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Zusammenfassung

Diese Doktorarbeit befasst sich mit dem Studium von geometrischen Korrekturen zu den effekti-

ven Wirkungen von String Theorie. Im speziellen werden Korrekturen zu dreidimensionaler, N = 2

supersymmetrischer und vier dimensionaler, N = 1 supersymmetrischer Supergravitation hergelei-

tet. Letztere Theorie ist von besonderem Interesse für die Phänomenologie, da es in ihrem Rahmen

möglich ist, chirale Teilchenspektren zu etablieren. Die prinzipielle Methodik, die der Herleitung die-

ser Korrekturen zu den Kopplungen der oben genannten Theorien zu Grunde liegt, ist das Konzept

der dimensionalen Reduktion von höher-dimensionalen Theorien auf kompakten Mannigfaltigkeiten,

nach drei bzw. vier Dimensionen. Hierbei wird ausgehend von in diesem konkreten Fall, M-Theorie

bzw. ihre Niederenergiewirkung, gegeben durch elfdimensionale Supergravitation, durch Reduktion

auf dem internen kompakten Raum, bestehend aus einer achtdimensionalen Calabi-Yau Mannigfaltig-

keit, eine dreidimensionale, N = 2 Supergravitationstheorie hergeleitet. Deren Kopplungen sind durch

geometrische, bzw. topologische Grössen der Calabi-Yau Mannigfaltigkeit bestimmt. Im Rahmen der

M/F-Theorie Dualität kann man die dreidimensionale Theorie kontrolliert auf eine vierdimensionale

Theorie abbilden. Hierzu verlangt man, dass die Calabi-Yau Mannigfaltigkeit eine elliptische Faser

besitzt, d.h. lokal aus dem Produkt eines Torus und einer sechsdimensionalen Kähler Mannigfaltigkeit

besteht. In Limes von verschwindendem Torus Volumen erhält man unter T-Dualität eine weitere

ausgedehnte Dimension, und dadurch eine vierdimensionale, N = 1 Supergravitationstheorie.

Zusätzlich zu der niedrigsten Ordnung von elfdimensionaler Supergravitation die zwei Ableitungs-

terme besitzt, haben wir uns dem Studium von durch String Streuamplituden induzierten, und nach

elf Dimensionen gehobenen Korrekturen mit acht Ableitungen, im Rahmen der oben geschilderten

Prozedur, gewidmet. Ein Beispiel für solche Korrekturen sind Kontraktionen von vier Riemanntenso-

ren.

Um diese Korrekturen konsistent nach drei Dimensionen zu reduzieren, muss man den Hintergrund,

im klassischen Fall bestehend aus dem direkten Produktraum aus zwei externen Raumdimensionen

und einer Zeitdimension, und einer internen Calabi-Yau Mannigfaltigkeit, abändern. Dies is der erste

wichtige Schritt, mit dem wir uns befassen. Hierbei wird der externe Raum mit einer exponentiel-

len Abhängigkeit, dem sogenannten Warp-Faktor, versehen, der wiederum von dem internen Raum

abhängt. Wir finden eine explizite Lösung der elfdimensionalen Bewegungsgleichungen für den me-

trischen Hintergrund. Des Weiteren schlagen wir korrigierte elfdimensionale Gravitinio Variationen

vor, die die supersymmetrie der Lösung andeuten. In einem weiteren Schritt kompaktifizieren wir alle

bekannten Korrekturen mit acht Ableitungen, zu der bosonischen elfdimensionalen Supergravitations-

wirkung, auf diesem Hintergrund, um eine dreidimensionale Theorie zu erhalten. Hierbei stellt sich



2

das Zusammenspiel von dem Warp-Faktor und den höheren Ableitungstermen als besonders wichtig

heraus. Um N = 2 Strukturen in der reduzierten Theorie zu entdecken, vergleichen wir diese mit der

kanonischen Form von dreidimensionaler, N = 2 Supergravitation. Im speziellen zeigen wir, dass das

Reduktionsresultat kompatibel mit einem vorgeschlagenen Kähler potential und den dazugehörigen

komplexen Koordinaten ist. Die Korrekturen zum Kählerpotnetial bestehen aus dem Warpfaktor und

einem Term der proportional zur dritten Chern-Form der klassischen Calabi-Yau Mannigfaltigkeit

ist. Die komplexen Koordinaten sind als Integrale über Divisoren definiert und enthalten neben einer

Warpfaktor Abhängigkeit, ebenfalls einen Teil der mit der Nichtharmonizität der vierten Chern-From

korreliert ist. Diese Korrekturen bestehen damit aus geometrischen Grössen der Mannigfaltigkeit.

Im ersten Teil dieser Arbeit haben wir in einem vereinfachten Modell eine Untermenge der be-

kannten Acht-Ableitungskorrekturen auf dem klassischen Hintergrund der Calabi-Yau Mannigfaltig-

keit ohne den Warpfaktor reduziert, und konnten die Korrekturen unter Benutzung der M/F-Theorie

Dualität nach vier Dimensionen heben. Die Analyse bei schwacher Stringkopplung zeigt, dass diese

von Selbstschnittkurven von D7-Branen herrühren.



Abstract

In this thesis we study geometric corrections to the low-energy effective actions of string theory.

More concretely, we compute higher-derivative corrections to the couplings of three-dimensional, N =

2 supergravity theories and interpret the induced α′-corrections in N = 1, minimal supergravity

theories in four dimensions, in the framework of F-theory. These allow for chiral spectra and are

therefore phenomenological relevant. We analyzed higher-derivative corrections to M-theory, accessible

through its low-energy effective theory, given by eleven-dimensional supergravity. The next to leading

order terms to eleven-dimensional supergravity carry eight-derivatives, and are suppressed by l6M
compared to the classical terms, with lM being the eleven-dimensional Planck-Length - the only scale

in eleven dimensions. These corrections are lifted from IIA supergravity corrections, which are derived

from string scattering amplitudes.

The common theme of this thesis is to compactify the bosonic sector of the eleven-dimensional

supergravity action, including all known eight-derivative corrections, on a supersymmetric background

to find a 3d, N = 2 theory, which then can be lifted to a 4d, N = 1 theory. This goal is approached

in several steps.

In the classical reduction of eleven-dimensional supergravity the metric background is a direct

product of the external space, consisting of two space and one time dimension and the internal eight

spacelike-dimensional Calabi-Yau manifold. However, when considering higher-derivative corrections

the background has to be altered by introducing a dependence of the external space on the warp-

factor, which is a function of the internal space. We find an explicit warped background solution

to the eleven-dimensional E.O.M.’s including non-vanishing flux. To check the background for its

supersymmetry features one would need to consider the eleven-dimensional gravitino variations at

this order in lM . However, these are not known, which leads us to propose higher-order lM -corrected

gravitino variations consistent with our background solution.

As a next step we dimensionally reduce the bosonic sector of the eleven-dimensional supergravity

action including all eight-derivative terms on this warped background and analyze the resulting three-

dimensional theory. In this context the interplay of the warp-factor and the higher-derivative terms

is of crucial importance. To identify the N = 2 properties of the resulting three-dimensional theory

obtained by dimensional reduction, we compare it to the canonical from of three-dimensional N = 2

supergravtiy. We conclude that the reduced action is compatible with N = 2 supersymmetry and give

a proposal for the Kähler potential and the complex coordinates, which receive l6M corrections. Besides

a warp-factor contribution, the Kähler potential receives a correction proportional to the third Chern-
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form of the zeroth order internal background, being the Calabi-Yau fourfold. The complex coordinates

are defined as divisor-integrals and are corrected by a warp-factor dependent term as well as one related

to the non-harmonic part of the fourth Chern-form, of the zeroth order Calabi-Yau manifold. Thus the

couplings of the resulting theory receive besides the warp-factor, in particular geometric corrections

of order l6M .

In the first part of this thesis we study a simplified setup, only considering a subset of the relevant

eight-derivative corrections in eleven dimensions. Furthermore, we do compactify on the classical

background, consisting of the internal Calabi-Yau fourfold without warping and fluxes, to gain a

three-dimensional theory. However, we use the M/F-theory duality to uplift the yielded corrections,

which results in corrections to the couplings of the four-dimensional theory. In the weak coupling limit

we find that these are sourced by the self-intersection curves of D7-branes.
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CHAPTER I

Introduction

”See now the power of truth; the same experiment which at first glance seemed to show one thing,

when more carefully examined, assures us of the contrary.” Galileo Galilei

Refined experiments teach us that our theoretical models at hand lack completeness. If one wishes

to address dark matter, dark energy or inflation there are various theoretical candidates available, but

their validity shall be verified only by future experiments. From a theoretical perspective it seems

more intriguing to wish for a theory, which presents various answers at once and moreover provides

us with an understanding of why nature favors certain structures over others.

Let me start with an assumption - there exists a unified theory of nature - one theory describing

all the interactions of particles, their masses, and their effect on space and time and vice versa. Its

existence is commonly believed and the quest for unification of the four known forces of nature, the

electro-magnetic force and gravity being long ranging in contrast to the weak and strong nuclear force,

is an active field of research. String theory being its most promising candidate forces us to rethink

the concept of particles as fundamental objects, replacing them by one-dimensional open and closed

strings. However, quantum field theory sourced by particles provides an elegant way to describe the

quantum structure of nature as long as gravity is weak. The Glashow-Salam-Weinberg model - the

renowned Standard Model - is a quantum field theory describing the electro-magnetic the strong and

the weak force based on gauge symmetry, and has been tested to hold with remarkable precision up to

energies of order 103GeV . Its most recent success due to experimental verification was the seemingly

discovery of the Higgs boson [1]. In quantum field theory, however, it is completely arbitrary to choose

the Standard Model gauge group of SU(3) × SU(2) × U(1) among the infinite set of renormalizable

theories, which is most famously argued for with the anthropic principle. Its main statement condenses

to that our observation of nature is originated by the fact that it allows for life, and thus physical

5



6 Chapter I. Introduction

constants and theories will lie in the narrow range of habitable Universes. One circumvents the need

for an universal argument, which in return implies that one may not be able to see behind this horizon,

i.e. nature does not favor any gauge group of the standard model over another. Let us pick up our

working assumption - there exists a unified theory of nature. String theory manages to remove our

incapabilities when it comes to quantum gravity but also might serve to explain why certain laws of

nature are favored over others. It is highly constraint by consistency conditions, e.g. engineering a

particular gauge group like SU(3)× SU(2)× U(1) comes at a price. But this prize as hard to pay as

it might be, may shed some light on the question why certain theories are preferable over others by

looking at various string vacua, each representing a different Universe with different laws of nature.

Very remarkably universality schemes emerge from these studies, e.g. axion decay constants seem to

be constraint to be smaller than the Planck mass Mp =
√
~c/G ≈ 1.2 · 1019 GeV/c2, [2, 3].

Due to our current incapability to explain experimental data [4], one might hope that string theory

provides natural theoretical models, which simply emerge from a subsector of the theory. Only 5%

of the total energy content of the Universe are accounted for by known particles, the remaining part

consists of 27% dark matter and 68% so called dark energy. The standard model of cosmology also

referred to as the ΛCDM model, successfully describes observation on macroscopic lengths scales,

providing a coherent description of the Universe from the Big-Bang to the present day, by requiring

only six parameters to be fixed. One necessary ingredient of the ΛCDM model is a novel kind of matter,

which mainly couples to the ordinary particles gravitationally, referred to as dark matter. Moreover,

to explain the observation of a positive cosmological constant the introduction of dark energy is

required, which can be interpreted as the vacuum energy. However, no microscopic description for

these two constituents is provided. Many theoretical candidates for dark matter particles have been

proposed, while the quest for a microscopic characterization of dark energy remains more mysterious

- both constitute interesting open problems of modern physics, see e.g. [5]. Besides these fundamental

obstacles certain parameters of the ΛCDM model and the Standard Model of particle physics need to

be fine-tuned, which is considered unnatural. In this category one desires to resolve the hirachy and

the CP problem, and moreover the flatness problem in cosmology, which most prominently might be

resolved by Inflation, see e.g. [6].

In particular string theory is obligated to reproduce the Standard Model of particle physics and

of cosmology, at the same time, which has not been accomplished so far. Note that these two theories

span a hirachy of length scales from particle physics at ∼ 10−19m to the Hubble radius ∼ 1026m. Since

string theory provides a description of quantum gravity the span of hierarchies becomes even larger

reaching down to the Planck length, lP ∼ 10−35m. To describe physics at these distant length scales

within string theory one considers different limits of the theory. To connect string theory to the well

tested field theoretical models one takes the limit of vanishing string length ls → 0, which results in

ten-dimensional supergravity theories, one for each of the five unique superstring theories: type I, Het

SO(32), Het E8 ×E8, type IIA and IIB. Type IIA supergravity in the limit of strong string coupling

gs →∞ is described by a dual theory, given by unique eleven-dimensional supergravity, the low-energy

effective action of M-theory, subordinate to solely the Planck length lM , which is the only scale in

eleven dimensions. Although a microscopic formulation of M-theory is still missing plenty of indirect
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evidence hints towards its existence. One can study higher-order ls, or in more common notation

α′ = l2s corrections to the various supergravity theories in ten-dimensions, given by higher-derivative

terms in fields of the supergravity multiplets, hence representing an imprint of the finiteness of the

string length on the field theory side. One can lift the α′-corrections of IIA supergravity to M-theory1,

where they become higher-order lM corrections.

The main focus of this work is the dimensional reduction of M-theory including eight-derivative

corrections of order l6M , on an eight-dimensional internal manifold to gain a 3d, N = 2 supergravity

theory. The higher-derivative corrections in eleven dimensions naturally give rise to corrections of the

couplings of the two derivative 3d, N = 2 supergravity theory, but also to higher external derivative

terms. However, we will discuss latter only marginally. Such reductions have not been performed

consistently before and it is a novel and interesting endeavor of conceptional as well as phenomeno-

logical interest. We focus on the vectors and the real scalar Kähler deformations, which form a vector

multiplet in 3d. The main phenomenological motivation to discuss these reductions of M-theory is

the so called M/F -theory duality, which allows to lift the 3d, N = 2 theory to a 4d, N = 1 super-

gravity theory, that is of superior interest since it can incorporate chiral spectra. Of special interest

are α′-corrections to the Kähler potential, which unlike the super potential in a 3d, N = 2 and a

4d, N = 1 theory can receive perturbative corrections. It is therefore particularly intriguing to answer

the question if in the light of the M/F-theory duality the higher-derivative corrections give rise to

novel α′-corrections to the Kähler potential and complex coordinates in 3d, and thus eventually lift to

corrections in the 4d theory, which will constitute the common theme of this work.

Let us address a particular difficulty when building phenomenology relevant string models. Dimen-

sionally reducing a higher-dimensional theory, certain deformations of the internal geometry appear

as massless scalars in the effective lower-dimensional field theory, see section 2.4. These scalars are

not observed in nature, hence need to gain a VEV via some mechanism, which goes under the name of

moduli stabilization. In [7] one achieves this with the help of a α′3 correction to the Kähler potential

[8].

This thesis starts by illustrating introductory material focusing on certain concepts particularly

related to the following work. The common theme visible throughout this chapter is the notion of an

effective field theory and how it arises in the context of the limit of vanishing string length. In section 1

the concept of a string is introduced and it is argued for its effective field theory action, for the bosonic

as well as for the supersymmetric string, focusing on type IIB and type IIA supergravity. In section 2

we then discuss how to derive higher-derivative corrections to the effective type II supergravity theories

from string scattering amplitudes. Furthermore, we introduce the concept of dimensional reduction.

Section 5 intends to give a short introduction to F-theory, which we define via M-theory.

In the second chapter we look at specific eight-derivative corrections at order l6M to the eleven-

dimensional supergravity action. In particular we consider corrections of the schematic form R̂4 and

Ĝ2R̂3, with R̂ the Riemann tensors and Ĝ the four-form field strength, which upon dimensional

1We commonly refer to eleven-dimensional supergravity as M-theory in this work.
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reduction on a Calabi-Yau fourfold M3 × Y4 and the F-theory lift to 4d, give α′2-corrections to the

Kähler potential and the Kähler coordinates. However, the Kähler potential expressed as a function

of the Kähler coordinates is of the same analytic form as in the classical case, thus these corrections do

not alter the 4d physics, which is equivalently shown in 3d. This is to be considered a toy model since

we do not consider all relevant higher-derivative correction and we compactly on a non-supersymmetric

background.

In the third and last chapter, we approach the main challenge of a warped reduction including the

full set of bosonic eight-derivative corrections to the eleven-dimensional supergravity action. Taking

into account higher-derivative corrections, the spaceM3×Y4 is no longer a supersymmetric background,

but one needs to consider a warped metric and turn on background fluxes on the internal space. In

section 6 we take the first step by proposing a supersymmetric background solution for the metric

in the presence of non-vanishing flux. Since the 11d gravitino variations are not known at order

l6M , we give necessary conditions for the background to be supersymmetric and propose higher order

lM -corrections to the gravitino variations. In section 7 we reduce the known set of eight-derivative

corrections of schematic form R̂4, Ĝ2R̂3 and (∇̂Ĝ)2R̂2 on the warped background including fluxes,

derived in section 6, and compute the resulting three-dimensional two derivative action. We consider

solely Kähler moduli deformations of the metric parametrized by harmonic (1, 1)-forms, and do not

allow for complex structure deformations. Furthermore we premise that h2,1 = 0. We vary the

higher-derivative terms according to the Kähler deformations of the metric, which embodies the first

reduction of this kind. An indirect proof of supersymmetry of the background derived in section 6, is

the observation that the derived 3d couplings upon reduction give a N = 2 supergravity theory. In

particular the couplings of the real scalars and of the vectors are given in terms of a Kähler metric

originating from a Kähler potential, which will be discussed in the dual picture with propagating

complex multiplets, referred to as complex coordinates. It is the focus of section 8 to suggest a

proposal for the Kähler potential and complex coordinates consistent with the reduction results.

1 A short story on strings

The following introduction to string theory indents to emphasize certain beautiful aspects, which are

worth being discussed in more detail. This is of cost of providing a more complete story.

1.1 The paradigm string

By incorporating gravity in a consistent quantum theory the success story of string theory suggests

that one might need to abandon the idea of particles being the fundamental objects of nature. One

may be bound to introduce strings instead, one-dimensional lines, open and closed to loops. Deriving

a consistent theory of strings leads us to consider also other fundamental objects, referred to as branes,

extended hypersurfaces of various dimensions where open strings are bound to end. At the same time

starting off by first introducing branes one is led to incorporate strings - it is intriguing that these two
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notions imply each other.

String theory provides a framework in which all the four forces can be discussed at the quantum

level. One may argue with the following intuitive picture. The natural length scale of string theory is

the string length ls. The extended nature of strings smears out the interaction vertices in contrast to

point particle interactions, which intuitively provides a natural momentum cut-off since length scales

smaller than ls cannot be probed. Although string theory’s ultraviolet finiteness is not rigorously

proven it is has been made highly plausible. Explicit results of super-string perturbation theory show

finiteness up to two loops, but further observation can be made for higher loops, which leads to the

conjecture, see e.g. [9].

Before we continue let us pause for a moment and comment on the underlying assumed paradigm.

We start with a classical object the particle or the string and think of the quantum theory as the path

integral of the classical action. Thus averaging the classical action over all classical paths in which

the classical object may travel. We know that our Universe is fundamentally quantum and classical

physics only appears due to a separation of scales. It is quite remarkable that starting with a classical

idea one is able to describe intrinsically non classical quantum behaviors. One should be always aware

that this kind of mindset might be holding us back. At some point we may be led to introduce

new notions to better capture the nature of quantum physics. String theory provides a window into

such new lands - indeed we know of the existence of theories which we cannot be described via the

Lagrangian principles [10].

1.1.1 The classical relativistic string

Before we introduce the action of the bosonic string let us review some aspects of the relativistic point

particle, which will provide a natural choice for the string action. Note that it is desirable to have a

limit of the theory in which the string effectively looks like a point particle to be able to compare it

to field theory. This is the case when the length of the string shrinks to zero α′ → 0.

The relativistic free particle obeys the well known energy and momentum relations

E =
√
m2 + ~p2 , ~p =

m~̇x

1− ~̇x2
. (1.1)

To find a covariant expression for the action we first choose coordinates Xµ = (t, ~x) in d-dimensional

Minkowski space-time Rd−1,1, with signature ηµν = diag(−1, 1, . . . , 1)µν . We can reveal (1.1) from the

action

S = −m
∫
dτ

√
−ηµνẊµẊν , (1.2)

by choosing τ = X0(τ) ≡ t, with τ being the eigen-time of the particle. This is always possible

since (1.2) is invariant under transformations of τ → τ ′(τ). Xµ(τ) describes the particle trajectory in

Minkowski space-time, but via leaving the covariant picture and restricting ourselves to τ = X0(τ) ≡ t,
one makes the interesting encounter that (1.2) is nothing else but the length of the particles trajectory
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in the Euclidian space Rd−1. For a more detailed introduction to string theory, see e.g. [11, 12, 13, 14,

15, 16, 17].

This observation is the guideline to introduce the action for the classical relativistic string - its

action being the area of its two-dimensional trajectory surface, the so called world-sheet. The string

is described by a map Xµ(τ, σ) from the world-sheet coordinates σi = (τ, σ) =: σ2 to the space-time,

called target space with τ ∈ R, and σ ∈ [0, 2π) or σ ∈ [0, π] for the closed and open string, respectively.

In the following the target space will constitute a d-dimensional Minkowski space. The area of the

world-sheet is given by the pullback of the Minkowski metric onto the world-sheet

S = −T
∫
d2σ

√
−detX∗η , (X∗η)ij =

∂Xµ

∂σi
∂Xν

∂σj
ηµν , (1.3)

well known from basic differential geometry referred to as the Nambu-Goto action in physics literature.

The pre-factor T is the string tension carrying the dimensions energy or mass per unit length. This

is easily seen by a dimensional analysis recalling that the area of the world-sheet carries dimension

space×time. Since [T ] = 2 and [X] = −1 in unit-mass dimensions one can associate a one over length

squared with the string tension, which is naturally written in terms of the only length scale involved

being the string length ls as

T =
1

2πl2s
=

1

2πα′
, (1.4)

where we have introduced the common notation α′ = l2s . Naively one would expect the string length

to be of the order of the Planck length thus 1/
√
α′ ≈ MP , however, it can be shown that it could

be as low as the TeV scale and thus in reach for collider experiments, see e.g. [18, 19]. The square

root in (1.3) gives an obstruction to the path integral quantization, which led to the discovery of the

Polyakov action,

S = − 1

4πα′

∫
d2σ
√
−ggij∂iXµ∂jX

νηµν , (1.5)

with g ≡ det g. This gives the same E.O.M.’s as (1.3), but with the difference that the world-

sheet metric gij is now a dynamical degree of freedom. This action is manifestly symmetric under

Poincare transformations Xµ → Λµν X
ν + cµ constituting a global symmetry in the world-sheet

perspective. Furthermore, it obeys reparametrization invariance σi → σ′(σ), which is a non-physical

gauge invariance of the action, and it is invariant under Weyl transformations

gij → Φ2(σ)gij . (1.6)

One can use the reparametrization invariance to gauge-fix the metric on the world-sheet to be flat

gij = ηij , thus the Polyakov action takes the beautifully simple form

S = − 1

4πα′

∫
d2σηij∂iX

µ∂jX
νηµν . (1.7)

For closed strings the embedding map needs to be periodic

Xµ(τ, σ) = Xµ(τ, σ + 2π) , (1.8)

2This is an common abuse of notation and it will be clear form the context which coordinates it refers to.
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but is not subject to any further constrains. One the other hand, the open string endpoints need to be

constraint by boundary conditions since they are different in nature from the rest of the open string,

which is locally described via the same action as the closed string (1.7). It is easy to see that by

varying (1.7), in the open string case one picks up boundary contributions, which need to vanish and

thus give rise to the constraint ∂iX
µδXµ = 0 at the endpoints σ = 0, π. This condition can either be

fulfilled by Dirichlet δXµ = 0 or Neumann boundary conditions ∂iX
µ = 0 at σ = 0, π, respectively.

The Dirichlet boundary condition restricts the endpoints of the string to fix positions in the target

space whereas Neumann boundary conditions allow the string endpoints to move freely with the speed

of light. One can allow the string to move freely in p+ 1 direction obeying Neumann conditions while

fixing it via Dirichlet conditions in the other d− p− 1 directions -this p+ 1-dimensional hypersurface

is called Dp-brane. This boundary conditions seem ad hoc and historically it took a while before

the string community realized that branes are natural dynamical objects equally fundamental as the

string itself [20]. Let us return to the closed string for the reminder of this section. We can analyze

the E.O.M.’s of (1.7) or (1.5) respectively. The E.0.M. for gij given by

Tij = 0 , Tij = − 2

T

1√
−g

δ(L
√
−g)

δgij
, (1.9)

expressed via the strew-energy tensor Tij
3. From (1.7) we find for Xµ the free wave equation

∂i∂
iXµ = 0 . (1.10)

The relativistic string obeys bizarre kinematic features from a classical point of view, which we analyze

by choosing x0 = r0τ ≡ t and discuss the strings motion in d− 1 - dimensional Euclidean space. The

free wave equation (1.10) and the two constraints following (1.9) in this new coordinates result in

~̈x− ~x′′ = 0 , ~̇x~x′ = 0 , and ~̇x2 + ~x′2 = r2
0 . (1.11)

The second equation in (1.11) tells us that the motion of the string is perpendicular to the string itself.

In particular this implies that if the center of mass of the string is moving any further oscillations

of the string have to be perpendicular to the direction of this movement, which is easily seen since

the conditions (1.11) are valid for any point (τ, σ), in other words the moving relativistic string is

infinitely stiff in the direction of the center of mass velocity. Let us now choose the string such that

the perpendicular directions to the movement are in the x1 − x2 - plane. Note that the string needs

to be a circle if it shall have any radial contraction or expansion in the x1 − x2 directions, due to the

second condition (1.11). One can now use polar coordinates to solve (1.11), which results in

r(t) = c1 sin t+ c2 cos t , c2
1 + c2

2 = r2
0 , (1.12)

describing an oscillating circular string with maximal radial expansion r0, thus the notation. Note

that the string contracts to zero size thus to a point before expanding again until its tension stops the

expansion, and the cyclic process is reinitiated.

3With L the Lagrangian density as usually S =
∫
dσ2√−gL.
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1.1.2 Strings and Einstein gravity

Einstein gravity, more commonly known as the theory of general relativity is a ”prediction” of string

theory. Let us shortly sketch the idea before going into more detail. By naively quantizing the

relativistic closed string action (1.7) one derives its massless spectrum and furthermore infers that

Lorentz invariance of these states imply the target space to be 26-dimensional, referred to as the

critical dimension. Furthermore, by demanding conformal invariance of the quantum theory at one

loop, among other effective terms one yields the Einstein-Hilbert term of general relativity. Thus

natural symmetry arguments predict Einstein gravity. This is also the first time we will encounter an

effective field theory action arising from string theory.

The quantization of the bosonic closed string is a straightforward procedure, which we will not

address in detail. The most convenient way of naively quantizing the bosonic closed string is the light-

cone quantization. The main point is to Fourier expand the classical Xµ in the periodic coordinate

σ. One chooses new coordinates σ± = τ ± σ on the world-sheet, which is a symmetry of (1.7) since

it can be undone by a Weyl transformation. The physical degrees of freedom are solutions to the free

wave equation and the two constraints on Xµ following from (1.9), which can be solved by a Fourier

Ansatz

Xµ = Xµ
L +Xµ

R with Xµ
L ∝

∑
n>0

1

n
aLµn e−inσ

+
, and Xµ

R ∝
∑
n>0

1

n
aRµn e−inσ

−
, (1.13)

decomposed in left and right-moving modes on the world-sheet, as easily seen by the sign of σ±.

Furthermore, one breaks manifest space-time Lorentz symmetry by making the string propagate in

a specific direction X± = 1√
2

(
X0 ±X1

)
, which leaves us with i, j = 1, .., d − 2 transverse oscillation

of the string. We will have to restore Lorentz invariance later on. We can now naively quantize the

string by promoting Xµ and its related conjugate momentum Πµ = 1
2πα′ Ẋµ, to operator valued fields

and enforce equal-time commutation relations upon them[
Xµ(σ),Πν(σ′)

]
|τ=τ ′ = iδ(σ − σ′)δµν[

Xµ(σ), Xν(σ′)
]
|τ=τ ′ =

[
Πµ(σ),Πν(σ′)

]
|τ=τ ′ = 0 . (1.14)

This implies that also the Fourier coefficients have to be promoted to operators. Focusing on the d−2

transverse left and right-moving modes, (1.14) gives rise to their commutation relations of generation

and annihilation operators as

[aL in , aL jm ] = [aR in , aRjm ] = n δij δn,−m and [aL in , aRjm ] = 0 . (1.15)

The classical equation of motions (1.9) and (1.10) translate into operator equations in creation a
R/Li
−n

and annihilation operators a
R/L i
n with n > 0. One of them being the relativistic rest mass M2 =

−pµpµ, which translates after normal ordering of operators in

M2 =
4

α′

(
N − d− 2

24

)
, (1.16)
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with N being the number-operator of the excitations of the left or the right-moving modes, respectively,

which for consistency need to have the same excitation number.4 The first observation is that the

ground state for N ≡ 0 has a negative mass squared. This state is referred to as tachyonic and indicates

that we have expanded the theory at an inappropriate point, stabilizing the tachyon to negative mass

squared, which motivates the introduction of supersymmetry later in section 1.2. Let us first look at

the excited state aRi−1a
Lj
−1 |0〉, giving (d − 2)2 degrees of freedom i, j = 1, . . . , d − 2. These degrees of

freedom have to transform under the full Lorentz group SO(1, d − 1) for the quantum theory to be

Lorentz invariant. Considering Wigner’s classification of representations of the Poincare group one

finds that this is only possible if the first excited state is massless, thus one infers from (1.16) that

d = 26 giving the critical dimension of the bosonic string. Thus the first excited state sits in a 24⊗ 24

representation of the symmetry group SO(24), which can be shown to decompose into a traceless

symmetric ⊕ an antisymmetric ⊕ a singlet irreducible representation. It is natural to assign fields

according these degrees of freedom, which we denote by Gµν(X), Bµν(X) and Φ(X), respectively. Gµν

is a massless spin 2 particle. According to an argument of Feynman and Weinberg, any theory of

interacting massless spin 2 particles must be Einstein gravity, 5 argued for as following. One can show

that any theory of massless spin 2 particles must have a gauge symmetry to remove negative norm

states from the spectrum. To ensure that this still works when interactions are taken into account the

theory must be diffeomorphism invariant, which is strong enough such that the claim follows. Bµν is

the so called Kalb-Ramond field mathematically a 2-form field and the scalar field Φ is the dilaton.

Note that the string gives rise to the massless spectrum (B,G,Φ) at the microscopic level. Similar to

electrodynamics where one considers charges moving in background fields, one is not concerned about

the microscopic generation of these background fields due to other charged particles. Analogously one

may write down a theory of the strings propagating in the macroscopic background fields G,B,Φ.

To argue in which limit it is justified to consider a string propagating in a classical background, let

us assume we knew how to build the macroscopic background fields in terms of microscopic states

G(X), B(X),Φ(X), which gives the non-linear sigma model

Sσ =
1

4πα′

∫
d2σ
(
Gµν(X)gij∂iX

µ∂jX
ν + iBµν(X)εij∂iX

µ∂jX
ν + α′Φ(X)R(σ)

)
, (1.17)

with R(σ) being the Ricci-scalar of the world-sheet. The couplings to the metric Gµν and the 2-

form field Bµν retain reparametrization and Weyl invariance, whereas the coupling to the dilaton

superficially breaks Weyl invariance at tree-level. Note that it comes with an additional power of α′.

Indeed at one-loop level Weyl invariance is restored by cancelation of the anomalous Weyl contributions

generated from the couplings Gµν , Bµν . Let us consider a string fluctuating around a point in a classical

background metric solution Xµ → ξµ +
√
α′Xµ(σ). Furthermore, we assume we knew the fully back-

reacted background of this string sitting at ξµ and Taylor expand it as

Gµν = α′
(
Gµν |ξµ +

√
α′(G(1)

µν )ρ1 |ξµXρ1 +
α′

2
(G(2)

µν )ρ1ρ2 |ξµXρ1Xρ2 + . . .
)
, (1.18)

4We have used the so called level matching constraint - in this form telling us that N = NL = NR, simply understood

by the fact that the invariant mass can be described by left and right-moving modes alike. Note that thus anything else

but equality of these operators is physically excluded.
5Possible including higher-derivative terms.
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which gives rise to interaction terms with the formal couplings (G
(i)
µν)ρ1...ρi = ∂

∂Xρ1 · · · ∂
∂XρiGµν(X) ≈

∂
∂xρ1 · · ·

∂
∂xρiGµν(x). The approximation is valid in the limit where the string doesn’t see the ripples

in space-time. Thus we note that (1.18) is a good pertubative approach if the space-time metric only

varies on scales much greater that the string scale
√
α′. An intuitive picture is provided by a locally

curved space of radius rl and a string propagating in it, which must have a length ls that is much

smaller than 1
rl

.

Since we have now seen that the non-linear sigma model possess an expansion in α′ let us make a

short a side in loop corrections arising from (1.17). Analogously to the quantization of field theory one

can compute stringy quantum-loop corrections to the tree-level result given by the classical solution

of (1.17). Note that, since corrections in α′ measure the extendedness of the string, they are no loop

corrections in a string scattering process in the usual sense, which is instead given by the so called

genus expansion. Analogously to field theory loops we can write a sum over world-sheet topologies, see

figure I.1. Let us start from (1.17) by rewriting the dilaton term as the variation around its vacuum

Figure I.1: Pictorial Escheresque representation of the sum over world sheet topologies.

expectation value Φ → 〈Φ〉 + Φ′, and furthermore apply the Gauss-Bonnet theorem of differential

geometry, which states that the integral of the Ricci scalar over a Riemannian surface - in this case

the world-sheet - is proportional to its Euler-characteristic χg = 2−2g 6, with g the so called genus of

the surface. The sphere has genus zero, the torus genus one, and so on counting the number of holes

in a perforated donut. Thus we find that∫
α′Φ(X)R(σ)→ α′ 〈Φ〉 χg + α′

∫
Φ(X)R(σ) . (1.19)

To quantize this expression we proceed by evaluating its path integral∫
DXDge−〈Φ〉χg−

∫
Sσ [X,g,G,B,Φ] =

∑
g∈N+

e−〈Φ〉χg
∫
DXDge−

∫
Sσ [X,g,G,B,Φ] , (1.20)

where we have used that the path integral of χg simply becomes the sum over all different topologies

of the world-sheet. From (1.20) one infers that the string coupling constant is given by gs = e〈Φ〉. This

6
∫ √
−gdσ2R = 4π χg .
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is very beautiful, the string couples to itself via the vacuum expectation value of a field it sources.

The incoming and outgoing states necessary to compute string scattering amplitudes are represented

by so called vertex operators Vi(Λi, pi), corresponding to the string states Λi, respectively, and can

be computed by using methods of conformal field theory. These are inserted as sources in the path

integral resulting in

A(Λ1, . . . ,Λn, p1, . . . , pn) =
∑
g∈N+

gs
−χg 1

V

∫
DXDge−

∫
Sσ [X,g,G,B,Φ]

n∏
i=1

VΛi,pi . (1.21)

Where we have divided out physical equivalent gauge-orbits via the pre-factor 1/V .7 The sum over

the world-sheet topologies can now in the light of (1.21), be viewed in a different way, see figure I.2.

Figure I.2: Pictorial representation of the genus expansion with four vertex operator insertions repre-

senting the external states.

This concludes the aside on the gs expansion, and we continue by focusing once more on the α′

expansion of (1.17). The action (1.17) is a two-dimensional theory with d = 26 bosonic fields interact-

ing via couplings given by the space-time fields G,B,Φ.8 Thus alternatively to the interpretation of

the 26-dimensional space-time the string propagates in, one can view it as a two-dimensional theory

with conformal symmetry. Reversely one treats (1.21) as the S-matrix of an 26-dimensional theory,

although one computes correlation functions among 26 bosonic fields living in two dimensions, subor-

dinate to various interactions. Let us next consider the field theory in d = 26 dimensions, arising from

(1.17) and (1.21) in the so called field theory limit α′ → 0. The resulting field theory knows only little

about the extended nature of the string, however needs to reproduce the same S-Matrix elements as

(1.21) in the limit α′ → 0. This implies that the theory is only accurate at low energies where the

string can effectively be treated as a point particle. Generically, one can construct this theory via the

matching of scattering amplitudes, as we comment on in section 2.2. Here we will take a somewhat

more elegant approach by using a field theory symmetry argument. As mentioned previously we desire

the quantum theory of (1.17) to obey Weyl invariance, which needs to be checked at one-loop level,

done by computing the one-loop in α′ counter-terms of he various couplings. Note that one-loop in α′

constitutes an ordinary field theory loop rather than the genus expansion in gs. To understand, which

of the appearing counter-terms may violate Weyl invariance let us compute the trace of the energy

momentum tensor, that vanishes Tµ
µ = 0, if the action posses Weyl invariance.

Loop α′-corrections can violate Weyl invariance. Applying dimensional regularization d → d + ε,

7Specifying inequivalent gauge-orbits is a nontrivial task and we refer the interested reader to [15].
8Note that we can choose the world-sheet metric such that gij = ηij .
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at one-loop level one encounters counter-terms, which generically alter the action by renormalisation

of the couplings and the fields, introducing divergences in ε. By performing the Weyl rescaling of the

resulting action by ηij → eληij , a factor e2λε arises since the Weyl rescaling from the inverse metric

and its determinant do not cancel identically in two dimensions. However, one should recover Weyl

invariance in the limit ε → 0. Due to the counter-terms added to (1.17) one encounters new terms

which do not scale with ε at all, e.g. combining the linear term from the expansion of e2λε and the

inverse power in the counter-terms. This hints towards the fact that the counter-terms violate Weyl

invariance and one has to impose equations on these new couplings to restore it. Computing the one-

loop corrected action starting from (1.17) one finds according to [21], for the trace of the stress-energy

tensor that

Ti
i = − 1

2α′
βGµν∂iX

µ∂iXν − i

2α′
βBµνε

ij∂iX
µ∂jX

ν − 1

2α′
βΦR(σ) , (1.22)

with

βGµν = α′Rµν −
α′

4
HµργHν

ργ + 2α′∇µ∇νΦ ,

βBµν = −α
′

2
∇γHγµν + α′Φ∇γHγµν ,

βΦ = −α
′

2
∆Φ + α′∇µΦ∇µΦ− α′

24
HµνρH

µνρ , (1.23)

with H = dB, the field strength of the Kalb-Ramond field. To restore Weyl invariance at one-loop α′

quantum-level one needs to demand that

βGµν = βBµν = βΦ = 0 . (1.24)

This is very intriguing, the consistency condition subjects the classical fields Gµν , Bµν , φ to the differ-

ential equations (1.24). These can be then considered as E.O.M.’s for the fields Gµν , Bµν , φ, and one

can hope to find an action which originates them. We will argue for this action after a short aside,

which intends to convey the idea of how the previous result was derived, in particular how the Ricci

tensor arose in (1.23) . Since the derivation of (1.22) is involved, we will briefly discuss the case of

the string coupling to Gµν only. To extract the explicit interaction terms we expand (1.17) around a

classical background (1.18) and compute the couplings G
(1)
µν,ρ1 , G

(2)
µν,ρ1ρ2 . Since this expansion is around

a point ξ we can choose normal coordinates, see e.g. A.6, to simplify the computation. One finds that

a single partial derivative of the metric vanishes, thus G
(1)
µν,ρ1 = 0. To compute G(2), we express the

partial derivatives on the metric in terms of Christoffel symbols, which in normal coordinates yields

G(2)
µν,ρ1ρ2

=
∂

∂Xρ1

∂

∂Xρ2
Gµν(X)|ξ ≈

∂

∂xρ1

∂

∂xρ2
Gµν(X)|ξ = 2 ∂ρ1Γ(µν)ρ2

. (1.25)

One expresses the partial derivative of the Christoffel symbols in terms of Riemann tensors (A.39),

such that G
(2)
µν,ρ1ρ2 = −2Rµ(ρ1|ν|ρ2). Thus we find the action at his order in the α′ expansion to be

Sσ =
1

4πα′

∫
d2σ
(
Gµνη

ij∂iX
µ∂jX

ν − α′Rµρ1νρ2X
ρ1Xρ2ηij∂iX

µ∂jX
ν
)
, (1.26)

as we can always choose gij = ηij . We can now compute the one-loop in α′-correction to the Gµν by

computing the diagram I.3, using the vertex arising from the interaction therm in (1.26) proportional
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to Rµρνγp
ρ
i p
iγ . Note that the space-time index here is merely a label denoting the momentum

Figure I.3: Feynman diagram of the one-loop correction to the propagator of the massless bosnonic

fields Xµ.

corresponding to the d = 26 bosonic fields Xρ. Thus the one-loop diagram, using the well known

Feynman rules for scalar fields is given by

= −
∫

dp2

2π2

∑
γ=ρ

1

pipi
δ(p(ρ), p)α′Rµρνγp

ρ
i p
iγ = − lim

µ→∞
α′Rµρνγδ

ργ µ
2

4π
, (1.27)

where we have used polar coordinate to evaluate the integral,9 and introduced the mass cut off µ.

Note that it is quadratic in the cut off scale µ, and furthermore that in flat normal coordinates

Rµρνγδ
ργ = Rµν , the Ricci tensor in normal coordinates. Thus one needs to introduce the counter-term

α′µ2

4π Rµνη
ij∂iX

µ∂jX
ν , which can be absorbed by a wave function renormalisation and a redefinition

of the coupling as

Gµν → Gµν(µ) := Gµν +
α′µ2

4π
Rµν . (1.29)

We can now compute the renormalisation group beta-function, which is defined as βµν ∝ µ
∂Gµν(µ)

∂µ =
α′µ2

2π Rµν .10 Thus we see that the coupling runs quadratically with cut-off scale. We want the non-

linear sigma model coupled to gravity to obey conformal symmetry, which is the invariance of change

of coordinates σi → σ′i(σ) such that the world-sheet metric changes as

gij(σ)→ Ω2(σ)gij(σ). (1.30)

From (1.30) one infers that the physics arising from a conformally invariant theory is not dependent

on the length scale, which is furthermore equivalent to saying that its couplings cannot run with

any energy scale. Thus we conclude from our previous analysis that in order to restore conformal

invariance at one-loop level we need to demand that Rµν = 0. Hence the space-time has to be Ricci-

flat in order for the non-linear sigma model to be conformally invariant. Note that this is the E.O.M.

9Since the Riemann tensor does not depend on the integration variable one is left with the same integrand for the

d = 26 bosonic fields running in the loop. Note that since naturally only one field can run in the loop the sum in (1.27)

is restricted to γ = ρ and δ(p(ρ), p). We choose polar coordinates p0 = p cosφ, p1 = p sinφ, with the radial coordinate

p =
√
pipi, to find∫
dp2

(2π)2
eip(σ−σ

′) =

∫
R+

∫ 2π

0

dpdφ

(2π)2
p eip(σ−σ

′) = lim
µ→∞

−1 + eiµ(σ−σ′)(1− iµ(σ − σ′))
2π(σ − σ′)2

σ−σ′→0−→ lim
µ→∞

µ2

4π
, (1.28)

were we have used the cut off in the momentum integration µ.
10Note that strictly speaking this beta-function is different from the one obtained in (1.23), since we have used a

different renormalization scheme.
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of free Einstein gravity sourced by the Einstein-Hilbert action

S ∼
∫
R ∗26 1 . (1.31)

Thus remarkably, we were led to incorporate the dynamics of the gravity upon the background field

Gµν of the string. Ricci-flatness is a sufficient condition to guarantee the vanishing of the beta-function

at two and three-loop level [22], but will be altered at four loops as we will discuss in more detail in

section 2.2. Let us note that Ricci-flatness is a local statement and does not imply that the entire

space is equivalent to Minkowski space. In fact a major part of this work will deal with Ricci-flat

Calabi-Yau manifolds, which are topologically far from trivial.

Let us return to the previous discussion where string couples to all background fields (1.17). We

found that the background fields Gµν , Bµν and Φ are subordinate to differential equations (1.23) and

(1.24), which following [21] can be derived as the E.O.M.’s from the 26-dimensional action

S =
1

κ0

∫
e−2Φ

(
R− 1

12
HµνρH

µνρ + 4∇µΦ∇µΦ
)
∗26 1 , (1.32)

with κ0 ∝ l24
s . Among other things we encounter the Einstein-Hilbert term in (1.32), which seeds

classical gravity. We conclude that one derives (1.32) in a perturbative regime in terms of α′, by

expanding the couplings of the non-linear sigma model to leading order in α′. For this to be a

reasonable approach the ripples in space-time need to be much bigger than the string length. In

other words the energy scale at which (1.32) describes physics with high precision, is much smaller

than Mp. Therefore one considers (1.32) to be the low-energy effective action of the bosonic string

describing the low-energy dynamics of the fields G,B,Φ, which in return correspond to the massless

first excited state of the bosonic quantum string. Let me emphasize the beauty in this, we started

with the classical relativistic free string in flat Minkowski space and merely just due to symmetry

constraints of the arising quantum theory of the string, we were led to (1.32), which among other

things describes gravity.

1.2 The supersymmetric string

Supersymmetry relates particles of different spin, namely it exchanges bosons to fermions and vice

versa [23]. Since their theoretical introduction in the 1970 ’s, supersymmetric quantum field theories, in

particular extensions of the standard model have been a flourishing field of research, although there has

not been found any experimental evidence for its realization in nature up to now. In supersymmetric

theories the mass of the bosons and their supersymmetric partners given by fermions are equal, which

is clearly not observed in nature thus this symmetry needs to be broken at some higher scale. However,

supersymmetric extensions of the Standard Model help to solve many problems of the Standard Model,

which we know lacks completeness. Among other things it solves the hirachy problem and improves

gauge coupling unification, see e.g. [24].

In this section we will discuss supersymmetry on the world-sheet of the string and its effect on
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the resulting supersymmetric effective field theories in analogy to the discussion of 1.1, given by

supergravity theories. We will then comment on dualities of the various effective superstring theories.

1.2.1 World-sheet fermions and supersymmetry

Let us introduce world-sheet supersymmetry by adding fermionic degrees of freedom to the bosonic

string action (1.7). Note that the world-sheet is embedded into d-dimensional space-time, thus the

fermionic degrees of freedom are d massless Majorana fermions, whose dynamics on the world-sheet

is described by the two-dimensional Dirac action as

S =
1

4π

∫
d2σ
( 1

α′
∂iX

µ∂iXµ + ψ̄µρ
i∂iψ

µ
)
, (1.33)

where ψ is a two component spinor arranged with its cousins to transform in the vector representation

ψµ of SO(1, d − 1), and ρi are the two-dimensional Dirac matrices such that {ρi, ρj} = 2ηij .11 The

components of the spinor are given by Grassmann numbers obeying

{ψµ, ψν} = 0 , (1.35)

where µ = 0, .., d− 1. The action (1.33) is invariant under the supersymmetry transformations

δXµ = α′ ε̄ψµ , (1.36)

δψµ = ρi∂iX
µε , (1.37)

where ε is the infinitesimal supersymmetry parameter, being a constant Majorana spinor. Physical

observables of bosons are different in nature than that of fermions, which need to be quadratic in the

fermionic field ψ. It is therefore consistent for closed world-sheet fermions to be periodic ψµ(σ, τ) =

ψµ(σ + 2π, τ) or anti-periodic ψµ(σ, τ) = −ψµ(σ + 2π, τ). These are called Ramond and Neveu-

Schwarz boundary conditions, respectively, which in principle could give rise to different physical

theories. However, it turns out that these constitute two sectors of the same theory. In fact, more

precisely, after quantization one needs to combine states from both fermionic sectors and the bosonic

one to build physical consistent theories. Furthermore, one concludes that there are exactly five

different ways to do so, which result in the five unique superstring theories IIB , IIA , Het E8 × E8,

Het SO(32) and type I.

1.2.2 The five unique supersymmetric strings

Since we have introduced new fermionic fields to the string theory action we will perform a discussion

in analogy to the one of the bosonic string, in section 1.1. We start by deriving the massless excitations

11

ρ0 =

(
0 −1

1 0

)
, ρ1 =

(
0 1

1 0

)
. (1.34)



20 Chapter I. Introduction

arising from the fermionic world-sheet string (1.33), to then proceed by analyzing which fields they

correspond to, and in particular study the effective field theory action that governs their dynamics for

low energies.

The naive quantization of (1.33) proceeds as in section 1.1 for the bosonic string. One can solve the

E.O.M.’s of the world-sheet by decomposing the d-fermionic fields in right and left-moving components

ψµ = ψµL+ψµR, and then by Fourier expanding the periodic (anti-periodic) directions in new coordinates

σ± = τ ± σ, which results in

ψL/Rµ(σ±) ∝
∑
m

ψL/Rµn e−imσ
±

, m = n (m = n+
1

2
) , n ∈ Z . (1.38)

The periodic and anti-periodic boundary conditions constrain the mode expansion index to be integer

and half-integer, respectively. By going to light-cone gauge one breaks manifest space-time Lorentz

invariance due to singling out one preferred space direction in which the string moves, thus one is left

with the i = 2, .., d transverse oscillations. To quantize the fermionic string one promotes the spinor

fields to operator-valued fields obeying the equal-time anti-commutation relations

{ψµa (σ, τ), ψνb (σ′, τ)} = 0 , and {ψµa (σ, τ),Πb
ν(σ′, τ)} = δa

bδ(σ − σ′) , (1.39)

with the conjugate momentum Πa
µ = δL

δ∂0ψ
µ
a

. These translate into anti-commutation relations of the

mode expansion coefficients (1.38), which promote to operators and obey

{ψR/Lim , ψ
L/Rj
m′ } = 0 {ψL/Rim , ψ

L/Rj
m′ } = δijδm,−m′ , (1.40)

with m,m′ = n ∈ Z for the R-sector, and m,m′ = n+ 1
2 , n ∈ Z for the NS-sector. We are interested

in the spectrum of (1.33), which combines now the bosonic and fermionic side. The invariant mass of

the left and right-moving sector needs to be equal for consistency M2 = 2M2
L = 2M2

R, which results

in

M2
NS =

2

α′

(
NNS +NB −

d− 2

16

)
, M2

R =
2

α′

(
NR +NB

)
, (1.41)

for the NS and the R-sector, respectively. The number operators are

NB =
∑
n∈Z

a
L/R i
−n aL/R in , NNS =

∑
n∈Z

(
n+

1

2

)
ψ
L/R i

−(n+ 1
2

)
ψ
L/R i

(n+ 1
2

)
, and NR =

∑
n∈Z

nψ
L/R i
−n ψL/R in , (1.42)

with creation a
L/R i
−n , ψ

L/R i

−(n+ 1
2

)
, ψ

L/R i
−n and annihilation operators a

L/R i
n , ψ

L/R i

n+ 1
2

, ψ
L/R i
n .

The ground state of the NS-sector (1.41) has negative mass squared thus is tachyonic - as for the

bosonic string. This is problematic but in contrast to the bosonic string it can be removed from the

spectrum via a consistent truncation as we will argue for in a moment. Let us first consider the first

excited state of the NS-sector, which is given via ψ
L/Ri

− 1
2

|0〉. The d− 2 degrees of freedom need to form

a representation of the SO(d − 2) Lorentz group, if Lorentz symmetry shall be obeyed. This is the

Lorentz group for massless particles in d dimensions. Since this state thus needs to be massless we find

from (1.41), that the critical dimension of the superstring is d = 10. Obviously the ground state of

the R-sector is massless and thus well behaved. The first excited states in the NS-sector are a
L/R i
−n |0〉
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and ψ
L/R i

− 1
2

ψ
L/Rj

− 1
2

|0〉, which is anti-symmetry in i, j following from (1.40). Thus this state is traceless

and anti-symmetric and has 1
2(d− 2)(d− 3) degrees of freedom, respectively. In ten dimensions these

become 8⊕ 28 degrees of freedom, which sit in a massive representation of the Lorentz group SO(9),

which reversely could have been used to derive the critical dimension d = 10. A similar argument

can be applied to the first excitation of the R-sector ψ
L/R i
−1 |0〉, which can be equally arranged into

representations of SO(9). There is a subtlety arising, the ground state of the R-sector is massless

but degenerate, since acting upon it with fermionic generators ψ
R/Li
0 results in a state with the same

energy, thus zero mass. It can be shown that the ground state therefore can be represented by a

non-chiral 16 component spinor representation of SO(8), which is reducible into two chiral spinor

representations 8s ⊕ 8c of opposite chirality corresponding to the left and right-moving modes.

Observe that all states originating from the operators ain related to the bosonic world-sheet action

are massive, thus will not give rise to any light degrees of freedom on the field theory side. The

graviton, the Kalb-Ramond field and the dilaton indeed will originate from the operators ψn, which

might seem a bit bizarre from the viewpoint of the bosonic string. Since the vacuum for the bosonic

string 1.1 and for the superstring are not identical, also the first excited states under action with the

operator ai−n are different. Moreover, the observation that all light degrees of freedom originate from

the operators ψn is merely a remnant of the light cone gauge quantization - note that supersymmetry

transformations exchange bosons and fermions.

