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1. Abstract 

The understanding of the neural circuits of the spinal cord is central to the comprehension 

of sensory information received from the environment to allow an appropriate motor response. 

These motor behaviors are the result of activation of a complex series of neural circuits that 

control precise muscle movement. Designated neural networks in the ventral spinal cord, termed 

central pattern generators (CPGs), regulate important aspects of muscle movement such as 

coordination of left-right locomotion, generation of rhythm and contraction of flexor and 

extensor muscles. Although many studies have been performed to dissect these networks in the 

ventral spinal cord, little is known about the contribution of dorsal spinal cord neurons in CPG 

function. Furthermore, the requirement of the axon guidance molecule, EphA4, has been 

investigated thoroughly in ventral interneurons; however, its functions in the dorsal spinal cord 

are poorly understood.    

The results presented in this thesis show, for the first time, the requirement of EphA4 in 

the dorsal spinal cord in maintaining left-right coordination of locomotion. Ablating EphA4 from 

the dorsal spinal cord alone produces a partial hopping phenotype. However, no shift in gait is 

observed in these mice when they are subjected to increasing speed during treadmill locomotion. 

Thus, EphA4 expressing dorsal interneurons participate in left-right coordination of locomotion, 

but do not integrate into or influence circuits that assimilate information on speed-dependent 

changes of gait. Interestingly, EphA4 is required for cortical control of adaptive locomotion as 

evidenced from experiments requiring the mice to modify their step to cross hurdles. 

Additionally, these experiments reveal cell autonomous and non-cell autonomous functions of 

EphA4. 
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Moreover, EphA4 ablation leads to morphological defects in the dorsal funiculus (DF), 

i.e. EphA4 mutants display a shallow DF compared to control littermates in the adult spinal cord. 

Indeed, ablating EphA4 in the dorsal cord alone is sufficient to cause this phenotype. 

Furthermore, the EphA4 mutants display a shallow DF during the development of the spinal cord 

itself, thereby suggesting that the phenotype is intrinsic to the spinal cord and not due to aberrant 

misprojections of the CST, as previously thought. EphA4 mutants also display a medial shift of 

dorsal interneurons that strongly express the zinc finger transcription factor, Zic2, to the midline. 

These results convincingly demonstrate that the medial shift of neurons to the midline hinders 

the ventral extension of the DF. Moreover, the axonal projections of EphA4 positive neurons, 

which usually project along an ascending ipsilateral tract into the DF, display aberrant midline 

misprojections in dorsal EphA4 mutants. Likewise, secondary spinal cord defects, such as, 

aberrant midline crossings of nociceptive sensory projections are also observed in the EphA4 

mutants.  

Collectively, these results delineate novel roles of EphA4 in preserving important circuits 

of the dorsal spinal cord that are required for the maintenance of left-right coordination of 

locomotion and the proper positioning and axon guidance of dorsal interneurons.  
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2. Introduction 

The central nervous system (CNS), comprising the brain and the spinal cord, is an 

incredible and fascinating system. It is made up of many billion neurons, which form during 

embryonic and postnatal development, that are interconnected in complex circuits and play 

instrumental roles in controlling the countless complex behaviors that many animals display – 

from receiving sensory stimuli from the environment and responding with an appropriate motor 

response to cognitive behaviors such as learning and memory. More than a century ago, the 

requirement for a thorough comprehension of the developing and changing brain (processes that 

are vital and integral to CNS function) for understanding these complex behaviors was realized. 

Pioneering anatomical studies have shed light on the structure and organization of the nervous 

system leading to the subsequent investigation of its development. Major advances in technology 

have allowed scientists to extend this investigation to the molecular and genetic level. In fact, we 

now know that the development of the nervous system is the result of an event that occurs very 

early during embryogenesis – the expression of particular genes in a spatial and temporal manner 

in certain cells that transforms them into neural progenitors. The differentiation of these neural 

progenitors is influenced by both internal and external factors. Internal factors include the gene 

expression profile that is hardwired into neural progenitors and epigenetic processes. These 

factors govern cellular identity, the formation and extension of axonal processes to their final 

targets and the establishment of electrically viable synaptic connections. External factors consist 

of sensory stimuli, nutrient intake and other environmental influences which allow the nervous 

system to continuously adapt to nature and respond appropriately. In other words, the internal 

and external factors sculpt the functional architecture of the brain thus allowing it to process 

information and produce behaviors.    



Introduction 
 

5 
 

Since the spinal cord is central to the study undertaken in this thesis, the subsequent 

sections aim to provide information on the neuronal development, patterning, differentiation, 

axon guidance and sensory and motor functions in this system.  

	

2.1. Development of the spinal cord 

The development of the spinal cord begins after the formation of the three main cell 

layers during embryogenesis – the endoderm, which is the innermost cell layer, the mesoderm, 

the middle cell layer and the ectoderm which is the outermost cell layer [1]. Pioneering studies 

conducted by Hans Spemann and Hilde Mangold in 1924, in Xenopus embryos, led to the 

fundamental discovery of a specialized region, called the ‘organizer,’ in the axial mesoderm that 

provides the inductive signals for neural differentiation in the overlying ectodermal cells [2]. 

Further experiments conducted to reveal the identity of the inductive signals of the ‘organizer’ 

region, shed light on the precise signaling pathways involved in neural differentiation. Three 

independent studies, conducted in 1989, made the important discovery that ectodermal cells, by 

default, differentiate into neural progenitors [3-5]. Hence, the generation of neural tissue must be 

influenced by adjacent cells and indeed they provide signals which result in the inhibition of a 

pathway that constitutively represses the induction of neural differentiation in ectodermal cells 

[6]. 

 Ectodermal cells that differentiate into neural cells are collectively termed as the neural 

plate. Via a process termed as neurulation, the neural plate folds upon itself, along the 

anteroposterior axis and gives rise to the neural tube. As development proceeds, the cells of the 

neural tube proliferate rapidly and occupy predetermined positions; however, the degree of cell 

proliferation and the final identity they acquire is dependent on the presence of various proteins 
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that exist in the environment. For example, the FGF family of proteins patterns the neural tube 

along the anteroposterior (AP) axis [7], whereas members of the BMP family of proteins and 

gradients of sonic hedgehog (Shh), pattern the neural tube along the dorsoventral axis [8].  

Together, they give rise to the different brain structures at the rostral end and the spinal cord at 

the caudal end of the neural tube. 

 

2.1.1. Anteroposterior (AP) patterning of the spinal cord 

Patterning of the neural tube along the AP (also called rostrocaudal) axis begins with 

neural induction by signals from the underlying mesoderm. In fact, evidence has suggested that 

signals expressed by the organizer (noggin, follistatin and chordin) promote the expression of 

molecular markers that are typically found in the forebrain [9-11]. In the second step, signals 

thought to arise from the paraxial mesoderm (“transformation”) are thought to give rise to more 

caudal structures, such as the midbrain, hindbrain and spinal cord [12-14]. It is now known that 

patterning along the AP, mediated by the concerted action of Wnt [15], retinoic acid (RA) [16] 

and FGF [17] signaling, is different along the length of the neural tube, thus enabling the 

generation of diverse neuronal subtypes [Figure 2.01].  
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Figure 2.01: AP patterning of the developing neural tube. FGF is expressed in the caudal part of the developing 

neural tube: the stem zone. It is expressed in a gradient with high levels of FGF in the posterior region and low 

levels of FGF in the anterior region. FGF is required to maintain cells in the proliferative state. RA is derived from 

the adjacent somites also along a decreasing gradient along the anteroposterior axis. Exposure to RA allows 

expression of various transcription factors that lead to neuronal differentiation and ventral patterning in the spinal 

cord. FGF and RA function by mutually inhibiting each other along the anteroposterior axis.  Wnt proteins are also 

expressed in an anteroposterior gradient, with high expression of Wnt proteins in the posterior neural tube. Adapted 

from [18]. A: anterior, P: posterior.	

	

2.1.2. Dorsoventral (DV) patterning of the spinal cord 

Patterning of the neural tube along the AP axis engages many molecular mechanisms 

leading to the generation of distinct cell populations in specific regions of the spinal cord. 

Conversely, similar molecular mechanisms are employed during DV patterning of the entire 

spinal cord. The adult spinal cord serves two important functions: a) it relays sensory 

information from the periphery to higher brain centers and b) it computes and communicates 

motor information to the limbs. Along the DV axis, the spinal cord is well separated; sensory 

neurons reside in the dorsal half of the spinal cord, whereas motor neurons occupy regions in the 

ventral half of the spinal cord. Patterning along the DV axis occurs as a result of signals derived 

from two regions of the developing neural tube:  

1. The roof plate, a region which forms at the dorsal midline and generates gradients of BMP 

and Wnt proteins that are important in the development of the dorsal interneurons that 

participate in sensory information.   

2. The floor plate, a region which forms at the ventral midline and is populated with specialized 

glial cells, produces gradients of Shh (sonic hedgehog), which are required for generating 

motor neurons and other ventral interneurons involved in motor function.  
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Together, signaling by Shh, BMPs and Wnts give rise to 11 distinct domains of neural 

progenitors; 6 dorsal domains; dP1-6, and 5 ventral domains; p3, pMN, p2-0 [Figure 2.02], by 

inducing the expression of transcription factors belonging to the homeodomain and basic-helix-

loop-helix families of proteins.   

 

Figure 2.02: DV patterning of the neural tube by signals derived from the roof plate and floor plate. 

BMP/Wnt proteins are expressed in the roof plate cells along a dorsal-ventral gradient leading to the formation of 6 

dorsal progenitor domains (dP1-6). Gradients of Shh are derived from the floor plate cells in a ventral-dorsal manner 

and are required for the generation of 5 ventral progenitor domains (p3, pMN and p2-0). D: dorsal, V: ventral.   

	

2.1.2.1. BMP and Wnt signaling 

The patterning of the dorsal spinal cord begins with the closure of the neural tube and the 

development of roof plate cells. Roof plate cells express several members of the BMP family 

(such as GDF7, BMP4 and BMP7) and Wnt family (Wnt1 and Wnt3a). They are required for the 

inhibition of the ventrally expressed Shh and the patterning of the dorsal progenitors. The 
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importance of the roof plate in patterning the dorsal interneurons was recognized from the 

spontaneously generated mutant mouse,  dreher, where a mutation in the Lmx1a gene (a member 

of the LIM-homeodomain family) leads to an expansion of ventral progenitors at the expense of 

dorsal cells [19, 20].  

Ablation of BMP proteins leads to a decrease in the dorsal most progenitor domains, 

pD1-3 (marked by the expression of Olig3), and dorsal interneurons that they differentiate into. 

BMP signaling does not affect the development of the other three ventral populations, that is, 

pD4-6 (marked by the expression of Lbx1), however, these regions expand at the expense of the 

dorsal most population [21]. 

 

2.1.2.2. Sonic hedgehog (Shh) 

The notochord, derived from the mesoderm, is a fundamental structure required for 

defining the body axes [22]. It produces Shh that acts as a short-range signaling molecule and 

induces the formation of the floor plate cells, and as a long-range molecule (morphogen) that acts 

in a concentration dependent manner to induce the formation of motor neurons and ventral 

interneurons. The floor plate cells also acquire the ability to generate Shh that acts in a similar 

short and long-range manner.  
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Figure 2.03: BMP/Wnt signaling is required for the generation of distinct dorsal interneurons [23, 24]. BMP 

and Wnt proteins, derived from the roof plate, act along a decreasing dorsal-ventral gradient and induce the 

expression of distinct transcription factors in progenitor cells (pD1-pD6). This leads to the generation of mature 

post-mitotic motor neurons and domains of dorsal interneurons which can be identified by specific transcription 

factors that they express. Post-mitotic neurons are generated during two rounds of neurogenesis in the dorsal spinal 

cord: six domains of early born neurons (dI1-6) are generated between E9-11, whereas two domains of late born 

neurons (dILA and dILB) are generated between E12-14.   

 

2.2. Interneurons of the dorsal spinal cord  

2.2.1. Early born dorsal interneurons 

Signaling via roof plate derived proteins, such as Wnts and BMPs leads to the generation 

of six dorsal progenitor domains (p1-6), that differentiate further, to give rise to six domains of 

post-mitotic neurons (dI1-6), around embryonic day 9-11 in the mouse, which are the early-born 

neurons of the dorsal spinal cord. The dorsal most neurons (dI1-3), termed ‘class A’ neurons, 

arise from progenitors that are specified by roof plate signals [23, 25]. These progenitors are 

identified by the expression of the transcription factor, Olig3 [26]. The more ventral neurons 
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(dI4-6), termed ‘class B’ neurons, develop in the absence of roof plate signals and are marked by 

the expression of the transcription factor, Lbx1 [23, 24]. A second round of neurogenesis occurs 

around embryonic day 12-14, which gives rise to two additional populations of neurons; dILA 

and dILB. These neurons express Lbx1 and are generated in a salt and pepper manner [23, 24]. 

The dILA population is generated as a result of asymmetric cell division, whereas dILB neurons 

divide symmetrically or asymmetrically [27] [Figure 2.03].  

dI1 interneurons are derived from the Math1 expressing progenitor domain (pD1). Post-

mitotic interneurons, expressing the transcription factors Lhx2/9 and Brn3a, are excitatory in 

nature, as they express glutamatergic markers, and migrate and settle in the dorsal horn in the 

post-natal spinal cord. These interneurons can be further divided into two subtypes: dI1i 

interneurons (that express Lhx9) settle in the deep lateral horn and extend their axons 

ipsilaterally, and dI1c interneurons (that express Lhx2) settle in the medial lateral horn and 

extend their axons contralaterally. dI1 dorsal interneurons relay somatosensory information 

regarding the position of the limbs and the trunk to the cerebellum via the spinocerebellar and 

reticulospinal tracts [28, 29]. dI2 interneurons are derived from the pD2 progenitor domain that 

can be identified by the expression of Ngn1. The post-mitotic neurons express the LIM-

homeodomain transcription factors, Lhx1 and Lhx5. These interneurons are excitatory, project 

their axons contralaterally and relay somatosensory information to the thalamus [30, 31]. Dorsal 

progenitors that express the transcription factors Ascl1 and Pax3 (pD3) differentiate to give rise 

to the dI3 population of dorsal interneurons. The post-mitotic neurons express the transcription 

factors Islet1 (Isl1) and Brn3a and are excitatory in nature. They migrate and settle in the deep 

dorsal laminae, project ipsilaterally to motor neurons and are required for relaying 

somatosensory information on regulation of cutaneous paw grasping [31, 32].  The expression of 
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transcription factors such as, Ptf1a, Pax3 and Ngn2, are required for the differentiation of the 

pD4 progenitors into dI4 interneurons. Post-mitotic markers for this population include Ptf1a, 

Lim1/2 and Lbx1. This population is inhibitory in nature, extend their axons ipsilaterally and 

settle in the superficial dorsal horn [24, 33]. dI5 interneurons arise from the pD5 progenitor 

population, which express the transcription factors Ascl1 and Pax3. The post-mitotic neurons can 

be identified by Lmx1b, which is expressed specifically in this population, and Brn3a. dI5 

interneurons express glutamatergic markers such as Vglut2 making them excitatory in nature. 

They finally settle in the dorsal horn and are involved in relaying somatosensory information 

[31, 34]. The pD6 progenitor population expresses transcription factors such as Pax3 and gives 

rise to the inhibitory dI6 population. This population of dorsal interneurons has been studied 

extensively and marked by transcription factors such as Wt1, Dmrt3 and Lbx1. They migrate and 

settle in the ventral spinal cord and participate in motor functions [31, 35, 36]. The Dmrt3 

expressing subpopulation has been shown to be required for coordinating motor neuron output 

and provides rhythmicity to motor movements. Furthermore, mutations in the gene encoding 

Dmrt3 has been reported to generate additional gaits in Icelandic horses; whereas, Dmrt3 

knockout mice display significant increases in stride length compared to wildtype littermates 

[35] [Figure 2.03 and 2.04].  
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Figure 2.04: Interneurons of the dorsal spinal cord [31, 37]. Dorsal progenitors differentiate into mature post-

mitotic neurons, after which, they migrate and occupy pre-determined positions in the superficial laminae (dI4, dI5, 

dILA and dILB) and the deep dorsal horn (dI1-3). dI6 interneurons and a subpopulation of dI5 interneurons migrate 

and settle in the ventral spinal cord. Adapted from [37] 

 

2.2.2. Late born dorsal interneurons 

During the second round of neurogenesis (between E12-14), two additional 

subpopulations of dorsal interneurons are born (dILA and dILB). These interneurons arise from 

progenitors that express Ascl1 and Ptf1a. Post-mitotically they express transcription factors such 

as Lim1/2 and Pax2 in the dILA population and are inhibitory, and Lmx1b and Tlx3 in the 

excitatory dILB population. These interneurons migrate and settle in the superficial laminae in the 

postnatal spinal cord where they receive sensory information from nociceptive afferents [27, 37] 

[Figure 2.03 and 2.04].   
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Figure 2.05: Shh signaling is required for the generation of distinct ventral interneurons [8, 31]. Shh, derived 

from the floor plate, acts along a decreasing ventral – dorsal gradient and induces the expression of distinct 

transcription factors in the progenitor cells. This leads to the generation of mature post-mitotic motor neurons and 

domains of ventral interneurons which can be identified by specific transcription factors that they express. FP: floor 

plate, MN: motor neuron.  

 

2.3. Interneurons of the ventral spinal cord 

In the developing mouse spinal cord, V0 interneurons are derived from the dorsal most 

progenitors of the ventral spinal cord (p0) around embryonic day 10-13. The progenitors can be 

identified by the expression of transcription factors such as Dbx1/2, whereas, post-mitotic V0 

interneurons express Evx1 and Lhx1 [38]. During embryonic development, these interneurons 

migrate and occupy positions in the ventro-medial spinal cord. They can be further divided into a 

dorsal (V0D) population that expresses Dbx1 and ventral population (V0V) that expresses Evx1. 

V0D interneurons are excitatory in nature, whereas, V0V interneurons are inhibitory. Both 

populations form commissural axonal projections and are implicated in contributing to 

locomotory behaviors. Additionally, another population of V0 interneurons has been identified 
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recently (V0C/G) that expresses the transcription factor Pitx2. These interneurons are either 

cholinergic (V0C) or glutamatergic (V0G) in nature and project ipsilaterally to motor neurons [39, 

40]. V1 interneurons are derived from Pax6, Nkx6.2 and Dbx2 expressing neural progenitors 

(p1). Post-mitotically, they express the transcription factor Engrailed-1 (En-1) and are located in 

the ventral horn. V1 interneurons are inhibitory in nature and form ipsilateral projections to 

motor neurons and can be further divided into two subtypes: the Renshaw cells (RC) and Ia 

inhibitory interneurons which provide reciprocal inhibition to motor neurons [41-43]. 

V2 interneurons are derived from progenitors that express the transcription factor Lhx3 

(p2). This population of mostly ipsilaterally projecting interneurons can be further divided into 

V2a and V2b subtypes. Post-mitotic V2a interneurons, marked by the expression of the 

transcription factor Chx10, are excitatory in nature, whereas, V2b interneurons, which can be 

identified by the expression of Gata2/3, are inhibitory. They participate in locomotor function 

and are required for maintaining left-right coordination of locomotion. Furthermore, these 

neurons also integrate information on speed-dependent changes of gait during ground/ treadmill 

locomotion [40, 44, 45]. V3 interneurons are derived from the Nkx2.2 expressing progenitor 

domain (p3). Post-mitotic neurons can be identified by the expression of the transcription factor 

Sim1. In the post natal spinal cord, they are located in ventro-medial and dorso-medial regions. 

These neurons are excitatory in nature and mostly extend their axons contralaterally and are 

thought to function by providing balance to neurons responsible for generating rhythm [Figure 

2.05 and 2.06] [40, 46].    
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Figure 2.06: Interneurons of the ventral spinal cord [8, 31]. Ventral progenitors exit the cell cycle and 

differentiate into mature post-mitotic neurons, after which, they migrate and occupy pre-determined positions in the 

ventral spinal cord. Interneurons participate in motor functions, such as rhythm generation, flexor and extensor 

activity and coordinate left-right locomotion by mostly impinging on motor neurons (MN). Adapted from [31] 

 

2.4. Motor system 

Limbed animals display different forms of locomotion such as swimming and walking. 

