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Zusammenfassung

In dieser Dissertation führe ich eine neue Observable der grossräumigen Struktur des
Universums ein, das ortsabhängige Leistungsspektrum. Diese Größe bietet ein Mass für
den “gequetschten” Limes der Dreipunktfunktion (Bispektrum), das heisst, eine Wellen-
zahl ist wesentlich kleiner als die beiden übrigen. Physikalisch beschreibt dieser Limes
der Dreipunktfunktion die Modulation des Leistungsspektrums auf kleinen Skalen durch
grossräumige Moden. Diese Modulation wird sowohl durch die Schwerkraft bewirkt als
auch (möglicherweise) durch die kosmologische Inflation im frühen Universum.

Für die Messung teilen wir das Gesamtvolumen der Himmelsdurchmusterung, oder
kosmologischen Simulation, in Teilvolumina ein. In jedem Teilvolumen messen wir die
Überdichte relativ zur mittleren Dichte der Materie (oder Anzahldichte der Galaxien)
und das lokale Leistungsspektrum. Anschliessend messen wir die Korrelation zwischen
Überdichte und Leistungsspektrum. Ich zeige, dass diese Korrelation einem Integral über
die Dreipunktfunktion entspricht. Wenn die Skala, an der das Leistungsspektrum aus-
gewertet wird (inverse Wellenzahl, um genau zu sein), viel kleiner als die Größe des Teil-
volumens ist, dann ist das Integral über die Dreipunktfunktion vom gequetschten Limes
dominiert.

Um physikalisch zu verstehen, wie eine grossräumige Dichtefluktuation das lokale Leis-
tungsspektrum beeinflusst, wenden wir das Bild vom “unabhängigen Universum” (“sep-
arate universe”) an. Im Kontext der allgemeinen Relativitätstheorie kann eine lang-
wellige Dichtefluktuation exakt durch eine Friedmann-Robertson-Walker-(FRW-)Raumzeit
beschrieben werden, deren Parameter sich von der “wahren” FRW-Raumzeit unterscheiden
und eindeutig von der Dichtefluktuation bestimmt werden. Die Modulation des lokalen
Leistungsspektrums kann dann durch die Strukturbildung innerhalb der modifizierten
FRW-Raumzeit beschrieben werden. Insbesondere zeige ich, dass die Dreipunktfunktion
im gequetschten Limes durch diesen Ansatz einfacher und besser beschrieben wird als durch
die herkömmliche Herangehensweise mittels Störungstheorie.

Diese neue Observable ist nicht nur einfach zu interpretieren (sie stellt die Antwort
des lokalen Leistungsspektrums auf eine großskalige Dichtestörung dar), sie ermöglicht
zudem die komplexe Berechnung der vollen Dreipunktsfunktion zu umgehen, weil das Leis-
tungsspektrum genauso wie die mittlere Dichte wesentlich leichter als die Dreipunktsfunk-
tion zu bestimmen sind.

Anschließend wende ich die gleiche Methodik auf die Daten der Himmelsdurchmus-
tering SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) an, insbesondere den
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Data Release 10 CMASS Galaxienkatalog. Wie ich zeige, stimmt das in den wirklichen
Daten gemessene ortsabhängige Leistungsspektrum mit den sogenannten “mock” (also
simulierten) Galaxienkatalogen überein, die auf dem PTHalo-Algorithmus basieren und
die räumlichde Verteilung der wirklichen Galaxien im statistischen Sinne möglichst genau
beschreiben wollen. Genauer gesagt, liegen die Daten innerhalb der Streuung, die das
ortsabhängige Leistungsspektrum zwischen den verschiedenen Realisierungen von “mock”
Katalogen aufweist. Diese Streuung beträgt ca. 10% des Mittelewerts. In Kombina-
tion mit dem (anisotropen) globalen Leistungsspektrum der Galaxien sowie dem Signal
im schwachen Gravitationslinseneffekt, benutze ich diese 10%-Messung des ortsabhängigen
Leistungsspektrums, um den quadratischen Bias-Parameter der von BOSS gemessenen
Galaxien zu bestimmen, mit dem Ergebnis b2 = 0.41± 0.41 (68% Vertrauensintervall).

Schließlich verallgemeinern wir die Analyse der Antwort des lokalen Leistungsspektrums
auf eine Häufung von m großräumigen Wellenlängenmoden, wobei m ≤ 3. In Analogie
zum vorherigen Fall, kann die resultierende Modulation des Leistungsspektrums mit der
m+ 2-Punktskorrelationsfunktion im Limes gequetschter Konfigurationen (so dass immer
zwei Wellenlängen wesentlich länger sind als die anderen), gemittled über die auftretenden
Winkel, in Verbindung gebracht werden. Mit Hilfe von Simulationen “unabhängiger Uni-
versen”, dass heißt N -body-Simulationen in Anwesenheit von Dichtestörungen unendlicher
Länge, vergleichen wir unsere semianalytischen Modelle, die auf dem Bild der unabhängigen
Universen basieren, mit den vollständig nichtlinearen Simulationen bei bisher unerreichter
Genauigkeit. Zudem testen wir die Annahme der gewöhnlichen Störungstheorie, dass
die nichtlineare N-Punktskorrelationsfunktion vollständig durch das lineare Leistungsspek-
trum bestimmt ist. Wir finden bereits Abweichungen von 10% bei Wellenzahlen von
k ' 0.2 − 0.5 h Mpc−1 für die Drei- bis Fünf-Punktskorrelationsfunktion bei Rotver-
schiebung z = 0. Dieses Ergebnis deutet darauf hin, dass die gewöhnlichye Störungstheorie
nicht ausreicht um die Dynamik kollissionsloser Teilchen für Wellenzahlen größer als diese
korrekt vorherzusagen, selbst wenn alle höheren Ordnungen in die Berechnung mit einbe-
zogen werden.



