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1 Einleitung 

1.1 Das humane duktale Pankreasadenokarzinom 
Das humane duktale Pankreasadenokarzinom (PaCa) ist einer der tödlichsten 

soliden Tumoren weltweit. Trotz der bedeutenden Fortschritte in der Diagnostik und 

Erkennung des PaCa, die in den letzten Jahren gemacht wurden, und der 

Entwicklung des Verständnisses über die molekularen und zellulären Mechanismen, 

die bei dem Zustandekommen des PaCa eine bedeutende Rolle spielen, besteht 

immer noch ein Mangel an erfolgreichen therapeutischen Ansätzen. Das schlechte 

Ansprechen auf Medikamente und vorherrschende Therapieresistenzen im PaCa 

stellen auch die moderne Medizin immer wieder vor neue Herausforderungen. 

Um die Situation von betroffenen Patienten zu verbessern, wird auch weiterhin an 

neuen, erfolgsversprechenden Behandlungsmethoden, wie beispielsweise 

Immuntherapien, geforscht. Das Ziel ist es, einen längerfristigen Erfolg in der 

Bekämpfung des PaCa zu erwirken, weshalb unser Verständnis über die 

Immunologie und die Pathophysiologie dieses Karzinoms im Speziellen verbessert 

werden soll und muss. 

1.1.1 Anatomie des Pankreas 
Das Pankreas ist ein 13-15cm langes, keilförmiges Gebilde, welches sich anatomisch 

in folgende drei Abschnitte gliedert: Caput pancreatis, Corpus pancreatis und Cauda 

pancreatis, wobei der Pankreaskopf den breitesten Teil ausmacht. Das Pankreas ist 

retroperitoneal auf Höhe des 2. Lendenwirbels zwischen Magen und der Aorta und 

Vena cava inferior gelegen. Seine zwei Ausführungsgänge, der Ductus pancreaticus 

und der Ductus choledochus münden auf der Papilla duodeni major und stehen somit 

mit dem Duodenum in Verbindung [1]. 

Das Pankreas besitzt sowohl exokrine, als auch endokrine Funktionen. Bei dem 

exokrinen Anteil handelt es sich um eine rein seröse Drüse, welche viele 

verschiedene Verdauungsenzyme sezerniert und über den Ductus pancreaticus in 

das Duodenum abgibt. Den endokrinen Anteil machen die sog. Langerhans-Inseln 

aus, welche sich aus endokrinen Epithelzellen zusammensetzen. Sie produzieren 

Hormone, wie Insulin und Glucagon und regulieren damit den Blutzuckerspiegel [1]. 

Das Pankreas übernimmt somit eine wichtige Rolle im gesunden Organismus, ist 

jedoch oft auch Ziel von verschiedenen Erkrankungen.  
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Abbildung 1.1.1-1 Anatomische Lage des Pankreas; modifizierte Abbildung aus: [2] 

 

1.1.2 Epidemiologie 
Das PaCa ist eines der aggressivsten humanen Neoplasien und laut einer aktuellen 

Studie der American Cancer Society aus dem Jahre 2012 die viert häufigste 

Krebstodesursache bei Erwachsenen. Häufiger anzutreffen sind nur noch Lungen- 

und Bronchialkrebs, gefolgt von Prostatakrebs beim Mann bzw. Brustkrebs bei der 

Frau und dem an dritter Stelle stehenden Darmkrebs. Aufgrund der sehr schlechten 

Prognose beträgt die 5-Jahres-Überlebensrate der PaCa-Patienten geschätzte 6%. 

Die Inzidenz beim Erwachsenen beläuft sich in den USA im Jahre 2012 

schätzungsweise auf ca. 12 Neuerkrankungen je 100.000 Einwohner (mit 43.920 

Neuerkrankungen und 37.390 Todesfällen) [3]. 

Laut einer aktuellen Publikation des Robert-Koch-Instituts (RKI) erkrankten im Jahr 

2010 rund 477.300 Menschen in Deutschland neu an Krebs, davon über 16.000 am 

PaCa [4, 5]. 

Die Ursachen der Entstehung dieser Erkrankung sind noch nicht vollständig 

erforscht, jedoch können durch statistische Auswertungen epidemiologischer Daten 

Vermutungen geäußert werden. 
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1.1.3 Ätiologie 
Epidemiologische Daten deuten unter anderem darauf hin, dass Umweltfaktoren eine 

große Rolle spielen. Der stärkste Risikofaktor, der von der Umwelt ausgeht, ist der 

Konsum von Zigaretten. In einer Metaanalyse von 82 Studien wurde gezeigt, dass 

das Risiko ein PaCa zu entwickeln bei Rauchern um 75% erhöht ist. Auch schwerer 

Alkoholabusus wird mit einem erhöhten Risiko in Verbindung gebracht [6]. 

Das Alter spielt mit einem medianen Alter von 72 Jahren zum Diagnosezeitpunkt 

ebenfalls eine bedeutende Rolle als Risikofaktor. Patienten unter 50 Jahren 

unterliegen einem geringen Risiko ein PaCa zu entwickeln (10,4 von 100.000), 

jedoch kommt es dann zu einem starken Anstieg bei einem Alter von 75-79 Jahren 

(73,5 von 100.000) und nimmt mit steigendem Alter weiterhin zu [6]. Als weiterer 

bedeutender demografischer Faktor gilt das Geschlecht. In den USA konnte gezeigt 

werden, dass Männer (13,5 von 100,000) einem höheren Risiko unterliegen an 

einem PaCa zu erkranken als Frauen (10,8 von 100,000) [6]. 

Übergewicht (erhöhter BMI = body mass index) bzw. Fettleibigkeit -bei Männern mit 

einem BMI >35 und bei Frauen mit einem BMI >40- wird ebenfalls als ein Risikofaktor 

für das Erkranken an einem PaCa gesehen, was unter anderem in mehreren großen 

Studien bewiesen werden konnte [7-9]. Übergewicht wird zudem als erhöhter 

Risikofaktor für Diabetes mellitus gezählt. Obwohl aufgrund epidemiologischer 

Studien die Theorie eines Zusammenhangs von Diabetes mellitus mit der 

Entwicklung eines PaCa existiert, variieren die Ergebnisse deutlich nach Länge der 

Zeit zwischen der Diagnose eines PaCa und der des Diabetes [6]. Als weitere 

Vorläufererkrankung wird eine chronische Pankreatitis mit dem erhöhten Risiko, ein 

PaCa zu entwickeln, in Verbindung gebracht [10]. Es konnten viele 

Wachstumsfaktoren sowie pro- und antiinflammatorische Zytokine bei einer 

chronischen Pankreatitis nachgewiesen werden, welche ebenso im Mikromilieu des 

PaCa vorkommen und das Tumorwachstum unterstützen. Dies lässt die Vermutung 

zu, dass bei einer chronischen Pankreatitis und bei der Tumorentwicklung ähnliche 

Mechanismen eine Rolle spielen und damit das Tumorrisiko durch eine chronische 

Pankreatitis erhöht wird [11]. 

Des Weiteren wird bei 5-10% der PaCa-Patienten eine vererbte genetische 

Prädisposition für ein erhöhtes Risiko, einen Pankreastumor zu entwickeln, erwogen. 

Hier werden eine erbliche Pankreatitis, das Peutz-Jeghers Syndrom, das FAMMM- 



Einleitung 

 

4 
 

Syndrom (Familiäres atypisches multiples Muttermal- und Melanomsyndrom) und 

das HNPCC (Hereditäres non-polypöses kolorektales Karzinom) oder auch Lynch-

Syndrom genannt [12]. Besonders häufig wurden bei PaCa-Patienten Mutationen 

des KRAS-Onkogens und der Tumorsuppressorgene p53 und p16 beobachtet [13, 

14]. Außerdem werden als wichtige Faktoren Mutationen in der Keimbahn diskutiert. 

Hierbei spielen die Tumorsuppressorgene BRCA1 und BRCA2 (BReast CAncer 1 

und 2), welche für ein erhöhtes Risiko an Brust- und Ovarialkrebs zu erkranken, 

verantwortlich sind, eine wichtige Rolle. Diese Mutationen können auch zu der 

Entstehung eines PaCa führen [6]. 

Ungeachtet der Ätiologie ist das PaCa durch seine kaum wahrzunehmenden 

Symptome erst sehr spät erkennbar. Einige Anzeichen sind aber bei genauerer 

Betrachtung dem PaCa zuzuordnen und sollen im folgenden Abschnitt näher 

beleuchtet werden. 

1.1.4 Symptome 
Die hohe Mortalitätsrate beim PaCa ist darauf zurückzuführen, dass die Diagnose bei 

der überwiegenden Mehrheit an Patienten aufgrund der unspezifischen Symptomatik 

erst in einem fortgeschrittenen Stadium gestellt wird. Oft ist es dann bereits zur 

Ausbildung von Metastasen gekommen und die Patienten befinden sich in einem 

inoperablen Zustand [14]. 

Typische Symptome sind dann Oberbauch- und mittlere Rückenschmerzen, 

Gewichtsverlust und Ikterus. Der Gewichtsverlust kann auf Anorexie, eine 

Maldigestion aufgrund einer Obstruktion des Pankreasganges und auf Kachexie 

zurückgeführt werden. Der Ikterus wird ebenfalls mit der Verengung bzw. Obstruktion 

des Gallenganges in Verbindung gebracht.  Zudem kann es zu einer tiefen oder 

oberflächlichen Venenthrombose kommen, was charakteristisch für das 

Vorhandensein einer bösartigen Krankheit sein kann. Gelegentlich tritt im 

fortgeschrittenen Stadium Übelkeit und Erbrechen auf [15].  

Diese unspezifische Symptomatik erschwert eine frühzeitige Diagnosestellung 

erheblich. 

1.1.5 Diagnose 
Für die Erstellung einer Diagnose können mehrere Möglichkeiten herangezogen 

werden. Zu den diagnostischen Standards gehört neben der Erhebung der 
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Anamnese und der Untersuchung des Patienten auch der abdominale Ultraschall. 

Dieser bietet sich zur primären Orientierung zwar an, erlaubt jedoch aufgrund seiner 

geringen diagnostischen Sensitivität im Falle des PaCa keine sichere Diagnose [15]. 

Als Mittel der Wahl gilt die dreidimensionale Darstellung durch die 

Computertomographie (CT), womit mit einer Wahrscheinlichkeit von 80% die 

mögliche Resezierbarkeit des Tumors festgestellt werden kann. Sollten Patienten die 

intravenöse Initiierung des Kontrastmittels für die CT nicht vertragen, kann eine 

Magnet-Resonanz-Tomographie (MRT) herangezogen werden [16]. 

Eine weitere Möglichkeit ein PaCa zu diagnostizieren, ist die endoskopische 

retrograde Cholangiopankreatikographie (ERCP). Hierbei besteht auch die 

Möglichkeit einer Probenentnahme z.B. durch eine Feinnadelaspiration für eine 

Zytologie [16]. 

Die Positron-Emissions-Tomographie (PET) wird nicht zur Routinediagnostik 

herangezogen, kann aber zum Nachweis von Metastasen dienen. Des Weiteren 

können mittels Röntgenaufnahmen des Thorax bzw. einer CT des Thorax ebenfalls 

Metastasen in der Lunge nachgewiesen werden [16]. 

Der Serum-Tumormarker CA 19-9 stellt eine weitere Option dar, um den Verlauf bzw. 

das Fortschreiten des PaCa zu dokumentieren, weist jedoch für eine erste Diagnose 

keine überzeugende Sensitivität und Spezifität auf  [16]. 

Beim sog. Staging können die Patienten bzw. deren Tumoren in verschiedene 

Entwicklungsstadien eingeteilt werden. Von primär resezierbar spricht man, wenn der 

behandelnde Arzt eine R0-Resektion vornehmen kann, das heißt der Tumor kann im 

Gesunden entfernt werden und histopathologisch ist kein Tumorgewebe im 

Resektionsrand mehr nachweisbar. Dies trifft bei etwa 10% der Patienten zu und es 

ist mit einer medianen Überlebenszeit von 17-23 Monaten zu rechnen. Als nächstes 

Stadium wird borderline resezierbar bzw. potentiell sekundär resezierbar 

beschrieben, d.h. bei diesen Patienten besteht ein deutlich erhöhtes Risiko einer R1- 

bzw. R2-Resektion. Von R1-Resektion spricht man, wenn der Tumor zwar entfernt 

werden kann, jedoch mikroskopisch noch Tumoranteile im Resektionsrand zu finden 

sind. Bei der R2-Resektion bleiben makroskopisch Tumoranteile zurück. Dieses 

Stadium tritt ebenfalls bei ca. 10% der Patienten mit einer medianen Überlebenszeit 

von 20 Monaten auf. Bei 30% der Patienten ist der Tumor zum Diagnosezeitpunkt 

bereits lokal fortgeschritten bzw. nicht resezierbar und die mediane Überlebenszeit 
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liegt zwischen 8-14 Monaten. Im letzten Stadium ist es bereits zur Ausbildung von 

Metastasen gekommen, sodass nur noch mit einer medianen Überlebenszeit von 4-6 

Monaten zu rechnen ist [16]. 

Abhängig von der Diagnose und diesem Staging kann folglich über mögliche 

Therapien nachgedacht werden. Im nächsten Abschnitt soll genauer auf die aktuell 

bestehenden Therapiemöglichkeiten eingegangen werden. 

1.1.6 Therapie und Prognose 
Gegenwärtig gilt als einzig vernünftige Chance für ein längerfristiges Überleben die 

radikale chirurgische Resektion als kurative Therapiemöglichkeit. Diese 

Behandlungsmethode kommt jedoch nur bei annähernd 20% der Patienten in Frage, 

bei denen sich das vorhandene Tumorgewebe auf das Pankreas begrenzt [17]. Um 

das Risiko eines Rezidivs zu verhindern, besteht danach die Möglichkeit einer 

adjuvanten Chemotherapie. In den meisten Fällen jedoch werden die Patienten in 

einem fortgeschrittenen Krankheitsstadium vorgestellt, entweder lokal fortgeschritten 

(keine R0 Resektion mehr möglich) oder bereits mit Metastasenbildung (60%) [18]. 

Für diese Patienten besteht die Möglichkeit einer neoadjuvanten Therapie oder 

palliativer Maßnahmen. 

1.1.6.1 Chirurgische Resektion 
Über viele Jahre lang galt die klassische, in einem Schritt durchgeführte, 

Pankreatikoduodenektomie, welche erstmalig durch Kausch und Whipple 

beschrieben wurde, als Goldstandard [19, 20]. Sie beinhaltet sowohl die Entfernung 

des Pankreaskopfes und einen Teil des Pankreaskörpers als auch des Duodenums, 

eine partielle Entfernung des Magens, die Entnahme des distalen Gallenganges 

einschließlich der Gallenblase und des proximalen Jejunums. Zusätzlich kommt es 

zu einer enbloc-Resektion der regionären Lymphknoten. 

Wie jedoch in einigen Studien gezeigt werden konnte, erwies sich die 

pyloruserhaltende Pankreatikoduodenektomie -bezüglich der perioperativen 

Sterblichkeit und des langfristigen Erfolgs- als geeigneter [21-23]. Der Vorteil hierbei 

liegt darin, dass durch den Erhalt des Magens auch die physiologische 

gastrointestinale Motorik bestehen bleibt. 

In der Literatur werden weitere Operationsmöglichkeiten und Modifikationen zuvor 

beschriebener Methoden diskutiert, wie zum Beispiel die distale Pankreatektomie, 
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welche bei Tumoren im Pankreaskörper oder –schwanz herangezogen wird, sowie in 

seltenen Fällen eine segmentale Resektion, worauf jedoch hier im Speziellen nicht 

genauer eingegangen wird [24, 25].  

1.1.6.2 Neoadjuvante Therapie 
Wie bereits erwähnt, wird bei der Mehrzahl an Patienten die Diagnose des PaCa erst 

in einem fortgeschrittenen Stadium gestellt und damit der Tumor als inoperabel 

erachtet. Das Ziel der neoadjuvanten Therapie basiert darauf, durch eine 

entsprechende Behandlung -mittels Chemoradiotherapie oder Chemotherapie allein- 

vor dem operativen Eingriff die Größe des Tumors so zu minimieren, dass eine  

R0-/R1-Resektion ermöglicht wird. 

Es wurde gezeigt, dass bei Patienten mit lokal fortgeschrittenem oder borderline  

resezierbarem PaCa nach dem Erhalten einer neoadjuvanten Therapie in 40% der 

Fälle eine R0/R1-Resektion herangezogen werden konnte [26]. 

1.1.6.3 Adjuvante Therapie 
Bei der adjuvanten Therapie handelt es sich -wie der Name bereits sagt- um eine 

unterstützende Therapiemaßnahme. Sie erfolgt nach vollständiger chirurgischer 

Resektion, um einem Rezidiv vorzubeugen bzw. eventuell bereits vorhandenen 

Mikrometastasen entgegen zu wirken.  

ESPAC-1 ist die erste international veröffentlichte Studie der European study group 

for pancreatic cancer, welche gezeigt hat, dass die Anwendung von adjuvanter 

Chemotherapie das Überleben der Patienten nach einer chirurgischen Resektion 

eines PaCa deutlich verbessert. Allerdings konnte auch gezeigt werden, dass eine 

postoperative Chemoradiotherapie im Vergleich mit einer Chemotherapie zu keiner 

Besserung verhalf, sondern sogar eine höhere toxische Wirkung hatte [27]. 

In den 50er Jahren galt das Pyrimidinanalogon 5-Fluorouracil (5-FU) als das Mittel 

der Wahl zur Therapie eines PaCa. Wie durch Pliarchopoulou beschrieben [28], 

erzielten Kombinationstherapien mit 5-FU verglichen mit unbehandelten Patienten zu 

einem besseren Überlebenserfolg (33 zu 15 Wochen). Jedoch konnte auch gezeigt 

werden, dass Kombinationen mit 5-FU gegenüber der alleinigen Gabe von 5-FU 

keine Vorteile erbrachten. 

Seit 1996 findet das Chemotherapeutikum Gemcitabine -durch die Food and Drug 

Administration (FDA) genehmigt- als Monotherapeutikum Verwendung. In einer 
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Phase-III-Studie namens CONKO-001 wurde gezeigt, dass die postoperative Gabe 

von Gemcitabin die 5-Jahres-Überlebensrate von 9% auf 21% verbessert, verglichen 

mit Patienten, die keiner Behandlung unterzogen wurden [29]. 

ESPAC-3 ist eine Studie, die verdeutlichte, dass die Gabe von Gemcitabine im 

Vergleich mit 5-FU-Bolus nach kompletter Resektion zwar keinen deutlichen 

Unterschied in der medianen Überlebenszeit (23,6 zu 23 Monaten) erbrachte, jedoch 

wies Gemcitabine die geringere Toxizität als 5-FU auf [29]. 

Heinemann et al. zeigte in einer Meta-Analyse von über 15 Studien, dass ein 

signifikanter Überlebenserfolg bei der Anwendung von Kombinationstherapien 

verglichen mit Gemcitabine als Monotherapeutikum erzielt werden konnte. Hierbei 

wurden Gemcitabine entweder mit einem Platinumderivat oder einem Fluoropyrimidin 

kombiniert. Dieser Überlebensvorteil konnte jedoch nur bei Patienten mit einem 

guten Allgemeinbefinden festgestellt werden [30].  

1.1.6.4 Palliative Therapie 
Patienten mit lokal fortgeschrittenen oder schon metastasierten PaCa bedürfen, 

vorausgesetzt ihr Allgemeinzustand lässt es zu, einer palliativen 

Behandlungsmethode, um die Krankheitssymptome der Patienten zu lindern. Sofern 

der Tumor als primär inoperabel gilt, es sich um ein Rezidiv handelt oder Metastasen 

vorhanden sind, besteht die Möglichkeit der Verabreichung einer systemischen 

Chemotherapie. Dies soll zu einer Verlängerung der Überlebenszeit und zu einer 

Verbesserung der Symptomatik und damit der Lebensqualität führen. 

Studien aus den 1990er Jahren haben ergeben, dass das Nukleosidanalogon 

Gemcitabine im Vergleich zu 5-FU eine bessere Wirksamkeit aufweist. In einer 

Phase-III-Studie wurde unter anderem gezeigt, dass die mediane Überlebensdauer 

durch Gemcitabine (5,65 Monate) im Vergleich zu 5-FU (4,41 Monate) und die  

1-Jahres-Überlebensrate durch Gemcitabine mit 18% zu 5-FU mit 2% deutlich 

gesteigert werden konnte [31]. 

Als relativ neu und erfolgreich gilt die Kombinations-Chemotherapie FOLFIRINOX, 

bestehend aus den folgenden vier Komponenten: Leukovorin, 5-FU, Irinotecan und 

Oxaliplatin. In der sog. ACCORD-Studie aus dem Jahre 2010, einer Phase-III-Studie, 

wurde ein erstaunlicher Erfolg in der medianen Gesamtüberlebenszeit von 11,1 

Monaten bei der Verabreichung von FOLFIRINOX verglichen mit 6,8 Monaten in der 
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Gruppe der Gemcitabine Patienten nachgewiesen. Des Weiteren bestand auch ein 

deutlich höheres Ansprechen der Patienten auf die FOLFIRINOX-Therapie, als die 

auf Gemcitabine (31,6% zu 9,4%). Zusammenfassend konnte somit ein besserer 

Überlebenserfolg mit dieser Therapie erzielt werden. Jedoch wurde auch eine höhere 

Hämatoxizität festgestellt, sodass FOLFIRINOX nur bei Patienten mit gutem 

Allgemeinbefinden eingesetzt werden kann [29]. 

Für eine erfolgreiche Therapie spielt die richtige und frühzeitige Diagnose eine sehr 

wichtige Rolle. Hierfür sind pathologische Untersuchungen und Kenntnisse über den 

jeweiligen Tumor von großer Bedeutung und oft ausschlaggebend für die weitere 

Behandlung. 

1.1.7 Pathologie  
Mit über 80% ist das PaCa die am häufigsten diagnostizierte Neoplasie gemessen an 

allen neoplastischen Erkrankungen des Pankreas [12]. Zusätzlich treten mit einer 

prozentualen Minderheit unter anderem Azinuszell- und Zystadenokarzinome des 

exokrinen Pankreas auf. 

Über die Lokalisation der duktalen Pankreasadenokarzinome ist bekannt, dass sie 

bei rund 75% im Pankreaskopf vorzufinden sind. Bei 15-20% befinden sie sich im 

Körper des Pankreas und bei 5-10% im Schwanz des Pankreas [12].  

Rezidive betreffend, treten schätzungsweise 75% lokal im Tumorbett wieder auf oder 

lokoregional im Abdomen mit gleichzeitigen Fernmetastasen bei 50-80%. Diese 

Fernmetastasen sind in 38-73% in der Leber, in 34-87% im Retroperitoneum, in  

19-53% im Peritoneum und in 8-29% in der Lunge zu beobachten [32]. 

1.2 Das duktale Pankreasadenokarzinom beim Tier 
Bislang ist das PaCa beim Tier leider nur sehr dürftig erforscht worden. Ein Grund 

hierfür ist sicherlich die Seltenheit des Auftretens und vor allem des Erkennens der 

Krankheit, da die unspezifische Symptomatik auch beim Tier auftritt und hier insofern 

ein größeres Problem als beim Menschen darstellt, als dass Tiere ihre Schmerzen 

und Symptome für gewöhnlich verbergen bzw. sie uns Menschen nicht direkt 

mitteilen können. Übliche Symptome sind Lethargie, Anorexie, Erbrechen, 

abdominale Schmerzen und Gewichtsverlust. Auch zu einem Ikterus kann es in 

Folge von Cholestase oder Lebermetastasen kommen [33]. 
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Das Auftreten eines Tumors im Pankreas gilt bei Tieren als äußerst ungewöhnlich. 

Dennoch tritt das PaCa am häufigsten von allen Tumorerkrankungen im Pankreas 

auf und konnte in einer Studie bei allen sechs Hauptspezies der Haussäugetiere 

diagnostiziert werden [34]. Am häufigsten wurde von Hunden mit ca. 140 Fällen und 

Katzen mit ca. 50 Fällen berichtet, seltener waren Rinder oder Pferde betroffen. 

Einzelfälle gab es beim Schwein und Schaf [34].  

Die Inzidenz des PaCa beläuft sich beim Hund auf schätzungsweise 1%, bezogen 

auf alle Tumorarten und analog zum Menschen nimmt sie auch beim Tier mit dem 

steigenden Alter zu. Das Durchschnittsalter beim Auftreten bzw. bei der 

Diagnosestellung liegt beim Hund bei etwa 10 Jahren und bei der Katze bei 12 

Jahren [34]. Des Weiteren konnte festgestellt werden, dass weibliche Hunde häufiger 

betroffen sind. Es scheint, dass Katzen hingegen keine Geschlechterspezifität 

aufweisen [33, 34]. In der Cancer Research aus dem Jahre 1974 wurde zusätzlich 

eine Rassedisposition für den Airdale Terrier und den Boxer beschrieben. Beim 

Boxer sollte jedoch hinzugefügt werden, dass er allgemein deutlich überrepräsentativ 

in Sachen Tumorerkrankungen ist [35]. 

Am häufigsten sind bei Hunden die Tumoren am duodenalen Schenkel des Pankreas 

vorzufinden, was eine Parallele zum Menschen aufzeigt, da er mit dem Pankreaskopf 

vergleichbar ist [34]. 

Im Vergleich zu den Menschen, werden bei den Tieren weniger Mittel zur 

Diagnosestellung herangezogen. Eine Umfangsvermehrung im Bereich des 

Pankreas kann eventuell durch abdominale Palpation, Sonographie oder Röntgen 

festgestellt werden. Zusätzlich sollte nach Möglichkeit mittels Laparoskopie und 

Biopsie eine histopathologische und zytologische Untersuchung davon durchgeführt 

und eine Untersuchung auf das Bestehen von Metastasen eingeleitet werden [33, 

36]. 

Auch die Therapiemöglichkeiten sind in der Veterinärmedizin begrenzt. Als 

erfolgreiche chirurgische Operationsmethode wird in einem Fall eine partielle 

Pankreatektomie mittels eines bipolaren Gefäßversiegelungsgerätes beschrieben 

[37]. Als palliative Maßnahmen werden eine Schmerztherapie und die Gabe eines 

Antiemetikums empfohlen. Zusätzlich sollte eine entsprechende Diät verabreicht 

werden. Die Überlebenszeit kann durch die Entfernung des Primärtumors verlängert 

werden, sofern es noch zu keiner Metastasenbildung gekommen ist. Jedoch sollte 
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hinzugefügt werden, dass das PaCa auch beim Tier mit einer sehr schlechten 

Prognose einhergeht und die meisten Hunde und Katzen innerhalb von 3-90 Tagen 

nach Diagnosestellung versterben [33].  

1.3 Immunologie  

1.3.1 Das Immunsystem  
Das Immunsystem ist das biologische Abwehrsystem höherer Organismen und ein 

komplexes Netzwerk aus spezialisierten Antikörpern, Immunzellen und -organen, das 

uns tagtäglich vor dem Eindringen von Krankheitserregern schützt [38]. 

Auch bei Krebserkrankungen, wie beispielsweise dem PaCa, spielt das 

Immunsystem eine äußerst wichtige Rolle. Um dies besser nachvollziehen zu 

können, ist es wichtig zu verstehen, wie das Immunsystem im gesunden Zustand, in 

seiner Anti-Tumor-Immunantwort allgemein und im speziellen Fall des PaCa agiert 

[38]. 

Prinzipiell wird zwischen zwei grundlegenden Mechanismen der Immunabwehr 

unterschieden: der angeborenen bzw. unspezifischen Immunantwort und der 

adaptiven bzw. spezifischen Immunantwort. 

1.3.1.1 Das angeborene Immunsystem 
Das angeborene Immunsystem dient der ersten Abwehr und ist kontinuierlich in 

Bereitschaft. Es wird auch als die unspezifische Immunantwort bezeichnet, da es 

Antigen-unspezifisch agiert. Es kann jedoch zwischen den verschiedenen 

Pathogenen (Viren, Bakterien, Pilze, Protozoen und bestimmte Helminthen) 

unterscheiden und dient als primäre Verteidigung des Organismus in den ersten 

Tagen nach einer Infektion oder aber auch bei Tumoren oder Verletzungen des 

Gewebes. Als Komponenten dieser Immunantwort dienen das Komplementsystem 

und verschiedene immune Zelltypen, wie neutrophile Granulozyten, Makrophagen, 

Mastzellen, Natürliche Killerzellen (NK-Zellen) und Dendritische Zellen (dendritic cells 

= DC). DC werden jedoch nicht vollständig zu dem angeborenen Immunsystem 

gezählt, sondern bilden vielmehr eine Art Bindeglied zwischen der angeborenen und 

erworbenen Immunantwort. Weitere Komponenten stellen Mediatoren wie Zytokine 

(u.a. Interferone oder Interleukine) und Chemokine dar. Diese können durch 

aktivierte Zellen des angeborenen Immunsystems freigesetzt werden und zu lokalen 

und systemischen Entzündungen führen. Mit Erreichen eines bestimmten 
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Schwellenwertes wird dann das erworbene bzw. adaptive Immunsystem aktiviert und 

es kommt zu einer Ausbildung des sog. immunologischen Gedächtnisses, das heißt 

der Organismus zeigt bei einer erneuten Infektion mit demselben Krankheitserreger 

eine schnellere und stärkere Reaktion [38, 39]. 

1.3.1.2  Das adaptive Immunsystem 
Durch die Ausbildung von ausdifferenzierten Gedächtniszellen mittels klonaler 

Selektion, kann das adaptive Immunsystem ganz bestimmte Krankheitserreger 

schneller erkennen und darauf reagieren [38, 39]. 

Des Weiteren kann das adaptive Immunsystem verschiedenste Antigene 

identifizieren, weshalb man auch von einer antigenspezifischen Immunantwort 

spricht. Diese Antigenerkennung erfolgt ebenfalls über eine klonale Selektion von 

Lymphozyten (B- und T-Lymphozyten), welche viele verschiedene, spezifische 

Rezeptoren besitzen. Es kommt zu einer Vermehrung dieser Lymphozyten und zur 

Differenzierung in Effektorzellen, was dem Immunsystem ermöglicht, den 

Krankheitserreger zu eliminieren [38]. 

1.3.2  Die Zellen des Immunsystems 
Allgemein entwickeln sich alle Zellen des Immunsystems aus gemeinsamen 

Vorläuferzellen myeloiden Ursprungs, den pluripotenten hämatopoetischen 

Stammzellen. Diese entwickeln sich dann zu Zellen einer myeloiden und einer 

lymphatischen Reihe, wobei die meisten Zellen der myeloiden Reihe dem 

angeborenen Immunsystem zuzusprechen sind, während aus den Zellen der 

lymphatischen Reihe die Lymphozyten des adaptiven Immunsystems und die NK-

Zellen des angeborenen Immunsystems hervorgehen [38].  
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Abbildung 1.3.2-1 Entwicklung von Blut- und Immunzellen [40] 

 

1.3.2.1 Zellen der lymphatischen Reihe 
Zu den Zellen der lymphatischen Reihe zählen auf der einen Seite diejenigen 

Lymphozyten, welche eine antigenspezifische Immunantwort auslösen, also die des 

adaptiven Immunsystems, und auf der anderen Seite Lymphozyten des angeborenen 

Immunsystems, die zwar auf eine Infektion reagieren, jedoch keine 

antigenspezifischen Rezeptoren besitzen. Bei zuletzt genannten handelt es sich um 

die NK-Zellen [38, 41]. 

