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1. Introduction 
 

1.1 Early mammalian development 

 

Early mammalian development is a well-orchestrated process involving dynamic molecular 

and structural changes. Oocytes start to develop in the ovary at prenatal age and pause 

maturation in late fetal life. Reaching puberty, in the first menstrual cycle (humans and 

primates) or estrous cycle (non-primate vertebrates), fully grown oocytes resume maturation 

in response to gonadotropins. As soon as the hormones induce meiosis, the germinal vesicles 

(GV) breaks down, the cytoskeleton rearranges, and the spindle assembles. Matured oocytes 

finally arrest in metaphase II (MII). At this stage, the first polar body is extruded, by which the 

extra haploid set of chromosomes resulting from meiosis is discarded (Figure 1) [1]. 

 

 

Figure 1. Maturation of mammalian oocytes. Maturation of immature germinal vesicle (GV) oocytes is induced 

by gonadotropins. In the maturation process, the germinal vesicle (GV) breaks down, followed by meiosis I spindle 

assembly and chromosome migration. The first polar body is extruded and the meiosis II spindle forms 

subcortically. Mature metaphase II (MII) oocytes arrest and are released into the oviduct (adapted from Li et al. [1]). 

  
A prophase I-arrested oocyte, with a 4C DNA content (corresponding in this case to a diploid (2N) chromosome number, and each 

chromosome consists of two chromatids), begins the maturation process with germinal vesicle breakdown (GVBD), followed by 

meiosis I spindle assembly and chromosome migration. This induces the formation of a cortical actomyosin domain (red). 

Immediately after meiosis I anaphase and extrusion of the first polar body, the meiosis II spindle forms subcortically and induces 

the formation of a second polar actomyosin domain. The now mature oocyte with 2C DNA content (corresponding in this case to a

haploid (1N) chromosome number, and each chromosome consists of two chromatids) maintains metaphase arrest and 

asymmetrical positioning of the spindle. Upon fertilization (or parthenogenetic activation), meiosis is reinitiated and results in the 

separation of sister chromatids and extrusion of the second polar body, leaving a haploid female pronucleus bearing a DNA 

content of 1C (corresponding in this case to a haploid (1N) chromosome number, and each chromosome consists of one 

chromatid) as is the case for the male pronucleus.

GV oocyte
(immature)

Germinal vesicle 
(nucleus)

Meiosis I Meiosis II

MII oocyte
(mature)

GV breakdown,
Spindle assembly

Extrusion of 
first polar body
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In monovulatory species such as humans and cows, usually one arrested MII oocyte enclosed 

by cumulus cells is released from the dominant follicle into the oviduct, a tube connecting 

ovary and uterus, in a process referred to as ovulation. Ovulation is initiated by a surge of 

luteinizing hormone (LH) at about day 14 of the menstrual cycle in humans [2] and at about 

day 0, at estrus, in cows [3]. Estrus is a phase of the estrous cycle of non-primate vertebrates 

characterized by receptivity to males and to mating, often referred to as "heat". LH acts 

synergistically with follicle stimulating hormone (FSH) which reaches its peak level at the 

same time as well [4, 5]. The release of FSH and LH from the pituitary is caused by 

hypothalamic secretion of gonadotropin-releasing hormone (GnRH), whose release is in turn 

caused by rising levels of estrogen. Following ovulation, in the luteal phase of the menstrual 

cycle, progesterone is produced by the remains of the dominant follicle, referred to as corpus 

luteum. This stimulates the growth of the uterine lining (endometrium) to prepare for a 

potential implantation of an embryo. If no pregnancy is established, the uterine lining is 

sloughed off during menstruation. The human menstrual cycle is illustrated in Figure 2 [6]. In 

animals with estrous cycles, the endometrium is restructured if no conception occurs [7]. 

Arrested MII oocytes are fertilizable for about 24 hours in the oviduct. Fertilization triggers 

resumption of meiosis in the oocyte and the extrusion of the second polar body. 

Subsequently, the membranes of the male and female haploid pronuclei dissolve, the 

chromosomes combine and become part of a single diploid nucleus. At this stage, the 

fertilized oocyte is called zygote [1]. Shortly afterwards, embryonic mitotic cleavage divisions 

begin and form the blastomeres of subsequent embryonic stages. During these initial 

cleavages, the embryo does not increase in size, i.e. the total volume of the early embryo 

remains unchanged from that of the zygote stage [8]. 
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Figure 2. The human menstrual cycle. Gonadotropins (A) and ovarian hormones (C) control the ovarian (B) and 

the uterine (D) cycle. During the follicular phase of the uterine cycle, the oocyte matures within the follicle of the 

ovary and the uterine lining prepares for implantation of a blastocyst. Ovulation occurs around day 14 by which a 

mature oocyte is released into the oviduct. If no blastocyst implants in the uterus, the uterine wall begins to break 

down, leading to menstruation. Source: Developmental Biology, 10th edition, Chapter 17, Scott F. Gilbert, 2013, 

ISBN 9781605351735 [6]. 

 

Completion of oocyte meiosis and the first embryonic cleavage cycles are under the control of 

maternal gene products, requiring adequate translation of maternal RNAs as well as 

activation, inactivation and relocation of proteins [9]. Maternal transcripts and proteins are 

accumulated and stored during oogenesis and gradually depleted while the embryonic 

genome activation (EGA) occurs and the embryo starts to produce its own transcripts and 
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proteins [10-12]. The shift from maternal to embryonic control, also referred to as maternal-to-

embryonic transition (MET), is characterized by major changes in the pattern of gene 

expression and protein synthesis. Major EGA occurs at the two-cell stage in mice [13], at the 

four- to eight-cell stage in humans [14] and pigs [13], and at the eight- to 16-cell stage in 

sheep [10]. In early bovine development, a gradual switch from maternal to embryonic control 

occurs with a minor EGA occurring between the one- to four-cell stage [15] followed by the 

major EGA at the eight- to 16-cell stage [16]. 

While the early embryo travels along the oviduct towards the uterus, compaction occurs, by 

which the outer blastomeres of the embryo acquire an apical-basal polarity and gain a tighter 

contact to each other by an increase of intercellular adhesions [17, 18]. Ongoing embryonic 

cleavage and compaction lead to formation of a solid mass of cells, at which stage the embryo 

is referred to as morula due to its shape resembling a mulberry (Latin, morus: mulberry). This 

is accompanied by a loss of pluripotency and resembles the first lineage decision, leading to 

the formation of trophectoderm (TE). The TE is a fluid-transporting epithelium responsible for 

formation of the blastocoel, a fluid-filled cavity, during blastocyst development [19] and 

resembles the progenitor cells of the embryonic part of the placenta. The inner blastomeres of 

the compacted morula form the inner cell mass (ICM), i.e. the pluripotent progenitor cells of 

the embryo proper. The embryo reaches the blastocyst stage at embryonic day 3 in mice, day 

5 to 6 in humans and day 7 in cows [20-22]. Shortly afterwards, the blastocyst hatches out of 

the zona pellucida, which is the outer shell and functions as a protective envelope. On day 4 

in mice [23], around day 9 in humans [23,24] and around day 19 to 20 postfertilization in cows 

[25-27], implantation occurs by which a physical and physiological contact between the 

blastocyst and the uterus is established. The embryo receives oxygen and nutrients by this 

direct contact, and later on by the placenta, to support growth [23]. The early embryo 

development of humans is depicted in Figure 3. 
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Figure 3. Early embryo development in humans. During ovulation, usually one arrested MII oocyte enclosed by 

cumulus cells is released from the ovary into the oviduct. Fertilization by sperm occurs in the oviduct at day 0. The 

male and female haploid pronuclei combine and a diploid zygote is formed. Embryonic cleavage begins shortly 

afterward and continues while the embryo travels along the oviduct towards the uterus. Soon after the embryo has 

reached the blastocyst stage, it hatches out of the zona pellucida and implants in the uterus at about day 9. 

Source: Early Development. In Stem Cell Information [World Wide Web site]. Bethesda, MD: National Institutes of 

Health, U.S. Department of Health and Human Services, 2009 [cited, June 25, 2014] (© 2001 Terese Winslow). 

Available at: http://stemcells.nih.gov/info/scireport/pages/appendixa.aspx  
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1.2 Considerations for the study of early mammalian development 

1.2.1 The cow – an ideal model system for human reproduction 

 

Ethical and practical reasons like the “German embryo protection law” prohibit direct analyses 

of human embryos, thus limiting mammalian embryo research to animals. The most widely 

used model organism for studying mammalian preimplantation embryo development is the 

mouse, but growing evidence suggests the bovine model to better reflect the human system 

[28]. Both cattle and humans are monovulatory, non-seasonal polycyclic and the duration of 

estrous and menstrual cycle are significantly longer compared to the mouse (21 and 28 days, 

respectively). Bovine and human reproductive biology also share important similarities 

regarding structure and function of the ovaries [29] and the role of the sperm centrosome for 

the first mitosis and the formation of a diploid genome [30, 31]. Furthermore, biochemical 

pathways and metabolism as well as size of oocytes and early embryos are comparable [28, 

32-34]. 

Most molecular studies so far were performed in mice, and results can only be extrapolated to 

both non-rodent mammals and humans to a very limited extent because of the fundamental 

differences in their reproductive physiology and morphology. Therefore, besides addressing 

problems in ruminant reproduction and development, bovine oocytes and embryos can in a 

number of aspects serve as animal models for human reproduction and corresponding 

disorders and/or therapies [35], making research in this area especially valuable.  

 

1.2.2 Generation of sample material 

 

Mature bovine oocytes in large numbers can be generated in vivo, however, cows usually 

need to be subjected to hormonal superstimulation before oocytes can be aspirated about 

every five weeks, which is very costly, labor-intensive and time-consuming. In contrast, the in 

vitro maturation of bovine oocytes and generation of embryos can be performed with a 

significantly higher throughput by using ovaries easily accessible from abattoirs. The ovaries 
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are transferred to the laboratory where the oocytes are aspirated out of the follicles, which are 

the functional units of the ovary. These aspirated bovine oocytes are a heterogeneous group 

of immature GV oocytes surrounded by several layers of cumulus cells and are therefore 

referred to as cumulus-oocyte complexes (COCs). To obtain a mostly homogenous group of 

mature MII oocytes, the GV oocytes need to be matured in vitro, by which they develop into 

haploid gametes and become fertilizable. There is a variety of different protocols available, by 

which maturation can be induced. Frequently, the oocyte in vitro maturation (IVM) media is 

supplemented with estrous cow serum (ECS) and hormones. ECS is taken about 12 hours 

after ovulation, at estrus, when the female cow is sexually receptive. Just as common is the 

supplementation of IVM media with the hypophyseal gonadotropins FSH and LH, which has 

been shown to enhance maturation of immature oocytes, expansion of cumulus cells, 

fertilization and embryo development [32, 36, 37]. Further recurrently used supplementations 

are estrogens (estradiol) and androgens. Androgens may affect folliculogenesis directly via 

androgen receptors or indirectly through aromatization to estrogen [38]. Growth factors are 

deployed as well, e.g. the epidermal growth factor (EGF) [39] and the growth hormone 

somatotrophin (GH). GH has been shown to accelerate nuclear maturation and to enhance 

the yield of blastocysts after fertilization and embryo culture [40-42]. 

After 22 to 24 hours of maturation, mature MII oocytes, recognizable by the presence of an 

extruded polar body, are ready for fertilization with bull sperm by co-incubation for about 19 

hours. Subsequently, the cumulus cells are removed by vortexing and the presumptive 

zygotes are cultured at a low oxygen level of 5 % until the desired stage, at which they are 

frozen. The process of in vitro embryo production is illustrated in Figure 4. 
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Figure 4. In vitro production of bovine oocytes and embryos. A: Bovine ovary collected from a local abattoir. 

B: Aspiration of cumulus-oocyte complexes (COCs) out of the ovarian follicles by vacuum pressure. C: Selection of 

COCs which are completely surrounded by cumulus cells using transmission light microscopy followed by hormone 

induced maturation for 22-to 24 h. D: Fertilization with bull sperm by co-incubation for 19 h. E: Removal of cumulus 

cells followed by embryo culture. Images were kindly provided by Dr. Myriam Demant. 

 

1.2.3 The study of early mammalian development on a molecular level 

 

The timing and morphology of pre-implantation development have been well studied [43, 44], 

but the underlying molecular mechanisms are only partially understood. Several peculiarities 

of oocytes make the understanding of crucial molecular processes during early 

embryogenesis challenging. For instance, unlike somatic cells, oocytes contain mRNAs which 

are extremely stable with an average half-life of around 12 days [45] and which are stored for 

longer periods of time. Similarily, many proteins are also already synthesized during oocyte 

growth and are stored for later use [46]. Furthermore, transcriptional activity is almost 

completely silenced starting several days before ovulation and ending with the major EGA at 

species-specific time points after fertilization [47, 48]. 

Only few studies so far have used proteomic approaches to analyze this highly critical period 

of mammalian development. Up to now, proteomic approaches require an expensive set of 

instruments and sophisticated know-how with respect to protein biochemistry, 

chromatography, mass spectrometry and bioinformatics. In contrast to RNAs, individual 

proteins differ enormously in their chemical and physicochemical properties (e.g. solubility) 

and the dynamic range of protein abundance in mammalian tissues or cells is in the order of 

108. Initial attempts to use antibody arrays for highly parallel protein quantification [49], similar 
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to the RNA microarray strategies, suffered from the very limited number of suitable antibodies 

available and the narrow dynamic range of this approach. Until now, this technique is not 

powerful enough for holistic proteome analyses which usually are expected to cover several 

thousand proteins. In addition, an amplification procedure like PCR does not exist for proteins. 

Therefore, proteomic experiments have to include de novo identification by mass 

spectrometry. Probably as a consequence of the complex technology and experience required 

for proteomic analyses, many researchers have focused on the analysis of the transcriptome, 

which currently is much faster, cheaper and more comprehensive. 
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1.3 Molecular approaches applied to study early mammalian development 

1.3.1 Transcriptomic studies 

 

Several transcriptomic studies have targeted bovine embryogenesis so far [50-52], e.g., 

Vigneault and coworkers [50] studied genes associated with the MET by characterizing cDNA 

libraries enriched in embryonic transcripts expressed at this crucial step in embryogenesis. 

They demonstrated a high proportion of genes to be involved in gene transcription or RNA 

processing which is consistent with the presumably high transcriptional activity of late eight-

cell embryos. In another study performed by Kues et al. [51], MII oocytes and preimplantation 

embryos were analyzed by Affymetrix GeneChip Bovine Genome Arrays. The authors 

detected approximately 350 genes which were transcribed in a stage-specific pattern before 

the major EGA at the eight-cell stage. Further, they described groups of transiently active 

genes and suggested dynamic changes in the embryo transcriptome. For example, they found 

a group of 48 genes which were up-regulated in the two-cell stage, down regulated in the four-

cell stage, and then up-regulated again, and remaining highly transcribed until the blastocyst 

stage. Among them were IL18 and tumor protein, translationally-controlled 1 (TPT1). Graf and 

co-workers [52] established a comprehensive catalogue of transcripts from several bovine 

embryonic stages by RNA-Seq and detected genes activated between four-cell and blastocyst 

embryos. Genes activated at the four-cell stage were related to RNA processing, translation 

and transport, which was interpreted as preparatory event for major EGA. The largest 

proportion of gene activation was detected at the eight-cell stage, the time of major EGA. 

It should be kept in mind, however, that analysis on the level of coding RNAs addresses the 

question whether or not the corresponding gene is more or less actively transcribed in a given 

sample. However, it does not give unambiguous evidence whether, and to what extent, the 

corresponding protein is either present in the sample or is going to be synthesized. This is a 

consequence of the numerous regulation steps in eukaryotic organisms between the 

appearance of the transcript or polyA+ RNA and the translation at the ribosome, e.g. splicing, 

5’ capping and 3’ end proccessing [53]. Making matters even worse, protein processing by 
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proteolytic events, protein activation and signaling cascade activation by (de)phosphorylation 

is not accessible from either the genome or transcriptome [54, 55]. Therefore, analysis of the 

transcriptome is not a suitable surrogate for proteome analysis, and information about protein 

expression levels, abundance changes, or activation status can in general only be gained at 

the protein level. 

 

1.3.2 Proteomic studies 

 

1.3.2.1 Overview of proteomic techniques 

 

The most popular analytical method for early proteomic experiments for a long period has 

been two-dimensional gel electrophoresis (2D-PAGE), which was described for the first time 

in 1975 [56, 57]. Since about ten years, a powerful alternative to 2D gel-based approaches 

has been developed and is referred to as nano liquid chromatography–tandem mass 

spectrometry or nano-LC-MS/MS (reviewed in [58]). In this approach, protein lysates of the 

original samples are digested with protease, separated by nano-chromatography and 

subsequently analysed by a tandem mass spectrometer. Tandem mass spectrometers can 

capture individual peptide ions in millisecond intervals and create peptide fragments by 

collision with gas molecules inside the instrument, a process referred to as collision-induced 

dissociation (CID) [59, 60]. Fortunately, fragmentation occurs predominantly at the peptide 

bond, yielding to a predictable fragmentation pattern. The peptide fragment masses are 

determined by the instrument and lead to so-called MS/MS spectra characteristic for each 

individual peptide. By correlation of all MS/MS spectra generated from a sample with 

theoretical MS/MS spectra calculated from a sequence database of the corresponding 

organism, proteins can be identified using dedicated software. The completeness of 

identification depends on the number of proteins present in the original lysate, their individual 

concentration, the effort taken to pre-fractionate proteins or peptides prior to RP 

chromatography, and the performance of both RP chromatography and mass spectrometer. 
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For relative quantification of individual proteins in LC-MS/MS approaches, several methods 

are available, based on either a direct quantification of MS or MS/MS signals or on a pre-

labeling of proteins or peptides with chemical tags containing different compositions of stable 

isotopes prior to mass spectrometry. These tags introduce a characteristic mass shift between 

corresponding peptides obtained from different samples, facilitating co-analysis in the LC-

MS/MS instrument [61]. The label free methods use either the signal intensity of the peptide in 

the MS spectrum (e.g., MAXQUANT [62]) or compare the number of MS/MS spectra obtained 

in different samples for each peptide by “spectral counting” [63]. Isotope labeling based 

quantification is generally regarded as more precise compared to label free methods, but 

requires additional efforts with respect to experimental procedures and costs. Non-radioactive 

stable isotope labels (SIL) are introduced either metabolically during cell culture, e.g., SILAC 

[64], or chemically at the level of proteins, e.g., ICAT [65] or of peptides, e.g., iTRAQ (isobaric 

tags for relative and absolute quantification) [66]. A benefit of the iTRAQ method is that it 

enables a multiplexed differential quantification between two to eight samples at the level of 

peptides. Samples are pooled prior to LC-MS/MS analysis, which increases the overall protein 

identification and quantification when working with low sample amounts, by far exceeding the 

results obtained by gel-based methods. Therefore, it is an ideal method when sample material 

is limited. The iTRAQ™ reagents enabling a 4-plex approach were developed by Darryl 

Pappin and coworkers in 2004 [66] and are depicted in Figure 5. They consist of four 

independent tags of the same mass which can be used for covalent labeling of the N-terminus 

and side chain amines of tryptic peptides from protein digests. Up to four samples are labeled 

individually with one of the iTRAQ reagents followed by combination of all samples and LC-

MS/MS analysis. After fragmentation in MS/MS, four unique reporter ions (mass-to-charge 

ratio (m/z) = 114 - 117) are released from the tag which are used for quantification of the 

parent proteins [67]. An example of protein quantification using the iTRAQ method is given in 

Figure 6. 
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Figure 5. Chemical structure of the iTRAQ 4-plex reagents. The iTRAQ labels 114- to 117 are isobaric tags 

which consist of a charged reporter group, a neutral balance group to maintain an overall mass of 145, and an 

amine specific peptide reactive group [67]. 

 

 

Figure 6. Example for quantification of the protein GAPDH using 4-plex iTRAQ. In the MS spectrum, all four 

labeled samples have identical m/z values and cannot be distinguished. After fragmentation in MS/MS, the reporter 

ions of the iTRAQ labels are released and can be used for quantification of individual peptides. Here, the 

quantification of the peptide GAAQNIIPASTGAAK is illustrated. This process is repeated many times and the mean 

of all quantified peptides is used for quantification of the corresponding protein. 
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A targeted proteomic method called selected reaction monitoring (SRM), also known as 

multiple reaction monitoring (MRM), is becoming increasingly popular for the quantification of 

pre-selected proteins in complex sample materials. It is based on stable isotope dilution and 

particularly eases protein quantification of samples from non-human species, because SRM 

requires no specific antibodies, only sequence information of the targeted protein. Additionally, 

it offers the option to study post-translational modifications and splice variants of proteins. 

SRM is also significantly more sensitive and specific than holistic proteomic approaches, 

enabling monitoring of unique ions amidst complex matrixes. For example, 100 amol of 

analyte can be quantified in only 1 µg total protein, making SRM the perfect method for 

quantification and verification of selected proteins in limited sample amounts. This is facilitated 

by two filtering steps: The first and third quadrupole of a triple quadrupole mass spectrometer 

serve as mass filters to isolate precursor ions and corresponding fragment ions, respectively. 

In the second quadrupole, the precursor ion is fragmented and the signal of the fragment ion 

is then monitored over the chromatographic elution time as illustrated in Figure 7 [68-70]. 

 

 

Figure 7. Principle of Selected Reaction Monitoring (SRM). SRM assays are usually performed on a triple 

quadrupole mass spectrometer. In the first quadrupole, a distinct precursor (peptide) ion is selected and 

fragmented in the second quadrupole. A corresponding fragment ion is selected in the third quadrupole and the 

SRM signal is monitored over the chromatographic elution time. (Adapted from: A. Schimdt, P. Picotti and R. 

Aebersold Proteomeanalyse und Systembiologie BIOspektrum, 1/2008, S. 44) 
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The establishment of an SRM assay starts with the selection of appropriate peptides, which 

are unique to the protein of interest (proteotypic), and show high mass spectrometry signal 

intensities. The next step is the selection of the most abundant peptide fragments. The 

specific precursor and corresponding fragment ion pairs represented by their m/z values are 

referred to as "transitions". Whenever possible, the most intense transition is used for 

quantification of the corresponding peptide and therefore referred to as “quantifier”. For 

additional improvement of the assay, usually one or two further transitions are monitored and 

referred to as “qualifiers”. Internal standards consisting of stable isotope-labeled (SI) peptides, 

also referred to as “heavy” peptides, enable relative and absolute quantification of proteins by 

calculation of the ratio endogenous (light) peptide to SI (heavy) peptide (Figure 8). SI peptides 

are chemically identical to the endogenous peptides, but their masses differ and their 

intensities can be co-detected [68, 71]. 

 

 

Figure 8. Protein quantification by SRM. The “light” peptide represents the endogenous peptide of the protein 

digest and the “heavy” peptide added stable isotope-labeled (SI) peptide. For quantification, the ratio between the 

signal intensities is calculated. Cps = counts per second. 
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1.3.2.2 Proteomic studies targeting bovine oocyte maturation and early embryogenesis 

 

Proteomic data of oocyte maturation, and especially of early embryogenesis in large 

mammals like cattle, is scarce. One of the few studies in this research area used a 2D gel-

based approach to study meiotic maturation of oocytes and identified differentially expressed 

proteins [72]. Bovine GV, MI, or MII oocytes were treated either with or without the cyclin 

dependent kinases (CDK) inhibitor butyrolactone I (BL I), and subjected to 2D-PAGE. There is 

increasing evidence that meiotic resumption is under the control of CDK1 kinase, which forms 

the maturation promoting factor MPF together with cyclin B, and mitogen-activated protein 

kinases MAPK [73, 74]. BL I is supposed to impair resumption of meiosis due to its CDK-

inhibiting quality. In a preceding study [75], the group had already demonstrated that BL I 

inhibits phosphorylation of essential components of the translation initiation complex and 

therefore modulates translation. Nevertheless, BL I treatment seemed to have no apparent 

effect on the overall expression of proteins during IVM in the follow-up study [72] and the 

authors concluded that alterations in the proteome are mainly caused by protein degradation 

and not by changes in the turnover of proteins. Forty proteins could be identified in the study 

and four of them were differentially abundant, from which cyclin E2 and peroxiredoxin-2 were 

suggested to serve as molecular markers for meiotic maturation [72]. 

In another 2D gel-based approach targeting oocyte maturation [76], more than 3,000 protein 

spots were detected by fluorescence scanning, and 38 significant differences in protein 

abundance between GV and MII oocytes were found. Of these 38 spots, the intensities of 21 

increased during maturation, while the intensities of 17 decreased. Among the proteins with 

decreased in abundances during maturation were clusterin (CLU), translationally controlled 

tumour protein (TCTP), peroxiredoxin-3 (PRDX3), and 14-3-3 protein epsilon (YWHAE). The 

latter has been suggested to mediate Cdc25 phosphatase inhibition [77], which is a 

phosphatase required for MPF activation [78]. Furthermore, changes in the abundance of 

different isoforms of “similar to glutathione-s-transferase Mu 5” (GSTM5) were shown. 
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A recently published study [79] used a nano-LC-MS/MS approach in combination with iTRAQ 

labeling to analyze the effect of the proteasomal inhibitor MG132 during bovine oocyte 

maturation. MG132 has already been shown to improve developmental competence of 

parthenogenetically activated oocytes in the pig [80]. The proteasome is a multisubunit 

proteolytic complex [81] and early in maturation, completion of meiosis I requires an 

inactivation of MPF through proteasomal cleavage of ubiquitinated cyclin B1 [82]. A total of 

669 proteins were identified in MII oocytes, and 653 proteins could be quantified. Exposure to 

MG132 increased the abundance of six proteins, e.g. glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), an enzyme involved in glycolysis and related to developmental 

competence [83] and tubulin alpha-1C chain (TUBA1C), important for organellar movement 

[84]. The study demonstrated that treatment with MGF132 late in maturation improves oocyte 

competence in cattle. 

One of the earliest studies addressing quantitative changes in the proteome of bovine 

embryos used a 1D gel-based approach. The amount of de novo protein synthesis during 

early embryogenesis was found to decrease between the zygote and the eight-cell stage and 

then to increase until the blastocyst stage [85]. These results supported the determination of 

the timing at the MET [86]. A more recent 2D gel-based study of bovine embryos [87] aimed 

to identify maternal housekeeping proteins (MHKP) translated during bovine oocyte 

maturation and early embryo development. It was demonstrated, that 92 proteins were 

synthesized de novo in oocyte maturation and 123 proteins in embryogenesis. A total of 46 

proteins were contained in both periods which were therefore considered as possible MHKPs. 

