputation und bestätigten 

veränderte COP-Muster zwischen prothetischem und gesundem Bein [167]. Zusätzlich 

berichteten Mahar et al., 1985 bei BLD, dass eine BLD von 10 mm zu einer signifikanten 

Verschiebung der Position des COP zum längeren Bein führt [183]. 

 

In Hinsicht auf die Gesamtbelastung beim Stand ist es deutlich, dass, wie erwartet, die meisten 

Kinder unseres Untersuchungsgutes die gesunden Hüften mehr als die erkrankten belasten.  

 

7.2 Klinische und theoretische Relevanz der Ergebnisse 
 

Hiermit bestätigen unsere Ergebnisse, dass der Schenkelhals sich deutlich steiler einstellt, wenn 

eine primär gesunde Hüfte durch eine hüftferne Beindeformität vermindert beansprucht wird. Die 

Pfanne bildet sich zudem etwas steiler aus, sodass man diese Hüftform in erweitertem Sinne als 

sekundäre Dysplasie bezeichnen kann. 

 

Als mögliche pathogenetische Faktoren, die zu einer Entlastungs-Coxa-valga führen, muss eine 

verlängerte Schrittlänge, eine verminderte Belastung des Beines und auch ein Duchenne-Hinken 

aufgrund veränderter statischer Verhältnisse an der unteren Extremität in Betracht gezogen 

werden. 

 

Bei der Standphase des normalen Gehens erreicht die Belastung des Hüftgelenks das Maximum 

und während der Schwungphase ist die Belastung gering – wie von Bergmann et al. 1989 

erwähnt. Diese periodische Be- und Entlastung dient als Wachstumsstimulus. Durch Entlastung 
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im Rahmen einer dauerhaften Beinverkürzung vermindern sich die Muskelbeanspruchungen, die 

zur Formveränderung des Hüftgelenks führen können [184].  

 

Bei der kinetischen Ganganalyse zeigten unsere Kinder längere Schrittlänge und -Zeit sowie eine 

verkürzte Standphase und niedrige Kräfte an der entlasteten Seite an. Die von der erkrankten 

Seite fehlende Propriozeption sowie das Gewicht der Orthese zwingen die Kinder, ihren Schritt 

zu verlängern. Außerdem benötigen Sie längere Zeit, um die untere Extremität bei der 

Schwungphase nach vorne zu bewegen. Diese kinetischen Veränderungen können durch die 

beste Orthesendesign und -passsung nicht eliminiert, sondern nur minimiert werden. 

 

Bei der kinematischen Ganganalyse wiesen die Kinder, die einseitige Beindeformität haben, ein 

besonderes Duchenne-Hinken auf. Sie behalten während der Standphase eine 

Abduktionsstellung der Hüfte des entlasteten Beines, um eine ipsilaterale Beckenabsenkung zu 

verhindern. Die seitliche Neigung des Rumpfes zum erkrankten Bein vergrößert sich, indem der 

Körperschwerpunkt soweit zur Seite verschoben wird, bis er über dem Hüftgelenk liegt. Leider 

reduziert dieser Mechanismus das Wachstum der Epiphysenfuge des Trochanter major und führt 

somit zur Entlastung-Coxa-valga. Er ist der wichtigste pathogenetische Faktor bei der 

Entwicklung der Entlastungs-Coxa-valga. Die gesehenen Verformungen zeigen beispielhaft die 

Gültigkeit der kausalen Histogenese. Nach der Gesetzmäßigkeit „function modifies design“ 

deformiert die veränderte Muskel- und Schwerkraftfunktion des einseitig entlastenden Kindes das 

Hüftgelenk. Die äußere Form und die innere Struktur des Hüftgelenkes spiegeln den 

Belastungsverlauf der Hüfte wider. 

 

Wir schließen daraus, dass die langfristig orthetisch und prothetisch versorgten Kinder mit einer 

Entlastungs-Coxa-valga nicht in Gefahr sind, eine schwere Pfannendysplasie zu entwickeln. Als 

praktische Konsequenz empfehlen wir, keine periodische Röntgenaufnahmen der Hüften, 

sondern vorsorglich eine Beckenaufnahme am Ende der Pubertät auszuführen. Außerdem 

können mit Hilfe der Ergebnisse Hinweise zur besseren Gestaltung von Orthesen und Prothesen 

ergeben werden. 

 

7.3 Diskussion der angewandten Methodik 
 

Um die formulierte Hypothese zu stützen und die am Hüftgelenk einwirkenden Kräfte zu 

beschreiben, ist die Anwendung der biomechanischen Modellrechnung nach Heimkes et al. [25, 

53, 121] möglich.  

 

- 99 - 



Diskussion 

Die hydrostatischen Druckmessungen der Muskelkräfte, die sich am Trochanter major auswirken 

(Hüftabduktoren, Tractus iliotibialis und M. vastus lateralis), können nicht von den übrigen 

Muskelkräften, die auf das Hüftgelenk einwirken, differenziert werden.  

 

Eine direkte Erfassung der Kraftverhältnisse im Tierexperiment ist technisch schwierig. 

Außerdem liegen durch den aufrechten Gang beim Menschen einzigartige Verhältnisse vor, die 

eine Vergleichbarkeit der Messungen eines tierexperimentellen Aufbaus in Frage stellen würden. 

In-vivo-Messungen beim Menschen stehen allein aus ethischen Gründen nicht zur Diskussion.  

 

Deshalb erscheint es zielführend, für die Überprüfung der formulierten Hypothese die 

anatomischen Veränderungen am Hüftgelenk durch die Beobachtung und Analyse der 

Wachstumsprozesse zu beschreiben und so indirekt Rückschlüsse auf die Kräfteverhältnisse im 

Hüftgelenk und deren Auswirkung zu ziehen. Im Rahmen der Bildgebung der anatomischen 

Veränderungen des Hüftgelenks kommen eine Röntgenuntersuchung, CT und MRT in Frage, 

außerdem die klinischen Untersuchungen und die instrumentelle Ganganalyse. 

 

Auf die Computertomographie wurde aufgrund der zu hohen Strahlenbelastung verzichtet. Die 

Kernspintomographie bereitet bei jüngeren Kindern Probleme, da diese nicht lange genug still 

liegen können. Außerdem treten im Randbereich von MRT-Messungen geometrische 

Verzerrungen auf, die die Analyse beeinträchtigen können. Somit verbleibt die radioanatomische 

Vermessung auf der Grundlage einer Beckenübersicht.  

