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I. Chapter 1 

Aim of This Thesis 
Micro- and nanoparticles are investigated extensively for biomedical 

applications like drug delivery or vaccination. The majority of the studies are 

performed with spherical particles, which can feature different particle 

properties. Common design parameters are size, surface charge or attached 

target ligands. In contrast particle shape is usually neglected. The current thesis 

aims to fill this gap. 

The motivation to investigate non-spherical particles for different drug delivery 

applications was originated by several non-spherical natural examples. The 

vision was to transfer the surprising properties of the natural examples to 

particulate drug delivery systems of tailored geometries [1, 2]. For example, the 

7 µm red blood cells (RBCs), which circulated 100-120 days in the body before 

they are eliminated by macrophages, are discoidal. The non-spherical shape 

and the flexibility of the RBCs is essential to pass through thin microcapillaries. 

Certain bacterial strains like Escherichia coli, Aeromonas hydrophila, or 

Streptococcus pneumonia possess an elongated shape [3], with very unique in-

vivo behavior. For example, Streptococcus pneumonia evades phagocytosis by 

the immune system and can circulate remarkably long in the human body. It is 

still unclear, whether the immune system is insensitive and blind to such 

elongated organisms or has adopted and triggers an adequate and shape-

specific activation response.  

Long circulating particles create new possibilities in the field of drug delivery, 

particle biodistribution, and passive tumor targeting. In contrast, immune 

activating particles, which mimic pathogens, could be used as vaccine delivery 

vehicles to boost the immune response and increase patient safety. Therefore, 

this thesis was divided into two parts to investigate both concepts.  
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1. Immune evasion:  

In the immune evasion part we compared our non-spherical particles to 

spherical particles in an in-vitro macrophages up-take assay to investigate their 

ability to evade phagocytosis. 

2. Immune activation: 

In the immune activation part we adsorbed toll-like receptor agonists to our non-

spherical particles and spherical particles to compare their ability to activate a 

dendritic cell line. 

In this thesis, we first established a reproducible method (film stretching method 

in hot oil) to fabricate elongated particles in different size ranges and different 

aspect ratios (Chapter 2, 3). In a second step, several innovative methods were 

applied to characterize the non-spherical particles (Chapter 2). Finally, the 

impact of particle shape was investigated with two in-vitro cell lines 

(Chapter 4, 5). 

During the non-spherical particle characterization experiments we realized the 

importance of the gathered knowledge in the field of protein formulation 

(Chapter 6). Despite the fact that the topic of this thesis does not directly 

address protein formulation several publication in this field were published 

including the publication in chapter 6. 
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1. Abstract 

Introduction: Micro- and nanoparticles in drug and vaccine delivery have 

opened up new possibilities in pharmaceutics. In the past, researchers focused 

mainly on particle size, surface chemistry and the use of various materials to 

control particle characteristics and functions. Lately, shape has been 

acknowledged as an important design parameter having an impact on the 

interaction with biological systems.  

Areas covered: In this review, we report on the latest developments in 

fabrication methods to tailor particle geometry, summarize analytical techniques 

for non-spherical particles, and highlight the most important findings regarding 

their interaction with biological systems and their potential applications in drug 

delivery. 

Expert opinion: The impact of shape on particle internalization into different 

cell types and particle bio-distribution has been extensively studied in the past. 

Current research focuses on shape dependent uptake mechanisms and 

applications for tumor therapy and vaccination. Different fabrication methods 

can be used to produce a variety of different particle types and shapes. Key 

challenges will be the transfer of new non-spherical particle fabrication methods 

from lab-scale to industrial large-scale production. Not all techniques may be 

scalable for the production of high quantities of particles. It will also be 

challenging to transfer the promising in vitro findings to suitable in vivo models. 

Keywords: non-spherical particles; particle fabrication techniques; particle 

shape; shape analytics 
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2. Introduction 

Particulate drug delivery systems have attracted great attention in the past 

years [4]. Numerous particulate delivery vehicles like liposomes [5], polymeric 

micro- and nanoparticles [6, 7], micelles [8], carbon nano-tubes [9], 

microbubbles [10], virus like particles [11], dendrimers [12], and quantum dots 

[13] have been established. Such particulate carriers have been applied to 

various fields in the biomedical research domain like bio-imaging [14, 15], 

treatment [16], and vaccination [17, 18]. Some products have received FDA 

(United States Food and Drug Administration) approval. This includes 

Abraxane™, a 130 nm paclitaxel-albumin drug delivery system for second-line 

breast cancer therapy [19], and Doxil/Caelyx™, a PEGylated liposomal 

doxorubicin formulation for various cancer treatments [20].  

The observed interest in such carriers and the exponential increase in particle-

based biomedical publications and patents can be explained by several 

advantages these particulates offer [21], such as the possibility of tailoring them 

to achieve active or passive targeting that in turn allows drug enrichment at the 

tumor site [22]. Additionally, they can improve the efficiency and the 

toxicological profile of available therapies, which has been demonstrated in 

several clinical trials [4, 23], in which the encapsulated drugs are protected from 

degradation [24] or the dosing intervals can be reduced by a controlled and 

prolonged drug release [25].  

Despite these benefits, some challenges remain unsolved. Upon intravenous 

(i.v.) injection, a protein corona is formed on particulate carriers [26], that leads 

to an adsorption of opsonins on their surface [26] and a rapid particle 

elimination from the blood circulation by the reticuloendothelial system (RES) 

[27]. In addition, nanoparticle delivery confronts difficulties in crossing biological 

barriers [28, 29]. Thus, particles face a challenging in vivo environment that 

includes the interaction with serum proteins, different cell types, complex fluid 

dynamics, and various biological barriers [30]. This can lead to several 

limitations, such as a preliminary release of payload, an aggregation due to an 



 

 4 

interaction with serum components [31], a premature removal from the blood 

stream [32, 33], and a low target efficiency [34].  

These limitations regarding particulate delivery systems have been approached 

by several researchers who use different strategies that primarily focus on 

particle size and surface chemistry. The role of particle size is well described 

and has a large impact on particle fate in vivo. For example, particles of a size 

smaller than 5 nm are rapidly eliminated from free circulation through 

extravasation or renal clearance [35], while larger particles up to the micrometer 

range preferentially accumulate in the liver and the spleen [36]. In addition, 

tailored surface chemistries are common methods to avoid opsonization and 

elimination by the RES. Hydrophilic polymeric chains like polyethylene glycol 

(PEG) [37], hydroxyethyl starch (HES) [38] or polysialic acid (PSA) [39] are 

adsorbed or covalently linked to the particles’ surface to prevent serum proteins 

adsorption in order to achieve prolonged circulation times [40].  

Recently, particle shape has emerged as a new design parameter to control 

micro- and nanoparticles properties, which impact their interaction with 

biological systems [41, 42]. Such progress was enabled by new and precise 

production and characterization methods of non-spherical particles [43]. 

Additionally, major advances towards a sound understanding of particle shape 

effects on biological interactions have been published by a growing number of 

researchers [41]. In this review, we will focus on the latest progresses in the 

field of non-spherical particle fabrication, characterization, the effect of 

geometry on biological interactions and their in vitro and in vivo applications. 

 

3. Particle fabrication  

Several different techniques are now available to produce non-spherical 

particles. In the following section we describe methods allowing de-novo 

synthesis of non-spherical particles or methods that process already formed 

spherical particles towards different shapes. 
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Figure I-1 A) PRINT particles, the scale bar is 5 µm [44], B) Continuous flow 

lithography particle, the scale bar is 10 µm [45], C) Film-stretched particles, the 

scale bar is 2 µm [46], D) Template self-assembly particles, the scale bar is 4 

µm [47], E) Gold nano-rods, the scale bar is 50 nm [48], F) Porous silicon 

particles, the scale bar is 500 nm [49] 

 

3.1. Non-wetting templates 

The particle fabrication method PRINT (Particle Replication In Non-wetting 

Templates) was established by the group of DeSimone (Figure I-1 A). Here, 

non-wetting characteristics of fluorinated materials are used to force raw 

materials into a designable mold where they are photo-chemically cross-linked 

(Figure I-2). The PRINT technology gives full control over particles’ size (below 

100 nm – micrometer), shape, flexibility [44], surface functionalization [50] and 

charge, as well as the possibility to change those attributes individually [51]. 

Particles can be produced from different materials like lipid-complexes such 

astripropylenglycol diacrylate [52], polyethylene - glycol (PEG) and polylactic- 
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co-glycolic acid (PLGA) [53], or a combination thereof [15, 54], and loaded with 

drugs by simple incorporation into the raw material [55-58]. 

 

 
Figure I-2: Schematic illustration of the preparation of non-spherical particles 

using a non-wetting mold fabrication process. 

 

3.2. Microfluidic systems 

Microfluidic devices are promising systems to fabricate non-spherical particles 

of different sizes, shapes (Figure I-1 B), porosities, and materials [59, 60]. 

Especially microfluidic systems coupled to lithography [61, 62], photolithography 

[63] and template assembly processes [47] have proven their potential to create 

complex particle shapes. A schematic illustration of a microfluidic system is 

given in Figure I-3. Optical microscopes equipped with digital micromirrow 

devices, which precisely project UV light to the microfluidic channel, allow 

precise design of microparticles’ shape at will [64-66]. With all the benefits of 

the versatile method, traditional microfluidic devices do not exceed a flow rate of 

5 ml/h and are not feasible for industrial particle production. However, Nisisako 
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et al. reported a first approach to scale up production with a circularly arranged 

microfluidic chip processing up to 320 ml/h [67]. 

 

 
 

Figure I-3: Schematic illustration of the preparation of non-spherical particles 

using a microfluidic system. The outlet channel defines particle geometry. A) 

high aspect ratio particles, B) cylindrical particles. 

 

3.3. Film-stretching  

The film stretching method is another simple but versatile technique to produce 

non-spherical polymeric particles of numerous shapes in the micro- and 

nanometer range (see Figure I-1 C) [46, 68, 69]. Spherical particles are 

embedded into a PVA film, liquefied in hot oil over the particles’ tg or a 

plasticizer like toluene and then stretched in one or two dimensions. The 

stretching process is achieved by strong association by hydrogen bonding of 

liquefied particles and the film. The stretching degree and temperature, as well 

as film and particle properties determine the aspect ratio. The stretching degree 

is proportional to the final aspect ratio, while temperature or the use of a 

plasticizer determines the viscosity of liquefied particles. A low particle viscosity 

results in flat shapes. Two - dimensional stretches can create complex 

geometries [2]. Non-spherical particles are recovered by dissolving the film. A 

schematic illustration of the film-stretching method is provided in Figure I-4. 
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Different polymeric materials like polystyrene or biodegradable PLGA [70] have 

been successfully treated. Despite the simplicity of the film-stretching method, 

an industrial scale up is rather problematic as films have to be stretched 

individually and a continuous production process is not possible. 

 

 
Figure I-4: Schematic illustration of the preparation of non-spherical particles 

using the film stretching method. 

 

3.4. Template-assembly 

Similar to the film-stretching method, spherical particles are used as starting 

material for template-assembly (Figure I-1 D). Spheres are forced into well-

defined arrays and joined together by cross-linking agents or heat [71]. The 

process is illustrated in Figure I-5. Long chains of connected spheres display 

high aspect ratios [72]. Self-assembly techniques and microfluidics are often 

combined to produce non-spherical colloidal structures [73]. Velev et al. have 

shown that it is possible to grow differently sized and shaped colloidal crystals 

by varying the aqueous droplets in the assembly suspension [74]. Kohler et al. 

reported on a template-assisted polyelectrolyte encapsulation method. Here, 
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nanoporous membranes were used into which nanoparticles were deposited. 

Nanoparticles in the pores where then encapsulated by polyelectrolytes due to 

electrostatic interactions, and colloidal, non-spherical nanoparticles or 

nanostructured microfibers were obtained [75]. Nonetheless, a scale up of non-

spherical particle production with template assembly techniques is problematic 

and has not been reported yet. 

 

 
Figure I-5: Schematic fabrication process of high aspect ratio template 

assembly particles. 

 

3.5. Further techniques 

Several other non-spherical particle production methods have been reported 

lately. For example, three fabrication processes to create gold nano-rods (NRs) 

(Figure I-1 E) have been reported: A template- [76], electrochemical- [77] and 
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seed growth method, which was improved towards a high yield (ca. 90%) and 

designable aspect ratios (up to 18) [78]. The seed grow method usually involves 

the addition of toxic cetyl-trimethylammonium bromid (CTAB) in the fabrication 

process, which cannot be washed off and limits bio-medical applications. 

Functionalized mesoporous silica can condensate to particles with various 

morphologies (Figure I-1 F) [79, 80]. Other methods involved the use of a 

piezoelectric inkjet printer to create drug loaded polymeric microparticles [81] or 

ball milling conventional glass wool to non-spherical needles [82]. Furthermore, 

PEGylated carbon nanotubes (single-wall nanotubes (SWNTs)) can be 

produced by an electric arc and laser ablation method [83]. Lepeltier et al. 

reported on an amphiphilic prodrug of gemcitabine that self-assembled 

spontaneously in water as non-spherical nanoparticles [84]. Moreover, non-

spherical lipid platelets have been produced by high-pressure homogenization 

[85]. Finally, different polymeric micelles were produced from block copolymers, 

where non-spherical flexible micelles can be produced in a wide size range from 

nanometers [86] to micrometers [87] at different aspect ratios.  

 

4. Characterization of non-spherical particles 

Following the preparation process, a characterization of the non-spherical 

particles is an essential step in analyzing and controlling product quality. While 

electron microscopy is the standard method for particle analysis, other methods 

such as microflow imaging (MFI), flow cytometry and asymmetric flow field flow 

fractionation (AF4) can be used as high to medium-throughput analytical 

methods. 

 

4.1. Scanning electron microscopy (SEM) 

Scanning electron microscopy is by far the most commonly used method to 

image particles in the micro- and nanometer range. However, samples require 

an elaborative, water free sample preparation. The image analysis is time 
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consuming and has no high through-put capabilities for quality control. Several 

other methods for quality control and shape characterization of non-spherical 

particles have been evaluated [43]. 

 

4.2. Microflow imaging (MFI) 

Microflow imaging techniques capture images of particles suspended in a fluid 

as they pass through the flow cell. By this the precise shape of micro-sized 

particles can be analyzed, and it can be used to quantitatively identify the 

quality of film-stretched particles in few minutes with no sample preparation 

[43]. This method allows analyzing particles down to a size of 5 µm. However, 

characterization of particle shape below 5 µm is not possible as the resolution is 

insufficient.  

 

4.3. Flow cytometry 

Flow cytometry (or fluorescence-activated cell sorting, FACS) is usually used to 

analyze fluorescent cells. It was also shown that the method can be used to 

measure a mixture of spherical and non-spherical particles, which pass a static 

light scattering module with forward and side detectors. The method can 

analyze particles in the medium to low micrometer range, and can quantify the 

amount of non-spherical particles and spherical contaminants, since the former 

scatter more light to the forward detector [43]. However, this method does not 

provide information about the exact particle size or shape. 

 

4.4. Asymmetric flow field flow fractionation (AF4) 

Asymmetric flow field flow fractionation (AF4) coupled to multi angel laser light 

scattering (MALLS) and quasi-elastic light scattering (QELS) can be used to 

analyze particle shape in the nanometer range. The hydrodynamic radius is not 
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affected by particle shape, whereas the geometric radius increases with non-

spherical shapes. The quotient of the geometric radius (form MALLS) and the 

hydrodynamic radius (from QELS) is a factor for particle geometry [43]. 

Spherical particles display a shape factor (SF) of 1, whereas elongated, non-

spherical particles have an increased SF of 1.5 – 2. 

 

5. Biological Interactions 

Table I-1: Overview of different non-spherical particle platforms and the 

biological effect of particle geometry. 

Particle type Shape Biological 
effect 

Fig. Ref. 

PRINT - 
particle 

Elongated Uptake 
increase  

1a [51] Gratton 
2008 

Film-
stretching 

2D particle 
design at will 

Uptake-
decrease, 
targeting 
increased 

1c [88] Barua 
2013 

Gold particles Rods Uptake 
decreased, 
half-life 
increased,  

1e [48] Arnida 
2011 

Silica Rods Uptake 
decreased 

1f [89] Herd 
2013 

Micelles Worm-like Uptake 
decreased, 
half-life 
increased,  

1e [87] Geng 
2007 

 

5.1. Particle uptake and uptake mechanism 

Shape effect on particle internalization was extensively investigated in 

phagocytic and non-phagocytic cells using different approaches (Table I-1). The 

group of Mitragotri manipulated spherical particles by the film-stretching method 

towards numerous shapes. This allowed a comparison of spherical and non-

spherical particles of the same material, surface charge and volume. For 
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instance they showed that IgG-coated 1 µm and 3 µm ellipsoid rods displayed a 

10 times lower internalization by rat macrophages [90]. We benchmarked 

particle shape and PEGylation as two uptake inhibiting tools in J774.A1 

macrophages. PEGylation and an elongated shape reduced internalization to 

the same extent. In addition, a combination of the non-spherical particle shape 

and PEGylation displayed additive effects [91]. Similar results were found using 

differently shaped gold nanoparticles, where Qiu et al. investigated gold nano-

rods of different aspect ratios. A decreased internalization of gold nano-rods 

was found with increased aspect ratios in MCF-7 cells [92]. These findings 

could be transferred to different cell types and particle coatings [93] and surface 

chemistries (PEGylation) [48, 94]. For instance, Agarwal et al. investigated 

differently sized and shaped polyethylene glycol diacrylate hydrogel 

nanoparticles in several cell types, where elongated particle-shape lowers 

particle internalization [95]. Similarly, filamentous block-copolymer micelles 

displayed a decreased cellular uptake by CHO-K1 and macrophages under 

static- [96] and fluid dynamic conditions [87]. The observed reduction in uptake 

of elongated particles can be time dependent. In HUVEC cells, 1 µm PLGA 

spheres had a 4-5 times increased inner cell concentration in the first 30 min of 

incubation compared to elongated ellipses, while the difference was almost 

equaled out to 1.25 times after 4 h [70, 97, 98].  

The long flat axis of elongated spheres or oblate discs gives them unique 

adhesive and targeting features. Decuzzi et al. discussed the receptor mediated 

binding of circulating non-spherical particles and predicted an ideal size of 100 

nm – 500 nm for targeted drug delivery systems [99, 100]. The two uptake 

inhibition aspects and enhanced receptor mediated binding were illustrated in a 

study by Barua et al., where 200 nm elliptical particles coated with BSA 

displayed a reduced unspecific internalization into BT-474 (Her2+) cells 

compared to spherical particles. In contrast, Trastuzumab coated ellipses 

showed an 2.3 fold enhanced uptake [88]. An elongated particle shape resulted 

in reduced particle internalization. However, Gratton et al. investigated 

differently sized and shaped PRINT particles in HELA cells. 150 nm cylindrical 

particles with an aspect ratio of 3 displayed an increased internalization 
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compared to cylindrical nanoparticles with an aspect ratio of 1 [51]. In vitro 

particle internalization is a combination of particle sedimentation, particle 

attachment to the cell surface and the process of membrane deformation [95]. 

Non-spherical particles display a greater surface to volume ratio, which 

promotes cell membrane attachment [98]. However, the energy required to 

bend the cell membrane around non-spherical particles is greater compared to 

their spherical counterparts. The competition of the two subtending processes 

will determine uptake kinetics of different shapes. [95]. 

The mechanism of uptake of non-spherical and spherical particles with different 

sizes was investigated in several studies with various cell uptake inhibitors. 

