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1 Verzeichnis der Abkürzungen 
 
α-DG α-Dystroglycan 

APC   Antigenpräsentierende Zelle (antigen presenting cell) 

Arm   LCMV (Armstrong) 

AVYNFATC  Aminosäuresequenz aus LCMV Glykoprotein gp34-41 (GP34) 

ß2m   ß-2-Mikroglobulin  
CD Oberflächenantigen (cluster of differentiation) 

cDC konventionelle DC (conventional DC) 

CFSE   Carboxyfluorescein-diacetate-succinimidylester 

CL13   LCMV-Stamm (LCMV strain: clone 13) 

cTEC kortikale Thymusepithelzelle (cortical thymic epithelial cell) 

CTL zytotoxischer T-Lymphozyt (cytotoxic T lymphocyte) 

DC   dendritische Zelle (dendritic cell) 

DT Diphterie Toxin 

ER endoplasmatisches Reticulum 

ERAAP (endoplasmatic reticulum aminopeptidase associated with antigen 

processing) 

FACS   Fluoreszenzaktivierter Zellsorter (fluorescence activated cell sorter) 
Flt3 (FMS-like tyrosine kinase 3) 

GFP grün fluoreszierendes Protein (green fluorescent protein) 

GM-CSF (granulocyte-macrophage colony-stimulating factor) 

GP Glykoprotein  

hbEGF heparin-bindender epidermaler Wachstumsfaktor (heparin-binding 

epidermal growth factor) 

HGIAAASPI Aminosäuresequenz aus mCMV (M45) 

HLA humaner Haupthistokompatibilitätskomplex (human leukocyte antigen) 

IFNγ Interferon−γ 

IL   Interleukin 

i.p. / i.v.   intraperitoneal / intravenös  

IRAP (insulin-regulated aminopeptidase) 

KAVYNFATC Aminosäuresequenz aus LCMV Glykoprotein gp33-41 (GP33) 
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LCMV Lymphozytäres Choriomeningitis Virus (lymphocyte choriomeningitis 

virus) 

LPS Lipopolysaccharid 

L RNA großes RNA Segment (large RNA) 

mCMV murines Cytomegalovirus (murine cytomegalovirus) 

MΦ Makrophagen 

MHC   Haupthistokompatibilitätskomplex (major histocompatibility complex) 

MMM Marginal metallophile MΦ (marginal metallophilic macrophages) 

MOI Vielzahl der Infektionen (muliplicity of infection) 

MZ Marginalzone 

MZM Marginalzonen MΦ (marginal zone macrophages) 

NP Nukleoprotein 

OVA   Hühner-Ovalbumin 

PAMPS konservierte mikrobielle Strukturen (pathogen-associated molecular 

patterns) 

pDC plasmazytoide DC (plasmacytoid DC) 

PFA Paraformaldehyd 

SIINFEKL   Aminosäuresequenz aus OVA257-264 

S RNA kleines RNA Segment (small RNA) 

TAP transporter associated with antigen processing 

TCR   T-Zell-Rezeptor (T-cell receptor) 

TLR   Toll-like Rezeptoren (toll-like receptors) 

TNF Tumornekrosefaktor 

TVTGPCLL Aminosäuresequenz aus mCMV (m139) 

vp Viruspartikel 

VSV vesikuläres Stromatitis Virus (vesicular stromatitis virus) 

 

 

Formelgrößen werden in der vorliegenden Arbeit mit den international gebräuchlichen SI-

Einheiten und Aminosäuren entsprechend ihres Einbuchstabenkodes abgekürzt. Für die 

Abkürzungen gebräuchlicher Wörter der deutschen Sprache wird gemäß Duden verfahren. 
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2 Zusammenfassung 
 

Zur Entwicklung zytotoxischer T-Lymphozyten (cytotoxic T lymphocyte, CTL) müssen naive 

CD8 T-Zellen spezifische Antigen/MHC-I Komplexe (Haupthistokompatibilitätskomplex, 

major histo compatibility complex) auf antigenpräsentierenden Zellen (antigen presenting 

cells, APC) im Kontext kostimulatorischer Moleküle und Zytokine erkennen. Dendritische 

Zellen (dendritic cells, DC) liefern all diese erforderlichen Signale und werden deshalb häufig 

als die wichtigsten APC im Immunsystem angesehen.  

In dieser Arbeit wurde ein transgenes Mausmodell (DC-MHCI), bei dem die Expression von 

MHC-I restringiert ist auf DC verwendet, um zu untersuchen welche Kapazitäten und Effekte 

DC auf die Entwicklung von CTL haben, wenn sie die einzigen APC sind, die das Antigen 

präsentieren können. Nach der Immunisierung von DC-MHCI und Wildtyp-Mäusen 

(C57BL/6) mit einem replikations-defizienten Adenovektor (rAd-GP33), der das Epitop 

gp33-41 (GP33) aus dem Glykoprotein (GP) des lymphozytären chroriomeningitis Virus 

(lymphocyte choriomeningitis virus, LCMV) exprimiert, konnte nur in C57BL/6 aber nicht in 

DC-MHCI Mäusen eine Expansion Db GP33 spezifischer T-Zellen detektiert werden.  

Das Epitop GP33, welches über MHC-I Db präsentiert wird, enthält das eine Aminosäure 

kürzere Epitop GP34 (gp34-41), welches MHC-I Kb restringiert ist. Durch die Verwendung Db 

GP33 und Kb GP34 spezifischer Multimere konnte gezeigt werden, dass DC-MHCI Mäusen 

die Fähigkeit zur Aktivierung Db GP33 spezifischer T-Zellen fehlt, wohingegen sie in der 

Lage sind Kb GP34 spezifische T-Zellantworten zu generieren. Des Weiteren konnte gezeigt 

werden, dass DC aus DC-MHCI und Wildtyp-Mäusen die gleichen Kapazitäten besitzen, und 

dass auch die DC aus C57BL/6 nicht in der Lage sind das längere Epitop zu präsentieren. 

Diese Ergebnisse wiesen darauf hin, dass andere APC wichtig sind um CTL Antworten gegen 

das Epitop GP33 zu generieren.  

Um dies näher zu untersuchen, wurden immun-histologische Analysen von Milzen aus 

rAd-GFP immunisierten C57BL/6 Mäusen durchgeführt, um die Lokalisation des Virus zu 

verfolgen und damit den Zelltyp identifizieren zu können. GFP-Expression konnte in 

Makrophagen (MΦ) der Marginalzone (MZ) detektiert werden. Die Kb GP34 spezifische T-

Zellantwort in den DC-MHCI Mäusen scheint demnach durch Kreuzpräsentation vermittelt zu 

werden, da DC in vivo von den Adenovektoren nicht infiziert wurden. Die direkte Infektion 

von DC in vitro führte hingegen zur Aktivierung Db GP33 spezifischer T-Zellen. Diese 
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Ergebnisse zeigen eine Dichotomie zwischen direkter und Kreuzpräsentation im Fall von GP 

und nur die in vivo direkt infizierten MΦ können sowohl Db GP33 als auch Kb GP34 

spezifische T-Zellen aktivieren. 
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3 Summary 
 

To develop cytotoxic effector functions, naive CD8+ T lymphocytes must recognize specific 

antigen/MHC-I complexes on APC in the context of costimulatory molecules and cytokines. 

DC can provide all of these required signals and are commonly thought of as the most 

important antigen presenting cells in the immune system.  

We used transgenic mice in which MHC-I expression is restricted to DC (DC-MHCI mice) to 

assess quantitative and qualitative effects on CD8+ T-cell priming when only DC present 

antigen. Following immunization with a replication-deficient Adenovirus (rAd-GP33) 

expressing the epitope gp33-41 (GP33) of the glycoprotein of LCMV we could not detect 

priming of Db GP33 specific T cells in DC-MHCI mice.  

The epitope GP33, which is presented via MHC-I Db contains the one amino acid shorter 

epitope gp34-41 (GP34), which is Kb restricted. Using MHC multimers for Db GP33 and Kb 

GP34 we were able to show, that DC-MHCI mice completely lacked the ability to prime 

GP33 restricted CTL, while they elicit normal GP34 CTL responses. 

Next we were able to show, that DC from DC-MHCI and wild-type mice have the same 

capacities and also DC from C57BL/6 mice were not able to present the longer epitope. This 

data suggested that there might be other APC important to induce CTL responses against 

GP33 epitope.  

To further investigate this question we performed histological analysis of spleens from 

rAd-GFP infected C57BL/6 mice in order to localize the vector and to identify the infected 

cell type. GFP-expression was confined to MΦ of the MZ. The Kb GP34 specific T-cell 

response in DC-MHCI mice seems to be mediated by crosspresentation, since in vivo the 

adenovectors did not infect DC. However direct infection of DC in vitro led to the activation 

of Db GP33 specific T-cells. 

Our data indicate a dichotomy between direct and crosspresentation in the case of GP and 

only MΦ, that are directly infected in vivo, are able to activate Db GP33 and Kb GP34 specific 

T-cells. 
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4 Einleitung 

4.1 Das Immunsystem der Säugetiere 
 
Das Immunsystem schützt den Körper durch verschiedenste Methoden vor Pathogenen wie 

Bakterien, Viren, Pilzen sowie ein- und mehrzelligen Parasiten. Grundsätzlich unterscheidet 

man zwischen dem angeborenen und dem adaptivem Immunsystem, wobei letzteres nur bei 

Vertebraten zu finden ist. Das angeborene Immunsystem zeichnet sich durch seine schnelle 

Wirkungsweise aus und bildet durch physikalische Barrieren wie zum Beispiel die Haut, 

Schleimhäute und Tränenflüssigkeit die erste Verteidigungslinie. Gelingt es Pathogenen 

dennoch in den Körper einzudringen, so spielen MΦ und natürliche Killer Zellen eine 

entscheidende Rolle. MΦ besitzen auf ihrer Oberfläche eine Reihe von Rezeptoren, wie zum 

Beispiel Toll-ähnliche Rezeptoren (toll-like receptors, TLRs), die es ihnen erlaubt 

Krankheitserreger zu erkennen und zu phagozytieren. Dies führt zu einer Aktivierung der MΦ 

und zu einer lokalen Entzündungsreaktion, die die Aktivierung des Komplementsystems und 

das Anlocken weiterer phagozytierender Zellen wie Neutrophilen zur Folge hat. Reichen die 

Abwehrmechanismen des angeborenen Immunsystems nicht aus den Erreger zu eliminieren, 

so wird das adaptive Immunsytem eingeschaltet. Dieses zeichnet sich im Gegensatz zu dem 

angeborenen Immunsystem durch Rezeptoren höherer Spezifität und die Fähigkeit zur 

Gedächtnisfunktion aus. Das immunologische Gedächtnis schützt den Körper schneller und 

effektiver sollte es zu einer erneuten Infektion mit einem bereits bekannten Pathogen 

kommen. Die Effektorzellen und deren Funktionen der adaptiven Immunität stehen nicht 

sofort zur Verfügung sondern müssen induziert werden. Dies erklärt warum in den ersten 12 

Stunden einer Infektion zunächst nur das angeborene Immunsystem eingreift und die adaptive 

Antwort mit einer Verzögerung von ca. ein bis fünf Tagen einsetzt.  

APC, wie MΦ, B-Zellen und DC, spielen bei der adaptiven Immunantwort eine entscheidende 

Rolle. Diese Zellen zirkulieren im Lymph- und Blutsystem des Körpers, nehmen Antigen auf 

und prozessieren es in kleinere Fragmente, sogenannte Peptide. Diese werden dann über 

Moleküle des MHC an antigenspezifische CD4 und CD8 T-Zellen präsentiert. Hierbei spricht 

man von der zell-vermittelten Immunität, die sich hauptsächlich gegen intrazelluläre Erreger 

richtet. Im Gegensatz dazu gibt es die humorale Immunität, die durch B-Zellen, die 

Antikörper produzieren vermittelt wird und sich gegen extrazelluläre Pathogene richtet.  
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4.2 Die Rezeptoren der Antigenpräsentation und Erkennung 
 

APC nehmen Antigen auf und präsentieren die prozessierten Peptide im Kontext von MHC-I 

bzw. MHC-II. Die Erkennung der so präsentierten Peptide durch T-Zellen erfolgt nur, wenn 

sowohl das Antigen, sowie auch das MHC-Molekül vom T-Zell-Rezeptor (T-cell receptor, 

TCR) erkannt wird. Es handelt sich also um eine zweifache Erkennung und darüber hinaus 

sind kostimulatorische Moleküle wie zum Beispiel CD80/86 auf der APC nötig, damit naive 

T-Zellen aktiviert werden können.  

 

4.2.1 MHC 
 

Der MHC ist eine polymorphe Gruppe von Genen, die sich beim Menschen auf Chromosom 6 

und bei der Maus auf Chromosom 17 befinden. Im Menschen bezeichnet man diese Gene als 

HLA (human leukocyte antigen), wohingegen man in der Maus von H-2 Genen spricht. Es 

existieren multiple Varianten von jedem Gen innerhalb einer Population, was das hohe Maß 

an Polymorphismus erklärt. Die Proteine die von dieser Region kodiert werden, haben 

hauptsächlich die Funktion Antigen zu präsentieren. Es gibt zwei Arten von MHC-

Molekülen, MHC-I präsentiert Peptide antigenspezifischen CD8 T-Zellen, wohingegen CD4 

T-Zellen Antigen im Kontext von MHC-II Molekülen erkennen. MHC-I Moleküle bestehen 

aus zwei Polypeptidketten, wobei die α Kette im MHC kodiert ist, die kleinere Kette, das 

sogenannte β2 Mikroglobulin (β2m) hingegen befindet sich im Menschen auf Chromosom 15 

und in der Maus auf Chromosom 2. Das β2m ist an die membrandurchspannende α Kette 

nicht kovalent gebunden. Für MHC-I Moleküle kodieren je drei Gene, wobei man beim 

Menschen von HLA-A, -B und -C spricht und bei der Maus von H-2K, D, L. Für MHC-II 

kodieren im Menschen die Gene HLA-DP, -DQ,-DR und in der Maus H-2 I-A und H-2 I-E. 

Bei Maus – Inzuchtstämmen haben alle Individuen das gleiche Allel, so tragen zum Beispiel 

C57BL/6 Tiere alle das Allel b auf der H-2 Region. So existieren also ausschließlich MHC-I 

Kb und Db Moleküle in den C57BL/6 Mäusen.  

MHC-I wird von nahezu jeder Zelle exprimiert und bindet bevorzugt endogene (in der Zelle 

vorkommende) Peptide einer Länge von acht bis zehn Aminosäuren, wobei diese auch häufig 
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von Pathogenen wie Viren, welche die Zelle infiziert haben, stammen können. Das MHC-II 

Molekül hingegen besteht aus einer α und einer β Kette, die beide die Membran 

durchspannen. MHC-II bindet nur Peptide die von außen (exogen) aufgenommen wurden, 

endogene Antigene werden nicht über MHC-II präsentiert. In der Maus exprimieren APC wie 

DC, MΦ und B-Zellen, sowie verschiedene Arten von Epithel- und Stromazellen MHC-II auf 

ihrer Oberfläche.  

 

4.2.2 T-Zell-Rezeptor (TCR) 
 

Der TCR ist ein membranständiges Heterodimer aus zwei unterschiedlichen Polypeptidketten, 

wobei es sich in den meisten Fällen um eine TCRα und eine TCRβ Kette handelt, die durch 

eine Disulfidbrücke miteinander verbunden sind (Marrack et al., 1987). Des weiteren gibt es 

eine kleine Gruppe von T-Zellen, die ein γ:δ Heterodimer exprimieren. Der extrazelluläre Teil 

beider Ketten besteht aus einer konstanten und einer variablen Region. Die hohe Diversität 

des TCR ergibt sich aus der somatischen Rekombination nicht homologer Gensegmente, 

hierbei werden verschiedene Abschnitte (V-, D- und J-Gensegmente) umgelagert und neu 

kombiniert. Während dieser Umlagerung kommt es zum zufälligen Einbau sogenannter P- 

und N-Nukleotide, dies erhöht die Diversität nochmals. Das TCR-Repertoire wird auf 1012-

1015 verschiedene Rezeptoren geschätzt.  

Der TCR erkennt und bindet den Peptid/MHC Komplex, kann aber keine Signale in das 

Zellinnere weiterleiten. Das α:β Heterodimer ist mit einem sogenannten CD3 Komplex, der 

für die Signalweiterleitung verantwortlich ist, assoziiert.  
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4.3 T-Zellentwicklung 
 
Im Folgenden wird nur auf die Entwicklung von α:β T-Zellen eingegangen, da diese relevant 

sind für die vorliegende Arbeit. Vorläuferzellen, die aus dem Knochenmark in den Thymus 

einwandern, sind negativ für CD3 sowie für die Korezeptoren CD4 und CD8. Aufgrund des 

Fehlens dieser beiden letztgenannten Rezeptoren, werden T-Vorläuferzellen in diesem 

Stadium als doppelt-negative Thymozyten bezeichnet. Der Thymus lässt sich in zwei 

Hauptbereiche unterteilen, den peripheren Kortex und die zentrale Medulla (Ladi et al., 2006; 

Takahama, 2006) . Die Entwicklung der Thymozyten beginnt im Kortex mit der Umlagerung 

der Gensegmente für die β Kette. Eine erfolgreiche Rearrangierung führt zur Expression des 

prä-T Zellrezeptors (von Boehmer et al., 1997), bestehend aus der β Kette und einer 

vorläufigen α Kette in Kombination mit CD3. Die Zelle proliferiert und die Korezeptoren 

CD4 und CD8 werden exprimiert. Diese doppelt-positiven Thymozyten beginnen mit der 

Kombination der Gensegmente für die α Kette und exprimieren schließlich einen 

vollständigen TCR. Nur Thymozyten die in der Lage sind MHC/Selbstpeptid Komplexe zu 

erkennen und zu binden, werden positiv selektioniert und können sich weiter entwickeln (von 

Boehmer, 1994). Hierbei kommt es zu der Entscheidung zwischen den beiden Korezeptoren, 

T-Zellen die Peptid im Kontext von MHC-I erkennen exprimieren CD8 wohingegen MHC-II 

von CD4 T-Zellen erkannt wird. Die Thymozyten wandern schließlich in die Medulla und 

werden negativ selektioniert, das bedeutet T-Zellen die Selbstantigene mit hoher Affinität 

binden werden eliminiert. Dies ist wichtig um zu gewährleisten, dass T-Zellen die schließlich 

in die Peripherie auswandern nicht körpereigene Strukturen angreifen, was zu 

Autoimmunkrankheiten führen könnte (Kyewski et al., 2004). Die negative Selektion führt 

nicht zu einer 100% Eliminierung autoreaktiver T-Zellen, da nicht alle peripheren 

Selbstpeptide im Thymus präsentiert werden. T-Zellen, die autogene Antigene in der 

Periphere erkennen, werden durch die sogenannte periphere Toleranz eliminiert, wobei dies 

durch klonale Deletion, die Aktivierung von Anergie oder durch die Suppression 

regulatorischer T-Zellen erfolgt (Annacker et al., 2001; Palmer, 2003).  
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4.4 Aktivierung von T-Zellen und Effektorfunktionen 
 
Sobald die Entwicklung der T-Zellen im Thymus abgeschlossen ist, wandern diese durch das 

Blut und Lymphsystem durch den Organismus. Damit eine naive T-Zelle aktiviert werden 

kann, bedarf es dreier verschiedener Signale, die von APC zur Verfügung gestellt werden. Bei 

Signal 1 handelt es sich um die Erkennung und Bindung des TCR an sein spezifisches 

Antigen, dass von APC im Peptid/MHC-Komplex präsentiert wird. Als nächstes spielen 

sogenannte kostimulatorische Moleküle eine entscheidende Rolle, wie zum Beispiel CD28 

auf der T-Zelle, das an CD80/86 auf der DC bindet (Boise et al., 1995). Signal 2 umfasst aber 

nicht nur positive sondern auch negative kostimulatorische Signale, die fein aufeinander 

abgestimmt sind (Subudhi et al., 2005). Letztlich kommt es zur Expansion und 

Differenzierung der antigenspezifischen T-Zelle. In welche Richtung sich die T-Zelle 

weiterentwickelt, wird vor allem durch ein Zusammenspiel verschiedener Zytokine bestimmt 

(Signal 3) (Murphy et al., 2002). So führt zum Beispiel die Produktion von IL-6 und TGF-β 

zur Aktivierung von Th17 Zellen. Diese Zellen regen Stromazellen an Chemokine zu 

produzieren, die dann Neutrophile anlocken. In Gegenwart von TGF-β und wenn weder IL-6, 

IFNγ, noch IL-12 vorhanden sind, führt dies bevorzugt zur Aktivierung sogenannter FoxP3 

exprimierender regulatorischer T-Zellen (Campbell et al., 2011). Die Ausschüttung von IFNγ 

und IL-12 durch APC führt zur Generierung von TH1 Zellen, wobei TH2 Zellen eher durch IL-

4 und Notch-Liganden induziert werden. TH1 Zellen aktivieren vor allem MΦ und helfen so 

bei der Eliminierung intrazellulärer Mikroorganismen. Darüber hinaus sind sie in der Lage B-

Zellen zur Produktion von IgG Antikörpern anzuregen. TH2 Zellen hingegen aktivieren B-

Zellen und regen deren Expansion und Produktion von Antikörpern wie IgE an.  

Alle bisher beschriebenen T-Zellen gehören zu der Gruppe der CD4+ T-Zellen. CD8+ T-

Zellen hingegen differenzieren zu zytotoxischen Effektorzellen, die virusinfizierte- oder 

Tumorzellen erkennen und abtöten. Zytotoxische T-Zellen besitzen spezialisierte Granula, die 

zytotoxische Proteine beinhalten. Bindet eine solche T-Zelle an ihre Zielzelle so kommt es zur 

Polarisierung und damit zielgerichteten Ausschüttung der zytotoxischen Proteine (Harty et al., 

2000). 
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4.5 Prozessierung und Präsentation von Antigenen 
 
Damit T-Zellen ihr spezifisches Antigen im Kontext von MHC-I bzw.-II erkennen und binden 

können, müssen die Peptide zunächst von APC prozessiert werden. Die Prozessierung von 

Peptiden für CD4 bzw CD8 und damit die Beladung von MHC-II bzw.-I läuft nach 

bestimmten Mechanismen und in unterschiedlichen Kompartimenten ab.  

