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I INTRODUCTION  

Anaplasma phagocytophilum (Ap) is a gram-negative, obligate intracellular bacterium that is 

able to infect different animal species and humans worldwide. Based on DNA sequencing, Ap 

has newly been reallocated from the genus Ehrlichia to the genus Anaplasma in the family 

Anaplasmataceae (DUMLER et al. 2001). In humans and animals, the clinical signs of Ap 

infection vary from mild symptoms to severe clinical outcomes, including death. However, the 

disease generally presents as undifferentiated fever accompanied by leucopenia, 

thrombocytopenia and increased serum transaminase activities (DUMLER et al. 2005; 

DUMLER et al. 2007; RIKIHISA 2011).  

Hard-bodied ticks of the genus Ixodes (family Ixodidae) are the main vectors for Ap 

dissemination. Compared to other pathogens such as Neorickettsia and Wolbachia spp., which 

can be transmitted from adult ticks to their offspring, Anaplasma and Ehrlichia spp. are the 

only Rickettsiales that are not transmitted transovarially (RIKIHISA 2011). Thus, ticks need to 

acquire Ap through blood feeding from infected hosts to complete the life cycle of Ap. During 

attachment of the tick, the bacterium is released by salivary secretion and is transmitted to the 

host. It is known that Ap multiplies within membrane-bound vacuoles (or called ‘morulae’) in 

the cytoplasm of peripheral granulocytes. The binding and infection of bacteria depends on the 

tetrasaccharide sialyl Lewisx (sLex or CD15s) of P-selectin glycoprotein ligand 1 (PSGL-1) on 

the surface of host cells, a factor expressed on peripheral granulocytes and HL-60 cells 

(GOODMAN et al. 1999; HERRON et al. 2000; RENEER et al. 2006; RENEER et al. 2008).  

Only little information is known about the transmission pathway of Ap after tick bite in the 

very early stage of infection. It is described that Ap is able to evade and replicate within 

microvascular endothelial cells in vitro (MUNDERLOH et al. 2004), while endothelial cells 

lining the inner lumen of blood vessels allow them to easily interact with any circulating blood 

cells. Since granulocytes do not return back to the blood stream after extravasation, it is 

reasonable to postulate that Ap evades and replicates within microvascular endothelial cells in 

the initial transmission, and subsequently transmits into peripheral granulocytes for ongoing 

dissemination.  

Therefore, the objective of the study was to establish a flow culture model that mimics the 

physiological environment in the blood vessel to study the possible transmission pathway of Ap 

between endothelial cells and polymorphonuclear leukocytes (PMNs). For this purpose, a 
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novel ex vivo flow culture system was established. For experimental setup, human 

microvascular endothelial cell line (HMEC-1) and primary human dermal microvascular 

endothelial cells (HDMEC) were used. Under static conditions, Ap evades endothelial cells 

within 24 h, supporting the hypotheses that endothelial cells might be the first infection site of 

the pathogen in the host. Thereby a high level of interleukin-8, a chemokine that is known to 

recruit PMNs, secreted by Ap-infected endothelial cells was detected. Using the investigated 

flow culture model, it was shown for the first time, that Ap is able to translocate from 

endothelial cells to PMNs under dynamic flow conditions. Furthermore, under defined shear 

stress, an increased binding of PMNs to Ap-infected endothelial cells monolayer was observed, 

resulting from the elevated expression of adhesion molecules associated with PMNs 

recruitment on endothelial cells. 

The flow culture model investigated in this study can be used to study the interaction between 

Ap-infected endothelial cells and PMNs under physiological flow conditions, and is therefore 

helpful to study the infection mechanism in the early stage of Ap dissemination in the host.   
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II REVIEW OF THE LITERATURE 

 Historical Background of Anaplasma phagocytophilum (Ap) 1

A. phagocytophilum (Ap) was first recognized as the infectious entity of a distinct tick-

transmitted disease of sheep in Scotland in 1932 by Macleod (MACLEOD 1932). Later the 

pathogen was demonstrated as the causative agent of the illness (tick-borne fever) in sheep by 

Gordon in 1940 and in cattle by Hudson in 1950 (WOLDEHIWET 1983). The first equine 

granulocytic anaplasmosis (formerly equine granulocytic ehrlichiosis) was reported as a 

disease of horses in California by Gribble and Stannard in 1969 (GRIBBLE 1969; 

STANNARD et al. 1969). Until today the epidemic areas of equine granulocytic anaplasmosis 

(EGA) include the United States, Europe, Asia and Northern Africa (DZIEGIEL et al. 2013). 

Dogs were first identified with Ap infection in California in 1982 (MADEWELL et al. 1982). 

Beside the United States, the canine granulocytic anaplasmosis (CGA) has been found in 

Germany, Italy, Poland, Spain, Sweden, Switzerland, UK and Japan (CARRADE et al. 2009). 

The first human granulocytic anaplasmosis (HGA) was described in 1990 in a patient from 

Wisconsin presenting a febrile illness accompanied by granulocytic cytoplasmic morulae in the 

peripheral blood (CHEN et al. 1994). HGA has become a notifiable disease in the United States 

since 1998, and the number of reported cases of anaplasmosis increased by approximately 

50 %, from 1761 cases in 2010 to 2575 cases in 2011 (ADAMS et al. 2013).  

 

 Etiology 2

2.1 Cell Morphology and Development Stages 

Ap is a small gram-negative, obligate intracellular bacterium. However, Gram staining is not 

suitable to visualize intracellular bacteria because of low contrast against the cytoplasm. 

Therefore Romanowsky staining is generally used, such as Wright-Giemsa staining dye that 

allows staining the bacteria in dark-blue to pale-blue in the infected cells (DUMLER et al. 

2007; RIKIHISA 2011). Ap replicates in membrane-bound vacuoles within the cytoplasm of 

peripheral granulocytes (mainly neutrophils), and other eukaryotic host cells such as 

endothelial cells and tick cells. Such membrane-bounded vacuoles are generally 1.5 to 2.5 µm 

in diameter but can be as large as 6 µm (POPOV et al. 1998). The size of a single bacterium is 

generally 0.4 to 1.3 µm, and up to 2 µm in diameter (POPOV et al. 1998; RIKIHISA 2011). 
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Electron microscopy analysis shows two morphological cell forms of Ap in mammalian and 

tick cell cultures. First, the larger coccoid or elongated reticulate cells (RC1; 0.4 - 0.6 × 0.7 - 

1.9 µm, Ø; Figure 1a) that are characterized by ribosomes and DNA strands that are spread 

over the entire cytoplasm. Second, the smaller coccoid dense-cored cells (DC2; 0.4 - 0.6 µm, Ø, 

Figure 1b) that are distinguished by ribosomes and DNA that are localized to the center of the 

cell (POPOV et al. 1998; MUNDERLOH et al. 1999; RAR et al. 2011). Both morphological 

cell forms have two layers of cell membranes comprising a smooth inner membrane and an 

irregular and loose outer membrane. The folding of the membranes leads to the enlargement of 

the periplasmic space (POPOV et al. 1998). The pathophysiology role of each form in the 

pathogenesis of Ap infection is unclear (TROESE et al. 2009). However, it is believed that both 

types are developmental stages similar to those described for other intracellular bacteria such 

as Chlamydia species (MUNDERLOH et al. 1999). Thus far, it is described that Ap undergoes 

a biphasic developmental cycle between an infectious DC form and a non-infectious replicating 

RC form (TROESE et al. 2009; TROESE et al. 2011).  

 

Figure 1: Two different morphotypes of Ap representing within tick cells 

Cited from Dyachenko at al. (DYACHENKO et al. 2013) 
a RC (5000×) and b DC (10000×) of Ap (ApMuc01c, isolated from a canine blood sample) within the 
membrane-bound vacuoles in the cytoplasm of IRE/CTVM20 cells (Ixodes ricinus-derived cell line). 

2.2 Taxonomy of Ap 

Ap was previously referred to as Ehrlichia phagocytophila (mostly prevalent in Europe, the 

cause of tick-borne fever in ruminants), Ehrlichia equi (mostly prevalent in Western United 

Sates in horses) and the HGE agent in humans (the agent of human granulocytic ehrlichiosis 

                                                
1 RC: reticulate cell form 
2 DC: dense-cored cell form 

A B 
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worldwide) (WOLDEHIWET 2010). Based on molecular analysis of bacterial 16S rRNA and 

groESL gene sequences, Ap has been reclassified to the genus Anaplasma, in the family 

Anaplasmataceae in the order Rickettsiales (Figure 2) (DUMLER et al. 2001). The other 

bacterial species in the genus Anaplasma comprise: A. marginale, A. centrale and A. bovis 

causing diseases in bovine and wildlife animals, A. platys causing cyclic thrombocytopenia in 

dogs, A. ovis causing diseases in sheep, goats and wild ruminants (DUMLER et al. 2001; RAR 

et al. 2011; RIKIHISA 2011). However, the 16S rRNA gene sequences of A. marginale, A. 

central and A. ovis shown a minimum of 99.1 % similarity, suggesting the possibility that they 

represent different subspecies (THEILER 1911; DUMLER et al. 2001).     

 

Figure 2: Current taxonomic classification of genera in the family Anaplasmataceae 

Modified from Dumler et al. (DUMLER et al. 2005) 
The phylogram is constructed based on the 16S rRNA sequences of these species. The distance bar 
represents substitution per 1,000 bp 3. E. coli, Escherichia coli. 

                                                
3 bp = base pair(s) 
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2.3 Life Cycle of Ap 

The life cycle of Ap is subdivided into the reproduction stages in the Ixodes ticks (hard-bodied 

ticks) and susceptible vertebrate animals and the transmission cycle, in which the pathogen is 

spread among different individuals by Ixodes ticks (RIKIHISA 1991; RAR et al. 2011). It was 

recently demonstrated that transplacental transmission in mammals occur and may play a role 

in the transmission pathway (REPPERT et al. 2013). That is underlined by experiments, in 

which a mother sheep was experimentally infected with Ap, resulting in a lamb that was also 

infected with Ap after birth (REPPERT et al. 2013). There is no evidence that transovarial 

transmission occurs during Ap reproduction in ticks (HOTOPP et al. 2006). Once Ixodes ticks 

acquire the bacterium from infected mammals, ticks are able to maintain the pathogen from the 

larva or nymph stage to adults. Ap first enters the tick midgut epithelium, where their primary 

replication takes place and then moves to the secretory salivary acini in the tick salivary glands 

(TELFORD et al. 1996). Afterwards, Ap is transmitted to the mammalian host from the 

salivary glands during tick feeding (REUBEL et al. 1998; FELEK et al. 2004). Experimentally, 

uninfected larval ticks begin to acquire Ap from infected mice within 24 h of attachment. 

Infected nymphal ticks are able to transmit Ap to the host within 24 h (DES VIGNES et al. 

2001) to 48 h after attachment (HODZIC et al. 1998a; KATAVOLOS et al. 1998). Ap is 

naturally maintained in a cycle (Figure 3) between ticks and wild animals such as deer and 

rodents (RIKIHISA 2011). 
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Figure 3: Proposed life cycle of Ap 

Cited from Rikihisa (RIKIHISA 2011)  
Diverse strains of Ap (e.g. A - F) exist in nature; susceptibilities of mammalian species to Ap vary. The 
animal species susceptibility to putative Anaplasma strains shown is a proposal, most of which has not 
been proven experimentally. 
Humans are only susceptible to some strains. Therefore humans are considered dead-end host of Ap. 

 Epidemiology 3

 Transmission Vectors, Global Distribution and Prevalence 3.1

Ticks in the genus Ixodes are the main vectors for transmission of Ap to mammalian hosts 

(BAKKEN et al. 2008). The worldwide distribution of Ap infection follows the local 

distribution of its primary tick vector Ixodes spp. (see Figure 4). Several studies used PCR 

methodology to detect Ap in different tick species. The DNA of Ap was detected in 

I  scapularis (black-legged tick), I. pacificus (western black-legged tick) and I. spinipalpis in 

the United States, I. ricinus (castor bean tick) in Europe (VON LOEWENICH et al. 2003; 

SCHORN et al. 2011; WALLMENIUS et al. 2012) and I. persulcatus (taiga tick) in Russia 
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(RAR et al. 2005), China (CAO et al. 2003) and other Asian countries (OHASHI et al. 2005). 

Recently human-to-human transmission (nosocomial transmission) is reported to possibly 

occur in China in 2008 (ZHANG et al. 2008a). However, ticks are still the main transmission 

vector of Ap and naturally infected reservoir hosts are thought to be necessary to complete the 

life cycle of bacteria (RIKIHISA 2010). Different methods were developed to investigate the 

prevalence of Ap infection in mammals and ticks. In Germany, Ap recently was detected in 

tissue samples from red foxes (Vulpes vulpes, 8.2 %) and raccoon dogs (Nyctereutes 

procyonoides, 23 %) by real-time PCR (HARTWIG et al. 2014). In southern Germany, a 

significantly higher prevalence of HGE antibodies was present among humans at high risk 

areas for exposure to ticks compared with low risk areas (11.4 - 14 % vs 1.9 %) (FINGERLE et 

al. 1999). However, DNA of Ap was detected in only 1.6 % of the investigated ticks, indicating 

a low prevalence of Ap in ticks compared to relatively high prevalence of B. burgdorferi DNA 

(FINGERLE et al. 1999). For certain, the overall prevalence of Ap in ticks in Europe varies 

depending on different areas in which ticks are collected (MYSTERUD et al. 2013).  

