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1. General Introduction 

1.1.  Half-life modulation of biologics 

The discovery of recombinant DNA technology in the early 1980s has led to a rapidly ex-

panding market for diagnostic and therapeutic biologics covering a broad range of human 

illnesses. Today, protein- and peptide-based drugs comprise over 200 approved products and 

hundreds of potential candidates in clinical trials. These compounds can be classified as bio-

pharmaceuticals, which 1) mimic native proteins and operate as replacement therapies, 2) 

serve as antagonist therapy or 3) stimulate and mobilize malfunctioning body proteins [1]. 

Problems with biopharmaceuticals often involve a suboptimal physicochemical profile, typi-

cally caused by either a tendency to aggregate, limited solubility or proteolytic instability. 

Additionally, a molecular weight below the renal cutoff (MW < 60 kDa) can restrain their 

pharmacokinetic effectiveness, resulting in a plasma half-life of just minutes to hours. Mono-

clonal antibodies (mAbs) tend to avoid this issue, with a molecular weight of around 150 kDa 

and a naturally-mediated FcRn recycling mechanism, which together yield a plasma half-life 

of days to weeks [2]. Rapid elimination is thus associated with hydrodynamically smaller va-

rieties of biopharmaceuticals such as cytokines, growth factors, peptides and protein scaf-

folds. The efficiency of these drugs is limited by their short circulation time, which must be 

overcome by frequent injections [3]. However, simultaneous circulation time enhancement 

and improved physicochemical properties can be obtained by covalent linkage of the active 

pharmaceutical ingredient (API) to biocompatible polymers. Among the first successful at-

tempts in this regard were the experiments performed by Davies and Abuchowsky in the 

1970s, who improved blood circulation of bovine liver catalase and bovine serum albumin by 

the chemical attachment of polyethylene glycol (PEG) [4, 5].  The first PEGylated protein 

was approved by the Food and Drug Administration (FDA) in the early 1990s: the PEGylated 

version of the adenosine deamidase (Adagen
®
) for the treatment of severe combined immu-

nodeficiency disease (SCID), an autosomal recessive genetic disorder induced by adenosine 

deficiency. At least ten PEGylated biopharmaceuticals are approved today and PEGylation is 

considered to be the gold standard for half-life extension (HLE) [6]. Table 1 summarizes the 

commercial benefit of the PEGylated products currently on the market (adapted from [7]).  

Therapeutic compounds usually profit from conjugation with PEG. PEGylation reduces glo-

merular filtration by substantially increasing hydrodynamic size to above the renal cut-off, 

thereby slowing down kidney clearance. Additional benefits include protection of the drug 
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from interactions with catabolic and proteolytic factors and the immune system [8, 9]. Physi-

cochemical properties are likewise improved, due to an increase in thermal stability, attenuat-

ed aggregation and enhanced solubility [10].   

Most of the approved biopharmaceutical drugs are recombinant replicas of naturally occurring 

human proteins. Next generation biologics include an emerging class of alternative protein 

scaffolds like affibodies, Adnectins, anticallins or DARPins [11], which are engineered to 

recognize particular target structures. These small, specific binders are designed to have affin-

ity to common targets such as TNF-α, CD20 or VEGF and are based on a robust, single-chain 

polypeptide framework with remarkable conformational tolerance [12-14].  As with the first 

generation of biologics, rapid elimination by the kidneys could prove to be the Achilles’ heel 

of these highly specific, unique molecules. Therefore, half-life extension technologies can be 

expected to play an important role in market entry.   
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Drug 
PEGylated 

protein 

Market 

entry 

Sales 2013 

(M US$)
1
 

Indication Company 

PEG–adenosine 

deaminase (Adagen
®
) 

Adenosine 

deaminase 
1990 65 

Severe combined 

immunodeficiency 

disease (SCID) 

Enzon 

PEG–asparaginase 

(Oncaspar
®
) 

Asparaginase 1994 55 
Acute lymphoblastic 

leukemia 
Enzon 

PEG–interferon α-2b 

(PegIntron
®
) 

Interferon α-2b 2000 496 Hepatitis C Schering-Plough 

PEG-interferon α-2a 

(Pegasys
®
) 

Interferon α-2a 2002 1,416 Hepatitis C Roche 

Pegvisomant, 

(Somavert
®
) 

Growth 

hormone 

receptor 

antagonist 

2002 217 Acromegaly Pfizer 

PEG-filgrastim 

(Neulasta
®
) 

Granulocyte 

colony 

stimulating 

factor 

2002 4,392 Neutropenia Amgen 

Pegaptanib 

(Macugen
TM

) 

PEG-anti-

VEGF aptamer 
2004 8 

Wet age-related 

macular degeneration 

Eyetech 

Pharmaceuticals/

Pfizer 

PEG-epoetin-β 

(Mircera
®
) 

Erythropoetin 2007 459 Renal anemia Roche 

Certolizumab Pegol 

(Cimzia
®
) 

Fab fragment 

against TNF-α 
2008 789 

Rheumatoid arthritis 

and Crohn’s disease 
UCB 

Pegloticase 

(Krystexxa
®
) 

Urate oxidase 2010 26 Chronic gout 
Savient 

Pharmaceuticals 

Peginesatide 

(Omontys
®
)* 

Erythropoiesis 

stimulating 

agent 

2012 n.a. 

Anemia due to 

chronic kidney 

disease 

Affymax and 

Takeda 

1 
From www.evaluategroup.com           *recalled in 2013 and now withdrawn from the market 

 

Table 1: Marketed PEGylated proteins and peptides, their year of approval, global sales in 

2013 and the companies which first commercialized them (adapted from [7]) 

http://www.evaluategroup.com/
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1.2. The bioconjugation polymer PEG and the effect of 

PEGylation on biologics 

As the name suggests, polyethylene glycol is a nonionic polyether with a chemical structure 

of HO(CH2CH2O)nH which can be synthesized by an anionic ring opening polymerization of 

ethylene oxide initiated by nucleophilic attack of a hydroxide ion on the epoxide ring [15]. 

However, when PEG is used for polypeptide modification, it must typically be of the hetero-

bifunctional variety. Specifically, one of the hydroxyl end groups must be capped with a me-

thyl group to create a monomethoxylated PEG (structure mPEG: CH3O - (CH2CH2O)n - 

CH2CH2OH), while the second end group is modified with a functional group amenable to the 

conjugation step. This heterobifunctionality enables straightforward conjugation while pre-

venting crosslinking of multiple polypeptides. In this approach, synthesis is initiated by nu-

cleophilic attack of a methoxide ion, as opposed to hydroxide, on the epoxide ring. The final 

product is amphiphilic in nature. The oxygen molecules are responsible for PEG’s hydrophilic 

character; while the hydrophobic tendency is caused by the ethylene subunits. As such, PEG 

is a surface active molecule, soluble both in water and in a number of organic solvents [16]. 

Its solubility in water over a wide range of molar masses is especially remarkable due to the 

fact that its two neighbors namely poly(methylene glycol) and poly(propylene glycol), are 

insoluble in water [17]. The apparently more polar character of PEG is derived from a strong 

tendency of the oxygen atoms to form hydrogen bonds between 2-3 water molecules; this 

results in extraordinary hydration of the polymer with high conformational flexibility and 

chain mobility [17]. The exact water-binding capacity ranges from 2-3 water molecules per 

subunit up to 16 molecules [18, 19] depending on the method used for quantification [20, 21].  

In general, PEG is considered to be non-toxic, non-immunogenic and biocompatible and is 

therefore approved by the FDA for parenteral usage [22]. Coupling the API of interest to PEG 

will in most cases drastically improve the physicochemical properties of the conjugate. For 

instance, hydrophobic drugs become soluble in an aqueous environment after PEGylation. 

One of the most oft-cited examples of this phenomenon is interferon β-1b [8]. Native IFNβ-1b 

is indicated for the treatment of multiple sclerosis and approved as Betaferon
®
 (Bayer 

HealthCare) or Extavia
®
 (Novartis). However, this formulation requires the addition of human 

serum albumin to stabilize the protein and preserve solubility after reconstitution. Basu et al. 

reported that unmodified IFNβ-1b began to precipitate as insoluble aggregates within 7 days 

at neutral pH in the absence of a detergent. In contrast, covalent coupling of a 40 kDa PEG 

was able to maintain solubility during that time [8]. The modified protein also profited from 
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an improved pharmacokinetic profile, a lower tendency toward aggregation and reduced im-

munogenicity [8]. 

1.3.  PEGylation chemistry and PEG reagents 

1.3.1. Random PEGylation 

For conjugation to therapeutic proteins and peptides, pharmaceutical grade PEG reagents are 

commercially available in linear or branched architectures and with a variety of different end 

group linker moieties for subsequent coupling. These linkers can either react directly or after 

an activation step with particular functional groups on the surface of the protein, in both cases 

forming a covalent bond. When linking to proteins, available conjugation targets for PEG 

include amino acids like lysine, cysteine, histidine, arginine, aspartic acid, glutamic acid, ser-

ine, threonine and tyrosine, as well as the N-terminal amino group and the C-terminal carbox-

ylic acid [19]. For random PEGylation, lysine, with its primary amine side group, is an attrac-

tive target due to the fact that it can represent up to 10% of the primary sequence in many 

proteins. This ɛ-amino group represents a nucleophilic target for a number of electrophilic 

functional groups. As a result, it is unsurprising that “first-generation PEG chemistry” includ-

ed PEG polymers modified with (1) dichlorotriazine, (2) tresylate, (3a) succinimidyl car-

bonate, (3b) benzotriazole carbonate, (3c) p-nitrophenyl carbonate, (3d) trichlorophenyl car-

bonate, (4) carbonylimidazole and (5) succinimidyl succinate end groups, all of which attack 

the abundant ɛ-amino groups found in proteins (Figure 1). 
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Figure 1: Activated PEG-derivatives for the chemical coupling to ɛ-amino groups  

(adapted from [19]) 

 

Such reactions are rapid and straightforward to optimize and scale, but are dominated by a 

lack of selectivity, resulting in a number of positional isoforms and differences in the total 

number of coupled PEG chains per protein [19]. The reactivity of the functional group and the 

protein to PEG ratio control the prevalence of side reactions with other nucleophiles on the 

protein surface, namely the N-terminal amino group, the imidazole nitrogens of histidine resi-

dues and the side chains of serine, threonine, tyrosine and cysteine residues [23]. The exist-
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ence of a number of positional isoforms led to concerns about the reproducibility of drug 

batches and may have contributed to higher antigenicity of the modified drug and poor clini-

cal outcomes [3]. Furthermore, unstable linkages between PEG and the protein were some-

times used, which triggered degradation of the PEGylated drug during manufacturing and 

storage [24]. An additional problem was caused by the presence of diols, representing up to 

15% by mass in batches of mPEG, which resulted in API crosslinking and the formation of 

aggregates [3, 19]. However, several PEG conjugates which emerged from “first-generation 

PEG chemistry,” such as Adagen
®
 and Oncospar

®
, did in fact receive regulatory approval. 

The historical evolution of improvements to PEGylation chemistry is presented in Table 2. 

  

Decade PEG reagents General observations Applications 

1970 – 1980 

PEG-chloro triazine [5] 

PEG-succinimidyl succinate 

PEG-tresyl 

Immunogenic or toxic starting 

material, highly polydisperse 

PEG, lack of selectivity 

Research studies, 

enzyme modification 

for biocatalysis 

1980 – 1990 

PEG-aldehyde [25] 

PEG-succinimidyl carbonate 

PEG-pNO2  

phenyl carbonate 

PEG-AA-NHS [26] 

PEG-carbonylimidazole, etc. 

Site-specific conjugation, less 

polydisperse PEG, absence of 

diols 

Enzyme replacement 

therapy 

1990 – 2000 [27] 

Branched PEG 

PEG-NHS 

PEG-maleimide 

PEG-OPSS 

Improved selectivity, marketing of 

PEGylated drugs 

Cytokines, hormones, 

anticancer drug tar-

geting 

2000 - 2014 

Enzymatic coupling [28] 

Disulfide coupling [29] 

Releasable PEGs [30] 

Forked PEGs 

Star PEGs 

Monodisperse PEGs 

Detailed chemical and biological 

characterization of conjugates, 

combination of genetic engineer-

ing and PEGylation in the design 

and discovery of new drugs, more 

stringent regulatory requirements 

Non-protein drug 

PEGylation, oligonu-

cleotide 

PEGylation, cell 

PEGylation 

AA = amino acids; NHS = N-hydroxysuccinimide; OPSS = ortho-pyridyldisulfide 

 

Table 2: History of PEGylation (adapted from [31]) 

 

1.3.2. Site-specific PEGylation of the N-terminus 

PEG chemistry from the so-called “second generation” was developed to eliminate first-

generation pitfalls by reducing polydispersity (also for high molecular weight PEGs) and diol 

content. Improvements to the stability of the linkers were also introduced by creating new 

functional moieties that enabled a more tunable conjugation process. The use of propionalde-



 

 

10 

 

hyde linkers in combination with a reducing agent such as sodium cyanoborohydride facilitat-

ed the linkage to the α-amino acid of a protein’s N-terminus under mildly acidic conditions 

(e.g. pH 5.0). This reaction takes place preferentially at the N-terminal amino acid due to the 

difference in the pKa value of ɛ-amino groups of lysine residues, which have a pKa of 10.1, 

and the pKa value of the N-terminal amino group, which has a pKa of 7.8 [25, 32, 33].  In the 

first step of this reaction, a labile Schiff’s base is formed, which is subsequently reduced by 

sodium cyanoborohydride to a stable secondary amine (Figure 2) [34].   

 

 

 

Figure 2: Reductive amination using PEG-propionaldehyde (adapted from [19]) 

 

1.3.3. Site-specific PEGylation of thiol groups 

The thiol group of an unpaired cysteine residue is rarely found in native proteins, as it is usu-

ally involved in a disulfide bridge with another cysteine residue [6, 35]. With genetic engi-

neering, however, it is possible to produce recombinant proteins containing an unpaired cyste-

ine residue. Therefore, thiol PEGylation is not limited to proteins with a naturally occurring 

unpaired and unprotonated thiol group [6]. However, incorrect coupling or disulfide scram-

bling, which can happen during process steps like purification, pose challenging obstacles to 

proper expression of these proteins. If protein dimerization via a disulfide bond takes place, 

the yield of coupling efficiency can be quite low under this approach [6]. If this is not a sig-

nificant issue, however, selective linkage of PEG to the thiol groups of unpaired cysteine resi-

dues can be achieved by use of a number of reactive groups such as maleimide, vinylsulfone 

or iodoacetamide, which all form stable thioethers (Figure 3).  The most common form of 

thiol coupling is the use of PEG derivatives carrying a maleimide end group, which forms a 

thioether bond with unpaired sulfhydryl groups under neutral conditions through a Michael’s 

addition [6]. 
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Figure 3: Thiol reactive PEGs. (1) PEG maleimide, (2) PEG vinylsulfone, (3) PEG 

iodoacetamid and (4) PEG orthopyridyl disulfide 

 

Table 3 illustrates the different PEG agents used for approved PEG-drug conjugates, includ-

ing MW, linker structure and type of modification (adapted from [36]). 
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Trade 

name 
Drug 

PEG agent 

(MW and linker structure) 
Type of modification 

Adagen
®

 
PEG-adenosine de-

aminase 

Linear 5 kDa /  

NHS-ester 

HyperPEGylation –  

random on predomi-

nantly ε-amino groups 

Oncaspar
®

 PEG-asparaginase 
Linear 5 kDa /  

NHS-carbonate 

HyperPEGylation –  

random on predomi-

nantly ε-amino groups 

Neulasta
®

 PEG-G-CSF 

Linear 20 kDa /  

PEG-aldehyde and reducing 

agent 

MonoPEGylation –  

specific N-terminal α- 

amino group 

PegIntron
®

 PEG-interferon α-2b 
Linear 12 kDa /  

PEG-p-nitrophenyl carbonate 

MonoPEGylation –  

random on  predomi-

nantly ε-amino groups 

of lysine residues 

Pegasys
®

 PEG-interferon α-2a 
Branched 40 kDa / PEG-

NHS-ester 

MonoPEGylation –  

random on  predomi-

nantly ε-amino groups 

of lysine residues 

Somavert
®

 

PEG-human growth 

hormone receptor an-

tagonist 

Linear 5 kDa /  

NHS-ester 

HyperPEGylation –  

random on  predomi-

nantly ε-amino groups 

of lysine residues 

Mircera
®
 PEG-epoetin-β 

Linear 30 kDa /  

PEG-aldehyde and reducing 

agent 

MonoPEGylation –  

random on  predomi-

nantly ε-amino groups 

of lysine residues 

Cimzia
®

 PEG-anti-TNF-α Fab′ 
Branched 40 kDa / PEG-

maleimide 

MonoPEGylation –  

specific on a thiol 

group of unpaired cys-

teine residue 

Krystexxa
®

 PEG-uricase 
Linear 10 kDa /  

PEG-p-nitrophenyl carbonate 

HyperPEGylation –  

random on  predomi-

nantly ε-amino groups 

of lysine residues 

Omontys
®

 PEG-hematide 
Branched 40 kDa / PEG-

aldehyde and reducing agent 

MonoPEGylation –  

specific on a secondary 

amine group between 

the dimeric peptide 

 

Table 3: PEGylation chemistry used in approved PEG-drugs 



 

 

13 

 

1.3.4. Further strategies for PEGylation  

A number of excellent articles and reviews have described additional novel – and sometimes 

highly sophisticated – pathways to PEGylation [27, 37-40].  For instance, a reducible linkage 

can be facilitated by the formation of a disulfide bridge using PEG-orthopyridyl disulfide 

[19]. A variety of other linker structures and approaches have been reported to create releasa-

ble and noncovalent PEG conjugates [6].  A more exotic approach to PEGylation utilizes an  

enzymatic pathway, which involves the addition of transglutaminase (TGase), discovered 

primarily by Sato et al. [41]. The reaction takes place between a PEG derivative carrying a 

primary amino end group and the γ-carboxamide group of glutamine residues, yielding a 

highly selective conjugation [37, 42].    

1.4.  Limitations of PEG and PEGylation technology 

1.4.1. Quality of the polymer and PEGylation chemistry  

Polyethylene glycol is a synthetic polymer and may therefore be characterized by a certain 

polydispersity. Low molecular weight oligomers (3-5 kDa) have a polydispersity value 

(Mw/Mn) of less than 1.01; this value can increase up to 1.2 for higher molecular weight 

will be directly transformed into a broader polydispersity of the PEGylated protein, which can 

lead to batch-to-batch variations. Consequences include changes in pharmacokinetics between 

batches and hampered analysis and characterization [44].  

For the conjugation process, only activated PEG derivatives can be used, which may contain 

certain amounts of impurities that influence conjugate synthesis and stability after coupling 

[45]. For protein conjugation, commercially available monomethoxy PEG (mPEG) reagents 

can contain considerable amounts of diol PEG, up to 15% by mass, due to the presence of 

trace amounts of water during polymerization [19]. Another common type of contaminant in 

PEG polymers is peroxides. The initial amount of peroxides present at the time of manufac-

ture can increase upon storage due to the presence of oxygen, light exposure or metal-induced 

auto-oxidation [46]. This can cause a loss of protein stability or activity upon PEG coupling 

[47]. Auto-oxidation leads to formation of hydroperoxides as well as peroxide free radicals, 

which promote PEG chain scission and increased polydispersity [48, 49]. This undesirable 

reaction is not unique to PEG and can also occur for polysorbate-based surfactants, polox-

amers and other substances which contain a number of ethylene oxide units [48]. Optimized 
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storage conditions, such as storage away from light, under an inert atmosphere (argon or ni-

trogen), in the presence of antioxidants such as 2-tert-butyl-4-methoxyphenol and at tempera-

tures below -15°C can attenuate the accumulation of peroxides [48]. Another chemical impu-

rity was reported by Zhang et al., who described the presence of a monomethoxy polyeth-

ylene glycol (mPEG)-acetaldehyde impurity in batches of mPEG–aldehyde. Storage of a 

PEGylated protein derived from this raw material for 12 months at 2-8°C initiated a slow hy-

drolysis of the acetal bond, which resulted in dePEGylation of the protein [50]. Finally, con-

taminants can impact the reactivity of the functionalized PEG polymer, influencing the degree 

of PEGylation during the conjugation process and leading to batch-to-batch variations; as 

such, reactivity  of the PEG derivative must be evaluated before each conjugation step [49]. 

Today, a number of different coupling strategies are available to attach functionalized PEG 

polymers to nucleophilic targets such as amino or thiol groups on the protein surface. Thiol 

coupling performed by maleimide chemistry is not stable under alkaline conditions and can 

undergo ring opening leading to release of the protein. PEG reagents carrying an iodo-

containing active group can generate iodine during the conjugation, which can interact with 

tyrosine residues. Succinimidyl esters do not couple selectively to amino groups and can also 

react with tyrosine and cysteine residues, creating unstable linkages that can slowly hydrolyze 

during storage [51]. The formation of multi-PEGylated species can drastically reduce the 

yield of the desired mono-PEGylated drug [52]. Additionally, positional isomers of a 

PEGylated protein cause heterogeneity in the final product [49]. In conclusion, comprehen-

sive quality control of the raw material, validation of the conjugation process and a well-

designed battery of physicochemical characterization methods [50] are required to provide the 

consistent quality and reproducibility of the PEGylated drug needed to obtain approval by 

regulatory authorities and ensure patient safety [53]. 

1.4.2. Effect on activity upon conjugation 

PEGylation tends to decrease the in vitro and in vivo activity of the protein, sometimes drasti-

cally. This diminished activity is not surprising; PEG has a high shielding effect, protecting 

proteins from unwanted interactions but also impeding target or receptor recognition.  A de-

tailed discussion is given by Kubetzko et al., who pointed out that the decline in conjugate 

activity is due to decreased association of the conjugate with the binding partner. The dissoca-

tion constant, in contrast, is in general unaffected [54]. In most cases, activity of a protein is 

related to a short sequence in the primary structure. Therefore, the conjugation site plays a 

major role. Basu and coworkers utilized a library of different versions of PEGylated IFNβ-1b 
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to describe how the conjugation site (random conjugation on lysine residues, N-terminal cou-

pling or the linkage to free thiol groups) influences the conjugate’s antiviral activity [8]. Peg-

asys
®
, an approved PEGylated version of IFNα-2a made by Roche, has a very low residual 

activity – as low as 7% compared to the unmodified protein.  However, the conjugate exhibits 

a 70-fold increase in serum half-life and a 50-fold increase in the mean plasma residence time 

in mice, outweighing the reduction in activity [55].  

Size, shape and length of the polymer chains can also influence circulation time, absorption 

rate and biological activity. In general, an increase in chain length prolongs circulation time, 

but reduces residual in vitro activity. Branched PEGs, or a molecule comprising two chains of 

identical length, prolong circulation more than linear derivatives of the same nominal molecu-

lar weight, but will also reduce the residual in vitro activity to a greater extent than a linear 

chain of the same molecular weight [56].  

1.4.3. Toxicity 

One of the main limitations of PEG is its non-biodegradability. In general, successful prolon-

gation of the circulation time and eventual renal filtration requires PEG of a certain molar 

mass, usually less than 30-40 kDa [7]. The elimination route for PEG can differ from case to 

case, mainly driven by the fate of the protein or peptide portion of the conjugate. For exam-

ple, when a conjugate is taken up by a cell via receptor-mediated endocytosis, PEG will also 

be absorbed. In this case, PEG can induce vacuolization of the cell, which is not observed for 

administration of PEG or unmodified protein alone. This phenomenon has been reported for a 

number of cell types from different tissues and organ types, including the kidneys, liver, 

spleen and bone marrow [57, 58]. Essentially, for so long as treatment with the PEGylated 

drug continues, the protein will be present in cellular vacuoles, which can be verified by im-

munostaining [58]. If intracellular degradation of the protein portion of the conjugate takes 

place, the vacuoles generated will contain PEG alone, which lysosomal proteases are typically 

unable to degrade [59]. In theory, degradation of PEG requires an etherase, which cleaves 

ether linkages, but these enzymes are not commonly found in mammalian cells [58]. The de-

gree of vacuolization and size of vacuoles formed are highly dependent on both the dosing 

interval and the total amount of the modified drug. Bendele and colleagues showed clear dos-

age dependencies for vacuolization when rats were treated with anywhere from 4 to 40 mg 

PEGylated API per kg body weight. The highest dosage led to the largest vacuoles in kidney 

tissue.  After cessation of drug administration, vacuoles were not completely eliminated from 

the cells, even after a period of 3 months [58]. Smaller vacuoles could regress, but additional 
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studies by Webster et al. showed that larger vacuoles can persist for at least 2 months [59]. In 

the worst-case scenario, consequences can include a failed restoration of cells to status quo, 

which can then be followed by cell death [60]. During drug development, toxicity studies are 

routinely employed, but must be evaluated more critically when selecting dosing regimens, 

especially when the treatment requires chronic administration of high doses of a PEGylated 

drug. 

1.4.4. Immunogenicity 

Both PEG and PEGylated systems are widely used in pharmaceutical research, clinical appli-

cations, food additives and cosmetic products since PEG is in general non-immunogenic, bio-

compatible and non-toxic. However, the common use of PEG entails continuous exposure to 

the polymer. Even as early as 1984, Richter and Åkerblom published the existence of anti-

PEG-antibodies, which were found in 0.2% of healthy test donors. By the early 2000s, this 

number had increased to 25%, probably due to both continuous exposure to PEG and the de-

velopment of higher-sensitivity methods to detect anti-PEG antibodies [61]. In the field of 

PEG-coated drug-delivery systems as well as PEGylated proteins and peptides, anti-PEG-

antibodies have already been described [37, 62, 63]. In these applications, the linker between 

polymer and conjugation site plays a remarkable role. For PEG derivatives carrying an aro-

matic linker or where the link is quite close to heterocyclic groups in the protein, immunogen-

icity of the conjugate can significantly increase [63]. Especially for PEGylated liposomes and 

particles, accelerated blood clearance (ABC) can occur upon second administration. This so-

called ABC phenomenon includes the production of anti-PEG antibodies with an IgM sub-

type, which fosters rapid elimination of the PEG conjugate from the body. For approved 

PEGylated proteins such as asparaginase, uricase and certolizumab pegol, induction of anti-

PEG antibodies and concomitant accelerated elimination has already been reported; the net 

effect is to increase the number of non-responders in the patient population [64-66]. Arm-

strong et al. found a clear relationship between pre-existing antibodies to PEG and diminished 

clinical response and suggested routine screening to monitor clearance rate and response, var-

iables which can inform the decision to adjust dosing or administer alternative, non-

PEGylated therapies [67]. 
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1.4.5. Effect on protein stability 

The physical stability of a protein is associated with two main thermodynamic aspects: colloi-

dal and conformational stability [68]. Conformational, or thermodynamic, stability is correlat-

ed to the melting temperature (Tm) in solution, or the point at which the protein starts to un-

fold into a nonnative state [69, 70].  PEGylation has, in most cases, been widely reported to 

increase the thermodynamic stability, resulting in higher Tm values. For example, recombinant 

human endostatin showed an increase in melting temperature of 15°C, whereas PEGylated α- 

chymotrypsin was reported to have a 6°C higher Tm compared to the unmodified protein [71, 

72]. In contrast, Gonnelli et al. found a decrease in melting temperature for PEGylated azurin; 

Plesner and colleagues observed a similar effect with calorimetric studies on PEGylated bo-

vine serum albumin (BSA) over a series of different PEG chain lengths [73, 74].  

