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1. Einleitung

Das menschliche Nervensystem nimmt eine besondere Stellung im Organismus ein. Mit Hilfe
des Nervensystems ist es dem Menschen maglich die Umwelt und sich selbst zu erleben,
sowie eine eigene Personlichkeit zu entwickeln. Reize und Informationen werden im
Nervensystem aufgenommen, gespeichert und weiterverarbeitet. Gewebe und Organe
werden im Koérper durch das Nervensystem gesteuert. Diese Prozesse laufen mit Hilfe von
zahlreichen Botenstoffen, sogenannten Neurotransmittern, ab. Serotonin ist einer dieser

Neurotransmitter. Die flr die Wirkung von Serotonin wichtige Struktur ist die serotonerge

Synapse.
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Abb.1: Die serotonerge Synapse (Abb.1a) und die Serotonin-synthese bzw. -abbau (Abb. 1b)

1a: Ausgehend von der essentiellen Aminosaure L-Tryptophan wird Serotonin nach der Synthese
mithilfe des vesikularen Monoamin-Transporters (VMAT) 1 oder 2 in synaptischen Vesikeln
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gespeichert. Bei Eintreffen eines Aktionspotentials am prasynaptischen Ende des serotonergen
Neurons und Depolaristation der Membran, kommt es zu einem Calciumeinstrom, der die
Serotoninausschittung in den synaptischen Spalt zur Folge hat. Serotonin bindet an post- oder
prasynaptische Rezeptoren, was spezifische Signale auslést. Der Serotonin-Transporter (SERT)
transportiert Serotonin zurlick in das prasynaptische Ende, wo es entweder in Vesikeln gespeichert
oder abgebaut wird. 1b: Tryptophan (Trp) wird Uber den large-neutral-aminoacid-(LNAA-)-Transporter
Uber die Blut-Hirn-Schranke in das Neuron transportiert und durch die Tryptophanhydroxylase (TPH1
und TPH2) zu 5-Hydroxy-L-Tryptophan (5-HTP) umgewandelt. 5-TPH wird dann von der L-
Aminosaure-Decarboxylase (AAAD) zu Serotonin (5-HT) synthetisiert. Die Monoaminoxidase (MAO)-A
oder (MAO)-B desaminiert Serotonin zu 5-Hydroxyindolacetaldehyd, was wiederum durch die
Aldehyd-Dehydrogenase zu 5-Hydroxyindolessigsaure (5-HIAA) abgebaut wird. Die Abbildung
entstammt der Ubersicht von Kriegebaum et al., 2010a

Das in den Vesikeln der Prasynapse gespeicherte Serotonin wird durch eine Fusion des
Vesikels mit der Membran in den synaptischen Spalt abgegeben, wo es uber
unterschiedliche Rezeptoren (siehe Kapitel 1.1.2.2) seine Wirkung entfalten kann. Zur
Signalbeendigung wird Serotonin entweder Gber den Serotonintransporter (SERT) wieder in
die Synapse aufgenommen und wieder in Vesikel gespeichert oder Uber verschiedene
Enzyme letztlich zu 5-Hydroxyindolessigsdure abgebaut. Die Serotoninverfigbarkeit wird
Uber seine Synthese im Neuron reguliert, wobei den geschwindigkeitsbestimmenden Schritt
das Enzym Tryptophanhydroxylase (TPH), bestehend aus den zwei Isoenzymen TPH1 und
TPH2, darstellt (Nielsen et al., 1992).

Friher hat man angenommen, dass TPH uberall im zentralen Nervensystem (ZNS) und der
Peripherie in nur einer Variante vorkommt. Vor einigen Jahren wurde jedoch eine zweite
Isoform der TPH gefunden, sodass sich eine Einteilung in TPH1, das Enzym in der
peripheren Serotoninsynthese, und in TPH2, das verantwortliche Enzym der zentralen
Serotoninsynthese, formulieren liet (Walther et al., 2003a). Diese neuronale Isoform der
TPH, TPH2, ist unter Berucksichtigung der Annahme, dass viele psychiatrische
Erkrankungen u.a. auf einer Stérung des Serotoninstoffwechsels beruhen kénnten, Ziel vieler
aktueller Forschungsansatze. Die Expression von TPH2 in unterschiedlichen Hirnregionen
des Menschen und mogliche Veranderungen der Expression bei psychiatrischen

Erkrankungen sollte in dieser Arbeit naher untersucht werden.



1.1 Serotonin

1.1.1  Allgemeine Grundlagen, Funktion und Entdeckung

Serotonin wurde bereits 1947 als eine vasokonstriktive Substanz bei Rindern entdeckt
(Rapport et al., 1948a; Rapport et al., 1948b). Spater zeigte sich, dass dieses Indolderivat
mit der in den enterochromaffinen Zellen des Gastrointestinaltraktes vorkommenden
Substanz Enteramin identisch ist (Erspamer und Asero 1952), dessen vasokonstriktive und
gefaltonusregulierende Wirkung bereits friih bekannt war.

Serotonin ist damit ein wichtiger Botenstoff bei verschiedensten physiologischen Prozessen
(Hadmostase, Immunantwort und Ontogenese); seine bekannteste Rolle ist aber wohl die als
Neurotransmitter (Fuxe 1965; Dahlstroem und Fuxe 1964a). Serotonin gehdrt gemeinsam
mit Noradrenalin und Dopamin zu der Gruppe der biogenen Amine und kann aufgrund seiner
hydrophilen Eigenschaften die Blut-Hirn-Schranke nicht Uberwinden. Es wird in den
Neuronen des zentralen Nervensystems durch die Enzyme Tryptophanhydroxylase und 5-
Hydroxytryptophan-Decarboxylase aus der essentiellen Aminosaure Tryptophan
synthetisiert. Nach der Freisetzung des Serotonins in den synaptischen Spalt bindet es an
spezifische Rezeptoren zur Signaltransduktion. AnschlieBend wird es entweder Uber
spezielle Transporterproteine wieder in die Zelle aufgenommen oder durch die Enzyme
Monoaminooxidase (MAO) und Aldehyddehydrogenase zu 5-Hydroxyindolessigsaure (5-
HIAA) abgebaut (siehe Abb. 1b).

Es gibt zahlreiche Studien, die die Verteilung und das Vorkommen von Serotonin, TPH-
Protein bzw. TPH-mRNA in verschieden Gewebe/Organen untersucht haben (siehe Tab. 1).
Bereiche deutlicher Serotoninkonzentrationen sind neben dem Gehirn retinale Zellen (Green
und Besharse, 1994), Nebennierenmark (Delarue et al., 1992), Niere (Sole et al., 1986),
Thrombozyten (Champier et al., 1997), Lymphozyten und Makrophagen (Finocchiaro et al.,
1988), Milz (Young et al., 1993), Pankreas (Barbosa et al., 1998), Lunge (Newman et al.,
1993), Hoden (Frungieri et al., 1999), Zunge (Fujimoto et al., 1987), Brustdrise (Matsuda et

al., 2004), Zygote und Blastozyste.



Organ/Gewebe Zelltyp Biomolekiil Quelle
Weber und Horita
Gehirn Rapheneurone 5-HT und TPH2" 1965
Epiphyse (Pinealozyten) 5-HT und TPH1 Sugden 2003
Green und Besharse
Auge retinale Zellen 5-HT und TPH1 1994

Gastrointestinaler Trakt

enterochromaffine Zellen

5-HT und TPH1'

Weber und Horita
1965

enterische Neurone

5-HT und TPH2

Cote et al 2003

Nebennierenmark

adrenochromaffine Zellen

5-HT und TPH1"

Delarue et al. 1992

Niere

renale proximale Tubuli

5-HT und TPH

Sole et al. 1986

hamatopoetische Zellen

Thrombozyten

5-HT und TPH

Champier et al. 1997

Lymphozyten und Makrophagen

5-HT und TPH1-
mRNA

Finocchiaro et al.
1988

Mastzellen

5-HT und TPH1'

Finocchiaro et al.

1988

Milz T-Lymphozyten? 5-HT und TPH1 Young et al 1993
3-Zellen der langerhanschen .
Pankreas Inselzellen 5-HT und TPH1 Barbosa et al. 1998
Lunge neuroendokrine Zellen 5-HT und TPH1 Newman et al. 1993
Hoden Leydigzellen 5-HT Frungieri et al 1999
Zunge Geschmacksknospen 5-HT und TPH Fujimoto et al. 1987
Brustdriise Epithelzellen 5-HT und TPH1 Matsuda et al. 2004
Walther und Bader
Zygote 5-HT und TPH 1999
Walther und Bader
Blastozyste 5-HT und TPH 1999

Tab. 1: Verteilung von Serotonin und TPH (Protein oder mRNA) in verschiedenen Organen; * * dabei
handelt es sich nach heutigem Kenntnisstand auf Grundlage der gewebsspezifischen Expression der
beiden TPH-Isoformen um TPH1* oder TPH2#(modifiziert nach Peter, 2006).
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Serotonin wird bereits wahrend der Embryonalentwicklung gebildet und ist als
morphogenetischer Signalstoff an der Regulation von Differenzierungsprozessen beteiligt
(Lauder, 1993; Gross und Hen, 2004). Es gibt experimentelle Hinweise auf die Beeinflussung
der Entwicklung des Gesichtsschadels, der SchlieRung des Neuralrohrs und der Reifung des
kardiovaskularen Systems durch Serotonin (Gutknecht et al., 2009; Cote et al., 2007). Die
Bedeutung des Serotonins als Regulator von strukturellen Organisations- und
Reorganisationsprozessen tritt wahrend der Hirnentwicklung besonders deutlich zutage, ist
aber auch im adulten Hirn nachweisbar (Lesch, 2001c; Lauder, 1990). Aus freien
Nervenendigungen ausgeschittetes Serotonin kann in Astrozyten das Signal zur Synthese
neurotropher Faktoren auslésen und leistet auf diese Weise einen stabilisierenden Beitrag
fur den Auf- und Umbau neuronaler Verschaltungen (Neuroplastizitat) (Huther und Rdther,
2000).

Walther und Bader (1999) fanden, dass bereits in embryonalen Stammzellen 5-HT, TPH-
Protein und TPH-mRNA nachgewiesen werden kann. Serotonin ist ein wichtiger Bestandteil

bei Entwicklungs- und Vernetzungsprozessen der Neurone im ZNS (Gaspar et al., 2003).

Der grofdte Teil des Serotonins im Kérper befindet sich in den enterochromaffinen Zellen des
Gastrointestinaltraktes (Weber und Horita, 1965), wo es die Motilitdt und Sekretion férdert.
Serotonin hemmt die Magen und Dickdarmmotilitdt und férdert die Aktivitat des Duodenums.

Im Magen-Darm-Trakt fordert Serotonin die Peristaltik und wirkt vasokonstriktiv auf glatte
Muskulatur (Ormsbee, Il und Fondacaro, 1985). Aufgrund dieser Wirkungen des Serotonins
im  Gastrointestinaltraktes wird eine Beteiligung bei der Atiopathogenese des
Reizdarmsyndroms diskutiert (Mach 2004).

Die Serotoninfreisetzung wird durch Vagusreizung, erhéhte AMP-Bildung oder mechanische
Reizung stimuliert. Von dort gelangt es in den Blutkreislauf und kann z.B. von Thrombozyten
aufgenommen werden und ist ein wichtiger Regulator der Thrombozytenaggregation
(Ormsbee, Il und Fondacaro 1985). Im Rahmen der Blutgerinnung, speziell der primaren

Hamostase, wird Serotonin aus Thrombozyten freigesetzt (Walther et al.,, 2003b).
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Wahrscheinlich soll auf diesem Weg die Konzentration an freiem Serotonin gering gehalten
werden um bei entsprechendem Signal (z.B. Verletzungen, Entziindungen) freigesetzt zu
werden und seine vasoaktiven und thrombozytenaggregierende Wirkung auszuuben.

Die Funktionen von Serotonin in der Peripherie sind vielfaltig. Es wirkt gefalverengend in der
Lunge und Niere und gefal3erweiternd in der Skelettmuskulatur. Carrasco et al. (2000)
diskutierten die Beteiligung von Serotonin in der Entstehung von Praeklampsie.

Aufgrund dieser Wirkungen auf das Gefalisystem lasst sich auch z.B. die Beteiligung des
serotonergen Systems bei Migrane bzw. deren Behandlungserfolg mit 5-HT1gp-
Rezeptoragonisten (Sumatriptan, Almotriptan etc.) erklaren (Hamel, 2007; Jones und
Blackburn, 2002; Villalon et al., 2003). Geba et al. (1996) fanden, dass Serotonin bei der T-
Zell-vermittelten Immunantwort der Mastzellen beteiligt ist. In den vergangenen Jahren
wurden immer wieder bisher unbekannte Funktionen des Serotonins entdeckt. Unter
anderem konnten Cote et al. (2003) eine Beteiligung von Serotonin an der kardialen
Regulation zeigen. Weiterhin konnten Zusammenhange zwischen Serotonin und der Leber-
Regeneration (Lesurtel et al., 2006) und der Homdostase des ph-Wertes in den

Hirnkapillaren (Richerson, 2004) gezeigt werden.

Weber und Horita (1965) zeigten bereits 1965 flir das Gehirn hohe Konzentrationen an
Serotonin in den Raphekernen und der Epiphyse. Die Epiphyse liegt zwar im Gehirn, ist
jedoch durch die Blut-Hirnschranke von diesem getrennt. Dort ist es vor allem an der
Melatonin-Synthese (Gern, 1979; Ralph, 1979), die einem circadianen Rhythmus unterliegt,
beteiligt (Reiter, 1993).

Neben zahlreichen neuromodulatorischen peripheren physiologischen Effekten wirkt
Serotonin besonders im ZNS als primarer Neurotransmitter.

Die Wirkung von Serotonin an der Synapse wird Uber verschiedene spezifische Rezeptoren
vermittelt, die sich pharmakologisch, strukturell und funktionell unterscheiden (Hoyer et al.,

1994).
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Obwohl nur ein Bruchteil des gesamten Serotonins des Koérpers dort zu finden ist, ist es
aufgrund einer komplexen Verteilung in praktisch allen Hirnarealen in verschiedenste
Hirnfunktionen involviert. Die synthetisierenden Zellkerne befinden sich aber v.a. in den
Raphekernen des Mittelhirns, Pons und Medulla oblongata (Dahlstroem und Fuxe, 1964a).

So werden einerseits praktisch alle wichtigen physiologischen Funktionen wie z.B. Schlaf,
Stimmung, Koérpertemperatur, Appetit und Sexualverhalten durch Serotonin reguliert,
andererseits werden Beeintrachtigungen des Serotoninsystems mit zahlreichen
psychiatrischen Erkrankungen in Verbindung gebracht und bei der Athiogenese dieser

diskutiert (Bellivier et al., 1998).

1.1.2 Serotonin-Synthese und Abbau

1.1.2.1 Synthese

Ausgangspunkt fiir die Serotoninsynthese ist die essentielle Aminosaure Tryptophan, deren
Verflgbarkeit die mdgliche Serotoninsynthese bestimmt. Der normale Tryptophanbedarf
eines Erwachsenen liegt bei 0.25 g pro Tag. Von der taglich aufgenommenen Menge an
Tryptophan wird nur ca. 1 % zur Serotoninsynthese verwendet. 90% werden zu Acetoacyl-
CoA abgebaut (Huther und Rather, 2000; Botting, 1995).

Im Blut wird Tryptophan gebunden an Albumin transportiert. Tryptophan wird Uber einen
unspezifischen Aminosauretransporter, an dem es mit allen anderen groR3en neutralen
Aminossauren (LNAA) kompetiert, aus dem Blut in die Zelle transportiert. Eine vermehrte
Tryptophanverfiigbarkeit fihrt zu einer vermehrten Bildung von 5-Hydroxytryptophan
(5—-HTP) und in Folge zu einer vermehrten Synthese von Serotonin (5-Hydroxytryptamin,
5-HT) (Fernstrom, 1983). Dadurch wird das Enzym vor einer oxidativen Inaktivierung

geschitzt (Substratprotektion).

Auch flr die Aufnahme in das Gehirn kompetiert Tryptophan mit allen groRen Aminosauren
(Valin,  Leucin, Isoleucin,  Phenylalanin, Tyrosin) an dem  unspezifischen

Aminosauretransporter der Blut-Hirn-Schranke. Die Tryptophanverfigbarkeit im ZNS ist
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daher abhangig von dem Verhaltnis von Tryptophan zu den anderen Aminosauren an

diesem Transporter (Young, 1986).

Der Km-Wert der TPH ist héher als die Tryptophankonzentration im Gehirn, sodass im
Grunde die TPH Syntheseleistung durch die Tryptophan-Verfligbarkeit bestimmt wird
(Friedman et al., 1972).

Eine veranderte Serotoninsyntheserate im Gehirn kann daher einerseits durch mehr freies
Tryptophan (Tryptophansupplementation, reduzierte Tryptophanbindungsfahigkeit von
Albumin z.B. nach fettem Essen (Kompetition von freien Fettsduren um die Albuminbindung))
oder durch ein geringeres Vorkommen der mit Tryptophan konkurrierenden Aminosauren
(postprandialer Konzentrationsabfall von Valin, Lecin und Isoleucin nach kohlenhydratreicher
Nahrung, vermehrte Insulin-vermittelte Aufnahme dieser Aminosauren in die Muskulatur)
verursacht sein (Huther und Rither, 2000). Eine schnelle Reduktion der zentralen
Serotoninkonzentration durch Gabe eines Aminosauregemisches (Tryptophan-Depletions-
Test) beruht auf diesem Mechanismus und ist ein wichtiges Werkzeug in der psychiatrischen
Forschung (Young, 2013; Bell et al., 2001).

Der geschwindigkeitsbestimmende Schritt (enzymatische Ringhydroxylierung in 5 Stellung)
in der Synthese wird von dem Enzym TPH bestimmt (Lovenberg et al., 1967).

Naheres zur TPH, die Thema dieser Arbeit ist, wird ausfiihrlich in Kapitel 1.2 beschrieben.
Als zweiter Schritt der Serotoninsynthese folgt die Decarboxylierung von
5-Hydroxytryptophan zu 5-Hydroxytryptamin (Serotonin, 5-HT) durch die aromatische
L-Aminosdure Decarboxylase (AAAD). Diese Decarboxylase kommt ebenfalls in anderen
Katecholamin-synthetisierenden Zellen vor und decarboxyliert aul’er L-Tryptophan auch

DOPA, L-Phenylalanin und L-Tyrosin zu den jeweiligen Aminen.
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1.1.2.2 Speicherung, Transmission und Rezeptoren

Alle Zellen, die Serotonin produzieren oder aktiv aufnehmen, speichern es in
Speichergranula oder prasynaptischen Vesikeln.

Wie bereits erwahnt, befindet sich der grofdte Teil des Serotonins im Koérper (iber 90 %) in
den enterochromaffinen Zellen des Gastrointestinaltrakt. Abgesehen von der
Serotoninspeicherung in den enterochromaffinen Zellen, sind ein weiterer Speicherort fir
Serotonin die Vesikel in den Thrombozyten, die vermutlich das Serotonin nicht selbst
produzieren, sondern vielmehr das im Gastrointestinaltrakt ausgeschuttete Serotonin Uber

den SERT und VMAT2 aufnehmen (Ormsbee, Il und Fondacaro,1985;Launay et al., 1994).

Die Aufnahme in die Vesikel erfolgt Uber unspezifische Monoamintransporter der
Vesikelmembran (vesikuldrer-Monoamintransporter-Typ-2, VMAT2) (Peter et al., 1994).
Serotonin wird in hoher Konzentration in den Vesikeln gespeichert; die Freisetzung erfolgt
durch Exozytose, ausgeldst durch lokale Veranderungen der Ca-Konzentration Uber
spannungsabhangige Calciumkanale (z.B. als Folge der Depolarisation durch eintreffende
Aktionspotentiale). Serotonin bindet nach Diffusion durch den Synaptischen Spalt an
spezifische Rezeptoren und 16st eine Reaktionskaskade aus. Serotonin wir zum grof3en Teil
von SERT zurlck in die Prasynapse aufgenommen (Reuptake) und dort zum Teil durch

MAO zu 5-HIAA verstoffwechselt (Kriegebaum et al., 2010a).

Die Wirkung von Serotonin an der Synapse wird Uber verschiedene spezifische Rezeptoren
vermittelt, die sich pharmakologisch, strukturell und funktionell unterscheiden. Insgesamt
existieren sieben Unterklassen (5-HT; - 5-HT;), wobei bis auf die 5-HT;-Rezeptoren
(Liganden gesteuerter lonenkanal) alle Rezeptoren G-Protein gekoppelt sind (Hoyer et al.,
1994). Im ZNS werden die Serotoninrezeptoren in unterschiedlichen Bereichen exprimiert,
aber auch in anderen Organen wie z.B. Herz, glatte Muskulatur, Darm, Milz, Blase, Niere

finden sich Serotoninrezeptoren, die die jeweiligen physiologischen Vorgange vermitteln.
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Im Zentralnervensystem dominieren v.a. 5 HTqs, 5-HT4s, 5-HT2a, 5-HTyoc und 5-HT;
Rezeptoren, wahrend in dem Herz-Kreislaufsystem 5 HT,a, 5-HT1g, 5-HT2g, 5-HT7 und im
Magen-Darm-Trakt 5-HTs; und 5-HT, Rezeptoren eine Rolle spielen. Die Rezeptoren
unterscheiden sich in ihrer Bindungseigenschaft, Verteilungsmuster und postsynaptischen
Wirkung. Die Vielzahl an physiologischen Reaktionen, die Serotonin vermittelt, basiert auf
der Varietat und Komplexitat der Serotonin Rezeptoren (Kriegebaum et al., 2010a).

Auler diesen post-synaptischen Rezeptoren, die der Signaltransduktion dienen, existieren
jedoch auch pra-synaptische Rezeptoren, die uber einen negativen
Ruckkopplungsmechanismus als Selbststeuerung der Serotoninausschittung dienen. Durch
ansteigende Serotoninkonzentrationen im synaptischen Spalt, wird Uber Aktivierung dieses
Rezeptors und weiteren Mechanismen die weitere Serotoninausschuttung verhindert

(Kriegebaum et al., 2010a).

16



Rezeptor | Verteilung Physiologische Rolle
5HT 1a ZNS (Kortex, Hippocampus, Amggdala, | Agonist: anxiolytisch, antidepressiv, hypotensiv
Septum, senkt Herzfrequenz
Hypothalamus, Raphe Nuclei); Darm, Autorezeptor(inhibiert Neurotransmission)
Milz Lernvorgange, Ess- und Sexualverhalten
5HT 18 ZNS (Kortex, Striatum, Raphe-Nuclei, Autorezeptor: prasynaptische Autoinhibierung,
geringe Konzentration: Substantia vermittelt Proliferation
nigra, Agonist: inhibiert Plasmaextravasation, gegen
Globus pallidus), Vaskulatur Migrane
5HT 1 ZNS (Kortex, Hlppocampus, Amygdala, | Autorezeptor
Substantia nigra Agonist: wirkt gegen Migrane
Nucleus caudatus, Putamen, Globus
pallidus, Superior
colliculus); Herz
5HT 1 ZNS ( Kortex, Hippocampus, Nucleus Emotionales Verhalten, Schmerzen, motorische
caudatus, Putamen, Aktivitat
Globus pallidus, Amygdala,
Hypothalamus); geringe
Konzentration in HerzkranzgefalRen
5HT 1 ZNS (Kortex, Striatum, Gyrus Dentatus, | Agonist: wirkt gegen Migréne
Nucleus tractus solitarius, Bulbus
olfactorius,
Ruckenmark); Uterus
5HT2a ZNS (Kortex, Hippocampus, Amygdala, | Kontraktion Blutgefafle, Harnwege, Darm ,Uterus;
Nuclus accumbens, vermittelt Thrombozytenaggregation, erhéht
Striatum,Hypothalaums, Kapillarpermeabilitat 5-HT 3¢
Bulbus olfactorius);glatte Muskulatur,
Thrombozyten
5HT28 ZNS (geringe Konzentration: Kontraktion glatte Muskulatur,
Neokortex, Amygdala, Vasorelaxation tber NO-Freisetzung
Septum, Hypothalus, Zerebellum); Migrane, chronische Hypertonie, Kontrolle SERT
Darm,Herz, Niere, Lunge, Aktivitat in Raphe-Neuronen
Vaskulatur, Endothelzellen von Lungen-
Arterien
5HT 2c ZNS (Plexus choroideus, Kortex, Agonist: anxiolytisch
Substania nigra,
Globus pallidus, Septum,
Hypothalamus, Riickenmark)
5 HT 3a ZNS (Kortex, Hippocampus, Amygdala, | schnelle Depolarisation durch Na und K-Influx,
5HT 38 Bulbus olfactorius, Darmmotilitat, intestinale Sekretion
5HT ¢ Rickenmark)
5HT 4 ZNS (Neokortex, Hippocampus, verstarkte Neurotransmission und
Basalganglien: Gedachtnisbildung
Nucleus caudatus durch erhéhte
Putamen, Globus pallidus, Substantia Transmitterfreisetzung,
nigra); kontrahiert Darm und Osophagus durch Ach-
Darm, Blase, Nebenniere, Herz Freisetzung,
vermittelt Sekretion ins Darmlumen,
kontrolliert Atmung
5HT sa ZNS (Rezeptor auch beim Menschen adaptives Verhalten bei Stress
identifiziert: Kortex, Hippocampus,
Hypothalamus, Zerebellum)
5HT s ZNS (Rezeptor Sequenz nur in Maus adaptives Verhalten bei Stress
und Ratte exprimiert; beim Menschen:
durch Stopcodons unterbrochen
5HT 6 ZNS (Kortex, limbisches System) Lern- und Verhaltenspozesse, erhoht
Ach-Neurotransmission
5HT 7 ZNS (Hippocampus, Thalamus, Relaxation von Muskulatur Tag-Nacht-und
suprachiasmatischer Nucleus); glatte Wach-Schlaf-Zyklen,
Muskulatur, Gastro- Angstlichkeit, Schmerzen,Vasodilatation
intestinaltrakt, kardiovaskulares
System, dorsales Wurzelganglion

Tab. 2: Lokalisation und physiologische Funktion der verschiedenen Serotoninrezeptor-Subtypen (modifiziert
nach: Kriegebaum et al. (2010a), Naughton et al. (2000); Gleiter et al. (1999) und Huether und Rither (2000).