Neural networks that reside in the ventral spinal cord, collectively termed central pattern 

generators (CPGs), generate these locomotory behaviors. They control important features of 

these behaviors such as 1) coordination of left-right locomotion 2) alternation of flexors and 

extensors and 3) the capacity to generate rhythm. These movements are repetitive and cyclical 

and are not controlled by input from the brain. However, CPG activity is initiated in pathways 

originating from higher brain centers such as the mesencephalic locomotor region (MLR) and the 

lateral hypothalamus and descend via the reticulospinal tracts that terminate in the spinal cord 

[47].   
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Most of our understanding of CPG circuits comes from in vitro studies performed in the 

hindlimb locomotor circuits of the lumbar spinal cord initially in lamprey, Xenopus and cats and 

more recently in rodents [[48, 49] and references within]. These studies have utilized the isolated 

spinal cord preparation, developed in the 1980s, to study rhythmic activity in hindlimb motor 

neurons by recording from either the ventral roots or from hindlimb muscles [50, 51]. The 

isolated spinal cord preparation has proven to be an invaluable tool to study CPG circuits for the 

following reasons: a) it produces a stable locomotor pattern for many hours in vitro, b) activity in 

the ventral roots can be evoked and manipulated with a number of neurotransmitters such as 

dopamine, 5-HT, NMDA [52, 53] to delineate motor patterns generated by the spinal cord (also 

called fictive locomotion) and c) the locomotor patterns generated by inducing fictive 

locomotion correlate with studies that investigate the walking pattern in intact adult animals [52]. 

This, along with the genetic studies conducted on identifying interneuron populations involved in 

CPG function allow the precise dissection of motor movements generated in the spinal cord.  

 

2.4.1. Left-right coordination of locomotion 

Commissural interneurons (CINs) in the ventral spinal cord are involved in controlling 

left-right coordination of locomotion. The axonal projections of these neurons cross the midline 

and influence the CPG circuitry in the contralateral spinal cord. CINs mediate left-right 

alternation via a dual inhibitory pathway, where inhibitory CINs (iCINs) that express the 

neurotransmitter GABA/glycine, project to contralateral motor neurons and inhibit their activity 

directly. Simultaneously, excitatory CINs (eCINs) that express glutamate, project to inhibitory 

interneurons including V1-Renshaw cells (RC) [54] and thus inhibit motor neuron activity 
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indirectly [55, 56]. Additionally, via a single excitatory pathway, eCINs were also found to 

project directly to contralateral motor neurons and promote synchrony [57]. 

V0 and V3 interneurons are commissural interneurons that participate in left-right 

coordination of locomotion. V0 interneurons are subdivided into excitatory V0V and inhibitory 

V0D subpopulations. Ablation of the V0 population, using diphtheria toxin A (DTA), leads to a 

rabbit-like hopping phenotype in these mice during fictive locomotion. This population nicely 

fits the dual inhibitory pathway, as V0 interneurons have been shown to project to motor 

neurons. The absence of both direct inhibitory input to motor neurons and probably indirect 

inhibitory input to RC and other inhibitory interneurons that project to motor neurons, causes 

eCINs to activate motor neurons in both halves of the spinal cord explaining the hopping gait 

[55, 58]. V3 interneurons were shown to participate in left-right coordination of locomotion by 

blocking neurotransmitter function. The authors found irregularities in the amplitude and 

frequency in fictive locomotion experiments, along with imbalance in motor activity. 

Furthermore, they demonstrated the projection of V3 neurons to RC interneurons, V1Ia 

inhibitory interneurons and motor neurons, suggesting roles in both dual inhibitory pathway and 

single excitatory pathway [46, 59].  

V2a interneurons have been suggested to drive activity in CINs. Ablation of the 

excitatory V2a population leads to irregularities in amplitude and frequency in isolated spinal 

cord preparations. However, the locomotor patterns were normal at low frequencies and were 

disrupted only at high frequencies. Furthermore, V2a interneurons have been shown to project to 

the V0V population implicating that they specifically drive activity of neurons involved in the 

direct dual inhibitory pathway and other groups of neurons are involved in driving activity in V3 

and V0D [59-62].    
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2.4.2. Flexor-extensor (F/E) alternation 

Flexor and extensor muscles are required for alternating limb movements. Flexor and 

extensor circuits in the spinal cord are thought to function by reciprocal inhibition of motor 

neurons. Mostly ipsilaterally projecting interneurons drive flexor and extensor activity as F/E 

activity patterns are preserved in the hemisected spinal cord. Additionally, these interneurons are 

inhibitory as blocking their neurotransmission leads to synchronous locomotor patterns. 

Renshaw cells (RC) and V1Ia interneurons have been implicated in F/E activity. They are 

inhibitory classes of interneurons that project ipsilaterally to motor neurons and are rhythmically 

active during locomotion [49]. RCs have been demonstrated to participate in controlling the 

firing rate of motor neurons, whereas V1Ias are thought to be involved in motor neuron 

inhibition. Ablating RCs and V1Ia interneurons however, leads to slowing of locomotor activity, 

but does not abolish F/E completely [43]. Thus, other ipsilaterally projecting interneurons have 

been thought to be involved in controlling F/E activity.   

Recently, the Goulding group has demonstrated the role of the V1 (including V1Ia 

interneurons) and V2b populations in F/E alternation. Both these populations of interneurons are 

inhibitory in nature and project ipsilaterally to motor neurons. The authors found that ablating 

these populations specifically leads to marked deficits in locomotor activity and limb reflexes, as 

ablating other inhibitory interneurons did not show defects in F/E activity. Thus, they conclude 

that CINs do not drive F/E activity directly; however, it may be possible that eCINs such as V3 

interneurons drive the activity of V1 and V2b interneurons that are required for F/E activity [41].  
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2.4.3. Rhythm generation 

In the spinal cord, rhythm is generated indirectly by ipsilaterally projecting interneurons 

that drive pattern generation, which in turn drive activity in motor neurons. These rhythm 

generating neurons possess the following properties [63]: 

a. They are excitatory in nature – experiments conducted in the rodent and cat spinal cord have 

demonstrated that iIINs and iCINs are not required for providing rhythmic input to motor 

neurons, as the rhythmic drive was not affected when inhibitory neurotransmission was 

blocked [49] 

b. They are situation in the ventromedial spinal cord  

c. They receive appropriate input from descending projections that affect motor activity 

d. They are rhythmically active during drug-induced fictive locomotion 

e. Since rhythm generating neurons drive pattern generation, the onset of activity in these 

neurons must precede that of pattern generating neurons 

Hb9 (basic-helix-loop-helix domain containing class 9) positive cells have been well 

studied to assess their role in rhythm generation as they meet most of the criteria listed above. 

These neurons are excitatory in nature and are located in the ventromedial region of the spinal 

cord. They have also been shown to be rhythmically active during drug-induced fictive 

locomotion and possess intrinsic oscillatory properties and, hence, have been designated as 

‘pacemaker’ cells in the past [49, 64, 65]. However, contradictory results were obtained from 

experiments conducted by the Harris-Warrick group, using calcium imaging and 

electrophysiological recordings. They found a lag in the onset of the calcium peak from Hb9 

positive neurons compared to ipsilateral ventral root bursting, suggesting that activity in Hb9 

neurons does not precede activity in pattern generating neurons. Furthermore, activity in the Hb9 
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neurons was not persistent after displaying initial activity; however, activity in motor neurons 

was persistent. These results led the authors to argue against a role for Hb9 neurons as the sole 

pacemaker or rhythm generating neurons. Instead they propose that Hb9 neurons may function in 

tandem with other interneurons of the ventral spinal cord in generating and setting the rhythm of 

locomotion [66].  

Recently, a previously undescribed population of eIINs, that express the transcription 

factor Shox2, has been shown to participate in rhythm generation. These interneurons are a 

subset of the Chx10 positive V2a interneurons and display a great extent of overlap. However, 

~25% of Shox2 interneurons do not express Chx10. These neurons are rhythmically active 

during locomotion and optogenetic silencing produces a marked decrease in locomotor 

frequency, with normal F/E and left-right coordination of locomotion. Therefore, the authors 

suggest that these neurons participate in rhythm generation. Furthermore, using anatomical 

techniques, they demonstrate that these interneurons project to motor neurons in addition to 

recurrent interconnections [67].  

     

2.5. Voluntary control of stepping movements 

Voluntary movements, such as catching, reaching or playing tennis, are neither repetitive 

nor stereotypic. Such movements demand modification of limb trajectories on a moment-to-

moment basis and require input from the motor cortex in the brain. The spinal cord receives 

supraspinal input via the corticospinal tract (CST), one of the longest longitudinally projecting 

tracts. The CST arises from pyramidal neurons in layer V of the motor cortex and remains 

ipsilateral [68]. Signaling via the axon guidance molecules Robo/Slit is essential in confining the 

CST axons to the ipsilateral side [69]. At the brainstem/cervical junction, the CST axons 
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decussate and project contralaterally as they enter the spinal cord via the dorsal funiculus (DF). 

The CST axons are prevented from re-crossing the midline via repulsive Eph4/ephrinB3 

signaling [70].  

Studies performed in cats subjected to adaptive tasks such as stepping over obstacles 

during treadmill walking display increased activity in electrical recordings from the motor cortex 

only when crossing the obstacle [71]. Similarly, experiments performed in rodents by electrically 

stimulating the motor cortex showed increased EMG activity in forelimb muscles [72]. 

Furthermore, ablating the entire motor cortex does not affect normal stepping behaviors in mice, 

however, modification of limb trajectory is significantly reduced in these mice compared to mice 

with intact motor cortex [73]. Thus, the interplay between CPG neurons and CST input is 

necessary for fine-tuned or adaptive locomotion. 

 

2.6. Eph/ephrin signaling  

Axon guidance molecules guide developing neurons in finding their correct synaptic 

partners thus establishing neural circuits. Molecules expressed in a highly dynamic structure at 

the leading edge of the axon, termed the growth cone, allow the axon to traverse through a 

labyrinth of environmental cues to find their targets. Varieties of molecules serve as guidance 

cues to developing axons: receptor tyrosine kinases (RTKs), cell adhesion molecules, 

morphogens and extracellular matrix proteins. These molecules function as either long-range or 

short-range attractive or repulsive cues in guiding axons.    

Eph receptors and their ligands, ephrins (Eph receptor interacting protein), constitute the 

largest family of the RTKs [74, 75]. The Eph receptors are classified into the A and B type based 

on sequence similarities and ligand binding affinities. Similarly, ephrin ligands are also 
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subdivided into class A and B. To date, nine EphAs (EphA1-9 and EphA10) and five EphBs and 

eight ephrins (five ephrinAs and three ephrinBs) have been documented in mammals [75]. A-

type Eph receptors typically bind ephrinAs and B-type Eph receptors bind ephrinBs with the 

exception of EphA4 which can bind ephrinBs and EphB2 which can bind ephrinA5 [76, 77]. 

Eph receptors are transmembrane proteins that consist of extracellular and intracellular 

regions. The extracellular region is made up of a ligand-binding domain (LBD), a cysteine-rich 

domain, followed by two fibronectin type III domains. The intracellular part of the receptor 

consists of a juxtamembrane region, a kinase domain, a SAM (sterile alpha motif) binding 

domain and a PDZ binding domain. EphrinAs are GPI (glycophosphatidylinositol) anchored 

proteins that have an extracellular receptor binding domain, whereas ephrinBs are 

transmembrane proteins that consist of an extracellular receptor binding domain and an 

intracellular PDZ-binding domain [75] [Figure 2.07]. 
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Figure 2.07: Schematic representing the structure of Eph receptors and ephrin ligands. The extracellular 

domain of Eph receptors consist of a ligand binding domain, cysteine rich domain and two fibronectin type III 

domains. The intracellular region is made up of the juxtamembrane region, kinase binding domain, SAM domain 

and PDZ binding domain. EphrinAs are GPI anchored proteins, whereas ephrinBs are transmembrane proteins with 

a PDZ binding domain. 

 

Three features of the Eph/ephrin system make signaling via these receptors unique: Eph 

receptors are membrane bound proteins and are activated only by membrane bound ligands [78]; 

signaling occurs in a bidirectional manner, that is, downstream of both the receptor (forward) and 
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the ligand (reverse) [74, 75]; higher order clustering of Eph receptors is necessary for the 

downstream signaling [79]. 

 

2.6.1. Eph/ephrin forward signaling  

Forward signaling via both classes of Eph receptors share similar mechanisms. For 

example, downstream signaling pathways are activated with the binding of the ligand that 

induces the formation of higher order clusters via transphosphorylation of tyrosine residues 

(most importantly of two tyrosine residues in the juxtamembrane region) on more than one Eph 

receptor [70, 80]. This allows the activation of signaling cascades that ultimately lead to versatile 

responses by the cell, such as cell proliferation, endocytosis of the Eph receptor (which may lead 

to axonal repulsion) and changes in cytoskeletal structures in the growth cone.  

For example, the Rho family of GTPases is involved in remodeling of the cytoskeleton 

via Rho, Rac and Cdc42. The concerted action of Rho GTPases, controls different aspects of 

cellular outcomes, for example, activated EphA receptors directly initiate Rho activity which 

promotes growth cone collapse and retraction of the axon [81]. On the other hand, Rac and 

Cdc42, promote the formation of F-actin and leads to extension of lamellipodia and filopodia 

respectively [82].  

Rho GTPases function by constantly switching between an active GTP-bound state and 

an inactive GDP-bound state. The balance between these two forms is maintained by:  

1. Guanine nucleotide exchange factors (GEFs) that promote the release of the GDP and 

binding of GTP. Ephexin, one of the most well characterized GEFs, binds to the kinase 

domain of activated EphA receptors and regulates the activity of Rho GTPases [83]. The Vav 

family proteins (specifically Vav2 and Vav3) have been shown to be recruited upon ephrinA 
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activation of the EphA2 receptor. Vav proteins function by activating Rac1 and promoting 

endocytosis of the ligand-receptor complex in neurons [84, 85] [Figure 2.08].    

 

Figure 2.08: Eph-dependent forward signaling. Binding of ephrin ligand induces clustering of the Eph receptor 

(activated Eph receptor) which leads to phosphorylation of two important tyrosine residues in the juxtamembrane 

region. Activation of various signaling cascades by recruitment of appropriate protein complexes leads to different 

cellular outcomes [75]. 

 

2. GTPase activating factors (GAPs) are required for inactivating the Rho GTPases and thus 

allowing them to return to their inactive form. The chimaerin family of proteins has been 

well established as Rac-GAP proteins. In rodents, two forms of chimaerins exist, α-chimaerin 
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and β-chimaerin. They further give rise to two isoforms each, α1/α2 and β1/β2. Of these 

isoforms, only α2-chimaerin and β2-chimaerin contain SH2 domains, in addition to the 

RacGAP domain and diacylglycerol-binding domain. In the nervous system, the function of 

α2-chimaerin has been well studied. It binds to the activated EphA4 receptor which leads to 

the recruitment of adaptor proteins, such as Nck (Grb4), which contains one SH2 domain and 

three SH3 domains, thus forming a stable complex that is required for the modulation of Rac 

activity during axonal growth cone collapse [86, 87] [Figure 2.08].    

Other protein families, such as the Ras family of GTPases are also regulated by activated 

Eph receptors. For example, phosphorylation of the juxtamembrane region of the Eph receptor 

recruits RasGAP, which further activates downstream signaling via ERK (extracellular signal 

regulated kinase) and MAPK (mitogen activated protein kinase), necessary for cell proliferation 

and migration. Similarly, the combined activity of PI3K (phosphoinositide 3 kinase), R-Ras and 

FAK promote cell adhesion [82] [Figure 2.08]. 

 

2.6.2. Eph/ephrin reverse signaling  

Reverse signaling via ephrin ligands share diverse mechanisms owing to differences in 

their structure. EphrinAs are tethered to the membrane via a GPI (glycophosphatidylinositol) 

anchor and thus lack an intracellular domain. GPI-anchored proteins, including ephrinAs are 

often localized to specialized regions in the cell membrane, termed lipid rafts that are rich in 

cholesterol and sphingolipids. Binding to the Eph receptor promotes clustering of ephrinAs 

within lipid rafts thus allowing the recruitment of Src proteins and further downstream signaling 

[Figure 2.09 A]. EphrinAs are also known to interact with co-receptors such as p75 which leads 

to phosphorylation of Fyn and inducing downstream signaling pathways which ultimately leads 
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to growth cone collapse in retinal cells [88]. Furthermore, during development, ephrinAs have 

been shown to interact with the TrkB receptor which regulates synapse formation and branching 

of axons in retinal ganglion cells (RGCs) [89] [Figure 2.09 B].  

 

Figure 2.09: EphrinA-dependent reverse signaling. Binding of Eph receptor induces clustering of ephrinAs which 

leads to recruitment of Src proteins and further downstream signaling [A]. ephrinAs also interact with coreceptors 

such as p75 and TrkB which induces the phosphorylation of downstream signaling proteins such as Fyn [B]. 

 

EphrinBs employ different methods to induce downstream signaling as they are 

transmembrane proteins. Binding of the Eph receptor induces clustering of ephrinBs which leads 

to the phosphorylation of specific tyrosine residues and the subsequent recruitment SH2 (Src 

homology 2) – containing proteins such as Grb4 [90-92]. Signaling via this pathway induces 

cytoskeletal rearrangements which are important processes required for spine maturation [91, 

93]. Furthermore, ephrinB-dependent signaling occurs via the PDZ domain which acts as a 

docking site for proteins such as GRIP and PDZ-RGS3 that inhibit the chemoattractive functions 

the G-protein coupled receptor, CXCR4 [94, 95] [Figure 2.10].   
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Figure 2.10: EphrinB-dependent reverse signaling. Binding of Eph receptors induces the phosphorylation of 

important tyrosine residues in the cytoplasmic domain of ephrinBs by the Src protein, SH2. This allows the docking 

of Grb4, an adaptor protein leading to further downstream signaling. ephrinBs also induce the recruitment of the 

PDZ domain binding protein, PDZ-RGS3 which leads to inhibition of the G-protein coupled receptor, CXCR4.  

 

2.6.3. EphA4/ephrinB3 dependent axon guidance 

Since the functions of EphA4 and ephrinB3 are of particular interest to this project, their 

roles in guiding CST axons and axonal projections in the spinal cord are discussed here.  

 

2.6.3.1. EphA4 and ephrinB3 in CST axons 

The corticospinal tract (CST) arises in layer V of the motor cortex. It traverses a long 

distance through the brain and when it reaches the medulla, the axons of the CST decussate 

across the midline and project contralaterally [96]. The CST axons enter the spinal cord via a 

structure termed the dorsal funiculus (DF) and its axons are confined to the contralateral side 

throughout the length of the spinal cord. CST axons express EphA4 whereas the spinal cord 

midline expresses ephrinB3. The CST axons are prevented from re-crossing the midline due to 
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the interaction of EphA4 with ephrinB3, which triggers repulsive axon guidance leading to the 

collapse of the growth cone and retraction of the axons away from the midline. Null mutations of 

either EphA4 or ephrinB3 render CST axons insensitive to repulsion by the spinal cord midline 

leading to extensive midline misprojections of CST axons, as observed in anterograde tracing 

experiments using biotin dextran amine in these mice  [70, 97]. The confinement of the CST 

axons to the contralateral spinal cord is mediated by EphA4-dependent forward signaling. 

Evidence for this comes from experiments that used mutated alleles of the ephrinB3 gene or 

EphA4. The first mutated allele of ephrinB3, ephrinB3neo, is essentially a loss-of-function 

hypomorphic allele that leads to abolished forward and reverse signaling. These mice display 

extensive midline misprojections of the CST axons in anterograde tracing experiments. The 

second allele, ephrinB3lacz, is a truncated version of ephrinB3 in which β-gal replaces the 

cytoplasmic domain of the protein and mice expressing this allele do not display midline 

misprojections of the CST axons. On the contrary, signaling deficient EphA4 mutants (EphA4 

kinase dead) display extensive midline misprojections implicating the need for the EphA4 kinase 

domain in guiding CST axons [98]. Thus, CST axon guidance is mediated by EphA4-dependent 

forward signaling and ephrinB3-mediated reverse signaling is dispensable for the guidance of 

these axons [99, 100].  

Furthermore, other studies have tested the consequence of inhibiting the activity of 

downstream effectors of EphA4 such as α2-chimaerin and Nck. Anterograde tracings, using 

biotin dextran amine, to trace CST axons in α2-chimaerin knockout mice display bilateral 

innervation of the spinal cord in comparison to unilateral innervation observed in control mice 

[101]. Similar results were obtained using retrograde pseudorabies viral tracings of CST axons in 

these mice reiterating the involvement of the EphA4 forward signaling via its downstream 



Introduction 
 

31 
 

effector, α2-chimaerin in CST axon guidance [73]. Likewise, Nck conditional mutants also 

display aberrant midline misprojections of CST axons [87] [Figure 2.11]. 