Ten of these potential MHKPs were identified, including heat shock 70 kDa protein (HSP70) 

and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1). 

 

An overview of proteomic studies concerning oocyte maturation and early embryogenesis 

using a bovine model system is presented in Table 1. 
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Table 1. Overview of proteomic studies concerning bovine oocyte maturation and early embryogenesis. 

Study subject 
/ Approach 

Major findings Conclusions Reference 

Oocyte 
maturation / 
radiolabeling + 
2D-PAGE 

Identification of cyclin B 
Cyclin B may have an initiator role 
for meiotic resumption 

Levesque & 
Sirard 1996 

Oocyte 
maturation / 
radiolabeling + 
2D-PAGE 

Characteristic patterns of protein synthesis 
detected 

Protein synthesis affects different 
proteins during the transition of GV 
to MII stage; 3 patterns of protein 
synthesis detected 

Coenen et 
al. 2004 

Oocyte 
maturation /  
2D-PAGE 

40 proteins identified; 4 were differentially 
expressed: tubulin-chain (TBB), cyclin E2 
(CCNE2) and truncated CCNE2, protein 
disulfide isomerase (PDIA3), and 
peroxiredoxin 2 (PDX2) 

CCNE2 and PDX2 as molecular 
markers for meiotic maturation 
suggested 

Bhojwani et 
al. 2006 

Oocyte 
maturation /  
2D-DIGE 
saturation 
labeling 

38 significant differences in protein 
abundance between GV and MII oocytes; 
10 identified: clusterin (CLU), translationally 
controlled tumour protein (TCTP), E2, 6-
phosphogluconolactonase (6PGL), 
peroxiredoxin-3 (PRDX3), Eukaryotic 
translation (EF-1ɣ), and 14-3-3 protein 
epsilon (YWHAE) and 3 different isoforms 
of glutathione-s-transferase Mu 5 (GSTM5) 

Varying abundance changes 
between different isoforms of 
GSTM5 revealed; Decrease of 
YWHAE fits MPF activation to 
promote mitosis; Protein 
candidates for in vitro maturation 
suggested 

Berendt et 
al. 2009 

Oocyte 
maturation / 
iTRAQ labeling 
+ LC-MS/MS 

669 proteins identified and 653 quantified; 
relative abundance of 7 and 24 proteins 
increased and decreased in response to the 
proteasomal inhibitor MG132, respectively 

Inhibition of proteasomes during 
the late phase of oocyte maturation 
can improve the developmental 
competence of oocytes 

You et al. 
2012b 

Embryogenesis 
/ radiolabeling + 
1D-PAGE 

Protein synthesis decreased between the 
zygote and the eight-cell stage and then 
increased until the blastocyst staged 

The maternal-to-embryonic 
transition occurs at the eight- to 16-
cell stage 

Frei et al. 

1989 

Oocyte 
maturation + 
embryogenesis / 
radiolabeling + 
2D-PAGE 

46 proteins present during oocyte 
maturation as well as early embryogenesis; 
10 identified: HSC71, HSP70, CypA, UCH-
L1, GSTM5, Cct5, E-FABP, 2,3-BPGM, 
E2D3 and ß-actin/ɣ-actin 

Translation affects different 
proteins during oocyte maturation 
and embryogenesis; Housekeeping 
proteins suggested 

Massicotte 
et al. 2006 
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1.4 Aim of the thesis 

 

Early embryogenesis is a highly critical period of mammalian development. The timing and 

morphology of pre-implantation development have been well studied, but molecular 

processes, particularly at the level of proteins, are still poorly understood. It is known that the 

rate of translation before embryonic genome activation is very low. This thesis will address the 

question if any significant differences in the proteome of oocytes and early embryos can be 

quantified which may be due to de novo translation, activation or degradation of proteins. 

Furthermore, a variety of rearrangement processes occur during maturation and embryonic 

cleavage which will be studied on a molecular level to identify relevant proteins. To achieve 

these objectives, modern LC-MS/MS-based proteomic techniques, such as iTRAQ and SRM, 

will be used to study the qualitative and quantitative proteome profiles during oocyte 

maturation and early embryogenesis. Due to crucial similarities to human reproduction, all 

analyses are performed with a bovine model system. 

The first aim is to investigate the proteome profile of oocyte maturation by comparison of 

immature GV oocytes and mature MII oocytes. Additionally, the influence of hormones, such 

as LH/FSH and LH/FSH/GH, on the proteome during maturation is assessed. The first steps 

of mammalian embryogenesis are also studied, i.e., zygotes, two-cell embryos and four-cell 

embryos using MII oocytes as a reference group. For both analyses, the holistic iTRAQ 

method is applied which enables the simultaneous differential analysis of four sample groups. 

Data derived from these discovery proteomic approaches are used for the establishment of 

highly sensitive targeted SRM assays which will be used for verification of results in pools of 

only ten oocytes or embryos. Another objective to be achieved by SRM is the simultaneous 

relative quantification of at least ten selected proteins in a broader set of embryonic stages 

from the GV oocyte until the blastocyst stage. Absolute protein contents will also be 

determined for a subset of proteins. Compared to relative values, these protein concentrations 

have the additional benefit that they can be used as independent reference values for other 

laboratories, as read out for functional assays, and for characterization of biological systems. 
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This thesis presents a comprehensive proteomic analysis of early bovine development and 

demonstrates that oocyte maturation and passage through the first embryonic cleavage 

cycles is associated with distinct quantitative and qualitative changes of protein profiles.  
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2. Materials and Methods 
 

2.1 Materials 

 

2.1.1 Media and hormones for in vitro embryo production 

 

TCM 199      Minitüb (Tiefenbach, Germany) 

TL media for fertilization    Minitüb (Tiefenbach, Germany) 

TL media for sperm cell capacitation   Minitüb (Tiefenbach, Germany) 

SOF       Minitüb (Tiefenbach, Germany) 

ECS       Produced by the group of Prof. Wolf 

b-LH       Sioux Biochemical (SiouxCenter, IA, USA) 

b-FSH       Sioux Biochemical (SiouxCenter, IA, USA) 

rbGH       Biomol (Hamburg, Germany) 

 

2.1.2 Plastic ware 

 

Four-well plates Nunc, Thermo Scientific (Rockford, IL, 

USA) 

Sterile centrifuge tubes, 11 mL, PS, for IVF Nunc, Thermo Scientific (Rockford, IL, 

USA) 

40 mm tissue culture dish Nunc, Thermo Scientific (Rockford, IL, 

USA) 

94 mm petri dishes     Roth (Karlsruhe, Germany) 

 

2.1.3 Instruments 

 

Distal coated Silica Tips    New Objectiv (Woburn, MA, USA) 
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Eksigent Ultra nano-LC    Eksigent (Dublin, CA, USA) 

Ettan MDLC     Amersham Biosciences   

    (Freiburg, Germany) 

Electronic aspiration pump, modell 3014  Labotect (Göttingen, Germany) 

Heraeus Sepatech Megafuge    Hareus (Hanau, Germany) 

LSM 510 Meta      Zeiss (Jena, Germany) 

LTQ Orbitrap XL     Thermo Scientific (Rockford, IL, USA) 

nanoACQUITY UPLC system    Waters (Milford MA, USA) 

Sonorex RK 100     Bandelin (Berlin, Germany) 

Thermomixer 5436     Eppendorf (Köln, Germany) 

Transferpettor      Brand (Wertheim, Germany) 

QTRAP 5500      AB SCIEX (Framingham, MA, USA) 

Vacuum concentrator     Bachhofer (Reutlingen, Germany) 

Vortex Genie 2     Bachhofer (Reutlingen, Germany) 

 

2.1.4 Columns 

 

SCX column Biobasic/Thermo Scientific (Rockford, IL, 

USA) 

C18 spin column Pierce/Thermo Scientific (Rockford, IL, 

USA) 

Trap column, C18 PepMap 100,  

5 µm, 300 µm x 5 mm     LC Packings/Dionex (Idstein, Germany) 

Separation column, 15 cm, ReproSil-Pur  

120 C18 AQ, 2.4 µm bead size, 75 µm i.d. Dr. Maisch (Ammerbuch-Entringen, 

Germany) 
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2.1.5 Antibodies 

 

Rabbit polyclonal to WEE2, ab121943, IF: 1/80  Abcam (Cambridge, UK) 

Rabbit polyclonal to Vimentin, ab45939, IF: 1/500  Abcam (Cambridge, UK) 

Monoclonal mouse-anti-Vimentin, V6630, IF: 1/800 Sigma-Aldrich  (Steinheim, 

Germany) 

Monoclonal mouse-anti-α-Tubulin, 

clone DM1A, T6199, IF: 1/500 Sigma-Aldrich  (Steinheim, 

Germany) 

Goat-anti-mouse-FITC, Cat. No. 115-095-003, IF: 1/500 Dianova (Hamburg, Germany) 

Goat-anti-rabbit-FITC, Cat.-No. 111-095-003, IF: 1/250 Dianova (Hamburg, Germany) 

Goat-anti-mouse-Cy5, Cat.-No. 115-175-003, IF: 1/500 Dianova (Hamburg, Germany) 

Goat-anti-rabbit-Cy5, Cat. No. 111-175-003, IF: 1/500 Dianova (Hamburg, Germany) 

Phalloidin-TRITC, P1951, IF: 1/250 Sigma-Aldrich  (Steinheim, 

Germany) 

 

2.1.6 Solvents and water 

 

Acetonitrile, LC-MS grade, LiChrosolv®  Merck Millipore (Darmstadt, Germany) 

Deuterium oxide, 99.9 %  Merck Millipore (Darmstadt, Germany) 

Ethanol, LC-MS grade  Merck Millipore (Darmstadt, Germany) 

Methanol, LC-MS grade, LiChrosolv®  Merck Millipore (Darmstadt, Germany) 

Water, LC-MS grade, LiChrosolv®  Merck Millipore (Darmstadt, Germany) 

 

2.1.7 Chemicals, kits and stable isotope-labeled peptides 

 

Aprotinin from bovine lung    Sigma-Aldrich (Steinheim, Germany) 
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Bovine serum albumin (BSA)    Sigma-Aldrich (Steinheim, Germany) 

DAPI       Sigma-Aldrich (Steinheim, Germany) 

Dithiothreitol (DTT)     Roth (Karlsruhe, Germany) 

EGTA       Sigma-Aldrich (Steinheim, Germany) 

Formic acid (FA)     Sigma-Aldrich (Steinheim, Germany) 

HeavyPeptide AQUA™ Ultimate peptides  Thermo Fisher (Rockford, IL, USA) 

Heparin sodium salt     Sigma-Aldrich (Steinheim, Germany) 

iTRAQ® Reagent 4plex    AB SCIEX (Framingham, MA, USA) 

Iodacetamide (IAA)     Sigma-Aldrich (Steinheim, Germany) 

Mineral oil for embryo culture    Sigma-Aldrich (Steinheim, Germany) 

Paraformaldehyde     Sigma-Aldrich (Steinheim, Germany) 

PEPotec™ SRM peptides    Thermo Fisher (Rockford, IL, USA) 

Pipes       Sigma-Aldrich (Steinheim, Germany) 

Polyvinylpyrrolidon (PVP)    Sigma-Aldrich (Steinheim, Germany) 

Potassium chloride (KCl)  Merck Millipore (Darmstadt, Germany) 

Seq grade modified trypsin    Promega (Madison, WI, USA) 

Sodium chloride (NaCl)  Merck Millipore (Darmstadt, Germany) 

Sodium pyruvate     Sigma-Aldrich (Steinheim, Germany) 

Taxol       Sigma-Aldrich (Steinheim, Germany) 

Triton X-100      Sigma-Aldrich (Steinheim, Germany) 

Tris       Roth (Karlsruhe, Germany) 

Urea       Roth (Karlsruhe, Germany) 

Vectashield® mounting medium 

(Anti fading, with DAPI)    LINARIS (Dossenheim, Germany) 
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2.2 Methods 

 

2.2.1 Generation of oocytes and embryo production 

 

2.2.1.1 Generation of GV oocytes 

 

For post-mortem collection of cumulus-oocyte complexes (COCs), bovine ovaries were 

obtained from a local abattoir and transferred to the laboratory in phosphate-buffered saline 

(PBS) at 20-25 °C. COCs were aspirated from 2-8 mm follicles with a 20-gauge needle and a 

vacuum pressure of approximately 50 mm Hg and selected as previously described [88]. 

Oocytes with a compact layer of cumulus cells and a homogeneous ooplasm were selected 

and denuded mechanically by vortexing for four minutes in PBS. The denuded oocytes were 

washed three times in PBS containing 1 mg/mL PVP, frozen buffer-free on dry ice and stored 

at -80 °C until analysis. 

 

2.2.1.2 In vitro oocyte maturation 

 

COCs were prepared as described above and washed three times in maturation media 

consisting of tissue culture medium 199 (TCM 199, Minitüb, Tiefenbach, Germany) 

supplemented with 5 % ECS, 0.025 IU/mL b-FSH and 0.0125 IU/mL b-LH (Sioux Biochemical, 

IA USA). If required, the medium was supplemented with 100 ng/mL GH. The COCs were 

transferred to four-well plates (Nunc, Thermo Scientific, Rockford, IL, USA) and matured in 

400 µL of maturation media for 23 h at 39 °C in a humidified atmosphere with 5 % CO2 in air. 
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2.2.1.3 In vitro embryo production 

 

COCs were collected and matured as described above. They were washed three times in 

fertilization medium consisting of TL fertilization media (Minitüb) enriched with 6 mg/mL bovine 

serum albumin (BSA), 22 µg/mL sodium pyruvate and 10 µg/mL heparin sodium salt followed 

by fertilization in 400 µL droplets of media. Frozen-thawed spermatozoa were subjected to the 

swim-up procedure described by Parrish et al. [89] for 60 min and were subsequently co-

incubated with COCs for 19 h at 39 °C in a humidified atmosphere with 5 % CO2 in air. 

Presumptive zygotes were mechanically denuded by vortexing and washed three times in 

culture medium consisting of synthetic oviduct fluid (SOF, Minitüb) supplemented with 5 % 

ECS, 1 % MEM non-essential amino acids solution, 4 % BME amino acids solution and 

0.36 mg/mL sodium pyruvate. For embryo culture at 39 °C in a humidified atmosphere with 

5 % CO2, 5 % O2, and 90 % N2, they were placed in 400 µL droplets of culture medium under 

mineral oil in four-well dishes. 

 

2.2.2 Sample preparation for iTRAQ and SRM analysis 

 

For iTRAQ and SRM analysis, batches of ten and 50 GV oocytes, MII oocytes, zygotes, two-

cell embryos, four-cell embryos, eight- to 16-cell embryos, morulae and blastocysts each were 

prepared. MII oocytes were collected after 23 h of maturation and mechanically denuded by 

vortexing in PBS. Zygotes, two-cell embryos, four-cell embryos and eight- to 16-cell embryos 

were collected at 19, 35, 43 and 70 hours post insemination (hpi), respectively. Morulae were 

collected at day 5 post insemination and blastocysts were collected at day 7 post 

insemination. Hatched blastocysts were collected at day 8 post insemination. Oocytes and 

embryos were evaluated microscopically, washed three times in PBS containing 1 mg/mL 

PVP, frozen on dry-ice and stored at -80 °C until analysis.  
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2.2.3 Preparation of stable-isotope dilution for SRM analysis 

 

For SRM analyses, SI peptides corresponding to all targeted peptides were purchased which 

served as internal standards. For relative and absolute quantification, crude PEPotec™ SRM 

peptides and HeavyPeptide AQUA™ Ultimate peptides (Thermo Fisher,Rockford, IL, USA) 

were purchased, respectively. All SI peptides were modified with a heavy K [Lysine (13C6; 

15N2)] or R [Arginine (13C6;15N4)] at the C-terminus. Stock solutions of both PEPotec and 

AQUA peptides were prepared. Disclosed amounts of PEPotec™ SRM peptides were 

provided by the manufacturer suspended in 0.1 % trifluoroacetic acid (TFA) in 50 % (v/v) 

acetonitrile (ACN)/water. Depending on the provided amount of peptide, the peptides were 

pre-diluted with 50 % ACN to 1000x the desired concentration in the final sample (listed in 

Supplementary Table 10), and combined in one stock solution which was stored in 10 µL 

aliquots at -20 °C. Prior to use, this stock solution was diluted 1/100 with 5 % ACN. The 

HeavyPeptide AQUA™ Ultimate peptides were provided by the manufacturer in a 

concentration of 5 pmol/μl suspended in 5 % (v/v) ACN/water. The peptides were pre-diluted 

with 5 % ACN to 10x the desired concentration in the final sample (listed in Supplementary 

Table 10), and combined in one stock solution which was stored in 100 µL aliquots at -20 °C. 

 

2.2.4 Trypsin digestion 

 

Samples were lysed in 0.5 µL denaturation buffer (8 M urea, 50 mM Tris-HCl, pH 8.0) per 

oocyte or embryo and homogenized by ice-cooled sonification for 10 min (Sonorex RK100, 

Bandelin, Berlin, Germany) and freezing on dry-ice. For trypsin digestion of SRM samples, the 

two stock solutions containing either PEPotec or AQUA SI peptides were combined 1/1. 

Denaturation buffer containing 10 M urea, 50 mM Tris-HCl, pH 8.0 was diluted with an aliquot 

of the combined SI peptide solution to give a final concentration of 8 M urea, which was used 

for sample lysis. The lysates were prepared for trypsin digestion by reduction of cysteine 

residues during 30 min incubation in 4.5 mM dithiothreitol (DTT) at 65 °C followed by 

alkylation in 10 mM iodoacetamide (IAA) for 15 min at room temperature in darkness. For 
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trypsin digestion, samples were diluted with water to reach a final concentration of 1 M urea 

and 5 ng porcine trypsin (Seq Grade Modified Trypsin, Promega, Madison, WI, USA) per 

oocyte or embryo was added. Incubation was performed overnight at 37 °C and the peptide 

solution was subsequently dried using a vacuum concentrator (Bachofer, Reutlingen, 

Germany) and stored at -80 °C. 

 

2.2.5 iTRAQ labeling and pre-fractionation by strong cation exchange chromatography 

(SCX) 

 

Preceding iTRAQ labeling, all sample batches belonging to one sample were combined and 

desalted using C18 spin columns (Pierce, Thermo Scientific, Rockford, IL, USA) according to 

the manufacturer’s protocol with an additional wash step (0.5 % TFA, 5 % ACN) prior to 

elution and subsequent drying in a vacuum concentrator (Bachofer, Reutlingen, Germany). 

Each sample was dissolved in 15 µL iTRAQ dissolution buffer (AB SCIEX, Framingham, MA, 

USA) and half of each corresponding iTRAQ reagent was added (iTRAQ aliquots with 

undisclosed concentrations suitable to label 5 to 100 µg of protein, iTRAQ-4plex kit, AB 

SCIEX, Framingham, MA, USA). After labeling for 1 h at room temperature, the peptides of all 

four pools belonging to one biological replicate were combined. The sample complexity was 

reduced by a pre-fractionation step using SCX. Peptides were eluted from the SCX column 

(Biobasic, Thermo Scientific, Rockford, IL, USA) stepwise using different molarities of 

potassium chloride (KCl) and subsequently desalted using C18 spin columns (Pierce, Thermo 

Scientific). SCX fractions were evaporated to dryness under vacuum (vacuum concentrator, 

Bachofer) and stored at -80 °C until LC-MS/MS analysis. 
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2.2.6 LC-MS/MS analysis of iTRAQ samples 

 

The SCX fractionated and desalted peptides belonging to the analysis of oocyte maturation 

were subjected to LC-MS/MS analysis using an Ettan MDLC (Amersham Biosciences, 

Freiburg, Germany) connected to an Orbitrap XL instrument (Thermo Scientific, Rockford, IL, 

USA). The SCX fractionated and desalted peptides belonging to the analysis of early 

embryogenesis were subjected to LC-MS/MS analysis using an Eksigent Ultra nano-LC 

device (Eksigent, Dublin, CA, USA) connected to the Orbitrap XL instrument. Peptide 

solutions were injected and trapped at 10 µL/min on a guard column packed with C18 

PepMap 100, 5 µm, 300 µm x 5 mm (LC Packings/Dionex, Idstein, Germany) and separated 

at a constant flow rate of 280 nL/min with a 15 cm separation column (ReproSil-Pur 120 C18 

AQ, 2.4 µm bead size, 75 µm i.d., Dr. Maisch, Ammerbuch-Entringen, Germany). Long 5 h 

chromatographic gradients for separation were used with a linear ramp from 8-40 % B (0.1 % 

formic acid, 84 % ACN) over 265 min. The chromatographic system was coupled online to the 

Orbitrap XL instrument via a distal coated SilicaTip (FS-360-20-10-D-20, New Objective, 

Woburn, MA, USA) and the electrospray ionization was operated at a needle voltage of 1.6 

kV. For data acquisition, collision induced dissociation (CID) spectra for protein identification 

in the linear ion trap and higher energy collision-induced dissociation (HCD) spectra for 

protein quantification via the lower mass iTRAQ reporter ions in the Orbitrap mass analyzer 

were acquired. Acquisition cycles consisted of one MS scan (mass range m/z 300–2000) 

followed by three data dependent CID and HCD MS/MS scans each. The mass spectrometer 

was run in positive ion mode, dynamic exclusion was implemented and a collision energy of 

35 % was applied. For analysis of oocyte maturation, each SCX fraction was measured trice 

consecutively with additional mass exclusion lists applied based on the peptide identifications 

of the first run, or based on the first and second run combined. For analysis of early 

embryogenesis, each SCX fraction was measured twice consecutively and in the second run, 

an additional mass exclusion list based on the peptide identifications of the first run was 

applied. Mass exclusion lists were generated with Proteome Discoverer 1.3 (Thermo 

Scientific, Rockford, IL, USA). 
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2.2.7 iTRAQ data processing and assessment 

 

MS RAW data was transformed into a mascot generic format (mgf) file and low mass range 

iTRAQ reporter ion peaks from HCD scans were merged into CID scans via the 

MassSpecUtils tool (The University of Washington’s Proteomic Resource Facility). Merged 

mgf files were searched with MASCOT Daemon [90] and MASCOT Server version 2.4 (Matrix 

Science, Boston, USA) against the bovine Uniprot database (release 05/2012, 31468 entries) 

including an automatic “Decoy Database”. Search parameters comprised trypsin as enzyme 

with maximal one missed cleavage allowed, carbamidomethylation at cysteine and iTRAQ 

labeling at lysine and N-terminal residues as fixed modifications. As variable modification, 

oxidation at methionine was set. Further parameters were: peptide charge: 2+ and 3+; peptide 

tol. ±: 2 Da and MS/MS tol. ±: 0.8 Da. MASCOT files were then further evaluated with the 

Scaffold software 4.0.5 (Proteome Software, Portland, OR, USA) to obtain a list of protein 

identifications. At least two individual peptides per protein were required and the probability 

threshold for the identified proteins was set to ≥ 99 % controlling for a false-discovery rate 

(FDR) below 1 % and a mass accuracy of precursors <10 ppm. Quantification of iTRAQ 

signals was accomplished with the Q+ module of the Scaffold software and results were 

exported to Microsoft Excel (2010) for statistical evaluation. 
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2.2.8 Subcellular localization and functional annotation clustering 

 

Subcellular location of identified proteins was determined by the DAVID Bioinformatics 

Resources 6.7 [91, 92], available at http://david.abcc.ncifcrf.gov/home.jsp according to the 

category GOTERM_CC_FAT. Self-organizing tree algorithm (SOTA) [93] clustering was 

accomplished by the R (R Development Core Team, 2011) plug ins clValid and LSD and four 

clusters were created. Functional and network analysis of proteins was performed with the 

Cytoscape 3.1.0 plug-ins ClueGO v2.0.8 [94] and CluePedia v1.0.9 [95]. GO tree levels 5 to 6 

were displayed with a minimum number of 2 genes per cluster. For statistics, the right-sided 

hypergeometric test was applied to calculate enrichment for terms and groups according to 

the GO biological process. Functional grouping was based on κ-score (> 0.3) and GO term 

fusion was activated for redundancy reduction in large clusters. 

 

2.2.9 Establishment of a multiplexed SRM assay 

 

For each targeted protein, two high-confidence proteotypic peptides and three fragment ions 

per peptide were selected based on discovery LC-MS/MS data of iTRAQ experiments and in 

silico digests of the proteins generated with the MRMPilot™ 2.0 software (AB SCIEX, 

Framingham, MA, USA). SI peptides corresponding to each analyzed peptide were used as 

internal standard and were applied in test runs for transition selection and optimization of 

collision energies. Whenever possible, the most intense transition was used for quantification 

(“quantifier”), and two more transitions were selected for “qualifiers”. All selected precursor 

ions had a charge state of + 2 or + 3 and the majority were y-ions. The amount of internal 

standard added to each sample was adjusted to closely reflect the protein amount of the 

corresponding endogenous peptides. Details of the multiplexed SRM assay are listed in 

Supplementary Table 10. 
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2.2.10 LC-MS/MS analysis of SRM samples and data analysis 

 

Samples for SRM analysis were desalted using C18 spin columns (Pierce, Thermo Scientific) 

according to the manufacturer’s protocol and subsequently dried in a vacuum concentrator 

(Bachofer). SRM analyses were performed with a combination of a nano-HPLC system 

(nanoACQUITY UPLC system, Waters, Milford MA, USA) and a triple quadrupole linear ion 

trap mass spectrometer (QTRAP 5500, AB SCIEX). Injected peptide solutions were loaded at 

a flow-rate of 10 µL/min on a reversed phase trap column with C18 PepMap 100, 5 µm, 

300 µm x 5 mm (LC Packings/Dionex, Idstein, Germany) and separated at a constant flow 

rate of 280 nL/min with a 15 cm separation column (ReproSil-Pur 120 C18 AQ, 2.4 µm bead 

size, 75 µm i.d., Dr. Maisch, Ammerbuch-Entringen, Germany) with a gradient from 1-60 % B 

(0.1 % formic acid in ACN) in 30 min followed by a second ramp to 80 % B in 15 min. The 

chromatographic system was coupled online to the triple quadrupole instrument via a distal 

coated SilicaTip (FS-360-20-10-N-20, New Objective, Woburn, MA, USA) and for electrospray 

ionization, and a needle voltage of 2.5 kV was applied to ionize peptides in “positive ionization 

mode”. A MRM detection window of 240 s and a target scan time of 3 s (1280 cycles) were 

used. SRM data was exported to Multiquant 2.1.1 (AB SCIEX, Framingham, MA, USA) and 

manually evaluated. Quantification was performed by calculating the ratios of the quantifier 

signal intensities of endogenous peptides and corresponding SI peptides. A signal to noise 

ratio ≥ 10 was used for valid signals. Relative quantification values were expressed as log2 

fold change and absolute quantification values as amol or fmol per oocyte or embryo. 

