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Zusammenfassung

Die vorliegende Dissertation behandelt das Verhalten von Eigenfuntionskorrelationen zweier
Schrédingeroperatoren in groBen endlichen Volumina. Wir beginnen mit zwei Schrodinger-
operatoren H und H’ auf R, deren Differenz klein ist, und betrachten die Restriktion beider
Operatoren auf ein endliches Volumen des Durchmessers L. Wir nennen diese Operatoren
Hp, und Hj und interessieren uns fiir folgende Abschitzungen an eine Korrelationsdeter-
minante ; )

‘Siv‘ = ‘det(<¢£vwlg>)1gj,k<1\/| 5 L_Ayv (I)
die aus den Skalarprodukten der zu den kleinsten Eigenwerten gehdrenden Eigenfunktionen
von Hj, und H} besteht, fiir groBe L und N, derart dass N/LY — p > 0. Dies model-
liert das Verhalten des Skalarproduktes der Grundzustinde zweier nicht wechselwirkender
Fermigase im thermodynamischen Limes, die sich um eine kleine Stérung unterscheiden.
Der Abfall der Determinante (i) ist in der Physikliteratur nach P.W.Anderson [And67b],
Andersons Orthogonalitatskatastrophe, benannt und wird zur Erklarung verschiedener ther-
modynamischer Phanomene in Fermigasen herangezogen. Das Verhalten (i) folgt aus dem
asymptotischen Verhalten von Produkten spektraler Projektionen

tl"{(1(_00,]3)(HL)l(E,oo)(H},)l(_m,E)(HL))n} ~cpelnl, (i)
wobei n € N und E € o(H) ist. Die Arbeiten [GKM14] und [GKMO14] zeigen die obi-
gen Asymptotiken (i) und (ii) fiir Paare relativ allgemeiner Schrodingeroperatoren, wobei
die Abschatzungen gegeben sind durch die T-Matrix — genauer durch die Exponenten
v = Z5|T/2|lns. beziehungsweise v = [|arcsin |T/2|||s.

In dieser Dissertation zeigen wir die obere Abschitzung (i) mit dem Exponenten
#HT/2||H5 in allgemeineren Situationen als in [GKM14]. Dariiber hinaus geben wir die
erste rigorose Herleitung der exakten Asymptotik der Korrelationsdeterminante und zeigen
im dreidimensionalen Raum im Falle der Storung mit einer Punktwechselwirkung, dass

SN~ L6 mit ¢i=6%n, (iiil)
wobei der Exponent gegeben ist durch die s-Wellen-Streuphase. Insbesondere zeigt dies,
dass der Exponent W—ﬂHarcsin\T/Q\HHs im Allgemeinen nicht das korrekte Verhalten von
Sj]:V widerspiegelt. Da die gefundenen Exponenten von der T-Matrix abhangen, liegt es
nahe, dass das absolutstetige Spektrum als treibende Kraft hinter dem Abfall (i) steht. So
beweisen wir im Falle von Andersonlokalisierung die gegenteiligen Aussagen zu (i) und (ii)

lim sup tr { (1(—oo, ) (Hu, ) 1(B,00) (Hi 1)1 (—o0,8) (Hu,1)) " } < 00 (iv)

L—oo

fir f.a. (F,w) € 0(Hy) x © und ebenso das Nichtverschwinden der Erwartung bei starker
Unordnung
liminf E[|SN]] > 0. v
N/L4—p>0 H L H ( )
Neben den obigen Eigenfunktionsasymptotiken beleuchten wir ebenso spektrale Asymp-
totiken und zeigen im thermodynamischen Limes das Verhalten

lim L _\E —/dx x)+o(1), vi
kg X (=N = [ane+o) (vi)
wobei )\]L und ,u% die Eigenwerte von Hy, und H/ sind und ¢ die spektrale Shiftfunktion
von H und H' bezeichnet. Des Weiteren bestimmen wir fiir Systeme auf der Halbachse die
Fehlerterme in (vi) genauer und zeigen, dass diese limesabhingig sind.






Abstract

This thesis treats asymptotics of eigenfunction correlations of pairs of finite-volume
Schrédinger operators in a large but finite volume. We start with a pair of Schrédinger
operators H and H’ on the Euclidean space R?, which differ by a short-range scattering
potential, and restrict these operators to some finite volume of diameter L > 0 and call
these operators Hy, and H; . In the first place, we are concerned with estimates on a cor-
relation determinant in the thermodynamic limit, which consists of scalar products of the
lowest energy eigenfunctions of H;, and H} . More precisely, we are intersted in bounds

S = [ det (e, ¥F)) 1| S L7 o)

as N/LY — p > 0. This models the behaviour of the scalar product of the ground states
of two non-interacting Fermi gases in the thermodynamic limit, which differ by a static
impurity. This decay of Siv is referred to as Anderson’s orthogonality catastrophe in the
physics literature and goes back to [And67b]. It is used to explain the behaviour of cross-
sections in certain photoexcitation experiments. Expanding the determinant, we see that
this is closely related to the L asymptotics of traces of products of spectral projections

tr{(1(—oo,E)(HL)l(E,oo)(H},)l(—oo,E)(HL))n} ~ Cn,FE In L, (II)
where n € N and E € o(H). [GKM14] and [GKMO14] prove for quite general pairs of
Schrédinger operators, which differ by a positive short-range potential, upper bounds of the
form (i) in terms of the scattering T-matrix with first v = 7r%||T/2HHS and in the second
article with v = #Harcsin |T/2||Hs-

In this thesis, we prove the upper bound (i) with the decay exponent %HT/ZHHS in
more general situations than considered in [GKM14]. Furthermore, we provide the first
rigorous proof of the exact asymptotics Anderson predicted, i.e. in the 3-dimensional toy
model, where H' is a Dirac-d perturbation of the negative Laplacian. We prove

ISF|P~ LS, where ¢ :=6%/n% (iii)
Here, § refers to the s-wave scattering phase shift. In particular, this result shows that the
exponent #Harcsin |T'/2|||ns found in [GKMO14] does not provide the correct asymptotics
of SIJ-JV in general. Since the decay exponent is expressed in terms of the T-matrix, the bounds
of (i) and the asymptotics (ii) are reminiscent of the absolutely continuous spectrum. Thus,

in the contrary situation of Anderson localisation we are able to deduce different behaviours
than (i) and (ii), i.e. we prove for a.e. (F,w) € o(H,) x £

11211 sup tr { (1(—oo,£) (Heo,2.)1(8,00) (His 1)1 (—00,5) (Ha )" } < 00 (iv)
—00
and the non-vanishing of the expectation value in the large disorder regime
liminf E[|S)]] > 0.
ot B[Sz )

Apart from the behaviour of eigenfunction correlations, we also study the asymptotics
of spectral correlations. We show asymptotics of the form

lim Z (,uJL - )\f) = /dxé(:c) +o(1) (vi)

N/Ld_)p>01<j<N
in the thermodynamic limit, where /\JL and ,uﬁ denote the eigenvalues of Hy, and H} and
¢ the infinite-volume spectral shift function. Furthermore, we quantify the error in (vi) for

models on the half-axis and show that higher order error terms depend on the particular
limit chosen.
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CHAPTER 1

Introduction

1. Anderson’s Orthogonality Catastrophe and Spectral Correlations

s one of the most elementary many-body problems one can consider
a Fermi gas exposed to a static impurity. Such an impurity arises, for
example, when a photon excites a core electron in such a way that
this core electron merges into the conduction band, i.e. the Fermi gas,
leaving behind a hole. In turn, this core hole interacts with the Fermi
gas and in a first approximation one can model this with a short-range
scattering potential. It was predicted that the cross-section of such

a photoexcitation experiment admits a power law singularity at the
threshold, which is referred to as a Fermi edge singularity, see [Mah00, Sct. 9.3] and
references cited therein. Even though this behaviour was observed in some materials, it
was noticed in several other metals that this singularity is suppressed and the cross-section
is continuous at the threshold. At this point Anderson found that the scalar product of the
ground-states of two non-interacting Fermi gases which differ by a short-range potential are
orthogonal in the thermodynamic limit [And67a, And67b]. Which is why this orthogonality
of the ground states in the thermodynamic limit is nowadays named Anderson orthogonality
catastrophe (AOC). It was precisely used to explain the at first unexpected phenomenon
of the absorption spectrum and is now a well-understood phenomenon in the physics of
the response of a free Fermi gas to the appearance of a scattering potential. We refer to
[OT90, Mah00] for an extensive overview of the problem and references up to the late
eighties. Nevertheless, up to now the AOC remains to attract attention in physics, e.g.
it was considered in quantum dots or graphene more recently, see [HSBvD05, HUBO5,
HK12a, HK12b] and the references therein. Another development was the study of the
problem for pairs of free Fermi gases in a random environment, which was done in [VLG02]
for ensembles of random matrices or in [GBLAQ2] for the Anderson model. Though this
so-called orthogonality catastrophe is a common topic in solid-state physics, which has
attracted attention up to now in several facets, there was no attempt to give a rigorous proof
of the AOC for a long time. Therefore, the goal of this thesis consists of giving a rigorous
proof of the AOC and show that there is some deep and interesting mathematics behind this
problem. Even in the physics literature it is accepted that in a first approximation it suffices
to consider non-interacting electrons to obtain a suitable model for these photoexcitation
effects. Thus, we start with a pair of one-particle Schrédinger operators

H,=-Ap+ VW and H/L:—AL-FV()-FV, (1.1)

in some finite box Az, := [L/2, L/2]? in d-dimensional Euclidean space. Vj denotes some
background potential such that both operators remain well-defined and bounded from below
and V denotes a small perturbation. These operators induce a pair of non-interacting N-
particle Schrodinger operators Hy, and H in the finite volume A7, acting on the totally
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antisymmetric subspace /\;V:1 L?(Ayr) of the N-fold tensor product space. More precisely,
these operators are given by
N
H) =Y 10 -91eHele ol (1.2)
j=1

where the index j determines the position of Hg) in the N-fold tensor product of operators.
The corresponding ground states are given by the totally antisymmetrised products

1 1
SN = —— b Annpk and BY = —— gl AL ARk, (1.3)

VN! VNI

where typically these ground states (I'g and \I'g are referred to as Slater determinants.
The corresponding ground-state energies are

N N
EY = Z )\]L and EN = Z,uﬁ (1.4)
j=1 k=1

Here, (cpf)jeN and (L) ren denote the eigenfunctions corresponding to the ordered eigen-
values ()\JL)jeN and (ul)gen of the one-particle operators Hy and H}. Now, a short
calculation shows that the scalar product of the two ground states ‘I’E and \IIE in the
Hilbert space /\j\fz1 L?(Ap) can be written itself as the correlation determinant

<<P1La¢1L>L2(AL) <<P1L7¢1LV>L2(AL)
SJJ:V = <@E’WE>/\§\’:1L2(AL) = det . L . L . (1.5)
(% Y1 >L2(AL) <80N7¢N>L2(AL)
where the subscript of the scalar products illustrates the underlying Hilbert space. In the
following, we call this determinant ground-state overlap, and we are interested in its

asymptotic behaviour as NV and L increase. More precisely, we are concerned with the limit
L — oo and N — oo such that

|ANL| S (E), (16)

where p(FE) denotes the integrated density of states of the operator H at some energy
E, which we refer to as the Fermi energy, and | - | denotes the Lebesgue measure. This
concept is called the thermodynamic limit and p(F) is viewed as the particle density of
the considered gas. Thus, we are interested in the asymptotic behaviour of the ground-
state overlap of two non-interacting Fermi gases approaching a particle density p(F) > 0
corresponding to the Fermi energy F.

As already mentioned, the first one to study this asymptotics was P.W.Anderson in
[And67a]. He considered a 3-dimensional system with no background potential V where
the one-particle Schrodinger operators differ by a Dirac-9 perturbation located at the origin.

In this work he claimed the algebraic decay of the ground-state overlap
2

SN P < L7 (nVED) (1.7)
by deducing logarithmic asymptotics of the form

1, 2
tr {1(—007/\%](HL)l[MIL\‘]+1,OO)(Hz)]‘(—oo,)\ILV](HL)} ~ p(sln (5(@))) h’lI/7 (18)

where 0 denotes the s-wave scattering phase shift. Here, 1 4 stands for the indicator function
of a Borel set A € Borel(R). The latter expression is nowadays called Anderson integral
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in the physics literature. Let us briefly explain the connection between (1.7) and (1.8).
Taking the logarithm of the square of the modulus of (1.5) and expanding the logarithm
results in

‘55’2 =exp (Intr A*4) = exp(_ i tr{(1 —nA*A)”})’ (1.9)
n=1

where A is the matrix occurring on the r.h.s. of (1.5). Ignoring the fact that there may be
eigenvalues of higher multiplicity, a straightforward calculation shows

0< (1= A"A) = 1ot (HOVpt | o) (HE) (o ngy(HL) = Tr v (1.10)

Taking only the first term in the expansion (1.9) into account, we see that (1.8) gives an
upper bound on (1.5) which results in (1.7). Generally speaking, the asymptotics of (1.5)
is closely related to the asymptotic behaviour of powers of products of pairs of spectral
projections. Motivated by the above calculation [And67a] argued for general 3-dimensional
systems with a spherically-symmetric perturbation V' an upper bound similar to (1.7) with
the decay exponent

F(E) = %Z(2€+1)(Sin (6:(VE)))?, (1.11)
=0

where §; denotes the scattering phase shift in the th angular momentum channel.

Later in the same year, Anderson claimed in [And67b] that the exact asymptotics of
the overlap for a Dirac-d perturbation is governed by the bigger decay exponent

C(E) := %52(\@), (1.12)

where § refers here to the s-wave scattering phase shift. After some controversies about
the correctness of this result [RS71, Ham71], the above was confirmed in the case of a
point interaction V' by theoretical-physics methods [Ham71] and is now accepted in the
physics literature.

Now, we briefly return to the random case. As already mentioned, [GBLA02] consider
the asymptotics of the Anderson integral (1.10) for the Anderson model. They claim a
logarithmic divergence of the Anderson integral in the delocalised regime in d > 3. If
absolutely continuous spectrum exists, this is not surprising. More interestingly, they predict
in the bulk of the spectrum of the two dimensional Anderson model faster divergence of
the Anderson integral than logarithmic whenever the perturbation is not point-like.

Since the decay exponent of the AOC might be quite complicated to compute, [AL94,
Aff97] propose to consider the error in the difference of the ground-state energies instead
and associate its behaviour with the decay exponent in the AOC. They claim the following
asymptotics for one-dimensional systems

N N E
- TFS 1
:g:ZE:p,’i—E:)\]L:/oodxé(E)%—L+0<L) (1.13)
k=1 j=1 B

in the thermodynamic limit and refer to xfs as the finite-size energy, which may be the
same as the decay exponent in the AOC. In the latter case, £ denotes the spectral shift
function. However, the finite-size energy xrs is equal to ((E) only for a particular choice of
the thermodynamic limit. The finite-size energy was deduced for this choice also in [ZA97,
App. A].
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2. Rigorous Results on the Ground-State Overlap

Here, we summarise the previous rigorous mathematical results on the asymptotics of
the ground-state overlap and comment on related results, as well as sketch the new results
deduced in this thesis. After some attempts in [Ott05] the first mathematically rigorous
result concerning the ground-state overlap was given in [KOS13]. For one-dimensional
systems without a background potential the following asymptotics of the Anderson integral
was proved

— . - 1
trZp N ~F(E)InL,  with F(E) = —|Te/2|}s, (1.14)

where HS denotes the Hilbert-Schmidt norm and Ty the transition or just T-matrix for the
pair of infinite-volume operators H and H’. As explained earlier on, see (1.7) and (1.8),
the above asymptotics leads to the algebraic decay ]SiVP < L&) Up to a numerical
energy dependent factor, the exponent ¥(E) is called total scattering cross-section averaged
over all incident directions, see [Yaf00, Sct. 8.5]. It arises naturally when measuring the
strength of the scattering caused by the perturbation V. Apart from the above asymptotics,
[KOS13] also showed a non-optimal lower bound for particular one-dimensional systems.
Later, [GKM14] proved the same upper bound

ISV < L7 (1.15)
for rather general pairs of Schrodinger operators including a background potential V5 in
arbitrary dimension d € N and 5(E) as in (1.14). Restricting ourselves to 3-dimensional

systems with a spherically-symmetric perturbation Vj, the exponent 5(E) reduces to the
one predicted by Anderson, i.e. in this case we rewrite

3(B) = 5 ITe/2lhs = — D20+ 1)(sin ((VE)))*, (1.16)
=0

where §; denotes the scattering phase shift in the /th angular momentum channel, see
[RS79, Chapt. IX]. Shortly after, [GKMO14] found in the general setting of [GKM14] the
stronger estimate

1
ISF? S L), with 4(E) := —|larcsin(Tr/2)|s. (1.17)
T
In the case of a 3-dimensional spherically symmetric system this exponent reduces to
1 o
v(E) = = Z(% + 1) (arcsin ( sin (5@(\/@))))2. (1.18)
(=0

Unfortunately, the previous results in [KOS13, GKM14, GKMO14] are not universally valid.
They only apply to certain thermodynamic limits. Moreover, none of the above results
provide the exact asymptotics of the ground-state overlap Siv but just upper bounds on
the latter. We state the precise setting and the results of both [GKM14] and [GKMO14]
in Chapter 2, see in particular Theorem 2.2 below. But we will not spell out the proof of
the stronger statement (1.17), instead we refer to the article and the PhD thesis [Kiit14].
The main difference in the proof of both results lies in either treating only the Anderson
integral Zy, n, see (1.10), or estimating each summand of the series (1.9). In this thesis,
we focus on the weaker upper bound found in [GKM14], i.e. estimate (1.15), and extend
this result in Chapter 2 to arbitrary choices of thermodynamic limits under the additional



2. RIGOROUS RESULTS ON THE GROUND-STATE OVERLAP 7

natural eigenvalue spacing condition

Va <1: lim sup (‘,U,JLVH —/\]LV‘L‘I) = 0. (1.19)
N,L—o0
N/IAL|=p(E)

Moreover, we extend the result to more general perturbations V' than considered in
[GKM14], see Theorem 2.6. Apart from the problem of restrictions to special thermody-
namic limits, the more important task is to find the exact asymptotics of the ground-state
overlap. In particular, we want to investigate, whether the upper bound governed by the
decay exponent y(E) provides a sharp upper bound as conjectured in [GKMO14, Kiit14].
In a nutshell, the general answer to this question is no. We arrive at this conclusion by
following a different approach than [GKMO14] and prove a product formula of the ground-
state overlap in terms of the eigenvalues of Hy, and H/, see Chapter 3, Theorem 3.3. This
formula is valid for rank-one perturbations and reads

‘S}:V{Q:ﬁ ﬁ ’yé—)\ﬂ’)\é—uﬂ'
j=1 k=N-+1 M= A7k = 1y

(1.20)

At this point it needs to be mentioned that the latter is known in physics literature and
goes back at least to [TO85]. We use this representation to show in Theorem 3.17 the
exact asymptotics of the ground-state overlap

[SEJP ~ LV, (121)

for the special case of the free negative Laplacian and a Dirac-d perturbation in three
space dimensions. In the above, § denotes the s-wave scattering phase shift. We emphasise
that this result is precisely the one Anderson claimed in [And67b]. In comparison, we
remark that in the case of a Dirac-d perturbation the T-matrix is just the number T =
1 — exp (2i5(VE)). Thus, we compute the modulus |T5/2| = |sin(5(vVE))| and in this

case
) - [#PVE). 6(VE)| <
T\ EGWE)-n)?, 3(VE)| >

T2

(1.22)

ISERNIE

Now, whenever |§(VE)| < 5, we obtain that 7(E) is the decay exponent in the exact

asymptotics of S,{V. But already in the case of an attractive Dirac-é perturbation, we
obtain for k > 0

§(k) = 7 — arctan (47T|a|> > g (1.23)

where « parametrises the strength of the d-interaction, see Definition 3.11. This implies at
least in this case

v(E) < %52(\@) (1.24)

and, therefore, v(E) does not determine the exact asymptotics. In more general settings
where the perturbation is a multiplication operator, we expect that v(E) does not neces-
sarily govern the exact decay of the correlation determinant, see also Remark 2.5 (iii).

Concerning exact asymptotics of eigenfunction-correlation determinants, we men-
tion also [KOS15] who consider perturbations by magnetic fields. They prove for one-
dimensional systems a similar statement to (1.21) for a shifted correlation determinant,
which relies on asymptotics of determinants of Toeplitz matrices. They need an assump-
tion similar to § < g
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As already pointed out, the proofs of [GKM14] and [GKMO14] both rely on the rep-
resentation (1.9). Given this representation, the proof proceeds in two steps. The first
elaborate step consists in estimating the spectral projections corresponding to the finite-
volume Schrédinger operators by the corresponding spectral projections corresponding to
the infinite-volume Schrodinger operators. The second step deals with these infinite-volume
operators and we deduce for n € N the asymptotics

tr { (1(7OO,E76) (H)l(EJre,oo) (Hl)l(foo,Efe) (H))n} ~ Cp tr {‘TE’/2|2n} | 11’l€| (125)
as € \, 0 for some appropriate constants c¢,. Surprisingly, these constants ¢, co-
incide with the coefficients in the series expansion of the function (arcsin(x))?,
which proves (1.17). The latter asymptotics (1.25) of powers of the operators
L~ oo, B—e) (H)1(Ete00) (H')1(—o0,5—c)(H) was extended in [FP15] to a more compact ex-
pression for continuous functions with sufficient decay at 0.

The above conclusions indicate that our problem is closely related to scattering theoretic
quantities. One can state, as a first summary, that non-trivial scattering results at least
in algebraic decay of the ground-state overlap. Since non-trivial scattering implies the
existence of absolutely continuous spectrum, a natural question is the behaviour of S£V
for other types of spectra. We treat this question in Chapter 5 for a pair of one-particle
Schrédinger operators on the lattice Z?, where the unperturbed operator is the random
Hamiltonian of the Anderson model and V is a rank-one perturbation. The first result
of Chapter 5 is a converse statement to (1.8). In the regime of exponentially localised
fractional moments of the resolvents, we obtain not just sublogarithmic divergence of the
Anderson integral but boundedness, i.e.

lim sup tr {1(— oo, 2y (Hu,1.)1(8,00) (He 1)1 (—00,) (Hu,L) } < 00 (1.26)

L—o0

for almost all (E,w) € o(H,) x €, see Theorem 5.7. The second result for the Anderson
model concerns the ground-state overlap itself. We prove the non-vanishing of its expec-
tation value, i.e. in the high disorder regime we show

liminf E [|S2]] > o, (1.27)

N/L%¢—p>0

see Theorem 5.19. Apparently, the latter results point towards the opposite direction than
the upper bounds found in the models with absolutely continuous spectrum. Although we
are only considering the expectation value, we think this is rather optimal in the sense that
with a positive probability there is a subsequence such that SIJ-JV goes to 0. Thus, almost sure
results may not hold. To illustrate this behaviour, we added some numerics in Chapter 6
which are particularly interesting in the random case. In the localised regime, these figures
suggest that the variance of Siv is rather big and Siv itself is either near O or near 1. This
reflects the existence or non-existence of an eigenfunction corresponding to an eigenvalue
near the Fermi energy whose localisation center sits near the support of the perturbation.

Apart from the asymptotics of the ground-state overlap for non-interacting fermions,
we consider for completeness also the case of non-interacting Bosons. We show that in
this case the asymptotic behaviour of the overlap depends on the space dimension, see
Theorem 3.30.
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Moreover, in Chapter 4 we treat the difference of the ground-state energies of the two
non-interacting N-particle Hamiltonians. We prove in arbitrary dimension

N al L al L e
EY =) pp =Y A N/ dz &(E) (1.28)
k=1 j=1 -

in the thermodynamic limit N/L? — p > 0, where ¢ denotes the spectral-shift function
of the pair of operators H and H’, see Theorem 4.2. This is not surprising because the
difference of the ground-state energies can be expressed in terms of the finite-volume
spectral-shift function, which converges weakly to the infinite-volume analogue, see [HM10]
or [BM12]. In the second part of this chapter, we consider systems on the half-axis. We
provide the exact asymptotics up to the second order of the difference of the ground-state
energies in the thermodynamic limit, i.e. we verify formula (1.13) and compute the finite-
size energy xrs defined in (1.13). More precisely, we show for systems on the half axis
that

v _ /E ey VEr

=N = [ dee(a) +/E da €(x) + <§(E) + 52(\@)) —i—o(%), (1.29)

as N/L — p > 0, where 0 is again the scattering phase shift. Since the second integral
depends on the particular thermodynamic limit chosen, we don't think that there is a deep
connection of the finite-size energy and the decay of the ground-state overlap.

— 00

In summary, the organisation of this thesis is the following. We recall in Chapter 2 the
results of [GKM14] and [GKMO14] and generalise these results. We proceed in Chapter 3
with a product representation of the ground-state overlap and use this representation to
prove the exact asymptotics of the ground-state overlap. In Chapter 4 we deduce the
asymptotics of the difference of the ground-state energies, and especially focus on the
finite-size correction. We continue in Chapter 5 with bounds on traces of products of
spectral projections and the expectation value of the ground-state overlap in the Anderson
model. Finally, Chapter 6 provides some numerics and an outlook on things that could be
done further. In general, each chapter is self-contained and can be read without further
knowledge of the remaining chapters.

Declaration concerning already published material in this thesis: The results of Chap-
ter 2 are substantial improvements of the findings of [GKM14] and [GKMO14]. A shortened
version of Chapter 3 is already published by the author of this thesis in the paper [Geb15].
Similarly, the result of Chapter 4, Section 2, is part of the preprint [Geb14] by the author.






CHAPTER 2
Upper Bounds for General Schrédinger Operators

In this chapter we begin with presenting the results of [GKM14] and [GKMO14| under
its precise assumptions. Thereafter, we extend the latter results to a broader class of
perturbations and more general choices of the particle number.

1. Model and Results

We consider the pair of one-particle Schrodinger operators
H:=-A+Vy, and H =-A+VW+V (2.1)

on L*(R%), d € N. Here, —A corresponds to the negative Laplacian and both V and Vj
correspond to real-valued functions on R?, where we assume

max{Vp, 0} € K2 (RY), max{—Vp,0} € K4R?),
VeKL@®RY, V=>o.

Here, we have written K4(R?) and K (R?) for the Kato class and the local Kato class,
respectively [Sim82]. In the following the perturbation V' will be specified further depending
on the particular theorem. These operators are self-adjoint and densely defined on the
Hilbert space L?(R?). Let A; C R? be open and bounded with 0 € Aj. For L > 0 we
denote by Ay, := L-Aj and by —A7, the negative Laplacian on Ay, with Dirichlet boundary

conditions. We define by

HL = —AL—I—VO and Hi = —AL+%+V (2.2)
the restrictions of H and H’ to Aj,. Here, V and V; stand for the canonical restrictions to
the finite volume Ay. Standard results imply that Hy, and H are self-adjoint and densely

defined on the Hilbert space L?(Ay). Moreover, assumption (A) ensures that the finite-
volume one-particle operators Hy, and H/ are bounded from below and have purely discrete

(A)

spectrum (which follows, e.g., from the fact that the semigroup operators exp ( — tHg))
are trace class [BHLOO, Thm. 6.1] for each ¢ > 0). We write

M <M< and b <pk < (2.3)
for their non-decreasing sequences of the eigenvalues, counting multiplicities, and ((pJL)jeN

and (¢,€)ke[\] for the corresponding sequences of normalised eigenfunctions with an arbitrary
choice of basis vectors in any eigenspace of dimension greater than one.

We are interested in the thermodynamic limit realising a given Fermi energy F € R.
For the moment we choose the particle number N to be

N =NL(E):=#{jeN: A <E} €N, (2.4)
With this choice we set

SL(E) = det(<¢JL’¢’€>)j k=1,..,N(E) >

11
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and we are interested in the asymptotics of Sy (E) as L — oo. If Np(E) = 0, we set
Sr(E) := 1. We note that the notation Sy (E) is slightly different from the one used in
the introduction and reflects the fact that we use the particular particle number N defined
in (2.4). Throughout this thesis, S;.(E) will refer to the ground-state overlap, where the
particle number N € N is given by (2.4).