 

 

Figure 2.11: Summary of CST axon phenotypes in wildtype and mutant mice. Anterograde tracing of CST 

axons, using biotin dextran amine, displays unilateral CST projections in wildtype spinal cords [A]. Conversely, 

anterograde tracing of CST axons in various EphA4 knockout and ephrinB3 knockout mice displays bilateral 

projections in the spinal cord. Furthermore, ablation of downstream effectors of EphA4, such as α2-chimaerin and 

Nck also display bilateral CST innervation of the spinal cord [B].    

 

These mice also display defects in the structure of the DF; EphA4 and ephrinB3 knockout 

mice have a shallow DF compared to their wildtype littermates [70]. Additionally, it is known 

that CST axons project to spinal interneurons and provide supraspinal input that is necessary for 

fine-tuned locomotion. Unilateral electrical stimulation of the motor cortex in ephrinB3-/- and α2-

chimaerin-/- mice evokes strong bilateral forelimb responses as compared to unilateral responses 

seen in control mice [73, 99]. Furthermore, α2-chimaerin-/- mice display defects in adaptive/ 

voluntary locomotor tasks such as crossing obstacles in a treadmill stepping paradigm. Control 

mice cross the obstacles by alternating their limbs whereas; knockout mice display significant 

bilateral limb movements when crossing the obstacles thus implicating EphA4-dependent 
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forward signaling via its downstream effector, α2-chimaerin in adaptive control of locomotion 

[73].    

 

2.6.3.2. EphA4 and ephrinB3 in spinal cord interneurons 

The most striking defect in EphA4 and ephrinB3 knockout mice is their altered gait. 

Wildtype mice usually produce alternating limb movements during locomotion; however, 

ablating EphA4 and/or ephrinB3 leads to bilateral limb movements or a hopping gait in these 

mice. This phenotype is mediated by EphA4-dependent forward signaling as ephrinB3lacZ mice 

(where β-gal replaces the cytoplasmic tail of ephrinB3) do not display any defect in locomotory 

behaviors, whereas EphA4 kinase dead mutants recapitulate the hopping gait observed in EphA4 

full knockouts [98]. Furthermore ablating EphA4 downstream effectors such as α2-chimaerin 

and the adaptor protein Nck, phenocopies the EphA4 knockout mice, that is, they display a 

robust hopping gait, thus adding further evidence to the requirement of EphA4-mediated forward 

signaling in maintaining alternating limb movements [87, 101]. Furthermore, RhoA, a known 

downstream target of α2-chimaerin, has also been shown to be required in maintaining 

locomotory circuits of the spinal cord. Indeed, ablating RhoA specifically in neuronal cells, 

produces locomotor defects similar to those observed in EphA4 and ephrinB3 knockout mice 

[102].    

EphA4 positive neurons have been shown to be an ipsilaterally projecting excitatory 

component of the mammalian CGP. Indeed, these neurons have been shown to express the 

vesicular glutamate transporter, VGlut2 [103]. They remain ipsilateral owing to their interaction 

with ephrinB3 expressed at the midline which repels EphA4 positive neurons and thus confines 

them to one side of the spinal cord. In the absence of EphA4 or ephrinB3, these neurons no 
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longer respect the midline and display aberrant misprojections. As mentioned in the earlier 

sections, left-right coordination of locomotion is controlled by commissural interneurons that are 

both excitatory and inhibitory. Thus, in the EphA4 knockout mice, the aberrant misprojections of 

normally ipsilateral projections provide additional excitatory drive to contralateral CPGs leading 

to the hopping phenotype observed in these mice. Evidence for this comes from experiments that 

utilize the isolated spinal cord technique (fictive locomotion). In these experiments, spinal cords 

from wildtype and knockout mice were bathed with glycine/GABA uptake blockers such as 

sarcosine and nipecotic acid thus leading to strengthening of inhibition. Recordings from 

wildtype cords revealed continued alternating locomotor patterns; however, knockout cords 

displayed a switch from synchrony to alternation with the strengthening of inhibitory drive. 

Furthermore, selectively ablating EphA4 in VGlut2 expressing cells produces a similar 

synchronous locomotor pattern thus demonstrating that increased excitatory drive to contralateral 

CPGs is responsible for the hopping phenotype observed in these mice [103, 104]. Another study 

conducted by the Kiehn group has shown that EphA4, specifically expressed in the ventral spinal 

cord is required to maintain CPG function, whereas, dorsally expressed EphA4 is dispensable 

[105]. This study is in contradiction with our results and is discussed extensively in section 5.1  

 

2.7. Project aims 

The aims of the project undertaken in this thesis were as follows: 

1. The roles of EphA4 and ephrinB3 in locomotor function have been well studied in the ventral 

spinal cord. It is largely accepted that the ventral spinal cord is involved in processing motor 

information whereas the dorsal spinal cord processes sensory information. However, owing 

to an increase in our understanding of the development and functions of spinal cord 
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interneurons, we now know that certain dorsal interneuron cell types participate in motor 

functions. Given the widespread expression of EphA4 in the entire spinal cord, we asked if 

EphA4, expressed specifically in dorsal interneurons, is required in motor functions. To 

assess this, we performed behavioral assays with specific dorsal spinal cord mutants and 

tested their role in CGP functions using the treadmill walking paradigm. 

2. EphA4 is required for guiding CST axons when they enter the spinal cord and EphA4 

knockout mice display aberrant midline crossings. We therefore asked if EphA4 is required 

for cortical control of adaptive locomotion. For this, we performed behavioral assays using 

specific forebrain EphA4 mutant mice and subjected them to the adaptive locomotion 

paradigm. 

3. EphA4 is also known to be required for the correct formation of the DF as ablating EphA4 

leads to a shallow DF. In order to understand how EphA4, expressed in the spinal cord, 

affects DF formation, we used EphA4 mutant mice and performed immunohistochemical and 

immunofluorescence assays.  
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3. Materials and Methods 

 

3.1. Materials 

 

3.1.1. Chemicals and reagents 

Chemicals were purchased from Millipore, Sigma, Merck, Roche, Biomol and Roth. 

Enzymes and buffers were purchased from New England Biolabs (NEB). All water used to 

prepare buffers and solutions were filtered using Milli-Q-Water System (Millipore).  

 

3.1.2. Buffers and solutions 

3.1.2.1. 10X Phosphate buffered saline (PBS) – for 1 liter; pH 7.3 

80g NaCl 

2g KCl 

11.5g NaH2PO4.7H2O 

2g KH2PO4 

 

3.1.2.2. 4% Paraformaldehyde (PFA) – for 100ml; pH 7.4 

4g Paraformaldehyde 

10μl 5M NaOH 

10ml 10X PBS 

Milli-Q-H2O to 100ml 

Half the amount of water indicated above was heated to 65˚C after which 4g of 

paraformaldehyde was added and left to stir for 10 minutes. 100μl of 5M NaOH was added to the 
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solution. Once the solution turned clear, 10ml PBS (10X) was added to the solution and allowed 

to cool. HCl was added to adjust the pH to 7.4. The volume was adjusted to 100ml.  

 

3.1.3. Genotyping oligonucleotides 

All oligonucleotides were purchased from Metabion or Eurofins MWG Operon 

EphA4WT-F 5’–CAATCCGCTGGATCTAAGTGCCTGTTAGC–3’ 

EphA4WT-R 5’–ACCGTTCGAAATCTAGCCCAGT–3’ 

EphA4KO-F  5’–GACTCTAGAGGATCCACTAGTGTCGA–3’ 

EphA4KO-R  5’–TTTTCTCCCTCTTTAAGCAAGGATCAAGC–3’ 

EphrinB3161-F 5’ - GGGATATGGAAGCTTTGAGAC - 3’ 

EphrinB3308-R 5’- GGTATCACCACCCACAACCAGC - 3’ 

EphrinB3Neo 5’ - GAGATCAGCAGCCTCTGTTCC - 3’ 

Cre1 5’–GCCTGCATTACCGGTCGATGCAACGA–3’ 

Cre2  5’–GTGGCAGATGGCGCGGCAACACCATT–3’ 

LacZ-F  5’–CCAGCTGGCGTAATAGCGAA–3’ 

LacZ-R  5’–CGCCCGTTGCACCACAGATG–3’ 

PLAP-F 5’ –AACCCAGACTTCTGGAACCG–3’ 

PLAP-R 5’ –CTGCACCAGATTCTTCCCGT–3’ 

Lox-F 5’ –GCACACTTAGCAATTCAGTGTGGG–3’  

Lox-R 5’–CAGTTAATTAGTGGTGGGTTCCTG–3’ 

Tomato-F 5’–AAGGGAGCTGCAGTGGAGTA–3’   

Tomato-R 5’ –CCGAAAATCTGTGGGAAGTC–3’  

Table 3.01: List of oligonucleotides for genotyping 
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3.1.4. Antibodies 

3.1.4.1. Primary antibodies 

Antibody Species Source Dilution Application 

α-βgal Chicken Abcam 1:2000 IF 

α-Lbx1 Guinea Pig C. Birchmeier 1:10000 IF 

α-Pax2 Rabbit Invitrogen 1:200 IF 

α-Brn3a Mouse Millipore 1:1000 IF 

α-Zic2 Rabbit E.Herrera 1:1000 IF 

α-CGRP Rabbit Calbiochem 1:2000 IF 

α-Parvalbumin Mouse Swant 1:1000 IF 

α-TrkA Goat R&D 1:500 IF 

α-TrkC Goat R&D 1:500 IF 

α-Ctip2 Rat Abcam 1:1000 IF 

α-EphA4 (S20) Rabbit 
Beck and 

Dickson 
1:300 WB 

α-Tubulin Mouse Sigma 1:20000 WB 

Table 3.02: List of primary antibodies 
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3.1.4.2. Secondary antibodies 

Antibody Species Source Dilution Application 

Rabbit–α–Cy2 Donkey Jackson Immunoresearch 1:400 IF 

Rabbit–α–Cy3 Donkey Jackson Immunoresearch 1:400 IF 

Mouse–α–Cy2 Donkey Jackson Immunoresearch 1:400 IF 

Mouse–α–Cy3 Donkey Jackson Immunoresearch 1:400 IF 

Guinea pig–α–

Cy2 
Donkey Jackson Immunoresearch 1:400 IF 

Guinea pig–α–

Cy3 
Donkey Jackson Immunoresearch 1:400 IF 

Chicken–α–Cy2 Donkey Jackson Immunoresearch 1:400 IF 

Chicken–α–Cy3 Donkey Jackson Immunoresearch 1:400 IF 

Rat–α–Cy5 Donkey Jackson Immunoresearch 1:400 IF 

Goat–α–Cy2 Donkey Jackson Immunoresearch 1:400 IF 

Rabbit–α–HRP Donkey GE Healthcare 1:5000 WB 

Mouse–α–HRP Donkey GE Healthcare 1:5000 WB 

Table 3.03: List of secondary antibodies 
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3.1.5. Agarose gel electrophoresis 

3.1.5.1. 50X Tris-acetate-EDTA Buffer (TAE) – for 1 liter; pH 8.5 

242g Tris base 

5.1ml Glacial acetic acid 

37.2g Na2EDTA.2H2O 

H2O up to 1 liter 

 

3.1.5.2. Gel loading buffer 

25ml Glycerol 

1ml 50X TAE 

0.1g Orange G 

24ml H2O 

 

3.1.6. Polyacrylamide gel electrophoresis 

3.1.6.1. Lysis Buffer 

50mM Tris pH 7.5 

150mM NaCl 

50mM EDTA 

1% Triton 

Milli-Q-Water 

The solution was stored at 4˚C till it was used. Before using, 1 tablet of Protease Inhibitor 

(Roche) was added to 50ml of lysis buffer and 1ml of PhosphoSTOP (Roche) was added to 10ml 

of lysis buffer. 
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3.1.6.2. SDS-PAGE resolving gel (7.5%) 

4.85ml H2O 

2.6ml 1.5M Tris pH 8.8; 0.4% SDS 

2.5ml 30% (w/v) Acrylamide; 0.8% (w/v) Bis-Acrylamide 

50μl 10% APS 

5μl TEMED 

 

3.1.6.3. SDS-PAGE stacking gel (4%) 

3.05ml H2O 

1.3ml 0.5M Tris pH 6.8; 0.4% SDS 

0.65ml 30% (w/v) Acrylamide; 0.8% (w/v) Bis-Acrylamide 

50μl 10% APS 

5μl TEMED 

 

3.1.6.4. 6X Sample Buffer 

12% SDS 

300mM Tris-HCl pH 6.8 

600mM DTT 

0.6% BPB 

60% Glycerol 

Milli-Q-H2O 

This buffer was stored at -20˚C. 
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3.1.6.5. 5X Electrophoresis Buffer 

154.5 g Tris base  

721g Glycine  

50g SDS 

The volume was adjusted to 10 liters with Milli-Q-water and stored at room temperature. 

 

3.1.6.6. 1X Transfer Buffer 

3.03 g Tris base  

14.4 g Glycine  

200 ml Methanol  

The volume was adjusted to 650 ml with Milli-Q-water to mix and dissolve the 

ingredients after which the final volume was adjusted to 1 liter. The buffer was stored at room 

temperature. 

 

3.1.6.7. PBS-Tween (PBS–T) 

1X PBS 

0.1% Tween®20 

This buffer was stored at room temperature. 

 

3.1.6.8. Blocking Buffer (10ml) 

0.5g 5% Skim milk 

10ml PBS – T  
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3.1.7. X-gal staining 

3.1.7.1. 0.5M Na-phosphate Buffer Stock; pH 7.3 

71g Na2HPO4 

72g NaH2PO4 

The volume was adjusted to 1000ml with Milli-Q-water. The buffer was stored at room 

temperature. 

 

3.1.7.2. Fixative 

0.4ml 25% Glutaraldehyde 

2.5ml EGTA pH 7.3 

0.1ml 1M MgCl2 

47ml 0.1M Na-phosphate buffer pH 7.3 

The buffer was stored at 4˚C. 

 

3.1.7.3. Wash Buffer 

2ml 1M MgCl2 

0.1g DOC 

0.2ml NP – 40 

The volume was adjusted to 1000ml using 0.1M Na-phosphate buffer pH 7.3. The buffer was 

stored at room temperature. 

 

3.1.7.4. X-gal Staining Solution 

0.106g C6N6FeK4 (Sigma) 
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0.082 C6N6FeK3 (Sigma) 

0.5ml of 100mg/ml X-gal (dissolved in N-N-dimethylformamide) was added to fresh, pre-heated 

buffer at 37˚C. The volume was adjusted to 50ml using wash buffer. The solution was protected 

from light and stored at 4˚C. 

 

3.1.7.5. 100% BABB 

1 part Benzyl alcohol 

2 parts Benzyl benzoate 

The solution was protected from light and stored at room temperature. 

 

3.1.7.6. 50% BABB 

50% BABB 

50% Methanol 

This solution was protected from light and stored at room temperature. 

 

3.1.8. Alkaline phosphatase staining 

3.1.8.1. NTMT Solution (200ml) 

4ml 5M NaCl 

20ml 1M Tris-HCl pH 9.5 

10ml 1M MgCl2 

200μl Tween® 20 

This solution was prepared fresh before each use. 
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3.1.8.2. Developing Solution (10ml) 

11μl 5-bromo-4chloro-3-indolyl-phosphate (BCIP) 

14μl Nitro blue tetrazolium (NBT) 

10ml NTMT 

This solution was prepared fresh before each use. 

 

3.1.9. Nissl Staining 

3.1.9.1. Nissl stain 

0.1% Cresyl violet 

0.3% Acetic acid 

This solution was stored at room temperature. 

 

3.1.10. Embedding solutions for vibratome and cryostat sectioning 

3.1.10.1. 0.1M Acetate Buffer; pH 6.5 

99ml 1M Sodium acetate 

960μl 1M Acetic acid 

The volume was adjusted to 1 liter using Milli-Q-water and stored at room temperature. 

 

3.1.10.2. Embedding Solution 

Solution a 

90g Ovalbumin (Sigma) 

200ml 0.1M Acetate buffer 
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Ovalbumin was dissolved in acetate buffer by stirring overnight at room temperature. The 

solution was filtered through gauze to remove undissolved ovalbumin and air bubbles. 

Solution b 

15g Gelatin 

100ml 0.1M Acetate buffer 

Gelatin was dissolved in warm acetate buffer. The solution was cooled down to room 

temperature. 

Solutions ‘a’ and ‘b’ were mixed, aliquoted and stored at -20˚C. 

 

3.1.10.3. 15% Sucrose (50ml) 

7.5g Sucrose 

1X PBS upto 50ml 

The solution was stored at 4˚C. 

 

3.1.10.4. 30% Sucrose (50ml) 

15g Sucrose 

1X PBS upto 50ml 

The solution was stored at 4˚C. 

 

3.1.11. Mouse lines 

EphA4 full knockout mice were generated in our laboratory [106] and maintained in a mixed 

129 x C57Bl6/J genetic background.  
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EphrinB3-/- mice [70] were provided by Regeneron. Inc and were maintained in a mixed 129 x 

C57Bl6/J genetic background. 

EphA4PLAP mice [107] were obtained from Marc Tessier-Lavigne, Rockefeller University, and 

maintained in a mixed 129 x C57Bl6/J genetic background. They were used to label the cell 

bodies with β-gal and axonal projections with human placental alkaline phosphatase (PLAP). 

EphA4lx mice [108] were obtained from Binhai Zheng, UCSD, and maintained in a mixed 129 x 

C57Bl6/J genetic background. They were used in combination with the below mentioned Cre 

lines to generate specific conditional EphA4 mutants.  

PGK–Cre mice were generated by the laboratory of Yvan Lallemand [109] and maintained in a 

mixed 129 x C57Bl6/J genetic background. They were used as deleter lines to phenocopy the full 

knockouts. 

Emx1–Cre mice (B6.129S2-Emx1tm1(cre)Krj/J) [110] were maintained in a mixed 129 x C57Bl6/J 

genetic background. They were crossed to EphA4lx mice to generate EphA4 forebrain knockouts. 

HoxB1–Cre mice (B6.129S-Hoxb1tm1(cre)Og/J) [111] were maintained in a mixed 129 x C57Bl6/J 

genetic background. They were crossed to EphA4lx mice to generate EphA4 spinal cord specific 

knockouts. 

Pax7–Cre mice [112] were maintained in a mixed 129 x C57Bl6/J genetic background. They 

were crossed to EphA4lx mice to generate dorsal spinal cord EphA4 mutants (dI1-6). 

Lbx1–Cre mice [113] were obtained from Carmen Birchmeier, MDC Berlin, and maintained in 

a mixed 129 x C57Bl6/J genetic background. They were crossed to EphA4lx mice to generate 

dorsal spinal cord EphA4 knockouts (dI4-6). 

Wnt1–Cre mice [114] were maintained in a mixed 129 x C57Bl6/J genetic background. They 

were crossed to EphA4lx mice to generate dorsal spinal cord EphA4 knockouts (dI1-2). 
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Ptf1a–Cre mice [115] were maintained in a mixed 129 x C57Bl6/J genetic background. They 

were crossed to EphA4lx mice to generate dorsal spinal cord EphA4 knockouts (dI4). 

Rosa26R mice [116] were maintained in a mixed 129 x C57Bl6/J genetic background. They 

were used as a reporter line. 

R26-CAG-td Tomato (Ai9) mice (B6.Cg-Gt(ROSA)26Sortm9(CAG-tDTomato)Hze/J) [117] were 

maintained in a mixed 129 x C57Bl6/J genetic background. They were used as a reporter line. 

