Aus dem Zentrum für Klinische Tiermedizin der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

Arbeit angefertigt unter der Leitung von Prof. Dr. Braun

HORMONELLE KASTRATION
BEIM WEIBLICHEN KANINCHEN
MIT DEM GNRH-AGONISTEN DESLORELIN

Inaugural-Dissertation
zur Erlangung der Doktorwürde
der Tierärztlichen Fakultät
der Ludwig-Maximilians-Universität München

vorgelegt von
Anja Michaela Geyer
aus Neuburg an der Donau
2015
Inhaltsverzeichnis

Abkürzungsverzeichnis .. 1
Abbildungsverzeichnis ... 2
Tabellenverzeichnis .. 3
1. Einleitung ... 4
2. Literaturübersicht ... 5
 2.1. Allgemeines ... 5
 2.1.1. Anatomische Grundlagen Reproduktionstrakt Kaninchen ... 5
 2.1.2. Histologische Merkmale Genitaltrakt Kaninchen .. 6
 2.2. Sexualzyklus beim weiblichen Kaninchen ... 8
 2.2.1. Sexualsteroidproduktion, Corpus luteum ... 9
 2.2.2. Physiologie der Ovulation .. 10
 2.2.3. Hormonverläufe beim Kaninchen ... 12
 2.2.3.1. Außerhalb von Gravidität und Pseudogravidität ... 12
 2.2.3.1. Pseudogravidität ... 12
 2.2.3.2. Gravidität ... 14
 2.3. Beeinflussung der Sexualfunktion .. 16
 2.3.1. Induktion der Ovulation .. 16
 2.3.2. Erkrankungen des Reproduktionstrakts und Kastration .. 16
 2.3.2.1. Endometriale Hyperplasie .. 16
 2.3.2.2. Uterines Adenokarzinom ... 17
 2.3.2.3. Weitere Metropathien ... 18
 2.3.2.4. Vaginaltumore ... 19
 2.3.2.5. Gesäugeerkrankungen ... 19
 2.3.2.6. Chirurgische Kastration ... 20
 2.3.2.6.1. Operationstechnik ... 20
 2.3.2.6.2. Risiken ... 20
 2.4. Gonadotropin releasing Hormon (GnRH) ... 21
 2.4.1. Chemische Struktur, Physiologie und Funktion .. 21
 2.4.2. GnRH-Rezeptoren und Signalkaskade ... 24
 2.4.3. Beeinflussung der Hypothalamus-Hypophysen-Gonaden-Achse 24
 2.4.3.1. GnRH-Agonisten ... 24
 2.4.3.2. GnRH-Antagonisten ... 25
 2.4.3.3. GnRH-Vakzinen .. 26
 2.5. Bisherige Anwendung von GnRH - Langzeitagonisten bei verschiedenen Spezies 27
 2.5.1. Hund .. 27
 2.5.1.1. Rüde ... 27

Abkürzungsverzeichnis

Follikelstimulierendes Hormon FSH
Alanin-Aminotransferase ALT
Gonadotropin releasing Hormon GnRH
Humanes Choriongonadotropin hCG
Luteinisierendes Hormon LH
Abbildungsverzeichnis

Abbildung 1 Pseudograviditäten Gruppe 1 ... 60
Abbildung 2 Pseudograviditäten Gruppe 2 ... 63
Tabellenverzeichnis

Tabelle 1 Ovulationsinduktion nach Implantatentfernung Gruppe 1 ... 59
Tabelle 2 Ovulationsinduktion nach Implantatentfernung Gruppe 2 ... 62
1. Einleitung

2. Literaturübersicht

2.1. Allgemeines

Das Hauskaninchen gehört zur Ordnung Lagomorpha, zur Familie Leporidae und zur Art Oryctolagus cuniculus. Alle Kaninchenrassen und Farbschläge gehen auf Wildkaninchen zurück (Göbel et al, 2005).

2.1.1. Anatomische Grundlagen Reproduktionstrakt Kaninchen

Der Uterus ist als Uterus duplex angelegt. Das bedeutet, dass ein Corpus uteri nicht vorhanden ist. Beide Cervices münden in die Vagina simplex (Bishop, 2002; Göbel, Ewringmann, 2005; Nickel, Schummer et al., 2004; Quesenberry, Carpenter, 2004).

Die Vagina ist ein schlaffes muskuläres Hohlorgan, das sich während dem Urinabsatz mit Harn füllt. In der Mitte der Vagina mündet ventral die Urethra (Harcourt-Brown, Chitty, 2013).

Das Vestibulum vaginae beginnt auf Höhe der Symphysis pelvis (Barberini, Correr et al., 1991).

Das Gesäuge besteht meist aus acht Gesäugekomplexen. Bei manchen Tieren sind bis zu vier zusätzliche Komplexe vorhanden (Quesenberry, Carpenter, 2012).
2.1.2. Histologische Merkmale Genitaltrakt Kaninchen

Das Epithel der Zervices geht nahtlos in das Epithel der Vagina über. Es handelt sich um ein einschichtiges Epithel, welches teilweise zilierte Zellen oder Zellen mit Mikrovilli aufweist. Die Zellen mit Mikrovilli besitzen vor allem postkoital sekretorische Aktivität. Das Sekret
kann als Spermienreservoir dienen und möglicherweise deren Überlebensfähigkeit verbessern (Barberini, Correr et al., 1991).

Das Vestibulum vaginae weist ein mehrschichtiges Plattenepithel auf (Barberini, Correr et al., 1991).
2.2. Sexualzyklus beim weiblichen Kaninchen

Das Kaninchen hat einen asaisonalen Reproduktionszyklus (Bakker, Baum, 2000).

Wenn Ovulationen stattfinden, es allerdings nicht zur Befruchtung der Eizellen kommt, resultiert eine Pseudogravidität. Dies ist beispielsweise durch eine sterile Bedeckung (Rubin, Azrin, 1967) oder gegenseitiges Bespringen auslösbar (Göbel, Ewingmann, 2005). In einer Studie, in der die weiblichen Kaninchen künstlich besamt wurden, führten eine einfache Manipulation, das Einführen eines Besamungskatheters oder eine intramuskuläre Injektion bei 37,5% der Tiere zur Ovulationsinduktion (Rebollar, Dal Bosco et al., 2012).

Die Pseudogravidität dauert beim Kaninchen 17 (Hilliard, Spieß et al., 1968) bis 18 (Quesenberry, Carpenter, 2004) Tage. Sie geht mit physiologischen Veränderungen und Verhaltensänderungen einher, die denen einer echten Trächtigkeit sehr ähnlich sind. Es

2.2.1. Sexualsteroidproduktion, Corpus luteum

Das Corpus luteum ist die einzige bisher bekannte Progesteronquelle des trächtigen und des scheinträchtigen Kaninchens (Hilliard, Scaramuzzi et al., 1973). Die Größe bzw. das Gewicht des Corpus luteum korrelieren mit seiner Progesteronproduktion. Das Volumen des Gelbkörpers ist am sechzehnten Tag einer Trächtigkeit maximal (Hilliard, Spieß et al., 1968; Miller, Keyes, 1975; Miller, Keyes, 1978; Özalp, Seyrek-İntaş et al., 2008).

Bis zum fünften oder sechsten Tag nach dem Beginn der Luteinisierung ist der Gelbkörper östrogenunabhängig, danach wird Östrogen als luteotroper Faktor obligat benötigt, um die Gelbkörperfunktion aufrechtzuerhalten (Miller, Keyes, 1975; Miller, Keyes, 1978). 48 bis 72 Stunden nach Östradiolentzug konnte im Corpus luteum eine deutliche Rekrutierung von Makrophagen beobachtet werden (Naftalin, Bove et al., 1997). Östradiol kann beim Kaninchen folglich als das ultimative Luteotropin bezeichnet werden (Robson, 1937).

Ab dem fünften oder sechsten Tag, also vom gleichen Zeitpunkt an, ab dem Östrogen als luteotroper Faktor benötigt wird, kann man erstmals Östrogenrezeptoren im Corpus luteum

Es konnte, im Gegensatz zu anderen Tierarten, kein Hinweis auf das Vorliegen eines uterinen Luteolytikums gefunden werden (Miller, Keyes, 1975).

Progesteron und 20α-Dihydroprogesteron sind die Steroide, die hauptsächlich vom Gelbkörper gebildet werden (Miller, Keyes, 1975; Miller, Keyes, 1978). Browning et al. (1980) konnten variable 20α-Dihydroprogesteronwerte während Trächtigkeit und Scheinträchtigkeit aufzeigen, was keine eindeutige Funktion dieses Hormons während dieser Phasen erkennen lässt.

2.2.2. Physiologie der Ovulation

Es existieren zwei unterschiedliche neuroendokrine Mechanismen der Ovulation: die spontane und die induzierte Ovulation.

Bei den spontan ovulierenden Tierarten werden Steroidhormone aus dem reifenden Follikel freigesetzt. Es kommt zur pulsatile GnRH-Ausschüttung aus der Eminentia mediana und zur Auslösung des präovulatorischen LH-Peaks (Bakker, Baum, 2000).

