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Zussamenfassung

Eukaryotische DNA muss mehrere Stufen einer organisierten Kompaktifizierung durchlaufen,
um in die räumlichen Grenzen eines Zellkerns zu passen. Die erste Stufe dieser Kompaktifi-
zierung beinhaltet den Aufbau von Nukleosomen durch die Verbindung von DNA und Histon-
Oktameren. Die Anordnung dieser Nukleosome entlang der DNA hat wichtige Einflüsse auf
die Organisation höherer Kompaktifizierungsstufen. Zusätzlich zu ihrer strukturellen Funk-
tion hat die Positionierung von Nukleosomen entlang eines Genoms, sowie die Wechselwirkung
von Nukleosomen untereinander wichtige Implikationen für die Regulation von Genen. Dicht
gepackte Nukleosome neigen dazu, Promotorregionen von der Transkription auszuschließen,
während eine lockere Packung von Nukleosomen in der Regel zur Hochregulation der entspre-
chenden Gene führt.

In dieser ersten Stufe kann die Positionierung von Nukleosomen effektiv als ein eindimensio-
nales System beschrieben werden. Viele Faktoren tragen zur Positionierung von Nukleosomen
entlang einer DNA bei. Hierzu zählen die Nukleotidsequenz der DNA, aktive “Chromatin
remodellers”, sowie der Wettbewerb um Bindungsstellen zwischen Nukleosomen untereinan-
der und mit anderen Bindungsproteinen. Die Einordung der einzelnen Faktoren ist zentraler
Bestandteil dieser Arbeit, wobei Hefe als Modellorganismus dient. Im Verlauf der Arbeit wer-
den allgemeine physikalische Fragen hinsichtlich der Kinetik eindimensionaler Adsorptions-
und Desorptions-Prozesse aufgeworfen. Das übergreifende Ziel ist daher die Errichtung ei-
ner Brücke zwischen Daten getriebener biophysikalischer Forschung und statistischer Physik.
Infolgedessen besteht diese Dissertation aus fünf verschiedenen, jedoch untereinander ver-
wandten Projekten.

Diese Arbeit beginnt mit einem Überblick über Hintergründe und einführende Beobachtungen
in Kapitel 1. In Kapitel 2 liegt der Fokus auf den Gleichgewichtseigenschaften der Nukleosom-
Positionierung. Experimentelle Nukleosom-Daten von einem Dutzend verschiedener Hefearten
werden verwendet, um die Anordnung von Nukleosomen in der Nähe einer Barriere zu mo-
dellieren. Bei der Barriere handelt es sich um das stark positionierte +1 Nukleosom mit
geringstem Abstand zur Transkriptionsstartstelle (abwärts).

Es wird gezeigt, dass die Berücksichtigung von “Weichheit” der Nukleosomen, aufgrund von
bekannten biophysikalischen Effekten, eine einheitliche Modellierung der Nukleosom-Position-
ierung ermöglicht. Da die Struktur von Nukleosomen verhältnismäßig konsistent zwischen
verschiedenen Arten ist, ist das beschriebene Modell sowohl minimalistisch als auch physika-
lisch sinnvoll. Angefügt an das Kapitel ist eine veröffentlichte Arbeit über die Anordnung von
Nukleosomen in einem Dutzend verschiedener Hefearten. Diese Verffentlichung basiert auf der
statistischen Physik des Gleichgewichts, sowie auf numerischen Monte-Carlo-Methoden zur
Berücksichtigung von aktiven Prozessen.

Obwohl DNA-Bindungspositionen durch Histone dominiert sind, gibt es wichtige Orte an
denen eine Bindung von anderen Proteinen, wie zum Beispiel von Transkriptionsfaktoren,
möglich ist. Diese Faktoren dienen zur Regulation der Transkription und beeinflussen die
Anordnung der Nukleosome. In Kapitel 3 betrachten wir die Wechselwirkung kleiner Tran-
skriptionsfaktoren, die mit spezifischen Loci binden und die Positionierung der benachbarten
Nukleosomen verschieben kann. Ein Dominoeffekt auf andere benachbarte Nukleosomen wird
ebenfalls beobachtet. Eine solche Verschiebung in der Anordnung von Nukleosomen induziert
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eine Kooperativität zwischen Transkriptionsfaktoren, deren Reichweite mehrere Nukleosome
umfassen kann.

Im Kapitel 4 wird die Rolle der genetischen Sequenz auf die Nukleosom-Positionierung näher
betrachtet, die schon vielfach Gegenstand der Forschung war. Hier wird die genetische Sequenz
als energetische Landschaft betrachtet und ein neuer Weg zur Bestimmung von Sequenz-
Präferenzen aus Daten ber die Nukleosom-Positionierung dargelegt. Es wird gezeigt, dass die
experimentell beobachteten Dichteverteilungen in Hefe, kombiniert mit der in Kapitel 2 her-
geleiteten Interaktionsenergie zwischen benachbarten Nukleosomen, genutzt werden können,
um die Sequenz-Präferenzen zu quantifizieren. Dieser Prozess wird jedoch durch den derzei-
tigen Mangel an spezifischen Daten über zwei-Körper-Korrelationen zwischen benachbarten
Nukleosomen erschwert. Aus diesem Grund ist der “Amöben” Optimierungsalgorithmus auf
die verfügbaren Daten angepasst, wie in Kapitel 4 beschrieben.

In Kapitel 5 wird der Fokus in Richtung der Dynamik des eindimensionalen Füllens ver-
schoben. Es wird gezeigt, dass der kinetische Prozess der Gleichgewichtseinstellung durch
eindimensionale reversible Adsorption qualitativ anders und sehr viel schneller ist, wenn wei-
che Interaktionen zwischen benachbarten Teilchen erlaubt sind. Es ist seit langem bekannt,
dass die Adsorption von “hard rods” in einer Dimension ein “jamming” Phänomen verur-
sacht, das nur durch sehr langsame, kollektive Umordnungsprozesse zu organisierten “Arrays”
mit hoher Dichte gelöst werden kann. Mit der Einführung von weichen Wechselwirkungen im
Nukleosom-Modell wird jamming durch eine neue Phase, die wir als “cramming” bezeichnen,
umgangen; der Übergang ins Gleichgewicht erfolgt auf Zeitskalen, die um Größenordnungen
kürzer sind. Dieses Prinzip wird hinsichtlich seiner Anwendung auf die Anordnung von Nukleo-
somen präsentiert. Die wichtigsten Erkenntnisse hierzu sind in der angehängten Publikation
beinhaltet.

Abschließend wird die Dynamik des eindimensionalen Adsorption- und Desorptions-Problems
von weichwechselwirkenden Teilchen in einer allgemeineren Weise betrachtet. Mit endlichen
nachbarschaftlichen oder benachbarten Wechselwirkungen entsteht eine reichhaltige Dyna-
mik, einschließlich eines seltsam, nicht-monotonen Dichteverlaufs in der Zeit. Die theoreti-
schen Grundlagen dieses Effekts werden in einem Manuskript, das diesen Text schlussfolgernd
abschließt, präsentiert.
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Abstract

Eukaryotic DNA must undergo several levels of organized compaction in order to be pack-
aged within the spatial confines of the cell nucleus. The first level of this packaging involves
the formation of nucleosomes by wrapping DNA around histone-octamers. The arrangement
of nucleosomes along the length of the DNA has important influences on the way higher
levels of packaging are organized. In addition to this structural role, the positioning of nu-
cleosomes along the genome –and in relation to one-another– has important implications for
the regulation of genes. Tightly-spaced nucleosomes tend to occlude promoter regions from
transcription machinery, while looser configurations tend to be up-regulated.

At this level, nucleosome positioning can be treated as an effective one-dimensional system.
Within this framework, many factors contribute to the positioning of nucleosomes along the
DNA: genetic sequence, active remodellers, and competition for binding sites with other
binding proteins and with one-another all play a role. How to disentangle these effects is
a central question that will be explored in this work using yeast as a model organism. In
the process, however, more general physical questions will arise regarding the kinetics of one-
dimensional adsorption/desorption processes. The over-arching goal is to provide a bridge
from biophysical, data-driven work to more pure statistical physics; thus the work is comprised
mainly of 5 somewhat separate, but related projects.

This thesis will begin with an overview of background information and introductory observa-
tions in Chapter 1 to provide context. Chapter 2 will then focus on equilibrium properties
of nucleosome positioning. Experimental nucleosome data from a dozen different species of
yeast will be used to model the pattern of nucleosome formation near a ‘barrier’ –in this
case, the strongly positioned +1 nucleoseome nearest (downstream) to the transcription start
site. It will be shown that accounting for ‘softness’ in nucleosomes, due to known biophysical
effects, allows for a unified model of nucleosome positioning. Since nucleosomes are rela-
tively structurally consistent across very different species, this represents a model that is
both parsimonious and physically sound. The published work studying the nucleosome po-
sitioning patterns of a dozen species of yeast is included and relies on equilibrium statistical
mechanics, as well as a Monte Carlo numeric scheme to account for active processes.

While histones clearly dominate the landscape of DNA binding positions, important loci ad-
mit binding by other proteins such as transcription factors which serve to regulate genetic
transcription and influence nucleosomal patterning. In Chapter 3, we consider the interac-
tion of small transcription factors which bind specifically to loci on the DNA and shift the
positioning of the neighboring nucleosome, with a corresponding domino effect on other nu-
cleosomes in the vicinity. Such shifts in nucleosome patterns can create nucleosome-mediated
cooperativity between transcription factors, even when separated by intervening nucleosomes.

Next, in Chapter 4, we will consider the role of the genetic sequence in nucleosome positioning,
an effect which has also been the subject of considerable research. We will refer to this as
the energetic ‘landscape’ of the genome and present a new way of inferring this sequence-
preference from nucleosome positioning data. We will see that the experimentally observed
density patterns in yeast, together with the interaction-energy of neighboring nucleosomes
that was derived in Chapter 2, can be used to quantify this sequence preference. This effort,
however, is complicated by the lack of specific data characterizing the 2-body correlation
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between neighboring nucleosomes. For this reason, the ‘amoeba’ optimization algorithm is
adapted to fit the available data, as described in Chapter 4.

In Chapter 5, the focus will shift to the dynamics of one-dimensional filling. It will be
shown that the kinetic process of equilibration through one-dimensional reversible adsorption
is qualitatively different, and much faster, when one allows for soft-interaction of neighboring
particles. It has long been known that ‘hard rods’ adsorbing randomly in 1 dimension undergo
a jamming phenomenon which can only be resolved into densely packed arrays through very
slow collective rearrangement processes. Upon introduction of softness to the nucleosome
model, however, jamming is circumvented by a new phase we term ‘cramming’; equilibration
can then proceed orders of magnitude faster. This will be reviewed with specific application
to the problem of nucleosome adsorption which has been of interest recently in light of new
experimental work and the attached publication highlights the main findings.

Finally, the dynamics of one-dimensional adsorption-desorption with soft-interacting particles
are considered in a more general way. With finite neighbor interactions, a rich new set of
dynamics emerges, including a curious non-monotonic density trace in time. The theoretical
underpinnings of this effect will be provided in the attached publication which concludes this
text.



1 The Nucleosome

Within the nucleus of eukaryotic cells, DNA is compacted on multiple levels; the need for
such condensed packaging can be readily understood even from just spatial considerations.
The DNA of, say, human cells, if extended lengthwise, with chromosomes end to end would
stretch over 1m. in length and yet is compacted (in a non-random way) within a cell nucleus
microns in diameter –a remarkably illustrative example of the complexity hidden within living
organisms.

At the most basic level of this condensation, the long string of DNA is wrapped just under
two times around a histone-octamer core to form a nucleosome, the repeating unit of chro-
matin, while the DNA extending outward in either direction continues on to form adjacent
nucleosomes or to bind with other factors[1]. At the next level of packaging, it has been
found in some organisms that these nucleosomes are stacked alongside one-another into long
fibers [2, 3]; notably, however, such fibers have not been found in the human genome[4], and
the generalizability of such higher-order structure in chromatin continues to be a matter of
ongoing research. Still further levels of organization are required to contort these long fibers
into superhelical arcs to form the (relatively) massive contours of chromosomes that are more
familiar in images of chromosomes from textbooks.

These latter descriptions of genomic architecture are more complex than what is necessary at
the level of description employed throughout this work, though their importance for biological
purposes should not be overlooked. At increasingly fine levels, they contribute to relevant
regulatory functions. Heterochromatin, for example, is tightly packed with nucleosomes and is
often characterized by the hypoacetylation and/or methylation of histones[5, 6]; euchromatin,
on the other hand, is more loosely packaged and transcriptionally active, and is associated
with converse patterns of post-translational modification. Epigenetic changes in features of
chromatin structure such as these can even be preserved across multiple generations[7], and
their simulated effects on gene expression have been studied[8].

Fig. 1.1 delineates the various size scales of chromatin organization, and provides some per-
spective to our model. In keeping with conventional notation, we use ‘primary structure’ to
refer to nucleosome positioning, while possible fibers and higher organization are referred to
as secondary and tertiary structures respectively. In practice, however, the properties of these
structures are somewhat overlapping at various scales. For example, it has been argued that
nucleosome ‘stacking’ at the secondary level exerts influence on positioning at the primary
level [9].

Nevertheless, throughout this work, we make use of the Kornberg-Stryer model[10, 11] and
assume that the higher-order steric and architectural features of chromatin can be omitted
from a description of the positioning patterns of nucleosomes along the length of the DNA.
This amounts to positing that a one-dimensional coordinate system along the length of the
DNA suffices to capture the most salient properties of nucleosome positioning.
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Figure 1.1: Many length scales exist between the description of chromatin as a double-helix of DNA
and familiar microscope images of a chromosome. The circumscribed panel indicates
the scale of our analysis, the so called ‘beads on a string’ picture of chromatin primary
structure. Secondary ‘fibers’ are adjacent to the right and higher order organization
follows, although these levels of configuration are beyond the scope of description here.
Image adapted from the work of Richard Wheeler, from the wikimedia commons under
the Creative Commons License.

Hence, we focus on the primary structure of chromatin, beginning with the nucleosome itself
which is roughly 10 nm in diameter and is surrounded by 147 bp of DNA[12]. Generally,
the nucleosome is comprised of 8 histone proteins: 2 each of H2A, H2B, H3 and H4 at
its core; variants of these histones have been noted. It is typically formed in a two step
process, starting with a tetramer of H3, H4 histones adsorbing to the DNA, followed by H2A,
H2B histones[13]. An additional H1 ‘linker histone’ at the interface with DNA is often also
present[14]. An important point is that when two adjacent nucleosomes are close together,
the binding of one histone octamer with DNA sterically prevents the other from doing the
same; an illustration is provided in Fig. 1.2.

Figure 1.2: Illustration of two adjacent nucleosomes along DNA. At close proximity, the binding to in-
tervening DNA can become ‘competitive’. Image credit to Christoph Hohmann, Nanosys-
tems Initiative Munich; used with permission.

The histone octamers depicted in Fig. 1.2 bind to the minor groove of the DNA, and require
significant bending of the DNA molecule around the histone surface to keep the entire unit
stable. Since multiple nucleosomes are prevented from adhering to the same stretch of DNA
simultaneously, it is convenient to visualize DNA as a long substrate upon which proteins, such
as histones, bind and reside as though they were ‘beads on a string’. This convenient visual
metaphor captures the much-simplified topology of this view. Despite the simplification, it
has been shown that this picture of chromatin has strong predictive and analytic value since
its development[11].

Within this single dimensional picture, the positioning of nucleosomes is determined by a
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host of factors[14], including sequence preference and active remodelling agents. In addition
to these, a further influence on positioning is the competitive binding of histones with other
factors, and with one-another; the cumulative effect of this competition between many binding
factors results in statistical positioning, where nucleosomes are ‘stacked’ closely together.
Analyzing this behavior, as well as the individual interactions between neighbor nucleosomes
will form the bulk of the following chapter. For the moment, it is useful to review the analysis
of available experimental data that will serve as the point of reference to evaluate the success
of our models.

1.1 Available Experimental Data

The majority of nucleosome positioning data used as a reference throughout this work is
gathered through the use of micrococcal nuclease, or MNase, applied to the yeast genome
–a standard model organism that has been well studied. Theoretical analysis presented here
has been made possible through availability of data from experimentalists in the field [15,
16, 17, 18], which we briefly review the processing of here. Other techniques have also been
developed for determining nucleosome positioning, with qualitatively similar results (albeit
with more specific resolution)[19]. A concise summary of the available positioning data is
provided by Bai and Morosov:

“The detailed methods used for nucleosome mapping can vary slightly in differ-
ent labs and for different species but the principle remains the same [...]. Live
cells or spheroplasts (sometimes crosslinked with formaldehyde) are made perme-
able and treated with MNase, an endo-exonuclease from Staphylococcus aureus
that preferentially digests linker DNA (uncovered DNA between neighboring nu-
cleosomes) versus nucleosomal DNA. The reaction is usually carried out to the
extent that most of the chromatin is digested to mononucleosomes, with subpop-
ulations of di- and trinucleosomes. The digested chromatin is sometimes purified
further by immunoprecipitation with histone antibodies before the crosslink is
reversed (if necessary) and the DNA segments are extracted. Mononucleosomal-
sized DNA fragments (150-200 bp) are selected by gel purification, and their lo-
cations on the genome are mapped by either hybridizing to DNA microarrays or
high-throughput sequencing followed by the alignment of sequence tags to the
reference genome.”[20]

One point must be added to the above description: in order to obtain positioning data centered
to the midpoint, or dyad, of the nucleosome, the sequence matches obtained from the 5’ ends
of the mononucleosomal-sized DNA fragments are generally shifted in the 3’ direction by
an offset of half of the average length of the segments. As described in the supplementary
materials of one of these experiments: “All tag 5’ coordinates were shifted by 73 bp in the
3’ direction to identify the putative nucleosome dyads.”[16]. Histograms of data used in this
text are then intended to represent the distribution nucleosome centers.

It is also worth noting that a similar technique has also been combined with a “modified
protocol” to detect DNA fragments smaller than mononucleosome fragments, and can serve
to indicate positions of partial nucleosomes, or transcription factor binding[21], the effect of
which will be considered in Chapter 3.
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There are some limitations to the information that can be gleaned from these experiments.
First, since the number of cells used in the experiment cannot be known exactly, available read
data is scaled by an unknown normalization factor α corresponding roughly to the number
of cells in the experiment. It is reasonable, however, to assume a single, global constant α
across the entire genome, which preserves the validity of relative comparisons of nucleosome
density between one region and another within a single experiment.

Secondly, during this process, information regarding which mononucleosomes had originally
been adjacent to one-another on the chromosomes is lost, and only the sum of individual
positioning data from many separate cells is preserved (although later techniques[19] are able
to partially preserve this information).

Nevertheless, MNase experiments provide an invaluable description of nucleosome positioning
along the genome. The natural question then arises: what regions of the genome are enriched
with nucleosomes, and what determines this positioning? To begin addressing this question,
we consider the degree to which nucleosomes are organized into characteristic positions at all.
Taking positioning data from each of the genome’s two strands1 we quantify the correlation
in read matches between these two halves of the experimental data, using a scalar overlap
function O(x) for each chromosome

O(x) =
1

N
×
(∑

i

Watson(i)× Crick(i+ x)

)
, (1.1)

as a function of the offset x between them. In Eq. 1.1, the summation index i is taken
across the entire length of the chromosome, and the normalization factor N is defined as the
maximum value of the overlap.

Eq. 1.1 represents the degree of consistency found in positioning data between one half of the
nucleosome positioning data (the Watson strand, in this example), and the other half (the
Crick strand, likewise), over many cells. Assuming random cell-to-cell positioning2, a plot
of Eq. 1.1 vs. x should amount to simple noise independent of x. However, Fig. 1.3 using
available experimental data[16] shows quite prominent features.

Of course, it has long been known nucleosome positions are not entirely random from one cell
to another. There are many factors contributing to the positioning patterns of nucleosomes in
yeast and other organisms, as can be seen in nucleosome positioning maps[22]. A summary of
these effects is outlined in Ref. [23], and a major goal of this thesis is to ascertain the relative
contributions of each of them. Thus, while Fig. 1.3 makes no novel claims, it nevertheless
contains several illuminating features for discussion.

First, the very sharp peak at precisely x = 0 is indicative of nucleosome positions that
are defined specifically at the base-pair level. The somewhat broader peak behavior over
the range x ± 50 illustrates that positioning data is also subject to a certain amount of
statistical fluctuation –the positioning of some nucleosomes is rather ‘fuzzy’[15]. Secondly,
the recurring features at ± 165 bp underscore the periodicity of nucleosome positioning. The

1assuming either of the two 5’ ends of the extracted mononucleosome strands are equally likely to have been
selected for sequencing

2due to the large number of cells used in such experiments, auto-correlated strands originating from the same
nucleosome in the same cell contribute negligibly).
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Figure 1.3: Scalar overlap of the nucleosome positioning data from Watson and Crick strands over the
length of each chromosome as tabulated to the right of the figure. With the Watson strand
oriented x bp offset from the Crick strand, the scalar overlap measures the consistency
of positioning data obtained from the two strands as a function of x. In addition to the
prominent maximum at x = 0, adjacent maxima can be observed at x ≈ ±165, suggesting
a trend in spacing between neighboring nucleosomes.

peaks produced by these overlapping read counts are due to correlation, not with the same
nucleosome on the two strands, but with the one adjacent. In Chapter 2 it will be shown
how occlusion of adjacent nucleosomes leads to extended patterns in nucleosome density due
to statistical positioning, and thus, characteristic periodicity in positioning patterns. Finally,
note that there is little difference in Fig. 1.3 between chromosomes in the shape of the curve of
O(x). One of the findings of Ref. [16] related to the grouping of genes into various categories
according to the nucleosome density profile in the promoter region. In the course of this work,
the distribution of these gene groups by chromosome was studied, showing no significant
correlation; it seems that yeast genes are distributed, both by function and by chromatin
structure, more or less randomly across the genome.

Hence, throughout the rest of this text, we treat all genes on an equal footing, making no
further distinction with regard to the position or chromosome of each gene, and attempt to elu-
cidate the mechanisms behind observed 1-D positioning patterns along the length of the DNA.
It is, however, noted that there is heterogeneity in the properties of nucleosome positioning
within each gene. For example, near the transcription start site (TSS) of most genes, there is
found a characteristic nucleosome free region (NFR)[24] where the genome tends to be highly
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depleted of nucleosomes, flanked by nucleosomes enriched with the H2A.Z modification[25]
upstream and downstream –the latter of which tends to be strongly positioned and is referred
to as the +1 nucleosome for the gene. In addition to being well positioned[26], +1 nucleo-
somes serve a particularly important regulatory role[27, 28, 29, 30], and it is especially in this
region where nucleosome occupation changes most markedly under changing cell conditions
[31]. Suffice it to say that the positioning pattern of nucleosomes near gene promoters has
important biological implications, though the effects on transcription dynamics will only be
discussed very briefly in Chapter 3. For the moment, the +1 nucleosome can be treated as an
effective barrier to downstream nucleosomes whose locations, on a gene-averaged level, tend
to be consistent with statistical positioning. These downstream patterns are the focus of the
following chapter.



2 The Equilibrium Nucleosome Gas Model

As discussed in the previous chapter, a convenient simplification for the positioning pattern
of histones on DNA is a 1-D lattice of base pairs along the length of the DNA, neglecting
the effects of higher-order chromatin structure and superhelicity. Segments bound to his-
tones can then be seen as ‘rods’ along the 1-D lattice. Within this framework, specifically
positioned proteins such as transcription factors (TFs) or +1 nucleosomes downstream from
a gene’s NFR can serve as a boundary against which characteristic oscillatory patterns can
be observed in the density of nucleosome positioning. One-dimensional models have been
proposed as a means to rationalize these patterns on the basis of statistical positioning[11].
It has been argued that this effect, in conjunction with particularly well positioned histones
and specifically-bound proteins, contribute significantly to nucleosome positioning[10].

Recently, statistical positioning models have been successfully applied to gene-averaged nu-
cleosome data in yeast relative to the +1 nucleosome ‘barrier’ downstream from the genetic
transcription start site [32]. Statistical positioning can be thought of as a link between the
probability that a given position is occupied by a nucleosome and the occupation ‘state’ of
other loci in the vicinity. In that respect, the problem is somewhat analogous to a well-studied
and archetypal problem in statistical physics.

The Ising model was first studied by Wilhelm Lenz and Ernst Ising[33], the latter of whom it
takes its name from. It continues to be employed as a model system in various applications in
statistical physics and the key to its success lies partly in its ability to predict macroscopic,
emergent behavior by extrapolation from simplified elementary interactions. While some of
the more striking predictions of the model (e.g. phase transitions) are unique to higher-
dimensional systems, the earliest work in this area is particularly relevant: the calculation of
equilibrium properties of a set of magnetic spins lying in a one-dimensional array.

Fig. 2.1 depicts two such adjacent spins along a lattice interacting with each other and with
the environment with characteristic energetics J and H respectively (assuming only nearest-
neighbor interactions). Based on the strength of these interactions, amid thermal effects,
the equilibrium probability of either spin-up or spin-down states at various positions can
be calculated exactly. The key lies in taking statistical sums of the set of states available
to each site throughout the chain. These calculations have long since been solved[34], and
their biophysical application to DNA has already been made[35], but the imagery is a useful
starting point as we explore some necessary methodology in greater detail in the next section.

2.1 The Transfer Matrix

The immediate relevance of this to nucleosomes may not be apparent until one considers that
DNA is, in fact, a discrete lattice of nucleotides to which different factors can chemically bind;
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J H

0 1state of lattice site

0 0state of lattice site

(a)

(b)

Figure 2.1: Minimal representation of the spin-Ising interaction to introduce the concept sites interact-
ing with characteristic energetics depending on their states. In (a) spins are anti-parallel
with only a single spin aligned with the local magnetic field. In (b), however, both spins
are in ‘state 0’ and interact favorably with the local field H, as well as with each-other J .
Thus, the arrangement in (b) is more likely than (a).

such binding can then be used to define the states of the lattice sites themselves. An obvious
difference here is that the Ising spin lattice required only 2 unique states for each lattice spin.
An array containing particles of size a lattice sites, however, will require a+ 1 unique ‘states’
to describe each possible position along the length of the particle (in addition to the state of
being unoccupied). A schematic of one possible set of such states is given in Fig. 2.2.

321 4 5 76 0 0 76543210

state of lattice site

a = 7

Figure 2.2: Schematic illustrating the ‘states’ of lattice site occupation by extended particles and the
notation used for Eq. 2.1, for a footprint length of a = 7. Partially adapted from SI of
Ref. [36].

Fig. 2.2 illustrates a set of states for lattice sites defined in sequence along the ‘footprint’ of the
DNA where a binding agent is found. Assuming these particles represent nucleosomes, and
assuming, for the moment, that nucleosome footprints cannot overlap, one possible matrix
for such a ‘hard-core nucleosome gas’ (HaNG) is provided in Eq. 2.1,

THaNG =




1 eµ 0 0 . . . 0
0 0 1 0 0
0 0 0 1 0
...

. . . 0
0 0 0 0 1
1 eµ 0 0 . . . 0




(2.1)

where the entries adjacent to the main diagonal are the result of a sequential rule (e.g. a lattice
site in state 3 must be followed by a lattice site in state 4). µ characterizes the energetic drive
of the environment to form nucleosomes, and depends on the local environment. Note that
that the matrix presented in Eq. 2.1 is degenerate for the sake of clarity: a single state could
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be neglected without loss of accuracy, although with rank a+1, the mapping to all a+1 states
is more intuitive. The transfer matrix given in 2.1 is not defined uniquely; other formulations
are possible, such as those provided by Teif[35], or Chen[37] and produce identical observables.
For a periodic array of length L, THaNG suffices to determine the partition sum

ZHaNG = Tr
{
TLHaNG

}
(2.2)

which represents the sum of statistical weights of all possible configurations of the lattice, and
can in turn be used to determine the probabilities of particular sites assuming given states.
The assumption of a periodic lattice will prove to be immaterial in the limit L → ∞. An
alternative transfer matrix will presented later in this chapter; to avoid repetition, explicit
calculation of state probabilities will be presented only once in Section 2.3 below. It is worth
noting, however, that these probability calculations, using Eq. 2.1 produce the same two-
particle correlation functions that have been developed previously[38, 39, 32]

ρ(x|0) =

∞∑

k=1

(
x
a − k

)(k−1)
Θ
(
x
a − k

)

aΓ(k)

(
ρa

1− aρ

)k
e
−
[
x
a−k
1
aρ
−1

]
, (2.3)

where ρ(x|0) is the probability of observing a particle at x given that one is fixed at 0,
Γ(n) = (n − 1)!, and ρ is the average density far from the barrier. In Eq. 2.3, the sum over
k is intended to represent the sequence of nearest neighbor particles, next-nearest neighbor,
. . . etc. producing identical results to what will be shown below based on Eq. 2.1.

All of this, however, is predicated on the assumption of absolutely stiff particle boundaries. As
we will see in the following section, further scrutiny of the binding behavior between histones
and DNA demands we revisit this static characterization of the nucleosome footprint.

2.2 Finite Neighbor Interactions Between Nucleosomes

The model of nucleosomes as sterically exclusive segments of 147 bp is a useful abstraction in
many ways and has demonstrative merit in reproducing experimentally measured nucleosome
distribution patterns near a barrier[32]. One important way in which the above description
of nucleosomes fails to reproduce the real biophysics of chromatin, however, is that nucleo-
somes do not conform so strictly to this picture of hard 147bp DNA segments for two reasons:
First, nucleosomes are formed in a step-wise manner, incorporating H3 and H4 histone pairs
first, followed by the H2A and the H2B histone pairs. In the interim, the histone tetramer
occupies significantly less space on the DNA which may be significant during chromatin for-
mation/reconstitution as we will see in Chapter 5. Secondly, even when nucleosomes are fully
formed, they undergo transient unwrapping at their boundaries[40, 41], and allow for partial
overlap[42, 43]. Unwrapping/rewrapping rates are fast on the time scale of overall adsorp-
tion/desorption rates[44], and produce measurable equilibrium probabilities of site exposure
near the periphery of the nucleosomal ‘footprints’. Towards the interior, however, it has
been observed that “DNA unwrapping rate decreases dramatically with distance inside the
nucleosome.”[45]. It has also been suggested that such nucleosome ‘breathing’ is enhanced
by the histone chaperone FACT[46] through the reorganization of the histone-DNA contacts
near the boundary.
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Even under thermal influences, segments of DNA will peel away, reversibly, from the histone
surface from the outside in, before reattaching; since the bound state tends to be energetically
preferable, reattachment occurs more rapidly than the reverse reaction, and the dynamics of
these forward and reverse reactions are sufficiently fast to be in effective equilibrium. This
transient unwrapping has been shown experimentally using FRET signals with donor-acceptor
pairs attached to the DNA and histone core respectively [42, 41]. Furthermore, the temporary
exposure of genetic loci via transient unwrapping has been shown to facilitate the binding of
TFs[47, 45] at positions that would otherwise be occluded by a ‘hard rod’-type nucleosome
footprint –however with decreasing exposure at positions deep within the nucleosome. Thus,
it seems clear that the soft-edge of the nucleosome footprint has real physical significance that
ought to be included in a full model of chromatin primary structure.

