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Abstract
In this thesis we study the properties of the Bernstein estimator for copulas and
copula densities. Our aim is to clarify the relevance of this estimator for practical
applications and to provide methodological enhancements. For practitioners ques-
tions regarding inference on copula models are the essential components in every
analysis that is conducted within the copula framework. Naturally, since reliable
inference can only be conducted on robust and valid information, considerable e�ort
has been made to develop and test various methods of estimating copulas from em-
pirical data. An influential contribution to this line of copula theory was published
e.g. in 1995 by Genest et al. where the authors developed a semi-parametric esti-
mation procedure for copulas that can be parameterized by a possibly vector valued
dependence measure –.

Bernstein copula estimators were introduced in 2004 by Sancetta and Satchell.
Based on Bernstein polynomials and their property to approximate any copula ar-
bitrary well, Bernstein copulas constitute a very flexible and non-parametric tool to
describe multivariate dependence structures. They are parameterized by the num-
ber of polynomials m that are applied to approximate the given copula, which in an
estimation setting is given by the empirical copula. In a non-parametric framework
the specification of an appropriate m is left to the analyst and to our knowledge,
apart from cross-validation estimates, no explicit criterion that supports the latter
with this task has been proposed yet.
We develop a data-driven estimator for m, which is optimal with respect to a cri-
terion that is a functional of the mean squared error of the estimator. We compare
our estimator in an extensive simulation study to the least square cross-validation
method and show that our estimator is clearly superior to the latter in the bivariate
case and that it generates tolerable estimates in 3 dimensional settings, even for
small datasets. We develop the concept of local Bernstein copula estimation, that
allows to specify the point estimator based on information that is local to the sup-
port of the respective dataset. Even though it was proved by Bouezmarni et al. in
2011 that the Bernstein copula estimator is asymptotically unbiased for unbounded
copula densities, Bernstein estimates in the tail region of copula densities are usu-
ally poor in precision for small to medium sized samples, since realizations in these
regions are sparse. Local Bernstein copula estimation allows us to enhance the pre-
cision on the total support and notably in the tails of the copula, furthermore this
concept extends naturally to the non-parametrical analysis of dynamical copulas,
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i.e. copulas that change in the course of time. An application of Bernstein copula
estimators as model-selection tool is presented as well.

We apply these tools to financial datasets that are independent and identically
distributed, as well as to datasets, that do not share this property.



Zusammenfassung
Bei der Analyse von Abhängigkeitsstrukturen zwischen Zufallsvariablen wird seit
geraumer Zeit in verschiedenen Anwendungsbereichen, z.B. bei der Bewertung von
Finanztiteln, auf Copulamodelle zurückgegri�en. Für den Anwender stellt sich
neben der Auswahl des adäquaten Copulamodells auch die Frage nach der Inferenz,
welche sich aufbauend auf den Ergebnissen der Schätzung ergibt.

Diese Doktorarbeit befasst sich mit den Eigenschaften des Bernsteinschätzers für
Copulae und Copuladichten, welcher zu den nichtparametrischen Copulaschätzern
zählt. Er basiert auf der Anwendung von Bernsteinpolynomen auf die empirische
Copula. Bernsteinpolynome sind überwiegend aus der Approximationstheorie bekannt
und wurden erstmals in 2004 von Sancetta undSatchell für die Anwendung auf
Copulamodelle verwendet. Sie verhalten sich in allen wesentlichen Eigenschaften
wie andere nichtparametrischen Schätzer, besitzen jedoch vorteilhafte Eigenschaften
hinsichtlich ihrer asymptotischen Varianz. Das Ziel dieser Arbeit ist es die Eigen-
schaften dieses Schätzers für praktische Anwendungen zu analysieren und method-
ische Verbesserungen vorzuschlagen. In diesem Zusammenhang entwickle ich:

• einen semiparametrischen Schätzer für den Parameter, der die Bandbreite des
Bernsteincopulaschätzers festlegt,

• das Konzept der lokalen Bernsteincopulaschätzung.

Derzeit wird der Bandbreitenparameter, der zur Spezifikation der Bernsteincop-
ula notwendig ist in der Regel ad-hoc gesetzt, was sich erheblich auf die Güte der
Schätzung auswirken kann. Durch die Entwicklung meines Schätzers biete ich eine
robuste Alternative zu diesem derzeit verbreiteten Vorgehen. Die Robustheit des
Schätzers weise ich u.a. in verschiedenen Simulationsstudien nach. Das Konzept
der lokalen Bernsteincopulaschätzung bietet die Möglichkeit den Schätzer auf ver-
schiedene Bereiche des untersuchten Datenraumes anzupassen, um so die Güte der
Schätzung an diesen Stellen zu verbessern. Dies ist sinnvoll da die Schätzgüte des
Bernsteincopulaschätzers in den Rändern des untersuchten Raumes nachlässt, let-
ztere sind aber in vielen Anwendungen von besonderer Relevanz. Der lokale Bern-
steincopulaschätzer ermöglicht zudem die Analyse von Abhängigkeitsstrukturen in
Zeitreihendaten hinsichtlich deren zeitlicher Veränderung. Auch in diesem Kontext
bieten sie den Vorteil gegenüber parametrischer Methoden, das sie ohne jegliche
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Annahme bezüglich der tatsächlichen Copula auskommen. Eine Anwendung des
lokalen Bernsteincopulaschätzers auf Finanzzeitreihendaten wird von mir gezeigt.
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1. Introduction
Copulas can be thought of as multivariate probability distributions that are defined
on the unit hypercube.

C : [0, 1]d æ [0, 1]
This perspective di�ers slightly from the widespread interpretation that focuses on

the fact, that a copula is the extracted dependency structure of a given probability
distribution. Latter property is responsible for the great popularity of copula theory
in applied probability theory as well as in real world applications, as it provides a
very flexible way to construct joint probability distributions.12

Viewing a Copula as a probability distribution in its own right leads to the question
of what can be inferred from such a probabilistic model. The information that is
contained in the marginal distributions is stripped from hints to the quantitative
extent of the random variables that generated the uniform margins and can solely be
recovered by reverting the initial transformation. Thus the joint occurrences within
a d-dimensional random vector U = (U

1

, U
2

, . . . , U
d

) with copula C are completely
controlled by the copula function.

C assigns probabilities to the joint occurrences of the individual ranks of the
random vector X = (X

1

, X
2

, . . . , X
d

), where

U = (U
1

, U
2

, . . . , U
d

) = (F
1

(X
1

), F
2

(X
2

), . . . , F
d

(X
d

)), d œ N.

F
i

, i œ {1 . . . d} denote the respective cumulative distribution functions of X. It is
often helpful in a first step to analyze a copula solely with regards to the probability
mass it assigns to the joint ranks and ignore the random variables that generated U,
as it visualizes the copula’s equivalence to the rather abstract concept of “dependence
structure”. We are therefore able to state heuristically e.g. in the bivariate case

C : [0, 1]2 æ [0, 1],

that a copula which assigns substantial probability mass along the diagonal in the
[0, 1]◊ [0, 1] plane which passes through the pair [(0.2, 0.2), (0.8, 08)] while allocating
negligible probability mass on the counter-diagonal along the pair [(0.8, 0.2), (0.2, 0.8)]

1For applications in risk management see e.g. McNeil et al., 2010.
2For applications in finance see e.g. Cherubini et al., 2004.
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represents a dependency structure that would most likely generate a positive cor-
relation coe�cient.3 It should be emphasized, that the mechanism that steers this

1

1

0
(a) diagonal

1

1

0
(b) counter-diagonal

Figure 1.1.: Orientation in the unit plane

interpretation relies heavily on the fact, that the margins of a copula are uniformly
distributed on the unit interval.4 To see this consider e.g. applications in Bayesian
statistics where the uniform distribution is used as prior distribution in situations
where ex ante there is no information available that allows the analyst to discrimi-
nate within the space of parameters of interest, thus equal probabilities are assigned
to every possible outcome.5 An equivalent interpretation in copula theory would
state that the information with regards to the dependency structure that is con-
tained in the marginal distributions is perfectly symmetrical and non-informative.
It follows that by specifying any copula apart from the independence copula for a
random vector U with pairwise independent entries, one explicitly induces a distinct
dependence structure and removes the independence. This enables us to exercise
a great amount of control when constructing relationships between random vari-
ables with regards to the specification of their joint occurrences. Considerations of
causality within U are not yet addressed by copula theory.

For practitioners questions regarding inference on copula models become relevant
after a copula has been extracted from a given dataset. The problem set that arises
in the latter context is identical to the estimation problems that statistical theory
has been dealing with traditionally. Given a sample of random multivariate data
points the objective is to estimate the true copula that generated the sample. This
can either be conducted in a fully parametrical procedure, where the necessary pa-
rameters of the margins and the copula can be estimated by maximum likelihood
or by a semi-parametric approach. Latter is generally conducted in a two step pro-
cedure where the first step involves a transformation of the margins into uniformly

3Technical definitions of dependence concepts that can capture these properties precisely follow
in chapter 2

4Other transformations of X are feasible and relevant in di�erent contexts, see Embrechts, 2009.
5see e.g. Lehmann and Casella, 1998, Lehmann and Casella regard the usage of so called ’nonin-

formative priors’ as mimicking a state of ignorance with respect to the true state of nature.
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distributed random variables U ≥ (0, 1). If we possess the necessary information, we
can use the true marginal distributions to perform this transformation, otherwise
we have to use the empirical margins, which asymptotically converge to the true
margins.6 The second step comprises the actual estimation of the copula, which can
be done either parametrically or non-parametrically. Kim et al. (2007) conduct an
extensive simulation study to compare semi-parametric and parametric estimation
methods for copulas. The authors find that semi-parametric methods are superior to
fully parametric methods when the true margins are unknown, which is generally the
case in practice. The Bernstein estimator for copulas represents a non-parametric
approach to copula estimation problems that lends itself to semi-parametric estima-
tion by following the steps outlined above.

This thesis is organized as follows. The copula function and its relation to depen-
dence concepts is introduced in Chapter 2. In Chapter 3 we discuss central aspects
and properties of the Bernstein copula, which is the main object of our analysis. We
give details on possible estimation procedures and present two alternative represen-
tations, the multivariate baker representation and the Rook copula. This chapter
concludes with an application related to model-selection. In Chapter 4 we lay the
groundwork for the development of the Locally optimal Bernstein copula. We com-
pare present approaches on bandwith selection and introduce a new criterion two
estimate an optimal grid size for the Bernstein copula, penalized grid optimality. We
conduct extensive simulation studies to assess the empirical behavior of the Bern-
stein copula estimator, parameterized with grid sizes specified according to their
penalized grid optimality. Chapter 5 defines the concept of Locally optimal Bern-
stein copulas, a concept which allows the techniques developed in Chapter 4 to be
adapted to various settings, such as estimation of the boarder regions of a copula or
time series analysis.

6For a compact introduction to empirical process theory see e.g. Van der Vaart, 2000.



2. The Copula Function
As mentioned in the previous chapter a copula can be thought of as a d-dimensional
distribution with uniformly distributed marginals C : [0, 1]d æ [0, 1] which satisfies
the properties:

1. C(u
1

, . . . , u
i≠1

, 0, u
i+1

, . . . , u
d

) = 0,

2. C(1, . . . , 1, u, 1, . . . , 1) = u,

3. C is d-increasing, i.e for each hyper-rectangle:

B = ◊d

i=1

[x
i

, y
i

] ™ [0, 1]d,

the C-Volume defined by:
Z

B

dC(u) =
X

zœ◊d

i=1{x

i

,y

i

}

(≠1)N(z)C(z) Ø 0,

where the N(z) = #{k : z
k

= x
k

} is non negative.

Property 1 establishes that zero probability mass is assigned to a copula,if one
of its arguments is zero, whereas Property 2 establishes that a univariate margin
may be recovered by integrating the copula over the other margins, which holds
for multivariate distributions in general. The notion of d-increasing in Property 3
is merely the n-dimensional analog of a non-decreasing function of one variable,
a necessary condition for a copula to be regarded as a multivariate probability
distribution.1 Two further results that are key in understanding the popularity of
copula models are the quantile transformation and the probability transformation,
which we present verbatim as in McNeil et al., 2010:

Proposition 1. Let G be a distribution function and let
Ω

G denote its generalized
inverse, i.e. the function

Ω

G(y) = inf{x : F (x) Ø y}.

1. Quantile transformation. If U ≥ U(0, 1) has a standard uniform distribu-
tion, then P (

Ω

G(U) Æ x) = G(x).
1see e.g. Nelsen, 2007, for a detailed introduction to the properties of a copula.
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2. Probability transformation. If Y has df G, where G is a continuous uni-
variate distribution function, then G(Y ) ≥ U(0, 1).

For a proof we refer to the book of the authors or any introductory text in proba-
bility theory. The probability integral transform provides a simple way to transform
a random variable into uniformly distributed random variables, whereas the quantile
transformation enables to perfectly reverse the quantile transformation in the sense
that the marginal distribution can be fully recovered. These transformations lie at
the very heart of Sklar‘s theorem which is the central result within copula theory:2

Theorem 1. (Sklar 1959). Let F be a joint distribution function with margins
F

1

, . . . , F
d

. Then there exists a copula C : [0, 1]d æ [0, 1] such that, for all x
1

, . . . , x
d

in R = [≠Œ, Œ],

F (x
1

, . . . , x
d

) = C (F
1

(x
1

) , . . . , F
d

(x
d

)) . (2.1)

If the margins are continuous, then C is unique; otherwise C is uniquely determined
on Ran F

1

◊ Ran F
2

◊ · · · ◊ Ran F
d

, where Ran F
i

= F
i

(R) denotes the range of F
i

.
Conversely, if C is a copula and F

1

, . . . , F
d

are univariate distribution functions,
then the function F defined in 2.1 is a joint distribution function with margins
F

1

, . . . , F
d

.

Sklar’s theorem states essentially, that it is possible to strip away the complete
distributional information of the marginal distributions of a multivariate distribu-
tion and regain the information relevant to the multivariate dependence structure
by means of the function C, that couples the uniformly distributed variables such
that they are distributed like F . Thus a copula can be interpreted as dependence
structure of a multivariate vector.

Another interesting relationship that should be focused is the relation of copula
functions to scale invariant dependence measures.3 If a relationship between a set
of random variables was considered to be perfectly positively dependent, we would
expect these variables to jointly increase and decrease in all possible states of the
universe. We would expect the contrary to be the case if a set of random vari-
ables was considered to be perfectly negatively dependent. While the former is
easily visualized in all dimensions the latter notion becomes conceptually di�cult
for dimensions d > 2. This heuristic notion of perfect positive dependence and per-
fect negative dependence is formalized by the Fréchet–Hoe�ding bounds for copulas

2see McNeil et al., 2010, , for this translation.
3see Embrechts et al., 2002, , for a succinct analysis of the properties of Pearsons correlation

coe�cient and other dependence measures such as e.g. rank correlations.
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given by

max {1 ≠ d +
dX

i=1

u
i

} Æ C(u
1

, . . . , u
d

) Æ min {u
1

, . . . , u
d

}, (2.2)

where the lower bound constitutes a copula in the bivariate case which is commonly
referred to as countermonotonicity copula

W (u
1

, u
2

) = max (u
1

+ u
2

≠ 1, 0).

In contrast the upper bound of Equation 2.2 constitutes a copula for all dimensions
d Ø 2 and is commonly referred to as comonotonicity copula

M(u
1

, . . . , u
d

) = min {u
1

, . . . , u
d

}.

In the bivariate case W (u and M(u, where u = (u
1

, u
2

) are the distributions of the
vectors (U, 1 ≠ U) and (U, U) respectively, as can be seen from

W (u
1

, u
2

) = P (U Æ u
1

, 1 ≠ U Æ u
2

), (2.3)
M(u

1

, u
2

) = P (U Æ u
1

, U Æ u
2

), (2.4)
(2.5)

where U ≥ U(0, 1). (U, 1≠U) represents a random vector that has all its probability
mass on the counterdiagonal, i.e. between (0, 1) and (1, 0), whereas (U, U) represents
a vector with all of its mass on the diagonal, i.e. between (0, 0) and (1, 1), see
Figure 1.1. Thus the upper and lower Fréchet–Hoe�ding bounds capture exactly the
notion of perfect positive and perfect negative dependence as we described above.
In between these two extremes lies the independence or product copula.

Y
(u

1

, . . . , u
d

) =
dY

i=1

u
i

(2.6)

which obviously represents independence. Figure 2.1 depicts these three copulas as
well as their corresponding contour plots. To assess the height of each contour line
it is easily seen from Equation 2 that the latter is identical to the value of u or v at
the border of the graph.

In contrast to the notion of dependence that is captured by Pearson’s correlation
coe�cient, W (u) and M(u) capture dependence via the complete distribution of the
ranks of a pair of random variables (F (X), F (Y )). Embrechts et al., 2002 define a set
of desired properties for a dependence measure ”(X, Y ) that measures dependence
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Figure 2.1.: First row: countermonotonicity copula, second row: product copula, third
row: comonotonicity copula

in a single number as Pearson’s correlation coe�cient does, two of which being that

”(X, Y ) = 1 … X, Y comonotonic, (2.7)
”(X, Y ) = ≠1 … X, Y countermonotonic. (2.8)

They further note that the natural requirement

”(X, Y ) = 0 … X, Y independent (2.9)

contradicts the requirement that ”(X, Y ) may possess the correct sign when (X, Y )
show positive or negative dependence, i.e. for T : R æ R:

”(T (X), Y ) =
(

”(X, Y ), if T increasing,

≠”(X, Y ), if T decreasing.
(2.10)

They continue to show that rank correlations satisfy these and the other properties
they have defined, which make them preferable to Pearson’s correlation coe�cient.
The advantages of the former include invariance under monotone transformations,
whereas Pearson’s correlation coe�cient is solely invariant under strictly increasing
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linear transformations. We note that there is a copula representation for the two
most widely known rank correlation coe�cients Spearman’s rho fl

S

and Kendall’s
tau fl

·

:4

fl
S

= 12
Z

1

0

Z
1

0

[C(u, v) ≠ uv] dudv, (2.11)

fl
·

= 4
Z

1

0

Z
1

0

C(u, v)dC(u, v) ≠ 1, (2.12)

it is thus suitable to regard rank correlation coe�cients as natural dependence pa-
rameters of copula functions. We will utilize this notion to develop an estimate for
the bandwidth parameter of the Bernstein copula in Chapter 4. Another widely
known measure that depends solely on the copula of a bivariate random vector are
the coe�cients of tail dependence given by

⁄
u

:= ⁄
u

(X
1

, X
2

) = lim
qæ1

≠
P (X

2

>
Ω

F
2

(q)|X
1

>
Ω

F
1

(q)), (2.13)

⁄
l

:= ⁄
l

(X
1

, X
2

) = lim
qæ0

+
P (X

2

Æ
Ω

F
q

(q)|X
1

Æ
Ω

F
1

(q)). (2.14)

Their copula representation are

⁄
l

= lim
qæ0

+

C(q, q)
q

, (2.15)

⁄
u

= lim
qæ1

≠

Ĉ(1 ≠ q, 1 ≠ q)
1 ≠ q

= lim
qæ0

+

Ĉ(q, q)
q

, (2.16)

(2.17)

where Ĉ is the survival copula of C.5 The variables X
1

, X
2

are said to show upper
or lower tail dependency if the respective coe�cient is in ]0, 1], if ⁄

u

= 0 or ⁄
l

= 0
they are considered asymptotically independent in the respective tail.

4Copula representations for two lesser known rank correlation coe�cients Gini’s gamma and
Blomqvist’s beta are given by:

• “

Y1,Y2 = 4
R 1

0 [C(u1, 1 ≠ u1) + C(u1, u1))du1 ≠ 1]

• —

Y1,Y2 = 4C

� 1
2 ,

1
2
�≠ 1.

5see McNeil et al., 2010, for further details on the tail dependance coe�cients.



3. The Bernstein Copula
The ability of Bernstein polynomials to approximate any function f(x) arbitrar-
ily well has been well known in approximation theory.1 They were developed by
Bernstein, 1912 to provide a constructive proof of the Weierstrass Approximation
Theorem. Their application to copula approximation has been studied by Li et al.,
1997, Li et al., 1998, Kulpa, 1999 who focus on convergence properties of Bernstein
and so called checkerboard copulas, as well as Durrleman et al., 2000b and Durrleman
et al., 2000a who established the convergence of Spearman’s rho and Kendall’s tau
to their approximands for both checkerboard and Bernstein copulas. These results
were established in bivariate settings. Applications to frequentist density estimation
have been introduced by Vitale, 1975 for univariate densities and Tenbusch, 1994 for
bivariate densities, while their applicability within a Bayesian framework has been
investigated by Petrone, 1999a, Petrone, 1999b and Petrone and Wasserman, 2002.
Bernstein polynomials have been discussed within regression analysis by Tenbusch,
1997 and Brown and Chen, 1999. Their properties with regard to the estimation
of copula functions were analyzed by Sancetta and Satchell, 2001 and Sancetta and
Satchell, 2004, as well as Bouezmarni et al., 2008, Bouezmarni et al., 2010 and
Bouezmarni et al., 2013. Janssen et al., 2012 provide the almost sure consistency
and asymptotic normality for the empirical Bernstein copula density estimator and
an analysis with respect to vine copula constructions is presented in Weiss and
Sche�er, 2012. For a recent publication on Bernstein copulas see Dou et al., 2014
or Cottin and Pfeifer, 2014, both of which introduce alternative representations of
Bernstein copulas, which we will discuss in the Sections 3.4.1 and 3.4.2.