PEG is of high osmotic activity [75], exhibits amphiphilic behavior and can bind to hydro-

phobic patches or aromatic clusters [76, 77]. In principle, specific adsorption of PEG on the 

surface of the protein can induce partial dehydration [73]. Furthermore, PEG can act as a pre-

cipitant due to unfavorable preferential exclusion of PEG at higher temperatures [78].  

PEGylation has been widely reported to improve colloidal stability by physically separating 

monomers from one another, leading to reduced protein-protein-interaction and therefore, 

reduced aggregation [8, 79, 80]. Contrary reports given by Veronese et al. reported a higher 

aggregation tendency for PEGylated G-CSF (linked by conjugation to a buried thiol group), 

caused predominantly by a subtle conformational change in the protein that exposes residues 

with a more hydrophobic character [81]. In the end, PEGylation cannot be assumed to im-

prove conformational and colloidal stability in general, but must be investigated on a case-by-

case basis. 

1.4.6. Effect on viscosity 

PEG and PEGylated biopharmaceuticals exhibit nonlinear increases in viscosity with increas-

ing concentration in solution [82, 83]. Such altered physicochemical properties are primarily 

driven by the architecture of the chosen PEG polymer. At higher concentrations, linear PEG 

polymers are especially prone to chain entanglement, which increases the viscosity of the so-

lution. In the case of PEGylated canine hemoglobin, the viscosity increase was dependent on 

the number of coupled PEG molecules, whereas the viscosity of the unmodified counterpart 

was nearly constant over the range of measured concentrations [83]. This viscosity effect is 

driven by both the length of the PEG chain and its branching factor. In general, highly 
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branched polymers have a lower intrinsic viscosity compared to linear versions with compa-

rable molecular weight [84]. The main cause is rooted in the different topology of linear vs. 

branched polymers. A highly branched polymer architecture allows the molecule to act more 

like a hard sphere, which is less prone to chain entanglement when compared to a linear, more 

flexible polymer chain. 

1.4.7. Behavior during and after lyophilization 

One potential drawback to use of PEG is the fact that PEG, when used as a bulking agent or 

when chemically grafted to a protein, tends to phase-separate during freeze-drying – an initial 

step toward crystallization [85, 86]. As a consequence, PEG conjugates experience a stronger 

tendency toward protein degradation if nascent crystallization is not suppressed by amorphous 

lyoprotectants and bulking agents [86, 87]. During and immediately after the lyophilization 

process, PEG crystallization is not immediately ruinous but will increase during storage, es-

pecially at elevated temperatures [88]. The route most commonly used to overcome crystalli-

zation is the addition of disaccharides like sucrose, which are frequently used to stabilize pro-

teins during freeze-drying and subsequent storage in the dried state by forming hydrogen 

bonds that inhibit unfolding [89]. These sugars tend to remain amorphous during dehydration 

and can also decrease crystallization [90]. For a freeze-dried formulation of a PEGylated pro-

tein, high sucrose-to-PEG weight ratios are required (≥ 5 [88]) to suppress PEG-induced crys-

tallization [85, 86, 91]. 
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1.5. Alternative strategies for half-life extension based on 

biodegradable polymers 

Half-life extension is becoming an essential component of the industrial development of small 

therapeutic peptides and proteins such as hormones, growth factors, cytokines, coagulation 

factors and enzymes [92]. PEGylation technology is by far the gold-standard for half-life ex-

tension but suffers from a number of shortcomings. The last decade has seen rapid growth in 

novel, alternative half-life extension technologies, including the use of other hydrophilic pol-

ymers, the development of recombinant PEG-mimicking polypeptide chains and the evolution 

of albumin-binding molecules. Additionally, genetic engineering of the Fc region has been 

used to alter the half-life of IgG molecules, opening new possibilities for the expansion of 

next-generation antibody-based drugs. An entire book has been written on the topic, with ex-

cellent reviews and case studies by contributors from industry and academia [92]. All availa-

ble methods can be divided into two main strategies. Strategy 1: Reducing renal filtration by 

increasing the hydrodynamic size of the protein, which can be achieved by chemical linkage 

to a polymer or fusion with large recombinant polypeptides. Strategy 2: The use of methods 

which increase the size of the molecule and keep the drug in circulation by using the natural 

recycling mechanism mediated by the Fc neonatal receptor. Therefore, the molecule of inter-

est has to be chemically linked or fused to either albumin or the Fc part of an IgG antibody 

[93, 94]. The following discussion is focused on techniques wherein biodegradable polymers 

or large polypeptides are fused to the molecule of interest. 

1.6. HES and HESylation 

HES is the semi-synthetic and water-soluble version of poorly soluble waxy maize starch 

fragments, which can be synthesized by ethylene oxide-mediated hydroxyethylation  of starch 

under alkaline conditions (Figure 4). The polysaccharide is constructed of amylose (linear 

glucose polymer based on α-1,4-glycosidic bonds) and amylopectin (linear glucose polymer 

based on α-1,4-glycosidic bonds with branching points based on α-1,6-glycosidic bonds). 
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Figure 4: Hydroxyethylation of starch 

 

The naturally occurring starch molecule exhibits a short serum half-life due to fast enzymatic 

digestion by serum amylase. Hydroxyethylation improves the solubility of starch in water, 

decreases the viscosity of starch solutions and notably lowers its biodegradability. The modi-

fication predominantly occurs at position C2, followed by C6 and C3 on the starch molecule. 

Hydroxyethylation at position C2 significantly hinders the degrading enzyme (α-amylase) 

from reaching its cleavage site and increases the circulation time. Factors like molar mass and 

the average number of hydroxyethyl groups per glucose subunit (C2/C6 ratio) can be a tuna-

ble tool to extend the half-life of the HES conjugates from minutes up to hours [95, 96]. 

The HES production process is divided into three steps (Fig. 5). First, amylopectin-rich starch 

is cleaved using acid or enzymatic hydrolysis to adjust the molecular weight. Next, the result-

ing starch fragments are hydroxyethylated using ethylene oxide under alkaline conditions. 

The degree of hydroxyethylation is controlled primarily by the reaction time. Purification 

and/or fractionation as a final polishing step are then applied to adjust the polydispersity of 

the resulting HES. A detailed description is given in the Patent EP0402724 A1 [97]. 
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Figure 5: Preparation of hydroxyethyl starch (adapted from [98]) 

 

Hydroxyethylstarch is widely used as a plasma volume expander (PVE) due to its high bio-

compatibility and biodegradability, and can be administered in doses of up to 200 g/day [96]. 

The structural similarity to glycogen (the human glucose storage moiety) is thought to be the 

reason for its low immunogenicity and the correspondingly low incidence of HES hypersensi-

tivity [99]. Additionally, and in contrast to other PVEs such as dextran or albumin, HES dis-

plays a lack of bacterial/viral contamination hazards. Undesirable drug interactions, such as 

the interaction of ACE inhibitors with albumin, are also absent [99].   

In conclusion, HES is characterized by a combination of desirable properties like excellent 

biocompatibility, tunable biodegradability and high tolerable doses. As a result, HESylation 

for half-life extension represents a promising alternative to PEGylation technology. And in 

fact, global pharmaceutical companies such as Octapharma, Boehringer Ingelheim, Bayer 

HealthCare and Sandoz have already begun using HESylation
®
 technology for the develop-

ment of novel drug candidates that require extended half-life [100-103]. 

1.6.1. HESylation chemistry and HES reagents 

HESylation, as the name suggests, involves the covalent coupling of HES to the molecule of 

interest. HESylation technology was first demonstrated with a HES-albumin conjugate in the 

1970s by Richter and de Belder [98]. They used those conjugates to immunize rabbits and 

obtain antisera for HES diagnostic purposes; HES had at that point already been in clinical 

use for several years as a plasma volume expander [104].  
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1.6.2. Random HESylation 

Early results for HESylated proteins such as hemoglobin were obtained by a random conjuga-

tion step involving cyanogen bromide activation of HES or a periodate oxidation to obtain an 

amination of the aldehyde groups for novel blood substitutes [104-106]. These studies were 

then supported by clinical results [107-109]. However, these HES conjugates faced some 

manufacturing limitations and suffered from toxicity problems. As with PEGylation, random 

HES linkage resulted in conjugation to a number of lysine residues with poorly controllable 

stoichiometry. Additionally, the multivalent HES molecules (with numerous BrCN-activated 

or aldehyde sites) in combination with poorly defined multivalent reaction sites often resulted 

in polymerization of the proteinaceous reaction partner. Tolerance of such conjugates was 

quite low in animal experiments due to the high fraction of covalently linked high molecular 

weight aggregates. Factors like stoichiometry and conjugate size were also not well-controlled 

under the chosen conditions [98].  At that point, the main focus shifted to use of the monova-

lent aldehyde functionality of the terminal glucose unit, which is not involved in glycosidic 

bond formation and is thus available for further derivatization steps. The reaction of hypoio-

dide under mild alkaline conditions resulted in selective and quantitative conversion of the 

aldehyde into an aldonic acid [98]. With this single carboxyl end group it was possible to 

HESylate by an EDC-mediated addition to protein amino groups or by forming a reactive 

ester using disuccinimidyl carbonate. Although reactive NHS esters are highly sensitive to 

hydrolysis, the HESylation achieved was sufficient to obtain high yields of HES-albumin con-

jugates and HES-nucleic acid molecules in aqueous solution [110, 111]. However, the high 

reactivity of the esters triggered the formation of unwanted linkages with thiol and protein 

hydroxyl groups. These drawbacks led to research activities on the implementation of specific 

linker structures, including use of aliphatic diamines or hexamethylendiamine to obtain an 

amino-HES structure. This structure was then used either as is or as an intermediate for reac-

tion with another bifunctional linker, resulting in reactive components for thiol modifications 

or aldehyde- or amine-reactive functionalized groups, for example [112]. Figure 4 illustrates 

a number of different coupling possibilities. 
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Figure 4: Chemistry of regioselective modification of the reducing end group  

(adapted from [98]) 

1.6.3. Site-specific HESylation  

HESylation
®
 technology, similar to PEGylation technology, at one point faced the problem of 

ensuring site-directed polymer coupling with well-defined stoichiometry: characteristics 

which are considered advantageous from a regulatory point of view. As mentioned above, 

stable and ready-to-use forms with a variety of linker structures became available to fulfill 

such requirements [113]. Site-directed HESylation was applied to a number of low molecular 

weight substances like amphotericin B, peptides and proteins such as an erythropoietin mi-

metic peptide, erythropoietin, interferon α-2b and anakinra [98, 114, 115].  

For instance, erythropoietin mimetic peptide was coupled via its single thiol group to an acti-

vated HES polymer carrying a number of maleimide groups which could link up to five mole-

cules of the peptide while retaining their functionality. Additionally, the HESylated derivative 

showed excellent efficiency, better than the peptide alone and comparable to that of erythro-

poietin (EPO) and Aranesp
®
 (Darbepoietin alpha) [116]. In the case of EPO, HESylation was 
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performed either at the N-terminal amino group or the glycosylation site of the protein [98]. 

The latter coupling was achieved by oxidation of the glycan structure using galactose oxidase 

to obtain an aldehyde functionality, which was used for reactive coupling to aminated HES 

molecules. In vivo studies in dogs performed for such conjugates showed that half-life can be 

tuned by varying the molar mass (MW) and molar substitution (MS). The HES conjugate with 

high MW and high MS led to threefold longer half-life compared to that of the commercially 

available glycosylated form of EPO, Aranesp
®
. Additionally, a PD study performed in mice 

showed a fourfold increase in hematocrit using HES-EPO over and above that of the unmodi-

fied counterpart and a 1.5-fold increase compared to Aranesp
®
 [98]. Commercially available 

PEG-EPO (Mircera
®
) served as a benchmark and showed comparable in vitro and in vivo bio-

activity profiles.  

HESylation of the N-terminal amino group of interferon α-2b performed by regioselective 

conjugation with an aldehyde-containing HES derivative under acidic conditions yielded a 1:1 

coupling stoichiometry > 80%. In vivo experiments performed in rabbits compared HES-IFNα 

to its PEGylated counterpart, resulting in comparable pharmacokinetics [98]. Additionally, 

conjugation at the N-terminus was performed in order to obtain improvements in product ho-

mogeneity relative to approved PEGylated versions of interferons such as PegIntron
®
 and 

Pegasys
®
, which both yield a number of positional isoforms upon conjugation. Both PEG-

drugs are derived from a more random mono-PEGylation using NHS-activated PEG deriva-

tives, which are known for their limited selectivity for amino groups [98].  

In conclusion, several chemical options have been successfully developed for covalent cou-

pling of HES to molecules of interest. However, chemical modifications can have some det-

rimental effects on very sensitive proteins. Under those circumstances, biocatalysis can be 

applied as a gentler alternative to strictly chemical modification strategies. Additionally, en-

zymes are known for their high specificity and selectivity, which can significantly increase 

the yield of site-specific conjugation of HES, especially for candidates which involve very 

complex structures. Following previous reports of enzymatically-mediated PEGylation [41, 

42], a feasibility study was performed for enzymatic catalysis of HES conjugation using 

transglutaminase [117]. In particular, recombinant, microbially sourced transglutaminase 

(rMTG) catalyzes the addition of a primary amine to an acyl residue. Glutamine residues car-

ry a gamma-carboxamide group and can act as an acyl donor. HES is then modified by esteri-

fication using N-carbobenzyloxy glutaminyl glycin and hexamethylene diamine to obtain an 

amino-HES, which acts as an amino donor substrate for the conjugation step. In this case, the 
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amino-HES derivative was used for HESylating dimethylcasein and monodansyl cadaverine 

[117].  

1.6.4. Quality of the polymer HES  

Use of HES for HESylation requires that two main aspects of raw material quality be consid-

ered, namely the polydispersity of the polymer (which depends on the MW) and the chemical 

stability of the chosen linker structure. The latter aspect is likely similar to what is required of 

commercialized PEG derivatives. Based on the natural origin of the polymer, high polydisper-

sity (up to 4.5) is to be expected for commercially available HES-based plasma volume ex-

panders [99]. However, by polymer fractionation, it is possible to obtain HES fractions with 

much narrower size distributions for further derivatization steps. Such fractions, with a much 

lower polydispersity of 1.3, were used to form HESylated anakinra from a chosen HES deriv-

ative [115]. For HESylated erythropoietin mimetic peptide, HES200/0.5 was fractionated to a 

size distribution of 130 ± 20 kDa in molecular weight, leading to greater homogeneity in the 

resulting conjugate [116]. In conclusion, a library of different activated HES derivatives with 

a variety of linker structures is available in pharmaceutical grade, wherein aspects like poly-

dispersity are drastically improved. 

1.6.5. Activity 

Polymer conjugation to proteins is known to reduce the specific activity of the protein due to 

steric hindrance, which inhibits the interaction between the protein and its intended receptor. 

For example, the PEGylated form of interferon α-2a has a residual activity of just 7% that of 

the unmodified protein [118]. Therefore, it can be supposed that HESylation will also de-

crease the conjugate activity in comparison to native protein. Site-specific conjugation, how-

ever, can greatly improve activity and binding affinity, as it can reduce the interference in 

protein–receptor interactions. HESylation of anakinra lowered the initial in vitro binding af-

finity from kD  = 0.05 nM (unmodified protein) to 0.32 nM (conjugate) [115]. However, the 

impaired residual activity was more than compensated for by a 6.5-fold longer half-life and a 

45-fold increase in AUC [115].  For the case of HESylated versions of EPO, the selective 

attachment of the glycosylation site or to the N-terminus resulted in conjugates with a residual 

in vitro activity of approximately 20-40% of the activity of the unmodified EPO standard 

[98]. A common EPO efficiency marker (hematocrit) showed that the conjugate’s PK profiles 
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were greatly improved upon HES coupling and comparable in both in vitro and in vivo per-

formance to its marketed PEGylated counterpart (Mircera
®
) [98]. 

1.6.6. Toxicity 

From a toxicological point of view, HES has been reported as safe since its first launch in the 

US in the 1970s.  In September 2013, all intravenous HES products were associated with an 

increased risk of kidney injury and mortality especially for patients with sepsis, burn victims 

or the critically ill [119]. Over 40 years the potential immunological risk has been deemed 

clinically insignificant and is considerably lower than that of dextran or albumin. This is be-

lieved to be due to the structural similarity of HES and glycogen, which also contains a 

branched glucose polymer backbone [120, 121]. In June 2013, the European Medicines 

Agency´s Pharmacovigilance Risk Assessment Committee (PRAC) recommended suspending 

marketing authorizations for infusion solutions containing hydroxyethyl starch. The German 

Federal Institute for Drugs and Medical Devices (BfArM) triggered this review based on three 

recent studies [122-124]. The purpose of these studies was to compare HES as a plasma vol-

ume expander with crystalloids in a population of critically ill patients. Patients with sepsis 

showed an increased risk of kidney injury that required dialysis. Additionally, Perner and 

Brunkhorst found a higher risk of mortality for patients treated with HES [122, 123]. Present-

ly, HES solutions can be used in patients for the treatment of hypovolaemia caused by acute 

loss of blood, where infusion solutions based on crystalloids are considered to be insufficient. 

Treatment regimens with HES solutions should not exceed 24 hours and patient kidney func-

tion must be monitored [119].  

Despite these hazards, the use of HES for HESylation of proteins and peptides will result in 

significantly lower doses of HES in the final conjugate when compared to PVEs. Even so, 

routinely performed toxicity studies must be evaluated to ensure the HESylated conjugate 

exhibits a satisfactory safety profile. 

1.6.7. Effect on protein stability 

Prior to our studies, little was known about the effect of HESylation on the stability of the 

modified protein. We recently showed for HES-anakinra that site-specific HESylation can 

drastically improve protein stability by increasing the thermodynamic stability and reducing 

the tendency toward aggregation [115]. The HESylated protein exhibited an increase in melt-
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ing temperature of 4.5 K, an enhanced melting enthalpy and possible refolding upon cooling, 

an effect which could not be observed for the unmodified protein.  

1.6.8. Effect on viscosity 

Generally, the development of highly concentrated protein solutions is associated with many 

analytical and formulation challenges [125]. Besides a higher tendency towards aggregation 

due to molecular crowding at high concentrations, proteins are liable to reversibly self-

associate under crowded conditions, leading to an increase in viscosity. The effect on viscosi-

ty is dramatically enhanced for polymer-protein conjugates due to the presence of the poly-

meric component, which tends to entangle at high concentrations. However, highly concen-

trated formulations are still common, especially for repeatedly dosed protein drugs which are 

self-administrated by subcutaneous injection in the chronically ill. In the literature, very little 

is written about the formulation of concentrated solutions of polymer-protein conjugates. It 

can be inferred that the stiff and branched architecture of HES will be less prone to polymer 

chain entanglement, acting as more of a hard sphere, than flexible, chain-like polymers such 

as PEG [99], which worked well in case of highly concentrated PEG- and HESylated anakinra 

[126]. 

1.6.9. Lyophilization 

HES has as long history of use as a cryoprotectant for red blood cells and human tissue [127-

129]. In freeze-drying, frozen solutions of HES have a relatively high glass transition temper-

ature compared to that of disaccharides like trehalose or sucrose. In addition, HES shows ex-

cellent glass-forming properties, characterized by solid cakes with high Tgs; it also serves as a 

Tg-modifying agent [130]. The use of HES as bulking agent and/or lyoprotectant unfortunate-

ly failed in most of the reported trials of freeze-dried biologics due to its high molecular 

weight and its inability to form sufficient hydrogen bonds with the protein [131]. Garzon-

Rodriguez et al. reported that when used in combination with disaccharides, HES (MW = 200 

kDa) enabled greater stability of freeze-dried IL-11 compared to formulations which included 

only disaccharides or only HES. The formulations which included HES showed higher col-

lapse temperatures and higher glass transition points, leading to improved storage stability 

and a potentially more economic drying process [132]. However, the effect of HESylation, 

lyophilization and subsequent storage on protein stability has not been described until now, 
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nor has the question been answered of whether or not the remarkable properties of HES will 

be transferred to the HES conjugate during freeze-drying.  

1.7. Polysialylation  

Polysialic acid (PSA), also known as columinic acid (CA), is a naturally occurring biode-

gradable polysaccharide and can be used for HLE of biopharmaceuticals. This homopolymer 

is composed of α-2,8-linked 5-N-acetylneuraminic acid (Neu5Ac) and was discovered on the 

capsule of neuroinvasive bacteria. The natural function of PSA is to provide a hydrophilic 

stealth coat for various bacteria. A bacterial surface thus coated can avoid host complement 

activation and defensive phagocytosis when entering the human body [133]. PSA coating en-

ables organisms to evade the host immune response because PSA is already prevalent in the 

human body [134]. For example, PSA is known to coat neurons and is involved in nervous 

system development and repair [135].  When PSA is covalently linked to proteins, the ex-

treme hydrophilicity of the polymer increases the conjugate’s hydrodynamic size and pro-

vides a protective coating against catabolic enzymes, opsonins, neutralizing antibodies and 

receptors on phagocytic cells, thus prolonging the presence of the conjugate in the blood 

stream [136]. Xenetic Bioscience is already using a modified CA for coupling to therapeutic 

molecules. In order to be used for coupling, the non-reducing end must be either cleaved by 

periodate oxidation to form an aldehyde group for direct coupling by reductive amination or 

attachment of another activated linker [136]. Recent publications describing polysialylated 

insulin using a 22 and 39 kDa PSA showed a threefold increase in the hypoglycemic effect 

compared to unmodified insulin [136]. Similar approaches were achieved for Fab fragments 

or a modified antitumor single chain Fv region (scFv), which both experienced increased half-

life, reduced immunogenicity and improved tumor uptake [137, 138]. As another example, 

polysialylation of asparaginase provided an effective coating against proteolytic enzymes, 

improved its pharmacokinetic profile and decreased protein immunogenicity depending on the 

degree of coupling of PSA chains [139, 140].  

1.8.  Recombinant PEG mimetics 

1.8.1. PASylation 

T The term ‘recombinant PEG mimetics’ describes genetic engineering of large polypeptide 

sequences containing a number of selected amino acids. Fusion of this polypeptide with pro-
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teins and peptides increases their hydrodynamic volume and provides a completely biode-

gradable conjugate. XL-Protein GmbH, in one of the first approaches, fused a PEG mimetic 

based on the amino acids proline, alanine and serine (PAS) to a number of therapeutic pro-

teins [141]. The concept is to maintain PEG-like properties in an engineered, recombinantly 

produced polypeptide, which should include a large hydrodynamic size, the absence of posi-

tive or negative charges in the polymer backbone, high aqueous solubility and a random 

coiled structure. Therefore, hydrophobic and charged amino acid side chains were not consid-

ered. Carboxamide-containing side chains from Asn and Gln were also eliminated due to their 

known tendency toward aggregation as well as their role in protein folding pathologies such 

as Huntington’s disease [142]. Threonine, a β-branched amino acid, was also excluded due to 

its pronounced propensity for β-sheet formation. Histidine was not considered because of the 

high binding affinity of the imidazole side chain for metal ions, as well as its basic character. 

Due to poor solubility with increasing peptide length and its compacting effect on a random 

coiled and unfolded polypeptide chain, glycine was also excluded [143]. The final PAS mole-

cule is a flexible and uncharged polypeptide chain and can range in length from 200 to 600 

amino acid residues; the neutral charge does not provoke changes in the isoelectric point of 

the molecule of interest upon fusion. The well-defined amino acid sequence tends to form a 

random coiled structure, which is highly dependent on the length of the polypeptide and can 

be assessed by CD-spectroscopy [144]. A PAS 600 amino acids in length is characterized by a 

MW of 50 kDa and appears as a 0.5 MDa molecule in analytical size exclusion chromatog-

raphy [145]. The PASylated molecule can experience a 10- to 100-fold increase in circulation 

time depending on the length of the chosen polypeptide. PASylation also enables conjugate 

production in an E. coli-based cell line, avoiding the use of mammalian or CHO cells. The 

PAS molecule itself is believed to be eliminated by intracellular enzymatic digestion but is 

highly resistant to serum proteases [145]. PASylation of three relevant protein therapeutics 

(hGH, IFNα-2b and a recombinant Fab fragment of the humanized anti-HER2 antibody 4D5 

(trastuzumab) proved that PAS extends half-life by retarding conjugate renal clearance [144]. 

In addition, the modified proteins showed higher thermal resistance, observed as higher melt-

ing points, while retaining their native charge and high in vitro binding affinity [144].   

1.8.2. XTENylation 

The XTEN technology from Amunix Inc. is a second approach to producing genetic PEG 

mimetics. The polypeptide sequence is based on alanine, glutamic acid, glycine, proline, ser-

ine and threonine. The exclusion of hydrophobic amino acids like phenylalanine, isoleucine, 
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leucine, methionine, valine, tryptophan and tyrosine promotes a maximal hydrodynamic radi-

us and avoids generation of a compact polypeptide structure, which can induce protein aggre-

gation. From the immunological point of view, the hydrophobicity of such amino acids is 

considered to play a critical role in polypeptide recognition by the immune system when the 

reaction is driven by binding to MHC receptors [146]. The negatively charged amino acids in 

the sequence provide for an unstructured chain with strong intramolecular repulsion. This is 

necessary both to prevent chain collapse and to produce a highly flexible polymer backbone. 

The molecule shows high resistance to plasma proteases and remains intact in the blood-

stream for a significant period of time [147]. Degradation is driven mainly by internalization 

into cells and subsequent rapid destruction. Therefore, it can be supposed that long-term in-

tracellular accumulation will be decreased [147]. In contrast to PASylation, XTENylation 

involves a conscious decision to make the overall net charge of the molecule negative after 

coupling. Adding polypeptide sequences of 864 amino acids based on ala (72 aa), glu (144 

aa), gly (144 aa), pro (144 aa), ser (216 aa) and thr (144 aa) to exenatide resulted in a 125-fold 

increase in half-life and a depot effect upon s.c. injection [146]. The lack of immunogenic 

potential has been proven in mice and rabbits, which were treated by weekly injection of the 

conjugate over a period of 6 weeks. However, XTENylation can lower the bioactivity of the 

conjugate relative to the native protein. In the case of XTENylated glucagon, activity de-

creased to 15% that of the native form [148]. Additionally, the modification of human growth 

hormone (VRS317 with a MW = 119 kDa) showed a 12-fold reduction in in vitro potency due 

to significantly attenuated receptor recognition, caused primarily by the highly negatively 

charged surface of the conjugate [149]. However, XTENylation yielded a net positive benefit 

due to reduced receptor-mediated clearance and a reduction in side effects, such as lipoatro-

phy at the injection site, observed for other long-acting derivatives like PEGylated hGH [149, 

150]. This novel construct caused a sustained pharmacodynamic response over the course of 

one month, an effect which promises to increase patient compliance and reduce possible side 

effects of repeated dosing [149]. XTENylation can also improve the physicochemical proper-

ties of hydrophobic peptides like glucagon, resulting in improved hydrophilicity as well as 

improved stability in liquid formulation. Improved colloidal stability could enable formulators 

to avoid an additional lyophilization step recommended for the native form of glucagon [148].  
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1.9. Aims of the thesis 

Many clinically relevant improvements have been achieved by grafting polyethylene glycol to 

proteins and peptides; this strategy has resulted in more than ten approved PEGylated drugs. 