Abstract

We present a new observable, position-dependent power spectrum, to measure the large-
scale structure bispectrum in the so-called squeezed configuration, where one wavenumber,
say k3, is much smaller than the other two, i.e. k3 � k1 ≈ k2. The squeezed-limit bis-
pectrum measures how the small-scale power spectrum is modulated by a long-wavelength
scalar density fluctuation, and this modulation is due to gravitational evolution and also
possibly due to the inflationary physics.

We divide a survey volume into smaller subvolumes. We compute the local power
spectrum and the mean overdensity in each smaller subvolume, and then measure the cor-
relation between these two quantities. We show that this correlation measures the integral
of the bispectrum, which is dominated by the squeezed configurations if the wavenumber
of the local power spectrum is much larger than the corresponding wavenumber of the size
of the subvolumes. This integrated bispectrum measures how small-scale power spectrum
responds to a long-wavelength mode.

To understand theoretically how the small-scale power spectrum is affected by a long-
wavelength overdensity gravitationally, we use the “separate universe picture.” A long-
wavelength overdensity compared to the scale of interest can be absorbed into the change
of the background cosmology, and then the small-scale structure formation evolves in this
modified cosmology. We show that this approach models nonlinearity in the bispectrum
better than the traditional approach based on the perturbation theory.

Not only this new observable is straightforward to interpret (the response of the small-
scale power spectrum to a long-wavelength overdensity), but it also sidesteps the complexity
of the full bispectrum estimation because both power spectrum and mean overdensity are
significantly easier to estimate than the full bispectrum.

We report on the first measurement of the bispectrum with the position-dependent
correlation function from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS)
Data Release 10 CMASS sample. We detect the amplitude of the bispectrum of the BOSS
CMASS galaxies at 7.4σ, and constrain their nonlinear bias to be b2 = 0.41 ± 0.41 (68%
C.L.) combining our bispectrum measurement with the anisotropic clustering and the weak
lensing signal.

We finally generalize the study to the response of the small-scale power spectrum to m
long-wavelength overdensities for m ≤ 3. Similarly, this response can be connected to the
angle-average (m+2)-point function in the squeezed configurations where two wavenumbers
are much larger than the other ones. Using separate universe simulations, i.e. N -body sim-
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ulations performed in the presence of an infinitely long-wavelength overdensity, we compare
our semi-analytical models based on the separate universe approach to the fully nonlinear
simulations to unprecedented accuracy. We also test the standard perturbation theory
hypothesis that the nonlinear n-point function is completely predicted by the linear power
spectrum at the same time. We find discrepancies of 10% at k ' 0.2 − 0.5 h Mpc−1 for
three- to five-point functions at z = 0. This result suggests that the standard perturba-
tion theory fails to describe the correct dynamics of collisionless particles beyond these
wavenumbers, even if it is calculated to all orders in perturbations.



Chapter 1

Introduction

1.1 Why study the position-dependent power spec-

trum of the large-scale structure?

The standard cosmological paradigm has been well developed and tested by the obser-
vations of the cosmic microwave background (CMB) and the large-scale structure. The
inhomogeneities seen in the universe originate from quantum fluctuations in the early uni-
verse, and these quantum fluctuations were stretched to macroscopic scales larger than the
horizon during the cosmic inflation [69, 132, 5, 99], which is the early phase with expo-
nential growth of the scale factor. After the cosmic inflation, the hot Big-Bang universe
expanded and cooled down, and the macroscopic inhomogeneities entered into horizon and
seeded all the structures we observe today.

With the success of connecting the quantum fluctuations in the early universe to the
structures we see today, the big questions yet remain: What is the physics behind inflation?
Also, what is nature of dark energy, which causes the accelerated expansion in the late-
time universe (see [57] for a review)? As the standard cosmological paradigm passes almost
all the tests from the current observables, especially the two-point statistics of CMB and
galaxy surveys, it is necessary to go to higher order statistics to obtain more information
and critically test the current model. In particular, the mode coupling between a long-
wavelength scalar density fluctuation and the small-scale structure formation receives much
attention in the past few years. This coupling is due to the nonlinear gravitational evolution
(see [17] for a review), and possibly the inflationary physics. Therefore, this provides
a wonderful opportunity to test our understanding of gravity, as well as to probe the
properties of inflation.

Traditionally, the n-point function with n > 2 is used to characterize the mode cou-
pling. Specifically, if one is interested in the coupling between one long-wavelength mode
and two short-wavelength modes, we measure the three-point correlation function or its
Fourier counterpart, the bispectrum, in the so-called “squeezed configurations,” in which
one wavenumber, say k3, is much smaller than the other two, i.e. k3 � k1 ≈ k2.

In the simplest model for the primordial non-Gaussianity (see [27] for a review on the
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general primordial non-Gaussianities from various inflation models), the primordial scalar
potential is given by

Φ(r) = φ(r) + fNL

[
φ2(r)− 〈φ2(r)〉

]
, (1.1)

where φ(r) is a Gaussian field and fNL is a constant characterizing the amplitude of the non-
Gaussianity, which encodes the properties of inflation. Note that 〈φ2(r)〉 assures 〈Φ(r)〉 =
0. This simple model is known as the local-type primordial non-Gaussianity because Φ(r)
depends locally on φ(r). The bispectrum of this local model is

BΦ(k1,k2,k3) = 2fNL [PΦ(k1)PΦ(k2) + 2 cyclic] , (1.2)

where PΦ(k) ∝ kns−4 is the power spectrum of the primordial scalar potential and ns ' 0.96
is its spectral index [88]. We can rewrite BΦ of this local model by fixing one wavenumber,
say k1, as

BΦ(k1,k2,k3) ∝ k
2(ns−4)
1

[(
k2

k1

)ns−4

+

(
k3

k1

)ns−4

+

(
k2

k1

)ns−4(
k3

k1

)ns−4
]

∝ k
2(ns−4)
1

[(
k2

k1

)ns−4

+

(
|k1 + k2|

k1

)ns−4

+

(
k2

k1

)ns−4( |k1 + k2|
k1

)ns−4
]
,

(1.3)

where k3 = −k1 − k2 because of the assumption of homogeneity. BΦ apparently peaks at
k1 ≈ k2 � k3 ≈ 0, so the local-type primordial non-Gaussianity is the most prominent in
the squeezed-limit bispectrum.