3.1. Definition
Let f(x) be a function defined on the interval [0, 1], then

B
n

(x) = Bf

n

(x) =
nX

‹=0

f
⇣‹

n

⌘✓n

‹

◆
x‹ (1 ≠ x)n≠‹ , ‹ œ {0, . . . , n}.

1see Lorentz, 2012, for an exposition on the main facts of Bernstein polynomials.
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is called the Bernstein polynomial of order n of the function f(x).2 The n + 1
expressions

b
‹,n

(x) =
✓

n

‹

◆
x‹ (1 ≠ x)n≠‹ , ‹ œ {0, . . . , n}. (3.1)

are also referred to as Bernstein basis polynomials. In general any linear combination
of Bernstein basis polynomials

B(x) =
nX

‹=0

—
‹

b
‹,n

(x),

is called a Bernstein polynomial or polynomial in Bernstein form of degree n. The
coe�cients —

‹

are called Bernstein coe�cients or Bèzier coe�cients. Let,

P
m

i

,v

i

(u) =
✓

m
i

v
i

◆
uv

i (1 ≠ u)m

i

≠v

i , v
i

œ {0, . . . , m
i

},

Let –
⇣

v1
m1

. . . , v

d

m

d

⌘
be a real valued constant indexed by (v

1

, ...., v
d

), 0 Æ v
j

Æ m
j

.

If C
B

: [0, 1]d æ [0, 1], where

C
B

(u
1

, . . . , u
d

) =
X

v1

...
X

v

d

–

✓
v

1

m
1

, . . . ,
v

d

m
d

◆
dY

i=1

P
m

i

,v

i

(u
i

), (3.2)

satisfies the properties of the copula function, then C
B

is a Bernstein copula for any
m

j

Ø 1. Each margin u
j

of the Bernstein copula is separated into m
j

, j = 1, . . . , d
sections, giving rise to a grid-type structure in the d-dimensional hypercube. If
m = m

j

, ’j = 1, . . . , d we will refer to m as the grid-size of the Bernstein cop-
ula. C

B

is evaluated at each vertex of this grid by its coe�cient, the constant
–
⇣

v1
m1

, . . . , v

d

m

d

⌘
, which is then smoothed by the product of Bernstein polynomials

Q
d

i=1

P
m

i

,v

i

(u
i

). The latter has the analogous interpretation as the kernel func-
tion in kernel density estimation, i.e. it can be thought of as weight function that
adjusts the constant – by applying information from the whole dataset, with the
di�erence being that the weight function is adjusted according to the position of
its arguments. The constant –

⇣
v1
m1

, . . . , v

d

m

d

⌘
represents the value of the estimated

copula, evaluated at the a specific vertex of the grid. In the case of estimating an
unknown copula by its empirical copula – is recovered from the dataset by counting
the number of observations in the respective hypersquare of the grid, the boundary
of which is specified by the arguments of –. Figure 3.1 depicts the smoothing e�ect

2see Lorentz, 2012.
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of 2-dimensional Bernstein polynomials. Each color represents one polynomial, the
graphs are generated by fixing one value of the binomial coe�cient and evaluating
the product

Q
2

i=1

P
m

i

,v

i

(u
i

), for all values of u, v on [0, 1]2. We can see that at each
point in the plane the weight that is assigned to the respective coe�cient is a result
of the overlap of multiple polynomials. We can further observe that, as mentioned
above, the structure of the weight depends on the position of the point.

u

0.0

0.5

1.0

v

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

u
0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1.: Smoothing e�ect of 2-dimensional Bernstein polynomials: m=3

The Bernstein copula can be thought of as a generalization of the class of poly-
nomial copulas, i.e. the class of copulas that can be expressed as polynomials in at
least one of the margins of u. Their general form in the bivariate case is

C(u, v) = a
n

(v)un + a
n≠1

(v)un≠1 + · · · + a
1

(v)u + a
0

(v),

with appropriate functions a
0

, . . . , a
n

. Members of this class are e.g. the Product
copula 2.6 mentioned in Chapter 2, which has linear sections in all variables or the
bivariate Farlie-Gumbel-Morgenstern Copula:

C
◊

= uv + ◊uv(1 ≠ u)(1 ≠ v), (3.3)

which is quadratic in both sections.3

3see Nelsen, 2007, for a discussion of polynomial copulas.
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The Bernstein copula as we introduced it in Equation (3.2) relates directly to
approximation theory as described in Durrleman et al., 2000a and Li et al., 1997 .
In this context the problem that arises is the construction of a copula C from its dis-
cretization, i.e. from the information provided on the grid L =

��
i

m

, j

m

�
: 0 Æ i, j Æ 1

 
,

on which the value of C is known at every vertex. The central point in this perspec-
tive is that for the approximation to be valid, it has to converge to the approximand,
the underlying copula, as m increases. At this stage there are two perspectives that
arise naturally, the first being the statistical perspective in which the discretization
can be viewed as an empirical observation of the unknown copula, the second being
the pure approximation perspective, which results in the aforementioned construc-
tion problem of a valid copula, since there are infinitely many copulas that can be
related to a specific discretization. As a solution to the latter the authors construct
a bijection between the set D

n

of doubly-stochastic nxn matrices and the set C
n

of
discretized copulas at each point

�
i

n

, j

n

�
of the grid L:

Ê : D
n

æ M
n+1

(3.4)
A ‘≠æ B = Ê(A) (3.5)

with
b

0,i

= b
i,0

= 0 0 Æ i Æ n (3.6)
and

b
i,j

= 1
n

iX

p=1

jX

q=1

a
p,q

1 Æ i, j Æ n (3.7)

Thus a doubly-stochastic matrix can be viewed as a discrete representation of a
bivariate copula density. Figure 3.2 depicts a 4x4-doubly-stochastic matrix D

4

(C)
and a discretized bivariate Gauss copula C

4

(A). The map from the doubly-stochastic
matrix to the discretized copula was constructed according to Equation (3.7).

If one sets – = C
⇣

v1
m1

, . . . , v

d

m

d

⌘
in Equation (3.2) the unknown copula C is evalu-

ated at discrete sections defined by its arguments, thus in an empirical context – can
be thought of as discrete approximation of the unknown copula. Pfeifer et al., 2009
generalize this construction by defining so called grid-type copulas, which subsume
all copulas, that are defined on a grid.

For the majority of this thesis we will be focusing on the Bernstein copula density,
which is given by:

c
B

(u
1

, ..., u
k

) =
dY

i=1

m
i

X

v1

...
X

v

d

–

✓
v

1

m
1

. . . ,
v

d

m
d

◆
dY

i=1

P
m

i

,v

i

(u
i

), (3.8)
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C
4
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0.1899 0.3333 0.445 0.5051

0.232 0.445 0.6305 0.7602
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v

u

D
4

(C) =
0

BB@
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0.2783 0.2955 0.2577 0.1684
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1

CCA

Figure 3.2.: Correspondence between doubly stochastic matrix and a bivariate Gauss
copula with fl = 0.5 and ‡ = 1. The colored region corresponds to the sum
of the matrix elements a

11

and a

12

, divided by 4: a11+a12
4

3.2. Properties
In the following section we collect some basic properties of the Bernstein copula
and illustrate how random samples that follow a specific Bernstein copula can be
generated. The asymptotic behavior of the Bernstein copula is driven by the unique
properties, that Bernstein polynomials possess with regard to the approximation of
arbitrary functions.

3.2.1. Large sample behavior
The main developments regarding the asymptotic properties of the Bernstein copula
density estimator were made by Sancetta and Satchell, 2004 and Bouezmarni et al.,
2010. Former construct the estimator for the copula function and find an upper
bound for the asymptotic bias and variance and establish the asymptotic normality
of the Bernstein copula density estimator in an i.i.d. setting. The latter extend
this analysis to –-mixing dependent data and provide the exact asymptotic bias
and variance, as well as establishing uniform strong consistency and asymptotic
normality. In Bouezmarni et al., 2013 the authors prove that the Bernstein copula
density estimator converges to infinity at the boarders, as well as providing further
convergence and consistency results. These results extend the results established in
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Bouezmarni et al., 2010 and Sancetta and Satchell, 2004 to the estimation of copula
densities that are unbounded, as latter results were dependent on a boundedness
assumption of the underlying copula. We present the main results of this line of
research in the present section.
For a sequence to be –-mixing the following has to hold:

–(h) = sup
AœFt

1(X),AœFŒ
t+h

(X)

|P (A fl B) ≠ P (A)P (B)|, (3.9)

where F t

1

(X) and FŒ
t+h

(X) are the ‡-field of events generated by {X
l

, l Æ t} and
{X

l

, l Ø t + h}, respectively. Bouezmarni et al., 2010 further require

–(h) Æ flh, h Ø 1, (3.10)

for some constant 0 < fl < 1.
For a sequence of –-mixing dependent random vectors the asymptotic bias of the

Bernstein copula density estimator ĉ is then given by

E(ĉ
B

(u)) = c(u) + “ú(u)
m

O �m≠1

�
(3.11)

where

“ú = 1
2

dX

j=1

⇢
dc(u)
du

j

(1 ≠ 2u
j

) + d2c(u)
du2

j

u
j

(1 ≠ u
j

)
�

. (3.12)

The asymptotic variance for u œ]0, 1[d is given by:

Var(ĉ
B

(u)) = m
d

2 V (u)
n

+ O
 

m
d

2

n

!
(3.13)

where

V (u) = 4fi≠ d

2
c(u)

Q
d

j=1

(u
j

(1 ≠ u
j

))
1
2
, (3.14)

and at the boundary u = 0, u = 1 by:

Var(ĉ
B

) = md

n
c(u) + O(md≠1

n
) (3.15)

From the denominator in Equation (3.14) we see that the variance of ĉ
B

increases
near the boundary, nevertheless, as mentioned above, the estimator is in a sense
precise as relative convergence at the corners as well as convergence to infinity,
when the density is unbounded, was proven. In general we thus conclude, that
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1. ĉ
B

is asymptotically unbiased.
Bias(ĉ

B

) = O(m≠1), m æ Œ.

2. The variance of ĉ
B

vanishes asymptotically on the entire support.
At the boundary it vanishes if m

d

n

æ 0.
In the interior support it vanishes if m

d

2 æ 0.

3. The optimal grid size in a mean square error sense increases with rate O(n2/m+4).

4. From 1. and 2. it follows that ĉ
B

is a consistent estimator for the estimated
true copula density, i.e. ĉ

B

(u) æ c(u).

Bernstein polynomials have slower rate of convergence compared to other poly-
nomial expressions, but they perform best within the class of all operators with
similar shape preserving properties.45 In principle the slow rate of convergence can
be compensated by increasing the grid size m, but from Fact 2. we can immediately
see, that while this would decrease the bias of the estimator it has the drawback
of simultaneously increasing its variance. A MSE-optimal grid size would take ac-
count of this trade o�, see Chapter 4. For the following comparisons between the
Bernstein estimator and the kernel and histogram estimators we follow Sancetta
and Satchell, 2004 and set the usual bandwidth parameter h © m≠1. Compared
to the kernel estimator, which has a bias of order O(m≠2), both the Bernstein and
histogram estimators have a higher bias of order O(m≠1), but the variance of the
Bernstein estimator is lower since the former and the histogram estimator have vari-
ance of order O(md), compared to O(m d

2 ) for the Bernstein estimator inside the
hypercube. Combining this information we could focus on the rate of consistency of
the kernel, histogram and the Bernstein estimators and observe that for the former
ĉ

B

(u) æ c(u) holds at rate m

d

n

æ 0, while the same holds for the latter inside
the hypercube at m

d

2
n

æ 0. The optimal order of smoothing with regard to the
MSE-criterion for the Bernstein estimator is m = O(n

2
d+2 ), m = O(n

1
d+2 ) for the

histogram estimator and m = O(n
1

d+4 ) for the kernel estimator. Thus the Bern-
stein estimator requires less smoothing compared to the other two non-parametric
estimators.

As mentioned in the previous chapter rank-correlations and tail dependency can
be regarded as natural dependence measure for copula functions, consequently their
exist various representations for Spearman’s rho and Kendall’s tau for the Bernstein
copula. Durrleman et al., 2000a provide the following elegant representations

4see Sancetta and Satchell, 2004.
5see Berens and DeVore, 1980.
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Theorem 2. (Durrleman et al., 2000a) Let � œ M
n+1

where

◊
i,j

=
(i ≠ j)

�
n

i

��
n

j

�

(2n ≠ i ≠ j)
�

2n≠1

i+j≠1

�

for all 0 Æ i, j Æ n (with the convention 0/0 = 1), then the Kendall’s tau of the
Bernstein copula is

· = 1 ≠ tr
�
�D�D€�

where D œ C
n

denotes an element of the set C
n

of discretized copulas at each point⇣
v1
m1

, v2
m2

⌘
of the grid L generated by the grid size m, i.e. D should be thought of as

the copula counterpart of the doubly-stochastic matrices introduced in the previous
chapter.

Theorem 3. (Durrleman et al., 2000a) Let � œ M
n+1

where

“
i,j

= 1
(n + 1)2

for all 0 Æ i, j Æ n (with the convention 0/0 = 1), then the Spearman’s rho of the
Bernstein copula is

fl = 12 tr(�D) ≠ 3

The Bernstein copula does not preserve tail dependency.67 Nevertheless we regard
this as a minor drawback since the Bernstein copula is perfectly capable of capturing
dependency that exists in a tail, it is merely the limiting operation that fails to be
replicated, if the underlying copula exhibits tail dependency.

3.2.2. Random number generation
To generate a random sample from a Bernstein copula two methods have been pro-
posed in the literature, the first being the application of rejection sampling, whereas
the second is based on the fact, that a Bernstein copula can be expressed as a mix-
ture of Beta distributions.
Bernstein copula densities are polynomials, which are evaluated on the unit hyper-
cube [0, 1]d, thus they are bounded by a constant M > 0. The necessary steps to
generate random variables with the multivariate acceptance-rejection method are
provided by Pfeifer et al., 2009 as followed:

1. Generate d+1 independent uniformly distributed random numbers u
1

, . . . , u
d+1

.

6see Sancetta and Satchell, 2004, for a heuristic argument to this property.
7see Durrleman et al., 2000a, for a proof with regard to ⁄

u

.
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2. If c(u
1

, . . . , u
d

) > Mu
d+1

go to step 3, otherwise go to step 1.

3. Use (u
1

, . . . , u
d

) as a sample from the Bernstein copula.

Consequently M repetitions of this algorithm are necessary on average to generate
1 sample from the Bernstein copula. This method has the drawback of not being
feasible for high dimensional problems, since the rejections increase due to the curse
of dimensionality, i.e. the ratio between the volume of the acceptance region to the
rejection region tends towards zero. Furthermore, upper bounds are not generally
easily obtained in high dimensional settings. If there is a preference to generate
random samples via Monte Carlo methods one would consequently have to switch to
di�erent algorithms such as the Metropolis-Hastings algorithm or Gibbs sampling.8

The second method, which was proposed by Diers et al., 2012 and Cottin and
Pfeifer, 2014, relies on the representation of Bernstein copula densities as mixtures of
Beta distributions. Let Y = (Y

v1,m1 , . . . , Y
v

d

,m

d

) denote a vector of Beta distributions
with parameters (v

j

+ 1, m
j

≠ v
j

), j = 1, . . . , d. The respective densities are then
given by

f
Y

v1,m1
(z) = m

j

✓
m

j

≠ 1
v

j

◆
zv

j (1 ≠ z)m

j

≠1≠v

j

= 1
B(v

j

+ 1, m
j

≠ v
j

)zv

j (1 ≠ z)m

j

≠1≠v

j , (3.16)

where z œ [0, 1].
The algorithm for generating random samples via the Beta mixture representation
is then given by:

1. Generate a random sample (V
1

, . . . , V
d

) œ [0, . . . , m ≠ 1]d such that
P [(V

1

, . . . , V
d

) = (v
1

, . . . , v
d

)] = –(v1
m

, . . . , v

d

m

).

2. Sample (U
i

, . . . , U
d

) with independent U
i

≥ Beta(V
i

, m
i

≠ V
i

) for i = 1, . . . , d.

3.3. Estimation
Compared to the vast literature on parametrical copula estimation, the literature on
non-parametrical copula estimation is rather negligible. Contributions in this regard
have dealt with kernel density estimation as proposed by Gijbels and Mielniczuk,
1990, Fermanian, n.d. who extended the analysis to time-dependent data, Fermanian
et al., 2004 and Chen and Huang, 2007. Omelka et al., 2009 improved the kernel
estimator by correcting for boundary bias. Wavelet based copula density estimation

8see Devroye, 1986, for a comprehensive overview of sampling methods.
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was studied in Genest et al., 2009 and Autin et al., 2010, whereas Morettin et al.,
2010 analyze copula estimation. Qu et al., 2009 and Qu and Yin, 2012 estimate
the copula density by smoothing a piecewise constant function placed on a grid
and maximizing a penalized log likelihood, where the penalty is incorporated to
impose smoothness on the estimate. Finally, non-parametric estimation based on
the application of B-splines was suggested by Shen et al., 2008, Kauermann et al.,
2013 and Cormier et al., 2014. For an overview of recent approaches we refer to
Embrechts, 2009 and Jaworski et al., 2010.

3.3.1. Non-parametric estimation
A fully non-parametric approach of estimating the Bernstein copula density ĉ

B

con-
sists of two steps. In the first step the probability transformation is applied to
each element of the random vector (X

1

, . . . , X
d

) by means of their respective em-
pirical distributions

⇣
F̂

1

, . . . , F̂
d

⌘
and in the second step the elements of the vector

F̂
1

(X
1

), . . . , F̂
d

(X
d

) the Bernstein copula density is estimated via the empirical cop-
ula density, which is identical to a multivariate histogram estimator.910 The quality
of the approximation of the true marginal distributions hinges obviously at the size
of the sample under consideration, as we know from empirical process theory.11 Thus
these approximations get better as the sample size increases. In addition to this it is
not guaranteed that the marginal distribution generated by the grid which is applied
to the joint relative ranks satisfy the predicate of being uniformly distributed. To see
this we look at Figure 3.3, which depicts 100 2-dimensional samples from a Clayton
copula with ◊ = 0.5 upon which we apply a 10x10 grid. The corresponding joint
relative ranks are depicted in the upper table of Table 3.1. We can observe that the
margins are not perfectly uniformly distributed, as can be seen from the row and
column sums, even though the samples were drawn from the Clayton copula, i.e.
the margins are uniformly distributed by definition. It is the rows and columns we
have to asses, since the Bernstein copula evaluates P (m

1

U
1

Æ v
1

, . . . , m
d

U
d

Æ v
d

),

9see Scott, 2012.
10The empirical copula density is sometimes also referred to as joint relative ranks, see e.g. Pfeifer

et al., 2009
11With regard to copula estimation Deheuvels, 1979, were the first to consider the empirical

copula. They furthermore proved the weak convergence of the empirical copula process, when
the marginals are independent.
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Table 3.1.: Joint relative ranks, original data vs optimized data. The first table
shows the original data, which was sampled from a Clayton copula
with ◊ = 0.5. The entries a

i,j

are not perfectly uniformly distributed,
as can be seen from the last row and column, which depict the respec-
tive sums. In contrast, the entries x

i,j

of the optimized dataset are
much closer to being uniformly distributed.

u

a

ij

Æ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P

v

1.0 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.04
0.9 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.04 0.07
0.8 0.00 0.00 0.00 0.03 0.03 0.02 0.00 0.02 0.02 0.00 0.12
0.7 0.00 0.02 0.00 0.04 0.00 0.02 0.03 0.01 0.01 0.02 0.15
0.6 0.00 0.01 0.00 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.12
0.5 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.10
0.4 0.00 0.01 0.04 0.01 0.00 0.01 0.01 0.02 0.01 0.00 0.11
0.3 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.10
0.2 0.03 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.09
0.1 0.07 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.10P

0.10 0.07 0.08 0.13 0.10 0.12 0.08 0.12 0.11 0.09 1.00

u

x

ij

Æ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P

v

1.0 0.00 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.03 0.01 0.10
0.9 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.04 0.09
0.8 0.00 0.00 0.00 0.02 0.03 0.02 0.00 0.02 0.02 0.00 0.11
0.7 0.00 0.02 0.00 0.03 0.00 0.01 0.03 0.00 0.00 0.01 0.10
0.6 0.00 0.01 0.00 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.11
0.5 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.10
0.4 0.00 0.01 0.04 0.01 0.00 0.01 0.01 0.02 0.01 0.00 0.11
0.3 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.10
0.2 0.03 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.09
0.1 0.07 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.10P

0.10 0.09 0.09 0.10 0.11 0.11 0.10 0.11 0.11 0.09 1.01
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Figure 3.3.: Failure to generate uniform distribution.

with mU
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1

), . . . , F̃
d

(v
d

)
�

,

where F̃
i

© U
i

(0, m
i

). This e�ect would have become stronger if we had used the
empirical distribution functions of the margins F̂ (u), F̂ (v) to apply the probability
transformation, since the sample size is moderate and convergence to the respec-
tive uniform distributions hasn’t been established at this size. Pfeifer et al., 2009
suggest imposing uniformity of the marginals in the 2-dimensional case by applying
a correction to the values of the joint relative ranks in the form of the solution of
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following optimization problem:

min
x

ij

mX

i=1

mX

j=1

(x
ij

≠ a
ij

)2 subject to

mX

i=1

x
ik

=
mX

i=1

x
lj

= 1
10 and x

lk

Ø 0 for k, l = 1, . . . , m.