However, PEGylation suffers from a number of shortcomings. These shortcomings inspired 

an investigation, in collaboration with Fresenius Kabi, into whether or not some of these 

drawbacks might be overcome by protein HESylation while preserving the favorable physico-

chemical properties enabled by PEGylation.  

Chapter II describes the effect of HESylation
®
 on the model protein anakinra. A battery of 

analytical methods is used to characterize the conjugate’s physicochemical properties, such as 

conformational and colloidal stability. These analytical results are supported by pharmacoki-

netic results from in vivo experiments. 

Little is known about the effect of polymer conjugation on APIs intended for use in highly 

concentrated formulations. Therefore, the aim of chaper III is to use anakinra as a model pro-

tein for comparing HESylation and PEGylation regarding their effect on the physicochemical 

characteristics of the protein, as well as its formulation and stability in the challenging situa-

tion of highly concentrated protein solutions. To wit, the influence on viscosity, thermody-

namic stability and storage stability are explored. 

Finally, chapters IV and V are dedicated to an evaluation of the stability of two PEGylated 

and HESylated model proteins upon freeze-drying and subsequent storage at elevated temper-

atures. Lyophilization of PEGylated proteins still represents a challenge, mainly due to the 

high tendency of PEG to crystallize during freeze-drying. Thus, its impact on storage stability 

at elevated temperatures in the presence/absence of lyoprotectants is the main focus of these 

studies. Finally, the influence of HESylation on protein stability upon lyophilization is evalu-

ated, for both dilute and highly concentrated protein samples. 
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Abstract 

Half-life extension (HLE) is becoming an essential component of the industrial development 

of small-sized therapeutic peptides and proteins. HESylation
®

 is a HLE technology based on 

coupling drug molecules to the biodegradable hydroxyethyl starch (HES). In this study, we 

report on the synthesis, characterization and pharmacokinetics of HESylated anakinra, where 

anakinra was conjugated to propionaldehyde-HES using reductive amination, leading to a 

monoHESylated protein. Characterization using size exclusion chromatography and dynamic 

light scattering confirmed conjugation and the increase in molecular size, while fourier trans-

form infrared spectroscopy showed that the secondary structure of the conjugate was not af-

fected by coupling. Meanwhile, microcalorimetry and aggregation studies showed a signifi-

cant increase in protein stability. Surface plasmon resonance and microscale thermophoresis 

showed that the conjugate retained its nanomolar affinity, and finally, the pharmacokinetics of 

the HESylated protein exhibited a 6.5-fold increase in the half-life, and a 45-fold increase in 

the AUC. These results indicate that HESylation
®

 is a promising HLE technology. 

 

Keywords 

HESylation
®
, anakinra, microcalorimetry, binding affinity, pharmacokinetics  
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2.1. Introduction 

Since the recombinant DNA revolution in the 80s, there has been a constant increase in the 

development of new protein therapies [1]. Except for monoclonal antibodies (MAbs), many of 

the marketed and investigational biopharmaceuticals have a molecular size below the renal 

clearance threshold (i.e. < 60 kDa), and are thus rapidly eliminated through the kidneys (such 

as cytokines, growth factors, antibody fragments or protein scaffolds) [2]. This requires fre-

quent injection and is associated with reduced compliance. The extension of a protein’s half-

life can be achieved by the covalent coupling of water soluble polymers, such as polyethylene 

glycol (PEG), as pioneered by Davies and Abuchowsky in the 70’s [3, 4]. Such covalent at-

tachment of hydrophilic polymers can have the added advantages of increasing protein solu-

bility, enhancing stability, reducing proteolysis and immunogenicity [5, 6].  

PEG, however, is not biodegradable, raising concerns about possible vacuolization of the kid-

ney or the liver upon chronic administration of high doses of PEGylated proteins [7-9]. This 

and other limitations have spurred activity to find other half-life extension (HLE) technolo-

gies, with many being pursued industrially and academically [10, 11]. Among these, 

HESylation
®

 represents a promising HLE strategy [12]. The latter involves the covalent cou-

pling of hydroxyethyl starch (HES) to a biopharmaceutical to increase its size. HES is highly 

biocompatible and biodegradable, and is clinically approved as one of the first line plasma 

volume expanders (PVEs), with applied doses up to 200 g/day, making it an attractive hydro-

philic polymer for HLE [13-15]. 

In this work, we report on the synthesis, characterization and pharmacokinetics of a model 

HESylated protein, namely recombinant human interleukin 1 receptor antagonist (rhIL-1ra, 

also known as anakinra). Anakinra is a 17.26 kDa protein that binds to IL-1 receptor, blocking 

the inflammatory action of IL-1, and is thus approved for adult patients with rheumatic arthri-

tis who show an inadequate response to other disease modifying anti-rheumatic drugs 

(DMARDs) [16]. Due to its short half-life [16], anakinra has to be administrated by a daily 

injection of 100 mg, making it an ideal candidate for HLE. Accordingly, the aim of this study 

is to synthesize and purify HESylated anakinra, compare its physicochemical properties to the 

native protein, and finally investigate the binding affinity and pharmacokinetic properties of 

the modified protein. 



 

 

50 

 

2.2. Experimental procedures 

2.2.1. Materials 

Kineret
®
 was obtained from SOBI (Stockholm, Sweden). Activated hydroxyethyl starch 

(HES, with a weight average molar mass (Mw) of approximately 85 kDa, number average 

molar mass (Mn) ~ 65 kDa, and a polydispersity of 1.3). was from Fresenius Kabi Deutsch-

land GmbH (Bad Homburg, Germany). The activated HES carries an aldehyde linker at its 

reducing end group as shown in scheme 1. All other chemicals were analytical grade and used 

as obtained. 

 

Scheme 1. Activated HES carrying an aldehyde linker at its reducing end. 

 

2.2.2.  Synthesis and purification of HESylated anakinra 

In a 1 L glass reaction vessel equipped with a thermojacket and a blade stirrer, 2.5 g protein 

(19 mL; 134 mg/mL) were diluted into 220 mL 0.1 sodium acetate buffer (pH = 5.0) pre-

chilled to 5°C. Hydroxyethyl starch carrying a reactive propionaldehyde group was dissolved 

in the same buffer to yield a 40% (w/v) solution and 75 ml of the HES solution (representing 

a 3:1 molar ratio of polymer to protein) were combined with the protein under moderate stir-

ring. The reductive amination reaction was started by addition of 12.5 mL of a freshly pre-

pared 0.5 M NaCNBH3 solution in water and incubated over night (18 h) under moderate stir-

ring at 5°C. 

The conjugate was purified by anion-exchange chromatography using Q Sepharose HP mate-

rial and an Äkta Purifier 100 chromatography system (both GE Healthcare, Munich, Germa-

ny). The system was operated at room temperature with a typical flow rate of 10 mL/min. The 

column (XK 16/20) was first equilibrated with 5 CV of eluent A (10 mM Tris acetate, pH = 

8.0). The reductive amination reaction mixture was 10 fold diluted with eluent A, the pH ad-

justed to pH = 8.0 using NH4OH solution and beta-mercaptoethanol added to a final concen-

tration of 1 mM to destroy potential disulfide-mediated protein dimers. Up to 800 mg of con-

jugate were then loaded onto the column at a flow rate of 10 mL/min, followed by a washing 
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step with 2 CV 5% eluent B (eluent A + 250 mM NaCl) to remove the unbound, excessive 

HES polymer. The conjugate was eluted in a step gradient at 25% eluent B for 4 CV. Peak 

fractions were collected and subsequently a buffer exchange to CSE (10 mM citrate, 140 mM 

sodium chloride, 0.5 mM EDTA, pH = 6.5) buffer w/o Tween 80 and up-concentration per-

formed by TFF using a 50 cm
2
 PES (polyethersulfone) membrane capsule with a MWCO of 

10 kDa operated on a Minimate
TM

 benchtop system (both from Pall, Dreieich, Germany). The 

retentate of the TFF step was subjected to a 0.22 µm filtration step, aliquots of the filtered 

solution shock-frozen in liquid nitrogen and stored at -80°C until further use. 

 

2.2.3. Determination of conjugate concentration 

Concentration determination was performed by UV spectroscopy using the extinction coeffi-

cient at 280 nm with an extinction coefficient of 13392 M
-1

cm
-1

 corrected for the formulation 

buffer and potential stray light contribution at 320 nm [17]. 

 

2.2.4. SEC-MALLS measurement for the determination of the 

molar mass and size of the conjugates 

The molar mass and size of native and HESylated anakinra were investigated by a size exclu-

sion chromatography-multi angle laser light scattering (SEC-MALLS) on the AF2000 Focus 

(Postnova Analytics, Landsberg/Lech, Germany) equipped with a multi-angle laser light scat-

tering (MALLS) miniDAWN Tristar detector (Wyatt Technology, Dernbach, Germany), re-

fractive index detector (PN 3150, Postnova Analytics, Landsberg/Lech, Germany) and a 

Shimadzu SPD-10A UV-VIS Detector (Shimadzu, Duisburg, Germany). For SEC separation, 

a Superose 6 10/300 GL column (GE Healthcare, Uppsala, Sweden) was used with CSE buff-

er as the running phase including 0.02% sodium azide at a flow rate of 0.5 mL/min over 45 

min. Each run was performed by the injection of 50 µg, based on the protein weight. The data 

were analyzed by the Astra software version 5.0 (Wyatt Technology, Dernbach, Germany), 

where the rms (root mean square) radii were calculated from the MALLS data. The protein 

conjugate analyses were performed by the Wyatt protein conjugate application embedded in 

the Astra 5.0 software. UV extinction coefficient for anakinra is 13392 M
-1

cm
-1

 [17]; dn/dc is 

0.1850 mL/ g for anakinra and 0.1460 mL/g for HES [18].  
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2.2.5. Dynamic light scattering (DLS) 

The hydrodynamic radius was measured by DLS using the Malvern Zetasizer (Malvern In-

struments, Herrenberg, Germany). Native and HESylated anakinra were diluted to a final con-

centration of 1 mg/mL (based on the protein). Before scanning, all samples were filtered 

through a 0.2 µm filter. The hydrodynamic radius is expressed as the Z- average, together 

with the polydispersity index (PI) as an indication for the breadth of size distribution. 

 

2.2.6. Fourier transform infrared spectroscopy 

FTIR spectroscopy experiments were performed using the Bruker Tensor 27 FTIR with the 

Bruker AquaSpec Cell (Bruker Optics, Ettlingen, Germany). The sensor was cooled with liq-

uid nitrogen and a constant gaseous nitrogen flow. The samples were analyzed at a concentra-

tion of 3 mg/mL (based on the protein part) in 240 scans against CSE buffer which was used 

for background subtraction. Using the OPUS Software, the second derivative of the spectrum 

for each sample was obtained in the range of 1600 to 1700 cm
-1

. The curves were normalized 

by vector normalization. 

 

2.2.7. Surface plasmon resonance measurements for in vitro bind-

ing affinity 

The binding affinity was analyzed by surface plasmon resonance (SPR) using a Biacore T100 

instrument (Biacore AB, Uppsala, Sweden). The recombinant IL-1 receptor type I (R&D Sys-

tems, Wiesbaden, Germany) was immobilized by standard EDC/ NHS coupling on a CM3 

chip in acetate buffer (cacetate = 10 mM; pH = 4.5) to final response of 569 RU. A kinetic study 

was performed for native and HESylated anakinra at room temperature with a constant flow 

rate of 30 µL/ min and 180 s for the on-rate and 900 s for the off-rate, after which, the recep-

tor was regenerated with 50 mM NaOH for 5 s. Different sample concentrations were pro-

duced by dilution in HBS-EP running buffer (contains HEPES 10 mM, sodium chloride 150 

mM, EDTA 3 mM and P-20 0.05%). The binding data were subtracted from those obtained 

by running the ligands on a control cell lacking the bound receptor, and analyzed for kinetic 

and affinity characteristics using the Biacore T200 Evaluation Software. The curves were fit-

ted by non-linear regression according to the Langmuir binding isotherm using the 1:1 model. 
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The specificity of the interaction was confirmed by lysozyme, which was allowed to interact 

with the receptor using the same set up, but did not show any binding with the receptor (data 

not shown). 

 

2.2.8. Microscale Thermophoresis (MST) for in vitro binding 

affinity 

MST measurements were performed on a Monolith NT 115 (NanoTemper Technologies, 

Munich, Germany). The IL-1 receptor type I was labeled with NT Dye 495 using a Nano-

Temper standard labeling protocol. The receptor was first rebuffered in the labeling buffer to 

a final concentration of 20 µM. NT Dye 495 was added in threefold molar excess and incu-

bated for 30 min at room temperature. Finally, the labeled protein was separated from excess 

dye by a gravity flow column and concurrently rebuffered in the same buffer used for the SPR 

measurements, namely HBS-EP (contains HEPES 10 mM, sodium chloride 150 mM, EDTA 

3 mM and P-20 0.05%). For MST measurements, native and HESylated anakinra were diluted 

in 16 dilution steps in HBS-EP covering the range from 1 µM to 0.03 nM. Then 2 µl of 100 

nM labeled receptor were added to 20 µl sample solution. The samples were loaded in NT 

hydrophobic capillaries (NanoTemper Technologies, Munich, Germany) and measured with a 

laser power of 40%, with a laser on- rate of 30 s and a laser off- rate of 5 s in triplicates. The 

kD values of native and HESylated anakinra were calculated by the NanoTemper software 

version 1.0.1. 

 

2.2.9. Microcalorimetry 

Differential scanning calorimetry (DSC) was performed using a MicroCal VP-DSC 

(MicroCal Inc, Northampton, MA). The samples were diluted to a final concentration of 1 

mg/mL (based on protein) and measured against CSE buffer in 2 consecutive scans (i.e. heat-

ing, cooling, then 2
nd

 heating) to investigate the melting temperature and unfolding reversibil-

ity. Each heating run was performed in the range of 20 to 95°C with a heating rate of 

1°C/min. The thermograms were analyzed using the Microcal Origin Software. The melting 

temperature was calculated as the maximum of heat capacity. The ratio of the enthalpies of 

both 1
st
 and 2

nd
 heating runs is expressed as the unfolding reversibility in %. All measure-

ments were performed in triplicates. 
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2.2.10. Thermal stability 

The thermal stability of native and HESylated anakinra was tested using the method of 

Raibekas et al. [17]. 180 µL Protein samples at a concentration of 25 mg/mL (related to pro-

tein) were placed in a flat-bottom 96 well plate (Greiner Bio-One GmbH, Frickenhausen, 

Germany). The plate was incubated at 40°C in a FLUOstar Omega plate reader (BMG Lab-

tech; Ortenberg; Germany) for a period of 500 min. The aggregation process was followed by 

the increase in optical density at 350 nm. After each reading step the samples were shaken 

with 700 rpm for 3 s. 

 

2.2.11. Pharmacokinetic study 

Male Wistar rats (250 – 300 g body weight) were randomly allocated to two test groups of six 

animals each. Anakinra and the molar equivalent amount of HESylated anakinra dissolved at 

2.5 mg/mL in CSE-buffer (1.93 mg/mL NaCitrate, 8.2 mg/mL NaCl, 0.18 mg/mL Na-EDTA, 

pH = 6.5) were intravenously administered at a single dose of 5 mg/kg. Within each group, 

rats were divided into two subgroups of three animals which were bled at alternating time 

points to avoid exceeding recommended volume limits for non-terminal blood withdrawal. 

Blood samples (approx. 200 µL each) were withdrawn from tail vein of the animals of both 

groups at predetermined time points. The collected blood was immediately transferred into 

lithium heparin-containing Microvette
®
 tubes, shaken by hand and stored for 60 min at most 

on crushed ice until centrifugation (10000 x g and 4°C for 10 min). After centrifugation, the 

supernatant (plasma) of each sample was collected and immediately frozen.  

 

The plasma concentrations were analyzed by a commercial enzyme linked immunosorbent 

assay (ELISA) kit method (RayBio
®
 Human IL-1ra ELISA Kit) with anakinra and HESylated 

anakinra as standards after appropriate dilution. The assay was used as described in the user 

manual of the ELISA manufacturer (incubation of calibration standards and study plasma 

samples was done overnight at 4°C). Plasma concentration data are expressed as mean +/- SD. 

The pharmacokinetic parameters were calculated from the plasma concentrations after admin-

istration (noncompartmental analysis, AUC calculated using linear trapezoidal method) using 

PKSolver 2.0 [19]. 
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2.3. Results  

Anakinra was coupled to HES at the N-terminus by a reductive amination reaction through a 

single terminal aldehyde group on HES. After anion exchange chromatography, and re-

buffering into citrate buffer pH = 6.5, a highly purified mono-HESylated protein was ob-

tained, with a yield of 65%. 

 

2.3.1. Molar mass and size 

The molar mass and size of the obtained mono-conjugate were characterized using SEC-

MALLS as well as DLS, respectively. The combination of SEC for molecular separation with 

MALLS, UV and RI for detection is a powerful method for an exact calculation of the molar 

mass as well as the quantification of the extent of coupling and/or aggregation of the conju-

gated proteins. Results show that the weight average molar mass (Mw) of the native anakinra, 

calculated by MALLS and UV detection, was 16.6 kDa, which is in good agreement with the 

theoretical protein mass of 17.26 kDa (Figure 1 and Table 1). The HESylated protein (Fig-

ure 1 bottom) showed a Mw of 105.5 kDa, which is also quite close to the hypothetical mass 

of 102.7 kDa. 
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Figure 1: SEC-MALLS chromatograms for determining the molar mass of native (top), and 

HESylated anakinra (bottom). The molar mass distributions of the conjugate, the protein part 

and the polymer part are expressed in red, green and blue lines, respectively. 
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Table 1: Weight average molar mass (Mw) and polydispersity index (PDI) for activated HES, 

native and HESylated anakinra. 

Sample MW [kDa] Polydispersity 
Hydrodynamic 

diameter [nm]
b
 

PDI
b
 

Activated HES 85 1.3 - - 

Native anakinra 16.6
 a
 1.00

a
 4.36 ± 0.18 0.16 ± 0.03 

HESylated anakinra 105.5
 a
 1.24

a
 14.73 ± 0.25 0.20 ± 0.01 

a
 determined by SEC-MALLS 

b
 determined by DLS 

 

The hydrodynamic size of the conjugate was determined using DLS as seen in Table 1. The 

size of anakinra is 4.36 nm, which is quite comparable to the literature-reported value [6]. 

Meanwhile, the size of HES-conjugate is nearly three times that of native anakinra as seen in 

Table 1.  

 

2.3.2. Protein conformation 

The effect of HESylation
®
 on anakinra’s conformation was investigated using FTIR. The 2

nd
 

derivative spectrum of anakinra in Figure 2 shows the main characteristics of its secondary 

structure, namely a predominant beta sheet arrangement (peak at 1640 cm
-1

) and beta-turn 

structures (peak at 1685 cm
-1

) [20]. The spectrum of HESylated anakinra nearly superimposes 

with that of the native protein, showing that HESylation
®
 did not lead to significant changes 

in anakinra’s secondary structure.  
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Figure 2: Second- derivative amide I FTIR spectra of native anakinra (black solid line), and 

HESylated anakinra (red dotted line). 

 

2.3.3. Microcalorimetry and thermal stability 

Microcalorimetric measurements show that anakinra has a melting temperature of 58.0 ± 

0.5°C, which is in agreement with the previously reported value of 56°C [21], whereas 

HESylated anakinra shows a 4.8 K increase in the melting point in comparison to the native 

protein (Figure 3 and Table 2). In addition to the observed increase in Tm, the enthalpy of 

melting increases significantly upon polymer conjugation (Table 2). Furthermore, the protein 

conjugate showed a high degree of refolding upon cooling (90%), contrary to the native pro-

tein, which precipitated upon denaturation (Figure 3 and Table 2). Meanwhile, the stress 

stability study performed in a microwell-plate at 40°C (Figure 4) showed that native anakinra 

aggregated rapidly as manifested by a rapid increase in turbidity after less than 30 min, simi-

lar to previously reported results [17], while the HESylated anakinra did not show an increase 

in turbidity over several hours. 
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Figure 3: Microcalorimetry thermograms of native anakinra (black solid line) and HESylated 

anakinra (red dotted line). Native anakinra aggregated directly after unfolding, leading to the 

observed decrease in heat capacity, while HESylated anakinra did not. 

 

Table 2: Thermodynamic properties of native and HESylated anakinra 

Sample 
Tm 

[°C] 

Δ H 

[kcal/ mole] 

Δ cp 

[kcal/mole/°C] 

Unfolding re-

versibility 

[%] 

Native anakinra 58.0 ± 0.5 58.4 ± 0.1 11.7 ± 0.4 0 

HESylated anakinra 62.8 ± 0.3 100.8 ± 1.0 19.4 ± 0.3 90.3 ± 0.9 
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Figure 4: Optical density at λ = 350 nm as a function of time for anakinra (black dots) and 

HESylated anakinra (red dots) solutions (protein concentration = 25 mg/mL) stored at 40°C 

for 500 min in a 96 well plate with eventual shaking after each reading step 

 

2.3.4. In vitro binding affinity 

The binding affinity was measured using SPR and MST. In case of SPR measurements, the 

recombinant IL-1 receptor type I was immobilized with a low density to minimize mass 

transport and rebinding effects. Table 3 illustrates the kD values of native and HESylated 

anakinra including the on- and off-rates. The wild type protein showed the fastest on-rate fol-

lowed by a very slow off-rate (Figure 5 and Table 3), which led to a kD value of 0.05 nM. 

The on-rate of the HESylated anakinra is nearly one order of magnitude lower than the native 

protein, while the off-rates for both proteins are similar (Table 3), leading to a slightly higher 

dissociation constant (kDHESylated anakinra = 0.32 nM). Meanwhile, MST results show that the 

native protein had a kD of 3.85 nM, while the conjugate’s kD was 10.7 nM (Figure 6 and 

Table 3).  
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Figure 5: SPR analyses for the binding of native anakinra (top) and HESylated anakinra (bot-

tom) to IL-1 receptor type I. All binding curves (black lines) were fitted by Langmuir (1:1) 

binding isotherm (red lines). 
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Figure 6: MST measurement for of the binding of native and HESylated anakinra to IL-1 

receptor type I as a function of ligand concentration. 

 

Table 3: On- rates, off-rates and dissociation constants for native- and HESylated anakinra 

from SPR measurements as well as dissociation constant from MST measurements  

Sample 

SPR MST 

kon 

[1/Ms] 

koff 

[1/s] 

kD 

[nM] 

kD 

[nM] 

Native anakinra 8.54E+5 3.91E-5 0.05 3.85 

HESylated anakinra 9.61E+4 3.11E-5 0.32 10.7 

 

 

2.3.5. Pharmacokinetic profiles of native and HESylated anakinra 

The pharmacokinetic properties of anakinra and HESylated anakinra were evaluated follow-

ing intravenous administration in male Wistar rats. No toxicity or adverse effects were noted 

in the treated rats. Figure 7 illustrates the plasma concentration profiles during a 72 h experi-

mental period, and the pharmacokinetic parameters calculated from the data by noncompart-

mental analysis are summarized in Table 4. Figure 7 shows that plasma concentrations of 

native and HESylated anakinra demonstrated an exponential declining pattern after i.v. ad-

ministration, but the elimination of HESylated anakinra was much slower than that of native 
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protein. The half-life of HESylated anakinra was increased about 6.5 times, as compared to 

that of native anakinra. Additionally, HESylated anakinra showed a reduced clearance (CL) 

and a marked increase (approximately 45 times) in the area under the plasma concentration 

curve (AUC), as well as a marked decrease in the apparent volume of distribution, indicating 

higher confinement to a smaller fluid volume, and lesser diffusion out of the blood compart-

ment. 

 

 
 

Figure 7: Plasma level of native and HESylated anakinra after single intravenous administra-

tion to rats. Closed symbol: anakinra; open symbol: HESylated anakinra. Rats were injected 

with 5 mg/kg anakinra or molar equivalent amount of HESylated anakinra. 

 

Table 4: Pharmacokinetic parameters after anakinra and HESylated anakinra administration 

to rats.  

 

Parameter Native anakinra HESylated anakinra 

AUC (h*ng/mL) 12,287 548,790 

t1/2 (h) 1.7 10.8 

CL (mL/h/kg) 403.3 9.1 

Vz (mL/kg) 958 141 
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Results are expressed as mean (n = 3). Abbreviations: AUC, area under the curve; t1/2 (h): 

apparent terminal elimination half-life; CL: observed clearance; Vz: apparent volume of dis-

tribution 

2.4. Discussion 

With the current developments in engineering protein molecules for a multitude of targets and 

diseases, HLE became an important enabling strategy for many protein development pro-

grams. Due to the limitations of PEGylation [22, 23], newer technologies are being pursued, 

and these can be grouped into 2 broad strategies: 1) physical increase in the size of the mole-

cule of interest above the renal glomerular filtration limit by coupling to biodegradable, water 

soluble polymers (such as polysialic acid [24, 25]) or fusion to random-coil-forming polypep-

tides (such as Xten technology [26, 27], or PASylation [28]). The other strategy involves 2) 

the use of a binding mechanism, such as binding to the Fc neonatal receptor (FcRn) to make 

use of the FcRn natural recycling mechanism in the endothelial cells [10]. The latter can be 

achieved by fusion to the Fc part of antibodies, or fusion to serum albumin [10]. 

In this study, we report on HESylation
®
 as a promising HLE technology. It involves coupling 

of hydroxyethyl starch (HES) to molecules of interest to increase their size and thus their cir-

culation time. HES is a semi-synthetic water-soluble polymer produced by the reaction of 

starch with ethylene oxide [29]. It is degraded by the action of serum alpha-amylase, and the 

rate of degradation can be tailored by controlling the extent of hydroxyethylation [30]. Such 

favorable properties, in addition to its proven safety record and extensive clinical use as plas-

ma volume expander, render HES as an attractive alternative to PEG.  

In this study, HESylation
®
 was applied to anakinra. The latter is used for the treatment of 

rheumatic arthritis, but has a terminal half-life of only 108 min in humans [16], thus many 

researchers have attempted to increase its circulation time and reduce the dosing frequency 

[31, 32]. Those attempts involved coupling it to PEG, either at the N-terminus [31], or at the 

cysteine or lysine residues [32]. In the current study, we report a site-specific conjugation of 

HES at the N-terminus of anakinra using reductive amination. The reaction makes use of a 

single terminal aldehyde group on the activated HES, which forms a Schiff’s base with the 

protein’s N-terminal-amino group, and is subsequently reduced to a secondary amino group. 

The coupling chemistry is based on the difference in pKa between the ε-amino groups of ly-

sine and that of the N-terminal amino group, leading to a preferred reaction with the N-

terminus at slightly acidic conditions [33-35]. Previous reports on HESylation
®
 described 
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coupling several peptides or small molecules to one HES chain [14, 36, 37], as well as site-

specific conjugation [12]. 