Remark 2.1. The choice (2.4) of the particle number implies that the particle density
p of the two non-interacting fermion systems in the thermodynamic limit is given by the
integrated density of states of the single-particle Schrodinger operator H. The limit

. Np(E)

1 =p(E). 2.6

AT p(E) (2.6)
exist in the case of e.g. periodic Vg, Vo = 0 or Vj vanishing at infinity. If the limit
(2.6) does not exist, then there must be more than one accumulation point because
limsup; ., N.(E)/L¢ < oo for every E € R due to assumptions (A). But even in
this case it makes still sense to study the asymptotic behaviour of the overlap Si.(F) as
L — oc.

With this special choice of the thermodynamic limit the most general results so far are
the following.
Theorem 2.2. Assume conditions (A) and additionally
V e L™(RY) and suppV C Ay compact. (2.7)

Let (Ly)nen C R be a sequence of increasing lengths with L,, T co. Then, there exists a
subsequence (Ly, )ren and a Lebesgue null set N C R of exceptional Fermi energies such
that for every E € R\ N the ground-state overlap (2.5) obeys

(i) [GKM14, Theorem 2.2]
|8z, (B) _ F(E)

li < - , 2.
P T L, 2 (28)
where )
Y(E) = ﬁHTE/QH%Is' (2.9)

(i) [GKMO14, Theorem 2.2]
Sz, () _ +(E)

lim su < - , 2.10
k—>oop lnLnk 2 ( )

where 1
v(E) = ﬁHarcsin\TE/QHﬁ_,S. (2.11)

Here, Tx denotes the scattering T-matrix and ||-||ns the Hilbert-Schmidt norm on the
appropriate fibre Hilbert space where T is defined.

One goal of this chapter is to remove this particular choice of the particle number and
allow arbitrary thermodynamic limits approaching a fixed particle density. Another goal
is to weaken the assumptions on the perturbation. Both things are partially achieved in
Theorem 2.6 below. For completeness, let us point out that in some special cases one can
erase the subsequences already.
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Theorem 2.3. [GKMOQ14, Theorem 2.2'] Assume the situation of Theorem 2.2 withd = 1,
or replace the perturbation potential V in Theorem 2.2 by a finite-rank operator V. =
Sy, +) ¢y with compactly supported ¢, € L*(R?) forv = 1,...,n, or consider the
lattice problem on Z¢ corresponding to the situation in Theorem 2.2. Then, the ground-

state overlap (2.5) obeys for Leb-a.e. E € R
: n|S.(E)| _ _~(E)
1 < - 2.12
FANCN Y7 2 (2.12)

with the decay exponent v(FE) defined in the second part of Theorem 2.2.

The proof of Theorem 2.2, as well as Theorem 2.3, relies on a lower bound on the
trace of powers of products of spectral projections, where no subsequences are necessary.
These bounds seem to be interesting on its own.

Theorem 2.4. [GKMO14, Theorem 3.4] Under the assumptions of Theorem 2.2, there
exists a null set N' C R of exceptional Fermi energies such that for every E € R\ N and
everyn € N

td (1 ey ()1 5.00) (HL) L o0,y (H)) 2 o (| T/ (2) ) In L+ o(In )

(2.13)
as L — oo, and )
_ _ — 1Y
Ty = m2n-Dgzn-1 [(n = DI 2.14
=T (2n)! (2.14)
Here, 1 stands for the indicator function of a set B € Borel(R).
Remarks 2.5. (i)  We will not define the T-matrix here. For a detailed introduction to

scattering theory including precise definitions we refer to [Yaf10] and [RS79]. Nevertheless,
let us point out that in our situation for Leb.-a.e. E© € R the T-matrix is compact and
defined by T := Sg—1, where Sg denotes the S-matrix at the energy E and I the identity
on the appropriate Hilbert space. Since the S-matrix is a unitary, see [Yaf92] or [RS79], we
obtain the operator inequality |Tjz/2| < 1. Moreover, we denote by (exp (2idx(V'E))),
the eigenvalues of Sg. The numbers (5k(\/E))keN are called the scattering phase shifts

which are a priori not uniquely defined, only up to a factor of 7. A short calculation shows
for ke N

| exp (2i04(VE)) — 1|/2 = |sin (6, (VE))|. (2.15)
Thus, we rewrite the above decay exponents according to
3(B) = 5 Tu/2ls = 5 > (sin (5u(VE)) ) (2.16)
k=1
V(E) = %Harcsin Te/2/|%s = % > (arcsin (sin (3(VE)))) (2.17)
k=1

We remark that these representations are independent of the choice of the scattering phase
shifts.

(i) Since |z| < |arcsin(z)| for |x| < 1 and |Tg/2| < 1, the decay exponents in
Theorem 2.2 satisfy

1 1 .
5 1Te/2ls < — llarcsin Tio/2l |3 (2.18)

and the second result of Theorem 2.2 is indeed stronger than the first one.
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(iii)  We return to the question, whether v(E) provides the correct asymptotics for the
choice (2.4) of the thermodynamic limit. As already mentioned in the introduction, we have
to negate this question. Restricting ourselves to the case of d = 3, V = 0 and a spherically-
symmetric perturbation V', we choose, following [RS79, Sct. XI.8C], the scattering phase
shifts d; uniquely to be continuous and according to limg s 5k(\/E) = (. Taking our
findings in the following chapter, in particular Theorem 3.17 and the discussion thereafter,
into account, the correct decay exponent is rather

C(E) = % 3 (5k(\/E))2, (2.19)
k=1

where the scattering phase shifts d; are uniquely defined due to the above normalisation.
Apparently v(E) = ((E), whenever |§,(VE)| < 7/2 for all k € N. We give in Chapter 6
some heuristics what effects are neglected in the decay exponent v(E).

(iv) Both statements given in Theorem 2.2 are equivalent to

|SL,,, (B)? < L))o (2.20)

as k — oo. Thus, we proved an algebraic decay of the ground-state overlap with decay
exponent y(E). Note that the o(1)-term may be quite big in the sense that the error
satisfies L°() = o(In L) only.

(v) In the proof of Theorem 2.2 (i), one witnesses that the decay exponent 7 emerges
as the diagonal value of the Lebesgue density

I _ du(E,E)
3(B) = lim 6—2p<(E /2, E+e/2) x (B —¢/2,E + 6/2)) -4z |, @
of the two-dimensional spectral-correlation measure, which is defined by
u(B x B) = tr{\/VlB(H)mB,(H’)\/V}, B, B' € Borel(R). (2.22)

We refer to Lemma 2.17 and Appendix A for a discussion of such measures. Now, with some
more effort one can see that the value of the density on the diagonal is the Hilbert-Schmidt
norm of the T-matrix. We will not present the proof here, see [GKM14], [GKMO14, Cor.
4.32] and [Kiit14, Cor. 9.12]. In general, this density is just an L} _(R?) function. Hence, it
is not obvious if (2.21) makes sense at all. But one can show it does at least for Leb.-a.e.
E € R, see [GKM14] and [GKMO14]. Later we will focus on the case of Vj = 0 and
V e L*(R%) with sufficient decay at infinity. In this case one knows that s is absolutely
continuous with a continuous density and (2.21) makes perfectly sense, see [FP15, Lem.
2.7] or [Yafl10, Lem. 8.1.8].

(vi) The definition of 7 in (2.21) implies 5(E) = 0, whenever E ¢ 0,.(H) = 0ac(H'),
where the latter equality of the spectra follows from standard results in scattering theory
and is referred to as Birman's theorem. On the other hand one should understand that
absolutely continuous spectrum leads to non-trivial scattering, i.e. Tp # 0. To see the
connection, we consider a rank-one perturbation V' with a cyclic vector n € H. Then, the
measure p reduces to a product measure and the decay exponent to

~ 1. 1 1
) = g g g | @2

Recalling the properties of the Borel transform of a measure, see [Tes09] or [Sim05], the
latter limit is equal to the product of the values of the densities of the ac-parts of the
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corresponding spectral measures of H and H' at the energy I, which exist and are non-
trivial for Leb.-a.e. E € 0ac(H) = 0ac(H'), therefore, 7(E) > 0 for Leb.-a.e. E € 0ac(H).
Apart from the above heuristics, [Kiit14] states a perturbative argument that ¥(£) > 0
for Leb.-a.e. E € 0,c(—A) in the case of Vj = 0 and d > 2. For spherically-symmetric
perturbations V' one can deduce this result also using the angular momentum decompo-
sition. The above discussion underlines that the absolutely continuous spectrum leads to
algebraic decay of the ground-state overlap.

(vii) The latter immediately implies the question what happens, if different kind of
spectra occur. We investigate this question further in Chapter 5.

We will not prove Theorem 2.2 nor Theorem 2.3 here. We refer to [GKM14], [GKMO14]
and [Kiit14] for the proofs. In the following, we want to generalise the above results to a
broader class of perturbations V. Moreover, we want to weaken assumption (2.4) on the
particle number, which means we allow arbitrary thermodynamic limits, and get rid of the
subsequences. We state an analogous result to Theorem 2.2 (i) without restrictions to sub-
sequences nor to specific thermodynamic limits but unfortunately an additional assumption
on the eigenvalue spacing enters.

Theorem 2.6. Assume conditions (A) without a background potential and subexponen-
tially decaying V, i.e.
Vo=0,3C >0, 0>1 such that |V(z)] < Ce~nzl2)" (2.24)

where | - | denotes the Euclidean norm on R%. Let E > 0 and Ny(E) : Ry — N be a
function subject to

N, (E
lim Y2E) _ p(E) > 0, (2.25)
L—o0 |AL|
where p denotes the integrated density of states of the operator H = —A. Moreover, we
assume the following eigenvalue spacing condition
lmsup \pg, (gy11 — ANy ()| L =0 (2.26)
L—oo
for all a < 1. Then M)
In|S;" ) (E)
lim s L < - : 2.27
NPT 2 (2.27)
with ]
V(E) == —ITe/2]ks (2.28)

We will prove Theorem 2.6 in Section 2.

Remarks 2.7. (i) We assumed E > 0 because o,c(H) = [0,00) and only positive
energies are relevant. Moreover, note that p can be computed explicitly in the case V = 0,
ie.

_ _Td 1d/2
where 7, is the volume of the unit ball in R, see e.g. [Sto01, App. 4.1] or [RS78].

(i) Weassumed Vy = 0 and V' € L>®(R?) for simplicity because this implies continuity
of the density of the measure (2.22). As a consequence, we do not need to exclude an
exceptional set of energies and the result holds for all energies within o,.(H). Probably the
proof can be generalised to the case with a background potential present using Lebesgue
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point ideas as in [GKM14], [GKMO14] and [Kiit14]. Using Lemma 2.16 below, one should

be able to prove the stronger statement of Theorem 2.2 for more general perturbations V.
(iii)  The assumption (2.26) seems to be natural. Morally, in the proof one sees that the

upper bound on the exact asymptotics is governed by the L-asymptotics of the integral

d
Q= /( M (2.30)
—00,A

L )%k gy yn00) (U )

where the measure p is the one given in (2.22). Assuming the density to be continuous, it
is not hard to see that

Qr ~5(E)In (,@L(E)+1 — A@L(E)), (2.31)

where Y(FE) is the value of the density on the diagonal (F, E). Unfortunately, we can not
prove that the asymptotics is governed by (2.30) exactly but just a lower bound with some
additional security distance L%, with a < 1, see Lemma 2.12 and Lemma 2.16 below.

(iv) Assumption (2.26) is satisfied in the d = 1 case and in the case of a finite-rank
perturbation as in Theorem 2.3. The eigenvalue spacing assumption should also be correct
in higher dimensions.

Most of the arguments in the proof of Theorem 2.6 apply to a broader class of pertur-
bations. Hence, we end this paragraph with an analogous statement to Theorem 2.2 under
weaker assumptions on the perturbation. The difference to Theorem 2.6 is that we include
singularities in the scattering potential and a background potential but we choose again
the particular particle number of (2.4).

Corollary 2.8 (Corollary of the proofs of Theorem 2.2 and 2.6). Assume conditions (A)
and additionally

VelL?RY and ILy>0, 0> 1 such that [V(z)| < e 272" for |2], > L.
(2.32)
Let E € R, and we choose N,(E) according to (2.4). Moreover, let (Ly)nen C Rxo be a
sequence of increasing lengths with Ly, 1 co. Then, there exists a subsequence (Ly, )ken
and a Lebesgue null set N' C R of exceptional Fermi energies such that for every E € R\N
the ground-state overlap (2.5) obeys

IS, () __5(E)

li < — , 2.33
P In L, 2 (2.33)

where 1
Y(E) == ﬁHTEﬁH%’s- (2.34)

We will not prove the corollary in detail. The key is Lemma 2.23 below which generalises
[GKM14, Lemma 3.14]. The rest follows along the same line as in [GKM14].

2. Proof of Theorem 2.6

The proof presented here will be close to the one given in [GKM14]. Nevertheless, we
try to include more general assumptions on V, e.g. V' € L?(RY), whenever this is possible.
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Throughout the proof we write N = N (FE). First we expand the ground-state overlap as
a series. To do this, we introduce the orthogonal projections
N N

P = (of, - )of and TI) = (bf, )f (2.35)

j=1 k=1
for N € Ny, i.e. the projections on the eigenspaces of the first IV eigenvalues. Using those,
we can prove the following lemma.

Lemma 2.9. Let L > 1, E € R and assume that SIJ:V % 0. Then,
x 1 n
|SN |2 :@(p(—Zlntr{(Pg(I—Hg)PiV) }), (2.36)

where we take the trace of operators on the Hilbert space L?>(Ar) and I denotes here the
identity on L?(Ap).
Proof. If N = 0, the assertion is true by definition. Otherwise, define the N x N-
matrix M = ((@]L,w,@)j’k:le. Then SN = det M and |SY|? = det(MM™). For
1< 7,0 < N, the (j,¢)-th matrix element of M M* is

N

(MM*)j0=>_ (b o )bk ofy = (of T of ) = (o, PRI P ). (2.37)
k=1

Since by assumption, S # 0, and therefore M M* > 0 we have 0 < PN (I-TIY)PN < 1.
Moreover, being of finite rank, PV (I —T1Y) P} is a trace-class operator. Thus, we compute

ISY|? = det (1 — PN (1 —11Y)P))

= exp<tr{ln(1 — P[J,V(I - Hg)Pg)})

o0 1 n
- exp(—tr{ZE<P£V(I—Hg)P£V) }) (2.38)
where we used the expansion In(1—z) = — Y7, 2™ /n for the logarithm, which converges
absolutely for |z| < 1. O

Corollary 2.10. The above lemma implies

o0

C S| = %Z%tr{@ﬁ([—ngwﬁ)"}. (2.39)

n=1

Since P]{V(I - H]LV)Piv > 0, we obtain
1
A tr{PgV(I - Hf)PiV}. (2.40)
From now on, we are interested in lower bounds on
Ii(E) = tr{PgV(I - Hf)PgV}. (2.41)

Remarks 2.11. (i) The expression Zp(FE) is called the Anderson integral in the
physics literature and was first investigated by P.W.Anderson in [And67a].
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(i) To prove Theorem 2.6 as well as Theorem 2.2 (i) it suffices to consider the lower
bound (2.40) and to investigate the asymptotics of the Anderson integral Z;(E). In con-
trast, to obtain the result of Theorem 2.2 (ii), one has to treat every summand in (2.39),
because each summand contributes to the asymptotics of the overlap.

Note that we assumed here Vy = 0, thus, H;, > 0 and

P > 1,0 (Hy) and [ —TI} > Lk, o) (H)- (2.42)
Hence, we obtain the lower bound
r{ Py (I =T} P} = tr {1y Ay (Hp)1 (“%HW)(H’L)1[0’AJLV)(HL)}. (2.43)
We set
.FL(E) = tr{l[o,)\LN)(HL)]‘(M%\HJ,OO)(HI ) [0 )\L )(HL)} (244)
Lemma 2.12. Let L > 0 and E > 0. Then, we have
dML(:l;?y) dML(xay) - +
FuE) = | By s [P Gendw. )
(oo k) x (i, .00) (¥ — )2 r2 (y—x)? TR
where the finite-volume spectral-correlation measure i, on R? is uniquely defined by
pr(B x B') = tr{\/ﬁB(HL)VlB/(H’L)\/V} (2.46)

for B, B' € Borel(R) and the functions xi € L°(R) are for the moment arbitrary subject
to

+
0< XL S 1(/‘%+1v°°

Proof of Lemma 2.12. Note that p, is a sum of Dirac measures and therefore uy, is well-
defined. Essentially, the assertion follows from Appendix A. Nevertheless, we provide a
straightforward and simpler proof for the special situation considered here. The eigenvalue
equations imply

i o) = (Hogg ) = mi{eg» i) = (o5, Vi) (2.48)
from which we obtain the identity
(ok wE)| = —] o (2.49)
(g — AF)?
provided )\jL # py. Since V > 0 and MY < pk ;. this yields
L>‘2
Z Z (o5 )] Z Z A2
JEN: keN: JeEN: kEN J
AENE > 14 AL >N
d
_ / dur(z.y) ;) gg)
(—oo k) x(uk ,y.00) (¥ — )
Now, the inequality in (2.45) follows from the positivity of the integrand. O

Before we specify the cut-off functions further, we determine the limits of /\]LV and
/1,%“ for a given Fermi energy E > 0.
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Lemma 2.13. Let E > 0 and for clarity let us write again N1(E) instead of N. Then,
assumption (2.25) and (2.26) imply

- L . L
Lll_I};Q Aoy =FE and LIEI;OMNL(E)H =F. (2.51)
Proof. We prove this under slightly more general assumptions in Lemma 4.4. O

Definition 2.14 (Cut-off functions). Let L > 1 and E > 0, Ey > E. Given some 0 < a <
1 we say that Xf € C°(R) are smooth cut-off functions corresponding to )\k and “%H'
if they obey

+
1[“%1+1+L_G’E0) SXL S 1(N§+1+%L_G7E0+1)’ (2.52)
1[0,A§—L—a] SXL S 1[71,/\%—%L—a)
and if there exist L-independent constants ¢ > 0 for k € Ny, such that
1
Xz (g £ 507 £ a) <Lz (2.53)
for all z € [0, %L—a)' where 7, := AL and ny = M%H' and
v 1 L o< <L
o + L% +x) < 2 2.54
dak XL \Z 2 ) Ck otherwise, (2.54)

for every k € N and x € R. Moreover, we choose the decay of x; in (—1,0) as well as the
decay of x} in (Eo, Eo + 1) independent of L.

Remark 2.15. The security distance L~% can be replaced by % where ¢ > 0,
without effecting the following computations and results. According to Lemma 2.13, the
indicator functions in (2.52) are well defined for L large enough, therefore, without further
mentioning we restrict us to such L.

In the next lemma, we replace the measure corresponding to the finite-volume operators
with the measure corresponding to the infinite-volume operators.

Lemma 2.16 (An application of the Helffer-Sjostrand formula). Let 0 < a < 1 and
xf be the associated smooth cut-off functions from Definition 2.14 corresponding to the
eigenvalues )\k and uﬁ_ﬂ. Then, we obtain

dML(J;’y) - + / d”(x7y) - +
T X\ @)X \W) = — X1 (@)xp (y) +o(1), 2.55)
LB G oniw = [ Gt m o,
as L — oo. Here, i denotes the infinite-volume spectral correlation measure on R? which
is uniquely defined by

(B x B') = tr {\/VlB(H)VlB/(H’)\/V} (2.56)
for B, B' € Borel(R).
This lemma is the main ingredient to the proof of the theorem. We prove this lemma in

the next section under weaker assumptions. For completeness, we state that the measures
w and py are well defined also under weaker assumptions on the perturbation V.
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Lemma 2.17. Here, we assume V > 0 and V € L'(R?) only. Then, the expression (2.56)
is finite for bounded Borel sets and gives rise to a locally finite Borel measures on R?.

Proof. See Appendix A, Theorem A.1. O

Remark 2.18. The use of the measure p is not necessary for the proof. The identity
Jo<dt te~ty—2) = ﬁ for x < y implies

/ dML X y / dtt/ d,U,L(.T,y)eit(yiw)
(700 )‘l]\II]X[H’k.Q_p ) 00, o0

N]>< :U‘N_,.lv )

_ H(HL—FEp) I\ —t(H! —Ep)
_/U dtm{fl oo (HD) BT (7)o L\/V}, (2.57)

Ao +uk . .
where Ej, = % Thus, the notation of uy, is not needed anymore and one can

formulate Lemma 2.16 also on the level of operators without introducing the measure p.
The proof of 2.16, see Section 3, proceeds in precisely this way. However, we introduce p
for brevity and clarity.

From the definition of the cut-off functions ij[, see (2.52), and the positivity of the
integrand we continue with the lower bound

dp(z,y) _ dp(z, y)
/]Rz WXL (x)XZ(y) > /RQ ml[OA%—L*“)(x)l(li§+1+L7a’E(’)(y)

dpac(z, )
2/}1&2 WHOA%—L—“)(x)l(u%+l+L—a7E0)(y)a (2.58)
where piac is the absolutely continuous part of the measure pi. Actually, assumption (2.24)
ensures that y itself is a purely absolutely continuous measure. Since we are just interested
in lower bounds, we will not focus on this and write ¥ € L] _(R?) for the density of fiac,
which we call in the sequel for brevity again . We continue with a regularity result on 7.

Lemma 2.19 (A form of the limiting absorption principle). There exists a representative
of the density of i which is continuous within Ri. In the following we denote by 7y precisely
this continuous representative on Ri.

Proof. Since we assumed V € L*°(R?) with sufficient decay at infinity, results from sta-
tionary scattering theory imply the convergences

h\r% 6f1E /2.54e2(H)WVV == A(E) (2.59)
h\% E\/VlE,C/ZEﬁ/z(H’)\/V .= B(E) (2.60)

in trace-class norm for all E > 0, see [FP15, Lem. 2.7 (ii)] or [Yaf10, Lem. 8.1.8]. The
latter also implies that the functions A : Ry — &1 and B : Ry — &y,

A:Ew— A(E) and B:Ew~ B(E) (2.61)
are continuous, where S; denotes the set of all trace-class operators. Hence, the function
7:R%2 - R,

y:(E,E') s tr {A(E)B(E’)} (2.62)
is a continuous function. Moreover, 7 is a representative of the density of the measure
L. 0
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Remark 2.20. For more general V, e.g. including suitable singularities, and with a non-
trivial background potential Vj the limits (2.59) and (2.60) still exist for Leb.-a.e. E > 0,
see [BE67]. But the question of continuity of the derivatives is not entirely clear. Since we
want to keep the proof elementary, we restrict ourselves to V' € L>(R%) with sufficient
decay at infinity in order to have a continuous representative of the density. We remark that
our subexponential decay assumption is not necessary to gain a continuous representative,
sufficient polynomial decay is enough, see [FP15].

Lemma 2.21. Let 0 < a < 1 and E > 0. Under the assumptions of Theorem 2.6 we
obtain the following asymptotics

Ak —L—e Ey P~

/ dz / dy Ly)z = a¥(E,E)InL + o(In L) (2.63)
0 ph L (y—x)

as L — oo, where the error term depends on a, the Fermi energy E and the cut-off energy

Ep.

Proof. This lemma is a standard d-approximation argument. Nevertheless, we prove it for
convenience. First note that Lemma 2.13 implies )\]LV — %L‘“ > 0 for L big enough and
for such L we compute

/)\L Liad / i d ( L )2— |1 ( Lo =2k +2L )‘—l—O(l) (2 64)
= |In @ .
) z iy L Y Y HN 1 N

+O(1)  (2.65)

as L — oco. Hence, we estimate

Ak —L—e Ey Sz
/ dz / dyﬂﬂi’y)2 - y(E,E)‘ln (,uﬁﬂ —)\%—1—21)_“)
0 u%jq—i-L*a (Z/ - .1‘)

A —L—a E
e ;HW y () - 3(8.8) ()

as L. — oo. Now, Lemma 2.19 provides continuity of 4 and by Lemma 2.13 )\]LV and ,u]LV
converge to E. Thus, given an € > 0 there exists a function h : Ry — R, such that
lime o h(€) = oo and

(2.65) < € |In (ufyy — AN +2L7%)| + h(e). (2.66)
Now, assumption (2.26) gives

In (pk oy — Ak +2L79) | +h
lim sup [mn {4y = Ak ) © < ae. (2.67)
L—oo InL

Since € was arbitrary, this yields
L.hs. of (2.63) = J(E, E) |In (ufry — Ay +2L7%)| + o(In L)
=ay(E,E)InL +o(InL), (2.68)

as L — oo, where the last line follows from assumption (2.26). O

As already mentioned before, the exponent ¥(FE, E') admits a scattering theoretic in-
terpretation.
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Lemma 2.22. Let E > 0. Set ¥(E) :=y(E, E). Then,

Y(E) = ||Tglks, (2.69)

where HS denotes the Hilbert-Schmidt norm on the corresponding fibre Hilbert space,
which is in our case L?(S%1). Here, S%~' denotes the d-dimensional sphere.

Proof. The lemma follows from [Kiit14, Cor. 9.12] or [GKMO14, Cor. 4.32], which are
valid here for all E > 0 due to Lemma 2.19. O

Proof of Theorem 2.6. Recalling equation (2.40), Lemma 2.12, Lemma 2.16, equation
(2.58) and Lemma 2.21 we obtain for all 0 < a < 1

v(E
—In|SN| > ( ) InL+o(IlnL), (2.70)
as L — oo. Therefore, for all 0 < a < 1
: m|Sp| _ (B
1 < . 2.71
S L ST 27)
This proves Theorem 2.6 because a was chosen arbitrary subject to 0 < a < 1. g

3. An Application of the Helffer-Sjostrand Formula: Proof of Lemma 2.16

Since Lemma 2.16 is valid in more general settings including background potentials
and unbounded perturbations V', we state Lemma 2.16 under weaker assumptions.

Lemma 2.23 (An application of the Helffer-Sjéstrand formula). Here, we assume (A) and
additionally

V e L*(R%) (2.72)
with subexponential decay at infinity, i.e.
3Ly >0, 0>1such that |V(z)| <e —log(lzl2)? for |x|2 = Lo. (2.73)

Let 0 < a <1 and XjLE be the associated smooth cut-off functions from Definition 2.14.
Then, we obtain

[ Gt = [ PO Gt w e, @)

as L — oo.

Remark 2.24. We do not claim that the assumptions on V' in Lemma 2.23 are optimal
and we do not claim that the following proof is elegant.

Proof. First note that 1/2? = [ dtte ™. Thus, using Fubini's theorem we can decouple
the = and y integration and rewrite

d Z, _ T
/RQM / dtt/RQduLx ) e W T (@)X F(y). (2.75)

Moreover,

/a#mm>w<m@
0 R2
_/ dttte{VV el (Hp) Ve "Hi-FyH(H)VVY, (2.76)

0
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where . .
By = “N“;AN (2.77)
We define the abbreviations
g () = xp ()@ F)and  fi(2) = xf (@) e ETE) (2.78)
for every x € R and t > 0 so that Lemma 2.23 can be reformulated as
/0 Tt Ko (1) = o(1) (2.79)

as L — oo with
K (t) = w{VV gL (H)V FLHVV = e{VV gL (VL)WY (2.80)

We use the cyclicity of the trace and estimate the modulus of (2.80) according to | K (t)| <
[ (0)]+ K7 (1)) where

K@) = we{ VL)V (gh(HL) - g1 (H) ) | (2.81)
K () = 0] (F1(HL) = FL(H) ) VaL(H)V |- (2.82)

Note that we did not assume V' to be bounded. Thus, in order to apply the cyclicity of
the trace in (2.81) and (2.82) we use that the operators WhtL(H((/L)))\/Vare trace class
due to Remark 2.26 below, where the function htL stands for one of the functions defined
in (2.78).