Constraining the physics of inflation using the squeezed-limit bispectrum of CMB is a
solved problem [87]. With the Planck satellite, the current constraint on the local-type
primordial non-Gaussianity is fNL = 2.5±5.7 (68% C.L.) using the temperature data alone
and fNL = 0.8± 5.0 using the temperature and polarization data [128]. These are close to
the best limits obtainable from CMB. To improve upon them, we must go beyond CMB to
the large-scale structure, where observations are done in three-dimensional space (unlike
CMB embedded on a two-dimensional sphere). Thus, in principle, the large-scale structure
contains more information to improve the constraint on the physics of inflation.

Measuring the three-point function from the large-scale structure (e.g. distribution of
galaxies), however, is considerably more challenging compared to CMB. From the mea-
surement side, the three-point function measurements are computationally expensive. In
configuration space, the measurements rely on finding particle triplets with the naive al-
gorithm scaling as N3

par where Npar is the number of particles. Current galaxy redshift
surveys contain roughly a million galaxies, and we need 50 times as many random sam-
ples as the galaxies for characterizing the survey window function accurately. Similarly, in
Fourier space, the bispectrum measurements require counting all possible triangle configu-
rations formed by different Fourier modes, which is also computationally expensive. From
the modeling side, galaxy surveys have more complicated survey selection function, which
can bias the estimation (see e.g. [30]). Additionally, the nonlinear gravitational evolution
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Figure 1.1: In the absence of the correlation between long and short wavelength modes,
the blue fluctuation have the same statistical property in the overdense and underdense
regions. On the other hand, in the presence of the positive correlation between long and
short wavelength modes, the red fluctuation has larger (smaller) variance in the overdense
(undersense) region.

of matter density field and the complexity of galaxy formation make it challenging to ex-
tract the primordial signal. The above difficulties explain why only few measurements of
the three-point function of the large-scale structure have been reported in the literature
[142, 55, 167, 82, 119, 109, 110, 105, 62, 67].

Since our main interest is to measure the three-point function of the squeezed config-
urations, there is a simpler way to sidestep all the above complexities of the three-point
function estimation. As we stated, in the presence of the mode coupling between long-
and short-wavelength modes, a long-wavelength density fluctuation modifies the small-
scale structure formation, and so the observables become position-dependent. Figure 1.1
sketches the short-wavelength modes with (red) and without (blue) correlation with the
long-wavelength mode. As a consequence, for example, the n-point statistics and the halo
mass function would depend on the local long-wavelength overdensity, or equivalently the
position in space. Measurements of spatially-varying observables capture the effect of mode
coupling, and can be used to test our understanding of gravity and the physics of infla-
tion. A similar idea of measuring the shift of the peak position of the baryonic acoustic
oscillation in different environments has been studied in [129].

In this dissertation, we focus on the position-dependent two-point statistics (see [32,
115] for the mass function). Consider a galaxy redshift survey or simulation. Instead
of measuring the power spectrum within the entire volume, we divide the volume into
many subvolumes, within which we measure the power spectrum. These power spectra of
subvolumes vary spatially, and the variation is correlated with the mean overdensities of
the subvolumes with respect to the entire volume. This correlation measures an integral of
the bispectrum (or the three-point function in configuration space), which represents the
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response of the small-scale clustering of galaxies (as measured by the position-dependent
power spectrum) to the long-wavelength density perturbation (as measured by the mean
overdensity of the subvolumes).

Not only is this new observable, position-dependent power spectrum, of the large-scale
structure conceptually straightforward to interpret, but it is also simpler to measure than
the full bispectrum, as the machineries for the two-point statistics estimation are well de-
veloped (see [56] for power spectrum and [91] for two-point function) and the measurement
of the overdensity is simple. In particular, the computational requirement is largely allevi-
ated because we explore a subset of the three-point function corresponding to the squeezed
configurations. More precisely, in Fourier space we only need to measure the power spec-
trum, and in configuration space the algorithm of measuring the two-point function by
finding particle pairs scales as Ns(Npar/Ns)

2 = N2
par/Ns for the entire volume with Ns

being the number of subvolumes. In addition, for a fixed size of the subvolume, the mea-
surement depends on only one wavenumber or one separation, so estimating the covariance
matrix is easier than that of the full bispectrum from a realistic number of mock catalogs.
The position-dependent power spectrum can thus be regarded as a useful compression of
information of the squeezed-limit bispectrum.

As this new observable uses basically the existing and routinely applied machineries to
measure the two-point statistics, one can easily gain extra information of the three-point
function, which is sensitive to the nonlinear bias of the observed tracers, from the current
spectroscopic galaxy surveys. Especially, since the position-dependent power spectrum
picks up the signal of the squeezed-limit bispectrum, it is sensitive to the primordial non-
Gaussianity of the local type.