 

Um vergleichbare Ausgangsbedingungen zu erhalten, wurden alle Röntgenbilder nach derselben 

Methode angefertigt. Hierzu liegt der Patient auf dem Rücken, die Beine liegen gestreckt und 

parallel, die Kniescheiben sind genau ventro-dorsal ausgerichtet. Weiterhin liegen die 

Innenknöchel aneinander. Trotz der standardisierten Aufnahmetechnik können sich bei den 

radiologischen Vermessungen des Hüftgelenkes am Röntgenbild im Rahmen der Konstruktion 

der Winkel bzw. Strecken Messfehler einstellen. Um die Interobserver-Variabilität zu vermindern, 

wurden alle Messungen von zwei Untersuchern beurteilt. Der Intraobserver-Bias pro Untersucher 

wurde durch einen Mittelwert von drei Messungen jedes Winkels oder jedes Abstands limitiert.  

 

Als weiterer Punkt bleibt zu erwähnen, dass in dieser Arbeit der projizierte CCD-Winkel, nicht der 

tatsächliche CCD-Winkel, zur Anwendung kommt. Es wurde von Robin et al. (2008) erklärt, dass 

in einer a.p.-Aufnahme des Hüftgelenks daher der tatsächliche Wert des CCD-Winkels dargestellt 

werden kann, wenn die Hüfte 30-40° nach innen rotiert wird [60]. 

 

Die Hüftbewegungsfähigkeit durch klinische Untersuchungen ist die Äußerung der zugrunde 

liegenden anatomischen Veränderungen. Die Bestimmung der Gelenkbeweglichkeiten erfolgt 
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Diskussion 

nach der Neutral-Null-Methode. Zur Verbesserung der intra- als auch interindividuellen Reliabilität 

wurde die klinischen Untersuchung der Gelenkbeweglichkeit durch zwei Personen durchgeführt 

und ein Mittelwert der drei Messungen jedes Winkels oder jedes Abstands berechnet. 

 

In der Ganganalyse können keine Bodenreaktionskraftvektoren berechnet werden, da die 

technische Ausstattung des Ganglabors keine Bodenkraftmessplatten umfasst, sondern die 

Kräfte und der Druck, die auf den Boden übertragen werden, über Drucksensoren erfasst 

wurden.  

 

Um systematische Fehler bei der Ganganalyse zu vermeiden, wurden vor jeder Messung eine 

Kalibrierung der Drucksensoren und der Kinematik-Messabnehmer durchgeführt.  

 

Alle Kinder gingen auf dem Laufband mit oder ohne Schuhe und Orthesen, um annähernd die 

Alltagsverhältnisse der Kinder zu simulieren. 

 

Die Ergebnisse wurden nicht mit einer vergleichbaren Kontrollgruppe korreliert, sondern die 

Ergebnisse der entlasteten Hüfte wurden mit denen der gesunden Gegenseite verglichen. Es ist 

nicht auszuschließen, dass das alterierte Gangbild durch die Erkrankung auch Auswirkungen auf 

die gesunde Hüfte hat. Dagegen sprechen allerdings die normwertigen radiologischen und 

klinischen Messwerte sowie die Ergebnisse der Ganganalyse bezüglich der nicht affektierten 

Hüften. 

 

Als letzter Punkt bleibt zu erwähnen, dass die vorliegende Studie aufgrund der Seltenheit dieser 

Deformitäten bei Kindern eine kleine Fallanzahl umfasst. Außerdem wurden Kinder unter sechs 

Jahren ausgeschlossen, da diesen das Protokoll nicht zu vermitteln ist. Somit entgeht der 

Analyse diese Altersgruppe. Deshalb empfehlen wir zukünftige große klinische Studien, um die 

Ergebnisse dieser Übersichtsarbeit zu bestätigen. 
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8. Zusammenfassung 
 

Ziel: In der vorliegenden Arbeit sollte in einem ersten Schritt überprüft werden, wie sich bei 

Kindern, die aufgrund einer nicht behebbaren, einseitigen Beindeformität distal des Kniegelenkes 

dauerhaft orthetisch oder prothetisch versorgt werden müssen, die primär gesunde Hüfte des 

betroffenen Beines sekundär verformt. In einem zweiten Schritt sollte mittels Ganganalyse 

evaluiert werden, welcher Pathomechanismus der diagnostizierten Formstörung zu Grunde liegt. 
 

Methodik: Das Patientengut bestand aus zwölf primär hüftgesunden, jedoch einseitig distal des 

Knies erkrankten, orthesenpflichtigen Kindern und Jugendlichen, deren klinische und 

radiologische Krankheitsverläufe retrospektiv ausgewertet wurden. Bei zehn der betroffenen 

Kinder konnte eine verwertbare instrumentelle kinetische und kinematische Ganganalyse mittels 

des Zebris-Systems durchgeführt werden. 
 

Ergebnisse: 1. Grunderkrankungen: Crus varum congenitum oder Tibiapseudarthrosen 5, 

Fehlbildungsklumpfuß 1, kongenitaler tibialer Längsdefekt 2, kongenitaler fibulärer Längsdefekt 

3, Unterschenkeldeformität nach Ewingsarkom 1. 

2. Klinische Ergebnisse: Im intraindividuellen Seitvergleich ist die Seite des von der Deformität 

betroffenen Beines wie folgt verändert: Die Hüftinnenrotation ist durchschnittlich 12,5º signifikant 

vermehrt (p <0,05), die Hüftaußenrotation um 20-22,5º verkleinert. 

3. Radiologische Ergebnisse: Koxales Femurende: Der projizierte CCD-Winkel ist altersabhängig 

und im Durchschnitt 14,71º signifikant steiler. Die Distanz zwischen Kopfkalotte und Trochanter 

minor (LTA) ist 1,58 cm signifikant vergrößert. Der Kopfepiphysen-Femurschaft-Winkel (KF) als 

Beweis der horizontalen Stellung der Kopfepiphysenfuge ist durchschnittlich um 13,52º 

vergrößert (p <0,05). Hüftpfanne: Der Sharp-Ullmann-Winkel ist 5,01º signifikant vergrößert und 

der Acetabulumwinkel (AC) ist 3,52º vergrößert (p <0,05).  

