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ABSTRACT 

Background: Given the shortcomings associated with the use of classical microbiological 

methods such as  "sputum culture  status'' as a biomarker for TB treatment response and cure,  

measurement of Mtb- specific antigen induced responses in blood has been proposed as a 

better option. Characterization of the cellular response to Mtb antigens during treatment is 

therefore required. 

Methods: Peripheral blood mononuclear cells (PBMC) of sputum smear positive TB patients 

and  Quantiferon TB test positive (QFT+) and negative (QFT-) household contacts of TB cases 

were stimulated with Early Secretory Antigenic Target-6 and Culture Filtrate Protein-10 kDa 

(ESAT-6/CFP-10) fusion protein and latency associated antigens (Rv1733, Rv2029 and Rv2628). 

Secreted cytokines (IFN-γ, IL- 17, IL-10, TNF-α, sIL2-Rα and Granzyme B) levels in the six-day 

culture supernatant was measured at baseline and at the 2nd week of treatment. Frequency of 

IFN-γ+ CD4 and CD8 T cells was also assessed by multi-colour flow cytometry at four time points 

during anti TB therapy. 

Results:  High quantities (pg/ml) of IFN-γ, followed by Granzyme B, TNF-α and IL-17 and  lower 

quantities of IL-10 and sIL2R-α characterized secretion by the antigens in TB patients (n=20) at 

baseline with  increased levels of IFN-γ, Granzyme B, IL-17, and sIL2R-α responses at week two. 

Additionally the T cell response to ESAT-6/CFP-10 was characterized by a lower frequency of 

IFN-γ +CD4 + T cells than IFN-γ+ CD8 T cells at baseline, and a decline in the frequency of IFN-γ+ 

CD8 T cells (P=0.0024) and increased  frequency of IFN-γ +CD4 T cells (P=0.0008) at week two. 

In patients (n=21),  followed up till treatment completion, frequency of IFN-γ +CD4  T cells  

increased steadily till treatment completion, while that of IFN-γ +CD8  T cells  declined in 

response to ESAT-6/CFP-10.  However, there were no significant changes in T cell response to 

Rv1733 although  there was a trend of increased frequency of IFN-γ+ CD4 and decline in the 

frequency of IFN-γ+ CD8 from baseline to week 2.  After successful  TB treatment, the 

frequency of ESAT-6/CFP-10 -specific IFN-γ +CD4 T cells were significantly increased in 

comparison to pretreatment levels (P<0.01)  as well as levels in QFT+ (n=19) (P<0.01) and QFT- 

(n=23) (P<0.001) household contacts.  

Conclusion: Anti-TB therapy is associated with increased frequency of IFN-γ+ CD4 and 

decreased IFN-γ+ CD8 T cell response to ESAT-6/CFP-10 and improved protective cytokine 

responses which can be exploited in biomarker discovery studies. 

Key words: 

TB, biomarkers, ESAT--6/CFP-10, DosR, Quantiferon test, immune response, multiplex assay 
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CHAPTER ONE 

Introduction 

1.1   The epidemiology of Tuberculosis 

Despite the availability since the 1980's of an inexpensive, effective, and reasonably well-

tolerated therapy, that can cure 90% of cases, tuberculosis (TB) continues to be a major global 

health problem ranking as the second leading cause of death from an infectious disease 

worldwide after HIV, the human immunodeficiency virus (WHO, 2012). With an estimated 9 

million new cases of active TB and 1.4 million deaths annually; 990,000 among HIV-negative 

and 430,000 among HIV-positive TB patients, TB is now the leading killer of people living with 

HIV (WHO, 2012).  

The average incidence of TB in African countries is estimated to have more than doubled 

between 1990 and 2005, from 149 to 343 per 100,000 population (WHO, 2007). Much of this 

problem is due to the human immunodeficiency virus/acquired immune deficiency syndrome 

(HIV/AIDS) plague as illustrated by the enormous HIV prevalence (22%) among TB patients in 

the WHO Africa region (Kaufman and Parida, 2008). Thus, in Sub Saharan Africa, where the 

TB/HIV prevalence is high, TB is the number one killer of HIV-infected individuals with one third 

of the 640,000 deaths due to TB occurring in HIV co-infected individuals. 

When the World Health Organization (WHO) declared TB a global emergency in 1993, efforts to 

improve TB care and control intensified at national and international levels leading to the 

adoption and implementation of the DOTS (Directly observed treatment-short course) strategy 

by all countries a decade later. This culminated in increased case detection (WHO, 2012). 

however, these efforts have achieved limited success by only slowing the rate of increase but 

failing to make substantial progress towards the ultimate goal of eliminating TB (Wallis et al., 

2009). The spread of HIV/AIDS in TB endemic regions and the global emergence of multi-drug 

resistant (MDR), extensively drug resistant (XDR) and now totally drug resistant (TDR) TB have 

largely frustrated these efforts (WHO, 2008). 
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 1.2  Human immune response to tuberculosis infection 

The major route of entry of the tubercle bacillus into the body is via the respiratory tract 

through the inhalation of infectious droplet nuclei. Only small sized droplet nuclei (1 to 2 µm or 

less) are able to gain entry into the lower respiratory tract while larger ones are excluded by 

physical barriers of the nasopharynx and upper respiratory tract (Riley et al., 1995). The alveoli 

is the first point of entry for the bacilli and there, they interact with professional phagocytic 

cells such as macrophages and dendritic cells through different receptors (Ernst, 2012). Host-

pathogen interaction finally results in the initiation of an adaptive immune response and 

migration of antigen-specific lymphocytes to the lungs to fight the infection.   

Earlier publications described four possible outcomes: Complete solution in which the host 

immune system is able to completely get rid of all invading bacilli such that there is no 

probability of disease establishment; Containment of the bacilli in granuloma leading to latent 

TB infection in the host characterised by no symptoms and a positive tuberculin skin test; 

Primary active infection where the bacilli are able to grow and multiply to cause clinical disease 

or reactivation where the latent bacilli exit the dormancy mode through resuscitation to 

establish active infection (Schluger and Rom, 1998). However, recent advances in studying the 

immune response to TB, suggest a paradigm shift from this old model of well defined outcomes 

towards a view of the outcome of infection with M. tuberculosis (Mtb), as a continuous 

spectrum generated by a range of lesions providing multiple microenvironments that support 

bacterial replication, persistence or killing (Barry et al., 2009). This continuous spectrum 

extends from sterilizing immunity, to subclinical active disease, to fulminate active disease, with 

conventional designations of latent infection and active disease corresponding to partially 

overlapping regions of biological heterogeneity (Young et al., 2009).  

It is not completely understood what determines which outcome will manifest in any individual 

exposed to Mtb but nutrition, hygiene, sex, age, host genetic factors, infecting strain and more 

recently HIV infection have all been implicated. What is clear is that most people are resistant 

to Mtb infection as only 5-10% of infected people (if HIV negative) ever develop a primary 

disease at some point in the lifetime. 
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1.2.1  Innate immune response to tuberculosis 

In mice, the early innate immune response to Mtb is characterized by the progressive 

accumulation of neutrophils, inflammatory monocytes, interstitial macrophages and Dendritic 

cells (DCs) in the lungs (Ernst, 2012). In humans also, upon entry into the body, the Mtb 

components are recognised by multiple pattern recognition receptors (PRR) of the host 

including toll like receptors (TLR), specific members of the C-type lectin receptor (CLR) family, 

including DC-SIGN, dectin 1, the mannose receptor and Mincle-monocyte-inducible C-type 

lectin (Ernst, 2012). The stimulation of these receptors either individually or collectively induces 

the expression of pro-inflammatory cytokines, selected chemokines and cell adhesion receptors 

that contribute to local and systemic immune cell mobilization and activation.  

Phagocytic cells engulf the invading microbe in a membrane-bound tight vacuole created when 

the pseudopods surround the bacterium and fuse distally (Schlesinger, 1996). Engulfment inside 

the phagosome leads to killing of pathogenic bacteria via several pathways; fusion of the 

phagosome with the lysosome to form the phagolysosome resulting in release of cytotoxic 

granules, generation of reactive oxygen intermediaries (ROI's) and reactive nitrogen 

intermediaries (RNI,s) (Schluger and Rom, 1998).  

Mtb however, accomplishes intracellular survival through several evasion strategies including 

neutralization of the phagosomal pH and interference with autophagy, which serves as a cell 

autonomous defence mechanism (Gutierrez et al., 2004; Deretic, 2006; Russell, 2007), invasion 

of the cytosolic compartment (van der Wel et al., 2007) and finally inhibition of apoptosis by 

production of prostaglandins. 

In contrast to other infectious diseases, where the recruitment of phagocytic cells restricts and 

even eliminates invading pathogens,  the recruitment of phagocytes to sites of mycobacterial 

infection actually benefits the pathogen during the early stages of infection, by providing 

additional cellular niches for bacterial population expansion (Davis and Ramakrishnan, 2009). 

The early response to mycobacterial infection leads to the establishment of the early 

granuloma formed from the progressive accumulation of neutrophils, inflammatory monocytes, 
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interstitial macrophages and dendritic cells which become infected by the expanding 

population of mycobacteria in the lung.  

1.2.2  Adaptive immune response to tuberculosis 

The adaptive response is critical to effective control of tuberculosis infection as its onset 

typically results in the arrest of the progressive growth of the bacterial population and may 

result in transient disease symptoms, including fever and an unusual skin rash termed erythema 

nodosum (Poulson, 1950). Subsequently, most humans become asymptomatic, do not shed 

bacteria and are considered to have latent TB infection (Ernst, 2012), defined by a detectable 

memory Mtb-specific T cell response signifying the important role of lymphocytes as co-

effectors in mycobacterial host defense.   

Most of our understanding of the T cells involved in protective anti–TB immunity is based on 

cause and effect evidence from studies of TB in mice in which the expression of immunity can 

be measured in terms of the control of infection in major organs in the absence of selected T 

cell subpopulations (Cooper et al., 1997).  On the other hand, our knowledge of the T cells 

involved in immunity to TB in humans, is based on correlative evidence that comes from 

experiments designed to identify T cells that respond to appropriately presented Mtb antigens 

in vitro (Mogues et al., 2001). Many studies are in agreement that many types of T-lymphocytes 

(including α/β CD4+ and CD8+ cells, cytotoxic T-lymphocytes, and γ/δ T-lymphocytes) play a 

role in host defense against Mtb, in both humans and mice (Boom et al., 1996; Murray et al., 

1999; Stenger and Modlin 1999). However, although undoubtedly the major effector cell in cell-

mediated immunity in TB is the CD4+ T-lymphocyte with CD8+ T cells thought to play a 

supporting role (Boom, 1996), others believe that CD8+ T cells are more important (Orme and 

Collins. 1984), equally important (Caruso et al., 1999; Flynn et al., 1992) or plays no protective 

role at all (Leverton et al., 1989). Other murine studies have suggested (D’Souza  et al., 1997) 

that T cells, like B cells (Johnson et al., 1997), contribute little to protective immunity in mice in 

spite of numerous publications showing that Mtb-specific T cells are generated in response to 

Mtb infections (Boom, 1999), and one publication showing that these T cells contribute 

significantly to protective immunity in mice (Ladel et al., 1995). A classic single study that 
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compared CD4+, CD8+ and other T cells using mice of a single strain infected via the natural 

route with small numbers of a given virulent strain of Mtb proved that CD8  in contrast to CD4 T 

cells are not essential  for control of infection in mice (Mogues et al., 2001). Undoubtedly 

mouse studies have contributed immensely to our current understanding of human TB 

infection, however the role of CD8+ T cells in human TB infection is still unravelling. 

1.2.3  Role of CD4+ and CD8+ T cells in adaptive immune response  

Whilst inside the phagosome, Mtb secretes proteins which after appropriate degradation are 

presented as small peptide fragments in the context of major histocompatibility complex (MHC) 

class II molecules. CD4+ T cells expressing α/β T-cell receptor recognizes these MHC II 

complexed peptides on the surface of antigen presenting cells such as monocytes, 

macrophages and dendritic cells resulting in CD4+  T-cell activation.  

Stimulation of CD8+ T cells, which requires peptide presentation by MHC I products, generally 

takes place in the cytosol and as Mtb does not readily access this environment, two possible 

pathways have been reported for this mechanism; direct loading and cross priming. In the 

former, Mtb can enter the cytosol of infected dendritic cells leading to direct loading of MHC 1 

molecules (van der Wel et al., 2007) and in the latter, infected macrophages undergo apoptosis 

and resulting vesicles carrying mycobacterial antigens are taken up by local DCs,  which can 

present antigenic peptides with high efficacy both in the context of MHC II and MHC I to CD4+ 

and CD8+ T cells, respectively (Winau et al., 2005). The CD8+ T cell response to Mtb has 

normally been of a lower magnitude than the CD4+ T cell response; however, CD8+ T cells may 

modulate phagocyte activity or produce molecules such as granulysin that may be directly 

cytotoxic to the mycobacteria (Bruns et al., 2009; Stenger et al., 1998). Mtb has evolved 

mechanisms to subvert the antigen presentation process by inhibiting MHC class II processing 

and thus impairing CD4+ T cell stimulation (Harding and Boom, 2010) or blocking cross priming 

of CD8+ T cells through modulating the lipoxygenase pathway (Divangahi et al., 2010). Under 

the influence of specific T lymphocytes, the loose aggregates of mononuclear phagocytes and 

polymorphonuclear granulocytes transform into solid granulomas composed of macrophages of 



18 

 

 

different activation and maturation stages and different T cell populations in a structured 

arrangement (Ulrichs and Kaufmann, 2006).  

The classic experiment by Engen et al., 2008 using intravital imaging, has gifted us with live 

images of tuberculous granulomas of the mouse (first live images of mycobacterial infection in 

a mammalian host), demonstrating the influx and incessant wandering of T lymphocytes. These 

surveys reveal that, relative to their potential, effector T cells migrating within mycobacterial 

granulomas produce an extremely muted response as a consequence of the limited local 

antigen presentation and/or identification.  Mtb is contained within these solid granuloma, but 

not eradicated thus when the immune response fails, necrotic areas develop and may become 

caseous later. Finally Mtb grows and thrives to cause lung damage and spreads to other organs 

climaxing in TB disease.  

To deal effectively with TB infection, there is a need to consider a double pronged approach as 

only up to 10% of exposed individuals actually develop active disease upon exposure to the 

pathogen and can be completely cured by the existing drug regimen if infected with a drug 

sensitive strain. The vast majority of exposed individuals (90%) develop only a latent TB 

infection (LTBI) with about 5-10% of this latently infected population developing disease 

sometime during their lifetime as a result of bacteria reactivation (Israel et al., 1941). The major 

stumbling block to eradicating TB remains this huge population of latently infected individuals 

who will need therapy and or vaccination that can kill dormant bacteria or prevent reactivation 

respectively.  

It has become apparent that strategies aimed solely at expanding the pool of antigen-specific 

effector T cells in individuals infected with some persistent pathogens, such as Mtb, may meet 

with limited success, because there may be insufficient antigen present at sites of infection to 

support additional effector responses (Engen et al., 2008). The best chance at successfully 

reversing the course of the disease could lie with utilizing immunotherapeutic approaches 

designed to both increase levels of local antigen presentation and maintain a high frequency of 

effector T cells within infected tissues (Engen et al., 2008). 
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1.3   New tools for an ancient disease 

In 2002, WHO projected that by 2020, 1 billion people will be newly infected with TB, 200 

million people will become sick with 35 million deaths, recommending that in order to avert 

this situation there was the need for novel diagnostics, new drugs, new vaccines as well as 

diagnostic/detection and treatment biomarkers (WHO, 2002). There was a general 

acknowledgement within the TB community that indeed these new approaches would be 

required to improve diagnosis, shorten treatment, improve outcomes, especially in MDR and 

XDR TB and enhance protection offered by vaccination if the goal of tuberculosis elimination 

was to be realized (Wallis et al., 2009).  

A decade after these projections were made, increased donor, governmental and corporate 

investment for the diagnosis, treatment, prevention and control of TB have led to a substantial 

advancement in the development of novel diagnostics, new drugs and vaccines (WHO, 1994; 

WHO, 2012). 

1.3.1  Novel diagnostics 

The Interferon-gamma (IFN-γ) release assays (IGRAs) for detecting infection with Mtb, are 

recent additions to TB diagnostics based on the ability of the Mtb antigens; Early Secretory 

Antigen Target 6 (ESAT-6) and Culture Filtrate Protein 10 (CFP-10) to stimulate host production 

of IFN-γ. These assays commercialized as QuantiFERON-TB Gold In-Tube  (FDA approved since 

2007) and T-SPOT. TB (UK-based)  quantifies the total amount of IFN-γ when whole blood is 

exposed to the antigens ESAT-6, CFP-10 and TB 7.7 and counts the number of activated T 

lymphocytes that secrete IFN-γ respectively (Ferrara et al., 2006). These antigens are not 

present in non-tuberculous mycobacteria (NTM) or in any Bacille Calmette Guerin (BCG) vaccine 

variant hence these tests can distinguish  between actual TB infection and NTM or vaccine 

induced responses. Systemic reviews of IGRAs  have concluded the tests have excellent 

specificity to distinguish latent TB from prior vaccination (Dinnes et al., 2007; Menzies et al., 

2007). In a recently published meta analysis, with data from both developed and developing 

countries, QuantiFERON-TB Gold In Tube had a pooled sensitivity for TB infection (active or 

latent) of 81% and specificity of 99.2%, whereas T-SPOT. TB had a pooled sensitivity of 87.5% 

http://en.wikipedia.org/wiki/QuantiFERON#QuantiFERON-TB_Gold_In-Tube
http://en.wikipedia.org/wiki/T-SPOT.TB
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and specificity of 86.3%.  Although both IGRA'S and TST cannot  distinguish between active and 

latent disease, nor past or previous exposure, in head-to-head comparisons, the sensitivity of 

IGRAs surpassed TST confirming that IGRAs are "superior” to the TST for detecting  TB infection 

(Diel et al., 2010). 

The Xpert MTB/RIF is a polymerase chain reaction-based diagnostic test for TB, which detects 

DNA sequences specific for Mtb and rifampicin resistance in about 100 minutes within the 

paltform of a cartridge-based, automated system. (Van Rie et al., 2010; Helb et al., 2010). The 

Xpert® MTB/RIF purifies and concentrates Mtb bacilli from sputum samples, isolates the 

genomic material from the captured bacteria by sonication and subsequently amplifies the 

genomic DNA by PCR and identifies all the clinically relevant Rifampicin resistance inducing 

mutations in the RNA polymerase beta (rpoB) gene in the Mtb genome in a real time format 

using fluorescent probes called molecular beacons. Results are obtained from unprocessed 

sputum samples in 90 minutes, with minimal Biohazard and very short technical training 

needed to operate (Boehme et al., 2010). In 2010, WHO endorsed the Xpert MTB/RIF for use in 

TB endemic countries after  18 months of rigorous assessment of its field effectiveness in the 

diagnosis of  TB, MDR-TB and TB with HIV co-infection (Small et al., 2010). Since the rollout of 

Xpert MTB/RIF 1.1 million tests had been purchased by 67 low-and middle-income nations. 

1.3.2  New anti-TB drugs   

The development of new drugs and new vaccines is also progressing with new or re-purposed 

TB and novel TB regimens to treat drug sensitive or drug resistant TB advancing in clinical and 

regulatory review. Bedaquiline, a diarylquinoline anti-tuberculosis drug became the first new 

medicine to fight TB in more than forty years after rifampicin, after being certified by the WHO 

for treatment of MDR (WHO, 2013). Bedaquiline had only been through two Phase IIb trials for 

safety and efficacy (Singh et al., 2013) but there is a huge interest in its potential to treat MDR 

hence was granted accelerated approval by the United States FDA in 2012. 

 

http://en.wikipedia.org/wiki/Polymerase_chain_reaction
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1.3.3  New Vaccines 

Currently there are 12 candidate vaccines being tested in clinical trials (Brennan and Thole, 

2012)  and for the first time since BCG was last assessed in infants as part of the Chingleput-

Madras trial in 1968 (Baily, 1980), a TB vaccine MVA85A which is a recombinant strain of 

modified Vaccinia Ankara virus expressing the immunodominant Mtb protein, antigen 85A went 

into phase 2b trials.  Developed as a heterologous boost for BCG (McShane et al., 2010) it failed 

to confer significant protection against tuberculosis or Mtb however immense lessons can be 

learned from the data to aid in the design of the next vaccine  (MacShane et al., 2013). 

While these successes are commendable the discovery of TB biomarkers has lagged behind. 

1.3.3  Biomarkers for TB 

 Biomarkers are objective characteristic that indicates a normal or pathogenic biological process 

or a pharmacological response to a therapeutic intervention or vaccination (Biomarkers 

working group, 2001). Thus, they can provide information about disease status, risk of 

progression, likelihood of response to treatment or of drug toxicity and protective immunity 

after vaccination. In clinical trials they are especially useful as surrogate endpoints, replacing 

typical clinical endpoints that describe how a patient feels, functions or survives (Wallis et al., 

2013). The requirement for biomarkers in TB stems from two critical features of human Mtb 

infection: its long and varied natural history, and the essential role played by minority bacillary 

sub-populations. Non-replicating persisters are thought to be the main impediment to 

shortening therapy, because they are relatively unaffected by most TB drugs (Rao et al., 2008). 

Over the past decade, both human and Mtb biomarker studies have focused on three specific 

areas of research: biomarkers predicting treatment efficacy and cure of active TB, the 

reactivation of latent tuberculosis infection and the induction of protective immune responses 

by vaccination (Wallis et al., 2013). This study was set up to provide new information that will 

be useful for studies aimed at looking for immunological biomarkers predicting early treatment 

response and cure. 
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1.4   Biomarkers predicting treatment response and cure 

Biomarkers for TB treatment response and cure are urgently required for proper management 

of the patient as well as for clinical trials for novel drugs and vaccines. For the TB patient, 6 

months of anti-TB therapy makes adherence very difficult and this long duration also puts 

pressure on health care systems in developing countries (Walzl et al., 2008). It has been shown 

(Balasubramanian et al., 1990; Hong Kong Chest Service/British Medical Research Council, 1991 

that it will be possible to reduce the duration of therapy for patients who show signs of early 

response to treatment.  Tools such as surrogate biomarkers that provide an indication of 

treatment efficacy early on during chemotherapy or markers that stratify patients into risk 

groups requiring different durations of treatment even prior to the start of therapy would 

improve therapeutic strategies and possibly reduce drug resistance due to non-adherence. It 

will also make it easier to focus more attention on patients who have a high risk of poor 

treatment outcomes and ease pressure on healthcare systems, especially in developing 

countries (Walzl et al., 2008). Such tools would also be crucial in validation of novel anti-TB drug 

candidates, thereby accelerating new drug development through shortening of clinical trials. 

For many years the ultimate success of chemotherapy has been assessed by the rate of relapse 

within the first two years after completion of treatment. The long duration of clinical trials that 

rely on this outcome renders clinical TB, research, despite its importance, unattractive to the 

pharmaceutical industry and biomarkers offer the possibility of a surrogate endpoint that can 

substitute for clinical endpoints (WHO/TDR, 2006).  Early evaluation of the response to anti-

tuberculosis (TB) treatment may improve routine clinical management and assessment of novel 

anti-TB drug candidates during clinical trials (Gandhi et al., 2006) 

 

1.5  Problem statement 

Currently there are no biomarkers for TB treatment efficacy and cure; response to TB treatment 

has traditionally been based on the decrease of acid fast bacilli in sputum during the course of 

anti-TB chemotherapy. TB patients on treatment are thus required by health facilities under the 
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DOTS strategy to produce sputum for AFB examination at month 2, month 5 and month 6 of 

therapy. Microbiological indicators such as "sputum smear positivity", "early bactericidal 

activity" (EBA) and "time to detection" (TTD) of mycobacteria in sputum culture have all not 

been sufficiently validated as biomarkers. Month 2 sputum culture status, however, is used as a 

surrogate marker of treatment response and cure (Mitchison, 1993) and is the only marker that 

has been accepted by the International union against tuberculosis and lung disease (IUATLD) for 

sterilizing activity. Month two sputum culture conversion has also recently been reported as 

candidate markers for TB relapse (Wallis et al., 2010) as well as a possible biomarker predictor 

of the required duration of treatment based on modelling studies (Wallis et al., unpublished). 