Herd et al. compared the internalization of 200 nm spherical and worm-like 

silica nanoparticles in RAW 264.7 macrophages. The clarithrin-mediated 

endocytotic uptake inhibitor chlorpromazine reduced the internalization of 

spheres below 20% of the controls. The uptake of worm-like silica particles was 

not affected by chlorpromazine (over 80% of control). The macropinocytosis 

blocker wortmannin preferentially blocked internalization of worms, while 

caveolae inhibitors had no influence on cellular particle uptake [89]. These 

results suggest that spherical particles are primary taken up by clarithrin-

mediated endocytosis, while the worm-like structures are internalized by 

macropinocytosis or phagocytosis. Chlorpromazine elicited similar uptake 

reducing effects of discoidal and cylindrical nanoparticles in HeLa cells like in 

the RAW 264.7 cells. Only minor differences in uptake were observed in HEK 

293 and HUVEC cells. In HEK 293 the major internalization route for discoidal 

particles was caveolae mediated, while inhibition of calveolae had no effect on 

high aspect ratio cylindrical nanoparticles [95]. No uptake inhibitor could block 

particle uptake completely, suggesting that a combination of different 

internalization routs is usually involved [89]. These uptake mechanism studies 

show that particle internalization is a complex process which is also dependent 

on several experimental setups. Major differences were observed between the 

different cell types, shapes and particle raw materials.  
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5.2. Blood circulation time 

The fluid dynamics of micro- and nanoparticles in the blood stream is shape-

dependent and has an influence on plasma half-life time. Different computer 

models suggest that a non-spherical particle-shape promotes lateral drift 

towards the vascular endothelia [101]. The theoretical findings were confirmed 

using in vitro flow chamber systems, where non-spherical particles preferentially 

attached to the flow chamber wall [69, 102, 103]. Despite these in vitro findings, 

numerous in vivo models have proven a superior blood circulation half-life time 

of non-spherical particles. In vivo blood circulation half-life time is a complex 

interplay of adhesion to the vascular endothelia, uptake by cells of the RES and 

passing natural barriers in the liver, lung and spleen, which is difficult to 

simulate ex-vivo. Arnida et al. compared blood levels of PEGylated gold nano-

spheres and nano-rods after i.v. administration at a 6 h time point in mice. 

Nano-rods had a plasma concentration of 11% of the injected dose whereas 

spheres concentrations stayed below 1% [48]. Other groups achieved 

comparable results to Arnida et al. with PEGylated nano-rods [104-106]. 

Elongated 15 µm flexible filomicelles circulated in the blood stream for 7 days, 

while spherical stealth micelles from the same polymeric material were cleared 

after 2 days  [87]. PEGylated single-walled carbon nanotubes (SWNTs) reach a 

plasma half-life time of 2 h [107], nano-graphene sheets 7 h (beta-phase) [108]. 

Merkel and co-workers applied the physical properties of long circulating red-

blood cells to flexible hydroxyl PEG acrylate (HPA) discoidal micro- and 

nanoparticles. The flexibility of the discs allows passing small capillaries in the 

lung and the 200 nm filtration slits in the spleen. 6.4 µm discs had a blood 

concentration of 13.2% of the injected dose after 104 h [109, 110]. Particle 

geometry has proven a clear influence on particles’ blood circulation time. 

However, in vivo half-life time is an interplay of particle size, shape, surface 

chemistry and material properties. More studies need to elucidate the 

connection of the different drug delivery properties on biological half-life. 
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5.3. Biodistribution 

Micro- and nanoparticle geometry plays an important role in their biodistribution. 

Arnida et al. compared the bioaccumulation of i.v. injected PEGylated nano-

spheres and nano-rods in ovarian tumor-bearing mice after 6 h. The authors 

observed a significant lower accumulation of rod-like nanoparticles in the liver 

and significant higher concentrations (15% of injected dose) in the tumor. 

Similarly, Akiyama and co-workers found high dosages of PEGylated gold 

nano-rods in tumor tissue [105]. Long circulating single-walled carbon nano-

tubes accumulated 15% of the injected dose in the tumor tissue of mice [107]. 

The endothelium of the lungs expresses ICAM-1 at basal levels. Kolhar et al. 

coated spherical and elongated 200 nm polystyrene particles with anti-ICAM-1 

or anti-transferrin receptor antibody. Anti-ICAM-1 rod-shaped particles 

accumulated twofold higher in the lungs of mice compared to the spheres. The 

lung/liver ratio of anti-ICAM-1 rods was 1.7 and only 0.7 for the corresponding 

spheres. IgG coated non-targeting control particles displayed no shape 

differences in lung accumulation. The anti-transferrin receptor antibody nano-

rods accumulated sevenfold higher in the brain than the coated spheres. This 

study demonstrates the great targeting potential of high aspect ratio particles 

[111]. Silica nano-rods preferentially accumulated in the lung [112]. Decuzzi et 

al. investigated the biodistribution of differently shaped silica particles in mice. 

Discoidal particles displayed a significant low liver entrapment than spherical or 

cylindrical particles, probably due to the lower propensity of non-spherical 

particles for cellular uptake by phagocytosis as discussed above. High 

accumulation of discoidal particles was observed in most of the organs. The 

higher surface to volume ratio of discs facilitates vessel wall adhesion [100, 

113]. Discoidal silica particles (dimensions 600 nm x 400 nm) were found at five 

times higher concentrations (10.2% of the injected dose / tissue g) in tumors 

compared to their spherical counter parts [49]. In general, the longer circulation 

time of non-spherical particles and the increased permeability of tumor vessels 

(enhanced permeability effect (EPR)) are believed to facilitate the particle 

enrichment at tumor sites [48]. 
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6. Applications 

The unique features of non-spherical particles have been applied to several 

biomedical applications (Table I-2). 

Table I-2: Overview of different biomedical application for different non-spherical 

particulates in drug delivery and vaccination. 

Particle type / 
shape 

Application Advantage vs. 
spheres  

Reference 

Cylindrical PRINT  Vaccination 5-times 
immunological 
response 
compared to 
soluble vaccines 

[55] Galloway 
2013 

Gold nano-rods Vaccination Higher antibody 
titer 

[114] Niikura 
2013 

Filomicelles Drug delivery 
(cancer) 

2-times apoptosis 
rate of tumor cells  

[87] Geng 2007 

Non-spherical 
PRINT 

Drug delivery 
(cancer) 

Not benchmarked [56] Enlow 2011 

Needle shaped 
PS 

Drug delivery 
(DNA) 

Increased knock-
down 

[111] Kolhar 2013 

 

6.1. Vaccination 

Galloway et al. used 320 nm PRINT particles as an influenza vaccine delivery 

system. The nanoparticles are based on PLGA and cationic additives and 

display an aspect ratio of 4. The positive zeta-potential as well as the high 

surface to volume ratio of the non-spherical nanoparticles increased antigen 

adsorption to 6% w/w. The PRINT nanoparticle bound influenza vaccines 

displayed a fivefold boosted immunological response (antibody titer response) 

compared to soluble antigen solutions. The toxicological studies of a broad 

range of dosages (20 µg – 500 µg) revealed no clinical observations and no 

significant increases in cytokine levels in mice. In addition, the PRINT 

technology offers GMP production capabilities to fortify the great potential as a 

promising drug delivery system for clinical trials [55]. Niikura et al. investigated 

differently sized and shaped gold nanoparticles as vaccine platform. Rod 

shaped 36 nm x 10 nm nanoparticles displayed a superior antibody titer 
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production compared to the 20 nm corresponding spheres. However, larger 

spheres were most efficient, which highlights the complex interplay of particle 

size, shape and material properties in drug delivery systems [114]. 

 

6.2. Drug Delivery 

Geng et al. loaded spherical micelles (aspect ratio 1) and long circulating 

filomicelles (aspect ratio 8) with paclitaxel. The increase in aspect ratio doubled 

the apoptosis rate of tumor cells in mice and efficiently decreased the tumor 

size. The longer half-life time of the filomicelles prolongs paclitaxel exposure to 

tumor cells and enhances passive targeting (EPR) [87]. Similarly, the group of 

DeSimone investigated non-spherical particles as chemotherapeutic drug 

delivery systems. Differently shaped PRINT particles had up to 40% w/w 

doxetaxel loading with a loading efficiency of >90% [56] and were efficient in a 

murine cancer model [58].  

Kolhar et al. used spheres and needle-shaped polymeric nanoparticles to deliver 

siRNA. The needle shaped particles permeated the cell membrane and induced 

cytoplasmic delivery. The percent of knock down increased with the aspect ratio of the 

particles [111].  

 

7. Conclusion 

The current review highlights the tremendous progresses in the last years 

regarding non-spherical particle fabrication, characterization and applications. 

New production processes allow precise control over particle shape, and 

various analytical methods can be used to check the quality of the produced 

particles. These new possibilities provided the basis for several studies to 

understand the effect of particle shape on the different biological interactions, 

focusing on particle uptake and uptake mechanisms, blood circulation time and 

biodistribution.  
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8. Expert opinion 

The basis of this fast growing research field was a remarkable progress in non-

spherical particle fabrication methods. These methods open up new possibilities 

in the research of drug delivery. The impact of particle shape on cellular 

interactions and biodistribution was demonstrated in numerous studies. A 

remarkable difference between the non-spherical particles and their spherical 

counterparts was observed in vitro and in vivo. Particle uptake into different cell 

types is well described and the majority of studies suggest a decreased 

internalization for non-spherical particles. In addition to this, researchers 

concentrate on shape dependent uptake mechanism. Nevertheless, only little is 

known how particle geometry predetermines cellular uptake mechanism.  

In vivo particle biodistribution has been studied extensively. Longer circulation 

times can lead to high tumor accumulation of particles by passive targeting. 

However, the majority of those studies were performed with model particles 

carrying no drug load. Accordingly, future work needs to transfer the promising 

results obtained by model particles to suitable drug delivery systems including 

pharmaceutical drug payloads. Chemotherapeutics and vaccines will play the 

dominate role.  

The overall in vivo performance is a combination of particle size, shape, 

material properties like flexibility and surface chemistry. Particle geometry has 

the potential to play an important parameter in the design of future drug delivery 

systems. One of the key challenges is to find suitable spherical control particles 

to benchmark spherical and non-spherical particles. In other words, the major 

task is to conserve all particle properties and exclusively manipulate particle 

shape, which is usually not possible. For example, manipulating particle shape 

will usually change particle’s flexibility and can have an effect on particle 

aggregation in culture media or in vivo. However, flexibility and aggregation 

behavior of particulated systems have an impact on the overall particle in vitro 

and in vivo performance.  
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The integration of the new design parameters increases complexity of drug 

delivery systems. Therefore, interdisciplinary teams of material scientist, 

chemists, pharmacist and biologics/immunologists are needed to match all the 

requirements needed for future drug delivery system design.  

The growing number of particulate drug delivery systems in clinical trials 

requires suitable large scale production methods. Hence, another key challenge 

will be to transfer the new fabrication methods for non-spherical particles from 

lab-scale to large-scale in order to provide particles in sufficient quality and 

quantity for clinical trials and marketed products.  

Finally, two aspects of a non-spherical drug delivery system seem very 

promising: First, including particle shape among size, surface chemistry and 

flexibility in the drug delivery design mix provides the possibility to mimic the 

compelling properties of natural entities like red blood cells. Second, the high 

surface to volume ratio of non-spherical particles offers possibilities for an active 

targeting. Consequently, an equal amount of non-spherical particles can carry a 

multiple of targeting ligands.  

The final aim is that through careful engineering of the different design 

parameters, these particulate carriers will provide superior disease treatment 

with less undesirable side effects and better patient acceptance.  
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The final aim of the thesis was to investigate non-spherical particles in-vitro. 

However, in-vitro experiments require homogenously stretched particles with a 

defined particle size. In contrast to particle size measuring instruments, 

instruments measuring particle shape are rare. Therefore, the first major aim of 
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this thesis was to homogeneously produce and characterize non-spherical 

micro- and nanoparticles.   
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1. Abstract 

Non-spherical micro- and nanoparticles have recently gained considerable 

attention due to their surprisingly different interaction with biological systems 

compared to their spherical counterparts, opening new opportunities for drug 

delivery and vaccination. Up till now, electron microscopy is the only method to 

quantitatively identify the critical quality attributes (CQAs) of non-spherical 

particles produced by film-stretching; namely size, morphology and the quality 

of non-spherical particles (degree of contamination with spherical ones). 

However, electron microscopy requires expensive instrumentation, demanding 

sample preparation and non-trivial image analysis. To circumvent these 

drawbacks, the ability of different particle analysis methods to quantitatively 

identify the CQA of spherical and non-spherical poly(1-phenylethene-1,2-diyl 

(polystyrene) particles over a wide size range (40 nm, 2 μm and 10 μm) was 

investigated. To this end, light obscuration, image-based analysis methods 

(Microflow imaging, MFI, and Vi-Cell XR Coulter Counter) and flow cytometry 

were used to study particles in the micron range, while asymmetric flow field 

fractionation (AF4) coupled to multi-angle laser scattering (MALS) and quasi 

elastic light scattering (QELS) was used for particles in the nanometer range, 

and all measurements were benchmarked against electron microscopy. Results 

show that MFI can reliably identify particle size and aspect ratios of the 10 μm 

particles, but not the 2 μm ones. Meanwhile, flow cytometry was able to 

differentiate between spherical and non-spherical 10 or 2 μm particles, and 

determine the amount of impurities in the sample. As for the nanoparticles, AF4 

coupled to MALS and QELS allowed the measurement of the geometric (rg) and 

hydrodynamic (rh) radii of the particles, as well as their shape factors (rg/rh), 

confirming their morphology. While this study shows the utility of MFI, flow 

cytometry and AF4 for quantitative evaluation of the CQA of non-spherical 

particles over a wide size range, the limitations of the methods are discussed. 

The use of orthogonal characterization methods can provide a complete picture 

about the CQA of non-spherical particles over a wide size range. 
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2. Introduction 

Synthetic micro- and nanoparticulate systems are being extensively studied for 

biomedical applications, including therapy, monitoring, diagnosis and 

vaccination [1-3]. This is because these systems show a number of benefits, 

including the potential for passive or active targeting to different body or cell 

compartments [4], protection of sensitive therapeutic payloads (e.g. proteins or 

oligonucleotides) from degradation, and helping to increase compliance by 

longer dosing schedules [5, 6]. 

In contrast to particle size, charge and surface properties, particle geometry has 

been traditionally neglected in studying micro- and nanoparticles for biomedical 

use. This can be attributed to several reasons, including limitations in 

production processes, which usually result in spherical particles to reduce 

surface energy. Additionally, methods for particle characterization and 

assurance of homogeneity are rather limited. However, recently different 

production methods including soft lithography, mechanical stretching, templated 

self-assembly, nano-moulding and microfluidics, allow for the production of 

particles with different, non-spherical morphologies [7-12]. The possibility to 

obtain non-spherical particles created large interest in investigating the impact 

of particle shape on the interaction with biological systems [11, 13-15], with 

many interesting findings. For example, non-spherical particles are 

phagocytosed to a different extent compared to spherical ones, where ellipsoids 

exhibit a lower incidence of uptake by macrophages [16-18] while discs or 

oblate spheroids show an increased incidence of phagocytosis [19]. 

Additionally, Geng et al. observed that shape could alter the particle circulation 

time in vivo [20], as filamentous micelles persisted in the circulation of rodents 

for a week, nearly 10 times longer than their spherical counterparts [20]. These 
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observations show that particle shape can be an important design parameter for 

particulate drug delivery systems. 

Despite these developments in producing and applying non-spherical micro- 

and nanoparticles, there are still very few methods for their analysis and 

characterization. At the moment, electron microscopy is the only analytical 

method used for the characterization of non-spherical particles [17]. Despite its 

strength, the method requires expensive instruments, laborious sample 

preparation and non-trivial image analysis [21]. Additionally, due to the broad 

size range and different possible shapes of non-spherical particles, it would be 

beneficial to identify different analytical methods which can cover several orders 

of magnitude of the possible size ranges [22, 23]. 

In this study, a number of different analytical methods were used to characterize 

non-spherical particles with different sizes and aspect ratios. For this purpose, 

40 nm, 2 μm and 10 μm spherical polystyrene particles were stretched towards 

different aspect ratios using a film-stretching method[16]. Light obscuration 

particle counting (LO), image-based analysis methods (microflow imaging, MFI 

and Vi-Cell XR Coulter Counter) and flow cytometry were used to characterize 

particles in the micrometre range, while asymmetrical flow field flow 

fractionation (AF4) and dynamic light scattering (DLS) were used to 

characterize non-spherical particles in the nanometer range. 

 

3. Materials and methods 

3.1. Particles 

Non-crosslinked 40 nm, 2 μm and 10 μm polystyrene (PS) particles were 

purchased from Polysciences (Eppelheim, Germany). Poly(1-hydroxyethylene) 

(Polyvinylalcohol 40–88 (PVA)) was purchased from Sigma–Aldrich (Steinheim, 

Germany). All other materials were of analytical grade. 
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3.2. Preparation of non-spherical particles 

Ellipsoidal particles were prepared from spherical 40 nm, 2 μm and 10 μm 

polystyrene particles using the film stretching method in hot oil according to 

Champion et al.[7] Briefly, PVA was dissolved in water at 85 °C (10%, w/v), and 

then 2.5% of glycerol was added. To this solution, spherical polystyrene 

particles were added at a concentration of 0.08%, w/v. The mixture was poured 

into moulds and dried for 48 h at room temperature. The dried PVA/PS-particle 

film was cut into 3 cm × 2 cm sections and stretched using a manual device 

built in-house, consisting of two metal clamps attached to a screw which 

separates the two clamps during the stretching process. The films were 

stretched in an oil bath at 110  C at a constant stretching speed of 0.5 mm/s. 

After stretching, the film was cooled down to approximately 60 °C and washed 

with 100% 2-propanol (isopropanol). 

 

3.3. Electron microscopy 

Particle morphology was confirmed by SEM imaging using a JEOL JSM 6500F 

scanning electron microscope (Jeol Ltd., Tokyo, Japan) with Inca Software 

(Oxford instruments, Oxfordshire, UK). The samples were fixed with self-

adhesive tape on aluminium stubs and were sputtered with carbon. SEM 

micrographs were collected at a magnification of 1000× for the 10 μm particles, 

3000× for the 2 μm particles and 50,000× for the 40 nm particles. The diameters 

reported from the SEM micrographs are the Ferret diamaters of the particles to 

better express the particles’ elongated shape. 

 

3.4. Light obscuration 

Light obscuration is usually used to measure particles in the range of 1–200 μm. 

The system measures an equivalent circular diameter of particles that pass a 

laser beam blocking light proportional to their cross-section area. The blocked 
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light is recorded by a photo diode [24]. Polystyrene particles were measured by 

light obscuration using a SVSS-C with a HCB-LD-25/25 sensor (PAMAS, 

Partikelmess- und Analysesysteme GmbH, Rutesheim, Germany). Triplicates of 

0.3 ml of each sample were analyzed with a pre-run volume of 0.5 ml. Fill, rinse 

and emptying rate were set to 10 ml/min. The system was rinsed with 6 ml of 

high purified water prior to each run until particles counts of less than 50 

particles/ml were reached. 

 

3.5. Micro-flow imaging (MFI) 

A micro-flow imaging system from Brightwell Inc. (Ottawa, Canada) was utilized 

to measure particle size and aspect ratio of different particle samples in 

triplicates. The system is usually used to analyze particles in the range of 1–

500 μm. Particles pass a light source and are imaged by a camera. The image 

analyzing software offers information about particle's size and shape. [24]. In 

our study we used the Ferret diameter to analyze the particle size. A peristaltic 

pump was used to create constant particle streams. Sample volume was 1 ml. 

The system was calibrated with 5 μm polystyrene particles standard (Thermo 

Scientific, USA). 

 

3.6. Vi-Cell XR Coulter Counter 

A Vi-Cell XR Coulter Counter from Beckman Coulter GmbH (Krefeld, Germany) 

was utilized to measure particle size and aspect ratio of 10 μm polystyrene 

particles in triplicates. The Vi-Cell XR Coulter Counter measures an equivalent 

circular diameter of particles passing the camera of the system. The cell 

brightness level was set to 85%, cell sharpness to 100, viable cell spot 

brightness to 65%, viable cell spot area to 5%, decluster degree to medium, 

aspiration cycles to 1 and mixing cycles to 3. 
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3.7. Flow cytometry 

A Bioscience flow cytometer FACS Canto II (Bioscience, Franklin Lakes, NJ, 

USA) equipped with forward- and side scattering laser was utilized. Detectors 

gain and sensitivity were optimized to maximize particle detection. All samples 

were measured in triplicates. For the 10 μm particles, the forward scatter 

detector (FSC) was set to 604 V and the side scatter (SSC) detector was set to 

416 V, for the 2 μm particles FSC was set to 240 V, SSC to 270 V. The different 

particle solutions were diluted to 100.000 particles/ml before measurements 

using a PAMAS SVSS particle counter for concentration determination. 