3. Ganganalytische Ergebnisse: Kinetik: Die Schrittlänge ist um durchschnittlich 7 cm signifikant 

verlängert (p <0,05). Die Standphase als Maß der Kräfteauswirkungszeit ist um 6,35 % signifikant 

verkürzt (p <0,05). Die Kräfte, die auf den Boden übertragen wurden, sind um 177,7 N signifikant 

vermindert (p <0,05). Kinematik: Es gibt keinen signifikanten Unterschied zwischen beiden 

Hüften bezüglich der Beckenabsenkung (um 0,08º verkleinert; p >0.05). Die Hüftabduktion der 

entlasteten Hüfte als Hinweis eines konstanten Duchenne-Hinkens ist durchschnittlich um 16,81º 

vermehrt. 
 

Schlussfolgerung: Zusammenfassend kann gesagt werden, dass die einseitig 

orthetisch/prothetisch versorgten Kinder eine Formstörung der Hüfte aufwiesen, die in der älteren 

Literatur als Entlastungs-Coxa-valga bzw. Entlastungsdysplasie bezeichnet wird. Erstmals 

konnten die pathogenetischen Faktoren identifiziert werden, die diese Formstörung hervorrufen. 
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Zusammenfassung 

Die Patienten weisen ein Duchenne-Hinken auf und belasten das betroffene Bein weniger stark 

und mit kürzerer Zeitspanne. 

 

Die Untersuchung bestätigt in eindrucksvoller Weise die allgemeinen Wachstumsgesetze des 

muskulo-skelettalen Organs, die unter dem Merksatz „form follows function“ zusammengefasst 

werden können. Als praktische Konsequenz für den Klinikalltag ergibt sich die Forderung, die 

Hüfte orthesenpflichtiger Kinder in größeren Abständen klinisch und bildgebend zu screenen und 

die Orthesen- bzw. Prothesenaufbau so zu gestalten, dass ein Duchenne-Hinken vermieden 

wird. 
 

Abstract 
 
Title: Gait analysis study of Unloading-Coxa-Valga (antetorta) in orthoses/prostheses-dependent 

children 

Background: During loading cycles, the joints’ geometry is continually modelled. 

Orthotics/prosthetics-dependent children develop ipsilateral in-toeing gait and Duchenne’s 

limping due to unilateral severe lower leg or foot deformities. These clinical phenomena are 

accompanied with an ipsilateral coxa-valga antetorta and hip dysplasia. A practical question is 

whether these hips are in danger to decompensate. An additional theoretical question is, how the 

external shape and internal architecture changes, if a primarily healthy hip is underused. 

Methods: 10 children with healthy hips, who are unilaterally long-term orthotics/prosthetics-

dependent, agreed to undergo an instrumental gait analysis. The results were analyzed and 

correlated with clinical findings, a common activity score and planimetric radiographic data. 

Results: The intra-individual comparison revealed the following significant changes in the hip of 

the deformed leg (p <0.05). Clinically, the internal rotation was increased (12.5°), while the 

external rotation was diminished (20-22.5°). Radiologically, the projected CCD angle, the lesser 

trochanter to articular surface distance (LTA) and the head-shaft angle (CF) were increased by 

14.71°, 1.58 cm and 13.52°, respectively. Both Sharp- and acetabular (AC) angles were 

increased by 5.01° and 3.52°, respectively. Kinetic gait analysis showed increased stride length 

(7 cm), shortened stance phase (6.35 %) and reduced forces transmitted to the ground (177.7 N). 

The kinematic analysis showed increased hip abduction (16.81°) while the pelvic obliquity was 

not significantly changed (0.08°). 

Conclusions: Duchenne’s limping and lack of weight-bearing stress are the decisive pathogenic 

factors of the underuse-coxa-valga and acetabular dysplasia. These changes follow the 

mechanobiological concept “function modifies design”, that means function influences external 

shape and internal architecture of bones and joints. As a practical consequence we recommend 

to perform one pelvic radiograph as a precaution at the end of puberty of the diseased children. 

Level of evidence: Level II retrospective study  
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Anhang 
Anhang I Demografische Daten des Untersuchungsguts 
 

Tab. I.1: Auflistung des Patientengutes unter Angabe des Ranges, des Geburtstages, des Beginns der Entlastung, des Datums bei Untersuchung, des 

Entlastungszeitraumes, des Geschlechtes, der erkrankten Seite, des Aktivitätsscores, sowie der Diagnose. 

 

Rang Geburtstag Beginn der 
Entlastung 

Datum bei 
Untersuchung 

Zeitraum der 
Entlastung, 

Jahre 
Geschlecht Seite UCLA-

Aktivitätsscore Diagnose 

1  14.05.2009 * Seit Laufalter 14.10.2013 3,25 W Li. 6 Neurofibromatose Typ 1. 
Crus varum congenitum 

2  01.09.2007 * Seit Laufalter 25.09.2013 5,25 M Li. 4 Fehlbildungsklumpfuß 
Aplasie des 2. Strahls des Fußes 

3  18.02.2007 * Seit Laufalter 21.10.2013 5,75 M Li. 10 Tibialer Längsdefekt Typ 3 
4  16.05.2005 * Seit Laufalter 20.11.2013 7,42 M Li. 9 Kongenitaler, tibialer Längsdefekt 

5  28.11.2001 * Seit Laufalter 29.10.2013 11,00 M Re. 2 Kongenitale 
Unterschenkelpseudarthrose 

6  15.10.2001 * Seit Laufalter 02.10.2013 11,00 W Li. 9 Kongenitaler Fibulalängsdefekt 
Kongenitaler Fehlbildungsklumpfuß 

7  11.10.2000 * Seit Laufalter 14.10.2013 12,00 W Li. 5 Fibulärer Längsdefekt Typ 1 b 

8  26.12.1996 * Seit Laufalter 21.10.2013 15,83 M Li. 6 
Neurofibromatose Typ I mit 

kongenitaler 
Unterschenkelpseudarthrose 

9  20.11.1996 * Seit Laufalter 12.11.2013 15,75 M Li. 2 
Neurofibromatose Typ I mit 

kongenitaler 
Unterschenkelpseudarthrose 

10  14.06.1996 * Seit Laufalter 02.10.2013 16,33 M Re. 4 Kongenitaler Femur- und Fibuladefekt 

11  26.04.1995 * Seit Laufalter 
bis 16.12.10 21.10.2013 14,76 M Re. 10 Lähmungsknickfuß Fallfuß mit Pes 

adductus bei Neurofibromatose Typ I 
12  24.04.1995 01.2005 08.10.2013 8,83 M Li. 3 Ewingsarkom der diaphysären Tibia 
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Anhang II Klinische Befunde des Untersuchungsguts 
 