This dissertation is organized as follows. In the rest of this chapter, we review the status
of the observations of the large-scale structure, and the current theoretical understanding.

In chapter 2, we introduce the main topic of this dissertation: position-dependent
power spectrum and correlation function. We show how the correlation between the
position-dependent two-point statistics and the long-wavelength overdensity is related to
the three-point statistics. We also make theoretical template for this correlation using
various bispectrum models.

In chapter 3, we introduce the “separate universe approach,” in which a long-wavelength
overdensity is absorbed into the background, and the small-scale structure formation
evolves in the corresponding modified cosmology. This is the basis for modeling the
response of the small-scale structure formation to the long-wavelength overdensity. We
consider the fiducial cosmology to be flat ΛCDM, and show that the overdensity acts as
the curvature in the separate universe.

In chapter 4, we measure the position-dependent power spectrum from cosmological
N -body simulations. We compare various theoretical approaches to modeling the mea-
surements from simulations, particularly the separate universe approach when the scales of
the position-dependent power spectrum are much smaller than that of the long-wavelength
overdensity. We also study the dependences of the position-dependent power spectrum on
the cosmological parameters, as well as using the Fisher matrix to predict the expected
constraints on biases and local-type primordial non-Gaussianity for current and future
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galaxy surveys.

In chapter 5, we report on the first measurement of the three-point function with the
position-dependent correlation function from the SDSS-III Baryon Oscillation Spectro-
scopic Survey Data Release 10 (BOSS DR10) CMASS sample. We detect the amplitude
of the three-point function of the BOSS CMASS galaxies at 7.4σ. Combining the con-
straints from position-dependent correlation function, global two-point function, and the
weak lensing signal, we determine the quadratic (nonlinear) bias of BOSS CMASS galaxies.

In chapter 6, we generalize the study to the response of the small-scale power spectrum
in the presence of m long-wavelength modes for m ≤ 3. This response can be linked to
the angular-averaged squeezed limit of (m + 2)-point functions. We shall also introduce
the separate universe simulations, in which N -body simulations are performed in the pres-
ence of a long-wavelength overdensity by modifying the cosmological parameters. The
separate universe simulations allow unprecedented measurements for the squeezed-limit
n-point function. Finally, we test the standard perturbation theory hypothesis that the
nonlinear n-point function is completely predicted by the linear power spectrum at the
same time. We find discrepancies of 10% at k ' 0.2− 0.5 h Mpc−1 for five- to three-point
functions at z = 0. This suggests the breakdown of the standard perturbation theory, and
quantifies the scales that the corrections of the effective fluid become important for the
higher order statistics.

In chapter 7, we summarize this dissertation, and present the outlook.

1.2 Observations and measurements of the large-scale

structure

In the 1960s, before the invention of the automatic plate measuring machine and the
densitometer, the galaxy catalogs such as Zwicky [174] and Lick [146] relied on visual
inspection of poorly calibrated photographic plates. These surveys consisted of different
neighboring photographic plates, so the uniformity of the calibration, which might cause
large-scale gradients in the observed area, was a serious issue. Because of the lack of the
redshifts (depths) of galaxies, only the angular clustering studies were possible. In addition,
the sizes of the surveys were much smaller than the ones today, thus only the clustering
on small scales, where the nonlinear effect is strong, can be studied. Nevertheless, in the
1970s Peebles and his collaborators did the first systematic study on galaxy clustering using
the catalogs at that time. The series of studies, starting with [125], considered galaxies
as the tracers of the large-scale structure for the first time, which was a ground-breaking
idea. These measurements confirmed the power-law behavior of the angular two-point
function, and the interpretation was done in the framework of Einstein-de Sitter universe,
i.e. matter-dominated flat Friedmann-Lemâıtre-Robertson-Walker universe.

In the 1980s, the invention of the automatic scanning machines as well as CCDs revolu-
tionized the large-scale structure surveys, and resulted in a generation of wide-field surveys
with better calibration and a three-dimensional view of the universe. Photographic plates
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Figure 1.2: (Credit: Michael Blanton and SDSS collaboration) SDSS galaxy maps projected
on the RA-redshift plane. (Left) The SDSS main galaxy sample out to z ∼ 0.15. (Right)
Yellow, red, and white dots are the SDSS main galaxy sample, luminous red galaxies, and
CMASS sample, respectively, out to z ∼ 0.7.

became obsolete for the large-scale structure studies, and nowadays photometric surveys
use large CCD cameras with millions of pixels. The galaxy redshift surveys, which gener-
ally require target selections with photometric detection and then spectroscopic follow-up,
thus open a novel avenue to study the universe. It was shown that the redshift-space
two-point correlation function in the CfA survey [74] agreed well with the previous studies
on angular clustering, if the redshift direction is integrated over [46]. In the 1990s, the
number of galaxies in surveys was ∼ 103 − 104, but with these data it was already shown
that the large-scale power spectrum was inconsistent with the CDM model [52, 135, 168],
in agreement with the study done in the angular clustering [101].