 

3.8. Asymmetric flow field flow fraction (AF4) system 

A Wyatt Eclipse 2 AF4 system (Wyatt Technology, Dernbach Germany) 

combined with an Agilent 1100 HPLC system (Agilent Technologies, Palo Alto, 

USA) equipped with UV detection and a Wyatt Down Eos multi-angle laser light 

scattering (MALLS) detector. The AF4 technique can analyze particles in the 

range of 1 nm to 50 μm [24]. The Wyatt Quasi-Elastic-Light-Scattering (QELS) 

was utilized to analyze the hydrodynamic radius of particles. Measurement 

interval length was set to 2 s. The large separation channel was equipped with 

a 350 μm spacer and a 30 kDa cut-off regenerated cellulose membrane. 10 μl 

of 40 nm polystyrene particles of a 0.027% (w/w) solution were injected. 

Focusing period was 7 min with an applied focus flow of 2 ml/min. The detector 

flow was set to 0.2 ml/min, while the cross flow was held constant at 0.11 

ml/min. The running buffer was composed of 0.5% SDS in water, and the pH 

was adjusted to 9.5. All samples were measured in triplicates. Particle 

diameters were calculated using the Astra software (version 5, Wyatt 

Technology). 
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3.9. Dynamic light scattering (DLS) 

DLS experiments were performed using a Zetasizer Nano ZS equipped with a 

633 nm He–Ne laser (Malvern, Herrenberg, Germany), which analyses the 

hydrodynamic radius of particles based on light intensity fluctuations of 

scattered laser light. One ml of polystyrene particle samples were measured in 

single use poly(methylmethacrylate) cuvettes (Brand, Wertheim, Germany) with 

a path length of 12.5 mm after an equilibration time of 120 s at 24 °C. Samples 

were analyzed in triplicates, each triplicate with 10 sub-runs. The average 

diameter and polydispersity were calculated by the Malvern Dispersion 

Technology software (version 4.20, Malvern, Herrenberg, Germany). 

 

3.10. Calculation of the polydispersity index (PDI) 

Except for DLS, the polydispersity index is calculated according to the following 

equation 

PDI = (∑i Mi
2Ni / ∑i MiNi) / (∑i MiNi / ∑i Ni) 

where Mi is a specific size fraction and Ni is the number of events in a specific 

size fraction. 

PDI for DLS measurements were reported by the software provided with the 

Zetasizer Nano ZS, which uses the following equation 

PDI = σ2/ZD
2 

where σ is the standard deviation of the hypothetical Gaussian distribution and 

ZD is the intensity weighted Z average mean diameter size. 

 

4. Results 

The film-stretching method was employed to produce ellipsoid particles, as this 

method is a powerful and simple technique to modify the shape of spherical 
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particles in the micro- and nanometer range. Additionally, it allows particle 

stretching in 1 or more dimensions simultaneously or in two subsequent steps, 

thereby making the production of a wide range of morphologies possible [7]. In 

this work, standard spherical polystyrene micro and nanoparticles were 

stretched twice (2×) or three times (3×) their original size, and then 

characterized using different particle characterization methods. 

Electron microscopy was used to prove the successful stretching of the 40 nm, 

2 μm and 10 μm particles, as can be seen in Figure II-1, where the stretched 

particles can easily be discerned from the non-stretched ones. Different 

elongations can also be measured using the microscope image analysis 

software, showing that indeed the 2× and 3× stretched particles have sizes 

quite close to the nominal values Table II-1. Additionally, stretching led to a 

decrease in the aspect ratio of the spherical particles from 1.0 to 0.18–0.31, 

depending on the stretching degree Table II-1. It was however possible to 

identify a small number of non-stretched particles (white arrows) in some 

batches of the produced non-spherical spheres, which raises the question about 

the degree of contamination of the produced non-spherical particles with 

spherical ones. Since electron microscopy requires demanding sample 

preparation and non-trivial image analysis, we set forward to test other 

analytical methods in order to evaluate their ability to deliver reliable quantitative 

information about the critical quality attributes (CQA) of the particles, namely 

size, morphology as well as the degree of contamination of the non-spherical 

particles. For this purpose, light obscuration, image-based particle analysis and 

flow cytometry were used for micron-sized particles, while DLS and AF4 were 

used for nanoparticles. 
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Figure II-1: SEM micrographs of differently sized and shaped polystyrene micro- 

and nanoparticles: (A) 10 μm spheres (1000× magnification), (B) 2× stretched, 

(C) 3× stretched particles, (D) 2 μm spheres (3000×), (E) 2× stretched, (F) 3× 

stretched, (G) 40 nm spheres (50,000×), (H) 40 nm 3× elongated (50,000×), 

and (I) 2 μm 3× stretched with spherical impurities. 
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Table II-1: Particle size and aspect ratio of spherical, 2X and 3X stretched 40 

nm, 2 µm and 10 µm particles as determined from electron micrographs. (n=20) 

 Spheres 2X stretched 3X stretched 
 Size Aspect 

ratio 
Size Aspect 

ratio 
Size Aspect 

ratio 
40 nm 40 nm ± 

1.8 
1 ± 0 ------------ ------------ 207 nm 

± 26 
0.24 ± 
0.02 

2 µm 2.2 µm  ± 
0 

1 ± 0 4.3 µm ± 
0.3 

0.32 ± 
0.02 

5.7 µm ± 
0.3 

0.19 ± 
0.03 

10 µm 10.1µm ± 
0.1 

1 ± 0 24.4 µm ± 
1.4 

0.20 ± 
0.02 

33.5 µm 
± 2.7 

0.26 ± 
0.03 

 

Prior to performing measurements on microparticles, the concentration of all 

samples was determined using the light obscuration-based SVSS-C PAMAS 

particle counter (LO), in order to perform all measurements at equal particle 

concentrations. Additionally, LO was used to determine particle size and particle 

size distribution. Results shown in Figure II-2 and Table II-2 demonstrate a 

slight increase in the mean particle diameter upon stretching, and a slight 

increase in the width of the size distribution. For instance, the PDI of 2 μm 

spheres increases from 1.04 to 1.093 for the 2× stretched and 1.085 for the 3× 

stretched particles. The PDI increases from 1.017 for the 10 μm spheres to 

1.042 for the 2× stretched and 1.056 for the 3× stretched particles. 

 

A 

 

B 
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Figure II-2: Measurement of particle size and size distribution of 2 μm and 

10 μm polystyrene microparticles using the SVSS-C PAMAS particle counter. 

(A-C) 2 μm: (A) spherical particles, (B) 2× stretched particles and (C) 3× 

stretched particles. (D-F) 10 μm: (D) spherical particles, (E) 2× stretched 

particles and (F) 3× stretched particles. 

Table II-2: Mean particle size and polydispersity index (PDI) of the SVSS-C 

PAMAS particle counter of different polystyrene particles (results represented 

as mean ± standard deviation). 

 Particle size (μm) PDI 
2 μm spheres 2.27 ± 0.00 1.042 
2× stretched 2.46 ± 0.01 1.093 
3× stretched 2.39 ± 0.01 1.085 
10 μm spheres 13.64 ± 0.03 1.017 
2× stretched 14.07 ± 0.04 1.042 
3× stretched 13.44 ± 0.01 1.056 
 

Two image analysis-based instruments were also used for the characterization 

of the microparticles; namely the Vi-Cell XR Coulter Counter (Beckman Coulter 

GmbH) and the micro-flow imaging system (Brightwell Inc.). Both measurement 

methods are based on imaging a number of particles as they flow through a 

capillary, and thus, can deliver information about the particles’ size and 

morphology. Images from Vi-Cell XR Coulter Counter show that changes in 

particle shape of the 10 μm particles can be identified (see images in Figure 

II-3). The Vi-Cell VR Coulter counter calculates particle size by counting the 

particle pixels and calculation of the theoretical diameter of a spherical particle. 
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This mean particle diameter as well as the polydispersity increase upon 

stretching as seen in  

 

A 

 

B 

 

C 

 
Figure II-3: Vi-cell Coulter counter images of (A) 10 μm spheres and its, (B) 2× 

stretched and (C) 3× stretched particles. 
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Figure II-4: Vi-Cell XR Coulter Counter measurement: mean diameter (left) and 

aspect ratio (right) of spheres (top), 2× stretched (middle) and 3× stretched 

(bottom) 10 μm polystyrene particles. Panels represent diameter of (A) 
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spherical, (B) 2× stretched, and (C) 3× stretched particles, as well as aspect 

ratio of (D) spherical, (E) 2× stretched and (F) 3× stretched particles 

Table II-3: Mean particle size and PDI as measured by the Vi-Cell XR Coulter 

Counter for the 10 μm spherical, 2× and 3× stretched polystyrene particles 

(results represented as mean ± standard deviation). 

 Particle size (μm) PDI 
10 μm spheres 10.72 ± 0.02 1.01 
2× stretched 16.64 ± 0.47 1.05 
3× stretched 18.80 ± 0.66 1.09 
 

Results of the MFI measurements are shown in Figure II-5, Figure II-6, Figure 

II-7 and Figure II-8 and Table II-4. In this case, the diameter is expressed as 

maximum Ferret diameters (the longest dimension of the particle independent 

of its angular rotation at the time the image was captured), which represents a 

better description for ellipsoid particles compared to the equivalent sphere 

diameter used for Vi-Cell XR Coulter Counter. Results of the 10 μm spherical, 

2× and 3× stretched particles show that indeed the particle Ferret diameter 

increases by stretching, while the aspect ratio decreases as seen in Figure II-5 

and Figure II-7 and Table II-4, with results comparable to those obtained by 

SEM imaging (see Table II-1). Additionally, we further tested the ability of MFI to 

distinguish 10:90 and 50:50 mixtures of spherical:stretched particles as seen in 

Figure II-8. Results show a bimodal distribution with medians of the 2 peaks 

coinciding with the individual populations. Moreover, the particle concentrations 

in the mixture are in agreement with the set concentrations (determined by LO 

before mixing), where the 10:90 mixture (spheres:stretched) was found to be 

14:86 by MFI, and the 50:50 mixture was 46:54. 
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Figure II-5: Micro flow images of (A) spheres, (B) 2× stretched particles, and (C) 

3× stretched particles. 

 

A 

 

C 

 
Figure II-6: (A) Grey scale, and (B) binary image of a 2 μm 3× stretched particle. 

 

A

 

B

 

C

 
D

 

E

 

F

 
Figure II-7: MFI measurements: The mean Ferret diameter and aspect ratio of 

spheres, 2× stretched and 3× stretched 10 μm polystyrene particles. Spherical 

particles have an aspect ratio of 1 elongated particles of <1. (a–c) Ferret 

diameter: (a) spherical particles, (b) 2× stretched particles and (c) 3× stretched. 
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(d–f) aspect ratio: (d) spherical particles, (e) 2× stretched particles and (f) 3× 

stretched particles. 
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Figure II-8: MFI measurements: Mean ferret diameter and aspect ratio of 

mixtures of 10 μm polystyrene spheres and 3× stretched particles. (a and b) 

Ferret diameter: (a) 10% spheres/90% 3× stretched particles, (b) 50% 

spheres/50% 3× stretched. (c and d) aspect ratio: (c) 10% spheres/90% 3× 

stretched particles, (d) 50% spheres/50% 3× stretched. 

Table II-4: Mean Ferret diameter and PDI as determined by MFI measurements 

for the 10 μm spherical, 2× and 3× stretched polystyrene particles (results 

represented as mean ± standard deviation). 

 Ferret diameter (μm) PDI 
10 μm spheres 9.88 ± 0.08 1.01 
2× stretched 18.69 ± 0.32 1.04 
3× stretched 23.59 ± 0.83 1.05 
 



 

 45 

It is worth noting that both instruments did not deliver meaningful results for the 

stretched 2 μm particles. This is because these methods can provide reliable 

image analysis in the range of 1–50 μm for spherical particles [23], but lack 

resolution to describe particle geometry in the lower μm range (see Figure II-6). 

Additionally flow cytometery was used to analyze spherical and stretched 

microparticles, because its ability to analyze 0.5–20 μm particles had been 

reported previously [25]. However, the instrument's ability to 

distinguish/recognize particle shape has never been reported before. Our 

results show that the flow cytometer has an even superior ability to differentiate 

between spherical and non-spherical particles compared to the image-based 

analyzers. Results from Figure II-9 show that spherical 2 μm particles are 

expressed as a reproducible discrete population on dot plots, with relatively low 

forward and side scattering. Meanwhile, the analysis of the stretched particles 

show a significant increase in side and especially forward scatter, allowing 

precise identification of the particles, so that very small populations of impurities 

(non-stretched spherical particles among stretched ones) can be detected and 

quantified. Thereby the method can be used to describe the quality of stretched 

particles comprehensively. In the highest quality produced batches, less than 

1% of non-stretched spherical contaminants were observed. Very similar results 

were obtained for the 10 μm spherical and stretched particles (data not shown). 
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Figure II-9: Flow cytometry measuremnts: Density dot plots and histograms of 

2 μm spherical and stretched polystyrene particles. (A-C) Density plots: (A) 

2 μm spherical particles, (B) 2 μm 2× stretched particles, (C) 2 μm 3× stretched 

particles. (D-F) Histograms: (D) 2 μm spherical particles, (E) 2 μm 2× stretched 

particles and (F) 2 μm 3× stretched particles (G-I) overlays of histograms: (G) 

2 μm spherical particles, (H) 2 μm 2× stretched particles and (I) 2 μm 3× 

stretched particles. 

In order to validate the method, different mixtures of known concentrations of 

spherical and stretched particles were measured using flow cytometry. As 

described earlier, concentrations of spheres and stretched particles were 

determined using a LO particle counter, and the mixtures were adjusted to 

contain 50 or 10% of the spherical particles. As seen in Figure II-10, it is 

possible to detect small populations of differently shaped particles in mixtures of 
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spheres and stretched particles, and the measured proportions coincide with 

the expected ratios measured with light obscuration. 
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Figure II-10: Density dot plots and histograms of mixtures of spherical and 3× 

stretched particles. (A and B) density dot plots: (A) 2 μm 50% spherical/50% 3× 

stretched, (B) 2 μm 10% spherical/90% 3× stretched. (C and D) Histograms: (G) 

2 μm 50% spherical/50% 3× stretched, (H) 2 μm 10% spherical/90% 3× 
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stretched. (E and F) overlays of histograms: (E) 2 μm 50% spherical/50% 3× 

stretched, (F) 2 μm 10% spherical and 90% 3× stretched. 

 

For the evaluation of nanoparticles, the AF4 instrument coupled to multi-angle 

light scattering (MALS) and quasi-elastic light scattering (QELS) was employed, 

where the AF4 is used to separate particles, while QELS measures their 

hydrodynamic radius, and MALS measures their radius of gyration (geometric 

radius). The chromatograms show clear differences between the 40 nm 

spherical and 3× stretched particles, where the chromatograms of the stretched 

particles show a relatively broad peak with extensive tailing, contrary to the 

symmetric peak of the spherical ones. By examining the measured radii of the 

main peaks, the hydrodynamic radius increases slightly after particle stretching, 

while the radius of gyration increases dramatically as seen in Figure II-11. The 

changes in the hydrodynamic radius observed by the AF4 measurements were 

confirmed with the Malvern Zetasizer (Table II-5), where the spherical particles 

showed a 19.8 nm radius, while the stretched particles show an apparent radius 

of 136.2 nm, quite close to the QELS results seen in Figure II-11b. Results of 

the quotient of the geometric radius to the hydrodynamic radius also show clear 

differences between the different particles [26], as it is equal to 0.96 in case of 

the spherical particles and 1.89 for the 3× stretched ones. 

 

A

 

B

 



 

 49 

Figure II-11: Chromatograms of 40 nm spheres and 3× stretched polystyrene 

particles including (A) geometric radius and (B) hydrodynamic radius. Arrows 

show the difference in radius of spheres (grey) and 3× stretched (black) 

particles: (A) geometric radius, (B) hydrodynamic radius. 

Table II-5: Hydrodynamic radius and PDI of 40 nm spheres and 3× stretched 

polystyrene particles as determined by DLS (results represented as 

mean ± standard deviation). 

 Hydrodynamic radius 
(nm) PDI 

40 nm spheres 19.8 ± 0.04 0.1 ± 0.00 
40 nm 3× stretched 136.2 ± 8.12 0.42 ± 0.19 
 

5. Discussion 

Non-spherical particles are developing into an interesting research field, 

showing important effects for particle shape on the interaction of micro- and 

nanoparticles with biological systems [17]. Among the different methods for 

non-spherical particle production, the film stretching method is a simple and 

powerful method for producing particles with different shapes [17]. Indeed, 

using this method allowed the production of rod-like micro- and nanoparticles 

with different aspect ratios, as shown by electron microscopy Figure II-1. In 

some electron micrographs, the presence of a few spherical contaminants in the 

stretched particles was observed (Figure II-1). To evaluate the CQA of non-

spherical particles, namely size, shape and degree of contamination with 

spherical ones, and simultaneously circumvent the laborious and expensive 

SEM sample preparation and the non-trivial image analysis [21], we tested 

different particle characterization methods for their ability to deliver quantitative 

information about the CQA using routine quality control methods. For micron-

sized particles, light obscuration (PAMAS), image-based particle analysis (Vi-

Cell XR Coulter Counter and MFI) as well as flow cytometry were used to 

investigate the particle size and shape of those particles. 
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The PAMAS particle counter is a very fast and easy-to-handle instrument to 

count particles in the micrometre range, and it can precisely determine particle 

concentrations of spherical and stretched particles. Accordingly, it was used 

prior to all experiments to adjust particle concentrations. The value of the LO 

method as a particle counter could be confirmed by delivering the same particle 

concentrations and respective ratios in the flow cytometer and MFI experiments. 

However, light obscuration did not provide reliable information about particle 

size or shape for the non-spherical particles. This is due to its measurement 

principle, which relates the intensity of the blocked light to particle size, and 

accordingly cannot actually determine particle geometry. On average, the 

stretched particles deliver about the same light obscuration areas when moving 

through the detector in a statistically distributed orientation. 

Two image analysis instruments were used for particle characterization in this 

study, namely Vi-Cell XR Coulter Counter and MFI. The former analyses 30–

150 particles/run, while the MFI can measure and analyze 150–5000 

particles/run, which leads to a dramatic enhancement of statistical analysis and 

reduction of scatter (compare Figure II-4 for Vi-Cell XR Coulter Counter vs. 

Figure II-6 for MFI). Our results show that for particles ≥10 μm, the particle size 

and geometry of the particles can be reliable analyzed using MFI, and to a 

lesser extent with the Vi-Cell XR Coulter. In the range of 2 μm, spherical 

particles can be analyzed in size by both instruments, but the resolution is not 

high enough to detect the geometry of a stretched particle. It is worth noting that 

the determined Ferret diameters in MFI are smaller than the dimensions 

determined by SEM. This is because elongated particles flowing in a tube show 

a distribution of orientations with respect to the flow direction depending on 

particle size, aspect ratio, flow rate and dimensions of the capillary [27, 28]. This 

leads to an averaged Ferret dimension lower than the actual value. 

Flow cytometry was also used in this study to examine particles with different 

shapes. Previous reports describe the use of flow cytometry for particle 

examination, such as the investigation of protein aggregates [29] as well as 

silicon oil contamination of protein formulations [30]. To the best of our 
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knowledge, this is the first report on using the flow cytometer to differentiate 

between spherical and non-spherical micro and nanoparticles. The flow 

cytometer is a single particle measurement method, which can analyze large 

samples of 0.5–100 μm in very short time frames (up to 5000 particles/s) [25]. 

By examining flow cytometry dot plots for forward and side scatter, spherical 

particles are found as small homogenous populations with relatively low scatter. 