Es gibt auch Hinweise, dass eine intrazelluldre, rezeptorunabhangige Signalibermittlung
existiert. Dieser als ,Serotonylierung” bezeichneter Effekt beruht auf einer

Transglutaminasereaktion (Walther et al., 2003b).

1.1.2.3 Serotoninabbau und Melatonin

Der Hauptabbauweg des Serotonins wird von dem in der auf’eren Membran der
Mitochondrien lokalisierten Enzym Monoaminoxidase (MAO) katalysiert, wobei die Isoform
MAO A eine hohere Affinitat fir Serotonin aufweist als die Isoform MAO B, diese ist jedoch
vorwiegend in serotonergen Neuronen enthalten (Waldmeier et al., 1987; Rodriguez et al.,
2000). In der Epiphyse wird vorwiegend MAO-A exprimiert, das im Gegensatz zur
Tryptophanhydroxylase keine zirkadianen Konzentrationsunterschiede aufweist (Yeung et
al., 2004). Die MAO wird besonders stark in Leber, Lunge und Darm exprimiert um direkt die
dort aufgenommenen bzw. produzierten Amine abzubauen. Erfolgt die Abspeicherung des
produzierten oder aufgenommenen Serotonins nicht schnell genug, wird es im ersten Schritt
intrazellular durch eine oxidative Desaminierung in 5-Hydroxyindolacetaldehyd umgewandelt.
Im zweiten Schritt wird es entweder zu 5-Hydroxyindolessigsaure oxidiert oder zu
5-Hydroxytryptophol reduziert. Beide Produkte werden mit dem Urin ausgeschieden (Siegel
et al., 1994). Pro Tag werden ca. 9 mg 5-HIAA im Urin ausgeschieden, im ZNS produziertes
5-HIAA kann im Liquor cerebrospinalis nachgewiesen werden (Huther und Rither, 2000).
Andere Abbauwege filhren z.B. Uber N-Acetylierung (Arylalkylamin-N-Acetyltransferase
AANAT) und O-Methylierung (Acetylserotonin-o-Methyltransferase) in der Epiphyse, anderen
Gehirnregionen und der Retina zur Synthese von Melatonin (Gern und Ralph, 1979). Dieses
wiederum wird nach 6-Hydroxylierung uber die Niere ausgeschieden.

Ein alternativer Abbauweg wird durch das Enzym Indolamin-2,3-dioxygenase (IDO), welches
auch z.B. Tryptophan, Melatonin und 5-Hydroxytryptohan umsetzen kann, katalysiert.
Serotonin wird durch eine Spaltung des Indol-Finfringes zu Formyl-5-Hydroxykynurenamin.
Dies wird weiter Gber den Kynureninweg (Abbauweg des Tryptophans) abgebaut und mit

dem Urin ausgeschieden (Botting, 1995).
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1.1.24 Serotonin als Substrat zur Melatoninsynthese

Serotonin kann durch N-Acetylierung und anschlieBende O-Methylierung in Melatonin
umgewandelt werden. Im ersten und geschwindigkeitsbestimmenden Schritt wird durch die
Serotonin-N-Acetyltransferase Serotonin in N-Acetyl-Serotonin umgewandelt. Im 2. Schritt
wird durch die Hydroxyindol-O-methyltransferase Melatonin synthetisiert.

Melatonin ist ein in der Epiphyse (Glandula pinealis: endokrines Organ des ZNS) (Cote et al.,
2003) und Retina (Hather und Rather, 2000) produziertes Hormon, das einem in den
suprachiasmatischen Nuclei entstehenden zirkadianen Rhythmus unterliegt. Das Maximum
der in den Pinealozyten stattfindenden Produktion liegt in der Nacht. Melatonin dient der
Steuerung des zirkadianen Rhythmus im K&rper. Nach seiner Produktion wird es in den
Blutstrom abgegeben und diffundiert in alle Flissigkeiten/Gewebe (Tan et al., 1999).
Melatonin wird in der Leber in 6-Sulfatoxymelatonin metabolisiert, das lber den Urin

ausgeschieden wird.

1.1.3 Das Serotonerge System im ZNS

Wie bereits erwadhnt, sind fast alle serotonergen Neurone in den Raphe-Kernen des
Mittelhirns lokalisiert. Dort sind sie in neun Gruppen geordnet (Dahlstrom und Fuxe, 1964b).
Diese vergleichsweise groRen Neurone ziehen mit ihren z.T. enorm langen, vielfach

verzweigten Fortsatzen in alle Bereiche des ZNS.
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Abb. 2: Darstellung des humanen serotonergen Systems im ZNS (sagitaller Schnitt). Die Raphekernen
liegen paramedian im Hirnstamm. Die rostralen Raphekerne projizieren v.a. in Vorderhirn und
Cerebellum, die kaudalen Raphekerne in Riickenmark und Cerebellum. (modifiziert nach Kriegebaum,
C. etal., 2010a).

Die deszendierenden Hauptprojektionen stammen aus den pontomedullaren Zellgruppen der
Raphe-Kerne (v.a. Nc. Raphes magnus, Nc. Centralis superior pars caudalis, Nc. Raphes
obscurus), wahrend die in das Vorderhirn aufsteigenden Projektionen zu 80% den
mesopontinen Raphe-Kernen entspringen (aus dem Nc. Raphes dorsalis zu den
Basalganglien, der Amygdala und dem Nc. Accumbens und aus dem Nc. Raphes medianus
zum cingularen Cortex, zum Septum und zum Hippocampus). Weitere Innervationsgebiete
sind das periventrikulare System (Colliculi superiores et inferiores, periventrikulare Anteile
des Thalamus und des Hypothalamus), der Cortex, die Substantia nigra, der Nc.
Supraopticus, das Corpus Mammilare und der Nc. Interpedunculus (Goridis und Rohrer,
2002; Jacobs und Azmitia, 1992; Rubenstein, 1998). Teile der Projektionen enden Uber
dinne, fein verzweigte Axone frei in ihrem Zielgebiet, wo das ausgeschittete Serotonin
indirekt (parakrin) seine Wirkung entfaltet (vor allem auch auf Gliazellen). Dagegen endet der
Anteil starkerer Axone in typischen Prasynapsen.

Diese vereinfachte Darstellung der Neuroanatomie des serotonergen Systems lasst erahnen,
dass es nach heutigem Forschungsstand kaum ein Neuron oder einen Astrozyten gibt, der

nicht auch von den weitreichenden Projektionen der Raphe-Kerne erreicht und beeinflusst
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werden kann und verdeutlicht die Bedeutung des Serotonins im ZNS und dadurch letztlich
auch fur dessen neuropsychiatrische Stérungen.

Auf der afferenten Seite haben, neben wechselseitigen Verschaltungen, sowohl GABAerge,
cholinerge und dopaminerge als auch peptiderge, histaminerge und glutamaterge Eingange
modulierenden Einfluss auf die Aktivitdt der serotonergen Raphe-Neurone. Hinzu kommen
autoregulatorische Afferenzen Uber rekurrente Axonkollateralen. Im Ubrigen erhalten die
Kerngebiete im Sinne einer funktionellen Rickkoppelung Afferenzen aus allen wesentlichen
Kerngebieten ihrer Efferenzen. Aber auch aullerhalb der Raphekerne befinden sich einige
serotonerge Neurone, und nicht alle Neurone innerhalb der Raphekerne sind serotonerg,

was die Darstellung erschwert (Huther und Rather, 2000).

Serotonerge Bahnen der ventralen und dorsalen Raphekernen, die fur den Grofteil des
Serotoninsynthese verantwortlich sind, projizieren in verschiedenste Gehirnareale (Kleinhirn,
Ruckenmark, Cortex, Thalamus, Amydala, Hippocampus) (Hornung, 2003). Allerdings kann
Serotonin auch lokal in den Axonendigungen synthestisiert werden. Man nahm lange an,
dass die TPH durch axonalen Transport dort hingelangt. Jedoch konnte in verschiedenen
Studien nicht nur das Protein, sondern auch die mRNA von TPH in Projektionsgebieten des
serotonergen Systems nachgewiesen werden. Dies lasst vermuten, dass das Enzym auch
dort direkt exprimiert wird. Wie bereits erwahnt, ist Serotonin ein wichtiger Neurotransmitter
im Zentralen Nervensystem und ist an der Kontrolle vieler Funktionen beteiligt. So werden
z.B. der Schlaf-Wach-Rhythmus, der Appetit, die Thermoregulation, die kardiovaskulare
Regulation, der Brechreflex, das Sexualverhalten, die spinale Regulation motorischer

Funktionen, die Schmerzverarbeitungen und psychische Regulationsvorgangen beeinflusst.

1.1.4 Die Bedeutung von Serotonin in der Psychiatrie

Anderungen im Serotoninhaushalt wurden schon lange zunéchst in der Pathogenese von
Depressionen diskutiert. Coppen et al. (1967) beobachteten verminderte Konzentrationen an

Serotoninmetaboliten im Liquor cerebrospinalis depressiver Patienten, die allerdings nicht
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immer in spateren Untersuchungen bestatigt werden konnten und eher mit Suizidalitat bzw.
Aggressivitat assoziiert zu sein scheinen (Huther und Rither, 2000). In einer Ubersicht von
Mann et al. (2001) wurden die verschiedensten Veranderungen innerhalb des serotonergen
Systems bei Suizidalitdt bzw. Suizidversuchen dargestellt. So lassen sich nicht nur
erniedrigte 5-HIAA Konzentrationen im CSF von depressiven Suiziden zeigen, sondern auch
eine reduzierte Konzentration an Serotonin Transportern im Hirnstamm und prafrontalen
Cortex (Mann et al., 1986; Stanley et al., 1986).

Auch die Wirkung der in das serotonerge System eingreifenden Psychopharmaka schien die
Serotoninhypothese der Depression zu bestarken (Lapin und Oxenkrug, 1969). Obwohl
immer noch nicht endgultig belegt, geht man auch heute noch von einer Beteiligung
serotonerger Mechanismen bei der Pathogenese depressiver Stérungen aus (Kriegebaum et
al., 2010a; Kriegebaum et al., 2010b).

Andere Theorien Uber die Entstehung depressiver Erkrankungen beschéaftigen sich mit dem
noradrenergen System (Schildkraut et al., 1965), cholinergen System (Fritze und Beckmann,

1988), dem dopaminergen System (Birkmayer und Riederer 1975) und deren Interaktionen.

Mittlerweile vermutet man dartUber hinaus bei den verschiedensten neurologischen und

psychiatrischen Erkrankungen eine funktionelle Beteiligung des serotonergen Systems

(siehe Tab.3).
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Neurologische Erkrankungen

Psychiatrische Erkrankungen

Parkinson Depression
Tardive Dyskinesien Zwangsstorung
Akathisie Suizidalitat
Dysthonie Angststérung

Chorea Huntington

Impulskontrollstérung

Restless-legs-syndrom

Panikstorung

Myoklonien

Schizophrenie

Gilles de la Tourette Syndrom

Personlichkeitsstorung

Multiple Sklerose

ERstérung

Familiarer Tremor

Schlafstérung

Migréne

Sucht

Saisonale affektive Erkrankung

Pramenstruelles Syndrom

Chronisches Mudigkeitssyndrom

Kindliches hyperkinetisches Syndrom

Demenz

Tab. 3: Mit dem Serotoninsystem assoziierte neurologische und psychiatrische Erkrankungen (nach
Huther und Rither, 2000)

Die Assoziation zwischen serotonergem System und psychiatrischen Erkrankungen wurde
in vielen Studien betreffend der TPH1 und TPH2 als geschwindigkeitsbestimmendes System
untersucht. Da auch das Thema der vorliegenden Arbeit zu diesem Themenbereich gehort,

werden diese Zusammenhange in Kapitel 1.2. ausfihrlich dargestellt.
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Eine Beteiligung von Serotonin bei der Stress-Antwort wird schon lange angenommen, da
u.a. serotonerge Neuronen aus den Raphekernen zum Hypothalamus ziehen, einer Region
die fir die Stress-Antwort relevant ist (Liposits et al., 1987; Meyer-Bernstein und Morin,
1996; Pickard und Rea, 1997; Yamakawa und Antle, 2010). Es existieren Hinweise flur einen
regulierenden Effekt des Serotonins an der Glukokortikoidexpression (Amdrews und
Matthews, 2004; Boisvert et al., 2011), aber auch fur einen modulierenden Effekt der
Stresshormone auf die Synthese des Serotonins (Lowry, 2002). Aufgrund der Interaktionen
von Serotonin und Stress wird eine Rolle des Serotonins bei der Entstehung Stress-
assoziierter Erkrankungen wie z.B. Depressionen, Suizid, Sucht und Schizophrenie (Keller et

al., 2007; McEwen, 1998) angenommen.

Psychiatrische Erkrankung Beispiele fur Studien

Schizophrenie Miyamoto et al. 2003

Zwangsstorung Zohar et al. 2004; Murphy et al. 1989

Angststoérung Gordon et al. 2004, Bell und Nutt 1998

Depression Vlassenko et al. 2004 ; Hasler et al. 2004 ;
Lesch 2004 ;

Suizidalitat Courtet et al. 2005 ; Arango et al. 2003

Impulskontrollstérung Krakowski 2003

Sucht Preuss et al. 2000

ADHS Schulz et al. 2002; Quist et al. 2001;
Gainetdinov et al. 1999

Autismus Ramoz et al. 2006; Veenstra-VanderWeele et
al. 2004

Emotional instabile Personlichkeitsstdrung Goodman und New, 2000

Tab. 4: Kleine Auswahl an Studien als Beispiel flir den Zusammenhang zwischen serotonerger
Dysfunktion und psychiatrischen Erkrankungen.

Eine Dysfunktion des serotonergen System wird besonders auch bei der Entstehung von
Angst- und Panikstérungen (Bell und Nutt, 1998), Zwangserkrankungen (Murphy et al.,

1989), und emotional-instabilen Persdnlichkeitsstérungen (Goodman and New, 2000)

24




diskutiert. Da diese Erkrankungen ebenfalls erfolgreich mit SSRIs behandelt werden kdnnen,

scheint eine Beteiligung des serotonergen Systems wahrscheinlich.

1.2 Tryptophanhydroxylase

Die TPH ist das geschwindigkeitsbestimmende Enzym in der Serotoninsynthese (Hamon et
al., 1981).

Wie bereits erwahnt, kommt die TPH in ZNS und Peripherie in zwei Isoformen vor. Die TPH1
und TPH2 gehéren zusammen mit anderen Enzymen (Phenylalaninhydroxylase (PH) und
Tyrosinhydroxylase (TH)) zu der Gruppe der biopterinabhangigen Aromatischen-
Aminosaure-Hydroxylasen (AAAHs). Diese Enzyme katalysieren die Hydroxylierung einer
aromatischen Aminosaure in Anwesenheit von molekularem Sauerstoff und dem Ko-Substrat
BH4.

TPH wird in den enterochromaffinen Zellen, Pinealozyten und den serotonergen Neuronen
der Raphe-Kerne exprimiert. Weiterhin wird fir die Synthese Sauerstoff, Eisenionen und
Tetrahydrobiopterin bendétigt. Die Tryptophanhydroxylase ist in vivo nicht substratgesattigt.
Da das Enzym sehr oxidationsempfindlich ist, hat es in vivo eine sehr kurze Halbwertszeit
von wenigen Tagen. Ca'" und c-AMP-abhingige Proteinkinasen und die von ihnen
regulierten Phosphorylierungsprozesse regulieren die Aktivitat der Tryptophanhydroxylase
(Jiang et al., 2000; Kuhn et al., 1997; Kumer et al., 1997).

Durch die Bindung an L-Tryptophan (Substrat) und Tetrahydrobiopterin (Cofaktor) wird die
Tryptophanhydroxylase vor Oxidation und proteolytischem Abbau geschiitzt. Durch eine
Erhéhung der Tryptophanverfiigbarkeit, z.B. durch Substitution der Aminosaure, wird die
Tryptophanhydroxylase aktiviert und folglich stabilisiert. Eine Erniedrigung der Verfligbarkeit

fuhrt zu einer weiteren Labilisierung.
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121 Der Weg zu TPH1 und TPH2

Bereits seit vielen Jahren gibt es Hinweise Uber die Existenz verschiedener Isoformen der
TPH (Cash, 1998; Mockus and Vrana, 1998). Cash et al. (1985) untersuchten die TPH in
Gesamthirnproben und fanden zwei verschiedene Aktivitdtspeaks des TPH-Enzyms mit
verschiedenen isoelektrischen Punkten in Hirnstamm und Epiphyse. In weiteren Studien
konnten in verschiedenen Geweben verschiedene biochemische Eigenschaften der TPH
gezeigt werden (Nakata und Fujisawa,1982b; Nakata und Fujisawa, 1982a). Hasegawa et al.
(Hasegawa et al., 1987) konnten anhand eines ersten Anti-TPH-Antikérpers TPH zwar aus
Darmpraparaten nachweisen, allerdings nicht aus Gehirnproben. In spateren Studien konnte
mittels TPH-Antikdrper TPH haufig entweder im Darm oder dem Gehirn nachgewiesen
werden (Chung et al., 2001; Haycock et al., 2002). Erste Erklarungsversuche diskutierten
Veranderungen wie z.B. Phosporylierungsprozesse der TPH in verschiedenem Gewebe
(Cash, 1998). Weitere Unstimmigkeiten und somit Hinweise auf unterschiedliche Isoformen
zeigten sich bei der Untersuchung des mRNA - Protein Verhaltnisses in Epiphyse und
Hirnstamm (Dumas et al., 1989; Austin and O'Donnell, 1999; Wang et al., 2002). Es zeigten
sich zwar in beiden Hirnarealen gleich hohe TPH-Proteinwerte, jedoch war im Hirnstamm die
TPH-mRNA ca 150-fach geringer als in der Epiphyse exprimiert.

Walther et al. (2003a) untersuchten erstmals anhand von TPH defizienten (TPH-/-) knock
out Mausen die physiologischen Auswirkungen des Verlustes der Serotoninsynthese.
Aufgrund der Funktion der TPH als geschwindigkeitsbestimmendes Enzym der
Serotoninsynthese wurde davon ausgegangen, dass eine Ausschaltung dieses Enzymes
zum Verlust von Serotonin im gesamten Organismus bzw. zu einem letalen Maustyp kommt.
Uberraschenderweise fand man bei diesen TPH-KO-M&usen anndhernd der Norm
entsprechende Serotoninkonzentrationen im ZNS und lediglich in der Peripherie (Darm, Blut)
konnte kein Serotonin nachgewiesen werden. Diese Ergebnisse gaben Grund zur Annahme,
dass eine zweite Form der TPH mit unterschiedlichem Genlokus existiert und durch die

Ausschaltung des TPH Gens unbeeinflusst blieb.
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Walther und Bader (2003) identifizierten erstmals eine zweite spezifisch neuronale Form der
Tryptophanhydroylase (TPH2) bei Mausen, die spezifisch im Gehirn vorkommt und am
starksten in den Raphekernen exprimiert wird (Walther et al., 2003a; Sakowski et al., 2006;
Patel et al., 2004). Die periphere Form der Tryptophanhydroxylase (TPH1) wird unter
anderem in den enterochromaffinen Zellen des Darms, Thrombozyten und Mastzellen
exprimiert. Beide Isoformen haben eine 71%ige Strukturdhnlichkeit (Walther et al., 2003a),

die biochemischen Eigenschaften unterscheiden sich jedoch erheblich.

1.2.2 Eigenschaften von TPH1 und TPH2

Die Tryptophanhydroxylase wird beim Menschen auf zwei verschiedenen Genen kodiert.

TPH1 auf Chromosom 11 und TPH2 auf Chromosom 12. Dabei besteht eine

Sequenzhomologie von 71 % (Walther und Bader 2003). TPH1 zeigt einen niedrigeren Km

Wert als TPH2 (McKinney et al., 2005).

TPH1 TPH2
Genlocus
Mensch Chromosom 11 Chromosom 12qg21.1
Maus/Ratte Chromosom 7/1 Chromosom 10/7
Exons 11 11
GroRe 51kDa 56kDA
Lokalisation Periperie/ZNS ZNS
(v.a.enterochromaffinen (v.a. Raphekernen)
Zellen und Epiphye,
teils auch im ZNS
Domanenstruktur 3 Doméanen 4 Domanen
-regulatorische -regulatorische
-katalytische -katalytische
-C-terminale -C-Terminale
-4. Domane: gebildet von 44-N-
terminalen Aminosauren
Vmax(mmol/min/mg) 646+/- 43 194+/-7,2
Km(Trp) 10-20 uM 40-50 uM
Aktivierung Phosphorylierung an Phosphorylierung an
Ser®® und Ser®® Ser' und Ser'™
Besonderheiten Ca. 70 % Sequenzhomologie

Tab. 5: Charakteristische Eigenschaften von TPH1 und TPH2
* nach Murphy et al., 2008; Tenner et al., 2007; Walther et al., 2003a; McKinney et al., 2005; Winge et
al., 2008)
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Unterschiede zeigen sich in der Anzahl der codierenden Exons, das TPH1 Gen umfasst 10,
das TPH2 Gen 11 Exons. Das TPH1 Protein hat ca. eine GroRe von 51 kDa, das TPH2
Protein 56 kDa. Unterschiede beider Isoformen bestehen auch im Bereich des strukturellen
Aufbaus. So besitzt TPH2 zusatzlich zu den bei der TPH1 vorkommenden 3 Doméanen
(regulatorische, katalytische und c-terminale Tetramerisierungsdoméne) eine 4. Doméne (N-
terminus) (Daubner et al., 1997; D'Sa et al., 1996). Tenner et al. (2007) fanden einen v.a.

inhibierenden Effekt dieses 44- Aminosaure langen N-Terminus auf die Enzymaktivitat (siehe

Abb.3).
N-Terminus
1 44 146 469
hTPH2 N 32 - C
a5 145 470 490
regulatorische Domiine katalytische Domiine C-Terminus
110 323
hTPH1 A== H- C
1 109 324 444

Abb.3: Strukturelle Darstellung der humanen TPH1 und TPH2 mit jeweils drei Domanen: die
regulatorische, die katalytische und die C-terminale Tetramerisationsdoméane. TPH2 besitzt zusatzlich
eine vierte Domane, die aus 44-N-terminalen Aminosauren besteht. (nach Carkaci-Salli et al. 2006;
D’Sa et al., 1996; Daubner et al.,1997)

So ist TPH1 die ,aktivere” Form der TPH. Die Tatsache, dieser ausschlieRlich bei der TPH2
vorkommenden Struktur, kénnte gerade in Hinblick auf pharmakologische Aspekte und als

Angriffspunkt mit alleiniger Wirkung im ZNS ohne periphere Auswirkungen interessant sein.

Sowohl physiologische Ablaufe als auch pharmakologische Interventionen scheinen einen
Einfluss auf die Expression der Tryptophanhydroxylase zu haben. So konnte in einer Studie
von Sugden (2003) eine Beeinflussung der Expression von TPH1- und TPH2-mRNA in der
Epiphyse durch den diurnalen Rhythmus gezeigt werden, mit einem nachtlichen Anstieg der
TPH1-mRNA Expression um das ca. 4-fache. Die TPH2-mRNA-Expression zeigte hingegen
keinen signifikanten Unterschied der Expression abhangig von der Tageszeit. Dabei war die

TPH2-mRNA Expression ca 105-fach niedriger als die TPH1-mRNA Expression. Eine
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ahnliche Beeinflussung der mRNA wurde auch in der Retina von Liang et al. (2004)
berichtet. Bei Macaque Affen kam es unter der Stimulation mit ovarialen Steroiden zu einer
erhdhten TPH2-mRNA Expression in den Raphekernen (Sanchez et al., 2005). Durch die
Gabe von Glukokortikoiden kam es zu einer reduzierten TPH-mRNA-Konzentration im
Gehirn und einer erhéhten Konzentration in der Epiphyse (Clark und Russo, 1997; Clark et
al., 2008). Durch die Gabe von Ecstasy kam es zu einem erhéhten TPH-mRNA Level im
Gehirn und reduzierten TPH Protein Level (Austin, 2004). Chamas et al. (1999) zeigten unter
wiederholtem Immobilisationsstress erhohte TPH-mRNA Level in den Raphekernen, jedoch

zeigte sich kein Effekt in der Epiphyse.