Tab. II.1: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte der BLD, der Beinlänge, der 

Oberschenkellänge  und der Unterschenkellänge auf der erkrankten (pathologischen) und der gesunden Hüftseite. Weiterhin sind der Median, der Maximalwert 

und der Minimalwert berechnet worden. 
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BLD, cm 
(im Stehen) 

 
 

Beinlänge, cm 
(im Liegen) 

Oberschenkellänge, 
cm 

Unterschenkellänge, 
cm 

Path. Gesund Path. Gesund Path. Gesund Path. Gesund 
1  W 4,33 2 ------- 44 46 29 29 16 18 
2  M 6 3 ------- 59 62 37 37,5 24 26,5 
3  M 6,67 9 ------- 50,5 59,5 35,5 36,5 15 23 
4  M 8,42 3 ------- 59 62 37 37,5 24 26,5 
5  M 11,92 32 ------- 54 86 54 49 0 37 
6  W 12 2 ------- 78 80 46,5 46,5 31,5 33,5 
7  W 13 13 ------- 70 83 43 49 27 34 
8  M 16,83 5 ------- 75 80 43,5 46 31,5 34 
9  M 17 4 ------- 89 93 51 51 38 42 
10  M 17,42 4 ------- 89 93 51 51 38 42 
11  M 18,5 1 ------- 87 88 49 49 38 39 
12  M 18,5 16 ------- 82 98 50 52 32 46 

Median 4 ------- 72 81,5 45 47,75 29,25 34 
Minimalwert 1 ------- 44 46 29 29 0 18 
Maximalwert 32 ------- 89 98 54 52 38 36 
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Tab. II.2: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte der Hüftbeweglichkeit auf der erkrankten 

(pathologischen) und der gesunden Hüftseite und Normalwert nach Alter und Geschlecht. Weiterhin sind der Median, der Maximalwert und der Minimalwert 

berechnet worden. 
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Hüftgelenke, Grad 

Streckung / Beugung Abspreizen / Anführen Drehung auswärts / einwärts (in 
Bauchlage, Hüfte gestreckt) 

Drehung auswärts / einwärts (in 
Rückenlage, Hüfte gebeugt) 

Path. Norm. Gesund Path. Norm. Gesund Path. Norm. Gesund Path. Norm. Gesund 
1  W 4,33 10/0/135 19/0/118 10/0/135 55/0/30 43/0/15 60/0/30 0/0/75 42/0/42 0/0/75 0/0/75 44/0/40 0/0/75 

2  M 6 10/0/135 19/0/118 10/0/135 55/0/30 43/0/15 60/0/30 0/0/75 42/0/42 0/0/75 0/0/75 44/0/40 0/0/75 

3  M 6,67 20/0/160 19/0/118 20/0/160 60/0/35 43/0/15 60/0/35 50/0/50 42/0/42 40/0/50 50/0/50 44/0/40 40/0/50 

4  M 8,42 10/0/135 19/0/118 10/0/135 55/0/30 43/0/15 60/0/30 0/0/75 42/0/42 0/0/60 0/0/75 44/0/40 0/0/60 

5  M 11,92 20/0/135 15/0/113 20/0/135 60/0/30 34/0/14 45/0/30 50/0/60 39/0/36 60/0/40 50/0/60 40/0/35 60/0/30 

6  W 12 20/0/145 22/0/120 20/0/145 20/0/55 44/0/17 20/0/55 10/0/75 44/0/42 40/0/55 10/0/75 46/0/35 40/0/55 

7  W 13 20/0/130 22/0/120 20/0/145 40/0/40 44/0/17 45/0/40 20/0/60 44/0/42 45/0/45 20/0/60 46/0/35 45/0/45 

8  M 16,83 20/0/135 15/0/113 20/0/140 40/0/40 34/0/14 45/0/40 20/0/60 39/0/36 40/0/45 20/0/60 40/0/35 45/0/45 

9  M 17 20/0/130 15/0/113 20/0/145 40/0/40 34/0/14 45/0/40 20/0/60 39/0/36 45/0/45 20/0/60 40/0/35 45/0/45 

10  M 17,42 20/0/130 15/0/113 20/0/145 40/0/40 34/0/14 45/0/40 20/0/60 39/0/36 45/0/45 20/0/60 40/0/35 45/0/45 

11  M 18,5 20/0/135 15/0/113 20/0/135 60/0/30 34/0/14 45/0/30 50/0/60 39/0/36 60/0/40 50/0/60 40/0/35 60/0/30 

12  M 18,5 10/0/145 15/0/113 10/0/145 60/0/30 34/0/14 65/0/40 5/0/90 39/0/36 20/0/80 5/0/90 40/0/35 20/0/80 

Median 20/0/135 17/0/115,5 20/0/142,5 55/0/32,5 38,5/0/14,5 45/0/37,5 20/0/60 40,5/0/39 40/0/47,5 20/0/60 42/0/35 42/0/47,5 

Minimalwert 10/0/130 15/0/113 10/0/135 20/0/30 34/0/14 20/0/30 0/0/50 39/0/36 0/0/40 0/0/50 40/0/35 0/0/30 

Maximalwert 20/0/160 22/0/120 20/0/160 60/0/55 44/0/17 65/0/55 50/0/90 44/0/42 60/0/80 50/0/90 46/0/40 60/0/80 
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Tab. II.3: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung, Fußlänge sowie der Werte der Umfangmaße auf der 

erkrankten (pathologischen) und der gesunden Hüftseite. Weiterhin sind der Median, der Maximalwert und der Minimalwert berechnet worden. 
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Fußlänge 