Despite the putative regioselectivity of the reductive amination reaction described above, it 

can not be excluded that also certain exposed Lys residues become reactive with the polymer, 

leading to an inhomogenous multi-HESylated product, especially when a high excess of the 

modification reagent (i.e. activated HES) is used for a prolonged reaction time. To minimize 

this risk, the small-scale conjugation process was directed towards maximizing homogeneity 

of the product rather than yield. After preliminary optimization runs, it was possible to 

identify conditions that produced predominantly mono-conjugated protein (as followed by 

SEC analysis, see below), with a coupling efficiency restricted to ~80 %, and an overall pro-

cess yield of 65% after all purification steps. The predominately regioselective coupling at the 

N-terminus was confirmed by peptide mapping after digestion by trypsin (Promega, Madison, 

USA) for 20 h at 37°C, followed by analysis on a Q-Star
®
 XL Hybrid LC/MS/MS system. 

Results showed that, the heptapeptide at the N-terminus of anakinra could not be recovered 

after HESylation, in contrast to the native protein, which confirms the N-terminal coupling 

(data not shown).  

SEC-MALS and RP-HPLC analysis showed that a predominantly mono-HESylated protein 

was obtained after synthesis and purification, with a purity of > 98 %, containing less than 

0.5% of non conjugated protein, free HES polymer as well as soluble aggregates. Additional-

ly, the calculated masses of the protein and the conjugate agree quite well with the theoretical 

values. One obvious difference between native anakinra and the HESylated one is the broad 

molar mass distribution of the latter (PDIHESylated anakinra = 1.244). This is quite close to 

the PD of the activated HES molecule (= 1.3), and generally due to the natural origin of the 

polymer, with polydispersities between 1.9 and 4.5 obtained for commercially available plas-

ma volume expanders based on HES [29]. However, by sample fractionation, it is possible to 

obtain HES fractions with even narrower size distribution compared to the starting material 

used for the protein conjugation in this study. Meanwhile, DLS results show that the hydro-

dynamic diameter of the anakinra increased from 4.36 to 14.73 nm for the HESylated protein. 

This is essential for increasing the half-life, since it is known that molecules bigger than the 

pores of the glomerular basement membrane (approximately 5.0 nm) have a reduced glomeru-

lar filtration rate [38]. 

The influence of HESylation
®
 on the secondary structure of the protein was investigated using 

FTIR. The vast majority of literature reports support the notion that polymer conjugation to 

proteins has no effect on a protein’s secondary and tertiary structure [39, 40]. For example, 
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Kinstler et al. studied the effect of PEGylation on the secondary structure of GCSF by circular 

dichroism, and found out that conjugation did not influence the protein conformation [33], a 

result later confirmed by Rajan et al. in an FTIR study [39]. There are however few studies 

which describe changes in protein conformation upon PEGylation [41, 42]. For instance, Yu 

and coworkers reported changes in the circular-dichroism-measured secondary structure of 

rhIL-1ra upon PEGylation [43]. Our results show that, HESylation
®
 did not alter the second-

ary structure of anakinra, since the spectra before and after conjugation nearly superimpose.  

In another set of experiments, the effect of HESylation
®
 on the protein’s thermodynamic 

properties and thermal stability was investigated. A number of studies have shown that 

glycosylation or PEGylation increases a protein’s thermodynamic stability [44-46], such as 

the work of Rodrigues-Martinez et al., who reported an increase of up to 6 K in the melting 

temperature (Tm) of α-chymotrypsin upon PEGylation [47]. Similarly, Tm of recombinant 

human endostatin increased by 15 K upon modification with a single 5 kDa PEG molecule at 

the N-terminus [48]. Meanwhile, others, such as Gonnelli et al. [49] and Plesner et al. [50], 

reported a reduction of Tm after polymer conjugation. The microcalorimetric measurements of 

HESylated anakinra showed a 4.8 K increase in Tm and a 65% increase in the unfolding en-

thalpy as well as refolding upon cooling (which was missing in the native protein due to ag-

gregation). These improved thermodynamic properties showed a positive effect on the protein 

stability under thermal stress, where the conjugated protein did not aggregate for more than   

8 h, while the native protein started aggregation already after 30 min. Similar correlation be-

tween increased Tm and higher stability was reported in previous studies [45]. 

The in vitro binding affinity was also investigated as an important surrogate for the influence 

of HES-conjugation on the protein activity. Polymer conjugation to proteins is known to re-

duce the protein activity due to steric hindrance of the interaction of the protein and the bind-

ing receptor, with activity dropping to as low as 7% as in the case of PEG-Interferon α-2a 

[51]. Site-specific conjugation can greatly improve activity and binding affinity, as it can re-

duce the interference in protein-receptor interaction. In the current study, the binding kinetics 

of the native and the conjugated anakinra were evaluated by surface plasmon resonance (SPR) 

measurements as well as microscale thermophoresis (MST). The latter is a novel entirely op-

tical method for the determination of the binding affinity [52], where the migration of bio-

molecules along a laser-induced microscopic temperature gradient is mainly governed by pro-

tein hydration and surface charge [53]. A binding event leads to alterations of the protein hy-

dration shell, and accordingly changes in the thermophoretic motion [54]. It offers a number 

of advantages, including minimum sample contamination or perturbation of the molecular 
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structure due to lack of protein-immobilization, as well as the ability to measure over a wide 

concentration range (nM to mM), requiring very small sample volumes (< 3 µl) [52, 53]. 

SPR measurements of anakinra gave a dissociation constant (kD) of 0.05 nM, which is close 

to the reported values of  0.12 [55] and 0.4 nM [56]. Meanwhile, it showed that the on-rate of 

the HESylated protein decreased by an order of magnitude, most probably due to the shield-

ing effect of the polymer, and possibly the lower diffusion coefficient of the larger conjugate 

[57], while the off-rates for both proteins are similar, indicating that once the ligand-receptor 

complex is formed, its dissociation is not influenced by the coupled polymer. The dissociation 

constants of native and modified anakinra were double-checked by MST, which showed 

higher kD values for both proteins, but with the same trend, namely, that the HESylated pro-

tein had a multiple-fold higher dissociation constant than the native protein. The lower kD 

values obtained by SPR have also been observed by Jecklin et al. when they compared SPR to 

isothermal calorimetriy (ITC) and nanoelectrospray ionization mass spectrometry (nESI-MS) 

[58]. They attributed this observation to issues of protein immobilization, where in case of 

fast association rates, which are highly affected by mass transport, the binding of the ligand to 

the protein on the sensor chip is faster than the diffusion of the ligand from the bulk solution 

to the immobilized protein at the surface [58]. This problem is not present in MST leading to 

higher apparent kD values. In general, one infers from both techniques that the conjugated 

protein is still highly active, retaining a dissociation constant in the low nM range. It is also 

worth noting that the minor reduction in binding affinity may not influence the in vivo per-

formance [5], as observed by Pearce et al. who produced hGH mutants with systematically 

lower binding affinities down to 500-fold [59], and found out that the cellular proliferation of 

the different mutants was unaffected until the affinity was reduced by more than 30-fold com-

pared to the wild-type protein [59]. 

Finally, the pharmacokinetic results of both native and HESylated anakinra in male Wistar 

rats show that HESylation
®
 significantly increased the half-life of the protein by 6.5 times, as 

well as the AUC by 45 times. To compare these results with published information about 

PEGylated anakinra, quite scarce data can be found in the literature. For instance, a patent by 

Hakimi et al. describes the serum concentrations of native and PEGylated anakinra (conjugate 

molar mass is 33 kDa, 46% protein content) for up to 24 h after subcutaneous injection into 

C57BF/6 mice [60]. Analyzing their data using the noncompartmental analysis of PKSolver 

2.0, native anakinra shows a t1/2 of 1.04 h (which is close to our estimate) while PEGylated 

anakinra shows a t1/2 of 3.53 h. While it is difficult to directly compare the results of 

HESylated anakinra to those of the published PEGylated one due to differences in the animal 
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species, molar mass of the polymer and injection route, the results generally show the poten-

tial of HESylation
®
 for extending the circulation time of proteins. 

2.5. Conclusions 

The present study reports on the use of HES-conjugation for half-life extension of a model 

protein, namely rhIL1ra (anakinra). The HESylated protein was synthesized using reductive 

amination under mild acidic conditions, and purified by anion exchange chromatography, 

giving a monoHESylated protein with a very good yield. Characterization of the HESylated 

anakinra by SEC-MALLS and DLS identified the molar mass and size of the protein, respec-

tively, while FTIR showed that HESylation
®

 did not alter the protein’s secondary structure. 

Additionally, microcalorimetry showed that HESylation
®
 increased the proteins melting point 

Tm by 4.5 K, as well as the melting enthalpy and refolding upon cooling, which translated into 

higher stability towards aggregation at 40°C. Meanwhile, HESylated anakinra maintained its 

high receptor binding affinity in the low nanomolar range as confirmed by SPR and MST. 

Finally, the pharmacokinetic study of native and HESylated anakinra in Wistar rats showed a 

marked increase in the protein’s half-life and AUC. This study shows that, while HESylation
®

 

significantly improves the pharmacokinetic parameters of the model protein, anakinra, it does 

not negatively affect its structure or binding affinity, and increases its stability, making 

HESylation
®
 an attractive HLE technology. 
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Chapter III – Highly concentrated formulations 
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Abstract 

Although PEGylation of biologics is currently the gold standard for half-life extension, the 

technology has a number of limitations, most importantly the non-biodegradability of PEG 

and the extremely high viscosity at high concentrations. HESylation is a promising alternative 

based on coupling to the biodegradable polymer hydroxyethyl starch (HES). In this study, we 

are comparing HESylation with PEGylation regarding the effect on the proteins physicochem-

ical properties, as well as on formulation at high concentrations, where protein stability and 

viscosity can be compromised. For this purpose, the model protein anakinra is coupled to 

HES or PEG by reductive amination. Results show that coupling of HES or PEG had practi-

cally no effect on the protein`s secondary structure, and that it reduced protein affinity by one 

order of magnitude, with HESylated anakinra more affine than the PEGylated protein. The 

viscosity of HESylated anakinra at protein concentrations up to 75 mg/mL was approximately 

40% lower than that of PEG–anakinra. Both conjugates increased the apparent melting tem-

perature of anakinra in concentrated solutions. Finally, HESylated anakinra was superior to 

PEG–anakinra regarding monomer recovery after 8 weeks of storage at 40°C. These results 

show that HESylating anakinra offers formulation advantages compared with PEGylation, 

especially for concentrated protein solutions. 
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3.1. Introduction 

There is currently a large growth in the development of therapeutic peptides and proteins, 

with many academic institutions and industrial settings introducing engineered proteins hav-

ing new designs and functionalities [1,2]. However, for many biopharmaceuticals with a mo-

lecular weight lower than 60 kDa, such as some cytokines, antibody fragments, or protein 

scaffolds, the rapid renal filtration and thus short half-life represents a hindrance for success-

ful commercialization due to the need for frequent administration and thereby reduced com-

pliance. Accordingly, these molecules require half-life extension (HLE) technologies to en-

sure their competitiveness [3]. Additionally, many of them need to be formulated as highly 

concentrated solutions to enable self- administration of the required high doses by the subcu-

taneous route [4]. With more than 10 approved products on the market, PEGylation currently 

represents the gold standard HLE technology [5]. The coupling of polyethylene glycol to pep-

tides and proteins was first introduced in the 1970s by Abuchowski et al. [6,7] and later found 

its way to the market, not only because of extending the circulation time, but also because of 

imparting many positive characteristics to molecules, such as increased solubility and stability 

as well as reduced immunogenicity and susceptibility to proteolytic degradation [8]. How-

ever, PEGylation suffers from a number of shortcomings, most importantly the fact that PEG 

is not biodegradable, leading to toxicity concerns, such as vacuolation of the kidney or liver 

[9–11]. Another safety concern involves the presence of pre-existing or newly developed anti-

PEG antibodies, which can limit the therapeutic efficacy of PEGylated proteins [12]. Addi-

tionally, highly concentrated solutions of PEGylated proteins can have extremely high viscos-

ities, leading to challenges in production and administration [13,14]. These issues led to the 

pursuit of better alternatives for PEGylation, with many approaches already commercially 

under development [15,16]. These alternative technologies can be classified under two main 

strategies. The first involves the same basic principle employed by PEGylation, that is, in-

creasing the hydrodynamic size of the biopharmaceutical above the renal glomerular filtration 

threshold. This can be achieved by coupling to biodegradable polymers (such as polysialic 

acid [17,18]) or fusion to non-folding polypeptides (such as Xten technology, [19,20] or 

PASylation [21]). The second approach utilizes a binding mechanism, such as binding to the 

Fc neonatal receptor (FcRn) to make use of the FcRn natural recycling machinery [15]. This 

can be achieved by fusion to the Fc part of antibodies, or to albumin [15]. HESylation
®
 is a 

promising HLE technology that utilizes the first strategy [22]. It involves protein coupling to 

the biodegradable and biocompatible semi synthetic polymer hydroxyethyl starch (HES). 
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HES is widely used as a plasma volume expander for decades, with patients tolerating doses 

of more than 100 g of HES per day [23]. Such favorable properties have prompted its investi-

gation for biomedical applications [24, 25] and more importantly for polymer–protein conju-

gation as a promising substitute for PEG [26]. 

The protein molecule used in this study is anakinra (recombinant human interleukin 1 recep-

tor antagonist, rhIL1-ra). Anakinra is a 17 kDa protein that binds to the IL1 receptor, blocking 

the inflammatory action of IL1 α and β, and is thus approved for adult patients with rheumatic 

arthritis who show an inadequate response to other disease-modifying antirheumatic drugs 

[27]. Because of its short half-life, anakinra has to be administrated by a daily injection of  

100 mg, making it an ideal candidate for HLE. We have recently shown that HESylation of 

anakinra maintains the binding affinity of the protein, has no effect on its secondary structure 

or stability, and more importantly, increases the elimination half-life more than fivefold [28]. 

The aim of this study is to use anakinra as a model protein for comparing HESylation versus 

PEGylation regarding their effect on the physicochemical characteristics of the protein, as 

well as its formulation and stability, particularly at the challenging situation of high protein 

concentrations. 

 

3.2. Materials and Methods 

3.2.1. Materials 

Kineret
®
 was purchased from SOBI (Stockholm, Sweden). Branched PEG propionaldehyd 

(molecular weight (MW) = 40 kDa) was purchased from Jenkem Technologies (Allen, Tex-

as). Activated HES (with a weight average Mw of approximately 85 kDa, number average 

MW (Mn) of approximately 65 kDa, and a polydispersity of 1.3) was from Fresenius Kabi 

Deutschland GmbH (Bad Homburg, Germany). All chemicals were used in analytical grade 

and purchased from VWR (Darmstadt, Germany). 

 

3.2.2. Synthesis and Purification of the Protein Conjugates 

3.2.2.1. PEGylation 

Anakinra was conjugated to branched PEG propionaldehyde (MW = 40 kDa) on the N- ter-

minus by reductive amination in acetate buffer (cProtein = 8 mg/mL, cBuffer = 100 mM, pH = 
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5.0) in a 2.5 molar excess of the polymer using 20 mM sodium cyanoborohydride as the  re-

ducing agent under gentle stirring for 16 h at 4°C. The reaction batch was rebuffered for 4 h 

by a dialysis membrane (Cellu Sep, MW cutoff (MWCO) 3.5 kDa; Scienova GmbH, Jena, 

Germany) against 5 L of a 20 mM TRIS buffer pH = 8.0 at 4°C before loading on a self-

packed XK 50/20 filled with Q Sepharose HP (GE Healthcare, Uppsala, Sweden) for anion-

exchange chromatography at a flow rate of 0.5 mL/min. The monoPEGylated protein was 

separated from the multi-conjugates and the unreacted protein using 10 column volumes in a 

linear salt gradient using Tris buffer with 250 mM NaCl on an ÄKTA Purifier (GE 

Healthcare) at a flow rate of 3 mL/min. For further experiments, the pooled fractions of 

mono-conjugate were rebuffered against citrate-saline- EDTA (CSE) buffer (cCitrate = 10 mM, 

cNaCl = 140 mM, cEDTA = 0.5 mM, pH = 6.5) by tangential flow filtration (TFF) using a 

Minimate
TM

 capsule with Omega
TM

 10 kDa membrane (PALL Scientific, East Hills, New 

York). The concentration was measured by UV-spectroscopy at 280 nm with an extinction 

coefficient of 13,392 M
−1

 cm
−1

 [29]. 

3.2.2.2. HESylation 

Anakinra was conjugated to HES propionaldehyde targeting protein’s N- terminus by reduc-

tive amination in acetate buffer. In a 1 L glass reaction vessel equipped with a thermojacket 

and a blade stirrer, 2.5 g protein (19 mL; 134 mg/mL) were diluted into 220 mL 0.1 M sodi-

um acetate buffer (pH = 5.0) prechilled to 5°C. Hydroxyethyl starch (Mn ~ 68 kDa) carrying a 

reactive propionaldehyde group (4-amino- N-(3-oxopropyl)butanamide [30]) was dissolved in 

the same buffer to yield a 40% (w/v) solution and 75 mL of the HES solution (representing a 

3:1 molar ratio of polymer to protein) were combined with the protein under moderate stir-

ring. The reductive amination reaction was started by addition of 12.5 mL of a freshly pre-

pared 0.5 M NaCNBH3 solution in water and incubated overnight (18 h) under moderate stir-

ring at 5°C. The conjugate was purified by anion-exchange chromatography using Q Se-

pharose HP material and an Äkta Purifier 100 chromatography system (both GE Healthcare, 

Munich, Germany). The system was operated at room temperature with a typical flow rate of 

10 mL/min. The column (XK 26/20) was first equilibrated with 5 CV of eluent A (10 mM 

Tris acetate, pH = 8.0). The reductive amination reaction mixture was 10-fold diluted with 

eluent A, the pH adjusted to pH 8.0 using NH4OH solution and beta-mercaptoethanol added 

to a final concentration of 1 mM to destroy potential disulfide-mediated protein dimers. Up to 

800 mg of conjugate was then loaded onto the column at a flow rate of 10 mL/min, followed 

by a washing step with 2 CV 5% eluent B (eluent A + 250 mM NaCl) to remove the unbound, 
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excessive HES polymer. The conjugate was eluted in a step gradient at 25% eluent B for 4 

CV. Peak fractions were collected and subsequently a buffer exchange to CSE (10 mM cit-

rate, 140 mM sodium chloride, 0.5 mM EDTA, pH = 6.5) buffer w/o Tween 80 and up-

concentration performed by TFF using a 50 cm
2
 PES (polyethersulfone) membrane capsule 

with a MWCO of 10 kDa operated on a Minimate
TM

 benchtop system (both from Pall, 

Dreieich, Germany). The retentate of the TFF step was subjected to a 0.22 µm filtration step, 

aliquots of the filtered solution shock-frozen in liquid nitrogen and stored at −80°C until fur-

ther use. 

 

3.2.3. SEC–MALLS Measurement for the Determination of the 

Molecular Weight and Size of the Conjugates 

 

The MW of native, PEGylated, and HESylated anakinra were investigated by size-exclusion 

chromatography–multi- angle laser light scattering (SEC–MALLS) on the AF2000 Focus 

(Postnova Analytics, Landsberg/Lech, Germany) equipped with a MALLS miniDAWN Tris-

tar detector (Wyatt Technology, Dernbach, Germany), refractive index detector (PN 3150; 

Postnova Analytics) and a Shimadzu SPD-10A UV-VIS Detector (Shimadzu, Duisburg, Ger-

many). For SEC separation, a Superose 6 10/300 GL column (GE Healthcare) was used with 

CSE buffer as the running phase including 0.02% sodium azide at a flow rate of 0.5 mL/min 

over 45 min. Each run was performed by the injection of 50 µg, based on the protein weight. 

The data were analyzed by the Astra software version 5.0 (Wyatt Technology). The protein 

conjugate analyses were performed by the Wyatt protein conjugate application embedded in 

the Astra 5.0 software. UV extinction coefficient for Anakinra was 13,392 M
−1

 cm
−1

 [29]; 

dn/dc for anakinra was 0.1850 mL/g, for PEG 0.1340 mL/g, [31] and HES 0.1460 mL/g [32]. 

 

3.2.4. Hydrodynamic Radius 

The hydrodynamic radius was measured by dynamic light scattering (DLS) using the Malvern 

Zetasizer (Malvern Instruments, Herrenberg, Germany). Native, PEGylated, and HESylated 

anakinra were diluted to a final concentration of 1 mg/mL (based on the protein). Before 

measurement, all samples were filtered through a 0.2 µm filter. The hydrodynamic radius is 
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expressed as the Z- average, together with the polydispersity index as an indication for the 

size distribution. 

 

3.2.5. FTIR 

FTIR spectroscopy experiments were performed using the Bruker Tensor 27 FTIR with the 

Bruker AquaSpec Cell (Bruker Optics, Ettlingen, Germany). The sensor was cooled with liq-

uid nitrogen and a constant gaseous nitrogen flow. The samples were analyzed at a concentra-

tion of 3 mg/mL (based on the protein part) in 240 scans against CSE buffer. Using the OPUS 

Software, the second derivative of the spectrum for each sample was obtained in the range of 

1600 to 1700 cm
−1

. The curves were normalized by vector normalization. 

 

3.2.6. Biacore Analysis for in vitro Binding Affinity 

The binding affinity was analyzed by surface plasmon resonance (SPR) using a Biacore T100 

instrument (Biacore AB, Uppsala, Sweden). The recombinant IL-1 receptor type I (R&D Sys-

tems, Wiesbaden, Germany) was immobilized by standard EDC/NHS coupling on a CM3 

chip in acetate buffer (c = 20 mM, pH = 4.5) to a final response of ≈ 570 RU. A kinetic study 

was performed for native, PEG- and HESylated anakinra by choosing 180 s for the on-rate 

and 300 s for the off-rate with a constant flow rate of 30 µL/min measured at room tempera-

ture. After the 300 s dissociation of the analytes, the receptor was regenerated with Glycine 5 

mM pH = 2.0 for 6 s. Different sample concentrations were diluted in HBS-EP running buffer 

(contains HEPES 10 mM, sodium chloride 150 mM, EDTA 3 mM and P-20 0.005%). The 

data were subtracted from an uncoated cell and normalized to their baseline using the 

BIAcore T200 Evaluation Software. The overlaid curves showed the loss in activity by a de-

creased response at different concentrations.  

 

3.2.7. Preparation of Highly Concentrated Solutions 

Up-concentration of the protein solutions was performed by ultrafiltration in Vivaspin 20 cen-

trifugators using a MWCO of 10 kDa for the conjugates and 3.5 kDa for the unmodified pro-

tein. The tubes were placed into a Sigma 4K15 centrifuge (Sigma Laborzentrifugen GmbH, 

Osterode am Harz, Germany) and rotated at 10,000 rpm (= 14,243 g) for 3– 4 h at 4°C. The 
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protein concentration was verified by UV measurement (NanoDrop; Thermo Scientific, 

Schwerte, Germany) using the aforementioned extinction coefficient of the protein. For fur-

ther experiments, the samples were diluted in the formulation buffer to the desired protein 

concentration. 

 

3.2.8. Differential Scanning Calorimetry 

Thermal properties of the highly concentrated protein solutions were investigated by differen-

tial scanning calorimetry on the Netzsch DSC (Netzsch- Gerätebau, Selb, Germany). There-

fore, 100 µL of native, PEGylated, and HESylated anakinra with a sample concentration of 

25, 50, and 75 mg/mL (relabased on the protein) was filled in 100 µL aluminum crucibles, 

hermetically sealed, and measured against CSE buffer. The folding process was followed by a 

heating gradient from 20°C to 95°C with a heating rate of 1°C/ min. Data analysis was deter-

mined by the Proteus software. The curves were smoothed by the program to determine the 

apparent Tm as the peak maximum of the melting process. Additionally, the temperature de-

scribing the onset of unfolding, Tonset, was determined by integrating the curve in Origin soft-

ware and fitting the curve using a Boltzmann equation as described by Menzen and Friess 

[33]. 

 

3.2.9. Viscosity 

The rheological properties as a function of protein concentration of the wild type and both 

conjugates were investigated on the mVROC device (Rheosense Inc., San Ramon, CA, USA) 

at 20°C. All samples were diluted in CSE buffer to 25, 50, and 75 mg/mL and analyzed at a 

shear rate of 314 s
−1

. The viscosity of Cimzia
®
 (UCB, Brussels, Belgium) measured under 

equivalent conditions served as a benchmark. The mentioned setup was also used to investi-

gate the influence of pH as well as sodium chloride on solution viscosity. 

 

3.2.10. Storage Stability: SEC 

The formation of soluble aggregates and the levels of monomeric protein were determined by 

SE-HPLC measurements on a Spectra-Physics System P2000 (ThermoFisher Scientific, Hen-

ningsdorf, Germany) equipped with a TSKgel G3000 SWxl (TOSOH Bioscience GmbH, 

Stuttgart, Germany) with CSE buffer as the running solvent at a flow rate of 0.5 mL/min over 
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35 min. The peak areas of the chromatograms were used to quantify the amount of soluble 

aggregates and the monomeric fraction of each sample. Protein standards with a known con-

centration were stored at 2– 8°C and served as controls for the thermal incubation experiment. 

All samples were diluted to 1 mg/mL and centrifuged to analyze the supernatant. Each SE-

HPLC run was performed by the injection of 50 µg of protein, detection wavelength was 280 

nm. 

 

3.3. Results 

3.3.1. Synthesis and Purification 

In case of both PEGylation and HESylation, the coupling efficiency was similar (approxi-

mately 75%). After purification using anion exchange chromatography, mono conjugated 

protein could be obtained, with a purity > 98% for both HESylated and PEGylated anakinra as 

determined by SEC and RP-HPLC, with a cumulated process yield of 65% – 70%.  

3.3.2. Determination of the Molecular Weight and Hydro-

dynamic Size  

Size-exclusion chromatography combined with MALLS, UV, and RI detectors was used for 

the calculation of the MW as well as quantification of the extent of coupling and/or aggrega-

tion of the conjugated proteins. The MW of native anakinra was found to be 16.6 kDa, in 

good agreement with the theoretical value of 17.26 kDa (Fig. 1a and Table 1). PEGylated 

and HESylated anakinra showed a MW of 53.5 and 105.5 kDa, respectively (Figs. 1b and 1c 

and Table 1), which is also quite close to the hypothetical masses of 57 and 102 kDa for 

mono conjugated proteins. In case of PEGylated anakinra, a small peak (peak area < 0.3%) of 

higher MW species can be observed before the monomer peak. It belongs to a dimer of mon-

oPEGylated protein (and not to a diPEGylated one) as confirmed by the doubling of the MW 

of the monoconjugate to 105.6 kDa. Regarding MW distribution, HESylated anakinra showed 

a broader distribution compared with the PEGylated protein (PDI HES-anakinra = 1.244 vs. 

PDI PEG-anakinra = 1.004), which is due to the natural origin of HES. 
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Figure 1: SEC–MALLS experiment for determining the molar mass of (a) native, (b) 

PEGylated, and (c) HESylated anakinra. The molar mass distributions of the conjugate, the 

protein part, and the polymer part are expressed in black, dark gray, and light gray lines, re-

spectively. 