The authors further suggest a two step procedure, which is computationally less
expensive, by providing a general Lagrange solution to this optimization problem,
which is easily solved and has to be corrected for negative values in the second step,
as the Lagrange problem does not account for the non-negativity constraints. Figure
3.4 shows the solution to a 3-dimensional dataset, drawn from the product copula.
We’ve set m = 2 to keep the plot simple. The probabilities P (u = i), P (v = i) and
P (z = 1) for i = 1, 2 are presented, they are calculated by taking the sum across
the respective slices of the cube.

3.3.2. Semi-parametric estimation
Semi-parametric estimation of a copula density with the Bernstein copula density
estimator can be done in three ways:

1. Specifying and estimating the parametric distributions of various subsets of
the marginals, which can then be used for the probability integral transform.

2. Specifying a parametric copula and approximating it with the Bernstein copula
density estimator.

3. Any combination of the former.

The usefulness of 2. becomes clear in situations, where the dependence model is
known, but its estimation due to a complicated functional form is not feasible. In
such a situation one could replicate this model with the Bernstein estimator since its
functional form is rather simple. One would solely have to specify its components,
i.e. the marginals and the copula function, and substitute this information into the
Bernstein estimator.12

A di�erent approach, that may be used with Bernstein polynomials and is essentially
semi-parametric, is the estimation of a copula function via B-splines and a penalty
to achieve a certain degree of smoothness as proposed in Kauermann et al., 2013.
The general idea of estimating the density ĉ

B

as solution to a maximization problem,

12see Sancetta and Satchell, 2001, for an application from portfolio theory.
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Figure 3.4.: 3d-grid, optimized to achieve uniform marginals. From top right, to bottom
left the grid is rotated counterclockwise by 90¶, 180¶, 270¶, 360¶respectively.
We have set m = 2. To assess the validity of the optimization, one can
calculate the sum across the respective margins, which is 0.5 for each, thus
uniformity was established.
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that incorporates a penalty for smoothness was suggested by Sancetta and Satchell,
2004 who considered solving

max P
n


ln c

B

≠ ⁄
n

Z
(D–c

B

)2

�

and
min P

n


(C

n

≠ C
B

)2 +
Z

(D–c
B

)2

�
,

where P
n

and C
n

denote the empirical measure and the empirical copula, ⁄
n

is a
smoothing factor that would have to be set a priori and D– is a di�erential operator
of order –, i.e. D1 =

P
k

j=1

ˆc

B

ˆu

j

, and c
B

= ˆ

k

C

B

ˆu1...u

k

. Adequate constraints would have
to be posed to ensure that the resulting estimate constitutes a valid copula.

The approach of Kauermann et al., 2013 is similar to these ideas and can to a
certain extend be considered as a generalization thereof, as Bernstein polynomials
represent one type of basis polynomials that can be applied to approximate the true
copula. We will provide details to this variant of B-spline estimation after giving a
short summary on the approach used by the authors. Splines are functions that are
constructed by joining separate polynomial functions. The locus where two spline-
segments join is called knot and the polynomial with the highest order within a
spline specifies the degree of the spline.13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5.: Linear B-spline with 3 knots

Without going into the technical details we can give an intuition of the idea behind
this approach as follows.14 Multidimensional surfaces can be approximated by so

13see Lyche and Morken, 2008, for a succinct introduction to splines.
14We adapt the notation used by Kauermann et al., 2013.
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called tensor product splines, which are formed by the tensor product „(u
1

, . . . , u
d

) =
¢d

j=1

„
j

of the d-B-spline bases „
1

, . . . , „
d

. The base „
i

represents all B-splines that
can be used for approximation of the univariate density f(u

j

), j = 1, . . . , d. The
estimation of the copula density is then based on the relationship

c (u
1

, . . . , u
d

) ¥
X

kœK

bk„k (u
1

, . . . , u
d

) =: c (u
1

, . . . , u
d

; b) , (3.17)

where bk denotes a spline basis coe�cient, for which
P

kœK bk = 1 has to be imposed
in the maximization step,

„k (u
1

, . . . , u
d

) = „
k1,...,k

d

(u
1

, . . . , u
d

) =
dY

j=1

„
k

j

(u
j

) , (3.18)

represents an element of the full tensor product „(·) and „
k

(u) denotes a linear
B-spline normalized to be a density, i.e.

R
„

k

(u)du = 1. By imposing the latter, as
well as the requirements c(u; b) and that the estimated margins are each uniformly
distributed, the authors establish that the estimate c(u, b̂) is a valid copula density.
The parameters that need to be estimated by maximum likelihood are the members
of the set b = {bk, k œ K}, i.e. the spline basis coe�cients whose number is obviously
controlled by the number of elements in K. The latter can be substantially large,
when using the full tensor product for the estimation , e.g. for K = 17 and d = 3
there are 173 = 4913 parameters to estimate. To reduce this number to a reasonable
amount the authors suggest using a reduced form of the tensor product. We refer
to Kauermann et al., 2013 for details of this approach. The log likelihood for b in
the full tensor product setup is then given by:

l(b) =
nX

i=1

log{
X

kœK

bk„k(u
i1

, . . . , u
ip

), (3.19)

subject to the constraints mentioned above. An expression for the bias of this
estimator is provided by the authors, which converges to zero exponentially in the
size of the dimension of the set K = {K

j

, j = 1, . . . , p} of all individual dimensions.
The variance of this estimator is not provided, but in general the behavior of B-
splines is known to be similar to other non-parametric estimators in that the variance
is increasing in the size of K.1516

We continue to provide the relationship between B-splines and Bernstein polyno-

15see Claeskens et al., 2009.
16see Kauermann et al., 2009.
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mials. In general the jth B-spline can be expressed as

B
j,m

(x) = B (x|t
j

, . . . , t
j+m+1

) ,

where the relationship between the B-spline and the knots (t
k

)j+m+1

k=1

is made ex-
plicit.17 The sequence of knots is required to be ascending and has a significant
influence on the form of the spline curve. Bernstein polynomials defined on the
interval [a, b] can be expressed as

Bm

j

(x) = B

0

@x|
m+1≠jz }| {

a, . . . , a,

j+1z }| {
b, . . . , b

1

A , for j = 1, . . . , m, (3.20)

i.e. the sequence of knots, that have to be specified consists solely of the upper and
lower bound of the interval. It can be shown that Equation 3.20 is equivalent to

Bm

j

(x) =
✓

m

j

◆✓
x ≠ a

b ≠ a

◆
j

✓
b ≠ s

b ≠ a

◆
m≠j

B(x|a, b), forj = 0, 1, . . . , m, (3.21)

which is the representation of the generalized Bernstein polynomials multiplied by
the factor B(x|a, b).18 The latter is defined by

B(x|a, b) =
(

1, if a Ø x Æ b

0, otherwise,

thus ensuring, that the polynomial evaluates to 0 outside of the interval [a, b]. Setting
a = 0 and b = 1 leads to the representation of the Bernstein copulas we introduced,
except for the aforementioned factor.

Bm

j

(x) =
✓

m

j

◆
xj(1 ≠ x)m≠jB(x|0, 1) forj = 0, 1, . . . , m, (3.22)

Kauermann et al., 2013 conducted their estimation procedure with regular linear
B-splines and B-splines with Bernstein basis polynomials as basis functions and
compared the performance of these estimators against each other and a Kernel
density estimate.19

17see Lyche and Morken, 2008, the authors use a slightly di�erent notation, choosing d to denote
the degree of the B-spline. Nevertheless, since the degree is equivalent to the order of the
polynomial, we set d © m to be consistent with the notation in this thesis.

18In contrast to the Bernstein polynomials we introduced in this chapter, the generalized Bernstein
polynomials are defined on the interval [a,b]

19The results seemed to suggest that the B-spline approach with regular linear B-splines performed
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3.4. Alternative Representations
In this section we will present two recently developed alternative representations of
the Bernstein copula, the first being based on the multivariate Baker distribution,
whereas the second is based on a specific representation of the checkerboard copula.

3.4.1. Multivariate Baker Representation
The multivariate Baker distribution is motivated by focusing on the joint distribution
of vectors of order statistics.20 Its general form in the bivariate case is given by

H(x, y; R) = Pr(X
(K)

Æ x, Y
(L)

Æ y) =
mX

k=1

nX

l=1

r
k,l

F
k:m

(x)G
l:n

(y), (3.23)

where F
k:m

and G
l:n

denote the marginal distributions of the Kth and Lth smallest
order statistic generated by samples of sizes m and n of the random variables X
and Y , i.e. X

(k)

and Y
(l)

respectively.21 The matrix R consists of the entries r
ij

which specify the probability of joint occurrence of the ranks k and l. Let B
k,n

(u) =R
0ub

k,n

(t)dt, u œ [0, 1] denote the integral over a Bernstein basis polynomial as
defined in Equation (3.1). Since distribution functions of order statistics can be
expressed in terms of Bernstein polynomials, one can set F

k:m

= mB
k≠1,m≠1

(F (x))
and G

l:n

= mB
l≠1,n≠1

(G(y)), thus Equation (3.23) is equivalent to

H(x, y; R) = C(F (x), G(y)) = mn
mX

k=1

nX

l=1

r
k,l

B
k≠1,m≠1

(F (x))B
l≠1,n≠1

(G(y)),

(3.24)
which is a slightly di�erent representation of the Bernstein copula introduced in
Section 3.1. Dou et al., 2014 continue to estimate the parameters r

ij

with the
EM-algorithm, specifying m and n by minimizing the Akaike information crite-
rion (AIC). To apply the EM-algorithm the authors specify an unobserved pair
of random variables (K

i

, L
i

) that occur with probability P (K
i

= k, L
i

= l) = r
k,l

,
k = 1, . . . , m, l = 1, . . . , n and i = 1, . . . , N . The realization of this pair is linked to
the indicator variable

·
i,k,l

=
(

1, if (K
i

, L
i

) = (k, l)
0, otherwise,

(3.25)

best, nevertheless while the dimension of the Bernstein polynomial basis was chosen by com-
parisons of the corrected Akaike Information Criterion as the interval [1, . . . , 10], it is not clear
to us which degree m was specified for the Bernstein basis polynomials.

20see Baker, 2008, the author introduces this distribution for the bivariate case, nevertheless the
extension to the multivariate case is straightforward.

21see Dou et al., 2014.
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the expectation of which, conditional on a realization of (x
i

, y
i

),

·̂
i,k,l

= E [·
i,k,l

|(x
i

, y
i

)
1ÆiÆN

; R] (3.26)

is calculated in the E-step of the EM algorithm. The likelihood of this model in the
case of two continuous marginals is then given by

NY

i

mY

k

nY

l

[r
k,l

f
k:m

(x
i

)g
l:n

(y
i

)]·i,k,l . (3.27)

The authors apply this methodology to various datasets and note that the AIC has
a tendency to prefer smaller numbers for the dimension of R, i.e. in our terminology
for specifying the grid size m. In general we would suggest to use the corrected
Akaike information criterion AICc to account for the well known property of the
AIC to prefer models with too many parameters.22

3.4.2. Rook Copula
Cottin and Pfeifer, 2014 introduced so called rook copulas which can be viewed as
checkerboard copulas with fixed grid size m = m

i

, i = 1, . . . , d for all dimensions.
The benefit of this representation is that it reduces the computational e�ort of
evaluating the multiple sums in 3.8 when calculating the Bernstein and checkerboard
copula from O �md

�
to O (m · d). To see this we have to look at the definition of a

rook copula:23
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where the vector (‡
i,1

, . . . , ‡
i,d

, i = 1, . . . , n) indicates the rank of each variable in
sample i. For each of the d- variables we can define the column vectors (‡
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m = n for every dimension and collect them in the permutation matrix:
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22see e.g. Burnham and Anderson, 2004.
23see Cottin and Pfeifer, 2014.
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Thus the locus of all points in the d-dimensional hypercube are specified by m · d
coordinates. The drawback of this construction is clearly that the grid size m is
always as large as the sample size n, which from our experience leads to overfitting.
The right graphic in Figure 3.6 depicts a rook copula that has been constructed
from 25 samples from a bivariate Clayton copula

C
Cl

=
�
u≠◊ + v≠◊ ≠ 1

�≠ 1
◊ , (3.29)

with parameter ◊ = 3, which is shown in the left graphic of the same figure. Being
a checkerboard-copula the rook copula is not smooth, but one can easily construct
samples from the corresponding Bernstein copula using the same methodology. We
refer to the authors for details regarding the simulation from rook copulas.
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Figure 3.6.: Left figure: Original sample - Clayton copula (◊ = 3).
Right figure: 5000 samples from a rook copula.

3.5. Application: Model selection
In the following we present a simulation study with the purpose to assess the pre-
cision of the Bernstein copula density estimator for samples of medium size. The
large sample properties of this estimators seem promising, nevertheless in real world
applications one is often confronted with situations where data is scarce. We are
interested in a real world scenario, in which the analyst has no information with
regards to the true underlying probability model, thus she has to select a proper
model from various candidate models. We draw samples from the bivariate Clayton-,
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Frank-, Gauss-, and t-copulas (CCl

◊

, CF r

◊

, CGa

fl

, Ct

‹,fl

) and estimate the copula densi-
ties for each of these samples from the set {ĉCl

◊

, ĉF r

◊

, ĉGa

◊

, ĉt

◊

, ĉ
B

}, where ĉ
B

denotes
the Bernstein copula density estimator. The parameter estimates for the paramet-
ric copulas are obtained by Maximum likelihood. In Figure 3.7 we have generated
scatter plots from the 4 copula models according to the parameterization given in
the plot titles. For CGa

fl

and Ct

‹,fl

we have additionally set the marginal distributions
to the standard normal and standard Student’s t distributions respectively.
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Figure 3.7.: Model selection: Scatter plots of 100 samples from the true copula models.

The respective copulas ot these models in the bivariate case are given by24

CF r

◊

(u
1

, u
2

) = ≠1
◊

ln
✓

1 + (exp (≠◊u
1

) ≠ 1) (exp (≠◊u
2

)) ≠ 1
exp (≠◊) ≠ 1

◆
,

CGa

fl

(u
1

, u
2

) = �
fl

�
�≠1(u

1

), �≠1(u
2

)
�

,

Ct

‹,fl

(u
1

, u
2

) = t
‹,fl

�
t≠1

‹

(u
1

), t≠1

‹

(u
2

)
�

.

The commonly used metrics to select between various parametric models are the
AIC and the Bayesian information criterion BIC.25 Since both of these criteria

24Regarding the formula for the Clayton copula see Equation (3.29).
25Even though it is recommended to use AICc instead of AIC to account for AIC’s overfitting

bias in small to medium samples, AIC is still widely used in scientific literature.
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are not feasible for non-parametric estimators we have to apply a di�erent metric
to select between the Bernstein copula density estimator and a set of parametric
models. In this regard we choose to select according to the relative distance (RD

N,p

)
given by

RD
N,p

= Îc
◊

≠ c
e

Î
N,p

Îc
e

Î
N,p

, p œ {1, 2, Œ}, (3.30)

where N denotes the sample size. We thus select according to the p-norm of the
distance between the true copula density c

◊

and the estimate c
e

. Table 3.2 sum-
marizes the means of the parameter estimates for the unknown copula densities.
The parameterization was chosen with the intention to cover a wide variety of de-
pendence structures. Note that the negative estimate for cCl

◊

, which is a result of
maximum likelihood trying to capture the negative linear dependence structure of
the specified t-copula, leads to a non-strict copula.26 Table 3.3 depicts the mean of

Table 3.2.: Parameter estimates for the model-selection simulation
c

Cl

◊

c

F r

◊

c

t

◊

c

Ga

◊

◊̄ ◊ = 1 ◊ = 5 (fl = ≠0.3, ‹ = 4) fl = 0.65

ĉ

Cl

◊

0.80603 0.17547 -0.06504 1.37974
ĉ

F r

◊

2.72932 0.68353 -3.41627 6.52156
ĉ

Ga

◊

0.44453 0.10267 -0.38969 0.74300
ĉ

t

◊

(0.44128, 4.1719) (0.10413, 54.93915) (-0.49617, 2.7126) (0.74579, 13.06077)

the AICc- and BIC-values across the 100 samples. Only for the Clayton copula we
observe that the correctly specified model attains the minimum AICc- and BIC-
value. For the rest of the samples a misspecified copula is selected to be the best
model on average. The obvious reason for this is that at a medium sample size of
100 the characteristics of the sample at hand do not convey enough information to
adequately discriminate between true and false models.

26see e.g. Nelsen (2007), an Archimedian copula is considered non-strict when its generator „(0) ”=
Œ. To avoid undefined areas in a non strict Archimedian copulas one has to resign to the notion
of a pseudo inverse, when constructing these copulas.
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Table 3.3.: Mean of AICc and BIC values from 100 simulations with sample
size 100 each. Parameters for the true copula densities:
(ĉCl

◊

, ◊ = 1),(ĉF r

◊

, ◊ = 5),(ĉGa

◊

, fl = 0.65), (ĉt

◊

, (fl = ≠0.3, ‹ = 4)

True
AICc cCl

◊

cF r

◊

cGa

◊

ct

◊

Estimate

ĉCl

◊

-25.08766 -0.14396 0.05574 -62.37794
ĉF r

◊

-17.11867 0.51655 -23.78354 -77.12786
ĉGa

◊

-16.41790 2.86301 -21.48877 -76.74386
ĉt

◊

-18.22732 5.03348 -46.59113 -75.20874
BIC ĉCl

◊

ĉF r

◊

ĉGa

◊

ĉt

◊

Estimate

ĉCl

◊

-22.5233 2.42039 2.62009 -59.81359
ĉF r

◊

-14.55432 3.08090 -21.21919 -74.56350
ĉGa

◊

-11.33127 7.94964 -16.40214 -71.65723
ĉt

◊

-10.66181 12.59899 -39.02562 -67.64323

In Table 3.4 we compare all estimators, including the Bernstein copula density
estimator ĉ

B

according to their RD
100,1

-values. To obtain these values we have
randomly chosen 1000 points from ]0, 1[d and computed this metric for each of the
estimators at each of the 100 samples. We can observe that ĉ

B

performs reason-
ably well on average, minimizing RD

100,1

at the estimation of the Clayton- and
Frank copulas, while generating the second best RD

100,1

-values for the Gauss- and
t-copulas. From the box plots in Figure 3.8 we can see that for the estimation
of the Clayton- and Frank copula densities the relative distance of all estimators
di�er only slightly. This result may be explained by reevaluating the scatter plots
in Figure 3.7, from which we can see that the distribution of the samples in the
plane for these copulas is rather homogeneous, thus revealing only minor informa-
tion to the specific structure of the data generating process. If we choose RD

100,2

and RD
100,Œ the results are clearly di�erent, since these metrics are functionals of

norms that punish large deviations stronger. Since ĉ
B

is a non-parametric estimator
it has rather poor performance in the estimation of the tails of the copula density,
for which c(u) æ Œ, u = (u

1

, . . . , u
d

) holds. Parametric estimators do not su�er
from this drawback thus deviations in the tail, that result from misspecification, are
in general of lesser extent. The results of the RD

100,2

and RD
100,Œ evaluations are

reported in Section A.1 of the Appendix.
The results of this simulation study suggest that the Bernstein copula density

estimator performs well, providing robust estimates even if it is compared to para-
metric estimators that can cover a wide range of dependence structures such as the
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Table 3.4.: Mean of RD

100,1

-values from 100 simulations with sample size 100 each. 95%
Confidence Intervals are reported in brackets. The minimum values are high-
lighted blue. Parameters for the true copula densities:
(ĉCl

◊

, ◊ = 1),(ĉF r

◊

, ◊ = 5),(ĉGa

◊

, fl = ≠0.3), (ĉt

◊

, (fl = 0.65, ‹ = 4)

RD ĉCl

◊

ĉF r

◊

ĉ
B

0.71103 , (0.70975, 0.7123) 0.69730 , (0.6959, 0.69873)
ĉCl

◊

0.71142, (0.70982, 0.71331) 0.69736, (0.69597, 0.69875)
ĉF r

◊

0.71110, (0.7098, 0.71236) 0.69732, (0.69598, 0.69867)
ĉt

◊

0.71608, (0.71461, 0.71775) 0.69736, (0.69602, 0.69868)
ĉGa

◊

0.71265, (0.7113, 0.71394) 0.69736, (0.69599, 0.69868)
ĉGa

◊

ĉt

◊

ĉ
B

0.70133, (0.69993, 0.70267) 0.80212, (0.80095, 0.80332)
ĉCl

◊

0.69917 , (0.69716, 0.70178) 0.77425 , (0.77284, 0.77564)
ĉF r

◊

0.74648, (0.74493, 0.74796) 0.85094, (0.84977, 0.85215)
ĉt

◊

0.75363, (0.75198, 0.75549) 0.82781, (0.82601, 0.82977)
ĉGa

◊

0.75778, (0.7562, 0.75954) 0.82373, (0.82241, 0.82499)
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Figure 3.8.: Model selection: Box plots for mean values of R

100,1

-values.
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Gauss copula or the t copula. This comes with the benefit of not having to specify
any assumptions with regard to the data generating process. Nevertheless, for ap-
plications that require good estimates of regions in the outer tail of the distribution
a flexible parametric model might be a more sensible choice.27

27These results are of course obtained in a very low dimensional setting, see Weiss and Sche�er,
2012, for an analysis of the performance of density estimatiors based on Bernstein polynomials.