 

3.2. Methods 

 

3.2.1. Genotyping 

3.2.1.1. Tail DNA preparation and genotyping using PCR 

To genotype the mice and the embryos, DNA was extracted from the tail and the 

hindlimbs respectively. The tissue was boiled in 100μl 50mM NaOH for 15 minutes three times 

and vortexed between each boiling step. The NaOH was neutralized with 10μ 1.5mM Tris-HCl, 

pH 8.8 and then centrifuged to allow the remaining debris to settle down. The samples were then 

stored at 4˚C if they were not used immediately. 1-2μl of the DNA was used as a template for the 

polymerase chain reaction (PCR). The PCR mix was prepared in a volume of 50μl as follows: 

2.5mM dNTPs 

50mM specific primers 

1x Taq polymerase buffer  

0.5μl Taq polymerase (NEB) 

Milli-Q-water to 50μl 

The PCR programs used are summarized in the table below: 
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Program Primers Denaturing Denaturing Annealing Extension 
No 

cycles 

Cre Cre 1+2 94°C for 2’ 94°C for 1’ 67°C for 1’ 
72°C for 

2’ 
40 

EphA4 WT 
EphA4 

WT F+R 
95°C for 2’ 95°C for 30s

60°C for 

1’20’’ 

72°C for 

1’15’’ 
30 

EphA4 KO 
EphA4 

KO F+R 
95°C for 3’ 94°C for 1’ 65°C for 1’ 

72°C for 

1’ 
38 

EphrinB3 
EphrinB3 

F+R+Neo 
94°C for 2’ 94°C for 45s

58°C for 

45s 

72°C for 

1’ 
34 

Lox Lox F+R 94°C for 4’ 94°C for 30s
62°C for 

45s 

72°C for 

1’ 
39 

LacZ 
LacZ 

F+R 
95°C for 5’ 95°C for 30s

58°C for 

30s 

72°C for 

30s 
36 

PLAP 
PLAP 

F+R 
95°C for 2’ 95°C for 30s

55°C for 

45s 

72°C 

for 1’ 

29 

Tomato 
Tomato 

F+R 
94°C for 3’ 94°C for 20s

61°C for 

30s 

72°C for 

30s 
35 

Table 3.04: List of PCR primers and programs for used to amplify the alleles 
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3.2.1.2. Agarose gel electrophoresis 

PCR products were loaded on either 1 or 2% agarose gels. The gels were prepared by 

dissolving agarose in 1X TAE buffer by boiling. Once the solution was sufficiently cooled, 3μl 

of ethidium bromide was added per 100ml of 1X TAE buffer. The solution was then poured into 

a gel chamber and appropriate sized combs were placed in the chamber following which the gel 

was allowed to solidify. The solidified gel was placed in an electrophoresis chamber containing 

1X TAE buffer and the combs were then removed. The PCR products were mixed with 5μl of 

10X gel loading buffer and were loaded in the wells and separated for ~30 minutes at ~200V. 

The DNA was then visualized under UV light using a gel documentation system (BioRad). 

 

3.2.2. Biochemistry 

3.2.2.1.Protein extraction and estimation 

Dissected brains and spinal cords were incubated in ice-cold lysis buffer containing 

protease and phosphatase inhibitors for 20 minutes on ice. The tissues were then homogenized 

using a homogenizer for 1 minute at maximum speed and incubated on ice for 5 minutes. The 

lysates were transferred to eppendorf tubes and centrifuged for 15 minutes at 13000rpm. The 

supernatant was transferred to fresh Eppendorf tubes and used for protein estimation. Protein 

concentration was measured using the DC Protein Assay (BioRad). 

 

3.2.2.2. Immunoblotting 

Proteins were separated by SDS-PAGE on a 7.5% gel, running at 120V for 90 minutes. 

They were then transferred onto nitrocellulose membranes (Whatman) by semi-dry blotting at 

80mA for 2 hours. The membranes were then blocked in blocking solution for 1 hour at room 
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temperature following which they were incubated in blocking solution containing primary 

antibody overnight at 4˚C while rocking on a shaker. The next day, the membranes were washed 

3 times with PBS-T for 5 minutes each and then incubated with secondary antibody for 1 hour at 

room temperature. The membranes were subsequently washed 3 times with PBS-T for 5 minutes 

each and then incubated with 1ml of ECL (Amersham) and exposed to X-ray films (Amersham). 

Subsequent detection of another protein was performed using primary antibodies in blocking 

solution containing 0.03% Na-azide.  

 

3.2.3. Histology and imaging 

3.2.3.1. Cardiac perfusions 

Adult mice were anaesthetized by an intraperitoneal (I.P.) injection of chloralhydrate (5% 

chloralhydrate; 0.9% NaCl). The skin and the rib cage were cut open and the diaphragm was 

removed and the heart was exposed. A needle, connected to a peristaltic pump, was inserted in to 

the left ventricle and an incision was made in the liver. 20ml of ice cold PBS was circulated to 

replace the blood, following which, 20ml of ice cold 4% PFA was circulated to fix the tissues. 

Upon fixation, the brain and the spinal cord were dissected and post-fixed in 4% PFA overnight 

at 4˚C.  

 

3.2.3.2. Vibratome sectioning 

2 ml of embedding solution was added to a small plastic mould and was allowed to 

solidify by the addition of 100μl of 25% glutaraldehyde solution. The perfused and post–fixed 

brains and spinal cords were washed extensively with PBS, dried gently using a paper towel and 

placed on top of this layer. Additionally, 3.5ml of embedding solution with 175μl of 25% 
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glutaraldehyde  was added on top of the tissue and allowed to solidify. The mould was allowed to 

solidify at room temperature for 5 minutes and the 80μm transverse sections were cut with the 

vibratome.  

 

3.2.3.3. Dissection of embryos and spinal cords 

The morning after setting up the breeding, vaginal plugs were checked and counted as 

day 0.5 of pregnancy. On the appropriate day, the mice were sacrificed by cervical dislocation. 

The skin was cut open and the uterus was dissected into ice cold PBS. The embryos were 

separated from the uterus and the spinal cords were dissected after eviscerating all other organs. 

The spinal cords were fixed for 2 hours with 4% PFA at room temperature after which they were 

washed extensively in PBS and incubated with ice cold 15% sucrose solution at 4˚C till they 

sank. The spinal were then transferred to 30% sucrose solution at 4˚C till they sank following 

which they were embedded in OCT compound (Tissue Tek) in small plastic moulds, allowed to 

solidify on dry ice and then stored at -80˚C. 

 

3.2.3.4. Cryostat sectioning 

25μm thick sections were cut using a Leica Cryotome. The sections were collected on 

coated glass slides (Menzel–Gläser) and allowed to dry for at least 2 hours at room temperature 

before they were stored at -20˚C. 

 

3.2.3.5. Immunofluorescence 

Cryo-protected sections were allowed to air dry for 30 minutes at room temperature. The 

sections were permeabilized using a solution of 0.5% Triton-X100 in PBS for 30 minutes at 
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room temperature following which they were blocked using a solution of 0.3% Triton-X100 in 

PBS along with 5% donkey serum and 5% bovine serum albumin for 2 hours at room 

temperature. The sections were then incubated in primary antibody [Table 3.02], diluted in 

blocking solution, overnight at 4˚C. The next day, the sections were washed 3 times in 0.1% 

Triton-X100 in PBS for 30 minutes each after which they were incubated in secondary antibody 

[Table 3.03] diluted in blocking solution. Washes were performed as mentioned before. Nuclear 

staining was achieved by using To-Pro-3 (Molecular Probes) at a dilution of 1:3000 in PBS for 

10 minutes. The sections were washed 3 times with PBS for 5 minutes each after which they 

were mounted using fluorescence mounting medium (DAKO) and allowed to air dry overnight. 

Images were acquired using an Olympus FV1000 confocal microscope. 

 

3.2.3.6. X-gal staining 

Whole embryos or spinal cord cryo-protected sections were rinsed briefly in 0.1M Na-

phosphate buffer and were fixed with fixative solution for 15-30 minutes at room temperature. 

The samples were then washed thoroughly with wash buffer three times for 15 minutes at room 

temperature. The samples were then transferred to pre-warmed (37˚C) staining solution for a 

minimum of 2 hours or overnight at 37˚C in a light protected manner. When the desired staining 

intensity was obtained, the samples were washed extensively with wash buffer and post fixed 

with 4% PFA overnight at 4˚C. The embryos were processed further by washing with PBS the 

next day following which they were dehydrated in a series of methanol grades (1:1 methanol: 

PBS) and 100% methanol for 10 minutes each. The embryos were then transferred to 50% and 

100% BABB solution until they sank. Spinal cord sections were washed with PBS after post 

fixation and mounted with Mowiol and the slides were allowed to air dry. Brightfield images of 
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the embryos were taken using the Leica MZFIII stereomicroscope and sections were imaged 

using the Zeiss Axioplan2 epifluorescence microscope.  

 

3.2.3.7. PLAP staining 

Placental alkaline phosphatase (PLAP) activity was detected using the alkaline 

phosphatase (AP) assay. Cryo-protected sections allowed to air dry for 30 minutes after which 

they were incubated in PBST for 2 hours at 65˚C to block endogenous AP activity. The sections 

were then post fixed with 4% PFA for 1 hour at room temperature and subsequently washed in 

PBST several times. The sections were then incubated for 20 minutes in NTMT solution at room 

temperature. Finally, the staining was developed by incubating the sections in developing 

solution (NTMT solution containing BCIP and NBT) overnight at room temperature. The 

sections were then washed with PBS several times and air dried following which they were 

mounted using Mowiol and brightfield images were taken using the Zeiss Axioplan2 

epifluorescence microscope. 

 

3.2.3.8. Nissl staining: 

Cryo-protected sections were air dried for 30 minutes. They were then incubated with 1:1 

chloroform: ethanol for 2 hours to remove fat molecules. Subsequently, they were rehydrated 

using a decreasing gradient of ethanol (100%, 95%, and 70%) for 5 minutes each and then 

stained in pre-warmed (37˚C) staining solution for 2–5 minutes. The sections were then rinsed in 

water many times and followed by dehydration using an increasing gradient of ethanol (70%, 

95%, and 100%) for 5 minutes each. The sections were then cleared using HistoClear for 5 

minutes; air dried and mounted using DPX. 
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3.2.4. Behavior 

3.2.4.1. Catwalk assay 

Adult mice were trained to walk in one direction on a gangway for 5-6 trials. The next 

day, the forepaws of the mice were painted with blue paint and the hindpaws with red paint and 

the mice were made to walk on a sheet of paper placed on the same gangway thus allowing us to 

capture the footprint of the mouse for subsequent gait analysis. 

 

3.2.4.2. Normal walking paradigm 

Adult mice were trained to walk in one direction on a clear treadmill belt (ExerGait – 

Columbus Instruments) for 6 days in 2 trials which lasted 20 minutes each. They were trained at 

2 speeds – a slow speed of 9cm/s and fast speed of 15 cm/s. On the 7th day of the experiment, the 

paw placement of the mice was recording from underneath using a high speed camera at 100 

frames per second. For each animal, 3 trials (2000 frames of video) at each speed were used for 

the analysis. The gait of the mice were captured at speeds of 6cm/s, 9cm/s, 13cm/s, 17cm/s, 

21cm/s and 25cm/s. TreadScanTM 3.0 (Clever Sys.) was used to identify the phase coupling 

values along with information on swing, stance phases of each limb along with stride time and 

length for each limb. This information was exported as Excel files for subsequent analysis. 

 

3.2.4.3. Adaptive locomotion 

In addition to the unobstructed stepping paradigm described above, two obstacles, 0.5cm 

and 1cm in height were mounted on the treadmill belt. Adult mice were trained to step over these 

hurdles for 6 days in 2 trials which lasted 20 minutes each. They were trained at 2 speeds – a 

slow speed of 9cm/s and fast speed of 15 cm/s. On the 7th day of the experiment, the paw 
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placement of the mice was recording using two high speed cameras: one from underneath and 

one from the side at 100 frames per second. For each animal, 3 trials (2000 frames of video) at 

each speed were used for the analysis. The gait of the mice were captured at speeds of 6cm/s, 

9cm/s, 13cm/s and 17cm/s. Depending on the speed, they encountered the hurdles once every 5 

seconds. The analysis was performed manually by scoring for the number of hops and 

alternations while crossing the hurdles.  
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4. Results 

 

4.1. Characterization of Cre lines 

In order to probe the involvement of EphA4 expressed in the brain and spinal cord, we 

used a number of Cre lines to specifically knockout EphA4 in distinct subpopulations of these 

regions [Figure 4.01 A and B]. To confirm the expression pattern of specific Cre lines, we first 

crossed all the lines to Rosa26R mice (Rosa26R-LacZlx/lx), a reporter line that conditionally 

expresses the β-galactosidase (β-gal) gene. The expression of the Cre was visualized in whole 

mount E10.5 embryos or cryo-protected spinal cord and brain sections at the stages indicated in 

the figures, using the X-gal staining method. X-gal or BCIG (5-bromo-4-chloro-3-indolyl-β-

galactopyranoside) is a substrate of β-gal and produces an intense blue color upon its hydrolysis. 

 

Figure 4.01: Summary of Cre lines. [A] Schematic representation of expression of Emx1 in the forebrain. [B] 

Expression of various transcription factors in the spinal cord: HoxB1 is expressed in the entire spinal cord; Pax7 in 

dI1-6; Lbx1 in dI4-6; Wnt1 in dI1-2 and Ptf1a in dI4. OB: olfactory bulb; CTX: cortex; CB: cerebellum; BS: 

brainstem; SC: spinal cord.  



Results 

57 
 

 

Figure 4.02: Expression of Emx1-Cre line. Emx1-Cre mice were crossed to the reporter line Rosa26R. [A] The 

expression of the Cre was visualized by whole mount X-gal staining in E10.5 embryos and [B] in the adult. The 

expression of the Cre was restricted to the forebrain early in development and no expression was detected in the 

spinal cord. [C]. Western blot analysis to show specific loss of EphA4 from adult motor cortex in the presence of the 

Cre but not in control littermates. Scale bars are 1000μm in [A]and 500μm in [B]. Data were generated by Dr. S. 

Paixão.  

 

Emx1 is a transcription factor that belongs to the homeobox family of proteins and is 

expressed specifically in the forebrain [110]. We used this line to ablate EphA4 specifically in 

the cortex, thus maintaining the expression of EphA4 in the spinal cord intact. The expression of 

the Cre was active early during development (E10.5) where we detected a strong recombination 

of the Cre specifically in the forebrain [asterix in Figure 4.02 A] and no X-gal staining was 

detected in the spinal cord [arrow in Figure 4.02 A]. Furthermore, the expression was maintained 

even in the adult forebrain [Figure 4.02 B]. Additionally, when we crossed the Emx1-Cre mice to 

EphA4lx/- mice and performed western blot analysis from the adult motor cortex, we found a loss 

of EphA4 protein in the knockouts compared to control littermates [Figure 4.02 C].  
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Figure 4.03: Expression of HoxB1-Cre line. HoxB1-Cre mice were crossed to the reporter line Rosa26R. The 

expression of the Cre was visualized by whole mount X-gal staining in E10.5 embryos [A] and E12.5 spinal cord 

sections [B]. The expression of the Cre was restricted to the entire spinal cord early in development and no 

expression was detected in the brain. Scale bar is 500μm in [A] and 100μm [B]. 

 

Next, we studied the expression pattern of HoxB1-Cre. HoxB1 is a protein that belongs to 

the homeodomain family of transcription factors [111] and is expressed in the entire spinal cord 

[111]. The expression of the Cre was seen early during development (E10.5), specifically in the 

hindbrain (rhombomere 3 and 4 [111]), but not in more rostral regions of the brain [arrow in 

Figure 4.03 A]. Furthermore, HoxB1-Cre expression was seen in the entire spinal cord [Figure 

4.03 B], as expected.  

Pax7 is a transcription factor that belongs to the paired box containing family of proteins 

and plays an important role during the development of the neural crest [118]. In the spinal cord, 

Pax7 is expressed in the dorsal progenitor cells [119] and was therefore used to knockout EphA4 

specifically in the dorsal spinal cord. To check the expression of Pax7-Cre, we used whole 

mount E10.5 embryos and found Pax7-Cre (X-gal) expression in the spinal cord [arrow in Figure 

4.04 A] as expected. In E12.5 spinal cord sections, robust expression of the Cre (X-gal) was seen 

only in the dorsal half of the spinal cord, with few cells recombined in the ventral spinal cord 
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[Figure 4.04 B]. The same pattern of expression was seen in the adult spinal cord [Figure 4.04 

C]. Furthermore, we checked the expression of the Cre in the adult motor cortex and found very 

few cells that showed expression of the Cre (X-gal) [Figure 4.04 D; magnified in D’]. 

Additionally, we wanted to ensure that there was no loss of EphA4 protein due to the 

recombination of the Cre in the motor cortex. Therefore, we crossed Pax7-Cre mice to EphA4lx/- 

and performed western blot analysis from different brain regions from adult control and 

knockout mice. No reduction of EphA4 protein was detected in the motor cortex [Figure 4.04 F] 

and hippocampus [Figure 4.04 G]. However, Pax7-Cre recombined extensively in the cerebellum 

[Figure 4.04 E] and we detected a drastic reduction in EphA4 protein levels in the knockouts 

compared to control littermates [Figure 4.04 H]. 
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Figure 4.04: Expression of Pax7-Cre line. Pax7-Cre mice were crossed to the reporter line Rosa26R. The 

expression of the Cre was visualized by whole mount X-gal staining in E10.5 embryos [A], E12.5 spinal cord 

sections [B], adult spinal cord sections [C], adult brain sections at the level of the motor cortex [D, D’] and 

cerebellum [E]. Western blot analysis to show specific loss of EphA4 in the presence of the Cre but not in control 

littermates from adult motor cortex [F], hippocampus [G] and cerebellum [H].  Scale bar in [A] is 500μm, [B] is 

100μm, [D] is 500μm, [D’] is 250μm and [E] is 500μm.  

 

 

Figure 4.05: Expression of Lbx1-Cre line. Lbx1-Cre mice were crossed to the reporter line Rosa26R. The 

expression of the Cre was visualized by whole mount X-gal staining in E10.5 embryos [A] and E12.5 spinal cord 

sections [B]. Scale bar in [A] is 500μm and [B] is 100μm.  

 

Lbx1, a homeodomain transcription factor [120], is expressed specifically in a subset of 

dorsal spinal cord cells (dI4-6) [113, 121]. In agreement with literature [113], the expression of 

the Lbx1-Cre was detected as early as E10.5 [Figure 4.05 A] and was restricted to a subset of 

dorsal spinal cord interneurons (dI4-6) [Figure 4.05 B]. 

Wnt1 is a protein that belongs to the wingless-type MMTV integration site family [122] 

and participates in developmental processes such as patterning and growth [123]. In the spinal 

cord, Wnt1 is expressed in the dorsal spinal cord (dI1-2) and is required to pattern the spinal cord 
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along its dorsal-ventral axis [124]. Surprisingly, we found extensive expression of the Cre in an 

extended area of the spinal cord upon examination of E12.5 sections [Figure 4.06] and therefore, 

further investigation of this mouse line is required. 

 

Figure 4.06: Expression of Wnt1-Cre line. Wnt1-Cre mice were crossed to the reporter line Rosa26R. The 

expression of the Cre was visualized by X-gal staining of E12.5 spinal cord sections. Scale bar is 100μm. 

 

 

Figure 4.07: Expression of Ptf1a-Cre line. Ptf1a-Cre mice were crossed to the Ai9-tomato reporter line. The 

expression of the Cre was visualized in E10.5 whole mount embryos [A] and in E11.5 spinal cord sections [B]. 

Scale bars are 100μm in [A]. Data were generated by Dr. S. Paixão.  

 

Ptf1a, is a transcription factor that encodes a basic helix-loop-helix domain [115] that is 

expressed in dI4 of the developing spinal cord and subsequently gives rise to GABAergic 

neurons of the dorsal horn [33]. Upon examination of E10.5 whole mounts and E11.5 spinal cord 
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sections from Ptf1a-Cre mice crossed to the reporter line, Ai9-tomato, we again found extensive 

ectopic expression of the Cre [Figure 4.07 A and B].  

 

4.2. EphA4 mutants display defects in left-right coordination and adaptive control of 

locomotion 

 

4.2.1. Removing EphA4 from dorsal spinal cord neurons partially affects left-right 

coordination of locomotion  

Numerous studies have shed light on the requirement of EphA4 in controlling left-right 

coordination of locomotion, a stereotyped and repetitive action that is capable of functioning in 

the absence of supraspinal input [44, 102-104]. However, these studies have focused their 

attention on the role of EphA4 in the ventral spinal cord. Recent evidence has established that 

neurons born dorsally during development migrate to the ventral cord and integrate into 

locomotory circuits [24, 58]. Indeed, these dorsal neurons were shown to be active (via c-fos 

expression) during locomotion [125]. We therefore asked whether EphA4 originating in dorsal 

neurons was involved in left-right coordination of locomotion. 

To test this, we performed gait analysis using the catwalk assay. The forepaws of the 

mice were painted in blue and the hindpaws in red following which they were trained to walk on 

a sheet of paper in a gangway. The captured footprints of the mice were analyzed (only 

hindpaws) by measuring the distance covered by a single hindpaw during a stride [B in Figure 

4.08 H] and compared to distance covered by the other hindpaw during a stride [A in Figure 4.08 

H]. The ratio of B/A was calculated and the data was categorized into 3 bins; ‘normal’ if the ratio 

was ~0.5, ‘intermediate’ if the ratio was ~0.25 or ~0.75 and ‘hop’ if the ratio was ~0 or ~1 
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[Figure 4.08 H]. The gait of the mouse was represented as a percentage of the ratio of B/A in 

each bin to the total number of steps covered by the mouse.  