Since both Kg) and Kf) can be estimated in the very same way, we will demonstrate

the argument for Kg) only. Our main technical tool is the Helffer-Sjostrand formula, see

e.g. [HS00, Chap. IX] or [Kiit14, Chap. 5], according to which
1 ~ 1 1
Eorrty _ pt oy — Tt _

where we note that the above integral is norm convergent. Here, z := x+iy, 0; := 0, +10,,

dz := dzdy and f}i € C%(C) is an almost analytic extension of /4 to the complex plane.
The latter can be chosen as
n - \k Ak rt
I o (iy)" d"fp,
fi(z) =¢&(2) kZO ok @) (2.84)
for some n € N and some £ € C°(C) with £(z) = 1 for all 2z € supp fi x [—1,1], £(2) =0
for all z such that distc(z, supp f}) = 3 and £(z) € [0, 1] otherwise. We will assume n > 2
below. Since supp fi = [0, Ey+ 1], the function £ can be chosen independently of L and ¢,
and such that ||{||., = 1 and ||¢'||., < 1. For later purpose we introduce the function

h = ZZié d;xJ;Z} € C.(R) and infer the existence of a constant C' € (0, 00), which is

independent of L and ¢, such that
0:F1(2)] < Cly|"h(2) (2.85)
for all z € C. Furthermore, the bound (2.54) implies the estimate

dkft = (B[ )"
d.:Uk (’:U) < L Z K E Ck—k 1[/"%\{+17E0+1] (‘T) (286)
~k=0
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for every t > 0, L > 1, x € R and the constants ¢, are the ones from (2.54). Hence,
we conclude the existence of a polynomial (),, over R of degree n + 1 with non-negative
coefficients such that

0 < h(z) < Qu(t/LY) LD 1 py(2). (2.87)

We will split the contribution of (2.83) in (2.82) into two parts. Accordingly, we define for
e€(0,1—a)

1 ~ 1 1
Dy (t) := Py /|y<L1+e dz (agfz(z)) [H/L — T J (2.88)

and . . )
D7 (t) == 27T/|y>L_H€ dz (8:f1(2)) [H/L — g J : (2.89)

The integral in the Helffer-Sjostrand formula is norm convergent and due to the assump-
tions on the potential the operator Vg} (Hy)V is trace class by Lemma 2.25. Hence, we
interchange the integral and the trace to estimate

|tr{DZ (t)VgtL(HL)VH

1 ~ 1 1
<— dz 0= 7% ()| 6 {V b (HL)V } - . 2.90
27T ‘ylgL—l-&-e z ‘ fL(Z)‘ r{ gL( L) } Hi — H/ — 2 ( )
The estimates (2.85) and (2.87) imply
C
(2.90) < tr{ Vgl (H )V} dz [y h(z)
T Jly|<L-tte
t 2C n(—1+e)
=tr{Vgr(HL)V}—L dz h(zx)
™ R

< tr{Vgh (Hp)V 0o Qn(t/L) Lot 1teta), (2.91)
where C'- depends on Ej only.

To estimate the term D7 (t), we interchange the integral and the trace as before to
obtain

|tr{ D7 ()V g}, (HL)V }|
<o i e 11 .
<27T ly|>L—1+e dzlul"hiz) |t { [H}J -z H - z] VgL(HL)V}‘ ' (2.92)

Now, we rewrite the identity on R? according to

lga = 1a,  + (Iga = 1a, ) = 15 + 1% (2.93)
and insert this into (2.92) according to
C 1 1
— dz [y["h(z) |tr (1% +1F - 1215Vl (HL)V 3.
e L astrn i ak 1) |t - kit Vel )
(2.94)

Using the triangle inequality, we estimate (2.92) from above by four terms, which we
denote by AgLHr,AJLF,,AE+ and AL_, where the latter indices apparently refer to the



3. AN APPLICATION OF THE HELFFER-SJOSTRAND FORMULA: PROOF OF LEMMA 2.16 25

decomposition (2.93) of the identity. We start with
C 1 1
L L Lyt
1 — 12 Vg; (Hp)V
{+{H’L—Z H’—Z] #VoLHn) H

Ay =— dz |y|"h t

++ T o oLt z |y|"h(z) |tr
C

<— dz [y|"h(z) tr{V gt (H)V

27T ‘y|>L—1+e ’ ‘ { L }

1 1
% HlAL/2 [H/L —z H’—z] Loz |-
We estimate the norm of the difference of the resolvents with the help of the geometric

resolvent inequality — see e.g. [Sto01, Lem. 2.5.2] or [Kiit14, Lem. 5.3] —, and the fact that
&(z) = 0 if dist(z,R) > 3. This provides for L > 3

(2.95) < tr{V gt (HL)V}

CCyre / 1
X dz h(z H1 1
21 Jy>pote 2 M@)y||Las o H) — oA

CClre / 1 1
dz h(z) |y|*~ HlaA A
27 |y‘€]L71+6 3] L H/ L/2

where dA7, := Ar \ Ar—1 and the constant Cygre < 0o depends only on Ejy, the space
dimension and the potentials V; and V. The operator norm in the last line of (2.96) is
bounded by a Combes-Thomas estimate for operator kernels of resolvents, see e.g. [GK03,
Thm. 1],
1 t /
1 71 H < Ce cer dist(I 1]yl 207
[trg—tr| < (2.97)

It holds for all cubes I', I” C R? of side length 1 and all z in some bounded subset of C,
which we choose as supp(h) x [—3,3]. The constants Cq, ¢t € (0,00) in (2.97) can be
chosen to depend only on Ej, the space dimension and the potentials V5 and V. Now,
we assume n > 2, cover Ay 5 and 0Ay by unit cubes and apply the bounds (2.97) and

(2.87) to (2.96). In this way we infer the existence of a constant Cs € (0,00), which is
independent of L and ¢, such that

(2.95)

1
‘1§AL H — 1AL/2

< tr{Vgy(Hp)V}

, (2.96)

3
2 96) tr{ HL V}C> Ey+ 1)Qn(t/La)L2d+a(”+1)/ dy ‘y’n 2 —cLy

L1+
< tr{VgtL(HL)V}Cl>Qn(t/L“) [2dFa(ntl) gel® (2.98)

forallt > 0and all L > 1, and ¢ depends only on c¢t and Ay and Cy~ depends on n, Cct
and Ey. We continue with A_. Using the cyclicity of the trace, we compute

C 1 1
A =— dz |y|"h(zx) [tr { 1L - 1Lvgt (H
=g [ e o {1 | gt - e [ m
C
<= dz [y|" h(z)|Viae oo tr {|Vgh (H
) 2ly[" T h(@)IV1ag , lloo tr { VgL (HL)[}
< Cone™ 0’ (/L LoD b {|Vigh (H) |} (2.99)

for L > L, where we used the subexponential decay of the potential V at infinity, and the
constant C~ > 0 depends on Ej and ¢ on A; only. We estimate A, _ along the same
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line. For A__ we estimate

C
A<= dz g~ "h(@) [VV g, I tr {VV g (H)VV }

T |y‘>L—1+e
< Oyoe10BCLY (1) [8) [a+D) g {\FvgtL(HL)\/V } . (2.100)

Here, the constant Cs~ depends on Ey and Aj only.
Now, Lemma 2.25 and Remark 2.26 below imply

/OO dtt Qn(t/L*) tr {Vgl (HL)V} < C, L,

0

| weuyzy (v i)} < oz
0

/OO dtt Q(t/L) tr {\FVgtL(HL)\FV} < L (2.101)

0
with some constant C,, > 0 depending on n. This together with the bounds (2.91), (2.98),
(2.99) and (2.100) yield a constant C' = C}, g, v,,v,A, > 0, depending on n, Ey, Vp, V and
A1, such that

/ > det| Kf) ) <C ( [latn(—l+eta) | p2dta(nt3) —calt | o—(log(2L))" La(n+3)> '
0
(2.102)

We recall that 0 < € < 1 —a and 6 > 1. Therefore, we can choose n large enough as to
ensure

3a+n(—-1+a+e)<0 (2.103)
and conclude that o
/ dtt K2 (1) = o(1) (2.104)
0
as L — oo. The same holds true for Kg) by an analogous argument. Thus, we have shown
(2.79). O

Lemma 2.25. Let hl, € {f}, g%}, where the latter are defined in (2.78). We assume here
V € L*(RY) with subexponential decay of V at infinity as in Lemma 2.23. Then, there
exists some constant C' > 0 such that for every L > 1 and every t > 0 we have

tr{VhtL (H((Q))V} < CeftL*a/2 and tr{‘VhtL (H((Q)) ‘} < Ce*tL*a/Q. (2105)
Remark 2.26. The assumptions of Lemma 2.23 on the perturbation V, i.e. V € L?(R%),
V > 0 with subexponential decay at infinity provide also 'V € L?(R?). Thus, we apply
Lemma 2.25 and obtain that \/VhtL(H((/L)))\/V is a trace-class operator and the latter
bounds hold.

Proof. The definition of Ey, implies that |Ef, — A% + 2L7% > 117 and therefore

() < gti () < gt-2/21 (g0)
90 (Hipy) < P10y gy (i) < e P1(H),  (2.106)
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where I is some bounded interval. The same holds for fi. Moreover, due to the quite

0
explicit representation of the integral kernel of ¢ ""(X) given in [BHLOO, Thm. 6.1] we
know the following inequality of integral kernels

(1 /
0 < e (2,y) < e (2,y) (2.107)
forall z,y € Ap, t > 0.

For the first assertion, we estimate
9 —tL=%/2 ("
r{ VAL (Hp))VE < e " P a{Vi(H7)V}
L e LT/ 2gsupl tr{Ve_H((%V}
L et 2gsund tr{VeiH(/)V} (2.108)
The last inequality follows from the integral-kernel inequality (2.107) and computing the

_g®" .
trace as the square of the Hilbert-Schmidt norm of the operator e A2y The assumption

V € L?(R%) implies that e~H" /2 is a Hilbert-Schmidt operator, see [BHLOO, Thm. 6.1],
and the assertion follows.

For the second statement, we note that for arbitrary trace class operators 0 < A < B
we obtain the inequality tr vV A < tr v B. Thus, we compute

e {vng ()|} = e Ly v ()0, (1)) v

<tr {\/VII(H((IL)))etL—aV}

—a _gW
et 2wl g [y e )] (2.109)

In case of the infinite-volume operators the assumption V' € L%(R?) with subexponential

decay at infinity yields that the operator Ve H" is trace class, see [Sim82, Thm. B.9.2].
Essentially, the case of the finite-volume operators follows also from [Sim82, Sct. B.9]
and inequality (2.107). To see this, we choose § > 0 and introduce the weight function
r(z) := (1 + |=|?)%/2. Using the Cauchy-Schwarz inequality for traces we estimate

tr {’VG_HE/L)) ’} =tr {‘Ve*Hg)/%r*lefH(L’)/z‘}

(1) (1
< |[Ve Py |lr e HE 2 s

< Ve O Pr||us e 1O 2 s, (2.110)
where we used (2.107) in the last line. For § > d/2, [Sim82, Thm. B.9.1] provides
Hr‘le_H(l)ﬂHHs < 00. Moreover, we rewrite |]V6_H</)/27"HH5 = ||Vr7"_le_H(/)/2rHH5.

Due to the subexponential decay of V we have Vr € L2(R?) and by [Sim82, Thm. B.6.1]
(rle HO2p)" 0 L2(RY) — L°(R?) is bounded. Hence, we use [Sim82, Prop. B.9.4]
to obtain that Vrr—te=# /21 is a Hilbert-Schmidt operator. Alternatively, one may show
directly square integrability of the integral kernel of the latter operator using suitable point-
wise bounds on the integral kernel of e~ O






CHAPTER 3
The Ground-State Overlap for Dirac-0 Perturbations

In the last chapter we saw upper bounds on the ground-state overlap Siv for quite
general pairs of Schrodinger operators. Here, using different tools we prove the exact
asymptotics for the toy model of a Dirac-9 perturbation in three space dimensions, which we
define in Section 2 below. We begin with an exact representation of the ground-state overlap
in terms of the eigenvalues valid for rank-one perturbations, which might be interesting on
its own and is at the heart of the main result in this chapter, Theorem 3.17.

1. Product Representation for Rank-One Perturbations

Let H be a separable infinite-dimensional Hilbert space and A be a self-adjoint compact
operator acting on H. Moreover, we assume A > 0 and ker(A) = {0}. We define for some
0#£pecH

B:=A+[¢)(¢l. (3.1)
We write oy > a9 > --- and 81 > B > --- for the non-increasing sequences of the
eigenvalues of A, respectively B, and denote by (‘Pj)jeN and ()cn the corresponding
normalised eigenvectors. Since A and B differ by a rank-one perturbation, the min-max
theorem implies that the eigenvalues interlace. We assume in addition a strict interlacing
property of the eigenvalues

51>041>52>042>-'-. (3.2)

This immediately implies 3, # «; for all non-zero eigenvalues of A and B. Furthermore,
the above gives cyclicity of ¢:

Lemma 3.1. Under condition (3.2), we obtain that ¢ is cyclic with respect to the operator
A. In particular, for all j € N

(pj,0) # 0. (3.3)

Proof. Let W := span{A"¢ : n € Ng}. Then W reduces A, i.e. AW C W and AW+ C
WL, Now, assume ¢ is not cyclic for A. Then, W+ # {0} and there exists an eigenvector
©n € W of Asuchthat Ap,, = E, and (¢,, ) = 0. This implies E is also an eigenvalue
of B, a contradiction to (3.2). O

Assumption (3.2) is not necessary but simplifies notation and computations. In the
general case one has to consider cyclic subspaces. But in our applications the interlacing
condition (3.2) will be satisfied, therefore, we assume it.

We continue with a property of the sum of the differences of the nth eigenvalues.

Lemma 3.2. Let (3.2) be satisfied. Then, the eigenvalues of the operators A and B satisfy

> (B =) = |9l < oo. (3.4)

=1

29
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Proof. For A € R we define the operator
A(X) == A+ o) (gl (35)

and write () for the [th eigenvalue counted from above and ;() for the corresponding
eigenvector. Moreover, we remark that «;(1) and ¢;(1) correspond to (3; and 1);. Assump-
tion (3.2) and the definite sign of the perturbation imply that the eigenvalues of A(\)
are non-degenerate for all A € [0,1]. Thus, standard results, see [RS78, Chap. Xll], give
differentiability of the eigenvalues for all A € (0,1) and we apply the Feynman-Hellmann
theorem, see e.g. [IZ88], to deduce for all [ € N and A € (0,1)

Qj(A) = @iV, 2. (3.6)

Hence, we compute

00 00 1
IZ; (B — ) :;/0 dAaj(A)
=i/ldA|m<A> ¢>|2=/1dxi|<sol<x> S (37)
=170 ’ 0 =1 ’ ’ .

where we used Fubini's theorem in the last line. Since the vectors (gol()\))leN form an ONB
of H, we obtain
1
(3.7) :/ A\ |62 < oo (3.8)
0
O

The above lemma is also valid without the assumption (3.2). In this case, one has to
include possible degenerate eigenvalues of A()) in the proof. This may cause a discrete set
where some of the ordered eigenvalues are not differentiable.

The main result of this section is the following product representation of the ground-
state overlap.

Theorem 3.3. Let N € N. We assume condition (3.2) to hold. Then,

et (030580) | H IRt D

Proof of Theorem 3.3. We use the eigenvalue equations, i.e. the identity (2.48), and as-
sumption (3.2) to obtain for all j,k € N

{05, 9)(¢ Yr)

(@5, ¥r) = B — o (3.10)
J
Hence, the multi-linearity of the determinant implies
et ((23:080) o
‘ et (es V) 1<j,k<N
2
‘det( ©js O)P: i) ) ‘
Br — 1<j,k<N
N N 5
- , d t( ‘ 3.11
[T 11 w5 )6, v)l? | de ﬁk_aj)lgjw (3.11)

j=1k=1
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Now, the remaining determinant can be computed explicitly. We use the Cauchy deter-
minant formula to evaluate this, see Appendix B or [Wey13, Lem. 7.6.A], and we end up
with

N N N
[kt jk 1Br — Bil loj — o
(3.11) ©j, P) (¢, ) [P =L : (3.12)
];[ 1;[ ’ Hj'\,[kzl Bk — O‘j|2

Corollary 3.5 below yields

8 8 M 1B — Byl oy —
(3.12) HH”Z ﬁ:{HHM Oéy|1—I|k J|\0@20¢k|

k= 1z 1 11— 1| lia]|j,k:1 |8 — oy
I#5 j#k
j=1k=N+1 Bk—ﬂj |a]—ak|

This gives the claim, where we remark that by the estimate (3.4) all infinite products in
the latter converge absolutely. (|

To complete the proof, we continue with computing the residue of the resolvents.
We do this using the following product representation of the resolvents which is valid for
rank-one perturbations.

Lemma 3.4. We assume (3.2). Then, there exist a,b € R with ab = —1 such that

(i) for all z € p(A)

1 = B — 2
—_— 1 pr— .
(6, )+ agak—Z’ (3.14)
(ii) for all z € p(B)
1 _
(65— 0)—1="b H 5, (3.15)
Corollary 3.5. Let j,k € N. Under the assumption (3.2).
!ﬁl %| lou — Byl
i o) — ol |a . 3.16
l;é] l;ék
Proof of Corollary 3.5. Using Lemma 3.4 we compute the residue of the resolvents
. 1
[(ps o))" = lim (@ —2) (6 =)
— lim ( )a BZ_Z = H (b = ay) (3.17)
z%a] -1 al — Z Oél - O[]
75
and along the same line
2 1 (2 — Bk)
) =b(a — —. 3.18
[(Vr, ) (g 51:)1_[1 B Br) (3.18)
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Taking the absolute value and using |ab| = 1 give the result. O

Proof of Lemma 3.4. First note that by the finiteness of (3.4) the sequences

Al —
d 3.19
<kl;‘[10‘k_z>NeN o < >N€N ( )

converge locally uniformly for all z € p(A) N o(B), see [Kn096, Thm. 252]. Therefore, the
limits

F(z) = ﬁ WMTE and Gz H (3.20)

n=1 Bn -z

are well-defined analytic functions on p(A) N o(B), which fqulI FG = 1. Due to the locally
uniform convergence the derivative of I’ satisfies

a, —zd o —z
1 el
Nl—rgoznﬂn—zdzﬁl—z

Br — 2
Oék—Z

N

. an — 2z ap— B 1 1
Ngn‘”zz;}_[lﬁn—z - 2)? (Z)Ngnooz<ﬁz—z az—z) (3:21)
n#l
for all z € p(A) N o(B). We apply Lemma 3.6 below and obtain
1
21) . 22
3. (g% 5 =9 (3.22)
Now, the resolvent identity implies for all z € Q(A) N Q(B)
1 1 1 1
B—z_A—z__A—z¢<B—Z¢"> (3.23)
which provides the equality
1 1 1
— . 3.24
ZIEEEL N Y N 524
Inserting this into (3.22), we see that F solves the differential equation
1 2
F'(E) = F(E) 9, ¢ (3.25)
o1 () ¥

at least for all E € o(A) N o(B) NR. On the other hand the resolvent of B is analytic in
o(B) and the function t — (¢, 5~¢) — 1, t < 0, solves the above ODE (3.25) as well.

Now, the general solution to this ODE is f(t) = xgexp (fti) ds m@, (BL_S)Q@),
"B—s

for some initial condition (o, z¢). Note that the functions t — F(t) and t — (¢, 5—¢) — 1

are non-zero, thus (¢, ﬁ@ — 1 = cF(t) for some ¢ # 0. This and the identity theorem
for analytic functions give the claim. Equation (3.14) follows from F(2)G(z) = 1 and the

identity . .
(6, 5—=0) = 1) ((6. =9V +1) = -1, (3.26)
for all z € p(A) N o(B) which is a consequence of (3.23). O
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Lemma 3.6. Let z € o(A) N o(B). Assume (3.2). Then, we obtain the following identity

N
lim Z (61 L —— ! )= —<ﬁ¢, ﬁ@. (3.27)

N—o00 o] — 2

Let us point out that in the finite-dimensional case the above equality follows directly
from the resolvent equation, (3.23). Nevertheless, the infinite-dimensional case is slightly
more involved due to convergence issues.

Proof. For A € R we define the operator
AN == A+ \9) (9] (3.28)

and write () for the [th eigenvalue counted from above and ;() for the corresponding
eigenvector. Following the proof of Lemma 3.2 we obtain differentiability of the of «ay(-)
with

aj(N) = (@A), o). (3:29)

Hence, we compute for z € C with Imz # 0

Yo 1 oLt 1 N2,
]\}gnoo (,BZ—Z al—z> __]\}gnoolz:;/o da <al()\) —Z) al(A)

The eigenvalue equation implies

(330) = - lim Z/ gy =z A ). =)

:_/O dA (g, (A(A;_Z)Q@, (3.31)

where we used Fubini's theorem to interchange the integral with the sum and the fact that
the vectors (¢;(\)), . form an ONB. The resolvent identity (3.23) implies

L 4= ! L s (3.32)

AN) — 2 1+A<¢,ﬁ¢>A—z

leN

Therefore, we continue

(3.31) =—/01dA<¢a (Al_z>2¢><1+A<¢1, AIZ¢>>2

o ) 1 i 1 1
- <¢’(A—Z) ¢>/0 dA d)\<1+)\<¢, Al, ¢>)<¢7 Alfz(z))

z

(3.33)




34 3. THE GROUND-STATE OVERLAP FOR DIRAC-§ PERTURBATIONS

Equation (3.32) with A = 1 provides the assertion

(3.33) = —<ﬁ¢, %@. (3.34)

We note that both sides of (3.27) are continuous within o(A) N o(B). For the left hand
side this follows from the finiteness of (3.4) and for the right hand side from the continuity
of the resolvent. Therefore, we obtain the result for all z € o(A) N o(B). O

2. Zero-range Interactions

In this section we define Dirac-6 perturbations for systems on (0, 00) and R?, and for
a given L > 0, we define its restrictions to the finite volume (0, L) respectively to the ball
Br.(0) of radius L around the origin. Our definitions and notations are close to [AGHHO5,
Chap. 1].

We begin with the 3-dimensional case, i.e. let d = 3. Throughout this chapter we denote
by H = —A the negative Laplacian on L?(R3) with dom(—A) = H?(R3). Furthermore,
we consider the operator

— A : C(R*\ {0}) — L*(R?) (3.35)

and observe that this operator has deficiency indices (1,1), see [AGHH05, Chap. 1]. Thus,
we obtain a one-parameter family of self-adjoint extensions of —Ay which we call H, and
—00 < a < 00. Each of these self-adjoint extensions H,, defines a negative Laplacian with
a Dirac-d perturbation located at the origin. For computations, we need a less abstract
representation of the Dirac-d perturbation. Therefore, we decompose the operators H and
H, with respect to angular momentum. Following [AGHHO5, Chap. 1], there exists a

unitary operator
U PR~ P P H (3.36)
LeNg —<m</

where H™ = L2((0,OO)), such that under this unitary U both operators H and H,

transform into
=P P ry P Pp H-PH p =™ (3.37)

£eNg —4<m<L £eNg —l<m<{ £eNg —f<m</{

The operators h’ and hf, coincide for all £ > 1 and are given by

d2 e +1)
L.l .
h*:=h, = = o (3.38)
with the domain
dom h( ) {f € L ( OO)) : f7 f, € AC|OC((O7 OO))ahef € L2((Oa OO))},

C L*((0,0)), (3.39)

whereas in the case ¢ = 0, which we call the lowest angular momentum channel,

d? d?

R = —— and  RY = (3.40)

dr2’ @ dr?
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with the two different domains
dom(h?) :={f € L*((0,00)) : f, ' € ACioc((0,00)), f" € L*((0,00)),

f(04+) =0} € L*((0,00)), (3.41)
dom(hd) :={f € L*((0,00)) : f, f' € ACj0.((0,00)), f” € L*((0,00))
— draf(04) + f'(0+) = 0} C L*((0,0)). (3.42)

Here, AC|OC((0,oo)) denotes the set of all locally absolutely continuous functions on
(0,00). We refer also to [Tes09, Chap. 10] for a more detailed derivation of the angu-
lar momentum decomposition.

Remarks 3.7. (i) Let us emphasise that the difference of H and H,, takes place in
the lowest angular momentum channel, i.e. £ = 0, only. Thus, we are effectively left with
the pair of operators h? and kY on the half axis (0, 00), where the pair corresponds to the
negative Laplacian with a different boundary condition at 0.

(i) Since H itself is a self-adjoint extension of —A, we remark that H = H, as well
as h® = hY_, i.e. a = 0o corresponds to —A.

(iii) Moreover, H is the biggest self-adjoint extension of —Ay. More precisely, for all
aeR

H, < H, respectively he < K. (3.43)

(iv) The operator h® corresponds to the negative Laplacian on the half axis with a
Dirichlet boundary condition at 0. The operator h8 corresponds to the negative Laplacian
with a Neumann boundary condition at 0.

(v) In the case a > 0 we have

0<Ho and  0<hy, (3.44)
whereas in the case o < 0 both operators H,, and hY admit the single negative eigenvalue
p1 = —(4ma)? (3.45)

with an exponentially decaying eigenfunction, see [AGHHO05, Thm. 1.1.4].

Since we are interested in restrictions to finite volumina, we will not go into more
details about a Dirac-d perturbation in the infinite volume.Now, let L > 0 and we denote
by | - |2 the Euclidean norm on R? and consider the self-adjoint extensions of

— Ao : C(B(0)\ {0}) — L*(B(0)), (3.46)

where B,(0) := {z € R3 : |x|]2 < L} is the ball of radius L around the origin. this operator
has deficiency indices (1, 1) as well, and we call its self-adjoint extensions H,, 1,, which are
Dirac-§ perturbations of the negative Laplacian on the ball with Dirichlet boundary condi-
tions. The spherical symmetry of the ball allows us to mimic the above angular momentum
decomposition and we infer the existence of a unitary

Up:L*(BL(0) - P P H:™ (3.47)

LeNg —l<m<L
where in this case Hg’m = L*((0,L)), such that

iU = B hiw,: B P H">EP P H"  (348)

£eNg —f<m</L £eNg —l<m<t £eNg —f<m</{
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Forall /> 1 )
d +1)
V4 l
= =—_——4 - 4
hoz,L hL d7”2 + 7”2 ) (3 9)
with the domain

dom(h{yy 1) :=={f € L*((0,L)) : f, ' € ACioc((0, L)), hef € L*((0,L));

f(L—) =0} c L*((0,L)). (3.50)
In the ¢ = 0 channel we obtain
0 d? 0 d?
hL,a = *@ and hL = *@ (351)

with the domains
dom(h] o) :=={f € L*((0,L)) : f, f' € ACic((0, L)), f" € L*((0, L)),

—dmaf(0+) + f(0+) = 0; f(L-) =0} c L*((0,L)),  (352)

dom(hy ) ={f € L*((0,L)): f, f' € ACioc((0, L)), " € L*((0, L)),
F(04) = 0; f(L-) =0} € I*((0.1)). (3.53)
Remarks 3.8. (i) The only difference to the operators on the infinite-volume is the

additional Dirichlet boundary condition at L.
(ii) Obviously, Hy, is the Dirichlet Laplacian on the ball Bz,(0) and we refer to H, 1,
as the Dirichlet Laplacian on B, (0) with a Dirac-d perturbation.

Lemma 3.9. In the case a > 0 we obtain the operator inequalities

0<Hapr and 0<h)p. (3.54)
In the case o < 0 we have at least the uniform lower bound
— (47@)* < H, 1 and equivalently — (4ma)* < hgyL. (3.55)

Proof. This lemma follows e.g. from Dirichlet-Neumann bracketing. Let h% . be the restric-
tion of h’ to (L,c0) with a Dirichlet boundary condition at L. Then, Dirichlet-Neumann
bracketing, see [RS78], implies h, < hﬁZ,L@héc. Thus, Remark 3.7 (v) gives the claim. O

Since Hy, and H, 1, differ only by a boundary condition, the difference seems to be
quite small, this is indeed the case in the following sense.

Lemma 3.10. Let z € o(Hy) U 0(Ha,1) - Then, there exists a 1 , € L*(BL(0)) such
that the difference of the resolvents satisfies
1 1 e o
HL — HOé7L — 2 - ‘T’L,Z><nL7Z"

(3.56)

The same is apparently true for the resolvents of hOL and hg’L with the vector (ULT]%’Z) €
£2((0, L)).