4. Bandwidth Selection
In this chapter we consider the problem of choosing an optimal bandwidth parameter
m for the Bernstein copula, and propose an estimator that is based on the local
rank correlation of the respective sample we wish to analyse. In the majority of
the present literature that deals with the estimation of copulas and copula densities
via Bernstein polynomials the bandwidth parameter is specified either ad-hoc or via
grid searches against a specific loss function. An exception is made in the case of
rook copulas, for which m is identical to the sample size by definition. Bouezmarni
et al., 2013 introduce a cross validation procedure to arrive at a theoretically sound
estimate of m, which we will shortly discuss in the next section, and which we will
utilize as benchmark for the estimator we develop in the Sections 4.2 and 4.3.

4.1. Cross Validation
The least-squared cross validation LSCV method for estimating an optimal grid
size m leads to an estimator m̂ that minimizes

LSCV (m) =
Z

1

0

ĉ2(u, v)dudv ≠ 2n≠1

nX

i=1

ĉ(≠i) (X
1,i

, X
2,i

) . (4.1)

It can be shown that by taking the expectation of Equation (4.1) one arrives at

E (LSCV (m)) = E
✓Z

1

0

(ĉ (u, v) ≠ c (u, v))2 dudv

◆
≠
Z

1

0

c2 (u, v) dudv, (4.2)

thus minimizing Equation (4.1) is equivalent to minimizing an unbiased estimator
of the expected integrated square error (ISE).1 This type of bandwidth estimator
has been known to provide rather volatile results within Kernel density estimation
due to slow rates of convergence at O(n 1

10 ). In particular it can be shown that

n
1

10

✓
h

LSCV

ĥ
ISE

≠ 1
◆

≥ N (0, ‡2

LSCV

), (4.3)

1see Bouezmarni et al., 2013.
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where h
LSCV

denotes the least-squared cross validation bandwidth and ĥ
ISE

denotes
the bandwidth that minimizes the ISE of the density estimate f̂

h

, ISE(f̂
h

).2 There
is an alternative to LSCV (h) given by the biased cross-validation estimator BCV (h)
with identical rate of convergence, but with variance ‡

BCV

that relates to ‡
LSCV

as
‡

BCV

‡

LSCV

¥ 15.7. Developing an estimator of this kind should be feasible for estimating
m as well, and is part of future research. see Bouezmarni et al., 2013 state that
Z

1

0

ĉ2(u, v)dudv = 1
n2

X

i

X

j

B̃ (ÂX
1,i

mÊ, ÂX
1,j

mÊ) B̃ (ÂX
2,i

mÊ, ÂX
2,j

mÊ) , (4.4)

whith
B̃ (a, b) = B (a + b + 1, 2m ≠ a ≠ b ≠ 1)

B (a + 1, m ≠ a) B (b + 1, m ≠ b) ,

where B (a, b) =
R

1

0

ta≠1(1 ≠ t)b≠1 denotes the Beta function.

4.2. Mean Squared Error Optimality
Our goal is to specify the grid size m in a manner that can be considered optimal with
respect to a suitable loss function. The bandwidth h in kernel density estimation
fulfils a similar role to m as it specifies the degree of smoothness that is applied
to a given dataset. If the bandwidth is chosen too small the estimated density
is undersmoothed and appears to be “rough”, as too much weight is given to the
individual data points. A bandwidth that is too large oversmoothes the data and
the information provided by the dataset is not taken to account to an adequate
extent. To specify an optimal bandwidth it is common practice in kernel density
estimation to choose that h that is optimal with respect to the asymptotic mean
integrated squared error (AMISE), which is the asymptotic counterpart to the mean
integrated squared error given by:

MISE(h) = E
Z

(f̂
h

(x) ≠ f(x))2 dx.

The resulting expression for h su�ers from the drawback, that it is still dependent
on functionals of f . This leads to various possibilities of specifiying the unknown
functionals and there has been a large amount of research with regards to this topic.3
A similar approach to specifying an optimal grid size m for the Bernstein copula
density c

B

is not feasible as its functional form, i.e. the number of summands in its

2see Sheather, 2004.
3For an overview, see e.g. Sheather, 2004, The author classifies the di�erent approaches into rules

of thumb, cross-validation methods and so called plug - in estimators.
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representation is dependent on m, thus c
B

is not specified unless m has been set in
advance. Therefore we propose to take a di�erent, data-driven, approach to arrive
at an optimal grid size m

opt

. In the following we will present a few facts on our
chosen loss function, the mean squared error (MSE) and then develop a criterion
that allows us to specify an optimal grid size based on its rate of increase when
optimized in a mean squared error sense.
The mean squared error of a copula density estimator is defined as:

MSE [ĉ (u)] = E [ĉ (u)] ≠ c (u)
= Bias [ĉ(u)]2 + Var [ĉ(u)] , (4.5)

where Bias [ĉ (u)] is defined as:

Bias [ĉ(u)] = E [ĉ (u)] ≠ c (u) ,

and Var(ĉ) denotes the variance of the estimator:

Var [ĉ(u)] = E
⇥
ĉ(u) ≠ µ

ĉ(u)

⇤
2

.

Non parametric density and copula estimators are known to face a bias-variance
trade o� with respect to the mean squared error, i.e. adjusting the bandwidth pa-
rameter according to the limiting behavior that is necessary for convergence to the
true underlying estimand leads to a decrease in the bias, but simultaneously to an
increase in the variance of the estimator. This is the basis on which optimizations
with respect to the bandwidth parameter can be conducted. Since the MSE [ĉ(u] is
convex in E [ĉ(u)] there is an optimal bandwidth to be derived from its integrated
counterpart the MISE [ĉ(u)] and procedures as mentioned above are feasible. This
follows from analogy to the bandwidth selection problem in kernel density estima-
tion.

Let m
opt

denote the optimal grid size according to the mean squared error crite-
rion:

m
opt

= arg min
m

MSE . (4.6)

The following result was established by Sancetta and Satchell (2004):

m
opt

= O
⇣

n
2

k+4

⌘
. (4.7)

Equation (4.7) specifies the rate at which m
opt

increases with respect to the sample
size n.
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Let G denote the set of functions with asymptotic behavior as specified by (4.7):

G =
⇢

f : ”f

”n
= O(n

2
k+4 )

�
. (4.8)

Elements of G are possible specifications of a relationship between m
opt

and n that
could be exploited to estimate m

opt

.
Thus the we are seeking to choose that element of G that yields function values that
are as close as possible to the theoretical optimum (4.6):

m
opt

= arg min
g(n)

MSE . (4.9)

A linear solution for g(n) in (4.9) would be of the form:

m
opt

= a + b(n
2

k+Bias 4 ), (4.10)

Until know the discussion is still very general and we can clearly see from (4.8), that
the correct specification of g is non-trivial, as there are infinitely many elements
in G. We propose to utilize information provided by the dataset in the form of a
dependence measure ◊ to establish a natural relationship between the sample size
in the optimal growth rate (4.7) and m

opt

.4 An advantage of this specification is,
that it enables us to treat g(n, ◊) as an estimator for m

opt

, since ◊ is a probabilistic
quantity. For the linear specification (4.10) one could then set:

m
opt

= |◊|(n 2
k+4 ). (4.11)

Since m > 2 has to hold it is reasonable in this case to set b = 0. (4.11) implies that
stronger dependency in a given dataset requires less smoothing i.e. a higher m, since
m

opt

is increasing in ◊. An intuition for the latter might be gained by considering
the relationship between concordance measures and copulas. Let ◊ to be one of the
popular concordance measures, i.e. Kendall’s tau or Spearman’s rho. Since both of
these statistics are functionals of a bivariate copula, they inherit its property of being
invariant under strictly increasing component-wise transformations5. They thus
can be considered as copula properties, giving a natural relationship between the
dependence structure of a random vector and a corresponding dependence measure.
A high |◊| in a reasonably sized random sample indicates a distinctive dependence
structure that can be captured more appropriately by applying a finer grid. In
contrast |◊| æ 0 the copula approaches the independence copula, where data points
are distributed rather symmetrically in the hypercube. In this scenario a low m is

4Bouezmarni et al., 2013, indicate that such a specification might be reasonable.
5see e.g. McNeil et al., 2010.
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appropriate since it captures the symmetrical nature of the dependence structure
more robustly. Figure 4.1 shows possible curves that are fitted against simulated
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Figure 4.1.: Optimal grid sizes with linear specifications - Data are MISE-optimal grid
sizes for the 2 dimensional Gauss Copula: C

ga

fl=0.9

(u).

estimates of MISE- optimal grid sizes. Both curves were created by fitting linear
models to the data. Since we can’t observe the estimates of the MSE-optimal grid
sizes directly a regression approach isn’t possible in reality. We therefore have to
develop a model from which we can derive these estimates.

4.3. Penalized Grid Optimality
We allow m to take values in R+ and specify the following criterion:6

m̂p = arg max
m

f
p

where f
p

= n

m

⇣m

n

⌘
1≠|◊|≠

1
n

ln
✓

1
|◊|mn≠ 2

d+4

◆
, (4.12)

6We relax the integer value restriction for the purpose of the analysis. When specifiying m in
applications we will choose m = nint(m̂p), where nint(x) denotes the nearest integer function.
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Equation (4.12) specifies a criterion which allows us to operationalize the selection
of m. In this respect this optimization problem may be viewed as selecting the
optimal cm

B

from the family B given by:

B = {cm

B

, m œ {2, 3, . . . }}.

We can regard B as consisting of a single Bernstein-copula-density estimator at all
stages of convergence towards the true underlying density c. We further assume
that the optimal grid size is dependent on the level of pairwise dependency within
the random vector in consideration, see above. Finally, we require ◊ œ [≠1, 1] and

◊ (u, v) = ≠1 ≈∆ W (u, v) = max(u + v ≠ 1, 0) (4.13)
◊ (u, v) = 0 ≈∆ Q

(u, v) = uv (4.14)
◊ (u, v) = 1 ≈∆ M(u, v) = min(u, v). (4.15)

For ◊ = 1 , Equation (4.12) then reduces to:

f
p

= n

m
ln
⇣

mn≠ 2
d+4

⌘
,

whereas for ◊ = 0, f
p

is not defined. For ◊ œ ]0, 1[ we can set

– = 1 ≠ |◊|≠ 1
n

= 1 ≠ 1
|◊| 1

n

< 0,

so that the second factor in 4.12 becomes
⇣m

n

⌘
1≠|◊|≠

1
n

=
⇣ n

m

⌘≠–

and (4.12) can be expressed as:

f
p

=
⇣ n

m

⌘
1≠–

ln
✓

1
|◊|mn≠ 2

d+4

◆

=
⇣ n

m

⌘
1≠–


ln
✓

1
|◊|
◆

+ ln
⇣

mn≠ 2
d+4 .
⌘�

=
⇣

ln mn≠ 2
d+4

⌘⇣ n

m

⌘
1≠–

+ O
✓

1
m1≠–

◆
(4.16)

Since we will be optimizing with respect to m we can treat ◊ and n as constant and
focus on the behavior of f

p

with respect to m. From (4.16) we can see that f
p

is
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essentially controlled by the expression

ln
⇣

mn≠ 2
d+4

⌘⇣ n

m

⌘
1≠–

, (4.17)

and that increasing values of m lead to increasing values of this criterion through
the first factor of (4.17), but are simultaneously punished by the second factor. We
specify this as it seems reasonable, when comparing multiple m̂ that satisfy (4.7),
to prefer that estimator, that relies on the highest ratio of data points per grid. The
first factor in expression (4.17) is composed of the product of m and the optimal
rate of increase (4.7). The latter is constant in our optimization problem (4.12),
thus it will be part of the optimal value obtained by the maximization, ensuring
that the latter increases accordingly in n.
We see that f

p

is continuous and di�erentiable everywhere except at f
p

(0), where
it is continuous but not di�erentiable due to the use of the absolute value of the
parameter ◊ . We chose the latter to induce symmetry with respect to the direction
of the dependence captured by this measure.
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f
p

obtains a maximum at:

m̂p = |◊|e|◊|
1
n n

2
d+4 (4.18)

thus satisfying (4.7). (4.18) is a global optimum, if

d2f
p

dm2

(◊) = |◊|≠ 2
n

m2

⇣m

n

⌘≠|◊|≠
1
n

✓
ln

✓
m

|◊|n
≠ 2

d+4

◆
|◊| 1

n

+ ln
✓

m

|◊|n
≠ 2

d+4

◆
≠ |◊| 2

n ≠ 2|◊| 1
n

◆
< 0. (4.19)

As m, n, d > 0, (4.19) will only hold for a suitable value of ◊. To be precise, we are
interested in the set D = {◊ : d

2
f

p

dm

2 (◊) < 0}. Let g(◊) = d

2
f

p

dm

2 (◊). g(◊) is quadratic
in the absolute value of ◊, |◊|. As |◊| is not di�erentiable on its complete support
a piece-wise analysis of the properties of g(◊) is necessary to specify which ◊ are
elements of D . We separate the support of g at ◊ = 0 and denote D

1

= {◊ : ◊ < 0}
and D

2

= {◊ : ◊ > 0}. Using the definition of the absolute value:

|x| =
(

x, if x Ø 0
≠x, if x < 0,

(4.20)

we define the functions g
1

: D
1

æ R and g
2

: D
2

æ R:

g
1

= (≠◊)≠ 2
n

m2

⇣m

n

⌘≠(≠◊)

≠ 1
n

h
≠ (≠◊)

2
n + (≠◊)

1
n ln

⇣
≠m

◊
n≠ 2

d+4

⌘
≠ 2 (≠◊)

1
n

+ ln
⇣

≠m

◊
n≠ 2

d+4

⌘i
, (4.21)

g
2

= ◊≠ 2
n

m2

⇣m

n

⌘≠◊

≠ 1
n

h
≠◊

2
n + ◊

1
n ln

⇣m

◊
n≠ 2

d+4

⌘
≠ 2◊

1
n + ln

⇣m

◊
n≠ 2

d+4

⌘i
. (4.22)

Equations (4.21) and (4.22) are not trivially solved, thus we conduct a case anal-
ysis on (4.21) to investigate necessary conditions for them to be negative. Due to
the symmetry of the absolute value the same logic will hold for necessary conditions
on (4.22). Since the first factor in g

1

is always positive, we will focus on the second
factor and set:

a = (≠◊) 1
n ln

⇣
≠m

◊
n≠ 2

d+4

⌘
+ ln

⇣
≠m

◊
n≠ 2

d+4

⌘

= ln
⇣

≠m

◊
n≠ 2

d+4

⌘⇣
(≠◊) 1

n + 1
⌘

,

b = ≠ (≠◊)
2
n ≠ 2 (≠◊)

1
n .
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We observe that:

a >0 ≈∆ ln
⇣

≠m

◊
n≠ 2

d+4

⌘
> 0, (4.23)

a <0 ≈∆ ln
⇣

≠m

◊
n≠ 2

d+4

⌘
< 0. (4.24)

Thus if (4.23) holds, we have:

a + b <0 ≈∆ |a| < |b|,
a + b >0 ≈∆ |a| > |b|.

If (4.24) holds a+b is always negative. Thus if the sample size is su�ciently larger
than the number of grids, n >> m , (4.24) will hold and (4.18) is a global optimum.
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Figure 4.3.: f

p

in the 2-dimensional case. The dotted lines denote the maxima of the
respective curves. Increasing n or fl

·

shifts the the respective maximum to
the right.



4.3 Penalized Grid Optimality 43

4.3.1. Estimation
Specifying m̂p requires us to choose an appropriate estimator for ◊, which we denote
by ◊̂. Let ◊̂ ≥ N(µ

ˆ

◊

, ‡2

ˆ

◊

).7 The expected value and variance of m̂p are then given by:

E(m̂p) = n
2

d+4 E
⇣

◊̂e
ˆ

◊

1
n

⌘

= n
2

d+4

 
µ

ˆ

◊

+
‡2

ˆ

◊

n

!
e

1
n

 
µ
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+

‡

2
◊̂

2n

!

(4.25)

and

Var(m̂p) = n
4

(d+4)2 Var
⇣
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n2


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. (4.26)

From (4.25) we see that the fractions ‡

2
◊̂

n

,
‡

2
◊̂

2n

vanish for n æ Œ. Thus m̂p is asymp-
totically unbiased if µ

ˆ

◊

= ◊. In the following we show that m̂p is unbiased for ◊̂ = fl̂
·

.
Kendall’s tau is defined by:

fl
·

= E
⇥
sgn

��
X

1

≠ X̃
1

� �
X

2

≠ X̃
2

��⇤
, (4.27)

where (X
1

, X
2

)€ is a vector of two continuous random variables and (X̃
1

, X̃
2

)€ is an
independent copy of (X

1

, X
2

)€.
Let (X

i

, X
j

)
n

denote n pairwise i.i.d. observations. The estimator for fl
·

is given by:

fl̂
·

(X
i

, X
j

) =
✓

n

2

◆≠1 X

iÆs<tÆn

sgn ((X
s,i

≠ X
t,i

) (X
s,j

≠ X
t,j

)) , (4.28)

where the summation is taken over the
�

n

2

�
pairs of n. We note that, since the sample

is i.i.d. we have, without loss of generality:

E [sgn ((X
s,i

≠ X
t,i

) (X
s,j

≠ X
t,j

))] = E [sgn ((X
s,1

≠ X
t,1

) (X
s,2

≠ X
t,2

))]
= E

⇥
sgn

��
X

1

≠ X̃
1

� �
X

2

≠ X̃
2

��⇤
.

7This assumption is non critical for appropriately designed estimators, this follows from empirical
process theory. See e.g. Van der Vaart, 2000.
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Therefore:

E(fl̂
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) =
✓

n

2

◆≠1 X

1Æs<tÆn

E [sgn ((X
s,i

≠ X
t,i
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◆✓
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��⇤
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. (4.29)

Furthermore, we state without proof:8

Var(fl̂
·

) =
✓

n

2

◆≠2
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��
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with
‡2

c

= Var [sgn ((X
s,1

≠ X
t,1

) (X
s,c

≠ X
t,c

))] .

It is clear that since ◊̂ is the only random variable in m̂p, the estimation of this
criterion reduces to the estimation of the dependence measure. Thus, in the case of
choosing Kendall’s tau we can easily derive the consistency of m̂p from the consis-
tency of fl̂

·

. The latter follows from the Equations (4.29) and (4.28) by the law of
large numbers.

4.3.2. Specifying the concordance measure
Before we proceed with the analysis we have to consider additional consequences of
parameterizing our criterion with a concordance measure fl

›

. Concordance measures
are measures of association, that quantify the degree at which a pair of random
variables (X, Y ) tend to move together, i.e. whether we can state that “large” values
of one variable tend to occur with “large” values of the other and “small” values tend
to occur with “small” values of the other. This information is quantified di�erently
by concordance measures such as Kendall’s tau or Spearman’s rho. We have seen
from (4.27) that the former measures the di�erence in probability of the occurrence
of concordant pairs to discordant pairs of a bivariate sample. The interpretation
here is clearly, that if the former is more probable than the latter fl

·

is positive,

8see e.g. Lehmann, 1999, pp. 368-369. Kendall’s tau is a U-statistic of degree 2. This expression is
derived under relatively mild conditions, namely that the variance of any subset of the random
vector X exists and is finite.
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otherwise negative. We have seen in Chapter 2 that Spearman’s rho however can
be expressed as:

fl
S

= 12
Z Z

[C(u, v) ≠ uv] dudv,

thus measuring a scaled distance between the distribution of (u, v) and the indepen-
dence copula Q. These are two fundamentally di�erent approaches at quantifying
the association between X and Y . Spearman’s rho is in this sense identical to
Pearson’s correlation coe�cient, with the exception that it is based on the rank-
transformed variables (F (X) , F (Y )) = (U, V ). This can be seen from the following
representation:9

fl
S

= E (U, V ) ≠ E (U) E (V )p
Var (U)

p
Var (V )

Consequently Kendall’s tau should be interpreted as the di�erence in probability of
the occurrence of concordant to discordant pairs, whereas Spearman’s rho quantifies
the distance in probability mass to what could be expected under independence.
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Figure 4.4.: m̂p parameterized with Kendall’s tau, Spearman’s rho and Blomqvist’s beta
for a bivariate gauss copula with µ = (0, 0)€ and fl = 0.5 .