Man unterscheidet zwei Typen von Lymphozyten: Die B-Lymphozyten (B-Zellen), 

welche im Knochenmark reifen und den sog. B-Zell-Rezeptor exprimieren und die  

T-Lymphozyten (T-Zellen), welche im Thymus reifen und den sog. T-Zell-Rezeptor 

exprimieren. Die Mehrheit dieser Lymphozyten sammelt sich nach ihrer Reifung in 

den lymphatischen Geweben bzw. Organen an [38]. 
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Über Major Histocompatibility Complex -I-/-II- (MHC -I-/-II-) Moleküle werden intra- 

bzw. extrazellulär körperfremde Antigene präsentiert und somit für die T-Zellen 

sichtbar gemacht. Es werden hauptsächlich drei verschiedene Typen von T-Zellen 

nach ihrer Funktion unterschieden. Die CD8+ zytotoxischen T-Zellen töten infizierte 

Zellen ab, die CD4+ T-Helferzellen tragen wiederum zu einer Aktivierung anderer 

Immunzellen, wie unter anderem der B-Zellen bei und als drittes die 

CD4+FoxP3+CD25+/hoch regulatorischen T-Zellen (Treg), welche die Aktivität von 

anderen Zellen unterdrücken und somit die Immunantworten kontrollieren. Zuletzt 

beschriebene Funktion ist sehr wichtig, um zum Beispiel das Entstehen von 

Autoimmunerkrankungen, Allergien und überdimensionale Immunantworten im 

Organismus zu verhindern [38, 42]. Wenn es zu einer Immunantwort gekommen ist, 

differenzieren sich einige der B- und T-Zellen zu Gedächtniszellen und es bildet sich 

das immunologische Gedächtnis aus [38]. 

NK-Zellen besitzen unveränderliche, unspezifische Rezeptoren, womit sie bestimmte 

Zellen erkennen können, wie Tumorzellen oder virusinfizierte Zellen. Ohne vorherige 

Aktivierung oder Immunisierung können sie diese dann gezielt abtöten [38, 41]. Der 

Immunologe Klas Kärre beschreibt dies in seiner „missing-self“ Hypothese 

folgendermaßen: Die NK-Zell-vermittelte Lyse der Tumorzellen oder virusinfizierten 

Zellen, wird durch das Fehlen der MHC-Moleküle auf der Oberfläche dieser Zielzellen 

ausgelöst. Dies deutet darauf hin, dass MHC-Moleküle gewissermaßen eine 

schützende Wirkung auf normale Zellen, bezogen auf die Lyse der NK-Zellen, 

ausüben [41]. 

Abschließend sollten noch die NKT-Zellen erwähnt werden, welche die 

Eigenschaften von NK-Zellen und T-Zellen vereinen. Sie machen eine kleine 

heterogene Untergruppe der T-Zellen aus. Der Name dieser Zellen ist darauf 

zurückzuführen, dass einige von ihnen auf ihrer Zelloberfläche den Marker NK1.1 (in 

Mäusen) bzw. CD56 (in Menschen) exprimieren, der normalerweise auf NK-Zellen zu 

finden ist. Trotzdem zählen sie nicht zu den NK-Zellen, sondern werden wie die T-

Zellen im Thymus gebildet und tragen einen T-Zell-Rezeptor. Sie unterscheiden sich 

hauptsächlich darin, dass sie mit ihrem T-Zell-Rezeptor keine MHC-Klasse-I- oder -II-

Moleküle binden, verglichen mit den T-Zellen, sondern MHC-Klasse-Ib-Moleküle, 

auch CD1-Proteine genannt. Diese wiederum binden und präsentieren Lipide, im 

Gegensatz zu den Peptiden, welche von MHC-Molekülen gebunden und präsentiert 
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werden [43, 44]. Des Weiteren können NKT-Zellen nach einer Antigenerkennung 

sehr schnell ein breites Spektrum an Zytokinen produzieren, wie Interferon γ (IFNγ), 
verschiedene Interleukine (IL), unter anderem IL- 4, IL-10, IL-13, IL-17 und IL-21 und 

GM-CSF oder auch den transforming growth factor-ß (TGFß) [43].  

Neuere Erkenntnisse zeigen, dass auch bei den NK- und NKT-Zellen regulatorische 

Eigenschaften nachgewiesen werden konnten. In einer Studie von Herrn Lu und 

seinen Kollegen wurden die inhibitorischen Wechselwirkungen zwischen dem MHC-

Ib-Molekül Qa-1 auf aktivierten T-Zellen und dem CD94-NKG2A-Rezeptor auf NK-

Zellen untersucht und es konnte gezeigt werden, dass dadurch die aktivierten  

T-Zellen vor ihrer Eliminierung durch die NK-Zellen geschützt werden. Durch die 

Verwendung bestimmter Antikörper konnte experimentell eine Unterbrechung dieser 

Interaktion hervorgerufen werden, wodurch eine NK-Zell-vermittelte Zerstörung der 

aktivierten autoreaktiven CD4+ T-Zellen bei der sog. experimentellen autoimmunen 

Enzephalomyelitis (EAE) beobachtet wurde [45]. 

1.3.2.2 Zellen der myeloiden Reihe  
Die Zellen der myeloiden Reihe umfassen sowohl die Erythrozyten, Thrombozyten 

und Granulozyten, als auch die Monozyten und Makrophagen. Als Sonderform 

werden die DC gezählt, da sie zwischen dem angeborenen und dem adaptiven 

Immunsystem vermitteln [38]. 

Monozyten zirkulieren im Blut, wandern ins Gewebe ein und differenzieren sich dann 

zu Makrophagen. Monozyten und Makrophagen beseitigen in ihrer primären Funktion 

Mikroorgansimen durch Phagozytose. Des Weiteren lösen Makrophagen auch eine 

erworbene Immunantwort aus, indem sie den T-Zellen Antigene präsentieren und 

diese somit aktivieren [38]. 

Die wichtigste Aufgabe der neutrophilen Granulozyten stellt ebenfalls die 

Phagozytose dar. Man vermutet, dass die eosinophilen Granulozyten zur Abtötung 

von Parasiten, die von Antikörpern eingehüllt sind, dienen. Die Funktion der 

basophilen Granulozyten ist weniger bekannt [38]. 
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1.3.2.3 Dendritische Zellen als Brückenglied zwischen der angeborenen und 
der erworbenen Immunität 

Als treibende Kraft für die Entdeckung der DC im Jahre 1972 durch Ralph Steinman 

und Zanvil Cohn, galt, das Verständnis über die Immunogenizität zu entwickeln, 

welches bereits von dem Pionier Michael Sela folgendermaßen beschrieben wurde: 

„the capacity of an antigen to provoke an immune response“, sprich die Fähigkeit zur 

Auslösung einer Immunantwort durch dieses Antigen, zu verstehen [46, 47]. 

Bei den myeloiden Vorläuferzellen der DC wird zwischen CD34+CLA+ Zellen und 

CD34+CLA- Zellen unterschieden. Erstere differenzieren sich wiederum in 

CD11c+CD1a+ Zellen, welche auch Langerhans-Zellen genannt werden und die 

CD34+CLA- Zellen differenzieren sich zu CD11c+CD1a- Zellen, welche als interstitielle 

DC bezeichnet werden [48]. 

Es werden zwei Haupt-Subpopulationen von DC aufgrund ihrer unterschiedlichen 

Morphologie, ihrer Marker und ihrer Funktion beschrieben, die konventionellen DC 

(conventional DC = cDC) und die plasmazytären DC (plasmacytoid DC = pDC). Die 

cDC werden am häufigsten darüber definiert, dass sie CD11c+CD11b+ sind. 

Zusätzlich gelten sie als MHC-II+ CD205+ Gr1- CD115low. Die pDC werden dagegen 

hauptsächlich davon abgegrenzt, dass sie CD11cintCD11b-CD45R+ (B220+) sind. 

Auch hier werden noch weitere Definitionen beschrieben, unter anderem ihre Siglec 

H+ Gr1+ Eigenschaften. Die Expression der Marker 33D oder DEC 205/CD205 ist 

zwar spezifisch für DC, jedoch sind sie nicht auf allen Zellen vorzufinden [49]. 

DC sind vielerorts in peripheren Geweben anzufinden (v.a. Haut und Schleimhaut) 

und besitzen die Fähigkeit in jegliches Gewebe des Körpers einzuwandern. Die 

unreifen DC phagozytieren die Bestandteile von untergegangenen Zellen und 

wandern als antigenpräsentierende Zellen (APC) in die regionalen Lymphknoten ein. 

Dort werden sie entweder durch Apoptose zerstört oder inaktiviert. Da die unreifen 

DC auch durch Aktivierung der Treg mit diesen interagieren können, sind sie somit an 

der Aufrechterhaltung der peripheren Immuntoleranz beteiligt [50]. Kommt es nun zu 

einer Infektion, können die unreifen DC mit Hilfe ihrer sog. Toll like receptors (TLR) 

die mikrobiellen Antigene erkennen, wodurch ein Reifungsprozess in Gang gesetzt 

wird. Sie verlieren damit ihre Endozytoseaktivität und es kommt zu einer vermehrten 

Expression in der Regel von MHC-II-Molekülen (Signal 1). Zusätzlich findet eine 

gesteigerte Expression kostimulatorischer und adhäsiver Moleküle (Signal 2), unter 
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anderem von CD80 (B7.1)/CD86 (B7.2) auf Seiten der DC, statt. Darüber hinaus wird 

die Produktion von Zytokinen, wie IFN oder IL, induziert (Signal 3), welche die 

Reifung der DC beschleunigen [50].  

 
 

        T-Zell-Proliferation      T-Zell-Inhibierung 
 
Abbildung 1.3.2-2 Schematische Darstellung der Signalkaskade der DC im Zusammenspiel mit den T-
Zellen; modifizierte Abbildung aus: [51] 

Signal 1: MHC-AG-Komplex. Signal 2: Kostimulatorische Moleküle. Signal 3: Zytokine. 

 

Die beschriebene Signalkaskade im Zusammenspiel mit den T-Zellen läuft wie folgt 

ab: Die reifen DC wandern in die sekundären lymphatischen Organe ein und 

präsentieren auf den MHC-II-Molekülen auf ihrer Oberfläche den naiven T-Zellen die 

Antigene und gehen mit dem T-cell antigen receptor (TCR) der T-Zelle eine Bindung 

ein [52]. Diesem Signal folgend gehen die kostimulatorischen Moleküle der B7-

Familie (CD80/CD86) eine Bindung mit CD28 der T-Zellen ein, womit es zu einer 

Aktivierung und gesteigerten Proliferation der T-Zellen kommt. Durch diese 

Aktivierung nimmt wiederum die Expression von CD28 zu [53]. 

Während CD28 konstitutiv exprimiert wird, kommt es im Zuge der T-Zell-Aktivierung 

nun zu einer induzierten, verstärkten Expression von Cytotoxic T-Lymphocyte 

Antigen 4 (CTLA-4). CTLA-4 weist eine höhere Affinität zu CD80/CD86 auf und die  

T-Zell-Aktivierung wird vermindert. Somit wird CTLA-4 als Gegenspieler der CD28-

vermittelten Co-Stimulation gesehen und ist für die Aufrechterhaltung der T-Zell-

Toleranz verantwortlich [53].  

Weitere wichtige regulatorische Moleküle sind die Liganden PD-L1/PD-L2, welche 

auch auf den DC exprimiert werden können. Binden sie an den Rezeptor PD-1 
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(programmed cell death protein 1) auf den T-Zellen, können sie dadurch einen 

supprimierenden Effekt ausüben [54].  

Der zuvor beschriebene Vorgang der Reifung der DC kann durch die Anwesenheit 

der immunsuppressiven Mediatoren, wie IL-10 oder TGFß wieder umgewandelt 

werden, indem unter anderem die Expression von MHC-II-Molekülen gehemmt wird. 

Kommt es beispielsweise zu einem starken Anstieg von IL-10, so können sog. 

tolerogene bzw. regulatorische DC entstehen [55]. 

1.3.3 Tumorimmunologie 
Tumorzellen können zwar vom Immunsystem wahrgenommen werden, besitzen aber 

auch viele Mechanismen um sich unkenntlich zu machen und diesem somit zu 

entkommen. 

1.3.3.1 Anti-Tumor-Immunantwort 
Einige Tumorerkrankungen sind in der Lage durch verschiedene Mechanismen dem 

Immunsystem zu entkommen. Das Immunsystem wiederum besitzt die Fähigkeit 

durch eine Reihe von verschiedenen Immunzellen und Mechanismen Tumorzellen zu 

erkennen und zu eliminieren. Werden jedoch nicht alle Tumorzellen vollständig 

zerstört, kann es zu Mutationen kommen und folglich entstehen verschiedene 

Varianten von Tumorzellen, welche dem Immunsystem noch besser entgehen 

können. Dieser Vorgang wird auch als Immun-Editing bezeichnet. Einige Tumorarten, 

das PaCa im Besonderen, verursachen nicht nur eine Aktivierung des 

Immunsystems, sondern schaffen in kurzer Zeit auch eine starke immunsuppressive 

Umgebung. 

1.3.3.2 Immunsuppressive Umgebung 
Bei den immunsuppressiven Mechanismen handelt es sich auf zellulärer Ebene unter 

anderem um die Treg und die Myeloid-derived suppressor cells (MDSC). Auf 

molekularer Ebene sind vor allem der PD-1 Rezeptor und sein Ligand B7-H1 (oder 

auch PD-L1) von großer Bedeutung. 

Treg: 

Bereits im Jahre 1995 wurde durch Sakaguchi gezeigt, dass eine kleine Untergruppe 

der CD4+ T-Zellen das CD25-Molekül (Interleukin-2 Rezeptor α Kette (IL-2Rα)) 

exprimieren und dies als phänotypischer Marker für die Identifizierung von Treg 

genutzt werden konnte. Die Mehrheit von CD4+CD25+/hoch Zellen reifen im Thymus 
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(natural Treg = nTreg) und stellen annähernd 10% aller peripher vorkommenden CD4+ 

T-Zellen in immunologisch naiven, erwachsenen Mäusen und Menschen dar [56]. Mit 

der Identifizierung des forkhead family transcription factor (FoxP3) wurde jedoch 

heutzutage eine präzisere Klassifizierung der nTreg möglich [57-59]. 

Zusammenfassend kann man sagen, dass nTreg darüber definiert werden, dass sie 

CD4+CD25+/hoch und FoxP3+ sind. Eine weitere Charakterisierung der nTreg ist 

dadurch möglich, dass sie unter anderem CD127-, PD-1+/hoch und CTLA-4+/hoch sind. 

Zusätzlich exprimieren sie auch den Ligand von PD-1, das B7-H1 Molekül [42, 60, 

61]. Außerdem weisen sie ein ausgedehntes Repertoire an T-Zell-Rezeptoren (TCR) 

auf, womit sie ein großes Spektrum an körpereigenen und -fremden Antigenen 

erkennen können [62, 63]. 

Die nTreg spielen eine zentrale Rolle in der Aufrechterhaltung der Selbsttoleranz 

gegenüber Autoantigenen und der Verhinderung potentieller 

Autoimmunerkrankungen. Verschiedene Mechanismen wurden in der Vergangenheit 

diskutiert, welche die suppressive Funktion der nTreg erklären sollen und eine Vielzahl 

an in vitro Studien hat verdeutlicht, dass die Suppression von einem direkten Zell-

Zell-Kontakt und/oder von Zytokinen (IL-10, TGFß) abhängig ist [64].  Zytokine wie 

zum Beispiel Interleukin-2 (IL-2) und TGFß, kontrollieren nicht nur die 

immunsuppressive Aktivität, sondern auch die Aktivierung und Ausbreitung der Treg 

[65].  

Neben den nTreg Zellen sind die induzierten oder adaptiven Treg (induced Treg = iTreg), 

auch bezeichnet als Typ 1 regulatorische T-Zellen, von zentraler Bedeutung. Die iTreg 

weisen zwei unterschiedliche Entstehungsweisen auf. Sie können entweder aus 

naiven, nicht regulatorischen CD4+ T-Zellen entstehen oder aber aus bereits 

aktivierten T-Effektorzellen hervorgehen. Beide iTreg Zelltypen erlangen ihre 

Funktionalität erst außerhalb des Thymus und entstehen überwiegend anlässlich 

eines Entzündungsgeschehen oder einer Krebserkrankung. Mit der dadurch 

hervorgerufenen Expression von CD25 und unter dem Einfluss von IL-10 und/oder 

TGFß unterdrücken sie ebenfalls die Effektor-T-Zell-Antwort und weisen damit eine 

stärkere immunsuppressive Wirkung auf [65-68]. Es konnte unter anderem gezeigt 

werden, dass iTreg in einer gesteigerten Anzahl bei Krebserkrankungen, wie dem 

Melanom oder dem renale Zellkarzinom, gefunden wurden [68-70]. 
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Diese Akkumulation der Treg kommt durch verschiedene Mechanismen zustande: Die 

antigen-präsentierenden DC sind teilweise für diese Expansion und Akkumulation der 

Treg, über ihr zuvor beschriebenes Zusammenspiel mit den T-Zellen, verantwortlich 

[71]. Des Weiteren kann es zur Migration der Treg aus den lymphoiden Organen 

kommen. Auch eine Proliferation von bereits vorhandenen Treg auf Seiten des 

Tumors ist möglich [68]. Darüber hinaus konnte gezeigt werden, dass auch MDSC in 

der Lage sind Treg zu induzieren [72]. 

Es wurde festgestellt, dass Treg in Krebspatienten deutlich häufiger anzufinden sind 

als bei gesunden Patienten – sowohl in der Peripherie zirkulierende Treg, als auch 

tumorgewebsspezifische Treg. Die Akkumulation dieser Zellen in der direkten 

Umgebung des Tumors geht mit einer schlechteren Prognose, bezogen auf das 

Tumorwachstum und das Überleben der Patienten, einher [73]. Des Weiteren zeigten 

Treg eine gewisse Toleranz gegenüber Tumor-assoziierten Antigenen und übten 

einen suppressiven Effekt auf die Anti-Tumor-Immunantwort, insbesondere der T-

Zellen, aus. Im Umkehrschluss führte eine Reduzierung der Treg im PaCa- 

Mausmodell zu einer stagnierenden Tumorgröße und die tumorspezifische 

Immunantwort konnte folglich wieder gesteigert werden [74]. Dies konnte 

beispielsweise durch zwei weitere in vivo Studien am orthotopen Mausmodell mit 

PaCa bestätigt werden, worin eine Depletion mittels Antikörpergabe bzw. Vakzination 

erreicht wurde [75-78]. 

Allerdings besitzen nicht nur Treg auf zellulärer Ebene suppressive Eigenschaften, 

sondern es konnten beispielsweise auch bei den MDSC diese Funktionen 

nachgewiesen werden. 

MDSC:  

Die MDSC umfassen eine heterogene Gruppe von Zellen myeloiden Ursprungs. 

Dazu zählen Vorläuferzellen, wie unreife Makrophagen, unreife Granulozyten und 

unreife DC, die sich im gesunden Organismus zu reifen, spezialisierten Zellen 

differenzieren. Im kranken Zustand jedoch (unter anderem bei Krebs, infektiöses 

oder autoimmunologisches Geschehen, Sepsis, Trauma etc.) differenzieren sich die 

myeloiden Vorläuferzellen nicht, sondern werden zu einem aktivierten unreifen 

myeloiden Zellpool, den MDSC. Ihre Funktionalität ist durch die steigende Produktion 

von Arginase-1, iNOS (nitric oxide synthase) und ROS (reactive oxygen species) 

charakterisiert. Dadurch kommt es folglich zu einem gesteigerten L-Arginin-
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Stoffwechsel, das heißt die Aminosäure wird aus der Umgebung verbraucht und 

steht nicht mehr den proliferierenden T-Zellen zur Verfügung. Auf diese Art und 

Weise können MDSC zu einer Suppression der T-Zell-Antwort führen [79].  

Der Phänotyp in Mäusen ist mit CD11b+Gr1+ zu dem des Menschen mit 

CD11b+CD33+HLA-DR-/low ähnlich, jedoch exprimieren die humanen Zellen keinen 

Marker, der vergleichbar mit Gr1+ der Maus wäre. Gr1+ besitzt die Fähigkeit an zwei 

Epitopen spezifische Antikörper zu binden, nämlich Ly6G und Ly6C. Daraus ergeben 

sich bei der Maus zwei unterschiedliche Subpopulationen der MDSC, die 

granulozytischen -oder auch Ly6C-„minder positiven“- MDSC (CD11b+Ly6G+Ly6Clow) 

und die monozytischen –oder auch Ly6C-„hoch positiven“- MDSC (CD11b+Ly6G-

Ly6Choch). Die humanen MDSC (CD11b+CD14-/lowCD33+ oder HLA-DR-/low LIN- 

CD33+) lassen sich ebenfalls in zwei weitere Subpopulationen unterteilen. Die 

granulozytischen (CD14-CD15+) und die monozytischen (CD14lowCD15-) MDSC [79]. 

Bei anderen Spezies ist bis heute relativ wenig über MDSC und ihren Phänotyp 

bekannt. Nur beim Hund konnte in einer Studie aus dem Jahre 2012 gezeigt werden, 

dass spezifische Antikörper (CD11blowCADO48Alow) für die Identifizierung von 

zirkulierenden, myeloiden Zellen in ihrem peripheren Blut sich zu Nutzen gemacht 

werden können. Die Expression eines hunde-spezifischen Markers, welcher 

äquivalent zu dem murinen Marker für Gr-1+ ist, konnte genauso wenig wie beim 

Menschen nachgewiesen werden. Zusätzlich wurde in der Studie aufgeführt, dass es 

zu einem Anstieg dieser Zellen im peripheren Blut bei tumortragenden Hunden 

gekommen ist und die Proliferation der Lymphozyten supprimiert wurde [80]. 

Die Aktivierung und Ausbreitung der MDSC kann durch verschiedene Vorgänge 

erfolgen. Auf der einen Seite können Tumorzellen die Aktivierung von MDSC 

beschleunigen. Sie stimulieren die Myelopoese derart, dass sich die Vorläuferzellen 

zu keinen reifen Zellen differenzieren können, sondern mehr MDSC gebildet werden. 

Für diesen Vorgang sind unter anderem Zytokine, wie beispielsweise Prostaglandine, 

der stem-cell factor (SCF) und der vascular endothelial growth factor (VEGF) 

verantwortlich. Auf der anderen Seite gibt es Zytokine, welche von aktivierten  

T-Zellen und Zellen des Tumorstromas ausgehend gebildet werden und die 

Aktivierung der MDSC positiv beeinflussen. Beispiele hierfür sind IFNγ, IL-4 und IL-6, 

sowie TGFß [79].  
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Es konnte bereits dargelegt werden, dass sich MDSC in einigen Tumoren anhäufen 

[49]. In einer Studie über das maligne Melanom aus dem Jahre 2011 wurde gezeigt, 

dass sich funktionell aktive MDSC sowohl in der Mikroumgebung des Tumors, als 

auch in den lymphatischen Organen ansammelten und zu einer drastischen 

Reduzierung in der Expression der TCR ζ-Kette der T-Zellen führte, welche als 

Aktivierungsmolekül auf T-Zellen gilt [81]. In einer Studie aus dem Jahre 2009 wurde 

ein Anstieg von MDSC in Mäusen mit spontanem PaCa in der frühen  

Tumorentwicklung beobachtet, welcher sich mit fortschreitendem Tumorwachstum 

auch weiterhin fortsetzte [82].  

Durch die Erkenntnisse, dass sowohl MDSC als auch Treg in erhöhten Zahlen bei 

verschiedenen Krebserkrankungen vorzufinden sind, wird darüber diskutiert, ob sich 

Treg und MDSC gegenseitig beeinflussen können. In einer Studie aus dem Jahre 

2011 wurde bereits festgestellt, dass eine Reduzierung von Treg gleichermaßen auch 

einen starken Rückgang von B7-H1 Molekülen auf MDSC bewirkte und damit 

wiederum zu einer stagnierenden Tumorgröße führte. Dies lässt eine starke, 

vereinheitlichte immunsuppressive Wirkung von Treg und MDSC vermuten [83]. 

B7-H1/PD-1: 

Auf molekularer Ebene der suppressiven Mechanismen soll hier im Speziellen näher 

auf den Rezeptor PD-1 und seinen Liganden PD-L1 eingegangen werden. PD-1 wird 

als Transmembranrezeptor zusammen mit ICOS (Inducible T-cell CoStimulator) und 

BTLA (B- and T-lymphocyte attenuator, CD272) zu der Familie der CD28 Moleküle 

gezählt, welche auf aktivierten T-Zellen, B-Zellen und myeloiden Zellen exprimiert 

werden und eine bedeutende Rolle bezüglich ihrer Regulation spielen. PD-L1 (auch 

B7-H1 oder CD274 genannt), ist ein Oberflächenglykoprotein der B7 Familie und ein 

wichtiger Ligand von PD-1. Zu den wichtigsten Mitgliedern der B7 Familie zählen 

außerdem PD-L2 (B7-DC), der ICOS-Ligand oder auch B7-H2 genannt, die B7-H3  

und B7-H4 Moleküle. Der PD-1:PD-L1/PD-L2 Reaktionsweg spielt besonders im 

Hinblick auf die T-Zell-Aktivierung eine bedeutende Rolle, weshalb im folgenden 

Abschnitt der Fokus hierauf gelegt wird [84].  

Es wird eine duale, regulatorische Rolle des PD-1:PD-L1-Reaktionsweges diskutiert. 

Wie aus verschiedenen Untersuchungen deutlich wird, konnten ihm sowohl 

aktivierende, als auch supprimierende Eigenschaften zugesprochen werden. In einer 

Studie aus dem Jahre 1996 wurde gezeigt, dass PD-1 eine stimulierende Wirkung 
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auf die T-Zell-Aktivierung haben kann [85]. Andererseits wurde in verschiedenen 

Studien verdeutlicht, dass Mäuse mit unzulänglichem PD-1-Rezeptor (PD-1-/-) 

systemische und organspezifische Autoimmunerkrankungen entwickeln [86, 87], was 

darauf hindeutet, dass das Vorhandensein von PD-1 hinsichtlich der Immunantwort 

eine inhibierende Stellung und damit eine negative Regulation einnimmt. In einer 

weiteren Studie wurde dies bestärkt, indem gezeigt werden konnte, dass das 

Zusammenspiel von PD-1:PD-L1 sowohl auf CD4+ T-Zellen als auch auf die CD8+  

T-Zellen eine hemmende Wirkung mittels dem Unterbinden ihrer Proliferation hat 

[88]. Diese Interaktion von PD-1 und seinem Liganden PD-L1 gilt auch als sog. 

„immunological checkpoint“, wobei es sich hier im Speziellen um ein negatives 

Kontrollsignal handelt, welches das Auslösen der T-Zell-Aktivierung hemmt. 

Betrachtet man B7-H1 nun im Zusammenhang mit diversen Krebserkrankungen, wie 

zum Beispiel humane Karzinome (Lungen-, Brust-, Ovarialkarzinom) oder Melanome, 

wurde verdeutlicht, dass durch eine gesteigerte Produktion von B7-H1 auf Seiten des 

Tumors, dieser sich der T-Zell-Erkennung und damit der Anti-Tumor-Immunantwort 

entziehen kann [89]. Zusätzlich konnte festgestellt werden, dass eine gesteigerte 

Expression von B7-H1 auf Seiten des PaCa, mit einer erhöhten Aggressivität des 

Tumors und einer schlechteren Prognose der Patienten einhergeht [90, 91]. 

Auch in experimentellen Tumormodellen mit bestimmten Tumorzelllinien aus Mäusen 

(Mastozytom, Melanom, Myelom/Plasmozytom) konnte bereits gezeigt werden, dass 

die Tumorzellen, welche B7-H1 exprimieren, gut wachsen, ohne vom Immunsystem 

daran gehindert zu werden. In B7-H1-defizienten (B7-H1-/-) Mäusen dagegen kam es 

zu einem Wachstumsstillstand bzw. zu einer Suppression dieser Tumorzellen [92]. 

Eine erfolgreiche Blockade von B7-H1 in Mäusen, und damit eine Blockade des 

immunologischen Kontrollpunktes, bezogen auf ein schlechteres Wachstum des 

PaCa, konnte erstmals durch Okudaira und Bazhin gezeigt werden [93, 94]. Auch 

war eine verlängerte Überlebensrate der Mäuse zu beobachten [94]. 

Da das B7-H1 Molekül nicht nur auf Tumorzellen, sondern auch auf Immunzellen, 

wie den DC -aber auch auf immunsuppressiven Zellen, wie den Treg und den MDSC- 

vorkommt, ergibt sich eine interessante, neue Fragestellung, inwiefern B7-H1 diese 

Zellpopulationen beeinflussen und eine reduzierte Immunantwort hervorrufen kann. 

Die gesteigerte Expression der B7-H1 Moleküle sowohl auf den Tumorzellen, als 

auch auf den Immunzellen, lassen die Vermutung zu, dass sie bezüglich der 
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Immunantwort im Tumorgeschehen auch einen Einfluss auf andere 

immunsuppressive Zellen nehmen können. 

1.4 Ziel dieser Arbeit 
In dieser Dissertation lag der Schwerpunkt auf ex vivo Untersuchungen der 

regulatorischen T-Zellen (Treg), der immunsuppressiven Zellen myeloider 

Abstammung (MDSC), sowie auf den dendritischen Zellen (DC) und welchen Einfluss 

das B7-H1 Molekül auf diese Immunzellen ausübt. Dabei sollte die B7-H1-

Ausschaltung auf der jeweiligen Oberfläche zuvor genannter Zellpopulationen und 

das dadurch hervorgerufene suppressive bzw. proliferative Verhalten der einzelnen 

Zellpopulationen, im Vergleich zu unbehandelten Zellen, sowohl im gesunden 

Zustand, als auch in der Tumorimmunantwort des PaCa analysiert werden. 

Zusätzlich sollte in vivo die Expression des Rezeptors PD-1 auf verschiedenen 

Immunzellen untersucht werden und inwiefern diese durch die Präsenz des B7-H1 

Moleküls beeinflusst wird. 
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2 Material- und Methodenteil 

2.1 Material 

2.1.1 Laborgeräte 
Tabelle 1: Laborgeräte 

Gerät Gerätename Hersteller 

Sterilbank Sterile bench Herasafe Heraeus 

Kühlschrank 4°C  Liebherr 

Gefrierschrank Gefrierschrank -20°C 

                       -80°C 

Liebherr 

Thermo Scientific 

Mikroskop Optical microscope 

Axiostar plus 

Optical microscope 

Axiovert 25 

Zeiss 

 

Zeiss 

Hämozytometer Neubauer Zählkammer neoLab Laborbedarf 

GmbH 

Deckgläschen 20x26x0,4mm Laborservice Albert 

Brenzinger 

Zellzähler Mechanischer Zellzähler VWR International GmbH 

Zentrifuge Centrifuge 5810R Eppendorf 

Tischzentrifuge Kinetic energy 26 jouels LabNet Laborsysteme 

GmbH 

Inkubator Incubator Heracell Heraeus 

Magnethalterung MACS Multi Stand Miltenyi Biotec GmbH 

Magnet Quadro MACS Miltenyi Biotec GmbH 

Durchflusszytometer Flow cytometer FACS  

BD Canto II 

Becton Dickinson (BD) 

Warmwasserbad Shaker Bath SBS30 Stuart Scientific 
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Pipetten (versch. 

