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I

Zusammenfassung

Die vorliegende Dissertation behandelt das Verhalten von Eigenfuntionskorrelationen zweier
Schrödingeroperatoren in großen endlichen Volumina. Wir beginnen mit zwei Schrödinger-
operatoren H und H ′ auf Rd, deren Differenz klein ist, und betrachten die Restriktion beider
Operatoren auf ein endliches Volumen des Durchmessers L. Wir nennen diese Operatoren
HL und H ′L und interessieren uns für folgende Abschätzungen an eine Korrelationsdeter-
minante ∣∣SNL ∣∣2 :=

∣∣det
(
〈ϕLj , ψLk 〉

)
16j,k6N

∣∣2 . L−γ , (i)

die aus den Skalarprodukten der zu den kleinsten Eigenwerten gehörenden Eigenfunktionen
von HL und H ′L besteht, für große L und N , derart dass N/Ld → ρ > 0. Dies model-
liert das Verhalten des Skalarproduktes der Grundzustände zweier nicht wechselwirkender
Fermigase im thermodynamischen Limes, die sich um eine kleine Störung unterscheiden.
Der Abfall der Determinante (i) ist in der Physikliteratur nach P.W.Anderson [And67b],
Andersons Orthogonalitätskatastrophe, benannt und wird zur Erklärung verschiedener ther-
modynamischer Phänomene in Fermigasen herangezogen. Das Verhalten (i) folgt aus dem
asymptotischen Verhalten von Produkten spektraler Projektionen

tr
{(

1(−∞,E)(HL)1(E,∞)(H
′
L)1(−∞,E)(HL)

)n} ∼ cn,E lnL, (ii)

wobei n ∈ N und E ∈ σ(H) ist. Die Arbeiten [GKM14] und [GKMO14] zeigen die obi-
gen Asymptotiken (i) und (ii) für Paare relativ allgemeiner Schrödingeroperatoren, wobei
die Abschätzungen gegeben sind durch die T -Matrix – genauer durch die Exponenten
γ = 1

π2 ‖T/2‖HS, beziehungsweise γ = 1
π2 ‖arcsin |T/2|‖HS.

In dieser Dissertation zeigen wir die obere Abschätzung (i) mit dem Exponenten
1
π2 ‖T/2‖HS in allgemeineren Situationen als in [GKM14]. Darüber hinaus geben wir die
erste rigorose Herleitung der exakten Asymptotik der Korrelationsdeterminante und zeigen
im dreidimensionalen Raum im Falle der Störung mit einer Punktwechselwirkung, dass∣∣SNL ∣∣2 ∼ Lζ mit ζ := δ2/π2, (iii)

wobei der Exponent gegeben ist durch die s-Wellen-Streuphase. Insbesondere zeigt dies,
dass der Exponent 1

π2 ‖arcsin |T/2|‖HS im Allgemeinen nicht das korrekte Verhalten von

SNL widerspiegelt. Da die gefundenen Exponenten von der T-Matrix abhängen, liegt es
nahe, dass das absolutstetige Spektrum als treibende Kraft hinter dem Abfall (i) steht. So
beweisen wir im Falle von Andersonlokalisierung die gegenteiligen Aussagen zu (i) und (ii)

lim sup
L→∞

tr
{(

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

)n}
<∞ (iv)

für f.a. (E,ω) ∈ σ(Hω)×Ω und ebenso das Nichtverschwinden der Erwartung bei starker
Unordnung

lim inf
N/Ld→ρ>0

E
[∣∣SNL ∣∣] > 0. (v)

Neben den obigen Eigenfunktionsasymptotiken beleuchten wir ebenso spektrale Asymp-
totiken und zeigen im thermodynamischen Limes das Verhalten

lim
N/Ld→ρ>0

∑
16j6N

(
µLj − λLj

)
=

∫
dx ξ(x) + o(1), (vi)

wobei λLj und µLk die Eigenwerte von HL und H ′L sind und ξ die spektrale Shiftfunktion

von H und H ′ bezeichnet. Des Weiteren bestimmen wir für Systeme auf der Halbachse die
Fehlerterme in (vi) genauer und zeigen, dass diese limesabhängig sind.





III

Abstract

This thesis treats asymptotics of eigenfunction correlations of pairs of finite-volume
Schrödinger operators in a large but finite volume. We start with a pair of Schrödinger
operators H and H ′ on the Euclidean space Rd, which differ by a short-range scattering
potential, and restrict these operators to some finite volume of diameter L > 0 and call
these operators HL and H ′L. In the first place, we are concerned with estimates on a cor-
relation determinant in the thermodynamic limit, which consists of scalar products of the
lowest energy eigenfunctions of HL and H ′L. More precisely, we are intersted in bounds∣∣SNL ∣∣2 :=

∣∣ det
(
〈ϕLj , ψLk 〉

)
16j,k6N

∣∣2 . L−γ , (i)

as N/Ld → ρ > 0. This models the behaviour of the scalar product of the ground states
of two non-interacting Fermi gases in the thermodynamic limit, which differ by a static
impurity. This decay of SNL is referred to as Anderson’s orthogonality catastrophe in the
physics literature and goes back to [And67b]. It is used to explain the behaviour of cross-
sections in certain photoexcitation experiments. Expanding the determinant, we see that
this is closely related to the L asymptotics of traces of products of spectral projections

tr
{(

1(−∞,E)(HL)1(E,∞)(H
′
L)1(−∞,E)(HL)

)n} ∼ cn,E lnL, (ii)

where n ∈ N and E ∈ σ(H). [GKM14] and [GKMO14] prove for quite general pairs of
Schrödinger operators, which differ by a positive short-range potential, upper bounds of the
form (i) in terms of the scattering T -matrix with first γ = 1

π2 ‖T/2‖HS and in the second

article with γ = 1
π2 ‖arcsin |T/2|‖HS.

In this thesis, we prove the upper bound (i) with the decay exponent 1
π2 ‖T/2‖HS in

more general situations than considered in [GKM14]. Furthermore, we provide the first
rigorous proof of the exact asymptotics Anderson predicted, i.e. in the 3-dimensional toy
model, where H ′ is a Dirac-δ perturbation of the negative Laplacian. We prove∣∣SNL ∣∣2 ∼ Lζ , where ζ := δ2/π2. (iii)

Here, δ refers to the s-wave scattering phase shift. In particular, this result shows that the
exponent 1

π2 ‖arcsin |T/2|‖HS found in [GKMO14] does not provide the correct asymptotics

of SNL in general. Since the decay exponent is expressed in terms of the T-matrix, the bounds
of (i) and the asymptotics (ii) are reminiscent of the absolutely continuous spectrum. Thus,
in the contrary situation of Anderson localisation we are able to deduce different behaviours
than (i) and (ii), i.e. we prove for a.e. (E,ω) ∈ σ(Hω)× Ω

lim sup
L→∞

tr
{(

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

)n}
<∞ (iv)

and the non-vanishing of the expectation value in the large disorder regime

lim inf
N/Ld→ρ>0

E
[∣∣SNL ∣∣] > 0. (v)

Apart from the behaviour of eigenfunction correlations, we also study the asymptotics
of spectral correlations. We show asymptotics of the form

lim
N/Ld→ρ>0

∑
16j6N

(
µLj − λLj

)
=

∫
dx ξ(x) + o(1) (vi)

in the thermodynamic limit, where λLj and µLk denote the eigenvalues of HL and H ′L and
ξ the infinite-volume spectral shift function. Furthermore, we quantify the error in (vi) for
models on the half-axis and show that higher order error terms depend on the particular
limit chosen.
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CHAPTER 1

Introduction

1. Anderson’s Orthogonality Catastrophe and Spectral Correlations

s one of the most elementary many-body problems one can consider
a Fermi gas exposed to a static impurity. Such an impurity arises, for
example, when a photon excites a core electron in such a way that
this core electron merges into the conduction band, i.e. the Fermi gas,
leaving behind a hole. In turn, this core hole interacts with the Fermi
gas and in a first approximation one can model this with a short-range
scattering potential. It was predicted that the cross-section of such
a photoexcitation experiment admits a power law singularity at the

threshold, which is referred to as a Fermi edge singularity, see [Mah00, Sct. 9.3] and
references cited therein. Even though this behaviour was observed in some materials, it
was noticed in several other metals that this singularity is suppressed and the cross-section
is continuous at the threshold. At this point Anderson found that the scalar product of the
ground-states of two non-interacting Fermi gases which differ by a short-range potential are
orthogonal in the thermodynamic limit [And67a, And67b]. Which is why this orthogonality
of the ground states in the thermodynamic limit is nowadays named Anderson orthogonality
catastrophe (AOC). It was precisely used to explain the at first unexpected phenomenon
of the absorption spectrum and is now a well-understood phenomenon in the physics of
the response of a free Fermi gas to the appearance of a scattering potential. We refer to
[OT90, Mah00] for an extensive overview of the problem and references up to the late
eighties. Nevertheless, up to now the AOC remains to attract attention in physics, e.g.
it was considered in quantum dots or graphene more recently, see [HSBvD05, HUB05,
HK12a, HK12b] and the references therein. Another development was the study of the
problem for pairs of free Fermi gases in a random environment, which was done in [VLG02]
for ensembles of random matrices or in [GBLA02] for the Anderson model. Though this
so-called orthogonality catastrophe is a common topic in solid-state physics, which has
attracted attention up to now in several facets, there was no attempt to give a rigorous proof
of the AOC for a long time. Therefore, the goal of this thesis consists of giving a rigorous
proof of the AOC and show that there is some deep and interesting mathematics behind this
problem. Even in the physics literature it is accepted that in a first approximation it suffices
to consider non-interacting electrons to obtain a suitable model for these photoexcitation
effects. Thus, we start with a pair of one-particle Schrödinger operators

HL = −∆L + V0 and H ′L = −∆L + V0 + V, (1.1)

in some finite box ΛL := [L/2, L/2]d in d-dimensional Euclidean space. V0 denotes some
background potential such that both operators remain well-defined and bounded from below
and V denotes a small perturbation. These operators induce a pair of non-interacting N -
particle Schrödinger operators HL and H ′L in the finite volume ΛL acting on the totally
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4 1. INTRODUCTION

antisymmetric subspace
∧N
j=1 L

2(ΛL) of the N -fold tensor product space. More precisely,
these operators are given by

H
(′)
L :=

N∑
j=1

1⊗ · · · ⊗ 1⊗H(′)
L ⊗ 1⊗ · · · ⊗ 1, (1.2)

where the index j determines the position of H
(′)
L in the N -fold tensor product of operators.

The corresponding ground states are given by the totally antisymmetrised products

ΦN
L :=

1√
N !
ϕL1 ∧ · · · ∧ ϕLN and ΨN

L :=
1√
N !
ψL1 ∧ · · · ∧ ψLN , (1.3)

where typically these ground states ΦN
L and ΨN

L are referred to as Slater determinants.
The corresponding ground-state energies are

EN
L :=

N∑
j=1

λLj and E
′N
L :=

N∑
k=1

µLk . (1.4)

Here, (ϕLj )j∈N and (ψLk )k∈N denote the eigenfunctions corresponding to the ordered eigen-

values (λLj )j∈N and (µLk )k∈N of the one-particle operators HL and H ′L. Now, a short

calculation shows that the scalar product of the two ground states ΦN
L and ΨN

L in the

Hilbert space
∧N
j=1 L

2(ΛL) can be written itself as the correlation determinant

SNL := 〈ΦN
L ,Ψ

N
L 〉∧N

j=1 L
2(ΛL) = det

〈ϕ
L
1 , ψ

L
1 〉L2(ΛL) · · · 〈ϕL1 , ψLN 〉L2(ΛL)
...

...
〈ϕLN , ψL1 〉L2(ΛL) · · · 〈ϕLN , ψLN 〉L2(ΛL)

 , (1.5)

where the subscript of the scalar products illustrates the underlying Hilbert space. In the
following, we call this determinant ground-state overlap, and we are interested in its
asymptotic behaviour as N and L increase. More precisely, we are concerned with the limit
L→∞ and N →∞ such that

N

|ΛL|
→ ρ(E), (1.6)

where ρ(E) denotes the integrated density of states of the operator H at some energy
E, which we refer to as the Fermi energy, and | · | denotes the Lebesgue measure. This
concept is called the thermodynamic limit and ρ(E) is viewed as the particle density of
the considered gas. Thus, we are interested in the asymptotic behaviour of the ground-
state overlap of two non-interacting Fermi gases approaching a particle density ρ(E) > 0
corresponding to the Fermi energy E.

As already mentioned, the first one to study this asymptotics was P.W.Anderson in
[And67a]. He considered a 3-dimensional system with no background potential V0 where
the one-particle Schrödinger operators differ by a Dirac-δ perturbation located at the origin.
In this work he claimed the algebraic decay of the ground-state overlap∣∣SNL ∣∣2 . L− 1

π2
(sin(δ(

√
E)))

2

(1.7)

by deducing logarithmic asymptotics of the form

tr
{

1(−∞,λLN ](HL)1[µLN+1,∞)(H
′
L)1(−∞,λLN ](HL)

}
∼ 1

π2

(
sin
(
δ(
√
E)
))2

lnL, (1.8)

where δ denotes the s-wave scattering phase shift. Here, 1A stands for the indicator function
of a Borel set A ∈ Borel(R). The latter expression is nowadays called Anderson integral
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in the physics literature. Let us briefly explain the connection between (1.7) and (1.8).
Taking the logarithm of the square of the modulus of (1.5) and expanding the logarithm
results in ∣∣SNL ∣∣2 = exp

(
ln trA∗A

)
= exp

(
−
∞∑
n=1

tr {(1−A∗A)n}
n

)
, (1.9)

where A is the matrix occurring on the r.h.s. of (1.5). Ignoring the fact that there may be
eigenvalues of higher multiplicity, a straightforward calculation shows

0 6 (1−A∗A) = 1(−∞,λLN ](HL)1[µLN+1,∞)(H
′
L)1(−∞,λLN ](HL) =: IL,N . (1.10)

Taking only the first term in the expansion (1.9) into account, we see that (1.8) gives an
upper bound on (1.5) which results in (1.7). Generally speaking, the asymptotics of (1.5)
is closely related to the asymptotic behaviour of powers of products of pairs of spectral
projections. Motivated by the above calculation [And67a] argued for general 3-dimensional
systems with a spherically-symmetric perturbation V an upper bound similar to (1.7) with
the decay exponent

γ̃(E) :=
1

π2

∞∑
`=0

(
2`+ 1

)(
sin
(
δ`(
√
E)
))2

, (1.11)

where δ` denotes the scattering phase shift in the `th angular momentum channel.

Later in the same year, Anderson claimed in [And67b] that the exact asymptotics of
the overlap for a Dirac-δ perturbation is governed by the bigger decay exponent

ζ(E) :=
1

π2
δ2(
√
E), (1.12)

where δ refers here to the s-wave scattering phase shift. After some controversies about
the correctness of this result [RS71, Ham71], the above was confirmed in the case of a
point interaction V by theoretical-physics methods [Ham71] and is now accepted in the
physics literature.

Now, we briefly return to the random case. As already mentioned, [GBLA02] consider
the asymptotics of the Anderson integral (1.10) for the Anderson model. They claim a
logarithmic divergence of the Anderson integral in the delocalised regime in d > 3. If
absolutely continuous spectrum exists, this is not surprising. More interestingly, they predict
in the bulk of the spectrum of the two dimensional Anderson model faster divergence of
the Anderson integral than logarithmic whenever the perturbation is not point-like.

Since the decay exponent of the AOC might be quite complicated to compute, [AL94,
Aff97] propose to consider the error in the difference of the ground-state energies instead
and associate its behaviour with the decay exponent in the AOC. They claim the following
asymptotics for one-dimensional systems

ΞNL :=

N∑
k=1

µLk −
N∑
j=1

λLj =

∫ E

−∞
dx ξ(E) +

xFS
L

+ o
( 1

L

)
(1.13)

in the thermodynamic limit and refer to xFS as the finite-size energy, which may be the
same as the decay exponent in the AOC. In the latter case, ξ denotes the spectral shift
function. However, the finite-size energy xFS is equal to ζ(E) only for a particular choice of
the thermodynamic limit. The finite-size energy was deduced for this choice also in [ZA97,
App. A].



6 1. INTRODUCTION

2. Rigorous Results on the Ground-State Overlap

Here, we summarise the previous rigorous mathematical results on the asymptotics of
the ground-state overlap and comment on related results, as well as sketch the new results
deduced in this thesis. After some attempts in [Ott05] the first mathematically rigorous
result concerning the ground-state overlap was given in [KOS13]. For one-dimensional
systems without a background potential the following asymptotics of the Anderson integral
was proved

tr IL,N ∼ γ̃(E) lnL, with γ̃(E) :=
1

π2
‖TE/2‖2HS, (1.14)

where HS denotes the Hilbert-Schmidt norm and TE the transition or just T-matrix for the
pair of infinite-volume operators H and H ′. As explained earlier on, see (1.7) and (1.8),
the above asymptotics leads to the algebraic decay |SNL |2 . L−γ̃(E). Up to a numerical
energy dependent factor, the exponent γ̃(E) is called total scattering cross-section averaged
over all incident directions, see [Yaf00, Sct. 8.5]. It arises naturally when measuring the
strength of the scattering caused by the perturbation V . Apart from the above asymptotics,
[KOS13] also showed a non-optimal lower bound for particular one-dimensional systems.
Later, [GKM14] proved the same upper bound∣∣SNL ∣∣2 . L−γ̃(E) (1.15)

for rather general pairs of Schrödinger operators including a background potential V0 in
arbitrary dimension d ∈ N and γ̃(E) as in (1.14). Restricting ourselves to 3-dimensional
systems with a spherically-symmetric perturbation V0, the exponent γ̃(E) reduces to the
one predicted by Anderson, i.e. in this case we rewrite

γ̃(E) =
1

π2
‖TE/2‖2HS =

1

π2

∞∑
`=0

(2`+ 1)
(
sin
(
δ`(
√
E)
))2

, (1.16)

where δ` denotes the scattering phase shift in the `th angular momentum channel, see
[RS79, Chapt. IX]. Shortly after, [GKMO14] found in the general setting of [GKM14] the
stronger estimate∣∣SNL ∣∣2 . L−γ(E), with γ(E) :=

1

π2
‖arcsin(TE/2)‖2HS. (1.17)

In the case of a 3-dimensional spherically symmetric system this exponent reduces to

γ(E) =
1

π2

∞∑
`=0

(2`+ 1)
(
arcsin

(
sin
(
δ`(
√
E)
)))2

. (1.18)

Unfortunately, the previous results in [KOS13, GKM14, GKMO14] are not universally valid.
They only apply to certain thermodynamic limits. Moreover, none of the above results
provide the exact asymptotics of the ground-state overlap SNL but just upper bounds on
the latter. We state the precise setting and the results of both [GKM14] and [GKMO14]
in Chapter 2, see in particular Theorem 2.2 below. But we will not spell out the proof of
the stronger statement (1.17), instead we refer to the article and the PhD thesis [Küt14].
The main difference in the proof of both results lies in either treating only the Anderson
integral IL,N , see (1.10), or estimating each summand of the series (1.9). In this thesis,
we focus on the weaker upper bound found in [GKM14], i.e. estimate (1.15), and extend
this result in Chapter 2 to arbitrary choices of thermodynamic limits under the additional
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natural eigenvalue spacing condition

∀a < 1 : lim sup
N,L→∞

N/|ΛL|→ρ(E)

(∣∣µLN+1 − λLN
∣∣La) = 0. (1.19)

Moreover, we extend the result to more general perturbations V than considered in
[GKM14], see Theorem 2.6. Apart from the problem of restrictions to special thermody-
namic limits, the more important task is to find the exact asymptotics of the ground-state
overlap. In particular, we want to investigate, whether the upper bound governed by the
decay exponent γ(E) provides a sharp upper bound as conjectured in [GKMO14, Küt14].
In a nutshell, the general answer to this question is no. We arrive at this conclusion by
following a different approach than [GKMO14] and prove a product formula of the ground-
state overlap in terms of the eigenvalues of HL and H ′L, see Chapter 3, Theorem 3.3. This
formula is valid for rank-one perturbations and reads∣∣SNL ∣∣2 =

N∏
j=1

∞∏
k=N+1

∣∣µLk − λLj ∣∣∣∣λLk − µLj ∣∣∣∣λLk − λLj ∣∣∣∣µLk − µLj ∣∣ . (1.20)

At this point it needs to be mentioned that the latter is known in physics literature and
goes back at least to [TO85]. We use this representation to show in Theorem 3.17 the
exact asymptotics of the ground-state overlap∣∣SNL ∣∣2 ∼ L− 1

π2
δ2(
√
E), (1.21)

for the special case of the free negative Laplacian and a Dirac-δ perturbation in three
space dimensions. In the above, δ denotes the s-wave scattering phase shift. We emphasise
that this result is precisely the one Anderson claimed in [And67b]. In comparison, we
remark that in the case of a Dirac-δ perturbation the T -matrix is just the number TE =
1 − exp

(
2iδ(
√
E)
)
. Thus, we compute the modulus |TE/2| = | sin(δ(

√
E))| and in this

case

γ(E) =

{
1
π2 δ

2(
√
E), |δ(

√
E)| 6 π

2
1
π2

(
δ(
√
E)− π

)2
, |δ(

√
E)| > π

2

. (1.22)

Now, whenever |δ(
√
E)| 6 π

2 , we obtain that γ(E) is the decay exponent in the exact

asymptotics of SNL . But already in the case of an attractive Dirac-δ perturbation, we
obtain for k > 0

δ(k) = π − arctan
( k

4π|α|

)
>
π

2
, (1.23)

where α parametrises the strength of the δ-interaction, see Definition 3.11. This implies at
least in this case

γ(E) <
1

π2
δ2(
√
E) (1.24)

and, therefore, γ(E) does not determine the exact asymptotics. In more general settings
where the perturbation is a multiplication operator, we expect that γ(E) does not neces-
sarily govern the exact decay of the correlation determinant, see also Remark 2.5(iii).

Concerning exact asymptotics of eigenfunction-correlation determinants, we men-
tion also [KOS15] who consider perturbations by magnetic fields. They prove for one-
dimensional systems a similar statement to (1.21) for a shifted correlation determinant,
which relies on asymptotics of determinants of Toeplitz matrices. They need an assump-
tion similar to δ 6 π

2 .
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As already pointed out, the proofs of [GKM14] and [GKMO14] both rely on the rep-
resentation (1.9). Given this representation, the proof proceeds in two steps. The first
elaborate step consists in estimating the spectral projections corresponding to the finite-
volume Schrödinger operators by the corresponding spectral projections corresponding to
the infinite-volume Schrödinger operators. The second step deals with these infinite-volume
operators and we deduce for n ∈ N the asymptotics

tr
{(

1(−∞,E−ε)(H)1(E+ε,∞)(H
′)1(−∞,E−ε)(H)

)n} ∼ cn tr
{
|TE/2|2n

}
| ln ε| (1.25)

as ε ↘ 0 for some appropriate constants cn. Surprisingly, these constants cn co-
incide with the coefficients in the series expansion of the function (arcsin(x))2,
which proves (1.17). The latter asymptotics (1.25) of powers of the operators
1(−∞,E−ε)(H)1(E+ε,∞)(H

′)1(−∞,E−ε)(H) was extended in [FP15] to a more compact ex-
pression for continuous functions with sufficient decay at 0.

The above conclusions indicate that our problem is closely related to scattering theoretic
quantities. One can state, as a first summary, that non-trivial scattering results at least
in algebraic decay of the ground-state overlap. Since non-trivial scattering implies the
existence of absolutely continuous spectrum, a natural question is the behaviour of SNL
for other types of spectra. We treat this question in Chapter 5 for a pair of one-particle
Schrödinger operators on the lattice Zd, where the unperturbed operator is the random
Hamiltonian of the Anderson model and V is a rank-one perturbation. The first result
of Chapter 5 is a converse statement to (1.8). In the regime of exponentially localised
fractional moments of the resolvents, we obtain not just sublogarithmic divergence of the
Anderson integral but boundedness, i.e.

lim sup
L→∞

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
<∞ (1.26)

for almost all (E,ω) ∈ σ(Hω)× Ω, see Theorem 5.7. The second result for the Anderson
model concerns the ground-state overlap itself. We prove the non-vanishing of its expec-
tation value, i.e. in the high disorder regime we show

lim inf
N,L→∞

N/Ld→ρ>0

E
[∣∣SNL ∣∣] > 0, (1.27)

see Theorem 5.19. Apparently, the latter results point towards the opposite direction than
the upper bounds found in the models with absolutely continuous spectrum. Although we
are only considering the expectation value, we think this is rather optimal in the sense that
with a positive probability there is a subsequence such that SNL goes to 0. Thus, almost sure
results may not hold. To illustrate this behaviour, we added some numerics in Chapter 6
which are particularly interesting in the random case. In the localised regime, these figures
suggest that the variance of SNL is rather big and SNL itself is either near 0 or near 1. This
reflects the existence or non-existence of an eigenfunction corresponding to an eigenvalue
near the Fermi energy whose localisation center sits near the support of the perturbation.

Apart from the asymptotics of the ground-state overlap for non-interacting fermions,
we consider for completeness also the case of non-interacting Bosons. We show that in
this case the asymptotic behaviour of the overlap depends on the space dimension, see
Theorem 3.30.
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Moreover, in Chapter 4 we treat the difference of the ground-state energies of the two
non-interacting N -particle Hamiltonians. We prove in arbitrary dimension

ΞNL :=

N∑
k=1

µLk −
N∑
j=1

λLj ∼
∫ E

−∞
dx ξ(E) (1.28)

in the thermodynamic limit N/Ld → ρ > 0, where ξ denotes the spectral-shift function
of the pair of operators H and H ′, see Theorem 4.2. This is not surprising because the
difference of the ground-state energies can be expressed in terms of the finite-volume
spectral-shift function, which converges weakly to the infinite-volume analogue, see [HM10]
or [BM12]. In the second part of this chapter, we consider systems on the half-axis. We
provide the exact asymptotics up to the second order of the difference of the ground-state
energies in the thermodynamic limit, i.e. we verify formula (1.13) and compute the finite-
size energy xFS defined in (1.13). More precisely, we show for systems on the half axis
that

ΞNL =

∫ E

−∞
dx ξ(x) +

∫ (NπL )
2

E
dx ξ(x) +

√
Eπ

L

(
ξ(E) + δ2(

√
E)
)

+ o
( 1

L

)
, (1.29)

as N/L → ρ > 0, where δ is again the scattering phase shift. Since the second integral
depends on the particular thermodynamic limit chosen, we don’t think that there is a deep
connection of the finite-size energy and the decay of the ground-state overlap.

In summary, the organisation of this thesis is the following. We recall in Chapter 2 the
results of [GKM14] and [GKMO14] and generalise these results. We proceed in Chapter 3
with a product representation of the ground-state overlap and use this representation to
prove the exact asymptotics of the ground-state overlap. In Chapter 4 we deduce the
asymptotics of the difference of the ground-state energies, and especially focus on the
finite-size correction. We continue in Chapter 5 with bounds on traces of products of
spectral projections and the expectation value of the ground-state overlap in the Anderson
model. Finally, Chapter 6 provides some numerics and an outlook on things that could be
done further. In general, each chapter is self-contained and can be read without further
knowledge of the remaining chapters.

Declaration concerning already published material in this thesis: The results of Chap-
ter 2 are substantial improvements of the findings of [GKM14] and [GKMO14]. A shortened
version of Chapter 3 is already published by the author of this thesis in the paper [Geb15].
Similarly, the result of Chapter 4, Section 2, is part of the preprint [Geb14] by the author.





CHAPTER 2

Upper Bounds for General Schrödinger Operators

In this chapter we begin with presenting the results of [GKM14] and [GKMO14] under
its precise assumptions. Thereafter, we extend the latter results to a broader class of
perturbations and more general choices of the particle number.

1. Model and Results

We consider the pair of one-particle Schrödinger operators

H := −∆ + V0 and H ′ := −∆ + V0 + V (2.1)

on L2(Rd), d ∈ N. Here, −∆ corresponds to the negative Laplacian and both V and V0

correspond to real-valued functions on Rd, where we assume

max{V0, 0} ∈ Kd
loc(Rd), max{−V0, 0} ∈ Kd(Rd),

V ∈ Kd
loc(Rd), V > 0.

(A)

Here, we have written Kd(Rd) and Kd
loc(Rd) for the Kato class and the local Kato class,

respectively [Sim82]. In the following the perturbation V will be specified further depending
on the particular theorem. These operators are self-adjoint and densely defined on the
Hilbert space L2(Rd). Let Λ1 ⊆ Rd be open and bounded with 0 ∈ Λ1. For L > 0 we
denote by ΛL := L ·Λ1 and by −∆L the negative Laplacian on ΛL with Dirichlet boundary
conditions. We define by

HL := −∆L + V0 and H ′L := −∆L + V0 + V (2.2)

the restrictions of H and H ′ to ΛL. Here, V and V0 stand for the canonical restrictions to
the finite volume ΛL. Standard results imply that HL and H ′L are self-adjoint and densely
defined on the Hilbert space L2(ΛL). Moreover, assumption (A) ensures that the finite-
volume one-particle operators HL and H ′L are bounded from below and have purely discrete

spectrum (which follows, e.g., from the fact that the semigroup operators exp
(
− tH(′)

L

)
are trace class [BHL00, Thm. 6.1] for each t > 0). We write

λL1 6 λ
L
2 6 · · · and µL1 6 µ

L
2 6 · · · (2.3)

for their non-decreasing sequences of the eigenvalues, counting multiplicities, and (ϕLj )j∈N
and (ψLk )k∈N for the corresponding sequences of normalised eigenfunctions with an arbitrary
choice of basis vectors in any eigenspace of dimension greater than one.

We are interested in the thermodynamic limit realising a given Fermi energy E ∈ R.
For the moment we choose the particle number N to be

N = NL(E) := #{ j ∈ N : λLj 6 E } ∈ N0. (2.4)

With this choice we set

SL(E) := det
(
〈ϕLj , ψLk 〉

)
j,k=1,...,NL(E)

(2.5)

11
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and we are interested in the asymptotics of SL(E) as L → ∞. If NL(E) = 0, we set
SL(E) := 1. We note that the notation SL(E) is slightly different from the one used in
the introduction and reflects the fact that we use the particular particle number N defined
in (2.4). Throughout this thesis, SL(E) will refer to the ground-state overlap, where the
particle number N ∈ N is given by (2.4).

Remark 2.1. The choice (2.4) of the particle number implies that the particle density
ρ of the two non-interacting fermion systems in the thermodynamic limit is given by the
integrated density of states of the single-particle Schrödinger operator H. The limit

lim
L→∞

NL(E)

Ld|Λ1|
= ρ(E). (2.6)

exist in the case of e.g. periodic V0, V0 = 0 or V0 vanishing at infinity. If the limit
(2.6) does not exist, then there must be more than one accumulation point because
lim supL→∞NL(E)/Ld < ∞ for every E ∈ R due to assumptions (A). But even in
this case it makes still sense to study the asymptotic behaviour of the overlap SL(E) as
L→∞.

With this special choice of the thermodynamic limit the most general results so far are
the following.

Theorem 2.2. Assume conditions (A) and additionally

V ∈ L∞(Rd) and suppV ⊂ Λ1 compact. (2.7)

Let (Ln)n∈N ⊂ R>0 be a sequence of increasing lengths with Ln ↑ ∞. Then, there exists a
subsequence (Lnk)k∈N and a Lebesgue null set N ⊂ R of exceptional Fermi energies such
that for every E ∈ R \ N the ground-state overlap (2.5) obeys

(i) [GKM14, Theorem 2.2]

lim sup
k→∞

ln|SLnk (E)|
lnLnk

6 − γ̃(E)

2
, (2.8)

where

γ̃(E) :=
1

π2
‖TE/2‖2HS. (2.9)

(ii) [GKMO14, Theorem 2.2]

lim sup
k→∞

ln|SLnk (E)|
lnLnk

6 −γ(E)

2
, (2.10)

where

γ(E) :=
1

π2
‖arcsin |TE/2|‖2HS. (2.11)

Here, TE denotes the scattering T-matrix and ‖·‖HS the Hilbert-Schmidt norm on the
appropriate fibre Hilbert space where TE is defined.