 
Umfangmaße, cm 

 
20 cm oberhalb 
Kniegelenkspalt 

10 cm oberhalb 
Kniegelenkspalt Kniescheibenmitte 15 cm unterhalb 

Kniegelenkspalt 

Path. Gesund Path. Gesund Path. Gesund Path. Gesund Path. Gesund 

1  W 4,33 13,0 14,0 25,0 26,0 22,0 22,0 19,0 21,0 18,0 19,0 

2  M 6 15,0 16,0 28,0 28,0 24,0 24,0 22,0 23,0 20,0 21,0 
3  M 6,67 13,0 19,0 38,0 38,0 31,0 31,0 27,0 27,0 21,0 27,0 

4  M 8,42 15,0 16,0 38,0 38,0 31,0 31,0 27,0 27,0 21,0 27,0 

5  M 11,92 0 27,5 0 51,0 0 43,0 0 42,0 0 37,0 
6  W 12 20,0 22,0 42,0 42,0 35,0 35,0 31,0 31,0 26,0 29,0 

7  W 13 17,0 22,0 35,5 36,5 34,0 34,5 31,0 32,0 21,0 30,0 

8  M 16,83 21,5 23,0 37,0 43,0 35,0 41,0 29,0 32,0 22,0 31,0 
9  M 17 21,0 23,5 43,0 46,0 40,0 43,0 36,0 38,0 30,0 34,0 

10  M 17,42 21,0 23,5 43,0 46,0 40,0 43,0 36,0 38,0 30,0 34,0 

11  M 18,5 23,0 24,0 45,0 48,0 43,0 45,0 35,0 35,0 72,0 72,0 
12  M 18,5 20,5 24,0 40,0 45,0 45,0 50,0 34,0 39,0 21,5 35,0 

Median 18,5 22,5 38 42,5 34,5 38 30 32 21,25 30,5 
Minimalwert 0 14 0 26 0 22 0 21 0 19 
Maximalwert 23 27,5 45 51 45 50 36 42 72 72 
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Tab. II.4: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte der Umfangmaße auf der erkrankten 

(pathologischen) und der gesunden Hüftseite. Weiterhin sind der Median, der Maximalwert und der Minimalwert berechnet worden. 
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Umfangmaße, cm 
 

Fessel Knöchel Mittelfuß Vorfußballen 

Path. Gesund Path. Gesund Path. Gesund Path. Gesund 
1  W 4,33 14 15 15 16 14 15 16 16 

2  M 6 16 17 17 18 16 17 18 18 

3  M 6,67 17 19 21 23 15 19 15 20 

4  M 8,42 17 19 21 23 15 19 15 20 

5  M 11,92 0 25,5 0 30 0 31 0 25 

6  W 12 22 23 23 24 20 22 21 23 

7  W 13 18,5 20 21,5 26,5 18 21,5 17 20,5 

8  M 16,83 19 24 22 25 20 24 19 23 

9  M 17 19 24 23 27 21 25 18 23 

10  M 17,42 19 24 23 27 21 25 18 23 

11  M 18,5 24 24 25 25 24 24 25 25 

12  M 18,5 17 20 23 24 21 23 20 23 

Median 17,75 21,5 21,75 24,5 19 22,5 18 23 
Minimalwert 0 15 0 16 0 15 0 16 
Maximalwert 24 25,5 25 30 24 31 25 25 
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Anhang III Radiologische Befunde des Untersuchungsguts 
 

Messwerte den Schenkelhals betreffend 
 

Tab. III.1: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte des pCCD-Winkels und der LTA auf der 

erkrankten (pathologischen) und der gesunden Hüftseite und Normalwert nach Alter und Geschlecht. Weiterhin sind der Median, der Maximalwert und der 

Minimalwert berechnet worden. 

 

 

Rang Geschlecht Alter bei 
Untersuchung 

pCCD-Winkel (º) LTA (cm) 
Path. Norm. Gesund Path. Norm. Gesund 

1  W 4,33 142,22 152 136,19 5 4 3,76 
2  M 6 163,37 140 142,21 7,53 4,8 5,92 
3  M 6,67 166,37 150 136,1 8,84 5,2 7,3 
4  M 8,42 156,31 141 146,98 7,7 5,2 5,87 
5  M 11,92 156,8 142 133,02 11,32 5,5 9,61 
6  W 12 145,4 138 141,46 7,54 6 6,48 
7  W 13 131,05 136 128,08 8,37 6,6 7,52 
8  M 16,83 138,59 135 127,52 9,9 7 8,57 
9  M 17 157,32 134 125,85 11,61 7 8,97 
10  M 17,42 157,78 134 143,55 10,28 7,5 9,56 
11  M 18,5 137,22 133 132,97 9,15 7,5 6,87 
12  M 18,5 143,55 133 136,91 10,34 7,5 8,66 

Median 150,86 137 136,15 8,99 6,3 7,41 
Minimalwert 131,05 133 125,85 5 4 3,76 
Maximalwert 166,37 152 146,98 11,61 7,5 9,61 
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Messwerte das Acetabulum betreffend 
 
Tab. III.2: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte der Sharp-Ullmann, AC- und CE-Winkel 

der erkrankten (pathologischen) und der gesunden Hüftseite und Normalwert nach Alter und Geschlecht. Weiterhin sind der Median, der Maximalwert und der 

Minimalwert berechnet worden. 

 

 

Rang Geschlecht Alter bei 
Untersuchung 

Sharp-Ullmann Winkel (º) AC-Winkel (º) CE-Winkel (º) 
Path. Norm. Gesund Path. Norm. Gesund Path. Norm. Gesund 

1  W 4,33 51,82 46 47,28 22,54 20 15,81 11,24 22 15,76 
2  M 6 52,04 46 48,18 20,33 17 19,34 21,32 25 22,51 
3  M 6,67 46,53 46 44,67 17,28 15 16,35 22,23 25 23,00 
4  M 8,42 52,41 46 49,16 19,72 15 18,69 21,40 25 30,65 
5  M 11,92 47,21 46 39,62 20,63 15 10,34 36,22 25 40,52 
6  W 12 47,77 46 45,41 21,06 8 14,50 32,57 32 36,49 
7  W 13 46,43 46 44,34 10,47 11 8,44 34,17 32 33,37 
8  M 16,83 43,33 44 40,62 14,45 10 11,26 29,40 32 49,52 
9  M 17 47,87 44 36,17 14,19 9 10,21 38,97 32 59,56 
10  M 17,42 43,01 44 37,44 20,86 9 17,84 40,01 32 15,72 
11  M 18,5 39,51 42 29,85 12,66 10 7,24 45,77 32 45,92 
12  M 18,5 49,21 42 39,27 16,25 7 15,45 33,92 32 37,55 

Median 47,49 46 42,48 18,5 10,5 14,98 33,25 32 34,93 
Minimalwert 39,51 42 29,85 10,47 7 7,24 11,24 22 15,72 
Maximalwert 52,41 46 49,16 22,54 20 19,34 45,77 32 59,56 
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Tab. III.3: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte der TDD und MP-Quotient der erkrankten 

(pathologischen) und der gesunden Hüftseite und Normalwert nach Alter und Geschlecht. Weiterhin sind der Median, der Maximalwert und der Minimalwert 

berechnet worden. 