The gait in the control mice (EphA4lx/-) was mostly asynchronous, that is, the mice 

produced alternating limb movements [Figure 4.08 A]. When we quantified the gait of these 

mice, we found that 80% of the steps fell into the normal bin, with very few steps in the 

intermediate bin and even fewer steps in the hop bin [Figure 4.08 I]. Conversely, when we 

analyzed the PGK-Cre mice (EphA4lx/-; PGK-Cre+), we found no steps in the normal bin, very 

few steps in the intermediate bin and more than 95% of the steps in the hop bin [Figure 4.08I]. 

We utilized the PGK-Cre mice instead of the EphA4 null mice since the former is a deleter line 

that phenocopies the EphA4 null mice [109], thus allowing us to maintain uniform genetic 

conditions as with all other conditional mutants that we assessed. Upon analysis of the forebrain 

specific EphA4 conditional mutants (EphA4lx/-; Emx1-Cre+) we found the gait of the mice to be 

alternating [Figure 4.08 B]. Likewise, on quantifying the data, most of the steps fell into the 

normal bin with very few steps in the intermediate and hop bins [Figure 4.08 I].  

Next, we investigated dorsal spinal cord EphA4 conditional mutants using Pax7-Cre 

(EphA4lx/-; Pax7-Cre+), Lbx1-Cre (EphA4lx/-; Lbx1-Cre+), Wnt1-Cre (EphA4lx/-; Wnt1-Cre+) and 

Ptf1a-Cre (EphA4lx/-; Ptf11a-Cre+) mice. We found that when EphA4 was ablated using Pax7-

Cre and Lbx1-Cre, the mice displayed a partial hopping phenotype; they showed asynchronous 

hindlimb movements (alternation) along with synchronous movements (hopping) coupled 

together with intermediate steps that were neither synchronous nor asynchronous movements 

[Figure 4.08 D &E]. Indeed when we quantified this data, we found approximately equal 

distribution of the steps into the three bins [Figure 4.08 I].     
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Furthermore, when we ablated EphA4 in more restricted cell populations using Wnt1-Cre 

and Ptf1a-Cre, we found that the mice displayed a greater percentage of asynchronous limb 

movements compared to intermediate and synchronous movements [Figure 4.08 F, G and I]. 

However, owing the ectopic expression pattern of these two Cre lines [Figure 4.06 and 4.07], 

these results require further investigation.    

Collectively, these results demonstrate the requirement of EphA4, expressed specifically 

in the spinal cord for maintaining left-right coordination of locomotion. Furthermore, ablating 

EphA4 in the dorsal spinal cord alone, leads to a partial hopping phenotype, suggesting that 

dorsal interneurons expressing EphA4 contributed to left-right coordination of locomotion. Since 

we saw the same phenotype when we used Pax7-Cre (dI1-6) and the more restricted Lbx1-Cre 

(dI4-6) to ablate dorsally expressed EphA4, we can conclude that dorsal contribution of EphA4 

to left-right locomotion arises within this subpopulation of dorsal interneurons.   
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Figure 4.08: Gait analysis of EphA4 mutants. The forepaws and hindpaws of the mice from the indicated 

genotypes were painted in blue and red respectively. The mice were trained to walk on a sheet of paper on a 

gangway and thus the footprint was captured [A-G]. Only the gait of the hindpaws was analyzed by measuring the 

distance between each stride of individual hindpaws (B) and (A) and calculating the ratio of the distances (B/A). The 

data was classified into three bins as in [H]. Bar graph depicting the percentage of the ratio (B/A) (in each bin) to the 

total number of steps [I]. Error bars, S.E.M. EphA4lx/- (n=21); EphA4lx/-; Emx1-Cre+ (n=4); EphA4lx/-; Pax7-Cre+ 

(n=8); EphA4lx/-; Lbx1-Cre+ (n=4); EphA4lx/-; HoxB1-Cre+ (n=3); EphA4lx/-; PGK-Cre+ (n=4); EphA4lx/-; Wnt1-Cre+ 
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(n=5); EphA4lx/-; Ptf1a-Cre+ (n=4). Error bars represent SEM. * p<0.05, ** p<0.01, *** p<0.001. Data in panels [A-

E] was generated by Dr. S. Paixão. 

 

4.2.2. Dorsally expressed EphA4 does not influence circuits that change gait with increase 

in speed of locomotion 

A number of studies have established the capability of mammals to generate a diverse set 

of gaits depending on the speed of locomotion [126-128]. Pioneering experiments conducted 

using the treadmill locomotion paradigm in cats displayed a shift in the gait from trotting to 

galloping with an increase in the speed of the treadmill [129]. Furthermore, the neural circuits in 

the ventral spinal cord that participate in integrating information on speed of locomotion and gait 

are now beginning to be understood. Recent research has shown that disrupting these circuits 

causes a shift from the normal trotting gait to galloping gait with increase in speed of the 

treadmill in mice [45]. Since we observed a partial hopping phenotype using the dorsal EphA4 

conditional mutants, we asked if these neurons influence the ventral circuitry that integrates 

information on speed and gait during locomotion.  

To address this question, we subjected the EphA4 mutants to the treadmill locomotion 

paradigm. The gait of the mice was recorded with a high speed camera, (located beneath the 

treadmill belt) and the speed of the treadmill belt was gradually increased (between 6cm/s and 

25cm/s). The captured gaits were analyzed using the TreadScan software which provided 

homologous phase coupling values, a measure of the time at which both feet on the same girdle 

begin their strides (a complete step which comprises of a stance phase, where the foot is in 

contact with the treadmill belt, and a swing phase, where the foot is in the air). The phase 

coupling is scored on a scale from 0 to 0.5, where 0 is perfect hopping and 0.5 is perfect 

alternation of the limbs.  
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Figure 4.09: EphA4 ablation results in robust synchronous movements of the limbs but does not shift gait 

with increase in speed of locomotion. Representative images of EphA4+/+ [A] and EphA4-/- [B]. The white arrows 

indicate limb movement on the same girdle. Homologous phase coupling values for the forelimbs [C] and hindlimbs 

[D] from the indicated genotypes (red line indicates EphA4+/+ and green line indicates EphA4-/-) at 6cm/s. 9cm/s, 

13cm/s and 17cm/s from the indicated genotypes. n=2-5 mice per group. Error bars represent SEM. **p<0.01, 

***p<0.001 with t-test between genotype; p>0.05 with 2-way ANOVA to test interaction between genotype and 

speed.   

Since it is already known that the EphA4-/- mice hop, we first analyzed their response to 

increases in speed of locomotion in comparison to their wildtype littermates [Figure 4.09 A and 

B]. We found that for both forelimbs and hindlimbs, the wildtype mice displayed homologous 

phase coupling values between 0.3 and 0.4 at all speeds tested, thereby confirming that the limbs 

alternate during locomotion [red lines in Figure 4.09 C and D]. However, when we analyzed the 

forelimbs of EphA4-/- mice, we found a significant difference of homologous phase coupling 
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values (between 0.1 and 0.2) in comparison to the wildtype littermates at 9cm/s and 13cm/s 

[Figure 4.09 C]. Homologous phase coupling values for the hindlimbs of the EphA4-/- mice 

showed a robust and significant difference (between 0 and 0.1) compared to wildtype littermates 

at 6cm/s and 9cm/s [Figure 4.09 D]. However, we did not find any interaction between increase 

in speed locomotion and shift of gait between EphA4+/+ and EphA4-/- mice indicating that speed 

does not influence the degree of hopping.  

 

 

Figure 4.10: EphA4 ablation in the dorsal spinal cord using Pax7-Cre results in partial synchronous 

movements of the forelimbs and hindlimbs but does not shift gait with increase in speed of locomotion. 

Representative images of EphA4lx/-; Pax7-CreWT [A] and EphA4lx/-; Pax7-Cre+ [B]. The white arrows indicate limb 

movement on the same girdle. Homologous phase coupling values for the forelimbs [C] and hindlimbs [D] from the 

indicated genotypes (red line indicates EphA4lx/-; Pax7-CreWT and green line indicates EphA4lx/-; Pax7-Cre+) at 

6cm/s (n=8WT and 9KO) 9cm/s (n=9WT and 11KO), 13cm/s (n=9WT and 11KO), 17cm/s (n=8WT and 10KO), 

21cm/s (n=8WT and 4KO) and 25cm/s (n=4WT and 3KO) from the indicated genotypes. Error bars represent SEM. 



Results 

70 
 

**p<0.01, ***p<0.001 with t-test between genotype; p>0.05 with 2-way ANOVA to test interaction between 

genotype and speed.   

 

 

Figure 4.11: EphA4 ablation in dI4-6 using Lbx1-Cre results in partial synchronous movements of the 

forelimbs and hindlimbs but does not shift gait with increase in speed of locomotion. Example images of 

EphA4lx/-; Lbx1-CreWT [A] and EphA4lx/-; Lbx1-Cre+ [B]. The white arrows indicate limb movement on the same 

girdle. Homologous phase coupling values for the forelimbs [C] and hindlimbs [D] from the indicated genotypes 

(red line indicates EphA4lx/-; Lbx1-CreWT and green line indicates EphA4lx/-; Lbx1-Cre+) at 9cm/s (n=12WT and 

12KO), 13cm/s (n=12WT and 11KO) and 17cm/s (n=12WT and 9KO) from the indicated genotypes. Error bars 

represent SEM. *p<0.05 with t-test between genotype; p>0.05 with 2-way ANOVA to test interaction between 

genotype and speed.   

 

Since we observed a partial hopping phenotype in dorsal spinal cord specific mutants, we 

investigated the influence of increase in speed of locomotion on gait in these mice. When we 

ablated EphA4 using the Pax7-Cre and Lbx1-Cre mice and performed the treadmill locomotion 
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paradigm [Figure 4.10 A and B and Figure 4.11 A and B], we found small, yet significant, 

differences in the homologous phase coupling values between control (red line in Figure 4.10 C 

and D and Figure 4.11 C and D) and knockout (green line in Figure 4.10 C and D and Figure 

4.11 C and D) mice at certain speeds in both forelimbs (Pax7-Cre: WT=0.38±0.0032S.E and 

KO=0.30±0.016S.E at 13cm/s, p =0.00175; WT=0.39±0.0081S.E and KO=0.28±0.002S.E at 

17cm/s, p = 0.0039; WT=0.41±0.008S.E and KO=0.35±0.017S.E at 21cm/s, p=0.0058. Lbx1-

Cre: WT=0.40±0.01S.E and KO=0.35±0.014, p=0.019) and hindlimbs (Pax7-Cre: 

WT=0.34±0.019S.E and KO=0.26±0.025S.E at 9cm/s, p=0.032; WT= 0.36±0.012S.E and 

KO=0.31±0.015 at 13cm/s, p=0.032; WT=0.39±0.006S.E and KO=0.28±0.028S.E at 17cm/s, 

p=0.0027. Lbx1-Cre: WT=0.38±0.011S.E and KO=0.30±0.0306S.E at 13cm/s, p=0.020; 

WT=0.38±0.0109S.E and KO=0.32±0.025S.E at 17cm/s, p= 0.019). However, there was no 

interaction between increase in speed of locomotion and genotype demonstrating an absence of 

speed dependent shift in the gait of the mice.  

 

 Speed EphA4lx/-; Pax7-Cre+ EphA4lx/-; Lbx1-Cre+ T-test (p) 

Forelimbs 

9cm/s 
0.331567 

(SEM ± 0.01757) 

0.364306 

(SEM±0.005567) 

n.s. 

(0.079552) 

13cm/s 
0.33387 

(SEM  ± 0.011921) 

0.355653 

(SEM±0.014243) 

n.s. 

(0.25466) 

17cm/s 
0.337678 

(SEM  ± 0.014758) 

0.365709 

(SEM±0.012424) 

n.s 

(0.169356) 

Hindlimbs 9cm/s 
0.268326 

(SEM ± 0.025358) 

0.2989478 

(SEM ± 0.0341987) 

n.s. 

(0.486402) 
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13cm/s 
0.312627 

(SEM  ± 0.015731) 

0.3044 

(SEM ± 0.0306191) 

n.s. 

(0.813534) 

17cm/s 
0.283809 

(SEM  ± 0.028511) 

0.3223979 

(SEM ± 0.0253594) 

n.s 

(0.330459) 

Table 4.01: Summary of forelimb and hindlimb homologous phase coupling values after EphA4 ablation 

using Pax7-Cre and Lbx1-Cre. No differences in forelimb homologous phase coupling values were observed 

between the two dorsal Cre lines at 9cm/s, 13cm/ and 17cm/s. SEM is standard error of mean, n.s. not significant; p 

value > 0.05.   

 

Furthermore, we compared the two dorsal EphA4 mutants to access differences in the 

extent of the hopping. We found that both mutants display similar homologous phase coupling 

values at 9cm/s, 13cm/s and 17cm/s for both, forelimbs and hindlimbs, and hence are not 

different from each other [Table 4.1]. Therefore, the dorsal contribution of EphA4 must arise 

from the more restricted dI4-6 subpopulation (Lbx1-Cre), however, this result must be confirmed 

by performing control experiments, that is, by ablating EphA4 in the dI1-3 subpopulation. When 

we ablated EphA4 using Wnt1-Cre (dI1-2), we saw a partial hopping phenotype in the catwalk 

assay [Figure 4.08 F and I]. However, owing to the faulty expression of the Cre itself [Figure 

4.06], these experiments cannot be validated and must be repeated with a more suitable Cre line.   

 

4.2.3. EphA4 is required for skilled motor tasks that involve the motor cortex   

The spinal cord controls left-right coordination of locomotion in the absence of 

supraspinal input, however, voluntary movements are controlled by inputs from the motor cortex 

in the brain. Such inputs allow the modification of limb movements in response to challenges 

encountered in the environment of the animal (adaptive locomotion) [73]. EphA4 is expressed in 
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the motor cortex and is required for the guidance of the cortico-spinal tract (CST) axons (one of 

the many descending tracts from the brain to the spinal cord) [104]. Hence, we asked, if EphA4, 

expressed in the CST axons, is involved in controlling adaptive locomotion.  

To address this question, we ablated EphA4 specifically in the forebrain using Emx1-Cre 

mice. We then subjected the mice to the adaptive locomotion paradigm where we assessed the 

gait while the mice crossed two hurdles, 0.5cm and 1cm in height, during treadmill locomotion at 

different speeds [Figure 4.12 A, B, C and D]. The gait was recorded with two high speed 

cameras: one camera was placed beneath the treadmill belt, thus allowing us to visualize all four 

paws and making it suitable for analysis with the TreadScan software; the other camera was 

placed perpendicular to the treadmill belt such that we could observe the stepping movements of 

the mice in a side view. For the adaptive locomotion paradigm, we analyzed the gait of the mice 

using the data generated in the side view rather than from the bottom view as it allowed us to 

assess clearly each limb crossing the hurdle. We manually scored the gait of the mouse while 

crossing the hurdles (for both forelimbs and hindlimbs) by assigning the step as: 

 Alternation, if one paw crossed the hurdle before the other paw lifted off the treadmill belt 

 Hopping, if both paws lifted off the treadmill belt before either one crossed the hurdle 
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Figure 4.12: Adaptive locomotion is affected in forebrain specific EphA4 mutants. Example images of 

EphA4lx/-; Emx1-CreWT [A] and EphA4lx/-; Emx1-Cre+ [B] crossing a hurdle of 0.5cm height. Example images of 

EphA4lx/-; Emx1-CreWT [C] and EphA4lx/-; Emx1-Cre+ [D] crossing a hurdle of 1cm height. The white arrows 

indicate limb movement on the same girdle. Percent of hops over the 0.5cm hurdle by forelimbs [E] and hindlimbs 

[F] and 1cm hurdle by forelimbs [G] and hindlimbs [H] at 6cm/s (n=20WT and 22KO), 9cm/s (n=19WT and 

20KO), 13cm/s (n=19WT and 20KO) and 17cm/s (n=17WT and 9KO). Error bars represent SEM. *p<0.05, 

**p<0.01 with t-test between genotypes. Data were generated with Dr. S. Paixão. 

 

The number of hops were quantified and represented as a percentage of the total number 

of steps. EphA4lx/-; Emx1-Cre+ mice differed significantly from EphA4lx/-; Emx1-CreWT 

littermates while crossing the 0.5cm hurdle only at 9cm/s (WT=0%±0%S.E and 

KO=7.93%±3.25%S.E, p=0.026) with both forelimbs and hindlimbs (WT=6.16%±3.09%S.E and 

KO=21.56%±6.59%S.E, p=0.049) [Figure 4.12 E and F]. Interestingly, EphA4lx/-; Emx1-Cre+ 

mice displayed a two-fold increase in percentage of hopping compared to their wildtype 

littermates, when crossing the 1cm hurdle [Figure 4.12 G], at all speeds. However, they differed 

significantly only at 17cm/s (WT=8.92%±4.08%S.E and KO=35.04%±9.81%S.E, p=0.027) 
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[Figure 4.12 H]. Furthermore, no speed dependent shift in gait was observed in these mice with 

both hurdles.   

In the catwalk assay mentioned previously [Figure 4.08 B and I], EphA4lx/-; Emx1-Cre+ 

mice did not display a hopping phenotype compared to their wildtype littermates. To ensure that 

the hopping phenotype we observed is entirely due to EphA4-dependant cortical control of 

adaptive locomotion, we subjected the mice to the treadmill locomotion paradigm and analyzed 

the gait at different speeds using the TreadScan software [Figure 4.13 A and B]. Homologous 

phase coupling values from both forelimbs and hindlimbs revealed no differences between 

EphA4lx/-; Emx1-CreWT (red line in Figure 4.13 C and D) and EphA4lx/-; Emx1-Cre+ (green line 

in Figure 4.13 C and D) thus demonstrating that cortical control of adaptive locomotion does not 

influence left-right coordination of locomotion (that is usually controlled by the CPGs of the 

spinal cord).  
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 Figure 4.13: EphA4 ablation in the forebrain using Emx1-Cre results in preservation of asynchronous 

movements of the forelimbs and hindlimbs and does not shift gait with increase in speed of locomotion. 

Example images EphA4lx/-; Emx1-CreWT [A] and EphA4lx/-; Emx1-Cre+ [B]. The white arrows indicate limb 

movement on the same girdle. Homologous phase coupling values for the forelimbs [C] and hindlimbs [D] from the 

indicated genotypes (red line indicates EphA4+/+ and green line indicates EphA4-/-) at 6cm/s. 9cm/s, 13cm/s and 

17cm/s from the indicated genotypes. n=17-23 mice per group. Error bars represent SEM. p>0.05 with t-test 

between genotype; p>0.05 with 2-way ANOVA to test interaction between genotype and speed.   

 

When we used the adaptive locomotion paradigm in dorsal spinal cord mutants (EphA4lx/-

; Pax7-CreWT and EphA4lx/-; Pax7-Cre+ mice) to assess their stepping behavior over the 0.5cm 

and 1cm hurdles [Figure 4.14 A, B, C and D], we found a significant increase in the percentage 

of hopping of EphA4lx/-; Pax7-Cre+ mice over both hurdles compared to their control littermates 

at certain speeds in both the forelimbs (0.5cm hurdle: WT=2.88%±1.85%S.E and 

KO=30.03%±8.18%S.E at 9cm/s, p=0.015; WT = 1.09% ± 1.09% S.E and 

KO=19.28%±7.05%S.E at 13cm/s, p=0.033. 1cm hurdle: WT=1.19%±1.19%S.E and 

KO=42.76%±7.99%S.E at 13cm/s, p=0.0003) and hindlimbs (0.5cm hurdle: 

WT=8.37%±3.41%S.E and KO=29.90%±7.97%S.E at 13cm/s, p=0.034. 1cm hurdle: 

WT=14.92%±5.96%S.E and KO=49.18%±7.51%S.E at 13cm/s, p=0.0039; WT=7.5%±7.5%S.E 

and KO=55.33%±16.17%S.E at 17cm/s, p=0.027) [Figure 4.14 E]. This result is interesting since 

we observe a defect in adaptive locomotion in dorsal EphA4 mutants, where EphA4 in the CST 

axons is left intact. It may be possible that EphA4 is required in a cell-autonomous manner 

(defect in adaptive locomotion using Emx1-Cre) and in a non-cell autonomous manner (defect in 

adaptive locomotion using Pax7-Cre) to orchestrate precise voluntary behaviors (see discussion, 

section 5.2 for further consideration). 
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Figure 4.14: Adaptive locomotion is affected in dorsal spinal cord EphA4 mutants. Example images of 

EphA4lx/-; Pax7-CreWT [A] and EphA4lx/-; Pax7-Cre+ [B] crossing a hurdle of 0.5cm height. Example images of 

EphA4lx/-; Pax7-CreWT [C] and EphA4lx/-; Pax7-Cre+ [D] crossing a hurdle of 1cm height. The white arrows indicate 

limb movement on the same girdle. Percent of hops by forelimbs and hindlimbs while crossing both hurdles at 9cm/s 

(n=7WT and 10KO), 13cm/s (n=7WT and 8KO) and 17cm/s (n=5WT and 5KO) [E]. Error bars represent SEM 

*p<0.05, **p<0.01, ***p<0.001 with t-test between genotypes. 

