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Zusammenfassung

Zur Analyse dynamischer Bilder aus Medizin und Biologie werden häufig Kompartimentmodelle

verwendet. Ausgehend von diesen Modellen können Differentialgleichungen hergeleitet werden,

deren Lösungen nichtlineare parametrische Funktionen darstellen, anhand derer die Veränderung

bestimmter Konzentrationen über einen Zeitraum hinweg beschrieben werden kann.

Oft ist die Anzahl der Kompartimente eines Modells unbekannt. Da die Kompartimentanzahl,

also die Modellkomplexität, jedoch eine wichtige Information darstellt, soll sie zusätzlich zu den

unbekannten Parametern des Modells aus den Daten geschätzt werden. Somit werden Methoden

zur Parameterschätzung und zur Modellwahl benötigt. Die Methoden in dieser Dissertation sind

durch zwei Anwendungen aus dem Bereich der biomedizinischen Bildgebung motiviert.

In der ersten Anwendung, der quantitativen Analyse von Fluorescence recovery after pho-

tobleaching (FRAP)-Daten, werden Kompartimentmodelle verwendet, um Einblick in das

Bindungsverhalten von Molekülen in lebenden Zellen zu gewinnen. Zum einen wurde ein

Bayesianisches nichtlineares gemischtes Modell für die Analyse einer Serie von FRAP-Bildern

entwickelt. Für die Parameter des Modells werden mixed-effect Prioris verwendet, was ein völlig

neuer Ansatz ist. Das Modell liefert neben Parameterschätzern auch Informationen über die Vari-

abilität zwischen den betrachteten Zellkernen. Die Evaluierung der Methode erfolgte anhand von

Daten aus FRAP-Experimenten, in denen eine Zellkernhälfte gebleicht wurde, im Vergleich mit

Modellen ohne zufällige Effekte. Zum anderen wurde eine Methode für die Analyse von FRAP-

Daten auf Pixelebene entwickelt, bei der Information aus den Nachbarpixeln für das Modell jedes

Pixels eines Bildes genutzt wird. Diese Methode ist innovativ, da bisher existierende Modelle

nur für die Analyse von Bildbereichen, welche mehrere Pixel umfassen, geeignet sind.

In der zweiten Anwendung, der quantitativen Analyse dynamischer kontrastmittelgestützter

Magnetresonanztomographie der Brust, wird ein Kompartimentmodell verwendet, das den Aus-

tausch von Blut zwischen verschiedenen Kompartimenten beschreibt. Die Anzahl der Kom-

partimente eines Modells lässt hierbei auf die Heterogenität des untersuchten Tumorgewebes

schließen. Es wurde eine Boosting-Methode zur Schätzung der Kompartimentanzahl sowie der

Parameter eines Modells auf Voxelebene entwickelt. Da Boosting bisher zwar für additive Re-

gression unter Verwendung von Glättung, jedoch nicht für nichtlineare parametrische Regres-

sion beschrieben wurde, ist das ein vollkommen neuer Ansatz. Um die räumliche Struktur eines

Bildes zu berücksichtigen, werden in einer Erweiterung der Methode Abweichungen von Para-

meterschätzern benachbarter Voxel bestraft. Die Evaluierung der Methode erfolgte in Simula-

tionsstudien sowie in der Anwendung auf Daten aus einer Brustkrebsstudie.

Der Großteil des Programmcodes, der in den drei Methoden verwendet wird, wurde in den

Programmiersprachen R und C neu entwickelt. Darauf basierend entstanden zwei R Pakete.





Abstract

Compartment models are a frequently used tool for imaging data gained with medical and biolog-

ical imaging techniques. The solutions of the differential equations derived from a compartment

model provide nonlinear parametric functions, based on which the behavior of a concentration

of interest over time can be described.

Often, the number of compartments in a compartment model is unknown. As the model

complexity itself, which is, the number of compartments, is certainly an important information,

it is desirable to estimate it from the observed data. Additionally, the unknown parameters have

to be estimated. Therefore, methods dealing with both the parameter estimation and model

selection in compartment models are needed. The methods proposed in this thesis are motivated

by two applications from the field of medical and biological imaging.

In the first application, the quantitative analysis of Fluorescence recovery after photobleach-

ing (FRAP) data, compartment models are used in order to gain insight into the binding behavior

of molecules in living cells. As a first approach, we developed a Bayesian nonlinear mixed-

effects model for the analysis of a series of FRAP images. Mixed-effect priors are defined on

the parameters of the nonlinear model, which is a novel approach. With the proposed model, we

get parameter estimates and additionally gain information about the variability between nuclei,

which has not been studied so far. The proposed method was evaluated on half-nucleus FRAP

data, also in comparison with different kinds of fixed-effects models. As a second approach, a

pixelwise analysis of FRAP data is proposed, where information from the neighboring pixels is

included into the nonlinear model for each pixel. This is innovative as the existing models are

suitable for the analysis of FRAP data for some regions of interest only.

For the second application, the quantitative analysis of dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) of the breast, we use a compartment model which describes the

exchange of blood between different, well-mixed compartments. In the analysis of such data, the

number of compartments allows conclusions about the heterogeneity of cancerous tissue. There-

fore, an estimation and model selection approach based on boosting, with which the number of

compartments and the unknown parameters can be estimated at the voxel level, is proposed. In

contrast to boosting for additive regression, where smoothing approaches are used, boosting in

nonlinear parametric regression as described in this thesis is a novel approach. In an extension

of this approach, the spatial structure of an image is taken into account by penalizing the differ-

ences in the parameter estimates of neighboring voxels. The evaluation of the method was done

in simulation studies, as well as in the application to data from a breast cancer study.

The majority of the program code used in the three approaches was newly developed in the

programming languages R and C. Based on that code, two R packages were built.
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Chapter 1

Introduction



2 1. Introduction

In medicine and biology, various in vivo imaging techniques are used today. Among estab-

lished clinical imaging modalities are for example ultrasound, computed tomography, magnetic

resonance imaging (MRI), and positron emission tomography. In the field of biology, fluores-

cence microscopy techniques are commonly used in order to visualize the behavior of molecules

of interest in living cells.

This thesis focuses on the analysis of dynamic biomedical images, i.e., images produced

by imaging techniques in medicine and biology that show for example some tissue of interest

or some cell nucleus of interest over time. The two applications that motivated the develop-

ment of the novel statistical methods presented in this thesis are Fluorescence recovery after

photobleaching (FRAP) and dynamic contrast-enhanced (DCE)-MRI. Data from FRAP experi-

ments on nuclei of living cells can be analyzed in order to investigate the binding dynamics of

molecules of interest. With DCE-MRI, medical tracer experiments can be done by which the

uptake of tracer in body regions of interest can be observed. The DCE-MR images analyzed in

this thesis were recorded in the framework of a breast cancer study. Thus, the methods presented

in this thesis promote image analysis in fluorescence microscopy and oncology.

The analysis of dynamic biomedical images in this thesis is based on compartment models

representing the exchange of fluorescent molecules between different compartments in the FRAP

application and the exchange of tracer between different compartments in the DCE-MRI appli-

cation. These compartment models can be described by ordinary differential equations (ODEs).

The solution of such ODEs is nonlinear and a function of kinetic parameters and time, and a

nonlinear parametric regression model can be formulated based upon it. As the only observable

in the regression model is time, the kinetic parameters describing the exchange of fluorescent

molecules or tracer between the compartments as well as parameters related to the size of the

compartments have to be estimated. Moreover, often, the number of compartments of a compart-

ment model is unknown and has to be estimated in addition. Therefore, novel methods dealing

with both the parameter estimation and model selection in compartment models are presented in

this thesis.

For the FRAP application, two different methods for parameters estimation are proposed. The

first method is a nonlinear mixed-effects model for the analysis of a series of FRAP images, with

which parameter estimates are obtained. The definition of mixed-effect priors on the parameters

of a nonlinear model in a Bayesian framework as done in this thesis is a novel approach. With

this method, in addition to the parameter estimates, information about the variability between

several similar cell nuclei is gained, which has not been studied so far. As a second method,

a nonlinear model at the pixel level is proposed into which information from the neighboring

pixels is included. The analysis of FRAP data at the pixel level is innovative, as FRAP data are

usually analyzed for some regions of interest which comprise lots of pixels. For the DCE-MRI

application, an estimation and model selection method based on boosting is proposed. With this

method, the number of compartments and the unknown parameters can be estimated at the voxel

level. The spatial structure of an image is additionally taken into account in an extension of this

method, where differences in the parameter estimates of neighboring voxels are penalized. To

the best of our knowledge, boosting used in nonlinear parametric regression is described for the

first time in Feilke, Bischl, Schmid, and Gertheiss (2015) and in the corresponding chapter of

this thesis.
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1.1 Outline

This thesis is organized as follows. In Chapter 2, an introduction to compartment models and

differential equations is given. A selection of application areas including the ones in this thesis

is presented. Moreover, a general compartment model and the common structure of the compart-

ment models in this thesis as well as assumptions commonly made in compartmental modeling

are introduced. Chapter 3 provides an introduction to nonlinear regression. It starts with a gen-

eral introduction to regression analysis and then introduces the common characteristics of the

nonlinear regression models in this thesis. Moreover, approaches for the parameter estimation

in linear and nonlinear regression models are discussed. Chapter 4 gives a short introduction to

Bayesian data analysis. The common structure of the Bayesian models in this thesis is described.

This is followed by a section about prior distributions in general and in this thesis. Moreover, the

Bayesian principle as well as Markov chain Monte Carlo inference are introduced. In Chapter 5,

a Bayesian nonlinear mixed-effects model for the analysis of a series of FRAP images, i.e., for

FRAP images of several similar cell nuclei, is proposed. After a short introduction, the data an-

alyzed in the application in this chapter is described. Then, the nonlinear recovery model that is

the basis of the Bayesian nonlinear mixed-effects model is introduced together with the Bayesian

model itself. This is followed by a presentation of the results of the evaluation of the proposed

model using FRAP data. The chapter ends with a discussion. In Chapter 6, a Bayesian nonlinear

model for the analysis of FRAP images at the pixel level is suggested. The introduction is fol-

lowed by a presentation of the Bayesian model and the nonlinear recovery model that serves as

a basis for it. After that, the setup of a simulation study for the evaluation of the Bayesian non-

linear model is described. The chapter closes with conclusions and a discussion. In Chapter 7,

boosting in nonlinear regression models for the analysis of DCE-MRI data is proposed. After

an introduction, the compartment model and the nonlinear regression model derived from it are

described. Thereafter, gradient boosting is introduced. This is followed by an introduction of the

novel boosting algorithm together with two estimation procedures, voxelwise and spatially reg-

ularized estimation, as well as an introduction of the refit procedure and the competing methods

that are used for the evaluation of the new boosting algorithm. Subsequently, the evaluation of

the boosting approach in comparison with the competing methods in the framework of a simula-

tion study as well as in the application to data from a breast cancer study is described. After that,

there is a section focusing on how the proposed method can be used for the assessment of therapy

success in a breast cancer study. The chapter ends with conclusions and a discussion. Chapter 8

gives a summary of the thesis, as well as a discussion on some general topics concerning the

applications in this thesis, and an outlook.
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1.2 Contributions

Parts of this thesis are published or submitted as peer-reviewed journal articles. The outline

given below lists the titles of the articles, gives a short summary of the content, and highlights

the contributions of the authors and additional contributors.

• Chapter 5 is mainly based on

Feilke, M., K. Schneider, and V.J. Schmid (2015). Bayesian mixed-effects

model for the analysis of a series of FRAP images. Statistical Applications in

Genetics and Molecular Biology 14(1), 35-51. (Feilke, Schneider, and Schmid,

2015)

In this manuscript, we suggest the usage of a hierarchical Bayesian mixed-effects model for

the analysis of a series of FRAP images, i.e., for FRAP images of several similar cell nu-

clei. Martina Feilke and Volker J. Schmid developed the model. Martina Feilke conducted

all analyses and drafted the manuscript. Volker J. Schmid and Katrin Schneider revised the

manuscript. Heinrich Leonhardt (Biocenter Martinsried, LMU Munich) and Lothar Scher-

melleh (Department of Biochemistry, University of Oxford) provided the data. Joseph

W. Sakshaug proofread the manuscript, as he is a native English speaker. Martina Feilke

and Volker J. Schmid were supported by Deutsche Forschungsgemeinschaft (DFG SCHM

2747/1-1). Katrin Schneider was supported by the International Max Planck Research

School for Molecular and Cellular Life Sciences (IMPRS-LS).

• Chapter 7 is mainly based on

Feilke, M., B. Bischl, V.J. Schmid, and J. Gertheiss. Boosting in nonlinear

regression models with an application to DCE-MRI data. Methods of Informa-

tion in Medicine. Accepted for publication on May 26, 2015. (Feilke, Bischl,

Schmid, and Gertheiss, 2015)

In this manuscript, we introduce boosting in nonlinear regression models for the analysis

of DCE-MRI data. Martina Feilke, Jan Gertheiss, and Volker J. Schmid developed the

method. Martina Feilke conducted all analyses and drafted the manuscript. Bernd Bis-

chl supported the analyses by providing R code and technical advice for the benchmark

study in Chapter 7 and the parallelization of R code. Volker J. Schmid, Jan Gertheiss,

and Bernd Bischl revised the manuscript. Anwar Padhani, PSSC, Mount Vernon Hospital,

Northwood, U.K, provided the clinical data. Martina Feilke and Volker J. Schmid were

supported by Deutsche Forschungsgemeinschaft (DFG SCHM 2747/1-1).
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1.3 Software

The majority of the program code used for the analyses in this thesis was newly developed in

the programming languages R (R Core Team, 2013) and C. The R packages used for the various

analyses are given in each chapter. Two R packages were developed within the framework of this

thesis:

• frapmm: Bayesian nonlinear mixed-effects model for a series of FRAP images.

• dcemriboost: Boosting for DCE-MRI data.

They are both available at https://github.com/feilke. Version 1.0 of the R packages was used

for the applications in this thesis. With the R package frapmm, a nonlinear mixed model can be

fitted to data from a series of FRAP images, i.e., FRAP images of various similar cell nuclei, as

described in Chapter 5 of this thesis. An accompanying file that is also available at GitHub pro-

vides a minimal working example including data simulation. With the R package dcemriboost,

voxelwise and spatially regularized boosting for DCE-MRI data as described in Chapter 7 of

this thesis can be performed. This package contains the simulated data for one of the simulation

settings introduced in Chapter 7. Moreover, we uploaded two accompanying R files to GitHub

that provide code for performing voxelwise and spatially regularized boosting for exactly this

simulation setting.
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Chapter 2

Compartment models and differential

equations
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This chapter gives an introduction to compartment models and differential equations. As

in many fields of research, compartment models are commonly used to describe processes of

interest, a selection of application areas – including those motivating the methods proposed in

this thesis – is presented in the first section. In the following sections, a general compartment

model and the common structure of the compartment models in this thesis as well as assumptions

usually made in compartmental modeling are introduced.

2.1 Introduction to compartment models

Compartment models can for example be used to describe the drug absorption in pharmacokinetic

studies (see for example Savic et al., 2007; Yu and Amidon, 1999), and they are also applied in

epidemiology, for example to describe transmission processes. Among others, Lipsitch et al.

(2000) use a compartment model to represent the bacterial transmission within a hospital, and

Legrand et al. (2008) model the dynamics of tuberculosis in prison based on a compartment

model. In physiology, compartment models are for example used to model the exchange of

oxygen between organs (for example in Jacquez, 1972) or the exchange of pulmonary nitric

oxide (for example in Tsoukias and George, 1998). Compartment models are moreover applied

in the social sciences (for example in Herbst, 1963) and with ecological systems, where the

exchange of energy is described (for example in Eriksson, 1971).

In this thesis, the focus is on compartment models used in the analysis of data from the field of

biomedical imaging. We use compartmental modeling for the analysis of data from biochemical

experiments that are done in order to investigate the binding dynamics of molecules of interest in

living cells (Sprague and McNally, 2005). These experiments are done with the FRAP technique.

Moreover, we use compartmental modeling for the analysis of data from medical tracer exper-

iments. In these experiments, the uptake of tracer in body regions of interest is observed using

imaging techniques such as MRI. We focus on a DCE-MRI application, where the exchange of

tracer between different compartments is modeled.

2.2 A general compartment model

A compartment model is a tool that is used in order to model a dynamic system consisting of

a certain number of compartments exchanging material with each other. In addition to the ex-

change of material between the compartments, there may also be input of material from the

outside into some compartments and excretion of material from some compartments to the out-

side environment (Anderson, 1983). In general, if there is no input of material from the outside

and no excretion of material to the outside, a system is called a closed system.

According to Anderson (1983), the general compartment model is a compartment model with

i compartments, i = 1, ...,n, which can be described by the following differential equation:

d

dt
qi(t) =

n

∑
j=1
j 6=i

fi j(q(t), t,α)q j(t)−
n

∑
j=0
j 6=i

f ji(q(t), t,α)qi(t)+ Ii(t). (2.1)
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Figure 2.1: General two compartment model.

We use the same notation as in Anderson (1983). The quantity of material in compartment

i at time t is nonnegative and is denoted by qi(t). fi jq j is the rate of transfer of material from

compartment j to compartment i, where i 6= j. fi j ≥ 0 is called ‘fractional transfer coefficient’.

It may be a function of q = (q1, ...,qn)
′, time t, and a vector of parameters α = (α1...,αν)

′. The

rate of input of material from the outside into compartment i is denoted by Ii(t), and f0iqi is the

rate of excretion of material from compartment i to the outside, with f0i the fractional excretion

coefficient.

In Figure 2.1, a block diagram for a general two compartment model, which is a special

case of the general compartment model, is given. In this model, there are two compartments

that exchange material with each other with fractional transfer coefficients f12, f21. For both

compartments, there can additionally be input of material from the outside (I1(t), I2(t)) as well

as excretion of material to the outside environment ( f01, f02).

2.3 Compartment models in this thesis

In the applications in this thesis, we assume that the fractional transfer coefficients are constant

over time, i.e., fi j(q(t), t,α) = fi j and f ji(q(t), t,α) = f ji, and therefore also call them ‘rate

constants’. With that, Equation (2.1) is simplified to

d

dt
qi(t) =

n

∑
j=1
j 6=i

fi jq j(t)−
n

∑
j=0
j 6=i

f jiqi(t)+ Ii(t), (2.2)

which is also called a nonhomogeneous linear system of ODEs with constant coefficients

(Heuser, 1995). With

fii :=−
n

∑
j=0
j 6=i

f ji,



10 2. Compartment models and differential equations

the system in Equation 2.2 can also be written as

d

dt
q1(t) = f11q1(t)+ f12q2(t)+ ...+ f1nqn(t)+ I1(t)

d

dt
q2(t) = f21q1(t)+ f22q2(t)+ ...+ f2nqn(t)+ I2(t)

...
d

dt
qn(t) = fn1q1(t)+ fn2q2(t)+ ...+ fnnqn(t)+ In(t). (2.3)

When formulating the system in 2.3 in matrix notation, we get

d

dt
q(t) = Fq(t)+ I(t). (2.4)

By solving the system in Equation 2.4 with boundary condition q(0) = q0, where q0 is fixed,

what is equivalent to solving the system of ODEs given in Equations 2.2 and 2.3 with boundary

conditions qi(0) = qi0, i = 1, ...,n, where qi0 are fixed values, a unique solution of the form

q(t) = exp(Ft)q0 +
∫ t

0
exp(F(t − τ))I(τ)dτ (2.5)

is obtained (Heuser, 1995).

As explained in Sommer (2013), the spectral decomposition F = SΛS−1 has to be computed

in order to compute the matrix valued exponentials in Equation 2.5, where S consists of eigenvec-

tors of F and Λ = diag(λ1, ...,λn) is a diagonal matrix containing the corresponding eigenvalues.

According to Seber and Wild (1989), the following equation applies for the integral in Equa-

tion 2.5:

∫ t

0
exp(F(t − τ))I(τ)dτ = S

∫ t

0
exp(Λ(t − τ))S−1I(τ)dτ,

with

[

∫ t

0
exp(Λ(t − τ))S−1I(τ)dτ

]

j

=
n

∑
i=1

s ji

∫ t

0
exp(λ j(t − τ))Ii(τ)dτ =

n

∑
i=1

s ji(Ii ∗ exp(λ jt)), (2.6)

where s ji are the elements of the matrix S−1. In Equation 2.6, ∗ denotes the convolution

operator, for which ( f ∗g)(t) =
∫ t

0 f (τ)g(t −τ)dτ applies. The exponential rates in this equation

are the eigenvalues of the connectivity matrix F (Sommer, 2013).

In this thesis, special cases of the compartment model in Equation 2.2 are considered. A

block diagram showing the common structure of these special cases is given in Figure 2.2. We

assume that there is one base compartment which exchanges material with up to n− 1 other

compartments. At time t, the base compartment contains the quantity of material q1(t) and the

other compartments contain the quantities of material q2(t), ...,qn(t). The exchange between

the base compartment and the other compartments happens with rate constants f1k and fk1, k =
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Figure 2.2: Common structure of the compartment models in this thesis.

2, ...,n, and depends on the current quantities of material in the compartments. Input of material

from the outside is optional, and is therefore not depicted in the block diagram in Figure 2.2.

The change of the quantity of material in compartment k, k = 2, ...,n, can be described by the

differential equation

d

dt
qk(t) = fk1q1(t)− f1kqk(t), (2.7)

which is a special case of Equation 2.4 with F = diag(− f12, ...,− f1n) and the base compart-

ment playing the role of an external source of material with I(t) = ( f21q1(t), ..., fn1q1(t))
′. With

boundary condition qk(0) = qk0, the solution of Equation 2.7 is

qk(t) = qk0 exp(− f1kt)+ fk1q1 ∗ exp(− f1kt). (2.8)

For the two imaging applications in this thesis, FRAP and DCE-MRI, however, it is not

possible to observe the quantity of material for each compartment individually. We can only

observe the total quantity of material q(t), that is, the sum of the quantities of material in all

compartments.

For the FRAP application in Chapter 5 of this thesis, the sum of the quantities of material in

all compartments in the notation used above is

q(t) =
n

∑
i=1

qi(t). (2.9)

Here, q1(t) denotes the quantity of material in the base compartment, and the quantities of

material in the remaining compartments are denoted by qk(t), k = 2, ...,n. In this application,

the observed and modeled quantity is the total fluorescence intensity in the bleached area of a
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cell nucleus. It is denoted by total(t) and corresponds to q(t) in Equation 2.9. total(t) is the

sum of the concentration of free unbleached molecules in the base compartment denoted by f (t)
and the concentration of bound unbleached molecules in the remaining k compartments ak(t),
k = 0, ...,K, and an error. f (t) corresponds to q1(t), and ak(t) to the remaining quantities of

material q2(t), ...,qn(t) in Equation 2.9.