Proof. First note that hr and h, are both self-adjoint extensions of —A with
dom(—A) := {u € C2((0,L)) : u(L—) = 0}. Moreover, the deficiency indices of the
latter are (1,1). Thus, the lemma follows from [AGHHO05, Thm. A.2] or [Tes09, Lem.
2.29]. 0
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Standard results imply the compactness of the resolvent of Hj, which is just the
Dirichlet Laplacian on the bounded domain Ay. Now, Lemma 3.10 provides compactness
of the resolvent of H, j, as well and we denote by

M <A< and pf <pf < (3.57)
the corresponding eigenvalues of Hy, and H, 1, counting multiplicities, and by
MO<MO < and pf () <pbl) < (3.58)

the eigenvalues of hé and hf;’L. Then,

o) = U UM®O o) =Uwouvlld U Uro.

eNg —<m<l keEN neN leN —<m<l keN
(3.59)

We saw that the perturbation is small in the sense of a rank-one perturbation in the
resolvent but the perturbation is L-dependent, thus, not compactly supported. Moreover,
we obtain that the eigenvalues of H; and H, j, interlace. But for our application in mind,
we need to know slightly more about the eigenvalues of Hy, and H, ;. To formulate this,
we continue with the definition of the scattering phase shift.

Definition 3.11 (Scattering phase shift). Let £ > 0. Then, the scattering phase shift is
defined by

k
= - >0, .
do(k) := arctan (47”1) fora >0 (3.60)
= — < .
da(k) := m — arctan (47r\a\) for a <0, (3.61)

k
where we use the convention arctan (6) = g for k > 0.

Remark 3.12. The separate definitions of the phase shift are reminiscent of the existence
of a negative eigenvalue whenever o« < 0 and related to Levinson’s theorem which states
that d,(0)/7 gives the number of negative eigenvalues, see [RS79].

The eigenvalues of hOL can be computed explicitly, see [RS78], i.e. for n € N

nm

An = <T>2‘ (3.62)

The eigenvalues of hg 1, admit the following simple representation in terms of the eigen-
values of h% and the phase shift.

Lemma 3.13. Let §, be given by Definition 3.11. Then,
(i) fora >0 and n € N the nth eigenvalue of b and h, | satisfy

0< Vit = v/, - /i) (3.63)

(ii) for a <0 and n > 1 the nth eigenvalue of h and hg’L satisfy

0< Vit = /i, - 2] (3.64)
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(iii) and § exhibits the following expansion

8 (VAn)da(VAn 1
bl /i) = B/ 3m) — 2 )L )4 o(7): (3.65)
which is valid for all 11, > 0 and the error term depends on « but is independent
of n.

Proof. Let k > 0. Consider the eigenvalue problem

—uf = Kuy,  —4maup(0+) + uj(0+) = 0. (3.66)
Introducing Priifer variables
ug(x) = pu()sin(Op(z))  up(x) = kpu(x) cos(Ok(x)), (3.67)
we see that any non-zero solution of (3.66) is of the form
. k
ug(x) := asin (k:x + arctan (m)), (3.68)

for some 0 # a € C. Since any eigenfunction w;, to an eigenvalue k? of h&L is a solution
of (3.66) in (0, L) and additionally fulfils u;(L—) = 0 we obtain that

. k

ug(L) = asin (kzL + arctan (m)) =0. (3.69)
On the other hand, all k% such that (3.69) is satisfied are eigenvalues of hg,L- Since the
function k — kL + arctan (ﬁ) is strictly increasing we obtain for any n € N an unique

eigenvalue g, > 0 of hY ; such that
VL + arctan <@> = nm, (3.70)

droy

where 11 < pg < ---. This proves (i). For the case a < 0 note that h&L admits a single

negative eigenvalue. Therefore, (3.70) is only valid starting from the second eigenvalue of
RO ;. This implies for all n € N

VvV Hn+1 _ t (\/ Hn+1 )
arctan (Y- T arctan \ gy
Vi = v A — 24) =1 — . ol 7 (3.71)
(iii) follows directly from (i), (ii) and Definition (3.11) of the phase shift. O

Remark 3.14. Later, we extend this lemma also for pairs of Schrodinger operators on
L% ((0, L)) which differ be a non-negative multiplication operator, see Lemma 4.11.

Corollary 3.15. The eigenvalues of hY and h&L fulfil
p1(0) < AT(0) < pz(0) < AF(0) <--- . (3.72)
Proof. Note that |0, (k)| < 7 for all K > 0. Thus, (3.62) and (3.64) imply the corollary. [

Remark 3.16. At the end of this section let us briefly comment on Dirac-§ perturbations
in other dimensions. Considering d > 4, the operator —A( given in (3.35) is essentially
self-adjoint [RS75, Thm. X.11] and we have a unique self-adjoint extension: the negative
Laplacian. In d = 2, a Dirac-6 can be defined, see [AGHHO05, Sct. 1.5], but Lemma 3.13
will not be as easy as in the d = 3 case since the operator in the lowest angular momentum
channel is d?/dz? — 1/(4] - |?). In the d = 1 case the deficiency indices are (2,2) and in
general this results in a rank-two perturbation in the resolvent, see [AGHHO05, Sct. 1.3].
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Thus, we cannot directly apply the product representation in Theorem 3.3, which is valid
for rank-one perturbations only.

3. The Exact Asymptotics of the Ground-State Overlap

We denote by (QOJL)]EN and (wé)keN the normalised eigenvectors of the operators H,
and H, 1, defined in the previous section, corresponding to the sequences of the eigenvalues
(AJL)J.GN and (,u%)keN, where we choose the same eigenvectors for Hy, and H, 1 in any
angular momentum channel ¢ > 1. This choice ensures that the eigenfunctions of Hy, and

H,, 1, differ in the lowest angular momentum channel only. Moreover, we write (‘pJL(O))jeN
and (zﬁ,f(O))keN for the eigenfunctions corresponding to the lowest angular momentum
channel.

With this choice of the eigenfunctions we obtain the following asymptotics of the

ground-state overlap:

Theorem 3.17. Let £ >0 and N(.(E) : Ry — N an arbitrary function subject to
NL(E E3/2
E) s omy = £,
|BL(0)] 8

where p denotes the integrated density of states of the operator H. Then, the ground-state
overlap corresponding to the pair of operators Hy, and H, j, admits the asymptotics

(3.73)

Ny (E)|2 2 152 (/E)4o
‘SLL( )’ = ‘det<<¢§’¢£>>1<jk<NL(E)‘ = L (3.74)
as L — oo, equivalently,
A N Ry
=— E -
L5 InL 27?250‘( ) (375)

and ¢, is given in Definition 3.11 above.

Remark 3.18. We choose the same eigenfunctions in the [ > 1 angular momentum chan-
nels because we are considering an s-wave scattering problem. In principle, this choice

(E)

is only necessary if A@L(E) is degenerate and SiVL takes only a proper subset of the

eigenfunctions in the )\%L(E) eigenspace into account.

Remarks 3.19. (i) Note that the result is valid for arbitrary thermodynamic limits
and independent of the latter but the o(1)-error term in (3.74) deduced in the proof
depends on the particular choice of the thermodynamic limit. We do not believe that it
can be substantially improved for arbitrary thermodynamic limits, see especially equations
(3.110) and (3.111).

(i) Due to s-wave scattering the S-matrix for the pair of Schrédinger operators H
and H, can be reduced to a complex number of modulus 1. This number is equal to
Sp = e20a(VE)  see [RS79, Sct. X1.8], where we chose the scattering phase shift as in
Definition 3.11. Next, we compare the exponent found in Theorem 3.17 above with the
exponent v(FE) = 2 |jarcsin |Tg/2|||3s found in [GKMO14]. To do this, we compute using

T2
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Tp =S -1

2

= %(arcsin (sin (5a(\/E))))2

1 1 A
—5 |larcsin Te/2||lks = — (arcsin (|€225“(\/E) - 1\/2))2
T T

#(6(1(\/@) - 7r)2, éa(\/ﬁ) > /2. '
Hence, we obtain in the case e < 0
SE(VE) 1 :
(7rQ) > pHarcsm\TE/QHms. (3.77)

This implies that in general the decay exponent in the asymptotics of the ground-state
overlap is not given by the decay exponent v(E) = #Harcsin Tr/2]|#s-

The definition of the Dirac-§ perturbation and our choice of the eigenfunctions in higher
angular momentum channels imply that Theorem 3.17 follows from the analogous result
on the half axis.

Theorem 3.20. Let £ > 0 and N(Q) (E) : Ry — N an arbitrary function subject to

NEE) , oy = YE. (3.78)

where py denotes the integrated density of states of the operator h'. Then, the ground-state
overlap corresponding to the pair of operators h% and hg 1, admits the asymptotics

SO = |det((oh(0), v 0)

as L — oo, and 6, is given by Definition 3.11 above.

‘2 _ [~ 2A(VE)+o(1) (3.79)
1<, k<N (E) '

The above deals with a problem on the half-axis. Due to symmetry, one can easily
deduce also a result for the ground-state overlap for systems on (—L, L) with different
boundary conditions at the endpoints +L. We sketch this. Let

ﬂL = —AL and Ha,L = _Aa,L (380)

be both negative Laplacians on (—L, L), where H;, admits Dirichlet boundary conditions
at the endpoints +L and H,, 1, admits the boundary conditions —4wa f (L+)+ f'(L£) =0
at £L for some o € R. Then, we obtain the following asymptotics of the ground-state
overlap.

Corollary 3.21. Let E > 0 and N(.)(E) : Ry — N an arbitrary function subject to

N’;(LE) — p(E) := \2/71? (3.81)
Then, the ground-state overlap corresponding to Hy, and H, 1 admits the asymptotics
‘SiVL(E)f — [, —C(B)+o(1) (3.82)
as L — oo. Here,
((B) i= S02(VE) (383)

and 0., is given by Definition 3.11.
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Proof. We only sketch the proof. Since we chose the same boundary conditions at +L, we
can decompose the operators Hy, and H,, j, with respect to odd and even functions. There-

fore, the operators ﬁ(a%L are unitarily equivalent to the direct sum E(La) &) ﬁéaL) acting on

L*((0,L)) ® L*((0,L)). Here, E(La) are negative Laplacians with a Dirichlet boundary con-
dition at 0 and EéaL) with a Neumann b.c. at 0. The operators hy, and BO,L admit a Dirichlet
b.c. at L, whereas the operators h¢ and B&L admit the b.c. —4waf(L—)+ f'(L—) =0 at
L. In this way, we reduced the problem to two separate problems on the half-axis and the
determinant is decomposed into two determinants. We use for each determinant the result

of Theorem 3.20 where we have to modify Lemma 3.13 accordingly due to the different
boundary conditions. But this does not change the results of Lemma 3.13. O

3.1. Proof of Theorem 3.17 and Theorem 3.20. We start with the 3-dimensional
case and decompose the determinant SéVL(E) according to the angular momentum decom-
position (3.37). This implies

‘det(@f,wzﬂ)

‘2 _ H ’det<<¢f(€),¢£(@>) ‘2(2e+1)

1eNg

. (3.84)

1<4,k<NL(E) 1<4,k<NL (E)

where @f(ﬁ) and £ () correspond to the radial part of the eigenfunctions lying in the ¢-th

angular momentum channel and Nf(E) to the relative particle number in the ¢-th angular
momentum channel. More precisely,

Ni(E):=#{keN: 3j€{1,--- N} with \(£) = A} } (3.85)

where ()\ﬁ(ﬁ))keN denote the eigenvalues of kY as defined in (3.58). Since we chose the
eigenfunctions of Hy, and H, j, to be the same in every angular momentum channel ¢ > 1
we obtain that only the £ = 0 term in the product (3.84) is different from 1. Hence,

et (toF. uh)) = | det (40, v (0) i

and we reduced the 3-dimensional problem to a problem on the half-axis with the relative
particle number N?(E). Now, this number satisfies.

: (3.86)

1<5,k<NL(E) 1<G,k<NY(E)

Lemma 3.22. Given E > 0. Let L and N1(F) € N such that Nu(E) p(E) as L — oo.

[BL(0)]
Then,
NYE) VE
A E .87
) 5 — (E), (387)
as L — .
Proof. Forany £ >0
. #{k: A< E) NL(E)
lim ———%———= =p(E) = lim ———, 3.88
Loss | BL(0)] p(E) = lim 1BL(0)] (3.88)

where the first equality follows from e.g. [Sto01, App. 4.1]. Hence, we obtain for an arbitrary
€ > 0 the inequalities

#{k AP <K E—e} <NL(E)<#{j: N <E+¢} (3.89)

for L large enough. Since p is given explicitly in (3.73) we know that it is strictly increasing.
Hence, /\JLVL(E) — E. Therefore, )\]LVO(E) (0) — FE as well because otherwise there would be
L
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a gap in the spectrum of A" by the definition of the relative particle number Ng(E). This
implies for an arbitrary € > 0 and L large enough

NY(E)  #{k: AL< E}‘\‘#{k (br)’ e (B-c,E+e)}

L L
< S 3.90
VE© (390)
for some constant c. Since #{k : AL(0) < E}/L — po(E), as L — oo by definition, this
yields the claim. O

The above implies that the 3-dimensional case completely reduces to the model on
the half-axis and Theorem 3.17 follows from Theorem 3.20. Therefore, we are left with
a problem concerning the eigenvalues ()\JL(O))J.GN, (uﬁ(O))keN and the eigenfunctions

(goj (0 ))]EN (& (0 ))keN in the ¢ = 0 angular momentum channel only.

In the following we drop both the £ = 0 parameter and the index L to shorten notation,
whenever this is convenient.

Next, we apply the product formula deduced in Theorem 3.3 to the determinant.

Lemma 3.23. Let N € N. Then,

N 00
‘det(@- wk>) ‘2 11 11 | — Ajl 1Ak = p5] (3.91)
’ tgkeNl R S e = Ayl = g

Proof. We want to apply Theorem 3.3 to the resolvents of ho 1, and hO Thus, we check
the assumptions of this theorem. First, note that hg ; and hOL are uniformly bounded from

below by Lemma 3.9. Therefore, E € o(h%) N Q(h&L) for some FE < info(hng) and the

1

and
)

operators are non-negative with trivial kernel. Moreover, by Lemma 3.10

1
ho —E
1 1

FE,«a FE.«
— .92
h%_E th_E ’77 >< ’7 (39 )

for some ng € LQ((O, L)) In addition, Corollary 3.15 provides the strict interlacing of the

eigenvalues

1 1 1 1
m—E>/\1—E>;L2—E>/\2—E>W (3.93)

and the explicit representation of the eigenvalues of hg,L and h% given in Lemma 3.13
imply

i ( ! L)< (3.94)
— Q. .
tn—FE A\ —E
Thus, th lvents —5= d tisfy th ti f Th 3.3 and
us e resolvents h%—l—E an +E satisty € assumptions O eorem ana we
end up with
N i 1E_>\1EH)\1E_ 1E‘
lik j — k— Hj—
)det<<¢j7wk>)1<‘k<N‘ H H §! [ T |
SHES =N+1 /\k - N-Ellw—E  p-E
N
T e = Al AR —
H 11 (3.95)
Ak — Aj ||#kz—MJ|

=1k=N+1
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Now, we are in position to prove the main result.

Proof of Theorem 3.20. We start with the product representation given in Lemma 3.23.
Note that for o < 0 there is an ambiguity since there exists precisely one negative eigenvalue
1. Therefore, we treat the j = 1 term in the product separately. We define

3 Ml —ml (e = M) (A1 = 1)
AN = s = M - 1+ (3.96)
t klj_V[H [Ae = Aul |k — pa klj_V[H ‘ (Ae = A1) (ke — p11) ‘
and estimate using Corollary 3.15
0o 0o kn 2_ (k—1)m\2
3 (ke — M) (A1 — ‘<|)\1 ml Y ((L) (77 )>
AL — A — kr\2 72 k—1)m\2 a\2
k=N+1 (M D) (e = p) k=N+1 ((T) - (Z) ><(( L) ) - (Z) )
L? = (2k — 1)
< —lA—
=l D (k2 — 1)(k2 — 2k)
k=N-+1
L\2
<o) = (3.97)
Since h{ is uniformly bounded from below with respect to L, see Lemma 3.9,
o AR = Al e =

as N,L — oo and & — p(E) > 0. Therefore, we are left with a product consisting of
the non-negative eigenvalues and apply Lemma 3.23, use Lemma 3.13 (i) and /A, = T,
n € N, to obtain

n ‘ det (<(‘0j’ ¢k>> 1<j,k<N

> )
—In AY +Z Z < —da(Vim))” — (G0 || ((km))* = (jm — 8a(/15)) })

. 2
=2 kN )2 = G || (kr = Sa(imm))” = (57 = da(/155))" |
(3.100)
In the following the O(1) and o(l) terms refer to the asymptotics L, N — oo,
N/L — po(E) > 0. Equation (3.98) above, Lemma 3.26 below and the abbreviation
gk = —100(\/ix) for k € N yield

(2795 + 9?7) (2kgk + g3
(3.100) Z Z ‘79] %) ( o g;“) ——+0(1). (3.101)
§=2 k=N+1 k+gkz — (1 +95)7) (k* = 52)
Using Lemma 3.27 and the abbreviation &;, := —28,(v/Ax) for k € N
(2465 + 67) (2kdx + 07)
(3.101) —+0(1). (3.102)
SR IR e e

=2 k= N+1

‘2 (3.99)
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Lemma 3.28 implies
2N

45k6;0
(3.102) Z:}: ] k1 O(1). (3.103)
J=2 k= N1 (k2 =3 )
Lemma 3.29 yields
1 4xy5 x7)0q (ym)
(3.103) = ﬂ/o /N+1 e _x2)2 + o). (3.104)
We define for 0 < x < y
dzyda(mz)da(my)
,Y) = 3.105
9(z,y) TEE (3.105)
The explicit representation of d, implies for all € > 0
sup sup [(Vg)(z,y)], = cle) < oc. (3.106)

b>e (z,y)€(0,b) % (b,00)

Therefore, using the mean value theorem and the Cauchy-Schwarz inequality, we compute
fora0<e<+vEand N, L big enough

A e

L L 1
ce)/ dl‘/NJridy‘(N/L_xay_N/L)|2(y_x)2

/ dx/ i & =0, (3.107)

where we used the inequality
— N/L — N/L
o = N/L|+ |y = N/L| _, 1

< ; 3.108
(y — ) (y — ) (3108)
which is valid for all z < N/L < y. Moreover, we compute
N 2N
L Ea 1 N+1
dzx / dy 5 =InL+1n
/0 X+1 (y — ) ( 2L )
=In L+ O(1) (3.109)
as % — @ > 0. Hence, combining equation (3.107) and (3.109), we end up with
1
(3.104) = —lnLﬁcﬁ(ﬂN/L) +0(1) (3.110)
1
— lnLﬁéi(\/E) +o(InL), (3.111)

where the last line follows from 77% — v/ E. Taking the exponential, the assertion follows.
O

Remark 3.24. The above d-approximation argument is quite similar to the one used in
Lemma 2.21.
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3.2. Auxiliary Lemmata. In this paragraph we prove the missing lemmata to deduce
Theorem 3.20 and also Theorem 3.17. We do not claim to give optimal or elegant estimates.
Throughout this section we restrict ourselves to the case o < 0 and drop the index « to
ease notation. This implies the following estimates on the phase shift

6(z) = 6(y) and d(z)—d(y) >0, (3.112)

for x < y, which we use in the sequel. The case a > 0 is even simpler since in that case
the definition of the phase shift (3.11) implies the uniform bound
T
61l < 3.
which simplifies some of the following estimates. Moreover, we use the elementary asymp-
totics:

(3.113)

1
Lemma 3.25. (i) Z B <™ for B > 1.
neN
N 00 1
i) > > 5 = O(lnN), as N — <.
j=1 k:N+1( —J)
N 00 1
(i) Z Z W:O(l) for > 2, as N — oo.
j=1k=N+1
Proof. Using 8 > 1
1 1 ood L _ 1 1 3.114
neN 1

Let 8 > 2. Then, we estimate

N
Z Z CEDER <y Z iR -
7 ki j=1k= o (k= 3) =1 N+1—J)
dx / dy 5t 3.115
/ N+1 - ﬂU Z nf’ ( )
Now, (ii) and (iii) follows from evaluating the integral and (i). O

Lemma 3.26. Set g, := —16(,/my,) for k € N. Then,

Al ((k+a0)* =72 (k2 = (G +9;)%)
2 2 ln((( 2—(j+gj>2)(k2—j2)>

=5 k+ gi)
N 2 + 2kgr, + g;
_ Z Z ]gj 9]) (2kgx + 9¢) +0(1) (3.116)

j=2 k=N+1 k+g <j+g])2)(k2_.72>

as N,L — oo, %%@.

™

Proof. We prove the assertion in two steps. First we consider the j = N and k=N + 1
summand. Note that Lemma 3.22 above and E > 0 imply
J(VE)

li = li = ——72 > 1. 3.117
fim ogv = gy pe (3.117)

N/L—VE/= N/L—VE/n
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Thus, forj=Nand k=N +1
i m(<<N+1+9N+1>2—N2><<N+1>2—<N+9N>2>)
L0 ((N+ L+ gn+1)” = (N 4 g3)° ) (N +1)2 = N?)

N/L—VE/r
i 1+ gn41)(1—gn) (2N +1+gn41) (2N +1+ gN)>
N,L—00 1+gN+1 gn) (2N 414 gny1+gn) (2N +1)
N/L—VE/n
52
—In ( (\F)) (3.118)
Moreover, along the same line using (3.117)
m (2Ngn +9%) 2(N + 1)gnt1 + 9341) B _52(@) (3.119)
N,L—00 N+1+ 2 (N+gn)?)(N+1)2-nN2) w2 "7
NI (( gn+1)" = (N +gn5)7) (( ) )
Therefore, the j = N and k = N + 1 term is of order 1.
For j < N < N 41 < k we want to apply the bound
22
1
In(1 —z| < 12
|In(1 4 z) — 2| < 1T (3.120)

for x € R with |z| < 1, to & = z, where

(2495 + 97) (2kgr + g7)
Tjp = — 5 . Ny (3.121)
((k+90)* = (G +99)°) (K2 = 52)
We estimate using |g,| < 1 for all n € N and g, —g; >0
(2 + 95)(2k + gr) H 1 ‘
+9i +k+gr)(k+ )1 (k=74 g9k —g;)(k—Jj)
1

(k—4)*
Since j < N < N + 1 < k, this implies in particular |z;| < % and we continue using
(3.120) and (3.122)

N 00 N 00
Z Z }1H(1+$jk)—$jk\<z Z o2

el <[ 5

<2 (3.122)

j=1k=N+2 jfl k=N+2
Z Z 4(—) = 0(1), (3.123)
j=2 k=N+1

as N — oo, where we used Lemma 3.25 in the last line. Ol

Lemma 3.27. Define 6, := —15(\/X;) for k € N. Then,

> | (246; + 52) (2k6), + 07) B (2795 +97) (2kgr + g7) 1 )
Jz;k‘%:-i-l k+0)° = (G +0)%)  (k+g)?—(G+g)*) k=352 M)
(3.124)

asN,L—)oo,%—>‘/E

T -
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Proof. First, using the expansion of Lemma 3.13, we obtain for alln € N, n > 1,
1 Ay < I0lloolldlloe €
|9n - 5n| < ;‘5(\/%1 - 5( )\n)’ < Y = 7’ (3-125)
where the constant ¢ > 0 depends only on . We prove the assertion in two steps. In the
first step we consider the numerator only in the second step we consider the denominator.
Using (3.125) we estimate

> (2465 +52) (2k0 + 67) — (2495 + 93) (2kgr + 97)
1222 e %:H ((k+gr)* = (G +95)%) (K = 52)
Cxn & G+ 1)(k+1)
S Jz:;kzl\/—&-l ((k+gx)* = (+95)%) (k2 = j2)
Ch & G+ 1)k +1) /N
ST 2 IS e (3.120)

as N, L — oo, L — f , where we used |g; + gr| < 2, g —g; > 0 for j < k and Lemma
3.25. In order to estlmate the denominator we use (3.125) to obtain some constant ¢ > 0
independent of j, k such that

(k40?4 9) = (4002~ (G +0,7)| < 2L (3.127)

Thus,
1
((k+g1)* = (G +95)°) (k2 — 52)

N (o)
Z Z (26, + 67) (2kdy, + 07)

j=2 k=N+1
1
(k4602 = (G +06)%) (k2 — 52)
legn o jk(k + j)
<=
L ]Z; k%;l (k2 = 32)((k + g1)2 = (G + 97)2) ((k + 00)2 = (G + 0;)?)
N 00 .
\%Z 3 Jk —o(1) (3.128)

= e (k= i)' (k+5—2)"(k+))

as N,L - oo N/L — % where we used |g; + gj| < 2, [0k + J;] < 2, g — g; > 0 and
(5k—5j>0forj<k. g

I
N

Lemma 3.28. The estimate

(2j0; + 02) (2ks 52 2N
Z Z (2495 +37) ( k+ | Z > 4jk(55k 1= o
=2 k= N+1 k+5k (J+5) =2 k= N+1
(3.129)

holds as N, L — oo, %—> vE

T -
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Proof. First, we bound the tail, i.e. using 0, —d; > 0 for k£ > j and [6,| < 1 foralln € N
we estimate

fj i (2765 + 62) (2kk + 67) fj i
j=2 k=2N +1 k+5k (]+6j) ) (k2 = 52) j=2 k=2N +1
> N
k=2N+1
N 2N )
. 4]k5j6k .
as N — oo. We insert + : in (3.129). Thus, in
;k%l (k+ 002 — (G + )2 (B2~ 77)
the next step d;, — 6; > 0 yields
Z QEN: (2j6; + 52) (2k0y + 02) — 4jk6;6y,
=2 k=N+1 (k400" = (G +0,)") (k2 — 52)
<ZN: Ql 2(k +5) + 1 ‘
i henl (k= i) (k+5)(k+5—2)
N 2N
1 In N
<3 , , ‘ o(—), (3.131)
JZ;k’N+1 (k=) (k+35—2) ( N )

as N — oo, where we used Lemma 3.25 in the last line. In the third step, again |d,,|
for n € N yields

N 2N 1 1
]z::“:zjﬂ )‘((k+5k) - (+6)?)  (k2-5%)
N 2N . .
95k (k+ 7)
gz Z k 2)(k—j
=2 e ( i) (k+35—2)(k-J)
N 2N
<) 0(1), (3.132)
=2 k= N+1 J)
as N — oo, where we used Lemma 3.25. O
Lemma 3.29. The asymptotics
2N
47kd;0 1 4dxyd(xm)d
Z Z '7 k —/ / :”y (zm) (‘Z”) =0(1)  (3.133)
N+1 _ 2
=2 k= e ( (y? — 2?)

holds as N, L — oo, & — @.

Proof. We recall that &5, := —25(+/A;) and we rewrite
2N

Z Z 4]1<;5 5k 1 ZN: 2ZN: 44 kg (im)

)
= 753 é? EICE (3.134)
j=2 k= N+1 L) (L)
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Thus, we estimate

1 o & £E5()e (k) %d 2NL+1d zyé(zm)d(ym)
23 )2 j22_/1 x/NH o)
e (8- @) v T
N 2N i kel ,
k
=2 k=N41” T T
h
wnere xyd(zm)d(ym)
flay) = ————5~. (3.136)

2 _ ,.2)2
(v* — %)
Using the mean-value theorem and the Cauchy-Schwarz inequality we obtain

N 2N
(3135 <> Y sup (V1) (@, y),
j=2 k=N+1 (zy)e(IF* J)X(% JEI)
+1

SLae [T |G,

<3 Z Z sup (V) (,9)],, (3.137)
j=2 k= N+1($y)€( i ’L)X( 1)
where | - |2 denotes the Euclidean norm. We compute
1
(Vi) (zy) = — 3138
o) = (3.138)
o (W2 = 22)(yd(am)o(ym) + zyd' (xm)d(ym)m) + da?yd(zm)d(yn)
(y? — 22) (26 (xm)d(ym) + zyd(xm)d (ym)7) — day?6 (zm)6(ym)
1
= ——g(x,y). 3.139
et (3.139)
We estimate for (x,y) (%,%) X (%,k—Ll) N <k,
3 6 6
( 5 : 2) S = L3 ! (3.140)
=) S o) E-a) M ()
and, using §,0" € L*((0,0)),
_sup l9(z,)], < sup l9(z,y)|, =0(1)  (3.141)

) () €(0,227H) % (0, 25714)

i
as N, L — oo, & — YE Thus, (3.140) and (3.141) imply

(3.137) (Z Z ) 0(1) (3.142)

Jj=2 k= N+1
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4. The Ground-State Overlap for Bosons

In this section we comment on a related problem of academic interest which is the
asymptotics of the ground-state overlap in the case of bosons. Since for bosons the un-
derlying Hilbert space is the symmetrised tensor product, all particles can be in the same
state. Therefore, the ground state of a non-interacting N-particle Bose gas is just the
tensor product of the eigenfunction belonging to the lowest one-particle energy. Thus, the
problem of computing the ground-state overlap consists of computing a single one-particle
scalar product only. We compute this scalar product and prove the asymptotics of the
ground-state for a model on the half axis with a Dirac-d perturbation at the origin because
in this way we can treat the 3-dimensional case simultaneously. In the physical literature
this problem is treated in [RSS04] and their results are similar to our findings.