Another measure that satisfies the assumptions we made in Equations (4.13) -

9see e.g. Nelsen, 2007.
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(4.15) is Blomqvist’s —:

— = 4C

✓
1
2 ,

1
2

◆
≠ 1,

which is constructed similarly to Kendall’s tau, as can be seen from:10

— = P [(X ≠ x̃) (Y ≠ ỹ) > 0] ≠ P [(X ≠ x̃) (Y ≠ ỹ) < 0]

where x̃ and ỹ denote the medians of X and Y . In Figure 4.4 we’ve plotted these
three measures for a bivariate Gauss copula with µ = (0, 0)€ and fl = 0.5. We can
observe that the consequences of selecting e.g. Kendall’s tau over Blomqvist’s — can
be significant. Since m̂p is specified with the absolute value of � the orderings do
not depend on the sign of the dependence measure. There seems to be no objective
reason to discriminate between either of the presented concordance measures, as
each lend themselves to meaningful interpretations, but since Kendall’s tau and
Spearman’s rho are widely used in practice we propose to parameterize m̂p with the
empirical average, that is constructed from both measures:

fl
·,s

= 1
2 (fl

·

+ fl
s

) .

4.3.3. Simulation study: 2-dimensional case
We conducted a monte carlo simulation study to identify an optimal grid size m

opt

,
which we compared to the estimators m̂p and m̂lscv

opt

. We simulated n bivariate
samples {U

i.1

, U
i,2

}n

i

, where n œ {50, 60, . . . , 500} for the Gumbel- (CGu

◊

), Clayton-
(CCl

◊

), Frank- (CF r

◊

), Gauss- (CGa

fl

), t- (Ct

‹,fl

) and Joe-(CJo

◊

). We computed the
grid size mn

opt

that minimizes the estimated mean integrated squared error for the
respective sample \MISE

n

in brute force optimizations for each copula we specified
and for individual parameter ranges per copula. The per sample estimator \MISE

n

is defined as11:

\MISE
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= \IBias
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10see e.g. Nelsen, 2007.
11see Bouezmarni et al., 2013.
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where I = 50, N = 1000 and s
k

= (u
1,k

, u
2,k

) are randomly chosen points from the
independence copula u

1

u
2

. ĉ
j

(s) for j œ {1, . . . N} corresponds to the jth Bernstein
copula density estimation.

The relationship between fl
·

and m̂p can be seen on all datasets. At levels of
Kendall’s tau near 0, mMSE

opt

is estimated at its lowest possible value across almost all
datasets, whereas at higher levels m̂p attains correspondingly higher values. Table
4.1 summarizes descriptive statistics with respect to the estimates of the MSE-
optimal grid sizes m̂MSE

opt

. Since m̂lscv

opt

hasn’t always attained its minimum within the
specified domain, we chose to use its value at the boundary of the interval as its
minimum value in these cases. This adds a level of arbitrariness to the respective
statistics, but we consider this procedure reasonable, with regard to the fact, that
the estimate of the MSE-optimal grid size attains its minimum within this range. We
thus underestimate the respective statistics in cases where the bounds are attained.
There is strong evidence, that mMSE

opt

is increasing in the absolute value of Kendall’s
tau |fl

·

|, which supports our modeling decisions. The latter can be seen in a more
compact way by the last sub-table. Here we have split the data into a center,
middle and outer region CR, MR and , OR, that are comprised of the intervals
[≠0.1, 0.1], {[≠0.5, ≠0.3], [0.3, 0.5]} and {[≠0.9, ≠0.7], [0.7, 0.9]}, respectively. As we
move from the center to the outer region m̂MSE

opt

increases everywhere in this reduced
dataset. The t-copula, which we parameterized with 4 degrees of freedom seems
to break this structure, as the values in the center region are significantly higher
than compared to the other copulas. But remembering that a t-copula with ‹ = 4
allocates significant amount of probability mass to all 4 corners of its support, while
allocating the rest evenly to the rest of the domain, we can explain these values. For
lower sized samples the probability mass in the corners is less pronounced, so the
evenly spaced sector of the supports dominates the dependence structure, i.e. for
small samples with this parameterization we are close to the independence copula.
Whereas for larger samples, this e�ect is reversed and realizations in the corners are
more frequent, which leads to high values of mMSE

opt

.
The simulation results clearly indicate, that the cross validation estimate overesti-

mates the optimal polynomial order systematically in the sample range. To quantify
the goodness of fit of the respective models we chose to measure the deviation of
the respective estimates from ◊MSE

opt

with the root mean squared error RMSE:

RMSE =
Ô

MSE =
rP

n

i=1

(y
i

≠ f
i

) ,

n

Even though this measure seems to have deficiencies with regard to its reliability, we
still report the RMSE as it is widely known and used in the scientific community.12

12For a discussion of various error measures in econometrics see e.g. Armstrong and Collopy, 1992.
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Table 4.1.: Descriptive statistics for m̂

MSE

opt

- 2-Dimensional data.

CGa

fl

Ct

‹,fl

CF r

◊

fl
·

mean CI mean CI mean CI

-0.9 19.80 (16.21, 23.3) 21.57 (16.56, 26.15) 13.04 (8.6, 18.26)
-0.7 8.63 (7.34, 10.19) 19.76 (14.82, 24.6) 9.43 (5.86, 14.19)
-0.5 5.57 (5.19, 5.91) 21.76 (16.63, 26.17) 5.67 (3.45, 9.34)
-0.3 4.20 (3.89, 4.43) 14.22 (9.82, 19.13) 2.74 (2.0, 4.21)
-0.1 2.61 (2.43, 2.71) 12.30 (7.86, 16.73) 2.00 (2.0, 2.0)
0.1 2.00 (2.0, 2.0) 3.48 (2.0, 5.69) 2.00 (2.0, 2.0)
0.3 4.22 (3.86, 4.47) 4.63 (3.93, 5.91) 2.96 (2.82, 2.97)
0.5 5.43 (5.04, 5.82) 6.52 (5.8, 7.41) 2.00 (2.0, 2.0)
0.7 8.09 (6.97, 9.23) 10.46 (8.67, 12.86) 8.59 (7.19, 10.28)
0.9 22.96 (18.76, 26.6) 18.57 (15.3, 22.08) 2.02 (2.0, 2.06)
fl

·

CCl

◊

CGu

◊

CJo

◊

mean CI mean CI mean CI

0.1 2.02 (2.0, 2.06) 2.52 (2.34, 2.65) 2.07 (2.0, 2.19)
0.3 2.72 (2.52, 2.86) 3.96 (3.6, 4.23) 2.72 (2.5, 2.93)
0.5 5.65 (4.71, 8.28) 4.85 (4.54, 5.28) 5.70 (4.82, 6.95)
0.7 10.80 (9.02, 12.84) 9.24 (8.26, 10.15) 11.59 (9.45, 14.17)
0.9 19.85 (16.06, 23.8) 19.33 (16.54, 22.78) 21.78 (17.67, 25.67)

CGa

fl

Ct

‹,fl

CF r

◊

CCl

◊

CGu

◊

CJo

◊

P
R

mean

CR 4.61 15.78 4.00 2.02 2.52 2.07
MR 19.41 47.13 13.37 8.37 8.80 8.41
OR 59.48 70.35 33.09 30.65 28.57 33.37
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Figure 4.5.: Plots of lscv(m) against m. The figures show cases of existence and non-
existence of a minimum within the specified range of grid sizes for m

lscv

opt

. In
contrast, m

MSE

opt

always attains its minimum in the same range.

In Appendix A.2 we also report the Mean Absolute Scaled Error (MASE) of the
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simulation data, where the scaled error is defined as

q
t

= e
t

1

n≠1

P
n

i=2

|Y
t

≠ Y
t≠1

| .

Taking the absolute value of the scaled error and averaging across the dataset then
gives:

MASE = 1
n ≠ 1

X
|q

t

|.
This measure, introduced by Hyndman and Koehler (2006), thus quantifies the

measurement error by evaluating the forecast error in relation to the mean prediction
error of a random walk. The results di�er marginally.
Table 4.2 summarizes the RMSE between m̂MSE

opt

and each estimator. m̂p captures
the relationship, that the optimal polynomial order depends on the strength of
concordance within the random vector. In contrast, m̂lscv

opt

only uses information
that is inherently a property of the Bernstein copula which is not su�cient for
medium sized samples.

In Table 4.3 we report the median values of the mean squared errors at the respec-
tive optimal grid sizes across the sample size interval [50, 60, . . . , 500] to approximate
the precision of a Bernstein copula estimate that is parameterized by m̂p.

4.3.4. Detecting Spearman’s rho
In addition to the aforementioned simulation we conducted the following study to
analyze the extent to which the Bernstein density estimator, parameterized with
m̂p and mlscv

opt

respectively, captures central properties related to the estimand. In
this simulation we generate samples from the Gauss copula for the parameter range
fl œ {≠0.9, ≠0.7, . . . , 0.9}, and calculate the corresponding Bernstein copulas. Since
rank correlations are copula parameters we can compute Spearman’s rho for each
Bernstein copula and compare it with the true value that generated the respective
sample. For the Gauss copula the true value can be computed by the well known
formula13:

fl
s

(X
1

, X
2

) = 6
fi

arcsin 1
2fl (4.31)

Spearman’s rho with respect to the Bernstein copula is defined as14:

fl
s

(X
1

, X
2

) = 12
mX

v1=0

mX

v2=0

“
⇣v

1

m
,
v

2

m

⌘ Y

j=1,2

✓
m

v
j

◆
B(v

j

+ 1, m + 1 ≠ v
j

), (4.32)

13see e.g. McNeil et al., 2010.
14see Sancetta and Satchell, 2004.
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Table 4.2.: RMSE across the sample range [50, 60, . . . , 500] per
parameter for 2-dimensional simulated data. The ran-
dom samples were generated with the parameters that
correspond to the respective Kendall’s tau values. For
C

Cl

◊

and C

Gu

◊

negative values of fl

tau

either lead to non-
strict copulas or, as in the latter case, are not defined.

RMSE

m̂p

fl
·

CGa

fl

Ct

‹,fl

CF r

◊

CCl

◊

CGu

◊

CJo

◊

1

n

P

-0.9 12.67 17.26 17.24 n.a. n.a. n.a. 15.72
-0.7 5.31 18.58 14.87 n.a. n.a. n.a. 12.92
-0.5 3.07 20.75 11.74 n.a. n.a. n.a. 11.85
-0.3 0.99 18.24 5.47 n.a. n.a. n.a. 8.23
-0.1 0.95 18.77 0.45 n.a. n.a. n.a. 6.72
0.1 0.45 7.12 0.45 0.51 0.88 0.64 1.67
0.3 0.99 3.04 2.33 2.64 1.26 2.66 2.15
0.5 3.21 3.18 6.73 5.47 3.89 4.37 4.48
0.7 4.88 6.38 5.85 6.43 3.77 8.20 5.92
0.9 15.07 11.55 13.68 14.37 11.52 14.41 13.43

1

n

P
4.76 12.49 7.88 5.88 4.26 6.05 8.31

m̂lscv

opt

fl
·

CGa

fl

Ct

‹,fl

CF r

◊

CCl

◊

CGu

◊

CJo

◊

1

n

P

-0.9 29.12 29.12 19.00 n.a. n.a. n.a. 25.75
-0.7 32.21 32.41 23.91 n.a. n.a. n.a. 29.51
-0.5 33.75 35.63 27.36 n.a. n.a. n.a. 32.24
-0.3 35.21 38.12 32.18 n.a. n.a. n.a. 35.17
-0.1 30.22 40.92 43.29 n.a. n.a. n.a. 38.14
0.1 31.20 41.01 29.67 31.09 24.90 32.22 31.68
0.3 32.87 38.16 32.27 34.68 31.62 36.44 34.34
0.5 33.70 35.74 17.90 35.06 34.72 35.51 32.10
0.7 32.11 32.54 31.80 32.40 32.28 32.41 32.26
0.9 29.12 29.12 18.14 29.1 29.12 29.12 27.29

1

n

P
31.95 35.28 27.55 32.47 30.53 33.14 31.85



4.3 Penalized Grid Optimality 52

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50
m

Ccl, (6.43, 32.40)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50
Ct, (6.38, 32.54)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

m

Cgu, (3.77, 32.28)

50 100 150 200 250 300 350 400 450 500

n

0

10

20

30

40

50
Cga, (4.88, 32.11)

50 100 150 200 250 300 350 400 450 500

n

0

10

20

30

40

50

m

Cfr, (5.85, 31.8)

50 100 150 200 250 300 350 400 450 500

n

0

10

20

30

40

50
Cjo, (8.2, 32.28)

Figure 4.6.: Optimal grid sizes in 2 dimensions plotted against m̂p and m̂

lscv

opt

, ◊ = fl

·

=
0.7. The blue dots show the MSE-optimal grid sizes, the green and black
lines represent m̂p and m̂

lscv

opt

, respectively. The RMSE with respect to
m̂

MSE

opt

and m̂p is reported in brackets.
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Figure 4.7.: Box plots of mean squared errors for selected levels of Kendall’s tau in the
2-dimensional case. The mean squared errors correspond to the respective
optimal grid sizes in the sample size interval [50, 60, . . . , 500].
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Table 4.3.: Median mean squared errors for 2-Dimensional data . For each value
of fl

·

the median is obtained with respect to the mean squared errors
of each sample size in the interval [50, 60 . . . .500].

fl
·

C
ga

C
t

C
fr

C
cl

C
gu

C
jo

-0.9 0.003575 0.005945 0.006246 n.a. n.a. n.a.
-0.7 0.000802 0.001930 0.002289 n.a. n.a. n.a.
-0.5 0.000182 0.001156 0.001142 n.a. n.a. n.a.
-0.3 0.000073 0.000527 0.000620 n.a. n.a. n.a.
-0.1 0.000011 0.000248 0.000229 n.a. n.a. n.a.
0.1 0.000037 0.000077 0.000034 0.000049 0.000013 0.000019
0.3 0.000075 0.000068 0.000005 0.000059 0.000094 0.000005
0.5 0.000222 0.000202 0.000583 0.000217 0.000247 0.000006
0.7 0.000805 0.000738 0.000599 0.001041 0.000907 0.000079
0.9 0.003607 0.004012 0.005222 0.003706 0.004271 0.001490

4.3.5. Simulation study: n-dimensional case, n > 2
In higher dimensions we have to specify a suitable mechanism to reduce the pairwise
rank-correlations of X to a one-dimensional criterion that captures the required
dependency information in a way that is equivalent to ◊.1516A natural specification
would set ◊ to the weighted average of the respective pairwise realizations:

◊ =
✓

d

2

◆≠1X

(d

2)
◊

i,j

1{i”=j}, i, j œ {1, . . . d}. (4.34)

Multivariate extensions of Spearman’s rho of this form are reviewed e.g. in Schmid
and Schmidt (2007). With respect to this dependence measure the above estimator
is referred to as population version of the average pair-wise Spearman’s rho which
the authors define by:

fl
3

= 3
"

4
X

k<l

✓
d

2

◆≠1

Z

[0,1]

2
C

kl

(u, v)dudv ≠ 1
#

(4.35)

A disadvantage of this specification is that in the presence of rank correlations of
opposite signs these values would cancel each other out, which is counter-intuitive in
situations when the respective pairwise rank correlations show strong dependency.

15see e.g. Joe, 1990, for a discussion on multivariate concordance measures.
16see e.g. Jaworski et al., 2010, pp. 209 for a more recent discussion on this topic.
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Figure 4.8.: Estimation of Spearman’s rho at sample size 800.
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The authors further present the two following extensions:

fl
1

= h(d)

2d

Z

[0,1]

d

C(u)du ≠ 1
�

(4.36)

fl
2

= h(d)

2d

Z

[0,1]

d

Y
(u)dC(u) ≠ 1

�
. (4.37)
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where
h(d) = d + 1

2d ≠ (d + 1) .
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Figure 4.10.: fl

1

, fl

2

and fl

3

for a 6-Dimensional random vector U = (U
1

, . . . , U

6

)€ taken
from a Gauss-Copula with fl(U

i

, U

j

) = fl, ’i ”= j. The solid line represents
the specification (4.34).

Another possible strategy is to select the maximum of the absolute value of the
respective dependence measures:

◊ = max
(d

2)
|◊

i,j

|, i, j œ {1 . . . d} · i ”= j. (4.38)

An argument for (4.38) can be made from the perspective of dimension reduc-
tion techniques like principal component analysis or factor models, where high-
dimensional problems are reduced to subsets of lower dimension. The essential
argument here is that in the case, that the randomness in a random vector is
mainly driven by a smaller subset of the same vector, one can ignore the irrel-
evant components and focus on the low dimensional subset for further analysis.
In the current context one could argue that given a random vector X and its
rank correlation matrix fl

›

(X) it might be feasible to focus on the maximum of
all rank correlations as it has the most influence on the joint dependency structure.
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An intuition for the validity of this specification may be gained by Figure 4.11.
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x
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z

(d)

Figure 4.11.: Perspective scatter plots of (x, y, z) ≥ N(µ, �), where fl(x, y) =
0.1, fl(x, z) = 0.8, fl(y, z) = 0.1. (a) shows the general elliptical dependence
structure, (b), (c) and (d) focus on di�erent angles of the same plot to
emphasize the correlation of the pairs (y, z), (x, z), and (x, y), respectively.

The graphic shows a random vector (x, y, z) ≥ N(µ, �) with correlation structure
fl(x, y) = 0.1, fl(x, z) = 0.8, fl(y, z) = 0.1. As we rotate the graphic to focus on
the correlation structure of the 3 pairs (y, z), (x, z), (x, y), we can clearly observe
that fl(x, z) in a sense dominates the dependence structure, as it induces the elliptic
shape into a scatter plot, that would otherwise be spherically shaped.

We generated 3-dimensional data according to the same specifications and for the
same copulas we introduced in the previous section. To keep the computational time
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Figure 4.12.: Optimal grid sizes in 3 dimensions plotted against m̂p, ◊ = fl

·

= 0.7.
The blue dots show the MSE-optimal grid sizes, the green lines represents
m̂p. The respective RMSE is reported in brackets.

at a moderate level we only considered exchangeable copulas.17

17A copula is called exchangeable if C(u1, . . . , u

d

) = C(u
fi(1), . . . u

fi(d)), for any permutation
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Figure 4.13.: Box plots of mean squared errors for selected levels of Kendall’s tau in the
3-dimensional case.

4.3.6. Non-linear least squares estimate of m̂p

Given the data generated by the monte carlo simulation we can take a slightly
di�erent approach and fit our model to the data with a least squares estimation
procedure. We conduct this study to compare the parameterization we specified,
namely choosing ◊ to be a rank correlation coe�cient, with the parameter estimates
◊̂NLS that are obtained from a least squares estimation. Furthermore, this will give
us an indication of the goodness of fit of our model within a regression framework.
We will not impose the restriction ◊̂NLS œ [≠1, 1] since we are explicitly interested
in the natural parameterization of the model. We thus focus on the perspective of
fitting a model to data that should capture the relationship between n and mMSE

opt

without a priori providing an interpretation of the regression coe�cient ◊NLS. By
comparing ◊NLS with the respective rank correlations we can analyze the optimality
of our parameterization with respect to the situation that m

opt

were an observable
quantity. Since m̂p is non-linear in ◊ and an application of a logarithmic transforma-
tion would not succeed in linearizing our estimator with respect to this parameter,

(fi(1), . . . , fi(d)) of (1, . . . , d). See e.g. McNeil et al., 2010.
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we have to conduct a non-linear least squares estimation.18 Thus we specify the
following regression:

y = |◊|e|◊|
1
n n 2

d+4 + ‘ (4.39)
where

y

0

B@
y

1

...
y

n

1

CA , n =

0

B@
n

1

...
n

n

1

CA , ◊ =

0

B@
◊

1

...
◊

n

1

CA and ‘ =

0

B@
‘

1

...
‘

n

1

CA

.
Similar to linear regression, the least squares estimator of the unknown vector

valued parameter ◊ = (◊
1

, . . . ◊
p

) in the general model

y = f (◊) + e,

where the errors e are assumed to be i.i.d. with µ = 0 and unknown variance ‡2, is
the p by 1 vector ◊̂ that minimizes

Îy ≠ f (◊) Î2. (4.40)

The estimate of the variance of the errors is given by

s2 =
Îy ≠ f

⇣
◊̂
⌘

Î2

n ≠ p
.

In non-linear least squares models the normal equations, that are obtained by taking
the derivatives of (4.40) with respect to each ◊

i

and setting them to zero, are func-
tions of the parameters, thus explicit solutions to this minimization problem cannot
be obtained and one has to consider numerical methods. The results reported in
the present analysis were obtained by applications of the Levenberg-Marquardt al-
gorithm, a widely used algorithm in this field.

The penalized grid estimator m̂p we introduced performs promising in the di-
mensions we tested it. Apart from the advantages in precision it has compared
to the least squares cross validation estimator mlscv

opt

, it proves to be significantly
more robust and has clear advantages with respect to the computational cost of the
calculation.