1.2.3 Isoform-spezifische Expression

Walther und Bader (2003) identifizierten erstmals die als TPH2 bezeichnete Isoform der
Tryptophanhydroxylase bei Mausen, die ausschlieldlich im Gehirn exprimiert wird und nicht in
peripherem Gewebe (z.B. Darm Lunge, Niere) nachgewiesen werden kann. Bei dieser
Studie mit Mausen konnte allerdings TPH1 (periphere Isoform) fast ausschlieRlich im Darm
detektiert werden, wahrend es im ZNS lediglich in der Epiphyse, aus embryologischer Sicht
peripheres Gewebe, nachzuweisen war. Weiterhin zeigte sich, dass in diesen Bereichen die
Konzentrationen der TPH1-mRNA wesentlich hoher waren als die Konzentrationen der
TPH2-mRNA. Aullerdem fand man bei Ratten zirkadiane Konzentrationsunterschiede der
TPH1 in der Epiphyse mit einem Konzentrationsmaximum nachts (Sugden 2003), was
eventuell mit der vor allem nachts stattfindende Melatoninsynthese aus Serotonin in
Zusammenhang steht.

Eine Studie von Nakamura zeigte, dass hauptsachlich TPH1 in den spaten
Entwicklungsstadien des Gehirns von Mausen exprimiert wird. TPH1 zeigte dabei eine
hohere Affinitdt gegenlber Tryptophan und eine hdhere Enzymaktivitdt als TPH2 im
Hirnstamm (Nakamura et al., 2006). Diese Ergebnisse zeigten, dass v.a. TPH1 in der
Entwicklung des Gehirns und der serotonergen Neurone eine Rolle spielt und dadurch evitl.

spatere Verhaltensweise beeinflussen kann. Eine Studie an Ratten zeigte, dass TPH1 fast
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ausschlief3lich in der Epiphyse, TPH2 exklusiv in den Raphekernen exprimiert wird. Die
Studie zeigte keine Uberlappungen in der mRNA Expression (Patel et al., 2004). Diese
Trennung konnte bei humanen Untersuchungen unserer Forschungsgruppe nicht so deutlich
nachgewiesen werden (Zill et al., 2007).

Die Konzentration der TPH2-mRNA in den Raphekernen konnte 2.5-fach héher als die
TPH1-mRNA in der Epiphyse nachgewiesen werden (Patel et al., 2004). In einer Studie der
eigenen Gruppe an zwei humanen post-mortem Gehirnen konnte TPH2-mRNA in
verschiedenen Gehirnregionen (frontaler Cortex, Thalamus, Hippocampus, Hypothalamus,
Amygdala), jedoch vernachlassigbar gering in peripherem Gewebe (Herz, Lunge, Niere,
Duodenum, Leber, Nebenniere) nachgewiesen werden (Zill et al., 2004a).

Zill et al. (2007) fanden bei humanen post-mortem Gehirnen eine deutliche héhere (4-fach)
TPH2-mRNA Expression als TPH1-mRNA in den Raphekernen. Hier wurden verschieden
zentrale Hirnregionen (Cortex, Thalamus, Hippocampus, Amygdala, Kleinhirn und
Raphekerne) untersucht. Im Unterschied zu bisherigen tierexperimentellen Studien konnte in
dieser Studie allerdings auch TPH1-mRNA in allen untersuchten Gehirnregionen gefunden
werden, wenn auch in geringem Masse.

Dieses Ergebnis lasst auch eine mogliche Beteiligung der TPH1 an Erkrankungen des ZNS
bzw. an Stérungen des zentral nervésen serotonergen Systems moglich erscheinen, sodass
die urspriingliche Aufteilung, bei der man annahm, dass TPH1 priméar peripher und TPH2 im

ZNS vermutet wurde, heute so nicht mehr aufrechterhalten werden kann (siehe Abb.4).
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Abb. 4: Die urspriingliche Vorstellung der Dualitat des serotonergen Systems mit dem Konzept einer
peripheren (TPH1) und zentralen (TPH2) Isoform bei der Serotoninsynthese. Serotonin fuhrt zu
verschiedensten peripheren und zentralen Funktionen, welche bei einer Stérung des serotonergens

Systems zu pathologischen Veranderungen filhren kdnnen (Walther et al., 2003a).

1.2.4  TPH (TPH1/TPH2) bei psychiatrischen Patienten

Aufgrund der mdéglichen Bedeutung der serotonergen Neurotransmission flr psychiatrische

Erkrankung und der primaren Rolle von TPH bei der Serotoninsynthese liegt es natirlich

nahe zu vermuten, dass Anderungen von TPH bzw. von beiden TPH-Isoformen, TPH1 und

TPH2, in die Pathogenese von psychiatrischen Erkrankungen involviert sind. Allerdings

wurde diese Fragestellung bisher in nur relativ wenigen Studien aufgegriffen.
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1.2.4.1 TPH-Protein (Immunaktivitat) und mRNA Expression

Auf Proteinebene zeigten sich v.a. in den Raphekernen z.T. unterschiedliche Ergebnisse der
Immunoreaktivitat bei Suiziden (siehe Tab.6).

Bonkale et al. (2006) fanden eine erhéhte Immunreaktivitdt (IR) der TPH in den dorsalen
Raphekernen bei depressiven, alkoholabhangigen Suiziden, jedoch keinen Unterschied der
TPH-IR bei depressiven Suiziden im Vergleich zu Kontrollen. Boldrini et al. (2005) fanden
jedoch eine erhdhte IR der TPH in den dorsalen Raphekerne bei Suiziden im Vergleich zu
Kontrollen. Kein Unterschied der IR der beiden Gruppen zeigte sich in den medianen
Raphekernen und im Prafrontalen Cortex (Ono et al., 2002). Bonkale et al. (2004) fanden
keinen signifikanten Unterschied der TPH-IR zwischen Suiziden und Kontrollen in den
Dorsalen Raphekernen. Wiste et al. (2008) konnten hingegen eine erhéhte TPH-IR bei
Suiziden im Rahmen einer Major Depression im Vergleich zu Suiziden im Rahmen einer

Bipolaren Stérung im Locus Coerulus finden.
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Kollektiv * | Region** Methode Ergebnis
TPH
(Protein)
Wiste et | 7 Kon LocusCoerulus Immunozytochemie | TPH-IR:
al. 2008 | g 57 (MD) mit Computer Sz(MD)>Sz(BP)
6 SZ (BP) assisted keine signifikante Korrelation
Quantifizierung qer mit Alter, Geschlecht und
Immunoreaktivitat Rauchen
Sawada | 6 Kon Caudatenucleus | HPLC Kon: TPH in Raphe, LC und
etal. 4 PS Hypothalamus Subst.nigra hoch
1985 3 SND LC PS: TPH im Thalamus niedrig
2 SDS Ncl Accumbens SND: TPH niedrig im LC,
1 PSP Pallidum Raphe, Subst, Nigra
Andere Gehirnregionen:
Putamen o
Raphekeme PS: TPH niedriger als Kon
Subst. Niara aufer Nc. Accumbens und
-9 Caudatenuclues (Aktivitat
Thalamus hoher)
Ono, H. 10 SZ Prafrontaler Immunreaktivitat Keine signifikanten
etal. 12 Kon Cortex 5HT2A Rezeptor Unterschiede zwischen SZ und
2002 Kon.
Assay
218 AA Genotyp:
erhéhte TPH IR und erniedrigte
Rezeptordensitat bei beiden
Gruppen
Bonkale 8 Kon DR Immuno- -TPH IR im dorsalen
etal. 8 SZ mit C2 autoradiographie subnucleus der DR signifikant
2006 erhéht bei Sz
-Anderen Regionen der DR
keine Unterschiede
Boldrini 11 8Z DRN MRN Immuno- DRN: TPH IR SZ>Con
etal. 11 Kon autoradiographie MRN gleich
2005 Méannlichen SZ in DRN héhere
TPH IR als Con
Rostrocaudal tberall bei SZ
héhere Desnity
Bonkale 13 SZ DR Immunozytochemie | Kein Unterschied TPH IR Sz
et al. (MD) und Kon
2004 13 Kon

Tab. 6: Zusammenfassung der Studien zu Veranderungen von TPH auf Proteinebene bei
verschiedenen psychiatrischen und neurologischen Erkrankungen.

* Kon: Kontrollen; Sz: Suizid; Sz(MD): Suizid bei Depression; Sz(BP): Suizid bei Bipolarer Stérung;
C2: Alkoholabhéangigkeit; PS: Parkinson-Syndrom; SDS: Shy-Dragger-Syndrom; SND: Striatonigrale
Degeneration; PSP: Progressive supranukleare Blickparese; **DR: dorsale Raphekerne; MRN:
mediane Raphekerne.

Nur wenige Arbeiten haben sich mit Veranderungen der TPH1 bzw. TPH2 Expression

(mRNA-Ebene) bei psychiatrischen Erkrankungen befasst (siehe Tab.7).
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Kollektiv* | Region** Methode*** Ergebnis****
TPHMRNA
Austin et al. | 5 Kon Hirnstamm RT-PCR mRNA postive Zellen
1999 Epiphyse Northern Blot Epiphyse>Raphe
In situ (11-46 fach)
Hybridisierung
Histochemie
TPH1mMmRN
A
Costedioet | 16 Mucosa des IHC -SERT mRNA bei Divertikulitis
al. 2008 Divetikulitis | ColonSigmoideu | RT-PCR reduziert
13 asympt. | m Enzym- -TPH1 mRNA keine
Divertukiliti Immunoassay Unterschiede
S -zwischen Gruppe kein
22 Kon Unterschied
TPH2mRN
A
Zill et al. 2 Kon Frontaler Cortex | RT PCR TPH2-mRNA
2004a Thalamus -
Hippocampus Cortex>Thalamus>Hypothalau
Hypothalamus ms
Amygdala -Peripher vernachlassigbar
Herz, Lunge, gering
Niere, -wenig Hippocampus,
Duodenum, Amygdala
Leber
Nebenniere
Bach- 11 Raphekerne inSituHypbridisierun | Negative Korrelation mit Alter
Mizrachi, H. | Depressive g DRN TPH2mRNADepr.
et al. 2006 11 Immunohistochemi | Sz>Con
Kontrollen e
Bach- 10 Sz Raphekerne In Situ TPH2 Sz>Kon
Mizrachi,H. | 10 Kon Hybridisierung und
et al. 2008 Computerassisted
Image Analyse
TPH1 und
TPH2
mRNA
Zill et al. 8 Kon Cortex Thalamus | RT PCR TPH1 in allen Regionen
2007 Hypothalamus TPH2 v.a. in Raphe

Hippocampus
Amydala
Raphekerne
Cerebellum

(4x mehr als TPH1)

Raphe hochste TPH2 Express.
(7x mehr als anderen
Regionen)

Tab. 7: Kurze Zusammenfassung der Studien tber die TPH-, TPH1- und TPH2-mRNA Expression an
humanen postmortem Proben *Kon: Kontrollen; Sz: Suizid; Schz: Schizophrenie; SA:
Substanzabhangigkeit; **HVL: Hypophysenvorderlappen; HHL: Hypophysenhinterlappen; ***IHC:
Immunhistochemie; ****DRN: dorsale Raphekerne.
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Austin et al. (1999) fanden in der Epiphyse ca 11-46-fach mehr TPH-mRNA als in den
Raphekernen, wobei zu diesem Zeitpunkt keine Differenzierung zwischen TPH1 und TPH2
vorgenommen wurde und es sich anhand des Expressionsmuster nach aktuellem
Wissensstand wahrscheinlich um TPH1 handelte.

Zill et al. (2004a) untersuchten die Expression der TPH2-mRNA im Gehirn sowie
verschiedenen peripheren Gewebe zweier Kontrollen. Hierbei zeigte sich peripher eine
vernachlassigbare geringe Expression der TPH2-mRNA, allerdings konnte im ZNS in allen
untersuchten Regionen TPH2-mRNA nachgewiesen werden. Hierbei zeigten sich v.a.
Cortex, Thalamus und Hypothalamus als Strukturen mit groRerer Expression als z.B.
Hippocampus und Amygdala. In einer weiteren Studie dieser Arbeitsgruppen wurde sowohl
die TPH1 als auch TPH2-mRNA Expression in verschiedenen Regionen des ZNS (Cortex,
Thalamus, Hypothalamus, Hippocampus, Amydala, Raphekerne, Cerebellum) bei 8
Kontrollen untersucht. TPH1 konnte in allen untersuchten Hirnregionen gemessen werden. In
den Raphekernen zeigte sich die héchste TPH2-mRNA Expression (Zill et al., 2007).

Auf der mRNA Ebene konnte in den dorsalen Raphekernen von Suizidopfern im Vergleich zu
Kontrollen eine erhéhte Konzentration von TPH2-mRNA (Bach-Mizrachi et al., 2006; Bach-
Mizrachi et al., 2008) nachgewiesen werden. Eine erhdhte TPH2-mRNA Expression wurde in
einer aktuellen Arbeit in den dorsalen und medianen Raphekernen von alkoholabhangigen
Patienten beschrieben (Bach et al., 2014).

De Luca et al. (2006a) fanden im dorsolateralen prafrontalen Cortex von Suizidopfern im
Vergleich zu Kontrollen erhdhte TPH2-mRNA Konzentrationen, wenngleich diese nicht
signifikant waren. Weiterhin fand die gleiche Arbeitsgruppe im dorsolateralen prafrontalen
Cortex signifikant héhere TPH2-mRNA Expressionen bei Patienten mit einer Bipolaren
Stérung im Vergleich zu Kontrollen, bei der Gruppe der Schizophrenen Patienten zeigte sich
kein signifikanter Unterschied (De Luca et al., 2005a).

Erniedrigte TPH Konzentrationen lieRen sich bei verschiedenen neurologischen

Erkrankungen (Parkinson-Syndrom, Striatonigrale Degeneration, progressive supranukleare
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Blickparese, Shy-Dragger-Syndrom) in einzelnen Gehirnregionen nachweisen (Sawada et

al., 1985).

1.2.4.2 TPH Polymorphismen (SNP)

Neben den oben erwahnten Studien der TPH1 und TPH2 auf mRNA- und Protein-Ebene der
an Gehirnproben von Menschen und Tieren gibt es zahlreiche Studien, die die Assoziation
verschiedenster Polymorphismen des TPH1- und TPH2-Gens mit verschiedenen
psychiatrischen Erkrankungen untersuchten. Abhangig von der Lage des SNP, kénnen
funktionelle SNPs z.B. zu einer Beeinflussung der Transkription und damit zur veranderten
Proteinkonzentration oder zu einer veranderten Proteinfunktion flhren.

Obwohl diese Studien keine direkte Beziehung zur Fragestellung der vorliegenden Arbeit
haben, wurde der aktuelle Stand zu diesen Untersuchungen zu TPH1-Polymorphismen und
TPH2-Polymorphismen bei psychiatrischen Patienten nachfolgend kurz zusammengefasst.
TPH2 ist in vielen Regionen des ZNS das vorherrschende Isoenzym und daher Ziel
zahlreicher Studien mit der Fragestellung nach mdglichen Assoziationen von
Polymorphismen (SNP) mit unterschiedlichen psychiatrischen Erkrankungen. Nach der
Erkenntnis, dass auch TPH1 im ZNS vorkommt, wurden auch entsprechende Assoziationen

mit TPH1 Polymorphismen durchgefihrt.

TPH1-Polymorphismen

Es gibt viele Studien, die eine mdgliche Assoziation von TPH1-Polymorphismen und
Suizidalitdt, wo eine Dysfunktion des serotonergen Systems angenommen wird,
untersuchten.

Zusammenfassend ergaben die Studien z.T. widerspruchliche Ergebnisse. Fiur den A218C-
Polymorphismus des TPH1-Gens zeigten manche Studien eine Assoziation mit Suizidalitat,
andere Studien konnten keine Assoziation zeigen (Geijer et al., 2000; Bennett et al., 2000;
Saetre et al., 2010; Jerney et al., 2004; Yoon et al., 2008; Stefulje et al., 2006; Liu et al.,

2006). In einer Metaanalyse von Clayden et al. (2012) konnten die Autoren zeigen, dass
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zwei SNPs (rs 1800532 und rs 1799913) insgesamt am haufigsten untersucht wurden. Fir
den SNP rs 1800532 (A218C) zeigte sich eine signifikante Assoziation zu Suizidversuchen.
Li und He (2006b) untersuchten in einer Metaanalyse eine mdgliche Assoziation des TPH1
Gens mit Schizophrenie und konnten eine signifikante Assoziation des TPH1 A218C und
A779C Polymorphismus mit Schizophrenie zeigen. Auch in einer Metaanalyse von Bellivier
et al. (2004) konnte eine signifikante Assoziation des TPH1 A218C Polymorphismus mit
Suizidalitdt zeigen. Hierbei erschien der homozygote AA Genotyp haufiger mit suizidalem
Verhalten assoziiert zu sein. Chen et al. (2008) zeigten in einer Zusammenfassung zweier
Metaanalysen eine signifikanten Effekt des AA Genotypes des TPH1 A218C
Polymorphismus fiir das Risiko einer Bipolaren Stérung. In einer weiteren Metaanalyse
konnte ebenfalls ein Risiko fir Bipolare- und Sucht-Erkrankungen bei Kaukasiern fur den AA-
Genotyp des TPH1 218 Polymorphismus gefunden werden (Chen et al., 2012). Watanabe et
al. (2007) untersuchten verschiedene Polymorphismen im TPH1 Gen und fanden keine
signifikante Assoziation mit Schizophrenie, wenngleich sie in ihrer Metaanalyse eine
mdglichen Zusammenhang des TPH1 A218C Polymorphismus mit einer Pradisposition mit
Schizophrenie sahen. Andere Studien untersuchten eine moégliche Assoziation von TPH1-
Polymorphismen mit Sucht-Erkrankungen (Koller et al., 2005); Essstorungen (Kim et al.,
2009a), Borderline-Persdnlichkeitsstérungen (Wilson et al., 2009) sowie Affektiven
Stérungen (Porter et al., 2008; Lai et al., 2005; Kato et al., 2007), wobei sich keine

signifikante Assoziationen zeigen liel3.

TPH2-Polymorphismen

Aufgrund der Bedeutung der TPH2 fiir das ZNS gibt es auch zahlreiche Studien zu TPH2
Polymorphismen und verschiedensten psychiatrischen Erkrankungen wie z.B. Depression
(Van den Bogaert et al., 2006; Zhang et al., 2005; Nyman et al., 2011; Xu et al., 2011; Mann
et al., 2008; Lopez de Lara et al., 2007; De Aranjo Pereira et al., 2011; Bicalho et al., 2006;
Zill et al., 2004c; Garriock et al., 2005; Gizatullin, 2006b; ), Bipolaren Stérung (Harvey et al.,

2004; De Luca et al., 2004; De Luca et al., 2005a; De Luca et al., 2006b; Lin et al., 2007;
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Cichon et al., 2008; Grigoroiu-Serbanescu et al., 2008), Angststorungen (Maron et al., 2007;
Méssner et al, 2006; Kim et al, 2009), Autismus (Coon et al., 2005), Schizophrenie (Highashi
et al., 2007; Schumacher et al., 2012), ADHD (Sheehan et al., 2005; Walitza et al., 2005;
McKinney et al., 2008), suizidalem Verhalten (Haghighi et al., 2008), Sucht (Kobayashi et al.,
2011; Gacek et al., 2008) und Zwangsstdrungen (Filardi da Rocha et al., 2011), wobei die
Untersuchungen nicht immer signifikante Assoziationen zeigen konnten.

Zhang et al. (2005) berichteten von einem SNP (G1463A) im TPH2-Gen, welcher bei
unipolar depressiven Patienten mit einer 80 % reduzierten Serotonin-Synthese assoziiert
war. Dieser Befund konnte jedoch von mehreren anderen Gruppen nicht bestatigt werden
(Delorme et al., 2006; Glatt et al., 2005; Méssner et al., 2006; Nielsen et al., 2008; van den
Bogaert et al., 2005; Zhang et al., 2005; Zhou et al., 2005).

Nielsen et al. (2008) fanden bei Hispano-Amerikanern sowohl bei einem SNP im TPH1 als
auch im TPH2 Gen eine signifikante Assoziation mit Heroin-Abhangigkeit.

Im Hinblick auf TPH2-Polymorphismen Iasst sich daher trotzt der groen Zahl der
Untersuchungen wegen ihrer unterschiedlichen und zum Teil widersprichlichen Daten keine
klare Aussage treffen, ob signifikante Assoziationen bei verschiedenen psychiatrischen
Erkrankungen existieren. Dies deckt sich auch mit einer aktuellen Metaanalyse zu TPH2-
Polymorphismen und Depression (Gao et al., 2012).

Auch die sehr viel geringere Zahl von Untersuchungen, die parallel mogliche
Polymorphismen von TPH1- und TPH2-Polymorphismen untersucht haben bei z.B. ADHS
(Johansson et al., 2010), Autismus (Ramoz et al., 2006), Schizophrenie (Shiroiwa et al.,
2010), Affektive Stérungen (Choi et al., 2010), ergaben keine klarere Aussage bzw. fanden

keine signifikanten Assoziationen.

Insgesamt lassen diese Untersuchungen aber den Schluss zu, dass flr die untersuchten
Erkrankungen eine wesentliche Rolle von TPH Polymorphismen unwahrscheinlich erscheint.
Vor diesem Hintergrund ist die vorliegende Arbeit einzuordnen, die weg von den

Polymorphismen sich wieder mit der TPH1- bzw. TPH2-Expression beschaftigt.
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2. Fragestellung

Fir viele psychiatrische Erkrankungen wird eine Stérung des serotonergen Systems als
Ursache diskutiert. Die Tryptophanhydroxylase (TPH) als geschwindigkeitsbestimmendes
Enzym der Serotoninsynthese ist daher ein wichtiger Ansatzpunkt bei der Erforschung
pathobiochemischer Veranderungen des serotonergen Systems im Rahmen dieser
Erkrankungen. Neben der klassischen TPH wurde eine zweite, ZNS-spezifische Isoform der
TPH (TPH2) erstmals von Walter et al. identifiziert (Walther und Bader, 2003; Walter et al.,
2003a), jedoch konnte in weiteren Studien gezeigt werden, dass sowohl TPH2, die
neuronale Isoform, als auch TPH1, die bisher als periphere Isoform betrachtet wurde, im
ZNS exprimiert werden (Zill et al., 2007). TPH2-mRNA hingegen wird hauptséachlich im ZNS,
nicht in der Peripherie exprimiert (Zill et al., 2004a).

Trotz einiger friiherer Studien gibt es bislang keine Daten, die die TPH1- und TPH2-mRNA
Expression bzw. Proteinverteilung in unterschiedlichen Regionen des menschlichen Gehirns
parallel, d.h. an gleichem Probenmaterial untersuchten. Alle frGheren Studien wurden an
Hirnmaterial von Ratten, Mausen bzw. in PC12-Zellen durchgefuhrt.

In der vorliegenden Dissertation wurde daher erstmalig parallel die mRNA-Expression beider
Isoenzyme im gleichen Probenmaterial verschiedener Areale des menschlichen Gehirnes
gemessen.

In dieser Studie galt es weiterhin erstmals einerseits die TPH1- und TPH2-mRNA Verteilung
mittels RT-PCR im Vergleich zu der Proteinimmunreaktivitdt anhand immunhistochemischer
Farbungen in verschiedenen Gehirnarealen darzustellen und andererseits zu Uberprifen, ob
es in verschiedenen Hirnarealen zu Veranderungen bei mehreren Gruppen psychiatrischer

Patienten kommt (Schizophrenie, Substanzabhangige, Suizid).
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Ausgehend von den Vorbefunden der eigenen Arbeitsgruppe sollten daher folgende drei

Fragestellungen bearbeitet werden:

. Es sollte untersucht werden, in wieweit sich die Expression der Isoformen TPH1 und
TPH2 zunachst auf mRNA Ebene in verschiedenen Arealen des humanen Gehirns
unterscheidet, wobei besonders auch die beiden Hypophysenteile (Adeno- und

Neurohypophyse) untersucht wurden, wo es bis dahin keine Vergleichsdaten gab.

. Im nachsten Schritt sollte Uberprift werden, ob sich die Expression von TPH1- und
TPH2-mRNA in den untersuchten Gehirnstrukturen bei verschiedenen psychiatrischen
Erkrankungen unterscheidet. Anhand der Literaturlagen sollte hier der Fokus auf den

Erkrankungsbilder: Schizophrenie, Suchterkrankungen und Suizid liegen.