The increasing reliance on this biomarker is at variance with the numerous limitations to its 

applicability such as; the sample involved (Sputum), the technique (Culture) and the time frame 

(month two).  

Most TB patients cannot produce sputum after two months on anti-TB therapy primarily 

because coughing ceases or reduces dramatically making expectorating difficult. Children as 

well as patients co-infected with HIV also have the same difficulty albeit for different reasons.  

In TB/HIV co-infected individuals the immunosuppression leads to disseminated disease as 

granuloma formation is impaired. Hence TB manifests mainly as extra pulmonary TB 

characterised by paucibacillary sputum (Sharma and Mohan, 2006). Therefore, the sputum 

culture status will be more difficult to monitor in patients with HIV co-infection (Sharma et al, 

2005) and is not applicable in the context of extra-pulmonary disease (Sharma and Mohan, 

2006) as obtaining sputum samples from these categories of people for biomarker analysis 

(month 2 sputum culture status) is usually not possible. 

Sputum culture is the Gold standard for TB diagnosis, however, its sensitivity is limited as it 

requires about 100 bacilli per ml of sputum to yield a positive culture (van deun, 2004). A 

negative result can be obtained merely as a result of low bacterial numbers resulting from 

paucibacillary sputum or decrease in bacilli load resulting from the decontamination process. 

Culture is also very expensive and thus is not easily available in most developing countries 

where the burden of the disease is and where these biomarkers are most needed. Lastly, 
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sputum culture takes between 3 to 6 weeks to yield positive results and this delay makes it 

unattractive as a biomarker.  

''Month 2 sputum culture status'' can only be determined after the patient has been on 

treatment for 2 months. Waiting for 2 months to make a decision on the treatment outcome 

could be detrimental to a patient as it unduly delays the need for drug sensitivity testing or 

changes in treatment regimens. Additionally, during this 2-month period, primary multi-drug 

resistant organisms will remain untreated and drug-resistant mycobacteria may have time to 

develop resistance to additional drugs (Sharma and Mohan, 2006). Most importantly  "month 2 

sputum culture status'' has not been validated to predict treatment duration, a very important 

factor to consider in validating a marker for treatment outcome and cure. 

 

1.6  Immunological profiling of individuals infected by Mycobacterium tuberculosis 

complex 

Given the shortcomings associated with the use of classical microbiological methods such as  

"sputum culture status'' as a biomarker for TB treatment response and cure, blood has been 

proposed as a better sample for identification of biomarkers. A blood-based biomarker would 

be ideal as blood is easier to obtain and assessment of immunological parameters can be done 

within days and could be easily adapted for field use. Also, if validated as a surrogate marker, it 

will be useful in clinical trials. Identification of immunological parameters in blood that 

correlates with culture sterilization may also provide important information about host factors 

most relevant to anti-TB therapy.  

Understanding the interplay between the host immune system and Mtb may provide a 

platform for the identification of suitable biomarkers, through both unbiased and targeted 

hypotheses-driven approaches (Walzl et al., 2011). In this study both approaches were used to 

generate immunological profiles of TB patients during the early stages of treatment as well as 

over the entire course of treatment. Such information can be exploited in studies aimed at 
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defining surrogate biomarkers for TB treatment outcome and cure respectively. The 

immunological profiles were generated by;  

(a) Measuring in peripheral blood mononuclear cells (PBMC) culture supernatant TNF-α, IL-10, 

IL-17, sIL-2Rα and Granzyme B in addition to IFN-γ, (6-plex assay) secretion after 6 days of 

stimulation with Mtb-specific antigens (ESAT-6/CFP-10, Rv1733, Rv2029, Rv2628) before and at 

two weeks of treatment (when most of the actively replicating bacteria are thought to be 

eliminated rendering TB patients no longer infectious) to determine their utility as predictive 

markers of early treatment response. 

(b) Determining by intracellular cytokine staining,  frequency of IFN-γ+ CD4 and CD8 T cells in 

PBMC of TB patients  stimulated with Mtb-specific antigens (ESAT-6/CFP-10, Rv1733,) at  four 

time points (before treatment /baseline, 2 weeks on treatment, 2 months on treatment and 6 

months/treatment completion).   

(c) Comparing the immune profile of TB patients after treatment with their latently infected TB 

contacts and non-infected controls (baseline measurement).  

 

1.7  Rationale/Study justification 

1.7.1  Measurement of antigen induced responses 

Several studies (reviewed in Walzl et al., 2008) that have investigated the role of immune 

products that can be measured directly in blood or serum as biomarkers for TB treatment 

response without further in vitro re-stimulation with antigen have been unsuccessful. This is 

because many of these products are non-specific markers of immune activation and can be 

detected in other infections. However, a few promising ones have been found to be 

associated with the extent of disease or treatment response based on increased levels in 

blood of active TB patients that declines with therapy as well as a correlation between high 

baseline levels and negative treatment outcomes. Additionally, persistently high levels even 

after therapy has been associated with risk of reactivation or relapse.  Such promising markers 
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include Neopterin - a nonspecific marker of macrophage activation (Immanuel et al., 2001; 

Djoba Siawaya et al., 2008), soluble intercellular adhesion molecule type 1 (sICAM-1) 

expressed by endothelial cells (Demir et al., 2002; Mukae et al., 2003) and C-reactive protein 

(CRP) - an acute phase protein produced by the liver. These studies have been inconclusive 

and it has been suggested that multivariate analyses may be helpful in future studies of these 

markers to determine the extent to which they are associated with other recognized baseline 

predictors of relapse, such as the bacterial burden and the presence of cavitary disease (Wallis 

et al., 2009). Antigen induced responses on the other hand, offers the opportunity to measure 

recall responses that are specific to TB infection, thus obviating the need for further 

complicated analysis and interpretation.  

Most treatment  response biomarker discovery studies based on the T cell response to Mtb 

antigens have focused on  the dynamics of the effector  T  cell (Tem) response hence have 

been limited to short term cultures. There is a paucity of information on the kinetics of the 

central memory response to Mtb antigens  during anti TB therapy. This study employed long 

term stimulation (6 days) to determine the effector response of central memory T cells (Tcm)  

to antigenic stimuli and its utility as a platform for TB treatment response biomarker. 

  1.7.2  Selection of Mtb-specific antigens 

It is now known that the Mtb genome (4.42Mb) contains over 4000 protein-encoding genes of 

which 52% can be assigned a function and only 376 putative proteins are considered unique 

to Mtb because they share no homology with known proteins (Casmus et al., 2002). With this 

wide array of antigens to choose from, we based our selection on antigens that are thought to 

be secreted by Mtb during certain stages of infection. Some of these promising Mtb-specific 

antigens have been identified as immune-dominant and are currently being tested as 

potential TB vaccine candidates (Sander and McShane, 2007). These so called "stage specific'' 

antigens are secreted during latency, reactivation and active disease and are known 

respectively as Dormancy survival regulon (DosR), resuscitation promoting factors (RPF) and 

region of difference 1 (RD1) proteins. DosR is a set of about 48 co-regulated genes induced by 

conditions that inhibit respiration (hypoxia, NO and CO) and are thought to be unregulated by 
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mycobacteria (Voskuil et al., 2009) to cope with these conditions in the granuloma. So far, 

only one study has examined the immune response of latently infected African populations to 

the entire set of antigens of the dormancy survival regulon (Black et al., 2009). We selected 

ESAT-6/ CFP-10 fusion protein as well as 4 of the DosR antigens for our panel based on their 

known immunogenecity in African populations. The RD1 proteins are the most studied of all 

Mtb proteins, hence it is well known that of the 9 proteins, ESAT-6 and CFP-10 are the most 

immunogenic and immunodominant.  

   1.7.3  Measurement of multiple cytokines 

In search of biomarkers for TB treatment outcome and cure, many cell-mediated immune 

response analytes of the host have been studied and CD4 and CD8 T lymphocytes, which 

secrete IFN-γ, have been shown to be important for protection of mice and humans. They 

don't only secrete cytokines such as IFN-γ that regulate immune responses to mycobacteria, 

but they also serve as cytotoxic effectors in an antigen-specific major histocompatibility 

complex (MHC) restricted manner (Boom and Wallis, 1991). 

A variety of studies have attempted to characterize the T-lymphocyte responses associated 

with TB infection; Surcel et al. (1994) studied proliferative responses and cytokine production 

in PBMCs  and found that patients with active TB had  an increased proliferation of cells 

secreting IL-4 but not IFN-γ in response to stimulation with mycobacterial antigens in vitro. 

Sanchez et al. (1994) reported similar results in patients with pulmonary TB and tuberculin 

skin-test-positive controls and concluded that patients with active TB had a Th2-type response 

in their peripheral blood, whereas tuberculin positive patients had a Th1-type response. IL-12 

production has also been suggested as an important regulator of T-cell phenotypes in TB 

(Zhang et al., 1994). Further elucidation of the role of IL-12 as a regulator of the T-cell 

phenotype response has been found in other studies (McDyer et al., 1997; Taha et al., 1997). 

The trigger for IL-12 release appears to be phagocytosis of Mtb by macrophages, as has been 

shown by several investigators, with the release of IL-12 appearing to be an early and perhaps 

somewhat nonspecific response to phagocytosis (Fulton et al., 1996). Ladel et al. (1997), 

showed that IL-12 was released by macrophages in vitro after infection with MTB or 
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phagocytosis of latex beads, but TNF-α and IL-12 were released together only after infection 

with the mycobacteria.  

 Undoubtedly, some studies utilizing single parameters to distinguish between active and 

latent TB infection have produced encouraging results. The diagnostic potential of T-cell 

response quality was established when utilizing the expression of CD27 on peripheral blood 

tuberculin specific CD4+  T-cells, Streitz et al, 2007, proved that  a single parameter could be 

used to diagnose active TB infection even in a BCG  vaccinated population. In a related study, 

Schuetz et al., 2011 showed in subjects from a Mtb and HIV endemic region; that down-

regulation of CD27 on Mtb-specific CD4 T cell could be used as a biomarker of active TB, 

potentially preceding clinical TB disease. The recent report of single-positive TNF-α Mtb-

specific CD4 T cells in subjects with active disease being the strongest predictor of diagnosis of 

active disease versus latent infection (Harari et al., 2011)  is welcome as it is one of only a few 

such studies using a single parameter that  has been validated in a cohort study with a 

sensitivity and specificity of 67% and 92% respectively.  

Interesting as some of these results have been, no single parameter has been able to predict 

early treatment response leading to the view that in this respect, multiple cytokines may hold 

the key. In the search for biomarkers, it has been suggested that multiple cytokines would 

increase the predictive value (Walzl et al., 2008, Mustapha, 2002; Bertholet et al., 2008). Of 

the multiple cytokines involved in the pathogenesis of TB, IFN-γ, TNF-α, IL-10, sIL-2R-α, 

Granzyme B and IL-17 were targeted in this study not only because they are involved in the 

control of TB infection but also because of their critical role during the early stages of 

infection.   

   1.3.7.1  Interferon gamma (IFN-γ) 

Interferon gamma (IFN-γ) is the first identified human immunologic factor essential for 

resistance against mycobacterial infection (Ottenhoff et al., 1988) due to its critical role of 

inducing macrophage synthesis of the enzyme inducible nitric oxide synthase (NOS2). Upon 

secretion by activated CD4 T cells, IFN-γ activates macrophages to generate nitric oxide and 
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other reactive nitrogen intermediates (RNIs), the best characterized anti-tuberculous effector 

molecules in mice (Chan et al., 1999) and humans (Nicholson et al., 1996).  

Since the strength of the host immune response against Mtb infection is directly proportional 

to the level of cellular (CD4+) production of IFN-γ, (Feng et al., 1999), IFN-γ level has been 

widely used for diagnosis of TB infection following stimulation with Mtb specific antigens 

(Goldsack  and Kirman., 2007; Flynn et al., 1993;  Newport et al., 1996). 

Due to its pivotal role in TB pathology, several studies have looked into the role of IFN-γ levels 

to monitor reaction to anti- TB therapy. These studies have, however, reported varied results, 

mainly because although it is known that IFN-γ plays an important role against Mtb infection, 

a complex network of other cytokines are involved (Lalvani and Millington, 2008) and studies 

involving multiple cytokines are needed. 

   1.7.3.2  Tumour necrosis factor alpha (TNF-α) 

Tumor necrosis factor alpha (TNF-α) α is one of the most important pro-inflammatory 

cytokines and critical to the control of tuberculosis infection prior to initiation of the adaptive 

immune response. It is produced mainly by macrophages in response to stimuli activating toll-

like receptors, but can as well be expressed by activating T cells, B cells, and NK cells (Old, 

1988). In concert with IFN-γ, it increases the phagocytic ability of macrophages and enhances 

the killing of mycobacteria and may also induce apoptosis of permissive macrophages (Bekker 

et al, 2001).  Baseline levels of TNF-α are thus thought to be low in peripheral blood and high 

at the sites of infection during the early phase of active tuberculosis infection. The importance 

of TNF-α especially in the early levels of TB infection had long been shown in mouse 

experiments proving that they play a vital part in the establishment of the early granuloma 

(Ehlers et al., 1999; Bean et al., 1999; Benini et al., 1999) however, the observation that there 

was an increased incidence of TB in persons given anti-TNF-α treatment for autoimmune 

diseases (Stenger, 2005) reinforced the protective function of TNF-α in TB  in humans as 

easily. For example, progression from LTBI to active disease can occur following TNF- α 

blocking treatments for chronic inflammatory diseases (Keane et al., 2001).  
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TNF-α has been investigated in many studies exploring the immune response during TB 

infection and it has been found that during the early stages of the disease serum TNF-α levels 

are high and decrease as treatment progresses. However, in severe TB, TNF-α levels have 

been found to increase transiently, due primarily to the fact that  the initiation of therapy in 

individuals with severe TB often begins with clinical deterioration (even death) before 

improvement occurs (Bekker  et al., 1998).  

1.7.3.3  Interleukin 10  (IL-10) 

Interleukin-10 is a potent immunomodulatory cytokine that has been shown in vitro to directly 

or indirectly affect multiple cell types, including macrophages, monocytes, dendritic cells, CD4 T 

cells, and CD8 T cells (Moore et al., 2001). Its main biological function seems to be the 

limitation and termination of inflammatory responses and the regulation of differentiation and 

proliferation of several immune cells, such as T cells, B cells, natural killer cells, antigen-

presenting cells, mast cells, and granulocytes (Asadullah et al., 2003). Produced by 

macrophages and T lymphocytes during infection with Mtb, IL-10 reduces the secretion of 

interferon-gamma (IFN-γ) by T-cells through the negative regulation of IL-12 production and co-

stimulatory molecule expression (Lago et al., 2012). It also has a TNF-α opposite effect 

protecting against tissue damage by regulating inflammation and apoptosis (Rojas et al., 1999). 

Aside IFN-γ and TNF-α, IL-10 down regulates the production of other protective cytokines such 

as IL-1, and IL-12 and it has been demonstrated that it  promotes mycobacterial persistence by 

acting on macrophages (Murray et al., 1997). On the other hand, the absence of IL-10 

accelerates mycobacterial clearance (Van creval et al., 2002). Among the Th1 and Th2 

cytokines, IFN-γ and IL-10 are considered the main cytokines responsible for protection against 

and pathogenesis of TB, respectively. IL-10 has multiple effects that interfere with the functions 

of protective cells and cytokines (Van creval et al, 2002), thereby helping mycobacteria to 

survive intracellular, despite the abundant production of IFN-γ (Murray et al., 1997). The 

interplay between IFN-γ and IL-10 is so critical that the IFNγ/IL10 ratio provides a useful 

objective marker of disease activity in TB and can be important in disease management (Jamil 

et al., 2007; Salina and Morozova, 2004). High IFN-γ/IL-10 ratios strongly correlate with 
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protection and TB cure, whereas low ratios correlate with disease severity. Although IL-10 is 

reported to be present in advanced TB, different responses of IL-10 according to infection 

status have been observed (Kim et al., 2012). Lower IL-10 levels have been reported in patients 

with TB (Frahm et al., 2011) in agreement with our study while others have reported that IL-10 

is highest in patients with chronic TB (Handzel et al., 2007). IL-10 has been identified as an 

important clinical biomarker of TB disease progression  (Jamil et al., 2007) as high levels at the 

end of treatment may function as a risk factor for TB recurrence. 

1.7.3.4  Interleukin 17 (IL-17) 

IL-17 (IL-17A) is produced by a newly described CD4+ Th cell population identified and referred 

to as Th 17 with signature cytokines including also IL-17F, IL-21 and IL-22. Due to its novelty, 

there is limited insight into its role in immunoregulation; however, recent data suggests a 

broader and more complex role for these cells and cytokines in different infections (Khader et 

al., 2009).  During primary TB, (IL-17) is reported to be induced together with IFN-γ and both 

being potent inflammatory cytokines, are capable of inducing the expression of chemokines 

that promote cell recruitment and granuloma organization (Torrado and Cooper, 2010). . IL-17 

produced by Th17 cells has been reported to be associated with protection against TB (Khader 

et al., 2007; Scriba et al., 2008) as reduced IL-17 production could limit the recruitment of CD4+ 

T cells into the lungs (Khader et al., 2007).  It has been suggested that excessive production of 

IL-17 lead to an extensive neutrophil recruitment and tissue damage hence to control bacterial 

growth and limit immunopathology during the chronic phase of TB, there needs to be a balance 

between Th1 and Th17 responses. It has also been suggested that with MDR-TB, the severe 

tissue damage caused by IL-17 producing T cells may be associated with the low effectiveness 

of the second-line drugs employed in the treatment (Basile et al., 2011). 

 The role of IL-17 in TB infection and pathogenecity has been the subject of many recent studies 

on immunoregulation of TB. A recent meta analysis on the subject concluded that IL-17 acts as 

an effector molecule similar to IFN-γ after BCG vaccination and Mtb infection and contributes 

to protection against TB dependent or independent on IFN-γ, however, it found no evidence of 
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IL-17 as an inducer of tissue damage (Li et al., 2012). The Effect of TB treatment on IL-17 

secretion needs to be investigated.  

1.7.3.5   Soluble interleukin 2 receptor alpha (sIL-2Rα) 

Interleukin-2 receptor alpha chain is a protein that in humans is encoded by the IL2RA gene 

(Leonard et al., 1985) and together with the interleukin 2 (IL-2) receptor alpha (IL-2Rα) and beta 

(IL-2Rβ) chains and the common gamma chain (IL2Rγ), constitute the high-affinity IL2 receptor.  

Interleukin-2 receptor (IL-2R) molecules are expressed on the surface (Cantrell and Smith, 1983) 

of activated T-lymphocytes upon the interaction of mycobacteria and alveolar macrophages  

and soluble IL-2R (sIL-2R) molecules are released into the circulation (Rubin et al., 1985). It is 

possible that sIL-2R could play a regulatory role in the immune response as this soluble receptor 

retains some of the biological activities of the cell-associated IL-2R molecule, including its 

capacity to bind IL-2 efficiently (Rubin et al., 1986). The exact immunological role of sIL-2R is not 

well-established, but it has been suggested that it may serve as a marker of disease activity in 

patients with systemic lupus erythematosus, rheumatoid arthritis (Semenzato et al., 1988), 

hematological malignancies (Chilosi et al., 1989) and pulmonary disorders, such as asthma (Lai 

et al., 1993), lung cancer [(Chan et al., 1993) and TB (Chan et al., 1991). 

Serum sIL-2Rα levels are known to be directly proportional to the number of producing cells as 

well as the number of molecules per cell, making sIL-2Rα blood values an index of the number 

and the functional state of producing cells, both normal and neoplastic. While sIL-2Rα could just 

be a byproduct without biological significance, it levels  have been reported to correlate with 

disease progression and/or response to therapy making their measurement a useful index of 

activity and extent of disease.  Active pulmonary TB is associated with markedly elevated sIL- 2R 

levels (Chan et al., 1991), however, the effect of anti-TB chemotherapy on the cellular immune 

response is unclear. It has been suggested by some studies that anti-TB drugs may have an 

immunosuppressive effect (Ruben et al., 1974) which may be reflected in the sIL-2R levels. 

Other studies have reported elevated levels of sIL-2Rα in active tuberculosis patients, which 

declined with therapy  (Tsao et al, 2002). 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Gene
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1.7.3.6  Granzyme B 

Granzyme B is a serine protease that in humans is encoded by the GZMB gene (Dahl et al., 

1990) and expressed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells both of which 

share the remarkable ability to recognize specific infected target cells. They are thought to 

protect their host by inducing apoptosis of cells that bear on their surface 'nonself' antigens, 

usually peptides or proteins resulting from infection by intracellular pathogens. Thus the 

protein encoded by this gene is crucial for the rapid induction of target cell apoptosis by CTL in 

cell-mediated immune response (Bots and Medema, 2006). Originally thought to induce 

apoptosis by entry through pores created within the cell membrane by perforin, it has now 

been established that Granzyme B is rather part of a multimeric complex (Granzyme B, perforin 

and granulysin). This complex enters the cell through  endocytosis  using the mannose 6 

phosphate receptor  and remains  arrested in endocytic vesicles until it gains access into the cell 

when perforin bores holes in the vesicle and allows it to pass through (Buzza and Bird, 2006). 

Within the cytosol, Granzyme B targets caspase-3 directly or indirectly through the 

mitochondria, initiating the caspase cascade to DNA fragmentation and apoptosis (Lord et al., 

2003). Granzyme B and other molecules involved in lymphocyte cytotoxicity have been 

implicated in disease pathogenesis. In the case of TB infection, it has been suggested that the 

apoptotic environment may be deleterious to mycobacteria, however, studies have shown that 

mice-deficient in perforin or Granzyme B do not exhibit a dramatically increased susceptibility 

to Mtb infection (Lewinsohn et al., 2003). 

      Granzyme B levels could therefore be a marker of disease activity, therefore would be expected 

to be high in active TB patients and decline with treatment and could be useful as part of a 

biomarker panel.                                    

 

1.7.4  Selection of time points 

During anti-TB therapy under the DOTs strategy, sputum of TB patients is assessed again for 

acid fast bacilli (AFB) at month 2, month 5 and upon completion of anti-TB therapy at month 6. 

http://en.wikipedia.org/wiki/Serine_protease
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Cytotoxic_T_lymphocytes
http://en.wikipedia.org/wiki/Natural_killer
http://en.wikipedia.org/wiki/Apoptosis
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For this study, follow- up started in week two in order to detect early treatment responses (if 

any) which could lead to the identification of a biomarker that can be used earlier than month 2 

which may also be useful in identifying early responders.  It has been established that clinical, 

bacteriological and radiological improvements in TB patients are achieved early (within 2 

months) upon effective chemotherapy with multidrug regimens, however, due to persister 

phenotypes, it requires 6 months of treatment to achieve complete cure and prevent frequent 

relapses (Stratton et al., 1986). Earlier studies assessed cellular responses in TB patients only at 

single time points, e.g. 4 months (Dieli et al., 1999) or 6 months (Garcia et al., 2002), and thus 

no data are available to show if there are any differences in the cellular responses in the early 

stages versus the end of anti-TB chemotherapy and most especially during the first two weeks 

of treatment when most of the actively replicating bacteria are eliminated. 