However, the two sectors of the theory NS and R cannot be combined naively since these leads to

inconsistencies. Furthermore, one needs to truncate the tachyonic ground state of the NS-sector. One

should only perform such a projection if there is a plausible physical argument for its validity. The

guiding principle of this consistent truncation was introduced by Gliozzi, Scherk and Olive (GSO),

[25]. There are two equivalent ways of formulating such an argument. Firstly by introducing a new

quantum number represented by the operator (−1)F , under which the Fermi fields ψµ are odd and

the bosonic fields Xµ are even. More precisely it anti-commutes with NS and R-fermion generators

{(−1)F , ψim} = 0, which implies that states with odd and even fermion generators have eigenvalue

−1 and +1, respectively. In the NS-sector the projector PNS = 1
2

(
1− (−1)F

)
, removes the tachyonic

ground state and all even fermionic generator states. Hence the massless state ψ
L/R i

− 1
2

|0〉 remains in

the spectrum. In the R-sector there is an ambiguity of how to define the projector P±R = 1
2

(
1±(−1)F

)
according to the two different chiralities of the ground state 8s, 8c. But these two projections are

related via space-time parity which exchanges the ground states 8s ↔ 8c.

Secondly, from the observation that the closed string partition function12 arising from (1.33) can

only be modular invariant when string states from both sectors NS and R co-exist, which naturally

implements a GSO projection and removes the tachyonic mode from the NS-sector. Furthermore, one

needs to ensure that the one-loop corrections to the supersymmetric partition function vanish, which

implies target space supersymmetry. Ensuring these two constrains one can find five inequivalent

consistent combinations of states from the NS and R-sector. In other words since we naturally start

12We refer the reader to, e.g. [15, 17], for a more detailed discussion.
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with all excitations of the bosonic and fermionic string, this amounts to the implementation of five

different consistent truncations. These results in the five supersymmetric string theories: type IIB,

type IIA , Het E8×E8, Het SO(32) and type I. Type IIB superstring theory arises when applying the

GSO Projection PNS , P
±
R to the left and right-moving modes yielding a modular invariant partition

function and space-time supersymmetry. There is another combination of these projectors acting

different on the left and right-moving sector, PNs, P
±
R on the left and PNs, P

∓
R on the right-moving

modes, which leaves us with IIA superstring theory.13 We refer the reader to [15] for a detailed

discussion of these truncations, especially for the Heterotic and type I theories.

Analogous to the discussion of the bosonic string we are now - after a bit more work - in a position

to discuss the massless field-content of the superstring theories, focusing in the following on type IIA

and type IIB. The table 1.1 gives the massless states of the type IIB string, composed of its left and

right-moving components, where e.g. |8v〉L,NS is a state in the 8v vector representation of SO(8),

which arises from the left moving NS-sector. The allocation to the left or right-moving sector will be

simply denoted by the left and right side of the tensor product in the following, where ΓMN , BNM ,Φ

are the graviton, the Kalb-Ramond field and the dilation, respectively, as for the bosonic string, and

C(0), C
(2)
MN , and C

(3)
MNO are anti-symmetric form fields, completing the bosonic field-content of IIB. The

| 〉L ⊗ | 〉R representation of SO(8) 10d field-content

|8v〉NS ⊗ |8v〉NS 1⊕ 24v ⊕ 35v GMN , BNM , Φ

|8v〉NS ⊗ |8c〉R 8s ⊕ 56s λ1
a, ψ

1
M a

|8c〉R ⊗ |8v〉NS 8s ⊕ 56s λ2
a, ψ

2
M a

|8c〉R ⊗ |8c〉R 1⊕ 24c ⊕ 35c C(0), C
(2)
MN , C

(4)
MNOP

Table 1.1: Massless bosonic and fermionic field-content of type IIB superstring theory.

fermionic field-content is given by λ
1/2
a , ψ

1/2
M a two gravitinos and dilatinos, respectively. The light states

of the type IIA superstring and their representations can be studied from table 1.2. The spectrum

| 〉L ⊗ | 〉R representation of SO(8) 10d field-content

|8v〉NS ⊗ |8v〉NS 1⊕ 24v ⊕ 35v GMN , BNM ,Φ

|8v〉NS ⊗ |8S〉R 8C ⊕ 56C λ1
a, ψ

1
M a

|8c〉R ⊗ |8v〉NS 8S ⊕ 56S λ2
a, ψ

2
M a

|8c〉R ⊗ |8s〉R 24V ⊕ 35V C
(1)
M , C

(3)
MNO

Table 1.2: Massless bosonic and fermionic field-content of type IIA superstring theory.

differs solely in the form fields C(1), C(3), which have odd number of indices, in contrast to type IIB

13In both cases, IIB and IIA one is left with two physically equivalent theories according to the projection P±R .



1. A short story on strings 23

where they are even C(0), C(2), C(4).

The mass of the excited states of the bosonic and superstring are of order α′, which could be as

high as ∼ 1016GeV .14 Thus all the relevant particles in the standard model and quite far beyond

originate from the massless string excitations, which are given mass via some mechanism.

From a classical string action with commuting and anti-commuting world-sheet variables Xµ, ψµ

respectively, we found the massless quantum excitations give rise to the ten-dimensional fields content

given in table 1.1 and table 1.2. We are now at a stage where it is intriguing to ask for the E.O.M.’s

for the classical background fields of type IIA and type IIB. One can do so by solely using symmetry

constraints and scattering amplitudes. For the moment we will just state the result and focus on

dualities between these different theories for the remainder of this section, we refer the reader to

section 2.2, where we elaborate more on the connection between amplitudes and effective actions. Let

us emphasize again that the effective action is valid in an energy regime where the extendedness of

the string α′ → 0 is not seen and it can be considered a point particle, which restricts the energy scale

of validity to E � 1
ls

. In this limit the dynamics of the II string is governed by the II supergravity

theories. With the field strength of the form fields G(i+1) = dC(i), i = 0, 2, 4 the IIB supergravity

action is given by

SIIB =
1

2κ10

∫
M10

e−2φR ∗ 1 + e−2φdφ ∧ ∗dφ− 1

2
e−2φH(3) ∧ ∗H(3) − 1

2
G(1) ∧ ∗G(1) − 1

2
G̃(3) ∧ ∗G̃(3)

− 1

2
G̃(5) ∧ ∗G̃(5) − 1

2
C(4) ∧H(3) ∧G(3) , (1.43)

where κ10 = (2π)3√πα′2gs, and

G̃(3) = G(3) − C(0)H(3) , G̃(5) = G(5) − 1

2
C(2) ∧H(3) +

1

2
B(2) ∧G(3) . (1.44)

The five-form field strength is self-dual, which cannot be implemented in the Lagrangian directly thus

has to be imposed as a separate equation G(5) = ∗G(5).

The IIA supergravity theory is given by

SIIA =
1

2κ10

∫
M10

e−2φR ∗ 1 + e−2φdφ ∧ dφ− 1

2
e−2φH(3) ∧ ∗H(3) − 1

2
G(2) ∧ ∗G(2)

− 1

2
G̃(4) ∧ ∗G̃(4) − 1

2
B(2) ∧G(4) ∧G(4) , (1.45)

with

G̃(4) = G(4) − C(1) ∧H(3) . (1.46)

Not surprisingly the two effective actions (1.43) and (1.45) are rather similar and only differ from each

other in respect to the field contents in the form fields, see table 1.1 and table 1.2 .

14Note that in some scenarios it can be much lower [18, 19].
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1.2.3 Dualities and M-theory

Let us next comment on one of the most remarkable encounters of superstring theories. Additionally

to the high uniqueness of only five different theories originating from the superstring, these theories

are furthermore dual to each other. Rising in prominence since the second half of the last century,

dualities among different physical theories have become a very powerful tool to understand nature,

its most beautiful example might be the AdS/CFT duality [26]. The notion of a duality describes

the fact that two seemingly different physical theories can under certain circumstances describe the

same physics in a regime of their validity. Thus what is hard to derive in one theory might be an easy

question to answer in the language of the other and vice versa. Let us propagate the IIB superstring

in the space M8,1 × S1, where the circle S1 has the radius rs. One can show that this is the same

physical theory as the IIA string propagating in a the space M8,1 × S1 but now with radius of the

circle 1
rs

. Thus the difference in the target space geometry reflects onto the massless spectrum of the

string.

This is the first time we have met the influence of geometry on effective physics in this work.

The described duality goes under the name T-duality and will play a crucial role in the discussion

of F-theory in section 3. A long with the massless closed string spectrum, which changes under T-

duality the non perturbative objects Dp-branes are mapped from type IIB ↔ IIA and thus the open

string spectrum, see e.g. [27, 28, 29, 30]. Furthermore, type IIB supergravity is invariant under a

weak to strong coupling transformation, thus one can go from an asymptotically free region of the

theory gs � 1 to a strongly coupled regime without any change of the effective physics, which is

quite remarkable. This strong weak coupling duality gs → 1
gs

more commonly goes under the name

S-duality. We can redefine the fields in the type IIB action (1.43) such that its SL(2,Z) invariance

becomes manifest, which in particular captures the S-duality invariance. To make SL(2,Z) symmetry

manifest firstly, we need to bring (1.43) in canonical Einstein-Hilbert form, which is done via a Weyl

rescaling

gMN → e
Φ
2 gMN , (1.47)

which according to (A.40) exactly cancels the Φ dependence. Furthermore, one rewrites the action by

packaging Φ and C(0) into a new field referred to as the axio-dilaton

τ := C(0) + i e−Φ , (1.48)

which gives

SIIB =
1

2κ10

∫
M10

R∗1+
1

Imτ2
dτ∧dτ̄+

1

Imτ
G̃(3)∧∗G̃(3)− 1

2
G̃(5)∧∗G̃(5)− 1

2
C(4)∧H(3)∧G(3) , (1.49)

being equivalent to (1.43). This action is now evidently invariant under SL(2,Z), 15 which acts on

15It is straightforward to show that

dτ ∧ ∗dτ̄ → 1

Imaτ+b
cτ+d

2 d

(
aτ + b

cτ + d

)
∧ ∗d

(
aτ̄ + b

cτ̄ + d

)
= dτ ∧ ∗dτ̄ (1.50)

for any a, b, c, d ∈ R, thus is given by SL(2,R). The SL(2,Z) arises due to non-perturbative instanton effects, which

break the classical SL(2,R) symmetry to a SL(2,Z) symmetry.
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(1.49) as

τ → aτ + b

cτ + d
,

(
H(3)

F (3)

)
→

(
d c

b a

)(
H(3)

F (3)

)
, G̃(5) → G̃(5) , and gMN → gMN ,

for

(
a b

c d

)
∈ SL(2,Z) ⇔ a, b, c, d ∈ Z with ad− bc = 1 . (1.51)

The strong-weak symmetry map is an element of SL(2,Z), as seen by chossing the element a = d =

0, b = c = 1, which transforms τ → 1
τ . Note that the type IIB string coupling is given by gIIB = eΦ

and by using (1.48) one infers that gIIB → 1
gIIB

, thus strong to weak coupling and vice versa.

The five different superstring theories are connected by S and T -dualities. However, to form a

connected chain amongst all of them one misses a link, which is filled in by M-theory. Since the

type IIB type IIA

type I

Het E8 x E8Het SO(32)

M-theory

S-duality
T-duality

Figure I.4: A diagrammatic depiction of the chain of dualitites among the five different string theories,

centered around M-theory.

microscopic description of M-theory is not known it is thus best accessible through its low-energy

effective action given by eleven-dimensional supergravity. But there is plenty of undeniable indirect

evidence for the existence of M-theory. Various attempts have been made to describe its fundamental

degrees of freedom, the most promising proposal for a microscopic description is based on matrix

theory, describing it by taking a certain kinematic limit of a stack of D0-branes [31, 32, 33]. The

dualitites between the string theories hold in the world-sheet picture, but in particular they are valid

in the various low-energy effective actions. When applying S-duality to type IIA supergravity the

strong coupling side is described by a theory living in eleven instead of ten dimensions, being eleven-

dimensional supergravity, which is appealing on its own right due to its high uniqueness being the

only supergravity theory in eleven dimensions. M-theory, in the following used as a synonym for

eleven-dimensional supergravity, when compactified on M10 × S1 yields type IIA supergravity. The

bosonic part of the 11d supergravity action is

S(0) =
1

2κ2
11

∫ [
R̂∗̂1− 1

2
Ĝ ∧ ∗̂Ĝ− 1

6
Ĉ ∧ Ĝ ∧ Ĝ

]
, (1.52)

first worked out in [34], with R̂ the Ricci scalar evaluated with conventions introduced in appendix

A, and κ11 = 1√
2
(2π)4 l

9
2
M , with the eleven-dimensional Planck length lM . The hat denotes eleven-
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dimensional quantities in the following, such as Ĉ the three-form field and Ĝ = dĈ its four-form field

strength. The fermionic side of eleven-dimensional supergravity as its supersymmetry variations will

be discussed in section 2.2.1, where we also comment on the construction of (1.52). We will only focus

on the bosonic side in the following.

The paradigm of dimensional reduction of a theory is elaborated on in more detail in section 2.4.

For now let us state that the principal idea. If one is only interested in the theory living in the

subspace of the total space, here M10 of M11 = M10 × S1, one needs to consistently integrate out

the fields living on S1. One does this by expanding the fields living on the internal space - referring

to S1 here - in the most general fashion, thus in this case one Fourier expands them on S1. This

gives rise to a whole tower of so called Kaluza-Klein (KK) states, where only the massless modes

shall be kept. After expanding the eleven-dimensional action one needs to integrate out the whole

massive Kaluza-Klein tower, which leaves one with two scenarios. Firstly, the remaining light modes

do not couple to the massive modes, which means that for any energy or size of the internal space the

resulting lower-dimensional theory is unaltered, one refers to this as a consistent truncation. Secondly,

this is not the case, and in principle we can not separate the light modes from the massive ones in a

clean way, which implies that one needs a separation of energy scales to argue that the massive modes

are not present, or in other words can not be excited. Since the masses of the heavy Kaluza-Klein

modes are of order of the size of the internal space, the energy scale at which the resulting lower

dimensional inconsistently truncated theory is valid, is much smaller than the so called KK-scale. The

most general ansatz giving rise to massless fields for the eleven-dimensional metric is

ĜMN = e−
2Φ
3

(
gµν + e2ΦC

(1)
µ C

(1)
ν e2ΦC

(1)
µ

e2ΦC
(1)
ν e2Φ

)
, (1.53)

with µ, ν = 0, 1, . . . , 9, chosen such that the 10d scalar and vector appear already in the right de-

composition of Φ and C(1), anticipating the matching with the dilaton and one-form field of type IIA

supergravity. The various components of the eleven-dimensional field strength gives rise to 10d fields,

where we again anticipate the identification with the well known type IIA supergravity spectrum. One

finds that

Ĉµνρ = C(3)
µνρ and Ĉµν11 = B(2)

µν , (1.54)

with the corresponding field strengths Ĝµνργ = G
(3)
µνργ and Ĝµνρ11 = H

(3)
µνρ. The reduction on a circle

is best performed transforming the components of the eleven-dimensional four-form field strength to

co-tangent space coordinates using the eleven and ten-dimensional vielbeins, êâM , eaM with â and a

denoting eleven and ten-dimensional flat tangent space indices, respectively. 16 From

Ĝâb̂ĉd̂ = eâ
Meb̂

Neĉ
Oed̂

P ĜMNOP , (1.56)

16 With the Vielbein êaM and the inverse vielbein êa
M derived from (1.53) where êâM ê

b̂
N η̂âb̂ = ĜMN and

êâ
M êb̂

N ĜMN = η̂âb̂, with η̂ the eleven-dimensional flat Minkowski metric.

êâM =

(
e−

Φ
3 eaµ 0

e
2Φ
3 C

(1)
µ e

2Φ
3

)
andêâ

M =

(
e

Φ
3 ea

µ 0

e−
Φ
3 C

(1)
µ ea

µ e−
2Φ
3

)
. (1.55)
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one infers upon using (1.55) and (1.54) that

Ĝabcd = e
4Φ
3

(
G

(4)
abcd + 4C

(1)
[a H

(3)
bcd]

)
=: e

4Φ
3 G̃

(4)
abcd and Ĝabc11 = e

Φ
3 H

(3)
abc . (1.57)

By going to tangent space indices in (1.57) one notices that the degrees of freedom from the metric C(1)

and Φ combine with the eleven-dimensional field strength do give the type IIA four-form field G̃(4).

To perform the reduction at this point boils down to plugging the field identifications (1.57),(1.55)

and (1.53) into the action (1.52), which in component notion reads

S(0) =
1

2κ2
11

∫ [
R̂− 1

2

1

4!
ĜMNOP Ĝ

MNOP − 1

6

1

3!4!4!
εN1...N11ĈN1N2N3ĜN4N5N6N7ĜN8N9N10N11

]
∗̂1 .

(1.58)

By transforming (1.58) to tangent space indices analogous to (1.56) one can naively split each index

â → (a, 11) and replace the components according to (1.57). Reducting the Einstein-Hilbert term

is computationally a bit more involved but conceptually one proceeds analogously. Note that R̂ =

R̂MNM
N = R̂âb̂â

b̂, which decomposes into Christoffel symbols, that can be written in flat tangent space

coordinates to give the various components. Performing the substitution of the lower-dimensional fields

into (1.58), one indeed arrives at the type IIA supergravity action (1.45), with string coupling given in

terms of the radius of the circle as gs = R√
α′

. By using that the eleven and ten-dimensional Newton’s

constant are related as

G11 = 2πRG10 , (1.59)

and with the identification 16πG11 = 2κ2
11 = (2π)8l9M in eleven dimensions and 16πG10 = 2κ2

10 =

(2π)7l8sg
2
s in ten dimensions, one finds that

l9M = R l8s g
2
s . (1.60)

Thus naturally, one can express the ten-dimensional couplings in terms of the eleven-dimensional ones.

2 Effective field theory and strings

In section 1.1 we have introduced the notion of an effective field theory of a string theory when

describing its effective physics in the limit α′ → 0. This description is valid when the considered energy

scale is much smaller than the string scale. Furthermore, we noted that for inconsitent truncations

in dimensional reductions of theories the fields that are integrated out are suppressed by the volume

of the internal space setting a cut-off scale, referred to as the KK-scale. Hence the resulting effective

theory is only valid in regimes where the energy is much smaller than the KK-scale. The paradigm of

scale separation is in fact maybe the the most fundamental concept inherent to all physical theories.

Classical mechanics is only accurate and thus valid for velocities much smaller than the speed of light.

The movement of planets around the sun can be described neglecting their extendedness, thus going

to a limit volume→ 0. It is quite remarkable that the anomalous magnetic moment of the electron is

known to ten significant digits without involving any TeV scale physics. It is not important to consider

heavy states in these computations since they decouple. This separation of scales is the reason why
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we need to build bigger colliders instead of low energy precision measurements. This paradigm can

be perfectly implemented in the language of quantum field theories as we will show in section 2.1,

and can be applied to renormalizable as well as non-renormalizable quantum field theories. Note that

supergravity theories are non-renormalizable because they incorporate gravity via the Einstein-Hilbert

term.17

This concept derives a low energy field theory from a not necessarily ultraviolet complete quantum

field theory valid at higher scales. Hence, this is in principal somewhat different from the limit α′ → 0

where the extendedness of the string and massive states thereof are washed away. But nevertheless,

these ideas rely on the same notion of deriving low energy physics by consistently neglecting higher

energy or mass-states. In section 2.2 we then show how one can derive string effective field theory

actions from the matching with superstring scattering amplitudes and taking the limit α′ → 0. This

results in ten-dimensional supergravity theories and corrections thereof. We also give an introduction

to supergravity theories since their interplay with string theory is fundamental. In section 2.4 we

focus on the paradigm of dimensional reduction of supergravity theories. Since the superstring lives in

ten-dimensional space-time one needs to establish a connection to reality, thus six of the dimensions

need to be small and curled-up. The idea first introduced by Kaluza and Klein is discussed in detail,

with a focus on supersymmetry preserving reductions.

2.1 The notion of an effective field theory

In the following we will simple consider a light scalar φ and a heavy scalar field Φ in four space-time

dimensions, to show the main techniques and principles. What quantitatively distinguishes a light

particle from a heavy particle is that at the energy we want the theory to be applicable, the light

particle can be generated on shell whereas the heavy ones cannot. Formally we can integrate out the

heavy states by performing a path integral over the heavy states only∫
DΦeiS(φ,Φ) = eiSeff (φ) . (2.1)

Since one is not capable to perform the path integral analytically in the most cases one is limited to

a perturbative approach by computing Feynman diagrams. The effective Lagrangian density can be

expanded in a finite number of terms, which are not suppressed by the cut-off scale Λ and an infinite

tower of higher-dimensional local operators On as

Leff (φ) = L0 +
∑
n

1

ΛdimOn−4
On . (2.2)

In practice, one can truncate the infinite sum over higher-dimensional operators since at higher orders

the effects to the action and therefore to the low energy observables become smaller. Note that one

anyway desires an approximate picture. Since one truncates the sum of higher-dimensional operators

17Recent work shows that any four-particle amplitude in N = 8 maximal supergravity in four and five dimensions is

ultraviolet finite at four loops [35].
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this process is equally valid for renormalizable as well as non-renormalizable theories. The breakdown

scale Λ of the theory corresponds to the on shell contribution from heavy states.

One can formally predict the magnitude of different operators Oi by analyzing how they scale

with energy simply done by power counting. Using that [mass] = [length−1] = 1 one infers that the

Lagrangian density has [L] = 4 since the action
∫
d4xL is dimensionless. The kinetic energy of the

scalar in four space-time dimensions ∂µΦ∂µΦ implies that [Φ] = 1. The toy-model Lagrangian of the

high energy theory of a massless scalar φ and a massive scalar Φ shall be

L(φ,Φ) =
1

2
∂µφ∂

µφ+
1

2
∂µΦ∂µΦ− M2

2
Φ2 − λ

2
φ2Φ , (2.3)

with m�M , and [λ] = 1, thus the interaction terms correspond to relevant and marginal operators,

respectively.18 This results in the following Feynman rules 2.1 using the full and the dashed line for

the light and heavy field, respectively. We next consider tree-level effects from the full path integral

x y ∆φ(x− y) = ei(x−y)

p2

x y ∆Φ(x− y) = ei(x−y)

p2−M2

−iλ

Table 2.1: Feynman rules of the action (2.3).

(2.1) of the action (2.3).

�

p2

p1

p4

p3

�

p2

p1

p4

p3

�

p2

p1

p4

p3

(a) (b) (c)

Table 2.2: Tree-level φφ→ φφ scattering diagrams for the s, t, u channel.

At tree-level the Feynman diagrams we need to compute are given in table 2.2. The first diagram

18Note that in three dimensions we find that [φ] = [Φ] = 1/2 and thus [λ] = 2.



30 Chapter I. Introduction

in table 2.2, which corresponds to the s-channel results in

�

p2

p1

p4

p3

= (−iλ)2 1
(p1+p2)2−M2 = − λ2

M2
1

(p1+p2)2

M2 −1
= λ2

M2

(
1 + (p1+p2)2

M2 +O( p4

M4 )
)
,

(2.4)

where we formed an expansion in p � M , which is a valid choice since the energies for the on-shell

fields φ are assumed to be much smaller than M . The u = (p1 − p3)2 and t = (p1 − p4)2 diagram (b)

and (c), respectively, contribute the same momentum independent contribution to the amplitude, the

next to leading order amplitude depending on the momenta vanishes since s+ t+ u = 0. We want to

reproduce the amplitude (2.4) for the φφ→ φφ scattering to leading and next to leading order in the

momentum expansion without involving the heavy states, which determines the effective Lagrangian
19 to be

L
(0)
eff (φ) =

1

2
∂µφ∂

µφ+
λ2

8M2
φ4 − λ2

2M4
∂µφ∂

µφφ2 . (2.5)

For the more involved discussion of one-loop amplitude matching we refer the reader to [36, 37].

However, a perturbative approach for the toy model (2.3) is not necessary since one can exactly

integrate out the massive scalar in the path integral as we will show next. One may use the exact

formula for path integrals for operators A and the functions B(x), C(x) given by∫
DφExp

[
−
∫ (1

2
φ(x)Aφ(x) +B(x)φ(x) + C(x)

)
∗d 1

]
=
e
∫

( 1
2
B(x)A−1B(x)−C(x))∗d1

√
detA

. (2.6)

We compute the effective theory by evaluating the path integral of the massive states20∫
DφDΦe−i

∫
L(φ,Φ) = (detA)−

1
2

∫
Dφe−i

∫
(− 1

2
∂µφ∂µφ+ 1

2
B(x)A−1B(x)−C(x))∗41 (2.7)

with A(x) = � +M2 − iε , and B(x) = −λ/2φ(x)2 and C(x) = 0, and with

(detA)−
1
2 =

∫
DΦe−

i
2

∫
Φ(x)(�+M2−iε)Φ(x)∗41 , (2.8)

which we can absorb in the normalization since it is just the path integral of a free theory. Note that

we performed a wick rotation in the path integral to be in Euclidean space. One thus finds the exact

effective theory to be

Leff (φ) =
1

2
∂µφ∂

µφ+
λ2

8
φ2 1

−� +M2 − iε
φ2 , (2.9)

19We have used that a coupling of the form g/4∂µφ∂
µφφ2 gives rise to a vertex −ig(p1 · p2 + p1 · p3 + p1 · p4 + p2 · p3 +

p2 · p4 + p3 · p4). Furthermore, that s = (p1 + p2) = 2p1 · p2 etc. , and that s+ t+ u = 0 since the external particles are

massless. Note that the amplitudes in the ultraviolet and effective theory vanish for the next to leading order momentum

expansion, thus we fixed the pre-factor by demanding that the factor of the vanishing kinematic combination matches

between the two theories.
20Note that we are working in a flat metric background here.
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where the minus in the denominator is due to the wick rotation back to Lorentzian signature. We are

considering only external momenta at energies much smaller than the mass M of the particle Φ, which

was integrated out. Thus �
M2φ � 1, which can be seen by going to momentum space where morally

this gives p2

M2φ(p)� 1. Hence we can expand the inverse operator in powers of �
M2 , which gives

Leff (φ) =
1

2
∂µφ∂

µφ+
λ2

8M2
φ2

(
1 +

�
M2
−
(

�
M2

)2

+ . . . ...

)
φ2 . (2.10)

We obtain by partial integration that the leading order contributions of (2.10) can be written as

Leff (φ) =
1

2
∂µφ∂

µφ+
λ2

8M2
φ4 − λ2

2M4
φ2∂µφ∂

µφ+ . . . . (2.11)

Comparing (2.5) and (2.10) one notes that in the perturbative approach one naturally only infers the

leading order terms of the expansion (2.10). The leading order action given by (2.11) matches the

low-energy effective action obtained by the perturbative approach (2.5).

2.2 String effective actions

In the previous section we have discussed how to integrate out high-energy degrees of freedom from

a field theory, yielding an effective low-energy theory, which governs certain remnants of the high-

energy dynamics. Morally, this is exactly what happens when taking the field theory limit α′ → 0

of string theory, discussed already in section 2.1. Alternatively to the vanishing of the sigma model

beta-function in section 1.1 we will in the following give a different systematic approach for deriving

the effective action. Starting from string scattering amplitudes we construct an effective field theory

such that the amplitudes of the field theory mimic the ones of the string theory to a certain accuracy.

This is morally the procedure we applied in section 2.1, matching the scattering amplitudes of the

high energy field theory. The non-linear sigma model in 1 + 1 dimensions with Ricci-flat target space

does not violate conformal and Weyl-invariance for one, two and three loops in α′, as commented

on in section 2.1. If this would hold to all order in α′, any Ricci-flat space-time would constitute

a solution to type II string theory, and furthermore would imply that gravitational wave scattering

as described by Einsteins equation RMN = 0, is governed by the same law in string theory. This is

not to be expected since the tree-level graviton-graviton scattering in string theory is fundamentally

different than gravitational wave scattering. Indeed, it turns out that at fourth order in α′ one needs

to add further counter-terms to the non-linear sigma model to guarantee the vanishing of the beta-

function, which in return modifies the effective action. Equivalently this is necessary for the effective

action to reproduce the string scattering amplitude at this order. Following the procedure of section

2.1 to derive the effective action one writes down all couplings allowed by symmetry for the entire

light field-content, adding higher-dimensional operators. The standard ten-dimensional N = 2 type

II supergravity actions (1.43) and (1.45) are enough to match the one, two and three loop scattering

amplitudes in α′, these results are at tree-level in gs. Thus there will not be any higher-order operators

in the effective field theory containing only one, two or three fields. However, it is expected that to

match the four loop result one requires terms containing four Riemann tensors, which is exactly what
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we will encounter soon. The first non-vanishing correction thus carries eight derivatives and was

derived in literature via vanishing of the beta-function [38, 39, 40, 41, 42, 43] as well as from tree-level

four graviton scattering [44, 45]. Before discussing the derivation of the correction to the effective

action let us state the result. The relevant corrections arising from tree-level in gs four graviton

scattering are

δL ∝
(
t8t8R

4 +
1

8
ε10ε10R

4
)

. (2.12)

With the tensor t8 defined in (A.35) and ε10 the ten-dimensional Levi-Civita tensor. The explicit

index structure of t8t8R
4and ε10ε10R

4 are given in (2.67). One-loop in gs string scattering of four

gravitons is given by the torus diagrams with four graviton vertex operator insertions, which results

in a contribution to the effective action given by

δL ∝
(
t8t8R

4 ∓ 1

8
ε10ε10R

4
)
, (2.13)

with the minus and plus sign for type IIA and IIB respectively. The torus diagram with four graviton

and one Kalb-Ramond field vertex operator insertions yields the correction

δL ∝ B2 ∧
(
trR4 − 1

4

(
trR2

)2)
, (2.14)

where the index structure of the traces is given in (2.3).

The four graviton string amplitudes at tree and one-loop level have been first computed in [46]

and [47] respectively, see as well e.g. [11, 12]. Let us next review the derivation of the tree-level

amplitude and the construction of the correction (2.12) to the effective action. The four graviton

scattering amplitude tree diagram is a closed string diagram. KLT [48] showed that any closed

string diagram can be written as a product of left and right-moving open string diagrams, thus one

needs to evaluate the open string diagram and secondly apply the KLT relation. This is particularly

simple for a three particle scattering, which reproduces an open string tree amplitude Aop3 (p1, p2, p3) =

gζA1 ζ
B
2 ζ

C
3 VABC(p1, p2, p3). With VABC depending on the external momenta p1, p2, p3 and carrying

information of the kinematics of the scattering process and ζA the polarization vector or spinor,

depending on the nature of the external state. The corresponding closed string amplitude derives to

Acl3 (p1, p2, p3) = κζAĀ1 ζBB̄2 ζCC̄3 VABC(
p1

2
,
p2

2
,
p3

2
)VĀB̄C̄(

p1

2
,
p2

2
,
p3

2
) , (2.15)

with ζAB = ζA ⊗ ζB. When computing four-particle scattering it is convenient to introduce Mandel-

stam variables to encode the external momenta s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2.21 The

four-particle open string tree diagrams can be written as

Aop4 (pi, s, t, u) = g2ζA1 ζ
B
2 ζ

C
3 ζ

D
4 KABCD(pi)

Γ( s2)Γ( t2)

Γ(1− u
2 )

, (2.16)

with pi , i = 1, 2, 3, 4 and KABCD(pi) being the kinematic factor of the scattering. The closed string

amplitude can be shown to take the form

Acl4 (pi, s, t, u) = sin
(πt

8

)
Aop4

(pi
2
,
s

4
,
t

4
,
u

4

)
Aop4

(pi
2
,
t

4
,
u

4
,
s

4

)
, (2.17)

21Note that s+t+u =
∑4
i=1 m

2
i as seen by using conservation of momentum p1 +p2 = p3 +p4, which gives s+t+u = 0

for massless external states.
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which using Γ(x)Γ(1− x) sin (πx) = π results in

Acl4 (s, t, u) = −πκ2ζAĀ1 ζBB̄2 ζCC̄3 ζDD̄4 KABCD

(pi
2

)
KĀB̄C̄D̄

(pi
2

) Γ( s8)Γ( t8)Γ(u8 )

Γ(1− s
8)Γ(1− t

8)Γ(1− u
8 )

. (2.18)

We are interested in solely gravitons as external states thus we restrict the further discussion to the

case ζMN = hMN , where hMN is the graviton polarization tensors, see figure I.5. Due to KLT (2.18)

hM2N2
hM4N4

hM6N6 hM8N8

Figure I.5: Schematic depiction of the tree-level scattering amplitude with four graviton vertex opera-

tor insertions with external polarization tensors hMN . The indices are chosen such that it reproduces

the index structure of the external graviton polarization tensors in (2.21).

one only needs to compute the tree-level scattering, note that also ζM = hM in the following. The

details of the computation are beyond the scope of this text but can be found in literature [11]. The

kinematic factor derives to

hL1 h
M
2 hN3 h

O
4 KLMNO(pi) =

(
t8N1N2N3N4N5N6N7N8

−1

2
εN1N2N3N4N5N6N7N8

)
pN1

1 pN3
2 pN5

3 pN7
4 hN2

1 hN4
2 hN6

3 hN8
4 ,

(2.19)

with the tensor t8 defined in (A.35), and ε totally antisymmetric in all its indices. By plugging this

result (2.19) in (2.16) and by expanding the Gamma function

Γ( s8)Γ( t8)Γ(u8 )

Γ(1− s
8)Γ(1− t

8)Γ(1− u
8 )

=
29

stu
− 2ζ(3) +O(s, u, t) , (2.20)

with ζ(3) the Riemann zeta-function one finds for the closed string four graviton amplitude

A4 grav =
( 29

stu
− 2ζ(3) + . . .

)(
t8N1N2N3N4N5N6N7N8

− 1

2
εN1N2N3N4N5N6N7N8

)(
t8M1M2M3M4M5M6M7M8

−1

2
εM1M2M3M4M5M6M7M8

)
pN1

1 pN3
2 pN5

3 pN7
4 pM1

1 pM3
2 pM5

3 pM7
4 hN2M2

1 hN4M4
2 hN6M6

3 hN8M8
4 .

(2.21)

The expansion (2.20) is the core of the field theory limit, we expand the full string amplitude in a

regime where the external moment s, u, t are small, thus the on-shell energy of the scattered states,

such that we can describe the leading terms by a field theory. Note that in this conventions the

Mandelstam variables are dimensionless variables inside (2.20).
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The part of the amplitude (2.21) proportional to 29

stu is reproduced by d = 10 supergravity. To

reproduce the part of the amplitude (2.21) proportional to ζ(3) one needs to add an higher-dimensional

operator to the effective theory. We will now argue for its structure. In linearized gravity gMN = ηMN+

hMN we can identify the external polarization representing the graviton with the linear fluctuation,

where hMN in (2.21) is taken to be transverse pMhMN = 0 and traceless hM
M = 0, see figure

I.5. Furthermore in this linearized approximation one can identify the Riemann tensor from the

combination

RN1M1
N2M2 = 4h[N1

[M1
pN2]pM2] , (2.22)

where indices are raised and lowered with η. Evaluating (2.21) in the linearized gravity limit only the

combination t8 − t8 contributes to the amplitude and thus can be reproduced by adding the term

ζ(3)

3 · 211
t8t8R

4 , (2.23)

with

t8t8R
4 = tM1...M8

8 t8N1...N8R
N1N2

M1M2R
N3N4

M3M4R
N5N6

M5M6R
N7N8

M7M8 , (2.24)

to the effective supergravity theory, which when expanded in g → η+h reproduces (2.21) at order h4.22

Although the ε10− ε10 part seems to appear in (2.21) by reversing the logic and expanding ε10ε10R
4 in

linearized gravity the first non-vanishing contribution is at order h5. Thus it can not be seen by the

four-point amplitude (2.21) and one would need to compute the five-point amplitude. Alternatively

this term has been derived via vanishing of the σ model β function [42, 43]. The tree-level correction

to the effective action then reads

Lα′
3

tree = α′
3 ζ(3)

3 · 211
e−2Φ

(
t8t8R

4 +
1

8
ε10ε10R

4
)
∗10 1 . (2.25)

Note that we added a dilaton dependent term eΦ, which could only arise at the level of the five-point

function but is needed to guarantee SL(2,Z) symmetry in type IIB thus it can be inferred by symmetry

arguments. Interestingly, computing the one-loop four graviton scattering, see figure I.6, one finds

Figure I.6: Schematic depiction of the one-loop scattering amplitude with four graviton vertex operator

insertions with external polarization tensors hMN .

that the same structure t8t8R
4 appears. The term ε10ε10R

4 appears in the effective action only at the

22The factor 3 · 211 is a combination of (2.22) and the combinatorics of the four linearized graviton tree-level term

44 · 4! = 3 · 211.
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level of the five-point function when computing five graviton scattering. Thus in total one finds for

the purely Riemann terms

Lα′
3

R4 =
α′3

3 · 211

(ζ(3)

g2
s

+
π2

3

)
e−2Φ

(
t8t8R

4 +
1

8
ε10ε10R

4
)
∗10 1 . (2.26)

When computing the one-loop five-point function of four gravitons and one Kalb-Ramond field, see

Figure I.7: Schematic depiction of the one-loop scattering amplitude with four graviton vertex operator

insertions and one Kalb-Ramond field vertex operator insertion, with external polarization tensors

hMN and bMN , respectively.

figure I.7, one finds another contribution to the effective action, given by

Lα′
3

BR4 =
1

3 · 211
B2 ∧

(
trR4 − 1

4

(
trR2

)2)
. (2.27)

This concludes our discussion of the derivation of α′-corrections to the type II supergravity theories.

In the next section 2.2.1 we will take a different perspective, starting from local supersymmetry one can

deduce the supergravity actions, which from a string theory point of view are its low-energy effective

actions. Not all higher-derivative corrections can be easily inferred from amplitude computations and

supersymmetry is a powerful tool to complete the picture.

2.2.1 Introduction to supergravity

The paradigm, which leads to supergravity is to promote global supersymmetry to be a local symmetry,

where the spinor parameters ε(x) are arbitrary functions of space-time. In fact realizing supersymmetry

in a theory of gravity enforces it to be local, conversely starting off with local supersymmetry equally

enforces us to think of the local translation parameters as diffeomorphism inferring gravity [49]. Every

supergravity theory contains interaction terms of the fields. The core of supergravity is given by the

gravity or gauge multiplet consisting of the frame field eaM (x), being the vielbein related to the metric

describing the graviton, and a number of N vector-spinor fields ψiM (x) representing the gravitinos

where i = 1, ..,N determines the amount of supersymmetry. In a 4d, N = 1 theory one can add

additional vector
(
φ,AVM , λ

V) and chiral multiplets
(
zα, χα

)
to the theory and promote the well known

global supersymmetry obeying couplings to local ones, where λV , χα are represented by Majorana
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spinors. Local supersymmetry can be established in d ≤ 11 with a specific type of spinor for each

dimension, as for d = 4 it is Majorana or Weyl. As well as supergravity can not be engineered

for every space-time dimension also the amount of supersymmetry is not arbitrary, as for d = 4 we

find N = 1, 2, 4, 8. It is intriguing and vividly to see how local supersymmetry works, therefore we

will devote the next part of this work to the discussion of the universal part of supergravity, solely

containing the gravity multiplet and thus N = 1. The action is

SdSUGRA =
1

2κ

∫
RMNab(ω)eaMeaN ∗d 1− ψ̄µγMNODMψO ∗d 1 , (2.28)

where the volume element written in terms of vielbeins is ∗d1 = e ddx, with e ≡ det eaM and γM1...Mn ≡
γ[M1 · · · γMn] . The gravitino covariant derivative is given by

DMψN ≡ ∂MψN +
1

4
ωMabγ

abψN , (2.29)

where ωMab is the torsion free spin connection. We now want to show that the action (2.28) is invariant

at linear order in the graviton and gravitino variation. Restrictions on the dimensions appear when

considering higher-order variations. One finds that the following variations leave the action invariant

at linear order

δeaM =
1

2
ε̄γaψM , (2.30)

δψM = DM ε(x) = ∂M ε(x) +
1

4
ωMabγ

abε(x) . (2.31)

We will show that this is the right choice in a moment. Note that (2.31) suggests that the gravitino

is the gauge field of local supersymmetry. At higher-order in variations (2.28) is not invariant under

(2.30) and (2.31). In N = 1 and d = 4 one needs to add a four fermion term or equivalently introduce

a connection with torsion such that (2.28) stays formally invariant, but this discussion is beyond the

scope of this text. For other dimensions one must add other fields to enlargen the gravity multiplet

as we will see in the case of eleven dimensions later. Varying the action (2.28) by using (2.31) and

(2.33) one finds

δSSUGRA =
1

2κ2

∫ (
− ε̄γMψN

(
RMN −

1

2
gMNR

)
+

1

4
ε̄γMNORMNabγ

abψO +δhighSSUGRA

)
∗d 1 , (2.32)

where the first term in (2.32) originates from the graviton part and the remaining terms from the

gravitino part of (2.28), including the cubic variation which we denote as δhighSSUGRA.23 For (2.28) to

possess supersymmetry we need δSSUGRA = 0. Focusing on the linear fluctuation in (2.32), we need

to evaluate the product of γ-matrices using some γ-matrix algebra. Let us note that

γMNOγab = eaLeaPγMNOγLP = eaLeaP
(
γMNO

LP + 6γ[MN
[P δ

O]
L] + 6γ[MδN [P δ

O]
L]

)
, (2.34)

which using the symmetries of the Riemann tensor leads to

γMNOγabRMNab = γMNO
LPRMN

LP + 2RMN
O
Pγ

MNP + 4γMRMN
ON + 2γORMN

MN . (2.35)

23To derive (2.32) we use

δeMa = −1

2
ε̄γMψa , δe =

1

2
e
(
ε̄γMψM

)
. (2.33)
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Using the first Bianchi identity (A.3) for the Levi-Civita connection without torsion, the first two

terms in (2.35) vanish. Thus using (2.35) we infer for the variation of the gravitino in (2.32) that

ε̄

4
γMNORMNabγ

abψO = ε̄γMψN
(
RMN −

1

2
gMNR

)
, (2.36)

which exactly cancels the variation originating from the graviton at linear order.

Let us now turn to the study of eleven-dimensional supergravity, the low energy limit of M-theory.

We already noted that the maximal dimension where supergravity can be realized is eleven, further-

more eleven-dimensional supergravity is very simple compared to its cousins in lower dimensions.

Following [50] one can argue by contradiction that there are no supergravity theories in more than

eleven dimensions, moreover it is a unique theory without any cousins. Assume there exists a su-

pergravity theory in d ≥ 11 dimensions than one can compactify it on a torus M4 × T d−4 down to

four dimensions. The concept of KK reductions will be elaborated in section 2.4, for now let us note

that in this compactification all the supersymmetry is preserved in the lower dimensional theory. To

start with an eleven-dimensional supergravity theory we need the minimal content of a graviton and

one gravitino (2.28). The gravitino is represented by an eleven-dimensional 32-component Majorana

spinor, which gives rise to 8 Majorana gravitinos and 56 Majorana graviphotons upon reduction to

four dimensions, which saturate the representation of maximal spin of two, and thus the field-content

of the maximal N = 8 supergravity algebra. Thus by adding another graviton in eleven dimensions,

one has N = 2 supersymmetry, or alternatively by increasing the dimension to d ≥ 12 the arising

degrees of freedom upon reduction need to sit in a representation of spin ≥ 5
2 , of which there do not

exist consistent interactions obeying local supersymmetry, thus the claim follows.

This discussion is quite illuminating and already hints in the direction of a simple theory at least

containing the graviton ĝMN and a gravitino ψ̂. We have seen already in section 1.2.3 that the

spectrum is completed by the 3-form field ÂMNO. Taking a more constructive perspective here we

follow the argument of [34]. The graviton in eleven dimensions is represented by a traceless symmetric

field off-shel d.o.f on-shell d.o.f

φ 1 1

λ 2
d
2
| 1

22
d
2
|

AM d− 1 d− 2

AM1...Mp

( d− 2

p

) ( d− 2

p

)
= (d−2)!

p!(d−2−p)!

ψM (d− 1)2
d
2
| 1

2(d− 3)2
d
2
|

gMN
1
2d(d− 1) 1

2d(d− 3)

Table 2.3: On-shell and off-shell degrees of freedom of various bosonic and fermionic fields relevant in

supergravity theories, with the symbol | denoting the integer part of this number. Furthermore, note

that since A is antisymmetric in all its indices p ≤ d.
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tensor according to 2.2.1 incorporating 44 on shell bosonic states. The gravitino represented by a

Majorana spinor transforms under a representation of SO(d − 2) according to 2.2.1, represented by

128 real fermionic states. Since supersymmetry demands an equal number of fermionic and bosonic

states in the theory we miss 84 bosonic degrees of freedom, which are delivered by the three-form

field AMNO carrying exactly this amount of bosonic states. This is a necessary but not sufficient

requirement for (gMN , AMNO, ψM ) being the complete field content. Let us now argue for the d =

11,N = 1 supergravity action, whose construction is very technical. Hence let us be very brief here.

Incorporating the field-content (gMN , AMNO, ψM ), we minimally need to have the action

S0 =
1

2κ2
11

∫
R̂MNab(ω)êaM êaN ∗̂1− ¯̂

ψµγ
MNODM ψ̂O∗̂1−

1

2 · 4!
ĜMNOP Ĝ

MNOP ∗̂1 , (2.37)

where we have added to (2.28) a kinetic term of the three-form field with Ĝ = dĈ its four-form

field strength. Surely, this action is not invariant under local supersymmetry. Let us postulate the

supersymmetry transformation rules altered by terms with coefficients c1, c2, c3 compared to (2.30)

and (2.31)

δêaM =
1

2
ε̄γaψ̂M , (2.38)

δψ̂M = DM ε(x) +
(
c1γ

NLOP
M + c2γ

LOP δNM
)
ĜNLOP ε , (2.39)

δĈMNO = −c3 ε̄γ[MN ψ̂O] . (2.40)

From (2.39) one may infer that the variation of the gravitino dependent term in (2.37) will solely give

rise to Ĝ dependent terms in δS0. Thus by considering global supersymmetry variations of (2.37)

and by neglecting the Einstein-Hilbert term one infers that c1 = c3
216
√

2
and c2 = − c3

27
√

2
. To fix

c3 = 3
23/2 one computes the commutator of two global supersymmetry transformations [δ1, δ2]AMNOP

and matches this with the local supersymmetry algebra. By promoting ε→ ε(x) to the actual case of

interest, one varies (2.37) and finds a piece JMDM ε with the coefficient being the supercurrent

ĴM =
1

3 · 24

(
γNLOPMQ + 3 · 22γNLĝMOĝPQ

)
ĜNLOP ψ̂Q . (2.41)

Constructing δS0 one finds terms proportional to γM1...M9 ∝ εM1...M11γM10M11 , which do not cancel

and lead to the introduction of the Chern-Simons term to the action given by24

SCS = −1

6

1

2κ2

∫
Ĉ ∧ Ĝ ∧ Ĝ . (2.45)

24The remaining uncanceled term hase the structure

ε̄ γM1...M9FM1M2M3M4FM5M6M7M8ψM9 ∝ ε̄ εM1...M11γM10M11FM1M2M3M4FM5M6M7M8ψM9 (2.42)

= ε̄ δ(AM9M10M11)εM1...M11FM1M2M3M4FM5M6M7M8 . (2.43)

Furthermore the variation of the Chern-Simons term derives to

δ

∫
Ĉ ∧ Ĝ ∧ Ĝ =

∫
2(dδC) ∧ Ĝ ∧ Ĉ + δ̂C ∧ Ĝ ∧ Ĝ = 3

∫
δ̂C ∧ Ĝ ∧ Ĝ , (2.44)

which uses the Bianchi identity dĜ = 0. By comparing (2.42) and (2.44) one infers that the missing term in the

Lagrangian is exactly the Chern-Simons term (2.45).
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This completes the main ingredients to the 11d, N = 1 supergravity action. However, some small

additional modifications are needed to indeed establish local supersymmetry. Since we will only be

concerned with the bosonic field-content of the supergravity theories from now on, we present the

bosonic and fermionic parts of the action separately. The bosonic part was already stated in (1.52),

but for completeness we give it again

S(0)
B =

1

2κ2
11

∫ [
R̂∗̂1− 1

2
Ĝ ∧ ∗̂Ĝ− 1

6
Ĉ ∧ Ĝ ∧ Ĝ

]
. (2.46)

The fermionic part results in

S(0)
F =

1

2κ2
11

∫ (
R̂(ωT )−R̂

)
∗̂1− ¯̂

ψµγ
MNO

[
DM (ωT )+

1

26

¯̂
ψPγ

PQ
Mabψ̂Qγ

ab
]
ψ̂O∗̂1− ¯̂

ψM
[
ĴM +

3√
2
ĴM
ψ̂

]
,

(2.47)

with DM (ωT ) the connection with torsion given by

ωTMab = ωMab +KMab with KMab = −1

4

(
¯̂
ψMγbψ̂a −

¯̂
ψaγM ψ̂b +

¯̂
ψbγaψ̂M

)
, (2.48)

and

Ĵ ψ̂
M =

1

3 · 24

(
γNLOPMQ + 3 · 22γNLĝMOĝPQ

) ¯̂
ψ[N γLO ψ̂P ]ψ̂Q . (2.49)

25 To accomplish local supersymmetry came at the cost of adding the term KMab to the gravitino

variation (2.39), by using the connection with torsion D → D(ωT ). We will next discuss the bosonic

part of the 3d , N = 1 and 3d , N = 2 supergravity action coupled to chiral and vector multiplets.

The reason for dropping the fermionic sector is due to the complication arising from the necessity of γ-

matrices. As seen in the example of (2.46) and (2.47) the appearing structures in the bosonic sector are

generically simpler. Local supersymmetry gives very strong constraints on the couplings in three and

four dimensions, such that in practice it provides sufficient evidence for local supersymmetry to verify

that these constraints are met, e.g. when deriving an action from a Kaluza-Klein reduction including

α′ corrections where supersymmetry of the background can not be shown directly, see e.g. section 8.

2.2.2 Relevant supergravity theories in F-theory

In (2.28) we gave the minimal field-content of 4d, N = 1 supergravity. To describe nature one needs

to couple these fields to vector and chiral multiplets also referred to as matter multiplets. In fact it

turns out that for theories with more than eight real supercharges the couplings of the kinetic terms

are strongly fixed by the field content. However, 4d, N = 1 supergravity omits four real supercharges

and the couplings can thus depend on more general functions of the fields in a systematic way, given

by

S
(4)
N=1 =

1

κ2
4

∫
M4

(
1

2
R ∗ 1−KMN̄∇MM ∧ ∗∇M̄ N̄ − 1

2
RefIJF

I ∧ ∗F J − 1

2
ImfIJF

I ∧ F J − V ∗ 1

)
.

(2.50)

25Note that the name Ĵ ψ̂ is due to the similarity to Ĵ under the exchange of ĜNLOP ↔ ¯̂
ψ[N γLO ψ̂P ].
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With the scalar potential given as the sum of the F- and D-term potential

V = VD + VF with VD = −1

2
Ref−1IJDIDJ and VF = eK

(
KMN̄DMWDN̄W̄ − 3|W |2

)
.(2.51)

The complex bosonic fields MN are in the chiral multiplet and may be gauged along the direction of

a Killing vector using the covariant derivative

∇MN = dMN +XN
I A

I , (2.52)

with constant Killing vectors XN
I . The couplings of these complex scalar are completely determined

by a function called the Kähler potential K(M,M̄), as KMN̄ = ∂M∂M̄K(MM̄). Whereas the gauge

couplings are given by the gauge kinetic function f(M). Note that the scalar potential (2.51) is written

in terms of the Kähler-covariant derivative DMW = ∂MW + (∂MK)W .

As the 4d , N = 1 also the 3d , N = 2 theory admits four supercharges. In general the gravity

multiplet can be coupled to a number of complex scalars NA in chiral multiplets, which are coupled

to non-dynamical vectors. In the following, we will only consider the ungauged case and can hence

start with a three-dimensional theory with only gravity and chiral multiplets.26

The bosonic part of the 3d, N = 2 action then reads [52]

S
(3)
N=2 =

1

κ2
3

∫
1

2
R3 ∗3 1−KNAN̄B dNA ∧ ∗3dN̄B − (VF + VD) ∗3 1 . (2.53)

Supersymmetry ensures that the metric KNAN̄B is actually encoded in a real Kähler potential K(N, N̄)

as KNAN̄B = ∂NA∂N̄ B̄K. A scalar F-term potential can arise from a holomorphic superpotential W (N)

and takes the form

VF = eK
(
KNAN̄B

DNAWDNBW − 4|W |2
)
, (2.54)

where KNAN̄B
is the inverse of KNAN̄B and DNAW = ∂NAW + (∂NAK)W is the Kähler covariant

derivative. The scalar D-term potential is given by

VD =
(
KNAN̄B

∂NAN∂N̄BN −N 2
)
, (2.55)

where N is real function in the fields NA.