2.2.1 The SoNG Model

In light of these observations, it has been noted[48] that the assumption made earlier of
histones occupying exactly a base-pairs, with hard-exclusive interactions must be relaxed
in order to present a more faithful description of nucleosome interaction with neighboring
proteins. We assume, instead, that there exists only a central core of length n bp at the dyad
of the nucleosome in addition to w bp in either direction that are preferentially bound to
the histone surface, but which can, transiently, detach. A revised state-notation schematic is
provided in Fig. 2.3

434 5321 07650 1 2 0 00

state of lattice site

neighboring nucleosomes overlapping w = 3
a = 7
n = 1

Figure 2.3: The ‘states’ of lattice site occupation by extended particles, again with a = 7, w = 3,
now including the possibility of overlap between adjacent particles. The state definition
corresponding to the second particle (i.e. to the right) supersedes the previous, and the
left-most position of the particle is set as the ‘reference’ position. Partially adapted from
SI of Ref. [36].

Due to the fast time scales of wrapping/unwrapping, this energetic cost of unwrapping can be
treated as an effective soft repulsive potential for neighboring particles; resulting calculations
are then similar to, e.g. Ref. [37]. There is, of course, no such ‘special’ segment within the
nucleosome, and all DNA is subject to detachment. Rather, deep within the footprint of the
nucleosome, DNA becomes increasingly unlikely to be removed from the histone surface and
any unwrapping event that penetrates into segments approaching the dyad core would serve
to destabilize the nucleosome entirely. For the sake of generality, we take a minimal hard core
dyad length of n = 1 corresponding to the precise center of the nucleosome; thus a = 2w+ 1.
Typical unwrapping lengths generally do not extend beyond 40-50 base pairs inward from the
outer edge, so this assumption is quite conservative.
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An appropriate model of transient unwrapping must then reflect this incremental ‘stiffness’
approaching the center of the nucleosome footprint. A natural way to do this is to assume a
constant energetic binding strength, ε, per unit length of DNA bound to the histone surface.
The energetic favorability of the nucleosome then increases in proportion to the amount of
DNA included. Indeed, this intuitive picture is supported by progressive increase in site
exposure towards the outer edge of the nucleosome. The corollary of this assumption is
that if two adjacent nucleosomes, separated by ∆x bp both admit the possibility of partial
unwrapping, then there exist states in which ∆x < a; the resulting overlap (and consequent
unwrapping of at least one of the two nucleosomes) is characterized by an energetic penalty
we refer to as v(∆x).

With the above context, the supplementary material of Ref. [36] describes the interaction
penalty between two dyads as follows:

“ The available nucleosome positioning data cannot distinguish between different
internal nucleosome states. In our model, we therefore consider the internal de-
grees of freedom as equilibrated and calculate the effective nucleosome-nucleosome
interaction. To that end, we consider two neighboring nucleosome particles with
a given distance ∆x between their dyad positions and sum over the Boltzmann
weights of all states compatible with this distance, defining the partition function

Z(∆x) =
w∑

r,l=0

Θ(∆x− 2w + r + l)e−(r+l)ε , (2.4)

where we use the convention Θ(x) = 1 for x > 0 and Θ(x) = 0 otherwise for
the Heaviside function. The effective interaction free energy v(∆x) between two
neighboring particles is then given by

v(∆x)

kBT
= − log

Z(∆x)

Z(2w + 1)
, (2.5)

where the normalization factor Z(2w+1) ensures that v(∆x ≥ 2w+1) = 0. When
the unwrapping penalty is significant, i.e. in the relevant limit [εw � 1], we can
obtain a simple approximation form for the interaction v(∆x) by extending the
sum in Eq. 2.6 to infinity,

Z(∆x) ≈
∞∑

r,l=0

Θ(∆x− 2w + r + l) e−(r+l)ε =
∞∑

n=0

n∑

j=0

Θ(∆x− 2w + n) e−nε

=

∞∑

n=2w−∆x+1

(n+ 1) e−nε =

(
1− ∂

∂ε

) ∞∑

n=2w−∆x+1

e−nε

=

(
1− ∂

∂ε

)
e−(2w−∆x+1)ε

1− e−ε . (2.6)

Calculating the derivative and then substituting into Eq. 2.5 leads to the desired
approximation for the interaction free energy,

v(∆x)

kBT
≈ (a−∆x)ε−log

[
1 + (a−∆x)

(
1− e−ε

)]
for ∆x ≤ a = 2w+1 , (2.7)
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valid for nucleosome distances ∆x not too much smaller than the interaction range
a = 2w + 1. ”([36], Supporting Information).

The values of v(x) can then be used to supplement the matrix from Eq. 2.1 to yield the
‘soft-core nucleosome gas’ (SoNG) transfer matrix:

TSoNG =




1 eµ 0 0 . . . 0

0 eµ−v(1) 1 0 0

0 eµ−v(2) 0 1 0
...

. . .
...

0 eµ−v(2w) 0 0 1
1 eµ 0 0 . . . 0



. (2.8)

Where the second column describes the state of a given lattice site, given that the neighboring
site (to the right) harbors the beginning of a nucleosome; ∆x then depends on the state at
the present position. Note that in the limit v(x)→∞∀x < a, Eq. 2.8 reduces to Eq. 2.1. As
in the hard-exclusive transfer matrix shown in Eq. 2.1, Eq. 2.8 is not unique. For example, a
useful alternative formulation is

T̃NN =




1 1 0 0 . . . 0 0 0 . . . 0
0 0 1 0 0 0 0 0
...

. . .
...

0 0 0 0 1 0 0 0

0 0 eµN−v(w) eµN−v(w−1) . . . eµN−v(1) eµN 0 . . . 0
0 0 0 0 0 0 1 0
...

. . .
...

0 0 0 0 0 0 1

1 1 e−v(2w) e−v(2w−1) . . . e−v(w+1) 0 0 . . . 0




.

0

1
...

w

w+1

w+2
...

2w−1

2w

(2.9)

where the state numbers of the matrix are indicated sequentially to the right of the matrix
for clarity. Although Eq. 2.8 is more transparent at first glance, Eq. 2.9 will form the basis for
incorporating other binding agents into the system in Chapter 3 (the subscript ‘NN’ signifies
exclusively nucleosome-nucleosome interactions, the only binding factor considered in this
chapter.)

As with the hard-exclusive case, the transfer matrix defines the partition sum of a lattice
array (in this case, a segment of DNA) with periodic boundary conditions as Z = Tr

{
TL
}

.
Explicit calculation of configuration probabilities can now be carried out in a more general
way.

2.3 Configuration Probabilities

The above discussions have described how to explicitly calculate the partition sum of various
1-D systems using the transfer matrix, but have merely alluded to how the probabilities
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of various states can be explicitly determined. Treating nucleosomes as ‘located’ at their
left-most end, we introduce the projection matrix Fs with elements,

Fsij = δi1δij , (2.10)

where s denotes the fact that Fs is composed in the state basis illustrated in Fig. 2.3, or
Fig. 2.2. In either the HaNG or SoNG case, the number of lattice sites in state 1 is then the
number of nucleosomes in the array.

From this point, for notational convenience, a general transfer matrix T is used; the following
derivation applies equally well to THaNG or TSoNG

1. With the above in mind, the probability of

a periodic array of length L containing a nucleosome at a given position is then P1 = Tr{Fs·TL}
Tr{TL} .

Likewise, the two-particle correlation function –i.e. the probability that a particle is found at
position x given that there is one also at position 0– can be written as

ρ(x|0) =
Tr
{
FsT

xFsT
L−x}

Tr {FsTL}
. (2.11)

Although Eq. 2.11 exactly defines the two-particle correlation function in principle, applying
this result to the kind of large systems that are of interest to us in studying long stretches
of genomic data requires further analytic work. For that reason, we note that the trace of a
matrix is invariant under basis transformations and define P as the matrix of column-wise
eigenvectors of T . Naturally, P · P−1 = I, and P−1 · T · P = D, where D is the diagonal
matrix of T ’s eigenvalues in decreasing order -i.e. |λi| > |λi+1| ∀i. The transformation of Fs
into the eigenbasis Fe is, likewise, Fe = P−1 · Fs · P . The denominator of Eq. 2.11 can then
be simplified as follows:

Tr
{
Fs · TL

}
= Tr

{
P · Fe · P−1 ·

(
P ·D · P−1

)L}

= Tr
{
P · Fe · (D)L · P−1

}

= Tr
{
Fe ·DL

}

=
∑

ν=0

(
Feννλ

L
ν

)
(2.12)

(2.13)

using the fact that Tr(B−1AB) = Tr(A). Likewise, the numerator in equation 2.11 becomes:

Tr
{
FsT

xFsT
L−x} = Tr

{
P · Fe · P−1 ·

(
P ·D · P−1

)x · P · Fe · P−1 ·
(
P ·D · P−1

)L−x}

= Tr
{
P · Fe · (D)x · Fe · (D)L−x · P−1

}

= Tr
{
Fe ·Dx · Fe ·DL−x}

(2.14)

1The calculation here applies also for T̃NN from Eq. 2.9, provided nucleosomes are ‘located’ at their dyad,
and the projection matrix is redefined as Fsij = δi,w+1δij .
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From this point, element-by-element inspection is presented in appendix A.1 to yield

ρ(x|0) =
1

Fe00

∑

ν=0

Fe0νFeν0

(
λν
λ0

)x
. (2.15)

Taking the limit x→∞, Eq. 2.15 yields the average density ρ

lim
x→∞

ρ(x|0) = ρ = Fe00. (2.16)

Eq.s 2.15 and 2.16 are valid for nucleosome calculations with arbitrary neighbor interaction,
including the limit of the SoNG model v(∆x) → ∞∀x < a, which is identical to the HaNG
model. In this latter case, Eq. 2.8 reduces to Eq. 2.1, and the Tonks gas case emerges.

Eq. 2.15 suffices as a prediction of nucleosome density in the presence of a nucleosome that
is strongly-positioned, such as the +1 nucleosome downstream from the TSS. However, the
values of Fe and λν depend on µ, a, and in the SoNG case, ε. Constraining these values is
accomplished via least-squares residual from experiment as described in the following section.

2.4 Best-Fit Optimization

We are now in a position to apply the theoretical models above to experimental data, although
doing so requires constraining the fit parameters2 a = 2w + 1, µ, and in the SoNG case, ε.
This is done by minimizing least-squared deviation from experimental data. As with any such
simulation, a minimum of fit parameters is desirable in order to choose the most parsimonious
model, and the resulting values should not be outside the range of physical plausibility.

At first glance, it may seem as though the SoNG model is in a weaker position by this
criteria, owing to the additional fit parameter ε. However, the opposite turns out to be the
case when data from a dozen different species are considered simultaneously, as in Ref.[36].
Here, it is shown that reproducing experimental data with the HaNG model requires unique
values of both µ and a for each species of yeast –one example of these fits is shown for C.
albicans in Fig. 2.4A. While individually fitting µ for each species is justified on the basis of
different physiological densities (for both the HaNG and SoNG models), fitting the footprint
a to each species individually is somewhat more dubious considering the uniform physical
characteristics of nucleosomes across species. Moreover, a scatter plot of the HaNG best-fit
values of a and ρ̄ (which can be mapped one-to-one with µ for any given a) shows a correlation
between the two, as seen in Fig. 2.4(B), which implies that the effective size of the nucleosome
footprint is density dependent, consistent with the SoNG model.

The SoNG model, on the other hand, is much more general. In this case, a single value of a
and ε can be fit to all species simultaneously, and is thus referred to as ‘unified’ in Fig. 2.4C.
Despite this reduced freedom in fit parameters (N+2, in total, for N distinct species compared
to 2N for the HaNG model), the SoNG model still exhibits lower least-squared deviation from
experiment (see Ref. [36], supporting information). The lone exception to this success is the

2the normalization parameter α mentioned in Section 1.1 is assigned analytically, see Ref. [36], supporting
information
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Figure 2.4: Equilibrium nucleosome density downstream from a strongly positioned +1 barrier for
(a) hard and (b) soft-interacting nucleosomes. Each model is fit to a set of parameters,
however hard nucleosomes exhibit a correlation in the best-fit parameter results that seem
to indicate a correlation between density and effective size. This observation would seem
to imply that the effective size has some degree of plasticity. Adapted from Fig. 2 of
Ref. [36].

species K. lactis, which exhibits an anomalously high nucleosome repeat length, for reasons
that remain unclear.

Taking best fit parameters with experimental data, the SoNG footprint size a = 165 is
consistent with the canonical 147 bp binding length with ≈20bp of linker DNA, and happens
to also coincide very closely with early predictions of the nucleosome size[10]. The same
fitting procedure also produces an optimal binding energy of ε = 0.15kBT/bp, consistent
with independent experimental measurement[44].

Our derivation of the interaction potential v(∆x) assumed competition between histones for
DNA binding at the bp level, while other theoretical studies [49] have explicitly included a
tendency toward 10-bp unwrapping based on the observation that linker lengths are prefer-
entially quantized[50]. Here, it is important to note that ε is intended only to represent the
average unwrapping penalty of nucleosomes per bp without rigorously exploring the state-
space of possible bonds between helical DNA and the adjacent histone surface. In addition
to this, two further subtleties of this model and corresponding fitting procedure have been
omitted from the above discussion.

The first relates to the precision of +1 nucleosome position used as a ‘barrier’. Despite
the relatively strongly positioning of the +1 nucleosome, its finite positioning uncertainty
necessitates taking a finite ‘spread’ of Eq. 2.15 to define a reference point for the barrier at
x = 0. Details such as this (including, e.g. the domain of analysis downstream from each
genes, etc.) are discussed in more detail in the supporting information of Ref. [36], but are
not essential to understand the main findings.

Secondly, the above models implicitly assume that the oscillatory pattern in nucleosome
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density near the +1 barrier is the result of a gas-like ‘pressure’ that stacks nucleosomes into
regular arrays as they are preferentially adsorbed. This description fails to account for the
preservation of the pattern under conditions of reduced-density histone measurements that
has been shown experimentally [18]. Separate calculations accounting for these observations
form the basis of the next section.

2.5 Kinetic Simulation

While the predictions of the Transfer matrix calculation shown above are excellent predictors
of equilibrium nucleosome distribution near a boundary at physiological densities, they are
explicitly equilibrium calculations done in a closed, energy conserving system.

Biological cells, however, are much more dynamic, and continually make use of ATP-consuming
remodelling machines to regulate the arrangement of histones on the DNA[25], resulting in
a steady state, but not necessarily equilibrium pattern. The previous section supposes that
the strongly-oscillating density pattern of nucleosomes near the beginning of genes, as shown
in Fig. 2.4 is the result of an effective ‘pressure’ from particles being crammed onto the one-
dimensional substrate. It would stand to reason, then, that a reduction in the overall density
of particles would alleviate this pressure and remove the pattern. In fact, experimental stud-
ies have shown that even with a substantial reduction in histone density, density oscillations
downstream from genetic promoter regions persist[18].

To account for this observation, a Monte-Carlo-based kinetic simulation is employed based
on the Gillespie algorithm, a resource which has become part of the standard set of tools in
statistical physics [51]. In this simulation, a lattice of length L is used to represent DNA
with all sites available for nucleosome formation with histones from bulk. The resulting
event-based dynamics use rates of addition, removal and induced sliding (passive sliding rates
are negligible) determined by the Boltzmann factors of the energetic difference between the
two states. For example, Fig. 2.5 illustrates states 1 and 2 with internal energy V1 and V2

respectively; these latter quantities include all chemical and interaction energies inherent in
the corresponding state. The transition rates between the two, r1→2, and r2→1 satisfy detailed
balance:

r1→2

r2→1
= e

V1−V2
kBT . (2.17)

Provided all sites in the array allow for reversible adsorption with rates analogous to Eq. 2.17,
and provided a single ‘barrier’ particle is fixed in position at x = 0, the resulting time-average
of particle occupation throughout the system is identical to the equilibrium results deter-
mined by the transfer matrix in Eq. 2.15. This method, however, allows for the addition of
non-equilibrium processes. For example, remodellers that expend energy to serve a spacing
role between adjacent nucleosomes by direct interaction between two neighboring nucleo-
somes have been proposed experimentally[52]. This is just one of many possible models, and
there are also other remodeller mechanisms that promote regular spacing[53]. Based on this
mechanism, the above kinetic simulation incorporates an additional rate of remodeling krm
which serves to reproduce the steady-state oscillatory density pattern (and long-range hetero-
geneity) of nucleosomes at low average densities that is seen experimentally[18]. However, it
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Figure 2.5: Example of two states of an array with transitions representing addition or removal of the
particle to the right.

produces negligible change to the density pattern at physiological densities at the same level
of activity[36]. Fig. 2.6 illustrates the relative change in density patterns introduced by such
remodellers under conditions of different average densities

Taken together, the above results summarize the major findings from reference [36] concerning
the nucleosome density pattern downstream from a barrier for 12 species of yeast using the
HaNG and SoNG models; the full report contains a more comprehensive description that
concludes this chapter.



18 2. The Equilibrium Nucleosome Gas Model

A

1/ρ = 175 bp
krm = 0

krm = 0.08

krm = 0
krm = 0.08

k rm

B

C

nu
cl

eo
so

m
e 

 d
en

si
ty

1/ρ = 300 bp
0.01

0.02

250 500 750 1000 1250 1500

distance from reference nucleosome [bp]

0.01

0.02

Figure 2.6: Adapted from Ref.[36]. Time averaged Gillespie simulations of 2-nucleosome correlation
function at high(b) and low(c) average nucleosome density with and without remodelling
based on an experimentally proposed remodeling mechanism[52] sketched in (a). At high
density, the remodellers have little effect, while at low density the strongly positioned +1
nucleosome creates a kind of ‘seed’ for clustering that preserves patterning.
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Recent genome-wide maps of nucleosome positions in different
eukaryotes revealed patterns around transcription start sites fea-
turing a nucleosome-free regionflanked by a periodicmodulation of
the nucleosome density. For Saccharomyces cerevisiae, the average
in vivo pattern was previously shown to be quantitatively described
by a “nucleosome gas” model based on the statistical positioning
mechanism. However, this simple physical description is challenged
by the fact that the pattern differs quantitatively between species
and by recent experiments that appear incompatible with statistical
positioning, indicating important roles for chromatin remodelers.
We undertake a data-driven search for a unified physical model to
describe the nucleosome patterns of 12 yeast species and also con-
sider an extension of the model to capture remodeling effects. We
are led to a nucleosome gas that takes into account nucleosome
breathing, i.e., transient unwrappingof nucleosomal DNA segments.
This known biophysical property of nucleosomes rationalizes a
“pressure”-induced dependence of the effective nucleosome size
that is suggested by the data. By fitting this model to the data, we
find an average energy cost for DNA unwrapping consistent with
previous biophysical experiments. Although the available data are
not sufficient to reconstruct chromatin remodeling mechanisms,
a minimal model extension by one mechanism yields an “active
nucleosome gas” that can rationalize the behavior of systems with
reduced histone–DNA ratio and remodeler knockouts. We there-
fore establish a basis for a physical description of nucleosome pat-
terns that can serve as a null model for sequence-specific effects
at individual genes and in models of transcription regulation.

nucleosome maps | chromatin structure | quantitative biology

Chromatin is a highly dynamic object and the substrate for
molecular processes such as transcription, gene regulation,

and DNA replication. Finding adequate model representations
for chromatin is challenging, because static structural models are
insufficient, and the data required to construct molecular-scale
chromatin movies are not within reach. However, conformation-
capturing techniques combining biochemical cross-linking and
whole-genome mapping provide intriguing statistical information
about chromatin conformations. Proximity-based cross-linking of
different DNA loci probes the large-scale conformations of
chromosomes (1), whereas histone–DNA cross-linking probes
conformations on the scale of the 10-nm chromatin fiber (2–5).
Such experiments collect a large number of molecular inter-
actions from a population of cells, thereby taking samples from
the underlying conformational probability distributions. Hence,
these methods inherently lead to a statistical representation of
chromatin, which does not explicitly describe the dynamics but
instead describes the resulting conformational distribution. A
key challenge then is to identify biophysical models that are
consistent with the observed conformational distribution.
Here, we consider this question for the statistical distribu-

tion of nucleosomes along the DNA. Genome-wide nucleosome-
mapping experiments yield a robust pattern upon averaging over
a large set of genes aligned at the transcription start site (2–5). It
displays a “nucleosome-free region” (NFR), roughly 200 bp wide,

and an oscillatory flanking pattern in the direction of transcription.
A pattern of this qualitative form has been identified in several
multicellular organisms, but is best studied in yeasts (6). TheNFRs
are likely functionally important, because they affect the access to
DNA target sites for factors that regulate and initiate transcription
(3–5). Our focus here is on the flanking pattern, a periodic mod-
ulation of the nucleosome density, with each peak corresponding
to a single nucleosome and an amplitude that decays with distance
from the NFR. The average over genes removes gene-specific
features and exposes generic physical properties of the 10-nm fiber
(7, 8). For the yeast Saccharomyces cerevisiae, it was shown (8) that
realignment of the genes by their+1 nucleosome (first nucleosome
downstream of the NFR) yields a pattern that is quantitatively
compatible with that of the barrier nucleosome model (9) based
on the “statistical positioning” mechanism (10). Moreover, re-
aligning the genes by their −1 nucleosome (first nucleosome up-
stream of the NFR) also revealed an upstream oscillatory pattern,
which is compatible with that of the same quantitative model.
However, this simple physical interpretation of the pattern is

challenged by two sets of experimental observations: First, the
quantitative characteristics of the in vivo pattern vary considerably
from species to species, even within a set of yeast species (6),
raising the question of whether this variation can indeed be un-
derstood in simple physical terms. The general physical framework
[within which the Kornberg–Stryer model (10) constitutes a spe-
cial case] is that of one-dimensional (1D) gas systems, consisting of
interacting particles confined to a line (11, 12). Within this
framework, is there a single model that consistently explains all
patterns? Second, recent experiments have shown in vitro (13)
and in vivo (14) that the formation of the native nucleosome
pattern requires the action of remodeling enzymes. Moreover,
reduction of the histone–DNA ratio in vitro (13) or in vivo (15)
does not lead to a concomitant increase in the typical nucleosome
spacing, as would be expected for statistical positioning. Do these
observations invalidate the entire 1D gas framework or just the
specific Kornberg–Stryer model?
Here, we address these questions, using a data-driven approach,

based on whole-genome nucleosome maps for 12 yeast species (6)
(Fig. 1). We find that the species-to-species variation of the pat-
terns cannot be naturally explained within the Kornberg–Stryer
model. In particular, it cannot rationalize a conspicuous trend
in the data: The effective width of the nucleosome core particle
decreases as the mean nucleosome density increases. This obser-
vation leads us to an extension of the model that takes into account
nucleosome breathing (16–20), the spontaneous transient
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unwrapping of nucleosomal DNA from either end of the fully
wrapped nucleosome “ground state” represented by the crystal
structure (21). This “soft-core” nucleosome gas model has a cru-
cial new biophysical parameter, the mean energy e per base pair
required to unwrap nucleosomal DNA. It rationalizes the density
dependence of the effective nucleosome width as pressure-
induced transient unwrapping of nucleosomes. This explanation
does not require rapid equilibration of nucleosome positions
within single cells, because the data provide snapshots of in-
dependent configurations from many cells. Interestingly, the
value for the unwrapping energy e that we infer from the in vivo
nucleosome maps agrees with the range of values obtained from
biophysical experiments with single-nucleosome core particles.
We also show that the soft-core nucleosome gas model can be
reconciled with the recent experiments (13–15) probing the de-
pendence on the histone–DNA ratio and the role of remodelers:
Adding a dinucleosome-remodeling mechanism to the model
does not significantly affect the native in vivo pattern, but renders
the typical nucleosome spacing insensitive to the histone–
DNA ratio.

Model
Our analysis is based on the working hypothesis that nucleosome
arrangements in the 10-nm chromatin fiber can be appropriately
described, on a coarse-grained physical level, within the theory of
1D interacting gas systems (12). This description projects the
complex molecular interactions among DNA and histones in 3D
onto a 1D configurational space. Here, we assume a free energy
function of the form

E
��

xj
��

=
X
i

uðxiÞ+
X
i

vðxi+1 − xiÞ; [1]

which assigns an energy value to a collection of nucleosome
positions {xj}. Each xj is the position of a nucleosome dyad along
the DNA and nucleosomes are indexed by order on the DNA
(x1 < x2 < . . . <xN). The total number of nucleosomes, N, is not
fixed, but may vary from cell to cell and in time. The potential
u(x), which acts on each nucleosome individually, is a genomic
free energy landscape subsuming cis and trans effects biasing
nucleosome positions (3). The pair interaction v(x) describes
the steric exclusion of nucleosomes as well as other mutual inter-
actions. In Eq. 1, we have restricted v(x) to neighboring nucleo-
somes. (Additional longer-range interactions due to higher-order
chromatin structure are likely, but their effect on the nucleosome
patterns appears to be minor, because we find below that a near-
est-neighbor–based interaction already describes the available

data well.) The Kornberg–Stryer model, which corresponds to
the Tonks gas in physics (11), is obtained when v(x) describes
a perfect steric repulsion, i.e., v(x) = ∞ for x < b and v(x) = 0
otherwise (with b ∼ 147 bp), whereas the energy landscape is
flat, u(x) = 0, except at isolated “barrier” positions on the genome
where u(x) takes on large positive values.
Although the standard theory of 1D interacting gas systems

deals with equilibrium systems (12), it is clear that due to the ac-
tion of various active remodelers, chromatin is an active system. In
general, a single energy function of the type Eq. 1 will therefore
not suffice to correctly describe the nucleosome distribution at
different histone-DNA ratios. Instead, active mechanisms, each
characterized by a ‘move’ within the space of nucleosome config-
urations and an associated kinetic rate, then need to be added on
top of the equilibrium model (22). For active and equilibrium
systems alike, the experimentally relevant observable is the local
nucleosome density

ρðxÞ=
�X

i

δðx− xiÞ
�
; [2]

i.e., the probability of finding a nucleosome positioned at x. For
the experimental data, the angular brackets〈. . .〉denote an
average over different cells, whereas the average is over the
appropriate statistical ensemble in the theoretical model (the
grand-canonical ensemble for equilibrium systems and the en-
semble of steady-state configurations for active systems).
An important general property of dense 1D interacting gas

systems is that local perturbations can produce longer-range
effects. Specifically, a local peak in the potential landscape u(x),
repulsive or attractive, can trigger an oscillation in ρ(x) over
a range of many nucleosomes, due to a statistical “domino effect,”
where the positioning of a nucleosome constrains its neighbor and
the latter its neighbor in turn. In physical terms, oscillatory be-
havior of ρ(x) results from the interplay of entropy and steric
repulsion: Because the same DNA position cannot simulta-
neously be incorporated into two nucleosomes, the nucleosome
footprints on the DNA exclude each other, whereas a large gap
between neighboring nucleosomes reduces the configurational
space for the remaining nucleosomes and is therefore entropically
unfavorable. For S. cerevisiae, a parsimonious explanation of the
experimental ρ(x) in the vicinity of transcription start sites (TSS)
assumes an asymmetrically shaped potential u(x), where the +1
nucleosome is directly positioned with a localized attractive peak
(negative potential), whereas the −1 and upstream nucleosomes
are statistically positioned by a repulsive potential within the NFR
(8). Because the experimental pattern results from an alignment
and average over a large set of genes, this shape of u(x) appears to
be common to most genes. Additionally, there may well be other
features in the genomic u(x) landscape, e.g., also within the
coding regions, which vary from gene to gene such that they do
not significantly affect the average pattern.
The precise form of the oscillatory pattern depends on the shape

of the peak in u(x) that defines the boundary condition for the
pattern (8). One can infer the most likely local shape of u(x) that
positions the+1 nucleosome from the experimental shape of the+1
peak in the average density. [For simplicity, in our calculations
reported below, we take this boundary effect into account via a
convolution of the idealized theoretical pattern for a sharply peaked
uðxÞ with the shape of the experimental +1 peak (SI Appendix).] In
the following, we use the term hard-core nucleosome gas (HNG)
model to refer to the Kornberg–Stryer–Tonksmodel supplemented
by this boundary condition (“HNG” is chosen in contrast to the soft-
core model introduced in Soft-Core Nucleosome Gas Model below).
By the logic of Occam’s razor, we seek to identify the simplest and
most plausible combination of an energy function, Eq. 1, and active
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Fig. 1. Average nucleosome density patterns downstream from the +1
nucleosome for 12 yeast species, based on the data of ref. 6. To estimate the
physical nucleosome density and enable direct comparison across species,
the raw data are normalized by an estimated sequencing depth; see SI Ap-
pendix for details. To facilitate comparison, the patterns are smoothed by
a running average over 11 bp.

5720 | www.pnas.org/cgi/doi/10.1073/pnas.1214048110 Möbius et al.



mechanism(s) that can rationalize the nucleosome patterns from
different species and in vitro experiments.