 

1.7.5   Immune responses in M. tuberculosis versus M. africanum infected TB patients 

Human TB is caused by a group of closely related Mycobacterium species known collectively as 

the Mycobacterium tuberculosis complex (MTBC).  These species; M. tuberculosis, M. 

africanum, M. bovis, M. caprae, M. microti and M. pinnepidii are characterized by a  99.9% 

similarity at the nucleotide level and a 16S rRNA sequence (Boddinghaus et al., 1990; 

Sreevatsan et al., 1997).  They don't only differ, in their host tropisms but also in their 

phenotypes and pathogenicity (Brosch et al., 2002). Of the six, M. tuberculosis (MTB) and M. 

africanum (MAF) are the most frequent cause of human pulmonary TB, but while the former 

occurs globally the latter is restricted to the West African region. 

      First described in 1968 in Dakar, Senegal (Castets et al., 1968), M. africanum causes up to 50% 

of all pulmonary tuberculosis cases in West Africa (de Jong et al, 2010). M. africanum strains 

were previously classified into two major subgroups per geographic origin and biochemical 

properties: M. africanum subtype I (Cluster G) from West Africa, which exhibits M. bovis-like 

properties, and M. africanum subtype II from East Africa (Cluster F), which exhibits M. 

tuberculosis- like properties (Källenius et al.,1999; Mostowy et al., 2004; David et al., 1978; Sola 
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et al., 2003). M. africanum is estimated to have lost about 68 kilobases compared with the M. 

tuberculosis genome (Motoswy et al., 2004) and recent studies using regions of difference (RD) 

to discriminate members of the M. tuberculosis complex isolates characterized as M. africanum 

have  since refined the old classification. Using molecular techniques M. africanum has been 

divided into two sub-species; M. africanum West African 1 (MAF1), common around the Gulf of 

Guinea, and M. africanum West African 2 (MAF2), mainly found in Western West Africa (Brosch 

et al., 2002; Gagneux et al., 2006). These two subtypes are indistinguishable phenotypically and 

also share some genetic markers like deletion of region of difference (RD) 9 and presence of 

RD12 and a specific gryB polymorphism (Niemann et al., 1997; de Jong et al., 2010). However, 

MAF 2 has additional deletions of RD7, RD8 and RD10 and giving the mounting evidence that 

the strain differences affect the host pathogen interaction (Malik et al., 2005), in studying the  

immune profiles of TB patients in Ghana, it is incumbent that infecting species are considered.  

  The geographic restriction of M. africanum to human populations in West Africa  is not well 

understood  and basic research on these clinically important mycobacteria was neglected until 

recently; however, an improved understanding of the biology of this mycobacterial lineage will 

also give clues about gene functions in the closely related M. tuberculosis (Gehre et al., 2013). 

   Measuring levels of changes in multiple cytokines before and after two weeks of chemotherapy 

might help in the identification of cytokine profiles associated with early treatment response 

while determining longitudinal changes in T cell subsets frequency during the course of TB 

treatment may provide an insight into which subset would be more useful in monitoring 

treatment response. 
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 1.8  Objectives 

 

 1.8.1 Main objective 

To define putative biomarkers of TB treatment response and cure based on the 

immunological profiles of patients infected by M. tuberculosis and M. africanum in response 

to ESAT-6/CFP-10  fusion protein, Rv1733, Rv2029, Rv2628 antigens of Mtb. 

 

 1.8.2 Specific objectives 

 Genotype Mycobacteria species isolated from sputum cultures of smear positive TB 

patients to identify  M. africanum (Maf) and  M. tuberculosis (Mtb) infected patients. 

 Determine cytokine/immunological factor (IFN-γ, TNF-α, IL-10, IL-17, sIL-2Rα and 

Granzyme B) expression profiles in the PBMC culture supernatant of Mtb and Maf-

infected patients before and after 2 weeks of anti-TB therapy in response to Mtb-

specific antigens (ESAT-6/CFP-10 fusion protein, Rv1733, Rv2029, Rv2628) using a 

Luminex bead assay (6-plex assay). 

 Determine T-cell subset (CD4/CD8) specific cytokine expression profile of Mtb & Maf- 

infected patients during anti-TB therapy through intracellular cytokine staining for IFN-γ 

expressing CD4+ and CD8+ T cells from in vitro re-stimulation  of PBMCs with Mtb 

specific antigens. 

 Compare Immune profile of TB patients after treatment with LTBI contacts (Baseline 

measurement) and non-infected controls. 
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CHAPTER TWO 

Genotyping of Mycobacteria species isolated from sputum samples to identify 

M. tuberculosis and M. africanum-infected patients 

2.1 Background 

Mtb strains with distinct genotypes have been shown to evoke different immunopathological 

events in mouse models (Dormans et al., 2004) and variable clinical manifestations in human 

population based studies (Dole et al., 2005). In studies done in the Gambia where there is a 

reported prevalence of 38% MAF2 and no MAF1, M. africanum has been shown to be  less 

virulent and more opportunistic than M. tuberculosis thus frequently associated with HIV 

disease, malnutrition and old age. It has also been reported to be less likely to reactivate in 

latently infected individuals, in whom ELISPOT responses to a known virulence protein ESAT-6 is 

thought to be lower compared to latently infected M. tuberculosis individuals (de Jong et al., 

2006, 2008, 2010).  

In a study done in Ghana however, the rate of M. africanum infections were similar in HIV-

positive and HIV-negative patients and no significant differences were found clinically and 

radiographically, except that M. africanum caused lower-lobe disease less frequently than M. 

tuberculosis (Meyers et al., 2008). In that same study, when MAF 1 and MAF2 were compared, 

there was no difference in virulence, as assessed by the severity of radiological presentation. In 

Ghana, 70-80% of tuberculosis infections are caused by M. tuberculosis with M. africanum 

accounting for 20-30% (Addo et al., 2006; Addo et al., unpublished). MAF 1 is more common 

(21%) than MAF 2 (9%).  

Given the genotypic difference between the two lineages of M. africanum, it is possible that 

differences also exist in terms of the human immune response to these two lineages which may 

require different biomarker signatures. The human immune response to Mtb-specific antigens 

have not been investigated in a Ghanaian cohort of TB patients.  Ghana offers an ideal setting 

to study the immunological profiles of individuals infected by M. africanum (MAF1 and MAF2)  
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and M. tuberculosis  as both strains coexist in the country. Identifying the nature of the immune 

response to Mtb antigens in a cohort of TB patients infected by M. tuberculosis or M. africanum  

is important as some of these Mtb antigens are also potential vaccine candidates and as such 

have to be shown to be immunogenic and immunodominant in individuals infected with M. 

africanum as well. 

 

2.2 Setting 

Ghana is a West African country with a TB incidence of 79 per 100,000 population and 21.6% of 

active TB patients are HIV positive (NTP, 2009). Ghana ranks 13th in Africa for the highest 

estimated number of new TB cases per year (WHO, 2006). The country adopted the DOTS 

strategy for controlling TB in 1994 and having achieved 100% coverage by 2005, is now 

implementing WHO's Stop TB Strategy.  TB diagnosis is by sputum smear microscopy and 

patients (smear positive as well as smear negative patients confirmed by chest radiography) are 

monitored daily during the intensive phase with sputum samples being examined again at 

month 2, month 5 and month 6 upon completion of treatment. 

Accra, the capital city where the study was conducted has a population of 2.4 million and   a 

high BCG vaccination coverage (Ghana DHS, 2008). With 20 government-run health facilities, 

Accra has the highest concentration of health centers. 

 

2.3 Study design 

2.3.1  Study period 

The study was a prospective longitudinal study where patients were recruited over a period of 

one year  (June 2011 to June 2012) and were followed up for up to six months until they 

completed TB treatment (December 2011-December 2012). 
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2.3.2 Study sites  

The study recruited participants from three public health facilities in Accra namely Achimota, 

Maamobi and University of Ghana Hospitals.  Selection of health facilities was based on 

proximity (not more than 3 hours drive) to the Noguchi Memorial Institute for Medical 

Research (NMIMR) so that samples could be picked up early enough to allow PBMC separation 

to be done within 5 hours of blood draw as per study protocol and best practices. 

2.3.3 Sample size  

Given a 20-30% prevalence of M. africanum in Ghana, (de Jong., 2010) it was calculated that for 

50 TB cases recruited, about 10-15 could be infected with M. africanum. To increase the 

probability of getting a representative number of M. africanum infected patients in comparison 

with M. tuberculosis infected patients, a sample size of 100 participants was targeted for 

recruitment from which 10-15 M. africanum and 20 to 30 M. tuberculosis cases could be 

selected for the immunological profiling experiments using their peripheral blood mononuclear 

cells (PBMC). 

2.3.4 Inclusion/exclusion criteria 

TB patients 16 years of age or older and newly diagnosed with sputum smear positive and /or 

culture positive pulmonary TB, including those co-infected with HIV (results were analyzed 

separately) were included, whereas patients with extra pulmonary TB were excluded.  

2.3.5 Administration of informed consent 

Details of the study were discussed with the potential study participants by the nurses 

stationed at the TB treatment centers (DOTS center) of the study facilities who had been 

thoroughly briefed about the study. Potential participants were then given the informed 

consent to read or the contents were translated into their local dialect for them. This consent 

form was approved by the Institutional Review Board of the Noguchi Memorial Institute for 

Medical Research (Certified protocol No.030/10-11). Those who were satisfied with the 

explanation of the purpose of the research study, and agreed to enroll in the study were asked 
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to sign or thumb-print the consent form. Details of sex, age, contact details, HIV status, and 

previous history of tuberculosis were taken using a structured questionnaire. 

2.3.6 Sputum Sample collection 

The participants were counseled about sputum production at the DOTS center and given wide 

mouthed sputum containers to produce sputum for microbiological analysis. Study participants 

who could not produce sputum on the spot were asked to bring an early morning sample when 

coming for their medication the following day. For each patient, two sputum specimen was 

collected; the positive specimen from the laboratory and an on-spot one from the DOTS center. 

2.3.7 HIV testing 

All study participants were offered voluntary counselling for HIV testing by trained health 

personnel in accordance with the National TB control program guidelines at the health facilities. 

Appropriate post- test counselling and referral for further treatment advice was offered to 

those with positive results. Two rapid HIV diagnostics kits were used; First response anti- 

HIV1/2 (Premier Medical Corporation, India) and Determine HIV 1/2 (Abbot Diagnostics, USA). 

2.3.8 Final study cohort 

In all, 104 sputum smear positive TB patients signed on for the study, 55 from Achimota, 30 

from Maamobi and 19 from the University of Ghana Hospitals. PBMC from these participants 

were selected for in-vitro assays in accordance with set objectives. 

 

2.2  Laboratory analysis 

2.2.1  Isolation of Mycobacterium species from sputum 

Sample Processing: The oxalic acid method was used for decontamination based on its superior 

performance compared to the Nalc-NaoH method in our laboratory setting. This method, 

although specially recommended for decontamination of clinical specimens that may be 

contaminated by Pseudomonas aeruginosa e.g., pulmonary specimens from cystic fibrosis 

patients and urine specimen (Della Latta., 2004). Briefly, each sputum sample was transferred 
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into a 50 ml sterile centrifuge tube and an equal volume of 5% oxalic acid was added. The 

mixture was homogenized using a vortex mixer and then allowed to stay at room temperature 

for 30 minutes. The tubes were then filled with sterile distilled water up to the 50ml mark and 

centrifuged at 3000g for 30 minutes. The supernatant was poured off and the 0.1μl of resulting 

sediment was used as inoculum for the culture of Mycobacterium species and also for smear 

preparation for AFB staining using the Ziehl-Neelsen (ZN) method. 

 Inoculation and incubation: Four tubes of self-made egg-based media Lowenstein-Jensen (LJ); 

2 containing glycerol and 2 with 0.4% Sodium pyruvate (to enhance isolation of M. africanum ) 

were used per sample for primary isolation.  For cultivation, 0.1 ml of the sediment from each 

sample was spread on the surface of each tube of media using a sterile Pasteur pipette and 

incubated at 37C for 12 weeks, with weekly observation for the appearance of Mycobacterium 

colonies. Initial identification was based on growth rate, colonial morphology and colonial 

pigmentation. Positive cultures were sub-cultured onto another set of media (2 slopes of each 

medium per culture) and incubated for another 3 to 4 weeks for further identification after a 

Ziehl-Neelsen staining to confirm whether they are acid fast bacilli.   

Ziehl-Neelsen staining: This is a differential staining procedure used to identify acid- fast 

bacteria. A tiny bit of the suspected bacterial culture was aseptically transferred onto a drop of 

distilled water on a slide and emulsified. It was then left to air dry for some time. The smears 

were then heat fixed on the slides and arranged on a staining rack with enough spaces between 

them to prevent cross contamination. The slides were then flooded with carbol fuchsin to cover 

the entire surface of the slides. The underside of the slides was then heated with a flame until 

steam came out and then they were left for about 5 minutes to cool down. The slides were 

then washed with a gentle stream of water to remove all excess carbol fuchsin. The slides were 

then covered with 20% Sulphuric acid for about 5 minutes (decolourisation) and drained. They 

were then washed with water and counter-stained with 0.3 % Methylene blue for about 1 

minute. The slides were then rinsed for a final time and drained. They were then observed 

under oil immersion for the presence of acid fast bacilli which appear as red under a blue 

background. 
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2.2.2  Confirmation of MTBC using Capilia TB-Neo test® 

All AFB-positive cultures were further screened with the Capilia TB- Neo test to determine 

whether or not they belonged to the Mycobacterium tuberculosis complex species.  The test 

was based on a slight modification of the protocol developed by TAUNS Laboratories, Inc.`  

Numazu, Japan (Abe et al., 1999). Briefly, 200 l of the extraction buffer (using an in-house 

prepared buffer) were dispensed into 1.5 ml sterile Eppendoff tubes. One loop (0.1μl) of 

bacteria obtained from mycobacterial colony was suspended in the extraction buffer and mixed 

by a vortex.  The resulting suspension was used as specimen for Capilia TB-Neo Test®. Using a 

pipette, approximately 80-100 μl of the specimen was dropped in the specimen placing area of 

the Capilia TB-Neo test® plate. The reading was then made between 15 and 60 minutes. A 

positive reading is indicated by the presence of a purple- red colour line in the reading areas of 

both the control band (C) and the test band (T). Likewise, a negative result is indicated by the 

presence of the purple-red colour line at only the control band (C) and not the test band (T). 

2.2.3  Hain Genotyping to differentiate between Mtb and Maf 

The Genotype MTBC® kit (Hain Life Sciences, Germany) is based on the DNA STRIP technology 

and permits amongst other things on the basis of gyrase B gene polymorphisms the genetic 

differentiation of the species/strains belonging to the Mycobacterium tuberculosis complex. 

The whole procedure is divided into three steps: DNA extraction from cultured material (culture 

plates/liquid medium); a multiplex amplification with biotinylated primers, and a reverse 

hybridization.  The hybridization includes the following steps: chemical denaturation of the 

amplicons to the membrane-bound probes, stringent washing, the addition of a 

streptavidine/alkaline phosphatase (AP) conjugate and an AP mediated staining reaction. A 

template ensures an easy and fast interpretation of the banding pattern obtained.  

DNA extraction: For isolation of DNA, 2 loops of bacteria from 4 week-old subcultures on LJ 

media was suspended in distilled water (1ml) and heated at 90oC for one hour using a heating 

block. This suspension was cooled and stored at -20 until ready to be used as DNA in the 

amplification assay. For use in a reaction the suspension was thawed, given a quick spin and the 

supernatant containing mycobacterium DNA was harvested into a separated vial. 
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Multiplex amplification: The GenoType MTBC assay was performed as recommended by the 

manufacturer. Briefly, for an amplification, 35 l of a primer nucleotide mixture (provided with 

the kit), 5 l of amplification buffer containing 1.5 mM MgCl2 and 1 U of Platinum Taq 

polymerase (Invitrogen, USA) (sold separately), and 5 l of DNA in a final volume of 50ul were 

used. The amplification mix (45 l) was prepared in a DNA-free hood. The DNA sample was 

added in a separate hood. 

Per tube mix: 

35 l PNM-provided 

5 l Polymerase incubation buffer (10x) 

2 l MgCl2 solution (25mM) 

0.2 l HotStarTaq (1U) 

3 l Water (molecular biology grade) to obtain a volume of 45 l 

5 l DNA solution (20-100ng DNA) leading to a final volume of 50 l 

A master mix was prepared containing all reagents except the DNA solution and mixed well. An 

aliquot of 45 l was then put in each of the prepared PCR tubes. As a negative control one of 

the tubes contained water instead of DNA. In a separate room, 5 l of each DNA was added per 

tube and then the tubes were placed in a thermocycler for amplification. 

Cycling conditions: The amplification protocol consisted of a cycle of 15 seconds of 

denaturation at 95°C, followed by 10 cycles comprising 30 seconds at 95°C and 120 seconds at 

58°C, an additional 20 cycles comprising 25 seconds at 95°C, 40 seconds at 53°C, and 40 

seconds at 70°C, and a final extension at 70°C for 480 seconds. 
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 Hybridization: The shaking water bath/ 

TwinCubator was pre-warmed to 450C, (the 

maximum tolerated deviation from the target 

temperature is +/-100C) while the solutions 

HYB and STR were pre-warmed to 37-450C 

before use to dissolve all precipitates. All 

remaining reagents were warmed to room 

temperature except the CON-C and SUB-C. 

Using a 15ml falcon tube, the conjugate 

concentrates (CON-C, orange) and substrate 

concentrate (SUB-C, yellow) were mixed at a 

ratio of 1:100 with the respective buffer 

(CON-C with CON-D, SUB-C with SUB-D) in the 

amounts needed. These were mixed well and 

brought to room temperature. For each strip, 10ul concentrate was added to 1ml of the 

respective buffer. CON-C was diluted before each use, while diluted SUB-C (stable for 4 weeks if 

stored at room temperature and protected from light) was prepared for multiple usage. 

The denaturation solution (20 l) was dispensed in a corner of each of the wells used. To this 

was added, 20 l of amplified sample. Using a pipette the mixture was mixed well and 

incubated at room temperature for 5 minutes. While incubating, the strips were taken out of 

the tube using tweezers and marked with a pencil underneath the coloured line (gloves were 

always worn when handling the strips). To each well, 1ml of pre-warmed hybridization buffer 

(HYB, green) was carefully added and the tray was shaken until the solution had a homogenous 

colour. A strip was then placed in each well with the coated side (identified by a coloured line 

near the lower end facing upward. Tweezers were used to turn over strips which might have 

turned when immersed in the solution. The tray was then placed in the shaking water bath/ 

TwinCubator and incubated for 30 minutes at 450C.  

           Amplification Profile: GenoType MTBC 

15 

min 

95°C 
1 Cycle 

30 sec 95°C 

10 Cycles 

2 min 58°C 

25 sec 95°C 

20 Cycles  40 sec 53°C 

40sec 70°C 

8 min 70°C 1 Cycle 
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After 30 minutes the hybridization buffer was completely aspirated by pouring it out into a 

discard jar and turning the tray upside down and gently striking on absorbent paper. Stringent 

solution (1ml) was added to each strip and incubated for 15 minutes at 450C in the 

TwinCubator. The Stringent Wash solution was also removed in the same manner after which 

each strip was washed once with 1ml of Rinse solution for I minute on the TwinCubator at room 

temperature.  

After pouring out the Rinse solution, 1ml of conjugate was added to each strip and incubated 

for 30 minutes in the TwinCubator. The solution was removed after incubation and each strip 

was rinsed twice with for 1minute with 1ml of Rinse solution and once with 1ml of distilled 

water on the TwinCubator. All water was removed after the last wash and then 1ml of diluted 

substrate was added to each strip and incubated (protected from light without shaking) for 10 

minutes. The reaction was stopped by rinsing with distilled water. Using tweezers the strips 

were removed from the tray and dried between layers of absorbent paper. 

The strips were protected from light and pasted on an evaluation sheet provide with the kit in 

the designated fields by aligning the bands CC (conjugate control) and UC (universal control) 

with their respective lines on the sheet. The species’ was then determined with the help of the 

interpretation chart and the names of the species identified was entered in the last column. 

2.2.4  Spoligotyping  

To differentiate between MAF1 and MAF2, all the isolates that were confirmed as M. africanum 

by Hain genotyping  were further typed by spoligotyping (Kamerbeek  et al., 1997). The method 

described in Yeboah Manu et al., 2011 was used as follows; the direct repeat region of each 

genome was amplified using primers DRa (59-CCG AGA GGG GAC GGA AAC-39) and biotinylated 

Drb (59-GGT TTT GGG TCT GAC GAC-39). The amplified DNA was tested for the presence of 

specific spacers by hybridization with a set of 43 oligonucleotides derived from the spacer 

sequences of M. tuberculosis H37Rv and M. bovis BCG P3 (the GenBank accession no. for the 

sequence of M. tuberculosis H37Rv is Z48304, and that for M. bovis BCG P3 is X57835). Bound 

fragments were revealed by chemiluminescence after incubation with horseradish peroxidase-
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labeled streptavidin (Boehringer Mannheim). In order to prevent cross contamination, PCR 

amplifications and pre-PCR procedures were conducted in physically separated rooms. Negative 

water controls were PCR amplified and included on each blot to identify any possible amplicon 

contamination. In addition, Positive controls (H37Rv and M. bovis BCG DNA) was amplified and 

included on each blot. 

 

2.3  Data analysis  

Data was entered into Microsoft® Excel 2007 (Microsoft Corp., USA) and age profile (mean, 

range), sex ratios and HIV status determined. For comparison of the mean ages between 

groups, students T tests were used and P values < 0.05 were considered significant. Graphs 

were generated using the same software.  

Spoligotypes were analyzed as character types. The obtained spoligotyping patterns were 

compared with those available in the international spoligotype database (SpolDB4) (Brudey et 

al., 2006) containing 35,925 spoligotypes comprising 39,295 isolates from 122 countries. 

 

2.4  Results 

2.4.1 Participant characteristics 

Study participants comprised 74 males and 30 females giving a male/female ratio of 2.5 to 1. A 

total of 15 participants tested positive for HIV; 8 males and 7 females, giving a TB/HIV co-

infection of 14.42% of the study population (Table 2.1). Of the 15 HIV positive participants, only 

one tested positive for both HIV1 and 2, all others were infected with HIV-1 only. There was no 

statistical difference between the number of male and female infected with HIV (P=0.126) in 

our cohort using Fishers exact test (2 sided), however, there is still a 2 times increased HIV rate 

in the female TB cases compared to males. 

The mean age was 35.13 (SD±12. 83) ranging from 16 to 78 with the  majority (85.72%)  within 

the 20 to 50 year group (Fig 2.1). Males (Mean ± SEM =29. 53 ± 2.016) were significantly 
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younger (P=0. 0045) compared to females (Mean ± SEM =37. 27 ± 1.444) with a 95% CI (-13.03 

to -2.449). However, there was no statistical difference (P=0. 297) between the mean age for 

the HIV-positive (Mean ± SEM =35. 47 ± 1.409) compared to the HIV-negative (Mean ± SEM 

=31.73 ± 2.381) participants, 95% CI (-3.336 to 10.80). Within the HIV-positive participant 

group, the mean age of the females (Mean ± SEM =29. 00 ± 2.610) and males-(Mean ± SEM 

=34.13 ± 3.796) was not statistically different P=0.299, 95% CI (-15.37 to 5.125). 

 

Table 2.1 Sex distribution and HIV prevalence among  sputum smear positive study 

participants 
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Figure 2.1 Age profile of sputum smear-positive participants 

 

2.4.2 Differentiation of Mycobacterium isolates 

Identification of the infecting species followed a stepwise process of sputum culture to 

spoligotyping (Fig 2.2). Sputum samples could not be obtained from 2 of the participants 

leaving 102 samples available for culture. After about 12 weeks of incubation, 7.8%  (8/102) of 

the cultures yielded no growth and were discarded together with 8.8%, (9/102) of the samples 

that got contaminated before isolates could be harvested. For the cultures that yielded growth, 

the Capilia neo TB test® confirmed 84 out of the 85 as belonging to the Mycobacterium 

tuberculosis complex (Fig 2.3). Subsequently Hain genotyping® identified 74 as M. tuberculosis 

and 10 as M. africanum (Fig 2.4) giving an M. africanum prevalence of 11.9%. The spoligotype 

patterns of the africanum species identified 1 as MAF2 and the 9 as MAF1 (Fig 2.5a, b).  