Volumina) 

Pipetman Gilson 

Pipette (0,5-10µl) Pipette Research Eppendorf 

Pipetus Pipetus®-akku Hirschmann Laborgeräte 

Multipipette Multipipette®plus Eppendorf 

Vortex Bio Vortex V1 Lab4you 

Vortex VortexGenie 2 Scientific Industries 

Wage EW600-2M KERN & Sohn GmbH 

Schüttler Titer Plate Shaker Thermo Scientific 

Wecker Digital timer neoLab 2-2002 

Tintendispensierer Dispensette® Brand 

Autoklav 2540 EL Tuttnauer Systec GmbH 

Labor 

Messgerät für Luminex Bio-Plex 200 System Luminex MAP Technology 

von Bio-Rad Laboratories 

GmbH zur Verfügung 

gestellt 

Messgerät für Luminex Bio-Plex HTF Luminex MAP Technology 

Luminex Waschstation  Millipore 

2.1.2 Verbrauchsmaterialien 
Tabelle 2: Verbrauchsmaterialien 

Verwendetes Material Bezeichnung Hersteller 

Falcon 15ml, 50ml Cellstar Tubes Greiner bio-one 

FACS-Röhrchen 5ml Polystyrene Round-

Bottom-Tubes 

BD 

Mikroreaktionsgefäß 

(1,5ml; 2,0ml) 

Safe-Lock Tubes 

 

Eppendorf 
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Mikroreaktionsgef. 0,5ml SafeSeal micro tube 0,5ml Sarstedt 

Kryogefäß Nalegene Cryoware Thermo Fisher Scientific 

Zellschaber Cell Scraper 25cm Sarstedt 

Zellsieb Cell Strainer 100µl Nylon 

Cell Strainer 40µl Nylon 

BD 

Einmal-Filterhalter Millex Sterilfilter 33mm 

Diameter 

Millipore 

Spritzen (5ml, 10ml) 

Spritzen (20ml, 50ml) 

Syringe Luer-Lok 

Syringe Plastipak 

BD 

 

Spritze 1ml Injekt-F 1ml Braun 

Nadeln (versch. Größen) Microlance 3 

23Gx1 (0,6mmx25mm) 

26Gx1/2 (0,45mmx13mm) 

30Gx1/2 (0,3mmx13mm) 

BD 

Dispensierspritzen Combitips advanced 5ml 

und 2,5ml  

Combitips PLUS 0,5ml 

Eppendorf 

Pipetten (5, 10, 25ml) costar Stripette Corning Incorporated 

Pipettenspitzen Pipette Tip Gilson  

Style 1000µl und 200µl 

Greiner bio-one 

Pipettenspitzen  Barrier Tips 10µl Avant Gµard 

Gewebekulturschalen/ 

Petrischalen 

35x10mm, mit Nocken 

94x16mm, mit Nocken 

Greiner bio-one 

96-well-Platte Tissue Culture Plate 

(Flat-Bottom) 

(U-Bottom) 

BD 
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Zellkulturflasche mit 

Schräghals 

Tissue Culture Flask 

(steril) 

BD 

MACS-Säulen MACS Separation 

Columns (25 LS/25 MS 

Columns) 

Miltenyi Biotec GmbH 

Tinte Trypanblau 0,5% Biochrom AG 

Aluminiumfolie AluFolie Carl Roth GmbH 

Wägeschalen (Gr.1 und 2)  neoLab 

Handschuhe  LATEX Disposable gloves 

S 6-7 

VWR 

2.1.3 OP-Materialien 
Tabelle 3: OP-Materialien 

Verwendetes Material Bezeichnung Hersteller 

OP-Haube Sentinex Easy Lohmann & Rauscher 

Mundschutzmaske OP-Maske, Typ II R DACH Schutzbekleidung 

GmbH & Co.KG 

OP-Kittel  Jungmichel Textil GmbH 

Moltex  Kolibri 

Sterile Handschuhe Gammex PF IsDerm Ansell 

Hamilton-Spritze GASTIGHT Syringe 25µl Hamilton Company 

Watteträger mit Kopf Meditip Servoprax GmbH 

Nahtmaterial Polysorb USP 5-0 Covidien AG 

Messschieber  Mauser INOX 

Klammerapparat Reflex 7 Clip Applier CellPoint Scientific  

Klammern Reflex 7 (7mm) CellPoint Scientific 

Klammerentferner Reflex Clip Remover CellPoint Scientific 

Chirurgische Pinzette  A. Dumont & Fils, Schweiz 
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Anatomische Pinzette 5 Inox A. Dumont & Fils, Schweiz 

Knüpfpinzette  Fine Sciene Tools 

Gebogene Schere  Fine Sciene Tools 

Gerade Schere  Fine Sciene Tools 

Nadelhalter nach Mayo-

Hegar 

 Fine Sciene Tools 

Ringpinzette  Fine Sciene Tools 

Schermaschine Isis GT420 Aesulap 

Wärmeplatte Hot Plate 062 mit Hot 

Plate Controller 

Labotect 

Narkosegerät  VIP 3000 Isoflurane Matrx by Midmark 

2.1.4 Pharmaka 
Tabelle 4: Pharmaka 

Pharmakologisches Produkt Hersteller 

Isofluran Baxter (Isofluran) Baxter GmbH 

Rimadyl ad us. vet., Injection solution 

(Caprofen) 

Pfizer GmbH 

Bepanthen Augen- & Nasensalbe Bayer 

NaCl (Isotone Kochsalzlösung 0,9%) Braun 

70%iges Ethanol Zentralbereich Neuenheimer Feld 

Desinfektionsspray antifect N liquid Schülke & Mayr GmbH 

Mycoplasma-Ex Spray PromoKine 

Aqua ad injectabilia  Braun 

Trypsin-EDTA Sigma 

Penicillin/Streptomycin (100x) PAA Laboratories GmbH  

Humanes Insulin (Insuman Rapid) Aventis Pharma AG 
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2.1.5 Antikörper für die Durchflusszytometrie 
Tabelle 5: Antikörper für die Durchflusszytometrie 

Spezifität Konjugat Klon Isotyp Endvolumen 
in µl * 

Hersteller 

CD4 V450 RM4-5 Rat (DA) IgG2a, 
ҡ 

1 BD Horizon 

Ly-6C V450 AL-21 Rat IgM, ҡ 0,1 BD 

Pharmingen 

CD45R V450 RA3-6B2 Rat IgG2a, ҡ 1 BD 

Pharmingen 

CD45 V500 30-F11 Rat 

(LOU/Ws1/M) 

IgG2b, ҡ 

2 BD Horizon 

CD69 FITC H1.2F3 Armenian 

Hamster IgG1, 

λ3 

2 BD 

Pharmingen 

NK-1.1 FITC PK136 Mouse 

(C3HxBALB/c) 

IgG2a, ҡ 

1,5 BD 

Pharmingen 

FoxP3 FITC FJK-16s Rat IgG2a, ҡ 2 eBioscience 

CD44 FITC IM7 Rat IgG2b, ҡ 0,5 BD 

Pharmingen 

CD80 FITC 16-10A1 Armenian 

Hamster IgG2, ҡ 

1 BD 

Pharmingen 

CD279 (PD-1) PE J43 Armenian 

Hamster IgG2, ҡ 

2,5 BD 

Pharmingen 

CD69 PE H1.2F3 Armenian 

Hamster IgG1, 

λ3 

3 BD 

Pharmingen 
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Ly-6G PE 1A8 Rat (LEW) 

IgG2a, ҡ 

0,3 BD 

Pharmingen 

CD45 RB PE 16A Rat IgG2a, ҡ 1 BD 

Pharmingen 

I-A[b] PE AF6-120.1 Mouse (BALB/c) 

IgG2a, ҡ 

0,5 BD 

Pharmingen 

CD11b PerCP- 

Cy 5.5 

M1/70 Rat (DA) IgG2b, 

ҡ 

3 BD 

Pharmingen 

CD8a PerCP-  

Cy 5.5 

53-6.7 Rat (LOU) 

IgG2a, ҡ 

1 BD 

Pharmingen 

FoxP3 PerCP- 

Cy 5.5 

FJK-16s Rat IgG2a, ҡ 3 eBioscience 

CD25 APC 3C7 Rat (LEW) 

IgG2b, ҡ 

6 BD 

Pharmingen 

NK-1.1 APC PK136 Mouse 

(C3HxBALB/c) 

IgG2a, ҡ 

3 BD 

Pharmingen 

CD69 APC H1.2F3 Armenian 

Hamster IgG1, 

λ3 

3 BD 

Pharmingen 

CD11c  APC HL3 Armenian 

Hamster IgG1, 

λ2 

1 BD 

Pharmingen 

CD62L APC MEL-14 Rat (F344) 

IgG2a, ҡ 

1 BD 

Pharmingen 

Ly-6G und Ly-

6C  

(Gr-1) 

APC-Cy7 RBG-8C5 Rat IgG2b, ҡ 0,25 BD 

Pharmingen 
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CD3e APC-Cy7 145-2C11 Armenian 

Hamster IgG1, ҡ 

1,5 BD 

Pharmingen 

CD86 PE-Cy-7 GL1 Rat (LOU) 

IgG2a, ҡ 

1 BD 

Pharmingen 

CFSE entfällt entfällt entfällt 0,5µM eBioscience 

CD274      

(B7-H1) 

Functional 

Grade Purified 

entfällt MIH5 Rat IgG2a, λ 10µl/ml eBioscience 

CD28 

Functional 

Grade Purified 

entfällt 37.51 Golden Syrian 

Hamster IgG 

2µl/ml 

Medium 

eBioscience 

CD3 

Functional 

Grade Purified 

entfällt 17A2 Rat IgG2b, ҡ 1µl/ml 

Medium 

eBioscience 

CD16/CD32 

Blocking 

Reagent 

entfällt 93 Rat IgG2a, λ 2 eBioscience 

* Volumen pro 2x106 Zellen/50µl  

2.1.6 Beads für die Kompensation 
Tabelle 6: Beads für die Kompensation 

Bezeichnung Komponenten Klon Isotyp Endvolumen  Hersteller 

Anti-Rat and 

Anti-Hamster 

Ig ҡ/ Negative 

Control 

Compensation 

Particles Set 

51-90-

9000949 (Anti-

rat/hamster Ig 

ҡ)/ 51-90-

9001291 

(Negative 

Control (FBS)) 

- - 1 Tropfen  ≙ 

60µl 

BD 

CompBeads 
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Anti-Rat Ig, 

ҡ/ Negative 

Control (FBS) 

Compensation 

Particles Set 

51-90-

9001189 (BD 

CompBeads 

Anti-rat Ig ҡ)/ 

51-90-

9001291 

(Negative 

Control (FBS)) 

G16-

510E3 

Mouse 

IgG1 

1 Tropfen  

≙ 60µl 

BD 

CompBeads 

2.1.7 Beads für die magnetische Zellseparation (MACS) 
Tabelle 7: Beads für die magnetische Zellseparation (MACS) 

Bezeichnung Kapazität Komponenten Hersteller 

Myeloid-Derived 

Suppressor Cell 

Isolation Kit 

(mouse) 

Für 2x109 

Zellen 

- 2ml Anti-Ly-6G-

Biotin 

- 2ml Anti-Gr-1-

Biotin 

- 2x2ml Anti-Biotin 

MicroBeads 

- 2ml Streptavidin 

MicroBeads 

- 1ml FcR Blocking 

Reagent 

Miltenyi Biotec 

CD4+CD25+ 

Regulatory T cell 

Isolation Kit 

(mouse) 

Für 109 

Leukozyten 

- 1ml CD4+CD25+ 

Regulatory T cell 

Biotin-Antibody 

Cocktail 

- 2ml Anti-Biotin 

MicroBeads 

- 1ml CD25-PE 

- 1ml Anti-PE 

MicroBeads 

Miltenyi Biotec 

CD11c MicroBeads 

(mouse) 

Für 2x109 

Zellen 

- 2ml CD11c 

MicroBeads 
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2.1.8 Lösungen, Medien und Puffer 
Tabelle 8: Lösungen, Medien und Puffer 

Lösungen Hersteller 

Dulbecco’s Phosphate Buffered Saline 

(10x) 

Sigma 

RPMI-1640 Medium Sigma 

Fetal-Calve-Serum (FCS)  Biochrom AG  

Ethylenediaminetetraacetic acid - 

disodium - salt solution, 0.5M 

SERVA Electrophoresis GmbH 

DMSO (Dimethylsulfoxid) Grüssing GmbH 

ISO-Lösung (Bestandteile): 

- DNase I (50.000U) 

- Kollagenase III 

- Kollagenase IV 

- Hyaluronidase 
- HBSS (Hank’s Buffered Salt 

Solution) 

 

Roche 

Biochrom AG 

Biochrom AG 

Sigma 

PAA Laboratories GmbH 

FoxP3 Staining Buffer Set: 

- Fixation/Permeabilization Diluent 
- Fixation/Permeabilisation 

Concentrate 
- 10x Permeabilization Buffer 

eBioscience 

Lösungen für FACS: 

- FACS Clean 

- FACS Flow 

- FACS Shutdown Solution 

BD 

 
 



Material- und Methodenteil 

 

35 
 

2.1.8.1 Zellkultur 
- PBS (Phosphate Buffered Saline) 

Wasch-Puffer für die Zellkultur (steril) 

- Medium 

RPMI 1640 + FCS 10% (für 30min, bei 56°C hitzeinaktiviert) 

- CFSE Stammlösung / Aliquots 

Aus jeder Ampulle des CFSE- (Carboxyfluorescein diacetate succinimidyl ester) 

Proliferationsfarbstoffes wurde steril eine Stammkonzentration von 10mM mit 

90µl DMSO hergestellt. Diese Lösung wurde dann in Aliquots à 10µl aufgeteilt 

und bei -20°C vor Licht geschützt tiefgefroren. 

Eine Titration mit den verschiedenen Konzentrationen von 0,5µM, 1,0µM und 

1,5µM wurde durchgeführt und daraus die geeignetste Konzentration von 

1,0µM für die Zell-Markierung verwendet. 

- ISO-Lösung 

Aus folgenden Komponenten bestehend: 

• 0,05mg/ml DNAse I 

• 0,24mg/ml Kollagenase III 

• 0,56mg/ml Kollagenase IV 

• 0,2mg/ml Hyaluronidase 

• 0,08U/ml H-Insulin 

 In HBSS Pufferlösung zugesetzt 

Aliquots à 50ml wurden bei -20°C tiefgefroren. 

2.1.8.2 Puffer für das Durchflusszytometer (FACS) 
- Stain Buffer 

1x PBS Pufferlösung + 2 mM EDTA 

- Fixationspuffer für intrazelluläres Färben 

1:4 Verdünnung: Fixation / Permeabilization Concentrate 

+ Fixation / Permeabilization Diluent 

- Waschpuffer für intrazelluläres Färben  

1:10 Verdünnung: Permeabilization Buffer + Aqua dest. 
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2.1.8.3 MACS-Puffer 
- 1x PBS Pufferlösung + 2mM EDTA + 0,5% BSA (Bovine Serum Albumin), steril 

filtriert 

 

2.1.9 Luminex 
Tabelle 9: Luminex 

Bezeichnung Hersteller 

Magnetische TGFß1 Platte Merck Millipore 

Magnetische 7 Plex Platte: 

IL-6, IFNγ, IL-10, IL-17, IL-1ß, IL-2, VEGF 

Merck Millipore 

Magnetische 12 Plex Platte: 

IFNγ, IL-1ß, IL-2, IL-6, IL-10, IL-17, VEGF, 

KC, TNFα, IL-13, IL-12 (p70), IL-4 

Merck Millipore 

2.1.10 Software 
Tabelle 10: Software 

Software Hersteller 

FlowJo 7.6.1 Diva Tree Star 

EndNote X7 Thomson Reuters 

MS Office Paket 2010 Microsoft 

Bio-Plex Manager 4.0 Bio Rad 

GraphPad Prism 5.01 GraphPad  
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2.2 Methoden 

2.2.1 Das orthotope Mausmodell 

2.2.1.1 Mäuse 
Für die Experimente wurden zwei verschiedene Mauslinien verwendet, der Wildtyp 

(WT) C57BL/6N von Charles River (Sulzfeld) bzw. von Janvier (Saint-Berthevin 

Cedex) und B7-H1 Knockout (KO) Mäuse aus eigener Zucht. Beide wiesen ein Alter 

von 8-12 Wochen auf und wurden unter spezifiziert pathogenfreien Bedingungen im 

klinisch experimentellen Bereich (KEB) an der Interfakultären Biomedizinischen 

Forschungseinrichtung (IBF) der Universität Heidelberg gehalten. Es handelte sich 

hierbei ausschließlich um männliche Mäuse, da diese im Gegensatz zu weiblichen 

Mäusen nicht so stark von hormonellen Schwankungen betroffen sind, die einen 

Einfluss auf das Immunsystem nehmen können. 

Die B7-H1 KO-Mäuse wurden ursprünglich von Herrn Dong und seinen Kollegen 

gezüchtet und freundlicherweise von der Arbeitsgruppe von Frau Dr. Linda Diehl und 

Herrn Prof. Dr. Percy A. Knolle bereitgestellt. Die Linie geht auf eine homologe 

Rekombination in embryonalen Stammzellen der C57BL/6 Mäuse zurück [95]. 

Die Tierversuche wurden nach Absolvierung des FELASA-Kurs B und der 

Genehmigung durch die Behörden (Regierungspräsidium Karlsruhe) durchgeführt. 

Es wurde mit folgenden Tierversuchsanträgen gearbeitet:  

35-91585.81 - G184/11 und G121/11, - A10/11 und A37/13, - T50/12 und T78/13. 

2.2.1.2 Tierstall 
Die Mäuse wurden in Käfigen des Typ II gehalten (Bodenfläche 363cm2). Bei dem 

Futter LASQCdiet Rod 18, Auto der Firma LASvendi handelte es sich um ein 

spezielles autoklavierbares, zertifiziertes Nagerfutter für Zucht und Haltung. Das 

Trinkwasser für die Mäuse kam aus extra installierten Leitungen. Es wurde mit UV-

Licht bestrahlt, um ein möglichst keimfreies Milieu zu schaffen. Bei der Einstreu 

Aspen wood chips, LTE E-001 der Firma ABEDD handelte es sich um 5x5x1mm 

große Hackschnitzel. 

2.2.1.3 Panc02 Zelllinie 
Für die tierexperimentellen Versuche wurde die syngene Zelllinie des duktalen 

Pankreasadenokarzinoms verwendet (Panc02) [96]. Dabei handelt es sich um eine 
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Zelllinie, die in Individuen desselben Inzuchtstammes (C57BL/6 Mäuse) gezüchtet 

wurde. Dies ist von Vorteil, da aufgrund der genetischen Identität keine 

Abstoßungsreaktion zu erwarten ist. 

Die Arbeit mit diesen Zellkulturen erfolgte unter der Sterilbank. Hierfür wurde das 

Kultivierungsmedium RPMI 1640 mit 10% FCS und Penicillin/Streptomycin 

angereichert. Anschließend wurden damit die Zellen in Zellkulturflaschen im 

Brutschrank bei 37,0°C und 5,0% CO2 inkubiert, bei routinemäßiger Überprüfung von 

Kontaminationen mit Mykoplasmen. Ein Mediumwechsel erfolgte einmal pro Woche 

und eine Zellteilung (1:2 oder 1:4) zweimal pro Woche. 

2.2.1.4 Vorbereitung der Panc02 Zellen für die OP 
Die Panc02 Zellen wurden entsprechend zeitnah zur OP vorbereitet. Die Arbeit 

erfolgte ebenfalls unter der Sterilbank. Hierbei handelte es sich um eine adhärente 

Zelllinie, sodass die Abnahme des Mediumüberstandes problemlos erfolgte. Die 

Zugabe von 2ml Trypsin aus dem Warmwasserbad und das Inkubieren für weitere 

4min im Brutschrank ermöglichten das Ablösen der Zellen von dem Boden der 

Zellkulturflasche. Es wurden 10ml PBS, ebenfalls aus dem Warmwasserbad, 

hinzugegeben, das Gemisch in ein 15ml Falcon überführt und bei einer Einstellung 

von 23°C, 400g, 7min zentrifugiert. Danach wurde der Überstand verworfen und das 

Zellpellet in 1ml PBS gelöst. Zur Bestimmung der Zellzahl wurden 20µl 

abgenommen, in ein Mikroreaktionsgefäß überführt und mit Trypanblau eine 1:10 

Verdünnung hergestellt. Die gewünschte Konzentration von 2x107 Zellen/ml wurde 

errechnet und das Zellpellet (nach einem weiteren Zentrifugationsschritt bei gleicher 

Einstellung) entsprechend in der Menge PBS gelöst. Abschließend wurden die Zellen 

in ein Kryogefäß überführt und gekühlt gelagert. 

2.2.1.5 Orthotopes Mausmodell 
Die Anästhesie der Mäuse erfolgte mittels Inhalationsnarkose. Für die 

Narkoseeinleitung wurde Isofluran mit einer Konzentration von 5,0 Vol% zusammen 

mit 60,0 Vol% Sauerstoff gewählt. Die Aufrechterhaltung der Narkose erfolgte mit 

einer Gabe von 3,5 Vol% an Isofluran und 20,0 Vol% an Sauerstoff (Weibchen 3,0 

Vol% Isofluran, 20,0 Vol% Sauerstoff). 

Bepanthen-Augensalbe schützte die Augen vor dem Austrocknen. 
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Um für eine ausreichende Analgesie zu sorgen, wurden 50µl Rimadyl subkutan 

(5mg/kg s.c. bei einer 1:10 Verdünnung mit 0,9%igem NaCl) in die Nackenfalte 

injiziert. 

Damit die Mäuse präzise und möglichst schonend operiert werden konnten, wurden 

sie in dorsaler Position fixiert. Das Abdomen wurde substernal rasiert und mit Alkohol 

desinfiziert. Der Eingriff erfolgte in der linea alba. Durch das Vorverlagern des 

Magens wurde das Pankreas sichtbar, sodass von den vorbereiteten Panc02 Zellen 

5µl/Maus, also 1x105 Zellen orthotop injiziert werden konnten. Hierfür wurde eine 

GASTIGHT-Spritze (25µl) von Hamilton verwendet. Nach der Implantation wurde die 

Injektionsstelle mit einer Ringpinzette für 30 Sekunden abgeklemmt, um einen 

Rückfluss der Zellen zu verhindern. Anschließend wurde das Pankreas in seine 

ursprüngliche Position gebracht. 

Das Nähen erfolgte in zwei Schichten. Zuerst wurde das Peritoneum zusammen mit 

der Fascie (Fascia superficialis) und den Bauchmuskeln mit einer fortlaufenden Naht 

genäht. Dann erfolgte die Hautnaht mit Einzelheften. Für beide Nähte wurde ein 

resorbierbares Nahtmaterial verwendet; eine polyfile Nadel-Faden-Kombination 

(Polysorb 5-0, 1 Metric, mit abgerundeter Nadel). Zusätzlich wurde die Haut 

geklammert; 8 Tage post OP konnten die Klammern wieder entfernt werden. 

2.2.2 Präparation von Milzen und Tumoren 
Vier Wochen nach der Implantation der Panc02 Zellen wurden die Mäuse durch 

zervikale Dislokation getötet. Steril wurden jeweils die Milz und der Primärtumor 

entnommen und in bereits vorbereitete, mit PBS gefüllte Eppendorfgefäße überführt, 

um ein adäquates, kühlendes Milieu für sie zu schaffen. 

   

Abbildung 2.2.2-1 Sterile Entnahme der Milz (links) und des Primärtumors (rechts) 
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2.2.3 Herstellung einer Einzelzellsuspension 

2.2.3.1 Milzen 
Die nach der Entnahme in PBS aufbewahrten Milzen wurden jeweils durch ein 

100µm Zellsieb passiert. Zur Gewinnung möglichst vieler Zellen wurde mit ca. 10ml 

PBS nachgespült. Danach wurden die Proben bei einer Einstellung von 4°C, 400g, 

5min zentrifugiert. Im nächsten Schritt wurde der Überstand verworfen, das Zellpellet 

in 10ml PBS gelöst und durch ein 40µm Zellsieb passiert. Nach erneuter 

Zentrifugation (4°C, 400g, 5min) wurde der Überstand abermals verworfen und das 

Zellpellet in 1ml PBS gelöst. Von dieser Zellsuspension wurde eine entsprechende 

Menge mit Trypanblau 1:10 bzw. 1:100 verdünnt. Mittels der Neubauer Zählkammer 

konnte abschließend die Zellzahl lebender Zellen ermittelt und die Zellkonzentration 

auf die gewünschte Zellzahl von 2x106 Zellen/50µl eingestellt werden [97]. 

Die Anzahl der Zellen pro ml wurde unter Berücksichtigung der Verdünnungsstufe 

berechnet. 

2.2.3.2 Tumoren 
Die Aufbereitung der Tumoren erfolgte in einem ähnlichen Verfahren. Abweichend 

davon wurde eine spezielle Lösung (ISO-Lösung) verwendet. Diese diente der 

„Verdauung“ der Tumoren, d.h. die extrazelluläre Matrix der Tumoren und vor allem 

ihre nekrotischen Areale wurden gelockert: 

Die vorhandene Tumorprobe wurde zerkleinert, 5ml der bereits vorgewärmten ISO-

Lösung hinzugegeben und für 15min bei 37,5°C und 80rev/min im Warmwasserbad 

inkubiert. 

Eine weitere Ausnahme stellte die zweimalige Passage durch das 40µm Zellsieb dar, 

um eine höhere Reinheit und ein geringeres Verklumpen der Tumoren zu erzielen.  

Die nachfolgenden Schritte erfolgten in gleicher Weise nach dem FACS-Protokoll, 

wie bereits unter Punkt 2.4.1 beschrieben. 

2.2.4 Durchflusszytometrie 

2.2.4.1 Durchflusszytometer (FACS) 
Die Durchflusszytometrie, auch FACS (Fluorescence activating cell sorting) genannt, 

basiert auf einer Antigen-Antikörper-Reaktion. Fluoreszenz-markierte Antikörper 

binden spezifisch an Zellen, welche mittels dem Seitwärtsstreulicht (SSC - Side 
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Scatter) und dem Vorwärtsstreulicht (FSC - Forward Scatter) auf Größe und 

Granularität bestimmt werden. Zusätzlich erfolgt eine Analyse der Zellen bezüglich 

ihrer Intensität der Fluoreszenz aufgrund der unterschiedlich gebundenen Antikörper. 

Jede einzelne Zelle durchwandert nacheinander einen Mikrokanal und wird von 

einem Laserstrahl angeregt. Das entstehende Fluoreszenzsignal wird von einem 

Detektor aufgenommen und ausgewertet. 

2.2.4.2 Cytometer Setup & Tracking (CS&-T) Beads  
Diese Durchflusszytometer-Setup und Tracking Beads wurden von BD entwickelt, um 

die Detektoren, die Laserkonfiguration und deren Spannungen täglich auf ein Neues 

genau zu überprüfen und auf optimale Werte anzupassen. 

2.2.4.3 Kompensation 
Vor jeder FACS-Messung wurde eine sog. Kompensation durchgeführt, um die 

Überlappung von verschiedenen Fluoreszenzspektren zu minimieren.  

Als zweite Kontrolle der positiven Events wurden FMO-Proben (Fluorescence minus 

one) gemessen, das heißt diese Proben wurden mit jedem Antikörper, 

ausgenommen dem der zuvor von Interesse war, gefärbt. 

2.2.4.4 Phänotypisierung 
Die durch die verschiedenen Verfahren gewonnenen und aufbereiteten 

Zellsuspensionen aus Milz, Tumor und Knochenmark, wurden mit verschiedenen 

Antikörper-Kombinationen in sog. Panelen angefärbt. Dadurch konnten sie dann auf 

bestimmte Zellpopulationen genau untersucht werden. Pro Messung konnten mit 

Hilfe des FACS Gerätes BD Canto II bis zu acht verschiedene Antigene mit 

fluoreszenz-gekoppelten Antikörpern identifiziert werden. 

In tumortragenden Mäusen wurde CD45 verwendet, um zwischen Tumorzellen 

(CD45 negativ) und  Tumor-infiltrierenden Leukozyten (CD45 positiv) zu 

unterscheiden.  

CD4/CD8 Panel, Treg Panel: 
Um die CD4+ und CD8+ T-Zellen zu quantifizieren und ihren Phänotyp zu bestimmen, 

fand das CD4/CD8 Panel seine Verwendung. Zusätzlich wurde die Anzahl und 

Aktivität der Natürlichen Killerzellen und der Natürlichen Killer-T-Zellen aus den 

Leukozyten untersucht. Hierbei diente CD69 als Aktivierungsmarker. Weiterhin wurde 

die Expression des Oberflächenmoleküls PD-1 auf den jeweiligen Zellpopulationen 
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untersucht. Um die Aktivität der regulatorischen T-Zellen (Treg) aus den CD4+  

T-Zellen zu analysieren, wurde das Treg Panel verwendet. In diesem Panel wurden 

aus CD4+ T-Zellen die Treg aus CD25+FoxP3+ und die konventionellen T-Zellen (Tcon) 

aus CD250positivFoxP3- dargestellt. Als Aktivierungsmarker wurde abermals CD69 

verwendet und die Expression des PD-1 Moleküls untersucht. 

CFSE-Panel: 
Um den Einfluss der Treg, MDSC und DC auf die Proliferation bzw. Suppression der 

Splenozyten zu untersuchen, wurde das CFSE-Panel verwendet. 

Hierbei handelt es sich um ein intrazelluläres Panel für eine bessere CFSE-

Darstellung zur Suppressions- bzw. Proliferationsanalyse. 

Es wurden sowohl CD4+ als auch CD8+ T-Zellen auf ihre Proliferation bzw. 

Suppression untersucht. Des Weiteren fand der Aktivierungsmarker CD69 seine 

Verwendung. Darüber hinaus wurden die Treg und Tcon erfasst. 

MDSC Panel: 
Dieses Panel wurde angewendet, um die Reinheit der isolierten MDSC 

Zellpopulation zu untersuchen.  

DC Panel: 
Dieses Panel fand seine Verwendung, um die Reinheit der isolierten DC Zellfraktion 

zu untersuchen.  

2.2.4.5 Extrazelluläres Anfärben 
Zuerst wurden die einzelnen Zellsuspensionen mit dem CD16/CD32 Blocking 

Reagent für 10min inkubiert (1µl CD16/CD32 pro 50µl Zellsuspension), um später ein 

unspezifisches Binden der Antikörper an den Fc-Rezeptoren zu verhindern. Nach 

diesem Schritt wurden 50µl der Zellsuspension in jedes FACS-Röhrchen überführt, 

die entsprechenden fluoreszenz-gekoppelten Antikörper jeweils hinzugegeben und 

für 10-20min bei 4°C vor Licht geschützt inkubiert. Während dieser Inkubationszeit 

können die Antikörper spezifisch binden. 

Danach erfolgte ein Waschschritt, indem 2ml Stain-Buffer pro Probe hinzugefügt und 

bei einer Einstellung von 4°C, 400g, 5min zentrifugiert wurden. Der Überstand wurde 

verworfen und der Schritt zweimal wiederholt. 

Danach wurden die Zellen in ca. 300µl Stain-Buffer aufgenommen, auf Eis gestellt 

und mittels Durchflusszytometer analysiert. 
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2.2.4.6 Intrazelluläres Anfärben 
Beim intrazellulären Färben ist es wichtig, dass die Zellen fixiert und die Membran für 

die intrazellulären Antikörper permeabilisiert wird, damit diese an das intrazelluläre 

Antigen binden können. 

Nachdem durch das extrazelluläre Färben die nicht-konjugierten Antikörper 

gebunden haben, wurden die Zellen nach dem ersten Waschschritt mit 1ml 

Fixationspuffer fixiert und für mind. 3 Stunden bei 4°C vor Licht geschützt inkubiert. 

Danach erfolgte zweimalig ein Waschschritt mit je 1ml Permeabilisationspuffer bei 

einer Zentrifugeneinstellung von 4°C, 400g, 5min. Daraufhin wurden nach 

Abpipettieren des Überstandes die intrazellulären und die konjugierten 

extrazellulären Antikörper entsprechend hinzugegeben und für 30min bei 4°C vor 

Licht geschützt inkubiert. Der Grund für die spätere Zugabe der konjugierten 

extrazellulären Antikörper ist, dass diese instabiler als die nicht-konjugierten sind und 

die Gefahr für sie bestünde, bei der Fixation auseinanderzufallen.  

Abschließend erfolgten zwei weitere Waschschritte nach zuvor beschriebener 

Methode. Die Zellen wurden danach in ca. 300µl Stain-Buffer aufgenommen, auf Eis 

gestellt und mittels Durchflusszytometer analysiert. 