 

4.5.1  Prozessierung und Beladung von exogenen Peptiden für MHC-II 
 

Zellen können zum Beispiel durch rezeptorvermittelte Endozytose oder durch 

Makropinozytose exogene (nicht in der Zelle vorkommende) Proteine aufnehmen. Dabei wird 

das Antigen von intrazellulären Vesikeln, sogenannten Endosomen aufgenommen, die dann 

mit Lysosomen verschmelzen. Die Veränderung des pH-Wertes hin zu einem sauren Milieu 

führt zu der Aktivierung von Proteasen, die das Antigen in Peptidfragmente degradieren. Im 

endoplasmatischen Reticulum (ER) bindet eine invariante Kette an die neu synthetisierten 

MHC-II Moleküle. Diese Kette stabilisiert zum einen das MHC Molekül und sorgt zum 

anderen dafür, dass nicht endogene Peptide im ER gebunden werden. Darüber hinaus leitet 

die invariante Kette das MHC-II Molekül zu einem endosomalen Kompartment mit niedrigem 

pH. Dort wird die Kette schrittweise durch Proteasen wie zum Beispiel Cathepsin S abgebaut 

(Hsieh et al., 2002), wobei am Ende nur ein kleines Fragment namens CLIP in der 

Bindungsgrube bleibt. Ein Protein, das im MHC kodiert ist (HLA-DM im Menschen und H-

2M in der Maus) sorgt für den Austausch des Clip Fragments gegen Antigen und der so 

entstandene MHC-II/Peptidkomplex wird an die Oberfläche transportiert.  
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4.5.2  Prozessierung und Beladung von endogenen Peptiden für MHC-I 
 

Alle im Zytosol produzierten Proteine einer Zelle werden als endogen bezeichnet. Jede 

kernhaltige Zelle exprimiert MHC-I auf ihrer Oberfläche, dies ist wichtig, damit 

virusinfizierte- oder Tumorzellen Antigen präsentieren und vom Immunsystem eliminiert 

werden können. Der Abbau zytosolischer Proteine erfolgt hauptsächlich durch die 

Markierung mittels Ubiquitin und die Degradierung in Proteasomen, großen 

multikatalytischen Proteasen aus verschiedenen Untereinheiten. Während einer Infektion und 

der damit verbundenen Ausschüttung von Interferonen kann es zur Modifizierung der 

Untereinheiten kommen, man spricht dann nicht mehr vom konstitutiven sondern vom 

Immunoproteasom (Griffin et al., 1998; Groettrup et al., 2010). Der Austausch der 

konstitutiven Einheiten führt zu einer veränderten enzymatischen Aktivität des Proteasoms. 

Die sythetisierten Peptide werden dann in das ER weitergeleitet, wobei sie durch Chaperone 

vor weiterem Abbau im Cytosol geschützt sind. Die meisten Peptide, die im ER ankommen 

sind zu lang um an MHC-I zu binden und werden am Aminoterminus durch Aminopeptidasen 

wie zum Beispiel ERAAP (endoplasmatic reticulum aminopeptidase associated with antigen 

processing) getrimmt (Saric et al., 2002). Hammer et al. (Hammer et al., 2005) fanden in 

ERAAP knockout Mäusen eine gestörte Generierung natürlicher Peptide, eine verminderte 

Stabilität von MHC-I/Peptidkomplexen und geringere CD8+ T-Zellantworten. Dies 

verdeutlicht die wichtige Rolle dieser Peptidase bei der Herstellung eines normalen MHC-I : 

Peptidrepertoires.  

Die im Zytosol synthetisierten Peptide müssen in das ER geleitet werden, um dort auf MHC-I 

Moleküle geladen zu werden. Diesen Transport übernimmt ein heterodimeres Protein, 

bestehend aus TAP1 und TAP2. Noch nicht vollständig gefaltete MHC-I α Ketten binden an 

das Chaperon Calnexin und werden so im ER gehalten, bis β2m bindet. Letztlich binden die 

MHC-I Moleküle über Tapasin an TAP und die Beladung mit Peptid erfolgt. Erst dann ist der 

Komplex stabil und kann auf der Zelloberfläche exprimiert werden.  
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4.5.3 Präsentation exogener Peptide über MHC-I: Kreuzpräsentation 
 

Neben den beiden zuvor beschrieben direkten Wegen der Antigen Aufnahme und 

Prozessierung, gibt es auch die Möglichkeit, dass exogen aufgenommene Proteine über 

MHC-I an CD8 T-Zellen präsentiert werden. Hierbei spricht man von der sogenannten 

Kreuzpräsentation, die in den letzten Jahren Gegenstand vieler wissenschaftlicher 

Untersuchungen war und nach wie vor ist. Diese Art der Präsentation spielt zum Beispiel vor 

allem bei Viren, die APC, wie DC nicht direkt infizieren oder infizierte Zellen inaktivieren, 

eine entscheidende Rolle und führt so zur Aktivierung antiviraler zytotoxischer CD8 T-

Zellen. Dabei stellt sich die Frage wie exogen aufgenommenes Material in den MHC-I-

Präsentationsweg gelangen kann. Momentan wird hauptsächlich zwischen zwei Arten der 

Kreuzpräsentation unterschieden, dem zytosolischen und dem vakuolären Weg (Joffre et al., 

2012) (Abbildung 4.1). Nach Phagozytose exogener Proteine können diese in das Zytosol 

exportiert werden und dort durch das Proteasom abgebaut werden. Die so synthetisierten 

Peptide gelangen durch TAP in das ER und können dort an neu hergestellte MHC-I Moleküle 

binden. Es konnte gezeigt werden, dass bei diesem zytosolischen Weg Aminopeptidasen wie 

ERAAP und vor allem IRAP (insulin-regulated aminopeptidase) eine entscheidende Rolle 

spielen um passende Peptide für die Beladung von MHC-I zu generieren (Saveanu et al., 

2009). Im Gegensatz dazu ist der vakuoläre Weg unhabhängig von TAP, die exogenen 

Peptide werden in Phagosomen aufgenommen, abgebaut und auf MHC-I Moleküle geladen. 

Noch nicht abschließend geklärt ist die Frage, woher die MHC-I Moleküle für die 

Kreuzpräsentation stammen. Unter anderem konnte kürzlich gezeigt werden, dass CD74 den 

Transport von neu synthetisierten MHC-I Molekülen vom ER zu endozytischen 

Kompartimenten in DC vermittelt (Basha et al., 2012).  
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Abbildung 4.1: Übersicht über den zytosolischen und vakuolären Kreuzpräsentationsweg aus (Joffre et al., 

2012) 

 

Es gibt, wie später in dieser Arbeit noch genauer beschrieben wird, eine Reihe verschiedener 

DC-Subtypen, die unterschiedliche Aufgaben im Immunsystem wahrnehmen. Residente 

CD8+CD11b- DC die man in Milz, Lymphknoten und Thymus findet, sowie migratorische 

CD103+CD11b- DC scheinen besonders effizient bei der Kreuzpräsentation zu sein. Die 

Fähigkeit Antigene effizient durch Kreuzpräsentation zu präsentieren wird durch Cytokine, 

wie GM-CSF (granulocyte-macrophage colony-stimulating factor), die bei der Entwicklung 

der CD8+ DC Linie eine entscheidende Rolle spielen, gefördert (Dresch et al., 2012; Sathe et 

al., 2011). Aber auch andere APC wie MΦ besitzen die Fähigkeit zur Kreuzpräsentation, so 

konnten beispielsweise Asano et al. (Asano et al., 2011) kürzlich zeigen, dass CD169+ MΦ 

tumorassoziierte Antigene kreuzpräsentieren können.    
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4.6 APC  
 

B-Zellen, MΦ und DC werden aufgrund ihrer Fähigkeit naive T-Zellen zu aktivieren als APC 

bezeichnet und werden im Folgenden näher beschrieben.   

 

4.6.1 B-Zellen 
 

B-Zellen sind die wichtigsten Effektorzellen der humoralen Immunantwort und darauf 

spezialisiert über ihren B-Zellrezeptor Antigene in ihrer nativen Form zu erkennen. Sobald sie 

aktiviert wurden und zu Plasmazellen differenzieren, können sie große Mengen an Antikörper 

der gleichen Spezifität produzieren und sezernieren. Darüber hinaus können B-Zellen die 

aufgenommenen Antigene aber auch prozessieren und über MHC-II präsentieren. Somit 

können sie als APC fungieren, sind dabei aber deutlich ineffizienter als MΦ und DC. Dies ist 

unter anderem darin begründet, dass B-Zellen zu ihrer vollständigen Aktivierung die Hilfe 

von CD4 T-Zellen benötigen.  

 

4.6.2 MΦ  
 

MΦ sind große mononukleäre Phagozyten, die in allen Geweben vorkommen. Sie besitzen 

eine Reihe verschiedener Rezeptoren, wie zum Beispiel TLRs, Scavengerrezeptoren und C-

Typ-Lektine, die es ihnen ermöglicht, verschiedene konservierte mikrobielle Strukturen 

(pathogen-associated molecular patterns, PAMPS) zu erkennen und Mikroorganismen 

aufzunehmen. MΦ lassen sich durch spezifische Oberflächenmarker wie CD11b, F4/80 und 

CD68 charakterisieren (Martinez-Pomares et al., 2012). In der Milz trennt die MZ die rote 

Pulpa, einen Ort für den Abbau roter Blutzellen, von der weißen Pulpa, in der sich B-

Zellfollikel und T-Zellzonen befinden. In der roten Pulpa befinden sich F4/80+ MΦ, 

wohingegen in der MZ zwei Arten von MΦ unterschieden werden. Die marginal 

metallophilen MΦ (marginal metallophilic macrophages, MMM), die CD169 exprimieren 

(Crocker et al., 1989; van den Berg et al., 1992) befinden sich im inneren Teil der MZ. Die 

MZ-MΦ (marginal zone macrophages, MZM) dagegen exprimieren SIGN-R1 (Geijtenbeek 



 

 

 

	
  
Einleitung 

	
  
	
   	
  

23 

et al., 2002) und befinden sich in der äußeren MZ. Auch in den Lymphknoten findet man 

diese beiden Arten von MΦ (Geijtenbeek et al., 2002).  

In den letzten Jahren gab es verschiedene Studien, die zeigen konnten, dass vor allem CD169+ 

MΦ nicht nur eine Rolle bei der Aktivierung von B-Zellen spielen, (Carrasco et al., 2007; 

Junt et al., 2007) sondern auch bei der Aktivierung von CD8 T-Zellen (Asano et al., 2011; 

Backer et al., 2010), der Rekrutierung von plasmazytoiden DC (plasmycytoid DC, pDC) und 

der Produktion von IFN.  

 

4.6.3 DC 
 

DC spielen eine Schlüsselrolle im adaptiven Immunsystem, sowie beim Auslösen von 

Toleranz. Bei diesen Zellen handelt es sich um eine heterogene Gruppe, die in 

unterschiedliche DC-Subtypen aufgeteilt wird. Diese Unterteilung erfolgt unter anderem auf 

der Basis der Expression unterschiedlicher Oberflächenmarker. Aufgrund dessen können zwei 

Hauptgruppen unterschieden werden: konventionelle DC (conventional DC, cDC) und pDC  

(Belz et al., 2012; Segura et al., 2009).  

Vor allem cDC sind spezialisiert für die Aufnahme und Prozessierung von Antigen und 

zeichnen sich durch eine hohe Expression von CD11c aus. Man unterteilt sie weiter in 

residente DC, die wiederum anhand der CD8 Expression unterschieden werden können, und 

in migratorische DC. Letztere wandern aus dem Gewebe in die Lymphknoten und sind nicht 

in der Milz zu finden. Man unterscheidet hierbei zwischen CD11b+CD103- und CD11b-

CD103+ DC (Segura et al., 2009).  

Dagegen zeichnen sich pDC durch die Produktion großer Mengen an Typ I Interferon aus und 

spielen daher eine wichtige Rolle bei der Antwort auf verschiedene Pathogene. 

Charakteristisch für diese Zellen ist die Expression von B220 und intermediäre Level an 

CD11c.  

Darüber hinaus gibt es noch eine Reihe weiterer DC-Subtypen, wie zum Beispiel 

Langerhanszellen in der Haut. Auf diese verschiedenen Arten soll hier aber nicht näher 

eingegangen werden.  
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Abbildung 4.2 zeigt einen Überblick der verschiedenen hier beschriebenen DC-Subtypen.  

 
 
Abbildung 4.2: Überblick über lymphoide DC in der Maus aus (Belz et al., 2012) 

 

DC liegen in verschiedenen Aktivierungs- bzw. Reifestadien vor und gerade dieses Merkmal 

macht sie so effizient bei der Aufnahme und Prozessierung von Antigen, sowie der 

anschließenden Präsentation dieser Antigene an T-Zellen. Im unreifen Stadium nehmen DC 

Antigen durch Phagozytose, Makropinozytose oder rezeptorvermittelte Endozytose auf. Dafür 

stehen ihnen verschiedene Rezeptoren wie zum Beispiel DEC205 und Mannoserezeptoren zur 

Verfügung. In diesem Stadium exprimieren DC noch wenig kostimulatorischen Moleküle. 

Liegt eine Infektion vor und DC erkennen sogenannte PAMPs, wie beispielsweise Proteine 

oder Nukleinsäuren, führt dies zu ihrer Reifung (Kawai et al., 2010). Die veränderte 

Expression von Zytokinrezeptoren ermöglicht letztlich den Eintritt der DC in das periphere 

lymphatische Gewebe. Darüber hinaus exprimieren reife DC vermehrt MHC-I und -II sowie 

kostimulatorische Moleküle wie zum Beispiel CD80/86. In diesem Stadium verlieren DC 

weitestgehend die Fähigkeit Antigen aufzunehmen, sind aber in der Lage naive T-Zellen zu 

aktivieren. Allerdings konnten Platt et al. (Platt et al., 2010) kürzlich zeigen, dass reife DC 

zwar ihre Kapazität zur Makropinozytose herunter regulieren, aber dennoch weiterhin in der 

Lage sind, über endozytische Rezeptoren Antigen aufzunehmen und zu präsentieren.  

DC besitzen eine Vielzahl an Effektorfunktionen, die es ihnen nicht nur ermöglicht 

verschiedene Arten von naiven T-Zellen zu aktivieren, sondern auch durch die Ausschüttung 

verschiedener Zytokine (Signal 3) die weiteren Funktionen der T-Zellen zu bestimmen. In der 

Literatur werden verschiedene Modelle diskutiert, welche die Fähigkeit von DC die 

Differenzierung der CD4 T-Zellen zu distinkten Effektorzellen zu lenken, zu erklären 

versuchen (Reis e Sousa, 2006).  
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Aufgrund dieser Fähigkeiten spielen cDC eine entscheidende Rolle bei der Bekämpfung 

verschiedenster Pathogene. Tabelle 4.1 zeigt eine Zusammenfassung dieser 

Krankheitserreger, die durch Studien in denen DC in vivo depletiert worden sind, 

herausgearbeitet werden konnten (Bar-On et al., 2010).   

 

Pathogene  

Viren LCMV 

Herpes Simplex 1 

Vesikuläres Stromatitis Virus 

Influenza 

Respiratorisches Syncytial Virus 

Herpes Simplex 

murines Hepatitis Virus 

Bakterien Listerien 

Mykobakterien 

Salmonellen 

Parasiten Plasmodium 

Leishmanien 

Toxoplasma Gondii 

Nippostrongylus brasiliensis 

 

Tabelle 4.1: Pathogene bei deren Bekämpfung cDC eine entscheidende Rolle spielen, aus (Bar-On et al., 2010), 

verändert. 

4.7 Verschiedene Modelle zur Untersuchung der DC Funktionen 
 

Aufgrund ihrer zentralen Rolle im Immunsystem waren und sind DC Gegenstand vieler 

wissenschaftlicher Untersuchungen. Um die Rolle und Funktionen dieser Zellen genauer 

untersuchen zu können, stehen verschiedene Möglichkeiten zur Verfügung (Bar-On et al., 

2010).  
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4.7.1 DC-Transfer bzw. Vakzinierung 
 

Es besteht die Möglichkeit, in vitro generierte DC adoptiv zu transferieren und wenn diese 

zuvor mit Antigen beladen worden waren, so spricht man von der DC Vakzinierung. Ein 

limitierender Faktor die Funktion von DC durch Transfer zu studieren, oder therapeutisch 

einzusetzen liegt darin, dass die meisten dieser Zellen an der Injektionsstelle verbleiben und 

relativ schnell sterben. Daher erreichen transferierte DC ihren entsprechenden 

physiologischen Wirkungsort nur sehr ineffizient. Dennoch konnte gezeigt werden, dass 

antigenbeladene DC sowohl in der Maus wie auch im Menschen T-Zellen stimulieren können 

und ein wichtiges Instrument bei der Entwicklung von Krebstherapien darstellen. So konnten 

in verschiedenen klinischen Studien DC in vitro mit Tumorantigenen beladen und wieder 

injiziert werden. Dabei macht man sich die Fähigkeit der DC zu T-Zellzonen in lymphoiden 

Organen wandern zu können und dort T-Zellen zu aktivieren zu nutze (Gilboa, 2007; 

Steinman et al., 2007). Beim Menschen werden für die Herstellung dieser DC Monozyten aus 

dem Blut verwendet.  

 

4.7.2 Antigen-Antikörper Konjugate 
 

Diese Art der Untersuchung zur Funktion der DC verwendet cDC-spezifische 

Oberflächenrezeptoren wie zum Beispiel DEC205 (Bonifaz et al., 2002). Beispielsweise 

konnten Ovalbumin/Antikörper-Konjugate mit oder ohne Aktivierungsstimulus dazu genutzt 

werden unreife bzw. reife DC zu generieren, die das Antigen aufnehmen, prozessieren und 

damit schließlich Toleranz oder Immunität auslösen (Dudziak et al., 2007; Hawiger et al., 

2001). Auch Tumorantigene können so durch spezifische Antikörper direkt DC in T-

Zellzonen zugeführt werden (Steinman et al., 2007).  

 

4.7.3 In vitro DC Kulturen 
 

Einige der Hauptfunktionen klassischer DC, wie zum Beispiel die Fähigkeit in zwei 

verschiedenen Reifestadien vorzuliegen, wurden mittels in vitro DC Kulturen untersucht. 

Dabei lassen sich Vorläuferzellen aus dem Knochenmark isolieren und unter Einfluss von 



 

 

 

	
  
Einleitung 

	
  
	
   	
  

27 

Wachstumsfaktoren wie GM-CSF oder Flt3- (FMS-like tyrosine kinase 3) Ligand, die auch 

bei der Entwicklung der DC in vivo eine Rolle spielen, zu DC differenzieren. Auch wenn 

diese Kulturen sehr wichtig sind bei der Untersuchung der DC Funktionen, so stellen sie doch 

ein relativ vereinfachtes System dar, dass nicht das komplexe in vivo DC Netzwerk aus 

verschiedenen Subtypen nachahmen kann. So konnte beispielsweise gezeigt werden, dass 

durch GM-CSF Kulturen eher DC generiert werden, die mehr monozyten-abgeleiteten DC als 

cDC ähneln. Die in vitro durch Flt3L generierten DC kommen den in vivo cDC näher (Brasel 

et al., 2000; Naik et al., 2005). Kürzlich konnten durch die Verwendung beider 

Wachstumsfaktoren in einer Kultur CD103+ DC mit der Fähigkeit zur Kreuzpräsentation 

generiert werden (Sathe et al., 2011).  

 

4.7.4 DC Depletion in vivo 
 

Eine weitere Möglichkeit DC Funktionen in vivo zu untersuchen bzw. vielmehr zu 

analysieren, welche Konsequenzen daraus resultieren, wenn DC nicht mehr vorhanden sind, 

besteht darin, Mausmodelle zu verwenden, die die konditionelle oder konstitutive Depletion 

von CD11c+ DC erlauben. Beide Systeme machen sich den Gebrauch des Diphtherie Toxins 

(DT) zu nutze. Die Zytotoxizität dieses Toxins besteht darin, dass es nur durch rezeptor-

vermittelte Endozytose über den DT-Rezeptor (DTR), ein Vorläufer des heparin-bindenden 

epidermalen Wachstumsfaktor (heparin-binding epidermal growth factor, hbEGF) in die 

Zelle gelangen kann (Naglich et al., 1992). Dieser Rezeptor weist in Mäusen einen 

Polymorphismus auf, der die Bindung des Toxins und damit die apoptotische Wirkung auf die 

Zielzelle verhindert. Das Toxin besteht aus zwei Untereinheiten, die nach der Internalisierung 

die Proteinsynthese inhibieren und so zum Tod der Zelle führen.  

 

4.7.4.1 Konditionelle Depletion 
 

Dieses Mausmodell trägt ein humanes DTR Transgen unter der Kontrolle des CD11c 

Promotors und durch DTR Expression werden cDC sensitiv für DT (Jung et al., 2002). Durch 

die Gabe des Toxins, werden alle CD11c+ Zellen depletiert. Probst et al (Probst et al., 2005a) 

konnten zeigen, dass der Höhepunkt der Depletion 18 Stunden nach Gabe des Toxins vorliegt, 
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wobei nicht nur cDC sondern auch bestimmte MΦ, wie alveolare-, F4/80+- MΦ, MMM und 

MZM, die ebenfalls CD11c exprimieren, fehlen. Die Repopulation der Milz mit F4/80+ MΦ 

erfolgte bereits fünf Tage nach Verabreichung von DT, wohingegen CD169+ und SIGN-R1+ 

MΦ erst nach zehn Tagen wieder detektierbar waren. Im Gegensatz dazu ließen sich DC 

bereist 42 Stunden nach der Gabe des Toxins in der Milz wieder immun-histochemisch 

anfärben. Ein Nachteil dieses Modells besteht darin, dass wiederholte Injektionen des Toxins 

zu schädigenden Nebenwirkungen führen. Allerdings lässt sich dies durch Chimären, also 

Wildtyp-Mäuse die mit CD11c-DTR transgenem Knochenmark rekonstituiert werden, 

umgehen, sodass auch über längere Zeiträume das Fehlen der cDC untersucht werden kann. 

Jung et al. (Jung et al., 2002) konnten mit diesem Mausmodell zeigen, dass DC eine 

entscheidende Rolle bei der Kreuzpräsentation zellassoziierten OVAs spielen und diese 

Mäuse nicht in der Lage sind, T-Zellantworten gegen Listeria Monocytogenes und 

Plasmodium Yoelii zu generieren.  

Kürzlich wurde ein Zinkfinger-Transkriptionsfaktor zDC (Zbtb46, Btdb4) beschrieben, der 

spezifisch von cDC und deren Vorläufern, aber nicht von Monozyten, pDC oder anderen 

Zellen des Immunsystem exprimiert wird (Meredith et al., 2012). Meredith et al. fügten die 

DTR cDNS in das 3´UTR des zDC Lokus ein. Diese sogenannten zDC-DTR Mäuse haben im 

Gegensatz zu den CD11c-DTR Mäusen den Vorteil, dass nur cDC fehlen, alle anderen Zellen 

wie beispielsweise MΦ aber nicht depeltiert werden. Allerdings ist es auch bei diesem 

Mausstamm nötig auf Chimären zurückzugreifen, da die wiederholte Gabe des Toxins zu 

unerwünschten Nebenwirkungen führt.   