Results
Quantitative Data Analysis. Fig. 1 shows the average nucleosome
pattern flanking the NFR on the downstream side, for each of the
12 different yeast species of ref. 6. Here, instead of aligning at the
TSS, we used the most likely +1 nucleosome position at each gene
as an alignment point (SIAppendix). In terms of the physicalmodel,
the +1 nucleosome is our reference particle, whereas the TSS
cannot be mapped to a physical feature (8). All of the patterns in
Fig. 1 have the same qualitative shape, a decaying oscillation, but
the quantitative characteristics differ significantly (6). To test
whether these differences are due to variation of gene expression
level or gene length, we used the data of ref. 6 to compare, for
each species, the patterns of genes with high and low expression
levels and the pattern of the long genes with the average over all
genes (SI Appendix, Figs. S1B–S12B). This reveals two trends: (i)
Genes with high expression levels display a pattern that appears
“compressed”; i.e., nucleosomes have a smaller spacing than for
low expression levels. (ii) Longer genes display a more pro-
nounced pattern, i.e., larger peak amplitudes at equal spacing.
Although these trends are consistent with previous observations
(3–5), both effects are relatively small compared with the species-
to-species differences.
To test whether the HNG model can rationalize the different

patterns, we fitted it using the average nucleosome density ρ as an
adjustable parameter. Because ρ controls the peak-to-peak dis-
tances in the pattern and it is well known that the average nucle-
osome spacing in coding regions is variable between yeast species
(6, 23), a species-to-species variation in ρmight already explain the
observed patterns. We recovered the previous finding that the
HNG model describes the S. cerevisiae pattern relatively well (8),
as quantified by the mean-square deviation, δ2. However, the fit
was poor for some of the other species, especially Kluyveromyces
waltii, Kluyveromyces lactis, and Debaryomyces hansenii (SI Ap-
pendix, section IV and Figs. S1A –S12A and S13).
To elucidate this failure of the HNG model, we allowed the

effective DNA footprint size of nucleosomes to be adjustable as
well (b was previously fixed at 147 bp). With the additional
parameter, we obtained good fits for all patterns; see Fig. 2A for
an example and SI Appendix for complete results. As shown in Fig.

2B, these fits yield a range of parameter values, with average re-
peat lengths 1=ρ between 163 and 182 bp and effective DNA
footprint lengths b from 138 to 158 bp. Given that the nucleosome
structure has a well-defined 146- to 147-bp length of nucleosomal
DNA (21) and the histone sequences are highly conserved, the
large spread in b indicates that the model does not fully capture
the physical behavior of the 10-nm chromatin fiber. Indeed, Fig.
2B shows that the two fitted parameters are not independent
(correlation coefficient r = 0.82), suggesting that the model misses
an essential property of the system. Additional analysis (SI Ap-
pendix) confirms that this correlation is not an experimental or
a computational artifact.
One biophysical property neglected by the HNG model is the

dynamic nature of the nucleosome structure: It is well known that
the ends of nucleosomalDNA transiently unwrap from the histone
core driven by thermal fluctuations (16, 18–20), even in the
chromatin context (17). This “nucleosome breathing” reduces the
average histone-bound DNA length in a nucleosome below that
in the crystal structure. Importantly, physical reasoning suggests
that the size of this reduction should depend on the nucleosome
density: A high density corresponds to a large effective “pressure”
of the nucleosome “gas”, which induces more unwrapping. This
intuitive picture is indeed applicable even when the dynamics of
nucleosome sliding along the DNA are slow, because (i) the ex-
perimental patterns are generated from many “snapshots” of
nucleosome configurations in different cells and (ii) the picture
depends only on the equilibrium statistics, not the dynamics, of
the system, with the unwrapping resulting from an energy–
entropy trade-off (see below).

Soft-Core Nucleosome Gas Model.To test whether this physical effect
can quantitatively explain the data, we devised a “soft-core nucle-
osome gas” (SNG) model, which accounts for nucleosome breath-
ing. In the SNG model, nucleosomes have two internal degrees of
freedom corresponding to the amount of unwrapped DNA on each
side of the dyad (Fig. 3A). Unwrapping has a free energy cost e > 0.
Consequently, two adjacent nucleosomes at a given distance
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Fig. 2. (A) Overlay of the C. albicans pattern (gray dots) with its best HNG
model fit, where particle size b and mean density ρ are independently var-
ied. (B) Parameter pairs ðρ;bÞ of the best HNG model for each species (cir-
cles). The nucleosome width b displays a positive correlation with the
average repeat length 1=ρ (Pearson’s correlation coefficient r = 0.82 for all
species and 0.78 for all but K. lactis). The dashed line is a linear fit to all data.
(C) Similar to A, but with the unified SNG model, where only ρ is in-
dependently fitted for each species.
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Fig. 3. Soft-core nucleosome gas (SNG) model. (A) A single soft-core particle
has a maximal footprint a. DNA can unwrap from both ends, up to a maxi-
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“breathing” dynamics lead to a reduced typical footprint size (illustrated by
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that contribute to the effective nucleosome–nucleosome interaction free
energy v(Δx) at a given distance Δx between the dyads. (C) This interaction is
plotted for our consensus parameter values (w = 83 bp, e = 0.1525kBT/bp).
The approximation of Eq. 3 (gray line) matches the exact form (red line) in
the relevant regime of small free energy.
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Δx = xi+1 − xi between the dyads can be in a number of different
internal states, as illustrated in Fig. 3B. Without any unwrapping,
they cannot be closer than a certain minimal distance a. For Δx <
a, at least a − Δx bp must unwrap, which can be split between the
left and the right particle. A priori, we expect that a is larger than
147 bp, because a configuration without unbound (linker) DNA
between two nucleosomes is difficult to achieve given the steric
constraints of chromatin. After summing over the internal states,
which are not observed in the experiments, we obtain an interaction
free energy for neighboring nucleosomes at distance Δx ≤ a,

vðΔxÞ≈ ða−ΔxÞe− kBT ln
h
1+ ða−ΔxÞ

�
1− e−e=kBT

	i
; [3]

whereas v(Δx) remains 0 for Δx > a. The first term of this “soft-
core potential” is enthalpic, whereas the second term is entropic,
accounting for the different internal states. Eq. 3 is an approxi-
mate expression valid for Δx � 1 bp (SI Appendix). Fig. 3C
displays both the exact and the approximative v(Δx) with repre-
sentative parameter values. Within the general theory of 1D gas
models, our SNG model falls into the class of “Takahashi near-
est-neighbor gases” (12). All of its statistical properties can be
calculated exactly, using standard techniques from statistical
physics. Conceptually similar models were considered by Chou
(24) and Teif et al. (25). Lubliner and Segal showed that taking
into account interactions between adjacent nucleosomes can im-
prove DNA sequence-based prediction of nucleosome occu-
pancy (26).
We first fitted the SNG model separately to each species, with

the average nucleosome density ρ, the unwrapping energy e, and
the interaction range a as adjustable model parameters. The best-
fit parameters and the fit quality are indicated with orange bars in
Fig. 4, and the individual patterns are shown in SI Appendix, Figs.
S1A–S12A. SI Appendix, Fig. S13 compares the fit qualities of all of
the models considered so far: As expected, the SNG model shows
a dramatic improvement over the restricted HNGmodel (fixed b).
It describes the experimental patterns about equally as well as the
HNG model with adjustable b. Importantly, the SNG model
appears to correctly capture the physical behavior of the system:
(i) The average repeat lengths 1=ρ determined from the SNG
model agree well with the peak-to-peak distances in the experi-
mental patterns, whereas the repeat lengths determined from the
HNG model are significantly longer (SI Appendix, Tables S2 and
S3). (ii) The inferred unwrapping energies e are in excellent
agreement with biochemical measurements of DNA unwrapping,
which indicate a free energy cost of about 1.5 kBT for the

unwrapping of 10 bp (27). (iii) The inferred interaction ranges a=
2w + 1 are roughly 20 bp larger than the DNA length of the nu-
cleosome core particle. In other words, already before the DNA
footprints of neighboring nucleosomes overlap, they experience
a weak repulsive interaction. Physically, such a repulsion arises,
e.g., from the geometrical constraints that reduce the conforma-
tional space of a nucleosome pair at short distances.
So far, the SNG model appears to share with the HNG model

the conceptual problem of species-specific histone properties de-
spite the high degree of histone conservation: Not only the nu-
cleosome spacings, but also the best-fit unwrapping energy and
interaction range vary from species to species (Fig. 4). However,
intuition suggests that larger particles with strong breathing can
yield the same average particle size as smaller particles that
breathe little; i.e., a decreased e may be compensated for by an
increased w. We therefore asked: Can the histone properties w
and e be constrained to be universal for all species without losing
the quality of the description? This “unified SNG model” has
a substantially reduced number of adjustable parameters for the
description of all data compared with the SNGmodel or theHNG
model with variable particle width, because only the average
nucleosome density ρ remains as a species-specific physical pa-
rameter. When performing this constrained and simultaneous
optimization, we found that the unified SNG model can describe
the data almost equally as well as the SNGmodel itself, except for
the case of K. lactis, which we excluded in this analysis (discussed
below). We find a unified binding energy of e = 0.1525 kBT/bp and
a maximum wrapping length of w = 83 bp corresponding to a uni-
fied interaction range of a = 167 bp. The resulting ρ-values and fit
qualities δ2 are shown in Fig. 4 (blue bars) and the individual
patterns as well as the comparison with the HNG models are in
SI Appendix.
As speculated above, when moving from the SNG to the unified

SNG model, an increase in e is typically accompanied by a de-
crease in a and vice versa without a severe drop in fit quality. This
trend is particularly clear in the case of K. waltii and Candida
albicans. In contrast, K. lactis is abnormal in this respect, because
the individually estimated values for e and a are both exceptionally
high, suggesting that nucleosomes in K. lactis breathe less or in-
teract over a larger range than in other yeast species. Accordingly,
the unified SNGmodel for the other 11 yeast species describes the
K. lactis data poorly (Fig. 4 and SI Appendix). The abnormal be-
havior of K. lactis could have various mechanistic origins, as dis-
cussed below. Because the average nucleosome spacing generally
shows a (weak) dependence on gene expression level, one possible
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Fig. 4. Bar graph of the parameter values for the species shown in the phylogeny as inferred from the independent (orange) and unified (blue) SNG models.
The rightmost column shows the mean-square deviation δ2 between experimental and model patterns. For the unified SNG model, the interaction range
a and binding energy e are global parameters (inferred values indicated by vertical blue lines). The average repeat length 1=ρ is a species-specific parameter in
both cases. K. lactis is the only species displaying poor agreement with the unified model and was not included in the optimization of the global parameters.
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origin could be related to gene expression. SI Appendix, Fig. S14
separately compares the patterns of genes with high and low ex-
pression levels between K. lactis and S. cerevisiae. Because K. lactis
displays a larger spacing than S. cerevisiae at high and low ex-
pression levels alike, the abnormal behavior of K. lactis is unlikely
related to gene expression.
Does the unified SNG model indeed display the pressure-

induced unwrapping effect postulated above? To address this
question, SIAppendix, Fig. S15 shows the effective footprint size aeff
(ensemble average over all configurations) as a function of the
inverse density 1=ρ (average repeat length). Over the relevant
range of 1=ρ, from 158 to 178 bp for the 11 species included in the
unified model, aeff varies between 144 and 151 bp. Hence, we find
pressure-induced unwrapping to be a relevant effect. As an aside,
we note that spontaneous and pressure-induced unwrapping could
also significantly contribute to the recently observed broad distri-
bution of micrococcal nuclease-protected DNA sizes in paired-end
sequencing studies (28) (in addition to the existence of other types
of particles).
Although the SNG model yields a surprisingly accurate de-

scription of the different in vivo nucleosome patterns within the
same physical model, it leaves open a number of important
questions. An immediate question is why K. lactis does not fit into
the unified model, especially because it is not at an extremity of
the phylogenetic tree (Fig. 4). It was previously found that the
nucleosome repeat length of K. lactis is 16 bp longer than that of
S. cerevisiae (23), which was speculated to be due to an abundant
use of the linker histone H1 in K. lactis. This would indeed
explain a concomitant increase of average nucleosome spacing
and apparent nucleosome width. Whereas the mRNA level of the
H1 ortholog in K. lactis is similar to that of H1 in S. cerevisiae (6),
a significant difference in H1 abundance could arise at the post-
transcriptional level. Alternatively, the behavior of K. lactis could
be rationalized by histone modifications that make DNA un-
wrapping energetically more costly and the apparent nucleosome
width larger than in the other yeast species (Fig. 4).

Remodeling Enzymes. We have seen that under in vivo conditions
the nucleosomes effectively behave like a 1D gas of interacting
particles, at least with respect to the observables considered so
far. This does not imply that the 10-nm chromatin fiber actually
is an equilibrium system with such simple interactions. The true
mix of molecular mechanisms that produce the effective in vivo
behavior is only beginning to be disentangled experimentally (29)
and in physical models of nucleosome organization (22). An in
vitro reconstitution of in vivo-like nucleosome patterns was
shown to be dependent on ATP and on factors acting in trans
(13). Moreover, a reduction of the histone–DNA ratio by 50% in
vitro (13) and ∼30% in vivo (15) surprisingly left the typical
nucleosome spacing close to TSSs largely unchanged. This find-
ing is clearly at odds with pure statistical positioning, which pre-
dicts an increased spacing for reduced nucleosome counts.
Instead, Zhang et al. (13) suggest an active packing mechanism
mediated by remodeling enzymes, e.g., a dinucleosome packing
mechanism of the type suggested for the imitation switch family
remodeler ISW1a (30). We now explore the possibility that such
a packing mechanism acts in addition to the mechanisms of the
SNG model.

Active SNG model. As a minimal extension of the SNG model, we
introduce a remodeler that randomly binds, at rate kRM, to two
adjacent nucleosomes and actively pulls one of them closer to the
other (by 1 bp). This “active SNG model” is illustrated in Fig. 5A;
see SI Appendix for details. We assume the remodeler has a max-
imal reach such that it can bind if the distance between the nu-
cleosome dyads is up to 4w. Although it has no intrinsic directional
bias, an apparent packing toward the +1 nucleosome can emerge
indirectly: The dinucleosome mechanism mediates an attraction

between nucleosomes, creating variable-sized nucleosome clusters
anywhere on the DNA. A strongly positioned +1 nucleosome
seeds such a cluster and effectively pins its position. To illustrate
the model behavior, SI Appendix, Fig. S16 shows the time evolu-
tion of a typical simulation. The emerging average pattern down-
stream of a well-positioned (+1) nucleosome is shown in Fig. 5B
for a normal histone–DNA ratio, whereas Fig. 5C shows the pat-
tern obtained at a significantly reduced nucleosome count. To
expose the effect of the remodeler, Fig. 5 B and C show not only
the pattern with remodeling (dashed line, kRM = 0.08 in units of
the intrinsic sliding rate of nucleosomes), but also that for kRM = 0
(solid line). Strikingly, the remodeler has virtually no effect on the
nucleosome pattern at the normal histone–DNA ratio (whereas it
is crucial at the reduced ratio to maintain the phasing). Intuitively,
the compressing effect of the remodeler is weak compared with
the gas pressure of the SNGmodel at high density. This behavior is
not sensitive to the precise choice of kRM, because the nucleosome
gas pressure rises steeply at high densities.

Discussion
The active SNG model is compatible with the preserved nucleo-
some spacing at reduced histone abundance (13, 15) and the
seemingly contradictory finding that the normal in vivo nucleo-
some pattern is well described by the barrier nucleosome model
without explicitly accounting for remodelers (7–9). The model
predicts that a reduced histone abundance produces a slight
downward slope in the average nucleosome pattern; i.e., the os-
cillatory density decays to the reduced average value at long
distances from the reference nucleosome (SI Appendix, Fig. S17).
Physically, this is a signature of the formation of nucleosome
clusters, which have a statistically distributed cluster size, such
that the likelihood of leaving the cluster of the reference nucle-
osome increases with distance. The in vivo data of Celona et al.
indeed suggest this trend; compare figure 7B in ref. 15.
Further clues about the physical mechanisms underlying (yeast)

nucleosome patterns are provided by the experimental findings
that (i) in vitro reconstitution of an in vivo-like nucleosome
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Fig. 5. Active SNG model. (A) Illustration of the kinetic model for the
coupled dynamics of passive nucleosome sliding and active remodeling.
Sliding occurs in 1-bp steps and is constrained by the soft-core nucleosome
interaction (relative rates set by the energetics of interaction with neigh-
bors; larger arrows indicate faster processes). Active remodeling is mediated
by remodelers acting on dinucleosomes (represented by “tweezer” symbols).
A remodeling move brings two neighboring nucleosomes closer to each
other by 1 bp, by randomly moving one of the two nucleosomes. (B and C)
At physiological histone density (B) remodeling at moderate rates has no
effect on the nucleosome pattern, whereas at low density (C) the pattern is
maintained only with remodeling.
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pattern requires whole-cell extract and ATP (13) and (ii) a com-
bined knockout of several remodelers shows a clear phenotype in
the average nucleosome pattern, whereas individual knockouts
have mild effects (14). Given that both observations are at
a physiological histone–DNA ratio, they can be rationalized ki-
netically only within the active SNG model: As previously pointed
out (22), the intrinsic dynamics of nucleosomes, i.e., fluctuation-
induced unbinding and diffusion along DNA, are too slow to
equilibrate their positions on the relevant timescales of cell di-
vision or in vitro experiments. The remodelers could significantly
speed up these dynamics, such that even at the normal histone–
DNA ratio an in vivo-like nucleosome pattern cannot be gener-
ated in time without active remodelers.

Conclusions
Our results support a physical interpretation of the statistical
distribution of nucleosomes around TSSs, where nucleosomes are
viewed as particles with a soft repulsive core in a 1D space. Al-
though this description ignores higher-order interactions between
nonadjacent nucleosomes, it captures in vivo patterns of different
yeast species surprisingly well. The behavior of mutant and in vitro
systems as well as the dynamic process of nucleosome pattern
formation can be understood by introducing remodeling enzymes
into the model, which constitute active components in the 1D

nucleosome gas. We proposed one such active component that
effectively leads to an attraction between nucleosomes. In-
terestingly, it can rationalize several key observations in mutant
and in vitro systems while retaining the model behavior in the
parameter regime corresponding to the in vivo situation. We note
that an effective attraction can also be produced through mo-
lecular mechanisms other than dinucleosome remodeling. In
particular, nucleosome interactions via higher-order chromatin
structure could also contribute to this attraction (31–33). Taken
together, we believe the active SNG model currently provides the
most comprehensive physical description of nucleosome patterns
in yeasts, although it is far from a truly mechanistic description of
the system. We see several practical uses for the model, e.g., as
a physical “null model” for future gene-by-gene analyses of nu-
cleosome positioning and as a component in mechanistic models
for transcription regulation in yeast.
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3 An Equilibrium Two-Component Gas Model

While histones are the most prevalent binding agent along the genome (for yeast as well as
other eukaryotes), other proteins, such as transcription factors (TF), are also present and
compete for binding sites along the DNA. Transcription factor binding, for example, has been
shown to be correlated with the nucleosome free region (NFR) in the promoter regions, not
only due to direct competition for binding sites, but also partly due to their recruitment of
remodellers [54, 55]. The distribution of DNA-binding proteins in the promoter region has
been shown to play an important regulatory role in transcription initiation[28, 56, 57, 20, 58,
59]. Furthermore, it has been demonstrated that changing cell conditions triggers changes in
the binding pattern near the promoter regions[60]. The interplay between transcription and
chromatin structure in the promoter region has even been proposed as a means of designing
synthetic gene circuits[61].

In this chapter we extend the one-dimensional model of competitive site-binding into a two-
component lattice gas model to reflect the interaction of smaller, usually specifically binding,
TFs. To motivate this work, experimental data of shifted nucleosome profiles was gathered
from published data and compared to TF binding positions in the course of Ref. [62]. The
competitive binding of TFs and nucleosomes is particularly relevant in the context of our
SoNG model from the previous chapter since it is known that transient unwrapping from the
end of the nucleosome can allow for TF binding to positions that would otherwise be occluded
in the HaNG model[40, 63, 45].

It has also been shown that multiple TFs whose binding sites overlap with the same nucle-
osome bind cooperatively, as they work together to displace a single nucleosome [64]. Cal-
culations presented below suggest that similar effective cooperativity can even exist between
transcription factors whose binding sites are separated by several intervening nucleosomes.
As we will see below, shifted nucleosome patterns under the influence of one TF can affect the
availability of sites for others. We refer to this interplay as nucleosome-mediated cooperativity
between TFs and provide a quantification (first presented in Ref. [65]) of this effect.

3.1 Equilibrium Calculations

To incorporate TFs into a theoretical model of lattice binding, it is necessary first to con-
struct an interaction potential between the two species, just as the nucleosome-nucleosome
interaction potential was used in the previous chapter. Previous studies of TF-nucleosome in-
teraction have assumed hard-exclusion in DNA binding (analogous to our HaNG model)[54].
It has been demonstrated experimentally, however, that site exposure (and availability for
TF-binding) of nucleosomal DNA due to transient unwrapping decreases incrementally from
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the outer edge of the nucleosome inward[45]. Thus, for TFs binding competitively with an ad-
jacent nucleosome, we propose a progressive unwrapping penalty that mirrors the underlying
physics of the nucleosome-nucleosome SoNG interaction from the previous chapter. Transient
unwrapping allows for exposure of certain sites along the DNA with the energetic penalty of
broken chemical bonds. One major difference from the SoNG interaction, however, is that
we assume TFs are sufficiently tightly bound as to prevent unwrapping; thus, the neighbor
interaction involves summing over the set of unwrapping states from only a single side.1 The
effective interaction potential u(∆x) between a TF of size m bp whose nearest side is sepa-
rated from a nucleosome dyad by ∆x bp is determined by the sum of the Boltzmann factors
of possible binding states of the nucleosome:

u(∆x) =




− ln

[∑∆x−1
i=0 eiε∑w
j=0 e

jε

]
if ∆x ≤ w

0 if ∆x > w
(3.1)

where w, again, is the length of DNA on one side of the dyad that can bind to the histone
surface. There are strong parallels with with Eq. 2.5 from Chapter 2, and Fig. 3.1 shows that
the two potentials are similar in shape, but with u acting at half the range.
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Figure 3.1: Neighbor interaction potential at a distance of ∆x bp between two nucleosomes
vNN(∆x)(red), and a Nucleosome with the nearest edge of a TF uNTF(∆x)(blue). To
a good approximation, uNTF is similar to vNN, but with half the range.

It is quite straightforward to adapt the Gillespie algorithm of Chapter 2 to include particles
of another type, and all of the same principles of reversible adsorption and detailed balance
still apply –provided the additional energetic terms described above are included into the
global energy change assumed in Eq. 2.17. Notably, however, the TFs are highly specific in
their binding behavior, which is reflected in a position-dependent binding energy µTF(x), as
opposed to nucleosomes which bind non-specifically with energy µN. As in Chapter 2, µTF(x)
determines the binding rate r+TF = eµTF(x)−u(∆xl)−u(∆xr) in conjunction with any energetic
interactions u(∆xl) and u(∆xr) with the left and right neighbors respectively. For simplicity,
we take µTF(x)→ −∞ at non-specific binding positions.

1There is, however, no reason to think that the binding energy of nucleosomes per bp ε would differ from the
value determined in Chapter 2 via least-squares regression and from experimental results in Ref. [44].
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To illustrate the effects of localized occlusion on the nearby nucleosome distribution pattern,
we take a system with a fixed nucleosome at position x = 0, and measure the effect of
adding a TF specific binding site at the downstream position r = 360, shown in Fig. 3.2 with
µTF(360) = µN = 9kBT . Here, the red data illustrate nucleosome density –in the absence
of any TFs– similar to what was seen in the previous chapter, while the blue data show the
resulting shift in this pattern due to competition with a single TF.
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Figure 3.2: Time-averaged nucleosome positioning from stochastic kinetic simulations, assuming a
fixed nucleosome at x = 0 as well as a TF of size m = 10 that binds specifically at x = 360
with energetic preference µTF(360) = µN = 9kBT (the TF binding position is indicated
by the black arrow). The difference between the red trace (TFs removed) and the blue
dashed trace (where TFs bind preferentially) illustrates the resulting shift in nucleosome
patterns from the binding of the TF which, effectively, serves as an additional barrier.

As one can see from Fig. 3.2, the nucleosome density pattern is visibly perturbed over a
significant length due to the TF. The new oscillating density pattern includes a new set
of loci available for TF binding since the set of sites found in linker regions or peripheral
nucleosome (susceptible to exposure from transient unwrapping) has shifted.

3.1.1 Nucleosomal Energetic Profile in the Promoter Region

TFs are, however, not the only factors that bind preferentially at certain target points. Until
now we have assumed uniform binding affinity adjacent to a fixed +1 reference nucleosome
that acts as a boundary for particles downstream. In Chapter 4 we will explicitly consider
the ‘landscape’ of nucleosome binding energetics. For the moment, however, as a crude
approximation to nucleosome binding patterns in the promoter region, we simply assign a
position dependent binding affinity µN with x to capture the global energetics of binding
throughout the entire NFR and +1 positioning region, rather than a fixed +1 barrier.

A very simplified profile is shown in Fig. 3.3(a); here we assume the NFR, an area of low
binding affinity, has a size of h = 200 bp consistent with experimental estimates[66]. The



28 3. An Equilibrium Two-Component Gas Model

 0

 0.02

 0.04

 0.06

-1000 -500  0  500  1000
position relative to +1 nucleosome

TFs removed
TF 1

TF 1+2

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12

   

 

 

nu
cl

eo
so

m
e 

de
ns

it
y

μ N(x)
μ   (x)TF

h

c

r

d
Lbi

nd
in

g 
af

fin
it
y (a)

(b)

“NFR”

“+1”

Figure 3.3: (a) sketch of simple profiles for the binding affinity of nucleosomes µN (red) and of TFs
µTF (green). (b) Nucleosome density pattern in the absence of TFs (red), with a single
TF at x = c+r(green), and with TFs binding at both x = c+r and x = c+r+d positions
indicated in (a).

width of the high-affinity +1 positioning peak was taken to be c = 30 bp, consistent with
typical convolution ranges of the +1 peak from yeast data in Ref. [36]. Figure 3.3(b) provides
the density profile throughout the entire promoter region using this simple position-dependent
nucleosome binding affinity. The figure is highly idealized (for example, the near complete
elimination of histones from the NFR is exaggerated) but is intended to show the versatility
of the numeric approach. Again, the influence on nucleosome density by a transcription
factor at x = 130 can be seen in the green data. With a second TF at x = 190; the
resulting blue data shows an even further displaced +2 peak. The model used here assumes
no strong ‘positioning’ of nucleosomes away from the promoter region, and so displacement
of nucleosomes by occlusion with TFs is incremental. Nevertheless, the curves in Fig. 3.3
suggest that two or more TFs can increase their effectiveness in displacing a nucleosome by
working in concert.



3.2 The Two-Factor Transfer Matrix 29
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Figure 3.4: Schematic of site state definition analogous to Fig. 2.3 including states corresponding to
transcription factor binding at right. Recall that state i is represented in the matrix of
Eq. 3.2 by row i+ 1.

3.2 The Two-Factor Transfer Matrix

In addition to the stochastic simulations in the previous section, the displacement of nu-
cleosomes due to competition with TFs can be observed by adapting the transfer matrix
approach from Chapter 2. To do so, we define an additional set of m states corresponding
to binding positions along a transcription factor m bp in length; this state convention is il-
lustrated in Fig. 3.4. The corresponding transfer matrix TNTF (the subscript ‘NTF’ denotes
‘nucleosomes + transcription factors’) for these states is a+m+ 1 in length. As in Chapter
2, we assume w bp are subject to unwrapping in either direction from the nucleosome dyad
and a footprint length a = 2w + 1. TNTF contains the matrix T̃NN (containing exclusively
nucleosome-nucleosome interactions) given in Eq. 2.9 as a submatrix in the upper left corner:

T̃ =




1 0 . . . 0
0[

T̃NN

] ...
...

...

eµN−u(1)

eµN−u(2)

...

eµN−u(w)

1 0 . . . 0
0 0 0 0 . . . 0 0 eµTF 0 . . . 0

0 0 1 0
...

. . .
. . .

0 0 0 0 0 0 1

1 1 e−u(w) e−u(w−1) . . . e−u(1) 0 . . . 0




(3.2)

where µTF, and µN denote the binding energy of TFs and nucleosomes respectively. As
mentioned above, TFs target certain sequences for binding quite specifically, implying strong
position dependence in the elements of Eq. 3.2 involving µTF . For this reason, we define a
matrix T̃TF for specific-binding TF loci where µTF = µN = 4, and take the limit µTF → ∞
elsewhere. As in Section 3.1.1, we can incorporate position-dependent features of nucleosome
formation by varying µN with position, and we define the matrices T̃NFR, T̃+1, and T̃NS to
denote the transfer matrices for the nucleosome free region, the +1 binding region, and the
non-specific region far away from the promoter respectively (see Fig. 3.3(a)). The partition
sum for a system of size L including the full promoter region is then
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ZNTF = Tr
{
T̃ hNFR · T̃ c+1 · T̃ rNS · T̃TF · T̃ dNS · T̃TF · T̃LNS

}
. (3.3)

By using Eq. 3.3 in conjunction with projection matrices and taking the large L limit just as in
the derivation of Eq. 2.15, state probabilities for various positions can be calculated; equivalent
calculations are provided in full in Ref. [65], but are omitted here to avoid repetition. One
benefit of this method is that it allows for efficient calculation of cooperativity in TF binding.

3.3 Transcription Factor Cooperativity

Fig. 3.3 illustrates the combined effect of multiple TFs to cooperatively displace or evict a nu-
cleosome; naturally, this would suggest that the presence of one TF can facilitate the binding
of other TFs in the vicinity. Cooperativity between TFs has been observed experimentally in
vitro [67], and in vivo [68], and has been studied theoretically in Ref. [69].

Making use of the formalism from the latter of these studies, two arbitrary sites for TFs a and
b are assigned statistical binding weights qa and qb respectively. In the absence of any binding
at b, the probability that site a is occupied is p̃a = qa/(1 + qa) (and likewise for protein b in
the absence of binding by a, p̃b = qb/(1 + qb).) More generally, however, when accounting
for possible binding of other proteins and an unknown interaction, the probability of binding
at site a, pa, the probability of binding at site b, pb, and the probability of binding at both
positions simultaneously pa,b are given respectively as[69]

pa =
qa(1 + ω · qb)

1 + qa + qb + ω · qa · qb
pb =

qb(1 + ω · qa)
1 + qa + qb + ω · qa · qb

pa,b =
ω · qa · qb

1 + qa + qb + ω · qa · qb
. (3.4)

Eq. 3.4 makes use of the dimensionless cooperativity ω which, on a log scale, captures the
degree to which the presence of one TF promotes (or perhaps even inhibits) the binding of
the other. ω can be solved for as

ω =
(pa + pb − pa,b − 1) pa,b

papa,b + pbpa,b − papb − p2
a,b

. (3.5)

For ω > 1 the two TFs bind cooperatively, while values of ω < 1 imply antagonistic binding.
The coupling constant J1,2 between the two is then defined as ω1,2 = e−J1,2

Obviously this cooperativity will depend on the proximity of loci a and b as well as their
relative binding strength and the prevailing pattern of nucleosomes due to other factors.
Notably, a and b need not necessarily be directly adjacent to one another. As noted in
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Fig.’s 3.2 and 3.3 the presence of one TF on the DNA shifts the pattern of nucleosome
density distribution, potentially uncovering or occluding the loci of secondary TFs even when
separated by several nucleosomes. Long-range cooperativity between TFs in vivo has been
pointed out by Vashee et al, though via a somewhat different mechanism[70] from what has
been presented above.