 

2.2.11 Statistical analysis 

 

Protein abundance in pair wise comparisons of groups in iTRAQ studies was considered 

significantly altered with a log2 fold change ≥ |0.6| and a t-test significance level of p ≤ 0.05. 

iTRAQ intensity data of all groups was compared using analysis of variance (ANOVA, 

p < 0.05, fold change > 1.5). T-tests, ANOVA and principle component analysis (PCA) 

analysis were performed using R (R Development Core Team, 2011). Analyses with R were 
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performed in collaboration with Kathrin Otte. GraphPad Prism 6.04 (GraphPad Software, La 

Jolla, CA, USA) was used for graphical illustration of SRM and iTRAQ data and for statistical 

analysis of SRM data (multiple T-tests). Differences were regarded as significant in case of 

p < 0.05 and log2 fold change ≥ |0.6|. 

 

2.2.12 Immunoflourescence and confocal microscopy of oocytes and embryos 

 

Cumulus cells were removed by gentle pipetting and oocytes or embryos were fixed in 400 µL 

of Albertini fixation solution (0.1 M Pipes, pH 6.9, 5 mM MgCl2, 2.5 mM EGTA, 50 % 

deuterium oxide, 2 % paraformaldehyde, 0.5 % triton X-100, 0.01 % aprotinin, 1 µM taxol) for 

20 min at 37 °C and subsequently washed with PBS containing 1 mg/mL PVP. For 

intracellular staining, samples were permeabilized in 0.5 % Triton X-100 in PBS containing 1 

mg/mL PVP for 1 h at room temperature followed by washing with PBS containing 1 mg/mL 

PVP. Incubation with indicated primary antibodies and subsequently with respective 

secondary antibodies was performed for 30 min at 37 °C followed by washing with PBS 

containing 1 mg/mL PVP each time. After staining, the oocytes were mounted in Vectashield® 

mounting medium (Linaris, Dossenheim, Germany) between two coverslips, thereby 

maintaining the 3-D structure of the oocytes and embryos. Images were captured using a 

confocal laser scanning microscope (LSM 510 Meta, Zeiss, Germany) with a 40x 

PlanApochromat (numerical aperture 1.3) oil immersion objective in collaboration with Dr. 

Felix Habermann. 
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3. Results 
 

3.1 Generation of oocytes and embryos 

 

For the generation of oocytes and embryos, ovaries were obtained from a local abattoir and 

transported to the laboratory. Cumulus oocyte complexes (COCs) were aspirated out of the 

ovaries, which delivered on average seven COCs per ovary. COCs were washed, and either 

denuded for preparation of GV oocytes or subjected to in vitro oocyte maturation and 

fertilization, followed by in vitro embryo culture until the desired stage. All oocytes and 

embryos were evaluated microscopically before washing with PBS containing 1 % PVP. 

Further, the oocytes and embryos were frozen buffer-free on dry ice and stored at -80 °C until 

analysis. 

The success of in vitro embryo production (IVP) was controlled regularly (about two times per 

month) by determination of the two-cell embryo and blastocyst rate compared to presumptive 

zygotes subjected to embryo culture. On average, about 70 % of the zygotes cleaved into 

two-cell embryos. About 30 % of the zygotes reached the blastocyst stage at day 7 post 

insemination, and this rate increased to about 40 % at day 8 post insemination (Figure 9). 

 

Figure 9. Developmental rates of in vitro embryo 

production. Developmental rates were determined 

by subjecting 50 to 150 presumptive zygotes to 

embryo culture until the blastocyst stage. The ratios 

between presumptive zygotes and two-cell embryos 

(n=10), blastocysts D7 (n=10) and blastocysts D8 

(n=3) ± SD were calculated. D7 = day 7 post 

insemination; D8 = day 8 post insemination. 
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3.2 Proteome signatures of bovine oocyte maturation 

 

3.2.1 General remarks and experimental strategy 

 

The aim of this study was to investigate the effects of IVM on the proteome of oocytes and to 

assess the influence of different hormone supplementations to maturation media. Three 

maturation protocols were chosen and an iTRAQ 4-plex based approach was applied. COCs 

were matured for 23 hours in TCM-199 containing ECS with no hormone, LH/FSH (standard 

protocol) or LH/FSH/GH supplementation, respectively. The cumulus cells were removed and 

the oocytes were evaluated by transmission light microscopy for extrusion of the first polar 

body (Figure 10A and B). An LSM analysis of mature and immature oocytes is depicted in 

Figure 10C and D, which was performed by Dr. Felix Habermann.  

 

 

Figure 10. Microscopic analysis of mature and immature bovine oocytes. A and B: Transmission light images 

of an immature GV oocyte (A) and a mature MII oocyte with the first polar body (B). Images were kindly provided 

by Dr. Myriam Demant. C and D: Confocal laser scanning microscopic analyses of an immature GV oocyte (C) and 

a mature MII oocyte with the first polar body (D). DNA staining with DAPI is shown in white, f-actin filaments 

(phalloidin-TRITC) in red and alpha-tubulin in green. The scale bar in (D) represents 100 µm. Image capturing and 

interpretation was performed in collaboration with Dr. Felix Habermann. 
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The developmental rates did not differ between the three maturation protocols used (Figure 

11). However, it was observed that the cumulus cells surrounding the oocytes appeared the 

most expanded after maturation under GH supplementation while they appeared the least 

expanded after maturation without additional hormone supplementation (ECS only) by light 

microscopic evaluation. 

 

Figure 11. Developmental rates after maturation 

according to three different protocols. COCs were 

matured in maturation media containing ECS with no 

hormone supplementation (ECS only), LH/FSH 

(standard protocol) or LH/FSH/GH supplementation, 

respectively. The ratios between presumptive zygotes 

and day 7 blastocysts ± SD were determined (n=3). 

 

Six biological replicates containing 150 oocytes each were prepared for each sample type, i.e. 

GV oocytes and three groups of differently matured MII oocytes. In total, each biological 

replicate contained 600 oocytes corresponding to about 54 µg total protein content. The 

average protein content of one bovine oocyte was determined to be 90 ng (Dr. Myriam 

Demant, personal communication). For identification and quantification of individual proteins, 

samples were lysed, reduced with dithiothreitol (DTT), alkylated with iodoacetamide (IAA) and 

digested over night with trypsin. Samples were chemically labeled with the iTRAQ reagent 

and pre-fractionated by SCX chromatography using six salt steps (0, 25, 50, 75, 125 and 350 

mM KCl), leading to 36 fractions in total. Each SCX fraction was split into three aliquots which 

were subjected to nano-LC-MS/MS analysis. Aliquots were measured consecutively, with 

application of an additional mass exclusion list applied to aliquots two and three, derived from 

peptide identifications of the previous runs. The experimental strategy is illustrated in Figure 

12. 

 



Results 

37 

 

Figure 12. Workflow for iTRAQ-based proteome analysis of oocyte maturation. The workflow for one 

biological replicate is depicted. In the iTRAQ-based approach, six biological replicates of immature GV and mature 

MII oocytes were analyzed. Additionally, the influence of different hormone supplementations was investigated. 

 

3.2.2 Comparative proteomic analysis of oocyte in vitro maturation using iTRAQ 

 

In six biological replicates, a total of 3,600 oocytes were analyzed and 1,115 proteins were 

identified (FDR < 1 %) by at least two individual peptides. Of those, 565 ± 69 proteins were 

identified in each biological replicate by LC-MS/MS analysis of the first aliquot of each SCX 

fraction. The combination with the second aliquot increased the number of identified proteins 

by 28 % to about 720 ± 98. The number of identified proteins could be further augmented to 

784 ± 98 by combination with the third aliquot, which corresponds to 11 % additional protein 

identifications. A total of 1,092 proteins were quantified with the Q+ module of Scaffold. For 

the quantitative pair-wise comparisons, a log2 fold change ≥ |0.6| and p ≤ 0.05 with the 

Student’s t-test was considered as significant. Calculation of P values was performed with R 
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in collaboration with Kathrin Otte. According to these criteria, a total of 53 proteins were 

detected which were significantly altered in protein abundance in at least one of the six pair-

wise comparisons. In Table 2, the 42 significant differences in protein abundance between GV 

oocyte (reference group) and differently matured MII oocytes are listed. In Table 3, significant 

differences in protein abundance between MII oocytes matured according to different 

maturation protocols are listed. The numbers of Table 3 refer to the numbers used in Table 2 

and 11 additional differences in protein abundances are listed in Table 3. In the pair-wise 

comparison between GV oocytes and MII oocytes matured according to standard protocol 

with LH and FSH supplementation, a total of 26 proteins were found to be significantly altered 

in abundance which is illustrated in the Volcano plot in Figure 13. 

 

 

Figure 13. Volcano plot of the pair-wise comparison between GV oocytes and MII oocytes matured 

according to the standard protocol with LH and FSH supplementation. A total of 15 proteins are decreased in 

abundance in MII oocytes (red dots), 11 proteins are increased in abundance (green dots), whereas the not 

significantly altered proteins are reflected by black dots. 

  



Results 

39 

Table 2. Significant differences in protein abundance between GV oocytes (reference group) and MII 

oocytes matured according to different protocols. 

        
GV vs. MII 

(LH + FSH)* 

GV vs. MII 
(no 

hormones)* 

GV vs. MII 
(LH + FSH + 

GH)* 

 # Protein name 
Gene 

Symbol 
Accession 

Number 
log2 
FC 

P 
value 

log2 
FC 

P 
value 

log2 
FC 

P 
value 

1 
Microtubule-associated protein RP/EB family 
member 1 

MAPRE1 F1MHV5_BOVIN -6.27 NA -6.29 NA -6.46 0.02 

2 Stathmin STMN1 STMN1_BOVIN -2.73 0.01 -2.97 0.00 -2.95 0.01 

3 CD81 antigen CD81 CD81_BOVIN -2.02 0.04 -2.34 0.03 -2.25 0.27 

4 IGL@ protein IGL@ Q3T101_BOVIN -1.21 0.10 -1.86 0.05 -1.92 0.01 

5 Zygote arrest protein 1 ZAR1 Q1PSA0_BOVIN -1.09 0.04 -1.28 0.04 -0.96 0.03 

6 Apolipoprotein A-I APOA1 APOA1_BOVIN -1.02 0.01 -0.89 0.01 -0.33 0.40 

7 
Eukaryotic translation initiation factor 4E 
transporter 

EIF4ENIF1 E1BG99_BOVIN -1.00 0.02 -1.26 0.03 -0.66 0.12 

8 Tropomyosin 4-like  LOC540799 F1MV90_BOVIN -0.94 0.00 -0.77 0.00 -0.83 0.00 

9 
Mitochondrial import receptor subunit 
TOM34 

TOMM34 E1BGD1_BOVIN -0.94 0.03 -0.49 0.03 -0.24 0.22 

10 ES cell-associated transcript 1 protein KHDC3L E1BPE9_BOVIN -0.88 0.02 -1.18 0.02 -1.41 0.01 

11 Beta-1,4-galactosyltransferase 4 B4GALT4 Q32LF7_BOVIN -0.85 0.04 -1.40 0.29 -1.86 0.13 

12 Retinol-binding protein 4 RBP4 G1K122_BOVIN -0.80 0.02 -0.70 0.05 -0.73 0.08 

13 ZAR1-like protein ZAR1L ZAR1L_BOVIN -0.75 0.03 -0.80 0.08 -0.47 0.14 

14 Synaptophysin-like protein 1 SYPL1 A8PVV5_BOVIN -0.68 0.05 -0.01 0.98 -0.10 0.78 

15 Gametocyte-specific factor 1 GTSF1 GTSF1_BOVIN -0.66 0.03 -0.92 0.08 -0.82 0.04 

16 Tubulin-specific chaperone E TBCE TBCE_BOVIN -0.64 0.03 -0.53 0.04 -0.07 0.70 

17 Isoleucine-tRNA ligase, mitochondrial IARS2 G3MWG4_BOVIN -0.63 0.05 -0.37 0.14 -0.12 0.18 

18 Apolipoprotein E APOE A7YWR0_BOVIN -0.54 0.04 -0.62 0.02 -0.91 0.01 

19 Y-box-binding protein 2 YBX2 A5D7M4_BOVIN -0.45 0.06 -0.53 0.05 -0.71 0.04 

20 40S ribosomal protein S RPS4Y1 A2VE06_BOVIN -0.14 0.38 -0.71 0.06 -1.07 0.01 

21 
Calcium-binding mitochondrial carrier protein 
Aralar2 

SLC25A13 F1MX88_BOVIN -0.09 0.87 -1.93 0.01 -0.68 0.62 

22 Vimentin VIM VIME_BOVIN -0.08 0.85 0.24 0.51 1.12 0.05 

23 
Isocitrate dehydrogenase [NAD] subunit 
beta, mitochondrial 

IDH3B IDH3B_BOVIN 0.28 0.62 0.62 0.19 0.94 0.04 

24 
putative MAGE domain-containing protein 
MAGEA13P-like 

LOC101112
889 

G3MYS0_BOVIN 0.34 0.06 0.54 0.01 0.63 0.02 

25 ATP-dependent RNA helicase DDX3X DDX3X G5E631_BOVIN 0.37 0.05 0.47 0.06 0.64 0.05 

26 Endoplasmic reticulum resident protein 44 ERP44 ERP44_BOVIN 0.41 0.34 0.74 0.08 0.90 0.05 

27 ADP-ribosylation factor 4 ARF4 ARF4_BOVIN 0.54 0.25 0.62 0.09 0.72 0.04 

28 Proteasome subunit alpha type-5 PSMA5 PSA5_BOVIN 0.58 0.06 0.62 0.07 0.81 0.04 

29 Caspase-6 CASP6 CASP6_BOVIN 0.62 0.02 0.40 0.04 0.70 0.01 

30 
Activator of 90 kDa heat shock protein 
ATPase homolog 1 

AHSA1 Q3T0G3_BOVIN 0.68 0.00 0.59 0.08 0.43 0.20 

31 Aurora kinase A AURKA AURKA_BOVIN 0.79 0.00 0.72 0.00 0.67 0.00 

32 Cyclin-dependent kinase 1 CDK1 CDK1_BOVIN 0.80 0.02 1.07 0.02 0.10 0.75 

33 Fructose-2,6-bisphosphatase TIGAR TIGAR TIGAR_BOVIN 0.83 0.18 0.91 0.03 0.82 0.19 

34 Plasminogen activator inhibitor 1 SERPINE1 PAI1_BOVIN 0.93 0.21 3.03 0.01 1.02 0.12 

35 Importin subunit alpha-8 KPNA7 IMA8_BOVIN 0.96 0.00 1.00 0.00 1.03 0.01 

36 Bcl-2-like protein 10 BCL2L10 E1B9B3_BOVIN 1.00 0.05 1.42 0.00 1.34 0.00 

37 
Transforming acidic coiled-coil-containing 
protein 3 

TACC3 A6QL93_BOVIN 1.25 0.00 1.17 0.00 1.33 0.00 

38 Sequestosome 1 SQSTM1 A7E3V0_BOVIN 1.27 NA 1.52 0.03 1.79 0.03 

39 
smg-5 homolog, nonsense mediated mRNA 
decay factor 

LOC521950 F1MLM3_BOVIN 1.46 0.04 1.17 0.07 0.72 0.34 

40 
Probable inactive 1-aminocyclopropane-1-
carboxylate synthase-like protein 2 

ACCSL F1MBE7_BOVIN 1.49 0.00 1.45 0.00 1.53 0.00 

41 E3 ubiquitin-protein ligase UHRF1 UHRF1 UHRF1_BOVIN 1.53 0.00 1.64 0.00 1.58 0.00 

42 Wee1-like protein kinase 2 WEE2 F1MZD1_BOVIN 2.90 0.00 3.09 0.00 3.07 0.00 

  Log2 fold change ≤ -0.6 and t-test with a significance level of p ≤ 0.05 
      Log2 fold change ≥ 0.6 and t-test with a significance level of p ≤ 0.05  
    

*In each pair-wise comparison, positive or negative values represent an increase or decrease of protein 

abundance, respectively, in the indicated group. GV = GV oocyte; MII = MII oocyte. FC = Fold change. 
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Table 3. Significant differences in protein abundance between MII oocytes matured according to different 

protocols. 

        

MII (no 
hormones) 
vs. MII (LH 

+ FSH)* 

MII (no 
hormones) 
vs. MII (LH 

+ FSH + 
GH)* 

MII (LH + 
FSH) vs. 
MII (LH + 

FSH + 
GH)* 

# Protein name 
Gene 

Symbol 
Accession 

Number 
log2 
FC 

P 
value 

log2 
FC 

P 
value 

log2 
FC 

P 
value 

4 IGL@ protein IGL@ Q3T101_BOVIN 0.65 0.04 -0.07 0.64 -0.71 0.12 

18 Apolipoprotein E APOE A7YWR0_BOVIN 0.38 0.12 -0.35 0.25 -0.73 0.03 

22 Vimentin VIM VIME_BOVIN -0.40 0.09 0.77 0.09 1.32 0.05 

23 
Isocitrate dehydrogenase [NAD] subunit beta, 
mitochondrial 

IDH3B IDH3B_BOVIN -1.52 0.13 -0.58 0.04 1.53 0.16 

26 Endoplasmic reticulum resident protein 44 ERP44 ERP44_BOVIN -0.06 0.82 0.59 0.02 0.39 0.09 

32 Cyclin-dependent kinase 1 CDK1 CDK1_BOVIN -0.34 0.24 -0.81 0.01 -0.74 0.01 

34 Plasminogen activator inhibitor 1 SERPINE1 PAI1_BOVIN -2.16 0.00 -2.12 0.00 0.06 0.71 

43 Growth differentiation factor 9 GDF9 D0EZ62_BOVIN -0.77 0.01 -0.16 0.56 0.44 0.13 

44 Heat shock 70 kDa protein 1B HSPA1B HS71B_BOVIN -0.25 0.25 0.29 0.25 0.61 0.00 

45 Regakine-1 LOC504773 REG1_BOVIN 0.96 0.02 0.80 0.40 -0.68 0.45 

46 Tropomyosin alpha-1 chain TPM1 TPM1_BOVIN -0.62 0.04 -0.54 0.14 0.05 0.90 

47 Alpha-2-HS-glycoprotein AHSG B0JYN6_BOVIN 1.37 0.01 0.91 0.38 0.44 0.33 

48 Catenin alpha-1 CTNNA1 CTNA1_BOVIN -0.51 0.26 0.22 0.41 0.76 0.04 

49 Serine/threonine-protein phosphatase 2A activator PPP2R4 PTPA_BOVIN -0.24 0.39 0.23 0.06 0.81 0.03 

50 
HSPA (Heat shock 70kDa) binding protein, 
cytoplasmic cochaperone 1 

HSPBP1 Q2KJ77_BOVIN 0.82 0.01 0.44 0.23 0.09 0.85 

51 Vesicle-associated membrane protein 3 VAMP3 VAMP3_BOVIN 0.88 0.03 0.81 0.08 -0.12 0.63 

52 Nucleosome assembly protein 1-like 4 NAP1L4 F1N7X3_BOVIN 0.70 0.00 -0.60 0.22 -0.93 0.04 

53 ATP synthase subunit alpha, mitochondrial ATP5A1 ATPA_BOVIN 2.31 NA 0.17 NA 2.57 0.04 

  Log2 fold change ≤ -0.6 and t-test with a significance level of p ≤ 0.05 
      

  Log2 fold change ≥ 0.6 and t-test with a significance level of p ≤ 0.05  
      

*In each pair-wise comparison, positive or negative values represent an increase or decrease of protein 

abundance, respectively, in the indicated group. GV = GV oocyte; MII = MII oocyte. FC = Fold change. # refers to 

the # in Table 2. 

 

To uncover functional categories related with the proteins of the pair-wise comparison, they 

were subjected to the Cytoscape [96] plugins ClueGO [94] and CluePedia [95] which grouped 

genes significantly enriched in the respective Gene Ontology (GO) terms involved in biological 

processes. For the comparison between GV oocytes and MII oocytes matured according to 

standard protocol with LH and FSH supplementation (Table 2 and Figure 14), this network 

analysis revealed among the proteins increasing in abundance in MII oocytes an enrichment 

of proteins related to the terms “positive regulation of ATPase activity”, “microtubule 

cytoskeleton organization”, “protein import” and “mitosis”. Among the proteins decreasing in 

abundance in MII oocytes, an enrichment of proteins related to the terms “regulation of protein 

secretion”, “regulation of protein phosphorylation” and “glycerophospholipid biosynthetic 

process” was found. 



Results 

41 

 

Figure 14. Cytoscape analysis of differently abundant proteins in the pair-wise comparisons between GV oocytes 

and MII oocytes matured according to standard protocol with LH and FSH supplementation. Analysis was 

performed according to the GO terms of “biological process”. Yellow colored nodes reflect significantly enriched 

GO-terms by proteins with increased abundance in MII oocytes. Blue colored nodes reflect significantly enriched 

GO-terms by proteins with decreased abundance in MII oocytes. Grey colored nodes: Protein abundance increase 

and decrease. In the functionally grouped network, terms and their associated genes (colored in red) are linked 

based on a к score (≥ 0.3) and the edge thickness indicates the association strength. The node size corresponds to 

the statistical significance of each term. 

 

The pair-wise comparisons of MII oocytes matured without hormone supplementation (ECS 

only) and MII oocytes matured according to standard protocol with LH and FSH 

supplementation revealed nine differences in protein abundance (Table 3 and Figure 15A). 

Three proteins showed a decreased abundance in MII oocytes matured according to standard 
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protocol and network analysis of these proteins demonstrated an enrichment of proteins 

related to the GO term “negative regulation of cell migration” (Figure 15B). 

 

 

Figure 15. Volcano plot and Cytoscape analysis of differently abundant proteins between MII oocytes 

matured without hormone supplementation (ECS only) vs. MII oocytes matured according to standard 

protocol with LH and FSH supplementation. A: Volcano plot. Proteins decreased or increased in abundance in 

MII oocytes matured according to standard protocol are represented as red dots and green dots, respectively. 

Black dots: Proteins not significantly altered in abundance. B: Cytoscape analysis according to the GO term 

“biological process”. Blue colored nodes reflect significantly enriched GO-terms by proteins with decreased 

abundance in MII oocytes. In the functionally grouped network, terms and their associated genes (colored in red) 

are linked based on a к score (≥ 0.3) and the edge thickness indicates the association strength. The node size 

corresponds to the statistical significance of each term. 

 

Supplementation of the maturation medium with GH lead to an abundance change of eight 

proteins compared to MII oocytes matured according to standard protocol (Table 3 and Figure 

16A). Network analysis of proteins decreased in abundance by GH addition revealed an 

enrichment of proteins related to “DNA packaging”, “regulation of protein kinase activity” and 

“positive regulation of cellular metabolic process”. For proteins increased in abundance by GH 

addition, the network analysis revealed an enrichment of proteins involved in “regulation of 

apoptotic process” and “ribonucleotide catabolic process” (Figure 16B). 
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Figure 16. Volcano plot and Cytoscape analysis of differently abundant proteins between MII oocytes 

matured according to standard protocol with LH and FSH supplementation and MII oocytes matured with 

LH, FSH and GH supplementation. A: Volcano plot. Proteins increased or decreased in abundance in MII 

oocytes matured with LH, FSH and GH supplementation are represented as green dots or red dots, respectively. 

Black dots: Proteins not significantly altered in abundance. B: Cytoscape analysis according to the GO term 

“biological process”. Yellow and blue colored nodes reflect significantly enriched GO-terms by proteins with 

increased or decreased abundance in MII oocytes matured with LH, FSH and GH supplementation, respectively. 

Grey colored nodes: Protein abundance increase and decrease. In the functionally grouped network, terms and 

their associated genes (colored in red) are linked based on к score (≥ 0.3) and the edge thickness indicates the 

association strength. The node size corresponds to the statistical significance of each term. 
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3.2.3 Localization of vimentin in MII oocytes by confocal laser scanning microscopy 

 

Vimentin (VIM) was found to strongly increase (log2 FC 1.3) between MII oocytes matured 

either according to standard protocol with LH and FSH or matured with LH, FSH and GH 

supplementation (Table 3). To determine if VIM is localized inside or on the surface of 

oocytes, immunofluorescence and confocal laser scanning microscopy (LSM) of MII oocytes 

with extruded first polar body (Figure 17) was performed. Image capturing and interpretation 

was performed in collaboration with Dr. Felix Habermann. Staining for VIM protein revealed 

small foci scattered over the surface of the MII oocyte matured according to standard protocol 

(Figure 17A). In accordance with the iTRAQ data, these focis were increased in abundance in 

MII oocytes matured with GH supplementation (Figure 17B). Notably, there was a 

considerable variability among the in vitro matured MII oocytes. For improved localization of 

VIM, a part of the zona pellucida was magnified which was sketched for clarification in Figure 

18A. In the magnification, VIM staining revealed the VIM protein to be localized inside of the 

cytoplasmic extensions and to be accumulated at the gap junctions that connect the cumulus 

cells with the oocyte (Figure 18B). 