This homogeneity is probably due to the isotropicity of the spherical particles, 

leading to a nearly identical scattering pattern for all the particles. In contrast, 

the non-spherical particles are anisotropic, leading to different scattering pattern 

for each particle depending on the orientation of the particle with respect to the 

incident light beam. Accordingly, non-spherical particles appear as a “cloud” 

rather than a homogeneous “spot” on the dot plot, with a shift towards higher 

forward and side scatter (see Figure II-9 and Figure II-10). These results 

allowed the differentiation between the two particle populations, as well as the 

determination of the two populations in preformed mixtures, and the levels of 

spherical contaminants (Figure II-10). 

In the nanometer range, we used the asymmetrical flow field flow fraction (AF4) 

coupled to QELS and MALS to analyze spherical and non-spherical particles, 

where the geometric radius was analyzed using MALS, while the hydrodynamic 

radius was investigated by online QELS measurements. Gajdos and Brenner 

[26] carried out a theoretical analysis for field-flow-fractionation (FFF) of non-

spherical particles proving that the method can separate particles based on 

geometry, however, the experimental proof is rare particularly in the nanometer 

range. Chromatograms of 40 nm spherical and 3× stretched particles show 

differences in elution times as well as in the measured radii. One can use the 

shape factor (the quotient of the geometric radius to the hydrodynamic radius) 

to estimate particle shape, where it is equal to 0.778 in the case of hard 

spheres, 0.977 for soft spheres, and ∼2 for rod like structures [31]. Our 

spherical particles have a shape factor of 0.96, nearly identical to the reported 

values of similar sized spherical nanoparticles, while a value of 1.8 confirms the 

rod-like morphology of the 3× stretched particles. The AF4 method is, however, 
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limited by the resolution of the used QELS detector, which can only measure in 

the range from 3 to 200 nm depending on the detector flow rate. 

Comparing the methods for the quantitative characterization of non-spherical 

microparticles, each method has its strengths and weaknesses. For instance, 

electron microscopy provides excellent images for the determination of particle 

size and shape over a wide range of sizes in the micro- and nanometer scale, 

but requires expensive instrumentation, demanding sample preparation and 

non-trivial image analysis. LO is a very good method for determining particle 

concentration, but is not able to accurately determine particle size or shape of 

elongated particles. The Vi-Cell XR Coulter Counter identified changes in 

particle shape and morphology, but could not provide reliable results because of 

the low number of the measured particles. MFI provides excellent results for 

particles ≥10 μm, but not for the 2 μm particles. Flow cytometry is a powerful 

tool in differentiating between spherical and non-spherical particles and 

determining minor amounts of spherical contaminants in non-spherical particles 

for both 2 and 10 μm spheres, but it cannot determine particle size. AF4 is the 

only method in the nanometer range to directly analyze particle shape, with the 

help of the shape factor, but requires demanding method development. 

 

6. Conclusion 

In conclusion, the current study shows the utility of MFI, FACS as additional 

methods for determining the CQA of non-spherical microparticles, and can be 

used for routine measurements for industrial scale quality control. In contrast to 

SEM imaging, they can rapidly analyze not only small fractions, but also larger 

samples and obtain quantitative statistically valuable information. On the other 

hand, AF4 allows the evaluation of size and morphology of non-spherical 

nanoparticles, proving the high flexibility of this technique. Finally, the use of 

orthogonal methods can guarantee an optimal characterization of non-spherical 

particles 
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III. Chapter 3 

Lesson learned: Shape characterization of differently 
shaped nanoparticles by asymmetric flow field flow 
fractionation 

 
In a first step the robust film-stretching method was established to produce non-

spherical micro- and nanoparticles (Chapter 2). Several methods were applied 

to characterize non-spherical micro-and nanoparticles (Chapter 2). Following 

the AF4 method was utilized to separate spherical and non-spherical 

nanoparticles. The aim was to use the AF4 method to obtain a pure sample of 

non-spherical nanoparticles. During the method development we realized that 

our non-spherical particles are susceptible for aggregation (properly during the 

focus step). Therefore, the AF4 method was an inadequate method to achieve 

this goal and this chapter was finally not published. Particle aggregation during 

the focus step is a typical AF4 problem.  
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1. Introduction 

Despite promising approaches to fabricate and apply non-spherical 

nanoparticles, electron microscopy is usually the only analytical method used at 

the moment to characterize non-spherical particles [1]. Electron microscopy has 

several drawbacks, namely high costs, time consuming sample preparation and 

non-trivial image analysis [2]. 

In this study, non-spherical particles were fabricated using the film stretching 

method [3]. AF4 coupled with multi-angle-laser-light-scattering (MALLS) and 

quasi-elastic-light-scattering (QELS) detection was utilized to characterize 20 

nm polystyrene spherical and non-spherical nanoparticles. The AF4 system was 

used to separate populations of different particle geometries, which were 

analyzed using the two detectors to characterize the particle shape factor. The 

analysis of the particle size revealed particle aggregation of the non-spherical 

particles (most likely during the focus step). Particle up-concentration and 

aggregation during the AF4 focus step is a common problem [4]. Surprisingly, 

only the non-spherical particles showed aggregation. Therefore, the used AF4 

method was not capable to analyze the shape of our non-spherical 

nanoparticles. 

 

2. Materials and Methods 

2.1. Materials 

Poly (vinyl alcohol) (PVA) 40-88 was purchased from Sigma Aldrich (Steinheim, 

Germany). 20 nm non-cross-linked and 500 nm cross-linked polystyrene (PS) 

particles were purchased from Polyscience (Eppenheim, Germany). All other 

materials were of analytical grade. 
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2.2. Non-spherical particle preparation 

The film stretching method established by Champion et al. [3] was used to 

prepare ellipsoid particles from 20 nm polystyrene spheres. Briefly, PVA (10% 

w/w) and glycerol (2% w/w) were dissolved in water at 85°C, then polystyrene 

spheres concentrated at 0.1% (w/w) were added. The dispersion was filled into 

polymethylmethacrylat molds and dried at room temperature for 48 h. PVA / PS 

particle film sections of 3 x 2 cm were stretched in a manual tool built in-house, 

consisting of a screw which separates two clamps during stretching at a 

constant speed of 0.5 mm/s. During stretching, the film was immersed in an oil 

bath at 110°C. After stretching, the oil bath was first cooled down to 60°C; then 

films were recovered and washed with 100% isopropanol by three centrifugation 

steps at 40000 rpm. 

 

2.3. Transmission electron microscopy (TEM) 

Samples were prepared using the following protocol: 2% of an aqueous solution 

of phosphotungstic acid (PTA), pH 7.4, was mixed in equal quantities with the 

nanoparticle dispersion. Of this mixture, 2 µl were placed on a carbon-coated 

copper grid (Plano, Wetzlar, Germany). Grids were dried for 20 s [5] at room 

temperature. Transmission electron micrographs were acquired using a FEI 

Titan electron microscope (Hillsboro, Oregon) at an acceleration voltage of 80 

kV.  

 

2.4. Asymmetrical flow field flow fraction (AF4) 

A Wyatt Eclipse 2 AF4 system (Wyatt Technology, Dernbach Germany) with an 

Agilent 1100 HPLC system (Agilent Technologies, Palo Alto, USA) equipped 

with a Wyatt Dawn Eos multi-angle laser light scattering (MALLS) detector and 

the Wyatt Quasi-Elastic-Light-Scattering (QELS) was used to analyze the radius 

of spheres and elongated particles. Detector voltage was manually reduced by 
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the factor 100 by jumpers to increase particle concentration for light scattering 

analysis. The large separation channel was equipped with a wide 350 µm 

spacer and a 10 kDa cut-off regenerated cellulose membrane (Wyatt 

Technology, Dernbach Germany). Following, 5 µl of 20 nm polystyrene particle 

dispersion (concentration 0.027% w/w) were injected. The detector flow was set 

to 0.1 ml/min and cross flow to 0.2 ml/min. The running buffer consisted of 0.5% 

sodium dodecyl sulfate (SDS) in highly purified water and the pH was adjusted 

with NaOH to 9.5. All particle size calculations were performed using the Astra 

software (version 5 Wyatt Technology, Dernbach Germany). Particle samples 

were analyzed using the following settings: 5 detectors: 3, 13 and 16-18 of the 

total 18 detectors were excluded analyzing geometric radius with the Wyatt 

Dawn Eos MALLS. Reliable particle radius-analysis was achieved investigating 

a broad area in the peak middle with high particle concentrations. Radius 

measurements were not manipulated by curve fitting.  

 

2.5. Dynamic Light Scattering (DLS) 

The Zetasizer Nano ZS equipped with a 633 nm He-Ne laser (Malvern, 

Herrenberg, Germany) was utilized to perform DLS measurements. After an 

equilibration step of 120 sec at 24°C, one ml sample was measured in water in 

triplicates in a poly(methylmethacrylate) cuvette (Brand, Wertheim, Germany). 

The Malvern Dispersion Technology software (version 4.20, Malvern, 

Herrenberg, Germany) was used to calculate average diameter and 

polydispersity.  

 

3. Results 

The powerful and simple film-stretching method was utilized to fabricate 

ellipsoid particles. It has the capacity to produce particles in a wide variety of 

shapes in the micro- and nanometer range [1, 3]. In this work we stretched the 
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20 nm polystyrene particles three fold to create ellipsoid rod-like particles and 

then characterized them with TEM and the AF4 system. 

It was possible to find several ellipsoid 20 nm particles with TAM (Figure III-1), 

where stretched particles can clearly be discriminated from spheres.  

A

 

B

 
 

Figure III-1: TAM micrographs of 20 nm spherical polystyrene particles (bar 

represents 50 nm): (A) spheres, (B) stretched rod-like particles. 

 

TEM requires tedious sample preparation, especially for organic particles, has 

non trivial image analysis and only analyzes small populations of the entire 

sample. Accordingly, we applied AF4 to obtain information about the size, 

morphology of spherical and stretched particles. Using the light scattering 

detector, one observes that spherical particles elute as a relatively narrow and 

symmetrical peak at 15 min (Figure III-2), while stretched particles elute as a 

rather broad peak between 15-40 min, with a small shoulder at 15 min, probably 

due to traces of non-stretched spherical particles (Figure III-2B). The measured 

radii of the main peaks show that spheres do not display any difference 

between hydrodynamic radius (11.4 nm, as determined by QELS) and radius of 
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gyration (11.8 nm, as determined by MALLS). In contrast, the stretched 

particles show a significant increase in the observed hydrodynamic radius 

(226.2 nm, QELS) as well as an even stronger increase in the radius of gyration 

(339.9 nm, MALLS). The QELS hydrodynamic radii measurements were 

confirmed using DLS bulk measurments. (Table III-1I).  

Table III-1: Hydrodynamic radius (rh) measurements of 20 nm polystyrene 

spherical and 3x stretched nanoparticles using DLS bulk measurements.  

 Mean size (nm) PDI 
spheres 11.4 1.01 
3X stretched 210 1.35 
 

A

 

B

 
Figure III-2: (A) AF4 fractogram of 20 nm spherical polystyrene particles and (B) 

AF4 fractogram of 20 nm polystyrene stretched rod-like particles 

Non-spherical MALLS and QUELS radii measurements do not correlate with the 

feret diameter. Therefore a “shape factor” was developed by Gajdos et al. to 

provide qualitative information about particle’s geometry: The quotient of the 

geometric radius (rg) to the hydrodynamic radius (rh), describes the shape of a 

particle. Hard spheres have a shape factor around 0.778, soft spheres 0.977 

while rod like particles display ~ 2 [6]. Our polystyrene spherical particles have 

a shape factor of 0.910, the stretched aggregated population displayed a shape 

factor of 1.792 (Figure III-3). 
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Figure III-3: AF4 fractogram: Burchard-Stockmayer factor of spherical (grey) 

and 3x stretched (black) aggregated particles.  

The very large increase of the non-spherical nanoparticle diameter cannot be 

accounted exclusively to the stretching process. The washing steps at 40000 

rpm might foster non-spherical nanoparticle aggregation. The high 

centrifugation speed (40000 rpm) was required to spin down the 20 nm 

nanoparticles. The long axis of the non-spherical nanoparticles made them 

susceptible for aggregation compared to their spherical counterparts. In addition 

to the harmful washing steps the long axis of the non-spherical nanoparticles 

could make them susceptible for membrane adsorption and further aggregation 

during the focus sequence of the AF4 method.  

The existence of large aggregates in the non-spherical sample was confirmed 

by the injection of 500 nm spherical particles. The 500 nm particles eluted 

between 23 and 33 min Figure III-4 , which is in the time frame of the non-

spherical sample in Figure III-2B. 
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Figure III-4: AF4 fractogram of 500 nm spherical polystyrene particles.  

In conclusion, the non-spherical nanoparticles aggregated and displayed an 

increased particle diameter in bulk DLS and AF4 measurements. The used AF4 

method was not suitable to analyze or separate the differently shaped 

nanoparticle populations.  

 

4. Discussion 

Electron microscopy is an essential method to confirm the size and morphology 

of non-spherical particles and delivers useful qualitative information but it has 

several drawbacks, namely expensive and time consuming sample preparation 

and image analysis. The AF4 method coupled to MALLS and QELS has proven 

its versatility in the past to deliver qualitative and quantitative information about 

the size and morphology of the particles and thus offers the opportunity to 

become a routine quality control method for non-spherical particle drug delivery 

systems. However, this study reassures that a careful AF4 method development 

is required. During the focus sequence an up-concentration promotes the self-

association of the sample [7].  

QELS and bulk DLS measurements showed that the stretched particles display 

a much higher hydrodynamic radius compared to spherical ones and thus are 

aggregated.  
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As an outlook a new Frit-Inlet channel prototype (Wyatt Technology, Dernbach 

Germany) was developed, which mechanically routs the sample to the channel 

membrane. No focus sequence is needed with a Frit-Inlet channel. Accordingly, 

no up-concentration of the sample occurs, which is beneficial for self-

association prone samples [8].  

 

5. Conclusion 

In conclusion, the use of AF4 as an orthogonal characterization method has 

proven potential in the past to provide information about particle size and 

shape.  However, the AF4 shows several drawbacks as well and requires 

careful method development. 
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IV. Chapter 4 
 

Influence of particle geometry and PEGylation on 
phagocytosis of particulate carriers 
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The major aim of the first part of this thesis was to produce and characterize 

non-spherical micro- and nanoparticles. The aim of the second part was to 

investigate the non-spherical particles in-vitro. In the following chapter non-

spherical particles were used in a macrophages cell line to investigate a 

possible impact of particle shape on phagocytosis.  
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1. Abstract 

Particle geometry of micro- and nanoparticles has been identified as an 

important design parameter to influence the interaction with cells such as 

macrophages. A head to head comparison of elongated, non-spherical and 

spherical micro- and nanoparticles with and without PEGylation was carried out 

to benchmark two phagocytosis inhibiting techniques. J774.A1 macrophages 

were incubated with fluorescently labeled PLGA micro- and nanoparticles and 

analyzed by confocal laser scanning microscope (CLSM) and flow cytometry 

(FACS). Particle uptake into macrophages was significantly reduced upon 

PEGylation or elongated particle geometry. A combination of both, an elongated 

shape and PEGylation, had the strongest phagocytosis inhibiting effect for 

nanoparticles. 

 

2. Graphical abstract 
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3. Introduction 

Biodegradable micro- and nanoparticle drug carrier systems have been 

explored for numerous applications [1-3], as particulate carrier systems have 

advantages when it comes to half-life extension [4, 5], protection of the drug 

from degradation, and enhancement of uptake into antigen-presenting [6] or 

other target cells [7, 8]. The physical and biochemical properties of particulate 

drug carrier systems (PDCS), such as size, composition of the polymer, charge 

and surface properties are usually considered as being the main factors 

influencing their bio-distribution. To overcome the drawback of rapid clearance 

by the mononuclear phagocyte system (MPS) in the spleen and liver [9], particle 

surfaces can be modified, e.g. using hydrophilic polymers such as poly(ethylene 

glycol) (PEG), thereby increasing circulation times [10]. Surprisingly, particle 

geometry has been traditionally neglected as an attribute that may alter the bio-

distribution and circulation half-time. New fabrication methods like micro-fluids, 

non-wetting molds and mechanical stretching [11-15] allow the preparation of 

non-spherical particles and hence the investigation of particle shape’s influence 

on circulation half-time and particle fate. For example, it has been reported in 

literature that ellipsoid particles display a lower internalization by macrophages 

[11, 16, 17]. Other shapes like discs trigger an increase in phagocytosis [18]. 

These observations show that particle shape can be an important parameter 

influencing the fate of particulate drug delivery systems. Although non-spherical 

gold particles or PEGylated nanorods have been investigated previously by 

Arnida et al. [19], a comparative study of PEGylated and non-PEGylated non-

spherical biodegradable particles in the micro- and nanometer range has not 

been reported. 
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The aim of our study was to prepare elongated nano- and microparticles using 

the established film-stretching technique [20], and to further modify the particles 

by PEGylation. The internalization of 150 nm and 2 μm spherical and elongated 

PLGA particles, which were either PEGylated or non-PEGylated, by 

macrophages was investigated using confocal microscopy and flow cytometry. 

 

4. Materials and Methods 

4.1. Particles 

150 nm and 2 µm fluorescently labeled (extinction 460/ emission 500) and non-

labeled poly(lactic-co-glycolic acid) (PLGA) particles with a lactic/glycolic ratio 

15/85 and chitosan coating were purchased from Phosphorex (Hopkinton,MA, 

USA). Polyvinylalcohol 40-88 (PVA) was purchased from Sigma-Aldrich 

(Steinheim, Germany). All the other materials were of analytical grade. 

 

4.2. Preparation of non-spherical particles 

Elongated particles were fabricated from spherical 150 nm and 2 µm PLGA 

particles using the film stretching method established by [11]. Briefly, PVA 40-

88 and 2% glycerol was dissolved in highly purified water at 90°C (10% w/v). 

Spherical PLGA particles were added to this solution at a concentration of 0.2% 

w/v. The dispersion was poured into 4 x 6 cm molds and dried for 72 h at 20°C. 

The dried PVA/PLGA-particle film was cut into 3 x 1 cm sections and stretched 

using an in-house built manual device, consisting of two metal clamps and a 

screw separating the two clamps during the stretching process. The PLGA-PVA 

films were stretched in a silicone oil bath at 50°C at a stretching speed of 1 

mm/s. After the stretching process, the film was cooled down to 30°C, washed 

with 100% isopropanol and dissolved in water to collect the particles. The 

spherical particles investigated in this study were treated the same way, but 
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without the stretching process. This ensured equal treatment of spheres and 

elongated particles.  

 

4.3. Scanning electron microscopy 

A Joel JSM 6500F scanning electron microscope (Joel Ltd, Tokyo, Japan) with 

Inca Software (Oxford instruments, Oxfordshire, UK) was utilized to confirm 

particle morphology. The different particle samples were fixed on aluminum 

stubs with self-adhesive tape and were sputtered with carbon. Collection of 

SEM micrographs was performed at a magnification of 2000 x for the 2 µm 

particles and 40000 x for the 150 nm particles. 

4.4. Light obscuration  

The 2 µm PLGA particles were analyzed by light obscuration using a SVSS-C 

particle counter equipped with a HCB-LD- 25/25 sensor (PAMAS, Partikelmess- 

und Analysesysteme GmbH, Rutesheim, Germany). The pre-run volume was 

set to 0.5 ml and the fill, rinse and emptying rate to 10 ml/min. Samples were 

analyzed in triplicates of 0.3 ml. High purified water was used to rinse the 

system prior to each run until the particle count of less than 25 particles / ml 

were reached.  