In order to match the action (2.53) with the dimensional reduction of eleven-dimensional super-

gravity, it turns out to be useful to dualize some of the complex scalars NA in the chiral multiplets

into 3d vectors. Therefore, we decompose NA = {M I , Ti} and split the index as A = (I, i). Note

that for our purposes in chapter II and III it would suffice to only consider (2.53) with propagating

{Ti}, since we only consider the vector multiplet arising form the vectors and the Kähler fluctuations

but do not consider complex structure deformation, which form chiral multiplets {M I}. However,

let us emphasize that in 3d one can indeed dualize the vector multiplet to a chiral multiplet as we

26Let us stress that most of the derivation presented in the following can be generalized to the case with non-trivial

gaugings in a straightforward fashion [51].



2. Effective field theory and strings 41

will show in the following, for its bosonic part. This is the case if the real scalars ImTi have shift

symmetries, since then it is possible to dualize them to vectors Ai. The real parts of Ti are redefined to

real scalars Li that naturally combine with the vectors Ai into the bosonic components of 3d, N = 2

vector multiplets. The dual 3d, N = 2 action reads

S
(3)
N=2 =

1

κ2
3

∫
1

2
R3 ∗3 1− K̃IJ̄ dM

I ∧ ∗3dM̄ J̄ +
1

4
K̃jidL

j ∧ ∗3dLi (2.56)

+
1

4
K̃jiF

j ∧ ∗3F i + Im[K̃IjdM
I ] ∧ F j − VF ∗3 1 .

The new couplings can now be derived from a real function K̃(L,M, M̄) known as the kinetic potential

according to

K̃ji = ∂LjδLiK̃ , K̃IJ̄ = ∂MI δM̄ J̄ K̃ , K̃Ij = ∂MI δLjK̃ . (2.57)

The Kähler potential K and kinetic potential K̃ as well as the fields ReTi and Li are related by a

Legendre transform. Explicitly, the relations are given by

K̃(L,M, M̄) = K(T, T̄ ,M, M̄) + ReTi L
i , Li = − δK

δReTi
. (2.58)

In reverse, one finds that

ReTi =
δK̃

δLi
. (2.59)

2.3 Higher-derivative corrections to M-theory

By introducing eleven-dimensional supergravity in section 2.2.1 and discussing higher-derivative or

α′-corrections to II supergravities in section 2.2, we have laid the foundation to discuss the main

topic of this work, higher-derivative corrections to M-theory. Note that higher lM corrections to the

M-theory effective action, given by eleven-dimensional supergravity can not be computed by a similar

procedure as in string theory, due to a lack of knowledge of the theory itself. However, this is not

necessary since there exists a duality between IIA supergravity, which in the strong coupling regime

gs → ∞ can be described by 11d supergravity, see e.g. figure I.4, which in return compactified on

S1 gives back IIA supergravity. One can thus lift the corrections from IIA to covariant expression in

M-theory, and simple check their correctness due to a circular reduction. This and other techniques

were used to derive lM -corrections to eleven-dimensional supergravity [53, 54, 55, 56, 57, 58, 59, 60].

The first non-vanishing higher-derivative corrections to M-theory carry eight derivatives and are of

order l6M .

Note that the most recent result of [60] claims to describe the complete eight-derivative bosonic

sector of M-theory. The fermionic higher-derivative corrections as well as the corrections to the

gravitino variations are not known at order l6M , thus a supersymmetric completion seems out of reach.

However, we propose in section 6 corrections to the gravitino variations based on an indirect argument.

We next introduce certain higher-derivative corrections relevant for the discussion in chapter II and

III. Although these corrections only represent a subset of the known eight-derivative corrections to
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eleven-dimensional supergravity, they are complete in a sense that upon reduction the neglected terms

would give rise to higher-order corrections in the dimensionful expansion parameter

α2 =
(4πκ2

11)
2
3

(2π)432213
. (2.60)

Note that α2 ∝ l6M , and thus our discussion will involve terms of order α2. Our starting point will be

the eleven-dimensional two-derivative, N = 1 supergravity action (1.52). Recall that the dynamical

fields of this supergravity theory arrange in an N = 1 gravity multiplet, with bosonic fields being the

eleven-dimensional metric ĝNM and a three-form ĈMNP with field strength ĜQMNP = ∂[QĈMNP ].

The full relevant action at eighth order in derivatives, which is crucial for our studies in chapter

II and III, takes the form

S = S(0) + α2S(2)

R̂4
+ α2S(2)

Ĝ2R̂3
+ α2S(2)

(∇̂Ĝ)2R̂2
+O(Ĝ3α2) +O(α3) , (2.61)

with the zeroth order action and the eight-derivative terms given by

S(0) =
1

2κ2
11

∫ [
R̂∗̂1− 1

2
Ĝ ∧ ∗̂Ĝ− 1

6
Ĉ ∧ Ĝ ∧ Ĝ

]
, (2.62)

S(2)

R̂4
=

1

2κ2
11

∫ [
(t̂8t̂8 −

1

24
ε̂11ε̂11)R̂4∗̂1− 32213Ĉ ∧ X̂8

]
, (2.63)

S(2)

Ĝ2R̂3
=

1

2κ2
11

∫ [
− (t̂8t̂8 +

1

96
ε̂11ε̂11)Ĝ2R̂3∗̂1

]
, (2.64)

S(2)

(∇̂Ĝ)2R̂2
=

1

2κ2
11

∫
ŝ18(∇̂Ĝ)2R̂2∗̂1 . (2.65)

The terms at higher-order in Ĝ and α will not be needed in what follows as their contribution is

higher-order in α when evaluated for both the ansatz in chapter II as well as in chapter III.

Let us now discuss the various couplings in (2.63)-(2.65) in more detail. In (2.63) we used the

definition

X̂8 =
1

192

(
TrR̂4 − 1

4
(TrR̂2)2

)
, (2.66)

where R̂ is the eleven-dimensional curvature two-from R̂MN = 1
2R̂

M
NPQdx

P ∧ dxQ, and

ε̂11ε̂11R̂
4 = εR1R2R3M1...M8εR1R2R3N1...N8R̂

N1N2
M1M2R̂

N3N4
M3M4R̂

N5N6
M5M6R̂

N7N8
M7M8 ,

t̂8t̂8R̂
4 = t̂M1...M8

8 t̂8N1...N8R̂
N1N2

M1M2R̂
N3N4

M3M4R̂
N5N6

M5M6R̂
N7N8

M7M8 , (2.67)

where ε11 is the eleven-dimensional totally anti-symmetric epsilon tensor and t8 is given explicitly in

(A.35) in appendix A. Using ε11 and t8 the explicit form for the terms in (2.64) is given by

ε̂11ε̂11Ĝ
2R̂3 = ε̂RM1...M10 ε̂RN1...N10Ĝ

N1N2
M1M2Ĝ

N3N4
M3M4R̂

N5N6
M5M6R̂

N7N8
M7M8R̂

N9N10
M9M10 ,

t̂8t̂8Ĝ
2R̂3 = t̂M1...M8

8 t̂8N1...N8Ĝ
N1

M1R1R2Ĝ
N2

M2
R1R2R̂N3N4

M3M4R̂
N5N6

M5M6R̂
N7N8

M7M8 . (2.68)
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Finally, we need to introduce the tensor ŝN1...N18
18 appearing in (2.65), which will be only relevant for

the discussion in chapter III. Unfortunately, the precise form of ŝ18 is not known. However, one can fix

significant parts of it following [61]. In order to express these parts we use the basis Bi, i = 1, ..., 24

of [61], that labels all unrelated index contractions in ŝ18(∇̂Ĝ)2R̂2. The Bi are explicitly given in

(A.36). The result can then be expressed in terms of a four-point amplitude contribution A and a

linear combination of six contributions Zi which do not affect the 4-point amplitude as

ŝ18(∇̂Ĝ)2R̂2 = ŝN1...N18
18 R̂N1...N4R̂N5...N8∇̂N9ĜN10...N13∇̂N14ĜN15...N18 = A+

∑
n

anZn . (2.69)

The combinations A and Zn are then given in terms of the basis elements as

A = −24B5 − 48B8 − 24B10 − 6B12 − 12B13 + 12B14 + 8B16 − 4B20 +B22 + 4B23 +B24 ,

Z1 = 48B1 + 48B2 − 48B3 + 36B4 + 96B6 + 48B7 − 48B8 + 96B10

+ 12B12 + 24B13 − 12B14 + 8B15 + 8B16 − 16B17 + 6B19 + 2B22 +B24 ,

Z2 = −48B1 − 48B2 − 24B4 − 24B5 + 48B6 − 48B8 − 24B9 − 72B10 − 24B13 + 24B14 −B22 + 4B23 ,

Z3 = 12B1 + 12B2 − 24B3 + 9B4 + 48B6 + 24B7 − 24B8 + 24B10

+ 6B12 + 6B13 + 4B15 − 4B17 + 3B19 + 2B21 ,

Z4 = 12B1 + 12B2 − 12B3 + 9B4 + 24B6 + 12B7 − 12B8 + 24B10 + 3B12 + 6B13 + 4B15 − 4B17 + 2B20 ,

Z5 = 4B3 − 8B6 − 4B7 + 4B8 −B12 − 2B14 + 4B18 ,

Z6 = B4 + 2B11 . (2.70)

However, we will show in chapter III that the terms Z3 to Z6 vanish both on the considered background

solution and their perturbed cousins to the order in α we are considering.

2.4 The paradigm of compactifications & 4d effective physics

The paradigm of compactifications in the context of string theory originates the experimental fact

that our Universe persists of four extended space-time dimensions, in contrast to the ten dimensions

predicted by superstring theory. To make these two sides compatible six space-like dimensions need

to be curled-up or in other words compact. Note that the size of the internal space needs to be

large compared to the string length for the effective field theory description in ten dimensions to be

a good approximation, see the discussion in section 2.1, which we always assume henceforth when

talking about compactifications. The metric describing the Lorentzian space-time and the internal

six-dimensional Euclidean space is referred to as background. Estimates on the upper bound of the

size of the internal space are given by experiments. These ”extra dimensions” as referred to in this

context, have escaped detection so far, thus must lie below the length scales probed by existing particle

detectors ∼ 10−19m. The goal of the procedure of compactification is to derive a lower dimensional

- in this case 4d - theory, that solely describes the dynamics of the lower-dimensional fields, which

is induced by the action of the higher-dimensional fields. The concept of deriving the dynamics of

a theory sourced by a higher-dimensional theory amongst compactification is interesting on its own
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right, despite its natural application in string theory. Reaching back to Kaluza [62] and Klein [63],

whose original attempt to unify general relativity and electro-magnetism, introduced the idea that

space-time could be of higher dimension than the extended ones we observe.

The procedure due to Kaluza and Klein is quite different for theories in which gravity is dynamical

compared to those where it is not. In the case that gravity is non-dynamical, one simply premises a

background consisting of an external and an internal space, and uses the existence of an eigenfunction

expansion along the internal directions to expand the various fields and ingrate them out. When gravity

is dynamical one needs to be proceed more carefully for three reasons. Firstly, not every background

will be a solution to Einsteins equations. Secondly, since every field couples to gravity and thus

back-reacts on the geometry one can only consider small fluctuations around their background field

configurations. Finally, one can fluctuate the geometry itself around its background field configuration,

which gives rise to additional dynamical degrees of freedom in the lower-dimensional theory.

2.4.1 Preliminaries of geometry

Let us briefly introduce a few mathematical concepts. For a more exclusive discussion we suggest,

e.g. [64, 65, 66, 67, 68]. On a manifold with an associated k-vector bundle and equipped with a

connection one can parallel transport a vector along closed curves over the manifold. The vector

which was transported from p0 along a closed curve back to the point p0, is generically different from

the original one, such that one can get the final vector by acting on the original vector with a linear

transformation in GL(k,R). In other words the parallel transport along a certain curve defines a

linear transformation on the vector space at p0. It is intuitive that the set of all linear transformations

obtained by linear transport may not span the full set of linear transformations GL(k,R) but a

subgroup thereof - the so called holonomy group of the connection. One drops the dependence of the

base point p0 since on connected manifolds the holonomy groups at different points are conjugate in

GL(k,R) w.r.t. to each other.

We restrict ourselves to the case of Riemannian manifolds (M, g) of dimension n. Its holonomy

group is the one of the Levi-Civita connection ∇ on the tangent bundle TM .

We will make the above statements more precise in the following. The parallel transport of tangent

vectors along a curve γ(t) in M form a section X ∈ TM , which needs to obey ∇γ̇(t)X = 0,∀t. Thus we

can define the holonomy group at a point p ∈M via the linear and invertible map gγ : TMp → TMp,

given by the parallel transport along a closed curve γ to be

Hol(∇, p) = {gγ ∈ GL(n,R)| closed γ ∈M with γ(0) = p} . (2.71)

If we restrict the curves to be contractible one can then define the restricted holonomy Hol0(∇, p),
analogously. We drop the base point dependence for the further discussion. On a Riemannian manifold

without further structures the holonomy group is O(n) or SO(n) if it is orientible. According to Berger

[69] there exists a classification of the holonomy groups on Riemannian manifolds depending of to their

additional properties, see table 2.4. We continue by discussing maybe the most relevant manifold in
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class of manifold defining properties dimension holonomy

Riemannian (∇, g) n SO(n)

Kaehler (∇, g, J) dJ = 0 2n U(n)

Calabi-Yau (∇, g, J), dJ = 0 , Rmn = 0 2n SU(n)

Quaternion-Kähler (∇, g, Ji=1,2,3) , Rmn = κgmn, κ 6= 0 4n Sp(n)× Sp(1)

Hyper-Kähler (∇, g, Ji=1,2,3), dJ1 = 0 , Rmn = κgmn, κ = 0 4n Sp(n)

G2 Rmn = 0, G2 = {g ∈ GL(7,R)|preserve 7 G2

non-degenerate 3-from}
Spin-Seven Rmn = 0, ∃ parallel Cayley four-form 8 Spin(7)

Table 2.4: Berger’s classification of simply connected Riemannian manifolds whose holonomy group

acts irreducible on the tangent bundle and which are not locally symmetric.

string theory - the Calabi-Yau manifold. Let us start by noting that a Kähler manifold (X, g, J,∇)

is a complex manifold of complex dimension n, endowed with a Hermitian metric g such that its

Kähler form is closed.27 The components of metric and Kähler form can be written in holomorphic

and antiholomorphic coordinates m, m̄ = 1, . . . , n as related to the complex structure on X

gmn̄ = gn̄m , gmn = gm̄n̄ = 0 , Jmn̄ = igmn̄ , (2.72)

and, in particular the only non-vanishing components of the Riemann tensor are given by

Rmm̄nn̄ = −Rm̄mnn̄ = −Rm̄mn̄n . (2.73)

The first Bianchi identity (A.3) implies a further symmetry of the Riemann tensors, such that

Rmm̄nn̄ = Rnm̄mn̄ = Rmn̄nm̄ . (2.74)

While the second Bianchi identity (A.3) then furthermore results in the relations

∇rRmm̄nn̄ = ∇mRrm̄nn̄ = ∇nRmm̄rn̄ , ∇r̄Rmm̄nn̄ = ∇m̄Rmr̄nn̄ = ∇n̄Rmm̄nr̄ . (2.75)

Thus the Bianchi identities become implemented as simple symmetries on the Riemann tensors.

Let us proceed with the definition of a Calabi-Yau manifold [67].

Definition: A Calabi-Yau manifold is a compact Kähler manifold (X, J, g,∇), of dimensions

n ≥ 2 with Hol(∇) = SU(n), or for n = 1 uniquely given by the Torus T 2.

Note that on a compact Kähler manifold (X, J, g,∇), Hol(∇) = SU(n) is equivalent to the ex-

istence of a nowhere vanishing holomorphic (n, 0)-form Ω. Which is furthermore equivalent to the

27For an introduction to complex Riemannian geometry see [70, 71] or [68].
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existence of a nowhere vanishing covariantly constant spinor η on X, which defines the almost com-

plex structure and the holomorphic n-form as described in A.4.

Proposition: Every compact Kähler manifold (X, J, g,∇) with Hol(∇) = SU(n), is Ricci-flat

and has c1 = 0, thus vanishing first Chern class. Note that the converse need not be true.

However note that on a compact Kähler manifold (X, J, g,∇) with vanishing first Chern class

c1 = 0, one can always find a Ricci-flat metric. Furthermore, one can show that any Ricci-flat space

does only admit parallel Killing vector fields, which is a local statement proofed by the Weizenböck

formula. The only example that allows for locally parallel vector fields is the torus, thus it follows

that there are no other continuous isometries on Ricci-flat manifolds, in particular this holds for

Calabi-Yau manifolds. Let us next discuss the Dolbeault cohomology groups Hp,q

∂̄
(X) of a Calabi-Yau

manifold, which measure the topological non triviality of the manifold. The hodge numbers hp,q give

the dimension of Hp,q

∂̄
(X), we refer the reader to [68] for a detailed discussion. On any compact Kähler

manifold one finds that

hp,q = hq,p , hp,q = hn−q,n−p, hp,p > 0 , (2.76)

which follows from complex conjugation, the hodge duality and the unique always existing closed but

not exact (p, p)-form Jp. Furthermore, since one discusses connected manifolds one finds that h0,0 = 1

and any Calabi-Yau has a nowhere vanishing holomorphic (n, 0)-form, thus

hn,0 = h0,n = 1 , h0,p = h0,n−p , p 6= 0, n . (2.77)

Let us specialize in the following to the case of a Calabi-Yau fourfold. One then finds using (2.76) and

(2.77) that the only independent hodge numbers are

h1,1 , h2,1 , h3,1 , (2.78)

where we further used the relation valid for Calabi-Yau fourfolds

h2,2 = 2(22 + 2h1,1 − h2,1 + 2h3,1) . (2.79)

These arrange in the so called Hodge star as

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

h4,1 h3,2 h2,3 h1,3

h4,2 h3,3 h2,4

h4,3 h3,4

h4,4

=

1

0 0

0 h1,1 0

0 h1,2 h1,2 0

1 h1,3 h2,2 h1,3 1

0 h1,2 h1,2 0

0 h1,1 0

0 0

1

.

(2.80)
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Note that, in particular using (2.76) one sees that h1,2 = h2,1 and h1,3 = h3,1. One can express other

topological quantities like the Euler characteristic for the Calabi-Yau fourfold in terms of the hodge

numbers as

χ = 6(8 + h1,1 − h2,1 + h3,1) . (2.81)

The Hodge diamond (2.80) is symmetric under reflection of the vertical and horizontal axis due to

the relations (2.76). Le us shortly comment on mirror symmetry [72], which is given by reflection

with respect to the main diagonal of the Hodge diamond. This statement can be generalized, to every

Calabi-Yau n-fold there exists a mirror Calabi-Yau manifold constructed upon reflection of the main

diagonal, which in the case of n = 4 amounts to exchanging h1,1 and h1,3 in (2.80).

Note that one finds ωi , i = 1, . . . , h1,1 holomorphic (1, 1)-forms. Thus one can define the intersec-

tion numbers

Kijkl =
∫
Y4
ωi ∧ ωj ∧ ωk ∧ ωl

V = 1
4!Kijklv

ivjvkvl , Ki = Kijklvkvlvj , Kik = Kikljvlvj , Kikl = Kikljvj . (2.82)

These quantities can be expressed as integrals including powers of J using J = viωi. Note that V is

the volume of the Calabi-Yau fourfold.

2.4.2 Supersymmetry preserving backgrounds

This section is devoted to the derivation of backgrounds, which preserve a certain amount of su-

persymmetry. The dynamics of the fields describing the fluctuations around the vacuum and their

compactification is discussed in section 2.4.3.

The most general metric, which is maximally symmetric and Poincare invariant in the extended

space-time is

GMN =
( ew(y)gµν(x) 0

0 gmn(y)

)
, (2.83)

or equivalently the line element is given by

ds2 = ew(y)gµν(x)dxµdxν + gmn(y)dymdyn , (2.84)

where the dimension of the external space is d − n, where n is the dimension of the internal space.

The external space metric may either describe a Minkowski, de Sitter or anti de Sitter space, and

w(y) is referred to as the warp-factor. If (2.84) solves the higher-dimensional E.O.M.’s, the theory

admits a spontaneous compactification. Note that by compactifying M-theory supergravity on a

supersymmetric background of the from (2.84) one finds that w = 0, unless one turns on fluxes

and considers α′ corrections, see 6. One can allow for background fluxes and break supersymmetry,

however, we will restrict ourselves to vanishing fluxes. Furthermore, one can argue that non-zero

background values of any field, which is not a scalar under the Lorentz group SO(1, d−1) reduces the
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symmetries of the extend dimensions, the exception being the the p-form fields that are allowed to

be Cm1...mp ∝ Qεm1...mp along the internal directions. Note that this implies zero background values

for all other fields e.g. spinors. It has proven to be very hard to engineer compactifications with de

Sitter solutions in supergravity [73]. Let us examine the Einstein equations of IIB/IIA and M -theory

supergravtiy theories (1.43),(1.45) and (2.62), for vanishing internal flux and using that the vacuum

configuration of any other field needs to be zero, and furthermore using (2.84) with w = 0 one finds

RMN −
1

2
RgMN = 0 ⇒ Rµν −

1

2
(Rext +Rint)gµν = 0 & Rmn −

1

2
(Rext +Rint)gmn = 0 . (2.85)

These equations solve for Rmn = 0 and external Minkowski space with Rext = 0. One can derive this

condition also from the requirement that the compactification shall preserve supersymmetry, which is

stronger since solutions to the supersymmetry condition are always solutions to the E.O.M.’s but not

vice versa. For the vacuum to be supersymmetric it needs to be annihilated by the supersymmetry

generator Q. More generally any state of the theory which obeys Q |ψ〉 = 0 preserves supersymmetry

while state Q〈ψ′〉 6= 0 are said to break supersymmetry spontaneously. Since δεψ ∝ [εQ, ψ] one

infers that 〈δεψ〉 ∝ 〈0|[εQ, ψ]|0〉 = 0 for any field of the theory which preserves supersymmetry.

Alternatively, this is to be understood connecting to the previous comment on the vanishing of all fields

in the background, that non-trivially transform under SO(1, d − 1). Thus also their supersymmetry

variations better vary to zero. The variation of generic bosonic fields Φ are fermionic and thus need

to be zero δεΦ|background = 0. Hence one is left to consider the fluctuations of the fermionic fields. Let

us consider e.g. the gravitino variation (2.39), which for various theories is of the generic form

δεψM = ∇M ε+ f(bosonic fields, ε) with f(bosonic fields, ε)|background = 0 , (2.86)

which implies that28

∇M ε|background = 0 ⇒ ∇µε|background = 0 , ∇mε|background = 0 . (2.87)

Thus the existence of a covariantly constant spinor also referred to as parallel Killing spinor (2.87)

is a necessary and sufficient requirement for the compactification to preserve supersymmetry in this

setup. Note that maximally symmetric spaces of dimensions d have d
2(d + 1) Killing vectors, which

in Minkowski space give the boosts, rotations and translations that are all symmetries of the metric.

Thus for maximally symmetric spaces the requirement (2.87) is automatically satisfied. This is not

true for any manifold, where the existence of a no-where vanishing spinor requires a certain topological

structure of the manifold, namely that the bundles of orthogonal frames can be patched together using

a proper subgroup of SO(n). In the case of six internal dimensions this is SU(3) ⊂ SO(6), while for

eight-dimensional internal manifolds one has e.g. SU(4) ⊂ SO(8), see table 2.4. Nota that (2.87)

poses a requirement on the connection and thus on the differentiable structure of the manifold, to

guarantee the existence of a covariantly constant spinor, which is reflected int the holonomy group of

the manifold (2.71). Under parallel transport along closed loops spinors are rotated analogously to

vectors , however, if a spinor is covariantly constant it is not rotated. Thus it transforms trivially or

in other words as a singlet under Hol(∇,M). Hence one reduces the problem of finding covariantly

28Note that we used again that we do not allow for background fluxes.
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constant spinors on the internal space to counting the singlet representations of Hol(∇,M). In the

following we give an derivation of this counting procedure in the case of Hol(∇,M) = SU(n), which is

relevant for internal manifolds considered in this work. So far the only fermion we have fluctuated is

the gravitino, which in the case of eleven-dimensional supergravity is the only fermion but for instance

in II supergravity theories there are two dilatinos whose variations vanish due to the above arguments.

In the heterotic and type I string there additionally exist gauginos whose treatment is a bit more subtle

due to the gauge fields, see e.g. [15]. Let us assume the existence of a nowhere vanishing covariantly

constant spinor ∇M ε = 0 and derive the implications on the metric background. This implies the

integrability condition

[∇M ,∇N ]ε =
1

4
RMNRSγ

[RγS]ε = 0 . (2.88)

By using gamma matrix algebra and building spinor bilinears on derives from (2.88) that gµν = ηµν ,

thus Minkowski space-time and that

Rmn = 0 . (2.89)

Hence the internal space is Ricci-flat. This is a necessary condition for the existence of a covariantly

constant spinor. Note that we have already seen in the world-sheet perspective that Weyl invariance

of the world-sheet CFT requires the background to be Ricci-flat.

To proceed it is of crucial interest to study the spinor representations of the groups SO(n) and

SU(n). We will introduce a few concepts of representation theory and their hands on application for

the purpose of dimensional reduction. We start with spinors in the d-dimensional space-time with

block diagonal metric

ds2 = ηµνdx
µdxν + gmndy

mdyn , (2.90)

where η is the Minkowski metric. The Lorentz symmetry group of the higher-dimensional space

decomposes in this product space as

SO(1, d− 1)→ SO(1, d− n− 1)× SO(n) . (2.91)

Thus the spinor representations of SO(1, d−1) will form new representation under the product group.

In the case that the internal manifold has more structure, see table 2.4, e.g. the holonomy group

can reduces to SU(n), one furthermore needs to consider how the spinor representations of SO(n)

decompose to those of SU(n). From the number of singlet representations on the internal space one

can infer the preserved amount of supersymmetry. To see this one parallel transports a spinor a long

a loop in the internal space, and it will differ upon acting with an element of the holonomy group.

We give a hands on procedure for this steps in the following. The groups need different treatment

for even and odd dimensions n = 2r and n = 2r + 1, respectively, with r the rank of the group.

Although we are mainly concerned with spinors in this section let us for completeness make a small

detour to vector representations. Vector representations of SO(n) in even dimensions n = 2r can be

characterized by the r-dimensional vector

(±, 0, 0, . . . , 0) , (2.92)
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where ±, 0 can be chosen at any position denoted by the underline. The number of different permuta-

tions gives the dimension of the vector representation, for a more detailed discussion, see e.g. [17, 74].

Let us look at the example of SO(1, 9) → SO(1, 3) × SO(6), the sourced by the product metric of

the corresponding geometry. The vector representations can be characterized by vectors of length

r = 5, r = 2 and r = 3 and thus dimensions 10, 4 and 6 respectively. For the dimension of the

representation in the split one finds

(±, 0, 0, 0, 0)→

(+, 0|0, 0, 0)

(−, 0|0, 0, 0)

(0, 0|+, 0, 0)

(0, 0|−, 0, 0)


(

+, 0
−,+|0, 0, 0) = (4v, 1v)

(0, 0|+, 0, 0−, 0, 0) = (1v, 6v) ,
(2.93)

where± denotes±1 and we have used the simple fact, that one finds four and six different permutations

in the first and second line, respectively. Thus we find the decomposition

10v → (4v, 1v)⊕ (1v, 6v) . (2.94)

The counting illustrated in the previous simple example can be applied for spinors analogously. In

the even-dimensional case there are two irreducible spinor representations of dimension 2r−1 carrying

different chirality, which are represented by the vector of weights of length r

s:

(
±1

2
, . . . ,±1

2

)∣∣∣∣
even+

& c:

(
±1

2
, . . . ,±1

2

)∣∣∣∣
odd+

, (2.95)

with the even or odd number giving the chirality denoted by s and c, respectively. Let us consider

the spinor representations of the previous example of ten-dimensional space-time with product metric

(2.83) and six internal dimensions. One then finds the split SO(1, 9) → SO(1, 3) × SO(6). Table

2.5 gives an overview of the spinors representations in various dimensions focusing on Lorentz groups

of space relevant for the compactifications at hand.29 Note that a Dirac spinor in ten dimensions

can be written as the sum of a left and right-handed Weyl spinor 16s ⊕ 16c, see table 2.5. Type

II supergravity has maximal supersymmetry in ten dimension N = 2, choosing two Majorana-Weyl

spinors of equal chirality (2, 0) one describes type IIB, while in the case of IIA supergravity one has

two Majorana-Weyl spinors of opposite chirality (1, 1). When compactifying IIA supergravity on the

product space one needs to consider 16c and 16s separately. Since the treatment is analogous we will

only consider the latter case of 16s now, using (2.95) and r = 5 one infers

1

2

(
±,±,±,±,±

)∣∣
even+

→ 1

2
(+,+,+,+,−) ,

1

2
(+,+,−,−,−) and

1

2
(−,−,−,−,−) , (2.96)

which decompose under the split to

1
2(+,+,+,+,−)→

1
2(+,+|+,+,−)
1
2(+,−|+,+,+)

,
1

2
(+,+,−,−,−)→

1
2(+,+|−,−,−)
1
2(+,−|+,−,−)
1
2(−,−|+,+,−)

, (2.97)

1
2(−,−,−,−,−)→ 1

2(−,−|−,−,−) . (2.98)

29A related discussion can be found in [75].
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Metric Signature

-

left,right - handed

Weyl (complex)

Dirac

(complex)

left,right - handed

Majorana-Weyl (real)

Majorana

(real)

SO(1, 2) - 2 - 2

SO(1, 3) 2s , 2c 4 - 4

SO(1, 9) 16s , 16c 32 16 , 16 32

SO(1, 10) - 32 - 32

SO(2) 1s , 1c 2 - 2

SO(6) 4s , 4c 8 - 8

SO(7) - 8 - 8

SO(8) 8s , 8c 16 8 , 8 16

Table 2.5: Spinor representations of orthogonal special groups relevant for string compactifications.

Note that for notational simplicity we pulled the weight 1
2 out of the bracket. We next want to rearrange

this permutations into different sets, such that we can fit them into representations of the four-

dimensional external and the six-dimensional internal space, given by 2s, 2c and 4s, 4c, respectively.

Written in terms of the weights as 1
2(±,±)|even+,

1
2(±,±)|odd+ and 1

2(±,±,±)|even+,
1
2(±,±,±)|odd+.

One repackages the vectors in (2.97) to

1
2(+,+|+,+,−−,−,−)

1
2(−,−|+,+,−−,−,−)

 =
1

2
(+,+
−,−|

+,+,−
−,−,−) = (2s, 4s) &

1

2
(+,−|+,−,−+,+,+) = (2c, 4c) . (2.99)

Analogously for the 16c one finds 1
2(+,−|+,+,−−,−,−) = (2c, 4s) and 1

2(+,+−,−|
+,−,−
+,+,+) = (2s, 4c). Let us now

introduce an additional structure on the internal space to promote it to a Calabi-Yau manifold, which

according to table 2.4 has SU(3) holonomy. Thus we are interested how the spinor representations

of SO(6) decompose into those of SU(3). We use that SO(6) is isomorphic to SU(4), and that the

complex left and right-handed Weyl spinor representations 4s, 4c correspond to the fundamental and

anti-fundamental representation 4, 4̄. Note that SU(n) has rank r = n− 1 and that the fundamental

and anti-fundamental spinor representations can be represented by a n-dimensional vector as30

(+, 0, . . . , 0) and (−, 0, . . . , 0) , (2.100)

respectively. Thus in the case of n = 4 one easily infers from (2.100) that the representations are 4

and 4̄. Instead of splitting the representation of SO(6)→ SU(3) we derive SO(6) ' SU(4)→ SU(3),

which gives

4 : (+, 0, 0, 0)

4̄ : (−, 0, 0, 0)

}
→ (+, 0, 0, 0) , (0,+, 0, 0)

(−, 0, 0, 0) , (0,−, 0, 0)

}
=

(1 + 3)

(1̄ + 3̄)
. (2.101)

30The following representation (2.100) represents U(n). SU(n) is represented by the vectors (+, 0, . . . , 0)− 1
r
(1, . . . , 1),

hence the difference lies in the second contribution, which is irrelevant for the following discussion, thus we drop it.



52 Chapter I. Introduction

Thus combining (2.99) and (2.101) one finds that 16s reduces to the spinor representations

16s → (2s, 1) , (2c, 1̄) , (2s, 3) , (2c, 3̄) ,

16c → (2s, 1̄) , (2c, 1) , (2s, 3̄) , (2c, 3) . (2.102)

Note that the preserved supersymmetry can be read off from the number of singlets in the internal

space, which combine to Majorana spinors of the external space, thus

(
2s
2c

, 1) = (4, 1) & (
2s
2c

, 1̄) = (4, 1̄) , (2.103)

where we have used that (2s, 2c) forms a single Majorana spinor of SO(1, 3) see table 2.5. Thus one

arrives at the decomposition

16s ⊕ 16c → (4, 1)⊕ (4, 1̄)⊕ (4, 3)⊕ (4, 3̄) . (2.104)

We conclude from (2.104) that we have N = 2 supersymmetry in four dimensions. Assume we had

used a manifold with Hol(∇,M) = SU(2) the representations of SO(6) ' SU(4) reduce to those of

SU(2) analogously to (2.101) giving 4 → 1 ⊕ 1 ⊕ 2 and 4̄ → 1̄ ⊕ 1̄ ⊕ 2̄. Thus one finds via the same

logic as in (2.103) that one yields four Majorana spinors (4, 1)⊕ (4, 1)⊕ (4, 1̄)⊕ (4, 1̄), and thus N = 4

supersymmetry.

Let us us next examine the case where the internal manifold has trivial holonomy or in other

words every spinor is covariantly constant. This is the case for S1 and its higher-dimensional cousin

the n-torus Tn. In the case of T 6, one finds the reduction of SO(6) ' SU(4) to the trivial group,

thus 4 → 1 ⊕ 1 ⊕ 1 ⊕ 1 and 4̄ → 1̄ ⊕ 1̄ ⊕ 1̄ ⊕ 1̄, which by using (2.104) results in N = 8, maximal

supersymmetry in four dimensions.

Two theories, which are related by circular reduction and crucial for the F-theory lift are 3d, N = 2

and 4d, N = 1 supergravity. Note that upon circular reduction of the one Majorana spinor in 4d and

the fact that S1 has trivial holonomy, it simply reduces to two component Majorana spinors in 3d as

4→ 2⊕ 2, see table 2.5. Thus we find N = 2 supersymmetry in three dimensions.

Another case of interest is the reduction of M-theory on a Calabi-Yau fourfold with SU(4) holonomy

2.4.1. The single gravitino is a 32 component Majorana spinor, see table 2.5. Thus the reduction from

SO(1, 10)→ SO(1, 2)× SO(8) decomposes the representation as

32 → (2, 8s) ⊕ (2, 8c) . (2.105)

To show this on proceeds completely analogous to the previous case (2.97) with the exception not

to differentiate between odd and even plus or minus weights in the total and external space, since

there do not exist chiral or anti-chiral representations in these dimensions. Next one breaks these

representation of SO(8) to the spinor representations of SU(4), which are 1, 1̄, 4, 4̄, 6. The embedding

in this case is more advanced since SO(8) has a unique Dynkin diagram D4, and can thus be shown not

to be isomorphic to any other classical Lie group. We simple note that 8s → 4⊕ 4̄ and 8c → 1⊕ 1̄⊕ 6.

Combining these results one finds that

32 → (2, 1) ⊕ (2, 1̄)⊕ (2, 4)⊕ (2, 4̄)⊕ (2, 6̄) . (2.106)
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Note that there are two Majorana spinors in 2 + 1 dimensions and hence one infers N = 2 supersym-

metry. We conclude that the reduction of eleven-dimensional supergravity on a Calabi-Yau fourfold

gives a 3d, N = 2 supergravity theory.

2.4.3 Kaluza-Klein recipe

The concept of dimensional reduction was introduced in the previous section 2.4.2. We noted that

the procedure of dimensional reduction of theories is fundamentally different in the case where gravity

is dynamical to the case where it is not, however, these two setups share some common features.

To examine the principal idea we first consider the simpler case without the Einstein-Hilbert term by

considering a d-dimensional theory, which lives on a space M×N where M,N are pseudo-Riemannian

manifolds of dimensions m and n, respectively. The core of the dimensional reduction is to express the

dependence of the fields on the internal coordinates in an expansion of eigenfunctions of the internal

manifold. The existence proof of such expansions rely on differential operators such as the Laplace-

Beltrami or the Hodge Laplacian, where latter is also defined for manifolds without connection. The

eigenfunctions {φi} of the Laplace-Beltrami operator

∆ = ∇M∇M =
1
√
g
∂M
(√
g∂M

)
, (2.107)

satisfy ∆φi = −λiφi such that λi > 0, and form a complete orthonormal 31 basis on any compact

Riemannian manifold [76], such that

f = c0 +
∑
i

ciφi , with ci =

∫
N
fφi ∗n 1 . (2.108)

Note that certain eigenvalues posses multiplicities included in the notation of the index i, and fur-

thermore that eigenfunctions φi can in principle chosen to be real, however, a complex representation

involves some advantages. For the expansion of p-forms, which are anti-symmetric one naturally uses

the eigenfunctions of the Hodge Laplacian ∆H = d†d + d†d and the related Hodge decomposition

[68]. For the decomposition of symmetric tensors it is convenient to use the eigenfunction of the

Lichnerowicz operator [77], its action on symmetric two-tensors is

∆LsMN = −∆sMN − 2RMPNQ sPQ +R(M
P sN)P . (2.109)

When considering spinors one needs to restrict the manifold to be a spin-manifold, such that their

existence is granted. As mentioned before this restricts the structure group and one expands in

eigenspinors of the Dirac operator D1/2 = γM∂M for spin 1/2 and the Rarita-Schwinger operator for

spin 3/2, given by D3/2µν = εµλσνγ5γλ∂σ − imγµν . Where it acts on the fermion as D3/2µνψν .

Let us start with the case of the free scalar field on M × N , whose dynamics is governed by the

action

S(d) =
1

2

∫
M×N

−dΦ ∧ ∗ddΦ . (2.110)

31
∫
φiφj ∗i 1 = δij .
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Note that Φ = Φ(x, y), which by using (2.108) can be expressed as32

Φ(x, y) = ϕ0(x) +
∑
i

ϕi(x)φi(y) , (2.111)

where coefficients of the eigenfunction expansion depend on the space M . Substituted into (2.110) and

by using the orthonormality of the eigenfunctions φi, one can perform the integral over the internal

space to yield

S(d) =
1

2

∫
M
−dϕ0 ∧ ∗ddϕ0 −

∑
i

(
dϕi ∧ ∗ddϕi + λiϕ2

i ∗d 1
)
, (2.112)

where we have performed a field redefinition ϕ0 → 1
VN ϕ0, with VN the volume of the internal space N ,

to arrive at 2.112. This theory describes one massless scalar field ϕ0 and an infinite tower of massive

scalar fields ϕi, of mass m2 = λi. Since the eigenvalues are positive there are no tachyons and thus

the spectrum is stable. Let us now turn to the simple case of a circular reduction N = S1. In this case

the eigenfunctions are φj = ei(jRy)
√

2πR
, to the eigenvalue λj = j2

R2 , with R the radius of the circle. Note

that since we have chosen a complex representation of the internal eigenfunctions but the total field

Φ is real, one finds that ϕ0 is real and ϕ?i = ϕ−i, which renders (2.112) to be real. The mass of the ith

KK-state is mi = i
R . Note that the massless state does not couple to the massive ones and thus also

their equation of motions are independent. One can safely truncate the massive tower of states and

the dynamics of the massless state is unaltered.33 This constitutes a consistent truncation. In the case

of a circular reduction such a consistent truncation is always possible [78, 79]. However, one needs to

argue that the KK-tower of massive states is not relevant for the lower dimensional physics. This is

achieved in the limit where the radius of the circle is small, such that the masses become larger than

the energy scale mi � E at which one considers the effective lower-dimensional theory to be valid. In

other words if the size of the internal space is physical and cannot be tuned arbitrary small, one can

only trust the effective theories at energies safely smaller than m1, since elsewise these states become

excited and alter the theory as dynamical degrees of freedoms.

Let us treat another example, with higher-dimensional gauge invariance on a non-dynamical back-

ground, namely the d-dimensional vector field AM (x, y) on M ×N ,

S =
1

2

∫
M×N

−F ∧ ∗dF , (2.113)

with its fields strength F = dA.34 The theory (2.113) is invariant under the gauge transformation

A → A+ dΛ , (2.114)

with gauge space-time function Λ = Λ(x, y). One can write the d-dimensional gauge field in terms of

eigenfunctions of the scalar Laplacian φi(y) to the eigenvalue λi > 0, and eigenvectors of the vector

32Note that on a compact manifold the scalar zero mode of the Laplace-Beltrami operator is constant, denoted by

ϕ0(x).
33Let us emphasize, that since this constitutes a free theory also the massive mode have no interaction terms among

each other.
34Note that due to (A.8), in particular F ∧ ∗dF = 1

2
FMNF

MN ∗d 1, and that F = dA is equivalent to FMN =

∇MAN −∇NAM due to the fact that the terms proportional to the Christoffel symbols cancel.
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Laplacian on the internal space Aαm(y) to eigenvalues λα > 0, where ∇mAαm = 0 and
∫
N A

α
mAβm∗n1 =

δαβ. The vector Laplacian is a cousin of the Hodge Laplacian that acts upon a vector as ∆VAm =

−∆Am + RmnAn ⇔ (dd† + d†d)A. Note that generically multiplicity’s to certain eigenvalues occur,

i.e. multiple eigensolutions to the same eigenvalue. Those to eigenvalue zero are of special interest

since they tend to give rise to the massless modes. We explicitly expresses the multiplicity’s of the

eigenvalue zero vectors, by the index α0 thus by Aα0
m . One expands

Aµ(x, y) = a0
µ(x) +

∑
i

aiµ(x)φi(y)

Am(x, y) =
∑
i

ϕi0(x)∂mφi(y) +
∑
α0

ϕα0(x)Aα0
m (y) +

∑
α

ϕα(x)Aαm(y) , (2.115)

and the gauge parameter field

Λ(x, y) = Λ0(x) +
∑
i

Λi(x)φi(y) . (2.116)

Replacing the field strength in (2.113) by the total derivative of (2.115), using the orthonormality

relations and integrating over the internal space one arrives at

Sd =
1

2

∫
M
− F (0) ∧ ∗dF (0) −

∑
i

(
F (i) ∧ ∗dF (i) − λi

2

(
aiµ − ∂µϕi0

) (
aiµ − ∂µϕi0

)
∗d 1

)
− 1

2

∑
α0

dϕα0 ∧ ∗ddϕα0 − 1

2

∑
α

(
dϕα ∧ ∗ddϕα + λαϕα2

)
, (2.117)

with F (0) = da0 and F (i) = dai = ∂[µa
i
ν]dx

µ ∧ dxν . Furthermore, following from (2.114) one finds an

infinite tower of gauge symmetries given by

a0
µ → a0

µ + ∂µΛ0 , aiµ → aiµ + ∂µΛi and ϕi0 → ϕi0 + Λi , (2.118)

where the scalars ϕα0 , ϕα do not transform.35 To bring (2.117) to a manifestly gauge invariant form

note that F (i) = dai = d(ai + dϕi0), which allows us to rewrite (2.117) in terms of the gauge invariant

combination aiµ + ∂µϕ
i
0. Note that

1

2

∫
−F (i) ∧ ∗dF (i) − λi

2

(
aiµ − ∂µϕi0

) (
aiµ − ∂µϕi0

)
∗d 1 , (2.119)

is the so called Stückelberg action. One can go to unitary gauge ϕi0 = 0 to yield the standard action

of massive vectors or in the original sense photons

1

2

∫
−F (i) ∧ ∗dF (i) − λi

2
aiµa

iµ ∗d 1 . (2.120)

The original idea follows the revers logic, starting from an apparently non-gauge invariant massive

vector action (2.120) on introduces the shift of the fields aiµ → aiµ + ∂µϕ
i
0, which is not a gauge

symmetry a priori but introduces a new degree of freedom to arrive at (2.119). However, using the

35By allowing for complex valued eigensolutions in the expansion, the restriction of A(x, y) to be real implies relations

of the various expansion fields aiµ, ϕ
i
0, ϕ

α, ϕα0 .
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manifest gauge symmetry of (2.119) one can go to unitary gauge and arrive at (2.120), which proves

the physically equivalence of (2.119) and (2.120). The manifest gauge invariance of (2.119) is needed to

understand the limit of vanishing mass of the vector field, which gives the theory of of a massless vector

and a massless scalar. Comparing to (2.120) one would trivially arrive at the massless vector only,

thus a degree of freedom would get lost This reflects the fact that a massive photon in four dimension

has three degrees of freedom that in the limit of vanishing mass reproduce the two degrees of freedom

of a massless vector plus the scalar field. Thus the action (2.117) carries a single massless vector field,

and a set of massless scalars of the size of the degeneracy of the vector Laplacian to eigenvalue zero,

which corresponds to the number of harmonic one-forms on N . And a tower of massive vectors of

mass mi =
√
λi and moreover a tower of massive scalars of mass ma =

√
λα, that are never tachyonic

due to the positivity of the eigenvalues.

In the case that N = S1 of the circular reduction one does not find the same spectrum since

on S1 there do not exist harmonic one-forms except for the trivial constant one. Thus the tower of

massless scalars is absent and reduces to a single massless scalar. The masses of the massive scalars

are ma = α2

R2 , α = 1, 2, 3. . . . , where R is the radius of the circle.

Let us begin the more important passage of the story of dimensional reduction, in which we allow

for dynamical metric backgrounds, thus incorporate gravity. The first step of this procedure as outlined

in the previous section 2.4.2, is to solve the higher-dimensional E.O.M.’s to find a valid background for

the metric and the p-form fields.36 Since the eigenfunction expansion of the fields is crucially related

to the explicit form of the metric background, one needs to be careful when deforming it. Let us

therefore look at a small deformation of the metric as

gMN → gMN + δgMN , (2.121)

where g is the background metric, thus a solution to the E.O.M.’s of the higher-dimensional theory.37

Let us return to the case of IIB/IIA or M-theory where we have discussed the background solution in

section 2.4.2. The metric is block diagonal with external space being Minkowski gµν = ηµν and the

internal space being Ricci-flat, thus gmn such that Rmn = 0. Let us perform the small perturbation

(2.121) of Einstein’s equation in ten or eleven dimensions up to linear order in gMN , which results in

0 = δ

(
RMN −

1

2
RgMN + other fields

)∣∣∣∣
background

= ∇L∇(MδgN)
L + gMN∇L∇[LδgO

O]

− 1

2
∇L∇LδgMN −

1

2
∇M∇NδgLL , (2.122)

where the other fields in the theory vanish in the background, so do terms proportional to the Ricci

tensors and Ricci scalar. One can infer three different sets of equations by choosing the free indices in

(2.122) to be µm, µν or mn. The complete set of perturbations, which leaves the Einstein equations

36Let us emphasize that in order to perturb around an appropriate background one also needs to solve for the e.g. the

gauge fields in the Heterotic string. However, note that these fields live in space-time, which constitute the difference to

solving for the background metric of the space.
37Note that the inverse metric is shifted by gMN → gMN − δgMN which guarantees the inverse metric property up

to higher-order perturbations.
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invariant allow for δgµm, δgµν and δgmn. Let us solve the three sectors µm, µν and mn of (2.122) for

the three different types of variations, respectively, under the retrospectively right assumption that

the equations decouple in each sector under the different variations δgµm, δgµν and δgmn. Let us start

with the variation δgmn, where only from the mixed free index equations (2.122) one finds

∇µ∇[mδgn]
n = 0 ⇒ ∇mδgnn = ∇nδgmn . (2.123)

Using this for the external free index sector of (2.122) one finds that

δgm
m = 0 & ∇nδgmn = 0 , (2.124)

thus it is traceless. Finally applying (2.123) and (2.124) to the purely internal free index part of

(2.122) one infers that

∇r∇rδgmn − 2∇[r∇m]δgn
r − 2∇[r∇n]δgm

r +∇µ∇µδgmn = 0 . (2.125)

Using the fact that ∇[m∇n]δgrs = 1
2R

t
rmnδgts + 1

2R
t
smnδgrt one can rewrite (2.125) in terms of the

Lichnerowicz operator (2.109) as

∆int
L

∣∣
background

δgmn = ∇µ∇µδgmn . (2.126)

Note that δgmn = δgmn(x, y), thus to solve (2.126) we make the product Ansatz δgmn(x, y) =

δv(x)wmn(y), which gives

∆int
L

∣∣
background

wImn = λI wImn & ∆extδv = λI δv . (2.127)

Let us emphasize that the notation δϕ keeps track of the fact that this is a small perturbation around

the background. Furthermore, ∆int
L and ∆ext denote the Lichnerowicz Laplacian on the internal and

the scalar Laplacian on the external space. We see from the second equation in (2.127) that we find

scalar fields with mass mi =
√
λi for every eigensolution of the Lichnerowicz operator on the internal

background metric to the eigenvalue λI . Hence we introduce the notation δv → δvI in the following.

This gives an infinite number of deformations, one for each eigenvalue solution of the Lichnerowicz

operator on the internal background metric, which leave the higher-dimensional Einstein equation

invariant when perturbed around to background to linear order. Note that the eigenvalues are in

general degenerate.

The derivation for the external variations is analogously and result in

δgµ
µ = 0 , ∇νδgµν = 0 & ∆ext

L

∣∣
background

δgµν = ∇m∇mδgµν , (2.128)

with ∆ext
L the Lichnerowicz operator of the external space. We can solve (2.128) by making the Ansatz

δgµν = δhµν(x)φ(y). which leaves us with

∆intφi = λiφi & ∆ext
L

∣∣
background

δhiµν = λiδhiµν , (2.129)

and furthermore with ∇µδhiµν = 0 thus transverse and traceless δhiµ
µ = 0. Hence a decomposition into

internal space eigenfunctions of the scalar Laplacian gives rise to massive gravitons described by the
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E.O.M given in (2.129), and which are of mass mi =
√
λi where λi are the eigenvalues of the internal

scalar Laplacian. Since the internal space is compact the only solution to the scalar Laplacian with

zero eigenvalue is constant. Furthermore, in the case of external Minkowski space (2.129) becomes

∆δh0
µν = 0, which is the usual homogeneous wave equation leading to gravitational waves. This modes

are taken care of in the dimensional reduction of the action trivially, where one takes the external space

metric to be an arbitrary tensor gµν and not the background value. However, then by substituting

the external metric by its background value plus a deformation one would encounter exactly these

massless excitations arising from the deformations δh0
µν .

Finally, we discuss the mixed deformations δgµm. From the free index sector mn, µν of (2.122)

one infers

∇mδgmµ = 0 & ∇µδgmµ = 0 , (2.130)

and by using (2.130) from the mixed free index sector of (2.122) that

∆int
H

∣∣
background

δgmµ = ∇ν∇[ν , δgmµ] , (2.131)

with ∆int
H ,∆ext

H the internal and external vector or Hodge Laplacian, respectively. We solve (2.131)

by the product ansatz δgmµ = Aµ(x)Am(y), which results in

∇ν∇[νA
α
µ] = λαAαµ & ∆int

H

∣∣
background

Aαm = λαAαm . (2.132)

This leads to vectors with mass mα =
√
λα in the external space, where λα are the eigenvalues of

the internal vector Laplacian.38 Thus there is a massless vector for every harmonic one-form on the

internal space.39

We are interested in the massless deformations only. One can show that these leave the internal

space Ricci tensor unchanged Rmn(g + δg) = 0, which follows from the above discussion trivially. To

be able to solve for explicit solutions one needs to specify the background metric more concretely,

which leads us to restrict to the case of the Calabi-Yau fourfold in the following. This is relevant for

this work since it turns the focus on the discussion of the reduction of eleven-dimensional supergravity

to a 3d, N = 2 supergravity theory. However, the discussion of the reduction of IIB/IIA - supergravity

on a Calabi-Yau threefold, is analogous. Note that since there do not exist harmonic one-forms on

Calabi-Yau manifolds, see (2.80), the only massless deformations arise due to the metric variations

δgmn. These massless deformations are particularly special since in the case of the Calabi-Yau it has

been shown that one can extend the infinitesimal shift of the metric along the massless direction, to

become finite without changing the Ricci-flatness and thus the ”Calabi-Yau ’ness” of the manifold.

This gives rise to the so called moduli space of the theory, which we will discuss below [80].

One can show that the equation ∆L|Y4
wmn = 0 has to different sectors of solutions. One is given

in terms of the harmonic (1, 1) forms

{ωimn̄} , i = 1, . . . , h1,1 ⇒ δgmn̄ =
∑
i

iδviωimn̄ , (2.133)

38In (2.132) we used the well known form of the equation of motion of vectors. Note that we could have written the

differential operator in terms of the Hodge or vector Laplacian on the external space ∇ν∇[νA
α
µ] = ∆ext

H

∣∣
background

Aαµ .
39 Note that ∇µAµ = 0, thus the vectors are in Lorentz gauge and that ∇mAαm = 0.
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which gives rise to the so called Kähler deformations of the metric where δvi = δvi(x) are real scalar

fields on the external space. The other one being the complex structure deformations written in terms

of the harmonic (1, 3), (3, 1)-forms and the holomorphic four-from as

{ξImn̄r̄s̄} , I = 1, . . . , h1,3 ⇒ δgmn =
1

3|Ω|2
∑
I

δdz̄IξImn̄r̄s̄Ωn
n̄r̄s̄ , (2.134)

with |Ω|2 = 1
4!ΩmnrsΩ̄

mnrs and δzI(x) complex scalars [80]. Note that δgm̄n and δgm̄n̄ are given by the

complex conjugates of (2.133) and (2.134), respectively, which in the Kähler case gives the identical

expression. The Poincare dual of (1, 1)-forms are divisors of the Calabi-Yau space, thus the Kähler

deformations correspond to changing the overall size along these directions, in contrast to the complex

structure deformations which change their shape.