18The notation and general results with respect to non-linear regression in this section follow
Gallant, 2009.
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Figure 4.14.: Non-linear least squares estimates (red) of m

opt

plotted against the MSE
optimal grid sizes and m̂p (green) for di�erent datasets. The RMSE

for m

NLS

opt

and m̂p with respect to the data are reported in brackets as
(RMSE

NLS , RMSE

p).
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5. Locally Optimal Bernstein Copulas
In the previous chapter we introduced the estimator for an optimal grid size m̂p (◊).
This estimator leads to copula estimates that perform reasonably well in the center
of the respective sample, but su�er from the well known drawback of non-parametric
density estimators, that estimates in the tails of the respective distributions are poor
for small to moderate sample sizes since data points in these regions are sparse. We
can try to improve these estimates by utilizing dependence structure information
that is local to the sample and estimate the density in the proximity of these points
by Bernstein copula densities that are parameterized with an optimal grid size ob-
tained by this additional information. Since we have given empirical evidence to
the validity of the relationship between the MSE-optimal grid size and the strength
of concordance, it is natural in our case to choose a suitable concordance measure
fl

›

to represent this additional information. This leads to any given d-dimensional
dataset Xd

n = (X
1,i

, . . . X
d,i

) , i œ {1, . . . n}, where n denotes the sample size, being
representable by a family of locally optimal Bernstein copulas B given by:

B = Bd

m(◊)

, ’ ◊ œ �X,

where the parameter-space �X is given by the set of locally realized concordance
measures fl

›,j

, j = 1, . . . , n at each point. But care has to be taken here, Boyer
et al. (1997) have shown in the bivariate normal case that by calculating Pearson’s
correlation coe�cient based on one variable being in some subset of the sample, one
can arrive at wrong conclusions. The authors show that in this case for any subset
A the correlation can be expressed as:

fl̂(A) = fl

✓
fl2 + (1 ≠ fl2) Var(x)

Var(x)|x œ A
◆≠ 1

2

Note that in this case the conditional correlation is dependent on the ratio of the
conditional variance of x to the overall variance in the sample. The larger the
conditional variance is, the larger the conditional correlation will get without there
being a change in the fundamental dependance relationship within the conditioning
set.

Berentsen and Tjøstheim (2013) discuss various concepts of local dependence
measures and point out that the conditional correlation coe�cient, which can be
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expressed as:

fl̂
c

(A) =
P

(X

i,1,X

i,2œA)

�
X

i,1

≠ µ̂
X1,c

� �
X

i,2

≠ µ̂
X2,c

�
qP

(X

i,1,X

i,2œA)

�
X

i,1

≠ µ̂
X1,c

�
2

qP
(X

i,1,X

i,2œA)

�
X

i,2

≠ µ̂
X2,c

�
2

su�ers from a drawback called the bias problem of conditional correlation which
refers to conditional correlation failing to aggregate appropriately to the global
Pearson’s correlation coe�cient which is incorrect for a pair of jointly Gaussian
variables by definition. Within the research that analyzes financial contagion an
expression for this bias has been developed relating the unconditional correlation to
the correlation in times of crisis:12

fl̂ = fl
yr

1 +
⇣

‡

2
y,1≠‡

2
x,1

‡

2
x,1

⌘ �
1 ≠ fl2

y

� ,

where fl
y

denotes the conditional correlation in times of crisis and ‡2

x

denotes the
conditional variance in regular periods. We observe the same deficiency as noted by
Boyer et al. (1997), namely that the conditional correlation is prone to be biased due
to changes in the variance of the conditioning set. Berentsen and Tjøstheim (2013)
further point out, that using a linear dependence measure may not be appropriate
in all cases and that conditional correlation is based on regions, which have to be
specified in advance. They propose an alternative measure which they termed local
Gaussian correlation and that is based on fitting Gaussian densities at each point of
a bivariate sample by means of local likelihood estimation.3 Since Pearson’s corre-
lation coe�cient is su�cient for completely specifying the dependence structure of
elliptical distributions, they thus completely describe the dependence structure in
the neighborhood of the respective point under investigation.
Remembering the similarities between rank correlation and linear correlation, we
thus have to be aware of potential inference problems that may occur due to the
conditioning we will conduct in the following sections. We note that we are explicitly
interested in the deviation of the local rank correlation coe�cients from the uncon-
ditional rank correlation. The results obtained with respect to financial contagion
analysis suggest that there is a relationship between the variances of the individual
elements of the random vector and the pairwise rank correlations. The phenomenon
of changes in the variances of a random variable is well studied in statistics and
common methods of dealing with it include transforming the data or modeling the
underlying functional relationship that drives these changes. We propose to utilize

1see e.g. Dungey* et al., 2005.
2see e.g. Forbes and Rigobon, 2002.
3see e.g. Loader, 1996.
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the information whether Homoskedasticity is present or not to enhance our estima-
tor via regionally measured rank correlations.
In contrast to the scope of the analyses conducted by the researchers, working in
the field of financial contagion analysis, we are not trying to find evidence that
the unconditional correlations for pairs of random variables have changed, we are
trying to improve our estimation procedure with the usage of information that is
inherently local. Under mild assumptions on the local smoothness of the underlying
density we can justify this approach, which deviates from the holistic perspective
of specifying the unconditional density. This method clearly has drawbacks since it
relies on reducing the respective sample to smaller subsets, which o�sets the idea of
incorporating all information that is available for the analysis. The intuition, that
lies behind this approach is that certain regions of a sample provide more informa-
tion with regards to the local structure of a density than others. If one is interested
in estimating the tail of a distribution where data is sparse, one should focus on
specifying a full distribution in the neighborhood of the tail. The feasibility of this
approach may be inferred from the fact, that every distribution can be represented
as mixture of other distributions and analogous every copula can be represented
as mixture of other copulas. An alternative path of local estimation that could
be taken, which has the advantage of utilizing all the information that is provided
by the dataset would be to apply a weighting function to the sample and estimate
the Bernstein copula with respect to this weighted dataset. This approach clearly
resembles kernel density estimation and the local likelihood procedure mentioned
above and constitutes a hybrid method incorporating elements of these alternative
non-parametric procedures. Analyzing the properties of this approach is subject to
future research.

We now proceed to define the concept of weighted locally optimal Bernstein cop-
ulas, which will be our main model in this chapter.
Definition 1. Let Xd

n = (X
1,i

, . . . X
d,i

) , i œ {1, . . . n} be a d-dimensional sample,
where n denotes the sample size. Let �X denote the set of locally realized concordance
measures fl�

›,j

, j œ {1, . . . n} with respect to the information set � in the sample and
let B

n

= Bd

m(◊)

be the family of locally optimal Bernstein copulas parameterized by
m (◊) , ’ ◊ œ �X.
Then

Bd

w

=
nX

i=1

Ê
i

Bd

m(◊

i

)

is called a weighted locally optimal Bernstein copula, where Ê = (Ê
1

, . . . , Ê
n

) are
weights satisfying

P
n

1

Ê
i

= 1.
Since every convex sum of copulas constitutes a copula4, weighted locally optimal

4see Nelsen, 2007, chapter 3.2.4.
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Bernstein copulas satisfy the necessary properties for them to be valid copulas. We
will refer to the Bernstein copula resulting from the special case Ê

i

= 1, Ê
j

= 0, ’j ”=
i as locally optimal Bernstein copula.

5.1. Specifying the information region
Within the models we develop in this chapter we are free to specify the regions we
find relevant to our local information set �, i.e. the subsets of the sample Xd

n

that we
choose to use for the estimation of the local concordance measure fl

›,i

, i œ {1, . . . n}.
It is theoretically possible to specify di�erent information sets for every point in a
given sample X, if that is feasible for the analysis at hand. In the following we will
discuss two specifications of �.

5.1.1. The spherical information set - �s

Let x

i

= (x
i,1

, . . . , x
i,d

), i œ {1, . . . , n} denote a point in d-dimensional euclidean
space. The spherical information set around x

i

is then constructed by evaluating
Kendall’s tau across all points of the d-ball with center x

i

and radius r
i

�s := {x œ Rd : Îx ≠ x

i

Î
2

Æ r
i

}, (5.1)

where Î · Î
2

denotes the euclidean norm. We allow r
i

to vary across the whole
sample for maximum flexibility. Depending on the specification of r

i

local estimates
for m

opt

in the center of the sample may be close to the estimate mc

opt

gained on the
whole dataset, whereas estimates taken in the other regions of the sample can be
substantially di�erent. Let s

n

be the vector of sum-norms of the sample X:

s

n

=
�Î (x

1

, . . . , x
d

) Î1

1

, . . . , Î (x
1

, . . . , x
d

) În

1

�€
.

Then
D

n

= max (s
n

) ≠ min (s
n

)
denotes the maximum distance between two points within the sample, i.e. in 2
dimensions that are farthest in the respective tails of the plane. We could then set
r = r

i

= D

n

2

, i = 1, . . . , n to construct spherical information regions, that cover at
least 50% of the samples.
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Figure 5.1.: Random samples drawn from a bivariate Clayton copula. The spherical
information set is shown on the left, the quadrant-dependent information
set on the right.

5.1.2. A quadrant-dependent information set - �q

The second approach we consider is to split the sample into n-dimensional cubes.
Let

Q = {[0, 0.5]
1

, ]0.5, 1]
1

} ◊ . . . , ◊{[0, 0.5]
d

, ]0.5, 1]
d

}
Then for every point p in Q

j

, j œ {1, . . . p}, where p = 2d denotes the number of
quadrants, we can define a quadrant-dependent information set �

q

by constructing
a hypercube C

j

(p) spanned at p, with edge length a = ÎpÎŒ that lies within Q
j

.
We can think of C

j

(p) as a matrix, that is a scaled down version of Q
j

, i.e. we
arrive at C

j

(p) by applying a suitable transformation T to the boundaries b

j

of Q
j

.
The kth scaling factors s

k

j

= (s
1

, s
2

) , k = 1, . . . , d of the hypercube are obtained by
solving the set of equations

b

k

j

T = a, k œ {1, . . . d}.

where

b

k

j

œ {(0, 0.5)€
i

, (0.5, 1)€
i

},

a =
(

(0, a)€ , if b

k

j

= (0, 0.5)€

(a, 1 ≠ a)€ , if b

k

j

= (0.5, 1)€ ,

and

T =
✓

s
1

0
0 s

2

◆
.
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The kth row-vector of C
j

(p) is then obtained by:

c

k

j

(p) = s

k

j

¶ b

k

j

=
✓

s
1

s
2

◆
¶
✓

bk

1,j

bk

2,j

◆
,

where ¶ denotes the Hadamard product. We can then construct �
q

with respect to
to the point p by considering all points within the boundaries given by the Cartesian
product of the rows of C

j

(p).
The construction of �

q

is driven by the aim to provide a mechanism that automat-
ically adapts to the tail-behavior of a dataset, and to incorporate this information
appropriately to the estimation of m̂p. Whereas �

r

can be regarded as utilizing
information that is local but still symmetric at each point and should thus di�er less
from m̂p.

Figure 5.2 shows the regions of varying m̂p(◊). We can observe, that the quadrant
dependent information set leads to higher values of the estimator in the respective
tails, than the grid sizes based on the spherical information set.

5.2. Time Varying Bernstein Copulas
The LBC framework is easily extended to timeseries applications and time-dependent
dependence structures, by specifying the information set appropriately:

Bd

m(◊

t

)

= Bd

m(◊

t

)

|Bd

m(◊

t≠1)

. . . Bd

m(◊

T

)

, ’ ◊ œ �, t œ {1 . . . T}, (5.2)
where the index t denotes a point in time. This specification has clear parallels to
conditional copula models as introduced by Patton (2006) with the di�erence that
we are adjusting the bandwidth that is needed to estimate the underlying copula
conditioned on historical values of ◊.

Before we present an application of the time varying LBC, it is important to
take a clear perspective what type of dependency one wishes to address with the
respective copula model. Consider a d-dimensional timeseries X = (X

1

. . . X
d

)
t

. We
can analyze this series with respect to its cross-sectional dependence structure, i.e.
the dependency between the d variables at time t, or we can analyze each of the d
series with regards to their inter-temporal dependence structure, i.e. in the bivariate
case the dependence structure between X

i,t

and X
i,t≠j

, j œ {1, . . . , t ≠ 1}.5. Studies
of the former are conducted by analyzing the dependence structure of the residuals
of the d timeseries, where one is either interested in the unconditional dependence
structure, i.e. the dependence structure C of the i.i.d sample of random vectors

5see e.g. Patton, 2009, for a review of the literature on the various aspects of time varying copula
analysis with regards to financial time series.
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Figure 5.2.: Scatter Plots of regions of local optimal grid sizes for di�erent copulas in the
bivariate case. Grid sizes generated by �

q

are shown on the left, grid sizes
based on �

s

set are shown on the (right). The color-spectrum indicates the
values of m̂p(◊) in the respective regions.
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When parameterizing the Bernstein copula according to Equation (5.2) it is ben-
eficial to remember that by adjusting m̂p according to di�erent information sets
one poses no restriction on the estimand, i.e. we are not necessarily estimating a
possibly di�erent copula with a di�erent parameter. We are indeed inferring the
structure of the copula solely from the data and are adjusting the grid size to the
optimality criterion specified in the previous chapter. If there are structural breaks
or other changes in the dependence structure of the underlying model the LBC will
automatically adjust accordingly if the change can be captured by the concordance
measure or the Bernstein copula. The possibility of specifying di�erent information
sets allows the LBC to adjust even more flexibly to asymmetries in the data than
the regular Bernstein copula. Jumps in the concordance measure for a given sample
size can then be interpreted as additional information that lets the data being more
or less reliable, therefore leading to increased or decreased smoothing.

5.2.1. Application: Forecasting financial data
The applications of copula-models in finance are numerous. They are used in quan-
titative risk management e.g. to model the aggregate dependence structures of
financial conglomerates by coupling the risks that are represented by the conglom-
erates subsidiaries. On this aggregate basis one can then evaluate various downside
risk measures such as the Value at Risk or the Expected Shortfall of the conglom-
erate. Calculations of the latter form are used for stress testing purposes and are
proprietary for financial institutions in Europe due to the regulatory frameworks
of Basel 2 and Solvency 2, if they exceed certain criteria related to their size. A
conglomerate that decides to use a so called internal model can choose to use cop-
ula models to determine their overall risk exposure. Companies will do so if they
recognize that the alternative, that is represented by having to apply the so called
standard formula, places inappropriate capital requirements on them. Another field
where copulas are widely used is option pricing and the pricing of credit derivatives,
such as Collateralized Debt Obligations. To derive fair values in the latter case
one often has to specify the dependency structure of multiple underlyings/obligors
since the respective products constitute cash flows that are directly related to the
probabilities of certain events happening.6 In the following we will apply the LBC
framework to analyze the time varying dependence structure of the S&P 500, Nikkei
and Dax and use the resulting model to forecast their future dependency structure.
This analysis may be interesting in the present times as questions regarding the sta-
bility of international financial markets with respect to their interdependencies have
become prominent after the financial crisis in 2007. Quantifying the dependance
structure between the leading stock market indices of three major economies may

6see e.g. Cherubini et al., 2004.
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give a first insight into the dynamics and the structure of intercontinental financial
relationships.
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Figure 5.3.: Scatter Plots of stock market indices.

The time-varying LBC-model is operationalized by specifying a full model with re-
spect to the dynamical properties of the marginal distributions and the concordance
measure that parameterizes the LBC. Estimating this model is therefore performed
in a two-step procedure. The first step consists of estimating the marginal processes
and the process used to quantify the dynamics of the parameter, whereas the second
step couples the margins with the Bernstein copula, parameterized by m̂t

p. A fore-
cast within this model then consists of forecasting the future value of the parameter
and then calculating the Bernstein copula density associated with this parameter-
ization. Models like these have been applied in parametric settings by e.g. Dias
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and Embrechts (2004), Jondeau and Rockinger (2006) and Patton (2006). To our
knowledge their hasn’t been an application within a non-parametric framework yet.

Table (5.1) summarizes descriptive statistics for the return series of the three
indices. We choose to consider 1832 joint observations within the period from Jan-
uary 1, 2007 up to October 3, 2010. The adjusted closing prices of the indices
were transformed to logarithmic returns, as is standard in quantitative finance due
to the various mathematical benefits with respect to interpretation, normalization,
stabilization and mathematical ease of the transformed series. The mean, median
and the quantiles of each series indicate that the respective distributions can be
considered symmetrical. Since we are considering stock market indices we naturally
have to consider GARCH-models for modeling the return data since these timeseries
usually show clear signs of time-varying volatility clustering.

Table 5.1.: Descriptive statistics for the re-
turns of the three stock market
indices

Dax Nikkei S&P 500
count 1832.00 1832.00 1832.00
µ̂ 0.00 -0.00 -0.00
‡̂ 0.01 0.02 0.01
min -0.07 -0.12 -0.09
q

25

-0.01 -0.01 -0.00
q

0,5

0.00 0.00 0.00
q

0.75

0.01 0.01 0.01
max 0.11 0.13 0.10

Modelling the margins

This assumption is confirmed graphically by inspecting Figure 5.4 which depicts
various plots for the respective indices. We can observe the typical characteristics
of financial timeseries, i.e. volatility clustering in the return series and persistent
patterns of autocorrelation in the squared return series.

The Ljung-Box Test for autocorrelation in the squared return series depicted in
Table 5.2 confirms the findings that we graphically observed in the ACF and PAC-
plots, as we can reject the null hypotheses of no autocorrelation for every series and
every lag.

According to these observations we consequently choose to specify GARCH(p, q)
models for all indices, where we set p = q = 1 since these perform traditionally well
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Figure 5.4.: Volatility clustering, autocorrelation and partial-autocorrelation of squared
returns for the S&P 500, Nikkei and Dax respectively.
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Table 5.2.: Ljung-Box Test for autocorrelation in the
squared returns

Dax Nikkei S&P 500
Lag 10 ‰2 835.474 1676.188 1543.504

p-value 0 0 0
Lag 15 ‰2 1247.375 2138.865 2274.022

p-value 0 0 0
Lag 20 ‰2 1477.619 2332.184 2798.273

p-value 0 0 0

on financial timeseries, that show the characteristics mentioned above:

r
t

= µ + ‘
t

, (5.3)
‘

t

= ‡
t

z
t

, (5.4)
‡2

t

= Ê + –‘2

t≠1

+ —‡2

t≠1

. (5.5)

In addition to this GARCH(1,1) model we estimated two ARMA-GARCH models
with GARCH-in-mean (GARCH-M) specifications which allow for various dynamics
with respect to to the mean-model depicted in Equation (5.5), as well as providing
the ability to incorporate lagged variables of both returns and innovations:

�(L)(r
t

) = µ
t

+ �(L)‘
t

, (5.6)

where L denotes the lag operator. The dynamics for µ
t

are given by

µ
t

= µ + ◊f(‡). (5.7)

We set µ œ {0, µ} and f(‡) = ‡ in Equation (5.7), i.e. we specify the following two
GARCH-M(1,1) models :

r
t

= µ
t

+ ‘
t

, (5.8)
µ

t

= ◊‡ , (5.9)
‘

t

= ‡
t

z
t

, (5.10)
‡2

t

= Ê + –‘2

t≠1

+ —‡2

t≠1

, (5.11)
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which we will denote GARCH-M(1,1)
1

and

r
t

= µ
t

+ „r
t≠1

+ ‘
t

+ Â‘
t≠1

, (5.12)
µ

t

= µ + ◊‡, (5.13)
‘

t

= ‡
t

z
t

, (5.14)
‡2

t

= Ê + –‘2

t≠1

+ —‡2

t≠1

, (5.15)

which we will denote GARCH-M(1,1)
2

.
We can confirm that these model specifications are appropriate by analyzing the
autocorrelation functions of the standardized squared residuals, which should show
no signs of autocorrelation, if the model that generated the residuals is able to
replicate the characteristics of the underlying time series. For completeness we thus
report Ljung-Box Tests for autocorrelation in the squared residuals of the estimated
GARCH-M(1,1)

2

series in Table 5.3. The results for the other specified processes
are similar and given in Appendix A.3. Let �

t

denote {r
t

, r
t≠1

, ...}. To model the

Table 5.3.: GARCH-M(1,1): Ljung-Box Test for
autocorrelation in the standardized
squared residuals

Dax Nikkei S&P 500
Lag 10 ‰2 15.15 10.09 3.95

p-value 0 .127 0.432 0.950
Lag 15 ‰2 16.373 13.922 6.145

p-value 0.358 0.531 0.977
Lag 20 ‰2 20.656 16.777 9.62

p-value 0.418 0.667 0.975

conditional distribution of the innovations ‘|�
t≠1

we choose to specify t-distributions
to account for the leptokurtic properties of the empirical densities as depicted in the
histograms in Figure 5.5:

‘|�
t≠1

≥ t
‹

(0, 1), (5.16)
where ‹ denotes the degrees of freedom of the respective t-distribution. Specifying
the appropriate distribution for the innovations is important due to various reasons,
as GARCH-models of financial timeseries may be used for pricing purposes or to
measure the downside risk of the respective series. McNeil and Frey, 2000 use
extreme value theory to estimate the tail of the innovation distribution and show
that utilizing heavy-tailed distributions provide one-day estimates that are superior
to the estimates that result from using distributions that neglect this property.
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Figure 5.5.: Leptokurtosis in index data
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Modelling the fl
·

-Series

When modeling the fl
·

-Series it is a priori not clear which time-series model might
be appropriate, in the sense that there is no clear intuition as tho which model class
might be appropriate. The dynamic behavior of rank correlation matrices might
be infered from the dynamic behavior of correlation matrices that are constructed
by dynamic conditional correlation models as developed by Engle, 2002 . This
holds true with respect to Kendall’s Tau for multivariate models that follow an
elliptical distribution since we know the functional relationship between Pearsons
correlation coe�cient and Kendall’s Tau. Nevertheless, in general such inference
is not feasible, thus we have to consider a larger set of timeseries models in the
specification step. In a first step, the estimation of an appropriate model requires us
to select an appropriate process from the rank-correlation matrix fl

›

(r). Following
the arguments provided in Chapter 4.3.5, we choose to to identify the relevant
timeseries according to the max criterion and for the reminder of this thesis we will
denote flmax

·

= max |fl
·

|. We generated the series by applying a moving window to the
margins, where the windowsize represents the sample size that is used to calculate
Kendall’s Tau. The window w is moved according to a stepsize s that has to be
specified carefully, as choosing a step size that is too small can lead to artificially
highly correlated data.7

Dias and Embrechts, 2004 consider a GARCH-type specification to capture the
dynamics of the underlying e-dimensional dependency parameter vector ◊

t

:

◊
m,t

= r
0

+
rX

i=1

r
i

dY

j=1

Z
j,t≠i

+
sX

k=1

s
k

◊
m,t≠k

where m = 1, 2 . . . , e and r
i

, i = 0, . . . , r and s
j

= 1, 2, . . . , s are scalar model param-
eters. Interestingly we found this GARCH-type specification to be inappropriate for
our purposes, as modeling the flmax

·

-series with a ARMA-process provided the clearly
superior results. One might provide a reason for this observation by inspecting the
graphics depicted in Figure (5.6). The two graphics at the top show the flmax

·

-Series
and the Fisher-transformation of the same series. The Fisher-transformation for fl
is known to induce normality in distribution and to be variance stabilizing, both
under certain conditions, i.e. when the random variables under consideration fol-
low a bivariate normal distribution and the sample size is large. If non-normality is
present, then this transformation provides poor results with respect to these proper-
ties.8 flmax

·

is bounded by 0 and 1, so we observe no realizations beyond these bounds,

7see Mittnik, 2011, The author reveals flaws within the calibration of correlation matrices that
are provided to insurance companies that use the so called standard formula to calculate their
regulatory capital requirements within the Solvency 2 regulatory framework.