Ap infection in Eurasia was mainly reported as tick-borne fever in sheep, cattle, goats and 

horses (STUEN et al. 2013). Although being increasingly detected in animals, the number of 

clinically apparent human granulocytic anaplasmosis is small (HUHN et al. 2014). A latest 

research using multilocus sequence typing (MLST) method showed that 380 of investigated Ap 

strains from humans and animals from Europe belong to the same clonal complex (HUHN et 

al. 2014). While canine and equine granulocytic anaplasmosis occurs frequently in Europe, 

therefore, human granulocytic anaplasmosis in Europe is likely to be underdiagnosed (HUHN 

et al. 2014). In endemic areas, the seroprevalence of Ap-specific antibodies in humans is still 

high (STRLE 2004). Ap antibodies were found in 2 - 28 % of the examined people in Europe 

(STRLE 2004), and in 8.8 - 20 % of individuals at high risk for exposure to ticks and animals 

in China (ZHANG et al. 2008b; ZHANG et al. 2009). From public health considerations, dogs 

that have been infected with Ap should be carefully considered, even though the potential for 

dogs and other domestic animals to be zoonotic risk for human Ap infection is not known 

(GREENE 2012). 
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Figure 4: Approximate worldwide geographic distributions of four Ixodes spp. tick vectors of Ap 
and their overlapping regions 

Cited from Greene CE (GREENE 2012) 
In the United States, I. scapularis is found in the Northeast and upper Midwest, and I. pacificus in the 
western states. In Eurasia, I. ricinus and I. persulcatus are the main vectors of Ap. 

 Host range and Reservoirs of Ap 3.2

Since a transovarial transmission of Ap in Ixodes ticks has not been yet demonstrated, Ap 

cannot be passed effectively from infected adult Ixodes ticks to eggs. Consequently, tick larvae 

are not infected (RIKIHISA 2011). Therefore, reservoir hosts are essential to maintain the life 

cycle of the pathogen (RIKIHISA 2011). The host range of Ap varies in different geographical 

regions (STUEN et al. 2013). In the United States, mammalian reservoirs for Ap infection are 

considered to include white-footed mice (peromyscus leucopus), dusky-footed woodrats 

(Neotoma fusipes), raccoons (procyon lotor), gray squirrels (Sciurus carolinensis), gray foxes 

(Urocyon cinereoargenteus), redwood chipmunks (Tamias ochrogenys) and white-tailed deer 

(Odocoileus virginianus) (RAR et al. 2011; RIKIHISA 2011). The roe deer (Capreolus 

capreolus), red deer (Cervus elaphus) and chamois (Rupicapra rupicapra) are considered as 

main reservoir hosts of Ap infection in Europe (LIZ et al. 2002). The detection of Ap by 

molecular methods in Europe has shown that a wide range of wildlife mammalian species are 

naturally infected with Ap, including voles (Myodes glareolus, Microtus arvalis, 
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Mi. agrestis and Mi. oeconomus), wood mice (Apodemus sylvaticus), yellow-necked mice 

(Apodemus flavicollis), common shrews (Sorex araneus) (LIZ et al. 2000; THOMAS et al. 

2009; RAR et al. 2011), red foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) 

(HARTWIG et al. 2014), wild boars (Sus scrofa) (MICHALIK et al. 2012) and hedgehogs 

(Erinaceus europaeus) (SILAGHI et al. 2012). Interestingly, current research shows that wild 

boars are susceptible to Ap infection but do not show clinical signs, indicating their role as a 

source of Ap transmission (DE LA FUENTE et al. 2012). However, MLST revealed that strains 

from wild boars and hedgehogs belong to the same clonal complex. It indicates that wild boars 

and hedgehogs may serve as reservoirs and their harbored Ap strains are infectious for humans 

and domestic animals in Europe (HUHN et al. 2014). Moreover, four species of birds were 

assessed as potential reservoirs of Ap, including Veery (Catharus fuscescens), Gray catbird 

(Dumetella carolinensis), Wood thrush (Hylocichla mustelina) and American robin (Turdus 

migratorius). Uninfected larval black-legged ticks (I. scapularis) became infected when they 

fed on infected birds (KEESING et al. 2012). The role of birds in dispersing infected ticks in a 

long distance of migration has not been clearly investigated, but one study showed that I. 

ricinus nymphs on migrating birds in Sweden were infected with Ap (BJOERSDORFF et al. 

2001).   

 

 Pathogenesis of Ap Infection 4

 Ap Entry to Host Cells 4.1

4.1.1 Ap Adhesins and Invasins 

Characteristic for obligatory intracellular parasites, Ap resides intracellularly within its own 

unique cytoplasmic membrane-bound vacuole and has a selective tropism for circulating 

neutrophils (DUMLER et al. 1996). For successful infection, Ap organisms must be able to 

attach and to enter host cells in order to survive (RIKIHISA 2011). The pathogens need to 

adhere to host cells, colonize the tissues, invade and multiply in the cells or disseminate to 

other tissues (PIZARRO-CERDA et al. 2006).  

The intracellular pathogen internalization and colonization is mediated by multiple bacterial 

adhesins and invasins that cooperatively recognize host cell receptors and initiate signaling 

cascades to promote infection (TRUCHAN et al. 2013). Adhesins are specific surface proteins 

that mediate bacterial adhesion. They recognize defined receptors on the surface of target host 
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cells, determining tissue tropism of the pathogen (NIEMANN et al. 2004). Invasion allows 

bacteria to evade the cell-mediated or humoral immune response and to proliferate in a well-

protected niche (NIEMANN et al. 2004). Several Ap outer membrane proteins (OMPs) have 

been identified and shown to play a role in mediating attachment to and invasion of 

mammalian host cells (PARK et al. 2003; OJOGUN et al. 2012; KAHLON et al. 2013; 

SEIDMAN et al. 2014).  

Outer membrane protein A (OmpA), also known as peptidoglycan-associated lipoprotein 

(pal), is conserved in most Gram-negative bacteria (GODLEWSKA et al. 2009). One function 

of the protein OmpA is to maintain the integrity of the bacterial outer membrane by interacting 

with peptidoglycan (CASCALES et al. 2002). OmpA (APH_03384, strain: HZ) is described as 

a surface protein in Ap and Ehrlichia chaffeensis (HOTOPP et al. 2006). It is located on the cell 

surface and is transcriptionally induced in Ap-infected ticks during feeding on mice (OJOGUN 

et al. 2012). Pretreatment of Ap with anti-OmpA serum reduces the infection capability of the 

pathogen in HL-60 cells. Glutathione S-transferase (GST)-tagged full-length OmpA and 

OmpA19-74 competitively inhibit the infection of myeloid cells (see Figure 5) (OJOGUN et al. 

2012).  

 

Figure 5: Models of Ap invasion and infection blocked by purified OmpA 
 
Modified from Ojogun et al. (OJOGUN et al. 2012) 
A Ap surface proteins cooperatively bind three determinants of Sialyl LewisX (sLeX) -capped PSGL-1 
receptor to promote bacterial adhesion and entry. B GST-OmpA binds to the α2,3-linked sialic acid 
determinant of sLex and competitively inhibits access of OmpA on the Ap surface resulting in a marked 
decrease in Ap infection.  

 
                                                
4 OmpA family protein, Anaplasma phagocytophilum strain HZ (HOTOPP et al. 2006; LIN et al. 2011) 

A B 
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Asp14 (14-kDa Ap surface protein, APH_02485, strain: HZ) is an outer membrane protein on 

the surface of dense-cored (DC) form of Ap (DUNNING HOTOPP et al. 2006; LIN et al. 

2011). Asp14 is localized on the Ap surface and is expressed during in vivo infection 

(KAHLON et al. 2013). It is transcriptionally induced during transmission feeding of Ap-

infected ticks on mice and is upregulated when the bacteria attach to host cells via the PSGL-1 

receptor (KAHLON et al. 2013). The C-terminal domain at 12 - 24 amino acids of Asp14 

protein plays a critical role in the cellular invasion (KAHLON et al. 2013). The combined use 

of GST-OmpA and GST-Asp14 results in a reduced infection rate of 90 % in HL-60 cells. The 

separate use of the proteins leads to a decrease of infection by 57 - 65 % (OJOGUN et al. 2012; 

KAHLON et al. 2013). Thus it is assumed that strategically targeting Asp14 and OmpA 

together may potentially protect against in vivo infection (KAHLON et al. 2013).  

Msp2 (major surface protein 2, P44) proteins are major immunodominant surface antigens of 

Ap organism. The proteins consist of conserved N- and C-terminal domains and a central 

hypervariable region (ZHI et al. 1999; RIKIHISA 2011). This protein was widely used for 

target antigen in routine diagnostics (ZHI et al. 1997; IJDO et al. 1999; TAJIMA et al. 2000). 

The genome of Ap contains 113 of msp2 (p44)-paralogous genes that encode for Msp2 (P44) 

proteins (HOTOPP et al. 2006). Except of the function as a major immunodominant outer-

membrane protein, Msp2 (P44) also plays a role as an adhesin for Ap entry into granulocytes 

(PARK et al. 2003). Furthermore, pretreatment of Ap with Msp2 monoclonal antibody or 

pretreatment of host cells (HL-60 cells and neutrophils) with recombinant Msp2 protein 

reduced bacterial adhesion to HL-60 cells and neutrophils (PARK et al. 2003). 

Correspondingly, Msp2 (P44) is presumed to match the fucosylated (Fuc-VII) P-selectin 

glycoprotein ligand-1 (PSGL-1), a known ligand of granulocytes for Ap infection (Figure 6) 

(TRUCHAN et al. 2013). However, whether the actual binding occurs between Msp2 (P44) 

and fucosylated PSGL-1 or between PSGL-1 with a structurally related Msp2 (P44) protein is 

not known (PARK et al. 2003; TRUCHAN et al. 2013).    

                                                
5 Hypothetical protein, Anaplasma phagocytophilum HZ (strain: HZ) (HOTOPP et al. 2006; LIN et al. 2011) 
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Figure 6: Ap cellular invasion 

Cited from Truchan et al. (TRUCHAN et al. 2013) 
The infectious dense-cored form of Ap utilizes multiple surface proteins to cooperatively bind PSGL-1. 
OmpA is the only identified Ap invasin that is known to bind α2,3-sialic acid of sLeX tetrasaccharide 
that caps PSGL-1. Binding to PSGL-1 initiates a signaling cascade that involves spleen tyrosine kinase 
(Syk) and phosphorylation of ROCK1 and thus facilitates bacterial internalization. ‘???’ in figure 6, 
unidentified Ap adhesins/invasins or host cell receptors. 

AipA (Ap invasion protein A, APH_09156, strain: HZ), is one of the putative OMPs. It was 

recently shown to be important for bacterial entry into mammalian cells (NELSON et al. 2008; 

SEIDMAN et al. 2014). AipA is localized on the bacterial surface. Its expression is induced (10 

- 20 fold) when Ap changes from the non-infectious RC morphotype to the infectious DC 

morphotype during infection of HL-60 cells (SEIDMAN et al. 2014). Pretreatment of Ap with 

AipA antibody inhibits the invasion of bacteria in host cells (SEIDMAN et al. 2014). 

Furthermore, a combination of antisera targeting AipA, OmpA and Asp14 was shown to 

abolish the infection (SEIDMAN et al. 2014).  

                                                
6 Hypothetical protein, Anaplasma phagocytophilum HZ (strain: HZ) (HOTOPP et al. 2006; LIN et al. 2011) 
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Other Ap hypothetical proteins such as surface-exposed Asp55 (APH_0405), Asp62 

(APH_0404), and ‘dense-cored’ (DC)-associatedAPH_1235 are considered to be involved in 

bacterial adhesion and invasion, even though their receptors are not known so far (GE et al. 

2007; TROESE et al. 2011; MASTRONUNZIO et al. 2012). 

4.1.2 Host Cell Receptor and Internalization Signal 

P-selectin glycoprotein ligand-1 (PSGL-1) is the best characterized Ap receptor on host cells. 

This receptor is found on neutrophils, bone marrow progenitors, and promyelocytic HL-60 

cells (GOODMAN et al. 1999; HERRON et al. 2000). PSGL-1 is capped by an O-glycan that 

is terminally decorated with sialyl lewisx (sLex), a tetrasaccharide that includes α1,3-flucose 

and α2,3-sialic acid (SOMERS et al. 2000). PSGL-1 is not required for binding and infection 

of murine neutrophils. However, sialylation and α1,3-fucosylation of neutrophils are essential 

for binding and infection of murine neutrophils. The infection rate of Fuc-TIV-/- / Fuc-TVII-/- 

mice with Ap is significantly reduced compared to wild-type mice (CARLYON et al. 2003a). 

ROCK1 is a Rho kinase (ROCK) that belongs to the AGC (PKA/PKG/PKC) family of serine-

threonine kinases and is a major downstream effector of RhoA that regulates the actin 

cytoskeleton (SURMA et al. 2011). In general, ROCK plays a central role in the organization 

of the actin cytoskeleton and is mainly involved in regulating of the morphology and 

movement of the cells (SURMA et al. 2011). Infection of promyelocytic HL-60 cells and 

neutrophils with Ap initiates a signaling cascade that involves tyrosine phosphorylation of 

ROCK1, which is associated with P-selectin glycoprotein ligand-1 (PSGL-1) and spleen 

tyrosine kinase (Syk) (THOMAS et al. 2007; TROESE et al. 2009). PSGL-1 blocking 

antibodies and siRNA targeting Syk interfere with ROCK1 phosphorylation in Ap-infected 

cells (THOMAS et al. 2007). Knockdown of either Syk or ROCK1 also markedly impaired Ap 

infection, suggesting that binding to PSGL-1 activates PSGL-1 signaling pathway through Syk 

and ROCK1 resulting in bacterial internalization (THOMAS et al. 2007). Downstream 

signaling pathways following tyrosine phosphorylation of ROCK1 remain to be explored in 

order to understand how bacteria enter into host cells (THOMAS et al. 2007). 

It is also described that Ap adhesion and invasion take place through sialic acid- and PSGL-1-

independent ways that involve β2 integrin and lipid rafts. PSGL-1 independent receptor has 

been shown to be involved during infection of two laboratory Ap strains in the mammalian 

cells (RENEER et al. 2006; SARKAR et al. 2007; RENEER et al. 2008). Strain NCH-1A is 

selected by cultivating strain NCH-1 in HL-60 sLeX -/low cells that defective in sialic acid but 

not fucose (RENEER et al. 2006), whereas strain NCH-1A2 is selected by cultivating strain 
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NCH-1A in HL-60 A2 cells (sLeX-defective HL-60 cells) that are defective in the expression of 

sialylation and Fuc-TVII but not Fuc-TIV (GOODMAN et al. 1999; RENEER et al. 2006). 