One goal of this chapter is to remove this particular choice of the particle number and
allow arbitrary thermodynamic limits approaching a fixed particle density. Another goal
is to weaken the assumptions on the perturbation. Both things are partially achieved in
Theorem 2.6 below. For completeness, let us point out that in some special cases one can
erase the subsequences already.
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Theorem 2.3. [GKMO14, Theorem 2.2’] Assume the situation of Theorem 2.2 with d = 1,
or replace the perturbation potential V in Theorem 2.2 by a finite-rank operator V =∑n

ν=1〈φν , · 〉φν with compactly supported φν ∈ L2(Rd) for ν = 1, . . . , n, or consider the
lattice problem on Zd corresponding to the situation in Theorem 2.2. Then, the ground-
state overlap (2.5) obeys for Leb-a.e. E ∈ R

lim sup
L→∞

ln|SL(E)|
lnL

6 −γ(E)

2
(2.12)

with the decay exponent γ(E) defined in the second part of Theorem 2.2.

The proof of Theorem 2.2, as well as Theorem 2.3, relies on a lower bound on the
trace of powers of products of spectral projections, where no subsequences are necessary.
These bounds seem to be interesting on its own.

Theorem 2.4. [GKMO14, Theorem 3.4] Under the assumptions of Theorem 2.2, there
exists a null set N ⊂ R of exceptional Fermi energies such that for every E ∈ R \ N and
every n ∈ N

tr
{(

1(−∞,E)(HL)1(E,∞)(H
′
L)1(−∞,E)(HL)

)n}
> nJ2n tr(|TE/(2π)|2n) lnL+ o(lnL)

(2.13)

as L→∞, and

J2n := π2(n−1)22n−1 [(n− 1)!]2

(2n)!
. (2.14)

Here, 1B stands for the indicator function of a set B ∈ Borel(R).

Remarks 2.5. (i) We will not define the T -matrix here. For a detailed introduction to
scattering theory including precise definitions we refer to [Yaf10] and [RS79]. Nevertheless,
let us point out that in our situation for Leb.-a.e. E ∈ R the T -matrix is compact and
defined by TE := SE−I, where SE denotes the S-matrix at the energy E and I the identity
on the appropriate Hilbert space. Since the S-matrix is a unitary, see [Yaf92] or [RS79], we

obtain the operator inequality |TE/2| 6 1. Moreover, we denote by
(

exp
(
2iδk(

√
E)
))
k∈N

the eigenvalues of SE . The numbers
(
δk(
√
E)
)
k∈N are called the scattering phase shifts

which are a priori not uniquely defined, only up to a factor of π. A short calculation shows
for k ∈ N ∣∣ exp

(
2iδk(

√
E)
)
− 1
∣∣/2 =

∣∣ sin (δk(√E)
)∣∣. (2.15)

Thus, we rewrite the above decay exponents according to

γ̃(E) :=
1

π2
‖TE/2‖2HS =

1

π2

∞∑
k=1

(
sin
(
δk(
√
E)
))2

(2.16)

γ(E) :=
1

π2
‖arcsin |TE/2|‖2HS =

1

π2

∞∑
k=1

(
arcsin

(
sin
(
δk(
√
E)
)))2

. (2.17)

We remark that these representations are independent of the choice of the scattering phase
shifts.

(ii) Since |x| 6 | arcsin(x)| for |x| 6 1 and |TE/2| 6 1, the decay exponents in
Theorem 2.2 satisfy

1

π2
‖TE/2‖2HS 6

1

π2
‖arcsin |TE/2|‖2HS (2.18)

and the second result of Theorem 2.2 is indeed stronger than the first one.
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(iii) We return to the question, whether γ(E) provides the correct asymptotics for the
choice (2.4) of the thermodynamic limit. As already mentioned in the introduction, we have
to negate this question. Restricting ourselves to the case of d = 3, V0 = 0 and a spherically-
symmetric perturbation V , we choose, following [RS79, Sct. XI.8C], the scattering phase

shifts δk uniquely to be continuous and according to limE→∞ δk(
√
E) = 0. Taking our

findings in the following chapter, in particular Theorem 3.17 and the discussion thereafter,
into account, the correct decay exponent is rather

ζ(E) :=
1

π2

∞∑
k=1

(
δk(
√
E)
)2
, (2.19)

where the scattering phase shifts δk are uniquely defined due to the above normalisation.
Apparently γ(E) = ζ(E), whenever |δk(

√
E)| 6 π/2 for all k ∈ N. We give in Chapter 6

some heuristics what effects are neglected in the decay exponent γ(E).
(iv) Both statements given in Theorem 2.2 are equivalent to

|SLnk (E)|2 6 L−γ(E)+o(1)
nk

(2.20)

as k → ∞. Thus, we proved an algebraic decay of the ground-state overlap with decay
exponent γ(E). Note that the o(1)-term may be quite big in the sense that the error
satisfies Lo(1) = o(lnL) only.

(v) In the proof of Theorem 2.2 (i), one witnesses that the decay exponent γ̃ emerges
as the diagonal value of the Lebesgue density

γ̃(E) := lim
ε↘0

1

ε2
µ
(

(E − ε/2, E + ε/2)× (E − ε/2, E + ε/2)
)

=
dµ(E,E′)

d(E,E′)

∣∣∣∣
E′=E

(2.21)

of the two-dimensional spectral-correlation measure, which is defined by

µ(B ×B′) := tr
{√

V 1B(H)V 1B′(H
′)
√
V
}
, B,B′ ∈ Borel(R). (2.22)

We refer to Lemma 2.17 and Appendix A for a discussion of such measures. Now, with some
more effort one can see that the value of the density on the diagonal is the Hilbert-Schmidt
norm of the T -matrix. We will not present the proof here, see [GKM14], [GKMO14, Cor.
4.32] and [Küt14, Cor. 9.12]. In general, this density is just an L1

loc(R2) function. Hence, it
is not obvious if (2.21) makes sense at all. But one can show it does at least for Leb.-a.e.
E ∈ R, see [GKM14] and [GKMO14]. Later we will focus on the case of V0 = 0 and
V ∈ L∞(Rd) with sufficient decay at infinity. In this case one knows that µ is absolutely
continuous with a continuous density and (2.21) makes perfectly sense, see [FP15, Lem.
2.7] or [Yaf10, Lem. 8.1.8].

(vi) The definition of γ̃ in (2.21) implies γ̃(E) = 0, whenever E /∈ σac(H) = σac(H
′),

where the latter equality of the spectra follows from standard results in scattering theory
and is referred to as Birman’s theorem. On the other hand one should understand that
absolutely continuous spectrum leads to non-trivial scattering, i.e. TE 6= 0. To see the
connection, we consider a rank-one perturbation V with a cyclic vector η ∈ H. Then, the
measure µ reduces to a product measure and the decay exponent to

γ̃(E) =
1

π2
lim
ε↘0

{
Im
〈
η,

1

H − E − iε
η
〉
Im
〈
η,

1

H ′ − E − iε
η
〉}

. (2.23)

Recalling the properties of the Borel transform of a measure, see [Tes09] or [Sim05], the
latter limit is equal to the product of the values of the densities of the ac-parts of the
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corresponding spectral measures of H and H ′ at the energy E, which exist and are non-
trivial for Leb.-a.e. E ∈ σac(H) = σac(H

′), therefore, γ̃(E) > 0 for Leb.-a.e. E ∈ σac(H).
Apart from the above heuristics, [Küt14] states a perturbative argument that γ̃(E) > 0
for Leb.-a.e. E ∈ σac(−∆) in the case of V0 = 0 and d > 2. For spherically-symmetric
perturbations V one can deduce this result also using the angular momentum decompo-
sition. The above discussion underlines that the absolutely continuous spectrum leads to
algebraic decay of the ground-state overlap.

(vii) The latter immediately implies the question what happens, if different kind of
spectra occur. We investigate this question further in Chapter 5.

We will not prove Theorem 2.2 nor Theorem 2.3 here. We refer to [GKM14], [GKMO14]
and [Küt14] for the proofs. In the following, we want to generalise the above results to a
broader class of perturbations V . Moreover, we want to weaken assumption (2.4) on the
particle number, which means we allow arbitrary thermodynamic limits, and get rid of the
subsequences. We state an analogous result to Theorem 2.2 (i) without restrictions to sub-
sequences nor to specific thermodynamic limits but unfortunately an additional assumption
on the eigenvalue spacing enters.

Theorem 2.6. Assume conditions (A) without a background potential and subexponen-
tially decaying V , i.e.

V0 = 0, ∃ C > 0, θ > 1 such that |V (x)| 6 Ce− ln(|x|2)θ , (2.24)

where | · |2 denotes the Euclidean norm on Rd. Let E > 0 and N(·)(E) : R+ → N be a
function subject to

lim
L→∞

NL(E)

|ΛL|
= ρ(E) > 0, (2.25)

where ρ denotes the integrated density of states of the operator H = −∆. Moreover, we
assume the following eigenvalue spacing condition

lim sup
L→∞

∣∣∣µLNL(E)+1 − λ
L
NL(E)

∣∣∣La = 0 (2.26)

for all a < 1. Then

lim sup
L→∞

ln|SNL(E)
L |

lnL
6 − γ̃(E)

2
, (2.27)

with

γ̃(E) :=
1

π2
‖TE/2‖2HS. (2.28)

We will prove Theorem 2.6 in Section 2.

Remarks 2.7. (i) We assumed E > 0 because σac(H) = [0,∞) and only positive
energies are relevant. Moreover, note that ρ can be computed explicitly in the case V0 = 0,
i.e.

ρ(E) =
τd

(2π)d
Ed/2, (2.29)

where τd is the volume of the unit ball in Rd, see e.g. [Sto01, App. 4.1] or [RS78].
(ii) We assumed V0 = 0 and V ∈ L∞(Rd) for simplicity because this implies continuity

of the density of the measure (2.22). As a consequence, we do not need to exclude an
exceptional set of energies and the result holds for all energies within σac(H). Probably the
proof can be generalised to the case with a background potential present using Lebesgue
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point ideas as in [GKM14], [GKMO14] and [Küt14]. Using Lemma 2.16 below, one should
be able to prove the stronger statement of Theorem 2.2 for more general perturbations V .

(iii) The assumption (2.26) seems to be natural. Morally, in the proof one sees that the
upper bound on the exact asymptotics is governed by the L-asymptotics of the integral

ΩL :=

∫
(−∞,λL

NL(E)
)×(µL

NL(E)+1
,∞)

dµ(x, y)

(y − x)2
, (2.30)

where the measure µ is the one given in (2.22). Assuming the density to be continuous, it
is not hard to see that

ΩL ∼ γ̃(E) ln
(
µLNL(E)+1 − λ

L
NL(E)

)
, (2.31)

where γ̃(E) is the value of the density on the diagonal (E,E). Unfortunately, we can not
prove that the asymptotics is governed by (2.30) exactly but just a lower bound with some
additional security distance L−a, with a < 1, see Lemma 2.12 and Lemma 2.16 below.

(iv) Assumption (2.26) is satisfied in the d = 1 case and in the case of a finite-rank
perturbation as in Theorem 2.3. The eigenvalue spacing assumption should also be correct
in higher dimensions.

Most of the arguments in the proof of Theorem 2.6 apply to a broader class of pertur-
bations. Hence, we end this paragraph with an analogous statement to Theorem 2.2 under
weaker assumptions on the perturbation. The difference to Theorem 2.6 is that we include
singularities in the scattering potential and a background potential but we choose again
the particular particle number of (2.4).

Corollary 2.8 (Corollary of the proofs of Theorem 2.2 and 2.6). Assume conditions (A)
and additionally

V ∈ L2(Rd) and ∃L0 > 0, θ > 1 such that |V (x)| 6 e− ln(|x|2)θ for |x|2 > L0.
(2.32)

Let E ∈ R, and we choose NL(E) according to (2.4). Moreover, let (Ln)n∈N ⊂ R>0 be a
sequence of increasing lengths with Ln ↑ ∞. Then, there exists a subsequence (Lnk)k∈N
and a Lebesgue null set N ⊂ R of exceptional Fermi energies such that for every E ∈ R\N
the ground-state overlap (2.5) obeys

lim sup
k→∞

ln|SLnk (E)|
lnLnk

6 − γ̃(E)

2
, (2.33)

where

γ̃(E) :=
1

π2
‖TE/2‖2HS. (2.34)

We will not prove the corollary in detail. The key is Lemma 2.23 below which generalises
[GKM14, Lemma 3.14]. The rest follows along the same line as in [GKM14].

2. Proof of Theorem 2.6

The proof presented here will be close to the one given in [GKM14]. Nevertheless, we
try to include more general assumptions on V , e.g. V ∈ L2(Rd), whenever this is possible.
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Throughout the proof we write N ≡ NL(E). First we expand the ground-state overlap as
a series. To do this, we introduce the orthogonal projections

PNL :=

N∑
j=1

〈ϕLj , · 〉ϕLj and ΠN
L :=

N∑
k=1

〈ψLk , · 〉ψLk (2.35)

for N ∈ N0, i.e. the projections on the eigenspaces of the first N eigenvalues. Using those,
we can prove the following lemma.

Lemma 2.9. Let L > 1, E ∈ R and assume that SNL 6= 0. Then,

|SNL |2 = exp
(
−
∞∑
n=1

1

n
tr
{(
PNL
(
I −ΠN

L

)
PNL

)n})
, (2.36)

where we take the trace of operators on the Hilbert space L2(ΛL) and I denotes here the
identity on L2(ΛL).

Proof. If N = 0, the assertion is true by definition. Otherwise, define the N × N -
matrix M :=

(
〈ϕLj , ψLk 〉

)
j,k=1,...,N

. Then SNL = detM and |SNL |2 = det(MM∗). For

1 6 j, ` 6 N , the (j, `)-th matrix element of MM∗ is

(MM∗)j,` =

N∑
k=1

〈
ϕLj , ψ

L
k

〉〈
ψLk , ϕ

L
`

〉
=
〈
ϕLj ,Π

N
L ϕ

L
`

〉
=
〈
ϕLj , P

N
L ΠN

L P
N
L ϕ

L
`

〉
. (2.37)

Since by assumption, SNL 6= 0, and therefore MM∗ > 0 we have 0 6 PNL (I−ΠN
L )PNL < 1.

Moreover, being of finite rank, PNL (I−ΠN
L )PNL is a trace-class operator. Thus, we compute∣∣SNL ∣∣2 = det

(
I − PNL (I −ΠN

L )PNL
)

= exp
(

tr
{

ln
(
I − PNL (I −ΠN

L )PNL
)})

= exp
(
− tr

{ ∞∑
n=1

1

n

(
PNL (I −ΠN

L )PNL

)n})
(2.38)

where we used the expansion ln(1−x) = −
∑∞

n=1 x
n/n for the logarithm, which converges

absolutely for |x| < 1. �

Corollary 2.10. The above lemma implies

− ln|SNL | =
1

2

∞∑
n=1

1

n
tr
{(
PNL (I −ΠN

L )PNL

)n}
. (2.39)

Since PNL (I −ΠN
L )PNL > 0, we obtain

− ln|SNL | >
1

2
tr
{
PNL (I −ΠN

L )PNL

}
. (2.40)

From now on, we are interested in lower bounds on

IL(E) := tr
{
PNL (I −ΠN

L )PNL

}
. (2.41)

Remarks 2.11. (i) The expression IL(E) is called the Anderson integral in the
physics literature and was first investigated by P.W.Anderson in [And67a].
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(ii) To prove Theorem 2.6 as well as Theorem 2.2 (i) it suffices to consider the lower
bound (2.40) and to investigate the asymptotics of the Anderson integral IL(E). In con-
trast, to obtain the result of Theorem 2.2 (ii), one has to treat every summand in (2.39),
because each summand contributes to the asymptotics of the overlap.

Note that we assumed here V0 = 0, thus, HL > 0 and

PNL > 1[0,λLN )(HL) and I −ΠN
L > 1(µLN+1,∞)(H

′
L). (2.42)

Hence, we obtain the lower bound

tr
{
PNL (I −ΠN

L )PNL
}
> tr

{
1[0,λLN )(HL)1(µLN+1,∞)(H

′
L)1[0,λLN )(HL)

}
. (2.43)

We set
FL(E) := tr

{
1[0,λLN )(HL)1(µLN+1,∞)(H

′
L)1[0,λLN )(HL)

}
. (2.44)

Lemma 2.12. Let L > 0 and E > 0. Then, we have

FL(E) =

∫
(−∞,λLN )×(µLN+1,∞)

dµL(x, y)

(y − x)2
>
∫
R2

dµL(x, y)

(y − x)2
χ−L (x)χ+

L (y), (2.45)

where the finite-volume spectral-correlation measure µL on R2 is uniquely defined by

µL(B ×B′) := tr
{√

V 1B(HL)V 1B′(H
′
L)
√
V
}

(2.46)

for B,B′ ∈ Borel(R) and the functions χ±L ∈ L∞(R) are for the moment arbitrary subject
to

0 6 χ+
L 6 1(µLN+1,∞) and 0 6 χ−L 6 1[0,λLN ). (2.47)

Proof of Lemma 2.12. Note that µL is a sum of Dirac measures and therefore µL is well-
defined. Essentially, the assertion follows from Appendix A. Nevertheless, we provide a
straightforward and simpler proof for the special situation considered here. The eigenvalue
equations imply

λLj 〈ϕLj , ψLk 〉 = 〈HLϕ
L
j , ψ

L
k 〉 = µLk 〈ϕLj , ψLk 〉 − 〈ϕLj , V ψLk 〉 (2.48)

from which we obtain the identity∣∣〈ϕLj , ψLk 〉∣∣2 =

∣∣〈ϕLj , V ψLk 〉∣∣2
(µLk − λLj )2

, (2.49)

provided λLj 6= µLk . Since V > 0 and λLN 6 µ
L
N+1, this yields

FL(E) =
∑
j∈N :
λLj <λ

L
N

∑
k∈N :

µLk>µ
L
N+1

∣∣〈ϕLj , ψLk 〉∣∣2 =
∑
j∈N :
λLj <λ

L
N

∑
k∈N :

µLk>µN+1

∣∣〈ϕLj , V ψLk 〉∣∣2
(µLk − λLj )2

=

∫
(−∞,λLN )×(µLN+1,∞)

dµL(x, y)

(y − x)2
. (2.50)

Now, the inequality in (2.45) follows from the positivity of the integrand. �

Before we specify the cut-off functions further, we determine the limits of λLN and
µLN+1 for a given Fermi energy E > 0.
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Lemma 2.13. Let E > 0 and for clarity let us write again NL(E) instead of N . Then,
assumption (2.25) and (2.26) imply

lim
L→∞

λLNL(E) = E and lim
L→∞

µLNL(E)+1 = E. (2.51)

Proof. We prove this under slightly more general assumptions in Lemma 4.4. �

Definition 2.14 (Cut-off functions). Let L > 1 and E > 0, E0 > E. Given some 0 < a <
1 we say that χ±L ∈ C∞c (R) are smooth cut-off functions corresponding to λLN and µLN+1,
if they obey

1[µLN+1+L−a,E0) 6 χ
+
L 6 1(µLN+1+ 1

2
L−a,E0+1),

1[0,λLN−L−a] 6 χ
−
L 6 1[−1,λLN−

1
2
L−a)

(2.52)

and if there exist L-independent constants ck > 0 for k ∈ N0, such that

χ±L (η±L ±
1

2
L−a ± x) 6 c0L

a x (2.53)

for all x ∈ [0, 1
2L
−a), where η−L := λLN and η+

L := µLN+1, and∣∣∣∣ dk

dxk
χ±L (η±L ±

1

2
L−a ± x)

∣∣∣∣ 6
{
ckL

ak if 0 6 x < 1
2L
−a

ck otherwise,
(2.54)

for every k ∈ N and x ∈ R. Moreover, we choose the decay of χ−L in (−1, 0) as well as the

decay of χ+
L in (E0, E0 + 1) independent of L.

Remark 2.15. The security distance L−a can be replaced by (lnL)1+ε

L , where ε > 0,
without effecting the following computations and results. According to Lemma 2.13, the
indicator functions in (2.52) are well defined for L large enough, therefore, without further
mentioning we restrict us to such L.

In the next lemma, we replace the measure corresponding to the finite-volume operators
with the measure corresponding to the infinite-volume operators.

Lemma 2.16 (An application of the Helffer-Sjöstrand formula). Let 0 < a < 1 and
χ±L be the associated smooth cut-off functions from Definition 2.14 corresponding to the

eigenvalues λLN and µLN+1. Then, we obtain∫
R2

dµL(x, y)

(y − x)2
χ−L (x)χ+

L (y) =

∫
R2

dµ(x, y)

(y − x)2
χ−L (x)χ+

L (y) + o(1), (2.55)

as L→∞. Here, µ denotes the infinite-volume spectral correlation measure on R2 which
is uniquely defined by

µ(B ×B′) := tr
{√

V 1B(H)V 1B′(H
′)
√
V
}

(2.56)

for B,B′ ∈ Borel(R).

This lemma is the main ingredient to the proof of the theorem. We prove this lemma in
the next section under weaker assumptions. For completeness, we state that the measures
µ and µL are well defined also under weaker assumptions on the perturbation V .
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Lemma 2.17. Here, we assume V > 0 and V ∈ L1(Rd) only. Then, the expression (2.56)
is finite for bounded Borel sets and gives rise to a locally finite Borel measures on R2.

Proof. See Appendix A, Theorem A.1. �

Remark 2.18. The use of the measure µ is not necessary for the proof. The identity∫∞
0 dt te−t(y−x) = 1

(y−x)2
for x < y implies∫

(−∞,λLN ]×[µLN+1,∞)

dµL(x, y)

(y − x)2
=

∫ ∞
0

dt t

∫
(−∞,λLN ]×[µLN+1,∞)

dµL(x, y)e−t(y−x)

=

∫ ∞
0

dt t tr
{√

V 1(−∞,λLN ](HL)et(HL−EL)V 1[µLN+1,∞)(H
′
L)e−t(H

′
L−EL)

√
V
}
, (2.57)

where EL :=
λLN+µLN+1

2 . Thus, the notation of µL is not needed anymore and one can
formulate Lemma 2.16 also on the level of operators without introducing the measure µ.
The proof of 2.16, see Section 3, proceeds in precisely this way. However, we introduce µ
for brevity and clarity.

From the definition of the cut-off functions χ±L , see (2.52), and the positivity of the
integrand we continue with the lower bound∫

R2

dµ(x, y)

(y − x)2
χ−L (x)χ+

L (y) >
∫
R2

dµ(x, y)

(y − x)2
1[0,λLN−L−a)(x)1(µLN+1+L−a,E0)(y)

>
∫
R2

dµac(x, y)

(y − x)2
1[0,λLN−L−a)(x)1(µLN+1+L−a,E0)(y), (2.58)

where µac is the absolutely continuous part of the measure µ. Actually, assumption (2.24)
ensures that µ itself is a purely absolutely continuous measure. Since we are just interested
in lower bounds, we will not focus on this and write γ̃ ∈ L1

loc(R2) for the density of µac,
which we call in the sequel for brevity again µ. We continue with a regularity result on γ̃.

Lemma 2.19 (A form of the limiting absorption principle). There exists a representative
of the density of µ which is continuous within R2

+. In the following we denote by γ̃ precisely
this continuous representative on R2

+.

Proof. Since we assumed V ∈ L∞(Rd) with sufficient decay at infinity, results from sta-
tionary scattering theory imply the convergences

lim
ε↘0

1

ε

√
V 1E−ε/2,E+ε/2(H)

√
V := A(E) (2.59)

lim
ε↘0

1

ε

√
V 1E−ε/2,E+ε/2(H ′)

√
V := B(E) (2.60)

in trace-class norm for all E > 0, see [FP15, Lem. 2.7 (ii)] or [Yaf10, Lem. 8.1.8]. The
latter also implies that the functions A : R+ → S1 and B : R+ → S1,

A : E 7→ A(E) and B : E 7→ B(E) (2.61)

are continuous, where S1 denotes the set of all trace-class operators. Hence, the function
γ̃ : R2

+ → R,

γ̃ : (E,E′) 7→ tr
{
A(E)B(E′)

}
(2.62)

is a continuous function. Moreover, γ̃ is a representative of the density of the measure
µ. �
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Remark 2.20. For more general V , e.g. including suitable singularities, and with a non-
trivial background potential V0 the limits (2.59) and (2.60) still exist for Leb.-a.e. E > 0,

see [BÈ67]. But the question of continuity of the derivatives is not entirely clear. Since we
want to keep the proof elementary, we restrict ourselves to V ∈ L∞(Rd) with sufficient
decay at infinity in order to have a continuous representative of the density. We remark that
our subexponential decay assumption is not necessary to gain a continuous representative,
sufficient polynomial decay is enough, see [FP15].

Lemma 2.21. Let 0 < a < 1 and E > 0. Under the assumptions of Theorem 2.6 we
obtain the following asymptotics∫ λLN−L

−a

0
dx

∫ E0

µLN+1+L−a
dy

γ̃(x, y)

(y − x)2
= aγ̃(E,E) lnL+ o(lnL) (2.63)

as L→∞, where the error term depends on a, the Fermi energy E and the cut-off energy
E0.

Proof. This lemma is a standard δ-approximation argument. Nevertheless, we prove it for
convenience. First note that Lemma 2.13 implies λLN −

1
2L
−a > 0 for L big enough and

for such L we compute∫ λLN−L
−a

0
dx

∫ E0

µLN+1+L−a
dy
( 1

y − x

)2
=
∣∣ln (µLN+1 − λLN + 2L−a

)∣∣+ O(1) (2.64)

as L→∞. Hence, we estimate∣∣∣∣∣
∫ λLN−L

−a

0
dx

∫ E0

µLN+1+L−a
dy

γ̃(x, y)

(y − x)2
− γ̃(E,E)

∣∣∣ ln (µLN+1 − λLN + 2L−a
) ∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
∫ λLN−L

−a

0
dx

∫ E0

µLN+1+L−a
dy
(
γ̃(x, y) − γ̃(E,E)

)( 1

y − x

)2
∣∣∣∣∣+ O(1) (2.65)

as L → ∞. Now, Lemma 2.19 provides continuity of γ̃ and by Lemma 2.13 λLN and µLN
converge to E. Thus, given an ε > 0 there exists a function h : R+ → R+ such that
limε↘0 h(ε) =∞ and

(2.65) 6 ε
∣∣ln (µLN+1 − λLN + 2L−a

)∣∣+ h(ε). (2.66)

Now, assumption (2.26) gives

lim sup
L→∞

ε
∣∣ln (µLN+1 − λLN + 2L−a

)∣∣+ h(ε)

lnL
6 aε. (2.67)

Since ε was arbitrary, this yields

l.h.s. of (2.63) = γ̃(E,E)
∣∣ln (µLN+1 − λLN + 2L−a

)∣∣+ o(lnL)

= aγ̃(E,E) lnL+ o(lnL), (2.68)

as L→∞, where the last line follows from assumption (2.26). �

As already mentioned before, the exponent γ̃(E,E) admits a scattering theoretic in-
terpretation.
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Lemma 2.22. Let E > 0. Set γ̃(E) := γ̃(E,E). Then,

γ̃(E) = ‖TE‖2HS, (2.69)

where HS denotes the Hilbert-Schmidt norm on the corresponding fibre Hilbert space,
which is in our case L2(Sd−1). Here, Sd−1 denotes the d-dimensional sphere.

Proof. The lemma follows from [Küt14, Cor. 9.12] or [GKMO14, Cor. 4.32], which are
valid here for all E > 0 due to Lemma 2.19. �

Proof of Theorem 2.6. Recalling equation (2.40), Lemma 2.12, Lemma 2.16, equation
(2.58) and Lemma 2.21 we obtain for all 0 < a < 1

− ln |SNL | > a
γ̃(E)

2
lnL+ o(lnL), (2.70)

as L→∞. Therefore, for all 0 < a < 1

lim sup
L→∞

ln |SNL |
lnL

6 −aγ̃(E)

2
. (2.71)

This proves Theorem 2.6 because a was chosen arbitrary subject to 0 < a < 1. �

3. An Application of the Helffer-Sjöstrand Formula: Proof of Lemma 2.16

Since Lemma 2.16 is valid in more general settings including background potentials
and unbounded perturbations V , we state Lemma 2.16 under weaker assumptions.

Lemma 2.23 (An application of the Helffer-Sjöstrand formula). Here, we assume (A) and
additionally

V ∈ L2(Rd) (2.72)

with subexponential decay at infinity, i.e.

∃ L0 > 0, θ > 1 such that |V (x)| 6 e− log(|x|2)θ for |x|2 > L0. (2.73)

Let 0 < a < 1 and χ±L be the associated smooth cut-off functions from Definition 2.14.
Then, we obtain∫

R2

dµL(x, y)

(y − x)2
χ−L (x)χ+

L (y) =

∫
R2

dµ(x, y)

(y − x)2
χ−L (x)χ+

L (y) + o(1), (2.74)

as L→∞.

Remark 2.24. We do not claim that the assumptions on V in Lemma 2.23 are optimal
and we do not claim that the following proof is elegant.

Proof. First note that 1/x2 =
∫∞

0 dt te−tx. Thus, using Fubini’s theorem we can decouple
the x and y integration and rewrite∫

R2

dµL(x, y)

(y − x)2
χ−L (x)χ+

L (y) =

∫ ∞
0

dt t

∫
R2

dµL(x, y) e−t(y−x)χ−L (x)χ+
L (y). (2.75)

Moreover, ∫ ∞
0

dt t

∫
R2

dµL(x, y) e−t(y−x)χ−L (x)χ+
L (y)

=

∫ ∞
0

dt t tr
{√

V et(HL−EL)χ−L (HL)V e−t(H
′
L−EL)χ+

L (H ′L)
√
V
}
, (2.76)
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where

EL :=
µLN+1 + λLN

2
. (2.77)

We define the abbreviations

gtL(x) := χ−L (x) et(x−EL) and f tL(x) := χ+
L (x) e−t(x−EL) (2.78)

for every x ∈ R and t > 0 so that Lemma 2.23 can be reformulated as∫ ∞
0

dt tKL(t) = o(1) (2.79)

as L→∞ with

KL(t) := tr
{√

V gtL(HL)V f tL(H ′L)
√
V
}
− tr

{√
V gtL(H)V f tL(H ′)

√
V
}
. (2.80)

We use the cyclicity of the trace and estimate the modulus of (2.80) according to |KL(t)| 6
|K(1)

L (t)|+ |K(2)
L (t)|, where

K
(1)
L (t) := tr

{
V f tL(H ′)V

(
gtL(HL)− gtL(H)

)}
, (2.81)

K
(2)
L (t) := tr

{(
f tL(H ′L)− f tL(H ′)

)
V gtL(HL)V

}
. (2.82)

Note that we did not assume V to be bounded. Thus, in order to apply the cyclicity of

the trace in (2.81) and (2.82) we use that the operators
√
V htL(H

(′)
(L))
√
V are trace class

due to Remark 2.26 below, where the function htL stands for one of the functions defined
in (2.78).