  

Taken together, these results provide compelling evidence for the role of dorsally 

expressed EphA4 in CPG function since ablating EphA4 in dorsal spinal cord neurons leads to a 

partial hopping phenotype as observed in catwalk assays. However, dorsally expressed EphA4 

does not participate in speed dependent changes in gait of the mice since the partial hopping 

phenotype is observed in all speeds tested. Furthermore, EphA4 is also required for the cortical 

control of adaptive or voluntary behaviors as forebrain ablation of EphA4 leads to increased 

hopping when the mice are challenged with obstacles. Moreover, dorsal EphA4 mutants also 

display defects in adaptive behaviors suggesting their indirect involvement in voluntary 

locomotion.  

 

4.3. EphA4 is required for correct development of the dorsal spinal cord 

 

4.3.1. Ablation of EphA4 in the dorsal spinal cord causes a shallow dorsal funiculus 

Upon performing histological studies on fixed transverse sections of the lumbar spinal 

cord, we found that in control animals, the ventral tip of the dorsal funiculus (DF) extended until 

the central canal [Figure 4.15 A] and thus had a normal shape. Conversely, in EphA4lx/-; PGK-
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Cre+ mice we confirmed that the white matter of the DF was largely reduced and thus displayed 

a shallow DF morphology [104] [Figure 4.15 H].  

When we removed EphA4 from the forebrain alone, using Emx1-Cre (Emx1-Cre; 

EphA4lx/PLAP), we found that the DF morphology was similar to the control mice [Figure 4.15 B]. 

We quantified the size of the DF (depicted as a ratio of the distance to the ventral tip of the DF to 

the distance to the central canal [Figure 4.15 J]) and found no differences between control and 

forebrain specific (Emx1-Cre; EphA4lx/PLAP) mutants [Figure 4.15 I]. Using the spinal cord 

specific HoxB1-Cre (HoxB1-Cre; EphA4lx/PLAP), we deleted EphA4 from the entire spinal cord 

alone leaving EphA4 intact in the brain. We found that the DF morphology was similar to that 

displayed by the PGK-Cre mice [Figure 4.15 G and I], thus proving that the described phenotype 

arises from the spinal cord. 

Furthermore, we assessed the contribution of dorsally expressed EphA4 to the DF 

phenotype by removing EphA4 in the dorsal cord using Pax7-Cre (Pax7-Cre; EphA4lx/PLAP). We 

found a reduction in the size of the DF that was similar to that observed in the PGK-Cre and, the 

spinal cord specific HoxB1-Cre mutants [Figure 4.15 C and I]. Additionally, we also ablated 

EphA4 in specific subpopulations of the dorsal spinal cord to assess their contribution to the DF 

phenotype. We used Lbx1-Cre to knockout EphA4 from dI4-6 (Lbx1-Cre; EphA4lx/PLAP) and 

found a reduction in the size of the DF similar to the other spinal cord mutants [Figure 4.15 D 

and I]. When we used Wnt1-Cre to knockout EphA4 from dI1-2 (Wnt1-Cre; EphA4lx/PLAP), we 

found a shallow DF morphology and the reduction in size of the DF was comparable to other 

spinal cord mutants [Figure 4.15 E and I]. However, since we found ectopic expression of the 

Cre itself [Figure 4.06], we were unable to validate these results and hence could not conclude 

the contribution of EphA4 to the DF phenotype in these subpopulations of the dorsal spinal cord. 
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We also used Ptf1a-Cre to specifically remove EphA4 from dI4 (Ptf1a-Cre; EphA4lx/PLAP). We 

found no defect in the DF morphology and the size of the DF was comparable to wildtype mice 

[Figure 4.15 F and I]. This result was rather surprising owing to the ectopic expression of the Cre 

all over the spinal cord [Figure 4.07]. Hence, it would be worthwhile to investigate the 

expression of the Cre prior to concluding the contribution of EphA4 to the DF morphology in 

this subpopulation of the dorsal spinal cord.  
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Figure 4.15: The dorsal funiculus morphology is affected in EphA4 spinal cord mutants. (A-H).  Dark field 

images of transverse spinal cord sections from adult mice at the lumbar level of the genotypes indicated in each 

panel. The control, EphA4lx/- [A] and the forebrain specific EphA4 mutant, Emx1-Cre; EphA4lx/- [B] and Ptf1a-Cre; 

EphA4lx/- [F] displayed a similar morphology where the ventral tip of the dorsal funiculus extends until the central 

canal (arrows). Spinal cord specific EphA4 mutants, Pax7-Cre; EphA4lx/- [C], Lbx1-Cre; EphA4lx/- [D] and HoxB1-

Cre; EphA4lx/- [G], Wnt-Cre; EphA4lx/- [E] displayed a reduced or shallow DF (brackets) similar to PGK-Cre; 

EphA4lx/- [G] mutants. Bar graph depicting the size of the DF that was quantified in spinal cords sections from all 

genotypes [I] Error bars represents SEM. Scheme summarizing the phenotypes [J]. ***p<0.001 with t-test Scale 

bars: 500μm. Data in panels [A-D] were generated by Dr. S. Paixão. 

 

4.3.2. EphA4 is expressed in neurons that surround the dorsal funiculus in the embryonic 

spinal cord 

How does EphA4 contribute to the DF phenotype? Previously, EphA4 has been shown to 

be required for the guidance of the descending CST tract. Furthermore, CST tracing experiments 

in EphA4 null mice revealed aberrant midline misprojections and implicated it to be the cause of 

the shallow DF phenotype observed in these mice [104]. Since the CST axons arrive in the spinal 

cord during the first postnatal week of development [104], we first investigated the contribution 

of EphA4 in the embryonic spinal cord, prior to the arrival of CST axons. For this, we made use 

of the EphA4βgeo-PLAP gene-trap allele, where β-gal is expressed in the cell bodies and human 

placental alkaline phosphatase (PLAP) is expressed in the axons of EphA4 positive cells [107].  

To visualize the EphA4 (β-gal) positive cells, we performed X-gal staining using the 

EphA4PLAP mice (from now EphA4PLAP/+). We observed robust expression of EphA4 (X-gal), by 

embryonic day 13.5 (E13.5) all over the spinal cord. Upon closer observation, we found that the 

dorsal spinal cord contained a population of darkly stained EphA4 (X-gal) cells that were well 

separated from the midline [indicated with an arrow in Figure 4.16 A]. One day later in 
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development, that is, by E14.5, the DF began to form by extending ventrally [indicated with the 

stippled line in Figure 4.16 B]. The EphA4 (β-gal) cells were observed to line the ventral tip of 

the DF [indicated by an arrow in Figure 4.16 B], while continuing to be bisected by the midline, 

throughout development [Figure 4.16 C and C’].  

 

 

Figure 4.16: EphA4 expression in the developing spinal cord. β-galactosidase (β-gal) expression using 

EphA4βgeo-PLAP allele (EphA4PLAP) [107]. Epha4 (β-gal) is expressed all over the spinal cord except in the dorsal 

horns. Dorsally located EphA4 positive cells (β-gal) are indicated by an arrow and the dorsal funiculus is indicated 

by a stippled line [A-C]. At E13.5, the dorsal funiculus has not yet begun to be formed. Two populations of cells 

strongly express EphA4 (β-gal) on either side of the midline in the dorsal spinal cord [A]. By E14.5, the dorsal 

funiculus begins to form. The cells that strongly express EphA4 (β-gal) in the dorsal spinal cord, line the ventral tip 

of the developing dorsal funiculus [B]. By E15.5, the dorsal funiculus enlarges and the EphA4 (β-gal) expressing 

cells maintain their position [C, C’]. Scale bars: 250μm; Data in panels [B-C] were generated by Dr. S. Paixão. 

 

4.3.3. Ablation of EphA4 hinders the extension of the dorsal funiculus and causes the cells 

to shift to the midline 

We then asked how the DF development would be affected in the absence of EphA4. 

First, we crossed the two alleles of EphA4: EphA4PLAP and EphA4-/- , thus allowing us to 

visualize the knockout EphA4 neurons (from now EphA4PLAP/-) using the X-gal method 
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described above.  When we looked at the spinal cords of EphA4PLAP/- mice, we found that, at 

E13.5, the DF had still not developed similar to wildtype littermates [Figure 4.17 A]. One day 

later in development, at E14.5, however, the DF appeared much reduced or shallow in the 

knockouts compared to wildtype littermates and this effect was more pronounced in E15.5 spinal 

cords [Figure 4.17 B and C].   

Interestingly, we noticed that, in the EphA4PLAP/- spinal cords, at E13.5, the darkly 

stained group of EphA4 (β-gal) cells were bisected by the midline similar to the EphA4PLAP/+ 

controls [Figure 4.17 A]. At E14.5 and E15.5, however, we found that these cells were no longer 

bisected by the midline; but were mis-positioned medially and were now located at the midline 

[Figure 4.17 B and C].  

 

 

Figure 4.17: EphA4 ablation results in a shallow DF and results in a medial shift of the cells to the midline. X-

gal staining in sections from E13.5 EphA4PLAP/- spinal cords shows a group of darkly stained cells that are bisected 

by the midline [A]. In E14.5 [B] and E15.5 [C] spinal cords of EphA4PLAP/- sections, these cells move medially to 

the midline thereby hindering the ventral extension of the DF. Scale bars in [A] and [B] is 250μm. Data in panel [C] 

were generated by Dr. S. Paixão. 
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4.3.4. EphA4 ablation produces a ‘gap’ in the dorsal spinal cord midline 

What causes the cells that express EphA4 to stay bisected at the midline? From previous 

studies, it is already known that ephrinB3 is a repellant for EphA4 neurons of the CST and CPG 

at the midline [70, 99, 104]. We, therefore, examined the expression of ephrinB3 in embryonic 

EphA4PLAP/+ and EphA4PLAP/- spinal cords via in situ hybridization. Additionally, we also 

performed in situ hybridization for LacZ in order to be able to visualize the EphA4 positive cells 

in the same sections. 

  

 

Figure 4.18: EphA4 ablation leads to a gap between the ventral tip of the DF and the expression of midline 

markers. Double in situ hybridization (ISH) was performed to visualize the expression of ephrinB3 (brown) and 

EphA4 (LacZ – blue). ephrinB3 expression was observed until the ventral tip of the DF and the EphA4 positive cells 

were bisected by the midline in EphA4PLAP/+ at E14.5 and P0 [A and C] EphA4 cells (LacZ) move to the midline in 

an area that is devoid of ephrinB3 expression in EphA4PLAP/- and EphA4lx/PLAP; Lbx1-Cre+ sections at E14.5 and P0 

[B and D]. Another midline marker, Gdf10, shows the same midline gap in EphA4-/- sections [E and F]. Stippled 
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lines indicate the DF and brackets indicate the midline gap. Scale bars are 250μm. Data were generated by Dr. S. 

Paixão. 

 

As early as E14.5, the expression of ephrinB3 mRNA could be seen at the midline and it 

extended from the ventral tip of the DF to the central canal. A similar expression pattern was also 

observed in P0 wildtype spinal cords [Figure 4.18 A and C]. However, from E14.5 onwards, 

EphA4PLAP/- sections displayed a distinct ‘gap’ between the dorsal tip of ephrinB3 mRNA 

expression at the midline and the ventral tip of the DF. Interestingly, this ‘gap’ was populated by 

the mis-positioned EphA4 (LacZ) knockout neurons that aberrantly move to the midline in the 

EphA4PLAP/- spinal cords [Figure 4.18 B and D]. Moreover, when we assessed the mRNA 

expression of another midline marker, Gdf10, we found the same ‘gap’ in knockout cords that 

did not exist in wildtype littermates [Figure 4.18 E and F].       

Taken together, these results show that EphA4 expressed specifically in dorsal 

subpopulations of the spinal cord is required for the correct formation of the DF. EphA4, 

expressed in cells that line the DF are bisected by the midline, thus allowing the dorsal funiculus 

to extend ventrally. In the absence of EphA4, however, these cells move to the midline thereby 

hindering the ventral extension of the DF. Thus the DF phenotype observed in the knockouts is 

caused by the absence of EphA4 expressed in cells within the dorsal spinal cord rather than CST 

mis-projections as thought previously. 

Additionally, the EphA4 positive cells are normally repelled by ephrinB3, a known 

ligand for EphA4 that is expressed at the midline. In the absence of EphA4, these cells no longer 

feel the repulsion from the midline and move their position medially. Indeed, this area is entirely 

devoid of ephrinB3. We believe that this phenotype is not due to a downregulation of ephrinB3 
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(since we observe a similar shift of other midline markers), but is due to a shift of the entire 

midline.  

 

4.3.5. Identification of EphA4 positive cells using dorsal interneuron markers 

Next we asked what the identity of the EphA4 (β-gal) cells was that lined the ventral tip 

of the DF. To address this question, we made use of the EphA4PLAP mice. Spinal cords from 

E14.5 mice were dissected and cryo-protected. Since the resolution of the X-gal staining was too 

low to permit any quantification, we used anti-βgal antibodies to detect the presence of EphA4 

(β-gal) and combined it with antibodies for dorsal interneuron markers such as Brn3a and Lbx1. 

Brn3a is a POU-domain transcription factor [130] that is expressed in early born dI1-3 and dI5 

interneurons [31]. They ultimately give rise to glutamatergic neurons that finally migrate and 

settle in the deep layers of the dorsal horn. Brn3a is required for the proper specification of 

sensory neuron projections into the spinal cord [130]. We quantified the data by assigning x-y 

co-ordinates to the EphA4 (β-gal) and Brn3a double positive cells to assess their spatial 

distribution. X is the medial-lateral axis and 0 represents the midline, whereas Y is the dorsal-

medial axis and 0 represents the central canal. When we assessed the co-localization of EphA4 

(β-gal) positive and Brn3a positive neurons, we found a weak co-staining between them (~12%)  

[Figure 4.19 B, B’, B’’ and D]. 
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Figure 4.19: Co-localization of EphA4 (β-gal) with dorsal interneuron markers expressed in the developing 

spinal cord. E14.5 transverse spinal cord sections from EphA4PLAP mice stained for EphA4 (β-gal) and Lbx1 to 

label dI4-6 interneurons, [A, A’ and A’’] and Brn3A to label dI1-3 interneurons [B, B’ and B’’]. The stippled line in 

the images indicates the dorsal funiculus and the midline. Mediolateral frequency distribution of the percentage of 

EphA4+Lbx1 (black) and EphA4 + Brn3a (red) [C]. Bar graph depicting the average percentage of EphA4+Lbx1 

cells and EphA4+Brn3a cells [D]. n=3; 3 sections per embryos; *p=0.03. Scale bar is 50μm.      
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Additionally, we studied the co-localization of Lbx1 with EphA4 (β-gal). Lbx1 is a 

homeobox transcription factor [120], expressed in dI4-6 interneurons [121] and gives rise to the 

neurons that finally reside in the upper and superficial layers of the dorsal horn or migrate 

ventrally, depending on the time of their birth [121]. When we co-stained EphA4 (β-gal) with 

Lbx1, and quantified the data as mentioned above, we found a strong co-localization in cells that 

lined the ventral tip of the DF and were bisected by the midline [Figure 4.19 A, A’ and A’’]. On 

average, 30% of the Lbx1 positive cells were also positive for EphA4 (β-gal) [Figure 4.19 D].  

 

4.3.6. EphA4 specifically co-localizes with Zic2 in cells that surround the dorsal funiculus 

Recently, in a screen performed in the laboratory of Dr. Eloisa Herrera, Zic2, a 

transcription factor belonging to the zinc finger family of proteins [131], was shown to be a 

glutamatergic marker for the late born dILB interneurons [132]. When we co-stained Zic2 with 

EphA4 (β-gal) in E15.5 wildtype sections of the spinal cord, we found two populations of Zic2 

positive cells: a ‘dorsal’ population that surrounded the DF showed strong co-localization with 

EphA4 (β-gal) [Figure 4.20 A and A’], and a ‘central’ population that was located close to the 

central canal and largely devoid of EphA4 (βgal) [Figure 4.20 A and A’’]. Both ‘dorsal’ and 

‘central’ populations were bisected by the midline [Figure 4.20 C] and cell counts to quantify the 

double positive cells revealed that, on average, in the ‘dorsal’ population, 26% of the Zic2 

positive cells were also positive for EphA4 [Figure 4.20 D], whereas, in the ‘central’ population 

only 9% of the Zic2 positive cells were also positive for EphA4 (β-gal) [Figure 4.20 D]. 

Moreover, we found the co-localization of EphA4 (β-gal) with Zic2 to be specific to the spinal 

cord, since we did not detect any Zic2 expression in the motor cortex of these mice [Figure 4.20 

B]. 
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Figure 4.20: EphA4 and Zic2 specifically co-localize in cells that surround the dorsal funiculus. Immuno-

staining of EphA4 (βgal) and Zic2 in transverse sections of the spinal cord from E15.5 wildtype embryos. Strong co-

localization can be seen in the cell population that surrounds the dorsal funiculus [indicated by the stippled circle in 

A]. Zoomed in image showing co-staining of EphA4 (β-gal) and Zic2 [A’]. Zic2 cells in the more ventral population 

that was close to the central canal were largely devoid of EphA4 (β-gal) [indicated by the solid circle in A]. Zoomed 

in image showing absence of EphA4 (β-gal) in the ventral Zic2 population [A’’]. No co-localization between Zic2 

and Ctip2 was seen in the motor cortex [B]. Medio-lateral frequency distribution of the percentage of Zic2 and 

EphA4 (β-gal) double positive cells in the dorsal (black line) and central (red line) populations [C]. Bar graph 

depicting the average cell count of EphA4 (β-gal) and Zic2 double positive cells in the dorsal and central 
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populations [D; n=3 embryos, 3-5 images per embryos; ** p = 0.006; t-test]. Scale bar is 50μm [A-A’’] and 250μm 

[D].    

 

4.3.7. Dorsal interneurons positive for Zic2 move to the midline in EphA4 null mice 

We then asked whether the EphA4 (β-gal) cells that move to the midline were also 

positive for Zic2.  For this, we used E15.5 spinal cords from EphA4PLAP/+ and EphA4PLAP/- mice 

and checked for co-localization of EphA4 (β-gal) and Zic2 via immunofluorescence in the 

‘dorsal’ population. The data were quantified as mentioned previously, that is by assigning x-y 

co-ordinates to EphA4 (β-gal), Zic2 and EphA4 (β-gal)/Zic2 double positive cells to assess their 

spatial distribution [Figure 4.21 A-F and A’-F’]. The medial-lateral axis was represented on the 

X axis with 0 representing the midline, whereas, the dorsal-lateral axis was represented on the Y 

axis with 0 being representative of the central canal [Figure 4.21 G-J].  

We analyzed the expression of EphA4 (β-gal), Zic2 and EphA4 (β-gal) and Zic2 double 

positive cells in spinal cords from EphA4PLAP/+ mice and compared it to that from EphA4PLAP/- 

mice. When we plotted the medio-lateral frequency distributions as a nonlinear regression, fitted 

as a sum of two Lorentizian distributions [Figure 4.21 G-I] (the corresponding raw data are also 

provided [Figure 4.21 G’-I’]), and compared the centers of distribution, a pronounced and 

significant shift of EphA4 (β-gal) positive cells to the midline was observed in the knockouts. 

The wildtype spinal cords showed a bilateral distribution that was bisected by the midline 

[Figure 4.21 G-I]. In addition, for better visualization of the same phenotype, we plotted the 

digital coordinates of the cells [Figure 4.21 A’-F’]. Moreover, we found this shift only in the 

medio-lateral plane; the dorso-ventral positioning of the cells seem unaltered [Figure G’’ and 

H’’]. Likewise, ephrinB3-/- mice phenocopy EphA4 null mutants and display similar medio-

lateral shifts of Zic2 cells to the midline. The interaction of EphA4 and ephrinB3 has been shown 
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to important in preserving neuronal circuits in the spinal cord and is also required for the correct 

positioning of dorsal interneurons [100].          
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Figure 4.21: EphA4 ablation causes Zic2 positive dorsal interneurons to move to the midline.  Immuno-

staining of sections from E15.5 spinal cords of EphA4PLAP/+ and EphA4PLAP/- mice for EphA4 (β-gal) [A and B] and 

Zic2 [C and D] in the dorsal population. Digital coordinates of EphA4 (β-gal) [A’ and B’] and Zic2 positive cells 

[C’ and D’] from these sections to assess the spatial distribution. X axis is medial-lateral axis and Y axis is dorso-

ventral axis. Expression of EphA4 (β-gal) [E] and Zic2 [F] in the central population from these sections. Digital 

coordinates of Zic2 positive cells to assess their distribution [E’ and F’]. Medio-lateral frequency distribution of 

relative cells density of EphA4 (β-gal) [G], Zic2 [H] and EphA4/Zic2 double positive cells [I] in EphA4PLAP/+ (black 

line) and EphA4PLAP/- (red line) spinal cord sections represented as a nonlinear regression (sum of two Lorentizian 

distributions). p<0.0001 extra sum-of-squares F-test, comparing distribution centers. Raw data of the corresponding 

fitted curves [G’, H’ and I’]. *p<0.05, **p<0.01, ***p<0.001 t-test. Dorso-ventral frequency distribution of EphA4 

(β-gal) [G’’] and Zic2 positive cells [H’’] from [A and B]. Medio-lateral frequency distribution of Zic2 [J] from 

EphA4PLAP/+ (black line) and EphA4PLAP/- (red line) spinal cord sections. p>0.05. n=3-4, 2-5 images per embryo. 