Theorem 3.30. Let o > 0, and ¥ and ¥ be the ground states of the operators h% and
hg ; defined in (3.51). Then, its scalar product admits the asymptotics

Ghot -1 B o) e

as L — .

Remarks 3.31. (i) The quantity 0/,(0) is called the scattering length, see e.g. [RS79,
Sct. XI1.8].

(i) The é correction instead of a % correction is due to the comparison of the ground
states.

Since exp(z) = lim <1 + —) for z € R, the above theorem allows us to determine
n—r00

n
the asymptotics of the ground-state overlap for systems on the half axis. Moreover, using
the angular momentum decomposition, we treat in this way also the asymptotics of a
3-dimensional system with a Dirac-d perturbation at the origin defined in Section 2 above.

Corollary 3.32. Let p > 0 and set

21
0:= (025 +2). 3.144
Then,
(i) as N,L — oo and N/L — p we obtain the asymptotics
N 1
((oh,vf) " =exp (= Tp0+0(1)), (3.145)
and in particular
. L L\ _
N}LHEOO (<<P1a 1 >) =L (3.146)
N/L—p
(i) as N, L — oo and N/L?® — p we obtain the asymptotics
N
(et 91))" =exp (= Lpf+o(1)), (3.147)
and in particular
. L L\\N -
im  ((e1,91))" =0. (3.148)

N/L3—p
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Remarks 3.33. (i) Corollary 3.32 shows that the asymptotics of the ground-state
overlap for bosons depends in general on the space dimension.

(i) A more elaborate proof using the same ideas, yields Theorem 3.30 also for the pair
—Aand —A+V on L*((0,00)), where V is a multiplication operator with sufficient decay
at infinity. Thus, in principle using the angular momentum decomposition one can prove
the above asymptotics for 3-dimensional systems with a spherically symmetric perturbation
V.

(iii) In the d = 2 case there might be some intermediate behaviour of the ground-state
overlap. Note that one cannot just raise the asymptotics deduce in Theorem 3.30 to the
power L2. The angular momentum decomposition in d = 2 vyields in the lowest angular
momentum channel a different operator, namely

1
A TRER (3.149)
Thus, the eigenfunctions corresponding to the lowest eigenvalue are not as easy as in the
case considered in Theorem 3.30. Even asymptotically in L, Theorem 3.30 might be wrong
in the d = 2 case, see [RSS04].

Proof of Theorem 3.30. For brevity, we drop the subscript « of the phase shift in the
proof. Since we assumed « > 0, we use Lemma 3.13 and equation (3.68) to see that the
eigenfunctions of h% and Y ; corresponding to the lowest eigenvalues A and pl are up
to a phase 7

Pl (x) := sin (ﬁx) and  ¢F(z) = sin (\/@m + 5(\/@)), (3.150)

where = € (0,L) and § is defined in Definition 3.11. Thus, we see that the normalised
eigenfunctions are given by

=L L
ol = L and yF = ?; , (3.151)
[41°[|2

R
where ||-||2 denotes the L?((0, L)) norm. Moreover, we set a := \/ A} = T and b:= /pul".
Then, a and b satisfy the identity

5(b)
b=a-—7, (3.152)
by Lemma 3.13, which we use intensively in the proof. We compute
L 1 al L
|5T]% = / dz sin?(ar) = / dz sin?(z) = =<, (3.153)
0 a Jo 2

and use the identity (3.152) to obtain

~ L sin
[o1]1* = /0 dz sin® (bx + 6(b)) = g + (422@). (3.154)
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Moreover, we continue

~I 7L _ L . .
(pT,¥1) ; dz sin(ax) sin(bz + 0(b))

) /OL 1 a2 (%((a +b)a +6(0)) ) — sin? (%((a — bz — 6(0)))

- ((a +b)L —sin ((a + b)L + 5(b)) + sin (5(b))>

~ 2(a+b)
1 . .
e ((a — )L —sin ((a — b)L — 6(b)) + sin ( — 6(b))>
_ 7wLsin(6(b))
where we used the identities a + b = 2% — @ and a — b = &f) in the last line. Thus,
(3.153), (3.154) and (3.155) imply
(ehvty = LU
[l
sin(4(b))
= G T 75 (3.156)
6(b) (1 = %2) (1 + 575 sin(20(b)))
The definitions of a, b and § imply the following expansion
§'(0)r  8'(0)2x  §"(0)m? 1
o(b) = T = o +0(75): (3.157)
This yields
sin(0(b)) §'(0)%n? 1
o = e +O<ﬁ) (3.158)
sin(26(b)) 8" (0)m 1
=00+ + O<ﬁ) (3.159)

and in particular

5(b §'(0) 802 §0)m 1
(1—Q):1— 2(L)+ ;Lg - 4<L§ +O(ﬁ>. (3.160)

Now, to determine the asymptotics of the second term in (3.156), we use /1+z =
1+ 35— %2 + O(2?) as |z| — 0 and (3.159) to obtain

(1 N lsin(25(b))>1/2 _1 1 sin(26(b)) 1 (Siﬂ(é(b)))Q N O(%)

L 2b 2L, 2b  8L2 2b
_ §'(0)  8"(0)r  &'(0)? 1
=1+ + = — e +O(ﬁ) (3.161)
Thus, equation (3.160) and (3.161) imply
5(b) 1 /2 §'(0)? 1
(1 _ §> (1 + 577 sin (25(b))> =145+ O(§> (3.162)

and

<<1 - 52(?) (1+ %Lb sin (25(1))))1/2) T ‘S;(LOQQ + O(%). (3.163)
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Therefore, equations (3.156), (3.158) and (3.163) give

ety =1- 2 (5 4 1) wo(5)
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(3.164)






CHAPTER 4

The Asymptotics of the Difference of the Ground-State
Energies

In the two previous chapters we computed the asymptotics of the scalar-product of the
ground-states of two non-interacting Fermi gases. In this chapter we consider the difference
of the corresponding ground-state energies. Again, we begin with a more general discussion
of the asymptotics of this difference. Later, we show a more detailed analysis for systems
on the half axis.

1. The General Case

Here, we consider rather general Schrodinger operators similar to those treated in
Chapter 2, equations (2.1) and (2.2). But for simplicity we omit the background potential
V. We denote by

H:=-A and H :=-A+V (4.1)
a pair of Schrédinger operators defined on L?(R?) and by
H;, = —-Ap and H/L =—-Ap+V, (4.2)

its restriction to L%(Ar), where for L > 1 we set Ay := LA; and 0 € A; C R? open.
Moreover, —Aj, denotes the restriction of the negative Laplacian —A to the finite volume
A, with Dirichlet boundary conditions. The perturbation V' is a multiplication operator
such that

V>0, VekKL®RY, suppV C A; compact. (4.3)
For a more detailed description of these operators we refer to Chapter 2. Now, we denote
by M <AL < - and ul < pud < - the increasing sequences of the eigenvalues of the
finite-volume operators H7,, respectively H} counting multiplicities.

In this chapter we are not interested in the asymptotics of the scalar product of the
non-interacting N-particle ground states but in the asymptotics of the difference of the
ground-state energies of the non-interacting N-particle Fermi gases in the thermodynamic
limit. We denote the sum of the N smallest eigenvalues by

N N
EN .= Z AE and EN = Z,uf (4.4)
k=1 j=1
The goal is to deduce the asymptotics of the difference E]LV = ’LN — EJLV in the thermo-

dynamic limit.

To state the result, let £ € L] _(R) be the spectral-shift function for the pair of infinite-
volume operators H and H'. There are numerous definitions of the spectral-shift function,
see e.g. [Yaf92, Chap. 8] or [BP98] for a more comprehensive summary of the definitions
of the spectral-shift function.

55
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Remarks 4.1. (i) Most intuitively, the spectral-shift function £ is defined by the trace
formula

tr {p(H') — p(H)} = /R dz o/ ()¢ () (4.5)

for all ¢ € C2°(R). Unfortunately, the above identity only determines £ up to an additive
constant. Let us briefly sketch how to erase this. We consider a strictly monotone function
0 € C=(R) such that §(H') — 6(H) is trace class, e.g. 6(z) := e '*. Then, results for
trace-class perturbations [Yaf92, Sct. 8.3] show the existence of a function £ € L!(R) such
that

tr {o0(") — o0} = [ do (o) (4.6)
for all ¢ € C°(R). It can be chosen uniquely according to
oty ~ o) = [ de o) (4.7)
R

where ||-|[1 stands for the trace norm. Hence, we define £(F) := sign(0'(E))E(6(E)).
One can find a more detailed derivation of the spectral-shift function for non trace-class
perturbations in [HM10, App. 5].

(i) In the case of a system on the half-axis, there is another simple representation of
the spectral-shift function. One can identify the spectral-shift function with the scattering
phase shift, see (4.33) in the next section.

Theorem 4.2. Let />0 and N(,(E) : Ry — N be a function subject to

Ni(E)
p(E), (4.8)
ALl

as L — oo, where p(E) denotes the integrated density of states of the operator —A. Then,

E

. —NL(E N (E Ny (E

Jim == g ) / da €(x). (4.9)

—0o0

Remarks 4.3. (i) The precise value of p(E) is given in (2.29).

(i) The proof should extend to the case, where a background potential is present
provided the integrated density of states of the unperturbed operator exists and is equal
to the one of the perturbed operator.

(iii)  The compact support of the perturbation V' is not essential, sufficient decay should
be enough. We assumed this for simplicity because the main ingredient to the proof [HM10]
did so.

Proof. First, we rewrite the difference E]LVL(E) in terms of the finite-volume spectral-shift

function. We define the finite-volume spectral-shift function &1, : R>g — Ny by
Emé(B)=#{k: Ny <E}—#{j: nf <E}>0. (4.10)

Here, the non-negativity of the perturbation V implies £1.(E) > 0. For E > 0 the following
holds

E
/_ dzér(x) = Z (min{uf, B} — Ap)., (4.11)

AL<SE
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which can be seen, for example, by introducing the two measures p : A — tr (14(Hp)) and
v: A tr(14(Hy)) for A € Borel(R) and the following computation using the definition
of &1, in (4.10) and Fubini's theorem

/ da &p(z /dx/du )1{y < xgE}—/dx/dy(yn{ygxgE}

=tr{(F — HL)l{HL E}y —tr{(E—Hy)1{H, < E}}

= E¢L(E Z wi= > A

My <E )\L<E
= Z (min{uf, E} — A) . (4.12)
keN:
ME<E

We use the short-hand notation = (F) = EJLVL(E) and N = N (E). Hence, using (4.11)

N )\L N
EL(E) = (uk — M) :/ daép(x) + > max {uf — Ak, 0} . (4.13)
k=1 - k=1
Now, [HM10, Thm. 1.4] implies for all E > 0
E E
/ dzér(z) — / dzé(x), (4.14)
as L — oo. Therefore, it suffices to prove
E
=L(B) —/ dw &i(z)| =0, (4.15)

as L — oo. Since Lemma 4.4 below yields lim7 0 )\% = F, we begin with the estimate

lim ’/ de & (z / do ¢ (z)| = lim ’/AL da & (2

E+e

<l li d
<l fim - dede(@)

E+e

:li\r‘)% . dz&(x). (4.16)

Recalling that £ € Lloc(R), dominated convergence implies for all £ € R
(4.16) = lim | dz1l(g_c pye(T)é(z) = / dr lim 1 p_ gy (7)é(z) = 0. (4.17)
eNO0 JR R e\0
We estimate the remaining sum on the r.h.s. of (4.13) by adding an additional term

N N
> max {uf — AK,0} < (Zmax{u;? A0 + > (k- Aﬁ)) (4.18)
k=1 k=1

/2>N:
>‘k BN



58 4. THE ASYMPTOTICS OF THE DIFFERENCE OF THE GROUND-STATE ENERGIES

and we rewrite the above in a more complicated way
N

(418) = (3 (min{ub. k) - min{ub Ak) + 3 (min{ub k) - )
k=1 k>N:
A <uk
=( S (minufo ik} A — Y (minful 2k} - AL>)
keN: keN:
AF<uk AFak
1y
)\N

L

where we used in the last line (4.11). Lemma 4.4 provides A\, — E as well as u% — E.
This and the above computation show

Jin AR Jin . d

im Zmax {,uk 0} < im y x&r(z)

E+e

<1{‘I(1)L11_I£o o dz ()

E+e

= lim dzé(x) =0, 4.20
t [ dee(a) (4.20)

for all E > 0, where we used again the weak convergence found in [HM10] and (4.17).
Hence, we proved (4.15), and in turn the theorem. O
Lemma 4.4. Let £ >0 and N(,(E) : Ry — N be a function subject to

N (E)

= p(B), 4.21
o () (421)
where p(E) denotes the integrated density of states of the operator —A. Then,
— L —
Lh_{n MN m) =E and ngr;OA ;) = E- (4.22)

Proof. First, we note that the integrated densities of states of both operators H and H’
exist and are equal. More precisely, the following limits exists

il < B} lim#{k:|:Lk| <E} = p(E), (4.23)

where p is the integrated density of states of —A and is given by (2.29). The latter
convergences and the equality follows from the convergence of the Laplace transform of the
measure [ : A — |A1—L‘tr{1A(HL)} andv: Aw— ﬁtr{lA(H’L)}, where A € Borel(R),
to the same limit. This can be seen from the explicit integral kernel of the finite-volume
semigroup operator, see [BHLOO] or [PF92, Sct. 5].

Now, we come to the proof of equation (4.22). We restrict ourselves to the case of
H', the other case follows along the same line. We denote by ]\NfL(E) = # {k Dok < E}

Thus, the convergence (4.23) implies N7 (E) ~ p(E)|AL| as L — oo and (4.21) gives
INL(E) = NL(E)| ~ o(|AL]) (4.24)

L—oo |AL] Lo
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as L — oo. The integrated density of states p is strictly increasing, see (2.29). Hence, for
a given € > 0 equation (4.24) provides the estimate N1 (E —¢) < Np(E) < Np(E + ¢),
asL—>oo.Thus,E—eg,u%L(E)SE—i-e,asL—H)o. O

2. Finite-Size Energy for Non-Interacting Fermions

In this section we compute the asymptotics of the difference of the ground-state energies
of two non-interacting Fermi gases on the half axis in the thermodynamic limit up to second
order, i.e. we quantify the error in Theorem 4.2 in terms of L.

2.1. Model and Results. We consider a non-negative, continuous potential 0 < V €
C((0,00)) satisfying

/OO dz V(z) (1 + 2?) < oo. (4.25)
0

Then, we define the pair of one-particle Schrddinger operators on Lz((O, oo))
H:=-A and H =-A+V, (4.26)

where —A denotes the negative Laplacian on (0,00) with Dirichlet boundary condition at
0. Apparently, H coincides with k" defined in Chapter 3. Moreover, let L > 0 and —A7,
be the negative Laplacian on the interval (0, L) with Dirichlet boundary conditions. We
denote the finite-volume one-particle Schrdédinger operators on LQ((O, L)) by

Hp = -Ap H,L =—-A,+V. (4.27)

Here, V' is understood as the canonical restriction of V' to the interval (0,L). These
are densely defined self-adjoint operators on the Hilbert space LZ((O,L)) with compact
resolvents. Thus, both operators admit an ONB of eigenfunctions and we denote, as before,
the corresponding non-decreasing sequences of the eigenvalues, counting multiplicities by
M<K < oand pf < pd < -+ The eigenvalues of Hy are AL = (%)2 n € N, see
e.g. [RS78], and we denote the sum of the N smallest eigenvalues of Hy, respectively H},
by

N N
EY =Y A and EN:=> uk. (4.28)
k=1 j=1

Moreover, for a given Fermi energy £ > 0 and some number of particles N € N, we
choose the system length L such that

% — p(E) := \/WE, (4.29)

as L — oo, where p is the integrated density of states of the infinite-volume operator H.

In order to state our result we have to introduce the scattering phase shift. We follow
[Cal67] or [RS79, Thm. XI.54] and define.

Definition 4.5. Let k£ > 0. Then, we denote by ¢;. the solution of the ODE
1
§p(x) = —EV(QZ) sin? (kz + 6 (2)), x>0 (4.30)

with the boundary condition lim sup,_, 2|0x(2)| < co. Moreover, we define the scattering
phase shift for the pair of operators H and H’ by

lim 6 () = 3(k). (4.31)
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Remarks 4.6. (i) Existence and uniqueness of the solution of the ODE (4.30) follows
from a standard fix point argument, see e.g. [RS72, Sct. V.6].

(i) Assumption (4.25) implies V' € L ((0,00)), thus, the limit in (4.31) is well defined
and finite.

(iii) From the ODE it is obvious that for V' > 0

d(k) <0. (4.32)
(iv) Let & € LL_(R) again be the infinite-volume spectral-shift function for the pair of

loc

operators H, H' as defined in Remark 4.1(i). Then, we have the identity [BY92]
1
“S(VE) = ~£(B), (43

for every > 0.

(v) Similar to the chapter before, here the scattering matrix is just a number of mod-
ulus one; Sg = exp (2@5(@)) Let Tr := Sp — 1 be the transition matrix. Then, we
define for £ > 0 )

v(E) := Fs?(\/ﬁ) (4.34)

and remark that the constant « is the decay exponent which determines the asymptotics
of the ground-state overlap in the previous Chapter 3 for Dirac-§ perturbations.

Using the notation of Remark 4.6 (iv), the result of this chapter is the following.

Theorem 4.7. For all Fermi energies E > O the difference of the ground-state energies
admits the asymptotics

2
1 ) VE 1 1
IN _ N _ _* ver o Lo +
EN — EN 7T/_OO dzo(va) + — ( 5(\/E)+7T6 (\/E))—l-o(L)
5 (7)’ VEr 1
— [ g+ [ 7 dwg@)+ ST (EE) +2(E) +o(1) (439)
—00 E
as N, L — oo, and% — @
Remarks 4.8. (i) The first term in the expansion is not surprising since Theorem 4.2
implies
'N N b
Jm (B - B = /_ deg(a), (4.36)
N/L—p(E)>0

at least in the case of a compactly supported perturbation. In the case of systems on the
half-axis equation (4.36) follows also from [BM12].
(i) Since £ is continuous, see Lemma 4.12 below,

[ e = (30) - p)ewy+o((3) -5) o

as N,L — oo, % — @ > 0. This immediately implies that the second term of the
asymptotics depends on the rate of convergence of the thermodynamic limit.

(iii) We assumed V' > 0, which implies §(z) = 0 for z < 0, and the integrals in
Theorem 4.7 may start from 0.
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(iv) The same result with an analogous proof holds also for a Dirac J-perturbation
defined in Chapter 3 as well.

(v) We chose V' > 0 since we want to avoid bound states or zero-energy resonances.
Moreover, the integrability assumption (4.25) on V ensures sufficient regularity of the
phase shift §. In contrast, the continuity condition on V is only technical and due to the
references we use and can be omitted.

(vi) This result allows also a conclusion for the same problem on R with a symmetric
perturbation V' because in this case the problem is reduced to two problems on the half
axis with either Neumann or Dirichlet boundary condition at the origin.

Restricting ourselves to thermodynamic limits of the form

N

2 10(7) =) (4.38)

the difference of the ground-state energies admits a leading 1/L correction, which we call
Trg, i.e. we obtain the asymptotics

1

rrs(E) + o<z> (4.39)

E
EN —EN :/ dz &(x) + VEr

—0o0

N,L — oo, and % — @ In the physics literature the first term is sometimes called
the Fumi term and xpg the finite-size correction or energy, see [Aff97]. It was claimed in
[AffO7, AL94, ZA97] that computing the finite-size energy is an easy way to compute the
decay exponent in Anderson's orthogonality catastrophe. This was done in [ZA97, App. A]
quite explicitly choosing a concrete thermodynamic limit. We compute zpg explicitly for

a family of thermodynamic limits corresponding to (4.38).

Corollary 4.9 (Finite-size energy). For a given Fermi energy E > 0, some particle number
N € N and a € R we choose the system length L such that

N E
ta._VE (4.40)
L s
Then, the finite-size energy xpg defined in (4.39) is
zrs(E) = (1 —2a)5(E) +y(E). (4.41)
Thus,
(i) for the particular choice a = § the finite-size energy is
zrs(E) =(E), (4.42)
(i) whereas for the choice a = O the finite-size energy is equal to
rrs(E) = §(E) +7(E). (4.43)
Remarks 4.10. (i) The previous corollary underlines that the finite-size energy de-

pends on the thermodynamic limit and that there is precisely one choice which provides
xps(E) = v(F). We note that for the above equality, we have to choose the same ther-
modynamic limit as in [ZA97, App. A].

(i) The results of Chapter 3, in particular Theorem 3.20, state that at least in the
special case of a d-perturbation the exponent in Anderson's orthogonality catastrophe is
independent of the precise thermodynamic limit. Since the result of this section also applies
to this case we doubt a deep connection between the 1/L correction and the Anderson
exponent.
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2.2. Proof of Theorem 4.7. We start with a lemma relating the eigenvalues of the
pair of finite-volume operators, which is the analogue to Lemma 3.13 in the previous
chapter.

Lemma 4.11. Let & be the phase shift for the pair of operators H and H' defined in
(4.31) then the nth eigenvalues of Hy, and Hj satisfy

Vin =\ An — 5(\2’7") + o(%) (4.44)

where the error depends only on the potential V.

The above lemma follows directly from introducing Priifer variables in the theory of
Sturm-Liouville operators. We have to investigate the behaviour of § at £ = 0 to obtain
suitable error estimates on the derivatives.

Lemma 4.12. Let § be the phase shift corresponding to the operators H and H' defined
in (4.31). Then, § € C%((0,00)) and there exists a constant c, depending on the potential
V', such that for all £ > 0
(i) [0(k)| < cmin{k, +}, in particular § € L>((0, 0)),
(i) &' € L=((0,0)),
(i) 6" (k)| < £.
Moreover,

(iv) we have the following expansion of the phase shift

S(iim) = 8(/A) — T2 | F(An) (4.45)

where the remainder term obeys for x > 0

1
Fa)| <e(=+1) (4.46)
T
for some constant ¢ depending on the potential V.
Remarks 4.13. (i) Lemma 4.11 and 4.12 are well known to experts in the theory of
Sturm-Liouville operators. For convenience, we prove both results in Section 2.3.
(i) Lemma4.11 and Lemma 4.12 are the analogue to Lemma 3.13, which was valid for

Dirac-9 perturbations. The proof of Lemma 3.13 is simpler due to the explicit representation
of the scattering phase shift.

The third ingredient to the proof of Theorem 4.7 is the following.

Lemma 4.14. (Euler-MacLaurin)
(i) Let f € C((0,00)) then

ﬁ;f (£)= /fdxf @)+ O(Z2) I (0 (4.47)

(i) Let f € C%((0,00)) with f" € L™ ((0,00)) then

N

iif(ﬁ) :/OL dxf(:v)—l—;L/O]Ldef’(x)—FO(i\;). (4.48)
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The proof of this lemma is elementary, see for example [Kno96, Chap. XIV].

Proof of Theorem 4.7. Using Lemma 4.11, we obtain

i (n — M) = i (— 2V A/ in) + 52(\/’T”)> + o(ﬁ) (4.49)

L L? L?

n=1 n=1

On the other hand Lemma 4.12 (iv) provides

N /
(4.49) =" (_ZWENE L 20 ADIVAN 52«/@)

= L L? L?
1 & N
+ 252 G +o(3): (4.50)
n=1

where
G(x) = ( — 25'(3;)52(3:) —2zF(x) + 1 (((5’(30)(5(3:))2 + 25(x)F(m))
2 @) (@)5(x) + 75 F(x). (451)

Since A\, = (%)2 T - g using Lemma 4.12 (i)-(iii) and (4.46), we obtain for the
error

= Z G(vAn) = O L12) (4.52)

Note that by Lemma 4.12 the functlon f @~ x0(x) fulfils the assumptions of Lemma
4.14 (ii). Thus, we compute

N N nm\ nmw
Y (R T
T 1 [T N
_ /0 4o 20(or)(@m) - /O da (8(zm)(zm)) + o(ﬁ)
Lo L S(VEWE +of -
— 7T/o dz d(v/z) = 73(VE) E+o<z), (4.53)
where we used in the last equality the convergence % — @ and the continuity of §. Using

Lemma 4.12 we see that g :  — x6(x)d’(x) satisfies the assumptions of Lemma 4.14 (i)
with H9/||Loo((0 xy) <e(l+ ﬂ). Therefore,
L

N ) nmy\ nm
3 WA L (1 Zz () (H)F)
N

= /OJLV dz 20" (xm)é (zm)(xm) + O(ﬁ) (1 * %)

_ % (52(\@)@ - /O]Lv da 52(a:7r)7r> + 0(%) (4.54)
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where we used integration by parts, the convergence % — @ and the continuity of ¢ in
the last line. Lemma 4.12 yields the assumptions of Lemma 4.14 (i) for h : x + §2(z) with

R € L* ((0,00)). Thus,

N N
S =G (D)

n=1 n=1
1 [T 1
2
= = ) + — . 4.
L/o dz §*(xm) O(L2> (4.55)
Summing up (4.53), (4.54), (4.55) and equations (4.49), (4.52) give the claim.

2.3. Priifer Variables and the Phase Shift. Our approach to the phase shift uses a
non-linear ODE called the variable-phase equation, see e.g. [Cal67].

Let k£ > 0. First we recall that there is a unique solution §; of
1
§p(x) = —EV(I) sin? (kz + 6 (2)), x>0 (4.56)

with the boundary condition limsup,_,1[0x(2)| < oo. This is a consequence of the
Banach fixed-point theorem, see [RS79, Thm. XI.54]. We call this solution the phase-shift
function. Moreover,

mlg)go ok(x) = o(k) (4.57)
is the phase shift for H and H’.
On the other hand consider the eigenvalue problem on (0, 00)
—u" 4+ Vu="~ku  u0)=0. (4.58)
Introducing Priifer variables
u(z) = pyu(x)sin(fx(x)) u'(z) = kpy(x) cos(Ok(z)), (4.59)
(4.58) is equivalent to the system

1
;:k—EVQHWQ, 0x(0) = 0, (4.60)
’ VSin(Q@k)

=, 4.61

see e.g. [Tesl2, Sct. 5.5]. We call 6, the Priifer angle. Note that p,(x) # 0 for all = > 0.
We did not choose the standard Priifer variables since we want to compare the Priifer
angle with the phase-shift function. These modified Priifer variables were also introduced
in [KLS98]. Given the phase-shift function in (4.56) we obtain a solution 6 to (4.60) by
setting
Or(z) = 6k(z) + kx, where k,z > 0. (4.62)
Since any solution of (4.60) fulfils |0;(z)| < kx, see (4.64) below, we obtain that d;(z) :=
0, (x) — kx is the unique solution of (4.56). This implies uniqueness of 6 and
) =~ | v ©sint(0u(0) (4.63)
0

We state some properties of the Priifer angle, respectively of the phase-shift function, which
we use in the sequel.

Proposition 4.15. Given k > 0, let 6y and 0) be the solution of (4.56), respectively
(4.60). Fix x > 0. Then,
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(i) Ox(x) is non-negative, moreover,

0 < O(z) < k. (4.64)
(i) we have
lim 6y (x) = 0, lim 6k (x) = oo. (4.65)
k—0 k—ro00
(iii) the functions k — 0y(x) and k — 0 (x) are smooth, i.e.
00y (), 6¢)(x) € C((0,00)). (4.66)
(iv) the derivative of the Priifer angle with respect to the energy is strictly positive,
i.e.
20 () >0 (4.67)
ok " ' '

Proof of Proposition 4.15. For (i) first note that lim, o 0. (z) = k > 0 and 6} (z) > 0
for all 2 > 0 such that 0 (z) = 0. Since 6;(0) = 0 and ), € C*((0,00)) we have ), > 0.
One the other hand k — %V sin?(y) <k, y € R, since V > 0. This yields 0 () < kx, see
e.g. [Har64, Chap. Ill, 4.2].