Another quantum leap of the sizes of the galaxy surveys happened in the 2000s, when
the technology of the massive multi-fiber or multi-slit spectroscopy became feasible. Sur-
veys such as Two-degree-Field Galaxy Redshift Survey (2dFGRS) [34] and Sloan Digital
Sky Survey (SDSS) [172] targeted at obtaining spectra of ∼ 105 − 106 galaxies. The left
panel of figure 1.2 shows the SDSS main galaxy sample out to z ∼ 0.15, which corresponds
to roughly 440 h−1 Mpc. It is clear even visually that the distribution of galaxies follows
filamentary structures, with voids in between the filaments. These data contain precious
information of the properties of the universe. For example, in 2005, the baryonic acoustic
oscillations (BAO) in the two-point statistics were detected for the first time by 2dFGRS
[33] in the power spectrum and SDSS [54] in the two-point correlation function, as shown
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Figure 1.3: (Credit: 2dFGRS and SDSS collaborations) The first detection of BAOs in
2dFGRS (left) and SDSS (right). The analysis of 2dFGRS was done in Fourier space, and
the BAOs are the wiggles in the power spectrum at 0.05 h Mpc−1 . k . 0.2 h Mpc−1;
the analysis of SDSS was done in configuration space, and the BAOs are the bump in the
two-point correlation function at r ∼ 100 h−1 Mpc.

in figure 1.3. The detection is phenomenal given the fact that the BAOs are of order a few
percent features on the smooth functions. Galaxy surveys in this era started probing the
weakly nonlinear regime, where the theoretical understanding is better, so we can extract
cosmological information.

With the success of the first BAO detection, more galaxy redshift surveys, such as
WiggleZ [22, 23] and SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) [7, 6],
followed and extended to higher redshifts. The right panel of figure 1.2 shows the galaxy
map of SDSS out to z ∼ 0.7, which corresponds to roughly 1800 h−1 Mpc. The BAO
feature can be used as a standard ruler to measure the angular diameter distance and
Hubble expansion rate. This is particularly useful for studying the time-dependence of
dark energy, which began to dominate the universe at z ∼ 0.4 where the galaxy clustering
is measured. The BAOs in the galaxy clustering thus becomes a powerful probe of dark
energy.

Thus far, most of the studies have focused on the two-point statistics. However, there
is much more information in the higher-order statistics. Especially, ongoing galaxy surveys
such as Dark Energy Survey [162] and the extended BOSS, as well as upcoming galaxy
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surveys such as Hobby Eberly Telescope Dark Energy eXperiment (HETDEX) [71] and
Subaru Prime Focus Spectrograph [156] will measure the galaxies at even higher redshift.
For instance, HETDEX will use Lyman-alpha emitters as tracers to probe the matter
distribution at 1.9 . z . 3.5. At such high redshift, the gravitational evolution is relatively
weak and can still be predicted analytically, hence this is an ideal regime to critically test
our understanding of gravity, as well as the physics of inflation via the primordial non-
Gaussianity.

Currently, most of the constraint on the local-type primordial non-Gaussianity from
the large-scale structure is through the scale-dependent bias [45, 106, 151]. That is, dark
matter halos (or galaxies) are biased tracers of the underlying matter distribution forming
at density peaks, so the formation of halos would be modulated by the additional correlation
between the long and short wavelength modes due to the primordial non-Gaussianity. As
a result, the halo bias contains a k−2 scale-dependent correction, and this correction is
prominent on large scale. Measurements of the large-scale galaxy power spectrum, which is
proportional to bias squared, can thus be used to constrain the primordial non-Gaussianity
of the local type.

This distinct feature appears in the galaxy power spectrum at very large scales, hence it
is crucial to have a huge survey volume to beat down the cosmic variance. Moreover, if the
galaxies are highly biased, then the signal-to-noise ratio would also increase. Thus, many
studies have used quasars at 0.5 . z . 3.5 from SDSS to constrain the primordial non-
Gaussianity [72, 2, 92]. Similar methods, such as combining the abundances and clustering
of the galaxy clusters [102] as well as the correlation between CMB lensing and large-scale
structure [61, 60], have also been proposed to study the primordial non-Gaussianity from
large-scale structure. It is predicted in [92] that for Large Synoptic Survey Telescope [100]
the constraint on fNL, parametrization of the local-type primordial non-Gaussianity, using
the scale-dependent bias can reach σ(fNL) ∼ 5 (95% C.L.).

The error bar on fNL from the scale-dependent bias is limited by the number of Fourier
modes on large scales. On the other hand, for the bispectrum analysis, we are looking
for triangles formed by different Fourier modes, so the bispectrum contains more infor-
mation and will have a tighter constraint on fNL. The difficulty for using the large-scale
structure bispectrum to constrain fNL is that gravity produces non-zero squeezed-limit bis-
pectrum even without primordial non-Gaussianity, and the signal from gravity dominates
for the current limit on fNL. This is why recent measurements of the large-scale structure
bispectrum have focused on constraining the growth and galaxy biases [105, 62].

The difficulty in modeling nonlinear effects can be alleviated if the observations are done
in the high-redshift universe, where the gravitational evolution on quasi-linear scales can
still be described by the perturbation theory approach. While theoretically we are reaching
the stage for studying the higher-order statistics, e.g. the three-point correlation function
or the bispectrum, if the data are obtained at high redshift, in practice the measurements
and analyses are still computational challenging. It is thus extremely useful to find a way
to compress the information, such that studying the three-point correlation function of the
galaxy clustering is feasible.

Another complexity of the bispectrum measurement from galaxy surveys is the window
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function effect. Namely, galaxy surveys almost always have non-ideal survey geometry,
e.g. masking around the close and bright objects or the irregular boundaries, as well as
the spatial changes in the extinction, transparency, and seeing. These effects would bias
the measurement, and extracting the true bispectrum signal becomes difficult. While the
observational systematics would enters into the estimation of both power spectrum and
bispectrum, the technique of deconvolving the window function effects, e.g. [134, 133], has
been relatively well developed for the two-point statistics.