For concreteness, we return to the example used in Fig. 3.2 except with a nucleosome fixed at
x = 0 (c = 0), and TFs with m = 5 located at r and r+d bp downstream. Fig. 3.5 charts the
cooperativity ln(ω) from Eq. 3.5 between TF a at r and TF b at r + d using the equilibrium
calculation based on Eq. 3.3.
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Figure 3.5: Heat map of cooperativity ω from Eq. 3.5 between two TFs separated at a distance d from
each other with the first a distance r from the +1 positioned nucleosome. Reproduced
from Ref. [65] with permission.

3.4 Experimental Observations

So far, this chapter has been purely theoretical. Our hope, however, is to compare these
predictions with biological data. Before describing our efforts in doing so, a small amount of
context is necessary. In the yeast Saccharomyces cerevisiae, fermentation is the major means
of energy production (even in the presence of oxygen). When glucose becomes scarce, a switch
is made to respiration using ethanol as a carbon source, resulting in massive reprogramming
of gene expression[71, 72] that can hopefully be exploited to analyze changes in chromatin
structure.

To attempt to connect the above observations to experimental data, Ref. [62] undertook a
review of data on the Saccharomyces cerevisiae genome under such changing growth condi-
tions. Available data on nucleosome occupancy[73], as well as expression level[74] of yeast
in environments rich in glucose, galactose, and ethanol respectively were analyzed. Partic-
ular attention was paid to occupancy in the promoter regions of genes that underwent the
greatest changes in expression. The report identified changes in nucleosome occupancy in the
promoter region of genes with the strongest relative change in expression and the position of
binding sites for TFs related to the above metabolic switch.
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Gene YKL148C, common name SDH1

position [bp]

Figure 3.6: Shift in the +1 nucleosome positioning in the promoter region under the influence of TF
binding. The blue line above denotes the transcript region with the circle representing
the TSS. Occupancy in glucose is shown in blue, in ethanol in red and in galactose in
green. TF binding sites are marked at the bottom with HAP1/2/3/4/5 in blue, GAL4 in
green, MIG1/2/3 in orange, NHP10 in black, ADR1 in red, and MSN2/4 in cyan. Note
the particularly dense concentration of HAP binding sites in the +1 region overlapping
with the +1 nucleosome. Reproduced from Ref. [62] with permission.

Many examples of shifted nucleosome patterns in the vicinity of TF loci are listed in Ref.[62],
and changes in nucleosome occupancy and TF binding activity showed some consistency with
the above picture of competitive binding, however a global rule remained elusive. Several
exceptions were observed. For example, the HAP4 TF is induced during the shift from
fermentative to respiratory metabolism[75, 71]. Fig. 3.6 shows occupancy changes in the
promoter region of the gene YKL148C, with particularly dense HAP binding sites indicated
at the bottom of the figure. The shift in nucleosome occupancy at the +1 nucleosome position
with ethanol (red) is clearly visible. However, unexpectedly, in the ethanol medium the +1
nucleosome is shifted towards the binding sites of the enriched HAP TFs, the opposite of
what would be expected from the model of binding occlusion presented earlier.

As a possible explanation for this, homologs of the S. cerevisiae Hap(2-5) proteins Hap(A-E)
in Aspergillus nidulans, have demonstrated bending of DNA similar to that in nucleosomes.
They also have the potential for “mutual substitution in nucleosomes and [...] interactions
with the histones H3 and H4 in mixed tetrasomes.”[76] If such nucleosome-like proteins are
formed by combining HAP proteins with H3 and H4 histones, then it is possible that this
would account for observed occupancy shifts toward overlap with HAP TFs as illustrated in
Fig. 3.6. This is, however, quite speculative. At any rate, our observations suggest that a
general picture of TF-nucleosome interactions along DNA requires a more subtle description
than the simple competitive interaction potential that was posited in Eq. 3.1.



4 The Inverse Problem

Up to now, our consideration of the influences on nucleosome positioning has been mostly
restricted to effects arising from competitive binding -either between the nucleosomes them-
selves, or between nucleosomes and transcription factors- and the statistical positioning that
arises from this interaction. In Chapter 2 we also introduced one experimentally-motivated
mechanism for remodeller action that was shown to be particularly important at low histone
densities.

In addition to these effects, however, another ever-present influence on nucleosome positioning
is the inherent binding affinity of different locations along the DNA encoded in its sequence.
We refer to this as the ‘energy landscape’ of the genome: regions where the landscape is low
are attractive to nucleosome formation, while regions of high potential are repulsive.

Omission of this effect in Chapter 2 was justified by taking averages over many different
genes throughout the yeast genome, with alignment to +1 nucleosome barrier. There, the
assumption was that the sequence-encoded features over many genetic loci across the genome
would average out to an approximately flat landscape, and that there is insignificant system-
atic trend, genome-wide, in the landscape relative to +1 nucleosomes. Although this latter
assumption was not proven, the resulting analysis was predicated to some degree on Occams
Razer. As Bertrand Russel put it: “Whenever possible, substitute constructions out of known
entities for inferences to unknown entities.”[77]. With this advice in mind, we assert that if
sequence-dependent landscape features are not necessary to reproduce gene-averaged exper-
imental data, then an appropriately parsimonious model should not include them. At the
single-gene level, however, landscape features play a much more prominent role.

Thus, we return to this omission and address the effects on nucleosome positioning from the
sequence-encoded landscape itself, a subject in which a great deal of work has already been
invested. For example, it is known that in Saccharomyces cerevisiae, certain sequences of
DNA, such as Poly(dA:dT) tracts are associated with nucleosome-depleted regions, perhaps
due to their inherent stiffness against bending[24, 78], though this has been shown not to be
consistent with other species of yeast, such as Schizosaccharomyces pombe[79]. Indeed, there
is also evidence supporting the additional stiffness of the AA/TT bond at the bp level while
the stiffnesses of other pair bonds seem not to obey any simple rule[80]. This suggests that
the effective histone affinity of a given stretch of DNA is actually determined by a complex
interplay of many factors.

Kaplan et al have developed a computational model to predict histone affinity from an arbi-
trary sequence across the yeast genome[73], while Gossette and Lieb have shown that under
artificially reduced histone conditions, sequence effects become increasingly important in de-
termining which nucleosomes are preserved, and which are not[81]. From a more theoretical
perspective, Chereji et al have proposed a means for inferring the landscape based on a pre-
sumed 10-bp periodicity in linker length[82, 83], while Teif and Rippe have proposed a model
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for predicting nucleosome positions based on sequence and remodeling activity[84]. For these
and many more reasons, the influence of the energetic landscape cannot be excluded from
discussion of nucleosome positioning at the single-gene level.

An important caveat here is that we are referring to an effective landscape in the sense that it
represents the net influence of all non-translationary-invariant nucleosome positioning effects.
The elasticity-dependence of DNA on sequence is a fairly intuitive mechanical dimension of
the energy landscape, as discussed above. Another, less obvious, component of the landscape,
however, comes in the form of active remodellers that target specific loci for remodelling and
repositioning of nucleosomes.[85, 86, 87] The SWI/SNF family of remodellers, for example,
tends to target acetylated histones and serves to clear histones from the nucleosome free
region. The ISWI family of remodellers, on the other hand, activates ‘sliding’ at the interface
between nucleosomes and linker DNA; ISWI2 activity is focused at the +1 nucleosome while
ISWI1 tends to have greater influence on the spacing of the nucleosomes downstream[25].
Naturally, then, changes in remodelling activity lead to altered nucleosome positioning that
will be reflected in the effective landscape of a given region of DNA. The following calculation
of this landscape is not intended to evince the precise mechanism responsible for preferred
nucleosome positioning, but rather to capture the global effective specificity of nucleosome
positioning arising –directly or indirectly– from the genetic sequence, all things considered.
One may hope that mechanistic understanding can then be gleaned from controlled changes
in the conditions under which the landscape is determined.

4.1 Introducing the Potential Landscape

For explicit inclusion of sequence-dependence in our lattice model, we consider 4 related
quantities which can be subdivided into analogous pairs. The energetic landscape, V (x), is
the focus of this chapter and captures the potential energy inherent in a one-dimensional
particle1 being bound to a substrate at position x in isolation –i.e. without any energetic
costs incurred from neighboring particles. The latter are explicitly included in the two-body
interaction potential φ(x, x′) between a pair of neighboring particles at x and x′ > x.

The density of particles at a position x is defined as n1(x), while the two-body pair density
n2(x, x′) describes the density of nearest-neighbor pairs at x and x′. The analogy between
the two pairs of quantities [n1(x), n2(x, x′)] and [V (x), φ(x, x′)] relates to one- and two-body
effects and either pair can be inferred from the other, as will be shown below. To do so
however, we must take note of two simplifications implicit in this starting point.

First, there is, in principle, no reason a priori why we must restrict ourselves to one- and two-
body effects. For example, a so-called ‘three body’ potential φ3(x, x′, x′′) and ‘triplet density’
n3(x, x′, x′′) could be introduced to represent nucleosome clustering due to, for example, the
influences of higher-order chromatin structure that extend beyond nearest-neighbors. Similar
higher-order interactions and distributions could be extended to arbitrarily high order, with
corresponding complexity. Restricting nucleosome interactions to nearest-neighbors, however,

1throughout this chapter, we will refer more generally to ‘particles’ in one-dimension –nucleosomes along
DNA being one such particle
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is in line with the mechanistic assumptions about neighbor interactions made in previous
chapters, and renders the problem analytically tractable.

Secondly, it is conceivable that the neighbor interaction φ could itself exhibit some position
dependence that is not captured purely by the difference in position between the neighbor-
ing particles. Based on the physical argumentation from Chapter 2, however, we assume a
translationally invariant competitive binding interaction, with unwrapping cost ε per bp

φ(x, x′) = φ(x′ − x) = φ(∆x). (4.1)

For the form of φ in Eq. 4.1, later in this chapter we will simply take φ(∆x) = v(∆x) from
Chapter 2, but for the moment we will use φ to underscore the generality of the following
argument. To some degree, both of these simplifications are, again, motivated by the fact
that V (x) and φ(∆x) represent ‘known constructions’, as there is no apparent need to invoke
a more complex set of interactions.

4.2 The 1-D Inverse Problem

Converting between 1- and 2- body particle densities and 1- and 2- body energetic potentials
for nearest-neighbor interacting particles along a 1-D axis has been considered[88, 89, 90].
This work by Percus provides the fundamental tools for the calculations in this chapter;
the derivation below from Eq.s 4.2 through 4.15 represents recapitulation of the relevant
aspects of this work, with some added commentary and a minor correction midway, though
the conclusion is identical. We follow this reasoning explicitly since an understanding of this
methodology is necessary for the application that will follow.

For a 1-D lattice of size L, we assume a corresponding basis set of vectors |i〉 (with length L)
that denote the position of particle xi. That is to say, if particle xn is at position m, then the
m-th elements of |n〉 is 1 and all others are zero. This leads to the unconstrained boundary
condition vector

|J〉 =

L∑

n=0

|n〉. (4.2)

Hence, if all particle interactions and positions were energetically neutral, our partition func-
tion for a single particle would be simply Z = 〈J | J〉. For a particular particle (say, the i-th
particle 〈i| J〉 = 1) We define φ(1, 2) = 〈1|φ|2〉 to be the energy of interaction between the
two particles x1 < x2 and thus

〈1|w|2〉 = e[−βφ(1,2)]Θ(x2 − x1) (4.3)

where Θ is the heaviside function, and β is inverse temperature. Again, our application allows
for the more restricted φ(1, 2) → φ(∆1,2), but the more general form is left in place. The
diagonal matrix e contains the weights of particle positions in isolation
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〈1|e|2〉 = e[−βV (x1)]δ(x2 − x1) (4.4)

where the diagonal elements of e are simply the Boltzmann factors of V (x). Assuming a given
particle number N , we define a canonical partition function QN . For N = 1, the lone particle
has no neighbors with which to interact, and thus a partition sum of

Q1 = 〈J | e |J〉 , (4.5)

accounting for all possible positions of the particle. Naturally then, the partition sum for two
particles involves two Boltzmann weights for specific binding in addition to a single interaction
matrix

Q2 = 〈J | ewe |J〉 . (4.6)

Likewise, for arbitrary N ,

QN = 〈J | (ew)N−1e |J〉 , (4.7)

Assuming N > 0, otherwise Q0 = 1 corresponding to the empty state.

In the grand canonical ensemble, however, we must sum over the set of all possible numbers
of particles N . To accomplish this, we augment the Boltzmann matrix of specific binding
with an overall chemical potential µ that represents the basic non-specific binding energy for
nucleosomes to be formed anywhere. Hence, we replace the previous matrix e with z = e[βµ]e,
yielding:

〈1| z |2〉 = e[β(µ−V (x1))]δ(x2 − x1). (4.8)

The grand canonical partition function is then:

Z =

L∑

N=0

e[βNµ]QN = 1 +

L∑

N=0

〈J | (zw)N−1z |J〉 . (4.9)

At this point, we exploit the matrix generalization of the geometric series (or, the Neumann
series)

n∑

k=0

Ak = (I −A)−1(I −An+1), (4.10)

assuming (I − A) is invertible, and the eigenvalues of A are less than unity. In our case,
k → N − 1, A → zw, and AL → 0 for large L (i.e. the probability of having an entire array
stacked with particles everywhere is vanishingly small) and truncation artifacts of this series
can be neglected. Hence

Z = 1 +

L∑

N=1

〈J | (zw)N−1z |J〉 = 1 + 〈J | (I − zw)−1z |J〉 , (4.11)



4.3 Application to Nucleosome Positioning Data 37

which differs slightly from Eq. 2.6 of Ref. [90]. By extending this argument in either direction
from a designated particle, the 1−particle density distribution n(1), is seen to be:

n(1)Z = 〈J | (I − zw)−1z |1〉 〈1| z(I − wz)−1 |J〉
= 〈J | (I − zw)−1 |1〉 z(x1) 〈1| (I − wz)−1 |J〉 (4.12)

Likewise, the 2−particle neighbor function is given by

n2(1, 2)Z = 〈J | (I − zw)−1 |1〉 z(x1) 〈1|w |2〉 z(x2) 〈2| (I − wz)−1 |J〉 . (4.13)

Eq.’s 4.12 and 4.13 suffice to carry out what could be termed the ‘forward’ calculation. That
is to say, the determination of the ‘effects’ (n1(x), and n2(x, x′)) from the ‘causes’ (V (x) and
φ(x, x′)). The above description also suffices to present a qualitatively clear understanding
of the relevance of this work. The remaining calculations to derive the analogous ‘inverse’
calculations (i.e. inferring the energetic interactions based on the observed 1- and 2-body
density patterns) can be found in the original Ref. [90]. The results of this calculation, are:

β [u(x1)− µ] = ln
[
1− 〈J | (I − n2n

−1)n |J〉
]
− ln

[
〈J | (I − n2n

−1) |J〉
]

− ln [n(x1)]− ln
[
〈1| (I − n−1n2) |J〉

]
(4.14)

βφ(x1, x2) = ln
[
〈1| (I − n−1n2) |J〉

]
+ ln

[
〈J | (I − n2n

−1) |2〉
]

− ln
[
〈1| (n−1n2n

−1) |J〉
]
− ln

[
1− 〈J | (I − n2n

−1)n |J〉
]

(4.15)

Eq.’s 4.12–4.15 define the forward and reverse calculations for the two pairs of quantities dis-
cussed above. In principle, they sufficiently constrain the landscape and two-body interaction
potential provided the full statistics of particle positioning can be obtained. However, for
nucleosomes, such statistical data is often incomplete in practice, and in the following section
we explore how the above analysis can be practically applied to nucleosome data.

4.3 Application to Nucleosome Positioning Data

The preceding has shown the feasibility of interchangeably calculating the pair of 1- and 2-
body energetic quantities from corresponding density quantities and vice-versa. Given the
availability of MNase positioning data, and the neighbor interactions described in previous
chapters, it may seem that the remaining quantities of interest can be easily calculated.

However, while experimental techniques provide n1 up to a normalization factor, the process
of read-collection omits all information related to n2(x, x′). Since many cells are used in the
process, it is impossible to differentiate which mononucleosomes had previously been adjacent
to one-another on the same genome. Conversely, the theoretical discussion from Chapter 2
provides a description of neighbor-interactions φ(x) → v(x), but omits any consideration of
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the potential landscape, V . Thus, both the forward and reverse calculations above are missing
one half of the necessary input.

In the face of this conundrum, an iterative scheme to calculate V was developed. This scheme
relies on taking the theoretical description of φ given in Chapter 2 (i.e. the SoNG potential
v(∆x)) along with successive candidate functions for V nominated iteratively to calculate n1

theoretically until deviation from experimental data is minimized.

In this scheme then, the landscape value V (x) is a free parameter at every value of x, and
convergence at a solution for V (x) requires optimization over an L-dimensional parameter
space. For a typical system of L in the thousands, an exhaustive mesh comparison over all
V (x) values would be computationally infeasible, and so an optimized search algorithm is
required.

High-dimensional numeric optimization is a field that encompasses many different techniques;
one of the most standard[91] of these is the Nelder-Mead, or ‘amoeba’ search algorithm[92].
This method has been adopted for high-dimensional numeric optimization successfully in a
variety of fields. Its power lies in its ability to infer regional trends in the function’s slope
from sample evaluations without needing to explicitly calculate the gradient of the function
at any particular point. For these reasons, it is well-suited to our goal of determining V (x).

4.3.1 The Amoeba Method

We seek a numeric scheme to numerically minimize a functional f of the euclidean distance
between the nucleosome read counts observed experimentally Ω(x), and the density predicted
theoretically from Eq. 4.12, n1(x), with optimization over the set of parameters V (x) for all
positions x. We define the functional subject to minimization explicitly as:

f([V (x)] , φ(∆x),Ω(x)) =
∑

x

[Ω(x)− αn1(x)]2 , (4.16)

where α is an unknown normalization constant associated with the number of cells sampled
in the experiment, and is assigned analytically

α =

(∑

x

n1(x)Ω(x)

)
/

(∑

x

n1(x)2

)
(4.17)

(See Ref. [36], SI). We assume that f is a smoothly-varying function in the space of V (x), and
while n1(x) is written merely as a function of x, dependence on V and φ, as described above,
is assumed. Clearly, f depends on the experimental read counts Ω(x), as well as the set of
parameters V (x) to be optimized, and the neighbor interaction φ(∆x) which we assume to
be the SoNG potential v(∆x) from Chapter 2.

To implement the amoeba search algorithm, a set of L + 1 candidate functions Vi(x) are
generated (each of which correspond to their own unique energetic landscape), representing
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vector positions throughout this L−dimensional parameter space2, and are each considered
as possible solutions for optimization. A convenient choice for initial candidates is given by

Vi(x) =

{
0 ∀x if i = 0

±1 · ξ δix if i ∈ [1, L]
. (4.18)

In Eq. 4.18, the factor ξ represents an intuitive guess at the characteristic length scale over
which n1(x) changes significantly with V (x), and can be arbitrarily assigned a value of 1kBT
without significantly affecting the final results. With V0 representing a baseline ‘flat’ energetic
landscape, each other candidate landscape is initially shifted by either +ξ or −ξ (randomly,
with equal probability) from zero at a single position. V is the centroid of these points in the
L-dimensional space, and the L vectors Vi−V0 form a linearly independent basis, the correct
combination of which yields the point in the space which minimizes the functional f .

To determine that combination correctly, the initial candidate points Vi are ordered by their
corresponding fi values. Vl is then the point with the lowest f value, while Vh corresponds
to the highest, and is iteratively replaced with transformed positions to reduce its f value.
These transformations are described in more detail using the flow-chart in Appendix A.2,
Fig. A.1 and are repeated until eventually all candidate points converge to the same position
in parameter space with the same f value within numeric tolerance. A full description of this
algorithm as well as the criteria for convergence can be found in Ref. [92].

4.3.2 An Illustrative Minimal Example

Even with the description in A.2, and the accompanying diagram, Fig. A.1, the application
of the amoeba method to our landscape problem may still seem unintuitive. For this reason,
it is helpful to consider a minimal illustrative example where L = 2 –an extremely simplified
scenario.

In this case, the two degrees of freedom to the potential V are denoted V (x), and V (y)
respectively, as shown in Fig. 4.1, and within this space, the optimum solution which leads
to the correct density exactly E is sought (E for ‘exact’ is a useful mnemonic). To that end,
three initial guesses are made in the 2-D parameter space of Vx, Vy in Fig. 4.1(b): points A,
B, and C, color-coded red, blue and green in the figure respectively. Each of these points,
however, also represents a candidate landscape sketched in Fig. 4.1(a). In this figure, A
represents V0 from Eq. 4.18 and is the default, or ‘flat’, featureless landscape, while B and C
contain random linear displacements from A at positions x and y respectively. Since C has
the highest scalar functional value in Fig. 4.1(b) it is reflected about the centroid to point
C*. Thereafter, B has the next poorest fit and will also be substituted. The algorithm will
continue to make iterative substitutions until all candidates converge at E.

Obviously, calculating a genomic landscape requires considering far more than L = 2 adja-
cent positions (typical genomic segments under consideration range in sizes of approximately
L ≈ 10, 000) and the dimensionality of such parameter space searches is not conducive to vi-
sualization. Nevertheless, the same principle applies: the set of L+ 1 vertices form a simplex

2bp are treated as lattice sites here, ignoring the option of coarse-graining
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V(x)

V(y)

V(x) V(y)

A
B

C

C*
E

A

B

C

E

C*

(a) (b)

Figure 4.1: Schematic of a highly reduced inverse-landscape algorithm with only two values V (x)
and V (y). (a), Various potential landscapes corresponding to the potential at these two
positions are sketched: an initially flat landscape, A, along with two landscapes with
random displacements at the two positions, B, and C. The optimal, or ‘Exact’ solution
is the dashed line E, and two axes ‘V(x)’ and ‘V(y)’ indicate the degrees of freedom
open to the system. All of these profiles correspond to a point in the 2-D plane in figure
(b). Here, a simplex of N + 1 = 3 points is shown, lines of constant f are sketched in
transparency. Points are drawn only approximately to scale. Since C has the highest
f value, it is substituted with C* before the fitness of each points is reevaluated; upon
the next iteration, B will be substituted for a new point B*. Eventually, all points will
converge to the exact solution E within numeric tolerance.

in the L−dimensional space which iteratively converge to a single position representing the
global minimization in f .

As a proof of this principle, an intermediate test case is proposed in which the exact solution E
is known, but ‘hidden’ from the algorithm, along a segment for L = 100. For this confirmation
see appendix Fig. A.2.

4.3.3 The 601 Sequence

We may now proceed with application of this algorithm to actual experimental data using
a sequence known particularly for its high-histone affinity[93, 94], which has come to be re-
ferred to as the 601 sequence. Nucleosomes reconstituted in vitro on plasmid DNA segments
with histones and DNA mixed in mass ratio 1:1 and 0.5:1 respectively were sequenced, and
the resulting positioning data was made available for the collaborative analysis above[95].
Naturally, the overall densities of nucleosome positioning differed, depending on histone mass
concentration. However, assuming the above analysis is valid, the underlying potential land-
scape ought to be independent of histone density. For this application, two interactions
φ(∆x)were considered: (1) neighboring nucleosome interactions exactly as obtained in the
SoNG model, as described in Eq. 2.5 from Chapter 2, and (2) the neighbor-potential from
Eq. 2.5 in addition to a slight linear attractive component to account for possible clustering
due to higher-order chromatin structure or histone-tail interactions. The results of the fits
are shown in Fig. 4.2.
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Figure 4.2: Landscape potential inferred from plasmid 601 sequence at different histone concentrations
assuming two different neighbor interactions: (A) the SoNG model alone, above, as well
as (B) the SoNG interaction in addition to a slight attractive potential to capture possible
clustering effects, below. Both potentials are sketched to the right.

4.4 Discussion

It bears repeating that this landscape is an effective one: it incorporates direct effects from
DNA due to, e.g. elasticity, as well as indirect specific sequence effects from targeted remod-
elling when such factors are present. In the data used in Fig. 4.2 there were no remodellers
acting on the substrate, however analogous experiments were carried out with remodellers
re-introduced and resulting density profiles were compared to the previous as a control. Since
different classes of remodellers are known to target different segments of the gene[25], it was
proposed that the change in density patterns that can be observed upon addition of different
remodellers[95] could be translated to an effective energetic potential -or gradient thereof- in
the various segments of the DNA.

Although characteristic changes in density patterns were clearly observed under the influence
of remodellers, no additive potential could be associated with each, and further study is
needed to make definitive claims about the degree to which V (x) is determined from active
remodelling.

One avenue for further development of this technique, however, would be the change in
the effective nucleosome potential under changing cell conditions that affect the binding of
Transcription factors at known loci. As observed in Chapter 3, competing proteins such as
specifically-binding transcription factors influence the binding of histones, and such an effect
would be included in the measure of the energetic nucleosome landscape. Such a change in
the effective potential could be attractive or repulsive, and the relative change could serve
as an indication of relative changes in TF binding activity at particular loci under changing
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conditions.



5 Dynamic Processes

Thus far, we have focused on steady state properties of nucleosomes. Chromatin is, however,
subject to constant change from the influence of external conditions, active mechanisms, and
the periodic need for repair and replication[96]. Nucleosomes can be repositioned[97], or even
undergo redistribution of histone proteins between themselves[98]. Nucleosomes can also serve
as fluctuating barriers to RNA polymerase that must be circumvented during transcription
[99]. One possible mechanism to bypass nucleosomes is via the translocation of loops of
DNA around the histone surface[100], which would account for upstream shifts in nucleosome
positioning during transcription[17]. Replication, however, is perhaps the strongest example
of displacement from equilibrium, during which the amount of DNA is doubled and must
be once again bundled into nucleosomes. How the cell is able to quickly restore the high
physiological density of nucleosomes in a structured array throughout the genome is not a
trivial question. In fact, this problem bears a striking resemblance to a well-studied problem
in statistical physics.

The so called ‘car parking’ problem refers to the random sequential placement of cars, with
length unity, along an infinite, unmarked, initially empty street. In this model, cars park on
the street with rate r+ per unit length, and leave with rate r−; with this intuitive analogy,
the adsorption of finite length particles to a 1-D substrate is perhaps more easily visualized.
The regime of greatest interest (from a kinetic physics perspective) occurs when r+ � r−,
and the formation of regular structured arrays becomes a many-body problem, as many
inter-particle gaps must be consolidated to make room for an additional car/particle. Again,
this is particularly relevant to the formation of dense nucleosome arrays in yeast where the
equilibrium coverage fraction of the genome is estimated at nearly 90% [101] in transcribing
regions.

One ostensible shortcoming of this analogy, however, is the assumption of a ‘street’ that is
initially completely empty. A eukaryotic genome, by contrast, is never completely depleted
of histones, but rather is divided at various segments progressively in a complex process
described in Ref. [96]. The assumption of an initially empty substrate, however, becomes
insignificant when one considers that the density of adsorbing, mutually-exclusive particles
along a 1-D substrate proceeds through a set of characteristic stages. The first of these stages
(at low initial particle concentration) is referred to as random sequential adsorption (RSA),
and is characterized by rapid density increase until reaching a characteristic ‘jamming’ density
at a coverage fraction of 0.7475. . . [102, 103]. It is at this point, statistically, that remaining
spaces are too small to accommodate additional particles. Hence, provided long stretches
of DNA are at some point reduced to randomly positioned nucleosomes with concentration
below the jamming threshold, the proverb ‘all roads lead to Rome’, would seem to be a
concise description of how ensuing RSA will still lead to the jammed configuration (in the
manuscript attached below, we also consider non-random initial placement of nucleosomes,
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an alternative means of circumventing jamming.) The resulting density and gap distribution
of this jammed state has been well characterized[103, 104, 105], and further increases in
density require desorption and rearrangement of many neighboring particles, a process which
is kinetically very slow.

The biological implications of this fact have been pointed out and simulated in theoretical work
[106]. In that work, the kinetics of hard, mutually-exclusive footprints 147 bp in length were
simulated as they underwent reversible binding in random positions with rates determined
from experiment previously[107]. In that study, it was shown that with random, untargetted
binding, a jammed configuration of hard-exclusive nucleosomes along a long stretch of DNA
cannot be resolved into an extended array with physiological densities on time scales com-
patible with the yeast cell cycle. For this reason, the authors proposed lateral positioning
remodelers that actively ‘slide’ nucleosomes until they contact a neighbor. With sufficiently
fast remodeller activity, it was shown that high density arrays can be reestablished quickly
enough to be compatible with the cell cycle –as they must. Later work on this topic also in-
cluded the influence of sequence-preference on kinetics[108]. It is, however, natural to wonder
whether these are the only explanations.

In this chapter, we relax the idealized ‘hard’ interaction of neighboring nucleosomes that has
been used up to now in modeling nucleosome kinetics. The significance of softness to the
underlying biophysics of equilibrium patterns was demonstrated in Chapter 2, however it is
in the context of dynamic array-assembly that the nucleosome’s soft footprint has the most
dramatic implications.

5.1 Nucleosome Cramming

At first glance, it may seem obvious, perhaps even trivial, that introducing softness to one-
dimensional particles eases filling and relaxes the jamming phenomenon described above.
Gaps that are marginally smaller than a particle footprint admit adsorption, albeit somewhat
slower, due to the energetic cost of interaction. It is somewhat less obvious, however, to
compare the hard 147 bp HaNG model against the larger 165 bp SoNG model, assuming that
the same equilibrium density must be achieved. Also not obvious is the dramatic speed-up
the SoNG interaction causes to the equilibration process; we will see later in this chapter
that equilibration times between the two models can be separated by orders of magnitude.
Finally, and certainly not obvious at all, soft interactions allow for the possibility of a tran-
sient maximum in density before decreasing toward equilibrium, an observation that will be
explored later in the chapter.

For the moment, we begin with a description of the jammed state that occurs at the end of
RSA for hard particles of length unity. Up to a mean-field description, the density of voids of
size x, V (x) separating common points on hard particles can be extrapolated from published
work[105] as:

Vjam(x) =





2
∞∫
0

t e[−(x−1)t−2
∫ t
0

1−e−u
u

du]dt if 1 ≤ x < 2

0 otherwise.

(5.1)
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Note that Eq. 5.1, refers to lengths between common points on each particle, arbitrarily taken
at the center, contrary to a common convention of measuring gap size from the inner edge
of particles on either side. Here, lengths shorter than unity would entail overlap and are
therefore forbidden, while lengths greater than 2 will have already been filled during RSA;
the remaining lengths consist only of a band in between. Referring to ‘mean-field’ in this
context, and throughout this chapter, implies the assumption that the probability of a given
void having a certain size is independent of the size of the neighboring voids.