Since both K
(1)
L and K

(2)
L can be estimated in the very same way, we will demonstrate

the argument for K
(2)
L only. Our main technical tool is the Helffer-Sjöstrand formula, see

e.g. [HS00, Chap. IX] or [Küt14, Chap. 5], according to which

f tL(H ′L)− f tL(H ′) =
1

2π

∫
C

dz
(
∂z̄ f̃

t
L(z)

)( 1

H ′L − z
− 1

H ′ − z

)
, (2.83)

where we note that the above integral is norm convergent. Here, z := x+iy, ∂z̄ := ∂x+i∂y,

dz := dxdy and f̃ tL ∈ C2
c (C) is an almost analytic extension of f tL to the complex plane.

The latter can be chosen as

f̃ tL(z) := ξ(z)
n∑
k=0

(iy)k

k!

dkf tL
dxk

(x) (2.84)

for some n ∈ N and some ξ ∈ C∞c (C) with ξ(z) = 1 for all z ∈ supp f tL× [−1, 1], ξ(z) = 0
for all z such that distC(z, supp f tL) > 3 and ξ(z) ∈ [0, 1] otherwise. We will assume n > 2
below. Since supp f tL = [0, E0 +1], the function ξ can be chosen independently of L and t,
and such that ‖ξ‖∞ = 1 and ‖ξ′‖∞ < 1. For later purpose we introduce the function

h :=
∑n+1

k=0

∣∣dkf tL
dxk

∣∣ ∈ Cc(R) and infer the existence of a constant C ∈ (0,∞), which is
independent of L and t, such that

|∂z̄ f̃ tL(z)| 6 C|y|nh(x) (2.85)

for all z ∈ C. Furthermore, the bound (2.54) implies the estimate∣∣∣∣dkf tLdxk
(x)

∣∣∣∣ 6 Lak k∑
κ=0

(
k
κ

)(
t

La

)κ
ck−κ 1[µLN+1,E0+1](x) (2.86)
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for every t > 0, L > 1, x ∈ R and the constants ck−κ are the ones from (2.54). Hence,
we conclude the existence of a polynomial Qn over R of degree n + 1 with non-negative
coefficients such that

0 6 h(x) 6 Qn(t/La)La(n+1) 1[µLN+1,E0+1](x). (2.87)

We will split the contribution of (2.83) in (2.82) into two parts. Accordingly, we define for
ε ∈ (0, 1− a)

D<
L (t) :=

1

2π

∫
|y|6L−1+ε

dz
(
∂z̄ f̃

t
L(z)

) [ 1

H ′L − z
− 1

H ′ − z

]
(2.88)

and

D>
L (t) :=

1

2π

∫
|y|>L−1+ε

dz
(
∂z̄ f̃

t
L(z)

) [ 1

H ′L − z
− 1

H ′ − z

]
. (2.89)

The integral in the Helffer-Sjöstrand formula is norm convergent and due to the assump-
tions on the potential the operator V gtL(HL)V is trace class by Lemma 2.25. Hence, we
interchange the integral and the trace to estimate∣∣tr{D<

L (t)V gtL(HL)V
}∣∣

6
1

2π

∫
|y|6L−1+ε

dz
∣∣∂z̄ f̃ tL(z)

∣∣ tr{V gtL(HL)V
}∥∥∥ 1

H ′L − z
− 1

H ′ − z

∥∥∥. (2.90)

The estimates (2.85) and (2.87) imply

(2.90) 6 tr
{
V gtL(HL)V

}C
π

∫
|y|6L−1+ε

dz |y|n−1h(x)

= tr
{
V gtL(HL)V

}2C

πn
Ln(−1+ε)

∫
R

dxh(x)

6 tr
{
V gtL(HL)V

}
C<Qn(t/La)La+n(−1+ε+a), (2.91)

where C< depends on E0 only.

To estimate the term D>
L (t), we interchange the integral and the trace as before to

obtain ∣∣tr{D>
L (t)V gtL(HL)V

}∣∣
6
C

2π

∫
|y|>L−1+ε

dz |y|nh(x)

∣∣∣∣tr{[ 1

H ′L − z
− 1

H ′ − z

]
V gtL(HL)V

}∣∣∣∣ . (2.92)

Now, we rewrite the identity on Rd according to

1Rd = 1ΛL/2 + (1Rd − 1ΛL/2) =: 1L+ + 1L− (2.93)

and insert this into (2.92) according to

C

2π

∫
|y|>L−1+ε

dz |y|nh(x)

∣∣∣∣tr{(1L+ + 1L−)

[
1

H ′L − z
− 1

H ′ − z

]
(1L+ + 1L−)V gtL(HL)V

}∣∣∣∣ .
(2.94)

Using the triangle inequality, we estimate (2.92) from above by four terms, which we
denote by AL++, A

L
+−, A

L
−+ and AL−−, where the latter indices apparently refer to the
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decomposition (2.93) of the identity. We start with

AL++ :=
C

2π

∫
|y|>L−1+ε

dz |y|nh(x)

∣∣∣∣tr{1L+

[
1

H ′L − z
− 1

H ′ − z

]
1L+V g

t
L(HL)V

}∣∣∣∣
6
C

2π

∫
|y|>L−1+ε

dz |y|nh(x) tr
{
V gtL(HL)V

}
×
∥∥∥1ΛL/2

[
1

H ′L − z
− 1

H ′ − z

]
1ΛL/2

∥∥∥. (2.95)

We estimate the norm of the difference of the resolvents with the help of the geometric
resolvent inequality – see e.g. [Sto01, Lem. 2.5.2] or [Küt14, Lem. 5.3] –, and the fact that
ξ(z) = 0 if dist(z,R) > 3. This provides for L > 3

(2.95) 6 tr
{
V gtL(HL)V

}
× CCgre

2π

∫
|y|>L−1+ε

dz h(x)|y|n
∥∥∥1ΛL/2

1

H ′L − z
1δΛL

∥∥∥∥∥∥1δΛL
1

H ′ − z
1ΛL/2

∥∥∥
6 tr

{
V gtL(HL)V

}CCgre

2π

∫
|y|∈]L−1+ε,3]

dz h(x) |y|n−1
∥∥∥1δΛL

1

H ′ − z
1ΛL/2

∥∥∥, (2.96)

where δΛL := ΛL \ ΛL−1 and the constant Cgre < ∞ depends only on E0, the space
dimension and the potentials V0 and V . The operator norm in the last line of (2.96) is
bounded by a Combes-Thomas estimate for operator kernels of resolvents, see e.g. [GK03,
Thm. 1], ∥∥∥1Γ

1

H ′ − z
1Γ ′
∥∥∥ 6 Cct

|y|
e−cct dist(Γ,Γ ′)|y|. (2.97)

It holds for all cubes Γ, Γ ′ ⊂ Rd of side length 1 and all z in some bounded subset of C,
which we choose as supp(h) × [−3, 3]. The constants Cct, cct ∈ (0,∞) in (2.97) can be
chosen to depend only on E0, the space dimension and the potentials V0 and V . Now,
we assume n > 2, cover ΛL/2 and δΛL by unit cubes and apply the bounds (2.97) and

(2.87) to (2.96). In this way we infer the existence of a constant C̃> ∈ (0,∞), which is
independent of L and t, such that

(2.96) 6 tr
{

(V gtL(HL)V
}
C̃>(E0 + 1)Qn(t/La)L2d+a(n+1)

∫ 3

L−1+ε

dy |y|n−2e−cLy

6 tr
{
V gtL(HL)V

}
C1>Qn(t/La)L2d+a(n+1) e−cL

ε
(2.98)

for all t > 0 and all L > 1, and c depends only on cct and Λ1 and C1> depends on n, CCT

and E0. We continue with A−+. Using the cyclicity of the trace, we compute

A−+ =
C

2π

∫
|y|>L−1+ε

dz |y|nh(x)

∣∣∣∣tr{1L−

[
1

H ′L − z
− 1

H ′ − z

]
1L+V g

t
L(HL)V

}∣∣∣∣
6
C

π

∫
|y|>L−1+ε

dz |y|n−1h(x)‖V 1Λc
L/2
‖∞ tr

{∣∣V gtL(HL)
∣∣}

6 C2>e
−(log(c̃L))θQn(t/La)La(n+1) tr

{∣∣V gtL(HL)
∣∣} (2.99)

for L > L0, where we used the subexponential decay of the potential V at infinity, and the
constant C2> > 0 depends on E0 and c̃ on Λ1 only. We estimate A+− along the same
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line. For A−− we estimate

A−− 6
C

π

∫
|y|>L−1+ε

dz |y|n−1h(x)‖
√
V 1Λc

L/2
‖2∞ tr

{√
V gtL(HL)

√
V
}

6 C3>e
−(log(c̃L))θQn(t/La)La(n+1) tr

{√
V gtL(HL)

√
V
}
. (2.100)

Here, the constant C3> depends on E0 and Λ1 only.

Now, Lemma 2.25 and Remark 2.26 below imply∫ ∞
0

dt tQn(t/La) tr
{
V gtL(HL)V

}
6 CnL

2a,∫ ∞
0

dt tQn(t/La) tr
{∣∣V gtL(HL)

∣∣} 6 CnL2a,∫ ∞
0

dt tQn(t/La) tr
{√

V gtL(HL)
√
V
}
6 CnL

2a (2.101)

with some constant Cn > 0 depending on n. This together with the bounds (2.91), (2.98),
(2.99) and (2.100) yield a constant C ≡ Cn,E0,V0,V,Λ1 > 0, depending on n,E0, V0, V and
Λ1, such that∫ ∞

0
dt t |K(2)

L (t)| 6 C
(
L3a+n(−1+ε+a) + L2d+a(n+3)e−cctL

ε
+ e−(log(c̃L))θLa(n+3)

)
.

(2.102)

We recall that 0 < ε < 1 − a and θ > 1. Therefore, we can choose n large enough as to
ensure

3a+ n(−1 + a+ ε) < 0 (2.103)

and conclude that ∫ ∞
0

dt tK
(2)
L (t) = o(1) (2.104)

as L→∞. The same holds true for K
(1)
L by an analogous argument. Thus, we have shown

(2.79). �

Lemma 2.25. Let htL ∈ {f tL, gtL}, where the latter are defined in (2.78). We assume here
V ∈ L2(Rd) with subexponential decay of V at infinity as in Lemma 2.23. Then, there
exists some constant C > 0 such that for every L > 1 and every t > 0 we have

tr
{
V htL

(
H

(′)
(L)

)
V
}
6 Ce−tL

−a/2 and tr
{∣∣V htL(H(′)

(L)

)∣∣} 6 Ce−tL−a/2. (2.105)

Remark 2.26. The assumptions of Lemma 2.23 on the perturbation V , i.e. V ∈ L2(Rd),

V > 0 with subexponential decay at infinity provide also
√
V ∈ L2(Rd). Thus, we apply

Lemma 2.25 and obtain that
√
V htL

(
H

(′)
(L)

)√
V is a trace-class operator and the latter

bounds hold.

Proof. The definition of EL implies that |EL − λLN + 1
2L
−a| > 1

2L
−a and therefore

gtL
(
H

(′)
(L)

)
6 e−tL

−a/21
(inf σ(H

(′)
(L)

)−1,λLN )

(
H

(′)
(L)

)
6 e−tL

−a/21I
(
H

(′)
(L)

)
, (2.106)
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where I is some bounded interval. The same holds for f tL. Moreover, due to the quite

explicit representation of the integral kernel of e
−tH(′)

(L) given in [BHL00, Thm. 6.1] we
know the following inequality of integral kernels

0 6 e−tH
(′)
L (x, y) 6 e−tH

(′)
(x, y) (2.107)

for all x, y ∈ ΛL, t > 0.

For the first assertion, we estimate

tr
{
V htL

(
H

(′)
(L)

)
V
}
6 e−tL

−a/2 tr
{
V 1I

(
H

(′)
(L)

)
V
}

6 e−tL
−a/2esup I tr

{
V e
−H(′)

(L)V
}

6 e−tL
−a/2esup I tr

{
V e−H

(′)
V
}

(2.108)

The last inequality follows from the integral-kernel inequality (2.107) and computing the

trace as the square of the Hilbert-Schmidt norm of the operator e
−H(′)

(L)
/2
V The assumption

V ∈ L2(Rd) implies that e−H
(′)/2V is a Hilbert-Schmidt operator, see [BHL00, Thm. 6.1],

and the assertion follows.

For the second statement, we note that for arbitrary trace class operators 0 6 A 6 B
we obtain the inequality tr

√
A 6 tr

√
B. Thus, we compute

tr
{∣∣V htL(H(′)

(L)

)∣∣} = tr
{√

V htL
(
H

(′)
(L)

)
htL
(
H

(′)
(L)

)
V
}

6 tr
{√

V 1I
(
H

(′)
(L)

)
e−tL−aV

}
6 e−tL

−a/2esup I tr
{
|V e−H

(′)
(L) |
}
. (2.109)

In case of the infinite-volume operators the assumption V ∈ L2(Rd) with subexponential

decay at infinity yields that the operator V e−H
(′)

is trace class, see [Sim82, Thm. B.9.2].
Essentially, the case of the finite-volume operators follows also from [Sim82, Sct. B.9]
and inequality (2.107). To see this, we choose δ > 0 and introduce the weight function
r(x) := (1 + |x|2)δ/2. Using the Cauchy-Schwarz inequality for traces we estimate

tr
{
|V e−H

(′)
(L) |
}

= tr
{∣∣V e−H(′)

L /2rr−1e−H
(′)
L /2

∣∣}
6 ‖V e−H

(′)
L /2r‖HS‖r−1e−H

(′)
L /2‖HS

6 ‖V e−H(′)/2r‖HS‖r−1e−H
(′)/2‖HS, (2.110)

where we used (2.107) in the last line. For δ > d/2, [Sim82, Thm. B.9.1] provides

‖r−1e−H
(′)/2‖HS < ∞. Moreover, we rewrite ‖V e−H(′)/2r‖HS = ‖V rr−1e−H

(′)/2r‖HS.
Due to the subexponential decay of V we have V r ∈ L2(Rd) and by [Sim82, Thm. B.6.1](
r−1e−H

(′)/2r
)∗

: L2(Rd) → L∞(Rd) is bounded. Hence, we use [Sim82, Prop. B.9.4]

to obtain that V rr−1e−H
(′)/2r is a Hilbert-Schmidt operator. Alternatively, one may show

directly square integrability of the integral kernel of the latter operator using suitable point-

wise bounds on the integral kernel of e−H
(′)

. �





CHAPTER 3

The Ground-State Overlap for Dirac-δ Perturbations

In the last chapter we saw upper bounds on the ground-state overlap SNL for quite
general pairs of Schrödinger operators. Here, using different tools we prove the exact
asymptotics for the toy model of a Dirac-δ perturbation in three space dimensions, which we
define in Section 2 below. We begin with an exact representation of the ground-state overlap
in terms of the eigenvalues valid for rank-one perturbations, which might be interesting on
its own and is at the heart of the main result in this chapter, Theorem 3.17.

1. Product Representation for Rank-One Perturbations

LetH be a separable infinite-dimensional Hilbert space and A be a self-adjoint compact
operator acting on H. Moreover, we assume A > 0 and ker(A) = {0}. We define for some
0 6= φ ∈ H

B := A+ |φ〉〈φ|. (3.1)

We write α1 > α2 > · · · and β1 > β2 > · · · for the non-increasing sequences of the
eigenvalues of A, respectively B, and denote by (ϕj)j∈N and (ψk)k∈N the corresponding
normalised eigenvectors. Since A and B differ by a rank-one perturbation, the min-max
theorem implies that the eigenvalues interlace. We assume in addition a strict interlacing
property of the eigenvalues

β1 > α1 > β2 > α2 > · · · . (3.2)

This immediately implies βk 6= αj for all non-zero eigenvalues of A and B. Furthermore,
the above gives cyclicity of φ:

Lemma 3.1. Under condition (3.2), we obtain that φ is cyclic with respect to the operator
A. In particular, for all j ∈ N

〈ϕj , φ〉 6= 0. (3.3)

Proof. Let W := span{Anφ : n ∈ N0}. Then W reduces A, i.e. AW ⊆ W and AW⊥ ⊆
W⊥. Now, assume φ is not cyclic for A. Then, W⊥ 6= {0} and there exists an eigenvector
ϕn ∈W⊥ of A such that Aϕn = Eϕn and 〈ϕn, φ〉 = 0. This implies E is also an eigenvalue
of B, a contradiction to (3.2). �

Assumption (3.2) is not necessary but simplifies notation and computations. In the
general case one has to consider cyclic subspaces. But in our applications the interlacing
condition (3.2) will be satisfied, therefore, we assume it.

We continue with a property of the sum of the differences of the nth eigenvalues.

Lemma 3.2. Let (3.2) be satisfied. Then, the eigenvalues of the operators A and B satisfy
∞∑
l=1

(
βl − αl

)
= ‖φ‖2 <∞. (3.4)

29
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Proof. For λ ∈ R we define the operator

A(λ) := A+ λ|φ〉〈φ| (3.5)

and write αl(λ) for the lth eigenvalue counted from above and ϕl(λ) for the corresponding
eigenvector. Moreover, we remark that αl(1) and ϕl(1) correspond to βl and ψl. Assump-
tion (3.2) and the definite sign of the perturbation imply that the eigenvalues of A(λ)
are non-degenerate for all λ ∈ [0, 1]. Thus, standard results, see [RS78, Chap. XII], give
differentiability of the eigenvalues for all λ ∈ (0, 1) and we apply the Feynman-Hellmann
theorem, see e.g. [IZ88], to deduce for all l ∈ N and λ ∈ (0, 1)

α′l(λ) = |〈ϕl(λ), φ〉|2. (3.6)

Hence, we compute
∞∑
l=1

(
βl − αl

)
=
∞∑
l=1

∫ 1

0
dλα′l(λ)

=

∞∑
l=1

∫ 1

0
dλ |〈ϕl(λ), φ〉|2 =

∫ 1

0
dλ

∞∑
l=1

|〈ϕl(λ), φ〉|2, (3.7)

where we used Fubini’s theorem in the last line. Since the vectors
(
ϕl(λ)

)
l∈N form an ONB

of H, we obtain

(3.7) =

∫ 1

0
dλ ‖φ‖2 <∞. (3.8)

�

The above lemma is also valid without the assumption (3.2). In this case, one has to
include possible degenerate eigenvalues of A(λ) in the proof. This may cause a discrete set
where some of the ordered eigenvalues are not differentiable.

The main result of this section is the following product representation of the ground-
state overlap.

Theorem 3.3. Let N ∈ N. We assume condition (3.2) to hold. Then,∣∣∣det
(
〈ϕj , ψk〉

)
16j,k6N

∣∣∣2 =
N∏
j=1

∞∏
k=N+1

|βk − αj | |αk − βj |
|αk − αj | |βk − βj |

. (3.9)

Proof of Theorem 3.3. We use the eigenvalue equations, i.e. the identity (2.48), and as-
sumption (3.2) to obtain for all j, k ∈ N

〈ϕj , ψk〉 =
〈ϕj , φ〉〈φ, ψk〉
βk − αj

. (3.10)

Hence, the multi-linearity of the determinant implies∣∣∣ det
(
〈ϕj , ψk〉

)
16j,k6N

∣∣∣2
=
∣∣∣ det

(〈ϕj , φ〉〈φ, ψk〉
βk − αj

)
16j,k6N

∣∣∣2
=

N∏
j=1

N∏
k=1

|〈ϕj , φ〉〈φ, ψk〉|2
∣∣∣det

( 1

βk − αj

)
16j,k6N

∣∣∣2. (3.11)
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Now, the remaining determinant can be computed explicitly. We use the Cauchy deter-
minant formula to evaluate this, see Appendix B or [Wey13, Lem. 7.6.A], and we end up
with

(3.11) =
N∏
j=1

N∏
k=1

|〈ϕj , φ〉〈φ, ψk〉|2
∏N
j,k=1,j 6=k |βk − βj | |αj − αk|∏N

j,k=1 |βk − αj |
2

. (3.12)

Corollary 3.5 below yields

(3.12) =

N∏
k=1

∞∏
l=1
l 6=k

|αl − βk|
|βl − βk|

N∏
j=1

∞∏
l=1
l 6=j

|βl − αj |
|αl − αj |

N∏
j,k=1
j 6=k

|βk − βj | |αj − αk|
|βk − αj |2

=

N∏
j=1

∞∏
k=N+1

|βk − αj | |αk − βj |
|βk − βj ||αj − αk|

. (3.13)

This gives the claim, where we remark that by the estimate (3.4) all infinite products in
the latter converge absolutely. �

To complete the proof, we continue with computing the residue of the resolvents.
We do this using the following product representation of the resolvents which is valid for
rank-one perturbations.

Lemma 3.4. We assume (3.2). Then, there exist a, b ∈ R with ab = −1 such that

(i) for all z ∈ %(A)

〈φ, 1

A− z
φ〉+ 1 = a

∞∏
k=1

βk − z
αk − z

, (3.14)

(ii) for all z ∈ %(B)

〈φ, 1

B − z
φ〉 − 1 = b

∞∏
n=1

αn − z
βn − z

. (3.15)

Corollary 3.5. Let j, k ∈ N. Under the assumption (3.2).

|〈ϕj , φ〉〈ψk, φ〉|2 = |βj − αj | |αk − βk|
∞∏
l=1
l 6=j

|βl − αj |
|αl − αj |

∞∏
l=1
l 6=k

|αl − βk|
|βl − βk|

. (3.16)

Proof of Corollary 3.5. Using Lemma 3.4 we compute the residue of the resolvents

|〈ϕj , φ〉|2 = lim
z→αj

(αj − z) 〈φ,
1

A− z
φ〉

= lim
z→αj

(αj − z) a
∞∏
l=1

(βl − z)
(αl − z)

= a (βj − αj)
∞∏
l=1
l 6=j

(βl − αj)
(αl − αj)

(3.17)

and along the same line

|〈ψk, φ〉|2 = b (αk − βk)
∞∏
l=1
l 6=k

(αl − βk)
(βl − βk)

. (3.18)
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Taking the absolute value and using |ab| = 1 give the result. �

Proof of Lemma 3.4. First note that by the finiteness of (3.4) the sequences( N∏
k=1

βk − z
αk − z

)
N∈N

and

( N∏
n=1

αn − z
βn − z

)
N∈N

(3.19)

converge locally uniformly for all z ∈ %(A)∩ %(B), see [Kno96, Thm. 252]. Therefore, the
limits

F (z) :=
∞∏
n=1

αn − z
βn − z

and G(z) :=
∞∏
k=1

βk − z
αk − z

(3.20)

are well-defined analytic functions on %(A)∩%(B), which fulfil FG = 1. Due to the locally
uniform convergence, the derivative of F satisfies

F ′(z) = lim
N→∞

N∑
l=1

N∏
n=1
n6=l

αn − z
βn − z

d

dz

αl − z
βl − z

= lim
N→∞

N∑
l=1

N∏
n=1
n6=l

αn − z
βn − z

αl − βl
(βl − z)2

= F (z) lim
N→∞

N∑
l=1

( 1

βl − z
− 1

αl − z

)
(3.21)

for all z ∈ %(A) ∩ %(B). We apply Lemma 3.6 below and obtain

(3.21) =− F (z)
〈 1

A− z
φ,

1

B − z
φ
〉
. (3.22)

Now, the resolvent identity implies for all z ∈ %(A) ∩ %(B)

1

B − z
− 1

A− z
= − 1

A− z
φ
〈 1

B − z̄
φ, ·

〉
(3.23)

which provides the equality

1

A− z
φ =

1

1− 〈 1
B−z̄φ, φ〉

1

B − z
φ. (3.24)

Inserting this into (3.22), we see that F solves the differential equation

F ′(E) = F (E)
1

〈φ, 1
B−Eφ〉 − 1

〈
φ,
( 1

B − E

)2
φ
〉

(3.25)

at least for all E ∈ %(A) ∩ %(B) ∩ R. On the other hand the resolvent of B is analytic in
%(B) and the function t 7→ 〈φ, 1

B−tφ〉 − 1, t < 0, solves the above ODE (3.25) as well.

Now, the general solution to this ODE is f(t) = x0 exp
( ∫ t

t0
ds 1
〈φ, 1

B−sφ〉−1
〈φ,
(

1
B−s

)2
φ〉
)

,

for some initial condition (t0, x0). Note that the functions t 7→ F (t) and t 7→ 〈φ, 1
B−tφ〉−1

are non-zero, thus 〈φ, 1
B−tφ〉 − 1 = cF (t) for some c 6= 0. This and the identity theorem

for analytic functions give the claim. Equation (3.14) follows from F (z)G(z) = 1 and the
identity (〈

φ,
1

B − z
φ
〉
− 1
)(〈

φ,
1

A− z
φ
〉

+ 1
)

= −1, (3.26)

for all z ∈ %(A) ∩ %(B) which is a consequence of (3.23). �
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Lemma 3.6. Let z ∈ %(A) ∩ %(B). Assume (3.2). Then, we obtain the following identity

lim
N→∞

N∑
l=1

( 1

βl − z
− 1

αl − z

)
= −

〈 1

A− z̄
φ,

1

B − z
φ
〉
. (3.27)

Let us point out that in the finite-dimensional case the above equality follows directly
from the resolvent equation, (3.23). Nevertheless, the infinite-dimensional case is slightly
more involved due to convergence issues.

Proof. For λ ∈ R we define the operator

A(λ) := A+ λ|φ〉〈φ| (3.28)

and write αl(λ) for the lth eigenvalue counted from above and ϕl(λ) for the corresponding
eigenvector. Following the proof of Lemma 3.2 we obtain differentiability of the of αl(·)
with

α′l(λ) = |〈ϕl(λ), φ〉|2. (3.29)

Hence, we compute for z ∈ C with Im z 6= 0

lim
N→∞

N∑
l=1

( 1

βl − z
− 1

αl − z

)
=− lim

N→∞

N∑
l=1

∫ 1

0
dλ
( 1

αl(λ)− z

)2
α′l(λ)

=− lim
N→∞

N∑
l=1

∫ 1

0
dλ
( 1

αl(λ)− z

)2∣∣〈ϕl(λ), φ
〉∣∣2. (3.30)

The eigenvalue equation implies

(3.30) =− lim
N→∞

N∑
l=1

∫ 1

0
dλ
〈 1

A(λ)− z̄
φ, ϕl(λ)

〉〈
ϕl(λ),

1

A(λ)− z
φ
〉

=−
∫ 1

0
dλ
〈
φ,
( 1

A(λ)− z

)2
φ
〉
, (3.31)

where we used Fubini’s theorem to interchange the integral with the sum and the fact that
the vectors

(
ϕl(λ)

)
l∈N form an ONB. The resolvent identity (3.23) implies

1

A(λ)− z
φ =

1

1 + λ〈φ, 1
A−zφ〉

1

A− z
φ. (3.32)

Therefore, we continue

(3.31) =−
∫ 1

0
dλ
〈
φ,
( 1

A− z

)2
φ
〉( 1

1 + λ〈φ, 1
A−zφ〉

)2

=−
〈
φ,
( 1

A− z
)2
φ
〉 ∫ 1

0
dλ

d

dλ

(
1

1 + λ〈φ, 1
A−zφ〉

)
1

〈φ, 1
A−zφ〉

=
〈φ,
(

1
A−z

)2
φ〉

〈φ, 1
A−zφ〉

(
1−

( 1

1 + 〈φ, 1
A−zφ〉

))

=−
〈φ,
(

1
A−z

)2
φ〉

1 + 〈φ, 1
A−zφ〉

. (3.33)



34 3. THE GROUND-STATE OVERLAP FOR DIRAC-δ PERTURBATIONS

Equation (3.32) with λ = 1 provides the assertion

(3.33) = −
〈 1

A− z̄
φ,

1

B − z
φ
〉
. (3.34)

We note that both sides of (3.27) are continuous within %(A) ∩ %(B). For the left hand
side this follows from the finiteness of (3.4) and for the right hand side from the continuity
of the resolvent. Therefore, we obtain the result for all z ∈ %(A) ∩ %(B). �

2. Zero-range Interactions

In this section we define Dirac-δ perturbations for systems on (0,∞) and R3, and for
a given L > 0, we define its restrictions to the finite volume (0, L) respectively to the ball
BL(0) of radius L around the origin. Our definitions and notations are close to [AGHH05,
Chap. 1].

We begin with the 3-dimensional case, i.e. let d = 3. Throughout this chapter we denote
by H = −∆ the negative Laplacian on L2(R3) with dom(−∆) = H2(R3). Furthermore,
we consider the operator

−∆0 : C∞c
(
R3 \ {0}

)
→ L2

(
R3
)

(3.35)

and observe that this operator has deficiency indices (1, 1), see [AGHH05, Chap. 1]. Thus,
we obtain a one-parameter family of self-adjoint extensions of −∆0 which we call Hα and
−∞ < α 6∞. Each of these self-adjoint extensions Hα defines a negative Laplacian with
a Dirac-δ perturbation located at the origin. For computations, we need a less abstract
representation of the Dirac-δ perturbation. Therefore, we decompose the operators H and
Hα with respect to angular momentum. Following [AGHH05, Chap. 1], there exists a
unitary operator

U : L2(R3)→
⊕
`∈N0

⊕
−`6m6`

H`,m, (3.36)

where H`,m = L2
(
(0,∞)

)
, such that under this unitary U both operators H and Hα

transform into

UH(α)U
∗ =

⊕
`∈N0

⊕
−`6m6`

h`(α) :
⊕
`∈N0

⊕
−`6m6`

H`,m →
⊕
`∈N0

⊕
−`6m6`

H`,m. (3.37)

The operators h` and h`α coincide for all ` > 1 and are given by

h` := h`α := − d2

dr2
+
`(`+ 1)

r2
, (3.38)

with the domain

dom(h`(α)) :=
{
f ∈ L2

(
(0,∞)

)
: f, f ′ ∈ ACloc

(
(0,∞)

)
, h`f ∈ L2

(
(0,∞)

)}
,

⊂ L2
(
(0,∞)

)
, (3.39)

whereas in the case ` = 0, which we call the lowest angular momentum channel,

h0 := − d2

dr2
, and h0

α := − d2

dr2
(3.40)
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with the two different domains

dom(h0) :=
{
f ∈ L2

(
(0,∞)

)
: f, f ′ ∈ ACloc

(
(0,∞)

)
, f ′′ ∈ L2

(
(0,∞)

)
,

f(0+) = 0
}
⊂ L2

(
(0,∞)

)
, (3.41)

dom(h0
α) :=

{
f ∈ L2

(
(0,∞)

)
: f, f ′ ∈ ACloc

(
(0,∞)

)
, f ′′ ∈ L2

(
(0,∞)

)
− 4παf(0+) + f ′(0+) = 0

}
⊂ L2

(
(0,∞)

)
. (3.42)

Here, ACloc

(
(0,∞)

)
denotes the set of all locally absolutely continuous functions on

(0,∞). We refer also to [Tes09, Chap. 10] for a more detailed derivation of the angu-
lar momentum decomposition.

Remarks 3.7. (i) Let us emphasise that the difference of H and Hα takes place in
the lowest angular momentum channel, i.e. ` = 0, only. Thus, we are effectively left with
the pair of operators h0 and h0

α on the half axis (0,∞), where the pair corresponds to the
negative Laplacian with a different boundary condition at 0.

(ii) Since H itself is a self-adjoint extension of −∆0, we remark that H = H∞ as well
as h0 = h0

∞, i.e. α =∞ corresponds to −∆.
(iii) Moreover, H is the biggest self-adjoint extension of −∆0. More precisely, for all

α ∈ R
Hα 6 H, respectively h0

α 6 h
0. (3.43)

(iv) The operator h0 corresponds to the negative Laplacian on the half axis with a
Dirichlet boundary condition at 0. The operator h0

0 corresponds to the negative Laplacian
with a Neumann boundary condition at 0.