As in the FRAP application in Chapter 5, the concentration of free unbleached molecules in

the base compartment f (t) is assumed to be constant over time, the convolution in Equation 2.8

is simple, and the total quantity of material total(t) can be described by a term containing a sum

of exponentials instead of a sum of convolved exponentials (Sommer, 2013).

For the application in Chapter 6 of this thesis, the observed and modeled quantity is the total

fluorescence intensity in each pixel of an image of a cell nucleus in a FRAP experiment. This

quantity is again denoted by total(t) and corresponds to q(t) in Equation 2.9. In the application

in Chapter 6, similar to the application in Chapter 5, it is the sum of the concentration of free

unbleached molecules in the base compartment f (t) and the concentration of bound unbleached

molecules in a second compartment a(t), plus an error, where f (t) corresponds to q1(t), and a(t)
to q2(t) (with n = 2) in Equation 2.9. In contrast to the application in Chapter 5 we, however, do

not assume that f (t) is constant, and therefore, we have to deal with convolved exponentials in

Chapter 6.

For the DCE-MRI application in Chapter 7 of this thesis, the fractional volumes of the com-

partments have to be considered in addition to the quantities of material in the compartments.

The fractional volume of the base compartment denoted by v1 is assumed to be negligible,

and is therefore set zero. Hence, the total quantity of material q(t) in the general notation used

above is

q(t) =
n

∑
k=2

vkqk(t), (2.10)

where vk is the fractional volume of the k-th compartment for k = 2, ...,n. The observed

quantity in this application is the total concentration of contrast agent in a voxel of an DCE-

MR image. It is denoted by C(t), what corresponds to q(t) in Equation 2.10. It is the sum

of the products of the fractional volumes of the tissue compartments vek
, k = 1, ...,q, and the

concentrations of contrast agent in the tissue compartments Cek
(t), where vek

corresponds to vk,

and Cek
(t) to qk(t) in Equation 2.10. Using Equation 2.8 and Equation 2.10, we get

q(t) = q1 ∗
n

∑
k=2

vk fk1 exp(− f1kt) (2.11)

and therefore, we have to deal with a sum of convolved exponentials in Chapter 7.

In each application in this thesis, the solution of the differential equations describing the used

compartment model is nonlinear in the coefficients. Based on it, a nonlinear regression model

can be formulated with which the data of interest can be modeled. This means, the evolution of

the quantity of some material over time can be described with a known parametric function. This

function depends on the structure of the compartment model, i.e., on the number of compart-

ments and the exchange structure between the compartments, as well as on the parameters of the

compartment model. Usually, the quantity of material is observed over time, and the parameters
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of the model have to be estimated for a compartment model with a given structure. In Chapters 5

and 6 of this thesis, for example, compartment models with fixed numbers of compartments are

assumed. However, there are cases in which the structure of a compartment model is not or

only partially given a priori, and therefore, it has to be (finally) determined in addition to the

parameter estimation. In Chapter 7 of this thesis, for example, the number of compartments in

the assumed compartment model is not fixed a priori, and is therefore estimated from the data.

Several general assumptions are usually made in compartmental modeling. Two assump-

tions applying for all compartment models considered in this thesis are time invariance and the

assumption of well-mixed and homogeneous compartments. If time invariance is assumed, the

parameters in a compartment model are assumed to be constant during the time of data acqui-

sition (Tofts, 1997; Sommer, 2013). The second assumption made for all compartment models

considered in this thesis implies that the material in the compartments of a compartment model

is well-mixed and homogeneous (Tofts, 1997; Sommer, 2013). A discussion of these two general

assumptions regarding the applications in this thesis can be found in Chapter 8. More assump-

tions that can be made in a compartmental modeling approach that are not discussed in detail

here can be found for example in Tofts (1997) and in Sommer (2013).



14 2. Compartment models and differential equations



Chapter 3

Nonlinear regression
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In this chapter, an introduction to regression analysis is given. In the first section, the classical

linear model and the method of parameter estimation in the linear model are introduced. After

that, the common characteristics of the nonlinear regression models considered in this thesis are

given. This is followed by an introduction of approaches for parameter estimation in nonlinear

regression models.

3.1 Introduction to regression analysis

In general, in a regression framework, the goal is to model the effects of one or more explanatory

variables on a response variable y. A crucial point for the choice of a suitable model to do this is

the type of the response variable. It can be continuous, binary, categorical, or counts (Fahrmeir

et al., 2013). Another important information for the choice of a suitable model are the types of

the explanatory variables, which can be continuous, binary, or categorical (Fahrmeir et al., 2013).

For an extensive overview of regression models, the linear model introduced in the following as

well as extensions and generalizations of this model see for example Fahrmeir et al. (2013).

In a regression model, the response variable y is assumed to be a random variable, with its

distribution depending on the explanatory variables. This means that the relationship between the

response variable y and the explanatory variables is not deterministic, but shows random errors.

If linear dependency of y on the explanatory variables is assumed, this results in the classical

linear model. In this model, it is moreover assumed that the random errors are independent and

identically normally distributed with mean zero and variance σ2. With only one explanatory

variable x, the linear model can be written as

y = β0 +β1x+ ε,

with an error term ε . If we consider observations i = 1, ...,n of x and y, we get

yi = β0 +β1xi + εi,

with Gaussian error terms εi ∼ N(0,σ2).

The unknown parameters of the model, β0 and β1, have to be estimated for given data (yi,xi).
In the linear model, they are estimated according to the least squares method, i.e., the residual

sum of squares (RSS)

RSS(β ) =
n

∑
i=1

ε2
i =

n

∑
i=1

(yi − x′iβ )
2

is to be minimized with respect to β = (β0,β1)
′. This results in the least squares estimate

β̂ = (X ′X)−1X ′y,

which is in the case of the linear model identical to the maximum likelihood estimator of β .
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3.2 Regression models in this thesis

In this thesis, we focus on continuous response variables. The only explanatory variable consid-

ered in the regression models in this thesis is time, which is continuous as well. As the regression

models describing the relationship between the continuous response variables and the explana-

tory variable time are derived from nonlinear solutions of systems of ODEs, they are nonlinear

regression models. This means that a relationship that is more complex than a linear relation-

ship has to be modeled between the response variable and the explanatory variable. But we still

assume independent Gaussian error terms in the regression models.

All regression models considered in this thesis contain terms of the form

α exp(−βx),

i.e., nonlinear combinations of the unknown parameters α and β that have to be estimated and a

given explanatory variable x. Consider now for example a simple regression model of the form

y = α exp(−βx)+ ε,

with response y and error term ε . If we aimed to transform this nonlinear model into a linear

model, we could think about applying a logarithmic transformation to this model in order to get

rid of the exponential function. However, the response variable as well as the error term would

then no longer follow a Gaussian distribution. This means, in particular, that the error structure

of the model would change. As an alternative, we could use the fact that in some cases where

the solution of the differential equations for a compartment model contains only one exponential

function, a linear solution can be obtained by integrating the differential equation describing

the kinetic behavior of some material (Murase, 2004). In this thesis, however, we throughout

consider models containing sums of exponentials, what corresponds to

y =
n

∑
k=1

αk exp(−βkx)+ ε

in this example. A logarithmic transformation is obviously not constructive for models of

this kind in order to obtain a linear model, as it would result in a multiplicative structure rather

than in an additive structure as present in a linear model. Therefore, the models presented in this

thesis will not be transformed into linear models and we will have to deal with nonlinear models.

In a frequentist framework, nonlinear least squares methods are used in order to estimate

the parameters in a nonlinear model. In contrast to the linear model, where the least squares

estimate can be analytically determined, this is not the case for the nonlinear model. Therefore,

iterative methods have to be used in order to solve the nonlinear optimization problem and thus

to determine the nonlinear least squares estimate. Among the various algorithms that have been

proposed for the determination of the nonlinear least squares estimate are for example the Gauss-

Newton method, the Nelder-Mead method, and the Levenberg Marquart algorithm. The latter is

used for the curve-fitting problem in Chapter 7 of this thesis.

However, consistency problems by specifying starting values and convergence issues can oc-

cur with algorithms for nonlinear model fitting. Therefore, the model is usually fitted several
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times using for example random starting values or a grid of starting values. The most suitable

model is then determined according to an information criterion like the Akaikes information cri-

terion (AIC) or the Bayesian information criterion (BIC). This may result in a high computational

burden, in particular if a large number of starting values is used.

To avoid the consistency problems and convergence issues mentioned above, as an alterna-

tive to the nonlinear least squares method, the parameters can also be estimated in a Bayesian

framework, where the algorithm usually converges and the parameter estimates do not depend

on any starting values. Bayesian inference is introduced in Chapter 4, and Bayesian approaches

for the estimation of the parameters in a nonlinear model are described in Chapters 5 and 6 of

this thesis.

For details on nonlinear regression and nonlinear optimization see for example Bates and

Watts (1988), Ratkowsky (1990), and Seber and Wild (1989).
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Bayesian data analysis
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In this chapter, the structure of the Bayesian models in the applications in Chapters 5 and 6 of

this thesis is described. This is followed by a section about prior distributions, the introduction

of the Bayesian principle, and an introduction to Markov chain Monte Carlo inference.

4.1 Bayesian models in this thesis

In the applications in Chapters 5 and 6 of this thesis, we use hierarchical Bayesian models con-

sisting of three levels:

1. Data model; derived from a nonlinear recovery model,

2. Prior model; prior assumptions on all unknown parameters in level 1,

3. Hyper prior model; prior assumptions on all unknown parameters in level 2.

This structure reflects that in the Bayesian framework probability density functions (PDFs) have

to be assigned not only to the observables of a statistical model, but to all unknown parameters

in a model, as there is no fundamental distinction between parameters and observables of a

statistical model (Gilks et al., 1996; Carlin and Louis, 2009).

4.2 Prior distributions

The choice of the prior distribution for all unknown parameters in a model is a fundamental task

in the Bayesian framework. In Chapters 5 and 6 of this thesis, we assume that the data follows

a Gaussian distribution. The priors for the remaining unknown parameters have to be chosen

according to the prior knowledge we have about these parameters.

Two commonly used types of prior distributions, which are not contradictory, are conjugate

priors and uninformative priors (Carlin and Louis, 2009). If a prior is conjugate with another

distribution, it means that the prior distribution belongs to the same distributional family as the

posterior distribution (Carlin and Louis, 2009). Uninformative priors are used in cases where we

have no reliable prior information about a parameter (Carlin and Louis, 2009).

In the application in Chapter 5 of this thesis, mixed-effect priors are defined on the param-

eters of a nonlinear model. A Gaussian distribution is defined on the random effect of one of

the parameters that may take negative as well as positive values. The log-normal distribution

can generally be used for a parameter in cases where we know that the parameter must be non-

negative. Therefore, this distribution is used for the random-effects of the transfer rates in the

application in Chapter 5 and for the transfer rates in the application in Chapter 6 of this thesis.

In Chapter 5, we assume Inverse Gamma distributions for the variance parameters in level 3 of

the hierarchical model, as this distribution is known as a conjugate prior for the Gaussian distri-

bution with known mean. Uniform priors are used for the fixed effects in Chapter 5 and for the

parameters describing the concentration of free and bound unbleached molecules at the time of

the bleaching of a cell nucleus in Chapter 6. In Chapter 5, the uniform prior distributions can

be regarded as uninformative, which means that they do not contain any relevant information. In
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Chapter 6, they incorporate the information that the concentration of free and bound unbleached

molecules at the time of the bleaching of a cell nucleus can each be at most equal to the sum of

these concentrations.

4.3 The Bayesian principle

In the Bayesian framework, all conclusions are drawn from the posterior distribution (Gilks et al.,

1996), which can be computed via Bayes’ theorem (Carlin and Louis, 2009):

p(θ |y) = f (y|θ)π(θ)
∫

f (y|θ̃)π(θ̃)dθ̃
,

with f (y|θ) the PDF of the data distribution, and π(θ) the product of the prior distributions.

In the applications in Chapters 5 and 6 of this thesis, we assume a priori independence of all

unknown parameters in a model. As in most cases the posterior distribution is only known up to

the normalization constant
∫

f (y|θ̃)π(θ̃)dθ̃ , for example Markov chain Monte Carlo (MCMC)-

methods have to be applied in order to derive the full conditional distributions (FCs) of the

parameters in a model from the posterior distribution (Carlin and Louis, 2009).

4.4 Introduction to MCMC inference

In the applications in Chapters 5 and 6 of this thesis, hybrid MCMC algorithms with Gibbs-

and Metropolis-Hastings (MH)-update steps are used in order to obtain samples from the FCs of

the parameters in a model. If the FC of a parameter θ is a familiar distribution, as for example

the Gaussian distribution or the gamma distribution, the parameter can be sampled directly from

this distribution. That means, the proposal distribution for the update of the parameter θ is

exactly its FC, and the proposed value is accepted with an acceptance probability of 1 (Gilks

et al., 1996). Otherwise, an MH algorithm has to be used. Then, a proposal distribution for the

update of the parameter θ , that should preferably be similar to the FC of this parameter, has to

be chosen (Schmid, 2004). Let p(θ | ·) denote the full conditional distribution of θ . Then, the

MH algorithm for the update of θ with a notation similar to the notation used in Schmid (2004)

is given in Figure 4.1.

For the MH algorithm, the proposal distribution q(θ ∗ | θ (n−1)) has to be specified. In the ap-

plications in Chapters 5 and 6 of this thesis, random walk proposals of the form q(θ ∗ | θ (n−1)) =
N(θ (n−1),σ2

θ ) are used. That means, the proposal θ ∗ is drawn from a Gaussian distribution

with mean θ (n−1) and variance σ2
θ . As the proposal distribution is symmetric in that case, i.e.,

q(θ (n−1) | θ ∗) = q(θ ∗ | θ (n−1)), the acceptance probability in step 4 of the MH algorithm in

Figure 4.1 reduces to

α = min

{

p(θ ∗ | ·)
p(θ (n−1) | ·) ,1

}

.
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1. Choose a starting value θ (0) and the number of iterations N.

2. Set n = 1.

3. Draw a proposal θ ∗ according to the proposal distribution q(θ ∗ | θ (n−1)).

4. Accept θ ∗ with acceptance probability

α = min

{

p(θ ∗ | ·)q(θ (n−1) | θ ∗)

p(θ (n−1) | ·)q(θ ∗ | θ (n−1))
,1

}

,

otherwise set θ (n) = θ (n−1).

5. Set n = n+1.

6. Iterate steps 3-5 until n = N, the number of iterations.

Figure 4.1: Metropolis-Hastings algorithm.

This is a special case of the MH algorithm which is called Metropolis algorithm (Carlin and

Louis, 2009). For more details on MCMC inference see for example Gilks et al. (1996) or

Brooks et al. (2011).



Chapter 5

Bayesian mixed-effects model for the analy-

sis of a series of FRAP images

This chapter is mainly based on Feilke, Schneider, and Schmid (2015). Some of the Tables and Figures of

the Appendix in Feilke, Schneider, and Schmid (2015) are additionally contained in this chapter and the content of

this chapter is accordingly changed at some points compared to Feilke, Schneider, and Schmid (2015). Some parts

that are common for this chapter and Chapter 6 are explained in Chapter 4 of this thesis and therefore, the content

of this chapter is at some points accordingly changed compared to Feilke, Schneider, and Schmid (2015). This

chapter moreover contains more detailed information on data preparation (in Section 5.2) than Feilke, Schneider,

and Schmid (2015) and additionally provides information about an R package that was built based on the code used

for the analyses in this chapter.
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Abstract

The binding behavior of molecules in nuclei of living cells can be studied through the analysis

of images from fluorescence recovery after photobleaching experiments. However, there is still a

lack of methodology for the statistical evaluation of FRAP data, especially for the joint analysis

of multiple dynamic images.

We propose a hierarchical Bayesian nonlinear model with mixed-effect priors based on local

compartment models in order to obtain joint parameter estimates for all nuclei as well as to

account for the heterogeneity of the nuclei population. We apply our method to a series of

FRAP experiments of DNA methyltransferase 1 tagged to green fluorescent protein expressed in

a somatic mouse cell line and compare the results to the application of three different fixed-effects

models to the same series of FRAP experiments.

With the proposed model, we get estimates of the off-rates of the interactions of the molecules

under study together with credible intervals, and additionally gain information about the vari-

ability between nuclei. The proposed model is superior to and more robust than the tested fixed-

effects models. Therefore, it can be used for the joint analysis of data from FRAP experiments

on various similar nuclei.
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5.1 Introduction

Fluorescence recovery after photobleaching is an imaging technique to investigate the binding

behavior of molecules inside organisms, cells or cellular sub-compartments in vivo (Sprague

et al., 2004; Meyvis et al., 1999; Reits and Neefjes, 2001). To analyze, for example, the dynamic

properties of proteins of interest within the cell nucleus, the proteins are genetically tagged to a

fluorescent protein (e.g. green fluorescent protein (GFP)) and expressed in cells of interest. A

part of the molecules in the cell nucleus is bleached by a focused laser beam and the recovery

in the bleached part of the nucleus is observed by capturing images of the nucleus in predefined

time intervals (McNally, 2008). Typically, such analyses are done on a couple of similar nuclei

and the resulting rate estimators are summarized afterwards. However, the results often differ

between nuclei. This variability is however not only due to random observation noise and the

randomness of the underlying diffusion process, but also caused by cell-to-cell variation or the

cellular status of the examined cells. To this end, we propose to analyze all nuclei together and

account for the variance between nuclei by using mixed-effects models.

To date, for the analysis of data from FRAP experiments for the same molecule on multiple

similar cell nuclei with a mathematical model, either the data of each recovery curve is analyzed

separately, and the results for all cell nuclei are regarded together (e.g. Schneider et al., 2013) , or

the data of the different cell nuclei are pooled, averaged and then analyzed (e.g. McNally, 2008).

In the second case, the recovery curves of the cell nuclei are averaged to obtain a smooth curve

that can then be analyzed by the same mathematical model that is usually used for the analysis

of one recovery curve. It is, however, vital, that only data of comparable fluorescent intensities

are averaged (Sprague et al., 2004).

Random effects are frequently used in linear models for longitudinal data. They account for

the fact that subjects are sampled randomly from a heterogeneous population (Pinheiro and Bates,

2000). Typically, random effects are combined with fixed effects, i. e. , the usual effects in a linear

model, resulting into mixed-effects models. Mixed-effects models are used in many applications

including agriculture, pharmacokinetics, and geophysics (Pinheiro and Bates, 2000), as well as

clinical trials (Brown and Prescott, 1999). In mixed-effects models, the relationships between

a response variable and covariates, which are grouped by one or several factors, are described

(Pinheiro and Bates, 2000). In our approach, fixed effects are parameters that are associated with

the recovery curves of all cell nuclei, while random effects are parameters associated with the

recovery curves of the individual cell nuclei.

The aim of a FRAP experiment is to infer the binding behavior of the unbleached molecules in

the cell nucleus from their speed of movement. Because the bleached and unbleached molecules

are assumed to behave identically, we can infer from that the binding behavior of all – bleached

and unbleached – molecules of interest in the cell nucleus. See Sprague and McNally (2005) for

more information on FRAP experiments. In this chapter, we concentrate on half-nucleus FRAP

(as opposed to circle FRAP or strip FRAP (Mueller et al., 2008; Sprague et al., 2004)), which

should cover representative fractions of heterogeneously distributed binding sites in all cell cycle

stages (Schneider et al., 2013). An example for such data is given in Figure 5.1. In the first

post-bleach image (second image from left, after 0.15 seconds), it is apparent that one half of
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Figure 5.1: Fluorescence recovery after photobleaching one half of the nucleus of a mouse

C2C12 cell expressing GFP-Dnmt1 in late S phase. Images of a cell nucleus in a FRAP ex-

periment: In the prebleach image, the complete cell nucleus is visible because all molecules are

fluorescent. In the first postbleach image (acquired after 0.15 seconds), it is obvious that one half

of the nucleus has been bleached. The subsequent images show the recovery of the fluorescence

in the nucleus after 5, 10, 20 and 50 seconds.

the cell nucleus has been bleached. The recovery of fluorescence in this half can be tracked over

time in the subsequent images.

We propose a Bayesian nonlinear regression with mixed-effect priors for the simultaneous

analysis of all recovery curves resulting from a series of FRAP experiments. In the following

section, the data used in our analyzes is described and the compartment model as well as the

differential equations associated with it are introduced. Thereafter, the model equation, which

is based on the solution to the differential equations, is presented. In the subsequent section,

the Bayesian nonlinear mixed-effects model, which consists of the data model, the prior model

and the hyper priors, is described. Then, the parameter estimation procedure is presented, and

the three different fixed-effects models with which the mixed-effects model is compared, are

introduced, together with the information criterion used for the comparison. In the Results sec-

tion, we present the results from the application of the proposed mixed-effects model to a series

of FRAP experiments of GFP-tagged DNA methyltransferase 1 (GFP-Dnmt1) expressed in a

somatic mouse cell line. Moreover, the comparison between the mixed-effects model and the

fixed-effects models is done. The chapter ends with a discussion of the proposed approach.

With the R package frapmm, which is available on GitHub (https://github.com/feilke/frapmm),

the Bayesian nonlinear mixed-effects model can be fitted to data from a series of FRAP images.

An accompanying file that is also available at GitHub provides a minimal working example in-

cluding data simulation.

5.2 FRAP experiments

5.2.1 Data

In this chapter, we use FRAP data sets of GFP-Dnmt1 expressed in mouse C2C12 myoblast

cells (Schneider et al., 2013), which were obtained from multiple cell nuclei and can therefore

be utilized to illustrate how our nonlinear regression model can be used to fit all available data

at once. DNA methylation at position 5 of cytosines within CpG dinocleotide sequences is

an important biochemical process for the stable epigenetic gene silencing in vertebrates (Bird,
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2002; Spada et al., 2006). The maintenance methyltransferase Dnmt1 reestablishes methylation

of hemi-methylated CpG sites generated during DNA replication in S phase and thus ensures

propagation of genomic methylation pattern over many cell divisions.

In order to study the cell cycle dependent binding behavior of wild type Dnmt1, we ana-

lyzed data from cells in different cell cycle stages as identified by the nuclear distribution pattern

of GFP-Dnmt1 (Schneider et al., 2013): 12 cells with diffuse nuclear distribution (mostly G1

phase and possibly also late G2 phase), 26 cells in early S phase with Dnmt1 association at early

replication foci, and 11 cells in late S phase with Dnmt1 associating with late replicating hete-

rochromatin clusters. For each cell, the concentration of unbleached GFP-Dnmt1 in the bleached

half of the cell nucleus was documented every 0.15 seconds up to 779 times after the bleaching.