8see eg. Berry and Mielke Jr, 2000.
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which leads to further questions regarding the distributional properties of this series.
To assess the latter we estimate the densities of both series, the original and the
transformed series, by the kernel density estimator, the graphics are depicted in the
bottom row of Figure (5.6). We see that the Fisher-transformation still stabilizes
the distribution, transforming the multi-modal distribution of the original series to
a smooth bi-modal distribution. For inference purposes it is still advised to utilize
bootstrapping to establish appropriate confidence intervals. From the autocorrela-
tion functions depicted in the third row of (5.6) we can see that the series can be
regarded as being i.i.d. which indicates that our choices for the step and window
size, (s = 5, w = 5) of the moving window were appropriate. Within the LBC
framework the region we specified is identified by all data points that constitute a
period of 5 consecutive days.

Table 5.4.: Descriptive statistics for the fl

max

·

-series

flmax

·

count 366
µ̂ 0.62
‡̂ 0.21
min 0.2
q

0.25

0.4
q

0.5

0.6
q

0.75

0.8
max 1.0

Table 5.4 summarizes descriptive statistics for the flmax

·

-series. The location of the
mean, 25% and 75%-quantile again suggest a rather symmetrical distribution, which
we can confirm graphically by the aforementioned kernel-density estimate depicted
in the last row of Figure 5.6. The multiple peaks of the density function are only
recognized visually, whereas the symmetrical nature of the distribution is revealed
when focusing on the descriptive statistics. The probability mass that is appointed to
values that a larger than the upper boundary of the theoretical support of Kendall’s
Tau are a result of the commonly known boundary bias problem of kernel density
estimation. It is important to remember that these statistics are attributes of a
very specific process, namely that of the maximum of the rank correlation matrices
that are calculated on 5-day datasets, which are obtained from our index-series. The
multiple occurrence of the upper boundary, depicted in Figure 5.7, is a result of these
calculations on small datasets. We can indeed observe almost linear relationships
between the respective indices, Dax and S&P 500, during these periods. As a
result of our observations with regard to the autocorrelation functions we choose to
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Figure 5.7.: Scatter plots of weekly subsamples with fl

·

near 1.

estimate following ARMA(1,1)-model:

fl
·,t

= µ + „fl
·,t≠1

+ ‘
t

+ ◊‘
t≠1

(5.17)

Parameter estimation

The results of the estimations of the GARCH model parameters are depicted in
Tables 5.5, 5.6 and 5.7. For the GARCH(1,1) and GARCH-M(1,1)

1

models all
estimated parameters are statistically significant for all three indices. The intercept
for the ‡2

t

-process is estimated to be 0 for both models and the – and — parameters
are of similar magnitude for all indices.

The estimated shape parameter ‹ of the t-distribution of the innovations varies
across all indices, with the highest value being estimated for the Nikkei-series, fol-
lowed by Dax and S&P 500. This pattern is shared across the GARCH(1,1) and
GARCH-M(1,1)

1

-models, with the di�erence being that the estimated ‹ Õs are higher
for the GARCH-M(1,1)

1

-model. The interpretation of the varying shape parame-
ters is straightforward, since as ‹ ¿ 1 the tails of the t-distribution become increas-
ingly heavy and the marginals become less peaked about 0.9 The results for the
GARCH-M(1,1)

2

-model are similar to the results of the other two models with re-

9see e.g. Kotz and Nadarajah, 2004.
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Table 5.5.: GARCH(1,1): Parameter estimates for
Dax, Nikkei and S&P 500

Dax
Estimate Std. Error t-value p-value

µ 0.0007 0.0002 3.0366 0.0024
Ê 0.0000 0.0000 2.6514 0.0080
– 0.1050 0.0170 6.1647 0.0000
— 0.8883 0.0164 54.0794 0.0000
‹ 6.8825 1.1635 5.9155 0.0000

Nikkei
Estimate Std. Error t-value p-value

µ 0.0005 0.0003 1.8856 0.0593
Ê 0.0000 0.0000 2.9615 0.0031
– 0.1032 0.0170 6.0686 0.0000
— 0.8785 0.0192 45.8699 0.0000
‹ 10.0420 2.1845 4.5970 0.0000

S&P 500
Estimate Std. Error t-value p-value

µ 0.0009 0.0002 4.7287 0.0000
Ê 0.0000 0.0000 2.9118 0.0036
– 0.1169 0.0187 6.2542 0.0000
— 0.8821 0.0164 53.6610 0.0000
‹ 4.8024 0.6265 7.6655 0.0000

spect to the parameters of the ‡2

t

-process, as all of these parameters share a similar
magnitude as well as all being statistically significant. In addition to that the pa-
rameters of the mean-model are all significant for the S&P 500-series, whereas „ and
Â are insignificant for both, the Nikkei and the Dax-series. We computed the AIC
and BIC information criterion to compare the specified models with each other and
identify the most suitable model for each index-series. Table 5.8 summarizes the
results for both criteria. Both criteria jointly favor the GARCH(1,1)-model for the
Dax-series and the GARCH-M(1,1)

2

-model for the S&P 500 series. The results for
the Nikkei-series are less clear since AIC favors the GARCH-M(1,1)

2

-model whereas
BIC favours the GARCH-M(1,1)

1

-model. We choose to give AIC precedence over
BIC for the Nikkei-series and consequently choose the GARCH(1,1)-model for the
Dax-series and the GARCH-M(1,1)

2

model for the Nikkei and S&P 500. The param-
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Table 5.6.: GARCH-M(1,1)
1

: Parameter estimates
for Dax, Nikkei and S&P 500

Dax
Estimate Std. Error t-value p-value

Ê 0.0000 0.0000 2.6434 0.0082
– 0.0989 0.0160 6.1833 0.0000
— 0.8936 0.0157 57.0337 0.0000
‹ 7.1994 1.2720 5.6597 0.0000

Nikkei
Estimate Std. Error t-value p-value

Ê 0.0000 0.0000 2.9548 0.0031
– 0.1016 0.0168 6.0526 0.0000
— 0.8798 0.0191 46.1400 0.0000
‹ 10.3108 2.2949 4.4929 0.0000

S&P 500
Estimate Std. Error t-value p-value

Ê 0.0000 0.0000 2.9179 0.0035
– 0.1097 0.0174 6.2926 0.0000
— 0.8866 0.0159 55.7692 0.0000
‹ 5.3307 0.7582 7.0311 0.0000

eters for the max|fl
·

|-process, which is based on the GARCH-processes we specified
are reported in Table 5.9.

Forecasting

We now turn to forecasting the future value of flmax

·

, which is given by the h-step
ahead forecast of the process in Equation 5.17, parameterized with the parameter
values we have just estimated:

fl̂
·,t+h

= „fl̂
·,t+h≠1

+ Â‘̂
t+h≠1

, h = 1, 2 . . . . (5.18)
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Table 5.7.: GARCH-M(1,1)
2

: Parameter estimates
for Dax, Nikkei and S&P 500

Dax
Estimate Std. Error t-value p-value

µ 0.0007 0.0002 3.0386 0.0024
„ -0.2723 0.5832 -0.4670 0.6405
Â 0.2901 0.5799 0.5003 0.6168
Ê 0.0000 0.0000 2.6536 0.0080
– 0.1049 0.0171 6.1372 0.0000
— 0.8884 0.0165 53.9324 0.0000
‹ 6.8584 1.1585 5.9201 0.0000

Nikkei
Estimate Std. Error t-value p-value

µ 0.0006 0.0003 1.9637 0.0496
„ -0.3701 0.3708 -0.9983 0.3181
Â 0.3237 0.3771 0.8584 0.3907
Ê 0.0000 0.0000 2.9554 0.0031
– 0.1031 0.0170 6.0491 0.0000
— 0.8786 0.0192 45.7594 0.0000
‹ 9.9020 2.1446 4.6172 0.0000

S&P 500
Estimate Std. Error t-value p-value

µ 0.0009 0.0001 6.5568 0.0000
„ 0.7974 0.0878 9.0800 0.0000
Â -0.8551 0.0756 -11.3097 0.0000
Ê 0.0000 0.0000 2.9266 0.0034
– 0.1179 0.0187 6.2978 0.0000
— 0.8811 0.0165 53.4349 0.0000
‹ 4.7063 0.5968 7.8864 0.0000

Given the prediction for flmax

·

we define the Bernstein copula density estimator for
period h as

cd

m(fl̂

·,t+h

) =
dY

i=1

m
i

X

v1

...
X

v

d

–

✓
v

1

m
1

. . . ,
v

d

m
d

◆
dY

i=1

P
m

i

,v

i

(u
i

), (5.19)
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Table 5.8.: AIC and BIC for GARCH(1,1), GARCH-M(1,1)
1

, and
GARCH-M(1,1)

2

GARCH(1,1) GARCH-M(1,1)
1

GARCH-M(1,1)
2

Dax
AIC -5.9525 -5. 9485 -5.9507
BIC -5.9375 -5.9364 -5.9296

Nikkei
AIC -5.6750 -5.6742 -5.6752
BIC -5.66 -5.6621 -5.6541

S&P 500
AIC -6.2895 -6.2788 -6.2967
BIC -6.2744 -6.2667 -6.2756

Table 5.9.: Parameter estimates for fl

max

·

-process

Estimate Standard Error p-value
µ 0.8750 0.0872 0
„ -0.9418 0.0635 0
◊ 0.6180 0.0051 0

where u
i

= F
i

(‘
i

) denote the cross sectional residuals, i.e. we parameterize the future
Bernstein copula density by the residuals of the total sample, which are transformed
to the unit interval by their estimated marginal distributions. We use this Bernstein
copula to draw samples from the estimated future distribution of the stock market
indices. These samples can be used to query certain aspects of interest with regards
to the joint occurrence of these random variables.

Calculating Value-at-Risk and expected shortfall

To provide an application that operationalizes the time varying LBC we give an
example from financial risk management and calculate Value-at-Risk (VaR) and
expected shortfall (ES) estimates for a portfolio, which is constructed from future
contracts that are based on the S&P 500, Nikkei and the Dax. We cannot invest di-
rectly into these indices as they represent a weighted average aimed at measuring the
performance of key companies in the respected countries. To invest into one of these
indices one has to apply either derivative strategies or invest in so called Exchange
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Traded Funds (ETF’s). Examples of the former are investments in certificates or
futures, where the price of both of these instruments rely on the development of
the underlying index. An Index ETF tries to replicate the performance of a spe-
cific index by either reconstructing all the components of the respective index or by
investing in a significant sub-sample thereof. Certificates are structured products
which represent payments that are contingent on the underlying and therefore share
a lot of the characteristics of the wider known options. The owner pays a principal
which can be augmented or reduced depending on the development of the underly-
ing. Future-contracts are derivative products that specify a future exchange of the
underlying at a fixed price, which is settled in the time of agreement.
Figure 5.8 depicts the index series plotted against their correspondent future series.
The future series are scaled by 0.8 to emphasize the nearly identical paths of these
derivatives. Except for the pair for the S&P 500 the paths of the respective series
are nearly indistinguishable. The reason for this can be derived from an arbitrage
argument, that is used to establish the fair price of the future. Since the future
contract at time t, F (t, T ), fixes the price for an exchange of the commodity in the
future t = T it has to be priced at the spot price of the underlying compounded at
the risk free rate r, i.e.

F (t, T ) = S
t

(1 + r)T , (5.20)
as a di�erent price would lead to arbitrage opportunities. This is easily seen when
comparing a direct investment in the underlying with a long position in the future
contract. Both strategies lead to the possession of the underlying in t = T without
taking any risk therefore they are perfectly equivalent and theoretically must have
the same value at time t. Arbitrage arguments are in essence equilibrium arguments,
i.e. they don’t imply, that there are no opportunities for arbitrage, they imply that
in an equilibrium in liquid markets with rational investors there will be no arbitrage
opportunities. Thus what the plots in Figure 5.8 depict is that the expected value
of the index at t = T is in general approximated adequately by formula 5.20. The
portfolio Value-at-risk and expected shortfall at confidence level – are defined by

VaR
–,t+�t

= inf{l œ R : P (L Æ l) Ø –} = F (–) (5.21)
ES

–,t+�t

= E(L|L Ø V aR
–,t+�t

) (5.22)

where L denotes the random loss, it is assumed that E(L) < Œ and �t denotes a
fixed time horizon. Both of these risk measures have been discussed widely in the
literature with the key di�erences being that ES fulfills the properties of a coherent
risk-measure, whereas the VaR does not satisfy this property as it lacks subaddi-
tivity.10 Nevertheless VaR is the de facto standard for measuring downside risk in
finance, e.g. within Solvency II, the regulatory framework relevant to insurance
10see Artzner et al., 1999, for a definition of coherence in this context.
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Figure 5.8.: Plots of future-series vs index-series. The future-series was scaled by 0.8 to
emphasize the similarities.

companies starting from January 1, 2016 all risks have to be measured by their
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VaR
–=99,5

. We consider the value V in t = t + 1 of the following portfolio in Euro:

V
t+1

= 1
3P

D

eR1,t+1 + 1
3P

Ni

eR2,t+1›U
e

+ 1
3P

S

eR3,t+1› $
e
, (5.23)

where P
D

.P
Ni

and P
S

denotes the prices of the respective future contract at time t
in the base currency, ›

i

, i œ {U
e , $

e} denote the relevant exchange rates to convert to
Euro in price notation and R

i

, i œ {1, 2, 3} denote the daily returns on the respective
futures. The return on the portfolio is consequently given by

Rp

t+1

= ln
✓

V p

t+1

V p

t

◆
. (5.24)

Figure 5.9 depicts a histogram of the historical returns of this portfolio. The prices
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Figure 5.9.: Histogram of portfolio returns.

for the three futures on September 24, 2014 were P
D

= 9590.5e, P
Nik

= 16100U
and P

S

= 1991$, furthermore we choose to fix the exchange rates at their values
from April 30, 2015 for the remainder of this section, i.e. we set ›U

e
= 0.0075 and

› $
e

= 0.8919. We can now proceed to draw samples (rú
1

, rú
2

, rú
3

) from the estimated
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future copula and use these samples to estimate the empirical VaR
–

and ES
–

, where
the former is given by the –-quantile of the sample we have generated:

VaR
t+1

= ≠rúp

t+1

, (–(N + 1)), (5.25)

and the latter by

ES
t+1

= ≠ 1
N

t+1

NX

i=1

rúp

t+1,i

I{xœR:xÆ≠V aR

t+1}(rúp

t+1,i

), (5.26)

where N denotes the sample size.
The dependence structure is modeled according to the specifications we introduced

in the previous section, i.e. we predict the one week ahead realization of flmax

·

at
t = t + 1, parameterize the LBC accordingly and use this parameterization to
generate the necessary samples. These samples have to be transformed to future
returns with an appropriate distribution. The obvious similarities between the index
series and the future series lead us to consider t-distributions to model the respective
future series. Figure 5.10 gives evidence to the adequacy of this specification, while
we compare the distributional parameters of the index series and the future series in
Table 5.10. The unconditional standard deviation ‡̂ is slightly higher for all index
series compared to their future counterparts, as well as the shape parameter ‹̂. The
latter indicates that the future series seem to possess heavier tails than the index
series and if we consider the general shape of the future series we can conclude that
they possess more of the leptokurtic characteristics common to financial time series.
In contrast, the estimated mean µ̂ is higher for all future series compared to the
respective index series.

We further assume that the dependence structure of R
t+1

does not change within
the week.

Table 5.10.: Comparison of distributional param-
eters Index vs Future

µ̂ ‡̂ ‹̂

Dax 0.000742 0.01929 6.88
Dax future 0.000988 0.00915 3.19
Nikkei 0.000551 0.01653 9.9
Nikkei future 0.000813 0.01081 5.27
S&P 500 0.000901 0.04319 4.71
S&P 500 future 0.000943 0.00721 2.19
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Figure 5.10.: Histograms of fitted t-distributions vs histograms of the future data.

In Table 5.11 we list the last observation of flmax

·

at September 24, 2014 and one
week ahead predictions up to October 29, 2014. The second row of the table lists
the corresponding values of the estimated optimal grid size m̂p.

Table 5.11.: One week ahead predictions of fl

max

·

starting from t
= September 24, 2014 up to October 29, 2014

t = 0 t + 1 t + 2 t + 3 t + 4 t + 5
flmax

·

0.5999 0.6404 0.6376 0.6351 0.6330 0.6311
m̂p 14 15 15 15 15 15

We see that m̂p is estimated at 15 for all future dates in consideration due to
the solely minor changes in the predicted values of flmax

·

. Table 5.12 summarizes
the VaR and ES estimates for t = September 25, 2014, for di�erent confidence
levels along with the respective confidence intervals. The confidence intervals were
estimated via bias-corrected and accelerated bootstrapping, where we have set the
number of bootstrap samples B and the individual sample sizes n of each sample
x

b

= (x
1

, . . . , x
n

), b œ {1, . . . , n} to 10000 each.
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Table 5.12.: VaR and ES estimates at di�erent confidence levels

– VaR 95% CI ES 95% CI
95% -0.0166 (-0.0174, -0.0159) -0,0275 (-0.029, -0.0264)
99% -0.0334 (-0.0352, -0.0323) -0.0432 (-0.0473, -0.0406)
99.5% -0.0393 (-0.0422, -0.0374) -0.0501 (-0.0568, -0.046)

Backtesting Value-at-Risk and expected shortfall estimates

We can now proceed to assess the overall precision of our VaR-estimates and perform
a backtesting exercise. We split our dataset into two parts a training and a test set,
where the training set is used to train our model, while the test set will be used to
perform one step out of sample predictions of VaR

t+1

. After each estimation we move
the training set one step ahead, re-estimate our Index-series GARCH-processes and
the one step ahead estimate of flmax

·

, which provides us with the necessary parameter
to estimate the future Bernstein copula. Starting at March 7, 2014, we proceed in
this manner until we arrive at the last date of our test-set, which in our case is April
30, 2015. This gives rise to 275 one step ahead predictions, at each step of which
we draw 10000 random samples to estimate VaR

t+1

.
A note to the computational cost has to be made at this point. Compared to eval-

uating a closed form functional the computational cost of drawing a large amount
of random samples of possibly high dimensional random variables is in general sub-
stantially larger for the Bernstein copula. These costs are mainly driven by the
optimal grid size m̂p, as the number of grids that need to be evaluated to calculate
its density increases in the number of dimensions as well as the number of grids i.e.
the cost is O(m̂d

p), for dimension d œ N+. Our calculations were mainly conducted
on multicore servers with up to 48 processors whose computing power was fully ex-
ploited via parallel computing in low-level languages such as C and Fortran. The
high number of random samples was chosen to achieve a maximum of precision to
avoid the well known curse of dimensionality that non-parametric estimation proce-
dures su�er from. These considerations have to be taken into account for practical
purposes in which the practitioner should conduct a cost-benefit analysis before she
chooses tho utilize this copula-model. The benefit she gains in utilizing this model
lie clearly in the flexibility to estimate an unknown copula arbitrarily precise, as
the sample size increases. Figure 5.11 depicts the returns of the portfolio during
the specified testing period along with the one-step-ahead forecasts for the VaR

–

and the ES
–

, for – œ {0.9, 0.95, 0.98}. The VaR boarder is violated 24, 11 and 1
time respectively, whereas the ES boarder is only violated at the 90% significance
level. The estimated Bernstein copula density thus slightly underestimates the VaR
as the number of exceedences are slightly less than we would expect under the null
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hypothesis. We have placed a dotted line in the same Figure to indicate the mean
of the losses that are larger than the VaR

–

within the whole sample. The deviation
of the mean of the ES-estimates to the observed sample mean is positive at the 95%
and the 90% significance level, whereas at the 98% level the deviation is strongest as
the sample mean is even lower than the estimated VaR. The V aR and ES estimates
thus suggest that the estimated Bernstein copula density assigns slightly too much
mass to the tail of the joint distribution of the 3 futures.
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Figure 5.11.: Top: V aR

–

(green line) and ES

–

(red line) estimates generated from one-
step-ahead predictions and realized returns (blue line), – = 0.98. The
dotted line denotes the empirical mean within the test set of exceedences
which are greater than the –-quantile.
Bottom: Plot of the absolute exceedances of V aR

–

within the test set,
– = 0.98.