Beim Kaninchen geht man davon aus, dass zur Auslösung des LH-Peaks und damit der Ovulation eine gesteigerte GnRH-Sekretion notwendig ist, was als deterministisches Modell der Ovulationsinduktion bezeichnet wird (Karsch, Bowen et al., 1997).

2.2.3. Hormonverläufe beim Kaninchen

2.2.3.1. Außerhalb von Gravidität und Pseudogravidität

Die Progesteronkonzentration beim nicht pseudograviden, nicht-graviden Kaninchen beträgt durchschnittlich 1,5 ng/ml (Baldwin, Stabenfeldt, 1974). Alle Werte unter 2 ng/ml sind als Basalwerte anzusprechen (YoungLai, Thompson et al., 1989).

2.2.3.1. Pseudogravidität

Der Maximalwert wurde - je nach Studie - zwischen zehntem und zwölftem Tag der Pseudogravidität erreicht. Mehrere Studien konnten am zehnten Tag maximale Progesteronkonzentrationen messen (Fuchs, Beling, 1974; Richardson, Oliphant, 1981; Surve,

2.2.3.2. Gravidität

Die Trächtigkeit des Kaninchens dauert 30 bis 32 (Mikhail, Noall et al., 1961; Quesenberry, Carpenter, 2004) bzw. 29 bis 33 Tage (Göbel, Ewringmann, 2005).

Die maternale Trächtigkeitserkennung und somit die Veränderung der Gelbkoerperfunktion durch das Vorhandensein des Konzeptus findet nicht vor dem Ende des ersten Trächtigkeitsdrittels statt (Browning, Keyes et al., 1980).

Progesteron bewirkt ein hohes Ruhepotential im Myometrium, dadurch zeigt dieses keine Reaktion auf nervale und humorale Stimuli (Hilliard, Scaramuzzi et al., 1973).

Wenn die Progesteronkonzentration direkt aus dem Blut der Ovarvene bestimmt wurde, so zeigte sich nach der Implantation ein Anstieg. Die Implantation erfolgt am siebten oder achten Tag postcoital (Hilliard, Scaramuzzi et al., 1973).

nachweisen, er betrug 13,3 ng/ml. Präpartale Werte wurden am 32. Graviditätstag erreicht. Bei Thau und Lanman (1975) lag der maximale Progesteronwert am sechzehnten Tag der Trächtigkeit vor, der Wert betrug 9,7±0,6 ng/ml.

Vergleicht man die Progesteronwerte von graviiden und pseudograviiden Tieren, so konnten im ersten Trächtigkeitsdrittel keine signifikanten Unterschiede nachgewiesen werden (Browning, Wolf, 1981). Vom fünften bis zum neunten Tag der Gravidität war die Progesteronkonzentration graviider Tiere signifikant höher als bei scheinträchtigen Vergleichstieren (Fuchs, Beling, 1974).

Präpartal konnten erhöhte Kortisolkonzentrationen gemessen werden, welche zusammen mit sinkenden Progesteronkonzentrationen einen wichtigen Faktor bei der Geburtseinleitung darstellen könnten (Baldwin, Stabenfeldt, 1974).
2.3. Beeinflussung der Sexualfunktion

2.3.1. Induktion der Ovulation

Zur Ovulationsinduktion werden in der kommerziellen Kaninchenhaltung GnRH-Analoga wie Buserelin intramuskulär oder intravaginal verabreicht. Eine intramuskuläre Verabreichung von 1µg pro Tier führte bei allen Tieren zur Ovulation (Rebollar, Dal Bosco et al., 2012; Viudes-de-Castro, Lavara et al., 2007). Um bei intravaginaler Gabe gleiche Ergebnisse zu erhalten, wird eine Verfünffachung (Viudes-de-Castro, Lavara et al., 2007) beziehungsweise Verzehnfachung (Rebollar, Dal Bosco et al., 2012) der Dosis empfohlen.

2.3.2. Erkrankungen des Reproduktionstrakts und Kastration

2.3.2.1. Endometriale Hyperplasie
Die häufigste uterine Erkrankung beim weiblichen Kaninchen stellt die endometriale Hyperplasie dar. Sie trat im Durchschnitt bei 29,8% der Tiere im Alter von 3,9 Jahren auf (Saito, Nakanishi et al., 2002; Walter, Poth et al., 2010). Ursächlich ist ein länger andauernder

2.3.2.2. Uterines Adenokarzinom

Als zweithäufigste uterine Erkrankung des Kaninchens sind Adenokarzinome zu nennen (Saito, Nakanishi et al., 2002). Sie stellen insgesamt die häufigste Neoplasie des weiblichen Kaninchens dar (Greene, Strauss, 1949).

Es konnte kein Zusammenhang zur bisherigen Zuchtnutzung festgestellt werden (Ingalls, Adams et al., 1964). Die Tumoren konnten ab einer Größe von 0,5 cm transabdominal palpierter werden (Greene, Newton, 1947). Das beste Diagnostikum stellt die sonographische Untersuchung des Abdomens dar (Walter, Poth et al., 2010).

Klinische Symptome die beobachtet werden können waren Hämaturie, serosanguinöser Vaginalausfluss, Anorexie, Dyspnoe, Aszites und Depression (Quesenberry, Carpenter, 2004).

In größeren Zuchtbeständen konnte vier bis fünf Monate vor der Diagnose des Vorliegens von Adenokarzinomen eine reduzierte Fertilität beobachtet werden. Außerdem wurden kleinere Würfe geboren. Bei Vorliegen des Tumors waren die Tiere infertil (Greene, Saxton, 1938).

Falls noch kein Hinweis auf Metastasierung vorlag, wurden die Tiere ovariohysterektomiert und ein bis zwei Jahre postoperativ alle drei Monate zum erneuten Tumorstaging einbestellt. Die Autoren empfahlen präventiv eine frühzeitige Kastration im Alter von sechs bis zwölf Monaten (Quesenberry, Carpenter, 2004).

2.3.2.3. Weitere Metropathien

Weitere Metropathien beim weiblichen unkastrierten Kaninchen stellen Pyometra, Mukometra, uterine Aneurysmen und das Leiomyosarkom dar.

Pyometren werden meist durch Pasteurella multocida und Staphylococcus aureus verursacht. Aufgrund der in der Regel sehr zären Konsistenz von Kanincheneiter erwies sich eine konservative Therapie selten als erfolgreich. Therapie der Wahl stellt somit die Ovariohysterektomie dar. Auch beim Vorliegen einer Mukometra rieten die Autoren diese Therapie an (Quesenberry, Carpenter, 2004). Er schwerend kommt beim Kaninchen hinzu,
dass rasch Verklebungen zwischen dem erkrankten Uterus und anderen Organen ausgebildet werden und das Gewebe insgesamt sehr brüchig ist.

Bei manchen Tieren entwickeln sich Aneurysmen der uterinen oder myometrialen Venenplexi, die zu intermittierenden oder hochgradigen Blutungen führen können (Harcourt-Brown, Chitty, 2013).

2.3.2.4. Vaginaltumore

2.3.2.5. Gesäugeerkrankungen

Fast alle Tiere mit uteriner Neoplasie wiesen auch Gesäugeveränderungen auf. Das Adenokarzinom der Mamma stellt insgesamt den zweithäufigsten Tumor des weiblichen Kaninchens dar (Greene, Strauss, 1949).

2.3.2.6. Chirurgische Kastration

2.3.2.6.1. Operationstechnik

2.3.2.6.2. Risiken
Einen Nachteil der chirurgischen Kastration stellt das Narkoserisiko dar. Das Gesamtrisiko während Sedation, Anästhesie und den darauffolgenden 48 Stunden beträgt beim Kaninchen 1,39%. Vergleicht man das Narkoserisiko gesunder Hunde und Katzen mit dem gesunder Kaninchen, so liegt das Risiko bei 0,05%, 0,11% und 0,73%. Bei kranken Tieren der ASA-Klassen drei bis fünf liegt das Narkoserisiko bei 1,33%, 1,40% und 7,37%. Daraus ist klar ersichtlich, dass das Risiko intra- oder postoperativ zu Versterben, beim Kaninchen deutlich höher anzusetzen ist als bei Hund und Katze. Im Vergleich zum Hund ist es siebenfach erhöht (Brodbelt, Blissitt et al., 2008).

Weitere Risiken des operativen Eingriffes stellen Wundinfektion, Nahtdehiszenz und Eviszeration, Nachblutungen, Lungenschäden und Dehydratation dar (Olsen, Bruce, 1986).
2.4. Gonadotropin releasing Hormon (GnRH)

Das Dekapeptidhormon GnRH ist das übergeordnete Hormon im Regelkreislauf der Sexualhormone (Padula, 2005). Es stammt aus dem Hypothalamus und stimuliert die Synthese und die Freisetzung von LH und FSH aus der Hypophyse. Es reguliert die Steroidhormonproduktion der Gonaden, fördert die Spermatogenese, das Follikelwachstum und die Ovulation. Es wird pulsatil ausgeschüttet (Bakker, Baum, 2000).