(v) In the case α > 0 we have

0 6 Hα and 0 6 h0
α, (3.44)

whereas in the case α < 0 both operators Hα and h0
α admit the single negative eigenvalue

µ1 := −(4πα)2 (3.45)

with an exponentially decaying eigenfunction, see [AGHH05, Thm. 1.1.4].

Since we are interested in restrictions to finite volumina, we will not go into more
details about a Dirac-δ perturbation in the infinite volume.Now, let L > 0 and we denote
by | · |2 the Euclidean norm on R3 and consider the self-adjoint extensions of

−∆0,L : C∞c
(
BL(0) \ {0}

)
→ L2

(
BL(0)

)
, (3.46)

where BL(0) := {x ∈ R3 : |x|2 6 L} is the ball of radius L around the origin. this operator
has deficiency indices (1, 1) as well, and we call its self-adjoint extensions Hα,L, which are
Dirac-δ perturbations of the negative Laplacian on the ball with Dirichlet boundary condi-
tions. The spherical symmetry of the ball allows us to mimic the above angular momentum
decomposition and we infer the existence of a unitary

UL : L2
(
BL(0)

)
→
⊕
`∈N0

⊕
−`6m6`

H`,mL , (3.47)

where in this case H`,mL = L2
(
(0, L)

)
, such that

UH(α),LU
∗ :=

⊕
`∈N0

⊕
−`6m6`

h`(α),L :
⊕
`∈N0

⊕
−`6m6`

H`,mL →
⊕
`∈N0

⊕
−`6m6`

H`,mL . (3.48)
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For all ` > 1

h`α,L = h`L := − d2

dr2
+
`(`+ 1)

r2
, (3.49)

with the domain

dom(h`(α),L) :=
{
f ∈ L2

(
(0, L)

)
: f, f ′ ∈ ACloc

(
(0, L)

)
, h`f ∈ L2

(
(0, L)

)
;

f(L−) = 0
}
⊂ L2

(
(0, L)

)
. (3.50)

In the ` = 0 channel we obtain

h0
L,α := − d2

dr2
and h0

L := − d2

dr2
(3.51)

with the domains

dom(h0
L,α) :=

{
f ∈ L2

(
(0, L)

)
: f, f ′ ∈ ACloc

(
(0, L)

)
, f ′′ ∈ L2

(
(0, L)

)
,

− 4παf(0+) + f ′(0+) = 0; f(L−) = 0
}
⊂ L2

(
(0, L)

)
, (3.52)

dom(h0
L ) :=

{
f ∈ L2

(
(0, L)

)
: f, f ′ ∈ ACloc

(
(0, L)

)
, f ′′ ∈ L2

(
(0, L)

)
,

f(0+) = 0; f(L−) = 0
}
⊂ L2

(
(0, L)

)
. (3.53)

Remarks 3.8. (i) The only difference to the operators on the infinite-volume is the
additional Dirichlet boundary condition at L.

(ii) Obviously, HL is the Dirichlet Laplacian on the ball BL(0) and we refer to Hα,L

as the Dirichlet Laplacian on BL(0) with a Dirac-δ perturbation.

Lemma 3.9. In the case α > 0 we obtain the operator inequalities

0 6 Hα,L and 0 6 h0
α,L. (3.54)

In the case α < 0 we have at least the uniform lower bound

− (4πα)2 6 Hα,L and equivalently − (4πα)2 6 h0
α,L. (3.55)

Proof. This lemma follows e.g. from Dirichlet-Neumann bracketing. Let h`Lc be the restric-
tion of h` to (L,∞) with a Dirichlet boundary condition at L. Then, Dirichlet-Neumann
bracketing, see [RS78], implies h`α 6 h

`
α,L⊕h`Lc . Thus, Remark 3.7(v) gives the claim. �

Since HL and Hα,L differ only by a boundary condition, the difference seems to be
quite small, this is indeed the case in the following sense.

Lemma 3.10. Let z ∈ %(HL) ∪ %(Hα,L) . Then, there exists a ηαL,z ∈ L2
(
BL(0)

)
such

that the difference of the resolvents satisfies
1

HL − z
− 1

Hα,L − z
= |ηαL,z〉〈ηαL,z|. (3.56)

The same is apparently true for the resolvents of h0
L and h0

α,L with the vector
(
ULη

α
L,z

)
∈

L2
(
(0, L)

)
.

Proof. First note that hL and hα,L are both self-adjoint extensions of −∆ with
dom(−∆) :=

{
u ∈ C2

c

(
(0, L)

)
: u(L−) = 0

}
. Moreover, the deficiency indices of the

latter are (1, 1). Thus, the lemma follows from [AGHH05, Thm. A.2] or [Tes09, Lem.
2.29]. �
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Standard results imply the compactness of the resolvent of HL, which is just the
Dirichlet Laplacian on the bounded domain ΛL. Now, Lemma 3.10 provides compactness
of the resolvent of Hα,L as well and we denote by

λL1 6 λ
L
2 6 · · · and µL1 6 µ

L
2 6 · · · (3.57)

the corresponding eigenvalues of HL and Hα,L, counting multiplicities, and by

λL1 (l) 6 λL2 (l) 6 · · · and µL1 (l) 6 µL2 (l) 6 · · · (3.58)

the eigenvalues of h`L and h`α,L. Then,

σ(HL) =
⋃
`∈N0

⋃
−`6m6`

⋃
k∈N

λLk (`) σ(Hα,L) =
⋃
n∈N

µLn(0) ∪
⋃
`∈N

⋃
−`6m6`

⋃
k∈N

λLk (`).

(3.59)

We saw that the perturbation is small in the sense of a rank-one perturbation in the
resolvent but the perturbation is L-dependent, thus, not compactly supported. Moreover,
we obtain that the eigenvalues of HL and Hα,L interlace. But for our application in mind,
we need to know slightly more about the eigenvalues of HL and Hα,L. To formulate this,
we continue with the definition of the scattering phase shift.

Definition 3.11 (Scattering phase shift). Let k > 0. Then, the scattering phase shift is
defined by

δα(k) := arctan
( k

4πα

)
for α > 0, (3.60)

δα(k) := π − arctan
( k

4π|α|

)
for α 6 0, (3.61)

where we use the convention arctan
(k

0

)
:=

π

2
for k > 0.

Remark 3.12. The separate definitions of the phase shift are reminiscent of the existence
of a negative eigenvalue whenever α < 0 and related to Levinson’s theorem which states
that δα(0)/π gives the number of negative eigenvalues, see [RS79].

The eigenvalues of h0
L can be computed explicitly, see [RS78], i.e. for n ∈ N

λn =
(nπ
L

)2
. (3.62)

The eigenvalues of h0
α,L admit the following simple representation in terms of the eigen-

values of h0
L and the phase shift.

Lemma 3.13. Let δα be given by Definition 3.11. Then,

(i) for α > 0 and n ∈ N the nth eigenvalue of h0
L and h0

α,L satisfy

0 6
√
µn =

√
λn −

δα(
√
µn)

L
, (3.63)

(ii) for α 6 0 and n > 1 the nth eigenvalue of h0
L and h0

α,L satisfy

0 6
√
µn =

√
λn −

δα(
√
µn)

L
, (3.64)
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(iii) and δ exhibits the following expansion

δα(
√
µn) = δα(

√
λn)− δ′α(

√
λn)δα(

√
λn)

L
+ o
( 1

L

)
, (3.65)

which is valid for all µn > 0 and the error term depends on α but is independent
of n.

Proof. Let k > 0. Consider the eigenvalue problem

− u′′k = k2uk, −4παuk(0+) + u′k(0+) = 0. (3.66)

Introducing Prüfer variables

uk(x) = ρu(x) sin(θk(x)) u′k(x) = kρu(x) cos(θk(x)), (3.67)

we see that any non-zero solution of (3.66) is of the form

uk(x) := a sin
(
kx+ arctan

( k

4πα

))
, (3.68)

for some 0 6= a ∈ C. Since any eigenfunction uk to an eigenvalue k2 of h0
α,L is a solution

of (3.66) in (0, L) and additionally fulfils uk(L−) = 0 we obtain that

uk(L) = a sin
(
kL+ arctan

( k

4πα

))
= 0. (3.69)

On the other hand, all k2 such that (3.69) is satisfied are eigenvalues of h0
α,L. Since the

function k 7→ kL+ arctan
(

k
4πα

)
is strictly increasing we obtain for any n ∈ N an unique

eigenvalue µn > 0 of h0
α.L such that

√
µnL+ arctan

(√µn
4πα

)
= nπ, (3.70)

where µ1 < µ2 < · · · . This proves (i). For the case α < 0 note that h0
α,L admits a single

negative eigenvalue. Therefore, (3.70) is only valid starting from the second eigenvalue of
h0
α,L. This implies for all n ∈ N

√
µn+1 =

√
λn −

arctan
(√µn+1

4πα

)
L

=
√
λn+1 −

π − arctan
(√µn+1

4π|α|
)

L
. (3.71)

(iii) follows directly from (i), (ii) and Definition (3.11) of the phase shift. �

Remark 3.14. Later, we extend this lemma also for pairs of Schrödinger operators on
L2 ((0, L)) which differ be a non-negative multiplication operator, see Lemma 4.11.

Corollary 3.15. The eigenvalues of h0
L and h0

α,L fulfil

µL1 (0) < λL1 (0) < µL2 (0) < λL2 (0) < · · · . (3.72)

Proof. Note that |δα(k)| < π for all k > 0. Thus, (3.62) and (3.64) imply the corollary. �

Remark 3.16. At the end of this section let us briefly comment on Dirac-δ perturbations
in other dimensions. Considering d > 4, the operator −∆0 given in (3.35) is essentially
self-adjoint [RS75, Thm. X.11] and we have a unique self-adjoint extension: the negative
Laplacian. In d = 2, a Dirac-δ can be defined, see [AGHH05, Sct. I.5], but Lemma 3.13
will not be as easy as in the d = 3 case since the operator in the lowest angular momentum
channel is d2/dx2 − 1/(4| · |2). In the d = 1 case the deficiency indices are (2, 2) and in
general this results in a rank-two perturbation in the resolvent, see [AGHH05, Sct. I.3].
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Thus, we cannot directly apply the product representation in Theorem 3.3, which is valid
for rank-one perturbations only.

3. The Exact Asymptotics of the Ground-State Overlap

We denote by
(
ϕLj
)
j∈N and

(
ψLk
)
k∈N the normalised eigenvectors of the operators HL

and Hα,L, defined in the previous section, corresponding to the sequences of the eigenvalues(
λLj
)
j∈N and

(
µLk
)
k∈N, where we choose the same eigenvectors for HL and Hα,L in any

angular momentum channel ` > 1. This choice ensures that the eigenfunctions of HL and
Hα.L differ in the lowest angular momentum channel only. Moreover, we write

(
ϕLj (0)

)
j∈N

and
(
ψLk (0)

)
k∈N for the eigenfunctions corresponding to the lowest angular momentum

channel.

With this choice of the eigenfunctions we obtain the following asymptotics of the
ground-state overlap:

Theorem 3.17. Let E > 0 and N(·)(E) : R+ → N an arbitrary function subject to

NL(E)

|BL(0)|
→ ρ(E) :=

E3/2

8π3
, (3.73)

where ρ denotes the integrated density of states of the operator H. Then, the ground-state
overlap corresponding to the pair of operators HL and Hα,L admits the asymptotics∣∣SNL(E)

L

∣∣2 :=
∣∣∣det

(
〈ϕLj , ψLk 〉

)
16j,k6NL(E)

∣∣∣2 = L−
1
π2
δ2α(
√
E)+o(1) (3.74)

as L→∞, equivalently,

lim
L→∞

|SNL(E)
L

∣∣
lnL

= − 1

2π2
δ2
α(
√
E), (3.75)

and δα is given in Definition 3.11 above.

Remark 3.18. We choose the same eigenfunctions in the l > 1 angular momentum chan-
nels because we are considering an s-wave scattering problem. In principle, this choice

is only necessary if λLNL(E) is degenerate and SNL(E)
L takes only a proper subset of the

eigenfunctions in the λLNL(E) eigenspace into account.

Remarks 3.19. (i) Note that the result is valid for arbitrary thermodynamic limits
and independent of the latter but the o(1)-error term in (3.74) deduced in the proof
depends on the particular choice of the thermodynamic limit. We do not believe that it
can be substantially improved for arbitrary thermodynamic limits, see especially equations
(3.110) and (3.111).

(ii) Due to s-wave scattering the S-matrix for the pair of Schrödinger operators H
and Hα can be reduced to a complex number of modulus 1. This number is equal to

SE = e2iδα(
√
E), see [RS79, Sct. XI.8], where we chose the scattering phase shift as in

Definition 3.11. Next, we compare the exponent found in Theorem 3.17 above with the
exponent γ(E) = 1

π2 ‖arcsin |TE/2|‖2HS found in [GKMO14]. To do this, we compute using
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TE = SE − I
1

π2
‖arcsin |TE/2|‖2HS =

1

π2

(
arcsin

(
|e2iδα(

√
E) − 1|/2

))2
=

1

π2

(
arcsin

(
sin
(
δα(
√
E)
)))2

=

{
1
π2 δ

2
α(
√
E), δα(

√
E) 6 π/2

1
π2 (δα(

√
E)− π)2, δα(

√
E) > π/2.

(3.76)

Hence, we obtain in the case α < 0

δ2
α(
√
E)

π2
>

1

π2
‖arcsin |TE/2|‖2HS. (3.77)

This implies that in general the decay exponent in the asymptotics of the ground-state
overlap is not given by the decay exponent γ(E) = 1

π2 ‖arcsin |TE/2|‖2HS.

The definition of the Dirac-δ perturbation and our choice of the eigenfunctions in higher
angular momentum channels imply that Theorem 3.17 follows from the analogous result
on the half axis.

Theorem 3.20. Let E > 0 and N0
(·)(E) : R+ → N an arbitrary function subject to

N0
L(E)

L
→ ρ0(E) :=

√
E

π
, (3.78)

where ρ0 denotes the integrated density of states of the operator h0. Then, the ground-state
overlap corresponding to the pair of operators h0

L and h0
α,L admits the asymptotics∣∣SN0

L(E)
L

∣∣2 :=
∣∣∣det

(
〈ϕLj (0), ψLk (0)〉

)
16j,k6N0

L(E)

∣∣∣2 = L−
1
π2
δ2α(
√
E)+o(1) (3.79)

as L→∞, and δα is given by Definition 3.11 above.

The above deals with a problem on the half-axis. Due to symmetry, one can easily
deduce also a result for the ground-state overlap for systems on (−L,L) with different
boundary conditions at the endpoints ±L. We sketch this. Let

H̄L := −∆L and H̄α,L := −∆α,L (3.80)

be both negative Laplacians on (−L,L), where H̄L admits Dirichlet boundary conditions
at the endpoints ±L and H̄α,L admits the boundary conditions −4παf(L±)+f ′(L±) = 0
at ±L for some α ∈ R. Then, we obtain the following asymptotics of the ground-state
overlap.

Corollary 3.21. Let E > 0 and N̄(·)(E) : R+ → N an arbitrary function subject to

N̄L(E)

2L
→ ρ̄(E) :=

√
E

2π
. (3.81)

Then, the ground-state overlap corresponding to H̄L and H̄α,L admits the asymptotics∣∣SN̄L(E)
L

∣∣2 = L−ζ(E)+o(1) (3.82)

as L→∞. Here,

ζ(E) :=
2

π2
δ2
α(
√
E) (3.83)

and δα is given by Definition 3.11.
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Proof. We only sketch the proof. Since we chose the same boundary conditions at ±L, we
can decompose the operators H̄L and H̄α,L with respect to odd and even functions. There-

fore, the operators H̄(α),L are unitarily equivalent to the direct sum h̄
(α)
L ⊕ h̄

(α)
0,L acting on

L2
(
(0, L)

)
⊕L2

(
(0, L)

)
. Here, h̄

(α)
L are negative Laplacians with a Dirichlet boundary con-

dition at 0 and h̄
(α)
0,L with a Neumann b.c. at 0. The operators h̄L and h̄0,L admit a Dirichlet

b.c. at L, whereas the operators h̄αL and h̄α0,L admit the b.c. −4παf(L−) +f ′(L−) = 0 at
L. In this way, we reduced the problem to two separate problems on the half-axis and the
determinant is decomposed into two determinants. We use for each determinant the result
of Theorem 3.20 where we have to modify Lemma 3.13 accordingly due to the different
boundary conditions. But this does not change the results of Lemma 3.13. �

3.1. Proof of Theorem 3.17 and Theorem 3.20. We start with the 3-dimensional
case and decompose the determinant SNL(E)

L according to the angular momentum decom-
position (3.37). This implies∣∣∣ det

(
〈ϕLj , ψLk 〉

)
16j,k6NL(E)

∣∣∣2 =
∏
l∈N0

∣∣∣det
(
〈ϕLj (`), ψLk (`)〉

)
16j,k6N l

L(E)

∣∣∣2(2`+1)
, (3.84)

where ϕLj (`) and ψLk (`) correspond to the radial part of the eigenfunctions lying in the `-th

angular momentum channel and N `
L(E) to the relative particle number in the `-th angular

momentum channel. More precisely,

N `
L(E) := #

{
k ∈ N : ∃ j ∈ {1, · · · , NL} with λLk (`) = λLj

}
(3.85)

where
(
λLk (`)

)
k∈N denote the eigenvalues of h`L as defined in (3.58). Since we chose the

eigenfunctions of HL and Hα,L to be the same in every angular momentum channel ` > 1
we obtain that only the ` = 0 term in the product (3.84) is different from 1. Hence,∣∣∣det

(
〈ϕLj , ψLk 〉

)
16j,k6NL(E)

∣∣∣2 =
∣∣∣ det

(
〈ϕLj (0), ψLk (0)〉

)
16j,k6N0

L(E)

∣∣∣2, (3.86)

and we reduced the 3-dimensional problem to a problem on the half-axis with the relative
particle number N0

L(E). Now, this number satisfies.

Lemma 3.22. Given E > 0. Let L and NL(E) ∈ N such that NL(E)
|BL(0)| → ρ(E) as L→∞.

Then,
N0
L(E)

L
→
√
E

π
= ρ0(E), (3.87)

as L→∞.

Proof. For any E > 0

lim
L→∞

#{k : λLk 6 E}
|BL(0)|

= ρ(E) = lim
L→∞

NL(E)

|BL(0)|
, (3.88)

where the first equality follows from e.g. [Sto01, App. 4.1]. Hence, we obtain for an arbitrary
ε > 0 the inequalities

#{k : λLj 6 E − ε} 6 NL(E) 6 #{j : λLj 6 E + ε} (3.89)

for L large enough. Since ρ is given explicitly in (3.73) we know that it is strictly increasing.
Hence, λLNL(E) → E. Therefore, λL

N0
L(E)

(0)→ E as well because otherwise there would be
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a gap in the spectrum of h0 by the definition of the relative particle number N0
L(E). This

implies for an arbitrary ε > 0 and L large enough∣∣∣N0
L(E)

L
−

#{k : λLk (0) 6 E}
L

∣∣∣ 6 ∣∣∣#{k :
(
kπ
L

)2 ∈ (E − ε, E + ε)}
L

∣∣∣
6

c√
E
ε, (3.90)

for some constant c. Since #{k : λLk (0) 6 E}/L → ρ0(E), as L → ∞ by definition, this
yields the claim. �

The above implies that the 3-dimensional case completely reduces to the model on
the half-axis and Theorem 3.17 follows from Theorem 3.20. Therefore, we are left with
a problem concerning the eigenvalues

(
λLj (0)

)
j∈N,

(
µLk (0)

)
k∈N and the eigenfunctions(

ϕLj (0)
)
j∈N,

(
ψLk (0)

)
k∈N in the ` = 0 angular momentum channel only.

In the following we drop both the ` = 0 parameter and the index L to shorten notation,
whenever this is convenient.

Next, we apply the product formula deduced in Theorem 3.3 to the determinant.

Lemma 3.23. Let N ∈ N. Then,∣∣∣ det
(
〈ϕj , ψk〉

)
16j,k6N

∣∣∣2 =

N∏
j=1

∞∏
k=N+1

|µk − λj | |λk − µj |
|λk − λj | |µk − µj |

. (3.91)

Proof. We want to apply Theorem 3.3 to the resolvents of h0
α,L and h0

L. Thus, we check

the assumptions of this theorem. First, note that h0
α,L and h0

L are uniformly bounded from

below by Lemma 3.9. Therefore, E ∈ %(h0
L) ∩ %(h0

α,L) for some E < inf σ(h0
α,L) and the

operators 1
h0L−E

and 1
h0α,L−E

are non-negative with trivial kernel. Moreover, by Lemma 3.10

1

h0
L − E

− 1

h0
α,L − E

= |ηE,αL 〉〈ηE,αL |, (3.92)

for some ηLE ∈ L2
(
(0, L)

)
. In addition, Corollary 3.15 provides the strict interlacing of the

eigenvalues
1

µ1 − E
>

1

λ1 − E
>

1

µ2 − E
>

1

λ2 − E
> · · · (3.93)

and the explicit representation of the eigenvalues of h0
α,L and h0

L given in Lemma 3.13
imply

∞∑
n=1

( 1

µn − E
− 1

λn − E

)
<∞. (3.94)

Thus, the resolvents 1
h0L+E

and 1
h0α,L+E

satisfy the assumptions of Theorem 3.3 and we

end up with∣∣∣ det
(
〈ϕj , ψk〉

)
16j,k6N

∣∣∣2 =
N∏
j=1

∞∏
k=N+1

∣∣ 1
µk−E −

1
λj−E

∣∣∣∣ 1
λk−E −

1
µj−E

∣∣∣∣ 1
λk−E −

1
λj−E

∣∣∣∣ 1
µk−E −

1
µj−E

∣∣
=

N∏
j=1

∞∏
k=N+1

|µk − λj | |λk − µj |
|λk − λj | |µk − µj |

. (3.95)
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�

Now, we are in position to prove the main result.

Proof of Theorem 3.20. We start with the product representation given in Lemma 3.23.
Note that for α < 0 there is an ambiguity since there exists precisely one negative eigenvalue
µ1. Therefore, we treat the j = 1 term in the product separately. We define

ANL :=
∞∏

k=N+1

|µk − λ1| |λk − µ1|
|λk − λ1| |µk − µ1|

=
∞∏

k=N+1

∣∣∣1 +
(µk − λk)(λ1 − µ1)

(λk − λ1)(µk − µ1)

∣∣∣ (3.96)

and estimate using Corollary 3.15

∞∑
k=N+1

∣∣∣(µk − λk)(λ1 − µ1)

(λk − λ1)(µk − µ1)

∣∣∣ 6 |λ1 − µ1|
∞∑

k=N+1

( (
kπ
L

)2 − ( (k−1)π
L

)2)((
kπ
L

)2 − ( πL)2)(( (k−1)π
L

)2 − ( πL)2)
6
L2

π2
|λ1 − µ1|

∞∑
k=N+1

(2k − 1)

(k2 − 1)(k2 − 2k)

6 c
( L
N

)2∣∣λ1 − µ1

∣∣. (3.97)

Since hαL is uniformly bounded from below with respect to L, see Lemma 3.9,

lnANL = ln

( ∞∏
k=N+1

|µk − λ1| |λk − µ1|
|λk − λ1| |µk − µ1|

)
= O(1) (3.98)

as N,L → ∞ and N
L → ρ(E) > 0. Therefore, we are left with a product consisting of

the non-negative eigenvalues and apply Lemma 3.23, use Lemma 3.13 (i) and
√
λn = nπ

L ,
n ∈ N, to obtain

ln
∣∣∣det

(
〈ϕj , ψk〉

)
16j,k6N

∣∣∣2 (3.99)

= lnANL +
N∑
j=2

∞∑
k=N+1

ln

(∣∣ (kπ − δα(
√
µk)
)2 − (jπ)2

∣∣∣∣ ((kπ))2 −
(
jπ − δα(

√
µj)
)2 ∣∣∣∣ (kπ)2 − (jπ)2

∣∣∣∣ (kπ − δα(
√
µk)
)2 − (jπ − δα(

√
µj)
)2 ∣∣

)
.

(3.100)

In the following the O(1) and o(1) terms refer to the asymptotics L,N → ∞,
N/L → ρ0(E) > 0. Equation (3.98) above, Lemma 3.26 below and the abbreviation
gk := − 1

π δα(
√
µk) for k ∈ N yield

(3.100) = −
N∑
j=2

∞∑
k=N+1

(
2jgj + g2

j

) (
2kgk + g2

k

)(
(k + gk)

2 − (j + gj)
2 )(k2 − j2

) + O (1) . (3.101)

Using Lemma 3.27 and the abbreviation δk := − 1
π δα(
√
λk) for k ∈ N

(3.101) = −
N∑
j=2

∞∑
k=N+1

(
2jδj + δ2

j

)(
2kδk + δ2

k

)(
(k + δk)

2 − (j + δj)
2 )(k2 − j2

) + O (1) . (3.102)
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Lemma 3.28 implies

(3.102) = −
N∑
j=2

2N∑
k=N+1

4jkδjδk(
k2 − j2

)2 + O(1). (3.103)

Lemma 3.29 yields

(3.103) = − 1

π2

∫ N
L

0
dx

∫ 2N
L

N+1
L

dy
4xyδα(xπ)δα(yπ)

(y2 − x2)2
+ O(1). (3.104)

We define for 0 6 x < y

g(x, y) :=
4xyδα(πx)δα(πy)

(y + x)2
(3.105)

The explicit representation of δα implies for all ε > 0

sup
b>ε

sup
(x,y)∈(0,b)×(b,∞)

∣∣(∇g)(x, y)
∣∣
2

:= c(ε) <∞. (3.106)

Therefore, using the mean value theorem and the Cauchy-Schwarz inequality, we compute
for a 0 < ε <

√
E and N,L big enough∫ N

L

0
dx

∫ 2N
L

N
L

+ 1
L

dy
∣∣∣4xyδα(xπ)δα(yπ)

(y + x)2
− δ2

α (N/L)
∣∣∣ 1

(y − x)2

6c(ε)
∫ N

L

0
dx

∫ 2N
L

N
L

+ 1
L

dy
∣∣(N/L− x, y −N/L)∣∣

2

1

(y − x)2

62c(ε)

∫ N
L

0
dx

∫ 2N
L

N
L

+ 1
L

dy
1

(y − x)
= O(1), (3.107)

where we used the inequality∣∣x−N/L∣∣+
∣∣y −N/L∣∣

(y − x)2
6 2

1

(y − x)
, (3.108)

which is valid for all x < N/L < y. Moreover, we compute∫ N
L

0
dx

∫ 2N
L

N
L

+ 1
L

dy
1

(y − x)2
= lnL+ ln

(N + 1

2L

)
= lnL+ O(1) (3.109)

as N
L →

√
E
π > 0. Hence, combining equation (3.107) and (3.109), we end up with

(3.104) = − lnL
1

π2
δ2
α(πN/L) + O(1) (3.110)

= − lnL
1

π2
δ2
α(
√
E) + o(lnL), (3.111)

where the last line follows from πNL →
√
E. Taking the exponential, the assertion follows.

�

Remark 3.24. The above δ-approximation argument is quite similar to the one used in
Lemma 2.21.
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3.2. Auxiliary Lemmata. In this paragraph we prove the missing lemmata to deduce
Theorem 3.20 and also Theorem 3.17. We do not claim to give optimal or elegant estimates.
Throughout this section we restrict ourselves to the case α < 0 and drop the index α to
ease notation. This implies the following estimates on the phase shift

δ(x) > δ(y) and δ(x)− δ(y) > 0, (3.112)

for x < y, which we use in the sequel. The case α > 0 is even simpler since in that case
the definition of the phase shift (3.11) implies the uniform bound

‖δ‖∞ 6
π

2
, (3.113)

which simplifies some of the following estimates. Moreover, we use the elementary asymp-
totics:

Lemma 3.25. (i)
∑
n∈N

1

nβ
<∞ for β > 1.

(ii)
N∑
j=1

∞∑
k=N+1

1

(k − j)2
= O(lnN), as N →∞.

(iii)
N∑
j=1

∞∑
k=N+1

1

(k − j)β
= O(1) for β > 2, as N →∞.

Proof. Using β > 1 ∑
n∈N

1

nβ
< 1 +

∫ ∞
1

dx
1

xβ
= 1 +

1

1− β
<∞. (3.114)

Let β > 2. Then, we estimate

N∑
j=1

∞∑
k=N+1

1

(k − j)β
6

N∑
j=1

∞∑
k=N+2

1

(k − j)β
+

N∑
j=1

1

(N + 1− j)β

6
∫ N

0
dx

∫ ∞
N+1

dy
1

(y − x)β
+
∑
n∈N

1

nβ
. (3.115)

Now, (ii) and (iii) follows from evaluating the integral and (i). �

Lemma 3.26. Set gk := − 1
π δ(
√
µk) for k ∈ N. Then,

N∑
j=2

∞∑
k=N+1

ln

((
(k + gk)

2 − j2
)(
k2 − (j + gj)

2 )(
(k + gk)

2 − (j + gj)
2 )(k2 − j2

))

=−
N∑
j=2

∞∑
k=N+1

(
2jgj + g2

j

) (
2kgk + g2

k

)(
(k + gk)

2 − (j + gj)
2 ) (k2 − j2)

+ O(1) (3.116)

as N,L→∞, N
L →

√
E
π .

Proof. We prove the assertion in two steps. First we consider the j = N and k = N + 1
summand. Note that Lemma 3.22 above and E > 0 imply

lim
N,L→∞

N/L→
√
E/π

gN = lim
N,L→∞

N/L→
√
E/π

gN+1 = −δ(
√
E)

π
> −1. (3.117)
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Thus, for j = N and k = N + 1

lim
N,L→∞

N/L→
√
E/π

ln

((
(N + 1 + gN+1)2 −N2

)(
(N + 1)2 − (N + gN )2 )(

(N + 1 + gN+1)2 − (N + gN )2 )((N + 1)2 −N2
))

= lim
N,L→∞

N/L→
√
E/π

ln

((
1 + gN+1

)(
1− gN

)(
1 + gN+1 − gN

) (
2N + 1 + gN+1

)(
2N + 1 + gN

)(
2N + 1 + gN+1 + gN

)(
2N + 1)

)

= ln
(

1− δ2(
√
E)

π2

)
. (3.118)

Moreover, along the same line using (3.117)

lim
N,L→∞

N/L→
√
E/π

−
(
2NgN + g2

N

) (
2(N + 1)gN+1 + g2

N+1

)(
(N + 1 + gN+1)2 − (N + gN )2 )((N + 1)2 −N2

) = −δ
2(
√
E)

π2
. (3.119)

Therefore, the j = N and k = N + 1 term is of order 1.