 
 
 

Rang Geschlecht Alter bei 
Untersuchung 

TDD (cm) MP (%) 

Path. Norm. Gesund Path. Norm. Gesund 
1  W 4,33 0,65 0,88 0,52 27,2 10 22,57 

2  M 6 1 0,88 0,72 6,73 10 12,68 

3  M 6,67 1,21 0,88 0,75 22,94 10 15,46 
4  M 8,42 0,79 0,88 0,79 13,33 10 19,49 

5  M 11,92 0,79 0,88 0,79 13,94 10 14,85 

6  W 12 0,63 0,88 0,63 14,25 10 12,74 
7  W 13 0,59 0,88 0,7 15,95 10 12,33 

8  M 16,83 0,71 0,88 0,92 11,69 10 23,2 

9  M 17 1,26 0,88 0,88 4,81 10 17,34 
10  M 17,42 0,76 0,88 0,8 10,94 10 30,94 

11  M 18,5 0,72 0,88 0,68 6,46 10 11,45 

12  M 18,5 1,05 0,88 0,68 15,16 10 21,1 

Median 0,78 0,88 0,74 13,63 10 16,4 

Minimalwert 0,59 0,88 0,52 4,81 10 11,45 
Maximalwert 1,26 0,88 0,92 27,2 10 30,94 
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Messwerte die Epiphyse betreffend 

 

Tab. III.4: Patientenauflistung mit Angabe des Rangs, des Geschlechtes, des Alters bei Untersuchung sowie der Werte der EY-, KE- und KF-Winkel der erkrankten 

(pathologischen) und der gesunden Hüftseite und Normalwert nach Alter und Geschlecht. Weiterhin sind der Median, der Maximalwert und der Minimalwert 

berechnet worden. 

 

Rang Geschlecht Alter bei 
Untersuchung 

EY-Winkel (º) KE-Winkel (º) KF-Winkel (º) 
Path. Norm. Gesund Path. Norm. Gesund Path. Norm. Gesund 

1  W 4,33 17,55 13 20,38 14,91 17 12,89 73,28 74 65,17 

2  M 6 8,02 14 10,51 10,55 17 27,44 86,01 70 70,41 

3  M 6,67 9,75 15 5,42 11,90 17 7,26 80,22 72 84,85 

4  M 8,42 18,43 15 11,52 15,90 17 12,97 80,26 68 65,45 

5  M 11,92 23,53 15 26,01 7,44 17 17,30 73,16 68 60,41 

6  W 12 21,67 17 26,74 5,58 17 8,06 61,72 65 58,75 

7  W 13 25,19 23 21,80 15,43 17 14,76 65,66 61 52,05 

8  M 16,83 25,72 24 10,00 19,79 17 21,93 66,21 61 51,94 

9  M 17 15,13 24 14,65 10,93 17 22,19 84,47 61 56,38 

10  M 17,42 18,00 23 19,52 19,35 17 18,04 89,83 61 71,14 

11  M 18,5 17,71 24 27,96 17,19 17 19,21 60,84 60 56,03 

12  M 18,5 8,40 24 19,56 24,67 17 15,35 77,18 62 63,01 

Median 17,86 20 19,54 15,17 17 16,33 75,23 63,5 61,71 
Minimalwert 8,02 13 5,42 5,28 17 7,26 60,84 60 51,94 
Maximalwert 25,72 24 27,96 24,67 17 27,44 89,83 74 84,85 
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Anhang IV Untersuchungsbogen 

 
     CAMPUS GROSSHADERN 
     CAMPUS INNENSTADT 
 
     KLINIK UND POLIKLINIK FÜR ORTHOPÄDIE, 
     PHYSIKALISCHE MEDIZIN UND REHABILITATION 

 
 

Pathogenese der Entlastungs-Coxa-Valga und Entlastungsdysplasie 
Ganganalytische Studie bei ortetisch und prothetisch versorgten Kinder 

 
Name: 
Vorname: 

 

Geburtsdatum: 

Alter bei Untersuchung: 

Alter bei Diagnosestellung: 

Erkrankungszeitraum: 

 
Geschlecht:       männlich           weiblich  

 

Diagnose: 
 

Seite: 
 

Anamnese: 
 

 

 

 

 

 

 

 

 

 

 

 

Klinische Untersuchungen: 
 
Größe: 
 
Gewicht: 
 
BMI: 
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     CAMPUS GROSSHADERN 
     CAMPUS INNENSTADT 
 

                     KLINIK UND POLIKLINIK FÜR ORTHOPÄDIE, 
     PHYSIKALISCHE MEDIZIN UND REHABILITATION 

 
 
UCLA-Aktivitätsscore Fragebogen 
 

Schätzen Sie bitte ihre derzeitige Leistungsfähigkeit ein. 

Bitte nur einen Punkt ankreuzen! 

 

10. Ich nehme im großen Umfang an Kontaktsportarten wie Turnen, Joggen, Tennis, 

Skifahren, Fußball oder starker körperlicher Arbeit teil.                                                                                                
 
 

9. Ich nehme gelegentlich an den unter Punkt 1. genannten Aktivitäten teil.                                                                               
 

 

8. Ich nehme regelmäßig an sportlichen (Vereins-)Aktivitäten wie Kegeln/Bowling, Golf oder 

einem Mannschaftssport teil.                  

 

7. Ich nehme gelegentliche an sportlichen Aktivitäten wie Radfahren teil.                                                                                                
 

 

6. Ich nehme regelmäßig an gemäßigten Aktivitäten wie Schwimmen und unbegrenzter Haus- 

bzw. Gartenarbeit teil.                               

 

5. Ich nehme gelegentlich an gemäßigten Aktivitäten wie unter 5 genannt teil.                                                                                   
 
 

4. Ich nehme regelmäßig an gemäßigten Aktivitäten wie Spazierengehen oder begrenzter 

Gartenarbeit teil.                           