 

Dynamic light scattering was used to determine the hydrodynamic size of the three proteins. 

Results in Table 1 show that the diameter of anakinra is very close to that reported earlier 
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[34]. Meanwhile, polymer conjugation to PEG or HES increases the size by threefold to ap-

proximately 14.5 nm, with no significant difference between the two polymers used.  

 

Sample MW [kDa] Polydispersity  
Hydrodynamic 

diameter [nm] 

PDI 

Native anakinra 16.6 1.000 4.36 ± 0.18 0.16 ± 0.03 

PEGylated anakinra 53.5 1.004 14.40 ± 0.27 0.08 ± 0.02 

HESylated anakinra 105.5 1.244 14.73 ± 0.25 0.20 ± 0.01 

 

Table 1: Weight Average Molecular Weight (MW) and Polydispersity as determined by SEC 

MALLS measurements, as well hydrodynamic diameter and Polydispersity Index as deter-

mined by DLS Analysis for the native, PEGylated, and HESylated anakinra   

3.3.3. FTIR Analyses for Changes in Secondary Structure 

The second derivative spectrum of anakinra in Figure 2 shows the main predominant beta 

sheet conformation (peak at 1640 cm
−1

) and beta-turn structures (peak at 1685 cm
−1

) [35]. The 

spectrum of HESylated anakinra correlates well with that of the native protein, whereas 

PEGylated anakinra shows a minor shift in the beta sheet peak from 1640 to 1641 cm
−1

. 

Therefore, it can be assumed that neither PEGylation nor HESylation under the chosen reac-

tion and purification conditions led to significant changes in the secondary structure of the 

protein. 
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Figure 2: Second- derivative amide I FTIR spectra of native anakinra (solid line), PEGylated 

anakinra (dashed line), and HESylated anakinra (dotted line). 

 

3.3.4. In Vitro Binding Affinity 

To investigate the effect of PEGylation and HESylation on the apparent binding affinity, the 

binding kinetics of the native and conjugated anakinra was evaluated by SPR. Recombinant 

IL-1 receptor type I was immobilized on a CM3 chip with a low density to minimize mass 

transport and rebinding. Table 2 demonstrates the on- and off-rates, as well as the kD value of 

native, PEGylated, and HESylated anakinra. The wild type protein showed the fastest on-rate 

followed by a very slow off- rate (Fig. 3 and Table 2), which led to a kD value of 0.05 nM. 

The on-rates of the PEGylated and HESylated anakinra are nearly one order of magnitude 

lower than the native protein, whereas the off-rates for all three proteins are similar, indicating 

that dissociation of the ligand-receptor complex is not influenced by the coupled polymer. 

This leads to higher kD values for the protein conjugates relative to the native protein  

(kDPEG-anakinra = 0.81 nM, kDHES-anakinra = 0.32 nM). 
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Figure 3: SPR analyses for the binding of (a) native anakinra, (b) PEGylated anakinra and (c) 

HESylated anakinra to IL-1 receptor type I. All binding curves (dark gray lines) were fitted by 

Langmuir (1:1) binding isotherm (black lines). 
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Sample 

SPR 

kon 

[1/Ms] 

koff 

[1/s] 

kD 

[nM] 

Native anakinra 8.54E+5 3.91E-5 0.05 

PEGylated anakinra 4.75E+4 3.87E-5 0.81 

HESylated anakinra 9.61E+4 3.11E-5 0.32 

 

Table 2: On-rates, off-rates and dissociation constants for native, PEGylated and HESylated 

anakinra from SPR measurements. 

 

3.3.5. Properties of Highly Concentrated Solutions 

3.3.5.1. Viscosity Measurement 

In the current study, we measured the viscosity of all three proteins using the microchip tech-

nology of the mVROC system [36]. Results show that increasing the concentration of the na-

tive protein from 25 to 75 mg/mL (1.45– 4.35 mM) has little effect on viscosity. Meanwhile, 

the viscosity of the PEGylated protein solution shows a dramatic increase of one order of 

magnitude over the same molar concentration range (see Fig. 4). In comparison, the viscosity 

of the HESylated protein is only approximately 60% of the PEGylated protein at the same 

molar concentrations. Additionally, we studied the effect of pH and ionic strength on the vis-

cosity of the conjugates. Results show that the viscosity of anakinra did not change in slightly 

alkaline conditions, but nearly doubled at pH 4 (Fig. 5, left). The same trend was seen with 

anakinra conjugates, which showed much higher viscosity in acidic pH compared with pH = 

6.5 or 8. The viscosity of all three proteins did not show any significant changes over the 

studied salt concentration range (Fig. 5, right). 
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Figure 4: Viscosity of anakinra, PEGylated-, and HESylated anakinra as a function of conju-

gate concentration. Left: The x-axis represents the conjugate concentration in mM or the con-

centration of the protein part in mg/mL. Right: the x-axis represents the conjugate concentra-

tion in mg/mL. The lines are fitted by exponential function. The horizontal dashed line repre-

sents the viscosity of Cimzia
®
 (conjugate concentration of 200 mg/mL), which is included as 

a benchmark. 

 

 

Figure 5: Viscosity of anakinra, PEGylated, and HESylated anakinra as a function of pH 

(left) and NaCl concentration (right). Protein concentration was 50 mg/mL. 
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3.3.5.2. Thermal Analysis 

The thermal properties of different concentrations of native and conjugated anakinra were 

evaluated by DSC measurements of the different proteins at 25, 50, and 75 mg/mL protein 

concentration. Anakinra is known to precipitate upon unfolding in thermal analysis experi-

ments, [37] and we had the same observation during earlier experiments [28]. Accordingly, a 

robust determination of the protein melting temperature (Tm) was not possible, and the peak 

maximum was regarded as apparent Tm. Additionally, we identified the temperature corre-

sponding to the onset of protein unfolding Tonset. The results in Figure 6 show that the appar-

ent Tm of anakinra decreases slightly with increasing concentration over the studied range. 

Meanwhile, both protein conjugates show a much higher apparent Tm compared with native 

anakinra over the studied concentration range, and show the same pattern of decreasing ap-

parent Tm with increasing concentration, except for HESylated anakinra, which shows a slight 

increase in apparent Tm at the highest concentration tested (75 mg/mL protein concentration). 

It is worth noting that PEGylated anakinra shows a slightly higher apparent Tm compared with 

HESylated anakinra. As for Tonset, the values for native anakinra show a slight decrease with 

increasing concentration, although the differences are not significant because of the large scat-

ter in values. Meanwhile, HESylated and PEGylated proteins have a much higher Tonset com-

pared with native anakinra, with a clear trend towards lower temperature with increasing con-

centration. There is no difference HESylated and PEGylated anakinra at 25 mg/mL, but at 

higher concentrations, Tonset of PEGylated anakinra is higher, although with large scatter in 

values. 
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Figure 6: DSC thermogram for native, HESylated, and PEGylated anakinra at a protein con-

centration of 75 mg/mL (a), the apparent melting temperature (Tm) of all three proteins as a 

function of protein concentration (b), as well as the temperature corresponding to the onset of 

unfolding (Tonset) as a function of protein concentration (c). 
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3.3.5.3. Thermal Stability upon Storage at 40°C 

The thermal stability of anakinra and its conjugates was evaluated by storing them at three 

different protein concentrations (25, 50, and 75 mg/mL) at 40°C for 8 weeks, and then evalu-

ated by estimating the monomer recovery by SEC. Results in Figure 7 show that native ana-

kinra at 75 mg/mL degrades rapidly, so that only 63.9% of the monomer is recovered after 8 

weeks. In contrast, PEGylation leads to an improved protein stability and reduction in protein 

loss, with a recovery of 71.9% at the end of the study for the 75 mg/mL concentration. 

HESylation on the other hand results in a surprisingly high protein recovery of 88.2% mono-

mer at the same concentration and a lower degree of higher aggregates formation compared 

with PEGylation (see Fig. 7). 
 

 

Figure 7: SEC chromatograms for native, PEGylated, and HESylated anakinra samples at 

three different protein concentrations (25, 50, and 75 mg/mL) stored at 40°C for 8 weeks 

(Upper panel). The percentage of monomer recovery of the three proteins as a function stor-

age time (middle panel). The percentage of soluble aggregates for the three proteins as a func-

tion of storage time (lower panel). 
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3.4. Discussion 

Although PEGylation is currently the benchmark technology in HLE, it suffers from a number 

of drawbacks, including PEG’s non-biodegradability, [38] and the high viscosity of concen-

trated PEG solutions, complicating processing and injectability [3]. Accordingly, alternative 

technologies are being pursued, with HESylation being a promising HLE approach [28]. In 

the current study, we are comparing HESylation with PEGylation regarding the effect on the 

physicochemical properties of proteins, as well as protein formulation at high concentration. 

The latter case can be associated with protein stability and viscosity issues, and the aim is to 

find out whether HESylation could offer advantages over PEGylation in this respect. For this 

purpose, anakinra was used as a model protein. Anakinra is a small 17 kDa protein that binds 

to IL-1 receptor with a short terminal half-life of 108 min [27]. As a result, daily administra-

tion of 100 mg protein as subcutaneous injection in the form of a highly concentrated solution 

(150 mg/mL) is required. Additionally, the protein is well studied with many literature reports 

about its biophysical properties and formulation, [34, 39– 42] thus serving as a useful model 

protein. There are a few literature reports on the PEGylation of anakinra to increase its circu-

lation time and reduce the dosing frequency [43, 44]. They involved coupling PEG at the N-

terminus, [43] as well as at cysteine and lysine residues, [44] although with much smaller 

PEG molecules compared with the ones used in the current study (5 vs. 40 kDa). The site-

specific conjugation at the N-terminus employed in this study using reductive amination has 

been used in the development of Peg- filgrastim, a commercialized PEGylated form of GCSF 

[45]. The coupling chemistry is based on the difference in pKa between the ε- amino groups 

of lysine (pKa = 10.1) and that of the N- terminal amino group (pKa = 7.8), leading to a pre-

ferred Schiff’s base formation (and subsequent reduction) to the N-terminus at slightly acidic 

conditions [46,47]. This chemical reaction is employed in the current study to couple anakinra 

to HES at a single terminal aldehyde group, as described earlier [28]. Previous reports on 

HESylation involved coupling several peptides or small molecules to one HES chain, 

[26,48,49] as well as site-specific coupling [22] with a defined 1:1 stoichiometry. The physi-

cochemical analysis of the conjugates involved measurements using SEC–MALLS, DLS, and 

FTIR. SEC– MALLS confirmed the conjugation and the purity of the mono- conjugated pro-

teins, where the MWs of the conjugates were in good agreement with the theoretical values 

(see Table 1). The HESylated protein showed a higher polydispersity compared with the 

PEGylated one. This is because of the natural origin of the polymer, with polydispersities for 

commercially available, HES-based plasma volume expanders as high as 4.5 [50]. However, 
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by polymer fractionation, it is possible to obtain HES fractions with much narrower size dis-

tribution as in the case of the starting material used in this study. Although the two conjugates 

differ considerably in MW (105.5 vs. 53.5 kDa for the HESylated and PEGylated proteins, 

respectively), their hydrodynamic sizes are very close (see Table 1).This similarity in hydro-

dynamic size despite the difference in MW is attributed to the fact that HES is a rigid 

branched polymer, [50] whereas PEG is very flexible and less branched (two branches only, 

each having a MW of 20 kDa). This architecture of HES forces it to attain a smaller size 

compared with flexible polymers with similar MW. As the main mechanism of HLE of both 

polymer conjugates is based on the molecule’s hydrodynamic size (irrespective of the MW), 

these two conjugates with similar sizes were chosen for the current study. FTIR analysis of 

anakinra was employed frequently to identify changes in protein structure, such as structural 

changes due to dimerization or aggregate formation in liquid form, [35,39] or due to interac-

tion with excipients [37]. 

Accordingly, it was employed in this study to evaluate the effect of polymer conjugation on 

the protein’s secondary structure. In this respect, the majority of literature reports support the 

opinion that conjugation has no effect on a protein’s secondary or tertiary structure [51,52]. 

However, a few studies describe changes in protein conformation upon PEGylation [8,53]. 

For instance, Yu et al. reported changes in the secondary structure of anakinra upon PEGyla-

tion. Our results show that, contrary to the aforementioned study, neither PEGylation nor HE-

Sylation led to significant changes in anakinra’s secondary structure, which is in accordance 

with the conventional notion in this respect [51,52]. Surface plasmon resonance analysis was 

used to evaluate the binding affinity of the conjugated proteins. The kD value of native ana-

kinra is quite close to the reported values of 0.12 [55] or 0.4 nM [56] (see Table 2). The on-

rates of the PEGylated and HESylated anakinra are nearly one order of magnitude lower than 

the native protein, with the on-rate of PEGylated anakinra nearly half that of the HESylated 

one (see Table 2). This reduction is probably because of the shielding effect of the polymers 

[57]. The off-rates are, however, similar for all three proteins, indicating that the dissociation 

of the ligand– receptor complex is not influenced by the coupled polymer. This leads to high-

er kD values for the protein conjugates relative to the native protein. These results show that 

both conjugates remain highly active, with the HESylated protein being more affine than the 

PEGylated one. 

In the current study, the formulation of highly concentrated solutions of protein conjugates 

was evaluated. Generally, the development of highly concentrated protein solutions is associ- 
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ated with many analytical and formulation challenges [58]. This is mainly because of the 

higher tendency for aggregation upon protein crowding, making it one of the most important 

protein degradation routes at high concentration [58]. Additionally, proteins are liable to re-

versibly self-associate in crowded conditions, leading to the increase in viscosity. This is ag-

gravated in case of polymer–protein conjugates because of the presence of the polymeric 

component, which tends to entangle at high concentrations, leading to an extreme increase in 

viscosity. Though the formulation of highly concentrated protein solutions is gaining increas-

ing attention, surprisingly little is known in the literature about the formulation of concentrat-

ed solutions of polymer– protein conjugates. In this study, we investigated the viscosity of the 

highly concentrated conjugates as well as their thermal properties and thermal stability. On an 

industrial scale, TFF is used for the final polishing and up- concentration of protein solutions. 

Because of the demanding material consumption of high concentration solutions, and the lack 

of sufficient protein amounts, we had to use small- scale methods for up-concentration, in-

cluding either dialysis or ultrafiltration with stirred cells or centrifugal filters. The method 

employed for up-concentration can have an influence on protein stability as shown by Eppler 

et al., [59] who demonstrated that the method showing the best comparability with TFF in 

terms of protein stability was centrifugal filtration [59]. Accordingly, we employed this meth-

od in sample preparation. The mVROC instrument was used for viscosity measurements, 

where it applies for this purpose a microchip-based technology [36]. It was used to measure 

the viscosity of high concentration antibody solutions, and has the advantage of low sample 

volume, thus saving material costs [60]. Additionally, it is devoid of measurement artifacts 

due to surface tension effects as it is the case with the widely used cone and plate rheometers 

[61]. Results show that the viscosity of PEGylated anakinra drastically increases with increas-

ing protein concentration in comparison with that of native anakinra (see Fig. 4). Similar be-

havior was reported earlier, where the viscosity of solutions of PEG or PEGylated proteins is 

known to increase exponentially with the concentration [14,62]. For instance, the viscosity of 

canine haemoglobin modified with up to six molecules of 5 kDa PEG increased “in a slightly 

exponential fashion” with concentration [14]. Meanwhile, the HESylated protein shows ap-

proximately 60% of the viscosity of the PEGylated protein at equivalent molar concentra-

tions, which is clearly a benefit and would translate into a dramatic improvement in the force 

required for injection. The latter is proportional to viscosity, [63,64] and is important in de-

termining the injectability either by patients or by autoinjectors [63,64]. The observed lower 

viscosity of HESylated anakinra can be explained by the highly branched and stiff architec-

ture of HES, [50] which makes it closer to a hard sphere and less prone to entanglements 
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compared with the highly flexible PEG structure. pH and ionic strength are known to influ-

ence the viscosity of proteins [58,65,66]. For instance, salts can shield the protein surface 

charges, and thus prevent attractive electrostatic interactions at high protein concentrations 

[67]. Similarly, pH changes the protein surface charges, and accordingly the intermolecular 

interactions [65]. As seen in Figure 5, the conjugates followed the same trend as native ana-

kinra, where they showed higher viscosities in acidic pH compared to pH 6.5 or 8, however 

HESylated anakinra maintained its nearly 40% reduction in viscosity compared with its 

PEGylated counterpart. Meanwhile, changing the salt concentration had no effect on viscosity 

of all three proteins, indicating that the attractive electrostatic interactions do not play an im-

portant role at pH 6.5, and that the high viscosity of the conjugates is due to the polymer part 

of the molecule, which is not affected by the employed NaCl concentrations. The thermal 

properties of the three proteins at high concentrations were evaluated using DSC. The protein 

melting temperature Tm represents the temperature at which 50% of the protein molecules are 

folded and 50% are unfolded, and it is a thermodynamic parameter for a reversible process. 

The peak maximum of the endotherm usually corresponds to Tm, but is amenable to errors if 

the peak is asymmetric, thus curve analysis using robust models, such as the two-state model 

could be used to correctly calculate Tm. However, anakinra is known to precipitate during 

thermal analysis, [28,37] making the process of unfolding irreversible and hindering thermo-

dynamic analysis. Accordingly, the peak maximum was regarded as apparent Tm, and was 

used for comparative analysis. Additionally, Tonset was computed to designate the onset of 

protein unfolding. The latter is gaining importance as an indicator for protein stability, [68] as 

it takes into account the width of the endothermic peak. Indeed, two proteins could have the 

same Tm, but the protein with larger peak width (smaller Tonset) is expected to have lower 

thermal stability [68]. Results show that, for all three proteins, the apparent melting tempera-

ture decreases with increasing concentration, a behavior reported earlier for some proteins 

[69]. Additionally, one notices that conjugation to both polymers leads to increase in both 

apparent Tm and Tonset. This is in agreement with many earlier reports showing that protein 

PEGylation or glycosylation increase the protein melting point [70–72]. Finally, comparing 

the apparent Tm for both protein conjugates shows that the PEGylated protein has a higher Tm 

compared with the HESylated one, indicating a higher thermal stability, however, Tonset tem-

peratures show that there is little to no difference between the two conjugates. Finally, protein 

stability was evaluated by storage at three different concentrations under elevated temperature 

for 8 weeks. Results in Figure 7 show a significant decrease in monomer recovery of ana-

kinra with increasing protein concentration. This effect has already been observed for ana-
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kinra and other proteins, [39,73] and is explained by increased macromolecular crowding and 

high total volume occupancy [58,74–77]. Although both protein conjugates show improved 

monomer recovery, HESylation shows a surprisingly higher monomer recovery compared 

with PEGylation at all the three studied concentrations. The surprising difference in protein 

stability might be due to differences in the nature of the polymers, where PEG is known to 

change the polarity and dielectric constant of aqueous solutions [78]. Another possible reason 

could be the well-known tendency of PEG to generate peroxides at high temperatures, [79–

81] which could have led to the observed increase in protein degradation compared with the 

HESylated protein. 

 

3.5. Conclusion 

The present study reports on the synthesis of PEGylated and HESylated anakinra and the 

comparison of the two polymer conjugates, regarding protein physicochemical properties and 

formulation at high protein concentrations. Both conjugates were synthesized using reductive 

amination under mild acidic conditions to produce predominantly mono-conjugated proteins, 

as proven by the physicochemical characterization of the conjugates using SEC–MALLS ex-

periments. DLS measurements showed that both conjugates have similar hydrodynamic size 

despite the large differences in MWs. FTIR analysis showed that there are practically no 

changes in the secondary structure of the protein after either PEGylation or HESylation. In 

vitro affinity studies performed by SPR detected higher kD values for the conjugates, mainly 

influenced by the shielding effect of the polymers. Analysis of the conjugate properties at 

high protein concentrations showed that the viscosity of HESylated anakinra was approxi-

mately 40% lower than its PEGylated counterpart at the same molar concentration. Thermal 

analysis experiments pointed out that the apparent melting point of anakinra increased by     

2– 4 K after coupling to HES or PEG, and that there is no significant difference between Tonset 

for both conjugates. Finally, the storage at 40°C over 8 weeks showed a significantly superior 

stability of the HESylated protein in comparison with the unmodified and the PEGylated 

counterparts. In conclusion, the results of this study reveal that HESylation can provide for-

mulation advantages compared with PEGylation, especially for highly concentrated protein 

solutions. 
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Chapter IV – Freeze- dried formulations 
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4. Freeze-drying of HESylated IFNα-2b: Effect of 

HESylation on storage stability and benchmarking to 

PEGylation 

Parts of this chapter are prepared for submission to the  

International journal of pharmaceutics. 

All conjugation and purification steps involved in preparing the PEGylated and HESylated 

proteins were performed by Sarah Bergmann, Fresenius Kabi. Georg Achleitner and his team 

at Fresenius Kabi Austria/Graz conducted the freeze-drying microscopy measurements. 

Thomas Hey and his team at Fresenius Kabi Germany/ Friedberg performed the quality con-

trol testing and the LC-MS analysis of the protein derivatives. 
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Abstract 

The main objective of the current study was to investigate the behavior of a lyophilized, HE-

Sylated model protein in comparison with both its unmodified and PEGylated counter-parts. 

Attachment of polyethylene glycol (PEG) as well as hydroxyethyl starch (HES) to the N-

terminus was achieved in a site-specific manner by reductive amination under mildly acidic 

conditions that retain the protein’s secondary structure. Freeze-dried samples of the native, 

PEG-modified and HESylated interferon α-2b were stored for up to three months at 4 and 

40°C and subsequently analyzed by a battery of analytical methods to obtain insights into 

conformational and colloidal changes during storage. In addition to other limitations, PEG 

tends to crystallize during lyophilization – a phenomenon which negatively impacts protein 

stability and must be suppressed by high amounts of amorphous lyoprotectants. HESylation
®

 

is a promising alternative to that approach for the following reasons: HES remains totally 

amorphous during lyophilization, facilitates a high glass transition temperature of the freeze-

dried cakes, provides effective shielding to prevent protein-protein-interaction (PPI) and 

maintains storage stability even in the absence of additives, moving the field one step closer 

to excipient-free lyophilized protein formulations. Additionally, we offer some general rec-

ommendations for lyophilization of PEGylated and HESylated proteins and describe the mod-

ification of G-CSF as a second model protein to provide improved understanding of the influ-

ence of both polymers on behavior during lyophilization. 

Keywords 

PEGylation, HESylation, freeze-drying, phase separation, interferon α-2b, crystallization, 

FTIR  
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4.1. Introduction 

Lyophilization is often implemented to increase the shelf life of labile protein and peptide 

solutions. Currently over 25% of approved protein products are lyophilisates. Biologics like 

cytokines, enzymes and peptides are known to experience limited physicochemical stability in 

solution, as well as short in vivo half-lives due to molecular weights which fall below the re-

nal filtration threshold (MW < 60 kDa). Protein scaffolds, an emerging class of small, indi-

vidually engineered specific binders to common targets like TNF-α, CD20 or VEGF that are 

based on a robust single chain polypeptide framework with remarkable conformational toler-

ance, represent another expanding area of resaerch [1-3]. The efficiency of these drugs is lim-

ited by their short circulation time, which must in general be overcome by frequent injections 

[4]. Current state-of-the-art strategies increase plasma half-life of proteins by covalent at-

tachment of polyethylene glycol. PEGylation leads to an increased hydrodynamic size of the 

conjugate, thereby slowing down kidney clearance and providing a protective coating that 

diminishes both the immune response and the susceptibility to degradation by proteolytic en-

zymes [5]. At least 10 PEGylated protein therapeutics are approved today; this technology is 

considered to be the gold standard for half-life extension (HLE) [6]. However, this well-

established technique has some limitations, especially within the field of lyophilization [7]. In 

the case of Somavert
®
 (PEG-hGH, Pfizer) and PegIntron

®
 (PEG-IFNα-2b, Schering-Plough) 

an additional freeze-drying step is necessary to achieve reasonable long-term stability. Anoth-

er potential drawback is that when used as a bulking agent or chemically attached to a protein, 

PEG tends to promote amorphous phase separation during freeze-drying, which is considered 

a precursor to crystallization [8, 9]. A consequence of this behavior would be a stronger ten-

dency towards protein degradation if crystallization is not suppressed by amorphous lyopro-

tectants and bulking agents [9, 10]. During and immediately after the lyophilization process, 

this crystallization has no serious impact, but its influence increases upon storage, especially 

at higher temperatures [11]. Today, the most common route to overcoming crystallization is 

the addition of disaccharides like sucrose, which are frequently used to stabilize proteins dur-

ing freeze-drying and subsequent storage in the dried state by forming hydrogen bonds that 

inhibit unfolding [12]. These sugars tend to remain in an amorphous state when dehydrated 

and can deter crystallization [13]. For freeze-dried formulations of PEGylated proteins, high 

sucrose-to-PEG weight ratios are required to suppress PEG-induced crystallization [8, 9, 14]. 

In addition, other serious limitations of PEGylation technology include PEG’s non-

biodegradability, the increased viscosity of PEG-conjugate solutions at higher concentrations 
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and the rising number of reports describing the generation of anti-PEG-antibodies; these fac-

tors have spurred both academia and industry to investigate alternative HLE approaches [7, 

15, 16]. Here, we present an alternative half-life extension technology based on the coupling 

of hydroxyethyl starch (HES) to proteins and explore its behavior in freeze-dried formula-

tions. HES is a biocompatible and biodegradable semi-synthetic polymer derived from a natu-

ral source (e.g. maize starch) whose use during freeze-drying is already well-known in the 

scientific community. However, its influence on protein stability following covalent attach-

ment to proteins has not yet been described. HES has been previously used successfully as a 

cryoprotectant for red blood cells and human tissue [17-19]. When used in lyophilization, 

HES exhibits a higher Tg’ value in solution compared to disaccharides like trehalose or su-

crose, imparts excellent glass-forming properties and enables high glass transition tempera-

tures of the solid cakes [20]. HES is generally more acceptable as a component of parenteral 

formulations when compared to other Tg-modifying high molecular weight carbohydrates like 

dextran [20] due to its lower antigenicity [21]. The use of HES as a bulking agent and/or lyo-

protectant unfortunately failed for most of the reported trials involving freeze-dried biologics 

due to its high molecular weight and the inability to generate sufficient hydrogen bonding 

with the protein [22]. Garzon-Rodriguez et al. reported that when used in combination with 

disaccharides, HES (MW = 200 kDa) enabled greater stability of freeze-dried IL-11 compared 

to formulations which included only disaccharides or only HES. The formulations which in-

cluded HES showed higher collapse temperatures and higher glass transition points, leading 

to improved storage stability and a potentially more economic drying process [23]. Covalent 

HESylation of several model proteins, on the other hand, has already proven its ability to pro-

long circulation [24, 25]. Additionally, site-specific HESylation of anakinra led to an im-

provement of both thermal and colloidal stability in comparison to the unmodified [24] and 

PEGylated [26] molecules. In this report, we describe how HESylation influences the stability 

of freeze-dried interferon α-2b as a model protein, already approved in its PEGylated version 

in a lyophilized formulation (PegIntron
®
, Schering-Plough). We synthesized PEGylated and 

HESylated versions of IFNα-2b by site-specific conjugation of the polymer to the protein’s N-

terminus and investigated their stability upon freeze-drying and long-term storage at elevated 

temperatures. Additional experiments confirming the findings for IFNα-2b were conducted 

with HES-modified G-CSF and its PEGylated counterpart, marketed under the brand name 

Neulasta
®
.  
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4.2. Materials and Methods  

4.2.1. Materials 

Recombinant human interferon α-2b and met-G-CSF were obtained in API quality from 

Sandoz (Kundl, Austria). Neulasta
®
 was from Amgen (Thousand Oaks/CA, USA). Activated 

hydroxyethyl starch carrying an aldehyde linker at its reducing end group [24] was from 

Fresenius Kabi Deutschland GmbH (Bad Homburg, Germany). A 2x20 kDa branched PEG-

aldehyde was purchased from Jenkem Technology (Allen/TX, USA). All other chemicals 

were at least of analytical grade and used as obtained. 