The first equality in (ii) follows by (i). For the second equality observe 0y (z) > kx —
2|[V|l1, where 2,k > 0 and ||-||; denotes the L!((0,00)) norm.

For (iii) note that k — k— £V (z) sin?(y) € C°°((0, 00)) for fixed z > 0,y € R. Then,
standard results imply that the solution 0)(z) € C*°((0,00)) for fixed x > 0, see e.g.
[Har64, Chap. V, 4.1].

For (iv) note that k — +V sin?(y) < k' — 2V sin®(y) for all k <k, y € Rsince V >0
and use [Har64, Chap. I, 4.2]. O
Proof of Lemma 4.11. Let u > 0. Consider the eigenvalue equation on [0, L]

—u" +Vu = pu, u(0) = 0. (4.68)
We introduce Priifer variables according to (4.59). Note that any eigenfunction u of h’LD
corresponding to an eigenvalue u has to satisfy u(L) = 0 due to the Dirichlet boundary
condition at L. Thus, using p,(x) # 0 for all z > 0, we obtain sin (GW(L)> = 0. With
(4.65) and (4.67) this implies for the nth eigenvalue p,, of h’P

0 /(L) = nr. (4.69)
Therefore, integrating (4.60) yields
nmw 1 L 9
- - i . 4.
Vi, 7 +L\/ﬁn ; dt V(t) sin*(0 sz (1)) (4.70)
Now, using |sin(z)| < |x|, (4.64), |sin(z)| < 1 and (4.25) we obtain
1 /OO . 9 /OO
dt V (t) sin“(0 t)) < dtV(t)t
= oS < [T ave
1>, 1
<= —o=
\L/L At £2V (¢) o(L). (4.71)

Then, (4.63) and /A, = 7 give the claim. O
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Proof of Lemma 4.12. Part (i) follows from (4.63), (4.64) and (4.25).

Concerning (ii), we first note that 6, € C1((0,00)) for fixed k > 0 because V is
assumed to be continuous and 6((x) € C*°((0,00)) for fixed z > 0 by (4.66). From
now on we consider 8 as a function of two variables and write, in abuse of notation, the
abbreviation f, for the partial derivative —f of a function f € C'*(R?). Also we drop the
u index of p. Then the ODEs (4.60) and (4 61) imply

3} 3} 0
( 8k0> 2ppxak0+p 814:0

v
=2,0px 9+p ( sin’ )

B 0 V sin? (9) _ Vsin(26) 0
—2ppx8k0+p <1+ 2 A %0
_ 2 (1 < Vsm ) (4.72)
Integrating the latter yields
0 T p2(t) V(t)sin?(0x(t))
— = 1 . 4.
2 Ou() = /0 ar by (1 T (4.73)
The ODE (4.61), (4.64), the elementary inequality |sinz| < |z| and (4.25) imply
t T
‘&‘ < exp (/ dssV(s)) <exp(|(OHV]h) < oo. (4.74)
p(z) t

From this, (4.64) and |sinz| < |x| we infer the existence of a constant ¢ depending on the
potential V' such that

‘;kek(x)] <c(l+z). (4.75)
Then, the above, (4.64) and dominated convergence provide § € C'*((0,0)) and
16'(k)| < c/ dtV(E)(1+t +t2). (4.76)
0

The assumptions on the potential give the claim.
For (iii) we compute as above

, 07 R sin(0)  sin(20) 20 cos(20)(20)>
( 252 9) =2p V< — s T 2 - ? . (4.77)
Using (4.64), |sinz| < |z|, (4.74) and (4.75), we see
0? ¢

where ¢ depends on V. Dominated convergence yields § € C?((0,00)) and (4.64) and
(4.78) provide

16" (k)| < i/ooo AtV (t)(1 +t + t2) (4.79)

for some C depending on the potential V.
To prove (iv) we use Lemma 4.11. Thus,

M:@ﬁwﬁ

+ 0(%) (4.80)
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Since 6 € 02((0,00)) we compute for z,y € (0,00) with y > z and y = = + 5(y) +o(1)

5(y) — o) + 20D [Ty |6/(x)]’y—:1:+6(§)‘

lly—x]2+% ydw'(t)] vo(7)). (as)
x L " L
Using Lemma 4.12 (ii) and once again the recursion relation we obtain

‘5(y)—5($)+W‘ (1+1)O(L12) (4.82)

The claim follows from setting x := A, and y := . O

ds (5"

N







CHAPTER 5
Eigenfunction Correlations in the Anderson Model

In this chapter we present two results which are contrary to the previous ones. The
first one concerns upper bounds on products of spectral projections for random Schrédinger
operators and the second one deals with lower bounds on the correlation determinant for
these random operators.

1. Model and Results
Let d € N and A > 0. We define the Anderson Hamiltonian on ¢?(Z%) by

H, :=-A+)\V,. (5.1)
The operator —A denotes the discrete negative Laplacian, i.e. for u € ¢*(Z%)
(A= Y (uln) —ulm), (52)
[n—m|1=1

where | - |; denotes the 1-norm on Z¢ and V,, is a random multiplication operator
(Vou) (n) = Vi, (n)u(n). (5.3)

Here, (V(')(n))nezd denotes a family of independent identically distributed real-valued
random variables on a probability space (€2, F,P). Moreover, we assume the single-site
distribution 1o defined by 9(A) = P(Vy(0) € A), A € Borel(R), to be bounded and
absolutely continuous with respect to Lebesgue measure with a bounded density g. These
conditions are too strong in general, but for simplicity we assume them. Moreover, we

define the perturbed Hamiltonian
HLIU =H, + l/<(50, ->(50, (54)

1 =0
where v > 0 and the vector &y € ¢?(Z%) is given by §o(n) := 0’ " 40" for n € 7.
, N
Let L € N, and we write for the corresponding operators restricted to the box A; :=
[-L,L]Ycz?
H, 1 and L7L, (5.5)

where we do not impose any particular boundary condition, i.e. Hfjl)L = 1ALHU(J/)1AL with

1A, being the orthogonal projection on Az. Using our standard notation, we denote by
AlL < /\5 < --- and ,uf < u% < --- the non-decreasing sequences of eigenvalues of

the operators H,, 1, respectively H/ ; counting multiplicities and by (cpﬁ) 1<k<(2L41)d and

(w”)1<k<(2L+l)d the corresponding normalised eigenvectors, where we omit for brevity the

index w.

69
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The family of operators (H,,)uecq form an ergodic family of operators with respect to
translations. Therefore, standard results about ergodic operators imply that

o(Hy,) = [0,4d] + Asuppyg (5.6)

for P-a.e. w € Q, see [K08] or [PF92, Chap. 1]. Since H/, is a rank-one perturbation of H,,
located at the origin, the ergodicity is broken but nevertheless the perturbation is small
and the spectra of both operators are closely related. We have the following elementary
lemma.

Lemma 5.1. 0.ss(H,) = 0ess(H/,) and o(H,) C o(H])) for P-a.e. w € 2. Moreover,
assuming o(H,,) to be connected for P-a.e. w € §), we obtain that there exists at most one
eigenvalue of multiplicity one, which we call p,,, of H), with pn, ¢ o(H,), i.e. o(H.) =
o(Hy) U{pw} for P-a.e. w € .

Proof. Following [PF92, Thm. 2.11] we obtain that o(H,) = 0ess(H,,) for P-a.e. w € Q.
Since H/, is a rank-one perturbation of H,,, Weyl's theorem implies that oess(H/,) =
Oess(Hy). Thus, o(H,) C o(H/,). Moreover, since there are no spectral gaps in o(H,),
the min-max principle says that there is at most one eigenvalue exceeding the essential
spectrum of H/,, see [RS78, Sct. XIII.1]. O

Remarks 5.2. (i) As expected, the above shows that the rank-one perturbation does
not change the spectrum a lot. In general this is not true for the spectral decomposition.
While the absolutely continuous spectrum is stable under a rank-one perturbation the pure-
point spectrum can change to singular continuous spectrum and vice versa, see [Sim05,
Sct. 12].

(i) For general operators with several spectral gaps a rank-one perturbation can
push an eigenvalue of multiplicity one in each spectral gap. To illustrate this, we con-
sider the example of the multiplication operator A on L?(R) with the function f(x) :=
z (11 (@) + 1g (), @ € R. Then, o(A) = [0,1] U [2,3]. Let B = A + |¢)(¢| with
¢ = (1jo1) + 1p2,3)- Using Krein's formula, [Sim05, Sct. 12] or equation (3.26), we see
that B has an eigenvalue u ¢ o(A) if and only if (¢, ﬁgb) = —1. A computation shows

1—p)(3—
(9, ﬁqﬁ) =In ‘%’ and, therefore, o(B) = [0,1] U {H%} u2,3u {2
Thus, the rank-one perturbation created two additional eigenvalues. Even though this phe-
nomenon may happen in general, we do not know, if it does happen in the case considered
above. However, this is just a side remark and for the rest of the paragraph not important.

1.1. Bounds on the Anderson Integral. In Chapter 2 we obtained upper bounds
on the ground-state overlap by deducing logarithmic divergence of the Anderson integral
(5.7) in the length scale L. In this section we show that the Anderson model exhibits
a substantially different behaviour in the exponentially localised regime: The Anderson
integral stays bounded as L — .

Let ¥ € R. In the following we are interested in the behaviour of the product of spectral
projections
IL(E) =tr {1(—00,E) (HLU,L)l(E,oo) (H(:J,L)]‘(—OO,E) (HW,L)} ) (57)
as L — oo. Although this is not exactly the Anderson integral defined in the introduction,
equation (1.10), we refer to (5.7) as the Anderson integral in this section.

Next we define the set of energies for which suitable fractional moment bounds of the
resolvents are satisfied.
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Definition 5.3. For 0 < s < 1 we define the set Agl) C R as the intersection
A = BO (e (5.8)
where

(i) BY) is the set of all energies E € R such that there exist constants ¢ > 0 and
C > 0, which may depend on s and E, such that for all n,m € Z% and for all
e>0

1

EU<5”’ H") —E — e

5m>r] < Cexp (—cln—mlp). (5.9)

(ii) c) = ﬂLeNC(/)L and CS(/)L is the set of all energies E' € R such that there exist

s

constants ¢ > 0 and C' > 0, which may depend on s and F, but are independent
of Ay, such that for all n,m € Ar and for all ¢ > 0

1 s
]E[‘(én,(/)ém)‘ ] < Cexp (—cln—mly). (5.10)
H;” — F —ie
Moreover, we set
A= ] A B:= |J B. (5.11)
0<s<1 0<s<1
Remarks 5.4. (i) Standard results imply that whenever I C AV for an interval

I C R, then we have only pure-point spectrum with exponentially decaying eigenfunctions
within this interval. This follows from the Simon-Wolff criterion, see [SW86, AM93] and
the references cited therein.

(i) In the following we are mainly interested in the set A and we need the sets A
only in the formulation of Theorem 5.17.

The set .Ag/) is not empty and has positive Lebesgue measure as long as A > 0. More
. . (r - .
precisely, we have at least two regimes, where A’ is rather big.

Proposition 5.5. Let 0 < s < 1. Then, in the model considered here, we have that the
Lebesgue measure |Ag)| > 0 for all coupling constants \ > 0. More precisely,

(i) (Large disorder regime) there exists a coupling constant \g > 0 such that for all
A > X\g we obtain for P-a.e. w € ()

AV = o(HD), (5.12)
see [AM93].
(ii) (Lifschitz tail regime) for all coupling constants X\ > O there exists a ) > 0 such

that for P-a.e. w € ()
(infU(Hw), info(H,) + 77>\) U (sup o(H,) — nx,sup O'(Hw)) Cc As, (5.13)
see [ASFHO1].
Remark 5.6. We remark that the proof of the fractional moment bounds of the resolvents
for operators with a random potential in [AM93, Sct. 3] is stated for rather arbitrary kinetic

terms. This includes —A + |09)(dp|. The proofs of these bounds do not rely on ergodicity.
Therefore, the localisation results for the Anderson model also apply to the operator H,.

For energies within the set A and B we obtain the following asymptotics.
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Theorem 5.7. (i) We have for a.e. (E,w) € A X
11Lnljolip tr { 1(_oo, ) (Hu,L)1(5,00) (H., 1)1(—o0 By (HuL) } < 0. (5.14)
(i) We have for a.e. (E,w) € B x Q
0 {100, 2) (Hu) L(,00) (Hi) 1 (—o0,) (Hu) } < 00 (5.15)

Throughout, for C' € Borel(R) the notation for a.e. (E,w) € C x ) refers to the
product measure A @ P where \ denotes the Lebesgue measure.

We prove the above theorem in Subsection 2.1 below.

Remarks 5.8. (i) In other words, the above says that for Leb.-a.e. E € R within the
exponentially localised regime equation (5.14) and (5.15) hold for P-a.e. w € .

(i) Since [|1(—co,m)(Huw,L)1(E00)(H], 1)1 (~00,5)(Hw,L)|| < 1, the above bounds are
also valid for traces of the operators (1(_w,E)(Hw,L)1(E7w)(Hw )1 (—o0,B) (Ho )"
n € N.

(iii) We assumed exponential decay of the fractional moments of the resolvents for the
proof. Sufficient polynomial decay of the fractional moments is enough.

(iv) Letw € Q and E € o(H,). Comparing the above with our general results from
Chapter 2 we define

1

. 1 1
Yw(E) == ﬁl{% {|m<507 m50>|m<507 w%)} : (5.16)

Then, as discussed in Chapter 2, 7, (F) = %HTEH?—B where T is the T-matrix of the
pair H,, and H/, and HS denotes the Hilbert-Schmidt norm. Now, Theorem 2.4, which is
also valid in our setting, implies that for Leb.-a.e. F € R

tr {1(—o0,m) (Hu,2) 1 (5.00) (His, 1)1 (—00,) (Hup) } = (E)InL +o(In L),  (5.17)
as L — oco. This does not violate Theorem 5.7. To see this we note that for any bounded

operator A € BL(H) standard results on the Borel transform of measures imply that the
imaginary part of the resolvent satisfies

0> _ dNac

lim l|m<(50, (5.18)

eNO T A— E

Here, pa. denotes the absolutely continuous part of the spectral measure
B +— (00,18(A)dp), B € Borel(R), see [Sim05, Chap. 11]. Now, assume that an neigh-
bourhood of the energy E is within the set A, i.e. the operator H,, admits purely pure-point
spectrum in a neighbourhood of E. Then, the Lebesgue density of pi,c is O for Leb.-a.e. E
in this neighbourhood. Thus, it follows that

Yw(E) =0 (5.19)

for a.e. (F,w) € A x €. Hence, (5.17) does not contradict Theorem 5.7.

(v) Letw € Q. Now, we assume that H,, has absolutely continuous spectrum in some
interval Z C o(H,), so has H/, by [Sim05, Chap. 12]. Moreover, assume for Leb.-a.e.
EFel

a=E

! —50) >0.  (5.20)

. 1
fig, Im(o o i
w

—) 0 d lLim Im{é
e\0 H,— FE —e 0> = an el\‘r% m< 0
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Thus, in this case v, (F) > 0 for Leb.-a.e. E € Z and (5.17)
lim inf tr {1(_oo p)(Hw,L)1(B00)(H, 1)} = o0, (5.21)

L—oo
where the divergence is at least logarithmic. This implies the following deterministic state-

ment.

Corollary 5.9. Let Pj, be the orthogonal projection onto the set span{H[jéo ' n e No} C

2(79).
(i) Assume there exists an interval Z such that for Leb.-a.e. E € T
liznsuptr {1(—oo,E)(Hw,L)1(E,oo)( L,L)l(—oo,E)(Hw,L)} < 0. (5.22)
—00
Then,
Oac(Ps,HyPs,) NI = 0. (5.23)
(i) Assume there exists an interval T such that for Leb.-a.e. E € T
tr {1(—oo,E)(Hw)l(E,oo)(Hl,;)l(—oo,E)(Hw)} < Q. (524)
Then,
Uac(PdonPJO) NZ=0. (5.25)

Proof of Corollary 5.9. Assume that cac(Ps, HoPs,) N Z # 0. This implies for a set of
positive Lebesgue measure J C 7 that (5.20) holds and, therefore, v,(E) > 0 within the
set J.

Hence, (5.17) gives a contradiction to (5.22). To obtain a contradiction to (5.24) we
note that the operator inequality 1(g o0)(H(,) = 1(g4c00)(H,,) for all € > 0 implies

tr {1(_o0,) (H) 1(,00) (HL) L (—00,i) (Huw) }
> limsup tr {1(—00,E) (Hw) 1(E—&-e,oo) (HL) 1(—oo,E) (Hw) }

e\0
=limsup {7,(E)|Ine|+ o(|Ine)}. (5.26)

e\ 0
The last line follows along the same line as in Lemma 2.21 or see [GKM14, Sct. 3]. Since
Yw(E) > 0 for all E € J, this contradicts (5.24). O
Remarks 5.10. (i) Under the assumption that g is cyclic for the operator H,, we

obtain in the equations (5.23) and (5.25) that 0ac(H,) NZ = (. In the Anderson model

cyclicity of the vector d is a delicate issue. In the localised regime [Sim94, KM06] showed

that Jp is a cyclic vector of the operator HW‘H for P-a.e. w € Q, where H,, denotes
pP

the pure-point spectral subspace. This result was extended in [JL06]. They proved that the
vector dg is for P-a.e. w € Q cyclic on the entire singular part of the spectrum. However,
it is an open problem to show cyclicity of Jg for the entire spectrum independently of the
spectral type. It was even suggested that showing non-cyclicity of the vector g might be
a suitable way to prove delocalisation in the Anderson model [JLO6].

(i) The second part of the above corollary is related to the Simon-Wolff criterion
because

1 2
tr {1(—o0,5) (Hoo) 1(B,00) (Ho,) 1 (—00,2) (Hw) } < (Do, (H—E) 30, (5.27)
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see Section 2 below. Whenever the Simon-Wolff criterion holds, the right hand side of
(5.27) is finite. Since this is the case in the localised regime, this proves (5.15) already. We
refer to [SW86] or [Sim05, Chap. 12] for more details about the Simon-Wolff criterion.

(iii) We do not know, whether (5.22) or (5.24) are sufficient to exclude singular-
continuous spectrum.

Theorem 5.7 states almost sure results. The next apparent question concerns the ex-
pectation value of the latter. In particular, the behaviour of the expectation value of the
infinite-volume Anderson integral

E [tr {1(—oo,2)(H)1(5,00)(H.)1(—c0,z)(H) }] , (5.28)
where we omit the subscript w in the expectation value throughout. We begin with a
representation of the Anderson integral.

Lemma 5.11. For all E € R we have the following identity

1
E [tr {1(_oo.m)(H)1(E.oo)(H)1(_oo i) (H :/ du(z,y) ———,
ooy ) o N oGO = [ i) (=
(5.29)
where the measure 11 is given by
ﬁ(B X BI) = 1’E [<(5(), 1B(H)50><(50, 13/(H’)50>] , (530)
with B, B' € Borel(R).

Proof. By Appendix A, Theorem A.1, we obtain
1
t1 41— oo ) (Hw) 1 (B .00) (HL) 1 (—oo. ) (Hu :/ du(z,y) ——. (5.31
{1 (—o0,5) (Ho) L(,00) (HE) L (— 00, 15) (Ho) § B () ( )<y_x)2 (5.31)

where the measure p is uniquely defined by p(B x B') := (0, 15(H,,)d0) {0, 15/ (H.,)d0)-
Moreover, we note that also (5.30) gives rise to a uniquely defined Borel measure on R
using monotone convergence. We have for all S € Borel(R?) the identity

B| [ autenista)]| =Eus)] = [ dmeanisen. (632)

Approximating the function f(x,y) := (y — x)_zl(_ooyE)x(Em)(:U,y) by simple functions
from below and using the monotone convergence theorem gives the identity (5.29). 0

Remark 5.12. The corresponding representation is also valid for the pair of the finite-
volume operators H,, 1, and HL’U I

Thus, the behaviour of the left hand side of (5.29) is closely related to the regularity of
the spectral-correlation measure (5.30) near the point (E, E) on the diagonal. Using the
technics developed in Chapter 2, we obtain.

Theorem 5.13. For Leb.-a.e. £ € R,

. 1 _
hm\S(l)lp mE (67 {1 com—) (H)L(Byeoo)(H ) (—oozo(H)}] Z7(E),  (5.33)

where
7(E) = lim ;2 A((E — ¢/2,E +¢/2) x (E — ¢/2,E + ¢/2)). (5.34)
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Proof. The proof essentially follows from the proof of Theorem 2.2 for the deterministic
setting observing that all errors can be controlled by the operator norm of the random
potential ||V, ||, see Chapter 2 and [GKM14]. Thus, the error is controlled uniformly in
w € Q. O

Remarks 5.14. The choice of the approximation of the identity in (5.34) is not important

and )
Y(E) = plli% E |Im{do,

S
H—F —ie

1

50>|m<(50, m

do) (5.35)

as well.

Now, we turn to the regularity of the measure (5.30). The Cauchy-Schwarz inequality
and the Wegner estimate [K08] immediately imply for all B, B’ € Borel(R)

E [(d0, 15(H)d0)(do, 15 (H")do)] < E[{b0, 15(H)do)] g [(80, 15/ (Hl)5o>]]%
<|BJ2|B'|:. (5.36)

Thus, the measure (5.30) does not have a pure-point part or a part supported on a Cantor
type set. But in general one can not exclude a singular continuous part or even obtain
a bounded density. Nevertheless, at a first glance the above computation seems to show
that the expectation value of (5.28) is infinite because the expectation value in (5.30)
regularises the spectral-correlation measure and we expect the measure (5.30) to have an
absolutely continuous part. But in the localised regime we can compute the constant 7
and obtain the following.

Lemma 5.15. LetZ C R be an interval such that both operators H,, and H/, admit purely
pure-point spectrum within I for P-a.e. w € Q). Then, for Leb.-a.e. E €T
1 1 1

Y(E)
We emphasise, that in the above the resolvents are evaluated at the same energies
E + ie.

Remarks 5.16. The value of (5.37) can be considered also in the v = 0 case. But in
this case we believe that the corresponding spectral-correlation measure has a singularity
on the diagonal even in the localised regime. Such two-point correlation functions are of
certain interest concerning conductivity, see e.g. [KLPO03].

Proof. We want to apply the dominated convergence theorem to interchange the limit
and the expectation in (5.37). To do so, we use the resolvent equation and obtain Krein's

formula
1 1

(00, =———00) = . (5.38)
H, - E—ie v+ (00, 7r=p=c%) 1
We set a + bi := (do, ﬁ%% where a,b € R. Then, using (5.38)
1 1 b? 1
Im(do, ———————380)Im(dp, ————00) = < —. :
m " H,—E —ie o)t O’HL—E—ie 0) (1+wva)?+ (vb)?2 ~ V2 (5.39)
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Moreover, we assumed that both operators H,, and H/, admit purely pure-point spectrum
for a.e. (E,w) € Z x Q. Hence,

1 1
li Im(dg, ————=——0d0)Im({dg, ————=——0 =0 5.40
e{,r(l){m<0’Hw—E—ie 0>m<0’Ho’J—E—ie °>} (5.40)
for a.e. (E,w) € T x Q. Thus, (5.37) follows from (5.39), (5.40) and the dominated
convergence theorem. O

Hence, we gain no information out of Theorem 5.13 in the case of purely pure-point
spectrum of the underlying pair of operators. Nevertheless, Lemma 5.15 indicates that
the expectation in (5.29) should be finite in the localised regime. We prove the following
statement pointing precisely in this direction.

Theorem 5.17. Let 0 < s < 1. Then, for all E € A; N A,
E [ (63 {100 ) (H) (3,00 (H') L0,y (H) }) ] < o0 (5.41)

We prove this theorem in Subsection 2.1 below. We remark that the above is not entirely
satisfying because pushing s — 1 will shrink the set of all possible energies E € As N A
to the empty set. While completing this thesis it was proved that the expectation is indeed
finite for energies within the exponentially localised regime.

Theorem 5.18 ([Diel5]). Let E € As N A,. Then,
E [ (tr {10, (H)1(5,00) (H')(00,m) (H) })] < o0 (5.42)

For a proof see the master thesis [Diel5].

1.2. Lower Bounds on the Correlation Determinant. Unlike in the above para-
graph, we focus here only on the high disorder case. We remind you that for L € N and
some Fermi energy E > 0 we set

E) = Lok A4
Su(B) = det({ef vh) (5.43)
where we choose the particle number for £ € R to be

N=Ny(E)=#{jeN: Al <E} €N, (5.44)

as in Chapter 2. If NL(E) = 0, we set Si,(E) = 1. The main result of this section is the
following non-vanishing of the expectation of the ground-state overlap.

Theorem 5.19. For any constant ¢ € (0,1) there exists a coupling constant A\ such that
for all A > X\
liminf E[|SL(E)|] > ¢ (5.45)
L—oo

for Leb.-a.e. E € R.

Apparently, the above result is only interesting if F is within the almost-sure spectrum.

Remarks 5.20. (i) The above is contrary to the findings in Chapter 2 and Chapter
3. As a reminder, we proved in these chapters under quite weak assumptions on the pair
of Schrédinger operators that

SL(E)—0 (5.46)
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if the decay exponent v,,(E) > 0. For the moment let us assume that v, (E) > 0 for a.e.
(E,w) € T x Q for an interval Z. The definition of 7,,(E) implies that Z C oac(H,,), see
definition (5.16). Since the determinant is the scalar product of two normalised ground-
states, we obtain that it is bounded by 1 uniformly in w € €. Therefore, we use dominated
convergence to show that in this case the above expectation value has to vanish, i.e.

lim E||S.(E)|| = E| lim |S1(E)|| = 0. (5.47)

for Leb.-ae. B € 7.
(ii) At least in our proof the rate of disorder depends on the strength of the coupling
constant v in the way that one needs at least

V2 S AL (5.48)

Though the square is probably too much and just due to far too rough estimates, numerics,
see Figure 1, suggest that such a condition may be necessary for Theorem 5.19 to hold.

(ili) We use the same deterministic estimates used in [KOS13] to deduce a deterministic
lower bound on the determinant. These estimates are too bad to obtain sharp lower bounds
on the determinant.

(iv) From Theorem 5.19 above one might think it is possible to show that the determi-
nant is almost surely bounded from below depending on the realisation w € Q2. Looking at
some numerics and some heuristics stated in Chapter 6 below, we doubt this. Nevertheless,
using Sr.(E) < 1, we obtain a weak pointwise result for subsequences as an immediate
corollary of Theorem 5.19.

Corollary 5.21. There exists a coupling constant Xy such that for all A > )y and Leb.-a.e.
E € o(H,) there exists some B € F with P(B) > 0 such that there exists a subsequence
LY such that
lim inf |Sre (E)| > 0. (5.49)
k—o0

Though the latter is valid for subsequences only, it is contrary to Theorem 2.3 in
Chapter 2. We proved there that the determinant will vanish for all subsequences in the
discrete setting provided 7, (E) > 0.

2. An Application of the Fractional Moment Bound

We start with investigating the convergence of the fractional moments of the resolvents
of the operators H,, 1, to the ones of the operator H,,. Later on, we use the results deduced
in this section to prove Theorem 5.7, Theorem 5.17 and Theorem 5.19.

We define the following abbreviation to shorten notation where we suppress the index
w € Q.

Definition 5.22. Let £ € R and € > 0.

(i) For n,m € A, we define

1
E,e —
G (n,m) := (bn, L _E- i€5m>. (5.50)
(ii) For n,m € Z%, we define
1
Ee -
G"(n,m) := (0y, o B i65m>' (5.51)
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Lemma 5.23. Let m,n € Z%. Then, for all w € Q the limit
h\IJI(l) GE<(m,n) = G¥ (m,n) € C (5.52)

exists for Leb.-a.e. E € R .

Proof. See [PF92, App. A] and the references cited therein on limit values of Borel trans-
forms of complex measures. O

We continue with a result on L'-convergence of fractional moments.