For the cells with diffuse nuclear distribution, the concentration was measured 778 times for 10

cells. For the two remaining cells with diffuse nuclear distribution, 390 and 480 measurements,

respectively, were available. 778 measurements were available for 24 cells in early S phase. For

the other two cells in early S phase, 774 and 754 measurements, respectively, were available. For

the cells in late S phase, 779 measurements were available for 10 cells, whereas 777 measure-

ments were available for the eleventh cell. The original FRAP data has been normalized by a

triple normalization procedure described in detail in Dargatz (2010) and Schneider et al. (2013),

converted to 8-bit, and Gauss-filtered with a two pixel radius (Schneider et al., 2013). Image

registration has been done in order to correct for lateral movement of cells. In the normaliza-

tion procedure, more specifically, it has been corrected for the intensity of the background of the

images. In addition, it has been accounted for the variation in fluorescence during postbleach

image acquisition as well as for cell-to-cell differences in the bleaching depth. Furthermore, the

fluorescence loss due to half nucleus bleaching has been taken into account.

The major part of the FRAP data analyzed in this chapter has previously been published and

analyzed (Schneider et al., 2013). The goal of the experiment was to identify the contribution

of two different kinds of interactions Dnmt1 is involved in in different cell cycle phases. The

interactions can be attributed to two subdomains of Dnmt1, first, the proliferating cell nuclear

antigen (PCNA)-binding domain (Schermelleh et al., 2007; Schneider et al., 2013), and second,

the targeting sequence domain, which targets Dnmt1 to the replication sites in S phase (Schneider

et al., 2013). A figure showing the domain structure of GFP-Dnmt1 constructs can be found

in (Schneider et al., 2013). Schneider et al. (2013) use the term “mobility classes” instead of

the term “binding partners,” because all interactions with similar on- and off-rates can not be

distinguished (Schneider, 2009), and, hence, build one mobility class (MC). Moreover, processes

like anomalous diffusion, which are not related to binding, can also be represented by a MC.

5.2.2 Nonlinear recovery model

The movement of a molecule of interest in a cell nucleus is influenced by diffusion and by

interactions, including binding reactions, the molecule is involved in (van Royen et al., 2011;

Hemmerich et al., 2011; Mueller et al., 2010; Mazza et al., 2012). It is possible to model this

process by using the full reaction-diffusion equations (Sprague et al., 2004; Carrero et al., 2004;

Beaudouin et al., 2006). As we strive for an analytical solution of the equations describing

the movement of the molecule of interest, we use a simplification of the full reaction-diffusion
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equations. Usually, one of the following three simplifications is employed: the pure-diffusion

scenario, the effective diffusion scenario or the reaction dominant scenario (Sprague et al., 2004).

A pure-diffusion dominant scenario (Sprague et al., 2004) is present when most of the fluorescent

molecules are free and interactions can be ignored. An effective diffusion scenario (Sprague

et al., 2004; Mueller et al., 2008; Beaudouin et al., 2006; van Royen et al., 2009) occurs “when

the reaction process is much faster than diffusion” (Sprague et al., 2004). A reaction dominant

scenario is present, when diffusion is very fast compared to the timescale of the image acquisition

and to the reaction process (Sprague et al., 2004).

The interactions Dnmt1 is involved in are described by on- and off-rates. In Schneider et al.

(2013), where a correction value for diffusion was used, it was found that, in S phase, Dnmt1 is

involved in interactions with relatively small off-rates, which means in the case of binding reac-

tions, that the molecules of interest have a relatively long residence time (about 10-20 seconds)

at their binding sites. We have no sufficient information about the magnitude of the on-rate.

For these reasons and because we aim to have an analytical solution to the ordinary differential

equations describing the movement of Dnmt1, we assume a reaction dominant scenario for our

data.

In a reaction dominant FRAP scenario, diffusion is very fast in comparison to reaction pro-

cesses and the time scale of the FRAP measurement (Bulinski et al., 2001; Coscoy et al., 2002;

Dundr et al., 2002) and the recovery curve in the bleached part of the cell nucleus can be modeled

using a nonlinear regression model (Sprague et al., 2004).

Here, we regard cases with two or three MCs (Schneider et al., 2013). In all considered cell

cycle phases, a MC with a very long residence time compared to the time of image acquisition

is indicated (Schneider et al., 2013). For this MC, we estimate only one parameter, and it is later

also referred to as “immobile fraction”. In cells with diffuse localization and in early S phase,

one additional MC has been identified. For the late S phase, two additional MCs with different

off-rates were found.

The binding sites to which the molecules of interest bind are assumed to be part of large

complexes, which are relatively immobile on the time scale of the FRAP measurement and the

molecular movement (Sprague et al., 2004; Carrero et al., 2004). A compartment model with

two or three compartments (Figure 5.2; the immobile fraction is ignored in this representation)

is used to describe the change of the concentration of unbleached molecules in the bleached part

of the cell nucleus. In a compartment model with two compartments, the molecules can be either

free or bound. Exchange between the compartment of the free and the compartment of the bound

molecules occurs with rates bon∗
1 and boff

1 . In a compartment model with three compartments, the

molecules can be either free or bound in one of two discriminable binding states. Exchange

between the compartment of the free molecules and the compartments of the bound molecules

occurs with rates bon∗
1 and boff

1 and bon∗
2 and boff

2 , respectively. A similar procedure based on the

reaction equation of a binding interaction was proposed by Sprague et al. (2004).

The on- and off-rates of the binding reaction are denoted by bon∗
k and boff

k , k = 0, ...,K. As

stated in Sprague et al. (2004), bon∗
k is actually a pseudo-on-rate. It is the product of the actual on-

rate bon
k and the concentration of vacant bindings sites belonging to MC k. It is constant during

the entire recovery process, because we assume that the biological system is in equilibrium before

the bleaching and because bleaching does not affect the number of vacant binding sites (Sprague
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Figure 5.2: (A) Compartment model with two compartments and (B) compartment model with

three compartments.

et al., 2004).

Let f (t) = [Free](t) denote the concentration of the free molecules and ak(t) = [Boundk](t)
the concentration of the bound molecules in MC k at time t. We can describe the change of

the concentration of the free and bound molecules based on the compartment model by the two

differential equations

d

dt
f (t) =

K

∑
k=0

(

−bon∗
k f (t)+boff

k ak(t)
)

+D f ∇2 f (t), (5.1)

with ∇2 the Laplacian operator and D f the diffusion coefficient for free proteins, and

d

dt
ak(t) = bon∗

k f (t)−boff
k ak(t). (5.2)

The molecules in the cell nucleus are in equilibrium before the bleaching. In a diffusion-

uncoupled FRAP scenario, the free molecules are moreover assumed to be in equilibrium again
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immediately after the bleaching. Therefore f (t) = feq, a constant, and Equation (5.2) can be

written as

d

dt
ak(t) = bon∗

k feq −boff
k ak(t). (5.3)

Moreover, we do not have to model the change of the concentration of the free molecules, it

suffices to model the change of concentration of the bound molecules, which means that Equa-

tion (5.1) can be ignored.

With boundary condition ak(0) = 0, which means that at time t = 0 (the time of the bleaching)

the concentration of unbleached bound molecules in MC k in the bleached area equals zero, the

solution of Equation (5.3) is

ak(t) =
bon∗

k feq

boff
k

− bon∗
k feq

boff
k

exp(−boff
k t). (5.4)

As the system is in equilibrium before bleaching we have d
dt

f (t) = 0, d
dt

ak(t) = 0 and constant

steady-state intensities feq, ak,eq. Together with Equation (5.3) we get

ak,eq =
bon∗

k feq

boff
k

,

and can therefore write Equation (5.4) as

ak(t) = ak,eq(1− exp(−boff
k t)). (5.5)

The observed value during FRAP recovery is the total fluorescence intensity in the bleached

area. It can be described by the sum of the bound and the free unbleached molecules plus an

error. The sum of the bound and the free unbleached molecules is denoted by total(t):

total(t) = feq +
K

∑
k=0

ak(t).

For our analysis, in each cell nucleus, the fluorescence intensity has been averaged over the

bleached part of the cell nucleus. Therefore, in our analysis, feq is the average of the intensity

of the free fluorescent molecules in the bleached half, and ak(t) is the average of the intensity of

the bound fluorescent molecules in the bleached part of the nucleus. With Equation (5.5) we can

then write

total(t) = feq +
K

∑
k=0

ak,eq(1− exp(−boff
k t)).
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With feq + ∑
K
k=0 ak,eq = 1, which holds because the concentration of the unbleached

molecules has been normalized to one, we arrive at

total(t) = 1−
K

∑
k=0

ak,eq exp(−boff
k t),

which is the deterministic approximation of the model with multiple mobility classes in Fuchs

(2013), where stochastic differential equations are used to describe the dynamics of molecules in

a cell nucleus.

5.3 Bayesian nonlinear mixed-effects model

In order to analyze all recovery curves from all nuclei simultaneously, we use a hierarchical

Bayesian model consisting of the three levels described in Section 4.1 of Chapter 4.

5.3.1 Data model

The total observed concentration of unbleached molecules in the bleached part of the cell nucleus

of cell j, j = 1, ...,J, at time ti, i = 1, ...,Tj, is denoted by C j(ti). We assume Gaussian noise for

the observations

C j(ti)∼ N
(

total j(ti),σ
2
)

.

The true concentration of unbleached molecules is modeled by the nonlinear model

total j(ti) = 1−
K

∑
k=0

ak j exp
(

−boff
k j ti

)

.

Therefore, we fit the mixed-effects model

C j(ti) = 1−
K

∑
k=0

ak j exp
(

−boff
k j ti

)

+ εi j

to the data of each cell cycle phase, where εi j are independent Gaussian noise terms with

mean 0 and variance σ2.

5.3.2 Prior model

In a Bayesian framework prior probability density functions have to be defined for all unknown

parameters. Here, for the parameters ak j and boff
k j , we use a mixed-effect decomposition of the

form

ak j = ak +αk j, boff
k j = exp( fk +φk j) = exp( fk) · exp(φk j),
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with boff
k = exp( fk) and β off

k j = exp(φk j). So each of these parameters is split into a fixed

effect, which represents a joint parameter for all recovery curves of all cell nuclei, and a random

effect representing a curve-specific parameter. The prior for the parameter boff
k j incorporates

moreover the knowledge that transfer rates must be nonnegative (Schmid, Whitcher, Padhani,

Taylor, and Yang, 2009). We do not assume nonnegativity for the parameter ak j, as a0 j can be

also negative. This is due to the fact that a triple normalization procedure has been applied to the

data, which assumes that the equilibrium concentration of unbleached molecules in the bleached

part of the cell nucleus is one. However, due to erroneous pre-processing, a0 j can also be smaller

than zero, which leads to a equilibrium concentration bigger than one.

For the fixed effects, uniform priors of the form

p(ak) = p(boff
k ) ∝ constant

are used. These prior distributions are uninformative, which means that they do not contain

any relevant information.

As prior distributions for the nuclei-specific random effects, we use Gaussian distributions

and log-normal distributions, respectively, which are given by

αk j ∼ N(0,τ2
αk
), β off

k j ∼ LN(0,τ2
β off

k

),

where τ2
αk

and τ2
β off

k

are unknown variance parameters.

5.3.3 Hyper prior model

Additional prior PDFs have to be defined for all other unknown parameters. As prior distributions

for the unknown variance parameters, Inverse Gamma distributions, which are given by

τ2
αk

∼ IG(ck,dk), τ2
β off

k

∼ IG(ek,gk),

are used. The Inverse Gamma distribution is known as a conjugate prior for the Gaussian

distribution with known mean.

By using uninformative priors for the parameters ak and boff
k , we ensure that as much variance

as possible is covered by the fixed effects. Only the variability that is not covered by the fixed

effects is captured by the random effects. The definition of the hyperpriors with prudently chosen

parameters on the variances of the parameters αk j and β off
k j leads to a shrinkage of the random

effects, so that they do not cover variance explained by the fixed effects (Schmid, Whitcher,

Padhani, Taylor, and Yang, 2009).

If K = 1, which means that there is one MC in addition to the immobile fraction, we have to

choose the parameters for the three Inverse Gamma distributions

τ2
α0

∼ IG(c0,d0), τ2
α1

∼ IG(c1,d1), τ2
β off

1

∼ IG(e1,g1).

For the diffuse and the early S phase, we choose the parameters c0 = c1 = e1 = 1, d0 = d1 =
g1 = 10−4.
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When K = 2, which means that there exist two MCs in addition to the immobile fraction, we

have the Inverse Gamma distributions

τ2
α0

∼ IG(c0,d0), τ2
α1

∼ IG(c1,d1), τ2
β off

1

∼ IG(e1,g1),

τ2
α2

∼ IG(c2,d2), τ2
β off

2

∼ IG(e2,g2).

The chosen parameters for the late S phase similar to above are c0 = c1 = c2 = e1 = e2 =
1, d0 = d1 = d2 = g1 = g2 = 10−4. By choosing the first parameter of the Inverse Gamma

distribution to be 1 and the second parameter to be considerably smaller than 1, we perform

shrinkage of the variances of the random effects. The smaller the second parameter is with

respect to 1, the stronger is the shrinkage of the variance of the corresponding random effect,

and, hence, the more variance is covered by the corresponding fixed effect.

As prior for the variance σ2 of the noise term εi j, we define the Inverse Gamma distribution

σ2 ∼ IG(a,b) with a = b = 1. We assume a priori independence of all unknown parameters.

5.3.4 Posterior distribution and MCMC inference

The full conditional distributions of the parameters of the nonlinear regression model can be

derived from the posterior distribution that is computed via Bayes’ theorem. A Markov chain

Monte Carlo algorithm with Gibbs- and Metropolis-Hastings-update steps is applied to obtain

samples from the full conditional distributions. Therefore, in each iteration of the algorithm, a

random sample from the conditional posterior distribution (given all other parameters and the

data) is drawn for each parameter. The full conditional distributions of all parameters can be

found in the Appendix (Part A).

The parameters ak and αk j are drawn in Gaussian Gibbs steps, because their full conditional

distributions are Gaussian distributions, from which one can sample directly. For the parameters

σ2, τ2
αk

, and τ2
β off

k

, Gamma Gibbs steps are used, because the full conditional distributions of the

parameters are Inverse Gamma distributions. The parameters boff
k and β off

k j are drawn in MH-

steps with random walk proposals, because their full conditional distributions are not standard

distributions. For the MC which is present in all considered cell cycle phases and has a very

long residence time compared to the time of image acquisition (k = 0), the parameters boff
0 and

β off
0 j are close to zero. Therefore, we set boff

0 = β off
0 j = 0 and estimate only the parameter a0 for

this immobile fraction (Schermelleh et al., 2007; Schneider et al., 2013; Sprague and McNally,

2005).

The random walk proposal of the Metropolis Hastings algorithm was tuned and resulted

in acceptance rates between 35% and 52%. This is in accordance with recommendations for

acceptance rates; for example Gilks et al. (1996) recommend acceptance rates between 15% and

50% (see also Gelman et al., 1996; Roberts et al., 1994). In our opinion, acceptance rates should

be rather higher than lower, because with acceptance rates that are too low it might happen that

part of the state space is never visited, what we intend to avoid.

We ran 10 parallel chains for each model (one model per cell cycle phase). For each param-

eter, a point estimate was obtained via the median of the sample formed by the observations of
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d0 d1 g1 a0 a1 boff
1 τ2

α0
τ2

α1
τ2

β1

10−4 10−4 10−4 0.006 0.831 0.163 0.0001 0.0007 0.0107

(0.000,0.012) (0.815,0.848) (0.152,0.174) (0.0000,0.0002) (0.0003,0.0018) (0.0052,0.0267)

10−3 10−4 10−4 0.007 0.831 0.163 0.0002 0.0007 0.0106

(-0.002,0.016) (0.815,0.848) (0.152,0.173) (0.0001,0.0006) (0.0003,0.0018) (0.0052,0.0263)

10−4 10−3 10−4 0.006 0.831 0.163 0.0001 0.0009 0.0107

(0.000,0.012) (0.813,0.850) (0.152,0.174) (0.0000,0.0002) (0.0004,0.0022) (0.0052,0.0268)

10−4 10−4 10−3 0.006 0.831 0.163 0.0001 0.0007 0.0109

(0.000,0.012) (0.815,0.848) (0.152,0.174) (0.0000,0.0002) (0.0003,0.0018) (0.0053,0.0273)

10−5 10−4 10−4 0.006 0.831 0.163 0.0001 0.0007 0.0106

(0.000,0.012) (0.815,0.848) (0.152,0.175) (0.0000,0.0002) (0.0003,0.0018) (0.0052,0.0270)

10−4 10−5 10−4 0.006 0.831 0.163 0.0001 0.0007 0.0106

(0.000,0.012) (0.815,0.848) (0.152,0.174) (0.0000,0.0002) (0.0003,0.0018) (0.0052,0.0266)

10−4 10−4 10−5 0.006 0.831 0.163 0.0001 0.0007 0.0107

(0.000,0.012) (0.815,0.848) (0.153,0.174) (0.0000,0.0002) (0.0003,0.0018) (0.0052,0.0266)

Table 5.1: Results of the sensitivity analysis for the diffuse phase.

d0 d1 g1 a0 a1 boff
1 τ2

α0
τ2

α1
τ2

β1

10−4 10−4 10−4 0.030 0.818 0.094 0.0004 0.0019 0.0510

(0.021,0.037) (0.799,0.835) (0.089,0.105) (0.0002,0.0007) (0.0011,0.0034) (0.0297,0.1003)

10−3 10−4 10−4 0.030 0.818 0.094 0.0005 0.0019 0.0506

(0.020,0.037) (0.799,0.835) (0.088,0.105) (0.0003,0.0008) (0.0011,0.0034) (0.0298,0.0994)

10−4 10−3 10−4 0.030 0.817 0.093 0.0004 0.0020 0.0500

(0.022,0.037) (0.798,0.834) (0.087,0.103) (0.0002,0.0007) (0.0012,0.0036) (0.0293,0.0960)

10−4 10−4 10−3 0.029 0.817 0.092 0.0004 0.0019 0.0491

(0.023,0.036) (0.801,0.832) (0.087,0.100) (0.0002,0.0007) (0.0011,0.0034) (0.0292,0.0911)

10−4 10−4 10−5 0.030 0.818 0.094 0.0004 0.0019 0.0509

(0.021,0.037) (0.799,0.835) (0.088,0.105) (0.0002,0.0007) (0.0011,0.0034) (0.0297,0.0992)

10−4 10−5 10−4 0.030 0.817 0.093 0.0004 0.0019 0.0500

(0.022,0.037) (0.799,0.833) (0.087,0.103) (0.0002,0.0007) (0.0011,0.0034) (0.0294,0.0951)

10−5 10−4 10−4 0.030 0.818 0.094 0.0004 0.0019 0.0509

(0.021,0.037) (0.799,0.834) (0.088,0.103) (0.0002,0.0007) (0.0011,0.0034) (0.0298,0.0981)

Table 5.2: Results of the sensitivity analysis for the early S phase.

the converged parallel chains. Additionally, a 95% credible interval was calculated for each pa-

rameter. Approximate convergence of the parallel chains was diagnosed if the upper confidence

limit of the potential scale reduction factor (Gelman and Rubin, 1992; Brooks and Gelman, 1998;

Plummer et al., 2006) was smaller than or equal to 1.1. The number of burn-in iterations was

determined by visual inspection of the sampling paths.

In order to check the sensitivity to the prior assumptions, i.e., to the choice of the parameter

values of the hyper priors, we ran the mixed-effects model with different parameter values for

the hyper priors. The parameter estimates together with 95% credible intervals can be found in

Tables 5.1-5.4. We found that the point estimates stay the same for the different parameters of

the hyper priors. Changes take place at most at the third decimal place of the estimates. The

width of the credible intervals varies slightly. Overall, we found that the parameter estimates are

not very sensitive to the choice of the parameter values of the hyper priors.
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d0 d1 d2 g1 g2 a0 a1 a2 boff
1 boff

2

10−4 10−4 10−4 10−4 10−4 0.013 0.309 0.558 0.217 0.043

(0.001,0.025) (0.262,0.352) (0.512,0.602) (0.183,0.273) (0.038,0.048)

10−3 10−4 10−4 10−4 10−4 0.013 0.309 0.557 0.214 0.043

(-0.001,0.027) (0.260,0.353) (0.511,0.602) (0.180,0.263) (0.038,0.049)

10−4 10−3 10−4 10−4 10−4 0.013 0.308 0.557 0.215 0.044

(0.002,0.024) (0.260,0.353) (0.510,0.602) (0.180,0.267) (0.038,0.048)

10−4 10−4 10−3 10−4 10−4 0.013 0.309 0.558 0.217 0.043

(0.001,0.025) (0.262,0.352) (0.512,0.601) (0.183,0.267) (0.038,0.048)

10−4 10−4 10−4 10−3 10−4 0.013 0.309 0.559 0.217 0.044

(0.001,0.023) (0.260,0.353) (0.511,0.602) (0.180,0.273) (0.038,0.048)

10−4 10−4 10−4 10−4 10−3 0.013 0.309 0.558 0.218 0.044

(0.001,0.025) (0.262,0.352) (0.512,0.602) (0.182,0.270) (0.038,0.048)

10−5 10−4 10−4 10−4 10−4 0.013 0.308 0.553 0.212 0.044

(0.004,0.024) (0.259,0.351) (0.508,0.603) (0.176,0.247) (0.038,0.049)

10−4 10−5 10−4 10−4 10−4 0.013 0.309 0.558 0.218 0.043

(0.001,0.025) (0.262,0.351) (0.511,0.601) (0.182,0.282) (0.038,0.048)

10−4 10−4 10−5 10−4 10−4 0.013 0.309 0.558 0.218 0.043

(0.001,0.025) (0.262,0.352) (0.512,0.601) (0.182,0.282) (0.039,0.048)

10−4 10−4 10−4 10−5 10−4 0.013 0.309 0.558 0.218 0.044

(0.001,0.025) (0.262,0.352) (0.511,0.601) (0.182,0.275) (0.039,0.049)

10−4 10−4 10−4 10−4 10−5 0.013 0.309 0.558 0.217 0.043

(0.001,0.025) (0.262,0.352) (0.512,0.601) (0.183,0.265) (0.038,0.048)

Table 5.3: Results of the sensitivity analysis for the late S phase - fixed parameters.