2.4.1. Chemische Struktur, Physiologie und Funktion

Im Jahr 1971 wurde die Aminosäuresequenz von GnRH aufgeklärt (Baba, Matsuo et al., 1971; Matsuo, Baba et al., 1971).

Insgesamt kommt es durch die beeinträchtigte Antwort der Hypophyse auf endogenes GnRH zur Abnahme der Sexualsteroidkonzentrationen (Herbert, Trigg, 2005).

Aufgrund der Peptidnatur des Hormons und seiner Analoga ist eine parenterale Verabreichung notwendig. Bei oraler Verabreichung wird das Hormon im Magen-Darm-Trakt enzymatisch abgebaut (Chrisp, Goa, 1990; Schriock, 1989). Bei intranasaler Gabe werden nur zwei bis fünf Prozent dessen resorbiert, was bei subkutaner Gabe resorbiert werden würde (Schriock, 1989).

In einer Studie, welche die Sensitivität unterschiedlicher Tierarten für GnRH -Agonisten und GnRH - Antagonisten untersuchte, ergaben sich signifikante tierartliche Unterschiede. Diese

2.4.2. GnRH-Rezeptoren und Signalkaskade

Der GnRH-I-Rezeptor ist ein G-Protein gekoppelter Rezeptor. Er hat sieben transmembranäre Domänen, die an der Konformation der Ligandenbindungsstelle beteiligt sind. Damit verbunden sind drei intra- und drei extrazelluläre Loops, die entscheidend für die Ligandenbindung und die Signaltransduktion sind. Eine Besonderheit des GnRH-Receptors ist die Tatsache, dass er kein zytoplasmatisches Carboxylende hat (Millar, Lu et al., 2004; Ramakrishnappa, Rajamahendran et al., 2005).

2.4.3. Beeinflussung der Hypothalamus-Hypophysen-Gonaden-Achse

Grundsätzlich existieren drei Methoden, um die Hypothalamus-Hypophysen-Gonaden-Achse zu unterdrücken.

2.4.3.1. GnRH-Agonisten

2.4.3.2. GnRH-Antagonisten

2.4.3.3. GnRH-Vakzinen

2.5. Bisherige Anwendung von GnRH - Langzeitagonisten bei verschiedenen Spezies

2.5.1. Hund

2.5.1.1. Rüde

Beim Rüden ist das hier angewandte 4,7 mg Deslorelin Implantat Suprelorin® (Firma Virbac) in verschiedenen Ländern, unter anderem in Deutschland, zur hormonellen Kastration des gesunden, adulten Rüden zugelassen. Außerdem besitzt ein Implantat des gleichen Herstellers, welches 9,4 mg Deslorelin enthält, eine Zulassung. Es existieren Studien, welche sich mit der Ausschaltung der Sexualfunktion durch die Verwendung von Deslorelin (Junaidi, Williamson et al., 2003; Junaidi, Williamson et al., 2009a; Junaidi, Williamson et al., 2009b; Trigg, Wright et al., 2001), Leuprolidacetat (Inaba, Umehara et al., 1996) oder Azagly-Nafarelin (Goericke-Pesch, Spang et al., 2009; Ludwig, Desmoulins et al., 2009) befassen. Außerdem gibt es Publikationen zur Therapie der benignen Prostatahyperplasie (Goericke-Pesch, Spang et al., 2009; Goericke-Pesch, Wilhelm et al., 2010; Polisca, Orlandi et al., 2013), zur Therapie aggressiven Verhaltens, exzessiven Markierverhaltens und zur Therapie eines Adenoms der hepatoiden Drüsen (Goericke-Pesch, Wilhelm et al., 2010). Des Weiteren kann der Pubertätseintritt durch die Gabe von slow-release Implantaten beeinflusst werden (Lacoste, Dube et al., 1989; Sirivaidyapong, Mehl et al., 2012).

Fell. Durch die Ausschaltung der sexuellen Aktivität konnten außerdem erektionsassozierte Penisblutungen unterbunden werden. Die Anwendung eines 4,7 mg Deslorelinimplantates (Suprelorin®, Virbac) zur Behandlung einer histologisch diagnostizierten, bisher asymptomatischen benignen Prostatahyperplasie beim Rüden wurde durch Polisca et al untersucht. Die Testosteronkonzentration in der peripheren Zirkulation konnte durch die hormonelle Behandlung von Tag elf ab auf nicht messbare Werte abgesenkt, die Prostatagröße signifikant reduziert werden. Zusammenfassend werten die Autoren das Implantat als eine geeignete Möglichkeit, das Fortschreiten der Erkrankung zu verhindern (Polisca, Orlandi et al., 2013).

2.5.1.2. Hündin

GnRH-Agonisten können bei der Hündin außerdem verwendet werden, um die Pubertät zu verschließen. Durch die Verwendung von eines 18,5 Milligramm Azagly-Nafarelin Implantates (Gonazon®, Intervet) bei der präpubertären Hündin, wurde ein Einsetzen der Pubertät bei allen Versuchstieren verhindert. Erst nach der Entfernung des Implantates traten Östrus und Ovulation entweder natürlich auf oder konnten induziert werden (Rubion, Desmoulins et al., 2006).

Außerdem können GnRH-Analoga zur Behandlung der kastrationsbedingten Urininkontinenz angewendet werden (Reichler, Hubler et al., 2003).

2.5.2. Katze

Bei dieser Tierart existieren Studien zur kontrazeptiven Wirkung von slow release GnRH-Implantaten bei Kater (Goericke-Pesch, Georgiev et al., 2014; Novotny, Cizek et al., 2012) und Kätzin (Ackermann, Volpato et al., 2012; Munson, Bauman et al., 2001; Rubion, Driancourt, 2009; Toydemir, Kılıçarslan et al., 2012), außerdem zur Gabe eines GnRH-Antagonisten zur Fertilitätsausschaltung beim Kater (Romero, Fernandez et al., 2012). Andere Autoren befassen sich mit der Verschiebung des Pubertätseintritts (Risso, Corrada et al., 2012), den Effekten einer Implantatgabe während der Frühträchtigkeit. (Goericke-Pesch, Georgiev et al., 2012) und der Behandlung der kastrationsbedingten Urininkontinenz (Pisu, Veronesi, 2013).

Beim Kater konnte durch Gabe eines 4,7 mg Deslorelin-Implantates (Suprelorin®, Virbac) die sexuelle Aktivität reversibel unterdrückt werden. Die Fertilitätsausschaltung scheint erst nach zwei bis drei Monaten vorzuliegen, allerdings ist zu diesem Zeitpunkt die Libido des Tieres eventuell schon so weit reduziert, dass keine sexuelle Aktivität mehr vorliegt. Auch hier

Auch bei der Katze kann durch ein 4,7 mg Deslorelin-Implantat (Suprelorin®, Virbac) der Pubertitätseintritt verschoben werden. In der Zeitspanne ergaben sich große individuelle Unterschiede. Im Schnitt trat die Pubertät 100 Tage später ein. Die Wachstumsrate wurde durch das Implantat nicht verändert. Bei einem Tier trat eine Pyometra auf. Um die tatsächliche Inzidenz dieser Erkrankung nach Behandlung zu ermitteln sind allerdings weitere Studien nötig (Risso, Corrada et al., 2012).
Bei Gabe eines 4,7 mg Deslorelinimplantates (Suprelorin®, Virbac) an eine Kätzin in der Frühträchtigkeit kam es nicht zur Östrusinduktion. Der Progesteronverlauf war physiologisch, es lagen keine Anzeichen auf das mögliche Vorliegen einer Geblökerinsuffizienz vor, wie dies bei der Hündin nach Implantation beschrieben ist. Der weitere Verlauf der Trächtigkeit war normal, allerdings zeigte das Tier kein Brutpflegeverhalten und eine unzureichende Laktation. Eine Östrusunterdrückung mittels Implantat war auch hier möglich. Die Autoren konnten eine vollständige Reversibilität anhand des Wiedereintretens von zyklischer Aktivität, erneuter Trächtigkeit und physiologischem Brutpflegeverhalten nachweisen (Goericke-Pesch, Georgiev et al., 2012).

2.5.3. Heimtiere

2.5.3.1. Frettchen

Bei der Frettchenfähre wurde die Östrusunterdrückung mittels slow release GnRH-Implantat untersucht (Goericke-Pesch, Wehrend, 2012; Prohaczik, Kulcsar et al., 2010). Außerdem existieren verschiedene Veröffentlichungen zur Therapie des kastrationsassozierten Hyperadrenokortizismus mittels GnRH-Analoga bei beiden Geschlechtern (Künzel, 2012; Prohaczik, Kulcsar et al., 2010; Riggs, Cook, 2007; Schoemaker, Kuijten et al., 2008; Schoemaker, Teerds et al., 2002). Der Effekt einer Implantatgabe auf den artspezifischen moschusartigen Geruch wurde untersucht (Schoemaker, van Deijk et al., 2008), zusätzlich der Einfluss auf das Wohlbefinden beim Frettchenrüden (Vinke, van Deijk et al., 2008).