 

4.5. Dynamic Light Scattering (DLS) 

The 150 nm PLGA nanoparticles were analyzed in triplicates, each sample with 

10 sub-runs using a Malvern Zetasizer Nano ZS with a 633 nm He-Ne laser 

(Malvern, Herrenberg, Germany). 700 µl of PLGA particles were measured in 

single use poly(methylmethacrylate) cuvettes (Brand, Wertheim, Germany) The 

path length of the cuvettes was 12.5 mm. The equilibration time was set to 

120 s at 24°C. The Malvern Dispersion Technology software (version 4.20, 

Malvern, Herrenberg, Germany) was utilized to calculate the average diameter 

and polydispersity. 
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4.6. Differential Scanning Calorimetry (DSC) 

150 nm PLGA particles were dispersed in high purified water at a concentration 

of 2 mg/ml and incubated overnight. The sample and reference cell of the VP-

DSC MicroCalorimeter (MicroCal, Northamton, Massachusetts) were filled with 

the particle suspension and a corresponding water blank sample. The pre-scan 

temperature equilibration time was set to 15 min, the DSC scan rate was set to 

1.5°C/min. Thermograms were recorded from 28°C to 48°C. The water blank 

was subtracted using Origin with MicroCal VPViewer2000 version 1.4.10 

(Northampton, Massachusetts). Peak maximum represents the glass transition 

temperature (Tg) of the PLGA particles.  

 

4.7. Surface modification of particles by PEGylation 

Fluorescence label free PLGA particles with amine functionalized surface at a 

concentration of 1 mg/ml were incubated with 2 mg aldehyde PEG 20 kDa 

(Jenkem Technology, TX, USA) and 5 mM sodium cyanoborhydride (Sigma 

Aldrich, Steinheim, Germany) overnight. Particles were washed three times with 

water and dissolved in acetone. The successful PEGylation reaction was 

confirmed and quantified by the amine reactive fluorescence dye, fluorescamine 

(Sigma Aldrich, Steinheim, Germany), using a Cary Eclipse fluorescence 

spectrophotometer (Agilent, Boeblingen, Germany). The extinction wavelength 

was set to 390 nm, emission was observed at 475 nm. The fluorescamine 

intensity of PEGylated and non-PEGylated particles were compared to calculate 

the degree of PEGylation. 

 

4.8. Determination of fluorescence stability incorporated into micro- 
and nanoparticles 

1 mg/ml of the fluorescently labeled PLGA particles batches were incubated for 

1 hour at 37°C. Particles were centrifuged and the supernatant was analyzed by 

a Cary Eclipse fluorescence spectrophotometer (Agilent, Boeblingen, Germany) 
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for free fluorescence dye. Values obtained for the supernatants were on a low 

baseline level. 

 

4.9. Macrophage cell line 

The murine macrophages cell line J-774A.1 was obtained from the German 

collection of Microorganisms and Cell Cultures, Heidelberg. Cells were seeded 

out at 1.5*106 cells / 75 cm² cell culture flasks (Becton-Dickinson, Heidelberg, 

Germany) and cultured at 37°C for 3 days in an atmosphere containing 5% Co2 

in 90% Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, 

Steinheim, Germany)  and 10% FBS (Biochrom, Berlin, Germany). Cells were 

harvested at 4.5*107 cells / 75 cm² by incubating with 3 ml Tris buffer and gently 

tappingthe culture flask against a table to detach cells.  

 

4.10. Uptake of PLGA particles into macrophages 

250 µl of a J774.A1 macrophages cell suspension at a concentration of 6*10^5 

cells/ml in Dulbecco’s modified eagle’s serum with 10% FBS were incubated for 

4 h in 8-well IBIDI µ-slides (IBIDI, Martinsried, Germany). 10 µl of a 2 mg/ml 

PLGA particle suspension was added in triplicates to the cells, homogenized by 

pipetting up and down and incubated for 45 min at 37° and on ice. The 

particle/cell suspension was washed and fixed with 4% paraformaldehyde 

(Sigma-Aldrich, Steinheim, Germany) and a cell core staining was applied using 

bisBenzimide H 33342 trihydrochloride (Sigma-Aldrich, Steinheim, Germany) for 

10 min. 

4.11. Endotoxin determination 

PLGA particles were tested for endotoxin contamination in a Limulus 

amoebocyte lysate (LAL) assay (Charles River, Wilmington, USA).The 

endotoxin level measured for the 2 µm particles was between 0.3-0.4 U/mg and 

3-4 U/mg for the 150 nm particles, respectively. 
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4.12. Flow cytometry 

Flow cytometry measurements were carried out using a Bioscience FACS 

Canto II (Bioscience, Franklin Lakes NJ, USA) equipped with forward-, side 

scatter and fluorescence detector. Fluorescence PLGA particle uptake into J744 

macrophages was quantified with forward scatter (FSC) sensitivity of 174 volts 

and green fluorescence detector sensitivity of 385 volts. A triplicate of 10000 

events each was collected per group twice. FACS data was analyzed using the 

Diva (BD Biosciences) and FlowJo (Tree Star) software using the mean 

fluorescence tool.  

 

4.13. Confocal Microscopy  

The macrophages were examined utilizing a Zeiss 510 LSMNLO confocal 

microscope (Carl Zeiss Microscope systems, Jena, Germany) with identical 

setting for all groups. A Carl- Zeiss 63x oil immersion objective was used for 

acquisition. Images were averaged 4 times and scan speed was set to 6. 18 

images were acquired per sample. Experiments were performed in triplicates 

twice. Internalized particles per cell were counted in case of the micrometer 

particles.  

 

4.14. Statistical significance  

The statistical significance between the groups was investigated by a variance 

f-test followed by a t-test. A p value < 0.05 indicated statistical significant 

differences. 

 

5. Results 

Particle size and a successful stretching process were determined using 

electron microscopy as shown in Figure IV-1. Stretching the 2 μm PLGA 
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particles lead to a decrease in aspect ratio from 1 in case of the spheres to 

0.204 ± 0.04. The aspect ratio of the 150 nm PLGA particles decreased from 1 

for the spheres to 0.233 ± 0.06. 

 

A

 

B

 
C

 

D

 
Figure IV-1: PLGA electron micrographs of PLGA particles (A) 2 μm spheres, 

(B) 2 μm 3× stretched particles, (C) 150 nm spheres and (D) 150 nm stretched. 

DSC thermogram displayed a glass transition temperature (Tg) for the PLGA 

particles of 40–41 °C. Therefore, Tg is sufficiently high to maintain particle 

shape even upon incubation at 37 °C. Nanoparticles were additionally analyzed 

by SEM to determine particle shape after an incubation step for 30 min at 37 °C. 

All particle batches were investigated regarding their physico-chemical 
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properties (Table IV-1), as particulate drug carrier systems can be destabilized 

when facing serum buffer salts [21], which leads to particle aggregation. In 

addition, the PEGylation degree and zeta potential may influence phagocytosis. 

For the microparticles, no aggregation was observed after a 15 min incubation 

step in culture media as determined by light obscuration. All groups had 

comparable properties regarding zeta potential (between +9.7 ± 1.3 mV and 

15.4 ± 6.2 mV) and PEGylation efficiency (22.94 ± 13.74% for spheres and 

30.04 ± 11.88 % for stretched particles). The nanoparticles displayed a small 

increase in size after 15 min incubation in culture media Table IV-1, however, 

comparable zeta potential (+27.4 ± 6.3 mV up to +34.1 ± 5.9 mV) and 

PEGylation degrees (32.33 ± 7.31% for spheres and 27.64 ± 11.87% for the 

stretched) were observed for all particles. 
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Table IV-1: The mean size and PDI, the mean size and PDI after incubation for 

30 min in DMEM culture media, zeta potential and the degree of PEGylation of 

the different particle samples. 

 Mean size 
(μm) PDI 

Mean size 
(μm) after 
incubation 

PDI 
Zeta 
potential 
(mV) 

PEGylatio
n degree 

2 μm 
sphere
s 

1.73 ± 0.01 1.29 ±  
0.00 1.72 ± 0.02 1.31 ± 0.

01 
+12.5 ± 2
.6 – 

2 μm 
sphere
s PEG 

1.74 ± 0.02 1.29 ± 0.
03 1.83 ± 0.05 1.42 ± 0.

06 
+9.7 ± 1.
3 

30.04 ± 11.
88 

2 μm 
stretch
ed 

1.62 ± 0.11 1.33 ± 0.
01 1.65 ± 0.02 1.47 ± 0.

03 
+15.4 ± 6
.2 – 

2 μm 
stretch
ed 
PEG 

1.68 ± 0.17 1.35 ± 0.
02 1.64 ± 0.03 1.41 ± 0.

04 
+14.1 ± 3
.7 

22.94 ± 13.
74 

150 nm 
sphere
s 

0.182 ± 6.8
6 

0.18 ± 0.
02 

0.243 ± 8.6
5 

0.29 ± 0.
06 

+33.2 ± 1
.3 – 

150 nm 
sphere
s PEG 

0.196 ± 9.3
5 

0.16 ± 0.
08 

0.221 ± 7.3
7 

0.21 ± 0.
05 

+27.4 ± 6
.3 

32.33 ± 7.3
1 

150 nm 
stretch
ed 

0.224 ± 21.
87 

0.28 ± 0.
12 

0.256 ± 29.
21 

0.38 ± 0.
19 

+34.1 ± 5
.9 – 

150 nm 
stretch
ed 
PEG 

0.207 ± 26.
41 

0.31 ± 0.
14 

0.261 ± 41.
96 

0.46 ± 0.
23 

+28.4 ± 3
.1 27. 

 

The mean fluorescence of the cells correlates with internalized micro- and 

nanoparticles. The particle shape as well as PEGylation played an essential 

role influencing the uptake by the macrophages. Figure IV-2 shows CLSM 

images of macrophages incubated with 2 μm fluorescence green PLGA 

particles. The number of particles internalized is summarized in Figure IV-3a. 

J774.A1 macrophages took up 1.23 ± 0.520 spherical particles per cell. 

Stretched particles had a significantly reduced incident for internalization 

(0.424 ± 0.210 particles/cell). PEG coating renders a resistance to phagocytosis 
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for the spheres (0.417 ± 0.086 particles/cell), and PEGylated and stretched 

particles stayed on a low particle up-take level (0.374 ± 0.255 particles/cell). 

The number of microparticles attached to the cell membrane is shown in Figure 

IV-3b: 0.486 ± 0.161 stretched particles attached to the macrophages cell 

membrane, and PEGylated stretched microparticles attached to a same extend 

(0.487 ± 0.311). Spherical particles had a lower incident to attach to the 

macrophages cell membrane, as only 0.217 ± 0.041 spherical particles and 

0.275 ± 0.142 PEGylated spherical particles were counted. 

 

A

 

B

 

C

 
D

 

E

 

F 

 
Figure IV-2: Incubation of bisBenzimide H 33342 trihydrochloride cell core 

stained J774.A1 macrophages at 37 °C with 2 μm green fluorescence PLGA 

particles analysed by CLSM: (A) spheres, (B) PEGylated spheres, (C) 

stretched, (D) PEGylated stretched, (E) no particles (control), (F) internalized 

stretched particles. 
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A

 

B

 
Figure IV-3: (A) Internalized 2 μm PLGA particles into J774.A1 macrophages 

counts and (B) attached 2 μm PLGA particles to J774.A1 macrophages. 

 

A

 

B

 
Figure IV-4: Flow cytometry data of the mean fluorescence intensity of J774.A1 

macrophages after incubation with (A) 2 μm PLGA particles at 37 °C, (B) 

100 nm PLGA particles at 37 °C. 

The effect of shape and PEGylation on internalization was investigated also in 

the nanometer scale and played an essential role. Nanoparticle phagocytosis 

was analysed using flow cytometry. The mean fluorescence/cell was 

1704 ± 376 for the spheres and 1183 ± 187 for PEGylated spherical particles 

Figure IV-4b. The mean fluorescence detected was even lower (1039 ± 157) for 

the stretched and 668 ± 178 for the PEGylated stretched nanoparticles Figure 

IV-4b. Nanoparticle uptake assays were performed on ice to discriminate 
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between active and passive uptake. All samples displayed a low mean 

fluorescence level (between 10 ± 8 and 63 ± 43). 

Different phagocytosis inhibiting techniques were investigated. The 2 μm 

microparticles significantly resisted phagocytosis after shape manipulation and 

PEGylation. CLSM and flow cytometry displayed comparable results regarding 

particle up-take Figure IV-3 and Figure IV-4. The positively charged 6 μm long 

major axis of 2 μm 3× stretched particles were prone to cell membrane 

attachment. However, the internalization process for particles attached to cells 

with their major axis is slowed down or not taking place at all. Our finding is in 

agreement with reports in the literature. For example, Yoo et al. reported that 

internalization of positively charged particles was slowed down in the first hours 

of incubation [22]. Particle orientation from the phagocyte’s perspective also 

seems to be important for internalization. Elongated 2 μm particles were 

exclusively observed entering the macrophages at their rounded ends. 

These results were also found upon analysis of the 150 nm nanoparticles. 

Likewise, surface functionalization with PEG and stretching particles to an 

elongated shape influenced the internalization by macrophages. However, the 

difference in mean fluorescence measured by flow cytometry for spheres and 

stretched particles was smaller for the nanometer particles than that observed 

for the micrometer particles. The decreased particle size seems to attenuate the 

effect of particle shape regarding phagocytosis resistance [23]. Interestingly, a 

combination of PEGylation and stretching techniques resulted in a superb 

internalization reduction for particles in the nanometer range Figure IV-4b. 

With regards to the two different particles sizes, we found that 150 nm particles 

did not sediment on macrophages during the 30 min incubation period unlike 

the 2 μm microparticles. Instead, nanoparticles had a higher tendency to 

aggregate in DMEM culture media. Microparticles were counted by traditional 

particle counting methods like light obscuration, while nanoparticle 

concentration was determined by their fluorescence intensity. Consequently, a 

comparison of different experimental groups within one size is significant, while 

a comparison between micro and nanoparticles needs to be done cautiously. 



 

 80 

Our study shows that an elongated particle geometry reduces the recognition 

and phagocytosis by macrophages. The two uptake inhibiting techniques 

PEGylation and stretching reduced the incident of internalization to a 

comparable extent. In the nanometer scale a combination of surface chemistry 

and particle geometry had an additive effect leading to greatly reduced inner 

cell particle concentration. 
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The first part of the in-vitro studies with the macrophages cell line showed that 

non-spherical particles as well as PEGylated particles displayed a reduced 

phagocytosis. Following the influence of particle shape on dendritic cell 
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activation was investigated. Therefore, micro- and nanoparticles with adsorbed 

toll-like-receptor agonists were incubated with the dendritic cell line JAWSII. In a 

second step activated JAWSII cells were stained for activation surface markers 

and analyzed using flow cytometry. 
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1. Abstract 

Modern subunit vaccines have many benefits compared to live vaccines like 

convenient and competitive large scale production, better reproducibility and 

safety. However, the poor immunogenicity of subunit vaccines usually requires 

the addition of potent adjuvants or drug delivery vehicles. Accordingly, 

researchers are investigating different adjuvants and particulate vaccine 

delivery vehicles to boost the immunogenicity of subunit vaccines. Despite the 

rapidly growing knowledge in this field, a comparison of different adjuvants is 

sparsely found. Until today, little is known about efficient combinations of the 

different adjuvants and particulate vaccine delivery vehicles.  

In this study we compared three adjuvants towards their immune stimulatory 

potential and combined them with different particulate vaccine delivery vehicles. 

For this reason, we investigated two types of polyI:C and a CL264 base 

analogue and combined these adjuvants with differently sized and shaped 

particulate vaccine delivery vehicles. A high molecular weight polyI:C combined 

with a spherical nano-sized particulate vaccine delivery vehicle promoted the 

strongest dendritic cells activation. 

Keywords: Non-spherical particles; flow cytometry; nano-rods; adjuvants; 

vaccination; dendritic cells 



 

 86 

2. Introduction 

Vaccination is a potent and cost-effective tool to treat and prevent fatal diseases 

[1]. The morbidity of life threatening diseases like smallpox, polio, hepatitis B, or 

measles has been significantly reduced [2]. Consequently, the mortality of 

children dropped from 20 million cases worldwide in 1960 to less than 10 million 

in 2005 [2].  

On the other hand, the development of subunit vaccines facilitates the industrial 

large scale production by reducing production costs, and increases the 

accessibility of vaccines to poor regions. Living pathogens can cause serious 

side effects or death in immune-deficient patients, as they can reverse to 

virulent wild-type strains [3]. Subunit vaccines consist of purified oligopeptides, 

recombinant proteins, or viral subunits, which cannot lead to disease and thus 

have a lower toxicological profile [4]. Despite these benefits, subunit vaccines 

are rather poorly immunogenic and require the addition of a potent adjuvant [5]. 

Adjuvants and particulate vaccine delivery vehicles have been applied to boost 

the immunogenic potency of subunit vaccines [6]. Specifically, adjuvants 

enhance antigen presentation and co-stimulation by the activation of pattern 

recognition receptors (PRRs) like toll-like receptors (TLR) in antigen-presenting-

cells (APC) [7]. For example, TLR 3 recognizes double-stranded (ds) RNA and 

activates the TRIF-dependent pathway, which leads to the induction of type I 

interferon [8, 9]. 

One example of adjuvants acting via TLR 3 are polyinosine-polycytidylic acids 

(polyI:C), which are synthetic dsRNAs available in different molecular weights 

[9]. Similarly, TLR 7/8, which is highly homologous to TLR9, recognizes several 

synthetic imidazoquinolines and induces several inflammatory cytokines like 

interferon alpha [8, 10]. The natural ligands of the TLR 7/8 family remain 

unclear. The adenine analog CL264 is a resiquimod analogue recognized by 

TLR 7/8 and is functionalized by a carboxy group for chemical conjugation [11-

13].  
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Upon administration of TLR agonists, like the above mentioned vaccine 

adjuvants, DCs are activated, which leads to DC maturation. The maturation 

process can be described by several factors. For example, a loss in phagocytic 

capacity, an increased expression of MHC molecules, the production of 

cytokines, and the up-regulation of co-stimulatory molecules including CD80, 

CD83, and CD86. The co-stimulatory molecules play an important role in the 

immune response and indicate dendritic cell activation [14]. 

Besides adjuvants, particulate vaccine delivery vehicles are used to efficiently 

deliver antigens to APCs. For this reason, numerous particulate vaccine 

delivery vehicles like liposomes [15], microparticles [16], nanoparticles [17], 

immune stimulating complexes (ISCOMs) [18-20], and virus-like particles 

(VLPs) [21] have been used as vaccine delivery vehicles in order to mimic 

pathogens. These particulate vaccine delivery vehicles can differ in size [22], 

charge [23], surface chemistry [24], and shape [25, 26].  

Particle shape has recently been identified to influence particle uptake into 

different immune cells. Champion et al. showed that an elongated particle 

shape reduces the incidence of particle phagocytosis into macrophages [27]. In 

addition, different pathogens like Escheria coli or Aeromonas hydrophila display 

an elongated shape [28]. It is still unclear whether a non-spherical particle 

shape could influence the activation of immune cells. 

The response of the immune system to an antigen depends on processing and 

presentation of the antigen by antigen presenting cells (APCs). Vaccine delivery 

vehicles are used to enhance the uptake into APCs and thus promote efficient 

antigen presentation. The overall efficiency of a vaccine delivery vehicle is a 

complex interplay of the physical and chemical vaccine delivery vehicle 

properties and is further boosted in a combination with an adjuvant [29]. 

Consequently, the synergistic combination of adjuvants and a vaccine delivery 

vehicle represents a promising strategy to enhance immunogenicity of subunit 

vaccines [5, 30].  
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Despite the progress in understanding the effect of adjuvants and particulate 

vaccine delivery vehicles, little is known about potent combination of different 

adjuvants and vaccine delivery vehicles, which are promising concepts to boost 

the immunogenicity of vaccines [31]. In particular, a comparison of different 

molecular weight polyI:Cs and TLR 7/8 adjuvants has not been reported. Zhou 

et al. compared a soluble low molecular weight and a soluble high molecular 

weight polyI:C. The high molecular weight polyI:C promoted a stronger immune 

response than the low molecular weight polyI:C in-vitro [32]. Nevertheless, the 

two different polyI:C forms have not been compared in combination with 

different particulate vaccine delivery vehicles to further boost their immune 

stimulatory potential. Micro- and nanoparticles have clearly proven their ability 

as vaccine delivery vehicles, however the preferred size and shape is still 

controversially discussed [22].  