Pretreatment of HL-60 cells with anti-sLeX or anti-PSGL-1 antibodies reduces the infection of 

NCH-1A and NCH-1A2 compared to the wild-type NCH-1 strain (RENEER et al. 2006; 

RENEER et al. 2008). It is suggested that these two variants, NCH-1A and NCH-1A2, bind to 

HL-60 cells in a sialic acid- and PSGL-1 independent manner (RENEER et al. 2006). 

Furthermore, PSGL-1 independent entry does not alter NCH-1A2 replication in host cells and 

Syk (spleen tyrosine kinase) is not essential for NCH-1A2 infection of HL-60 cells (RENEER 

et al. 2008). To date, the genetic characterization of NCH-1A2 and the sialic acid- and PSGL-

1-independent pathogen-host receptor interaction are still unclear.  

 

 Intracellular Survival Strategies 4.2

It has recently become evident that Ap has evolved several mechanisms to thwart the innate 

and adaptive immune response. To date, these mechanisms include down-regulation of reactive 

oxygen species (ROS) generation, inhibition of apoptosis, subversion of autophagy, antigenic 

variation of immunodominant surface protein Msp2/P44, nutritional virulence factor and 

manipulation of SUMOylation of host cells (TRUCHAN et al. 2013). 

4.2.1 Down-regulation of Reactive Oxygen Species Generation 

It is known that Ap lacks genes for the biosynthesis of Lipid A (an essential component of 

lipopolysaccharides, LPS) and the biosynthesis of peptidoglycan (LIN et al. 2003) that are two 

important pathogen associated molecular patterns (PAMPs) in most gram-negative bacteria 

(like E. coli). The absence of LPS and peptidoglycan contributes to the disability of Toll-like 

receptors (TLRs) to recognize foreign materials and the lack of a nucleotide-binding 

oligomerization domain (NOD) activation, that are expressed on/in host immune cells such as 

neutrophils (HEDAYAT et al. 2011; SORBARA et al. 2011). Neutrophils are the most abundant 

blood cells and exert their powerful and effective role in antimicrobial responses against 

invading pathogens (KOBAYASHI et al. 2009). Phagocytes such as neutrophils and 

monocytes/macrophages play a primary role in reactive oxygen species (ROS) generation such 

as superoxide anion (O2
-), hydrogen peroxide (H2O2), hydroxyl radical (-OH) and 

hypochlorous acid (HOCl), aiding to the oxidative killing of microorganisms (EL-BENNA et 

al. 2005).  Ap infection does not induce superoxide anion (O2
-) generation in human neutrophils 

but requires HGE contact and protein synthesis in neutrophils (MOTT et al. 2000; WANG et al. 
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2002), HL-60 cells (BANERJEE et al. 2000; MOTT et al. 2002) and murine neutrophils 

(WANG et al. 2002). Ap infection also prevents the superoxide anion (O2
-) by human 

neutrophils or HL-60 cells in response to various stimuli, such as phorbol myristate acetate 

(PMA) (BANERJEE et al. 2000; MOTT et al. 2000; MOTT et al. 2002; IJDO et al. 2004). This 

down-regulation of superoxide production is required for bacterial contact and protein 

synthesis by the neutrophils (MOTT et al. 2000). Contradictorily, another group reported that 

Ap does not inhibit the respiratory burst when PMA was added, but undoubtedly suppress the 

neutrophil respiratory burst (JW et al. 2004). Inhibition is specific in neutrophils, because 

human monocytes can respond to exogenous stimuli in the presence of Ap (MOTT et al. 2000). 

In fact, once internalization finished, the bacterium resides within a protective membrane-

bound vacuole that excludes gp91phox and p22phox membrane proteins, which are essential for 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assembly in neutrophils 

(CARLYON et al. 2004; JW et al. 2004; EL-BENNA et al. 2005).    

4.2.2 Inhibition of Host Cell Apoptosis 

In multicellular organisms, cells that are damaged or are no longer needed are removed by a 

tightly regulated cell suicide process known as apoptosis or programmed cell death (ALBERTS 

2002). This process is mediated by a serial of proteolytic enzymes called caspases, which are 

able to cleave specific proteins in the cytoplasm and nucleus (ELMORE 2007). Caspases exist 

in all cells as inactive precursors or pro-caspases. They are usually activated by a proteolytic 

caspase cascade that is induced through cleavage of other caspases (ALBERTS 2002). Caspase 

activation is mainly regulated by activity of Bcl-2 and IAP protein families in cell apoptosis 

(ALBERTS 2002).  

Ap infection inhibits apoptosis of peripheral blood neutrophils by modulating the extrinsic as 

well as the intrinsic pathway of apoptosis in human (YOSHIIE et al. 2000; GE et al. 2006). 

This prolonged surviving time of neutrophils will benefit Ap dissemination to naive host cells 

(CARLYON et al. 2003b). Many apoptotic-related genes are up-regulated in human neutrophils 

within 1 - 3 h after infection (LEE et al. 2006). The PI3K/Akt7 and NF-κB pathways are 

considered as important survival signaling pathways in neutrophils (ZHU et al. 2006). Ap 

infection activates the PI3K/Akt, NF-κB signaling pathways and enhances expression of the 

anti-apoptotic protein cIAP2 in human neutrophils (SARKAR et al. 2012). Anaplasma 

translocated substrate (Ats-1) was recently shown to prevent etoposide-induced apoptosis after 

translocation into mitochondria in mammalian cells (NIU et al. 2010). Ats-1 is secreted by the 

                                                
7 Phosphatidylinositol 3-kinase/protein kinase-B pathway 
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Type IV secretion system (T4SS) and translocated into mitochondria across five membranes 

(two bacterial membranes, inclusion membrane and two mitochondria membranes) via its 

cleavable N-terminal mitochondrion-targeting presequence by mitochondrial protein transport 

system (NIU et al. 2010). bfl-1, a member of antiapoptotic bcl-2 genes family, was shown to be 

increased in Ap-infected neutrophils and mediates the inhibition of human neutrophil apoptosis 

(GE et al. 2005). Ap infection inhibits caspase 3 enzyme activity and prevents the loss of 

mitochondrial membrane potential in human neutrophils (GE et al. 2005). P38 mitogen-

activated protein kinase (MAPK) phosphorylation (activation) was shown to be involved in 

apoptotic inhibition of Ap-infected neutrophils, and this p38 MAPK signal transduction leading 

to delayed apoptosis is bypassed with active intracellular infection (CHOI et al. 2005). This 

anti-apoptotic effect of Ap infection in ovine neutrophils was also observed in vivo (SCAIFE et 

al. 2003).  

Notably, unlike the anti-apoptotic effect in neutrophils, Ap promotes the apoptosis in HL-60 

cells (BEDNER et al. 1998; KARKI et al. 2011). However, Ap inhibits the apoptosis of ISE6 

tick cells (AYLLON et al. 2013). Reduced expression of spectrin alpha chain or alpha-fodrin 

(CG8) in tick salivary glands and voltage-dependent anion-selective channel or mitochondrial 

porin (T2) in both the gut and salivary glands were recently shown to be involved in the 

inhibition of tick cell apoptosis and Ap multiplication (AYLLON et al. 2013). An E3 ubiquitin 

ligase named x-linked inhibitor of apoptosis protein (XIAP) restricts Ap colonization in I. 

scapularis ticks (SEVERO et al. 2013).  

4.2.3 Subversion of Autophagy 

Autophagy is a ubiquitous eukaryotic cytoplasmic quality and quantity control pathway that is 

essential for survival, differentiation, development and homeostasis (DERETIC 2010). The key 

morphological feature of autophagy is the emergence of membranous organelles called 

autophagosomes (AP) that capture various cytoplasmic targets and deliver them for lysosomal 

degradation in autolysosomes (AL) within the cytosol (DERETIC 2010).  

Several hallmarks of early autophagosomes have been identified in Ap-replicative inclusions, 

including a double-lipid bilayer membrane and colocalization with GFP-tagged LC3 (light 

chain 3) and Beclin 1, the human homologues of Saccharomyces cerevisiae autophagy-related 

proteins Atg8 and Atg6 respectively (NIU et al. 2008). These Ap-induced early 

autophagosomes do not fuse with lysosome to form mature autolysosome (AL) as the absence 

of LAMP-3 (lysosome-associated membrane protein 3), a late endosomal and lysosomal 

marker (NIU et al. 2008). Inhibition of autophagy with the class III PI3K (PI3KC3) inhibitor 3-
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methyladenine (3-MA) does not enhance Ap infection but arrests its growth, indicating Ap-

induced autophagosomes formation is not helpful for innate immune response to defense 

infection but helpful to aid bacterial replication (NIU et al. 2008). Anaplasma translocate 

substrate 1 (Ats-1) is one of two identified type IV secretion effectors of Ap (another is 

ankyrin-rich protein A, AnkA) (RIKIHISA et al. 2010; LIN et al. 2011). Ats-1 was recently 

shown to bind with Beclin 1, a subunit of the class III PI3K and Atg14L and subsequently 

hijack the Beclin 1-Atg14L autophagy initiation pathway for bacterial growth (NIU et al. 

2012). Above all, Ap resides in a membrane-bound compartment and acquires nutrients from 

host cytoplasm in part by subversion of autophagy process (NIU et al. 2008; NIU et al. 2012).  

4.2.4 Cholesterol Acquisition for Proliferation 

As Ap lacks genes for synthesis of lipid A and peptidoglycan, Ap stabilizes its outer membrane 

by incorporating cholesterol from host cells in order to infect host cells (LIN et al. 2003). In 

general, cells acquire cholesterol via two ways, endogenous biosynthesis in the smooth 

endoplasmic reticulum (ER) or mostly low-density lipoprotein receptor (LDLR)-mediated 

uptake from exogenous lipoproteins via endocytosis (BROWN et al. 1986). Data have been 

shown that the uptake of fluorescence-labeled low-density lipoprotein (LDL) was enhanced 

and LDLR expression was upregulated at both mRNA and protein level in Ap-infected cells 

(XIONG et al. 2009). The total amount of host cell cholesterol is increased by 2-fold or more 

and enriched in Ap inclusion in infected HL-60 cells (XIONG et al. 2009). Additionally, LDL 

uptake blocking assay with a monoclonal antibody against LDLR or treatment with cholesterol 

transport inhibitors (like U18666A that blocks LDL-derived cholesterol egress from late 

endosomes or lysosomes) have shown that Ap replication was significantly inhibited (XIONG 

et al. 2009). Thus, Ap acquires cholesterol for its own replication through the low-density 

lipoprotein receptor (LDLR)-mediated uptake pathway (XIONG et al. 2009).  

4.2.5 Selective Targeting of Rab GTPases 

Ras-like GTPase (Rabs) constitute the largest family of small Ras-like GTPases of monomeric 

G proteins with eleven identified members in yeasts and approximately 70 members in humans 

(HUTAGALUNG et al. 2011). Rab GTPases serve as master regulators that regulate many 

steps of membrane transport mechanisms, including vesicle formation, vesicle movement, 

vesicle uncoating, vesicle tethering and membrane fusion (HUTAGALUNG et al. 2011). The 

disturbance of Rab-regulated pathways is involved in infection of several pathogens, like 

Salmonella enterica or Chlamydia pneumonia (CORTES et al. 2007). Rabs and their effectors 
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are known to be targets for infectious microorganisms to evade host defenses, obtain nutrients 

and replicate in an intracellular environment (BRUMELL et al. 2007).  

Ap-occupied vacuole selectively targets Rab GTPases are primarily associated with the 

recycling endosomes (HUANG et al. 2010a). A list of Rab GTPases that have been examined 

and revealed to be recruited to Ap-occupied vacuoles is given in Table 1. 

The hijack of Rab GTPases involved in recycling endosomes allows Ap-occupied vacuole to 

effectively disguises itself as a ‘real recycling endosome’, which is necessary for avoiding 

endosomal maturation and lysosomal fusion (HUANG et al. 2010a). Doing so, the Ap-

containing vacuole provides a means of molecular camouflage and escapes the first wave of 

host defenses and bacterial-killing by neutrophils (HUANG et al. 2010a). This strategy may 

also likely contribute to the biogenesis of the vacuole, such as the acquisition of membrane 

materials, amino acids and cholesterol from the host cells (HUANG et al. 2010a).  
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Table 1: Location and transport functions of Rab GTPases associated with Ap-occupied vacuolesa 

Rab GTPase location(s) function(s) in membrane transportation 

Rab1 ER exit sites, IC ER to Golgi, Golgi to ER, IC to PM 

Rab4A rapid RE clathrin-dependent endocytic recycling 

Rab10 EE to ERC, tubular RE, TGN clathrin-independent endocytic recycling, TGN to PM 

Rab11A ERC, RE, tubular RE clathrin-independent endocytic recycling 

Rab14 EE, ERC, TGN clathrin-independent endocytic recycling, TGN to EE 

Rab22A EE to ERC, tubular RE clathrin-independent endocytic recycling, EE to TGN 

Rab35 tubular RE, rapid RE clathrin-dependent endocytic recycling 

a Data summarized from reference by Huang et al. (HUANG et al. 2010a) 

ER, endoplasmic reticulum; IC, pre-Golgi intermediate compartment; PM, plasma membrane; RE, recycling endosome; EE, early endosome;  
ERC, endocytic recycling center; TGN, trans-Golgi network. 
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4.2.6 Manipulation of SUMOylation of Host Cells 

Protein post-translational modifications (PTMs), such as ubiquitination, phosphorylation and 

acetylation, are known as essential mechanisms used by eukaryotic cells to react rapidly to 

environment changes (ASHIDA et al. 2014). SUMOylation, the covalent attachment of a 

member of small ubiquitin-like modifier (or SUMO) proteins to lysines in target substrate 

proteins, is a reversible and essential post-translation modification step in eukaryotic cells 

(BEYER et al. 2014). SUMO proteins are biochemically similar to ubiquitin, but functionally 

distinct from that involved in ubiquitination and are involved in many different biological 

processes such as protein localization and stability, transcriptional activities, nucleocytoplasmic 

signaling and transport, genome replication, and regulation of gene expression (HAY 2005).  