 

Figure 17. Confocal laser scanning microscopic analyses of vimentin (VIM) in mature MII oocytes. VIM 

staining is shown in white, DNA staining with DAPI is in yellow and f-actin filaments (phalloidin-TRITC) is shown in 

red. Scale bar represents 100 µm. Image capturing and interpretation was performed in collaboration with Dr. Felix 

Habermann. A: MII oocyte matured according to standard protocol with LH and FSH. B: MII oocyte matured with 

LH, FSH and GH supplementation. 
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Figure 18. Vimentin analysis in oocytes. A: Sketch of an oocyte. The oocyte is surrounded by cumulus cells 

from which cytoplasmic extensions protrude into the zona pellucida of the oocyte. B: Confocal laser scanning 

microscopic analysis of vimentin in MII oocytes matured with LH, FSH and GH supplementation. A part of the zona 

pellucida is shown. Vimentin staining is shown in orange and green and f-actin filaments (phalloidin-TRITC) 

staining is shown in white. Scale bar represents 2 µm. Image capturing and interpretation was performed in 

collaboration with Dr. Felix Habermann.  
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3.3 Proteome signatures in early bovine embryo development 

 

3.3.1 General remarks and experimental strategy 

 

This study focuses on the quantitative and qualitative proteome changes during the first steps 

of mammalian embryogenesis, i.e., zygotes, two-cell embryos and four-cell embryos using MII 

oocytes as a reference. MII oocytes were collected after 23 hours of maturation and 

mechanically denuded by vortexing in PBS. Zygotes, two-cell embryos and four-cell embryos 

were collected at 19, 35 and 43 hours post insemination (hpi), respectively. All oocytes and 

embryos were evaluated microscopically before they were frozen on dry ice. 

The experimental strategy comprised an iTRAQ-based discovery approach followed by SRM-

based verification as illustrated in Figure 19. For the iTRAQ study, four biological replicates 

were prepared containing 400 oocytes or embryos corresponding to about 36 µg protein each. 

For the identification and quantification of individual proteins, samples were lysed, reduced 

with DTT, alkylated with IAA and digested over night with trypsin. Prior to nano-LC-MS/MS 

analysis, samples were chemically labeled with the iTRAQ reagent and pre-fractionated by 

SCX using eight salt steps (0, 45, 75, 90, 110, 135, 175 and 350 mM KCl), leading to 24 

fractions in total. Each fraction was split into two aliquots which were measured consecutively 

with application of an additional mass exclusion list in the second run based on the peptide 

identifications of the first run. For verification of the protein profiles obtained by this holistic 

LC-MS/MS approach, a multiplexed SRM assay was established. A subset of five interesting 

proteins relevant for early embryogenesis was selected and proteins were quantified in pools 

of ten oocytes or embryos corresponding to about 0.9 µg protein each. 
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Figure 19. Workflow for the 4-plex iTRAQ-based proteome analysis and the SRM verification studies. The 

panel “iTRAQ-based discovery approach” illustrates the generation and analysis of one out of four biological 

replicates, each of which contains 100 oocytes, zygotes, two-cell and four-cell embryos. SRM assays were 

established for five proteins which were quantified in pools of 10 oocytes or embryos (n=4) in a multiplexed setup. 

 

3.3.2 Comparative proteomic analysis of early embryonic stages using iTRAQ 

 

In four biological replicates, a total of 1,600 oocytes or embryos were analyzed and 1,072 

proteins in 1,020 protein clusters were identified (FDR < 1 %) by at least two individual 

peptides. Of those, 732 protein clusters were identified in the first run while combination with 

the second run increased the number of identified proteins by 39 % to 1,020 identified protein 

clusters in total (Figure 20A). A total of 579 (57 %) protein clusters were identified in all four 

analyzed biological replicates, while 624 (61 %), 689 (68 %) and 809 (79 %) protein clusters 

were identified in at least three, two and one biological replicate, respectively. In total, 187 

(18 %) protein clusters were identified exclusively in one of the four replicates (Figure 20B). 

The identified 1,020 protein clusters were subjected to functional Gene Ontology (GO) 
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analysis with respect to cellular localization in “The Database for Annotation, Visualization and 

Integrated Discovery (DAVID)” [91, 92]. A total of 873 proteins could be assigned to GO terms 

(Figure 21). The GO analysis with DAVID revealed, among others, 158 proteins (18.1 %) to 

be grouped to mitochondrion, 114 (13.1 %) proteins to non-membrane-bounded organelle, 83 

(9.5 %) proteins to organelle lumen, 73 (8.4 %) proteins to cytoskeleton and 70 (8.0 %) to 

cytosol. The DAVID analysis of oocyte and embryo proteomes also revealed three 

mitochondrion related annotation clusters (Table 4) with high enrichment scores of 25.5, 11.5 

and 1.7. An enrichment score of 1.3 is equivalent to a P value of 0.05 and higher scores 

indicate that the gene members in the group are involved in more important (enriched) terms 

in a given study [91]. 

 

 

Figure 20. Venn diagrams of protein clusters identified from four biological replicates. A: A total of 732 

protein clusters were identified in the first run and combination with the second run increased the number of 

identified protein clusters to 1,020. B: In total, 1,020 protein clusters were identified, 579 of them in four replicates. 
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Figure 21. DAVID analysis of all proteins identified in MII oocytes, zygotes, two-cell and four-cell embryos 

according to the GO term “cellular localization”. The percentage of enriched proteins associated with a GO 

term compared to the total number of identified proteins is indicated. An extract of the most significant terms is 

shown. 

 

Table 4. DAVID annotation clustering of all proteins identified in MII oocytes, zygotes, two-cell and four-cell 

embryos according to the GO term “cellular localization”. Clusters associated with the mitochondrion are 

shown. 

Cluster 1, Enrichment Score: 25.6 
     

term count % P value fold enrichment FDR 
GO:0005739~mitochondrion 158 18.1 8.89E-38 2.8 1.24E-34 
GO:0044429~mitochondrial part 103 11.8 4.24E-32 3.5 5.92E-29 
GO:0019866~organelle inner membrane 74 8.5 1.29E-26 4.0 1.80E-23 
GO:0031967~organelle envelope 93 10.7 1.06E-25 3.2 1.49E-22 
GO:0031975~envelope 93 10.7 1.31E-25 3.2 1.83E-22 
GO:0005743~mitochondrial inner membrane 71 8.1 6.27E-25 3.9 8.75E-22 
GO:0005740~mitochondrial envelope 76 8.7 1.04E-22 3.4 1.46E-19 
GO:0031966~mitochondrial membrane 74 8.5 1.20E-22 3.5 1.68E-19 
GO:0031090~organelle membrane 103 11.8 2.75E-19 2.5 3.84E-16 

  
    

  

Cluster, 3 Enrichment Score: 11.5 
     

term count % P value fold enrichment FDR 
GO:0005759~mitochondrial matrix 40 4.6 8.67E-17 4.6 1.55E-13 
GO:0031980~mitochondrial lumen 40 4.6 8.67E-17 4.6 1.55E-13 
GO:0031974~membrane-enclosed lumen 89 10.2 6.05E-10 1.9 8.44E-07 
GO:0070013~intracellular organelle lumen 83 9.5 1.03E-08 1.9 1.44E-05 
GO:0043233~organelle lumen 83 9.5 1.13E-08 1.9 1.58E-05 

  
    

  

Cluster 11, Enrichment Score: 1.7 
     

term count % P value fold enrichment FDR 
GO:0005758~mitochondrial intermembrane space 6 0.7 9.32E-03 4.4 1.23E+01 
GO:0031970~organelle envelope lumen 7 0.8 1.17E-02 3.5 1.51E+01 
GO:0042719~mitochondrial intermembrane space 
protein transporter complex 

3 0.3 9.40E-02 5.6 7.48E+01 
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Within the four biological replicates, a total of 1,051 proteins could be quantified with the Q+ 

module of Scaffold. For the quantitative pair-wise comparisons, a log2 fold change ≥ |0.6| and 

a P value ≤ 0.05 with the Student’s t-test was considered as significant. According to these 

criteria, a total of 87 proteins were quantified, which were significantly altered in abundance in 

at least one of the six pair-wise comparisons. A total of 55 proteins are significantly altered in 

abundance with MII oocytes as reference group (Table 5). In Table 6, the significant 

differences in protein abundance between the embryonic stages with either zygotes or two-

cell embryos serving as reference group are listed. The numbers of Table 6 refer to the 

numbers used in Table 5 and 32 additional differences in protein abundance are listed in 

Table 6. 

The 87 differences in protein abundance were clustered using the self-organizing tree 

algorithm (SOTA) analysis [93], leading to four clusters (Figure 22). The first cluster consists 

of 44 proteins which gradually decrease in abundance up to a maximum log2 fold change of 

about -2 (Figure 22A) while cluster 2 contains 32 proteins which increase from the MII oocyte 

stage up to a log2 fold change of about 1.3 at the four-cell stage (Figure 22B). The abundance 

of the 7 proteins of cluster 3 increased to the zygote stage, stayed fairly constant until the two-

cell stage and increased upon development to the four-cell stage up to a Log2 fold change of 

about 2.5 (Figure 22C). The fourth cluster comprises 4 proteins, the abundance of which 

sharply increased to the zygote stage by a log2 fold change up to a maximum of about 5, 

followed by a gradual decrease until the four-cell stage to the initial value (Figure 22D). 

Calculation of P values and the SOTA analysis were performed with R in collaboration with 

Kathrin Otte. 

To uncover functional categories related with the proteins of the four SOTA clusters, they 

were subjected to the Cytoscape [96] plugins ClueGO [94] and CluePedia [95] which grouped 

the most relevant biological processes in a network with GO terms and associated genes 

(Figure 23). For SOTA cluster 1, this network analysis revealed an enrichment of proteins 

related to the terms “protein folding”, “mitotic spindle organization”, “tricarboxylic acid cycle”, 

“translation”, “maturation of SSU-rRNA” and “high-density lipoprotein particle assembly” 
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(Figure 23A). For the proteins of SOTA cluster 2, which all increase in abundance during 

development, the biological terms “cellular macromolecular complex assembly”, “cellular 

amino acid metabolic process”, “purine ribonucleotide metabolic process”, “regulation of 

organelle organization” and “response to unfolded protein” were assigned (Figure 23B). In 

SOTA cluster 3 (Figure 23C), two proteins each were found to be connected to “M phase” and 

“protein transport” and in SOTA cluster 4 (Figure 23D), two proteins were involved in “protein 

polymerization”. 

 

Table 5. Significant differences in protein abundance between the embryonic stages with MII oocytes 

serving as reference group. 

        
MII oocyte 
vs. zygote* 

MII oocyte 
vs. two-cell 

embryo* 

MII oocyte 
vs. four-cell 

embryo* 

# Quantified Proteins 
Gene 

Symbol 
Accession 

Number 
Log2 
FC 

P 
value 

Log2 
FC 

P 
value 

Log2 
FC 

P 
value 

1 40S ribosomal protein S18 RPS18 Q861U5_BOVIN -0.05 0.498 -0.73 0.013 -0.44 0.042 

2 40S ribosomal protein S8 RPS8 RS8_BOVIN -0.70 0.107 -1.07 0.164 -1.11 0.042 

3 Apolipoprotein A-I APOA1 APOA1_BOVIN -0.71 0.040 -0.48 0.045 -0.71 0.010 

4 Apolipoprotein E APOE A7YWR0_BOVIN -0.42 0.469 -0.34 0.539 -0.93 0.009 

5 Astacin-like metalloendopeptidase ASTL F1MP41_BOVIN -0.75 0.000 -0.81 0.021 -1.09 0.000 

6 Chromogranin-A CHGA CMGA_BOVIN -1.10 0.002 -1.01 0.011 -1.07 0.082 

7 Cochlin COCH COCH_BOVIN -1.20 0.000 -1.57 0.001 -1.92 0.002 

8 COP9 signalosome complex subunit 4 COPS4 CSN4_BOVIN -0.42 0.249 -0.71 0.049 0.11 0.580 

9 COP9 signalosome complex subunit 7b COPS7B CSN7B_BOVIN 1.15 0.016 -3.11 0.541 -3.15 0.533 

10 E3 ubiquitin-protein ligase UHRF1 UHRF1 UHRF1_BOVIN 0.88 0.008 0.90 0.001 1.22 0.003 

11 Endoplasmic reticulum resident protein 44 ERP44 ERP44_BOVIN -0.23 0.635 -0.26 0.345 -0.65 0.013 

12 Enoyl-CoA delta isomerase 2, mitochondrial ECI2 F1MWY9_BOVIN -0.71 0.032 -0.05 0.255 -0.22 0.434 

13 Fructose-2,6-bisphosphatase TIGAR TIGAR TIGAR_BOVIN 0.54 0.120 0.79 0.022 -0.44 0.235 

14 
Glutamine--fructose-6-phosphate 
aminotransferase [isomerizing] 1 

GFPT1 A8E645_BOVIN 0.42 0.082 0.57 0.003 0.79 0.018 

15 Growth/differentiation factor 3 GDF3 F1MH37_BOVIN -0.44 0.114 -0.36 0.223 -0.86 0.043 

16 Heat shock 27kDa protein 1 HSPB1 E9RHW1_BOVIN 0.86 0.018 0.03 0.813 0.43 0.003 

17 Heterogeneous nuclear ribonucleoprotein K HNRNPK HNRPK_BOVIN 0.77 0.132 0.46 0.507 0.83 0.025 

18 Histone chaperone ASF1B ASF1B ASF1B_BOVIN -0.07 0.720 -0.69 0.018 -1.56 0.043 

19 Histone H2A HIST3H2A A4IFU5_BOVIN 0.47 0.015 0.08 0.842 1.01 0.013 

20 Hyaluronan and proteoglycan link protein 3 HAPLN3 A5PK97_BOVIN -1.48 0.003 -1.49 0.005 -1.32 0.006 

21 Inhibin alpha chain INHA INHA_BOVIN -1.15 0.388 -0.61 0.017 -0.71 0.659 

22 Inorganic pyrophosphatase PPA1 IPYR_BOVIN -0.50 0.081 -0.64 0.017 -0.09 0.785 

23 KHDC3-like protein C6orf221 E1BPE9_BOVIN -0.98 0.021 -0.71 0.011 -0.62 0.016 

24 Lysosome membrane protein 2 SCARB2 A6QQP4_BOVIN 1.13 0.356 2.98 0.004 2.97 NA 

25 NAD(P)H-hydrate epimerase APOA1BP NNRE_BOVIN 0.66 0.112 0.88 0.088 1.03 0.040 

26 Nicastrin NCSTN Q3SZQ1_BOVIN -0.01 0.954 -0.66 0.036 -0.73 0.242 

27 Nuclear pore complex protein Nup93 NUP93 NUP93_BOVIN -0.26 0.354 -0.24 0.138 -0.64 0.014 

28 PABPC4 protein PABPC4 A4IFC3_BOVIN -0.52 0.121 -0.28 0.001 -0.82 0.034 

29 Peptidyl-prolyl cis-trans isomerase D PPID PPID_BOVIN -1.01 0.013 -0.64 0.153 -0.37 0.052 

30 Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4 FKBP4_BOVIN -0.79 0.064 -1.05 0.020 -0.78 0.097 

31 
Poly(A)-specific ribonuclease PARN-like 
domain-containing protein 1 

PNLDC1 F1MX01_BOVIN 0.82 0.427 -1.27 0.048 -0.40 0.775 

32 Polyadenylate-binding protein 4 ABCE1 A4IFE6_BOVIN -0.83 0.102 -0.82 0.032 -0.52 0.272 

33 
Probable inactive 1-aminocyclopropane-1-
carboxylate synthase-like protein 2 

ACCSL F1MBE7_BOVIN 0.72 0.001 0.99 0.003 1.11 0.001 
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34 Protein FAM49B FAM49B FA49B_BOVIN 1.56 0.001 1.52 0.002 -6.64 NA 

35 protein LSM14 homolog B LSM14B E1BEY9_BOVIN -0.27 0.184 -0.58 0.044 -1.06 0.000 

36 Protein regulator of cytokinesis 1 PRC1 Q2T9P1_BOVIN -0.50 0.018 -1.17 0.008 -1.08 0.002 

37 protein transport protein Sec31A SEC31A E1BMP2_BOVIN 0.46 0.453 0.97 0.012 0.63 0.473 

38 rab GTPase-activating protein 1 RABGAP1 F1N746_BOVIN 2.69 0.179 0.84 0.047 -0.04 0.954 

39 Ras GTPase-activating-like protein IQGAP2 IQGAP2 F1MTR1_BOVIN 0.17 0.668 0.78 0.000 0.46 0.301 

40 Ras-related protein Rab-10 RAB10 A6QLS9_BOVIN 0.61 0.047 0.29 0.437 0.91 0.028 

41 Ras-related protein Rab-21 RAB21 RAB21_BOVIN 0.46 0.012 -0.03 0.954 0.73 0.001 

42 Ribosomal protein S14 RPS14 Q3T076_BOVIN -0.24 0.386 -0.89 0.023 -0.38 0.145 

43 S-adenosylmethionine synthase MAT2A A7E3T7_BOVIN -0.74 0.024 -0.65 0.015 -0.40 0.227 

44 Sec1 family domain-containing protein 1 SCFD1 E1BG76_BOVIN 0.98 0.005 0.82 0.101 0.82 0.014 

45 
Sodium/potassium-transporting ATPase 
subunit alpha-1 

ATP1A1 AT1A1_BOVIN -0.57 0.089 -0.35 0.155 -0.79 0.013 

46 Stathmin STMN1 STMN1_BOVIN 2.09 0.001 2.44 0.001 2.38 0.000 

47 
Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit, mitochondrial 

SDHA DHSA_BOVIN -0.24 0.333 -0.68 0.038 -0.34 0.057 

48 T-complex protein 1 subunit zeta CCT6A TCPZ_BOVIN -0.46 0.048 -0.43 0.124 -0.75 0.021 

49 
TRAF-type zinc finger domain-containing 
protein 1 

TRAFD1 TRAD1_BOVIN 0.67 0.112 0.65 0.015 0.39 0.094 

50 
Translocase of outer mitochondrial membrane 
70 

TOMM70A Q08E34_BOVIN -0.34 0.169 -0.82 0.019 -0.70 0.214 

51 Transmembrane protein 160 TMEM160 TM160_BOVIN 0.44 0.184 0.35 0.281 0.69 0.034 

52 Tudor and KH domain-containing protein TDRKH F1MUI1_BOVIN -0.54 0.032 -1.43 0.040 -1.70 0.003 

53 Uncharacterized protein (Fragment) LOC522998 F1N091_BOVIN 0.45 0.255 0.71 0.235 1.28 0.033 

54 Vimentin VIM VIME_BOVIN -0.05 0.356 -2.32 0.003 -2.30 0.002 

55 Wee1-like protein kinase 2 WEE2 F1MZD1_BOVIN 0.87 0.010 0.85 0.016 0.78 0.020 

  Log2 fold change ≤ -0.6 and t-test with a significance level of p ≤ 0.05           

  Log2 fold change ≥ 0.6 and t-test with a significance level of p ≤ 0.05          

*In each pair-wise comparison, positive or negative values represent an increase or decrease of protein 

abundance, respectively, in the indicated group. FC = Fold change. 
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Table 6. Significant differences in protein abundance between the embryonic stages with either zygotes or 

two-cell embryos serving as reference group. 

        
zygote vs. 
two-cell 
embryo* 

zygote vs. 
four-cell 
embryo* 

two-cell 
embryo 
vs. four-

cell 
embryo* 

# Quantified Proteins 
Gene 

Symbol 
Accession 

Number 
Log2 
FC 

P 
value 

Log2 
FC 

P 
value 

Log2 
FC 

P 
value 

1 40S ribosomal protein S18 RPS18 Q861U5_BOVIN -0.66 0.033 -0.38 0.100 0.28 0.288 

7 Cochlin COCH COCH_BOVIN -0.56 0.003 -0.95 0.002 -0.41 0.111 

13 Fructose-2,6-bisphosphatase TIGAR TIGAR TIGAR_BOVIN 0.11 0.705 -0.26 0.384 -0.71 0.023 

16 Heat shock 27kDa protein 1 HSPB1 E9RHW1_BOVIN -0.95 0.001 -0.52 0.007 0.37 0.015 

31 
Poly(A)-specific ribonuclease PARN-like domain-
containing protein 1 

PNLDC1 F1MX01_BOVIN -1.62 0.036 -1.32 0.036 0.21 0.790 

35 protein LSM14 homolog B LSM14B E1BEY9_BOVIN -0.19 0.661 -0.88 0.003 -0.69 0.024 

36 Protein regulator of cytokinesis 1 PRC1 Q2T9P1_BOVIN -0.68 0.007 -0.58 0.002 0.09 0.550 

42 Ribosomal protein S14 RPS14 Q3T076_BOVIN -0.72 0.035 -0.16 0.677 0.37 0.149 

43 S-adenosylmethionine synthase MAT2A A7E3T7_BOVIN 0.12 0.738 0.93 0.001 0.27 0.064 

52 Tudor and KH domain-containing protein TDRKH F1MUI1_BOVIN -1.27 0.033 -0.97 0.005 -0.23 0.190 

54 Vimentin VIM VIME_BOVIN -2.21 0.001 -2.05 0.003 -0.40 0.113 

56 4F2 cell-surface antigen heavy chain SLC3A2 F1N2B5_BOVIN 0.66 0.091 -0.32 0.422 -0.92 0.000 

57 60S ribosomal protein L19 RPL19 RL19_BOVIN -0.56 0.107 -0.74 0.003 -0.18 0.442 

58 6-phosphogluconolactonase PGLS F1MM83_BOVIN 0.18 0.420 -0.34 0.098 -0.65 0.003 

59 
Ankyrin repeat and FYVE domain-containing 
protein 1 

ANKFY1 F1MD79_BOVIN -1.10 0.217 -0.58 0.722 1.02 0.046 

60 Citrate synthase, mitochondrial CS CISY_BOVIN -0.93 0.044 -0.32 0.129 0.18 0.030 

61 
Cysteine and histidine-rich domain-containing 
protein 1 

CHORDC1 CHRD1_BOVIN 0.42 0.277 0.84 0.105 0.65 0.026 

62 Cysteine dioxygenase type 1 CDO1 CDO1_BOVIN 0.05 0.985 -1.26 0.001 1.71 0.109 

63 Cytochrome b-c1 complex subunit 6, mitochondrial UQCRH QCR6_BOVIN -0.10 0.906 -0.43 0.322 -0.97 0.037 

64 cytoplasmic FMR1-interacting protein 1 CYFIP1 E1BN47_BOVIN 0.62 0.040 0.08 0.867 -0.04 0.915 

65 Eukaryotic translation initiation factor 4E transporter EIF4ENIF1 E1BG99_BOVIN -0.80 0.048 -0.88 0.004 -0.20 0.469 

66 Formin-like protein 2 FMNL2 E1BB06_BOVIN 1.38 0.011 1.27 0.001 -0.27 0.732 

67 Glutathione S-transferase Mu 1 GSTM1 GSTM1_BOVIN 0.63 0.002 0.38 0.144 -0.12 0.713 

68 Importin subunit alpha KPNA2 Q3SYV6_BOVIN 4.34 0.200 -0.72 0.622 -5.45 0.045 

69 Inner membrane protein, mitochondrial IMMT A7E3V3_BOVIN -0.71 0.476 0.68 0.025 0.64 0.481 

70 
Mesencephalic astrocyte-derived neurotrophic 
factor 

MANF MANF_BOVIN -0.56 0.359 -0.76 0.036 -0.38 0.351 

71 
NADH-ubiquinone oxidoreductase 75 kDa subunit, 
mitochondrial 

NDUFS1 NDUS1_BOVIN 0.43 0.197 0.77 0.004 0.11 0.689 

72 Nuclease EXOG, mitochondrial EXOG E1BAZ9_BOVIN 0.61 0.003 0.45 0.498 -0.16 0.785 

73 Peptidyl-prolyl cis-trans isomerase FKBP1A FKBP1A FKB1A_BOVIN 0.16 0.715 0.82 0.087 0.73 0.044 

74 Prolyl 4-hydroxylase subunit alpha-1 P4HA1 A6QL77_BOVIN 0.69 0.023 0.36 0.056 -0.34 0.006 

75 Proteasome subunit alpha type-7 PSMA7 A7E3D5_BOVIN -0.89 0.088 -0.09 0.158 1.02 0.040 

76 Protein PAT1 homolog 2 PATL2 F1N6C5_BOVIN -0.46 0.071 -0.78 0.043 -0.23 0.462 

77 Putative zinc finger protein 840 ZNF840 G3MXP4_BOVIN -1.65 0.162 -2.17 0.022 -0.99 0.120 

78 Ras-related protein Rab-6A RAB6A F1MBF6_BOVIN 0.80 0.128 0.95 0.023 0.07 0.762 

79 
Sarcoplasmic/endoplasmic reticulum calcium 
ATPase 2 

ATP2A2 F1MPR3_BOVIN -0.86 0.040 0.89 0.677 1.42 0.459 

80 
Serine/threonine-protein phosphatase PP1-gamma 
catalytic subunit 

PPP1CC PP1G_BOVIN -0.35 0.367 -2.60 0.006 -1.03 0.500 

81 Similar to prefoldin subunit 2 PFDN2 Q862M6_BOVIN 0.38 0.285 -0.26 0.508 -0.70 0.029 

82 Spectrin beta chain, non-erythrocytic 1 SPTBN1 F1MYC9_BOVIN 1.10 0.024 -1.95 0.494 -0.45 0.076 

83 Stimulated by retinoic acid gene 6 protein homolog STRA6 F1N4Q6_BOVIN -0.61 0.002 -0.08 0.858 0.36 0.341 

84 Synaptic vesicle membrane protein VAT-1 homolog VAT1 F1MUP9_BOVIN -1.42 0.461 1.37 0.000 0.11 0.743 

85 tubulin alpha-1C chain-like LOC100141266 F1MNF8_BOVIN 0.69 0.029 0.23 0.590 -0.33 0.341 

86 Tubulin beta-5 chain TUBB5 TBB5_BOVIN 2.08 0.007 -6.64 NA -1.06 0.502 

87 Twinfilin-1 TWF1 TWF1_BOVIN 0.06 0.858 0.96 0.042 0.26 0.245 

  Log2 fold change ≤ -0.6 and t-test with a significance level of p ≤ 0.05            

  Log2 fold change ≥ 0.6 and t-test with a significance level of p ≤ 0.05             

*In each pair-wise comparison, positive or negative values represent an increase or decrease of protein 

abundance, respectively, in the indicated group. FC = Fold change. # refer to the # used in Table 5. 
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Figure 22. SOTA plot of the 87 proteins significantly different in abundance between MII oocytes, zygotes, 

two-cell and four-cell embryos. Relative protein abundance with MII oocytes as reference group is expressed as 

log2 fold change (y-axis) and developmental stages are outlined on the x-axis. Protein enrichment is encoded from 

low (yellow) to high (red). Proteins also quantified by SRM assay are highlighted in blue. The SOTA analysis was 

performed in collaboration with Kathrin Otte. A: Cluster 1 with 44 proteins, B: Cluster 2 with 32 proteins, C: Cluster 

3 with 7 proteins and D: Cluster 4 with 4 proteins. 
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Figure 23. Cytoscape analyses of the four SOTA clusters according to the GO term “biological process”. In 

the functionally grouped networks, terms and their associated genes (colored in red) are linked based on a к score 

(≥ 0.3) and the edge thickness indicates the association strength. The node size corresponds to the statistical 

significance for each term. Cytoscape analyses were performed based on the proteins of A: SOTA cluster 1, B: 

SOTA cluster 2, C: SOTA cluster 3 and D: SOTA cluster 4. 
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The proteomes of two-cell and four-cell embryos differed most compared to the reference MII 

oocytes, with 32 and 31 significant differences in protein abundance, respectively. In contrast, 

the proteomes of two-cell and four-cell embryos were more similar to each other with only 11 

detected abundance alterations (Figure 24A). Functionally grouped networks with terms and 

associated genes were generated by subjecting proteins increased and decreased in 

abundance to a comparative Cytoscape analyses according to the GO term “biological 

process”. These networks visualized functional categories significantly enriched during each 

step of early embryogenesis. First the proteomes of MII oocytes and zygotes were compared 

to study the effect of fertilization on the level of proteins. Between MII oocytes and zygotes, 9 

proteins with increased and another 9 with decreased abundance in the zygote stage were 

detected. The affected proteins were related to the terms “cellular modified amino acid 

metabolic process” and “hormone metabolic process” (Figure 24B). During the first cleavage 

from the zygote stage to the two-cell stage, 11 proteins with increased and 21 proteins with 

decreased abundance in two-cell embryos were detected. Network analysis revealed proteins 

involved in “protein polymerization” to be increased and proteins related to the term 

“translational initiation” to be decreased in abundance from the zygote stage until the two-cell 

stage (Figure 24C). The second cleavage, leading to the four-cell stage, affected 11 proteins. 