Assuming the unit length of Eq. 5.1 actually corresponds to the 147 bp footprint of the
HaNG model, and applying the same stochastic simulations described in Section 2.5 (with
nucleosome ‘particles’ adsorbing and desorbing with rates r+ and r− respectively) jamming
indeed occurs at an average spacing of around 147/0.7475 =197bp, or equivalently, an average
density (the inverse of the average spacing) of 5× 10−3bp−1, as seen in Fig. 5.1. This density
is well below the physiological equilibrium density ρeq ≈ [1/165]bp−1 of typical yeast species,
and as mentioned above, reaching such densities via random readsorption is impractically slow
for biological purposes[106]. Nevertheless, this jammed configuration serves as an illustrative
template for the transition between RSA and high-density equilibration.

For example, when the larger footprint of the SoNG model (165 bp) is considered, we make the
assumption that non-overlapping adsorption reactions occur significantly faster than reactions
that would require energetically costly overlap with their neighbors. Given this assumption,
RSA will lead, at least briefly, to the same jammed configuration described in Eq. 5.1 with the
length unit now corresponding to a nucleosome footprint of 165bp, and a jamming density of
165/0.7475=223bp−1 –even further away from equilibrium density than in the jammed HaNG
model. In this case, however, the possibility for nucleosomes to ‘cram’ into binding positions
too narrow for full wrapping allows for equilibrium densities to be obtained much faster -on
time scales up to 2 orders of magnitude shorter, in fact, as illustrated in Fig. 5.1 for three
different values of r+/r−. The three different on-rates in Fig. 5.1 were chosen to correspond to
three different equilibrium densities near 1/165bp−1, given a constant r− used as a time unit.
Real time units at the top of the figure are intended to denote order of magnitude estimates
from in vitro measurements[107].

What is clear from Fig. 5.1 is that a new phase of the filling process is introduced in between
the free filling of RSA and the equilibration period of collective rearrangements for t > 1/r−,
and it is this phase in the upper left corner of panel B in Fig. 5.1 which we refer to as
‘cramming’. Although the three different on-rates traced in Fig. 5.1 result in jamming at
different points in time, it turns out that the void distribution at the point of jamming
is the same (see Ref. [109] Fig. S3 attached below). Consistent with the description from
Eq. 5.1, the distribution is primarily restricted to a certain set of lengths neither so short as
to imply overlap nor so long as to have been filled already. The distribution can be described
phenomenologically as

Gc(x) = A ef(x) (5.2)

where

f(x) =





−v(x) if x < a

α1x+ b1 if a ≤ x < x∗

α2x+ b2 if x∗ ≤ x
,
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Figure 5.1: Qualitatively different filling behavior can be observed in logarithmic time depending on
the neighbor interaction between adjacent nucleosome models; equilibration happens on a
much shorter time scale for the SoNG model than for HaNG. Here, the off-rate r− is set
to unity as a reference time unit, while the on-rate r+ is adjusted to obtain three steady-
state densities for both cases: 1/180bp−1, 1/165bp−1, and 1/155bp−1. Time scales above
represent only order of magnitude estimates from in vitro measurements[107]

and the constants α1,2, b1,2, A and x∗ are fit to numerical data with least-squares (see Ref.[109],
supplementary information, attached below). A plot of Gc(x) is shown in Fig. 5.2A for the
central trace with ρeq = 1/165bp−1.

As was the case in the HaNG model, the nucleosomes that make up this distribution remain
essentially frozen in place until desorption begins to take effect on time scales of 1/r−. Unlike
in the HaNG model, however, on time scales faster than that, inter-particle gaps of size x fill
with a rate γ(x) given by the sum of binding rates at all positions between the two neighbors:

γ(x) = r+

x−1∑

x′=1

e[−v(x′)−v(x−x′)+v(x)]/kBT , (5.3)

where v(x) is the energetic interaction between neighboring nucleosomes separated by a dis-
tance x as derived in Chapter 2. Eq. 5.3 represents the sum of Boltzmann factors for binding
at position x′ throughout the void x. The rate is modulated by repulsive interactions on both
sides v(x′) and v(x−x′), while the relieved interaction v(x) is typically negligible (i.e. particles
that already overlap are exceedingly unlikely to be filled by a third particle in between). Using
Eq. 5.3, it is possible to project how the density might evolve during the cramming phase by
considering the sum of explicit filling rates of each of the voids in the system, multiplied by
their prevalence; doing so yields

ρ(t) = ρc +
∑

x

Gc(x)
(

1− e−γ(x)(t−tc)
)
. (5.4)

This analytic cramming density as a function of time is illustrated in Fig. 5.2B, with clear
correspondence to the data obtaremodelerined directly from our stochastic simulations. Be-
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Figure 5.2: A) The actual distribution of distances between neighbors observed in numeric simulations
when the jamming density is reached, superimposed is the best-fit function from Eq. 5.2.
(B) The distribution from (A) serves as a template for cramming, leading to density
described by Eq. 5.4, again superimposed on stochastic data, with evident consistency
throughout the cramming period t ∈ [1/r+, 1/r−].

yond time scales of 1/r−, equilibration proceeds very quickly, since readsorptions are guided
by their neighbor interactions –this effect is discussed in more detail later in the chapter.

Although this model is motivated by physically observed mechanisms, as with the remodelling
scheme provided by Ranjith et al, it is only one possible explanation for fast array assembly;
in practice, chromatin assembly could be influenced by a number of other factors. For exam-
ple, the processive movement of the replication fork (which, under normal growth conditions
in yeast, moves at an average rate of 3kb per minute[110]), given an appropriate speed, can
also form nucleosomal arrays quickly without jamming, as gaps are filled immediately behind
the replication machinery as soon as they are large enough. As a second example, inherited
placement of paternal histones on the daughter chromatids can also serve to prevent jam-
ming, provided the paternal histones are placed at alternating positions on the two daughter
chromosomes. This allows for isolated gaps that are each the appropriate size for a single nu-
cleosome. Both of these cases represent a form of non-random initial positioning that avoids
the jamming seen in RSA, and thereby alters the filling dynamics.

The expected jam-resolving influence of these effects is demonstrated by theoretical simulation
in the published work attached below [109], and, along with the cramming results presented
explicitly above, comprise the major findings. A more comprehensive set of computational
details and incidental findings have been omitted above for the sake of brevity, but are included
in the full report below.



Nucleic Acids Research, 2014 1
doi: 10.1093/nar/gku1190

Replication-guided nucleosome packing and
nucleosome breathing expedite the formation of
dense arrays
Brendan Osberg1,†, Johannes Nuebler1,†, Philipp Korber2 and Ulrich Gerland1,*

1Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1,
D-85748 Garching, Germany and 2Adolf-Butenandt-Institut, University of Munich, Schillerstrasse 44, 80336 Munich,
Germany

Received August 19, 2014; Revised October 30, 2014; Accepted November 3, 2014

ABSTRACT

The first level of genome packaging in eukaryotic
cells involves the formation of dense nucleosome
arrays, with DNA coverage near 90% in yeasts. How
cells achieve such high coverage within a short time,
e.g. after DNA replication, remains poorly under-
stood. It is known that random sequential adsorption
of impenetrable particles on a line reaches high den-
sity extremely slowly, due to a jamming phenomenon.
The nucleosome-shifting action of remodeling en-
zymes has been proposed as a mechanism to re-
solve such jams. Here, we suggest two biophysi-
cal mechanisms which assist rapid filling of DNA
with nucleosomes, and we quantitatively character-
ize these mechanisms within mathematical models.
First, we show that the ‘softness’ of nucleosomes,
due to nucleosome breathing and stepwise nucleo-
some assembly, significantly alters the filling behav-
ior, speeding up the process relative to ‘hard’ par-
ticles with fixed, mutually exclusive DNA footprints.
Second, we explore model scenarios in which the
progression of the replication fork could eliminate
nucleosome jamming, either by rapid filling in its
wake or via memory of the parental nucleosome po-
sitions. Taken together, our results suggest that bio-
physical effects promote rapid nucleosome filling,
making the reassembly of densely packed nucleo-
somes after DNA replication a simpler task for cells
than was previously thought.

INTRODUCTION

In eukaryotic cells, DNA is packaged into chromatin with
nucleosomes as the basic building blocks. A high nucleo-
some coverage is essential for cells, for example to prevent

cryptic transcription (1). In addition, the local positions of
specific nucleosomes, especially in promoter regions, can af-
fect transcription factor binding and thereby play an impor-
tant role in gene regulation (2–5). Nucleosomes consist of
about 147 bp of DNA wound around an octamer of histone
proteins. While the length of linker DNA connecting neigh-
boring nucleosomes varies locally, nucleosome mapping ex-
periments (6–8) indicate an overall nucleosome coverage of
around 90% in yeasts (i.e. the fraction of base pairs of the
genomic DNA that are nucleosomal). This dense packing of
nucleosomes has to be re-established whenever the DNA is
(partially) cleared of nucleosomes, for instance during tran-
scription, repair and replication. This is particularly chal-
lenging in the case of replication where the doubled amount
of DNA needs to be assembled into chromatin. It is of inter-
est how cells achieve this assembly within biologically rea-
sonable timescales.

A related physical process, the sequential adsorption of
mutually exclusive particles from a bulk solution onto a
lower-dimensional substrate, has been intensely studied in
non-equilibrium statistical physics (9). In a simple one-
dimensional model, sometimes referred to as the ‘car park-
ing’ model, particles can bind to an initially empty line
at any position where they do not overlap with particles
already in place (10,11). If the adsorption is irreversible,
all gaps larger than the particle size are quickly occupied
and the coverage then runs into a ‘jamming’ plateau where
nearly 75% of the line is covered (12). If the process is re-
versible, that is, if desorption is allowed, the density can be
increased beyond this limit. Density increases then happen
via rare events where a ‘bad parker’, a particle whose neigh-
boring voids taken together are larger than the particle size,
detaches and is replaced by two particles. This process is ki-
netically limited by the desorption rate, since at least one
desorption event must precede any density increase. While
the frequency of particles arriving at the substrate and at-
tempting to adsorb must be much larger than the desorp-
tion rate to obtain high coverage, increasing it even further,
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e.g. via increase of the particle concentration in bulk solu-
tion, will not speed up the filling process. Instead, the ad-
sorption rate merely sets the final density that is eventually
achieved.

It was shown by Padinhateeri and Marko (13) that the
jamming plateau can pose a serious kinetic challenge to
the formation of dense nucleosome arrays: based on an
in vitro measurement of the nucleosome formation rate
(14) and a discrete version of the above-mentioned one-
dimensional adsorption-desorption model that describes
the nucleosomes as impenetrable particles covering 147 bp
of DNA, they concluded that the physiological coverage of
90% of the DNA cannot be reached on biologically reason-
able timescales without additional mechanisms. They also
showed that an additional remodeling mechanism, which
moves a nucleosome along the DNA in a randomly selected
direction until it collides with its neighbor, can eliminate the
kinetic problem and yield high coverage beyond the jam-
ming plateau on much shorter timescales.

Here we show that the jamming problem is alleviated by
the ‘softness’ of nucleosomes and by replication-guided nu-
cleosome packing. We consider nucleosomes soft when the
full-size footprints of neighboring nucleosomes can over-
lap. Such overlaps can arise by two different means: first,
nucleosomes are known to breathe, i.e. nucleosomal DNA
partially unwraps from the histone core, leading to a dy-
namic footprint on the DNA. Thermal fluctuations are suf-
ficient to mediate transient unwrapping in vitro (15–17),
while adenosine triphosphate-dependent chromatin remod-
eling enzymes (18) also affect unwrapping in vivo (19–21).
Second, nucleosome assembly occurs in a stepwise manner,
with an H3/H4 tetramer deposited first, followed by the ad-
dition of two H2A/H2B dimers (22). Effectively, the assem-
bly process therefore leads to a transiently reduced DNA
footprint. Taken together, nucleosome breathing and step-
wise assembly permit neighboring nucleosome dyads to be
more closely spaced than the canonical 147 bp footprint
length, albeit with a reduced probability. There is indeed
considerable genomic evidence for this behavior, including a
direct experimental confirmation of the mutual invasion of
neighboring nucleosomal DNA territories (23), and statisti-
cal evidence from the analysis of nucleosome maps (24,25).

Nucleosome softness necessitates a theoretical descrip-
tion that goes beyond treating nucleosomes as impenetra-
ble ‘hard-core’ particles. A ‘Soft-core Nucleosome Gas’
(SoNG) model was previously introduced as a generaliza-
tion of the Kornberg–Stryer model (26) for the analysis of
gene-averaged steady-state nucleosome positioning patterns
(24). To study the effects of nucleosome softness on the
above-mentioned jamming problem, we introduce here a ki-
netic model that reproduces the steady state pattern of the
SoNG model, but also describes the ‘nucleosome filling dy-
namics’, i.e. the approach to the steady state. We contrast
the dynamic behavior of our kinetic SoNG model with that
of the corresponding hard-core model that was previously
studied (13,27). The comparison is justified, in the relevant
parameter regime, by the observation that the steady-state
nucleosome patterns of the two models are essentially the
same and are both compatible with yeast data (24). We find
that dense nucleosome arrays form much faster within the

SoNG model, which proceeds via a new ‘cramming’ regime,
avoiding the jamming behavior of hard-core nucleosomes.

In the second part of this article, we then explicitly con-
sider nucleosome filling in the context of DNA replica-
tion. In yeast, replication starts at many origins across the
genome and proceeds at rates that are highly variable, with
50 bp/s marking a typical speed of the replication fork
(28). Most of the existing parental nucleosomes are directly
passed on to the daughter strands (29). The essential steps
of this ‘segregation’ process are removal and partial disas-
sembly ahead of the fork, allocation to one of the daugh-
ter strands, and reassembly onto the daughter strand (30–
32). De novo assembly of the missing nucleosomes then re-
establishes densely packed chromatin behind the fork. The
parental nucleosomes are deposited closely behind the fork
(33) and typically within a distance of <400 bp from their
parental loci (34), mediated by spatial association of the
involved chaperones with the replication fork (31). Nucle-
osome positioning patterns appear to be virtually identi-
cal ahead of and behind the fork (35). There is some evi-
dence that nucleosomes are distributed between the daugh-
ter strands in a random fashion with roughly equal shares
(33,36,37), but the details of this process are still unclear and
appear to be context dependent (38). Also, the process may
differ between the leading and the lagging strand (39).

Taken together, the experimental evidence suggests that
the segregation of parental nucleosomes is an orchestrated
process that happens in close proximity to the fork, while
the de novo deposition is less coordinated and less spatially
constrained. We explore the interplay between a proces-
sively moving replication fork, nucleosome segregation and
de novo assembly of nucleosomes on the newly synthesized
DNA. We devise two simplified model scenarios intended to
expose generic consequences of this interplay. Our model il-
lustrates that nucleosome filling is facilitated by replication
guidance in two cases, (i) if nucleosome (re)assembly be-
hind the replication fork is sufficiently rapid to suppress the
transient occurrence of large gaps and (ii) if the segregation
process is highly orchestrated, e.g. such that the placement
of parental nucleosomes alternates between the daughter
strands and their new positions are highly correlated with
their parental positions. In the first case, jamming is avoided
by sequential filling, while positional ‘memory’ circumvents
jamming in the second case.

MATERIALS AND METHODS

We first introduce our model for the assembly of nucleo-
some arrays on a large segment of naked DNA, and then
extend it to a minimal model of replication-guided nucleo-
some filling. The starting point for the construction of our
model, and a point of reference for its analysis, is a previ-
ously studied assembly model for nucleosome arrays (13),
which is a kinetic version of the Kornberg–Stryer model
(26). The DNA is represented as a one-dimensional lattice,
with each lattice site representing a single base pair. Nucle-
osomes are assembled and evicted at random locations with
the only constraint that gaps <147 bp wide cannot be filled.
The steady-state of these kinetics is the statistical nucleo-
some distribution of the Kornberg–Stryer model, with the
steady-state nucleosome density ρ set by the rates for assem-
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Figure 1. Kinetic model for the assembly of soft-core nucleosomes into
dense arrays. (A) Nucleosomes (illustrated by shaded ellipses) are assem-
bled onto free DNA at a rate r+ and are evicted at a rate r−. Nucleosomes
can also form if this leads to an overlap of their DNA footprints, but the
on-rate is then reduced by the Boltzmann factor of the interaction energy
v (x). Here, x denotes the distance between dyads, i.e. the center positions
within nucleosome footprints (hollowed out in the nucleosome symbol).
(B) The interaction potential v (x) of soft-core nucleosomes has a range of
a = 167 bp, as opposed to hard-core nucleosomes which obey strict exclu-
sion over a range of b = 147 bp.

bly and eviction, r+ and r−, via ρ = η/(1 + η) with �exp (�)
= r+/r−, such that the steady-state density is a slowly in-
creasing function of the rate ratio (11).

As illustrated in Figure 1A, we modify this model to take
into account the softness of nucleosomes. The softness is
manifested in a gradual repulsive potential between nucleo-
somes, shown in Figure 1B, which makes the assembly rate
configuration-dependent, as opposed to the homogeneous
assembly rate for hard-core repulsion. The rationale of our
model is illustrated in Figure 2. Nucleosome softness stems
from a multitude of structural states with different DNA
footprint sizes, as depicted in Figure 2A. The statistical dis-
tribution of DNA footprint sizes is the essential determi-
nant for the likelihood of assembling a nucleosome into a
gap between existing nucleosomes. Within our model, the
assembly into a narrow gap is less likely, but not excluded,
as illustrated in Figure 2B.

The existence of nucleosome states with different DNA
footprints is experimentally well established. Figure 2A de-
picts two classes of such states, those due to nucleosome
breathing and those due to stepwise nucleosome assem-
bly. Nucleosome breathing has long been suggested based
on experiments showing that sites within the nucleosome
footprint are accessible to binding proteins (15,40). Sub-
sequently, the transient partial unwrapping of nucleoso-
mal DNA from the histone core was directly demonstrated
using single-molecule fluorescence techniques (16,17), and
neighboring nucleosomes were shown to be capable of in-
vading each others canonical 147 bp footprint (23). While
these experiments were performed with reconstituted nu-
cleosomes (via salt-gradient dialysis), indicating that ther-

wide gap

tetramer

dimers

narrow gap

footprint size80 bp 150 bp

nucleosome
assembly state

tetramer

canonical
nucleosome

nucleosome
breathing

hexamer

A

B

unwrapping
required

Figure 2. Nucleosome states with different DNA footprints and
configuration-dependent nucleosome assembly. (A) Due to nucleosome
breathing and multi-step assembly, nucleosomes have a multitude of
internal states with a spectrum of DNA footprint sizes, i.e. they are ‘soft’.
In terms of DNA footprint size, the tetramer and hexamer states are
equivalent to full nucleosomes with varying degree of DNA unwrapping.
(B) The assembly rate of soft nucleosomes depends on the size of the
gap between existing nucleosomes. Effectively, the stepwise assembly into
a wide gap is faster than into a narrow gap, due to the required DNA
unwrapping in the latter case.

mal fluctuations are sufficient to produce transient unwrap-
ping, ATP-dependent chromatin remodeling enzymes can
also influence unwrapping in vivo (20,21). For our quanti-
tative model, detailed below, it is important to note that nu-
cleosome breathing leads to a rapid sampling of nucleosome
states with different DNA footprints, with timescales in the
millisecond to second regime (17).

According to the standard model for in vivo nucleosome
assembly, an H3/H4 tetramer is first deposited onto the
DNA and then completed to a full nucleosome by the ad-
dition of two H2A/H2B dimers (22,41). While there are
different assembly pathways, both replication-coupled and
replication-independent, involving different chaperones, re-
modelers and histone variants (22,30,31,42–44), the exis-
tence of assembly intermediates with reduced DNA foot-
print appears to be universal. Figure 2B (left panel) shows
a simplified illustration of nucleosome assembly into a wide
gap, where the neighboring nucleosomes do not impose any
constraints on the assembly. The involved chaperones and
remodelers are not shown in the illustration. In our quan-
titative model, we will use effective rates, which subsume
all factors that affect these rates. Both assembly steps, for-
mation of a tetrasome and integration of the heterodimers,
are depicted as reversible processes; the backward reactions
correspond to nucleosome eviction (18,45,46). Given that
fully assembled nucleosomes are much more stable than as-
sembly intermediates, the second step must be biased in the
forward direction.
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The right hand panel of Figure 2B illustrates the assembly
into a narrow gap, where the neighboring nucleosomes af-
fect the assembly process. This should primarily affect the
rate of heterodimer integration in the second step, which
requires DNA unwrapping in at least one of the shown nu-
cleosomes (it does not matter how the required amount of
unwrapping is distributed between the nucleosomes). The
general implication for the construction of our quantitative
model below is that soft nucleosomes, which feature an in-
trinsically variable DNA footprint size, will assemble at a
rate that depends on the size of the gap between the existing
neighboring nucleosomes, no matter if the newly deposited
nucleosome enters as a breathing nucleosome or as some in-
termediate of stepwise assembly. For our purpose of model-
ing the process of nucleosome array formation, it is then ad-
equate to coarse-grain the assembly of a single nucleosome
into a one-step process with a configuration-dependent rate.
This leads us to the kinetic model illustrated in Figure 1A,
with a constant nucleosome eviction rate r− and a basal as-
sembly rate r+ that is modulated depending on the distances
to the neighboring nucleosomes (we also consider the effect
of a variable eviction rate, see below). Starting from an ini-
tial configuration, we are then interested in the approach to
‘equilibrium’ of this model, which corresponds to an ATP-
dependent non-equilibrium steady-state of the real system
(47).

We incorporate the effect of the neighboring nucleosomes
onto the nucleosome assembly rate via a repulsive ‘soft-
core’ interaction potential v (x), which gradually reduces
the rate with decreasing distance x. This constitutes an adi-
abatic approximation, justified by the observation that nu-
cleosome breathing samples nucleosome states with differ-
ent DNA footprint sizes on a rapid timescale (17). The
form of v (x) should be chosen such that it (i) relaxes the
widespread assumption of hard-core nucleosomes, (ii) leads
to steady-state nucleosome distribution compatible with in
vivo nucleosome patterns and (iii) produces a spectrum of
DNA footprints compatible with experiments probing the
accessibility of nucleosomal DNA. The task of finding such
a potential was already carried out in (24). There, a soft-
core potential with two free parameters, representing the
maximal nucleosome footprint size and the effective stiff-
ness of nucleosomes, was used to construct a statistical
model, the ‘SoNG’, to describe in vivo nucleosome patterns.
It was found that this model provides a more consistent de-
scription of the nucleosome patterns across multiple yeast
species than the corresponding hard-core nucleosome gas.
The fit to twelve different yeast species led to an effective in-
teraction footprint of a = 167 bp and a nucleosome stiffness
of ε = 0.15kBT per base pair. The latter is consistent with
estimates obtained from in vitro nucleosomal DNA accessi-
bility data (48). The former is 20 bp longer than the DNA
within a nucleosome core particle, which is not surprising,
since steric constraints should disfavor neighboring nucleo-
somes with no linker DNA in between. Figure 1B shows the
best-fit potential v(x), with x measuring the dyad-to-dyad
distance between neighboring nucleosomes.

The explicit shape of the potential is derived from the as-
sumption of a constant energetic cost ε per bp to reduce the
maximal DNA footprint a of a nucleosome at each end. For
two neighboring nucleosomes placed with a dyad-to-dyad

distance x < a, the required total footprint reduction can
be distributed between the two nucleosomes and all possi-
bilities are statistically weighted with the Boltzmann factor.
Reference (24) finds that the simple expression

v(x) ≈ (a − x)ε − kBT ln
[
1 + (a − x) (1 − e−ε/kBT)

]
(1)

for x ≤ a and v(x) = 0 for x > a is an excellent approxima-
tion to this statistical average. Given that the values of its pa-
rameters a and ε were determined from in vivo data and yield
a consistent description of gene-averaged nucleosome pat-
terns over a range of yeast species, this potential essentially
captures all effects that contribute to these steady-state pat-
terns, including the action of remodelers. However, the fact
that it is also consistent with the in vitro site-accessibility
data suggests that thermal nucleosome breathing already
leads to a similar sampling of footprint sizes as all in vivo
processes combined. Therefore, equilibrium statistical mod-
els can be an adequate coarse-grained description of the 10-
nm chromatin fiber even under in vivo conditions where it is
an active system, contrary to what has been claimed else-
where (27). We also note that our parameters for the maxi-
mal footprint and the unwrapping energy per base pair are
compatible with those independently estimated from a dif-
ferent dataset (25). This analysis also considered an addi-
tional oscillatory component in the unwrapping energy to
reflect the known 10–11 bp periodic preference of nucleo-
some positions. However, the additional oscillatory compo-
nent has a minor effect on the statistics of nucleosome po-
sitions, visible only in the statistics of the relative rotational
positions of neighboring nucleosomes (25), but not in the
average nucleosome patterns considered here.

The nucleosome assembly model introduced here defines
the kinetics for the SoNG model of (24). The soft-core po-
tential modulates the local nucleosome assembly rate into
the effective rate

r̃+ = r+ e−[v(xL)+v(xR)]/kBT , (2)

where xL and xR are the dyad-to-dyad distances to the next
nucleosome on the left and right, respectively. As above, r+
denotes the rate of nucleosome assembly at a given position
sufficiently far away from existing nucleosomes. While we
also simply refer to it as the ‘on-rate’, it should be noted that
r+ is not an association rate in the usual sense, since it does
not measure the frequency of binding events per concentra-
tion of binding molecules but already includes this concen-
tration. In fact, it is currently unclear (to the best of our
knowledge) whether r+ is limited by the number of free his-
tones or by the number of chaperones that assist the forma-
tion of nucleosomes. Our expression for the effective rate r̃+
assumes that the interactions with the left and right neigh-
bor are additive, which requires the unwrapping of the two
DNA ends of a nucleosome to be independent. Although
correlations (or anti-correlations) are certainly possible, e.g.
due to cooperative effects or electrostatic interactions, we
currently do not know of any clear experimental evidence
indicating any significant correlation of this kind.

To reproduce the steady-state of the SoNG model, the nu-
cleosome eviction rate (or ‘off-rate’) must be constant, such
that r̃+/r− is proportional to the Boltzmann factor of the
interaction potential. We have chosen to assign the entire
Boltzmann factor to the on-rate in Equation 2, but we will
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also consider other choices in the ‘Results’ section. There,
we show that assigning the entire Boltzmann factor to the
on-rate is the most conservative choice, in the sense that an-
other choice would support our claim of substantially faster
nucleosome filling of soft nucleosomes even more. Finally,
given that we do not study sequence-guided nucleosome po-
sitioning at specific genes here, Equation 2 neglects any de-
pendence of the on-rate on the DNA sequence. For hard-
core nucleosomes, such effects have been considered in (13).

Model extension for replication-guided nucleosome filling

To model nucleosome filling in the wake of a moving repli-
cation fork, we consider the same kinetics as described
above, but with a system size L (length of the DNA in bp)
that increases with time. Specifically, we add lattice sites at
the right hand boundary with a constant rate vrepl. This
moving boundary represents the replication fork, and nu-
cleosomes can only form behind the fork. The interaction
between nucleosomes and the replication fork is described
in the same way as the interaction between nucleosomes, i.e.
the boundary condition is as if an imaginary nucleosome
would always sit with its dyad at position L + 1 (with L in-
creasing in time). The same boundary condition is applied
at the fixed left boundary, i.e. there is an imaginary nucleo-
some with dyad at lattice site 0.

We first assume that parental and newly synthesized nu-
cleosomes are mixed in a common pool, but later separate
them in order to study how memory of parental nucleo-
some positions can affect the filling kinetics. To that end, we
initialize our model in a partially filled state, which is con-
structed using a minimal model for the inheritance of nu-
cleosome positions: we assume that during replication each
daughter strand obtains half of the parental histones, on
average. Starting from a parental nucleosome configuration
according to the steady-state, each nucleosome is placed in
its exact parental position on one of the daughter strands,
proceeding along the parental DNA. If the previous nucleo-
some was placed on strand 1, the next one is place on strand
2 with the ‘alternation probability’ α, and vice versa, such
that α = 0.5 corresponds to a completely random place-
ment, while α = 1 corresponds to perfect alternation. We
then use one of these daughter strands as the initial state
for nucleosome filling.

Model implementation and parameter choice

To determine the nucleosome filling kinetics, we perform
kinetic Monte Carlo simulations using the Gillespie algo-
rithm (49). In these simulations, the state of the system is
specified by the list of bound nucleosome dyad positions.
The transition rates between states depend on the configura-
tion as described above. For the DNA lattice, we either use a
linear geometry with hypothetical fixed particles at the two
ends (for replication-guided nucleosome filling, see above)
or periodic boundary conditions corresponding to circular
DNA (in all other cases). In each case, the total DNA length
L is chosen large enough to ensure that none of our observ-
ables display a significant finite size effect. Except for the
case of inherited parental nucleosomes (see above), we use
an empty lattice as the initial condition. All observables are

Table 1. Soft-core nucleosomes require a different ratio of on- to off-rate
than hard-core nucleosomes to obtain the same steady-state nucleosome
density. At high densities, the required ratio is dramatically larger for hard-
core nucleosomes.

Model 1/ρ̄ [bp] r+/r−

155 3.69 × 106

Hard-core nucleosomes 165 149
180 2.37

155 4.57 × 103

Soft-core nucleosomes 165 200
180 5.70

averaged over a sufficient number of simulation runs to ex-
tract the mean kinetics (see Supplementary Table S2 for de-
tails). As our main observable, we calculate the average nu-
cleosome density ρ(t) as the number of nucleosomes divided
by the total DNA length, i.e. it can be interpreted as the in-
verse of the average spacing between nucleosomes (in bp).
The quantity ρ(t) also corresponds to the average probabil-
ity for a base pair to be occupied by a nucleosome dyad. As
a second observable, we calculate the time-dependent nu-
cleosome pattern close to a boundary or a reference nucle-
osome.