Pathogen-occupied vacuoles (PVs), derived from host cells and remodeled during 

internalization, are a special cytosolic compartment containing internalized pathogens and are 

optimal niches for intracellular survival (KUMAR et al. 2009). Pathogen-encoded proteins that 

localize to pathogen-occupied vacuolar membranes (PVMs) play a critical pathobiological role 

in providing structural integrity to the PVM, hijacking vesicular traffic, and intercepting host 

signal transduction pathways (HUANG et al. 2010c). Following internalization, Ap resides 

within a host cell-derived vacuole with a two layers membrane while avoiding fusion with 

lysosomes and NADPH oxidases (HUANG et al. 2010c). Based on the advantages of genomic 

sequencing, several Ap-encoded proteins, Ats-1, AptA, APH0032 and AmpA (Ap post-

translationlly modified protein A; formerly APH1387) that are presented on the Ap-occupied 

vacuole membrane (AVM) have been identified (HUANG et al. 2010b; HUANG et al. 2010c; 

SUKUMARAN et al. 2011; HUANG et al. 2012; NIU et al. 2012). Of these few identified 

proteins, AmpA has been previously identified to be expressed throughout bacterial 

intracellular development and localized to the AVM in host cells (HUANG et al. 2010c). 

Recently, Beyer et al. showed that ectopically expressed green fluorescent protein (GFP)-

tagged and endogenous AmpA molecules are poly-SUMOylated, which is consistent with the 

observation that AmpA colocalizes with SUMO2/3 at the AVM in infected cells (BEYER et al. 

2014). Inhibition of SUMOylation by knockdown of Ubc9 (a necessary enzyme for 

SUMOylation) only slightly bolstered Ap infection (BEYER et al. 2014). However, ectopically 

expressed GPF-AmpA but not lysine-deficient GFP-AmpA was shown to serve as a 

competitive agonist against native AmpA in infected cells, implying an important role of 

modification of AmpA lysines during bacterial infection (BEYER et al. 2014).  
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 Immune response to Ap infection 5

In vertebrates, the immune system defends the organism against infection through the 

activation of the innate and adaptive immune system (GIRARDIN et al. 2002). It is described 

that mice infected with Ap do not show clinical signs (HODZIC et al. 1998b; BUNNELL et al. 

1999) but may develop histopathological injury, similar to those that are present in humans and 

horses (MARTIN et al. 2000; MARTIN et al. 2001). The use of laboratory mice to investigate 

host cell-pathogen interactions, infection kinetics, cellular alterations, cytokine profiles and 

immune response has expanded our understanding of Ap biology and pathogenesis 

(BORJESSON et al. 2002a).  

During Ap infection, plasma IFN-γ levels are evaluated 4 h after inoculation in experimentally 

infected mice, implying a rapid proinflammatory response to occur in the meantime (MARTIN 

et al. 2000; MARTIN et al. 2001). A previous study has shown that production of IFN-γ is 

critical for the generation of protection against Ap infection, as its absence renders mice less 

able to control bacterial burden (CHOI et al. 2014). However, IFN-γ also plays an important 

role in the induction of severe immune mediated histopathological damage in Ap-infected 

mice, horses and humans (SCORPIO et al. 2005; DUMLER et al. 2007; SCORPIO et al. 2009; 

BUSSMEYER et al. 2010; DAVIES et al. 2011). IFN-γ is an important proinflammatory 

cytokine, which is necessary for innate immunity and mediates many biological actions such as 

macrophage activation, antimicrobial effector mechanisms and production of proinflammatory 

cytokines, chemokines and reactive oxygen species (PALUDAN 2000). Infection of ifng-/- 

(IFN-γ deficient) mice led to an increased bacterial load in the early phase of the infection and 

inhibition of immune induced inflammation reaction (AKKOYUNLU et al. 2000; MARTIN et 

al. 2001). Infection of NKT-deficient mice (CD1d-/-) with Ap caused a complete loss of hepatic 

inflammatory lesions on days 4 - 7 postinfection compared with infection in wild-type mice 

(unpublished data), implying an involvement of natural killer T (NKT) cells in the early IFN-γ 

generation and further in the immunopathological injury (DUMLER 2012). Interestingly, a 

study using different gene-knockout mice showed that IFN-γ production by natural killer (NK) 

cells is important for initial early step of host immune response against Ap, but not critical for 

pathogen elimination (BIRKNER et al. 2008). In contrast, CD4
+ T cells are strictly 

indispensable to subsequent bacterial clearance, while perforin, Fas/FasL, major cytokines 

from type 1 of T helper cells (Th1 cells) such as IL-12, IFN-γ, and MCP-1 (monocyte 

chemoattractant protein-1) are unexpectedly not important (BIRKNER et al. 2008). The IFN-γ 

production in Ap infected mice is induced through the signal transducer and activator of 
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transcription (Stat1) signaling pathway (CHOI et al. 2013). Compared to wild-type (WT) mice, 

Ap infected Stat1 knockout (KO) mice develop more severe disease resulting in >100-fold 

higher blood and splenic bacterial loads and a stronger proinflammatory reaction (CHOI et al. 

2014). Nevertheless, various infection models with Ap provide evidence that the biological 

basis of the disease’s inflammatory injury is not driven by bacterial load but rather by the host 

innate immune and/or inflammatory response (LEPIDI et al. 2000; MARTIN et al. 2001; 

SCORPIO et al. 2005; BROWNING et al. 2006; SCORPIO et al. 2006; CHOI et al. 2007). 

These results suggest that IFN-γ plays a critical role in the early eradication of Ap, and the 

same as a double-edged sword initiating immune response to play a key role in disease’s 

immunopathological injury (DUMLER 2012). 

The activation of the innate immune system relies on the recognition of pathogen-associated 

molecular patterns (PAMPs) by specific pattern-recognition receptors (PRRs) expressed by 

immune cells (GIRARDIN et al. 2002). Several classes of PRRs including Toll-like receptors 

(TLRs, see Table S1 in appendix) and recently identified cytoplasmic receptors recognize 

distinct microbial components and directly activate immune cells (AKIRA et al. 2006). It is 

shown that only TLR2, but not TLR4 is involved in NF-κB8 translocation in TLR-transfected 

cells upon the infection with Ap in in-vitro-studies (CHOI et al. 2004). However, in vivo data 

demonstrate that mice lacking of TLR2 and TLR4, or even lacking of MyD88, TNF, iNOS are 

unimpaired in their ability to control a systemic infection with Ap (VON LOEWENICH et al. 

2004). Thus the role of TLRs in Ap recognition needs to be further investigated.  

Recently, NOD19 and NOD2, two cytoplasmic proteins containing an NBS-LRR10 motif, have 

been identified as cytoplasmic pattern recognition receptor (PRR) with the function as 

intracellular sensors for ‘inside-in’ signaling following PAMPs recognition (GIRARDIN et al. 

2002). Rip2 (receptor interacting protein-2) is a key adaptor molecule of NOD1 and NOD2 in 

the Nod-like Receptor (NLR) family (MAGALHAES et al. 2011). Sukumaran et al. showed 

that Rip2 transcription was induced in human primary neutrophils infected with Ap as early as 

2 h post-infection and maintain a fourfold increase until 8 h post-infection (SUKUMARAN et 

al. 2005; SUKUMARAN et al. 2012). Moreover, in vivo infection assay using the Rip2 

deficiency mice (Rip2-/- mice) showed an increased bacterial load and a delayed clearance (10-

12 days vs ~20 days) of Ap in the peripheral blood, compared with those in wild-type mice 

(SUKUMARAN et al. 2012). Interestingly, the Ap genome does not encode genes for the 

                                                
8 Nuclear factor kappa-light chain-enhancer of activated B cells 
9 Nucleotide-binding oligomerization domain-containing protein 1 
10 Nucleotide-binding site (NBS) and  leucine-rick repeat (LRR) 
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synthesis of D-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide, which 

are two known bacterial membrane-derived peptidoglycan components (MDP) that interact 

with NOD1 and NOD2 in immune cells (INOHARA et al. 2003; HOTOPP et al. 2006; 

FRANCHI et al. 2009). Thus the key adaptor molecule ‘Rip2’ mediating cytoplasmic PRRs 

NOD1/2 signaling, activated by unknown component of bacterium, plays an important role 

during the early mid-phase of the immune control to Ap (SUKUMARAN et al. 2012).  

It is known that adaptive immunity is important in elimination of pathogens in the late phase of 

infection as well as the generation of immunological memory (AKIRA et al. 2006). Given that 

immunocompetent mice control the infection, whereas immunocompromised severe combined 

immunodeficiency (SCID) mice become persistently infected, it is implied that the adaptive 

immune system provides protection against Ap (VON LOEWENICH et al. 2004). High titers 

of specific antibodies are induced in approximately 40 % of human patients and 44 % of equine 

patients (DUMLER et al. 1998; ARTURSSON et al. 1999). However, the protective role for 

antibody in clearing Ap infection is not demonstrated. One of these mechanisms may be due to 

antigenic variation of immunodominant proteins, Msp2/P44 of Ap (PALMER et al. 2009; 

BROWN 2012). The genome size of Ap strain HZ is 1.47 Mb11, approximately one quarter of 

the size of the E. coli genome (DUNNING HOTOPP et al. 2006). The Ap genome contains 

three copies of omp1, one msp2 locus, two msp2 homologues (which are distinct from P44), 

one copy of msp4 and 113 copies of p44 (or msp2) genes, which are phylogenetically distinct 

from the msp2 of A. marginale (DUNNING HOTOPP et al. 2006). The p44 (msp2) 

homologous genes consist of a single central hypervariable region of approximately 94 amino 

acid residues and N- and C-terminal regions highly conserved among the homologs (ZHI et al. 

1999). During the course of infection, Ap utilizes gene conversion to shuffle about 100 

functional pseudogenes into a single expression cassette of the msp2 (p44) gene, which allows 

multiple P44 antigen variants to be rapidly exchanged at transcriptional regulation level 

(RIKIHISA 2010; REJMANEK et al. 2012). Therefore the evasion of specific protective 

antibody by the generation of differ Msp2/P44 variants allows Ap to survive in host cells and 

establish a long-term persistent infection (BROWN 2012).  

A number of studies have examined the cytokine and chemokine responses to Ap infection (see 

Table 2). In humans with Ap infection, evaluated IFN- and IL-10 in serum from acute phase 

are significantly elevated compared with convalescent and normal serum, while tumor necrosis 

factor alpha (TNF-α), interleukin 1 beta (IL-1β) and IL-4 levels are not elevated compared with 

                                                
11 Mb: Mega base paris 
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convalescent serum (DUMLER et al. 2000). In vitro study showed that IL-1β, TNF-α and IL-6 

mRNA and protein in human peripheral blood leukocytes (PBLs) are induced by either 

recombinant 44-kDa major surface protein (rP44) of the HGA agent or viable HGA organism, 

while expression of IL-8, IL-10, IFN-, transforming growth factor beta (TGF-β) and IL-2 

mRNA was not remarkable increased (KIM et al. 2000). The kinetics of induction of these 

three cytokines in PBLs is quite similar (KIM et al. 2000). Further analysis indicates that the 

monocytes present in the PBL preparation are responsible for expression of TNF-α and IL-6 

mRNA, whereas IL-1β is generated by neutrophils, lymphocytes and monocytes in response to 

viable bacterium or rP44 of Ap (KIM et al. 2000). However, in vivo studies showed that 

infection with Ap does not affect IL-1β and TNF-α expression in humans and mice (MARTIN 

et al. 2000; THOMAS et al. 2001). IL-8, also known as neutrophil chemotactic factor, induces 

neutrophil migration to sites of infection. Ap or P44 protein induce IL-8 secretion in 

neutrophils and in a promyelocytic cell line (HL-60) that has been differentiated with retinoic 

acid into a neutrophil lineage (AKKOYUNLU et al. 2001). Expression of CXCR2 but not 

CXCR1, both are IL-8 receptors, are upregulated in neutrophils and in retinoic acid 

differentiated HL-60 cell line (AKKOYUNLU et al. 2001). Immunocompetent (BALB/c), 

severe combined immunodeficient (C3H-scid) mice that are administered CXCR2 antisera, and 

IL-8 receptor (CXCR2-/-) knockout mice (BALB/c-Cmkar2tm1Mwm), showed much less 

susceptibility to Ap infection (AKKOYUNLU et al. 2001). Thus, these results indicate that IL-

8 production is induced by Ap infection in host cell, and appears to be exploited in order to 

facilitate infection (AKKOYUNLU et al. 2001).   

The horse is a valuable animal model of HGA (MADIGAN et al. 1995). Previously reported 

investigation of four horses experimentally infected with Ap showed that IL-1β and TNF-α 

mRNA expression were upregulated in peripheral blood leukocytes (PBLs) in all four horses, 

and IL-8 mRNA expression was up-regulated in three horses (KIM et al. 2002). None of IL-2, 

IL-4, IL-6 and IL-12p40 transcription was detected from any of the four horses (KIM et al. 

2002). These data suggest that IL-1β, TNF-α and IL-8 play a primary role during the infection 

with Ap in horses (KIM et al. 2002).  
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Table 2: Alterations of cytokines and chemokines during Ap infection 

cytokine/chemokine kinetics source analyte 
possible role(s) in Ap 
pathogenesis 

reference(s) 

IFN- elevated  

human serum from acute-
phase HGA compared with 
convalescent serum 

protein in serum 
histopathological injury, 
early control infection 

DUMLER et al. 
2000 

TNF-α 

elevated from two h 
to 36 h p.i. (mRNA) 
and 24 h p.i. 
(protein) 

human PBLs incubated with 
Ap 

mRNA and 
protein in culture 
supernatant of 
PBLs 

NM KIM et al. 2000  

Increased during 20 
days p.i. 

PBLs from experimentally 
infected horse 

mRNA  NM KIM et al. 2002 

IL-1β 

increased during 20 
days p.i. 