For j 6 N < N + 1 < k we want to apply the bound∣∣ ln(1 + x)− x
∣∣ 6 x2

2

1

1− |x|
(3.120)

for x ∈ R with |x| < 1, to x = xjk where

xjk := −
(
2jgj + g2

j

)(
2kgk + g2

k

)(
(k + gk)

2 − (j + gj)
2 )(k2 − j2

) . (3.121)

We estimate using |gn| 6 1 for all n ∈ N and gk − gj > 0

|xjk| 6
∣∣∣ (2j + gj)(2k + gk)

(j + gj + k + gk)(k + j)

∣∣∣∣∣∣ 1

(k − j + gk − gj)(k − j)

∣∣∣
6 2

1

(k − j)2
. (3.122)

Since j 6 N < N + 1 < k, this implies in particular |xjk| 6 1
2 , and we continue using

(3.120) and (3.122)

N∑
j=1

∞∑
k=N+2

∣∣ ln(1 + xjk)− xjk
∣∣ 6 N∑

j=1

∞∑
k=N+2

x2
jk

6
N∑
j=2

∞∑
k=N+1

4
( 1

k − j

)4
= O(1), (3.123)

as N →∞, where we used Lemma 3.25 in the last line. �

Lemma 3.27. Define δk := − 1
π δ(
√
λk) for k ∈ N. Then,

N∑
j=2

∞∑
k=N+1

∣∣∣∣
(
2jδj + δ2

j

) (
2kδk + δ2

k

)(
(k + δk)

2 − (j + δj)
2 ) −

(
2jgj + g2

j

) (
2kgk + g2

k

)(
(k + gk)

2 − (j + gj)
2 )∣∣∣∣ 1

(k − j)2
= o(1)

(3.124)

as N,L→∞, N
L →

√
E
π .
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Proof. First, using the expansion of Lemma 3.13, we obtain for all n ∈ N, n > 1,

|gn − δn| 6
1

π

∣∣δ(√µn − δ(√λn)
∣∣ 6 ‖δ‖∞‖δ′‖∞

πL
:=

c

L
, (3.125)

where the constant c > 0 depends only on α. We prove the assertion in two steps. In the
first step we consider the numerator only in the second step we consider the denominator.
Using (3.125) we estimate

N∑
j=2

∞∑
k=N+1

∣∣∣∣
(
2jδj + δ2

j

) (
2kδk + δ2

k

)
−
(
2jgj + g2

j

) (
2kgk + g2

k

)(
(k + gk)

2 − (j + gj)
2 ) (k2 − j2)

∣∣∣∣
6
C

L

N∑
j=2

∞∑
k=N+1

(j + 1)(k + 1)(
(k + gk)

2 − (j + gj)
2 ) (k2 − j2)

6
C

L

N∑
j=2

∞∑
k=N+1

(j + 1)(k + 1)

(k + j − 2) (k + j) (k − j)2 = O
( lnN

L

)
(3.126)

as N,L→∞, N
L →

√
E
π , where we used |gj + gk| 6 2, gk − gj > 0 for j < k and Lemma

3.25. In order to estimate the denominator we use (3.125) to obtain some constant c > 0
independent of j, k such that∣∣∣((k + gk)

2 − (j + gj)
2
)
−
(

(k + δk)
2 − (j + δj)

2
)∣∣∣ 6 ck + j

L
. (3.127)

Thus,
N∑
j=2

∞∑
k=N+1

(
2jδj + δ2

j

) (
2kδk + δ2

k

) ∣∣∣∣ 1(
(k + gk)

2 − (j + gj)
2 )(k2 − j2

)
− 1(

(k + δk)
2 − (j + δj)

2 )(k2 − j2
)∣∣∣∣

6
4c

L

N∑
j=2

∞∑
k=N+1

jk(k + j)(
k2 − j2

)2(
(k + gk)2 − (j + gj)2

)(
(k + δk)2 − (j + δj)2

)
6

4c

L

N∑
j=2

∞∑
k=N+1

jk(
k − j

)4(
k + j − 2

)2(
k + j

) = o(1) (3.128)

as N,L → ∞ N/L →
√
E
π , where we used |gk + gj | 6 2, |δk + δj | 6 2, gk − gj > 0 and

δk − δj > 0 for j < k. �

Lemma 3.28. The estimate∣∣∣∣ N∑
j=2

∞∑
k=N+1

(
2jδj + δ2

j

) (
2kδk + δ2

k

)(
(k + δk)

2 − (j + δj)
2 )(k2 − j2

) − N∑
j=2

2N∑
k=N+1

4jkδjδk
(k2 − j2)2

∣∣∣∣ = O(1)

(3.129)

holds as N,L→∞, N
L →

√
E
π .
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Proof. First, we bound the tail, i.e. using δk − δj > 0 for k > j and |δn| 6 1 for all n ∈ N
we estimate

N∑
j=2

∞∑
k=2N+1

(
2jδj + δ2

j

) (
2kδk + δ2

k

)(
(k + δk)

2 − (j + δj)
2 ) (k2 − j2)

6
N∑
j=2

∞∑
k=2N+1

1

(k − j)2

6
∞∑

k=2N+1

N

(k −N)2
= O(1), (3.130)

as N →∞. We insert ±
N∑
j=2

2N∑
k=N+1

4jkδjδk(
(k + δk)2 − (j + δj)2

)(
k2 − j2

) in (3.129). Thus, in

the next step δk − δj > 0 yields

N∑
j=2

2N∑
k=N+1

∣∣∣∣
(
2jδj + δ2

j

) (
2kδk + δ2

k

)
− 4jkδjδk(

(k + δk)
2 − (j + δj)

2 )(k2 − j2
) ∣∣∣∣

6
N∑
j=2

2N∑
k=N+1

∣∣∣∣ 2(k + j) + 1(
k − j

)2(
k + j

)(
k + j − 2)

)∣∣∣∣
63

N∑
j=2

2N∑
k=N+1

∣∣∣∣ 1(
k − j

)2(
k + j − 2

)∣∣∣∣ = O
( lnN

N

)
, (3.131)

as N → ∞, where we used Lemma 3.25 in the last line. In the third step, again |δn| 6 1
for n ∈ N yields

N∑
j=2

2N∑
k=N+1

4jk

(k2 − j2)

∣∣∣∣ 1(
(k + δk)

2 − (j + δj)
2 ) − 1(

k2 − j2
)∣∣∣∣

6
N∑
j=2

2N∑
k=N+1

9jk (k + j)(
k2 − j2

)2(
k + j − 2

)(
k − j

)
69

N∑
j=2

2N∑
k=N+1

1(
k − j

)3 = O(1), (3.132)

as N →∞, where we used Lemma 3.25. �

Lemma 3.29. The asymptotics∣∣∣∣ N∑
j=2

2N∑
k=N+1

4jkδjδk(
k2 − j2

)2 − 1

π2

∫ N
L

0
dx

∫ 2N
L

N+1
L

dy
4xyδ(xπ)δ(yπ)(

y2 − x2
)2 ∣∣∣∣ = O(1) (3.133)

holds as N,L→∞, N
L →

√
E
π .

Proof. We recall that δk := − 1
π δ(
√
λk) and we rewrite

N∑
j=2

2N∑
k=N+1

4jkδjδk(
k2 − j2

)2 =
1

L2π2

N∑
j=2

2N∑
k=N+1

4 jL
k
Lδ
( jπ
L

)
δ
(
kπ
L

)((
k
L

)2 − ( jL)2)2 . (3.134)
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Thus, we estimate∣∣∣∣ 1

L2

N∑
j=2

2N∑
k=N+1

j
L
k
Lδ
( jπ
L

)
δ
(
kπ
L

)((
k
L

)2 − ( jL)2)2 −
∫ N

L

1
L

dx

∫ 2N+1
L

N+1
L

dy
xyδ(xπ)δ(yπ)(
y2 − x2

)2 ∣∣∣∣
6

N∑
j=2

2N∑
k=N+1

∫ j
L

j−1
L

dx

∫ k+1
L

k
L

dy
∣∣∣ f( j

L
,
k

L

)
− f(x, y)

∣∣∣, (3.135)

where

f(x, y) :=
xyδ(xπ)δ(yπ)(
y2 − x2

)2 . (3.136)

Using the mean-value theorem and the Cauchy-Schwarz inequality we obtain

(3.135) 6
N∑
j=2

2N∑
k=N+1

sup
(x,y)∈( j−1

L
, j
L

)×( k
L
, k+1
L

)

∣∣(∇f)(x, y)
∣∣
2

×
∫ j

L

j−1
L

dx

∫ k+1
L

k
L

dy
∣∣∣( j
L
− x, k

L
− y
)∣∣∣

2

6
1

L3

N∑
j=2

2N∑
k=N+1

sup
(x,y)∈( j−1

L
, j
L

)×( k
L
, k+1
L

)

∣∣(∇f)(x, y)
∣∣
2
, (3.137)

where | · |2 denotes the Euclidean norm. We compute

(∇f)(x, y) =
1(

y2 − x2
)3 (3.138)

×
(

(y2 − x2)(yδ(xπ)δ(yπ) + xyδ′(xπ)δ(yπ)π) + 4x2yδ(xπ)δ(yπ)
(y2 − x2)(xδ(xπ)δ(yπ) + xyδ(xπ)δ′(yπ)π)− 4xy2δ(xπ)δ(yπ)

)
=:

1(
y2 − x2

)3 g(x, y). (3.139)

We estimate for (x, y) ∈
( j−1
L , jL

)
×
(
k
L ,

k+1
L

)
, j 6 N < k,( 1

y2 − x2

)3
6

L6(
k + j − 1

)3(
k − j

)3 6 L6

N3

1(
k − j

)3 (3.140)

and, using δ, δ′ ∈ L∞((0,∞)),

sup
(x,y)∈( j−1

L
, j
L

)×( k
L
, k+1
L

)

∣∣g(x, y)
∣∣
2
6 sup

(x,y)∈(0, 2N+1
L

)×(0, 2N+1
L

)

∣∣g(x, y)
∣∣
2

= O(1) (3.141)

as N,L→∞, N
L →

√
E
π . Thus, (3.140) and (3.141) imply

(3.137) 6 O

( N∑
j=2

2N∑
k=N+1

1

(y − x)3

)
= O(1) (3.142)

as N,L→∞, N
L →

√
E
π . �
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4. The Ground-State Overlap for Bosons

In this section we comment on a related problem of academic interest which is the
asymptotics of the ground-state overlap in the case of bosons. Since for bosons the un-
derlying Hilbert space is the symmetrised tensor product, all particles can be in the same
state. Therefore, the ground state of a non-interacting N -particle Bose gas is just the
tensor product of the eigenfunction belonging to the lowest one-particle energy. Thus, the
problem of computing the ground-state overlap consists of computing a single one-particle
scalar product only. We compute this scalar product and prove the asymptotics of the
ground-state for a model on the half axis with a Dirac-δ perturbation at the origin because
in this way we can treat the 3-dimensional case simultaneously. In the physical literature
this problem is treated in [RSS04] and their results are similar to our findings.

Theorem 3.30. Let α > 0, and ϕL1 and ψL1 be the ground states of the operators h0
L and

h0
α,L defined in (3.51). Then, its scalar product admits the asymptotics〈

ϕL1 , ψ
L
1

〉
= 1− δ′α(0)2

L2

(π2

6
+

1

8

)
+ O

( 1

L3

)
(3.143)

as L→∞.

Remarks 3.31. (i) The quantity δ′α(0) is called the scattering length, see e.g. [RS79,
Sct. XI.8].

(ii) The 1
L2 correction instead of a 1

L correction is due to the comparison of the ground
states.

Since exp(x) = lim
n→∞

(
1 +

x

n

)n
for x ∈ R, the above theorem allows us to determine

the asymptotics of the ground-state overlap for systems on the half axis. Moreover, using
the angular momentum decomposition, we treat in this way also the asymptotics of a
3-dimensional system with a Dirac-δ perturbation at the origin defined in Section 2 above.

Corollary 3.32. Let ρ > 0 and set

θ := δ′α(0)2
(π2

6
+

1

8

)
. (3.144)

Then,

(i) as N,L→∞ and N/L→ ρ we obtain the asymptotics(〈
ϕL1 , ψ

L
1

〉)N
= exp

(
− 1

L
ρ θ + o (1)

)
, (3.145)

and in particular

lim
N,L→∞
N/L→ρ

(〈
ϕL1 , ψ

L
1

〉)N
= 1. (3.146)

(ii) as N,L→∞ and N/L3 → ρ we obtain the asymptotics(〈
ϕL1 , ψ

L
1

〉)N
= exp

(
− Lρ θ + o(1)

)
, (3.147)

and in particular

lim
N,L→∞
N/L3→ρ

(〈
ϕL1 , ψ

L
1

〉)N
= 0. (3.148)



4. THE GROUND-STATE OVERLAP FOR BOSONS 51

Remarks 3.33. (i) Corollary 3.32 shows that the asymptotics of the ground-state
overlap for bosons depends in general on the space dimension.

(ii) A more elaborate proof using the same ideas, yields Theorem 3.30 also for the pair
−∆ and −∆+V on L2

(
(0,∞)

)
, where V is a multiplication operator with sufficient decay

at infinity. Thus, in principle using the angular momentum decomposition one can prove
the above asymptotics for 3-dimensional systems with a spherically symmetric perturbation
V .

(iii) In the d = 2 case there might be some intermediate behaviour of the ground-state
overlap. Note that one cannot just raise the asymptotics deduce in Theorem 3.30 to the
power L2. The angular momentum decomposition in d = 2 yields in the lowest angular
momentum channel a different operator, namely

−∆− 1

4| · |2
. (3.149)

Thus, the eigenfunctions corresponding to the lowest eigenvalue are not as easy as in the
case considered in Theorem 3.30. Even asymptotically in L, Theorem 3.30 might be wrong
in the d = 2 case, see [RSS04].

Proof of Theorem 3.30. For brevity, we drop the subscript α of the phase shift in the
proof. Since we assumed α > 0, we use Lemma 3.13 and equation (3.68) to see that the
eigenfunctions of h0

L and h0
α,L corresponding to the lowest eigenvalues λL1 and µL1 are up

to a phase

ϕ̃L1 (x) := sin
(√

λL1 x
)

and ψ̃L1 (x) = sin
(√

µL1 x+ δ
(√

µL1
))
, (3.150)

where x ∈ (0, L) and δ is defined in Definition 3.11. Thus, we see that the normalised
eigenfunctions are given by

ϕL1 :=
ϕ̃L1
‖ϕ̃L1 ‖2

and ψL1 :=
ψ̃L1

‖ψ̃L1 ‖2
, (3.151)

where ‖·‖2 denotes the L2
(
(0, L)

)
norm. Moreover, we set a :=

√
λL1 = π

L and b :=
√
µL1 .

Then, a and b satisfy the identity

b = a− δ(b)

L
, (3.152)

by Lemma 3.13, which we use intensively in the proof. We compute

‖ϕ̃L1 ‖2 =

∫ L

0
dx sin2(ax) =

1

a

∫ aL

0
dx sin2(x) =

L

2
, (3.153)

and use the identity (3.152) to obtain

‖ψ̃L1 ‖2 =

∫ L

0
dx sin2

(
bx+ δ(b)

)
=
L

2
+

sin
(
2δ(b)

)
4b

. (3.154)
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Moreover, we continue〈
ϕ̃L1 , ψ̃

L
1

〉
=

∫ L

0
dx sin(ax) sin(bx+ δ(b))

=

∫ L

0
dx sin2

(1

2

(
(a+ b)x+ δ(b)

))
− sin2

(1

2

(
(a− b)x− δ(b)

))
=

1

2(a+ b)

(
(a+ b)L− sin

(
(a+ b)L+ δ(b)

)
+ sin

(
δ(b)

))
− 1

2(a− b)

(
(a− b)L− sin

(
(a− b)L− δ(b)

)
+ sin

(
− δ(b)

))
=

πL sin(δ(b))

δ(b)(2π − δ(b))
, (3.155)

where we used the identities a + b = 2π
L −

δ(b)
L and a − b = δ(b)

L in the last line. Thus,
(3.153), (3.154) and (3.155) imply〈

ϕL1 , ψ
L
1

〉
=

〈
ϕ̃L1 , ψ̃

L
1

〉
‖ϕ̃L1 ‖‖ψ̃L1 ‖

=
sin(δ(b))

δ(b)
(
1− δ(b)

2π

) (
1 + 1

2Lb sin(2δ(b))
)1/2 . (3.156)

The definitions of a, b and δ imply the following expansion

δ(b) =
δ′(0)π

L
− δ′(0)2π

L2
+
δ′′(0)π2

2L2
+ O

( 1

L3

)
. (3.157)

This yields

sin(δ(b))

δ(b)
= 1− δ′(0)2π2

6L2
+ O

( 1

L3

)
(3.158)

sin(2δ(b))

2b
= δ′(0) +

δ′′(0)π

2L
+ O

( 1

L2

)
(3.159)

and in particular (
1− δ(b)

2π

)
= 1− δ′(0)

2L
+
δ′(0)2

2L2
− δ′′(0)π

4L2
+ O

( 1

L3

)
. (3.160)

Now, to determine the asymptotics of the second term in (3.156), we use
√

1 + x =

1 + x
2 −

x2

8 + O(x3) as |x| → 0 and (3.159) to obtain(
1 +

1

L

sin(2δ(b))

2b

)1/2
= 1 +

1

2L

sin(2δ(b))

2b
− 1

8L2

(sin(δ(b))

2b

)2
+ O

( 1

L3

)
= 1 +

δ′(0)

2L
+
δ′′(0)π

4L2
− δ′(0)2

8L2
+ O

( 1

L3

)
(3.161)

Thus, equation (3.160) and (3.161) imply(
1− δ(b)

2π

)(
1 +

1

2Lb
sin
(
2δ(b)

))1/2
= 1 +

δ′(0)2

8L2
+ O

( 1

L3

)
(3.162)

and ((
1− δ(b)

2π

)(
1 +

1

2Lb
sin
(
2δ(b)

))1/2
)−1

= 1− δ′(0)2

8L2
+ O

( 1

L3

)
. (3.163)
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Therefore, equations (3.156), (3.158) and (3.163) give〈
ϕL1 , ψ

L
1

〉
= 1− δ′(0)2

L2

(π2

6
+

1

8

)
+ O

( 1

L3

)
. (3.164)

�





CHAPTER 4

The Asymptotics of the Difference of the Ground-State
Energies

In the two previous chapters we computed the asymptotics of the scalar-product of the
ground-states of two non-interacting Fermi gases. In this chapter we consider the difference
of the corresponding ground-state energies. Again, we begin with a more general discussion
of the asymptotics of this difference. Later, we show a more detailed analysis for systems
on the half axis.

1. The General Case

Here, we consider rather general Schrödinger operators similar to those treated in
Chapter 2, equations (2.1) and (2.2). But for simplicity we omit the background potential
V0. We denote by

H := −∆ and H ′ := −∆ + V (4.1)

a pair of Schrödinger operators defined on L2(Rd) and by

HL := −∆L and H ′L := −∆L + V, (4.2)

its restriction to L2(ΛL), where for L > 1 we set ΛL := LΛ1 and 0 ∈ Λ1 ⊂ Rd open.
Moreover, −∆L denotes the restriction of the negative Laplacian −∆ to the finite volume
ΛL with Dirichlet boundary conditions. The perturbation V is a multiplication operator
such that

V > 0, V ∈ Kd
loc(Rd), suppV ⊂ Λ1 compact. (4.3)

For a more detailed description of these operators we refer to Chapter 2. Now, we denote
by λL1 6 λL2 6 · · · and µL1 6 µL2 6 · · · the increasing sequences of the eigenvalues of the
finite-volume operators HL, respectively H ′L counting multiplicities.

In this chapter we are not interested in the asymptotics of the scalar product of the
non-interacting N -particle ground states but in the asymptotics of the difference of the
ground-state energies of the non-interacting N -particle Fermi gases in the thermodynamic
limit. We denote the sum of the N smallest eigenvalues by

ENL :=

N∑
k=1

λLk and E′NL :=

N∑
j=1

µLj . (4.4)

The goal is to deduce the asymptotics of the difference ΞNL := E′NL − ENL in the thermo-
dynamic limit.

To state the result, let ξ ∈ L1
loc(R) be the spectral-shift function for the pair of infinite-

volume operators H and H ′. There are numerous definitions of the spectral-shift function,
see e.g. [Yaf92, Chap. 8] or [BP98] for a more comprehensive summary of the definitions
of the spectral-shift function.

55
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Remarks 4.1. (i) Most intuitively, the spectral-shift function ξ is defined by the trace
formula

tr
{
ϕ(H ′)− ϕ(H)

}
=

∫
R

dxϕ′(x)ξ(x) (4.5)

for all ϕ ∈ C∞c (R). Unfortunately, the above identity only determines ξ up to an additive
constant. Let us briefly sketch how to erase this. We consider a strictly monotone function
θ ∈ C∞(R) such that θ(H ′) − θ(H) is trace class, e.g. θ(x) := e−tx. Then, results for

trace-class perturbations [Yaf92, Sct. 8.3] show the existence of a function ξ̃ ∈ L1(R) such
that

tr
{
ϕ(θ(H ′))− ϕ(θ(H))

}
=

∫
R

dxϕ′(x)ξ̃(x) (4.6)

for all ϕ ∈ C∞c (R). It can be chosen uniquely according to

‖θ(H ′)− θ(H)‖1 =

∫
R

dx |ξ̃(x)|, (4.7)

where ‖·‖1 stands for the trace norm. Hence, we define ξ(E) := sign(θ′(E))ξ̃(θ(E)).
One can find a more detailed derivation of the spectral-shift function for non trace-class
perturbations in [HM10, App. 5].

(ii) In the case of a system on the half-axis, there is another simple representation of
the spectral-shift function. One can identify the spectral-shift function with the scattering
phase shift, see (4.33) in the next section.

Theorem 4.2. Let E > 0 and N(·)(E) : R+ → N be a function subject to

NL(E)

|ΛL|
→ ρ(E), (4.8)

as L→∞, where ρ(E) denotes the integrated density of states of the operator −∆. Then,

lim
L→∞

Ξ
NL(E)
L := E

′NL(E)
L − ENL(E)

L =

∫ E

−∞
dx ξ(x). (4.9)

Remarks 4.3. (i) The precise value of ρ(E) is given in (2.29).
(ii) The proof should extend to the case, where a background potential is present

provided the integrated density of states of the unperturbed operator exists and is equal
to the one of the perturbed operator.

(iii) The compact support of the perturbation V is not essential, sufficient decay should
be enough. We assumed this for simplicity because the main ingredient to the proof [HM10]
did so.

Proof. First, we rewrite the difference Ξ
NL(E)
L in terms of the finite-volume spectral-shift

function. We define the finite-volume spectral-shift function ξL : R>0 → N0 by

E 7→ ξL(E) := #
{
k : λLk 6 E

}
−#

{
j : µLj 6 E

}
> 0. (4.10)

Here, the non-negativity of the perturbation V implies ξL(E) > 0. For E > 0 the following
holds ∫ E

−∞
dx ξL(x) =

∑
λk6E

(
min{µLk , E} − λLk

)
, (4.11)
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which can be seen, for example, by introducing the two measures µ : A 7→ tr (1A(HL)) and
ν : A 7→ tr (1A(H ′L)) for A ∈ Borel(R) and the following computation using the definition
of ξL in (4.10) and Fubini’s theorem∫ E

−∞
dx ξL(x) =

∫
R

dx

∫
R

dµ(y) 1 {y 6 x 6 E} −
∫
R

dx

∫
R

dν(y) 1 {y 6 x 6 E}

= tr {(E −HL)1 {HL 6 E}} − tr
{

(E −H ′L)1
{
H ′L 6 E

}}
= EξL(E) +

∑
µLk6E

µLk −
∑
λLk6E

λLk

=
∑
k∈N:
λLk6E

(
min{µLk , E} − λLk

)
. (4.12)

We use the short-hand notation ΞL(E) ≡ Ξ
NL(E)
L and N ≡ NL(E). Hence, using (4.11)

ΞL(E) =

N∑
k=1

(
µLk − λLk

)
=

∫ λLN

−∞
dx ξL(x) +

N∑
k=1

max
{
µLk − λLN , 0

}
. (4.13)

Now, [HM10, Thm. 1.4] implies for all E > 0∫ E

−∞
dxξL(x)→

∫ E

−∞
dxξ(x), (4.14)

as L→∞. Therefore, it suffices to prove∣∣∣ΞL(E)−
∫ E

−∞
dx ξL(x)

∣∣∣→ 0, (4.15)

as L→∞. Since Lemma 4.4 below yields limL→∞ λ
L
N = E, we begin with the estimate

lim
L→∞

∣∣∣ ∫ E

−∞
dx ξL(x)−

∫ λLN

−∞
dx ξL(x)

∣∣∣ = lim
L→∞

∣∣∣ ∫ E

λLN

dx ξL(x)
∣∣∣

6 lim
ε↘0

lim
L→∞

∫ E+ε

E−ε
dx ξL(x)

= lim
ε↘0

∫ E+ε

E−ε
dx ξ(x). (4.16)

Recalling that ξ ∈ L1
loc(R), dominated convergence implies for all E ∈ R

(4.16) = lim
ε↘0

∫
R

dx 1(E−ε,E+ε)(x)ξ(x) =

∫
R

dx lim
ε↘0

1(E−ε,E+ε)(x)ξ(x) = 0. (4.17)

We estimate the remaining sum on the r.h.s. of (4.13) by adding an additional term

N∑
k=1

max
{
µLk − λLN , 0

}
6
( N∑
k=1

max
{
µLk − λLN , 0

}
+

∑
k>N :
λLk6µ

L
N

(µLN − λLk )
)

(4.18)
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and we rewrite the above in a more complicated way

(4.18) =

( N∑
k=1

(
min{µLk , µLN} −min{µLk , λLN}

)
+

∑
k>N :
λLk6µ

L
N

(
min{µLk , µLN} − λLk

))

=

( ∑
k∈N:
λLk6µ

L
N

(
min{µLk , µLN} − λLk

)
−

∑
k∈N:
λLk6λ

L
N

(
min{µLk , λLN} − λLk

))

=

∫ µLN

λNL

dx ξL(x), (4.19)

where we used in the last line (4.11). Lemma 4.4 provides λLN → E as well as µLN → E.
This and the above computation show

lim
L→∞

N∑
k=1

max
{
µLk − λLN , 0

}
6 lim

L→∞

∫ µLN

λNL

dx ξL(x)

6 lim
ε↘0

lim
L→∞

∫ E+ε

E−ε
dx ξL(x)

= lim
ε↘0

∫ E+ε

E−ε
dx ξ(x) = 0, (4.20)

for all E > 0, where we used again the weak convergence found in [HM10] and (4.17).
Hence, we proved (4.15), and in turn the theorem. �

Lemma 4.4. Let E > 0 and N(·)(E) : R+ → N be a function subject to

NL(E)

|ΛL|
→ ρ(E), (4.21)

where ρ(E) denotes the integrated density of states of the operator −∆. Then,

lim
L→∞

µLNL(E) = E and lim
L→∞

λLNL(E) = E. (4.22)

Proof. First, we note that the integrated densities of states of both operators H and H ′

exist and are equal. More precisely, the following limits exists

lim
L→∞

#
{
k : λLk 6 E

}
|ΛL|

= lim
L→∞

#
{
k : µLk 6 E

}
|ΛL|

= ρ(E), (4.23)

where ρ is the integrated density of states of −∆ and is given by (2.29). The latter
convergences and the equality follows from the convergence of the Laplace transform of the
measure µ̃ : A 7→ 1

|ΛL| tr{1A(HL)} and ν̃ : A 7→ 1
|ΛL| tr{1A(H ′L)}, where A ∈ Borel(R),

to the same limit. This can be seen from the explicit integral kernel of the finite-volume
semigroup operator, see [BHL00] or [PF92, Sct. 5].

Now, we come to the proof of equation (4.22). We restrict ourselves to the case of

H ′, the other case follows along the same line. We denote by ÑL(E) := #
{
k : µLk 6 E

}
.

Thus, the convergence (4.23) implies ÑL(E) ∼ ρ(E)|ΛL| as L→∞ and (4.21) gives

|NL(E)− ÑL(E)| ∼ o(|ΛL|) (4.24)
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as L→∞. The integrated density of states ρ is strictly increasing, see (2.29). Hence, for

a given ε > 0 equation (4.24) provides the estimate ÑL(E − ε) < NL(E) < ÑL(E + ε),
as L→∞. Thus, E − ε 6 µLNL(E) 6 E + ε, as L→∞. �

2. Finite-Size Energy for Non-Interacting Fermions

In this section we compute the asymptotics of the difference of the ground-state energies
of two non-interacting Fermi gases on the half axis in the thermodynamic limit up to second
order, i.e. we quantify the error in Theorem 4.2 in terms of L.

2.1. Model and Results. We consider a non-negative, continuous potential 0 6 V ∈
C
(
(0,∞)

)
satisfying ∫ ∞

0
dxV (x)

(
1 + x2

)
<∞. (4.25)

Then, we define the pair of one-particle Schrödinger operators on L2
(
(0,∞)

)
H := −∆ and H ′ := −∆ + V, (4.26)

where −∆ denotes the negative Laplacian on (0,∞) with Dirichlet boundary condition at
0. Apparently, H coincides with h0 defined in Chapter 3. Moreover, let L > 0 and −∆L

be the negative Laplacian on the interval (0, L) with Dirichlet boundary conditions. We
denote the finite-volume one-particle Schrödinger operators on L2

(
(0, L)

)
by

HL := −∆L H ′L := −∆L + V. (4.27)

Here, V is understood as the canonical restriction of V to the interval (0, L). These
are densely defined self-adjoint operators on the Hilbert space L2

(
(0, L)

)
with compact

resolvents. Thus, both operators admit an ONB of eigenfunctions and we denote, as before,
the corresponding non-decreasing sequences of the eigenvalues, counting multiplicities by

λL1 6 λL2 6 · · · and µL1 6 µL2 6 · · · . The eigenvalues of HL are λLn =
(
nπ
L

)2
, n ∈ N, see

e.g. [RS78], and we denote the sum of the N smallest eigenvalues of HL, respectively H ′L,
by

ENL :=

N∑
k=1

λLk and E′NL :=
N∑
j=1

µLj . (4.28)

Moreover, for a given Fermi energy E > 0 and some number of particles N ∈ N, we
choose the system length L such that

N

L
→ ρ(E) :=

√
E

π
, (4.29)

as L→∞, where ρ is the integrated density of states of the infinite-volume operator H.

In order to state our result we have to introduce the scattering phase shift. We follow
[Cal67] or [RS79, Thm. XI.54] and define.

Definition 4.5. Let k > 0. Then, we denote by δk the solution of the ODE

δ′k(x) = −1

k
V (x) sin2 (kx+ δk(x)) , x > 0 (4.30)

with the boundary condition lim supx→0
1
x |δk(x)| <∞. Moreover, we define the scattering

phase shift for the pair of operators H and H ′ by

lim
x→∞

δk(x) = δ(k). (4.31)
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Remarks 4.6. (i) Existence and uniqueness of the solution of the ODE (4.30) follows
from a standard fix point argument, see e.g. [RS72, Sct. V.6].

(ii) Assumption (4.25) implies V ∈ L1
(
(0,∞)

)
, thus, the limit in (4.31) is well defined

and finite.
(iii) From the ODE it is obvious that for V > 0

δ(k) 6 0. (4.32)

(iv) Let ξ ∈ L1
loc(R) again be the infinite-volume spectral-shift function for the pair of

operators H,H ′ as defined in Remark 4.1(i). Then, we have the identity [BY92]

1

π
δ(
√
E) = −ξ(E), (4.33)

for every E > 0.
(v) Similar to the chapter before, here the scattering matrix is just a number of mod-

ulus one; SE = exp
(
2iδ(
√
E)
)
. Let TE := SE − 1 be the transition matrix. Then, we

define for E > 0

γ(E) :=
1

π2
δ2(
√
E) (4.34)

and remark that the constant γ is the decay exponent which determines the asymptotics
of the ground-state overlap in the previous Chapter 3 for Dirac-δ perturbations.

Using the notation of Remark 4.6(iv), the result of this chapter is the following.

Theorem 4.7. For all Fermi energies E > 0 the difference of the ground-state energies
admits the asymptotics

E′NL − ENL = − 1

π

∫ (NπL )
2

−∞
dx δ(

√
x) +

√
E

L

(
− δ(
√
E) +

1

π
δ2(
√
E)
)

+ o
( 1

L

)
=

∫ E

−∞
dx ξ(x) +

∫ (NπL )
2

E
dx ξ(x) +

√
Eπ

L

(
ξ(E) + γ(E)

)
+ o
( 1

L

)
(4.35)

as N,L→∞, and N
L →

√
E
π .