From (2.127) we know that the deformations (2.133) and (2.134) give rise to massless real and

complex scalars in three dimensions. The dimensional reduction is performed by plugging (2.133) and

(2.134) into the M-theory action (2.62), which then sheds light on the couplings of these fields in the

3d action. We will present the result of the reduction of the Einstein-Hilbert term, which after a 3d

Weyl rescaling to the Einstein form gives∫
M3×Y4

R ∗11 1 →
∫
M3

R ∗3 1 −Kijdδv
i ∧ ∗3dδvj −GIJ̄dδzI ∧ ∗3dδz̄J̄ , (2.135)

where the couplings are given by

Kij = Gij +
1

V2
KiKj ,with Gij =

1

2V

∫
Y4

ωi ∧ ∗ωj and GIJ̄ = −
∫
Y4
ξI ∧ ξ̄J̄∫

Y4
Ω ∧ Ω̄

, (2.136)

with V =
∫
Y4
J ∧ J ∧ J ∧ J the volume of the Calabi-Yau fourfold. We comment on the reduction

results of the Kähler sector in more detail in section 7.3. Note that since a Calabi-Yau manifold

in particular is Kähler, the Kähler form and the metric relate via Jmn̄ = igmn̄. Moreover, one can

express them in terms of a basis expansion of harmonic (1, 1)-forms as gmn̄ = −ivi0 ωimn̄ and thus

Jmn̄ = vi0 ωimn̄, which fixes the constants vi0 according to the Calabi-Yau background metric. Note

that the fluctuation of the background gives the fluctuated metric g′mn̄(x, y) = −i(vi0 + δvi)ωimn̄

and g′mn(x, y) ∼ δzIξImr̄s̄t̄Ωn
r̄s̄t̄. Due to the non trivial mathematical result that the infinitesimal

shift can be replaced by a finite shift [80], one can make the replacement vi0 + δvi(x) → vi(x) and

δzI(x), δz̄Ī(x)→ z̄Ī(x). This is the manifestation of the statement that one can go from one vacuum

configuration of the Calabi-Yau vi0 to another vi′0, - with vi0, v
i′
0 constant - without the use of energy.

Which in return can be seen from the fact that these massless scalars do not admit any potential thus

〈vi〉 = vi0 for any constant vi0. The space describing the different configurations of the internal space

is called Moduli space. One notices from (2.136) that the geometry of the Moduli space is locally a

product of complex structure and an Kähler moduli space

M(Y4) =M3,1(Y4)×M1,1(Y4) . (2.137)
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Furthermore, one notes that the metric on the space of M3,1 is given by KIJ̄ in (2.136), which arises

from a Kähler potential

GIJ̄ = ∂zI∂z̄JK3,1 , K3,1 = −ln
( ∫

Y4

Ω ∧ Ω̄
)
, (2.138)

while the metric on the Kähler moduli space M1,1 given by Gij in (2.136) analogously is sourced by

Gij =
1

2V2
∂Li∂LjK1,1 , K1,1 = −3ln

(
V
)
, (2.139)

where V is the volume of Y4 and we have introduced the scalar fields Li = vi

V .40 Let us emphasize

the beauty of this interpretation, on the one hand one has a description of a metric on the Moduli

space of the theory, which on the other hand give the kinetic couplings, which due to 3d, N = 2

supersymmetry arise from a Kähler potential.

Let us return to the dimensional reduction of the only dynamical bosonic field of eleven-dimensional

supergravity besides the metric, the 3-from field Ĉ. Note that we inferred above Ĉ|background = 0.

One can expand the components of Ĉ on the background metric as we did in the example (2.110) and

(2.113). It is convenient to expand the p-form field in the eigentensors of the Hodge Laplacian, which

gives a convergent expansion. The different components can be expanded as

Amnr =
∑

Λ

NΛ(x)wΛmnr(y) , Aµmn =
∑
i

Aiµ(x)wimn(y) and Aµνm =
∑
α

Aαµν(x)wαm(y) ,

(2.141)

with wimnr, wI mn, wαm eigenforms of the Hodge Laplacian ∆Hw = λw to the eigenvalues λi, λj , λα,

respectively. Note that the since we reduce to three dimensions Aµνρ ∝ εµνρ does not give rise to

any dynamical massless field. Since one knows that these expansions (2.141) converge on the metric

background M2,1 × Y4 one can simply plug (2.141) in the M-theory action (1.52) and derive the

spectrum of the reduced theory. The eigentensors to zero eigenvalue give rise to light modes. To see

this one can also approach this by solving the field equations for Ĉ in the background, which read

d ∗11 Ĝ =
1

3
Ĝ ∧ Ĝ , (2.142)

where we have used that the covariant derivative acting on forms is equivalent to the exterior derivative.

However, the discussion of massive modes is more involved due to the gauge invariance of Ĉ. Hence

let us just note that the massless modes are given by the zero modes of the Hodge Laplacian of

∆Hwimnr = ∆HwI mn = ∆Hwαm = 0. Thus the massless fields are given in terms of harmonic

forms, and since there are no harmonic one-forms on Calabi-Yau manifolds the decomposition Aµνm

is trivial. Furthermore Aµmn is written in terms of harmonic (1, 1) forms giving rise to vectors Aiµ in

three dimension and Amnr in terms of harmonic (1, 2), (2, 1) forms, which gives rise to complex scalars

40This relation can easily be verified using the chain rule and the inverse definition of the intersection numbers (2.82)

as

∂Li∂LjK
1,1 =

(∂vk
∂Li

∂vk
(∂vm
∂Lj

))
∂vmK1,1 +

∂vk

∂Li
∂vm

∂Lj
∂vk∂vmK

1,1 = −KiKj +KijV . (2.140)

Where we have use that ∂vi

∂Lj = δijV − 1
3
Kjvi.
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NΛ, N̄ Λ̄. Combing the reduction of the metric moduli with the one of the three-form field one finds

the 3d field-content of the N = 2 supergravity theory, inherited from the eleven-dimensional fields, as

depicted in the table 2.6. The vectors combine with the real scalars into a vector multiplet and the

complex scalars form chiral multiplets. The explicit form of the reduction for the different sectors can

Fields Multiplet Dimension

(NΛ, N̄ Λ̄) chiral h2,1

(zI , z̄Ī) chiral h3,1

(Aiµ, v
i) vector h1,1

Table 2.6: 3d field-content obtained from dimensional reduction of eleven-dimensional supergravity on

a Calabi-Yau fourfold.

be reviewed in [81]. We discuss the reduction of the Kähler moduli and the vectors in section 7.

3 F-theory vs. IIB orientifolds

F-theory is a formulation of Type IIB string theory that incorporates seven-branes in a fully back

reacted fashion [82] and at varying string coupling gs, which is encoded in the geometry of an elliptically

fibered higher-dimensional manifold. While this is a pragmatic definition, F-theory may have the

potential to be more, however due to inconclusive evidence we stick to it for this discussion. Let us

shortly give the M/F-theory recipe before diving into more detail. Starting with eleven-dimensional

supergravity (2.62) upon compactification on a Calabi-Yau fourfold one finds a 3d N = 2 supergravity

theory. In F-theory one chooses the Calabi-Yau fourfold to be elliptically fibered, which can be written

locally as the product of a Kähler manifold and a torus as B3 × T2. Note furthermore that 4d N = 1

supergravity compactified on a circle S1, which in this context is taken to be one of the two circles of

the torus T 2 = S1 × S1, gives a 3d N = 2 supergravity theory. Since the other circular dimension is

already compactified it seems however hard to decompactify it to yield a 4d N = 1 theory. However,

this can be done using T-duality, which identifies a theory on a circle with radius R with another

theory one on a circle of radius 1/R. Note that M-theory reduced along one circle of the torus gives

type IIA supergravity and one can then T-dualize the other circle to yield type IIB supergravity. By

taking the limit v → 0, where v is the volume of the torus, in the T-dual picture one sends the radius

of the circle to infinity and a fourth extended dimensions appears. We will next discuss this in more

detail focusing mainly on the reduction on Calabi-Yau fourfolds to 3d and the F-theory lift to 4d. The

following discussion is closely tied to [83, 84, 85, 86].
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3.1 M/F-theory duality

The origin of F-theory is the manifest SL(2,Z) S-duality invariance of type IIB supergravity described

in section 2.2, with the axio-dilaton given by

τ = C(0) + i e−Φ transforming as τ → aτ + b

cτ + d
, (3.1)

under an element in SL(2,Z), thus a, b, c, d ∈ Z with ad− bc = 1. This mirrors the complex structure

modulus of a torus in every respect. Thus the axio-dilaton of type IIB supergravity can straightfor-

wardly arise from a compactification of some twelve-dimensional theory on a torus. So do the H(3)

and F (3) three-form field strengths, which transform as(
H(3)

F (3)

)
→

(
d c

b a

)(
H(3)

F (3)

)
. (3.2)

Thus can arise from a twelve-dimensional four-form F̂ (4) as F̂
(4)
xMNO = H

(3)
MNO and F̂

(4)
yMNO = F

(3)
MNO,

where x, y correspond to the two different one-cycles of the torus. Let us call them x, y-circle. However,

as we have shown in section 2.2.1, supergravity in eleven dimensions is the highest possible dimensions

in which one can engineer an ordinary supergravity multiplet. Thus there is no twelve-dimensional

appropriate low-energy theory that upon dimensional reduction gives type IIB. However, one can use

the detour via M-theory as explained in the beginning of the section. When allowing for higher-

derivative corrections to eleven-dimensional supergravity (2.61) or in the presence of M2-branes the

background metric needs to be warped, as we will see in section 6. Hence we write the background

metric as

ds2
11 = e−2W (2)

ηµνdx
µdxν + 2eW

(2)
gmn̄dz

mdz̄n̄ , (3.3)

where ηµν , µ = 0, 1, 2 is the external space metric with Lorentzian signature and gmn̄m, n̄ = 1, 2, 3, 4

is the Calabi-Yau fourfold metric and W (2) = W (2)(z, z̄) is the warp-factor being dependent on the

internal space. Since we assume the Calabi-Yau fourfold to be elliptically fibered we can write it

locally as B3 × T 2, where B3 is a three complex dimensional Kähler manifold referred to as the base

manifold. The torus is as well a Kähler manifold, thus one can locally express the product metric of

the Calabi-Yau fourfold as

gmn̄dz
mdz̄n̄ = gαβ̄dz

αdz̄β̄ +
v

2τ2
dzdz̄ , (3.4)

where α, ᾱ = 1, 2, 3 the indices on the base B3 with metric gαβ̄ and v
τ2
dzdz̄ the metric on the torus.

Note that a torus can be represented by a parallelogram, where opposite sides are identified and the

base lies on the real axis in C. The complex structure of the torus is given by a complex number

τ = τ1 + iτ2, while τ1 representing the upward side of the parallelogram, the length of the base is

given by a real number l, which parametrizes the overall size of the torus. Since the area of the torus

v equals the area of the parallelogram on finds that v = τ2 · l. Thus the information of the complex

structure of the torus metric is hidden in the choice of complex coordinates z, z̄, while the pre-factor

in (3.4) reduces to l, which gives the size of the torus. Note that since we consider fibrations of the
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torus, τ = τ(zα) is a holomorphic function over base manifold B3, while v remains constant. It is

convenient to go to real coordinates on the torus via the identification

z = x+ (τ1 + iτ2)y

z̄ = x+ (τ1 − iτ2)y
⇒

x = 1
2τ2

(
iτ1(z − z̄) + τ2(z + z̄)

)
,

y = 1
2iτ2

(
z − z̄

)
,

(3.5)

where x, y are periodic in (0, 1) and one finds41

v

τ2
dzdz̄ → v

τ2

(
(dx+ τ1dy)2 + τ2

2 dy
2
)
, (3.6)

thus we can write the eleven-dimensional background metric as

ds2
11 = e−2W (2)

ηµνdx
µdxν + eW

(2)
( v
τ2

(
(dx+ τ1dy)2 + τ2

2 dy
2
)

+ 2gαβ̄dz
αdz̄β̄

)
. (3.7)

By comparison with the metric of the circular compactification (1.53) of M-theory we can write (3.7)

in terms of the IIA fields, resulting in

ds2 = R2e
4Φ
3 (dx+ C(1))2 + e−

2Φ
3 ds2

IIA , (3.8)

where we have introduced the length scale R in (1.53), thus x ∈ (0, R) the periodic length of the circle.

By comparison of (3.7) and (3.8) one infers that

C(1) = τ1 dy , e4Φ/3 =
v

R2τ2
eW

(2)
. (3.9)

Furthermore by using e−2Φ/3 = R
√

τ2
v e
−W (2)/2 one finds that

ds2
IIA =

√
v

R
√
τ2

(
e−3W (2)/2ηµνdx

µdxν + e3W (2)/2
(
v τ2 dy

2 + 2gαβ̄dz
αdz̄β̄

))
. (3.10)

Thus upon circular reduction of (3.7) on the x-circle expressed in the correct type IIA variables one

finds the type IIA background to be (3.10). As outlined in the introduction of this section the next

step is to T-dualize the geometry along the other circle - thus the y-circle. Since T-duality maps type

IIA to type IIB string theory one has

RIIB =
ls

RIIA
, C(0) = C(1)

y , gs,IIB =
ls

RIIA
gs,IIA , (3.11)

where RIIA is the length of the y-circle. Since in (3.10) the periodicity of y ∈ (0, 1) we find the length

of the circle R2
IIA ∼ e3W (2)/2, which gives under T-duality R2

IIB ∼ e−3W (2)/2. By matching the scales

appropriately using reductions of M2 and D2-probe brane actions on the background (3.8) and by

setting the length scale R =
√
v one infers

τ = C0 + i(gs,IIB)−1 , ds2
IIB = e−3W (2)/2

(
ηµνdx

µdxν + dỹ2
)

+ 2e3W (2)/2gαβ̄dz
αdz̄β̄ . (3.12)

This is the metric in the Einstein frame and we have defined a new coordinate for the T-dual circle ỹ

of periodicity ỹ ∈ (0, l
2
s√
v
). One can now take the limit of shrinking the torus volume to zero v → 0 but

41Note that
∫
T2 dz ∧ dz̄ = τ2 , which is easily shown in real coordinates using (3.6).
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keeping ls finite in which the periodicity of ỹ goes to infinity and one gains another extended fourth

dimension. Thus one can write the previous equation as

ds2
IIB = e−3W (2)/2ηµ̃ν̃dx

µ̃dxν̃ + 2e3W (2)/2gαβ̄dz
αdz̄β̄ , (3.13)

where now µ̃, ν̃ = 0, 1, 2, 3. Since we have now commented on the behavior of the background in

the limit v → 0 let us next discuss the scaling behavior of the 3d effective couplings of the theory

depending on the geometry of the elliptically fibered Calabi-Yau fourfold. To be able to proceed

in this discussion let us refine our notion of F-theory by comparing M-theory on elliptically fibered

Calabi-Yau fourfold giving a 3d, N = 2 theory, to a 4d, N = 1 theory with non-Abelian gauge groups

compactified on S1. Let us preempt a result of the next section 3.2 namely that a stack of (p, q)

seven-banes is identified with singular fibers in the Calabi-Yau fourfolds. Thus by concretely choosing

singular fibers one can engineer gauge groups in the effective theory. Furthermore this allows to extend

the collection of gauge groups U(N), SO(n), Sp(n) of type IIB orientifold setups by exceptional gauge

groups E6, E7 and E8, which are of particular interest for GUT model building. However, it turns out

to be difficult to establish U(1) symmetries, which are needed e.g. to forbid proton decay operators,

see e.g. [87, 88, 89, 90, 91, 92]. Let us shortly comment on this intriguing interplay between gauge

theory and geometry. All possible singularities in the fiber of a elliptically fibered Calabi-Yau fourfold

have been classified by Kodaira [93, 94]. Although there have been proposals how to extract the

physics directly from singular Calabi-Yau spaces [95], the best understood procedure is to resolve the

geometric singularities locally by smearing out the singularity by replacing it with a smooth patch,

intuitively speaking. More precisely, to every singular fibered Calabi-Yau fourfold Y4 one can find a

smooth Calabi-Yau fourfold Ỹ4 and a map which smoothy transforms Ỹ4 → Y4 called the blow-down,

reversely one uses the terminology blow-up to resolve singularities. One can depict the blow-up as

following, the fiber of the Calabi-Yau be singular along a divisor of the base B3. One can resolve this

singularity by fibering appropriate intersections of P1 ' S3/U(1) ' S2 spaces over the singular divisor

and hence replacing the singularity in the fiber by a smooth geometry to gain Ỹ4, e.g. see figure I.8.

Reversely the blow-down map simply shrinks the intersection of P1’s to zero and one recovers the

Figure I.8: Pictorial depiction of the singular fiber on the left characterized by the pinching of the

torus and the resolved geometry on the right, where the singularity is removed due to the replacement

by a smooth P1 geometry. The intersection pattern corresponds to the Dynkin diagram of SU(2).

original singular geometry Y4. Note that the geometry, that is patched in, consists of a fibration of

a two-dimensional space over a four-curve thus gives new divisors of the total Calabi-Yau manifold,
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referred to as exceptional divisors. Remarkably, the intersection pattern of the P1’s, according to

Kodaira’s singularity classification mimics exactly the affine Dynkin diagrams of Lie Algebras of the

A,D,E series. May the intersection pattern reflect the Dynkin Diagram of a group G then the number

of exceptional divisors DI coincides with the number of generators of the Cartan subalgebra of G thus

on can write

DI , I = 1, . . . , rank G . (3.14)

One furthermore can split the divisors Di in three types according to their Poincaré-dual two-forms

ω0, ωα, and ωI , where ωi, i = 1, . . . , h1,1(Y4). The two-form ω0 corresponds to the holomorphic zero-

section and has two legs in the fiber, while the two-forms ωα with α = 1, . . . , h1,1(B3) have two legs

in the base and under Poincare duality correspond to divisors that are elliptic fibrations over divisors

of the base. Finally the two-forms ωI correspond to the blow-up or exceptional divisors.42 Upon

dimensional reduction of the M-theory three-form one finds a massless vector for every harmonic ωi

as discussed in detail in chapter II, identifying

Ĝµνmn̄ = F iµνωimn̄ , (3.15)

where F = dA.

The locus of vanishing fiber being a four-curve in the base B3 of an elliptically fibered Calabi-Yau

fourfold Y4 when resolved mimics a group G. One can thus interpret it as wrapped by a stack of

space-time filling (p, q) seven-branes, and G as the gauge group living on the branes. Since we only

treat the resolved geometry where the group is Abelianized the vectors AI are interpreted as the

U(1) factors in the Cartan subalgebra of the non-Abelian gauge group. To restore the non-Abelian

gauge group one needs more degrees of freedom encoded in M2-branes wrapping the resolution P1’s.

These can be interpreted as type IIA strings stretching in-between parallel D6-branes, due to their

separation these are massive and are interpreted as the massive ”W” bosons of the gauge group G

in the Coulomb branch, encoding the degrees of freedom of the roots of G. By blowing down the

geometry these string states become massless, since the D6-branes approach each other during the

down-lift to become coincident when the singular geometry Ỹ4 is recovered. This enhances the gauge

group to the full non-Abelian group G. Note that since it is not known how to proceed to the singular

limit this provides just an explanation an hence a justification for the interpretation of AI being the

U(1) factors in the Cartan subalgebra of the non-Abelian gauge group G.

Furthermore one can thus expand the Kähler form of the Calabi-Yau fourfold as

J = v0ω0 + vαωα + vIωI , (3.16)

where v0 represents the volume of the elliptic fiber. By comparing M-theory on elliptically fibered

Calabi-Yau fourfolds giving a 3d ,N = 2 theory obtained by circular reduction of radius r of a 4d,N = 1

one obtains the relation between the eleven-dimensional Planck length lM and the string length ls to

be

ls = lM (v0)−1/4 , r = (v0)−3/4 . (3.17)

42 It is common notation that ωI also denotes extra sections in the Calabi-Yau fourfold, which give rise to Abelian

U(1) factors.
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In the F-theory limit one sends v0 → 0 and thus decompactifies the fourth dimension by sending

r → ∞. Then all volumes of the base B3 become expressed in units of ls. One introduces a small

parameter ε to express the scaling of the dimensionless fields by writing v0 ∼ ε. As explained in [96, 97]

one finds vα ∼ ε−1/2 and infers the scaling behavior of the classical volume of Y4 to be V4 ∼ ε−1/2. In

the following we use the subscript b to denote quantities of the base that are finite in the limit ε→ 0.

In particular one has

vαb =
√
v0vα , (3.18)

which holds in the strict ε → 0 limit. Note that vαb are the volumes of two-cycles of the base in the

Einstein frame.

3.2 On branes and elliptic curves

Incorporating D7 and D3-branes in a O7/O3-planes background in type IIB is a non-trivial endeavor

since the branes back-react on the geometry. This back-reaction is usually neglected by going to a

large volume limit, where one can treat the branes as being far away and thus knowledge of the local

solution around the brane becomes negligible. Although this allows to study some main properties of

the background one has to keep in mind that this is not a fully consistent background solution. This

approximation works for p-branes with spatial normal dimensions bigger than two thus for p = 1, . . . , 6

in ten-dimensional space-time, since they source a back-reaction to the metric and the C(p+1) from

field, which decay as

C(p+1) ∼ N 1

r7−p , ds2 =
(

1 +
NeΦ0

r7−p

)−1
ηµνdx

µdxν +
(

1 +
NeΦ0

r7−p

)
δijdx

idxj , (3.19)

where this precise scaling holds for supergravity BPS solutions of stacks of N p-branes [98]. Where

µ = 0, 1, . . . , p are the dimensions along the brane and i, j = 9 − p the transverse ones, eΦ0 the

asymptotic value of eΦ, which can be taken as the string coupling gs, and r the spatial distance from

the brane. Heuristically this can be understood by describing the fields of the branes as solutions of

the Laplace equation sourced by a delta functional, which then has a solution depending on the normal

spatial dimensions of the support of the delta functional proportional to 1/r7−p. Thus a six-brane

behaves qualitatively like an electrostatic point particle, while lower dimensional branes give rise to

even faster decaying fields, and a large volume limit gives a sensible approximation. This argument

breaks down in the case of D7-branes, which source fields that decay not only logarithmically but even

more severely have monodromies as we will argue in the following. In co-dimension two a complex

coordinate z = z0 describes the position of the 7-brane, which electrically sources a C(8) form field

dual to a magnetically sourced C(0) axion, obeying the Poisson equation

d ∗10 F
(9) = δ(2)(z − z0) ⇒

∫
d ∗10 F

(9) =

∮
S1

dC(0) = 1 . (3.20)

Note that the axio-dilaton τ = C(0) + ie−Φ due to supersymmetry is a holomorphic function of z thus

one can solve the previous equation by

τ = τ0 −
i

2π
ln(z − z0) + Fregular(z) . (3.21)
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Note that by choosing z0 = 0 at the origin and taking a counterclockwise path around the brane due

to the branch-cut the imaginary part of the logarithm f(ϕ) := ln(r0 cosϕ + ir0 sinϕ), for any radius

r0 increases at at rate of 2π per closed circle, thus f(ϕ+ 2π) = f(ϕ) + 2π. This in return implies that

using (3.21) the axion and axio-dilaton jump as

C(0) → C(0) + 1 , τ → τ + 1 , (3.22)

when following it once around a single D7-brane. Note that in (3.21) for z → z0 the imaginary part

arising due to the real part of the logarithm diverges thus gs → 0 and perturbation theory is valid

in the vicinity of the brane. Note that due to the SL(2,Z) invariance of type IIB string theory the

monodromy of the axio-dilaton (3.22) is a symmetry of the theory and thus this does not pose a

problem. Furthermore one can think of objects which generate more complicated monodromies of

τ but are nevertheless locally related to D7-branes by a more complicated SL(2,Z) transformation,

see (1.51). These objects will be manifestly non-perturbative and are called (p, q)-branes, extended

hypersurfaces where (p, q)-strings are bound to end on. By setting the notation that (1, 0) represents

the F1-string giving rise to B2 while (0, 1) is the D1-string charged under C2, they form a SL(2,Z)

doublet. This sets a notation which manifests the mixing of B2, C2 under (1.51). A string that carries

p units of electric B2-charge and q units of electric C2-charge is referred to as a (p, q)-string.

Note that in F-theory the geometry gives us a varying τ of the torus over the base manifold B3,

which becomes the axio-dilaton of type IIB compactified on the base. In the generic setup one finds

regions of strong and weak coupling and the monodromies of the branes identify them as (p, q)-branes.

Locally one can always find a transformation of SL(2,Z) to transform them back to D7-branes,

however, globally this is not possible in general and one has to apply a refined procedure to go to

weak coupling as we discuss among other things in the following. Note that when the x-cycle in the

torus fiber collapses along a divisor in the base B3, in the F-theory lift this becomes a space-time

filling D7-brane. Similarly, when a p x+ q y-cycle of the torus collapses one gains (p, q)-brane. Since

this work does not intend to give a self contained introduction to algebraic geometry let us just study

the geometrization of physics in F-theory in an hands on example, which shows several features found

in more complicated phenomenological more relevant compactifications. One can explicitly construct

geometries by studying vanishing loci of polynomials, very similar to ax+ b+ y = 0 in R2 defines the

geometry of a straight line. Elliptic curves are given of the vanishing loci of homogenous polynomials

in a weighted projective space P231 , where

P231 = {(x, y, z) ∼ (λ2x, λ3y, λz) ∈ C3/{(0, 0, 0)}|λ ∈ C∗} , (3.23)

where the equivalence relation denotes that all points which are equivalent under this transformation

contribute as a single point to P231. One can now form homogenous polynomials of the so called

homogenous coordinates x, y, z, which define elliptic curves such as the Weierstrass form

y2 = x2 + f(u, v)xz4 + g(u, v)z6 . (3.24)

Let us now turn to the example of M-theory on R1,6 ×K3, where K3 is a complex two-dimensional

Calabi-Yau manifold. Note that we want to describe an elliptically fibered K3, which can be done by
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subjecting the homogenous coordinates of (3.24) to a further equivalence relation

(u, v, x, y, z) ∼ (u, v, λ2x, λ3y, λz) ∼ (µu, µv, µ4x, µ6y, z) , (3.25)

where µ, λ ∈ C/{0} and (u, v, x, y, z) ∈ C/{(0, 0, x, y, z) ∪ (u, v, 0, 0, 0)}, with f, g polynomials of

degree eight and twelve in u, v. This describes a two-dimensional complex surface, since we added two

coordinates u, v but have two equivalence relations (3.25) and one defining equation (3.24). Note that

the sum of weights, hence the some of powers of µ, λ in (3.25) is equal to 6 in the first relation and

in the second to 12. While counting the highest power of coordinates u, v, x, y, z in (3.24), which is

subject to a weighting in the equivalence relations is as well 6 in the first and 12 in the second, defining

the degree of the polynomial. One can show that since the degrees of the both countings agree the

hypersurface is Calabi-Yau. Let us look at the local picture by fixing u, v and thus neglecting the

newly introduced equivalence relation, one has thus an one-complex dimensional hypersurface and

counting the degrees as before one finds from the first relation in (3.25) 6 vs. 6, thus the torus T 2.

One can now choose coordinates in the full setup as z ≡ 1, v ≡ 1 such that the equation simplifies to

y2 + x3 + f(u)x+ g(u) , (3.26)

with f, g polynomials of degree eight and twelve. This describes an elliptic fibration of T 2 over the

base P1 ' S2. This algebraic definition of an elliptic fibration needs to be connected to the more

familiar one of differential geometry, where one can explicitly see the complex structure τ of the torus

and its metric. We note that this can be done by computing period integrals and one arrives at

j(τ) =
4(24f(u))3

∆
, ∆ = 27g2 + 4f(u)3 (3.27)

j(τ) = e−2πiτ + 744 + . . . , ds2 ∼ τ2|η(τ)|4

|∆|6
dzdz̄ . (3.28)

where η(τ) is the Dedekind eta-function, j(τ) is the SL(2,Z) modular invariant j-function, and ∆

is referred to as discriminant. Note that in this expression τ2, τ,∆ vary over the base due to their

dependence on u. Furthermore ∆ is a homogeneous polynomial of degree 24 with generic zero points

ui, i − 1, . . . , 24, which implies the elliptic curve becomes singular at this points. let us explicitly

compute τ in the vicinity of this singular fibers thus in the vicinity of the D7-branes, one has

j(τ(u)) ∼ 1

u− ui
⇒ τ(u) ∼ − i

2π
ln(u− ui) . (3.29)

Where this implication holds up to SL(2,Z) transformations and one has to be more careful when

going to the weak coupling limit. Equation (3.29) coincides with the analysis from (3.21) for the

axio-dilaton profile near a D7-brane. Reversely, not knowing the above result one would identify the

D7-brane by the induced monodromy (3.29). Thus we naively would find 24 D7-branes, one for each

locus of ∆, which violates charge conservation in the compact space. However, as we commented

on above one cannot simply go to the weak coupling limit globally. The procedure of allowing for a

global weak coupling solution is due to Sen [99, 100] and is done by pushing the computation to a

point in complex structure moduli space of K3 where τ(u) is constant and has large imaginary part,
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thus gs � 1. Rewriting (3.27), one infers that f(u)3/g(u)2 = const. is sufficient to guarantee that the

axio-dilaton is constant, hence one finds

f(u)3

g(u)2
= const ⇒ g(u) = h(u)3 , f(u) = a · h(u)2 with h(u) =

4∏
i=1

(u− ui) , (3.30)

with a a constant and h(u) a homogenous polynomial of degree four, where we set its coefficients to

one by a rescaling of the homogenous coordinates x, y. Now it is straightforward to plug this into

(3.27) and derive

j(τ) ∼ 1

27 + 4a3
⇒ a ≈ − 3

41/3
, ∆ ∼ (27 + 4a3)

4∏
i=1

(u− ui)6 , (3.31)

which gives weak coupling on every point in the base. One notes that the fields B2, C2 are double-

valued, namely flipping signs when circled around a zero of h(u), which is seen by looking at the

non-trivial monodromy element a = 1, d = −1, b = c = 0, see (1.51) sending τ → τ . We will next

show that this arises due to the presence of an O7-plane. Let us construct the double cover X of the

base P1 expressed by one equation and one variable, which are then added to (3.24) and (3.25), and

are given by

w2 = h(u, v) , (u, v, w) ∈ C/(0, 0, 0) , (u, v, w) ∼ (λu, λv, λ2w) , (3.32)

where this describes a one-complex dimensional space of weights 4 vs. 4 since h(u, v) is of degree

4. Thus it represents the only compact one-dimensional Calabi-Yau, namely the torus. By adding

another relation, which identifies (w) ∼ (−w) on finds the original base P1, this is more commonly

denoted in type IIB language as the orientifold projection qoutienting the Calabi-Yau manifold as

P1 = X/σ , σ : w → −w . (3.33)

This map can be compared to perturbative world-sheet results obtained by orientifolding X in type

IIB to give justification of this identification.

Very intriguingly we can now look at fix points of the Z2 involution σ, where one expects the O7-

planes. These are straightforwardly obtained from the loci of h(u) where one finds four. Note that

in the covering space one does not find any monodromies of C(0) since the fields are single-valued.

Thus to cancel the charge of the O7-plane of −4, there must be four D7-branes sitting on top of each

O7-planes, respectively.

Let us comment on the example of the previous section 3.1 where we have discussed the F-theory

lift on an elliptically fibered Calabi-Yau fourfold Y4 over the Kähler base B3. The explicit singularity

structure and therefore the gauge groups are model dependent, however, one encounters that in Sen’s

weak coupling limit the double cover of the base is the orientifolded Calabi-Yau threefold in the type

IIB picture, thus

B3 = X3/Z2 . (3.34)

Let us close this section by emphasizing again that in the realm of F-theory the back reaction of the

D7-branes and O7-planes on the axio-dilaton τ is beautifully incorporated in the geometry.
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CHAPTER II

Higher-derivative M-theory and α′-corrections

to F-theory - a first step

The goal of this section is to perform a Kaluza-Klein reduction of M-theory including certain l6M -

corrections on a Calabi-Yau fourfold down to three dimensions, and to subsequently apply the F-theory

lift to gain a 4d theory. The line element of the background metric is

dŝ2 = ηµνdx
µdxν + 2g(0)

mn̄dy
mdyn̄ , (3.1)

with g(0)

mn̄ the Calabi-Yau metric. Note that this background is not a solution to the 11d E.O.M.’s in-

cluding higher-derivative terms, instead the background metric needs to be warped and non-vanishing

background fluxes have to be considered, as discussed in section 6. Furthermore, for simplicity we

do not allow for background fluxes in this chapter, although there is no principal objection. Let us

summarize the required steps to perform a supersymmetric reduction including higher-derivative cor-

rections. Following the procedure of dimensional reduction of section 2.4.3 one first needs to determine

the supersymmetric background, and then perform the dimensional reduction of the M-theory action

including the full set of l6M -corrections. Where the metric needs to varied w.r.t. the Kähler and com-

plex structure moduli. This yields a 3d, N = 2 theory which can then be lifted to a 4d, N = 1 theory

using F-theory. This is a vast endeavor which is performed to some extend in chapter III, however,

this section reviews our early work [101, 102] on the subject - a first step, which serves as an excellent

toy model to highlight the main features of this program.

We start with a simplified setting considering a subset of the 11- dimensional action

S = S(0) + α2S(2)

R̂4
+ α2S(2)

Ĝ2R̂3
+ α2S(2)

(∇̂Ĝ)2R̂2
+O(Ĝ3α2) +O(α3) , (3.2)

71
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at eight-derivative level given by

Ssub =
1

2κ2
11

∫
R ∗11 1− 1

2
Ĝ∧∗11Ĝ+α2

[
(t̂8t̂8−

1

24
ε̂11ε̂11)R̂4−(t̂8t̂8 +

1

96
ε̂11ε̂11)Ĝ2R̂3

]
∗̂1+SCS , (3.3)

and

SCS = − 1

2κ2
11

∫
1

6
Ĉ ∧ Ĝ ∧ Ĝ+ 32213α2Ĉ ∧ X̂8 , (3.4)

where we reordered the terms in a more suitable way for this discussion. Note that we have dropped

S(2)

(∇̂Ĝ)2R̂2
at level α2, the terms of order O(Ĝ3α2) are not relevant for this analysis since they would

give only rise to more than two external derivatives.

The variations of the Calabi-Yau metric split into h1,1(Y4) Kähler structure and h3,1(Y4) complex

structure deformations. For simplicity we will consider geometries with h2,1(Y4) = 0 in the following.

Furthermore, we will not consider the complex structure deformations. In fact, one can check that the

corrections analyzed in the following are indeed independent of the complex structure. In principle

the Kähler deformations of the metric of the purely Riemann terms in (2.63) lead to kinetic terms

for the real scalars and one expects that these kinetic couplings will receive corrections from the

higher-derivative pieces as well, as we show in section 7. This approach is likely not to yield the

physical complete answer since one neglects warping and does not take into account all relevant terms

in the eleven-dimensional action. Nevertheless this is a pedagogical valuable toy model since one

is confronted with all the conceptual steps and techniques required to approach the full problem.

Performing the reduction on this background one breaks supersymmetry explicitly but perturbatively

in lM . Nevertheless, it turns out that the considered sector after reduction still obeys 3d,N = 2

supersymmetry properties, which are read off by comparing to canonical form of the 3d, N = 2

action. However, this only holds under the assumption that the third Chern form c3 is harmonic with

respect to the background Calabi-Yau metric. It is not clear if this assumption can ever be satisfied,

however a more refined treatment in chapter III shows that indeed the non-harmonic part of c3 plays

an important role. In chapter III we exclusively study the general case of a non-harmonic third Chern

form.

4 Unwarped reduction of higher-derivative M-theory

Let us start by commenting on the structure of 3d, N = 2 supergravity theories reviewed in 2.2.2,

at which one arrives after reduction on a Calabi-Yau fourfold. In general the canonical form of the

3d N = 2 action propagates a number of complex scalars NA in chiral multiplets coupled to non-

dynamical vectors. In the following, we will only consider the ungauged case and can hence start with

a 3d theory with only gravity and chiral multiplets.1 In order to match the action (2.53) with the

dimensional reduction of M-theory, it turns out to be useful to dualize some of the scalar multiplets

NA into 3d vector multiplets. One decomposes NA = {M I , Ti} and splits the index as A = (I, i).

1Let us stress that most of the derivation presented in the following can be generalized to the case with non-trivial

gaugings in a straightforward fashion [51].
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If the real scalars ImTi have shift symmetries, it is possible to dualize them to vectors Ai. The real

parts of Ti are redefined to real scalars Li that naturally combine with the vectors Ai into the bosonic

components of N = 2 vector multiplets.

In the following we aim to read off the Kähler potential K and metric K̃ij from the dimensional

reduction of the 11d action (3.3).

Neglecting higher-derivative terms, the N = 2 Kähler potential arising from a reduction on a

Calabi-Yau fourfold Y4 was derived in [103, 81]. For the Kähler structure moduli it was found to be

K = −3 logV0 , V0 =
1

4!

∫
Y4

J (0) ∧ J (0) ∧ J (0) ∧ J (0) , (4.1)

where V0 is the classical volume of Y4, and J (0) is the Kähler form on Y4. Note that the quantity in

the logarithm, i.e. the volume V0, appears in front of the 3d Einstein-Hilbert term after dimensional

reduction. A Weyl rescaling of the metric gnew = V2
0 gold transforms it to the Einstein frame. In fact,

due to the Weyl rescaling also the scalar potential is rescaled and by comparison with the factor eK

in (2.54) one can heuristically infer (4.1).

Let us first give an overview of the logic of the computation before diving into more details in

section 4.1. Including the higher-derivative terms present in SR given by (2.63), one might expect a

correction to the classical Kähler potential (4.1), sourced by a correction to the 3d Einstein-Hilbert

term of the form

S3 ⊃
1

(2π)8

∫
ṼR(3)

sc ∗3 1 , (4.2)

with the corrected volume

Ṽ =
1

4!

∫
J (0)4 + VR4 . (4.3)

The explicit form of the correction VR4 induced by the higher-derivative terms is given in the next

section 4.1. Applying the same strategy as above, one can then infer the corrected Kähler potential

to be

K = −3 log Ṽ . (4.4)

Here we have used the conventions to avoid powers of lM floating around, which we keep for this

chapter that2

2κ2
11 = (2π)8l9M = (2π)8 ≡ 2κ2

3 , α2 → π2

32 · 211
(4.5)

It is important to emphasize that this derivation does not suffice to fix the 3d Kähler coordinates

Ti. However, this can be achieved by reading off the metric K̃ij in front of the dynamical terms of the

vectors in (2.56). More precisely, we perform the reduction of the terms Ĝ2R̂3 in Ssub given in (3.3)

on a Calabi-Yau fourfold Y4. The kinetic terms of the vectors arise as a subset of the terms induced

by reduction of SG4 and take the form

S3 ⊃
1

(2π)8

∫
Gij F

i ∧ ∗3F j . (4.6)

2This corresponds to setting α′ = gIIA
S = 1 in lM = (2πgIIA

S )1/3
√
α′, when reducing to Type IIA string theory.
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One arrives in the frame with dynamical vectors which thus can be compared to the canonical form of

the action (2.56). Due to the corrected volume Ṽ in front of the Einstein-Hilbert term (4.2) one first

Weyl rescales the action to to transform it to the Einstein frame. This process introduces a power of

Ṽ in front of the kinetic term of the vectors and one finds

S3 ⊃
1

(2π)8

∫
R ∗3 1 + ṼGijF j ∧ ∗3F i . (4.7)

After comparing to (2.56) and using (4.5), one infers that K̃red
ij = 2ṼGij . In order to find a consistent

reduction, K̃red
ij has to be compatible with K as given in (4.4) and (4.13). This fixes the 3d Kähler

coordinates Ti as we discuss in more detail in subsection 4.2.

4.1 Dimensional reduction of higher-curvature terms

In this subsection we present the reduction of (3.3) on a Calabi-Yau fourfold to three dimensions with

focus on the Weyl rescaling factor of the Einstein-Hilbert term and the kinetic terms of the vectors

which will allow us to infer the Kähler potential and the Kähler coordinates. We only consider the

Kähler structure variations of the Calabi-Yau metric h1,1(Y4) for the kinetic terms of the vectors and

do not discuss the fluctuations of the purely gravitational terms in (3.3). The main part of this work

discusses the analysis of corrections to the two derivative effective theory in three dimensions, induced

by higher-derivative terms in the eleven-dimensional theory. Note that this makes use only of a part

of the information contained in the higher-derivative terms which also give rise to higher-derivative

external terms. In this section we also will derive a four-derivative correction to the effective action

arising from the purely gravity part of (3.3). The Kähler structure deformations parametrize the

variations of the Kähler form J (0) by expanding

J (0) = vi0ω
(0)

i , (4.8)

where {ω(0)

i } is a basis of harmonic (1, 1)-forms on Y4 w.r.t to the Calabi-Yau metric gmn̄(v0). After

the lift vi0 → vi these correspond to real scalar fields in the 3d effective theory. Note that we have

introduced the notation ω(0) denoting that it is harmonic w.r.t. to the background Calabi-Yau metric,

to distinguish it from ω(2) which will become relevant in chapter III. Furthermore, we define the

topological quantities

Z (0)

i =

∫
Y4

c(0)

3 ∧ ω
(0)

i , Z (0) = Z (0)

i vi0 =

∫
Y4

c(0)

3 ∧ J
(0) , (4.9)

where c(0)

3 is the third Chern class of the tangent bundle of Y4 dependent on the background Calabi-Yau

metric. Note that Zi contains six internal derivatives.

Let us next analyze the result of the dimensional reduction on the background (3.1) of the terms

in (3.3) separately,

R̂ ∗11 1
∣∣∣ = R ∗3 1 ∗(0) 1 (4.10)

t̂8t̂8R̂
4 ∗11 1

∣∣∣ = 192 Tr (R∧ ∗3R) c(0)

2 ∧ J
(0)2 + 1536 ∗3 1 c(0)

4 (4.11)

− 1

24
ε̂11ε̂11R̂

4 ∗11 1
∣∣∣ = −768R ∗3 1 c(0)

3 ∧ J
(0) + 1536 ∗3 1 c(0)

4 , (4.12)
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where we denoted the evaluation on the background by the vertical line, R denotes the curvature two

form of the external space (A.13), and c(0)

2 , c(0)

3 , c(0)

4 the second, third and fourth Chern form of Y4,

respectively. The explicit relation of the Chern forms to Riemann tensors is given in (A.15). Thus, in

particular we find the correction to the volume (4.13)

VR4 =
π2

24
Z (0) . (4.13)

The Chern-Simons term reduces to zero since we do not allow for fluxes and

32213α2Ĉ ∧ X̂8| = −3072 ∗3 1 c(0)

4 . (4.14)

Note that the scalar potential contributions that are proportional to the fourth Chern class cancel

amongst (4.11), (4.12) and (4.14). There cannot be any contribution to the scalar potential arising

from the other flux depend parts of (3.3). However we did not vary (4.11) and (4.12) with respect to

the Kähler moduli, which gives rise to a non vanishing scalar potential, see section 7.4, and which is

a manifestation of the caveat that we do not compactly on a supersymmetric background in this toy

model.

Let us next tun our focus to the flux dependent parts of (3.3). In our reduction ansatz, the M-

theory three-form Ĉ is expanded into the harmonic (1, 1)-forms introduced in (4.8) with vector fields

Ai as coefficients. Hence, the four-form field strength Ĝ = dĈ upon reduction takes the form

Ĝ→ F i ∧ ω(0)

i =
1

2
F iµν(ω(0)

i )mn̄ dx
µ ∧ dxν ∧ dzm ∧ dz̄n̄ , (4.15)

where the F i = dAi are the field strengths of the 3d vector fields with real external coordinates

xµ, µ = 0, 1, 2 and complex internal coordinates zm, z̄m̄m, m̄ = 1, 2, 3, 4.

Using (4.15), one performs the dimensional reduction of the classical part of (3.3), see [103, 81],

and finds

− 1

2
Ĝ ∧ ∗11Ĝ

∣∣∣ = −1

2
F i ∧ ∗3F jω(0)

i ∧ ∗
(0)ω(0)

j . (4.16)

To rewrite expressions in terms of the quantities introduced in (2.82) and (4.9), one makes use of

identities valid for the Hodge star ∗8 evaluated on certain internal harmonic forms. One very relevant

identity of this form is

∗(0)ω(0)

i =
1

3!V0
K(0)

i J (0)3 − 1

2
ω(0)

i ∧ J
(0)2 . (4.17)

We discuss further equations like this one in appendix A.7, where we also give the definition of

the intersection numbers in the background K(0)

i ,K
(0)

ij ,K
(0)

ijk,K
(0)

ijkl and derive additional relations that

straightforwardly follow from (4.17). These identities will be repeatedly used in the following. For

example, applying the first equation in (4.17) one finds∫
Y4

ω(0)

i ∧ ∗
(0)ω(0)

j =
1

V0
K(0)

i K
(0)

j −K
(0)

ij . (4.18)

Note that since we do not discuss metric deformations in this chapter let us note that in this context

by fluctuating the metric with Kähler deformations g(0)

mn̄ → g(0)

mn̄ + iδviω(0)

imn̄ as done in chapter III, it
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becomes necessary to lift the fluctuations around the background metric to full fields v0 + δv → v in

the 3d theory. Since the intersection numbers are topological quantities they can be lifted safely, thus

we find ∫
Y4

ω(0)

i ∧ ∗
(0)ω(0)

j → 1

V0
KiKj −Kij . (4.19)

Let us now discuss the dimensional reduction of the higher-derivative corrections in (3.3) by apply-

ing the same logic as for the classical part discussed above. This requires us to use (4.15), (4.17) and

related identities summarized in appendix A.7. We begin by discussing the reduction of t̂8t̂8Ĝ
2
4R̂

3 and

then proceed with ε̂11ε̂11Ĝ
2R̂3. We consider only terms that have two external derivatives and depend

on the gauge fields Ai. Hence, Ĝ is of the form (4.15) and has two external and two internal indices.

All other remaining summed indices are purely internal. The reduction of t̂8t̂8Ĝ
2R̂3 then yields3

t̂8t̂8Ĝ
2R̂3 ∗11 1

∣∣∣ ⊃ sgn(◦ · · · ◦) Ĝ◦ ◦µ1µ2
Ĝµ1µ2

◦ ◦R
◦ ◦
◦ ◦R

◦ ◦
◦ ◦R

◦ ◦
◦ ◦ ∗11 1 := Xt8t8 . (4.20)

where Xt8t8 is given in (4.20) and the subset symbol suggest that on;y terms with two external deriva-

tives are taken into account. Here, the symbols ◦ schematically represent all appearing permutations

of internal indices dictated by the index structure of the t8 tensor. Each of the 14 terms in Xt8t8 are

of the general form [
F i ∧ ∗3F j

] (
ω(0)

i

)◦
◦

(
ω(0)

j

)◦
◦
R◦ ◦ ◦ ◦R

◦ ◦
◦ ◦R

◦ ◦
◦ ◦ ∗(0) 1 . (4.21)

Similarly, one reduces ε̂11ε̂11Ĝ
2R̂3 and finds the following terms contributing to the kinetic terms

of the vectors

1

96
ε̂11ε̂11Ĝ

2R̂3 ∗11 1
∣∣∣ ⊃ sgn(◦ · · · ◦) Ĝ◦ ◦µ1µ2

Ĝµ1µ2

◦ ◦R
◦ ◦
◦ ◦R

◦ ◦
◦ ◦R

◦ ◦
◦ ◦∗111 = Xε11ε11−Xt8t8 . (4.22)

with Xε11ε11 is given (A.5) and its eight terms have the generic structure (4.21). The Xt8t8 term in

the reductions of t̂8t̂8Ĝ
2R̂3 and ε̂11ε̂11Ĝ

2R̂3 cancels. The various index summations in (C.3) can be

recast in terms of the following linear combination of top forms on the internal space, each containing

the third Chern form c(0)

3 (Y4) and two (1, 1)-forms ω(0)

i :

−
(
t̂8t̂8Ĝ

2R̂3 +
1

96
ε̂11ε̂11Ĝ

2R̂3
)
∗11 1

∣∣ ⊃ −Xε11ε11 = 3 · 27
[
F i ∧ ∗3F j

][
∗(0)

(
ω(0)

i ∧ ω
(0)

j ∧ J
(0)
)
∧ c(0)

3

− 1

2
∗(0)

(
ω(0)

i ∧ ω
(0)

j ∧ J
(0)2
)
∧ c(0)

3 ∧ J
(0) +

1

6
ω(0)

i ∧ J
(0)3 ∧ ∗(0)

(
c(0)

3 ∧ ω
(0)

j

)
+

1

6
ω(0)

j ∧ J
(0)3 ∧ ∗(0)

(
c(0)

3 ∧ ω
(0)

i

)
−
(
ω(0)

i ∧ ∗
(0)ω(0)

j

)
∧ ∗(0)

(
c(0)

3 ∧ J
(0)
)]
.

(4.23)

One uses the identities (4.17) and (A.7) - (A.47) to express the result in terms of the basic building

blocks (2.82) and (4.9). In the next step, we relate this result to the canonical form of the 3d, N = 2

action (2.56) as already outlined in subsection 2.2. Taking into account the contribution arising from

the reduction of the classical kinetic term (4.16) and performing the Weyl rescaling with the corrected

3These computations were performed in Mathematica using the X-tensor package http://xact.es/xTensor.
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volume (4.13), one can read off the couplings K̃red
ij that arise from the reduction. Before we proceed let

us comment on the non-harmonicity of c3, which will be of crucial importance for the following integral

splits. The third Chern form can be written in terms the curvature two-form Rmn̄ = Rmn̄rs̄dz
r ∧ dz̄s̄

on a Calabi-Yau manifold as

c3 = − i
3
Tr(R3) = − i

3
Rmn ∧Rnr ∧Rrs . (4.24)

Hence c3 is real and one can easily explicitly verify that

dc3 = 0 whilst d ∗(0) c3 6= 0 , (4.25)

thus it is closed but not co-closed with respect to the Kähler metric gmn̄. This means that it may be

expanded as

c3 = Hc3 + i∂∂̄F4 , (4.26)

where H indicates the projection to the harmonic part with respect to the metric gmn̄. This equation

defines a co-closed (2, 2)-form F4 which becomes relevant when using (A.47) to derive∫
Y4

∗(0)(ω(0)

i ∧ ω
(0)

j ∧ J
(0)
)
∧ c(0)

3 = −V0K(0)klK(0)

kliZ
(0)

j +
2

3V0
K(0)

ij Z
(0) +

∫
Y4

∗(0)∂H̃ ∧ c(0)

3 (4.27)

where ∗(0)∂H̃ is the co-closed part of the identity (A.47). Note that ∂ ∗(0) c(0)

3 = 0 is a sufficient criteria

for the unwanted last term in (4.27) to vanish. It is not clear that one can find a Calabi-Yau geometry

where c(0)

3 is harmonic, however, we assume c(0)

3 to be harmonic in the background Calabi-Yau for the

remainder of this chapter. In case c(0)

3 cannot be chosen harmonic it amounts to effectively dropping

the term ∫
Y4

∗(0)(ω(0)

i ∧ ω
(0)

j ∧ J
(0)
)
∧ ∂∂̄F (0)

4 (4.28)

from the following discussion, as we comment on it in more detail in section A.3. Discussing the

warped background reduction in chapter III it becomes crucial to treat this issue with more care, as

of we never assume c3 to be harmonic. By using (A.7) one finds without any obstruction that∫
Y4

−1

2
∗(0)

(
ω(0)

i ∧ ω
(0)

j ∧ J
(0)2
)
∧ c(0)

3 ∧ J
(0) −

(
ω(0)

i ∧ ∗
(0)ω(0)

j

)
∧ ∗(0)

(
c(0)

3 ∧ J
(0)
)

= − 1

V0
K(0)

i K
(0)

j Z
(0)(4.29)

since the terms ∗(0)
(
ω(0)

i ∧ ω
(0)

j ∧ J2
)
∧ c(0)

3 ∧ J (0) cancel without the necessity of splitting the integral,

which would elsewise give rise to terms containing the non-harmonic part of c3. Hence one could either

take into account the dropped term (4.28) or assume c3 to be harmonic thus F = 0, as we mentioned

above we choose latter.