While the steady-state nucleosome density depends only
on the rate ratio r+/r−, we also need one of these rates in ab-
solute terms in order to estimate the timescale of the filling
kinetics. From constant-force measurements of the shrink-
ing rate of DNA during nucleosome assembly in Xenopus
egg extract (without ATP), the on-rate r+ was estimated
at ∼12 s−1 for a DNA segment with length of one nucleo-
some footprint (14). However, this can at most be an order
of magnitude estimate for our purposes, since the rate may
be significantly different in vivo and in the presence of ATP
(50). In all figures of this manuscript, time is therefore mea-
sured in units such that r− = 1, and only a rough correspon-
dence to real time is indicated. To obtain different asymp-
totic nucleosome densities, we adjust the rate ratio r+/r− as
listed in Table 1. Note that the hard-core model requires a
dramatically higher r+/r− ratio at high densities than the
soft-core model. This observation is consistent with the pre-
vious finding that the hard-core model does not provide a
unified physical description of the 10-nm chromatin fiber in
different yeast species (24).

RESULTS

We now use the quantitative model described above to ad-
dress our two main questions: how does the softness of nu-
cleosomes affect the kinetics of nucleosome assembly into
dense arrays? And under which conditions can the replica-
tion process assist in the rapid reassembly of dense nucleo-
some arrays?

Kinetics of assembling soft nucleosomes into dense arrays

Figure 3 shows a characterization of the nucleosome filling
kinetics for both the hard-core and the SoNG model (la-
beled by HaNG and SoNG, respectively). Panels A and B
plot the average nucleosome density, ρ(t), as a function of
time (with a logarithmic time axis). For the time axis, we
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Figure 3. Characterization of nucleosome array assembly within the soft-core model and comparison to hard-core nucleosomes. (A) Time-dependent
nucleosome density ρ(t) for the HaNG model (with a logarithmic timescale). Three curves are shown for different final densities, as labeled on the right
vertical axis. The gray horizontal line indicates the jamming density at which, statistically, non-overlapping adsorption opportunities have been exhausted.
From this point, the hard-core nucleosomes must wait for desorption events to further increase the density (see sketch). The time labels above the figure
mark approximate timescales based on the in vitro estimate of (13) (see main text). (B) Same plot for the SoNG model. Soft-core nucleosomes (represented
by shaded ellipses in the sketch) have a larger maximal DNA footprint and accordingly have a smaller nominal jamming density (again indicated by a
gray line). However, after reaching this density, ρ(t) does not plateau, but instead enters a ‘cramming’ stage. (C) Mean deviation �(t) between the time-
dependent nucleosome pattern p(x, t) and its steady-state p(x) for the HaNG model (see text for details). The three curves correspond to the same cases as
shown in panel (A). (D) Same plot for the SoNG model. (E) Comparison of the equilibrium patterns of the two models at a nucleosome density of 1/(165
bp). (F) Snapshots of the average nucleosome pattern during the filling process of the SoNG model for 1/(165 bp) final nucleosome density. The circles on
the green line in panel B mark the points in time for which the snapshots are displayed.

use the average dwell time of a nucleosome on the DNA,
1/r-, as our time unit. The shape of the filling curves of the
SoNG model in Figure 3B is strikingly different from that
of the HaNG model in Figure 3A: initially, when the DNA
coverage is still low, the density increases rapidly (linear in
time) in both cases, since nucleosome–nucleosome interac-
tions play a negligible role. Then, however, the filling of the
hard-core model stalls, while the density steadily increases
for the soft-core model. The stalling of the HaNG model oc-
curs at a density of 1/197 bp, the ‘jamming plateau’ marked
by the gray line. This plateau corresponds to a DNA cover-
age equal to the nontrivial theoretical limit of 74.8. . . % cal-
culated by Rényi (12) for the irreversible random binding of
equally sized objects to a continuous one-dimensional sub-
strate. The continuum limit provides an accurate descrip-
tion also for our discrete DNA substrate, since nucleosomes
are large compared to the discrete length unit of a single
base. Importantly, the jamming plateau is independent of
the on-rate: the three different curves in Figure 3A corre-
spond to different r+ values, but stall at the same coverage
level, albeit at different times.

For the green traces in both Figure 3A and B, the on-rate
is adjusted such that a steady-state nucleosome spacing of
165 bp is ultimately reached, corresponding approximately
to the average spacing in Saccharomyces cerevisiae under
physiological conditions (6). The blue traces illustrate the
behavior for a reduced density with a 180 bp spacing, while

the red traces illustrate the case of close to maximal pack-
ing with a 155 bp spacing. In the case of the HaNG model,
nucleosome filling beyond the level of the jamming plateau
starts at a timescale of ∼1/r- for all three traces. This reflects
the fact that ‘unjamming’ requires the removal of ‘bad park-
ers’, as illustrated in the sketch inside panel A. Note that
for the green and red traces, the filling process is stalled for
several orders of magnitude in time, and that unjamming is
logarithmically slow (10).

Nucleosome filling within the SoNG model never stalls,
but instead displays a ‘cramming’ stage. The crossover be-
tween the initial filling and the onset of cramming hap-
pens when most gaps are too small for further nucleo-
somes to attach at non-overlapping positions. This density
is marked by the gray line in Figure 3B. The biophysics of
the cramming process is analyzed in detail further below.
On the phenomenological level, the cramming stage ends
when the final steady-state density is reached, which hap-
pens on about the same timescale for all three traces. Re-
markably, this timescale is not much longer than the un-
binding timescale 1/r-, suggesting that breathing nucleo-
somes will reach dense packing already when hard-core nu-
cleosomes are only starting the unjamming process. This
conclusion is not dependent on the assumption, made in
Equation 2, that the nucleosome–nucleosome interaction
only affects the on-rate: as shown in Supplementary Figure
S1, this assumption is conservative, since all other choices
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for the dependence of the kinetics on the interaction (see
Supplementary Text, Section I) only lead to even faster fill-
ing with soft-core nucleosomes.

Dynamics of nucleosome phasing

While the above analysis showed that a high density is
reached very rapidly with soft-core nucleosomes, it did not
address the question of whether the characteristic phasing
of nucleosome arrays (7) forms on the same rapid timescale.
We calculate the dynamics of nucleosome phasing via the
time-dependent probability p(x, t) of finding a nucleosome
dyad at position x at time t, given that one reference nucleo-
some is fixed at position 0. To quantify the timescale of the
approach to steady-state, we compute the normalized mean
deviation � between the time-dependent pattern p(x, t) and
its steady-state limit p(x),

�(t) = 1
Lρ

L∑

x=1

|p(x, t) − p(x)| . (3)

Here, the steady-state limit p(x) is calculated exactly by the
transfer matrix method as previously described (24), while
p(x, t) is obtained as an average over many kinetic simula-
tions, see ‘Materials and Methods’ section and Supplemen-
tary Table S2.

Figure 3C and D show how the mean deviation Δ de-
creases as a function of time, for the HaNG and the SoNG
model, respectively. The three different curves in each panel
correspond to the same ρ values considered already in pan-
els A and B. These curves demonstrate that the dynamics
of the phasing pattern largely follow the behavior of the nu-
cleosome density ρ(t). For the HaNG model, the timescale
of the approach to steady state increases dramatically with
the steady-state density ρ, whereas it displays no significant
dependence on ρ for the SoNG model. Figure 3E superim-
poses the final pattern p(x) for the HaNG and SoNG model
to show that the steady states of the two models are compat-
ible with each other. Note that the sharp peaks in the pattern
of the HaNG model are due to the exact positioning of the
reference nucleosome; after taking into account the fuzzi-
ness in the positioning of e.g. the +1 nucleosome, the two
patterns become almost identical and are both compatible
with the genome-averaged experimental pattern of S. cere-
visiae (24).

Figure 3F shows several snapshots of the dynamics of nu-
cleosome phasing within the SoNG model, corresponding
to the points marked by circles on the green curve in panel B.
These snapshots illustrate how the phasing pattern emerges
on the unbinding timescale 1/r−, by gradual propagation of
the pattern from the reference nucleosome. Supplementary
Figure S2 shows similar plots for other densities, and also
for the HaNG model, which displays much slower dynam-
ics consistent with Figure 3C. The slow dynamics of nucleo-
some pattern formation within the HaNG model were also
observed in a recent study and motivated the extension of
the model by an additional remodeling mechanism (27).

Physical analysis of the cramming stage

During the cramming stage in the nucleosome filling dy-
namics of Figure 3B, nucleosomes are ‘squeezed’ into
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Figure 4. Analysis of nucleosome filling during the cramming stage of the
SoNG model. (A) Length-dependent gap density, Gc(x), at the onset of
cramming on a logarithmic axis (the gap length x is measured as the dis-
tance between the dyads of neighboring nucleosomes). The green symbols
show simulation data whereas the gray line shows the fit described in the
main text. Vertical lines separate three regimes (see sketches for illustra-
tion): for x < a, neighboring particles already overlap, such that interven-
ing adsorption will be strongly suppressed, due to an enormous energy
penalty. The second regime, a < x � 2a, largely determines the cramming
dynamics, with gaps that provide less than a nucleosome footprint of free
DNA space. In the third region, x � 2a, gaps are large enough to permit
the assembly of an intervening nucleosome without interaction; these gaps
will fill very quickly. All gaps fill with rate � (x) defined in Equation 5; the
middle sketch illustrates how the different attachment possibilities within
a gap sum up to the gap’s total filling rate � (x). (B) Nucleosome filling
during the cramming stage. Equation 4 (lines) describes the Monte Carlo
simulations (symbols) throughout the cramming stage. See Table 1 for pa-
rameters. The horizontal gray line indicates the cramming density ρc, while
the vertical gray line indicates the desorption timescale 1/r−, which marks
the end of the cramming stage.

progressively shorter gaps. The cramming stage begins
when the average density ρ(t) reaches the jamming density
marked by the gray line in Figure 3B, i.e. the jamming den-
sity ρc = 0.748/a for the maximal footprint a of the soft-
core nucleosomes. At this point, the density Gc(x) of inter-
nucleosome gaps of size x has the shape shown in Figure
4A. Here, x is measured as the distance between the dyads
of neighboring nucleosomes and the gap density is plotted
on a logarithmic axis. Note that despite the overall depen-
dence of the filling dynamics on r+, the distribution Gc(x) at
the onset of cramming is invariant, as shown in Supplemen-
tary Figure S3. To a good approximation, the shape of Gc(x)
is piecewise exponential with three regimes (see also Supple-
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mentary Text, Section II): (i) for x < a, where the neighbor-
ing nucleosomes already overlap, the gap density increases
roughly exponentially with gap size. The slope (gray line in
Figure 4A) follows directly from the Boltzmann factor for
the interaction potential. The addition of nucleosomes into
gaps in this regime is exceedingly unlikely. (ii) For x ≥ a,
but less than an upper threshold x* ≈ 2a, the neighboring
nucleosomes do not overlap, but the gap does not allow a
new nucleosome to bind without significant interaction with
at the least one of the existing nucleosomes. In this regime,
Gc(x) decays slowly with increasing gap size. (iii) For x > x*,
the gaps are wide enough to fit a new nucleosome without
significant hindrance, such that only very few of these gaps
remain at the onset of the cramming stage. Accordingly, the
distribution Gc(x) decays rapidly with x in this regime.

If the dominant kinetic process during the cramming
stage is the filling of initially created gaps, we should be able
to predict the dynamics of ρ(t) from Gc(x). Specifically, the
time-dependent nucleosome density should follow

ρ(t) = ρc +
∑

x

Gc(x)
(
1 − e−γ (x)(t−tc)) , (4)

where tc is the time at which the nucleosome density reaches
the cramming threshold ρc (defined above). As the total
number of gaps in the system equals the number of nucleo-
somes, we also have the relation

∑
xGc(x) = ρc. The factor

in brackets corresponds to the probability that a gap of size
x has been filled at time t, given a gap filling rate � (x). This
rate can be obtained as the sum over the attachment rates at
all positions between the dyads, with each position-specific
rate according to Equation 2, such that

γ (x) = r+
x−1∑

x′=1

e[−v(x′)−v(x−x′)]/kBT (5)

(see also the sketch inside regime (ii) of Figure 4A).
The cramming dynamics predicted by Equation 4 are
shown in Figure 4B alongside the three simulated filling
curves, displaying excellent agreement until the character-
istic timescale 1/r− for unbinding when the cramming stage
ends. For the numerical evaluation of Equation 4, we used
the entire distribution Gc(x) (described as the piecewise ex-
ponential shown as the gray line in Figure 4A; see Supple-
mentary Text, Section II for more details), however regime
(ii) of the gap size distribution governs the cramming be-
havior (see Supplementary Figure S4 for an analysis of the
relative contributions of the three regimes).

The above quantitative analysis confirms our biophysical
interpretation of the cramming stage as a progressive fill-
ing of the gap distribution that is established prior to the
onset of cramming. In other words, higher-order processes
involving the recursive filling of newly created gaps are neg-
ligible. At the end of the cramming stage, when unbinding
becomes relevant, the subsequent final equilibration occurs
very fast in the SoNG model. This is due to the fact that
after unbinding, the rebinding position of a nucleosome is
not uniformly distributed within gaps, as is the case in the
HaNG model. Rather, the energetic gradient of their inter-
actions with neighboring nucleosomes provides a ‘guiding
funnel’ toward proper spacing.

Nucleosome filling behind a moving replication fork

We now consider effects on the kinetics of nucleosome fill-
ing that can result from the process of DNA replication, us-
ing the model extension described in ‘Materials and Meth-
ods’ section. We first investigate a scenario where the DNA
is cleared from nucleosomes by the replication fork and nu-
cleosome filling of the daughter strands occurs behind the
moving fork. The replication fork moves along the DNA
with a certain speed vrepl and thereby exposes newly syn-
thesized DNA continuously. Once the synthesized DNA
has reached a sufficient length, a new nucleosome can as-
semble. If the progression speed is slow and the adsorption
rate large, this will occur almost immediately when the new
strand is long enough. Replication then continues and soon
the next nucleosome can attach adjacent to the previous
one. This leads to closely packed nucleosomes in the wake
of the moving fork, as depicted in the upper part of Fig-
ure 5A. We refer to this as ‘replication-guided’ assembly. If,
on the other hand, the replication fork progresses rapidly
compared to the assembly rate, then large stretches of newly
synthesized DNA will be exposed to nucleosome assembly
at random positions, leading to jamming, as sketched in the
lower part of Figure 5A. Note that in the limit of very fast
replication, we would recover the replication-independent
nucleosome filling studied above.

A typical replication speed is vrepl = 50 bp/s or one-third
of a nucleosome footprint per second, however a variation
of at least a factor 10 in the replication speed has been ob-
served (28). For the rate of nucleosome assembly, the ex-
trapolated in vitro rate from (14) suggests 12 assembly at-
tempts per second within a nucleosome footprint. Clearly,
the in vivo rate could be substantially different and addition-
ally modified by histone level and chaperone activity regu-
lation. Given this spread in the relevant quantities, both of
the above scenarios could be realistic. We therefore show
a quantitative analysis of both regimes within the SoNG
model in Figure 5.

Figure 5B shows the nucleosome density in the wake of
the moving fork, while Figure 5C shows the time evolution
of the density at a fixed position. In each case, a simula-
tion result for a slow and fast replication fork is shown (see
Supplementary Materials for more details). For slow repli-
cation (red traces), nucleosomes are packed tightly behind
the fork. The density rises quickly after the fork has passed
by and initially exceeds its ultimate equilibrium value. Later,
the density decreases through events in which two nucleo-
somes leave and the gap is filled by only one nucleosome. In
contrast, for fast replication (blue traces), the moving fork
guides nucleosomes only weakly and the density follows the
cramming behavior of naked DNA (black traces) in its last
stage.

From the quantitative analysis in Figure 5 it becomes
clear that the functionally ideal regime corresponds to an
intermediate case where the replication-guided assembly di-
rectly leads to the steady-state density: if the assembly rate
is tuned with respect to the replication speed, the nucleo-
somes behind the fork will already display the proper spac-
ing, and the filling curve in Figure 5C will rapidly rise to
the steady-state nucleosome density, without any overshoot
or relaxation behavior. Such a fine-tuned optimal behavior
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Figure 5. Illustration of the wake filling mechanism. (A) Schematic of different filling regimes in the wake of the moving replication fork (only one daughter
strand shown). If the fork progresses slowly, or if replication machinery tightly replaces nucleosomes in its wake, nucleosomes attach to synthesized DNA
very quickly once a sufficiently wide segment becomes available, leading to tight packing in the wake. If the fork progresses quickly, however, the newly
synthesized DNA is left essentially empty. Jamming can then occur, which, for soft nucleosomes, is resolved by cramming. (B) Snapshots of the nucleosome
density along the DNA at different times t1 < t2 � t3. (C) Time-evolution of the nucleosome density at fixed positions. Time is set to zero when the fork
passes by and filling can start. Red: for slow replication, the density initially exceeds and then approaches its equilibrium value. Blue: for fast replication the
density in its final phase follows the replication-independent cramming behavior (shown in black for comparison). The cramming density ρc is indicated
by the gray line. See Supplementary Figure S5 for detailed simulation parameters.

could be obtained, for instance, by coupling the replication
speed to the concentration of free histones (see discussion
for possible evidence).

Nucleosome filling guided by parental nucleosome positions

In the above analysis, parental and new nucleosomes were
lumped together in one pool, from which nucleosomes were
randomly placed on the newly synthesized DNA. To ex-
plore possible effects of nucleosome segregation on the fill-
ing kinetics, we now consider a variant of our model which
takes the deposition of parental nucleosomes on the daugh-
ter strands into account. We assume that all parental nu-
cleosomes are distributed between the daughter strands by
the replication machinery, thus generating an initial state for
the subsequent filling with new nucleosomes that is signifi-
cantly different from the empty DNA assumed above. Given
that important aspects of the nucleosome segregation pro-
cess are not yet experimentally characterized, we consider
only extreme scenarios that illustrate the potential effects
most clearly. Specifically, we consider only the fast replica-
tion regime of the previous section, which allows for a clear
separation between nucleosome segregation and DNA fill-
ing with new nucleosomes (we do not need to consider the
moving replication fork explicitly, but can use the deposited
parental nucleosomes as an initial condition for the filling
with de novo assembled nucleosomes). Furthermore, we as-
sume the idealized case where a segregated nucleosome re-
ceives the same position on a daughter strand as it had on
the parental DNA.

We focus on the question of how the filling kinetics are af-
fected by the splitting process that distributes the parental
nucleosomes between the two daughter strands, see ‘Mate-
rials and Methods’ section. Figure 6A depicts the two ex-
treme cases of random distribution (bottom) and perfectly
alternating distribution (top). Figure 6B and C show the

corresponding filling kinetics, for the SoNG and the HaNG
model, respectively. Figure 6B and C also show the fill-
ing curve for empty DNA as a reference (black lines). For
the alternating initial distribution (red lines in Figure 6B
and C) we observe that the density reaches its final value
very quickly, avoiding jamming (for the HaNG model) and
cramming (for the SoNG model). This is to be expected,
given that all gaps have the correct size for one additional
nucleosome. The gaps are quickly filled, re-establishing the
equilibrium density with no need for rearrangements. For
random allocation between strands (blue lines) there are
gaps that have accommodated two or more nucleosomes
on the parental DNA, which are then likely to become ob-
structed by ‘bad parkers’, thus leading to jamming. The ef-
fects of parental histone positions are more pronounced for
the HaNG model where jamming is more severe than in the
SoNG model. However, even for the SoNG model the fi-
nal approach to the steady-state is considerably faster when
nucleosome filling is guided by alternating nucleosome seg-
regation.

DISCUSSION

Summary

Our model-based analysis has shown that the formation
of dense nucleosome arrays is expedited by nucleosome
softness, which can be attributed to nucleosome breath-
ing and stepwise assembly, and by positional guidance ob-
tained through the replication process. For the latter, we
identified two different mechanisms, (i) positional guid-
ance by a moving replication fork and (ii) positional guid-
ance by segregated parental histones. Mechanism (i) pro-
vides optimal guidance, if the nucleosome assembly rate
is matched to the speed of the replication fork. If, how-
ever, the replication machinery moves too fast to allow
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Figure 6. Effects of inherited parental nucleosome positions on filling dynamics. (A) An alternating distribution of parental nucleosomes onto the daughter
strands (α = 1) leads to gaps that each accommodate a single additional nucleosome (top panel), while a random distribution (α = 0.5) leads to gaps of
various sizes such that jamming will occur for de novo deposited nucleosomes (bottom panel). (B) Nucleosome filling dynamics of the SoNG model starting
from an alternating inherited configuration (red), a random inherited configuration (blue) and from empty DNA as a reference (black). The dashed line
marks the asymptotic density and the gray line the jamming density. (C) Same plot for the HaNG model.

dense packing in its wake, nucleosomes form at random
positions, resulting in ‘jammed’ nucleosome configurations
which must be resolved to further increase the DNA cov-
erage. In this fast replication regime, mechanism (ii) can
still prevent jamming. A caveat is that it is effective only
if the segregated nucleosomes (approximately) retain their
positions during DNA replication and neighboring nucle-
osomes on the parental DNA are typically segregated to
different daughter strands. However, even if jammed nucle-
osome configurations do occur, we found that their effect
on the nucleosome filling kinetics is much less dramatic for
soft nucleosomes than when nucleosomes are approximated
as hard-core particles.

We find it useful to illustrate replication-guided nucleo-
some packing by extending the ‘car parking’ analogy that
is often used for one-dimensional adsorption-desorption
models (11). Imagine a truck that slowly moves along the
curb of a street, e.g. performing roadwork. Cars in search
of parking spots can park right behind the truck as soon as
the distance from the previously parked car is large enough.
This results in densely spaced cars along the curb, analo-
gous to the replication-guided filling described above. Now,
assume that the truck moves by more than one car’s length
before a driver looking for a parking spot arrives. Then,
parking will no longer be ordered behind the truck. If how-
ever, the roadwork performed by the truck consists of paint-
ing parking spot guidelines on the road, dense packing is
again established (assuming equal car lengths and drivers
respecting guidelines). In the nucleosome context, such po-
sitioning guides emerge if the gaps between inherited nu-
cleosomes correspond directly to the space vacated by a
parental histone, such that each gap can be quickly filled
by a single assembly event.

That nucleosomes with an effective soft-core interaction
display much faster filling kinetics than hard-core nucleo-
somes is not a trivial effect. They are larger than their coun-
terparts in the HaNG model and the interaction param-
eters are determined such that the same equilibrium den-

sity and compatible nucleosome patterns are obtained in
both cases (24). Furthermore, the filling kinetics of the soft-
core nucleosomes differs significantly from that of the hard-
core nucleosomes: the latter quickly run into a stagnating
nucleosome density, the ‘jamming plateau’, followed by a
long period of collective rearrangements during which the
nucleosome density creeps to the final steady-state density.
In contrast, the density of soft-core nucleosomes does not
plateau before reaching the final steady-state. Rather, the
SoNG model displays a cramming stage, during which the
nucleosome density steadily increases, followed by a rapid
relaxation to the steady-state nucleosome pattern via nucle-
osome rearrangements that are guided by the nucleosome–
nucleosome interaction. Taking nucleosome softness into
account thus leads to profound effects that should not be
ignored in kinetic studies of nucleosome array formation.
For steady-state properties, the hard-core description (26)
remains a useful abstraction that can even quantitatively
describe the gene-averaged nucleosome pattern adjacent to
nucleosome-free regions (51), albeit not in a unified way,
across different species (24).

Assumptions and limitations

Taken together, our findings suggest that the biophysics of
nucleosomes and DNA replication helps cells to avoid the
kinetic problem of jamming, which would otherwise arise
in the formation of dense nucleosome arrays (13). We note
that the dramatic speedup of the filling kinetics of the soft-
core model compared to the hard core model is a generic
property of soft nucleosomes, i.e. it is robust to changes in
the specific shape of the interaction potential. Clearly, our
coarse-grained model has many simplifying assumptions,
which could potentially affect this conclusion. For instance,
our SoNG model is restricted to nearest-neighbor interac-
tions between nucleosomes. While it is certainly possible
to integrate longer-range interactions (mediated by higher-
order chromatin structure) into these models (52), there is
currently no experimental evidence that nearest-neighbor
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interactions do not suffice to describe the statistical dis-
tribution of nucleosome positions. Another simplifying as-
sumptions was to ignore the DNA sequence preferences of
nucleosomes, which would make our on- and off-rates r+
and r− position-dependent. However, position-dependent
rates can provide additional guidance and further reduce
the tendency of nucleosomes to jam, i.e. the assumption is
not critical.

One of the limitations of our study is the inability of our
coarse-grained model to predict the absolute timescale of
the nucleosome filling kinetics. A crucial unknown parame-
ter is the in vivo rate of nucleosome assembly (the rate r+ in
our model). Using the in vitro estimate of (14), our SoNG
model suggests that 90% DNA coverage can be reached on
a timescale of several minutes, see Figure 3. However, this
estimate has considerable uncertainty, due to both the ex-
trapolation to zero applied force in (14) and the usage of an
in vitro rate for an in vivo process. The strength of the coarse-
grained modeling approach is that it can compare differ-
ent mechanisms in terms of their relative speed of nucleo-
some array assembly. Our model comparison demonstrated
that soft-core nucleosomes have a kinetic advantage over
hard-core nucleosomes, with an almost two orders of mag-
nitude shorter assembly time for nucleosome arrays with
the spacing of S. cerevisiae. The SoNG assembly time is in
fact comparable to the timescale estimated within a similar
coarse-grained model for hard-core nucleosomes, but with
remodeler-assisted nucleosome sliding (13) (passive nucleo-
some sliding without assistance by remodeling enzymes is
too slow to significantly affect assembly times).

Our treatment of replication-guided nucleosome packing
has introduced a minimal model for the simultaneous kinet-
ics of DNA replication and assembly of nucleosome arrays.

Rather than modeling the detailed processes at the repli-
cation fork, we focused on the more general question of
how the processive nature of replication influences filling
kinetics. This establishes the basis upon which more elab-
orate orchestration of chromatin reassembly may operate.
Slow progression of the replication fork compared to the
nucleosome assembly rate helps to avoid nucleosome jam-
ming, while the guiding effect of the fork is negligible at
fast progression speeds. We showed that for very slow pro-
gression, the density in the wake of the fork even exceeds
its equilibrium value temporarily. It is tempting to spec-
ulate whether a coupling mechanism between the assem-
bly rate and the fork speed might allow cells to tune the
replication-guided density to the steady-state value. This
density would then be reached substantially faster than even
the soft-core model predicts for the homogeneous case. An
indication for such a feedback mechanism was indeed re-
ported in mammalian cells: limiting the supply of new hi-
stones slows down the replication fork (53). However, in
these experiments the nucleosome density on the nascent
daughter strands was reduced in histone depleted condi-
tions, indicating that the feedback mechanism might not
fully compensate for the lower histone availability. To what
extent this feedback might tune the ratio of speed and as-
sembly toward the optimal regime is currently unclear.

We also investigated possible influences of histone segre-
gation. Again, our model is certainly not meant as a full
description of these processes in yeast cells. For instance,

we have ignored differences between the replication of the
leading and the lagging strand. Instead, our model serves
to illustrate generic consequences of an interplay between
the DNA replication machinery and nucleosome assembly.
This interplay depends on the statistical properties of the
nucleosome segregation process. Fast assembly of dense ar-
rays is facilitated by an alternating deposition of parental
nucleosomes to the daughter strands and a high correla-
tion between parental nucleosome positions and those on
the daughter strands. These aspects of DNA replication and
nucleosome segregation are insufficiently characterized ex-
perimentally. However, it does seem clear already that the
details are context-dependent. For instance, while nucleo-
somes are generally believed to be allocated in equal shares
to the two daughter strands, nucleosomes in Drosophila
germline stem cells are mainly segregated to one daughter
strand, while de novo assembled nucleosomes are enriched
on the other (38). It is also interesting to note that repli-
cation of the lagging strand was found to be tied to the as-
sembly of nascent chromatin: Okazaki fragment lengths are
multiples of the average nucleosome spacing in S. cerevisiae
with fragments terminating preferentially at consensus dyad
positions, and suppression of nucleosome assembly resulted
in longer fragments (39).

Finally, our model does not explicitly account for remod-
eling enzymes, which are known to reposition, remove and
restructure nucleosomes (18). As described in the model sec-
tion, we incorporate the action of histone chaperones into
our effective assembly rate r+, and the ATP-assisted removal
of nucleosomes in our effective eviction rate r−. Note that
the parameters of the potential which describes the reduced
on-rate for overlapping adsorptions are determined from in
vivo nucleosome positioning patterns that include the effects
of remodelers. Our analysis has shown that reasonable effec-
tive rate constants r+ and r− are sufficient for rapid forma-
tion of dense nucleosome arrays, once nucleosome softness
is taken into account. While our findings don’t deny that
other types of remodeling processes are also taking place,
they suggest that active lateral repositioning of nucleosomes
is not required to form dense nucleosome arrays in a timely
manner. This conclusion is not in conflict with the observa-
tion that the reconstitution of nucleosome patterns across
the 5’ ends of yeast genes requires whole cell extract and
ATP (54), given that eviction of nucleosomes is also ATP-
assisted.

However, these and other experiments at reduced nucle-
osome density show that our model is not sufficient for a
coherent quantitative description of gene-averaged nucleo-
some patterns for all experimental conditions. At a mini-
mum, this will require either a mechanism that pushes nu-
cleosome toward the 5′ ends of genes (54) or a mechanism
that mediates a nucleosome–nucleosome attraction (24).

Experimental ramifications and outlook

Our theoretical analysis of replication-guided nucleosome
packing stimulates several experimental questions. Given
that the kinetically optimal scenario lies in the regime where
the replication speed is tuned to the nucleosome assembly
rate r+ times the dyad-to-dyad spacing of the packed nucle-
osome array, it is of particular interest to test whether yeast
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cells typically operate in this regime. The replication fork
speed could even be controlled externally via hydroxyurea
(55,35) to study different regimes of the wake filling mecha-
nism in vivo. A useful experimental observable for compar-
ison with theoretical models would be the nucleosome den-
sity profile as a function of the distance to the replication
fork. This density profile should display a depletion zone
behind the fork, whose width is a function of the ratio of the
replication fork speed to the speed of nucleosome assembly.

The process of nucleosome segregation has been of great
interest in the context of epigenetic inheritance of histone
modifications. Our theoretical analysis has shown that the
statistical properties of this process can also have strong
effects during the process of reforming dense nucleosome
arrays after DNA replication. An experimental analysis of
these statistical properties could simultaneously shed new
light on both questions and would be highly desirable. We
hope that a dynamical analysis of nucleosome arrays will
significantly advance our quantitative understanding of the
processes that shape the arrays.
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51. Möbius,W. and Gerland,U. (2010) Quantitative test of the barrier
nucleosome model for statistical positioning of nucleosomes up- and
downstream of transcription start sites. PLoS Comput. Biol., 6,
e1000891.

52. Chereji,R.V. and Morozov,A.V. (2011) Statistical mechanics of
nucleosomes constrained by higher-order chromatin structure. J.
Stat. Phys., 144, 379–404.