Scale bars are 50μm.  
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Furthermore, we analyzed the expression of Zic2 in the ‘central’ population that was largely 

devoid of EphA4 (β-gal) and found that these cells did not shift their position in the medio-lateral 

plane to the midline in the knockouts [Figure 4.21 J].  

Together, these results show that the EphA4 positive cells that line the DF are positive for 

Zic2. This co-localization is rather specific for the cells that surround the DF since very few Zic2 

positive cells are also positive for EphA4 in the more ventral cell population and Zic2 is 

completely absent from the motor cortex of the brain. Furthermore, in the absence of EphA4, the 

cells that move to the midline express Zic2; however, this effect was highly specific to the cells 

that surround the DF, as Zic2 cells that did not express EphA4 (located close to the central canal) 

did not move to the midline in the absence of EphA4. 

 

4.3.8. Cells expressing EphA4 project ipsilaterally into the dorsal funiculus 

Next, we investigated the axonal projections of the EphA4 expressing cells by staining 

for the axonal marker, human placental alkaline phosphatase (PLAP) using the EphA4PLAP mice. 

NBT (Nitroblue tetrazolium) and BCIP (5-bromo-4chloro-3-indolyl phosphate), substrates for 

the enzyme alkaline phosphatase, produce an intense insoluble blue dye upon reaction, allowing 

visualization of the axonal projections.  

In sections from E14.5 wildtype (EphA4PLAP/+) spinal cords, the axonal projections of the 

dorsally located EphA4 cells form a tight bundle on either side of the midline and project into the 

DF. Furthermore, these axons enter the DF ipsilaterally and do not cross the midline [Figure 4.22 

A]. The same staining pattern was observed at E15.5 and in P1 spinal cords [Figure 4.22 B and 

C]. 
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Additionally, since the resolution of the PLAP staining was too low to allow us to track 

the projection of single axons, we used an EphA4 BAC-transgenic reporter line, Tg(EphA4-

EGFP), that was generated by GENSAT, where EGFP was placed under the regulatory elements 

of the EphA4 gene, thus labeling the cells bodies and axons of EphA4 expressing cells and 

allowing their visualization [133]. Longitudinal sections of spinal cords from post natal mice 

permitted us to follow to the axonal projections and indeed we were able to confirm that the 

axons make a rostral turn and enter the DF suggesting that this ipsilateral tract forms ascending 

projections [Figure 4.22 E-F]. 

 

Figure 4.22: EphA4 neurons project ipsilaterally into the DF. PLAP staining to visualize axons of EphA4 

positive neurons at E14.5 [A], E15.5 [B] and P1 [C]. Schematic diagram depicting the longitudinal axis along which 

the spinal cord was sectioned [D]. Longitudinal sections from Tg(EphA4-EGFP) mice stained with GFP show the 

axons projecting into the DF [E]. High magnification image of a single EphA4 positive neuron (in red) whose axon 

turns rostrally into the DF. The image was reconstructed and superimposed on the maximum projection of a GFP 
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stained longitudinal section [F]. Scale bars are 250μm in [A and B], 1mm in [C], 100μm in [E]and 20μm in [F]. Data 

were generated by Dr. S. Paixão. 

 

4.3.9. EphA4 knockouts display aberrant midline mis-projections 

We then asked if EphA4 in the dorsal neurons is required for the guidance of their axons. 

We first investigated the axonal projections of EphA4PLAP/- mice in comparison to their wildtype 

littermates using the PLAP staining in embryonic (E15.5) and postnatal (P0) spinal cords. We 

found that in the absence of EphA4 the axons fail to maintain their ipsilaterality and mis-project 

across the midline [Figure 4.23 A and B]. Also, since ephrinB3 is a known midline repellent of 

EphA4 [104] we investigated the axonal projections of EphA4 expressing neurons in ephrinB3-/- 

mice in early development (P0). To visualize the axons of EphA4 expressing cells, we first 

crossed the EphA4PLAP allele into ephrinB3+/+ (ephrinB3+/+; EphA4PLAP/+) and ephrinB3-/- 

(ephrinB3-/-; EphA4PLAP/+) mice. We found a similar phenotype as in the EphA4PLAP/- mice: 

extensive midline mis-projections of the EphA4 expressing neurons in the ephrinB3 knockouts 

compared to controls [Figure 4.23 C and D].     

To assess the contribution of EphA4 specifically in the dorsal neurons, we first crossed 

the EphA4PLAP allele into the EphA4lx mice. We found that the axons in heterozygous controls 

(EphA4lx/PLAP) behaved similar to those in EphA4PLAP/+ mice, that is, they formed ipsilateral 

projections that did not cross the midline [Figure 4.23 E]. However, when EphA4 was ablated 

specifically in the dorsal neurons, using Pax7-Cre (Pax7-Cre; EphA4lx/PLAP) and Lbx1-Cre 

(Lbx1-Cre; EphA4lx/PLAP), aberrant mis-projections of the axons over the midline was observed 

[Figure 4.23 G and F]. Furthermore, when we ablated EphA4 specifically in the forebrain using 

the Emx1-Cre (Emx1-Cre; EphA4lx/PLAP), we found no midline mis-projections of the dorsal 

neurons [Figure 4.23 H].  
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Collectively, these results demonstrate that the axons of EphA4 expressing cells are 

repelled by the midline that expresses ephrinB3, a known ligand of EphA4. This interaction 

allows EphA4 to guide the axons of dorsal neurons into bundles that project ipsilaterally into the 

DF. Ablating EphA4, specifically in the dorsal spinal cord, causes aberrant midline mis-

projections.  

 

 

Figure 4.23: Aberrant midline misprojections in EphA4 mutant mice. PLAP staining to visualize the axons of 

EphA4 positive cells from the indicated genotypes of E15.5 and P0 mice. The EphA4 axons remained ipsilateral in 

EphA4PLAP/+ mice [A], ephrinB3+/+; EphA4PLAP/+ mice [C] and forebrain specific EphA4 knockout mice [H]. 

Extensive mis-projections were observed in all other genotypes analyzed [D-G] n=3; scale bar = 50μm. Data in 

panels [A, B, E-H] were generated by Dr. S. Paixão  
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4.3.10. EphA4 ablation results in secondary spinal cord defects but leaves the overall 

laminar structure of the spinal cord intact 

Sensory axon projections that arise from the dorsal root ganglia (DRG) enter the spinal 

cord along an ipsilateral corridor in the dorsal horn [134]. Since EphA4 is not expressed in the 

DRGs [135] and EphA4 knockout mice display defects in the DF morphology and dorsal midline 

defects, we asked if the incoming sensory axon projections are indirectly perturbed as a 

consequence of these phenotypes.      

To address this question, we performed immunofluorescence stainings using markers of 

nociceptive and proprioceptive neurons. CGRP (calcitonin gene-related peptide), is a commonly 

accepted marker for the peptidergic subset of nociceptive sensory neurons [136, 137]. In 

EphA4+/+ sections, we found that the CGRP positive axons entered the spinal cord and mostly 

remained ipsilateral [Figure 4.24 A]. Conversely, in EphA4-/- sections, we found that a large 

proportion of the CGRP positive axons aberrantly crossed the midline in the area just beneath the 

DF and thus displayed contralateral projections [Figure 4.24 B]. 

Furthermore, when we quantified this result by measuring the intensity of staining in an 

area just below the DF and normalized it to an area devoid of any staining [indicated by the solid 

and stippled boxes respectively in Figure 4.24 B] in sections from all genotypes, we found a 

significant difference in the staining intensity in sections from EphA4-/- mice compared to their 

wildtype littermates. 

Additionally, since the ephrinB3-/- mice pheno-copy the EphA4-/- mice, we analyzed the 

CGRP positive axons in spinal cord sections from these mice. The ephrinB3+/+ sections displayed 

ipsilateral CGRP axon projections as expected [Figure 4.24 C and E], however, to our surprise; 
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we found that the CGRP axons remained ipsilateral in the ephrinB3-/- mice [Figure 4.24 D and 

E]. 

 

 

Figure 4.24: Nociceptive sensory afferents aberrantly mis-project in EphA4-/- mice. Immunostaining to detect 

CGRP positive nociceptive sensory axons in cryo-protected sections from EphA4+/+ [A], EphA4-/- [B], EphrinB3+/+ 

[C] and ephrinB3-/- [D] P1 mice. The stippled line indicates the DF. Quantification of staining intensity from the 

indicated genotypes [E]. *p = 0.01; t-test; n=3; 3-4 images per mouse; scale bar = 50μm. Data in panels [A] and [B] 

were generated by Dr. S. Paixão.  
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Figure 4.25: Proprioceptive sensory afferents are not affected in EphA4-/- mice. Immunostaining to detect 

parvalbumin positive proprioceptive sensory axons in cryo-protected sections from EphA4+/+ [A], EphA4-/- [B], 

EphrinB3+/+ [C] and ephrinB3-/- [D] P1 mice. The stippled line indicates the DF. n=3; scale bar = 50μm. Data in 

panels [A] and [B] were generated by Dr. S. Paixão.  

 

When we used parvalbumin as a marker to label proprioceptive sensory fibers [138] and 

performed immunofluorescence stainings, we found that the proprioceptive sensory afferents 

entered the spinal cord via the DF and projected ipsilaterally in sections from both EphA4 and 

ephrinB3 wildtype mice [Figure 4.25 A, and C]. Similarly, we found ipsilateral projections of 

parvalbumin positive sensory axons in sections from both EphA4 and ephrinB3 knockout mice 

[Figure 4.25 B and D].   
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Figure 4.26: The laminar distribution of the dorsal spinal cord is preserved in EphA4 knockout mice. Nissl 

staining in cryo-protected sections from EphA4PLAP/+ [A] and EphA4PLAP/- [B] P1 mice. High magnification images 

of dorsal spinal cord with stippled lines indicating the laminar distribution in both genotypes [A’ and B’]. n=3; scale 

bar = 200μm.   

 

Finally, since we observed a shift of dorsal interneurons to the midline and aberrant 

midline projections of their axons, coupled with secondary defects in sensory axon 

misprojections, we investigated the laminar organization of the dorsal spinal cord. We performed 

Nissl staining to label the nuclei in cryo-protected sections from EphA4PLAP/+ and EphA4PLAP/- 

mice and found no alterations in the laminar distribution except the shallow DF [Figure 4.26 A 

and B].Together, all the morphological phenotypes described above point to the critical role of 

EphA4 in the dorsal spinal cord in guiding dorsal interneurons to their correct positions along 

with maintaining their axonal projections in an ipsilateral and ascending corridor. Ablating 
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EphA4 leads to a shift of these dorsal interneurons to the midline, thus hindering the ventral 

extension of the DF. Furthermore, the axonal projections of these neurons aberrantly cross the 

midline and project contralaterally. Additionally, majority of the cells that shift to the midline are 

also positive for Zic2. Moreover, in the absence of EphA4, secondary phenotypes were observed 

in the guidance of nociceptive axons.  
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5. Discussion 

 

5.1. The contribution of EphA4, expressed specifically in the dorsal spinal cord, to left-

right coordination of locomotion 

The last decade has seen a tremendous increase in the interest to understand the structure 

and the underlying molecular mechanisms that govern locomotory circuits of the spinal cord. 

Locomotory behavior entails the rhythmic and sequential stepping of the right and left limbs and 

is controlled by organized pools of interneuron circuits, collectively termed as the central pattern 

generators (CPGs), which reside in the ventral spinal cord [67, 139-141]. Therefore, in the past, a 

number of studies have focused their attention on this region and have shed light on the identity 

and role of these distinct interneuron pools in CPG function [38, 44, 142-145]. Indeed, certain 

studies have made use of EphA4 and ephrinB3 knockout mice, which display midline axon 

guidance defects and consequently, a rabbit-like hopping gait, to understand the requirement of 

EphA4 in the ventral spinal cord with respect to CPG function [104, 105, 146]. However, the 

widespread expression of EphA4 along the dorsal-ventral axis of the spinal cord raises the 

possibility of a dorsal contribution in locomotory behaviors. We therefore investigated the role of 

dorsally expressed EphA4 in left-right coordination of locomotion, by spatially restricting its 

expression to various regions of the brain and spinal cord, using specific Cre lines.  

Like the EphA4 null mice, complete ablation of EphA4 (PGK-Cre) produces synchrony, 

whereas, littermate control mice display an alternating gait. Furthermore, the alternating gait is 

preserved when EphA4 is ablated in the forebrain alone (Emx1-Cre), however, ablating EphA4 

specifically in the entire spinal cord (HoxB1-Cre) produces synchrony, reinforcing the fact that 

EphA4, expressed in the spinal cord, is involved in left-right coordination of locomotion. 
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Specifically ablating EphA4 in the dorsal interneurons produces an interesting partial hopping 

phenotype. The mice display 3 distinct gaits within the same experiment – synchrony, alternation 

and intermediate. Indeed, ablating EphA4 from the entire dorsal spinal cord (dI1-6), using Pax7-

Cre, or from a more restricted subpopulation of dorsal interneurons (dI-4-6), using Lbx1-Cre, 

produces the same phenotype. Furthermore, experiments conducted by Dr. S. Paixão, using the 

ventral midline tracing technique [104], to label commissural interneurons, substantiate these 

results as they reveal aberrant midline misprojections specifically in dorsal spinal cord EphA4 

mutants (using Lbx1-Cre), in addition to ventral midline crossings observed in control spinal 

cords [100]. Hence, it is compelling to conclude that the dorsal contribution of EphA4 to left-

right coordination of locomotion must arise from this subpopulation of interneurons (dI4-6). 

However, it is necessary to draw attention to the findings of experiments conducted in the 

laboratory of Prof. Ole Kiehn, since they are in disagreement with the observations presented 

here [105]. This study utilized isolated spinal cord preparations from EphA4 knockout mice to 

test drug-induced fictive locomotion. To determine the dorsal versus ventral contribution of 

EphA4 to left-right coordination of locomotion, localized lesions were made to sever the dorsal 

and/or the ventral commissure prior to inducing fictive locomotion. The authors found that a 

lesion of the ventral commissure alone rescued the synchronous firing pattern, whereas, the 

synchronous firing pattern was preserved upon the lesion of the dorsal commissure. Hence, they 

conclude that EphA4 expressed in the dorsal spinal cord is dispensable for left-right coordination 

of locomotion [105].  

This disparity could be explained by the different methods employed in both studies to 

assess the contribution of dorsally expressed EphA4. So far, fictive locomotion has been elicited 

successfully in spinal cords isolated from P0-P2 mice [45, 55, 67, 103, 105, 147, 148]. 
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Preparations from older mice have been attempted in the past [149-153], however, eliciting 

fictive locomotion from these preparations are challenging as they pose problems, such as 

hypoxia, owing to the increased generation of myelin that hinders adequate oxygenation of the 

spinal cord [151]. Conversely, the experiments conducted in our study utilized adult intact mice 

in treadmill locomotion. It is possible that the circuits controlling locomotion undergo ‘hard-

wired’ changes during the development of the animal. If this is true, it is probable that dorsally 

expressed EphA4 interneurons become functionally mature at a time point later than that 

investigated using fictive locomotion, thus explaining the difference in results. 

How does dorsally expressed EphA4 contribute to left-right coordination of locomotion? 

Extensive research on the locomotor circuitry of the spinal cord has revealed that alternating 

movements are orchestrated by the balanced interplay of inhibitory commissural interneurons 

that promote left-right alternation [154-158], and excitatory commissural interneurons that 

promote synchrony [46]. Based on the transcription factors they express, five classes of 

interneurons have been described in the ventral spinal cord [Table 5.01] that participate in left-

right coordination of locomotion [38, 44, 46, 142, 144, 145, 155, 156, 159]. 

 

Inhibitory V0D; dI6 Contralateral Left-right pathway 

Excitatory 
V2a Ipsilateral Speed dependent changes of gait/ project to iCINs 

V0V; V3 Contralateral Synchrony pathway/Rhythmicity of motor neurons 

Table 5.01: Summary of ventral interneuron classes that participate in CPG function [140] 

 

In order to understand how dorsally expressed EphA4 might contribute to left-right 

coordination of locomotion, it might be beneficial to consider the potential projection of EphA4 
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positive dorsal interneurons, to each of these classes in isolation, as depicted in the simplified 

models below:  

 

1. EphA4 positive dorsal interneurons project to iCINs (inhibitory commissural 

interneurons):  

V0D and dI6 neurons, present in lamina VIII of the ventral spinal cord [58], are two 

classes of CINs that have been shown to participate in generating left-right limb movements. 

These neurons project to the contralateral motor neurons and inhibit their function. Together with 

excitatory commissural interneurons, which promote synchrony of the motor neurons, they lead 

to alternating limb movements [Figure 5.01 A]. Indeed, ablating the V0D population using Dbx1 

mutants and the dI6 population using Dmrt3 mutants, leads to a loss of inhibition to the motor 

neurons and results in synchronous limb movements in these mice [Figure 5.01 B] [35, 55].  

 

Figure 5.01: Simplified scheme depicting the hypothetical outcome of dorsal EphA4 projections to iCINs in 

the ventral spinal cord. [A] Ipsilateral projection of dorsally expressed EphA4 to the iCINs (V0D and dI6) leads to 

alternation of limbs in wildtype mice. [B] Contralateral misprojection of dorsally expressed EphA4 to iCINs leads to 

no limb movement rather than hopping in EphA4 knockout mice.   
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The majority of the EphA4 expressing neurons have been shown to be excitatory in 

nature [104, 105]. Therefore, if EphA4 positive dorsal interneurons project to iCINs, they would 

activate them, leading to the inhibition of the contralateral motor neurons, as depicted in Figure 

5.01 A. However, abrogating dorsally expressed EphA4 leads to aberrant projections over the 

midline, resulting in the activation of the iCINs and inhibition of motor neuron function in both 

halves of the spinal cord simultaneously [Figure 5.01 B]. The increased inhibition would result in 

no limb movements rather than the synchronous gait that is observed in the EphA4 knockout 

mice. Additionally, this hypothesis is in contradiction with other studies, which have shown that 

the hopping phenotype in EphA4 mutants is a result of increased excitation and decreased 

inhibition of circuits impinging on motor neurons [105]. Hence, the projection of EphA4 positive 

dorsal interneurons to iCINs is highly unlikely.  

 

2. EphA4 positive dorsal interneurons project to eCINs (excitatory commissural 

interneurons):  

V0V and V3 interneurons are excitatory commissural interneurons [46, 55]. V0V 

interneurons, marked by the transcription factor Evx1, participate in the synchrony pathway of 

limb movements. However, alternating limb movements are achieved together with iCINs [55, 

140]. V3 interneurons, marked by the transcription factor Sim1, are thought to be dispensable for 

left-right coordination of locomotion, but required for maintaining stable rhythmicity of motor 

neurons [46].  
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Figure 5.02: Simplified scheme depicting the hypothetical outcome of dorsal EphA4 projections to eCINs in 

the ventral spinal cord. (A) Ipsilateral projection of dorsally expressed EphA4 to the eCINs (V0V and V3) leads to 

alternation of limbs in wildtype mice. (B) Contralateral misprojection of dorsally expressed EphA4 to eCINs leads 

to hopping in EphA4 knockout mice.  