The mean age of the M. africanum infected patients was 34.1 ±6. 83, range 26-50 and they 

comprised of 7 males and 3 females. Of the 10, only one tested positive for HIV. None of the M. 

africanum isolates was multi-drug resistant (MDR) Table 2.2. 
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                  Figure 2.2:  Differentiation of Mycobacterium isolates 

 

 

 

 

 

Figure. 2.3 Capilia Neo tb test: 2 bands 

indicating a valid positive test for MTBC  

Figure. 2.4 Hain GenoType test: sheet showing samples 

(strips) identified as M. tuberculosis and M. africanum  

(MI011) 
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aRD9 RD701 RD720 BSpoligoprofile Sublineage cSpoldb4 

Deld Del Undel 1111110001110111110000101000011111111101111 West African 1  
Del Del Undel 1011111000001111111100000111111111110001111 West African 1  
Del Del Undel 1111111000001111111100001111111111110001111 West African 1 331 
Del Del Undel 1111111000001111111000000101100000110000111 West African 1  
Del Del Undel 1110011000001111111111111111111111110001111 West African 1 331 
Del Undele Del 1111110001111111111110001111111111111101111 West African 2 326 
Del Del Undel 1110000000001001100111111111111111111101111 West African 1  
Del Del Undel 1011110000001001111100001111111111010001101 West African 1 319 
Del Del Undel 1011111000001111111100000111111111110001111 West African 1  
Del Del Undel 1011111000001111111100000111111111110001111 West African 1 

 
 

aRD: Regions of difference 
bSpoligoprofile: presence of the spacer (1);  absence of the spacer (0). 
 
cSpoldb4: coded patterns in the international spoligotype database. 
 
dUndel: Undeleted, eDel: Deleted. 
 

Figure 2.5: Spoligotyping profile for isolates identified through Hain genotyping® as M. africanum as 

defined by RD's 

 

 

2.5  Discussion 

The male/female ratio of 2:1 in this population is consistent with reports stating that the 

tuberculosis notification in most countries is twice as high in males as in females. Although 

worldwide the male/female ratio of tuberculosis is 1.9±0.6 (WHO, 2009), there are wide 

variations between countries. Previously attributed solely to socioeconomic and cultural factors 

denying women access to health leading to under-reporting of TB in women, biological factors 

are now being considered as possible factors for this observation (Neyrolles et al., 2009). This is 

based on the numerous studies linking female sex as a protective factor. Specifically related to 

TB, there is some evidence that protective Th1 responses associated with IFN-γ production is 

stronger in females partly because of estrogens (Roberts et al., 2001). More evidence based 

studies will be needed to fully explain this gender difference. 
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It is also well known that TB affects the most productive age group, hence the majority of 

participants in this study being within the 20-50 year group is consistent with the global trend.  

The Global TB/HIV prevalence stands at 13% (WHO, 2012) and in Ghana, a nationwide survey to 

determine the prevalence of HIV in TB patients that concluded in 2008, recorded a prevalence 

of 14.1%  in 503 newly diagnosed TB patients from 66 health facilities across the country (Addo 

et al, unpublished). That study also recorded an HIV 1 prevalence of 96% and an HIV 1+ 2 

prevalence of 4% with no HIV 2 alone being detected in any patient. Those results are 

consistent with the 14.4% HIV prevalence recorded among this study cohort as well as the 

preponderance of HIV 1, although recent reports attributed to the National tuberculosis Control 

program in Ghana indicate that the TB/HIV prevalence has gone up to 21.6 % (NTP, 2012).   

The actual prevalence of M. africanum in Ghana is difficult to ascertain, as genotyping is not a 

routine practice, but a recent study put the prevalence at 20% out of 232 samples collected 

(Yeboah-Manu et al., 2011), making the prevalence of 11.2% recorded in this study on the 

lower side. This could probably be due to the small sample size in our study or to regional 

variation as the former study recruited participants from the Central and Western Regions of 

Ghana whilst our study recruited from Greater-Accra Region only. Regional variation in 

prevalence of M. africanum has been previously reported in Senegal (Diop et al., 1976). The 

proportion of MAF1/MAF2 (9 out of 10) in this study is comparable to the study in the 

Central/Western Region of Ghana which reported MAF1  prevalence greater than 80%, 

however, another study in a different region (Ashanti) of Ghana reported an almost 50-50 

proportion of MAF1-MAF2 (Goyal et al., 1999) emphasizing that within the same country, there 

is  also wide variation in the distribution of the 2 genotypes in different regions. Only large scale 

population-based studies will be able to conclusively confirm these observations.  

Also in contrast to reports of an association between M. africanum and HIV infection (de Jong 

et al., 2010) no such association was seen in this study.  Given the mean age of 34.4 years in the 

M. africanum infected population in this study, M. africanum could not be associated with old 

age as has been previously reported (de Jong et al, 2008). These observations are, however, 
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consistent with other studies conducted in Ghana with a higher prevalence of MAF1 which also 

reported no association between MAF and HIV or older aged individuals (Meyer et al., 2008). 

Thus, it can be inferred that this association with HIV and old age is peculiar to MAF2 and not to 

the entire M. africanum genus or the sample size was just too small to see any such 

associations. 
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CHAPTER THREE 

 

Mtb-specific multiple  cytokine  and CD4/ CD8 T cell responses before and after 
two weeks of treatment 

3.1 Background 

Cytokines are soluble proteins that are secreted by cells of the immune system and can alter 

the behavior and properties of different cell types (de Jager et al., 2003). Different cytokines 

possess biological overlapping functions, and they have the ability to regulate the production of 

other cytokines. Therefore, analysis of the function of the complete set of cytokines expressed 

within micro-environments (e.g., a site of inflammation) are often of more value than the 

analysis of a single isolated cytokine (O'Garra and Murphy, 1994). The human immune response 

to infection is mediated by cytokines and in Mtb infection in humans, the best described 

mediators of immunity are tumour necrosis factor (TNF-α) and IFN-γ (Harris and Keane, 2010; 

Jouanguy et al., 2000), owing to the known effect of the usage of TNF-blocking therapeutic 

agents and the characterization of mutations in the IFN-γ receptor gene.  

The IFN-γ knockout (KO) mouse experiments also provide compelling evidence of the protective 

function of IFN-γ in tuberculosis infection (Mogues et al., 2001). Again, using both in-vivo 

neutralization and a KO mouse (with a disruption in the gene for the 55 kDa TNF receptor), 

Flynn et al., 1995 established that TNF-α and the 55 kDa TNF receptor are essential for 

protection against tuberculosis in mice, and for reactive nitrogen production by macrophages 

early in infection.  

However, several other mediators have been characterized for their specific roles in the human 

immune response to M. tuberculosis.  Interleukin 10 (IL-10), an anti- inflammatory cytokine 

with immune inhibitory functions, produced by macrophages and T cells is known to down- 

regulate interleukin 12 (IL-12) production, leading to decreased IFN-γ production and 

exacerbating infection (Raja, 2004).  Other studies suggest that Granzyme B, a serine protease 

secreted by CTL and NK cells by exocytosis to induce apoptosis (Stenger and Modlin, 1998) as 

well as the soluble form of IL-2Rα  (sIL-2Rα) released by mononuclear cells following activation 
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are markers of disease severity (El-Mesallamy et al., 2013; Seidler et al., 2012) while other 

molecules such like IL-17,  contribute to the immune control of Mtb in mice, but has not yet 

been shown to be significant in humans (Reviewed by Torrado and Cooper, 2010).  

Despite extensive investigation, a clear, reproducible correlate of human immunity to M. 

tuberculosis infection has not yet been identified (Ernst, 2012). Probably the full repertoire of T 

cell subsets and molecular mediators of protective immunity are still unravelling or there is a 

lack of appreciation of the fact that no single parameter alone will mediate or correlate with 

protective immunity in tuberculosis. Although in mouse model of tuberculosis infection, single 

cytokines are essential, it is clear that protection is mediated by a complex immune response 

that involves many different cell subsets and cytokine pathways. Assessing cytokine levels after 

antigenic stimulation of PBMC as well as specific T cell subset dynamics therefore could be 

useful in monitoring treatment response during tuberculosis infection. 

So far only a few studies have integrated combinations of markers to predict treatment 

outcome. Most studies aimed at identifying host immune responses to Mtb antigens have 

mostly studied IFN-γ production resulting in poor specificity. It has been suggested that sets of 

markers rather than a single marker may increase the predictive ability (Walzl et al., 2008).   

There has been a long held belief that patients with drug-susceptible TB are non-infectious after 

two weeks of therapy (Rouillon et al., 1976; NICHE, 2006) although recent microbiological and 

epidemiological evidence has challenged this dogma (Rouillon et al., 1976; Escombe et al.,2007; 

Menzies et al., 1997; Riley et al.,1962;Fitzwater et al., 2010).  However, the nature of the Mtb-

specific immunological response during this period of TB treatment has not been adequately 

investigated. Levels of immune markers (IFN-γ, TNF-, IL-17, IL-10, sIL-2R and a soluble 

mediator, Granzyme B) released in response to Mtb were assessed for their utility for 

monitoring early response to TB treatment. In addition, to determine the functional T cell 

phenotypes contributing to the cytokine secretion during the first two weeks of treatment, IFN-

γ+ CD4+ and CD8+ T cells were assessed at baseline and at two weeks of treatment in the same 

patients. 
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3.2 Experimental Design 

3.2.1 Preparation of cells for culture 

3.2.1.1  Blood collection 

From each participant, up to 30 ml of venous blood was drawn using butterfly needles (BD) into 

10 ml vacutainers (BD) containing sodium heparin to prevent clotting. Blood samples were 

taken at four time points; before treatment (baseline), and at 2 weeks, 2 months and 6 months 

of TB treatment. All samples were sent immediately to the laboratories of the Noguchi 

Memorial Institute for Medical Research for the appropriate analysis 

3.2.1.2  PBMC separation   

Using sterile 10 ml disposable pipettes (Sarstedt) blood from the three 10 ml vacutainers per 

participant was transferred into a sterile 50 ml centrifuge tube labeled with the participant 

unique identification number. An equal volume of pre-warmed (370C) RPMI 1640 (GIBCO) was 

added to the blood in the falcon tube to achieve a 1:1 dilution and mixed gently.  The diluted 

blood was layered gently onto 15 ml of Histopaque (Sigma: Cat. No. H8889) without breaching 

the Histopaque-blood barrier. To attain a ratio of 2:1 for blood and Histopaque, 25-30 ml of 

blood was layered on 15 ml of Histopaque. Both the blood and Histopaque were used at room 

temperature. The tubes were centrifuged at 800 g for 30 min at room temperature with the 

brake off. The milky-white PBMC band at the interface between Histopaque  (transparent) and 

plasma (yellow) was then aspirated with a sterile pastette into sterile 50ml tubes, topped up to 

the 50ml mark with pre-warmed Hank’s Balanced Salt Solution or HBSS (Sigma: Cat. No.  H9394) 

and centrifuged at 400 g for 10 minutes. The supernatant was discarded and the pellet (cells) 

re-suspended once more in HBSS and centrifuged at 400 g for 5mins. After this wash the 

supernatant was again discarded and the pellet suspended in 1 ml of the filtered growth 

medium [RPMI, 10% FCS (Fetal Calf Serum) (Sigma: Cat. No. F9665), 1% Pen-Strep 

(Penicillin/Streptomycin) (Sigma:Cat No. 15070063)] for counting. 
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3.2.1.3  Cell counts 

The Cell suspension was diluted 1 in 2 with 0.2% Trypan blue (GIBCO: Cat. No. 15250-061) by 

adding 20 l of Trypan blue solution to 20 l of cell suspension in an Eppendorf tube. Using a 

coulter counting chamber, 10 l of the cell suspension was dispensed into the counting 

chamber and cover slip was firmly attached.  Live lymphocytes (translucent white cells) and 

dead cells (blue cells) were counted using the x10 magnification, within 5 of the 25 triple ruled 

squares of the hemocytometer. The cell count was then calculated as ff; 

Viable Cell concentration =   

Average number of viable cells counted x multiplier x dilution x 104/ ml of suspension 

I.e.: [No. of cells/5] x25 x10 x 104/ ml 

 

3.2.1.4  Cryopreservation of PBMC 

Cells that were to be used later, as well as any remaining cells from any assay were 

cryopreserved. For cryopreservation, the “Mr Frosty” (Nalgene: Cat. No. 5100-0001), filled with 

250 ml 2-propanol was placed in a fridge (40C) at least one hour before use and in case it had 

been used for the fifth time,  the 2-propanol was refreshed. While counting, the rest of the cells 

were placed on ice for at least 30 minutes and at the same time X ml freezing medium [RPMI, 

20% FCS, 10% DMSO/Dimethyl Sulphoxide (Sigma: Cat. No. D2650)] per sample was also placed 

on ice in the same period  (for the preparation of the freezing medium the DMSO was added at 

the last minute. The freezing medium was added drop-wise to the cells and quickly the cell 

suspension was transferred to X cryotubes (Cat. No. 377267). The tubes were put in the Mr 

Frosty and stored overnight in a –800C freezer and after at maximum 1 week the cells were 

transferred into liquid nitrogen. 
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3.2.2 Preparation of antigens/recombinant proteins 

3.2.2.1  Antigens/recombinant proteins used 

ESAT-6/CFP-10 fusion, Rv1733c, Rv2029c, Rv2628 and Rv1115 (Table 3.1)  were obtained from 

the Leiden University Medical Centre, the Netherlands in a dehydrated form and reconstituted 

using growth medium. 

3.2.2.2   Reconstitution of antigens/recombinant proteins 

Using sterile techniques an appropriate volume of freshly prepared growth medium was added 

to each vial of protein to reconstitute it into a stock concentration. The stock was then 

distributed into separate cryotubes, labelled with the antigen name, volume, date of 

reconstitution and concentration and stored  as aliquots at -200C. Antigens in the working 

concentration of 5µg/ml were prepared from these stock aliquots by dilution with growth 

medium, labelled similarly and stored at -200C until ready for use.  The working concentration 

of 5 µg/ml was chosen based on a pilot study using 2.5, 5 and 10 µg/ml. While the 2.5 µg 

induced minimal secretion of IFN-γ, there was no significant difference between the secretion 

at 5 µg and 10 µg. 

 

Table 1Table 3.1: Antigens used in the study showing their protein size and function 

NAME PROTEIN SIZE (a .a) MTB GENE FUNCTION/PROTIEN 

FUNCTION 

ESAT-6/CFP-10 - Fusion product, Classical antigen 

Rv1733c 210 Possible trans membrane protein 

Rv2029c 339 pfkB  (Phospho fructo kinase B) 

Rv2628 120 HP (Hypothetical protein) 

Rv1115 232 Possible exported Protein 
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3.2.3 Cell culture with antigens/recombinant proteins   

Frozen antigen aliquots (25 µl at 10 g/ml) were brought to room temperature and each 

aliquot added  in duplicate wells of  the culture plates (Nunc; Cat. No. 163320). In the negative 

control  well, growth medium was added instead of antigen. After cell counting, the thawed 

cells were re-suspended in pre-warmed sterile filtered growth medium at 500,000 cells per 25 

l and aliquots of 250 l (500,000 cells) added per well of antigen and growth medium 

(negative control).  Blank spaces were filled with HBSS to prevent evaporation. The plate was 

covered and sealed with Micropore tape (Cat. No.1530-125) and incubated for 6 days at 37°C in 

a 5% CO2
 incubator. The culture form was then filled indicating the subjects IDs start and end 

date. The positive control  (Staphylococcus enterotoxin B (SEB) (Sigma: Cat. No. S4881) was 

added on the 4th day of culture. 

 

3.2.4 Harvesting culture supernatant and inhibition of cytokine secretion 

To ensure sterile working condition for this procedure, the hood was thoroughly cleaned with 

70% ethanol. For the last 12-16 hours of the 6 day incubation, the culture plates containing 

previously cultured PBMCs were removed from the incubator and placed in the hood.  Using a 

sterile pipette, aliquots of 255 l of culture supernatant was put into pre-labelled screw-capped 

Eppendorf tubes and frozen at -20oC for multiplex assay. Without disturbing the cells, 5 l of 

Brefeldin A (BFA) (Sigma: Cat. No. B7651) at 250  g/ml) was carefully added to  the remaining 

cell suspension  to achieve a final concentration of 5 g/ml. The culture plate was covered, 

sealed with Micropore tape and returned into CO2 incubator at 370C overnight. 

 

3.2.5 FACS Analysis 

3.2.5.1  Surface staining 

After the 6-day culture, cells were harvested into appropriately labeled FACs tubes.  Each well 

was washed out gently with sterile FACS buffer (1 X PBS, 1% HI-FCS, 0.1% NaN3) to completely 

collect all cells. All tubes were placed on ice ensuring cells are kept cold during staining.  Two (2 
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ml) of FACS buffer was added per tube and centrifuged for 5 minutes at 1350 rpm.  The 

supernatant was decanted and the pellet re-suspended in 100 l FACS buffer and incubated 

with the appropriate amount of monoclonal antibody (Mab) for surface staining (CD4/CD8) at 

40C in the dark for 30 minutes wrapped in aluminum foil. After incubation, 2 ml of FACs buffer 

was added per tube and centrifuged as before and the supernatant decanted as before. The cell 

pellet was then re-suspended in 0.5 ml of 2% PFA (paraformaldehyde) at room temperature in 

the dark for 15 minutes to fix the cells for intracellular staining. 

3.2.5.2  Intracellular staining:  

After fixing, 2 ml of sterile filtered Perm wash (FCS, 10% NaN3, 10% Saponin) pH, 7.5 was added 

and centrifuged as before. The supernatant was decanted, the pellet re-suspended in 1 ml of 

perm wash for 25 minutes before centrifugation. After centrifugation, 100 l of perm wash and 

appropriate volumes of intracellular antibody (IFN-γ) were added to the tubes and incubated 

for 30 minutes at 40C in the dark. After incubation, 2 ml perm wash was added and centrifuged 

as before and the supernatant decanted. The pellet was then re-suspended in 0.3 ml of 2% PFA 

and the cells were acquired immediately on a FACS Calibur (BD). Using FLOWJO software 

Version 7.6.2, we defined an R1 gate for lymphocytes in a dot plot of Forward Scatter Channel 

(FSC) versus Side Scatter Channel (SSC). To identify CD4+ and CD8+ T cells, events from R1 were 

analyzed in a plot of either CD3-FITC versus CD4-PerCP or CD8-PerCP respectively  or CD4-Percp 

and CD8-APC (R2). Finally, gated CD4+ and CD8+ T cells were analyzed for IFNγ-PE or IFNγ-FITC.  

Data were reported as percentages of CD4+ and CD8+ T cells. Compensation settings were 

defined using anti-mouse kappa Comp Beads (BD Biosciences) stained with each fluorochrome–

conjugated antibody. A threshold of 0.2% IFN-γ+ CD4+/CD8+ T cells defined positive T-cell 

responses against antigens (Shuck et al., 2009).  
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Table 2Table 3.2: Flourochrome -conjugated monoclonal antibodies used in the study 

Antigen Clone Isotype Material No. Company 
CD3 FITC UCH-T1 Mouse IgG1, k 555332 BD Biosciences 
CD4  PerCp SK-3 Mouse IgG1, k 345770 BD Biosciences 
CD4 APC RPA-T4 Mouse IgG1, k 555349 BD Pharmingen 
CD8 PerCp SK-1 Mouse IgG1 345774 BD Biosciences 
CD8 APC RPA-T8 Mouse IgG1 561421 BD Biosciences 
IFN-γ PE 4S.B3 Mouse IgG1,k 559326 BD Pharmingen 
IFN-γ FITC 4S.B3 Mouse IgG1,k 554551 BD Pharmingen 

 

3.2.6 Thawing of previously  stored culture supernatant  

The six-day culture supernatant, previously harvested and stored at -80oC were brought to 

room temperature to thaw slowly until all ice had completely melted. Whilst still ice cold, the 

samples were centrifuged to remove cell debris after which it  was dispensed into new tubes 

and transported on ice for analysis. 

3.2.7 Human 6-plex (IFN-, TNF-, IL-17, IL-10, sIL-2R and Granzyme B) assay   

Luminex xMAP technology for multiplexed quantification of cytokines, chemokines, and growth 

factors in human was performed using the Luminex™ 100 system (Luminex, Austin, TX, USA) by 

Eve Technologies Corp. (Calgary, Alberta-Canada). The six markers were measured in the cell 

culture supernatant using an Affymetrix Human Cytokine/Chemokine Custom plex kit 

(Affymetrix, Inc, Santa Clara, CA, USA) according to the manufacturer's protocol.  The 6-plex 

consisted of IFN-y, IL-10, IL-17, IL-2Rα, Granzyme B, and TNFα,.  The assay sensitivities of the 6-

plex markers ranged from 0.1 – 0.4 pg/ml, and 5 pg/ml for IL-2Rα and Granzyme B. 

3.2.8 Data analysis 

Data was entered into Microsoft Excel 2007® or transported to GraphPad Prism®4 for analysis 

and graphs. To compare the cytokine expression profile for each antigen, the median 

concentration of each cytokine in pg/ml was determined at baseline and after 2 weeks on TB 

treatment.  The minimum detectable concentrations of the cytokines or soluble mediator in 
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this assay were 5.7, 0.2, 0.26, 3.35, 1.39, 2.13 pg/ml for Granzyme B, IFN-γ, IL-10, IL-17, sIL-2R-α 

and TNF-α respectively. 

To determine the number of positive responders to each antigen, values of S/U (where S/U is 

defined as follows: cytokine concentration in antigen- stimulated cultures divided by the 

cytokine concentration in un-stimulated (negative control) as described in Al-Attiya et al, 2008) 

that were greater than or equal to 2 were considered positive responses. In experiments where 

the concentrations of cytokines in control cultures lacking antigens were not detectable, the 

S/U values were determined by dividing the concentration of a given cytokine in antigen-

stimulated cultures with the minimum detectable concentration of the same cytokine. 

To determine changes in cytokine expression profile after 2 weeks on TB treatment, the Mann-

Whitney test was used to compare the median cytokine concentrations for each antigen before 

and after two weeks of treatment, while the Wilcoxon signed rank, text was also used to 

compare changes in cytokine expression profile in the same individuals at baseline and 2 weeks 

of treatment (matched observations). The Mann-Whitney test was used to compare cytokine 

responses at baseline and after 2 weeks of treatment in each participant (single). For flow 

cytometric analysis, percentage of IFN-γ+ cells were calculated by subtracting the percentage of 

IFN-γ+ cells in un-stimulated cultures from stimulated ones. A threshold of 0.2% IFN-γ+ CD4/ 

CD8 T cells defined positive T-cell responses against antigens. Samples with a negative SEB 

response were excluded from the analysis. Differences in the percentage of IFN-γ+ CD4/CD8 T 

cells to antigenic stimulation were analyzed using the nonparametric Mann-Whitney U-test. 

In all cases, P values of 0.05 were considered significant.  
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3.3 Results 

3.3.1 Early response to TB treatment: Cohort Characteristics 

The early response to TB treatment cohort consisted of the first 20 sputum smear positive 

patients recruited for the study with Mean age 34.05 years (range: 21 to 55) and 80% male. 

Participants were categorized based on AFB smear grading as 3+ (one or both smears were 3+), 

2+ (one or both smears were 2+ or lower), 1+ (one or both smears were 1+ or lower) and SC 

(one or both smears were scanty "less than 10 AFB per field" or negative).  Accordingly, nine (9) 

were classified as 3+, Four (4) as 2+, three (3) as 1+ and four (4) as SC (scanty). Two of the 

participants were infected with MAF and one was HIV+.  All but one had converted to smear 

negative at month 2 (Table 3.3). 