Remarks 4.8. (i) The first term in the expansion is not surprising since Theorem 4.2
implies

lim
N,L→∞

N/L→ρ(E)>0

(
E
′N
L − ENL

)
=

∫ E

−∞
dx ξ(x), (4.36)

at least in the case of a compactly supported perturbation. In the case of systems on the
half-axis equation (4.36) follows also from [BM12].

(ii) Since ξ is continuous, see Lemma 4.12 below,∫ (NπL )
2

E
dx ξ(x) =

((Nπ
L

)2
− E

)
ξ(E) + o

((Nπ
L

)2
− E

)
(4.37)

as N,L → ∞, N
L →

√
E
π > 0. This immediately implies that the second term of the

asymptotics depends on the rate of convergence of the thermodynamic limit.
(iii) We assumed V > 0, which implies δ(x) = 0 for x 6 0, and the integrals in

Theorem 4.7 may start from 0.
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(iv) The same result with an analogous proof holds also for a Dirac δ-perturbation
defined in Chapter 3 as well.

(v) We chose V > 0 since we want to avoid bound states or zero-energy resonances.
Moreover, the integrability assumption (4.25) on V ensures sufficient regularity of the
phase shift δ. In contrast, the continuity condition on V is only technical and due to the
references we use and can be omitted.

(vi) This result allows also a conclusion for the same problem on R with a symmetric
perturbation V because in this case the problem is reduced to two problems on the half
axis with either Neumann or Dirichlet boundary condition at the origin.

Restricting ourselves to thermodynamic limits of the form

N

L
+ O

( 1

L

)
= ρ(E), (4.38)

the difference of the ground-state energies admits a leading 1/L correction, which we call
xFS , i.e. we obtain the asymptotics

E′NL − ENL =

∫ E

−∞
dx ξ(x) +

√
Eπ

L
xFS(E) + o

( 1

L

)
(4.39)

N,L → ∞, and N
L →

√
E
π . In the physics literature the first term is sometimes called

the Fumi term and xFS the finite-size correction or energy, see [Aff97]. It was claimed in
[Aff97, AL94, ZA97] that computing the finite-size energy is an easy way to compute the
decay exponent in Anderson’s orthogonality catastrophe. This was done in [ZA97, App. A]
quite explicitly choosing a concrete thermodynamic limit. We compute xFS explicitly for
a family of thermodynamic limits corresponding to (4.38).

Corollary 4.9 (Finite-size energy). For a given Fermi energy E > 0, some particle number
N ∈ N and a ∈ R we choose the system length L such that

N + a

L
:=

√
E

π
. (4.40)

Then, the finite-size energy xFS defined in (4.39) is

xFS(E) = (1− 2a)ξ(E) + γ(E). (4.41)

Thus,

(i) for the particular choice a = 1
2 the finite-size energy is

xFS(E) = γ(E), (4.42)

(ii) whereas for the choice a = 0 the finite-size energy is equal to

xFS(E) = ξ(E) + γ(E). (4.43)

Remarks 4.10. (i) The previous corollary underlines that the finite-size energy de-
pends on the thermodynamic limit and that there is precisely one choice which provides
xFS(E) = γ(E). We note that for the above equality, we have to choose the same ther-
modynamic limit as in [ZA97, App. A].

(ii) The results of Chapter 3, in particular Theorem 3.20, state that at least in the
special case of a δ-perturbation the exponent in Anderson’s orthogonality catastrophe is
independent of the precise thermodynamic limit. Since the result of this section also applies
to this case we doubt a deep connection between the 1/L correction and the Anderson
exponent.
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2.2. Proof of Theorem 4.7. We start with a lemma relating the eigenvalues of the
pair of finite-volume operators, which is the analogue to Lemma 3.13 in the previous
chapter.

Lemma 4.11. Let δ be the phase shift for the pair of operators H and H ′ defined in
(4.31) then the nth eigenvalues of HL and H ′L satisfy

√
µn =

√
λn −

δ(
√
µn)

L
+ o
( 1

L2

)
, (4.44)

where the error depends only on the potential V .

The above lemma follows directly from introducing Prüfer variables in the theory of
Sturm-Liouville operators. We have to investigate the behaviour of δ at k = 0 to obtain
suitable error estimates on the derivatives.

Lemma 4.12. Let δ be the phase shift corresponding to the operators H and H ′ defined
in (4.31). Then, δ ∈ C2((0,∞)) and there exists a constant c, depending on the potential
V , such that for all k > 0

(i) |δ(k)| 6 cmin{k, 1
k}, in particular δ ∈ L∞((0,∞)),

(ii) δ′ ∈ L∞((0,∞)),
(iii) |δ′′(k)| 6 c

k .

Moreover,

(iv) we have the following expansion of the phase shift

δ(
√
µn) = δ(

√
λn)− δ′(

√
λn)δ(

√
λn)

L
+
F (
√
λn)

L2
, (4.45)

where the remainder term obeys for x > 0

|F (x)| 6 c
(1

x
+ 1
)

(4.46)

for some constant c depending on the potential V .

Remarks 4.13. (i) Lemma 4.11 and 4.12 are well known to experts in the theory of
Sturm-Liouville operators. For convenience, we prove both results in Section 2.3.

(ii) Lemma 4.11 and Lemma 4.12 are the analogue to Lemma 3.13, which was valid for
Dirac-δ perturbations. The proof of Lemma 3.13 is simpler due to the explicit representation
of the scattering phase shift.

The third ingredient to the proof of Theorem 4.7 is the following.

Lemma 4.14. (Euler-MacLaurin)

(i) Let f ∈ C1((0,∞)) then

1

L

N∑
n=1

f
(n
L

)
=

∫ N
L

0
dx f(x) + O

(N
L2

)
‖f ′‖L∞((0,N

L
)). (4.47)

(ii) Let f ∈ C2((0,∞)) with f ′′ ∈ L∞ ((0,∞)) then

1

L

N∑
n=1

f
(n
L

)
=

∫ N
L

0
dx f(x) +

1

2L

∫ N
L

0
dx f ′(x) + O

(N
L3

)
. (4.48)
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The proof of this lemma is elementary, see for example [Kno96, Chap. XIV].

Proof of Theorem 4.7. Using Lemma 4.11, we obtain

N∑
n=1

(µn − λn) =

N∑
n=1

(
−

2
√
λnδ(
√
µn)

L
+
δ2(
√
µn)

L2

)
+ o
(N
L2

)
(4.49)

On the other hand Lemma 4.12 (iv) provides

(4.49) =
N∑
n=1

(
−2δ(

√
λn)
√
λn

L
+

2δ′(
√
λn)δ(

√
λn)
√
λn

L2
+
δ2(
√
λn)

L2

)

+
1

L3

N∑
n=1

G(
√
λn) + o

(N
L2

)
, (4.50)

where

G(x) =
(
− 2δ′(x)δ2(x)− 2xF (x) +

1

L

(
(δ′(x)δ(x))2 + 2δ(x)F (x)

)
− 2

L2
F (x)δ′(x)δ(x) +

1

L3
F 2(x)

)
. (4.51)

Since λn =
(
nπ
L

)2
, N
L →

√
E
π , using Lemma 4.12 (i)-(iii) and (4.46), we obtain for the

error

1

L3

N∑
n=1

G(
√
λn) = O

( 1

L2

)
. (4.52)

Note that by Lemma 4.12 the function f : x 7→ xδ(x) fulfils the assumptions of Lemma
4.14 (ii). Thus, we compute

N∑
n=1

−2δ(
√
λn)
√
λn

L
= − 1

L

N∑
n=1

2δ
(nπ
L

) nπ
L

= −
∫ N

L

0
dx 2δ(xπ)(xπ)− 1

L

∫ N
L

0
dx (δ(xπ)(xπ))′ + O

(N
L3

)
= − 1

π

∫ (Nπ
L

)2

0
dx δ(

√
x)− 1

L
δ(
√
E)
√
E + o

( 1

L

)
, (4.53)

where we used in the last equality the convergence N
L →

√
E
π and the continuity of δ. Using

Lemma 4.12 we see that g : x 7→ xδ(x)δ′(x) satisfies the assumptions of Lemma 4.14 (i)
with ‖g′‖L∞((0,N

L
)) 6 c(1 + N

L ). Therefore,

N∑
n=1

2δ′(
√
λn)δ(

√
λn)
√
λn

L2
=

1

L

(
1

L

N∑
n=1

2δ′
(nπ
L

)
δ
(nπ
L

) nπ
L

)

=
1

L

∫ N
L

0
dx 2δ′(xπ)δ(xπ)(xπ) + O

(N
L3

)(
1 +

N

L

)
=

1

Lπ

(
δ2(
√
E)
√
E −

∫ N
L

0
dx δ2(xπ)π

)
+ o
( 1

L

)
, (4.54)
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where we used integration by parts, the convergence N
L →

√
E
π and the continuity of δ in

the last line. Lemma 4.12 yields the assumptions of Lemma 4.14 (i) for h : x 7→ δ2(x) with
h′ ∈ L∞ ((0,∞)). Thus,

N∑
n=1

δ2(
√
λn)

L2
=

1

L

(
1

L

N∑
n=1

δ2
(nπ
L

))

=
1

L

∫ N
L

0
dx δ2(xπ) + O

( 1

L2

)
. (4.55)

Summing up (4.53), (4.54), (4.55) and equations (4.49), (4.52) give the claim. �

2.3. Prüfer Variables and the Phase Shift. Our approach to the phase shift uses a
non-linear ODE called the variable-phase equation, see e.g. [Cal67].

Let k > 0. First we recall that there is a unique solution δk of

δ′k(x) = −1

k
V (x) sin2 (kx+ δk(x)) , x > 0 (4.56)

with the boundary condition lim supx→0
1
x |δk(x)| < ∞. This is a consequence of the

Banach fixed-point theorem, see [RS79, Thm. XI.54]. We call this solution the phase-shift
function. Moreover,

lim
x→∞

δk(x) = δ(k) (4.57)

is the phase shift for H and H ′.

On the other hand consider the eigenvalue problem on (0,∞)

− u′′ + V u = k2u, u(0) = 0. (4.58)

Introducing Prüfer variables

u(x) = ρu(x) sin(θk(x)) u′(x) = kρu(x) cos(θk(x)), (4.59)

(4.58) is equivalent to the system

θ′k = k − 1

k
V sin2(θk), θk(0) = 0, (4.60)

ρ′u =
V sin(2θk)

2k
ρu, (4.61)

see e.g. [Tes12, Sct. 5.5]. We call θk the Prüfer angle. Note that ρu(x) 6= 0 for all x > 0.
We did not choose the standard Prüfer variables since we want to compare the Prüfer
angle with the phase-shift function. These modified Prüfer variables were also introduced
in [KLS98]. Given the phase-shift function in (4.56) we obtain a solution θk to (4.60) by
setting

θk(x) := δk(x) + kx, where k, x > 0. (4.62)

Since any solution of (4.60) fulfils |θk(x)| 6 kx, see (4.64) below, we obtain that δk(x) :=
θk(x)− kx is the unique solution of (4.56). This implies uniqueness of θk and

δ(k) = −1

k

∫ ∞
0

dt V (t) sin2(θk(t)). (4.63)

We state some properties of the Prüfer angle, respectively of the phase-shift function, which
we use in the sequel.

Proposition 4.15. Given k > 0, let δk and θk be the solution of (4.56), respectively
(4.60). Fix x > 0. Then,
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(i) θk(x) is non-negative, moreover,

0 6 θk(x) 6 kx. (4.64)

(ii) we have
lim
k→0

θk(x) = 0, lim
k→∞

θk(x) =∞. (4.65)

(iii) the functions k 7→ θk(x) and k 7→ δk(x) are smooth, i.e.

θ(·)(x), δ(·)(x) ∈ C∞((0,∞)). (4.66)

(iv) the derivative of the Prüfer angle with respect to the energy is strictly positive,
i.e.

∂

∂k
θk(x) > 0. (4.67)

Proof of Proposition 4.15. For (i) first note that limx→∞ θ
′
k(x) = k > 0 and θ′k(x) > 0

for all x > 0 such that θk(x) = 0. Since θk(0) = 0 and θk ∈ C1((0,∞)) we have θk > 0.
One the other hand k − 1

kV sin2(y) 6 k, y ∈ R, since V > 0. This yields θk(x) 6 kx, see
e.g. [Har64, Chap. III, 4.2].

The first equality in (ii) follows by (i). For the second equality observe θk(x) > kx −
1
k‖V ‖1, where x, k > 0 and ‖·‖1 denotes the L1((0,∞)) norm.

For (iii) note that k 7→ k− 1
kV (x) sin2(y) ∈ C∞((0,∞)) for fixed x > 0, y ∈ R. Then,

standard results imply that the solution θ(·)(x) ∈ C∞((0,∞)) for fixed x > 0, see e.g.
[Har64, Chap. V, 4.1].

For (iv) note that k− 1
kV sin2(y) 6 k′− 1

k′V sin2(y) for all k 6 k′, y ∈ R since V > 0
and use [Har64, Chap. III, 4.2]. �

Proof of Lemma 4.11. Let µ > 0. Consider the eigenvalue equation on [0, L]

− u′′ + V u = µu, u(0) = 0. (4.68)

We introduce Prüfer variables according to (4.59). Note that any eigenfunction u of h′DL
corresponding to an eigenvalue µ has to satisfy u(L) = 0 due to the Dirichlet boundary

condition at L. Thus, using ρu(x) 6= 0 for all x > 0, we obtain sin
(
θ√µ(L)

)
= 0. With

(4.65) and (4.67) this implies for the nth eigenvalue µn of h′DL

θ√µn(L) = nπ. (4.69)

Therefore, integrating (4.60) yields

√
µn =

nπ

L
+

1

L
√
µ
n

∫ L

0
dt V (t) sin2(θ√µn(t)). (4.70)

Now, using | sin(x)| 6 |x|, (4.64), | sin(x)| 6 1 and (4.25) we obtain

1
√
µn

∫ ∞
L

dt V (t) sin2(θ√µn(t)) 6
∫ ∞
L

dt V (t)t

6
1

L

∫ ∞
L

dt t2V (t) = o
( 1

L

)
. (4.71)

Then, (4.63) and
√
λn = nπ

L give the claim. �
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Proof of Lemma 4.12. Part (i) follows from (4.63), (4.64) and (4.25).

Concerning (ii), we first note that θk ∈ C1((0,∞)) for fixed k > 0 because V is
assumed to be continuous and θ(·)(x) ∈ C∞((0,∞)) for fixed x > 0 by (4.66). From
now on we consider θ as a function of two variables and write, in abuse of notation, the
abbreviation fx for the partial derivative ∂

∂xf of a function f ∈ C1(R2). Also we drop the
u index of ρ. Then the ODEs (4.60) and (4.61) imply(

ρ2 ∂

∂k
θ

)
x

= 2ρρx
∂

∂k
θ + ρ2 ∂

∂k
θx

= 2ρρx
∂

∂k
θ + ρ2 ∂

∂k

(
k − V sin2(θ)

k

)
= 2ρρx

∂

∂k
θ + ρ2

(
1 +

V sin2(θ)

k2
− V sin(2θ)

k

∂

∂k
θ

)
= ρ2

(
1 +

V sin2(θ)

k2

)
. (4.72)

Integrating the latter yields

∂

∂k
θk(x) =

∫ x

0
dt
ρ2(t)

ρ2(x)

(
1 +

V (t) sin2(θk(t))

k2

)
. (4.73)

The ODE (4.61), (4.64), the elementary inequality | sinx| 6 |x| and (4.25) imply∣∣∣ ρ(t)

ρ(x)

∣∣∣ 6 exp

(∫ x

t
ds s V (s)

)
6 exp (‖(·)V ‖1) <∞. (4.74)

From this, (4.64) and | sinx| 6 |x| we infer the existence of a constant c depending on the
potential V such that ∣∣∣ ∂

∂k
θk(x)

∣∣∣ 6 c (1 + x) . (4.75)

Then, the above, (4.64) and dominated convergence provide δ ∈ C1((0,∞)) and

|δ′(k)| 6 c
∫ ∞

0
dt V (t)(1 + t+ t2). (4.76)

The assumptions on the potential give the claim.

For (iii) we compute as above(
ρ2 ∂

2

∂k2
θ

)
x

= 2ρ2V

(
− sin2(θ)

k3
+

sin(2θ) ∂
∂kθ

k2
−

cos(2θ)( ∂
∂kθ)

2

k

)
. (4.77)

Using (4.64), | sinx| 6 |x|, (4.74) and (4.75), we see∣∣∣ ∂2

∂k2
θk(x)

∣∣∣ 6 c̃

k
, (4.78)

where c̃ depends on V . Dominated convergence yields δ ∈ C2
(
(0,∞)

)
and (4.64) and

(4.78) provide

|δ′′(k)| 6 C

k

∫ ∞
0

dt V (t)(1 + t+ t2) (4.79)

for some C depending on the potential V .

To prove (iv) we use Lemma 4.11. Thus,

√
µn =

√
λn +

δ(
√
µn)

L
+ o
( 1

L

)
. (4.80)



2. FINITE-SIZE ENERGY FOR NON-INTERACTING FERMIONS 67

Since δ ∈ C2((0,∞)), we compute for x, y ∈ (0,∞) with y > x and y = x+ δ(y)
L + o( 1

L)∣∣∣δ (y)− δ(x) +
δ′(x)δ(x)

L

∣∣∣ 6 ∣∣∣∫ y

x
dt

∫ t

x
ds δ′′(s)

∣∣∣+ |δ′(x)|
∣∣∣y − x+

δ(x)

L

∣∣∣
6

1

x
|y − x|2 +

‖δ‖∞
L

(∣∣∣ ∫ y

x
dt δ′(t)

∣∣∣+ o
( 1

L

))
. (4.81)

Using Lemma 4.12 (ii) and once again the recursion relation we obtain∣∣∣δ (y)− δ(x) +
δ′(x)δ(x)

L

∣∣∣ 6 (1

x
+ 1
)

O
( 1

L2

)
. (4.82)

The claim follows from setting x := λn and y := µn. �





CHAPTER 5

Eigenfunction Correlations in the Anderson Model

In this chapter we present two results which are contrary to the previous ones. The
first one concerns upper bounds on products of spectral projections for random Schrödinger
operators and the second one deals with lower bounds on the correlation determinant for
these random operators.

1. Model and Results

Let d ∈ N and λ > 0. We define the Anderson Hamiltonian on `2(Zd) by

Hω := −∆ + λVω. (5.1)

The operator −∆ denotes the discrete negative Laplacian, i.e. for u ∈ `2(Zd)

(−∆u) (n) =
∑

|n−m|1=1

(
u(n)− u(m)

)
, (5.2)

where | · |1 denotes the 1-norm on Zd and Vω is a random multiplication operator

(Vωu) (n) = Vω(n)u(n). (5.3)

Here,
(
V(·)(n)

)
n∈Zd denotes a family of independent identically distributed real-valued

random variables on a probability space (Ω,F ,P). Moreover, we assume the single-site
distribution µ0 defined by µ0(A) = P

(
V(·)(0) ∈ A

)
, A ∈ Borel(R), to be bounded and

absolutely continuous with respect to Lebesgue measure with a bounded density g. These
conditions are too strong in general, but for simplicity we assume them. Moreover, we
define the perturbed Hamiltonian

H ′ω := Hω + ν〈δ0, ·〉δ0, (5.4)

where ν > 0 and the vector δ0 ∈ `2(Zd) is given by δ0(n) :=

{
1, n = 0

0, n 6= 0
, for n ∈ Zd.

Let L ∈ N, and we write for the corresponding operators restricted to the box ΛL :=
[−L,L]d ⊂ Zd

Hω,L and H ′ω,L, (5.5)

where we do not impose any particular boundary condition, i.e. H
(′)
ω,L := 1ΛLH

(′)
ω 1ΛL with

1ΛL being the orthogonal projection on ΛL. Using our standard notation, we denote by
λL1 6 λL2 6 · · · and µL1 6 µL2 6 · · · the non-decreasing sequences of eigenvalues of
the operators Hω,L respectively H ′ω,L counting multiplicities and by

(
ϕLk
)

16k6(2L+1)d
and(

ψLn
)

16k6(2L+1)d
the corresponding normalised eigenvectors, where we omit for brevity the

index ω.

69
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The family of operators (Hω)ω∈Ω form an ergodic family of operators with respect to
translations. Therefore, standard results about ergodic operators imply that

σ(Hω) = [0, 4d] + λ supp g (5.6)

for P-a.e. ω ∈ Ω, see [K08] or [PF92, Chap. 1]. Since H ′ω is a rank-one perturbation of Hω

located at the origin, the ergodicity is broken but nevertheless the perturbation is small
and the spectra of both operators are closely related. We have the following elementary
lemma.

Lemma 5.1. σess(Hω) = σess(H
′
ω) and σ(Hω) ⊂ σ(H ′ω) for P-a.e. ω ∈ Ω. Moreover,

assuming σ(Hω) to be connected for P-a.e. ω ∈ Ω, we obtain that there exists at most one
eigenvalue of multiplicity one, which we call µω, of H ′ω with µω /∈ σ(Hω), i.e. σ(H ′ω) =
σ(Hω) ∪ {µω} for P-a.e. ω ∈ Ω.

Proof. Following [PF92, Thm. 2.11] we obtain that σ(Hω) = σess(Hω) for P-a.e. ω ∈ Ω.
Since H ′ω is a rank-one perturbation of Hω, Weyl’s theorem implies that σess(H

′
ω) =

σess(Hω). Thus, σ(Hω) ⊂ σ(H ′ω). Moreover, since there are no spectral gaps in σ(Hω),
the min-max principle says that there is at most one eigenvalue exceeding the essential
spectrum of H ′ω, see [RS78, Sct. XIII.1]. �

Remarks 5.2. (i) As expected, the above shows that the rank-one perturbation does
not change the spectrum a lot. In general this is not true for the spectral decomposition.
While the absolutely continuous spectrum is stable under a rank-one perturbation the pure-
point spectrum can change to singular continuous spectrum and vice versa, see [Sim05,
Sct. 12].

(ii) For general operators with several spectral gaps a rank-one perturbation can
push an eigenvalue of multiplicity one in each spectral gap. To illustrate this, we con-
sider the example of the multiplication operator A on L2(R) with the function f(x) :=
x
(
1[0,1](x) + 1[2,3](x)

)
, x ∈ R. Then, σ(A) = [0, 1] ∪ [2, 3]. Let B = A + |φ〉〈φ| with

φ :=
(
1[0,1] + 1[2,3]

)
. Using Krein’s formula, [Sim05, Sct. 12] or equation (3.26), we see

that B has an eigenvalue µ /∈ σ(A) if and only if 〈φ, 1
A−µφ〉 = −1. A computation shows

〈φ, 1
A−µφ〉 = ln

∣∣ (1−µ)(3−µ)
µ(2−µ)

∣∣ and, therefore, σ(B) = [0, 1] ∪
{

2
1+e−1

}
∪ [2, 3] ∪

{
2

1−e−1

}
.

Thus, the rank-one perturbation created two additional eigenvalues. Even though this phe-
nomenon may happen in general, we do not know, if it does happen in the case considered
above. However, this is just a side remark and for the rest of the paragraph not important.

1.1. Bounds on the Anderson Integral. In Chapter 2 we obtained upper bounds
on the ground-state overlap by deducing logarithmic divergence of the Anderson integral
(5.7) in the length scale L. In this section we show that the Anderson model exhibits
a substantially different behaviour in the exponentially localised regime: The Anderson
integral stays bounded as L→∞.

Let E ∈ R. In the following we are interested in the behaviour of the product of spectral
projections

IL(E) := tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
, (5.7)

as L→∞. Although this is not exactly the Anderson integral defined in the introduction,
equation (1.10), we refer to (5.7) as the Anderson integral in this section.

Next we define the set of energies for which suitable fractional moment bounds of the
resolvents are satisfied.
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Definition 5.3. For 0 < s < 1 we define the set A
(′)
s ⊂ R as the intersection

A(′)
s := B(′)

s ∩ C(′)
s , (5.8)

where

(i) B(′)
s is the set of all energies E ∈ R such that there exist constants c > 0 and

C > 0, which may depend on s and E, such that for all n,m ∈ Zd and for all
ε > 0

E
[∣∣∣〈δn, 1

H(′) − E − iε
δm〉
∣∣∣s] 6 C exp

(
− c|n−m|1

)
. (5.9)

(ii) C(′)
s := ∩L∈NC

(′)
s,L and C

(′)
s,L is the set of all energies E ∈ R such that there exist

constants c > 0 and C > 0, which may depend on s and E, but are independent
of ΛL, such that for all n,m ∈ ΛL and for all ε > 0

E
[∣∣∣〈δn, 1

H
(′)
L − E − iε

δm〉
∣∣∣s] 6 C exp

(
− c|n−m|1

)
. (5.10)

Moreover, we set

A :=
⋃

0<s<1

As B :=
⋃

0<s<1

Bs. (5.11)

Remarks 5.4. (i) Standard results imply that whenever I ⊂ A(′)
s for an interval

I ⊂ R, then we have only pure-point spectrum with exponentially decaying eigenfunctions
within this interval. This follows from the Simon-Wolff criterion, see [SW86, AM93] and
the references cited therein.

(ii) In the following we are mainly interested in the set A and we need the sets A′s
only in the formulation of Theorem 5.17.

The set A(′)
s is not empty and has positive Lebesgue measure as long as λ > 0. More

precisely, we have at least two regimes, where A(′)
s is rather big.

Proposition 5.5. Let 0 < s < 1. Then, in the model considered here, we have that the

Lebesgue measure |A(′)
s | > 0 for all coupling constants λ > 0. More precisely,

(i) (Large disorder regime) there exists a coupling constant λ0 > 0 such that for all
λ > λ0 we obtain for P-a.e. ω ∈ Ω

A(′)
s = σ(H(′)

ω ), (5.12)

see [AM93].
(ii) (Lifschitz tail regime) for all coupling constants λ > 0 there exists a ηλ > 0 such

that for P-a.e. ω ∈ Ω(
inf σ(Hω), inf σ(Hω) + ηλ

)
∪
(

supσ(Hω)− ηλ, supσ(Hω)
)
⊂ As, (5.13)

see [ASFH01].

Remark 5.6. We remark that the proof of the fractional moment bounds of the resolvents
for operators with a random potential in [AM93, Sct. 3] is stated for rather arbitrary kinetic
terms. This includes −∆ + |δ0〉〈δ0|. The proofs of these bounds do not rely on ergodicity.
Therefore, the localisation results for the Anderson model also apply to the operator H ′ω.

For energies within the set A and B we obtain the following asymptotics.
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Theorem 5.7. (i) We have for a.e. (E,ω) ∈ A× Ω

lim sup
L→∞

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
<∞. (5.14)

(ii) We have for a.e. (E,ω) ∈ B × Ω

tr
{

1(−∞,E)(Hω)1(E,∞)(H
′
ω)1(−∞,E)(Hω)

}
<∞. (5.15)

Throughout, for C ∈ Borel(R) the notation for a.e. (E,ω) ∈ C × Ω refers to the
product measure λ⊗ P where λ denotes the Lebesgue measure.

We prove the above theorem in Subsection 2.1 below.

Remarks 5.8. (i) In other words, the above says that for Leb.-a.e. E ∈ R within the
exponentially localised regime equation (5.14) and (5.15) hold for P-a.e. ω ∈ Ω.

(ii) Since ‖1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)‖ 6 1, the above bounds are

also valid for traces of the operators
(
1(−∞,E)(Hω,L)1(E,∞)(H

′
ω,L)1(−∞,E)(Hω,L)

)n
,

n ∈ N.
(iii) We assumed exponential decay of the fractional moments of the resolvents for the

proof. Sufficient polynomial decay of the fractional moments is enough.
(iv) Let ω ∈ Ω and E ∈ σ(Hω). Comparing the above with our general results from

Chapter 2 we define

γω(E) :=
1

π2
lim
ε↘0

{
Im〈δ0,

1

Hω − E − iε
δ0〉Im〈δ0,

1

H ′ω − E − iε
δ0〉
}
. (5.16)

Then, as discussed in Chapter 2, γω(E) = 1
π2 ‖TE‖2HS, where TE is the T -matrix of the

pair Hω and H ′ω and HS denotes the Hilbert-Schmidt norm. Now, Theorem 2.4, which is
also valid in our setting, implies that for Leb.-a.e. E ∈ R

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
> γω(E) lnL+ o(lnL), (5.17)

as L→∞. This does not violate Theorem 5.7. To see this we note that for any bounded
operator A ∈ BL(H) standard results on the Borel transform of measures imply that the
imaginary part of the resolvent satisfies

lim
ε↘0

1

π
Im
〈
δ0,

1

A− E − iε
δ0

〉
=

dµac
dx

∣∣∣
x=E

. (5.18)

Here, µac denotes the absolutely continuous part of the spectral measure
B 7→ 〈δ0, 1B(A)δ0〉, B ∈ Borel(R), see [Sim05, Chap. 11]. Now, assume that an neigh-
bourhood of the energy E is within the set A, i.e. the operator Hω admits purely pure-point
spectrum in a neighbourhood of E. Then, the Lebesgue density of µac is 0 for Leb.-a.e. E
in this neighbourhood. Thus, it follows that

γω(E) = 0 (5.19)

for a.e. (E,ω) ∈ A× Ω. Hence, (5.17) does not contradict Theorem 5.7.
(v) Let ω ∈ Ω. Now, we assume that Hω has absolutely continuous spectrum in some

interval I ⊂ σ(Hω), so has H ′ω by [Sim05, Chap. 12]. Moreover, assume for Leb.-a.e.
E ∈ I

lim
ε↘0

Im
〈
δ0,

1

Hω − E − iε
δ0

〉
> 0 and lim

ε↘0
Im
〈
δ0,

1

H ′ω − E − iε
δ0

〉
> 0. (5.20)



1. MODEL AND RESULTS 73

Thus, in this case γω(E) > 0 for Leb.-a.e. E ∈ I and (5.17)

lim inf
L→∞

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)

}
=∞, (5.21)

where the divergence is at least logarithmic. This implies the following deterministic state-
ment.

Corollary 5.9. Let Pδ0 be the orthogonal projection onto the set span
{
Hn
ωδ0 : n ∈ N0

}
⊂

`2(Zd).

(i) Assume there exists an interval I such that for Leb.-a.e. E ∈ I
lim sup
L→∞

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
<∞. (5.22)

Then,
σac(Pδ0HωPδ0) ∩ I = ∅. (5.23)

(ii) Assume there exists an interval I such that for Leb.-a.e. E ∈ I
tr
{

1(−∞,E)(Hω)1(E,∞)(H
′
ω)1(−∞,E)(Hω)

}
<∞. (5.24)

Then,
σac(Pδ0HωPδ0) ∩ I = ∅. (5.25)

Proof of Corollary 5.9. Assume that σac(Pδ0HωPδ0) ∩ I 6= ∅. This implies for a set of
positive Lebesgue measure J ⊂ I that (5.20) holds and, therefore, γω(E) > 0 within the
set J .

Hence, (5.17) gives a contradiction to (5.22). To obtain a contradiction to (5.24) we
note that the operator inequality 1(E,∞)(H

′
ω) > 1(E+ε,∞)(H

′
ω) for all ε > 0 implies

tr
{

1(−∞,E)(Hω)1(E,∞)(H
′
ω)1(−∞,E)(Hω)

}
> lim sup

ε↘0
tr
{

1(−∞,E)(Hω)1(E+ε,∞)(H
′
ω)1(−∞,E)(Hω)

}
= lim sup

ε↘0

{
γω(E)| ln ε|+ o(| ln ε|)

}
. (5.26)

The last line follows along the same line as in Lemma 2.21 or see [GKM14, Sct. 3]. Since
γω(E) > 0 for all E ∈ J , this contradicts (5.24). �

Remarks 5.10. (i) Under the assumption that δ0 is cyclic for the operator Hω we
obtain in the equations (5.23) and (5.25) that σac(Hω) ∩ I = ∅. In the Anderson model
cyclicity of the vector δ0 is a delicate issue. In the localised regime [Sim94, KM06] showed
that δ0 is a cyclic vector of the operator Hω

∣∣
Hpp for P-a.e. ω ∈ Ω, where Hpp denotes

the pure-point spectral subspace. This result was extended in [JL06]. They proved that the
vector δ0 is for P-a.e. ω ∈ Ω cyclic on the entire singular part of the spectrum. However,
it is an open problem to show cyclicity of δ0 for the entire spectrum independently of the
spectral type. It was even suggested that showing non-cyclicity of the vector δ0 might be
a suitable way to prove delocalisation in the Anderson model [JL06].