In this study, we compared two different molecular weight polyI:C TLR 3 

ligands, as well as the TLR 7/8 CL264 adenine base analogue. In addition, we 

adsorbed the above mentioned adjuvants to differently sized and shaped 

polystyrene particles. All adjuvant samples were then applied to the dendritic 

cell (DC) line JAWSII and tested towards their potential to stimulate the DCs. 

JAWSII stimulation was followed by flow cytometry measurements of the co-

stimulatory molecules CD83 and CD86. 

 

3. Materials and Methods 

3.1. Micro- and nanoparticles 

Fluorescently labeled (extinction 460/emission 500) and label free 150 nm and 

2 µm polystyrene particles were purchased from Phosphorex (Hopkinton, Ma, 

USA).  
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3.2. Non-spherical micro- and nanoparticle fabrication 

The film stretching method established by Champion et al. [33] was used to 

stretch spherical 150 nm and 2 µm polystyrene particles to elliptical particles 

with tailored aspect ratios as mentioned earlier [34]. In brief, spherical particles 

were incorporated into a polyvinyl alcohol 40-88 (PVA) film (Sigma-Aldrich, 

Steinheim, Germany). PVA 40-88 (10% w/v) was dissolved in highly purified 

water at 80°C. Then, 2% of glycerol (Sigma-Aldrich, Steinheim, Germany) and 

spherical polystyrene particles (0.2% w/v) were added to this solution. The 

mixture was dried at room temperature for 4 days in 4 x 6 cm molds until a 

flexible film was formed. The PVA film was cut into 2 x 3 cm pieces and fixed in 

an in-house built film-stretching device. The 2 cm long PVA – film including the 

spherical polystyrene particles was stretched to the length of 6 cm in a silicone 

oil bath at 120°C at a stretching speed of 2 cm per minute. Afterwards, the 

stretched PVA film was cooled down to room temperature and washed with 

100% isopropanol (Sigma-Aldrich, Steinheim, Germany). Finally, the PVA films 

were dissolved in highly purified water to recover the non-spherical particles. 

Non-spherical particles stretched to three fold of their original length are 

referred to as 3X stretched particles. To ensure comparability, the spherical 

particles used in the following in vitro study were treated in the same manner 

but without stretching the PVA film. 

 

3.3. Scanning electron microscopy (SEM) 

Particle morphology was confirmed using a Joel JSM 6500F scanning electron 

microscopy (Joel Ltd, Tokyo, Japan). Spherical and non-spherical particles 

were applied to a filter paper and attached to self-adhesive tape on aluminum 

scanning electron microscopy stubs. Afterwards, the samples were sputtered 

with carbon. SEM image collection was performed at 8000x magnification for 

the nanoparticles and 2000x magnification for the microparticles. The aspect 

ratio of the 3X stretched micro- and nanoparticles were calculated using the 
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SEM images (20 particles measured per group). The Inca software (Oxford 

instruments, Oxfordshire, UK) was utilized to process image acquisition data. 

 

3.4. Light obscuration 

Microparticles were measured by light obscuration (LO) utilizing a SVSS-C 

system (PAMAS, Partikelmess- und Analysesysteme GmbH, Rutesheim, 

Germany). All microparticle batches were analyzed in triplicates. The measuring 

volume was set to 0.3 ml and the pre-run volume was set to 0.5 ml. The system 

was cleaned with highly purified water until the particle count was less than 25 

counts/ml between each measurement.  

 

3.5. Dynamic light scattering 

Nanoparticles were analyzed using a Malvern Zetasizer Nano ZS (Malvern, 

Herrenberg, Germany). Each sample was measured in triplicates; each 

triplicate was performed with 11 sub-runs at 24°C. 400 µl of the polystyrene 

particle suspensions were measured in a poly(methylmethacrylate) cuvettes 

(Brand, Wertheim, Germany) with a path length of 12.5 mm. Particle size was 

measured in water or culture media. Particle zeta potential was measured in 

water including 10 mM sodium chloride. The particle concentration was always 

0.06 mg/ml. Size, zeta potential, and polydispersity index (PDI) were calculated 

using the Malvern Dispersion Technology software (version 4.20, Malvern, 

Herrenberg, Germany). 

 

3.6. Fluorescence stability on polystyrene micro- and nanoparticles 

Polystyrene particles were incubated overnight in highly purified water at 37°C 

to test the stability of the fluorescent dye incorporated into the particles. The 

supernatant was analyzed after centrifugation for free fluorescence dyes using 
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a Cary Eclipse fluorescence spectrophotometer (Agilent, Boeblingen, 

Germany). 

 

3.7. Adjuvant loading on polystyrene micro- and nanoparticles 

200 µl of 10 mg/ml label free polystyrene particles were incubated with 100 µl of 

a 0.33 mg/ml adjuvant solution and incubated for 5 hours. Particles were then 

centrifuged and the supernatant was analyzed by UV measurements to detect 

unbound adjuvant. Loading efficiency was calculated as ratio between loaded 

adjuvants on particles divided by the total amount of adjuvant used. Particles 

with surface loaded adjuvants were resuspended in highly purified water.  

 

3.8. Colloidal stability of polystyrene particle adjuvant complexes in 
water and culture media 

The different micro- and nanoparticle adjuvant loaded samples were incubated 

in the JAWSII dendritic cell culture media (described below) for 30 min at 37°C. 

Particle aggregation behavior was monitored using the Malvern Zetasizer Nano 

ZS for the nanoparticles or the SVSS-C light obscuration system for 

microparticles. 

 

3.9. JAWSII dendritic cell (DC) line 

A JAWSII dendritic cell line (ATCC, Teddington, United Kingdom) was grown in 

a CO2 incubator at 5% CO2 and at 37°C. 3 x 106 cells/ml were grown in an 80 

cm2 culture flask. The culture medium consisted of Iscove’s Modified Dulbeco’s 

Medium (IMDM) (Sigma Aldrich, Steinheim, Germany) with 5 ng/ml murine GM-

CSF (Invitrogen, Darmstadt, Germany) and 10% fetal calf serum (FCS) 

(Invitrogen, Darmstadt, Germany). Cells were cultured in 80 cm² culture flasks 

with 15 ml culture media. The sub cultivation ratio was 1:2. The 15 ml culture 
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media was renewed twice a week. JAWSII DCs were seeded at 100,000 cells 

per 0.5 ml culture media in a 48 well plate. 

 

3.10. JAWSII dendritic cell (DC) stimulation 

JAWSII dendritic cells were stimulated with 0.83 µg of free adjuvant (low 

molecular weight poly:IC (LMW), high molecular weight poly:IC (HMW), or 

CL264 (all adjuvants from Invivogen, Toulouse, France) or 50 µg of adjuvant-

loaded particles. Native particles without any adjuvant but phosphate buffer 

saline (PBS) were used as controls. Adjuvant loaded particles or free adjuvants 

were added, pipetted up and down, and incubated overnight to the JAWSII 

seeded in the 48 well plates. 

 

3.11. JAWSII dendritic cell staining 

All cells were washed with 0.2 ml PBS buffer and incubated with an anti-

CD16/32 (Becton, Dickinson and Company, Franklin Lakes, USA) antibody to 

block non-specific binding sites for 15 min on ice in the dark. Cells were then 

stained with 0.5 µg/well of CD83 (Becton, Dickinson and Company, Franklin 

Lakes, USA) and CD86 (Becton, Dickinson and Company, Franklin Lakes, 

USA) for 20 min on ice in the dark. The compensation controls were prepared 

using the above mentioned fluorescence polystyrene particles or the CD83 and 

CD86 staining antibody solutions. 

 

3.12. Cell analytics by flow cytometry 

All samples were analyzed using a Bioscience FACS Canto II (Bioscience, 

Franklin Lakes NJ, USA) equipped with forward- (FSC), side scatter (SSC), and 

fluorescence detectors (FITC, PE, APC). The FSC detector voltage was set to 

319 volts, the SSC detector voltage was set to 401 volts, the FITC detector 
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voltage was set to 500 volts, the PE voltage was set to 250 volts, and the APC 

detector voltage was set to 350 volts. Stimulated cells were analyzed in 

triplicates. Each triplicate contained 10,000 cells. Triplicates were collected 

twice (n=6). Flow cytometry data was analyzed using the Flowjo software (Tree 

Star, Ashland, Oregon, USA). Fluorescence intensity was analyzed using the 

mean intensity tool. 

 

3.13. Dimethylthiazol-yl-diphenyltetrazoliumbromid (MTT) cell 
viability assay 

A final stock solution of 5 mg/ml was produced with Thiazolyl Blue Tetrazolium 

Bromide (Sigma-Aldrich, Taufkirchen, Germany). First, JAWSII dendritic cells 

were treated as described above in the DC activation studies. Afterwards, the 

toxicity assay was performed. Cells were incubated for 4h at room temperature 

with the MTT solution. Therefore, the blue crystals were dissolved in dimethyl 

sulfoxide (DMSO) by shaking for 5 min at 300 rpm. Absorbance was measured 

at 540 nm using a Fluostar Omega plate reader (BMG Labtech GmbH, 

Offenburg, Germany) in 96-well plates (Greiner Bio-one GmbH, Frickenhausen, 

Germany). Pure DMSO was used as a blank.  

 

3.14. Statistical significance 

Statistical analysis was performed using a one way ANOVA test followed by a 

Fisher LSD method. P was set to < 0.001 and alpha was 0.05. All statistical 

calculations were performed using Sigma Plot (Systat Software Inc., San Jose, 

CA, USA). 
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4. Results 

Ellipsoid fluorescence labeled polystyrene micro- and nanoparticles were 

stretched towards high aspect ratios using the film stretching technique 

established by Champion et al. [33]. The successful stretching process was 

confirmed by scanning electron microscopy (SEM) (Figure V-1). The mean 

aspect ratio decreased from 1 for spherical micro- and nanoparticles to 

0.23±0.07 in case of the 3X stretched microparticles, and 0.21±0.01 for the 3X 

stretched nanoparticles (Figure V-1). 

 

A

 

B

 
C

 

D

 
Figure V-1: SEM micrographs of spherical and non-spherical micro- and 

nanoparticles: (A) spherical microparticles, (B) non-spherical 3X stretched 

microparticles, (C) spherical nanoparticles, and (D) non-spherical 3X stretched 

nanoparticles. 
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4.1. Particle characterization  

Nanoparticle DLS measurements revealed a nanoparticle size of 132±1.2 nm 

for the spheres and 172.5±16.5 nm for 3X stretched particles. Loading 

nanoparticles with polyI:C or CL264 did not increase particle size, no 

aggregation was observed. Microparticles were measured by LO. Spheres were 

sized 1.5±0.0 µm and 3X stretched particles 1.6±0.1 µm. No increase in 

microparticles’ size was observed after loading the microparticles with polyI:C or 

CL264.  

In addition, particle aggregation in the JAWSII culture media was investigated. 

The different particle groups were incubated in the JAWSII culture media for 30 

min. The different nanoparticle samples displayed an increase in particle size 

from 126.8±2.4 to 185.5±20.5 nm (before incubation in culture media) to 

227.7±1.3 to 589.5±31.5 nm (after incubation in culture media) (Table V-1). 

Microparticles did not show any increase in particle size after incubation in 

culture media. 

The zeta potential of the different particle batches was measured to confirm the 

adjuvant loading. For example, it was +62.1±2.7 mV for spherical unloaded 

nanoparticles and +55.8±2.3 mV for 3X stretched unloaded nanoparticles. As 

expected, the adsorption of negatively charged adjuvants decreased the zeta 

potential. Nanoparticles loaded with the high molecular weight polyI:C showed 

the strongest decrease in zeta potential (+46.1±1.3 mV for spheres and 

+47.2±1.2 mV for 3X stretched particles). The loading efficiency experiment 

showed similar results. The high molecular weight loaded nanoparticle samples 

showed the highest loading efficiency (83.1±13.0% for spheres and 86.4±6.7% 

for 3Xstretched particles) (Table V-1).  
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Table V-1: An overview of the different nanoparticle sample characteristics used 

in the in vitro experiments (low molecular weight polyI:C (LMW), high molecular 

weight polyI:C (HMW), and the base analogue CL264 (CL264)). 

 
Mean 
size  PDI 

Mean size 
after 
incubation 
in 
DEMEM PDI 

Zeta 
potential 
[mV] 

Loading 
efficienc
y [%] 

Cell 
viability 
[%] 

150 nm 
 

132.9
±1.2 

0.1±
0.0 

462.0±32.
0 

0.5±0.
0 

+62.1±2.
7 -- 

63.5±11.
6 

150 nm 
LMW 
polyI:C 

134.9
±1.3 

0.2±
0.0 227.7±1.3 

0.3±0.
0 

+49.7±1.
4 

62.7±16.
3 

61.1±10.
4 

150 nm 
HMW 
polyI:C 

126.8
±2.4 

0.2±
0.0 

526.0±32.
0 

0.5±0.
1 

+46.1±1.
3 

83.1±13.
0 57.5±5.5 

150 nm 
CL264 

133.8
±1.2 

0.1±
0.0 380.0±3.0 

0.7±0.
0 

+54.7±0.
7 32.4±5.1 64.9±9.6 

150 nm 3X 
172.5
±16.5 

0.1±
0.0 

580.5±17.
5 

0.5±0.
1 

+55.8±2.
3 -- 

53.0±13.
9 

150 nm 
LMW 
polyI:C 3X 

185.5
±20.5 

0.2±
0.1 

398.5±33.
5 

0.4±0.
1 

+47.2±1.
2 

58.2±21.
1 72.8±8.8 

150 nm 
HMW 
polyI:C 3X 

158.5
±4.5 

0.2±
0.0 

589.5±31.
5 

0.5±0.
1 

+36.8±1.
1 86.4±6.7 

53.4±15.
1 

150 nm 
CL264 3X 

222±
12.0 

0.1±
0.0 

421.0±44.
0 

0.2±0.
0 

+41.0±0.
6 27.1±5.6 

66.3±14.
9 

 

Similarly, zeta potential measurements were obtained for the microparticle 

samples. Unloaded microparticles displayed the highest zeta potential values 

(+28.6±0.3 mV for the spheres and +34.3±0.7 mV for the 3X stretched 

particles). Likewise, the high molecular weight polyI:C loaded microparticles had 

the lowest zeta potential of all microparticle batches (+19.5±0.2 mV for the 

spheres and +24.5±0.3 mV for the 3X stretched particles). The results from 

loading efficiency experiments confirmed the zeta potential measurements. The 

loading efficiency was high for the high molecular weight samples (71.8±6.3% 

for the spheres and 68.5±11.3% for the 3X stretched particles). 
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Table V-1: An overview of the different nanoparticle sample characteristics used 

in the in vitro experiments (low molecular weight polyI:C (LMW), high molecular 

weight polyI:C (HMW), and the base analogue CL264 (CL264)). 

 
Mean 
size  PDI 

Mean size 
after 
incubation 
in 
DEMEM PDI 

Zeta 
potential 
[mV] 

Loading 
efficiency 
[%] 

Cell 
viability 
[%] 

2 µm 1.5±0.0 1.3±0.0 1.6±0.1 1.3±0.1 +28.6±0.3 -- 35.7±15.7 
2 µm 
LMW 
polyI:C 1.5±0.0 1.3±0.0 1.5±0.0 1.3±0.0 +22.3±0.3 61.2±7.3 38.9±11.3 
2µm 
HMW 
polyI:C 1.6±0.0 1.3±0.0 1.5±0.0 1.3±0.0 +19.5±0.2 71.8±6.3 41.6±4.4 
2 µm 
CL264 1.5±0.0 1.2±0.0 1.5±0.0 1.3±0.0 +26.1±0.3 19.3±24.2 32.9±9.7 
2 µm 
3X 1.6±0.1 1.4±0.1 1.7±0.1 1.4±0.1 34.3±0.7 -- 48.6±7.2 
2 µm 
LMW 
polyI:C 
3X 1.7±0.0 1.3±0.0 1.6±0.0 1.5±0.0 +16.6±0.2 58.7±3.2 41.5±8.6 
2 µm 
HMW 
polyI:C 
3X 1.7±0.0 1.4±0.1 1.9±0.0 1.4±0.1 +24.5±0.3 68.5±11.3 31.0±6.0 
2 µm 
CL264 
3X 1.8±0.0 1.3±0.0 1.8±0.1 1.5±0.0 +21.7±0.6 18.7±3.4 43.8±11.5 
 

In conclusion, the overall loading efficiency was higher for nanoparticles 

compared to the microparticles. No relevant differences between the different 

particle shapes were observed.  

In addition, cell viability was investigated using a MTT cell viability assay. The 

overall cell viability was higher for the nanoparticle groups (between 

53.0±13.9% up to 72.8±8.8). Cell viability decreased for the cell samples, which 

received a microparticle treatment (31.0±6.0% to 66.3±14.9%). 
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4.2. Particle uptake into JAWSII dendritic cells 

Fluorescently labeled particle internalization was investigated by flow cytometry. 

First, the stability of the fluorescent dye loading into the polystyrene particles 

was tested by analysis of the supernatant of a particle suspension for free 

fluorescent dyes. No free fluorescent dye was found in the supernatant. 

Consequently, the inner cell fluorescence concentration can be correlated to the 

inner cell particle concentration. 

 
Figure V-2: Mean fluorescence intensity per cell measured by flow cytometry 

and analyzed using six samples per group. 

Nanoparticles were internalized by JAWSII dendritic cells more efficiently than 

microparticles. The mean inner fluorescence concentration per cell ranged from 

228.3±48.3 to 445.3±104 for the microparticles and 772.0±153.5 to 

1127.6±246.6 for the nanoparticles (Figure V-2). All nanoparticle vaccine 

delivery vehicle groups displayed significant higher inner cell particle 

concentrations than all the microparticle vaccine delivery vehicles, adjuvants 

without particles, and the negative PBS control. However, no significant 

differences in the mean fluorescence per cell were observed for spherical and 

elongated particles. The different nanoparticle adjuvant vaccine delivery 



 

 99 

vehicles were internalized less than the plain nanoparticles. For example, the 

nano HMW, the nano 3x HMW, nano LMW, and nano 3x LMW had significant 

lower inner particle concentrations than the plain nanoparticles. (Figure V-2). 

The PBS control and the particle free type adjuvant groups displayed baseline 

levels of mean fluorescence per cell (Figure V-2). 

 

4.3. JAWSII DC activation 

Comparison of the different adjuvants 

In addition to particle uptake, JAWSII dendritic cell stimulation was accessed by 

investigating the up-regulation of CD 83 and CD86 dendritic cell surface 

markers. A good correlation between CD83 and CD86 was found (Figure V-3 

(A), (B)). The negative control PBS and the spherical and non-spherical 

nanoparticles without adjuvants displayed a significant lower CD83 and CD86 

up-regulation than all other nanoparticle vaccine delivery with adjuvants. The 

low activation of adjuvant free samples was expected and proved the overall 

suitability of the dendritic cell activation assay. 

The high molecular weight polyI:C nanoparticle vaccine delivery vehicles (nano 

HMW) displayed the strongest up-regulation of CD83 as well as for CD86. The 

nano HMW mean CD86 intensity per cell was 180.7±67.5 and the CD83 nano 

HMW mean intensity per cell was 2500±54.7. (Figure V-3 (A), (B)). 
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A 

 
B 

 
Figure V-3: Dendritic cell stimulation: (A) up-regulation of CD83, (B) up-

regulation of CD86 measured by flow cytometry and analyzed using six 

samples per group.      

The up-regulation of CD83 and CD86 by the nano HMW vaccine delivery 

vehicle was significantly higher compared to all other tested groups. The CL264 

nanoparticle (nano CL264, Figure V-3) vaccine delivery vehicles showed the 

lowest up-regulation of CD83 and CD86. Accordingly, the spherical CL264 

vaccine delivery vehicles (nano CL264, Figure V-3) displayed a CD83 mean 
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intensity per cell of only 808±230 and a CD86 mean intensity per cell of 74±7.4. 

Similarly, the CL264 3X stretched vaccine delivery vehicles (nano 3X CL264, 

Figure V-3) stayed on a very low mean CD83 and CD86 up-regulation level. 

(CD83 was 630±263 and CD86 was 33.4±11.6).  