 

4.7.4.2 Konstitutive Depletion 
 

Zur konstitutiven Depletion der DC in vivo wurden CD11c-Cre Mäuse mit Mäusen verpaart, 

die Diphterie Toxin A (DTA) unter der Kontrolle einer loxP-flankierenden Neomycin 

resistenten Kassette des ROSA26 Lokus exprimieren. Cre-vermitteltes Ausschneiden der 

Kassette führt zur Expression von DTA und damit zum konstitutiven Verlust der cDC, pDC 

und Langerhanszellen (Ohnmacht et al., 2009). Zwei unabhängige Arbeitsgruppen generierten 

diesen Mausstamm zeitgleich, wobei sich die beiden Mausstämme lediglich durch die 

Herkunft des DTA unterscheiden. Dennoch zeigte die Arbeitsgruppe um Jung (Birnberg et al., 
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2008), dass ihre Mäuse noch größtenteils pDC und Langerhanszellen besitzen. In der 

vorliegenden Arbeit wurden die von Ohnmacht et al. publizierten Mäuse verwendet.  

Birnberg et al konnten zeigen, dass die konstitutive Depletion der cDC einhergeht mit einer 

normalen Entwicklung und Homeostase der T-Zellen. Ohnmacht et al. hingegen fanden in 

ihren Mäusen eine erhöhte Anzahl an einfach positiven CD4 T-Zellen und eine daraus 

resultierende spontane Autoimmunität, die letztlich den Tod der Mäuse im Alter von ca. zwei 

Monaten zur Folge hat. Die Diskrepanz zwischen diesen beiden Mausstämmen lässt sich nicht 

abschließend klären, ist aber zum Teil wahrscheinlich auf den unterschiedlichen genetischen 

Hintergrund und die Haltung der Mäuse in verschiedenen Stallungen zurückzuführen (Bar-On 

et al., 2010).   

 

4.7.5 DC-MHCI, ein transgenes Mausmodell 
 

In diesem transgenen Mausstamm wird MHC-I selektiv nur auf DC und Epithelzellen im 

Thymus exprimiert, alle anderen Zellen weisen keine MHC-I Expression auf (Kurts et al., 

2001). Dazu wurde ein doppelt-transgener Mausstamm generiert, in dem ß2m unter dem DC 

spezifischen CD11c Promotor und dem Keratin 14 (K14) Promotor in ansonsten ß2m 

defizienten Mäusen, exprimiert wird. Dies führt zu einer Expression von MHC-I auf DC und 

kortikalen Thymusepithelzellen (cortical thymic epithelial cells, cTECs), wodurch es zu 

positiver und negativer Selektion und damit zu einem normalen T-Zellrepertoire kommt. In 

diesen Mäusen kann man somit spezifische CD8 T-Zellantworten studieren, die nur von DC 

induziert worden sind, da alle anderen APC negativ sind für MHC-I. Kurts et al (Kurts et al., 

2001) konnten mit diesem Modell zeigen, dass DC ausreichen, um in vivo CD8 T-Zellen 

Selbstantigene durch Kreuzpräsentation zu präsentieren. Eine andere Studie untersuchte die 

Rolle der DC bei der Selektion naiver T-Zellen und fand heraus, dass DC ausreichen für die 

negative Selektion, wohingegen für die positive Selektion cTECs im Thymus entscheidend 

sind (Cannarile et al., 2004). Darüber hinaus konnte gezeigt werden, dass DC ausreichen um 

die homöostatische Proliferation von CD8 T-Zellen auszulösen (Gruber et al., 2005).  

In einer weiteren Untersuchung wurden die DC-MHCI Mäuse mit HSV-OVA immunisiert 

und es wurde nachgewiesen, dass sowohl die OVA-spezifische als auch die HSV-spezifische 

CD8 T-Zellantwort über einen Zeitraum von 60 Tagen in den transgenen Tieren im Vergleich 

zu C57/BL6 fünf bis sieben mal höher lag (Gruber et al., 2010). In Wildtyp-Mäusen führt die 
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Erkennung des Antigens auf parenchymalen nicht professionellen APC zu der Aktivierung 

von bim (einem Molekül aus der proapoptotischen bcl2 Familie) in zytotoxischen T-Zellen.  

4.8 LCMV und das Modellantigen GP33 
 

Neben dem MHC-I Kb restringierten Hühner Ovalbumin (OVA) Epitop OVA257-264, ist auch 

das MHC-I Db restringierte Epitop GP33 aus dem Glykoprotein von LCMV, ein beliebtes und 

intensiv studiertes Modellantigen, um die Aktivierung und Funktion zytotoxischer T-Zellen 

zu untersuchen. So ist beispielsweise die fundamentale Entdeckung der MHC Restriktion auf 

Untersuchungen mit diesem Virus zurückzuführen (Zinkernagel et al., 1974). LCMV aus der 

Familie der Arenaviren ist ein negativ-Einzelstrang RNS Virus, dessen Genom aus zwei 

Segmenten besteht. Ein kleines RNS (small RNA, S RNA) und ein großes RNS (large RNA, L 

RNA) Segment. Die S RNA kodiert für das virale Glykoprotein (GP) und das Nukleoprotein 

(NP), wohingegen die Proteine L (virale Polymerase) und Z (RNA-bindendes Protein) von 

der L RNA kodiert werden. GP wird posttranslational in GP1, das die Aminosäuren 1- 264 

umfasst und in GP2 mit den Aminosäuren 264-486 gespalten. Der natürliche Wirt dieses 

Virus sind Nagetiere wie die Maus. Die Infektion der Zelle erfolgt über die rezeptor-

vermittelte Aufnahme von Virionen in endoplasmatischen Vesikeln. Die Änderung des pH 

Wertes führt zur Freilassung der viralen Nucleokapside in das Zytoplasma der Zelle und dort 

beginnt schließlich die Replikation des Virus. Der Rezeptor für die Aufnahme von LCMV, 

sowie auch anderer Arenaviren ist α-Dystroglycan (α-DG) (Cao et al., 1998), ein zellulärer 

Rezeptor für extrazelluläre Matrixproteine. Es existieren unterschiedliche Stämme von 

LCMV (Dutko et al., 1983), wobei häufig zwischen zwei Typen unterschieden wird. Bei 

clone 13 (Cl 13) handelt es sich um eine immunsuppressive Variante, die eine persistierende 

Infektion zu Folge hat, wohingegen Armstrong (Arm) das Immunsystem nicht supprimiert 

und innerhalb weniger Tage durch spezifische CD8 T-Zellen elimiert werden kann. LCMV ist 

kein zytophatisches Virus, führt also nicht direkt zu morphologischen, zellschädigenden 

Veränderungen der infizierten Zelle. Es konnte aber gezeigt werden, dass durch 

virusspezifische T-Zellen indirekt zytophatische Effekte hervorgerufen werden. Odermatt et 

al (Odermatt et al., 1991) fanden heraus, dass mit der Zerstörung LCMV-infizierter APC 

durch virusspezifische CTL eine Zerstörung der follikulären Struktur von Milz und 

Lymphknoten einhergeht. 
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Replizierende Viren wie LCMV haben den Nachteil, dass sich die Infektion auf weitere 

Zellen ausbreiten kann, und es kann wie zuvor beschrieben, zu immunsuppressiven und 

zytophatischen Effekten kommen. Nicht replizierende Vektoren stellen deshalb ein 

hervorragendes Instrument dar, um die antigenpräsentierenden Fähigkeiten infizierter Zellen 

zu untersuchen. Aufgrund dessen wurden die meisten Untersuchungen in dieser Arbeit mit 

einem rekombinanten Adenovektor, der das Modelantigen GP33 exprimiert, durchgeführt. 

Adenoviren sind nicht umhüllte einfach-doppelsträngige DNS Viren, mit einer Genomgröße 

von ca. 30-35 Kilobasen (Lasaro et al., 2009). In den meisten wissenschaftlichen Studien die 

mit dieser Art von Vektoren arbeiten handelt es sich um den humanen Serotyp 5, so auch in 

der vorliegenden Arbeit. Adenovektoren besitzen einige Merkmale, wie zum Beispiel die 

Fähigkeit robuste Immunantworten auszulösen, die sie nützlich machen für den Einsatz als 

Vakzine (Khare et al., 2011). In der klinischen Pharmakologie kommen hauptsächlich die 

Serotypen 2 und 5 zum Einsatz. 

 

4.9 Zielsetzung der Arbeit 
 

DC spielen im Immunsystem eine entscheidende Rolle aufgrund ihrer Fähigkeit Antigen 

aufzunehmen, zu T-Zellzonen zu wandern und dort naive T-Zellen zu aktivieren. In der 

vorliegenden Arbeit sollte die Kapazität der DC CTL zu generieren untersucht werden, wenn 

sie die einzigen APC sind, die Antigen präsentieren können. Dazu wurde das bereits zuvor 

beschriebene Mausmodell DC-MHCI verwendet, welches es ermöglicht, die qualitativen und 

quantitativen Effekte auf CD8 T-Zellen zu untersuchen, wenn DC die einzigen APC sind, die 

Antigen präsentieren können. Wie bereits erwähnt, konnten Gruber et al. (Gruber et al., 2010) 

mit diesem Mausmodell zeigen, dass DC ausreichen um sowohl OVA spezifische als auch für 

das Glykoprotein von HSV spezifische T-Zellen zu generieren. Vielmehr war es sogar so, 

dass die Präsentation der Antigene auf nicht-DC eine Verringerung der T-Zellexpansion zur 

Folge hatte. 

Neben OVA ist auch GP33 ein gut untersuchtes Modellantigen in der Immunologie und die 

Rolle der DC im Bezug auf dieses Antigen wird in der Literatur kontrovers diskutiert. So 

konnten beispielsweise Probst et al. (Probst et al., 2005b) zeigen, dass DC unumgänglich sind 

für eine Aktivierung LCMV spezifischer T-Zellen, wohingegen eine andere Arbeitsgruppe 
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(Thomas et al., 2007) postuliert, dass nicht-hematopoetische Zellen entscheidend sind für die 

klonale Expansion GP33 spezifischer CD8 T-Zellen.  

In der vorliegenden Arbeit sollte die Rolle der DC für dieses Modellantigen genauer 

untersucht werden und gezeigt werden, ob auch im Fall von GP33 eine Präsentation auf nicht-

APC zu einer Verringerung der Expansion spezifischer T-Zellen führt. Gerade im Hinblick 

auf die Optimierung von Vakzinen, ist es wichtig zu verstehen, welche Mechanismen der 

effizienten Aktivierung und Differenzierung von Effektor- und Gedächtnis-CTL zu Grunde 

liegen. 
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5 Material und Methoden 

5.1 Material 

5.1.1 Antikörper  
 
Tabelle 5.1: Verwendete Antikörper für die Durchflusszytometrie 

 

Spezifität 

(Anti-Maus-) 

Konjugat Klon Bezugsquelle 

CD4 PerCP H129.9 BD Bioscience 

CD8 FITC 

PerCP 

APC 

53-6.7 

 

BD Bioscience 

CD11c PeCy5.5 N418 eBioscience 

CD19 PerCP 1D3 BD Bioscience 

CD40 APC 1C10 eBioscience 

CD44 PE 

APC 

IM7.8.1 

IM7 

Caltag 

BD Bioscience 

CD62L FITC 

APC 

MEL-14 BD Bioscience 

CD86 PE GL1 BD Bioscience 

CD90.1 FITC 

PerCP 

APC 

Ox-7 

Ox-7 

HIS51 

BD Bioscience 

CD107a PE eBio1D4B eBioscience 

B220 FITC RAR-6B2 eBioscience 

CD169 Biotin Moma-1 Acris 

F4/80 APC BM8 eBioscience 

H-2Db FITC KH95 BD Bioscience 

H-2Kb PE AF6-88.5 BD Bioscience 

I-Ab Bio 25-9-17 BD Bioscience 

IFNγ PE XMG1.2 BD Bioscience 

IL-2 PE-Cy7 JES6-5H4 eBioscience 



 

 

 

	
  
Material und Methoden 

	
  
	
   	
  

34 

TNFα FITC MP6-XT22 eBioscience 

Vα2-TCR FITC 

PE 

APC 

B20.1 BD Bioscience 

Vα5.1/5.2-TCR PE MR9-4 BD Bioscience 

 

Für die intrazelluläre Färbung von IFNγ, TNFα und IL-2 wurde das Cytofix/Cytoperm Kit der 

Firma BD Bioscience (San Diego) verwendet. 

ITAgTM MHC Multimere H-2Db/KAVYNFATC (GP33) bzw. H-2Kb/AVYNFATC (GP34) 

wurden von der Firma Beckman Coulter (Fullerton, USA) und das Pro5-MHC-Multimer H-

2Kb/SSINFEKL (OVA257-264), sowie das zugehörige PE- bzw. APC- Konjugat wurde von der 

Firma ProImmune (Deutschland) bezogen. Für die Unterscheidung lebender Zellen von Toten 

wurde Dapi oder Violet Fluorescent Reactive Dye (Invitrogen, Darmstadt, Deutschland) 

eingesetzt. 

 

5.1.2 Chemikalien 
 

Alle verwendeten Lösungen, Medien und Puffer wurden mit zweifach destilliertem Wasser 

angesetzt. Wenn nicht anders vermerkt wurden die Chemikalien von den Firmen Merck 

(Darmstadt), Roth (Karlsruhe) und Sigma (St. Louis, MO, USA) im jeweils höchsten 

Reinheitsgrad bezogen. Die Herkunft speziell benötigter Reagenzien ist der entsprechenden 

Methodenbeschreibung zu entnehmen.  

 

5.1.3 Geräte 
 

Für die Experimente wurden folgende Geräte verwendet: 

Brutschrank (Hera cell, von Heraeus), Chemikalienwaage (Kern, Albstadt), 

Durchflusszytometer (FACSCalibur und FACSCanto von Becton Dickinson), Feinwaage 

(Adventurer, Ohaus Corp., Pine Brooks, NJ, USA), Magnetrührer (Ika Labortechnik, Staufen), 

Pipetten (Gilson, Middleton, WI, USA), Pipettierhilfe (Integra Biosciences, Baar, Schweiz), 

Sterilbank (Heraeus), Tischzentrifuge (Centrifuge 5415 D, Eppendorf, Hamburg), UV-Lampe 

(UVC 30, Kendro, Langenselbold), Vortex-Genie2 (Scientific Industries, Bohemia, NY, USA), 
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Wasserbad (Grant Instruments Ltd., Barrington Cambridge, England), Zellzählgerät (Coulter 

Counter Z2, Beckman Coulter, Krefeld), Zentrifuge (Rotixa RP, Hettich, Tuttlingen). Alle 

anderen verwendeten Geräte sind in den jeweiligen Methodenbeschreibungen erwähnt. 

 

5.1.4 Lösungen und Medien 
ACK-Puffer     8,29 g NH4Cl 
      1 g KHCO3 
      37,2 mg Na2EDTA 
      H20 ad 1 l 

pH 7,2-7,4 mit 1 N HCl einstellen und durch 
0,2 µm Filter steril filtrieren 
 

CFSE Puffer     Dulbecco`s PBS (PAA) ohne Ca2+ /Mg2+  
      0,1 % FBS (v/v) 
 
FACS-Puffer     0,01 % Natriumazid (v/v) 
      2 % FBS (v/v) 
      PBS 
 
PBS-Heparin     Dulbecco`s PBS (PAA) ohne Ca2+ /Mg2+ 

      2% (v/v) Heparin-Natrium (25000 I.E/ 5ml,  
      Ratiopharm, Ulm, Deutschland) 
 
MACS-Puffer     Dulbecco`s PBS (PAA) ohne Ca2+ /Mg2+  
      0,5 % FBS (v/v) 
      2 mM EDTA 
 
Verdaupuffer     RPMI-1640 (PAA) 
      0,4 mg/ml Liberase DL 
      0,02 mg/ml DNase I 
 

Zellkulturmedium für T-Zellen  RPMI-1640 (PAA) 
      10 % FBS (inaktiviert, v/v) 
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      100 U/ml Penicillin 
      100 µg/ml Streptomycin 

      500 mM β-Mercapthoethanol 

 
Zellkulturmedium für DC   RPMI-1640 (PAA) mit Glutamin 
      5 % FBS (inaktiviert, v/v) 
      10 mM Hepes 
      100 U/ml Penicillin 
      100 µg/ml Streptomycin 

      500 mM β-Mercapthoethanol 
      25 ng/ml GMCSF 
 

5.1.5 Verbrauchsmaterialien 
 

Folgende Verbrauchsmaterialien wurden benutzt: 

Einmalspritzen 0,3 mm x 12mm  Braun, Melsungen, Deutschland 

Plastik-Petrischalen    Roth, Karlsruhe, Deutschland 

Reaktionsgefäße 1,5 ml und 2 ml  Eppendorf, Hamburg, Deutschland 
Reaktionsröhrchen 5 ml (FACS)  BD, Franklin Lakes, NJ USA 
Reaktionsgefäße 15 ml und 50 ml  Greiner, Frickenhausen, Deutschland 
Zellkulturplatten    Nunc, Dänemark 
 
Sonstige Zellkulturmaterialien und -plastikwaren wurden von den Firmen Falcon, Becton 

Dickinson (Franklin Labs. NJ, USA), Nunc (Wiesbaden) und Greiner (Frickenhausen) 

erworben. 

 

5.1.6 Proteine und Peptide 
 

Die Peptide OVA257-264 (pOVA257-264) aus Hühner-Ovalbumin, Peptid GP33 aus 

Glycoprotein 1 von LCMV und die mCMV Peptide M45985-993 bzw das Peptid m139419-426 

wurden von der Firma NeoMPS (Strasburg, Frankreich) synthetisiert und bezogen. 
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5.1.7 Virale Vektoren 
 

Die replikations-defizienten, rekombinanten Adenovektoren rAd-GP33, rAd-OVA und rAd-

GFP wurden im Labor von Florian Kreppel (Universität Ulm, Deutschland) hergestellt und 

freundlicherweise zur Verfügung gestellt. Hierbei handelt es sich um den humanen Serotyp 5 

mit einer E1 Deletion. Die Expression der Modelantigene erfolgt unter einem hCMV 

Promotor. 

LCMV WE (Dutko et al., 1983) wurde freundlicherweise von David Vöhringer (Universität 

Erlangen, Deutschland) bereit gestellt. 

Der replikations-defiziente und rekombinate Vaccinia- Vektor V-331 VVG2 (Vacc- full) 

wurde freundlicherweise von Daniel Pinschewer (Universität Genf, Schweiz) zur Verfügung 

gestellt. Vacc- full exprimiert das gesamte Glykoprotein aus LCMV. 

Das Virus mCMV-wt  wurde im Labor von Zsolt Ruzsics (Max von Pettenkofer Institut 

München, Deutschland) hergestellt. 

 

5.1.8 Mausstämme 
 

Alle Mäuse wurden im Tierstall des Instituts für Immunologie in München gehalten. 

Nachfolgende Mäuse wurden in der vorliegenden Arbeit verwendet: 

 

C57BL/6 

Der MHC-Haplotyp dieses als Wildtyp-Kontrolle dienenden Mausstamms ist H-2b. 
 

DC-MHCI (K14β2mxCD11c-MHCI) 

Bei diesem Stamm handelt es sich um eine Kreuzung aus CD11c-MHCI und K14-β2m. In 

K14-β2m Mäusen wird β2m nur unter der Kontrolle des K14-Promotors exprimiert (β2m-/--

Hintergrund). Dies führt zur selektiven Expression von MHC-I auf kortikalen 

Thymusepithelzellen (cTEC) (Carbone et al., 1998), während alle anderen Zellen negativ für 

MHC-I sind. Diese Maus verfügt über die Fähigkeit der positiven, jedoch nicht der negativen 

Thymusselektion von CD8-T-Zellen. CD11c-MHCI Mäuse wurden ebenfalls im genetischen 

β2m-/--Hintergrund generiert und β2m wurde unter der Kontrolle des CD11c-Promotors 
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exprimiert. Dies hat eine funktionelle MHC-I Expression selektiv auf DC zur Folge, 

wohingegen MHC-I auf allen anderen Zellen aufgrund des β2m-/- Hintergrundes nicht 

exprimiert wird (Kurts et al., 2001). Durch Abwesenheit der positiven Thymusselektion 

werden keine endogenen CD8 T-Zellen generiert. Die Kreuzung der CD11c-MHCI Mäuse 

mit den K14-β2m Mäusen, führt zur Wiederherstellung der funktionellen positiven sowie der 

negativen Thymusselektion von CD8 T-Zellen, da hier kortikale Thymusepithelzellen und DC 

MHC-I exprimieren. 

 

P14 

Dieser Mausstamm ist transgen für einen TCR, der das Epitop GP33 aus GP 1 von LCMV im 

Kontext von MHC-I Db erkennt (Brandle et al., 1995; Pircher et al., 1989).  

 

Δ-DC 

Um diesen Mausstamm zu generieren wurden CD11c-Cre Mäuse, die die Cre Rekombinase 

selektiv in CD11c+ Zellen exprimieren (Caton et al., 2007) mit einem Stamm verpaart, der das 

DTA unter der Kontrolle einer LoxP-flankierten Neomycin resistenten Kassette des ROSA26-

Locus exprimiert. Dies hat die Expression von DTA und den  konstitutiven Verlust von 

konventionellen DC, pDC und Langerhanszellen zur Folge (Ohnmacht et al., 2009). 

 

CD11c-DTR 

Dieser Mausstamm trägt ein Transgen, das ein humanes DT Rezeptor Fusionsprotein unter 

der Kontrolle des murinen CD11c Promotors exprimiert. Murine Zellen sind im Gegensatz zu 

humanen Zellen nicht sensitiv für das Diphterie Toxin. Die Zytotoxizität dieses Toxins ist 

abhängig von rezeptorvermittelter Endozytose und führt zur Apoptose in den betreffenden 

Zellen. Somit führt die Gabe des Toxins in diesem transgenen Mausstamm zur selektiven 

Depletion CD11c+ Zellen (Jung et al., 2002). 
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5.2 Methoden 
 

5.2.1 Adoptiver Zelltransfer 
 

Diese Methode ermöglicht es, das Verhalten antigenspezifischer T-Zellen in vivo zu 

untersuchen. In nicht immunisierten Mäusen ist die Anzahl an antigenspezifischen T-Zellen 

zu gering, um mit Antikörpern nachgewiesen werden zu können. Durch den Transfer von T-

Zellen in syngene Rezipienten ensteht eine Zellpopulation in den Empfängertieren, die groß 

genug ist, um zum Beispiel mittels Durchflusszytometrie detektiert zu werden. Für den 

adoptiven Zelltransfer wurden Einzelzellsuspensionen aus Milzen von P14-TCR transgenen 

Mäusen hergestellt. Mittels ACK-Puffer wurden die Erythrozyten lysiert und anschließend die 

T-Zellen durch negative Selektion (MACS) isoliert. Um die Reinheit der T-Zell-Fraktion zu 

bestimmen wurde eine FACS-Analyse durchgeführt. Direkt vor der Injektion in syngene, 

gleichgeschlechtliche Mäuse, wurden die Zellen durch ein Nylonnetz (Reichelt Chemie 

Technik, Porengröße 51µm) filtriert, um Zellaggregate zu vermeiden. Die transferierten T-

Zellen wurden durch Färbung mit dem kongenen Marker CD90.1 und anti-CD8-Antikörper 

detektiert. 