Lemma 5.24. Let s < i. Then, for Leb.-a.e. E € Ay, there exist constants c¢1, C1 and
Lo > 0 such that for all L > Ly

EU Z ’Gf’o(o,nﬂ% B Z ‘GE,O(O’n)’ZS” < Crexp(—al). (5.53)

neAy, nezd

Proof. Let L € N. Note that for a given w € Q the union of the spectra Upeno(H,, 1) is
a Lebesgue nullset as a countable union of finite sets. This and Lemma 5.23 imply that

(B,w) — X(E,w) ;:\ ST eEt0n))* = 3 |6P00,n)*| € [0,00]  (5.54)
neAp nezd

is well-defined for a.e. (E,w) € R x Q where the exceptional set can be chosen uniformly
in L € N. Thus, for Leb.-a.e. E' € R the random variable w — X (F,w) is well-defined. We
restrict ourselves to one of these F' € R intersected with Ays. For 0 < r < 1 the function
R>p 2 z +— 2" is concave, which implies the elementary inequality

lal” = IoF"| < o — b (5.55)

valid for all a,b € C. We split the sum on the left hand side of (5.53) in two parts and
first estimate using (5.55)

EU Z (‘Gf’o(o,n)‘% — ‘GEvO(()m)‘?S)

neAy,
28:|

<> E Uaf’o(o,n) — GEY0,n)

neNy,
. E.e o 2s
-V E hm‘GL’ (0,n) — GE<(0,n)
e\0
neNy,

< lim\iglf E UG?G(O, n) — GP<(0,n)

28] , (5.56)

neAy

where in last two lines we used definition (5.52) and Fatou's lemma. The geometric resol-
vent identity, see [K08, Eq. (5.51)], implies

< limi E.e Eerqr
(5.56) < liminf > IE“ Y G0, k)G (K )
neAr (k,k")€OAL
k’IEAL

25] : (5.57)

where OA [, denotes the boundary of Ay, i.e.
ONL, ={(k,K):|k—K|i=1and ke A}, K e Aporke AL,k e A7},  (5.58)
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where A¢ = Z3\Ap. Since 25 < 1, we obtain the elementary inequality

N 2 N
‘ Zan < Z |an)? (5.59)
n=1 n=1

for N € N and ay,...,ay € C. Hence, this and the Cauchy-Schwarz inequality imply

(5:57) <liminf 3 D7 (E[\GEvE(o,k)\‘“DI/Q<E[\fo(k’,n)}4s})l/2.

neAL (k,k')EOAL

k/EAL
(5.60)
Since £ € Ay, Definition 5.3 yields independently of €
(5.60) Z Z Cexp ( — clk|1/2)
neAyr (k,k')EIAL
k'eAr
< (2L +1)%0AL| Cexp (— cL/2). (5.61)

Since |0AL| < C4L%1, where the constant Cy depends only on the dimension d, we obtain
for all o < ¢
(5.61) < Cexp ( — L) (5.62)

for all L > Lo(c2) big enough. Moreover, the Definition 5.3 of A4, implies

[ Z ‘hmGEE 0,n |25} 11m1nf Z Cexp (—cln|y)

n AL n AL
< Cyexp (—cL) (5.63)
for all E € Ays. Set C; := max{C,C3} and ¢; := min{c, ca}, and the assertion follows.
O

Using a Borel-Cantelli argument, the above can be strengthened to obtain pointwise
convergence. We demonstrate it for convenience.

Lemma 5.25. Let s < i. Then, we have for a.e. (E,w) € Ay X Q

lim G700, )1F =3 6P, (5.64)

neAL neczd

Proof. Since we consider a discrete model, we note that every sequence (L), oy is a sub-
sequence of (n), oy, i.e. the sequence of the natural numbers. Hence, we restrict ourselves
to this sequence (L), .. Let m € N'and s < 1. Then, the event

- {| X oent®- ¥ oot

neAy nezd

>;} (5.65)

is well-defined for Leb.-a.e. E € R, see (5.54). Then, by the Markov inequality and Lemma

5.24
P(AT) < mIEH Z \GE,O(o,n)’%_ Z ‘GE,O(O’n)‘Qs}

neAy, nczd
<mCiexp(—c1L). (5.66)
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Thus,
> P(AT) < o0 (5.67)
LeN
and the Borel-Cantelli Lemma implies
P (AT' happens for infinitely many L € N) = 0. (5.68)
Hence, there exists a set B,, €  with P(B,,) = 1 such that for all w € B,,
1
timsup | > GF00,0)* = 3 [6F00,m)[*] < . (5.69)
L=oo Tneny nezd m
Now, the assertion holds for all w € Ny,enBy, which still has probability 1. O

2.1. Proof of Theorem 5.7 and Theorem 5.17.

Proof of Theorem 5.7. We prove (i) only, (ii) follows along the same line. First note that
A, C As, for s1 < s2. This follows from Hélder's inequality. Thus, A is a countable union
A = Up>2A41 and it suffices to prove (i) only for a.e. (E,w) € A, x Q for a fixed r < 1

to obtain the assertion for a.e. (E,w) € A x €.

Let 0 <7 <1, and set s :=r/4. Let (F,w) € Ays x Q such that Lemma 5.25 holds.
Using Lemma 2.12 or Appendix A, we rewrite

1
6 {1 ooy (Hoo, L) L (5.00) (HLy 1)L (o0, (Hos =/ dpr(z,y) 73,
{1 (oo, (Huo, )L (,00) (His )L (~o0,) (Hus,2) } (oo By (E0) HLY) o
(5.70)

where, as before, y, is the spectral-correlation measure defined on Borel sets B, B’ €
Borel(R) by

pr(B x B') :=v(80, 15(H,, 1)50) (00, 1 3 (H.1.)0). (5.71)
Hence, we estimate

tr {1( o0, 2) (Hoo, 1)1 (£,00) (Hop 1)1 (— 00,y (Huo,1) }
1
< dpr(z,y) 3
/(—oo,E)x(E,oo) (B —x)?
<6 ! "50) (60, 1 Hp)o 5.72
IV < 07<Hw7L_E) 0>< 0, (E,oo)( L) 0>- (5.72)
We estimate the second part by 1 and insert an identity in the first part of the above
product of scalar products. Therefore,

1 2

neAy
=2 3" 6700, n))?
neAr
< (Y lerom)”. (5.73)

TZEAL
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where 0 < s < 1 and we used the inequality (5.59) in the last line. Now, Lemma 5.25
implies for a.e. (F,w) € Ays X Q

lim sup Z ‘GEO )‘28 < Z ‘GE’O(O,TL)‘QS (5.74)
L—o0 neAr nezd
and Fatou's lemma together with the definition of the set A4, provide for all E € Ay, that
Z ’GE’O(O, )| hmmf Z ’G’Ee )‘25 < 00, (5.75)
nezd n€ezd
for P-a.e. w € Q. This and the inequalities (5.73) and (5.74) give the assertion. O

Proof of Theorem 5.17. We fix 0 < s < 1 and FE € A, N A,. We begin with the integral
representation deduced in Appendix A

1
00, ) x (E,00) (y — )

Then, the inequality
1 1 1
- e ) < g lewn(@) —F
implies the bound

E[tr {1(—co,m)(H)1(5,00)(H') (oo (H)}"]
< V25T, |:(<50’ ﬁl(—oo,E) (H)(50><(50, ﬁl(}im) (H,)(50>>s:| . (578)

In the above inequality, we do not a priori claim that the right hand side is finite. We
continue with the resolvent equation and estimate

(5.78) :I/SE[(<1(_OO,E)(H)5O> <H’1—E g i E) 1(E’°°)(H/)50>)S}

<Vl EH<1(_OO,E) (H)do, ﬁl(E:OO)(H,)%MS}

0 B[ (o ()0, 21 ey ()0)| ], (5.79)

where we used s < 1 and (5.59) for the last inequality. Now, the Cauchy-Schwarz inequality
implies

L(g,00) (%) (5.77)

(579) < vSE[HH/ sl el
[Zd\ ne 57— 19)| } + v E[ Z [{0n, 57— E50>! } (5.80)

where we used once again the elementary inequality (5.59) in the last line. Since we chose
E € As N A, the theorem follows from Definition 5.3. Il
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2.2. Proof of Theorem 5.19. The key to the proof of Theorem 5.19 is the following
asymptotics of the expectation value of the fractional moments.

Lemma 5.26. Let 0 < 2s < 1. There exists a coupling constant Ag and a constant C
such that for all A > \g

2s 1
e[ Y a0, ] < oy (5.81)

nezd
for Leb.-a.e. E € R.

This is a classical result for the Anderson model. For a proof of this lemma see [AM93]
or [AG98, App. B] and keep track of all the constants. We note that in the above lemma
the constant Cs can be chosen independently of the energy E.

Proof of Theorem 5.19. Let E € R. Since |S.(E)| < 1 we estimate

E[|SL(E)|] > E [|SL(B)] - (5.82)
Let ¢ > 0. Then, the Markov inequality implies
E[\SL(E)F] > e CP <|SL(E)]2 > e—c) . (5.83)
Now, expanding the determinant, as in Lemma 2.9, we obtain
— 1 N N\ pN\"
1S1.(B)[? :exp<—zﬁtr{(PL (I—HL)PL) }) (5.84)
where we write N = N (E)
N N
Pl =3 (of. -)of and I =) (g, - )of. (5.85)
j=1 k=1

Hence, we rewrite the right hand side of (5.83) as
2 —c) _ - 1 N(r 1Ny pN)"
]P’(|SL(E)| >e )_P<;ntr{(PL (1 HL)PL> }<c>. (5.86)

The inequality >, o lak|™ < (X jen lar])” for ax € C, n € N, implies

e{ (P (1 - 1) PY)" } < (e PR (1 - 11}) P}

We define the event

n
. (5.87)
K::{w: e { PN (1 — I PN} < 1} c F. (5.88)

For all w € K we compute using the inequality (5.87) and the geometric series

o0 S PN(1 — 1IN\ PN
el (2 < T e
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This implies that

r.hs. (5.86)2]?({ tr{PNI 2P } } )

1= te{ PN (I —11)) P}
—]P’<tr{PL (I-1¥)P } ) (5.90)

where we used 1%0 < 1forc> 0. Smugglinginal<s< Z and another application of
the Markov inequality provide

(5.90) =1 — P ( PN (I- HN)PL} 1CC>

#((nferu-mn) (52))
>1f<1 )E[(tr{PL (1-11y) PL}

Moreover, the special choice of N = N (E), see (5.44) implies /\]L\, <E< ,u,kﬂ. Hence,

tr{PiV (I- Hg)Piv} < {1 (o0,2) (H1)1[2,00) (1)1 (—00,) (HL) } (5.92)

and we use once again the integral representation deduced in Appendix A to compute

(tr{ng(I - Hﬁ)PﬁV})S < </(_OO7E)X[E7OO) A (.9) (53 _136)2>S

< 1/25<<507 <HL1—E>260>)S
=3 ‘Gf’o(o,n) ’

neAp

(5.91)

" (5.93)

where the latter inequalities follow along the same line as in (5.72) and (5.73). Now, Lemma
5.24 provides for Leb.-a.e. E € R

E[ 3 \Gf’o(o,n)}ﬂ —>1E[ 3 \GEvO(o,n)ES} (5.94)

n€ArL nezd
as L — oo. Therefore, the above and the equations (5.83) and (5.91) imply

11Lnigf1@[|sL(E)y2} >ec<1_(1+c) 281@[2 G0, D (5.95)

Lemma 5.26 gives

(5.95) > e—0<1 - (ﬂfﬂs &) (5.96)

C

and increasing the disorder strength X sufficiently far, provides the assertion. O






CHAPTER 6

Outlook

In this chapter we begin with some numerics on the ground-state overlap. Later on,
motivated by these numerics, we formulate some open questions and conjectures concerning
the ground-state overlap.

1. Let the Computer Compute

In this section we present some numerics on the ground-state overlap. We visualise
and illustrate the behaviour of the ground-state overlap for different Fermi energies or
magnitudes of the perturbation. In particular, since the pointwise results for the Anderson
model in Chapter 5 are not entirely satisfying, numerics will help to get a feeling for the
behaviour of the ground-state overlap. Throughout we consider the discrete setting on the
half line, i.e. H = ¢?(N) and for u € ¢*(N)

2u(n) —u(n—1)—u(n+1) n>1
(—Au) (n) == 2 (6.1)
u(l) —u(2) n=1
and we define the pair of operators
H:=-A+blj and H' = H +bVy +aV, (6.2)

where a, b € R. Here, Vj denotes some background potential, which is in the following either
zero or a random multiplication operator. Moreover, V' is some multiplication operator with
compact support, which will be a rank-one up to a rank-four perturbation. Let L € N. Then,
we denote by Hy, and Hj the restrictions of H and H' to the interval [1,L] C N. Thus,
Hy, and Hj are just L x L matrices. Moreover, we introduce the energy E € (0,1) to
parametrise the Fermi energy, i.e. for a given E € (0,1) and a length L € N we choose
the particle number N € N according to

N
Np:=|EL|  which implies  lim =% = E, (6.3)
L—oo L

where || := max{n € N: n < z}. We slightly changed our notation in this section. In
the previous chapters we choose the thermodynamic limit as Ny /L — p(FE) for L — oo,
where p is the integrated density of states of the unperturbed operator. Here, for brevity
we don't introduce p and E = p(E) for some E € o(H).

In the following we write S (E) for the ground-state overlap corresponding to H;, and
H defined in (2.5) with Nz, chosen as in (6.3) above.

The Deterministic Case. We start with the case 1, = 0 and V = |§1)(d1] a rank-one
perturbation. Thus, we are in position to use the product formula deduced in Chapter 3,
Theorem 3.3, to compute the values of the ground-state overlap S7.(E). We do this for
three different coupling constants a; = —5, a2 = 1 and a3 = 5 and various Fermi energies

85
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E and obtain Figure 1. We remind you that the analytic proof of Chapter 3 extends to the
discrete setting considered here.

Figure 1. The ground-state overlap Sy, (E) for various parameters
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Even though the determinant behaves in Figure 1 perfectly as proven in Theorem 3.17
and Theorem 3.20, let us comment on two things. We can not create arbitrary decay of
the ground-state overlap with a rank-one perturbation. This is due to the interlacing of the
eigenvalues, which implies that the scattering phase shift is uniformly bounded independent
of the precise strength of the rank-one perturbation. Let us also note that the ground-state
overlap behaves in the same way for a negative perturbation and small energies as for a
positive perturbation and high energies. This can be observed well in the figure. Therefore,
we believe that in the case of an absent background potential there is a duality of the
form Sp(E,a) ~ Sp(1 — E,—a), as L — oo, at least for energies E € (0,1)\{0.5}. In
the above, we included the index a which refers to the coupling constant in front of the
perturbation. This is an effect of the discrete setting and the symmetric bounded spectrum
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of the discrete negative Laplacian. Since we considered so far models in the continuum
only, we will not discuss this discrete ambiguity.

We proceed with a plot of the decay exponent ((F) for various energies in the in-
terval E € (0,1). In this case we consider a rank-four perturbation V' := |d1)(d1| +
|02) (92| + |03) (03] 4 |d4) (d4]. Though we didn’t prove |In SL(E)/In L| — ((E) as L — oo
in the case of a rank-four perturbation, we approximate the decay exponent ((F) by
|In S1000(£)/In1000| and plot this value for a variety of energies E in Figure 2. Qualita-
tively, this should be a good approximation of the behaviour of the decay exponent when
changing the energy F.

Figure 2. The decay exponent ((FE) of the ground-state overlap Sp(F)
depending on the energy E
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We comment on one thing concerning Figure 2. The behaviour of the decay exponent
¢ at the right spectral edge is related, up to a factor of 7, to the number of the eigenvalues
which are pushed over the spectral edge by the non-negative perturbation V. In our case
this number is at most 47 due to the rank-four perturbation. One can see this number
in the second picture of Figure 2 at the right spectral edge. Such theorems go under the
name Levinson's theorem in the theory of ODEs, see e.g. [RS79].

In Figure 3 we focus again on the product formula deduced for rank-one perturbations
in Chapter 3, Theorem 3.3. One can ask, whether this formula is a good approximation of
the actual asymptotics of Sy (F) for more general perturbations than a rank-one perturba-
tion. This is in particular interesting if we remember that the main ingredient to obtain the
asymptotics out of the product formula was Lemma 3.15. This lemma relates the eigen-
values of the perturbed operator H} with the eigenvalues of the unperturbed operator Hy,
in terms of the scattering phase shift. Later on, we saw that this relation does not rely
on the rank-one perturbation and we proved a corresponding lemma also for more general
perturbations, see Lemma 4.11.

We consider a rank-two perturbation V' and compare the decay exponent of the actual
value of Sy (FE) with the value of the decay exponent given by the product formula in this
situation. More precisely, let us call Q1 (E) the value of the overlap resulting from the
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Figure 3. The difference of the decay exponents of the ground-state overlap
S1.(E) and the product formula Q1 (E) for rank-two perturbations
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product formula in Theorem 3.3. Then, we plot in Figure 3 the difference |InS;(E) —
InQr(E)|/In L for increasing length scales L. Figure 3 suggests that the product formula
might be a good approximation of the asymptotics. Moreover, the loglog plot indicates
that the difference of the decay exponents may converge algebraically to 0 as L — oc.

Conjecture: We have the following behaviour ‘lnif]sE) — IH%L]EE) | = O (£) for some a >

0 as L — o0, i.e. the asymptotic behaviour of the product formula gives the asymptotics of
the ground-state overlap also for more general perturbations than rank-one perturbations.

The Case including a Random Background Potential. In this subsection let V{, be
the multiplication operator given by a family of random variables (V,,(n))),,cx., Which are
independent and identically uniformly distributed on the interval [0, 1].

Morally, this setting is the same as in Chapter 5, just on the half-axis. We proved in
Chapter 5 that the expectation value of the ground-state overlap stays bounded away from
0 at least for high disorder. But we were not able to obtain almost sure results or even
results concerning a single realisation of the random potential.

Therefore, we start with Figure 4 which illustrates the behaviour of the ground-state
overlap for various coupling constants a and various magnitudes of the random potential b.
Here, the perturbation is the rank-one perturbation V' = |d1)(d1| as considered in Chapter
5. We point out that we chose in any of the subplots in Figure 4 five realisations of the
random potential. Moreover, the realisations in different subplots are independently chosen.

Throughout, one sees in Figure 4 that the ground-state overlap has a tendency to be
either near one or near . Heuristically, this is reminiscent of the following. If one eigenvalue
of Hy, which lies near the Fermi energy, is localised at d; this eigenvalue jumps over the
Fermi energy when turning on the perturbation. This implies a quite small ground-state
overlap. If this does not happen, i.e. no relevant eigenvalue is localised near d; the ground-
state overlap stays near 1.

In general, we expect no non-trivial lower bounds on the ground-state overlap to hold
at least for almost all realisations. Moreover, we expect the deviations from the mean to
be quite big. Thus, we continue with a plot of the expectation value and the variance of



1. LET THE COMPUTER COMPUTE

89

Figure 4. The ground-state overlap Sy (E) for various realisations of the

random potential
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the ground-state overlap. We computed in Figure 5 the value of the ground-state overlap
for m = 2000 realisations of the random potential and plotted the mean and the variance
of this vector. We did this for the same coupling constants and parameters as in Figure 4.

The first observation from Figure 5 is the large variance of Sp.(E). Since |S(E)| < 1

a variance of approximately 0.2, which implies a standard deviation of more than 0.4,
is enormous compared to the value of Si(E). Thus, we have large fluctuations of the
ground-state overlap. Moreover, from the picture one sees that in the high disorder regime
the expectation stays bounded away from 0. This is proven in Theorem 5.19. On the other
hand in the case of moderate disorder, i.e. b = 1, it is not entirely clear what to expect by
investigating our numerics only. Somehow it rather looks like the non-random picture, see
Figure 1, but this could be reminiscent to considering too small length scales.



90 6. OUTLOOK

Figure 5. The expectation and the variance of the ground-state overlap Sy (F)
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2. What is the Asymptotics of the Ground-State Overlap?

In this section we comment on the correct asymptotics of the ground-state overlap. As

already pointed out earlier on, the upper bound found in [GKMO14]
In|Sz, (E)| v(E) 1

limsup ——2—— < -~ with E) := —||arcsin |Tx/2|||2 6.4

menp o < 1 IE) = 5 laresin|Tp/2lRs (64)

does not provide a sharp upper bound on the decay of the ground-state overlap in general.

Therefore, the most striking question is to find larger decay exponents than ~ or even
optimal ones in more general situations than Dirac-d perturbations.

The results of Chapter 3, deduced for a Dirac-d perturbation, suggest that bound states
prevent the result of [GKMO14] from being sharp. Here, we want to emphasise that this
is not the case. To be more precise, we are not missing a correction in terms of the bound
states in the exponent . We are rather missing a term depending on the finite-volume
spectral-shift function at the Fermi energy E. Let us vaguely sketch this. We consider two
systems on the half-axis which differ by a multiplication operator V', which creates one
additional exponentially localised bound state ¥ whereas the finite-volume spectral-shift
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function 1, (E) = 0. We introduce the ground-state overlap using the notation of Chapter 2

SL(E) = det (6.5)

The following is not a rigorous argument but we think one can make it precise. Consider

the kth column with k£ > 1. Then, the entry with the maximal absolute value of this vector
is at the scalar product <903L0(k)’ w,f) where

)‘jLo(k) i=min {|py — Af|: 1<j <N} (6.6)

and each column has some decay away from its maximum. This maximum is morally at the
k 4 1-entry of the vector. At a first glance the £ = 1 row which includes the exponentially
localised 11" seems to behave differently. Due to the exponential fall-off, the matrix elements
near the diagonal, e.g. (¢F,¥f), are of lower order than (¢, wﬁ)(k)> for k > 1. One might
guess that this causes additional decay of the determinant. This intuition is wrong because
the maximal entry of the £ = 1 column lies at the very end of this column, i.e. at <<p§,1/11L>,
and this scalar product is of the same order as (@ﬁ)(k),w,@ for k > 1. Heuristically, after
shifting each column to the left, the maximum of each row lies on the diagonal of the
matrix. Therefore, after this reordering one sees that there is no additional decay caused by
the bound state. We have to admit that the above is very vague and of course the question
is now: Where does the additional decay emerges? It comes from the states near the
Fermi energy E. To illustrate this, we assume that the finite-volume spectral-shift function
satisfies £7,(E)) = 2, which means that the perturbation V' pushes two eigenvalues over
the Fermi energy E/. Moreover, we suppose that A%(N) = )\]LVH. Now, consider the last row
of the matrix in (6.5). Due to the above assumption, the natural partner of the eigenvalue
pk: in the sense of (6.6) is missing in the Nth row. Therefore, the maximal entry of the
row is abnormally small compared to the others. This effect will cause additional decay of
the determinant not measured by ~.

The heuristics indicate that we are not missing a factor proportional to the number
of bound states created by the perturbation but rather to the eigenvalues pushed over
the Fermi energy by the perturbation. With these heuristics in mind, we consider a 3-
dimensional spherically symmetric model and a spherically symmetric perturbation V. Then,
we define 1

B(E) = — Y (2+1) (6. (VE))?, (6.7)

¢eN

where J§, denotes the scattering-phase shift in the ¢th angular momentum channel. Since
dg is a priori just defined up to a multiple of 7, one has to find the right choice of d,. It is
convenient to take the §; to be continuous with limg_, o 5g(\/E) = 0. This seems to be
consistent with the above heuristics and Remark 4.6 (iv), which says that the spectral-shift
function corresponds to the scattering phase shift, normalised in the above way, at least
for models on the half-axis. Moreover, we remark that this choice ensures that Levinson's
theorem holds, see [RS79, Sct. XI]. In scattering theory the choice |6/ € [0, 7/2] is more
common because one is interested in the behaviour of the generalised eigenvalues far away
from the origin only. However, when d, crosses /2 we pick up a winding number in the
phase space of the Priifer variables. Considering again the exponent ~, we rewrite using
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the above definitions

v(E) = (2¢ + 1) (arcsin (sin (5@(@))))2

ﬂw‘,_.
WE

T
o

20+ 1)(3(VE))?, (6.8)

I
ﬂw‘ —
Nk

~
Il
o

where &, is normalised according to 0y € [—7/2, 7/2]. Therefore, the crucial point, which
we missed in the proof of [GKMO14], is the winding number of the scattering phase shifts.

We included in (6.7) the scattering phase shifts of the infinite volume. However, we
obtain in the heuristics rather the phase shifts in the finite volume. Unfortunately, in
higher dimensions we don't know if the infinite sum of the finite-volume scattering phase
shifts converges to (6.7). Such convergence issues related to the finite-volume spectral-shift
function are a quite delicate thing in higher dimensions, see [Kir87] and [HM10]. Therefore,
one might generate faster decay than given by (6.7) for some choices of the thermodynamic
limit. Nevertheless, we conjecture:

Conjecture: Let 6 be the exponent defined in (6.7). Then,
Si(E) < 0(E) (6.9)
L—oo InL 2
We emphasise that the <sign is due to possible finite-size effects. To overcome such finite-
size effects concerning the finite-volume spectral-shift function, one can consider related
problems in the infinite volume. Recalling Lemma 2.9, we have the following identity of
Fredholm determinants

SL(E)? = det (I ook (HO) 1t | o) (Hi)l(foo,)\%](HL)) (6.10)

up to a question of multiplicity of the eigenvalue H]LV+1- The above determinant is under-
stood as a Fredholm determinant. There are at least two ways to generalise this to the
infinite volume.

One is to consider the asymptotics of the Fredholm determinant

det (I — 15, Q(E) 14,), (6.11)
where 1y, is the projection on Ay, := [L/2,L/2]¢ and
Q(E) = 1(—o0,p)(H)1(5,00)(H')1(~o0,p) (H). (6.12)

We conjecture that in the d = 1 case the following is true

In det (I—lA Q(E)lA )
li L L =0(E 1
Pt InL ) 13
for Leb.-a.e. E' € R. Here, O(E) is the one-dimensional analogue to (6.7).

Another one is introducing for € > 0 the operators

QG(E) = 1(—oo,E—e] (H)l[E—‘re,oo) (Hl)l(—oo,E—e](H)' (614)
Products of traces of such operators are investigated in [FP15]. However, here we are
interested in the exact asymptotics of the entire Fredholm determinant

det (I — Qc(E)). (6.15)
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in the limit € N\, 0. We conjecture:
Conjecture: The decay exponent 6 given in (6.7) provides precisely the right asymptotic
behaviour of the Fredholm determinant @, i.e.

Indet (I — Q(E))

lim e = 0(E). (6.16)







APPENDIX A

An Integral Representation for Products of Spectral
Projections

In this chapter we give a more detailed analysis on the spectral-correlation measures
defined in Chapter 2, equation (2.22), and used throughout this thesis. Let again be

H=-A+V, and H =H+YV, (A1)

where
max{Vp,0} € K2 _(RY), max{—Vp,0} € K4R?),

B
Vel'(RY, V=o. B)

Theorem A.1. Assume conditions (B). Then, the mapping . defined for all product sets
by
W(B x B') = tr {WlB(H)VlB/(H’)W} ,  B,B e Borel(R), (A.2)

gives rise to a well-defined locally finite Borel measure on R%. Moreover, for two disjoint
open intervals A and B, which might touch, we have the identity

tr { LA (LAY = [ dp(any) —

AxB (y —z) (A-3)

Remarks A.2. (i) We point out that if 14(H)15(H')14(H) is not trace class the
identity (A.3) still makes sense. In this case both sides of (A.3) are infinite. This may
happen, if the intervals A and B touch.

(i) The identity (A.1) also holds for the finite-volume restrictions of H and H'. In
this case, the proof follows either along the same line as below or one uses the pure-point
spectrum of the finite-volume operators, which was done in Lemma 2.12. Of course, one
can use the representation for finite-volume operators to lift (A.3) to the infinite-volume
operators by proving convergence of both sides in (A.3). Here, we will not do this but prove
the above identity directly.

(iii) For a corresponding integral representation of higher powers of the
operator 14(H)1p(H')14(H), we run into the problem that for Borel sets
Ay, B1,A9,Bs, -+, Ay, By, traces of the form

tr {VV Lo, (H)V 1, (H)V Ly (H)V L, (') -+ La, (H)V 15, (HOWV (A4

need not to be non-negative or real-valued, see [GKMO14] and [Kiit14]. Nevertheless,
viewed as a complex measure a corresponding formula to (A.3) holds at least for bounded
Borel sets, see [Kiit14].

From (A.3) we obtain the corollary.
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Corollary A.3. Let A, B be two intervals with dist(A, B) > 0. Then,

tr {WlA(H)VlB(H')W}

dist(A, B)? (A-5)

tr {14(H)1p(H')1a(H)} <

In some cases the measure p is absolutely continuous with a continuous density, see
Lemma 2.19, and we obtain the sharper bound.