2.2.5 Magnetische Zellseparation – Das MACS-Verfahren 
Die magnetische Zellseparation (MACS = magnetic activated cell sorting) diente der 

Isolation der MDSC aus Tumoren und Knochenmark, der Treg aus Milzen und der DC 

aus Tumoren, jeweils nach dem Protokoll des Herstellers. Durch die magnetische 

Zellseparation konnte aufgrund der Expression von spezifischen Rezeptoren die 

gewünschte Zellpopulation magnetisch markiert werden. Während des 

Isolierungsvorgangs verblieben die positiv-markierten Zellen in den Säulen. Durch 

das Auswaschen der Säulen konnte die positive Zellfraktion gewonnen werden. 

2.2.5.1 MACS-Isolation von Treg 
Die regulatorischen T-Zellen (Treg) werden durch den CD4+ und CD25+ Marker 

charakterisiert. Die Isolierung erfolgte in zwei Schritten. 

Zuerst wurden für die Isolierung der CD4+ T-Zellen diese vorangereichert, indem die 

nicht-CD4+ T-Zellen indirekt mit dem Biotin-Antikörper Cocktail und den Anti-Biotin 

MicroBeads magnetisch markiert wurden. Gleichzeitig wurden die CD25+ T-Zellen mit 

dem CD25-PE Antikörper markiert. 
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Im zweiten Schritt erfolgte die positive Selektion von CD4+ und CD25+ T-Zellen, 

indem sie mit den Anti-PE MicroBeads magnetisch markiert wurden. 

Nach Herstellung der Einzelzellsuspension wurde diese bei einer Einstellung von 

4°C, 300g, 10min zentrifugiert, der Überstand verworfen und das Zellpellet in einer 

bestimmten Menge an MACS-Puffer aufgenommen. Danach wurde der Biotin-

Antikörper Cocktail hinzugegeben und für 10min im Kühlschrank (4°C) vor Licht 

geschützt inkubiert. Als nächstes wurde MACS-Puffer, die Anti-Biotin MicroBeads 

und der CD25-PE Antikörper hinzugefügt und für weitere 15min im Kühlschrank 

inkubiert. Danach erfolgte ein Waschschritt nach Zugabe von MACS-Puffer bei 

gleicher Zentrifugeneinstellung. Der Überstand wurde verworfen, das Zellpellet in 

MACS-Puffer aufgenommen und es wurde mit der magnetischen Separation 

begonnen. 

Die LD-Säulen wurden im magnetischen Feld platziert und mit MACS-Puffer gespült. 

Nach Zugabe und Durchlaufen der vorbereiteten Zellsuspension wurden die Säulen 

nochmals gespült. Bei der aufgefangenen Durchflussfraktion handelte es sich um die 

nicht-markierten CD4+ T-Zellen. 

Diese isolierten CD4+ T-Zellen wurden im zweiten Schritt bei 4°C, 300g, 10min 

zentrifugiert, der Überstand verworfen und das Zellpellet in MACS-Puffer 

aufgenommen. Die Anti-PE MicroBeads wurden hinzugefügt und für 15min im 

Kühlschrank vor Licht geschützt inkubiert. Es erfolgte abschließend ein weiterer 

Waschschritt wie zuvor beschrieben und der zweite MACS-Vorgang mit MS-Säulen 

konnte beginnen. Dieses Mal erfolgte jedoch eine positive Selektion, das heißt die 

magnetisch markierten Zellen (CD4+ und CD25+ T-Zellen) wurden mittels eines 

Kolbens und entsprechender Menge an MACS-Puffer aus der Säule gewaschen. 

Hierbei handelte es sich dann um die isolierte Treg Zellfraktion. 

2.2.5.2 MACS-Isolation von MDSC 
Die MDSC Subpopulationen werden durch die unterschiedliche Expression von Ly-

6C und Ly-6G auf der Zelloberfläche charakterisiert. 

In diesem Fall erfolgte zuerst eine positive Selektion der Gr-1high Ly-6G+ myeloiden 

Zellen, indem die Zellen indirekt mit Anti-Ly-6G-Biotin und Anti-Biotin MicroBeads 

magnetisch markiert wurden. Bei der negativen Durchfluss-Fraktion handelte es sich 

um Gr-1dim Ly-6G- myeloide Zellen. Diese wurden  indirekt mit Anti-Gr-1-Biotin und 
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Streptavidin MicroBeads magnetisch markiert und es erfolgte eine positive Selektion 

dieser Gr-1dim Ly-6G- Zellen. 

Nach Herstellung einer Einzelzellsuspension wurde diese bei einer Einstellung von 

4°C, 300g, 10min zentrifugiert, der Überstand verworfen und das Zellpellet in einer 

bestimmten Menge an MACS-Puffer aufgenommen. Danach wurde FcR Blocking 

Reagent hinzugegeben und für 10min im Kühlschrank (4°C) inkubiert. Anti-Ly-6G-

Biotin wurde hinzugefügt und für weitere 10min im Kühlschrank inkubiert. Als 

nächstes folgte ein Waschschritt mit MACS-Puffer und gleicher 

Zentrifugeneinstellung. Der Überstand wurde verworfen und die Zellen in einer 

entsprechenden Menge MACS-Puffer wieder aufgenommen. Nun wurden die Anti-

Biotin MicroBeads beigefügt und für 15min im Kühlschrank inkubiert. Es erfolgte ein 

erneuter Waschschritt mit MACS-Puffer bei gleicher Einstellung. Die Zellen wurden in 

der entsprechenden Menge an MACS-Puffer aufgenommen und konnten nun 

magnetisch separiert werden. 

Die LS-Säulen wurden im magnetischen Feld auf einem geeigneten MACS Separator 

platziert und mit MACS-Puffer gespült. Die vorbereitete Zellsuspension wurde in die 

Säulen gegeben, wobei die nicht markierte Durchflussfraktion aufgefangen wurde. 

Abschließend wurden die Säulen mit MACS-Puffer dreimal gewaschen. Die gesamte 

Durchflussfraktion entsprach den nicht markierten Zellen (Gr-1dim Ly-6G-), welche in 

einem nächsten Schritt eine magnetische Markierung erhielten. 

Die positive Zellfraktion (Gr-1high Ly-6G+) wurde mit Hilfe von MACS-Puffer und einem 

Kolben durch Eluierung aus der Säule gewaschen und stellte die granulozytäre 

MDSC-Population dar. Um ihre Reinheit zu erhöhen, lies man diese Zellfraktion ein 

weiteres Mal durch neue LS-Säulen laufen.  

Im nächsten Schritt wurde die gesammelte Durchflussfraktion magnetisch markiert. 

Nach einem Waschschritt (4°C, 300g, 10min) wurden die Zellen in MACS-Puffer 

aufgenommen und Anti-Gr-1-Biotin in entsprechender Menge hinzugefügt. Es folgte 

eine Inkubation im Kühlschrank für 10min und daraufhin ein weiterer Waschschritt mit 

MACS-Puffer bei gleicher Einstellung. Der Überstand wurde verworfen und das 

Zellpellet in entsprechender Menge MACS-Puffer aufgenommen. Danach wurden 

Streptavidin MicroBeads hinzugegeben und für 15min im Kühlschrank inkubiert. Ein 

weiterer Waschschritt folgte und die Zellen wurden in MACS-Puffer aufgenommen. 
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Die magnetische Separation und positive Selektion der Gr-1dim Ly-6G- Zellen konnte 

beginnen. 

Hierfür wurden MS-Säulen verwendet und auf die gleiche Weise am Ende die 

positive Zellfraktion durch Eluierung der Säulen gewonnen, welche die monozytäre 

Zellpopulation der MDSC darstellte. 

Um die Reinheit der Gr-1dim Ly-6G- Zellen zu erhöhen, liefen sie auch hier ein 

weiteres Mal durch neue MS-Säulen. 

2.2.5.3 MACS-Isolation von DC 
Die DC Zellpopulation wird unter anderem dadurch charakterisiert, dass sie CD11c+ 

sind. Es erfolgte eine positive Selektion der CD11c+ Zellen. 

Nach Herstellung der Einzelzellsuspension wurde diese bei einer Einstellung von 

4°C, 200g, 10min zentrifugiert, der Überstand danach verworfen und das Zellpellet in 

MACS-Puffer aufgenommen. Um die Reinheit und Spezifität der DC zu erhöhen, 

wurde die Zellsuspension mit dem FcR Blocking Reagent (CD16/CD32) in einer 

Konzentration von 3µl/100µl MACS-Puffer für 10 min inkubiert. Dies sollte später ein 

unspezifisches Binden der CD11c MicroBeads an den Fc-Rezeptoren verhindern. 

Im nächsten Schritt wurden die CD11c MicroBeads hinzugegeben und für 15min im 

Kühlschrank (4°C) vor Licht geschützt inkubiert. Nach einem Waschschritt bei 

gleicher Zentrifugeneinstellung wurde das Zellpellet in der gewünschten Menge an 

MACS-Puffer aufgenommen und es erfolgte eine positive Selektion der CD11c+ 

Zellen mittels LS-Säulen. 

Um die Reinheit zu erhöhen, erfolgte ein zweiter MACS-Durchgang der positiv 

eluierten Fraktion durch LS-Säulen. 

2.2.5.4 Reinheitsmessung 
Zur Bestimmung der Reinheit der jeweils zuvor isolierten Zellfraktionen (Treg, MDSC 

und DC), wurden 0,5x106 Zellen entnommen und wie unter Punkt 2.2.4.5 für die 

Durchflusszytometrie vorbereitet, indem die Zellen mit dem Anti-Mouse CD45 

Antikörper inkubiert wurden. Die Reinheit betrug bei jeder Isolation mindesten 75% 

oder darüber. 
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2.2.6 Untersuchung der Aktivität der einzelnen Zellpopulationen 

2.2.6.1 Proliferations-/Suppressionsmarker 
Um die Proliferation bzw. Suppression der Splenozyten nachzuvollziehen, wurden sie 

mit dem sog. CFSE- (5-(und 6-) Carboxyfluorescein diacetate succinimidyl ester) 

Farbstoff markiert. 

CFSE besitzt die Fähigkeit eine intakte Zellmembran zu durchdringen. Es bindet 

intrazellulär an sekundäre Aminogruppen von Proteinen. Eine Zellteilung wird durch 

die Halbierung der Farbstoffmenge in der nächsten Zellgeneration deutlich. 

Die geeignetste, durch Titration ermittelte Konzentration von 1,0µM wurde für die 

CFSE-Farbmarkierung der Splenozyten verwendet. Diese wurde zu der 

Einzelzellsuspension mit einer Konzentration von 2x106 Zellen/ml gegeben und für 

10min bei Raumtemperatur und vor Licht geschützt inkubiert. Um den 

Markierungsprozess zu stoppen wurde das Vier- bis Fünffache an Volumen von 

kaltem Medium dazugegeben und für weitere 5min auf Eis gekühlt inkubiert. Danach 

wurden die Zellen dreimal mit kaltem Medium bei einer Zentrifugeneinstellung von 

4°C, 400g, 5min gewaschen und konnten anschließend in Kultur gebracht werden. 

2.2.6.2 Verwendung des B7-H1 Antikörpers 
Um den Einfluss des Oberflächenmoleküls B7-H1 auf die Proliferation bzw. 

Suppression der Splenozyten zu untersuchen, wurde die eine Hälfte der nach dem 

jeweiligen MACS-Protokoll isolierten Treg bzw. MDSC bzw. DC von WT-Mäusen für 

30min mit dem B7-H1 Antikörper inkubiert (bei einer Konzentration von 10µl/ml). 

Nach einem zusätzlichen Waschschritt (4°C, 400g, 5min) wurden sie dann in der 

entsprechenden Konzentration zu den Splenozyten gegeben, parallel zu nicht 

behandelten Splenozyten.  

2.2.6.3 Ko-Kultivierung 
Für die Ko-Kultur wurden 96-well-Platten mit U-förmigem Boden verwendet. Die 

zuvor mit CFSE markierten Splenozyten wurden in einer Konzentration von 2x105 

Zellen/100µl Medium auf diesen Platten verteilt. 

Die isolierten Treg, MDSC bzw. DC -mit bzw. ohne B7-H1 Antikörper- wurden in einer 

Konzentration im Verhältnis von 1:1 hinzugegeben, das heißt ebenfalls 2x105 

Zellen/100µl Medium. 
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Als Aktivierungsstimulus wurden eine Stunde nach Ausplatzierung der Zellen die 

Antikörper CD3 (1µl/ml) und CD28 (2µl/ml) hinzugefügt.  

Nach einer Inkubationszeit von 72 Stunden bei 37°C im Inkubator wurden die Zellen 

mittels Pipette geerntet. Der Mediumüberstand wurde bei -20°C tiefgefroren, bis er 

zur Luminex-Analyse herangezogen wurde. Abschließend wurden die Zellen für die 

anstehende Messung mittels des Durchflusszytometers nach dem üblichen FACS-

Protokoll vorbereitet. 

2.2.7 Luminex 
Luminex dient zur quantitativen Bestimmung vor allem von Zytokinen und 

Chemokinen aus Mediumüberständen von Zellkulturen, Blutserum oder Blutplasma. 

Die Methode beruht auf speziellen Mikrosphären (sog. Beads), welche als Festphase 

dienen und jeweils mit spezifischen Antikörpern gekoppelt sind. Zusätzlich weisen 

diese eine unterschiedliche Fluoreszenz auf. Kommt es nun zu einer Bindung der 

zugegebenen Analyten, wird dies durch die Zugabe eines zweiten biotinylierten 

Antikörpers und des Streptavidin-Phycoerythrin Konjugats, welches wiederum an die 

biotinylierten Nachweisantikörper bindet, erfasst und mittels des Bio Plex-Analysators 

sichtbar gemacht. 

Im Folgenden wurden Mediumüberstände der verschiedenen Ko-Kulturen verwendet. 

Entsprechend dem Herstellerprotokoll wurden die Proben bei 800g für 5min 

zentrifugiert, um den Zelldebris auf den Boden des Eppendorfgefäßes absetzen zu 

lassen.   

Zuerst wurde die Platte mit Assay Buffer (bei 7 und 12 Plex Kit mit Wash Buffer) bei 

Raumtemperatur auf dem Schüttler gewaschen und nach 10min mit Hilfe der 

magnetischen Waschstation vorsichtig abgegossen und ausgeklopft. Nach diesem 

Waschschritt wurden folgende Reagenten hinzugefügt: 

Assay Buffer zu den background- und sample-wells, Standard zu den standard-wells 

und Quality Controls zu den control-wells, Serummatrix zu background-, standard- 

und control-wells. Danach wurden die ausgewählten Proben zu den sample-wells 

gegeben. Im nächsten Schritt wurden die Beads in jedes well pipettiert, die Platte 

verschlossen und auf den Schüttler über Nacht bei 4°C inkubiert. 

Am nächsten Tag wurden alle Reagenten mit Hilfe der magnetischen Waschstation 

entfernt und zweimal mit Waschpuffer gewaschen. Daraufhin wurden Detection 
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Antibodies in jedes well pipettiert und für eine Stunde bei Raumtemperatur inkubiert. 

Danach erfolgte direkt die Zugabe eines zweiten Antikörpers, Streptavidin-

Phycoerythrin in jedes well und ein Inkubieren für weitere 30min bei 

Raumtemperatur. Nach zwei erneuten Waschschritten mit Waschpuffer, wurde 

Sheath Fluid in jedes well hinzugegeben und konnte mit dem Bio-Plex 200 System 

analysiert werden. 

Bei den verwendeten Platten, der TGFß1 Platte, der 7 Plex Platte und der 12 Plex 

Platte, handelte es sich jeweils um eine 96-well-Platte, welche zwei Positiv-Kontrollen 

(Quality Controls), die jeweiligen Standards für die spätere Standardkurve und die 

restlichen wells für die Proben beinhaltete. Die Proben wurden jeweils als Duplikate 

gemessen, um mögliche Fehlerquellen auszuschließen. 

2.2.8 Statistik 
Alle statistischen Auswertungen wurden mit dem Programm „GraphPad Prism“ in der 

Version 5.01 durchgeführt. Die Verteilung von Variablen wurden als SD 

(Standardabweichung), SE (Standardfehler), Median und 25%- und 75%- Perzentil 

beschrieben. Zur Analyse von zwei normal verteilten Datengruppen wurde der 

ungepaarte, zweiseitige T-Test herangezogen. Hierbei diente die Nullhypothese der 

Annahme, dass die in der Statistik zu vergleichenden Werte gleich sind. Die 

Alternativhypothese, als die Menge von alternativen Annahmen gegenüber der 

Nullhypothese, besagt, dass ebendiese Werte nicht gleich sind. 

Für mehrere Gruppen wurde die „one-way ANOVA (Varianzanalyse)“  mit dem 

Bonferroni’s post-hoc Test genutzt und für die nicht-parametrischen Daten der Mann-

Whitney U-Test angewendet. Hierbei wurden Unterschiede ab einem p-Wert von  

<0,05 als signifikant betrachtet und mit einem Stern gekennzeichnet. Bei einem p-

Wert <0,01 wurden zwei und bei einem p-Wert <0,001 drei Sterne zur 

Kennzeichnung verwendet (höchste Signifikanz). 
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3 Ergebnisse 
Um die von mir für diese Arbeit formulierten Ziele zu erreichen und die Rolle des B7-

H1 Moleküls im PaCa besser verstehen zu können, wurden unterschiedliche 

Experimente durchgeführt und die daraus gewonnen Erkenntnisse beschrieben und 

aufgezeigt. 

Im folgenden Abschnitt wird die Expression des Rezeptors PD-1 auf Immunzellen 

und der Einfluss des B7-H1 Moleküls untersucht. 

3.1 Charakterisierung der Expression von PD-1 auf Immunzellen 
Das folgende Experiment wurde durchgeführt, um die Expression des Moleküls PD-1 

auf verschiedenen Zellen des Immunsystems zu untersuchen. Hierfür wurden 

dieselben Immunzellen sowohl von gesunden, männlichen C57BL/6 (Wildtyp, WT) 

Mäusen als auch von gesunden, männlichen B7-H1 KO-Mäusen isoliert und 

miteinander verglichen.  

3.1.1 Splenozyten aus gesunden Mäusen 
Aus den Milzen gesunder Mäuse (WT und B7-H1 KO) wurden 

Einzelzellsuspensionen hergestellt. Um eine Charakterisierung der gewünschten 

Zellpopulationen und deren Oberflächenmarker, wie unter anderem PD-1, zu 

ermöglichen, wurden die Splenozyten mit spezifischen, fluoreszenz-markierten 

Antikörpern gekoppelt. Damit konnte einerseits ermittelt werden, wie viele der Zellen 

PD-1 auf ihrer Oberfläche exprimieren und andererseits eine Aussage über die 

Unterschiede in der Gesamtzahl dieser Moleküle auf der jeweiligen Zelloberfläche 

getroffen werden. Hierfür wurde der mean fluorescence intensity- (MFI-) Wert 

herangezogen. Als Kontrollen dienten die jeweiligen FMO-Proben (fluorescence 

minus one). Die Zellpopulationen konnten abschließend mit Hilfe der FACS-Analyse 

bildlich dargestellt werden. Das Experiment wurde in drei Durchläufe unterteilt und 

mit jeweils 3 WT-Mäusen und 3 B7-H1 KO-Mäusen durchgeführt. 

3.1.1.1 CD4+ und CD8+ T-Zellen 
Die Auswertungsstrategie der CD4+ und CD8+ T-Zellen ist unter der Abbildung 3.1.1-

1 dargestellt. 

Die Leukozyten wurden mittels des FSC- SSC-Dot-Plots dargestellt, also anhand 

ihrer Größe (forward scatter, FSC) und ihrer Granularität (side scatter, SSC) (Abb. 

3.1.1-1 Bild A). Aus ihnen konnten die CD3+ T-Zellen identifiziert werden (Abb. 3.1.1-
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1 Bild B), woraus dann wiederum sowohl die CD4+, als auch die CD8+ T-Zellen 

gezeigt wurden (Abb. 3.1.1-1 Bild C). Im Histogramm wurden dann aus beiden 

Zellpopulationen (CD4+ und CD8+) jeweils diejenigen Zellen analysiert, welche PD-1 

auf ihrer Oberfläche exprimieren (Abb. 3.1.1-1 Bild D). Um den Grad der Aktivierung 

zu verdeutlichen, wurde der Aktivierungsmarker CD69 verwendet und ebenfalls im 

Histogramm dargestellt (Abb. 3.1.1-1 Bild E). Die jeweiligen FMO-Proben dienten als 

Kontrolle (Abb. 3.1.1-1 Bild F und G). 
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Abbildung 3.1.1-1 Auswertungsstrategie der CD4+ und CD8+ T-Zellen aus Splenozyten gesunder WT-
Mäuse bzw. B7-H1 KO-Mäuse 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ und CD8+ T-Zellen D: Darstellung der CD4+PD-1+ T-Zellen im Histogramm. E: 
Darstellung der CD4+CD69+ T-Zellen im Histogramm. F: FMO-Probe von PD-1. G: FMO-Probe von CD69. 

 

Betrachtet man in der statistischen Auswertung die erste Abbildung, ist ein 

signifikanter Unterschied im prozentualen Anteil der CD4+ T-Zellen im Vergleich der 

WT- zu den B7-H1 KO-Mäusen festzustellen (Abb. 3.1.1-2 Bild A). Die B7-H1 KO-

Mäuse wiesen einen höheren Anteil an CD4+ T-Zellen auf als die WT-Mäuse. 

Vergleicht man als nächstes die Expression des Oberflächenmoleküls PD-1 auf CD4+ 

T-Zellen zwischen den beiden Mauslinien, so konnte für die B7-H1 KO-Mäuse ein 

deutlich höherer prozentualer Anteil an PD-1 festgestellt werden (Abb. 3.1.1-2 Bild 
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B). Um die Veränderungen in der Gesamtzahl des PD-1 Moleküls zu betrachten, 

wurde der MFI-Wert der PD-1 Moleküle herangezogen. Auch hier konnte bei den B7-

H1 KO-Mäusen eine höhere Intensität der Fluoreszenz nachgewiesen werden (Abb. 

3.1.1-2 Bild C). Bei Betrachtung des Aktivierungsgrades der CD4+ T-Zellen mit Hilfe 

des Markers CD69 war kein wesentlicher Unterschied zu verzeichnen (Abb. 3.1.1-2 

Bild D). Einzig bei der Untersuchung des MFI-Wertes von CD69 der CD4+CD69+ T-

Zellen, zeigten die WT-Mäuse einen höheren Wert als die B7-H1 KO-Mäuse (Abb. 

3.1.1-2 Bild E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.1.1-2 Quantifizierung und Charakterisierung der CD4+ T-Zellen aus Splenozyten gesunder 
WT-Mäuse bzw. B7-H1 KO-Mäuse 

A: Prozentualer Anteil der CD4+ T-Zellen in Bezug auf CD3+ T-Zellen. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf 

CD4+ T-Zellen. C: MFI-Wert von PD-1 der CD4+PD-1+ T-Zellen. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf CD4+ T-

Zellen. E: MFI-Wert von CD69 der CD4+CD69+ T-Zellen. *p≤0,05. **p≤0,01.  
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Im nächsten Schritt galt das Interesse den CD8+ T-Zellen (Abb. 3.1.1-3). Hier konnte 

kein Unterschied im prozentualen Anteil der CD8+ T-Zellen in Bezug auf die CD3+ T-

Zellen zwischen WT- und B7-H1 KO-Mäusen festgestellt werden (Abb. 3.1.1-3 Bild 

A). Betrachtet man dagegen den Prozentsatz der Expression der CD8+ T-Zellen von 

dem Molekül PD-1, lag dieser bei den B7-H1 KO-Mäusen auf einem signifikant 

höheren Niveau als bei den WT-Mäusen (Abb. 3.1.1-3 Bild B). Im Hinblick auf den 

MFI-Wert von PD-1 der CD8+PD-1+ T-Zellen, konnte sogar ein hoch signifikanter 

Unterschied gezeigt werden (Abb. 3.1.1-3 Bild C). Die B7-H1 KO-Mäuse wiesen 

einen deutlich höheren MFI-Wert auf. Abschließend wurde mit Hilfe des frühen 

Aktivierungsmarkers CD69 der Aktivierungsstatus der CD8+ T-Zellen zwischen WT- 

und B7-H1 KO-Mäusen miteinander vergleichen (Abb. 3.1.1-3 Bild D). Hierbei konnte 

jedoch keine statistisch auffallende Abweichung festgestellt werden. Lediglich bei der 

Beurteilung des MFI-Wertes von CD69 der CD8+CD69+ T-Zellen war bei den WT-

Mäusen ein deutlicher Anstieg im Gegensatz zu den B7-H1 KO-Mäusen zu 

verzeichnen (Abb. 3.1.1-3 Bild E). 
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Abbildung 3.1.1-3 Quantifizierung und Charakterisierung der CD8+ T-Zellen aus Splenozyten gesunder  
WT-Mäuse bzw. B7-H1 KO-Mäuse 
A: Prozentualer Anteil der CD8+ T-Zellen in Bezug auf CD3+ T-Zellen. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf 

CD8+ T-Zellen. C: MFI-Wert von PD-1 der CD8+PD-1+ T-Zellen. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf CD8+ T-

Zellen. E: MFI-Wert von CD69 der CD8+CD69+ T-Zellen. **p≤0,01. ***p≤0,001. 

 

3.1.1.2 Regulatorische und konventionelle T-Zellen, CD4+CD25-FoxP3+ und 
CD4+CD25+FoxP3- Zellen 

Des Weiteren wurden im CD4-Kompartiment die regulatorischen T-Zellen (Treg), die 

konventionellen T-Zellen (Tcon), die CD25-FoxP3+ und CD25+FoxP3- (Tcon aktiviert) 

näher betrachtet. 

Mittels FSC und SSC konnten die Leukozyten und daraus alle CD3+ T-Zellen 

bestimmt werden (Abb. 3.1.1-4 Bild A und B). Aus den CD3+ T-Zellen wurde die 

CD4+ Zellpopulation erfasst, welche mit Hilfe des CD25 und FoxP3 Markers in vier 

Quadranten und damit in Treg (Q2), Tcon (Q4), CD4+CD25-FoxP3+ T-Zellen (Q1) und 

CD4+CD25+FoxP3- T-Zellen (Tcon aktiviert) (Q3) eingeteilt wurden (Abb. 3.1.1-4 Bild 

C und D). In den jeweiligen Quadranten wurde ebenfalls der Fokus auf die 

Expression des Oberflächenmoleküls PD-1 gelegt und durch die Darstellung im 

Histogramm verdeutlicht (Abb. 3.1.1-4 Bild G). Der Aktivierungsstatus der 

Zellpopulationen in den einzelnen Quadranten wurde durch die Verwendung des 

frühen Aktivierungsmarkers CD69 bestimmt und ebenfalls im Histogramm dargestellt 

(Abb. 3.1.1-4 Bild H). Als Kontrollen wurden die entsprechenden FMO-Proben 

durchgeführt (Abb. 3.1.1-4 Bild E und F, Bild I und J). 
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Abbildung 3.1.1-4 Auswertungsstrategie der regulatorischen T-Zellen und der konventionellen T-Zellen 
aus den Splenozyten gesunder WT-Mäuse bzw. B7-H1 KO-Mäuse 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ T-Zellen. D: Q1: CD25-FoxP3+, Q2: CD25+FoxP3+ (Treg), Q3: CD25+FoxP3- (Tcon 

aktiviert), Q4: CD25-FoxP3- (Tcon). E: FMO-Probe von CD25. F: FMO-Probe von FoxP3. G: PD-1+ Treg im Histogramm. H: CD69+ 

Treg im Histogramm. I: FMO-Probe von PD-1. J: FMO-Probe von CD69. 

 

3.1.1.2.1 Regulatorische T-Zellen (Treg) 
Wie aus der Abbildung 3.1.1-5 Bild A ersichtlich wird, konnte keine Abweichung 

bezüglich des prozentualen Anteils der CD4+CD25+FoxP3+ T-Zellen (Treg) im 

Vergleich von WT- zu B7-H1 KO-Mäusen festgestellt werden. Betrachtet man jedoch 

die Expression des Oberflächenmoleküls PD-1 auf dieser Zellpopulation, wird ein 

hoch signifikanter Unterschied erkennbar (Abb. 3.1.1-5 Bild B). Die B7-H1 KO-Mäuse 

exprimierten unverkennbar mehr PD-1 auf den Treg als die WT-Mäuse. Die Statistik 

des MFI-Wertes des PD-1 Moleküls auf den Treg verdeutlichte ebenfalls einen 
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höheren Wert bei den B7-H1 KO-Mäusen (Abb. 3.1.1-5 Bild C). Der Aktivierungsgrad 

dieser Zellpopulation wurde durch die Darstellung mit Hilfe des frühen 

Aktivierungsmarkers CD69 verständlich und es konnte eine deutlich höhere 

Aktivierung der Treg bei den B7-H1 KO-Mäusen beobachtet werden (Abb. 3.1.1-5 Bild 

D). Im Gegensatz dazu zeigte der MFI-Wert von CD69 der Treg keine bedeutende 

Abweichung zwischen den unterschiedlichen Mauslinien (Abb. 3.1.1-5 Bild E). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.1.1-5 Quantifizierung und Charakterisierung der Treg (CD4+CD25+FoxP3+ Zellen) aus 
Splenozyten gesunder WT-Mäuse bzw. B7-H1 KO-Mäuse 
A: Prozentualer Anteil der Treg in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf Treg. C: MFI-

Wert von PD-1 der Treg. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf Treg. E: MFI-Wert von CD69 der Treg. *p≤0,05. 

***p≤0,001. 
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3.1.1.2.2 Konventionelle T-Zellen (Tcon) 
Die Abbildung 3.1.1-6 zeigt die statistische Auswertung der CD4+CD25-FoxP3- T-

Zellen (Tcon). Aus der ersten Abbildung wird ersichtlich, dass der prozentuale Anteil 

der Tcon der WT- und B7-H1 KO-Mäuse auf gleichem Niveau lag (Abb. 3.1.1-6 Bild 

A). Betrachtet man hingegen die Expression des Oberflächenmoleküls PD-1, so wird 

ein hoch signifikanter Unterschied erkennbar, da die Tcon der B7-H1 KO-Mäuse einen 

deutlich höheren Prozentsatz an PD-1 aufwiesen, als die WT-Mäuse (Abb. 3.1.1-6 

Bild B). Im Hinblick auf den MFI-Wert des PD-1 Moleküls der Tcon wurde ebenfalls ein 

signifikanter Unterschied bezüglich einer deutlich höheren Gesamtmenge bei den 

B7-H1 KO-Mäusen erkennbar (Abb. 3.1.1-6 Bild C). Die Aktivierung der Tcon -durch 

Verwendung des frühen Aktivierungsmarker CD69 dargestellt- zeigt, dass die WT-

Mäuse gegenüber den B7-H1 KO-Mäusen eine ähnlichen Aktivierungsstatus 

aufwiesen (Abb. 3.1.1-6 Bild D). Auch bei der Beurteilung des MFI-Wertes von CD69 

der Tcon war keine deutliche Abweichung zwischen den beiden Mauslinien 

festzustellen (Abb. 3.1.1-6 Bild E). 
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Abbildung 3.1.1-6 Quantifizierung und Charakterisierung der Tcon (CD4+CD25-FoxP3- Zellen) aus 
Splenozyten gesunder WT-Mäuse bzw. B7-H1 KO-Mäuse 
A: Prozentualer Anteil der Tcon in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf Tcon. C: MFI-

Wert von PD-1 der Tcon. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf Tcon. E: MFI-Wert von CD69 der Tcon. *p≤0,05. 