. Im letzten Schritt sollte orientierend Uberprift werden, ob sich das Expressionsmuster
von TPH1 und TPH2 auf der mRNA Ebene auch auf der Proteinebene beider Isoenzyme
wiederspiegelt. Das fiir diese Untersuchungen zur Verfiigung stehende Probenmaterial war
allerdings relativ klein, sodass es keine Aussage Uber mdgliche Einflisse psychiatrischer

Erkrankungen erlaubte.
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3. Material und Methode

3.1 Untersuchungsmaterial

3.1.1  Gruppen

Alle verwendeten Gewebeproben wurden von dem Institut fir Rechtsmedizin der Ludwig-
Maximilians-Universitat zur Verfligung gestellt (Zusammenarbeit mit Prof. A. Buttner, Leiter:
Prof. W. Eisenmenger).

Die Untersuchung umfasste Gehirn-Gewebeproben von 47

verstorbenen Personen (30 Manner, 17 Frauen; siehe Tab. 8).

Probe | Gruppe* Geschlecht** Alter PMI Axe |-Stdrung Todesursache Toxikologie***

1 Con 2 25 7 Essstérung Herzversagen kA

2 Con 2 33 16 Keine Mord kA

3 Con 1 35 4 Keine Mord kA

4 Con 1 35 24 Keine Herzversagen kA

5 Con 1 48 22 Keine Herzinfarkt kA

6 Con 2 22 Keine Mord kA

7 Con 1 65 Keine Mord Codein,
Paracetamol

8 Con 1 34 1 Keine Herzversagen kA

9 Con 1 58 9 Keine Herzversagen kA

10 Con 2 32 15 Keine Mord kA

11 Con 2 31 26 Keine Unfall kA

12 Con 1 49 5 Keine Herzversagen kA

13 Con 1 41 23 Keine Vergiftung kA

14 Con 2 45 30 Keine Herzversagen kA

15 Con 1 42 15 Keine Herzversagen kA

16 SA 2 40 16 Substanzabhangigkeit | Intoxikation Morphin

17 SA 1 23 15 Substanzabhangigkeit | Intoxikation Morphin

18 SA 1 22 15 Substanzabhangigkeit | Intoxikation Morphin

19 SA 1 24 20 Substanzabhangigkeit | Intoxikation Morphin, Alkohol

20 SA 1 29 15 Substanzabhangigkeit | Intoxikation Morphin, Codein,
Alkohol

21 SA 1 32 18 Substanzabhangigkeit | Intoxikation Morphin, Codein,
Diazepam

22 SA 2 47 11 Substanzabhangigkeit | Intoxikation Alkhohol

23 SA 1 27 14 Substanzabhangigkeit | Intoxikation Morphin

24 SA 1 33 19 Substanzabhangigkeit | Intoxikation Morphin, Alkohol,
Diazpem

25 SA 1 37 5 Substanzabhangigkeit | Intoxikation Morphin, Diazepam

26 SA 1 27 15 Substanzabhangigkeit | Intoxikation Morphin,

27 SA 2 19 26 Substanzabhangigkeit | Intoxikation Morphin, Diazepam

28 Schz 2 56 18 Schizophrenie Herzversagen Thioridazin

29 Schz 1 44 20 Schizophrenie Herzversagen Risperidon,
Levomepromazin

30 Schz 54 18 Schizophrenie Pankreatitis Tiapride, Amisulprid
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31 Schz 2 58 17 Schizophrenie Herzinfarkt Haldol

32 Schz 1 41 19 Schizophrenie Asthmaanfall kA

33 Schz 2 45 16 Schizophrenie Herzinfarkt kA

34 Schz 1 34 12 Schizophrenie Herzversagen kA

35 Schz 1 24 15 Schizophrenie Herzversagen Clozapin, Diazepam
36 Schz 1 42 8 Schizophrenie Herzversagen kA

37 Sz 1 23 19 Keine CO Vergiftung kA

38 Sz 2 23 17 Depression Erhangen kA

39 Sz 1 47 20 Keine Sturz in Tiefe kA

40 Sz 1 38 11 Keine Erhangen kA

41 Sz 2 46 21 Keine CO Vergiftung kA

42 Sz 1 67 17 Depression Schneiden kA

43 Sz 2 65 25 Depression Intoxikation kA

44 Sz 1 42 27 Keine Erhangen kA

45 Sz 2 19 15 Keine Erhangen kA

46 Sz 1 38 17 Keine Erhangen kA

47 Sz 1 34 21 Keine Intoxikation kA

Tab. 8: Demographische Daten der untersuchten Gehirnproben von Kontrollen und Patienten *Con:

Kontrolle, SA: Substanzabhangigkeit, Schz: Schizophrenie; Sz: Suizid** 1: mannlich, 2: weiblich;
***KkA: keine Angaben

Die Proben wurden aufgeteilt in eine Kontroll-Stichprobe (n=15) und drei Gruppen mit einer

bestehenden psychiatrischen Erkrankung (n=32), wie in Tab. 9 gezeigt.

Diagnose Manner Frauen Mittleres Alter (Jahre)
Kontroll-Stichprobe 9 6 39.5+12,2
Substanzabhangigkeit | 9 3 29.8+8.2

Suizid 7 4 41.1+£17.5
Schizophrenie 5 4 44.2 +10.9

Tab. 9:

Diagnosen, Alter und Geschlechtsverteilung der Kontroll-Stichprobe und der Patientengruppen.

Als Todesursache der Kontrollen wurden folgende Diagnosen gestellt: Herzversagen (N=7),
Herzinfarkt (N=1), Mord (N=5), Autounfall (N=1), nicht vorsatzliche Vergiftung (N=1).

7 der 11 Suizidopfer starben durch einen sogenannten ,harten Suizid“ wie Erhangen (N=5),
Sprung in die Tiefe

(N=1), Schneiden (N=1); 4 starben durch eine sogenannte ,weiche

42




Methode®, die Intoxikation (N=4). 5 der 9 an Schizophrenie erkrankten Personen verstarben
an Herzversagen, 2 an einem Herzinfarkt, 1 an einem Asthmaanfall und 1 an einer akut
hamorrhagischen Pankreatitis. Todesursache in der Gruppe der Substanzabhangigen
Patienten war die Intoxikation mit Morphin (n=5), Morphin + Alkohol + Diazepam (n=2),
Morphin + Diazepam (n=2), Morphin + Alkohol (n=1), Alkohol (n=1), Morphin + Codein +
Alkohol (n=1).

Bei allen Personen der Kontroll-Stichprobe gab es keine Hinweise auf neurologische oder
psychiatrische Erkrankungen in der Vorgeschichte und in der Obduktion. Anhand der dem
Institut fir Rechtsmedizin der Ludwig-Maximilians-Universitdt Munchen vorliegenden
Krankenunterlagen gab es in der Anamnese keine Hinweise fir die Einnahme von
Psychopharmaka, sowie keine Hinweise auf Alkohol- oder Drogenmissbrauch.

In der Gruppe, der durch Suizid verstorbenen Personen gab es keine Informationen Uber
bereits friihere psychiatrische Erkrankungen einschlief3lich Substanzabhangigkeit, allerdings
lag nicht in allen untersuchten Fallen der Bericht einer chemisch-toxikologischen
Untersuchung vor. Alle Verstorbenen stammten aus der gleichen Region in Siiddeutschland;
alle Personen waren Kaukasier. Die Untersuchungen wurden unter Einhaltung der

Richtlinien des Ethikkommitees der Ludwig-Maximilians-Universitat durchgefuhrt.

3.1.2 Gewebeentnahme und Praparation, Probenaufbewahrung
Die Entnahme der unfixierten Gehirngewebeproben erfolgte 1-30 Stunden nach dem
Zeitpunkt des Todes im Rahmen der Obduktion. Die Zeit zwischen dem Todeszeitpunkt und

dem Zeitpunkt des Einfrierens der Gewebeproben (post-mortem Intervall) betrug im Mittel

16.0 + 6.6 Stunden.

Es wurden Gewebeproben aus folgenden Gehirnarealen entnommen:
* Posteriorer Nucleus thalamicus (auf coronaler Ebene der hinteren Kommisur)
* Hippocampus (posterior auf coronaler Ebene des Corpus geniculatum

lateralis)
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+ Cortex Cerebri

+ Raphekerne (Teilung des Hirnstammes in transverse Schnitte. Entnahme des
medianen Blockes, welcher die Raphekerne entlang der Mittellinie des
rostrocaudalen Teils im Tegmentum des Hirnstamms enthalt.).

+ Die Hypophyse wurde aus der Sella turcica entnommen und geteilt. Eine
Halfte wurde in 4%-igem Formalin fixiert. Die andere Halfte wurde in Adeno-

bzw. Neurohypophyse aufgeteilt.

Die Gewebeproben zur Bestimmung der mRNA wurden direkt zur Vermeidung von RNA
Degradation mit RNAlater (Qiagen, Hilden, Deutschland) bearbeitet und bei -80°C bis zur
RNA Extraktion eingefroren.

Die zur immunhistochemischen Farbung benutzten Gewebeproben wurden in 4%igem
gepufferten Formalin fixiert und anschlieRend in 0,5 bis 1 cm dicke koronare Scheiben

geschnitten.

3.2 RT PCR

3.21 Allgemein

Wichtig fur die quantitative Bestimmung einer Genexpression ist die Vermeidung von
Degradationen der RNA. Da diese schon direkt nach Entnahme des biologischen Materials
sowie bei der Lagerung auftreten, ist es wichtig das biologische Material bzw. die RNA sofort
nach Entnahme zu stabilisieren. Wir verwendeten eine optimierte Menge an RNAlater RNA
Stabilization Reagent Lésung (Qiagen), die einer Preservation der Genexpression in
biologischen Material dient und so eine Archivierung des Materials bei —80° C ohne Verluste
oder Qualitatseinbuflen der RNA ermdglicht. Dieses Verfahren ist jedoch nur fur frisch
entnommene Proben geeignet und ist abhangig von der maximalen Kapazitat der

Probenréhrchen.

Die Probeentnahmeréhrchen wurden wie folgt vorbereitet der Gerichtsmedizin Gbergeben:
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Probengefal: Collection Tube (5ml)

Losung: 1ml RNAlater RNA StabilizationReagent

Alle Arbeitsschritte mit RNA wurden an speziellen RNAse-freien Arbeitsplatzen durchgefiihrt;
diese wurden, um eine Kontamination mit RNAsen zu vermeiden, durch spezielle Reinigung
und Benutzung RNase freier Gerate und Reagenzien vorbereitet. Dartiber hinaus wurde nur

Einwegmaterial verwendet. Bei sdmtlichen Arbeiten wurden Handschuhe getragen.

3.2.2 RNA Isolierung und cDNA Synthese

RNA Isolierung

Die RNA Isolierung wurde mit dem RNeasy Lipid Tissue Midi Kit (Qiagen, Hilden,
Deutschland) durchgefihrt.

Ca. 100 mg groRe Sticke wurden von den in RNAlater Stabilization Reagent archivierten
Gewebeproben in gefrorenem Zustand abgeschnitten und je in ein steriles R&éhrchen
gegeben, das 1 ml Qiazol-Lésung enthielt. Ein steriles Réhrchen wurde extra ohne Gewebe
und Quiazol-Lsg, aber mit RNAseAway-Lésung gerichtet. 600 pyl RLT Puffer wurde
hinzugefiugt. Die Gehirnproben wurden mit einem Rotor Stator Homogenisator fur ca. 30
Sekunden homogenisiert und lysiert. Das Gerat wurde sowohl vor als auch nach dem
Benutzen mit RNAseAway-Losung gereinigt. Die Proben inkubierten fur 5 Minuten bei
Raumtemperatur. Je Probe wurden 200 ul Chloroform dazugegeben und manuell bei
geschlossenem Deckel fiir ca. 15 Sekunden geschiittelt. Die Proben inkubierten fur 2-3
Minuten bei Raumtemperatur. Nach 15 minltiger Zentrifugation bei 12 000rpm und 4°C
wurden die klaren Uberstande (ca. 600 ml) abpipettiert und in 1,5 ml EppendorfgefaRe
Uberfuhrt und je 600 pl 70%-iges Ethanol dazugegeben. Die Proben wurden gevortext und
in zwei Schritten auf Saulen aufgetragen, bei 10 000 rpm und 15-25°C fir 1 Minute
zentrifugiert und der Durchlauf abgegossen. Jede Probe wurde mit 700 pl RW1 Puffer
gewaschen bei 10 000rpm und 15-25°C. Der Uberstand wurde abgegossen und die Saule

auf ein neues Réhrchen gesetzt. Nach Zugabe von 400 pl RPE wurden die Proben fir 1
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Minute zentrifugiert (10 000rpm, 15-25°C), der Uberstand abgegossen und 400 ul RPE
zugegeben. Nach 2 Minuten Zentrifugation (10 000rpm, 15-25°C) wurden die Filter auf neue
Eppendorfcups gesetzt und mit 30 pIRNAse freies Wasser gespllt. Die Proben wurden bei
10 000 rpm, 15-25 °C 1 Minute zentrifugiert, nicht abgegossen und wiederholt mit 30
MIRNAse freiem Wasser gesplilt. Zuletzt wurden die Proben 1Minute bei 10 000 rpm, 15-25

°C zentrifugiert.

DNAse Verdau

Normalerweise ist es bei dem RNeasy Lipid Tissue Midi Kit nicht erforderlich einen
gesonderten DNAse Verdau durchzuflihren, da die Silikon Membran sehr effizient die meiste
DNA eliminiert. Jedoch gibt es RNA Verarbeitungsschritte, wie z.B. die hier verwendete
TagMan RT-PCR, bei denen schon kleinste Mengen DNA stéren und zu Verfalschungen
fuhren kénnen. Dieser Versuchsschritt diente der vollstandigen Entfernung von DNA aus
dem RNA Produkt. Da bei einigen Proben 60 pl RNA und den restlichen 80yl RNA isoliert
wurden, wurde fir den DNA Verdau 2 Mastermixe angesetzt.

Fur die 60 yl RNA Proben bestand der Mastermix pro Probe aus 9ul 10xDNAse | Reaction
Puffer (Invitrogen, Karlsruhe, Deutschland), 1 pul DNAse | (Invitrogen, Karlsruhe,
Deutschland) und 20 pl H,O; fir die 80 ul Proben aus 9 pl 10 x DNAse | Reaction Puffer
(Invitrogen, Karlsruhe, Deutschland) und 1 pyl DNAse | (Invitrogen, Karlsruhe, Deutschland).
Dementsprechend wurden den 60 pl Proben 30 yl Mastermix und den 80 ul Proben 10 pl
Mastermix zugegeben. Nach 15 Minuten Inkubation bei Raumtemperatur wurde allen Proben
9 ul EDTA zugegeben, um die DNAse | bei 65° 10 min zu inaktivieren. Zum Ausfallen wurden
150 pl Isopropanol dazupipettiert, gevortext und fiir 30 min bei —20 °C inkubiert. Es wurde 15
min bei 4°C zentrifugiert. Das Pellet wurde mit 50 uyl Ethanol gewaschen und zentrifugiert.
Das Pellet wurde 2 min bei Raumtemperatur getrocknet und mit je 300 yl RNAse freiem H,0O
wieder resuspendiert.

Die RNA Konzentrationen und die Ratio wurden photometrisch gemessen.
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Hierzu wurde fur die Messung eine Verdinnung von 1:20 angesetzt (5 gl RNA Lésung + 95

pl TE Puffer).
AnschlieBend wurden die Proben auf eine Konzentration von 450 ng/15 pl eingestellt. Die

Verdiinnung erfolgte mit RNAse freiem H,O. Aliquots wurden bei -80°C eingefroren.

cDNA-Synthese

Im néachsten Schritt wurde fir die Nutzung der Tag-Polymerase die RNA fir die
Amplifikation in ¢cDNA umgeschrieben. Zur cDNA-Synthese wurde das iScript™cDNA
Synthesis Kit (BIO-RAD, Minchen, Deutschland) verwendet. Die Proben wurden durch die
Zugabe von H,O auf ein Gesamtvolumen von 15 pl mit einer Konzentration von 30 ng/pl
eingestellt.

Reaktionsansatz:

Reagens Menge

5x iScriptReaction Mix 4 ul

iScript Reverse Transcriptase 1l

RNA

H,O

Den Proben wurde je 4 ul 5xiScript Reaction Mix und 1 pl Iscript Reverse Transcriptase

zugegeben. Eine Inkubationsreihe folgte mit

25°C 5 min
42°C 30 min
85°C 5 min

Kihlen auf Eis
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Um bessere Lagerungsbedingungen und eine Konzentration von 2 ng/ul zu erreichen, wurde
jeder Probe 205 ul H,O und 3 pl MS 2 RNA zugegeben. Dies dient der Stabilisierung, bzw.

verhindert, dass die RNA an der Wand der Eppendorfgefalle haftet.

3.2.3 Quantitative Real Time PCR

Die Quantitative Real Time PCR wurde am ABI 7000 Sequence Detection System (Taq man)
(Applied Biosystems, Foster City, USA) mit kauflich erworbenen Tagman Gene Expression
Assays flir TPH1 und TPH2 (Applied Biosystems: TPH1- Hs 00188220 _m1; TPH2-
Hs0099877_m1) durchgeflihrt. Fir alle Proben wurden 3-fach Werte bestimmt um eine
statistische Sicherheit zu gewahrleisten und aus den jeweiligen drei Werten ein Mittelwert
gebildet. Als Housekeeping-Gen, d.h. ein Gen von welchem man annimmt, dass es in allen
Zellen stabil exprimiert wird, wurde Ribosomal Phosphoprotein Lage PO (RPLPO) verwendet.
Nach Testung mehrerer Housekeeping Gene im Rahmen eigener postmortem mRNA-
Expressionsanalysen, wie z.B. R-Actin, GAPDH, 32-Microglobulin und RPLPO zeigte sich,
dass RPLPO die stabilsten und reproduzierbarsten Ergebnisse lieferte. Deshalb wurde fiir die
vorliegenden Untersuchungen ausschlieRlich RPLPO verwendet. Diese Beobachtung wurde
mittlerweile auch von weiteren Gruppen in unterschiedlichen humanen Geweben bestatigt
(Bamias et al., 2013; Silberberg et al., 2009).

Die Menge der amplifizierter PCR Produkte wurde gegen den Calibrator ,Total Brain Tissue*
(Gesamthirngewebe) normiert. Bei dieser Methode werden die Ergebnisse relativ zu der
Calibrator Expression gemessen.

Ebenfalls wie empfohlen wurde eine two Step RT-PCR durchgefuhrt, wobei die cDNA
Synthese schon oben beschrieben wurde. Vorteil dieser Methode gegenlber der One Step
RT PCR ist, dass ein Aufbewahren von cDNA fur spatere Versuche moglich ist.

Fir jedes Gen (TPH1 TPH2, RPLPO) wurde ein spezifischer Mastermix angesetzt.

Der TagMan Mix enthielt Puffer, TagPolymerase, Referenzfarbstoff ROX sowie Zusatze;

Assay on Demand (AOD) beinhaltete die benétigten Primer und Sonden.
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TPH1 Mastermix TagMan Mix 12,5 pl
AOD 1,25 pl
H,O 1,25 pl
TPH2 Mastermix TagMan Mix 12,5 pl
AOD 1,25 pl
H,O 1,25 pl
RPLPO Mastermix TagMan Mix 12,5 pl
AOD 1,25 pl
H,O 1,25 pl

In die 96 well Platten wurde je Tube 10 yl cDNA und 15 pl Mastermix pipettiert. Die Platten
wurden mit Folie abgeklebt, zentrifugiert und in den TagMan eingesetzt.

Die Einstellungen fir den PCR Lauf waren festgelegt mit

1) 10 min bei 95 C ,

2) 15 sec. bei 95 C,

3) 1 min bei 60 C.

Schritte 2 und 3 wurden je 40-mal wiederholt.

Die Mengenangabe der mRNA Ergebnisse erfolgt als relative mRNA Expression (arbitrare
Einheit) entsprechend der Gerateangabe und den Standardbedingungen unter Verwendung

des Calibrators ,Total Brain Tissue“ (Gesamthirngewebe).

3.3. Immunhistochemie

TPH-haltige Neurone wurden in 20 Gehirnschnitten mit spezifischen Antikdrpern sichtbar
gemacht und im Mikroskop ausgezahlt (14 Manner, 6 Frauen, Alter 35.55 + 12.68 Jahre,
post-mortem Intervall 16.35 * 9.735 Stunden). Aufgrund der geringen Anzahl der
untersuchten Hirnproben in den unterschiedlichen Gruppen (Kontrollen: n=5;
Substanzabhangigkeit: n=7; Suizid: n=3; Schizophrenie: n=2; Keine Angaben: n=3), wurde

auf eine diagnose-spezifische Aufteilung verzichtet und die zwanzig Hirne als eine Gruppe
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betrachtet.

Dieses Vorgehen erscheint vor dem Hintergrund der mRNA Ergebnisse

akzeptabel, da hier keine signifikanten Gruppenunterschiede gesehen wurden. Bei 9 der 20

Gehirnschnitte wurden Adeno-

Gehirnschnitten Adeno-

und Neurohypophyse untersucht,

und Neurohypophyse,

Raphekerne

bei weiteren

und Cortex.

11

15 der

immunhistochemisch untersuchten Gehirne wurden in dieser Arbeit auch mittels RT PCR

untersucht; bei 5 der

Gehirne erfolgte ausschliel3lich eine

Untersuchung der Adeno- und Neurohypophyse (siehe Tab.10).

Geschlecht*™ | Alter | PMI | Axe I-Stérung Todesursache | Toxikologie***
Probe
1 2 24 8 Keine Angaben Keine Angaben | kA
2 1 22 2 Keine Erhangen kA
3 1 41 32 | Keine Angaben Keine Angaben | kA
4 1 26 15 | Substanzabhangigkeit | Intoxikation Opiate
5 1 34 21 Keine Angaben Keine Angaben | kA

immunhistochemische

Tab. 10: Erganzende demographische Daten fiir die immunhistochemischen Untersuchungen *SA:
Substanzabhangigkeit, Sz: Suizid **1: mannlich, 2: weiblich; ***kA: keine Angaben.

Prinzip der immunhistochemischen Farbung

Die immunhistochemischen Untersuchungen wurden im Immunhistochemischen Labor des
Instituts fur Rechtsmedizin der Ludwig-Maximilians-Universitdt Minchen durchgefuhrt. Ziel
der immunhistochemischen Untersuchung ist die Detektion zelluldrer Antigene unter
Anwendung spezifisch gegen diese Antigene gerichtete Antikdrper. Diese Antigen-

Antikérper-Reaktion wird mit Hilfe eines farbgebenden Enzymmarkers sichtbar gemacht. Die

dazu vorwiegend angewandten Methoden sind folgende (Boenisch, 2003):
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+ direkte Methode
* indirekte Methode
* Peroxidase-anti-Peroxidase (PAP) Methode

* Avidin-Biotin-Methode

Die Farbung der zu untersuchenden Gewebeschnitte in dieser Studie wurde nach einer
modifizierten Avidin-Biotin-Complex (ABC)-Methode durchgefiihrt (Hsu et al., 1981;Boenisch
2003), die als eine der empfindlichsten Farbemethoden fir fixiertes in Paraffin eingebettetes
Gewebe gilt (Boenisch, 2003). Bei diesem 3-schrittigen indirekten immunhistochemischen
Nachweisverfahren wird im ersten Schritt ein spezifisch gegen das zu untersuchende
Antigen gerichteter (unmarkierter) Antikérper (Primarantikérper) aufgetragen. Danach erfolgt
die Behandlung mit einen Biotin-konjugiertem (biotinylierter) Sekundarantikdrper, welcher
gegen das Fc-Fragment des Primarantikorpers gerichtet ist und an die Primarantikorper
bindet. Als dritter Schritt wird ein Komplex aus Peroxidase-konjugiertem Streptavidin
aufgetragen, der an das Biotin des Sekundarantikérpers bindet und in Reaktion mit einem
Chromogensubstrat die Farbreaktion vermittelt. Die Farbung erscheint an der Stelle des
vorhandenen Antigens, wobei die Intensitat der Farbung proportional mit der Menge des
vorhandenen Antigens korreliert. Eine Gegenfarbung stelle im Kontrast die Zellen dar,
welche kein Antigen enthalten.

Die Praparatschnitte einer Person wurden je mit einem unspezifischen Antikdrper gegen
TPH (nur Vorversuche), einem Antikdrper gegen TPH1 und einem Antikérper gegen TPH2
gefarbt, hierzu wurde vorab fur jeden Antikdrper eine Verdunnungsreihe durchgefihrt um die
optimale Antikérperkonzentration festzustellen, d.h. die Antikérperkonzentration, welche ein
Maximum der spezifischen Farbung erzielt (Boenisch, 2003).

Diaminobenzidin (DAB)-Chromogen wurde zur Visualisierung verwendet, da es
lichtmikroskopisch an den Stellen der Antigen-Antikérper-Reaktion als braunes Prazipitat

sichtbar wird.
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Zur Untersuchung der Tryptophanhydroxylase wurden 3 verschiedene Primarantikorper

verwendet.