Compared to two-cell embryos, proteins related to the GO term “regulation of protein 

ubiquitination” were found to be enriched in four-cell embryos according to the network 

analysis (Figure 24D). 
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Figure 24. Differently abundant proteins in pair-wise comparisons between MII oocytes, zygotes, and two-

cell and four-cell embryos. Yellow color: Proteins increasing in abundance during ongoing development. Blue 

color: Proteins decreasing in abundance during development. A: Number of differently abundant proteins between 

all six pair-wise comparisons. B-D: Cytoscape analyses of three pair-wise comparisons according to the GO term 

“biological process”. In the functionally grouped network, terms and their associated genes (colored in red) are 

linked based on a к score (≥ 0.3) and the edge thickness indicates the association strength. The node size 

corresponds to the statistical significance of each term. B: MII oocytes vs. zygotes, C: zygotes vs. two-cell 

embryos and D: two-cell vs. four-cell embryos. 
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3.3.3 Verification of iTRAQ data by 5-plex SRM 

 

To verify protein profiles obtained by the holistic LC-MS/MS approach, SRM assays for a 

subset of five proteins relevant for early embryogenesis were established. Selection of 

targeted proteins was based on literature research of biological functions, signal intensities of 

corresponding peptides and protein profiles determined by the iTRAQ approach. To cover 

different abundance alteration profiles, proteins from several SOTA clusters were chosen 

which are highlighted in blue in Figure 22. Three proteins were selected from SOTA cluster 1: 

Astacin-like metalloendopeptidase (ASTL), tudor and KH domain-containing protein (TDRKH) 

and vimentin (VIM). Additionally, one protein was selected from SOTA cluster 2, heat shock 

protein beta-1 (HSPB1), and another one from SOTA cluster 3, wee1-like protein kinase 2 

(WEE2). Table 7 shows two characteristic peptides along with the corresponding top 3 

transitions selected for relative quantification of the selected proteins. The protein amounts 

were determined simultaneously in pools of 10 oocytes or embryos each, using synthetic 

stable isotope-labeled (SI) peptides as internal standards for each endogenous peptide. Four 

biological replicates were analyzed. Whenever possible, the most intense transition of each 

peptide was used for relative quantification, and abundance alteration was determined via the 

intensity ratio of the transition obtained from the endogenous peptide and the corresponding 

SI peptide. Alterations in protein abundance between groups were expressed as log2 fold 

change compared to MII oocytes. The two peptides used for quantitation of each protein 

provided high signal to noise ratios of at least 14. The quantified protein profiles obtained in 

the SRM experiment by peptide 1 and 2 proved to be consistent in all cases with those 

acquired in the iTRAQ experiment (Figure 25), demonstrating the reliability of the iTRAQ data. 

 

 

 

 



Results 

59 

Table 7. Top three transitions for each of the two peptides per protein selected for validation by SRM.a 

gene  
symbol 

peptide  
sequence 

precurser 
 ion (m/z) 

top three  
transitions 

(m/z) 

charge / 
fragment ions 

CE 
(V) 

ASTL SQLQQLLK 479.29 742.48 2+ / y6 20 
   629.40 2+ / y5 20 
   501.34 2+ / y4 23 
 NGGVVEVPFLLSSK 723.40 1118.65 2+ / y10 31 
   328.16 2+ / b4 31 
   229.09 2+ / b3 40 

HSPB1 LFDQAFGLPR 582.31 903.47 2+ / y8 28 
   589.35 2+ / y5 28 
   660.38 2+ / y6 31 
 ALPAAAIEGPAYNR 707.38 677.34 2+ / y6 30 
   495.29 2+ / b6 30 
   424.26 2+ / b5 36 

TDRKH IDVDTEDIGDER 688.81 1049.44 2+ / y9 32 
   934.41 2+ / y8 35 
   704.32 2+ / y6 32 
 NLDIGLELVR 571.33 686.42 2+ / y6 27 
   343.16 2+ / b3 24 
   799.50 2+ / y7 27 

VIM TLYTSSPGGVYATR 736.87 1095.54 2+ / y11 37 
   820.43 2+ / y8 34 
   994.50 2+ / y10 37 
 FADLSEAANR 547.27 647.31 2+ / y6 26 
   875.42 2+ / y8 23 
   334.14 2+ / b3 29 

WEE2 IGVGDFGTVYK 578.31 886.43 2+ / y8 27 
   1042.52 2+ / y10 24 
   714.38 2+ / y6 30 
 IGDLGHVTSISNPK 719.39 746.40 2+ / y7 40 
   593.30 2+ / b6 40 
   692.37 2+ / b7 40 

aPrecursor ions and top three transitions in decreasing intensity order are listed with their mass to 

charge (m/z) ratios. CE represents the collision energy in Volt. 
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Figure 25. Comparison of protein profiles obtained by either SRM or iTRAQ based quantitation for 5 

selected proteins. The log2 fold changes outlined at the y-axis were determined by comparing protein 

abundances against MII oocytes for each stage ± SD (n = 4). The two peptides used for quantitation of each 

protein by SRM are outlined separately by dark and bright blue bars and iTRAQ data is outlined by yellow bars. 

Pep1 = Peptide 1; Pep2 = Peptide 2. A: ASTL (SOTA cluster 1), B: HSPB1 (SOTA cluster 2), C: TDRKH (SOTA 

cluster 1), D: VIM (SOTA cluster 1) and E: WEE2 (SOTA cluster 3). *Significant difference in protein abundance 

compared to MII oocytes (Log2 fold change ≥ │0.6│and t-test with a significance level of p ≤ 0.05). 
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3.3.4 Principle component analysis of iTRAQ and SRM data 

 

To test if the subset of 5 proteins chosen for SRM analysis enables discrimination between 

oocytes, zygotes, two-cell and four-cell embryos, analysis of variance (ANOVA) was 

performed on iTRAQ intensities and SRM data. Subsequently, the significantly altered 

proteins of the iTRAQ data were subjected to principle component analysis (PCA) that led to a 

clear discrimination of the four groups (Figure 26A). The ANOVA and PCA conducted on the 

relative quantitation of ASTL, HSPB1, TDRKH, VIM and WEE2 by multiplexed SRM also 

enabled clear distinction between the four developmental stages (Figure 26B). This indicates 

the capability of these proteins to be parameters which enable discrimination between MII 

oocytes, zygotes, and two-cell and four-cell embryos on the abundance level of a few 

proteins. 

 

 

Figure 26. Principal component analysis (PCA) of iTRAQ and SRM data. A: Analysis of variance (ANOVA) 

was performed on iTRAQ data (n = 4) followed by principal component analysis of the significant differences in 

protein abundance. B: ANOVA and PCA was conducted on the targeted, SRM-based relative quantitation of ASTL, 

HSPB1, TDRKH, VIM and WEE2 (n = 4). ANOVA and PCA analysis was performed in collaboration with Kathrin 

Otte. 
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3.3.5 Localization of WEE2 by LSM 

 

WEE2 protein was found to increase between MII oocytes and two-cell embryos by a log2 fold 

change of about 0.9 (Figure 25E). Immunofluorescence and LSM was used to study the 

localization of WEE2 in two-cell embryos. Staining for WEE2 protein revealed it to be localized 

inside of the nucleus (Figure 27). 

 

 

Figure 27. LSM analysis of WEE2 in a two-cell embryo. WEE2 staining is shown in green, DNA staining with 

DAPI is in white and f-actin filaments (phalloidin-TRITC) staining is shown in red. Arrows indicate the localization of 

WEE2 in the nucleus of one blastomere of the two-cell embryo. Scale bar represents 100 µm. Image capturing and 

interpretation was performed in collaboration with Dr. Felix Habermann. 
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3.4 Targeted proteome analysis by multiplexed SRM 

 

3.4.1 General remarks 

 

The multiplexed SRM assay consisting of ASTL, HSPB1, TDRKH, VIM and WEE2 was further 

extended to cover a larger set of biologically relevant proteins. Target proteins were selected 

based on their significant differences in abundance during oocyte maturation (Table 2 and 3) 

and early embryogenesis (Table 5 and 6), as well as from previous proteomic experiments of 

our lab and literature research of biological functions. In total, 27 proteins were chosen for the 

multiplexed SRM assay, which are listed in Table 8. The 54 peptides of the 27 selected 

proteins and their corresponding SI peptides (324 transitions) were measured simultaneously 

in a scheduled SRM assay. In Figure 28, an exemplary SRM chromatogram from the 

measurement of 10 zygotes is depicted. Zygotes were selected, because the abundance of 

some analyzed proteins was very low in GV and MII oocytes. To improve quantification, the 

added amounts of SI peptides were optimized to closely reflect the amounts of the 

endogenous peptides in the sample. The complete SRM method can be viewed in 

Supplementary Table 10. 
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Table 8. Proteins for which SRM assays were established. 

Study of origin: a: iTRAQ study of oocyte maturation; b: iTRAQ study of embryogenesis; c: previous proteomic 

experiments of the lab. 

protein name gene name peptide sequences 
Study 

of 
origin 

Zygote arrest 1 variant 1 ZAR1 
TLAVYSPVTSR 

a 
DAAVQVNPFR 

Heat shock protein 70 HSP70 
NQVALNPQNTVFDAK 

a LYQGAGGPGAGGFGAQGP
K 

Importin subunit alpha-8 KPNA7 
IGQVVDTGVLPR 

a 
LIVDAGLIPR 

Clusterin CLU 
GSLFFNPK 

a 
LLLSSLEEAK 

Retinol-binding protein 4 RBP4 
DPSGFSPEVQK 

a 
YWGVASFLQK 

Gametocyte specific factor 1 GTSF1 
LATCPFNAR 

a 
SCIEQDVVNQTR 

Tudor and KH domain-containing protein TDRKH 
IDVDTEDIGDER 

b 
NLDIGLELVR 

Heat shock protein beta-1 HSPB1 
ALPAAAIEGPAYNR 

b 
LFDQAFGLPR 

Protein regulator of cytokinesis 1 PRC1 
LQIPAEER 

b 
VEVAQYWDR 

Astacin-like metalloendopeptidase ASTL 
NGGVVEVPFLLSSK 

b 
SQLQQLLK 

Programmed cell death protein 5 PDCD5 
VSEQGLIEILEK 

c 
NSILAQVLDQSAR 

Phosphatidylethanolamine-binding protein 1 PEBP1 
LYEQLSGK 

c 
YGGAEVDELGK 

Ubiquitin-40S ribosomal protein S27a RPS27A 
ESTLHLVLR 

c 
TLSDYNIQK 

Thioredoxin-dependent peroxide reductase, 
mitochondrial 

PRDX3 
GLFIIDPNGVIK 

c 
HLSVNDLPVGR 

Glutathione S-transferase mu 3 GSTM3 
YLEQLPGQLK 

c 
YSWFAGEK 

Lysosomal-associated membrane protein 2 LAMP2 
IPLNDIFR 

c 
EKEVFTVNNR 

10 kDa heat shock protein, mitochondrial HSPE1 
VLLPEYGGTK 

c 
VLQATVVAVGSGSK 

Pterin-4-alpha-carbinolamine dehydratase PCBD1 
AVGWNELEGR 

c 
DQLLPNLR 

ACC synthase-like protein 2 ACCSL 
NTLGYINLGTSENK 

a, b 
FGALYTHNR 

Wee1-like protein kinase 2 WEE2 
IGVGDFGTVYK 

a, b 
IGDLGHVTSISNPK 

E3 ubiquitin-protein ligase UHRF1 UHRF1 
YAPIEGNR 

a, b 
LNDTIQLLVR 

Stathmin STMN1 
ASGQAFELILSPR 

a, b 
AIEENNNFSK 

Aurora kinase A AURKA 
TAVPLSDGPK 

a, b 
IADFGWSVHAPSSR 

Vimentin VIM 
FADLSEAANR 

a, b 
TLYTSSPGGVYATR 

Transforming acidic coiled-coil-containing protein 3 TACC3 
QASEEIAQVR 

a, b 
ICDDLISK 

Y-box-binding protein YBX2 
TPGNPATAASGTPAPLAR 

a, c 
GAEAANVTGPGGVPVK 

Hyaluronan and proteoglycan link protein 3 HAPLN3 
SNCGALEPGVR 

b, c 
LTLAEAR 
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Figure 28. SRM chromatogram obtained from the analysis of ten zygotes by LC-ESI-MS/MS. The light and 

heavy form of 54 peptides corresponding to 27 proteins were analyzed. Peak assignments: 1, UHRF1_YAPIEGNR; 

2, STMN1_AIEENNNFSK; 3, TACC3_QASEEIAQVR; 4, HAPLN3_SNCGALEPGVR; 5, LAMP2_EKEVFTVNNR; 6, 

PEBP1_LYEQLSGK3; 7, HAPLN3_LTLAEAR; 8, ACCSL_FGALYTHNR; 9, AURKA_TAVPLSDGPK; 10, 

RPS27A_TLSDYNIQK; 11, RBP4_DPSGFSPEVQK; 12, YBX2_GAEAANVTGPGGVPVK; 13, PRC1_LQIPAEER; 

14, PEBP1_YGGAEVDELGK; 15, TACC3_ICDDLISK; 16, GTSF1_LATCPFNAR; 17, VIM_FADLSEAANR; 18, 

YBX2_TPGNPATAASGTPAPLAR; 19, WEE2_IGDLGHVTSISNPK; 20, GTSF1_ SCIEQDVVNQTR; 21, 

HSP70_LYQGAGGPGAGGFGAQGPK; 22, HSPE1_VLQATVVAVGSGSK; 23, VIM_TLYTSSPGGVYATR; 24, 

TDRKH_IDVDTEDIGDER; 25, PRDX3_HLSVNDLPVGR; 26, ZAR1_TLAVYSPVTSR; 27, HSPE1_VLLPEYGGTK; 

28, RPS27A_ESTLHLVLR; 29, HSPB1_ALPAAAIEGPAYNR; 30, ZAR1_DAAVQVNPFR; 31, ASTL_SQLQQLLK; 

32, KPNA7_IGQVVDTGVLPR; 33, PRC1_VEVAQYWDR; 34, PCBD1_AVGWNELEGR; 35, 

GSTM3_YLEQLPGQLK; 36, GSTM3_YSWFAGEK; 37, HSP70_NQVALNPQNTVFDAK; 38, 

ACCSL_NTLGYINLGTSENK; 39, PCBD1_DQLLPNLR; 40, CLU_GSLFFNPK; 41, AURKA_IADFGWSVHAPSSR; 

42, WEE2_IGVGDFGTVYK; 43, CLU_LLLSSLEEAK; 44, KPNA7_LIVDAGLIPR; 45, UHRF1_LNDTIQLLVR; 46, 

LAMP2_IPLNDIFR; 47, HSPB1_LFDQAFGLPR; 48, STMN1_ASGQAFELILSPR; 49, TDRKH_NLDIGLELVR; 50, 

PDCD5_NSILAQVLDQSAR; 51, RBP4_YWGVASFLQK; 52, ASTL_NGGVVEVPFLLSSK; 53, 

PDCD5_VSEQGLIEILEK; 54, PRDX3_GLFIIDPNGVIK. 

 

3.4.2 Reproducibility of the 27-plex SRM assay 

 

The reproducibility of the 27-plex SRM assay was validated by iterative analysis of twelve 

aliquots comprising ten zygotes each. The zygote stage was selected for this assay, because 

the abundance of some analyzed proteins was very low in GV and MII oocytes. The mean 

coefficient of variation (CV) was 10.1 % for all transitions (quantifier + both qualifiers) (Figure 

29A) and the mean CV for the quantifier transition only was 7.8 % (Figure 29B). The 

reproducibility of the retention time of each peptide was also tested and the mean CV was 
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0.5 %. The elution times of the peptides were well separated and evenly distributed over the 

chromatographic gradient (Figure 29C). 

 

 

Figure 29. Reproducibility of the 27-plex SRM assay. Yellow bar: 10 % variation; Grey bar: 25 % variation; 

FC = Fold change. A: Technical variability of the SRM measurement of all 162 transitions (quantifier + qualifier) 

corresponding to 27 proteins. B: Technical variability of the SRM measurement of the 54 quantifier transitions 

corresponding to 27 proteins. C: Reproducibility and distribution of the elution times over the chromatographic 

gradient of all 54 analyzed peptides.  
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3.4.3 Targeted quantification of 27 proteins in oocytes and embryos 

 

3.4.3.1 Relative quantification of 27 proteins 

 

Protein amounts were determined simultaneously in six biological replicates consisting of 

pools of ten oocytes or embryos each. All oocytes and embryos were evaluated 

microscopically prior to collection. Oocytes were studied at the GV and at the MII stage. The 

studied embryonic stages comprised embryos at zygote, two-cell, four-cell, eight- to 16-cell, 

morula and blastocyst stage. Embryos at the blastocyst stage were collected at day 7 and 8 

post insemination. At day 8 post insemination, only hatched blastocysts were collected. 

Relative quantification was done via the intensity ratio of the quantifier transition of the 

endogenous peptide (light peptide) to SI peptide and alterations in protein abundance 

between groups were expressed as mean log2 fold change compared to the dataset mean of 

each peptide (Figure 30). Intensity values were only considered valid with a signal to noise 

ratio ≥ 10. Significance criteria for quantification were a log2 fold change ≥ │0.6│ and 

p < 0.05. In about 70 % of all significant cases, the calculated log2 fold change of peptide 1 

differed less than 25°% from peptide 2. Further, in about 5 % of all significant cases, the 

calculated log2 fold change of peptide 1 differed more than 100 % from peptide 2. Peptide 1 

and 2 used for quantification of each protein are illustrated in Supplementary Figure 33. 
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Figure 30. Relative quantification of 27 proteins in oocytes and embryos by SRM. Values are expressed as 

mean log2 fold change ± SD (n=6) compared to the dataset mean of each peptide. D7 = day 7; D8 = day 8. 

*Significant changes of protein abundance compared to MII oocytes: p < 0.05 and log2 fold change ≥ │0.6│. 
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3.4.3.2 Comparison between iTRAQ data and SRM data 

 

Sixteen proteins of the 27-plex SRM assay also showed significant abundance alterations in 

at least one of the two previously performed iTRAQ studies covering GV oocytes, zygotes, 

two-cell embryos and four-cell embryos compared to MII oocytes (see chapter 3.2 and 3.3). 

The quantitative values obtained by iTRAQ and SRM analysis were outlined and compared 

(Table 9). In 31 out of 34 cases, highlighted in blue in Table 9, a significant value (p ≤ 0.05 

and log2 fold change ≥ │0.6│) was obtained by SRM analysis which confirmed the value 

obtained by iTRAQ analysis. In three out of 34 cases, highlighted in orange in Table 9, no 

significant quantitative value was obtained by SRM analysis. 

 

Table 9. Comparison of significant abundance alterations obtained by either iTRAQ or SRM analysis. 

Only significant quantitative values of each stage compared to MII oocytes (Log2 FC ≥ │0.6│ and p ≤ 0.05) are 

listed. Positive and negative values represent an increase or decrease of protein abundance in the indicated group 

compared to MII oocytes, respectively. N/A: No quantitative value available. N/S: No significant quantitative value 

available. 

    
GV oocyte Zygote two-cell embryo four-cell embryo 

    [Log2 FC] [Log2 FC] [Log2 FC] [Log2 FC] 

Quantified Proteins 
Gene 

Symbol 
iTRAQ SRM iTRAQ SRM iTRAQ SRM iTRAQ SRM 

Probable inactive 1-
aminocyclopropane-1-
carboxylate synthase-like 
protein 2 

ACCSL -1.49 -1.89 0.72 0.70 0.99 0.93 1.11 1.10 

Astacin-like 
metalloendopeptidase 

ASTL N/S N/S -0.75 -1.06 -0.81 -1.56 -1.09 -2.26 

Aurora kinase A AURKA -0.79 -0.60 N/S N/S N/S N/S N/S N/S 

Gametocyte-specific factor 1 GTSF1 0.66 N/S N/S -1.01 N/S -1.09 N/S -1.26 

Hyaluronan and proteoglycan 
link protein 3 

HAPLN3 N/S N/S -1.48 -2.05 -1.49 -2.14 -1.32 -2.31 

Heat shock 27kDa protein 1 HSPB1 N/S N/S 0.86 0.93 N/S N/S N/S N/S 

Importin subunit alpha-8 KPNA7 -0.96 -1.43 N/S N/S N/S N/S N/S N/S 

Protein regulator of cytokinesis 
1 

PRC1 N/A -1.77 N/S N/S -1.17 -1.18 -1.08 -0.83 

Retinol-binding protein 4 RBP4 0.80 0.76 N/S N/S N/S N/S N/S -0.83 

Stathmin STMN1 2.73 2.17 2.09 1.77 2.44 2.11 2.38 2.09 

Transforming acidic coiled-coil-
containing protein 3 

TACC3 -1.25 -1.80 N/S N/S N/S N/S N/S N/S 

Tudor and KH domain-
containing protein 

TDRKH N/S N/S N/S N/S -1.43 -1.40 -1.70 -1.83 

E3 ubiquitin-protein ligase 
UHRF1 

UHRF1 -1.53 -1.61 0.88 1.24 0.90 1.48 1.22 1.98 

Vimentin VIM N/S N/S N/A N/S -2.32 -2.75 -2.30 -2.91 

Wee1-like protein kinase 2 WEE2 -2.90 -1.96 0.87 N/S 0.85 N/S 0.78 0.82 

Zygote arrest protein 1 ZAR1 1.09 2.95 N/A N/S N/A N/S N/A N/S 
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3.4.3.3 Absolute quantification of nine proteins 

 

For absolute quantification of nine proteins, two synthetic SI “AQUA™” peptides were used as 

internal standard for each protein. These AQUA™ peptides are provided in solution and the 

concentration it determined at a precision of ± 5% by the manufacturer, which enables the 

calculation of absolute protein contents. They were added to the sample prior to digestion at 

pre-defined concentrations which are listed in Supplementary Table 10. 

 

3.4.3.3.1 Determination of the limit of detection (LOD) and the limit of quantification 

(LOQ) for all nine proteins 

 

For each of the 18 AQUA™ peptides, the LOD and LOQ were determined. The AQUA™ 

peptides were added to the samples consisting of three aliquots of five GV oocytes each in 

concentrations ranging from 50 amol to 100 fmol per sample. For the LOD, the signal to noise 

ratio had to be ≥ 3 and for the LOQ, the signal to noise ratio had to be ≥ 10. The responses 

were linear over several orders of magnitude for all peptides (Figure 31). The LOQ and LOD 

of the 18 SI peptides used for absolute quantification by SRM are listed in Supplementary 

Table 11. 
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Figure 31. Determination of the LOQ and LOD of the 18 AQUA™ peptides by SRM. Five GV oocytes were 

used as background. Values are depicted as mean signal intensity in cps [log10] ± SD (n=3). Red data point: LOD; 

Green data point: LOQ. 
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3.4.3.3.2 Absolute quantification of nine proteins in oocytes and embryos 

 

Protein amounts were determined simultaneously in six biological replicates consisting of 

pools of ten oocytes or embryos each as described in chapter 3.4.3.1. For absolute 

quantification, the intensity ratios of the quantifier transition of the light and the heavy peptide 

were used and the protein abundance was expressed as mean amol or fmol per oocyte or 

embryo (Figure 32). Intensity values were only considered valid with a signal to noise ratio 

≥ 10. Significance criteria for quantification were a log2 fold change ≥ │0.6│ and p < 0.05. 

Peptide 1 and 2 used for quantification of each protein are illustrated in Supplementary Figure 

34. 
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Figure 32. Absolute quantification of nine proteins in oocytes and embryos. Values are expressed as mean 

fmol or amol per oocyte or embryo ± SD (n=6). D7 = day 7; D8 = day 8. *comparison with MII oocytes as reference 

group: p < 0.05 and log2 fold change ≥ │0.6│. 
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4. Discussion 
 

4.1 General aspects 

 

The first aim of this thesis was the establishment of proteome profiles of oocyte maturation 

and early embryogenesis by a holistic proteomic approach. Among the variety of different 

holistic proteomic methods available to reach that goal, isotope labeling based quantification 

is generally regarded as more precise compared to label free methods. Non-radioactive stable 

isotope labels (SIL) can be introduced metabolically during cell culture, e.g., SILAC [64]. 