***p≤0,001. 

 

3.1.1.2.3 CD4+CD25-FoxP3+ T-Zellen 
Der folgenden Grafik ist zu entnehmen, dass es einen deutlichen Unterschied im 

prozentualen Anteil der CD4+CD25-FoxP3+ T-Zellen zwischen den beiden Mauslinien 

gegeben hat. Die B7-H1 KO-Mäuse wiesen einen deutlich höheren Prozentsatz auf, 

als die WT-Mäuse (Abb. 3.1.1-7 Bild A). Betrachtet man die Expression des 

Oberflächenmoleküls PD-1 der CD4+CD25-FoxP3+ T-Zellen, so zeigten die B7-H1 

KO-Mäuse einen signifikant höheren prozentualen Anteil als die WT-Mäuse (Abb. 

3.1.1-7 Bild B). Dies wird auch bei der Beurteilung des MFI-Wertes von PD-1 der 

CD4+CD25-FoxP3+ T-Zellen erkennbar, da dieser Wert bei den B7-H1 KO-Mäuse 

ebenfalls eindeutig über dem der WT-Mäuse lag (Abb. 3.1.1-7 Bild C). Mit Hilfe des 

frühen Aktivierungsmarkers CD69 wurde der Aktivierungsgrad der CD4+CD25-

FoxP3+ T-Zellen untersucht und es konnte keine Abweichung, weder im 

Aktivierungsstatus (Abb. 3.1.1-7 Bild D) zwischen den beiden Mauslinien, noch 

bezüglich des MFI-Wertes von CD69 (Abb. 3.1.1-7 Bild E) der CD4+CD25-

FoxP3+CD69+ T-Zellen festgestellt werden. 
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Abbildung 3.1.1-7 Quantifizierung und Charakterisierung der CD4+CD25-FoxP3+ Zellen aus Splenozyten 
gesunder WT-Mäuse bzw. B7-H1 KO-Mäuse 
A: Prozentualer Anteil der CD25-FoxP3+ Zellen in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der PD-1+ Zellen in Bezug 

auf CD4+CD25-FoxP3+ T-Zellen. C: MFI-Wert von PD-1 der CD4+CD25-FoxP3+PD-1+  T-Zellen. D: Prozentualer Anteil der 

CD69+ Zellen in Bezug auf CD4+CD25-FoxP3+ T-Zellen. E: MFI-Wert von CD69 der CD4+CD25-FoxP3+CD69+ T-Zellen. 

**p≤0,01. ***p≤0,001. 

 

3.1.1.2.4 CD4+CD25+FoxP3- T-Zellen (Tcon aktiviert) 
Aus der Abbildung 3.1.1-8 wird die statistische Auswertung der CD4+CD25+FoxP3- T-

Zellen (Tcon aktiviert) ersichtlich. Betrachtet man den prozentualen Anteil der 

aktivierten Tcon im Vergleich der WT-Mäuse zu den B7-H1 KO-Mäusen, so konnte 

kein bedeutender Unterschied nachgewiesen werden (Abb. 3.1.1-8 Bild A). In Bild B 

der Abbildung 3.1.1-8, wurde die Expression des Oberflächenmoleküls PD-1 der 
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aktivierten Tcon ermittelt und ein hoch signifikanter Unterschied festgestellt. Die B7-

H1 KO-Mäuse zeigten einen deutlich höheren Anteil im Prozentsatz der Expression 

von PD-1 der aktivierten Tcon gegenüber den WT-Mäusen. Auch im Hinblick auf den 

MFI-Wert von PD-1 der aktivierten Tcon wurde bei den B7-H1 KO-Mäusen ein höherer 

Gesamtwert aufgezeigt (Abb. 3.1.1-8 Bild C). Die Überprüfung des 

Aktivierungsgrades der aktivierten Tcon mit Hilfe des frühen Aktivierungsmarkers 

CD69 hingegen zeigte keinen wesentlichen Unterschied zwischen den WT- und den 

B7-H1 KO-Mäusen (Abb. 3.1.1-8 Bild D). Auch der Vergleich der Gesamtmenge von 

CD69 der aktivierten Tcon durch Heranziehen des MFI-Wertes von CD69 zeigte keine 

Differenz (Abb. 3.1.1-8 Bild E). 
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Abbildung 3.1.1-8 Quantifizierung und Charakterisierung der aktivierten Tcon (CD4+CD25+FoxP3- Zellen) 
aus Splenozyten gesunder WT-Mäuse bzw. B7-H1 KO Mäuse 
A: Prozentualer Anteil der aktivierten Tcon  in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf die 

aktivierten Tcon. C: MFI-Wert von PD-1 der aktivierten Tcon. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf die aktivierten 

Tcon. E: MFI-Wert von CD69 der aktivierten Tcon. *p≤0,05. ***p≤0,001. 
 

3.1.1.3 Natürliche Killer-Zellen (NK-Zellen) und Natürliche Killer T-Zellen  (NKT-
Zellen) 

Abschließend lag ein Augenmerk auf den NK-Zellen und den NKT-Zellen. Die 

Leukozyten wurden anhand des FSC- SSC-Dot-Plots dargestellt (Abb. 3.1.1-9 Bild A) 

und hieraus konnten wiederum die NK- und NKT-Zellen mit Hilfe der Marker NK1.1 

und CD3 abgebildet werden (Abb. 3.1.1-9 Bild B). Im Histogramm wurde auf beiden 

Zellpopulationen (NK- und NKT-Zellen) die Expression des Oberflächenmoleküls PD-

1 (Abb. 3.1.1-9 Bild C) und der Aktivitätsstatus mit Hilfe des frühen 

Aktivierungsmarkers CD69 untersucht (Abb. 3.1.1-9 Bild D). Als Kontrollen dienten 

abermals die jeweiligen FMO-Proben. 
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Abbildung 3.1.1-9 Auswertungsstrategie der NK-Zellen und der NKT-Zellen aus Splenozyten gesunder 
WT-Mäuse bzw. B7-H1 KO-Mäuse 
A: Leukozyten. B: NK- und NKT-Zellen. C: NK1.1+PD-1+ Zellen im Histogramm. D: NK1.1+CD69+ Zellen im Histogramm. 

 

3.1.1.3.1 Natürliche Killerzellen (NK-Zellen) 
Vergleicht man den prozentualen Anteil der NK-Zellen aus den Leukozyten von WT-

Mäusen zu B7-H1 KO-Mäusen, so konnte ein signifikant höherer Anteil bei den WT-

Mäusen nachgewiesen werden (Abb. 3.1.1-10 Bild A). Im Hinblick auf die Expression 

des PD-1 Moleküls der NK-Zellen wurde ein größerer Prozentsatz bei den B7-H1 

KO-Mäusen festgestellt (Abb. 3.1.1-10 Bild B). Um Veränderungen in der 

Gesamtzahl der PD-1 Moleküle auf NK-Zellen feststellen zu können, wurde der MFI-

Wert von PD-1 der NK1.1+PD-1+ Zellen herangezogen, wobei hier kein deutlicher 

Unterschied zwischen WT- und B7-H1 KO-Mäusen aufgezeigt wurde (Abb. 3.1.1-10 

Bild C). Der Aktivierungsgrad der NK-Zellen wurde mithilfe des frühen 

Aktivierungsmarkers CD69 untersucht. Hier wurde im Vergleich beider Mauslinien 

kein prozentualer Unterschied erkennbar (Abb. 3.1.1-10 Bild D). Auch der MFI-Wert 

von CD69 der NK1.1+CD69+ Zellen zeigte keine statistisch auffallende Abweichung 

zwischen WT- und B7-H1 KO-Mäusen (Abb. 3.1.1-10 Bild E). 
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Abbildung 3.1.1-10 Quantifizierung und Charakterisierung der NK-Zellen aus Splenozyten gesunder WT-
Mäuse bzw. B7-H1 KO-Mäuse 
A: Prozentualer Anteil der NK-Zellen in Bezug auf Leukozyten. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf NK-Zellen. 

C: MFI-Wert von PD-1 der NK1.1+PD-1+ Zellen. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf NK-Zellen. E: MFI-Wert 

von CD69 der NK1.1+CD69+ Zellen. *p≤0,05. **p≤0,01. 

 

3.1.1.3.2 Natürliche Killer T-Zellen (NKT-Zellen) 
Betrachtet man Bild A der Abbildung 3.1.1-11, so wurde ein höherer Prozentsatz der 

NKT-Zellen den WT-Mäusen -verglichen mit den B7-H1 KO-Mäusen- zugeschrieben. 

Ein Blick auf die nächste Abbildung (Abb. 3.1.1-11 Bild B), zeigt die Untersuchung 

der Expression des Oberflächenmoleküls PD-1 der NKT-Zellen, wobei hier keine 

auffallende prozentuale Abweichung zwischen den jeweiligen Mauslinien zu 

erkennen war. Zieht man nun den MFI-Wert von PD-1 der NKT-Zellen heran, um 

eine Aussage über die Abweichung in der Gesamtmenge der PD-1 Moleküle treffen 
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zu können, so zeigte sich eindeutig ein statistisch signifikanter Unterschied. Die B7-

H1 KO-Mäuse wiesen einen deutlich höheren MFI-Wert an PD-1 als die WT-Mäuse 

auf (Abb. 3.1.1-11 Bild C). Bei der Betrachtung des Aktivitätsgrades der NKT-Zellen 

durch Verwendung des frühen Aktivierungsmarkers CD69, konnte ein bedeutend 

höherer prozentualer Anteil an CD69 der NKT-Zellen bei den WT-Mäusen 

ausgemacht werden (Abb. 3.1.1-11 Bild D). Im Gegensatz dazu zeigte der MFI-Wert 

von CD69 der NKT-Zellen keinen Unterschied zwischen den verschiedenen 

Mauslinien (Abb. 3.1.1-11 Bild E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.1.1-11 Quantifizierung und Charakterisierung der NKT-Zellen aus Splenozyten gesunder WT-
Mäuse bzw. B7-H1 KO-Mäuse 
A: Prozentualer Anteil der NKT-Zellen in Bezug auf Leukozyten. B: Prozentualer Anteil der PD-1+ Zellen in Bezug auf NKT-

Zellen. C: MFI-Wert von PD-1 der NKT+PD-1+ Zellen. D: Prozentualer Anteil der CD69+ Zellen in Bezug auf NKT-Zellen. E: MFI-

Wert von CD69 der NKT+CD69+ Zellen. *p≤0,05. **p≤0,01. ***p≤0,001. 
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Im Hinblick auf die Charakterisierung der Expression des Oberflächenmoleküls PD-1 

auf den unterschiedlichen Immunzellen konnte zusammenfassend festgestellt 

werden, dass die B7-H1 KO-Mäuse einen deutlich höheren Prozentsatz an PD-1 

aufwiesen, als es bei den WT-Mäusen der Fall war. Einzig bei den NKT-Zellen lag 

der Wert von PD-1 auf einem ähnlichen prozentualen Niveau. Auch bei Betrachtung 

der Unterschiede in der Gesamtzahl dieser Moleküle auf den jeweiligen 

Zelloberflächen konnte ein signifikant höherer MFI-Wert von PD-1 den B7-H1 KO-

Mäusen jeweils zugeschrieben werden. 

3.2 Untersuchung der Effekte einer B7-H1-Ausschaltung auf der 
Oberfläche von Treg auf ihr Suppressionspotential 

Wie bereits gezeigt werden konnte, besitzen Treg ein suppressives Potential. Das  

B7-H1 Molekül auf der Oberfläche der Treg könnte eine wichtige Rolle bei dem 

Suppressionspotential der Treg spielen. Um die Bedeutung des B7-H1 Moleküls 

genauer zu untersuchen wurden im nachfolgenden Experiment Treg mit dem B7-H1 

Antikörper behandelt, um eine B7-H1-Ausschaltung auf der Oberfläche der Treg zu 

erreichen. Diese wurden dann mit Splenozyten ko-kultiviert und mit ko-kultivierten 

unbehandelten Treg verglichen. 

3.2.1 Treg aus Splenozyten gesunder C57BL/6 WT-Mäuse 
Aus den Splenozyten gesunder C57BL/6 WT-Mäuse wurden Einzelzellsuspensionen 

hergestellt und Treg als Zellfraktion isoliert. Ein Teil der Treg wurde mit dem B7-H1 

Antikörper behandelt, wobei der andere Teil der Treg unbehandelt blieb. Mithilfe des 

CFSE-Proliferationsfarbstoffes wurden Splenozyten markiert und sowohl einzeln 

ausplatziert als auch mit den Treg (+/- B7-H1 Antikörper) ko-kultiviert. Dies erfolgte 

sowohl mit, als auch ohne Aktivierung mittels der Antikörper CD3/CD28, um den 

suppressiven Effekt der Treg nachvollziehen zu können. Folglich ergaben sich 6 

verschiede Ansätze. 

Eine Charakterisierung der CD4+/CD8+ Zellpopulationen und des suppressiven 

Verhaltens der Treg erfolgte mit Hilfe der FACS-Analyse. Als Negativkontrollen 

dienten die jeweiligen FMO-Proben. Der Versuch wurde in 3 Durchläufe mit jeweils 

10 gesunden, männlichen WT-Mäusen unterteilt. 
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3.2.1.1 Suppressionsanalyse - Auswertungsstrategie der Ko-Kultur von 
Splenozyten mit Treg 

Wie in der Auswertungsstrategie unter Abbildung 3.2.1-1 ersichtlich wird, wurden die 

CD3+ T-Zellen (Bild B) aus den Leukozyten identifiziert (Bild A), welche wiederum 

anhand von FSC und SSC dargestellt wurden. Aus den CD3+ T-Zellen konnte dann 

die CD4+/CD8+ Zellfraktion identifiziert werden (Abb. I.2.1.1.13.2.1-1 Bild C). Der 

Proliferationsstatus der CD4+/CD8+ T-Zellen und das dadurch bestimmte 

Suppressionsverhalten der Treg wurde durch die Intensität der CFSE-Färbung 

verdeutlicht (Abb. 3.2.1-1 Bild D-H).  
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Abbildung 3.2.1-1 Auswertungsstrategie der CD4+ und CD8+ T-Zellen und ihres proliferativen Verhaltens 
aus der Ko-Kultur von Splenozyten mit Treg gesunder WT-Mäuse 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ und CD8+ T-Zellen D: CFSE-Darstellung aktivierter Splenozyten aus CD4+ T-Zellen 

im Histogramm. E: CFSE-Darstellung nicht-aktivierter Splenozyten aus CD4+ T-Zellen im Histogramm. F: CFSE-Darstellung im 

overlay der aktivierten Zellfraktionen aus CD4+ T-Zellen im Histogramm. G: CFSE-Darstellung im overlay der aktivierten 

Zellfraktionen aus CD8+ T-Zellen im Histogramm. H: CFSE-Darstellung im overlay der nicht-aktivierten Zellfraktionen aus CD4+ 

T-Zellen im Histogramm. F/G/H: Spl A - aktivierte Splenozyten. Treg – regulatorische T-Zellen. B7-H1 Ak – B7-H1 Antikörper. Spl 

NA – nicht-aktivierte Splenozyten. 

 

Die statistische Auswertung zeigt in den ersten beiden Abbildungen (Abb. 3.2.1-2 

Bild A und B) den Prozentsatz aller CD4+ bzw. CD8+ T-Zellen, die sich nicht geteilt 

hatten (Peak 1). Wie zu erwarten war, zeigten die nicht-aktivierten Splenozyten 

gegenüber den aktivierten Splenozyten einen hoch signifikanten Unterschied, wobei 

sich die aktivierte Zellfraktion bereits geteilt hatte und damit einen deutlich geringeren 

Prozentsatz aufwies. Vergleicht man die aktivierten Splenozyten mit den aktivierten, 

ko-kultivierten Splenozyten mit Treg (+/- B7-H1 Antikörper), so ließ sich ein deutlich 

höherer Anteil nicht-geteilter CD4+ T-Zellen beider Ko-Kulturen ausmachen, was für 

das suppressive Verhalten der Treg spricht. Mit Blick auf die nicht-geteilten CD8+ T-

Zellen zeigte sich ein sehr ähnliches Bild, wobei bei allen aktivierten Zellfraktionen 

eine noch höhere Teilungsaktivität zu beobachten war. 
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Abbildung 3.2.1-2 Quantifizierung aller nicht-geteilten CD4+/CD8+ T-Zellen (Peak 1) aus der Ko-Kultur von 
Splenozyten mit Treg gesunder WT-Mäuse 
A: Prozentualer Anteil aller nicht-geteilten CD4+ T-Zellen. B: Prozentualer Anteil aller nicht-geteilten CD8+ T-Zellen. ***p≤0,001. 

 

Betrachtet man in den nächsten beiden Abbildungen (Abb. 3.2.1-3 Bild A und B) den 

prozentualen Anteil der teilungsaktiven CD4+ bzw. CD8+ T-Zellen (Peak 2), also aller 

zum ersten Mal geteilten Zellen, so wurde bestätigt, dass die nicht-aktivierten 

Zellfraktionen keinerlei Teilungsvermögen aufwiesen. Die aktivierten Zellfraktionen 

hingegen zeigten einen sehr hohen Wert und damit eine hohe Teilungsaktivität. 

Gegenüber den aktivierten, ko-kultivierten Splenozyten mit Treg (+/- B7-H1 

Antikörper) wiesen die aktivierten Splenozyten einen hoch signifikanten, größeren 

Wert auf. Bei der Teilungsaktivität der CD8+ T-Zellen konnte nur ein deutlicher 

Unterschied zwischen den aktivierten und den nicht-aktivierten Splenozyten bestätigt 

werden.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.2.1-3 Quantifizierung aller zum ersten Mal geteilten CD4+/CD8+ T-Zellen (Peak 2) aus der Ko-
Kultur von Splenozyten mit Treg gesunder WT-Mäuse 
A: Prozentualer Anteil aller erstmalig geteilten CD4+ T-Zellen. B: Prozentualer Anteil aller erstmalig geteilten CD8+ T-Zellen. 

*p≤0,05. ***p≤0,001. 
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Im Hinblick auf den CFSE-Peak 3 und 4 der CD4+ T-Zellen (Abb. 3.2.1-4 Bild A-D), 

wurde abermals das Proliferationsverhalten der aktivierten Zellfraktionen bestätigt. 

Auch hier konnte eine Suppression der proliferierenden Splenozyten durch die Treg 

festgestellt werden. Der Peak 3 der CD8+ T-Zellen wies keine deutliche Differenz auf. 

Bei Peak 4 der CD8+ T-Zellen war ein signifikanter Unterschied zwischen den 

aktivierten Splenozyten zu den nicht-aktivierten und zwischen den aktivierten 

Splenozyten zu den aktivierten, ko-kultivierten Splenozyten mit Treg (+/- B7-H1 

Antikörper) zu verzeichnen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.2.1-4 Quantifizierung aller zum zweiten und dritten Mal geteilten CD4+/CD8+ T-Zellen (Peak 3 
und 4) aus der Ko-Kultur von Splenozyten mit Treg gesunder WT-Mäuse 
A: Prozentualer Anteil aller zum zweiten Mal geteilten CD4+ T-Zellen, Peak 3. B: Prozentualer Anteil aller zum zweiten Mal 

geteilten CD8+ T-Zellen, Peak 3. C: Prozentualer Anteil aller zum dritten Mal geteilten CD4+ T-Zellen, Peak 4. D: Prozentualer 

Anteil aller zum dritten Mal geteilten CD8+ T-Zellen, Peak 4. *p≤0,05. ***p≤0,001. 
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Diese Auswertung der einzelnen Peaks zeigte, dass bei der Zugabe von Treg zu den 

Splenozyten das Teilungsvermögen sowohl der CD4+ als auch der CD8+ T-Zellen 

abnahm. Dieses Verhalten bestätigt das suppressive Potential der Treg, jedoch 

konnte kein signifikanter Unterschied bei einer B7-H1-Ausschaltung im Vergleich zu 

keiner B7-H1-Ausschaltung auf der Oberfläche von Treg beobachtet werden. 

3.2.1.2 Weitere Auswertungen der Ko-Kultur von Splenozyten mit Treg 
Um den Aktivierungsgrad der CD4+/CD8+ T-Zellen zu verdeutlichen, wurde der frühe 

Aktivierungsmarker CD69 verwendet (Abb. 3.2.1-5 Bild A). Zusätzlich wurden die 

CD8+ T-Zellen auf ihren prozentualen Anteil von CD25 untersucht (Abb. 3.2.1-5 Bild 

B). 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 
Abbildung 3.2.1-5 Auswertungsstrategie der CD4+ und CD8+ T-Zellen aus der Ko-Kultur von Splenozyten 
mit Treg gesunder WT-Mäuse 

A: Darstellung der CD8+CD69+ T-Zellen aus aktivierten Splenozyten im Histogramm. B: Darstellung der CD8+ CD25+ T-Zellen 

aus aktivierten Splenozyten im Histogramm. 

 

Der Aktivitätsstatus der CD4+ T-Zellen wurde durch Verwendung des frühen 

Aktivierungsmarkers CD69 bestimmt (Abb. 3.2.1-6 Bild A). Wie zu erwarten, 

proliferierten die durch CD3/CD28 aktivierten Zellpopulationen gegenüber den nicht-

aktivierten Zellpopulationen deutlich, womit sich ein statistisch hoch signifikanter 

Unterschied ergab. Auch bei Betrachtung des Aktivierungsgrades der CD8+ T-Zellen 

mithilfe des Markers CD69 wurden die gleichen Erwartungen bestätigt und ein 

deutlicher Unterschied im Proliferationsgrad zwischen den aktivierten und den nicht-

aktivierten Zellfraktionen festgestellt (Abb. 3.2.1-6 Bild B). Bei den CD8+ T-Zellen 

B A 
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wurde zusätzlich ein Augenmerk auf den prozentualen Anteil von CD25 gelegt. Alle 

aktivierten Zellfraktionen wiesen einen höheren prozentualen Anteil an CD8+CD25+ 

T-Zellen gegenüber den jeweiligen nicht-aktivierten Zellfraktionen auf, wobei hier der 

größte und signifikanteste Unterschied zwischen den aktivierten und den nicht-

aktivierten Splenozyten nachgewiesen wurde (Abb. 3.2.1-6 Bild C). In Anbetracht der 

Verwendung des B7-H1 Antikörpers und damit der Ausschaltung des B7-H1 

Moleküls auf der Oberfläche der Treg, konnte kein signifikanter Unterschied im 

suppressiven Verhalten der Treg -im Vergleich zu keiner B7-H1-Ausschaltung- 

festgestellt werden. 
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Abbildung 3.2.1-6 Quantifizierung und Charakterisierung von CD4+ und CD8+ T-Zellen aus der Ko-Kultur 
von Splenozyten mit Treg gesunder WT-Mäuse 
A: Prozentualer Anteil der CD69+ Zellen in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der CD69+ Zellen in Bezug auf 

CD8+ T-Zellen. C: Prozentualer Anteil der CD25+ Zellen in Bezug auf CD8+ T-Zellen. *p≤0,05. ***p≤0,001. 
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3.3 Untersuchung der Effekte einer B7-H1-Ausschaltung auf der 
Oberfläche von MDSC auf ihr Suppressionspotential 

In diesem Experiment sollte auf dem Wissen basierend, dass MDSC ein 

suppressives Potential zeigen, ihr Suppressionsvermögen auf CD4+ T-Zellen 

untersucht werden. Um die Auswirkungen, die dabei das B7-H1 Molekül mit sich 

bringt, zu untersuchen, wurde durch Verwendung des B7-H1 Antikörpers eine 

Ausschaltung dieses Moleküls auf der Oberfläche der MDSC erzielt. Das ganze 

erfolgte vergleichend mit unbehandelten MDSC. Die MDSC wurden dann jeweils mit 

Splenozyten ko-kultiviert. 

3.3.1 Vergleich zwischen MDSC aus Tumoren und Knochenmark  
Im ersten Teil dieses Experiments sollte das immunsuppressive Potential der MDSC 

aus Tumoren mit MDSC aus dem Knochenmark verglichen werden. Hierfür wurden 

aus tumortragenden, männlichen C57BL/6 WT-Mäusen sowohl die Primärtumoren, 

als auch das Knochenmark der Hinterextremitäten isoliert, daraus jeweils 

Einzelzellsuspensionen hergestellt und MDSC als Zellfraktion isoliert. Des Weiteren 

wurden die Milzen isoliert und daraus eine Einzelzellsuspension hergestellt. Die 

Splenozyten wurden mit dem CFSE-Farbstoff markiert und mit den jeweiligen MDSC 

ko-kultiviert. Zusätzlich erfolgte bei einem Teil der Zellen eine Aktivierung mit den 

CD3/CD28 Antikörpern. Dies ergab insgesamt 6 verschiedene Ansätze. 

Eine Charakterisierung der Zellen erfolgte mittels der FACS-Analyse. Als 

Negativkontrollen wurden die jeweiligen FMO-Proben herangezogen. Der Versuch 

wurde in zwei Durchläufe mit jeweils 10 tumortragenden, männlichen WT-Mäusen 

unterteilt. 

3.3.1.1 Auswertungsstrategie 
Anhand von FSC und SSC wurden zuerst die Leukozyten dargestellt, woraus 

anschließend alle CD3+ T-Zellen identifiziert wurden (Abb. 3.3.1-1 Bild A und B). Aus 

dieser Zellpopulation ließen sich alle CD4+ T-Zellen darstellen, worauf dann der 

Proliferationsstatus durch die CFSE-Färbung im Histogramm zu sehen war (Abb. 

3.3.1-1 Bild C-F). 
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Abbildung 3.3.1-1 Auswertungsstrategie der CD4+ T-Zellen und des suppressiven Verhaltens der MDSC 
aus der Ko-Kultur von Splenozyten mit MDSC tumortragender WT-Mäuse 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ T-Zellen D: CFSE-Darstellung der aktivierten Splenozyten aus CD4+ T-Zellen im 

Histogramm. E: CFSE-Darstellung im overlay der aktivierten Zellfraktionen im Histogramm aus CD4+ T-Zellen. F: CFSE-

Darstellung im overlay der nicht-aktivierten Zellfraktionen im Histogramm aus CD4+ T-Zellen. E/F: Spl A – aktivierte 

Splenozyten. Spl NA – nicht-aktivierte Splenozyten. MDSC – Myeloid derived suppressor cells. 

 

Wie die statistische Auswertung zeigt, gab es keinen signifikanten Unterschied 

zwischen dem suppressiven Verhalten der MDSC aus den Tumoren und dem 

Knochenmark (Abb. 3.3.1-2 Bild A-C). Aus diesem Grund wurde entschieden, MDSC 

für die weiteren Versuche aus Tumoren zu isolieren. 
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Abbildung 3.3.1-2 Quantifizierung der geteilten bzw. nicht-geteilten, ko-kultivierten Splenozyten mit MDSC 
in Gegenüberstellung der MDSC aus Tumoren und aus Knochenmark 
A: Prozentualer Anteil aller nicht-geteilten Zellen, Peak 1. B: Prozentualer Anteil aller zum ersten Mal geteilten Zellen, Peak 2. 

C: Prozentualer Anteil aller zum zweiten Mal geteilten Zellen, Peak 3. 

 

3.3.2 MDSC aus Tumoren von C57BL/6 WT-Mäusen 
Im nachfolgenden Experiment wurden die Milzen und Tumoren aus WT-Mäusen 

isoliert und daraus jeweils Einzelzellsuspensionen hergestellt. Aus den Tumoren 

wurden MDSC als Zellfraktion isoliert und teilweise mit dem B7-H1 Antikörper 

behandelt. Der andere Teil der MDSC blieb unbehandelt. Die Einzelzellsuspension 

der Splenozyten wurde mit dem CFSE-Proliferationsfarbstoff versetzt. Anschließend 

wurden die Splenozyten sowohl einzeln, als auch in Ko-Kultur mit den MDSC (+/- B7-

H1 Antikörper) ausplatziert. Zuletzt erfolgte eine Aktivierung der Zellen mittels der 

Antikörper CD3/CD28, im Vergleich zu keiner Aktivierung. Daraus ergaben sich 

insgesamt 6 verschiedene Ansätze. 

Eine Phänotypisierung der Zellen erfolgte mit Hilfe der FACS-Analyse. Als 

Negativkontrollen wurden die jeweiligen FMO Proben herangezogen. Der Versuch 

wurde in vier Durchläufe unterteilt mit jeweils 12 tumortragenden, männlichen WT-

Mäusen. 

3.3.2.1 Auswertungsstrategie der CD3+ und CD4+ T-Zellen 
Anhand von FSC und SSC wurden zuerst die Leukozyten dargestellt, woraus 

anschließend alle CD3+ T-Zellen identifiziert werden konnten. Aus dieser 

Zellpopulation ließen sich alle CD4+ T-Zellen darstellen. Der Proliferationsstatus der 
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CD4+ T-Zellen und das Suppressionsverhalten der MDSC wurde durch die Intensität 

der CFSE-Färbung bestimmt.  

Die folgenden Abbildungen zeigen ein sog. overlay, also eine Überlagerung der 

unterschiedlich aktivierten bzw. nicht-aktivierten Zellpopulationen. 
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Abbildung 3.3.2-1 Auswertungsstrategie der CD4+ T-Zellen und des proliferativen Verhaltens im 
Histogramm aus der Ko-Kultur von Splenozyten mit MDSC tumortragender WT-Mäuse 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ T-Zellen. D: CFSE-Darstellung aktivierter Splenozyten aus CD4+ T-Zellen. E: CFSE-

Darstellung nicht-aktivierter Splenozyten aus CD4+ T-Zellen. F: CFSE-Darstellung im overlay der aktivierten Zellfraktionen aus 

CD4+ T-Zellen im Histogramm. G: CFSE-Darstellung im overlay der nicht-aktivierten Zellfraktionen aus CD4+ T-Zellen im 

Histogramm. F/G: Spl A – aktivierte Splenozyten. MDSC – Myeloid derived suppressor cells. B7-H1 Ak – B7-H1 Antikörper. Spl 

NA – nicht-aktivierte Splenozyten. 
 

Bei der Beurteilung des prozentualen Anteils der CD3+ T-Zellen bezogen auf die 

Leukozyten, war ein signifikanter Unterschied und höherer Wert aller aktivierten, im 

Gegensatz zu allen nicht-aktivierten Zellen festzustellen (Abb. 3.3.2-2 Bild A). 

Betrachtet man im Einzelnen die nicht-aktivierten Zellfraktionen (Splenozyten +/- 
MDSC, +/- B7-H1 Antikörper) und die aktivierten Zellfraktionen untereinander, so 

wurde kein deutlicher Unterschied im prozentualen Anteil der CD3+ T-Zellen aus den 

Leukozyten nachgewiesen (Abb. 3.3.2-2 Bild B und C).  
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Abbildung 3.3.2-2 Quantifizierung der CD3+ T-Zellen aus den Leukozyten aus der Ko-Kultur von 
Splenozyten mit MDSC tumortragender WT-Mäuse 
A: Prozentualer Anteil der CD3+ T-Zellen in Bezug auf die Leukozyten. B: Prozentualer Anteil der CD3+ T-Zellen in Bezug auf 

die Leukozyten, im Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der CD3+ T-Zellen in Bezug auf 

die Leukozyten, im Vergleich unter den aktivierten Zellfraktionen. *p≤0,05. 

 

Im Hinblick auf die CD4+ Zellfraktion und ihrem prozentualen Anteil der CD3+ T-

Zellen, zeigte sich ein deutlicher Unterschied zwischen den in ihrer Gesamtheit 

aktivierten und nicht-aktivierten Zellpopulationen (Abb. 3.3.2-3 Bild A). Die nicht-

aktivierten Zellen wiesen insgesamt einen höheren Anteil an CD4+ T-Zellen auf, als 

die aktivierten. Vergleicht man sowohl die nicht-aktivierten Zellfraktionen 

untereinander, als auch die aktivierten Zellfraktionen, so war abermals keine 

deutliche Abweichung zu verzeichnen (Abb. 3.3.2-3 Bild B und C). 
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Abbildung 3.3.2-3 Quantifizierung der CD4+ T-Zellen aus den CD3+ T-Zellen aus der Ko-Kultur von 
Splenozyten mit MDSC tumortragender WT-Mäuse 
A: Prozentualer Anteil der CD4+ T-Zellen in Bezug auf die CD3+ T-Zellen. B: Prozentualer Anteil der CD4+ T-Zellen in Bezug auf 

die CD3+ T-Zellen, im Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der CD4+ T-Zellen in Bezug auf 

die CD3+ T-Zellen, im Vergleich unter den aktivierten Zellfraktionen. *p≤0,05. 