The low molecular weight polyI:C vaccine delivery vehicles displayed an 

intermediate JAWSII DC stimulation potential (significantly lower than the high 

molecular weight polyI:C vaccine delivery vehicles (Figure V-3). 

In conclusion, the high molecular weight polyI:C vaccine delivery vehicles 

stimulated the DCs significantly stronger than all other samples.  

 Comparison of particle size (microparticles vs. nanoparticles) 

Nanoparticles were internalized more efficiently by JAWSII dendritic cells. 

Consequently, the nanoparticle adjuvant vaccine delivery vehicles displayed a 

stronger DC activation than the microparticle adjuvant vaccine delivery vehicles. 

For example, the high molecular weight polyI:C nanoparticle vaccine delivery 

vehicles (nano HMW, Figure V-3 (A)) showed a mean CD83 intensity per cell of 

2500±537.9. In contrast, the high weight polyI:C microparticle vaccine delivery 

vehicles (micro HMW, Figure V-3 (A)) showed a significantly lower mean CD83 

intensity per cell (1183±263). Furthermore, the nano 3x HMW vaccine delivery 

vehicle displayed a CD83 intensity of 1795.7±2912 and a CD86 intensity of 

101.0±48.4, which was significantly higher than the microparticle counterparts 

(CD83: 677.3±19.4 and CD86: 43.0±1.7). Similar results were also observed for 

the nano LMW vaccine delivery vehicles which trigger a significant higher DC 

activation than the micro LMW vaccine delivery vehicle. 

Influence of particle shape (spherical vs. 3X stretched elongated) on DC 

activation 

The spherical high molecular weight polyI:C nanoparticle and microparticles 

vaccine delivery vehicles (nano HMW and micro HMW, Figure V-3 (A,B)) 

displayed a significant stronger mean CD83 and CD86 intensity than the non-

spherical counterparts. Particularly the spherical and elongated nanoparticle 
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HMW vaccine delivery vehicles showed the most prominent difference in DC 

activation. For example, the CD86 intensity of nano HMW was (2500±537) 

whereas the 3X stretched high molecular weight polyI:C nanoparticles had only 

a CD 86 intensity of (1795.66±291) (nano 3X HMW, Figure V-3 (B)).  

Similar results were observed for microparticle HMW vaccine delivery vehicles. 

The spherical high molecular weight polyI:C microparticle vaccine delivery 

vehicles (micro HMW, Figure V-3 (B)) displayed a stronger mean CD86 

intensity (1183±267) than the 3X stretched high molecular weight polyI:C 

microparticles (713±93), (micro 3X HMW, Figure V-3 (B)). In addition, the mean 

CD83 intensity showed stronger JAWSII DC activation for spheres than for 3x 

stretched particle vaccine delivery vehicles (Figure V-3 (A)).  

Despite the difference in DC activation for the spherical and elongated particles 

with the high molecular weight polyI:C vaccine delivery vehicles, other adjuvant 

vaccine delivery vehicles displayed only minor changes in DC activation 

regarding particle shape. Particle shape had no relevant influence on DC 

activation in samples not containing the HMW poly:IC adjuvant. 

The FACS dot plots in Figure V-4 confirmed the results from Figure V-2 and 

Figure V-3. The PBS negative controls display no green fluorescence 

nanoparticles and no CD83, CD86 activation, which proves the overall suitability 

of the experimental layout. The green fluorescent nanoparticles (Figure V-4 

D,G) were internalized more efficiently compared to the microparticles (Figure 

V-4 J,M). The FACS dot plots for the nanoparticle vaccine delivery vehicles 

(Figure V-4 D,G) display a prominent cell population of FITC high cells, whereas 

the FACS dot plots of the microparticle vaccine delivery vehicles (Figure V-4 

J,M) display less FITC high cells. The high molecular weight polyI:C spherical 

nanoparticles displayed the strongest activation. For example, Figure V-4 (E) 

displays the largest PE high cell population (CD83 activation) compared to all 

other groups. 

In summary, the high molecular weight polyI:C vaccine delivery vehicles 

stimulated the JAWSII dendritic cell line stronger than all other adjuvant vaccine 
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delivery vehicles (low molecular weight polyI:C and CL264). In addition, 

nanoparticles activated the JAWSII dendritic cells stronger than microparticles. 

Spherical particles stimulated JAWSII dendritic cells stronger than non-spherical 

particles in case of the HMW vaccine delivery vehicles. However, particle shape 

had no effect for the LMW and CL264 vaccine delivery vehicles. 
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Figure V-4: FACS dot plots of JAWSII DC: X-axis forward scatter, Y-axis inner 

particle concentration (1st column), (CD83 (2nd column), CD86 (3rd column). A-

C: PBS negative controle, D-F: HMW polyI:C spherical nanoparticles, G-I: HMW 

polyI:C non-spherical nanoparticles, J-L: HMW polyI:C spherical microparticles, 

M-O: HMW polyI:C microparticles, O-R: HMW polyI:C. 
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5. Discussion 

In this study different vaccine delivery vehicles design parameters were 

analyzed towards their ability to stimulate DCs of the JAWSII dendritic cell line.  

First, the internalization of the different vaccine delivery vehicles into dendritic 

cells was investigated. In the literature, polyI:C loaded PLGA microparticles as a 

vaccine delivery vehicle have been reported [4, 31]. However, a direct 

comparison to polyI:C nanoparticles and to different particle shapes has not 

been performed.  

In our study nanoparticles were internalized more efficiently compared to 

microparticles. This can be explained by the preference of the dendritic cells for 

nanoparticles, but also by the higher positive zeta potential of the nanoparticles. 

The impact of particle size and surface charge has been investigated by Foged 

et al. In accordance to our findings, nanoparticles were internalized by dendritic 

cells more efficiently than microparticles. A positive zeta potential increased 

phagocytosis in vitro. However, the authors did not investigate dendritic cell 

activation with different TLR agonists and used only spherical particles [35]. 

Thiele et al. already reported that a positive zeta potential promotes particle 

uptake into APCs [36]. For this reason, the polyI:C vaccine delivery vehicles, 

which had a lower zeta potential, displayed a lower incident for internalization 

into dendritic cells compared to the plain, unbound particle groups.  

Secondly, JAWSII dendritic cell activation was investigated. Despite the fact 

that only minor difference in DC activation were observed for the free, unbound 

adjuvants, major differences were revealed for the different vaccine delivery 

vehicles. The strong activation potential of the high molecular weight polyI:C 

(HMW) vaccine delivery vehicles can be explained by two factors. First, high 

molecular weight polyI:C stimulates DCs stronger than low molecular weight 

polyI:C. Similar results were achieved before by Zhou et al. [32]., who 

compared high molecular weight polyI:C and low molecular weight polyI:C, but 

did not combine the polyI:Cs to different vaccine delivery vehicles. Secondly, 

due to the cooperative nature of the polyelectrolyte interaction, the long dsRNA 
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chains of the HMW polyI:C are expected to interact stronger with particulate 

carriers than the LMW polyI:C. Accordingly, a higher loading efficiency for the 

HMW polyI:C was achieved. While this higher loading efficiency could have 

improved the delivered dose to the cells and led to the observed high DC 

activation, there is currently no direct evidence for this hypothesis.  

In addition to the strong impact of the adjuvants, particle size played an 

important role in DC activation. Nanoparticles were the superior delivery 

vehicles for several reasons. The larger surface area and the strong positive 

zeta potential of nanoparticles resulted in a higher adjuvant loading efficiency. 

Accordingly, more adjuvant was delivered to the dendritic cells. More important, 

the nanoparticles were internalized more efficiently by the dendritic cells, 

because of their ideal size and strong positive zeta potential. Similar results 

were obtained by Thiel et al. [36] and Jung et al. [37], where nanoparticles 

induced stronger immunity than microparticles. In addition, Nixon et al. [38] 

showed that nanoparticles promote a stronger cytotoxic lymphocyte response 

than microparticles. 

Finally, the influence of particle shape on DC activation was investigated. 

Numerous pathogens like bacteria or viruses display an elliptical non-spherical 

shape, which was the motivation to the current investigation of shape-

dependent DC activation. However, the non-spherical particles did not promote 

a stronger DC stimulation. Instead, in case of HMW polyI:C, the non-spherical 

micro and nanoparticles were less potent in stimulating DCs compared to their 

spherical counterparts. Reasons for the observed lower DC activation could be 

the slightly lower particle uptake, the lower zeta potential, or the lower cell 

viability. Non-spherical particles were observed to resist internalization by APCs 

before [39]. For example, Champion et al. found that elongated particles resist 

phagocytosis by macrophages [40]. In addition, Arnida et al. showed a 

decreased internalization for gold nano-rods into macrophages [41]. Vaccine 

delivery vehicles loaded with LMW polyI:C or CL264 displayed no difference in 

DC activation due to variations in particle shape.  
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A head to head comparison of spherical and non-spherical TLR-agonist loaded 

vaccine delivery vehicles is missing. Despite the fact, that non-spherical 

particles did not show an increased DC activation, the results of this study 

provide essential information for the design of future vaccine delivery vehicles. 

The above results show that the spherical nanoparticles loaded with HMW 

polyI:C represent a promising future vaccine delivery vehicles. In addition to a 

superior APC stimulation of nanoparticles compared to microparticles, 

nanoparticles show several other benefits. For example, the preparation is 

simple and uses less toxic solvents. Moreover, the preparation must not be 

aseptic as small nanoparticles can be sterile filtered [22]. Besides these, the 

small size of nanoparticles allows a free diffusion into the lymph nodes and the 

targeting of a specific DC subset [30]. 

 

6. Conclusion 

In this study we compared different vaccine delivery vehicle properties like 

particle size and particle shape, but also different adjuvants towards their ability 

to stimulate the JAWSII dendritic cell line.  

First, a combination of an adjuvant and a vaccine delivery vehicle showed 

stronger DC activation than adjuvants or vaccine delivery vehicles alone. 

Second, the nanoparticle vaccine delivery vehicles displayed the stronger DC 

activation compared to their microparticle vaccine delivery vehicles 

counterparts. 

Third, the high molecular weight polyI:C displayed the strongest DC activation 

potential of all adjuvants in combination with an vaccine delivery vehicle.  

Finally, particle geometry played only a minor role in DC activation. However, 

spherical particles showed a stronger DC activation for the HMW polyI:C 

vaccine delivery vehicles than elongated vaccine delivery vehicles. 
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Consequently, in our study the spherical nanoparticle vaccine delivery vehicle 

with HMW polyI:C represent the most potent system to stimulate DCs. 
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VI. Chapter 6 
 

Quality Control of Protein Crystal Suspensions Using 
Microflow Imaging and Flow Cytometry 
 

This chapter was published as a note in the Journal of Pharmaceutical Science: 

Mathaes, R.*, Hildebrandt, C.*, Winter, G., Engert, J.° ǂ, & Besheer, A°. (2013). 

Quality Control of Protein Crystal Suspensions Using Microflow Imaging and 

Flow Cytometry. Journal of Pharmaceutical Sciences, 102(10), 3860-3866. 
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Ahmed Besheer supported the experimental work with his analytical 

understanding, reviewed the manuscript and submitted it. Julia Engert and 

Gerhard Winter critically discussed the results and reviewed the manuscript.  

The following chapter describes the characterization of protein crystal 

suspensions. Obviously this chapter is not directly associated to the topic of this 

thesis, which has its focus on drug delivery applications of non-spherical 

particles. However, several methods developed in this thesis to characterize the 
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shape of non-spherical particles showed potential to be used in the field of 

protein formulation.  

The therapeutic protein investigated in this study was a needle shaped 

crystalline insulin. Some insulin pharmaceuticals are formulated in crystal 

suspension to tailor the release and pharmacokinetic profile of the insulin. The 

process of crystallization is a delicate step. Only minor changes in the 

crystallization process can lead to spherical amorphous insulin aggregates, 

which might show a different insulin release profile compared to the needle 

shaped insulin crystals.  

In this study the shape characterization methods developed to analyze the non-

spherical drug delivery particles were applied to discriminate spherical insulin 

impurities from needle shaped insulin crystals.  
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1. Abstract 

Protein crystallization is an attractive method for protein processing and 

formulation. However, minor changes in the crystallization setup can lead to 

changes in the crystal structure or the formation of amorphous protein 

aggregates, which affect the product quality. Only few analytical tools for 

qualitative and quantitative differentiation between protein crystals and 

amorphous protein exist. Electron microscopy requires expensive 

instrumentation, demanding sample preparation, and challenging image 

analysis. Therefore, there is a need to establish other analytical techniques. It 

was the aim of this study to investigate the capability of light obscuration (LO), 

microflow imaging (MFI), and flow cytometry (FC) in differentiating the 

amorphous and crystalline states of insulin as a relevant model. Qualitative 

discrimination of the two populations based on the particle size was possible 

using LO. Quantitative determination of amorphous protein and crystals by MFI 

was challenging due to overlapping size distributions. This problem was 

overcome by particle analysis based on the mean light intensity. Additionally, 

FC was applied as a new method for the determination of the quality and 

quantity of amorphous protein by differences in the light scattering. Our results 

show the potential of MFI and FC for rapid high throughput screening of 

crystallization conditions and product quality. 

Keywords 

Insulin; crystallization; analysis; proteins; high-throughput technologies; flow 

cytometry; microflow imaging; light obscuration; microscopy 

 

2. Introduction 

Crystallization is an important protein processing, formulation, and delivery tool, 

which is actively investigated at both the academic and industrial levels. This is 

because crystallization offers a wide field of application, including 

controlling/prolonging drug release,[1, 2] reducing the viscosity of highly 
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concentrated solutions by using crystal suspensions,[3] or increasing the protein 

stability.[1, 2, 4] However, it also offers a number of challenges, including the 

need to identify protein-friendly crystallization-processing conditions. Among the 

problems in protein crystal development is the fact that minor changes in 

crystallization conditions (changes in temperature, pH, concentration of 

additives, or mechanical treatment) can lead to changes in the product quality, 

such as changes in crystal morphology, size, stability, or even precipitation of 

the protein in an amorphous form [1, 5]. Rapid evaluation of the product quality 

is difficult, as there are still very few analytical methods for the quantitative 

characterization of protein crystals. The methods are traditionally divided into 

those that characterize morphology, and those that prove crystallinity. For the 

assessment of particle morphology and size distribution, microscopy, 

particularly electron microscopy is the most common method to analyze protein 

crystals.[6] Despite the strength of electron microscopy, it is a time consuming, 

low-throughput method that requires expensive instrumentation and nontrivial 

image analysis.[7] On the other hand, X-ray diffraction is commonly utilized to 

assess crystallinity, but needs perfectly grown crystals larger than 50 μm.[8] 

Therapeutic protein crystals should be much smaller due to syringeability 

issues.[8] Thus, it would be benefitial to establish different analytical methods, 

which can overcome these drawbacks and allow a simultaneous determination 

of amorphous impurities and proof crystallinity. 

In the current study, we investigated the ability of microflow imaging (MFI) and 

flow cytometry (FC) to rapidly characterize the quality of protein crystals. For 

this purpose, we used insulin as a model protein. Crystalline insulin products 

from different manufacturers have huge market sales and have regulatory 

approval since decades.[8, 9] Minor changes in insulin's crystallization process 

are known to change the crystals' morphology, and foster amorphous 

precipitation.[10] Accordingly, MFI and FC were benchmarked against standard 

methods, namely light obscuration (LO), light microscopy (LM), and scanning 

electron microscopy. 
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3. Materials and Methods 

3.1. Insulin 

Insulin in crystal form (Insuman® basal) was a kind gift from Sanofi–Aventis 

(Frankfurt am Main, Germany). Human insulin (Humulin) (100 I.E. injection 

solution) from Lilly (Gießen, Germany) was purchased from the market. 

Lysozyme from chicken egg white as lyophilized powder (protein > 90%, > 

40,000 units/mg protein) was purchased from Sigma–Aldrich (Taufkirchen, 

Germany). Sodium acetate (USP standard, analytical quality) was obtained 

from Merck (Darmstadt, Germany). Sodium chloride (AnalaR NORMAPUR) was 

obtained from VWR Prolabo (Leuven, Belgium). Zinc chloride was purchased 

from Ceasar & Lorenz (Hilden, Germany). 

 

3.2. Amorphous Precipitation of Insulin 

Amorphous insulin precipitates were obtained by mixing human insulin with a 

saturated zinc chloride solution in highly purified water at a 1:2 ratio. 

 

3.3. Light Microscopy 

For microscopy, a Biozero BZ-8000 microscope from Keyence (Neu-Isenburg, 

Germany) was used. The application BZ viewer was employed for analysis 

purposes. The samples were covered with glass cover slides. Examinations 

were carried out at 400-fold magnification. 

 

3.4. Scanning Electron Microscopy 

A JEOL JSM 6500F scanning electron microscope (Jeol Ltd., Tokyo, Japan) 

with Inca Software (Oxford instruments, Oxfordshire, UK) was utilized for 

particle morphology confirmation. Samples were sputtered with carbon after 
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sample fixing with selfadhesive tape on aluminum stubs. Samples were viewed 

at a magnification of 2000–11,000-fold. 

 

3.5. Light Obscuration 

A PAMAS SVSS-C40 (PAMAS GmbH, Rutesheim, Germany) light-blockage 

system was utilized to size (1–200 μm) and count particles. Particle count was 

classified into 16 different size ranges. The rinsing volume was set to 0.5 mL 

and the measurement volume to 0.3 mL. 

 

3.6. Microflow Imaging 

Particle size and mean intensity was measured using a MFI system from 

Brightwell Inc. (Ottawa, Canada). A constant particle stream was confirmed by 

utilizing a peristaltic pump. The sample volume was set to 1 mL. Calibration was 

performed with 5 μm polystyrene particle standards (Thermo Scientific, 

Fremont, California). 

 

3.7. Flow Cytometry 

A Bioscience flow cytometer FACS Canto II (Bioscience, Franklin Lakes, New 

Jersey) equipped with forward- and side-scattering laser was utilized to analyze 

protein crystals and amorphous precipitates. Detectors gain and sensitivity were 

optimized to maximize the particle detection. The forward-scatter (FSC) 

detector was set to 231 V and the side-scatter (SSC) detector was set to 191 V. 

 

4. Results 

Insuman® basal is an approved crystalline insulin product, therefore, it was 

chosen as the model crystalline protein. Samples containing crystals and 
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amorphous precipitate were produced by mixing suspended insuman basal 

samples (1 mL) with 2 μL of precipitated human insulin to simulate product 

impurities. This setup was employed for all analytical assessments. 

Light microscopy and scanning electron microscopy were utilized to 

characterize the particle size and shape. Both methods displayed an oblong 

shape for the crystals with a Ferret diameter of 8 μm and width of 1 μm (Figure 

VI-1).Amorphous precipitates appeared as spherical particles sized up to 2 μm 

that tend to form clusters. After mixing of crystals and amorphous precipitates, 

both structures remained unaltered and were easily detectable. However, only 

qualitative information could be obtained from the images. Quantification was 

not possible due to clustering of the particles and the transparency of some 

particles. 

 

A 

 

B 

 

C 

 
D 

 

E 

 

F 

 
Figure VI-1: Light microscopy images of (a) amorphous human insulin, (b) 

insuman basal crystals, (c) mixture of insuman basal crystals and humaninsulin 

amorphous precipitates. The scale bar represents 25μm. Scanning electron 

micrographs of (d) human insulin amorphous precipitates, (d) insuman basal 
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crystals, (f) mixture of insuman basal crystals and human insulin amorphous 

precipitates. 

The different samples were analyzed by LO, a standard method for particle 

characterization. LO measurements of the different protein samples showed 

that they differ in the mean size (1.64 vs. 10.24) and polydispersity index (PDI) 

(2.13 vs. 11.66) (Table VI-1) for the amorphous and crystalline particles, 

respectively (Figure VI-2A and Figure VI-2B). Over 99% of the amorphous 

aggregates were smaller than 4.1 μm (Figure VI-2A), while over 93% of the 

crystalline insulin were larger than 4.1 μm. Thus, two distinct particle fractions 

can be discriminated, even in the mixture of both materials (Figure VI-2C). 