53. Mejlvang,J., Feng,Y., Alabert,C., Neelsen,K.J., Jasencakova,Z.,
Zhao,X., Lees,M., Sandelin,A., Pasero,P., Lopes,M. et al. (2014) New
histone supply regulates replication fork speed and PCNA unloading.
J. Cell Biol., 204, 29–43.

54. Zhang,Z., Wippo,C.J., Wal,M., Ward,E., Korber,P. and Pugh,B.F.
(2011) A packing mechanism for nucleosome organization
reconstituted across a eukaryotic genome. Science, 332, 977–980.

55. Poli,J., Tsaponina,O., Crabbé,L., Keszthelyi,A., Pantesco,V.,
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Supplementary Text

I. DIFFERENT CHOICES FOR THE DEPENDENCE OF THE KINETICS ON

THE NUCLEOSOME-NUCLEOSOME INTERACTION

In general, the nucleosome assembly and eviction reactions within our model could both

be configuration-dependent, leading to the position-dependent rates r̃+(x) and r̃−(x). How-

ever, the ratio between these reactions must be consistent with the Boltzmann factor at

every position x,
r̃+(x)

r̃−(x)
=
r+
r−

e−V/kBT (1)

where V is the net change in interaction potential produced by the addition of a nucleo-

some at position x (taking into account all contributing nearest-neighbour interactions1).

Therefore, the most general form for the effective rates is

r̃+(x) = r+ e−θV

r̃−(x) = r− e(1−θ)V , (2)

where the parameter θ is in the range between zero and one. Values of θ close to one indicate

rate-modulation at the point of assembly, while values close to zero indicate rate-modulation

at the point of eviction. The nucleosome density as a function of time for various θ values

is plotted in Fig. S1 for the three values of r+ considered in the main text (as in the main

text, we use time units such that r− = 1).

1 The main text Eq. 2 implicitly assumes that the nucleosomes immediately to the left and right of the

assembly site x do not already overlap. In the extremely rare case of such a previously existing overlap, V

is the sum of the interactions between the new nucleosome and its neighbors less the preexisting interaction

between those neighbors.

2



II. GAP DISTRIBUTION AT THE ONSET OF CRAMMING

When SoNG adsorption reaches the cramming density of ρc = 4.48·10−3 nucleosomes/bp,

the density, per bp, of gaps with size x is given by

Gc(x) = A ef(x) (3)

f(x) =





−v(x) if x < a

α1x+ b1 if a ≤ x < x∗

α2x+ b2 if x∗ ≤ x

.

where v(x) is the interaction potential from the main text, α1, b1 and α2, b2 are best fit

values taken from regression over the intervals [a, 2a) and [2a, 3a) respectively, and x∗ is the

‘corner point’ at which the exponential slopes intersect. A is a normalization constant, such

that
∑

xGc(x) = ρc, the number of nucleosomes per bp, (or, equivalently, the number of

gaps per bp). Fig. S3 shows a histogram of gap sizes for our three time series at the onset

of cramming, and Table S1 shows the values of the above parameters for each case.

III. SIMULATION PARAMETERS

In Table S2 we list the detailed parameters used in the Monte Carlo simulations for all

figures of the main text and the supplement. Figure S5 is a reproduction of the corresponding

Fig. 4 in the main text, with detailed simulation parameters added.
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FIG. S1: Equilibration to our three final average densities under consideration for different values

of θ, corresponding to different applications of the Boltzmann factor in the simulations. At θ = 1

(the choice always presented in the main text), the speed-up of the filling process, relative to the

HaNG model, is least pronounced. Thus, the choice of θ = 1 is conservative with respect to our

main conclusion.
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common parameters:

number of initially naked bp: 20*167 = 3340

total number of bp:  80*167 = 13360

r+ = 221 /bp/s
r-  = 1 /s

number of runs averaged: 30
(plus 2000 consecutive bp for panel C)

simulation time: 0 s   to   exp(4) s

slow replication parameters:

speed of right boundary: 1485 bp/s

times of snapshots in (b): 
 0.64 s
 1.18 s
 5.92 s

positions for time trace in (c):
 poss 10,000 - 12,000 
 (averaged)
 

fast replication parameters:

speed of right boundary: 37128 bp/s

times of snapshots in (b): 
 0.15 s
 0.20 s

positions for time trace in (c):
 poss 10,000 - 12,000 
 (averaged)
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FIG. S5: Detailed simulation parameters used for the illustration of the wake filling mechanism in

Fig. 4 of the main text (the figure is reproduced here for ease of reference).
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Supplementary Tables

1/ρ̄[bp] tc[1/r−] α1 α2 b1 b2 x∗ A

155 6.3 x10−6 -9.6 x10−3 -2.8 x10−2 1.6 7.5 316 4.5 ×10−5

165 1.6 x10−4 -1.0 x10−2 -3.3 x10−2 1.7 8.9 319 4.6 ×10−5

180 5.0 x10−3 -9.5 x10−3 -2.7 x10−2 1.5 7.2 314 4.4 ×10−5

TABLE S1: Constants describing the distributions in figure S3 for the three time series. Each

curve in Fig. 2 reaches the onset of cramming at time tc, at which point the probability distribution

of inter-nucleosome gaps can be characterized by a piecewise exponential function with parameters

shown here.

figure panel / trace geometry system size L number of runs

2 A,B periodic 6000 400

C,D periodic 6000 60000

C trace 1/155 periodic

F periodic 6000 60000

3 A periodic 6000 20000

4 see parameters in Fig. S5

5 B,C linear 200 × particle size 10

S1 periodic 6000 400

S2 each color (final density): see parameters for Fig. 3

S3 periodic 8000 60000

TABLE S2: List of simulation parameters. For Fig. 5, the system size is given in multiples of the

particle size, which is 147 for HaNG and 167 for SoNG.

7
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5.2 A Statistical Physics Perspective

The study included above was motivated by the biological application of 1-D adsorption of
histones on DNA, and the results have particular relevance in light of ongoing research in the
kinetics of chromatin assembly[111]. It turns out, however, that this application serves as an
impetus for the study of more fundamental properties of non-equilibrium physical processes
which we explore now. The second manuscript attached at the end of this chapter presents
the major findings of this more general study and, as of July 28 2015, has been accepted by
peer-review for publication. The supplementary materials of this text (denoted reference 21
therein) consist primarily of content presented explicitly in this chapter, though to facilitate
ease of reading, only portions of the text from this supplement are used here, rather than the
whole document.

Reversible one-dimensional sequential adsorption of hard-exclusive particles, and the corre-
sponding equilibration process in the above-jamming regime, has been an area of active re-
search for some time[112, 113]. The problem, in addition to demonstrating intriguing physics
in its own right, exhibits the same density dynamics as granular media [114, 115, 116, 105],
and presents intriguing applications to related problems[117, 118, 119].

Part of the reason this problem is interesting is that it exhibits partially broken ergodicity[120]
in the sense that during unjamming, only a restricted portion of the state-space is accessi-
ble. Various approach laws have been proposed to describe this relaxation process, such
as using mean-field theory to describe the void distribution from the density[121, 120], or
via phenomenological means using a stretched exponential[122]. Up to this point, however,
available literature on the kinetics of line filling has been restricted to particles that inter-
act via exclusion. The only study on kinetic filling with finite interactions we are aware of
relied on stochastic interaction upon overlap (i.e. a potential that is either zero or infinite
randomly)[123] -a very different form of ‘soft’ interaction from the deterministic potential we
are interested in. To explore this topic in a more generic way, rather than the nucleosome-
specific potential given in Eq. 2.5, we use the linear interaction potential

ϕ(x) = ε(1− x) for x < 1. (5.5)

which defines an effective particle size of unity. The filling dynamics observed for particles
with an interaction potential from Eq. 5.5 are qualitatively the same as for the SoNG potential
derived in Chapter 2, however this form is intended to be archetypal for other applications
with interactions that can be roughly linearized. Using the same Monte Carlo simulations
described in Section 2.5, the density of particles as a function of time for various levels of
stiffness ε are shown in Fig. 5.3. While this interaction potential served purely to diminish
adsorption rates (rather than expedite desorption,) alternative implementations of detailed
balance were discussed in the previous document included above.

Note that for the upper curve in Fig. 5.3 the density trace is non-monotonic, reaching a
transient maximum we refer to as the ‘overshoot’ shortly before tr− ≈ 1 and then relaxing
downward toward equilibrium. This behavior is reminiscent of other transient density profile
maxima which have been shown in 2D adsorption experiments[119].

The three curves shown illustrate the emergence of this behavior with decreasing ε, and a
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Figure 5.3: (a) Time traces of ρ(t) for constant r+, r−, assuming a linear interaction potential as
given in Eq. 5.5, with varying interaction strengths ε showing the transition into the
overshoot regime. The void distribution at time points 1− 5 indicated in (a) are shown in
(b),(c). Overlaid on the stochastic data (symbols) are transparent lines determined using
a more sophisticated cramming formula than what was used in the previous manuscript.
This theory provides the transparent density traces in (a) using Eq. 5.13, as well as the
transparent void distributions in (b) using Eq. 5.12. The criteria that the asymptote of
this cramming density exceed the equilibrium value delineates the regime where a transient
maximum is observed.

more exhaustive exploration of the phase-space for the overshoot is presented in Fig. 3 of the
manuscript attached below.

The cause of this behavior is not obvious, and to understand it, a first step is to see whether the
same behavior is observed in a calculation of the density using mean-field void probabilities,
since non-mean-field effects have been shown to play an important role in equilibration for
the case of hard particles[124].

The same mean-field description that was applied to the jammed configuration of hard par-
ticles used in Eq. 5.1 has also been used to include time dynamics by treating voids of size
x as dynamic variables V (x, t)[125]. In so doing, the evolution of the density in time can be
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predicted. We extend this reasoning one step further to include the above neighbor interaction

∂

∂t
V (x, t) = − r+ V (x, t)

x∫

0

dy e−ϕ(y)−ϕ(x−y)+ϕ(x)

+ 2 r+

∞∫

x

dy V (y, t) e−ϕ(x)−ϕ(y−x)+ϕ(y)

− 2 r−V (x, t)

+
r−
ρ(t)

x∫

0

dy V (y, t)V (x− y, t) , (5.6)

where ρ(t) =
∫
V (x, t) dx owing to the one-to-one correspondence between particles and voids.

In actual calculation, we coarse-grain Eq. 5.6, into the form of discrete k−mers along a lattice
of finite size L with periodic boundary conditions, with k and L chosen large enough to
approach an effective quasi-continuum, as shown below.

While the length variable x, in parenthesis, is used in Eq. 5.6 to denote separation between
neighbors in units of the particle size, it is useful to employ subscript indices to denote the
discrete number of intervening lattice sites between the positions of neighboring particles
along this lattice; a circumflex is also used to denote quantities measured with respect to
discrete lattice site lengths rather than particle size. Hence, V0 refers to immediately adjacent
lattice positions with maximal overlap interaction ϕ0, while a Vk−2 void carries the minimum
non-zero interaction energy, ϕk−2 = ε̂, where ε̂ = ε/k. Likewise ϕm = (k − m − 1)ε/k for
0 ≤ m ≤ (k − 1) (zero for m ≥ k). Finally, the on-rate per lattice site, r̂+, is related to the
on-rate per footprint r+ by r+ = kr̂+ as with the number of particles per footprint ρ = kρ̂.
The non-interacting chemical potential cited refers to µ0 = ln(r+) = ln(kr̂+). The discrete
analogue of Eq. (5.6) is then
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V̇m(t) =





−2r−Vm(t)

+2r̂+

L−1∑
i=m+1

Vi(t)e
−ϕm−ϕi−1−m+ϕi

−r̂+Vm(t)
m−1∑
i=0

e−ϕi−ϕm−1−i+ϕm

+ r−
ρ∗

m−1∑
j=0

VjVm−1−j(t),

(if 0 ≤ m < L− 2)

−r−Vm(t)

+r̂+LVm+1(t)e−ϕm

−r̂+Vm(t)
m−1∑
i=0

e−ϕi−ϕm−1−i+ϕm

+ r−
ρ∗

m−1∑
j=0

VjVm−1−j(t),

(if m = L− 2)

−r̂+Le
−ϕm−1Vm(t) + r−Vm−1(t)

(if m = L− 1) .

(5.7)

Note the parameter ρ∗ 6= ρ; for arbitrarily large but finite systems, the finite number of
particles necessitates a correction to Eq. (5.6) to maintain conservation of space. Applying
this conservation relation to Eq. 5.7 yields

ρ∗(t) =

L−1∑
n=0

(1 + n)
n−1∑
j=0

Vj(t)Vn−1−j(t)

2
L−2∑
m=0

(1 +m)Vm(t)

, (5.8)

while the ratio ρ∗(t)/ρ(t) converges to unity quickly as an initially empty system fills. The
density of particles, (our main observable of interest) is then taken as the number of particles
per k lattice sites, ρ.

Note in Eq. 5.7 the two characteristic time-scales of adsorption and desorption r±, which set
the onset of jamming and equilibration respectively. As seen in Fig. 5.4 the ρ(t) predicted
by Eq. 5.7 is very much consistent with the values obtained from full stochastic simulation.
Moreover, as shown in Fig. 5.5, discretizing the continuous particles into k−mers has little
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effect on ρ, provided k is chosen sufficiently fine. Fig. 5.5 suggests that k & 10 is sufficient to
be regarded as an effective quasi-continuous particle. For the remainder of this text, unless
otherwise stated, quasi-continuous data was gathered by using k = 50.
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From the above, it can be said that the qualitative features of filling, cramming and relaxation
seen in 5.3 seem to be relatively insensitive to coarse-graining or mean-field approximations.
A natural next step in understanding the overshoot comes by revisiting the cramming analysis
given in Eq. 5.4.
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5.3 Cramming with Finite Density Saturation

Eq. 5.4 makes the rather simplistic assumption that all binding is irreversible. While this
assumption is useful in analyzing system behavior well before the formation of stacked arrays,
it also unfortunately overestimates the density by breaking detailed balance locally. Assuming
each of the voids within Eq. 5.1 can be crammed -now reversibly- against some repulsive
interaction potential, the probability of voids of size x remaining unfilled at time t, P (x, t),
follows the relation:

d

dt
P (x, t) = −P (x, t)γ(x) + (1− P (x, t))r−. (5.9)

Here, the second term is the probability that the void has been filled, multiplied by the rate
of desorption. From another perspective, the two terms in Eq. 5.9 reflect the first and last
terms of Eq. 5.6. During the cramming period, t ∈ [1/r+, 1/r−], the opportunity to fill very
large voids has already been exhausted and the bounding particles on either side are not yet
departing, thus the second and third terms of 5.6 can be neglected.

This partial relaxation of irreversibility for the cramming particles has the somewhat arbitrary
implication of treating particles that arrived before jamming as fixed in place, while those
adsorbing during cramming do so reversibly (that is to say, the fourth term in Eq. 5.6 is
effectively retained. The goal here is to model saturated filling on a local level, before many-
body rearrangements. At any rate, such an estimate is a better approximation than the
irreversible ‘ratchet-like’ behavior of Eq. 5.4, and we will see below that it actually produces
reasonable asymptotic behavior that helps explain the overshoot. The solution to equation
5.9 supplies the elements of our diagonal probability matrix Pxx which, again, describes the
likelihood of a gap of size x remaining unfilled:

P̂ (t)xx′ =
δxx′

γ(x) + r−

(
r− + γ(x)e−(γ(x)+r−)t

)
. (5.10)

Likewise, the transition matrix T̂xx′ characterizes the creation of voids of size x from the
filling of a void of size x′:

T̂xx′ =

{
2 e
−ϕ(x)−ϕ(x′−x)+ϕ(x′)

γ(x′) if x < x′

0 else .
(5.11)

Note that
∫
x
dx T̂xx′ = 2, since each each cramming reaction creates a net increase of one void.

Taken together with a vector interpretation of void distributions V, Vjam, equations 5.10 and
5.11 suffice to give us the cramming distribution of voids of size x at time t

V (x, t) =
(
P̂ (t)xx · Vjam(x) + T̂xy · (I − P̂ (t)yy) · Vjam(y)

)
. (5.12)

Snapshots of this void distribution are overlaid in transparency in Fig. 5.3(b) as described in
the caption. The density of such a ‘glassy’ phase is
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ρcr(t) = ρjam +

∫
dxVjam(x)

γ+(x)
(
1− e−[γ+(x)+r−]t

)

γ+(x) + r−
, (5.13)

which is also overlaid, in transparency, on stochastic data in Fig. 5.3(a). Note that Eq. 5.13
reaches asymptotic behavior not seen in the projections from Eq. 5.4. Furthermore, the
asymptotic level depends on the interaction potential; as a result, the overshoot in Fig. 5.3
becomes visible when ρcr yields a steady state result that exceeds the ultimate equilibrium
density. This brings us to the basic premise of our explanation for the transient overshoot
seen in Fig. 5.3: the void distribution established at the conclusion of RSA can be crammed
to densities that are unsustainable when full freedom of redistribution is allowed for the many
particles in the system.

To test this, we apply the same cramming theory in Eq. 5.13 under a different initial condition.
Namely, one that will proceed through the cramming process directly into the equilibrium
void distribution –a ‘guiding’ distribution, so to speak. For an equilibrium state with density
ρeq, and void density Veq(x), the corresponding probability distribution of voids Peq(x) =
Veq(x)/ρeq is obtained by simply normalizing Veq(x) to unity. If one were to remove alternating
particles from this arrangement, the distribution of ‘double-voids’ would then be

P2(x) =

x∫

0

dx′
Veq(x′)
ρeq

Veq(x− x′)
ρeq

. (5.14)

Using this, we consider a ‘guiding’ initial configuration of particles obtained by removing
isolated particles from the equilibrium configuration until the density is reduced to ρjam. The
void density distribution for this guiding configuration Vg is mixed from the distributions
P2(x) and Peq(x) in such a ratio as to prepare the system in the same initial density, ρjam, as
before:

Vg(x) = (ρeq − 2(ρeq − ρjam))Peq(x) + (ρeq − ρjam)P2(x). (5.15)

Thus, the ‘guided’ density evolution follows

ρg(t) = ρjam +

∫
dxVg(x)

γ+(x)
(
1− e−[γ+(x)+r−]t

)

γ+(x) + r−
, (5.16)

which is identical to Eq. 5.13, except that the initial condition that serves as a template for
cramming is now Vg instead of Vjam.

The importance of this seemingly subtle difference is made clear in Fig. 5.6. Here, cramming
of Vg proceeds directly to equilibrium without any high-density intermediate. On its own, this
observation is rather trivial (each removed particle is simply crammed back into its original
position); however when juxtaposed against the density evolution using Vjam(x) as a template,
it shows that the initial condition of the cramming process is what determines the asymptotic
density until many-particle rearrangements at timescales t > 1/r−.

To reiterate, the overshoot is a consequence of the dependence of the asymptotic density on the
initial condition subject to cramming, and how this density compares to the ultimate equilib-
rium density once many-particle rearrangements take effect. Under the right conditions, this
asymptotic density is higher than what can be sustained at equilibrium when many-particle
rearrangements are taking place, leading to a density ‘collapse’ near time scales t ≈ 1/r−,
and an apparent overshoot.
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Figure 5.6: (a) Initial distributions Vjam and Vguided compared to the equilibrium distribution Veq.
Cramming calculations from Eq. 5.13 and Eq. 5.16 respectively are then applied to these
initial distributions under varying (b)µ0 and (c)ε. In both cases, cramming of the guided
distribution (dashed) proceeds directly to equilibrium (as expected), while the ‘slow and
steady’ cramming of Vjam leads to different asymptotics that can, under the right condi-
tions, exceed ρeq. Whenever this occurs, the Monte Carlo data show a transient maximum
in the density profile.

5.4 Dimers

Earlier in this chapter we considered an array undergoing reversible adsorption of particles
occupying k adjacent lattice sites, where k was set to either 147, or 165 for the HaNG
and SoNG models respectively. These k values are well into the regime of quasi-continuum
behavior where the discrete ‘graininess’ of the lattice sites in the array (i.e. DNA base pairs
in the context of nucleosomes) is insignificant. The last section showed that k can be as low
as 20, or even 10, while preserving much of the characteristics of a continuum.

Unfortunately, a full analytic description of the relaxation of these larger particles is not
available. Nevertheless, a fairly clear qualitative understanding can be gleaned from a reduced
system that is fully solvable. In the extreme coarse-graining limit, k = 2, dimer particles
bind reversibly to an infinite array of lattice sites. As before, we focus on the more kinetically
interesting regime r+ � r−, where the initially empty substrate first reaches a jammed
configuration via RSA before relaxing towards equilibrium.

Assuming the dimers are ‘hard’, and prohibit overlap, the density (per footprint of two lattice
sites) of the jammed configuration has been shown to be ρjam = 1− e−2[126]. At this point,
neighboring dimers can be separated by either 2 or 3 lattice lengths but no more. We refer
to the density of such intervening voids as V1, and V2 respectively, while ‘soft’ dimers admit
the additional possibility of single overlaps denoted V0 with energetic penalty ε̂; a schematic
is given in Fig. 5.7.

On the typical time scales at which such jammed configurations become established, large
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V2 V1
V0

Figure 5.7: A schematic of a jammed configuration after RSA, with V0,1,2 voids labeled. The trans-
parent dimer is possible only upon cramming. As dimers are made increasingly stiff (i.e.
as ε→∞), the concentration of overlaps V0 diminishes, approaching the hard dimer limit,
where V0 → 0. The convention of ‘land-marking’ dimers at their left position is arbitrary
and done for clarity.

voids of size 3 or higher are extremely short lived. With this observation in mind, a truncation
of the mean-field description given in Eq. 5.7, using only V0(t), V1(t), and V2(t) as dynamic
variables, can be obtained by tracing over larger gaps that act only as transient intermediates.
The order of this approximation can be taken as the number of adjacent desorption events that
are likely to happen in succession. The n−th order truncated mean-field dynamic equations
are then:

V̇0 = −2r−V0 − 2r−
V 2

0

ρ
+ 2r̂+e[−2ε̂]V1 + 2r̂+e[−ε̂]V2 + f

(n)
0 (V0, V1, V2)

V̇1 = 2r−
V 2

0

ρ
− 2r−

V0V1

ρ
− r̂+e[−2ε̂]V1 + 2r̂+e[−ε̂]V2 + f

(n)
1 (V0, V1, V2)

V̇2 = 2r−
V0V1

ρ
− 2r̂+e[−ε̂]V2 + f

(n)
2 (V0, V1, V2) (5.17)

where ρ(t) = V0(t) + V1(t) + V2(t) is the total particle density. The terms f
(n)
0−2 are generally

the contributions to the dynamic variables from immediate refilling of transient states larger
than V2 after a maximum of n sequential desorption events; they are constrained to satisfy
overall conservation of space. A ‘first order’ approximation (n = 1), for example would
entail assuming that every desorption event is immediately followed by an adsorption that
occurs –with equal probability– at any of the non-interacting sites that become available. An
illustration is provided in Fig. 5.8. The additional dynamics to first order are then given by:

f
(1)
0 = 0

f
(1)
1 =

4r−V0V2

ρ
+

4r−V 2
2

ρ

f
(1)
2 = −2r−V0V2

ρ
− 8r−V 2

2

3ρ
(5.18)

which account for transient states up to V5 –the maximum transient void size at this order of
approximation. A clear problem in this description arises when one considers that all possible
reactions must either conserve or increase the total number of particles. The asymptotic den-
sity of hard particles will then always be precisely 1.0, and density increase is then monotonic
by construction.
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1
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3

Figure 5.8: A desorbing dimer with V2 voids on either side leaves 3 available sites for unobstructed
adsorption. In our ‘first order’ treatment, each of the exposed sites is filled with probability
1
3 . Thus, with probability 2

3 , the incoming dimer lands to one side, and is immediately
followed by an additional dimer on the other side, resulting in a net increase of 1 particle.

Thus, we proceed to a second order approximation which allows for at most 2 successive
adjacent desorption events. At this order, the probability that the first desorption event is
followed immediately by at least one filling adsorption (previously unity) is now P1, while the
probability that the first desorption event is followed quickly by the desorption of one of the
two adjacent dimers is P2. These two quantities are given by:

P1 =
d r̂+

d r̂+ + 2r−

P2 =
2r−

d r̂+ + 2r−
(5.19)

where d is the number of non-interacting binding sites available (e.g. d = 3 in the reaction
depicted in Fig. 5.8). The largest intermediate voids is then V8, but subsequent filling then
proceeds along the same principle for all intermediate voids V3 − V8 (i.e. all non-interacting
binding sites are equally likely, and are filled until exhausted). The more complicated relations
at second order represent a much improved approximation:
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(5.20)

When Eq. 5.20 is implemented into Eq. 5.17, numerical time evolution can be taken to obtain
the density ρ. The result compares favorably with Monte Carlo data during the initial filling
phase and at equilibrium, as shown in Fig. 5.9. The density of energy U(t) stored in the
interaction of the soft dimers with finite ε̂ indicates the density of overlaps in time. However,
there remains a clear disparity during the relaxation period for t > 1, a point which can
be attributed to non-mean-field effects described later in this chapter. For the moment, we
consider a heuristic argument as to why monotonicity emerges for interacting dimers only as
ε→∞.

5.4.1 The Hard Dimer Limit

In the equations of motion from Eq. 5.17, 5.20, although there are three dynamic variables,
any of the three can be inferred from the other two due to conservation of space. Hence, there
are only two degrees of freedom. When the limit ε→∞ is taken, these mean-field equations
of motion reduce to hard-core dimer kinetics and V0 → 0, eliminating a further degree of
freedom. The system then becomes one-dimensional, and we can express either of the two
dynamic variables in terms of ρ as

V1 = 3ρ− 1

V2 = 1− 2ρ. (5.21)

By incorporating Eq. 5.20 into Eq. 5.17, setting V0 → 0, summing over V̇1+V̇2, and simplifying,
we obtain
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Figure 5.9: (a) Density of soft dimers as a function of time using stochastic simulation data (symbols)
compared with the numerical results of Eq. 5.20 for various interaction strengths ε̂; the
second value ε̂ = 19.3 represents the marginal case where asymptotic cramming coincides
with the equilibrium density. (b) The potential energy stored in the sum of neighbor
interactions throughout the system U indicates the window of time over which overlaps
occur. Initial filling density and equilibrium values from (a) are clearly in agreement,
however during relaxation, deviation can be observed between the mean-field equations
and full stochastic data.
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and the utility of the description from Eq. 5.20 starts to become apparent. Expressing ρ̇ as
a function of ρ itself implies that this one-dimensional system is necessarily monotonic, as
all one-dimensional systems must be. Recalling the definition r̂+ = e[µ0], we then plot this
derivative for various µ0 in Fig. 5.10.

Note the fixed points (where ρ̇(ρ) = 0 ) in Fig. 5.10 converge at 1.0 in the limit µ0 →∞. The
larger fixed point in the region ρ > 1 represents a non-physical solution, as hard dimers cannot
exceed unity density; algebraic solution of the lower (stable) fixed point, however, yields
the asymptotic density predicted by Eq. 5.17, which can then be compared to equilibrium
calculations determined by the transfer matrix method. The resulting comparison agrees
quite well for µ0 ≥ 3 − 4 as shown in Fig. 5.11 (an additional trace in red, obtained from
Eq. 5.27 is discussed below.)

Thus, the second-order truncated approximation to Eq. 5.7 for dimers reproduces not only
the cramming and overshoot seen in stochastic simulations for soft interactions, but also the
steady-state density for exclusive interactions. More importantly, it illustrates how the soft-
dimers admit more complex dynamics than hard-dimers, and provides an indication as to why
–at least at mean-field– monotonicity is violated only in the former case. Neither the state
of the system nor the derivative of the density is uniquely defined by the density itself, and
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Figure 5.10: ρ̇ plotted in terms of the density ρ itself for various µ0 -such a reduction is only possible
in the limit ε → ∞. The zero intercepts for ρ < 1 represent fixed points of asymptotic
density, while the shaded region represents non-physical solutions, since hard dimers are
restricted to densities ρ < 1.

these other aspects of the system become particularly significant when particles are allowed
to overlap.

While the mean-field description given here captures much of the dynamics, significant dis-
parity with stochastic simulation during relaxation can nevertheless be observed in Fig. 5.9.
Surprisingly, these deviations are not related to the truncation step made in Eq. 5.17, but
rather are due to the assumption of mean-field itself. We elaborate on this in the following
section.
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Figure 5.11: Steady state densities ρ of hard dimers determined exactly using the transfer matrix from
chapter 2 (solid, blue), using the fixed point ρ defining ρ̇ = 0 in Eq. 5.22(dashed, green),
and using the steady-state solution for defect creation and annihilation between dimers
discussed below (red, dotted).
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5.4.2 Non-Mean-Field Effects

The description above, starting from Eqs. (5.6) assumes that no correlations exist between the
sizes of neighboring voids. We now consider an alternative picture, starting by referring to V2

gaps between dimers as stacking ‘defects’, as they result in sub-optimal density arrangements.

When either particle adjacent to the defect desorbs and is replaced, the defect is shifted by
two lattice sites half of the time. When two defects are adjacent, a new dimer will arrive to fill
the space. Thus the behavior of these defects is equivalent to particle diffusion-annihilation,
with the effective lattice for defects coarse-grained by a factor of 2. In fact, a solution to the
diffusion-annihilation problem in 1-D is already available[125], and the parallel with filling
dimers has already been drawn[127]. For an initially full lattice of particles which pair-wise
annihilate irreversibly upon meeting one-another, the density is given by:

c(t) = I0(2t)e[−2t] (5.23)

where I0(x) is the modified Bessel function of the first kind with argument x, which at late
times scales as 1/

√
t.

The analogy here is not perfect since defects in the jammed state are never uniformly spaced.
However, to capture the long-time dynamics we take the average density of defects in the
jammed state 1

e[−2] , as an approximate renormalized lattice. The unit of this array has spacing

e[2] ≈ 7.389, and the time required, on average, for one diffusing defect to reach its neighbor is

then
(

e[2]

2

)2
≈ 13.65. The filling of hard dimers from the jammed state to complete coverage

in the high-µ0 limit is then approximated by

ρ(t) = 1− V2(t)

= 1− I0(2t′)e[−2t′]

= 1− I0

(
e4

2
te−

e4

2
t

)
. (5.24)

Eq. 5.24 is not a significant advancement from what is already known[127]. What is, however,
much more intriguing is that this same reasoning can apply even if the voids are crammed.
Specifically, in the regime r̂+e

−ε > 1 > r̂+e
−2ε, V2 gaps will be crammed by dimers that

overlap with a single neighbor, however V1 gaps will not, due their two-fold higher interaction
penalty. By ‘saturated’ soft dimers, we refer to those in which V2 gaps are generally filled,
but not V1.