 

3. Ich nehme gelegentlich an den unter Punkt 7. genannten Äktivitäten teil.                                                                               
 

 

2. Ich bin größtenteils inaktiv und auf die minimalen Aktivitäten des täglichen Lebens 

beschränkt.                                                          

 

1. Ich bin absolut inaktiv, bettlägerig oder nicht in der Lage das Haus zu verlassen.                                                                          
 
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     CAMPUS GROSSHADERN 
     CAMPUS INNENSTADT 
 

                     KLINIK UND POLIKLINIK FÜR ORTHOPÄDIE, 
     PHYSIKALISCHE MEDIZIN UND REHABILITATION 

 
Klinisches Messblatt für untere Gliedmaßen 
 

 Rechts Links 

BLD in cm (im Stehen)  

Beinlänge in cm (im Liegen)   

- Oberschenkellänge   

- Unterschenkellänge   

Hüftgelenke:   

- Streckung / Beugung   

- Abspreizen / Anführen   

- Drehung auswärts / einwärts (in 

Bauchlage, Hüfte gestreckt) 
  

- Drehung auswärts / einwärts (in 

Rückenlage, Hüfte gebeugt) 
  

Fußlänge   

Umfangmaße in cm   

- 20 cm oberhalb Kniegelenkspalt   

- 10 cm oberhalb Kniegelenkspalt   

- Kniescheibenmitte   

- 15 cm unterhalb Kniegelenkspalt   

- Fessel   

- Knöchel   

- Mittelfuß   

- Vorfußballen   

 
Radiologisches Messblatt für Hüfte (BÜS): 

 Rechts Links 

Sharp-Ullmann Winkel   

AC Winkel   

CE-Winkel   

Tränenfigur-Abstand (TDD)   

Migration Percentage   

EY-Winkel   

KE-Winkel   

KF-Winkel   

pCCD-Winkel   

Articulo-trochanteric Distance (LTA)   
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     CAMPUS GROSSHADERN 
     CAMPUS INNENSTADT 
 

                     KLINIK UND POLIKLINIK FÜR ORTHOPÄDIE, 
     PHYSIKALISCHE MEDIZIN UND REHABILITATION 

 
Instrumentelle Ganganalyse: 
Ganggeschwindigkeit:  

Weg-Zeit: 

Gangzyklus Rechts Links 

Schrittweite   

Schrittlänge   

Schrittzeit   

Standphase   

Stoßdämpfungsphase   

Mittlere Standphase   

Abstoßphase   

Schwungphase   

Doppelstandphase  

Doppelschrittlänge  

Doppelschrittzeit  

Kadenz  

 

Bodenreaktionskräfte Rechts Links 

Körperschwerpunkt  

Maximalkraft, N 

(Vorfuß, Mittelfuß, Ferse) 
  

Zeit Maximalkraft, % der Standphase (Vorfuß, 

Mittelfuß, Ferse) 
  

Maximaldruck, N/cm2 

(Vorfuß, Mittelfuß, Ferse) 
  

Wechsel Rückfuß nach Vorfuß, sek   

Wechsel Rückfuß nach Vorfuß, %   

 

Kinematische Ganganalyse Rechts Links 

Beckenkippung  

Beckenrotation  

Oberschenkel ante   

Oberschenkeladduktion   

Oberschenkelrotation   

Kniebeugung   

Dorsales Flexion des Fußes   

Fußrotation   
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Anhang V Aufklärungsbogen und Einwilligungserklärung 
 

     CAMPUS GROSSHADERN 
     CAMPUS INNENSTADT 
 

                     KLINIK UND POLIKLINIK FÜR ORTHOPÄDIE, 
     PHYSIKALISCHE MEDIZIN UND REHABILITATION 

 

 
  Schwerpunkt Kinderorthopädie    
  Leiter: Prof. Dr. med. B. Heimkes 
 
     Patientenanmeldung 
  Herr Werth 
     Tel (089) 7095 – 3920 
     Fax (089) 7095 – 3932 
    
     Sekretariat Frau Brückner 
  Tel (089) 7095 – 3931 
  Fax (089) 7095 - 3934 
  
  KIGA 
  Prof.H./br 
                               28.10.2013 

 
  
Spezialsprechstunden für:   - kindliche Hüfterkrankungen (Prof. Dr. Heimkes) 
    - neuroorthopädische Erkrankungen (Prof. Dr. Heimkes) 
    - angeborene und erworbene Fußdeformitäten (Dr. Utzschneider) 

- arthroskopische Operationen (Prof. Dr. Müller, Dr. Utzschneider)  
 
 
Sehr verehrte/r ……………………………………………. 
Sehr verehrte Eltern, 
   
Seit vielen Jahren stellst Du dich immer wieder mit deinen Eltern in der Orthesensprechstunde 
der Kinderambulanz Großhadern vor, um die von Dir getragene Orthese erneuern, verlängern 
oder reparieren zu lassen. Bei diesen Vorstellungen bist  Du regelmäßig von einem unserer 
Doktoren untersucht und neu vermessen worden,  in größeren Abständen war auch eine 
Röntgenkontrolle erforderlich. 
 
Wir bitten Dich und Deine Eltern nun, bei der nächsten Routinekontrolle etwas mehr Zeit 
mitzubringen, weil wir Dich zu diesem Zeitpunkt zu einer Zusatzuntersuchung einladen möchten. 
Seit neuestem besitzen wir ein Ganganalyselabor mit einem Laufband, wie Du es vielleicht schon 
einmal in einem Sportgeschäft gesehen hast, das Laufschuhe verkauft. Im Unterschied zu diesen 
einfachen Messlaufbändern dient unser Gerät nicht zum Schuhverkauf, es vermisst vielmehr 
ganz genau, wie du mit deiner Orthese gehst. Es entstehen dabei im angeschlossenen Computer 
Kurven, die uns und Dir genau sagen, ob Du deine Beine unterschiedlich stark belastest oder ob 
Du diese beim Gehen stärker verdrehst. 
 
Die Untersuchung im Ganganalyselabor ist völlig harmlos, da du durch eine begleitende 
Aufhängung gegen Stürze gesichert bist, sie ist ohne irgendeine Strahlenbelastung und 
absolut schmerzfrei. Du erhältst sogenannte Sensoren aufgeklebt, das sind kleine Sender, die 
deine Bewegungen an den Computer weitermelden, während du auf dem Laufband ganz normal 
gehst. Mit dem Aufkleben dauert die gesamte Untersuchung ungefähr 20 Minuten. Zur 
Durchführung der Studie sind keine zusätzlichen Röntgenaufnahmen erforderlich, wir 
können hier genügend Information aus älteren Aufnahmen gewinnen, die im Rahmen der 
Vorbehandlung notwendig wurden. 
 