4.2.2. Synthesis and purification of HESylated interferon α-2b 

In a 6 L glass reaction vessel equipped with a thermal jacket and a blade stirrer, 30 mL of 2 M 

acetic acid were added to 2.4 L protein solution (protein content 5 g; 2.1 mg/mL in 50 mM 

sodium acetate buffer, 150 mM NaCl, pH = 4.5) to adjust the pH to 4. The solution was 

chilled to 4°C. 200 g of hydroxyethyl starch (Mn ~ 60 kDa) carrying a reactive propionalde-

hyde group were dissolved in 400 mL of 0.1 M sodium acetate buffer (pH = 4.0) pre-chilled 

to 5°C. 500 mL of the resulting HES reagent solution were added to the protein solution and 

mixed for 15 min at a stirrer speed of 100 rpm. The reductive amination reaction was started 

by addition of 4 g NaCNBH3 dissolved in 100 mL water and allowed to run overnight (21 h) 

under moderate stirring at 5°C. In-process control samples were taken out and the reaction 

mixture was then frozen in aliquots at -20°C and stored at this temperature until further use. 

The HES-interferon conjugate was purified by cation-exchange chromatography using SP 

Sepharose HP material and an Äkta Purifier 100 chromatography system (both from GE 

Healthcare, Munich, Germany). The system was operated at room temperature with a typical 

flow rate of 10 mL/min. The column (XK 26/20 packed with ~130 mL resin) was first equili-

brated with 5 column volumes (CV) of eluent A (20 mM sodium acetate, pH = 4.0). The re-

ductive amination reaction mixture was diluted 5-fold with water and the pH was adjusted to 

pH = 4.0 using glacial acetic acid. 400 mg of conjugate were then loaded onto the column at a 

flow rate of 10 mL/min, followed by a washing step with 2 CV eluent A to remove the un-

bound, excess HES polymer. The conjugate and unreacted protein were eluted using a linear 

gradient from 0-100% eluent B (eluent B: 20 mM sodium acetate, 500 mM NaCl, pH = 4.0) 

over 20 CV. Peak fractions containing the conjugate were collected; subsequently, a buffer 

exchange was performed to 20 mM sodium acetate, pH = 4.5. The diafiltration step and the 
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final up-concentration to ~5 mg/mL (protein content) were performed by TFF using a 50 cm2 

PES (polyethersulfone) membrane capsule with a MWCO of 10 kDa operated on a Mini-

mate
TM

 benchtop system (both from Pall, Dreieich, Germany). The retentate of the TFF step 

was subjected to a 0.22 µm filtration step; aliquots of the filtered solution were flash-frozen in 

liquid nitrogen and stored at -80°C until further use. Samples for lyo-microscopy experiments 

were further concentrated to 20 mg/mL protein content using an Amicon Ultra 4 device 

(MWCO 10 kDa). 

4.2.3. Synthesis and purification of PEGylated interferon α-2b 

320 mL of interferon solution (2.54 mg/mL in 50 mM sodium acetate buffer, 150 mM NaCl, 

pH = 4.5) were subjected to diafiltration/ultrafiltration using a 50 cm2 PES (polyethersulfone) 

membrane capsule with a MWCO of 3 kDa operated on a Minimate
TM

 benchtop system (both 

from Pall, Dreieich, Germany). The protein solution was concentrated to ~10 g/L and the pH 

adjusted to 4.0 using acetic acid. 75 mL of the concentrated interferon solution were trans-

ferred into a 100 mL glass reactor (Mettler Toledo) and cooled down to 5°C in a Mettler To-

ledo Easy Max 102 system. 4 g of a 40 kDa branched PEG aldehyde (Jenkem, PALD-40 k) 

were dissolved in reaction buffer (0.1 M sodium acetate buffer, pH = 4.0) in a 50 mL Falcon 

tube to yield a 20% (w/v) solution that was slowly added to the protein solution under gentle 

mixing with a blade stirrer (100 rpm). The Falcon tube was rinsed with 14 mL reaction buffer 

and the rinsing solution also transferred into the reactor. The reductive amination reaction was 

started by addition of 4.5 mL of a 0.5 M NaCNBH3 solution freshly prepared in reaction 

buffer. The reaction was allowed to run overnight (20 h) under moderate stirring (30 rpm) at 

5°C. The reaction was quenched by addition of 20 mM glycine (final concentration) and sub-

jected to purification after removal of in-process control samples. The PEG-interferon conju-

gate was purified by cation-exchange chromatography using SP Sepharose HP material and 

an Äkta Purifier 100 chromatography system (both from GE Healthcare, Munich, Germany). 

The system was operated at room temperature with a typical flow rate of 10 mL/min. The 

column (XK 26/20 packed with ~130 mL resin) was first equilibrated with 5 CV of eluent A 

(20 mM sodium acetate, pH = 4.0). The reductive amination reaction mixture was diluted 5-

fold with water and 400 mg of conjugate were then loaded onto the column at a flow rate of 

10 mL/min, followed by a washing step with 2 CV eluent A to remove the unbound, excess 

polymer. The conjugate and unreacted protein were eluted using a linear gradient from 0- 

40% eluent B (eluent B: 20 mM sodium acetate, 1 M NaCl, pH = 4.0) over 20 CV. Peak frac-

tions containing the conjugate were collected and subsequently a buffer exchange was per-
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formed to 20 mM sodium acetate, pH = 4.5. The diafiltration step and the final up-

concentration to ~5 mg/mL (protein concentration) were performed by TFF using a 50 cm2 

PES (polyethersulfone) membrane capsule with a MWCO of 10 kDa operated on a Mini-

mate
TM

 benchtop system (both from Pall, Dreieich, Germany). The retentate of the TFF step 

was subjected to a 0.22 µm filtration step and the PEG-interferon α-2b conjugate solution 

stored at 2-8°C until further use. Samples for lyo-microscopy experiments were further con-

centrated to 20 mg/mL protein content using an Amicon Ultra 4 device (MWCO 10 kDa). 

4.2.4. Synthesis and purification of HESylated rh-met-G-CSF  

25 mg G-CSF in 9 mL of an ice-cold 10 mM sodium acetate buffer, pH = 4.0, were combined 

with 2 mL of a 40% (w/v) solution of hydroxyethyl starch (Mn ~ 60 kDa) carrying a reactive 

propionaldehyde group and dissolved in G-CSF reaction buffer (0.1 M sodium acetate pH = 

5.0) in a 50 mL Falcon tube. 0.43 mL of a 0.5 M NaCNBH3 solution, freshly prepared in 

reac-tion buffer, was added and the reaction mixture incubated at 2-8°C on a roller-mixer (20 

rpm) for 20 h. The reaction mixture was subjected to purification after removal of in-process 

control samples. The HES-G-CSF conjugate was purified by cation-exchange chromatog-

raphy using SP Sepharose HP material prepacked in 5 mL HiTrap columns and an Äkta Puri-

fier 100 chromatography system (both GE Healthcare, Munich, Germany). The system was 

operated at room temperature with a typical flow rate of 5 mL/min. The HiTrap 5 mL SP HP 

column was first equilibrated with 5 CV of eluent A (20 mM sodium acetate, pH = 4.0). The 

reductive amination reaction mixture was diluted 5-fold with water and the loaded onto the 

column at a flow rate of 5 mL/min, followed by a washing step with 2 CV eluent A to remove 

the un-bound, excess HES polymer. The conjugate and unreacted protein were eluted using a 

linear gradient from 0-100% eluent B (eluent B: 20 mM sodium acetate, 100 mM NaCl, pH = 

4.0) over 20 CV. Peak fractions containing the conjugate were collected and subsequently a 

buffer exchange was performed to 10 mM sodium acetate, pH = 4.0 using an Amicon Ultra 15 

de-vice (10 kDa MWCO). The retentate of the ultrafiltration step (~10 mg/mL protein con-

centra-tion) was subjected to a 0.22 µm filtration step, and aliquots of the filtered solution 

were flash-frozen in liquid nitrogen and stored at -80°C until further use. 

4.2.5. Pretreatment of PEGylated rh-met-G-CSF 

Commercially available PEG20-G-CSF conjugate (Neulasta
®

) is formulated in acetate buffer 

containing sorbitol as a tonicity modifier. Sorbitol was removed by ultrafiltration against a 10 



 

 

116 
 

mM sodium acetate, pH = 4.0 formulation buffer using an Amicon Ultra 4 device (MWCO 10 

kDa) for benchmarking against the lyo excipient-free formulation of the HESylated protein. 

4.2.6. Quality control of protein conjugates 

4.2.6.1. UV-measurement 

Determination of protein and conjugate concentration was performed by UV spectroscopy 

using the respective protein-specific extinction coefficient (IFNα-2b 279 nm: 17440 M-1 cm-

1; G-CSF 280 nm: 15720 M-1 cm-1) corrected for both the absorbance of formulation buffer 

and potential stray light contribution at 320 nm. HES is almost transparent at this wavelength 

and its contribution was thus neglected.  

4.2.6.2. SDS-PAGE 

The purity and mass distribution pattern of the conjugate samples was tested by SDS-PAGE 

on 4-12% BisTris gels run in MOPS buffer (NuPAGE system, Life Technologies). Samples 

were processed and gels stained with Coomassie according to the manufacturer’s instructions.  

4.2.6.3. Size-exclusion and reversed phase chromatography 

The content of soluble aggregates and unmodified protein was determined by SE-HPLC using 

a 7.8 x 300 mm Biosep SEC-s3000 column (Phenomenex, Aschaffenburg, Germany) 

equipped with the respective guard cartridge. 1x PBS with 10% (v/v) EtOH was used as elu-

ent at a flow rate of 1 mL/min. The absence of unreacted polymer and protein was also moni-

tored by RP-HPLC on a Jupiter C18 widepore column (5 µm, 300A; Phenomenex, Aschaf-

fenburg, Germany). Different methods were used for the separation of PEGylated and HESyl-

ated samples to address the differences in the hydrophilicity of the polymers. Separation of 

the PEG conjugate and unmodified IFNα-2b was achieved in an acidic (0.1% (v/v) TFA) wa-

ter/acetonitrile system on a 4.6 x 50 mm column at a flow rate of 2 mL/min with a segmented 

gradient program (2-40% B in 2.5 min, 40-46% B in 2.5 min, 46% B for 2.5 min). For HES 

conjugations a gradient from 2-40% B in 2.5 min was used to elute the unreacted HES, fol-

lowed by 40-55% B in 2.5 min to obtain separation of HES-IFNα and free protein.  
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4.2.6.4. AF4-MALLS measurement for the determination of the 

molar mass, size of the conjugates and conjugate 

stoichiometry 

The conjugate stoichiometry was investigated by aFFFF using a Wyatt (Wyatt Technology, 

Dernbach, Germany) Eclipse system with triple detection (UV, RI, MALLS). A 300 mm sep-

aration chamber equipped with a 5 kDa MWCO regenerated cellulose membrane was used 

with a 150 mM sodium acetate, pH 4.0 running buffer at a detector flow of 1 mL/min. The 

components were controlled by AF4 Eclipse software (v. 2.5.1) and Astra V (v. 5.3.4.14) was 

used for data evaluation (both from Wyatt). The refractive index increments used were 0.185 

for the protein and 0.147 for the HES compound.  

4.2.6.5. Dynamic light scattering (DLS) 

Dynamic light scattering was used to determine the hydrodynamic radius of the conjugate 

samples. Measurements were conducted in disposable cuvettes (UVette, Eppendorf,  

Germany) with a sample volume of 100 µL diluted to 1 mg/mL in formulation buffer using a 

Zetasizer Nano Series instrument (Malvern Instruments, Herrenberg, Germany), controlled by 

software version 6.20.  

4.2.6.6. Peptide mapping 

The site-specific attachment of HES to the N-terminus of IFNα was proven by tryptic peptide 

mapping analyzed by RP-HPLC-ESI-MS. The conjugate sample and unmodified protein were 

cleaved with 7.5% (w/w) of trypsin (sequencing grade, Roche) for 18 h in phosphate buffer, 

pH = 8 at 37°C. Samples were reduced and denatured with 50 mM DTT and 4.5 M guanidini-

um chloride (final concentrations) at 100°C for 1 min prior to loading on the RP-HPLC col-

umn. The chromatographic separation was conducted on a 2 x 150 mm Jupiter C18 column (5 

µm, 300 A) in a segmented gradient (0-7 min, 3% B; 7-15 min, 3-10% B; 15-45 min, 10-50% 

B; 45-65 min, 50-70% B; 65-70 min, 70% B; 70-90 min, 3% B) with eluent A (0.1% (v/v) 

formic acid, 0.01% (v/v) TFA in water) and eluent B (0.1% (v/v) formic acid in acetonitrile). 

Elution of the peptides was monitored at 214 nm. Peak identification and peptide assignment 

was conducted based on the MS signal obtained from a MicrO-TOF system coupled to an ESI 

device (Bruker Daltonik, Bremen, Germany). 
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4.2.7. Freeze-Drying Microscopy 

For freeze-drying microscopy the lyostat 2 microscope (BTL, Winchester, UK) controlled by 

Linksys 32 software (Linkam, Surrey, UK) was used. For the preparation of samples, a 15 

mm round quartz slide was placed in the sample holder on the silver block of the freezing 

stage. This block was coated with a drop of silicon oil to improve heat transfer from the silver 

block to the glass cover slide. Approximately 2 µL of test solution were pipetted onto the 

slide and subsequently covered by a second 9-mm cover glass slide. Precision-cut spacers 

(height 0.025 mm) were located in-between both slides to maintain a constant sample height. 

The cooling rate used throughout this study was 5°C/min. The heating rate was 1.0°C/min in 

the temperature range of interest to allow a representative investigation of the first structural 

changes in the product. The pressure in the freeze-drying chamber was below 1 Pa (0.01 

mbar) when the sample was dried.  Pictures of the respective sample were taken in 15-sec 

intervals by using a digital camera system mounted on top of the microscope (200-fold mag-

nification). Pictures were then analyzed for onset of collapse, and full collapse temperature, 

using the Linksys 32 software. The onset of collapse was defined as the temperature at which 

first gaps and fissures were visible in the frozen sample adjacent to the sublimation interface. 

Full collapse was defined as the temperature at which a full loss of structure (i.e. big holes, 

melting) could be determined.  

4.2.8. Sample preparation for lyophilization 

Native, PEGylated and HESylated IFNα-2b were rebuffered into 25 mM citrate buffer at pH 

5.0 using 70 mL Slide-A-Lyzer
®
 dialysis cassettes (Thermo Scientific, Schwerte, Germany). 

The protein concentration was determined by UV-VIS spectroscopy at 280 nm using an ex-

tinction coefficient of ɛ = 0.9051 (provided by the original protein supplier). 

4.2.9. Tg´ measurement 

The Tg’ was determined by differential scanning calorimetry on a Netzsch DSC 204 Phönix
®
 

(Netzsch, Selb, Germany). 20 µL of each formulation was hermetically sealed in 40 µL alu-

minum pans, cooled from 20 to -70°C at a rate of 10°C/min and subsequently heated up to 

20°C at a rate of 10°C/min to detect the glass transition temperature of the frozen solution. 
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4.2.10. Freeze-drying protocol 

The freeze-drying process was performed in a Martin Christ Epsilon 2-6D pilot-scale freeze- 

dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) using 

the following freeze-drying protocol. 2R vials (Vetter, Ravensburg, Germany) were filled 

with 1 mL sample volume. After shelf loading the vials were frozen by cooling at a rate of 

1°C/min from 20 to -45°C and holding at the final temperature for 90 min. Primary drying 

was performed at 0.1 mbar by implementing a heating ramp from -45 to -25°C at a rate of 

0.1°C/min and holding the final temperature for 30 h. Secondary drying was performed by 

implementing an equivalent ramp up to 20°C and holding the system at 0.01 mbar for 15 h. 

The vials were flooded with gaseous nitrogen, stoppered with Teflon-coated stoppers (West 

Pharmaceutical Services, Eschweiler, Germany) at 800 mbar and afterwards manually sealed 

with 13 mm flip off seals (West Pharmaceutical Services, Eschweiler, Germany). 

4.2.11. Tg and degree of crystallization 

The glass transition temperature of the freeze-dried cakes was determined by DSC measure-

ment. Under a pressurized, air-flooded glove box with a relative humidity between 5-10%, a 

sample amount of 1-20 mg was weighed in aluminum pans and hermetically sealed. For DSC 

measurement the pans were heated from 10 to 110°C, cooled to the starting point and heated 

again to 180°C with a constant heating rate of 10°C/min. Due to structural relaxation of the 

cakes (Tg overshoot), the samples had to be heated twice to determine the correct glass transi-

tion temperature. Additionally, the DSC thermograms imply further information about the 

crystallization processes. Therefore, the enthalpy of crystallization as represented in J/g, was 

determined by the AUC of the crystallization peak. 

4.2.12. Residual moisture  

The moisture content of the cakes was measured by a coulometric Karl-Fischer-Titrator (KF 

373, Metrohm GmbH & Co, Filderstadt, Germany).  

4.2.13. Turbidity measurement 

The turbidity in 2 mL sample volumes was determined at 860 nm and given in formazine 

nephelometric units (FNU) by using a NEPHLA turbidimeter (Dr. Lange, Düsseldorf, Ger-

many). 
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4.2.14. Particle count - Light obscuration 

According to Ph. Eur. and USP specifications, particle analysis was performed by light obscu-

ration using a PAMAS SVSS-C particle counter (PAMAS, Rutersheim, Germany) [27]. Parti-

cles with a size of 1, 10 and 25 µm were quantified after a rinse volume of 0.5 mL in three 

runs of 0.3 mL with an emptying rate and rinse rate of 10 mL/min. 

4.2.15. Monomer recovery – Size exclusion chromatography 

HP-SEC was performed on a Spectra System P2000 (Thermo Scientific, Germany) equipped 

with a TSK guard column and a TSKgel G3000 SWxl (Tosoh Bioscience GmbH, Stuttgart, 

Germany). After an injection of 50 µg protein, each run was performed by an isocratic elution 

of the mobile phase, containing 25 mM citrate, 150 mM NaCl, 1% diethylene glycol, 10% 

ethanol, pH 5.0 at 0.5 mL/min over 45 min followed by UV detection at 280 nm (buffer com-

position adapted from Kusterle et al. [28]). 

4.2.16. Conformational changes - FTIR 

FTIR spectroscopy was investigated on the Bruker Tensor 27 FTIR with the Aquaspec cell 

(Bruker Optics, Ettlingen, Germany). The sensor was cooled with liquid nitrogen and flushed 

with a constant gaseous nitrogen flow. The samples were analyzed at a protein concentration 

of 3 mg/mL in 40 scans against pure formulation buffer, which was used for background sub-

traction. The curves were normalized by vector normalization using the OPUS Software to 

detect changes in secondary structure in the second diversion of each spectrum. 

4.3. Results 

4.3.1. Preparation and quality control of the polymer modified 

interferon samples 

TThe SDS-PAGE analysis conducted on conjugate samples before and after chromatographic 

purification reveals information on the conjugation turnover, the conjugate purity and poten-

tial changes in the mass distribution pattern due to purification (Fig. 1). The comparison of 

the crude reaction mixtures on the left with the purified samples on the right proves that unre-

acted protein is efficiently depleted by the cation exchange chromatography step, since the 
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low molecular weight band at ~15-20 kDa is no longer detectable in the purified conjugates. 

Furthermore, it can be seen that di-PEGylated protein was also removed during the purifica-

tion. The mass distribution pattern of the polydisperse HES conjugate, seen as a broad smear 

on the gel, remains unchanged after purification. 

 

Figure 1: SDS-PAGE analyses, 1: HES-IFNα reaction mix (non-red.) 2: PEG-IFNα reaction mix 

(non-red.) 3: IFNα (non-red.) M1: SeeBlue
®
 Plus2 Prestained Standard 4: IFNα (reducing) 5: HES-

IFNα purified (reducing) 6: PEG-IFNα purified (reducing) M2: HiMark
®
 Standard 

These observations are also confirmed by the chromatographic analyses shown in Fig. 2. For 

the PEGylated sample an additional peak, eluting just before the main product, is visible in 

the reaction mixtures; this peak is removed during purification and no longer appears in the 

final product as assessed by both RP-HPLC and SE-HPLC. In the RP-HPLC analysis it can 

also be seen that the unreacted polymer is removed in the ion exchange step, since a tiny peak 

eluting in the first part of the gradient is no longer visible in the purified samples. Only negli-

gible amounts of free protein, which cannot be quantified using the methods applied here, are 

present in the final product. The SEC analysis reveals the presence of only minor amounts of 

soluble aggregates (< 0.5%). The data analysis is slightly impaired by peak fronting of the 

HES conjugate, caused by its broader mass distribution and the presence of larger HES mole-

cules conjugated to the protein. Some of these molecules fall outside of the separation range 
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of the SEC column used here and led to a “pseudo” peak at the void volume that could also be 

assigned as a soluble aggregate. But re-analysis of the samples on a column with a broader 

separation range (Superose 6, GE Healthcare) unambiguously confirmed the absence of ag-

gregates in all conjugate preparations (data not shown). 

  

  

 

Figure 2: A: SEC analyses of PEG-IFNα, B:  SEC analyses of HES-IFNα, C:  RP-HPLC 

analyses of PEG-IFNα and D:  RP-HPLC analyses of HES-IFNα before and after purifcation 

 

A A 2x20 kDa branched PEG was chosen for the modification of IFNα-2b since it is used in a 

number of approved drugs, including PEGasys
®
, a randomly mono-PEGylated IFNα-2a. In 

order to obtain an HES conjugate having a comparable biologic effect it was necessary to use 

an HES polymer of higher molecular weight to address the conformational and flexibility dif-

ferences between the two polymers: While the linear PEG chains adopt an extended coil con-

formation due to their high flexibility, the HES molecule has a more condensed, globular, 



 

 

123 
 

tree-like shape since it contains rigid glycosidic bonds and a large number of branches. The 

hydrodynamic radius of the resulting conjugates was comparable as shown by DLS measure-

ments. As is to be expected, the polydispersity was slightly higher for the HESylated sample 

(see Table 1). 
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Table 1: Weight average molar mass (Mw) and polydispersity index (PDI) for the activated polymers, native protein and conjugates. 

Sample 
Hydrodynamic 

radius [nm]
b
 

PDI
 b
 

Conjugate Polymer Protein Polymer/ Protein Ratio 

Mw by 

RI/MALLS 

[kDa]
a
 

Mn by 

RI/MALLS 

[kDa]
a
 

Mw by 

RI/MALLS 

[kDa]
a
 

Mn by 

RI/MALLS 

[kDa]
a
 

Mw by 

RI/MALLS 

[kDa]
a
 

Mn by 

RI/MALLS 

[kDa]
a
 

Modifier in conjugate/ 

modifier before  

conjugation
a
 

IFN-2b 2.1 0.26 n.a. n.a. n.a. n.a. 19.8 19.2 n.a. 

PEG-IFN 6.1 0.21 68.4 65.8 47.9 46.1 20.5 19.7 1.14 

HES-IFN 5.9 0.54 101.2 85.8 82.0 61.4 19.2 18.9 1.01 

Activated PEG 4.7 0.23 n.a. n.a. 42.8 40.4 n.a. n.a. n.a. 

Activated HES 4.7 0.55 n.a. n.a. 81.0 60.5 n.a. n.a. n.a. 

a
 determined by AF4-MALLS 

b
 determined by DLS 
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Table 1 also shows the results of aFFFF analysis followed by triple detection. The combina-

tion of light scattering data, refractive index measurements and UV absorption at 280 nm al-

lows a virtual split of the conjugate into its single components, thus yielding information on 

its stoichiometry. It should be noted that the molecular weight determined for the protein is 

close to the theoretical value. For HESylated IFNα-2b the molecular weight calculated for the 

polymer fraction is almost identical to the value determined for the HES reagent as assessed 

before conjugation, clearly suggesting a 1:1 stoichiometry. The value is slightly higher than 1 

in the case of the PEG conjugate, although the other analysis methods employed clearly show 

a mono-PEGylated protein and successful depletion of di-PEGylated species. It is also evident 

that the Mw deduced for the protein fraction is slightly higher than for the other conjugates. A 

potential explanation for this phenomenon may be the presence of some loose conjugate di-

mers leading to a virtual increase in the average molecular weight. The conjugation site of the 

polymer on the protein was determined by peptide mapping for the HESylated sample (Fig. 

3). The RP-HPLC/ESI-MS analysis of the tryptic digest showed the complete disappearance 

of the N-terminal peptide peak in the conjugate sample. The polydisperse nature and high 

hydrophilicity of the HES polymer resulted in a broad and front-shifted peak representing the 

HESylated N-terminal peptide T1, while all other peaks remain unchanged, clearly pointing 

towards the N-terminus as the predominant modification site. 

  

Figure 3: Peptide Mapping of HES-IFNα 
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4.3.2. Lyomicroscopy 

PEGylated and HESylated interferon as well as the PEGylated and HESylated version of G-

CSF were characterized by lyomicroscopy to investigate general aspects of collapse tempera-

ture, cake appearance and density, which are mainly influenced by the attached polymer. 

Commercially available PEGylated G-CSF (Neulasta
®
), under the selected conditions, begins 

to collapse at -23.2°C, resulting in a final collapse temperature of -22.3°C. Cake appearance 

and density showed a sub-optimal cake structure with a more liquid-like character (Fig. 4). In 

contrast, HESylated G-CSF showed a much higher onset in collapse temperature at -11.1°C 

resulting in a final Tc of -10.6°C. Cake appearance and density are drastically improved upon 

HESylation.  