 

Table VI-1. The mean size and polydispersity index of the SVSS-C PAMAS 

Particle Counter (LO) of amorphous insulin aggregates and insulin crystals are 

displayed 

 Mean Size (µm) PDI 
Amorphous aggregates 1.64 2.13 
Crystals 10.24 11.66 
 

A

 
 

B

 
 

C

 
 

Figure VI-2: The SVSS-C PAMAS particle counter (LO) measurement of insulin. 

(a) amorphous insulin aggregates, (b) insulin crystals, (c) mixture of amorphous 

insulin aggregates and insulin crystals. 

The image-analysis-based MFI system detects particles flowing through a 

capillary, where the particle stream is imaged by a camera. Particle size is 
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calculated by the image-analyzing software, which also provides information 

about particle morphology.[11] Besides the particle count, the mean intensity of 

the particle is also assessed. This feature gives information about the optical 

density and can be used as a tool to distinguish between aggregates and 

crystals. 

In contrast to LO, assessment of particle size using MFI does not show a clear 

separation into two different populations. Although the mean size of the 

aggregates is rather small compared with the crystals, (2.92 vs. 10.63, 

respectively), the particle distribution is rather broad (PDI = 10.64 for the 

aggregates and 13.53 for the crystals) (Figure VI-3), so that the two populations 

overlap in the mixture (Figure VI-3G). Thus, analysis of the mean intensity was 

used for better discrimination. The standard MFI software offers the possibility 

to determine the gray scale of the detected objects. The mean intensity is a 

dimensionless number with low values for dark objects. While amorphous 

precipitates show a mean intensity of approximately 801 (Figure VI-3B), the 

crystal values are around 644 (Figure VI-3E), indicating that the crystals appear 

darker in the MFI images. Using this method, two separate populations can be 

easily identified and quantified as shown in (Figure VI-3H). 
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D
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Figure VI-3: MFI size distribution measurements of (a) amorphous insulin 

aggregates, (d) crystalline insulin, (g) mixture of crystalline and amorphous 

insulin. Mean intensity measurements of (b) amorphous insulin aggregates, (d) 

crystalline insulin and (h) mixture of crystalline and amorphous insulin. MFI 

images of (c) amorphous insulin aggregates, (f) crystalline insulin and i) mixture 

of crystalline and amorphous insulin. 

Flow cytometry was used as an additional tool for the analysis of aggregate and 

crystalline insulin particles. FC measurements in the range of 0.5–20 μm of 

protein subvisible particles have already been reported.[12] Results show that 

based on light scattering, one can identify distinct populations in FC dot plots. 

While the protein crystals show relatively high forward and side scatter values, 

the aggregates are expressed in a population with lower forward and side 

scatter values (Figure VI-4), allowing the identification of those impurities in the 

mixture (Figure VI-4C). 
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A 

 

B 

 

C 

 
Figure VI-4: Flow cytometry dot plots of (a) amorphous insulin, (b) insulin 

crystals, (c) mixture of amorphous and crystalline insulin. 

 

5. Discussion 

The product quality of protein crystal suspensions is strongly dependent on 

reproducible production conditions. Minor changes can lead to the precipitation 

of amorphous protein aggregates. An appropriate analytical tool should allow for 

the determination of the product's quality and would also quantify the degree of 

impurities. Microscopic techniques are often used to confirm the crystalline 

state. However, the accurate quantification of impurity needs the effort of using 

scanning electron microscopy (including sample preparation) and nontrivial 

image analysis. In contrast to microscopic observations, the methods 

investigated in this study allow rapid quantitative analysis of product quality, and 

are amenable for high throughput analysis, thus allowing the screening of 

protein crystallization conditions or monitoring the crystal quality by frequent in-

process controls. LO was tested as a method that is commonly used in product 

particle analysis. This approach can size particles in the amorphous and 

crystalline state. LO measurements show that amorphous precipitates were in 

the size range of 1–5 μm while crystals show sizes from 4 to 25 μm (Figure 

VI-2A and Figure VI-2B). In our experiments, differentiation between crystals 

and amorphous aggregates was possible based solely on the particle size. 

However, if the particle sizes in other samples were similar or the distributions 
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were broader, a differentiation based solely on the size would have not been 

possible. 

Meanwhile, MFI showed a larger size range for the amorphous aggregates (1–

12 μm) and for the crystals (0.75–26 μm) compared to LO. Such differences 

between MFI and LO were reported previously while measuring standard 

polystyrene particles of different sizes and shapes.[13] One possible reason is 

the lower accuracy of LO for particles smaller than 2 μm. Due to the broad size 

distribution; identification of the crystals and amorphous aggregates based only 

on the particle size was not possible, as both groups overlapped. However, 

using the mean intensity allowed the identification of two separate populations 

based on the fact that the crystals appeared darker than the amorphous 

aggregates. Possible reasons for this can be different refractive indices 

between the crystals and aggregates, or greater thickness (and accordingly 

greater path length) for the crystals, associated with larger light scattering. 

Flow cytometry was also used in this study. The use of this tool was described 

before in the context of protein aggregate analysis or contamination with 

silicone oil in biopharmaceutical products.[12-14] The flow cytometer can 

measure large particle numbers in a very short time frame (up to 5000 

particles/s). This single-particle measurement method can analyze size ranges 

from 0.5 to 100 μm. To our best knowledge, this is the first reported use of flow 

cytometer for differentiation of protein crystals and amorphous precipitates. FC 

measurements expressed as dot plots show the aggregates as a population 

with relatively low forward and side scatter (Figure VI-4). Contrary, the oblong 

protein crystals show a different scattering pattern dependent on the orientation 

of the crystal with respect to the incident light beam, with higher forward and 

side scatters (Figure VI-4). These results allow for qualitative, quantitative, and 

clear discrimination between insulin crystals and amorphous precipitates. 
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6. Conclusion 

The presented study shows the potential applicability of MFI and FC for the 

differentiation between crystalline and amorphous protein precipitates and the 

assessment of crystalline protein quality. MFI and FC are rapid and reliable 

methods, which provide quantitative and statistically valuable information. To 

the best of our knowledge, MFI and flow cytometry were used for the first time 

for the determination of amorphous impurities in protein crystal suspensions. 

The presented tools open new possibilities in industrial early-phase 

crystallization screening as well as large-scale product quality control of 

crystalline biopharmaceutical products. 
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VII. Chapter 7 
 

Summary  

Micro- and nanoparticles are extensively investigated as drug delivery systems 

(DDSs) since the 1970s. Researchers have increased the performance of DDSs 

by tailoring their design parameters, like size, surface chemistry and flexibility. 

However, particle shape was usually neglected. The purpose of the current 

thesis is to contribute to fill that gap.  

A reproducible method to fabricate non-spherical particles was established and 

a number of analytical methods were developed to characterize particle shape 

in the different size ranges. In a second step, the impact of particle shape on 

the immune system was investigated using a macrophages cell line and a 

dendritic cell line.  

The influence of particle shape on immune cells was insufficiently described in 

literature with two possible outcomes. Firstly, a non-spherical particle shape 

reduces uptake into phagocytic cells like macrophages and secondly, a non-

spherical shape triggers immune cell activation. Therefore, the in-vitro 

experiments were divided into two parts: Particle uptake was investigated with a 

macrophages cell line, immune cell activation was investigated with a dendritic 

cell line. 

In the general introduction (chapter 1) the latest fabrication methods for non-

spherical particles are summarized and evaluated towards large scale 

production capabilities. Non-spherical particles require complementary 

analytical techniques to be characterized. In addition, the impact of different 

particle geometries on biological interaction is outlined. Firstly, the influence of 

particle geometry on particle up-take into different phagocytic cells and the bio-

distribution is summarized. Moreover, current research fields like shape 

dependent uptake mechanisms and applications for tumor therapy and 
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vaccination are described. Finally, an expert opinion is given, which discusses 

key challenges and future trends of non-spherical drug delivery systems.  

In the early stage of the project (chapter 2) the simple but reproducible film-

stretching method was established in our laboratory to fabricate elongated 

micro-and nanoparticles. In a second step those non-spherical particles were 

characterized. In the past electron microscopy was usually the only applied 

analytical method to investigated particle shape. However, it is expensive, 

requires demanding sample preparation, and analyzes only a small fraction of 

the complete particle population. Therefore, we used our well-defined non-

spherical particles to establish innovative high throughput methods to close the 

analytical gap for non-spherical particles. For example, the micro flow imaging 

technique was utilized to analyze non-spherical particles in the range of 5 – 10 

µm. In addition, flow cytometry was used to analyze particle shape in the range 

of 2 – 10 µm and asymmetric flow field flow fractionation to characterize particle 

shape in the range of 20 – 200 nm.  

In chapter 3 the versatile asymmetric flow field flow fraction method used to 

separate nanoparticles of different shapes. However, the washing procedure 

and the focus sequence of the asymmetric flow field flow fraction method lead 

to the aggregation of the non-spherical nanoparticles. A precise analysis of the 

non-spherical particles was not applicable. Chapter 3 highlights the versatility of 

the AF4 methods, but also controversially discusses the complexity of the 

method, including a demanding method development. 

Following non-spherical fabrication and characterization, the established non-

spherical micro- and nanoparticles were tested in-vitro: 

Chapter 4 describes the comparison of particle up-take into J774.A1 

macrophages of PEGylated and un-PEGylated spherical and non-spherical 

particles. Therefore, spherical and non-spherical micro-and nanoparticles were 

PEGylated. PEGylation as well as stretching particles towards an elongated 

particle shape reduced the incident for internalization by macrophages. A 

combination of the non-spherical shape and PEGylation had an additive effect 
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for the nanoparticles. Chapter 4 highlights the need to combine different drug 

delivery system design parameters to achieve a desirable and tailored biological 

performance.  

In addition to particle up-take, in chapter 5, dendritic cell activation was 

investigated using the dendritic cell line JAWSII. Different vaccine adjuvants 

were adsorbed to spherical and non-spherical micro- and nanoparticles to form 

vaccine delivery vehicles. The adjuvants tested in this thesis were a high 

molecular weight polyI:C, a low molecular weight polyI:C and the Resiquimod 

analogue CL264. Then the different vaccine delivery vehicles were compared 

towards their potential to stimulate the dendritic cells. In our study the high 

molecular weight polyI:C was the most potent adjuvant and nanoparticles 

stimulated the dendritic cells stronger than microparticles. Finally, spherical 

particles stimulated the dendritic cells stronger than the non-spherical particles. 

Consequently, the spherical nanoparticles with adsorbed high molecular weight 

polyI:C were the superior vaccine delivery vehicle.  

Non-spherical particle characterization is not only important in the field of drug 

delivery. Obviously, challenges in the field of protein formulation were not 

directly associated with the topic of this thesis. However, the developed 

methods in Chapter 2 and 3 can be applied to the analytical tool box of protein 

formulation. For example, crystalline insulin is a multi-billion dollar 

pharmaceutical product and contains of non-spherical needle shaped crystals. 

In contrast, amorphous insulin impurities display a spherical shape. In chapter 6 

the characterization methods of chapter 2 were applied to biologics 

manufacturing quality control. Therefore, microscopy, micro flow imaging, and 

flow cytometry were utilized to identify and quantify spiked-in spherical insulin 

impurities in crystalline insulin suspensions.  

Taking together the conclusions of all chapters, non-spherical particles were 

reproducibly fabricated and characterized. The impact of particle shape on the 

interaction with macrophages and dendritic cells was studied. A remarkable 

difference between the non-spherical and spherical particles was observed in-
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vitro. Particle shape has the potential to play an important design parameter in 

future of drug delivery systems. 



 

 129 

VIII. Appendix 

Publications Associated with this Thesis: 
 

Mathaes, R., Winter, G., Besheer, A.*, & Engert, J.*ǂ (2014). Non-spherical 

micro- and nanoparticles: fabrication, characterization and drug delivery 

applications. Expert Opinion on Drug Delivery, 2014. 12(3): p. 481-492. 

 

Mathaes, R., Winter, G., Engert, J.*, & Besheer, A.* ǂ (2013). Application of 

different analytical methods for the characterization of non-spherical micro-and 

nanoparticles. International Journal of Pharmaceutics, 453(2), 620-629. 

 

Mathaes, R., Winter, G., Besheer, A.* ǂ, & Engert, J.*ǂ (2014). Influence of 

particle geometry and PEGylation on phagocytosis of particulate carriers. 

International Journal of Pharmaceutics, 465(1), 159-164. 

 

Mathaes, R., Winter, G., Siahaan, T., Besheer*,A., Engert*ǂ,J., Influence of 

particle size, geometry, and adjuvants on dendritic cell activation, (this 

manuscript is in the submitted for publication to the European Journal of 

Pharmaceutics and Biopharmaceutics.) 

 

 

 



 

 130 

Additional Publications Written During the research 
period  (not directly associated with this thesis) 
 

Mathaes, R.*, Hildebrandt, C.*, Winter, G., Engert, J.°, & Besheer, A°ǂ. (2013). 

Quality Control of Protein Crystal Suspensions Using Microflow Imaging and 

Flow Cytometry. Journal of Pharmaceutical Sciences, 102(10), 3860-3866. 

 

Nishi, H., Mathäs, R., Fürst, R.,  Winter, G. (2014). Label-Free Flow Cytometry 

Analysis of Subvisible Aggregates in Liquid IgG1 Antibody Formulations. 

Journal of Pharmaceutical Sciences, 103(1), 90-99. 

 

Liebner, R., Mathaes, R., Meyer, M., Hey, T., Winter, G., Besheer, A. (2014). 

Protein HESylation for half-life extension: Synthesis, characterization and 

pharmacokinetics of HESylated anakinra. European Journal of Pharmaceutics 

and Biopharmaceutics, 87(2), 378-385. 

 

Deng, Y., Mathaes, R., Winter, G., Engert, J. (2014). Encapsulation of antigen-

loaded silica nanoparticles into microparticles for intradermal powder 

Injection. European Journal of Pharmaceutical Sciences, 63, 154-166. 

 

Kalonia, C., Kumru, OS., Prajapati, I., Mathaes, R., Engert, J., Zhou,S., 

Middaugh, RC. and Volkin, DB (2014). Calculating the Mass of Subvisible 

Protein Particles with Improved Accuracy Using Microflow Imaging 

Data. Journal of Pharmaceutical Science, 104 (2), 536-547. 

 



 

 131 

Hildebrandt, C.*, Mathaes, R.*, Saedler, R., Winter, G. Origin of aggregate 

formation in antibody crystal suspensions containing PEG, (this manuscript is in 

the submission process for publication.)  

 



 

 132 

IX. Curriculum Vitae 
 

Roman Mathäs 

Wohnhaft in Basel 

Geboren am 15. Jan 1985 

In Mainz 

 

08.2014 bis heute  Roche, Basel    

01.2011 - 06.2014  Wissenschaftlicher Mitarbeiter: AK Prof. Winter 

Promotion am Lehrstuhl Pharmazeutische 

Technologie und Biopharmazie der Ludwigs-

Maximilian Universität München  

10.2012 - 05.2014  MBA-Fernstudium: General Management 

    University Cardiff und Fernuniversität Hagen 

05.2010 - 11.2010  Praktisches Jahr, Roland Apotheke, Berlin 

11.2009 - 05.2010  Praktisches Jahr, Kings College London 

10.2005 - 11.2009  Pharmaziestudium Philipps-Universität Marburg 

06.2004 - 06 2005  Zivildienst, Deutsches Rotes Kreuz, Mainz  

06.1991 - 04.2004  Schule, St. Katharinen Gymnasium, Oppenheim 

 
 


	I. Chapter 1
	Aim of This Thesis
	Non-spherical Micro- and Nanoparticles: Fabrication, Characterization and Drug Delivery Applications
	1. Abstract
	2. Introduction
	3. Particle fabrication
	3.1. Non-wetting templates
	3.2. Microfluidic systems
	3.3. Film-stretching
	3.4. Template-assembly
	3.5. Further techniques
	4. Characterization of non-spherical particles
	4.1. Scanning electron microscopy (SEM)
	4.2. Microflow imaging (MFI)
	4.3. Flow cytometry
	4.4. Asymmetric flow field flow fractionation (AF4)
	5. Biological Interactions
	5.1. Particle uptake and uptake mechanism
	5.2. Blood circulation time
	5.3. Biodistribution
	6. Applications
	6.1. Vaccination
	6.2. Drug Delivery
	7. Conclusion
	8. Expert opinion
	9. References

	II. Chapter 2
	Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles
	1. Abstract
	2. Introduction
	3. Materials and methods
	3.1. Particles
	3.2. Preparation of non-spherical particles
	3.3. Electron microscopy
	3.4. Light obscuration
	3.5. Micro-flow imaging (MFI)
	3.6. Vi-Cell XR Coulter Counter
	3.7. Flow cytometry
	3.8. Asymmetric flow field flow fraction (AF4) system
	3.9. Dynamic light scattering (DLS)
	3.10. Calculation of the polydispersity index (PDI)
	4. Results
	5. Discussion
	6. Conclusion
	7. Acknowledgements
	8. References

	III. Chapter 3
	Lesson learned: Shape characterization of differently shaped nanoparticles by asymmetric flow field flow fractionation
	1. Introduction
	2. Materials and Methods
	2.1. Materials
	2.2. Non-spherical particle preparation
	2.3. Transmission electron microscopy (TEM)
	2.4. Asymmetrical flow field flow fraction (AF4)
	2.5. Dynamic Light Scattering (DLS)
	3. Results
	4. Discussion
	5. Conclusion
	6. Acknowledgements
	7. References

	IV. Chapter 4
	Influence of particle geometry and PEGylation on phagocytosis of particulate carriers
	1. Abstract
	2. Graphical abstract
	3. Introduction
	4. Materials and Methods
	4.1. Particles
	4.2. Preparation of non-spherical particles
	4.3. Scanning electron microscopy
	4.4. Light obscuration
	4.5. Dynamic Light Scattering (DLS)
	4.6. Differential Scanning Calorimetry (DSC)
	4.7. Surface modification of particles by PEGylation
	4.8. Determination of fluorescence stability incorporated into micro- and nanoparticles
	4.9. Macrophage cell line
	4.10. Uptake of PLGA particles into macrophages
	4.11. Endotoxin determination
	4.12. Flow cytometry
	4.13. Confocal Microscopy
	4.14. Statistical significance
	5. Results
	6. References

	V. Chapter 5
	Influence of particle size, geometry, and adjuvants on dendritic cell activation
	1. Abstract
	2. Introduction
	3. Materials and Methods
	3.1. Micro- and nanoparticles
	3.2. Non-spherical micro- and nanoparticle fabrication
	3.3. Scanning electron microscopy (SEM)
	3.4. Light obscuration
	3.5. Dynamic light scattering
	3.6. Fluorescence stability on polystyrene micro- and nanoparticles
	3.7. Adjuvant loading on polystyrene micro- and nanoparticles
	3.8. Colloidal stability of polystyrene particle adjuvant complexes in water and culture media
	3.9. JAWSII dendritic cell (DC) line
	3.10. JAWSII dendritic cell (DC) stimulation
	3.11. JAWSII dendritic cell staining
	3.12. Cell analytics by flow cytometry
	3.13. Dimethylthiazol-yl-diphenyltetrazoliumbromid (MTT) cell viability assay
	3.14. Statistical significance
	4. Results
	4.1. Particle characterization
	4.2. Particle uptake into JAWSII dendritic cells
	4.3. JAWSII DC activation
	5. Discussion
	6. Conclusion
	7. References

	VI. Chapter 6
	Quality Control of Protein Crystal Suspensions Using Microflow Imaging and Flow Cytometry
	1. Abstract
	2. Introduction
	3. Materials and Methods
	3.1. Insulin
	3.2. Amorphous Precipitation of Insulin
	3.3. Light Microscopy
	3.4. Scanning Electron Microscopy
	3.5. Light Obscuration
	3.6. Microflow Imaging
	3.7. Flow Cytometry
	4. Results
	5. Discussion
	6. Conclusion
	7. Acknowledgments
	8. References

	VII. Chapter 7
	Summary

	VIII. Appendix
	Publications Associated with this Thesis:
	Additional Publications Written During the research period  (not directly associated with this thesis)

	IX. Curriculum Vitae