Die Ovulation der Frettchenfähre wird durch den Deckakt induziert. Wenn in der Zuchtsaison kein Deckakt stattfindet, resultiert daraus ein Daueröstrus mit persistierender Östrogenproduktion. Dies kann zur Entwicklung eines Hyperöstrogenismus mit Panzytopenie und zum Versterben des Tieres führen. Durch die Implantation eines 4,7 mg Deslorelin-

Beim Frettchenrüden existiert keine medizinische Indikation zur routinemäßigen Kastration. Trotzdem wird diese durchgeführt, um die Fortpflanzung zu unterbinden, die auftretende Interspeziesaggression und den artspezifischen Geruch zu reduzieren.

In Studien von Schoemaker et al (2008a; 2008b) konnte durch das untersuchte 9,4 mg Deslorelin-Implantat (Suprelorin®, Virbac) die Fortpflanzung unterdrückt werden. In einer durchgeführten histologischen Untersuchung der Hoden der behandelten Tiere konnten keine normalen Keimzellen mehr nachgewiesen werden. Das Vorliegen dieser implantatbedingten Infertilität übersteigt sogar das Ergebnis bei anderen Tierarten, da bei diesen nach Implantatgabe teilweise noch wenig Spermatogenese vorliegt oder zumindest Spermienvorläuferzellen nachweisbar waren. Der tierartspezifische moschusartige Geruch konnte durch die Implantatgabe sogar noch stärker reduziert werden als durch die herkömmliche chirurgische Kastration.

In einer anderen Studie beim männlichen Tier konnte beobachtet werden, dass die Aggression zwischen männlichen Tieren nach chemischer und chirurgischer Kastration abnahm. Das untersuchte Spielverhalten - als Messinstrument für das Wohlbefinden - nahm nach Kastration zu. Beide Effekte waren nach chemischer Kastration mittels 9,4 mg Deslorelinimplantat (Suprelorin®, Virbac) stärker ausgeprägt als nach herkömmlicher chirurgischer Kastration. Die Autoren sehen die chemische Kastration deshalb der chirurgischen als überlegen an (Vinke, van Deijk et al., 2008).

2.5.3.2. Ratte

2.5.3.3. Meerschweinchen

2.5.4. Pferd

Bei der Stute wurden GnRH-Analoga im Rahmen des Embryotransfers (Raz, Carley et al., 2009) und zur terminierten Ovulationsinduktion (Hemberg, Lundeheim et al., 2006; Stich, Wendt et al., 2004) angewandt.

Donorstuten in der frühen Übergangsphase erhielten zweimal täglich 63µg Deslorelin (BET Pharm, Lexington, KY, USA) intramuskulär. Der Effekt auf die Ovarien und die Embryoproduktion wurde mit einer FSH Behandlung verglichen. Beide Therapieprotokolle lösten gleich effektiv die Ovulation aus. Bei der Behandlung mit equinem FSH (eFSH®, Bioniche Animal Health Canada Inc., Belleville, ON, Canada) konnte allerdings eine höhere Anzahl an Ovulationen und Embryonen pro Stute erzielt werden (Raz, Carley et al., 2009).

Um die Anzahl der Deckakte oder Besamungen einer Stute zu verringern, wird in vielen Ländern eine kontrollierte Ovulation praktiziert. Die Verwendung von GnRH-Agonist-Implantaten, die 2,2 mg Deslorelin enthalten (Ovuplant®) ermöglicht es, dass eine einzige Ultraschalluntersuchung 36 bis 41 Stunden nach Implantatgabe ausreichend ist, um den Ovulationszeitpunkt abzuschätzen. (Hemberg, Lundeheim et al., 2006).

Wurde ein 1,5 mg Deslorelin-Implantat (BET Pharma, Lexington, KY, USA) angewandt, waren ebenfalls weniger Deckakte als in der Kontrollgruppe nötig und mehr Tiere ovulierten innerhalb von zwei Tagen nach Implantatgabe. Es wurden normale Trächtigkeitsraten erzielt (Stich, Wendt et al., 2004).

2.5.5. Schwein

Die Substanzen Androstendion und Skatol sind für die Ausbildung des Ebergeruchs verantwortlich. 1994 wurde der Effekt eines einen Monat lang kontinuierlich wirkenden Leuprolidacetat-Depots (Lupron Depot, Abbott Laboratories, North Chicago, IL) auf die Ausbildung des Ebergeruchs untersucht. Bei Gabe von 200µg/kg konnte der durch 16-Androstenonsteroide verursachte Ebergeruch signifikant reduziert und somit erfolgreich
eliminiert werden. Die Skatolkonzentrationen konnten durch die Behandlung nicht beeinflusst werden. Der Einfluss auf Wachstumsrate und Schlachtkörperqualität wurde hier nicht untersucht. Die Abnahme der Hodengröße war dosisabhängig (Xue, Dial et al., 1994).

In einer anderen Studie konnte die Erkenntnis gewonnen werden, dass die Unterdrückung der Sexualfunktion durch Gabe eines intramuskulären Deslorelin 4,7 mg Implantats (Suprelorin®, Virbac) an fünf Wochen alte intakte Tiere möglich ist und bis zur Schlachtreife anhalten kann. Das Implantat stellt somit eine Alternative zu anderen Methoden der Ebergeruchbekämpfung dar. Weil die Dauer der Suppression von Spermatogenese und Steroidhormonkonzentration variierte, empfehlen die Autoren die Durchführung weiterer Studien, um gegebenenfalls die Wirkstoffdosis und das Alter bei Behandlung zu verändern. Des Weiteren sehen sie die Notwendigkeit von Untersuchungen bezüglich der Schlachtkörperqualität und der Futterverwertung (Kauffold, Rohrmann et al., 2010a, 2010b).

2.5.6. Wiederkäuer

Durch die Gabe von Buserelin über subkutan gelegene osmotische Minipumpen (2ML4, Alza Corporation, Palo Alto, CA, USA) konnte bei nach der Geburt azyklischen Rindern eine Ovulation induziert werden. Die daraus resultierenden Corpora lutea waren allerdings von
kurzer Lebensdauer und es resultierte keine zweite Ovulation (D’Occhio, Gifford et al., 1989).

2005 fanden Jimenez-Severiano et al heraus, dass die Behandlung von Zebu-Bullen mit einem 12mg Deslorelinimplantat keinen positiven Einfluss auf die Hodenentwicklung hatte. Wenn die Behandlung schon im Alter von drei Monaten erfolgte, wurde der Pubertätseintritt der behandelten Tiere verzögert.

Auch beim kleinen Wiederkäuer wurden Studien durchgeführt. Zum Beispiel wurde die Östrusinduktion mittels Gabe eines 2,1mg Deslorelinimplantates untersucht (Ovuplant®, Firma Peptech, Virbac Group). Das Implantat wurde der bunten Mohairziege im Anöstrus gegeben. Die Östrusinduktion war nicht möglich. (Uslu, Sendag et al., 2011).
2.5.7. Wildtiere

In der Wildtiermedizin stellen GnRH-Agonisten eine Möglichkeit zur Durchführung von Populationsmanagement dar.

Beim weiblichen afrikanischen Wildhund war die Wirkung des 6mg Deslorelinimplantates weniger einheitlich. 10% der Tiere wurden nach Implantation tragend, bei 90% der Tiere konnte der Deckakt bis in die nächste Zuchtsaison verschoben werden. Zwei Tiere erhielten nur 3mg Deslorelin, was keinen kontrazeptiven Effekt erbrachte. Beim männlichen Tier konnte hingegen ein effektiver kontrazeptiver Effekt für ungefähr 12 Monate erreicht werden (Bertschinger, Trigg et al., 2002).

Beim weiblichen Leoparden wurde ein 6mg Deslorelinimplantat verwendet. Es erbrachte eine mindestens 12 Monate lang anhaltende kontrazeptive Wirkung (Bertschinger, Trigg et al., 2002).

Löwinnen erhielten in dieser Studie 12mg oder 15mg Deslorelinimplantate und es konnte damit ein kontrazeptiver Effekt für 12 bis 18 Monate erzielt werden. Zur Reversibilität war am Studienende noch keine Aussage möglich. Löwenmännchen sollten nicht behandelt werden, da sie durch die Behandlung ihre testosteronabhängige Mähne verlieren (Bertschinger, Trigg et al., 2002).

Insgesamt sehen die Autoren in der Behandlung der unterschiedlichen Wildtierspezies eine sichere, reversible Methode der Kontrazeption für kleine Populationen wildlebender oder im Gehege gehaltener Wildkarnivoren. Die männliche Infertilität war, wenn sie induzierbar war, erst sechs Wochen nach Implantatgabe zuverlässig gegeben. Es konnten keine
Nebenwirkungen oder Verhaltensänderungen festgestellt werden, die Rangfolge blieb konstant (Bertschinger, Trigg et al., 2002).