However, this approach was no option due to the low metabolism during oocyte maturation 

and the few cleavage cycles of the studied embryos. Chemical labeling at the level of proteins, 

such as ICAT [65], enables only a comparison of two samples. Chemical labeling of peptides 

using iTRAQ [66], however, offers the possibility to quantitatively compare four sample and 

was therefore the method of choice. The 4-plex iTRAQ method was applied for the 

simultaneous analysis of the proteomes of GV oocytes and MII oocytes matured in vitro 

according to three different maturation protocols. MII oocytes are usually matured with 

supplementation of ECS and LH/FSH in our lab. To assess the influence of the exogenous 

hormone supplementation of LH/FSH, one group was matured with ECS only. Growth 

hormones such as GH are also frequently used in oocyte maturation and a group matured 

with LH/FSH/GH supplementation was included in the study. The 4-plex iTRAQ method also 

enabled a simultaneous analysis of the proteomes of zygotes, two-cell embryos, four-cell 

embryos and an internal standard consisting of MII oocytes for the establishment of proteome 

profiles of early mammalian embryogenesis. A further advantage of the iTRAQ method is that 

the multiplexed approach downsizes the total number of necessary LC-MS runs, and 

minimizes technical variances due to stable isotope labeling of peptide mixtures prior to LC-

MS analysis. 

A common problem of bottom-up proteomics is under sampling. Under sampling usually 

occurs during analysis of complex biological samples. The high number of components to be 
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analyzed exceeds the data acquisition capacity of the instrument, causing loss of information 

[97]. Therefore, a pre-fractionation step was included in the workflow. Several methods are 

available, such as OFFGEL [98], SDS-PAGE and strong cation exchange (SCX) 

chromatography, which were all tested in pilot studies (data not shown). The largest number 

of identified proteins was achieved with pre-fractionation by SCX, which is in line with results 

previously reported [99, 100]. The combination of SCX chromatography and iTRAQ offers the 

possibility of first-dimension separation and simultaneous cleanup of excess iTRAQ reagents, 

salts and other interfering compounds [101]. Furthermore, SCX is performed after isotope 

labeling of the samples, which minimizes technical variances. The sample is eluted from the 

SCX column stepwise, using different concentration of KCl. In the iTRAQ study of oocyte 

maturation, six salt steps were applied which was previously reported by Demant et al. 

(unpublished data). The salt steps were further optimized (data not shown) and in the iTRAQ 

study of early embryogenesis, eight salt steps were applied. The analytical depth was further 

enhanced by splitting each SCX fraction into two or three aliquots to be iteratively analyzed by 

LC-MS/MS with manually established exclusion lists applied in the following runs. These 

exclusion lists instructed the mass spectrometer to ignore masses already acquired, thus 

enhancing data acquisition. The number of protein identifications could be substantially 

increased which is in agreement with previously reported studies about technical replication of 

LC-MS/MS analysis [102]. In the study of oocyte maturation, the largest increase in protein 

identification was already achieved after application of the first exclusion list. Therefore, only 

one exclusion list was applied in the follow-up study of early embryogenesis. Due to these 

optimizations, the sample amount could be substantially decreased from 4 x 150 oocytes per 

replicate, which corresponds to the protein amount of 50 µg usually applied in iTRAQ studies, 

to 4 x 100 oocytes/embryos in the second iTRAQ study reaching comparable results. This 

lessened the problem of the more challenging generation of embryos compared to oocytes. 

The last aim of this thesis was to use the data derived from these holistic proteomic 

approaches for the establishment of SRM assays which enabled targeted protein 

quantification of selected proteins for verification of results as well as for targeted protein 
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quantification in additional embryonic stages. Ten oocytes/embryos were pooled per sample, 

corresponding to about 1 µg total protein, which facilitate a reproducible quantification. For 

relative quantification, crude stable isotope-labeled (SI) peptides were sufficient; however, for 

absolute quantification of proteins, SI peptides in highly accurate concentrations were 

required. Therefore, due to the high cost, absolute values were established for a subset of 

nine proteins throughout nine developmental stages. These absolute protein contents are of 

additional value, because they can be used as independent references and as read out for 

functional assays. 
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4.2 Proteome signatures of bovine oocyte in vitro maturation 

 

4.2.1 Fundamental events of oocyte maturation are reflected on the level of proteins 

 

To become a fully competent oocyte, a multitude of fundamental events have to occur and 

must be precisely regulated during maturation, e.g. inhibition and induction of meiosis, 

interaction with cumulus cells, chromatin condensation, organelle redistribution and 

cytoskeletal changes [103]. Several of these processes were found to be reflected on the level 

of proteins. In total, 1115 proteins were identified with high confidence (FDR < 1%) from six 

biological replicates, and 53 quantitative differences were detected in the six pair-wise 

comparisons between all groups (Table 2 and 3). Functional analysis using Cytoscape of the 

26 proteins differentially abundant between GV oocytes and MII oocytes matured according to 

the standard protocol with FSH/LH supplementation revealed proteins related to “protein 

import”, “regulation of protein transport” and “microtubule cytoskeleton organization”, which 

may hint to the rearrangement processes during GV breakdown in maturation (Figure 14). 

Among these proteins is importin subunit alpha-8 (KPNA7), a member of the importin family 

which mediate nuclear transport of, e.g. transcription and chromatin remodeling factors. Its 

abundance increases by a log2 fold change of 1 in MII oocytes compared to GV oocytes. 

KPNA7 has a particularly strong binding affinity for the nuclear protein nucleoplasmin 2, which 

is a core histone chaperone involved in chromatin reprogramming, especially important during 

fertilization and early embryonic development [104,105]. By PCR and Western blot analysis, it 

was demonstrated that KPNA7 mRNA and protein abundance is high in bovine GV oocytes 

and slightly increased in MII oocytes [105] and this trend in protein abundance was confirmed 

by the results presented here. 

Furthermore, the functional analysis with Cytoscape of proteins increased in abundance in MII 

oocytes revealed an enrichment of proteins important for cell cycle progression, e.g. GO terms 

“mitosis”, “spindle organization”, “centrosome cycle” and “M phase” (Figure 14). Among them 

are aurora kinase A (AURKA), cyclin-dependent kinase 1 (CDK1), transforming acidic coiled-
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coil-containing protein 3 (TACC3) and wee1-like protein kinase 2 (WEE2). AURKA is a 

serine/threonine kinase involved in many processes essential for mitosis and its abundance 

increases by a log2 fold change of 0.8 in MII oocytes compared to GV oocytes (Table 2). It 

regulates centrosome maturation and separation, followed by assembly of a bipolar spindle, 

trigger of mitotic entry, alignment of chromosomes in metaphase, cytokinesis and the return to 

G1 [106]. A substrate of AURKA is TACC3, which supports the centrosome-dependent 

microtubule assembly in mitosis [107]. The abundance of TACC3 increased strongly during 

maturation by a log2 fold change of 1.3. Furthermore, the activation of the CDK1/cyclin B 

complex is also supported by AURKA, which allows nuclear entry [108]. Interestingly, the 

abundance of WEE2 was also found to strongly increase by a log2 fold change of 2.9 in MII 

oocytes compared to GV oocytes. WEE2 is a downstream substrate of protein kinase A and 

known to be responsible for phosphorylation of the CDK1 inhibitory site and thereby 

maintaining meiotic arrest in oocytes [109]. High levels of WEE2 are probably needed for a 

tight control of the cell cycle during the upcoming cleavage cycles. 

 

4.2.2 Differences in the proteome signature of oocyte maturation caused by exogenous 

hormone supplementation of FSH, LH and GH 

 

In vitro oocyte maturation is obtained by simulating the pre-ovulatory follicle environment. 

Therefore, all three maturation media were supplemented with ECS, which is taken from the 

female cow on day 0 of the estrous cycle, at estrus and shortly before ovulation. ECS has 

been shown to increase developmental capacity of oocytes compared to supplementation with 

fetal calf serum (FCS) [110]. Gonadotropins, especially LH and FSH, are frequently added to 

the maturation media in view of their natural role as promoter of in vivo oocyte maturation, 

cumulus cell expansion and ovulation [103, 111]. Due to endogenous LH/FSH levels in ECS, 

exogenous addition may be needless but compensates fluctuating endogenous levels. 

LH/FSH has been shown to impact oocyte in vitro maturation, cumulus cell expansion and 
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developmental competence [36, 112, 113]. By assessing gene expression activity, it was 

postulated, that the in vitro FSH-response of cumulus cells is similar to the in vivo LH-

response [114]. The effects of LH are mediated by epidermal growth (EGF)-like family 

members, which are secreted by granulosa cells and activate the EGF receptor on cumulus 

cells [115]. An influence of LH and FSH on the cumulus cells was also observed in this study 

by microscopic evaluation of COCs, where exogenous LH/FSH supplementation caused 

increased expansion of COCs. However, the effects of especially LH during IVM were 

discussed controversial and there are studies reporting no influence on the developmental 

capacity of oocytes [39]. The aim of this study was to assess the influence of these hormones 

on the proteome of oocytes undergoing maturation. All maturation protocols resulted in the 

same biological outcome, i.e. matured MII oocytes which developed until the blastocyst stage 

with comparable rates (Figure 11). This is in line with the result, that the abundance of about 

35 out of 42 altered proteins was changed in the same way by addition of LH/FSH or 

LH/FSH/GH (Table 2). A total of 18 significant differences in protein abundance were detected 

between the three maturation protocols comprising maturation without exogenous hormones, 

LH/FSH and LH/FSH/GH supplementation, respectively (Table 3). Of those, nine differences 

in protein abundance were detected between MII oocytes matured with ECS only and ECS + 

LH/FSH. LH and FSH were supplemented in a concentration of 8 and 10 µg/mL (0.0125 and 

0.025 IU/mL), respectively, which are in the range of normally adopted concentrations [116-

118]. However, these concentrations are about hundred fold higher than preovulatory surge 

levels of LH (100 ng/mL) and FSH (50 ng/mL) in the serum of estrus cows [5]. These strongly 

increased concentrations may cause the reported differences in protein abundance (Figure 

15). Supplementation with LH/FSH led to an enrichment of the HSP70 cochaperone 

(HSPBP1) by a log2 fold change of 0.8 in MII oocytes compared to GV oocytes. Molecular 

chaperones are essential during growth, development, and for dealing with accumulated non-

native proteins under stress, thereby exerting pro-survival functions. HSPBP1, in particular, 

inhibits the ubiquitination and proteasomal degradation of anti-apoptotic, inducible heat shock 

70 kDa proteins (HSP70), which mediate the folding of newly translated polypeptides and 

recognize nonnative conformations of proteins [119]. HSP70 proteins are important for 
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embryonic development [120,121]. One may therefore conclude that LH/FSH addition to the 

maturation media, although it was not reflected in the blastocyst rate, is beneficial for 

embryonic viability. 

GH has been employed in IVM medium for cattle and has been shown to increase the 

percentage of oocytes that reached the MII stage, developed to blastocysts and hatched [122] 

by accelerating nuclear maturation of cumulus enclosed bovine oocytes [41]. GH was also 

shown to act as survival factor during in vitro culture, to reduce apoptosis by altering the BAX 

to BCL-2 ratio during early embryogenesis [123] and to alter the structure and the pore size of 

the zona pellucida of blastocysts [124]. However, it is not routinely applied in IVM. In this 

study, the effects of GH on the level of proteins were investigated by using a GH 

concentration of 100 ng/mL as previously reported [122, 125]. By microscopic evaluation, it 

was observed that GH addition led to increased cumulus cell expansion, which is in line with 

the results previously reported [125]. Effects on the protein level varied. On the one hand, an 

increase of heat shock 70 kDa protein 1B (HSPA1B) was detected under GH addition, which 

may hint towards an enhanced embryonic viability. Contrariwise, the abundance of proteins 

important for mitosis such as CDK1 and nucleosome assembly protein 1-like 4 (NAP1L4) 

[126] were decreased by GH addition (Figure 16). In the case of NAP1L4, the increase in 

protein abundance caused by LH/FSH was even negated. 

Noteworthy, abundance of vimentin (VIM) was found to strongly increase (over 2-fold) in the 

presence of GH (Table 3 and Figure 17) in MII oocytes compared to GV oocytes and was 

selected for a further study by LSM. Vimentins are class-III intermediate filaments attached to 

the nucleus, endoplasmic reticulum, and mitochondria [127] and a role for VIM in the 

attainment of genomic union during fertilization in mammals was suggested [128]. 

Interestingly, LSM analysis revealed VIM to be localized in large amounts in the cytoplasmic 

extensions of the cumulus cells, which protrude into the zona pellucida of the oocyte, and to 

accumulate at the gap junctions towards the oocyte (Figure 18). It was concluded, that the 

increase in VIM protein abundance was actually caused by the remaining cytoplasmic 

extension of the cumulus cells. GH probably triggers VIM production by the cumulus cells or 
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re-localization, which is in line with the observed influence of GH on cumulus cells, leading to 

increased cumulus cell expansion. 

In conclusion, numerous proteins important for oocyte maturation were identified and 

quantified, and protein profiles for key players previously described were contributed. 

Bioinformatics analysis revealed proteins increased in abundance related to rearrangement of 

the cytoskeleton, protein transport and cell cycle progression. It was demonstrated, that 

supplementation of oocyte maturation media with hormones led to few prominent abundance 

alterations in the proteome of MII oocytes. FSH/LH supplementation resulted in an increase of 

developmentally important proteins, but had no influence on subsequent embryonic 

development. Addition of GH also did not influence developmental rates and had diverse and 

opposing effects on the abundance of proteins during oocyte maturation. 
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4.3 Proteome signatures of early bovine embryo development 

 

4.3.1 The proteomes of two-cell and four-cell embryos differed most from the reference 

MII oocyte 

 

The six pair-wise comparisons of embryonic stages (Figure 24A) revealed that 32 and 31 

abundance alterations were detected between the proteomes of two-cell and four-cell 

embryos, respectively, compared to MII oocytes. Eighteen differences were found between 

MII oocytes and zygotes, among them are proteins associated with the GO terms “cellular 

modified amino acid metabolic process” and “hormone metabolic process” which became less 

abundant in zygotes (MAT2A, CHGA, APOA1) (Figure 24B). In the first cleavage forming a 

two-cell embryo, the abundance of RPS14, RPS18 and HSPB1 decreased (Figure 24C) while 

proteins belonging to the GO term “protein polymerization” (TUBB4A/TUBB5, SPTBN1) 

increased, compared to zygotes. Only few changes were detected between the proteomes of 

two-cell and four-cell embryos (Figure 24A). Among these, two proteins of the ontology group 

“regulation of protein ubiquitination” were found with about 2-fold increased abundance in 

four-cell embryos compared to two-cell embryos. One of the two proteins was proteasome 

subunit alpha type-7 (PSMA7) which is part of the 20S proteasome core complex. This 

complex is responsible for protein degradation through the ubiquitin-proteasome pathway and 

is involved in numerous cellular processes like cell cycle control, cell proliferation and 

differentiation and regulation of transcription and is therefore describes as a potential 

biomarker [129]. An increase of PSMA7 in four-cell embryos might be related to degradation 

of maternal proteins during the process of MET. The second protein showing an increased 

abundance in four-cell embryos was peptidyl-prolyl cis-trans isomerase (FKBP1A). FKBP1A, 

which has not been reported in the context of mammalian embryogenesis, is an immunophilin 

known to be important for immunoregulation and cellular processes like protein assembly, 

folding and trafficking [130, 131], all of which are vital processes during the rapid cleavage 

divisions of the embryo.  
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4.3.2 Evidence for a major role of the p53 pathway during early embryogenesis 

 

Functional analysis with Cytoscape of SOTA cluster 1 (Figure 22A), which consisted of 

proteins gradually decreased abundance, revealed an enrichment of proteins linked to 

“translation” and related terms such as “maturation of SSU-rRNA” (small subunit ribosomal 

RNA), which is vital for translation of mRNAs into proteins [132], and “protein transport” 

(PPA1, LSM14B, PATL2, KPNA2, RPS14, RPS18, RPS8, ABCE1, TOMM70A, EIF4ENIF1, 

NUP93, APOA1 and PABPC4). This may reflect the attenuated translation before the major 

activation of the embryonic genome at the eight-cell stage. Interestingly, a recently published 

transcriptome study by Graf and co-workers [52] demonstrated the genes RPS14 and RPS18 

connected to the GO term “translation” to be activated at the four-cell stage. Both proteins are 

components of the small 40S subunit of the ribosome which is the molecular machine that 

translates mRNAs into proteins [132]. Little is known about RPS18 besides its ribosomal 

functions, but excess free S14 protein was proposed to be a negative effector of RPS14 

mRNA transcription [133]. The observed decrease in abundance of S14 protein during 

embryogenesis in our study therefore might enable the subsequent activation of the RPS14 

gene. Furthermore, RPS14 is involved in various cellular processes. It negates c-Myc function 

[134] and plays a key role in erythropoiesis [135] as well as in the ribosomal stress-p53 

pathway where overexpression of RPS14 leads to elevated p53 activity via inactivation of 

MDM2 and subsequently to G1 or G2 arrest and growth inhibition [136]. Another member of 

the p53 pathway is HNRNPK, for which a 1.8-fold increase in abundance until the four-cell 

stage compared to MII oocytes was demonstrated (Figure 22B). It is also one of the genes 

found to be transcriptionally activated at the four-cell stage by Graf et al. [52] which is related 

to the GO term “RNA processing”. This ribonucleoprotein is a DNA/RNA-binding protein 

participating in numerous processes such as chromatin remodeling, transcription, splicing and 

translation [137]. In response to DNA damage, it activates transcription of cell-cycle arrest 

genes as a cofactor of p53 [138], which leads to DNA repair, cell-cycle arrest or apoptosis 

[139]. The abundance alterations of HNRNPK and RPS14 together with activation of their 
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genes before the major EGA suggest a major role of the p53 pathway during early 

embryogenesis. 

 

4.3.3 Proteins involved in energy and lipid metabolism are increased in embryo 

development 

 

Complex I-75kD (NDUFS1), belonging to the respiratory chain, and the enzymes citrate 

synthase (CS) and succinate dehydrogenase (SDHA) of the tricarboxylic acid (TCA) cycle, 

became less abundant until the four-cell stage (Figure 23A). These might be the first signs of 

the switch in energy generation by ATP synthesis from oxidation of acetate in the TCA cycle 

to energy generation by glycolysis, which has been demonstrated to occur at the blastocyst 

stage in mice [140]. ATP formation via TCA cycle takes place in mitochondria, which are 

maternally inherited. A 100-fold increase in oocyte mitochondrial DNA as compared to 

somatic cells has been found in bovine oocytes [141] and human oocytes contain between 

240,000 and 1.55 million mitochondria which do not start to replicate before embryonic 

differentiation [142, 143]. Therefore, it is no surprise that functional analyses with DAVID of 

oocyte and embryo proteomes revealed a high percentage (18.1%) of mitochondrion proteins 

(Figure 21) and three mitochondrion related annotation clusters (Table 4) with enrichment 

scores of 25.5, 11.5 and 1.7. Failures in mitochondria redistribution, differentiation or 

transcription are thus associated to the efficiency of respiration in human and bovine oocytes. 

This efficiency of respiration has been shown to be closely correlated to the developmental 

capacity after in vitro fertilization [144, 145]. Major substrates used for ATP production in the 

mitochondrial TCA cycle are lipids. Proteins involved in assembly of high-density lipoprotein 

particles were found to decrease during embryo development (Figure 23A). Previous studies 

demonstrated the presence of a high amount of lipid droplets in the cytoplasm of bovine 

oocytes and early embryos until the blastocyst stage, at which they were significantly reduced 

[146], which is in line with the results presented here. Lipid droplets are supposed to facilitate 

increased ATP production required for blastocyst formation [147] and an accumulation of 
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lipids in the cytoplasm of oocytes has been suggested to reflect good developmental capacity 

[148]. However, abnormally increased accumulation of cytoplasmic lipids caused by 

supplementation of culture medium with serum during in vitro production of embryos is 

supposed to impair cryotolerance [149, 150], and can lead to immature or even abnormal 

mitochondria [151]. There are also some studies stating serum supplementation resulting in a 

higher blastocyst rate [152] and a generally improved embryonic development in cattle [153, 

154]. Obviously, lipid metabolism is crucial for embryogenesis and therefore proteins of this 

pathway represent interesting targets for future studies. Especially interesting is 

apolipoprotein A1 (APOA1), which has previously been shown to be produced by human 

preimplantation embryos. Increased APOA1 secretion was associated with blastocysts of a 

higher morphologic grade, suggesting a role in embryonic development [155]. Therefore, the 

1.6-fold decrease in APOA1 abundance in the data presented here (SOTA cluster 1) may 

results from growing secretion of this protein in the culture medium during ongoing 

embryogenesis and increases evidence for an important role of APOA1 in embryo 

development. 

 

4.3.4 Protein abundance profiles of key players in mitosis and meiosis were established 

 

Four proteins were detected showing a strong, at least 2-fold, increase in abundance in the 

zygote stage, followed by a decrease until the four-cell stage to the basal level measured in 

MII oocytes (Figure 22D). Among them is beta-II spectrin (SPTBN1), which is related to 

“protein polymerization” (Figure 23D). It has been demonstrated to be a functional partner of 

ankyrin-G in de novo membrane biogenesis during mitosis of epithelial cells, where both are 

required for the delivery of proteins and phospholipids to the membrane [156, 157]. SPTBN1 

has already been shown to be required for compaction of early mouse embryos [157]. 

Furthermore, PPP1CC was quantified, which is the catalytic subunit of protein phosphatase 1, 

as well as rab GTPase-activating protein 1 (RABGAP1), which are both crucial for cell division 

[158, 159]. PPP1CC is a key player of spermiogenesis [160] while RABGAP1 has not been 
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connected to mammalian reproduction yet so far. The results presented here suggest these 

proteins to be particularly important for either formation of the diploid zygote and/or early 

steps of mitosis in bovine embryogenesis. 

The majority of proteins increasing in abundance of SOTA cluster 2 (Figure 22B) and 3 

(Figure 22C) are necessary for organization of cellular components, which is in line with the 

fundamental morphological reorganization of the entire structure of the cell during mitosis. The 

detected proteins were related to the GO terms “regulation of organelle organization”, “cellular 

macromolecular complex assembly” (Figure 23B), “protein transport” and “M phase” (Figure 

23C). The structural changes were found to be accompanied by an increase of metabolically 

active proteins which were associated with the GO terms “cellular amino acid metabolic 

process” and “purine ribonucleotide metabolic process” (Figure 23B). The main regulator of M 

phase, cyclin-dependent kinase 1 (CDK1), was found to be unaltered in abundance in the 

proteome data while one of its substrates, stathmin (STMN1/Op18), was becoming 5.2-fold 

more abundant in zygotes compared to MII oocytes. STMN1 is a microtubule-destabilizing, 

cytosolic phosphoprotein of which a threshold level is required for progression through mitosis 

[161-163]. WEE2 was also detected, which was shown to deter meiosis by inhibiting cyclin 

B/CDK1 [164] and to function downstream of cAMP in the rhesus macaque [165]. 

Interestingly, WEE2 mRNA was found to be exclusively expressed in mouse MII oocytes and 

to abruptly decrease after fertilization [166], while the data presented here showed WEE2 

protein to become 1.7-fold more abundant until the four-cell stage compared to MII oocytes, 

demonstrating the disparity between transcript and protein abundance during embryogenesis. 

Furthermore, WEE2 was already found to be altered in abundance in oocyte maturation and 

therefore selected for an additional localization study. By immunofluorescence and LSM in 

two-cell embryos, WEE2 protein was localized inside of the nucleus of the two blastomeres of 

the embryo (Figure 27). This result is in line with those of Hanna et al. [165] who 

demonstrated a specific nuclear localization of WEE2 protein in both growing and fully grown 

GV oocytes of rhesus macaque monkeys. 
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4.3.5 Activation of “The unfolded protein response” may be an indicator for low 

success rates of in vitro embryo production 

 

Comparing the GO networks of proteins with increased and decreased abundances in the 

four-cell stage compared to MII oocytes (Figure 23A and Figure 23B), resulted in a quite 

striking observation. Proteins involved in “protein folding” (PFDN2, CCT6A, PPID, ERP44 and 

FKBP4) decreased while at the same time proteins associated with the “response to unfolded 

protein” became more abundant (MANF, GFPT1, SEC31A, CHORDC1, PGLS, FKBP1A, 

HSPB1, PGLS and ATP2A2). Proteins are usually folded and assembled in the endoplasmic 

reticulum (ER). In the case of an accumulation of unfolded proteins in the lumen of the ER 

(ER stress), intracellular signal transduction pathways are activated which are collectively 

termed the unfolded protein response (UPR). The aim of the UPR is the protection of the cell 

against proteotoxicity or the induction of apoptosis if the ER stress cannot be mitigated [167]. 

These results suggest an accumulation of defects in protein folding during early 

embryogenesis which might be one of the reasons for the still low success rate of in vitro 

embryo production The UPR may be caused by the artificial environment during in vitro 

maturation of oocytes and culture of embryos. It would be interesting to see, if new 

approaches to in vitro maturation are beneficial to protein folding, such as simulated 

physiological oocyte maturation (SPOM), which mimics some characteristics of in vivo oocyte 

maturation. It delays the completion of meiosis which promotes gap junctional communication 

between the oocyte and the cumulus cells [168]. Besides, it is possible that the UPR is a 

normal phenomenon and also occurs in oocytes and embryos generated in vivo. 
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4.4 Targeted protein quantification by SRM 

 

4.4.1 iTRAQ data was successfully verified by 5-plex SRM in a pilot study 

 

In a pilot study, a 5-plex SRM assay was established which was used to verify the iTRAQ data 

of early embryogenesis. This SRM assay also represents the first step towards an approach 

facilitating molecular staging of early embryos based on quantitative protein assays. 

Developmentally interesting proteins, namely ASTL, HSPB1, TDRKH, VIM and WEE2, were 

selected based on their differential abundance determined in the iTRAQ approach. ASTL is an 

astacin-like metalloendopeptidase supposed to be involved in the hatching process. It is also 

called ovastacin due to its predominant expression in ovarian tissue, especially in unfertilized 

oocytes. ASTL has been studied in the murine system, where transcript levels have been 

found to strongly increase in superovulated mice, suggesting a hormonal control [169]. 