 

5.2.2 Blut und Organentnahme 
 

A) Isolation von Lymphozyten aus peripherem Blut 

 

Hierzu wurden die Mäuse vor der Blutentnahme unter einer Infrarotlampe erwärmt, wodurch 

sich die Blutgefäße erweitern und die Durchblutung gefördert wird. Durch einen Schnitt an 

der Schwanzvene wurde den Tieren etwa drei bis fünf Tropfen Blut abgenommen (ca. 100-

200µl) und direkt mit 50µl Heparin-Natrium (2500 I.E./5 ml, Ratiopharm, Ulm, Deutschland) 

gemischt, um einer Blutgerinnung vorzubeugen. Daraufhin wurden 50µl Blut in ein FACS-

Röhrchen überführt und mit den gewünschten Antikörpern gefärbt. Im Anschluss erfolgte 

eine Erythrozytenlyse mittels 2 ml BD Pharm Lyse Puffer (BD Pharmingen) für 15 min bei 
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Raumtemperatur. Anschließend wurden die Proben einmal mit FACS-Puffer gewaschen und 

dann bis zur Analyse am Durchflusszytometer bei 4°C aufbewahrt.  

 

B) Organentnahme und Herstellung einer Einzelzellsuspension 

 

Zur Organentnahme wurde die Maus mittels zervikaler Dislokation getötet, auf einem 

Sezierbrett fixiert und äußerlich mit 70%igem Ethanol desinfiziert.  

 

Milz 

Die Milz wurde mit einer feinen Schere herausgeschnitten und bis zur weiteren Verwendung 

je nach Analyse entweder in RPMI 1640 Medium oder MACS Puffer auf Eis gelagert. 

Anschließend wurde die Milz zur Herstellung einer Einzelzellsuspension zwischen zwei 

Gazetstückchen (Franz Eckert GmbH, Waldkirch, Deutschland, Porengröße 100 µm) mit dem 

Stempel einer 1 ml Injektionsspritze (Omnifix, Braun) zerrieben. Die Zellsuspension wurde in 

ein neues Reaktionsgefäß überführt und bei 300 g und 4°C für fünf Minuten zentrifugiert. 

Nach Dekantieren des Überstandes wurden die Erythrozyten lysiert und die Zellen 

anschließend im gewünschten Medium oder Puffer aufgenommen. Für die bessere Analyse 

dendritischer Zellen aus der Milz, wurde das Organ vor dem Zerreiben in Verdaupuffer 

inkubiert. Dazu wurden 2 ml des Puffers mit einer 5 ml Spritze (BD DiscarditII) an 

verschiedenen Stellen in das Organ injiziert und anschließend 20 min bei 37°C inkubiert. 

Danach wurde das Organ mittels Cell Strainer (BD Falcon, Porengröße 100 µm) zerrieben 

und dann bei 300 g für 5 min bei 4°C abzentrifugiert. 

 

Leber und Lunge 

Zunächst wurde die Aorta durchtrennt und das austretende Blut mit Zellstoff aufgenommen. 

Dies erleichtert die nachfolgende Spülung der Organe mit PBS-Heparin, um die 

Blutlymphozyten zu entfernen. Um die Gewebe aufzuschließen wurde das gleiche 

Verdauprotokoll wie bei der Milz durchgeführt und schließlich wurden die Erythrozyten 

lysiert. Die Einzelzellsuspensionen wurden im gewünschten Medium aufgenommen. 
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Lymphknoten 

Die zervikalen, brachialen, axillären und inguinalen Lymphknoten wurden mittels feinen 

Pipetten entnommen und die weitere Behandlung erfolgte wie für die Milz beschrieben, 

wobei eine Erythrozytenlyse mittels ACK nicht nötig ist.  

 

Knochenmark 

Zur Isolierung von Knochenmark wurden die Ober- und Unterschenkel entnommen, von 

einander getrennt und mit Hilfe eines Tuches (Kimberly-Clark Professional, Carl Roth, 

Karlsruhe) von Muskeln und Sehen befreit. Die Knochen wurden dann in einen Mörser 

gegeben, kurz mit 70%igem Ethanol desinfiziert und schließlich in RPMI-1640 Medium 

zerrieben. Das Knochenmark wurde aus dem Überstand isoliert und über einen Cell Strainer 

filtriert. Anschließend wurde eine Erythrozytenlyse durchgeführt. In einer Petrischale wurden 

1x107 Zellen in 10 ml DC-Medium für fünf bis sieben Tage kultiviert um eine BMDC Kultur 

(bone marrow derived dendritic cells) zu erhalten.  

 

Erythrozytenlyse 

Zur Lyse der Erythrozyten wurden die Zellpellets in 5 ml ACK-Puffer suspendiert und für 5 

min bei Raumtemperatur inkubiert. Erythrozyten fehlt eine Natrium-Kalium Pumpe, demnach 

können einströmende Ionen nicht aus der Zelle befördert werden. Um den osmotischen Druck 

auszugleichen, strömt Wasser in die Zelle und bringt diese zum Platzen. Nach der Inkubation 

wurde die Zellsuspension mit 5 ml FACS-Puffer verdünnt und bei 300 g und 4°C für 5 min 

zentrifugiert und anschließend der Überstand abgekippt. Das Pellet wurde je nach Analyse in 

Puffer oder Medium resuspendiert und auf Eis gelagert. 

 

Bestimmung der Zellzahl 

Die Zellzahlen wurden mit dem Coulter Counter Z2 (Beckman Coulter, Inc., Fullerton, CA, 

USA) bestimmt. Das Zählprinzip beruht auf der messbaren Veränderung des elektrischen 

Widerstandes, der von einer Zelle ausgelöst wird, die in einer elektrisch-leitfähigen 

Flüssigkeit suspendiert wird und eine Kapillaröffnung zwischen zwei Elektroden passiert. Die 

Anzahl der Impulse gibt die Zahl der aufgenommenen Zellen wieder und die Höhe des 

ausgelösten elektrischen Impulses ist proportional zum Volumen der Zelle. Durch diese 

Methode lassen sich Zellen in sehr engen Größenverteilungen zählen. Die Zugabe von Zap-
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O–Globin (Beckman Coulter, Inc, Fullerton, CA, USA) erlaubt die Unterscheidung lebender 

Zellen von toten Zellen und Erythrozyten. 

Für eine Messung wurden 10 ml Isoton II Lösung (Beckman Coulter) mit 10 µl Zellsupension 

und 2 µl Zap-O-Globin vermischt und im Coulter Counter Z2 analysiert.  

 

5.2.3 Durchflusszytometrie (FACS Analyse) 
 

Mit einem FACS Gerät (FACS) lässt sich die relative Größe, Granularität und die relative 

Fluoreszenzintensität einer Zelle bestimmen. Dazu werden die Zellen in einem 

Flüssigkeitsstrom zu einem Laser geleitet, wobei Licht beim Auftreffen auf die Zelle gestreut 

wird. Das Vorwärtsstreulicht gibt Auskunft über die Größe einer Zelle und das 

Seitwärtsstreulicht ist das Maß für die Granularität einer Zelle. Durch diese beiden Parameter 

lassen sich zum einen tote Zellen durch ihre geringere Größe und zum anderen MΦ sowie 

Granulozyten durch ihre stärkere Granularität von der Lymphozytenpopulation abgrenzen. 

Die fluoreszenzmarkierten Antikörper, mit denen die Zellen markiert wurden, absorbieren 

Licht einer spezifischen Wellenlänge und emittieren Licht einer höheren Wellenlänge. 

Sogenannte Photomultiplier wandeln das emittierte Licht in elektronische Signale um und 

geben somit Auskunft über die Anzahl fluoreszenzmarkierter Zellen sowie deren 

Fluoreszenzintensität. Die interessierende Zellpopulation kann bei der Analyse durch 

Eingrenzen der entsprechende Region genauer untersucht werden. Übliche 

Darstellungsweisen sind das Histogramm, bei dem nur eine Fluoreszenz dargestellt wird oder 

das Punktwolkendiagramm (Dot plot) bei dem zwei Fluoreszenzen gegeneinander dargestellt 

werden. 

Die Messungen erfolgten an einem FACSCalibur- oder an einem FACSCantoII–

Durchflusszytometer (BD, Franklin Lakes, NJ, USA). Die Datenaufnahme erfolgte mit 

CellQuest Software, Version 3.4 bzw. BD FACSDiva Software, Version 2.2 (Becton, 

Dickinson & Co., Franklin Lakes, NJ, USA) Die FlowJo-Software (Tree-star, Ashland, OR, 

USA) wurde für die Datenanalyse verwendet. 

 
Färbung von Lymphozyten mit fluorochrommarkierten Antikörpern 
In einem 5 ml FACS-Röhrchen wurden 50-100 µl der Zellsuspension mit dem gleichen 
Volumen einer doppeltkonzentrierten Antikörperlösung in PBS vermischt und 20 min auf Eis 
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inkubiert. Daraufhin wurden ungebundene Antiköper durch einmaliges Waschen mit FACS-
Puffer entfernt. Falls nötig schloss sich ein zweiter Färbeschritt mit einem sekundären 
Antikörper oder Reagenz wie zum Beispiel Streptavidin an. Nach dem letzten Waschschritt 
verblieben ca. 200 µl Zellsuspension im FACS-Röhrchen, das bis zur Analyse lichtgeschützt 
auf Eis gelagert wurde. 
 
Multimerfärbung 
Endogene, polyklonale T-Zell-Populationen, die während einer Immunantwort aktiviert 
werden und expandieren, besitzen ein diverses TCR-Repertoire. Mit Hilfe ihres natürlichen 
Liganden, dem MHC:Peptid-Komplex, können epitopspezifische T-Zellen nachgewiesen 
werden. Die Kopplung dieses Komplexes an ein Fluorochrom ermöglicht die Quantifizierung 
und Isolierung der antigenspezifischen T-Zellen nach Bindung der löslichen MHC-Komplexe 
ex vivo. In ihrer monomeren Form haben MHC:Peptid-Komplexe eine hohe Dissoziationsrate 
vom TCR. Die Multimerisierung dieser Komplexe zu Tetrameren oder Multimeren erhöht 
ihre Avidität (Altman et al., 1996). 
Für die Multimerfärbung wurden 3 µl biotinyliertes Multimer pro Probe eingesetzt und bei 
4°C für 20 min inkubiert. Im Anschluss wurde einmal mit FACS-Puffer gewaschen und dann 
5 µl des fluorochromgekoppelten Sekundärantikörpers zugegeben. Es folgte wieder eine 20 
minütige Inkubation bei 4°C im Dunkeln und anschließend wurden die Proben mit FACS-
Puffer gewaschen und dann bis zur Analyse im Kühlschrank gelagert. 
Im Fall der direktmarkierten Multimere wurde 3 µl Multimer pro Probe eingesetzt und bei RT 
für 30 min inkubiert. Danach wurde einmal mit FACS-Puffer gewaschen und es folgte eine 
Antikörperfärbung. 
 
Intrazelluläre Zytokinfärbung in T-Zellen ex vivo 
Die Zytokinproduktion von T-Zellen lässt sich nachweisen, indem diese nach der Isolierung 
in vitro restimuliert werden. Jedoch werden dabei keine naiven T-Zellen aktiviert, sondern nur 
bereits voraktivierte Zellen zur Zytokinproduktion angeregt. Um Zytokine in einer Zelle 
anzuhäufen und damit nachweisen zu können, muss die Zytokinsekretion mittels Brefeldin A 
(BD, Franklin Lakes, NJ USA) inhibiert werden. Damit die Antikörper für die intrazelluläre 
Zytokinfärbung in die Zelle eindringen können, müssen die Zellwände permeabilisert werden. 
Um nach der Permeabilisierung der Zellwände ein Auslaufen und Absterben der Zellen zu 
vermeiden, werden diese mittels Paraformaldehyd (PFA) fixiert. 
Eine Einzelzellsuspension von 2x106 Milzzellen aus einer immunisierten Maus wurde in 
Zellkulturmedium mit 1 µg/ml Peptid und anti-CD107a bei 37°C und 5% CO2 in einer 96-
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Lochplatte inkubiert, nach einer Stunde wurde 1 µl Brefeldin A/ml hinzupipettiert und weitere 
drei Stunden inkubiert. Danach wurden die Zellen für CD8 und mit lebend/Tod Farbstoff 
gefärbt. Anschließend wurden die Zellen mittels Cytofix/Cytoperm (BD, Franklin Lakes, NJ 
USA) permeabilisert und eine intrazelluläre Färbung schloss sich an. Bis zur Analyse am 
FACS wurden die Zellen im Kühlschrank aufbewahrt. 
 

5.2.4 Immunisierung 
 

Diphterie Toxin 

Zur Depletion CD11c+ Zellen, wie zum Beispiel DC wurden den CD11c-DTR Mäusen  

100 ng Diphterie Toxin in PBS i.p. verabreicht.  

 

Lösliche Peptide 

Als immunologisches Agens wurde LPS (Sigma-Aldrich, St. Louis, MO, USA) verwendet 

und dieses zusammen mit dem entsprechenden Peptid i.v. verabreicht. Hierzu wurden pro 

Maus 20 µg LPS und 10 µg Peptid gemischt und in PBS injiziert. 

 

Immunisierung mit rekombinanten Viren (rAd-GP33, rAd-OVA, rAd-GFP, Vaccinia) 

Alle Viren wurden auf Eis aufgetaut und dort bis zur Injektion gelagert. 

Die Viren rAd-GP33, rAd-OVA sowie rAd-GFP wurden mit PBS bis zur gewünschten 

Konzentration von 1x109 vp (Viruspartikel)/Maus verdünnt. Zur Immunisierung wurden 200 

µl in die Schwanzvene injiziert, dies entsprach bei Vaccinia 2x106 pfu pro Maus. 

 

Immunisierung mit nicht-rekombinanten Viren (LCMV-WE, mCMV-wt) 

Für die Immunisierung wurde das jeweilige Virus auf Eis aufgetaut und im Fall von mCMV-

wt wurde das Virus bis zur gewünschten Konzentration von 2x106 pfu / Maus mit PBS 

verdünnt und dann i.p. injiziert. Im Fall von LCMV-WE wurden 5x104 pfu pro Maus 

intravenös verabreicht. 
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5.2.5 CFSE Färbung 
 

Die Markierung mit Carboxyfluorescein-Succinimidyl Esters (CFSE) ermöglicht die Analyse 

von Zellteilung in vivo und in vitro. Der Farbstoff dringt passiv in die Zellen ein und bindet 

an Aminogruppen zellulärer Proteine der Zellmembran und des Zytosols. Bei jeder 

Zellteilung wird der Farbstoff zu gleichen Teilen an die Tochterzellen weitergegeben, die 

dann somit nur noch die Hälfte der ursprünglichen Fluoreszenzintensität besitzen. Anhand 

dieser abnehmenden Intensität lässt sich jede nachfolgende Generation einer proliferierenden 

Zellpopulation identifizieren. 

Zur CFSE Markierung wurden Einzelzellsuspensionen aus der Milz hergestellt und die 

Erythrozyten mittels ACK-Puffer lysiert. Die Zellen wurden zweimal mit PBS gewaschen um 

Reste von FBS aus der Lösung zu entfernen, da diese die CFSE-Färbung inhibieren würden. 

Anschließend wurden die Zellen mit 12 µM CFSE pro 1-50x106 Zellen 10 min bei 37°C 5% 

CO2 inkubiert. Die Reaktion wurde durch Zugabe von 1 ml reinem FBS gestoppt, die Zellen 

zweimal mit PBS gewaschen und für die Injektion in PBS bzw. für in vitro Versuche in 

Medium suspendiert. 

 

5.2.6 In vivo Zytotoxizitätstest 
 

Mit Hilfe dieser Methode lässt sich die zytotoxische Effektorfunktion von CD8-T-Zellen in 

vivo nachweisen. Dabei eliminieren antigenspezifische CD8-T-Zellen selektiv peptid-

beladene, CFSE markierte Milzzellen. Als interne Referenz wurden unbeladene Milzzellen 

mit einer geringeren Menge an CFSE markiert, um sie so durchflusszytometrisch von der 

beladenen Population unterscheiden zu können. Zunächst wurde eine Einzelzellsuspension 

aus der Milz hergestellt und die Erythrozyten lysiert. Schließlich wurden die Zellen in 

Zellkulturmedium aufgenommen und in zwei gleich große Populationen aufgeteilt und für 

eine Stunde bei 37°C und 5 % CO2 mit Peptid (GP33, 2 µg/ml) oder ohne inkubiert. 

Anschließend wurden die Zellen mit PBS gewaschen und dann mit CFSE, wie unter Punkt 

5.2.5 beschrieben gefärbt, wobei die peptidbeladene Population mit einer hohen CFSE 

Konzentration (2,5 µM) (CFSEhigh) und die unbeladenen Zellen mit einer niedrigen CFSE 

Konzentration (0,5 µM) (CFSElow) markiert wurden. Vor der Injektion wurden die beiden 
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Populationen im Verhältnis 1:1 gemischt und pro Maus wurden 1x107 Zellen injiziert. Die 

Zellen wurden in syngene Mäuse transferiert, die acht Tage vorher mit rAd-GP33 immunisiert 

worden waren. Nach vier bis fünf Stunden wurden die Mäuse getötet und die Milzen 

entnommen. Die Milzzellen wurden ohne weitere Färbung durchflusszytometrisch analysiert 

und die beiden Populationen wurden durch ihre unterschiedlichen CFSE-

Fluoreszenzintensitäten detektiert. 

Die spezifische Lyse wurde anhand des Verhältnisses CFSElow zu CFSEhigh bestimmt und 

nach folgender Formel berechnet. 

Verhältnis beider Populationen zueinander:  

Ratio (R) = (Protzentsatz CFSElow/ Protzensatz CFSEhigh) 

Prozentsatz der spezifischen Lyse (PSL): 

PSL = [1-(R von nicht immunisierter Maus/R von immunisierter Maus) × 100] 

 

5.2.7 Magnetische Zellseparation 
 

Die magnetische Zellseparation (MACS, Miltenyi Biotech, Bergisch-Gladbach) dient der 

Isolation von Zellen mit Antikörpern, welche an paramagnetische Partikel (Microbeads) 

gekoppelt sind. Mit Hilfe einer Säule, die in ein starkes Magnetfeld platziert wird, werden die 

magnetisch markierten Zellen in der Säule zurückgehalten und können später eluiert werden, 

während die nicht markierten Zellen ungehindert passieren können. Dies hat zur Folge, dass 

zwei Arten der Separation durchgeführt werden können. Bei der positiven Isolierung wird die 

gewünschte Zellpopulation mit dem Antikörper markiert und dadurch auf der Säule 

zurückgehalten. Für die negative Isolation hingegen werden alle unerwünschten Zellen 

markiert, so dass sich nur die gewünschte Zellpopulation im Durchfluss befindet. In dieser 

Arbeit kamen beide Isolierungsstrategien zum Einsatz. P14- bzw. OTI-Zellen wurden mittels 

negativer Selektion mit dem CD8+T-Zellisolationskit aufgereinigt, wohingegen dendritische 

Zellen durch CD11c-Microbeads positiv isoliert wurden. Einzelzellsuspensionen aus der Milz 

wurden nach der Lyse der Erythrozyten, mit der vom Hersteller angegebenen Menge an 

Antikörper, Microbeads und MACS Puffer bei 4°C inkubiert und anschließend mit dem 20-

fachen Volumen an Puffer gewaschen. Die Zellen wurden über einen Filter auf die LS+-

Säulen gegeben um Zellaggregate zu vermeiden. Die Säulen wurden dreimal mit je 3 ml 

MACS Puffer gewaschen und der Durchfluss wurde gesammelt. Die auf der Säule 
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zurückgehaltenen Zellen wurden isoliert, indem die Säule aus dem Magnetfeld entfernt und 

die Zellpopulation durch 5 ml Puffer eluiert wurde. Um bei der Aufreinung dendritischer 

Zellen eine möglichst hohe Reinheit zu erzielen, war es nötig die Zellen zweimal durch das 

magnetische Feld passieren zu lassen, wobei für die zweite Runde frische Säulen verwendet 

wurden. 

 

5.2.8 Zellproliferation 
 

In vivo Zellproliferation 

P14-T-Zellen wurden mittels CD8+T-Zellisolationskit aufgereinigt und mit CFSE gefärbt. 

Nach dem waschen wurden die Zellen in PBS aufgenommen und jeder Maus wurden 2x106 

Zellen intravenös verabreicht. Die Tiere wurden am gleichen Tag entweder mit 1x109 vp rAd-

GP33 oder einer Mischung aus 20 µg LPS und 10 µg Peptid GP33 immunisiert. An Tag drei 

und sechs nach Immunisierung wurden die Mäuse getötet und ihre Milzen isoliert. Nach der 

Erythrozytenlyse erfolgte eine Färbung der Milzzellen mit anti-CD8- und anti-CD90.1- 

Antikörper und eine Messung am Durchflusszytometer. Die CFSE-Verdünnung gab 

Aufschluss über die Proliferation der Zellen. 