We find an overall factor of 3 · 28 · k1 = π2

24 for the contributions from (4.23). This is the same

factor that appeared in the corrected volume Ṽ given in (4.13). Due to the Weyl rescaling, the

volume correction also contributes to K̃red
ij in linear order in Z (0)

i . Note that we will neglect quadratic

corrections in Z (0)

i to the Kähler metric in all of our computations. These corrections would contain
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six Riemann tensors of the internal space and would thus have twelve derivatives. Performing all

outlined steps, we finally arrive at the result

K̃red
ij = K̃0

ij −
π2

24

[
V0K(0)klK(0)

kliZ
(0)

j −
5

3
K(0)

ij Z
(0) −K(0)

i Z
(0)

j −K
(0)

j Z
(0)

i +
2

V0
K(0)

i K
(0)

j Z
(0)

]
, (4.30)

with the classical coupling function

K̃0
ij(v0) = V0K(0)

ij −K
(0)

i K
(0)

j = −V0

∫
Y4

ω(0)

i ∧ ∗
(0)ω(0)

j → K0
ij(v) = VKij −KiKj , (4.31)

Where we have performed the uplift to the full fields vi for the classical part in (4.19). Let us next

comment on the uplift of the higher-curvature terms in (4.9) which since there are of topological nature

can as well simply lifted to obtain

Zi =

∫
Y4

c3 ∧ ωi , Z = Zi vi =

∫
Y4

c3 ∧ J , (4.32)

and one thus finds for the uplifted total kinetic couplings of the vectors

K̃red
ij (v) = K̃0

ij(v)− π2

24

[
VKklKkliZj −

5

3
KijZ −KiZj −KjZi +

2

V
KiKjZ

]
, (4.33)

where all the quantities depend on the full fluctuated fields vi. This concludes the dimensional reduc-

tion of the action Ssub given in (3.3). In the next step, we will use this result to infer the 3d, N = 2

Kähler coordinates. Let us stress that in order to derive the kinetic terms of the scalars in the vector

multiplet (vi, Ai) one needs to vary the purely gravitational l6M terms w.r.t. the Kähler deformations

of the metric gmn̄ → gmn̄ + iδviωimn̄ as done in chapter III. However, as we will see next, the result

(4.33) together with 3d, N = 2 supersymmetry suffices to fix the Kähler coordinates.

4.2 Determining the 3d, N = 2 coordinates and Kähler potential

As already noted above, from the reduction of the R4 terms in (3.3) one infers the Kähler potential

(4.4) but is unable to fix the Kähler coordinates Ti in the 3d, N = 2 action (2.53). The Kähler

coordinates can however be determined by using the relation of the Kähler potential K given in (4.4)

with the couplings K̃red
ij found in (4.33). As a first step, one computes the general form of K̃ij arising

from a Kähler potential K by Legendre transform. If the Kähler metric separates w.r.t. the coordinates

NA = {M I , Ti}, that is all mixed derivatives of K vanish, one can compute K̃ij using the identity

K̃ij = −1

4

(
∂2K

∂T̄ j∂Ti

)−1

. (4.34)

In our reduction with h2,1(Y4) = 0, the separation into NA = {M I , Ti} indeed takes place. Hence,

one can compare the expression (4.34) to K̃red
ij in order to read off Tj .

The classical Kähler coordinates, which correspond to six-cycle volumes of the Calabi-Yau fourfold

Y4, are given by

ReTi = Ki . (4.35)
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Performing the Legendre transform and using (4.34), one finds that the classical Kähler coordinates

(4.35) together with the Kähler potential (4.4) do not suffice to arrive at the metric K̃red
ji given in

(4.33). Indeed, it is necessary to correct the Kähler coordinates as

ReTi = Ki
(

1 +
π2

24V
Z
)
− π2

24
Zi , (4.36)

to achieve the match K̃ji = K̃red
ji . This non-trivial field redefinition might also be interpreted as a

correction to the six-cycle volumes. We stress that the last term in (4.36) is constant, since Zi are

topological quantities, and cannot be inferred by using (4.34). In fact, this term could be removed

by a trivial holomorphic Kähler transformation. The reason for including this shift will be explained

below.

Having determined both the Kähler potential in (4.4) and the Kähler coordinates in (4.36), one

can now show that a 3d no-scale condition holds. More precisely, one derives that

KTiK
TiT̄ jKT̄ j

= 4 . (4.37)

This implies that the term −4|W |2 in the scalar potential (2.54) will cancel precisely if W is indepen-

dent of Tj .

The coordinates Ti are the propagating complex scalars in the 3d, N = 2 action (2.53). If one

changes to different propagating degrees of freedom by dualizing ImTi and performing the Legendre

transform for ReTi as described in section 2.2.2, one arrives at propagating real scalars Li in the dual

version of the 3d N = 2 action (2.56). It is convenient to perform all computations in this frame,

since the Kähler potential K, the Kähler form J , and the geometric quantities (2.82) and (4.9) depend

explicitly on the fields vi. These are real scalars in the 3d action and correspond to 2-cycle volumes

of the internal space. By definition of the Legendre transform one has the relation

Li = − ∂K

∂ReTi
= −∂K

∂vj
∂vj

∂ReTi
. (4.38)

To evaluate (4.38) one first needs to compute the partial derivative of the Kähler potential K and the

Kähler coordinates Ti in (4.36) w.r.t. to the fields vj . Then one inverts the matrix
(
∂ReT
∂v

)−1,ij
= ∂vj

∂ReTi
.

We neglect corrections that have more than six derivatives, hence being at least quadratic in Zi. This

implies that we assume the corrections proportional to Zi to be small compared to the classical

contribution. Hence, we can expand the inverse matrix by using the formula (A + B)−1
ij = A−1

ij −
A−1
ij B

jj′A−1
j′j +O(B2). Using (4.36) and applying the above steps one arrives at

Li =
vi

V
+
π2

24

(
−2

3

Z
V2
vi − 1

2V
ZjKji

)
. (4.39)

Furthermore, one can compute

ReTiL
i = 4 , (4.40)

which is valid up to linear order in Zi. The dual kinetic potential then takes the form

K̃ = log
( 1

4!
KijklLiLjLkLl

)
+ 4 . (4.41)
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Note that it is straightforward to evaluate the coordinates ReTi given in (4.36) as a function of Li

given in (4.39) as

ReTi =
1

3!

KijklLjLkLl

V̂(L)
, V̂(L) =

1

4!
KijklLiLjLkLl . (4.42)

This is clearly consistent with (2.59) when using (4.41).

Let us close this section with some further remarks. First of all, note that by using the field

redefinition (4.39) one finds the same functional dependence of K̃(L) w.r.t. Li as in the classical

reduction without higher-curvature terms. This is equally true when evaluating the Kähler potential

K given in (4.4) as a function of the corrected Ti given in (4.36). Clearly, this implies the no-scale

condition (4.37) to linear order in the correction Zi. Secondly, note that the redefinition of Li in (4.38)

does not change if one varies the coefficient of the last term in Ti given in (4.36). The convenient

choice made in (4.36) implies that (4.40) and (4.41) do not have irrelevant linear terms of the form

ZiLi.

5 F-theory limit and the 4d effective action

In this section we examine the 4d effective theory obtained by taking the F-theory limit of the 3d

results found in section 4. As in [102], we use the duality between M-theory and F-theory to lift the

lM -corrections to α′-corrections of the 4d effective action arising from F-theory compactified on Y4.

In subsection 5.1 we formulate the F-theory limit in terms of the corrected Kähler coordinates and

discuss the resulting 4d Kähler potential. Next, in subsection 5.2 we derive the corrected expressions

for the volume of the internal space and for the 4d Kähler coordinates in terms of two-cycle volumes.

Analogously to the 3d case, the considered 4d effective couplings turn out to be identical to the classical

ones when expressed in terms of the modified Kähler coordinates. We comment on the consequences

of this observation.

5.1 F-theory limit and the 4d, N = 1 effective action

To begin with, we require that Y4 admits an elliptic fibration over a three-dimensional Kähler base

B3. We allow Y4 to accommodate both non-Abelian and U(1) gauge groups. A detailed discussion of

its geometry will be given in subsection 5.3. The structure of the elliptic fibration allows us to split

the divisors and Poincaré-dual two-forms ωj , j = 1, . . . , h1,1(Y4) into three types: ω0, ωα, and ωI . The

two-form ω0 corresponds to the holomorphic zero-section, the two-forms ωα to divisors obtained as

elliptic fibrations over divisors of the base with α = 1, . . . , h1,1(B3), and the two-forms ωI correspond

to both the extra sections, i.e. Abelian U(1) factors, and the blow-up divisors, i.e. U(1) factors in

the Cartan subalgebra of the non-Abelian gauge group. We can thus expand the Kähler form of the

Calabi-Yau fourfold as

J = v0ω0 + vαωα + vIωI , (5.1)
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where v0 represents the volume of the elliptic fiber. Accordingly, one can also split the Li and Ti

introduced in (4.39) and (4.36) such that

Li =
(
L0 ≡ R, Lα, LI) , Ti = (T0, Tα, TI) . (5.2)

The field R will play a special role in the uplift from three to four dimensions. In fact, one finds

that R is given by R = r−2, where r is the radius of the circle compactifying the 4d theory to three

dimensions.

In the F-theory limit one sends v0 → 0, which translates to sending R → 0. Such an operation

decompactifies the fourth dimension by sending the radius r of the 4d/3d circle in string units to

infinity: r → ∞. Henceforth, all volumes of the base B3 will be expressed in units of ls. In all 3d

effective quantities one has to retain the leading order terms in such a limit. Therefore we introduce a

small parameter ε and express the scaling of the dimensionless fields by writing v0 ∼ ε. As explained

in [96, 97] and in section 3.1, one shows that all vI scale to zero in the limit of vanishing ε, whereas

vα ∼ ε−1/2. One then infers the scaling behavior of the classical and corrected volume of Y4 to be

V ∼ Ṽ ∼ ε−1/2. In the following we use the letter b to denote quantities of the base that are finite in

the limit ε→ 0.

When compactifying a general 4d, N = 1 supergravity theory on a circle, one can match the

original 4d Kähler potential and gauge coupling functions with the 3d Kähler potential K or kinetic

potential K̃. Since we have found that the dependence of K and K̃ on the modified coordinates Ti and

Li is the same as in the classical case, we can perform the limit by simply following [96]. Firstly, we

recall that the fields Tα remain complex scalars in four dimensions, while the T0, TI should be dualized

already in three dimensions into vector multiplets with (R,A0) and (LI , AI) and then uplifted to four

dimensions. In fact, (R,A0) are parts of the 4d metric, while (LI , AI) form the Cartan gauge vectors

of the 4d gauge group. In this mixed frame one finds a kinetic potential K̃(R,LI |Tα, T̄α), which can

be computed for example by Legendre dualization of Lα starting from (4.41). This kinetic potential

has to be matched with the one arising in a dimensional reduction from four to three dimensions,

which has the form

K̃(r, LI |T bα) = − log(r2) +KF (T bα)− r2RefIJL
ILJ , (5.3)

where the LI are the Wilson line scalars from 4d Cartan vectors on a circle, and fIJ(T bα) is the

holomorphic 4d gauge coupling function. As a next step, one can implement the F-theory limit by

identifying the 3d fields with appropriate 4d fields. In addition to R = r−2 and identifying the LI , we

also set 4

Lαb = Lα|ε=0 , T bα = Tα|ε=0 , (5.4)

which are the only Li and Ti that are finite and non-zero in the limit ε→ 0. This is the same limit as

taken in [96], but with the modified coordinates Li and Ti.

It is now straightforward to determine KF (T bα), since in the modified coordinates this is just

the classical analysis. First of all, one has to evaluate the intersection numbers Kijkl for an elliptic

4One could speculate that also this identification is modified with terms depending on Zi. This would significantly

change the conclusions of our analysis, but we found no further evidence that this should be the case.
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fibration. One finds the always non-vanishing coupling K0αβγ = Kbαβγ , where we have introduced the

base intersection numbers

Kbαβγ =

∫
B3

ωα ∧ ωβ ∧ ωγ . (5.5)

Second of all, one can split the kinetic potential (4.41) and coordinates (4.42) for an elliptic fibration.

The terms of leading order in ε are given by

K̃(Li) = log(R) + log
( 1

3!
KbαβγLαb L

β
bL

γ
b + . . .

)
+ 4 , (5.6)

ReTα =
1

2!

KbαβγL
β
bL

γ
b

V̂b(Lb)
+ . . . , V̂b(Lb) ≡

1

3!
KαβγLαb L

β
bL

γ
b , (5.7)

where we have replaced the Lα with Lαb by means of (5.4). Performing the Legendre transform in

order to express everything in terms of T bα and comparing the result with (5.3) setting R = r−2 one

finds

KF (T bα) = log
( 1

3!
KbαβγLαb L

β
bL

γ
b

)
, ReT bα =

1

2!

KbαβγL
β
bL

γ
b

V̂b(Lb)
, (5.8)

where one has to solve T bα for Lαb (T bα) and insert the result into KF . Analogously to the 3d case, one

can compute

ReT bαL
α
b = 3 . (5.9)

In this case we also choose the constant shift in (5.14) in order to avoid irrelevant linear terms of the

form ZbαL
α
b in the kinetic potential.

The result (5.8) agrees with the classical result and hence, as in three dimensions, the functional

dependence of KF on T bα is not modified by the corrections. In particular one can trivially check that

the no-scale condition

KF
T bα
KF T bαT̄

b
βKF

T̄ bβ
= 3 (5.10)

is satisfied by this Kähler potential and Kähler coordinates. It should be stressed that the modifications

arise when expressing KF and T bα in terms of the finite two-cycle volumes vαb as we discuss in detail

in subsection 5.2.

Before closing this subsection we note that the gauge coupling function of the 4d gauge group can

equally be determined by comparing (5.3) with the M-theory result (4.41). Clearly, one also just finds

the classical result when working in the coordinates T bα. More precisely, if the seven-brane supporting

the gauge theory wraps the divisor dual to Cαωα in B3, the gauge coupling is proportional to CαT bα.

As we will see in the next subsection, also this result differs from the classical expression when written

in terms the two-cycle volumes vαb of B3.

5.2 Volume dependence of the 4d, N = 1 coordinates and Kähler potential

In this subsection we express the 4d, N = 1 coordinates T bα and Kähler potential KF given in (5.8) in

terms of finite two-cycle volumes vαb in the base B3. In these coordinates the corrections will reappear

and we can comment on their structure.
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To begin with, we introduce some additional notation. The base Kähler form is denoted by

Jb = vαb ωα|B3 . The classical volume V0
b of the base and the volume dependent matrix Kbαβ are defined

as

V0
b =

1

3!

∫
B3

J3
b , Kbαβ =

∫
B3

ωα ∧ ωβ ∧ Jb = Kbαβγv
γ
b , Kbα = Kbαβγv

β
b v

γ
b , (5.11)

where Kbαβγ are the triple intersection numbers of B3 defined in (5.5). All corrections to the 4d theory

will be expressed in terms of the fundamental quantity

Zα =

∫
Y4

c3(Y4) ∧ ωα
!

=

∫
B3

[C] ∧ ωα ≡ Zbα . (5.12)

Since the ωα are inherited from the base B3 there always exists a curve C such that the middle equality

in (5.12) is satisfied. An explicit expression for C is derived in subsection 5.3 starting from c3(Y4) for

numerous singular configurations with extra sections. Let us note that we have defined Zbα = Zα in

order to more easily distinguish Z = vjZj and Zb(Jb) = vαb Zbα.

We now can relate the two-cycle volumes vαb of B3 to the two-cycle volumes vi of Y4. Since both

v0 and vα scale with ε as discussed above, one is led to set

√
v0vα = 2πvαb . (5.13)

This is the classical relation between the different two-cycle volumes.5 One can then evaluate the

N = 1 Kähler coordinates ReT bα and the real coordinates Lαb in terms of the vαb . Inserting (5.13) into

(4.36) and (4.39) one finds

ReT bα = (2π)2Kbα
2

+
π2

24

(
1

2

KbαZb(Jb)
V0
b

−Zbα
)
, (5.14)

Lαb =
vαb

(2π)2V0
b

− 1

384π2

(
1

2

vαb Zb(Jb)
V0 2
b

+
Kαβb Z

b
β

V0
b

)
. (5.15)

The only non-trivial step in this computation is to relate the inverse Kαβ to the inverse Kαβb of Kbαβ
given in (5.11). We will discuss this in more detail momentarily. Before doing so, let us introduce the

corrected base volume Vb by setting

R1/2V3/2 = (2π)3Vb . (5.16)

This equation can be viewed as an extension of the relation between the classical volumes of Y4 and

B3 to a corrected V and Vb. Inserting the identification (5.13) one finds

Vb = V0
b +
Zb(Jb)

96
. (5.17)

Equation (5.16) also implies that the F-theory Kähler potential takes form

KF = −2 log(2π)3Vb . (5.18)

5Note that one could have included further terms proportional to Zbα that would non-trivially mix the two-cycle

volumes in a manifestly non-local way. It is straightforward to use such a more general ansatz in the following expressions.

However, a string theory interpretation of such corrections would remain elusive and we refrain from including them in

the following.
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The identification of circle radius r with the coordinate R can equally be expressed in terms of the

base volumes vαb and v0. Using (5.13) and (5.24) in (4.39) one finds that

1

r2
= R =

v
3/2
0

(2π)3

1

Vb
, (5.19)

with Vb given in (5.17). Note that this implies the existence of a correction to the classical identification

that only involved V0
b .

It remains to comment on the relation of Kαβ and Kαβb . To this end, we need to determine the

behavior of the matrix Kij in the F-theory limit. Recall that here we are restricting our attention

to corrections at order l6M , over which we have direct control through the higher-dimensional theory,

and therefore we will only retain terms up to linear order in Z. By splitting the index i in (0, α), the

equality KijKjΓ = δΓ
i gives rise to the following conditions:

Kα0K0β +KαγKγβ = δβα , (5.20)

K00K0α +K0γKγα = 0 , (5.21)

K00K00 +K0γKγ0 = 1 . (5.22)

It is easy to realize that K00,K0α,Kαβ have leading terms which scale like ε−1, ε−1, ε1/2 respectively.

This implies that, for (5.20) to be fulfilled in general, Kαβ must admit a term which scales like ε−1/2.

Moreover, such a term is the leading one for ε → 0, as otherwise Lα would not stay finite in the

limit. In contrast, K0α goes to zero at least as fast as ε, thus ensuring the right scaling behavior of R,

i.e. ε3/2. Given the following ansatz for the leading term of Kαβ

√
v0Kαβ =

1

2(2π)

(
Kαβb − q

vαb v
β
b

V0
b

)
, (5.23)

with q a yet to be determined coefficient, condition (5.20) at the zeroth order in ε implies after using

(5.13) and neglecting higher-order terms that

K0α

v0
=

q

(2π)2

vαb
V0
b

. (5.24)

Now, looking at condition (5.21), one realizes that there is a sum of divergent terms of order ε−3/2.

Requiring this sum to be identically zero for every α fixes the coefficient q to be

q =
1

6
. (5.25)

Note that if only one Type IIB modulus is present, the r.h.s. of equation (5.23) is identically zero,

and thus Kαβ vanishes in the F-theory limit, as its leading term is of order ε. Let us remark here that

the above result is not an artifact of the F-theory limit. In fact, one can alternatively infer equation

(5.23) with q as in (5.25) by matching the inverse of the classical Kähler metrics in three and four

dimensions.

To further discuss the result (5.14) we stress that in addition to the constant shift in ReT bα one

also finds a correction proportional to Zb(Jb). Using (5.12) this implies that ReT bα receives corrections
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depending on the volume of the curve C. A priori this curve needs not to intersect the divisor dual to

ωα of which the classical part of ReT bα parametrizes the volume. It would be interesting to understand

the origin of this ‘non-locality’. This becomes particularly apparent when interpreting ReT bα as part

of the seven-brane gauge coupling function as discussed at the end of subsection 5.1. In this case a

local limit might exist in which one decouples gravity by sending the total classical volume V0
b of B3

to infinity. Note, however, that Zb(Jb) is suppressed by V0
b and the non-local correction disappears

for V0
b → ∞. This implies that the correction is consistent with the expected local behavior in the

decompactification limit.

In summary, we found the corrected coordinates T bα given in (5.14) and Kähler potential (5.18) with

(5.17). Both corrections appear when expressing the 4d results in terms of the geometrical two-cycle

volumes vαb . We suggested that there are no further corrections to the map (5.13) in order that our

results admit a reasonable string interpretation. To fully confirm this assertion, one should compute

for example the D7-brane gauge coupling function. The relevant open string amplitude is at one-loop

order in gs and has been studied before in various Type II set-ups in [104, 105, 106, 107, 108]. It

would be interesting to perform the match with our result.

5.3 Weak-coupling interpretation of the α′ correction

In the previous sections, we found that the inclusion of higher-curvature terms in the M-theory reduc-

tion leads to a redefinition of the Kähler coordinates both in three and four dimensions. The main

new object is

Zi =

∫
Y4

c3(Y4) ∧ ωi (5.26)

and in the following we will try to shed some light on its physical interpretation. In order to understand

the physical quantities that Zi and the related Z = viZi correspond to, we rewrite them in terms of

geometrical objects in Sen’s weak-coupling limit of F-theory [99, 100].

Let us first discuss the simple case of on non-singular elliptically fibered Calabi-Yau fourfolds for

the corrections

Z = viZi =

∫
Y4

c3(Y4) ∧ J & X̃ =

∫
Y4

c2(Y4) ∧ J2 . (5.27)

In this case we can use adjunction formulæ to express Chern classes of Y4 in terms of Chern classes

of B3. For simplicity, let us restrict to a smooth Weierstrass model, i.e. a geometry without non-

Abelian singularities, that can be embedded in an ambient fibration with typical fibers being the

weighted projective space WP2
231. This implies having just two types of divisors Dj , j = 1, . . . , h1,1(Y4).

There is the horizontal divisor corresponding to the 0-section D0, and the vertical divisors Dα, α =

1, . . . , h1,1(B3), corresponding to elliptic fibrations over base divisors. Denoting the Poincaré-dual

two-forms to the divisors by ωi = (ω0, ωα), we expand

J = v0ω0 + vαωα , (5.28)
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where v0 is the volume of the elliptic fiber. Using adjuction formulæ one derives

c3(Y4) = c3 − c1c2 − 60c3
1 − 60ω0c

2
1 , (5.29)

c2(Y4) = c2 + 11c2
1 + 12ω0c1 , (5.30)

where the ci on the r.h.s. of these expressions denote the Chern classes of B3 pulled-back to Y4.

In order to take the F-theory limit of the expression (5.27), we need the relation between the 11d

Planck length lM and the string length ls, given in (3.17), and one sends v0 → 0 to decompactify the

fourth dimension. One retains the leading order terms in (5.27) in the limit of vanishing fiber volume

v0 → 0 upon using the scaling behavior of the various fields see 3.1 or section 5. One finds by inserting

(3.17) , (5.13) and (5.29) into (5.27), and neglecting all terms that vanish for ε going to zero one finds

V0 =

∫
Y4

J4 → 1

3!

∫
B3

J3
b (5.31)

Z =

∫
Y4

c3(Y4) ∧ J → −60

∫
B3

c2
1(B3) ∧ Jb , (5.32)

X̃ =

∫
Y4

c2(Y4) ∧ J2 → 12

∫
B3

c1(B3) ∧ J2
b . (5.33)

This simple analysis allows us to comment on the behavior of the corrections in some special cases.

First of all, when the elliptic fibration is trivial, i.e. Y4 = X × T 2 with X being a Calabi-Yau

threefold, then c2(Y4) = c2(X) and c3(Y4) = c3(X). Since these have no components along the fiber,

all corrections in (5.32) and (5.33) go to zero and the α′ corrections are absent in the resulting N = 2

theory.

Let us first look at the correction (5.32) and (5.33) in the light of the weak coupling limit by Sen

[99]. This limit is performed in the complex structure moduli space of Y4 and gives a weakly coupled

description of F-theory in terms of Type IIB string theory on a Calabi-Yau threefold X with an O7-

plane and D7-branes. The Calabi-Yau threefold is a double cover of the base B3 branched along the

O7-plane. The class of this branching locus is the pull-back of c1(B3) to X.

As in the case we consider, the case where non-Abelian singularities are absent, the corresponding

Sen limit contains a single recombined D7-brane wrapping a divisor of class 8c1(B3), as required

by seven-brane tadpole cancellation. This D7-brane has the characteristic Whitney-umbrella shape

[109, 110]. We first discuss the volume correction in (5.32). For this correction the intersection curve

of the D7-brane with the O7-plane plays a crucial role. It is a double curve with additional pinch

point singularities. However, all we need in the following is its volume in X given by

VD7∩O7 = 8

∫
X
c2

1(B3) ∧ Jb , (5.34)

where we omitted the pullback map from B3 to its double cover X in the integrand. Since the

intersection numbers of X are twice the ones of B3, we can immediately read off from (5.32) the

induced correction to be

Z =

∫
Y4

c3(Y4) ∧ J → −60

∫
B3

c2
1(B3) ∧ Jb ,

gs�1−→ −15

2
VD7∩O7 (5.35)
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Note that the quantum correction in (5.35) can alternatively be expressed in terms of the volume of

the self-intersection curve of the O7-plane by using tadpole cancellation. Note that the correction is of

order α′2 since two of the original six derivatives in M-theory have been absorbed by the integration on

the elliptic fiber. Let us point out one possible obstruction to the procedure of pulling higher-derivative

or lM corrections depending on Riemann tensors through the F-theory lift. One could object that

since in the limit of vanishing fiber the geometry becomes singular even higher lM corrections become

more relevant, however these corrections (5.32) and (5.33) are of topological nature and thus very well

be protected.

The novel correction (5.35) should arise from a string amplitude. We first look at the 4d effective

action in the string frame one infers that (5.35) has a string coupling dependence of g−1
S . Recall

that the power of the string coupling constant in a given amplitude coincides with −χ(Σ), where Σ

is the string world-sheet. The general formula for the Euler number of Riemann surfaces, possibly

non-orientable and with boundaries, is

χ(Σ) = 2− 2g − b− c , (5.36)

where g, b, c denote the genus, the number of boundaries, and the number of cross caps, respectively.

Therefore, we immediately see that the volume correction in (5.35) arises from a string amplitude

that involves the sum over two topologies: The disk (g = c = 0, b = 1) and the projective plane

(g = b = 0, c = 1). They correspond to the tree-level of orientable open strings and non-orientable

closed strings, respectively. This is consistent with the fact that the existence of this correction relies

on having D7-branes intersecting with an O7-plane. It would be interesting to perform a direct string

derivation of this α′2 correction.

Let us next discuss the correction (5.33) in the weak fouling limit and give it a string theory

interpretation. In fact, at weak string coupling, the coefficient (5.33) can be easily written as

X̃ =

∫
Y4

c2(Y4) ∧ J2 → 12

∫
B3

c1(B3) ∧ J2
b

gs�1−→ VD7 + 4VO7 , (5.37)

where VD7 and VO7 are the volumes of the D7-brane and the O7-plane in X, respectively. Both volumes

are in the Einstein frame and in units of ls. By tadpole cancellation one has VD7 = 8VO7. However,

in (5.37) we have split the volumes according to the appearance of the corresponding divisors in the

F-theory discriminant. The relative factor in the volume split is in agreement with the relative factor

in the higher-curvature terms of the Chern-Simons actions of D7-branes and O7-planes. These have

been studied to derive the 4d higher-curvature term proportional to Tr (R(4) ∧R(4)) in [111], which is

the supersymmetric partner of the Tr (R(4) ∧ ∗4R(4)) term in (4.11). Translated to the string frame

the higher-derivative correction in (4.11) becomes

S(4) ⊃
π2

192gIIB (2π)7

(
VsD7 + 4VsO7

) ∫
Tr (R(4) ∧ ∗s4R(4)) , (5.38)

where we see that this correction has the same string loop order as the one in (4.12) correcting the

volume. This term is expected to directly arise from a higher-curvature correction of the string-tree-

level Dirac-Born-Infeld action on the D7-brane and O7-plane as discussed in [112]. This concludes the

discussion of the corrections in the simple case of a non-singular fibered Calabi-Yau fourfold.
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Let us return to the more generic case of elliptically fibered Calabi-Yau fourfolds focusing on the

main object of interest Zi . Let us be clear about what we mean by analyzing its weak-coupling

interpretation. We wish to find a geometric object inside X that contains the same information as

Zi. More precisely, after taking the F-theory limit, all we are really interested in are the values Zbα as

defined in (5.12). This means that we are trying to find a curve C ⊂ X satisfying∫
B3

[C] ∧ ωbα = Zbα ∀α . (5.39)

Postponing a discussion of our methods to the following subsections, let us cut to the case and present

our results. Restricting the gauge group to be

G =

nSU∏
i=1

SU(Ni)×
nUSp∏
j=1

USp(2Mj) (5.40)

of which we believe to have a relatively decent weak-coupling understanding and embedding the elliptic

fiber in P231 we suggest that C is given by 6

C = −W · (W − c1

2
) + Cnon−Abelian

= −W · (W − c1

2
)−

∑
•=+,−

nSU∑
i=1

NiS
•
i · (S•i +

c1

2
)−

∑
i

2MiTi · (Ti +
c1

2
) . (5.41)

Here we denoted by W the class of the Whitney umbrella, by S±i the brane stack and its orientifold

image hosting the SU(Ni) gauge group, and by Ti the brane stack on which the USp(2Ni) gauge

theory is located. For U(1)-restricted models with a simple non-Abelian gauge group, the Whitney

umbrella splits into two pieces denoted by W± and we conjecture that the curve can be written as

C = −W+ · (W+ +
c1

2
)−W− · (W− +

c1

2
) + Cnon−Abelian . (5.42)

For the sake of brevity we used the abbreviation c1 = [π′∗c1(B3)] with π′ : Z → B3 the projection

from the double cover Z to the base manifold in the above formulas and will continue to do so from

here on.

Given a clear geometric expression for C, one can try and find a physical interpretation for the

topological quantities Zbα defined in (5.39). First of all, apart from some shifts proportional to c1, C
can roughly be interpreted as the curve over which the D7 branes intersect themselves in the manifold

X. One explanation for the presence of the c1 shifts might be that they correct effects of the orientifold

planes, as the orientifold locus has class c1. However, it is not entirely clear to us how this correction

works. Let us denote the base divisor dual to ω(0)
α |B3 by Db

α. Then the topological quantities Zbα clearly

count the number of times that Db
α intersects the curve C. In the light of this piece of information, we

can reconsider the shifts to T bα that were found in the previous section. While the term proportional

to Zbα is ’local’ in the sense that it corresponds to intersections of the divisor Db
α, the term linear in

6Here and in the following we use the notation A · B, AB, and [A] ∧ [B] interchangeably to denote the intersection

product between two subvarieties A and B or, alternatively, the product of their Poincaré-dual forms.
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Zb(Jb) is not. For generic values of vαb , Jb is a linear combination of all divisors Db
α and hence the

correction of the coordinate T bα also depends on the topology of divisors far away from Db
α.

Before proceeding to the computations, let us be very clear about the class of models that we

suggest our formulas apply to. In the absence of Abelian gauge groups, we believe that our result

(5.41) holds very generally and depends neither on the total number of gauge group factors nor on

the rank of the single factors.7 As soon as one allows for Abelian gauge factors, things become more

complicated and (5.42) only holds as long as the non-Abelian gauge group is simple and the U(1)

gauge group can be obtained by U(1)-restriction [114].

To this end, let us note here that not every F-theory model with a single U(1)-factor can be

obtained by U(1)-restriction, or phrased differently, by embedding the elliptic curve inside the toric

surface F11, see [88] for notation. An easy way of seeing this uses the classification of tops [115]. Taking

for example SU(5), there exists only one top [88] with fiber F11. However, since the top already fixes

the matter split, i.e. imposes a condition on the U(1) charges of the non-Abelian representations8, one

has that the U(1)-charge of 5 representation must satisfy

Q(5) ≡ 2, 3 mod 5 . (5.43)

In more general models, this need not be the case and (5.42) does not apply to those. More generally,

F-theory models obtained from Calabi-Yau manifolds with elliptic fibers embedded in other spaces

than F11 appear to be described by (5.42) if and only if they have the matter split as the U(1)-

restricted model with the same non-Abelian gauge group. In the examples we studied, all tops with

generic fiber F11 that give rise to flat fibrations had the same matter split, namely the straightforward

generalization of (5.43):

Q(N) =

{
N
2 for N even
N−1

2 , N+1
2 for N odd

(5.44)

It would be interesting to find a general proof that U(1)-restricted models always have this matter

split.

Finally, we wish to remark that there does appear to be a similar logic for arbitrary splits and

F-theory models with both Abelian and multiple non-Abelian gauge factors. While we would generally

expect the same logic to hold for these more general cases, we currently do not have elegant expressions

for W± in these scenarios. Studying those set-ups and improving our current understanding of the

weak coupling limit for arbitrary gauge groups would be an interesting problem.

5.4 Conclusions

In this section we performed the classical Kaluza-Klein reduction of a seemingly controlled subset

of the known higher-derivative couplings of 11d supergravity in an unwarped compactification on a

7Note, however, that an SU(2) gauge group should be treated as USp(2) as already observed for example in [113].
8See [116, 88] for a detailed discussion of the relation between tops and matter splits.
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Calabi-Yau fourfold. In eleven dimensions, the two considered correction terms at order l6M take the

schematic form R̂4 and Ĝ2R̂3 in terms of the Riemann tensor and the M-theory four-form field strength

Ĝ. We analyzed the consequences for the resulting 3d, N = 2 effective action and found that both

the total volume of the Calabi-Yau fourfold and the 3d, N = 2 Kähler coordinates are non-trivially

corrected at order l6M . It is surprising that we have identified remnants of N = 2 supersymmetry since

the background metric certainly is not a supersymmetric solution to the eleven-dimensional Einstein

equations, as we discuss in section 6 in great detail. That these N = 2 supersymmetry features appear

might be correlated to neglecting a sector of the relevant eight-derivative terms and assuming c3 to

be harmonic.

The first correction modifies the classical expression of the 3d Kähler potential in terms of two-

cycle volumes, whereas the second is a shift of the classical volume of holomorphic six-cycles that also

depends on the two-cycle volumes. The two corrections combine in such a way that the functional

dependence of the 3d Kähler potential on the 3d, N = 2 Kähler coordinates remains classical. Let us

note that there actually exists a one-parameter family of 3d, N = 2 Kähler coordinate deformations

in terms of the considered basic geometric quantities of Y4 under which the Kähler potential retains

its classical functional dependence. The reduction of the 11d Ĝ2R̂3 coupling was therefore crucial to

directly deduce the Kähler metric and to identify the correct 3d, N = 2 Kähler coordinates.

Note that the physical implications have to be contrasted to the fact that we truncate away certain

l6M corrections in 11d, compactify on a non-warped background and need to make the assumption about

the harmonicity of the third Chern form c3 to perform the match. Nevertheless it is intriguing that

the integration into a Kähler potential can be performed, which might hint towards the fact that this

sector of the theory is well controlled in some sense. Having these caveats in the back of our heads

we can now conclude the physical implications which might or might not be washed away by a more

refined future treatment.

After deriving the 3d, N = 2 Kähler coordinates we examined the lift of such corrections to the 4d,

N = 1 effective theory obtained from an elliptically fibered Calabi-Yau fourfold compactification of F-

theory by making use of the M-theory/F-theory duality. In doing so, we found a natural map between

the 4d and the 3d Kähler coordinates and confirmed that the functional dependence of the Kähler

potential remains classical also in four dimensions. Furthermore, we expressed the 4d Kähler potential

as well as the Kähler coordinates and their Legendre dual variables in terms of two-cycle volumes and

intersection numbers of the base manifold. Written in this form, both the Kähler potential and Kähler

coordinates receive non-trivial α′2 corrections depending on the volume and intersections of a specific

curve C in the base of Y4. This curve is defined by using the third Chern class of Y4 and shown to

crucially depend on the seven-brane configuration present in the compactification.

One could object that in the limit of vanishing fiber the geometry becomes singular and corrections

carrying Riemann tensors as Z,Zi, are thus not well behaved in the limit, and thus the lifted results

written in terms of C cannot be trusted. However, these corrections are of topological nature and thus

might be somehow protected. Furthermore in the case of the higher-curvature correction in (4.11)
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proportional to the second Chern form have been lifted in the simple case of non-singular elliptically

fibered Calabi-Yau fourfolds and in the weak fouling limit (5.37) can be interpreted as arising as the

string-tree-level Dirac-Born-Infeld action on the D7-brane and O7-plane as discussed in [112]. This

natural interpretation gives confidence to the applicability of the procedure.

In order to gain a deeper understanding of the corrections parametrized by C we examined the 4d

F-theory reduction in the Type IIB weak string coupling limit. The resulting set-up admits space-

time filling D7-branes and O7-planes. We suggested the simple geometric expressions (5.41) and (5.42)

for the curve C in terms of the D7-brane and O7-plane locations. In order to test these expressions

we developed an algorithm to systemically perform this computation for a range of examples with

multiple Abelian and non-Abelian gauge group factors. We infer that the self-intersection curve of

each D7-brane present in the weakly coupled background contributes to C and hence induces an α′2

correction. In particular, these corrections are due to open string diagrams and they rely on having

D7-branes which have proper self-intersections. Indeed, not only do the corrections vanish in the

absence of D7-branes, but also in N = 2 compactifications in which the D7-branes are parallel.

In the presented general F-theory reduction a linear combination of the 4d, N = 1 Kähler coor-

dinates is found to be the seven-brane gauge coupling function in the effective theory. This is also

the case when including the eight-derivative couplings of M-theory and performing the duality to

F-theory. The correction we find non-trivially shifts the gauge coupling function from its classical

value, represented by the Einstein frame volume of the divisor wrapped by the seven-brane gauge

stack. As the Kähler coordinates themselves, the shift depends on the volume and intersections of

the curve C. In particular, this shift can contain volumes of curves that do not meet the seven-brane

with the considered gauge coupling function. This seemingly ‘non-local’ contribution does, however,

vanish in the decompactification limit corresponding to decoupling gravity. Considered at weak string

coupling a simple counting of powers of the string coupling shows that the relevant amplitude which

computes such a shift is at one-loop order. Since it would be interesting to have an independent string

derivation of this correction, let us mention here that gauge coupling corrections were computed for

certain F-theory set-ups in [117, 118] and for general classes of Type IIA torus orientifolds for example

in [104, 105, 106, 107, 108], see also [119] for a comprehensive review of orientifold set-ups. Naturally,

finding a map between those string corrections and the one we found would be gratifying. While

constructing compactification manifolds in F-theory, which reduce to the class of orientifolds that are

under computational control as far as world-sheet corrections are concerned, may turn out to be a

non-trivial task, it seems plausible that the qualitative behavior of both corrections can be matched

in certain limits.

Finally, let us comment on the implications on the search for new string vacua. As explained in

section 5, the fact that the corrections to the Kähler coordinates T bα are non-holomorphic suggests

that the functional dependence of the superpotential W (T ) remains uncorrected. A non-perturbative

superpotential depending on the T bα can arise, for example, from seven-brane gaugino condensates

or D3-brane instantons. Consistent with the above observations both the gauge coupling function of

the seven-brane stack and the D3-brane instanton action need to receive corrections. Clearly, if both
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W (T ) and the Kähler potential have the same functional dependence as in the classical reduction the

search for vacua remains unmodified. The structure of the functional dependence is very sensitive

and thus can easily be altered by introducing the warp-factor and by considering the additional l6M
corrections to the eleven-dimensional action, which we address in the next chapter. However, at this

point we provide a spoiler for the next chapter where we will not able to express the Kähler potential

as functions of the Kähler coordinates since more subtle issues arise, a further study of this would be

of great interest.



CHAPTER III

Warped reduction of M-theory

In this chapter we study the Kaluza Klein reduction of eleven-dimensional supergravity including the

full set of eight-derivative corrections

S = S(0) + α2S(2)

R̂4
+ α2S(2)

Ĝ2R̂3
+ α2S(2)

(∇̂Ĝ)2R̂2
+O(Ĝ3α2) +O(α3) , (5.1)

with the explicit terms given in (2.62) and (2.63)-(2.65). The terms fourth-order in R̂ are known

since the works [53, 54, 55, 56, 57, 58, 59], while recently the third-order terms involving Ĝ have been

analyzed in [60]. Note that for a consistent treatment at order α2 one a priori needs to consider all

eight-derivative corrections to the bosonic part of the eleven-dimensional supergravity action, whose

complete form was conjectured by [60]. However, the zeroth order supersymmetry conditions force the

flux to vanish in the background thus G ∼ O(α). Hence in order to determine the background solution

at order α2 one can neglect all terms in (5.1) which carry an explicit flux and are of order α2. However,

we will find in this analysis that the background flux is exactly of order α, hence G ∼ α+O(α3). Thus

when performing the reduction on this background one can neglect eight-derivative terms which have

more than two explicit fluxes since they would give rise to either α2 terms, which have more than two

external derivatives or to two external derivative terms of order α3 or higher. Thus (5.1) represents

the full set of terms at order α2 relevant to perform a reduction to three dimensions keeping only two

external derivatives, which is the focus of this chapter.

This chapter is organized in three sections according to the canonical steps in the procedure of a

dimensional reduction, representing the work done in [120, 121, 122]. We start by determining the

supersymmetry preserving background in section 6, to then dimensionally reduce the action (5.1) on

this background in section 7. Performing the dimensional reduction we focus on the Kähler deforma-

tions giving rise to real scalars and the vectors arising form Ĉ, which form the bosonic part of a vector

multiplet in 3d, where we assume that h(2,1) = 0. Furthermore we do not allow for complex structure

93
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deformations. In section 8 we then comment on the N = 2 supersymmetry of the 3d theory.

Let us comment on these three steps in more detail. Given the action (5.1) we introduce an

ansatz for the background metric and fluxes expanded in powers of α ∝ `3M , where `M is the eleven-

dimensional Planck length. This ansatz includes a warp-factor as well as a shift of the internal metric

at order α2 [123]. The field equations pose second order differential constraints on the shifted internal

metric which we are able to solve explicitly. The internal manifold turns out to have still vanishing

first Chern class, but the metric background has to be chosen to be no longer Ricci-flat. At order α2

the deviation from Ricci-flatness is measured by the warp-factor and the non-harmonic part of the

third Chern form c(0)

3 evaluated in the zeroth order, Ricci-flat metric. In order to systematically find

an explicit solution and analyze its supersymmetry properties we also study the eleven-dimensional

supersymmetry variations. Unfortunately, these are not known to the required order to give a com-

plete check of the preservation of three-dimensional N = 2 supersymmetry corresponding to four

supercharges. We will argue for corrections to the eleven-dimensional gravitino variations involving

certain seven-derivative couplings incorporating three Riemann curvature tensors. Evaluated for the

background ansatz this induces modified Killing spinor equations for a globally defined spinor that

has to exist in order to have a supersymmetric solution. We show that the integrability condition on

these Killing spinor equations yields the modified Einstein equations at order α2. Furthermore, we

use the globally defined spinor to introduce a globally defined real two-form J and complex four-form

Ω. The Killing spinor equations translate into first order differential constraints on these forms, which

imply that the metric is (conformally) Kähler. In fact, this formulation allows us to give a simple

derivation of the α2 correction to the internal metric found by solving the Einstein equations. Our

results can also be reformulated in terms of torsion classes on an SU(4) structure manifold. We find

that, upon separating the conformal rescaling of the internal metric, only the torsion form W5 in

dΩ =W5 ∧Ω is non-vanishing but exact. At the two-derivative level eleven-dimensional supergravity

on SU(4) structure manifolds has recently been studied in [124].

In section 7 we then compactify the action (5.1) on this background allowing for a finite number

of Kähler deformations of the metric and vector deformations of the M-theory three-form Ĉ. Before

discussing the reduction let us stress that there are important terms of the structure (∇̂Ĝ)2R̂3, that

have not been fully determined. We argued in section 2.3 that they are given by a number of building

blocks of index contractions with 4-point amplitudes only determining part of the numerical pre factors.

Remarkably, most of these unknown coefficients actually do not effect our computation and we are

able to suggest a fixation of the unknown coefficients up to one constant. Clearly, the complete form of

the (∇̂Ĝ)2R̂3 terms could also be determined by considering amplitudes with 5 and more external legs.

Given the eleven-dimensional action (5.1) we systematically construct the perturbed background order

by order in a scale parameter α. The metric ansatz is modified and accordingly the mode expansion

for Kähler structure perturbations of the metric and vector perturbations of the M-theory three-form

is described in terms of forms non-harmonic in the zeroth order Calabi-Yau metric. We carefully keep

track of all such modifications, but show that most of these modifications eventually cancel in the final

three-dimensional effective action. In fact, inserting the ansatz into the higher-derivative action, we

find that the kinetic terms for the deformations and vectors in the three-dimensional effective theory
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can be expressed using a single higher-curvature building block Zmm̄nn̄ = 1
4!(ε8ε8R

(0)3)mm̄nn̄, where

R(0) is the internal Riemann tensor in the zeroth order Calabi-Yau metric, see (5.3) for the precise

form of Z. Let us note that Zmm̄nn̄ has the same symmetries as the Riemann tensor. It contracts

with Rm̄mn̄n to the Hodge-dual of the fourth Chern-form, and contracting any of the index pairs

with the metric one finds expressions in terms of the third Chern-form. The equivalent quantity on a

Calabi-Yau threefold was found to be important in [125]. It would be interesting to examine if Zmm̄nn̄

plays a special role in describing the topology of the compact eightfold.

In addition to the complications arising from reducing higher-derivative terms in the action, a

proper treatment of the warp-factor turns out to be crucial. Warped compactifications of M-theory

and Type IIB have been considered previously in [126, 127, 128, 129, 130, 131, 132, 133, 134, 135], and

were argued to be crucial in a complete understanding of the M-theory to F-theory limit for minimally

supersymmetric setups [118]. We perform the crucial generalization to include the higher-derivative

terms, since warped compactifications with fluxes are inconsistent without these contributions. It

turns out, that in this general case the modifications of the warp-factor to the lower-dimensional

effective theory are significantly more involved then the ones discussed previously in the literature.

Nevertheless we will be able to show that the effective theory permits a non-trivial scaling symmetry

induced by rescaling the warp-factor by a field-dependent function.

We furthermore derive the scalar potential for the Kähler structure deformations by dimensional

reduction. Interestingly, reducing the higher-curvature terms on the leading order Calabi-Yau back-

ground it appears that they become massive with a coupling purely depending on the geometry.

However, we will show that these mass terms are precisely cancelled by the higher-order corrections

in the solution arising as a back-reaction effect. The remaining scalar potential is only induced by

background fluxes as in [81]. This gives a further test that the included fluctuations are indeed the

relevant light degrees of freedom and highlights the interplay from back-reaction effects in the solution

and the corrections to the effective theory.

Finally we study the supersymmetry properties of the three-dimensional effective theory in section

8. The classical leading order three-dimensional N = 2 theory obtained from M-theory on a Calabi-

Yau fourfold with background fluxes was first found in [103, 81], while recent derivations of N =

1 effective theories arising from M-theory flux compactifications can be found in [136, 124, 137].

Let us note that previous works on warped compactifications of M-theory and Type IIB include

[126, 127, 128, 129, 130, 131, 132, 133, 118, 134, 135]. In order to reveal the supersymmetry properties

of the three-dimensional effective action we discuss its promotion into the standard N = 2 form.

In three space-time dimensions massless vectors are dual to scalars and the dynamics of the light

modes therefore should be describable by a Kähler potential and a set of complex coordinates. We

study the order by order expansion of the Kähler potential and complex coordinates in the Kähler

structure fluctuations. The coefficients are deduced by comparison with the dimensionally reduced

action. We infer compatibility with N = 2 supersymmetry and argue that a no-scale condition can be

implemented. Since the dimensional reduction only includes the leading-order terms in the fluctuations

we are not able to completely fix all coefficients by the comparison alone. The fundamental ‘all-order’
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expression, as it is known for the classical reduction without higher-curvature terms [103, 81], turns

out to be even more difficult to find. We argue that this problem lies in fixing the complex coordinates

and should be approached by introducing divisor integrals. These integrals should be matched with the

actions of M5-branes wrapped on divisors. We make steps towards finding an all order expression for

the complex coordinates and Kähler potential. An intriguing interplay between variations of warped

divisor integrals and higher-curvature terms via the warp-factor equation allows the compatibility with

the dimensional reduction to be shown. As a byproduct this suggests that the M5-brane action should

receive higher-curvature corrections that parametrise the non-harmonicity of the fourth Chern-form

of the background geometry.

Let us set the stage by giving the conventions for the complex indices m, m̄ = 1, 2, 3, 4, which

always refer to the zeroth order complex structure on the internal manifold. On a Calabi-Yau fourfold

there exists a nowhere vanishing covariantly constant Kähler form J (0) and holomorphic (4, 0)-form

Ω(0) satisfying

dJ (0) = dΩ(0) = 0 . (5.2)

Let us next introduce new building blocks which feature the main players of this chapter

Zmm̄nn̄ =
1

4!
ε(0)

mm̄m1m̄1m2m̄2m3m̄3
ε(0)

nn̄n1n̄1n2n̄2n3n̄3
R(0)m̄1m1n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 , (5.3)

and

Yijmn̄ =
1

4!
ε(0)

mm̄m1m̄1m2m̄2m3m̄3
ε(0)

nn̄n1n̄1n2n̄2n3n̄3
∇(0)nω(0)

i
m̄1m1∇(0)m̄ω(0)

j
n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 .

(5.4)

It turns out that the tensor Zmm̄nn̄ given in (5.3) plays a central role in the following and is related

to the key topological quantities on Y4. It satisfies the identities

Zmm̄nn̄ = Znm̄mn̄ = Zmn̄nm̄ , ∇(0)mZmm̄nn̄ = ∇(0)m̄Zmm̄nn̄ = 0 . (5.5)

It is related to the third Chern-form c(0)

3 via

Zmm̄ = i2Zmm̄n
n =

1

2
(∗(0)c(0)

3 )mm̄ ,

Z = i2Zm
m = ∗(0)(J (0) ∧ c(0)

3 ) , ∗(0)(c(0)

3 ∧ ω
(0)

i ) = −2Zmn̄ω
(0)

i
n̄m , (5.6)

and yields the fourth Chern-form c(0)

4 by contraction with the Riemann tensor as

Zmm̄nn̄R
(0)m̄mn̄n = ∗(0)c(0)

4 . (5.7)

We note that Yijmn̄ is also related to Zmm̄nn̄ upon integration as∫
Y4

Yijm
m ∗(0) 1 = −1

6

∫
Y4

(iZmn̄ω
(0)

i
r̄mω(0)

j
n̄
r̄ + 2Zmn̄rs̄ω

(0)

i
n̄mω(0)

j
s̄r) ∗(0) 1 , (5.8)

where the right hand side represents the same linear combination that will be relevant in (C.15).
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6 Warped background solutions to eleven-dimensional supergravity

In this section we will determine a bosonic solution to eleven-dimensional Einstein equations in the

presence of higher-curvature corrections and background fluxes. We will explicitly solve the Einstein

equations finding a correction to the internal Calabi-Yau metric and comment on the supersymmetry

properties of the solution. More concretely, in section 6.2 we present the ansatz for the metric and

the background fluxes and give the equations satisfied by the appearing functions. We then solve the

internal Einstein equations finding corrections to the metric. Supersymmetry properties of this solution

and the gravitino variations will be analyzed in section 6.5. We derive the modified Killing spinor

equations and translate the conditions into first order differential equations for J,Ω. We comment

on the compatibility with the Einstein equations and the implications for supersymmetry. Useful

identities and a summary of our conventions are supplemented in appendix A.

6.1 The eleven-dimensional action

The dynamics of the fields Ĉ and ĝMN is determined by the bosonic part of the N = 1 supergravity

action (2.61) given by

S = S(0) + α2S(2)

R̂4
+ α2S(2)

Ĝ2R̂3
+ α2S(2)

(∇̂Ĝ)2R̂2
+O(Ĝ3α2) +O(α3) + . . . . (6.1)

with the expansion parameter α given in (2.60) being proportional to the third power of the eleven-

dimensional Planck length. The detailed structures of the various terms of (6.1) is given in (2.63)

-(2.65) .

However, for the purpose of determining the background solutions to order α2 it suffices to solely

consider the following relevant terms. Firstly, the classical two-derivative action (2.62) and secondly,

SR̂4 given in (2.63) and again here given by

SR̂4 =
1

2κ2
11

∫
(t̂8t̂8 −

1

24
ε̂11ε̂11)R̂4∗̂1 + 32213Ĉ ∧ X̂8 . (6.2)

The explicit form of the various terms in (6.2) is given (2.66) and (2.67). It is believed that these

are all terms quartic in the Riemann tensor at this order in α. The terms at higher-order in Ĝ and

α, such as SR̂3Ĝ2 , will not be needed in what follows as their contribution is higher-order in α when

evaluated on the ansatz we will make.

6.2 Ansatz for the vacuum solution

We now consider solutions for which the internal space is a compact eight-dimensional manifold M8

and the external space is R2,1. At lowest order in α the solution takes the form

dŝ2 = ĝMNdx
MdxN = ηµνdx

µdxν + g(0)
mndy

mdyn +O(α) , Ĝ = 0 +O(α) , (6.3)
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where µ = 0, . . . , 2 the external space and m = 1, . . . , 8 the real internal space indices. Note that in

contrast to the previous sections of this work we will not write down the internal components in the

holomorphic and antiholomorphic indices m, m̄ = 1, 2, 3, 4. The main advantage there is to use the

Kähler property of the Calabi-Yau metric to simplify the discussion. In this section, however, we aim

solve for the metric of the internal space and it proves more convenient to proceed in real indices.