Moreover, Burkart and co-workers [170] demonstrated zona pellucida sperm-binding protein 2 

(ZP2) to be a direct substrate of ASTL. Proteolytic cleavage of ZP2 after gamete fusion is 

important for the postfertilization block to sperm binding which warrants monospermic 

fertilization and thereby successful embryogenesis in mice. Burkart et al [170] detected ASTL 

only before fertilization, which is consistent with the strong 2.2-fold decrease of ASTL protein 

abundance until the four-cell stage in the data set presented here. The small heat shock 

protein HSP27 was chosen (HSPB1) which was demonstrated to co-localize with mitotic 

spindles, especially with tubulin and microtubules, in HeLa cells [171] and to add to 

chaperone capacity by binding unfolded proteins [172]. HSPB1 protein abundance was 

demonstrated to increase 1.8-fold until the zygote stage compared to MII oocytes, and to 

decrease again until the four-cell stage, suggesting a role in fertilization and/or zygote 

formation. Furthermore, VIM was selected which strongly decreased by a fold change of 4.9 

until the four-cell stage compared to MII oocytes in the iTRAQ data. The domains of tudor and 

KH domain-containing protein (TDRKH/TDRD2) are supposed to mediate protein-RNA 

interactions by binding RNA and are involved in cellular RNA metabolism [173, 174]. TDRKH, 

in particular, is known to be involved in spermatogenesis and in piRNA biogenesis in the 
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germLine [175] and became 3.2-fold less abundant in four-cell embryos. The fifth protein of 

the SRM assay was the oocyte-specific key regulator of meiosis WEE2, the nuclear 

localization of which has been determined by LSM analysis (Figure 27). iTRAQ analysis 

revealed that WEE2 abundance increased by a fold change of 1.7 until the zygote stage 

compared to MII oocytes, and stayed on this level until the four-cell stage. Quantitative values 

obtained by iTRAQ were verified by SRM in all cases in pools of only ten oocytes or embryos 

each which demonstrates the performance of the SRM method. 

To prove the applicability of these proteins for molecular staging of early embryos, a PCA 

analysis was performed to test if they enable clear separation of MII oocytes, zygotes and 2- 

and four-cell embryos (Figure 26). As a proof of principle, a PCA based on the proteins 

significantly differing in abundance in the iTRAQ approach was performed (Figure 26A). This 

dataset led to a clear separation of the analyzed embryonic stages. Moreover, subjecting 

SRM-derived quantification of the five proteins mentioned above to PCA analysis resulted in 

an even better separation of the embryonic stages (Figure 26B). This demonstrates the 

possibility to characterize early embryos on a much more precise level throughout their 

development at the level of proteins.  

 

4.4.2 Nine interesting developmental stages were analyzed by 27-plex SRM 

 

The results of the SRM pilot study suggested expanding the panel used for multiplexed SRM 

analysis. SRM offers the possibility to study distinctively more developmental interesting 

stages than the iTRAQ approach, due to the significantly lower sample amounts required. 

This is particularly advantageous when studying more developed embryos, such as the 

morula or blastocyst stage, which are difficult to generate. Therefore, the pursued strategy 

involved the use of easier generated developmental stages for discovery of promising 

candidate proteins by iTRAQ which were then studied further by SRM in a multitude of 

biological stages. Fourteen additional proteins known from the two iTRAQ studies (see 

chapter 3.2 and 3.3) were included which have partly been discussed above. Furthermore, 
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eight proteins known from previous proteomic studies of the lab for which SRM assays had 

already been established were included (Table 8). Among the not yet mentioned proteins are 

PRC1, GTSF1, UHRF1, CLU, YBX2 and ZAR1. Protein regulator of cytokinesis 1 (PRC1) 

controls spindle polarization and recruitment of cytokinetic factors during monopolar 

cytokinesis [176]. Gametocyte-specific factor 1 (GTSF1) is highly expressed in embryonic 

male and female mouse gonads, in the cytoplasm of all stages of postnatal oocyte maturation, 

and in prespermatogonia during early postnatal testicular development. An essential role for 

GTFS1 in germ cell development was suggested [177]. E3 ubiquitin-protein ligase UHRF1 

(UHRF1) is associated with regulation of the immune system and has previously been 

reported in bovine endometrium [178]. Clusterin (CLU) is involved in complement inactivation 

and has been found to play a role in reproductive complications [179]. CLU mRNA has also 

been found to be delivered to porcine oocytes by spermatozoa, suggesting a contribution to 

zygotic and embryonic development [180]. Y-box-binding protein 2 (YBX2) has been reported 

to have an important role in storage and translational regulation of maternal mRNAs during 

bovine in vitro embryogenesis [181]. Zygote arrest protein 1 (ZAR1) is a maternal-effect gene 

involved in the oocyte-to-embryo transition and essential for female fertility [182]. 

Quantification of proteins by SRM can be performed by selecting and quantifying at least one 

proteotypic peptide per protein. However, the targeted peptide may be affected by post-

translation modifications (PTM) which interfere with the MS analysis by causing mass shifts of 

the peptide or miscleavages during trypsin digestion, thus leading to erroneous quantitative 

values. Possible PTMs are attachment of biochemically functional groups (e.g. 

phosphorylation), changing of the chemical nature of an amino acid (e.g. conversion of 

arginine to citrulline) and proteolytic cleavage [183-185]. Furthermore, one peptide can 

correspond to unknown protein isoforms which abundances are affected in different ways 

throughout biological processes as has been previously demonstrated for the protein “similar 

to GSTM5” [76]. In this thesis, reliability of quantification was improved by selection of two 

proteotypic peptides per protein and using corresponding stable isotope-labeled (SI) peptides 

for each analyzed peptide as internal standard. The final SRM assay comprised 54 
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endogenous and 54 SI peptides, corresponding to 27 proteins, listed in Supplementary Table 

10. Noteworthy, in the resulting SRM chromatogram, maxima of the eluting peptides are fairly 

equally distributed over the entire elution time (Figure 28). The number of analytes to be 

studied simultaneously was reduced by using “scheduled” SRM which instructs the instrument 

to acquire data of each peptide only in a pre-specified time frame of 240 seconds around the 

expected elution time. The design of the multiplex SRM thus facilitated data acquisition from a 

sufficient number of individual data points for each of the 108 monitored analytes along their 

individual elution periods. Quantification using the multiplexed SRM was highly reproducible, 

as evident from the results of technical replicates (Figure 29). Relative abundance, i.e., the 

intensity ratio endogenous/SI peptide, was determined with a median coefficient of variation 

(CV) of 7.8 %, and the CV of the elution times was 0.5 %. This corresponds to results 

previously reported for SRMs studies concerning protein quantification in plasma [186] and 

urine [187]. 

Due to the low sample amount of only ten oocytes or embryos required, it was possible to 

analyze six replicates of nine different developmental stages starting with GV oocytes and 

ending with hatched day 8 blastocysts (Figure 30). Quantitative profiles of 27 proteins were 

established which represents the first comprehensive approach to an exact protein 

quantification covering such a high number of developmental stages. Distinct protein profiles 

were uncovered, e.g., the protein abundance of ACCSL increased strongly, about four-fold, 

from the GV until the MII oocyte stage, continued to increase until the four-cell stage, and then 

decreased strongly, about 4-fold, until development to the blastocyst stage. A similar 

abundance profile was discovered for AURKA, KPNA7, WEE2, TACC3 and PCBD1. In 

contrast, the abundance of HSPE1 and LAMP2 stayed fairly constant throughout all 

developmental stages analyzed. The abundance of PDCD5, PEBP1, GSTM3 and HSP70 also 

remained broadly at the same level until the four-cell stage or the eight- to 16-cell stage, and 

declined from than onward, which may be caused by the embryonic-genome activation. Two 

proteins, ASTL and TDRKH, became steadily less abundant until the blastocyst stage. 

Interestingly, the abundance of the majority of analyzed proteins started to decline at one 
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point until the blastocyst stage, despite the increased de-novo translation after the activation 

of the embryonic genome at the eight-cell stage. In the iTRAQ study of early embryogenesis, 

the protein PSMA7 was found to increase in abundance until the four-cell stage. PSMA7 is 

responsible for protein degradation through the ubiquitin-proteasome pathway and thus an 

increase of PSMA7 is in line with the decreasing protein abundances in the SRM study. Only 

HSPB1 and RBP4 became more abundant in hatched day 8 blastocysts. 

The criteria for significant quantification were a log2 fold change of at least 0.6, which equals 

a fold change of 50 % in protein abundance, and p < 0.05 in each stage compared to MII 

oocytes. For 16 proteins showing significant abundance alteration in the iTRAQ analysis of 

oocyte maturation and early embryogenesis, i.e., GV oocytes, zygotes, two-cell embryos and 

four-cell embryos using MII oocytes as a reference group, corresponding SRM data were 

acquired. SRM results verified the corresponding iTRAQ ratios in all cases. Only in three out 

of 34 cases, the obtained SRM values were not significant and could therefore not be used for 

comparison with the iTRAQ data (Table 9), that demonstrates the power of SRM for 

verification of protein abundance. 

In the 27-plex SRM assay, two peptides per protein were used for quantification and in about 

70 % of all significant quantifications, the value obtained by peptide 1 differed less than 25 % 

from the value obtained by peptide 2. However, in about 5 % of all significant cases, 

quantitative values obtained by peptide 1 differed more than 100 % of those obtained by 

peptide 2 (Supplementary Figure 33). Possible reasons for this have been outlined above. To 

obtain reliable quantitative values in these cases, the synthesis of additional proteotypic 

peptides for the establishment of further SRM assays and repetition of the study would be 

necessary. If the quantitative values obtained by peptide 1 and 2 differed from each other only 

in single developmental stages, as is the case for e.g. ZAR1, also outliers can be assumed 

and the SRM assay can still be regarded as valid. 

SRM also offers the option to determine very precise protein concentrations, by far exceeding 

the possibilities offered by staining techniques such as immunohistochemistry. For a subset of 
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nine proteins, additional absolute protein values were established which has rarely been done 

in embryos so far. The limits of detection and quantification were determined for each of the 

selected 18 peptides (Figure 31) and absolute quantitative values were obtained for nine 

developmental stages using pools of ten oocytes or embryos each (Figure 32). For the protein 

ASTL, e.g., a protein concentration of about 16 fmol per GV oocyte was determined. 

Assuming an oocyte diameter of 100 µm and thus a volume of 5.2 x 10-10 L, 16 fmol ASTL per 

GV oocyte correspond to 32 µmol/L. This protein concentration decreased gradually to about 

1 fmol per embryo at the blastocyst stage (≈ 2 µmol/L) The high amount of ASTL in GV 

oocytes and the decreasing abundance of ASTL are consistent with the function of this protein 

as an oocyte-specific oolemmal receptor involved in sperm and egg adhesion and fertilization 

[170]. PEBP1 had a constant concentration of about 12 fmol per oocyte or embryo (≈ 

24 µmol/L) from the GV oocyte stage until the morula stage which decreased to about 6 fmol 

per embryo at the blastocyst stage (≈ 12 µmol/L). For PEBP1, an involvement in defective 

sperm physiology has been reported [188] but the role of PEBP1 in mammalian 

embryogenesis still needs to be elucidated. For these absolute values, no reference group is 

required and they can therefore be used as independent reference values for further 

experiments or in other laboratories. Additionally, knowledge of protein concentrations as a 

function of cellular state is critical for mathematic models and system biology [189]. 

In conclusion, the approaches described demonstrate the power of modern proteomic 

techniques and approaches to effectively discover and quantify proteins crucial for 

mammalian reproduction. By SRM analysis of nine developmental stages, considerable 

dynamics in the occurrence of proteins with even low abundances at stages of embryogenesis 

were demonstrated which - from a morphological point of view - seem to only redistribute the 

molecular environment of the inner cell mass to increasing numbers of blastomeres. Highly 

sensitive, multiplexed SRM quantification can facilitate the detection of developmental 

disturbances and disorders, e.g., during different conditions of in vitro production of embryos, 

and provide first insights into the underlying molecular pathways. Protein concentrations for 

nine proteins in nine developmental stages were determined and represent the first dataset of 



Discussion 

98 

this magnitude which can be used as reference values for other laboratories and for further 

functional assays, e.g., concentrations of metabolites can be calculated and the influence of 

hormones and inhibitors on a system can be assessed. With respect to mammalian 

reproduction, the ultimate ambition of comprehensive proteomic analysis in single oocytes 

and embryos will soon be affordable, leading to significantly increased and rapid 

understanding of the processes in early development.   
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5. Summary 
 

One of the most critical periods in mammalian development is early embryogenesis. Its timing 

and morphology have been well studied, but molecular processes are still poorly understood. 

Several transcriptomic studies have addressed these molecular events. However, 

development of early embryonic stages before activation of the embryonic genome depends 

on sufficiently stored products of the maternal genome and adequate de/activation and 

relocation of proteins. Therefore, this thesis addresses early mammalian development, i.e., 

oocyte maturation and the first steps of embryogenesis, by holistic iTRAQ-based discovery 

approaches and by a targeted approach based on SRM. Numerous proteins important for 

oocyte maturation and embryogenesis so far not described in the mammalian system were 

identified and quantified, and protein profiles for key players previously described in the 

literature were contributed. In oocyte maturation, bioinformatics analysis revealed proteins 

increasing in abundance involved in rearrangement of the cytoskeleton, protein transport and 

cell cycle progression. Supplementation of oocyte maturation media with the gonadotropins 

follicle stimulation hormone and luteinizing hormone resulted in an increase of 

developmentally important proteins, but did not change developmental rates. Addition of 

growth hormone during oocyte maturation led to diverse and opposing effects at the level of 

proteins and also did not influence subsequent embryo development. During early 

embryogenesis, a considerable fraction of proteins continuously increased in abundance, 

despite a strongly attenuated rate of translation reported for this period. Bioinformatics 

analysis revealed particularly interesting proteins involved in the p53 pathway, lipid 

metabolism and mitosis. Activation of the unfolded protein response is demonstrated, which 

may be an indicator of the still lower success rates of in vitro versus in vivo embryo 

production. Relevant differences between transcript and protein abundance levels were 

detected, e.g., for WEE2, which highlights the importance of innovative proteomic tools and 

workflows to complement transcriptome data of early embryogenesis. 
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iTRAQ results of early embryogenesis were successfully verified by targeted 5-plex SRM 

analysis. By principal component analysis, SRM quantifications comprising a panel of only five 

proteins were shown to discriminate between all four developmental stages analyzed. Using 

an expanded 27-plex SRM assay, proteins were quantified in nine developmentally interesting 

stages and absolute protein contents were established for nine proteins. SRM is a highly 

sensitive tool for detection of disturbances and disorders of embryonic development at the 

molecular level, thus complementing morphological analyses by high resolution microscopy. 
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7. Appendix 
 

7.1 Abbreviations 

 

ANOVA  Analysis of variance 

ACN   Acetonitrile 

ART   Assisted reproductive techniques 

BSA   Bovine serum albumin 

CE   Collision energy 

CID   Collision induced dissociation 

COC   Cumulus-oocyte complex 

CV   Coefficient of variation 

CXP   Collision exit potential 

DAPI   4',6-diamidino-2-phenylindole 

DP   Declustering potential 

ECS   Estrous cow serum 

e.g.   Exempli gratia (for example) 

EGA   Embryonic genome activation 

EP   Entrance potential 

ER   Endoplasmic reticulum 

FDR   False discovery rate 

FSH   Follicle stimulating hormone 

GH   Growth hormone 

GO   Gene ontology 

GV   Germinal vesicle 

Hpi   Hours post insemination 

HCD   Higher energy collision-induced dissociation 

ICM   Inner cell mass 

IVM   in vitro maturation 

IVP   in vitro embryo production 

iTRAQ   Isobaric tags for relative and absolute quantification 

KCl   Potassium chloride 
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LC-MS/MS  Liqud chromatography tandem mass spectormetry 

LH   Pituitary luteinizing hormone 

LOD   Limit of detection 

LOQ   Limit of quantification 

LSM   Laser scanning microscopy 

MALDI-TOF-MS Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight-Mass- 

Spectrometry 

MET   Maternal-to-embryonic transition 

Mgf   Mascot generic format 

MHKP   Maternal housekeeping proteins 

MII   Metaphase II 

m/z   mass to charge 

PBS   Phosphate-buffered saline 

PCA   Principle component analysis 

PTM   Post-translation modification 

RT   Room temperature 

SCX   Strong cation exchange 

SI   Stable isotope-labeled peptide 

SOF   Synthetic oviduct fluid 

SRM   Selected reaction monitoring 

SSU-rRNA  Small subunit ribosomal ribobucleic acid 

TCM   Tissue culture medium 

TE   Trophectoderm 

UPR   Unfolded protein response 

Vs.   versus 

2D-PAGE  Two-dimensional polyacrylamide gel electrophoresis 
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7.2 Supporting information 

 

7.2.1 Details of the 27-plex SRM assay 

 

Table 10. Details of the 27-plex SRM assay. 

Light: Endogenous peptide. Heavy: Stable isotope labeled peptide. Blue color: Quantifier transition. Precursor ions 

and fragment ions are listed with their mass to charge (m/z) ratios. DP: Declustering potential: 100 Volt. EP: 

Entrance Potential: 10 Volt. CXP: Collision exit potential: 15 Volt. CE: Collision energy in Volt. Duration of the 

method: 64 min; 1280 cycles; MRM detection window: 240 s and target scan time: 3 s. Peptides are sorted by 

increasing retention time. 

gene 
name 

peptide sequence 
light 
or 

heavy 

charge / 
fragment 

ions 

precurser 
ion (m/z) 

fragment 
ion (m/z) 

CE 
in 

volt 

retention 
time in 

min 

Amount 
heavy 

peptide in 
fmol/oocyte 
or embryo 

UHRF1 YAPIEGNR light 2+ / y6 460.24 685.36 22 13.8 / 

UHRF1 YAPIEGNR light 2+ / y5 460.24 588.31 28 13.8 / 

UHRF1 YAPIEGNR light 2+ / y4 460.24 475.23 28 13.8 / 

UHRF1 YAPIEGNR heavy 2+ / y6 465.24 695.36 22 13.8 12.4 

UHRF1 YAPIEGNR heavy 2+ / y5 465.24 598.31 28 13.8 12.4 

UHRF1 YAPIEGNR heavy 2+ / y4 465.24 485.23 28 13.8 12.4 

STMN1 AIEENNNFSK light 2+ / y8 583.28 981.43 25 14 / 

STMN1 AIEENNNFSK light 2+ / y6 583.28 723.34 28 14 / 

STMN1 AIEENNNFSK light 2+ / y7 583.28 852.38 25 14 / 

STMN1 AIEENNNFSK heavy 2+ / y8 587.28 989.43 25 14 8.8 

STMN1 AIEENNNFSK heavy 2+ / y6 587.28 731.34 28 14 8.8 

STMN1 AIEENNNFSK heavy 2+ / y7 587.28 860.38 25 14 8.8 

TACC3 QASEEIAQVR light 2+ / y4 565.79 473.28 30 16 / 

TACC3 QASEEIAQVR light 2+ / y6 565.79 715.41 30 16 / 

TACC3 QASEEIAQVR light 2+ / y8 565.79 931.48 30 16 / 

TACC3 QASEEIAQVR heavy 2+ / y4 570.79 483.28 30 16 7.0 

TACC3 QASEEIAQVR heavy 2+ / y6 570.79 725.41 30 16 7.0 

TACC3 QASEEIAQVR heavy 2+ / y8 570.79 941.48 30 16 7.0 

HAPLN3 SNC[CAM]GALEPGVR light 2+ / y4 580.28 428.26 35 16 / 

HAPLN3 SNC[CAM]GALEPGVR light 2+ / y6 580.28 670.39 31 16 / 

HAPLN3 SNC[CAM]GALEPGVR light 2+ / y8 580.28 798.45 31 16 / 

HAPLN3 SNC[CAM]GALEPGVR heavy 2+ / y4 585.28 438.26 35 16 17.8 

HAPLN3 SNC[CAM]GALEPGVR heavy 2+ / y6 585.28 680.39 31 16 17.8 

HAPLN3 SNC[CAM]GALEPGVR heavy 2+ / y8 585.28 808.45 31 16 17.8 

LAMP2 EKEVFTVNNR light 2+ / y8 618.32 978.50 29 18 / 

LAMP2 EKEVFTVNNR light 2+ / y6 618.32 750.39 35 18 / 

LAMP2 EKEVFTVNNR light 2+ / y7 618.32 849.46 32 18 / 

LAMP2 EKEVFTVNNR heavy 2+ / y8 623.32 988.50 29 18 15.0 

LAMP2 EKEVFTVNNR heavy 2+ / y6 623.32 760.39 35 18 15.0 

LAMP2 EKEVFTVNNR heavy 2+ / y7 623.32 859.46 32 18 15.0 

AURKA TAVPLSDGPK light 2+ / y7 492.77 713.38 22 17.5 / 

AURKA TAVPLSDGPK light 2+ / y5 492.77 503.25 33 17.5 / 

AURKA TAVPLSDGPK light 2+ / y3 492.77 301.19 33 17.5 / 

AURKA TAVPLSDGPK heavy 2+ / y7 496.77 721.38 22 17.5 3.1 

AURKA TAVPLSDGPK heavy 2+ / y5 496.77 511.25 33 17.5 3.1 

AURKA TAVPLSDGPK heavy 2+ / y3 496.77 309.19 33 17.5 3.1 

PEBP1 LYEQLSGK light 2+ / y6 469.25 661.35 23 17 / 

PEBP1 LYEQLSGK light 2+ / y7 469.25 824.41 20 17 / 

PEBP1 LYEQLSGK light 2+ / y5 469.25 532.31 23 17 / 

PEBP1 LYEQLSGK heavy 2+ / y6 473.25 669.35 23 17 10.0 

PEBP1 LYEQLSGK heavy 2+ / y7 473.25 832.41 20 17 10.0 
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PEBP1 LYEQLSGK heavy 2+ / y5 473.25 540.31 23 17 10.0 

HAPLN3 LTLAEAR light 2+ / y5 387.23 559.32 19 17 / 

HAPLN3 LTLAEAR light 2+ / y4 387.23 446.24 25 17 / 

HAPLN3 LTLAEAR light 2+ / y6 387.23 660.37 22 17 / 

HAPLN3 LTLAEAR heavy 2+ / y5 392.23 569.32 19 17 7.8 

HAPLN3 LTLAEAR heavy 2+ / y4 392.23 456.24 25 17 7.8 

HAPLN3 LTLAEAR heavy 2+ / y6 392.23 670.37 22 17 7.8 

ACCSL FGALYTHNR light 2+ / y5 539.78 690.33 29 17 / 

ACCSL FGALYTHNR light 2+ / y4 539.78 527.27 29 17 / 

ACCSL FGALYTHNR light 2+ / b3 539.78 276.13 31 17 / 

ACCSL FGALYTHNR heavy 2+ / y5 544.78 700.33 29 17 2.5 

ACCSL FGALYTHNR heavy 2+ / y4 544.78 537.27 29 17 2.5 

ACCSL FGALYTHNR heavy 2+ / b3 544.78 276.13 31 17 2.5 

RPS27A TLSDYNIQK light 2+ / y7 541.28 867.42 20 18.8 / 

RPS27A TLSDYNIQK light 2+ / y6 541.28 780.39 20 18.8 / 

RPS27A TLSDYNIQK light 2+ / y5 541.28 665.36 23 18.8 / 

RPS27A TLSDYNIQK heavy 2+ / y7 545.28 875.42 20 18.8 7.8 

RPS27A TLSDYNIQK heavy 2+ / y6 545.28 788.39 20 18.8 7.5 

RPS27A TLSDYNIQK heavy 2+ / y5 545.28 673.36 23 18.8 7.5 

RBP4 DPSGFSPEVQK light 2+ / y6 595.79 687.37 31 19 / 

RBP4 DPSGFSPEVQK light 2+ / y8 595.79 891.46 31 19 / 

RBP4 DPSGFSPEVQK light 2+ / b3 595.79 300.12 28 19 / 

RBP4 DPSGFSPEVQK heavy 2+ / y6 599.79 695.37 31 19 2.7 

RBP4 DPSGFSPEVQK heavy 2+ / y8 599.79 899.46 31 19 2.7 

RBP4 DPSGFSPEVQK heavy 2+ / b3 599.79 300.12 28 19 2.7 

YBX2 GAEAANVTGPGGVPVK light 2+ / y3 712.38 343.23 33 19 / 

YBX2 GAEAANVTGPGGVPVK light 2+ / y9 712.38 811.47 35 19 / 

YBX2 GAEAANVTGPGGVPVK light 2+ / y10 712.38 910.54 35 19 / 

YBX2 GAEAANVTGPGGVPVK heavy 2+ / y3 716.38 351.23 33 19 5.0 

YBX2 GAEAANVTGPGGVPVK heavy 2+ / y9 716.38 819.47 35 19 5.0 

YBX2 GAEAANVTGPGGVPVK heavy 2+ / y10 716.38 918.54 35 19 5.0 

PRC1 LQIPAEER light 2+ / y5 478.26 601.29 23 19.5 / 

PRC1 LQIPAEER light 2+ / y6 478.26 714.38 23 19.5 / 

PRC1 LQIPAEER light 2+ / b3 478.26 355.23 20 19.5 / 

PRC1 LQIPAEER heavy 2+ / y5 483.26 611.29 23 19.5 0.8 

PRC1 LQIPAEER heavy 2+ / y6 483.26 724.38 23 19.5 0.8 

PRC1 LQIPAEER heavy 2+ / b3 483.26 355.23 20 19.5 0.8 

PEBP1 YGGAEVDELGK light 2+ / y10 569.27 974.48 24 20 / 

PEBP1 YGGAEVDELGK light 2+ / y9 569.27 917.46 24 20 / 

PEBP1 YGGAEVDELGK light 2+ / y7 569.27 789.40 24 20 / 

PEBP1 YGGAEVDELGK heavy 2+ / y10 573.27 982.48 24 20 10.0 

PEBP1 YGGAEVDELGK heavy 2+ / y9 573.27 925.46 24 20 10.0 

PEBP1 YGGAEVDELGK heavy 2+ / y7 573.27 797.40 24 20 10.0 

TACC3 IC[CAM]DDLISK light 2+ / y6 482.24 690.37 23 20 / 

TACC3 IC[CAM]DDLISK light 2+ / y7 482.24 850.40 20 20 / 

TACC3 IC[CAM]DDLISK light 2+ / b4 482.24 504.18 32 20 / 

TACC3 IC[CAM]DDLISK heavy 2+ / y6 486.24 698.37 23 20 4.9 

TACC3 IC[CAM]DDLISK heavy 2+ / y7 486.24 858.40 20 20 4.9 

TACC3 IC[CAM]DDLISK heavy 2+ / b4 486.24 504.18 32 20 4.9 

GTSF1 LATC[CAM]PFNAR light 2+ / y5 525.26 604.32 28 20 / 

GTSF1 LATC[CAM]PFNAR light 2+ / b8 525.26 875.41 22 20 / 

GTSF1 LATC[CAM]PFNAR light 2+ / y7 525.26 865.40 22 20 / 

GTSF1 LATC[CAM]PFNAR heavy 2+ / y5 530.26 614.32 28 20 26.7 

GTSF1 LATC[CAM]PFNAR heavy 2+ / b8 530.26 875.41 22 20 26.7 

GTSF1 LATC[CAM]PFNAR heavy 2+ / y7 530.26 875.40 22 20 26.7 

VIM FADLSEAANR light 2+ / y6 547.27 647.31 26 21 / 

VIM FADLSEAANR light 2+ / y8 547.27 875.42 23 21 / 

VIM FADLSEAANR light 2+ / b3 547.27 334.14 29 21 / 

VIM FADLSEAANR heavy 2+ / y6 552.27 657.31 26 21 3.2 

VIM FADLSEAANR heavy 2+ / y8 552.27 885.42 23 21 3.2 

VIM FADLSEAANR heavy 2+ / b3 552.27 334.14 29 21 3.2 

YBX2 
TPGNPATAASGTPAPLA
R light 2+ / y11 825.43 1011.56 46 21.5 / 

YBX2 
TPGNPATAASGTPAPLA
R light 2+ / y9 825.43 869.48 46 21.5 / 

YBX2 
TPGNPATAASGTPAPLA
R light 2+ / y10 825.43 940.52 43 21.5 / 
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YBX2 
TPGNPATAASGTPAPLA
R heavy 2+ / y11 830.43 1021.56 46 21.5 5.0 