To evaluate the model fit, we compared the mixed-effects model – which was fitted to the

whole of the data resulting from the FRAP experiments – to

1. a model without random effects fitted to the whole of the data,

2. a model without random effects fitted to the individual recovery curves,

3. a model without random effects fitted to the averaged recovery curves (all recovery curves

of the same phase were averaged).

For each of these three scenarios, we fitted the following fixed-effects model to the data of

each cell cycle phase:

C(ti) = 1−
K

∑
k=0

ak exp(−boff
k ti)+ εi, εi ∼ N(0,σ2).

As for the mixed-effects model, we ran 10 parallel chains for each modeling alternative.

Again, we calculated the medians and the 95% credible intervals of the samples formed by the

observations of the converged chains (upper confidence limit of the potential scale reduction

factor ≤ 1.1). The number of burn-in iterations was again determined by visual inspection of the

sampling paths.

The Deviance Information Criterion (DIC) served as a measure of the model fit for the com-

parison of the mixed-effects model to the fixed-effects models 1 and 2. It is a suitable information

criterion for model selection in hierarchical models, where parameters may outnumber obser-

vations and measures like the Akaikes information criterion or Bayesian information criterion

cannot be directly applied (Spiegelhalter et al., 2002). The DIC itself is not an absolute measure,
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d0 d1 d2 g1 g2 τ2
α0

τ2
α1

τ2
α2

τ2
β1

τ2
β2

10−4 10−4 10−4 10−4 10−4 0.0003 0.0051 0.0055 0.0669 0.0443

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0144) (0.0292,0.1921) (0.0210,0.1140)

10−3 10−4 10−4 10−4 10−4 0.0005 0.0051 0.0054 0.0671 0.0462

(0.0002,0.0013) (0.0023,0.0135) (0.0024,0.0143) (0.0296,0.1861) (0.0217,0.1197)

10−4 10−3 10−4 10−4 10−4 0.0003 0.0050 0.0056 0.0663 0.0450

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0147) (0.0290,0.1891) (0.0212,0.1181)

10−4 10−4 10−3 10−4 10−4 0.0003 0.0051 0.0055 0.0666 0.0445

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0144) (0.0292,0.1860) (0.0210,0.1144)

10−4 10−4 10−4 10−3 10−4 0.0003 0.0053 0.0055 0.0675 0.0444

(0.0002,0.0009) (0.0024,0.0139) (0.0025,0.0143) (0.0295,0.1922) (0.0211,0.1139)

10−4 10−4 10−4 10−4 10−3 0.0003 0.0051 0.0055 0.0671 0.0445

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0144) (0.0294,0.1895) (0.0211,0.1145)

10−5 10−4 10−4 10−4 10−4 0.0003 0.0049 0.0054 0.0634 0.0449

(0.0001,0.0008) (0.0022,0.0129) (0.0024,0.0144) (0.0281,0.1724) (0.0211,0.1156)

10−4 10−5 10−4 10−4 10−4 0.0003 0.0051 0.0055 0.0680 0.0443

(0.0002,0.0009) (0.0023,0.0135) (0.0025,0.0143) (0.0293,0.2018) (0.0210,0.1139)

10−4 10−4 10−5 10−4 10−4 0.0003 0.0051 0.0055 0.0675 0.0443

(0.0002,0.0009) (0.0023,0.0135) (0.0025,0.0144) (0.0294,0.2016) (0.0210,0.1138)

10−4 10−4 10−4 10−5 10−4 0.0003 0.0050 0.0055 0.0675 0.0445

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0143) (0.0293,0.1933) (0.0211,0.1145)

10−4 10−4 10−4 10−4 10−4 0.0003 0.0051 0.0055 0.0663 0.0441

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0144) (0.0290,0.1836) (0.0209,0.1134)

Table 5.4: Results of the sensitivity analysis for the late S phase - variances.

that is, the absolute values cannot be interpreted, but can be compared relatively between mod-

els. We did not compare the mixed-effects model and fixed-effects model 3 on the basis of the

DIC, because these two models were fit to different kinds of data. The fixed-effects model 3 in

contrast to the mixed-effects model was not fitted to the whole of all recovery curves but to the

averaged recovery curve per phase.

The DIC can be calculated by the deviance of the medians D(θmed) plus two times the effec-

tive number of parameters pD (Spiegelhalter et al., 2002):

DIC = D(θmed)+2pD.

The deviance is a measure of the fit of a model and is calculated by

D(θ) =−2l(θ),

where l(θ) is the log-likelihood. The effective number of parameters is a measure of the com-

plexity of the model. It is the median deviance minus the deviance of the medians and is calcu-

lated by

pD = median(D(θ))−D(θmed).

The effective number of parameters is high for models with a high effective model complexity.

When comparing two models on the basis of their DIC, the model with the lower DIC is to be

favored.

All software was written in the programming languages R and C.
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Figure 5.3: Normalized data together with estimated joint recovery curve. The estimated joint

recovery curves for all cell nuclei using the posterior medians of the MCMC-samples of the fixed

effects are shown together with the normalized data for all three reviewed cell cycle phases – (A)

diffuse, (B) early S, (C) late S phase.

5.4 Results

5.4.1 Mixed-effects model

By using the Bayesian regression model with mixed-effect priors we gain common parameter

estimates for all cell nuclei through the estimation of the fixed effects, as well as curve specific

parameter estimates through the estimation of the random effects, and estimates for the variances

of the random effects.

In Figure 5.3, for each phase (diffuse, early S, and late S phase), the estimated joint recovery

curve for all cell nuclei is shown together with the normalized data. The joint recovery curve is

computed using the posterior medians of the MCMC-samples of the fixed effects.

The random effects take into account the variability resulting from the joint analysis of data

of multiple cell nuclei, which is not covered by the fixed effects. In Figure 5.4, the estimated

joint recovery curve for all cell nuclei (black, solid line) is shown together with the cell nuclei-

specific curves (colored, dashed lines), which are computed using the posterior medians of the

MCMC-samples of the curve-specific random effects.

The posterior medians of the fixed parameters ak and boff
k together with 95%-credible inter-

vals can be found in Table 5.5. Density plots of the posterior distributions of the fixed parameters

for the diffuse phase can be found in Figure 5.5. The density plots for the remaining cell cycle

phases can be found in the Appendix of Feilke, Schneider, and Schmid (2015). All parameters

could be estimated with small variance. For the diffuse phase, the posterior median of the fixed

effect of the off-rate is denoted by boff
1 and equals 0.163 (0.152,0.174). For the early S phase,

boff
1 equals 0.094 (0.089,0.105). In both cases, we assumed that there is only one MC in addition

to the immobile fraction (K = 1), based on Schneider et al. (2013). In the presence of binding,

the off-rate is the rate of the unbinding reaction where a protein is unsoldered from its binding

site (Sprague and McNally, 2005), and its inverse is the residence time, i.e., the time a protein

remains at a binding site (McNally, 2008). In early S phase, binding of Dnmt1 to immobilized
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Figure 5.4: Estimated joint recovery curve together with cell nuclei-specific recovery curves.

The cell nuclei-specific recovery curves using the posterior medians of the MCMC-samples of

the random effects for all three reviewed cell cycle phases – (A) diffuse, (B) early S, (C) late S

phase – are shown together with the estimated joint recovery curve.

phase number of a0 a1 a2 boff
1 boff

2

recovery curves

diffuse 12 0.006 0.831 0.163

(0.000,0.012) (0.815,0.848) (0.152,0.174)

early S 26 0.030 0.818 0.094

(0.021,0.037) (0.799,0.835) (0.089,0.105)

late S 11 0.013 0.309 0.558 0.217 0.043

(0.001,0.025) (0.262,0.352) (0.512,0.602) (0.183,0.273) (0.038,0.048)

Table 5.5: Mixed-effects model: Fixed effects - median plus 95% credible interval.

PCNA trimetric rings at replication forks takes place (Schneider et al., 2013; Schermelleh et al.,

2007; Sporbert et al., 2005). The median residence time of Dnmt1 at this binding site is about

11 seconds. In the diffuse phase, the off-rate can not be interpreted in the same way, because in

this phase, there is no specific binding partner present and the additional MC is probably due to

anomalous diffusion behavior (Schneider et al., 2013).

For the late S phase, we assumed that there are two distinctive MCs in addition to the immo-

bile fraction (K = 2) (Schneider et al., 2013). The posterior medians of the fixed effect of the

off-rates are boff
1 = 0.217 (0.183,0.273) and boff

2 = 0.043 (0.038,0.048), which corresponds to

median residence times of about 5 seconds and about 23 seconds, respectively. This is in com-

pliance with the finding that the protein Dnmt1 is involved in two distinctive interactions in the

late S phase (Schneider et al., 2013).

As it is of essential interest how much variance is captured by the random effects, point

estimates for the variances of the random effects plus 95%-credible intervals were calculated and

can be found in Table 5.6. Density plots of the posterior distributions of the variances for the

diffuse phase can be found in Figure 5.6 and the density plots of the variances for the remaining

cell cycle phases can be found in the Appendix of Feilke, Schneider, and Schmid (2015).

Each of the credible intervals in Tables 5.5 and 5.6 embodies the true parameter with a prob-

ability of 95%. To give an impression about the variation of the off-rates in the population of cell

nuclei, for each cell cycle phase, we calculated the minimum and the maximum of the products
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Figure 5.5: Mixed-effects model: Density plots of the posterior distributions of the fixed param-

eters for the diffuse phase.
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Figure 5.6: Mixed-effects model: Density plots of the posterior distributions of the variances for

the diffuse phase.
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phase number of τ2
α0

τ2
α1

τ2
α2

τ2
β1

τ2
β2

recovery curves

diffuse 12 0.0001 0.0007 0.0107

(0.0000,0.0002) (0.0003,0.0018) (0.0052,0.0267)

early S 26 0.0004 0.0019 0.0510

(0.0002,0.0007) (0.0011,0.0034) (0.0297,0.1003)

late S 11 0.0003 0.0051 0.0055 0.0669 0.0443

(0.0002,0.0009) (0.0023,0.0134) (0.0025,0.0144) (0.0292,0.1921) (0.0210,0.1140)

Table 5.6: Mixed-effects model: Variances of random effects - median plus 95% credible inter-

val.

phase number of a0 a1 a2 boff
1 boff

2

recovery curves

diffuse 12 0.005 0.829 0.159

(0.005,0.006) (0.824,0.833) (0.158,0.161)

early S 26 0.032 0.809 0.086

(0.031,0.033) (0.805,0.813) (0.085,0.087)

late S 11 0.015 0.316 0.546 0.202 0.042

(0.013,0.018) (0.291,0.343) (0.516,0.573) (0.179,0.231) (0.040,0.044)

Table 5.7: Fixed-effects model 1 (fitted to the whole of the data): Fixed effects - median plus

95% credible interval.

of the median of the fixed effect of the off-rate and the medians of the nuclei-specific off-rates

to get approximate limits in which the off-rates of the different cell nuclei lie. According to that,

the off-rate for the diffuse phase varies approximately between 0.141 and 0.195 over the differ-

ent cell nuclei, whereas for the early S phase, it lies approximately between 0.056 and 0.143

(residence time: about 7 - 18 seconds). For the late S phase, boff
1 varies between 0.129 and 0.293

(residence time: about 3 - 8 seconds), and boff
2 varies between 0.026 and 0.059 (residence time:

about 17 - 38 seconds). Thus, we do not only get a joint point estimate of the off-rate for the

population of the cell nuclei for each cell cycle phase, but we also gain information about the

variation of the off-rate in the population of nuclei.

5.4.2 Comparison between the mixed-effects model and the fixed-effects

models

Table 5.7 provides the posterior medians of the fixed effects ak and boff
k together with 95%-

credible intervals for fixed-effects model 1, where regression model (5.6) was fitted to the whole

of the data resulting from the FRAP experiments. Table 5.8 provides the posterior medians,

minima, and maxima of the fixed effects ak and boff
k for fixed-effects model 2, where regression

model (5.6) was fitted to the individual recovery curves of all cell nuclei. In Table 5.9, the

posterior medians of the fixed effects ak and boff
k together with 95%-credible intervals for fixed-

effects model 3, where regression model (5.6) was fitted to the averaged recovery curves, are

shown. All three tables provide estimates for each cell cycle phase under review. Density plots

of the posterior distributions of the inferred parameters for the diffuse phase for the fixed-effects

models 1-3 can be found in Figures 5.7-5.10. The density plots for the remaining cell cycle

phases can be found in the Appendix of Feilke, Schneider, and Schmid (2015). For fixed-effects
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phase number of a0 a1 a2 boff
1 boff

2

recovery curves

diffuse 12 0.004 0.820 0.153

[-0.009,0.020] [0.793,0.889] [0.139,0.194]

early S 26 0.034 0.824 0.087

[-0.003,0.063] [0.727,0.892] [0.056,0.144]

late S 11 0.014 0.293 0.503 0.212 0.043

[-0.048,0.043] [0.220,0.450] [0.455,0.686] [0.102,0.333] [0.022,0.060]

Table 5.8: Fixed-effects model 2 (fitted to the individual recovery curves): Fixed effects - median

[min,max].

phase number of a0 a1 a2 boff
1 boff

2

recovery curves

diffuse 1 0.005 0.826 0.158

(0.001,0.009) (0.794,0.861) (0.149,0.169)

early S 1 0.032 0.806 0.086

(0.027,0.037) (0.783,0.832) (0.081,0.090)

late S 1 0.015 0.329 0.533 0.190 0.041

(0.002,0.024) (0.230,0.468) (0.383,0.636) (0.120,0.345) (0.031,0.049)

Table 5.9: Fixed-effects model 3 (fitted to the averaged recovery curves): Fixed effects - median

plus 95% credible interval.

model 2, exemplary density plots of the inferred parameters are shown for two cell nuclei of

each cell cycle phase. In Figure 5.11, the point estimates and the 95%-credible intervals for the

mixed-effects model and fixed-effects models 1 and 3 are displayed.

Table 5.10 contains the DIC, the effective number of parameters (pD) and the deviance of the

medians (D(θmed)) for the proposed mixed-effects model and the fixed-effects models 1 and 2

introduced in Section 5.3.4.

Regarding the point estimates in Table 5.7, one sees that the point estimates for the fixed

effects provided by fixed-effects model 1 differ from the estimates provided by the mixed-effects

model (Table 5.5). Figure 5.11 and the comparison of Table 5.7 with Table 5.5 reveal that the

95%-credible intervals for the fixed parameters resulting from fitting fixed-effects model 1 to the

whole of the data are considerably smaller than the credible intervals for the fixed parameters

resulting from fitting the proposed mixed-effects model to the whole of the data. Therefore, it

could be erroneously concluded that the estimation of the fixed parameters is more exact by using

the fixed-effects model 1 than by using the proposed mixed-effects model. This is not the case, as

for the fixed-effects model 1 we assume many independent observations and, hence, ignore the

structure of the data, i.e., the observations come from different cells and are not all independent.

Due to this assumption, the variance of the fixed effects is underestimated.

For all three cell cycle phases (diffuse, early S, and late S phase), when comparing the DIC

of the mixed-effects model to the DIC of fixed-effects model 1, it is obvious that the DIC is

considerably lower for the mixed-effects model. The clearest result can be found for the late S

phase, where the DIC of the mixed-effects model is almost two times lower than the DIC of fixed-

effects model 1. This means, that the proposed mixed-effects model is superior to fixed-effects

model 1 for all three cell cycle phases.

Regarding the point estimates resulting from fitting fixed-effects model 2 to the individual

recovery curves (Table 5.8), we observe that most of them differ from the point estimates result-
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Figure 5.7: Fixed-effects model 1: Density plots of the posterior distributions of the parameters

for the diffuse phase.
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Figure 5.8: Fixed-effects model 2: Density plots of the posterior distributions of the parameters

for the diffuse phase (curve 4).
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Figure 5.9: Fixed-effects model 2: Density plots of the posterior distributions of the parameters

for the diffuse phase (curve 11).



46 5. Bayesian mixed-effects model for the analysis of a series of FRAP images

−0.02 0.00 0.02

0
1
0

2
0

3
0

4
0

5
0

a0

d
e
n
s
it
y

0.75 0.80 0.85 0.90
0

5
1
0

1
5

2
0

a1

d
e
n
s
it
y

0.12 0.14 0.16 0.18 0.20

0
1
0

2
0

3
0

4
0

b1
off

d
e
n
s
it
y

0.0020 0.0025 0.0030 0.0035

0
5
0
0

1
5
0
0

σ
2

d
e
n
s
it
y

Figure 5.10: Fixed-effects model 3: Density plots of the posterior distributions of the parameters

for the diffuse phase.
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Figure 5.11: Point estimates and 95%-credible intervals for the fixed effects of the mixed-effects

model and fixed-effects models 1 and 3. The posterior medians of the fixed effects together with

95%-credible intervals are shown for the proposed mixed-effects model and fixed-effects models

1 and 3 for all three reviewed cell cycle phases.
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Mixed-effects model Fixed-effects model 1 Fixed-effects model 2

D(θmed) pD DIC D(θmed) pD DIC D(θmed) pD DIC

diffuse -53393.32 99.66 -53193.01 -45393.75 4.19 -45385.38 -55231.80 1084.99 -53061.82

early S -115018.28 114.67 -114788.94 -73488.90 2.59 -73483.71 -119243.50 1212.22 -116819.10

late S -60694.44 278.22 -60138.01 -34218.33 5.43 -34207.48 -61334.80 2515.63 -56303.55

Table 5.10: Deviance of the medians (D(θmed)), effective number of parameters (pD) and DIC

of the mixed-effects model and fixed-effects models 1 and 2.

ing from fitting the proposed mixed-effects model to the whole of the data (Table 5.5). When

comparing the DIC of the mixed-effects model to the DIC of fixed-effects model 2, it can be seen

that the DIC of the mixed-effects model is lower than the DIC of fixed-effects model 2 for the

diffuse and late S phase. Only for the early S phase, the DIC of fixed-effects model 2 is lower

than the DIC of the mixed-effects model. But overall, the DIC is approximately of the same

magnitude for both models.

Figure 5.11 reveals that most of the credible intervals for the fixed effects ak and boff
k resulting

from fitting fixed-effects model 3 to the averaged recovery curves for the fixed effects ak and boff
k

(Table 5.9) are broader or of approximately the same size as the corresponding credible intervals

resulting from the proposed mixed-effects model (Table 5.5). Only for the fixed effect a0, it is

converse. This is due to the difference in the number of data points between the two models.

For fixed-effects model 3, we have only one recovery curve per cell cycle phase because of the

averaging of the data. Therefore, the estimation of the fixed effects is more exact when using

the proposed mixed-effects model. Moreover, we are of the opinion that averaging the recovery

curves induces a loss of information because not all available data is used and the variability

contained in the data is not appropriately quantified, which is why we favor the proposed mixed-

effects model over fixed-effects model 3.

Overall, we conclude that the mixed-effects model is superior to the fixed-effects models 1-3,

because the DIC of the mixed-effects model is lower in almost all considered scenarios. More-

over, it adequately reflects the heterogeneity of the data caused by cell-to-cell variability through

the estimation of the variances of the random effects. The heterogeneity of the data is also taken

into account by fixed-effects model 2, which gives point estimates of the fixed effects for each

curve per cell cycle phase. However, estimating the variance through a mixed-effects model is

the more appropriate and comfortable way to quantify the cell-to-cell variability. Moreover, the

proposed mixed-effects model is more robust than the fixed-effects models 1-3 because it uses

more information.

5.5 Discussion

Our objective was to develop an approach with which data from FRAP experiments on various

similar cell nuclei can be analyzed in one model, taking into account the variability contained in

the data. The variability can only be assessed by considering data of several cell nuclei in a joint

model.

Using the proposed Bayesian nonlinear regression model with mixed-effect priors, we are

able to do a joint analysis of the recovery curves of all available cell nuclei per cell cycle phase.
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So all available data resulting from different FRAP experiments can be used for the estimation of

the parameters of interest and no data is ignored. Hence, a distinct benefit of the proposed model

is that we fit only one model to the whole of the data arising from all available cell nuclei, which

is more comfortable than fitting one model per cell nucleus and analysing the results afterwards.

Curve-specific effects are taken into account by the use of random effects. These are, how-

ever, shrunk towards zero, so that most variability in the data is captured by the fixed effects. The

variability of the parameters of interest can however be quantified through the estimation of the

variance of the random effects. Hence, the proposed method allows not only to gain estimates

of the parameters of interest, that is, the binding rates, but it also allows to gain insight into the

variability between cells. That is, the proposed method allows to decompose the total variability

in the data into the variability between cells and the remaining variability for example due to

noise. The Bayesian technique gives complete posterior distributions for the binding rates in

each phase, allowing to compute credible intervals for these binding rates, and, hence, showing

the precision of the binding rate point estimates. The mixed-effect approach allows to quantify

the variability between cells, which, so far, has not been studied. For example, in our data we

see a similar variability between cells in the off-rates in early S phase and late S phase, but the

variability in the concentration of bound molecules at equilibrium is higher in the late S phase

compared to the early S phase.

Algorithms for nonlinear model fitting have consistency problems by specifying starting val-

ues and have convergence issues. Therefore, the model is typically fitted several times using a

grid of starting values or random starting values, and the best model is determined using an infor-

mation criterion like AIC or BIC. This results in a high computational burden. Using a Bayesian

approach, the algorithm is guaranteed to converge and the resulting parameter estimates are not

dependent on any starting values, which reduces computation time. Moreover, the regression

model is very flexible. Mixed-effect priors on the nonlinear parameters can be incorporated eas-

ily into the nonlinear regression, which is a novel approach. In addition, the proposed technique

allows to analyze all data jointly. For our data, the whole analysis of all data took 42 minutes

(diffuse phase), 127 minutes (early S phase), and 138 minutes (late S phase), respectively.

In our approach, the number of MCs for the molecule and the cell cycle phase is a fixed pa-

rameter that was adopted from a previous study using a refined compartmental approach (Schnei-

der et al., 2013). To make sure that the number of MCs is still valid with the mixed-effects model,

we additionally fitted the mixed-effects model with two MCs for the cell cycle phases diffuse and

early S, and the mixed-effects model with one MC for the cell cycle phase late S. For the cell

cycle phases diffuse and early S, when fitting the model with two MCs, convergence and re-

dundancy issues arise, which give a hint that the model with two MCs is not the appropriate

one. Redundancy issues may for example occur when the exponential rates are too similar. In

Reich (1981), a redundancy measure has been used to show that parameters in a sum of two

exponentials model are highly redundant if the exponential rates differ by less than a factor of

five (Sommer, 2013). The mixed-effects model with one MC for the cell cycle phase late S can

be fitted without convergence problems. The resulting DIC is -47057.77 (pD= 63.26, D(θmed)=
-47184.30), which is bigger than the DIC for the mixed-effects model with two MCs (DIC= -

60138.01). Hence, we conclude that according to the DIC, the model with two MCs is more

suitable for the data of the late S phase than the model with one MC. The number of MCs is
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moreover biologically sound, as desribed in Schneider et al. (2013).