 

Ex vivo Zellproliferation  

Für diesen Ansatz wurden aus Milzzellen dendritische Zellen durch CD11c-Microbeads 

isoliert und 1x106 DC/ml wurden über Nacht in einer 12-Lochplatte mit 100 ng/ml LPS 

stimuliert um so das Ausfreifen der Zellen zu gewährleisten. Am nächsten Morgen wurden 

diese DC für drei Stunden mit Peptid GP33 oder pOVA257-264 beladen und danach dreimal 

mit PBS gewaschen. C57BL/6 bzw. DC-MHCI Mäuse wurden mit 1x1010 vp rAd-GP33 bzw. 

rAd-OVA immunisiert und 24 Stunden später wurden die Milzen entnommen und die 

dendritischen Zellen durch CD11c-Microbeads aufgereinigt. Sowohl die peptidbeladenen DC 

als auch die dendritischen Zellen aus den immunisierten Mäusen wurden mit P14- respektive 

OT-I-Zellen, die mittels CD8+T-Zellisolationskit aufgereinigt worden waren, in einer 96-

Lochplatte kultiviert. Dabei wurden jeweils 2,5x104 DC und 5x104 T-Zellen in 200 µl 

Zellkulturmedium unter Zugabe von 17x103 U/ml IL-2 (ImmunoTools, Friesoythe, 

Deutschland) kultiviert. Um die Zellen an Tag drei bzw. vier nach Kultivierung am FACS 

auszählen zu können, wurde eine Suspension von Polystyrol Mikropartikeln (BDTM 
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CompBeads negative control (FBS), San Diego, CA, USA) in PBS hergestellt, wobei die 

Partikel unter dem Mikroskop gezählt wurden. Zu jedem DC-/T-Zellansatz wurden dann  

10 µl der CompBeads hinzupipettiert und anschließend wurden die Zellen mit Violet 

Fluorescent Reactive Dye gefärbt. Die Anzahl lebender Zellen pro Ansatz wurde wie folgt 

berechnet: 

 

Anzahl  der  Zellen  pro  Ansatz   =
Anzahl  gezählter  Zellen Anzahl  zugefügter  CompBeads

Anzahl  gezählter  CompBeads
 

 

5.2.9 Transduktion einer BMDC Kultur 
 

Zur Transduktion einer BMDC Kultur mit rAd-GFP wurde Knochenmark wie unter 5.2.2 

beschrieben entnommen und kultiviert. An Tag drei der Kultur wurden die Zellen mit einer 

MOI 6 (multiplicity of infection) transduziert. Dazu wurden die Zellen geerntet, gezählt und in 

Gegenwart von 4 µg/ml Protaminsulfat für zwei Stunden mit der entsprechenden Menge an 

Virus in einer 6-Lochplatte bei 32°C und 300 g zentrifugiert. Es schloss sich eine zwei 

stündige Inkubation bei 37°C, 5% CO2 an und schließlich wurden die Zellen mit PBS 

gewaschen in DC-Medium aufgenommen und wieder für weitere drei Tage in Kultur 

genommen. Die Zellen wurden schließlich durchflusszytometrisch analysiert.  

 

5.2.10  Depletion von MΦ mittels Clodronat 
 

Ein Tag vor der Immunisierung der Mäuse mit LCMV-WE wurden die MΦ durch die Gabe 

von Clodronat-gefüllten Liposomen (ClodronateLiposomes.org) depletiert. Dazu wurde den 

Mäusen 7 mg/ml dieser Liposomen injiziert oder als Kontrolle PBS gefüllte Liposomen. 

Phagozytierende Zellen wie MΦ nehmen diese Partikel auf, wobei eine bestimmte 

Konzentration an Clodronat schließlich zum Zelltod führt. In der mit PBS-gefüllten 

Liposomen behandelten Kontrollgruppe hingegen kommt es nicht zur Depletion der MΦ. An 

Tag acht nach Immunisierung mit LCMV wurde mittels Multimere spezifische CD8 T-Zellen 

am Durchflusszytometer analysiert.  
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5.2.11 Histologie (Immunfluoreszenz) 
 

A) Azeton fixierte Organe 

Die Organe wurden direkt nach der Entnahme in Schälchen mit Tissue Tek (Sakura, 

Zoeterwoude, NL) eingebettet und in Flüssigstickstoff eingefroren. Die Schnitte, in einer 

Dicke von 5-7 µm, wurden an einem Kryotom (Leica Microsystems, Wetzlar) angefertigt, 

anschließend für 20 min bei -20°C in Azeton fixiert und über Nacht im Dunkeln getrocknet. 

Die Schnitte können auf -80°C gelagert werden. Vor der Färbung müssen sie auf 

Raumtemperatur gebracht werden und für 15 min in PBS, 0,25% BSA rehydriert werden. Um 

unspezifische Färbungen zu minimieren, wurden die Schnitte anschließend für 15 min in 

PBS, 0,25% BSA, 10% normalem Mausserum inkubiert. Die Schnitte wurden in einer 

feuchten Kammer, im Dunkeln bei Raumtemperatur für 30 min gefärbt. Nach den 

Färbeschritten wurde mit PBS, 0,25% BSA gewaschen und die Schnitte schließlich mit 

Fluoromount G (Southern Biotechnology Associates, Birmingham, AL, USA) eingedeckelt.  

 

B) PFA fixierte Organe zur Detektion von GFP 

Die Mäuse wurden 48 Stunden vor Entnahme der Organe mit rAd-GFP immunisiert. Die 

entnommen Milzen und Lymphknoten wurden direkt in 2% PFA für zwei Stunden bei 

Raumtemperatur fixiert und anschließend in 50 ml PBS über Nacht gewaschen. Diese Art der 

Fixierung ist nötig, um GFP durch das Schneiden nicht zu verlieren. Anschließend wurden die 

Organe in Schälchen mit Tissue Tek eingebettet und in Flüssigsticktoff eingefroren. Zur 

Detektion von GFP ist es am besten die Schnitte ein Tag vor der Färbung anzufertigen und sie 

dann über Nacht trocknen zu lassen. Anschließend wurden die Objektträger für eine Stunde in 

PBS, 1% H2O2, 0,1% NaN3 inkubiert. Zur Minimierung unspezifischer Hintergrundsignale 

wurde eine 1:100 Verdünnung von Fc-block in einer Lösung aus TNB (TSA-Kit, Perkin 

Elmer, Waltham USA), 1% Maus- und 1% Rattenserum hergestellt. Davon wurden 100 µl auf 

jeden Schnitt pipettiert und diese dann in einer feuchten Kammer für 30 min inkubiert. Es 

schließt sich ein Waschschritt mit PBS an und die Blockierung für jeweils 20 min zunächst 

mit Streptavidin Block (Vector labs, Burlingame, USA) und dann mit Biotin Block (Vector 

labs, Burlingame, USA). Die Amplifizierung des GFP Signals wurde mit dem TSA signal 

amplification kit (Perkin Elmer, Waltham USA) nach Herstellerangaben durchgeführt.   
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C) Mikroskopie 

Die unter A und B beschriebenen Präparate wurden an einem Mikroskop (DMXA-RF8, Leica 

Microsystems) betrachtet, mit einer Kamera (Sensys CCD, Photometrics, Tucson, AZ, USA) 

aufgenommen und mit dem Programm Q-Fish (Leica Microsystems) analysiert. Für die 

Anpassung der Helligkeit und des Kontrastes an das Druckmedium wurden die Aufnahmen 

mit Photoshop, (Version CS 5,1 Adobe Systems Inc., San Jose, CA, USA) bearbeitet.  

 

5.2.12 Statistik 
 

Mittelwerte und Standardabweichungen wurden mit dem Programm Prism (Version 5,0b) 

berechnet. 
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6 Ergebnisse 

6.1 Polyklonale CD8+ T-Zellantwort in DC-MHCI Mäusen  
 
Neben dem MHC-I Kb restringierten Hühner Ovalbumin (OVA) Epitop OVA257-264 ist auch 

das MHC-I Db restringierte LCMV GP Epitop GP33 eines der am besten charakterisierten und 

am häufigsten verwendeten Modelantigene in der Immunologie. 

In den letzten Jahren haben verschiedene Studien gezeigt, dass DC entscheidend sind für die 

Aktivierung GP33 spezifischer T-Zellen. So konnte zum Beispiel nach der Diphterie Toxin 

vermittelten in vivo Depletion von DC (Jung et al., 2002) keine MHC-I Db restringierte GP33 

spezifische T-Zellantwort detektiert werden (Probst et al., 2005b). 

In der vorliegenden Arbeit wurde ein replikations-defizienter rekombinanter Adenovektor 

(rAd-GP33) (CompuVac, Florian Kreppel), der GP33 aus Glycoprotein 1 von LCMV 

exprimiert verwendet, um die GP33 spezifische T-Zellantwort in Mäusen (DC-MHCI) zu 

untersuchen, in denen MHC-I selektiv auf DC exprimiert wird und diese Zellen somit die 

einzigen APC sind die Antigen präsentieren können (Kurts et al., 2001). Wie bereits erwähnt, 

wurde die polyklonale CD8+ T-Zellantwort in diesen DC-MHCI Mäusen, bereits nach 

Immunisierung mit HSV-OVA untersucht (Gruber et al., 2010) und es konnte gezeigt werden, 

dass nach Immunisierung mit diesem Vektor sowohl die HSV Glykoprotein B (HSVgB)-

spezifische, als auch die OVA-spezifische CD8 T-Zellantwort über einen Zeitraum von bis zu 

60 Tagen nach Injektion fünf bis sieben mal höher war, als in C57BL/6 Mäusen.  

Aufgrund dieser Resultate und der bereits erwähnten Studien in den DC depletierten Mäusen, 

waren die Ergebnisse nach der Immunisierung der DC-MHCI Mäuse mit rAd-OVA, das als 

Kontrolle diente bzw. rAd-GP33 überraschend. Sowohl in den Wildtyp-Mäusen als auch in 

den DC-MHCI Mäusen konnte eine Expansion OVA spezifischer T-Zellen nachgewiesen 

werden (Abbildung 6.1 A). Die OVA-spezifische T-Zellantwort war in den DC-MHCI 

Mäusen zwei bis dreimal höher als in C57BL/6 Mäusen. Dies ist in Einklang mit den zuvor 

erwähnten Daten zu rekombinantem HSV-1 (Gruber et al., 2010).  
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Abbildung 6.1: Polyklonale CD8+ T-Zellantwort (rAdOVA bzw.rAd-GP33): 
(A) C57BL/6 und DC-MHCI Mäuse wurden mit 1x109 vp rAdOVA bzw. rAd-GP33 i.v. immunisiert und an Tag 
acht wurde mittels Kb OVA bzw. Db GP33 spezifischem Multimer die Expansion der T-Zellen analysiert. Als 
Kontrolle dienten unbehandelte C57BL/6 Mäuse. Dargestellt sind die Mittelwerte ± Standardabweichung. 
Gezeigt ist ein repräsentatives Experiment von zwei bis vier Versuchen mit vergleichbarem Ergebnis, wobei 
jeweils pro Gruppe drei Tiere verwendet wurden. (B) Zum Nachweis zytotoxischer Aktivität in vivo wurden an 
Tag acht nach Immunisierung mit rAd-GP33, mit Peptid GP33 beladene Zielzellen in die Mäuse transferiert und 
ihre Abstoßung am FACS verfolgt. Der Prozentsatz an spezifischer Lyse wurde berechnet wie in Material und 
Methoden beschrieben. (C) C57BL/6 und DC-MHCI Mäuse wurden mit 1x109 vp rAdGP33 immunisiert und 
acht Tage später wurden die Milzen isoliert und die Splenozyten wurden mit dem Peptid GP33 für vier Stunden 
restimuliert. Im Anschluß erfolgte sowohl eine Färbung von CD8 und CD107a, sowie eine intrazelluläre 
Färbung für das Zytokin IFNγ. Der Nachweis der zytotoxischen Aktivität, sowie die Bestimmung der 
Zytokinproduktion wurde zweimal durchgeführt, mit je drei Tieren pro Gruppe (gezeigt sind die Mittelwerte ± 
Standardabweichung). 
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Dagegen konnte nach Immunisierung mit rAd-GP33 nur in C57BL/6 Mäusen mittels Db 

GP33 spezifischem Multimer die zu erwartende spezifische CD8+ T-Zellantwort detektiert 

werden. In den DC-MHCI Mäusen hingegen konnte keine Expansion Db GP33 spezifischer 

T-Zellen nachgewiesen werden (Abbildung 6.1 A). Überraschenderweise konnten aber in den 

DC-MHCI Mäusen trotz ausbleibender Expansion der spezifischen T-Zellen 

Effektorfunktionen detektiert werden (Abbildung 6.1 B und C).  

Für den Nachweis der zytotoxischen Aktivität, wurde acht Tage nach Immunisierung mit 

rAd-GP33 die Fähigkeit untersucht, antigenbeladene Zielzellen abtöten zu können. Dazu 

wurden in C57BL/6 und DC-MHCI Mäuse 1x107 Milzzellen, die mit dem Peptid GP33 

beladen worden waren, transferiert und die Abstoßung dieser Zellen am FACS analysiert. In 

nicht immunisierten Kontrollmäusen wird weder die unbeladene CFSElow Zellfraktion, noch 

die beladenen CFSEhigh Fraktion abgestoßen. In den immunisierten Tieren kam es sowohl in 

den Wildtyp-Mäusen als auch in den DC-MHCI Mäusen zu einer Abstoßung der beladenen 

Milzzellen (Abbildung 6.1 B). Ähnliche Befunde wie mit dem in vivo Zytotoxizitätsassay, 

ergaben sich nach der Restimulation von Milzzellen immunisierter Tiere in vitro mit Peptid 

GP33. Durch den Nachweis konnten in C57BL/6 und in DC-MHCI Tieren CD8 T-Zellen 

nachgewiesen werden, welche die gleichen Mengen an CD107a und IFNγ bzw. nur IFNγ 

produzieren (Abbildung 6.1 C). Offensichtlich besitzen die T-Zellen, deren 

Effektorfunktionen in den DC-MHCI Mäusen nachgewiesen werden konnten, nicht die 

MHC-I Db Spezifität, da sie sonst, wie in den Wildtyp-Mäusen, durch das Db Multimer 

detektierbar sein sollten. Für die hier beschriebene Diskrepanz, dass keine Expansion GP33 

spezifischer T-Zellen, aber Effektorfunktionen in den DC-MHCI Mäusen nachweisbar waren, 

gibt es verschiedene Erklärungsmöglichkeiten. Erstens könnte es sein, dass sich das endogene 

T-Zellrepertoire in den DC-MHCI Mäusen von dem der C57BL/6 Mäuse unterscheidet, dass 

also keine Db GP33 spezifischen T-Zellen in den DC-MHCI Tieren generiert werden. 

Zweitens besteht die Möglichkeit, dass sich die spezifischen T-Zellen in den DC-MHCI 

Mäusen in anderen Organen als der Milz, die hier untersucht wurde, befinden. Es konnte 

gezeigt werden, dass β2m als homig factor fungieren kann (Dunon et al., 1990), daher ist es 

denkbar, dass in diesen Mäusen die spezifischen T-Zellen nicht in die Milz wandern. Drittens 

könnte es sich auch um einen generellen Defekt in der Präsentation über MHC-I Db in den 

DC-MHCI Mäusen handeln. Viertens könnte sich die hier beschriebene Diskrepanz dadurch 

erklären lassen, dass es zwei überlappende Epitope im GP 1 von LCMV gibt, die sich in ihrer 
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MHC-I Restriktion unterscheiden (Hudrisier et al., 1997). Um heraus zu finden, warum in den 

DC-MHCI Mäusen keine Expansion Db GP33 spezifischer T-Zellen aber Effektorfunktionen 

detektiert werden konnten, wurden die angesprochenen Erklärungsmöglichkeiten in der 

vorliegenden Arbeit genauer untersucht.  

  

6.2 Monoklonale CD8+ T-Zellantwort in DC-MHCI Mäusen 
 
Um zu untersuchen, ob das Ausbleiben einer GP33 spezifischen CD8 T-Zellantwort in den 

DC-MHCI Mäusen auf ein defektes oder lückenhaftes endogenes T-Zellrepertoire in diesen 

Tieren zurückzuführen ist, wurde ein adoptiver T-Zelltransfer durchgeführt, welcher die 

Frequenz der zu untersuchenden T-Zellen erhöht. Dazu wurden 5x105 CD8 T-Zellen aus P14 

Mäusen in DC-MHCI und C57BL/6 Mäuse adoptiv transferiert. Durch Färbung des kongenen 

Markers CD90.1 konnten diese Zellen von den endogenen T-Zellen unterschieden werden. 

P14 Mäuse sind transgen für einen T-Zellrezeptor, der das Epitop GP33 im Kontext von 

MHC-I Db  erkennt. Am Tag nach dem adoptiven Transfer wurden die Mäuse mit 1x109 vp 

rAd-GP33 immunisiert und acht Tage später wurde die Expansion der P14 T-Zellen aus der 

Milz analysiert. In den C57BL/6 Mäusen kam es, wie zu erwarten, zu einer Proliferation der 

P14 T-Zellen, in den DC-MHCI Mäusen blieb eine Antwort aber erneut aus (Abbildung 6.2). 

Dieses Ergebnis lässt den Schluss zu, dass in den DC-MHCI Mäusen keine GP33 

spezifischen T-Zellantworten induziert werden können. Auch die zur Verfügung gestellten 

spezifischen T-Zellen, um eine eventuelle Lücke im endogenen Repertoire der DC-MHCI 

Mäuse zu schließen, expandierten in diesen Mäusen nicht. 
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Abbildung 6.2: Monoklonale CD8+ T-Zellantwort (rAd-GP33) 
Adoptiver T-Zelltransfer von 5x105 P14 T-Zellen in C57BL/6 und DC-MHCI Mäuse. Ein Tag nach dem 
adoptiven Transfer wurden die Tiere mit 1x109 vp rAd-GP33 i.v. immunisiert. Die Analyse der Expansion der 
P14 T-Zellen aus der Milz erfolgte an Tag acht nach Immunisierung. Als Kontrolle dienten C57BL/6 Mäuse, 
denen P14 T-Zellen adoptiv transferiert wurden, die aber nicht immunisiert worden waren. Zu sehen ist ein 
repräsentatives Ergebnis von drei Experimenten mit vergleichbarem Ergebnis (dargestellt sind die Mittelwerte ± 
Standardabweichung von je drei Mäusen pro Gruppe). 

6.3  Die Analyse der CD8 spezifischen T-Zellantwort in 

verschiedenen Organen 
 
Bisher wurde die Expansion sowohl endogener CD8 T-Zellen als auch P14 T-Zellen nach 

Immunisierung der beiden Mausstämme nur in der Milz verfolgt. Um auszuschließen, dass in 

den DC-MHCI Mäusen keine Expansion nachgewiesen werden konnte, weil sich die Zellen 

eventuell in anderen Organen als der Milz befinden, wurden Lunge und Leber untersucht.  

Hierzu wurden erneut 5x105 P14 T-Zellen in C57BL/6 und DC-MHCI Mäuse adoptiv 

transferiert und am nächsten Tag wurden die Mäuse mit 1x109 vp rAd-GP33 immunisiert. Die 

Expansion spezifischer T-Zellen wurde acht Tage später sowohl in der Leber als auch in der 

Lunge verfolgt. In C57BL/6 Mäusen konnte eine spezifische CD8 T-Zellantwort in beiden 

Organen detektiert werden, in DC-MHCI Mäusen hingegen kam es nur zu einer sehr 

ineffizienten Aktivierung spezifischer T-Zellen (Abbildung 6.3). Das Fehlen einer 

spezifischen CD8 T-Zellantwort in den DC-MHCI Mäusen lässt sich also nicht damit 

erklären, dass die Zellen in diesen Mäusen im Vergleich zu C57BL/6 in anderen Organen 

expandieren. 
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Abbildung 6.3: Monoklonale CD8+ T-Zellantwort (rAd-GP33) in Lunge und Leber 
Adoptiver T-Zelltransfer von 5x105 P14 T-Zellen in C57BL/6 und DC-MHCI Mäuse. Die Immunisierung der 
Tiere mit 1x109 vp rAd-GP33 i.v. erfolgte am darauffolgenden Tag. Die Analyse der Expansion der P14 T-
Zellen aus Lunge und Leber erfolgte an Tag acht nach Immunisierung. Als Kontrolle dienten C57BL/6 Mäuse, 
denen P14 T-Zellen adoptiv transferiert wurden, die aber nicht immunisiert worden waren. Dargestellt sind die 
Mittelwerte ± Standardabweichung von je drei Tieren pro Gruppe. 
 

6.4  Die Präsentation über MHC-I Db in DC-MHCI Mäusen 
 

6.4.1 Die Präsentation des Peptid GP33 in DC-MHCI Mäusen 
 

Bei der Analyse der DC-MHCI Mäuse mit dem rekombinanten HSV-1-Vektor (Gruber et al., 

2005) wurde eine MHC-I Kb Antwort detektiert, da die Präsentation sowohl des Peptids 

SIIEFARL aus GP B des Virus als auch des OVA-Peptids SIINFEKL über MHC-I Kb erfolgt. 

Das Peptid GP33 aus GP 1 von LCMV wird aber über MHC-I Db präsentiert. Es besteht also 

die Möglichkeit, dass die DC-MHCI Mäuse einen generellen Defekt in der Db Präsentation 

haben und somit keine Db GP33 spezifische Antwort generiert werden kann. Um diese 
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Möglichkeit genauer untersuchen zu können, wurde den Mäusen nach adoptivem Transfer 

GP33 spezifischer T-Zellen am nächsten Tag LPS und Peptid GP33 verabreicht. LPS fungiert 

in diesem Versuch als Adjuvans zur Stimulierung der DC. Diese präsentieren das Peptid dann 

direkt über MHC-I Db, eine Aufnahme und Prozessierung wie im Fall von Virus ist also nicht 

nötig. 

 

 
 

Abbildung 6.4: Monoklonale CD8+ T-Zellantwort (Peptid GP33) 
Adoptiver T-Zelltransfer von 5x105 P14 T-Zellen in C57BL/6 und DC-MHCI Mäuse. Am nächsten Tag wurde 
den Tieren 20 µg LPS und 10 µg Peptid GP33  i.v. injiziert. An Tag drei nach Immunisierung erfolgte die 
Analyse der Expansion der P14 T-Zellen aus der Milz. Als Kontrolle dienten C57BL/6 Mäuse, denen P14 T-
Zellen adoptiv transferiert wurden, die aber nicht immunisiert worden waren. Pro Gruppe wurden je drei Mäuse 
verwendet und gezeigt sind die Mittelwerte ± Standardabweichung. 
 

An Tag drei nach Immunisierung mit Peptid und LPS wurde die Expansion der P14 T-Zellen 

aus der Milz analysiert. Es konnte sowohl eine Proliferation der spezifischen T-Zellen in den 

C57BL/6 als auch in den DC-MHCI Mäusen nachgewiesen werden (Abbildung 6.4), wobei 

die Expansion der spezifischen T-Zellen in den DC-MHCI Mäusen höher ausfiel als in 

C57BL/6. Dies ist wieder in Einklang mit den bereits vorhandenen und erwähnten Daten zu 

rekombinantem HSV-1 (Gruber et al., 2010). Ein genereller Defekt in der Präsentation über 

MHC-I Db scheint also in den DC-MHCI Tieren nicht vorzuliegen, da es sonst zu keiner 

Expansion der Db GP33 spezifischen T-Zellen in den DC-MHCI Mäusen kommen würde. 
 