 

Wie zu erwarten war, zeigte der durch Verwendung des frühen Aktivierungsmarkers 

CD69 dargestellten Aktivierungsstatus der CD4+ T-Zellen eine hoch signifikante 

Abweichung (Abb. 3.3.2-4 Bild A). Die durch CD3/CD28 aktivierten Zellen wiesen 

einen sehr viel höheren Prozentsatz an CD4+CD69+ T-Zellen auf, als die nicht-

aktivierten. Im Hinblick auf den prozentualen Vergleich aller nicht-aktivierten 

CD4+CD69+ T-Zellen untereinander, wurde ein größerer Wert der nicht-aktivierten 

Splenozyten im Vergleich zu den nicht-aktivierten, ko-kultivierten Splenozyten mit 

MDSC (+/- B7-H1 Antikörper) festgestellt (Abb. 3.3.2-4 Bild B). Dies verdeutlicht das 

suppressive Potential, welches den MDSC zugeschrieben wird, selbst wenn die 

MDSC zu nicht-aktivierten Splenozyten zugegeben wurden. Die B7-H1-Ausschaltung 

durch Zugabe des B7-H1 Antikörpers hatte keine Auswirkungen auf das suppressive 

Potential der MDSC. Bei Betrachtung aller aktivierten CD4+CD69+ T-Zellen im 

Vergleich fiel keine bedeutende Abweichung auf (Abb. 3.3.2-4 Bild C). 
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Abbildung 3.3.2-4 Quantifizierung der CD69+ Zellen aus den CD4+ T-Zellen aus der Ko-Kultur von 
Splenozyten mit MDSC tumortragender WT-Mäuse 
A: Prozentualer Anteil der CD69+ Zellen in Bezug auf die CD4+ T-Zellen. B: Prozentualer Anteil der CD69+ Zellen in Bezug auf 

die CD4+ T-Zellen, im Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der CD69+ T-Zellen in Bezug 

auf die CD4+ T-Zellen, im Vergleich unter den aktivierten Zellfraktionen. *p≤0,05. ***p≤0,001. 

 

3.3.2.2 Untersuchung der Effekte von MDSC auf Treg, Tcon, Tcon aktiviert und 
CD4+CD25-FoxP3+ Zellen 

Des Weiteren wurden die Effekte der MDSC auf Treg, Tcon, Tcon aktiviert und  

CD4+CD25-FoxP3+ Zellen untersucht. Hierfür wurden mittels FSC und SSC die 

Leukozyten dargestellt und hieraus wiederum alle CD3+ T-Zellen abgebildet (Abb. 

3.3.2-5 Bild A und B). Aus der CD3+ Zellfraktion wurden danach die CD4+ T-Zellen 

identifiziert (Abb. 3.3.2-5 Bild C). Aus diesen konnten mit Hilfe der Marker CD25 und 

FoxP3 die Zellpopulationen (Treg, Tcon, Tcon aktiviert und CD4+CD25-FoxP3+ Zellen) in 
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vier Quadranten geteilt dargestellt werden (Abb. 3.3.2-5 Bild D). Als 

Negativkontrollen dienten die jeweiligen FMO-Proben (Abb. 3.3.2-5 Bild E und F). 
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Abbildung 3.3.2-5 Auswertungsstrategie  der Treg, Tcon, Tcon aktiviert und der CD4+CD25+FoxP3+ T-Zellen 
aus der Ko-Kultur mit Splenozyten und MDSC tumortragender WT-Mäuse 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ T-Zellen. D: Q1: CD25-FoxP3+, Q2: CD25+FoxP3+ (Treg), Q3: CD25+FoxP3- (Tcon 

aktiviert), Q4: CD25-FoxP3- (Tcon). E: FMO-Probe von CD25. F: FMO-Probe von FoxP3. 

 

3.3.2.2.1 Treg, CD4+CD25+FoxP3+ Zellen 
Im Folgenden sollte das Verhalten der MDSC auf Treg untersucht werden. Dabei 

zeigte sich wie zuvor schon beschrieben ein ähnliches Muster: Es konnte ein 

deutlicher Unterschied und damit höherer Prozentsatz der Treg gemessen an den 

CD4+ T-Zellen aller aktivierten Zellfraktionen im Vergleich zu den nicht-aktivierten 

festgestellt werden (Abb. 3.3.2-6 Bild A). Betrachtet man die nicht-aktivierten 

Zellpopulationen im Vergleich, konnte ein signifikant höherer prozentualer Anteil der 

aktivierten Splenozyten gegenüber den aktivierten, ko-kultivierten Splenozyten mit 

MDSC (+/- B7-H1 Antikörper) jeweils nachgewiesen werden (Abb. 3.3.2-6 Bild B). 

Bei den aktivierten Zellpopulationen der CD4+CD25+FoxP3+ T-Zellen, wurde im 

Vergleich untereinander keine bedeutende Abweichung ermittelt (Abb. 3.3.2-6 Bild 

C). 
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Abbildung 3.3.2-6 Quantifizierung der Treg aus den CD4+ T-Zellen aus der Ko-Kultur von Splenozyten mit 
MDSC aus tumortragenden WT-Mäusen (+/- B7-H1 Antikörper) 
A: Prozentualer Anteil der Treg in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der Treg in Bezug auf CD4+ T-Zellen, im 

Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der Treg in Bezug auf CD4+ T-Zellen, im Vergleich 

unter den aktivierten Zellfraktionen. *p≤0,05. 

 

3.3.2.2.2 Tcon, CD4+CD25-FoxP3- Zellen 
In der nachfolgenden Auswertung lag das Augenmerk auf den Tcon. Vergleicht man 

den prozentualen Anteil der nicht-aktivierten zu den aktivierten Zellen der CD4+CD25-

FoxP3- T-Zellen, so konnte eine stark signifikante Differenz festgestellt werden (Abb. 

3.3.2-7 Bild A). Die nicht-aktivierten Zellen wiesen einen deutlich höheren Wert an 

Tcon auf als die aktivierten. Hinsichtlich der nicht-aktivierten Zellpopulationen 

untereinander, befanden sich alle drei Ansätze auf ungefähr gleichem Niveau (Abb. 

3.3.2-7 Bild B). Auch die aktivierten Zellpopulationen der Tcon zeigten keine 

auffallenden Abweichungen untereinander (Abb. 3.3.2-7 Bild C). 
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Abbildung 3.3.2-7 Quantifizierung der Tcon aus den CD4+ T-Zellen aus der Ko-Kultur von Splenozyten mit 
MDSC aus tumortragenden WT-Mäusen (+/- B7-H1 Antikörper) 
A: Prozentualer Anteil der Tcon in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der Tcon in Bezug auf CD4+ T-Zellen, im 

Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der Tcon in Bezug auf CD4+ T-Zellen, im Vergleich 

unter den aktivierten Zellfraktionen. **p≤0,005. 

 

3.3.2.2.3 Tcon aktiviert, CD4+CD25+FoxP3- Zellen 
Zieht man einen Vergleich zwischen den aktivierten und nicht-aktivierten Zellen, so 

ist auch hier wieder ein deutlicher Unterschied erkennbar, denn der prozentuale 

Anteil der aktivierten Zellen der CD4+CD25+FoxP3- Zellen lag signifikant höher, als 

der der nicht-aktivierten Zellen (Abb. 3.3.2-8 Bild A). Die Aktivierung der Zellen führte 

erwartungsgemäß zu einer gesteigerten Expression von CD25, was bereits bei den 

Treg deutlich wurde. Betrachtet man als nächstes die nicht-aktivierten 

Zellpopulationen der CD4+CD25+FoxP3- Zellen, so konnte ein deutlicher Unterschied 

zwischen den nicht-aktivierten Splenozyten und den nicht-aktivierten, ko-kultivierten 

Splenozyten mit MDSC sowohl mit, als auch ohne B7-H1 Antikörper nachgewiesen 
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werden (Abb. 3.3.2-8 Bild B). Weiterhin befanden sich alle aktivierten Fraktionen auf 

einem ähnlichen prozentualen Niveau (Abb. 3.3.2-8 Bild C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Abbildung 3.3.2-8 Quantifizierung der Tcon aktiviert aus CD4+ T-Zellen aus der Ko-Kultur mit Splenozyten 
und MDSC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
A: Prozentualer Anteil der Tcon aktiviert in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der Tcon aktiviert in Bezug auf CD4+ 

T-Zellen, im Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der Tcon aktiviert in Bezug auf CD4+ T-

Zellen, im Vergleich unter den aktivierten Zellfraktionen. *p≤0,05.  

 

3.3.2.2.4 CD4+CD25-FoxP3+ Zellen 
Die Statistik über die CD4+CD25-FoxP3+ T-Zellen zeigte eine hoch signifikante 

Abweichung aller nicht-aktivierten Zellen, im Sinne eines deutlich höheren Anteils 

gegenüber den aktivierten Zellen (Abb. 3.3.2-9 Bild A). Des Weiteren wurden die 

nicht-aktivierten Zellpopulationen der CD4+CD25-FoxP3+ T-Zellen miteinander 

verglichen (Abb. 3.3.2-9 Bild B). Darin konnte ein stark signifikanter Unterschied 
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B7-H1 Antikörper) und den nicht-aktivierten Splenozyten alleine festgestellt werden. 

Die letzte Abbildung der CD4+CD25-FoxP3+ T-Zellen weist zwischen den aktivierten 

Splenozyten und den aktivierten, ko-kultivierten Splenozyten mit MDSC -sowohl mit, 

als auch ohne B7-H1 Antikörper- einen deutlichen Unterschied auf, da die ko-

kultivierten Zellpopulationen jeweils einen höheren Prozentsatz zeigten (Abb. 3.3.2-9 

Bild C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 3.3.2-9 Quantifizierung der CD25-FoxP3+ Zellen aus CD4+ T-Zellen aus der Ko-Kultur mit 
Splenozyten und MDSC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
A: Prozentualer Anteil der CD25-FoxP3+ Zellen in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der CD25-FoxP3+ Zellen in 

Bezug auf CD4+ T-Zellen, im Vergleich unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil der CD25-FoxP3+ Zellen 

in Bezug auf CD4+ T-Zellen, im Vergleich unter den aktivierten Zellfraktionen. *p≤0,05. **p≤0,01. ***p≤0,001. 
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kein signifikanter Unterschied bei einer B7-H1-Ausschaltung verglichen mit keiner 

B7-H1-Ausschaltung auf der Oberfläche der MDSC festgestellt werden. 

3.3.2.3 Das suppressive Verhalten der MDSC 
Betrachtet man die statistische Auswertung der einzelnen CFSE-Peaks, so zeigte der 

prozentuale Anteil aller nicht-geteilten Zellen, dass die nicht-aktivierten Zellen einen 

eindeutig höheren Wert als die aktivierten Zellen aufwiesen (Abb. 3.3.2-10 Bild A). 

Das heißt es konnte bei den aktivierten Zellfraktionen erwartungsgemäß eine 

deutliche Teilungsaktivität nachgewiesen werden. Zieht man einen direkten Vergleich 

zwischen den nicht-aktivierten Zellfraktionen und ihrer Teilungsaktivität, so zeigten 

alle das gleiche Verhalten (Abb. 3.3.2-10 Bild B). Im Gegensatz dazu konnte bei den 

aktivierten Zellfraktionen ein deutlicher Unterschied in ihrer Teilungsaktivität 

nachgewiesen werden (Abb. 3.3.2-10 Bild C). Während die ko-kultivierten, aktivierten 

Splenozyten mit MDSC ohne B7-H1 Antikörper sich am wenigsten teilten, zeigten die 

aktivierten Splenozyten alleine die aktivste Teilung. Bei den ko-kultivierten 

Splenozyten mit MDSC mit B7-H1 Antikörper war der Unterschied zu den aktivierten 

Splenozyten ebenfalls signifikant, zu den ko-kultivierten Splenozyten mit MDSC ohne 

B7-H1 Antikörper jedoch nur minimal geringer. Das Verhalten aller zum ersten Mal 

geteilten Zellen verglichen zwischen aktivierten und nicht-aktivierten 

Zellpopulationen, bestätigt die Erwartung, dass sich alle nicht-aktivierten Zellen auch 

nicht geteilt und sich die aktivierten Zellen dagegen sehr stark geteilt hatten (Abb. 

3.3.2-10 Bild D). Blickt man abschließend auf das prozentuale Verhalten der 

aktivierten, zum ersten Mal geteilten Zellpopulationen, ist ein deutlicher Unterschied 

feststellbar (Abb. 3.3.2-10 Bild E). Während die aktivierten Splenozyten sich am 

aktivsten geteilt hatten, zeigten die aktivierten, ko-kultivierten Splenozyten mit MDSC 

(+/- B7-H1 Antikörper) eine statistisch signifikante, geringere Teilungsaktivität.  
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Abbildung 3.3.2-10 Quantifizierung aller nicht-geteilten (Peak 1) und zum ersten Mal geteilten (Peak 2) 
CD4+ T-Zellen aus der Ko-Kultur von Splenozyten mit MDSC tumortragender WT-Mäuse (+/- B7-H1 
Antikörper) 
A: Prozentualer Anteil aller nicht-geteilten CD4+ T-Zellen. B: Prozentualer Anteil aller nicht-geteilten CD4+ T-Zellen, im Vergleich 

unter den nicht-aktivierten Zellfraktionen. C: Prozentualer Anteil aller nicht-geteilten CD4+ T-Zellen, im Vergleich unter den 
aktivierten Zellfraktionen. D: Prozentualer Anteil aller geteilten CD4+ T-Zellen, im Vergleich unter den nicht-aktivierten 

Zellfraktionen. E: Prozentualer Anteil aller geteilten CD4+ T-Zellen, im Vergleich unter den aktivierten Zellfraktionen. *p≤0,05.  

***p≤0,001. 
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3.4 Untersuchung der Effekte einer B7-H1-Ausschaltung auf der 
Oberfläche von DC auf ihr Proliferationsverhalten 

Dieses Experiment wurde durchgeführt, um zu prüfen, ob DC im Falle des PaCa 

ebenfalls ein aktivierendes Verhalten zeigen, wie es im gesunden Zustand der Fall 

ist. Das proliferative Verhalten der aus Tumoren gewonnenen DC wurde folglich auf 

CD4+/CD8+ T-Zellen untersucht. Dabei wurde durch Verwendung des B7-H1 

Antikörpers eine Ausschaltung des B7-H1 Moleküls auf der Oberfläche von DC 

erzielt und vergleichend mit unbehandelten DC wurden sie jeweils in Ko-Kultur mit 

Splenozyten gebracht.  

3.4.1 DC aus Tumoren von C57BL/6 WT-Mäusen 
Aus tumortragenden, männlichen WT-Mäusen wurden die Milzen und Tumoren 

isoliert und daraus jeweils Einzelzellsuspensionen hergestellt. Aus der Tumor-

Einzelzellsuspension wurden DC als Zellfraktion isoliert, wobei ein Teil davon mit 

dem B7-H1 Antikörper behandelt wurde und der andere unbehandelt blieb. Die Milz-

Einzelzellsuspension wurde mit dem CFSE-Proliferationsfarbstoff markiert, um das 

proliferative Verhalten der CD4+/CD8+ T-Zellen nachvollziehen zu können. Daraufhin 

wurden die Splenozyten sowohl einzeln, als auch in Ko-Kultur mit den DC (+/- B7-H1 

Antikörper) ausplatziert. Anschließend erfolgte bei der einen Hälfte der Ansätze eine 

Aktivierung der Zellen mit Hilfe der CD3/CD28 Antikörper. Daraus ergaben sich 

insgesamt 6 verschiedene Ansätze. 

Eine Charakterisierung der Zellen erfolgte mit Hilfe der FACS-Analyse. Als 

Negativkontrollen wurden die entsprechenden FMO-Proben herangezogen. Der 

Versuch wurde in 3 Durchläufen mit jeweils 16 tumortragenden, männlichen WT-

Mäusen durchgeführt. 

3.4.1.1 Proliferationsanalyse - Auswertungsstrategie der Ko-Kultur von 
Splenozyten mit DC  

Um die CD4+/CD8+ T-Zellen zu analysieren, wurde folgende Auswertungsstrategie 

herangezogen: Die Leukozyten konnten mit Hilfe der Dotplot-Darstellung (FSC zu 

SSC) ermittelt werden (Abb. 3.4.1-1 Bild A). Daraus wurden alle CD3+ T-Zellen 

festgelegt und im nächsten Schritt die CD4+/CD8+ Zellpopulationen identifiziert (Abb. 

3.4.1-1 Bild B und C). Im Histogramm wurde dann sowohl auf den CD4+ als auch auf 

den CD8+ T-Zellen das proliferative Verhalten der Splenozyten mit Hilfe des CFSE-

Farbstoffes untersucht (Abb. 3.4.1-1 Bild D-I).  



Ergebnisse 

 

93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B A 

C 

E 

D 

F 

 



Ergebnisse 

 

94 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.4.1-1 Auswertungsstrategie der CD4+ und CD8+ T-Zellen und des proliferativen Verhaltens 
aus der Ko-Kultur von Splenozyten mit DC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
A: Leukozyten. B: CD3+ T-Zellen. C: CD4+ und CD8+ T-Zellen. D: CFSE-Darstellung der aktivierten Splenozyten aus CD4+ T-

Zellen im Histogramm. E: CFSE-Darstellung der aktivierten Splenozyten aus CD8+ T-Zellen im Histogramm. F: CFSE-

Darstellung der nicht-aktivierten Splenozyten aus CD4+ T-Zellen im Histogramm. G: CFSE-Darstellung im overlay der 

aktivierten Zellfraktionen aus CD4+ T-Zellen im Histogramm. H: CFSE-Darstellung im overlay der aktivierten Zellfraktionen aus 

CD8+ T-Zellen im Histogramm. I: CFSE-Darstellung im overlay der nicht-aktivierten Zellfraktionen aus CD4+ T-Zellen im 

Histogramm. G/H/I: Spl A – aktivierte Splenozyten. DC – Dendritische Zellen. B7-H1 Ak – B7-H1 Antikörper. Spl NA – nicht-

aktivierte Splenozyten. 
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Erwartungsgemäß konnte ein hoch signifikanter Unterschied bezüglich des 

prozentualen Anteils aller nicht-geteilten Zellen (Peak 1) zwischen den aktivierten 

und den nicht-aktivierten Zellfraktionen nachgewiesen werden, sowohl bei den CD4+ 

T-Zellen, als auch bei den CD8+ T-Zellen (Abb. 3.4.1-2 Bild A und B). Während die 

nicht-aktivierten Zellpopulationen einen hohen Prozentsatz und damit eine geringe 

Teilungsaktivität aufwiesen, zeigten die aktivierten Zellpopulationen genau das 

Gegenteil - einen niedrigen Prozentsatz und damit eine hohe Teilungsbereitschaft.  

Betrachtet man nur den letzten CFSE-Peak der CD4+ T-Zellen (Peak 5), so wird 

folglich ebenfalls ein hoch signifikanter Unterschied deutlich (Abb. 3.4.1-2 Bild C). 

Alle aktivierten Zellfraktionen waren hoch teilungsaktiv, während die nicht-aktivierten 

Zellen naturgemäß keine Bereitschaft mehr dazu zeigten. Betrachtet man die 

Teilungsaktivität der aktivierten, ko-kultivierten Splenozyten mit DC (ohne B7-H1 

Antikörper), so konnte eine deutlich höhere Rate gegenüber den aktivierten 

Splenozyten festgestellt werden. Durch die Zugabe der DC erfolgte damit eine 

deutliche Aktivierung der Proliferation. Im Hinblick auf die aktivierten, ko-kultivierten 

Splenozyten mit DC (mit B7-H1 Antikörper), wurde dieses aktivierende Verhalten 

nicht verstärkt. 

Die Auswertung des letzten CFSE-Peaks der CD8+ T-Zellen (Peak 6) zeigte ein sehr 

ähnliches Bild. Alle aktivierten Zellfraktionen zeigten gegenüber den jeweiligen nicht-

aktivierten Zellfraktionen eine signifikant höhere Teilungsaktivität (Abb. 3.4.1-2 Bild 

D). 
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Abbildung 3.4.1-2 Quantifizierung der CD4+ und CD8+ T-Zellen und des proliferativen Verhaltens aus der 
Ko-Kultur von Splenozyten mit DC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
A: Prozentualer Anteil aller nicht-geteilten CD4+ T-Zellen, Peak 1. B: Prozentualer Anteil aller nicht-geteilten CD8+ T-Zellen, 

Peak 1. C: Prozentualer Anteil aller zum vierten Mal geteilten CD4+ T-Zellen, Peak 5. D: Prozentualer Anteil aller zum fünften 

Mal geteilten CD4+ T-Zellen, Peak 6. 

 

3.4.1.2 Weitere Auswertungen der Ko-Kultur von Splenozyten mit DC 
Im nächsten Schritt wurden im Histogramm sowohl auf den CD4+ als auch auf den 

CD8+ T-Zellen der Grad der Aktivierung mit Hilfe des frühen Aktivierungsmarkers 

CD69 überprüft (Abb. 3.4.1-3 Bild A). Zusätzlich fand der Marker für CD25 seine 

Verwendung, was ebenfalls im Histogramm dargestellt wurde (Abb. 3.4.1-3 Bild B).  

 

 

 

 

 

 

 

 

 

Abbildung 3.4.1-3 Weitere Auswertungsstrategie der CD4+ und CD8+ T-Zellen aus der Ko-Kultur von 
Splenozyten mit DC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
A: Darstellung der CD4+CD69+ T-Zellen aus aktivierten Splenozyten im Histogramm. B: Darstellung der CD4+CD25+ T-Zellen 

aus aktivierten Splenozyten im Histogramm. 
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Im Hinblick auf den Aktivierungsstatus der CD4+CD69+ T-Zellen, konnten einige hoch 

signifikante Unterschiede zwischen den 6 unterschiedlichen Ansätzen festgestellt 

werden (Abb. 3.4.1-4 Bild A). Erwartungsgemäß wiesen die durch die CD3/CD28 

Antikörper aktivierten Splenozyten einen deutlichen Aktivierungsgrad gegenüber den 

nicht-aktivierten Splenozyten auf. Auch im Vergleich zu den aktivierten, ko-

kultivierten Splenozyten mit DC (+/- B7-H1 Antikörper) zeigten die aktivierten 

Splenozyten eine deutlich stärkere Aktivierung. Vergleicht man den prozentualen 

Anteil zwischen den nicht-aktivierten, ko-kultivierten und den aktivierten, ko-

kultivierten Splenozyten mit DC (+/- B7-H1 Antikörper), so konnte ebenfalls ein 

deutlicher Anstieg unter den aktivierten Populationen der CD4+CD69+ T-Zellen 

beobachtet werden. In Anbetracht der Auswertung der CD4+CD25+ T-Zellen konnte 

jeweils ein signifikanter Unterschied zwischen den jeweiligen aktivierten und nicht-

aktivierten Zellpopulationen nachgewiesen werden (Abb. 3.4.1-4 Bild B). Die 

aktivierten Fraktionen wiesen immer einen deutlich höheren Prozentsatz an CD25+ 

Zellen auf, als die nicht-aktivierten. 

Bei der Untersuchung des Aktivierungsgrades der CD8+CD69+ T-Zellen wiesen nur 

die durch CD3/CD28 aktivierten Splenozyten gegenüber den nicht-aktivierten 

Splenozyten einen deutlich höheren Prozentsatz an CD69 auf (Abb. 3.4.1-4 Bild C). 

Abschließend wird die statistische Auswertung der CD8+CD25+ T-Zellen verdeutlicht 

(Abb. 3.4.1-4 Bild D). Hierbei ließ sich zwischen allen drei aktivierten Zellfraktionen 

jeweils ein hoch signifikanter Unterschied und damit eindeutig höherer prozentualer 

Anteil an CD25+ Zellen zu den nicht-aktivierten ermitteln. 

Die Ergebnisse deuten darauf hin, dass DC auch im Tumorgeschehen des PaCa 

eine aktivierende Funktion besitzen, was sich durch die Verstärkung der Proliferation 

der aktivierten Splenozyten zeigt. Die Ausschaltung des B7-H1 Moleküls auf der 

Oberfläche der DC hat jedoch keine Auswirkung auf die Stimulierung der Proliferation 

der T-Zellen gezeigt. 
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Abbildung 3.4.1-4 Quantifizierung und Charakterisierung der CD4+ und CD8+ T-Zellen aus der Ko-Kultur 
von Splenozyten mit DC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
A: Prozentualer Anteil der CD69+ Zellen in Bezug auf CD4+ T-Zellen. B: Prozentualer Anteil der CD25+ Zellen in Bezug auf 

CD4+ T-Zellen. C:  Prozentualer Anteil der CD69+ Zellen in Bezug auf CD8+ T-Zellen. D: Prozentualer Anteil der CD25+ Zellen in 

Bezug auf CD8+ T-Zellen. *p≤0,05. **p≤0,01.  ***p≤0,001. 

 

3.5 Luminex-Analyse  
Bei Zytokinen handelt es sich um körpereigene Proteine, welche an der Regulierung 

von verschiedenen immunologischen Prozessen beteiligt sind. Prinzipiell wird 

zwischen antiinflammatorischen (u.a. IL-10, TGFß) und proinflammatorischen (u.a. 

IFNγ, IL-1ß, IL-2, IL-6, TNFα) Zytokinen unterschieden. 

Die Luminex-Analyse wurde herangezogen, um aus den Mediumüberständen der 

Ko-Kulturen von Splenozyten mit Treg, MDSC und DC eine Zytokinbestimmung 

durchzuführen. Untersucht wurden folgende Zytokine und Chemokine: IFNγ, IL-1ß, 

IL-2, IL-6, IL-10, TGFß, IL-17, VEGF, TNFα und KC (CXCL1). 
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3.5.1 Bestimmung der Zytokine aus den Mediumüberständen der 
Proliferations-/Suppressionsanalyse aus Ko-Kulturen mit Treg 

Im Folgenden wurden die Mediumüberstände aus den Ko-Kulturen mit Treg von 

insgesamt 3 Durchläufen mit Hilfe der Luminex-Analyse auf bestimmte Zytokine bzw. 

Chemokine untersucht. Diese Mediumüberstände aus den sechs verschiedenen 

Ansätzen wurden miteinander verglichen: aktivierte und nicht-aktivierte Splenozyten, 

aktivierte und nicht-aktivierte, ko-kultivierte Splenozyten mit Treg (+/- B7-H1 

Antikörper). Hierfür wurden eine magnetische TGFß Platte und eine magnetische 7 

Plex Platte verwendet. 

3.5.1.1 IFNγ 
Wie in der Abbildung der statistischen Auswertung zu sehen ist, konnten hoch 

signifikante Unterschiede in der Produktion von IFNγ nachgewiesen werden. Den 

höchsten Wert an IFNγ zeigten die aktivierten Splenozyten, wo hingegen alle 

anderen Zellpopulationen einen sehr geringen Anteil aufwiesen. 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.1-1 Quantifizierung der Produktion von IFNγ aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
***p≤0,001. 

 

3.5.1.2 IL-1ß 
Betrachtet man folgende Abbildung, so wurde zwischen den einzelnen Ansätzen in 

der Produktion von IL-1ß kein deutlicher Unterschied erkennbar. Alle wiesen ein 

ähnlich hohes prozentuales Niveau auf. 
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Abbildung 3.5.1-2 Quantifizierung der Produktion von IL-1ß aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
 

3.5.1.3 IL-2 
Vergleicht man die einzelnen Ansätze im Hinblick auf die Produktion von IL-2, so 

zeigten sich einige sehr deutliche Unterschiede. Die aktivierten Splenozyten wiesen 

abermals gegenüber allen anderen Fraktionen einen sehr viel höheren Anteil an IL-2 

auf. Zusätzlich konnte bei den Ko-Kulturen der aktivierten Splenozyten mit Treg ohne 

B7-H1 Antikörper ein hoch signifikanter Unterschied, d.h. ein höherer Wert in der IL-2 

Produktion gegenüber der Ko-Kultur der aktivierten Splenozyten mit Treg mit B7-H1 

Antikörper festgestellt werden. 

 

 

 

 

 

 

 

 

Abbildung 3.5.1-3 Quantifizierung der Produktion von IL-2 aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
***p≤0,001. 
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3.5.1.4 IL-6 
Bei der Analyse der Produktion von IL-6, hat sich ein signifikanter Unterschied der 

aktivierten Splenozyten gegenüber allen anderen Zellpopulationen herausgestellt. 

Sie wiesen einen deutlich höheren Wert an IL-6 auf, wohingegen alle anderen 

Ansätze eine sehr geringe Produktion zeigten. 

 

 

 

 

 

 

 

 

 
Abbildung 3.5.1-4 Quantifizierung der Produktion von IL-6 aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.1.5 IL-10 
Im Hinblick auf die statistische Auswertung der IL-10 Produktion der 

unterschiedlichen Zellpopulationen, zeigte sich zwischen den aktivierten und den 

nicht-aktivierten Splenozyten, sowie zwischen den aktivierten Splenozyten und den 

nicht-aktivierten, ko-kultivierten Splenozyten mit Treg ohne B7-H1 Antikörper ein 

signifikanter Unterschied. Die aktivierten Splenozyten wiesen jeweils einen höheren 

Wert an IL-10 auf. 
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Abbildung 3.5.1-5 Quantifizierung der Produktion von IL-10 aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.1.6 TGFß 
Wie man der Abbildung entnehmen kann, wurde in der TGFß Produktion 

vergleichend zwischen den einzelnen Ansätzen keine deutliche Differenz ermittelt. 

Sie befanden sich alle auf einem ähnlichen Niveau. 

 

 

 

 

 

 

 

 
 
 

Abbildung 3.5.1-6 Quantifizierung der Produktion von TGFß aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
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3.5.1.7 IL-17 
In der Abbildung wird deutlich, dass es hoch signifikante Unterschiede in der 

Produktion von IL-17 gegeben hat. Die Produktion von IL-17 der aktivierten 

Splenozyten lag deutlich über dem der nicht-aktivierten und dem der nicht-aktivierten, 

ko-kultivierten Splenozyten mit Treg (+/- B7-H1 Antikörper). Zusätzlich lag der Wert 

der aktivierten Splenozyten eindeutig über dem der aktivierten, ko-kultivierten 

Splenozyten mit Treg (+/- B7-H1 Antikörper). 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.1-7 Quantifizierung der Produktion von IL-17 aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
***p≤0,001. 

 

3.5.1.8 VEGF 
Die statistische Auswertung der Luminex-Analyse der Produktion von VEGF zeigte 

einen signifikanten Unterschied im Bereich der aktivierten Splenozyten zu allen drei 

nicht-aktivierten Zellfraktionen, im Sinne eines deutlich höheren Wertes an VEGF der 

aktivierten Splenozyten, auf. 
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Abbildung 3.5.1-8 Quantifizierung der Produktion von VEGF aus der Ko-Kultur von Splenozyten mit Treg 
gesunder WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.2 Bestimmung der Zytokine aus den Mediumüberständen der 
Proliferations-/Suppressionsanalyse aus Ko-Kulturen mit MDSC 

Im Folgenden wurden die Mediumüberstände der Ko-Kulturen mit den MDSC von 

insgesamt 4 Durchläufen mit Hilfe der Luminex-Analyse auf bestimmte Zytokine bzw. 