The Einstein equations imply Ricci-flatness of the internal space R(0)
mn = 0. In fact, together with the

supersymmetry conditions requiring the preservation of four supercharges, one infers that the internal

manifold is Calabi-Yau and thus admits a nowhere vanishing Kähler form J (0)
mn and a holomorphic

(4,0)-form Ω(0)
mnrs that are harmonic.

Having deduced this lowest order solution we can then work to second order in α by considering

the field equations of the α-corrected action. To solve the corrected Einstein equations we make an

ansatz for the metric 1

dŝ2 = eα
2Φ(2)

(e−2α2W (2)
ηµνdx

µdxν + eα
2W (2)

gmndy
mdyn) +O(α3), (6.4)

where

gmn = g(0)
mn + α2g(2)

mn +O(α3) . (6.5)

Here Φ(2), W (2), g(0)
mn and g(2)

mn depend only on the internal coordinates ym in the background. The

function Φ(2) is an overall Weyl rescaling that we will discuss in more detail below, while W (2) is known

as the warp-factor. At this order in α a background four-form field strength must also be included.

Following [123] we make the ansatz

Ĝmnrs = αG(1)
mnrs +O(α3) , Ĝµνρm = εµνρ∂me

−3α2W (2)
+O(α3) , (6.6)

where G(1) is a background four-form flux on the internal manifoldM8 that is harmonic with respect

to g(0)
mn. Let us note that the term linear in α appearing in Ĝmnrs has the correct mass dimensions

such that the background flux G(1)
mnrs integrates to a dimensionless number. In fact TM2

∫
C4 Ĝ has to

be dimensionless and the inverse M2-brane tension T−1
M2 is proportional to α. We do not include a α2

term in the Ansatz for Ĝmnrs, since it can be shown to either decouple or to give contributions at only

O(α3) in the following evaluations.

6.3 Equations determining the solution

The functions appearing in our ansatz may then be constrained by substituting into the eleven-

dimensional equations of motion. The solution is found by expanding each of the equations of motion

in powers of α and inferring the respective constraints [123].

To begin with, we note that the equations of motion of Ĉ and the eleven-dimensional Einstein

equations derived from (6.1) do not decouple at first. However, combining the Ĉ equation with the

1Note that an alternative ansatz with AdS external space can also be analysed. However, this is not compatible with

the lowest order supersymmetry conditions on the flux combined with the second order equations of motion.
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external Einstein equations one infers that G(1) in the ansatz (7.6) is self-dual in the Calabi-Yau

background, i.e.

αG(1) = α ∗(0) G(1) +O(α3) , (6.7)

where one uses thatM8 is compact. By using (6.7) the second order equation of motion of Ĉ implies

the warp-factor equation

∆e3α2W (2)
+ 1

4!2α
2G(1)

mnrsG
(1)mnrs − 32213

8! α2εm1...m8X8m1...m8 +O(α3) = 0 , (6.8)

where the Laplacian ∆ = ∇m∇m, the X8, and the contractions of G(1)
mnrs are evaluated using gmn

given in (7.3). We stress that with the above ansatz (7.6) the corrections to the Ĉ equation of motion

(6.7) and (7.7) from SR̂3Ĝ2 in (6.1) give contributions at least of order α3. At this order not all higher

curvature contributions are known. Therefore, these conditions give constraints only to order α2.

This indicates consistency of our ansatz for the warp-factor and implies that lower α powers in the

solution to (7.7) would be constants. Moreover, at this order in α the metric used in (7.7) is only g(0)
mn.

Integrating (7.7) over the internal manifold M8 one infers that, in the absence of localized sources, a

non-trivial background flux G̃
(1)

mnrs is required by consistency for a manifold with
∫
M8

X(0)

8 6= 0.

Next we use the ansatz (7.2) and (7.6), along with the the constraints (6.7) and (7.7), to rewrite

the Einstein equations into a simple form. Firstly, we expand

Rmn ≡ R(g(0)
rs + α2g(2)

rs )mn = R(0)
mn + α2R(2)

mn (6.9)

which defines R(2)
mn. Using this abbreviation the internal part of the eleven-dimensional Einstein

equations can be rewritten as

R(2)
mn − 1

2g
(0)
mng

(0) rsR(2)
rs + 768J (0)

m
rJ (0)
n
s∇r∇sZ − 9

2∇m∇nΦ(2) + 9
2g

(0)
mng

(0) rs∇r∇sΦ(2) = 0 , (6.10)

where J (0)
m
n = J (0)

mpg(0)pn is the complex structure on the underlying Calabi-Yau manifold. The con-

ditions (6.7) and (7.7) are used to cancel all flux dependence in (6.10) and ensure that the Einstein

equations involving R̂mµ are automatically satisfied at the order considered. The external part of the

Einstein equations takes the form

R(2)
mng

(0)mn − 9g(0)mn∇m∇nΦ(2) = 0 . (6.11)

The derivation of (6.10) and (6.11) is rather lengthy and requires the use of the identities summarized

in appendix A. Furthermore, we have used Ricci-flatness R(0)
mn = 0 for the lowest order part of the

Riemann tensor to simplify the result. In these expressions the scalar Z is proportional to the six-

dimensional Euler density and is given by

Z = ∗(0)(J (0) ∧ c(0)

3 ) = 1
12(R(0)

mn
rsR(0)

rs
tuR(0)

tu
mn − 2R(0)

m
r
n
sR(0)

r
t
s
uR(0)

t
m
u
n) , (6.12)

where c(0)

3 the third Chern form evaluated in the metric g(0)
mn given explicitly in (A.16). Tracing the

internal part of the Einstein equation and demanding compatibility with the external part then fixes

Φ(2) = −512
3 Z , R(2)

mn = −768(J (0)
m
rJ (0)
n
s∇r∇sZ +∇m∇nZ) . (6.13)

In other words, the solution indeed requires the presence of a non-trivial eleven-dimensional Weyl

rescaling involving the higher-curvature terms.
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6.4 Solving the modified Einstein equation

In order to solve (6.13) we follow a technique equivalent to that shown in [138]. We begin by noting

that as c(0)

3 is real and closed but not co-closed with respect to the Kähler metric g(0)
mn. This means

that it may be expanded as

c(0)

3 = Hc(0)

3 + i∂(0)∂̄(0)F4 (6.14)

where H indicates the projection to the harmonic part with respect to the metric g(0)
mn. This equation

defines a co-closed (2, 2)-form F that will be key to the following discussions.2 Then by using (6.12)

we see that

Z = ∗(0)(J (0) ∧Hc(0)

3 ) + 1
4∆(0) ∗(0) (J (0) ∧ J (0) ∧ F4) (6.15)

where ∗(0)(J (0) ∧Hc(0)

3 ) is constant over the internal space as a result of the harmonic projection. We

are now in the position to use these quantities to solve (6.13) for a metric correction at order α2. The

explicit solution is given by

g(2)
mn = 384(J (0)

m
rJ (0)
n
s∇(0)

r ∇(0)
s +∇(0)

m∇(0)
n ) ∗(0) (J (0) ∧ J (0) ∧ F4) , (6.16)

where F is the four-form introduced in (A.18). Clearly, one can now explicitly check that (6.16) solves

(6.13).3 In the next section we will show by introducing globally defined forms on M8 how one is

naturally lead to the solution (6.16).

6.5 Killing spinor equations and globally defined forms

In this section we comment on the supersymmetry properties of the solution introduced in section 6.

This is a challenging task, since the supersymmetry variations are not fully known at the desired order

α2. Following a strategy used in [141, 142] we will be able to extract at least partial information about

the supersymmetry properties by studying the Killing spinor equations at order α2. Furthermore, we

will then translate these equations into differential conditions on the globally defined forms J and Ω

on M8. This will lead to a stepwise derivation of the correction (6.16).

To set the stage of our study, let us note that we assert that at quadratic order in α the eleven-

dimensional gravitino variation is given by

δψ̂M = ∇̂M ε̂− 1
288ĜNRST Γ̂M

NRST ε̂+ 1
36ĜMNRSΓ̂NRS ε̂

+ 128
3 α2∇̂N ẐΓ̂M

N ε̂− 48α2∇̂N R̂MRN1N2R̂NSN3N4R̂
RS

N5N6Γ̂N1...N6 ε̂+O(α2) , (6.17)

2The harmonicity of Chern forms has been also discussed in the mathematical literature and lead to the introduction

of the Bando-Futaki character [139], which is however trivially vanishing in the Calabi-Yau case.
3Recently, it was pointed out in [140] that a redefinition of the metric background gmn = g

(0)
mn−768α2J

(0)
m

r(∗(0)c
(0)
3 )rn

trivializes the kinetic terms for the vectors obtained from Ĝ in the three-dimensional effective action. This interesting

observation, however, has to be contrasted with the fact that this shift is not a solution to the Einstein equations at

order α2.
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where the remaining order α2 terms vanish on the backgrounds we consider. Here Ẑ is proportional

to the six-dimensional Euler density in eleven dimensions and is given by

Ẑ = 1
12(R̂MN

RSR̂RS
TU R̂TU

MN − 2R̂M
R
N
SR̂R

T
S
U R̂T

M
U
N ) . (6.18)

This form of the gravitino variation is compatible with the terms that are necessary in [141, 142]. In

other words, we will see below that the Killing spinor equations derived from (6.17) are compatible

with the Einstein equations up to order α2. Remarkably, the terms in (6.17) also appear in the

gravitino variations deduced by eleven-dimensional Noether coupling in [143].

6.6 Dimensional reduction of the supergravity variations

We next dimensionally reduce the supersymmetry variations (6.17) on the background introduced in

section 6. To begin with, we decompose the eleven-dimensional supersymmetry parameter and gamma

matrices in a way that is compatible with our ansatz as

ε̂ = e−
1
2
α2W (2)

ε⊗ η , Γ̂µ = e
1
2
α2Φ(2)−α2W (2)

γµ ⊗ γ9 , Γ̂m = e
1
2
α2Φ(2)+ 1

2
α2W (2)

1l⊗ γm , (6.19)

where ε is a spinor in the three-dimensional external space and η is a no-where vanishing spinor on

M8. The spinor η is chosen to satisfy γ9η = η, η†η = 1 and ηT η = 0.

Substituting this decomposition along with the reduction ansatz (7.2) and (7.6) into (6.17) we find

for the internal gravitino variation

δψ̂m = e−
1
2
α2W (2)

ε⊗∇mη − 1
288αG

(1)

nrstε⊗ γmnrstη + 1
36αG

(1)
mnpqε⊗ γnpqη

− 48α2∇nRmrm1m2Rnsm3m4R
rs
m5m6ε⊗ γm1...m6η

+ 128
3 α2∇nZε⊗ γmnη + 1

4α
2∇nΦ(2)ε⊗ γmnη +O(α3) = 0 , (6.20)

and for the external gravitino variation

δψ̂µ = e−
1
2
α2W (2)∇µε⊗ η − α 1

288G
(1)
mnpqγµε⊗ γmnpqη

− 128
3 α2∇nZγµε⊗ γnη − 1

4α
2∇nΦ(2)γµε⊗ γnη +O(α3) = 0 . (6.21)

These equations can then be satisfied if at lowest order in α if the background is Calabi-Yau, as

already noted at the beginning of section 6.2, and one has ∇µε = 0. At linear order in α one finds the

condition

G(1)
mnrsγ

nrsη = 0 (6.22)

Finally, at second order in α one finds that (6.13) has to be satisfied and η obeys the Killing spinor

equation

∇mη = −384α2J (0)
m
n∇nZrsγrsη +O(α3) , Zrs = 1

2(∗c(0)

3 )rs (6.23)

where J (0)rsZrs = Z.



102 Chapter III. Warped reduction of M-theory

6.7 Differential conditions on the globally defined forms

Using the spinor η one can introduce a globally defined no-where vanishing real two-form J and a

complex four-form Ω. This is a familiar strategy for manifolds with reduced structure group. The

case of having SU(4) structure was discussed in [124, 144] and we refer the reader to the appendix

A.4 for more details . Concretely, we use η to construct the forms

Jmn = iη†γmnη , Ωmnrs = ηTγmnrsη . (6.24)

By using Fierz identities we see that these forms satisfy

J ∧ Ω = 0 , J ∧ J ∧ J ∧ J = 3
2Ω ∧ Ω̄ . (6.25)

The Kähler form J (0)
mn corresponding to the Ricci-flat metric g(0)

mn is then the lowest order part of Jmn.

We can now rewrite the supersymmetry conditions (6.22) and (6.23) using J and Ω. The constraint

on the flux (6.22) implies that

G(1) ∧ J (0) = 0 , G(1) is of type (2,2) in J (0)n
m (6.26)

where J (0)n
m is the complex structure of the underlying Calabi-Yau fourfold. Furthermore, the Killing

spinor equation (6.23) satisfied by η translates to the differential conditions

∇mJnr = 0 +O(α3) , ∇mΩnrst = 6144α2J (0)
m
p∇(0)

p Z[n
qΩ(0)

rst]q +O(α3) (6.27)

Antisymmetrising in the indices then gives

dJ = 0 +O(α3) , dΩ = −768α2dZ ∧ Ω(0) +O(α3) . (6.28)

We can thus infer that the metric gmn including α2 corrections is still Kähler. In fact, the higher-

curvature terms only amount to introducing the non-closedness of Ω with a result proportional to

Ω itself. In fact, translated into torsion forms for an SU(4)-structure manifold (see, for example,

[124, 144]), the only non-trivial torsion form is W5 = −768α2∂̄(0)Z, which is exact.

Let us stress that the derivation of the Killing spinor equation makes use of the full internal

space metric ĝMN . However, the overall Weyl rescaling and warp-factor terms precisely cancel and

the resulting equation (6.23) depends only on the metric gmn appearing in (7.2). The J and Ω

appearing(6.28) are thus related to the metric gmn. Clearly one could introduce a alternative J̃ and

Ω̃ related to rescaled metric ĝmn. This would induce new terms proportional to J̃ in dJ̃ and Ω̃ in dΩ̃

will then be induced, since the gamma-matrices in (6.24) are rescaled.

We can now use the condition that gmn is a Kähler metric and study the integrability condition

of (6.23). Here the commutator [∇m,∇n]η = 1
4Rmnrsγ

rsη can be compared with the result obtained

form (6.23). This simply results in the condition

1

4
Rmnrsγ

rsη − 768α2J (0)
[m
r∇(0)

n]∇
(0)
r Zpqγ

pqη +O(α3) = 0 . (6.29)
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Contracting with η† we see that this implies

1
4RmnrsJ

rs − 768α2J (0)
[m
r∇(0)

n]∇
(0)
r Z +O(α3) = 0 . (6.30)

As we know that RmnrsJ
rs = 2RmrnsJ

rs by the first Bianchi identity and that for a Kähler manifold

Jm
pRpnrs = Jn

pRmprs we then see that (6.30) implies R(0)
mn = 0 at zeroth α order and the Einstein

equations (6.13) at order α2.

6.7.1 Solving the equations for J and Ω

We now wish to solve the equations (6.28) subject to the algebraic constraints (6.25). To do this we

begin by expanding these equations in α to find

dJ (2) = 0 , dΩ(2) = −768dZ ∧ Ω(0) . (6.31)

We may solve the constraint on Ω(2) by letting

Ω(2) = φΩ(0) + ρ , where dφ = −768dZ , dρ = 0 . (6.32)

The (4,0) part of ρ can be absorbed into φΩ(0) so we may assume that ρ ∧ Ω̄(0) = 0. Similarly as J (2)

is a real d-closed 2-form on a Kähler manifold

J (2) = σ + i∂(0)∂̄(0)ψ , where dσ = d(0)†σ = 0 . (6.33)

Then considering the expansion of (6.25) we see that

4J (2) ∧ J (0) ∧ J (0) ∧ J (0) =
3

2
(Ω(2) ∧ Ω̄(0) + Ω(0) ∧ Ω̄(2)) , (6.34)

and substituting (6.32) and (6.33) into (6.34) we find

1

3
∗ (σ ∧ J (0) ∧ J (0) ∧ J (0))−∆(0)ψ = 2(φ+ φ̄) , (6.35)

which implies that d∆(0)ψ = 3072dZ. Considering this along with (6.32) and using the expansion of

Z given by (6.15) we see that we are lead to a solution for J (2) and Ω(2) where

J (2) = i786 ∂(0)∂̄(0) ∗(0) (F ∧ J (0) ∧ J (0)) , Ω(2) = −192 ∆(0) ∗(0) (F ∧ J (0) ∧ J (0))Ω(0) . (6.36)

This shows that the internal space Kähler potential is shifted by a term proportional to F. The

remaining forms ρ and σ correspond to moduli. Expanding the relationship

gmn = i
48Ω(m|rptΩ̄|n)squJ

rsJpqJ tu , (6.37)

which may be demonstrated using the results of Appendix A, we find

g(2)
mn = −J (0)

(m
rJ (2)

n)r +
1

2
J (0)rsJ (2)

rs g
(0)
mn −

1

48
Ω(2)

(m|rstΩ̄
(0)

|n)
rst − 1

48
Ω̄(2)

(m|rstΩ
(0)

|n)
rst , (6.38)
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and using this we see that the correction to J and Ω implies the metric correction (6.16) that solves

(6.13).

The analysis presented here shows that the first order equations (6.28) on J and Ω, which are

derived from the Killing spinor equations (6.23) are economically solved by (6.36). This then provides

a solution to the second order equations (6.13) arising from the internal space Einstein equations.

While we have no complete proof of the supersymmetry of this solution this result provides a necessary

condition. Furthermore, as we expect that the lowest order supersymmetry carries over to the higher-

order analysis and we have made a general analysis of the corrections to the eleven-dimensional field

equations, it seems natural to expect that further corrections to the gravitino variation (6.17) vanish

in the background presented. It would be interesting to continue to develop the Noether coupling

analysis of [143] to find the complete expression for the gravitino variation at order α2.

7 Warped Kaluza-Klein reduction to 3d

In this section we will compactify the full set of relevant eight-derivative corrections at order α2

S = S(0) + α2S(2)

R̂4
+ α2S(2)

Ĝ2R̂3
+ α2S(2)

(∇̂Ĝ)2R̂2
+O(Ĝ3α2) +O(α3) , (7.1)

on the background solution derived in the previous section 6 down to three dimensions considering a

finite number of Kähler deformations of the metric and vector deformations of the M-theory three-

form. Note that terms in (7.1) carrying a higher-order in the flux O(Ĝ3α2) can be safely discarded

from the following discussion since their contribution in the reduction is of higher order in α. The

precise form of the terms in (7.1) is given in section 2.3. Let us stress that the (∇̂Ĝ)2R̂3 terms have

not been fully determined as discussed in section 2.3. We argued them to be given by a number of

building blocks of index contractions, in section 2.3, with 4-point amplitudes only determining part

of the numerical pre-factors. Remarkably, most of these unknown coefficients actually do not effect

our computation and we are able to suggest a fixation of the unknown coefficients up to one constant.

This last constant might then be fixed by supersymmetry, as the results in section 8 suggest. Clearly,

the complete form of the (∇̂Ĝ)2R̂3 terms could also be determined by considering amplitudes with 5

and more external legs.

The metric ansatz is modified according to section 6 and upon reducing the action (7.1) the mode

expansion for Kähler structure perturbations of the metric and vector perturbations of the M-theory

three-form need to be corrected at order α2, which is done in terms of forms non-harmonic in the

zeroth order Calabi-Yau metric. Inserting the ansatz into the higher-derivative action (7.1), we find

that the kinetic terms for the deformations and vectors in the three-dimensional effective theory can

be expressed using a single higher-curvature building block Zmm̄nn̄ = 1
4!(ε8ε8R

(0)3)mm̄nn̄, see (5.3).

In section 7.1 we review the eleven-dimensional effective action of M-theory including higher-

derivative terms and the considered warped solutions that admit an eight-dimensional compact internal

manifold and background fluxes and comment on the supersymmetry conditions. The considered
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perturbations of the background solutions are introduced in section 7.2 and consist of vector modes

of the M-theory three-form and Kähler structure deformations. We also discuss the field-dependence

of the warp-factor. The dimensional reduction yielding a three-dimensional effective action is carried

out in section 7.3, where we present the results for the kinetic terms and Chern-Simons terms. More

details on the dimensional reduction of the higher-derivative terms can be found in appendix C.

7.1 Compactifying warped solutions with background fluxes

Let us set the stage for the reduction of (7.1) by reviewing the warped background solutions following

the previous section 6. The solution for the eleven-dimensional metric background is

dŝ2 = eα
2Φ(2)

(e−2α2W (2)
ηµνdx

µdxν + 2eα
2W (2)

gmn̄dy
mdyn̄) +O(α3), (7.2)

where ηµν is the three-dimensional Minkowski metric and

gmn̄ = g(0)

mn̄ + α2g(2)

mn̄ +O(α3) . (7.3)

with the lowest order metric g(0)

mn̄ Calabi-Yau and

g(2)

mn̄ = 768∂(0)
m ∂̄(0)

n̄ ∗(0) (J (0) ∧ J (0) ∧ F ), Φ(2) = −512
3 Z , Z = ∗(0)(J (0) ∧ c(0)

3 ) . (7.4)

This implies that the metric gmn̄ introduced in (7.3) is still Kähler and that the internal part of

the eleven-dimensional metric (7.2) is conformally Kähler.

At zeroth order in α the background is a direct product and g(0)

mn̄ is a Ricci-flat metric and super-

symmetry of the background at lowest order in α demands that the metric g(0)

mn̄ must be Calabi-Yau.

The complex indices m, m̄ = 1, 2, 3, 4 always refer to the zeroth order complex structure on the internal

manifold. On a Calabi-Yau fourfold there exists a nowhere vanishing covariantly constant Kähler form

J (0) and holomorphic (4, 0)-form Ω(0) satisfying

dJ (0) = dΩ(0) = 0 . (7.5)

In what follows we will work in conventions in which the internal space indices are raised and lowered

with the lowest order internal space metric g(0)

mn̄.

The background also includes a flux for the four-form given by

Ĝmn̄rs̄ = αG(1)

mn̄rs̄ +O(α3) , Ĝmnrs = αG(1)
mnrs +O(α3) ,

Ĝµνρm = εµνρ∂me
−3α2W (2)

+O(α3) . (7.6)

In order that the eleven-dimensional field equations are solved to order α2 by this background the flux

G(1) must be self-dual in the lowest-order metric g(0)

mn̄. This condition allows (2, 2) and (4, 0) + (0, 4)

components of the flux with respect to the lowest order complex structure.
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The field equations for the M-theory three-form Ĉ and the external space Einstein equations then

constrain the warp-factor W (2) to satisfy

d†de3α2W (2) ∗8 1− α2Q8 +O(α3) = 0 , (7.7)

where

Q8 = −1

2
G ∧G− 32213α2X8(Y4) = −1

2
G ∧G+ 3072 c(0)

4 . (7.8)

where we have used that X8(Y4) = − 1
24 c

(0)

4 . In this expression c4 is the fourth Chern-form evaluated

in the metric gmn̄ given by

c4 =
1

8
(RmnRnmRrsRsr − 2RmnRnrRrsRsm) . (7.9)

For a compact Y4 the warp-factor equation (7.7) implies the global consistency condition

1

32214

∫
Y4

G(1) ∧G(1) =
χ(Y4)

24
, (7.10)

where χ(Y4) = −4!
∫
Y4
X8 is the Euler number of Y4. Using self-duality of the fluxes G(1) one thus

realizes that in higher-derivative terms cannot be consistently ignored if one allows for a background

flux. The somewhat unusual numerical factor in (7.10) stems from our normalization of G(1) with α

and can be removed when moving to quantized fluxes Gflux = 1
3 26
√

2
G(1).

Let us close this section with a short discussion on supersymmetry, by stressing again that the full

supersymmetric completion of the action (2.61) is not known and neither have the supersymmetry

variations of the fermions been written down. The proposal for the gravitino variations (6.17) included

novel terms at order α2. At linear order in α the supersymmetry variations were unchanged and the

condition on the flux is the vanishing of the (4, 0) + (0, 4)-component of G(1), i.e.

G(1)
mnrs = 0 , (7.11)

and the primitivity condition

G(1) ∧ J (0) = 0 . (7.12)

7.2 Perturbations of the background

In subsection 7.1 we have reviewed a supersymmetric background with an internal compact space

that is conformally Kähler. We will now examine a set of deformations that preserve the Kähler

condition but change the chosen Kähler structure. Our whole discussion will be carried out at fixed

complex structure, i.e. there are no complex structure deformations that will be switched on. In the

following, the complex structure is chosen such that the supersymmetry condition (7.11) on the flux is

satisfied. At lowest order in α the Kähler structure deformations are known to combine with vectors

arising from the M-theory three-form Ĉ into three-dimensional N = 2 multiplets, as discussed e.g. in

[103, 81]. We therefore need to study vectors arising from Ĉ taking into account higher α-corrections

in subsection 7.2.1. The real scalars vi that correspond to the deformations of the Kähler structure

will be introduced in subsection 7.2.2. In this latter subsection we will also study the variations of the

warp-factor equation with respect to the Kähler structure deformations.
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7.2.1 Vector modes from the M-theory three-form

Let us first examine the vector which arises in perturbations of the M-theory three-form Ĉ. These

correspond to a extra terms in the expansion of Ĝ of the form

δĜ = F i ∧ ω(v)

i , (7.13)

where F i = dAi and so provides the field strength for a three-dimensional vector Ai, and ω(v)

i are

two-forms on the internal manifold. The tensor gauge symmetry of Ĝ translates to the U(1) gauge

symmetry of the Ai in the three-dimensional effective theory.

In order to make the meaning of (7.13) precise, we need to specify the two-forms ω(v)

i . Therefore,

as with the background fields studied in subsection 7.1, we consider the expansion of ω(v)

i to order α2

as

ω(v)

i = ω(0)

i
(v) + α2ω(2)

i
(v) . (7.14)

By making use of the Bianchi identity dĜ = 0 in the absence of localized sources we see that dω(0)

i
(v) =

dω(2)

i
(v) = 0. The standard analysis of the lowest order reduction shows that only the harmonic part

of ω(0)

i
(v) contributes in the effective action and therefore we may pick ω(0)

i
(v) to be harmonic. On

a Calabi-Yau fourfold this implies that ω(0)

i
(v) is a (1, 1)-form and one has i = 1, . . . ,dim(H1,1(Y4)),

where H1,1(Y4) is the (1, 1)-form cohomology of Y4 whose dimension is independent of the metric

chosen on Y4.

Let us next turn to ω(2)

i
(v). We first note that ω(0)

i
(v) can be redefined to absorb the harmonic part

of ω(2)

i
(v). This implies that ω(2)

i
(v) must be exact and as it is a real two-form on a Kähler manifold the

∂∂̄-lemma implies that it can be obtained by a ∂(0)∂̄(0) of a scalar ρ(v)

i . In other words, one can write

ω(0)

i
(v) = H (0)ω(0)

i
(v) , ω(2)

i
(v) = ∂(0)∂̄(0)ρ(v)

i . (7.15)

The scalars ρ(v)

i parametrizes our ignorance in incorporating the higher-derivative corrections in the

ansatz for the three-dimensional vector perturbations. Strictly speaking the indices i on the ρ(v)

i and

hence ω(2)

i
(v) and ω(v)

i are not restricted to the range 1, . . . ,dim(H1,1(Y4)) as before. However, as we

will see in the explicit derivation of the effective action, all ρ(v)

i actually drop out of the final expression

and therefore cannot yield additional dynamical fields. Interestingly, there is also a particular choice

ρ(v)

i one could imagine, where ω(v)

i is harmonic with respect to the full internal space metric (7.2).

7.2.2 Kähler structure deformations and the warp-factor

We now turn to the study of Kähler structure deformations of the conformally Kähler metric in (7.2).

In order to do that, we introduce variations

δgmn̄ = iδviω(s)

imn̄ , (7.16)
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where gmn̄ is the Kähler metric given in (7.3). The δvi correspond to scalars in the three-dimensional

effective theory, while the ω(s)

imn̄ is a set of two-forms on Y4. Despite the misuse of notation, the

field-range of the index i is not yet restricted. The key point is to consider only ω(s)

imn̄ that preserve

the Kähler condition. As before we can expand the forms ω(s)

i in α as

ω(s)

i = ω(0)

i
(s) + α2ω(2)

i
(s) . (7.17)

Preserving the Kähler condition requires that we impose dω(0)

i = dω(2)

i = 0. As before, we recall

that at zeroth order in the parameter α the fluctuations δvi are the well-known Kähler structure

deformations of the Calabi-Yau metric g(0)

mn̄ and the ω(0)

i
(s) can be chosen to be harmonic (1, 1)-forms

with i = 1, . . . ,dim(H1,1(Y4)). We may then make a redefinition to absorb the harmonic part of

ω(2)

i
(s) so that ω(2)

i
(s) = ∂(0)∂̄(0)ρ(s)

i . We may then redefine the δvi such that the lowest order harmonic

(1, 1)-forms match those used in the vector case

ω(0)

i
(s) = ω(0)

i
(v) = ω(0)

i . (7.18)

Importantly the range of the index on the ρ(s)

i is once again a priori not restricted and there could

be many more δvi than harmonic forms. However, we will again see that all the ρ(s)

i as well as F̃

appearing in (6.16) do not appear in the three-dimensional effective action. This implies that one can

equally consider deformations of the form

δg(0)

mn̄ = iδviω(0)

imn̄ , (7.19)

while making sure that all other quantities in the ansatz that are built from g(0)

mn̄ shift accordingly. It

will be also convenient to define scalars vi containing the background value of g(0)

mn̄ by setting

g(0)

mn̄ + δg(0)

mn̄ = iviω(0)

imn̄ (7.20)

There are two main complications that arise when discussing the Kähler structure deformations

in a warped flux compactification. Firstly, they will in general not all be massless. Secondly, a change

of Kähler structure will induce a shift in the warp-factor. The first of these points is seen at linear

order in α. When the shift (7.19) is made we see that the primitivity condition G(1) ∧ J (0) = 0 given

in (7.12) is not preserved by the full set of fluctuations. This means that for constant δvi the field

equations do not remain solved and so the full range of δvi no longer represent massless moduli of the

background. Instead the set of massless δvi now becomes those that satisfy

δviω(0)

i ∧G
(1) = 0 . (7.21)

These terms are responsible for the well known potential terms studied in the Calabi-Yau fourfold

reductions with fluxes in [103, 81]. That this result for the potential is not effected by the higher-

order corrections that result from higher-curvature terms is due to the fact that the supersymmetry

conditions receive no linear modification in α and the potential is the square of this supersymmetry

constraint.
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Let us now focus on the warp-factor. Going to second order in α we find that in addition to (7.6)

the fluctuations δvi must also preserve the warp-factor equation (7.7). In order that this equation is

preserved by the fluctuations we must now take the warp-factor to depend both on the internal space

position and also the fields δvi such that W (2) = W (2)(ym, vi). When we perturb the background

we will then find that the derivatives of W (2) with respect to vi, denoted by ∂iW
(2), appear in these

equations. We will only deduce the effective action for the fluctuations δvi up to second order in δvi

and therefore it will suffice to consider W (2) to be described by the truncated Taylor series

W (2)(ym, vi) = W (2)|+ ∂iW
(2)|δvi +

1

2
∂i∂jW

(2)|δviδvj , (7.22)

where W (2)| indicates the restriction of W (2) to the point in moduli space where δvi = 0. Demanding

that (7.7) is invariant up to second order in δvi we find that at first order in δvi one has to impose

∇(0)m∇(0)n̄(g(0)

mn̄∂iW
(2)
∣∣− iω(0)

imn̄W
(2)|+ iω(0)

i
r
rgmn̄W

(2)| − i2048ω(0)

i
s̄rZmn̄rs̄) = 0 , (7.23)

while at second order one constrains

∇(0)m∇(0)n̄(g(0)

mn̄∂i∂jW
(2)
∣∣− 2iω(0)

(i|mn̄∂|j)W
(2)| − 2ω(0)

(i|ms̄ω
s̄
|j)n̄W

(2)|+ ω(0)

i
r
rω

(0)

j
s
sg

(0)

mn̄W
(2)|

+ ω(0)

i
r
sω

(0)

j
s
rg

(0)

mn̄W
(2)| − 4096ω(0)

i
s̄rω(0)

i
t̄
t̄Zmn̄rs̄ − 2048ω(0)

i
s̄tω(0)

it
rZmn̄rs̄ + 6114Yijmn̄) = 0 . (7.24)

The observation that both equations (7.23) and (7.24) can be represented as total derivatives in the

internal space reflects the topological nature of the terms appearing in (7.7).

We will see in the next section that the three-dimensional effective action contains the various

contractions of Zmm̄nn̄. Interestingly, the analog quantity on Calabi-Yau threefolds has played a key

role in the analysis of [125].

7.3 The three-dimensional effective action

In this section we derive the three-dimensional effective action for the scalar and vector fields intro-

duced in section 7.2. The kinetic terms for the Kähler structure deformations and vector fields will

be discussed. In a flux background also Chern-Simons terms are induced and will be included in our

analysis.4 We also study a non-trivial field-dependent scaling symmetry of the kinetic terms, which

involves a rescaling of the warp-factor. Some of the technical details of the performed reduction are

supplemented in appendix C.

Having identified the background of eleven-dimensional action in section 7.1 and a set of pertur-

bations in section 7.2 we are now in a position to derive the three-dimensional effective action using

a dimensional reduction. To systematically approach this task we will consider an expansion up to

second order in the scalar fluctuations δvi and vectors Ai. Furthermore, we will restrict our analysis

to terms with only two external space derivatives and only retain terms up to order α2.

4Note that these terms are topological in nature and key in the study of chiral F-theory spectra and anomalies

[145, 146].
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For the convenience of the reader we begin by summarising the full ansatz that we will use in the

reduction. The perturbed eleven-dimensional metric takes the form

dŝ2 =e−
512
3
α2(Z|+∂iZ|δvi+ 1

2
∂i∂jZ|δviδvj)

[
e−2α2(W (2)|+∂iW (2)|δvi+ 1

2
∂i∂jW

(2)|δviδvj)gµνdx
µdxν

+ 2eα
2(W (2)|+∂iW (2)|δvi+ 1

2
∂i∂jW

(2)|δviδvj)(g(0)

mn̄ + ω(0)

i mn̄dv
i

+ α2∂m∂n̄(F̃ |+ ρ(s)

i δv
i + ∂iF̃ |δvi +

1

2
∂i∂jF̃ |δviδvj)

)
dymdyn̄

]
+O(α3) +O(δvi3) , (7.25)

while the perturbed M-theory four-form field strength is given by

Ĝ =αG(1) + F i ∧ ω(0)

i + α2F i ∧ ∂∂̄ρ(v)

i

+ ∗31 ∧ de−3α2(W (2)|+∂iW (2)|δvi+ 1
2
∂i∂jW

(2)|δviδvj) +O(α3) +O(δvi3) . (7.26)

The rather involved form of this ansatz reflects the fact that the quantities present are expanded in

both α and δvi. Recall that the symbol | means evaluation at δvi = 0, ∂i are derivatives with respect

to vi, and ∂m, ∂n̄ are space-time derivatives in the lowest-order complex structure of the internal

manifold.

The quantities Z|, ∂iZ|, ∂i∂jZ| are directly evaluated by using the definition of Z given in (5.6).

Similarly one proceeds with the derivatives of F̃ = ∗(J ∧ J ∧ F4) given in (6.16). In contrast, since

the warp-factor W (2) is only known as a solution to the warp-factor equation (7.7) one would have to

apply (7.23) and (7.24) to determine ∂iW
(2)| and ∂i∂jW

(2)|. It turns out to be sufficient, however, to

keep ∂iW
(2)| and ∂i∂jW

(2)| throughout the analysis. Remarkably, we will find that all contributions

involving ∂i∂jW
(2)| precisely cancel, while the first derivatives ∂iW

(2)| appear in the correct way to

ensure the presence of a vi-dependent scaling symmetry involving the warp-factor. Before turning to

the derivation, let us also note that one may include compensators in the effective action along the

lines of the discussion presented in [147, 128, 131]. However these do not change the effective action

at the studied order.

In this subsection we only discuss the kinetic terms that are present in the reduction. The reduction

process is quite lengthy and makes use of the intermediate results listed in appendix C. One inserts the

ansatz (7.25), (7.26) into the eleven-dimensional action (2.61). The dimensional reduction requires

numerous partial integrations and uses multiple Schouten and Bianchi identities, which was only

possible by using a computer algorithm. Our goal was to represent all three-dimensional terms using

the higher-curvature tensor Zmm̄nn̄ introduced in (5.3). Combining all terms of the computation we

find the action

Skin = S(0)

kin + αS(1)

CS + α2 S(2)

kin , (7.27)

where at zeroth order one has

S(0)

kin =
1

2κ11

∫
M3

[
Ω(0)R ∗ 1 + dδvi ∧ ∗dδvj

∫
Y4

(1

2
ω(0)

imn̄ω
(0)

j
n̄m − ω(0)

im
mω(0)

jn
n
)
∗(0) 1

+
1

2
F i ∧ ∗F j

∫
Y4

ω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

]
, (7.28)
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while at first order one finds the Chern-Simons terms

S(1)

CS =
1

2κ11

∫
M3

ΘijA
j ∧ F i , Θij =

1

2
α

∫
Y4

ω(0)

i ∧ ω
(0)

j ∧G
(1) , (7.29)

and at second order

S(2)

kin =
1

2κ11

∫
M3

[
Ω(2)R ∗ 1 + dδvi ∧ ∗dδvj

∫
Y4

(
3i∂iW

(2)|ω(0)

jm
m + 3W (2)

(1

2
ω(0)

imn̄ω
(0)

j
n̄m − ω(0)

im
mω(0)

jn
n
)

− 768Zω(0)

im
mω(0)

jn
n + 3072iZmn̄ω

(0)

i
n̄mω(0)

js
s + 3072Zmn̄rs̄ω

(0)

i
n̄mω(0)

j
s̄r
)
∗(0) 1

+ F i ∧ ∗F j
∫
Y4

(
(
3

2
W (2) + 256Z)ω(0)

imn̄ω
(0)

j
n̄m + 192(−7 + a1)iZmn̄ω

(0)

i
r̄mω(0)

j
n̄
r̄

+ 384(1 + a1)Zmn̄rs̄ω
(0)

i
n̄mω(0)

j
s̄r
)
∗(0) 1

]
. (7.30)

Here we have abbreviated

Ω(0) =

∫
Y4

[
1 + iδvi ω(0)

im
m +

1

2
δviδvj(ω(0)

imn̄ω
(0)

j
n̄m − ω(0)

im
mω(0)

jn
n)

]
∗(0) 1 ,

Ω(2) =

∫
Y4

[
3W (2) + 3δvi

(
∂iW

(2)|+ iω(0)

im
mW (2)

)
+ δvjδvi

(3

2
∂i∂jW

(2)|

+ 3iω(0)

im
m∂jW

(2)|+ 3

2
W (2)

(
ω(0)

imn̄ω
(0)

j
n̄m − ω(0)

im
mω(0)

jn
n
))]
∗(0) 1 . (7.31)

A few comments are in order. Firstly, we show in appendix C that among all the terms in (2.69) only

A, Z1 an Z2 contribute, while Z3 to Z6 vanish identically. This implies that the result should depend

on two unknown parameters a1, a2 that appear in (2.69). It turns out that for the choice a1 = a2

the result simplifies significantly and only depends on Zmm̄nn̄ as is equally true for the reduction of

all other term in the eleven-dimensional action (2.61). We therefore have chosen a1 = a2 in (7.30).

Secondly, we note that, as already mentioned before, the scalar functions F̃ , ρ(s)
i and ρ(v)

i have totally

dropped out of this expression. This justifies the use of dim(H1,1(Y4)) deformations δvi and vectors

Ai.

The action (7.30) still depends on ∂i∂jW
(2), however, only through the coefficient of the three-

dimensional Einstein-Hilbert term. We now wish to Weyl rescale this action to bring it to the Einstein

frame and show that this dependence actually drops. From (A.40) one finds that one needs to redefine

the external metric by gµν → g′µν = Ω−2gµν for

Ω = Ω(0) + α2 Ω(2) . (7.32)

Performing the Weyl rescaling we find that the kinetic terms displayed in (7.28) and (7.30) become

S(0)

kin =
1

2κ11

∫
M3

[
R ∗ 1 + dδvi ∧ ∗dδvj 1

V0

∫
Y4

(
1

2
ω(0)

imn̄ω
(0)

j
n̄m + ω(0)

im
mω(0)

jn
n) ∗(0) 1

+ F i ∧ ∗F j V0

2

∫
Y4

ω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

]
, (7.33)



112 Chapter III. Warped reduction of M-theory

and

S(2)

kin =
1

2κ11

∫
M3

[
dδvi ∧ ∗dδvj

(
1

V0

∫
Y4

(
− 9i∂iW

(2)|ω(0)

jm
m +

3

2
W (2)|ω(0)

imn̄ω
(0)

j
n̄m

− 768Zω(0)

im
mω(0)

jn
n + 3072iZmn̄ω

(0)

i
n̄mω(0)

is
s + 3072Zmn̄rs̄ω

(0)n̄m
i ω(0)s̄r

j

)
∗(0) 1

− 1

V2
0

∫
Y4

3

2
W (2)| ∗(0) 1

∫
Y4

ω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

)
+ F i ∧ ∗F j

(
V0

∫
Y4

(
(
3

2
W (2)|+ 256Z)ω(0)

imn̄ω
(0)

j
n̄m + 192(−7 + a1)iZmn̄ω

(0)

i
r̄mω(0)

j
n̄
r̄

+ 384(1 + a1)Zmn̄rs̄ω
(0)n̄m
i ω(0)s̄r

j

)
∗(0) 1 +

∫
Y4

3

2
W (2)| ∗(0) 1

∫
Y4

ω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

)]
, (7.34)

where here we have introduced the zeroth-order volume

V0 =

∫
Y4

∗(0)1 . (7.35)

The warp-factor dependence can be nicely captured by introducing the warped volume and warped

metric

VW =

∫
Y4

e3α2W (2) ∗(0) 1 , GWij =
1

2VW

∫
Y4

e3α2W (2)
ω(0)

i ∧ ∗
(0)ω(0)

j , (7.36)

which at zeroth order in α reduce to V0 and Gij = 1
2V0

∫
Y4
ω(0)

i ∧ ∗(0)ω(0)

j . We also introduce

KWi =iVW ω(0)

im
m +

9

2
α2

∫
Y4

∂iW
(2)| ∗(0) 1 , (7.37)

which at lowest order simply reduces to K(0)

i = iV0 ω
(0)

im
m = 1

3!

∫
Y4
ω(0)

i ∧ J (0) ∧ J (0) ∧ J (0). Note that we

use the notation K(0)

i to abbreviate the intersection number evaluated in the background. With these

definitions one rewrites the action (7.27) for all kinetic terms into the form

Skin =
1

2κ11

∫
M3

[
R ∗ 1− (GWij + V−2

W KW
i KW

j )dvi ∧ ∗dvj − V2
WG

W
ij F

i ∧ ∗F j + ΘijA
i ∧ F i

− dvi ∧ ∗dvj α
2

V0

∫
Y4

(
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mω(0)
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n − 3072iZmn̄ω

(0)

i
n̄mω(0)
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i ω(0)s̄r

j

)
∗(0) 1

+ F i ∧ ∗F jα2V0

∫
Y4

(
256Zω(0)

imn̄ω
(0)

j
n̄m + 192(−7 + a1)iZmn̄ω

(0)

i
r̄mω(0)

j
n̄
r̄

+ 384(1 + a1)Zmn̄rs̄ω
(0)n̄m
i ω(0)s̄r

j

)
∗(0) 1

]
, (7.38)

where we have replaced dδvi directly with dvi. Expanding to order α2 one indeed recovers the above

result.

It is interesting to observe that the three-dimensional effective action permits a scaling symmetry

involving the rescaling of the warp-factor. We begin by noting that the eleven-dimensional background

ansatz given in subsection 7.1 has a symmetry under which

W (2) →W (2) + j , gmn̄ → e−α
2jgmn̄ , gµν → e2α2jgµν , (7.39)
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for j = j(xµ). This can be extended to a symmetry of the perturbed background (7.25) and (7.26) by

requiring that

vi → e−α
2jvi . (7.40)

This then implies that

dvi → e−α
2jdvi − α2vi ∂jjdv

j , (7.41)

if we further restrict j = j(vi). This symmetry carries over to the reduced effective action before

the Weyl rescaling to move to the Einstein frame is performed. When the rescaling is performed the

value of Ω in gµν → g′µν = Ω−2gµν transforms as Ω → e−α
2W (2)

Ω so that the rescaled metric does

not transform. The final form of the effective action coming from the dimensional reduction is then

invariant under the symmetry

W (2) →W (2) + j , vi → e−α
2jvi . (7.42)

We note that the ∂iW
(2) terms in the δvi kinetic terms are key to ensuring the symmetry of the action

for j as a function of vi, as they covariantize the derivatives which appear in the reduction. Indeed,

this symmetry can be made manifest by introducing a covariant derivative for vi. Furthermore we

note that if we make the choice a1 = 7 then using the definitions,

GTij = GWij + 256
1

V2
0

∫
Y4

Z ∗(0) 1

∫
Y4

ω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

− 256
1

V0

∫
Y4

[
Zω(0)

i mn̄ω
(0)

j
n̄m + 12Zmn̄rs̄ω

(0)

j
n̄mω(0)

i
s̄r

]
∗(0) 1 ,

KTi = K(0)

i + α2

∫
Y4

[
K(0)

i

V0
(3W (2) − 128Z) ∗(0) 1− 1536Zmn̄ω

(0)

i
n̄m ∗(0) 1

]
,

VT = VW + α2256

∫
Y4

Z ∗(0) 1 , (7.43)

and the covariant derivative

Dvi = dvi + α2Wjdv
j vi , Wj =

1

V

∫
Y4

∂jW ∗ 1 , (7.44)

the action takes the simple form5

Seff = Skin + SCS + Spot , (7.46)

with

Skin =
1

2κ11

∫
M3

[
R ∗ 1− (GTij + V−2

T K
T
i KTj )Dvi ∧ ∗Dvj − V2

TGTijF i ∧ ∗F j
]
, (7.47)

5Note that in making this match we have used that∫
M3

dvi ∧ ∗dvj 1

V0

∫
Y4

Zω
(0)
i ∧ ∗

(0)ω
(0)
j =

∫
M3

dvi ∧ ∗dvj 1

V2
0

∫
Y4

Z ∗(0) ∗1
∫
Y4

ω
(0)
i ∧ ∗

(0)ω
(0)
j∫

M3

dvi ∧ ∗dvj 1

V0

∫
Y4

W (2)ω
(0)
i ∧ ∗

(0)ω
(0)
j =

∫
M3

dvi ∧ ∗dvj 1

V2
0

∫
Y4

W (2) ∗(0) 1

∫
Y4

ω
(0)
i ∧ ∗

(0)ω
(0)
j (7.45)

which can be demonstrated by taking using integration by parts in the external space.
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and

SCS =
1

2κ11

∫
M3

ΘijA
i ∧ F i , Spot = − α2

4κ2
11

∫
M3

∗31

∫
Y4

1

2

(
G ∧ ∗′G−G ∧G

)
, (7.48)

with Spot discussed in the next section 7.4. Under the transformations (7.42) one finds for the couplings

GTij → e2α2jGTij , VT → e−α
2jVT , KTi → e2α2jKTi , Dvi → e−α

2jDvi , (7.49)

thus it becomes manifest that the action (7.46) remains invariant.

7.4 Scalar potential

In this subsection we discuss the derivation of the scalar potential for the Kähler structure fluctuation

δvi introduced in (7.19). We expect a flux-induced scalar potential for all fluctuations that do not

respect the primitivity condition (7.12).

To begin with we consider the terms containing Ĉ without derivative. Considering the pure three-

dimensional space-time part for Ĉ one easily sees

−
∫ (1

6
Ĉ ∧ Ĝ ∧ Ĝ+ 32213Ĉ ∧ X̂8

)∣∣∣
pot

= 0 , (7.50)

which can be traced back to the fact that this combination is proportional to the tadpole constraint

(7.10). A pure flux-induced potential term arises from the reduction

−
∫

1

2
Ĝ ∧ ∗̂Ĝ

∣∣∣
pot

= −α2

∫
M3

∗31

∫
Y4

1

2
G ∧ ∗′G , (7.51)

where ∗′ is the Hodge star of the perturbed internal metric (7.20). In order to derive the full flux-

induced potential, however, we need to also dimensionally reduce the higher-curvature terms. Inserting

the fluctuated ansatz into the R̂4-corrections to the eleven-dimensional action we find∫
t̂8t̂8R̂

4∗̂1 =

∫
M3

∗31

∫
Y4

(
1536 c(0)

4 − 768 δviδvj(∇(0)
a ∇(0)aZ)ω(0)

imn̄ω
(0)

j
n̄m ∗ 1

)
−
∫

1

24
ε̂11ε̂11R̂

4∗̂1 =

∫
M3

∗31

∫
Y4

1536 c(0)

4 . (7.52)

We thus encounter the integral over the forth Chern-form
∫
Y4
c4 = χ(Y4) and (7.10) can be used to

replace these terms with a flux-dependent contribution proportional to
∫
Y4
G∧G. Furthermore, there

appears to be an additional mass term for the fluctuations δvi involving the higher-curvature invariant

Z. However, we still need to dimensional reduce the zeroth order action inserting the α2-corrected

background solution. Performing this reduction one finds∫
R̂∗̂1 = α2

∫
M3

∗31

∫
Y4

768 δviδvj(∇(0)
a ∇(0)aZ)ω(0)

imn̄ω
(0)

j
n̄m ∗ 1 , (7.53)

which precisely cancels the Z-dependent mass-term arising from the higher-curvature reduction in

(7.52).
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In summary, adding all terms (7.50)-(7.53) one finds the scalar potential term

Spot = − α2

4κ2
11

∫
M3

∗31

∫
Y4

1

2

(
G ∧ ∗′G−G ∧G

)
. (7.54)

This term has to be still Weyl-rescaled to bring the action into the three-dimensional Einstein frame.

The rescaled result will be given in (8.3). As expected one can check that the scalar potential vanishes

for primitive (2, 2)-fluxes, i.e. for all (2, 2)-fluxes satisfying Gmn̄ρs̄J
′r̄s = 0. This condition generically

fixes a number of deformations δvi in the vacuum. Note that this is the only effect stabilising moduli

at order α2 in our setting.

8 3d, N = 2 Kähler potential and complex coordinates

In this section in order to reveal the supersymmetry properties of the three-dimensional effective

action (7.46) we discuss its promotion into the standard N = 2 form. Note that in section 6 we

could only give necessary conditions for the derived background to be supersymmetric. Thus upon

the procedure of dimensional reduction carried out in the previous section 7 we arrive at (7.46), which

may not necessarily be N = 2 supersymmetric. The procedure of identifying the correct N = 2

building blocks to capture the higher-derivative corrections in the couplings turns out to be a difficult

endeavor. However, in this section we infer compatibility of (7.46) with N = 2 supersymmetry and

argue that a no-scale condition can be implemented. Note that in 3d vectors can be dualized to scalars

and the dynamics of the vector multiplet in (7.46) can thus be described in terms of a Kähler potential

and a set of complex coordinates. We expand the Kähler potential and complex coordinates in the

Kähler fluctuations where we deduce the coefficients by comparison with the dimensionally reduced

action (7.46). We cannot fix all the parameters in this expansion since the reduction (7.46) only

incorporates the leading order terms of order δv2. To derive an expression, which is exact to all orders

in the fluctuations δv analogous to the classical reduction [103, 81], when including higher-curvature

terms becomes a more involved discussion. We argue that a possible approach to this problem lies in

fixing the complex coordinates by introducing divisor integrals, which then should be matched with

the actions of M5-branes wrapped on divisors. Comparing the variations of warped divisor integrals

and higher-curvature terms by using the warp-factor equation allows us to show compatibility with the

dimensional reduction, which furthermore suggests that the M5-brane action should receive corrections

related to the non-harmonic part of the fourth Chern-form c(0)

4 .

We start this section in 8.1 by reviewing the dimensionally reduced effective action (7.46) and

discuss its scaling symmetry in more detail. The N = 2 supersymmetric structure and the no-scale

condition are discussed in section 8.2. We derive the Kähler potential and complex coordinates as an

expansion in the fluctuations and later propose a definition using divisor integrals.
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8.1 Symmetries of the reduced action

Let us start by reviewing the three-dimensional action for the Kähler fluctuations δvi and the vectors

Ai section 7.3 derived by dimensional reduction of the M-theory action including all relevant α2

terms (2.61) on the warped background solution derived in section 6. It was shown that it takes the

remarkably simple form

κ2
11Seff = Skin + SCS + Spot , (8.1)

with kinetic terms given by

Skin =
1

2κ11

∫
M3

[
R ∗ 1− (GTij + V−2

T K
T
i KTj )Dvi ∧ ∗Dvj − V2

TGTijF i ∧ ∗F j
]
. (8.2)

and flux-induced Chern-Simons terms and scalar potential given by

SCS =

∫
M3

1

2
ΘijA

i ∧ F i , Spot = −α2

∫
M3

∗31

∫
Y4

1

8V3
0

(
G ∧ ∗′G−G ∧G

)
, (8.3)

with GTij ,KTi and VT defined in (7.43) and the covariant derivative Dvi in (7.44). The Chern-Simons

terms are dependent on the fluxes via Θij = α
2

∫
Y4
G ∧ ωi ∧ ωj .