6.4.2 In vivo Proliferation GP33 spezifischer T-Zellen 
 

Das vorangegangene Experiment lässt den Schluss zu, dass es keinen generellen Defekt in der 

Präsentation über MHC-I Db und der Aktivierung Db GP33 spezifischer T-Zellen in DC-

MHCI Mäusen gibt, solange das vorgefertigte Peptid zur Verfügung steht. Um dies zu 

CD
90

.1

CD8
0 102 103 104 105

0

102

103

104

105

0 102 103 104 105 0 10 10 10 102 3 4 5

Kontrolle C57BL/6 DC-MHCI

Kont
roll

e

C57B
L/6

DC-MHCI
0

1

2

3

4

 P
14

 T-
Ze

lle
n

(%
CD

8+ CD
90

.1
+ )



 

 

 

	
  
Ergebnisse 

	
  
	
   	
  

58 

bestätigen, wurde die in vivo Proliferation nach Gabe des Peptids, als auch nach 

Immunisierung mit rAd-GP33 analysiert. Dazu wurden C57BL/6 und DC-MHCI Mäusen am 

gleichen Tag sowohl CFSE gefärbte P14 T-Zellen als auch LPS und Peptid GP33 oder rAd-

GP33 injiziert. Drei Tage später wurde durchflusszytometrisch die Proliferation der T-Zellen 

aus der Milz anhand des CFSE Profils analysiert. In C57BL/6 Mäusen expandierten die 

spezifischen T-Zellen sowohl nach Injektion von LPS und Peptid, als auch nach 

Immunisierung mit rAd-GP33. Eine Proliferation der P14 T-Zellen in den DC-MHCI Tieren 

konnte hingegen nur nach Verabreichung des Peptids nachgewiesen werden (Abbildung 6.5). 

Dieses Ergebnis bestätigt die Vermutung, dass DC nur das vorgeformte Peptid GP33 

präsentieren können, nicht aber das Epitop selbst generieren. 

 

 
 

Abbildung 6.5: In vivo Proliferation GP33 spezifischer T-Zellen 
C57BL/6 und DC-MHCI Mäusen wurden zeitgleich 2x106 CFSE gefärbte P14 T-Zellen in die eine Schwanzvene 
injiziert und in die andere Vene entweder 20 µg LPS und 10 µg Peptid GP33 oder 1x109 vp rAd-GP33. 
An Tag drei nach Immunisierung wurden die Milzen entnommen und die Expansion der spezifischen T-Zellen 
wurde anhand des CFSE Profils am Durchflusszytometer analysiert. Als Kontrolle dienten Tiere, denen 
ausschließlich T-Zellen adoptiv transferiert worden sind (dickere Linie). Zu sehen ist ein repräsentatives 
Experiment von dreien mit jeweils zwei Tieren pro Gruppe (dargestellt sind die Mittelwerte ± 
Standardabweichung). 
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6.4.3 Die Analyse der CD8 T-Zellantwort nach Immunisierung mit mCMV 
 

Das murine Cytomegalovirus (mCMV) ist ein natürlich vorkommendes Pathogen von 

Labormäusen und es sind sowohl Epitope bekannt, die über MHC-I Db als auch über MHC-I 

Kb präsentiert werden (Munks et al., 2006). Dies ermöglicht eine Analyse spezifischer CD8 

T-Zellantworten der Präsentation über beide MHC-I Arten. Es wurden zwei verschiedene 

Epitope in einem Restimulationsassay untersucht. Das Epitop TVTGPCLL (m139) wird über 

MHC-I Kb und das Epitop HGIAAASPI (M45) wird über MHC-I Db präsentiert. C57BL/6 

und DC-MHCI Mäuse wurden intraperitoneal (i.p.) mit mCMV immunisiert und die Fähigkeit 

zur Produktion von IFNγ wurde sieben Tage nach der Immunisierung in der Milz untersucht. 

Nach Restimulation mit den entsprechenden Peptiden für MHC-I Db bzw. Kb konnten sowohl 

die CD8 T-Zellen aus den C57BL/6 Mäusen als auch aus den DC-MHCI Tieren IFNγ 

produzieren (Abbildung 6.6). Es können also in beiden Mausstämmen antigenspezifische T-

Zellen mit Effektorfunktion generiert werden, wobei auch hier die Antwort in den DC-MHCI 

Mäusen wieder höher ausfiel als in C57BL/6. Dieses Ergebnis unterstützt die Befunde, dass 

DC in den DC-MHCI Mäusen generell in der Lage sind Virus zu prozessieren und über 

MHC-I Db zu präsentieren. 

 

 
 

Abbildung 6.6: Effektorfunktion mCMV spezifischer T-Zellen 
C57BL/6 und DC-MHCI Mäuse wurden mit 2x106 pfu mCMV i.p. immunisiert. Zur Analyse der IFNγ 
Produktion und damit der Effektorfunktion antigenspezifischer T-Zellen wurden an Tag sieben nach 
Immunisierung Milzzellen isoliert und mit den Peptiden m139 bzw. M45 in vitro für vier Stunden restimuliert. 
Es folgte eine extrazelluläre Färbung für CD8, sowie eine intrazelluläre für IFNγ. Dargestellt sind sowohl die 
Prozente CD8+ T-Zellen die IFNγ produzieren sowie die Zellzahlen. Pro Gruppe wurden drei Mäuse verwendet 
und die Mittelwerte ± Standardabweichung sind gezeigt. 
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6.5 Das LCMV Kb-Epitop GP34 
 
Wie bereits zuvor beschrieben, konnten in den DC-MHCI Mäusen trotz des Ausbleibens einer 

antigenspezifischen Expansion der T-Zellen Effektorfunktionen detektiert werden. Eine 

mögliche Erklärung für diese Diskrepanz in den DC-MHCI Mäusen liegt eventuell darin, dass 

es zwei überlappende Epitope im GP 1 von LCMV gibt. Hudrisier et al. (Hudrisier et al., 

1997) konnten zeigen, dass das MHC-I Db restringierte GP1 Epitop GP33 aus der 

Signalsequenz von LCMV auch ein immunodominantes Epitop im Kontext von MHC-I Kb 

darstellt. Das Minimalepitop für MHC-I Kb GP34, ist nur eine Aminosäure kürzer, als das Db 

Epitop GP33. Nachfolgend sind die beiden Peptide dargestellt: 

 

KAVYNFATC  GP33 (gp33-41)  MHC-I Db 

   AVYNFATC  GP34 (gp34-41)  MHC-I Kb 

 

Um zu untersuchen, ob die DC in den DC-MHCI Mäusen in der Lage sind, dass Kb Epitop zu 

präsentieren und damit eine Expansion GP34 spezifischer T-Zellen zu bewerkstelligen, 

wurden Multimerfärbungen für Kb GP34 durchgeführt. Hierzu wurden Wildtyp-Mäuse und 

DC-MHCI Mäuse mit rAd-GP33 immunisiert und an Tag acht wurde mittels Kb GP34 

spezifischem Multimer die Proliferation der antigenspezifischen T-Zellen aus der Milz 

analysiert. Um den Unterschied zwischen MHC-I Db und Kb zu verdeutlichen ist in der 

Abbildung 6.7 nochmals die Multimerfärbung Db GP33 spezifischer T-Zellen aus Abbildung 

6.1 dargestellt.  

In den C57BL/6 Mäusen konnte eine Expansion von T-Zellen beider Spezifitäten detektiert 

werden, also sowohl Db GP33 spezifische CD8 T-Zellen, als auch Kb GP34 spezifische T-

Zellen. In den DC-MHCI Mäusen lässt sich keine Proliferation von T-Zellen der Db GP33 

Spezifität nachweisen, es konnte aber eine deutliche Population von CD8 T-Zellen spezifisch 

für das kürzere Kb GP34 Epitop detektiert werden (Abbildung 6.7). 
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Abbildung 6.7: Db GP33 und Kb GP34- Multimerfärbung  
C57BL/6 und DC-MHCI Mäuse wurden mit 1x109 vp rAd-GP33 immunisiert. Nach acht Tagen wurden die 
Milzen isoliert und eine Multimerfärbung durchgeführt. Gezeigt ist der Prozentsatz Db bzw. Kb spezifischer CD8 
T-Zellen, so wie jeweils die Zellzahlen. Die Abbildung zu Db GP33 ist identisch zu Abbildung 6.1. Als 
Kontrolle dienten nicht immunisierte C57BL/6 Mäuse. Pro Gruppe wurden drei Mäuse verwendet, wobei hier 
ein repräsentatives Experiment aus fünf unabhängigen Versuchen dargestellt ist  (Mittelwerte ± 
Standardabweichung). 
 

Wenn nur DC Antigen präsentieren (im Fall von DC-MHCI), kommt es nicht zu einer 

Expansion Db GP33 spezifischer T-Zellen. Für die Expansion dieser Zellen in den C57BL/6 

Mäusen scheinen also andere Zellen als DC verantwortlich zu sein. Die Detektion einer Kb 

GP34 spezifischen T-Zellpopulation in den DC-MHCI Mäusen stellt eine Erklärung für die 

Effektorfunktion in diesen Mäusen dar (Abbildung 6.1). Das GP33 Epitop bindet sowohl an 

MHC-I Db als auch an Kb (Achour et al., 2002), wobei, wie bereits zuvor erwähnt das 

Minimalepitop für Db KAVYNVATC (GP33) ist und für Kb AVYNFATC (GP34). Die Kb 

GP34 spezifischen T-Zellen führen zur Abstoßung der mit Peptid beladenen Milzzellen, da 

sie das Epitop im Kontext von MHC-I Kb erkennen. Die spezifischen MHC-I Kb T-Zellen 

sind in den DC-MHCI Tieren die Zellen, welche die detektierten Zytokine generieren.  
 

6.6 Wildtyp-DC können Db GP33 nicht präsentieren 
 
Die Detektion von CD8 T-Zellen beider Spezifitäten in C57BL/6 Mäusen, könnte daher 

resultieren, dass Wildtyp-DC im Gegensatz zu den DC-MHCI transgenen DC das längere 
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Epitop prozessieren und über Db präsentieren können. Eine andere Möglichkeit besteht darin, 

dass die Db GP33 spezifischen T-Zellen durch andere APC, die in den DC-MHCI Tieren 

MHC-I negativ sind, induziert werden. Um zu untersuchen, ob die DC aus einer C57BL/6 

Maus in der Lage sind GP33 über Db zu präsentieren und so die Proliferation von P14 T-

Zellen auslösen, wurden Wildtyp-Tiere und DC-MHCI Mäuse mit rAd-GP33 immunisiert 

und 24 Stunden später wurden die Milzen isoliert. Nach dem Verdau der Organe wurden die 

CD11c+ Zellen isoliert und mit P14 T-Zellen zusammengesetzt. Als Kontrolle dienten DC die 

aus nicht immunisierten Tieren aus der Milz isoliert wurden und vor der Kultivierung mit den 

spezifischen T-Zellen mit Peptid beladen worden waren. Das gleiche Experiment wurde auch 

nach Immunisierung mit rAd-OVA und OTI T-Zellen durchgeführt.  

 

 
 
Abbildung 6.8: Wildtyp-DC können Db GP33 nicht präsentieren 
C57BL/6 und DC-MHCI Mäuse wurden mit 1x1010 vp rAd-OVA oder rAd-GP33 immunisiert. Am nächsten 
Tag wurden die Milzen entnommen und die DC wurden mittels CD11c MACSBeads isoliert. Aus nicht 
immunisierten Mäusen wurden ebenfalls CD11c+ Zellen isoliert und mit Peptid SIINFEKL oder GP33 für drei 
Stunden inkubiert. Diese und die mit Virus infizierten DC wurden für vier Tage zusammen mit den spezifischen 
T-Zellen kultiviert. Als Kontrolle dienten DC, die weder mit Virus infiziert noch mit Peptid beladen worden 
waren. Um die Anzahl der T-Zellen am FACS bestimmen zu können, wurde als interner Standard pro Probe eine 
bestimme Menge an Polystyrol Mikropartikel gemessen. Die Anzahl an Zellen pro Probe wurde wie in Material 
und Methoden beschrieben berechnet. Es ist eines von zwei Experimenten mit vergleichbarem Ergebnis 
dargestellt, wobei pro Probe Triplikate angesetzt wurden (Mittelwert ± Standardabweichung). 
 

Im Fall von OVA wurden die spezifischen T-Zellen durch die DC aus beiden Mausstämmen 

aktiviert (Abbildung 6.8). Dies spricht für vergleichbare APC Kapazitäten und zeigt, dass 

nach Immunisierung mit rAd-OVA in vivo das Antigen von den DC prozessiert und 

präsentiert werden kann. Im Gegensatz dazu konnte keine Proliferation spezifischer T-Zellen 
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Wildtyp oder DC aus DC-MHCI Tieren handelt (Abbildung 6.8). Dies lässt den Schluss zu, 

dass DC generell nicht in der Lage sind das Epitop GP33 über MHC-I Db zu präsentieren. 

Wie zu erwarten war führt die exogene Beladung von DC mit Peptid GP33 aus beiden 

Mausstämmen zu einer Proliferation der P14 T-Zellen. 
 

6.7 rAd-Vektoren infizieren BMDC  
 
Im vorangegangenen Experiment konnte nachgewiesen werden, dass DC aus rAd-OVA 

immunisierten Mäusen OTI T-Zellen aktivieren können, wohingegen es nicht zu einer 

Expansion von P14 T-Zellen durch DC aus rAd-GP33 immunisierten Mäusen kam. Aufgrund 

dessen sollte im weiteren Verlauf untersucht werden, ob es möglich ist BMDC in vitro mit 

einem Adenovektor der GFP exprimiert, zu infizieren. Es konnte gezeigt werden, dass die 

BMDC drei Tage nach der Infektion mit diesem Vektor GFP exprimieren (Abbildung 6.9 A). 

Darüber hinaus wurden BMDC aus C57BL/6 mit rAd-GP33 infiziert und dann zusammen mit 

CFSE gefärbten P14 T-Zellen kultiviert. Die Proliferation der spezifischen T-Zellen konnte 

drei Tage später anhand des CFSE-Profils am FACS nachgewiesen werden (Abbildung 6.9 

B). Diese Ergebnisse lassen den Schluss zu, dass DC, die in vitro direkt mit rAd-GP33 

infiziert werden, das Db GP33 Epitop effizient präsentieren können, wohingegen in vivo keine 

Db spezifische Antwort generiert werden kann. Die Tatsache, dass in Wildtyp-Mäusen nach 

der Immunisierung mit rAd-GP33 T-Zellen beider Spezifitäten nachweisbar sind, ex vivo 

isolierte DC aus diesen Mäusen aber P14 T-Zellen nicht aktivieren können, lässt vermuten 

dass andere APC für die Db spezifische Antwort nötig sind. Des Weiteren legen diese 

Ergebnisse den Schluss nahe, dass das Db GP33 Epitop durch direkte MHCI-Präsentation von 

DCs generiert werden kann, aber in vivo DC das GP33 Peptid evtl. nicht direkt, sondern 

kreuzpräsentieren. 
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Abbildung 6.9: Infektion von BMDC mit rAd-GFP bzw rAdGP33  
(A) BMDC aus C57BL/6 wurden an Tag drei der Kultur mit MOI6 (Vielzahl der Infektionen, multiplicity of 
infection) transduziert. Die Analyse GFP+CD11c+ Zellen erfolgte drei Tage später am FACS. (B) Die Infektion 
der BMDC mit rAd-GP33 (MOI5) wurde ebenfalls an Tag drei durchgeführt. Die DC wurden vier Tage später 
mit CFSE gefärbten P14 T-Zellen kultiviert und nach weiteren drei Tagen wurde die Proliferation der 
spezifischen CD8+ T-Zellen am FACS ermittelt. Für beide Experimente dienten als Kontrolle nicht transduzierte 
BMDC (dickere Linie in B). Das Experiment wurde zweimal durchgeführt, gezeigt ist der Mittelwert ± 
Standardabweichung. 
 

6.8 rAd-GFP infiziert Zellen in der MZ der Milz 
 
Aufgrund der vorangegangenen Ergebnisse, die den Schluss zulassen, dass für die 

Aktivierung Db GP33 spezifischer T-Zellen andere APC als DC verantwortlich sind, sollten 

diese Zellen identifiziert werden. Dazu wurden histologische Analysen von Milzschnitten 

einer C57/BL6 Maus angefertigt. Zuvor wurde die Maus mit rAd-GFP immunsiert, um so die 

Lokalisierung des Vektors in der Milz verfolgen zu können. Zwei Tage nach der Infektion mit 

dem Vektor lässt sich GFP hauptsächlich in den Zellen der MZ nachweisen (Abbildung 6.10 

A). Dies ist im Einklang mit Resultaten von Backer et al. (Backer et al., 2010), die zeigen 

konnten dass nach Immunisierung mit einem GFP exprimierenden Adenovektor das Virus 

hauptsächlich in CD169+ MΦ detektierbar ist und legt die Vermutung nahe, dass MΦ eine 

entscheidende Rolle bei der Aktivierung der GP33 spezifischen T-Zellantwort spielen. Die 

MΦ sollten in den DC-MHCI Mäusen negativ sein für MHC-I und dies konnte durch die 

Färbung von Splenozyten mit anti-CD169, anti-CD11c und anti-MHC-I bestätigt werden 

(Abbildung 6.10 B). In MHC-I Knockout Tieren (dünne durchgezogene Linie), die in diesem 

Versuch als Kontrolle dienten, konnte weder MHC-I Expression auf CD11c+ noch auf 

CD169+ Zellen nachgewiesen werden. In den DC-MHCI-Mäusen hingegen (dicke 

durchgezogene Linie), wird MHC-I, wie zu erwarten war, auf CD11c+ aber nicht auf CD169+ 
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Zellen exprimiert und in Wildtyp-Mäusen (gestrichelte Linie) konnte MHC-I Expression 

sowohl auf CD11c+ als auch auf CD169+ Zellen nachgewiesen werden.  

 

 
 
Abbildung 6.10: rAd-GFP infiziert Zellen in der MZ der Milz 
(A) C57BL/6 Mäuse wurden mit 1x109 vp rAd-GFP i.v. immunisiert. Nach 48 Stunden wurde die Milz 
entnommen und in PFA fixiert. Anschließend wurden 5µm dicke Schnitte angefertigt. Zur Detektion von GFP 
wurde das TSA Signalamplifizierungskit (PerkinElmer) verwendet, außerdem wurde der Schnitt mit dem 
Antikörper F4/80 gefärbt. Messbalken entspricht 200µm. (B) Die Milzen nicht immunisierter C57BL/6 
(gestrichelte Linie), DC-MHCI (dicke durchgezogene Linie) und MHC-I KO (dünne durchgezogene Linie) 
Mäusen wurden mittels DNase/Liberase verdaut und gefärbt mit Antikörpern für MHC-I Kb und Db, CD11c und 
CD169. Es ist ein Experiment von zweien mit vergleichbarem Ergebnis dargestellt.  
 

6.9 Db GP33 spezifische T-Zellantwort in DC depletierten 

Mäusen 
 
Um die Rolle der MΦ bei der Aktivierung Db GP33 spezifischer CD8+ T-Zellen genauer zu 

untersuchen, wurden zwei Arten von DC-defizienten Mäusen mit rAd-GP33 immunisiert. Bei 

den Δ−DC Mäusen (Ohnmacht et al., 2009) handelt es sich um eine Kreuzung von CD11c-

Cre Mäusen mit Tieren, die Diphterie Toxin A (DTA) unter der Kontrolle einer loxP-

flankierten STOP-Kassette im ROSA26 Lokus exprimieren. Dies hat den konstitutiven 

Verlust von cDC, pDC und Langerhans Zellen zur Folge. Bei den CD11c-DTR Mäusen (Jung 

et al., 2002) hingegen handelt es sich um ein induzierbares System. Durch die Gabe von DT 

werden die DC, aber auch verschiedene Arten von MΦ für einen gewissen Zeitraum in vivo 

depletiert (Probst et al., 2005a). Um sicher zu gehen, dass die Depletion der CD11c+ Zellen 

18 Stunden nach Injektion des Toxins vollständig ist, wurde eine histologische Analyse der 
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Milzen durchgeführt. In den CD11c-DTR Mäusen konnten am Höhepunkt der Depletion noch 

vereinzelt CD11c+ Zellen nachgewiesen werden, wohingegen weder MΦ der roten Pulpa noch 

metallophile- (CD169+) oder MZ-MΦ (SIGN-R1+) detektiert wurden. Im Gegensatz dazu 

konnten keine DC in den Δ-DC Mäusen nachgewiesen werden, diese Mäuse besitzen aber 

noch alle Arten an MΦ (Abbildung 6.11 A).  
 

 
 

Abbildung 6.11: MΦ in der MZ der Milz sind verantwortlich für die Db GP33 spezifische T-Zellantwort 
(A) Für die immun-histologische Untersuchung wurden nicht immunisierte Mäuse verwendet, wobei die Milz 
der CD11c-DTR Maus 18 Stunden nach Gabe von DT entnommen wurde. Gefärbt wurde für CD11c, B220 
sowie die MΦ-Marker CD169, SIGN-R1 und F4/80. Messbalken entspricht 200µm. 
(B) Für die Db und Kb Multimerfärbung wurden die verschiedenen Mausstämme mit 1x109 vp rAd-GP33 i.v. 
immunisiert und acht Tage später wurde die Expansion der spezifischen CD8+ T-Zellen verfolgt. Die Analyse 
der durchflusszytometrischen Daten erfolgte wie in Abbildung 6.7 dargestellt und das Experiment wurde viermal 
durchgeführt, wobei hier ein repräsentatives Resultat mit drei Mäusen pro Gruppe dargestellt ist (Mittelwert ± 
Standardabweichung).  
 

Nach der Immunisierung mit rAd-GP33 konnten mittels Db und Kb Multimeren T-Zellen 

beider Spezifitäten in den Δ-DC Mäusen nachgewiesen werden, in den CD11c-DTR Mäusen 

kam es hingegen zu keinerlei Proliferation (Abbildung 6.11 B). Da in den Δ-DC Mäusen noch 

MΦ, aber keine DC mehr vorhanden sind, untermauert dies die Ergebnisse aus der 

histologischen Analyse mit rAd-GFP und lässt den Schluss zu, dass MΦ in der MZ der Milz 

für die Aktivierung der Db GP33 spezifischen T-Zellantwort verantwortlich sind. Die noch 

vereinzelt vorkommenden DC in den CD11c-DTR Mäusen führen nicht zu einer Proliferation 

spezifischer CD8+ T-Zellen.  
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6.10  Sowohl CD169+ wie auch SIGN-R1+ MΦ werden von rAd-

GFP infiziert 
 
Bislang wurde gezeigt, dass MΦ aus der MZ der Milz Db GP33 spezifische T-Zellantworten 

generieren können. In dieser Zone gibt es zwei Arten von MΦ, zum einen die CD169+ 

metallophilen und die SIGN-R1+ MZ-MΦ. CD169+ MΦ befinden sich in der, der weißen 

Pulpa zugewandten inneren Seite der MZ, die SIGN-R1+ Zellen hingegen auf der, der roten 

Pulpa zugewandten äußeren Seite (Geijtenbeek et al., 2002).  