(ii) The second part of the above corollary is related to the Simon-Wolff criterion
because

tr
{

1(−∞,E)(Hω)1(E,∞)(H
′
ω)1(−∞,E)(Hω)

}
6
〈
δ0,

(
1

Hω − E

)2

δ0

〉
, (5.27)
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see Section 2 below. Whenever the Simon-Wolff criterion holds, the right hand side of
(5.27) is finite. Since this is the case in the localised regime, this proves (5.15) already. We
refer to [SW86] or [Sim05, Chap. 12] for more details about the Simon-Wolff criterion.

(iii) We do not know, whether (5.22) or (5.24) are sufficient to exclude singular-
continuous spectrum.

Theorem 5.7 states almost sure results. The next apparent question concerns the ex-
pectation value of the latter. In particular, the behaviour of the expectation value of the
infinite-volume Anderson integral

E
[
tr
{

1(−∞,E)(H)1(E,∞)(H
′
ω)1(−∞,E)(H)

}]
, (5.28)

where we omit the subscript ω in the expectation value throughout. We begin with a
representation of the Anderson integral.

Lemma 5.11. For all E ∈ R we have the following identity

E
[
tr
{

1(−∞,E)(H)1(E,∞)(H
′)1(−∞,E)(H)

}]
=

∫
(−∞,E)×(E,∞)

dµ(x, y)
1

(y − x)2
,

(5.29)
where the measure µ is given by

µ(B ×B′) := ν2E
[〈
δ0, 1B(H)δ0

〉〈
δ0, 1B′(H

′)δ0

〉]
, (5.30)

with B,B′ ∈ Borel(R).

Proof. By Appendix A, Theorem A.1, we obtain

tr
{

1(−∞,E)(Hω)1(E,∞)(H
′
ω)1(−∞,E)(Hω)

}
=

∫
(−∞,E)×(E,∞)

dµ(x, y)
1

(y − x)2
. (5.31)

where the measure µ is uniquely defined by µ(B ×B′) := 〈δ0, 1B(Hω)δ0〉〈δ0, 1B′(H
′
ω)δ0〉.

Moreover, we note that also (5.30) gives rise to a uniquely defined Borel measure on R2

using monotone convergence. We have for all S ∈ Borel(R2) the identity

E
[∫

R2

dµ(x, y) 1S(x, y)

]
= E [µ(S)] =

∫
R2

dµ(x, y) 1S(x, y). (5.32)

Approximating the function f(x, y) := (y − x)−21(−∞,E)×(E,∞)(x, y) by simple functions
from below and using the monotone convergence theorem gives the identity (5.29). �

Remark 5.12. The corresponding representation is also valid for the pair of the finite-
volume operators Hω,L and H ′ω,L.

Thus, the behaviour of the left hand side of (5.29) is closely related to the regularity of
the spectral-correlation measure (5.30) near the point (E,E) on the diagonal. Using the
technics developed in Chapter 2, we obtain.

Theorem 5.13. For Leb.-a.e. E ∈ R,

lim sup
ε↘0

1

| ln ε|
E
[
tr
{

1(−∞,E−ε)(H)1(E+ε,∞)(H
′)1(−∞,E−ε)(H)

}]
> γ(E), (5.33)

where

γ(E) := lim
ε↘0

1

ε2
µ
(
(E − ε/2, E + ε/2)× (E − ε/2, E + ε/2)

)
. (5.34)



1. MODEL AND RESULTS 75

Proof. The proof essentially follows from the proof of Theorem 2.2 for the deterministic
setting observing that all errors can be controlled by the operator norm of the random
potential ‖Vω‖∞, see Chapter 2 and [GKM14]. Thus, the error is controlled uniformly in
ω ∈ Ω. �

Remarks 5.14. The choice of the approximation of the identity in (5.34) is not important
and

γ(E) =
1

π2
lim
ε↘0

E
[

Im
〈
δ0,

1

H − E − iε
δ0

〉
Im
〈
δ0,

1

H ′ − E − iε
δ0

〉]
(5.35)

as well.

Now, we turn to the regularity of the measure (5.30). The Cauchy-Schwarz inequality
and the Wegner estimate [K08] immediately imply for all B,B′ ∈ Borel(R)

E
[〈
δ0, 1B(H)δ0

〉〈
δ0, 1B′(H

′)δ0

〉]
6 E

[〈
δ0, 1B(H)δ0

〉] 1
2E
[〈
δ0, 1B′(H

′)δ0

〉]
]
1
2

6 |B|
1
2 |B′|

1
2 . (5.36)

Thus, the measure (5.30) does not have a pure-point part or a part supported on a Cantor
type set. But in general one can not exclude a singular continuous part or even obtain
a bounded density. Nevertheless, at a first glance the above computation seems to show
that the expectation value of (5.28) is infinite because the expectation value in (5.30)
regularises the spectral-correlation measure and we expect the measure (5.30) to have an
absolutely continuous part. But in the localised regime we can compute the constant γ
and obtain the following.

Lemma 5.15. Let I ⊂ R be an interval such that both operators Hω and H ′ω admit purely
pure-point spectrum within I for P-a.e. ω ∈ Ω. Then, for Leb.-a.e. E ∈ I

γ(E) :=
1

π2
lim
ε↘0

E
[

Im
〈
δ0,

1

H − E − iε
δ0

〉
Im
〈
δ0,

1

H ′ − E − iε
δ0

〉]
= 0. (5.37)

We emphasise, that in the above the resolvents are evaluated at the same energies
E + iε.

Remarks 5.16. The value of (5.37) can be considered also in the ν = 0 case. But in
this case we believe that the corresponding spectral-correlation measure has a singularity
on the diagonal even in the localised regime. Such two-point correlation functions are of
certain interest concerning conductivity, see e.g. [KLP03].

Proof. We want to apply the dominated convergence theorem to interchange the limit
and the expectation in (5.37). To do so, we use the resolvent equation and obtain Krein’s
formula 〈

δ0,
1

H ′ω − E − iε
δ0

〉
=

1

ν +
〈
δ0,

1
Hω−E−iεδ0

〉−1 . (5.38)

We set a+ bi :=
〈
δ0,

1
Hω−E−iεδ0

〉
, where a, b ∈ R. Then, using (5.38)

Im
〈
δ0,

1

Hω − E − iε
δ0

〉
Im
〈
δ0,

1

H ′ω − E − iε
δ0

〉
=

b2

(1 + νa)2 + (νb)2
6

1

ν2
. (5.39)
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Moreover, we assumed that both operators Hω and H ′ω admit purely pure-point spectrum
for a.e. (E,ω) ∈ I × Ω. Hence,

lim
ε↘0

{
Im
〈
δ0,

1

Hω − E − iε
δ0

〉
Im
〈
δ0,

1

H ′ω − E − iε
δ0

〉}
= 0 (5.40)

for a.e. (E,ω) ∈ I × Ω. Thus, (5.37) follows from (5.39), (5.40) and the dominated
convergence theorem. �

Hence, we gain no information out of Theorem 5.13 in the case of purely pure-point
spectrum of the underlying pair of operators. Nevertheless, Lemma 5.15 indicates that
the expectation in (5.29) should be finite in the localised regime. We prove the following
statement pointing precisely in this direction.

Theorem 5.17. Let 0 < s < 1. Then, for all E ∈ As ∩ A′s
E
[(

tr
{

1(−∞,E)(H)1(E,∞)(H
′)1(−∞,E)(H)

})s]
<∞. (5.41)

We prove this theorem in Subsection 2.1 below. We remark that the above is not entirely
satisfying because pushing s → 1 will shrink the set of all possible energies E ∈ As ∩ A′s
to the empty set. While completing this thesis it was proved that the expectation is indeed
finite for energies within the exponentially localised regime.

Theorem 5.18 ([Die15]). Let E ∈ As ∩ A′s. Then,

E
[(

tr
{

1(−∞,E)(H)1(E,∞)(H
′)1(−∞,E)(H)

})]
<∞. (5.42)

For a proof see the master thesis [Die15].

1.2. Lower Bounds on the Correlation Determinant. Unlike in the above para-
graph, we focus here only on the high disorder case. We remind you that for L ∈ N and
some Fermi energy E > 0 we set

SL(E) := det
(
〈ϕLj , ψLk 〉

)
j,k=1,...,NL(E)

, (5.43)

where we choose the particle number for E ∈ R to be

N ≡ NL(E) := #{ j ∈ N : λLj 6 E } ∈ N0, (5.44)

as in Chapter 2. If NL(E) = 0, we set SL(E) = 1. The main result of this section is the
following non-vanishing of the expectation of the ground-state overlap.

Theorem 5.19. For any constant c ∈ (0, 1) there exists a coupling constant λ0 such that
for all λ > λ0

lim inf
L→∞

E
[
|SL(E)|

]
> c (5.45)

for Leb.-a.e. E ∈ R.

Apparently, the above result is only interesting if E is within the almost-sure spectrum.

Remarks 5.20. (i) The above is contrary to the findings in Chapter 2 and Chapter
3. As a reminder, we proved in these chapters under quite weak assumptions on the pair
of Schrödinger operators that

SL(E)→ 0 (5.46)
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if the decay exponent γω(E) > 0. For the moment let us assume that γω(E) > 0 for a.e.
(E,ω) ∈ I × Ω for an interval I. The definition of γω(E) implies that I ⊂ σac(Hω), see
definition (5.16). Since the determinant is the scalar product of two normalised ground-
states, we obtain that it is bounded by 1 uniformly in ω ∈ Ω. Therefore, we use dominated
convergence to show that in this case the above expectation value has to vanish, i.e.

lim
L→∞

E
[
|SL(E)|

]
= E

[
lim
L→∞

|SL(E)|
]

= 0. (5.47)

for Leb.-a.e. E ∈ I.
(ii) At least in our proof the rate of disorder depends on the strength of the coupling

constant ν in the way that one needs at least

|ν|2 . |λ|. (5.48)

Though the square is probably too much and just due to far too rough estimates, numerics,
see Figure 1, suggest that such a condition may be necessary for Theorem 5.19 to hold.

(iii) We use the same deterministic estimates used in [KOS13] to deduce a deterministic
lower bound on the determinant. These estimates are too bad to obtain sharp lower bounds
on the determinant.

(iv) From Theorem 5.19 above one might think it is possible to show that the determi-
nant is almost surely bounded from below depending on the realisation ω ∈ Ω. Looking at
some numerics and some heuristics stated in Chapter 6 below, we doubt this. Nevertheless,
using SL(E) 6 1, we obtain a weak pointwise result for subsequences as an immediate
corollary of Theorem 5.19.

Corollary 5.21. There exists a coupling constant λ0 such that for all λ > λ0 and Leb.-a.e.
E ∈ σ(Hω) there exists some B ∈ F with P(B) > 0 such that there exists a subsequence
Lωk such that

lim inf
k→∞

∣∣SLωk (E)
∣∣ > 0. (5.49)

Though the latter is valid for subsequences only, it is contrary to Theorem 2.3 in
Chapter 2. We proved there that the determinant will vanish for all subsequences in the
discrete setting provided γω(E) > 0.

2. An Application of the Fractional Moment Bound

We start with investigating the convergence of the fractional moments of the resolvents
of the operators Hω,L to the ones of the operator Hω. Later on, we use the results deduced
in this section to prove Theorem 5.7, Theorem 5.17 and Theorem 5.19.

We define the following abbreviation to shorten notation where we suppress the index
ω ∈ Ω.

Definition 5.22. Let E ∈ R and ε > 0.

(i) For n,m ∈ ΛL, we define

GE,εL (n,m) :=
〈
δn,

1

Hω,L − E − iε
δm
〉
. (5.50)

(ii) For n,m ∈ Zd, we define

GE,ε(n,m) :=
〈
δn,

1

Hω − E − iε
δm
〉
. (5.51)
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Lemma 5.23. Let m,n ∈ Zd. Then, for all ω ∈ Ω the limit

lim
ε↘0

GE,ε(m,n) := GE,0(m,n) ∈ C (5.52)

exists for Leb.-a.e. E ∈ R .

Proof. See [PF92, App. A] and the references cited therein on limit values of Borel trans-
forms of complex measures. �

We continue with a result on L1-convergence of fractional moments.

Lemma 5.24. Let s < 1
4 . Then, for Leb.-a.e. E ∈ A4s there exist constants c1, C1 and

L0 > 0 such that for all L > L0

E
[∣∣∣ ∑

n∈ΛL

∣∣GE,0L (0, n)
∣∣2s − ∑

n∈Zd

∣∣GE,0(0, n)
∣∣2s∣∣∣] 6 C1 exp

(
− c1L

)
. (5.53)

Proof. Let L ∈ N. Note that for a given ω ∈ Ω the union of the spectra ∪L∈Nσ(Hω,L) is
a Lebesgue nullset as a countable union of finite sets. This and Lemma 5.23 imply that

(E,ω) 7→ X(E,ω) :=
∣∣∣ ∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s − ∑

n∈Zd

∣∣GE,0(0, n)
∣∣2s∣∣∣ ∈ [0,∞] (5.54)

is well-defined for a.e. (E,ω) ∈ R× Ω where the exceptional set can be chosen uniformly
in L ∈ N. Thus, for Leb.-a.e. E ∈ R the random variable ω 7→ X(E,ω) is well-defined. We
restrict ourselves to one of these E ∈ R intersected with A4s. For 0 < r < 1 the function
R>0 3 x 7→ xr is concave, which implies the elementary inequality∣∣|a|r − |b|r∣∣ 6 |a− b|r (5.55)

valid for all a, b ∈ C. We split the sum on the left hand side of (5.53) in two parts and
first estimate using (5.55)

E
[∣∣∣ ∑

n∈ΛL

(∣∣GE,0L (0, n)
∣∣2s − ∣∣GE,0(0, n)

∣∣2s)∣∣∣]

6
∑
n∈ΛL

E
[∣∣∣GE,0L (0, n)−GE,0(0, n)

∣∣∣2s]

=
∑
n∈ΛL

E
[

lim
ε↘0

∣∣∣GE,εL (0, n)−GE,ε(0, n)
∣∣∣2s]

6 lim inf
ε↘0

∑
n∈ΛL

E
[∣∣∣GE,εL (0, n)−GE,ε(0, n)

∣∣∣2s] , (5.56)

where in last two lines we used definition (5.52) and Fatou’s lemma. The geometric resol-
vent identity, see [K08, Eq. (5.51)], implies

(5.56) 6 lim inf
ε↘0

∑
n∈ΛL

E
[∣∣∣ ∑

(k,k′)∈∂ΛL
k′∈ΛL

GE,ε(0, k)GE,εL (k′, n)
∣∣∣2s], (5.57)

where ∂ΛL denotes the boundary of ΛL, i.e.

∂ΛL =
{

(k, k′) : |k − k′|1 = 1 and k ∈ ΛcL, k
′ ∈ ΛL or k ∈ ΛL, k

′ ∈ ΛcL
}
, (5.58)
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where ΛcL := Zd\ΛL. Since 2s < 1, we obtain the elementary inequality∣∣∣ N∑
n=1

an

∣∣∣2s 6 N∑
n=1

|an|2s (5.59)

for N ∈ N and a1, ..., aN ∈ C. Hence, this and the Cauchy-Schwarz inequality imply

(5.57) 6 lim inf
ε↘0

∑
n∈ΛL

∑
(k,k′)∈∂ΛL
k′∈ΛL

(
E
[∣∣GE,ε(0, k)

∣∣4s])1/2 (
E
[∣∣GE,εL (k′, n)

∣∣4s])1/2
.

(5.60)

Since E ∈ A4s, Definition 5.3 yields independently of ε

(5.60) 6
∑
n∈ΛL

∑
(k,k′)∈∂ΛL
k′∈ΛL

C exp
(
− c|k|1/2

)
6 (2L+ 1)d|∂ΛL| C exp

(
− cL/2

)
. (5.61)

Since |∂ΛL| 6 CdLd−1, where the constant Cd depends only on the dimension d, we obtain
for all c2 < c

(5.61) 6 C exp
(
− c2L

)
(5.62)

for all L > L0(c2) big enough. Moreover, the Definition 5.3 of A4s implies

E
[ ∑
n/∈ΛL

∣∣ lim
ε↘0

GE,ε(0, n)
∣∣2s] 6 lim inf

ε↘0

∑
n/∈ΛL

C exp
(
− c|n|1

)
6 C2 exp

(
− cL

)
(5.63)

for all E ∈ A4s. Set C1 := max{C,C2} and c1 := min{c, c2}, and the assertion follows.
�

Using a Borel-Cantelli argument, the above can be strengthened to obtain pointwise
convergence. We demonstrate it for convenience.

Lemma 5.25. Let s < 1
4 . Then, we have for a.e. (E,ω) ∈ A4s × Ω

lim
L→∞

∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s =

∑
n∈Zd

∣∣GE,0(0, n)
∣∣2s . (5.64)

Proof. Since we consider a discrete model, we note that every sequence (Ln)n∈N is a sub-
sequence of (n)n∈N, i.e. the sequence of the natural numbers. Hence, we restrict ourselves

to this sequence (L)L∈N. Let m ∈ N and s < 1
4 . Then, the event

AmL :=

{ ∣∣∣ ∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s − ∑

n∈Zd

∣∣GE,0(0, n)
∣∣2s∣∣∣ > 1

m

}
(5.65)

is well-defined for Leb.-a.e. E ∈ R, see (5.54). Then, by the Markov inequality and Lemma
5.24

P (AmL ) 6 mE
[∣∣∣ ∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s − ∑

n∈Zd

∣∣GE,0(0, n)
∣∣2s∣∣∣]

6 mC1 exp (−c1L) . (5.66)



80 5. EIGENFUNCTION CORRELATIONS IN THE ANDERSON MODEL

Thus, ∑
L∈N

P(AmL ) <∞ (5.67)

and the Borel-Cantelli Lemma implies

P (AmL happens for infinitely many L ∈ N) = 0. (5.68)

Hence, there exists a set Bm ∈ Ω with P(Bm) = 1 such that for all ω ∈ Bm

lim sup
L→∞

∣∣∣ ∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s − ∑

n∈Zd

∣∣GE,0(0, n)
∣∣2s∣∣∣ 6 1

m
. (5.69)

Now, the assertion holds for all ω ∈ ∩m∈NBm which still has probability 1. �

2.1. Proof of Theorem 5.7 and Theorem 5.17.

Proof of Theorem 5.7. We prove (i) only, (ii) follows along the same line. First note that
As2 ⊂ As1 for s1 < s2. This follows from Hölder’s inequality. Thus, A is a countable union
A = ∪n>2A 1

n
and it suffices to prove (i) only for a.e. (E,ω) ∈ Ar × Ω for a fixed r < 1

to obtain the assertion for a.e. (E,ω) ∈ A× Ω.

Let 0 < r < 1, and set s := r/4. Let (E,ω) ∈ A4s × Ω such that Lemma 5.25 holds.
Using Lemma 2.12 or Appendix A, we rewrite

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
=

∫
(−∞,E)×(E,∞)

dµL(x, y)
1

(y − x)2
,

(5.70)

where, as before, µL is the spectral-correlation measure defined on Borel sets B,B′ ∈
Borel(R) by

µL(B ×B′) := ν2〈δ0, 1B(Hω,L)δ0〉〈δ0, 1B′(Hω,L)δ0〉. (5.71)

Hence, we estimate

tr
{

1(−∞,E)(Hω,L)1(E,∞)(H
′
ω,L)1(−∞,E)(Hω,L)

}
6
∫

(−∞,E)×(E,∞)
dµL(x, y)

1

(E − x)2

6 ν2
〈
δ0,
( 1

Hω,L − E

)2
δ0

〉〈
δ0, 1(E,∞)(H

′
L)δ0

〉
. (5.72)

We estimate the second part by 1 and insert an identity in the first part of the above
product of scalar products. Therefore,

(5.72) 6 ν2
∑
n∈ΛL

∣∣∣〈δ0,
1

Hω,L − E
δn
〉∣∣∣2

= ν2
∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2

6 ν2
( ∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s)1/s

, (5.73)
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where 0 < s < 1 and we used the inequality (5.59) in the last line. Now, Lemma 5.25
implies for a.e. (E,ω) ∈ A4s × Ω

lim sup
L→∞

∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s 6∑

n∈Zd

∣∣GE,0(0, n)
∣∣2s (5.74)

and Fatou’s lemma together with the definition of the set A4s provide for all E ∈ A4s that∑
n∈Zd

∣∣GE,0(0, n)
∣∣2s 6 lim inf

ε↘0

∑
n∈Zd

∣∣GE,ε(0, n)
∣∣2s <∞, (5.75)

for P-a.e. ω ∈ Ω. This and the inequalities (5.73) and (5.74) give the assertion. �

Proof of Theorem 5.17. We fix 0 < s < 1 and E ∈ As ∩ A′s. We begin with the integral
representation deduced in Appendix A

tr
{

1(−∞,E)(Hω)1(E,∞)(H
′
ω)1(−∞,E)(Hω)

}
=

∫
(−∞,E)×(E,∞)

dµ(x, y)
1

(y − x)2
. (5.76)

Then, the inequality

1

(y − x)2
1(−∞,E)(x)1(E,∞)(y) 6

1

E − x
1(−∞,E)(x)

1

y − E
1(E,∞)(y) (5.77)

implies the bound

E
[

tr
{

1(−∞,E)(H)1(E,∞)(H
′)1(−∞,E)(H)

}s ]
6 ν2sE

[(〈
δ0,

1

E −H
1(−∞,E)(H)δ0

〉〈
δ0,

1

H ′ − E
1(E,∞)(H

′)δ0

〉)s]
. (5.78)

In the above inequality, we do not a priori claim that the right hand side is finite. We
continue with the resolvent equation and estimate

(5.78) = νs E
[(〈

1(−∞,E)(H)δ0,

(
1

H ′ − E
− 1

H − E

)
1(E,∞)(H

′)δ0

〉)s]
6 νs E

[∣∣∣〈1(−∞,E)(H)δ0,
1

H ′ − E
1(E,∞)(H

′)δ0

〉∣∣∣s]
+ νs E

[∣∣∣〈1(−∞,E)(H)δ0,
1

H − E
1(E,∞)(H

′)δ0

〉∣∣∣s], (5.79)

where we used s < 1 and (5.59) for the last inequality. Now, the Cauchy-Schwarz inequality
implies

(5.79) 6 νs E
[∥∥ 1

H ′ − E
δ0

∥∥s]+ νs E
[∥∥ 1

H − E
δ0

∥∥s]
6 νs E

[ ∑
n∈Zd

∣∣〈δn, 1

H ′ − E
δ0

〉∣∣s]+ νs E
[ ∑
n∈Zd

∣∣〈δn, 1

H − E
δ0

〉∣∣s], (5.80)

where we used once again the elementary inequality (5.59) in the last line. Since we chose
E ∈ As ∩ A′s the theorem follows from Definition 5.3. �
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2.2. Proof of Theorem 5.19. The key to the proof of Theorem 5.19 is the following
asymptotics of the expectation value of the fractional moments.

Lemma 5.26. Let 0 < 2s < 1. There exists a coupling constant λ0 and a constant Cs
such that for all λ > λ0

E
[ ∑
n∈Zd

∣∣GE,0(0, n)
∣∣2s ] 6 Cs 1

|λ|s
(5.81)

for Leb.-a.e. E ∈ R.

This is a classical result for the Anderson model. For a proof of this lemma see [AM93]
or [AG98, App. B] and keep track of all the constants. We note that in the above lemma
the constant Cs can be chosen independently of the energy E.

Proof of Theorem 5.19. Let E ∈ R. Since |SL(E)| 6 1 we estimate

E
[
|SL(E)|

]
> E

[
|SL(E)|2

]
. (5.82)

Let c > 0. Then, the Markov inequality implies

E
[
|SL(E)|2

]
> e−c P

(
|SL(E)|2 > e−c

)
. (5.83)

Now, expanding the determinant, as in Lemma 2.9, we obtain

|SL(E)|2 = exp
(
−
∞∑
n=1

1

n
tr
{(
PNL
(
I −ΠN

L

)
PNL

)n})
, (5.84)

where we write N ≡ NL(E)

PNL :=

N∑
j=1

〈ϕLj , · 〉ϕLj and ΠN
L :=

N∑
k=1

〈ψLk , · 〉ψLk . (5.85)

Hence, we rewrite the right hand side of (5.83) as

P
(
|SL(E)|2 > e−c

)
= P

( ∞∑
n=1

1

n
tr
{(
PNL
(
I −ΠN

L

)
PNL

)n}
< c

)
. (5.86)

The inequality
∑

k∈N |ak|n 6
(∑

k∈N |ak|
)n

for ak ∈ C, n ∈ N, implies

tr
{(
PNL
(
I −ΠN

L

)
PNL
)n}
6
(

tr
{
PNL
(
I −ΠN

L

)
PNL
})n

. (5.87)

We define the event

K :=
{
ω : tr{PNL (I −ΠN

L )PNL } < 1
}
∈ F . (5.88)

For all ω ∈ K we compute using the inequality (5.87) and the geometric series

∞∑
n=1

1

n
tr
{(
PNL
(
I −ΠN

L

)
PNL

)n}
6

tr
{
PNL
(
I −ΠN

L

)
PNL

}
1− tr{PNL

(
I −ΠN

L

)
PNL }

. (5.89)
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This implies that

r.h.s. (5.86) > P
({ tr

{
PNL
(
I −ΠN

L

)
PNL

}
1− tr{PNL

(
I −ΠN

L

)
PNL }

< c

}
∩ K

)
= P

(
tr
{
PNL
(
I −ΠN

L

)
PNL

}
<

c

1 + c

)
, (5.90)

where we used c
1+c < 1 for c > 0. Smuggling in a 0 < s < 1

4 and another application of
the Markov inequality provide

(5.90) = 1− P
(

tr
{
PNL
(
I −ΠN

L

)
PNL

}
>

c

1 + c

)
= 1− P

((
tr
{
PNL
(
I −ΠN

L

)
PNL

})s
>
( c

1 + c

)s)
> 1−

(1 + c

c

)s
E
[(

tr
{
PNL
(
I −ΠN

L

)
PNL

})s]
. (5.91)

Moreover, the special choice of N = NL(E), see (5.44) implies λLN 6 E < µLN+1. Hence,

tr
{
PNL
(
I −ΠN

L

)
PNL

}
6 tr

{
1(−∞,E)(HL)1[E,∞)(H

′
L)1(−∞,E)(HL)

}
(5.92)

and we use once again the integral representation deduced in Appendix A to compute(
tr
{
PNL
(
I −ΠN

L

)
PNL

})s
6

(∫
(−∞,E)×[E,∞)

dµL(x, y)
1

(y − x)2

)s
6 ν2s

(
〈δ0,

( 1

HL − E

)2
δ0〉
)s

6 ν2s
∑
n∈ΛL

∣∣∣GE,0L (0, n)
∣∣∣2s, (5.93)

where the latter inequalities follow along the same line as in (5.72) and (5.73). Now, Lemma
5.24 provides for Leb.-a.e. E ∈ R

E
[ ∑
n∈ΛL

∣∣GE,0L (0, n)
∣∣2s]→ E

[ ∑
n∈Zd

∣∣GE,0(0, n)
∣∣2s] (5.94)

as L→∞. Therefore, the above and the equations (5.83) and (5.91) imply

lim inf
L→∞

E
[
|SL(E)|2

]
> e−c

(
1−

(1 + c

c

)s
ν2s E

[ ∑
n∈Zd

∣∣GE,0(0, n)
∣∣2s ]). (5.95)

Lemma 5.26 gives

(5.95) > e−c
(

1−
(1 + c

c

)s
ν2s Cs
|λ|s

)
(5.96)

and increasing the disorder strength λ sufficiently far, provides the assertion. �





CHAPTER 6

Outlook

In this chapter we begin with some numerics on the ground-state overlap. Later on,
motivated by these numerics, we formulate some open questions and conjectures concerning
the ground-state overlap.

1. Let the Computer Compute

In this section we present some numerics on the ground-state overlap. We visualise
and illustrate the behaviour of the ground-state overlap for different Fermi energies or
magnitudes of the perturbation. In particular, since the pointwise results for the Anderson
model in Chapter 5 are not entirely satisfying, numerics will help to get a feeling for the
behaviour of the ground-state overlap. Throughout we consider the discrete setting on the
half line, i.e. H = `2(N) and for u ∈ `2(N)

(−∆u) (n) :=

{
2u(n)− u(n− 1)− u(n+ 1) n > 1

u(1)− u(2) n = 1
(6.1)

and we define the pair of operators

H := −∆ + bV0 and H ′ := H + bV0 + aV, (6.2)

where a, b ∈ R. Here, V0 denotes some background potential, which is in the following either
zero or a random multiplication operator. Moreover, V is some multiplication operator with
compact support, which will be a rank-one up to a rank-four perturbation. Let L ∈ N. Then,
we denote by HL and H ′L the restrictions of H and H ′ to the interval [1, L] ⊂ N. Thus,
HL and H ′L are just L × L matrices. Moreover, we introduce the energy E ∈ (0, 1) to
parametrise the Fermi energy, i.e. for a given E ∈ (0, 1) and a length L ∈ N we choose
the particle number NL ∈ N according to

NL := bELc which implies lim
L→∞

NL

L
= E, (6.3)

where bxc := max{n ∈ N : n 6 x}. We slightly changed our notation in this section. In
the previous chapters we choose the thermodynamic limit as NL/L → ρ(E) for L → ∞,
where ρ is the integrated density of states of the unperturbed operator. Here, for brevity
we don’t introduce ρ and E = ρ(Ẽ) for some Ẽ ∈ σ(H).

In the following we write SL(E) for the ground-state overlap corresponding to HL and
H ′L defined in (2.5) with NL chosen as in (6.3) above.

The Deterministic Case. We start with the case V0 = 0 and V = |δ1〉〈δ1| a rank-one
perturbation. Thus, we are in position to use the product formula deduced in Chapter 3,
Theorem 3.3, to compute the values of the ground-state overlap SL(E). We do this for
three different coupling constants a1 = −5, a2 = 1 and a3 = 5 and various Fermi energies

85
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E and obtain Figure 1. We remind you that the analytic proof of Chapter 3 extends to the
discrete setting considered here.

Figure 1. The ground-state overlap SL(E) for various parameters
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Even though the determinant behaves in Figure 1 perfectly as proven in Theorem 3.17
and Theorem 3.20, let us comment on two things. We can not create arbitrary decay of
the ground-state overlap with a rank-one perturbation. This is due to the interlacing of the
eigenvalues, which implies that the scattering phase shift is uniformly bounded independent
of the precise strength of the rank-one perturbation. Let us also note that the ground-state
overlap behaves in the same way for a negative perturbation and small energies as for a
positive perturbation and high energies. This can be observed well in the figure. Therefore,
we believe that in the case of an absent background potential there is a duality of the
form SL(E, a) ∼ SL(1 − E,−a), as L → ∞, at least for energies E ∈ (0, 1)\{0.5}. In
the above, we included the index a which refers to the coupling constant in front of the
perturbation. This is an effect of the discrete setting and the symmetric bounded spectrum
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of the discrete negative Laplacian. Since we considered so far models in the continuum
only, we will not discuss this discrete ambiguity.