PBLs from experimentally 
infected horse 

mRNA  NM KIM et al. 2002 

elevated from two h 
to 36 h p.i. (mRNA) 
and 24 h p.i. 
(protein) 

human PBLs incubated with 
Ap 

mRNA and 
protein in culture 
supernatant of 
PBLs  

NM KIM et al. 2000 

IL-1β increased 
HL-60 cells differentiated 
with retinoic acid 

mRNA NM 
CARLYON et al. 
2002 

IL-6 

elevated from two h 
to 36 h p.i. (mRNA) 
and 24 h p.i. 
(protein) 

human PBLs incubated with 
Ap 

mRNA and 
protein in culture 
supernatant of 
PBLs  

NM KIM et al. 2000 

IL-8 

increased at 24 h 
p.i., until 120 h p.i. 

HL-60 cells differentiated  
along the neutrophil lineage 
with retinoic acid incubated 
with Ap or HGA-44 antigen 

mRNA and 
protein in culture 
supernatant 

exploited to enhance 
infection 

AKKOYUNLU et 
al. 2001 

increased at seven h 
p.i. and 24 h p.i. 

human neutrophils incubated 
with Ap 

protein in culture 
supernatant 

exploited to enhance 
infection 

AKKOYUNLU et 
al. 2001 
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p.i.: post infection 
NM: not mentioned 

increased  
serum from patient with 
confirmed HGA  

protein in serum NM 
AKKOYUNLU et 
al. 2001 

increased from  

24 h to 48 h p.i. 

HL-60 cells differentiated  
along the neutrophil lineage 
with 1.25 % DMSO 
incubated with Ap 

protein in culture 
supernatant 

cytopenia and mediation of 
inflammatory response 

KLEIN et al. 2000 

increased during  

20 days of 
postinfection 

PBLs from experimentally 
infected horse 

mRNA  NM 
Kim, H.Y. et al., 
2002 

IL-10 elevated  
human serum from acute-
phase HGA compared with 
convalescent serum 

protein in serum 
modulate histopathological 
injury triggered by IFN-γ 

DUMLER et al. 
2000 

IL-18 
elevated after  

four h p.i. 
NB4 cells inoculated with Ap mRNA 

proinflammatory response,  
a Driving production of 
IFN-γ for Ap clearance 

PEDRA et al. 2005; 
PEDRA et al. 2007 

MCP-1, MIP-1α, 
MIP-1β, RANTES 

increased from  

24 h to 48 h p.i. 

HL-60 cells differentiated  
along the neutrophil lineage 
with 1.25 % DMSO 
incubated with Ap 

protein in culture 
supernatant 

cytopenia and mediation of 
inflammatory response 

KLEIN et al. 2000 
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 PMNs Recruitment and Interaction with Microvascular Endothelial Cells 6

6.1 Leukocytes Migration and Cell Adhesion Molecules 

The migration of leukocytes from circulating blood to specific sites is a crucial step in the 

inflammatory reaction against invasion of pathogens (KOLACZKOWSKA et al. 2013). 

Neutrophils are the first cells that cross the blood vessel to the site of infection 

(RAZAKANDRAINIBE et al. 2013). Even in the absence of infection, monocytes also 

continuously migrate into the tissue, where they differentiate into macrophages (JANEWAY 

2001). The migration occurs through a multistep process (known as extravasation) in which 

neutrophils interact with the endothelium in postcapillary venules. The process is mediated by 

integrins, selectins, chemokines and their respective ligands or receptors (KOLACZKOWSKA 

et al. 2013). Traditionally, this cascade is dissected into a sequential process that includes the 

capture on, rolling along and firm adhesion to the microvascular endothelium, followed by 

transmigration through the vessel wall and further migration into the extravascular tissue 

(ULBRICH et al. 2003). However, this recruitment cascade has been augmented by several 

more steps, including slow rolling, adhesion strengthening, intraluminal crawling, and 

paracellular and transcellular migration (LEY et al. 2007).   

Selectins are a family of transmembrane glycoprotein, including E-, L-, and P-selectin that bind 

to fucoslated and sialylated glycoprotein ligands to initiate the transmigration, and are found on 

endothelial cells, leukocytes and platelets (LEY 2003). Integrins are a group of heterodimeric 

transmembrane glycoprotein compromising one α- and one β-subunit, and they are mainly 

found on PMNs and other hematopoietic cells that serve as adhesion-mediating receptors to 

mediate cell-cell and cell-extracellular matrix adhesion (WAGNER et al. 2000). To date, 

mammals express 18 α-units and 8 β-units of integrin that combine to form 24 distinct receptor 

heterodimers (LARJAVA et al. 2014). 

Firm adhesion of leukocytes to endothelial cells depends on interactions between integrins such 

as Macrophage-1 antigen (Mac-1) on neutrophils, and their protein ligands termed 

immunoglobulin superfamily (IgSF) cell adhesion molecules on endothelial cells (MULLER 

2013). In the immunoglobulin superfamily, intercellular adhesion molecules (ICAMs) and 

vascular adhesion molecule-1 (VCAM-1) are two main surface proteins for PMNs recruitment. 

PECAM-1 (CD31) is an immunoglobulin superfamily member that is concentrated at the 

borders of endothelial cells as well as expressed diffusely on platelets and leukocytes 

(MULLER 2013). Homophilic interaction of leukocyte PECAM with endothelial PECAM is 
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required for transendothelial migration of leukocytes (MULLER et al. 1993; MULLER 2013). 

Several crucial adhesion molecules and their ligands involved in transendothelial migration of 

leukocytes are listed in Table 3.  
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Table 3: Adhesion molecules and their ligands generally involved in leukocyte transmigration 

a a number of glycosylated, fucosylated, sulfated sialylated glycoproteins 
b less affinity to ICAM-1 than to ICAM-2 
L-selectin: leokocyte selectin, E-selectin: Endothelial cell selectin, P-selectin: Platelet selectin, Mac-1: macrophage-1 antigen, LFA-1: lymphocyte-associated function antigen-1, LPAM-1: integrin alpha 4 beta 7 (α4β7), ICAMs: Intercellular adhesion 
molecules, VCAM-1: Vascular adhesion molecule-1, PECAM-1: Platelet endothelial cell adhesion molecule-1, LAM-1: leukocyte adhesion molecule-1, CD: Cluster of differentiation, ELAM-1: endothelial cell leukocyte adhesion molecule-1, GMP-140: 
Granule membrane protein 140, PADGEM: Platelet activation-dependent granule to external membrane protein, CR3: Complement receptor 3, GlyCAM-1: Glycosylation-dependent cell adhesion molecule-1, MAdCAM-1: Mucosal addressin cell adhesion 
molecule-1, PSGL-1: P-selectin glycoprotein ligand-1, VLA-4: Very late antigen-4 

leukocyte 
recruitment 

adhesion 
molecules 

basic role(s) name(s) 
alternative 
name(s) 

distribution ligand(s) distribution reference(s) 

ca
p
tu

re
, 

ro
ll

in
g,

 a
n
d
 

sl
o
w

 r
o
ll

in
g

 

se
le

ct
in

s 

initiate the 
migration 

L-selectin LAM-1, CD62L 
leukocytes, mainly on 
lymphocytes 

CD34a, GlyCAM-
1, MAdCAM-1, 
and PSGL-1 et al. 

vein endothelial cells, 
leukocytes 

WAGNER et al. 
2000; JANEWAY 
2001; LEY et al. 
2007; 
NIMRICHTER et 
al. 2008  
  
  
  
  

E-selectin 
ELAM-1, 
CD62E 

activated ECs 
E-selectin ligand 1 
(in murine),  
unknown in human 

PMNs 

P-selectin 
GMP-140, 
PADGEM, 
CD62P 

activated ECs and 
platelets 

PSGL-1(CD162), 
 sialyl-Lewis x 

PMNs, monocytes and 
platelets 

ad
he

si
on

 
st

re
n

gt
he

n
in

g
 

in
te

gr
in

s 

bind the cell-
adhesion 
molecules and 
extracellular 
matrix in order 
to strongly 
adhere 

Mac-1 
αMβ2, CR3, 
CD11b/CD18 

monocytes, granulocytes, 
macrophages, and natural 
killer cells. 

ICAM-1, iC3b, 
fibrinogen 

endothelial cells 

LFA-1 
 αLβ2, 
CD11a/CD18 

T cells, monocytes, 
macrophages, neutrophils, 
dendritic cells 

ICAMs endothelial cells 

in
tr

av
as

cu
la

r 
cr

aw
li

n
g

 

LPAM-1 α4β7 lymphocytes 
MAdCAM-1 
 

endothelial cells LEY et al. 2007  

im
m

un
og

lo
b

ul
in

 s
up

er
fa

m
il

y
 

various roles in 
cell adhesion, 
transmigration, 
ligands for 
integrins 

ICAM-1                          CD54 activated endothelial cells Mac-1, LFA-1b 
PMNs, lymphocytes 
 

  
WAGNER et al. 
2000; JANEWAY 
2001 

ICAM-2  CD102 
resting  endothelial cells, 
dendritic cells 

LFA-1 PMNs, lymphocytes 

VCAM-1  CD106 activated endothelial cells 
VLA-4 (integrin 
α4β1) 

activated human 
PMNs and rat PMNs  

DAVENPECK et al. 
1998; WAGNER et 
al. 2000 

p
ar

ac
el
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r 
an

d
 

tr
an

sc
el

lu
la

r 
tr

an
sm

ig
ra

ti
on

 

PECAM-1 CD31 
activated leukocytes, 
unstimulated endothelial 
cell-cell junctions      

PECAM-1 

activated leukocytes, 
unstimulated 
endothelial cell-cell 
junctions  

WAGNER et al. 
2000; JANEWAY 
2001  
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6.2 Endothelial Cells as Infection Target 

The endothelium consists of a single layer of flat cells (endothelial cells) that line the 

vasculature. It has been demonstrated to be an infection target of several infectious pathogens, 

including viruses and bacteria (VALBUENA et al. 2006, 2009). Importantly, its critical location 

allows endothelial cells to easily interact with any circulating blood cells and be able to 

modulate host immune system, including initiating neutrophils recruitment, antigen 

presentation, regulating the passage of immune molecules and immune cells, in order to 

defense pathogenic invasion (ROTHERMEL et al. 2004; KOLACZKOWSKA et al. 2013; 

RAZAKANDRAINIBE et al. 2013). A limited number of intracellular bacteria, including 

Rickettsia spp., Ehrlichia ruminantium, Bartonella spp., Orientia tsutsugamushi, and 

Anaplasma marginale use endothelial cells as their main target host cells or as one type of 

target host cells during infection (VALBUENA et al. 2006, 2009). Besides erythrocytes, 

microvascular endothelial cells were also shown to be target cells of other related Anaplasma 

species, e.g. Anaplasma marginale, the agent of bovine anaplamosis (LEPIDI et al. 2000; 

CARRENO et al. 2007). 

Only little information is available on in vivo infection of Ap in endothelial cells. Infection of 

microvascular endothelial cells by Ap has only been identified in vitro in bovine and human 

endothelial cell lines under culture conditions (MUNDERLOH et al. 2004). Interestingly, Ap 

transmission into granulocytes occurs, if co-culture with infected endothelial cells is allowed 

under static conditions (HERRON et al. 2005). Furthermore, blocking of the mostly utilized 

host cell receptor, PSGL-1, does not affect the binding of granulocytes to Ap-infected HMEC-1 

cells, whereas it reduces infection of granulocytes (HERRON et al. 2005). Sialidase 

pretreatment increases the binding of Ap to HMEC-1 cells, while fucoidan as well as EDTA 

decrease the binding capacity. It is implied that a non-sialylated cell surface moiety different 

from PSGL-1 is utilized by Ap and a bivalent cations (such as Ca2+) is involved during the 

adhesion process in the endothelial cells (HERRON et al. 2005). However, the evidence of 

infection of microvascular endothelial cells or other type of endothelial cells by Ap in a truly 

physiological context is still unclear so far. 

 Laboratory Diagnostics  7

7.1 Anaplasmosis 

The manifestations of granulocytic anaplasmosis in humans and animals vary in severity from 
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non-clinical symptom, to severe clinical signs including death (DUMLER et al. 2005). 

According to clinical studies in 685 HGA patients across North America and Europe, the most 

common clinical manifestations in human patients are fever (92 %), headache (75 %), myalgia 

(77 %), and malaise (94 %). Other clinical manifestations include thrombocytopenia, 

leukopenia, anemia, and an elevated hepatic transaminase levels (DUMLER et al. 2005). The 

severity of clinical signs in animals is variable, based on different factors including ages, 

immune status, co-infections with other pathogens, natural or experimental infection. Despite 

those effects described above, the most prominent and consistent hallmark of infection is 

moderate to marked thrombocytopenia, with approximately 50 % decline of circulating platelet 

numbers (BAKKEN et al. 1996; BORJESSON et al. 2001). The pathophysiological 

mechanism of thrombocytopenia is not well understood, however it may results from decreased 

or ineffective hematopoiesis, increased intramedullary destruction (hemophagocytic 

syndrome), increased peripheral destruction (immune or non-immune mediated mechanism), 

decreased cell life span, or altered cellular distribution (endothelial or splenic sequestration) 

(BORJESSON et al. 2002a). 

At least five species of bacteria in three genera in the family of Anaplasmataceae have been 

shown to cause human infection (DUMLER et al. 2007), namely Ehrlichia chaffeensis (E. 

chaffeensis), E. ewingii, E. canis, Ap, and N. sennetsu (see Table 4). Furthermore, other two 

important pathogens in veterinary health, E. muris and E. ruminantium (previously named 

Cowdria ruminantium), have been considered as emerging pathogenic agents for humans 

recently, while they are primarily reported in the United States and Africa, respectively 

(ALLSOPP et al. 2005; ESEMU et al. 2011; PRITT et al. 2011). 
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Table 4: Human infections by Anaplasmataceae and their host, host cells and distribution 

genus species disease(s) host cells host(s) distribution(s) reference(s) 

Anaplasma Ap 
HGA, EGA, CGA, 
TBRF 

granulocytes, 
endothelial cells 

humans, 
ruminants, 
horses, dogs, cats, 
rodents, deer etc. 