Table 3Table 3.3: Detection of early responses to TB treatment; Participant's Characteristics 

PARTICIPANT AGE 
(YEARS) 

GENDER SPUTUM SMEAR MICROSCOPY RESULTS 
DIAGNOSIS^ CATEGORY MONTH 2 

01 44 M 3+ 3+ 3+ Neg 
02 32 M 3+ 3+ 3+ Neg 
03 52 M 2+ 2+ 2+ Neg 
04 21 F 1+ Neg 1+ Neg 
05 31 M 2+ 2+ 2+ Neg 
06 29 M 3+ SC 3+ SC 
07* 34 M 1+ 1+ 1+ Neg 
08 55 M 3+ 3+ 3+ Neg 
09 23 M 2+ 2+ 2+ Neg 
10# 23 F 2+ 2+ 2+ Neg 
11 37 M 3+ 3+ 3+ Neg 
12 24 M 1+ 1+ 1+ Neg 
13 37 F 3+ 3+ 3+ Neg 
14 45 M 3+ 3+ 3+ Neg 
15 32 M 3+ 3+ 3+ Neg 
16 38 M SC SC SC Neg 
17 33 M SC SC SC Neg 
18 33 M 3+ 3+ 3+ Neg 
19* 30 M SC Neg SC Neg 
20 28 M SC Neg SC Neg 
Average 34.05 M (80%)   + (100%) (+) 5% 
Range 
 

[21-55]      
* M. africanum (MAF)                                                                                         # HIV + participant 
SC (Scanty) < 10 AFB per  100 fields           ^ Showing two smear results  required for TB diagnosis 
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3.3.2 Antigen-induced secretion of cytokines by PBMC in response to "stage specific" 

mycobacterial antigens 

To determine the immunogenicity of each antigen, we compared the levels of cytokines (pg/ml) 

induced by each antigen after 6 days of PBMC culture to that of the un-stimulated controls. In 

all cases, the levels of cytokines were significantly higher (P<0.001) in stimulated than un-

stimulated controls, indicating the antigens were immunogenic in our cohort of TB patients. 

This observation was true at both baseline (data shown in Fig 3. 1), and after two weeks of TB 

treatment (data not shown). 

3.3.3 Positive responders and median cytokine concentration 

Determining the number of positive responders to Mtb antigens is critical to prioritizing the 

antigens as there continues to be a search for the TB antigen with universal immunogenicity. 

Based on our calculation of positive cytokine responses, SEB (positive control) induced the most 

positive responses, with about 84-100% responders for all 6 cytokines (Table 3. 2). Compared 

to ESAT-6/CFP-10 (65-84%), and the latency associated proteins Rv1733 (67-83%), Rv2029 (55-

73%) and Rv2628 (50-80%). The important role of IFN-γ in protection during TB disease was 

evident as regardless of the antigen in question, the cytokine with the highest median 

concentration (pg/ml) was IFN-γ (Range 372.6 - 1931). This was followed by Granzyme B (Range 

585 - 1144), TNF-α  (Range 216.5 - 491.5) or IL-17 (Range 142.6 - 334.2) while sIL-2R-α (Range 

155.1 - 187.1) and IL-10 (Range 108.2 - 172) were secreted in lower quantities (Figure 3. 2). 

After two weeks of treatment, this trend did not change in terms of cytokine secretion profile.  
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Figure 3. 1: Median cytokine concentration in response to different antigenic stimulation of PBMC of TB patients 

at baseline (before start of TB therapy). 

Secretion of Granzyme B, IFN-γ, IL-10, IL-17, sIL2Rα and TNF-α (pg/ml) by PBMCs obtained from 20 sputum smear 

positive TB patients at baseline (before treatment). PBMC was stimulated in vitro with the stage specific M. 

tuberculosis antigens; ESAT-6/CFP-10 (n=19), Rv1733 (n=18), Rv2029 (n=11), Rv2628 (n=10), a negative control 

(Growth medium) and Staphylococcus aureus B (SEB) as positive control. A six-plex Luminex assay was done on 6-

day culture supernatants. The box plots show the 25th, 50th, and 75th percentiles, and the whiskers represent the 

minimum and maximum levels of cytokine (pg/ml) induced by each stimulus. To determine immunogenicity of 

antigens in the study population, each antigen-induced response was compared to the un-stimulated or negative 

control culture (medium) using a Mann-Whitney U test. P<0.0001 (***), P<0.001 (**), P<0.01 (*). 
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Table 3.4:  Positive cytokine responses per antigen before and after 2 weeks of TB treatment 

 No.  of positive responders per antigen [n1/N2 (%)] 

 SEB E6/C10 Rv1733 Rv2029 Rv2628 

Granzyme B      

Before 19/19 (100) 13/19 (68.4) 13/18 (72.2) 7/11 (63.6) 7/10 (70) 

After 2wks 14/15 (93.3) 12/15 (80.0) 9/10 (90.0) 7/7 (100.0) 5/5 (100) 

P value 0.4412 0.6974 0.3746 0.1193 0.5055 

IFN-γ      

Before 18/19 (94.7) 16/19 (84.2) 15/18 (83.3) 8/11 (72.7) 8/10 (80.0) 

After 2wks 12/15 (80.0) 13/15 (86.6) 10/10 (100) 7/7 (100) 5/5 (100) 

P value 0.2994 1.0 0.5330 0.2451  0.5238 

IL-10      

Before 18/19 (94.7) 14/19 (73.7) 12/18 (66.7) 7/11 (63.6) 5/10 (50.0) 

After 2wks 12/15 (80) 9/15 (60.0) 7/10 (70.0) 4/7 (57.1) 5/5 (100) 

P value 0.2994 0.4748 1.0 1.0 0.1009 

IL-17      

Before 19/19 (100) 13/19 (68.4) 14/18 (77.8) 6/11 (54.5) 8/10 (80.0) 

After 2wks 13/15 (86.6) 12/15 (80.0) 9/10 (90.0) 6/7 (85.7) 5/5 (100) 

P value 0.1872 0.6974 0.6264 0.3156 0.5238 

sIL-2R-α      

Before 18/19 (94.7) 14/20 (70.0) 12/18 (66.7) 7/11 (63.6) 8/10 (80.0) 

After 2wks 11/15 (73.3) 12/15 (80.0) 9/10 (90.0) 6/7 (85.6) 5/5 (100) 

P value 0.1458 0.7003 0.3642 0.5956 0.5238 

TNF-α      

Before 16/19 (84.2) 13/19 (68.4) 12/18 (66.7) 7/11 (63.6) 7/10 (70.0) 

After 2wks 11/15 (73.3) 9/10 (90.0) 9/10 (90.0) 5/7 (71.4) 5/5 (100) 

P value 0.6722 0.3667 0.3642 1.0 0.5055 

Freshly isolated PBMC from Sputum smear positive TB patients were stimulated for 6 days before 

initiation of therapy (baseline) with SEB (n=19), ESAT-6/CFP-10 (n=19), Rv1733 (n=18), Rv2029 (n=11) 

and Rv2628 (n=10) and after 2 weeks on anti-TB therapy with SEB (n=15), ESAT-6/CFP-10 (n=15), 

Rv1733 (n=10), Rv2029 (n=7) and Rv2628 (n=5). Culture supernatant was assessed by multiplex cytokine 

analysis. Percentage of positive cytokine (Granzyme B, IFN-γ, IL-10, IL-17, sIL2R-α and TNF-α) responses 

per antigenic stimulation were calculated. Positive responses were determined as follows; Cytokine 

concentrations were divided by the negative control sample (medium only, un-stimulated) and values 

greater than or equal to 2 were considered positive.  

1Number of positive responses       2Number of samples analyzed 
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Figure 3.2: Cytokine profile in response to Mtb-specific antigens. High levels of IFN-γ and Granzyme B are 

secreted in response to all antigens.  

Freshly isolated PBMC obtained from sputum smear positive TB patients (n=19) at baseline (before 

treatment) were stimulated in vitro with the stage specific M. tuberculosis antigens; ESAT-6/CFP-10, 

Rv1733, Rv2029, Rv2628 (latency associated), positive control Staphylococcus enterotoxin B (SEB)  and 

negative control (Growth medium) for  6 days. The harvested supernatant were used in a six-plex 

Luminex assay for of Granzyme B (GrzB), IFN-γ, IL-10, IL-17, sIL2Rα and TNF-α. The box plots show the 

25th, 50th, and 75th percentiles, and the whiskers represent the minimum and maximum levels of 

cytokine (pg/ml) induced by each stimulus. In response to all antigens, high levels of IFN-γ followed by 

Granzyme B and TNF-α and low levels of IL-17, sIL2Rα and IL-10 were observed. 
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3.3.4 Effect of two weeks of anti-TB treatment on cytokine response to Mtb-specific 

antigens 

To determine whether there are significant changes in the antigen-induced cytokine secretion 

by PBMC of individuals undergoing anti-TB therapy after the first two weeks of initiation of 

treatment, two approaches were used.  First, to identify differences in cytokine responses to 

antigens associated with active infection (ESAT-6/CFP-10) and latency (Rv1733), the Wilcoxon 

matched pairs test was used to compare the levels of each of the six cytokines in response to 

ESAT-6/CFP-10 and Rv1733 at baseline and 2 weeks of treatment using patients (n=9) with data 

available for all cytokines at both time points. Secondly, each cytokine response to the same 

antigen was compared at baseline and week 2. There was no difference (P>0.05) in levels of the 

6 cytokines induced by ESAT-6/CFP-10 and the latency associated Rv1733 at baseline (T0) and 2 

weeks of treatment (T1).  The median concentration (pg/ml) of all cytokines (except TNF-α) in 

response to ESAT-6/CFP-10 were higher at TI  (week two) compared to T0 (baseline) and the 

same trend was observed  with responses to Rv1733, while IL-10 levels remained almost 

unchanged during this period. However, only the median increase of Granzyme B secretion in 

response to Rv1733 fusion protein (474.2 to 1264.9 pg/ml, P=0. 01), was statistically significant 

(Figure 3.3).         
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Figure 3.3: ESAT-6/CFP-10   fusion protein and latency associated Rv1733 induce comparable levels of the 6 

cytokines in TB patients.  

Cytokine levels induced by ESAT-6/CFP-10 (EC) fusion protein and Latency associated Rv1733 at baseline 

(T0) and 2 weeks (T2) on treatment were compared using the Wilcoxon matched pairs test in Patients 

who had data for both time points available (n=9). Cytokine levels were obtained after subtracting 

values in un-stimulated wells from stimulated wells and negative values were converted to zero.  There 

is no difference (P>0.05) in levels of the 6 cytokines induced by ESAT-6/CFP-10 and the latency 

associated Rv1733 at baseline (T0) and 2 weeks of treatment (T1).   In the same patients (n=9), the 

median concentration of all  cytokines except TNF-α in response to ESAT-6/CFP-10  were higher at TI 

compared to T0 and the same trend was observed  with responses to Rv1733. However, only the 

median increase of Granzyme B secretion in response to Rv1733 fusion protein was statistically 

significant (P=0. 01).  
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3.3.5  Cytokine response to antigenic stimulation in individual patients before and after two 

weeks of anti-TB treatment 

To determine if the trend of improved cytokine responses (Granzyme B, IFN-γ, IL-17) was a 

reflection of individual cytokine responses and not a group effect, analysis of cytokine 

responses to ESAT-6/CFP-10 at baseline and 2 weeks of treatment was done for individual 

patients (n=12) who had both data available. A wide inter-individual variation was observed in 

cytokine response profile. As such, cytokine responses to ESAT-6/CFP-10 fusion protein were 

categorized based on the three distinct response patterns observed from baseline to week 2 as; 

(a) Increased median cytokine concentration, (b) decreased median cytokine concentration and 

(c) Fluctuations in median concentration for all 6 cytokines (Figure 3.4). To understand this 

variation in cytokine response pattern, a Uni-variate analysis was done for "age'' and "sputum 

smear result at diagnosis" with cytokine response to antigenic stimulation 

(increased/decreased/fluctuating) as outcome variables. However, no association could be 

established. 
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Figure 3.4:  Changes in cytokine levels after 2 weeks of TB treatment follows three patterns. 

 Shown are the cytokine profiles of (n=13) patients with both time points available for response to ESAT-

6/CFP-10 fusion protein. In patients A1, L2, M10, M9 there is a significant decrease in all cytokine levels 

at week two, while in patients A6, L4, M4, M2, M6, M5 there is a significant increase in all cytokine 

levels. The increase and decrease in cytokine levels in A5 and L1 respectively, are not significant while 

M1 shows fluctuating levels. 
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3.3.6 Dynamics of Mtb-specific CD4 and CD8 T cell responses before and after two weeks of 

treatment 

Effective treatment of active TB patients with anti-TB drugs has been shown to improve cellular 

responses (antigen-induced proliferation and IFN-γ secretion) of PBMC to various complex 

mycobacterial antigens and some immunodominant single antigens, e.g. ESAT-6, 16-kDa and 

38-kDa proteins (Wilkenson et al., 1998; Ulrichs et al., 2000). However, it is not known if the 

improvement in cellular responses is limited to these proteins or is a generalized improvement 

of cellular responses to a large number of antigenic proteins of Mtb.  In view of this, the IFN-γ T 

cell responses to 3 latency associated antigens were also evaluated at baseline and week 2 in 

this subset of patients. To determine the CD4 and CD8 T cell phenotypes contributing to the 

cytokine secretion during the first two weeks of treatment, we assessed the IFN-γ+ CD4+ and 

CD8+ T cells at baseline and at two weeks of treatment. Figure 3.5 illustrates the gating 

strategy.  

Rv1733 was the strongest inducer of IFN-γ in both CD4 and CD8 T cells compared to Rv2029 and 

Rv2628. After two weeks of treatment, the median frequency of antigen- specific IFN-γ+ CD4 T 

cell responses increased compared to baseline values; however, only the increase in the ESAT-

6/CFP-10-specific response was significant (Median: 1.660 vs 3.495 pg/ml, P=0. 0008). In 

contrast, the median frequency of antigen- specific IFN-γ+ CD8 T cell responses declined during 

week two, with the decline in ESAT-6/CFP-10- specific (from 3.295 to 1.665 pg/ml, P=0.0024) 

and Rv2029- specific CD8 T cell response (from 2.225 to 0.480 pg/ml, P=0.009) being significant 

(Figure 3.6 A and B).  The Wilcoxon matched pairs test analysis was done on subjects  for whom  

T cell responses at both time points in  response to ESAT-6/CFP-10 and Rv1733 (the strongest 

inducer of T cell responses among the 3 DosR proteins)  were available.  Again, the median 

frequency of IFN-γ+ CD4 T cells in response to ESAT-6/CFP-10 was significantly increased (P=0. 

0078) at week two, while the frequency of IFN-γ+ CD8 T cells was significantly decreased  (P=0. 

0039, Figure 3.6 C). There were no significant changes in response to Rv1733 (Figure 3.6 D).  
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Figure 3.5 Gating strategy for identification of IFN-γ+ CD4 T cells after ESAT-6/CFP-10 re-stimulation at 

baseline  and week 2. 

Freshly isolated PBMC from smear positive TB patients (n=20) were stimulated for 6 days with Mtb 

antigens. Supernatant was harvested on the 5th day for multiplex assay and BFA was added to the 

remaining cells overnight. Cells were harvested and fixed in paraformaldehyde, stained for CD3 and 

CD4/CD8, permeabilized, and stained for IFN-γ. Cells were gated on lymphocytes by forward and side 

scatter and analyzed by three-color FACS®.  CD3+ CD4+ or CD3+ CD8+ T Cells were analyzed for each 

stimulant, and dot plots from a representative sample are shown. Percentages of gated cells are 

indicated. 
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Figure 3.6: CD4 and CD8 T cell responses to Mtb specific antigens before and after two weeks of treatment 

Freshly isolated PBMC from newly diagnosed sputum smear positive and HIV-negative TB patients 

(n=19) were stimulated for 6 days with ESAT-6/CFP-10, Rv1733, Rv2029 and Rv2628, SEB and an un-

stimulated control (Medium).  IFN-γ+ CD4+ and IFN-γ+ CD8+ T cells were assessed by flow cytometry by 

subtracting the percentage in un-stimulated cultures from stimulated ones. A threshold of 0.2% IFN-γ+ 

CD4/ CD8 T cells defined positive T-cell responses against antigens. The Mann-Whitney U test  (P<0.05) 

was used to compare frequency of IFN-γ+ CD4  (A) and CD8  (B) T cells at baseline (T0) and week two 

(T1) in response to ESAT-6/CFP-10 (n=11), Rv1733 (n=10), Rv2029 (n=6), Rv2628 (n=6). Also shown (E 

&F) is the frequencies IFN-γ + CD4 and CD8 T cell at baseline (T0) and at 2 weeks (T1) into treatment  for 

individual participants with data available in response to ESAT-6/CFP-10 (n=8) and Rv1733 (n=6).  P 

values computed with the Wilcoxon signed rank test (P<0.05). 
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3.4 Discussion 

Cytokine expression in response to mycobacterial antigens has been studied extensively  in 

identifying immunological differences between active TB and latent infection or  in TB patients 

before and after treatment. Determining the antigen-induced cytokine expression profile would 

also expand the knowledge of the performance of potential immunogenic Mtb antigens just as 

is required in designing new diagnostics or vaccines (Bartholet et al., 2000; Sable et al., 2007).  

All the four antigens used, were immunogenic in this cohort as evidenced by the highly 

significant differences (P<0.01 to P<0.0001) in cytokine secretion seen between stimulated and 

un-stimulated cultures. 

The cytokine profile in response to all antigenic stimulation consisted of high levels of IFN-γ 

followed by granzymeB (grzB) and TNF-α or IL-17 and lower levels of sIL2Rα and IL-10.  This 

finding was contrary to expectations that ESAT-6/CFP-10 being virulent factors would induce 

both pro- and anti-inflammatory cytokines whiles Rv1733, Rv2029 and Rv2628 being latency 

associated antigens would only induce pro-inflammatory responses and relatively minor anti-

inflammatory response. The cytokine profile observed in this study suggests that the immune 

responses in the active stage of the disease (TB patients) are characterised by both pro- and 

anti-inflammatory cytokines irrespective of the nature of the antigen. This is supported by 

studies that have shown that the functional signature in response to Mtb antigens depends on 

the infection state in the host (active/latent infection) rather than the nature of the antigen 

(RD1, DosR, PPD) (Petruccioli et al., 2013; Lalvani et al., 1998). This suggests that a 

discriminatory cytokine profile could be observed using different cohort groups (active/latent 

TB). 

The level of inflammatory versus anti-inflammatory cytokines determine the clinical outcome of 

Mtb infection (Kassa et al., 2012). Although antigens that evoke strong IFN-γ responses are 

candidates for TB vaccine development (Feng et al., 1999), it has been argued that care should 

be taken when antigens that induce high levels of IL-10 for instance, are considered for vaccine 

formulations for TB, as IL-10 down regulates the production of protective cytokines, including 

IFN-γ, TNF-α IL-1, and IL-12 (Mustapha et al., 2011; Van Crevel et al., 2002). Hence, high 
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concentrations of IFN-γ as observed in this study, on its own is not indicative of protection 

without being accompanied by low concentrations of anti-inflammatory cytokines such as IL-10.  

Except for sIL2R-α, median IL-10 levels were lowest in response to all antigens, resulting in high 

IFN-γ/IL-10 ratios (not shown). Low IL-10 levels early during treatment is a good indicator of 

early response and this could probably be the reason why 95%  (19/20) participants were 

"smear-negative" by month 2 signifying the successful clearance of mycobacteria. It has 

previously been confirmed that, IL-10 levels are significantly higher in slow responders very 

early during treatment, indicating that an early increased anti-inflammatory response during 

treatment may lead to the delay of sputum culture conversion in patients (Djoba Siawaya et al., 

2009).  

Levels of TNF-α in this study were higher than that of IL-17, IL-10 and sIL2R in response to all 

antigens, an indication of its importance in TB pathogenesis. The median cytokine 

concentration of IL-17 in response to all antigens was higher than only that of sIL2R and IL-10. 

The detection of IL-17 positive responses in 65% of supernatant of ESAT-6/CFP-10 induced 

PBMCs may indicate nonspecific  inflammation during active TB (Nemeth et al., 2011) while 

addition IL-17 positive responses to the latency antigens may indicate that these play a role in 

inflammation and pathogenesis of TB. 

Antigen induced secretion of sIL2R was low compared to the other cytokines, except IL-10. 

Elevated sIL-2R during TB infection could indicate an inappropriate activation of T-lymphocytes 

and macrophages/monocytes, which may have harmful consequences (Chan et al., 1991). 

There was high secretion of grzB to all antigens with median cytokine concentrations only less 

than that of IFN-γ. Similar findings were reported by Toosii et al., 2004 where IFN- γ and grzB, 

were the only Mtb effector molecules that were induced in PBMC from Mtb-sensitized subjects. 

In the latter study, however, Mtb-induced expression of IFN-γ, but not grzB, was significantly 

lower in TB patients as compared with healthy control subjects. 
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The role of grzB in TB pathogenesis has not been clearly established, but it is known to be a 

driving force of cytotoxicity. The resolution of infections with many intracellular pathogens 

requires the effector functions of both NK cells and CD8+ CTLs. In Mtb infections, the combined 

action of perforin and the antibacterial agent granulysin, both of which are expressed in the 

granules of CTLs and NK cells, influences the outcome of infection (Stenger et al., 1998). 

However, other molecules involved in cytotoxicity (FasL, perforin and granulysin) are not 

inducible by Mtb and/or a T-cell mitogen in primary cells (Toosii et al., 2004) making grzB the 

only mediator to assess for evidence of cytotoxicity in such situations. The high levels of grzB 

suggests that the early stages of disease are characterized by apoptosis of infected cells 

ostensibly to halt the spread of infection and this is supported by a higher frequency of CD8+ T 

cells than CD4+ at baseline observed  in this study. This also re-enforces the role of CD8+ T cells 

in the control of human tuberculosis infection. Studies from mouse models indicate that the 

majority of Mtb-specific CD8 T cells are limited to either cytotoxicity or the secretion of gamma 

interferon (IFN-γ), with cytotoxicity being far more prevalent than IFN-γ secretion with memory 

response being less functional (Einarsdottir et al., 2009). 

It has been demonstrated that Acid fast bacilli (AFB) counts fall by about 20-fold in the first 2 

days and by a further 200-fold in the next 12 days to reduce the counts of an initially smear-

positive patient to about 103 per ml at  2  weeks of  short course chemotherapy (Jindani et al., 

1980). These levels are below the estimates of 103.5 to 104 per ml which are the limits indicating 

a change from smear-positive to smear-negative, culture-positive in untreated patients 

(Rouillon et al., 1976).  To determine whether this change is characterized by  an improvement 

in cellular response, the cytokine levels at baseline and two weeks of treatment were 

compared. There were marginal increases in median cytokine levels of IFN-γ,  Granzyme B and 

IL-17 from baseline to week two signifying an improvement in cytokine response to therapy. 

However, only the increase in median Granzyme B response to Rv1733 was statistically 

significant (P=0. 013).  This could be because the sample size was too small to show any 

differences or the levels of the six cytokines assessed, remain relatively unchanged or stable 

from baseline to week two of treatment. In the case of the former, the fact that there were 
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significant changes in  IFN-γ positive T cell subsets in the same patient cohort might suggest 

that is not the case, while the latter cannot be determined as polyfunctional T cells producing 

two or more of the six cytokines were not assessed. In-spite of this general improvement in 

cellular responses, inter-individual variation was observed with 3 distinct patterns of increased, 

decreased or fluctuating levels of all cytokines.  An association could not be established 

between "age'' and "sputum smear result at diagnosis" with cytokine response to antigenic 

stimulation. The variation could be best explained by host intrinsic factors beyond the scope of 

this study. 