We proceed with a plot of the decay exponent ζ(E) for various energies in the in-
terval E ∈ (0, 1). In this case we consider a rank-four perturbation V := |δ1〉〈δ1| +
|δ2〉〈δ2|+ |δ3〉〈δ3|+ |δ4〉〈δ4|. Though we didn’t prove | lnSL(E)/ lnL| → ζ(E) as L→∞
in the case of a rank-four perturbation, we approximate the decay exponent ζ(E) by
| lnS1000(E)/ ln 1000| and plot this value for a variety of energies E in Figure 2. Qualita-
tively, this should be a good approximation of the behaviour of the decay exponent when
changing the energy E.

Figure 2. The decay exponent ζ(E) of the ground-state overlap SL(E)
depending on the energy E
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We comment on one thing concerning Figure 2. The behaviour of the decay exponent
ζ at the right spectral edge is related, up to a factor of π, to the number of the eigenvalues
which are pushed over the spectral edge by the non-negative perturbation V . In our case
this number is at most 4π due to the rank-four perturbation. One can see this number
in the second picture of Figure 2 at the right spectral edge. Such theorems go under the
name Levinson’s theorem in the theory of ODEs, see e.g. [RS79].

In Figure 3 we focus again on the product formula deduced for rank-one perturbations
in Chapter 3, Theorem 3.3. One can ask, whether this formula is a good approximation of
the actual asymptotics of SL(E) for more general perturbations than a rank-one perturba-
tion. This is in particular interesting if we remember that the main ingredient to obtain the
asymptotics out of the product formula was Lemma 3.15. This lemma relates the eigen-
values of the perturbed operator H ′L with the eigenvalues of the unperturbed operator HL

in terms of the scattering phase shift. Later on, we saw that this relation does not rely
on the rank-one perturbation and we proved a corresponding lemma also for more general
perturbations, see Lemma 4.11.

We consider a rank-two perturbation V and compare the decay exponent of the actual
value of SL(E) with the value of the decay exponent given by the product formula in this
situation. More precisely, let us call QL(E) the value of the overlap resulting from the
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Figure 3. The difference of the decay exponents of the ground-state overlap
SL(E) and the product formula QL(E) for rank-two perturbations
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product formula in Theorem 3.3. Then, we plot in Figure 3 the difference | lnSL(E) −
lnQL(E)|/ lnL for increasing length scales L. Figure 3 suggests that the product formula
might be a good approximation of the asymptotics. Moreover, the loglog plot indicates
that the difference of the decay exponents may converge algebraically to 0 as L→∞.

Conjecture: We have the following behaviour
∣∣ lnSL(E)

lnL − lnQL(E)
lnL

∣∣ = O
(

1
Lα

)
for some α >

0 as L→∞, i.e. the asymptotic behaviour of the product formula gives the asymptotics of
the ground-state overlap also for more general perturbations than rank-one perturbations.

The Case including a Random Background Potential. In this subsection let V0 be
the multiplication operator given by a family of random variables (Vω(n)))n∈N, which are
independent and identically uniformly distributed on the interval [0, 1].

Morally, this setting is the same as in Chapter 5, just on the half-axis. We proved in
Chapter 5 that the expectation value of the ground-state overlap stays bounded away from
0 at least for high disorder. But we were not able to obtain almost sure results or even
results concerning a single realisation of the random potential.

Therefore, we start with Figure 4 which illustrates the behaviour of the ground-state
overlap for various coupling constants a and various magnitudes of the random potential b.
Here, the perturbation is the rank-one perturbation V = |δ1〉〈δ1| as considered in Chapter
5. We point out that we chose in any of the subplots in Figure 4 five realisations of the
random potential. Moreover, the realisations in different subplots are independently chosen.

Throughout, one sees in Figure 4 that the ground-state overlap has a tendency to be
either near one or near 0. Heuristically, this is reminiscent of the following. If one eigenvalue
of HL, which lies near the Fermi energy, is localised at δ1 this eigenvalue jumps over the
Fermi energy when turning on the perturbation. This implies a quite small ground-state
overlap. If this does not happen, i.e. no relevant eigenvalue is localised near δ1 the ground-
state overlap stays near 1.

In general, we expect no non-trivial lower bounds on the ground-state overlap to hold
at least for almost all realisations. Moreover, we expect the deviations from the mean to
be quite big. Thus, we continue with a plot of the expectation value and the variance of
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Figure 4. The ground-state overlap SL(E) for various realisations of the
random potential
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the ground-state overlap. We computed in Figure 5 the value of the ground-state overlap
for m = 2000 realisations of the random potential and plotted the mean and the variance
of this vector. We did this for the same coupling constants and parameters as in Figure 4.

The first observation from Figure 5 is the large variance of SL(E). Since |SL(E)| 6 1,
a variance of approximately 0.2, which implies a standard deviation of more than 0.4,
is enormous compared to the value of SL(E). Thus, we have large fluctuations of the
ground-state overlap. Moreover, from the picture one sees that in the high disorder regime
the expectation stays bounded away from 0. This is proven in Theorem 5.19. On the other
hand in the case of moderate disorder, i.e. b = 1, it is not entirely clear what to expect by
investigating our numerics only. Somehow it rather looks like the non-random picture, see
Figure 1, but this could be reminiscent to considering too small length scales.
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Figure 5. The expectation and the variance of the ground-state overlap SL(E)
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2. What is the Asymptotics of the Ground-State Overlap?

In this section we comment on the correct asymptotics of the ground-state overlap. As
already pointed out earlier on, the upper bound found in [GKMO14]

lim sup
k→∞

ln|SLnk (E)|
lnLnk

6 −γ(E)

2
, with γ(E) :=

1

π2
‖arcsin |TE/2|‖2HS (6.4)

does not provide a sharp upper bound on the decay of the ground-state overlap in general.
Therefore, the most striking question is to find larger decay exponents than γ or even
optimal ones in more general situations than Dirac-δ perturbations.

The results of Chapter 3, deduced for a Dirac-δ perturbation, suggest that bound states
prevent the result of [GKMO14] from being sharp. Here, we want to emphasise that this
is not the case. To be more precise, we are not missing a correction in terms of the bound
states in the exponent γ. We are rather missing a term depending on the finite-volume
spectral-shift function at the Fermi energy E. Let us vaguely sketch this. We consider two
systems on the half-axis which differ by a multiplication operator V , which creates one
additional exponentially localised bound state ψL1 whereas the finite-volume spectral-shift
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function ξL(E) = 0. We introduce the ground-state overlap using the notation of Chapter 2

SL(E) := det

〈ϕ
L
1 , ψ

L
1 〉 · · · 〈ϕL1 , ψLN 〉

...
...

〈ϕLN , ψL1 〉 · · · 〈ϕLN , ψLN 〉

 . (6.5)

The following is not a rigorous argument but we think one can make it precise. Consider
the kth column with k > 1. Then, the entry with the maximal absolute value of this vector
is at the scalar product 〈ϕLj0(k), ψ

L
k 〉 where

λLj0(k) := min
{
|µLk − λLj | : 1 6 j 6 N

}
(6.6)

and each column has some decay away from its maximum. This maximum is morally at the
k+ 1-entry of the vector. At a first glance the k = 1 row which includes the exponentially
localised ψL1 seems to behave differently. Due to the exponential fall-off, the matrix elements
near the diagonal, e.g. 〈ϕL1 , ψL1 〉, are of lower order than 〈ϕLk , ψLj0(k)〉 for k > 1. One might

guess that this causes additional decay of the determinant. This intuition is wrong because
the maximal entry of the k = 1 column lies at the very end of this column, i.e. at 〈ϕLN , ψL1 〉,
and this scalar product is of the same order as 〈ϕLj0(k), ψ

L
k 〉 for k > 1. Heuristically, after

shifting each column to the left, the maximum of each row lies on the diagonal of the
matrix. Therefore, after this reordering one sees that there is no additional decay caused by
the bound state. We have to admit that the above is very vague and of course the question
is now: Where does the additional decay emerges? It comes from the states near the
Fermi energy E. To illustrate this, we assume that the finite-volume spectral-shift function
satisfies ξL(E) = 2, which means that the perturbation V pushes two eigenvalues over
the Fermi energy E. Moreover, we suppose that λLj0(N) = λLN+1. Now, consider the last row

of the matrix in (6.5). Due to the above assumption, the natural partner of the eigenvalue
µLN in the sense of (6.6) is missing in the N th row. Therefore, the maximal entry of the
row is abnormally small compared to the others. This effect will cause additional decay of
the determinant not measured by γ.

The heuristics indicate that we are not missing a factor proportional to the number
of bound states created by the perturbation but rather to the eigenvalues pushed over
the Fermi energy by the perturbation. With these heuristics in mind, we consider a 3-
dimensional spherically symmetric model and a spherically symmetric perturbation V . Then,
we define

θ(E) :=
1

π2

∑
`∈N

(2`+ 1)
(
δ`(
√
E)
)2
, (6.7)

where δ` denotes the scattering-phase shift in the `th angular momentum channel. Since
δ` is a priori just defined up to a multiple of π, one has to find the right choice of δ`. It is
convenient to take the δ` to be continuous with limE→∞ δ`(

√
E) = 0. This seems to be

consistent with the above heuristics and Remark 4.6(iv), which says that the spectral-shift
function corresponds to the scattering phase shift, normalised in the above way, at least
for models on the half-axis. Moreover, we remark that this choice ensures that Levinson’s
theorem holds, see [RS79, Sct. XI]. In scattering theory the choice |δ̃`| ∈ [0, π/2] is more
common because one is interested in the behaviour of the generalised eigenvalues far away

from the origin only. However, when δ̃` crosses π/2 we pick up a winding number in the
phase space of the Prüfer variables. Considering again the exponent γ, we rewrite using
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the above definitions

γ(E) =
1

π2

∞∑
`=0

(2`+ 1)
(
arcsin

(
sin
(
δ`(
√
E)
)))2

=
1

π2

∞∑
`=0

(2`+ 1)
(
δ̃`(
√
E)
)2
, (6.8)

where δ̃` is normalised according to δ̃` ∈ [−π/2, π/2]. Therefore, the crucial point, which
we missed in the proof of [GKMO14], is the winding number of the scattering phase shifts.

We included in (6.7) the scattering phase shifts of the infinite volume. However, we
obtain in the heuristics rather the phase shifts in the finite volume. Unfortunately, in
higher dimensions we don’t know if the infinite sum of the finite-volume scattering phase
shifts converges to (6.7). Such convergence issues related to the finite-volume spectral-shift
function are a quite delicate thing in higher dimensions, see [Kir87] and [HM10]. Therefore,
one might generate faster decay than given by (6.7) for some choices of the thermodynamic
limit. Nevertheless, we conjecture:
Conjecture: Let θ be the exponent defined in (6.7). Then,

lim
L→∞

SL(E)

lnL
6
θ(E)

2
. (6.9)

We emphasise that the 6 sign is due to possible finite-size effects. To overcome such finite-
size effects concerning the finite-volume spectral-shift function, one can consider related
problems in the infinite volume. Recalling Lemma 2.9, we have the following identity of
Fredholm determinants

|SL(E)|2 = det
(
I − 1(−∞,λLN ](HL)1[µLN+1,∞)(H

′
L)1(−∞,λLN ](HL)

)
(6.10)

up to a question of multiplicity of the eigenvalue µLN+1. The above determinant is under-
stood as a Fredholm determinant. There are at least two ways to generalise this to the
infinite volume.

One is to consider the asymptotics of the Fredholm determinant

det
(
I − 1ΛLQ(E) 1ΛL

)
, (6.11)

where 1ΛL is the projection on ΛL := [L/2, L/2]d and

Q(E) := 1(−∞,E)(H)1(E,∞)(H
′)1(−∞,E)(H). (6.12)

We conjecture that in the d = 1 case the following is true

lim
L→∞

ln det
(
I − 1ΛLQ(E) 1ΛL

)
lnL

= θ(E) (6.13)

for Leb.-a.e. E ∈ R. Here, θ(E) is the one-dimensional analogue to (6.7).

Another one is introducing for ε > 0 the operators

Qε(E) := 1(−∞,E−ε](H)1[E+ε,∞)(H
′)1(−∞,E−ε](H). (6.14)

Products of traces of such operators are investigated in [FP15]. However, here we are
interested in the exact asymptotics of the entire Fredholm determinant

det
(
I −Qε(E)

)
. (6.15)
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in the limit ε↘ 0. We conjecture:
Conjecture: The decay exponent θ given in (6.7) provides precisely the right asymptotic
behaviour of the Fredholm determinant Qε, i.e.

lim
ε↘0

ln det
(
I −Qε(E)

)
| ln ε|

= θ(E). (6.16)





APPENDIX A

An Integral Representation for Products of Spectral
Projections

In this chapter we give a more detailed analysis on the spectral-correlation measures
defined in Chapter 2, equation (2.22), and used throughout this thesis. Let again be

H = −∆ + V0 and H ′ = H + V, (A.1)

where
max{V0, 0} ∈ Kd

loc(Rd), max{−V0, 0} ∈ Kd(Rd),

V ∈ L1(Rd), V > 0.
(B)

Theorem A.1. Assume conditions (B). Then, the mapping µ defined for all product sets
by

µ(B ×B′) := tr
{√

V 1B(H)V 1B′(H
′)
√
V
}
, B,B′ ∈ Borel(R), (A.2)

gives rise to a well-defined locally finite Borel measure on R2. Moreover, for two disjoint
open intervals A and B, which might touch, we have the identity

tr
{

1A(H)1B(H ′)1A(H)
}

=

∫
A×B

dµ(x, y)
1

(y − x)2
. (A.3)

Remarks A.2. (i) We point out that if 1A(H)1B(H ′)1A(H) is not trace class the
identity (A.3) still makes sense. In this case both sides of (A.3) are infinite. This may
happen, if the intervals A and B touch.

(ii) The identity (A.1) also holds for the finite-volume restrictions of H and H ′. In
this case, the proof follows either along the same line as below or one uses the pure-point
spectrum of the finite-volume operators, which was done in Lemma 2.12. Of course, one
can use the representation for finite-volume operators to lift (A.3) to the infinite-volume
operators by proving convergence of both sides in (A.3). Here, we will not do this but prove
the above identity directly.

(iii) For a corresponding integral representation of higher powers of the
operator 1A(H)1B(H ′)1A(H), we run into the problem that for Borel sets
A1, B1, A2, B2, · · · , An, Bn traces of the form

tr
{√

V 1A1(H)V 1B1(H ′)V 1A2(H)V 1B2(H ′) · · · 1An(H)V 1Bn(H ′)
√
V
}

(A.4)

need not to be non-negative or real-valued, see [GKMO14] and [Küt14]. Nevertheless,
viewed as a complex measure a corresponding formula to (A.3) holds at least for bounded
Borel sets, see [Küt14].

From (A.3) we obtain the corollary.

95
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Corollary A.3. Let A,B be two intervals with dist(A,B) > 0. Then,

tr
{

1A(H)1B(H ′)1A(H)
}
6

tr
{√

V 1A(H)V 1B(H ′)
√
V
}

dist(A,B)2
. (A.5)

In some cases the measure µ is absolutely continuous with a continuous density, see
Lemma 2.19, and we obtain the sharper bound.

Corollary A.4. Assume the measure µ has a density γ ∈ L∞loc(R2) and let K ⊂ R2 be
compact. Then, for all intervals A,B within K ⊂ R2 and dist(A,B) > 0 there exists a
constant C(K) depending on K such that

tr
{

1A(H)1B(H ′)1A(H)
}
6 C(K)

∣∣ ln ( dist(A,B)
)∣∣. (A.6)

Remarks A.5. (i) In the case of V0 = 0, 0 6 V ∈ L∞(Rd) with suppV compact,
the measure µ is absolutely continuous with a continuous density within R2

+, see Lemma
2.19. Thus, Corollary A.4 holds.

(ii) Apparently, this logarithmic divergence is the key to the findings in Chapter 2 and
in [FP15].

Proof of Corollary A.4. Since the measure µ is absolutely continuous with a locally
bounded density, we estimate

tr
{

1A(H)1B(H ′)1A(H)
}
6 ‖γ‖L∞(K)

∫
A×B

dxdy
1

(y − x)2
. (A.7)

Integrating the latter yields the corollary. �

Though we allowed both sides in (A.3) to be infinite, in the case of dist(A,B) > 0
they are not.

Lemma A.6 (Lemma 3.2 [FP15]). Let A,B ∈ Borel(R) be two disjoint bounded intervals
with dist(A,B) > 0. Then,

1A(H)1B(H ′) ∈ S2 and 1B(H ′)1A(H) ∈ S2, (A.8)

where we denote by S2 the set of all Hilbert-Schmidt operators.

Proof. Note that the assumption on the perturbation provides
√
V ∈ L2(Rd). Then,

[Sim82, Thm. B.9.1] implies
√
V 1A(H) ∈ S2 and

√
V 1B(H ′) ∈ S2. (A.9)

The rest follows along the very same line as in [FP15, Pf. of Lem. 3.2]. �

Remark A.7. For two disjoint bounded intervals A and B, the assumption V ∈ L1(Rd)
does not imply that the operator 1A(H)1B(H ′) is trace class. Thus, we can not justify

tr
{

1A(H)1B(H ′)1A(H)
}

= tr
{

1A(H)1B(H ′)
}
. (A.10)

To obtain that 1A(H)1B(H ′) is trace class, it suffices to assume V ∈ `1(L1(R)), where
the latter is some Birman-Solomjak space, see [Sim82, Sct. B.9]. Throughout this thesis,
the perturbations V are nice enough to provide (A.10).
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Proof of Theorem A.1. Let B,B′ ∈ Borel(R) be bounded. Then, by Lemma A.6 we may
use cyclicity of the trace to see

tr
{√

V 1B(H)V 1B′(H
′)
√
V
}

= tr
{

1B(H)V 1B′(H
′)V 1B(H)

}
> 0. (A.11)

Moreover, Hölder’s inequality and the norm inequality ‖·‖`2 6 ‖·‖`1 imply

tr
{√

V 1B(H)V 1B′(H
′)
√
V
}
6 tr

{√
V 1B(H)

√
V
}

tr
{√

V 1B′(H
′)
√
V
}
. (A.12)

The latter is finite due to Lemma A.6. Thus, results for bimeasures, see [Hor77], provide
that the expression A.2 gives rise to uniquely defined locally finite Borel measures on R2.
Let −∞ < a1 < a2 6 b1 < b2 < ∞ and A := (a1, a2) and B := (b1, b2) be two disjoint
bounded intervals. If the intervals touch a2 = b1, consider A and Bε := [b1 + ε, b2] for
ε > 0 and use monotone convergence. Thus, we assume a2 < b1 and consider the function
F : R+ → R+

F : t 7→ tr
{

1A(H)etHe−tH
′
1B(H ′)1A(H)

}
, (A.13)

which is well-defined by Lemma A.6. The idea of considering this function appears in
[Pus08] and was also used in [FP15]. Now, F is twice differentiable with

F ′(t) =− tr
{

1A(H)etHV e−tH
′
1B(H ′)1A(H)

}
(A.14)

F ′′(t) = tr
{√

V 1A(H)etHV 1B(H ′)e−tH
′√
V
}
, (A.15)

which we prove in Lemma A.8 below. Moreover, F (0) = tr {1A(H)1B(H ′)1A(H)},
limt→∞ F (t) = 0, limt→0 tF

′(t) = 0 and limt→∞ tF
′(t) = 0. This follows from

a2 < b1 and the estimate of the operator norm ‖et(H−E)1A(H)‖ 6 e−t(E−a2), with
E := (b1 + a2)/2, which implies E − a2 > 0. Hence, the fundamental theorem of cal-
culus and integration by parts imply

tr
{

1A(H)1B(H ′)1A(H)
}

= −
∫ ∞

0
dt F ′(t)1

=

∫ ∞
0

dt t tr
{√

V 1A(H)etHV 1B(H ′)e−tH
′√
V
}
. (A.16)

On the other hand, since a2 < b1, we use the identity
∫∞

0 dt te−tx = 1/x2, which is valid
for x > 0, and Fubini’s theorem to obtain∫

A×B
dµ(x, y)

1

(y − x)2
=

∫ ∞
0

dt t

∫
R2

dµ(x, y) 1A(x)etx1B(y)e−ty

=

∫ ∞
0

dt t tr
{√

V 1A(H)etHV 1B(H ′)e−tH
′√
V
}
. (A.17)

Thus, (A.16) and (A.17) give the claim for intervals [a1, a2] and [b1, b2] with −∞ < a1 <
a2 6 b1 < b2 < ∞. For intervals with −∞ < b1 < b2 6 a1 < a2 < ∞ consider the
function

G : t 7→ tr
{

1A(H)e−tHetH
′
1B(H ′)1A(H)

}
, (A.18)

and the same as above holds. �

Lemma A.8. Let −∞ < a1 6 a2 < b1 6 b2 < ∞ and A := (a1, a2) and B := (b1, b2).
Define the function F : R+ → R+

F : t 7→ tr
{

1A(H)etHe−tH
′
1B(H ′)1A(H)

}
. (A.19)
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Then, F is twice differentiable with

F ′(t) =− tr
{

1A(H)etHV e−tH
′
1B(H ′)1A(H)

}
(A.20)

F ′′(t) = tr
{√

V 1A(H)etHV 1B(H ′)e−tH
′√
V
}
. (A.21)

Proof. First, note that the spectral theorem implies

F (t) = tr
{
etH̃1A(H)1B(H ′)e−tH̃

′
1B(H ′)1A(H)

}
, (A.22)

where H̃ := H1A(H) and H̃ ′ := H ′1B(H ′) are bounded operators. Thus, we can expand

etH̃ and e−tH̃
′

in norm-convergent power series and we obtain

1

h

(
ehH̃1A(H)1B(H ′)e−hH̃

′ − 1A(H)1B(H ′)
)

+ 1A(H)V 1B(H ′)

=h

5∑
j=1

fj(H)1A(H)1B(H ′)gj(H
′), (A.23)

where the f ′js and g′js are some bounded functions. Since 1A(H)1B(H ′) is Hilbert-Schmidt
by Lemma A.6, (A.20) follows from (A.23). Moreover, the proof of Lemma A.6 provides
that 1A(H)V 1B(H ′) is trace class. Hence, we use the cyclicity of the trace to obtain

F ′(t) = − tr
{

1A(H)V 1B(H ′)e−tH
′
etH1A(H)

}
. (A.24)

Now, the second assertion (A.21) follows along the same line as above. �



APPENDIX B

The Cauchy determinant

In this chapter we compute the determinant of the Cauchy matrix. We use this in
Theorem 3.3 to obtain a product representation of the ground-state overlap. We do this
only for convenience and completeness. One can find a proof e.g. in [Wey13, Lem. 7.6.A].

Theorem B.1. Let N ∈ N and α1, ..., αN , β1, ..., βN ∈ R be two sequences such that(
βk − αj

)
6= 0 for all 1 6 j, k 6 N . Then,∣∣∣ det

( 1

βk − αj

)
16j,k6N

∣∣∣2 =

∏N
j,k=1,j 6=k |βk − βj | |αj − αk|∏N

j,k=1 |βk − αj |
2

. (B.1)

Remark B.2. For the particular choice βk := k and αj := j − 1, the latter matrix is the
Hilbert matrix.

Proof. We prove the above by induction. For N = 1, (B.1) is satisfied. Let N ∈ N. We
call v1, ..., vN the columns of the matrix on the l.h.s. of (B.1), i.e. for 1 6 i 6 N

vTi :=
(

1
β1−αi · · ·

1
βN−αi

)
. (B.2)

Since the determinant is linear in the columns and is equal to 0, if two columns coincide,
we manipulate

det
(
v1 · · · vN

)
= det

(
v1, v2 − v1, v3, ..., vN

)
= det

(
v1, v2 − v1, ..., vN − v1

)
= det


1

β1−α1

α1−α2
(β1−α2)(β1−α1) · · · α1−αN

(β1−αN )(β1−α1)
...

...
1

βN−α1

α1−α2
(βN−α2)(βN−α1) · · · α1−αN

(βN−αN )(βN−α1)

 . (B.3)

The multi-linearity of the determinant gives

(B.3) =
N∏
k=1

1(
βk − α1

) N∏
j=2

(
α1 − αN

)
det

 1 1
β1−α2

· · · 1
β1−αN

...
...

1 1
βN−α2

· · · 1
βN−αN

 . (B.4)

We call rows of the matrix on the r.h.s. of (B.4) w1, ..., wN , i.e. for 1 6 j 6 N

wj :=
(

1 1
βj−α2

· · · 1
βj−αN

)
. (B.5)
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As before, we subtract the row w1 from w2, ..., wN and end up with

det


w1

w2
...
wN

 = det


w1

w2 − w1
...

wN − w1



= det


1 1

β1−α2
· · · 1

β1−αN
0 (β1−β2)

(β2−α2)(β1−α2) · · · (β1−β2)
(β2−αN )(β1−αN )

...
...

...

0 (β1−βN )
(βN−α2)(β1−α2) · · · (β1−βN )

(βN−αN )(β1−αN )

 . (B.6)

Now the multi-linearity and the Leibniz formula imply

(B.6) =

N∏
j=2

1(
β1 − αj

) N∏
k=2

(
β1 − βk

)
det


1 1 · · · 1
0 1

β2−α2
· · · 1

β2−αN
...

...
...

0 1
βN−α2

· · · 1
βN−αN



=
N∏
j=2

1(
β1 − αj

) N∏
k=2

(
β1 − βk

)
det


1

β2−α2
· · · 1

β2−αN
...

...
1

βN−α2
· · · 1

βN−αN

 , (B.7)

The induction hypothesis, equation (B.4) and equation (B.7) give∣∣∣det
( 1

βk − αj

)
16j,k6N

∣∣∣2
=

N∏
k=2

(
β1 − βk

)2(
βk − α1

)2 N∏
j=2

(
α1 − αN

)2(
β1 − αj

)2 1(
β1 − α1

)2
∏N
j,k=2,j 6=k |βk − βj | |αj − αk|∏N

j,k=2 |βk − αj |
2

=

∏N
j,k=1,j 6=k |βk − βj | |αj − αk|∏N

j,k=1 |βk − αj |
2

. (B.8)
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List of symbols

H := −∆ + V0 infinite-volume Schrödinger operator

H ′ := H + V infinite-volume perturbed Schrödinger operator

−∆ negative Laplacian

V , V0 perturbation of H, background potential

Hα negative Laplacian with a Dirac-δ perturbation, see Chaper 3, Sec-

tion 2

hl, h0, h0
α Schrödinger operators on the half-axis, see Chaper 3, Section 2

L length parameter

ΛL finite volume of diameter L > 0 with 0 ∈ ΛL

BL(0) Euclidean ball of radius L around the origin

HL, H ′L restrictions of H and H ′ to the finite volume ΛL

Hα,L restriction of Hα to BL(0), see Chaper 3, Section 2

h`L, h`α,L restrictions of h` and h`α to the interval (0, L), see Chaper 3, Section 2

Hω random Schrödinger operator of the Anderson model, see Equa-

tion (5.1)

H ′ω rank-one perturbation of Hω, see Equation (5.4)

λLj , µLk eigenvalues of the finite-volume restrictions counted from below

ϕLj , ψLk eigenfunctions corresponding to λLj and µLk
N particle number

NL(E) particle number corresponding to a Fermi energy E and a lenth scale

L

N `
L(E) relative particle number corresponding to the `th angular momentum

channel, see Equation (3.85)

ρ integrated density of states of the unperturbed operator

SNL ground-state overlap corresponding to some N ∈ N and L > 0 de-

fined in (1.5)

SL(E) ground-state overlap SNL for a special choice of N depending on E,

see Equation (2.5)

ΞNL difference of the ground-state energies, see Equation (1.13)

γ̃(E) decay exponent found in [GKM14], see Theorem 2.2

γ(E) decay exponent found in [GKMO14], see Theorem 2.2

ζ(E) decay exponent of Theorem 3.17
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102 LIST OF SYMBOLS

µL, µ spectral-correlation measures, see Lemma 2.12 and Appendix A

γ(E,E′) density of the absolutely continuous part of the measure µ

µ expectation value of the spectral-correlation measure µ, see

Lemma 5.11

γ(E) expectation value of the decay exponent γ̃(E), see Theo-

rem 5.34

TE , SE T-matrix and S-matrix corresponding to the pair H and H ′

δ(
√
E) scattering phase shift, see Definition 4.5

δ`(
√
E) scattering phase shift in the `th angular momentum channel

δα(
√
E) scattering phase shift corresponding to the pair H and Hα, see

Definition 3.11

ξ infinite-volume spectral-shift function, see Remark 4.1(i)

ξL finite-volume spectral-shift function, see Equation (4.10)

χ+
L , χ−L smooth cut-off functions, see Definition 2.14

αj , βk eigenvalues of a pair of compact operators A and B, see Equa-

tion (3.1)

θk, ρu Prüfer variables, see Equation (4.59)

A(′)
s , A′s see Definition 5.3

GE,ε(·) resolvent at the energy E + iε, see Definition 5.22

ν coupling constant in front of the perturbation, see Equa-

tion (5.4)

λ strength of the disorder, see Equation (5.1)

〈·, ·〉 scalar product, anti-linear in the first and linear in the second

argument

‖·‖HS Hilbert-Schmidt norm

‖·‖ operator norm

| · |1, | · |2 1-norm, respectively, 2-norm on Rd or Zd

S1, S2 set of all trace-class, respectively all Hilbert-Schmidt operators

on the appropriate Hilbert space

Borel(X) σ-algebra generated by all open subset of the topological space

X

L2(X), L∞(X) set of all square integrable, respectively all essentially bounded,

functions on X ∈ Borel(Rd) w.r.t. the Lebesgue measure

1A indicator function of a Borel set A ∈ Borel(X)

σ(T ) spectrum of the linear operator T

σpp(T ), σsc(T ),

σac(T )

spectral subsets of the linear operator T

%(T ) resolvent set of the linear operator T

dom(T ) domain of the linear operator T
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[BÈ67] M. Š. Birman and S. B. Èntina, The stationary method in the abstract theory
of scattering, Math. USSR Izv. 1, 391–420 (1967) [Russian original: Izv. Akad.
Nauk SSSR Ser. Mat. 31, 401–430 (1967)].

[BP98] M. Sh. Birman and A. B. Pushnitski. Spectral shift function, amazing and
multifaceted. Integral Equations Operator Theory, 30(2):191–199, 1998. Ded-
icated to the memory of Mark Grigorievich Krein (1907–1989).

[BY92] M. Sh. Birman and D. R. Yafaev, The spectral shift function. The work of M.
G. Krejn and its further development, St. Petersbg. Math. J. 4, 1–44 (1992).

[BM12] V. Borovyk and K. A. Makarov, On the weak and ergodic limit of the spectral
shift function, Lett. Math. Phys. 100, 1–15, (2012).

103



104 Bibliography

[BHL00] K. Broderix, D. Hundertmark and H. Leschke, Continuity properties of
Schrödinger semigroups with magnetic fields, Rev. Math. Phys. 12, 181–225
(2000).

[Cal67] F. Calogero, Variable phase approach to potential scattering, Academic Press,
New York, 1967.

[Die15] A. Dietlein, Absence of Anderson orthogonality for localised Anderson models,
master thesis, LMU München, 2015.

[FP15] R.L. Frank and A. Pushnitski, The spectral density of a product of spectral
projections, J. Funct. Anal. 268, 3867–3894 (2015).

[Geb14] M. Gebert, Finite-size energy of non-interacting Fermi gases, arXiv:1406.3739
(2014).

[Geb15] M. Gebert, The asymptotics of an eigenfunction-correlation determinant for
Dirac-δ perturbations, J. Math. Phys. 56, 072110 (2015).
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