YBX2 
TPGNPATAASGTPAPLA
R heavy 2+ / y9 830.43 879.48 46 21.5 5.0 

YBX2 
TPGNPATAASGTPAPLA
R heavy 2+ / y10 830.43 950.52 43 21.5 5.0 

HSP70 
LYQGAGGPGAGGFGAQ
GPK light 2+ / y14 845.42 1157.57 39 23.5 / 

HSP70 
LYQGAGGPGAGGFGAQ
GPK light 2+ / y12 845.42 1043.53 39 23.5 / 

HSP70 
LYQGAGGPGAGGFGAQ
GPK light 2+ / y13 845.42 1100.55 39 23.5 / 

HSP70 
LYQGAGGPGAGGFGAQ
GPK heavy 2+ / y14 849.42 1165.57 39 23.5 4.0 

HSP70 
LYQGAGGPGAGGFGAQ
GPK heavy 2+ / y12 849.42 1051.53 39 23.5 4.0 

HSP70 
LYQGAGGPGAGGFGAQ
GPK heavy 2+ / y13 849.42 1108.55 39 23.5 4.0 

GTSF1 SC[CAM]IEQDVVNQTR light 2+ / y9 724.84 1088.53 37 22 / 

GTSF1 SC[CAM]IEQDVVNQTR light 2+ / y8 724.84 959.49 34 22 / 

GTSF1 SC[CAM]IEQDVVNQTR light 2+ / y7 724.84 831.43 31 22 / 

GTSF1 SC[CAM]IEQDVVNQTR heavy 2+ / y9 729.84 1098.53 37 22 24.9 

GTSF1 SC[CAM]IEQDVVNQTR heavy 2+ / y8 729.84 969.49 34 22 24.9 

GTSF1 SC[CAM]IEQDVVNQTR heavy 2+ / y7 729.84 841.43 31 22 24.9 

WEE2 IGDLGHVTSISNPK light 2+ / y7 719.39 746.40 40 22.8 / 

WEE2 IGDLGHVTSISNPK light 2+ / b6 719.39 593.30 40 22.8 / 

WEE2 IGDLGHVTSISNPK light 2+ / b7 719.39 692.37 40 22.8 / 

WEE2 IGDLGHVTSISNPK heavy 2+ / y7 723.39 754.40 40 22.8 1.5 

WEE2 IGDLGHVTSISNPK heavy 2+ / b6 723.39 593.30 40 22.8 1.5 

WEE2 IGDLGHVTSISNPK heavy 2+ / b7 723.39 692.37 40 22.8 1.5 

HSPE1 VLQATVVAVGSGSK light 2+ / y8 658.38 704.39 28 23 / 

HSPE1 VLQATVVAVGSGSK light 2+ / y11 658.38 975.55 28 23 / 

HSPE1 VLQATVVAVGSGSK light 2+ / y10 658.38 904.51 28 23 / 

HSPE1 VLQATVVAVGSGSK heavy 2+ / y8 662.38 712.39 28 23 16.7 

HSPE1 VLQATVVAVGSGSK heavy 2+ / y11 662.38 983.55 28 23 16.7 

HSPE1 VLQATVVAVGSGSK heavy 2+ / y10 662.38 912.51 28 23 16.7 

VIM TLYTSSPGGVYATR light 2+ / y11 736.87 1095.54 37 23 / 

VIM TLYTSSPGGVYATR light 2+ / y8 736.87 820.43 34 23 / 

VIM TLYTSSPGGVYATR light 2+ / y10 736.87 994.50 37 23 / 

VIM TLYTSSPGGVYATR heavy 2+ / y11 741.87 1105.54 37 23 4.2 

VIM TLYTSSPGGVYATR heavy 2+ / y8 741.87 830.43 34 23 4.2 

VIM TLYTSSPGGVYATR heavy 2+ / y10 741.87 1004.50 37 23 4.2 

TDRKH IDVDTEDIGDER light 2+ / y9 688.81 1049.44 32 22.5 / 

TDRKH IDVDTEDIGDER light 2+ / y8 688.81 934.41 35 22.5 / 

TDRKH IDVDTEDIGDER light 2+ / y6 688.81 704.32 32 22.5 / 

TDRKH IDVDTEDIGDER heavy 2+ / y9 693.81 1059.44 32 22.5 11.7 

TDRKH IDVDTEDIGDER heavy 2+ / y8 693.81 944.41 35 22.5 11.7 

TDRKH IDVDTEDIGDER heavy 2+ / y6 693.81 714.32 32 22.5 11.7 

PRDX3 HLSVNDLPVGR light 2+ / y9 603.83 956.52 32 24.5 / 

PRDX3 HLSVNDLPVGR light 2+ / b2 603.83 251.15 35 24.5 / 

PRDX3 HLSVNDLPVGR light 2+ / y5 603.83 541.35 38 24.5 / 

PRDX3 HLSVNDLPVGR heavy 2+ / y9 608.83 966.52 32 24.5 26.6 

PRDX3 HLSVNDLPVGR heavy 2+ / b2 608.83 251.15 35 24.5 26.6 

PRDX3 HLSVNDLPVGR heavy 2+ / y5 608.83 551.35 38 24.5 26.6 

ZAR1 TLAVYSPVTSR light 2+ / y7 597.33 809.42 28 24 / 

ZAR1 TLAVYSPVTSR light 2+ / y9 597.33 979.52 25 24 / 

ZAR1 TLAVYSPVTSR light 2+ / y6 597.33 646.35 28 24 / 

ZAR1 TLAVYSPVTSR heavy 2+ / y7 602.33 819.42 28 24 0.4 

ZAR1 TLAVYSPVTSR heavy 2+ / y9 602.33 989.52 25 24 0.4 

ZAR1 TLAVYSPVTSR heavy 2+ / y6 602.33 656.35 28 24 0.4 

HSPE1 VLLPEYGGTK light 2+ / y7 538.80 751.36 23 24 / 

HSPE1 VLLPEYGGTK light 2+ / y8 538.80 864.45 23 24 / 

HSPE1 VLLPEYGGTK light 2+ / y6 538.80 654.31 26 24 / 

HSPE1 VLLPEYGGTK heavy 2+ / y7 542.80 759.36 23 24 8.7 

HSPE1 VLLPEYGGTK heavy 2+ / y8 542.80 872.45 23 24 8.7 

HSPE1 VLLPEYGGTK heavy 2+ / y6 542.80 662.31 26 24 8.7 

HSPB1 ALPAAAIEGPAYNR light 2+ / y6 707.38 677.34 30 25.5 / 

HSPB1 ALPAAAIEGPAYNR light 2+ / b6 707.38 495.29 30 25.5 / 
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HSPB1 ALPAAAIEGPAYNR light 2+ / b5 707.38 424.26 36 25.5 / 

HSPB1 ALPAAAIEGPAYNR heavy 2+ / y6 712.38 687.34 30 25.5 8.1 

HSPB1 ALPAAAIEGPAYNR heavy 2+ / b6 712.38 495.29 30 25.5 8.1 

HSPB1 ALPAAAIEGPAYNR heavy 2+ / b5 712.38 424.26 36 25.5 8.1 

ZAR1 DAAVQVNPFR light 2+ / y6 558.79 760.41 24 27 / 

ZAR1 DAAVQVNPFR light 2+ / y5 558.79 632.35 27 27 / 

ZAR1 DAAVQVNPFR light 2+ / y4 558.79 533.28 24 27 / 

ZAR1 DAAVQVNPFR heavy 2+ / y6 563.79 770.41 24 27 0.4 

ZAR1 DAAVQVNPFR heavy 2+ / y5 563.79 642.35 27 27 0.4 

ZAR1 DAAVQVNPFR heavy 2+ / y4 563.79 543.28 24 27 0.4 

ASTL SQLQQLLK light 2+ / y6 479.29 742.48 20 27 / 

ASTL SQLQQLLK light 2+ / y5 479.29 629.40 20 27 / 

ASTL SQLQQLLK light 2+ / y4 479.29 501.34 23 27 / 

ASTL SQLQQLLK heavy 2+ / y6 483.29 750.48 20 27 8.0 

ASTL SQLQQLLK heavy 2+ / y5 483.29 637.40 20 27 8.0 

ASTL SQLQQLLK heavy 2+ / y4 483.29 509.34 23 27 8.0 

KPNA7 IGQVVDTGVLPR light 2+ / y8 627.36 856.49 30 27 / 

KPNA7 IGQVVDTGVLPR light 2+ / y7 627.36 757.42 30 27 / 

KPNA7 IGQVVDTGVLPR light 2+ / b3 627.36 299.17 33 27 / 

KPNA7 IGQVVDTGVLPR heavy 2+ / y8 632.36 866.49 30 27 0.4 

KPNA7 IGQVVDTGVLPR heavy 2+ / y7 632.36 767.42 30 27 0.4 

KPNA7 IGQVVDTGVLPR heavy 2+ / b3 632.36 299.17 33 27 0.4 

PCBD1 AVGWNELEGR light 2+ / y8 565.78 960.45 21 27.4 / 

PCBD1 AVGWNELEGR light 2+ / y6 565.78 717.35 33 27.4 / 

PCBD1 AVGWNELEGR light 2+ / y7 565.78 903.43 30 27.4 / 

PCBD1 AVGWNELEGR heavy 2+ / y8 570.78 970.45 21 27.4 10.1 

PCBD1 AVGWNELEGR heavy 2+ / y6 570.78 727.35 33 27.4 10.1 

PCBD1 AVGWNELEGR heavy 2+ / y7 570.78 913.43 30 27.4 10.1 

GSTM3 YLEQLPGQLK light 2+ / y5 594.84 542.33 31 27.4 / 

GSTM3 YLEQLPGQLK light 2+ / y8 594.84 912.51 25 27.4 / 

GSTM3 YLEQLPGQLK light 2+ / y6 594.84 655.41 28 27.4 / 

GSTM3 YLEQLPGQLK heavy 2+ / y5 598.84 550.33 31 27.4 90.4 

GSTM3 YLEQLPGQLK heavy 2+ / y8 598.84 920.51 25 27.4 90.4 

GSTM3 YLEQLPGQLK heavy 2+ / y6 598.84 663.41 28 27.4 90.4 

PRC1 VEVAQYWDR light 2+ / y7 583.29 937.45 25 27.6 / 

PRC1 VEVAQYWDR light 2+ / y6 583.29 838.38 28 27.6 / 

PRC1 VEVAQYWDR light 2+ / b2 583.29 229.12 28 27.6 / 

PRC1 VEVAQYWDR heavy 2+ / y7 588.29 947.45 25 27.6 0.9 

PRC1 VEVAQYWDR heavy 2+ / y6 588.29 848.38 28 27.6 0.9 

PRC1 VEVAQYWDR heavy 2+ / b2 588.29 229.12 28 27.6 0.9 

RPS27A ESTLHLVLR light 2+ / y5 534.31 637.41 32 26 / 

RPS27A ESTLHLVLR light 2+ / y6 534.31 750.50 28 26 / 

RPS27A ESTLHLVLR light 2+ / y7 534.31 851.55 38 26 / 

RPS27A ESTLHLVLR heavy 2+ / y5 539.31 647.41 32 26 7.8 

RPS27A ESTLHLVLR heavy 2+ / y6 539.31 760.50 28 26 7.5 

RPS27A ESTLHLVLR heavy 2+ / y7 539.31 861.55 38 26 7.5 

HSP70 NQVALNPQNTVFDAK light 2+ / y9 829.93 1019.52 36 27.2 / 

HSP70 NQVALNPQNTVFDAK light 2+ / y10 829.93 1133.56 36 27.2 / 

HSP70 NQVALNPQNTVFDAK light 2+ / y8 829.93 922.46 36 27.2 / 

HSP70 NQVALNPQNTVFDAK heavy 2+ / y9 833.93 1027.52 36 27.2 4.0 

HSP70 NQVALNPQNTVFDAK heavy 2+ / y10 833.93 1141.56 36 27.2 4.0 

HSP70 NQVALNPQNTVFDAK heavy 2+ / y8 833.93 930.46 36 27.2 4.0 

GSTM3 YSWFAGEK light 2+ / y6 494.23 737.36 21 28.4 / 

GSTM3 YSWFAGEK light 2+ / y5 494.23 551.28 24 28.4 / 

GSTM3 YSWFAGEK light 2+ / y7 494.23 824.39 21 28.4 / 

GSTM3 YSWFAGEK heavy 2+ / y6 498.23 745.36 21 28.4 86.2 

GSTM3 YSWFAGEK heavy 2+ / y5 498.23 559.28 24 28.4 86.2 

GSTM3 YSWFAGEK heavy 2+ / y7 498.23 832.39 21 28.4 86.2 

ACCSL NTLGYINLGTSENK light 2+ / y11 762.39 1195.60 33 29 / 

ACCSL NTLGYINLGTSENK light 2+ / y6 762.39 635.30 39 29 / 

ACCSL NTLGYINLGTSENK light 2+ / y8 762.39 862.43 33 29 / 

ACCSL NTLGYINLGTSENK heavy 2+ / y11 766.39 1203.60 33 29 2.5 

ACCSL NTLGYINLGTSENK heavy 2+ / y6 766.39 643.30 39 29 2.5 

ACCSL NTLGYINLGTSENK heavy 2+ / y8 766.39 870.43 33 29 2.5 

PCBD1 DQLLPNLR light 2+ / b3 484.78 357.18 17 28.5 / 

PCBD1 DQLLPNLR light 2+ / y6 484.78 725.47 32 28.5 / 

PCBD1 DQLLPNLR light 2+ / b5 484.78 612.38 26 28.5 / 
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PCBD1 DQLLPNLR heavy 2+ / b3 489.78 357.18 17 28.5 1.5 

PCBD1 DQLLPNLR heavy 2+ / y6 489.78 735.47 32 28.5 1.5 

PCBD1 DQLLPNLR heavy 2+ / b5 489.78 622.38 26 28.5 1.5 

CLU GSLFFNPK light 2+ / y5 455.25 652.35 19 29 / 

CLU GSLFFNPK light 2+ / y4 455.25 505.28 24 29 / 

CLU GSLFFNPK light 2+ / b5 455.25 552.28 19 29 / 

CLU GSLFFNPK heavy 2+ / y5 459.25 660.35 19 29 4.2 

CLU GSLFFNPK heavy 2+ / y4 459.25 513.28 24 29 4.2 

CLU GSLFFNPK heavy 2+ / b5 459.25 552.28 19 29 4.2 

AURKA IADFGWSVHAPSSR light 3+ / y6 510.59 654.33 30 30 / 

AURKA IADFGWSVHAPSSR light 3+ / y8 510.59 840.43 27 30 / 

AURKA IADFGWSVHAPSSR light 3+ / y7 510.59 753.40 27 30 / 

AURKA IADFGWSVHAPSSR heavy 3+ / y6 513.92 664.33 30 30 26.4 

AURKA IADFGWSVHAPSSR heavy 3+ / y8 513.92 850.43 27 30 26.4 

AURKA IADFGWSVHAPSSR heavy 3+ / y7 513.92 763.40 27 30 26.4 

WEE2 IGVGDFGTVYK light 2+ / y8 578.31 886.43 27 29.5 / 

WEE2 IGVGDFGTVYK light 2+ / y10 578.31 1042.52 24 29.5 / 

WEE2 IGVGDFGTVYK light 2+ / y6 578.31 714.38 30 29.5 / 

WEE2 IGVGDFGTVYK heavy 2+ / y8 582.31 894.43 27 29.5 1.5 

WEE2 IGVGDFGTVYK heavy 2+ / y10 582.31 1050.52 24 29.5 1.5 

WEE2 IGVGDFGTVYK heavy 2+ / y6 582.31 722.38 30 29.5 1.5 

CLU LLLSSLEEAK light 2+ / y8 551.82 876.47 24 31 / 

CLU LLLSSLEEAK light 2+ / y7 551.82 763.38 33 31 / 

CLU LLLSSLEEAK light 2+ / y6 551.82 676.35 24 31 / 

CLU LLLSSLEEAK heavy 2+ / y8 555.82 884.47 24 31 5.9 

CLU LLLSSLEEAK heavy 2+ / y7 555.82 771.38 33 31 5.9 

CLU LLLSSLEEAK heavy 2+ / y6 555.82 684.35 24 31 5.9 

KPNA7 LIVDAGLIPR light 2+ / y8 533.84 840.49 25 32.5 / 

KPNA7 LIVDAGLIPR light 2+ / y5 533.84 555.36 22 32.5 / 

KPNA7 LIVDAGLIPR light 2+ / y6 533.84 626.40 31 32.5 / 

KPNA7 LIVDAGLIPR heavy 2+ / y8 538.84 850.49 25 32.5 0.4 

KPNA7 LIVDAGLIPR heavy 2+ / y5 538.84 565.36 22 32.5 0.4 

KPNA7 LIVDAGLIPR heavy 2+ / y6 538.84 636.40 31 32.5 0.4 

UHRF1 LNDTIQLLVR light 2+ / y5 592.85 628.41 31 34 / 

UHRF1 LNDTIQLLVR light 2+ / y8 592.85 957.57 31 34 / 

UHRF1 LNDTIQLLVR light 2+ / y6 592.85 741.50 31 34 / 

UHRF1 LNDTIQLLVR heavy 2+ / y5 597.85 638.41 31 34 6.0 

UHRF1 LNDTIQLLVR heavy 2+ / y8 597.85 967.57 31 34 6.0 

UHRF1 LNDTIQLLVR heavy 2+ / y6 597.85 751.50 31 34 6.0 

LAMP2 IPLNDIFR light 2+ / y5 494.28 664.34 30 34.7 / 

LAMP2 IPLNDIFR light 2+ / y6 494.28 777.43 24 34.7 / 

LAMP2 IPLNDIFR light 2+ / y7 494.28 874.48 21 34.7 / 

LAMP2 IPLNDIFR heavy 2+ / y5 499.28 674.34 30 34.7 6.0 

LAMP2 IPLNDIFR heavy 2+ / y6 499.28 787.43 24 34.7 6.0 

LAMP2 IPLNDIFR heavy 2+ / y7 499.28 884.48 21 34.7 6.0 

HSPB1 LFDQAFGLPR light 2+ / y8 582.31 903.47 28 34.2 / 

HSPB1 LFDQAFGLPR light 2+ / y5 582.31 589.35 28 34.2 / 

HSPB1 LFDQAFGLPR light 2+ / y6 582.31 660.38 31 34.2 / 

HSPB1 LFDQAFGLPR heavy 2+ / y8 587.31 913.47 28 34.2 8.8 

HSPB1 LFDQAFGLPR heavy 2+ / y5 587.31 599.35 28 34.2 8.8 

HSPB1 LFDQAFGLPR heavy 2+ / y6 587.31 670.38 31 34.2 8.8 

STMN1 ASGQAFELILSPR light 2+ / y3 694.88 359.20 30 36 / 

STMN1 ASGQAFELILSPR light 2+ / y8 694.88 974.57 36 36 / 

STMN1 ASGQAFELILSPR light 2+ / y9 694.88 1045.60 36 36 / 

STMN1 ASGQAFELILSPR heavy 2+ / y3 699.88 369.20 30 36 11.2 

STMN1 ASGQAFELILSPR heavy 2+ / y8 699.88 984.57 36 36 11.2 

STMN1 ASGQAFELILSPR heavy 2+ / y9 699.88 1055.60 36 36 11.2 

TDRKH NLDIGLELVR light 2+ / b3 571.33 343.16 24 36 / 

TDRKH NLDIGLELVR light 2+ / y6 571.33 686.42 27 36 / 

TDRKH NLDIGLELVR light 2+ / y7 571.33 799.50 27 36 / 

TDRKH NLDIGLELVR heavy 2+ / b3 576.33 343.16 24 36 7.4 

TDRKH NLDIGLELVR heavy 2+ / y6 576.33 696.42 27 36 7.4 

TDRKH NLDIGLELVR heavy 2+ / y7 576.33 809.50 27 36 7.4 

PDCD5 NSILAQVLDQSAR light 2y10 707.89 1100.61 26 38 / 

PDCD5 NSILAQVLDQSAR light 2y9 707.89 987.52 30 38 / 

PDCD5 NSILAQVLDQSAR light 2y8 707.89 916.48 28 38 / 

PDCD5 NSILAQVLDQSAR heavy 2y10 712.89 1110.61 26 38 2.0 
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PDCD5 NSILAQVLDQSAR heavy 2y9 712.89 997.52 30 38 2.0 

PDCD5 NSILAQVLDQSAR heavy 2y8 712.89 926.48 28 38 2.0 

ASTL NGGVVEVPFLLSSK light 2+ / y10 723.40 1118.65 31 37.7 / 

ASTL NGGVVEVPFLLSSK light 2+ / b4 723.40 328.16 31 37.7 / 

ASTL NGGVVEVPFLLSSK light 2+ / b3 723.40 229.09 40 37.7 / 

ASTL NGGVVEVPFLLSSK heavy 2+ / y10 727.40 1126.65 31 37.7 8.0 

ASTL NGGVVEVPFLLSSK heavy 2+ / b4 727.40 328.16 31 37.7 8.0 

ASTL NGGVVEVPFLLSSK heavy 2+ / b3 727.40 229.09 40 37.7 8.0 

PDCD5 VSEQGLIEILEK light 2y8 679.38 914.56 34 38 / 

PDCD5 VSEQGLIEILEK light 2y6 679.38 744.45 34 38 / 

PDCD5 VSEQGLIEILEK light 2y7 679.38 857.53 34 38 / 

PDCD5 VSEQGLIEILEK heavy 2y8 683.38 922.56 34 38 2.0 

PDCD5 VSEQGLIEILEK heavy 2y6 683.38 865.53 34 38 2.0 

PDCD5 VSEQGLIEILEK heavy 2y7 683.38 752.45 34 38 2.0 

RBP4 YWGVASFLQK light 2+ / y8 599.82 849.48 28 39 / 

RBP4 YWGVASFLQK light 2+ / y6 599.82 693.39 28 39 / 

RBP4 YWGVASFLQK light 2+ / y5 599.82 622.36 28 39 / 

RBP4 YWGVASFLQK heavy 2+ / y8 603.82 857.48 28 39 4.0 

RBP4 YWGVASFLQK heavy 2+ / y6 603.82 701.39 28 39 4.0 

RBP4 YWGVASFLQK heavy 2+ / y5 603.82 630.36 28 39 4.0 

PRDX3 GLFIIDPNGVIK light 2+ / y8 643.38 855.49 27 38.5 / 

PRDX3 GLFIIDPNGVIK light 2+ / b3 643.38 318.18 30 38.5 / 

PRDX3 GLFIIDPNGVIK light 2+ / y6 643.38 627.38 39 38.5 / 

PRDX3 GLFIIDPNGVIK heavy 2+ / y8 647.38 863.49 27 38.5 32.3 

PRDX3 GLFIIDPNGVIK heavy 2+ / b3 647.38 318.18 30 38.5 32.3 

PRDX3 GLFIIDPNGVIK heavy 2+ / y6 647.38 635.38 39 38.5 32.3 
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7.2.2 Relative quantification by SRM 
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Figure 33. Display of both peptides corresponding to each of the 27 proteins relatively quantified by SRM 

assays. 
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7.2.3 Absolute quantification by SRM 

 

Table 11. LOQ and LOD of the 18 SI peptides used for absolute quantification by SRM. 

gene name peptide sequence 
charge / 

fragment ion 
LOQ LOD 

ASTL SQLQQLLK 2+ / y6 100 amol 50 amol 

ASTL NGGVVEVPFLLSSK 2+ / y10 500 amol 250 amol 

HSP70 NQVALNPQNTVFDAK 2+ / y9 500 amol 100 amol 

HSP70 LYQGAGGPGAGGFGAQGPK 2+ / y14 2.5 fmol 500 amol 

KPNA7 IGQVVDTGVLPR 2+ / y8 250 amol 50 amol 

KPNA7 LIVDAGLIPR 2+ / y8 50 amol N/A 

PDCD5 NSILAQVLDQSAR 2+ / y10 2.5 fmol 500 amol 

PDCD5 VSEQGLIEILEK 2+ / y8 2.5 fmol 500 amol 

PEBP1 LYEQLSGK 2+ / y6 50 amol N/A 

PEBP1 YGGAEVDELGK 2+ / y10 50 amol N/A 

RPS27A TLSDYNIQK 2+ / y7 250 amol 50 amol 

RPS27A ESTLHLVLR 2+ / y5 1 fmol 50 amol 

WEE2 IGDLGHVTSISNPK 2+ / y7 1 fmol 500 amol 

WEE2 IGVGDFGTVYK 2+ / y8 500 amol 50 amol 

YBX2 TPGNPATAASGTPAPLAR 2+ / y11 1 fmol 500 amol 

YBX2 GAEAANVTGPGGVPVK 2+ / y3 250 amol 50 amol 

ZAR1 TLAVYSPVTSR 2+ / y7 50 amol N/A 

ZAR1 DAAVQVNPFR 2+ / y6 500 amol 50 amol 
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Figure 34. Display of both peptides corresponding to each of the nine proteins absolutely quantified by 

SRM assays. 
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