Beim männlichen Känguru konnte kein kontrazeptiver Effekt durch die Implantation eines 5 mg, 10 mg oder 20 mg Deslorelinimplantats festgestellt werden. Die Hypophysen-Gonaden-Achse schien durch chronische GnRH-Agonisten Behandlung nicht supprimiert zu werden (Herbert, Trigg et al., 2004). Beim weiblichen Tier konnte mittels 5 mg Deslorelinimplantat eine in der Dauer sehr variable reversible Fertilitätsausschaltung erzielt werden. Ein Tier sprach erst auf die Behandlung mit einem zweiten Implantat an. Insgesamt stellten die Implantate für den Autor eine praktikable Lösung für das Fortpflanzungsmanagement von in Gefangenschaft lebenden oder halbwilden Beuteltierpopulationen dar (Herbert, Trigg et al., 2005).

2.5.8. Vögel

Durch die intramuskuläre oder subkutane Gabe eines 4,7 mg Deslorelin Implantates (Suprelorin®, Virbac) konnte die Legetätigkeit bei verschiedenen Psittaciden unterdrückt werden. Die Wirkdauer war generell länger als 8 Monate, erweist sich allerdings insgesamt als variabel. Es konnten keine Nebenwirkungen beobachtet werden (Riggs, Cook, 2007).

Auch bei der japanischen Legewachtel konnte durch die subkutane Gabe des gleichen Implantates bei 60% der Tiere die Legetätigkeit nach einer Woche gestoppt werden. Insgesamt war die durchschnittliche Eierproduktion während der gesamten Studie reduziert (Petritz, Guzman et al., 2011).

Beim Bankivahuhn, das als Studienmodell für Ovar tumore beim Menschen dient, wurde die Sicherheit und Effektivität von subkutanen Deslorelin-Implantaten auf die Unterdrückung der Legetätigkeit untersucht. Die Studiendauer betrug ein Jahr. Es wurde je ein 4,7mg oder ein 9,4mg Deslorelin Implantat (Suprelorin®, Virbac) eingesetzt. Bei allen Tieren war ab der zweiten Woche keine Legetätigkeit mehr vorhanden, das Ovar war im Ultraschall inaktiv. Die Wirkdauer des 4,7 mg Implantates betrug im Schnitt 180 Tage, die Wirkdauer des 9,4mg Implantates 319 Tage. Bei 40% der Tiere mit 9,4 mg Implantat hielt der Effekt zum Ende der Studiendauer noch an (Noonan, Johnson et al., 2012).

2.5.9. Reptilien
Beim weiblichen grünen Leguan wurde der Einfluss der subkutanen Implantation eines 4,7mg Deslorelin-Implantates (Suprelorin®, Virbac) auf den Zyklus und die Steroidhormonplasmaspiegel untersucht. Die Autoren sehen in dem Implantat eine brauchbare Methode der Kontrazeption. Außerdem können Erkrankungen des Reproduktionstrakts, die bei Tieren in Gefangenschaft auftreten, wie zum Beispiel eine Legenot, verhindert werden (Kneidinger, Knote et al., 2010).

Außerdem konnte das aggressive Verhalten bei männlichen Bartagamen mittels subkutaner Gabe eines 4,75mg Deslorelin-Implantates (Suprelorin®, Virbac) unterbunden werden. Nach der Gabe erfolgte eine schnelle Besserung des Verhaltens und ein rascher Testosteronabfall, was für das Funktionieren sprechen könnte. Eine Spermauntersuchung wurde nicht durchgeführt, weswegen keine Aussage zur Fertilitätsbeeinflussung durch das Implantat möglich ist. Insgesamt hält der Autor weitere Untersuchungen für notwendig, da auch die Testosteronmessung für diese Tierart nicht validiert ist (Rowland, 2011).

Laut unveröffentlichter Daten wurde außerdem die Ausschaltung ovarieller Aktivität bei der Schlange versucht. Dies war nicht möglich (Rowland, 2011).

2.5.10. Mensch
Verbesserung des Urinabsatzes möglich. Außerdem kann es in der Therapie von Prostatakarzinomen angewandt werden.

Bei der Frau kann Nafarelin zur Verhinderung der Follikelreifung, Ovulation und Luteinisierung vor einem geplanten Embryotransfer verwendet werden, außerdem bei vorliegender Endometriose, zur präoperativen Verkleinerung von Myomen und bei Hirsutismus (Chrisp, Goa, 1990).
2.6. Anwendung beim Kaninchen

2.7. GnRH-Antagonisten

2.8. GnRH-Vakzinen

GnRH-Vakzinen wurden beispielweise bei Katze, Hündin, Stute, Eber und verschiedenen Wildtieren angewandt.

Bei wildlebenden Katzen wurde eine einmalige Vakzination (GonaCon™, USDA, Pacarello, ID, USA) zur Populationskontrolle untersucht. 93% der vakzinierten Tiere waren für ein Jahr post Vakzination infertil, 73% der Tiere für zwei Jahre, 53% für drei Jahre, 40% für vier Jahre und 27% der Tiere bis zum Studienende fünf Jahre nach der Vakzination. Die Antikörper titer fielen bei denjenigen Tieren schneller, die früher wieder fertil waren. Es war allerdings kein absoluter Antikörper titer festlegbar, ab dem die Infertilität vorlag. Bei einem Drittel der Tiere entwickelten sich zwei Jahre nach Vakzination nicht-schmerzhafte, aber persistierende granulomatöse Massen an der Injektionsstelle. Die Autoren empfehlen eine Weiterentwicklung der Vakzine, um die Entwicklung von Entzündungsreaktionen und das damit erhöhte Sarkomrisiko zu vermeiden (Levy, Friary et al., 2011).

Auch die Ausschaltung der Ovaraktivität bei der Stute wurde untersucht. In diesem Fall wurden die Tiere zweimalig mit einer GnRH-Vakzine (Improvac®, Firma Zoetis) behandelt. Bei allen Stuten wurde die ovarielle Aktivität unterdrückt, der Effekt war fast immer reversibel. Die Unterdrückung war altersabhängig und hielt bei jüngeren Tieren länger an, wobei die Antikörper titer keine Unterschiede aufwiesen (Schulman, Botha et al., 2013).

Die zweifache Immunisierung gegen GnRH wurde beim männlichen Kamel versucht. Bei einem Teil der Tiere kam es zu einem Testosteronabfall und zu einer Reduktion der Libido (Ghoneim, Waheed et al., 2012).

3. Material und Methoden

3.1. Tierversuch und Tiere

Bei dem Tierversuch handelte es sich um das Versuchsvorhaben mit dem Geschäftszeichen 55.2-1-54-2532-41-11.

3.2. Haltung und Fütterung

Die Tiere wurden in vier Gruppen mit drei bis fünf Tieren gehalten. Die Stallabteile waren jeweils 1,3x1,6 m groß und mit Sägespänen und Stroh ausgelegt.

Direkt nach der Ankunft wurden die Tiere per Losverfahren in vier Stallabteile aufgeteilt und die erste Blutentnahme durchgeführt. Alle Tiere hatten untereinander Sichtkontakt. Die Zusammensetzung der Stallabteile blieb über die gesamte Versuchsdauer unverändert.
3.3. Zeitlicher Ablauf

Alle Tiere der Gruppe 1 erhielten das Implantat (Suprelorin®, Virbac Tierarzneimittel GmbH, Bad Oldesloe; 4,7mg des GnRH-Superagonisten Deslorelin; siehe 3.4.3) bereits vor dem Eintritt in die Pubertät im Alter von 61 Tagen. Die Tiere der Gruppe 2 erhielten zunächst kein Implantat und dienten somit als Vergleichstiere. Nach zweimaliger erfolgreicher Ovulationsinduktion (siehe 3.4.4), was als Nachweis der Geschlechtsreife gewertet wurde, erhielten auch die Kaninchen der Gruppe 2 das Implantat.

Die erste Ovulationsinduktion nach der Entfernung des slow release Implantates erfolgte nach elf Tagen. Sobald eine Ovulation und darauffolgende Pseudogravidität zweimal in Folge induziert werden konnten, war der Versuch für alle Tiere beendet.

Nach dem Versuchsende der oben beschriebenen Studien wurden alle Tiere in private Haushalte oder zur Weitervermittlung an Tierschutzorganisationen vermittelt.
3.4. Methoden

3.4.1. Klinische Untersuchung inklusive Gewichtsbestimmung

3.4.2. Gynäkologische Untersuchung
Gemeinsam mit der Beurteilung der Perianalregion erfolgte auch eine Adspektion der Vulva.

3.4.3. Implantation des GnRH-Analogons
herausgezogen und die den Stichkanal umgebende Haut für circa eine Minute komprimiert. Anschließend wurde die komplette Abgabe des Implantates adspektorisch und der korrekte Sitz des Implantates palpatorisch überprüft. Im Rahmen jeder klinischen Untersuchung wurde eine erneute Kontrolle des Implantatsitzes und möglicher Veränderungen der Struktur des Implantates durchgeführt.