Let us comment on the notation widely used in this section. Note that the intersection numbers

(2.82) are used here with fully fluctuated vi defined in (7.20) i.e. V = 1
4!Kijklv

ivjvkvl while in the

background they take the value vi0, thus V0 = 1
4!K

(0)

ijklv
i
0v
j
0v
k
0v

l
0, thus V0 is simply the background

zeroth-order volume of Y4 also given by V0 =
∫
Y4
∗(0)1. Following this logic one writes the case with

with fully fluctuated vi as Ki and in the background as K(0)

i as given in (A.42).

It is necessary to discuss lifted and background quantities at the same time thus we abuse our

notation, e.g. the warp-factor in the background W (2) is written as W (2) = W (2)(v). Note that

in this notation ω(0)

i is harmonic w.r.t. g(0)

mn̄(v0) while ωi is harmonic w.r.t. gmn̄(v). This intro-

duces an ambiguity when discussing explicit corrections of higher-order in α where we then use

e.g. W (2)|, T (2)

i |, T
(0)

i | to denote their value in the unfluctuated background. For instance one writes∫
W (2)ωi∧ωj ∧J2| =

∫
W (2)|ω(0)

i ∧ω
(0)

j ∧J (0)2, where J is the Kähler form related to the metric gmn̄(v).

8.1.1 Warp-factor scaling symmetry and integration

To connect (8.1) to the canonical form of a 3d, N = 2 theory we wish to integrate the Kähler metric

into a Kähler potential with appropriate complex coordinates. We have seen in chapter II for the

simplified setup that the main issue arises when splitting the integrals in the couplings. This was

necessary to connect them to objects with two free indices, which can be obtained from a small set

of building blocks upon twofold differentiation w.r.t. to vi. Note that to do this one needs to uplift

these objets to moduli space independent topological building blocks. This procedure, however, turns

out not to be applicable in the full fletched setup (8.1). Let us illustrate the uplift at the example of
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the classical Kähler fluctuations where one finds up to order δv3

dδvi ∧ ∗3dδvj
1

V0

∫ [(
ω(0)

im
mω(0)

jn
n +

1

2
ω(0)

imn̄ω
(0)

j
n̄m
)
− iδvk

(
ω(0)

im
nω(0)

jn
rω(0)

kr
m

+ 2ω(0)

km
nω(0)

in
mω(0)

jr
r
)

+O(δv2)
]
∗(0) 1 . (8.4)

As a very standard result performing the uplift consitently absorbs all the higher-order fluctuations

in the previous equation to arrive at

dδvi ∧ ∗3dδvj(Gij(v0) + δvkGijk(v
0) +O(δv2))→ dvi ∧ ∗3dvjGij(v) (8.5)

with

Gij(v) =
1

V

∫ [(
ωim

mωjn
n +

1

2
ωimn̄ωj

n̄m
)
∗ 1 = − 3

2V2
KiKj +

1

2V
Kij , (8.6)

where gmn̄(v) = iviωimn̄. To perform this uplift to (8.6) one argues that the coupling can be written

entirely via topological quantities which trivially uplift.

Let us present an alternative approach of how to think about the uplift v0 + δv → v. Reversely, by

guessing the lifted result we should be able to reproduce (8.4) by making the replacement vi → vi0 +δvi

on the right hand side of equation (8.5), which is not trivial as we will show now. Making the

replacement v → v0 + δv in (8.5) to match to the reduction (8.4) we want to express everything in

terms of the harmonic forms w.r.t. to the metric depending on vi0. Which is done by noting that

gmn̄(v) = gmn̄(v0) + iδviω(0)

imn̄ , (8.7)

and

ωimn̄ = ω(0)

imn̄ + iδvj∂m∂̄n̄κij , (8.8)

with vi0κij = vj0κij = 0. From d∗ωi = 0 we find that ∇r(gmn̄iδvj∂m∂̄n̄κij + 1
2ω

(0)

imn̄ω
(0)

j
n̄m) = 0 and thus

iδvj∂m∂̄n̄κij = 1
2ω

(0)

imn̄ω
(0)

j
n̄m + Cij . The integration constant can be fixed by applying the algebraic

constraints on κij to Cij = 1
2V0

∫
ω(0)

imn̄ω
(0)

j
n̄m ∗8 1, thus

δvj∇m∇mκij = −1

2
ω(0)

imn̄ω
(0)

j
n̄m +

1

2V0

∫
ω(0)

imn̄ω
(0)

j
n̄m ∗8 1 . (8.9)

Thus to down lift v → v0 + δv one plugs in (8.7) and (8.8) in (8.6) and indeed derives the term

proportional to δv3 in (8.4). The terms proportional to κ drop out due the harmonicity of ω(0) and

only become relevant at O(δv4). It would be desirable to also derive the linear fluctuations of the

kinetic couplings arising form the higher-derivative terms in (7.38) by an in principal straightforward

analogous analysis.

Let us next take a different angle to discuss the uplift of terms. The coefficients GTij ,KTi , and VT in

(7.43) are evaluated in the background vi0, however, let us investigate how far an uplift of the couplings

GTij(v0), KTi (v0), VT (v0) → GTij(v), KTi (v), VT (v) , (8.10)
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is feasible. Let us start the argument by noting that at first sight the couplings appear to be unrelated,

however, they are in fact precisely taking values so as to ensure the identity

(GTij + V−2
T K

T
i KTj ) = GTkl(δi

k − 1

V0
vk0K

(0)

i )(δj
l − 1

V0
vl0K

(0)

j ) , (8.11)

which holds in the background vi0. As we will demonstrate in the this section, this identity is one of the

crucial ingredients to ensure supersymmetry of the three-dimensional effective action. Furthermore,

we have observed in section 7.3 that (8.1) turns out to be invariant under the symmetry

W (2) →W (2) + j , vi → e−α
2jvi . (8.12)

for any scalar function j = j(vi) that can be space-time dependent. It is conceivable that this scaling

invariance persists beyond the α-order testable in the current reduction. It is also interesting to note

that one can introduce a potential W for the connection in (7.44) as

Wj = ∂j

(W
V

)
, W(vi) =

1

4!

∫
Y4

W (2)J4 , (8.13)

where J = viωi contains the fluctuated Kähler moduli.

The scaling symmetry fixes a number of the warp-factor dependent terms in (8.1) and one readily

infers a potential W that appears in these couplings. However, there is one contribution proportional

to
∫
Y4
Wω(0)

i ∧ ω
(0)

j ∧ J ∧ J that appears to be special. It arises by expanding (7.36)

GWij = − 1

2V
Kij +

1

2V2
KiKj −

3

4V

∫
Y4

W (2)ωi ∧ ωj ∧ J ∧ J +
3

2V2
Kij

∫
W (2) ∗ 1 , (8.14)

where we have used 6

∗ ωi = −1

2
ωi ∧ J ∧ J +

1

6V0
KiJ3 . (8.15)

At first, one might have suspected that all terms in (8.14) arise as derivatives of W as well. However,

evaluating 7

∂j

∫
W (2)ωi ∧ J3 = 3!KiWj + 3!

W
V
Kij , ∂jWi =

1

4!V0

∫
Y4

(∂i∂jW
(2))J4 , (8.16)

one infers that there is no term proportional to
∫
W (2)ωi∧ωj∧J2. This is a first example of a situation

where one can connect couplings with zero and one index, but new structures arise at the two-index

level. We discuss similar issues arising in the higher-derivative sector next.

In order to integrate terms in the higher-derivative sector, one might want to start with the scalar

function

Z(vi) =
1

4!

∫
Y4

ZJ4 =

∫
Y4

J ∧ c3 . (8.17)

6Note that this relation only holds for harmonic forms ωi.
7A simple way to show the first identity is to split the integral

∫
W (2)ωi ∧ J3 ∝ WKi, by using that ωi ∧ J3 is

harmonic.
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where we have used (5.6) and view Z as a function of the fluctuated moduli vi. It is then straightfor-

ward to derive

Zi = ∂iZ =

∫
Y4

ωi ∧ c3 = −2

∫
Y4

Zmn̄ωi
n̄m ∗ 1 , (8.18)

where we again inserted (5.6). Note that when written with the Chern-form c3 it is obvious that Zi is

actually constant such that ∂jZi = 0. Thus, in complete analogy to the warping terms, there appears

to be no obvious potential that admits the two-index terms∫
Y4

Zmn̄rs̄ω
n̄m
j ωs̄ri ∗ 1 ,

∫
Y4

Zωi ∧ ωj ∧ J ∧ J , (8.19)

as derivatives. We will have to address precisely these obstacles when showing the supersymmetry of

the effective action in next section.

To close this section let us point out that the two terms in (8.19) are just part of a set of higher-

derivative terms of the form

X (r)
ijkl =

∫
Y4

ω(0)

i ∧Rm1m̄1 ∧Rm2m̄2 ∧Rm2m̄2 ω
(0)

i
n̄1n1ω(0)

k
n̄2n2ω(0)

l
n̄3n3 (Y(r))

m1m̄1m2m̄2m3m̄3
n1n̄1n2n̄2n3n̄3

, (8.20)

where the Y(r) are defined to encode all possible index contractions of mp with nq. The two terms

in (8.19) arise when contracting a particular set of X (r)
ijkl with vk and vl. It would be very interesting

to study the properties of such X (r)
ijkl. In particular, the variation of these terms with the moduli vi

might uncover interesting relations. Furthermore, it is worth stressing that the terms X (r)
ijkl including

the contractions (8.19) depend on the chosen forms ωi, i.e. not just on the class of ωi, for all appearing

two-forms. In our study the ωi were always harmonic, but it would be interesting to check if there

are linear combinations of the X (r)
ijkl or its vp contractions that only depend on the cohomology class

of the two-forms.

8.2 Demonstrating the supersymmetric structure

In this section we determine the Kähler potential and complex coordinates compatible with N = 2

supersymmetry in three dimensions. Our starting point will be the three-dimensional effective action

(8.1) obtained by dimensional reduction. We discuss its supersymmetric structure both in the frame

when working with vectors Ai and in the dual frame when the vectors are replaced by scalars ρi.

8.2.1 Comparing the reduction result with N = 2 supergravity

It turns out to be convenient to first work with three-dimensional vector multiplets with bosonic

fields (Li, Ai) and only later switch to chiral multiplets with complex scalars Ti. The kinetic terms

of an ungauged N = 2 supergravity theory (2.56) propagates the vector multiplets (Li, Ai) The

couplings of the real scalars are given by K̃ij can be determined from a so-called kinetic potential

K̃(L) via K̃ij = ∂Li∂LjK̃. Dualising the vector Ai in the vector multiplet one can translate the
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three-dimensional theory into an action for complex scalars Ti with kinetic terms given by a Kähler

potential K(T, T̄ ) given by the action (2.53) where KTiT̄ j
= ∂Ti∂T̄ jK is the Kähler metric. Note that

ReTi, K and Li, K̃ are related by a Legendre transform as as discussed in section 2.2.2 and in section

4.2, by

Ti = K̃Li + iρi , K = K̃ − 1

2
(Ti + T̄ i)L

i , (8.21)

where ρi is the three-dimensional scalar dual to the vector Ai. One can now straightforwardly derive

that KTiT̄ j
= −1

4K̃
ij , which uses the inverse of K̃ij . Note that K is independent of the scalar ρi and

thus a function K(ReTi). It is useful to recall the inverse transformation

Li = −2KTi , (8.22)

where KTi = ∂TiK. The theory formulated in the Ti coordinates can admit a scalar F and D-term

potential of the form (2.54) and (2.55).

To read off K̃ij we compare the action (2.56) with the result from the dimensional reduction (8.1).

We first read off the coefficient of the F i ∧ ∗F j term and identify

K̃ij

∣∣ = −1
2V

2
TG

T
ij . (8.23)

Here we have used the notation f(vi)| = f(vi0), i.e. the vertical dash denotes evaluation in the back-

ground setting all fluctuations δvi = 0. Supersymmetry implies that for the correct definition of Li,

this metric has to match the one in front of dLi ∧ ∗dLj . Applied to (8.1) this implies the relation

V2
TG

T
ij = (GTkl + V−2

T K
T
kKTl )(δkh + vk0W

(0)

h )(δlo + vl0W (0)
o )

∂vh

∂Li

∣∣∣ ∂vo
∂Lj

∣∣∣ , (8.24)

where W (0)

i = Wi| is defined in (7.44) being evaluated in the background. Then using (8.11) we find

that

∂jL
i| ≡ ∂Li

∂vj

∣∣∣ =
1

VT

(
δik −

vi0
V0
K(0)

k

)(
δkj + vk0W

(0)

j

)
, (8.25)

where as above we abbreviate derivatives with respect to vi as ∂i ≡ ∂
∂vi

and ∂i1 . . . ∂inK = Ki1,...,in . It

turns out that it is complicated to integrate this condition. This can be traced back to the fact that

there is an evaluation and, as we discuss below, the fundamental objects to define Li itself might be

more involved. Nevertheless, we can already make some interesting observations. Firstly, the higher-

curvature corrections only appear through VT in (8.25). One suspects that this can only be true in

the background. In fact, we might imagine that ∂jL
i contains a term

∂jL
i ⊃ vi

∫
Y4

[
Zmn̄ω

n̄m
j − 2Zmn̄rs̄ω

n̄m
j ωs̄rk v

k
]
∗ 1 , (8.26)

which trivially gives zero when evaluated at vi0.8 Terms of this type, however, will turn out to be

crucial in order to determine the underlying objects of the theory. In contrast, artificially switching

8Note that the Z quantities in (8.26) are dependent on the Riemann tensors build form gmn̄ rather of g
(0)
mn̄
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off the higher-curvature corrections in (8.25) one finds that the Li in the presence of warping actually

takes the simple form

Li =
vi

VW
, (8.27)

where VW is the warped volume (7.36) now evaluated as a function of the perturbed vi.

As a second requirement of supersymmetry we note that (8.21) implies

∂iReTj
∣∣ = K̃jk∂iL

k
∣∣ . (8.28)

Using (8.23) and (8.25) we conclude that

∂jReTi
∣∣ = K(0)

ij + 3α2K(0)

i W
(0)

j +
3

2
α2

∫
Y4

W (2)|ω(0)

i ∧ ω
(0)

j ∧ J
(0) ∧ J (0) (8.29)

−256α2 1

V0
K(0)

ij Z
(0) − 1536α2 1

V0
K(0)

j Z
(0)

i

+256α2

∫
Y4

Zω(0)

i ∧ ω
(0)

j ∧ J
(0) ∧ J (0) + 6144α2

∫
Y4

ω(0)

i
n̄mω(0)

j
s̄rZmn̄rs̄ ∗(0) 1 ,

where K(0)

ij and K(0)

i are introduced in (2.82) and evaluated at vi0.

8.2.2 Kähler potential and coordinates as a δv expansion

In the previous section we have deduced the expressions for ∂Li/∂vj and ∂ReTj/∂v
i when evaluated in

the background vi = vi0. We will next try to infer directly the coordinates Ti and the Kähler potential

K. In order to do this we view Ti and K as being given by an expansion both in α and δvi by writing

ReTi = ReT (0)

i + α2ReT (2)

i , ReT (2)

i = ReT (2)

i |+ ∂jReT (2)

i |δv
j +

1

2
∂j∂kReT (2)

i |δv
jδvk ,

K = K(0) + α2K(2) , K(2) = K(2)|+ ∂jK
(2)|δvj +

1

2
∂j∂kK

(2)|δvjδvk . (8.30)

In the following we derive as much information as possible about the coupling functions that appear

in this expansion by comparing to the reduction result.

As a first step, recall that the zeroth order result in α was already determined in [103, 81]. With

our above expressions one can check that

K(0) = −3 log(V) , ReT (0)

i = Ki , (8.31)

where now V and Ki depend on the varying vi. At the next order in α we note that there are only

few objects with zero or one index i that are non-trivial in the background. More precisely, one can

write

K(2)| = µ1

V0
Z (0) +

µ2

V0
W (0) , (8.32)

where Z andW are defined in (8.17) and (8.13). The constants µ1, µ2 are undetermined at this point.

Clearly, the constant shifts in K are unimportant for the derivation of the Kähler metric. However,
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the form of (8.32) might hint towards the fully moduli-dependent form of K. To fix the coefficients

µ2 one might be inclined to use the scaling symmetry (8.12). Together with the classical form of K

one then infers that an invariant K requires µ2 = −12.

We can proceed similarly for the one-index quantities. We first make an ansatz using all one-index

building blocks we have encountered so far by setting

ReT (2)

i | = ν̃1Z (0)

i + ν̃2V0W (0)

i + ν̃3K(0)

i Z
(0) + ν̃4K(0)

i W
(0) ,

∂iK(2)| = µ̃1

V0
Z (0)

i + µ̃2W (0)

i +
µ̃3

V0
K(0)

i Z
(0) +

µ̃4

V0
K(0)

i W
(0) . (8.33)

The constant coefficients ν̃α, µ̃α are not determined at this point, since there are no direct relations

fixing the background values of Ti and ∂iK. To fix at least some of the coefficients in (8.33) one can

again use the symmetry (8.12). Note that Ti are proper complex coordinates that should be invariant

under (8.12). This suggests that ν̃4 = 3 and ν̃2 = 0, where we have used that the leading contribution

to Ti is of third power in vi as in (8.31). In contrast, we note that K should be invariant under (8.12),

while ∂iK
(2) should transform as a derivative and therefore contain the connection Wi. Using again

the leading form (8.31) and the expression (8.13) one concludes µ̃2 = −12 and µ̃4 = 0.

In contrast to (8.32) and (8.33) the form of ∂jReT (0)

i | and ∂jReT (2)

i | are fully fixed by the reduction

and are trivially read off from (8.30) with

∂jReT (2)

i

∣∣ = 3K(0)

i W
(0)

j +
3

2

∫
Y4

W (2)|ω(0)

i ∧ ω
(0)

j ∧ J
(0) ∧ J (0) (8.34)

−256
1

V0
K(0)

ij Z
(0) − 1536

1

V0
K(0)

j Z
(0)

i

+256

∫
Y4

Zω(0)

i ∧ ω
(0)

j ∧ J
(0) ∧ J (0) + 6144

∫
Y4

ω(0)

i
n̄mω(0)

j
s̄rZmn̄rs̄ ∗(0) 1 .

All other remaining terms in the expansion (8.33) are also not fully determined by our results

obtained from the reduction. However, we can use (8.22) to show that the general relation

Li = −2
∂K

∂Ti
= −∂K

∂vj
∂vj

∂ReTi
, (8.35)

together with (8.33) gives

L(2)i = −Kij∂jK(2)| − 1

V
vjKik∂kT (2)

j |+KjlmK
ilKkm∂kK(2)|δvj

−Kik∂j∂kK(2)|δvj − 1

V
Kik∂kT (2)

j |δv
j +

1

V2
KjvlKik∂kT (2)

l |δv
j

+
1

V
KjmnKimKlnvk∂lT (2)

k |δv
j − 1

V
Kilvk∂j∂lT (2)

k |δv
j +O(δv2) . (8.36)

From this it is straightforward to evaluate ∂iL
j and compare the result with (8.25) in the background
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vi = vi0. One then infers that the coefficients in (8.33) have to satisfy the relation

∂i∂jReT (2)

k vk| − VKijkK
kl∂lK

(2)|+ V∂j∂kK(2)|

=9
1

V0
K(0)

ij W
(0) + 18V0W (0)

(i K
(0)

j) + 12V0K(0)

ijkK
(0)klW (0)

l −
3

2

∫
W (2)|ω(0)

i ∧ ω
(0)

j ∧ J
(0) ∧ J (0)

− 256

∫
Zω(0)

i ∧ ω
(0)

j ∧ J
(0) ∧ J (0) + 3072

1

V0
K(0)

(i Z
(0)

i) − 1536
1

V2
0

K(0)

i K
(0)

j Z
(0)

− 6144

∫
ω(0)

i
n̄mω(0)

j
s̄rZmn̄rs̄ ∗(0) 1 + 1536K(0)

ijkK
(0)klZ (0)

l (8.37)

Imposing these conditions then implies that we match the metric (8.23). Note that this analysis can

be carried out independent of any gauge fixing of the scaling symmetry (8.12). Also note that our

first-order analysis does neither uniquely fix the Kähler coordinates nor the Kähler metric. This can

be traced back to the fact that we performed the dimensional reduction only to leading order in the

fluctuations δvi.

In order to fix the coefficients in (8.33) further, one can try to impose conditions that might hold

also at the higher-derivative level. For example, one may suspect that a no-scale condition holds even

when including α-corrections to the action. In three space-time dimensions such a condition reads

KTiK
TiT̄ jKT̄ j

= 4 . (8.38)

It ensures that in the scalar potential (2.54) the negative −4|W |2 term cancels for a superpotential

independent of Ti. Using (8.22) and KTiT̄ j = −4K̃ij one rewrites (8.38) as

LiK̃ijL
j = −4 . (8.39)

In the background this expression can be evaluated by using (8.36) together with (8.34) to yield the

condition9

∂iK
(2)vi| = 2304

1

V0
Z (0) − 12W (0)

i vi0 . (8.41)

Keeping in mind that we have few objects with zero or one index, one can use this condition as a

further motivation to make an ansatz for the Kähler potential and match the coefficients. This will

be considered in the following section.

8.2.3 Completing the Kähler potential and complex coordinates

In this final subsection we comment on the completion of the Kähler potential and complex coordinates

as a closed expression in Kähler deformations. Our goal is to replace the δvi-expansion (8.33) with

an appropriate ansatz hinting towards the underlying structure of the higher-derivative reduction. It

9 We note also that a similar set constraints ReTiReTjG
ij | = LiLjG−1

ij | = LiReTi| = 4 and ∂k(LiReTi)| = 0 can all

be satisfied if we demand (8.41) as well as

ReT
(2)
i | = ∂iK

(2)| − 1

3
Ki∂jK(2)vj |+ 12W(0)

i + 3K(0)
i W

(0) − 4
1

V0
K(0)
i W

(0)
j vj0 + 256

1

V K
(0)
i Z

(0) . (8.40)
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should be stressed that we are only able to fully justify the leading terms. However, we will also

discover an intriguing interplay between warping effects and higher-curvature terms.

To begin with, let us propose an ansatz for the Kähler potential. We have noted in (8.32) that

there are only few objects without indices. Using the quantities introduced in (8.13) and (8.17) we

suggest

K = −3 log

(∫
Y4

e4α2W ∗ 1 + 256µα2

∫
Y4

Z ∗ 1

)
(8.42)

= −3 log(V + 256µα2Z + 4α2W +O(α4)) ,

where the functions that appear are now viewed as being dependent on the fields vi. In this expression

we fixed the factor in front of W by the fact that K has to be invariant under the symmetry (8.12).

The factor in front of the Z term is not fixed a priori and we have introduced the constant µ to capture

this freedom. Let us stress that it is straightforward to compute the vi derivatives of K as defined in

(8.42). In particular, one finds

∂iK = −3
1

V
Ki + 768µα2 1

V
ZKi − 768µα2 1

V
Zi − 12α2Wi . (8.43)

Clearly, in order to compute the actual Kähler metric we also have to supplement an ansatz for the

complex coordinates Ti. The involved form of the Kähler metric determined from the dimensional

reduction (8.1) and the rather simple form of the Kähler potential (8.42) as a function of the vi

suggests that the Ti have to capture most of the non-trivial information about the N = 2 system.

To get some intuitive information about Ti, we note that these coordinates are expected to lin-

earise the action of M5-brane instantons on divisors Di. In fact, as discussed in [148] a holomorphic

superpotential of the schematic form W ∝ e−Ti can be induced by such instanton effects. This implies

that the Ti are expected to be integrals over divisors Di. We therefore suggest that they take the form

Ti =

∫
Di

( 1

3!
e3α2W (2)

J ∧ J ∧ J + 1536α2F6

)
+ iρi , (8.44)

where Di are h1,1(Y4) divisors of Y4 that span the homology H2(Y4,R). The six-form F6 in this

expression is a function of degrees of freedom associated with the internal space metric and will be

responsible for the more complicated higher-derivative structures (8.19). It is constrained by a relation

to the fourth Chern form c4 such that F6 determines the non harmonic part of c4 as

c4 = Hc4 + i∂∂̄F6 . (8.45)

This is in analogy to the quantity F4 introduced representing the non-harmonic part of c3. Note

that (8.45) leaves the harmonic and exact part of F6 unfixed and we will discuss constraints on these

pieces in more detail below. The justification of the first term in ReTi is simpler. It captures the

warped volume of an M5-brane wrapped on Di. In fact, the power of the warp-factor turns out to be

appropriate to ensure invariance under the scaling symmetry (8.12), in accord with the expectation

that Ti is invariant under this symmetry. Remarkably, this definition of the Kähler coordinates as

Di integrals will help us to obtain the couplings
∫
e3α2W (2)

J ∧ J ∧ ωi ∧ ωj , which, as we stressed in
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subsection 8.1.1, cannot be obtained as vi-derivatives of the considered Y4-integrals. Note that the

following discussion of the warping is inspired by [135]. Here we will adapt and extend the arguments

of [135] and include the higher-curvature pieces. Interestingly they turn out to complete the analysis

in an elegant and non-trivial fashion.

In order to evaluate the derivatives of Ti with respect to vi and to make contact with the Kähler

metric found in (8.1), we have to rewrite the integrals over Di into integrals over Y4. Due to the

appearance of the warp-factor and the non-closed form F6 in (8.44) this is not straightforward. In

particular, one cannot simply use Poincaré duality and write Ti as an integral over Y4 with inserted

ωi. Of course, it is always possible to write Ti as a Y4 integral when inserting a delta-current localised

on Di, i.e.

ReTi =

∫
Y4

( 1

3!
e3α2W (2)

J ∧ J ∧ J + 1536α2F6

)
∧ δi , (8.46)

where δi is the (1,1)-form delta-current that restricts to the divisor Di. Appropriately extending the

notion of cohomology to include currents [64, 149], we can now ask how much δi differs from the

harmonic form ωi in the same class. In fact, any current δi is related to the harmonic element of the

same class ωi by a doubly exact piece as

δi = ωi + i∂∂̄λi . (8.47)

This equation should be viewed as relating currents. Importantly, as we assume Di and hence δi to be

vi-independent, the vi dependence of the harmonic form ωi and the current λi has to cancel such that

∂jωi = −i∂∂̄∂jλi. Importantly, once we determine ∂jReTj we can express the result as Y4-integrals

without invoking currents. We therefore need to understand how each part of Ti varies under a change

of moduli. This will also fix the numerical factor in front of F6 in (8.44).

In order to take derivatives of Ti we first use the fact that Di and hence δi are independent of the

moduli vi, which implies

∂jReTi =

∫
Y4

(1

2
e3α2W (2)

ωj ∧ J ∧ J +
1

2
α2∂jW

(2)J ∧ J ∧ J + 1536α2∂jF6

)
∧ δi . (8.48)

We next claim that we can replace δi with ωi such that finally

∂jReTi =
1

2

∫
Y4

e3α2W (2)
ωi ∧ωj ∧ J ∧ J +

1

2
α2

∫
Y4

∂jW
(2)ωi ∧ J ∧ J ∧ J + 1536α2

∫
Y4

ωi ∧ ∂jF6 . (8.49)

Note that by using (8.47) the two expressions (8.48) and (8.49) only differ by a term involving ∂∂̄λi.

By partial integration this term is proportional to∫
Y4

λi∂∂̄
(1

2
e3α2W (2)

ωj ∧ J ∧ J +
1

2
α2∂jW

(2)J ∧ J ∧ J + 1536α2∂jF6

)
=

∫
Y4

λi

(1

2
∂∂̄(e3α2W (2)

)ωj ∧ J ∧ J +
1

2
α2∂∂̄(∂jW

(2))J ∧ J ∧ J + 1536α2∂∂̄∂jF6

)
. (8.50)

It is now straightforward to see that the terms multiplying λi are simply the ∂j derivative of the

warp-factor equation (7.7). One first writes (7.7) as

d†de3α2W (2) ∗8 1− α2Q8 = −1

3
i∂∂̄(e3α2W (2)

) ∧ J ∧ J ∧ J − α2Q8 . (8.51)
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Then one takes the vj-derivative of (8.51) by using the fact that Q8 is given via (7.8) and (8.45). The

moduli dependence of Q8 only arises from the term involving F6, i.e. one has ∂iQ8 = 3072 i ∂∂̄∂iF6.

Hence one finds exactly the terms in (8.50) such that this λi dependent part of the Ti variation vanishes

due to the warp-factor equation (7.7).

The final expression (8.49) is written using (2.82) and (8.13) as

∂jReTi =
1

2

∫
Y4

e3α2W (2)
ωi ∧ ωj ∧ J ∧ J + 3α2KiWj + 1536α2

∫
Y4

ωi ∧ ∂jF6 . (8.52)

The Li coordinates are then computed using (8.35) by inserting (8.43) and (8.52). This gives the

result

Li =
vi

V
− α2 v

i

V2
(3W + 256µZ) + 1536α2K

ij

V

(
Zj −

∫
Y4

J ∧ ∂jF6

)
. (8.53)

It is then straightforward to derive

∂jL
i =

δij
V
− viKj

V2
−
δij
V2

(3W + 256µZ)− 1

V
vi(3Wj + 256µZj) +

1

V3
Kjvi(3W + 512µZ)

− α2 1

V
768µKimKknKmnjZk − α2 1

V2
0

768µKikKjZk

+ α2 1

V
1536KimKknKmnj

∫
Y4

J ∧ ∂kF6 + α2 1

V2
1536KikKj

∫
Y4

J ∧ ∂kF6

− α2 1

V
1536Kik

∫
Y4

ω(0)

j ∧ ∂kF6 − α2 1

V
1536Kik

∫
Y4

J ∧ ∂j∂kF6 (8.54)

This allows to determine the derivatives of F6 by comparing (8.25) and (8.30) with (8.54) and (8.52).

We find that∫
Y4

ωi ∧ ∂jF6| =4
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ijkK
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l ,

(8.55)

in order for the results to match. This implies that the Kähler potential (8.42) and coordinates (8.44)

yield the metric matching with the reduction result.

The result (8.55) still depends on the free parameter µ introduced in the Kähler potential (8.42).

Clearly, one expects that such a freedom is not fundamental, but rather due to the fact that we are

only able to partially check the result. A dimensional reduction including fluctuations to higher-order

is likely fixing µ unambiguously. Alternatively, we can impose the no-scale condition (8.38), which we

presume persists at higher-curvature level. This implies that µ = 1.

Let us note that the definition contains two ambiguities. Firstly, we did not specify the divisor

basis Di spanning H2(Y4,R). This can be shifted by a boundary of a seven-chain Γi without changing
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the class as

Di → Di + ∂Γi . (8.56)

This would result in a different choice for the currents δi and ji in (8.47). The result is a modification

of the N = 2 coordinates Ti given in (8.46). However, as we have shown above, only the harmonic

representative of the class enters in the variation ∂jTi, while ji drops out due to the warp-factor

equation. In other words, the transformation (8.56) is actually a symmetry of the Kähler metric.

Secondly, the constraint (8.45) is invariant under shifts of F6 by six-forms η6, which get annihilated

by the derivatives. In other words, one might transform

F6 → F6 + η6 , ∂̄η6 = ∂η6 = 0 . (8.57)

Clearly, this transformation will in general not respect (8.55). These conditions, however, constrain

only the harmonic part of F6 and allow for the symmetry

F6 → F6 + dη̃4 . (8.58)

It would be interesting to investigate the implication of the symmetries (8.56) and (8.58) in greater

detail. This is particularly interesting when including a superpotential explicitly depending on the

coordinates Ti.

The presence of the F6 term in (8.44) implies, by the above relationship between Ti and the action

of a probe M5-brane on Di, that higher-derivative corrections are relevant in the M5-brane action.

Corrections of this type are also required for gravitational anomaly cancellation [150, 151, 152] for an

M5-brane in the background of eleven-dimensional supergravity. From this anomaly analysis additional

metric dependent contributions to the M5-brane action that are related to certain topological classes

are expected, in a way similar to the relationship between F6 and c4. In future work it would be

interesting to see if this analysis can be used to infer a more direct definition of the F6 part of the

correction in (8.44) and so prove the constraints (8.55) that are necessary in our analysis.
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9 Conclusions & outlook

9.1 Summay and conclusions

The study of higher-derivative corrections to M-theory and the induced corrections to 3d and 4d

effective physics upon compactification is of phenomenological as of conceptual interest. The declared

goal of this research program, which is the common theme throughout this work is to understand the

compactification of the complete bosonic sector of eleven-dimensional supergravity including l6M ∼ α2

corrections, to three dimensions.10 In a second step we aspire to lift the action to 4d using the M/F-

theory duality. Let us conclude on the status of this endeavor by taking into consideration the results

of this work. The α2-corrections in eleven dimensions carry eight derivatives and thus upon reduction

not only correct the couplings of the two derivative external quantities, but as well give rise to higher-

derivative corrections in 3d and 4d. However, the main focus was devoted to the induced corrections

with two external derivatives, in particular the arising vector multiplet (vi, Ai) in 3d. We were led to

consider geometric backgrounds, where the internal manifold is a Calabi-Yau or a conformally Calabi-

Yau fourfold, restricting ourselves to the case h2,1 = 0. Our approach in this work was twofold. Firstly,

in chapter II we considered a simplified setup by omitting (∇̂Ĝ)2R̂2 structures and compactifying on

a direct product space M3 × Y4, with Y4 the internal Calabi-Yau manifold, which reflects our early

work on the subject [101, 102]. Remarkably, the corrections to the Kähler metric read off from the

couplings of the 3d vectors integrated into a Kähler potential by making the assumption that c(0)

3 , the

third Chern form, is harmonic. However, this assumption might not hold in general such that this

amounted to neglecting a single contribution proportional to the non-harmonic part of c(0)

3 . Finally,

we lifted the corrections proportional to the third Chern class to 4d using the M/F-theory duality.

However, although we were able to push the program until the end this setup has to be considered a

toy model, and one can not draw definite conclusions from its results. Therefore we refer the reader

to section 5.4, where we discuss the characteristics of the simplified setup, but will not comment on it

here.

Secondly, chapter III represented the work done in a series of three publications [121, 120, 122],

discussed in sections 6, 8 and 7, respectively. We presented the dimensional reduction of eleven-

dimensional supergravity including the full set of eight-derivative terms on a seemingly supersymmetric

background, giving rise to a 3d effective action compatible with N = 2 supersymmetry.

When considering higher-derivative corrections to eleven-dimensional supergravity it can be in-

ferred that the background M3 × Y4 is not a supersymmetric solution, but instead it must be warped

and include non-vanishing fluxes [153]. Checking a background solution of the eleven-dimensional

E.O.M.’s for supersymmetry is done by comparing it to the solution of the Killing spinor equations

derived from the gravitino variations. However, the gravitino variations in 11d are not known at the

order α2, which led us to argue indirectly for supersymmetry by giving necessary conditions. More

concretely, in section 6 we solved for the 11d E.O.M.’s arising at order α2 and found the internal metric

10As we pointed out the completeness is a conjecture by [60].
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background to be a conformally Kähler manifold with vanishing first Chern class, but a non-Ricci-flat

metric. The conformal rescaling includes the warp-factor, which in the background is of order α2

as well as another α2 correction Z =
∫
Y4
c(0)

3 ∧ J (0), where the third Chern form c(0)

3 and the Kähler

form were evaluated in terms of the Ricci-flat zeroth order Calabi-Yau metric of Y4. The deviation at

order α2 from the zeroth order Ricci-flat metric is due to the in general non-harmonicity of the third

Chern-form.

The argument for supersymmetry of this background was indirect. Let us shortly discuss a con-

structive approach towards it. A solution with four real supercharges requires the existence of a

no-where vanishing background complex Weyl spinor. One can uniquely fix a Killing spinor equa-

tion by compatibility with the background solution and the E.O.M.’s, which reversely led us to infer

a conjecture for the eleven-dimensional gravitino variations with higher curvature terms, based on

[141, 142]. We then compactified the proposed gravitino variations on the warped background solu-

tion, which naturally yielded the desired Killing spinor equations and led us conclude that the warped

background admits a globally defined real two-form J and complex four-form Ω. The Killing spinor

equations translated into first order differential constraints on J,Ω, with only dΩ′ = W5 ∧ Ω′ non-

vanishing for an exact one-form W5, after separating the warp-factor. We conclude that the desirable

check of supersymmetry of the proposed solution and the completeness of the gravitino variations is

still missing, however it could be provided by a tedious Noether coupling procedure. However, dimen-

sional reduction of M-theory at order α2 on the warped background with fluxes to a 3d,N = 2 would

give further evidence for its correctness. Note that a proof of supersymmetry of proposed background

would not directly imply that the asserted gravitino variations in eleven dimensions are complete,

since our discussion could miss terms which vanish on the background and are thus never seen by our

indirect derivation.

In section 8 we discussed the dimensional reduction on the α2-corrected background and included

all relevant corrections at order α2 to the eleven-dimensional supergravity. Note that we discarded

certain known corrections from our analysis since they would have contributed to more than two

external derivative terms at order α2, or to O(α3) two derivative corrections. This was due to the fact

that the background flux was exactly of order α, hence G ∼ α +O(α3) and thus 11d quantities with

more than two Ĝ-forms fields could be safely neglected. However, we did not discuss the complete 3d

field-content but rather focused on the Kähler moduli fields and the vectors arising form the three-

form field strength Ĉ, forming a vector multiplet in 3d. We as well did not vary the metric w.r.t. the

complex structure deformations and we premised that h2,1 = 0. The first step in this procedure is

to determine the light field content, which can be done by solving the higher-dimensional E.O.M.’s

and detecting the corrected Ansatz for the decomposition of the higher-dimensional fields in terms of

internal and external components. In the zeroth order in α analysis this can be done straightforwardly

and one finds that one massless vector and one massless scalar arises for every harmonic (1, 1) -form

of the internal Calabi-Yau space from the three-form Ĉ and the Kähler deformations of the metric,

respectively. However, as we argued the expansion in harmonic (1, 1)-forms for the vectors and scalars

receive α2-corrections in form of double exact pieces, which was inferred from their closure put upon

them by the Bianchi identity for Ĝ and by closure of the Kähler form, respectively. Note that this was
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only a necessary condition for the corrected mode to give rise to massless scalars, nevertheless this

could be verified by computing the scalar potential. We then performed the dimensional reduction,

using this new α2-corrected modes, carefully expanding the action order by order in α, we inferred

the 3d effective action. Note that we varied the higher-curvature corrections w.r.t. to the Kähler

deformations, which is a novel step in the literature of string theory reductions. We concluded that

the α2 contributions to the modified light modes eventually canceled in the effective action and hence

did not contribute at all. Furthermore, we found that the kinetic couplings of the Kähler deformations

and vectors in the three-dimensional effective theory at order α2 could be expressed using a single

higher-curvature building block Zmm̄nn̄ = 1
4!(ε8ε8R

(0)3)mm̄nn̄ and the warp-factor W (2). Note that

R(0) is the internal Riemann tensor in the zeroth order Calabi-Yau metric. The introduced building

block Zmm̄nn̄ carries interesting semi-topological features as it has same symmetries as the Riemann

tensor, it contracts with Rm̄mn̄n to the Hodge-dual of the fourth Chern-form, and contracting any

of the index pairs with the metric one finds expressions in terms of the third Chern-form. Despite

its direct connection to these topological quantities it seems that this structure has not appeared in

mathematics so far and it remains interesting to explore if it plays a special role in describing the

topology of a compact eightfold.

Furthermore we consistently incorporated the warp-factor in this dimensional reduction taking

into account its interplay with higher-derivative terms and fluxes. Since the warp-factor is sourced at

α2 from the higher-derivative corrections and the fluxes, this setup can solely be discussed correctly

when considering all the ingredients at the same time. In the general discussion of section 8 the warp-

factor modifications to the 3d effective theory were significantly more involved than it had previously

been argued in literature. Nevertheless we managed to transform the effective action to a remarkably

simple form by introducing a warped volume, which was simple the volume measure weighted with

the exponential of the warp-factor, and a covariant derivative for the scalars involving the variation of

the warp-factor w.r.t. to the Kähler deformations of the metric. In these new variables the non-trivial

scaling symmetry of the effective action, induced by rescaling of the warp-factor by a field-dependent

function, became manifest.

Note that the conditions on the mode expansion did actually not guarantee to give rise to massless

fields and hence one might doubt if these are the appropriate light degrees of freedom. Thus finally,

we provided an inquiry by deriving the scalar potential for the Kähler deformations. At first, by

reducing the α2 higher-curvature terms on the zeroth order Calabi-Yau background, mass terms were

generated with a coupling depending on the scalar Laplacian of Z, the twofold metric contraction of

the building block Zmm̄nn̄. Intriguingly, this mass terms were precisely canceled by the contribution

from the Einstein-Hilbert term arising from the α2-corrections to the background as a back-reaction

effect, which led us to conclude that the remaining scalar potential was only induced by background

fluxes as known in literature [81]. We conclude that this strongly supports the claim that the discussed

fluctuations indeed represent the relevant light degrees of freedom and as well provides an intriguing

example of the interplay of α2 back-reaction effects to the solution and α2-corrections to the effective

theory.
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Finally, in section 8 we turned our focus to the study of the N = 2 characteristics of the resulting

3d effective theory for the vector multiplet (Li, Ai), where we obtained Li(vi). In three dimension one

can dualize a vector to a real scalar Ai → ImTi, while the Kähler moduli are identified with the real

part Li → ReTi, which transforms the vector multiplets into complex scalars Ti in chiral multiplets,

referred to as complex coordinates. We then determined compatibility with the reduction result with

a proposal for the N = 2 Kähler potential K and complex coordinates Ti, which were exact to all

orders in the fluctuations. Note that in order to do this one needs to uplift the couplings of the

chiral fields, in principal done by expressing them in terms of topological building blocks, which thus

results in moduli space independent quantities in the Kähler metric. Furthermore these need to arise

from a Kähler potential upon twofold differentiation w.r.t. Ti and T̄ j . At the classical level α0 it is

well-known that the Kähler metric, the Kähler potential, and the coordinates Ti can be expressed by

intersection numbers of Y4. The uplift of the α2-corrected couplings was more involved.

In the case of the warp-factor W (2) dependent corrections to the kinetic terms we performed

the uplift by expressing the complex coordinates in terms of divisor integrals. Let us comment on

this in a bit more detail. The kinetic couplings of the three-dimensional effective action derived

from dimensional reduction contain non topological integrals like
∫
Y4
W (2)ω(0)

i ∧ ω
(0)

j ∧ J ∧ J , which

depends on the actual choice of representative (1, 1)-forms in the class [ωi], where ω(0)

i is the harmonic

representative, w.r.t. the lowest order Calabi-Yau metric. It seemed hard to integrate this expression

into complex coordinates or in a Kähler potential, since as we argued there exists no obvious integral

over Y4 with only one free Kähler-index that yields the above integral upon taking a vi derivative.

Remarkably, we could resolve this obvious obstruction by defining Ti to be given by integrals over

divisors Di. Our key observation was that the vi-derivatives of the warp-factor equation allows us to

express vi-variations of the complex coordinates ∂jTi as Y4-integrals. Furthermore, this vj-derivative of

Ti was argued to only depend on the homology class of the divisor Di and not the precise representative.

This might suggest that for a proper treatment of effective actions resulting from warped reductions,

one may be led to loosen the stringent constraint of considering only topological integrals to also allow

for ”semi-topological” integrals up to usage of the warp-factor equation. Let us emphasize that since

the warp-factor equation naturally contains α2 higher-curvature terms, the above treatment shows

that the discussion of the warp-factor and higher-derivative terms cannot be disentangled.

However, treating the higher-derivative corrections to the couplings composed of objects built from

Zmm̄nn̄ analogously, was very challenging. As for the W (2) correction, not all the appearing structures

were of topological nature but a further difficulty arose due to the explicit appearance of the metric

in the Riemann tensors in Zmm̄nn̄, which led us to follow an indirect route for these couplings since it

seemed very challenging to integrate them into a Kähler potential. Note that the findings of section

8 were only at lowest order in the fluctuations δvi, which thus naturally drew us to determine K,

Ti in terms of a δvi-expansion. The problematic non-topological metric-dependent integrals, which

appeared in the couplings given by
∫
Y4
Zω(0)

i ∧ ω
(0)

j ∧ J ∧ J and
∫
Y4
ω(0)

i
n̄mω(0)

j
s̄rZmn̄rs̄ ∗ 1, should be

arising from a Kähler potential. We conjectured an all order Kähler potential and complex coordinates

Ti and then expanded it in δvi variations around the background and showed compatibility with the

reduction result. The proposed expression for the Kähler potential contained the warp-factor and
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Z =
∫
c3∧J . While the form of Ti was severely constraint by the warp-factor equation it was given in

terms of integrals of the divisor Di containing the warped volume of Di, and in a second contribution

a six-form F6, which contains the information about the non-harmonicity of the fourth Chern-form c4.

The compatibility with the reduction results bottom-up fixed F6 to obey the constraints (8.55). Note

that the definition of F6 (8.45) as parametrizing the non-harmonicity of c4 allows for shifts of harmonic

six-forms, which will in general modify Ti and cannot be a symmetry of the system. It would thus be

desirable to give an independent top-down definition of F6, which naturally needs to be compatible

with its relation to c4, but furthermore allows us to study its moduli dependence such that one can

verify the constraints obtained by the match with the reduction. Furthermore, let us note that due

to the relationship between Ti and the action of a M5-probe brane on the divisor Di, the presence of

the F6 correction suggests the relevance of this higher-derivative correction to the M5-brane action.

Let us close the discussion of chapter III by providing a few further comments. The attempted

program of a supersymmetric compactification of M-theory to three dimensions including the full set

of α2-corrections meets to major obstructions. Firstly, the lack of knowledge of the 11d gravitino

variations at order α2 and secondly, the integration of non-topological couplings in the 3d theory into

a Kähler potential. By resolving the latter issue, which we reduced to the problem of understanding

the moduli dependence of F6, one may be able to complete the analysis and show N = 2 features of

the obtained effective 3d theory. One would then conclude that the proposed background in section

6 is indeed supersymmetric and give justification to the asserted gravitino variations. However, we

should note that the study of higher-curvature corrections to the effective theory led us to introduce

new higher-derivative building blocks and it cannot be excluded that our analysis has to be completed

with a yet missing set of those, as we comment on in the next section 9.2.

Let us comment on the connection between the findings of chapter II where we have studied the

simplified setup, and the remnants of N = 2 supersymmetry obtained by considering the complete

warped reduction including fluxes of chapter III. The connection between the correction to the real part

of Ti given by Z =
∫
c3 ∧ ωi and KiZ, as discussed in chapter II, and the divisor integral formulation

of the corrections to the complex coordinates Ti in chapter III, is not immediate. A further discussion

is required to connect these results. However, in the full setup of chapter III one still obtains the

Z-correction to the Kähler potential. This program is at a too early stage to give the dependence of

the Kähler potential in terms of the complex coordinates Ti. However, it occurs to us that a solution

of this is in sight, which would allow to answer the phenomenological very relevant question of a

functional change of the Kähler potential. In this context the F-theory lift of the correction Z may

become very relevant. Nevertheless, it is anyway worthwhile to comment on the F-theory lift of the

Z,Zi-corrections, due to their role in chapter II. We inferred in section 5, that in the weak-coupling

limit the α′2-corrections are sourced by the self-intersection curve of each D7-brane present in the

background. We further argued that the corrections are due to open string diagrams and that it relies

on having D7-branes with proper self-intersections. Note that the corrections vanish in the absence of

D7-branes as in the case of 4d, N = 2 compactifications with parallel D7-branes. Note that one could

object to the uplift of curvature related objects such as Z,Zi, that the geometry becomes singular in

the F-theory lift and an uplift of these corrections can therefore not be trusted. Yet these corrections
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are of topological nature and thus might be protected, as we commented on in more detail in section

5.4.

It would furthermore be desirable to investigate the F-theory uplift of the full 3d, ”N = 2”

action obtained in chapter III to gain a 4d, N = 1 theory. However, in contrast to the discussion of

topological structures on elliptically fibered Calabi-Yau fourfolds where one can relate the quantities

in the fourfold to the corresponding ones in the base due to their topological nature, the treatment of

non-topological terms as the warp-factor and F6 which would be required, poses an interesting open

problem.

9.2 Outlook

The limitations of our previous analysis eventually arose from the possibility that we did not identify

all relevant higher-derivative building blocks. Among the various combinations of possible index

contractions of the Riemann tensor only a few are topologically relevant e.g. c1, c2, c3, c4, while others

seem to have a special role in physics, such as Zmm̄nn̄. Our guiding principle to find new building

blocks was dimensional reduction, once a new structure is identified one is able to construct identities

and relate the various components to each other. In this sense an immediate extension subsequent

to chapter III is to consider the dimensional reduction at next order in the fluctuations δvi, thus

looking at the fluctuations of the couplings of the scalars and vectors. This could moreover help to

understand the uplift of the moduli and provide justification for the proposed Kähler potential and

complex coordinates. A preliminary analysis suggests that indeed new building blocks are relevant to

match the reduction result.

There are two further obvious follow-ups of this research program, firstly, to consider the complex

structure deformations and secondly, to allow for h2,1(Y4) 6= 0. These discussions are very interesting

but incorporate the complication that one has to consider the Kähler and the complex structure

deformations at the same time, and then moreover, needs to expand Ĉ in harmonic (2, 1) and (1, 2)-

forms, which give rise to additional complex three-dimensional scalars. In fact, we have derived

preliminary results of this study, where details can be found in section D.0.1. We have dimensionally

reduced the term (t̂8t̂8 − 1
24 ε̂11ε̂11)R̂4 on the warped background considering Kähler and complex

structure deformations. Note that this is equivalent to the reduction on the zeroth order background

consisting of a Calabi-Yau manifold, since the analyzed correction is already of order α2. Despite α2-

corrections to the kinetic couplings of the complex scalars, we encounter peculiar mixing-terms between

the Kähler deformations and the complex structure deformations of the form dδvi∧∗dδzI
∫
Y4
YIim

m∗(0)

1 + dδvi ∧ ∗dδz̄I
∫
Y4
YIimm ∗(0) 1. Remarkably, one encounters a coupling which has the analogous

structure as the already introduced building block Yijmm̄. Note that a full discussion of the reduction

is required to guarantee that the mixing is present in the effective theory and not subject to some

non-trivial cancellation, for instance due to terms arising from α2-corrections to the background when

reducing the Einstein-Hilbert term, the α2-modifications of the of the zero modes, or the Ĉ∧X̂8 term.

However, in the case that these mixing terms remain in the full study it will be very interesting to
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analyze their implications on the effective physics. We refer the reader to future work.

Furthermore, one can allow for h2,1(Y4) 6= 0, which implies that the Ĉ form field gives rise to

h2,1(Y4) propagating complex scalars in chiral multiplets. In a simplified setup we look at the terms

arising from the dimensional reduction of Ĝ2R̂3 considering only the h2,1-sector, see section D.0.2 for

details. We find that the reduced result takes a very similar, analogous form compared to the one

found in chapter III, and remarkably, can agian be written entirely in terms of our building block

Zmm̄nn̄. Comparing to the analysis of chapter III, the building block with all four indices contracted

on the metric only arose when reducing the (∇̂Ĝ)2R̂2 terms, whereas in the h2,1-case it originates

from Ĝ2R̂3. This makes the h2,1-reduction of the (∇̂Ĝ)2R̂2 terms a promising location for the search

of new fundamental building blocks, since one might expect that objects with six free indices arise,

i.e. a structure Z6
mm̄nn̄rr̄.

However, alternatively one can broaden the field of study to see how universal the identified

structure Zmm̄nn̄ is. For instance by analyzing if there exist others, which are equally relevant. This

problem seems hard to approach, due to the enormous number of possible index contractions of three

Riemann tensors, or two Riemann tensors and two covariant derivatives acting on e.g. the harmonic

(1, 1)-forms as in Yijmm̄. The guiding principle to identify the physical relevant objects was dimensional

reduction. However, one can go a different route by scanning over certain structures to determine the

full set of different index contractions. As a first step in this direction one could be inspired by

Zmm̄nn̄ ∼ (ε8ε8R
3)mm̄nn̄, and derive all inequivalent contractions of the form (ε8ε8R

3)mm̄nn̄. It would

be interesting to see if one can find a minimal basis of structures Zγmm̄nn̄, such that contracted only

with two harmonic (1, 1)-forms and no metric, under a linear combination matches the reduction

result. Then all the higher-derivative structures in the effective action would be at the same footing,

carrying four explicit indices. A first preliminary study shows that these different structure Zγmm̄nn̄
are highly related to each other by linear combinations. One may hope that this furthermore leads

to novel identities, which help to rewrite the reduction result in a more appropriate form to connect

it to expressions depending on the fields vi, rather than vi0. As a consequence this could provide

further evidence for the proposed Kähler potential and complex coordinates. Let us conclude by

emphasizing that the outlined topics are certainly worth a more detailed investigation, and thus

constitute interesting future directions.
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A Conventions, definitions, and identities

In this work we denote the eleven-dimensional space indices by capital Latin letters M,N,R =

0, . . . , 10, the external ones by µ, ν = 0, 1, 2, and the internal complex ones by m,n, p = 1, ..., 4

and m̄, n̄, p̄ = 1, . . . , 4. Eleven-dimensional quantities for which the indices are raised and lower with

the total space metric carry a hat, for example the M-theory three-form is denoted by Ĝ. Furthermore,

the convention for the totally anti-symmetric tensor in Lorentzian space in an orthonormal frame is

ε012...10 = ε012 = +1. The epsilon tensor in d dimensions then satisfies

εR1···RpN1...Nd−pεR1...RpM1...Md−p = (−1)s(d− p)!p!δN1
[M1

. . . δNd−pMd−p] , (A.1)

where s = 0 if the metric has Riemannian signature and s = 1 for a Lorentzian metric.