 
Direktor der Klinik: Prof. Dr. med. Dipl.-Ing. Volkmar Jansson 
Das Klinikum der Universität München ist eine Anstalt des öffentlichen Rechts. 
Vorstand: Ärztlicher Direktor: Prof. Dr. Dr. h.c. Karl-Walter Jauch (Vorsitz), Kaufmännischer Direktor: Gerd Koslowski, 
Pflegedirektor: Peter Jacobs, Vertreter der Medizinischen Fakultät: Prof. Dr. Dr. h.c. Maximilian Reiser (Dekan) 
Institutionskennzeichen: 260 914 050, Umsatzsteuer-Identifikationsnummer gemäß §27a Umsatzsteuergesetz: DE 813 536 017 
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Mit den gewonnenen Ergebnissen wollen wir in einer Studie mit dem Titel:  
 

„Ganganalytische Studie zur Entlastungs-Coxa valga (antetorta) orthetisch oder 
prothetisch versorgter Kinder“ 

 
herausfinden, ob und wie sich dein Gangbild von einem Kind unterscheidet, das keine Orthese 
trägt. Wir wollen insbesondere danach suchen, ob es Möglichkeiten gibt, die bei Dir bestehende 
Hüftverformung zu erklären und dann gering zu halten, zum Beispiel durch eine begleitende 
Krankengymnastik oder durch einen anderen Aufbau der Orthese.  
 
Als Zweites bitten wir Dich, zusammen mit Deinen Eltern den mitversandten Fragebogen 
anzusehen, die gestellten Fragen zu beantworten und den ausgefüllten Fragebogen zur 
nächsten Untersuchung mitzubringen. Aus den gestellten Fragen wollen wir erkennen, wie sich 
die Orthese auf dein Alltagsleben  auswirkt. 
 
Die Untersuchung im Ganganalyselabor  ist absolut freiwillig und wenn Du sie nicht durchführen 
willst, entstehen Dir in der Behandlung selbstverständlich keine Nachteile. Bei der Studie werden 
alle Vorschriften über die ärztliche Schweigepflicht und den Datenschutz streng eingehalten. Alle 
Daten über Dich und über die Untersuchungsergebnisse werden nur in verschlüsselter 
(sogenannter  pseudonymisierter) Form ausgewertet, das heißt, bei der Auswertung der 
Ergebnisse liegen weder dein Name noch dein exaktes Geburtsdatum vor. Solltest Du oder 
Deine Eltern im Nachhinein Bedenken haben, deine Daten auswerten zu lassen, dann werden 
alle erhobenen Daten einschließlich der ausgefüllten Fragebögen vernichtet. 
 
Deine Originaldaten und den Verschlüsselungscode dürfen nur zwei ärztliche Mitarbeiter unseres 
Kinderorthopädischen Schwerpunkts, Herr Prof. Heimkes und Herr Dr. Günther einsehen. Die 
gewonnen Daten werden fünf Jahre im Klinikum Großhadern aufbewahrt und dann vernichtet. 
 
Wenn die durchgeführte Studie wichtige Ergebnisse erbringt, die wir weitersagen sollten, dann 
werden wir diese in einer Fachzeitschrift  veröffentlichen. Für diese Veröffentlichung gilt 
dasselbe, was für die Studie selbst gilt. Es wird also darin niemand erkennen können, dass Du an 
der Studie teilgenommen hast und dass deine Daten in die Studie mit aufgenommen wurden. 
 
Da die Ganganalyse im Rahmen einer von Dir wahrgenommenen Routineuntersuchung 
durchgeführt wird, und, wie oben geschildert, nach menschlichem Ermessen risikolos ist, 
wurde für die Untersuchung keine verschuldenunabhängige  und keine Wege-Unfall-
Versicherung abgeschlossen. 
 
Wir würden uns sehr freuen, wenn Du bei der Ganganalyse mitmachen würdest. Solltest Du noch 
weitere Fragen haben, dann ruf einfach bei Herrn Professor Heimkes (089 7095 3920) an. 
 
 
Prof. Dr. Bernhard Heimkes                             
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„Ganganalytische Studie zur Entlastungs-Coxa valga (antetorta) orthetisch oder 
prothetisch versorgter Kinder“ 

 

 

 

Einwilligungserklärung 

 

Mit der Durchführung der vorgeschlagenen Ganganalyse und der oben beschriebenen 

Studiendurchführung  bin ich einverstanden 

 

 

 

München, den……………………………………Unterschrift Patient 

 

 

 

 

 

Mit der Durchführung der vorgeschlagenen Ganganalyse und der oben beschriebenen 

Studiendurchführung bin ich einverstanden 

 

 

 

München, den……………………………..Unterschrift der Erziehungsberechtigten 
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Anhang VII Einzelberichte der Ganganalyse des Untersuchungsgutes 
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Abkürzungsverzeichnis 

 
 
a.p. : Antero-posterior 
Abb. : Abbildung 
AC : Acetabulum 
ANOVA : Analysis of Variance 
AO : Arbeitsgemeinschaft Osteosynthese 
AT : Anteversion 
BLD : Beinlängendifferenz 
BMI : Body Mass Index 
CE : Center Edge 
cm : Centimeter 
COM : Center of Mass 
COP : Center of Pressure 
D : Druck 
DGOT : Deutsche Gesellschaft für Orthopädie und Traumatologie 
EMG : Elektromyografie 
EY : Epiphysenfuge – Y 
GMFCS : Gross Motor Function Classification System 
H : Hour 
Ho : Nullhypothese 
Hx : Alternativhypothese 
K : Körperabschnittsgewicht 
KE : Köpfepiphyse 
KF : Kopfepiphysen-Femurschaft 
Kg : Kilogram 
Km : Kilometer 
Lig. : Ligamentum 
LTA : Lesser Trochanter to Articular surface distance 
M : Muskelkraft 
M : Meter 
Min : Minute 
mm : Millimeter 
MP : Migration Percentage 
N : Newton 
OSG : Oberes Sprunggelenk 
p : Probabilität 
pCCD : Projizierter Centrum-Collum-Diaphysen 
R : Resultierende 
RT : Trochanterresultierende 
s : Second 
Schr : Schritte 
Sek : Sekund 
Sog. : Sogenannten 
Tab. : Tabelle 
TDD : Tear Drop Distance 
UCLA : University of California Level of Activity 
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