* AK 1 —unspezifischer Antikorper gegen Tryptophanhydroxylase (fiir Vorversuche)
(Tryptophan Hydroxylase (Ab-1) (Mouse) Cat#OP71L, Calbiochem,
San Diego, CA, USA)

* AK 2 — spezifischer Antikorper gegen Tryptophanhydroxylase 2
(Anti-Tryptophan 5 Hydroxylase 2 (TPH2) (Rabbit) Cat# ARP34141_P050,

Aviva Systems Biology, San Diego, CA, USA)

* AK 3 — spezifischer Antikorper gegen Tryptophanhydroxylase 1
(Bezugsquelle: Donald M. Kuhn, Department of Psychiatry and Behavioural
Neuroscience of the Wayne State University School of Medicine, Detroit, Mi,

USA)

Nach Evaluation der Methode mit einem unspezifischen TPH Antikérper (AK1) in
Vorversuchen, wurden die eigentlichen Untersuchungen mit zwei spezifischen Antikdrpern
fur TPH1 und TPH2 an 5 ym dicken, paraffineingebetteten Schnittpraparaten durchgefihrt

(AK2 und AK3).

Immunhistochemische Farbung mit TPH Antikdrper

Alle immunhistochemischen Farbungen wurden anhand dieses festgelegten Protokolls
schrittweise bei Raumtemperatur durchgefihrt (detaillierte Angaben bzw. Hersteller zu

Puffer/Lésungen/Materialien sind dem Anhang zu entnehmen).

Im ersten Schritt erfolgte die Entparaffinierung der Gewebeschnitte. Hierzu wurden die
Objekttrager zweimal fir 10 min in Xylol gespilt. Im zweiten Schritt erfolgte die
Rehydratation in einer absteigenden Ethanolreihe fir jeweils eine Minute (2x 100%ig, 2 x

90%ig, 2x80%ig, 2x70%ig). Zur Hintergrundreduktion wurden die Gewebeschnitte im
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nachsten Schritt in einer Ethanol-H,0,-Lésung (3%ig) fir 20 Minuten zur Blockierung der
endogenen Peroxidaseaktivitdt gespilt. Die Gewebeschnitte wurden anschlielend erst
sorgfaltig in Aqua destillata und anschlieBend flr 10 min in Phospate-buffered saline (PBS)
Puffer gespult. Ausschliel3lich bei AK 3 erfolgte eine thermische Vorbehandlung der
Gewebeschnitte. Hierzu wurden die Objekttrager in einen Behalter mit DAKO
AntibodyDiluent gegeben und 30 min im Wasserbad erhitzt. Danasch wurden die
Gewebeschnitte mit PBS-Puffer gespdilt.

Zur Blockierung unspezifischer Bindungen wurden 3 Tropfen Reagens A pro Objekttrager
(10%iges nicht-immun Serum (Ziege), Histostain®-Plus Kit) aufgetragen und fir 5 Minuten in
der feuchten Kammer belassen. AnschlieRend wurde Reagens A abgekippt. Im néchsten
Schritt wurden pro Objekttrager ca. 100-200 ul Antikérper (AK1, AK2 oder AK3) (1:1000
Verdinnung in Dako®AntibodyDiluent) auf pipettiert und fir 24 Stunden in der feuchten
Kammer bei -4 °C inkubiert. Danach wurden die Antikérper-LOsungen abgekippt und die
Gewebeschnitte mit PBS-Puffer fir 10 Minuten gespult. Im nachsten Schritt folgte die
Inkubation mit dem biotinkonjugiertem Sekundarantikérper (Reagens B; Hisostain®-Plus Kit)
fur 15 min in der feuchten Kammer. Die Gewebeschnitte wurden in PBS-Puffer fur 15 min
gespult. AnschlieRend erfolgte die Inkubation mit dem Streptavidin-Peroxidase-Komplex
(Reagens C; Histostain®-Plus Kit) fir 15 min der feuchten Kammer. Die Proben wurden fir
10 min in PBS-Puffer gespult. Zum Sichtbarmachen der Peroxidase folgte die Inkubation mit
DAB (3,3 -Diaminobenzidine Tetrahydrochlorid Substrate Kit) Losung flr 5 min in der offenen
feuchten Kammer. Im folgenden Schritt wurden die Gewebeschnitte in Aqua destillata fir 10
min gespult um die Farbreaktion abzustoppen.

Es erfolgte eine Gegenfarbung mit Mayer's Hamalaun fir 5 min. Zum Blauen wurden die
Gewebeschnitte fir 10 min unter flieRendes Leitungswasser gestellt. Anschlielend erfolgte
die Dehydratation in einer aufsteigenden Ethanolreihe (2x70%ig, 2x80%ig, 2x90%ig,
2x100%ig) fur jeweils 1 Minute. Die Gewebeschnitte wurden fur 20 min in Xylol gestellt und

zuletzt erfolgte das Eindeckeln der Gewebeschnitte in Histofluid.
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Morphometrische Auswertung

Die Auswertung wurde unter einem Leitz Laborlux S Mikroskop (Firma Leitz) bei 400-facher
Vergréflerung durchgefiihrt. Bestimmt wurde die Dichte der positiv gefarbten Zellen pro
Gesichtsfeld (n/mm?). Nach der Auszahlung am histologischen Schnitt erfolgte die Eingabe

der Parameter in eine Datenmatrix.

3.4 Statistische Auswertung

Alle Befunde wurden als Mittelwerte (MW) und mittlerer Fehler des Mittelwertes (SEM) der
jeweiligen Gruppe angegeben. Die statistische Auswertung (one-way-ANOVA, Mann-
Whitney Test, Spearman Korrelation) erfolgte mit Hilfe des SPSS Programmes (IBM
Statistical Package for the Social Sciences, 20.0, Chicago, USA) und Prism Software (Prism

4.0). Unterschiede p<0.05 wurden als signifikant bewertet.
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4. Ergebnisse

41 Patientendaten
Insgesamt wurde das Gewebe von 47 humanen Gehirnen in dieser Arbeit untersucht. Tab.

11 zeigt die Geschlechts- und Altersverteilung sowie das durchschnittliche postmortale

Intervall an.
Fallzahl Geschlecht mittleres Alter mittleres postmortales
(Jahre ) = SD Intervall ( Stunden ) + SD
N =47 M= 30 37,8 +11.6 15.0£6,5
W= 17 38,8 + 14,6 17,6 £ 6,6
Tab. 11:

Geschlecht, Alter und postmortem Intervall (PMI) der verwendeten Gehirnproben

Von allen 47 Gehirnproben wurde eine RT-PCR durchgefiihrt. Dabei wurden die
Raphekerne, der Frontalcortex, die Adenohypophyse und Neurohypophyse, Hypothalamus
und Hippocampus untersucht. Immunhistochemische Farbungen konnten von insgesamt 20
Gehirnproben durchgefiihrt werden, die wie im Methodikteil beschrieben aus allen
Diagnosegruppen bestanden und hier zusammengefasst werden.

Fir keine, der an den Gewebeproben der Kontrollen mit PCR ermittelten mRNA Werte oder
immunhistochemischen Farbungen ergab sich eine signifikante Beziehung zu dem post-
mortem Intervall (siehe auch Kapitel 11.1, Tab. 12 im Anhang).

Die relative mRNA Expression von TPH1 und TPH2 wurde in allen 47 Gehirnproben in allen
sechs Arealen untersucht. Hierzu wurde die mRNA Expression fir jede Region einzeln
gemessen.

Die Proben wurden in eine Kontroll-Stichprobe (n=15) und in die Patientengruppen

(Schizophrenie (n=9), Suizid (n=11), Substanzabhangigkeit (n=12) unterteilt.
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4.2 Regionale Verteilung der TPH1 und TPH2 mRNA Expression in der Kontroll-
Stichprobe

Die relative Expression von TPH1 und TPH2 in den untersuchten Gehirnarealen der

Kontrollen ist in Abb. 5 vergleichend dargestellt. TPH1 ist sehr stark in der Adenohypophyse

(HVL) exprimiert, gefolgt von der Neurohypophyse (HHL) und zeigt in allen anderen Arealen

eine ahnlich niedrige Expression (Abb. 5). Im Gegensatz dazu ist die Expression von TPH2

besonders hoch in den Raphekernen, wahrend sie in allen anderen Strukturen deutlich

geringer ist und sich im Ausmaf nicht stark unterscheidet (Abb. 5).
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Abb. 5

Relative TPH1- und TPH2-mRNA-Expression in den untersuchten Hirnarealen der gesunden

Kontrollen.

Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n) untersuchten

Hirnproben.

Raphe: Raphekerne; Hipp: Hippocampus; Hypo: Hypothalamus; HVL: Adenohypophyse

(Hypophysenvorderlappen); HHL: Neurohypophyse (Hypophysenhinterlappen).

4.3 TPH1 und TPH2 Expression der Kontrollen und psychiatrischen
Patientengruppen in den Raphekernen

4.3.1 Kontrollen

Die relative Expression von TPH2 der Kontrollgruppe ist in den Raphekernen um ein

vielfaches héher als die TPH1 Expression (Abb. 6). Es zeigte sich eine signifikant héhere

mRNA Expression von TPH2 (MW 27.72 + SEM 7,395) im Vergleich zu TPH1 (MW 2,481 =

SEM 0,3256) (p<0,0001). Es konnte keine signifikante Korrelation zwischen Lebensalter der
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Kontrollproben und Expression der TPH1- und TPH2-mRNA in den Raphekernen festgestellt

werden (Abb. 6).
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a) Relative mRNA-Expression fir TPH1 und TPH2 in den Raphekernen der Kontrollhirne.
Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n=10)
untersuchten Hirnproben. *** P<0,0001 (Mann Whitney t-Test).

b) Abhangigkeit der relativen mRNA-Expression von TPH1 (links) und TPH2 (rechts) in den
Raphekernen vom Lebensalter der Kontrollprobanden in Jahren (J). Die Korrelationen waren nicht
signifikant (TPH1: p=0,3125; TPH2: p=0,9116).

4.3.2 Patientenkollektive

Die relativ niedrige Expression von TPH1-mRNA bei den nicht-psychiatrisch erkrankten
Kontrollen war nicht unterschiedlich bei den drei Patientengruppen (Substanzabhangigkeit,
Schizophrenie, Suizid) (Abb. 7). Die mRNA-Expression von TPH1 der einzelnen
Patientengruppen ist in Abb. 7 dargestellt (Substanzabhangigkeit: MW 2.695 + SEM 0.3597;

Schizophrenie: MW 3.179 + SEM 0.5381; Suizid: MW 1.860 = SEM 0.2796).
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Im Gegensatz dazu scheint die Expression von TPH2 bei allen drei Patientengruppen héher
zu sein als bei den nicht-psychiatrisch erkrankten Kontrollen, jedoch waren diese
Unterschiede nicht signifikant (Abb.7). Die mRNA Expression von TPH2 der einzelnen
Patientengruppen in den Raphekernen ist in Abb. 7 im Vergleich zu den Kontrollen
dargestellt (Substanzabhangigkeit: MW 51.49 + SEM 11.94; Schizophrenie: MW 43.89 =
SEM 11.82; Suizid: MW 53.10 =+ SEM 18.47). Hierbei zeigen sich groRe Unterschiede der
TPH1 und TPH2 Expression, sodass zu besseren Ubersicht der Ergebnisse die Skalierung
angepasst wurde, um die Unterschiede besser darstellen zu kénnen.

In allen Patientengruppen konnte eine signifikant héhere mRNA Expression von TPH2 im
Vergleich zu TPH1 gemessen werden (siehe Abb.7) (Substanzabhangigkeit: p=0.0014,

Schizophrenie: p=0.0006, Suizid: p=0.0002).
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Abb. 7

Relative TPH1- und TPH2-mRNA-Expression in den Raphekernen der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW * SEM) von (n) untersuchten Hirnproben.
TPH1:0one-way ANOVA n.s. p=0,1638 TPH2: one-way ANOVA n.s. p=0,4361

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

Berechnet man das Verhaltnis der TPH1 gegen TPH2 Expression, so findet sich in den damit
erhaltenden Ratiowerten kein offensichtlicher Unterschied zwischen den nicht-

psychiatrischen Kontrollen und den drei psychiatrischen Patientengruppen (Abb.8).
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Abb. 8

Ratio der mRNA-Expression (TPH1/TPH2) in den Raphekernen der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW + SEM) von (n) untersuchten Hirnproben.

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

4.4 TPH1 und TPH2 Expression der Kontrollen und psychiatrischen
Patientengruppen im Cortex

4.4.1 Kontrollen

In der Kontrollgruppe konnte eine signifikant héhere mRNA Expression von TPH1 (MW
1.534 + SEM 0.1672) im Vergleich zu TPH2 (MW 0.9893 + SEM 0.08953) gemessen werden
(Abb.9) (p=0.0139). Auch im Cortex war die Expression beider TPH Isoenzyme nicht
abhangig vom Lebensalter der Kontrollpersonen (Abb.9). Dabei zeigt sich insgesamt jedoch
eine sehr niedrige TPH1- und TPH2-mRNA Expression im Vergleich zu den anderen Arealen

wie z.B. Raphekerne, Adeno- und Neurohypophyse.
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a) Relative mRNA-Expression fur TPH1 und TPH2 im Cortex der Kontrollhirne. Angegeben sind
Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n=10) untersuchten Hirnproben.

* p< 0,05 (Mann Whitney t-Test)

b) Abhangigkeit der relativen mRNA-Expression von TPH1 (links) und TPH2 (rechts) im Cortex vom
Lebensalter der Kontrollprobanden in Jahren (J). Die Korrelationen waren nicht signifikant (TPH1:
p=0,8441; TPH2: p=0,2960).

4.4.2 Patientenkollektive

Betrachtet man sich im Cortex die Expression von TPH1 und TPH2 im Vergleich der nicht-
psychiatrischen Kontrollen gegen die einzelnen Patientengruppen dann wurde kein
Unterschied der Expressionshéhe gefunden (Abb. 10). Die mRNA-Expression von TPH1 der
einzelnen Patientengruppen ist in Abbildung 10 dargestellt (Substanzabhangigkeit: MW
1.286 + SEM 0.1541; Schizophrenie: MW 1.249 + SEM 0.2851; Suizid: MW 1.411 + SEM
0.1598). Die mRNA Expression von TPH2 der einzelnen Patientengruppen im Cortex ist in

Abb. 10 im Vergleich zu den Kontrollen dargestellt (Substanzabhangigkeit: MW 1.269 + SEM

0.2042; Schizophrenie: MW 0.9038 + SEM 0.2412; Suizid: MW 1.002 + SEM 0.1461). In den

60



einzelnen Patientengruppen konnten im Cortex keine signifikanten Unterschiede der TPH1
und TPH2 mRNA-Expression gemessen werden.

In allen Patientengruppen konnte keine signifikante veranderte mRNA Expression von TPH2
im Vergleich zu TPH1 gemessen werden (siehe Abb.10) (Substanzabhangigkeit: p=0.3553,

Schizophrenie: p=0.6943, Suizid: p=0.0940).
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Abb. 10

Relative TPH1- und TPH2-mRNA-Expression im Cortex der drei untersuchten Patientengruppen im
Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW +
SEM) von (n) untersuchten Hirnproben.

TPH1:0ne-way ANOVA n.s. p=0,6690 TPH2: one-way ANOVA n.s. p=0,4510

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

Ebenso unterschied sich das Expressionsverhaltnis TPH1/TPH2 (Ratio-Werte) nicht

(Abb.11).

61



TPH1/TPH2

4.0
T 3.0 —|-
o
=
T 204 -
[ — —
S 1.0 ::2:;:::2

0.0 T T T

Con(14) SA(12) Schz(7) Sz(11)
Abb. 11

Ratio der mRNA-Expression (TPH1/TPH2) im Cortex der drei untersuchten Patientengruppen im
Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW *
SEM) von (n) untersuchten Hirnproben.

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

4.5 TPH1 und TPH2 Expression der Kontrollen und psychiatrischen
Patientengruppen im Hippocampus

4.5.1 Kontrollen

In der Kontrollgruppe konnten keine signifikanten Unterschiede in der Expression von TPH1
mRNA (MW: 1.220 + SEM 0.1382) im Vergleich zu TPH2 mRNA (MW 1.029 + SEM 0,1305)
gemessen werden (Abb. 12) (p=0,2856). Ebenso war die Expressionshéhe nicht abhangig
vom Lebensalter der Kontrollen (Abb. 12). Auch im Hippocampus zeigte sich eine insgesamt
geringe TPH1- und TPH2-mRNA Expression im Vergleich zu den anderen Gehirnarealen wie

Raphekerne, Adeno- und Neurohyophyse.
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a) Relative mRNA-Expression fir TPH1 und TPH2 im Hippocampus der Kontrollhirne.
Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n=10)
untersuchten Hirnproben.

b) Abhangigkeit der relativen mRNA-Expression von TPH1 (links) und TPH2 (rechts) im Hippocampus
vom Lebensalter der Kontrollprobanden in Jahren (J). Die Korrelationen waren nicht signifikant (TPH1:
p=0,4255; TPH2: p=0,9560).

4.5.2 Patientenkollektive

Betrachtet man im Hippocampus die TPH1 Expression im Vergleich nicht psychiatrische
Kontrollen gegen psychiatrische Patientengruppen, so findet sich kein signifikanter
Unterschied (Abb. 13). Das gleiche gilt im Hippocampus fir die TPH2 Expression (Abb. 13).
Ebenso war das Verhaltnis der TPH1 versus TPH2 Expression (Ratio-Daten) nicht
unterschiedlich (Abb. 14).Die mRNA Expression von TPH1 der einzelnen Patientengruppen
ist in Abb. 13 dargestellt (Substanzabhangigkeit: MW 1.173 + SEM 0.2013; Schizophrenie:
MW 1.631 + SEM 0.2540; Suizid: MW 1.077 =+ SEM 0.1040). Die mRNA-Expression von

TPH2 der einzelnen Patientengruppen im Hippocampus ist in Abb. 13 im Vergleich zu den
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Kontrollen dargestellt (Substanzabhangigkeit: MW 1.381 + SM 0.2717; Schizophrenie: MW
1.264 + SEM 0.2313; Suizid: MW 1.650 + SEM 0.2344).

In allen Patientengruppen konnte keine signifikante veranderte mRNA Expression von TPH2
im Vergleich zu TPH1 gemessen werden (siehe Abb.13) (Substanzabhangigkeit: p=0.4356,

Schizophrenie: p=0.2477, Suizid: p=0.0878).
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Abb. 13

Relative TPH1- und TPH2-mRNA-Expression im Hippocampus der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW * SEM) von (n) untersuchten Hirnproben.
TPH1:0ne-way ANOVA n.s. p=0,2094 TPH2: one-way ANOVA n.s. p=0,1871

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

In allen Patientengruppen im Hippocampus konnte kein signifikanter Unterschied der mRNA

Expression von TPH1 im Verhaltnis zu TPH2 gemessen werden (Abb.14).
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Abb. 14

Ratio der mRNA-Expression (TPH1/TPH2) im Hippocampus der drei untersuchten Patientengruppen

im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW

+ SEM) von (n) untersuchten Hirnproben.

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

4.6 TPH1 und TPH2 Expression der Kontrollen und psychiatrischen
Patientengruppen im Hypothalamus

4.6.1 Kontrollen

In der Kontrollgruppe konnte eine signifikant hdhere mRNA Expression von TPH1 (MW:

1.648 + SEM 0.2060) im Vergleich zu TPH2 (MW: 0.3085 + SEM 0.09555) gemessen

werden (Abb. 15) (p<0,0001). Beide Expressionsprofile waren nicht signifikant vom Alter

beeinflusst (p>0,05) (Abb. 15). Im Vergleich zu den anderen Gehirnarealen zeigte sich

jedoch eine niedrige mMRNA Expression von TPH1 und TPH2.
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Abb. 15

a) Relative mRNA-Expression fir TPH1 und TPH2 im Hypothalamus der Kontrollhirne.
Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n=10)
untersuchten Hirnproben. *** p<0,0001 (Mann Whitney t-Test).

b) Abhangigkeit der relativen mRNA-Expression von TPH1 (links) und TPH2 (rechts) im Hypothalamus
vom Lebensalter der Kontrollprobanden in Jahren (J). Die Korrelationen waren nicht signifikant (TPH1:
p=0,1296; TPH2: p=0,1605).

4.6.2 Patientenkollektive

Die individuellen Expressionsdaten (TPH1 und TPH2) waren nicht unterschiedlich zwischen
nicht-psychiatrischen Kontrollen und psychiatrischen Gruppen (Abb. 16).

Die mRNA Expression von TPH1 der einzelnen Patientengruppen ist in Abb. 16 dargestellt
(Substanzabhangigkeit: MW 1.802 + SEM 0.3392; Schizophrenie: MW 1.519 + SEM 0.3513;
Suizid: MW 1.537 + SEM 0.1550).

Die mRNA Expression von TPH2 der einzelnen Patientengruppen im Hypothalamus ist in

Abb. 16 im Vergleich zu den Kontrollen dargestellt (Substanzabhangigkeit: MW 0.3742 =

SEM 0.1159; Schizophrenie: MW 0.2917 = SEM 0.1750; Suizid: MW 0.3100 + SEM 0.1347).
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In allen Patientengruppen konnte eine signifikant héhere mRNA Expression von TPH1 im
Vergleich zu TPH2 gemessen werden, was sich auch in den hohen Ratio-Werten

niederschlagt (Substanzabhangigkeit: p=0.0006, Schizophrenie: p=0.0082, Suizid:

p=0.0003).
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Abb. 16

Relative TPH1- und TPH2-mRNA-Expression im Hypothalamus der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW * SEM) von (n) untersuchten Hirnproben.
TPH1:0one-way ANOVA n.s. p=0,8836 TPH2: one-way ANOVA n.s. p=0,9644

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

Daruber hinaus war der Ratiowert (TPH1 Expression gegen TPH2 Expression) nicht

unterschiedlich Uber alle vier Gruppen (Abb. 17).
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Abb. 17

Ratio der mRNA-Expression (TPH1/TPHZ2) im Hypothalamus der drei untersuchten Patientengruppen
im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW
+ SEM) von (n) untersuchten Hirnproben.

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

4.7 TPH1 und TPH2 Expression der Kontrollen und psychiatrischen
Patientengruppen in der Adenohypophyse

4.7.1 Kontrollen

Die hohere TPH1 Expression im Vergleich zu TPH2 Expression, die sich schon im

Hypothalamus gezeigt hatte, war in der Adenohypophyse noch ausgepragter und hoch

signifikant (p< 0.0001); hdhere mRNA Expression von TPH1 (MW: 18.41 + SEM 4.152) im

Vergleich zu TPH2 (MW: 1.359 + SEM 0.2059) (Abb.18). Auch hier war keine signifikante

Abhangigkeit vom Alter der nicht-psychiatrischen Kontrollen zu sehen (Abb. 18).
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Abb. 18

a) Relative mRNA-Expression fir TPH1 und TPH2 in der Adenohypophyse der Kontrollhirne.
Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n) untersuchten
Hirnproben. *** p<0,0001 (Mann Whitney t-Test).

b) Abhangigkeit der relativen mRNA-Expression von TPH1 (links) und TPH2 (rechts) in der
Adenohypophyse vom Lebensalter der Kontrollprobanden in Jahren (J). Die Korrelationen waren nicht
signifikant (TPH1: p=0,5285; TPH2: p=0,5367).

4.7.2 Patientenkollektive

Auch in der Adenohypophyse war die relative TPH1 sowie TPH2 Expression nicht
unterschiedlich zwischen Kontrollen und den einzelnen psychiatrischen Patientengruppen
(Abb. 19). Das gleiche gilt fur die Ratiowerte (TPH1 versus TPH2) (Abb. 20). Die mRNA
Expression von TPH1 der einzelnen Patientengruppen ist in Abb. 19 dargestellt
(Substanzabhangigkeit: MW 18.58 + SEM 5.028; Schizophrenie: MW 17.08 + SEM 4.876;
Suizid: MW 10.60 + SEM 2.160). Die mRNA-Expression von TPH2 der einzelnen
Patientengruppen in der Adenohypophyse ist in Abb. 19 im Vergleich zu den Kontrollen

dargestellt (Substanzabhangigkeit: MW 1.655 + SEM 0.2737; Schizophrenie: MW 1.400 =
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SEM 0.4457; Suizid: MW 1.299 + SEM 0.2149). In allen Patientengruppen konnte eine
signifikant héhere mRNA Expression von TPH1 im Vergleich zu TPH2 gemessen werden,
(Substanzabhangigkeit: p=0.0004, Schizophrenie: p=0.0079, Suizid: p=0.0009), siehe auch

die Ratio-Werte in Abb. 20.
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Abb. 19

Relative TPH1- und TPH2-mRNA-Expression in der Adenohypophyse der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW * SEM) von (n) untersuchten Hirnproben.
TPH1:0ne-way ANOVA n.s. p=0,1638 TPH2: one-way ANOVA n.s. p=0,4361

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid
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Abb. 20

Ratio der mRNA-Expression (TPH1/TPH2) in der Adenohypophyse der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW + SEM) von (n) untersuchten Hirnproben.