In contrast to other studies which reported higher frequencies of IFN-γ+ CD4+ Cells than CD8 T 

cells (Young et al., 2010) in response to ESAT-6/CFP-10 in active TB patients, we observed a 

lower CD4 T cell response at baseline which increased at week two. Such disparities could be 

related to the stage of TB disease and hence the bacterial load at the time of the experiment as 

in this present study, the frequency of IFNγ+ CD4 T cells increased and was higher than that of 

CD8 T cells by the second week of treatment when the bacterial load should have reduced 

significantly. Low levels of antigen- specific T cells have been reported in peripheral blood in 

active disease (Moresini et al., 2005) and it  has been suggested that the low levels are due to 

migration of antigen specific T cells to the site of  infection during acute stages of the disease.  

This sequestration of T cells at the site of infection has been reported for both CD4 and CD8 T 

cells  (Caccamo et al., 2006; Dieli et al., 2000; Dilei et al., 1999) hence the relatively higher levels 

of IFN-γ+ CD8 T cells observed in this study pre-treatment could  probably be attributed to a 

"compensatory'' increase  arising out of a massive influx of antigen specific CD4  T cells which 

are the major producers of IFN-γ to the site of disease. While the proliferation of CD4 T cells 

producing IFN-γ could activate macrophages to fight against the early infection (Munk and 

Emoto, 1995), proliferation of CD8 T cells could promote bacterial schizolysis by secreting 

perforin, granulysin and extracellular enzymes. This cytotoxic function of CD8 T cells probably 

plays an important role during these early stages of disease as evidenced by the high quantities 

of Granzyme B, (a soluble mediator released by CD8 T cells) in addition to IFN-γ in the culture 

supernatant of active TB patients during the first 2 weeks of treatment.  
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The sub-study had some limitations, including the small sample size (n=20), and limited number 

of analytes tested for (6 cytokines). As applies in all biomarker discovery studies, regardless of 

the discovery platform used, the potential for reporting a significant finding which occurred by 

chance, given that 6 cytokines/soluble mediators were evaluated in 4 different Mtb infection 

phase-dependent antigen-stimulated supernatant is a risk.  Sputum samples could not be taken 

at week 2 which would have allowed a direct comparison of the changes in the cytokine profile 

to smear status (bacterial load) at week 2 and perhaps would have helped to better explain the 

individual variation in response. We could also not compare the cytokine response profile of 

Mtb and Maf-infected individuals due to the rather low number (2/20) of Maf-infected patients 

in this subset. However, of the 2 Maf species included in the subset, IFN-γ secreted by M11 

(MAF2) was very low (518pg/ml) in response to ESAT-6/CFP-10 compared to A11 (MAF1) 

(2260pg/ml). The mean IFN-γ response to ESAT-6/CFP-10  in this study was 1235.4 (± 926.2) at 

baseline (before TB treatment).   This observation, although limited could suggest that MAF 2 

infection does lead to reduced IFN-γ response to ESAT-6 as reported by de Jong et al, especially  

as all the five cytokines to ESAT-6/CFP-10 as well as cytokine responses to the other antigens 

were comparable between the two MAF 1 and MAF 2 cases. More cases of Maf would be 

needed to confirm this observation. Although in a similar study, a tendency towards increased 

IL-10 and TNF-α production was seen in TB cases infected with Maf (compared to Mtb) but this 

had no significant effect on the overall cytokine profile (Sutherland et al., 2010). It would have 

been interesting to compare the two as the latter study was done in the Gambia where there is 

a preponderance of MAF2 in contrast to MAF1 in Ghana. 

These limitations notwithstanding, the results indicate that in addition to IFN-γ, multiple 

cytokines, including TNF-α, IL-17, sIL2Rα, IL-10  and soluble mediator grzB are  expressed in 

PBMCs of  TB patients in response to antigenic stimulation and that the cytokine profile reflects 

the immune status of the host and not the nature of the antigen. While the high levels of grzB 

was an interesting finding that lends credence to the view that in the early stages of TB disease, 
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cytotoxic activity is a critical part of TB control it warrants further investigation as quantity does 

not reflect function. 

The results further show that effective chemotherapy improves cellular responses of TB 

patients to Mtb- stage specific antigens, as early as two weeks after therapy, however, most of 

the trends were not statistically significant. This could be due to the small sample size, 

however, changes in cytokine profile beyond week two, but before second month would need 

to be  equally investigated for markers for early  response. Cytokine levels vary considerably 

amongst individuals, so the range of values observed with the multiplexed assays was rather 

large. Using cytokine levels to monitor the efficacy of anti-TB treatment will be difficult due to 

this inter-individual variation. Therefore, studies in large populations of TB patients are 

required to identify the factors that determine variation in cytokine responses before cytokine 

based prediction scales are used for clinical management of TB.  Future longitudinal studies 

with larger sample size to identify biomarkers should in addition to IFN-γ and TNF-α include 

grzB to investigate the functional significance of the high levels observed during the first two 

weeks. 
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CHAPTER FOUR 

Longitudinal changes in IFN-γ  expression  in Mtb antigen-specific  T cell subsets  obtained 

from active pulmonary TB patients undergoing treatment  

 

4.1  Background 

Host defense against TB is T-cell-mediated, and among the T lymphocytes the CD4+ T- 

lymphocyte is undoubtedly the major effector cell (Boom, 1996). The role of CD4 T-cells in 

protection against Mtb is well documented, however, evidence from various studies using 

human and animal models suggests an involvement of CD8 T-cells (Flynn et al., 1992; Stenger et 

al., 1997). CD8 T cells are thought to contribute to the control of Mtb infection by mediating 

specific effector functions, including IFN-γ and TNF-α production upon recognition of 

mycobacterial antigens (Kaufman et al., 2005; Flynn et al., 2001), lysis of infected host cells, and 

direct killing of mycobacteria (Stenger et al., 1997, Ottenhoff et al., 2008). Consistent with the 

hypothesis that CD8 T lymphocytes are constantly being stimulated with antigen, CD8 T-cells 

specific for numerous mycobacterial antigens can be isolated at high frequency from human 

and mouse models (Lalvani et al., 1998; Ottenhoff et al., 2000).  

Various studies have highlighted the immunologic and clinical relevance of measuring T cell 

response to TB infection. The development and introduction of the IGRA's (Interferon gamma 

release assays) into clinical practice for diagnosis (Pai et al., 2008) have also resulted in an 

explosion of studies aimed at  using IFN-γ production for monitoring of tuberculosis  infection. 

Conflicting results have been reported by these studies with some reporting decreasing or 

negative responses (Aiken et al., 2006; Dheda et al., 2007) and increased or persistently positive 

responses (Ferrand et al., 2005; Pai et al., 2007) after treatment. These differences have been 

attributed to assay characteristics, antigen load at different stage of the disease and the 

functional diversity of T-cell response (Sauzollo et al., 2009). Determination of the T cell 

cytokine profile at specific stages of infection, disease and recovery would aid in the 
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identification of specific markers that could serve as an end point in clinical trials for the 

development of new diagnostics and vaccines.  Despite the conflicting results, the common 

denominator for all these IGRA based assays for monitoring TB treatment response, is the use 

of short-term incubation assays. Short-term stimulation (18-24hrs) essentially detects 

responses of activated effector/effector memory T cells that rapidly release IFN-γ when 

stimulated in vitro with antigen (Leyton et al., 2006). On the other hand, studies investigating 

antigenic responses after long -term stimulation are lacking. Longer period of in vitro 

stimulation by contrast detects the effector functions of long-lived central memory T cells,  

which may be less likely to release IFN-γ during the short period of exposure to antigens in the 

IGRA assay (Ketch et al., 2002). Thus the dynamics of central memory response during anti TB 

treatment have not been properly investigated and may be a better tool for monitoring of TB 

treatment response.  

4.2  Experimental Design 

4.2.1  Sample selection 

Cryo-preserved PBMC of culture positive and HIV negative patients from the study cohort, 

which met the selection criteria were identified. PBMC samples of patients who were lost to 

follow up (Figure 4.1) were excluded and only samples  of patients who honored all four study 

time points were eligible. In addition, selected samples included only those of patients  whose 

infecting strain of Mycobacterium had been genotyped  as M. tuberculosis or M. africanum. 

Based on this criteria, PBMC of 38 participants, known to be infected with M. tuberculosis were 

selected in addition to all PBMC of all 10 patients infected with M. africanum.  

4.2.2 Thawing of cryopreserved PBMC  

The vials of PBMC to be used were transferred from the nitrogen vessel and put in a transport 

vessel filled with liquid nitrogen or dry ice. For each vial to be thawed, a 15 ml tube containing 2 

ml of RPMI 10% FCS was prepared. The vials were placed in a water bath of 37°C degrees and 

removed before the last clump of cells had thawed. The outside of the tube was thoroughly 

wiped clean with alcohol and 1ml of the thawing medium added drop-wise while gently shaking 

the tube. The contents of the tube were then transferred into the 15ml tubes and topped up 
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with R10 (RPMI, 10%FCS) to the 14 ml mark. The tubes were centrifuged for 7 minutes at 1400 

RPM (439g), the supernatant was discarded and the pellet re-suspended in 1 ml of sterile 

filtered growth medium for cell counting. The cells were then made up to the concentration 

needed for the particular assay using growth medium and placed in the appropriate wells of an 

already labelled culture plate. All cryopreserved cells were rested for 2 hours at 370C, in the CO2 

incubator prior to the addition of antigens. All protocols from stimulation till intracellular flow 

cytometry followed procedures described in Chapter 3. 

 

4.2.3   Assay characteristics 

For the longitudinal study, CD4+ and CD8+ T cell expression of IFN-γ in response to ESAT-6/CFP-

10  fusion protein and the most recognized of the three DosR proteins, Rv1733  was evaluated  

to determine T cell specific dynamics during treatment. To minimize experimental bias,  for 

each selected sample  cryo-preserved PBMC for all 4 time-points were thawed and cultured the 

same day under similar conditions.   

For the evaluation of M. africanum response to ESAT-6/CFP-10 fusion protein, frequency of IFN-

γ+ CD4 and CD8 T cell responses to ESAT-6/CFP-10 was compared at baseline between the M. 

africanum and Mtb samples (matched for age and sex).  

 

4.2.4 Data analysis 

Data was entered into Microsoft Excel 2007 (Microsoft Corp, USA) and analyzed using PRISM 

software version 4.0 (GraphPad prism software Inc., California, USA). Differences in the 

percentage of IFN-γ+ CD4/CD8+ T cells to antigenic stimulation were analyzed using the non-

parametric Mann-Whitney U-test. Data in the longitudinal analysis during the treatment course 

of individual patients were evaluated with the non parametric Wilcoxon signed-rank test (two 

tailed). P–values of less than 0.05 were regarded as significant. Samples were excluded from 

analysis as a result of culture contamination or negative SEB result.  
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4.3 Results 

4.3.1  The Study Profile 

Of the 104 TB patients recruited, blood samples were collected from all at baseline, 2 weeks, 2 

months  after initiation of TB treatment and 6 months  upon treatment completion for in-vitro 

assays. Due to losses to follow up, 95 participants were available for the week two, 93 for 

month two and 81 for month six.  In all, 23 (22%) of participants recruited were lost to follow 

up for reasons described in Figure 4.1. Based on the selection criteria for the longitudinal study, 

38 samples were selected. After eliminating samples due to culture contamination or negative 

SEB response, 21 out of 38 samples were included in the longitudinal study analysis. The 21 

samples were from 13 males and 8 females with mean age of 32.7 years. 

 

 

Figure  4.1: Study Profile shows losses to follow-up at different time points 

Of the 104 TB patients recruited into the study, 81 were available for all the four time points for blood 

draw. A total of 20 were lost to follow up in the course of the study for various reasons, while 3 were as 

a result of death. 
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Figure 4.2: Representative sample showing IFN-γ secretion in un-stimulated (GM), SEB (positive 

control), ESAT-6/CFP-10 and Rv1733. 

Intracellular IFN-γ staining of PBMC from TB patients during the course of anti-TB therapy. 

Cyropreserved PBMC were thawed, rested for 2 hours and then stimulated for 6 days with antigens 

(indicated), BFA was added on the 5th day overnight. Cells were harvested and fixed in 

paraformaldehyde, stained for CD4 and CD8, permeabilized, and stained for IFN-γ. Cells were gated on 

lymphocytes by forward and side scatter and analyzed by three-color FACS®. Cells were analyzed from 

each stimulant, and dot plots from a representative sample are shown. Percentages of gated cells are 

indicated. 

  

4.3.2  Kinetics of IFN-γ+ T cell subset response to ESAT-6/CFP-10   fusion protein and Rv1733 

At baseline, T cells from all 21 patients expressed IFN-γ in response to ESAT-6/CFP-10   but this 

reduced substantially in CD8+ T cells by completion of treatment (Table 4.1).  A similar 

reduction was observed in IFN-γ expression of both T cell subsets in response to Rv1733. 
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Table 4.1: Longitudinal assessment of Positive T cell responses to ESAT-6/CFP-10 and Rv1733 

during anti TB therapy 

  %IFN-γ+ CD4 T cells   %IFN-γ+ CD8 T cells 

[n/N] SEB 1 (%) ESAT-6/CFP-101 

(%) 

Rv17331 

(%) 

SEB 1 (%) ESAT-6/CFP-

101 (%) 

Rv17331 (%) 

T0 21/21 (100) 21/21 (100) 8/10 (80) 21/21 (100) 21/21 (100) 9/10 (90) 

T1 21/21 (100) 21/21 (100) 9/15 (60) 21/21 (100) 21/21 (100) 11/14 (79) 

T2 21/21 (100) 21/21 (100) 7/13 (54) 21/21 (100) 15/21 (71.4) 7/13 (54) 

T3 21/21 (100) 21/21 (100) 6/11 (55) 21/21 (100) 11/21 (52.4) 2/11 (18) 

 

Samples were assessed at four time points: T0 (baseline), T1 (two weeks of treatment), T2 (two 
months of treatment) and T3 (month 6). 

1Number of participants (PBMC) with more than 0.2% IFN-γ CD4/CD8 T cells in response to 6 days of 
antigenic stimulation. 

 

 

Also, as reported in the earlier experiment using freshly isolated PBMCs (3.5.3), the median 

frequency of IFN-γ + CD8+ T cells was higher (not significant) than that in CD4 T cells at baseline 

(T0) (Figure 3.4) 

At week 2 (T1), there was a significant increase in the median frequency of IFN-γ+ CD4  T cells in 

response to ESAT-6/CFP-10  (from 1.3 to 2.58 %; P<0.01) and an insignificant decrease in the 

median frequency of IFN-γ+ CD8 T cells. There was no significant difference in the median 

frequency of IFN-γ+ CD4/CD8 T cells in response to Rv1733 from baseline  (T0) to week Two 

(T1).  
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By month, two (T2), there was a highly significant increase (from 1.3 to 3.1%; P<0.001) in the 

median frequency of IFN-γ+ CD4 T cells and  decrease in CD8 T cells (from 1.85 to 0.485 % 

P<0.05) in response to ESAT-6/CFP-10, compared to baseline. However, in response to Rv1733 

there were no significant changes.  

From Month 2 (T2) to end of treatment or month 6 (T3), there was  an insignificant increase in 

the median frequency of IFN-γ+ CD4 T cells as well as an insignificant decrease in CD8 T cells. 

Compared to baseline values, the IFN-γ expression in CD4 T cells was significantly increased at 

the end of TB treatment (from 1.3 to 3.45 %; P<0.001) while that of CD8 T cells decreased (from 

1.85 to 0.277 %; P<0.001).   

Taken together, the data show that in response to ESAT-6/CFP-10 there is an increase in the 

median frequency of IFN-γ+ CD4 T cells by week two (T1) of treatment in comparison to the 

pre-treatment  frequency with  a further   increase at  month two (T2) which continues till the 

end of treatment (T3). On the contrary, there is a decline in the median frequency of IFN-γ+ 

CD8 T cells at week 2 compared to pre-treatment frequencies and this decline continued 

through to month 2. By the end of treatment there is a marked decrease in the median 

frequency of IFN-γ+ CD8 T cells compared to baseline values. 

In response to latency associated Rv1733, there were no significant changes in median 

frequencies of IFN-γ+ CD4 or CD8 T cells at any time point, but there was a trend of a decline 

from pre-treatment frequencies to week 2, followed by an increased  frequency by month two 

for both T cell subsets. At the end of treatment (month 6) there was a decline in the frequency 

of Rv1733-specific IFN-γ+ CD4 T cells in contrast to  Rv1733-specific IFN-γ+  CD8 T cells which  

increased at the end of treatment. The longitudinal changes in frequencies of ESAT-6/CFP-10 

and Rv1733 specific IFN-γ+ responses for each T cell subset is shown in  (Figure 4.3) for patients 

with all four time points available.   
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Figure 4.3: Longitudinal changes in frequencies of IFN-γ +  CD4 and CD8 T cells in response to antigenic 

stimulation.  

Cryo-preserved PBMC from culture-positive (genotyped as M. tuberculosis) TB patients were stimulated 

with ESAT-6/CFP-10 and Rv1733 for 6 days. Cells were analyzed by Flow cytometry for intracellular 

expression of IFN-γ in CD4+ and CD8+ T cells by subtracting the percentage in un-stimulated cultures 

from stimulated ones. A threshold of 0.2% IFN-γ+ CD4/CD8 T cells defined positive T-cell responses 

against antigens ESAT-6/CFP-10  (n=25) and Rv1733 (n=15). Samples with a negative SEB response were 

excluded, but values below this threshold were converted to zero for plotting. Bar indicates the mean at 

each time point: T0 (baseline,) T1 (two weeks into treatment), T2 (2 months into treatment) and T3 

(month 6/treatment completion). Data were analyzed using a Kruskal-Wallis ANOVA followed by Dunn’s 

post-test comparison and p-values indicated. 
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Figure 4.4: Kinetics of IFN-γ expression in CD4+ and CD8+ T cells for individual patients undergoing TB treatment 

A longitudinal analysis of IFN-γ expression by CD4+ and CD8+ T cells at four time points T0 (pre-

treatment), T1 (week 2 of treatment), T2 (month two of treatment) and T3 (end of treatment) was done 

including only patients with all four time points available for  response to ESAT-6/CFP-10  (n=20) and 

Rv1733 (n=9).  

 

4.3.3 Longitudinal changes in cytokine secretion profile in a subset of patients 

The median cytokine secretion of the 6 cytokines at four time points (baseline, week two, 

month two and six months) was determined for the first five (5) patients to complete treatment 

with PBMC for all time points available. One way ANOVA was used to compare the median 

cytokine secretion upon stimulation with ESAT-6/CFP-10 and Rv1733 at each time point.  A post 

test to identify statistically significant (P<0.05) means was done was the Kruskal-Wallis test. 

Cytokine secretion (pg/ml) was calculated by subtracting the values of the un-stimulated 

cultures from the stimulated cultures. 
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There was a general increase in all cytokine levels upon treatment completion compared to 

baseline values in response to both ESAT-6/CFP-10 fusion protein and Rv1733 (Fig 4.6). 

However, only the increase in IL-10 levels from baseline to month 2 and to treatment 

completion (month 6) in response to ESAT-6/CFP-10  were statistically significant (P<0.01). 

IFN-γ secretion increased steadily in response to both ESAT-6/CFP-10 and Rv1733 from baseline 

to treatment completion (T0 to T3). In the former, there was a two-fold increase from baseline 

to week 2 and a four-fold increase by  month 6 (treatment completion). Granzyme B, sIL-2Rα 

and IL-10 levels decreased at month 2 after an increase at week two before increasing again 

upon treatment completion. 

TNF-α levels were dramatically low from baseline to month 2 before finally increasing upon 

treatment completion.  

However, there was again wide individual variation in responses in response to both ESAT-

6/CFP-10  (shown in Fig 4.7) and to Rv1733 (not shown).  Due to the rather low number of 

samples these results would have to be confirmed in a larger cohort. 
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Figure 4.5: Changes in the levels of secreted cytokines to ESAT-6/CFP-10 and Rv1733 in a small subset of TB 

patients (n=5) from baseline till  treatment completion  

PBMC of the first 5 patients to complete TB treatment were stimulated with ESAT-6/CFP-10 and Rv1733 

for 6 days and supernatant assayed for the six analytes (IFN-γ, Granzyme B, IL-10, IL-17, sIL2r-α, TNF-α). 

Cytokine secretion (pg/ml) was calculated by subtracting the values of the un-stimulated cultures from 

the stimulated cultures. Median cytokine levels were compared at four time points (baseline, 2 weeks 

on treatment, 2 months on treatment and six months) using one way ANOVA.  A post test to identify 

statistically significant (P<0.05) means was done was the Kruskal-Wallis test.  
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Figure 4.6: Cytokine dynamics per patient over the course of TB treatment 

Shown are IFN-γ, Granzyme B, IL-10, IL-17, sIL2r-α, TNF-α secretion (pg/ml) in response to ESAT-6/CFP-

10 at four time points; baseline (T0), week 2 (T1), month 2 (T3) and 6 months (T4) for Five (5) smear 

positive TB patients (P1, P2, P3, P4, P5) with all time points available.  
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4.3.4  Frequency of  IFN-γ+ T cell responses to ESAT-6/CFP-10 in M. africanum and  M. 

tuberculosis infected subjects 

Studies conducted mostly in Gambia, West Africa, where there is a preponderance (60%) of M. 

africanum subspecies 2 (MAF2), and no subspecies 1 (MAF1), have reported an attenuated IFN-

γ response to ESAT-6/CFP-10 in Maf- infected TB patients (de Jong et al., 2010).  Studies in 

Ghana have on the other hand reported a Maf prevalence of 20 -30% with only about 9% being 

MAF2. In this study, of the 10 participants infected with Maf, only one was genotyped as MAF2, 

with the 9 being MAF1. To determine whether there is a similar attenuated response to ESAT-

6/CFP-10 in our  predominantly MAF 1 population, we compared ESAT-6/CFP-10   responses at 

Baseline in Maf patients (n=10) to that of the Mtb  (n=10) population matched for age and sex. 

There was no difference in frequencies of IFN-γ+ CD4 or CD8 T cells between Maf and Mtb 

subjects in response to ESAT-6/CFP-10  (Figure 4.8). 
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Figure 1Figure 4.7:  No difference in frequency of IFN-γ+ CD4 or CD8 T cells in response to ESAT-6/CFP-

10  fusion protein between Maf and Mtb- infected subjects. 

The frequency of IFN-γ+ CD4+ and CD8+ T cells in response to ESAT-6/CFP-10 (EC) was compared using the Mann-

Whitney U test between the 10 Maf subjects and 10 Mtb- infected subjects matched by age (34.4 verse 35.13) and 

sex (M (7): F (3). Y axes show the percentage IFN-γ + per each cell population and the X axes shows the Mtb strain. 

Also shown are response to growth medium/negative control (GM) and positive control/Stapyloccucus enterotoxin 

B (SEB).     
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4.4 Discussion 

Longitudinal changes in CD4/CD8 T cell subset after long term stimulation with Mtb- specific 

antigens 

The critical role CD4 T cells play in controlling TB infection is demonstrated by the uncontrolled 

mycobacterial growth seen in transgenic mouse strains unable to mount CD4 T cell responses 

or Th1 immune responses (Mogues et al., 2001; Carusso et al., 1998; Copper et al., 1997; Ladel 

et al., 1995).  Both CD4 and CD8 T cells are thought to contribute to protection against TB 

(Hoang et al., 2009). We earlier evaluated the functional response of antigen- specific T cells by 

comparing the frequencies of IFN-γ+ CD4 and CD8 T cells upon exposure to ESAT-6/CFP-10, 

Rv1733, Rv2029 and Rv2628 antigens in freshly isolated PBMC of the first 20 participants 

recruited at baseline and week two of treatment. Of the three DosR proteins, the T cell 

response to Rv1733 in terms of frequency of IFN-γ+ CD4 cells were higher compared to Rv2029 

and Rv2628.  