The subject of this dissertation is to find a method to more easily extract the bispec-
trum in the squeezed configurations, where one wavenumber, say k3, is much smaller than
the other two, i.e. k3 � k1 ≈ k2. The squeezed-limit bispectrum measures the correlation
between one long-wavelength mode (k3) and two short-wavelength modes (k1, k2), which is
particularly sensitive to the local-type primordial non-Gaussianity. Specifically, we divide
a survey into subvolumes, and measure the correlation between the position-dependent
two-point statistics and the long-wavelength overdensity. This correlation measures an in-
tegral on the bispectrum, and is dominated by the squeezed-limit signal if the wavenumber
of the position-dependent two-point statistics is much larger than the wavenumber cor-
responding to the size of the subvolumes. Therefore, without employing the three-point
function estimator, we can extract the squeezed-limit bispectrum by the position-dependent
two-point statistics technique. Furthermore, nonlinearity of the correlation between the
position-dependent two-point statistics and a long-wavelength mode can be well modeled
by the separate universe approach, in which the long-wavelength overdensity is absorbed
into the background cosmology; the window function effect can also be well taken care of
because this technique measures essentially the two-point function and the mean overden-
sity, for which the procedures for removing the window function effects are relatively well
developed. With the above advantages, the position-dependent two-point statistics is thus
a novel and promising method to study the squeezed-limit bispectrum of the large-scale
structure.

Galaxy redshift surveys has entered a completely new era at which the sizes (e.g. survey
volume and number of observed galaxies) are huge, and redshifts are high. As the signal-to-
noise ratio of the higher-order statistics, especially for the primordial non-Gaussianity, will
be much higher in the upcoming galaxy surveys than the previous ones, we should do our
best to extract the precious signal for improving our understanding of the universe. The
new observable, position-dependent power spectrum, proposed in the dissertation would
help us achieve this goal.

1.3 Theoretical understanding of the large-scale struc-

ture

1.3.1 Simulations

How do we understand the gravitational evolution of the large-scale structure? Because
of the process is nonlinear, the gold standard is the cosmological N -body simulations of
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Figure 1.4: (Credit: Volker Springel) A slice of the Millennium simulation shows the cosmic
web of the large-scale structure.

collisionless particles.

Using N -body simulations to solve for gravitational dynamics has a long history (see
e.g. [48] for a review). The first computer calculation was done back in 1963 by [1]
with N = 16. Later, N has roughly doubled every two years following Moore’s law, and
nowadays state-of-the-art simulations for collisionless particles have N = 109 − 5 × 1010,
e.g. [154, 161, 155, 86]. The N -body codes, such as GADGET-2 [153], solve dynamics
of dark matter particles, and dark matter particles are grouped into dark matter halos
by algorithms such as friends-of-friends or spherical overdensity. We can thus study the
properties of these halos, such as the clustering and the mass function. Figure 1.4 shows
a slice of the Millennium simulation [154]. The cosmic web of the large-scale structure is
obvious, and we also find the similarity between the simulation and the observation, i.e.
figure 1.2.

Direct observations, however, can only be done for luminous objects, e.g. galaxies,
so we must relate galaxies to the halos. As baryonic physics is more complicated than
gravity-only dynamics, simulations of galaxy formation can only be done with the usage
of sub-grid physics models. That is, the empirical relations of the feedback from baryonic
physic such as supernovae and active galactic nuclei are used in the galaxy formation sim-
ulations. State-of-the-art hydrodynamic simulations for the galaxy formation are Illustris
[169] and EAGLE [136]. Since these simulations are extremely computationally intensive,
the simulation box size cannot be too large (e.g. ∼ 100 h−1 Mpc for both Illustris and
EAGLE). On the other hand, galaxy redshift surveys at present day have sizes of order
1− 10 h−3 Gpc3.

Alternatively, we can link the simulated dark matter halos to galaxies using techniques
such as semi-analytic models [81], which use the merging histories of dark matter halos, or
halo occupation distribution [16, 90], which uses the statistical relation between halos and
galaxies. As both methods contain free parameters in the models, these parameters can be
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tuned such that multiple properties (e.g. clustering and environmental dependence) of the
“simulated” galaxies match the observed ones (see [68] for the recent comparison between
semi-analytic models and the observations). These thus provide a practically feasible way
to populate galaxies in dark matter halos in the simulations.

The remaining task, especially for the clustering analysis of galaxy redshift surveys,
is to generate a large suite of simulations with halos, so they can be used to estimate
the covariance matrices of the correlation function or the power spectrum, which are the
necessary ingredient for the statistical interpretation of the cosmological information. In
particular, the present-day galaxy redshift surveys contain a huge volume, and if high
enough mass resolution for halos (which depend on the properties of the observed galaxies)
is required, N -body simulation are not practical. Thus, most analyses for the two-point
statistics of galaxy surveys use algorithms such that the scheme of solving dynamics is
simplified to generate “mock” halos. For example, COLA [159] solves the long-wavelength
modes analytically and short-wavelength modes by N -body simulations, and PTHalos
[143, 104, 103] is based on the second-order Lagrangian perturbation theory.

As the full N -body simulations are regarded as the standard, we can input identical
initial conditions to various codes for generating mock catalogs (halos) and compare the
performances. Currently most of the observations now have been focused on the two-point
statistics and the mass function, so these algorithms are designed to recover these two
quantities. On the other hand, for the three-point function, which is more sensitive to
nonlinear effects, more careful and systematic studies are necessary. One recent compari-
son between major methodologies for generating mock catalogs shows that the differences
between N -body simulations and mock generating codes are much larger for the three-
point function than for the two-point function [31]. This suggests that at this moment the
full N -body simulations are still required to understand the three-point function, or the
bispectrum in Fourier space.