We can conclude, that the DIC of the mixed-effects model is lower or in approximately the

same range as the DIC of all considered models without random effects for all three cell cycle

phases. With the mixed-effects model, we additionally gain precious insight into the variability

in the population of cell nuclei in the different cell cycle phases through the estimation of random

effects and their variances.

With the proposed mixed-effects model, estimates of the off-rates of the interactions the

molecules of interest are involved in, and of the variances of the random effects are attained.

Therefore, the model is useful for the analysis of data from FRAP experiments on various similar

cell nuclei. With that model, it is no longer necessary to analyze each recovery curve belonging

to an experiment on one cell nucleus separately and summarize the results afterwards, or to pool

and average the data of experiments on multiple similar cell nuclei to be able to analyze it. The

data of FRAP experiments on different cell nuclei can rather be analyzed simultaneously by one

single model.

The main goal of this study is to show that the proposed technique can be used for the joint

analysis of the data of many cells at once, furthermore providing insight into the variation of the

off-rates in the population of cell nuclei. This is a novel approach in the field of FRAP analysis.

Although we use a simplified kinetic model here, the approach can easily be adapted to other

FRAP experiments and any kinetic model for such FRAP experiments.



Chapter 6

Analysis of FRAP images at the pixel level
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Abstract

To date, there is still a lack of methodology for the statistical analysis of Fluorescence recovery

after photobleaching data. With the imaging technique FRAP, the binding behavior of molecules

inside organisms, cells or cellular sub-compartments can be studied in vivo. But today, there is

still no method for the analysis of FRAP images at the pixel level.

In this chapter, we propose a Bayesian nonlinear model to study the binding behavior of

molecules in nuclei of living cells at the pixel level. This model is advantageous in cases where

the spatial structure of the nuclei is of interest, that is, if the binding behavior of molecules

should not be studied only for some regions of interest, but for each pixel of an image. With such

a model, for example, binding sites of molecules in a nucleus could be located.

We present the setup of a simulation study for the evaluation of the model. Program code for

the fit of the simulated data was implemented in the programming languages R and C. In order to

reduce the runtime, part of the C code was parallelized. However, 1000 iterations of the MCMC

algorithm still took approximately five days using 9 cores on a linux server with 64 cores and 512

GB memory, which is rather long. The MCMC algorithm was run with up to 15000 iterations

and different settings for the proposal variances of the MH-updates in the MCMC algorithm, but

the results were not satisfactory regarding the convergence of the MCMC algorithm.

As manual tuning of the proposal variances for the MH-updates can not be realized within

a reasonable time frame and an adaptive MCMC algorithm as an alternative can as well not be

realized within a reasonable time frame for our problem, the implementation of an algorithm that

tackles the problem described in this chapter in a reasonable time frame is left for future research.
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6.1 Introduction

To date, FRAP data has been analyzed only for some regions of interest, not for each pixel of an

image. Half nucleus FRAP based on ordinary differential equations was performed for example

in Feilke, Schneider, and Schmid (2015), Schneider et al. (2013), and Phair et al. (2004). In

Beaudouin et al. (2006), the nuclei of the cells of interest were divided into six parts, and an

analysis based on partial differential equations was carried out for each of these parts. In this

chapter, we introduce a model that can be used for a pixelwise analysis of FRAP images. The

model applied to the data of each pixel incorporates information from the neighboring pixels,

i.e., we account for diffusion by replacing the term D f ∇2 f (t) in Equation (5.1) of Chapter 5 by a

term describing the exchange of free unbleached molecules between one pixel and its neighbors.

Moreover, we assume one binding reaction per pixel.

The remainder of this chapter is organized as follows. In Section 6.2, the nonlinear regres-

sion model and the underlying compartment model are introduced. In Section 6.3, the Bayesian

nonlinear model consisting of the data model, the prior model and the hyper prior model, is pre-

sented. This is followed by a description of the parameter estimation procedure. The setup of a

simulation study for the evaluation of the proposed model is described in Section 6.4. Section 6.5

concludes and gives a short discussion.

6.2 Nonlinear recovery model

For the model at the pixel level, we use a two-dimensional neighborhood structure where adjacent

pixels are neighbors. Therefore, each pixel has up to four neighbors. Pixels that are located at

the edge of an image have less than four neighbors, whereas all other pixels have four neighbors.

We assume one single mobility class per pixel. The interactions the molecule of interest is

involved in are described by on- and off-rates denoted by bon∗
1 and boff

1 . As stated in Sprague

et al. (2004), bon∗
1 is actually a pseudo-on-rate. It is the product of the actual on-rate bon

1 and the

concentration of vacant bindings sites. As we assume that the biological system is in equilibrium

before the bleaching and because bleaching does not affect the number of vacant binding sites

(Sprague et al., 2004), it is constant during the entire recovery process. To account for diffusion,

we include the concentrations of free unbleached molecules in the neighboring pixels into the

model. In Figure 6.1, the assumed interaction structure for a pixel with four neighbors is shown.

Free molecules are exchanged between the considered pixel and its neighbors at diffusion rates

bin
2 and bout

2 . Moreover, one interaction the molecule of interest is involved in is illustrated. We

assume that bleached and unbleached molecules have the same properties regarding the binding

and diffusion behavior. Therefore, in Figure 6.1 and in the following, we concentrate only on the

unbleached molecules.

Let f (t) = [Free](t) denote the concentration of the free molecules, a(t) = [Bound](t) the

concentration of the bound molecules, and nk(t) = [Free Neighbor k](t) the concentration of

free molecules in neighbor k at time t. Let K denote the number of neighboring pixels, and

n(t) = ∑
K
k=1 nk(t) the sum of the concentrations of free molecules in the K neighboring pixels at

time t. With the assumption that the exchange of molecules with all neighboring pixels occurs at
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Figure 6.1: Interaction structure for a pixel with four neighbors and one interaction (e.g., binding

reaction).

the same rate for each pixel, the change of the concentration of the free and bound unbleached

molecules for one pixel can be described by the two differential equations

d

dt
f (t) = −bon∗

1 f (t)+boff
1 a(t)+bin

2 n(t)−Kbout
2 f (t), (6.1)

and

d

dt
a(t) = bon∗

1 f (t)−boff
1 a(t). (6.2)

Thus, a compartment model with three compartments is used to describe the change of the

concentration of unbleached molecules in each pixel. A block diagram for this compartment

model is given in Figure 6.2.

As the model introduced here is intended for the analysis of FRAP data sets of GFP-Dnmt1

expressed in mouse C2C12 myoblast cells and in S phase, Dnmt1 is involved in interactions

with relatively small off-rates (see for example Schneider et al., 2013, Feilke, Schneider, and

Schmid, 2015), i.e., the residence time of Dnmt1 at its binding sites is relatively long compared

to the diffusion time, boff
1 is relatively small compared to bin

2 and bout
2 , and the term boff

1 a(t) in

Equation (6.1) can be neglected. Therefore, Equation (6.1) reduces to

d

dt
f (t) = bin

2 n(t)− (bon∗
1 +Kbout

2 ) f (t). (6.3)
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Figure 6.2: Compartment model with three compartments.

With boundary condition f (0)= f0, which means that at time t = 0 (the time of the bleaching)

the concentration of unbleached free molecules equals f0, the solution of this equation is

f (t) = f0 exp(−(bon∗
1 +Kbout

2 )t)+bin
2 n(t)∗exp(−(bon∗

1 +Kbout
2 )t)

= f0 exp(−(bon∗
1 +Kbout

2 )t)+bin
2

∫ t

0
n(τ)exp(−(bon∗

1 +Kbout
2 )(t − τ))dτ

= f0 exp(−(bon∗
1 +Kbout

2 )t)+bin
2 exp(−(bon∗

1 +Kbout
2 )t)

·
∫ t

0
n(τ)exp((bon∗

1 +Kbout
2 )τ)dτ. (6.4)

We assume that n(τ) is known and approximate the integral in (6.4) by a sum:

f (t) = f0 exp(−(bon∗
1 +Kbout

2 )t)+bin
2 exp(−(bon∗

1 +Kbout
2 )t)

∫ t

0
n(τ)exp((bon∗

1 +Kbout
2 )τ)dτ

≈ f0 exp(−(bon∗
1 +Kbout

2 )t)+bin
2 exp(−(bon∗

1 +Kbout
2 )t)

· t

M

M

∑
m=1

n(τm)exp((bon∗
1 +Kbout

2 )τm), (6.5)

with τ1, ...,τM equally spaced on [0, t].

With boundary condition a(0) = a0, the solution of Equation (6.2) is

a(t) = a0 exp(−boff
1 t)+bon

1 f (t)∗exp(−boff
1 t)

= a0 exp(−boff
1 t)+bon

1

∫ t

0
f (τ)exp(−boff

1 (t − τ))dτ

= a0 exp(−boff
1 t)+bon

1 exp(−boff
1 t)

∫ t

0
f (τ)exp(boff

1 τ)dτ. (6.6)

The solution for f (t) in Equation (6.5) is then inserted into the solution for a(t) in Equa-
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tion (6.6). The integral in Equation (6.6) is then again approximated by a sum:

a(t) = a0 exp(−boff
1 t)+bon

1 exp(−boff
1 t)

∫ t

0
f (τ)exp(boff

1 τ)dτ

≈ a0 exp(−boff
1 t)+bon

1 exp(−boff
1 t)

· t

M

M

∑
m=1

{[ f0 exp(−(bon∗
1 +Kbout

2 )τm)+bin
2 exp(−(bon∗

1 +Kbout
2 )τm)

·
∫ τm

0
n(x)exp((bon∗

1 +Kbout
2 )x)dx]exp(boff

1 τm)}

≈ a0 exp(−boff
1 t)+bon

1 exp(−boff
1 t)

· t

M

M

∑
m=1

{[ f0 exp(−(bon∗
1 +Kbout

2 )τm)+bin
2 exp(−(bon∗

1 +Kbout
2 )τm)

·τm

P

P

∑
p=1

n(xp)exp((bon∗
1 +Kbout

2 )xp)]exp(boff
1 τm)},

with τ1, ...,τM equally spaced on [0, t] and x1, ...,xP equally spaced on [0,τm].

For each pixel, the observed value during FRAP recovery is the total fluorescence intensity

total(t), which is the sum of the concentration of free unbleached molecules f (t) and the con-

centration of bound unbleached molecules a(t) in a pixel at time t plus an error.

For the diffusion rates, we assume that bin
2 = bout

2 , i.e., that the input of molecules from the

neighboring pixels happens at the same rate as the excretion of molecules to the neighboring

pixels. Therefore, only one diffusion rate has to be estimated and

total(t) = f0 exp(−(bon∗
1 +Kbin

2 )t)

+bin
2 exp(−(bon∗

1 +Kbin
2 )t)

t

M

M

∑
m=1

n(τm)exp((bon∗
1 +Kbin

2 )τm)

+a0 exp(−boff
1 t)+bon

1 exp(−boff
1 t)

· t

M

M

∑
m=1

{[ f0 exp(−(bon∗
1 +Kbin

2 )τm)+bin
2 exp(−(bon∗

1 +Kbin
2 )τm)

·τm

P

P

∑
p=1

n(xp)exp((bon∗
1 +Kbin

2 )xp)]exp(boff
1 τm)}.

6.3 Bayesian nonlinear model

We use a hierarchical Bayesian model consisting of the three levels described in Section 4.1 of

Chapter 4.
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6.3.1 Data model

The total observed concentration of unbleached molecules in pixel j, j = 1, ...,J, at time ti,

i = 1, ...,T , is denoted by C j(ti). We assume the model

C j(ti) = total j(ti)+ εi j (6.7)

for each pixel, where εi j ∼ N(0,σ2) are independent Gaussian noise terms and

total j(ti) = f0 j exp(−(bon∗
1 j +K jb

in
2 )ti)

+bin
2 exp(−(bon∗

1 j +K jb
in
2 )ti)

ti

M

M

∑
m=1

n j(τm)exp((bon∗
1 j +K jb

in
2 )τm)

+a0 j exp(−boff
1 j ti)+bon

1 j exp(−boff
1 j ti)

· ti

M

M

∑
m=1

{[ f0 j exp(−(bon∗
1 j +K jb

in
2 )τm)+bin

2 exp(−(bon∗
1 j +K jb

in
2 )τm)

·τm

P

P

∑
p=1

n j(xp)exp((bon∗
1 j +K jb

in
2 )xp)]exp(boff

1 j τm)}.

In this equation, K j is the number of neighboring pixels for pixel j, and n j is the sum of the

concentrations of free molecules in the K neighboring pixels of pixel j.

6.3.2 Prior model

In the model in Equation (6.7), there are some pixel-specific parameters as well as some param-

eters that are common for all pixels.

For the pixel-specific pseudo-on-rate bon∗
1 j and the pixel-specific off-rate boff

1 j , we use log-

normal distributions

bon∗
1 j = exp(θ1 j)∼ LN(µ1,τ

2
1 ), boff

1 j = exp(θ3 j)∼ LN(µ3,τ
2
3 )

as priors to ensure positiveness, since we know that these rates must be nonnegative (Schmid,

Whitcher, Padhani, Taylor, and Yang, 2009). The pixel-specific parameters f0 j and a0 j, which

describe the concentration of free and bound unbleached molecules at the time of the bleaching,

respectively, sum up to total j(t1). As we only observe C j(t1) and not total j(t1), we use this

quantity as a proxy for total j(t1), and use uniform distributions of the form

f0 j ∼U(0,C j(t1)), a0 j ∼U(0,C j(t1))

as priors for the parameters f0 j and a0 j. As f0 j and a0 j are not independent of each other, we

additionally introduce the constraint a0 j + f0 j =C j(t1) for these parameters.
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For the common variance parameter σ2, we use the Inverse Gamma distribution σ2 ∼
IG(a,b), as this distribution is a conjugate prior for the Gaussian distribution with known mean.

For the common diffusion rate bin
2 , we use the log-normal distribution

bin
2 = exp(θ2)∼ LN(µ2,τ

2
2 )

as prior to incorporate the knowledge that this rate must be nonnegative.

6.3.3 Hyper prior model

After the definition of the data model and the prior model, we have to determine the unknown

parameters in the prior model, namely the parameters µ1, µ2, µ3, τ2
1 , τ2

2 , and τ2
3 of the log-

normal distributions in Subsection 6.3.2. We use µ1 =−6, τ2
1 = 6, µ2 =−2, τ2

2 = 2, µ3 =−10,

and τ2
3 = 6, to map our assumption that boff

1 j takes the smallest values in expectation, followed by

bon∗
1 j and bin

2 , since the residence time of Dnmt1 at its binding sites is relatively long compared to

the diffusion time. These values apply to all pixels in an image.

6.3.4 Posterior distribution and MCMC inference

We assume a priori independence of all unknown parameters. The full conditional distributions

of the parameters of the nonlinear model can be derived from the posterior distribution and

are given in the Appendix (Part B). To obtain samples from these distributions, a Markov chain

Monte Carlo algorithm with Gibbs- and MH-update steps is used. In each iteration of the MCMC

algorithm, we update the parameter values for the common as well as for the pixel-specific

parameters. The parameter σ2 is drawn in a Gamma Gibbs step, because the full conditional

distribution of this parameter is an Inverse Gamma distribution. The remaining parameters are

drawn in MH-steps with random walk proposals, because their full conditional distributions are

no standard distributions. Similar to Sommer et al. (2014), we do a parallel update of the pixel-

specific parameters following a checkerboard pattern, using conditional independence from the

remaining pixels given all neighboring pixels. By the checkerboard pattern, the pixels in an

image are divided into “even” and “odd” pixels. Therefore, the update of the pixel-specific

parameters alternates between the “even” and the “odd” pixels. The update scheme used for the

update of all – common and pixel-specific – parameters is given in Figure 6.3.

The sum of the concentrations of free molecules is latent, and hence can not be observed

in a FRAP experiment. As it is, however, necessary for the recovery model in Equation (6.7),

it has to be calculated in each iteration of the update scheme described above. Therefore, the

concentration of free molecules is calculated based on the current values of all parameters for all

pixels in an image in each iteration. For the first iteration, starting values for the concentration

of free molecules in all pixels have to be calculated. The procedure for the calculation of the

starting values is described in the following.
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1. Initialization:

• Set q = 0.

• Set starting values for the unknown parameters:

b
on(0)
1 j , b

off(0)
1 j , b

in(0)
2 , f

(0)
0 j , a

(0)
0 j , σ2(0).

• Compute starting values for the concentration of free molecules in all pixels: n j(ti)
(0).

2. Set q = q+1.

3. Update the common parameters bin
2 (MH-step) and σ2 (Gibbs-step) ⇒ b

in(q)
2 , σ2(q).

4. Update of the “even” pixels:

• Update the pixel-specific parameters (MH-steps)

⇒ b
on(q)
1 j , b

off(q)
1 j , b

in(q)
2 , f

(q)
0 j , a

(q)
0 j , σ2(q) for all “even” pixels.

• Compute the concentration of free molecules with the help of the current values of

all unknown parameters

⇒ n j(ti)
(q) for all “even” pixels.

5. Update of the “odd” pixels:

• Update the pixel-specific parameters (MH-steps)

⇒ b
on(q)
1 j , b

off(q)
1 j , b

in(q)
2 , f

(q)
0 j , a

(q)
0 j , σ2(q) for all “odd” pixels.

• Compute the concentration of free molecules with the help of the current values of

all unknown parameters

⇒ n j(ti)
(q) for all “odd” pixels.

6. Iterate steps 2-5 until q = Q, the number of iterations.

Figure 6.3: Update scheme.
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Figure 6.4: Compartment model with two compartments.

Starting values for the concentration of free molecules in all pixels

In the model we use for the computation of starting values for the concentration of free

molecules in all pixels, we assume one MC per pixel and disregard the concentrations of free

molecules in the neighboring pixels. A compartment model with two compartments is used to

describe the change of the concentration of unbleached molecules in each pixel in an image. A

block diagram for this compartment model is given in Figure 6.4.

We use the notation introduced in Section 6.2. The change of the concentration of the free

and bound molecules based on the compartmental model in Figure 6.4 can be described by the

two differential equations

d

dt
f (t) = −bon∗ f (t)+boffa(t)+D f ∇2 f (t), (6.8)

with ∇2 the Laplacian operator and D f the diffusion coefficient for free proteins, and

d

dt
a(t) = bon∗ f (t)−boffa(t). (6.9)

These differential equations are special cases of the differential Equations (5.1) and (5.2) in

Chapter 5 for K = 0. As described in Chapter 5, we assume that f (t) = feq, a constant, and

therefore, Equation (6.9) can be written as

d

dt
a(t) = bon∗ feq −boffa(t) (6.10)

and Equation (6.8) can be ignored. With boundary condition a(0) = a0, the solution of

Equation (6.10) is

a(t) =
bon∗ feq

boff
−
(

bon∗ feq

boff
−a0

)

exp(−bofft), (6.11)
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similar to Equation (5.4) in Chapter 5. We assume again that the system is in equilibrium

before the bleaching, i.e., before the bleaching we have d
dt

f (t) = d
dt

a(t) = 0 and constant steady-

state intensities feq and aeq. Together with Equation (6.9) we then get

aeq =
bon∗ feq

boff
,

and can therefore reduce Equation (6.11) to

a(t) = aeq − (aeq −a0)exp(−bofft).

For the sum of the concentration of free unbleached molecules and the concentration of bound

unbleached molecules in a pixel at time t applies

total(t) = f (t)+a(t) = feq +aeq − (aeq −a0)exp(−bofft).

With p0 = feq +aeq and p1 = aeq −a0, this yields

total(t) = p0 − p1 exp(−bofft). (6.12)

To assure that we get only nonnegative values for the fit of the recovery curve, we write p0 in

Equation (6.12) as p1 + δ with δ = a0 + feq and fix δ ≥ 0. We use the following model, which

can be derived from the nonlinear recovery model in Equation (6.12):

C j(ti) = total j(ti)+ εi j

= p1 j +δ j − p1 j exp(−boff
j ti)+ εi j.

We fitted this model with a nonlinear least squares method. A Levenberg-Marquardt algo-

rithm implemented in the R function nls.lm (package minpack.lm (Elzhov et al., 2013)) was

used. The fit of all pixels of an image was done in parallel. The R package multicore (Urbanek,

2014) was used for the parallelization.

6.4 Simulation

We simulated a FRAP image that is similar to a FRAP image showing the fluorescence recovery

of Dnmt1. The simulated image consists of 18 pixels. We simulated half-nucleus FRAP (as

opposed to circle FRAP or strip FRAP (Mueller et al., 2008; Sprague et al., 2004)), so that half

of the pixels lie in the bleached area of the cell nucleus, and the other half lies in the area of the

nucleus that has not been bleached. For the diffusion rate, which is common for all pixels, we

assume bin
2 = 0.1. We assume that the pixel-specific off-rate boff

1 j is smaller than the pixel-specific

pseudo-on-rate bon∗
1 j for all pixels. As the off-rate and the pseudo-on-rate can vary between

the pixels, we split the pixels in the image in three parts according to their off- and pseudo-

on-rates. For one third of the pixels, we assume bon∗
1 j = 6 · 10−4 and boff

1 j = 6 · 10−5. For the

second third of the pixels, we assume bon∗
1 j = 6 ·10−4 and boff

1 j = 9 ·10−5, and for the last third we
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assume bon∗
1 j = 9 ·10−4 and boff

1 j = 6 ·10−5. We assume f0 j and a0 j are zero for the pixels in the

bleached area of the nucleus, and draw random numbers from the following normal distributions

for the pixels in the unbleached area of the nucleus: f0 j ∼ N(0.09,10−6), a0 j ∼ N(0.01,10−6).
We assume that the concentration of the unbleached molecules is available for 781 time points.

The first measurement has been done at the time of the bleaching of half the nucleus, and the

following measurements have been done every 0.15 seconds after the bleaching. With the help

of the differential Equations (6.2) and (6.3), the concentrations of the free and bound unbleached

molecules can be calculated for all simulated time points. We discretize the differential quotients
d
dt

a(t) and d
dt

f (t) in Equations (6.2) and (6.3), so that we have the difference quotients ∆a
∆t

and
∆ f
∆t

, respectively:

∆a

∆t
= bon∗

1 f (t)−boff
1 a(t),

∆ f

∆t
= −(bon∗

1 +Kbout
2 ) f (t)+bin

2 n(t).