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid
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4.8 TPH1 und TPH2 Expression der Kontrollen und psychiatrischen
Patientengruppen in der Neurohypophyse

4.8.1 Kontrollen

Auch in der Neurohypophyse konnte eine signifikant hdhere mRNA- Expression von TPH1

(MW: 8.978 + SEM 2.436) im Vergleich zu TPH2 (MW: 0.5280 + SEM 0.1340) gemessen

werden (Abb.21) (p<0,0001). Beide Expressionsdaten waren nicht signifikant vom

Lebensalter abhangig (Abb. 21).
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Abb. 21

a) Relative mRNA-Expression fir TPH1 und TPH2 in der Neurohypophyse der Kontrollhirne.
Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n) untersuchten
Hirnproben. *** p<0,0001 (Mann Whitney t-Test).

b) Abhangigkeit der relativen mRNA-Expression von TPH1 (links) und TPH2 (rechts) in der
Neurohypophyse vom Lebensalter der Kontrollprobanden in Jahren (J). Die Korrelationen waren nicht
signifikant (TPH1: p=0,7850; TPH2: p=0,9184):
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4.8.2 Patientenkollektive

Betrachtet man die Patientengruppen, dann fallt die deutlich héhere TPH1 und TPH2
Expression bei den Patienten mit Substanzabhangigkeit im Vergleich zu den nicht
psychiatrischen Kontrollen auf (Abb. 22), Dieser Unterschied war bei den schizophrenen
Patienten und Patienten mit Suizid nicht zu sehen, sodass Uber alle vier Gruppen sich kein
signifikanter Utneschied ergab (Abb. 22).

Keine der vier Gruppen unterschied sich in den Ratiowerten (TPH1 gegen TPH2) (Abb.23).
Die mRNA Expression von TPH1 der einzelnen Patientengruppen ist in Abb. 22 dargestellt
(Substanzabhangigkeit: MW 19.61+ SEM 6.905; Schizophrenie: MW 8.371 + SEM 2.023;
Suizid: MW 7.306 =+ SEM 1.797). Die mRNA Expression von TPH2 der einzelnen
Patientengruppen in der Neurohypophyse ist in Abb. 22 im Vergleich zu den Kontrollen
dargestellt (Substanzabhangigkeit: MW 1.681 + SEM 0.3112; Schizophrenie: MW 1.151 =
SEM 0.6337; Suizid: MW 0.7843 + SEM 0.3559). In allen Patientengruppen konnte eine
signifikant (Substanzabhangigkeit: p=0.0003, Schizophrenie: p=0.0012, Suizid: p=0.0006)
héhere mRNA Expression von TPH1 im Vergleich zu TPH2 gemessen werden, siehe auch

die Ratio-Werte in Abb. 23.
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Abb. 22

Relative TPH1- und TPH2-mRNA-Expression in der Neurohypophyse der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW * SEM) von (n) untersuchten Hirnproben.
TPH1:0ne-way ANOVA n.s. p=0,1177 TPH2: one-way ANOVA n.s. p=0,1586

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid
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Abb. 23

Ratio der mRNA-Expression (TPH1/TPH2) in der Neurohypophyse der drei untersuchten
Patientengruppen im Vergleich zu den Kontrollen. Angegeben sind Mittelwerte und mittlerer Fehler
des Mittelwerts (MW + SEM) von (n) untersuchten Hirnproben.

Con: Kontroll-Stichprobe; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

49 Immunhistochemische TPH1 und TPH2 Farbungen der Gehirnareale

In initialen Experimenten wurde Uberprift in wieweit sich die Tryptophanhydroxylase mittels
eines unspezifischen TPH-Antikorpers bzw. in weiterfihrenden Versuchen die beiden
Isonenzyme TPH1 und TPH2 mit spezifischen Antikbrpern immunhistochemisch darstellen
lassen.

Es wurden 20 Gehirnschnitte von Adenohypophyse (HVL), Neurohypophyse (HHL), Cortex
und Raphekernen immunhistochemisch mit spezifischen TPH1- und TPH2-Antikérpern
angefarbt. Fir keine, der an den Gewebeproben durchgefiihrten immunhistochemischen
Farbungen ergab sich eine signifikante Korrelation zu dem postmortem Intervall und dem
Lebensalter (siehe auch Kapitel 11.2, Tab. 13 im Anhang).

In Abb. 25-29 sind exemplarisch einige typische histologische Schnitte gezeigt. So konnte
z.B. bereits in den Vorversuchen mit dem unspezifischen TPH-AK TPH in den Raphekernen
dargestellt werden (Abb. 25). Auch in den weiteren Versuchen mit TPH1 und TPH2
spezifischen AK konnten beide Proteine in den Raphekernen identifiziert werden (Abb. 26,
27). Auch in der Adenohypophyse konnte TPH1 und TPH2 dargestellt werden (Abb. 28, 29).
Bei der quantitativen Auswertung der immunhistochemischen Farbungen zeigten sich fur

Cortex, Raphekerne und Neurohypophyse eine ahnlich niedrige Anzahl an farbbaren Zellen
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sowohl fir TPH1 als auch TPH2. In der Adenohypophyse zeigte sich eine sehr viel starkere

Anzahl an TPH1 und TPH2 positiven Zellen.

4.9.1 TPH1 und TPH2 positive Zellen in den Raphekernen

In den Raphekernen konnte kein signifikanter Unterschied in der Anzahl der TPH1 (MW:
62,98 + SEM 5,604) und TPH2 (MW: 65,80 + SEM 6,666) positiven Zellen gefunden werden
(Abb.24) (p=0,9213).

Es konnte weiterhin keine signifikante Abhangigkeit von Alter und postmortem-Intervall

gesehen werden.

4.9.2 TPH1 und TPH2 positive Zellen im Cortex

Im Cortex zeigte sich eine ahnlich niedrige Anzahl von anfarbbaren TPH1 (MW: 25,64 +
SEM 2,653) und TPH2 (MW: 70,64 £+ SEM 6,438) Zellen, jedoch zeigte sich im Gegensatz zu
den Raphekernen ein signifikanter Unterschied von TPH1 zu TPH2 (p=0.0001) (Abb.24).
Sowohl bei der TPH1 als auch bei der TPH2 Farbung zeigte sich keine signifikante

Abhangigkeit von Alter und postmortem Intervall.

4.9.3 TPH1 und TPHZ2 positive Zellen in der Adenohypophyse

Im Vergleich zu den 3 Arealen (Neurophypophyse, Raphekerne und Cortex) zeigte sich in
der Adenohypophyse eine deutlich héhere Anzahl an TPH1 (MW: 178,5 + SEM 33,74) und
TPH2 (MW: 94,55 + SEM 12,76) positiven Zellen (Abb.24). Hierbei unterschied sich die
Anzahl der TPH1 zu TPH2 anfarbbaren Zellen signifikant (p=0.0316). Auch hier waren die

Ergebnisse nicht abhangig von Alter und post-mortem Intervall.

4.9.4 TPH1 und TPH2 positive Zellen in der Neurohypophyse
In der Neurohypophyse zeigte sich eine niedrige Anzahl an TPH1 (MW: 20,30 £ SEM 3,232)
und TPH2 (MW: 31,21 + SEM 7,713) positiven Zellen, ahnlich wie in den Raphekernen und

Cortex (Abb. 24). TPH1 und TPH2 konnte in &hnlich niedrigem Ausmal} gefunden werden
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ohne signifikante Unterschiede (p=0,3109). Es fand sich keine Abhangigkeit von Alter und

PMI.
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Abb. 24

TPH-positive Zellen

TPH-positive Zellen

Cortex
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TPH1 (n=14) TPH2 (n=17)

TPH1- und TPH2-positive Zellen in den Raphe-Kernen, im Cortex, in der Adenohypophyse (HVL), in
der Neurohypophyse (HHL).
Angegeben sind Mittelwerte und mittlerer Fehler des Mittelwerts (MW + SEM) von (n) untersuchten

Hirnproben.

*** p< 0,0001 (Mann Whitney t-Test)
* p< 0,05 (Mann Whitney t-Test)

ns p> 0,05 (Mann Whitney t-Test)
Raphe: Raphekerne; HVL: Adenohypophyse (Hypophysenvorderlappen); HHL: Neurohypophyse
(Hypophysenhinterlappen).
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Abb. 25 Immunhistochemische Darstellung von TPH in der Medulla (Raphekerne) (Gegenfarbung mit
Mayer’'s Hamalaun, Originalvergrésserung 400x)

Abb. 26 Immunhistochemische Darstellung von TPH1 in der Medulla (Raphekerne) (Gegenfarbung mit
Mayer’'s Hamalaun, Originalvergrésserung 400x)
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Abb. 27 Immunhistochemische Darstellung von TPH2 in der Medulla (Raphekerne) (Gegenfarbung mit
Mayer’'s Hamalaun, Originalvergrésserung 400x)

Abb. 28 Immunhistochemische Darstellung von TPH1 in der Adenohypophyse (HVL) (Gegenfarbung
mit Mayer’s Hamalaun, Originalvergrésserung 400x)
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Abb. 29 Immunhistochemische Darstellung von TPH2 in der Adenohypophyse (HVL) (Gegenfarbung
mit Mayer’s Hamalaun, Originalvergrésserung 400x)
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5. Diskussion

5.1 Allgemeine Einleitung der Diskussion

Ein mdglicher Zusammenhang zwischen dem serotonergen System bzw. der serotonergen
Neurotransmission und verschiedenen neurologischen und psychiatrischen Erkrankungen
wird schon seit Jahren vermutet. In einer Vielzahl von Studien wurde eine Beziehung
zwischen Serotonin und Erkrankungen wie z.B. Depressionen, Angststérungen,
Zwangsstoérungen, Schizophrenie, Essstorungen und Abhangigkeitsstérungen beschrieben
(Lucki 1998; Lesch 2001a; Lesch 2001b). Untersucht wurden hier die Konzentrationen von
Serotonin  bzw. dessen Metaboliten 5-Hydroxyindoyl-Essigsdure, die Dichte von
Serotoninrezeptoren bzw. vom neuronalen Serotonintransporter und auch die Eigenschaften,
der in die Serotonin-Synthese bzw. -Metabolismus involvierten Enzyme (HUther und Rither
2000).

Da der limitierende und geschwindigkeitsbestimmende Schritt der Serotoninsynthese das
Enzym Tryptophanhydroxylase (TPH) darstellt (Fritzpatrick 1999; Hamon et al., 1981), ist
dieses Enzym ein Schlusselprotein bei Untersuchungen serotonerger Mechanismen im
Rahmen der Pathogenese verschiedener psychiatrischer Erkrankungen. Dieser
Forschungsansatz hat durch neuere Befunde, dass TPH nicht als einheitliches Molekill,
sondern in zwei Isoformen (TPH1 und TPH2) im Organismus vorliegt, neue Ansatzpunkte
erhalten, besonders auch durch erste Befunde der eigenen Arbeitsgruppe, dass das
ursprunglich nur in der Peripherie vermutete TPH1 auch im zentralen Nervensystem (ZNS)
des Menschen vorkommt (Zill et al., 2004b; Zill et al., 2004c; Zill et al., 2007). Diese
Ausgangsbefunde sollten im Rahmen der vorliegenden Arbeit auf der Ebene der mRNA-
Expression beider Isoformen und komplimentierend der Proteinexpression an einer groReren
Anzahl humaner postmortem Gehirnproben bestatigt und um weitere wichtige Hirnareale
erweitert werden. Daruber hinaus sollte erstmalig untersucht werden, ob es im Rahmen

verschiedener psychiatrischer Erkrankungen (Schizophrenie, Substanzabhangigkeit, Suizid)
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in wichtigen serotonergen Hirnregionen (Raphekerne, Cortex, Hippocampus, Hypothalamus,
Hypophyse) zu Anderungen im Expressionsmuster von TPH1 und TPH2 kommt.

Da die TPH-Synthese hauptsachlich in den Zellkérpern der primar den Raphekernen
entstammenden serotonergen Neuronen stattfindet, war es zu erwarten, dass in dieser
Arbeit eine hohe Expressionsrate beider Isoenzyme in den Raphekernen gefunden wurde.
Obwohl auch am Tier die meisten serotonergen Bahnen aus den Raphekernen im
Hirnstamm entstammen (Hornung 2003; Lucki 1998), konnte in verschiedenen
Tiermodellstudien an Ratten und Mausen TPH-mRNA bzw. -Aktivitat auch in Gehirnarealen
detektiert werden, von denen bisher nicht bekannt war, dass sie serotonerge Zellkerne
enthalten wie z.B. Amygdala, Hippocampus, Thalamus, Cortex, Cerebellum, Hypothalamus
(Miguez et al., 1991; Khan und Thomas 2004; Berenguer et al., 2003; Popova et al., 2001;
Popova et al.,, 2002). Erganzend zu diesen Tierdaten konnte in dieser Arbeit an
menschlichen Gehirnproben sowohl in der Hypophyse und den Raphekernen als auch in
Arealen wie Cortex, Hippocampus, und Hypothalamus sowohl TPH1- als auch TPH2-mRNA
nachgewiesen werden.

Diese Ergebnisse kénnten auf einen axonalen Transportmechanismus von TPH-mRNA mit
einer einhergehenden lokalen Serotoninsynthese in der Synapse hinweisen. Dies ware, wie
von Nagamura und Hasegawa (2007) beschrieben, eine zusatzliche Serotoninquelle. Die
Autoren konnten zeigen, dass TPH1 vorherrschend in den spateren Entwicklungsstadien des
Gehirnes exprimiert wird, also zu einer Zeit, wo die Anlage der Zellkdrper meist schon
stattgefunden hat. Andererseits konnten die oben genannten Daten aus dieser Studie auch
auf die Existenz weiterer Serotonin-produzierender Neurone bzw. serotonerger Bahnen
auflerhalb des Hirnstammes hinweisen, wogegen wie erwahnt die spate Anlage spricht.

Wie bereits erwadhnt, war man bei alteren Untersuchungen lange von nur einer
Enzymvariante ausgegangen. Walther et al. (2003a) identifizierten erstmals an der Maus
eine neuronale Isoform der Tryptophanhydroxylase, die TPH2, in Ergdnzung zu der TPH-
Isoform im peripheren Gewebe, der TPH1. Die TPH2 ist beim Menschen auf Chromosom 12

lokalisiert und zeigt 72 % Sequenzhomologie zur TPH1 auf Chromosom 11 (Walther et al.,
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2003a; Walter und Bader, 2003). TPH1 hat einen niedrigeren Km-Wert als TPH2 (McKinney
et al., 2005; Tenner et al., 2007).

Bisher existieren wenige Studien Uber die genaue Verteilung der TPH-mRNA und des TPH-
Proteins in dem humanen Gehirn. Altere Studien konnten zeigen, dass die
Tryptophanhydroxylase v.a. in der Hypophyse und den Raphekernen nachzuweisen war und
somit der Serotoninverteilung im ZNS entsprach (Ehret et al., 1987). Austin et al. (1999)
fanden eine 11- bis 46-fach erhéhte Anzahl von TPHmMRNA postiven Zellen in der Epiphyse
im Vergleich zu den dorsalen und medianen Raphekernen. Diese Untersuchungen
bertcksichtigten noch nicht, dass zwei Isoformen der Tryptophanhydroxylase existieren und
diese unterschiedlich ausgepragt im ZNS exprimiert werden (Walther und Bader 2003). Dies
wurde in spateren Untersuchungen im Gehirn von Versuchstieren und von Menschen
beschrieben (Walther und Bader 2003; Sakowski et al., 2006; Patel et al., 2004).

In verschiedenen Tiermodellstudien wurde eine Trennung von TPH2 im Gehirn und TPH1 in
der Peripherie angenommen. Jedoch konnten bereits frih TPH1-mRNA im Mesencephalon,
einer Region in der man annahm, dass TPH2 dominiert (Patel et al., 2004; Salli et al., 2004),
und TPH2-mRNA in der Epiphyse (Sugden 2003), einer Region in der TPH1 dominiert,
gefunden werden.

Sakowski et al. (2006) untersuchten mittels monospezifischer polyklonaler Antikdrper gegen
TPH1 und TPH2 verschiedene Hirnareale und peripheres Gewebe von Mausen. Hierbei
zeigte sich, dass TPH1 die vorherrschende Isoform in der Epiphyse und in Mastozyten
darstellt. TPH2 wird hauptsachlich im Striatum, Hippocampus und im mesencephalischem
Tegmentum exprimiert. Zwar konnten in der Untersuchung einzelne TPH1 positive Zellen in
den dorsalen Raphekernen markiert werden, jedoch zeigte sich ein deutlich geringeres
Ausmald als TPH2. Nach Angaben der Autoren konnte eine gewisse Kreuzreaktivitat nicht
ausgeschlossen werden. Die von der Gruppe um Sakowski produzierten Antikérper
differenzierten zwischen TPH1 und TPH2 und =zeigten keine Kreuzreaktivitdt mit

Tyrosinhydroxylase und Phenylalaninhydroxylase.
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Sakowski et al. (2006) diskutierten bereits die Mdglichkeit, dass bestimmte Gewebe beide
Isoformen exprimieren, wie z.B. im Darm die enterochromaffinen Zellen TPH1 und das
enterische Nervensystem TPH2, da in ihrer Arbeit leichte TPH1 Signale im distalen Raphe
detektiert wurden. Eine Kreuzreaktivitat wurde dabei jedoch auch in Betracht gezogen.

Zill et al. (2007) konnten in postmortem Untersuchungen zeigen, dass sowohl TPH1- als
auch TPH2-mRNA im Gehirn vom Menschen in verschiedenen Arealen exprimiert werden,
wie z.B. Thalamus, Cortex, Hippocampus, Hypothalamus und Amygdala; TPH2-mRNA aber
nicht in peripheren Geweben wie Herz, Lunge, Niere, Duodenum, Nebenniere (Zill et al.,
2004a).

Hierbei zeigte sich nicht nur in den ,klassischen® serotonergen Projektionsgebieten wie
Cortex und Hippocampus TPH2-mRNA (Zill et al., 2004a), sondern auch in anderen
Regionen, die auch in der Pathologie psychiatrischer Erkrankungen diskutiert werden
(Brambilla et al., 2002a; Brambilla et al., 2002b; Scheibel, 1997), passend zu friheren Daten
Uber serotonerge Projektionen im Gehirn (Azmitia 1999; Jacobs und Azmitia, 1992).

In einer humanen postmortem Studie dieser Arbeitsgruppe wurde festgestellt, dass sowohl
TPH2 als auch TPH1, was bis dahin nur in der Peripherie vermutet wurde, in verschiedenen
Hirnarealen, z.B. Frontalcortex, Thalamus, Hippocampus und Amygdala exprimiert werden
(Zill et al, 2007). TPH2 wird hauptsachlich im Hirnstamm, der Hauptregion der zentralen
Serotoninsynthese, exprimiert und ist nicht in peripheren Geweben detektierbar (Zill et al.,
2004a). TPH1 hingegen wird v.a. in peripherem Geweben wie z.B. Herz, Lunge, Niere,
Darm, Hypophysenvorderlappen exprimiert, allerdings auch im ZNS (Zill et al. , 2007;
Walther et al. 2003a). Trotz dieser Befunde zur TPH1-Expression im ZNS des Menschen gibt
es zumindest in tierexperimentellen Studien Hinweise, dass TPH1 keine zentrale Rolle fir

das Verhalten hat (Walther und Bader, 2003).

Walther und Bader (2003) fanden namlich bei TPH1-Knouckout-M&usen keine Anderungen
in Verhaltensweisen, was dahingehend diskutiert wurde, dass TPH2 eine entscheidende,

zumindest aber sehr wichtige Rolle bei tierischen Verhalten spielt, das ja einen grof3en Teil
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von unterschiedlichen Gehirnfunktionen abbildet. Demgegeniber konnte aber in der
vorliegenden Arbeit sowohl TPH1- und TPH2-mRNA als auch TPH1- und TPH2-Protein in
unterschiedlichen Konzentrationen in verschiedene Gehirnregionen, wu.a. Cortex,
Hypohtalamus, Hippocampus, Raphekerne und Hypophyse nachgewiesen werden. Auf
MmRNA Ebene konnten damit die vorherigen Daten aus der Arbeitsgruppe von 2007 (Zill et
al., 2007) repliziert werden, auch passend zu friheren Daten an Maus und Ratte. Die
hochste Expression von TPH2-mRNA war wie erwartet in den Raphekernen, in denen sich
serotonerge Zellkérper befinden und die Synthese von Serotonin stattfindet. Darliber hinaus
konnte erstmals in den beiden Hypophysenteilen, eine Gehirnregion, welche in bisherigen
postmortem Studien wenig untersucht wurde, TPH1- und TPH2-mRNA nachgewiesen
werden. TPH1-mRNA zeigte sich hier als vorherrschendes Isoenzym, mit einer Haufigkeit
von 20-50 % der TPH2-mRNA Expression in den Raphekernen. Diese eigenen Befunde

sollen im Folgenden noch ausfiihrlicher besprochen werden.

5.2 Diskussion der Ergebnisse

5.2.1 mRNA Expression in der Kontroll-Stichprobe

TPH1- und TPH2-mRNA Expression in den Raphekernen

Die Raphekerne sind der Hauptursprung der serotonergen Projektionen im humanen Gehirn
(Hornung 2003, Lucki 1998) und sind Teil des Hirnstammes. Der groRte Teil aller zentralen
serotonergen Bahnen entstammt den Raphekernen und strahlt in praktisch alle Teile des
Gehirns aus, die damit die verschiedensten Funktionen wie z.B. Verhaltensweisen,
Emotionen, Kognition, Motorik und andere kontrollieren.

Die kaudalen Anteile der Raphekerne liegen in der Medulla oblongata und ihre Axone
projizieren in das Rickenmark, Cerebellum, und Cortex. Die kaudale Zellgruppe umfasst die
Nuclei raphe magnus, raphe obscurus und raphe pallidus, die unter anderem zur Steuerung
der Motorik, Schmerzmodulation, Respiration und kardiovaskularen Aktivitdten wichtig sind.
Rostrale Zellgruppen liegen in der Pons und dem Mesencephlon und projizieren in

Telencephalon und Diencephalon. Sie umfassen die Nuclei raphe dorsalis (DRN), raphe
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medianus (MRN) und linearis caudalis und sind z.B. an emotionalen Vorgangen beteiligt.
Einige Gebiete enthalten Projektionen aus DRN und MRN, jedoch innerviert der DRN
vermehrt in das laterale Vorderhirn, der MRN vermehrt in das mediale Vorderhirn. Bahnen
aus rostralen Teile diese Nucleus ziehen z.B. zum Thalamus, Striatum, Hypothalamus,
Amygdala (Dahlstrdm und Fuxe, 1964b; Hornung 2003).

In der vorliegenden Arbeit konnte gezeigt werden, dass TPH2-mRNA vorranging und am
hochsten innerhalb der untersuchten Hirnareale in den Raphekernen exprimiert wird. Dies
bestatigt die Vermutung, dass die Raphekerne als Hauptursprung der serotonergen
Projektionen im ZNS dienen. Die TPH2-mNRA Expression war hier signifikant groRer als die
TPH1-mRNA Expression, die nur ca. 10 % des Wertes von TPH2 erreichte. Allerdings war
die messbare Konzentration in den Raphekernen ca. doppelt so hoch wie die TPH1-mRNA
Expression in der Adenohypophyse, die Region mit der hochsten TPH1-mRNA-Expression
der untersuchten Areale. Die hohe Konzentration an TPH1TmRNA in der Hypophyse konnte
in dieser Studie erstmals gezeigt werden und kénnte auf eine wichtige Rolle der TPH1 in
physiologischen Vorgangen der Hypophyse hinweisen.

In den anderen untersuchten Arealen lag die TPH2-mRNA Expression allgemein niedriger
als die TPH1-mRNA Expression. Patel et al. (2004) fanden mittels in-situ-Hybridisierung bei
Ratten, dass TPH2 fast ausschlielilich in den Raphekernen exprimiert wird, TPH1
hauptsachlich in der Epiphyse, eine Region, die in dieser Arbeit nicht untersucht wurde, da
von dieser Gehirnregion keine Proben vorhanden waren. Diese tierexperimentellen Daten
wurden zumindest fir das TPH2-mRNA Expressionsmuster in den Raphekernen durch die
Daten dieser Arbeit bestatigt.

Fruhere Studien an humanen postmortem Proben zeigten bereits Ubereinstimmend mit
unseren Ergebnissen, dass TPH2 vorrangig in den Raphekernen bzw. Hirnstamm exprimiert
wird (Haghigi et al., 2008; Bach-Mizrachi et al., 2006; Clark et al., 2008; Bach-Mizrachi et al.,
2008; Malek et al., 2007; Patel et al., 2004; Lim et al., 2007). Im Gegensatz zu den Daten der

vorliegenden Arbeit und den Daten von z.B. Zill et al (2004a) wurde in den friheren
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Publikationen allerdings keine gleichzeitige Expression beider Enzyme in den untersuchten
Gewebeproben untersucht.