The full bispectrum contains triangles formed by different Fourier modes. While the
configurations of the bispectrum can be simulated easily if three wavenumbers are similar,
the squeezed triangles are more difficult because a large volume is needed to simulate the
coupling between long-wavelength modes and small-scale structure formation. In partic-
ular, if high enough mass resolution is required, the simulations become computationally
demanding. In this dissertation, we provide a solution to this problem. Specifically, we
absorb the long-wavelength overdensity into the modified background cosmology (which
is the subject in chapter 3) and perform the N -body simulations in the separate universe
(which is the subject in section 6.2). This setting simulates how the small-scale structure
is affected by a long-wavelength mode. As the box size of the separate universe simula-
tions can be small (∼ 500 h−1 Mpc), increasing the mass resolution becomes feasible. This
technique is therefore useful for understanding the nonlinear coupling between long and
short wavelength modes.

Another computational challenge to the bispectrum analysis is the number of Fourier
bins. Specifically, the bispectrum contains all kinds of triangles, so the number of bins is
much larger than that of the power spectrum. If the mock catalogs are used to estimate the
covariance matrix, many more realizations are required to characterize the bispectrum than
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the power spectrum. The lack of realizations of mock catalogs would result in errors in the
covariance matrix estimation, and the parameter estimation would be affected accordingly
[51]. Therefore, even if there is an algorithm to generate mock catalogs with accurate two-
and three-point statistics, we still need a huge amount of them for data analysis, which can
be computational challenging. The advantage of the position-dependent power spectrum
is that it depends only on one wavenumber, so the number of bins is similar to that of
the power spectrum. This means that we only need a reasonable number of realizations
(∼ 1000) for analyzing the power spectrum and position-dependent power spectrum jointly.

1.3.2 Theory

While N -body simulations are the gold standard for understanding nonlinearity of the
large-scale structure, it is impractical to run various simulations with different cosmological
parameters or models. It is therefore equally important to develop analytical models so
they are easier to compute. We can then use them in the cosmological inferences, e.g. the
Markov chain Monte Carlo methods.

The most commonly used technique is the perturbation theory approach, in which
the fluctuations are assumed to be small so they can be solved recursively (see [17] for a
review). For example, in the standard perturbation theory (SPT), the density fluctuations
and peculiar velocity fields are assumed to be small. Using this assumption, we can expand
the continuity, Euler, and Poisson equations at different orders, and solve the coupled
differential equations order by order (see appendix A and [77] for a brief overview on
SPT). The SPT power spectrum at the first order contains the product of two first order
fluctuations (P11); the next-to-leading order SPT power spectrum contains the products
of first and third order fluctuations (P13) as well as two second order fluctuations (P22). A
similar approach can be done in Lagrangian space, in which the displacement field mapping
the initial (Lagrangian) position to the final (Eulerian) position of fluid element is solved
perturbatively [108, 107].

Generally, the perturbation theory approach works well on large scales and at high
redshift, where nonlinearity is small. On small scale and at low redshift, the nonlinear effect
becomes more prominent, including higher order corrections is thus necessary. However,
the nonlinear effect can be so large that even including more corrections does not help. The
renormalized perturbation theory (RPT) was introduced to alleviate the problem [41, 18].
Specifically, RPT categorizes the corrections into two kinds: the mode-coupling effects
and the renormalization of the propagator (of the gravitational dynamics). Thus, in RPT
the corrections for nonlinearity become better defined, and so the agreement with the
nonlinear power spectrum extends to smaller scales compared to SPT. Another approach
is the effective field theory (EFT) [25]: on large-scale the matter fluid is characterized by
parameters such as sound speed and viscosity, and these parameters are determined by
the small-scale physics that is described by the Boltzmann equation. In practice, these
parameters are measured from N -body simulations with a chosen smoothing radius. As
for RPT, EFT also gives better agreement with the nonlinear power spectrum on smaller
scales compared to SPT.
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A different kind of approach to compute the clustering properties of the large-scale
structure is to use some phenomenological models. The well known phenomenological
model is the halo model (see [35] for a review), where all matter is assumed to be contained
inside halos, which are characterized by the density profile (e.g. NFW profile [118]) and
the mass function (e.g. Sheth-Tormen mass function [149]). The matter n-point functions
is then the sum of one-halo term (all n positions are in one halo), two-halo term ((n− 1)
positions are in one halo and the other one is in a different halo), to n-halo term (n positions
are in n different halos). The small-scale nonlinear matter power spectrum should thereby
be described by the halo properties, i.e. the one-halo term. Some recent work attempted
to extend the halo model to better describe the nonlinear matter power spectrum. For
example, in [116], the Zeldovich approximation [173] is added in the two-halo term, and
a polynomial function (A0 + A2k

2 + A4k
4 + · · · ) is added to model the baryonic effects;

in [145], the two-halo term with the Zeldovich approximation is connected to the SPT
one-loop power spectrum (P11 + P13 + P22), but a more more complicated function is used
for the one-halo term.

One can also construct fitting functions based on results of N -body simulations. The
most famous fitting functions of the nonlinear matter power spectrum are the halofit pre-
scription [152] and the Coyote emulator [70]. More specifically, the Coyote emulator was
constructed with a suite of N -body simulations with a chosen range of cosmological pa-
rameters (e.g. Ωb, Ωm). Then, the power spectrum is computed based on the interpolation
of the input cosmological parameters. Thus, the apparent limitation of these simulation-
calibrated fitting formulae is that they are only reliable within limited range of cosmological
parameters and restricted cosmological models.

Similar to that of simulations, most of the theory work has been focused on precise
description of nonlinearity of the matter power spectrum, while relatively few work has been
devoted to investigate nonlinearity of the bispectrum. Therefore, the matter bispectrum
is normally computed at the SPT tree-level, i.e. the product of two first order fluctuations
and a second order fluctuation. Some studies [140, 64, 63] considered nonlinearity of the
bispectrum by replacing the SPT kernel with fitting formulae containing some parameters,
which are then obtained by fitting to N -body simulations. These models, however, lack
the theoretical foundation, and it is unclear how the fitting parameters would depend on
the cosmological parameters.