 
(A) Intact cake at -24.7°C 

 
(B) Start of collapse at -23.2°C 

 
(C) Collapse at -22.3°C 

 
(D) Intact cake at -11.6°C 

 
(E) Start of collapse at -11.1°C 

 
(F) Collapse at -10.6°C 

Figure 4: Freeze-drying microscopy of PEG- (A-C) and HESylated G-CSF (D-F) 
 

Comparable trends are given for PEGylated and HESylated IFNα. The PEGylated protein 

started to collapse at a much earlier point (Tconset = –36.1°C and Tc = –35.4°C) than HES-

IFNα, which showed a Tconset of = -23.4°C and a Tc of –22.7°C under the chosen conditions 

(Fig. 5).  
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(A) Intact cake at -37.4°C 

 
(B) Start of collapse at -36.1°C 

 
(C) Collapse at -35.4°C 

 
(D) Intact cake at -24.7°C 

 
(E) Start of collapse at -23.4°C 

 
(F) Collapse at -22.7°C 

Figure 5: Freeze-drying microscopy of PEG- (A-C) and HESylated IFNα-2b (D-F) 

4.3.3. Thermal analysis of the frozen formulations 

The thermal properties of the frozen solutions were further characterized by differential scan-

ning calorimetry to determine the glass transition temperatures of the maximally freeze-

concentrated matrix; these temperatures represent a critical product temperature associated 

with collapse during freeze-drying. Table 2 summarizes the Tg´ values of the chosen formu-

lations. Obviously, the Tg´ values differ significantly from the obtained collapse tempera-

tures, caused mainly by the difference in protein concentration (see Materials and Methods). 

Sample Protein conc. [%m/v] Sucrose conc. [%m/v] Tg´ [°C] 

Native IFNα 0.1 0 * 

 0.1 2.5 -34 

 0.1 5 -33 

PEGylated IFNα 0.1 0 * 

 0.1 2.5 -35 

 0.1 5 -33 

HESylated IFNα 0.1 0 * 

 0.1 2.5 -31 

 0.1 5 -33 

 

Table 2: Thermal analysis of the frozen formulations before lyophilization, * not detectable 
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4.3.4. Optical evaluation of the freeze-dried samples 

Figure 6 illustrates the cakes after freeze-drying. Vials A, D and G represent native, PEGylat-

ed and HESylated IFNα, respectively, lyophilized in the absence of sucrose. The native pro-

tein was heavily affected by cake shrinkage due to the absence of lyoprotectans.  

   

Figure 6: Optical evaluation of the freeze-dried formulations; (A) IFNα without sucrose (B) 

IFNα and 2.5% sucrose (C) IFNα and 5% sucrose (D) PEG-IFNα without sucrose (E) PEG- 

IFNα and 2.5% sucrose (F) PEG- IFNα and 5% sucrose (G) HES-IFNα without sucrose (H) 

HES- IFNα and 2.5% sucrose (I) HES- IFNα and 5% sucrose 

4.3.5. Cake properties after lyophilization and storage 

4.3.5.1. Glass transition temperature and degree of crystallization 

Immediately after freeze-drying the native and PEGylated IFNα showed for the sucrose based 

formulations a glass transition temperature in a range between 69 and 74°C, which remained 

more or less constant during storage. Due to the high Tg of the HES part in the molecule, the 

glass transition temperature exceeded 110°C for the sucrose free formulation of HES-IFNα 

and was substantially lowered by the addition of 2.5 and 5% disaccharide to 67°C. The PEG- 

induced crystallization was fully suppressed using 5% m/v sucrose (Fig. 7). During storage 

the degree of crystallization for PEG-IFNα without and in combination with 2.5% sucrose 

slightly increased over time, especially for the samples stored at 40°C.  

 

A        B        C D       E         F G       H       I 
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Figure 7: Tg measurement (A): black bars represent the initial Tg after freeze-drying; the 

grey-dashed ones after 3 months storage at 4°C and the white- dashed ones after 3 months 

storage at 40°C; AUC of the crystallization peak (B): black bars represent the initial value 

after freeze-drying; the grey-dashed ones after 3 months storage at 4°C and the white- dashed 

ones after 3 months storage at 40°C, Representative thermogramms taken immediately after 

freeze-drying (C,D,E) 

4.3.5.2. Residual moisture 

Table 3 summarizes the residual moisture data of the lyophilized cakes immediately after 

lyophilization and after 3 months storage at 4 or 40°C. The addition of sucrose substantially 

lowers the residual moisture. In general, both conjugates showed, without the addition of sug-

ar, lower initial moisture contents in contrast to the unmodified protein. In a direct compari-

son of PEG and HES, the coupling of HES led to lower values lying in the fact, that HES has 

a better drying behavior due to the sugar based scaffold of the molecule. In contrast, PEG is 

highly hydrophilic and can coordinate a higher number of water molecules, which are appar-

ently harder to remove by freeze-drying.  
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Formulation  

0% sucrose 

Native IFNα 

Residual moisture [%] 

PEGylated IFNα 

Residual moisture [%] 

HESylated IFNα 

Residual moisture [%] 

T0 3.6 ± 0.2 2.7 ± 0.2 2.3 ± 0.1 

T3 at 4°C 4.1 ± 0.4 3.0 ± 0.4 1.3 ± 0.2 

T3 at 40°C 1.9 ± 0.4 1.1 ± 0.0 1.1 ± 0.1 

2.5% sucrose    

T0 1.0 ± 0.3 1.5 ± 0.1 1.1 ± 1.1 

T3 at 4°C 1.2 ± 0.3 1.2 ± 0.1 0.7 ± 0.1 

T3 at 40°C 0.8 ± 0.1 0.9 ± 0.1 0.6 ± 0.0 

5% sucrose    

T0 1.0 ± 0.1 1.0 ± 0.1 1.2 ± 0.2 

T3 at 4°C 1.0 ± 0.1 0.7 ± 0.1 0.9 ± 0.2 

T3 at 40°C 0.8 ± 0.0 0.6 ± 0.0 0.9 ± 0.1 

 

Table 3: Residual moisture contents immediately and after storage for 3 months at 4 or 40°C; 

Key: T0: immediately after freeze-drying, T3: 3 months storage at 4 or 40°C 

4.3.5.3. Conformational stability after lyophilization and storage 

FTIR analyses of the conjugates provided two essential insights. First, it helps to illustrate 

how PEGylation and HESylation alter the secondary structure after polymer coupling (Fig. 8) 

and second, it shows how the formulation influences conformational stability after freeze-

drying and during storage. Surprisingly, significant changes in secondary structure upon 

freeze-drying and storage could not be detected for native protein and both conjugates, indi-

cating high conformational stability (data not shown). 
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Figure 8: Area-normalized, second-derivative amide I spectra of native (solid line), PEG- 

(dashed line) and HESylated IFNα (dotted line) of the liquid samples 

4.3.6. Colloidal stability after lyophilization and storage 

4.3.6.1. Turbidity and particle counts  

Turbidity values and particle counts are illustrated in Figure 9. The attachment of PEG or 

HES to the protein prevented the formation of particles due to a shielding effect independent 

of the type of polymer used. Samples of both conjugates showed significantly lower initial 

particle counts compared to those of the native IFNα. The turbidity measurement correlates 

well to the total particle counts. 
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Figure 9: Turbidity and particle count; (A) native IFNα; (B) PEGylated IFNα and (C) HESyl-

ated IFNα; Key: T0: immediately after freeze-drying, T3: after 3 months storage at 4 or 40°C 

4.3.6.2. Monomer recovery and soluble aggregates 

The monomer content and the generated level of soluble aggregates during storage at 4 or 

40°C as a function of the formulation’s sucrose content was determined by HP-SEC (Fig. 10). 

The data show that the sucrose-to-polymer weight ratio and the chosen storage conditions 

have the greatest influence on the formation of aggregates. Neither native nor HESylated 

IFNα showed a dramatic decrease in monomer recovery, nor were soluble aggregates formed, 

even at 40°C. Taking the data from soluble and insoluble aggregates together, it is even pos-

sible to formulate HESylated interferon α-2b without any sugar. In contrast, the colloidal sta-

bility of PEGylated interferon α-2b is highly dependent on the sucrose-to-PEG weight ratio 

and storage temperature. For example, storage of lyophilized PEGylated IFNα at 4°C without 
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the addition of sucrose caused soluble aggregates to increase only slightly, from 1.1 to 1.2%. 

At 40°C, the level of soluble aggregates increased remarkably, from 1.1 to 6.9%, indicating 

the strong influence of storage temperature. The addition of sucrose substantially prevented 

aggregation. Increasing the concentration of sucrose from 2.5% to 5% led to a significant de-

crease in the level of soluble aggregates, from 5.5% to 1.3%, for samples stored at 40°C. In-

terestingly, losses in monomer recovery correlate quite well to the degree of crystallization 

(see supplementary data). When crystallization of PEG is not suppressed by amorphous lyo-

protectants, the PEGylated protein will rapidly degrade during long-term storage.  

  

Figure 10: HP-SEC measurement to quantify monomer content (A) and the level of high- 

molecular weight species (HMW; B) after 3 months at 4 or 40°C 

4.4. Discussion 

Today, approval of conjugated biologics requires site-specific chemistry to obtain homogene-

ous batches of single isomers [6]. Targeting the N-terminus to obtain a well-defined product 

can be performed by reductive amination under mildly acidic conditions (e.g. at a pH of 4- 5). 

The reaction takes place preferentially at the N-terminal amino group, which typically dis-

plays a lower pKa value of ~8 compared to ~10 for the ɛ-amino groups of lysine residues [29-

31]. In the first step of the conjugation a labile Schiff`s base is formed, which is subsequently 

reduced by sodium cyanoborohydride to a stable secondary amine [32]. This approach 

worked exceptionally well for conjugations involving interferon α-2b; peptide mapping and 

aFFFF-MALLS analysis shown above provide proof of site-specific mono-conjugation. Fur-

thermore, our results are in good agreement with previously reported variants of PEGylated 

IFNα-2b carrying a range of PEG derivatives at the N-terminus [28]. The resulting conjugates 

were of excellent purity, with only trace amounts of unmodified protein and aggregates de-
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tected in the liquid formulations that served as a starting point for lyophilization experiments. 

Evaluation of the collapse temperature of frozen formulations is a critical tool for the selec-

tion of appropriate lyophilization parameters [33, 34]. Using lyomicroscopy, the freezing and 

annealing step can be simulated and visually tracked to assess performance of the samples 

under the selected lyo conditions [33]. The general goal is to maintain as high a collapse tem-

perature as possible [20]. The obtained Tc is directly related to the maximally allowed prod-

uct temperature, which must be several degrees below Tc to maintain an acceptable appear-

ance of the dried cake [34]. With this context, PEGylated and HESylated versions of two 

pharmaceutically relevant proteins were tested for their performance during freezing and 

thawing in an adjusted lyo cycle. The presence of hydroxyethyl starch in the conjugate led to 

an extraordinarily high collapse temperature of the frozen solution; the precise Tc value de-

pends on the amount of HES present in the formulation. The sugar-based HES scaffold also 

improves cake appearance and density, whereas PEG, when conjugated to the same protein 

and yielding comparable conjugate hydrodynamic size, does not. The very high collapse tem-

perature of HES enables a more economical and robust lyophilization process. In general, 

freeze-drying is a time- and cost-intensive process; therefore, the target product temperature, 

which is highly dependent on the collapse temperature, should be as a high as possible. For 

example, an almost 1°C increase in product temperature lowers the time for primary drying 

by about 13% [34]. As a proof of concept, formulations of PEGylated and HESylated IFNα 

were compared to the unmodified protein in terms of conformational and colloidal stability 

after freeze-drying and storage at elevated temperatures (4 and 40°C) for 3 months. With the 

exception of the formulation consisting of unmodified protein and no sucrose, the freeze-

drying protocol led to pharmaceutically elegant cakes, indicating that primary drying occurred 

under the critical collapse temperature of the frozen solutions. The determined Tg´ values 

correlated well to reported data for other sucrose-based formulations [20]. In general, HES 

solutions are characterized by high Tg´ values, ranging from -12 to -17°C depending on the 

HES molecular weight, the degree of substitution and the HES-to-disaccharide ratio [13, 35, 

36]. Our results, however, demonstrate only a slight increase in the Tg´ value for the HESyl-

ated protein. The most likely reason for this is that the total amount of HES in a formulation 

of 1 mg/mL protein concentration is rather low, having almost no effect on Tg´ and process 

settings. To ensure adequate storage stability after drying, the Tg of the dry cake should be as 

high as possible, preferably at least 20°C above storage temperature [13]. Our data indicate 

that this condition has been easily met, as we report Tg values of at least 60°C up to ~110°C – 

well above ambient temperature. Although it is quite common for sucrose-based cakes with 
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residual moisture in the range of 1% to have Tgs of about 65°C [37], some of our data are 

remarkable. HES is obviously capable of acting as a Tg modifier when covalently bound to 

the protein. With no sucrose added, HESylated interferon α-2b has a Tg of ~110°C after 

freeze-drying. The addition of 2.5% or 5% sucrose inhibits this particular effect of HESyla-

tion, leading to Tgs of 75°C and 65°C, respectively. In addition, native and HESylated IFNα 

did not show any tendency toward crystallization. Hydroxyethyl starch is based on a carbohy-

drate scaffold, and thus acts as a completely amorphous bulking agent during freeze-drying, 

in a similar fashion to dextran [23, 33]. For PEGylated IFNα, we observed a different situa-

tion entirely. PEG is prone to rapid crystallization during lyophilization, due to its tendency to 

promote phase separation into polymer-rich and sugar-rich phases, a precursor for crystalliza-

tion [11]. Therefore, high sucrose-to-PEG weight ratios (≥ 5) are required to fully suppress 

PEG-induced crystallization. If crystallization occurs during storage, it is in most cases ac-

companied by an increased propensity for protein degradation [11]. In general, polymer con-

jugation under mild reaction conditions should have no effect on the secondary and tertiary 

structure of the protein [38]. Using CD measurement, Kinstler and colleagues observed no 

effect of site-specific PEGylation of G-CSF on the protein conformation; these results were 

supported by FTIR studies from Rajan et al. [38]. Our results confirm these findings; we re-

cently reported that neither PEGylation nor HESylation altered the secondary structure of rh 

IL-1ra (anakinra) [26]. In this study, the 2nd derivative FTIR spectra were obtained after stor-

age of the freeze-dried samples. Furthermore, native, PEGylated and HESylated IFNα under-

went lyophilication and subsequent storage without evidence of any changes, indicating high 

conformational stability.  Colloidal stability of IFN and its conjugates was assessed by tur-

bidity measurement, particle counting and monomer recovery by HP-SEC [39, 40]. Typically, 

protein PEGylation reduces aggregation by physically separating monomers from one another 

and therefore leads to reduced protein-protein interaction [41, 42]. The ability of PEGylation 

to prevent PPI is not unique; this effect can also be obtained via HESylation [26]. In this 

study, PEGylated and HESylated IFNα showed significantly lower particle counts after re-

constitution of the freeze-dried samples compared to that of the native protein. As mentioned 

above, turbidity measurement can be used as a predictive marker for changes in a sample’s 

aggregate status [27]. However, the turbidity measurement can be influenced by excipients or 

high protein concentration and high values do not necessarily reflect high numbers of protein-

aceous particles [43]. Polymers can also scatter light and lead to high background turbidity 

[44, 45]. In our studies we found that HESylation leads to higher initial turbidity values com-

pared to those of both the native and PEGylated protein. However, this value is not a reliable 
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marker of higher numbers of aggregates, which was investigated by LO and HP-SEC meas-

urements. As mentioned above, PEG-induced crystallization fosters protein degradation if it is 

not suppressed by some means, such as high sucrose-to-PEG weight ratios. Stability studies 

from Bhatnagar et al. regarding freeze-dried PEGylated human growth hormone found the 

lowest colloidal stability in samples which were lyophilized with low sucrose to PEG weight 

ratios [11]. We can confirm those findings for PEG-interferon. In particular, even the addition 

of 2.5% sucrose was insufficient to prevent aggregation of PEGylated IFNα. Therefore, a 

concentration of at least 5% sucrose must be included to prevent protein degradation induced 

by PEG-driven crystallization. In contrast, HESylation drastically improved the colloidal sta-

bility of the conjugate, leading to reduced monomer loss and aggregate formation. This can be 

explained by two facts: first, HES remained totally amorphous during lyophilization.  Second, 

when covalently attached to a protein, HES provides a protective shield that prevents PPI. 

Additionally, for a sucrose-free lyophilisate of HESylated IFNα, a very high Tg will also most 

likely lead to long-term storage stability even at greatly elevated storage temperatures. Final-

ly, a sucrose-free, freeze-dried formulation allows for a very high protein load, which is ex-

tremely attractive for further manufacturing steps, such as integration with drug delivery sys-

tems. 

4.5. Conclusion 

Site-specific mono-modification of the model protein interferon α-2b with PEG or HES was 

achieved by reductive amination. Conjugate preparations of high purity were obtained by cat-

ion exchange chromatography without altering the protein’s secondary structure. Some fun-

damental questions concerning cake appearance and density were clarified for both polymers 

and illustrated using conjugated IFNα-2b and G-CSF. Upon freeze-drying of PEGylated pro-

teins, the use of high sucrose-to-PEG weight ratios is necessary to prevent protein degradation 

during long-term storage. In contrast, HESylation was found to be an attractive alternative 

PEGylation, overcoming several significant formulation challenges associated with manufac-

turing of lyophilized PEGylated proteins. We demonstrate HESylation of IFNα as an example 

of chemical coupling of a biocompatible polymer with excellent lyophilization properties; the 

conjugate remained completely amorphous throughout lyophlization. The high glass transition 

temperature of pure HES facilitated an elevated Tg of the HESylated protein during freeze-

drying, which can be an essential feature for manufacturing steps characterized by high resid-

ual moisture content, such as spray or vacuum drying. Additionally, HESylation effectively 

shielded the conjugate to prevent PPI and improve conjugate colloidal stability. Lyophilized 
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formulations with no or low concentration of sucrose, as tested in this study, could be used to 

up-concentrate protein solutions or permit a high protein load; both of these features would be 

attractive for further manufacturing steps, like bulk drying of API or loading into drug deliv-

ery systems. In conclusion, this study reveals that HESylation offers a number of advantages 

over PEGylation with regards to the development of freeze-dried formulations of polymer-

protein conjugates. In particular, higher collapse and glass transition temperatures, as well as 

an amorphous nature which maintains storage stability even in the absence of additives could 

be highly beneficial in drug formulation and manufacturing environments. 
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Chapter V – Highly concentrated lyophilized formulations 
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5. Protein HESylation for the use of highly concentrated 

and freeze-dried formulations of HES-anakinra conju-

gates: storage stability and the benchmark to 

PEGylation 

 

All conjugation and purification steps involved in preparing the HESylated protein were per-

formed by Sarah Bergmann, Fresenius Kabi.  
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Abstract 

The purpose of this study was to investigate the effect of lyophilization on highly concentrat-

ed formulations of polymer-protein conjugates and their stability upon storage. PEGylation 

and HESylation, two strategies currently used to prolong serum half-life of proteins and pep-

tides, were applied to the model protein anakinra. The resulting conjugates were lyophilized 

with or without the addition of sucrose at protein concentrations up to 50 mg/mL. Results 

showed that the nature of the polymer significantly impacts the colloidal stability of the con-

jugate. In both cases, PEGylation and HESylation prevented protein-protein interactions as 

assessed by lower particle counts for sizes greater than 1 µm, whereas the native protein 

formed significantly higher quantities of aggregates. However, in PEGylated proteins, PEG 

promotes conjugate crystallization during lyophilization. This behavior fostered degradation 

of the conjugate, resulting in the formation of high levels of soluble aggregates that could not 

be substantially decreased by the addition of sucrose. In contrast, HESylated anakinra re-

mained completely amorphous and exhibited remarkable stability even over 3 months of stor-

age at 40°C in the absence of sucrose. Additionally, coupling HES to APIs such as proteins 

offers a number of other advantages over PEGylation. 

Keywords 

HESylation, PEGylation, freeze-drying, phase separation, crystallization, aggregation 
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5.1. Introduction 

Some high-value protein-based therapies require chronic administration of high doses of drug 

(several mg/kg), typically performed by intravenous or subcutaneous injection [1, 2]. The 

latter administration route, particularly when coupled with prefilled syringe and autoinjector 

devices, is restricted primarily by injection volume (≤ 1.5 mL) and therefore requires APIs to 

be formulated at high concentrations. Under conditions of high concentration, proteins are 

known to have but limited intrinsic stability, constraining the development of lyophilized 

formulations [1], which already experience reduced physical and chemical stability in the 

dried state [3-5]. For small proteins and peptides such as cytokines, antibody fragments or 

protein scaffolds that require half-life extension, the development of a highly concentrated 

and lyophilized formulation is still challenging due to a number of drawbacks stemming from 

PEGylation, the main HLE technology in use today. In highly concentrated aqueous solutions, 

PEG promotes an extraordinary increase in viscosity and can generate certain peroxides, es-

pecially at high temperatures, which accelerates degradation of the protein portion of the con-

jugate [6, 7]. During lyophilization, PEG tends to crystallize rapidly regardless of whether it 

is covalently attached or used as a bulking agent, resulting in further degradation of the pro-

tein upon storage, especially at high temperatures [6, 8, 9]. Complete suppression of crystalli-

zation requires high disaccharide-to-PEG ratios [8], which places clear limitations on the use 

of highly concentrated and freeze-dried formulations of PEGylated drugs. A comparative 

study of lyophilized PEGylated and HESylated IFNα showed the strong need for an amor-

phous lyoprotectant like sucrose to stabilize the PEGylated protein, whereas the HESylated 

form maintained an amorphous character throughout lyophilization and exhibited excellent 

storage stability even in the absence of additives (see chapter IV). Here, it is worth highlight-

ing that HESylation of proteins yields an additional stabilizing effect in highly concentrated 

formulations of protein-polymer conjugates during freeze-drying and storage. We tested these 

effects using anakinra, which is usually administrated by subcutaneous injection of a highly 

concentrated solution (150 mg/mL) [6, 7]. For highly concentrated solutions of HESylated 

anakinra, we recently showed that attachment of HES significantly improves the physico-

chemical stability of the protein as compared to the unmodified or PEGylated versions [7]. In 

the present study, formulations of anakinra were subjected to an additional freeze-drying step 

to evaluate the stability of highly concentrated polymer-protein conjugates using the perfor-

mance of PEGylated protein as a benchmark. As already described, N-terminal PEGylation 

and HESylation was performed by reductive amination followed by purification using anionic 
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exchange chromatography [7]. Additionally, both conjugates were up-concentrated, lyophi-

lized and stored at elevated temperatures. Equivalent lyphilization and storage parameters 

were applied for native anakinra, which served as a control for this study. 

5.2. Materials and Methods  

Kineret
®
 was purchased from SOBI (Stockholm, Sweden). Branched PEG propionaldehyde 

(MW = 40 kDa) was purchased from Jenkem Technologies (Allen/TX, USA). Activated hy-

droxyethyl starch (HES), with a weight average molar mass (Mw) of approximately 85 kDa, 

number average molar mass (Mn) of approximately 65 kDa, and a polydispersity of 1.3 [10]) 

was from Fresenius Kabi Deutschland GmbH (Bad Homburg, Germany). All other chemicals 

were used in analytical grade and purchased from VWR (Germany). 

5.2.1. Synthesis and purification  

A detailed description of the PEGylation and HESylation processes is already provided in 

chapter III and was used without modification for the following experiments. 

5.2.2. Sample preparation 

Native anakinra (Kineret
®
) formulated at a protein concentration of 150 mg/mL was rebuff-

ered into 10 mM citrate buffer, pH 6.5 using 70 mL Slide-A-Lyzer
®

 dialysis cassettes (Ther-

mo Scientific, Schwerte, Germany). Buffer exchange to 10 mM citrate, pH 6.5 of PEGylated 

and HESylated anakinra was performed by TFF using a 50 cm2 PES (polyethersulfone) 

membrane capsule with a MWCO of 10 kDa operated on a Minimate
TM

 benchtop system 

(both from Pall, Dreieich, Germany) to a protein concentration of 10-15 mg/mL. The final up-

concentration step for the conjugate solutions was performed by ultrafiltration in Vivaspin 20 

centrifugal concentrators using a molecular weight cutoff (MWCO) of 10 kDa. The tubes 

were placed into a Sigma 4K15 centrifuge (Sigma Laborzentrifugen GmbH, Osterode am 

Harz, Germany) and rotated at 10,000 rpm (= 14,243 g) for 3-4 h at 4°C. The protein concen-

tration was verified by UV absorption (NanoDrop, Thermo Scientific, Schwerte, Germany) 

using the extinction coefficient of the protein as reported by Raibekas et al. [21]. For further 

experiments, samples were diluted in formulation buffer to the desired protein concentration.   

Table 1 summarizes the details of formulations used for lyophilization experiments and sub-

sequent storage at 2-8 and 40°C for 3 months. 
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Sample 
Protein concentration  

[mg/ mL] 

Sucrose 

 [%(w/v)] 

Native  10 0 

anakinra 10 2.5 

 10 5 

 25 0 

 25 5 

 50 0 

 50 5 

PEGylated  10 0 

anakinra 10 2.5 

 10 5 

 25 0 

 25 5 

 
50 

50 

0 

5 

HESylated  10 0 

anakinra 10 2.5 

 10 5 

 25 0 

 25 5 

 
50 

50 

0 

5 

Table 1: selected formulations for lyophilization and storage stability studies 

5.2.3. Tg´ measurement 

The Tg´ was determined by differential scanning calorimetry on a Netzsch DSC 204 Phönix 

(Netzsch, Selb, Germany). 20 µL of each formulation was hermetically sealed in 40 µl alumi-

num pans, cooled from 20 to -70°C at a cooling rate of 10°C/min and heated up to 20°C to 

detect the glass transition temperature of the frozen solutions.  

5.2.4. Freeze-drying protocol 

The freeze drying process was performed in a Martin Christ Epsilon 2-6D pilot-scale freeze- 

dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) using 

the following freeze-drying protocol. 2R vials (Vetter, Ravensburg, Germany) were filled 

with 0.2-0.3 mL sample volume. After shelf loading the vials were frozen by cooling at 

1°C/min from 20 to -45°C and holding at the final temperature for 90 min. Primary drying 
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was performed at 0.1 mbar with a heating ramp from -45 to -15°C at a rate of 0.1°C/min and 

holding the final temperature for 30 h. Secondary drying consisted of an equivalent ramp to 

20°C, followed by holding the system at 0.01 mbar for 15 h. The vials were flooded with gas-

eous nitrogen, stoppered with Teflon-coated stoppers (West Pharmaceutical Services, 

Eschweiler, Germany) at 800 mbar and afterwards manually sealed with 13 mm flip off seals 

(West Pharmaceutical Services, Eschweiler, Germany). 

5.2.5. Tg and degree of crystallization 

The glass transition temperature of the freeze-dried cakes was determined by DSC measure-

ment. In a pressurized air flooded glove box with a relative humidity between 5-10%, a sam-

ple amount of 1-20 mg was weighed in aluminum pans and hermetically sealed. For DSC 

measurement the pans were heated from 10 to 110°C, cooled to the starting point and heated 

again to 180°C with a constant heating rate of 10°C/min. The second heating step was essen-

tial for determination of the correct glass transition temperature due to structural relaxation of 

the cakes (Tg overshoot). Additionally, the DSC thermograms impart information about crys-

tallization. A 2.3% PEG solution (of the same PEG,used for conjugation) was lyophilized 

under equivalent conditions and analyzed by DSC measurement. The obtained enthalpy, cal-

culated by measuring the area under the curve in J/g, was set to 100% to form the normaliza-

tion basis for quantifying crystallinity in the freeze-dried PEG- protein samples. 

5.2.6. Residual moisture  

The moisture content of the cakes was measured by a coulometric Karl-Fischer Titrator (KF 

373, Metrohm GmbH & Co, Filderstadt, Germany).  