Sowohl Austin et al. (1999) (humane Daten) als auch Dumas et al. (1989) (Nager) fanden in
Studien hoéhere Gesamt-TPH-mRNA Konzentrationen in der Epiphyse als in den
Raphekernen. Bei Austin et al. (1999) zeigte sich eine bis zu 46-fach héhere Konzentration;
Dumas et al. (1989) wies eine bis zu 150-fach héhere TPH-mRNA Konzentration in der
Epiphyse als Raphekernen nach. Einen ahnlichen methodischen Ansatz wie in dieser Arbeit,
d.h. vergleichende Untersuchungen der mRNA-Expression und Proteinexpression, gab es
bereits in zahlreichen Studien, die Gesamt-TPH-mRNA und Gesamt-TPH-Protein in
Raphekernen und der Ephiphyse vergleichend untersuchten. Dabei war die Epiphyse das
Hirnmaterial mit der hochsten TPH Konzentration. Jedoch zeigten sich in den
Untersuchungen widersprichliche Ergebnisse (Chamas et al., 2002; Chamas et al., 2004;
Chamas et al., 1999; Clark et al., 1997; Clark et al., 1998; Dumas et al., 1989), was jedoch
vor dem Hintergrund gesehen werden muss, dass keine Differenzierung von TPH1 und
TPH2 erfolgte. Nach heutigem Wissenstand muss davon ausgegangen werden, dass es sich

dabei um TPH1 handelt.

TPH1- und TPH2-mRNA Expression im Cortex

Von den Raphekernen projizieren wichtige serotonerge Bahnen in cortikale Strukturen.
Kamali et al. (2001) fanden bereits in einer postmortem Studie im prafrontalen Cortex
Veranderungen innerhalb des serotonergen Symstems, wie z.B. Veranderungen der
Rezeptor-Dichte und-Aktivitat sowie der Neurotransmitter Konzentrationen bei Depression
und Suizidalitdt, was auf mogliche erkrankungsrelevante Veradnderungen serotonerger
Mechanismen hinweist. In Ubereinstimmung mit der Bedeutung des Cortex als wichtiges
serotonerges Projektionsgebiet wurden in den Cortex-Proben der Kontrollgruppe in der
vorliegenden Studie sowohl TPH1- als auch TPH2-mRNA nachgewiesen, wobei die

Expressionsrate von TPH1 signifikant héher war.
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TPH1- und TPH2-mRNA Expression im Hippocampus

Der Hippocampus ist Teil des limbischen Systems und ist fir die Regulation von Kognition
und Emotion ein besonders wichtiges Areal. Aufgrund dieser Funktionen gibt es Daten Uber
die Beteiligung des Hippocampus an der Pathogenese von dementiellen Erkrankungen
(Murre, 1999), aber auch an Schizophrenie (Knable et al.,, 2004; Harrison, 2004) und
Suizidalitat (Pandey et al., 2002). Im Hippocampus zeigte sich kein signifikanter Unterschied
der TPH1 und TPH2 Expression in der Kontrollgruppe. Jedoch bestand ein leichter Trend,

dass TPH1 etwas hdéher exprimiert wird. Dies war jedoch nicht signifikant.

TPH1- und TPH2-mRNA Expression im Hypothalamus

Auch der Hypothalamus wird durch serotonerge Bahnen aus dem Hirnstamm innerviert und
kontrolliert bzw. aktiviert wiederum die Hypophyse. In alteren Studien an Ratten (Arezki et
al., 1985; Frankfurt et al., 1981) konnte dariber hinaus gezeigt werden, dass der
dorsomediale Nucleus des Hypothalamus eine Gruppe Serotonin produzierende Neurone
enthalt, welche unter der dem Einfluss von Katecholaminen sind. Dabei handelte es sich
bisher aber nur um tierexperimentelle Daten an Ratten. Unter der Annahme, dass dies auch
fur das menschliche Gehirn zutrifft, kdnnten Uber solche serotonerge Neurone die relativ
hohen Expressionswerte erklart werden. In der vorliegenden Studie konnte im Hypothalamus
signifikant mehr TPH1 in den Kontrollproben gemessen werden als TPH2. Dies kénnte z.B.
auch Hinweise darauf geben, dass TPH1 eine wichtige Rolle im Rahmen der HPA-Achse
spielt und somit fir Stress-vermittelte Psychopathologien relevant ist. Die HPA-Achse
vermittelt die korperliche Reaktion auf Stress und wird mit verschiedenen psychiatrischen
Erkrankungen wie z.B. Depression, Suizid, Substanzabhangigkeit und Schizophrenie in

Verbindung gebracht (Sher, 2007; Phillips et al., 2006; Keller et al., 2006).

TPH1- und TPH2-mRNA Expression in der Adeno- und Neurohypophyse
Die Hypophyse als hormonelles Ausfilhrungsorgan des Hypothalamus ist aus 2 Teilen

aufgebaut. Einerseits aus der Adenohypophyse (Hypophysenvorderlappen, HVL) oder
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Hirnanhangsdrise genannt, das aus Driisengewebe besteht (aus embryologisches Sicht nur
dem Gehirn angelagert selbst kein Gehirngewebe) und andererseits der Neurohypophyse
(Hypophysenhinterlappen, HHL), einer Struktur des Hypothalamus. Die Neurohypophyse
(HHL) grenzt als Fortsetzung an das zum Hypothalamus gehdérende Infundibulum. Die dort in
den Nervenzellen gebildeten Neurohormone (Oxytocin und Vasopressin) werden in Axonen
in die Neurohypophyse transportiert und dort durch Neurosekretion ins Blut abgegeben, was
durch eine undichte Blut-Hirn-Schranke moéglich ist. Die Adenohypophyse (HVL) ist eine
eigenstandige endokrine Drise und wird Uber Release- und Inhibiting-Hormone des
Hypothalamus gesteuert. Durch die hypothalmische Steuerung werden das
Adrenocorticotrope Hormon (ACTH), Thyreoidea stimulierende Hormon (TSH), Follikel
stimulierende Hormon (FSH), Luteotrope Hormon (LH), Prolactin (PRL), Somatotrope
Hormon (STH) freigesetzt und gelangen in den hypophysaren Pfortaderkreislauf. Diese
Freisetzung wird Uber hormonale Ruckkopplungsmechanismen bzw. die Wirkung weiterer
Substrate wie Glucose reguliert. Im peripheren Gewebe steuern diese Hormone die Funktion
der meisten endokrinen Organe und bewirken die Synthese bzw. Freisetzung weiterer
Gewebshormone (Junqueira und Carneiro, 1991).

Frihere Studien uber die Hypophyse untersuchten v.a. den Zwischenlappen beziglich der
Serotoninverteilung. Palkovits et al. (1986) wiesen Serotonin in Nervenfasern- und
Endigungen, in Mastzellen sowie in Blutbestandteilen, welche in Gefalen an der Oberflache
des Zwischenlappens zirkulieren, nach (Palkovits et al., 1986). Mezey et al. (1984) wiesen in
einer Tiermodellstudie darauf hin, dass die serotonergen Fasern im Zwischenlappen, aus
Zellen der Raphekerne des Mittelhirn und des dorsomedialen Nucleus des Hypothalamus
stammen kénnen. Andererseits fanden Friedman et al. (1983) keine Anderungen der
Serotoninkonzentration in der Adeno- und Neurohypophyse nach Sektion des Indundibulum.
In der Adenohypophyse (HVL) wurde in dieser Studie deutlich mehr TPH1mMRNA als
TPH2mRNA gemessen. Auch in der Neurohypophyse (HHL) zeigte sich ein dhnlicher Trend.
Jedoch war die relative TPH1mRNA Expression niedriger als im HVL. Insgesamt zeigte sich

die hdochste Expression von TPH1 unter den untersuchten Gehirnarealen in der
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Adenohypophyse. Relativ lag die Expression von TPH1 in der Adenohypophyse bei ca. 20-
50 % der TPH2-mRNA Expression in den Raphekernen, was auf eine relevante
physiologische Bedeutung von TPH1 in der Hypophyse hinweisen konnte. TPH1-mRNA
wurde jedoch auch wie oben erwahnt in allen anderen Gehirnregionen (Raphekerne, Cortex,
Hippocampus, Hypothalamus) nachgewiesen, allerdings in deutlich niedriger Konzentration.
Hohe TPH1-mRNA Konzentrationen in der Hypophyse konnten durch TPH1 in Mastzellen
verfalscht sein. Daher untersuchten Zill et al. (2009) auch die Relation der Dichte der
Mastzellen und der TPH1-mRNA Konzentration in beiden Hypopyhsenteilen, wobei sich
keine Korrelation zwischen der Dichte der Mastzellen und TPH1 Konzentration zeigte,
sodass von hohen TPH-mRNA Konzentrationen in der Hypophyse selbst ausgegangen
werden muss.

Vergleichende Daten Uber TPH1 und TPH2 Expression in der humanen Hypophyse lagen
noch nicht vor. Bisher existieren nur Daten an der Ratte bzw. Daten zur hypophysaren
Expression von TPH2 beim Menschen.

Saland et al. (1993) zeigten, dass bei Ratten TPH altersabhangig in der Neurohypophyse
und dem Zwischenlappen der Hypophyse exprimiert wird (Saland et al., 1993). In zwei
neueren Studien wurde zwar die TPH2-mRNA und Protein-Expression in der Hypophyse
dargestellt, jedoch wurde die TPH1 Expression nicht untersucht (Clark et al., 2008; Remes
Lenicov et al., 2007). In der Studie von Clark et al. (2008) wurde mittels spezifischem TPH2
Antiserum an Gehirnproben von Menschen und Nagetieren TPH2 Protein in den
Raphekernen, Hypothalamus, Epiphyse, und Hypophyse nachgewiesen (Clark et al., 2008).
Remes Lenicov et al. (2007) untersuchten eine mdgliche Beziehung zwischen Calcium-
Modulation und Serotonin Konzentrationen im Gehirn in vitro. Gleichzeitig wiesen sie TPH2-
MRNA in den Zellen der Hypophyse von Ratten nach. Sowohl Clark et al. (2008) als auch
Remes Lenicov et al. (2007) bieten jedoch keine ausfihrliche Diskussion der Ergebnisse in
der Hypophyse an. Insgesamt fehlen jedoch, trotz dieser interessanten Studien, bisher Daten

Uber die Verteilung und Bedeutung von TPH1 und TPHZ2 in der menschlichen Hypophyse.
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Aufgrund der Ergebnisse dieser Studie Iasst sich die Hypothese aufstellen, dass TPH1 die
dominierende Isoform der TPH in der Hypophyse und ggf. im Hypothalamus ist. Uber
unabhangige serotonerge Mechanismen kdnnte ein direkter Effekt auf die Hormonproduktion
der Hypophyse vorhanden sein und mdéglicherweise eine Rolle in der Regulation der Stress-
Antwort durch die Hypophyse spielen.

Clark und Mitarbeiter zeigten eine Glukokortikoid-abhangige Abnahme von TPH2-mRNA und
Protein in den Raphekernen, was Hinweise auf einen Einfluss von Stress, Uber
Glukokortikoide vermittelte Effekte, auf die TPH2 Expression geben kdnnte (Clark et al.,
2005; Clark et al., 2008). Weiterhin erscheint der zirkadiane Rhythmus von TPH2-mRNA
Expression in den Raphekernen durch tagliche Glukokortikoidgaben induziert zu sein (Malek
et al., 2007). Auch in Zusammenhang mit der HPA-Achse konnten Chen et al. (2006) bei
Rhesus Affen eine signifikante Assoziation mit TPH2 Polymorphismen nachweisen.
Unterstitzend zu dieser eher TPH2 bezogenen Stress Antwort, konnten ahnliche Daten
auch von Abumaria et al. (2008) in einer Studie mit Ratten fur TPH1 gezeigt werden, die
niedrige Level von TPH1-mRNA in den Raphekernen (DRN), jedoch eine hohe TPH1-mRNA
Expression in der Epiphyse fanden. Nach einer Woche taglichem Stresses stieg die TPH1-
MRNA Konzentration bis zu 2,5-fach in den DRN an. Diese Ergebnisse kénnten auf eine
mogliche Rolle von TPH1 in dem Mechanismus der Stressregulierung in den DRN
hinweisen, ein Effekt, der auch in der Epiphyse denkbar ist.

Auch wenn die Ergebnisse dieser Arbeit als neuer Befund eine bedeutsame Rolle der TPH1
in Stress bezogenen HPA-Achsen Mechanismen suggerieren, sollte nicht unerwahnt bleiben,
dass zahlreiche Studien ebenso robuste Daten Uber die Beteiligung der TPH2-mRNA in
HPA-Achsen-Regulation erbrachten, wie es auch in neueren Ubersichten formuliert wurde

(Chen und Miller, 2013; Chen und Miller, 2012).
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5.2.2 Ergebnisse der immunhistochemischen Untersuchungen

Im Anschluss an die Untersuchung uber die regionale Verteilung von TPH1 und TPH2 auf
mRNA Ebene wurde versucht die Befunde auf Proteinebene zu validieren. Leider standen
hierzu relativ wenige Gehirne von Kontrollpersonen und aus der Patientengruppe zur
Verfligung, sodass keine diagnosespezifische Differenzierung vorgenommen werden konnte.
Dieses Vorgehen erscheint gerechtfertigt, da die ausfuhrlichen Untersuchungen auf mRNA
Ebene keine signifikanten Signale fur Veranderungen der TPH1 und TPH2 uber
verschiedene Gruppen psychiatrischer Patienten ergeben haben. Daher wurden die
immunhistochemischen Bestimmungen nur in Hinblick auf eine Bestatigung oder ggf. auch
als Nicht-Bestatigung der TPH1 bzw. TPH2 regionalen Verteilung ausgewertet.

Unter Verwendung monospezifischer polyklonaler Antikérper fir TPH1 und TPH2 (Sakowski
et al., 2006) konnte in dieser Studie TPH1 und TPH2 immunhistochemisch in den
untersuchten Arealen (Adeno- und Neurohypophyse, Cortex und Raphekerne)
nachgewiesen werden. Durch die Anwesenheit TPH1- und TPH2-positiver Zellkorper in der
Adenohypophyse kénnen falsch positive Werte der TPH-mRNA durch z.B. vaskulare TPH-
Expression ausgeschlossen werden.

Auch in der Neurohypophyse (HHL) konnte TPH1 nachgewiesen werden, jedoch in einer
niedrigeren Konzentration und es zeigte sich auch keinen signifikanten Unterschied
zwischen TPH1 und TPH2.

Eine mdgliche Erklarung hierfir kdnnte die geringere Anzahl an neuronalen Zellen in der
Neurohypopyhse im Vergleich zur Adenohypophyse sein.

Passend dazu konnte in den immunhistochemischen Farbungen die insgesamt hochste
Konzentration von TPH1 bzw. TPH positiven Zellen in der Adenohypophyse (HVL) detektiert
werden. In den anderen drei Regionen zeigte sich eine ahnlich niedrige Konzentration. Im
Cortex zeigte sich hier signifikant mehr TPH2 positive Zellen als TPH1 Zellen.

Damit wurden bei den Untersuchungen zur regionalen Verteilung von TPH1 und TPH2 auf
Proteinebene zwar meist Parallelen zum jeweiligen mRNA Expressionsmuster gesehen,

aber z.T. auch deutliche Unterschiede. Grundsatzlich bestatigen die immunhistochemischen
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Befunde aber das Vorkommen beider Isoenzyme in den untersuchten Hirnarealen auf
Proteinebene, wenn auch die quantitiative Auswertung Divergenzen =zeigt. Es wird
mittlerweile von einem axonalen Transport von mRNA in die Synapse ausgegangen. Dort
scheint unter anderem die Aktivitdt der Synapse die Translation zu regulieren, sodass
unterschiedliche mRNA- und Protein-Werte durch die Aktivitat der Synapse bedingt zu sein
scheinen (Martin und Zukin, 2006). Auch Sutton und Schumann (2005) beschrieben eine
komplexe Kontrolle der Translation in den Dendriten, wobei verschiedenste Mechanismen
die Proteinsynthese regulieren, z.B. Wachstumsfaktoren wie BDNF und Neurotransmitter wie
Dopamin und L-Glutamat.

Ahnliche Befunde wurden von Dumas et al. (1989) publiziert, der eine bis zu 150-fach
héhere TPH-mRNA Konzentration in der Epiphyse als in den Raphekernen nachweisen
konnte, jedoch wurden in den Raphekernen dreimal mehr TPH Protein festgestellt als in der
Epiphyse. Die Autoren diskutierten die Ergebnisse dahingehend, dass es womadglich eine
unterschiedliche Translationseffizienz in verschiedenen Geweben fur TPH wie auch andere
Proteine gibt.

In der Vergangenheit wurden vergleichenden Studien uber die TPH-mRNA Verteilung und
Protein Expression im Hirnstamm und Epiphyse verdffentlicht, dabei blieben die Ergebnisse
jedoch uneinheitlich, wobei oft die mRNA Daten nicht mit der Immunoreaktivitdt (IR)
korrelierten (Chamas et al., 2002; Chamas et al., 2004; Chamas et al., 1999; Clark et al.,
1997; Clark et al., 1998). Im Fall der TPH2 gibt es eine weitere mdglich relevante Variable.
Im Gegensatz zu TPH1 besitzt TPH2 einen 41 Aminosaure langen N-Terminus, der eine
regulierende Funktion hat und damit zu unterschiedlichen Expression Level fihrt, wie
Murphy et al. zeigen konnten (Murphy et al., 2008). Dies scheint einerseits durch eine
unterschiedliche Effizienz der Proteinexpressionsrate, aber auch durch unterschiedliche

Posttranslationsstabilitdt des Enzyms bedingt zu sein.
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5.2.3 mRNA Expression in der Patienten-Stichprobe

Wie bereits in Kapitel 1.3 beschrieben, wurden TPH1- und TPH2- Expression, Funktion
sowie genetische Veranderungen bereits in einigen Studien an postmortem Hirnmaterial
verschiedener psychiatrischer Patientengruppen untersucht.

Hier wurden zum Teil Zusammenhange zwischen verschiedenen Gen-Polymorphismen oder
Veranderungen der Gen-Expression der TPH und verschiedenen psychiatrischen
Erkrankungen wie Suizidalitat, Aggressionen, Substanzabhangigkeit, Alkoholabhangigkeit,
Schizophrenie und Depression beschrieben (Lalovic et al., 2002; Nielsen et al.,1998; Serretti
et al., 2001). V.a. bei depressiven Erkrankungen und Suizidalitat wird TPH schon lange als
interessantes Kandidaten-Gen beschrieben (Lucki 1998; Mann 1987; Mann et al., 1990).

Fur beide Isoenzyme wurden eine Vielzahl von Assoziationsstudien mit Polymorphism
durchgefihrt, die auf eine mégliche Bedeutung der TPH bei diesen Erkrankungen (affektive
Erkrankungen, Suizidalitat, Schizophrenie) hinweisen kénnten. Dies gilt besonders bei TPH2
Polymorphismen (Zill et al., 2004c; Zill et al., 2004b; Zill et al., 2007; Sakowski et al., 2006;
Méssner et al., 2007; Reuter et al., 2007a,b; Bach-Mizrachi et al., 2008; Nielsen et al., 2008),
aber auch Polymorphismen von TPH1 (Lalovic und Turecki, 2002; Rujescu et al., 2003; Li
und He, 2006a; LI und He, 2006b; Gizatullin et al., 2006a; Gizatullin et al., 2006b; Watanabe
et al., 2007; Allen et al., 2008). So wurden z.B. Polymorphismen des TPH1 Gens zahlreich
mit Suizidalem Verhalten assoziiert, wie z.B. der A779C Polymorphismus (Mann, 2003). Der
gleiche SNP wurde in anderen Studien mit Alkoholabhangigkeit assoziiert (Nielsen et al.,
1998). Assoziationen traten bei v.a. gewalttatigen Suiziden auf (Abbar et al., 2001). Auch

der A218 SNP wurde mit Suizidalitat assoziiert (Bellivier et al., 2004; Rujescu et al., 2003).

Ein Teil dieser Befunde konnte auch metaanalytisch gefestigt werden, aber mit sehr
geringeren Assoziationswerten. Damit lassen diese interessanten Befunde keine sichere
Aussage Uber eine mogliche Bedeutung von TPH1 und TPH2 bei diesen Erkrankungen zu,
zumal eine funktionelle Bedeutung der meisten Polymorphismen nicht bekannt ist.

Interessant erscheinen die Daten zu einem SNP im TPH2 Gen (G1463), der reduzierte
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Serotonin Level in PC12 Zellen bewirkte (Zhang et al., 2005) und haufiger bei depressiven
Patienten gefunden wurde. Jedoch konnte der SNP von anderen Gruppen bei ber 5000
Proben nicht repliziert werden (Blakely et al., 2005, Garriock et al., 2005; Glatt et al., 2005;

Van Den Bogaert et al., 2005; Zhou et al., 2005; Bicalho et al., 2006; Delorme et a., 2006).

Ein wesentliches Anliegen dieser Arbeit war die Frage, ob es im Rahmen verschiedener
psychiatrischer Erkrankungen zu Anderungen des regionalen Verteilungsmuster fiir beide
TPH-Isoenzyme kommt, wobei keine Polymorphismen, sondern die Expressionsrate auf
MmRNA Ebene erfasst wurde und erganzend in einigen Proben auch auf Proteinebene. Ein
wichtiges neues Ergebnis war hier, dass TPH2-mRNA vorrangig und am hochsten in den
Raphekernen exprimiert wird. In allen untersuchten Patienten-Gruppen (Schizophrenie,
Suizid, Sucht, Kontrollen) zeigte sich ein vergleichbares Expressionsmuster ohne signifikante
Unterschiede, jedoch mit einer Tendenz 2zu etwas hoheren Werten bei den
Patientengruppen. Die TPH1-mRNA zeigte sich sowohl in der Kontrollgruppe als auch bei
den Patienten &hnlich niedrig. Auch die Ratios beider Isoformen in den Raphekernen zeigte
sich von Kontrollen zu Patienten nicht signifikant unterschiedlich. Bach-Mizrachi et al. (2006)
sahen héhere TPH2-mRNA Expression in den Raphekernen von depressiven Suiziden im
Vergleich zu Kontrollen. In einer Gruppe der Proben fand sich eine Korrelation zwischen
mMmRNA-Expression und TPH Immunraktivitat in den Raphkernen, was die Autoren vermuten
lies, dass eine funktionelle Bedeutung vorliegt und héhere mRNA Expressionsdaten zu
héheren Proteinlevel fuhrt. Die Autoren diskutierten, dass zwar in alteren Befunden weniger
Serotonin und/oder 5-HIAA im Mittelhirn von Suiziden gefunden wurde (Mann et al., 1990)
und im CSF von Suiziden (Placidi et al., 2001), dennoch fand die Gruppe mehr TPH-mRNA
und mehr TPH-Protein in den Raphekernen. Als ein moglicher Erklarungsversuch wurde ein
kompensatorischer Regulationsmechanismus bei Serotoninmangel in Erwagung gezogen,
wie es bisher bei Depression und Suiziden diskutierte wurde (Arango et al., 2001; Mann,
2003). Boldrini et al. (2005) fanden in den medianen Raphekernen keine veranderte TPH-IR,

in den DRN von Suizidopern mehr TPH-IR, was in Anbetracht der Befunde von reduzierten
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Serotonin- und Serotoninmetaboliten Konzentrationen im CSF von Suiziden die
Schlussfolgerung zulasst, dass keine Stérung der Serotoninsynthese vorliegt, sondern eine
veranderte Ausschittung. Alternativ. wurde ein TPH Feedback Mechanismus mit
hochregulierter TPH Expression bei erniedrigten Serotoninspiegeln diskutiert. Die
Ergebnisse der DRN erscheinen jedoch mit 13 % Unterschied gerade signifikant und lieBen
die Hypothese zu, dass dies keine funktionell relevante Veranderung zur Folge hat.

Bonkale et al. (2004 und 2006) fanden, dass im DRN bei alkoholabhangigen depressiven
Suiziden die TPH-IR erhdht war, jedoch lediglich im dorsalen Subnucleus. In den anderen
Arealen des DR fand sich kein Unterschied, was sich mit den vorliegenden Befunden deckt,
wo auch kein Unterschied gesehen wurde.

Frihere Studien fanden im Prafrontalen Cortex eine reduzierte 5-HT1A Rezeptor-Bindung
bei alkoholabhangigen Suiziden im Vergleich zu nicht-abhangige Suiziden (Underwood et al.,
2004) sowie reduzierte 5-HIAA Konzentrationen im CSF von ,early-onset®
Alkoholabhangigen (Fils-Aime et al., 1996), sodass eine Veranderung von Serotonin bei
Suiziden im Cortex diskutiert werden kdnnte. Jedoch fanden sich in der vorliegenden Arbeit
im Cortex und Hippocampus ein vergleichbares Bild zur Expression beider Isoenzyme wie in
den Raphekernen, wo auch keine signifikanten Unterschiede zwischen den Kontrollen und
den jeweiligen Patientengruppen gefunden wurde. De Luca et al. (2005) konnten ebenfalls in
ihrer Untersuchung keinen Unterschied der TPH2-mRNA zwischen Schizophrenen und
Kontrollen im prafrontalen Cortex, jedoch signifikante Unterschiede zwischen Kontrollen und
Bipolar Erkrankten zeigen.