To add more rigor to these observations we conduct the test of conditional coverage
as introduced by Christo�ersen, 1998 and Christo�ersen and Pelletier, 2004, which
is based on the hit sequence

h
t,–

:=
(

1, if R
p,t

< ≠V aR
–

(R
p,t

)
0, otherwise.

(5.27)



5.2 Time Varying Bernstein Copulas 93

May 2014
Jul 2014

Sep 2014

Nov 2014

Jan 2015

Mar 2015
�0.04
�0.03
�0.02
�0.01

0.00
0.01
0.02
0.03

May 2014
Jul 2014

Sep 2014

Nov 2014

Jan 2015

Mar 2015
0.000

0.002

0.004

0.006

0.008

0.010

Figure 5.12.: Top: V aR

–

(green line) and ES

–

(red line) estimates generated from one-
step-ahead predictions and realized returns (blue line), – = 0.95. The
dotted line denotes the empirical mean within the test set of exceedences
which are greater than the –-quantile.
Bottom: Plot of the absolute exceedances of V aR

–

within the test set,
– = 0.95.

Under the null hypothesis this sequence follows a Bernoulli distribution with pa-
rameter p

h
t

≥ Bernoulli(p). (5.28)
The alternative hypothesis, based on the observed empirical parameter fi is conse-
quently given by

h
t

≥ Bernoulli(fi). (5.29)
Thus the test of unconditional coverage tests

H
0,uc

: fi = p

against
H

1,uc

: fi ”= p,
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Figure 5.13.: Top: V aR

–

(green line) and ES

–

(red line) estimates generated from one-
step-ahead predictions and realized returns (blue line), – = 0.9. The dotted
line denotes the empirical mean within the test set of exceedences which
are greater than the –-quantile.
Bottom: Plot of the absolute exceedances of V aR

–

within the test set,
– = 0.9.

which is a quite intuitive test for the frequency of the observed V aR-violations.
The test for unconditional coverage implicitly assumes that the individual hits are
independent. This assumption is tested by the test of independence which assumes
that the hit sequence follows a Markov sequence with transition matrix

Y
=
✓

1 ≠ fi
01

fi
01

1 ≠ fi
11

fi
11

◆
. (5.30)

The test is then conducted by testing

H
0,ind

: fi
01

= fi
11

. (5.31)

These two tests can then be combined in a test of conditional coverage, i.e. by
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testing the null hypothesis
H

0,cc

: fi
01

= fi
11

= p. (5.32)
For a sequence of T trials the log-likelihood for a Bernoulli variable with unknown
parameter fi

1

is
ln L(h, p) = fiT1

1

(1 ≠ fi
1

)T ≠T1 , (5.33)
where T

1

, fi
1

denote the number of hits and the probability of hits respectively. The
maximum likelihood estimate of fi is

fî
1

= T
1

T
,

which is then used to specify the likelihood ratio test

LR
uc

= ≠2 [ln L(h, fî
1

)) ≠ ln L(h, p
1

)] .

The log likelihood for the independence test is

ln L(h, fi
01

, fi
11

) = (1 ≠ fi
01

)T≠T01fiT01
01

(1 ≠ fi
11

)T≠T11fiT11
11

,

with the maximum likelihood estimators for fî
01

and fî
11

given by

fî
01

= T
01

T
0

, fî
11

= T
11

T
1

.

The test statistics for the test of independence and the test of conditional coverage
are then

LR
ind

= ≠2 [ln L(h, fî
01

, fî
11

) ≠ ln L(h, fî
1

)] ,

LR
cc

= ≠2 [ln L(h, fî
01

, fî
11

) ≠ ln L(h, p
1

)] ,

respectively. The asymptotic distribution of LR
uc

, LR
ind

and LR
cc

, are chi squared
with one degree of freedom for the former ratios and 2 degrees of freedom for the
latter.11 In Table 5.13 we report these test statistics for the current test set along
with the theoretical p-values. We can observe that we can’t reject the null hypothesis
for neither of the three test statistics at the respective significance levels.

In this chapter we introduced the concept of Locally Optimal Bernstein Copu-
las, which enabled us to adjust our copula density estimatior to specific regions of
the sample, which in turn led us to be able to investigate time varying dependence
structures from a non-parametric perspective. This concept is su�ciently general

11 The assumptions underlying the applicability of a chi squared distributions for likelihood are
problematic in small sample sizes. The viable alternative is to compute p-values from monte
carlo simulations, which we did not conduct, due to the computational cost.
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Table 5.13.: Likelihood ratio tests of exceedances at 5 % significance level

–
Exceedances
(expected)

Exceedances
(realized) LR

uc

LR
ind

LR
cc

0.02 5.5 1 0.00268 (1.000) 0.00000 (1.000) 0.00269 (1.000)
0.05 13.75 11 0.00000 (1.000) 0.00000 (1.000) 0.00000 (1.000)
0.1 27.5 24 0.00000 (1.000) 0.00000 (1.000) 0.00000 (1.000)

to incorporate di�erent measures of dependence, as long as we make sure that the
information captured by the alternative dependence measure is mapped appropri-
ately into the interval [≠1, 1]. Since m = 1, 2, . . . only rather large changes in fl

›

lead to corresponding changes in m̂p, i.e. if the local dependence measure di�ers
only slightly from the global measure in the sample the information transported
by the locally optimal grid size will not di�er from the globally optimal grid size.
Nevertheless, if there are significant di�erences in the dependence measures, e.g. in
a timeseries context, in times of financial distress, the LBC will adjust accordingly.



6. Summary and Conclusion
The goal of this thesis was to analyze the properties of the Bernstein estimator for
copulas and copula densities for real world applications and to improve this esti-
mator methodologically. After introducing the Bernstein copula in Chapter 3 and
focusing on its relationship to approximation theory we summarize its large sample
properties, which were developed by Sancetta and Satchell, 2004, Bouezmarni et al.,
2010, Bouezmarni et al., 2013 and Janssen et al., 2012. We compared the precision
of this estimator in a model-selection exercise with medium sized samples, where we
showed that in the bivariate case the Bernstein copula density estimator has perfor-
mance comparable to parametric density estimators. This confirmed the properties
we expected theoretically, namely that even though they adjust slowly Bernstein
polynomials are fully capable of capturing any dependence structure, while provid-
ing the benefit not to be forced to make an assumption with regards to the true
underlying process. The latter is indeed crucial since a misspecified copula may lead
to a serious bias in the estimation.1
While o�ering enormous flexibility with regard to the functional form it may esti-
mate, the goodness of fit of the estimation is strongly dependent on the specification
of the bandwidth parameter m. To address the latter problem we develop a data
driven estimator for the bandwidth parameter in section 4.3 of Chapter 4 and an-
alyze its large sample properties. We compare a Bernstein copula parameterized
with m̂ as derived by this newly developed estimator to a Bernstein copula density
parameterized by m̂ as derived by the leave one out cross validation estimator in-
troduced in Section 4.1 of Chapter 4. By means of large scale simulation studies
with bivariate and trivariate data we find that a Bernstein copula parameterized
with our new estimator clearly outperforms the same estimator parameterized with
m̂ gained from the leave one out cross validation estimator. The application of this
estimator also reduces the curse of dimensionality problem as it allows to parame-
terize a n-dimensional empirical Bernstein copula estimator with its MSE-optimal
grid size.
The idea of using information which is specific to a given sample to enhance the
performance of the Bernstein copula density estimator is extended to a framework
that allows us to adresss several interesting problems known to multivariate density
estimation. In this regard we introduce the Locally optimal Bernstein copula LBC

1see e.g. Fermanian and Scaillet, 2004.
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in Chapter 4, which gives us the tools to adjust our estimation to certain regions
of interest, e.g. the tails of a multivariate density. The LBC framework allows us
also to capture time varying dependence structures, which to our knowledge has
not been applied within a non-parametric setting yet. We assess the applicability
of this new procedure in an empirical application for timeseries data, in which we
use forecasts of the parameter m̂ to obtain an estimate of the future dependence
structure within a portfolio constructed from three futures. We calculated VaR and
ES-estimates based on the estimated future copula and analyzed the precision of
these quantile forecasts via various formal backtests. The results of these backtests
indicate that the quality of the forecasts is appropriate since non of the backtests
reject the quantiles we obtained.

Within the field of copula estimation many procedures have been analyzed so far,
with a clear focus on the estimation of parametric copulas. Only recently there has
been an increasing interest in copula estimation via alternative methods such as
wavelets, while estimation based on kernel methods or Bernstein polynomials has
been known significantly longer. Nevertheless, non-parametric copula estimation
takes up only a small part of the literature published in the field, which we can
only attribute to the problematic properties in very high dimensions. Being easy
to implement the Bernstein copula density estimator provides a viable alternative
to the prominent parametric estimators, with appealing properties with regards to
its variance and unbiasedness in large samples. But even in small to medium sized
samples we find the Bernstein copula estimator to perform reasonably well.
The introduction of a sound estimator for the optimal bandwith parameter m̂p ex-
tends the applicability of the Bernstein copula estimator to estimation problems that
have yet been adressed exclusively by parametric copula estimators, such as time
varying copula estimation. The concept of exploiting local information to enhance
an estimator has already been employed in fields such as regression analysis and
density estimation, but only recently have their been applications with a specific
focus on multivariate dependence structures.2
In this thesis we have focused on analyzing the relationship between the optimal
grid size and the strength of dependence as captured by rank correlations. Natural
extensions would be to investigate wether estimations in the tails of a multivariate
distribution could be enhanced by information as captured by the coe�cient of tail
dependence or other suitable dependence measures. When utilizing the LBC we
have to specify suitable information regions �

i

, i = 1, . . . , n, which automatically
leads to the question of how to adequately specify these regions. In this regard we
would expect pattern recognition tools from machine learning such as the k-Nearest
Neighbors algorithm to provide interesting subsets, which could serve as basis for
our local estimation procedure.

2see Tjøstheim and Hufthammer, 2013.
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With regard to the applicability of the empirical Bernstein copula estimator for high
dimensional problems, we would suggest to safely utilize this estimator in situations
where data scarcity is not an issue. The computational cost may be high but the
shape preserving properties of this estimator, especially with respect to the estima-
tion of complicated dependence structures, that cannot easily be reconstructed by
parametric copulas, has led us to use to regularly use the Bernstein copula estimator
as sound “first guess”, when dealing with copula estimation problems.



A. Appendix

A.1. Additional distance measures: Model-selection

Table A.1.: Mean of RD

100,2

-values from 100 simulations with sam-
ple size 100 each. Parameters for the true copula den-
sities:
(ĉCl

◊

, ◊ = 1),(ĉF r

◊

, ◊ = 5),(ĉt

◊

, fl = ≠0.3), (ĉt

◊

, (fl =
0.65, ‹ = 4)

True
RD

2

ĉCl

◊

ĉF r

◊

ĉGa

◊

ĉt

◊

Estimate

ĉ
B

0.73397 0.73117 0.75428 0.84533
ĉCl

◊

0.63683 0.7206 0.62948 0.87357
ĉF r

◊

0.69373 0.72654 0.64523 0.77594
ĉt

◊

0.64108 0.72683 0.59546 0.65409
ĉGa

◊

0.67802 0.72726 0.60862 0.80906

Table A.2.: Mean of RD

100,Œ-values from 100 simulations with sample
size 100 each. Parameters for the true copula densities:
(ĉCl

◊

, ◊ = 1),(ĉF r

◊

, ◊ = 5),(ĉt

◊

, fl = ≠0.3), (ĉt

◊

, (fl = 0.65, ‹ = 4)

True
RD

100,Œ ĉCl

◊

ĉF r

◊

ĉGa

◊

ĉt

◊

Estimate

ĉ
B

0.99656 0.99791 0.93175 0.99298
ĉCl

◊

0.23233 0.35041 0.22501 1.42624
ĉF r

◊

0.76547 0.76443 0.53723 0.61474
ĉt

◊

0.25230 0.54564 0.24187 0.16203
ĉGa

◊

0.38189 0.62022 0.25931 0.43027
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A.2. Additional descriptive statistics: m̂p simulation
data

Table A.3.: Mean x and sample standard deviation s

for x = m

lscv

opt

- 2-Dimensional data simula-
tion data. Note that these statistics where
calculated with an upper bound of 49 for
x that was attained several times, i.e they
underestimate their actual values.
C

Ga

fl

C

t

‹,fl

C

F r

◊

fl

·

x s x s x s

-0.9 44.33 4.38 44.33 4.38 21.02 17.06
-0.7 43.96 4.54 44.20 4.39 28.15 17.50
-0.5 41.76 6.55 43.96 4.53 29.13 18.04
-0.3 38.98 10.16 42.96 5.18 34.17 14.48
-0.1 26.22 17.91 42.13 6.53 44.78 4.41
0.1 28.30 16.57 42.00 7.84 25.96 17.32
0.3 36.17 11.31 42.87 6.12 35.37 11.70
0.5 41.78 6.18 44.09 4.41 18.24 15.80
0.7 43.78 5.32 44.33 4.38 43.52 4.55
0.9 44.33 4.38 44.33 4.38 20.17 17.10

fl

·

C

Cl

◊

C

Gu

◊

C

Jo

◊

x s x s x s

0.1 29.17 14.75 21.78 14.99 30.80 14.07
0.3 38.54 9.97 34.76 11.66 41.00 6.82
0.5 43.26 5.53 42.74 6.65 43.83 4.57
0.7 44.17 4.51 44.04 4.52 44.20 4.39
0.9 44.33 4.38 44.33 4.38 44.33 4.38

C

Ga

fl

C

t

‹,fl

C

F r

◊

C

Cl

◊

C

Gu

◊

C

Jo

◊

CR 54.52 84.13 70.74 29.17 21.78 30.80
MR 158.70 173.87 116.91 81.80 77.50 84.83
OR 176.39 177.17 112.87 88.50 88.37 88.52
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Table A.4.: Mean Absolute Scaled Error (MASE) across the
sample range [50, 60, . . . , 500] per parameter for 2-
dimensional simulated data. The random samples
were generated with the parameters that corre-
spond to the respective Kendall’s tau values. For
C

Cl

◊

and C

Gu

◊

negative values of fl

tau

either lead
to non-strict copulas or, as in the latter case, are
not defined.ú

MASE

m̂p

fl

·

m

c

ga

m

c

t

m

c

fr

m

c

cl

m

c

gu

m

c

jo

1
n

P

-0.9 0.98 0.92 1.06 n.a. n.a. n.a. 0.99
-0.7 1.09 1.49 0.83 n.a. n.a. n.a. 1.14
-0.5 5.77 1.44 1.94 n.a. n.a. n.a. 3.05
-0.3 2.81 0.30 2.17 n.a. n.a. n.a. 1.76
-0.1 14.27 0.04 inf n.a. n.a. n.a. 7.15
0.1 inf 0.09 inf 5.56 8.14 2.02 3.95
0.3 1.96 0.52 102.59 3.71 2.63 3.01 19.07
0.5 4.60 1.15 inf 1.16 5.54 1.73 2.84
0.7 1.39 0.74 1.26 0.60 1.16 0.81 0.99
0.9 1.02 0.70 625.61 0.69 0.48 0.97 104.91

1
n

P
3.77 0.74 105.07 2.34 3.59 1.71 2.09

fl

·

m̂

lscv

opt

fl

·

m

lscv

ga

m

lscv

t

m

lscv

fr

m

lscv

cl

m

lscv

gu

m

lscv

jo

1
n

P

-0.9 8.77 8.77 0.92 n.a. n.a. n.a. 6.15
-0.7 8.22 9.27 0.98 n.a. n.a. n.a. 6.16
-0.5 5.20 9.22 1.10 n.a. n.a. n.a. 5.17
-0.3 4.01 9.88 2.79 n.a. n.a. n.a. 5.56
-0.1 1.37 7.01 12.58 n.a. n.a. n.a. 6.99
0.1 1.76 8.10 1.73 1.60 0.87 2.48 2.75
0.3 2.84 9.18 3.18 5.40 2.62 7.62 5.14
0.5 6.01 9.77 0.39 7.64 6.22 9.02 6.51
0.7 8.04 9.82 7.87 9.20 8.72 9.27 8.82
0.9 8.77 8.77 0.59 8.77 8.77 8.77 7.40

1
n

P
5.50 8.98 3.21 6.52 5.44 7.43 6.07

ú see e.g. Nelsen (2007), an Archimedian copula is considered
non-strict when its generator „(0) ”= Œ. To avoid undefined
areas in a non strict Archimedian copulas one has to resign to
the notion of a pseudo inverse, when constructing these copulas.
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A.3. Additional parameter estimates: Forecasting
financial data

Table A.5.: GARCH-M(1,1)
1

: Ljung-Box Test for
autocorrelation in the standardized
squared residuals

Dax Nikkei S&P 500
Lag 10 ‰2 4.334 11.239 15.131

p-value 0.931 0.34 0.127
Lag 15 ‰2 5.895 14.662 15.737

p-value 0.981 0.476 0.4
Lag 20 ‰2 9.347 17.815 20.278

p-value 0.979 0.6 0.441

Table A.6.: GARCH(1,1): Ljung-Box Test for
autocorrelation in the standardized
squared residuals

Dax Nikkei S&P 500
Lag 10 ‰2 4.075 9.905 13.989

p-value 0.944 0.449 0.173
Lag 15 ‰2 6.377 13.578 14.959

p-value 0.973 0.558 0.454
Lag 20 ‰2 9.838 16.445 18.824

p-value 0.971 0.689 0.533
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Table A.7.: GARCH(1,1): Parameter estimates for Dax, Nikkei and S&P 500. Robust
errors

GARCH(1,1) GARCH-M(1,1)1

Dax

Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value

µ 0.0007 0.0002 3.0366 0.0024 n.a. n.a. n.a. n.a.
Ê 0.0000 0.0000 2.5685 0.0102 0.0000 0.0000 2.5522 0.0107
– 0.1050 0.0203 5.1737 0.0000 0.0989 0.0189 5.2325 0.0000
— 0.8883 0.0177 50.3176 0.0000 0.8936 0.0165 54.2439 0.0000
‹ 6.8825 1.0931 6.2963 0.0000 7.1994 1.2029 5.9848 0.0000

Nikkei

Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value

µ 0.0005 0.0003 1.9407 0.0523 n.a. n.a. n.a. n.a.
Ê 0.0000 0.0000 2.6376 0.0083 0.0000 0.0000 2.9548 0.0031
– 0.1032 0.0210 4.9233 0.0000 0.1016 0.0168 6.0526 0.0000
— 0.8785 0.0224 39.2757 0.0000 0.8798 0.0191 46.1400 0.0000
‹ 10.0420 2.5550 3.9303 0.0001 10.3108 2.2949 4.4929 0.0000

S&P 500

Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value

µ 0.0009 0.0002 5.6873 0.0000 n.a. n.a. n.a. n.a.
Ê 0.0000 0.0000 3.3437 0.0008 0.0000 0.0000 2.9179 0.0035
– 0.1169 0.0197 5.9237 0.0000 0.1097 0.0174 6.2926 0.0000
— 0.8821 0.0167 52.8220 0.0000 0.8866 0.0159 55.7692 0.0000
‹ 4.8024 0.6160 7.7959 0.0000 5.3307 0.7582 7.0311 0.0000
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Table A.8.: GARCH-M(1,1)
2

: Parameter estimates
for Dax, Nikkei and S&P 500. Robust
errors

Dax
Estimate Std. Error t-value p-value

µ 0.0007 0.0002 3.0386 0.0024
„ -0.2723 0.5832 -0.4670 0.6405
Â 0.2901 0.5799 0.5003 0.6168
Ê 0.0000 0.0000 2.6536 0.0080
– 0.1049 0.0171 6.1372 0.0000
— 0.8884 0.0165 53.9324 0.0000
‹ 6.8584 1.1585 5.9201 0.0000

Nikkei
Estimate Std. Error t-value p-value

µ 0.0006 0.0003 1.9637 0.0496
„ -0.3701 0.3708 -0.9983 0.3181
Â 0.3237 0.3771 0.8584 0.3907
Ê 0.0000 0.0000 2.9554 0.0031
– 0.1031 0.0170 6.0491 0.0000
— 0.8786 0.0192 45.7594 0.0000
‹ 9.9020 2.1446 4.6172 0.0000

S&P 500
Estimate Std. Error t-value p-value

µ 0.0009 0.0001 6.5568 0.0000
„ 0.7974 0.0878 9.0800 0.0000
Â -0.8551 0.0756 -11.3097 0.0000
Ê 0.0000 0.0000 2.9266 0.0034
– 0.1179 0.0187 6.2978 0.0000
— 0.8811 0.0165 53.4349 0.0000
‹ 4.7063 0.5968 7.8864 0.0000
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