Chemokine untersucht. Dafür wurden die Mediumüberstände folgender 6 Ansätze 

verwendet: aktivierte und nicht-aktivierte Splenozyten, aktivierte und nicht-aktivierte, 

ko-kultivierte Splenozyten mit MDSC (+/- B7-H1 Antikörper). Zu diesem Zweck 

wurden eine magnetische TGFß Platte und eine magnetische 12 Plex Platte 

verwendet. 

3.5.2.1 IFNγ 
Bei Betrachtung der statistischen Auswertung von IFNγ, wurden einige Unterschiede 

in der Produktion von IFNγ nachgewiesen. Die aktivierten Zellfraktionen wiesen zu 

ihren jeweiligen nicht-aktivierten Gegenspieler einen signifikant höheren Wert auf. 

Zusätzlich wurde eine sehr deutliche Differenz zwischen den beiden aktivierten, ko-

kultivierten Fraktionen festgestellt, wobei die aktivierten, ko-kultivierten Splenozyten 

mit MDSC mit B7-H1 Antikörper einen deutlich höheren Wert zeigten, als die ohne 

B7-H1 Antikörper. 
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Abbildung 3.5.2-1 Quantifizierung der Produktion von IFNγ aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. ***p≤0,001. 

 

3.5.2.2 IL-1ß 
Im Hinblick auf die Auswertung von IL-1ß konnte zwar keine statistische Signifikanz 

aufgezeigt werden, jedoch wurde eine Tendenz sichtbar. Während die aktivierten, ko-

kultivierten Splenozyten mit DC (mit B7-H1 Antikörper) den höchsten Wert 

aufwiesen, nahm dieser über die aktivierten, ko-kultivierten Splenozyten (ohne B7-

H1 Antikörper), bis hin zu den aktivierten Splenozyten minimal ab. 

 

 

 

 

 

 

 

 

 

 

 
Abbildung 3.5.2-2 Quantifizierung der Produktion von IL-1ß aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
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3.5.2.3 IL-2 
Die statistische Auswertung unter folgender Abbildung hat einige Differenzen in der 

Produktion von IL-2 ergeben. Während die aktivierten Splenozyten gegenüber den 

nicht-aktivierten einen signifikanten Unterschied und höheren Anteil an IL-2 

aufwiesen, zeigten die aktivierten, ko-kultivierten Splenozyten mit MDSC (+/- B7-H1 

Ak) zu ihrem jeweiligen nicht-aktivierten Pendant einen signifikant höheren Wert. 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.2-3 Quantifizierung der Produktion von IL-2 aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. **p≤0,01. 

 

3.5.2.4 IL-6 
Bei der Auswertung der Produktion von IL-6, wurde sowohl ein deutlich höherer Wert 

bei den aktivierten Splenozyten gegenüber den nicht-aktivierten festgestellt, als auch 

bei den nicht-aktivierten, ko-kultivierten Splenozyten mit MDSC (ohne B7-H1 

Antikörper) gegenüber den nicht-aktivierten Splenozyten. 
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Abbildung 3.5.2-4 Quantifizierung der Produktion von IL-6 aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.2.5 IL-10 
Die Produktion von IL-10 zeigte keine deutlichen Abweichungen zwischen den 

einzelnen Ansätzen. 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 3.5.2-5 Quantifizierung der Produktion von IL-10 aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
 

- a
kt

+ a
kt

- a
kt 

+ M
DSC - A

k

+ a
kt 

+ M
DSC - A

k

- a
kt 

+ M
DSC + 

Ak

+ a
kt 

+ M
DSC + 

Ak
0

50

100

150

*
*

IL
-6

, p
g/

m
l

- a
kt

+ a
kt

- a
kt 

+ M
DSC - A

k

+ a
kt 

+ M
DSC - A

k

- a
kt 

+ M
DSC + 

Ak

+ a
kt 

+ M
DSC + 

Ak
0

5

10

15

20

IL
-1

0,
 p

g/
m

l



Ergebnisse 

 

108 
 

3.5.2.6 IL-17 
Die höchste Produktion an IL-17 wiesen die aktivierten, ko-kultivierten Splenozyten 

mit MDSC ohne B7-H1 Antikörper auf. Damit lagen sie auch deutlich über dem Wert 

aller anderen Ansätze. Des Weiteren konnte ein Unterschied zwischen den 

aktivierten zu den nicht-aktivierten Splenozyten und zwischen den aktivierten zu den 

nicht-aktivierten, ko-kultivierten Splenozyten mit MDSC mit B7-H1 Antikörper 

nachgewiesen werden. 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.2-6 Quantifizierung der Produktion von IL-17 aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.2.7 VEGF 
Bei nachstehender Abbildung wurde ein hoch signifikanter Unterschied zwischen den 

nicht-aktivierten, ko-kultivierten Splenozyten mit MDSC (ohne B7-H1 Antikörper) im 

Vergleich zu den aktivierten Splenozyten nachgewiesen. Zusätzlich lag die 

Produktion der aktivierten, ko-kultivierten Splenozyten mit MDSC (ohne B7-H1 

Antikörper) deutlich über dem der nicht-aktivierten Zellfraktion. Die aktivierten, ko-

kultivierten Splenozyten mit MDSC (mit B7-H1 Antikörper) zeigten im Vergleich zu 

ihrem nicht-aktivierten Gegenspieler ebenfalls eine höhere Rate an VEGF. 
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Abbildung 3.5.2-7 Quantifizierung der Produktion von VEGF aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. ***p≤0,001. 

 

3.5.2.8 TGFß 
Ein Blick auf die statistischen Auswertungen der Produktion von TGFß lässt keine 

deutlichen Unterschiede zwischen den einzelnen Zellfraktionen erkennen. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 3.5.2-8 Quantifizierung der Produktion von TGFß aus der Ko-Kultur von Splenozyten mit MDSC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
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3.5.2.9 KC (CXCL1) 
Betrachtet man nachstehende Abbildung, so erkennt man deutlich einen 

signifikanten Unterschied und höheren Wert an KC der nicht-aktivierten, ko-

kultivierten Splenozyten mit MDSC (ohne B7-H1 Antikörper) gegenüber den nicht-

aktivierten Splenozyten. Auch die aktivierten, ko-kultivierten Splenozyten mit MDSC 

(ohne B7-H1 Antikörper) wiesen eine größeren Produktion an KC gegenüber den 

aktivierten Splenozyten auf. Die aktivierten, ko-kultivierten Splenozyten mit MDSC 

(mit B7-H1 Antikörper) zeigten den größten Anteil an KC, wobei dieser Unterschied 

deutlich über den nicht-aktivierten, ko-kultivierten Splenozyten mit MDSC (mit B7-H1 

Antikörper) und über den aktivierten Splenozyten lag. 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.2-9 Quantifizierung der Produktion von KC (CXCL1) aus der Ko-Kultur von Splenozyten mit 
MDSC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.2.10 TNFα 
Die letzte Luminex-Auswertung aus der Ko-Kultur der Splenozyten mit MDSC 

beschreibt die statistischen Unterschiede in der TNFα Produktion. Während die 

aktivierten Splenozyten einen signifikant höheren Wert gegenüber den nicht-

aktivierten Splenozyten aufwiesen, ließen sie im Vergleich zu den aktivierten, ko-

kultvierten Splenozyten mit MDSC (ohne B7-H1 Antikörper) einen deutlich 

geringeren Wert an TNFα erkennen. Bei den aktivierten, ko-kultivierten Splenozyten 

mit MDSC (mit B7-H1 Antikörper) konnte der größte Anteil an TNFα ausgemacht und 

gleichzeitig eine erkennbare Differenz bezüglich der nicht-aktivierten, ko-kultivierten 
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Splenozyten mit MDSC (mit B7-H1 Antikörper) und der aktivierten Splenozyten 

festgestellt werden. 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.2-10 Quantifizierung der Produktion von TNFα aus der Ko-Kultur von Splenozyten mit 
MDSC tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.3 Bestimmung der Zytokine aus den Mediumüberständen der 
Proliferations-/Suppressionsanalyse aus Ko-Kulturen mit DC   

Im Folgenden wurden die Mediumüberstände aus den Ko-Kulturen der Splenozyten 

mit DC von insgesamt 3 Durchläufen mit Hilfe der Luminex-Analyse auf bestimmte 

Zytokine bzw. Chemokine untersucht. Folgende 6 Ansätze wurden dabei miteinander 

verglichen: aktivierte und nicht-aktivierte Splenozyten, aktivierte und nicht-aktivierte 

ko-kultivierte Splenozyten mit DC (+/- B7-H1 Antikörper). Hierfür wurden eine 

magnetische TGFß Platte und eine magnetische 7 Plex Platte verwendet. 

3.5.3.1 IFNγ 
Betrachtet man die statistische Auswertung des jeweiligen Anteils von IFNγ, so 

konnte eine deutliche Differenz und relativ geringe Produktion zwischen den 

aktivierten und den nicht-aktivierten Splenozyten nachgewiesen werden. Ebenso 

stellte man dies bei den nicht-aktivierten, ko-kultivierten Splenozyten mit DC (ohne 

B7-H1 Antikörper) im Vergleich zu den nicht-aktivierten Splenozyten fest, wobei 

erstere einen höheren Wert an IFNγ aufwiesen. Die höchste Produktion an IFNγ 

zeigten jedoch die aktivierten, ko-kultivierten Splenozyten mit DC (ohne B7-H1 

Antikörper). Diese wiesen gleichzeitig einen signifikanten Unterschied zu den nicht-
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aktivierten, ko-kultivierten Splenozyten mit DC (ohne B7-H1 Antikörper), sowie zu 

den aktivierten, ko-kultivierten Splenozyten mit DC (mit B7-H1 Antikörper) auf. 

Abschließend konnte ein deutlicher Unterschied zwischen den aktivierten, ko-

kultivierten Splenozyten mit DC zu ihrem nicht-aktivierten Pendant gezeigt werden. 

Insgesamt wiesen die nicht-aktivierten Zellfraktionen gegenüber ihren jeweiligen 

aktivierten Zellfraktionen immer einen geringeren Wert an IFNγ auf. 

 

 

 

 

 

 

 

 

 

 

 

 
Abbildung 3.5.3-1 Quantifizierung der Produktion von IFNγ aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.3.2 IL-2 
Auffallend bei der statistischen Auswertung von IL-2 war, dass die aktivierten 

Splenozyten den höchsten Wert zeigten. Vor allem gegenüber den nicht-aktivierten 

Splenozyten ließ sich ein hoch signifikanter Unterschied erkennen, aber auch zu den 

aktivierten, ko-kultivierten Splenozyten mit DC (+/- B7-H1 Antikörper) zeigten sie eine 

höhere Produktion an IL-2. Die Ko-Kulturen untereinander wiesen keine eindeutigen 

Abweichungen auf.  
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Abbildung 3.5.3-2 Quantifizierung der Produktion von IL-2 aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. ***p≤0,001. 

 

3.5.3.3 IL-10 
Im Hinblick auf die nachfolgende Grafik konnten keine signifikanten Unterschiede in 

der Produktion von IL-10 zwischen den unterschiedlichen Ansätzen ausgemacht 

werden. Einzig und allein die Tendenz, dass die Ko-Kulturen einen gering höheren 

Anteil aufwiesen als die Splenozyten alleine, ist der Abbildung zu entnehmen. 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.3-3 Quantifizierung der Produktion von IL-10 aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
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3.5.3.4 IL-17 
Die Auswertung der Produktion von IL-17 ergab, dass die aktivierten, ko-kultivierten 

Splenozyten mit DC (+/- B7-H1 Antikörper) einen deutlich höheren Wert an IL-17 

aufwiesen als die restlichen Ansätze. Ein signifikanter Unterschied wurde zwischen 

den aktivierten, ko-kultivierten Splenozyten mit DC (mit B7-H1 Antikörper) und den 

aktivierten Splenozyten, sowie den nicht-aktivierten, ko-kultivierten Splenozyten mit 

DC (mit B7-H1 Antikörper) festgestellt. Des Weiteren ergab sich eine deutliche 

Differenz in der Produktion von IL-17 zwischen den aktivierten, ko-kultivierten 

Splenozyten mit DC (ohne B7-H1 Antikörper) und den nicht-aktivierten Splenozyten. 

Zusätzlich zeigten die aktivierten Splenozyten gegenüber den nicht-aktivierten 

Splenozyten einen signifikant höheren Wert an. 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.3-4 Quantifizierung der Produktion von IL-17 aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 

 

3.5.3.5 IL-1ß 
Die Produktion von IL-1ß zeigte keine deutlichen Abweichungen zwischen den 

einzelnen Zellpopulationen. Der höchste Wert wurde den aktivierten, ko-kultivierten 

Splenozyten mit DC (mit B7-H1 Antikörper) zugesprochen. 
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Abbildung 3.5.3-5 Quantifizierung der Produktion von IL-1ß aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
 

3.5.3.6 IL-6 
In dieser graphischen Darstellung zur Produktion von IL-6 fanden sich einige 

signifikante Unterschiede. Den geringsten Wert an IL-6 zeigten die nicht-aktivierten 

Splenozyten, gefolgt von den aktivierten Splenozyten. Hierbei wurde eine deutliche 

Abweichung der nicht-aktivierten bzw. aktivierten Splenozyten zu den nicht-

aktivierten, ko-kultivierten Splenozyten mit DC (ohne B7-H1 Antikörper) festgestellt. 

Des Weiteren konnte zwischen den aktivierten Splenozyten und den aktivierten, ko-

kultivierten Splenozyten mit DC (+/- B7-H1 Antikörper) ein hoch signifikanter 

Unterschied verzeichnet werden. Abschließend wurde der höchste Wert an IL-6 bei 

den aktivierten, ko-kultivierten Splenozyten mit DC (mit B7-H1 Antikörper) 

nachgewiesen. Damit ist eine deutliche Differenz zu ihrem nicht-aktivierten Pendant 

erkennbar. 
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Abbildung 3.5.3-6 Quantifizierung der Produktion von IL-6 aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. **p≤0,01. ***p≤0,001. 

 

3.5.3.7 TGFß 
Wie in der Abbildung zu sehen ist, befanden sich alle Ko-Kulturen und die nicht-

aktivierten Splenozyten in Bezug auf ihre Produktion an TGFß auf gleichem Niveau. 

Die aktivierten Splenozyten wiesen den geringsten Wert an TGFß auf und es konnte 

eine Differenz zu den aktivierten, ko-kultivierten Splenozyten mit DC (+/- B7-H1 

Antikörper) nachgewiesen werden. 

 

 

 

 

 

 

 

 

 

 

 
Abbildung 3.5.3-7 Quantifizierung der Produktion von TGFß aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 
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3.5.3.8 VEGF 
In der letzten Luminex-Analyse über den prozentualen Anteil an VEGF der 

Mediumüberstände aus der Ko-Kultur der Splenozyten mit DC stellten sich einige 

signifikante Unterschiede heraus. Während die aktivierten und nicht-aktivierten 

Splenozyten eine relativ geringe Produktion an VEGF aufwiesen, zeigten die Ko-

Kulturen der Splenozyten mit DC (+/- B7-H1 Antikörper) einen verhältnismäßig hohen 

Anteil, wobei der der nicht-aktivierten, ko-kultivierten Splenozyten mit DC (+/- B7-H1 

Antikörper) etwas darunter lag. 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.5.3-8 Quantifizierung der Produktion von VEGF aus der Ko-Kultur von Splenozyten mit DC 
tumortragender WT-Mäuse (+/- B7-H1 Antikörper) 
*p≤0,05. 
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4 Diskussion 
Aufgrund der schlechten Prognose, der hohen Mortalitätsrate und der geringen 

Chance auf Heilung durch oftmals zu spätes Erkennen, stellt das Pankreaskarzinom 

eine der gefürchtetsten Tumorerkrankungen dar. Deshalb ist es umso wichtiger, 

Behandlungsmethoden für diese Erkrankung zu verbessern und neue Therapien zu 

entwickeln. Das Ziel der Forschung an neuen Therapieansätzen, wie beispielsweise 

Immuntherapien, ist es, neue Methoden zur Behandlung des PaCa zu entwickeln 

und damit eine längere Überlebensrate der betroffenen Patienten zu ermöglichen. 

Um dieses Ziel zu erreichen, ist es wichtig das Immunsystem im Allgemeinen und 

das PaCa in seiner Anti-Tumor-Immunantwort zu verstehen. Dieses immunologische 

Verständnis bezieht sich sowohl auf die zelluläre, als auch auf die molekulare Ebene. 

Die Eigenschaft des Immun-Editings ermöglicht es dem PaCa dem Immunsystem zu 

entkommen. Es kommt somit nicht nur zu einer Aktivierung des Immunsystems, wie 

unter anderem durch CD4+/CD8+ T-Zellen bzw. DC, sondern das PaCa besitzt auch 

die Fähigkeit eine immunsuppressive Umgebung zu schaffen. Auf zellulärer Ebene 

handelt es sich bei diesen immunsuppressiven Mechanismen unter anderem um 

MDSC und Treg, sowie auf molekularer Ebene um den PD-1 Rezeptor und seinen 

Liganden B7-H1 (oder auch PD-L1). 

In der vorliegenden Arbeit wurde das Zusammenspiel dieser zellulären und 

molekularen Mechanismen sowohl an gesunden Mäusen, als auch im späteren 

Panc02 Modell genauer untersucht. Welche Rolle spielt das B7-H1 Molekül im 

gesunden Zustand und im Falle des PaCa? Hat eine Ausschaltung dieses Moleküls 

auf der Oberfläche von Treg, MDSC oder DC eine Auswirkung auf das suppressive 

bzw. proliferative Verhalten dieser Zellpopulationen? 

Das regulatorische Molekül B7-H1 (PD-L1) spielt eine bedeutende Rolle in der 

Regulierung der Immunantwort, nicht nur im gesunden Zustand, sondern auch in 

pathologischen Geschehnissen, wie Autoimmunität, Infektionen oder 

Krebserkrankungen [84, 98]. B7-H1 KO-Mäuse stellen ein wichtiges 

Forschungsmodell zur Aufklärung von zellulären und molekularen 

Immunmechanismen dar, welche unter anderem an der Entwicklung und dem 

progressiven Verlauf des Tumorwachstums beteiligt sind [95]. 

Als ein bedeutender Teil des suppressiven Arms des Immunsystems wird der  

PD-1:PD-L1/PD-L2 Reaktionsweg beschrieben, der eine wesentliche Rolle in der 
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Regulierung der T-Zell-Aktivierung und –Toleranz übernimmt [84]. In verschiedenen  

Studien konnte gezeigt werden, dass diese Wechselwirkungen –auch immunological 

checkpoint genannt- auf CD4+/CD8+ T-Zellen zu einer Hemmung in ihrer Proliferation 

und ihrer Zytokinproduktion führten [88, 99, 100].  

Es stellte sich die Frage, inwieweit eine B7-H1-Ausschaltung Auswirkungen auf den 

Phänotyp hat? Zeigen B7-H1 KO-Mäuse bereits im gesunden Zustand 

phänotypische Veränderungen? 

Der Rezeptor CTLA-4 spielt eine wichtige Rolle in der Regulation der T-Zell-

Aktivierung und gilt als Gegenspieler der CD28-vermittelten Co-Stimulation. CTLA-4 

KO-Mäuse zeigten akute und systemische Autoimmunerkrankungen, wie 

lymphoproliferative Erkrankungen mit multiorganlymphatischer Infiltration und 

Gewebszerstörung mit einer maximalen Lebenserwartung von 3-4 Wochen [101, 

102]. Auch transgene Mäuse, bei denen der PD-1 Rezeptor ausgeschaltet wurde 

(PD-1 KO-Mäuse), entwickelten charakteristische lupus-ähnliche 

Autoimmunerkrankungen, wie proliferative Arthritis und Glomerulonephritis [86, 103]. 

Die Liganden B7-DC (PD-L1) und B7-H1 übernehmen mit der Bindung an ihren 

Rezeptor PD-1 eine wichtige Rolle in der Regulierung der Aufrechterhaltung der T-

Zell-Homöostase. B7-DC KO-Mäuse zeigten kaum augenscheinlich wahrnehmbare 

phänotypische Veränderungen, nur in einer Studie über ein bestimmtes murines 

Asthmakrankheitsmodell konnte eine stärkere Entzündung der Atemwege bei den 

B7-DC defizienten Mäusen nachgewiesen werden [104]. Obwohl sich zwischen den 

gesunden B7-H1 KO-Mäusen und den gesunden WT-Mäusen keine deutlichen 

phänotypischen Unterschiede ausmachen lassen, so konnten in unserer Studie 

eindeutige Differenzen in den immunologischen Parametern der beiden 

Mausstämme aufgezeigt werden [105]. Es wurde unter anderem die Expression des 

Rezeptors PD-1 auf CD4+/CD8+ T-Zellen, vergleichend zwischen den beiden 

Mausstämmen, untersucht. Dabei konnte erstmalig ein deutlicher Anstieg in der Zahl 

der PD-1+ Zellen der B7-H1 KO-Mäusen beobachtet werden. Auch einen signifikant 

höheren Wert in der Gesamtzahl der PD-1 Moleküle, welche über den MFI-Wert 

ermittelt wurden, konnten den B7-H1 KO-Mäusen zugeschrieben werden. Dieses 

Phänomen konnte außerdem bei den Treg und den Tcon festgestellt werden. Die NK-

Zellen wiesen zwar einen Anstieg in der Expression von PD-1 auf, nicht aber in der 

Gesamtzahl der PD-1 Moleküle (MFI). Einzig bei den NKT-Zellen lag der prozentuale 
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Anteil von PD-1 auf ähnlich hohem Niveau verglichen mit den WT-Mäusen. Hier 

konnte jedoch eine deutlich höhere Intensität der PD-1 Expression, welche durch den 

MFI-Wert reflektiert wird, beobachtet werden. Diese Erkenntnisse über den PD-1 

Rezeptor der B7-H1 KO-Mäuse lassen die Vermutung zu, dass der Organismus 

versucht, die Abwesenheit des Liganden PD-L1 zu kompensieren, indem es zu einer 

gesteigerten Expression von PD-1 kommt. Dadurch soll die Verfügbarkeit von PD-1 

für die anderen Liganden, beispielsweise PD-L2 erhöht werden, um somit wieder den 

ursprünglichen Zustand der Immunregulation herzustellen, wie es bei den WT-

Mäusen der Fall ist. Um diese Vermutung zu bestärken, sollte zukünftig in weiteren 

Studien über PD-L2 eingehender geforscht werden. 

Des Weiteren konnte in meiner Studie ein deutlicher Rückgang in der Gesamtzellzahl 

der NK- und NKT-Zellen der B7-H1 KO-Mäuse beobachtet werden. Warum es dazu 

kommt, bleibt unklar. NK- und NKT-Zellen zählen auf der einen Seite zu dem 

aktivierenden Arm des Immunsystems und bekämpfen Tumorzellen und 

virusinfizierte Zellen. Sie besitzen jedoch auch regulatorische Funktionen [105]. Eine 

mögliche Erklärung für die Verminderung der Zellzahl könnte ein Anstieg der Treg in 

B7-H1 KO-Mäusen sein. Wie bereits in einigen in vivo und in vitro Studien gezeigt 

wurde, können Treg einen inhibierenden Einfluss auf NK-Zellen ausüben [106-108]. 

Ähnliches konnte auch für NKT-Zellen nachgewiesen werden. Darüber hinaus 

können NKT-Zellen auch eine Anhäufung von Treg bewirken, was wiederum eine 

Hemmung dieser Zellen über einen erforderlichen Zell-Zell-Kontakt zur Folge hat 

[109, 110]. Zusätzlich konnte in unserer Studie gezeigt werden, dass B7-H1 KO-

Mäuse eine gesteigerte Anzahl an Treg aufweisen, was ebenfalls für eine 

Reduzierung der Zellzahl der NK- und NKT-Zellen spricht [105]. Dieser Mechanismus 

der Immunregulation könnte somit als eine Art Bindeglied zwischen angeborener und 

erworbener Immunität fungieren. 

Ein weiteres wichtiges Kriterium ist der Aktivitätsstatus der unterschiedlichen 

Immunzellen im Vergleich beider Mausstämme. Dieser wurde anhand der Expression 

des frühen Aktivierungsmarkers CD69 analysiert. Hierbei wiesen die WT-Mäuse im 

Vergleich zu den B7-H1 KO-Mäusen einen signifikant höheren Wert in der 

Expression von CD69 der NKT-Zellen auf. Dieses Resultat steht im Einklang mit 

folgender Erkenntnis, dass die CD4+/CD8+ T-Zellen der B7-H1 KO-Mäuse eine 
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niedrigere Intensität –gemessen am MFI-Wert- in der Expression von CD69 

aufwiesen.  

All diese Erkenntnisse unterstreichen die Bedeutung des B7-H1 Moleküls und es 

lässt sich zusammenfassend feststellen, dass sich durch einen Mangel von B7-H1 in 

vivo einige immunologische Parameter deutlich verändern. Diese von uns 

festgestellten Veränderungen weisen darauf hin, dass verschiedene Mechanismen in 

den B7-H1 KO-Mäusen ablaufen, die darauf abzielen, durch kompensatorische 

Vorgänge die ursprüngliche Situation und das Gleichgewicht zwischen 

Immunstimulation und –suppression wieder herzustellen, so wie sie bei den WT-

Mäusen vorzufinden ist [105]. 

Die vorliegenden ex vivo, an gesunden Mäusen erzielten Ergebnisse, zeigen die 

Wichtigkeit der Anwesenheit des B7-H1 Moleküls für die anderen immunologischen 

Parameter auf und verdeutlichen zudem die Notwendigkeit weiterer 

Forschungsarbeiten unter Berücksichtigung der Resultate bei der Übertragung auf 

das PaCa. 

Die zelluläre und molekulare Ebene der immunsuppressiven Mechanismen und 

deren Zusammenspiel stellen einen weiteren wichtigen Aspekt dar, der genauer 

untersucht werden sollte, um ein Verständnis über die Komplexität der 

Tumorimmunologie des PaCa zu entwickeln. Hierfür müssen die Zusammenhänge 

vorerst auf gesunden Mäusen untersucht werden, woraufhin sie dann auf das 

Tumormodell des PaCa übertragen werden können. Zu diesem Zweck wurde die 

Rolle des B7-H1 Moleküls auf der Oberfläche der Treg genauer untersucht. Den Treg 

wird ein immunsuppressives Potential zugeschrieben, wodurch sie die Selbsttoleranz 

des Immunsystems regulieren und folglich unter anderem das Entstehen von 

Autoimmunerkrankungen und Allergien verhindern. Ebenfalls konnte gezeigt werden, 

dass sich Treg in der Umgebung von Tumoren, wie auch im PaCa, akkumulieren [69, 

73, 74]. Könnte das B7-H1 Molekül im Zusammenspiel mit den Treg eine wichtige 

Rolle bezüglich des Suppressionspotentials der Treg übernehmen? 

Um diese Frage zu beantworten wurde im nächsten Teil meiner Studie untersucht, 

inwieweit das B7-H1 Molekül an der Suppression der T-Zellen beteiligt ist. Dies 

erfolgte durch eine Ausschaltung des B7-H1 Moleküls auf der Oberfläche der Treg. 

Zusammenfassend konnte das zu erwartende suppressive Verhalten der Treg durch 

die Zugabe der Treg zu den Splenozyten bestätigt werden, indem sowohl den CD4+ 
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als auch den CD8+ T-Zellen eine deutlich geringere Teilungsaktivität nachgewiesen 

werden konnte. Allerdings konnte kein signifikanter Unterschied im 

Suppressionspotential bei einer B7-H1-Ausschaltung auf der Oberfläche der Treg 

festgestellt werden.  

Zusätzlich wurde im selben Experiment der Aktivierungsgrad der CD4+ und CD8+ T-

Zellen anhand der Expression von CD69 untersucht. Zusammenfassend konnte hier 

erwartungsgemäß sowohl bei den CD4+ T-Zellen, als auch bei den CD8+ T-Zellen ein 

deutlicher Unterschied im Aktivierungsgrad festgestellt werden. Die durch CD3/CD28 

aktivierten Zellfraktionen proliferierten deutlich gegenüber den jeweiligen nicht-

aktivierten Fraktionen. Jedoch war kein abweichendes Ergebnis bei einer B7-H1-

Ausschaltung auf der Oberfläche der Treg im Vergleich zu keiner Ausschaltung 

festzustellen.  

Zusätzlich wurde der prozentuale Anteil von CD25 der CD8+ T-Zellen untersucht. Der 

signifikante Unterschied und höhere Anteil der aktivierten Zellpopulationen 

gegenüber den nicht-aktivierten entsprach den Erwartungen. Abermals konnte kein 

Unterschied bei einer B7-H1-Ausschaltung auf der Oberfläche der Treg durch 

Verwendung des B7-H1 Antikörpers festgestellt werden.  

Zusammenfassend wurde somit das suppressive Potential der Treg bestätigt, jedoch 

konnte entgegen der Erwartungen keine Veränderung bei einer B7-H1-Ausschaltung 

auf der Oberfläche der Treg festgestellt werden. Folglich nimmt das B7-H1 Molekül 

keinen Einfluss auf das Suppressionspotential der Treg. Kann dagegen eine B7-H1-

Ausschaltung auf den Treg einen Effekt auf die Zytokinproduktion ausüben? 

Diese Frage wurde im Folgenden beantwortet. Mit Hilfe der Luminex-Analyse wurde 

die Produktion von Zytokinen bzw. Chemokinen und Wachstumsfaktoren aus den 

Mediumüberständen der Proliferations-/Suppressionsanalyse der Ko-Kulturen von 

Splenozyten mit Treg untersucht. Sie sind für die Regulation von Proliferation und 

Differenzierung verschiedener Zellen verantwortlich, besitzen antiinflammatorische 

bzw. proinflammatorische Wirkungen und spielen somit eine wichtige Rolle in 

immunologischen Prozessen, weshalb ein Augenmerk in dieser Studie auf sie 

gerichtet war. Bei IFNγ handelt es sich um ein Zytokin mit proinflammatorischen 

Eigenschaften, welches v.a. von CD4+/CD8+ T-Zellen und NK-Zellen produziert wird 

[111]. Die Produktion von IFNγ wird wiederum durch die Zytokine IL-12 und IL-18 

kontrolliert. Sie fungieren als eine Art Bindeglied, indem sie eine Infektion mit der 
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Produktion von IFNγ und damit dem angeborenen Immunsystem verknüpfen. Zu den 

negativen Regulatoren der IFNγ Produktion zählen unter anderem IL-4, IL-10 und 

TGFß [111]. In meinen Ergebnissen konnte erwartungsgemäß gezeigt werden, dass 

die Produktion an IFNγ in den durch CD3/CD28 aktivierten Splenozyten deutlich 

gegenüber allen anderen Zellpopulationen erhöht war. Durch die Zugabe der Treg zu 

den Splenozyten konnte ein deutlicher Rückgang der Produktion von IFNγ 
verzeichnet werden. Eine solche Verminderung ist vermutlich darauf zurückzuführen, 

dass durch die Zugabe der Treg zu den Splenozyten eine Inhibierung der IFNγ 
Produktion hervorgerufen wurde. Dies konnte beispielsweise in einer Studie durch 

Sojka et al. bestätigt werden, in der ebenfalls Treg einen Rückgang der IFNγ 

Produktion induzierten [112]. Jedoch konnte kein Unterschied bei einer B7-H1- 

Ausschaltung bezüglich der IFNγ Produktion ausgemacht werden. 