Consequently, the change of the concentrations of free and bound unbleached molecules per ∆t

is

∆a = (bon∗
1 f (t)−boff

1 a(t))∆t

and

∆ f = (−(bon∗
1 +Kbout

2 ) f (t)+bin
2 n(t))∆t.

For each simulated time point and for each pixel j, we computed

C j(ti) = f j(ti)+a j(ti)+ εi j = total j(ti)+ εi j

with εi j ∼ N(0,10−4), that means, we added Gaussian noise with variance σ2 = 10−4 to the

simulated recovery curves of all pixels. The simulated recovery curves with Gaussian noise are

given in Figure 6.5.

6.5 Conclusions and Discussion

The code for the fit of the simulated data was written in the programming languages R and C.

The part of the code containing the Gibbs and MH-updates of the parameters of the nonlinear

model was written in C, whereby the updates of the pixel-specific parameters was done in parallel

according to the checkerboard pattern described in Subsection 6.3.4 for all pixels of the simulated

image in order to reduce the runtime.

However, even with the parallelization in C, 1000 iterations of the MCMC algorithm took

approximately five days using 9 cores on a linux server with 64 cores and 512 GB memory, what

is a rather long time. Therefore, the MCMC algorithm was run with different settings for the
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Figure 6.5: Simulated recovery curves with Gaussian noise.

proposal variances of the MH-updates for up to 15000 iterations without tuning the proposal

variances. But the results were not satisfactory regarding the convergence of the MCMC algo-

rithm. Manual tuning of the proposal variances, however, can not be realized within a reasonable

time frame.

An alternative to the MCMC algorithm with manual tuning of the variances would be to use

an adaptive MCMC algorithm as described in Haario et al. (2001) and applied for example in

Weidemann et al. (2014). As for the simplest variant in Haario et al. (2001), however, 20000

iterations were needed, we found that an adaptive MCMC algorithm can as well not be realized

within a reasonable time frame for our problem. Another possibility would be to use analytic ap-

proximations of the posterior distribution, such as Laplace’s method (Tierney and Kadane, 1986).

However, such methods are mostly not of sufficient accuracy for a moderate or high number of

parameters, and it is difficult to numerically compute the associated Hessian matrices (Carlin and

Louis, 2009). In structured additive regression models that include for example (generalized) lin-

ear models and (generalized) additive models, Integrated Nested Laplace Approximation can be

used instead of MCMC sampling (Rue et al., 2009), and with that, the computational effort can

be reduced. However, this approach can not be used with nonlinear regression models as the one

used in this chapter.

Therefore, the implementation of an algorithm that tackles the problem described in this

chapter in a reasonable time frame is left for future research.
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Chapter 7

Boosting in nonlinear regression models

with an application to DCE-MRI data

This chapter is mainly based on Feilke, Bischl, Schmid, and Gertheiss (2015). Compared to Feilke, Bischl,

Schmid, and Gertheiss (2015), the abstract is slightly changed, and Subsection 7.2.1 is more detailed. Section 7.5 is

in addition to the content in Feilke, Bischl, Schmid, and Gertheiss (2015), and Section 7.6 is accordingly changed.

Some of the Figures of the Appendix in Feilke, Bischl, Schmid, and Gertheiss (2015) are additionally contained

in this chapter and the content of this chapter is accordingly changed at some points compared to Feilke, Bischl,

Schmid, and Gertheiss (2015).
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Abstract

For the statistical analysis of dynamic contrast-enhanced magnetic resonance imaging data, com-

partment models are a commonly used tool. By these models, the observed uptake of contrast

agent in some tissue over time is linked to physiologic properties like capillary permeability and

blood flow. Up to now, models of different complexity have been used, and it is still unclear

which model should be used in which situation. In previous studies, it has been found that for

DCE-MRI data, the number of compartments differs for different types of tissue, and that in

cancerous tissue, it might actually differ over a region of voxels of one DCE-MR image.

The objective is to find the appropriate number of compartments and estimate the parameters

of a regression model for each voxel in an DCE-MR image. With that, tumors in an DCE-MR

image can be located, and for example therapy success can be assessed.

The observed uptake of contrast agent in a voxel of an image of some tissue is described

by a concentration time curve. This curve can be modeled using a nonlinear regression model.

We present a boosting approach with nonlinear regression as base procedure, which allows us to

estimate the number of compartments and the related parameters for each voxel of an DCE-MR

image. In addition, a spatially regularized version of this approach is proposed.

With the proposed approach, the number of compartments – and with that the complexity

of the model – per voxel is not fixed but data-driven, which allows us to fit models of adequate

complexity to the concentration time curves of all voxels. The parameters of the model remain

nevertheless interpretable because of the underlying compartment model.

The proposed boosting approaches outperform all competing methods considered in this

chapter regarding the correct localization of tumors in DCE-MR images as well as the spatial

homogeneity of the estimated number of compartments across the image, and the definition of

the tumor edge.
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Figure 7.1: Excerpt of the DCE-MRI series of a breast cancer patient showing the concentration

of contrast agent at eight different time points.

7.1 Introduction

DCE-MRI is an imaging technique by which the blood supply of a tissue of interest can be

recorded in vivo. A series of images is acquired by an MRI scanner that captures images of

the tissue at several time points after the injection of a contrast agent (CA). An excerpt of the

DCE-MRI series of a breast cancer patient showing the concentration of contrast agent at eight

different time points can be found in Figure 7.1. The first image has been taken at the time of the

injection of the CA, and the following images show the subsequent perfusion of the tissue with

CA after 12, 24, and 36 seconds and after 1, 2, 5, and 9 minutes.

For each voxel of an image, the concentration of CA at each time point can be computed

from the MR signal (Buckley and Parker, 2005). From the dynamic behavior of CA uptake,

tumors can be located, malignancy and types of tumors can be inferred, tumors can be graded

and therapy success can be assessed (Padhani et al., 2005; Liu et al., 2005).

For the analysis of the CA uptake behavior, model-based or data-driven methods can be used.

An advantage of model-based methods is that they result in quantitative physiological parameters

which characterize the amount and rate of capillary leakage (Padhani et al., 2005), as they are

based on pharmacokinetic models describing the exchange of CA between different, well-mixed

compartments (Tofts and Kermode, 1991). For data-driven methods such as nonparametric re-

gression, usually no a priori compartment-structure is assumed (Schmid, Whitcher, Padhani, and

Yang, 2009).

So far, several compartment models with a varying, a priori fixed, number of compartments

have been proposed and it is not clear which model should be used in which situation. The two-
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compartment exchange models proposed by Brix et al. (2009) and Sourbron and Buckley (2011),

for example, consists of two different compartments for arterial plasma and interstitial plasma.

Furthermore, a hierarchical Bayesian two-compartment model for the analysis of DCE-MRI data

on voxel level has been proposed by Sommer and Schmid (2014), and a multi-tissue compartment

model with a fixed number of compartments has been proposed by Port et al. (1999).

In different types of tissue, however, different numbers of compartments might be needed.

Moreover, as tumor tissue is often heterogeneous, the adequate number of compartments might

even vary over a field of voxels. Therefore, we propose to estimate the number of compartments

for each voxel from the data.

Sommer et al. (2014) recently proposed a spatially regularized estimation method based on

a multi-tissue compartment model for the estimation of the number of compartments and the

related parameters per voxel. Thereby, they combined the advantages of model-based and data-

driven methods, as the number of compartments is chosen data-dependently, but biologically

interpretable parameter estimates are obtained.

Similar to Sommer et al. (2014), we base our approach on a multi-tissue compartment model.

We, however, propose a more straightforward method to estimate the number of compartments

and the parameters of this model: a boosting approach with nonlinear regression as base proce-

dure. The original boosting algorithm (Freund and Shapire, 1996) arose in the machine learn-

ing community and was mainly used for classification Mayr et al. (2014a). Later, the concept

of boosting was adapted to the field of regression modeling (Friedman et al., 2000; Friedman,

2001; Bühlmann and Yu, 2003; Bühlmann, 2006; Bühlmann and Hothorn, 2007), where it can be

used in various settings to select predictors and estimate their effects on a univariate continuous

response (Mayr et al., 2014b). Gradient boosting algorithms are currently gaining attention, as

they can be very useful to address important research questions in modern biomedicine (Mayr

et al., 2014b).

The boosting algorithm that will be introduced in Subsection 7.2.4 together with the voxel-

wise or the spatially regularized estimation procedure presented in Subsections 7.2.5 and 7.2.6 is

a completely novel approach for a regression setting where the univariate response variable is de-

scribed by a nonlinear parametric function. Specifically, it tackles the problem of the estimation

of the number of compartments in a multi-tissue compartment model and the related parameter

estimation. To the best of our knowledge, in contrast to the extensive literature on boosting in

additive regression, boosting used in nonlinear parametric regression is described for the first

time in Feilke, Bischl, Schmid, and Gertheiss (2015) and in this chapter.

The remainder of this chapter is organized as follows. In Section 7.2, the compartment model

and the nonlinear regression model built upon it are introduced. Moreover, gradient boosting in

general, the novel boosting algorithm, and the associated voxelwise and spatially regularized

estimation procedures are described. In Section 7.3, the simulation setup and the results of the

simulation studies are presented. The evaluation of the proposed method for in vivo data from

a breast cancer study is found in Section 7.4. Section 7.5 deals with the assessment of therapy

success in the framework of this study, and Section 7.6 gives a discussion on this chapter and

concludes.

With the R package dcemriboost, which is available on GitHub

(https://github.com/feilke/dcemriboost), voxelwise and spatially regularized boosting for
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Figure 7.2: Tofts model.

DCE-MRI data as described in this chapter can be performed. This package contains the

simulated data of Simulation 1 introduced in Section 7.3 of this chapter. Moreover, we uploaded

two accompanying R files to GitHub. These files provide code for performing voxelwise

boosting and spatially regularized boosting (λ = 10−10) for the data of Simulation 1.

7.2 Methods

7.2.1 Compartment model

For the analysis of DCE-MRI data, several compartment models with a varying number of com-

partments have been used. A fundamental compartment model is the so-called Tofts model

(Tofts, 1997). A block diagram for the Tofts model is given in Figure 7.2.

In this model, the perfusion of CA is described with the help of an arterial plasma compart-

ment (APC) and an interstitial space compartment, which is also called extravascular extracel-

lular space (EES) (Tofts, 1997; Tofts et al., 1999). It is assumed that the contrast agent enters

only the interstitial space and not the cells. This assumption holds typically when using low-

molecular-weight tracers such as gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA).

CA is exchanged between the APC and the EES at constant rate kep.

The change of CA concentration in the EES can be described by the differential equation

d

dt
Ce(t) = kepCp(t)− kepCe(t), (7.1)

where Ce(t) is the CA concentration in the EES at time t, and Cp(t) the CA concentration

in plasma at time t. Cp(t) is also called arterial input function (AIF). Given the initial condition

Ce(0) = 0, which holds because prior to the CA injection, the concentration of CA in the EES is

zero, the solution of this equation is

Ce(t) = kepCp(t)∗ exp(−kept),

where ∗ is the convolution operator such that

Cp(t)∗ exp(−kept) =
∫ t

0
Cp(t − τ)exp(−kepτ)dτ

as in Sommer et al. (2014). In the Tofts model, the concentration C(t) of CA at time t is the

product of the concentration Ce(t) of CA in the EES at time t and the fractional volume of the
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Figure 7.3: Multi-tissue compartment model with q tissue compartments.

EES ve:

C(t) = veCe(t).

With Ktrans := vekep we have:

C(t) =Cp(t)∗Ktrans exp(−kept).

The parameters of interest, which have to be estimated, are kep and Ktrans. kep is the rate con-

stant at which the EES exchanges CA with the APC, and Ktrans = vekep is the associated volume

transfer constant. Observed tracer kinetics can often be well described by the Tofts model for

healthy tissue despite the simplifying assumptions made (Sommer, 2013). However, as the mi-

crovasculatur in tumors often is highly heterogeneous (Yang and Kopp, 2011), the Tofts model

fails to describe its observed uptake dynamics (Schmid, Whitcher, Padhani, Taylor, and Yang,

2009; Port et al., 1999), and therefore, more complex compartment models are needed (Sommer,

2013).

We use a multi-tissue compartment model with q tissue compartments. A block diagram for

this model is found in Figure 7.3. This model is a generalization of the Tofts model:

C(t) =
q

∑
k=1

vek
Cek

(t) =
q

∑
k=1

Cp(t)∗Ktrans
k exp(−kepk

t). (7.2)

It can also be obtained by solving a system of differential equations derived from the compart-

ment model in Figure 7.3 similar to Equation 7.1 with some initial conditions (Seber and Wild,

1989).
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With this model, it is possible to map tissue heterogeneity on the voxel level. For each

voxel, we assume the compartment model in (7.2), and estimate the number of compartments

q. Therefore, the number of compartments can vary over the voxels of an image. Moreover,

each tissue compartment k, k = 1, ...,q, has a unique rate constant kepk
at which CA is exchanged

between the APC and the EES, as well as an individual volume transfer constant Ktrans
k . Of

course, these parameters have to be estimated in addition to q.

7.2.2 Nonlinear regression model

Let the observed concentration of CA in voxel i, i = 1, ...,N, at time xt , t = 1, ...,T , be denoted

by Yi(xt), and let Ci(xt) be the expected concentration of CA in voxel i at time xt . We assume

that Ci(xt) can be described by the nonlinear multi-tissue compartment model with qi tissue

compartments

Ci(xt) =
qi

∑
k=1

Cp(xt)∗Ktrans
ik exp(−kepik

xt). (7.3)

Furthermore, we assume that the observed concentration of CA in voxel i can be modeled by

Yi(xt) =Ci(xt)+ εit =
qi

∑
k=1

Cp(xt)∗Ktrans
ik exp(−kepik

xt)+ εit , (7.4)

where εit are independent Gaussian noise terms with mean zero and variance σ2
i (Schmid et al.,

2006).

For kepik
, values between 0.05 and 20 are feasible, considering that the rate is positive and

does typically not exceed 20 (Schmid et al., 2006), and for Ktrans
ik , values in the interval [0.01,20]

are considered (Schmid et al., 2006; Parker et al., 1998), as these ranges of values are biologi-

cally realistic. Since in breast DCE-MRI there are no big vessels in the captured area from which

Cp(xt) could be measured, we use a bi-exponential population based arterial input function as

proposed by Tofts and Kermode (1991): Cp(xt) = D(a1 exp(−m1xt)+a2 exp(−m2xt)), with con-

stant dose D of tracer (in mmol/kg) depending on the experimental conditions and fixed values

a1 = 3.99 kg/l, a2 = 4.78 kg/l, m1 = 0.144 min−1, m2 = 0.0111 min−1 (Tofts and Kermode, 1991;

Weinmann et al., 1984).

7.2.3 Gradient boosting

We use the boosting algorithm that is introduced in the following subsection to fit model (7.4),

and thus to estimate the model complexity for each voxel of an MR image. We use a notation

similar to the notation in Hofner et al. (2014), and adapt the general methodology presented there

to the voxelwise DCE-MRI framework in this chapter.

We consider the response Y and the predictor function C =: f . The aim is to receive an

optimal prediction of Y , which is achieved by minimizing the loss function ρ(Y, f ) ∈ R over all

admissible prediction functions f . This means, the optimal prediction function

f ∗ := argmin
f
E [ρ(Y, f )] (7.5)
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has to be estimated, where ρ is assumed to be differentiable with respect to f . In our approach,

we consider a nonlinear regression with response Y ∈ R and use the L2 loss function ρ(Y, f ) =
1
2
(Y − f )2. As in practice, we deal with realizations Y (xt), t = 1, ...,T , of Y , the empirical risk

R := ∑
T
t=1 ρ(Y (xt), f (xt)) has to be minimized instead of the expected loss in equation (7.5).

7.2.4 Boosting algorithm

For each voxel i, we use the boosting algorithm in Figure 7.4 to minimize the empirical risk R

over f .

By step 4.c), model choice is performed, because compartments are iteratively accepted into

the model only if the model is improved by the acceptance. A new compartment is accepted

only if its kep-value differs substantially (i.e., by a factor of at least 5) from the kep-values of the

already accepted compartments. We set a factor for the relative difference of the kep-values in the

multi-tissue compartment model, because redundancy issues may occur if the exponential rates

of two compartments are too similar. In Reich (1981), it has been shown that parameters in a sum

of exponentials model are highly redundant if the exponential rates differ by less than a factor of

5 (Sommer, 2013). It is difficult to obtain a generalization of that for convolved exponentials, but

it can be assumed that parameters are as well redundant in this case if the decay rates differ too

little (Sommer, 2013). Therefore, we use the same factor also for the convolved exponentials.

Moreover, in each iteration, we check if the RSS is decreased at least by a factor of 10−8.

The same base-learner can be selected several times during the execution of the boosting

algorithm. Because of the additive update of compartments, the final boosting estimate of voxel

i in iteration mstopi
can be interpreted as an additive prediction function. The boosting algorithm

iteratively fits the gradient of the loss function instead of fitting the original observations directly.

In each update step, the current estimate û
[m]
i is multiplied by the step length factor ν . Therefore,

the stepwise increments of the final estimator f̂
[m]
i are small, and the overall minimum is only

slowly approached. The choice of the step length factor ν is of minor importance, as long as

the chosen value is small (Schmid and Hothorn, 2008). It is essential that a small ν is chosen,

because otherwise the algorithm could overshoot the minimum of the empirical risk. We use

ν = 0.1, which is a typical value (Hofner et al., 2014). As u
[m]
i depends on xt , it is from now on

denoted by ui(xt)
[m].

A substantial issue in the gradient boosting framework is the choice of the stopping iteration

mstop. Boosting algorithms should not be run until convergence, because otherwise, overfitting

would be the consequence (Bühlmann and Hothorn, 2007; Mayr et al., 2012). Here, the opti-

mal mstop is chosen according to the Bayesian Information Criterion (BIC) (Hastie et al., 2009;

Hansen and Yu, 2001). For the computation of the BIC, the degrees of freedom of the model have

to be defined. As we fit a compartment model where each compartment is defined by two param-

eters that are biologically interpretable, we think that the number of parameters in the model is a

somewhat natural definition of the degrees of freedom here.
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1. Initialization: Set m = 0. Set f̂
[0]
i = 0, because we fit a model without intercept.

Generally, f̂
[m]
i denotes the vector of function estimates in iteration m for voxel i.

2. Specify a set of base-learners. Here, the base-learners are single compartments

Cp(xt)∗Ktrans
ik exp(−kepik

xt) (7.6)

from the multi-tissue compartment model in (7.3).

3. Set m = m+1.

4. a) Compute the negative gradient of the loss function evaluated at the function estimates

of the previous iteration: u
[m]
i = Yi − f̂

[m−1]
i , where Yi is the original response vector.

b) Fit the nonlinear model in (7.6) to the negative gradient vector u
[m]
i . This is done by a

nonlinear least squares method. As optimization procedure, a Levenberg-Marquardt

algorithm implemented in the R function nls.lm (package minpack.lm (Elzhov

et al., 2013)) is used (Ahearn et al., 2005). Hereby, the best base-learner, i.e., the

base-learner that fits u
[m]
i best according to the residual sum of squares criterion is

selected. The function estimate of the best base-learner, which minimizes the RSS,

is denoted by û
[m]
i .

As the output of the optimization procedure may depend on the starting values for

the unknown parameters, ten initial guesses are drawn by latin hypercube sampling

from the grid stretched by the biologically realistic ranges for the two parameters

(kepik
∈ [0.05,20], Ktrans

ik ∈ [0.01,20]). The optimization procedure is performed with

all ten initial guesses and the base-learner that leads to the smallest RSS is chosen.

Details on the choice of the number of initial guesses are given in the final part of this

section.

c) Decide if a new compartment is accepted into the model. We use the fact that a

compartment k is characterized by its kep-value and

– accept the new kep-value, i.e., the new compartment, if the estimated kep-value

resulting from the optimization procedure in b) differs from the kep-values of the

compartments that have already entered the model in the previous iterations by

a factor of at least 5.

– do not accept the new compartment otherwise. In this case, the model is fitted

again with the previously accepted kep-value, i.e., only the parameter Ktrans is

estimated. The estimator K̂trans is determined analytically. Details can be found

in the final part of this section.

d) Update f̂
[m]
i = f̂

[m−1]
i +ν û

[m]
i , with a step length factor ν , 0 < ν ≤ 1.

5. Iterate steps 3 and 4 until m = mstopi
, the stopping iteration.

Figure 7.4: Boosting algorithm.
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MSE q̂av qc

Boosting voxelwise (10 restarts) 1.7 ·10−4 2.04 0.71

Boosting voxelwise (1000 restarts) 1.7 ·10−4 2.03 0.71

Table 7.1: Average values for the 10 simulated images: Average MSE (MSE), estimated average

number of tissue compartments (q̂av), and percentage of voxels for which the number of tissue

compartments is correctly estimated (qc).

Details on the optimization in the boosting algorithm

The number of initial guesses for the optimization in step 4.b) of the boosting algorithm

in Subsection 7.2.4 was determined in a benchmark experiment. In this experiment, we fitted a

compartment model with one tissue compartment for the concentration time curves (CTCs) of

the voxels contained in an image with four different algorithms:

• Levenberg Marquart (R function nls.lm in R package minpack.lm (Elzhov et al., 2013))

• Nelder-Mead (R function constrOptim)

• L-BFGS-B (R function optim)

• rgenoud (function genoud in R package rgenoud (Mebane and Jasjeet, 2011))

For each algorithm, we tried different numbers of restarts. The benchmark experiment was

performed for all simulated images and two of the images from the breast cancer study. For

each CTC and for each algorithm, we recorded the loss and the running time. We averaged the

loss and the running time for each algorithm over all CTCs and determined the pareto front.

According to the pareto front, we considered the Levenberg Marquart algorithm with 1-3 restarts

a good solution. Conservatively, we chose the Levenberg Marquart algorithm with 10 restarts for

the optimization in step 4.b).