United States, Europe, 
Asia, North Africa 

RIKIHISA 2011 

Ehrlichia 

E. chaffeensis HME 
monocytes, 
macrophages 

humans, deer, 
dogs 

United States, South 
America, Asia 

RIKIHISA 2011 

E. ewingii HEE granulocytes 
dogs, deer, 
humans 

United States, South 
America 

NDIP et al. 2005; 
OLIVEIRA et al. 
2009; RIKIHISA 
2011 

E. canis CME 
monocytes, 
macrophages 

canids, humans Worldwide RIKIHISA 2011 

E. muris splenomegaly 
monocytes, 
macrophages 

rodents, humans 
United States, Japan, 
Russia 

PRITT et al. 2011; 
RIKIHISA 2011 

E. 
ruminantium 

heartwater 
endothelial cells, 
granulocytes 

ruminants, 
humans 

Africa, Caribbean 

ALLSOPP et al. 
2005; ESEMU et 
al. 2011; 
RIKIHISA 2011 

Neorickettsia N. sennetsu 
Sennetsu fever, 
glandular fever 

monocytes, 
macrophages 

humans Japan, Southeast Asia RIKIHISA 2011 

HGA: human granulocytic anaplasmosis, EGA: equine granulocytic anaplasmosis, CGA: canine granulocytic anaplasmosis, TBRF: tick-borne fever,  
HME: human monocytic/monocytotropic ehrlichiosis, HEE: human ewingii ehrlichiosis, CME: canine monocytic/monocytotropic ehrlichiosis. 
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7.2 Diagnosis of Anaplasmosis in Humans and Animals 

Diagnostically much attention is devoted on peripheral blood samples from patient with acute 

HGA. The presence of neutrophilic morulae stained with Wright-Giemsa staining is indicative 

for an infection. However, the absence of morulae does not preclude infection. Therefore, 

polymerase chain reaction (PCR) analyses and evaluation of serological responses by indirect 

immunofluorescent antibody assays (IFA) are applied to confirm the diagnosis (BAKKEN et 

al. 1996). For serodiagnosis of HGA, Ap cultured in HL-60 cells is usually used especially in 

indirect immunoflurescent antibody assay (IFA) (GAOWA et al. 2014). However, Ap 

propagated in THP-1 cells (an acute human monocytic leukemia cell line) was recently 

recommended to be used as a supplementary antigen with antigen propagated in HL-60 cells 

for the serodiagnosis of rickettsiosis-like infections (OHASHI et al. 2013). Human 

monocytotropic ehrlichiosis (HME) is caused by Ehrlichia chaffeensis. HME is also a febrile 

tick-borne disease. HGA and HME have similar clinical manifestations and therefore need to 

be taken into consideration as a differential diagnoses. HME’s clinical signs including fever, 

headache, leukopenia, thrombocytopenia and evaluated transaminase levels. Among patients 

with HME, morulae are rarely observed in peripheral monocytes (ISMAIL et al. 2010). 

Presumptive diagnosis of HME is based on clinical manifestation, medical history and specific 

hematologic abnormalities. However, a specific diagnostic test is needed to confirm HME in 

laboratory. These methods include specific antibodies titration by ELISA, detection of specific 

ehrlichial DNA in blood by PCR, direct detection of Ehrlichia spp. in tissue samples by 

immunohistochemistry, and bacterial isolation (ISMAIL et al. 2010). 

Although no standardized procedure for Ap diagnosis in animals has been proposed, similar 

criteria of HGA diagnosis should be used. The identification of morulae in circulating 

neutrophils is the fastest and most cost-effective method of Ap diagnosis in animals (GREENE 

2012). PCR is the most reliable method in the clinical laboratory for specific and early 

diagnosis of granulocytic anaplasmosis in animals (ENGVALL et al. 1996).  

 

 Therapy and Prevention 8

8.1 Therapy for Humans and Animals 

Anaplasma and Ehrlichia species are sensitive to both tetracycline and doxycycline. Most 

patients with HGA or HME respond well, if treated with antibiotics early and properly in 



Literature review 35 

illness (DUMLER et al. 2007). Because of fewer side effects, doxycycline is the recommended 

treatment for HGA or HME for both pediatric and adult cases (DUMLER et al. 2007). The 

recommended dose is 100 mg per dose administered twice daily (orally or intravenously) for 

adults or 2.2 mg/kg body weight per dose administered twice daily (orally or intravenously) for 

children weighing <45.4 kg. Duration of drug treatment is normally tenable for 3 to 5 days or 

longer (e.g. 10 - 14 days) after disappearance of fever (DUMLER et al. 2007). If co-infection 

with B. burgdorferi is apparent, doxycycline treatment should be continued for at least 10 days 

for adults (WORMSER 2006; WORMSER et al. 2006) or be continued for three days after 

disappearance of fever. Later the remainder 14-day course of treatment should be completed 

with an alternative antibiotic (e.g. amoxicillin or cefuroxime) against B. burgdorferi to 

minimize the risk of dental discoloration for children under eight years of age (CHAPMAN et 

al. 2006). 

For treatment of canine Ap infection, antimicrobial therapy is a common and the most effective 

method. Most dogs respond rapidly to treatment and are frequently clinically healthy 24 to 48 

hours after initiation of therapy (GREENE 2012). The recommended therapy for canine Ap 

infection is 5 - 10 mg/kg of doxycycline per os (PO) or intravenously (IV) per administration 

every 12 - 24 hours for 10 - 21 days. A total of 4 weeks of doxycycline treatment should be 

considered, if dogs are co-infected with B. burgdorferi. Chloramphenicol at 25 - 50 mg/kg, PO, 

three times per day for 14 - 21 days is recommended to treat puppies that under one year of 

age, in order to avoid teeth yellowing (GREENE 2012).  

8.2 Prevention 

So far, no vaccine is available to prevent Ap infection in both human and animals. The most 

effective strategies are (1) avoiding exposure to tick vectors during peak periods of activity 

(primarily April - September), (2) thorough inspection of the body and clothing for ticks after 

being in wooded or grassy areas, (3) immediate removal of attached ticks, (4) application of 

tick repellant before entering grassy or wooded areas (CHAPMAN et al. 2006). 
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IV DISCUSSION 

 Establishment of the Flow Culture System 1

Endothelial cells cultivated in vitro are quite different from that in vivo due to dynamic blood 

flow-mediated regulation and tissue microenvironment-mediated regulation including the 

constantly changing environment of inflammation (VALBUENA et al. 2009). Dynamic shear 

forces are capable of modulating cytoskeletal rearrangement, cell morphology and gene 

expression in endothelial cells as well as influencing leukocyte-endothelial adhesion 

(WALPOLA et al. 1993; CHIU et al. 2005). Therefore, the endothelium cultured under shear 

stress becomes necessary when the interaction between Ap, endothelial cells and peripheral 

polymorphonuclear leukocytes (PMNs) is investigated. In this study, a flow culture system was 

initially established in order to mimic physiological shear stress in vivo. Defined shear stress is 

needed to simulate the dynamic interaction between Ap-infected endothelial cells and PMNs, 

and this allowed us to investigate the Ap transmission pathway between cells under 

physiological relevant flow conditions. In order to to generate a controlled unidirectional shear 

flow an air pump was used. The schematic of whole flow culture system driven by air pump is 

illustrated below. 

A 

 

Air pressure pump 
(positive pressure) 

State 1 State 2 

Reservoirs 

µ-Slide 

Air flow 

Liquid flow 
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B 

 

Figure 7: Schematic of the flow culture system 

A Working principle of the pump system (ibidi GmbH, Martinsried, Germany) to ensure the 
unidirectional flow in the chamber slide; B schematic setup of the flow culture system inside and 
outside of incubator in lab. 
 

Firstly, the feasibility of culturing endothelial cells under different shear stresses using this 

pump system was verified. Given that little information about the physiological shear stress in 

the microvasculature is available in the literature (PRIES et al. 1996; FRY et al. 2012) relevant 

values of shear stress can be only estimated in vitro by different models (RENEMAN et al. 

2008). Typical values of shear stress in blood vessels are in the range of 0.1 - 13 dyne/cm2 

depending on the type of blood vessels in humans (RENEMAN et al. 2008). Considering that 

the minimal effective shear stress that can be used is 0.37 dyne/cm2 (µ-Slide l0.6 Luer, 

Handbook of Cell Analysis from ibidi, Martinsried, Germany), shear stresses at 0.5, 1.0 and 2.0 

dyne/cm2 were chosen and tested in this study. It was found that microvascular endothelial 

cells were able to form a confluent monolayer when shear stress was 0.5, 1.0 and 2.0 dyne/cm2 

(see Figure 2A in publication). The results are consistent with that from another group, which 

cultured HMEC-1 cells at shear stress levels from 0.25 to  4.0 dyne/cm2 (GRUBB et al. 2009). 

Secondly, the endothelial cell culture medium (MCDB 131 medium) depleted of 

hydrocortisone was tested for its applicability for culturing HMEC-1 cells (data not shown) 

under shear stress to exclude hydrocortisone’s influence on cell adhesion molecules expression. 
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Gluococorticoids exert their powerful anti-inflammatory effect through different mechanisms 

including inhibition of the expression of ICAM-1, VCAM-1 and LFA-3 as well as P- and E-

selectin, inhibition of chemotaxis and adhesiveness of leukocytes. (SANCHEZ-MADRID et al. 

2001; ULBRICH et al. 2003). It was found that no difference in the efficiency of proliferation 

was present when endothelial cells were freshly subcultured from cultured cells in MCDB 131 

medium and subsequently cultured in hydrocortisone-free MCDB 131 medium under shear 

stress. Interestingly, preliminary results showed that hydrocortisone is able to decrease ICAM-

1 expression in HMEC-1 cells, implying the expression of cell adhesion molecules is restrained 

by hydrocortisone and thereby impairs the adhesion of PMNs (data not shown). Therefore, 

hydrocortisone was not used when HMEC-1 cell monolayers were exposed to Ap, even though 

it is recommended to add 0.5 - 1.0 µg/ml of hydrocortisone to the endothelial cell culture 

medium (XU et al. 1994; SURMA et al. 2011). However, the effect of hydrocortisone on the 

other cell adhesion molecules and even on pathogenicity of Ap still needs to be investigated in 

greater detail.  

A large numbers of animal experiments were conducted via a direct intravenous injection of Ap 

organisms to study the infection pathway (AKKOYUNLU et al. 2001; SCORPIO et al. 2004). 

However, this infection approach does not mimic Ap infection under natural condition as it 

ignores the possible contribution of endothelial cells in the initial transmission of Ap. The data 

generated in the studies presented here proof that the flow culture system is an ideal platform to 

study the role of endothelial cell infection prior to interaction with neutrophils and 

consequently adds critical information to any new animal experiment.  

 

 Infection of Microvascular Endothelial Cells 2

It is known that microvascular endothelial cells are susceptible to Ap infection (MUNDERLOH 

et al. 2004; HERRON et al. 2005). Ap infects different relevant endothelial cells including 

rhesus (RF/6A), human (HMEC-1, MVEC) and bovine (BCEC/D-1b) endothelial cell lines in 

vitro (MUNDERLOH et al. 2004).  

Due to a very fast proliferation of endothelial cells in nutrient-enriched culture medium, it is 

difficult to maintain the infected endothelial cells in the situation that holds a high infectious 

ratio but also retains a confluent monolayer. Therefore, the incubation time and infectious 

doses of Ap were optimized when HMEC-1 cells were inoculated with the bacteria. Given the 

proliferation of primary endothelial cells will stop once they are reaching a confluent stage, 
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primary HDMEC cells were also tested and used in the later Ap transmission assay. It was 

documented that Ap invades and replicates within HMEC-1 cells and primary HDMEC cells 

after 24 h post infection (see Figure 1 in publication). Numerous smaller inclusions or so called 

‘morulae’ were observed at 24 h, 48 h and 96 h in the cytoplasmic vacuoles of Giemsa-stained 

HMEC-1 cells and HMDEC cells. It was also demonstrated that Ap invasion into endothelial 

cells occurred rapidly, in agreement with the result reported previously (MUNDERLOH et al. 

2004). To determine the infection ratio, an immunofluorescent antibody test (IFAT) and 

Giemsa staining were used. It was shown that 60 % - 80 % of HMEC-1 cells were infected at 

24 h, whereas the infection ratio decreased to 20 % - 30 % at 48 h and 96 h (see Figure 1 in 

publication). The results indicate that replication of Ap is not activated once the organisms are 

internalized into endothelial cells. Result of real-time PCR (COURTNEY et al. 2003; 

COURTNEY et al. 2004) also confirmed this phenomenon (see Figure 2 in publication). The 

phenomenon of decreased infection ratio along incubation time is also pointed out in a previous 

paper (MUNDERLOH et al. 2004). It was hypothesized, that surviving HMEC-1 cells in an 

infection milieu do replace cells that were lysed due to anaplasma growth, but subsequently are 

refractory to infection themselves. However, the mechanism of this phenomenon is not known 

so far. Hence, 24 h of incubation time was selected in order to observe the interaction between 

PMNs and Ap-infected HMEC-1 cells as this time point showed the highest infection rate.  
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           1. Bacterial load in HMEC-1 cells                           2. Bacterial load in culture supernatants 

Figure 8: Ap load in HMEC-1 cells after different inoculation time 

Bacterial load was evaluated by RT-PCR targeting msp2 gene reported elsewhere. Culture media were 
changed at 48 h and 96 h. The bacterial load in cells (A), and in culture supernatants (B) decreased
along the incubation time.    