Since each defect affords a crammed particle, in this scenario two defects sum to a net gain of
one particle, as opposed to a loss in the hard case. Nevertheless, defect diffusion-annihilation
still obeys they same kinetic principle and the same rate laws; the more general rule for ρ is
then

ρ(t) =





1− I0

(
e4

2 t
)

e

[
− e4

2
t
]

hard dimers

1 + I0

(
e4

2 t
)

e

[
− e4

2
t
]

saturated soft dimers .
(5.25)
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Both of which approach unity as t−1/2, up to the point where spontaneous pair-wise defect
creation becomes relevant, as shown in Fig. 5.12.
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Figure 5.12: log-log plot of |1− ρ| for full Monte-Carlo data shows the t−1/2 dependence of both hard
(µ0 = 20, ε̂→∞) and soft (µ0 = 20, ε̂ = 14) dimers until steady state is approached via
the finite rate of pair-wise defect creation.

The fact that the same relaxation behavior can be seen for both hard and saturated-soft
particles for k = 2 brings us to an important question posed much earlier in this chapter:
why do soft particles equilibrate so much faster in the continuous case? In other words: what
remaining difference between dimers and continuous particles could account for the dramatic
speed-up in equilibration for soft particles in the latter case?

The answer is guided readsorption of continuous soft particles. For continuous particles, the
filling of voids between soft neighbors is not uniformly distributed throughout the gap, and
the distribution of filling rates γ(x) is strongly weighted near the center position x/2 for most
cases that involve interaction. Thus, there is a natural preference for particles that desorb
to be repositioned in an evenly-spaced manner. Hard-exclusive particles, on the other hand,
readsorb randomly and uniformly throughout the available space. Close stacked positions
then occur only rarely by chance, and so extended arrays form only very slowly.

In the case of dimers, however, there is no guiding energetic gradient for the readsorption
–either for hard or soft dimers, since there is only a single interaction strength. As larger
k particles are used, biased readsorption positioning becomes the determining factor in the
faster equilibration for extended arrays of soft particles.

5.4.3 Steady State

The previous section demonstrated power-law approach in the density traces of dimers towards
equilibrium, but only assuming that defect annihilation is irreversible.

In fact, steady-state pair-wise defect creation can also be observed for any finite r̂+/r−.
This, again, has been found in analogous problems such as spin-Ising lattices where ‘defects’
are boundaries between domains of parallel spin. These systems have been studied[125],
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and the balance between annihilation and creation of defects is determined by the rate h
with which boundary-pairs are created when an isolated spin within a domain flips. In our
case, this rate is the product of r−(since there is one dimer for every footprint in this limit)
multiplied by 2r−/(r̂+ + 2r−) (the chance of an adjacent desorption event occurring before
re-adsorption), and again by 1/3 (the probability of the replacement dimer landing in the
middle). A schematic illustration of this is provided in Fig. 5.13.

r-

2r -
r  + 2r+

1 3

Figure 5.13: Creation of stacking defects, or, equivalently, domain boundaries in the 1-D spin Ising
model

The defect-pair creation rate is then given as

h =
r2
−

3(r̂+ + 2r−)
. (5.26)

For a given creation rate, the pair-wise creation/annihilation steady-state density of particles
has been solved[125]:

ρeq =
1

2

(
1−

√
h

1 +
√
h

)
. (5.27)

with h depending on µ0 = ln
(
r̂+
r−

)
as given in Eq. 5.26. This equilibrium density, as a

function of µ0 is what is plotted in red in Fig. 5.11 against the exact result determined using
the transfer matrix, in addition to the steady-state fixed point of ρ̇(ρ) = 0 determined from
Eq. 5.22, providing one further confirmation of our previous steady-state analysis.

The above discussion of dimer filling is intended to be a minimal example of the behavior of
continuous particles that is fully solvable yet preserves the qualitative features of the latter:
jamming; relaxation through collective rearrangements; cramming of soft particles predicted
by 5.13, and its corresponding asymptotics; and overshoot, or non-monotonicity only for soft
interacting particles. The key difference is that in the case of dimers, relaxation is no faster
for soft particles than for hard, because there is no biasing energetic gradient guiding the
readsorption of soft dimers (as there is for larger k particles), since interaction only occurs
via single overlap.
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5.4.4 Dimer Nonequilibrium Thermodynamics

As a final observation, by substituting dimers for extended particles and using explicit Monte
Carlo statistical sampling, it becomes possible to study one-dimensional filling kinetics at
another level of description. Namely, by employ an information theory approach one can
study the nonequilibrium thermodynamics of filling. For an array of finite L sites, where
indistinguishable soft dimers adsorb randomly, there is a total of 2L unique arrangements of
particles, and to each configuration i we attribute a probability pi. For extended particles
with large L, the number of configurations is too large for practical statistical sampling, but
for dimers on a limited lattice we can use the Shannon measure of entropy[128]:

S(t) = − 1

L

∑

n

pn(t) ln [pn(t)] . (5.28)

We may also use the Kullback-Leibler divergence

H(t) =
1

L

∑

n

pn(t) ln [(pn(t)/peq
n )] (5.29)

to define the relative entropy H(t) with respect to the equilibrium distribution peq. While
S may have transient peaks, the quantity H from Eq. 5.29 must be monotonically decreas-
ing for all closed systems that obey a master equation with time independent transition
amplitudes[129]. Explicit calculation of these quantities demonstrates that these require-
ments are satisfied, as shown in the attached document below, and serve to reinforce the
physical plausibility of our model and its predictions.

Taken together, these observations form many of the major findings of the article included
below[130], which concludes this text.



Adsorption-Desorption Kinetics of Soft Particles

Brendan Osberg, Johannes Nuebler, and Ulrich Gerland*

Theory of Complex Biosystems, Physik-Department, Technische Universität München,
James-Franck-Strasse 1, 85748 Garching, Germany
(Received 27 April 2015; published 18 August 2015)

Adsorption-desorption processes are ubiquitous in physics, chemistry, and biology. Models usually
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A minimal 1D model reveals that softness fundamentally changes the kinetics: Below the desorption time
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A broad range of physical, chemical, and biological
systems feature adsorption processes in which particles are
randomly deposited on an extended substrate [1]. Possible
substrates include polymers [2], crystalline or amorphous
surfaces [3], and membranes, while the particles can be
small molecules, colloidal particles, macromolecules such
as proteins [4,5], or even larger objects such as cells. In
phenomenological models [6–8], the particles can also
represent modified states of the substrate [6] or complexes
formed with the substrate [8]. Generally, the filling of the
substrate slows as the coverage increases, due to substrate
saturation as well as jamming. Here, jamming refers to the
process of reaching configurations where all gaps are
smaller than the particles, prohibiting further filling.
Jammed configurations constitute a nonthermal ensemble
that has received considerable theoretical interest [9,10].
However, jamming is often only transient, as a small
desorption rate allows the system to eventually reach
thermal equilibrium in a nontrivial relaxation process
during which the system loses memory of its jammed
state [11–13].
Adsorption-desorption models usually assume hard

particles that can neither be deformed nor overlap on the
substrate. This assumption does not hold for systems
such as soft colloidal particles [14], macromolecules like
proteins [5], or complexes that can be forced into con-
formations with different effective sizes [15]. While the
mechanical properties of soft particle systems are well
studied [16], their adsorption-desorption kinetics have not
been characterized. To explore this question, we analyze a
minimal model with particles of finite stiffness ε binding to
a one-dimensional (1D) substrate; see Fig. 1. Our model
recovers the hard particle kinetics in the ε → ∞ limit but
demonstrates that the new parameter significantly enriches
the kinetic behavior. Notably, softness can lead to non-
monotonic filling, where an initially empty substrate fills
to a high “cramming density” ρcr before relaxing to the
equilibrium density ρeq < ρcr. While this behavior may

seem counterintuitive, it does not violate thermodynamic
principles.
Our model is a generalization of the 1D car parking

model [11,12] to soft particles. Models of this type are
directly applicable to experimental systems with linear
topology, and they also serve as a tractable theoretical
framework to capture general kinetic phenomena [1]. For
instance, 1D models show how the extremely slow relax-
ation of jammed systems [11,12] arises from the growing
number of rearrangements required to make space for
additional particles [13]. The same physics applies also
in higher dimensions, e.g., to describe the slow densifica-
tion of vibrated granular materials [13,17–19]. We discuss
general implications of our 1D results further below.
Model.—Our model, illustrated in Fig. 1, describes the

random adsorption and desorption of soft particles on a
1D substrate. The particles are assumed to have a finite
interaction range set to 1, defining the length unit. Isolated
particles adsorb at the bare rate rþ per unit length and
desorb with rate r−. We are interested in the regime in
which the rate ratio

r ¼ rþ=r− ¼ eμ ð1Þ

is large, such that adsorption and desorption operate on
very different time scales and a high equilibrium density is

r_ r+ r+e-ϕ(x)

x 

ϕ(x) 

ε

1
x x 

FIG. 1. One-dimensional adsorption-desorption model for soft
particles. Overlapping adsorptions that require deformation are
allowed but slowed down by the Boltzmann factor of the
interaction energy φðxÞ, which depends linearly on the center-
to-center distance x. In the limit ε → ∞ the hard particle model
is recovered.
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ultimately reached. For later convenience, Eq. (1) expresses
r also in terms of the chemical potential of the non-
interacting system, μ (throughout this Letter we set kBT ¼ 1
by choice of energy unit). A soft particle can attach even if
it partially overlaps with its neighbor(s). We assume that
overlaps are associated with an interaction φðxÞ, where x
denotes the center-to-center distance of adjacent particles.
We primarily consider a potential that increases in pro-
portion to proximity,

φðxÞ ¼
�
εð1 − xÞ for x ≤ 1;
0 for x > 1;

ð2Þ

but also test to what extent the kinetic behavior depends
on the shape of φðxÞ. We note that potentials with finite
stiffness ε can also serve as effective descriptions for hard
particles that fluctuate between internal states with different
effective lengths.
The interaction (2) modulates the reaction rates. An

adsorption event alters the total interaction energy by
UðxL;xRÞ¼φðxLÞþφðxRÞ−φðxLþxRÞ, with the center-
to-center distances to the left and right neighbors, xL and
xR. Detailed balance requires that the modulated rates ~rþ,
~r− have the ratio eμ−U. As we do not seek to describe a
specific experimental system, but rather to characterize
generic effects of softness on adsorption-desorption
kinetics, we can simply choose ~r− ¼ r− and

~rþðxL; xRÞ ¼ rþe−UðxL;xRÞ: ð3Þ
The Supplemental Material [20] discusses the effects of
distributing the Boltzmann factor between adsorption and
desorption.
Our model does not explicitly include lateral diffusion,

although an effective form of lateral transport arises via
desorption and readsorption [22]. We analyze the full
stochastic kinetics of our model with simulations using
the Gillespie method [23]. We also use a mean field
description that characterizes the state of the system by
the line density of particle spacings, Vðx; tÞ, which obeys

∂
∂t Vðx; tÞ ¼ 2

Z
∞

x
dyVðy; tÞ~rþðx; y − xÞ − 2r−Vðx; tÞ

− Vðx; tÞ
Z

x

0

dy~rþðy; x − yÞ

þ r−

Z
x

0

dy
Vðy; tÞVðx − y; tÞ

ρðtÞ ð4Þ

and

R
∞

0
dx xVðx; tÞ ¼ 1 (conservation of space). Since the

number of voids equals the number of particles, the total

particle density is ρðtÞ ¼
R

∞

0
dxVðx; tÞ. Equation (4)

describes the creation and destruction of voids of size x
via adsorption within larger voids, desorption of a bound-
ing particle, adsorption within the void, and the fusion of

two smaller voids. In the last term of Eq. (4) the two-void
density is approximated by the product of one-void
densities, truncating the hierarchy of mean field equations
at lowest order. Equation (4) recovers the mean field
description of the car parking model [12] in the limit
ε → ∞. For t → ∞, the equilibrium distribution VeqðxÞ ∝
e−αx−φðxÞ is reached [20]. The equilibrium density can
exceed unity since particles can overlap. See Ref. [20]
for a comparison of the mean field and full model, the
lattice equivalent of Eq. (4) used for all simulations, and a
discussion of finite size effects.
Qualitative behavior.—Figure 2 characterizes the filling

kinetics of an initially empty substrate. The time evolution
of the total particle density ρðtÞ is shown in Fig. 2(a) for
different stiffnesses ε, including the hard-core limit ε → ∞.
On the logarithmic time axis, the two time scales 1=rþ and
1=r− roughly divide the kinetics into three separate stages.
(i) Essentially unhindered adsorption for t < 1=rþ with
ρðtÞ ∼ t independent of ε since interactions play only a
minor role initially. At the end of this stage, most voids
large enough for nonoverlapping adsorption are exhausted.
(ii) For 1=rþ < t < 1=r−, hard-core particles are in a
jamming stage: Their density remains essentially constant
at a plateau of ρjam ≈ 0.748, the Rényi limit [9]. In contrast,
the density of soft particles keeps increasing, albeit only
logarithmically, ρðtÞ − ρjam ∼ logðtÞ. (iii) In the third stage,
t > 1=r−, desorption becomes relevant and all systems
relax to their equilibrium density ρeq. However, the relax-
ation behavior changes dramatically with ε. Whereas the

(a)

(b) (c)

FIG. 2 (color online). Soft particle adsorption-desorption
kinetics. (a) Density evolution for different stiffnesses ε (with
μ ¼ 20). Symbols: stochastic simulations; transparent overlays:
cramming dynamics of Eq. (6). Vertical lines indicate the
adsorption and desorption time scales. (b),(c) Gap size distribu-
tion for ε ¼ 25 at the time points marked in (a). At the onset of
cramming, Vðx; tÞ is similar to the jammed distribution V jamðxÞ.
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density of hard-core particles approaches ρeq extremely
slowly from below, soft particles can either reach ρeq from
below, arrive directly at ρeq at the onset of the third stage, or
display a density overshoot before rapidly relaxing to ρeq
from above.
The surprisingly rich kinetic behavior of Fig. 2(a) calls

for a clarification of the underlying physics. How does the
logarithmic behavior in stage (ii) arise from the softness
and how generic is it? Under which conditions does
nonmonotonic filling occur in an adsorption-desorption
process that obeys detailed balance? Why is the relaxation
to thermodynamic equilibrium much faster for soft
particles? We address these questions in the remainder
of this article by combining numerical analysis with
analytical arguments.
Cramming.—The physics underlying the logarithmic

regime (ii) of Fig. 2(a) is revealed by Fig. 2(b), which
shows three consecutive snapshots of the void distribution
Vðx; tÞ. At the onset of stage (ii), Vðx; tÞ is similar to
the known jammed distribution V jamðxÞ for irreversibly
adsorbed hard particles [24],

V jamðxÞ ¼ 2

Z
∞

0

dt t exp

�
−ðx − 1Þt − 2

Z
t

0

du
1 − e−u

u

�

ð5Þ
[for 1 ≤ x < 2, while V jamðxÞ ¼ 0 otherwise]: Both
distributions display a dropoff for large gaps, while voids
x < 1 are suppressed in Vðx; tÞ and are entirely forbidden
in V jamðxÞ. With increasing time, the dropoff in Vðx; tÞ
progressively moves to smaller x as the largest available
voids are filled (creating new voids with x < 1).
This behavior indicates that the system’s memory of the
jammed configuration generated in stage (i) governs the
“cramming” dynamics during stage (ii).
We quantify this physical picture by considering the

Langmuir kinetics of reversibly filling the gaps in a
jammed configuration. If Pðx; tÞ denotes the probability
that a void of size x remains unfilled at time t, we have
Pðx; tÞ ¼ ½γþðxÞe½−ðγþðxÞþr−Þt� þ r−�=½γþðxÞ þ r−�, where
γþðxÞ ¼

R
x
0 dy~rþðy; x − yÞ is an effective filling rate that

combines all attachment possibilities. Neglecting multiple
filling, this yields the cramming dynamics

Vcrðx; tÞ ¼ Pðx; tÞV jamðxÞ þ 2

Z
∞

x
dx0½1 − Pðx0; tÞ�

× V jamðx0Þ
~rþðx; x0 − xÞ

γþðx0Þ
; ð6Þ

which can be considered an approximate solution to Eq. (4)
for the cramming stage [20]. This distribution and the

corresponding density ρcrðtÞ ¼
R

∞

0
dxVcrðx; tÞ are dis-

played as semitransparent lines in Fig. 2, showing that
Eq. (6) captures the kinetics of stage (ii) very well. It also

explains the logarithmic increase of ρðtÞ: Approximating
γþðxÞ by its largest contribution, the drop in Vðx; tÞ moves
as ΔxdrðtÞ≔2 − xdrðtÞ ≈ lnðrþtÞ=ε for our linear potential
[20]. Given that the density is related to the area under the
void size distribution, this yields [20]

ΔρðtÞ ≈ V jamð2Þ lnðrþtÞ=ε; ð7Þ

which rationalizes the logarithmic time dependence and
predicts how the dynamics slow down with increasing
stiffness ε.
Nonmonotonic density.—Remarkably, ρðtÞ can tran-

siently exceed the equilibrium density. We now show that
this is a result of desorption erasing the memory of stage
(i) that was preserved during stage (ii). We first note that
the density ρcrðtÞ obtained above (by assuming that only
cramming is reversible while the underlying jammed
configuration is preserved) saturates towards a value ρ∞cr ,
which can be smaller than the equilibrium density ρeq [the
blue line in Fig. 2(a)], or can exceed it (the green line).
Figure 3(a) shows that the parameter regime where
ρ∞cr > ρeq is virtually identical with the regime where the
maximal density ρmax exceeds ρeq. Thus, a nonmonotonic
density ρðtÞ occurs whenever suppressing rearrangements
leads to a larger equilibrium density than allowing for them.
To elucidate the minimal requirements for nonmonotonic

filling and to study the phenomenon from the perspective
of nonequilibrium thermodynamics, it is useful to consider
the case of dimers on a discrete lattice. For soft dimers,
which can overlap by a single site at the energetic cost ε=2,
nonmonotonic filling occurs in a similar parameter range
as in the continuum model; see Fig. 3(b). In fact, the
boundaries in (ε; μ) space can be understood with a simple
argument: A density overshoot is possible only if single
overlaps occur faster than desorption and simultaneous
overlaps with both neighboring particles are rare, which
translates into the condition [20]

ε=2 < μ < ε: ð8Þ
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FIG. 3 (color online). Phase diagram in (ε; μ) space for the
density overshoot with (a) quasicontinuum particles and (b) soft
dimers. The overshoot is the ratio of the maximum and the
equilibrium densities ρmax=ρeq observed numerically (color
coded). Overlayed are contour lines of ρ∞cr =ρeq, where ρ∞cr is
the asymptotic cramming density derived from Eq. (6). Dashed
lines indicate the regime of Eq. (8).
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This regime is indicated by the dashed lines in Fig. 3.
Interestingly, this regime also encompasses the nonmono-
tonic region of the continuum model, showing that Eq. (8)
provides a necessary (but not sufficient) condition for the
class of models that we consider.
Why can a density overshoot occur for soft but not for

hard particles? One way to address this question is to
consider the large-ε behavior of the lattice equivalent of
Eq. (4). After the initial filling stage, the only relevant
components of the void density vector for soft dimers are
the ones for overlapping dimers, for adjacent dimers, and
for single empty sites. Space conservation then reduces the
dynamics to a two-dimensional first-order ordinary differ-
ential equation, which permits nonmonotonic behavior (see
the Supplemental Material [20] for details). However, in the
limit ε → ∞, the dynamics become effectively one dimen-
sional, and hence monotonic, since the overlapping dimer
degree of freedom is lost. Thus, the mathematical mecha-
nism within the mean field description is dimensional
reduction.
Nonequilibrium thermodynamics.—Figure 4 shows the

filling dynamics ρðtÞ of dimers together with two thermo-
dynamic quantities, S and H. The time-dependent entropy
SðtÞ ¼ −ð1=LÞPnpnðtÞ logpnðtÞ can be computed via
the occupation probabilities pnðtÞ of all configurations of
the system (we measure the system size L in units of the
particle size). It displays a nonmonotonic behavior, not
only for soft dimers (the dashed line) but also for hard
dimers (the solid line), which is not surprising since our
system is initially far from equilibrium. That SðtÞ first rises
and later decreases during relaxation is consistent with the

evolution from a single initial state (empty) through
disordered intermediate states to a highly ordered equilib-
rium state (relevant stages are sketched in Fig. 4). However,
the relative entropy HðtÞ ¼ ð1=LÞPnpnðtÞ log½pnðtÞ=peq

n �
(with respect to the equilibrium state) must monotonically
decrease for a system described by a discrete master
equation that obeys detailed balance [25]. Figure 4 shows
that the density overshoot is compatible with this funda-
mental theorem.
Relaxation kinetics.—Figure 2 indicated that relaxation

to equilibrium is faster for soft particles than for hard.
To clarify whether the relaxation behavior is qualitatively
different, we examine how jρðtÞ − ρeqj approaches zero in
Fig. 5 (and in more detail in the Supplemental Material
[20]). For dimers, the relaxation behavior is actually the
same for hard and soft particles, due to a particle-hole
symmetry [20]: Both jamming (for hard particles) and
cramming (for soft particles) lead to configurations with
“defects,” which undergo a diffusion-annihilation process.
For hard particles, the defects are isolated, unoccupied
lattice sites, and diffusion occurs via desorption of an
adjacent particle followed by immediate adsorption of a
particle into the gap [22]. The progressive dilution of
defects leads to the power law behavior jρðtÞ − ρeqj ∼ t−1=2,
which holds until the finite defect creation rate balances
the diffusion-annihilation process. For soft particles, the
defects are sites with double occupancy, which by a similar
mechanism lead to the same power law behavior and even a
“mirror symmetry” of the relaxation curve around density
one [20].
This symmetry is broken when the particle size is

increased to k-mers with k > 2 (since reactions then occur
between defects of different sizes). Figure 5 shows that
for hard particles the relaxation behavior becomes slower
as k increases, while it becomes faster for soft particles.
The scaling approaches logarithmic behavior in the limit
k → ∞ for hard particles [11,12], while it approaches
exponential behavior for soft particles. Qualitatively, this
is explained by the fact that the soft interaction “guides”
attaching particles to the most favorable positions (reducing
the entropic barrier for the rearrangements required for
equilibration). Other shapes of the interaction potential lead
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to the same behavior as long as the repulsion is sufficiently
soft [20].
Discussion.—We have shown that the adsorption-

desorption kinetics of soft particles differs fundamentally
from that of hard particles in at least three aspects: (i) the
jamming behavior, with a gradual density increase instead
of the Rényi plateau, (ii) a density overshoot, which can
occur only for soft particles, on a time scale set by the
desorption rate, and (iii) the relaxation behavior, which for
soft particles becomes faster with increasing particle size
(on a lattice), while hard particles show the opposite trend.
We performed our analysis for a minimal model and
showed that our qualitative conclusions are not sensitive
to details such as the precise shape of the repulsive
interaction potential and the way in which it affects the
kinetic rates.
Models within this class are directly relevant in bio-

physics, for instance, in describing the binding of dimeric
kinesins to microtubules [26] (where the softness stems
from the ability to bind with either one or two head
domains) or the assembly of nucleosome arrays [15] (where
the softness arises from transient, thermally induced DNA
unwrapping). While our analysis was limited to 1D sub-
strates, we expect that much of the qualitative phenom-
enology carries over to 2D substrates. An interesting 2D
experimental system is protein adsorption from blood
plasma, which can show nonmonotonic surface density
[27–29]. This effect is not well understood but is usually
interpreted in a two-species scenario where a fast-binding
protein is replaced by a slower but stronger-binding
competitor. Our findings suggest that even a single soft
protein species could generate nonmonotonic densities.
Another field of application is the physics of vibrated

granular materials. The sluggish kinetics of these systems is
nonadiabatic and shows signs of broken ergodicity [30,31].
One-dimensional models have already been useful to
describe certain aspects of these kinetics phenomenologi-
cally [13,32]. The introduction of an effective soft-core
interaction will provide a valuable new dimension in the
parameter space of such phenomenological descriptions.
More generally, it will be interesting to explore how the rich
adsorption-desorption kinetics of soft particles couples
to other kinetic processes. For instance, it should modify
the collective dynamics of molecular motors, reaction-
diffusion processes that involve a lower-dimensional sub-
strate, and substrate-guided self-assembly processes.
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A.1 Two Particle Correlation in the Large L Limit

In Chapter 2, we reduced the two-particle correlation function to

ρ(x|0) =
Tr
{
FsT

xFsT
L−x}

Tr {FsTL}
, (A.1)

where the numerator was rewritten as Tr
{
Fe ·Dx · Fe ·DL−x}. For notational simplicity we

write L̃ = L− x and see that

Fe ·DL̃ =



Fe00 Fe01 Fe02

Fe10 Fe11 Fe12

. . .


 ·




λL̃0 0 0

0 λL̃1 0

0 0 λL̃2
. . .




(A.2)

=




Fe00λ
L̃
0 Fe01λ

L̃
1 Fe02λ

L̃
2

Fe10λ
L̃
0 Fe11λ

L̃
1 Fe12λ

L̃
2

Fe20λ
L̃
0 Fe21λ

L̃
1 Fe22λ

L̃
2

. . .



. (A.3)

Proceeding further,

Dx · Fe ·DL̃ =




λx0 0 0
0 λx1 0
0 0 λx2

. . .


 ·




Fe00λ
L̃
0 Fe01λ

L̃
1 Fe02λ

L̃
2

Fe10λ
L̃
0 Fe11λ

L̃
1 Fe12λ

L̃
2

Fe20λ
L̃
0 Fe21λ

L̃
1 Fe22λ

L̃
2

. . .




(A.4)

=




Fe00λ
x+L̃
0 Fe01λ

x
0λ

L̃
1 Fe02λ

x
0λ

L̃
2

Fe10λ
x
1λ

L̃
0 Fe11λ

x+L̃
1 Fe12λ

x
1λ

L̃
2

Fe20λ
x
2λ

L̃
0 Fe21λ

x
2λ

L̃
1 Fe22λ

x+˜̃L
2

. . .



. (A.5)

One further matrix multiplication by Fe produces diagonal elements of Fe ·Dx ·Fe ·DL̃ given
by: 



λL̃0
∑
ν=0

Fe0νFeν0λ
x
ν

λL̃1
∑
ν=0

Fe1νFeν1λ
x
ν

λL̃2
∑
ν=0

Fe2νFeν2λ
x
ν

. . .



. (A.6)

The finite non-diagonal elements from Eq. A.6 can be ignored when taking the trace:
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Tr
{
Fe ·Dx · Fe ·DL̃

}
= λL̃0

∑

ν=0

Fe0νFeν0λ
x
ν + λL̃1

∑

ν=0

Fe1νFeν1λ
x
ν + . . . (A.7)

Recalling from Chapter 2 we determined Tr
{
FsTL

}
=
∑
ν=0

(
Feννλ

L
ν

)
, the conditional proba-

bility from the beginning of this section becomes

ρ(x|0) =
Tr
{
FsT

xFsT
L−x}

Tr {FsTL}
, (A.8)

=

λL̃0
∑
ν=0

Fe0νFeν0λ
x
ν + λL̃1

∑
ν=0

Fe1νFeν1λ
x
ν + . . .

∑
ν=0

(FeννλLν )
(A.9)

and upon taking the limit L̃→∞, the largest eigenvalue of this series dominates:

ρ(x|0) =
1

Fe00

∑

ν=0

Fe0νFeν0

(
λν
λ0

)x
, (A.10)

as given in Eq. 2.15
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A.2 The Amoeba Method

In Chapter 4, we discussed a numeric scheme to infer the potential landscape from the equi-
librium density of particles along a 1-D substrate of length L for a given interaction potential
between neighboring particles. The basis of this solution depended on nominating candidate
landscape potentials Vi with which to predict a density pattern that best reproduces exper-
imental data –or, more precisely, one which minimizes the sum of squared error f with said
data.

How the initial guesses for Vi are nominated is inconsequential, provided they are linearly
independent, and the vectors between them span the space. In other words, for each initial
guesses Vi there must exist a set of coefficients cj such that all points in L space are expressible
as Vi +

∑
j
cj(Vj − Vi). Section 4.3.1 provides one means of doing this, although this is by no

means unique.

Once initial values are chosen, they are ranked by their fi values, and the poorest candidate
with fh (h denotes a ‘high’ functional value) are transformed in search of better positions.
To perform these transformations, the centroid of the points V , or mean positioned is defined
as a reference, about which fh is reflection, expanded or all points are contracted, until
convergence at an optimum solution. Fig. A.1 shows the operations that are performed on
the set of Vi’s and is based on the same flow diagram in Ref. [92]. Determination of this
solution used standard values[92, 91] for the reflection coefficient α = 1, expansion coefficient
γ = 2, and contraction coefficient β = 1

2 . In general, the tolerance of position coordinates,
PTOL is defined by the precision with which the position is reported, although this is rarely
the limiting convergence criteria. Convergence of f values within FTOL = 10−4, or one part
in ten thousand of the smallest f value typically defined the exit criteria of the algorithm.
Upon convergence, the resulting point was then used as an initial guess Vi, and the whole
process was started again. This was repeated until successive iterations were, themselves,
converged within FTOL, and the final result was taken.

To test the reliability of this method, a known potential was used to generate a density profile
to see whether the algorithm was able to infer that potential from the density and neighbor
interaction alone. Fig. A.2 shows the results of this proof of concept for a test system of size
L = 100, a=10 with various arbitrary features embedded in the landscape, in addition to
several intermediate candidate landscapes that were generated in the process of converging
to the optimum solution. Starting from a flat landscape guess (green), proceeding through
intermediate guesses (blue) the output of the algorithm (red) is consistent with the exact
solution (black). With this proof of concept in mind, the algorithm was then applied to real
data as described in Chapter 4. Although Fig. A.2 represents only one regime of possible
neighbor interactions (where positioning is rather Boltzmann distributed), similar tests in
other regimes show the robustness of the method to other interaction strengths and at higher
densities.
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Figure A.1: The alogorithm by which the amoeba method converges at an optimal solution to the
minimization of a multivariable function. Boolean conditionals, in diamonds, are followed
by ovals for “yes”(true) or “no”(false) leading to operations in rectangles where equality
denotes assignment. The reflection, expansion, and contraction transformations in these
rectangles are iterated until convergence is reached. Adapted from Ref. [92].
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