3.4.4. Ovulationsinduktion

3.4.5. Gewinnung, Aufbereitung und Lagerung der Blutproben

Material und Methoden

Serum zunächst bei – 18°C (Gefrierschrank Typ GS OS 05, Robert Bosch GmbH, Stuttgart) für minimal 24 Stunden und maximal eine Woche gelagert.

3.4.6. Laboruntersuchungen

3.4.6.1. Blutbild und Serumparameter

3.4.6.2. Bestimmung der Progesteronkonzentration

3.4.7. Entfernung des Implantats
3.5. statistische Auswertung

4. Ergebnisse

4.1. Allgemeine klinische Untersuchung

4.1.1. Gruppe 1
Die klinische Untersuchung zum Zeitpunkt der Einstellung mit 57 Tagen war bei allen Tieren unauffällig.

Zum Zeitpunkt der zweiten Blutentnahme nach der Implantatentfernung lag bei zwei von sieben Tieren eine perivulväre Bissverletzung durch ein Partnertier vor. Ein weiteres Tier wies zum Zeitpunkt der dritten Blutentnahme eine Bissverletzung am ventralen Abdomen auf. Die Untersuchung der restlichen Tiere war ohne besonderen Befund.

4.1.2. Gruppe 2
Bei diesen Tieren waren die klinischen Untersuchungen über die gesamte Versuchsdauer ohne besonderen Befund.
4.2. Gewichtsentwicklung
Zum Zeitpunkt der Einstellung mit 57 Tagen betrug das Gewicht der Tiere der präpubertären Gruppe im Mittel 1,69 kg, der Maximalwert lag bei 1,90 kg.
Zum Zeitpunkt des Versuchsendes, also nachdem bei allen Tieren post Explantation zweimal in Folge eine Ovulationsinduktion möglich war, betrug das Gewicht der Tiere der präpubertären Gruppe 4,5 kg. Das Gewicht der Tiere der postpubertären Gruppe lag zu diesem Zeitpunkt im Mittel bei 4,23 kg.
4.3. Gynäkologische Untersuchung

4.4. Laboruntersuchungen

Die bei der Ankunft im Alter von 57 Tagen angefertigten Laboruntersuchungen waren, ausgehend von den Referenzbereichen von Hein und Hartmann (2003), bei allen Tieren ohne besonderen Befund.
4.5. Progesteronkonzentration

4.5.1. Progesteronkonzentration Gruppe 1

4.5.1.1. Vor der Behandlung

Vor der Implantatgabe wiesen alle Tiere basale Progesteronwerte auf. Die Progesteronkonzentration lag im Schnitt bei 0,79 ng/ml. Der niedrigste Wert betrug 0,27 ng/ml, der Maximalwert 1,53 ng/ml.

4.5.1.2. Progesteronkonzentration zum Zeitpunkt der Implantation

Zum Zeitpunkt der Implantation wiesen die Tiere I bis VII basale Progesteronwerte auf.

4.5.1.3. Induzierte Ovulation nach Implantatgabe

Bei zwei (I, III) der sieben Tiere konnte zehn Tage nach dem Setzen des Implantates ein erhöhter Progesteronwert gemessen werden. Er betrug 5,93 ng/ml und 7,80 ng/ml. Die restlichen Tiere wiesen weiterhin basale Hormonkonzentrationen auf. Der Maximalwert lag hier bei 1,28 ng/ml.

4.5.1.4. Ovulationsinduktion unter Wirkung des GnRH-Analogons

Während der gesamten weiteren Dauer der Implantation konnte bei keinem der Tiere eine Ovulation induziert werden. Die Progesteronwerte im Serum lagen alle unter 2ng/ml.

4.5.1.5. Reversibilität der Implantatwirkung

<table>
<thead>
<tr>
<th>Versuchstier</th>
<th>Ovulationsinduktion nach Implantatentfernung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kaninchen I</td>
<td>-</td>
</tr>
<tr>
<td>Kaninchen II</td>
<td>+/-</td>
</tr>
<tr>
<td>Kaninchen III</td>
<td>-</td>
</tr>
<tr>
<td>Kaninchen IV</td>
<td>-</td>
</tr>
<tr>
<td>Kaninchen V</td>
<td>+</td>
</tr>
<tr>
<td>Kaninchen VI</td>
<td>+</td>
</tr>
<tr>
<td>Kaninchen VII</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 1 Ovulationsinduktion nach Implantatentfernung Gruppe 1

+ pseudogravid (> 4ng/ml)
- nicht pseudogravid (<2 ng/ml)
+/- fraglich (2-4 ng/ml)
k.M. keine Messung
4.5.1.6. Übersicht Pseudograviditäten

Abbildung 1 Pseudograviditäten Gruppe 1

Abbildung 1 Pseudograviditäten Gruppe 1
4.5.2. Progesteronkonzentration Gruppe 2

4.5.2.1. Vor der Behandlung

4.5.2.2. Progesteronkonzentration zum Zeitpunkt der Implantation

Die Tiere VIII bis XI wiesen zum Zeitpunkt der Implantation basale Progesteronwerte auf. Tier Nummer XII befand sich in einer Pseudogravidität. Von Tier Nummer XIII liegt zu diesem Zeitpunkt kein Messwert vor.

4.5.2.3. Induzierte Ovulation nach Implantatgabe

Vier (IX, X, XII, XIII) von sechs Tieren wiesen nach der Implantatgabe einmalig eine Ovulation und darauffolgende Pseudogravidität auf.
4.5.2.4. Ovulationsinduktion unter der Wirkung des GnRH-Analogons

Bei allen Kaninchen dieser Gruppe war unter der Wirkung des Implantates keine Ovulationsinduktion möglich. Die Werte lagen alle unter der in der Literatur angegebenen Basalgrenze von 2 ng/ml. Bis auf einen einzigen Wert, lagen die Werte sogar unter 1 ng/ml.

4.5.2.5. Reversibilität der Implantatwirkung

<table>
<thead>
<tr>
<th>Versuchstier</th>
<th>Ovulationsinduktion nach Implantatentfernung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kaninchen VIII</td>
<td>+</td>
</tr>
<tr>
<td>Kaninchen IX</td>
<td>+</td>
</tr>
<tr>
<td>Kaninchen X</td>
<td>+</td>
</tr>
<tr>
<td>Kaninchen XI</td>
<td>+</td>
</tr>
<tr>
<td>Kaninchen XII</td>
<td>-</td>
</tr>
<tr>
<td>Kaninchen XIII</td>
<td>+</td>
</tr>
</tbody>
</table>

Tabelle 2 Ovulationsinduktion nach Implantatentfernung Gruppe 2

+	pseudogravid (> 4ng/ml)
-	nicht pseudogravid (<2 ng/ml)
+/-	fraglich (2–4 ng/ml)
k.M.	keine Messung
4.5.2.6. Übersicht Pseudograviditäten

Abbildung 2 Pseudograviditäten postpubertäre Tiere

Abbildung 2 Pseudograviditäten Gruppe 2
4.6. Unerwünschte Nebenwirkungen

Über die gesamte Studiendauer konnten weder lokale noch systemische unerwünschte Nebenwirkungen beobachtet werden.
5. Diskussion

5.1. Praktische Relevanz von GnRH slow-release Implantaten

5.2. Ovulationsinduktion und Ovulationsinduktionsprotokoll
Die zur Ovulationsinduktion angewandte Buserelinmenge entspricht den Empfehlungen des Herstellers zur Ovulationsinduktion beim Kaninchen.

Im Rahmen einer Studie, während der die Tiere besamt wurden, konnte beobachtet werden, dass auch manche Handlingmaßnahmen im Rahmen der Besamung ausreichend waren, um
Diskussion

eine Ovulation auszulösen. Alleine das Handling, das Einführen des Besamungskatheters und
die intramuskuläre Injektion führten bei 37,5% der Tiere zur induzierten Ovulation (Rebollar,
Dal Bosco et al., 2012). Es ist also möglich, dass durch das Handling und die Gruppenhaltung
der Tiere Ovulationsinduktionen zu anderen Zeitpunkten als dem der Buserelingabe
stattgefunden haben. Diese Faktoren wären eine weitere mögliche Erklärung für das
vereinzelt aufgetretene Ausbleiben von Pseudograviditäten.

Manche Autoren geben die Dauer der Pseudogravidität mit maximal 20 Tagen an (Caillol,
Dauphin-Villemant et al., 1983; Richardson, Oliphant, 1981). Eventuell liegen rassentypische
Unterschiede vor. Dies wäre eine weitere Erklärung für das beobachtete Phänomen.

In manchen Zyklen waren also - eventuell auch aufgrund individueller Unterschiede in der
Follikelentwicklung - noch keine oder nur wenige ovulationsbereite Follikel vorhanden. Aus
diesen Vorkommnissen konnte die Erkenntnis gewonnen werden, dass eine
Ovulationsinduktion mittels Buserelin in 3 Wochen Intervallen beim Zika-Hybrid-Kaninchen
das kürzeste mögliche Ovulationsinduktionsintervall darstellt.