In this study, two different values of multiplicity of infection (MOI) (5 and 1) were applied in 

order to simulate different conditions of infection ratio in endothelial cells that may occur in 

vivo. Therefore, two different amounts of host-cell free Ap organisms were inoculated for 24 h 

with endothelial cells. Flow cytometric data showed that around 87 % of HMEC-1 cells were 

infected at a MOI of 5, while around 5.1 % of infected cells were obtained at a MOI of 1 (see 

Figure 2C in publication). However, this result was not reproducible between different batches 

of experiment when the same MOI was used. It is known that Ap transitions between an 

infectious DC form and a replicating RC form during replication in HL-60 cells (TROESE et 

al. 2009). Given the technical problem to exactly quantify the yield of such intracellular 

bacteria, it is explainable that the experiments did not show reproducible results concerning the 

infection ratio in endothelial cells. It is widely accepted to use a ratio of infected HL-60 cells to 

target cells (endothelial cells) for inoculum calculation in previous researches (CARLYON 

2005). In this study, we used the same method to calculate inoculum dose. In fact, prior to Ap 

purification, only the number of infected HL-60 cells was counted even though different 

numbers of bacteria may be present in each HL-60 cell. Therefore when infected HL-60 cells 

were collected, it was not guaranteed that a same amount of infectious DCs was present in the 

same quantity of infected HL-60 cells. After Ap were liberated from infected HL-60 cells, 

varying numbers of infectious DCs were obtained between different batches of infected HL-60 
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cell cultures. Therefore, different numbers of Ap inoculating with endothelial cells leads to a 

diversity of infection ratio in endothelial cells.  

The result above points out that the infection ratio in endothelial cells depends on the 

incubation time and infectious doses used. The fraction of infected endothelial cells apparently 

increased along with the infection doses, but likely decreased along with the incubation time.  

 

 Alterations of PMN Adhesion, Cell Adhesion Molecules 3

Neutrophils are the first wave of leukocytes to arrive at the site of inflammation to phagocytize 

pathogens (KOBAYASHI et al. 2009). To successfully exert their functions, neutrophils must 

firstly attach to the endothelium that is located to the interior of blood vessel. Previous study 

showed that PMN adhesion to Ap-infected endothelial monolayer is increased under static 

conditions (HERRON et al. 2005). However, no data is available in the context of flow 

conditions thus far. Therefore PMNs adhesion to Ap-infected endothelial cells under flow 

conditions was investigated for the first time in this study. It was found that PMN adhesion 

increased remarkably (p < 0.01) when naïve PMNs were perfused onto Ap-infected endothelial 

monolayer compared to uninfected endothelial monolayer at shear stress of 0.5 dyne/cm2 (see 

Figure 2B in publication). This finding indicates that endothelial cells are activated via Ap 

infection. And because Ap-infected neutrophils and dimethyl sulfoxide (DMSO) differentiated-

HL-60 cells displayed a reduced binding to cultured brain and systemic endothelial cells, which 

is accompanied with reduced surface expression of P-selectin glycoprotein ligand 1 (PSGL-1, 

CD162) and L-selectin (CD62L) under shear force conditions (CHOI et al. 2003). Such 

activation may be associated with the change of surface cell adhesion molecules expression 

(CHOI et al. 2003). It was also demonstrated that the susceptibility of mice to Ap depends on 

the presence of PMN (BIRKNER et al. 2008). Therefore, the enhanced recruitment of PMNs to 

endothelial cells may provide a new niche for Ap and might facilitate the bacterial 

dissemination by interacting with Ap-infected endothelial cells. Furthermore, PMN adhesion to 

endothelial monolayers that are highly infected with Ap was significantly more prominent than 

observed with cells stimulated with TNF-α (p < 0.01). It is supposed that a broad type of 

immune molecules such as CAMs and cytokines are activated and expressed by endothelial 

cells infected with high inoculum of Ap. Interaction between various factors thus exceeds the 

effect of single used TNF-α. However, this hypothesis needs to be investigated in further 

studies. 



Discussion  53 

The migration of neutrophils to inflammatory sites is generally driven through a cascade 

reaction that is mediated by a series of cell adhesion molecules (CAMs) on neutrophils, 

endothelial cells and by the interaction with extracellular matrix (VOISIN et al. 2013). To 

characterize the enhanced PMN adhesion, two CAMs, intercellular adhesion 

molecule 1/ICAM-1 and vascular cell adhesion molecule 1/VCAM-1, on the surface of 

endothelial cells that are mainly responsible for firm adhesion of PMNs were studied. Flow 

cytometry analysis revealed that the expression of ICAM-1 and VCAM-1 were considerably 

upregulated on endothelial cells infected with Ap compared with uninfected endothelial cells. 

Compared with the result reported previously (MUNDERLOH et al. 2004), the established 

method of using flow cytometry allows to quantify the expression of ICAM-1 and VCAM-1 on 

Ap-infected endothelial cells. In this study, it was shown that the expression of ICAM-1 and 

VCAM-1 was induced by Ap infection in a dose-dependent manner (see Figure 4 in 

publication). Because ICAM-1 possesses a relative high level of basic expression (22.6 % - 

24.7 %, see Figure 4A in publication) that is remarkably induced by Ap infection, while 

VCAM-1 is not constitutively expressed on HMEC-1 cells. Of these two cell adhesion 

molecules, ICAM-1 is likely to play a dominate role in mediating PMN recruitment during the 

Ap infection. In turn, VCAM-1 expression was only inducible when endothelial cells were 

infected with Ap. It is known that neutrophils express constitutively high levels of the β2-

integrins Mac1 (also known as αMβ2; CD11b/CD18) and LFA1 (also known as α1β2; β2 integrin 

CD11a complexed with CD18), which bind to endothelial cell surface molecules, such as 

ICAM-1 and ICAM-2 (KOLACZKOWSKA et al. 2013). Especially the firm adhesion of 

neutrophil is mediated largely by the β2-integrins LFA-1 and Mac1, by which binding to the 

same ligand, ICAM-1 (DIAMOND et al. 1991; ISSEKUTZ et al. 1992; PHILLIPSON et al. 

2006). Therefore, increased levels of ICAM-1 and VCAM-1 upon Ap infection in this study 

can be interpreted as the phenomenon of enhanced PMN adhesion. On the other hand, the 

alteration of adhesion molecules was observed in the context of endothelium infection with 

other intracellular parasites, such as Rickettsia conorii, Rickettsia rickettsii, Ehrlichia 

ruminantium, Orientia tsutsugamushi and Toxoplasma gondii (TAUBERT et al. 2006; 

VALBUENA et al. 2006). Therefore, the alteration of adhesion molecules is considered as a 

consequence of host cells activation depending on the different cell tropism of intracellular 

parasites. Neutrophils infection with Ap also leads to increased level of β2-integrin (Mac-1, 

CD11b/CD18) expression on their surface, indicating an activated condition of the neutrophils 

(CHOI et al. 2003). This activation of neutrophils augments organism clearance, as infection of 

CD11b/CD18-knockout C57/BL6 mice results in an early increase in bacteria burden in blood 
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compared to the wild-type mice (BORJESSON et al. 2002b). The evidences described above 

highlight an important role of manipulation of adhesion molecules expression in intracellular 

bacterial infection. Although membrane-bound forms of either adhesion molecules (ICAM-1, 

VCAM-1) are easy to measure in vitro culture conditions, soluble forms can be detected in the 

serum or plasma in many conditions with an inflammatory component (BALLANTYNE et al. 

2002).It would be quite interesting to investigate such soluble adhesion molecules after tick 

bite but before appearance of intracellular inclusion within peripheral leukocytes in vivo. Doing 

so, it may provide a link between endothelial inflammatory response and Ap infection. 

 

 Alteration of IL-8 4

Cytokines and chemokines are proven to play a crucial role in the process of neutrophils 

migration (KOBAYASHI 2008). In this study, the expression level of IL-8 was measured in 

culture supernatant from endothelial cells infected with Ap. IL-8 is known as a key chemokine 

mediating neutrophils recruitment to the site of infection. It was previously shown that HGA 

bacteria and the HGA-44 protein (or P44) markedly induce IL-8 secretion in retinoic acid 

differentiated HL-60 cells (AKKOYUNLU et al. 2001). An increased IL-8 was detected in 

serum of humans, horses and mice infected with Ap (AKKOYUNLU et al. 2001; KIM et al. 

2002; SCORPIO et al. 2004). However, the IL-8 secretion by endothelial cells upon Ap 

infection has not been investigated yet. In the adhesion assay of this study, it was found that 

adhering PMNs were evenly distributed on endothelial cell monolayers (see Figure 2A in 

publication). It indicates that the interaction between Ap-infected endothelial cells and PMNs is 

mediated by some soluble factors. Subsequently it was shown that IL-8 expression was 

significantly induced by Ap-infected endothelial cells compared with uninfected endothelial 

cells (see Figure 5 in publication). Increased secretion of IL-8 by Ap-infected endothelial cells 

attracts uninfected neutrophils attachment, subsequently increases the chance of Ap 

transmission back to neutrophils. In order to see whether the infection status of endothelial 

cells alters the level of IL-8 expression, different doses of cell-free Ap was added and co-

cultured with endothelial cells. The infection ratio of endothelial cells showed a clear dose-

dependent effect on IL-8 expression secreted by endothelial cells (see Figure 5 in publication). 

This finding demonstrates that Ap induces IL-8 expression and thereby facilitates the 

recruitment of PMNs to endothelial cell monolayer, in agreement with result from other 

researchers (AKKOYUNLU et al. 2001). A supportive role of IL-8 in Ap infectivity in host is 

also considered in other studies (AKKOYUNLU et al. 2001; SCORPIO et al. 2004). For 
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example, CXCR2
-/- mice that lack the human IL-8 receptor homologue showed a reduced 

susceptibility to Ap as also did the evidence of reduced pathogen load in tissues compared to 

control mice (SCORPIO et al. 2004). This result also supports the view that IL-8, as a crucial 

chemokine, is exploited by Ap to facilitate their replication in host cells.  

Based on the communication networks of proinflammatory cytokines, it is quite interesting to 

investigate the profile of cytokines that secreted by endothelial cells and their roles in the 

context of Ap infection. It is known that recruitment of PMNs to endothelial monolayer can be 

blocked by pre-incubation with IL-8 antibodies (AKKOYUNLU et al. 2001). It can be 

assumed that the inhibition of PMNs recruitment will take place under flow conditions. 

Furthermore, that blockage of IL-8 receptor on neutrophils may inhibit or at least slow down 

Ap dissemination from endothelial cells to neutrophils using the established in vitro flow 

culture model. Nonetheless, this still needs intensive investigation in further studies.   

 

 The Role of Endothelial Cells in the Transmission of Ap Infection 5

Ap has developed mechanisms to facilitate its survival within its host. Even though the bacteria 

are majorly found in peripheral neutrophils in experimental infected animals and clinical cases 

(DUMLER et al. 1998; BUNNELL et al. 1999), it is still questionable whether neutrophils are 

the unique residence of bacteria for ongoing infection, or what other types of host cells are 

getting involved in the transmission route utilized by Ap. In mice, Ap is found mainly in blood, 

bone marrow, and tissue with high blood flow, especially in the spleen (HODZIC et al. 2001). 

Undoubtedly, tissues with good blood supply contain large numbers of peripheral leukocytes, 

which in turn are utilized by the bacterium for its growth. Plenty of Ap are released from 

infected neutrophils to interact with nearby endothelial cells of local blood vessel. On the other 

hand, Ap is able to invade and replicate within microvascular endothelial cells (MUNDERLOH 

et al. 2004). So it is reasonable to presume that microvascular endothelial cells harboring 

bacteria provide a well-suited niche for continuously infection in circulating peripheral 

leukocytes in blood.   

To prove this hypothesis, the interaction between these two types of susceptible host cells 

(endothelial cells and neutrophils) were studied under shear flow conditions by using the flow 

culture system. Transmission assays showed that Ap uptake by PMNs only occurred in a short 

time (4.5 h) after fresh PMNs were added, but not increased during the following time (see 

Figure 3B in publication). Such relatively low number of infected PMNs acquired (see Figure 
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3B in publication) in the in vitro transmission assay may truly reflect the low amount of 

infected PMNs in vivo. By now, the transmission assay offers a hint that it is possible for Ap to 

transfer from endothelial cells to PMNs in vivo. Given the biphasic developmental stages and 

their multiplication time of Ap in host cells (POPOV et al. 1998; MUNDERLOH et al. 1999; 

TROESE et al. 2009), it is sensible to consider that the time for bacterial multiplication within 

endothelial cells is important for ongoing infection to other host cells. In order to achieve a 

longer culture time, a human promyelocytic leukemia HL-60 cell line that differentiated along 

neutrophil lineage with 1.25 % DMSO (dHL-60 cells) but also possessed normal functions of 

mature neutrophils (COLLINS et al. 1978, 1979) were used. As speculated, the results of 

transmission assays showed that Ap organisms were not only transferred to circulating 

granulocytes from infected endothelial cells, but also eventually established steady infections 

in circulating, moving granulocytes under flow culture conditions. Infection in dHL-60 cells 

was detectable after three days followed by an increased infection level for four days of co-

culture with infected endothelial cells (see Figure 3D in publication). Given that the replication 

cycle of Ap is roughly 24 h (TROESE et al. 2009), it was likely that Ap replicated in infected 

host cells (endothelial cells or dHL-60 cells) and were released for further infection of 

uninfected host cells. 
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V SUMMARY  

Anaplasma phagocytophilum (Ap) is a tick-borne and an intracellular pathogen that mainly 

replicates in neutrophils in humans and animals. Besides neutrophils, microvascular endothelial 

cells are also susceptible to Ap in vitro. Little information is available about the role of 

microvascular endothelial cells in the initial stage of Ap transmission. It is reasonable to 

hypothesize that endothelial cells might be a well-suited niche for initial replication or longer-

lived endothelial cells could represent a tissue reservoir for Ap during persistent infection. The 

aims of this study were: 1. to establish a flow culture model to co-culture endothelial cells and 

polymorphonuclear leukocytes (PMN); 2. to investigate the adhesion of PMNs to Ap-infected 

endothelial cells and the changes of associated adhesion molecules; 3. to evaluate the 

feasibility of Ap transmission between endothelial cells and PMNs under flow conditions. 