We adopt the following conventions for the Christoffel symbols and Riemann tensor

ΓRMN =
1

2
gRS(∂MgNS + ∂NgMS − ∂SgMN ) , RMN = RRMRN ,

RMNRS = ∂RΓMSN − ∂SΓMRN + ΓMRTΓT SN − ΓMSTΓTRN , R = RMNg
MN , (A.2)

with equivalent definitions on the internal and external spaces. Written in components, the first and

second Bianchi identity are

ROPMN +ROMNP +RONPM = 0

(∇LR)OPMN + (∇MR)OPNL + (∇NR)OPLM = 0 . (A.3)

Differential p-forms are expanded in a basis of differential one-forms as

Λ =
1

p!
ΛM1...Mpdx

M1 ∧ . . . ∧ dxMp . (A.4)
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The wedge product between a p-form Λ(p) and a q-form Λ(q) is given by

(Λ(p) ∧ Λ(q))M1...Mp+q =
(p+ q)!

p!q!
Λ

(p)
[M1...Mp

Λ
(q)
M1...Mq ]

. (A.5)

Furthermore, the exterior derivative on a p-form Λ results in

(dΛ)NM1...Mp = (p+ 1)∂[NΛM1...Mp] , (A.6)

while the Hodge star of p-form Λ in d real coordinates is given by

(∗dΛ)N1...Nd−p =
1

p!
ΛM1...MpεM1...MpN1...Nd−p . (A.7)

Moreover,

Λ(1) ∧ ∗Λ(2) =
1

p!
Λ

(1)
M1...Mp

Λ(2)M1...Mp∗1 , (A.8)

which holds for two arbitrary p-forms Λ(1) and Λ(2).

A.1 Complex manifolds

Let M be a complex Hermitian manifold with dimCM = n, thus 2n real coordinates {ξ1, ..., ξ2n}. We

define the complex coordinates to be

(z1, ..., zn) =

(
1√
2

(ξ1 + iξ2), . . . ,
1√
2

(ξ2n−1 + iξ2n)

)
. (A.9)

Using these conventions one finds

√
gdξ1 ∧ ... ∧ dξ2n =

√
g(−)

(n−1)n
2 indz1 ∧ ... ∧ dzn ∧ dz̄1 ∧ ... ∧ dz̄n =

1

n!
Jn , (A.10)

with g the determinant of the metric in real coordinates and
√

det gmn = det gmn̄. The Kähler form is

given by

J = igmn̄dz
m ∧ dz̄n̄ . (A.11)

Let ωp,q be a (p, q)-form, then

∗ωp,q =
(−1)

n(n−1)+2np
2

in

p!q!(n− p)!(n− q)!
ωm1...mpn̄1...n̄qε

m1...mp
r̄1...r̄n−p

× εn̄1...n̄q
s1...sn−q

dzs1 ∧ · · · ∧ dzsn−q ∧ dz̄r̄1 ∧ · · · ∧ dz̄r̄n−p . (A.12)

A.2 Chern classes

We define the curvature two-form for Hermitian manifolds to be

Rmn = Rmnrs̄dz
r ∧ dz̄s̄ , (A.13)
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and

TrR = Rmmrs̄dz
r ∧ dz̄s̄ ,

TrR2 = Rmnrs̄R
n
mr1s̄1dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ,

TrR3 = Rmnrs̄R
n
n1r1s̄1R

n1
mr2s̄2dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 . (A.14)

The Chern forms can be expressed in terms of the curvature two-form as

c0 = 1 ,

c1 = iTrR ,

c2 =
1

2

(
TrR2 − (TrR)2

)
, (A.15)

c3 =
1

3
c1c2 +

1

3
c1 ∧ TrR2 − i

3
TrR3 ,

c4 =
1

24

(
c4

1 − 6c2
1TrR2 − 8ic1TrR3

)
+

1

8
((TrR2)2 − 2TrR4) .

The Chern classes of the n-dimensional Calabi-Yau manifold Yn reduce to

c3(Yn≥3) = − i
3

TrR3 and c4(Yn≥4) =
1

8
((TrR2)2 − 2TrR4) , (A.16)

with TrR4 defined as in (A.14).

A.3 Non-harmonicity of c3

The third Chern form on a Calabi-Yau given in (A.16). It is real and one can easily explicitly verify

that

dc3 = 0 whilst d ∗(0) c3 6= 0 , (A.17)

thus being closed but not co-closed with respect to the Kähler metric gmn. This implies that it may

be expanded as

c3 = Hc3 + i∂∂̄F4 (A.18)

where H indicates the projection to the harmonic part with respect to the metric gmn. This equation

defines a co-closed (2, 2)-form F . Let us note that since F is a co-closed (2,2) form it obeys

∇mF4nn̄r
m = 0 . (A.19)

Using this one shows that

∂[n(∗(0)∂∂̄F4)m]n̄ = −2∇[n|∇r∇rF4m]n̄s
s + g[m|n̄∇n]∇r∇rF4 s

s
t
t − 2R[n|n̄r

s∇m]F4 s
r
o
o (A.20)

which upon contraction with the inverse metric and using (A.19) gives.

∂[n(∗(0)∂∂̄F4)m]n̄g
n̄m = −∂[n(∗(0)∂∂̄F4)m]n̄g

n̄n = ∇n∇r∇rF4 s
s
t
t . (A.21)
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Note that the non harmonicity of c3 becomes relevant for the effective action discussion when per-

forming integral splits as∫
Y4

∗(0)
(
ω(0)

i ∧ ω
(0)

j ∧ J
2
)
∧ c3 ∧ J =

1

V0
ZKij +

∫
Y4

ω(0)

i ∧ ω
(0)

j ∧ J
2 ∗(0) (∂∂̄F4 ∧ J) (A.22)

The last term in the previous equation is not zero and has to be taken into account when performing

these kind of integral splits. If ∗(0)(∂∂̄F4 ∧ J) were covariantly constant one could pull it out of the

integral and then by integrating over it the second term would vanish due since
∫
∂∂̄F4 ∧ J = 0, one

straightforwardly computes

∗(0) (∂∂̄F4 ∧ J) = 2∇m∇mFnnrr ∗(0) 1 (A.23)

which gives ∇r∇m∇mF4n
n
r
r 6= 0. However one can show that if F where additionally closed thus

harmonic then ∇mFnnrr = 0, which is against its definition but nevertheless provides a nice cross

check. Thus, in particular

d ∗(0) (c3 ∧ J) = d ∗(0) (Hc3 ∧ J) + i d ∗(0) (∂∂̄F4 ∧ J) = d ∗(0) (∂∂̄F4 ∧ J) 6= 0 (A.24)

unless ∇m∇mFnnrr = 0 which we do not have any weaker arguments than additional closedness of F

at hand.

Let us next comment on the integral split performed in (4.27) given by∫
Y4

∗(0)(ω(0)

i ∧ ω
(0)

j ∧ J
)
∧ c3 = −2V0KklKkliZj +

1

3V0
KijZ +

∫
Y4

∗(0)∂H̃ ∧ c3 (A.25)

We see that the last term can be recast to the form∫
Y4

∗(0)∂H̃ ∧ c3 =

∫
Y4

H̃ ∧ ∂ ∗(0) c3 =

∫
Y4

H̃ ∧ ∂ ∗(0) ∂∂̄F4 (A.26)

We can alternatively the left hand side of (A.25) as∫
Y4

∗(0)(ω(0)

i ∧ω
(0)

j ∧J
)
∧(Hc3+∂∂̄F4) = −2V0KklKkliZj+

1

3V0
KijZ+

∫
Y4

ω(0)

i ∧ω
(0)

j ∧J∧∗
(0)∂∂̄F4 (A.27)

where we see that we can perform the split of the integral with the pieceHc3 and promote
∫
Hc3∧ω(0)

i =∫
c3 ∧ ω(0)

i = Zi due to the harmonicity of ωi, which is equivalent to (A.25).

A.4 Spinors on SU(4) structure manifolds

The existence of a nowhere vanishing spinor η on X implies that the structure group of the manifold

reduces to SU(4). Equivalently J and Ω uniquely determine the SU(4) structure obeying

J ∧ Ω = 0 and Ω ∧ Ω̄ =
2

3
J4 . (A.28)
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The forms J and Ω can be constructed from spinor bilinears in η. One can normalize a complex Weyl

spinor in eight dimensions to obey η†η = 1 and ηT η = 0. One can construct bilinear quantities which

coincide with the nowhere vanishing J and Ω obeying (A.28) as

Jmn = iη†γmnη (A.29)

Ωmnrs = ηTγmnrsη . (A.30)

In section 6 we made use of the following set of identities. Let us first define the projection operators

Π± n
m =

1

2
(δ n
m ∓ J n

m ) (A.31)

actin on Ω as

Π− i
m Ωinrs = Ωmnrs , Π+ i

m Ωinrs = 0 . (A.32)

The bilienear expressions obey

ηT η = 0 , ηTγmnrsη = Ωmnrs , ηTγp1...pdη = 0 , for d 6= 4

η†η = 1 , η†γmnη = −iJmn , η†γmnrsη = −3J[mnJrs] ,

and

η†γmnrstuη = 15iJ[mnJrsJtu] ,

η†γmnrstuvwη = 105J[mnJrsJtuJvw] ,

η†γp1...pdη = 0 , for odd d . (A.33)

A.5 Higher-Derivative Terms

In this subsection we discuss the explicit form of the terms in the action (2.61). Let us start by

commenting in more detail on the X̂8 structure

X̂8 =
1

192

[
Tr R̂4

R −
1

4

(
Tr R̂2

R

)2
]
. (A.34)

Let the subscript R denote the curvature two-forms in real coordinates, i.e. R̂R = 1
2R

O
PNMdx

N∧dxM .

The traces of curvature two-forms in real coordinates are defined analogously to those in complex

coordinates as in (A.14), but with an additional factor 1
2 for each curvature two-form. On a Calabi-Yau

manifold one has X8(Y4) = − 1
24c4(Y4). This follows straightforwardly by using the transformation

properties under coordinate transformation from real to complex coordinates, which are Tr R̂4
R ↔

2Tr R̂4 and Tr R̂2
R ↔ 2Tr R̂2, and then by comparison to (A.15).

The terms t̂8t̂8R̂
4 and t̂8t̂8Ĝ

2R̂3 in (2.63) and (2.64) require the definition

t̂N1...N8
8 =

1

16

(
− 2

(
ĝN1N3 ĝN2N4 ĝN5N7 ĝN6N8 + ĝN1N5 ĝN2N6 ĝN3N7 ĝN4N8 + ĝN1N7 ĝN2N8 ĝN3N5 ĝN4N6

)
+ 8

(
ĝN2N3 ĝN4N5 ĝN6N7 ĝN8N1 + ĝN2N5 ĝN6N3 ĝN4N7 ĝN8N1 + ĝN2N5 ĝN6N7 ĝN8N3 ĝN4N1

)
− (N1 ↔ N2)− (N3 ↔ N4)− (N5 ↔ N6)− (N7 ↔ N8)

)
. (A.35)

In order to discuss the term ŝ18 appearing in (2.65) and (2.69) we introduce the basis
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B1 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N5ĜN1N7N8
N9
∇̂N3ĜN2N4N6N9 , B13 = R̂N1N2N3N4

R̂N5

N1
N6

N3∇̂N9
ĜN2N6

N7N8
∇̂N9ĜN4N5N7N8 ,

B2 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N5ĜN1N3N7
N9
∇̂N8ĜN2N4N6N9 , B14 = R̂N1N2N3N4

R̂N5

N1
N6

N3∇̂N9
ĜN2N4

N7N8
∇̂N9ĜN5N6N7N8 ,

B3 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N5ĜN1N3N7
N9
∇̂N6ĜN2N4N8N9 , B15 = R̂N1N2N3N4

R̂N5

N1
N6

N3∇̂N2ĜN6
N7N8N9

∇̂N5ĜN4N7N8N9 ,

B4 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N9
ĜN3N4N7N8∇̂N6ĜN9N1N2N5 , B16 = R̂N1N2N3N4

R̂N5

N1
N6

N3∇̂N2ĜN4
N7N8N9

∇̂N5ĜN6N7N8N9 ,

B5 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN2N3
N8N9
∇̂N5ĜN6N7N8N9 , B17 = R̂N1N2N3N4

R̂N5

N1
N6

N3∇̂N2ĜN5
N7N8N9

∇̂N4ĜN6N7N8N9 ,

B6 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN2N5
N8N9
∇̂N3ĜN6N7N8N9 , B18 = R̂N1N2N3N4

R̂N5

N1
N6

N3∇̂N9
ĜN5N6

N7N8
∇̂N4ĜN2N7N8N9 ,

B7 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN2N5
N8N9
∇̂N7ĜN3N6N8N9 , B19 = R̂N1N2N3N4

R̂N5N6

N3N4∇̂N9
ĜN1N5

N7N8
∇̂N9ĜN2N6N7N8 ,

B8 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN3N5
N8N9
∇̂N2ĜN6N7N8N9 , B20 = R̂N1N2N3N4

R̂N5N6

N3N4∇̂N1ĜN5
N7N8N9

∇̂N2ĜN6N7N8N9 ,

B9 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN3N5
N8N9
∇̂N6ĜN2N7N8N9 , B21 = R̂N1N2N3N4

R̂N5N6

N3N4∇̂N1ĜN5
N7N8N9

∇̂N6ĜN2N7N8N9 ,

B10 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N9
ĜN3N5N7N8∇̂N9ĜN1N2N6N8 , B22 = R̂N1N2N3N4

R̂N5

N1N3N4∇̂N2ĜN6N7N8N9
∇̂N5ĜN6N7N8N9 ,

B11 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N8
ĜN1N2N6

N9
∇̂N9ĜN3N5N7N8 , B23 = R̂N1N2N3N4

R̂N5

N1N3N4∇̂N9
ĜN2

N6N7N8
∇̂N9ĜN5N6N7N8 ,

B12 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N3ĜN5N6
N8N9
∇̂N7ĜN2N1N8N9 , B24 = R̂N1N2N3N4

R̂N1N2N3N4∇̂N5
ĜN6N7N8N9

∇̂N6ĜN5N7N8N9 .

(A.36)

The contributions to ŝ18(∇̂Ĝ)2R̂2 are then formed from the linear combinations described in (2.69).

A.6 Normal Coordinates

On a Riemannian manifold of real dimension n the affine connection defines a unique geodesic γv for

every tangent vector vp ∈ TpM through every point p ∈ M , such that γv(0) = p. This gives rise to a

map from a small neighborhood of the origin in the tangent space TpM to the manifold, the so called

exponential map with exp(tv) = γv(t). We can now use the inverse of this map to map points on the

manifold to the tangent space, which in return is isomorphic to Rn. Thus we can use this procedure

to define flat coordinates locally around any point p ∈ M . In this coordinates one finds that the

Christoffel symbols vanish for the Levi-Civita connection and the covariant derivative reduces to the

partial derivative. Furthermore, one finds that derivatives of The Christoffel symbols obey

∂(µ1
. . . ∂µnΓµν1ν2) = 0 . (A.37)

Moreover, since the metric is locally flat one yields gµν → δµν and also that the first derivative of the

metric vanishes ∂ρgµν → 0. Furthermore, one can show that a Riemanntensor can be written as

Rµνργ = ∂[νΓγ|µ]ρ , (A.38)

and via using (A.37) that

∂γΓρµν = R(ν|γ|µ)ρ . (A.39)
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A.7 Identities

We note that by performing a Weyl rescaling of the three-dimensional external metric with g′µν =

Ω−2gµν one finds that ∫
M3

ΩR′ ∗′3 1 =

∫
M3

(R ∗3 1− 2

Ω2
∇µΩ∇µΩ ∗3 1) . (A.40)

Let us next define the intersection numbers, where {ωi} are harmonic w.r.t. to the Calabi- Yau

metric gmn̄

Kijkl =

∫
Y4

ωi ∧ ωj ∧ ωk ∧ ωl , Kijk = Kijklvl , Kij =
1

2
Kijklvkvl ,

Ki =
1

3!
Kijklvjvkvl , V =

1

4!
Kijklvivjvkvl . (A.41)

While in the background we introduce the notation {ω(0)

i } denoting that it is harmonic w.r.t. g(0)

mn̄, the

background metric. One thus finds for the intersection numbers that

K(0)

ijkl =

∫
Y4

ω(0)

i ∧ ω
(0)

j ∧ ω
(0)

k ∧ ω
(0)

l , K(0)

ijk = K(0)

ijklv
l
0 , K(0)

ij =
1

2
K(0)

ijklv
k
0v

l
0 ,

K(0)

i =
1

3!
K(0)

ijklv
j
0v
k
0v

l
0 , V0 =

1

4!
K(0)

ijklv
i
0v
j
0v
k
0v

l
0 . (A.42)

In this section we prove some identities that are necessary to derive the result of subsection 4.1.

By choosing coordinates and using (A.11) and (A.12), one can straightforwardly show that

∗ J4 = 4! and ∗ J3 = 3!J . (A.43)

Furthermore, one can show that

∗ωi =
1

3!V
Ki ∧ J3 − 1

2
ωi ∧ J2 , (A.44)

∗
(
ωi ∧ J2

)
= −2ωi +

2

V
Ki ∧ J , (A.45)

∗
(
ωi ∧ J3

)
=

6

V
Ki ∗ 1 , (A.46)

∗
(
ωi ∧ ωj ∧ J

)
= −VK̃0 klωkKlij +Hij . (A.47)

where Hij is a closed (1, 1) - form, Hij = ∗∂H̃ij , where H̃ij is a (2, 3) form.

These identities follow from using the topological intersection numbers (A.41), (4.9), and K0 jj′ ,

the inverse of

K̃0
ij = VKij −KiKj = −V

∫
ωi ∧ ∗ωj . (A.48)

Explicitly, K0 jj′ reads

K̃0 ij =
1

V
Kij − 1

3V2
vivj , (A.49)
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with Kij the inverse intersection numbers, which obey KikKkj = δij . Let {ω̃i} be the dual basis of

(3, 3) -forms, which fulfill the relation
∫
ω̃i ∧ ωj = δij . Then one finds

ω̃i = −VK̃0 ij ∗ ωj . (A.50)

In the following the identities (A.7) - (A.47) are derived under the assumption that the underlying

space is a 4d Kähler manifold. In order to argue for whose analog for a 3d Kähler manifold was derived

in [154]. One applies Hodge’s theorem to ∗ωi, which is harmonic and thus decomposes in harmonic

(3, 3) forms. In this particular case on can straightforwardly use (A.12) to derive

∗ ωi = − i

3!
Tr ωiJ

3 − 1

2
ωi ∧ J2 , (A.51)

with Tr ωi = ω m
im . If ωi is harmonic, then Tr ωi is covariantly constant. Thus one can separate it

from the integrand and evaluate the integral. One has ωi ∧ J3 = −6iTr ωi ∗ 1 and hence

Tr ωi =
i

6V

∫
ωi ∧ J3 =

i

V
Ki . (A.52)

Combining the two previous equations one arrives at (A.7) which upon using the Hodge star gives

(A.46). The identity (A.45) follows trivially from (A.7) by applying the Hodge star on both sides of

the equation. It is left to show that Tr ω is covariantly constant for a harmonic form, which shall be

done later.

In order to show (A.47) one expands according to Hodge’s theorem ∗ (ωi ∧ ωi′ ∧ J) = Ωj
ii′ωj +Hii′

in a basis of harmonic (1, 1)-forms {ωj} and a co-closed (1, 1)-form. Let {ω̃i} be the dual basis of

harmonic (3, 3) -forms, which span a space isomorphic to H(1,1) on a Kähler manifold, and thus also

on a Calabi-Yau fourfold. By making use of ω̃i = −VK̃0 ij ∗ ωj and applying (A.7) one finds∫
ω̃j ∧ ∗(ωi ∧ ωi′ ∧ J) = Ωj

ii′ = −VK̃0jj′Kj′ii′ . (A.53)

Note that the co-closed part is not determined by this integral since∫
ω̃j ∧Hii′ =

∫
ω̃j ∧ ∗∂H̃ii′ = 0 (A.54)

Next, we show that Tr ω is covariantly constant if ω is a harmonic form. Recall that a form ω

is called ∂-harmonic (∂̄-harmonic) if ∆∂ω = 0 (∆∂̄ω = 0). A ∂-harmonic (∂̄-harmonic) form satisfies

∂ω = 0, and − ∗ ∂̄ ∗ ω = 0 (∂̄ω = 0, and − ∗ ∂ ∗ ω = 0). On a Kähler manifold ∆ = 2∆δ = 2∆δ̄,

which implies that any δ̄-harmonic form is automatically ∂-harmonic and vice versa. In particular

any harmonic form satisfies ∂ω = 0 and ∂ ∗ ω = 0 due to the injectivity of the Hodge star operator.

Additionally, on a Kähler manifold one can show that one can replace the partial derivative with the

covariant one in certain cases like

∂[rωm]n̄ = ∇[rωm]n̄ , (A.55)
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where ω is a (1, 1)− form. Assuming ω to be a harmonic (1, 1)-form, one uses its closure dω = 0 and

replaces the partial derivative with a covariant one. Then one uses the fact that the metric commutes

with the covariant derivative to arrive at

∇nω m
m = ∇mω m

n . (A.56)

From d ∗8 ω = 0 one finds that

∇nω n
m = 0 , (A.57)

and thus closure and coclosure imply

∇nω n
m = 0 & ∇mω n

n = 0 . (A.58)

B F-theory lift

In this section we present some additional material to the discussion of section 5, filling in some details.

B.1 Weak coupling with non-Abelian gauge groups

Let us begin by briefly reviewing the Sen limit of an elliptically fibered fourfold with fiber embedded

in P231. In that case we can take its defining equation to be given in Tate form as

y2 = x3 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 (B.1)

and the singularities of the elliptic curve are located at the zero locus of its discriminant

∆ = −1

4
β2

2(β2β6 − β2
4)− 8β3

4 − 27β2
6 + 9β2β4β6 , (B.2)

where βi is given by

β2 = a2
1 + 4a2, β4 = a1a3 + 2a4, β6 = a2

3 + 4a6 . (B.3)

In order to take the weak-coupling limit, one sets [155] β2 = −12h, β4 = 2εη, and β6 = − ε2

4 χ and

obtains

∆ = −36ε2h2(3hχ− 4η2) +O(ε3) . (B.4)

Next, one defines the Calabi-Yau threefold X as the double cover of B3 branched over h = 0 as

Z : ξ2 = h. In the limit ε→ 0, the F-theory model then reduces to Type IIB string theory compactified

on the orientifold obtained by quotienting X by the orientifold involution i : ξ 7→ −ξ. A careful analysis

of the monodromies along the singular loci of the Calabi-Yau fourfold reveals the presence of O7 and

D7 branes at

O7 : ξ = 0 W : 3hχ− 4η2 = 0 , (B.5)



144 Appendix

where the D7-brane takes the shape of a Whitney umbrella [109, 110]. From these expressions one

easily reads off the cohomology classes of the forms dual to these divisors. They are

O7 = c1 W = 8c1 . (B.6)

Having concluded a discussion of the smooth case, we now begin to enforce singularities along certain

divisors of the base and study the pullbacks of these divisors to the double cover X. Let

S : s = 0 (B.7)

be a divisor in the base manifold B3. According to the Tate algorithm, we can then generate a non-

Abelian singularity along S by restricting the coefficients ai in such a way that they vanish along

S to a certain order. Since it will turn out to be the simplest case, we begin by considering USp

singularities. To create an USp(2N) singularity one must restrict ai in such a way that they factor as

[156]

a1 = a1, a2 = a2, a3 = a3,Ns
N , a4 = a4,Ns

N , a6 = a6,2Ns
2N . (B.8)

Plugging this form of ai into (B.4), one finds that it factorizes as

∆USp(2N) = s2Nξ4∆′USp(2N) . (B.9)

One can then take the Whitney umbrella to be defined by the remaining I1 locus

WUSp(2N) : ∆′USp(2N) = 0 . (B.10)

Let us now take a closer look at the projection π′ : Z → B3 and study the pullback π′∗S. In fact, for

USp(2N) singularities this is simply

π′
∗
S :

{
ξ2 = a2

1 + 4a2

s = 0 ,
(B.11)

and, in particular π′∗S is generically irreducible if there is a USp singularity along S.

Next, let us consider SU(N) singularities. In this case, one must choose Tate coefficients ai such

that

a1 = a1, a2 = a2,1s, a3 = a3,bN/2cs
bN/2c, a4 = a4,dN/2es

dN/2e, a6 = a6,Ns
N (B.12)

where bN/2c denotes the greatest integer smaller than N/2 and dN/2e the smallest integer greater

than N/2. This implies that the discriminant must factor as

∆SU(N) = sNξ4∆′SU(N) . (B.13)

As before, we set

WSU(N) : ∆′SU(N) = 0 . (B.14)
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Now, however, we encounter the crucial difference between the symplectic and the unitary case. Unlike

for USp, a2 vanishes on S. Considering again the pullback of S to the double cover, one finds that

π′
∗
S :

{
ξ2 = a2

1 + 4a2,1s

s = 0
(B.15)

is not irreducible anymore. Instead, it clearly has two components

S± :

{
s = 0

ξ± = 0 ,
(B.16)

where we introduced the short-hand

ξ± = a1 ± ξ . (B.17)

The factorization of a2 creates a conifold singularity in X which cannot be resolved while keeping both

the Calabi-Yau condition and the orientifold symmetry [155]11. As done in [158], in what follows we

will always restrict to base manifolds B3 whose topology does not allow the curve {a1 = a2,1 = 0} to

intersect the surface {s = 0}, thus assuring smoothness of the double cover. Plugging in the equations,

one sees that S+ and S− intersect precisely on their respective intersection curve with the O7 plane.

To see this explicitly, simply compare the defining equations:

S+ · S− :


s = 0

ξ+ = 0

ξ− = 0

' S± · ξ :


s = 0

ξ± = 0

ξ = 0

(B.18)

To summarize, the pullback of one of the base divisors S hosting an SU singularity to the double

cover X of the base branched over the orientifold locus is given by

π′
∗
(S) = S+ + S− (B.19)

and SU(N) brane stacks intersect with their images stacks only on the orientifold plane, allowing us

to interchange the following three terms at will:

S+ · S− = S+ · c1 = S− · c1 (B.20)

After dealing with the brane stacks hosting the non-Abelian gauge theories, we turn to the last

remaining piece, the Whitney umbrella. From the equations given above one readily reads off that for

Tate models with gauge group G as in 5.40 its homology class inside the double cover X is given by

W = 8c1 −
nSU∑
i

Ni(S
+
i + S−i )−

nUSp∑
j

2MjTj , (B.21)

where we abbreviated π′∗Tj as Tj and took it to be the divisor on which the USp(2Mj) gauge singularity

is located.
11See [157] for the definition of alternative weak coupling limits which avoid the conifold problem.
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B.2 Weak coupling for U(1)-restricted models with non-Abelian gauge groups

We would now like to understand what happens to W after U(1)-restricting a given Tate model. To do

so, recall that a U(1)-restriction amounts to enforcing a6 ≡ 0. The additional divisor class introduced

by resolving the singularity caused by this restriction gives a second section of the fibration, which in

turn gives rise to an additional U(1) gauge factor. In order to understand what happens to W upon

such a restriction, we need to take a closer look at the Whitney umbrella part of the discriminant,

which we denoted ∆′ above.

Beginning with the simplest conceivable model, the one without any non-Abelian gauge singulari-

ties, one finds that

∆′|ε→0 ∼ ε2
[
a6ξ

2 −
(
a4 +

ξ+

2
a3

)(
a4 +

ξ−

2
a3

)]
+O(ε3) , (B.22)

where the term in square brackets denotes the familiar Whitney umbrella. At the level of the Tate

form, it is easy to understand what it means to embed the elliptic fiber inside F11 as opposed to P231:

It splits into the two pieces defined by

W± : a4 +
ξ±

2
a3 = 0 , (B.23)

which both have homology class

W± = 4c1 . (B.24)

One therefore clearly sees that a U(1) restriction amounts to the Whitney umbrella splitting into a

brane and image brane. Next, one needs to generalize this to models with additional non-Abelian

gauge factors. As it turns out, this generalization is fairly straightforward for SU(2N) and USp(2N),

while requiring a bit more care when defining the split Whitney umbrella for the case of SU(2N + 1).

We begin by discussing the split Whitney umbrella for SU(2N). As before, we place the non-

Abelian singularity on a divisor in the base manifold B3 defined by the vanishing of a single coordinate

s. In the weak coupling limit we see that the defining equation of the Whitney umbrella takes the

form [158]

∆′SU(2N) ∼
[
a6,2Nξ

2 −
(
a4,N +

ξ+

2
a3,N

)(
a4,N +

ξ−

2
a3,N

)]
∼
(
a4,N +

ξ+

2
a3,N

)(
a4,N +

ξ−

2
a3,N

)
(B.25)

and we again find that W splits into two irreducible pieces W±. Both of them have the same homology

class, namely

W±SU(2N) = 4c1 −Nπ′∗S = 4c1 −N(S+ + S−) . (B.26)

In the next step, we proceed with the case of USp(2N). In fact, the only difference to the SU(2N)

case is that a2 does not factorize. However, since both W+ and W− depend only on the invariant
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divisor class S, the discussion carries over immediately. We therefore find that the homology classes

of the split Whitney umbrella are

W±USp(2N) = 4c1 −Nπ∗S . (B.27)

Last but not least, let us take care of SU(2N + 1). Due to the fact that the discriminant vanishes

with an odd power of s, that is

∆|ε→0 ∼ s2N+1∆′ , (B.28)

it is a bit more tricky to properly define the Whitney umbrella. In the local patch away from the

D7-stack one now finds that

∆′SU(2N+1) =

[
a6,2N+1ξ

2 − s
(
a4,N+1 +

ξ+

2s
a3,N

)(
a4,N+1 +

ξ−

2s
a3,N

)]
, (B.29)

where, as before, the first term vanishes after setting a6 ≡ 0. In order to obtain the split Whitney

umbrella one uses the same trick as in the previous subsection and notes that on the threefold X

the divisor S splits into two irreducible components. As the example in [159] suggests, one may find

an alternative way of defining X such that S+ and S− can separately be written as the complete

intersection with X of a unique equation in the ambient space12, unlike what happens for the above

definition of X, where this is only true for S+ + S−. In other words, there may exist polynomials

s+, s−, r+, r− such that

s = s+s− ,

ξ± = s±r∓ , (B.30)

and, in particular,

S± : s± = 0 , (B.31)

where the divisors S+ and S− do not necessarily need to have the same homology class. This is

expected to hold generally for smooth, SU(3) holonomy Calabi-Yau threefolds, since the group of

their 4-cycles is completely specified topologically to be H1,1(Z), and thus all 4-cycles are algebraic

anywhere in the complex structure moduli space. We can therefore write

∆′SU(2N+1) ∼ s
(
a4,N+1 +

ξ+

2s
a3,N

)(
a4,N+1 +

ξ−

2s
a3,N

)
∼
(
a4,N+1s

− +
r−

2
a3,N

)(
a4,N+1s

+ +
r+

2
a3,N

)
. (B.32)

Having brought ∆′SU(2N+1) in this form, one can easily read off the homology classes of W±:

W±SU(2N+1) = 4c1 − (N + 1)π∗S + S∓

= 4c1 − (N + 1)S± −NS∓ (B.33)

Note that the two irreducible components of the Whitney umbrella have different homology classes if

and only if the classes of the SU(2N + 1) brane stack and image brane stack are different as well.

12In [159] X was written as a complete intersection of two equations in an ambient fivefold.
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B.3 Computational strategies and survey

After introducing the geometric objects relevant in the weak-coupling picture of our F-theory set-ups,

we turn to the actual derivation of our main result, equations (5.41) and (5.42). In principle, it is

possible to derive these two formulas analytically. To do so, one can write down a general Tate model,

engineer singularities by restricting coefficients accordingly, resolve them and use known intersection

relations to reduce c3(Y4) ∧ J to an expression in terms of quantities on the base manifold B3. Once

one has an expression for c3(Y4) ∧ J in terms of quantities on B3, this can then be lifted to X.

In practice, this approach quickly becomes very cumbersome. As a way out, we automated the

calculation and used an algorithm to calculate C for a range of examples. Let us go into a bit more

detail and outline the algorithm that we applied. The basic idea is as follows: For D7-branes located

along a certain set of divisors {S1, . . . , T1, . . . }, one expects the curve C to be given by a linear

combination of all the curves one can obtain from taking intersections between the D7-brane divisors

and the divisor Poincaré-dual to c1(B3). One can thus write down the most general ansatz, consisting

of said
(nSU+nUSp+2

2

)
terms. Next, one chooses a base manifold B3 and selects the gauge groups hosted

on the D7-brane divisors. In toric language, choosing a gauge group corresponds to determining a

set of tops [160, 115] sharing the same generic fiber space. After requiring flatness in codimension

2 on B3 [161, 88], see also [162, 92], one makes an explicit choice for the D7-brane divisors Si and

Ti. This choice fixes the location of the tops over the base manifold. Using the methods developed

in [88]13, one can then construct all Calabi-Yau fourfolds containing the given base and tops. After

choosing one of these fourfolds, it is straightforward to compute its third Chern class and to calculate

intersection numbers with a base of divisors. By demanding∫
Y4

c3 ∧ ω(0)
α

!
= C ·Db

α (B.34)

one thus obtains a set of linear constraints that the expansion coefficients for C have to satisfy.

Instead of using a single basis, one can use a set of base manifolds, find all homologically inequiva-

lent tuples of base divisors and then enforce (B.34) for all such manifolds Y4. In creating such a large

number of manifolds, we heavily relied on the methods and code developed in [161, 116, 88, 163]. 14

Let us emphasize here that while the algorithm described here deals with computing the image of c3

under the F-theory limit, it is straightforward to generalize this set-up to compute other quantities

that might be challenging to obtain analytically.

Unlike the analytic computation, this is of course by no means a rigorous proof. Nevertheless, the

above procedure quickly produces highly overconstrained systems of linear equations for a variety of

13In [90, 91] an equivalent method for determining all fibrations of a top over a base was presented. While in [88]

one computes the set of fourfold completions by using convexity arguments for the fiber polygon, the authors of [90, 91]

demand that the fiber coordinates must be sections of certain line bundles, thereby enforcing restrictions on the line

bundle classes.
14Note that similar methods for constructing global F-theory compactifications have recently been under intensive

investigation in [89, 87, 162, 90, 92, 164, 91].
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bases. In all of these cases, we verified that there exist unique solutions fitting furthermore into the

logic of equations (5.41) and (5.42). We therefore believe that our findings are relatively robust.

Last, but not least, let us close this section with a concrete survey of the gauge groups that we

studied in order to verify (5.41) and (5.42). For models with purely non-Abelian gauge groups we

studied simple gauge groups with rank ≤ 10 and gauge groups with two or three simple factors and

rank ≤ 7. Furthermore, we examined U(1)-restricted models with simple non-Abelian gauge groups

of rank ≤ 10. For those cases, we found the following expressions to hold:

CP231 = −60c1(B3)2

+ 16

nSU∑
i=1

Nic1 · Si −
nSU∑
i=1

Ni(Ni + 1)S2
i −

∑
i 6=j

NiNjSi · Sj

+ 15

nUSp∑
i=1

2Mic1 · Ti −
nUSp∑
i=1

2Mi(2Mi + 1)T 2
i −

∑
i 6=j

4MiMjTi · Tj (B.35)

CF11,SU(2N) = −36c1 + 18NS · c1 − 2N(N + 1)S2 (B.36)

CF11,SU(2N+1) = −36c1 + (18N + 10)S · c1 − 2(N2 + 2N + 1)S2 (B.37)

Using the expressions for the Whitney umbrella and the pullbacks of the gauge group divisors to the

double cover X given in subsections B.1 and B.2, one can confirm that the formulas are equivalent to

equations (5.41) and (5.42).

C Results of the dimensional reduction

C.1 Results of chapter II

In the following we give the results of the dimensional reduction of the higher-derivative corrections

in (3.3). We consider only terms which have two external derivatives and hence the various index

summations reduce to those ones where two indices of each Ĝ are external and the remaining summed

indices are purely internal. In this spirit, the reduction of t8t8Ĝ
2R̂3 yields

t8t8Ĝ
2R̂3∗̂1 ⊃ sgn(◦ · · · ◦)G◦ ◦µ1µ2

Gµ1µ2

◦ ◦R̂
◦ ◦
◦ ◦R̂

◦ ◦
◦ ◦R̂

◦ ◦
◦ ◦ ∗11 1 = 14 terms := Xt8t8 . (C.1)

The symbols ◦ schematically represent all appearing permutations of internal indices due to the index

structure of the t8 tensor. One then reduces ε11ε11Ĝ
2R̂3 and finds

1

96
ε11ε11Ĝ

2R̂3 ∗11 1 ⊃ sgn(◦ · · · ◦)G◦ ◦µ1µ2
Gµ1µ2

◦ ◦R
◦ ◦
◦ ◦R

◦ ◦
◦ ◦R

◦ ◦
◦ ◦ ∗11 1 = 8 terms −Xt8t8 . (C.2)
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Thus one has

−
(
t8t8Ĝ

2R3 +
1

96
ε11ε11Ĝ

2
R3

)
∗11 1 = 27

[
F i ∧ ∗3F j

]
(C.3)

×
[
R(0)m2 m4

m1m3
R(0)m1 m6

m2m5
R(0)m3 m5

m4m6
(ω(0)

i
m0
m (ω(0)

j ) m
m0

+R(0)m2 m4
m1m3

R(0)m5 m6
m2m4

R(0)m1 m3
m5m6

(ω(0)

i ) m0
m (ω(0)

j ) m
m0

+ 6R(0)m m3
m1m2

R(0)m4 m6
m3m5

R(0)m2 m5
m4m6

(ω(0)

i ) m0
m (ω(0)

j ) m1
m0

− 6R(0)m2 m4
m1m3

R(0)m m6
m2m5

R(0)m3 m5
m4m6

(ω(0)

i ) m0
m (ω(0)

j ) m1
m0

− 6R(0)m2 m4
m1m3

R(0)m5 m6
m2m4

R(0)m m3
m5m6

(ω(0)

i ) m0
m (ω(0)

j ) m1
m0

]
∗(0) 1.

These eight terms, each containing different index summations between three Riemann tensors and the

components of two (1, 1)-forms, can be rewritten using three curvature two-forms and two (1, 1)-forms

as in (4.23).

Let us shortly command on a relation between the Euler density and the higher-derivative correc-

tion ε11ε11R̂
4 which can be written as

ε11ε11R
4 = 3!E8(M11) , (C.4)

where one uses the Euler density

En(Md) =
1

(d− n)!
εN1···Nnε

N1···Nd−nMd−n+1···MnRNd−n+1Nd−n+2
Md−n+1Md−n+2

· · ·RNd−1Nd
Md−1Md

,(C.5)

where n > 0 and D being the real dimension of the manifold MD. Let us first compute E8(M3 ×M8)

for a generic product space. By using the definition (C.5), splitting indices and applying Schouten

identities it is straightforward to show that

E8(M3 ×M8) = −E8(M8) + 4E2(M3)E6(M8) , (C.6)

where E2(M3) = −2R
(3)
sc and

E6(M8) = 6!R(0)m1m2
m1m2 · · ·R(0)m5m6]

m5m6 . (C.7)

Evaluating this in the case of M8 = Y4, one finds

E6(Y4) ∗8 1 = 3 · 27 c(0)

3 ∧ J
(0) . (C.8)

which results in the volume correction in (4.13). While

E8(Y4) = −28c(0)

4 . (C.9)
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C.2 Results of chapter III - 11d two derivative terms

The reduction of the lowest order part of the action (2.61) gives the following contribution to the

Kinetic terms of the 3d theory

S(0)|kin =
1

2κ11

∫
M3

R ∗ 1

∫
Y4

[
eα

2(3W (2)−768Z)
(

1 + iδviω(0)

im
m +

1

2
δviδvj

(
ω(0)

imn̄ω
(0)

j
n̄m − ω(0)

im
mωjn

n
))

+ 3α2δvi∂iW
(2)|+ 3iα2δviδvj ∂(iW

(2)|ωj)mm +
3

2
α2δviδvj∂i∂jW

(2)|+ 1536α2δviZmn̄ω
(0)

i
n̄m

+ i768α2Zδviω(0)

im
m + 384α2Zδviδvjω(0)

imn̄ω
(0)

j
n̄m − 384α2δviδvjZω(0)

im
mω(0)

jn
n

]
∗(0) 1

+
1

2κ11

∫
M3

dδvi ∧ ∗dδvj
∫
Y4

[
eα

2(3W (2)−768Z)

(
1

2
ω(0)

imn̄ω
(0)

j
n̄m − ω(0)

im
mωjn

n

)
+ 3iα2∂(iW

(2)|ω(0)

j)m
m + 3072α2iZmn̄ω

(0)

i
n̄mω(0)

js
s − 1536α2Zω(0)

im
mω(0)

jn
n

]
∗(0) 1

+
1

2κ11

1

2

∫
M3

F i ∧ ∗F j
∫
Y4

eα
2(3W (2)−256Z)ω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1 + α

1

2κ11

∫
M3

F i ∧Aj
∫
Y4

1

2
G(1) ∧ ω(0)

i ∧ ω
(0)

j .

(C.10)

It is interesting to note that in these terms the value of F̃ , ρ(s)

i and ρ(v)

i drop out of these expressions

as they contribute only internal space total derivatives to the 3d effective theory.

C.3 Results of chapter III - 11d eight-derivative terms

Let us record the reduction of certain higher-derivative terms which are used as intermediate results

in deriving the effective action (7.27). These results were computed using the mathematica package

xAct and required the use of several internal space total derivative and schouten identities.∫
t̂8t̂8R̂

4∗̂1|kin =
1

2κ11

∫
M3

dδvi ∧ ∗dδvj
∫
Y4

384
(
Zω(0)

imn̄ω
(0)

j
n̄m + 4Zmn̄rs̄ω

(0)

i
n̄mω(0)

j
s̄r
)
∗(0) 1 ,

− 1

24

∫
ε̂11ε̂11R̂

4∗̂1|kin =
1

2κ11

∫
M3

R ∗ 1

∫
Y4

(
768Z − 1536δviZmn̄ω

(0)

i
n̄m
)
∗(0) 1

+
1

2κ11

∫
M3

dδvi ∧ ∗dδvj
∫
Y4

1536Zmn̄rs̄ω
(0)

i
n̄mω(0)

j
s̄r ∗(0) 1 ,

∫
Y4

32213Ĉ ∧ X̂8|kin = 0 . (C.11)

Similarly we note that the reduction of the Ĝ2R̂3 terms uses the identities

−
∫
t̂8t̂8Ĝ

2R̂3∗̂1|kin =
1

2κ2
11

384

∫
M3

F i ∧ ∗F j
∫
Y4

[
Zω(0)

imn̄ω
(0)

j
n̄m

− 4iZmn̄ω
(0)

i
r̄mω(0)

j
n̄
r̄ − 4Zmn̄rs̄ω

(0)n̄m
i ω(0)s̄r

j

]
∗(0) 1,
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− 1

96

∫
ε̂11ε̂11Ĝ

2R̂3∗̂1|kin =
1

2κ2
11

1536

∫
M3

F i ∧ ∗F j
∫
Y4

Zmn̄rs̄ω
(0)

i
n̄mω(0)

j
s̄r ∗(0) 1. (C.12)

Finally reducing the (∇̂Ĝ)2R̂2 terms in (2.61) gives∫
ŝ18(∇̂Ĝ)2R̂2∗̂1|kin =

1

2κ2
11

∫
M3

1

2
F i ∧ ∗F j

∫
Y4

[
− 96(1 + a2)ω(0)

i
m̄nω(0)

j
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sR(0) t̄
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t
uR(0)

nm̄r
tR(0)

sr̄us̄ + 48(1 + a1)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄

m̄r
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+ 48(1 + a2)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄

m̄n
sR(0) t̄

r̄r
tR(0)

ss̄tt̄ − 48(2 + a1 + a2)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄

m̄nr̄R
(0) t̄s

r
tR(0)

ss̄tt̄

+ 24(1 + a1)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄st̄tR(0)

nm̄rr̄R
(0)
ss̄tt̄ + 48(1 + a2)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄s

n
tR(0)

rs̄s
uR(0)

tm̄ur̄

+ 48(a1 − a2)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄

r̄n
sR(0)

r
t
s
uR(0)

tm̄us̄ − 48(1 + a1)ω(0)

i
m̄nω(0)

j n
rR(0)r̄

m̄s
tR(0)s̄s

r
uR(0)

tr̄us̄

+ 48(1 + a1)ω(0)

i
m̄nω(0)

j n
rR(0)r̄

m̄r
sR(0)s̄t

s
uR(0)

tr̄us̄ + 48(1 + a2)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄

m̄s
tR(0)

n
s
r
uR(0)

tr̄us̄

+ 96(1 + a2)ω(0)

i
m̄nω(0)

j
r̄rR(0)s̄

m̄n
sR(0)

r
t
s
uR(0)
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vR(0)

um̄vr̄
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]
∗(0) 1 (C.13)

Where we see directly that in the reduction Z3 = Z4 = Z5 = Z6 = 0. The result above represents the

only terms in the reduction result that can not be expressed in terms of Zmm̄nn̄ for arbitrary choice

of the parameters a1 and a2. For this reason we now make the choice a1 = a2 which then allows the

result to be rewritten as∫
ŝ18(∇̂Ĝ)2R̂2∗̂1|kin =

1

2κ2
11

192(1 + a1)

∫
M3

F i ∧ ∗F j
∫
Y4

(iZmn̄ωi
(0)r̄mωj

(0)n̄
r̄ + 2Zmn̄rs̄ωi

(0)n̄mω(0)s̄r
j ) ∗(0) 1 .

(C.14)

Furthermore we note that if the basis (A.36) is reduced with and arbitrary set of coefficients and

then we demand that the result can be expressed in terms of Zmm̄nn̄, then only a multiple of the linear

combination ∫
M3

F i ∧ ∗F j
∫
Y4

(iZmn̄ω
(0)

i
r̄mω(0)

j
n̄
r̄ + 2Zmn̄rs̄ω

(0)

i
n̄mω(0)

j
s̄r) ∗(0) 1 , (C.15)

is produced.

D Outlook details

As we suggest in section 9.2, there are various directions in which one can naturally extend the study

of higher-derivative corrections to 3d effective physics. Firstly, we introduce the discussion of complex

structure deformations in section D.0.1. Secondly, we allow for h2,1 6= 0 and give a preliminary results

in section D.0.2.
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D.0.1 Complex structure deformations at α2

Another very interesting direction is to generalize the study of chapter III by allowing for complex

structure deformations of the metric, thus at the same time one deforms the background geometry

w.r.t. the Kähler deformations given by h1,1 harmonic (1, 1) -forms ω(0)

i

gmn̄ = g(0)

mn̄ + iδviω(0)

imn̄ , (D.1)

and

gmn = δz̄IΞImn , gm̄n̄ = δzI Ξ̄Im̄n̄ , (D.2)

the h3,1 complex structure deformations with ΞI , Ξ̄I given by

ΞImn =
1

3|Ω(0)|2
ξ(0)

Imr̄s̄t̄
Ω(0)
n
r̄s̄t̄ , Ξ̄Im̄n̄ = − 1

3|Ω(0)|2
ξ̄(0)

Irstm̄Ω̄(0)

n̄
rst , (D.3)

with |Ω(0)|2 = 1
4!Ω

(0)
mnrsΩ̄(0)mnrs and where ξ(0)

I , ξ̄(0)

J I, J = 1, . . . , h3,1 are harmonic (1, 3), (3, 1) forms of

the zeroth order Calabi-Yau metric, respectively, and Ω(0) is the holomorphic four-form. One expects

α2-corrections to the kinetic terms for the complex structure moduli arising form the (t̂8t̂8− 1
24 ε̂11ε̂11)R̂4

terms in (2.63). However, this shall be studied in future work. Here we want to state a more peculiar

result. At the level of the α2-corrections one experiences a mixing between the Kähler and complex

structure deformations as

(t̂8t̂8 −
1

24
ε̂11ε̂11)R̂4 ⊃ 1

2κ2
11

32210

∫
M3

[
dδvi ∧ ∗dδzI

∫
Y4

YIimm̄g
m̄m ∗(0) 1

+ dδvi ∧ ∗dδz̄I
∫
Y4

YIimm̄g
m̄m ∗(0) 1

]
, (D.4)

where we find a similar structure as in chapter III given by

YIimm̄ =
i

4!
ε(0)

mm̄m1m̄1m2m̄2m3m̄3
ε(0)

nn̄n1n̄1n2n̄2n3n̄3
∇(0)m1Ξ(0)

I
m̄1n̄∇(0)nω(0)

i
n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 ,

YIimm̄ =
i

4!
ε(0)

mm̄m1m̄1m2m̄2m3m̄3
ε(0)

nn̄n1n̄1n2n̄2n3n̄3
∇(0)m̄1Ξ̄(0)

I
m1n∇(0)n̄ω(0)

i
n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 ,

(D.5)

where YIimm̄ and its complex conjugate is obviously antisymmetric in its indices. Note that (D.4) is

real since the RHS is a complex expression plus its complex conjugate. This mixing of the Kähler and

complex structure sector is intriguing and it will be very interesting to study its implications on the

variables of the effective action in particular the Kähler potential.

D.0.2 h2,1 chiral multplets at α2

In the following we perform the reduction of the Ĝ2R̂3 structure in (2.68) allowing only for h2,1 fluc-

tuations of the M-theory three-form Ĉ and considering only terms in 3d with two external derivatives,
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which are of maximal order α2. The four-form field strength Ĝ gives rise to complex scalars NK , N̄L

as

Ĝµmnr̄ = ∂µN
Kα(0)

Kmnr̄ and Ĝµmn̄r̄ = ∂µN̄
K ᾱ(0)

Kmn̄r̄ , (D.6)

with α(0)

k , ᾱ
(0)

L K,L = 1, . . . , h2,1 are harmonic (2, 1) and (1, 2)-forms of the zeroth order Calabi-Yau

metric, respectively. Using the closure and co-closure of α(0)

k , ᾱ
(0)

L one finds that

∇mα(0)

Knr
r = ∇nα(0)

Kmr
r , ∇mα(0)

Knr
m = 0 ,

∇m̄α(0)

Knrs̄ = ∇s̄α(0)

Knrm̄ , ∇m̄α(0)

Kn
m̄n = 0 , (D.7)

and that

∇mᾱ(0)

Knr̄s̄ = ∇nᾱ(0)

Kmr̄s̄ , ∇mᾱ(0)

Kn
mn = 0 ,

∇m̄ᾱ(0)

K
n̄
n̄r̄ = ∇r̄ᾱ(0)

K
n̄
n̄m̄ , and ∇m̄ᾱ(0)

K
m̄
n̄r̄ = 0 . (D.8)

Upon using (D.6) one finds the higher-curvature contributions arising from Ĝ2R̂3 at order α2 to the

effective action to be

S(2)

Ĝ2R̂3

∣∣∣
h2,1

=
1

2κ2
11

384

∫
M3

dNK ∧ ∗dN̄L

∫
Y4

(− Zα(0)

Kmnr̄ᾱ
(0)r̄mn
L + 4iZmn̄α

(0)

Krs
mᾱ(0)n̄rs

L

− 8Zmn̄rs̄α
(0)n̄mō
K ᾱ(0)s̄r

L ō) ∗(0) 1 ,

which remarkably involves the same Zmm̄nn̄ like structures.15 Note that the Ĝ2R̂3 terms in the case

of the (1, 1) expansion in chapter III did not give rise to the intrinsically non-topological term Zmm̄nn̄

with all indices not contracted on the metric, but it originated only from the more involved structure

(∇̂Ĝ)2R̂2. One may speculate that fluctuating the (∇̂Ĝ)2R̂2 terms w.r.t. to the h2,1-forms requires new

structures with six free indices Z6
mm̄nn̄rr̄, such that α(0)

K , ᾱ
(0)

L can be entirely hooked upon it. However,

we conclude that this sector involves the same Z-like structures we have encountered before but also

has the potential to be the playground for interesting studies on its own right, as of among other

things to identify new fundamental building blocks.

15Note that we restrict ourselves to the sector where Ĉ only is expanded in harmonic (2, 1) and (1, 2)-forms.
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