Ahnlich der mRNA Daten im Hypothalamus der Kontrollen zeigte sich auch in den
Patientengruppen durchweg signifikant mehr TPH1-mRNA als TPH2-mRNA in dieser
Region. Dies kdnnte fir eine entscheidende Beteiligung der TPH1 innerhalb der HPA-Achse
auch bei psychiatrischen Patienten hinweisen, wenn auch hier keine Unterschiede der
Expressionsraten gesehen wurden.

Interessanterweise konnte bei allen Patientengruppen und der Kontrollgruppe eine signifikant

hohere TPH1-mRNA Expression als TPH2-mRNA Expression im Hypophysenvorderlappen
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gemessen werden. Weiterhin zeigte sich in der Neurohypophyse eine deutlich héhere TPH1-
und TPH2-Expression in der Gruppe der Substanzabhangigen gegenlber den anderen
Gruppen.

Die Befunde sind auffallend, weil TPH1 und TPH2 in allen untersuchten Patientengruppen
keine signifikante Verdnderung gegenuber den Kontrollen zeigt. Dies ist unerwartet, da wie
im Vorangegangenen diskutiert, eine groRe Bedeutung von Serotonin innerhalb der
Stressachse vermutet wird bzw. eine Beteiligung der Stressachse bei psychiatrischen
Erkrankungen wahrscheinlich erscheint.

Die vorliegenden Befunde kann man daher dahingehend diskutieren, dass anzunehmende
Stérungen der Stressachse, wie sie bei einem Grofdteil der psychiatrischen Erkrankungen
anzunehmen sind, sich nicht auf der Expressionsebene der TPH direkt widerspiegeln.
Einschréankend muss man aber berucksichtigen, dass adaptive Veranderungen der TPH
Expression, wie sie vor allem nach akutem Stress beschrieben sind, im Rahmen der
vorliegenden postmortem Daten nicht erfasst werden (Chen und Miller, 2012; Chen und
Miller, 2013). Die dargestellte Verteilung der TPH1-mRNA und Protein in verschiedenen
Gehirnarealen, insbesondere der Hypophyse, lasst eine bisher unbekannte Funktion der
TPH1 am neuronalen serotonergen System vermuten.

Wie bereits erwahnt, konnte als wichtiger Befund in dieser Arbeit erstmals nachgewiesen
werden, dass nicht nur TPH1 neben TPH2-mRNA in Hypophysenvorder- und Hinterlappen
exprimiert werden, sondern dass zumindest auf mMRNA Ebene TPH1 in beiden Teilen der
Hypophyse das vorherrschende Isoenzym darstellt. Die hohe Konzentration von TPH1
mMmRNA und Protein in der Adenohypophyse lasst die Vermutung zu, dass TPH1 eine
entscheidende Rolle in der Funktion der Hypophyse beitragt. Hierbei zeigte sich jedoch kein
wesentlicher Unterschied der TPH1- und TPH2-mRNA Expression zwischen Kontrollen und
den Patientengruppen (Schizophrenie, Suizid, Substanzabhangigkeit), obwohl eine
Beteiligung der Stressachse bei verschiedensten psychiatrischen Erkrankungen
angenommen wird (Chen und Miller, 2012). Die vorliegenden Daten lassen jedoch die

Vermutung zu, dass sich dies nicht auf mMRNA Ebene zeigt.
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Dies ist neu, da man bisher im Wesentlichen eine wichtige Rolle von TPH2 bei Stress
gesehen hat (Chen und Miller, 2012; Chen und Miller, 2013). Wenige Arbeiten haben eine
Veranderung der TPH1 Expression, im Sinne einer erhdhten TPH-mRNA-Expression, als
Stressantwort bei der Ratte beschrieben (Chamas et al., 2004; Abumaria et al., 2008),
allerdings primar in den Raphekernen und nicht in der Hypophyse.

Dies koénnte fir weitere Forschungsansatze von Bedeutung sein, bei Erkrankungen bei
denen nicht nur Stérungen des serotonergen Systems, sondern auch Veranderungen im
Bericht der Hypothalamus-Hypophysen-Ache eine Rolle spielen. In Zusammenhang mit den
Ergebnissen dieser Studie, dass TPH1 mRNA in beiden Hypophysenteilen sowie dem
Hypothalamus sehr stark exprimiert wurde, kdnnte angenommen werden, dass TPH1 die
vorherrschende Isoform in der HPA Achse ist und somit bei Stress induzierten
Psychopathologien eine relevante funktionelle Rolle spielt.

Eine mdgliche Beteiligung von TPH1 bei Stressmechanismen via HPA Achse, bzw. bei
Dysregulationen der HPA Achse bei psychiatrischen Erkrankungen, kann man auch
vermuten durch die vielfach bestatigten signifikanten Assoziationen von TPH1 Gen Varianten
und Depression, Suizidalitdt und Schizophrenie (Li und He, 2006a; Li and He 2006b;

Gizatullin et al., 2006a,b; Allen et al., 2008).

5.3 Limitierende Faktoren

Die in der vorliegenden Arbeit aufgestellten Schlussfolgerungen sind zum Teil sehr
spekulativ und missen naturlich vor dem Hintergrund einiger methodischer Einschrankungen
gesehen werden.

Haghighi et al. (2008) konnten eine zweite TPH2 Isoform identifizieren, welche eine kirzere
5-UTR und lediglich 6 Exons hat. In dieser Arbeit wurde ein kommerzieller Assay-on-
Demand (Applied Biosystems, Foster City, USA) fir die TPH2-mRNA Messungen
verwendet, welcher die Boundary zwischen Exon 2 und 3 umfasst. Eine Differenzierung

zwischen den beiden TPH2 Isoformen bei unseren Ergebnissen ist somit nicht mdglich.
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Um eindeutig sagen zu kdnnen, dass die HPA-Achse von TPH1 beeinflusst wird, musste
gezeigt werden, dass die Antikdrper positiven Zellen in der Hypophyse ACTH produzierende
Zellen sind, was jedoch den Umfang dieser Arbeit Gbersteigt.

Limitierende Faktoren sind aulerdem der zirkadiane Rhythmus der TPH1 und TPH2
Expression, der Effekt des postmortem Intervalls, Einflisse durch Lagerungszeit und
Praparation des Gewebes, der Gewebe pH und Veranderungen des Metabolismus wahrend
der Agonie.

In friheren Studien wurde gezeigt, dass Geschlecht, Alter und pH-Wert des Gehirns
potentielle Einflussfaktoren in Studien mit postmortem Gehirngewebe darstellt, wohingegen
keine Korrelationen mit agonal states gesehen wurden und das postmortem Intervall nur
minimalen Einfluss auf die mRNA Expressionslevel hatte (Preece und Cairns, 2003a).

Auch bei der immunhistochemischen Untersuchung postmortaler Gewebeproben ist zur
Verringerung der Artefaktbildung ein méglichst kurzes postmortales Intervall erstrebenswert.
Auf die postmortale Liegezeit konnte wenig Einfluss genommen werden, da zur
gerichtsmedizinischen Obduktion ein Anordnungsverfahren nétig ist. Jedoch wurden keine
Gehirne mit bereits aufgetretenen autolytischen Verdnderungen in die Studie
eingeschlossen. In dieser Studie war das postmortem Intervall relativ kurz (16.0 + 6.6
Stunden) und in der vorliegenden Arbeit wurde kein Einfluss auf die TPH1- und TPH2-
mMmRNA Expression oder Proteinkonzentration gesehen.

Angaben Uber den ,agonal state® waren nicht vorhanden, aber in Anbetracht der
Studienergebnisse von Preece and Cairns (2003b), ist eine wichtige Rolle dieser Ergebnisse
nicht sicher. Leider wurde im Rahmen der Autopsie kein pH Wert des Gehirngewebes
ermittelt. Eine geringe Auswirkung auf unsere Studienergebnisse ist somit nicht
auszuschlieen. Die unwillkirliche Degradation von mRNA nach dem Tode wurde durch die
Normalisierung anhand eines Housekeeping-Gens kontrolliert.

Einflisse auf TPH Transkription und Translation kénnen viele physiologische und
pharmakologische Faktoren sein, die in den zur Verfligung stehenden forensischen

Hirnproben nicht alle erfasst wurden (Chen und Miller, 2013). Auch viele Medikamente
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besonders Psychopharmaka koénnen zumindest im Tierversuch die TPH Expression
beeinflussen, wie z.B. SSRIs oder Lithium (Chen und Miller, 2013). Obwohl in der
vorliegenden  Arbeit  psychiatrische  Patienten  untersucht wurden, war die
Medikamenteneinnahme in dieser Stichprobe zumindest zum Zeitpunkt des Todes sehr
gering. Von einem groRRen Einfluss von Medikamenten auf die Ergebnisse ist daher eher
nicht auszugehen.

Es wurde darauf geachtet, dass die Fixierungszeiten der entnommen Gehirne in gepuffertem
Formalin sich nicht zu sehr unterschieden, um einen mdglichen Einfluss der Fixierungszeit
zu vermeiden. Dieses immunhistochemische Verfahren ist ein etabliertes und sensitives
Verfahren um zelluldre Antigene zu identifizieren. Es bedarf jedoch eine grof3e Sorgfalt in
seiner Anwendung und moglichst spezifischer Antikérper um aussagekraftige Ergebnisse zu
erzielen. Es ist wichtig bei jeder Farbung die Gewebsvorbehandlung, Verdinnungen, ph-
Werte, und Inkubationszeiten sowie die einzelnen Schritte exakt einzuhalten, Exogene
Einflussfaktoren wie z.B. Umgebungs- und Reagentientemperatur gilt es moglichst zu
reduzieren. Die optimale Konzentration des Antikdrpers sollte in einer Verdinnungsreihe vor
Beginn der Versuche ausgetestet werden. Die Reaktionsspezifitat sollte bei jedem Versuch
mit Hilfe einer Positiv- und Negativkontrolle Uberprift werde.

Zusammenfassend konnten somit Einflussfaktoren zu einem groRen Malle ausgeschlossen

werden.

98



5.4 Schlussfolgerung

Zusammenfassend konnten in dieser Studie mehrere neue Aspekte hinsichtlich der
humanen TPH1- und TPH2-Expression erarbeitet werden. Im Rahmen von postmortem
MmRNA Expressionsstudien konnten friihere, an einer kleineren Stichprobe erhobene Daten
der eigenen Arbeitsgruppe zur Verteilung von TPH1- und TPH2-mRNA im menschlichen
Gehirn an einem groReren Kollektiv bestatigt werden. Dartber hinaus wurde in einem neuen
Forschungsansatz die TPH1- und TPH2-mRNA Expression vergleichend bei den
psychiatrischen Krankeitsbildern Schizophrenie, Substanzabhangigkei und suizidales
Verhalten in verschiedenen Gehirnarealen untersucht. Diese Ergebnisse konnten flr einen
Teil der untersuchten Proben um immunhistochemische Daten erweitert werden. Auflerdem
konnte erstmals gezeigt werden, dass die eigentlich eher peripher exprimierte TPH1 und
nicht die neuronale TPH2 die pradominante Form in der humanen Hypophyse ist und damit
mdglicherweise ein wichtiges Bindeglied zwischen zentralen und peripheren Effekten
darstellt.

In dieser Studie konnte sowohl TPH1- und TPH2-mRNA als auch TPH1- und TPH2-Protein
in verschiedene Gehirnregionen, u.a. Cortex, Hypothalamus, Hippocampus, Raphekerne und
Hypophyse nachgewiesen werden. Eine mogliche Erklarung fir diese Befunde kdnnte ein
axonaler Transport von TPH mit lokaler Serotoninsynthese in den Synapsen sein. Altere
Tiermodellstudien zeigten, dass TPH2 nur im Gehirn und dort bis zu 150-fach héher in den
Raphekerne als TPH1 exprimiert wird. Zill et al zeigten an humanen postmortem Gehirnen,
dass TPH2 ebenfalls exklusiv im Gehirn und dort in unterschiedlichen Regionen, wie z.B.
frontaler Cortex, Thalamus, Hippocamus, Hypothalamus, Amygdala exprimiert wird und nicht
in der Peripherie wie Herz, Lunge, Niere, Duodenum, Leber (Zill et al., 2004a).

Auch wenn zahlreiche genetische Assoziationsstudien sowohl eine Beziehung des TPH1
und TPH2 Gens zu zahlreichen psychiatrischen Erkrankungen gezeigt haben, konnte auf
Expresssionsebene fur TPH1 und TPH2 keine signifikanten Veranderungen in den einzelnen

Patientengruppen (Schizophrenie, Suizid, Substanzabhangigkeit) gesehen werden.

99



Die Daten weisen darauf hin, dass eine strikte Trennung des serotonergen Systems in
zentrale Effekte, kontrolliert durch die TPH2, und periphere Mechanismen, kontrolliert durch
TPH1, nicht mdglich ist. TPH1 scheint aufgrund der hohen Expressionsrate in der
Hypophyse ebenfalls einen Einfluss auf neuronale Mechanismen, besonders tber die HPA-
Achse zu haben. Dies sollte neue Anséatze fir die Beziehung zwischen psychiatrischen und
somatischen Erkrankungen geben.

Uber die HPA Achse reprasentiert die Hypophyse eine wichtige Verbindung zwischen Gehirn
und Peripherie und ist somit in die Regulation verschiedenster Kérperfunktionen wie z.B.
Verdauung, Sexualitat, Angst und Stimmung beteiligt. Betrachtet man diese umfassenden
Aufgaben der Hypophyse, so kénnten die in dieser Studie gefundenen hohen Werte der
TPH1mMRNA Expression auch einen moglichen Link zwischen psychiatrischen Erkrankungen
und somatischen Erkrankungen geben. In diesem Kontext zu erwahnen ist der bekannte
Zusammenhang zwischen kardiovaskularen Erkrankungen wund Depressionen, wo
Veranderungen im serotonergen System und Stress Sytem mit beiden Erkrankungen in

Verbindung zu bringen sind (Escolar et al., 2005; Kitzlerova and Anders, 2007).
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6. Zusammenfassung

Veranderungen der Serotoninkonzentration im ZNS sowie Stérungen in der Ubertragung
innerhalb des serotonergen Systems spielen eine wichtige Rolle in der Pathogenese
psychiatrischer Erkrankungen. In einer Vielzahl von Studien wurde der Zusammenhang
zwischen Serotonin und Depressionen, Schizophrenie, Suchterkrankungen und Suizidalitat
untersucht. Der limitierende und geschwindigkeitsbestimmende Schritt in der
Serotoninsynthese wird durch das Enzym Tryptophanhydroxylase (TPH) reguliert und wurde
daher in zahlreichen Studien als moglicher Suszeptibilitatsfaktor flr psychiatrische
Erkrankungen diskutiert.

Lange Zeit wurde angenommen, dass nur eine Form der Tryptophanhydroxylase existiert,
die sowohl flir die periphere als auch neuronale Serotoninsynthese verantwortlich ist. In
alteren Studien v.a. in den Raphekernen und der Epiphyse zeigten sich jedoch bereits bei
der Untersuchung der TPH-mRNA-Expression und Proteinimmunreaktivitat z.T. divergente
Ergebnisse (Chamas et al., 2002; Chamas et al., 2004; Chamas et al., 1999; Clark et al.,
1997; Clark et al., 1998; Dumas et al., 1989).

Walther et al. zeigten 2003 erstmals, dass bei TPH-Knockout Mausen weiterhin
unveranderte TPH Konzentrationen im ZNS und keine Verhaltensauffalligkeiten der Tiere zu
finden waren und schlossen auf eine zweite ZNS-spezifische neuronale Isoform (TPH2)
zusatzlich zu der peripheren (TPH1) (Walther et al., 2003a).

In vorausgehenden Arbeiten der eigenen Arbeitsgruppe konnte gezeigt werden, dass TPH1
v.a. in peripheren Geweben wie z.B. Herz, Lunge, Darm und Epiphyse exprimiert wird, aber
auch in Arealen des ZNS wie Zill et al. zeigen konnten (Zill et al., 2007). TPH 2 wird jedoch
ausschlief3lich im ZNS bzw. v.a. in den Raphekernen exprimiert (Zill et a., 2004a; Zill et al.,
2007). TPH1- und TPH2mRNA konnte dabei auch in Regionen, wie Amygdala,
Hippocampus, Thalamus, Cortex, Cerebellum und Hypothalamus nachgewiesen werden,
von denen man bis dahin annahm, dass sich hier nicht typischerweise serotonerge

Zellkorper befinden. Dies lasst die Vermutung zu, dass sowohl TPH1- als auch TPH2mRNA
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Uber axonalen Transport in die verschiedenen Hirnareale wie z.B. Cortex und Hippocampus
transportiert werden.

Die genaue Verteilung der TPH2-mRNA bzw. des Proteins im humanen Gehirn ist jedoch
noch wenig untersucht. In bisherigen Studien wurde zwar die Verteilung der mRNA
Expression beider Isoformen in verschiedenen Gehirnarealen untersucht, aber noch nicht im
Vergleich mit immunhistochemischer Darstellung auf Proteinebene.

In dieser Studie wurde daher erstmals die mRNA Expression von TPH1 und TPH2 in den
verschiedenen Gehirnstrukturen (Raphekerne, Adeno- und Neurohypophyse, Cortex,
Hippocampus und Hypothalamus) mittels RT-PCR an 47 humanen postmortem Hirnen
parallel analysiert. Erganzend wurde die Proteinexpression der TPH1 und TPH2 an einem
Teil der entsprechenden Gehirnproben bzw. erganzend an  zusatzlichen
Hypophysenschnitten mittels immunhistochemischer Farbungen und polyklonaler Antikorper
ermittelt. Hierbei wurden erstmals postmortem Proben verschiedener psychiatrischer
Krankheitsbilder (Schizophrenie, Substanzabhangikeit, Suizid) im Vergleich zu einer
Kontrollgruppe sowohl auf mRNA-Expressions als auch Proteinebene untersucht.

Die Ergebnisse zeigten, dass in allen untersuchten Arealen die mRNA beider Isoformen
nachweisbar war, wenn auch in unterschiedlichen Konzentrationen. Die hochste Expression
von TPH2-mRNA konnte in den Raphekernen gemessen werden, dem Hauptort der
Serotonin Synthese im Gehirn. Darlber hinaus konnte erstmals als wichtiger neuer Befund in
beiden Hypophysenteilen, eine Gehirnregion, welche in bisherigen postmortem Studien
wenig untersucht wurde, TPH1- und TPH2-mRNA nachgewiesen werden. TPH1-mRNA
zeigte sich hier als vorherrschendes Isoenzym, mit einer Expressionsstarke von circa 20-50
% der TPH2-mRNA Expression in den Raphekernen.

Trotz der groflen Bedeutung der TPH im serotonergen System konnte in dieser Arbeit kein
signifikanter Unterschied der TPH1- und TPH2-mRNA-Expression in den Patientengruppen

im Vergleich zu den Kontrollgruppen gesehen werden.
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Die Daten dieser Arbeit konnen dahingehend diskutiert werden, dass Veranderungen der
TPH1 und/oder TPH2 auf mRNA-Expressionsebene bei den untersuchten psychiatrischen
Patientenstichproben nicht nachweisbar waren.

In  der immunhistochemischen Darstellung waren ebenfalls beide Isoformen in
unterschiedlichen Konzentrationen in allen untersuchten Arealen nachweisbar. Hierbei war
auffallig, dass die TPH1 Proteinexpression in der Adenohypophyse um ein vielfaches hdher
war. Somit wurden in den Untersuchungen zur regionalen Verteilung der TPH1 und TPH2
auf Proteinebene zwar meist parallelen zum jeweiligen mRNA Expressionsmuster gesehen,
aber z.T. auch deutliche Unterschiede. Grundsatzlich bestatigen die immunhistochemischen
Befunde aber das Vorkommen beider Isoenzyme in den untersuchten Hirnarealen auf
Proteinebene, wenn auch die quantitiative Auswertung Divergenzen zur mRNA Analyse
zeigt.

Zusammenfassend kann man feststellen, dass frihere Daten der Arbeitsgruppe bestatigt,
wesentlich erweitert und um immunhistochemische Daten erganzt werden konnten. TPH1
und TPH2 Protein wurden in der Adenohypophyse nachgewiesen.

Die ermittelten Daten weisen darauf hin, dass eine strikte Trennung des serotonergen
Systems in eine zentrale Komponenten mit ausschlieBlich neuronalen Effekten kontrolliert
durch die TPH2 und periphere Mechanismen gesteuert durch TPH1 nicht méglich ist. TPH1
scheint durch die hohe Expression in der Hypophyse ebenso einen Einfluss auf neuronale
Mechanismen zu haben, moglicherweise vermittelt Gber die HPA Achse, d.h. TPH1 kdnnte
das Verbindungsglied zwischen peripheren und zentralen Effekten sein. Diese sollte auch
neue Forschungsansatze fir die Interaktion zwischen psychiatrischen und somatischen
Erkrankungen, wie z.B. die mehrfach beschriebene und validierte Beziehung zwischen Herz-

Kreislauf Erkrankungen und Depressionen geben.
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?in 5 Liter Aqua destillata I6sen

132




11. Anhang

11.1 Korrelation zwischen den postmortem Intervall und den untersuchten Parametern der
unterschiedlichen Gruppen in den untersuchten Gehirnarealen der RT-PCR Proben

Areal Parameter Gruppe p-Wert r
Raphe TPH1mMRNA Con 0,1475 -0,5356
SA 0,8385 0,07444
Schz 0,3956 -0,3784
Sz 0,4444 0,3424
TPH2mRNA Con 0,81 -0,09205
SA 0,1786 0,4602
Schz 0,5948 -0,2342
Sz 0,1389 -0,6487
Cortex TPH1mRNA Con 0,2452 -0,3471
SA 0,9910 -0,003559
Schz 0,4976 0,3243
Sz 0,4933 -0,2594
TPH2mRNA Con 0,2201 -0,3650
SA 0,8692 0,05695
Schz 0,6646 0,1916
Sz 0,5206 -0,2427
Hipp TPH1mMRNA Con 0,7204 -0,1100
SA 0,8004 0,08379
Schz 0,1150 0,6108
Sz 0,8801 0,06695
TPH2mRNA Con 0,2183 -0,3818
SA 0,3085 -0,3197
Schz 0,6191 -0,2036
Sz 0,4366 0,3025
Hypo TPH1mMRNA Con 0,5837 0,1678
SA 0,5280 0,2029
Schz 0,1095 -0,6847
Sz 0,2696 0,41
TPH2mRNA Con 0,7033 -0,1171
SA 0,2560 0,3583
Schz 1 -0,02899
Sz 0,4101 0,3067
HVL TPH1MRNA Con 0,1192 -0,4539
SA 0,4511 -0,2559
Schz 0,5167 -0,3591
Sz 0,2125 -0,4603
TPH2mRNA Con 0,8382 0,07903
SA 0,9768 -0,02440
Schz 0,2333 0,7182
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Sz 0,1511 -0,5629
HHL TPH1mRNA Con 0,1548 -0,4924
SA 0,9768 0,02440
Schz 0,2667 -0,4865
Sz 0,7131 0,1622
TPH2mRNA Con 0,3304 -0,3455
SA 0,083 0,6857
Schz 0,5560 0,2703
Sz 0,8397 0,09009
Tab. 12

Keine signifikanten Korrelationen zwischen den postmortem Intervall und den untersuchten

Parametern der unterschiedlichen Gruppen in den untersuchten Gehirnarealen

Raphe: Raphekerne; Hipp: Hippocampus; Hypo: Hypothalamus; HVL: Adenohypophyse; HHL

Neurohypophyse

Con: Kontrollen; SA: Substanzabhangigkeit; Schz: Schizophrenie; Sz: Suizid

11.2 Korrelation zwischen den postmortem Intervall bzw. Lebensalter und den untersuchten
Parametern in den untersuchten Gehirnarealen der immunistochemischen Proben

Areal Parameter p-Wert r
HVL TPHA1 PMI 0,4069 -0,2970
Alter 0,9730 -0,01220
TPH2 PMI 0,9184 0,04242
Alter 0,5837 0,2006
HHL TPHA1 PMI 0,4697 0,2516
Alter 0,5367 -0,2222
TPH2 PMI 0,3304 0,3455
Alter 0,5367 0,2188
Cortex TPHA1 PMI 0,4069 -0,2970
Alter 0,8382 0,07317
TPH2 PMI 0,1548 0,4924
Alter 0,1548 0,4939
Raphe TPHA1 PMI 0,8382 0,07879
Alter 0,9730 -0,01829
TPH2 PMI 0,7850 0,09726
Alter 0,8382 0,07012
Tab. 13

Keine signifikanten Korrelationen zwischen der postmortem Zeit bzw. dem Lebensalter und den

untersuchten Parametern in den untersuchten Gehirnarealen

Raphe: Raphekerne; HVL: Adenohypophyse; HHL Neurohypophyse; PMI: Postmortem Intervall; Alter:

Lebensalter
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