5.3. Pubertät und Beeinflussung des Pubertätseintritts durch GnRH-
Agonisten

Betrachtet man das Auftreten des ersten Östrus bei anderen Kaninchenrassen, so konnte beim
weißen Neuseeländer Kaninchen bei 18 Stunden Tageslichtzufuhr im Alter von 105±3,6
Tagen der erste Östrus beobachtet werden. Das Gewicht der Tiere betrug zu diesem Zeitpunkt
2,65±0,07 kg (Kamwanja, Hauser, 1983).

Beim Kalifornier, einer Kaninchenrasse, deren Endgewicht dem der hier verwendeten Zika-
Hybrid-Kaninchen ebenfalls vergleichbar ist, traten ab einem Körpergewicht von 3 kg erste
Ovulationen auf. Ab einem Körpergewicht von 3,3 kg war der Prozentsatz der Tiere mit
induzierter Ovulation nach dem Deckakt im normalen Rahmen für adulte Tiere (Hulot,
Mariana et al., 1982).

Der Prozess der Follikelbildung ist histologisch betrachtet bei Jungtieren im Alter von zwei
bis vier Wochen beendet. Bei einem Viertel der acht Wochen alten Kaninchen sind frühe
kleine Antralfollikel vorhanden. Dies entspricht dem Zeitpunkt an dem die präpubertären
Diskussion

Tiere ihr Hormonimplantat erhielten. Erst bei 12 Wochen alten Tieren waren Antralfollikel vorhanden (Hutt, McLaughlin et al., 2006).

5.4. Progesteronbestimmung

Das für die Progesteronbestimmung angewandte Messgerät und -prinzip ist für die Anwendung beim Kaninchen bisher nicht validiert. Dennoch erscheint es für die Anwendung beim Kaninchen geeignet.

Serumprogesteronwerte unter 2 ng/ml werden allgemein als basal angesehen. Befindet sich die Hormonkonzentration in diesem Bereich, liegen keine funktionellen Corpora lutea vor.
Diskussion

5.5. Wirkung des Implantates

Die Ovarien aller Tiere waren während der Implantatwirkung inaktiv. Es konnte bei keinem Tier eine Pseudogravidität induziert werden.

Bei der weiblichen Ratte konnte dieser Effekt auch histologisch verdeutlicht werden: in zwei Studien lagen unter der Behandlung mit dem gleichen GnRH slow-release Implantat zehn Mal weniger präantrale Follikel vor, als in der Kontrollgruppe (Alkis, Sendag et al., 2011; Cetin, Alkis et al., 2013).

Bei anderen Tierarten war die Fertilitätsausschaltung weniger einheitlich gegeben. Eine von 14 Kätzinnen und einer von 53 Rüden reagierten nicht auf die Behandlung mit einem GnRH slow-release Agonisten, die Spermatogenese konnte beim Rüden maximal auf Spermatogonien und primäre Spermatozyten reduziert werden (Goericke-Pesch, Wilhelm et al., 2010; Toydemir, Kılıçarslan et al., 2012).

5.6. Reversibilität

Aufgrund der Tatsache, dass die Behandlung beim Kaninchen vor allem bei Heimtieren und weniger bei Zuchttieren relevant sein dürfte, spielt die Reversibilität der Implantatwirkung eine eher untergeordnete Rolle. Trotzdem konnte anhand der Betrachtung dieses Aspektes die Erkenntnis gewonnen werden, dass eine schädliche Wirkung auf die Gonaden nicht
vorzuliegen scheint. Daher spricht nichts gegen eine Wiederholung der Behandlung beim Einzeltier.

5.7. Zusammenfassung
6. Zusammenfassung

In diesen Untersuchungen wurde geprüft, ob die Behandlung mit dem 4,7mg Deslorelinimplantat die Ovarfunktion beim Kaninchen langfristig unterdrücken kann. Diese Behandlung könnte die chirurgische Kastration ersetzen, die zur Verhinderung hormonell bedingter Erkrankungen des Genitaltraktes und des Gesäuges sowie der ungewollten Fortpflanzung empfohlen wird.

Bei anderen Tierarten werden GnRH slow-release Implantate bereits zur Fertilitätsausschaltung, zur Verschiebung des Pubertätseintritts und zur Verhinderung hormonell bedingter Erkrankungen eingesetzt. Eine Zulassung für die Anwendung in der Praxis besitzen deslorelinhaltige Implantate zur hormonellen Kastration des adulten Rüden und des Frettchens.

Die Unterdrückung der Ovarfunktion über neun Monate mittels 4,7mg Deslorelin als Implantat war bei allen behandelten Tieren möglich. Diese Behandlung könnte damit beim weiblichen Kaninchen eine geeignete Alternative zur chirurgischen Kastration darstellen. In weiteren Studien sollte die maximale Wirkungsdauer des Implantates und dessen Einfluß auf die Inzidenz hormonbedingter Erkrankungen des Geschlechtsapparates und des Gesäuges untersucht werden.
7. Summary

Hormonal castration in the female rabbit with the GnRH-agonist Deslorelin

The aim of this study was to test the long term effect of a slow-release Deslorelin implant on ovarian function in female rabbits. This treatment could be a valuable alternative to surgical castration which is used to prevent unwanted pregnancies and to reduce the incidence of diseases of the genital tract and the mammary gland.

Slow-release Deslorelin implants are used in a number of species for contraception, to delay the onset of puberty and to reduce the incidence of hormone related diseases. In Germany a registered product is available for hormonal castration in male dogs.

Female rabbits prepuberal (zika-hybrid) aged 57 days were assigned to two groups. Seven animals were treated immediately with a 4.7 Deslorelin implant subcutaneously in the umbilical area. The remaining six animals received the same treatment not before ovulation (progesterone < 4ng/ml) could be induced twice by Buserelin (postpuberal animals). Ten days after treatment with the implant, the progesterone level in peripheral blood was measured to detect ovulations induced by the implant. A minividax was used to determine quantitatively the level of progesterone in peripheral blood.

The implant was left in place for 273 days. During this treatment Buserelin was administered twelve times with 21-days intervals. A rise of progesterone >4 ng/ml was used as a criterion for successful induction of ovulation. After the implant had been removed, induction of ovulation was carried out in 21-days intervals until a rise of progesterone could be detected in two consecutive cycles.

In two out of seven prepuberal rabbits a rise of progesterone indicating ovulation could be detected ten days after insertion of the implant. Induction of ovulation by Buserelin could be verified twice in all animals of the second group (adult) before the implant was inserted. As a result four out of six rabbits ovulated. In both groups, ovulations could not be induced during treatment with the implant. No side-effects were detected during treatment with the implant. The suppression of ovarian function by the implant was reversible in all animals. In the seven
rabbits treated before onset of puberty, induction of ovulation in two consecutive treatments with buserelin was possible with a maximum of three treatments. In postpuberal animals up to six injections with Buserelin were necessary to achieve induction of ovulation in two consecutive cycles.

Ovarian function could be suppressed over a period of nine months in all rabbits treated with a 4.7mg Deslorelin implant. This treatment could be a valuable alternative to surgical castration. More studies are needed to investigate the maximum time an implant is effective and the incidence of hormonal related diseases of the genital tract and the mammary gland after long term treatment with the implant.
8. Literaturverzeichnis

Structure of Porcine LH-Releasing and FSH-Releasing Hormone. 2. Confirmation of Proposed Structure by Conventional Sequential Analyses. Biochemical and Biophysical Research Communications, 44(2).

Hypophyseal Responses to Continuous and Intermittent Delivery of Hypothalamic

Continued desensitization of the pituitary gland in young bulls after treatment with the
luteinizing hormone-releasing hormone agonist deslorelin. Biology of Reproduction,
54(4), 769-75.

Repeated use of the GnRH analogue deslorelin to down-regulate reproduction in male

Induction of contraception in some African wild carnivores by downregulation of LH
and FSH secretion using the GnRH analogue deslorelin. Reproduction (Cambridge,
England) Supplement, 60, 41-52.

Neuroendocrine regulation of estrous behavior in the rabbit: Similarities and
differences with the rat. Hormones and Behavior, 52, 2-11.

Reproductive medicine of rabbits and rodents. Veterinary Clinics of North America:

Bourguignon, J. P., Van Vliet, G., Vandeweghe, M., Malvaux, P., Vanderschueren-
Treatment of central precocious puberty with an intranasal analogue of GnRH
(Buserelin). Eur J Pediatr, 146(6), 555-60.

Brodbelt, D. C., Blissitt, K. J., Hammond, R. A., Neath, P. J., Young, L. E., Pfeiffer, D.
The risk of death: the Confidential Enquiry into Perioperative Small Animal Fatalities.
Veterinary Anaesthesia and Analgesia, 35(5), 365-73.

Luteotropic and Anti-Luteolytic Activities of the Rabbit Conceptus. Biology of
Reproduction, 27(3), 665-72.