Im Jahre 1975 wurde das Zytokin IL-2 entdeckt und erstmals durch Morgan et al. als 

ein wachstumsstimulierender Faktor für T-Lymphozyten aus dem Knochenmark 

beschrieben [113]. Als eine der Hauptfunktionen dieses sog. T-Zell-Wachstumsfakors 

(„T cell growth factor“ - TCGF) gilt das Vorantreiben der Proliferation und 

Differenzierung der CD4+ und CD8+ T-Zellen [114]. Die in meiner Studie erarbeiteten 

Ergebnisse zeigten erwartungsgemäß, dass die durch CD3/CD28 aktivierten 

Splenozyten die höchste Produktion an IL-2 aufwiesen und diese damit auch deutlich 

über der der anderen Zellpopulationen lag. Dies lässt sich dadurch begründen, dass 

IL-2 v.a. von CD4+/CD8+ T-Zellen gebildet wird [114]. Des Weiteren konnte durch die 

Zugabe der Treg ein deutlicher Rückgang in der Produktion von IL-2 beobachtet 

werden. Dieser Effekt lässt sich dadurch erklären, dass Treg die Fähigkeit besitzen die 

Sekretion von IL-2 zu hemmen [42]. Zusätzlich konnte den aktivierten, ko-kultivierten 

Splenozyten mit Treg (ohne B7-H1 Antikörper) eine deutlich höhere Konzentration an 

IL-2 gegenüber der Ko-Kultur mit B7-H1 Antikörper zugeschrieben werden. Dieses 

Resultat steht in Einklang mit der Studie aus dem Jahre 2010 durch 

Channappanavar R. und Suvas S., in der unter anderem beschrieben wird, dass eine 

Steigerung der Expression von PD-1 auf den Treg mit einer Reduzierung der 

Produktion von IL-2 einhergeht. Zusammenfassend wurde festgestellt, dass IL-2 

somit die Expression von PD-L1 auf den Treg hemmt [115]. Darüber hinaus kann das 

B7-H1 Molekül auch die Produktion von IL-2 kontrollieren [105]. 
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IL-6 (alternativ auch Interferon-ß2, B-Zell-stimulierender Faktor (BSF-2) oder 

Hybridoma-Plasmazytoma-Wachstumsfaktor (HPGF) genannt) ist ein 

proinflammatorisches Zytokin, dessen Expression unter anderem durch 

Virusinfektionen hervorgerufen wird. Des Weiteren wird die Produktion von IL-6 durch 

verschiedene andere Zytokine, wie IL-1, IFNγ oder TNFα induziert. IL-6 verknüpft die 

angeborene mit der erworbenen Immunantwort, indem es an der Regulation von 

Entzündungsprozessen beteiligt ist und spielt darüber hinaus eine wichtige Rolle bei 

der Produktion von Antikörpern [116]. Die Analyse meiner Ergebnisse ergab, dass 

die durch CD3/CD28 aktivierten Splenozyten gegenüber allen anderen Zellfraktionen 

eine deutlich höhere Produktion an IL-6 gezeigt haben. Ein denkbarer Grund hierfür 

ist, dass IL-6 ferner an der T-Zell-Aktivierung und –Differenzierung beteiligt ist und es 

folglich durch die Aktivierung der Proliferation der CD4+/CD8+ T-Zellen zu einem 

Anstieg in der Produktion von IL-6 kam [116]. Meine Ergebnisse haben außerdem 

gezeigt, dass durch die Zugabe der Treg zu den Splenozyten auch gleichzeitig eine 

Suppression der IL-6 Produktion hervorgerufen wurde. Jedoch konnte kein 

Unterschied bei einer B7-H1-Ausschaltung beobachtet werden. 

Im Jahre 1993 wurde das Zytokin IL-17 entdeckt und zum ersten Mal beschrieben. 

Es wird von Th17-Zellen exprimiert und übernimmt damit auch eine zentrale Rolle im 

Th17-System. Es konnte gezeigt werden, dass es die Expression von IL-6, IL-8 und 

G-CSF in Zellen wie Fibroblasten und Epithelzellen induziert. Weiterhin ist IL-17 in 

die Pathogenese verschiedener Autoimmunerkrankungen verwickelt [117]. 

Eine Studie über humane Th17-Zellen besagt, dass IL-17 unter anderem durch 

FoxP3-exprimierende Treg produziert werden kann [118]. Die Ergebnisse meiner 

Studie hingegen zeigten nach Zugabe der Treg zu den Splenozyten einen 

signifikanten Rückgang in der Produktion von IL-17 auf. Diese Erkenntnis wird durch 

folgende Studie belegt, in der beschrieben wird, dass Th17-Zellen bei Patienten mit 

Rheumatoider Arthritis durch Treg kontrolliert bzw. gehemmt werden [119].  

IL-17 wird vorwiegend von Th17-Zellen zusammen mit IFNγ produziert [118, 120]. 

Wie bereits zuvor beschrieben, konnte gezeigt werden, dass die durch CD3/CD28 

aktivierten Splenozyten die höchste Konzentration an IFNγ aufwiesen und es durch 

Zugabe der Treg zu einer Suppression in der Produktion kam. Dieses Ergebnis lässt 

die Vermutung zu, dass IL-17 in Parallele zu IFNγ produziert wird und es somit 

ebenfalls zu einer Verringerung in seiner Produktion kommt. 
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Allerdings konnte entgegen aller Erwartungen –gleichermaßen wie bei der 

Untersuchung des proliferativen Verhaltens der mit Treg ko-kultivierten CD4+/CD8+ T-

Zellen- kein Unterschied bei einer B7-H1-Ausschaltung auf Treg nachgewiesen 

werden. 

Auf zellulärer Ebene spielen darüber hinaus die MDSC mit ihrem immunsuppressiven 

Potential und die T-Zellen mit ihrer Empfänglichkeit gegenüber MDSC vermittelter 

Suppression eine wichtige Rolle in der Anti-Tumor-Immunantwort des PaCa. In einer 

weiteren Versuchsreihe meiner Studie wurde die Bedeutung des B7-H1 Moleküls auf 

der Oberfläche von MDSC genauer untersucht und anhand der Fragestellung, 

inwieweit dieses Oberflächenmolekül an dem Suppressionspotential der MDSC 

beteiligt ist, erarbeitet. Bei den MDSC handelt es sich ursprünglich um eine 

heterogene Gruppe von Zellen myeloiden Ursprungs, welche sich bei dem Einstellen 

eines pathologischen Zustandes (Sepsis, Krebs oder infektiöses Geschehen etc.) 

nicht zu reifen, spezialisierten Zellen differenzieren, sondern zu MDSC [79].  

Das Suppressionspotential der MDSC wurde anhand der Proliferation der CD4+ T-

Zellen nach Aktivierung mit Hilfe der CD3/CD28 Antikörper bestimmt. Im ersten Teil 

meiner Versuchsreihe erfolgte ein Vergleich zwischen dem suppressiven Verhalten 

der MDSC aus Tumoren und dem Knochenmark. In einer Studie aus dem Jahre 

2012 und in unserer Arbeit konnte gezeigt werden, dass es bei Patienten mit PaCa 

nicht nur auf Seiten des Tumors zu einem Anstieg der MDSC kam, sondern auch im 

Knochenmark und im peripheren Blut, welche ebenfalls das Tumorwachstum 

begünstigen [121, 122]. Dies bestätigt das vorliegende Ergebnis, welches keinen 

signifikanten Unterschied im Suppressionspotential der MDSC aus Tumoren und 

Knochenmark, bezogen auf die CD4+ T-Zellen, zeigte. Deshalb wurde aus 

versuchstechnischen Gründen in den folgenden Versuchen die MDSC aus den 

Tumoren isoliert. 

In meinem nächsten Arbeitsschritt wurde das suppressive Verhalten der MDSC 

eingehender untersucht, indem das proliferative Verhalten der CD4+ T-Zellen 

analysiert wurde. Dabei sollte ebenfalls eine eventuelle Beteiligung des B7-H1 

Moleküls an diesem suppressiven Verhalten geprüft werden. Die Auswertung der 

einzelnen CFSE-Peaks bestätigte, dass die aktivierten Zellfraktionen im Gegensatz 

zu den nicht-aktivierten Zellen eine deutliche Teilungsaktivität aufwiesen. Zusätzlich 

wurde das proliferative Verhalten der CD4+ T-Zellen durch die Zugabe der MDSC 
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deutlich supprimiert. Diese Erkenntnis wurde bereits in einigen Studien bestätigt, 

unter anderem indem die Suppression der antigenspezifischen, T-Zell-vermittelten 

Immunantwort nachgewiesen wurde [123]. Dass es zu keiner Veränderung in der 

Suppression der MDSC durch Blockade des B7-H1 Moleküls kam, stellt die 

Vermutung in Frage, dass dieses Oberflächenmolekül an der Suppression beteiligt 

ist. 

Der Aktivierungsstatus der CD4+ T-Zellen gilt als ein weiteres wichtiges Merkmal 

dieser Zellpopulation. Hierfür wurde der Aktivierungsgrad der CD4+ T-Zellen mit Hilfe 

des frühen Aktivierungsmarkers CD69 eingehend untersucht. Erwartungsgemäß 

zeigten die durch CD3/CD28 aktivierten Zellen gegenüber den nicht-aktivierten 

Zellen einen deutlich höheren Wert an. Sogar bei Betrachtung der nicht-aktivierten 

Zellpopulationen im Vergleich untereinander konnte ein deutlich geringerer 

Aktivierungsgrad nach Zugabe der MDSC zu den Splenozyten beobachtet werden. 

Jedoch war abermals kein Unterschied im suppressiven Verhalten nach Blockade 

des B7-H1 Moleküls auf der Oberfläche der MDSC zu beobachten. 

Im anschließenden Abschnitt über MDSC wurden die Effekte der MDSC auf Treg, Tcon, 

aktivierte Tcon und CD4+CD25-FoxP3+ Zellen genauer untersucht. Eine Studie über 

das Melanom hat gezeigt, dass es durch eine Verringerung der Treg zu einer 

Abnahme in der Expression unter anderem von B7-H1 auf MDSC gekommen ist [83]. 

Daher habe ich mir die Frage gestellt, inwieweit umgekehrt MDSC einen Einfluss auf 

Treg nehmen können und welche Rolle dabei das B7-H1 Molekül spielt. 

Zusammenfassend konnte festgestellt werden, dass eine Aktivierung der Zellen, wie 

es bei den Treg und den aktivierten Tcon der Fall ist, zu einer gesteigerten Expression 

von CD25 führte. Des Weiteren konnte bei den Treg, den aktivierten Tcon und den 

CD4+CD25-FoxP3+ Zellen das vermutete suppressive Verhalten der MDSC bestätigt 

werden. Jedoch wurde wider Erwarten keinerlei Veränderung bei einer B7-H1-

Ausschaltung beobachtet.  

Abschließend wurden die Zytokine aus den Mediumüberständen der Ko-Kulturen mit 

MDSC mit Hilfe der Luminex-Analyse untersucht. Hierbei lag das Augenmerk auf den 

pro- und antiinflammatorischen Zytokinen, welche oftmals in ein Tumorgeschehen 

involviert sind. VEGF (Vascular-Endothelial-Growth-Factor) gilt als ein wichtiges 

Signalmolekül in der Angiogenese und ist v.a. für die Stimulierung von 

Endothelzellen verantwortlich. Es konnte bereits im Jahre 1993 gezeigt werden, dass 
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es durch Verwendung von neutralisierenden Antikörpern bzw. von VEGF-Rezeptor-

Blockern zu einer Blockade von VEGF in Endothelzellen von Tumor-assoziierten 

Blutgefäßen und damit zu einer Hemmung des Tumorwachstums gekommen ist. Das 

bedeutet, dass dadurch die Neubildung von Blutgefäßen in Tumoren inhibiert wurde, 

was sogar zu einer Rückbildung des Tumors führte [124]. Somit gilt VEGF als ein 

wichtiges Zytokin vor allem in der Tumorangiogense. Des Weiteren wurde bereits 

gezeigt, dass VEGF auf der einen Seite zu den Zytokinen gehört, welche die 

Expansion von MDSC induzieren und auf der anderen Seite aber auch von MDSC 

produziert werden [125, 126]. Dies steht im Einklang mit den gegenwärtigen 

Ergebnissen, bei denen durch die Anwesenheit der MDSC ein direkter Anstieg der 

VEGF Konzentration beobachtet wurde. Des Weiteren wurde ein deutlicher Anstieg 

an VEGF bei den aktivierten, ko-kultivierten Splenozyten mit MDSC mit B7-H1 

Antikörper gegenüber der aktivierten Splenozyten beobachtet. Folglich könnte man 

daraus schließen, dass der B7-H1 Antikörper und damit die Anwesenheit von B7-H1, 

einen Einfluss auf die Regulation der Produktion von VEGF nimmt. 

Chemokine zählen zu einer Gruppe der Zytokine und bestehen aus zwei großen 

Familien -die CXC oder α Chemokine und die CC oder ß Chemokine- und aus zwei 

Unterfamilien -die C oder γ Chemokine und die CX3C oder δ  Chemokine- [127]. In 

meiner Arbeit lag das Augenmerk auf den CXC Chemokinen, im Speziellen dem 

CXCL1 (auch KC genannt), da es eine wichtige Rolle unter anderem in 

entzündlichen Prozessen, in der Angiogenese und vor allem in der 

Tumorangiogenese und dem –wachstum übernimmt. In einigen Studien konnte 

bereits gezeigt werden, dass die Produktion von CXCL1 im Tumorgeschehen in vivo 

und in vitro deutlich anstieg, wie beispielsweise im Melanom, Harnblasenkarzinom 

und Brustkrebs [128-130]. Die vorliegenden Resultate bestätigen diese Befunde: 

Durch Zugabe der MDSC (aus PaCa-Tumoren isoliert) zu den Splenozyten konnte 

ein deutlicher Anstieg in der Produktion an CXCL1 nachgewiesen werden. Waren die 

Splenozyten zuvor durch CD3/CD28 aktiviert, so war der Anstieg an CXCL1 noch 

deutlicher. Der höchste Wert an CXCL1 war den aktivierten, ko-kultivierten 

Splenozyten mit MDSC mit B7-H1 Antikörper zuzuschreiben und lag deutlich über 

dem der aktivierten Splenozyten. Somit erhärtet sich auch bei CXCL1 die Vermutung, 

dass das B7-H1 Molekül an der Regulation verschiedener Zytokine beteiligt sein 

könnte. 
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Betrachtet man in der gleichen Serie dieses Experiments die proinflammatorischen 

Zytokine IFNγ, IL-2 und IL-17, so wurden bei allen dreien ähnliche Beobachtungen 

gemacht. Zusammenfassend wiesen alle mittels CD3/CD28 Antikörper aktivierten 

Zellfraktionen gegenüber ihren nicht-aktivierten Pendants einen signifikant höheren 

Wert auf. Zusätzlich zeigten die aktivierten, ko-kultivierten Splenozyten mit MDSC mit 

B7-H1 Antikörper bei der Auswertung der IFNγ Produktion die höchste Konzentration 

auf. Dieses Resultat steht im Einklang mit den Daten der Studie aus dem Jahre 2009 

über das murine Pankreastumormodell. Darin wurde bei der Blockade des B7-H1 

Moleküls in vivo mit Hilfe von Antikörpern ein signifikanter Anstieg in der IFNγ 

Konzentration festgestellt [93]. Diese Beobachtung deutet darauf hin, dass das B7-

H1 Molekül auch im PaCa eine wichtige Rolle in der IFNγ Produktion übernimmt.  

Es konnte bereits gezeigt werden, dass eine Neutralisierung von IL-17 durch 

Verwendung von Antikörpern das Tumorwachstum hemmt und im Gegensatz dazu 

eine Verabreichung von IL-17 dieses wiederum steigert. Darüber hinaus wurde im 

Mausmodell nachgewiesen, dass IL-17 für die Entwicklung und die 

wachstumsfördernde und immunsuppressive Aktivität der MDSC auf Seiten des 

Tumors erforderlich ist [131]. Es erhärtet sich somit die Vermutung, dass es im 

Umkehrschluss durch die Zugabe der MDSC (aus Tumoren isoliert) zu den 

Splenozyten zu einem Anstieg der Konzentration von IL-17 kommt.  

Zusammenfassend konnte bei meinen Untersuchungen festgestellt werden, dass es 

keinen Unterschied im Suppressionspotential der MDSC bei einer B7-H1-

Ausschaltung gab. Zusätzlich zu den bereits bekannten Zytokinen, wie IFNγ und IL-2, 

erhärtet sich jedoch die Vermutung, dass das B7-H1 Molekül einen Einfluss auf die 

Regulation weiterer Zytokine nimmt, wie es beispielsweise erstmals bei VEGF oder 

CXCL1 nachgewiesen werden konnte. 

Von großer Bedeutung für die Anti-Tumor-Immunantwort sind auf zellulärer Ebene 

die DC. Hierfür wurde das stimulierende Potential der aus Tumoren gewonnenen DC 

auf CD4+/CD8+ T-Zellen eingehend untersucht. Um zu sehen, ob das B7-H1 Molekül 

einen Einfluss auf dieses Potential nimmt, erfolgte seine Ausschaltung auf der 

Oberfläche eines Teils der DC durch Verwendung des B7-H1 Antikörpers. 

Die DC gelten als eine Art Bindeglied, da sie zwischen der angeborenen und der 

adaptiven Immunantwort vermitteln. Sie übernehmen eine Schlüsselrolle als 

antigenpräsentierende Zellen, aktivieren naive T-Zellen und sind imstande eine 
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primäre Immunantwort zu induzieren. Es konnte bereits gezeigt werden, dass einige 

Zytokine, wie beispielsweise TNFα, IL-1ß oder IL-6, den Reifungsprozess der DC 

beeinflussen [132]. Obwohl die Rolle des B7-H1 Moleküls in diesem Zusammenhang 

noch nicht vollständig geklärt wurde, ist seit einiger Zeit bekannt, dass es unter 

anderem auf der Oberfläche der DC exprimiert wird und ihre Stimulationsfähigkeit 

bezüglich der T-Zellen beeinflusst [99, 100, 133]. Des Weiteren konnte in Patienten 

mit PaCa bereits gezeigt werden, dass das stimulierende Potential der DC reduziert 

ist [134]. Aus diesem Grund beschäftigt sich der folgende Abschnitt der Studie 

zudem mit der Frage, welchen Einfluss das Oberflächenmolekül B7-H1 auf das 

aktivierende Verhalten der DC im speziellen Fall des PaCa nimmt. 

Im ersten Teil meiner Proliferationsanalyse der Ko-Kultur mit Splenozyten und DC, 

konnte auf den CD4+ T-Zellen eine deutliche Aktivierung der Proliferation durch die 

Zugabe der DC (ohne B7-H1 Antikörper) nachgewiesen werden. Somit wurde die 

Vermutung bestätigt, dass DC auch im Tumorgeschehen des PaCa ein 

stimulierendes Verhalten zeigen, auch wenn dieses nicht so stark ausgeprägt ist, wie 

im gesunden Zustand. Wie durch Freeman bereits gezeigt wurde, ist es durch die 

Bindung des B7-H1 Moleküls auf der Oberfläche der DC an seinem Rezeptor PD-1 

möglich, auf die T-Zellen einen supprimierenden Effekt auszulösen [54, 99]. 

Überraschenderweise konnte dieses Verhalten in meiner Studie auf den CD4+ T-

Zellen nicht beobachtet werden. Ganz im Gegenteil kam es bei der Blockade des B7-

H1 Moleküls zu keiner Verstärkung des aktivierenden Verhaltens der DC. Allem 

Anschein nach könnte die Ursache dafür die Isolierung der DC aus dem PaCa sein, 

da sie bereits unter dem Einfluss des Tumormilieus standen. 

Als ein weiterer bedeutender Aspekt gilt der Aktivierungsstatus der CD4+/CD8+ T-

Zellen, der mit Hilfe des frühen Aktivierungsmarkers CD69 untersucht wurde. Hierbei 

wiesen die durch CD3/CD28 aktivierten Zellfraktionen einen signifikant höheren Wert 

als die nicht-aktivierten auf. Der stärkste Aktivierungsgrad war den aktivierten 

Splenozyten zuzuschreiben und lag deutlich über dem der aktivierten, ko-kultivierten 

Splenozyten mit DC. Es bleibt unklar, weshalb es zu einer Reduktion der Expression 

von CD69 auf den CD4+ T-Zellen durch die Ko-Kultivierung mit den DC gekommen 

ist. Allerdings liegt die Vermutung nahe, dass diese aufgrund ihrer Isolation aus den 

Tumoren von dem vorherrschenden, tumorsuppressiven Milieu beeinflusst wurden. 
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Zusätzlich lag ein Augenmerk auf der Expression von CD25 sowohl auf den CD4+ als 

auch auf den CD8+ T-Zellen. Hier konnte die Erwartung bestätigt werden, dass es 

durch die Aktivierung mittels der CD3/CD28 Antikörper auch zu einem Anstieg in der 

Expression von CD25 gekommen ist. Abermals konnte keine Abweichung im 

Stimulationspotential der DC bei einer B7-H1-Ausschaltung auf der Oberfläche der 

DC beobachtet werden.  

Zusammenfassend kann festgestellt werden, dass die DC auch im Tumorgeschehen 

des PaCa ein aktivierendes Verhalten zeigen, auch wenn dieses nicht so stark 

ausgeprägt ist wie im gesunden Zustand. Zusätzlich konnte weder bei der 

Untersuchung des proliferativen Verhaltens, noch beim Aktivierungsstatus der 

CD4+/CD8+ T-Zellen kein Unterschied bei einer B7-H1-Ausschaltung auf den DC 

festgestellt werden. 

Zuletzt wurden die Mediumüberstände der Ko-Kultur der Splenozyten mit DC auf ihre 

Zytokine mit Hilfe der Luminex-Analyse untersucht. Nimmt das B7-H1 Molekül einen 

Einfluss auf die Regulation bestimmter Zytokine, sofern es auf aus Tumoren 

isolierten DC exprimiert wird? 

Betrachtet man die Konzentration des T-Zell-Wachstumsfaktors IL-2, so ist 

erwartungsgemäß die Höchste den aktivierten Splenozyten zuzuschreiben. Durch die 

Aktivierung mittels der CD3/CD28 Antikörper stiegen die Proliferation und damit auch 

der Wert von IL-2. Es konnte in den letzten Jahren die Erkenntnis gewonnen werden, 

dass IL-2 vor allem für die T-Zell-Proliferation verantwortlich ist, aber auch von T-

Zellen produziert werden kann. IL-2 kann aber auch von anderen Zelltypen 

produziert werden, wie unter anderem durch die DC. Welche Rolle IL-2 dabei spielt 

bleibt jedoch unklar [135]. Die vorliegenden Ergebnisse zeigen, dass die aktivierten, 

ko-kultivierten Splenozyten mit DC sowohl mit als auch ohne B7-H1 Antikörper eine 

deutlich geringere Produktion von IL-2 gegenüber den aktivierten Splenozyten 

aufwiesen. Dieses Resultat lässt sich wahrscheinlich dadurch erklären, dass IL-2 

zwar von DC produziert werden kann, jedoch wurde die Expression von IL-2 in 

diesem Fall nicht in dem Umfang durch die DC verstärkt, wie es bei den CD4+/CD8+ 

T-Zellen der Fall ist. Dies ist schätzungsweise davon anhängig, woraus die DC 

isoliert wurden, nämlich aus Tumoren. 

IL-6 gilt als einer der Hauptregulatoren in der Differenzierung der DC. Der 

Reifungsprozess der DC steht im Zusammenhang mit einer Hochregulierung der 
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MHC II-Moleküle, kostimulatorischer Faktoren und nachfolgend der Sekretion von 

Zytokinen, wie unter anderem IL-6. Folglich wurde gezeigt, dass die reifen DC große 

Mengen dieses proinflammatorischen Zytokins produzieren [136, 137]. Dieser Befund 

steht im Einklang mit den vorliegenden Ergebnissen meiner Studie. Darin wurde 

ebenfalls ein deutlicher Anstieg der Konzentration von IL-6 nach Zugabe der DC zu 

den Splenozyten festgestellt. Die durch die CD3/CD28 Antikörper aktivierten, ko-

kultivierten Splenozyten mit DC zeigten im Gegensatz zu den aktivierten Splenozyten 

die höchste Produktion von IL-6. Jedoch konnte kein Unterschied bei der Blockade 

von B7-H1 festgestellt werden. 

Bei TGFß handelt es sich um ein Zytokin, welches die Proliferation von T-Zellen 

hemmt und eine wichtige Rolle in der Aufrechterhaltung der Immuntoleranz 

übernimmt [138]. In einer Studie über das Lungenkarzinom konnte gezeigt werden, 

dass humane DC zu einer Steigerung der TGFß Expression beitrugen, sofern sie 

Zellen des Lungenkarzinoms ausgesetzt wurden [139]. Diese Erkenntnisse decken 

sich mit denen meiner Studie, in der eine deutlich höhere Konzentration an TGFß bei 

den aktivierten, ko-kultivierten Splenozyten mit DC –sowohl mit, als auch ohne B7-H1 

Antikörper- im Vergleich zu den aktivierten Splenozyten alleine nachgewiesen 

werden konnte. 

Die Ergebnisse meiner Studie zeigen, dass es zu einem starken Anstieg in der 

Produktion von VEGF bei den Ko-Kulturen der Splenozyten mit DC, im Gegensatz zu 

den aktivierten und nicht-aktivierten Splenozyten, kam. Eine mögliche Erklärung für 

die Steigerung der VEGF Konzentration könnte die Isolation der DC aus PaCa-

Tumoren sein, wo VEGF bekanntlich sehr präsent ist und eine bedeutende Rolle 

spielt. 

Betrachtet man alle zuvor beschriebenen und diskutierten Resultate dieser Studie 

über die Wechselwirkung, den sog. immunological checkpoint, des PD-1:PD-L1 

Reaktionsweges, so wird deutlich, dass eine B7-H1-Ausschaltung sowohl im 

gesunden Zustand, als auch im Speziellen Fall des PaCa, einen gravierenden 

Einfluss auf einige immunologische Parameter nimmt. Dieser Einfluss konnte bei der 

B7-H1-Ausschaltung sowohl durch Verwendung von B7-H1 KO-Mäusen beobachtet 

werden aber auch durch Blockade dieses Moleküls mithilfe des B7-H1 Antikörpers. 

Die Vermutung, dass das B7-H1 Molekül einen Einfluss auf das suppressive bzw. 

proliferative Verhalten der verschiedenen Immunzellen (Treg, MDSC und DC) nimmt, 
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konnte jedoch nicht bestätigt werden. Allerdings wurde gezeigt, dass es bei der 

Regulation der Zytokinproduktion von großer Bedeutung ist, da es Einfluss auf 

mehrere Zytokine nahm, als bisher vermutet. Des Weiteren wurde das suppressive 

Verhalten der MDSC im PaCa bestätigt und auch bei den DC wurde nachgewiesen, 

dass sie im PaCa ebenfalls ein stimulierendes Verhalten aufweisen können. All diese 

Erkenntnisse sind sehr wichtig für das PaCa und stellen die Forschung im Bereich 

Tumorimmunologie und Immuntherapie vor neue Fragestellungen und Ansatzpunkte. 
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5 Zusammenfassung 
Das immunsuppressive B7-H1 Molekül bei regulatorischen T-Zellen, 
suppressiven Zellen myeloider Abstammung und dendritischen Zellen in 
antitumoraler Immunantwort beim Pankreasadenokarzinom 

Das Pankreasadenokarzinom (PaCa) zeichnet sich durch eine sehr schlechte 

Prognose aus, die mit einer geringen Überlebensrate aufgrund der oftmals zu späten 

Diagnose einhergeht. Des Weiteren sind sein aggressives Wachstumsverhalten, die 

hohe Metastasierungsrate und das geringe Ansprechen auf eine Bestrahlungs- oder 

Chemotherapie charakteristisch für das PaCa. 

Aus diesen Gründen wird dringend nach neuen Therapieansätzen gesucht, wobei die 

Immuntherapie eine neue Möglichkeit der Behandlung des PaCa darstellt. Um auf 

diesem Gebiet Fortschritte zu erzielen, müssen zuerst die immunologischen 

Zusammenhänge nicht nur im gesunden Zustand, sondern auch im Fall des PaCa 

verstanden werden. Das Immunsystem weist sowohl einen aktivierenden, als auch 

einen supprimierenden Arm auf, um über ihr Zusammenwirken ein Gleichgewicht 

aufrecht zu erhalten. Ein bekanntes Beispiel für den supprimierenden Arm des 

Immunsystems, stellt der PD-1:PD-L1 Reaktionsweg dar. 

In dieser Arbeit wurde unter anderem die Expression des Rezeptors PD-1 auf 

verschiedenen Immunzellen untersucht und der Einfluss, den das B7-H1 Molekül 

dabei nimmt. Dies geschah in vivo unter Verwendung gesunder B7-H1 KO-Mäuse im 

Vergleich zu gesunden WT-Mäusen. Insgesamt konnte eine deutlich höhere 

Expression von PD-1 den B7-H1 KO-Mäusen zugeschrieben werden. Auch in der 

Gesamtzahl der PD-1 Moleküle, welche über den MFI-Wert reflektiert werden, 

wiesen sie einen signifikant höheren Wert auf. Dies spricht dafür, dass in den B7-H1 

KO-Mäusen kompensatorische Vorgänge ablaufen, um das Gleichgewicht zwischen 

Immunstimulation und –suppression, wie es bei den WT-Mäusen der Fall ist, wieder 

herzustellen. Darüber hinaus wurde ex vivo der Einfluss des B7-H1 Moleküls auf das 

suppressive bzw. proliferative Verhalten der Treg, MDSC und DC durch Ausschaltung 

dieses Moleküls auf ihrer jeweiligen Oberfläche untersucht. Das suppressive 

Verhalten der MDSC und das stimulierende Potential der DC wurden bei PaCa-

tumortragenden Mäusen bestätigt. Jedoch war kein direkter Einfluss des B7-H1 

Moleküls auf diese Immunzellen festzustellen. Allerdings machte es den Anschein, 

dass es bei der Regulation der Zytokine v.a. bei den MDSC eine wichtige Rolle 
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übernimmt. Diese Erkenntnisse unterstreichen die Wichtigkeit von B7-H1 im PaCa 

und verdeutlichen die Notwendigkeit weitere Forschungsarbeiten in diesem Bereich 

durchzuführen, besonders im Zusammenhang mit Immuntherapien. 
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6 Summary 
The immunosuppressive molecule B7-H1 in regulatory T-cells, myeloid-derived 
suppressor cells and dendritic cells in antitumor immune response in 
pancreatic carcinoma 

The pancreatic carcinoma (PaCa) is characterized by a very poor prognosis which is 

associated with a low survival rate due to an often very late diagnosis. Furthermore, 

its aggressive growth behavior, the high rate of metastasis and the low response to 

irradiation or chemotherapy are characteristic for the PaCa. 

Therefore, new therapeutic approaches are urgently needed and immunotherapy 

represents a new way of treating PaCa. To progress in this field, the immunological 

relationships need to be understood not only by observing healthy people but also for 

PaCa. The immune system has both an activating and a suppressive arm ensuring 

the balance through their interaction. The PD-1:PD-L1 pathway is a well-known 

example for the suppressive arm of the immune system. 

This doctoral thesis analyzes the expression of the PD-1 receptor and the resulting 

influence on the B7-H1 molecule for various immune cells. This was done in vivo 

comparing healthy B7-H1 KO mice to healthy WT mice. Overall, a significantly higher 

expression of PD-1 could be attributed to the B7-H1 KO mice. They also showed a 

greater amount of PD-1 molecules, which are reflected on the MFI value. This 

suggests that compensatory processes are taking place in the B7-H1 KO mice to 

achieve the same balance between immune stimulation and -suppression as 

observed on the WT mice. Additionally, effects of the B7-H1 molecule on the 

suppressive or proliferative behavior of Treg, MDSC and DC were investigated ex vivo 

by elimination of this molecule on their surface. The suppressive behavior of MDSC 

and the stimulatory potential of DC could be confirmed with tumor-bearing mice in 

both mouse strains. However, no direct effect of B7-H1 on these immune cells was 

observed. Nevertheless, it seemed that this molecule plays an important role in the 

regulation of cytokines, especially in MDSC. 

After all, this work emphasizes the importance of B7-H1 in PaCa and underlines the 

necessity for further research in this field, especially with respect of immunotherapy. 
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