 

 
 
Abbildung 6.12: CD169+ und SIGN-R1+ MΦ werden von rAd-GFP infiziert 
C57BL/6 und Δ-DC Mäuse wurden mit 1x109 vp rAd-GFP i.v. immunisiert und 48 Stunden später wurden die 
Milzen entnommen und in PFA fixiert. Zur Detektion von GFP wurde das TSA Signalamplifizierungskit 
(PerkinElmer) benutzt und die Schnitte wurden mit Antikörper gegen CD169 und SIGN-R1 gefärbt. Weiße 
Pfeile zeigen Zellen positiv für CD169+, SIGN-R1+ und GFP+, gelbe Pfeile markieren CD169+und GFP+ Zellen. 
Messbalken entspricht 100µm. 
 

Detailliertere histologische Untersuchungen sollten zeigen, welcher der beiden Zelltypen für 

die Aktivierung Db GP33 spezifischer T-Zellen verantwortlich sein könnte. Dazu wurden 
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C57BL/6 und Δ-DC Mäuse mit rAd-GFP immunisiert und 48 Stunden später wurden die 

Milzen entnommen. Die Färbung ergab, dass viele SIGN-R1+ MΦ auch schwach positiv sind 

für CD169 (Abbildung 6.12), ein Befund, welcher bereits anhand von mRNA 

Expressionsstudien nachgewiesen werden konnte (Miyake et al., 2007). Die Tatsache, dass 

doppelt positive MΦ nachweisbar sind, lässt nur schwer eine Aussage darüber treffen, 

welcher der beiden Zelltypen für die Aktivierung GP33 spezifischer T-Zellen verantwortlich 

ist, offensichtlich werden beide Arten von MΦ in der MZ der Milz von rAd-GFP infiziert, 

was anhand der weißen Pfeile in der Abbildung (Abbildung 6.12) verdeutlicht werden soll. 

Vereinzelt konnten infizierte MΦ, die nur positiv für CD169 sind detektiert werden (gelbe 

Pfeile).   
 

6.11  Die Aktivierung Db GP33 spezifischer T-Zellen in 

Lymphknoten 
 

Geijtenbeek et al. (Geijtenbeek et al., 2002) konnten zeigen, dass auch die MΦ in den 

Lymphknoten zum Teil positiv sind sowohl für CD169 als auch für SIGN-R1. Aufgrund 

dessen sollte im Folgenden zusätzlich zu den bereits analysierten Milzen auch die 

Lymphknoten von C57BL/6 und Δ-DC Mäusen untersucht werden. Die histologische Analyse 

wurde nur in Wildtyp Tieren durchgeführt. In Haut drainierenden Lymphknoten aus C57BL/6 

Mäusen konnten nach der Immunisierung mit rAd-GFP infizierte CD169+ MΦ des 

subkapsulären Sinus detektiert werden, wobei auch hier wieder einige dieser MΦ sowohl 

positiv waren für CD169 als auch SIGN-R1 (Abbildung 6.13 A). Darüber hinaus konnte 

gezeigt werden, dass CFSE gefärbte P14 T-Zellen aus den Lymphknoten drei Tage nach 

Immunisierung mit rAd-GP33 in vivo proliferieren und zwar auch in Δ-DC Mäusen, die keine 

DC haben (Abbildung 6.13 B).  
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Abbildung 6.13: MΦ des subkapsulären Sinus der Lymphknoten können Db GP33 spezifische T-Zellen 
aktivieren 
(A) C57BL/6 wurden mit 1x109 vp rAd-GFP i.v. immunisiert. Die Haut drainierenden Lymphknoten wurden 48 
Stunden später entnommen und in 2% PFA für zwei Stunden fixiert. Die angefertigten Schnitte wurden mit den 
Antikörpern CD169 und SIGN-R1 gefärbt und der Nachweis von GFP erfolgte mit dem Signalamplifizierungskit 
(PerkinElmer). Für den Nachweis der in vivo Proliferation (B) wurden 2x106 CFSE gefärbte P14 T-Zellen 
transferiert und gleichzeitig wurden die Mäuse (C57BL/6 und Δ-DC) mit 1x109 vp rAd-GP33 i.v. immunisiert. 
Drei Tage später wurden die Haut drainierenden Lymphknoten und die Milzen entnommen und die Expansion 
der spezifischen T-Zellen (CD8+ und CD90.1+) anhand der CFSE Verdünnung analysiert. Als Kontrolle dienten 
C57BL/6, denen ausschließlich T-Zellen transferiert wurden (dickere Linie). 
 

6.12 Die polyklonale CD8 T-Zellantwort: LCMV-GP gesamt 
 
Bisher konnte gezeigt werden, dass DC GP33 nicht präsentieren, sondern nur das kürzere 

Epitop Kb GP34. Wie bereits erwähnt, ist das Modelantigen GP33 im Adenovektor 

eingebettet in die BL26 Kassette (IKAVYNFATCGILA). Im folgenden sollte untersucht 

werden, ob sich die bisherigen Beobachtungen reproduzieren lassen, wenn die Mäuse mit dem 

gesamten GP des LCMV oder mit LCMV selbst immunisiert werden. Hierzu wurden in 

C57BL/6 und DC-MHCI Mäuse entweder 2x106 pfu Vaccinia-LCMVgp, ein Vektor der das 

gesamte GP von LCMV exprimiert, oder 5x104 pfu LCMV-WE injiziert. Nach acht Tagen 

wurden die Milzen isoliert und eine Kb bzw. Db Multimerfärbung durchgeführt.  
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Abbildung 6.14: Vaccinia-LCMVgp und LCMV-WE führen nicht zu einer effizienten Aktivierung Db 
GP33 spezifischer T-Zellen in DC-MHCI Mäusen 
C57BL/6 und DC-MHCI Mäuse wurden mit 2x106 pfu Vaccinia-LCMVgp i.p. bzw. mit 5x104 pfu LCMV-WE 
i.v. immunisiert. Acht Tage später wurden die Milzen entnommen und eine Multimerfärbung für Db und Kb 
durchgeführt. Gezeigt ist der Prozentsatz an Db bzw Kb positiven T-Zellen, wobei je drei Tiere pro Gruppe 
verwendet wurden (Mittelwert ± Standardabweichung). Als Kontrolle dienten nicht immunisierte C57BL/6 
Mäuse. 
 

 

Die Daten aus den Experimenten mit rAd-GP33 sind mit diesen beiden Viren vergleichbar. 

Auch wenn das gesamte Glycoprotein zur Verfügung steht, wird in den DC-MHCI Mäusen 

nur eine Kb spezifische T-Zellantwort generiert, wohingegen in den Wildtyp Mäusen für 

beide Spezifitäten eine Expansion der CD8 T-Zellen nachgewiesen werden konnte (Abbildung 

6.14).  
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6.13 Die Rolle der MΦ für LCMV-WE 
 
DC reichen auch dann nicht aus eine Db GP33 spezifische T-Zellantwort zu generieren, wenn 

das gesamte GP zur Verfügung steht. Da gezeigt werden konnte, dass sowohl CD169+ als 

auch SIGN-R1+ MΦ in der Milz und Lymphknoten von rAd-GFP infiziert werden, und es in 

den Δ-DC Mäusen trotz nicht vorhandener DC zu einer Db spezifischen CD8 T-Zellantwort 

kommt, sollte die Rolle der MΦ für das gesamte GP untersucht werden. Dazu wurden die 

beiden DC defizienten Mausstämme sowie zur Kontrolle C57BL/6 mit LCMV-WE 

immunisiert und am Höhepunkt der Antwort wurden Db und Kb spezifische T-Zellen mittels 

Multimer detektiert. Wie zu erwarten war, kam es im Gegensatz zu den Wildtyp-Tieren und 

Δ-DC in den CD11c-DTR Mäusen, denen nach Gabe des Toxins sowohl DC als auch MΦ 

fehlen, nicht zu einer Expansion spezifischer T-Zellen. In den anderen beiden Mausstämmen 

(C57BL/6 und Δ-DC) hingegen konnten T-Zellen beider Spezifitäten nachgewiesen werden 

(Abbildung 6.15 A). Darüber hinaus konnte durch ein Restimulationsassay mit dem Peptid 

GP33 gezeigt werden, dass die spezifischen T-Zellen nach Immunisierung mit LCMV-WE 

funktionell sind. Es konnten in Wildtyp- und Δ-DC Mäusen gleiche Mengen an sowohl 

CD107a und IFNγ- sowie auch nur IFNγ produzierende CD8 T-Zellen detektiert werden 

(Abbildung 6.15 B). Somit spielen MΦ nicht nur im Fall von rAd-GP33, sondern auch wenn 

mit LCMV-WE immunsiert wird, eine entscheidende Rolle für die Expansion Db und Kb 

spezifischer funktioneller T-Zellen. 
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Abbildung 6.15: Expansion und Funktionalität Db und Kb spezifischer T-Zellen in DC depletierten 
Mäusen nach Immunisierung mit LCMV-WE  
C57BL/6, Δ-DC und CD11c-DTR Mäuse wurden mit 5x104 pfu LCMV immunisiert. Acht Tage später wurden 
die Milzen entnommen und eine Db bzw. Kb Multimerfärbung (A) bzw. ein Restimulationsassay mit Peptid 
GP33 (B) durchgeführt. Für die Restimulation wurden die Splenozyten für vier Stunden mit dem Peptid 
inkubiert und anschließend wurde eine extrazelluläre Färbung für CD8 und CD107a und eine intrazelluläre 
Färbung für das Zytokin IFNγ durchgeführt. Der Versuch wurde dreimal durchgeführt, wobei ein repräsentatives 
Experiment gezeigt ist, mit drei Tieren pro Gruppe (Mittelwert ± Standardabweichung). 
 
 

6.14  Die Depletion von MΦ verhindert eine Aktivierung GP33 

spezifischer T-Zellen 
 
MΦ lassen sich in vivo durch die Gabe Clodronat-gefüllter Liposomen depletieren. Die 

Liposomen werden von phagozytierenden Zellen aufgenommen und ab einer gewissen 

Konzentration an Clodronat geht die Zelle in Apoptose (van Rooijen et al., 1996).  
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Abbildung 6.16: Eine Depletion von MΦ verhindert die Expansion Db und Kb spezifischer T-Zellen 
C57BL/6 und Δ-DC Mäuse wurden 10 mg/ml Clodronat- bzw. PBS-gefüllte Liposomen injiziert und am darauf 
folgenden Tag wurden die Tiere mit 5x104 pfu LCMV-WE immunisiert. Acht Tage später wurden die Milzen 
entnommen und eine Db bzw Kb Multimerfärbung durchgeführt. Gezeigt ist eines von zwei vergleichbaren 
Experimenten. (Mittelwert ± Standardabweichung; je drei Mäuse pro Gruppe) 
 
 

Nach der Depletion der MΦ in vivo wurden die Mäuse mit LCMV-WE immunisiert und acht 

Tage später wurden mittels Multimeren Db und Kb spezifische T-Zellen aus der Milz 

detektiert. In der Kontrollgruppe, die PBS-gefüllte Liposomen erhielt, konnten die zu 

erwartenden Prozentsätze an Db GP33 und Kb GP34 spezifischen T-Zellen nachgewiesen 

werden. Im Gegensatz dazu kam es in den Tieren, deren MΦ depletiert worden waren zu 

keinerlei Expansion spezifischer T-Zellen (Abbildung 6.16). Durch Clodronat kommt es nicht 

nur zum Verlust von MΦ, sondern alle phagozytierenden Zellen also auch DC werden 

depletiert. In den Δ-DC Mäusen in denen es keine DC gibt, konnten in der Kontrollgruppe T-
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aber nicht zu einer Proliferation spezifischer T-Zellen. Dieses Experiment bestätigt die 

vorangegangenen Ergebnisse und zeigt, dass MΦ eine entscheidende Rolle spielen in der 

Aktivierung Db GP33 spezifischer T-Zellen. 
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7 Diskussion 

7.1 Die Rolle dendritischer Zellen für die Aktivierung GP33 

spezifischer T-Zellen 
 

Um naive CD8 T-Zellen zu aktivieren bedarf es professioneller APC, die das entsprechende 

Peptid im Kontext von MHC-I präsentieren und kostimulatorische Signale übermitteln. 

Allerdings exprimieren nahezu alle kernhaltigen Zellen MHC-I und so stellte sich in den 

letzten Jahren vor allem für Viren wie LCMV, die eine Vielzahl an verschiedenen Zellen 

infizieren können (Doyle et al., 1978; Homann et al., 2004), die Frage, welcher Zelltyp für die 

Aktivierung und weitere Expansion GP33 spezifischer CD8 T-Zellen verantwortlich ist. In 

der Literatur lassen sich dazu widersprüchliche Daten finden. Manche Arbeitsgruppen 

zeigten, dass nicht-hematopoetische Zellen einen erheblichen Beitrag leisten zur Generierung 

LCMV spezifischer CD8 T-Zellantworten. So fanden beispielsweise Kündig et al. (Kundig et 

al., 1995) heraus, dass Virus-transduzierte Fibroblasten in der Lage sind LCMV spezifische 

T-Zellantworten auszulösen, allerdings nur in zytokinreichen, lymphoiden Organen. Darüber 

hinaus, zeigte eine andere Arbeitsgruppe in Chimären in denen nur nicht-hematopoetische 

Zellen MHC-I exprimierten, dass diese Zellen im Fall von LCMV entscheidend sind, um die 

klonale Expansion GP33 spezifischer T-Zellen aufrecht zu erhalten bzw. zu verstärken, 

wohingegen keine Proliferation OVA-spezifischer T-Zellen detektiert werden konnte 

(Thomas et al., 2007). Offensichtlich reichen im Fall einer LCMV Infektion die wenigen 

strahlungs-resistenten APC in den Chimären aus (Sigal et al., 2000), um naive T-Zellen zu 

aktivieren und die infizierten nicht-hematopoetischen Zellen spielen dann eine wichtige Rolle 

bei der weiteren Expansion der LCMV spezifischen T-Zellen.  

Im Gegensatz dazu postulierten Probst et al. (Probst et al., 2005b), dass DC essentiell sind um 

eine GP33 spezifische T-Zellantwort zu generieren. Die Autoren infizierten CD11c-DTR und 

Wildtyp-Mäuse mit LCMV-WE und verfolgten die Expansion GP33 spezifischer T-Zellen 

mittels Db Multimer an Tag sieben nach Immunisierung, wobei sie in den CD11c-DTR 

Mäusen keine Aktivierung spezifischer T-Zellen detektieren konnten. Allerdings, wie bereits 

in dieser Arbeit beschrieben, werden durch die Behandlung mit DT nicht nur DC sondern 

auch MΦ depletiert, wie Probst et al. in einem später veröffentlichten Artikel durch 
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histologische Untersuchungen belegen konnten (Probst et al., 2005a). Diese Ergebnisse 

decken sich weitestgehend mit den in der vorliegenden Arbeit vorgestellten Daten. So konnte 

in den CD11c-DTR Mäusen ebenfalls keine Expansion Db GP33 oder Kb GP34 spezifischer 

T-Zellen nachgewiesen werden (Abbildung 6.11 B). Im Gegensatz dazu kam es aber in den Δ-

DC Mäusen zu einer Expansion von T-Zellen beider Spezifitäten und durch histologische 

Analysen konnte gezeigt werden, dass diese Mäuse im Gegensatz zu den CD11c-DTR noch 

F4/80+, CD169+ sowie SIGN-R1+ MΦ besitzen und nur CD11c+ Zellen fehlen (Abbildung 

6.11 A). In der Literatur wurde beschrieben - dies deckt sich auch mit den vorliegenden 

histologischen Färbungen -, dass nur etwa 85-90% CD11c+ Zellen in den CD11c-DTR 

Mäusen depletiert werden (Bennett et al., 2007). Dennoch reichen diese noch vorhandenen 

DC aber nicht aus, um eine GP33 spezifische T-Zellantwort zu generieren. Sollten DC 

entscheidend sein für die Aktivierung LCMV spezifischer T-Zellen, dann sollten wie bei 

Thomas et al. (Thomas et al., 2007) beschrieben, diese wenigen APC ausreichen und 

infizierte nicht-hematopoetische Zellen in den CD11c-DTR Mäusen sollten die klonale 

Expansion verstärken können.  

Nach der Immunisierung mit rAd-GFP konnten GFP+ Zellen nur in den MMM und MZM der 

MZ der Milz (Abbildung 6.12) detektiert werden. Dies lieferte einen ersten Hinweis, welcher 

Zelltyp entscheidend sein könnte für die Aktivierung GP33 spezifischer T-Zellen. Aber auch 

nach der Immunisierung mit LCMV-WE, der wie bereits erwähnt verschiedene Zelltypen 

infiziert, konnte in den DC-MHCI Mäusen nur eine Expansion Kb spezifischer T-Zellen 

nachgewiesen werden (Abbildung 6.14), wohingegen es in den Δ-DC Mäusen zu einer 

Aktivierung von T-Zellen beider Spezifitäten kam (Abbildung 6.15). Somit lassen diese 

Ergebnisse den Schluss zu, dass MΦ in der MZ eine bedeutende Rolle bei der Aktivierung 

GP33 spezifischer CD8 T-Zellantworten spielen und ausreichen funktionelle T-Zellen zu 

generieren. Das Ausbleiben einer LCMV spezifischen Antwort in den CD11c-DTR Mäusen 

ist dann nicht auf das Fehlen der DC zurückzuführen, sondern auf die zusätzliche Depletion 

der MΦ in diesem Mausmodell.   
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7.2 Die Rolle der MΦ für die Aktivierung adaptiver 

Immunantworten 
 
Seit ihrer Entdeckung gelten DC als besonders effiziente APC, die entscheidend sind für die 

Aktivierung von Immunität bzw. Toleranz. In den letzten Jahren vermehren sich aber 

Publikationen, die zeigen konnten, dass auch MΦ einen wichtigen Beitrag leisten bei der 

Aktivierung von B- und T-Zellen. Durch die Immunisierung verschiedener Mausstämme mit 

rAd-GP33 bzw. LCMV-WE und die Analyse mittels Db und Kb Multimeren (Abbildung 6.7, 

6.11, 6.14 und 6.15) konnte in der vorliegenden Arbeit gezeigt werden, dass MΦ essentiell 

sind für die Expansion spezifischer GP33 bzw. GP34 CD8 T-Zellen. So kam es in den Δ-DC 

Mäusen, die keine DC aber MΦ besitzen zu einer Aktivierung von T-Zellen beider 

Spezifitäten, wohingegen in den DC-MHCI Mäusen in denen MHC-I nur auf DC exprimiert 

wird (Abbildung 6.10), lediglich zur Aktivierung Kb spezifischer T-Zellen. In den CD11c-

DTR Mäusen, die weder DC noch MΦ aufweisen, kam es zu keinerlei Expansion (Tabelle 7.1 

fasst diese Ergebnisse zusammen). Darüber hinaus reichen MΦ nicht nur aus die Expansion 

spezifischer T-Zellen zu aktivieren, sondern diese CTL sind auch funktionell, wie mittels in 

vitro Restimulationsassay nachgewiesen werden konnte (Abbildung 6.15).  

 

Mausstamm APC MHC-I Expression T-Zell-Spezifität 

C57BL/6 DC, MΦ auf allen Zellen Db und Kb 

DC-MHCI DC, MΦ nur auf DC Kb 

Δ-DC MΦ auf allen Zellen Db und Kb 

CD11c-DTR - auf allen Zellen keine Expansion 

 
Tabelle 7.1: Überblick über die Expansion Db GP33 bzw. Kb GP34 spezifischer T-Zellen in den verwendeten 

Mausstämmen 

 

Die Depletion der MΦ durch die Gabe Clodronat-gefüllter Liposomen verhinderte die 

Expansion spezifischer CD8 T-Zellen nach Immunisierung mit LCMV-WE (Abbildung 6.16). 

Ähnliche Ergebnisse wurden von Seiler et al. (Seiler et al., 1997) erzielt, wobei sie sich die 

gleiche Technik zur Depletion der MΦ zu nutze machten. Nach der Behandlung von C57BL/6 

mit Clodronat-gefüllten Liposomen konnten die Mäuse eine LCMV Infektion nicht beseitigen 
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und das Virus breitete sich auf periphere Organe aus, in denen es unkontrolliert repliziert, 

bevor eine schützende Immunantwort etabliert werden kann. Die Autoren schlossen daraus, 

dass MMM und MZM eine wichtige „Filterfunktion“ besitzen und verhindern, dass sich das 

Virus systemisch ausbreitet.  

Durch die Gabe von Clodronat kann nicht ausgeschlossen werden, dass andere 

phagozytierende Zellen wie beispielsweise DC depletiert werden, die eventuell wichtig sein 

könnten für die Eliminierung des Virus. Allerdings konnte in der vorliegenden Arbeit in Δ-

DC Mäusen, die als Kontrolle mit PBS-gefüllten Liposomen behandelt wurden, allein durch 

MΦ eine Expansion von T-Zellen beider Spezifitäten erzielt werden, die dann aber in den 

Clodronat behandelten Mäusen ausblieb.  