5.2.7. Turbidity measurement 

Protein quality after reconstitution with highly purified water and a dilution step to 1 mg/mL 

in formulation buffer was evaluated using turbidity. Sample degassing was performed using a 

Microcal ThermoVac2 degassing station (MicroCal Inc, Northampton, MA). The turbidity of 

a 2 mL sample volume was determined at 860 nm and given in formazine nephelometric units 

(FNU) using a NEPHLA turbidimeter (Dr. Lange, Düsseldorf, Germany). 
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5.2.8. Particle count - Light obscuration 

According to Ph. Eur. and USP specifications, particle analysis was performed by light obscu-

ration using a PAMAS SVSS-C particle counter (PAMAS, Rutersheim, Germany) [22]. Parti-

cles with sizes of 1, 10 and 25 µm were quantified after a rinse volume of 0.5 mL in three 

runs of 0.3 mL with an emptying and rinse rate of 10 mL/min. 

5.2.9. Monomer recovery – Size exclusion chromatography 

HP-SEC was performed on a Spectra System P2000 (Thermo Scientific, Germany) equipped 

with a TSK guard column and a TSKgel G3000 SWxl (Tosoh Bioscience GmbH, Stuttgart, 

Germany). After an injection of 50 µg protein, each run was performed by an isocratic elution 

of the mobile phase, which contained 10 mM citrate, 140 mM NaCl, pH 6.5 at 0.5 mL/min 

over 45 min followed by UV detection of monomer and high molecular weight (HMW) con-

tent at 280 nm. 

5.3. Results  

The thermal properties of the frozen solutions were characterized by differential scanning 

calorimetry to detect the glass transition temperatures of the maximally freeze-concentrated 

matrix; this glass transition temperature is a critical process parameter, knowledge of which 

helps avoid cake collapse during freeze-drying. Table 2 summarizes the obtained Tg´ values 

of selected formulations. Covalently linked PEG chains found in PEGylated protein conju-

gates rapidly began to crystallize during freezing and thawing. In most cases, the prominent 

endothermic melting event overlapped with the predicted glass transition temperature range 

and therefore no Tg´ could be detected. Additionally, the limited sensitivity of the instrument 

restricted our ability to detect rather small glass transitions of formulations containing only 

anakinra, lyophilized without the addition of sucrose. However, it is readily apparent that pro-

tein concentration has an impact on Tg´. For instance, raising the protein concentration of 

native anakinra from 10 to 50 mg/mL in the presence of 5% (w/v) sucrose increased the glass 

transition temperature by about 3.8 K. HESylation led to an additional elevation of the glass 

transition temperature; at a protein concentration of 50 mg/mL in the presence of 5% sucrose, 

HESylation led to elevation of the Tg´ by 5.8 K. 
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Sample  
Protein to sucrose ratio 

[%(w/v) / %(w/v)] 

Before  

freeze-drying 

Naitve anakinra 

Tg´ 

[°C] 

1/0 * 

 1/2.5 -28.1 

 1/5 -28.7 

 2.5/0 * 

 2.5/5 -26.6 

 5/0 * 

 5/5 -24.9 

PEGylated anakinra 1/0 * 

 1/2.5 * 

 1/5 -30.3 

 2.5/0 * 

 2.5/5 * 

 5/0 * 

 5/5 * 

HESylated anakinra 1/0 -16.9 

 1/2.5 -22.8 

 1/5 -25.1 

 2.5/0 -14.1 

 2.5/5 -21.0 

 5/0 -13.6 

 5/5 -19.1 

 

Table 2: Thermal analysis of the frozen formulations before lyophilization 

5.3.1. Cake properties after lyophilization and storage  

5.3.1.1. Glass transition temperature and residual moisture 

Glass transition temperatures (Tg) of the lyophilized formulations, as well as the measured 

residual moisture (RM), are summarized in Table 3. In general, significantly higher RM con-

tents can be observed for the sucrose-free formulations. Immediately after freeze-drying, na-

tive anakinra formulated with sucrose exhibited glass transition temperatures in a range be-

tween 69-84°C and residual moisture values of 0.5-1.3%, both of which remained more or 
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less constant during storage at 2-8°C. Upon storage at 40°C for 3 months, higher RM values 

were obtained. This had a plasticizing effect on the glass transition temperature, leading us to 

infer that water vapor from the stoppers escaped into the lyo cakes. The modifying effect in-

duced by PEGylation and HESylation in both cases decreased the residual moisture. For both 

types of conjugates, higher RM values were obtained for the samples stored at 40°C, whereas 

lower RM numbers were found for the samples stored at 2-8°C. For PEG-anakinra, no Tg 

values could be measured due to the fact that a predominant melting peak of PEG overlapped 

the expected glass transition point. This effect could not be suppressed by the amount of su-

crose used in this study. Due to the elevated Tg of HES, the glass transition temperature of 

HESylated anakinra exceeded 110°C for the sucrose free formulations and was substantially 

lowered when sucrose was added. For example, the presence of 5% sucrose at a 10 mg/mL 

protein concentration resulted in Tg values around 78°C. An increase in protein concentration 

from 10 to 25 and 50 mg/mL lowered the sucrose to polymer ratio. Lowering this ratio also 

reduced the plasticizing effect of sucrose on the glass transition temperature to negligible lev-

els; all Tg values measured immediately after lyophilization at a protein concentration beyond 

25 mg/mL exceeded 100°C. 
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Sample  
Protein to sucrose ratio 

[%(w/v) / %(w/v)] 

After freeze-

drying 

After 3 months 

storage at 2-8°C 

After 3 months 

storage at 40°C 
 

After freeze-

drying 

After 3 months 

storage at 2-8°C 

After 3 months 

storage at 40°C 

Native  

Tg 

[°C] 

1/0 * * * 

RM 

[%] 

3.30 ± 0.20 3.46 ± 0.13 7.43 ± 0.03 

anakinra 1/2.5 64.7 ± 0.5 70.7 ± 7.6 55.6 ± 15.8 1.27 ± 0.33 1.12 ± 0.06 4.05 ± 0.48 

 1/5 64.7 ± 0.2 72.7 ± 0.3 46.5 ± 5.9 0.83 ± 0.10 0.91 ± 0.03 2.24 ± 0.07 

 2.5/0 * * * 2.55 ± 0.38 2.77 ± 0.79 5.43 ± 0.41 

 2.5/5 84.1 ± 0.1 64.7 ± 9.6 51.7 ± 2.0 0.90 ± 0.23 0.97 ± 0.11 2.69 ± 0.40 

 5/0 * * * 2.26 ± 0.21 1.96 ± 0.45 4.36 ± 0.24 

 5/5 80.0 ± 22.7 79.5 ± 0.7 61.0 ± 3.6 0.47 ± 0.19 1.13 ± 0.02 2.65 ± 0.27 

PEGylated  1/0 * * * 1.39 ± 0.49 0.98 ± 0.06 2.25 ± 0.27 

anakinra 1/2.5 * * * 0.80 ± 0.01 0.64 ± 0.08 2.27 ± 0.34 

 1/5 * * * 0.76 ± 0.30 0.72 ± 0.02 2.23 ± 0.05 

 2.5/0 * * * 0.81 ± 0.11 0.71 ± 0.07 1.71 ± 0.16 

 2.5/5 * * * 0.57 ± 0.02 0.73 ± 0.03 1.88 ± 0.04 

 5/0 * * * 0.97 ± 0.71 0.59 ± 0.20 1.33 ± 0.05 

 5/5 * * * 0.42 ± 0.05 0.46 ± 0.07 1.43 ± 0.21 

HESylated  1/0 110.3 ± 1.9 109.2 ± 0.2 * 0.91 ± 0.04 0.92 ± 0.04 3.38 ± 0.43 

anakinra 1/2.5 94.1 ± 0.9 86.2 ± 2.3 61.5 ± 10.0 0.63 ± 0.23 0.68 ± 0.01 2.86 ± 0.01 

 1/5 77.8 ± 5.2 78.4 ± 0.1 49.8 ± 2.3 0.45 ± 0.01 0.53 ± 0.06 2.37 ± 0.21 

 2.5/0 110.8 ± 0.6 111.6 ± 2.9 113.8 ± 0.6 0.35 ± 0.04 0.86 ± 0.04 2.75 ± 0.27 

 2.5/5 100.9 ± 7.2 89.5 ± 1.8 62.8 ± 1.3 0.29 ± 0.01 0.60 ± 0.11 2.24 ± 0.04 

 5/0 110.7 ± 1.3 110.4 ± 2.2 112.1 ± 0.6 0.60 ± 0.15 0.57 ± 0.24 2.02 ± 0.25 

 5/5 109.9 ± 10.0 110.5 ± 4.0 66.5 ± 0.6 0.41 ± 0.02 0.39 ± 0.05 2.04 ± 0.23 

* not detectable 

Table 3: Glass transition temperatures and residual moisture immediately after lyophilization and after 3 months storage at 2-8 and 40°C
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5.3.1.2. Degree of crystallization 

During freeze-drying of native and HESylated anakinra, no crystallization could by detected 

by DSC analysis. In contrast, PEGylated anakinra rapidly began to crystallize during lyophi-

lization, an effect which could only be suppressed by the addition of sucrose to a certain pol-

ymer-to-disaccharide ratio (Table 4). Increasing the amount of PEG in the formulation sub-

stantially lowered the sucrose-to-PEG ratio and therefore enhanced the role of crystallization 

in the lyo cake. Samples, which were stored at 40°C showed, as expected, a slight increase in 

crystallization. Interestingly, during storage at 2-8°C the degree of crystallization was in some 

cases lower than the initial value obtained immediately after freeze-drying. 

Sample  
Protein to sucrose ratio 

[%(w/v) / %(w/v)] 

After freeze-

drying 

After 3 months 

storage at 2-8°C 

After 3 months 

storage at 40°C 

Native  

Crystallinity 

[%] 

 

1/0 * * * 

anakinra 1/2.5 * * * 

 1/5 * * * 

 2.5/0 * * * 

 2.5/5 * * * 

 5/0 * * * 

 5.0/5 * * * 

PEGylated  1/0 64.4 ± 1.7 67.4 ± 0.3 68.1 ± 0.9 

anakinra 1/2.5 38.7 ± 0.1 39.0 ± 0.3 43.7 ± 2.0 

 1/5 23.2 ± 1.7 16.3 ± 1.9 29.1 ± 0.3 

 2.5/0 66.0 ± 2.3 68.9 ± 0.8 68.3 ± 1.6 

 2.5/5 44.4 ± 0.2 44.7 ± 0.5 44.5 ± 1.9 

 5/0 66.7 ± 0.3 67.7 ± 3.8 71.1 ± 1.5 

 5.0/5 57.2 ± 0.2 53.0 ± 1.2 58.4 ± 0.2 

HESylated  1/0 * * * 

anakinra 1/2.5 * * * 

 1/5 * * * 

 2.5/0 * * * 

 2.5/5 * * * 

 5/0 * * * 

 5.0/5 * * * 

* not detectable 

Table 4: Thermal analysis for the degree of crystallization 
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5.3.2. Protein quality after reconstitution 

5.3.2.1. Colloidal stability after lyophilization and storage 

The number of particles with a size greater than 1 µm and corresponding turbidity values 

were measured immediately after lyophilization and subsequent storage (Figure 1). Especial-

ly for native anakinra, storage temperature and the presence of sucrose had the biggest impact 

on the degree of aggregate formation. Formulations lacking sucrose exhibited greater numbers 

of particles, particularly at protein concentrations of 25 and 50 mg/mL. Obtained particle 

counts are in good agreement with the turbidity measurements; higher particle numbers are 

associated with higher turbidity values. These effects are more distinct for samples which 

were stored at 40°C. The addition of sucrose substantially decreased both particle counts and 

the solution turbidity, indicating the strong need for a lyoprotectant in the formulation. In con-

trast, conjugation with either PEG or HES prevented the formation of aggregates. This effect 

can be explained by the high shielding effect of both polymers. As one might expect, then, 

correspondingly low particle counts were observed in each conjugate formulation. 

5.3.2.2. Monomer recovery and soluble aggregates 

Monomer recovery and levels of soluble aggregates were monitored by HP-SEC analysis. 

Protein concentration and the amount of sucrose were found to have the greatest influence on 

the formation of subvisible particles (Figure 2). While native anakinra showed no substantial 

loss in monomer content, an increase in soluble aggregates was observed especially for for-

mulations, lyophilized in the absence of sucrose. Including sucrose in the formulation sub-

stantially lowered the degree of aggregate formation. In contrast, PEGylated anakinra exhibit-

ed both dramatic loss in monomer recovery and rapid formation of soluble aggregates espe-

cially for samples lyophilized without sucrose (the reader is advised to note the difference in 

y-axis scales in the presented figures).  Again, sucrose is found to prevent formation of parti-

cles and preserve high monomer levels. Interestingly, the loss in monomer recovery correlates 

well to the degree of crystallization measured via DSC. When crystallization of PEG is not 

suppressed by amorphous excipients, the PEGylated protein degrades rapidly during long-

term storage. Surprisingly, even in the absence of sucrose, HESylation of anakinra neither 

diminished monomer recovery nor promoted formation of high levels of soluble aggregates. 
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Figure 1: Turbidity and particle counts immediately after lyophilization (A) native anakinra; (B) PEGylated anakinra and (C) HESylated anakinra; 

Turbidity and particle counts after storage at 40°C for 3 months (D) native anakinra; (E) PEGylated anakinra and (F) HESylated anakinra;  X axes 

keys:  A: native anakinra; PA: PEG- anakinra; HA: HES-anakinra and 10, 25 or 50 represent the protein concentration in mg/mL 
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Figure 2: SEC analyses after 3 months at 40°C: monomer content of (A) native anakinra (B) PEGylated anakinra and (C) HESylated anakinra; 

high molecular weight (HMW) content in (D) native anakinra (E) PEGylated anakinra and (F) HESylated anakinra; Caption key:  A: native  

anakinra; PA: PEG-anakinra; HA: HES-anakinra and 10, 25 or 50 represent the protein concentration inmg/mL
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5.4. Discussion 

The development of PEGylated drugs in highly concentrated formulations represents an on-

going challenge due to the high viscosity of PEG at high concentrations, hampering manufac-

turing processes and drug injectability [6]. For the use of freeze-dried formulations of 

PEGylated proteins, high disaccharide-to-PEG ratios are necessary to obtain a reasonable 

shelf-life due to fact that PEG will rapidly crystallize during freeze-drying, which may de-

crease storage stability and induce protein degradation if left unsuppressed by amorphous 

lyoprotectants [8].  

The main focus of this study was to apply HESylation technology to the formulation of highly 

concentrated, freeze-dried protein-polymer conjugates. Freeze-drying is a time- and cost-

intensive process, and the glass transition temperature of the maximally freeze-concentrated 

phase has a considerable effect on the overall drying time. To reduce drying time, the target 

product temperature during primary drying should be as high as possible while staying well 

below the glass transition temperature to yield a pharmaceutically elegant cake with no obvi-

ous meltbacks or sample collapse [11]. A nearly 1°C increase in product temperature lowers 

the time for primary drying by about 13% [4]. As described previously, an increase in protein 

concentration will increase the Tg´ and therefore a higher Tp can be applied for primary 

drying [12, 13]. We confirm these findings with our results for the case of native anakinra. An 

additional enhancement is observed upon protein HESylation. In general, HES solutions are 

characterized by high Tg´ values in a range of -12 to -17°C depending on the molecular 

weight, the degree of substitution and the HES-to-disaccharide ratio [14-17]. For highly con-

centrated formulations, the elevating effect of HESylation on Tg´ was highly significant, thus 

enabling higher Tp values during the lyophilization process and a concomitant reduction in 

the time required for primary drying. This cannot be presently achieved using either the native 

or PEGylated protein. To ensure appropriate storage stability in a dried state, the glass transi-

tion temperature should be as high as possible. Typically, the glass transition should be at 

least 20°C above ambient temperature to limit molecular mobility in the freeze-dried cake and 

thus prevent protein degradation [15, 18, 19]. The glass transition temperatures we obtained 

immediately after lyophilization satsify this criterion and match previously reported glass 

transition points of sucrose-based formulations [20].  In addition, an increase in protein con-

centration has been reported to generally enhance the glass transition temperature [21]. We 

confirm this finding for anakinra; higher protein concentrations showed higher Tg values. The 

effect of HESylation, as expected, further increased the glass transition temperature, an effect 
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which has already been shown for HESylated IFNα-2b (see chapter IV).  HES itself has a 

very high Tg, which depends on molecular weight and degree of substitution. This modifying 

effect on glass transition temperature is directly transferred to covalently modified HES-

protein conjugates,. Thus, the presence of HES opposes the plasticizing effect of water in the 

lyo cake and maintains the glass transition point above the storage temperature. This effect 

has the potential to make an impact on next-generation drying methods, where in most cases 

higher residual moisture contents can be expected after the drying process [22]. Methods such 

as spray-, convective, vacuum and microwave drying or combinations thereof are mainly 

focused on overcoming the drawbacks of lyophilization, for example, by reducing the overall 

process time or the high purchase and maintenance costs of the drying equipment. Additional-

ly, freeze-drying has a low energy efficiency and can cause a significant loss in API quality 

due to its exposure to various process-related stresses such as the freezing step [22].   

One potential limitation of polyethylene glycol is its strong tendency to crystallize during ly-

ophilization and subsequent storage, fostering degradation of the conjugated protein [8, 9, 23]. 

This effect can be overcome by the use of amorphous lyoprotectants such as sucrose in disac-

charide-to-PEG weight ratios ≥ 5 [8]. Protein degradation occurring as a result of crystalliza-

tion is mainly induced by interfacial denaturation at the large ice/water interface [24, 25]. In 

contrast to PEGylation strategies, crystallization cannot be observed when HES is attached to 

the protein. In a similar fashion to dextran, HES is based on a carbohydrate scaffold and 

therefore acts as a completely amorphous bulking agent during freeze-drying [13, 26]. The 

effect of covalent modification on colloidal stability of conjugate formulations was evaluated 

by turbidity measurement, particle counting and HP-SEC for monomer recovery [27, 28]. 

PEGylation and HESylation of proteins tend to prevent protein-protein interaction and reduce 

protein aggregation in aqueous solution [7, 10, 29-31]. In the current study, both modifica-

tions of anakinra exhibited this effect. PEGylated and HESylated anakinra both generated 

significanlty lower particles counts upon lyophilization and subsequent storage than the un-

modified protein. HP-SEC provides information on entities existing at the submicron level, 

including whether or not the attachment of PEG or HES highly influences the formation of 

aggregates. For PEG-containing samples, which tend to experience heavy crystallization and 

concomitant protein degradation, significant losses in monomer recovery were observed. In 

contrast, HES-containing conjugates did not show any tendency toward crystallization and 

thus inhibited the formation of both submicron and micron-scale aggregates. Thus, for all 

chosen protein concentrations, even in the absence of sucrose, no significant loss in monomer 

recovery could be observed. These results make feasible the use of formulations with high 
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protein loads, for applications such as further integration of lyophilisates into drug delivery 

systems. In addition, the absence of a requirement for lyo excipients enables the use of freeze-

drying for up-concentration to obtain highly concentrated formulations of HES-protein conju-

gates. 

5.5. Conclusion 

Lyophilization makes proteins susceptible to degradation because both physical and chemical 

stability are significantly reduced in the dried state. The use of chemical modifications such as 

polymer conjugation can prevent protein aggregation in the liquid state by hampering PPIs. It 

has been shown that polymers such as PEG and HES differ widely in a variety of relevant 

physicochemical properties – variations which can either prevent or foster protein degradation 

after lyophilization. We showed here that in the context of highly concentrated lyophilisates, 

covalent linkage of HES to the model protein anakinra has several advantages. The presence 

of HES increases the Tg´ of the solutes, permitting primary drying to be run at higher product 

temperatures and thus, in shorter periods of time. HES also maintains its amorphous nature 

after drying; cakes of HES conjugates show very high glass transition temperatures, which 

helps provide sufficient storage stability even in the presence of higher moisture contents. 

HESylation in this case enabled freeze-dried formulations without sucrose, opening the door 

to routine up-concentration of protein solutions. This feature is attractive for its impact on 

subsequent manufacturing steps, such as bulk drying of drug substance or preparation of drug 

delivery systems such as implants or microspheres. Beyond its excellent drying behavior, the 

attachment of HES prevents PPIs after reconstitution due to effective shielding. In conclusion, 

this study reveals that HESylation has the potential to replace PEGylation, especially for ap-

plications where highly concentrated lyophilisates of polymer-protein conjugates are desirable 

or essential. 
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6. Summary of the thesis 

During the last decades, grafting of biocompatible polymers like polyethylene gycol to thera-

peutic proteins and peptides for half-life extension has become an established and highly re-

fined technology. With over 10 approved PEGylated drugs, this technology is considered to 

be the gold standard for half-life extension. However, PEG has a number of serious shortcom-

ings, which have recently spurred development of alternative HLE technologies based on both 

biocompatible and biodegradable polymers. Such alternatives aim to prolong the circulation 

time of small biologics while simultaneously overcoming formulation challenges posed by 

use of PEG. In response, the overall goal of this thesis is to further develop HESylation tech-

nology and overcome some of the challenges associated with formulation of novel, biode-

gradable HES-protein conjugates. Results from preliminary studies revealed that the chemical 

attachment of HES is a promising tool for serum half-life modulation of proteins and offers 

distinct formulation advantages over PEGylation. 

In the first phase of the project hydroxyethyl starch (HES) was chemically grafted to a model 

protein called anakinra. Chapter II describes the synthesis and physicochemical characteriza-

tion of the HESylated protein. Site-specific HESylation of anakinra at the N-terminus was 

achieved using reductive amination at a pH of 5.0. The mildly acidic conditions during syn-

thesis and subsequent purification by anionic exchange chromatography at a pH of 8.0 had no 

significant influence on either the protein conformation or its biological affinity to its cognate 

receptor. Coupling HES to anakinra improved the thermodynamic properties, prevented pro-

tein aggregation during accelerated stress conditions and prolonged the pharmacokinetics of 

the protein in vivo. 

In a next step, HESylated anakinra was benchmarked against its PEGylated counterpart with 

respect to the effect on the conjugate’s physicochemical properties in highly concentrated 

solutions, where protein stability and solution viscosity can be notably suboptimal. HESylated 

and PEGylated anakinra were synthesized and purified under equivalent conditions. Coupling 

a 40 kDa branched PEG and an 85 kDa HES to anakinra resulted in conjugates of comparable 

hydrodynamic size. Highly concentrated formulations of both conjugates exhibited increased 

melting temperature in solution, which led to improved thermodynamic stability when com-

pared to the unmodified counterpart. However, solution viscosity and colloidal stability com-

pletely differed for both conjugates. In general, more highly concentrated protein solutions are 

associated with a greater tendency toward aggregation as a result of molecular crowding.  In 

addition, reversible self-association in more crowded conditions makes solutions of such pro-
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teins liable to show an increase in viscosity. The presence of a covalently coupled polymer 

aggravates changes in viscosity due to entanglement of adjacent polymer chains. This phe-

nomenon is more pronounced for the highly flexible polymer chains found in PEG molecules. 

In contrast, the highly branched polymeric architecture of HES provides a stiffer structure in 

which the molecules act more like a hard sphere. As a result, the viscosity of HESylated pro-

tein solutions was observed to be much lower than that of solutions of PEG conjugates at 

equivalent protein concentration. Although both conjugates showed improved monomer re-

covery, HESylation provided for higher colloidal stability compared to native and PEGylated 

anakinra at all studied concentrations. The root cause for this surprising difference in protein 

stability might be the difference in the nature of the two polymers. PEG is known to change 

the polarity and dielectric constant of aqueous solutions and can generate peroxides, especial-

ly at high temperatures, which could have led to the higher degree of protein degradation ob-

served in comparison to the HESylated protein. The combination of lower intrinsic viscosities 

and improved storage stability of the HES conjugate reveals that HESylation can provide 

formulation advantages over PEGylation, especially for the development of highly concen-

trated formulations of polymer-protein conjugates. 

The final part of the project aimed to distinguish between the physicochemical properties of 

lyophilized PEGylated and HESylated proteins. In this study the model protein interferon α-

2b was either PEGylated or HESylated in a site-specific manner, lyophilized and stored under 

elevated temperatures (2-8 and 40°C) for three months. In chapter IV we studied the effect of 

lyoprotectants by varying the amount of sucrose in the freeze-dried formulations. We also 

examined the influence of storage temperature and evaluated how conjugation of each poly-

mer impacts the conformational and colloidal stability of the protein. Our results show that 

PEG tends to crystallize upon freeze-drying, which has a significant influence on protein sta-

bility during storage, especially at high temperatures. The amount of crystallization could be 

substantially limited by formulating with sucrose at high disaccharide-to-PEG ratios. Conse-

quently, samples of the PEGylated protein lyophilized without the addition of sucrose and 

stored at 40°C showed the highest degradation rate. In conclusion, freeze-dried formulations 

of PEGylated proteins require large amounts of amorphous lyoprotectants to enable sufficient 

storage stability. In contrast, HESylation of IFNα drastically improved the colloidal stability 

of the protein by reducing monomer loss and tendency toward aggregation. This can be ex-

plained by two facts: first, HES remains totally amorphous during lyophilization and second, 

it provides a protective shield that prevents PPI when covalently attached to the protein. Addi-

tionally, HES exhibits very high initial glass transition temperatures both in solution and in 



 

 

169 
 

the dried state – properties which may be directly transferred to the conjugate. An increase in 

the Tg´ of frozen solutions makes a more economic lyophilization cycle possible by enabling 

application of higher product temperatures, which reduces the time required for primary dry-

ing. The presence of HES in the conjugate also provides a protective shielding that reduces 

aggregate formation, even in the absence of sucrose and under storage at high temperatures. 

Our results show that it might even be possible to formulate HESylated interferon α-2b with-

out any sugar at all. A sucrose-free, freeze-dried formulation would permit a very high protein 

load, which is extremely attractive for further manufacturing steps; examples include integra-

tion with drug delivery systems such as implants. In conclusion, the results of this study re-

veal that HESylation can provide formulation advantages over PEGylation during lyophiliza-

tion.  

In chapter V we investigated the stability of highly concentrated PEGylated and HESylated 

anakinra upon freeze-drying. After storage at 2-8 and 40°C, both polymers imparted effective 

shielding and suppression of micron-scale aggregate formation. However, due to the high 

tendency of PEG to crystallize during lyophilization, an effect which could not be fully sup-

pressed by the use of certain amounts of sucrose, the PEGylated protein degraded rapidly and 

formed large amounts of soluble submicron aggregates. In the presence of sucrose, native 

anakinra showed a reduced tendency toward aggregation, as seen via lower particle counts. 

Formulations of the HESylated protein remained remarkably stable and did not promote the 

formation of aggregates on either micron or submicron scales, even in the absence of sucrose. 

Lyophilization studies of both dilute and highly concentrated HESylated protein solutions 

confirmed the benefit of covalently bound HES. Taken together, these results paint an ex-

tremely attractive portrait of the potential benefits of incorporating HESylation technology 

into biologic formulation development workflows, and should motivate further studies in the 

field of HESylated drugs. 
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