Corollary A.4. Assume the measure ji has a density v € LiS.(R?) and let K C R? be

compact. Then, for all intervals A, B within K C R? and dist(A, B) > 0 there exists a
constant C'(K) depending on K such that

tr {14(H)1p(H")14(H)} < C(K)|In (dist(4, B))]. (A.6)

Remarks A.5. (i) Inthe case of Vj =0, 0 < V € L*®(R?) with suppV compact,
the measure p is absolutely continuous with a continuous density within R%r, see Lemma
2.19. Thus, Corollary A.4 holds.

(i) Apparently, this logarithmic divergence is the key to the findings in Chapter 2 and
in [FP15].

Proof of Corollary A.4. Since the measure p is absolutely continuous with a locally
bounded density, we estimate

tr {La(H) 1 p(H')YLa(H)} < ]l /

AXx

(y_lx)?‘ (A7)

Integrating the latter yields the corollary. (]

dzdy
B

Though we allowed both sides in (A.3) to be infinite, in the case of dist(4,B) > 0
they are not.

Lemma A.6 (Lemma 3.2 [FP15]). Let A, B € Borel(R) be two disjoint bounded intervals
with dist(A, B) > 0. Then,

1A(H)1B(H/) €Sy and 1B(H/)1A(H) € 82, (A8)
where we denote by Sy the set of all Hilbert-Schmidt operators.
Proof. Note that the assumption on the perturbation provides vV € L2(RY). Then,
[Sim82, Thm. B.9.1] implies

VVI4(H) €S, and VV1g(H') € So. (A.9)

The rest follows along the very same line as in [FP15, Pf. of Lem. 3.2]. O

Remark A.7. For two disjoint bounded intervals A and B, the assumption V € L'(R%)
does not imply that the operator 14(H)1p(H’) is trace class. Thus, we can not justify

tr {14(H)1p(H")1a(H)} =tr {1a(H)1p(H")}. (A.10)

To obtain that 14(H)1g(H') is trace class, it suffices to assume V' € ¢*(L'(R)), where
the latter is some Birman-Solomjak space, see [Sim82, Sct. B.9]. Throughout this thesis,
the perturbations V' are nice enough to provide (A.10).
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Proof of Theorem A.1. Let B, B’ € Borel(R) be bounded. Then, by Lemma A.6 we may
use cyclicity of the trace to see

fr {\/VlB(H)VlB,(H’)x/V} = tr {1p(H)V1z (H)V1g(H)} > 0. (A.11)
Moreover, Holder’s inequality and the norm inequality ||-||,2 < ||-||,2 imply
tr {\/VlB(H)VlB/(HI)\/V} < tr {\/VlB(H)\/V} tr {\/VlB/(H/)\/V} . (A.12)

The latter is finite due to Lemma A.6. Thus, results for bimeasures, see [Hor77], provide
that the expression A.2 gives rise to uniquely defined locally finite Borel measures on R?.
Let —00 < a1 < ag < by < by < o0 and A := (a1,az) and B := (b1, b2) be two disjoint
bounded intervals. If the intervals touch as = by, consider A and B, := [b; + €, bs] for
€ > 0 and use monotone convergence. Thus, we assume as < by and consider the function
F R+ — R+

F:tHtr{1A(H)etHe*tH’1B(H')1A(H)}, (A.13)
which is well-defined by Lemma A.6. The idea of considering this function appears in
[Pus08] and was also used in [FP15]. Now, F is twice differentiable with

F(t) = — tr {1A(H)etHve*tH’1B(H’)1A(H)} (A.14)

F'(t) =t {VVLa(H)e V(e T VYV (A.15)

which we prove in Lemma A.8 below. Moreover, F'(0) = tr{la(H)1p(H")14(H)},
limy 0o F'(t) = 0, limy0tF’(t) = 0 and limyo tEF'(t) = 0. This follows from
as < by and the estimate of the operator norm ||e!I=E)1,(H)|| < e "F~%) with
E := (b1 + a2)/2, which implies E — aa > 0. Hence, the fundamental theorem of cal-
culus and integration by parts imply

tr {14(H)1p(H)14(H)} = —/Ooo dt F'(t)1

_ /OO dtttr {WlA(H)ethB(H’)e—tH’\/V} . (A.16)
0

On the other hand, since as < by, we use the identity fooo dtte=t = 1/22, which is valid
for x > 0, and Fubini’s theorem to obtain

1 o tx —ty
/AdeM(x’y)(y—x)z :/0 dtt/RQ dp(z,y) La(z)e™1p(y)e
:/ dtttr{ﬁlA(H)ethB(H’)e*tH\/V}. (A.17)
0

Thus, (A.16) and (A.17) give the claim for intervals [a1, az] and [b1, ba] with —co < a1 <
as < by < by < oo. For intervals with —0o < b1 < by < a1 < as < oo consider the
function

Gt tr {1A(H)e’tHetHllB(H’)1A(H)} , (A.18)

and the same as above holds. O

Lemma A.8. Let —00 < a1 < az < by < by < oo and A := (a1, a2) and B := (b1, ba).
Define the function F': Ry — Ry

F:tHtr{1A(H)etHe*tH’1B(H')1A(H)}. (A.19)
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Then, F' is twice differentiable with
Fl(t) = — tr {1 A(H)eH Ve ' (H)1 A(H)} (A.20)
F'(t) =tr {ﬁlA(H)ethB(H’)e*tH’x/V} . (A.21)
Proof. First, note that the spectral theorem implies
F(t) = tr {etﬁ La(H)1p(H e ' 15(H')1 A(H)} , (A.22)

where H := H14(H) and H' := H'15(H') are bounded operators. Thus, we can expand
et and e " in norm-convergent power series and we obtain

% <ehﬁ1A(H)1B(H’)e*hﬁ’ - 1A(H)1B(H’)) +14(H)V1g(H)

5
=hY_ fj(H)1a(H)1p(H )g;(H'), (A.23)
j=1

where the fis and g)s are some bounded functions. Since 14(H)1p(H') is Hilbert-Schmidt
by Lemma A.6, (A.20) follows from (A.23). Moreover, the proof of Lemma A.6 provides
that 14(H)V1p(H') is trace class. Hence, we use the cyclicity of the trace to obtain

Fl(t) = —tr {1 A(H)V1p(H e H et A(H)} . (A.24)

Now, the second assertion (A.21) follows along the same line as above. g



APPENDIX B
The Cauchy determinant

In this chapter we compute the determinant of the Cauchy matrix. We use this in
Theorem 3.3 to obtain a product representation of the ground-state overlap. We do this
only for convenience and completeness. One can find a proof e.g. in [Wey13, Lem. 7.6.A].

Theorem B.1. Let N € N and ay,...,an, B1,...,B8 € R be two sequences such that
(Br — o) #0 forall 1 < j,k < N. Then,

1
’ det( )
Br — o/ 1< k<N

N
‘2 _ =520 186 — Bil I — Oék|. (B.1)

N 2
Hj,k:l 1Bk —

Remark B.2. For the particular choice 3, := k and «; := j — 1, the latter matrix is the
Hilbert matrix.

Proof. We prove the above by induction. For N = 1, (B.1) is satisfied. Let N € N. We
call vq,...,un the columns of the matrix on the l.h.s. of (B.1), i.e. for 1 <i< N

T ._ 1 - 1
Vi = (51—0@ ﬁN—ai) : (B'2)
Since the determinant is linear in the columns and is equal to 0, if two columns coincide,
we manipulate

det(vl . '-UN) = det(vl,vg — 1, U3, ...,UN)

:det(vl,vg — V1, ., UN — vl)

1 a1 —ao . a1 —an
B1—ai (B1—a2)(B1—a1) (B1—an)(B1—a1)
=det : : . (B.3)
1 a]1—Qo . a]1—aN
Bn—a1  (Bn—a2)(Bn—a1) (BN—an)(Bn—a1)
The multi-linearity of the determinant gives
1 1
N 1 N I 3= " Biax
B3) =[] —+——[] (1 — an)det | : : . (B.4)
i1 (B —an) j=2 1 1 ... 1
BN—az2 BN—an
We call rows of the matrix on the r.h.s. of (B.4) wy,...,wyn, i.e. for 1 <j < N
1 1
wj = ( 1ogts ijaN> _ (B.5)
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As before, we subtract the row w; from ws, ...,

B. THE CAUCHY DETERMINANT

wy and end up with

w1 w1
w9 w2 — w1
det = det
WN WwN — w1
1 1
Br1—az Br—an
(B1 52) (B1—P2)
— det (B2— az).(ﬁ1 az) (ﬁz—aN).(lﬁ—aN) (B.6)
6 (51—-/31\7) (51—-,31\7)
(BN —az)(B1—az) (BNn—an)(Bi—an)
Now the multi-linearity and the Leibniz formula imply
1 1 1
N N 1 1
0 Ba—az B2—an
B6)=]] m—— H — By) det _ _
]:2 51 —Olg 2 : : :
1 1
0 BN —a BN—an
1 1
ﬁ 1 ﬁ PBa—as Ba—an
=l 77— 11 (B —Be)det | : 2 (B.7)
=2 (61 - a]) k=9 1 1
BN —az BN—an
The induction hypothesis, equation (B.4) and equation (B.7) give
2
|4t (5= ey
B — aj 1<j k<N
ﬂ B — /Bk N (o — OéN)2 1 H;\,[k:Q,j;ék 1Bk — Bl lej —
2 2
a1) ize (Br—aj)” (B — ) H?fk:Q 1B — o
HN 1,5k 1Bk — Bjl laj — ayl
Hj,k:l 1Bk — a



H:=-A+W
H =H+V
—A

V. W

H,

B, B, 1O
L

Ap

B(0)
Hy, H,
H,r

hi W
H,

H,
N b
oF, vy

N (E)

NL(E)

List of symbols

infinite-volume Schrédinger operator

infinite-volume perturbed Schrodinger operator

negative Laplacian

perturbation of H, background potential

negative Laplacian with a Dirac-0 perturbation, see Chaper 3, Sec-
tion 2

Schrodinger operators on the half-axis, see Chaper 3, Section 2
length parameter

finite volume of diameter L > 0 with 0 € Ap,

Euclidean ball of radius L around the origin

restrictions of H and H’ to the finite volume A,

restriction of H, to Br(0), see Chaper 3, Section 2

restrictions of A* and h’, to the interval (0, L), see Chaper 3, Section 2
random Schrodinger operator of the Anderson model, see Equa-
tion (5.1)

rank-one perturbation of H,,, see Equation (5.4)

eigenvalues of the finite-volume restrictions counted from below
eigenfunctions corresponding to )\JL and ,uﬁ

particle number

particle number corresponding to a Fermi energy E/ and a lenth scale
L

relative particle number corresponding to the fth angular momentum
channel, see Equation (3.85)

integrated density of states of the unperturbed operator
ground-state overlap corresponding to some N € N and L > 0 de-
fined in (1.5)

ground-state overlap S}JV for a special choice of N depending on F,
see Equation (2.5)

difference of the ground-state energies, see Equation (1.13)

decay exponent found in [GKM14], see Theorem 2.2

decay exponent found in [GKMO14], see Theorem 2.2

decay exponent of Theorem 3.17
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Tg, Sk
S(VE)

§e(VE)
8o (VE)

&L
Xi. XL
o, Bk

ek. pu
AV A

FEe
G

I-llms

[
[ [ |2
S1, S2
Borel(X)

opp(T), 0sc(T),
Oac(T)

o(T)

dom(T)

LIST OF SYMBOLS

spectral-correlation measures, see Lemma 2.12 and Appendix A
density of the absolutely continuous part of the measure p
expectation value of the spectral-correlation measure u, see
Lemma 5.11

expectation value of the decay exponent J(E), see Theo-
rem 5.34

T-matrix and S-matrix corresponding to the pair H and H’
scattering phase shift, see Definition 4.5

scattering phase shift in the fth angular momentum channel
scattering phase shift corresponding to the pair H and H,, see
Definition 3.11

infinite-volume spectral-shift function, see Remark 4.1(i)
finite-volume spectral-shift function, see Equation (4.10)
smooth cut-off functions, see Definition 2.14

eigenvalues of a pair of compact operators A and B, see Equa-
tion (3.1)

Priifer variables, see Equation (4.59)

see Definition 5.3

resolvent at the energy E + ie, see Definition 5.22

coupling constant in front of the perturbation, see Equa-
tion (5.4)

strength of the disorder, see Equation (5.1)

scalar product, anti-linear in the first and linear in the second
argument

Hilbert-Schmidt norm

operator norm

1-norm, respectively, 2-norm on R or 74

set of all trace-class, respectively all Hilbert-Schmidt operators
on the appropriate Hilbert space

o-algebra generated by all open subset of the topological space
X

set of all square integrable, respectively all essentially bounded,
functions on X € Borel(R?) w.r.t. the Lebesgue measure
indicator function of a Borel set A € Borel(X)

spectrum of the linear operator T’

spectral subsets of the linear operator T’

resolvent set of the linear operator T’
domain of the linear operator T’



Bibliography

[Aff97] I. Affleck, Boundary condition changing operations in conformal field theory
and condensed matter physics, Nuc. Phys. B 58, 3541 (1997).

[AL94] I. Affleck and A. W. Ludwig, The Fermi edge singularity and boundary condi-
tion changing operators, J. Phys. A 27, 5375-5392 (1994).

[AG98] M. Aizenman and G. M. Graf, Localization bounds for an electron gas, J. Phys.
A 31, 6783-6806 (1998).

[AM93] M. Aizenman and S Molchanov, Localization at large disorder and at ex-
treme energies: an elementary derivation, Commun. Math. Phys. 157, 245-278
(1993).

[ASFHO1] M. Aizenman, J. H. Schenker, R. M. Friedrich, and D. Hundertmark, Finite-
volume fractional-moment criteria for Anderson localization, Commun. Math.
Phys. 224, 219-253, (2001).

[AGHHO05] S. Albeverio, F. Gesztesy, R. Hgegh-Krohn, and H. Holden, Solvable models
in quantum mechanics, 2nd ed., American Mathematical Society, Providence,
RI, 2005.

[And67a] P. W. Anderson, Infrared catastrophe in Fermi gases with local scattering
potentials, Phys. Rev. Lett. 18, 1049-1051 (1967).

[And67b] P. W. Anderson, Ground state of a magnetic impurity in a metal, Phys. Rev.
164, 352-359 (1967).

[BE67] M. . Birman and S. B. Entina, The stationary method in the abstract theory
of scattering, Math. USSR Izv. 1, 391-420 (1967) [Russian original: Izv. Akad.
Nauk SSSR Ser. Mat. 31, 401-430 (1967)].

[BP98] M. Sh. Birman and A. B. Pushnitski. Spectral shift function, amazing and
multifaceted. Integral Equations Operator Theory, 30(2):191-199, 1998. Ded-
icated to the memory of Mark Grigorievich Krein (1907-1989).

[BY92] M. Sh. Birman and D. R. Yafaev, The spectral shift function. The work of M.
G. Krejn and its further development, St. Petersbg. Math. J. 4, 1-44 (1992).

[BM12] V. Borovyk and K. A. Makarov, On the weak and ergodic limit of the spectral
shift function, Lett. Math. Phys. 100, 1-15, (2012).

103



104 Bibliography

[BHLOO] K. Broderix, D. Hundertmark and H. Leschke, Continuity properties of
Schrédinger semigroups with magnetic fields, Rev. Math. Phys. 12, 181-225
(2000).

[Cal67] F. Calogero, Variable phase approach to potential scattering, Academic Press,
New York, 1967.

[Diel5] A. Dietlein, Absence of Anderson orthogonality for localised Anderson models,
master thesis, LMU Miinchen, 2015.

[FP15] R.L. Frank and A. Pushnitski, The spectral density of a product of spectral
projections, J. Funct. Anal. 268, 3867-3894 (2015).

[Geb14] M. Gebert, Finite-size energy of non-interacting Fermi gases, arXiv:1406.3739
(2014).

[Geb15] M. Gebert, The asymptotics of an eigenfunction-correlation determinant for
Dirac-0 perturbations, J. Math. Phys. 56, 072110 (2015).

[GKM14] M. Gebert, H. Kiittler and P. Miiller, Anderson’s orthogonality catastrophe,
Commun. Math. Phys. 329, 979-998 (2014).

[GKMO14] M. Gebert, H. Kiittler, P. Miiller, and P. Otte, The decay exponent in the
orthogonality catastrophe in Fermi gases, arXiv:1407.2512 (2014). To appear
in J. Spect. Theory.

[GBLAOQ2] Y. Gefen, R. Berkovits, |. V. Lerner, and B. L. Altshuler, Anderson orthogo-
nality catastrophe in disordered systems, Phys. Rev. B 65, 081106(R) (2002).

[GKO3] F. Germinet and A. Klein, Operator kernel estimates for functions of general-
ized Schrédinger operators, Proc. Amer. Math. Soc. 131, 911-920 (2003).

[Ham71] D. R. Hamann, Orthogonality catastrophe in metals, Phys. Rev. Lett. 26,
1030-1032 (1971).

[Har64] P. Hartman, Ordinary differential equations, John Wiley & Sons, New York,
1964.

[HK12a] M. Heyl and S. Kehrein, Crooks relation in optical spectra: Universality in work
distributions for weak local quenches, Phys. Rev. Lett. 108, 190601 (2012).

[HK12b] M. Heyl and S. Kehrein, X-ray edge singularity in optical spectra of quantum
dots, Phys. Rev. B 85, 155413 (2012).

[HM10] P. D. Hislop and P. Miiller, The spectral shift function for compactly supported
perturbations of Schrodinger operators on large bounded domains, Proc. Amer.
Math. Soc. 138, 2141-2150 (2010).



Bibliography 105

[Hor77] J. Horowitz, Une remarque sur les bimesures, Lecture Notes in Math., Vol.
581, 59-64, Springer, Berlin, 1977.

[HSBvDO05] R. W. Helmes, M. Sindel, L. Borda and J. von Delft, Absorption and emission
in quantum dots: Fermi surface effects of Anderson excitons, Phys. Rev. B 72,
125301 (2005).

[HUBO5] M. Hentschel, D. Ullmo and H. U. Baranger, Fermi edge singularities in the

mesoscopic regime: Anderson orthogonality catastrophe, Phys. Rev. B 72,
035310 (2005).

[HS00] W. Hunziker and I. M. Sigal, The quantum N-body problem, J. Math. Phys.
41, 3448-3510 (2000).

[1Z88] M. E. H Ismail and Ruiming Zhang, On the Hellmann-Feynman theorem and
the variation of zeros of certain special functions. Adv. in Appl. Math. 9,
439-446 (1988).

[JLO6] V. Jaksi¢ and Y. Last, Simplicity of singular spectrum in Anderson-type Hamil-
tonians, Duke Math. J 133, 185-204 (2006).

[Kir87] W. Kirsch, Small perturbations and the eigenvalues of the Laplacian on large
bounded domains, Proc. Amer. Math. Soc. 101, 509-512 (1987).

[KLP03] W. Kirsch, O. Lenoble, and L. Pastur, On the Mott formula for the ac con-
ductivity and binary correlators in the strong localization regime of disordered
systems. J. Phys. A 36, 12157-12180 (2003).

[K08] W. Kirsch, An invitation to random Schrédinger operators, Panoramas et
Synthéses 25, 1-119 (2008).

[KLS98] A. Kiselev, Y. Last and B. Simon, Modified Priifer variables and EFGP trans-
forms and the spectral analysis of one-dimensional Schrédinger operators,
Commun. Math. Phys. 194, 1-45 (1998).

[KMO06] A. Klein and S. Molchanov, Simplicity of eigenvalues in the Anderson model,
J. Stat. Phys. 122, 95-99 (2006).

[Kno96] K. Knopp, Theorie und Anwendung der unendlichen Reihen, 6th ed., Springer-
Verlag, Berlin, 1996.

[KOS15] H. K. Knérr, P. Otte, and W. Spitzer, Anderson's orthogonality catastrophe
in one dimension induced by a magnetic field, J. Phys. A: Math. Theor. 48,
325202 (2015).

[KOS13] H. Kiittler, P. Otte and W. Spitzer, Anderson’s orthogonality catastrophe for
one-dimensional systems, Ann. H. Poincaré 15, 1655-1696 (2014).



106 Bibliography

[Kit14] H. Kittler, Anderson’s orthogonality catastrophe, PhD thesis, LMU Miinchen,
2014.

[Mah00] G. D. Mahan, Many-Particle physics, Springer-Verlag US, 2000.

[0T90] K. Ohtaka and Y. Tanabe, Theory of the soft-x-ray edge problem in simple

metals: historical survey and recent developments, Rev. Mod. Phys. 62, 929—
991 (1990).

[Ott05] P. Otte, An adiabatic theorem for section determinants of spectral projections,
Math. Nachr. 278, 470-484 (2005).

[PF92] L. A. Pastur and A. Figotin, Spectra of random and almost-periodic operators,
Springer, Berlin, 1992.

[Pus08] A. Pushnitski, The scattering matrix and the differences of spectral projections,
Bull. London Math. Soc. 40, 227-238 (2008).

[RSS04] O. Rambow, Jun Sun, and Qimiao Si, Orthogonality catastrophe in Bose-
Einstein Condensates, arXiv:cond-mat/0404590 (2004).

[RS72] M. Reed and B. Simon. Methods of modern mathematical physics. I. Func-
tional Analysis, Academic Press, New York, 1972.

[RS75] M. Reed and B. Simon. Methods of modern mathematical physics. Il. Fourier
analysis, self-adjointness, Academic Press, New York, 1975.

[RS79] M. Reed and B. Simon, Methods of modern mathematical physics Ill, Aca-
demic Press, New York, 1979.

[RS78] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis
of operators, Academic Press, New York, 1978.

[RS71] N. Rivier and E. Simanek, Exact calculation of the orthogonality catastrophe
in metals, Phys. Rev. Lett. 26, 435-438 (1971).

[Sim82] B. Simon, Schrédinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7, 447-526
(1982).

[SW86] B. Simon and T. Wolff, Singular continuous spectrum under rank one pertur-
bations and localization for random Hamiltonians, Commun. Pure Appl. Math.
39, 75-90 (1986).

[Sim94] B. Simon, Cyclic vectors in the Anderson model, Rev. Math. Phys. 6, 1183—
1185 (1994).

[Sim05] B. Simon, Trace ideals and their applications, Mathematical Surveys and
Monographs, vol. 120, 2nd ed. American Mathematical Society, Providence
(2005)



[Sto01]

[TO85]

[Tes09]

[Tes12]

[VLG02]

[Wey13]

[Yaf92]

[Yaf0O]

[Yaf10]

[ZA97]

Bibliography 107

P. Stollmann, Caught by disorder: bound states in random media, Progress in
Mathematical Physics, vol. 20, Birkhauser, Boston, MA, 2001.

Y. Tanabe and K. Ohtaka, Orthogonality catastrophe and the x-ray photoe-
mission spectrum, Phys. Rev. B 32, 2036-2048 (1985).

G. Teschl. Mathematical methods in quantum mechanics, With applications
to Schrédinger operators, volume 99 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 2009.

G. Teschl, Ordinary differential equations and dynamical systems, American
Mathematical Society, Providence, RIl, 2012.

R. O. Vallejos, C. H. Lewenkopf, and Y. Gefen, Orthogonality catastrophe in
parametric random matrices, Phys. Rev. B 65, 085309 (2002).

H. Weyl. The classical groups, their invariants and representations, Reprint
of the 1946 2nd edition published by Princeton University Press. New Delhi:
Hindustan Book Agency, reprint of the 1946 2nd edition published by princeton
university press edition, 2013.

D. R. Yafaev, Mathematical scattering theory, General theory, Translations of
Mathematical Monographs, vol. 105, American Mathematical Society, Provi-
dence, RI, 1992.

D. R. Yafaev, Scattering theory: Some old and new problems, Lecture Notes
in Mathematics, vol. 1735, Springer, Berlin (2000).

D. R. Yafaev. Mathematical scattering theory, Analytic theory, volume 158
of Mathematical Surveys and Monographs, American Mathematical Society,
Providence, RI, 2010.

A. M. Zagoskin and |. Affleck, Fermi edge singularities: Bound states and
finite-size effects, J. Phys. A 30, 5743-5765 (1997).






Danksagung

Es ist mir eine Freude an diesem Punkt, an dem die Dissertation geschrieben ist, ein letz-
tes Mal meinen Stift zu spitzen um warme Worte des Dankes zu Papier zu bringen. Zuerst
danke ich meinem Betreuer Prof. Peter Miiller fiir dessen uneingeschrankte Unterstiitzung,
seine motivierenden Worte und die in mich investierte Zeit, die fiir das Gelingen dieser
Doktorarbeit maBgeblich gewesen sind. Ebenso danke ich fiir die finanzielle Unterstiitzung
durch den SFB/TR12.

Daneben freut es mich hier an diesem Punkt meinen Eltern herzlich zu danken, nicht
nur dafiir, dass sie mich in die Welt gesetzt haben, sondern vielmehr fiir die Inspiration und
Unterstiitzung, die sie mir stets waren und die ich iiber die Jahre von ihnen erhalten habe.

Ich freue mich auch meine beiden Zweitgutachter Prof. Peter Stollmann und Prof.
Abel Klein dankend zu erwahnen, die sich bereiterklart haben meine Arbeit zu lesen und
zu bewerten. Teile dieser Arbeit liegen lange Diskussionen mit Heinrich Kiittler zugrunde,
die mir immer in guter Erinnerung bleiben werden und dessen Anteil am Erfolg meiner
Promotion ich nicht verschweigen will. Constanza Rojas-Molina wird ebenso stets fester
Bestandteil dieser Arbeit sein. Sie gestaltete den Anfangsbuchstaben dieser Doktorarbeit.

Es gibt viele weitere Menschen, die es verdienen in dieser Arbeit erwdhnt zu werden.
Ohne einzelne Namen zu nennen danke ich der Arbeitsgruppe Analysis der Universitat
Miinchen fiir viele unvergessliche Stunden, Ausfliige und berauschende Abende, die wir
zusammen verbracht haben.

Letztendlich will ich noch zwei Freunden, Lisa Kraus und Ralph Wiirschinger, herzlichst
danken fiir deren Geduld, deren offene Ohren und deren Unterstiitzung in den Momenten
des Zweifels.

109






Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.7.2011, § 8, Abs. 2 Pkt.5)

Hiermit erklare ich an Eides statt, dass die Dissertation von mir selbstandig, ohne unerlaubte
Beihilfe angefertigt wurde.

Martin Gebert

Ort, Datum Unterschrift Doktorand



	Chapter 1. Introduction
	1. Anderson's Orthogonality Catastrophe and Spectral Correlations
	2. Rigorous Results on the Ground-State Overlap

	Chapter 2. Upper Bounds for General Schrödinger Operators
	1. Model and Results
	2. Proof of Theorem 2.6
	3. An Application of the Helffer-Sjöstrand Formula: Proof of Lemma 2.16

	Chapter 3. The Ground-State Overlap for Dirac- Perturbations
	1. Product Representation for Rank-One Perturbations
	2. Zero-range Interactions
	3. The Exact Asymptotics of the Ground-State Overlap
	3.1. Proof of Theorem 3.17 and Theorem 3.20
	3.2. Auxiliary Lemmata

	4. The Ground-State Overlap for Bosons

	Chapter 4. The Asymptotics of the Difference of the Ground-State Energies
	1. The General Case
	2. Finite-Size Energy for Non-Interacting Fermions
	2.1. Model and Results
	2.2. Proof of Theorem 4.7
	2.3. Prüfer Variables and the Phase Shift


	Chapter 5. Eigenfunction Correlations in the Anderson Model
	1. Model and Results
	1.1. Bounds on the Anderson Integral
	1.2. Lower Bounds on the Correlation Determinant

	2. An Application of the Fractional Moment Bound
	2.1. Proof of Theorem 5.7 and Theorem 5.17
	2.2. Proof of Theorem 5.19


	Chapter 6. Outlook
	1. Let the Computer Compute
	The Deterministic Case
	The Case including a Random Background Potential

	2. What is the Asymptotics of the Ground-State Overlap?

	Appendix A. An Integral Representation for Products of Spectral Projections
	Appendix B. The Cauchy determinant
	List of symbols
	Bibliography
	Danksagung
	Eidesstattliche Versicherung