The recruitment of PMNs is a crucial step in the defense of Ap infection and is initiated by 

changes of surface adhesion molecules on endothelium that results in stimulation by 

inflammatory mediators. Over decades, most in vitro assays concerning PMNs adhesion were 

performed under static conditions. Static assays provide valuable information regarding the 

mechanisms of cell adhesion, but they are clearly limited models to understand adhesive 

process in circulating fluids. Therefore, in order to mimic the physiological flow conditions in 

microvasculature, a flow culture system was established in this study. The resulting data 

showed that microvascular endothelial cells grew very well and formed a confluent monolayer 

under shear stress of 2.0 dyne/cm2. Ap replicated within HMEC-1 cells and primary HDMEC 

cells after 24 h post infection. The fraction of infected endothelial cells apparently increased 

along with infection doses, but likely decreased along with incubation time. In agreement with 

the results in other studies that were performed under static conditions, adhesion assay under 

flow conditions (e.g. 0.5 dyne/cm2) showed a remarkable increase of PMNs adhesion to Ap-

infected endothelial cell monolayers.  

Intercellular adhesion molecules 1 (ICAM-1) and vascular cell adhesion molecules 1 (VCAM-

1) are mostly presenting on endothelial cells that are mainly responsible for firm adhesion of 

PMNs. Flow cytometric analysis revealed that the expression of ICAM-1 and VCAM-1 are 

considerably upregulated on endothelial cells infected with Ap compared to uninfected 

endothelial cells. Of these two adhesion molecules, ICAM-1 was upregulated from 24.7 % 

(basic level of expression) on uninfected endothelial cells to 91.7 % on endothelial cells that 

were vastly infected with Ap (87.0 %). In contrast to the baseline level of ICAM-1 expression, 
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VCAM-1 was not constitutively expressed on endothelial cells (HMEC-1 cells) and was only 

inducible when the endothelial cells are infected with high dose of Ap. Moreover, ICAM-1 

expression was induced in a dose-dependent manner on infected endothelial cells. Similar 

results were gathered for VCAM-1. This indicates that Ap induces the expression of the 

adhesion molecules and thereby enhances the recruitment of PMNs to infected endothelial 

monolayer under flow conditions. Concurrently, the concentration of IL-8 secreted by 

endothelial cells was measured by ELISA. A remarkable high level of IL-8 induced by Ap in 

endothelial cells was detected, and the induction was dose-dependently promoted by infectious 

doses of bacteria. Thus, IL-8 might be exploited by Ap to recruit more neutrophils and 

therefore to facilitate infection.   

In the transmission assay, fresh human PMNs and HL-60 cells that differentiated into 

neutrophilic lineage with DMSO (dHL-60 cells) were used to be perfused with Ap-infected 

endothelial cells. It was clearly shown that Ap transmission occurred from endothelial cells to 

either fresh PMNs or dHL-60 cells. The result of Giemsa staining showed that approximately 

10 % at day 3, and 80 % at day 5 of dHL-60 cells were infected with Ap. Most of dHL-60 cells 

were progressively lysed due to Ap infection in the next two days.  

In summary, the flow culture model established in this study mimics the physiological 

environment in the microvasculature and allows a detailed observation of PMN adhesion to 

endothelial cells. The finding of Ap transmission from endothelial cells to PMNs in a dynamic 

flow conditions sheds light on the understanding of Ap pathogenicity mechanism, and this 

finding brings an insight into a situation of existence of Ap infection in microvasculature in 

vivo. 
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VI ZUSAMMENFASSUNG 

Anaplasma phagocytophilum (Ap) ist ein durch Zecken übertragener, intrazellulärer 

Krankheitserreger. Das Bakterium vermehrt sich hauptsächlich in neutrophilen Granulozyten 

der Menschen und Säugetiere, wobei unter in vitro Bedingungen gezeigt wurde, dass Ap sich 

auch in Endothelzellen des mikrovaskulären Gefäßsystems replizieren kann. Über die Rolle des 

Endothels in der frühen Infektionsphase während einer Ap-Infektion ist nur wenig bekannt. Es 

besteht die begründete Annahme, dass Endothelzellen als primärer Replikationsort bei einer 

Ap-Infektion eine Rolle spielen oder sogar als „Gewebenische“ bei persistenten Infektionen 

dienen können. Daher war Ziel dieser Arbeit: 1. ein Kultivierungsmodell mit Endothelzellen 

und polymorphkernigen neutrophilen Granulozyten (PMN) unter dynamischen 

Flussbedingungen zu etablieren; 2. die Adhäsion von PMNs an Ap-infizierte Endothelzellen 

und die Veränderungen der damit in Verbindung stehenden Adhäsionsmoleküle zu untersuchen; 

3. und zu analysieren, ob eine Übertragung des Erregers von infizierten Endothelzellen auf 

PMNs unter Flussbedingungen möglich ist. 

Relevant für die effektive Abwehr bei einer Ap-Infektion ist, dass PMNs in ausreichender 

Menge angelockt werden. Dies wird durch die Änderung bestimmter Oberflächenproteine des 

Endothels initiiert, wodurch es zur Freisetzung proinflammatorischer Botenstoffe kommt. In-

vitro-Untersuchungen zu Adhäsionsmechanismen der PMNs wurden bisher jahrzehntelang 

unter statischen Versuchsbedingungen durchgeführt. Durch Auswertungen konnten dabei 

sichere Erkenntnisse zu Zelladhäsionsmechanismen gewonnen werden. Diese Studien sind 

jedoch in ihrer Aussage limitiert, da keine Erkenntnisse über die Adhäsionsvorgänge unter 

physiologischen Flussbedingungen getroffen werden können. Daher wurde in dieser Arbeit ein 

dynamisches, steuerbares Kultivierungssystem etabliert, um die physiologischen Bedingungen 

im mikrovaskulären Gefäßsystem nachzuahmen. Das Wachstum der Endothelzellen in dem 

etablierten Kultivierungssystem war sehr gut. Bei Scherbedingungen von 2,0 dyne/cm2 bildeten 

die Endothelzellen eine geschlossene Zellschicht. Vierundzwanzig  Stunden post infectionem 

replizierte sich Ap in den beiden verwendeten Zelllinien HMEC-1 und der primären HDMEC 

Zelllinie. Der Anteil infizierter Endothelzellen stieg dabei mit Zunahme der Infektionsdosis, 

sank jedoch mit anhaltender Inkubationszeit. Diese Ergebnisse stimmen mit anderen Studien, 

die unter statischen Bedingungen durchgeführt wurden, überein. Unter Flussbedingungen (z.B. 

bei 0,5 dyne/cm2) lag der Anteil an PMNs, die an Ap-infizierte Endothelzellen banden, jedoch 

deutlich höher als in den Studien, die unter statischen Bedingungen durchgeführt wurden. 
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Für eine sichere Adhäsion der PMNs an Endothelzellen sind hauptsächlich zwei 

Adhäsionsmoleküle, ICAM-1 (interzelluläres Adhäsionsmolekül) und VCAM-1 (vaskuläres 

Adhäsionsmolekül), die auf der Oberfläche von Endothelzellen exprimiert werden, 

verantwortlich. Verglichen mit nicht infizierten Endothelzellen waren die genannten 

Oberflächenmoleküle bei Ap-infizierten Endothelzellen in dem etablierten Infektionsmodell 

mit fliesenden Kulturmedium hochreguliert. Für ICAM-1 (ausgehend vom 

Basisexpressionslevel) wurde dabei ein Anstieg der Expression ausgehend von 24,7 % (nicht 

infizierten Endothelzellen) auf 91,7 % gemessen (bei einer Infektionsarte der Endothelzellen 

von 87,0 %). Für VCAM-1 konnte dies nicht gezeigt werden. Dieses Adhäsionsmolekül war 

lediglich bei hochgradig infizierten Endothelzellen exprimiert. Die Expressionsrate war jedoch 

sowohl im Falle von ICAM-1 als auch für VCAM-1 abhängig von der Infektionsrate in den 

Endothelzellen. Diese Ergebnisse deuten darauf hin, dass Ap durch Hochregulierung 

bestimmter Oberflächenmoleküle PMNs anlockt und dadurch auch unter dynamischen 

Kultivierungsbedingungen Endothelzellen infizieren kann. Mit Messungen mittels ELISA 

konnte zudem gezeigt werden, dass auch die Menge des freigesetzten Chemokines IL-8 direkt 

abhängig von der Bakterienmenge in den infizierten Endothelzellen ist. Dies lässt darauf 

schließen, dass Ap den Faktor IL-8 nutzt, um mehr neutrophile Granulozyten anzulocken und 

damit die Infektion auf weitere Zellen ausdehnt. 

Um die Übertragung von Ap von infizierten Endothelzellen auf PMNs zu untersuchen, wurden 

frische PMNs von Versuchspersonen und zudem unter dem Einfluss von DMSO zu 

neutrophilen Granulozyten differenzierte HL-60 Zellen (dHL-60 Zellen) verwendet. An Ap-

infizierte Endothelzellen wurden unter definierten Flussbedingungen die genannten, 

freibeweglichen Zellen vorbeigeleitet. Dabei zeigte sich, dass tatsächlich eine Übertragung von 

Ap entweder auf humane PMNs oder auf dHL-60-Zellen stattfindet. Giemsa-Färbungen 

betätigten einen prozentualer Anstieg der Ap-infizierten Zellen zwischen Tag 3 und Tag 5 post 

infectionem von 10 % auf 80 %. Durch die hohe Anzahl der Ap in den Endothelzellen lösten 

sich aber diese zunehmend während der folgenden zwei Tage auf.  

Das in dieser Arbeit etablierte Kultivierungsmodell unter Flussbedingungen spiegelt die 

physiologischen Bedingungen im mikrovaskulären Gefäßsystem in vitro am besten wieder und 

gibt neue Informationen über die Anheftungsmechanismen von PMNs an Endothelzellen. 

Durch die im Flussmodel gezeigte Übertragung von Ap von Endothelzellen auf PMNs konnten 

detaillierte Erkenntnisse über mögliche Pathogenitätsmechanismen gewonnen werden, die bei 

einer Ap-Infektion eine Rolle spielen. Mit Hilfe des etablierten Modells sind nun differenzierte 

Einblicke in Mechanismen möglich, die in vivo während einer Ap-Infektion im 

mikrovaskulären Gefäßsystem  geschehen. 
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IX APPENDIX 

 

Figure A1: Physical maps of the Himar 1 transposon and transposase plasmid 

From FELSHEIM et al. 2006 
A pHIMAR1-UV-SS carries the A. marginale promotor tr driving expression of GFP and 
spectinomycin resistance. B pET28AMTR-A7-HIMAR contains the A7 hyperactive mutant of the 
Himar 1 transposase also driven by the Am tr promotor. 

 

A B 
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Table A1: Various microbial components recognized by mammalian Toll-like receptors 

TLR microbial components (ligands) ligand location cell types reference(s) 

TLR1 
peptidoglycan and (Triacyl) lipopeptides with 
TLR2 

bacteria and mycobacteria macrophages and neutrophils HAWN et al. 2007 

TLR2 

peptidoglycan, lipoprotein, MALP-2 a,  
Leptospira interrogans LPS, diacyl 
lipopeptides (with TLR6), triacyl lipopeptides 
(with TLR1), LAM b, LTAc (with TLR6), 
porins 

bacteria, mycobacteria, 
Mycoplasma and Neisseria 

macrophages, 
neutrophils and 
dendritic cells 

GIRARDIN et al. 
2002; AKIRA et al. 
2006 zymosan, phospholipomannan, and GXMd 

Saccharomyces cerevisiae, 
Candida albicans and 
Cryptococcus neoformans 

tGPI-mutin Trypanosoma 

hemagglutinin protein, NDe 
Measles virus and HCMV, 
HSV1 

TLR3 double-stranded RNA viruses 
dendritic cells, B 
lymphocytes 

ALEXOPOULOU et 
al. 2001 

TLR4 

LPS, LTA bacteria 

macrophages, neutrophils, 
dendritic cells,  
B lymphocytes,  
Intestinal epithelium 

GIRARDIN et al. 
2002; AKIRA et al. 
2006 

mannan and GXM 
Candida albicans and  
Cryptococcus neoformans 

glycoinositolphospholipids Trypanosoma 

envelope proteins,  HSP60f, HSP70 and 
fibrinogen 

viruses and host 

TLR5 flagellin flagellated bacteria 
macrophages, a subset of 
dendritic cells and intestinal 
epithelium 

GIRARDIN et al. 
2002 

TLR6 
peptidoglycan (with TLR2), MALP-2 (with 
TLR2), LTA (with TLR2), Zymosan (with 
TLR2) 

bacteria and  Saccharomyces 
cerevisiae 

lacrophages,  
B lymphocytes 

GIRARDIN et al. 
2002; AKIRA et al. 
2006 
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a MALP-2: mycoplasmal lipopeptide macrophage-activating lipopeptide-2 
b LAM: lipoarabinomannan 
c LTA: lipoteichoic acid 
d GXM: glucuronoxylomannan 
e ND: not determined 
f HSP60: heat-shock protein 60 
 

TLR7 single-stranded RNA RNA viruses 
macrophages, plasmacytoid 
dendritic cells and B 
lymphocytes 

AKIRA et al. 2006 

TLR8 single-stranded RNA RNA viruses 
macrophages, plasmacytoid 
dendritic cells and B 
lymphocytes 

AKIRA et al. 2006 

TLR9 

CpG-DNA bacteria and mycobacteria macrophages, plasmacytoid 
dendritic cells and B 
lymphocytes 

AKIRA et al. 2006 hemozoin Plasmodium 

DNA viruses 
TLR10 unknown unknown unknown AKIRA et al. 2006 

TLR11 profilin Toxoplasma gondii 
macrophages, liver cells, 
kidney and epithelium in 
mice 

YAROVINSKY et al. 
2005 

TLR12 profilin Toxoplasma gondii 
neurons and dendritic cells in 
mice 

MISHRA et al. 2008; 
KOBLANSKY et al. 
2013 

TLR13 23S RNA sequence ‘CGGAAAGACC’ bacteria 
macrophages and dendritic 
cells in mice 

OLDENBURG et al. 
2012 