To make sure that 10 restarts with the Levenberg Marquart algorithm are enough, we addi-

tionally ran the voxelwise boosting algorithm for the simulated data with 10 restarts and with

1000 restarts in the optimization in step 4.b). The results can be found in Table 7.1. The aver-

age mean squared error (MSE) for the 10 simulated images with 1000 restarts was 1.7 ·10−4, the

average number of compartments was 2.03, and for 71% of the voxels, the number of tissue com-

partments was estimated correctly. With 10 restarts, the MSE was 1.7 ·10−4, the average number

of compartments was 2.04, and for 71% of the voxels, the number of tissue compartments was

estimated correctly. Hence, we concluded that 10 restarts are sufficient, because the average

MSE and the percentage of voxels for which the correct number of tissue compartments was

estimated were the same as with 1000 restarts, and the average number of compartments differed

only marginally. Boxplots of the voxelwise MSE for all 10 simulated images for the comparison

of the voxelwise boosting with 10 restarts and with 1000 restarts are plotted in Figure 7.5.

In step 4.c) of the boosting algorithm, in the case that we do not accept a new compartment,

K̂trans can be determined analytically. By using a fixed kep-value, which is the previously accepted
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Figure 7.5: Voxelwise MSE for all 10 simulated images; voxelwise boosting with 10 restarts and

with 1000 restarts.

kep-value, the nonlinear regression model is linearized. Therefore, we have to solve a convex

optimization problem and there is one local minimum which is also the global minimum. The

solution of the optimization problem is given in what follows. We start with the nonlinear least

squares estimate given in Equation 7.7 of Section 7.2.5:

(

K̂
trans[m]
ik , k̂

[m]
epik

)′
= argmin

K,k

{

∑
t

(

ui(xt)
[m]−Cp(xt)∗K exp(−kxt)

)2
}

,

with side conditions 0.05 ≤ k̂
[m]
epik

≤ 20 and 0.01 ≤ K̂
trans[m]
ik ≤ 20. As k is fixed in our case, with

the convolution given in the Appendix of Sommer (2013) and

b(xt) =
a1

m1 − k
(exp(−kxt)− exp(−m1xt))+

a2

m2 − k
(exp(−kxt)− exp(−m2xt)),

this can be written as

(

K̂
trans[m]
ik

)′
= argmin

K

{

∑
t

(

ui(xt)
[m]−DKb(xt)

)2
}

,

with side condition 0.01 ≤ K̂
trans[m]
ik ≤ 20. Minimizing

∑
t

(

ui(xt)
[m]−DKb(xt)

)2
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means differentiating this function with respect to K, equating it to zero and solving the equation

for K. This leads to

K̂
trans[m]
ik =











0.01, K < 0.01
∑t ui(xt)

[m]b(xt)
D∑t b(xt)2 , 0.01 ≤ K ≤ 20

20, K > 20

The solution is a minimum as the second derivative with respect to K, which is 2D2 ∑t b(xt)
2, is

greater than zero.

7.2.5 Voxelwise estimation

In a first approach, we estimate the parameters kepi
= (kepi1

, ...,kepiqi
)′ and Ktrans

i =

(Ktrans
i1 , ...,Ktrans

iqi
)′ independently for all voxels in an image, i.e., for each voxel i, we fully run the

boosting algorithm described in Section 7.2.4.

In each iteration m, we have to minimize the residual sum of squares ∑t(ui(xt)
[m]− ûi(xt)

[m])2.

Hence, the nonlinear least squares estimate is

(

K̂
trans[m]
ik , k̂

[m]
epik

)′
= argmin

K,k

{

∑
t

(

ui(xt)
[m]−Cp(xt)∗K exp(−kxt)

)2
}

, (7.7)

with side conditions 0.05 ≤ k̂
[m]
epik

≤ 20 and 0.01 ≤ K̂
trans[m]
ik ≤ 20.

7.2.6 Spatially regularized estimation

To take into account the spatial structure of the voxels in an image, we perform, as a second

approach, a spatially penalized estimation. We use a two-dimensional neighborhood structure

where adjacent voxels are neighbors, i.e., each voxel has up to four neighbors. Voxels at the edge

of an image have less than four neighbors, whereas all other voxels have four neighbors.

For the penalization, we use again the fact that a compartment is characterized by its kep-

value. While the contribution of a specific tissue compartment, i.e., the fractional volume ve and

consequently the volume transfer constant Ktrans of this compartment, may vary considerably

over a field of neighboring voxels, the rate constant kep at which the compartment exchanges CA

with the APC should be similar for neighboring voxels (Tofts et al., 1999; Sommer, 2013). Thus,

we penalize differences in the k̂ep-values of adjacent voxels. As a penalty, we use a ridge type

penalty. Let k̂
[m]
ep j1

, ..., k̂
[m]
ep jq j

denote the q j k̂ep-values of voxel j in iteration m. Then, the nonlinear

penalized least squares estimate for voxel i in iteration m is

(

K̂
trans[m]
ik , k̂

[m]
epik

)′
= argmin

K,k

{

∑
t

(

ui(xt)
[m]−

(

Cp(xt)∗K exp(−kxt)+λJ(k)
)

)2
}

,
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with side conditions 0.05 ≤ k̂
[m]
epik

≤ 20 and 0.01 ≤ K̂
trans[m]
ik ≤ 20, penalty parameter λ , and

penalization term

J(k) = ∑
j∈δi

min
l
((k̂

[m]
epik

− k̂
[m]
ep jl

)2),

where δi is the set of voxels in the neighborhood of pixel i.

This estimate corresponds to the estimate in (7.7), except for the penalization term λJ(k),
where J(k) corresponds to a Markov random field on the kep-values. By replacing the least

squares base-learners by penalized variants, i.e., by the introduction of the penalization term

λJ(k), we ensure that neighboring voxels share similar kep-values, and therefore, spatial smooth-

ness of these parameters is achieved.

Similar to Sommer et al. (2014), for efficiency reasons, we do a parallel update of the esti-

mates of the voxels following a checkerboard pattern, using conditional independence from the

remaining voxels given all neighboring voxels. By the checkerboard pattern, the voxels in an

image are divided into “even” and “uneven” voxels. We do not fully run the boosting algorithm

for each voxel as in 7.2.5. Rather, the updates of the parameter estimates are done alternately for

the “even” and the “uneven” voxels. This means, in each iteration, the “even” and the “uneven”

voxels are updated each once. In the first iteration, the k̂ep-values of the “even” and the “uneven”

voxels are penalized to some starting k̂ep-values. To receive these starting values, we apply the

voxelwise boosting algorithm (Subsections 7.2.4 and 7.2.5) to the mean CTC, which results from

averaging the CTCs of all voxels in one image. From the second iteration on, the k̂ep-values of

the “even” voxels are penalized to the current k̂ep-values of the “uneven” voxels and vice versa.

7.2.7 Refit

After the execution of the boosting algorithm with the voxelwise or the spatially regularized esti-

mation procedure, for each voxel, the number of compartments and the k̂ep-values are considered

as fixed and a refit of the model is done in order to get the final K̂trans-values (Candes and Tao,

2007; Gertheiss and Tutz, 2010; Tutz and Groll, 2013; Groll, 2013). By using fixed k̂ep-values,

the nonlinear regression model is linearized, and therefore, the refit is done with the R function

solve.QP (package quadprog (Turlach and Weingessel, 2013)).

7.2.8 Competing Methods

Within the framework of the simulation and for the analysis of real DCE-MRI data, we compare

the results of our two boosting approaches (voxelwise and spatially regularized) with the results

of fitting a Tofts model (Subsection 7.2.1), as well as the results of a voxelwise and a spatially

regularized estimation approach as described in Sommer et al. (2014). The two approaches in

Sommer et al. (2014) are based on basis functions Ψk(xt) =Cp(xt)∗ exp(−kepk
xt). Using those,

Equation (7.3) becomes Ci(xt) = ∑
qi

k=1 Ktrans
ik Ψk(xt). A set of candidate values for kepk

is consid-

ered such that log(kepk
) ∈ {−3.0,−2.9, ...,3.0}, and suitable values, i.e., compartments, have to

be chosen. Therefore, the unknown parameters Ktrans
ik are estimated, and the k̂epk

-values related



78 7. Boosting in nonlinear regression models with an application to DCE-MRI data

kep1
Ktrans

1 kep2
Ktrans

2 kep3
Ktrans

3

Simulation 1 outside tumor 0.2 0.15 - - - -

inside tumor 0.2 0.05 1.4 1.3 - -

tumor edge 0.2 0.1 1.4 0.6 9.8 2.6

Simulation 2 outside tumor 0.15 0.1 - - - -

inside tumor 1.5 1.3 15 2.8 - -

tumor edge 0.15 0.08 1.5 0.6 15 2.6

Simulation 3 outside tumor 0.25 0.15 - - - -

inside tumor 0.25 0.05 1.25 1.2 - -

tumor edge 0.25 0.15 1.25 0.4 6.25 1.6

Table 7.2: Simulation setup.

to positive K̂trans
ik -values are selected. As the usual ML-estimates are unstable or even not unique,

two penalized approaches are proposed. In the first approach, the voxelwise regularized esti-

mation, a penalized maximum likelihood estimator is used, with the (positive) elastic net (Zou

and Hastie, 2005) being chosen as penalty. In the second approach, the spatially regularized

estimation, the penalty term used in the first approach is modified in such a way that it enforces

spatial smoothness of parameters of neighboring voxels. Differences in the K̂trans-values of ad-

jacent voxels are penalized by a quadratic penalty term, which in our opinion, however, is not as

straightforward as penalizing the k̂ep-values of adjacent voxels as done in the spatially regularized

boosting approach proposed in this chapter.

In both approaches from Sommer et al. (2014) as well as in the spatially regularized boost-

ing approach, the tuning parameters are determined according to the BIC. The neighborhood

structure in Sommer et al. (2014) and in this chapter coincide. In Sommer et al. (2014), the

BIC is computed according to Hastie et al. (2009). For the DCE-MRI data, the variance σ2
ε

of the assumed normal distribution is estimated by the mean-squared error of a low-bias model

(Hastie et al., 2009). We, however, compute the BIC for this data according to the formula

n · log
(

∑
N
i=1 ∑

T
t=0(Yi(xt)− Ŷi(xt))

2
)

+ p · log(n), where p is the number of parameters, i.e., the

sum of the estimated number of compartments over all voxels in an image, and n = N ·T is the

number of voxels in an image multiplied by the number of time points at which an MR signal has

been measured for this image. The approaches in Sommer et al. (2014) are from now on called

‘elastic net approaches’ (voxelwise and spatial elastic net approach, respectively).

7.3 Simulation studies

7.3.1 Simulation setup

For each of the simulations listed in Table 7.2, we simulated 10 DCE-MR images, each consisting

of 40×50 voxels. We simulated images which are similar to DCE-MR images revealing breast

cancer, and therefore, three kinds of typical CTCs were simulated. For the tissue located outside

the tumor, we simulated from a compartment model with one tissue compartment. Inside the

tumor, we assumed a compartment model with two tissue compartments. For the voxels at the
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Figure 7.6: Simulated CTCs (without noise) for Simulations 1-3.

edge of the tumor, we simulated from a compartment model with three tissue compartments.

We used different kep-values for the simulations, and the factor by which the kep-values differ

in each of the three simulations is chosen differently as well. The kep-values differ by a factor

of 7 in Simulation 1, by a factor of 10 in Simulation 2, and by a factor of 5 in Simulation 3.

For all simulations, each simulated CTC consists of CA concentrations at 46 time points every

12 seconds, and we added Gaussian noise (standard deviation σ = 0.05) to the CTCs of all

voxels. A figure showing the simulated CTCs (without noise) for Simulations 1-3 can be found

in Figure 7.6.

7.3.2 Results

In Figure 7.7, some results of Simulation 1 are shown for one of the ten simulated images. The

results for the remaining simulated images are similar and can be found in the Appendix (Part C),

as well as the results for the remaining simulations. The first image in the first row of Figure 7.7

shows the true number of compartments for all voxels in the simulated image. In the subse-

quent images in the first row, the estimated number of compartments q̂ is given for all methods

under consideration. In general, when applying the Tofts model, for each voxel in an image, a

compartment model with one tissue compartment is assumed. Therefore, the average number of

compartments in an image is always 1 and the true average number of compartments is underes-

timated if the image contains voxels for which a compartment model with more than one tissue

compartment is assumed, as it is the case for Simulation 1. It is obvious from the images in the

first row of Figure 7.7 that for the boosting approaches, the estimated number of compartments

across the image is spatially more homogeneous than for the elastic net approaches. This is most

obvious for the tumor edge and the tissue located outside the tumor. Moreover, with the boost-

ing approaches, the number of compartments is not as often overshooted as with the elastic net

approaches, where in many cases a number of 4 or 5 compartments is estimated. In the second

row of Figure 7.7, the voxelwise mean squared error (MSE) MSEi =
1
T ∑

T
t=0(Ci(xt)− Ŷi(xt))

2 is

plotted for all methods under consideration. For the Tofts model, it can be clearly seen that the
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MSE is the highest at the tumor edge, followed by the MSE for the inner region of the tumor.

The MSE is the lowest for the tissue outside the tumor. This shows that especially for the voxels

at the tumor edge, the Tofts model is not sufficient and more complex compartment models are

needed. For the boosting approaches, the MSE is comparatively large for the voxels inside the

tumor, whereas for the elastic net approaches, voxels with a comparatively large MSE are a bit

more scattered across the image.

In Table 7.3, for each simulation, the average MSE for the 10 simulated images is given for

each considered method. The MSE for image k is calculated according to MSEk =
1
N ∑

N
i=1 MSEi,

and the average MSE over all K images according to MSE = 1
K ∑

K
k=1 MSEk. Additionally, in

Table 7.3, the true average number of compartments qtrue
av , the estimated average number of com-

partments over all ten simulated images q̂av, and the percentage qc of voxels for which the correct

number of tissue compartments is estimated is given. It can be seen that the average MSE is ap-

proximately the same for all methods except for the Tofts model, where it is considerably larger

than for the other four methods. For Simulation 1, boxplots of the voxelwise MSE for all con-

sidered methods for all 10 simulated images are available in Figure 7.8. When comparing the

average MSE for the two voxelwise methods (boosting and elastic net) and the two spatial meth-

ods (boosting and elastic net) for Simulations 1-3, we can see that it is most of the times slightly

larger for the elastic net approaches than for the boosting approaches. In all three simulation

settings, the boosting approaches perform better than the elastic net approaches with regard to

MSE and qc, as MSE is at most as large as with the elastic net approaches, and qc is always larger

as with the elastic net approaches. For each simulation setting, the performance of the voxelwise

and the spatially regularized boosting approach regarding qc is similar, whereas for the elastic

net approaches, the spatial approach always performs considerably better regarding qc compared

to the voxelwise approach.

7.4 Application to DCE-MRI data

7.4.1 Description of the data

For the clinical evaluation of our approach we used data of six breast cancer patients who have

participated in a breast cancer study which has previously been reported on and which has al-

ready been analyzed (Ah-See et al., 2004; Schmid et al., 2005, 2006; Sommer et al., 2014).

Per breast cancer patient, we used two scans recorded by a 1.5 T Siemens MAGNETOM Sym-

phony scanner (Repetition time (TR) = 11 ms, Echo Time (TE) = 4.7 ms). One of the scans

has been recorded at the beginning of the treatment (pre-treatment scan) and the second one

after two weeks of chemotherapy (post-treatment scan). Each scan comprises three slices. For

our analysis, we used only the central slice. Per patient and recording, the MR signal has been

recorded every 12 seconds at 36 or 46 time points, respectively. At the start of the fifth MR signal

recording, Gd-DTPA at a dose of 0.1 mmol per kg body weight has been injected with a power

injector. The regions of interest used for the analyses cover the tumor as well as surrounding

non-tumorous tissue. The smallest analyzed image consists of 48×81 voxels, and the largest one

of 118×115 voxels.
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Figure 7.7: Results of Simulation 1 for the first of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.



82 7. Boosting in nonlinear regression models with an application to DCE-MRI data

MSE q̂av qc

Simulation 1 Tofts 8.8 ·10−4 1.00 0.48

(qtrue
av =1.78) Elastic net voxelwise (λ = 1e-10, s=0.2) 1.8 ·10−4 2.23 0.54

Elastic net spatial (λ = 1e-07, s = 0.2) 1.9 ·10−4 2.01 0.68

Boosting voxelwise 1.7 ·10−4 2.04 0.71

Boosting spatial (λ = 1e-10) 1.7 ·10−4 2.04 0.71

Simulation 2 Tofts 7.2 ·10−4 1.00 0.48

(qtrue
av =1.78) Elastic net voxelwise (λ = 1e-10, s=0.2) 1.7 ·10−4 2.20 0.54

Elastic net spatial (λ = 1e-10, s = 0.2) 2.0 ·10−4 1.95 0.69

Boosting voxelwise 1.7 ·10−4 1.98 0.74

Boosting spatial (λ = 1e-10) 1.7 ·10−4 1.98 0.74

Simulation 3 Tofts 6.9 ·10−4 1.00 0.48

(qtrue
av =1.78) Elastic net voxelwise (λ = 1e-05, s=0.2) 1.8 ·10−4 2.17 0.53

Elastic net spatial (λ = 1e-10, s = 0.2) 1.7 ·10−4 1.94 0.64

Boosting voxelwise 1.6 ·10−4 1.99 0.69

Boosting spatial (λ = 1e-07) 1.6 ·10−4 1.99 0.69

Table 7.3: Average values for the 10 simulated images: Average MSE (MSE), estimated average

number of tissue compartments (q̂av), and percentage of voxels for which the number of tissue

compartments is estimated correctly (qc).

7.4.2 Results

In Figures 7.9-7.14, for both the boosting and the elastic net approaches the estimated number

of compartments q̂ is plotted for the two images of each patient from the breast cancer study.

In the last row of these figures, the concentration of CA one minute after the injection of the

CA is plotted pre- and post-treatment as a reference. We will discuss only the results for one

of the patients of the breast cancer study in detail (patient 2, Figure 7.10), as the difference in

the results for the boosting and elastic net approaches is particularly evident for this patient.

However, the results for the remaining patients are of similar quality. Patient 2 is a responder to

the chemotherapy (Schmid et al., 2006). Therefore, the tumor is considerably smaller in the post-

treatment image than in the pre-treatment image. We can see that with the boosting approaches,

the tumor can be located much better than with the elastic net approaches. This is especially

obvious for the post-treatment scan of patient 2, where the tumor can not be located correctly

with the spatial elastic net approaches, but with the boosting approaches it can. Furthermore, with

the boosting approaches, the estimated number of compartments across the image is spatially

more homogeneous, but the tumor edge is still more clearly defined than with the elastic net

approaches, which is especially obvious for the pre-treatment scan of patient 2.

The BIC and the estimated average number of compartments q̂ for the elastic net and the

boosting approaches for all analyzed images can be found in Table 7.4 together with the corre-

sponding tuning parameters. For all images except for the post-treatment scan of patient 3, the

BIC for the elastic net approaches is smaller than the BIC for the boosting approaches, based

on which one would usually favor the elastic net approaches. However, the BIC does not reflect

the spatial structure of the image and the correct localization of the tumor. When comparing



7.4 Application to DCE-MRI data 83

Boost. spat. Boost. vw Enet spat. Enet vw Tofts

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

M
S

E
i

Figure 7.8: Voxelwise MSE for all considered methods for all 10 simulated images. The boxplots

lie approximately in the same range for all considered methods except for the Tofts model, where

the median and the 75%-quantile of the voxelwise MSE are much higher than for the other

methods. For the spatial elastic net approach, there are slightly more outliers with marginally

larger MSE-values than for the voxelwise elastic net and the boosting approaches.

the two boosting approaches presented, we see that the BIC for spatial boosting is smaller or

approximately in the same range as the BIC for voxelwise boosting.

The tuning parameters λ and s for the elastic net approaches and λ for the spatially regular-

ized boosting approach can be found in the last three rows of Table 7.4. Mostly, a small value of

10−10 or 10−7 is chosen for the penalization parameter λ in all of these approaches. An exception

are the images of patients 5 and 6 and the post-treatment image of patient 4 (Figures 7.12-7.14),

for which the value of the penalization parameter λ is 10−3 for the spatially regularized boosting

approach. Therefore, for these five images, the biggest influence of the spatial regularization can

be found, and a clear difference between the spatial structure of the number of compartments

for the voxelwise and the spatially regularized boosting approach is apparent. The estimated

number of compartments is distributed more homogeneously across the image for the spatially

regularized approach.
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Figure 7.9: Results of the application to the DCE-MRI data: estimated number of tissue com-

partments q̂ for each voxel of the image of patient 1. Reference picture (last row): concentration

of CA 1 minute after the injection of the CA.
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Figure 7.10: Results of the application to the DCE-MRI data: estimated number of tissue com-

partments q̂ for each voxel of the image of patient 2. Reference picture (last row): concentration

of CA 1 minute after the injection of the CA.
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Figure 7.11: Results of the application to the DCE-MRI data: estimated number of tissue com-

partments q̂ for each voxel of the image of patient 3. Reference picture (last row): concentration

of CA 1 minute after the injection of the CA.
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Figure 7.12: Results of the application to the DCE-MRI data: estimated number of tissue com-

partments q̂ for each voxel of the image of patient 4. Reference picture (last row): concentration

of CA 1 minute after the injection of the CA.
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Figure 7.13: Results of the application to the DCE-MRI data: estimated number of tissue com-

partments q̂ for each voxel of the image of patient 5. Reference picture (last row): concentration

of CA 1 minute after the injection of the CA.
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partments q̂ for each voxel of the image of patient 6. Reference picture (last row): concentration
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7.5 Assessment of therapy success

Whereas, in DCE-MRI, the rate constant kep describes the shape of a CTC, the fractional vol-

ume ve and consequently the volume transfer constant Ktrans relate to absolute values of a CTC

(Sommer, 2013). The rate constant kep is always greater than the transfer constant Ktrans. Sev-

eral physiologic interpretations contingent upon the balance between capillary permeability and

blood flow in the tissue of interest are possible for the transfer constant Ktrans (Tofts et al.,

1999). In a high-permeability scenario, i.e., if tracer flux is flow-limited, the volume transfer

constant Ktrans “equals the blood plasma flow per unit volume of tissue” (Tofts et al., 1999).

In a permeability-limited scenario, i.e., if tracer flux is permeability-limited, Ktrans “equals the

permeability surface area product per unit volume of tissue” (Tofts et al., 1999). Thus, Ktrans

gives information about the balance between capillary permeability and blood flow in the tissue

of interest, and is therefore used in order to assess therapy success for the patients in the breast

cancer study described in Subsection 7.4.1.