To determine longitudinal changes in CD4 and CD8 T cell responses to Mtb-specific antigens, 

cyro-preserved cells from four time points (baseline, week two, month two, month six) were 

thawed and cultured under similar conditions as the fresh cells using ESAT-6/CFP-10 and 

Rv1733.  

As previously observed, before treatment, the T cell profile consisted of more IFN-γ+ CD8  T 

cells than CD4 T cells and this trend was reversed during the second week with more IFN-γ+ 

CD4 than CD8 T cells.   

Aside sequestration, other factors that have been implicated in decreased numbers of antigen 

specific T cells in the periphery include, T cell exhaustion or aberrant immune regulation during 

disease. During active disease aberrant immune regulation, mediated by regulatory T cells 

(Schuck et al., 2009), anti-inflammatory cytokines such as IL-10 and TGF-β (Hirsch et al., 1999) 

and Th2 cytokines like IL-4 and IL-13 may be up-regulated in chronic infections such as HIV and 

CMV. Such persistently high antigenic load drives specific T cell exhaustion and dysfunction 

(Barber et al., 2006; Day et al., 2006). These cells up-regulate markers like PD-1, and are more 



94 

 

 

prone to apoptosis (van Grevenynghe et al., 2008). A recent observation that T cells from 

patients with TB disease were strikingly less likely to survive in a 6-day culture, compared with T 

cells from persons with LTBI, suggests that T cell exhaustion may also be responsible for lower 

responses in TB patients at baseline.  It was found that PD-1 expression is increased on Mtb-

specific CD4+ T cells in TB diseased patients, compared to persons with LTBI (C. Day, 

unpublished observations). Essentially, T cell exhaustion leads to a loss of function in particular 

for antigens like ESAT-6/CFP-10 that predominate during the early stages of infection, and 

where continued exposure may lead to exhaustion (Barber et al., 2006). We could speculate 

that  ESAT-6/CFP-10 - specific CD4 T cells are recruited earlier during the immune response to 

TB and may have gotten exhausted during the course of infection leaving the CD8+ T cells to 

predominate. An alternative explanation could be that because  CD8 T cells are restricted to the 

recognition of antigens from the intracellular environment, they are better predictors of 

bacterial load, hence their abundance during the acute phase of infection when the bacterial 

load is high.   

The subsequent increase in the frequency of IFN-γ+ CD4 cells in peripheral  blood during week 

two could signal the end of the cytotoxic activity as it was also accompanied by a decline in the  

frequency of IFN-γ+ CD8 T cells.  It is largely believed that  most of the actively replicating 

bacteria are eliminated during the first 2 weeks of TB treatment and that follow up treatment is 

targeted at the persistent and the latent foci.   

Interestingly, during the second month follow up, there was a further  increase in median  

frequency of IFN-γ+ CD4 T cells  and a decline in  that of CD8 T cells. This is in contrast to many 

studies that have reported a decline in IFN-γ expression in CD T cells at month two treatment. 

This decline has been attributed to bacterial clearance at month 2. It has been suggested that a 

higher IFN-γ response at 2 months could be an independent indicator of the likelihood of 

remaining sputum culture-positive at the end of the intensive phase of anti-tuberculosis 

treatment  (Katiyah et al., 2008), similarly a delayed drop in TB  IFN-γ release could be an 

indicator of adverse outcome and poor response to treatment (Carrara et al., 2004). However, 

the majority of these studies reporting a dip in IFN-γ expression during the second month have 
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been based on  the use of IGRA’s which uses short term incubation. Short term incubation is 

thought to detect effector memory responses, which are expected to decline as bacterial load 

decreases with effective chemotherapy (Lalvani, 2004). 

In contrast, this present study employed long term stimulation, which is thought to detect 

effector responses of central memory T cells (Sprent et al., 2002; Ketch et al., 2002). Central 

memory T cells are long-lived, even in the absence of persistent antigen, and home to 

secondary lymphoid organs, require long term stimulation assays and signify previous 

immunological sensitization to the pathogen (Walzl et al., 2011). In several infection models 

including TB, it has been shown that effector T-cells are expanded during active replication, 

whereas only memory cells are detectable after control or eradication (Butera et al., 2009; 

Jafari et al., 2009; Jafari et al., 2011). However, data on characterization of the memory 

phenotype of Mtb-specific cells during active disease in response to Mtb-specific antigens is 

limited.  Measurements of memory T cell subpopulations and other biomarkers for pathogen 

persistence have so far not been adequately investigated for their ability to predict treatment 

outcome, and the field relies on clinical evidence of mycobacterial activity (Walzl et al., 2011). 

This study represents one of a few to monitor the response of memory cells to Mtb-specific 

antigens during chemotherapy using long term stimulation ostensibly to capture central 

memory responses. 

The increased frequency of IFN-γ+ CD4 T cells at month 2 which continued through to month 6 

could indicate that as treatment progress and bacterial load  decreases, the frequency of CD4 

specific- ESAT-6/CFP-10 memory responses increases. Based on the 0.2% cut-off for positive 

responders to antigen, in response to ESAT-6/CFP-10 all participants had positive responses 

throughout treatment, but with varying frequencies of IFN-γ+ CD4/CD8 T cells.  All patients in 

this subset were successfully treated and deemed clinically cured of TB. Clinical cure is 

characterized by negative bacteriological examination for Mtb and by resolution or 

improvement of symptoms. These results indicate that immunologically, clinical cure is 

associated with higher frequency of ESAT-6/CFP-10-specific memory IFN-γ+ CD4 T cells and low 
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frequencies of IFN-γ+ CD8 T cells. This profile could be behind the improvement in cellular 

responses observed. 

Two reasons have been adduced for the cellular improvement with anti-TB therapy, with 

regards to CD4 T cell responses; firstly an increase in the number of peripheral CD4 T cells that 

produce IFN-γ, owing to the fact that CD4 T cells responding to a vast array of Mtb epitopes are 

sequestered or compartmentalized at the site of the disease, and appear in the peripheral 

blood after effective chemotherapy, thus reversing the state of anergy seen in TB patients prior 

to therapy (Wilkenson et al., 1998; Dieli et al., 1999).  Secondly, a shift in cytokine production 

by PBMC, from cytokines that down regulates the activation of Th1 cells and their cytokines 

such as IL-10 have been implicated. The levels of these regulatory cytokines are high in active 

TB patients and decrease upon treatment with anti-TB drugs (Hirsh et al., 1999; Garcia et al., 

2002). 

The decline of IFN-γ+ CD8 T cells following successful TB treatment suggests  that frequencies of 

IFN-γ+ CD8 T cells  during treatment will be useful as a surrogate marker of treatment response. 

In addition, unlike the conflicting results with regards to CD4 T cell responses during treatment 

which has been attributed to assay characteristics,  recent studies using ELISPOT (Nyendak et 

al., 2013) and intracellular cytokine staining (Day et al., 2011) have also reported a decline in 

IFN-γ+ CD8 T cells following successful TB treatment, indicating consistency across different 

assays. Given that CD8  T cells have a high affinity for cells heavily infected with Mtb (Lewinsohn 

et al., 2006) and the finding that young children with TB exhibit a strong IFN-γ+ CD8 T cell 

response to TB antigens (Lancioni et al., 2012), similar findings in our adult cohort is not 

surprising. 

There were no significant differences in the frequency of IFN-γ+ CD4 and CD8 T cells in response 

to Rv1733. There was, however, a trend towards increased frequency of  Rv1733 specific-IFN-γ+ 

CD4 and CD8 at week two which declined at month two in both subsets. At the end of 

treatment there was  a  trend of increased frequency in Rv1733 specific -CD8  T cells and a 

decline in Rv1733 specific-CD4 T cells.  
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In general, the presence or absence of  a specific memory response at the end of treatment on 

its own may not be indicative of long lasting protection in all individuals. Active tuberculosis can 

recur, either through re-infection with a new bacterial strain (in patients whose TB treatment 

resulted in sterilizing cure) or through relapse with the original bacterial strain (in patients 

whose infection returned to a quiescent phase after treatment (Walzl et al., 2010).  

In the search for a TB vaccine,  the potential candidate antigen is expected to evoke a high 

frequency of antigen specific cytokines after  a long period of incubation, indicative of a central 

memory response. The limitation of this sub-study is that we did not use any specific markers 

that have been associated with central memory responses.  We cannot therefore be categorical 

that the responses we have measured are truly central memory responses even though effector 

cells are less likely to survive in 6 day stimulation assays. Future studies employing such 

memory markers would give a more definitive insight into the nature of these CD4 and CD8 T 

cells persisting in 6 day cultures.  

Longitudinal assessment of cytokine profile from baseline to treatment completion 

Compared to baseline values, there was an increased concentration of all cytokines at two 

weeks of treatment. However, in the exploratory cohort (n=5), assessed at longitudinally at  

four time points, it was observed that all cytokine levels depressed at month two (intensive 

phase) after the increase during week 2, before increasing again at month 6 upon treatment 

completion. The only exception was IFN-γ and TNF-α. The decrease in cytokine levels at month 

two may correlate with the resolution of inflammation after the bacterial load is reduced.  

However, in the case of IFN-γ and TNF-α, the steady increase from week 2 to 6 months 

(treatment completion) after low baseline levels could be due to sequestration at the site of 

infection at the early phase of the disease (Schwander et al., 1998) leading to a reduction in 

peripheral blood.  

Specifically the increased levels of pro-inflammatory cytokines  during week two may reflect the 

contraction of Mtb-specific pools as the bacterial load drops and tissue inflammation resolves 

leading to infiltration of the two into the periphery.  Low IFN-γ induction in PBMC of TB patients 
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prior to treatment may also be the result of a chronic depletion of antigen responsive T cells as 

suggested by studies of Hirsch and others (Hirsch et al., 1999; Hircsh et al., 2001). Also 

Sahiratmadja et al., 2007 evaluated the cytokine profiles for 93 TB patients before and after 

curative treatment and found that IFN-γ was strongly depressed in patients with active TB 

before treatment but increased after treatment. However, in a  similar study by Su et al, there 

were elevated IFN-γ levels pre-treatment in TB patients compared to controls and a significant 

decline in IFN-γ levels after the intensive 2-month anti-TB therapy, the latter of which was also 

observed in this four time point cohort. It appears that generally IFN-γ levels are low pre-

treatment and high post treatment, but between these two time periods the levels fluctuate. In 

the case of TNF-α although there was a steady increase from baseline to end of treatment, the 

background was so high that most of the values for the first three time points were negative 

after subtracting it from the stimulated cultures. Previous studies have observed high 

background level of TNF-α in un-stimulated samples from patients whether infected with Mtb 

or not (Lighter-Fisher et al., 2010; Chegou et al., 2009) and this could explain the high 

background values observed.  

 

ESAT-6/CFP-10 -specific IFN-γ response to M. africanum 

So far no study has investigated the immune response of M. africanum 1 (MAF1) infected 

patients to ESAT-6, so we compared the frequency of ESAT-6/CFP-10- specific IFNγ+ CD4 and 

CD8 T cell responses  in our MAF1 cohort with that of  an Mtb cohort (matched for age and sex)  

but found no significant difference between the two (Figure 4.7). 

The epidemiological and clinical differences between M. tuberculosis (Mtb) and M. africanum 

(Maf) are still unraveling, however the observation that individuals infected with Maf have a 

reduced response to ESAT-6 (de Jong et al., 2006) compared to Mtb-infected individuals 

generated a lot of interest, especially because ESAT-6 is one of the major antigens in the IGRA, 

currently in use for TB diagnosis (Pai et al., 2006). The implication was that for most individuals, 
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particularly in West Africa, infected with Maf, diagnosis using the IGRA"s would yield inaccurate 

results. Even more worrying was the fact that ESAT-6 is also a potential vaccine candidate.  

The two subspecies of Maf; MAF1 and MAF2 are predominantly found around the Gulf of 

Guinea and Western parts of West Africa respectively.  The study, which reported the reduced 

ESAT-6 responses was conducted in the Gambia with Gambian patients so the reduced 

response was with respect to MAF2  as  MAF1  is not prevalent in the  Gambia. 

Given the phylogenetic difference between MAF1 and MAF2; MAF1 is closer to Mtb  whilst 

MAF2 is closer to M. bovis (Gagneux et al., 2007; Brosch et al., 2002)  we could hypothesize that 

T cell response to MAF1 and Mtb are similar. Another explanation for our finding could be due 

to the fact that we used a fusion protein comprising of ESAT-6 and CFP-10 which could have 

masked the effect that using ESAT-6 alone (as was used in the former study) would have had.  

Co-secreted, these two most immunodominant proteins of the RD1 region of Mtb genome are 

thought to induce stronger responses together compared to individually. However a recent 

study has reported  that, contrary to the lower ESAT-6 responses based on ELISPOT result, T cell 

responses were no different between mice experimentally infected with  Maf and Mtb  (Bold et 

al., 2012). The mouse study in question used MAF2 strains which implies that in terms of T cell 

response, MAF2 is similar to Mtb. Factors such as in vivo attenuation of Maf compared to Mtb, 

difference in ESAT-6 secretion and mutation in the Rv3879c gene in Maf have been investigated 

in an attempt to explain the lower ELISPOT response found in MAF2 infected compared to Mtb 

infected  individuals, but none of these could successfully explain this finding (Bold et al., 2012). 

The reduced ELISPOT responses could thus only be  attributable to variation in host response, 

especially as not all the Maf-infected individuals exhibited such reduced responses (de Jong et 

al., 2006). 

In reality, until we can discover antigens that can distinguish between Maf and Mtb in latently 

infected individuals, it will be difficult to fully characterize differences in the immune response 

to Maf and Mtb in LTBI.  In the de Jong et al., 2006 study,  latently infected individuals were 

characterized as Mtb or Maf- infected only on the basis that those individuals were household 
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contacts of  active TB patients infected with Mtb or Maf respectively. While we can distinguish 

between Maf and Mtb active TB patients through isolating and identifying the infecting strain, 

we are yet to discover the tools for identifying infecting strain in latently infected TB patients. 

So far only one study (de Jong et  al., 2010) has attempted this by using TbD1  which is present 

in Maf but absent in Mtb, but the immunogenicity was low and also it could not discriminate  

between Maf and Mtb infected patients. Maf is an important cause of TB in West Africa and 

further studies to discover other antigens Unique to Maf and even to MAF1 and MAF2 are 

needed to properly characterize the immune response associated with these infections. Studies 

involving a larger cohort of Mtb and Maf infected patients to Mtb antigens are needed to fully 

explore the differences, if any, in the immune response to these antigens as it will have 

implications for utility for Mtb-based diagnostics, vaccines and biomarkers in Maf-infected 

individuals.  
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CHAPTER FIVE 

Comparison of immune profile of TB patients (after treatment) with LTBI and non-infected 

contacts (Baseline measurement) 

5.1 Background 

Only 10% of people infected with TB will progress to active disease; the vast majority will 

remain latently infected for life because they are capable of mounting an adequate immune 

response. LTBI (latent TB infection) is thought to be associated with a dormant/non-replicating 

state of low metabolic activity of the pathogen controlled by the dormancy survival regulon 

(DosR). Antigens predominantly expressed by dormant M. tuberculosis during LTBI are 

promising candidate immune markers of protection (Leyton et al., 2006) 

The requirements for a protective immune response are yet to be fully elucidated, but include 

changes in the host immune system together with changes in the virulence and pathogenesis of 

the Mycobacterium (Young et al., 2010). It is widely known that IFN-γ producing CD4+ T cells 

provide the major effector response to TB, but while IFN-γ is required for protection against 

disease progression in TB, it is not sufficient on its own. TNFα as well as polyfunctional T cells 

have also been recognized as playing protective roles in tuberculosis infection (Stenger, 2005; 

however, other studies have reported varying results depending on the cytokines of interest, 

the antigenic stimuli, the age of the subjects and their genetic background (Scriba et al., 2008; 

Mueller et al., 2008). For a particular immune profile to be associated with TB disease, 

abrogation or reversal needs to be shown following standard treatment regimes for TB. 

Effective treatment of active TB patients with anti-TB drugs have been shown to improve 

cellular responses (antigen-induced proliferation and IFN-γ secretion) of PBMC to various 

complex mycobacterial antigens and some immunodominant single antigens, e.g. ESAT-6, 16-

kDa and 38-kDa proteins (Wilkinson et al., 1998; Dieli et al., 1999; Ulrichs et al., 2000). 

However, it is not known if the improvement in cellular responses is limited to these proteins or 
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is a generalized improvement of cellular responses to a large number of antigenic proteins of 

Mtb. Furthermore, there is conflicting information on the nature of the immune response after 

anti-TB treatment in comparison with latently infected and uninfected contacts. This 

information is critical to understanding immune protection in tuberculosis infection and will 

help identify immune correlates of TB cure. 

For a particular immune profile to be associated with TB disease, abrogation or reversal needs 

to be shown following standard treatment regimes for TB (Young et al., 2010). As such, we  

compared the immune cell profiles of TB cases after treatment to that seen in latently infected  

(QFT+) and healthy (QFT-) household contacts (HHC) following stimulation with Mtb antigens. 

 

 5.2 Methodology 

5.2.1 Recruitment of household contacts of TB index cases 

All household contacts of TB index cases aged 6 months or over were invited to the clinic where 

the index cases were recruited and introduced to the study. Those who agreed to participate 

signed an informed consent form and were interviewed for demographic information. For 

minors, parents/guardians signed and responded on  their behalf.  

5.2.1 QuantiFERON® TB Gold -in- Tube Test (QFT-TB) 

All participants (TB contacts) were screened for tuberculosis infection using the QuantiFERON® 

TB Gold -In- Tube (QFT) assay (Cellestis Ltd, Carnegie, Victoria, Australia). Briefly Iml of blood 

was drawn into each of two tubes; one tube pre-coated with synthetic peptide antigens (ESAT-

6, CFP-10, TB7.7) and a second tube without antigens (negative control sample/NIL tube). The 

tubes were swirled several times to allow the blood to come into contact with the inner walls of 

the tubes in order to ensure complete mixing of the blood and the antigens along the wall. 

Samples were transported to the lab for analysis the for incubation within a few hours.  

The tubes were incubated upright at 370C overnight and then centrifuged at 2500 rpm for 10 

minutes. The supernatant was harvested and stored at -200C until ready for the IFN-γ Enzyme-
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Linked Immunosorbent Assay (ELISA). IFN-γ ELISA was done according to manufactures' 

instructions using IFN-γ standard for quantification. The quality of all laboratory analysis and 

calculation of the results was controlled by using the accompanying QFT analysis software 

(v2.62).  

A sample was considered positive if it exceeded the standard cut-off value at 0.35 IU IFN-γ/ ml. 

All positive results were confirmed by re-analysis of the same plasma sample before reporting it 

as positive. Samples with irreproducible positive results or indeterminate results after repeat 

run were not included in subsequent in vitro experiments.  

5.2.3 PBMC of TB contacts 

In addition to the 2 ml of blood used for the QFT testing, blood samples were also collected for 

in vitro stimulation assays. Depending on the age of participants, 5 to 30 ml of blood was drawn 

from each participant. PBMC separation and cryopreservation were carried out as previously 

described in 3.2.1. 

5.2.4 In vitro stimulation assays 

All procedures previously described for TB patients (3.2.2 to 3.2.5) were used for the TB 

contacts as well. Briefly cryopreserved cells were thawed, stimulated with same recombinant 

proteins as that of the TB cases, supernatant was harvested and stimulated cells were stained 

for intracellular IFN-γ using fluorescently labelled monoclonal antibodies. Cells were acquired 

on a FACS Calibur and analyzed using Flowjo® software v7.6.5 (Treestar Inc, USA). For a 

comparative analysis of the results of the in vitro stimulation assays, individuals who lived in 

the same house as the TB index case, but had a negative QFT result were classified as Internal 

controls (uninfected) while individuals with positive QFT result were classified as latently 

infected (LTBI) contacts.  
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5.2.5 Data analysis 

Data were entered into Excel and transported to IBM SPSS version 20 for statistical analysis. 

Different uni- and multivariate unconditional logistic regression analyses were performed in 

order to identify predictors for positive QFT. The outcome variable was QFT result (Positive or 

negative), Age (in 3 categories), sex, relation (spouse, parent, child, sibling) were included as 

independent variables in a preliminary multivariable regression analysis. The independent 

categorical variables were expressed as dummy variables. We subtracted one variable at a time 

using the likelihood ratio test as an elimination criterion (p < 0.05). The same approach was 

used to test the significance of the two-way interaction terms between the independent 

variables in the final model. The odds ratios calculated from the estimated coefficients in the 

final models were used to measure the strength of association. 

Prism® software version 4.0 (GraphPad, Inc.) was used in the final analysis to compare cytokine 

responses in TB patients after treatment with LTBI and non-infected contacts. The Mann-

Whitney U test was used for comparing two groups whilst the Wilcoxon matched pairs test was 

used for comparing paired groups. P values of <0.05 were considered significant. 

5.3 Results 

5.3.1 Enrollment and participant characteristics 

A total of 112 household contacts of sputum smear positive TB patients were enrolled in the 

study, out of which 8 (7.14%) were excluded from the subsequent in vitro assays due to either 

their unavailability to provide blood for the QFT test or indeterminate QFT result after a repeat 

run and subsequent unavailability to provide a second sample for QFT testing. 

There were more females (56.25%) than males (43.75%) Table 5. 1. Median age was 26 years 

(range: 2-86 years) with 9 unknown ages. Of the 103 whose ages were known, 10 (9.7%) were 

children under five; 25 (24.3%) were above 5 years, but under 15 years (children) while the 

remaining 68 (66%) were 15 years or older (adults). Participants were related to TB index cases 

as; Parents (14), Siblings (27), Spouse (25), Child (30) other relatives (6), Unknown (10). Hence 

TB contacts recruited were mostly children of TB index cases, followed by siblings, spouses and 
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parents.  Recruitment was passive in the sense that the TB index cases were encouraged to 

bring their contacts to the clinic for screening, hence it could not be determined whether 

characteristics of those who declined to participate in the study were different from those who 

participated as the former were unknown to the study. 

 

Table 5.1: Characteristics of TB contacts enrolled in the study 

 No. of Participants (%) 

Total 112 

  

Sex 
Male 49 (43.75) 

Female 63 (56.25) 

  

Relating to Index case 

Parent (Mother/Father) 25 (22.32) 

Child  (Daughter/Son) 30 (26.50) 

Siblings (Sister/Brother) 27 (24.79) 

Others  (other relations 6 (5.36) 
Unknown 10 (8.93) 

 

5.3.2 Quantiferon® TB Gold-In-Tube Test results 

Of the 107 TB contacts screened for tuberculosis infection with the QFT, 68  (63.6%) were 

positive, 36 (33.6%) were negative and 3 (2.8%) had indeterminate results even after repeat 

run. More  males (63.3%) tested positive compared to females (58.7%). Table 5.2. 