Comparison of Serum Progesterone, 20-alpha-Dihydroprogesterone, and Estradiol-17-
Beta in Pregnant and Pseudopregnant Rabbits - Evidence for Post-Implantation

Quantitative determination of progesterone (P4) in canine blood serum using an

Oestrous behaviour and circulating progesterone and oestrogen levels during
pseudopregnancy in the domestic rabbit.

Long-Term Effect of Deslorelin Implant on Ovarian Pre-Antral Follicles and Uterine

Nafarelin: A Review of its Pharmacodynamic and Pharmacokinetic Properties, and

Assessment of Fertility in Male Rats After Extended Chemical Castration with a
GnRH Antagonist. AAPS PharmSci.

Characteristics of luteinizing hormone (LH) and testosterone secretion, pituitary
responses to LH-releasing hormone (LHRH), and reproductive function in young bulls
receiving the LHRH agonist deslorelin: effect of castration on LH responses to LHRH.
Biology of Reproduction, 54(1), 45-52.

Controlled, reversible suppression of oestrous cycles in beef heifers and cows using

Pituitary and ovarian responses of post-partum acyclic beef cows to continuous long-
495-502.

Failure of the LH-releasing hormone agonist, deslorelin, to prevent development of a
persistent follicle in heifers synchronized with norgestomet. Theriogenology, 44(6),
849-57.

Dahm-Kähler, P., Löfman, C., Fujii, R., Axelsson, M., Janson, P. O., Brännström, M.
An intravital microscopy method permitting continuous long-term oberservations of

Studies on the progestational endometrium of the rabbit. I. Light microscopy, day 0 to

A review of rabbit and rodent reproduction medicine. Seminars in Avian and Exotic Pet Medicine.

Short- and long-term effects of immunization against gonadotropin-releasing hormone, using ImprovacTM, on sexual maturity, reproductive organs and sperm morphology in male pigs. Theriogenology, 71, 302-10.

Evidence for Early Ovarian Recognition of Blastocysts in Rabbits. Endocrinology, 95(4), 1054-58.

Heimtierkrankheiten.

Greene, H. S. N., Newton, B. L. (1947).

Multiple Primary Tumors in the Rabbit. Cancer, 673-91.

Textbook of Rabbit Medicine.

Ovulation in Rabbit - Time of Follicular Rupture and Expulsion of Eggs, in Relation to Injection of Luteinizing Hormone. Journal of Endocrinology, 26(3), 307-&.

Effects of a gonadotropin-releasing hormone agonist implant on reproduction in a
dmale marsupial, Macropus eugenii. Biology of Reproduction, 70(6), 1836-42.

Long-term effects of deslorelin implants on reproduction in the female tammar

Gonadotropic Activation of Preovulatory Synthesis and Release of Progestin in the

Progesterone, Estradiol and Testosterone Levels in Ovarian Venous-Blood of Pregnant

Cholesterol Storage and Progestin Secretion During Pregnancy and Pseudopregnancy

Establishment of puberty in the doe rabbit, folliculogenesis and ovulation. Effect of

Primordial follicle activation and follicular development in the juvenile rabbit ovary.
Cell Tissue Research, 326, 809-22.

Reversible suppression of pituitary-testicular function by a sustained-release
formulation of a GnRH agonist (Leuprolide acetate) in dogs. Theriogenology, 46(4),
671-77.

Natural History of Adenocarcinoma of the Uterus in the Phipps Rabbit Colony.
Journal of the National Cancer Institute (JNCI), 33, 799-806.

Testicular development of Zebu bulls after chronic treatment with a gonadotropin-

Dose-Response Studies for Pituitary and Testicular Function in Male Dogs Treated with the GnRH Superagonist, Deslorelin. Reproduction in Domestic Animals, 44(5), 725-34.

The influence of photoperiod on the onset of puberty in the female rabbit. Journal of Animal Science, 56(6), 1370-5.

Effects of long-term treatment with the GnRH agonist deslorelin (Suprelorin (R)) on sexual function in boars. Theriogenology, 74(5), 733-40.

Suppression of Reproductive Activity in Green Iguana Females (Iguana iguana) caused by Deslorelin Implants. Paper presented at the 7th EVSSAR Congress

Estrogen Receptor in Rabbit Corpus Luteum. Science, 173(4001).

Ovarian function suppression with a GnRH analogue: D-ser(But(t) (6)-Arzgly (10)-LHRH (Goserelin) in hormone dependant canine mammary cancer. Journal of veterinary Pharmacology and Therapeutics, 22, 56-61.

Loumaye, E., Catt, K. J. (1982).

Reversible downregulation of endocrine and germinative testicular function (hormonal castration) in the dog with the GnRH-Agonist Azagly-Nafarelin as a removable implant “Gonazon”; a preclinical trial. Theriogenology, 71(7), 1037-45.

Structure of Porcine LH- and FSH-Releasing Hormone. 1. Proposed Amino Acid Sequence Biochemical and Biophysical Research Communications, 43(6), 1334-&.

Gonadotropin-releasing hormone receptors. Endocrine Reviews, 25(2), 235-75.

Transition of the rabbit corpus luteum to estrogen dependence during early luteal development. Endocrinology, 102(1), 31-38.

Lehrbuch der Anatomie der Haustiere.

Inhibition of ovulation in women by chronic treatment with a stimulatory lhrh analogue — A new approach to birth control? Contraception, 17(6), 537-45.

Olsen, M. E., Bruce, J. (1986).
Ovariectomy, Ovariohysterectomy and Orchidectomy in Rodents and Rabbits. The Canadian Veterinary Journal, 27(12).
Mid-gestation pregnancy termination in rabbits by the progesterone antagonist aglepristone. Theriogenology, 69(9), 1056-60.

Passive transfer of maternal GnRH antibodies does not affect reproductive development in elk (Cervus elaphus nelsoni) calves. Theriogenology, 78(4), 830-41.

Comparison of four treatments to suppress ovarian activity in ferrets (Mustela putorius furo). Veterinary Record, 166(3), 74-78.

Ferrets, Rabbits and Rodents Clinical Medicine and Surgery.

Ferrets, Rabbits and Rodents Clinical Medicine and Surgery (3 ed.).

Comparison of the effects of eFSH and deslorelin treatment regimes on ovarian stimulation and embryo production of donor mares in early venereal transition. Theriogenology, 71(9), 1358-66.

The effect of GnRH analogs on urinary incontinence after ablation of the ovaries in dogs. Theriogenology, 60(7), 1207-16.

Use of GnRH Agonists in Exotic Practice. Metropolitan Veterinary Referral Group, 1.

Use of a deslorelin implant to control aggression in a male bearded dragon (Pogona vitticeps). Veterinary Record, 169(5), 127A.

Treatment with a subcutaneous GnRH agonist containing controlled release device reversibly prevents puberty in bitches. Theriogenology, 66(6–7), 1651-54.

Controlled Delivery of a GnRH Agonist by a Silastic Implant (Gonazon) Results in Long-Term Contraception in Queens. Reproduction in Domestic Animals, 44, 79-82.

Uterine Disorders Diagnosed by Ventrotomy in 47 Rabbits. Journal of Veterinary Medical Science, 64, 495-97.

The role of luteinizing hormone in the pathogenesis of hyperadrenocorticism in neutered ferrets. Molecular and Cellular Endocrinology, 197(1–2), 117-25.

Effects of deslorelin implants on ovarian cysts in guinea pigs. Schweizer Archiv Fur Tierheilkunde, 153(9), 416-17.

Pathways to Pregnancy and Parturition (Vol. 2).

Delay of Puberty and Reproductive Performance in Male Dogs Following the Implantation of 4.7 and 9.4 mg GnRH-Agonist Deslorelin at an Early Pre-pubertal Age. Reproduction in Domestic Animals, 47, 400-02.

Metabolic-Clearance Rates (MCR) and Production-Rates (PR) of Plasma Progesterone in Pregnant and Pseudopregnant Rabbits. Endocrinology, 97(2), 454-57.

Use of a GnRH analogue implant to produce reversible long-term suppression of reproductive function in male and female domestic dogs. Advances in Reproduction in Dogs, Cats and Exotic Carnivores(57), 255-61.

9. Danksagung

An dieser Stelle möchte ich Herrn Prof. Dr. J. Braun und Frau Dr. Beate Walter für die Überlassung des überaus interessanten Themas, ihre fachliche Betreuung und die Durchsicht des Manuskripts recht herzlich danken.

Herrn PD Dr. Reese danke ich für seine fachliche Hilfe bei der statistischen Auswertung der Ergebnisse.

Dank gilt außerdem der Firma Virbac für die Bereitstellung der 4,7 mg Deslorelin-Implantate.

Außerdem danke ich Frau Tremmel für Ihre Mithilfe bei der Vermittlung der Tiere an Ihre neuen Besitzer und allen Personen, die eines oder mehrere der Tiere bei sich aufgenommen haben.

Ein besonderer Dank gilt Bernhard und meiner Familie für deren Verständnis und immerwährende Unterstützung.