Auch für andere Viren konnte in den letzten Jahren nachgewiesen werden, dass MΦ eine 

entscheidende Rolle spielen. So wurde für VSV (vesikulärer Stomatitis Virus, vesicular 

stomatitis virus) zum einen gezeigt, dass die verstärkte Replikation des Virus in CD169+ MΦ 

die Aktivierung der adaptiven Immunantwort fördert (Honke et al., 2012) und zum anderen 

verhindert diese Art von MΦ, dass das Virus das zentrale Nervensystem infiziert (Iannacone 

et al., 2010). Die Depletion von MΦ in Lymphknoten führte bei ca. 60 % der mit VSV 

infizierten Mäuse zu einer Lähmung und nach sieben bis zehn Tagen schließlich zum Tod. In 

dieser Studie waren MΦ nicht direkt an CD8 T-Zellantworten beteiligt, sondern kontrollieren 

die VSV Infektion durch die Produktion von IFNγ. Des Weiteren sind MMM und MZM 

erforderlich für die Aufnahme im Blut-zirkulierender Antigene und damit der Kontrolle von 

Infektionen wie mit Listeria Monozytogenes, wobei auch in diesen Versuchen die MΦ durch 

Clodronat-gefüllte Liposomen depletiert wurden (Aichele et al., 2003). Backer et al. (Backer 

et al., 2010) konnten nach der Immunsierung mit einem GFP exprimierenden Adenovektor 

virale Proteine in CD169+ MΦ detektieren, dies ist in Einklang mit den hier vorgestellten 

histologischen Analysen, die eine Kolokalization von GFP mit MMM und MZM zeigten 

(Abbildung 6.12). Die Autoren arbeiteten außerdem mit einem OVA exprimierenden 

Adenovektor und fanden heraus, dass die CD169+ MΦ die aufgenommenen Antigene an 

CD8+ DC in der Milz weitergeben. Dies führt letztlich zur Kreuzpräsentation und Aktivierung 

spezifischer CTL, wobei funktionelle CD8 T-Zellen nur aktiviert werden konnten, wenn 

sowohl MΦ als auch DC beteiligt waren. Für GP33 hingegen konnte durch die 

Immunisierung der Δ-DC Mäuse gezeigt werden, dass MΦ ausreichen um direkt funktionelle 

CD8 T-Zellantworten zu generieren.  
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MΦ haben wie DC die Fähigkeit zur Kreuzpräsentation. MMM phagozytieren 

tumorassoziierte Antigene und aktivieren damit spezifische CD8+ T-Zellen. Dies konnte 

durch die DT vermittelte Depletion von MMM in CD169-DTR Mäusen nachgewiesen 

werden, in denen es nach Immunisierung toter Tumorzellen nicht mehr zur Generierung 

spezifischer T-Zellen kam (Asano et al., 2011). Auch bei der Aktivierung humoraler 

Immunantworten übernehmen CD169+ MΦ wichtige Aufgaben, indem sie die Verbreitung in 

der Lymphe zirkulierender Pathogene, wie VSV vermeiden und Antigen antiviralen B-Zellen 

präsentieren (Junt et al., 2007).  

All diese Studien konnten zeigen, dass vor allem CD169+ MΦ eine wichtige Rolle spielen bei 

der Aktivierung adaptiver Immunantworten, gerade auch aufgrund ihrer Lokalisation, die es 

ihnen erlaubt im Blut und Lymphe zirkulierende Antigene aufzunehmen, Stunden bevor 

migratorische DC in die Lymphknoten einwandern.  

 

7.3 DC aktivieren Db GP33 spezifische T-Zellen in vivo nur sehr 

ineffizient 
 

Nach Immunisierung der DC-MHCI Mäuse mit rAd-GP33 konnte keine Expansion Db GP33 

spezifischer CD8 T-Zellen nachgewiesen werden (Abbildung 6.1). Dieses Ergebnis wurde 

auch dann erzielt, wenn spezifische P14 T-Zellen vor der Immunisierung adoptiv transferiert 

wurden (Abbildung 6.2). Darüber hinaus wurde gezeigt, dass virusinfizierte DC aus Wildtyp-

Mäusen ex vivo nicht in der Lage sind P14 T-Zellen zu aktivieren. Im Vergleich zu OTI T-

Zellen blieb eine Expansion der GP33 spezifischen CD8 T-Zellen aus (Abbildung 6.8). 

Aufgrund dieser Ergebnisse stellt sich die Frage, warum DC nicht in der Lage sind das Epitop 

GP33 über MHC-I Db zu präsentieren.  

Die meisten Peptidliganden für MHC-I werden durch das Proteasom generiert, entweder 

bereits in der finalen Form oder als Vorläufer, die dann am N-Terminus von Proteasen, wie 

beispielsweise ERAAP geschnitten werden. Die Stimulation von Zellen durch IFNγ oder TNF 

führt zum Austausch dreier Untereinheiten des konstitutiven Proteasoms durch die 

induzierbaren Untereinheiten LMP2 (low-molecular mass polypeptide 2), LMP7 und 

MECL-1 (multicatalytic endopeptidase complex-like-1), welche das Immunoproteasom bilden 

(Groettrup et al., 2010). Verschiedene Studien konnten zeigen, dass der Austausch dieser 
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Untereinheiten eine veränderte Substratspezifität nach sich zieht und somit eine Veränderung 

des T-Zellrepertoires zur Folge haben kann. So wurde beispielsweise publiziert, dass die in 

vitro Überexpression der drei induzierbaren Immunoproteasom-Untereinheiten eine 

Steigerung der Präsentation des H-2Ld-restringierten NP118 Epitop aus dem Nukleoprotein 

von LCMV nach sich zieht (Schwarz et al., 2000). In der vorliegenden Arbeit wurde gezeigt, 

dass DC nur das kürzere Kb restringierte GP34 Epitop, aber nicht GP33 präsentieren 

(Abbildung 6.7). Aufgrund dieser Ergebnisse sollte untersucht werden, ob die veränderte 

Spezifität des Immunoproteasoms dafür verantwortlich ist, dass DC nur GP34 generieren. In 

der Literatur werden verschiedene Inhibitoren beschrieben, um einzelne Untereinheiten des 

Immunoproteasoms zu blockieren. In der vorliegenden Arbeit wurden DC-MHCI und 

C57BL/6 Mäuse mit PR-957, einem Inhibitor der LMP7 Untereinheit (Muchamuel et al., 

2009), behandelt und anschließend mit rAd-GP33 immunisiert (Daten nicht gezeigt). Auch 

nach der Inhibierung dieser Untereinheit kam es in den DC-MHCI Mäusen nicht zu einer 

Expansion Db GP33 spezifischer CD8 T-Zellen. Weitere Inhibitoren wurden in dieser Arbeit 

nicht getestet, somit kann die Rolle des Immunoproteasoms im Bezug auf die vorliegenden 

Ergebnisse nicht abschließend geklärt werden. Allerdings konnte in LMP2- defizienten 

Mäusen keine Änderung der CTL Antworten auf die Epitope GP33, GP276 und NP396 von 

LCMV nachgewiesen werden (Basler et al., 2004; Nussbaum et al., 2005) und in LMP7- 

defizienten Mäusen kam es lediglich zu einer gesteigerten Antwort auf das LCMV Epitop 

GP276.  

Gegen einen Beitrag des Immunoproteasoms bei der hier angesprochenen Fragestellung 

spricht, dass in der vorliegenden Arbeit gezeigt wurde, dass BMDC, die in vitro mit rAd-

GP33 infiziert wurden in der Lage sind Db GP33 spezifische T-Zellen zu aktivieren 

(Abbildung 6.9). Es ist davon auszugehen, dass durch die viralen inflammatorischen Signale 

in diesen BMDC das Immunoproteasom aktiv war. Sollte das Immunoproteasom die 

Generierung des längeren Epitops GP33 verhindern, so hätte es in vitro nicht zu einer 

Aktivierung der P14 T-Zellen kommen sollen. Darüber hinaus kommt es auch in MΦ durch 

IFNγ und TNF zur Aktivierung des Immunoproteasoms, würde dieses eine Rolle für GP33 

spielen, dann sollte vermutlich auch in MΦ nur das kürzere Epitop generiert werden. 

Die immun-histologischen Untersuchungen nach der Immunisierung mit rAd-GFP, durch die 

die Lokalisation des Virus in der Milz verfolgt wurde, ergaben, dass 48 Stunden nach 

Infektion GFP in der MZ zu finden ist (Abbildung 6.10 A). Detailliertere histologische 

Analysen in Milz und Haut-drainierenden Lymphknoten zeigten, dass GFP mit CD169+ und 
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SIGN-R1+ MΦ kolokalisiert (Abbildung 6.12 und 6.13). Diese Ergebnisse lassen den Schluss 

zu, dass DC in vivo nicht direkt durch den Adenovektor infiziert werden. Allerdings ergab die 

Analyse mit einem weiteren Multimer, dass DC für die Expansion Kb GP34 spezifischer T-

Zellen verantwortlich sind (Abbildung 6.7). Da keine direkte Infektion der DC mit rAd-GFP 

nachweisbar war, es aber in den DC-MHCI Mäusen zu einer Expansion Kb GP34 spezifischer 

CD8 T-Zellen kam, spricht dies dafür, dass die Aktivierung dieser T-Zellen durch 

Kreuzpräsentation vermittelt wird, wohingegen anscheinend das längere Db GP33 Epitop 

nicht kreuzpräsentiert wird. Daten von Wolkers et al. (Wolkers et al., 2004) sprechen dafür, 

dass GP33 nicht kreuzpräsentiert wird. Bei dem Epitop GP33 aus dem Glykoprotein von 

LCMV handelt es sich um ein Signalpeptid und es wurde gezeigt, dass solche Peptide nur 

sehr ineffizient kreuzpräsentiert werden. Dazu wurden zwei verschiedene Epitope (NP366 und 

E749) in ein GFP-Fusions Molekül inseriert, wobei bei einem der Konstrukte NP366 in den N-

Terminus des Signalpeptids eingefügt wurde und E749 in den C-Terminus, bei dem zweiten 

Konstrukt verhielt es sich genau umgekehrt. Mäuse die mit RMA-S Tumorzelllinien, die 

diese Konstrukte beinhalteten, behandelt worden sind, zeigten immer eine stärkere Expansion 

von T-Zellen spezifisch für das jeweils im C-Terminus lokalisierte Epitop. Auch wenn mit 

dieser Untersuchung nicht direkt GP33 analysiert wurde, spricht einiges dafür, dass 

Signalpeptide wie GP33 nicht kreuzpräsentiert werden. Dabei wird diskutiert, dass 

Signalpeptide nur sehr ineffizient kreuzpräsentiert werden, da sie sehr schnell abgebaut 

werden. Freigang et al. (Freigang et al., 2007) generierten eine lösliche nicht spaltbare GP 

Variante und konnten damit zeigen, dass diese Modifikationen zu einer gesteigerten 

Kreuzpräsentation dieses Antigens und zur Aktivierung spezifischer CTL führten. Allerdings 

liegt GP33 im Fall des in dieser Arbeit verwendeten Adenovektors nicht als Signalpeptid vor. 

Die Daten von Wolkers et al. (Wolkers et al., 2004) sind also vor allem im Bezug auf LCMV 

interessant und nach Immunisierung der DC-MHCI Mäuse mit diesem Virus konnte nur eine 

sehr ineffiziente Db GP33 spezifische T-Zellantwort detektiert werden (Abbildung 6.14). 

Die bisher veröffentlichten Arbeiten zu Kreuzpräsentation von GP33 unterscheiden nicht 

zwischen den beiden überlappenden Epitopen im GP von LCMV. Entweder wurden 

funktionelle Analysen, wie beispielsweise Restimulationsassays durchgeführt, die aber keine 

Unterscheidung der beiden Epitope zulassen, oder es wurde mittels Multimeren die 

Expansion Db spezifischer T-Zellen untersucht. Durch die Verwendung Db und Kb 

spezifischer Multimere konnte in der vorliegenden Arbeit gezeigt werden, dass DC, solange 
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sie nicht direkt infiziert werden nur GP34 generieren können und nur die direkt infizierten 

MΦ präsentieren sowohl das Kb als auch das Db restringierte Epitop.  

Wie bereits erwähnt werden in der Literatur derzeit zwei Wege der Kreuzpräsentation 

diskutiert, der zytosolische und der vakuoläre Weg (Abbildung 4.1) (Joffre et al., 2012). Beim 

zytosolischen Weg, welchem derzeit die größere Bedeutung beigemessen wird, können nach 

der Phagozytose exogener Antigene, diese in das Zytosol entlassen werden und durch das 

Proteasom abgebaut werden. Die so prozessierten Antigene können schließlich über TAP in 

das ER transportiert und dort auf MHC-I geladen werden, oder es kommt zu einem 

Rücktransport in die Phagosomen und die dortige Beladung auf MHC-I. Da bei dieser Art der 

Kreuzpräsentation ähnliche Mechanismen (proteasomaler Abbau), wie bei der direkten 

Präsentation über MHC-I greifen, kann dieser Weg für GP33 ausgeschlossen werden, da 

gezeigt werden konnte, dass direkt infizierte DC das GP33 Epitop generieren können 

(Abbildung 6.9). Demnach bleibt der vakuoläre Kreuzpräsentationsweg bei dem die 

aufgenommen Antigene in Phagosomen abgebaut und auf MHC-I geladen werden.   

Darüber hinaus wird in der Literatur diskutiert, welche Bedingungen vorliegen müssen, damit 

exogen aufgenommene Antigene überhaupt in den Kreuzpräsentationsweg gelangen und nicht 

über MHC-II an CD4+ T-Zellen präsentiert werden. So konnten beispielsweise Burgdorf et al. 

(Burgdorf et al., 2007) zeigen, dass der Rezeptor über den das Antigen aufgenommen wird, 

eine entscheidende Rolle spielt. Die Aufnahme exogener Antigene über den Mannoserezeptor 

führt dazu, dass das aufgenommene Antigen in frühe endosomale Kompartimente gelangt und 

dies führt letztlich zur Kreuzpräsentation. Darüber hinaus gibt es Hinweise dafür, dass auch 

der DC Endozytoserezeptor DEC-205, in ähnlicher Weise mit frühen Endosomen verknüpft 

ist. Exogene Antigene, die diesem Rezeptor, der von CD8α+ DC exprimiert wird, zugeführt 

wurden, werden kreuzpräsentiert (Dudziak et al., 2007). Ähnliche Ergebnisse konnten 

Mukhopadhaya et al. (Mukhopadhaya et al., 2008) erzielen. Sie führten einen adoptiven 

Transfer CFSE gefärbter GP33 spezifischer T-Zellen durch und immunisierten die 

Empfängertiere mit anti-DEC205-GP33 und konnten dann sowohl in den Lymphknoten als 

auch in der Milz Proliferation Db GP33 spezifischer T-Zellen nachweisen. 
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7.4 DC-spezifische Vakzinierung  
 

Die Anzahl der Gedächtnis-CTL ist direkt proportional zu der Größe der klonalen Expansion 

der entsprechenden naiven T-Zellen (Hou et al., 1994). Aufgrund dessen wird bei der 

Entwicklung neuer Impfstrategien unter anderem darauf Wert gelegt, die primäre Expansion 

naiver CD8 T-Zellen zu optimieren. Wie bereits erwähnt, konnten Gruber et al. (Gruber et al., 

2010) nach der Immunisierung von C57BL/6 und DC-MHCI Mäusen mit einem replikations-

defizienten rekombinanten HSV-OVA Vektor eine höhere Expansion spezifischer T-Zellen 

sowohl für OVA, als auch für Glykoprotein B des Herpes Simplex Virus in DC-MHCI 

Mäusen nachweisen. Diese Ergebnisse liefern eine Erklärung für die Effizienz von Vakzinen, 

bei denen das Antigen in vivo DC zugeführt wird, wie beispielsweise durch Antikörper gegen 

DEC205/CD205 (Bonifaz et al., 2004). Durch die Immunisierung mit rAd-OVA konnten in 

der vorliegenden Arbeit ähnliche Ergebnisse erzielt werden. So kam es in den DC-MHCI 

Mäusen zu einer ca. zwei- bis dreifach stärkeren Expansion OVA-spezifischer T-Zellen als in 

den Wildtyp-Mäusen (Abbildung 6.1). Da, wie bereits angesprochen GFP Expression nur in 

MΦ der MZ detektiert werden konnte, scheint auch die OVA spezifische Antwort auf 

Kreuzpräsentation zurückzuführen zu sein. Durch die Immunisierung von C57BL/6 Mäusen 

mit Ig-OVA, das kreuzpräsentiert wird, im Vergleich zu der Verabreichung von Ig-OVA in 

Kombination mit OVA-Peptid, fanden Gruber et al (Gruber et al., 2010) heraus, dass auch im 

Fall der Kreuzpräsentation die Expression des Peptids auf allen Zellen zu einer verminderten 

Expansion spezifischer T-Zellen führt.  

Impfstoffe, die das Antigen selektiv DC zuführen, können also einen entscheidenden Vorteil 

haben gegenüber solchen, die das Antigen ubiquitär verteilen. In der vorliegenden Arbeit 

konnte, wie bereits erwähnt, gezeigt werden, dass DC, solange sie nicht direkt infiziert 

werden nur GP34 spezifische T-Zellen aktivieren (Abbildung 6.7). Ob die beobachtete 

Dichotomie zwischen direkter- und Kreuzpräsentation bezüglich der Epitopspezifität auch für 

andere Antigene zu treffend ist, bleibt zu klären. 
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7.5 Schlussfolgerungen und Ausblick  
 

In der vorliegenden Arbeit wurde sowohl durch immun-histologische Analysen nach der 

Immunisierung mit rAd-GFP (Abbildung 6.10 und 6.12), als auch durch die Depletion der 

MΦ mittels Clodronat gezeigt (Abbildung 6.16), dass MMM und MZM entscheidend sind für 

die Aktivierung Db spezifischer T-Zellen. In der Literatur wird das Mausmodell CD169-DTR 

beschrieben, wobei die Depletion der MΦ durch DT auf dem gleichen System beruht, wie die 

Depletion der DC in den CD11c-DTR Mäusen (Miyake et al., 2007). Miyake et al. führten die 

humane DTR cDNS in das CD169 Sialoadhesin Gen ein, das spezifisch von MMM 

exprimiert wird. Es wäre interessant, diese Mäuse mit rAd-GP33 oder auch mit LCMV-WE 

zu immunisieren, um sowohl mittels Kb und Db Multimeren die Expansion der T-Zellen zu 

analysieren, als auch funktionelle Assays durchzuführen. Da in diesen Mäusen DC noch 

vorhanden sind, MMM und MZM aber nicht, besteht die Möglichkeit, dass es in vivo zu einer 

direkten Infektion der DC kommt und diese dann, ähnlich wie in vitro gezeigt werden konnte 

(Abbildung 6.9), Db GP33 spezifische T-Zellen aktivieren können. Sollte es auch in den 

CD169-DTR Mäusen nicht zu einer direkten Infektion der DC kommen, dann wäre wieder 

nur eine Kb GP34 spezifische T-Zellantwort zu erwarten. In den DC-MHCI Mäusen, in denen 

dieses Ergebnis erzielt wurde, sind MΦ noch vorhanden, exprimieren aber kein MHC-I 

(Abbildung 6.10 B). Zu welchem Ergebnis das Fehlen der MΦ in der MZ der CD169-DTR 

Mäuse führt, bleibt zu untersuchen. 

Mit den in dieser Arbeit durchgeführten Analysen konnte nicht zwischen MMM und MZM 

unterschieden werden. Auch mit den CD169-DTR Mäusen ließe sich die Frage welcher MΦ- 

Typ entscheiden ist für die Aktivierung Db spezifischer T-Zellen nicht abschließend klären. 

Miyake et al. zeigten, dass es in diesen Mäusen nach Gabe von DT sowohl zu einer Depletion 

der MMM (CD169+) als auch der MZM (SIGN-R1+) kommt. Die Autoren konnten die 

Expression der CD169 mRNA in beiden Arten von MΦ detektieren, allerdings ist das 

Expressionslevel in den MZM etwas geringer als in den MMM.  

Dies deckt sich mit den immun-histologischen Analysen (Abbildung 6.12), die eine 

Unterscheidung zwischen MMM und MZM nicht erlaubten, da doppelt positive Zellen in der 

MZ zu finden waren.  
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Die in der vorliegenden Arbeit vorgestellten funktionellen Analysen ergaben weder 

qualitative noch quantitative Unterschiede im Bezug auf T-Zell-Effektorfunktionen 

(Abbildung 6.1 und 6.15). Sowohl in den Δ-DC als auch in den DC-MHCI-Mäusen konnten 

im Vergleich zu C57BL/6 immer die gleichen Mengen an T-Zellen, die CD107a und IFNγ 

oder nur IFNγ produzieren, detektiert werden. Allerdings wurden die Experimente sowohl 

nach Immunisierung mit rAd-GP33, als auch mit LCMV-WE immer am Höhepunkt der 

Antwort durchgeführt. Eine Analyse der Gedächtnisantworten um zu untersuchen, wie sich 

der Gedächtnispool entwickelt, wenn beispielsweise nur DC das Antigen präsentieren können 

oder DC depletiert wurden, könnte in diesem Zusammenhang noch untersucht werden. Dies 

wird sich aber nur schwer realisieren lassen, da die Δ-DC Mäuse mit zunehmendem Alter 

erkranken (Ohnmacht et al., 2009).  

Wie bereits beschrieben, konnten GFP positive Zellen nach der Immunisierung mit rAd-GFP 

sowohl in der Milz als auch in den Haut-drainierenden Lymphknoten 48 Stunden nach 

Immunisierung in MMM und MZM der MZ detektiert werden (Abbildung 6.12 und 6.13) Die 

Lokalisation des GFP änderte sich nicht bis zu sieben Tage nach Immunisierung (Daten nicht 

gezeigt). Dies liegt vermutlich daran, dass es sich bei dem Vektor um ein replikations-

defizientes Virus handelt. Bei LCMV-WE hingegen ist dies nicht der Fall, weshalb die 

Lokalisation dieses Virus in Milz und Lymphknoten nach Immunisierung noch untersucht 

werden soll. Da LCMV-GFP nicht zur Verfügung steht, wird mit dem Antikörper VL4 

gearbeitet werden. Smelt et al. (Smelt et al., 2001) konnten zeigen, dass an Tag eins nach 

Immunisierung das Virus vor allem in der MZ detektierbar ist. Ob sich das Virus in den 

folgenden Tagen in der weißen Pulpa ausbreitet und eher eine persistierende Infektion zur 

Folge hat, oder ob es in der roten Pulpa repliziert und relativ schnell eliminiert werden kann, 

ist abhängig vom LCMV Stamm. Dabei konnten Smelt et al. zeigen, dass die Affinität des 

Virus zu seinem Rezeptor α-DG maßgeblich dafür ist, in welcher Region das Virus nach Tag 

eins repliziert. So führt eine starke Affinität des Virusstammes zu diesem Rezeptor eher zu 

einer Replikation in der weißen Pulpa, wohingegen schwachbindende Stämme eher in der 

roten Pulpa replizieren. Darüber hinaus zeigten Sevilla et al. (Sevilla et al., 2000), dass α-DG 

hauptsächlich von CD11c+ Zellen exprimiert wird und dass die Interaktion zwischen Virus 

und Rezeptor auf DC zu deren Infektion führt. Dass macht sie zur Zielscheibe, sie werden von 

spezifischen T-Zellen eliminiert, was letztlich persistierende Infektionen auslösen kann. Um 

dies genauer in der DC-MHCI Maus und in den DC-defizienten Mausstämmen zu 



 

 

 

	
  
Diskussion 

	
  
	
   	
  

86 

untersuchen, sollen immun-histologische Analysen an verschieden Tagen nach 

Immunisierung durchgeführt werden, wobei neben LCMV-WE auch noch zwei weitere 

Stämme verwendet werden sollen, die sich in ihrer Affinität zu α-DG unterscheiden.  
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