Positive QFT results were more often detected among parents of an index case (78.6%) 

compared to spouses (60%), likewise positive QFT results in children (56.7%) of index cases 

were slightly more than within siblings (51.9%). Figure 5.1  

Based on the 3 age categories chosen for analysis; 70%  (7/10) of the "under fives" were QFT-

positive compared to 48% (12/25) for the ''under 15 years'' and 67% (44/68) of adults. 
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Table 5.2: QFT results of  household contacts of TB patients  enrolled into the study 

 No. (%) No. (%) No. (%) 

Sex Male  Female Total 

QFT Positive 31 (63.3) 37 (54.4) 68 (63.6) 

QFT Negative 16 (32.7) 20 (29.4) 36 (33.6) 

Indeterminate 2 (4.0) 1 (1.6) 3 (2.8) 

Total 49 38 107 

 

 

 

 

Figure 5.1: Distribution of QFT results according to relation of Household contact to TB index case 
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Figure 5.2: Prevalence of tuberculosis infection (QFT-Positive) within the age categories 

  

5.3.3 Predictors of positive QFT result 

Predictors of positive QFT could not be determined from the logistic regression (multivariate 

regression analysis) with the QFT result as an outcome or dependent variable. All the covariates 

were not significant at alpha =0. 05. A Pearson chi-square test for association found no 

association between gender (P value =0.911>>0.05),  age group (P value=0.645>>0.05), or 

relationship to index case (P value=0. 372>>0.05) to  QFT result. However, it could be inferred 

from the P values that ''relationship to index case'', followed by ''age group'' were more likely 

to be associated with type of QFT result than ''gender''. On the basis of this analysis, it was 

assumed that all the participants had equal chances of being QFT positive or negative and thus 

PBMC of any of the contacts could be included in the in-vitro assays without further 

randomization. 
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5.3.4 Frequency of IFN-γ+ T cell responses to ESAT-6/CFP-10   and latency associated 

antigens in QFT positive and negative TB contacts. 

The Frequency of IFN-γ+ T cell responses to ESAT-6/CFP-10 fusion protein and latency 

associated Rv1733, Rv2029, Rv2628 as well as resuscitation associated Rv1115 and DosR which 

is an antigen pool comprised of the 3 latency associated proteins (Rv1733, Rv2029, Rv2628) 

were determined in QFT-positive (n=19) and QFT-negative (n=23) household contacts of TB 

patients previously described. Frequency of IFN-γ+ CD4+ and CD8+ T cells were determined for 

each antigen after long term stimulation (6 days). Increased T cell-derived IFN-γ responses after 

prolonged in vitro incubation have been previously described (Leyton et al., 2006; Leyton et al., 

2007; Cebovin et al., 2007).   

Table 5.3: Positive T cell responses against Mtb- stage specific antigens in QFT positive and 

QFT negative household contacts of sputum smear positive TB patients.  

 QFT POSITIVE (LTBI) QFT NEGATIVE (CONTROL) 

 Positive T cell responses  [1n/2N (%)] 

Stimulation %IFN-γ+CD4+ %IFN-γ+CD8+ %IFN-γ+CD4+ %IFN-γ+CD8+ 

SEB 18/19 (94.7) 17/19 (89.5) 22/23 (95.7) 19/23 (82.6) 

ESAT-6/CFP-10 18/18 (100) 4/17 (82.3) 3/22 (13.6) 2/22 (9.1) 

Rv1733 16/18 (88.9) 6/17 (35.3) 8/20 (40.0) 9/20 (45.0) 

Rv2029 12/18 (66.7) 15/17 (88.2) 4/17 (23.5) 2/14 (14.3) 

Rv2628 9/18 (83.3) 16/17 (94.1) 2/19 (10.53) 12/19 (63.2) 

Rv1115 15/18 (83.3) 16/17 (94.1) 2/19 (10.53) 12/19 (63.2) 

DosR 7/10 ( 70.0) 7/10 (70.0) 9/22 (40.9) 12/22 (54.5) 

1Number of participants with more than or 0.2% IFN-γ producing CD4+/C8+ T cells 

2Number of cultures assessed (Uncontaminated and SEB positive) 
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All the QFT+ samples gave positive IFN-γ responses to ESAT-6/CFP-10 with 100% of CD4+ T cells  

and a lower frequency of 82.3% in CD8+ T cells. (Table 5.3).  Surprisingly, IFN-γ positive 

responses to ESAT-6/CFP-10 were detected in 3 (CD4+) and 2 (CD8+) QFT negative samples, 

indicating a past exposure that could not be detected in the short term stimulation used in the 

IGRA. Rv1733 induced expression of IFN-γ in CD4+ T cells was higher than the other antigens, 

making Rv1733, the most recognized of the 3 latency associated proteins with respect to T cell 

response. There were positive IFN-γ responses in the QFT negative group to all other DosR 

antigens as well. Resuscitation associated protein, Rv1115 induced IFN-γ positive responses in 

>80% of QFT positive subjects and 63% of QFT negative subjects while, DosR, an antigen 

consisting of a mixture of the three DosR proteins induced responses in 70% and 54.5% of CD4+ 

T cells in QFT positive and QFT negative subjects respectively.  The data further revealed that 

some of the latency associated antigens might be  strong inducers of CD8+ responses, as with 

the exception of Rv1733, the CD8 T cell response in Rv2029, Rv2628 and  Rv1115 were stronger 

compared to CD4+ responses. 

 

5.3.5  Magnitude of T cell responses against Mtb- specific antigens in QFT+ and QFT- 

household contacts of TB patients. 

The magnitude of the T cell responses to  Mtb antigens in the two groups  was  determined by 

comparing  the median T cell expression of  IFN-γ in response to Mtb- specific antigens in QFT 

positive (A and B) and QFT negative subjects (C and D). There was a  significantly higher 

frequency of IFN-γ+ expression to Rv1733  compared to Rv2628 (1.38 vs 0.14 %, P<0.05) on 

CD4+ T cells and to Rv2029 (0.0 vs 1.2 %, P<005) in CD8+ T cells.  
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Figure 5.3: Magnitude of T cell response against Mtb- specific antigens in QFT + and QFT - household contacts of 

TB patients. 

 T cell responses were measured by intracellular flow cytometry after 6 days of in vitro stimulation in 
PBMC from QFT + (n=19) and QFT- subjects (n=22). Scatter plots indicate mean and standard deviation. 
Background values of non-stimulated controls were subtracted and negative values were converted to 
zero for plotting.   Percentages of IFN-γ expressing CD4+/CD8+ T cells in QFT + (A and B) and QFT - (C 
and D)  are indicated on the y-axis for stimulation with SEB,  ESAT-6/CFP-10 (EC)  fusion protein, latency 
associated Rv1733, Rv2029, Rv2628, resuscitation associated Rv1115 and a pool of the three DosR  
proteins (DosR) from M. tuberculosis (x- axes). Data were analyzed using a Kruskal-Wallis ANOVA 
followed by Dunn’s post-test comparison and p-values indicated.  

 

5.3.5 Comparison of the cytokine expression profile of the three groups 

To determine whether at the end of treatment, T cell response resembles that of latently 

infected individuals or non infected controls, the frequency ESAT-6/CFP-10 and Rv1733 specific 

IFN-γ+ CD4 and CD8  T cells was compared between, QFT+ (n=19), QFT- (n=23), TB cases at 

baseline (n=21) to TB cases after treatment completion (n=21).  
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The median frequency of ESAT-6/CFP-10- specific IFN-γ+ CD4 T cells was significantly higher in 

TB patients ''post-treatment'' compared to ''pre treatment'' (3.45 vs 1.14 %, P<0.01), however, 

between QFT positive and QFT negative individuals, there was no difference in ESAT-6/CFP-10-  

specific IFN-γ+ CD4+ T cells  (0.65 vs -0.015 %, P>0.05). This highlights the difference in 

incubation times between the two assays as the QFT uses a shorter incubation time (16-24 hrs) 

compared to the 6 days in vitro stimulation, which is known to induce long-lived central 

memory T cells,  less likely to release IFN-γ during the short period of exposure to antigens in 

the QFT assay Figure 5.4. The median frequency of ESAT-6/CFP-10- specific IFN-γ+ CD4 T cells  

at the end of TB treatment was significantly higher compared to QFT positive (3.45 vs 0.65 %, 

P<0.01) and QFT negative individuals (3.45 vs 0.015 %, P<0.001). Also the frequency of ESAT-

6/CFP-10- specific IFN-γ+ CD4 T cells in TB cases pre-treatment was higher than in QFT negative 

individuals (1.140 vrs -0.015 %, P<0.05).  

The frequency of ESAT-6/CFP-10- specific IFN-γ+ CD8 T cells was equally higher in TB cases pre 

treatment compared to QFT negative controls (1.850 vs 0.260 %, P<0.001) and significantly 

lower in TB cases post treatment (1.850 vs 0.227 %, P<0.001). Also the median frequency of 

ESAT-6/CFP-10- specific IFN-γ+ CD8 T cells in QFT negative individuals was insignificantly  lower 

than  that in QFT positive individuals (0.26 vs 0.81 %). These results indicate that with respect to 

ESAT-6/CFP-10, the cellular response (T cell) profile of TB cases after treatment is not the same 

as that in latently infected individuals (LTBI). We  speculate that successful TB treatment is 

associated with accumulation of central memory  CD 4 T cells, which can differentiate to 

generate effector responses that are much greater than what pertains in latently infected 

individuals while the reverse is true for CD8 T cells which decline after treatment to frequencies 

lower than that seen in LTBI. 

After in vitro re-stimulation with the latency associated protein Rv1733, the frequency of IFN-γ+ 

CD4 T cells was higher in QFT positive compared to QFT negative individuals (1.350 vs 0.030 %, 

P<0.01). There was also a significant difference between the median frequency of Rv1733  

specific IFN-γ+  CD4+ T cells in QFT positive individuals compared and TB cases after treatment 

(1.350 vs 0.16 %, P <0.01). The CD8+ IFN-γ+ expression levels in response to Rv1733  was 
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significantly higher in TB cases, pre-treatment compared to QFT negative individuals (1.965 vs 

0.045 %,  P<0.01) and TB cases after treatment (1.964 vs 0.06 %, P<0.01). 
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Figure 5. 4 Comparison of frequency of  ESAT-6/CFP-10  and Rv1733 specific IFN-γ+  CD4  and CD8 T 

cells  in  TB  cases post treatment to QFT+, QFT-, and TB cases pre- treatment 

Bar indicates median frequency of antigen- specific  IFN-γ positive CD4 or CD8+ T cells in QFT- (n=23), 
QFT+ (n=19), TB cases pre treatment (n=21) and TB cases post treatment in response to  ESAT-6/CFP-10 
(A and B) and latency associated Rv1733 (C and D). Background values of non-stimulated controls were 
subtracted for all data points with a positive SEB response. Data were analyzed using a Kruskal-Wallis 
ANOVA followed by Dunn’s post-test comparison and p-values indicated as follows: P<0.05 (*), P<0.01 
(**), P<0.001 (***) for ONLY comparisons with TB cases post-treatment. For all other comparisons, 

significant P values are indicated. 
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5.4 Discussion 

During latent tuberculosis infection (LTBI), the tubercle bacilli contained within granulomas  

(Ulrichs et al, 2004) are thought to be subject to nutrient and oxygen deprivation (Tufariella et 

al., 2003, Wayne et al, 1998). As part of the Mtb-adaptive response to hypoxia, expression of 

the DosR regulon is observed. The functions of most DosR-regulon-encoded proteins (DosR or 

latency associated proteins) are still mostly unknown (Yaun et al., Park et al., 2003). However, it 

has been suggested that long lasting memory response to this subset of antigens will be useful 

in vaccine design. 

The results indicate that there is a higher frequency of specific T-cells to both secreted RD1 

associated ESAT-6/CFP-10 and latency-associated (Rv1733, Rv2029, Rv1628, Rv1115 and DosR) 

antigens in QFT positive household contacts of TB cases and very little to no response in QFT 

negative household contacts.   

Various studies have reported that there is a higher IFN-γ response to ESAT-6/CFP-10 by 

latently-infected Individuals compared to active TB patients, however, in a comparison of TB 

cases (pre-treatment) and QFT positive  (LTBI) individuals in this study (Figure 5.4 A and B), 

there was a higher median frequency of IFNγ+ CD4 and CD8 T cells in TB cases pre-treatment 

compared to LTBI but the difference was not statistically significant. The results in the literature 

regarding IFN-γ responses to the classical antigens in active-TB patients are inconsistent (Kassa 

et al., 2012). Differences in host genetic makeup (Jabado and Philippe, 2005), in Mtb strains 

(Tsenova et al., 2007), in study methodologies (Day et al., 2011), and in the extent of TB disease 

progression, with diminished IFN-γ production during advanced disease (Widek et al., 2008) 

have all been implicated in these inconsistencies.  Most studies that reported lower IFN-γ 

response to ESAT-6/CFP-10 in active TB patients compared to LTBI used short term assays 

which will detect effector memory rather than central memory T cell responses (Sallustro et al., 

1999).   
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Additionally, long-term assays have also been shown to enhance detection of LTBI and to 

distinguish between recently acquired and remote infections (Buteraa et al., 2009; Golleti et al., 

2009).  In this study, we used long- term stimulation (6 days) hence we can speculate that the 

QFT positive individuals were harbouring recent infections while most of the TB cases probably 

had previous exposures leading eventually to TB disease. This is interesting as it indicates that 

most people succumb to infection after numerous encounters leading to an enhanced central 

memory response. It could also indicate that the TB contacts had been actually recently 

exposed as a result of close contact  with an active TB patient.  In a West African cohort of TB 

patients and controls, using long term stimulation, good discrimination was shown between 

infection and disease following TB10.4 (a virulent part of Mtb genome) stimulation indicating 

that a longer-term stimulation is optimal for detection of active disease (Sutherland et al., 

2010).  

 

A number of studies have also reported higher frequencies of IFN-γ+ responses to Rv1733 

compared to other tested DosR proteins (Leyten et al., 2006; Schuck et al., 2009; Commanduer 

et al., 2011 Kaasa et al., 2012) and this was consistent with our results which showed a higher 

frequency of IFN-γ positive T cell responses to Rv1733 compared to Rv2029 and Rv2628 

(P<0.05, Figure 5.3). In the first attempt at determining the immunogenecity of the entire set of 

48 antigens spanning the Dos R regulon, Black et al., 2009 reported that Rv1733 was among the 

top 3 most recognized antigens in Guinea, Gambia and South Africa population of latently 

infected individuals. While the recognition of the latency-associated antigens by cells from 

active TB patients could reflect the fact that most TB patients undergo a latent infection prior to 

TB disease (Schuck et al., 2009), it might also indicate the involvement of latency antigens in the 

pathogenesis of TB. It could also be that active TB actually coexists with latency hence an 

individual could harbour actively replicating bacteria and succumb to TB, but also harbour 

latent foci that will lead to a recognition of latency related antigens. To determine whether 

these antigens are differently recognized by cells from LTBI populations than active TB patients, 

we compared the response to Rv1733 in TB cases pre-treatment and QFT positive (LTBI) 
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individuals, we found no significant differences, although  it has been reported that in  

BALB/mice persistently infected with Mtb there is preferential recognition of latency antigens 

than in acutely infected mice (Roupie et al., 2007). Not all lesions in the human lung are active 

during disease  so consequently Mtb infection may be viewed as a continuous spectrum 

extending from sterilizing immunity to full blown TB (Barry et al., 2009; Lin et al., 2009), making 

the response to these "'Stage specific antigens "'  not unusual.  

Interestingly the resuscitation associated protein Rv1115 and the DosR pool induced some 

CD8+ T cell response in QFT negative subjects. Those individuals, even though had no 

detectable effector memory cells for TB, may more likely have been previously exposed to TB 

infection (past infection) which was not detectable using the QFT because the QFT detects only 

effector memory response (Lalvani et al., 2004) due to its short incubation period. A QFT 

negative result may rule out a recent infection or exposure, but does not necessarily  imply that 

the individual has never been  exposed to TB infection. Comparing the frequency of IFN-γ+ 

CD4+ and CD8+ T cells post treatment to QFT+, QFT- and TB patients pre-treatment revealed 

that there is a higher frequency of IFN-γ+ CD4+ T cells after treatment compared to LTBI 

subjects and a lower frequency of  IFN-γ+ CD8 T cells. This offers further proof that the high 

frequency of CD8 T cells is associated with  active TB while low frequency CD8 T cells  is 

associated with cured TB as was observed in the longitudinal study. CD4 T cells have taken 

center stage when in comes to protective response in TB, but this study suggests that CD8 T 

cells should not be overlooked and that they in fact may be better indicators of the state and 

stage of TB infection.  It has been suggested that  IFN-γ assays targeted at CD8+  T cells may be 

able to distinguish between latently infected and actively infected patients (Day et al., 2011), 

and our data supports this strategy. It would be a great improvement on the current IGRA, s 

which cannot make that distinction between latent infection and active infection and which are 

also thought in its present form to measure IFN-γ responses in the periphery dominated by 

CD4+ T cells (McCoy et al., 1994.) 
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Summary 

Tuberculosis (TB) continues to be a major global health problem ranking as the second leading 

cause of death from an infectious disease worldwide after HIV, the human immunodeficiency 

virus (WHO, 2012). With an estimated two billion people living with latent M. tuberculosis 

infection (Corbett et al., 2003), the global control of tuberculosis can only be achieved through 

the development of effective vaccines, improved diagnostics, and novel and shortened therapy 

regimens and biomarkers (Abu Raddad et al., 2009). 

Month two sputum culture conversion remains the only biomarker accepted by the IUTLD for 

monitoring TB treatment response (Mitchison, 1993). Use of classical microbiological methods 

like  "sputum culture status'' as a biomarker for TB treatment response and cure has limited 

utility in children and extra-pulmonary cases, where appropriate quality sputum samples are 

difficult to obtain. Immunodiagnostic techniques could be valuable in such cases (Chegou et al., 

2008; Munk et al., 2001) especially if they can be developed into rapid, point-of care tests. Also, 

if validated as a surrogate marker it will be useful in clinical trials (Walzl et al., 2008). 

Identification of immunological parameters in blood that correlates with culture sterilization 

may also provide important information about host factors most relevant to anti-TB therapy. 

Understanding the interplay between the host immune system and Mtb may provide a 

platform for the identification of suitable biomarkers, through both unbiased and targeted 

hypotheses-driven approaches (Walzl et al., 2011).  

Urgently needed biomarkers include those that can detect early response to treatment. Such 

markers should be present at baseline (before treatment) and show measurable change that 

correlates with improved bacteriological or immunological outcomes. Due to the important role 

of IFN-γ, many studies have used it as a marker for treatment response, but the predictive 

ability has been low (Chee et al., 2010). It has been suggested that multiple cytokines will a give 

better predictive value (Walzl et al., 2008). We therefore assessed in addition to IFN-γ, five 

other pro- and anti inflammatory host factors for this criteria using the Luminax platform. 
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Freshly isolated PBMC of the first 20 subjects recruited into the study were stimulated for 6 

days with ESAT-6/CFP-10 fusion protein and three Dormancy survival Regulon (DosR) proteins 

at baseline and  2 weeks of treatment. Week two was chosen because it is believed that most 

of the actively replicating bacteria are eliminated during  first two weeks of treatment, leaving 

only the latent foci (NIHCE, 2006; Rouillon et al., 1976). Hence, during this period, improvement 

in immunological response would be expected to coincide with the decreasing bacteria burden. 

In response to all antigenic stimuli, however, we observed a cytokine profile which consisted of 

high levels of IFN-γ, followed by Granzyme B, TNF-α and IL-17 with  lower levels of sIL2R and IL-

10. This profile was in contrast to expectations that ESAT-6/CFP-10  being a virulence factor 

(Brodin et al., 2006; Guinn et al., 2004; Dwivedi et al., 2012) would induce secretion of  both 

pro- and anti-inflammatory cytokines whiles Rv1733  only induces pro- inflammatory responses 

and relatively minor anti-inflammatory response. This observed profile suggests that cytokine 

responses are dependent on the stage of disease in the host (in this case active disease), not 

antigen type (associated with virulence or dormancy). At week two of treatment, we observed 

a trend of increased  cytokine levels  for IFN-γ, Granzyme B, TNF-α and IL-17 but only the 

increase in Rv1733-induced Granzyme B (P=0.013) was significant.   Although cytokine quantity 

does not equate function,  the high levels of Granzyme B warrants further studies to determine 

its utility as part of a multi cytokine marker signature for treatment response.   Improvement in 

cellular response of TB patients was seen after two weeks of effective chemotherapy and was 

characterised by  increased  cytokine response to Mtb-specific antigens. However, due to the 

wide inter-individual variation  observed, a wider pool of cytokines and Mtb- specific antigens 

would have to be investigated to discover the most effective cytokine signatures for monitoring 

TB treatment response. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

We also investigated the functional differences in T cell response during treatment by 

characterizing IFN-γ+ CD4 and CD8 specific responses. Monitoring treatment response using 

frequency of IFN-γ sensitized cells is not new, but many of these IGRA based studies have been 

unsuccessful due to its low predictive ability (Chee et al., 2010). IGRA mainly detects effector 
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memory response, hence information on dynamics of central memory response which require 

long term incubation (Leyton et al., 2007; Sallutro et al., 1999)  is lacking. In the initial attempt 

at characterizing T cell response, the  PBMCs (from the first 20 patients) remaining after 

harvesting the supernatant from the 6 day cultures for the Luminex assay,  were used  in the 

intracellular cytokine assay  for IFN-γ after overnight incubation with the protein transport 

inhibitor Brefeldin A (BFA).  Similar to other studies (Kassa et al., 2012; Ravn et al., 1999; Black 

et al., 2009)   frequency of ESAT-6/CFP-10  specific responses were high and in agreement with 

(Kassa et al., 2012; Black et al., 2009)  among the DosR proteins, frequency of IFN-γ+ T cell 

responses were highest for Rv1733. The CD8+ T cell response to Mtb is normally of a lower 

magnitude than the CD4+ T cell response (Bruns et al., 2009; Stenger et al., 1998), however, we 

observed lower frequency of CD4  T cells at baseline and a compensatory increase in CD8, but 

by week two, the frequency of CD8+ T cells had declined (P=0. 0024)and that of CD4 cells had 

increased significantly (P=0.0008). Having established  that memory  T cell response can be 

detected upon long term stimulation, we proceeded to perform a longitudinal study using 

cyropreserved cells to determine the memory  response  to stage-specific antigens, ESAT-

6/CFP-10  (associated with actively metabolizing bacteria) and Rv1733 (associated with latent 

bacteria)  at four time points; before, during and upon completion of TB therapy (month 6). 

We selected  cryopreserved PBMC samples of 38 patients (out of the 104 recruited for the 

entire study) with all four time points  available. Samples were thawed, rested overnight, 

stimulated  for 6 days with ESAT-6/CFP-10 and Rv1733 and stained for intracellular production 

of IFN-y. However the final analysis included data from 21 out of the 38.  Similar to what was 

observed using fresh cells, the frequencies of ESAT-6/CFP-10 -specific IFN-γ+ CD4 increased 

from baseline to week 2 while that of  CD8  T cells  declined. The increase in frequency of IFN-γ+ 

CD4  T cells continued through to month two and month 6, when treatment completed while in 

CD8  T cells, there was a further decline in month 2 untill treatment completion. In response to 

Rv1733, however, they were no significant changes.  

Lastly, we compared the immune profile of treated TB patients with their latently infected and  

uninfected household contacts. In the treated patients, the frequency of ESAT-6/CFP-10-specific 
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IFN-γ+ CD4 T cells were significantly increased in comparison to pretreatment levels (P<0.01) as 

well as levels in QFT+ (P<0.01) and QFT- (P<0.001) household contacts. Levels in Rv1733 were 

not significant. 

In Conclusion, our data support the concept that studying the immunological profile of TB 

patients to Mtb-stage- specific antigens in the context of multiple cytokines and specific T cell 

subset responses will generate information that will be useful in biomarker design and 

discovery. We found that successful anti TB therapy is associated with improved  ESAT-6/CFP-

10 specific- IFN-γ+ CD4 T cell memory response and decreased ESAT-6/CFP-10- specific IFN-γ+ 

CD 8 T cell response. To use this CD4/CD8 T cell profile as a tool to monitor response to 

treatment, there is the need to quantify what levels of this response are actually associated 

with complete cure and even if complete cure is achieved, how long lasting this T cell memory 

response will be. To achieve this, future studies would have to follow up a cohort of successfully 

treated TB patients until up to two years to determine durability of this profile and its potential 

association  with relapse, reinfection or relapse-free cure. 
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