A one-sided two-sample Wilcoxon rank sum test (also called ‘Mann-Whitney test’), was

performed to compare the pre-treatment and post-treatment Ktrans-values of the six patients from

the breast cancer study in 7.4.1. We performed this test for each patient using the Ktrans-values

resulting from the application of the voxelwise boosting approach to the DCE-MRI data from the

breast cancer study. The null hypothesis of the test was that the distributions of the pre-treatment

and post-treatment Ktrans-values of one patient differ by a location shift of µ = 0. For patients 1,

2, 3, and 6, the null hypothesis was rejected at a significance level of 0.05 (P < 2.2 ·10−16). This

means that the true location shift is greater than zero, i.e., the distribution of the pre-treatment

Ktrans-values is shifted to the right of the distribution of the post-treatment Ktrans-values. This

suggests that patients 1, 2, 3, and 6 are responders to the therapy. For patients 4 and 5, the null

hypothesis was not rejected at a significance level of 0.05 (P = 1), which suggests that these

patients are nonresponders to the therapy. This is in accordance with the true responder status

of the patients Schmid et al. (2006). The distributions of the pre-treatment and post-treatment

Ktrans-values for each patient can be found in Figure 7.15. Therefore, therapy success can be

assessed by using the Ktrans-values resulting from the application of voxelwise boosting in order

to identify responders and nonresponders of the therapy.

7.6 Conclusions and Discussion

We proposed two boosting approaches for data-driven model choice and parameter estimation

for DCE-MRI data. Both approaches build on a multi-tissue compartment model and combine

the advantages of data-driven and model-based approaches, as the number of compartments is

estimated from the data for each voxel of an image, and the parameters nevertheless remain in-

terpretable. Based on the results of the simulation studies and the results of the application to

DCE-MRI data of six breast-cancer patients, we conclude that the boosting approaches outper-

form the Tofts and elastic net approaches regarding the correct localization of the tumor as well

as the spatial homogeneity of the estimated number of compartments across the image, and the

definition of the tumor edge. Therefore, we favor the boosting approaches over the elastic net



92 7. Boosting in nonlinear regression models with an application to DCE-MRI data

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

K
trans

d
e
n
s
it
y

pre−treatment

post−treatment

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

K
trans

d
e
n
s
it
y

pre−treatment

post−treatment

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

K
trans

d
e
n
s
it
y

pre−treatment

post−treatment

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

K
trans

d
e
n
s
it
y

pre−treatment

post−treatment

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

K
trans

d
e
n
s
it
y

pre−treatment

post−treatment

0.0 0.5 1.0 1.5 2.0

0
5

1
0

1
5

K
trans

d
e
n
s
it
y

pre−treatment

post−treatment

Figure 7.15: Distributions of the pre-treatment and post-treatment Ktrans-values for each patient.

approaches, even though the BIC was smaller for the elastic net approaches than for the boosting

approaches for most images of the breast-cancer patients.

When comparing the plots of the estimated number of compartments q̂ (Figures 7.9-7.14),

the BIC, and the estimated average number of tissue compartments q̂av (Table 7.4) for the two

boosting approaches applied to the DCE-MRI data, it appears that there is no major difference

between the results of these two approaches, except for the images of patients 5 and 6 and the

post-treatment image of patient 4. For these images, the number of compartments is distributed

more homogeneously across the image for the spatially regularized approach, and for the images

of patients 5 and 6, the BIC is considerably smaller for the spatially regularized approach com-

pared to the voxelwise boosting approach. It was indeed a surprising result that the proposed

penalization did not have a large impact on the nonlinear boosting. The voxelwise boosting

approach already turned out to determine the number of compartments quite well and found

numbers of compartments similar to the spatial elastic net approach in all of the simulations and

most of the real situations. Therefore, we think that the spatial penalization could not strengthen

the boosting approach in the same way it strengthened the elastic net approach. As there is also

a large difference in computation time, in order to get results as quickly as possible, we would

recommend to favor the voxelwise boosting approach over the spatially regularized version. In

order to get results where the spatial structure is taken into account properly, however, we would



7.6 Conclusions and Discussion 93

MSE q̂av qc

Boosting voxelwise (factor 5) 1.7 ·10−4 2.04 0.71

Boosting voxelwise (factor 4) 1.7 ·10−4 2.31 0.57

Boosting voxelwise (factor 3) 1.8 ·10−4 2.69 0.48

Boosting spatial (factor 5, λ = 1e-10) 1.7 ·10−4 2.04 0.71

Boosting spatial (factor 4, λ = 1e-05) 1.8 ·10−4 2.27 0.58

Boosting spatial (factor 3, λ = 1e-05) 1.9 ·10−4 2.53 0.52

Table 7.5: Influence of the chosen factor for the relative difference of the kep-values in the boost-

ing algorithm. Average values for the 10 simulated images of Simulation 1: Average MSE

(MSE), estimated average number of tissue compartments (q̂av), and percentage of voxels for

which the number of tissue compartments is estimated correctly (qc).

recommend to use the spatially regularized version. The computation time for the spatially regu-

larized boosting for all 12 images was approximately 19 days on a linux server with 64 cores and

512 GB memory using 40 cores in parallel, whereas the voxelwise boosting for all 12 images

took approximately 2 hours on the same machine using 40 cores in parallel (For comparison:

The computation times for the competing methods on the same machine using 40 cores in par-

allel were: spatial elastic net: approximately 2 hours, voxelwise elastic net: approximately 3

minutes.). For the spatially regularized boosting, the updates of the parameter estimates are done

alternately for the voxels in an image, which increases the runtime considerably in comparison

to the voxelwise boosting, where the parameter estimates are updated independently of each

other for the voxels in an image. All code for the analyses was written in R. For the paralleliza-

tion of R code, we used the R packages parallel, BatchJobs and BatchExperiments (Bischl

et al., 2014). For the independent parameter updates and the refit in the voxelwise boosting

approach, the parallelization was done with the packages BatchJobs and BatchExperiments.

For the alternating updates in the estimation process in the spatially regularized boosting ap-

proach, we used the package parallel. For the refit, we used the packages BatchJobs and

BatchExperiments. The fact that we had to use a different package for the estimation process

in the spatially regularized boosting approach might also contribute to the increased computation

time for this approach.

In order to avoid redundancy issues in the boosting algorithm, we set a factor by which the

kep-values in the multi-tissue compartment model must differ at least. We chose a factor of

5, as we know from Reich (1981) that parameters in a sum of exponentials model are highly

redundant if the exponential rates differ by less than a factor of 5, and a generalization of that

for convolved exponentials is difficult to obtain. Table 7.5 shows the influence of the choice

of this factor within the boosting algorithm on the average MSE (MSE), the estimated average

number of compartments (q̂av), and the percentage of voxels for which the correct number of

tissue compartments is estimated (qc) for alternative values of 3 and 4 for Simulation 1. From

this table, we see that the smaller the chosen factor, the larger the MSE, the larger q̂av, and the

smaller qc. However, also with factors 3 or 4, the MSE is at most as large as the MSE for the

spatial elastic net approach (cf. Table 7.3). But with factors 3 or 4, qc is considerably reduced

compared to factor 5. The influence of the chosen factor on qc with the spatial boosting approach
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is not as strong as with the voxelwise boosting approach, which is probably due to the spatial

penalization.

In order to avoid overfitting of the boosting algorithm, we used early stopping. If we run the

voxelwise boosting algorithm for example on the 10 simulated images of Simulation 1 without

early stopping, the estimated average number of tissue compartments q̂av is 2.68. With early

stopping, q̂av is 2.04 (cf. Table 7.3), which makes clear that without early stopping, the number

of compartments is clearly overestimated.

The results of the simulation studies and the application to real world DCE-MRI data indicate

that additional complexity is needed especially at tumor edges, and the Tofts model is not capable

of reflecting this complexity. Using the approaches presented, the number of compartments is

estimated per voxel. Thus, important information about the tissue heterogeneity is gained. This

can not be done with a priori fixed model architectures.

Therapy success can be assessed by performing a Wilcoxon rank sum test on the pre-

treatment and post-treatment Ktrans-values of each patient resulting from the application of vox-

elwise boosting to the DCE-MRI data of the patient.



Chapter 8

Conclusion
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8.1 Summary

In vivo imaging techniques can shed light on dynamic and structural aspects of organisms, cells

or cellular sub-compartments in biology as well as of tissues of interest in medicine.

The two imaging techniques in the focus of this thesis are FRAP, a fluorescence microscopy

technique in biology, and DCE-MRI, an imaging technique used for example in oncology. With

FRAP, the binding behavior of molecules inside organisms, cells or cellular sub-compartments

can be investigated in vivo. With DCE-MRI, the blood supply of a tissue of interest can be

recorded in vivo.

After the introduction, this thesis starts with giving some theoretical background on compart-

ment models and differential equations, nonlinear regression, and Bayesian data analysis. In the

body of this thesis, novel methods for the estimation and model selection for dynamic biomedical

images that promote image analysis in the fields of fluorescence microscopy and oncology are

proposed.

For the first imaging application in this thesis, the quantitative analysis of FRAP data, two

different hierarchical Bayesian models for parameter estimation in a compartment model have

been newly developed: a nonlinear mixed-effects model for the analysis of a series of FRAP

images (Chapter 5), and a nonlinear model for the pixelwise analysis of FRAP data (Chapter 6).

The proposed nonlinear mixed-effects model is useful for the joint analysis of data from FRAP

experiments on various similar cell nuclei, since estimates of the off-rates of the interactions the

molecules of interest are involved in are attained and the model moreover provides insight into the

variation of the off-rates in the population of cell nuclei. This is a novel approach in the field of

FRAP analysis. Although a simplified kinetic model is used, the approach can easily be adapted

to other FRAP experiments and thus promotes image analysis in fluorescence microscopy. The

evaluation of the method was done on half-nucleus FRAP data, also in comparison with different

kinds of fixed-effects models. The DIC, which served as a measure of the model fit for the

comparison of the mixed-effects model to the fixed-effects models, is lower or in approximately

the same range for the mixed-effects model in comparison to the considered models without

random effects for all considered cell cycle phases.

The proposed nonlinear model for the pixelwise analysis of FRAP data, where information

from the neighboring pixels is included into the nonlinear model for each pixel, is advantageous

in cases where the spatial structure of a cell nucleus is of interest and could thus allow a deeper

insight into the dynamic and structural aspects of cells of interest. As the evaluation of the

proposed model in a simulation study could not be realized within a reasonable time frame, this

task is left for future research.

For the second imaging application in this thesis, the quantitative analysis of DCE-MRI of the

breast, an estimation and model selection approach based on boosting, with which the number

of compartments in the compartment model that is applied at the voxel level is flexible, has

been newly developed (Chapter 7). With this approach, data-driven model choice and parameter

estimation for DCE-MRI data can be done. The advantages of data-driven and model-based

approaches are unified in this approach, as the number of compartments is estimated from the

data for each voxel of an image, but the parameters still remain interpretable. In a simulation
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study and in an application to DCE-MRI data, the proposed boosting approach outperforms all

considered competing methods with respect to the correct localization of the tumor, the spatial

homogeneity of the estimated number of compartments across the image, and the definition of

the tumor edge. Moreover, with a Wilcoxon rank sum test, therapy success could be assessed in

the framework of a breast cancer study. For these reasons, the approach promotes image analysis

in oncology.

8.2 Discussion

As each chapter in the body of this thesis contains an independent discussion, we now focus on

some general topics concerning the applications in this thesis.

Discussion on compartment models

All newly developed methods presented in this thesis are based on compartment models.

In the FRAP applications in Chapters 5 and 6, a compartment model with a fixed number of

compartments is assumed. In Chapter 7, the number of compartments in the compartment model

is chosen data-driven.

In compartmental modeling, several general assumptions can be made (Tofts, 1997; Sommer,

2013), and some of them will be discussed in the following. One of the assumptions that applies

for all compartment models considered in this thesis is time invariance, which means that the

parameters in a compartment model are assumed to be constant during the time of data acqui-

sition (Tofts, 1997; Sommer, 2013). For the compartment models considered in this thesis, this

assumption concerns the rates of exchange between the compartments. Though we can imagine

that the exchange properties in a compartment model may change over a longer period, for the

relatively short period of image acquisition, it seems reasonable to make this assumption.

Another assumption generally made in a compartmental model is that the compartments are

well-mixed and homogeneous (Tofts, 1997; Sommer, 2013). In the case that this condition is not

fulfilled for a simple compartment model with a small number of compartments, it may be neces-

sary to increase the number of compartments in the model, and therefore, to use a more complex

compartment model. The results of the simulation study and the application of the boosting ap-

proach to real world DCE-MRI data in Chapter 7 for example indicated that in tumorous tissue,

complex compartment models are needed especially at tumor edges, and less complex models

like the Tofts model are not capable of reflecting this complexity. By choosing the number of

compartments in a data-driven way as done in Chapter 7, strong deviation from the assumption

of well-mixed and homogeneous compartments is avoided. Another way to prevent strong devia-

tion from this assumption is to use a high image resolution, i.e., to define a compartment model at

the pixel or the voxel level rather than for a region of interest. This was done in the applications

in Chapters 6 and 7 of this thesis. For a high image resolution, the assumption of well-mixed and

homogeneous compartments is more likely valid than for a low image resolution, in particular

for compartment models with a small number of compartments, and therefore, models with a

reasonable number of compartments can be used.
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Discussion on the used estimation methods

Another characteristic that the newly developed methods presented in this thesis have in

common is that they all use nonlinear regression.

In Chapters 5 and 6, Bayesian approaches are proposed in order to estimate the parameters

in nonlinear regression models. By using a Bayesian approach, consistency problems by speci-

fying starting values are avoided. Moreover, convergence issues that can occur with algorithms

for nonlinear model fitting in a frequentist framework do usually not arise with a Bayesian ap-

proach. Another advantage of Bayesian models is that they are very flexible. This advantage

was for example exploited in Chapter 5, where mixed-effect priors on nonlinear parameters were

incorporated into a nonlinear regression model. Bayesian approaches are, however, in general

computationally more demanding than frequentist estimation approaches. For the Bayesian in-

ference in Chapters 5 and 6, MCMC simulations are done. These are associated with a high

computational effort. An alternative to MCMC inference would be to approximate the posterior

distribution analytically. Analytical approximation methods are, however, mostly not of suffi-

cient accuracy for a moderate or high number of parameters that have to be estimated, and it

is difficult to numerically compute the associated Hessian matrices (Carlin and Louis, 2009).

In structured additive regression models that include, among others, (generalized) linear mod-

els and (generalized) additive models, Integrated Nested Laplace Approximation (INLA) can be

used instead of MCMC sampling (Rue et al., 2009). Thereby, the computational effort can be re-

duced. With the nonlinear regression models used in this thesis, however, INLA can not be used.

Bayesian inference could be done without any problems for the proposed nonlinear mixed-effects

model in Chapter 5. For the nonlinear model at the pixel level in Chapter 6, however, Bayesian

inference could not be carried out satisfactorily, and the intended evaluation of the method in the

framework of a simulation study could not be done successfully.

In Chapter 7, an estimation and model selection approach based on boosting is proposed,

and we therefore are in a frequentist setting. In order to reduce the computational effort that

usually results from fitting a model several times using a great number of starting values, a

suitable algorithm and an adequate number of initial guesses for the optimization in the boosting

algorithm was determined in a benchmark experiment. In accordance with the results of this

experiment, a Levenberg Marquart algorithm with a small number of starting values was then

used for this optimization. Convergence issues did not occur in our application.

Bayesian and frequentist approaches differ moreover substantially in the interpretation of

estimation results. Whereas parameter estimation in a frequentist framework usually results

in point estimates and corresponding confidence intervals, parameter estimation in a Bayesian

framework is based on the posterior distribution of the parameters (Gilks et al., 1996), from

which for example point estimates and credibility regions can be computed.
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Discussion on the software in this thesis

The majority of the program code used in the approaches in this thesis was newly devel-

oped in the programming languages R and C. Two R packages were built based on that code.

Most of the code used in Chapters 5 and 6 was written in C, because especially for the parts of the

code containing Gibbs and MH-updates of the parameters of the nonlinear model this resulted

in a remarkable reduction in runtime. The analyses in Chapter 7 could be done completely in

R. Parts of the codes used for the analyses in Chapters 6 and 7 of this thesis were moreover

parallelized in R or C. In general, by a proper parallelization of program code, the runtime of

a program is reduced, and it therefore usually allows the fast execution of a program – in this

thesis a program written in R or C – even if complex parameter updates have to be done. This

applies for the DCE-MRI application in Chapter 7. For the FRAP application in Chapter 6,

however, we reached our limits regarding computation time despite the parallelization of parts

of the program code in C. The proposed Bayesian hierarchical model could not be evaluated in

the framework of a simulation study in a reasonable time frame. Therefore, this task is left for

future research.

8.3 Outlook

In each chapter of the body of this thesis, a newly developed method for parameter estimation

solely or parameter estimation and model choice in nonlinear regression is presented that has

been tailor-made for an application in dynamic biomedical imaging. More specifically, this the-

sis provides two new methods that can be used in image analysis in FRAP and in DCE-MRI

applications, respectively (Chapters 5 and 7). Therefore, the methods proposed in Chapters 5

and 7 of this thesis promote image analysis in oncology and fluorescence microscopy, as they

open up new possibilities for image analysis in these fields.

In the future, it would be desirable that the implementation of an algorithm that tackles the

problem described in the FRAP application in Chapter 6 within a reasonable time frame could

be realized in order to be able to further study the binding behavior of molecules taking the

spatial structure of cell nuclei into consideration. This could for example allow the location of

binding sites of molecules of interest in a cell nucleus and would therefore further promote image

analysis in FRAP applications.
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Full conditional distributions
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a0 | · ∼ N

(

m

v
,
1

v

)

,with v =
∑

J
j=1 Tj

σ2
,

m =
J

∑
j=1

Tj

∑
i=1

−C j(ti)+1−α0 j −∑
K
k=1 ak j exp(−boff

k j ti)

σ2
.

α0 j | · ∼ N





m

v+ 1

τ2
α0

,
1

v+ 1

τ2
α0



 ,with v =
Tj

σ2
,

m =
Tj

∑
i=1

1−C j(ti)−a0 −∑
K
k=1 ak j exp(−boff

k j ti)

σ2
.

τ2
α0

| · ∼ IG(c0 +
J

2
,
1

2

J

∑
j=1

α2
0 j +d0)

p(boff
k | ·) = p(exp( fk) | ·) ∝

J

∏
j=1

Tj

∏
i=1

exp

(

− 1

2σ2
(C j(ti)− (1−a0 j −

K

∑
k=1

ak j exp(−exp( fk)exp(φk j)ti)))
2

)

p(β off
k j | ·)= p(exp(φk j) | ·)∝

Tj

∏
i=1

(

exp

(

− 1

2σ2
(C j(ti)− (1−a0 j −

K

∑
k=1

ak j exp(−exp( fk)exp(φk j)ti)))
2

))

· 1

τβ off
k

√
2π exp(φk j)

exp(− 1

2τ2
β off

k

φ 2
k j)

τ2
αk

| · ∼ IG(ck +
J

2
,
1

2

J

∑
j=1

α2
k j +dk)

τ2
β off

k

| · ∼ IG(ek +
J

2
,
1

2

J

∑
j=1

φ 2
k j +gk)

σ2 | · ∼ IG(a+
1

2

J

∑
j=1

Tj,b+
1

2

J

∑
j=1

Tj

∑
i=1

(C j(ti)− (1−a0 j −
K

∑
k=1

ak j exp(−boff
k j ti)))

2)



103

If K = 1:
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Full conditional distributions

Pixel-specific parameters:
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Results of the simulation study - Additional figures
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Figure C.1: Results of Simulation 1 for the second of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.



109

True Tofts Elastic net Elastic net

voxelwise spatial

q̂

0

1

2

3

4

5

M
S

E
i/

1
0
−

4

0

5

10

15

≥ 20

Boosting Boosting

voxelwise spatial

q̂

0

1

2

3

4

5

M
S

E
i/

1
0
−

4

0

5

10

15

≥ 20

Figure C.2: Results of Simulation 1 for the third of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.3: Results of Simulation 1 for the fourth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.4: Results of Simulation 1 for the fifth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.5: Results of Simulation 1 for the sixth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.6: Results of Simulation 1 for the seventh of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.7: Results of Simulation 1 for the eighth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.8: Results of Simulation 1 for the ninth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.9: Results of Simulation 1 for the tenth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.10: Results of Simulation 2 for the first of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.11: Results of Simulation 2 for the second of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.12: Results of Simulation 2 for the third of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.13: Results of Simulation 2 for the fourth of the 10 simulated images: Estimated num-

ber of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.14: Results of Simulation 2 for the fifth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.15: Results of Simulation 2 for the sixth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.16: Results of Simulation 2 for the seventh of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.17: Results of Simulation 2 for the eighth of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.18: Results of Simulation 2 for the ninth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.19: Results of Simulation 2 for the tenth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.20: Results of Simulation 3 for the first of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.21: Results of Simulation 3 for the second of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.22: Results of Simulation 3 for the third of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.23: Results of Simulation 3 for the fourth of the 10 simulated images: Estimated num-

ber of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.24: Results of Simulation 3 for the fifth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.



132 C. Appendix to Chapter 7

True Tofts Elastic net Elastic net

voxelwise spatial

q̂

0

1

2

3

4

5

M
S

E
i/

1
0
−

4

0

5

10

15

≥ 20

Boosting Boosting

voxelwise spatial

q̂

0

1

2

3

4

5

M
S

E
i/

1
0
−

4

0

5

10

15

≥ 20

Figure C.25: Results of Simulation 3 for the sixth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.26: Results of Simulation 3 for the seventh of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.27: Results of Simulation 3 for the eighth of the 10 simulated images: Estimated

number of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.28: Results of Simulation 3 for the ninth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.
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Figure C.29: Results of Simulation 3 for the tenth of the 10 simulated images: Estimated number

of tissue compartments q̂ and MSE for each voxel of the image.



Bibliography

Ah-See, M.-L., A. Makris, N. Taylor, R. Burcombe, M. Harrison, J. Stirling, P. Richman,

M. Leach, and A. Padhani (2004). Does vascular imaging with MRI predict response to

neoadjuvant chemotherapy in primary breast cancer? Journal of Clinical Oncology (Meet-

ing Abstracts) 22(14S), 582.

Ahearn, T., R. Staff, T. Redpath, and S. Semple (2005). The use of the Levenberg-Marquardt

curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data. Physics in Medicine

& Biology 50(9), N85–N92.

Anderson, D. H. (1983). Compartmental Modeling and Tracer Kinetics. Berlin, Heidelberg,

Germany, New York, USA, Tokyo, Japan: Springer-Verlag.

Bates, D. and D. G. Watts (1988). Nonlinear regression analysis and its applications. New York,

USA: Wiley.
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