 

The axonal projections of EphA4 positive excitatory dorsal interneurons impinging upon 

eCINs could lead to the activation of contralateral motor neurons, and together with functionally 

active iCINs, produce asynchronous limb movements that are typical of wildtype mice [Figure 

5.02 A]. However, the misprojecting axons of dorsal EphA4 mutants could activate eCINs in 

both halves of the spinal cord leading to strengthening of the synchronous pathway that could 

override the inhibition of iCINs. Thus, the resultant increased excitatory drive of the 

synchronous pathway could be the underlying reason for synchronous limb movements observed 

in these mice. Indeed, previous studies have demonstrated that ablation of EphA4 produces the 

hopping phenotype as a result of an imbalance between the excitation and inhibition across the 

midline [Figure 5.02 B][105]. Taken together, it is possible that EphA4 expressing dorsal 

interneurons project to eCINs and integrate into the synchronous pathway to maintain left-right 

coordination of locomotion. 
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3. EphA4 positive dorsal interneurons project to eIINs (excitatory ipsilateral interneurons):  

V2a interneurons have been described as an excitatory and ipsilaterally projecting class 

of ventral spinal cord neurons that are indirectly required for maintaining left-right coordination 

of locomotion [61, 62]. These interneurons, marked by the transcription factor, Chx10 [45, 61], 

are known to impinge upon inhibitory commissural V0 interneurons [61].  

The potential projection of EphA4 positive dorsal interneurons to V2a interneurons, 

would activate them, leading to the activation of V0 iCINs. Together with eCINs, they may be 

able to produce alternating limb movements [Figure 5.03 A]. However, the aberrant midline 

misprojections in dorsal EphA4 mutants would lead to activation of V0 iCINs and subsequent 

inhibition of motor neurons, bilaterally, which would result in no limb movements, rather than 

the hopping gait observed [Figure 5.03 B]. Hence, the projection of dorsally expressed EphA4 to 

V2a interneurons is unlikely.  

 

Figure 5.03: Simplified scheme depicting the hypothetical outcome of dorsal EphA4 projections to eIINs in 

the ventral spinal cord. (A) Ipsilateral projection of dorsally expressed EphA4 to the eIINs (V2a) leads to 

alternation of limbs in wildtype mice. (B) Contralateral misprojection of dorsally expressed EphA4 to eIINs leads to 

no limb movement rather than hopping in EphA4 knockout mice.   
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Furthermore, V2a interneurons are recruited by iCINs and integrate information of speed-

dependent changes in gait [45, 60]. Indeed, these interneurons were shown to be required at very 

high speeds during treadmill locomotion. Ablating these neurons led to limb synchronization 

during shift in gait, that is, from trotting to galloping at high speeds, but preserved left-right 

coordination at low speeds [45]. However, dorsal EphA4 mutants do not display any changes in 

gait with an increase of treadmill speed, thereby, indicating that they do not project to V2a 

interneurons.  

 

Figure 5.04: Simplified model to depict the projection of dorsal interneurons expressing EphA4 to CPG 

interneurons in the ventral spinal cord. (A) Ipsilateral projection of dorsally expressed EphA4 to the CPGs leads 

to alternation of limbs in wildtype mice. (B) Contralateral misprojection of dorsally expressed EphA4 to the CPGs 

leads to hopping in EphA4 knockout mice.   

 

Taken together, the results presented here implicate dorsally expressed EphA4 in CPG 

function [Figure 5.04A and B]. The loss of dorsal EphA4 leads to aberrant projections over the 

midline which may cause bilateral activation of motor circuits and, as a consequence, 

synchronous limb movements. However, since the loss of dorsal EphA4 produces a partial 

hopping phenotype, it is possible, that these interneurons impinge on ventral interneurons that 
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are known to participate in left-right coordination, eCINs being the most likely candidates. 

Further studies are required to map the connectivity of dorsal interneurons expressing EphA4 to 

specifically describe their function in locomotory behaviors.     

 

5.2. EphA4-dependent cortical control of voluntary stepping behavior  

Stereotypic and repetitive stepping movements are controlled by the spinal interneurons 

of the CPG network [[140] and references within]. However, supraspinal input from different 

regions of the brain, such as the motor cortex, brainstem and cerebellum are required to allow the 

animal to adjust its limb trajectory on demand [160, 161]. The role of the motor cortex and CST 

have been well studied in generating these movements, and are often termed as adaptive [73], 

voluntary [160] or goal oriented [72]. They are distinct from those generated by spinal locomotor 

circuits, as they are neither stereotypic nor repetitive [72]. However, the precise interplay 

between CPG and CST neurons is essential to allow the animal to respond appropriately to 

various environmental cues. 

The results presented here demonstrate the requirement of EphA4 in generating precise 

voluntary movements. Wildtype mice subjected to voluntary stepping over obstacles in a 

treadmill paradigm display alternating limb movements over the hurdles, whereas, EphA4 full 

knockouts display synchronous movements. We ablated EphA4 specifically in the forebrain 

(using Emx1-Cre), thereby preserving the spinal cord circuitry, and tested the cortical 

requirement of EphA4 in voluntary locomotion. We found that these mice present robust 

bilateral limb movements over the obstacles, while exhibiting alternating movements when 

subjected to normal treadmill locomotion (that is, in the absence of obstacles). Additionally, CST 

tracing experiments performed by Dr. S. Paixão provides anatomical evidence to support the 



Discussion 

113 
 

observed voluntary stepping behavior in these mice. Usually, the CST innervates the 

contralateral half of the spinal cord. As EphA4 is a repulsive guidance cue [75, 86, 100], its 

interaction with ephrinB3, expressed at the spinal cord midline, promotes repulsion of the 

incoming CST axons in wildtype mice [70], thus confining them to the contralateral half of the 

spinal cord. However, forebrain specific and EphA4 full knockouts display aberrant midline 

projections, thus innervating the spinal cord bilaterally.  

Furthermore, experiments conducted in the laboratory of Prof. John Martin [72, 100] 

provide physiological evidence of a bilateral motor phenotype in these mice. Electrical 

stimulation of the motor cortex in wildtype mice evoked contralateral forelimb muscle activity, 

whereas, both contralateral and ipsilateral muscle activity was recorded in forebrain specific 

EphA4 mutants at the same threshold currents [72, 100]. These results provide strong evidence 

for the requirement of cortical EphA4 in a cell-autonomous manner in generating voluntary 

movements. 

To our surprise, voluntary stepping experiments using dorsal spinal cord specific EphA4 

mutants (with Pax7-Cre), where EphA4 in the CST is spared, also display a similar bilateral 

response. Additionally, CST tracings demonstrate bilateral innervation of the spinal cord [100] 

and motor cortex stimulation leads to bilateral muscle activity [100] in these mice. Furthermore, 

as these mutants also display a shallow DF and display defects in patterning of premotor dorsal 

interneurons. Therefore, the defect in voluntary stepping could arise due an accumulation of all 

these phenotypes and hence, it is imperative to conclude that, EphA4 also acts in a non-cell 

autonomous manner in contributing to voluntary stepping behavior. The rodent CST is known to 

participate in motor function, indirectly, via projections to premotor spinal interneurons, rather 

than direct projection to motor neurons [162]. Thus, all together, the voluntary stepping behavior 
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observed in forebrain and dorsal EphA4 mutants, points to the importance of EphA4/ephrinB3 

signaling in guiding the contralateral innervation of the CST and the likelihood of its projections 

to CPG neurons.   

 

5.3. EphA4-dependent development of the dorsal funiculus and guidance of descending 

and ascending tracts 

The dorsal funiculus (DF) is an area in the spinal cord that is populated by a multitude of 

ascending and descending tracts that serve to link the brain and spinal cord and establish 

communication between them [68]. These tracts extend longitudinally and typically traverse long 

distances along the anterior-posterior axis of the body to reach their final destinations. A classic 

example of such a tract is the CST, one of the longest axon tracts in the CNS, which arises in the 

motor cortex, decussates at the level of the hindbrain [68, 96] and innervates the spinal cord at 

the cervical and lumbar level [96]. A number of short and long-range guidance systems 

participate in guiding the CST through the brain [68], including EphA4/ephrinB3 signaling, 

which prevents the recrossing of the CST once it enters the spinal cord [70, 72, 100, 104, 163].       

The bilateral CST phenotype observed in the EphA4 mutants, led us to perform further 

anatomical investigations in the spinal cord. Ablating EphA4 leads to the development of a 

shallow dorsal funiculus. Indeed, ablating EphA4 in the dorsal spinal cord alone is sufficient to 

produce this phenotype. Previous studies have implicated the bilateral innervation of the CST to 

be the underlying cause of the shallow DF [104]. However, examination of spinal cords from 

forebrain specific EphA4 mutants did not reveal defects in the DF anatomy, thereby proving that 

the correct development of the DF is intrinsic to the spinal cord rather than due to the innervating 
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CST axons. Indeed, the defect in the development of the DF arises during embryogenesis itself, 

that is, before the arrival of the CST in the spinal cord.  

Upon closer examination of the developing spinal cord, we found that, EphA4 expressed 

in cells surrounding the DF are critical in directing the dorsal-ventral extension of the DF. 

EphA4 full knockouts display a medial shift of dorsal interneurons and aberrant projections of 

their axons over the midline, along with a shallow DF. Ablating EphA4 only in the dorsal spinal 

cord, using Lbx1-Cre is sufficient to produce the DF defect [100]. We, therefore, conclude that 

EphA4, specifically expressed in cells lining the DF, is crucial in preserving the anatomy of the 

dorsal spinal cord.  

A screen performed to identify the EphA4 positive neurons that surround the DF revealed 

Zic2, a transcription factor, to be abundantly expressed in these neurons. This result is coherent 

with chromatin immunoprecipitation (ChIP) assays, performed in the laboratory of Dr. Eloisa 

Herrera, from wildtype spinal cords, demonstrating the binding of Zic2 to the region 

immediately upstream of the EphA4 transcription start site, and thus regulating its expression 

[132]. Indeed, the cells that move to the midline, upon EphA4 ablation, are also positive for 

Zic2. The regulation of EphA4 expression by Zic2 is specific to the cells that surround the DF, 

since Zic2 positive cells, located close to the central canal are largely devoid of EphA4 and do 

not shift to the midline in EphA4 knockouts.          

What causes the medial shift of EphA4 expressing cells to the midline? The interaction of 

Eph receptors with its ligands, ephrins, promotes growth cone collapse via modulation of Rho 

GTPases [164, 165], which are key downstream targets of Ephs and regulators of the 

cytoskeleton, thus promoting repulsion [102].  To test if EphA4 positive dorsal spinal cord 

neurons are also repelled by ephrinB3, Dr. S. Paixão performed in vitro growth cone collapse 
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assays using cultures of dissociated dorsal spinal cord neurons from Zic2-GFP transgenic mice 

[100] and stimulated them with ephrinB3-Fc or Fc alone. Indeed, stimulation with ephrinB3-Fc 

produced a two-fold increase in growth cone collapse compared to stimulation with Fc alone, 

indicating that these neurons are repelled by interaction with ephrinB3. Furthermore, spinal cords 

from mice with impaired downstream EphA4 signaling (using EphA4-GFP mice, where the 

intracellular domain of EphA4 is replaced with GFP, thus blocking EphA4-mediated forward 

signaling [106]), and ephrinB3 knockout mice [70], showed a similar shift of EphA4+;Zic2+ 

cells to the midline and aberrant projections by their axons [100]. Additionally, the position of 

ephrinB3 positive cells, that reside at the midline, is shifted ventrally, exposing a ‘gap’ that is 

devoid of the ephrinB3 expression, in the midline. This ‘gap’ is occupied by cells that are 

positive for Zic2 and their aberrantly projecting axons in EphA4 knockout spinal cords. 

Moreover, upon close examination of the axonal projections of EphA4 positive cells, we 

found that they bundle into fascicles and project ipsilaterally into the ventral tip of the DF in 

wildtype spinal cords. Indeed, longitudinal spinal cord sections from the transgenic reporter line, 

EphA4-EGFP, demonstrate the rostral turn that axons from EphA4 positive cells make as they 

enter the DF. Furthermore, the descending CST axons exit the DF via the same area in the DF 

(ventral tip) and thus enter and innervate the spinal cord [100].  

    Taken together, these data underline the importance of the interaction of EphA4 with 

ephrinB3 in the correct development of the dorsal spinal cord. Our hypothesis is that ablation of 

EphA4 renders the axons of dorsal interneurons incapable of sensing the midline repellent, 

ephrinB3, and thus leads to aberrant axonal projections across the midline. Furthermore, this 

causes the cells bodies to shift their position to the midline, thereby, hindering the ventral 

extension of the DF and producing a shift in the expression of the EphA4 midline repellent, 



Discussion 

117 
 

ephrinB3 [Figure 5.05 A and B]. Since it is known that axons usually explore the surrounding 

environment and influence the location of the cell body [166, 167], this hypothesis is highly 

plausible, however, further experimentation, using live-cell imaging is required to confirm its 

validity. 

The axons of EphA4 positive cells usually form ascending ipsilateral projections into the 

DF. The ipsilaterality of these axons is maintained by EphA4/ephrinB3 signaling. Similarly, the 

descending CST axons also utilize EphA4/ephrinB3 signaling to prevent them from recrossing at 

the level of the spinal cord. The fact that both the ascending and descending tracts utilize the 

same signaling pathway to confine their axons to the appropriate side of the spinal cord indicates 

that the ascending tract may serve as pioneering axons that the descending tracts use to enter the 

spinal cord. It may also be possible that the axons of the two tracts interact; however, 

investigating this requires the identification of distinct markers belonging to these tracts and the 

development of tools that would aid in the visualization of these tracts. 

Although we provide evidence that the axonal projections of EphA4+Zic2+ cells form 

ascending ipsilateral tracts, we are far from understanding their nature and function. A number of 

studies have revealed the existence of ipsilateral ascending tracts that arise in the spinal cord 

[68]. The dorsal spinal gray matter can be divided into 7 distinct laminae that convey 

somatosensory information from the spinal cord to higher brain centers [168]. The dorsal spinal 

cord predominantly receives sensory information from the dorsal root ganglia (DRG). Sensory 

projections enter the spinal cord by extending their axons to the dorsal root entry zone (DREZ) 

and innervate the dorsal spinal cord at various locations of the dorsal horn [169]. Upon entry into 

the spinal cord, they project extensively to spinal interneurons in different laminae, which then 
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form ascending projections that relay information related to different modalities such as touch, 

proprioception, pain and temperature to appropriate brain regions [170-175] 

 

Figure 5.05: Simplified model to depict the formation of the DF and guidance of ascending tracts in the dorsal 

spinal cord. (A) Wildtype: The DF extends almost until the central canal. EphA4+Zic2+ cells (orange) surround the 

DF and are bisected by the midline. The projections of these cells ascend and enter the DF via an ipsilateral corridor 

(black). Zic2+ cells close to the central canal (blue) are devoid of EphA4 and are bisected by the midline. (B) 

EphA4 knockout: The DF is shallow. Absence of EphA4 causes these cells (orange) to move to the midline. The 

projections of these cells ascend and enter the DF contralaterally due to aberrant crossing of the midline (red). Zic2+ 

cells close to the central canal (blue) are devoid of EphA4 and are bisected by the midline. 

 

5.4. Functions of EphA4+Zic2+cells 

Information on touch and proprioception is transmitted to the brain via ipsilaterally 

projecting tracts of the dorsal column-lemniscal pathway. They project to the gracile and cuneate 

nuclei of the medulla, after which they decussate and finally target the thalamus [172]. Neurons 

transmitting information on touch typically terminate in laminae III and IV or the dorsal horn, 

whereas, those mediating proprioception terminate in lamina VII which forms the Clarke’s 

column [176]. These projections show an extensive overlap with those of EphA4+Zic2+ 

neurons. However, since the projections of the Clarke’s column form ipsilateral ascending tracts 
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via the dorsolateral funiculus [68], they are distinct from the EphA4+Zic2+ population described 

here.  

Noxious information, such as pain and temperature, are thought to be transmitted to the 

thalamus via the anterolateral pathway which essentially ascends contralaterally [177, 178]. 

Another pathway, the postsynaptic dorsal column (PSDC), consists of a heterogeneous 

population of neurons that relay information on touch and pain. This tract is poorly characterized 

in comparison to the other ascending pathways mediating somatosensory information [179-181]; 

however, a recent study has shown that some projections of the PSDC pathway terminate in the 

gracile and cuneate nuclei of the medulla [182]. Furthermore, this tract ascends ipsilaterally in 

the ventral DF and shows a great degree of overlap with the Zic2+EphA4+ population we 

describe.   

To further characterize the EphA4+Zic2+ cells, we performed immunofluorescence 

stainings in collaboration with Dr. Sonia Paixão and Dr. Wenqin Luo. Staining with the vesicular 

glutamate transporter, VGlut1, a synaptic marker of sensory axons, showed great colocalization 

with EphA4+Zic2+ cells. Markers of proprioceptive and nociceptive axons (stained with 

antibodies against parvalbumin and CGRP) did not colocalize with Zic2 positive cells. The 

innervation by low-threshold mechanosensory afferents was tested using the Ret-Cre mice 

crossed to the Tomato-reporter line and further co-stained with VGlut1 and Zic2. The majority of 

the Zic2+ cells were found to be positive for VGlut1 and Ret, indicating that the EphA4+Zic2+ 

cells receive mechanosensory input [183, 184]. Therefore, it is likely that this population is 

involved in mediating tactile information.  

We also investigated the innervation of the spinal cord by nociceptive afferents, using the 

marker, CGRP [136, 137]. We found that in wildtype spinal cords, these axons innervate the 



Discussion 

120 
 

spinal cord via the dorsal horn and remain mainly ipsilateral. However, spinal cords from EphA4 

knockout spinal cords reveal an interesting phenotype as they show extensive midline 

misprojections [Figure 5.06 A and B]. Initially, this led us to conclude that the lack of EphA4 in 

these neurons, results in impaired EphA4/ephrinB3 forward signaling due to the absence of 

ephrinB3 in the midline ‘gap.’ If this was true, then ephrinB3 knockout spinal cords must display 

similar midline misprojections of nociceptive axons. Much to our surprise, we found that the 

nociceptive projections in ephrinB3 knockout spinal cords remained ipsilateral and did not show 

extensive midline misprojections. Therefore, it is imperative to conclude that other signaling 

mechanisms may participate in guiding nociceptive axons. Indeed, it is now known that EphA4 

expression is absent in DRG neurons [185]. However, since spinal cord derived EphA4 is 

necessary in guiding nociceptive axons, it may be possible that other ephrin ligands interact with 

EphA4 and EphA4/ephrin reverse signaling is required for the proper guidance of these neurons. 

It may also be possible that EphA4, expressed on spinal interneurons, acts non-cell 

autonomously in guiding nociceptive axons correctly. Indeed, it has been demonstrated that 

sensory axons expressing ephrinAs interact with EphA3/4 expressed on motor neurons and track 

alongside motor projections to reach their final targets [186]. Since the nociceptive axon 

misprojections and spinal interneuron misprojections occur around the same time (E14.5 spinal 

cords) in EphA4 knockout spinal cords, new tools are required to allow the visualization of these 

projections in real time.    
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Figure 5.06: Simplified model to depict the guidance of sensory afferents in the dorsal spinal cord. (A) 

Wildtype: CGRP+ axons enter the spinal cord via the dorsal horn and remain ipsilateral. (B) EphA4 knockout: 

CGRP+ axons display aberrant midline misprojections in the absence of EphA4. 

 

5.5. Concluding remarks 

The results presented in this thesis delineate novel roles for EphA4 in defining circuits 

involved in locomotion advance our understanding of the principles of ascending and descending 

tract guidance. This study demonstrates the requirement of EphA4/ephrinB3 signaling in 

maintaining spinal circuits that control left-right coordination of locomotion and bring to light 

the contribution of a previously unknown population of dorsal interneurons in preserving these 

circuits. Furthermore, it also highlights the importance of the same signaling pathway in more 

complex behaviors that require input from higher brain centers. Furthermore, EphA4/ephrinB3 

signaling is required to guide ipsilateral ascending projections into the DF and these projections 

serve as guideposts for descending CST tracts. Disruption of EphA4/ephrinB3 signaling leads to 

behavioral consequences such as in voluntary stepping and stereotyped and repetitive 

locomotion. Additionally, ablating this pathway also amounts to morphological defects in the 

development of the DF and guidance of ipsilateral axon tracts along with indirect secondary 

guidance defects of nociceptive axon projections.  
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Our advancement in understanding the underlying neural circuitry of the dorsal spinal 

cord leaves us with many unanswered and interesting questions, some of which are mentioned 

here: 

 What are the downstream targets of the CST projections? Do they project to spinal 

interneurons of the dorsal cord; perhaps EphA4+Zic2+ population?  

 Where do the dorsal interneurons that participate in left-right coordination of locomotion 

project to; perhaps CPG neurons or motor neurons?  

 What is the rostral extent of the ipsilateral ascending EphA4+Zic2+ axonal projections? 

Answering these questions by additional characterization of the circuits investigated in this 

study, using a plethora of new emerging tools, will improve our understanding of the spinal cord 

circuitry in the future.  
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