In this dissertation, we provide a semi-analytical model for describing the bispectrum
in the squeezed configurations. Specifically, we show that the real-space angle-average
squeezed-limit bispectrum is the response of the power spectrum to an isotropically in-
finitely long-wavelength overdensity. Due to the presence of this overdensity, the back-
ground cosmology is modified, and the small-scale power spectrum evolves as if matter is
in the separate universe. In chapter 4, we show it is straightforward to combine the separate
universe approach and the power spectrum computed from perturbation theory approach,
phenomenological models, or simulation-calibrated fitting formulae. More importantly, the
results of the separate universe approach agree better with the N -body simulation mea-
surements in the squeezed limit than that of the real-space bispectrum fitting formula. In
chapter 6, we generalize the separate universe approach to the response of the small-scale
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power spectrum to m infinitely long-wavelength overdensities for m ≤ 3. As expected, this
response is related to the squeezed-limit (m+2)-point function with a specific configuration
shown in figure 6.1. The separate universe approach is thus extremely useful for modeling
the squeezed-limit n-point functions, and its analytical form can be added to the fitting
formulae.

As future galaxy surveys contain data with unprecedented amount and quality which
can be used to test our understanding of gravity and the physics of inflation, accurate
theoretical model, especially for the bispectrum, is required to achieve the goal. While
the full bispectrum contains various triangles formed by different Fourier modes, in this
dissertation we present the theoretical model specifically for the squeezed triangles, so more
work needs to be done for the other configurations.



Chapter 2

Position-dependent two-point
statistics

2.1 In Fourier space

2.1.1 Position-dependent power spectrum

Consider a density fluctuation field, δ(r), in a survey (or simulation) of volume Vr. The
mean overdensity of this volume vanishes by construction, i.e.

δ̄ =
1

Vr

∫
Vr

d3r δ(r) = 0 . (2.1)

The global power spectrum of this volume can be estimated as

P̂ (k) =
1

Vr
|δ(k)|2 , (2.2)

where δ(k) is the Fourier transform of δ(r).
We now identify a subvolume VL centered at rL. The mean overdensity of this subvol-

ume is

δ̄(rL) =
1

VL

∫
VL

d3r δ(r) =
1

VL

∫
d3r δ(r)W (r− rL) , (2.3)

where W (r) is the window function. For simplicity and a straightforward application to
the N -body simulation box, throughout this dissertation we use a cubic window function
given by

W (r) = WL(r) =
3∏
i=1

θ(ri), θ(ri) =

{
1, |ri| ≤ L/2,
0, otherwise .

(2.4)

where L is the side length of VL. The results are not sensitive to the exact choice of
the window function, provided that the scale of interest is much smaller than L. While
δ̄ = 0, δ̄(rL) is non-zero in general. In other words, if δ̄(rL) is positive (negative), then this
subvolume is overdense (underdense) with respect to the mean density in Vr.
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Similar to the definition of the global power spectrum in Vr, we define the position-
dependent power spectrum in VL as

P̂ (k, rL) ≡ 1

VL
|δ(k, rL)|2 , (2.5)

where

δ(k, rL) ≡
∫
VL

d3r δ(r)e−ir·k (2.6)

is the local Fourier transform of the density fluctuation field. The integral ranges over
the subvolume centered at rL. With this quantity, the mean density perturbation in the
subvolume centered at rL is given by

δ̄(rL) =
1

VL
δ(k = 0, rL) . (2.7)

One can use the window function WL to extend the integration boundaries to infinity as

δ(k, rL) =

∫
d3r δ(r)WL(r− rL)e−ir·k =

∫
d3q

(2π)3
δ(k− q)WL(q)e−irL·q , (2.8)

where WL(q) = L3
∏3

i=1 sinc(qiL/2) is the Fourier transform of the window function and
sinc(x) = sin(x)/x. Therefore, the position-dependent power spectrum of the subvolume
VL centered at rL is

P̂ (k, rL) =
1

VL

∫
d3q1

(2π)3

∫
d3q2

(2π)3
δ(k− q1)δ(−k− q2)WL(q1)WL(q2)e−irL·(q1+q2) . (2.9)

2.1.2 Integrated bispectrum

The correlation between P̂ (k, rL) and δ̄(rL) is given by

〈P̂ (k, rL)δ̄(rL)〉 =
1

V 2
L

∫
d3q1

(2π)3

∫
d3q2

(2π)3

∫
d3q3

(2π)3
〈δ(k− q1)δ(−k− q2)δ(−q3)〉

×WL(q1)WL(q2)WL(q3)e−irL·(q1+q2+q3) , (2.10)

where 〈 〉 denotes the ensemble average over many universes. In the case of a simulation
or an actual survey, the average is taken instead over all the subvolumes in the simulation
or the survey volume. Through the definition of the bispectrum, 〈δ(q1)δ(q2)δ(q3)〉 =
B(q1,q2,q3)(2π)3δD(q1 + q2 + q3) where δD is the Dirac delta function, eq. (2.10) can be
rewritten as

〈P̂ (k, rL)δ̄(rL)〉 =
1

V 2
L

∫
d3q1

(2π)3

∫
d3q3

(2π)3
B(k− q1,−k + q1 + q3,−q3)

×WL(q1)WL(−q1 − q3)WL(q3)

≡ iBL(k) . (2.11)
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As anticipated, the correlation of the position-dependent power spectrum and the local
mean density perturbation is given by an integral of the bispectrum, and we will therefore
refer to this quantity as the integrated bispectrum, iBL(k).

As expected from homogeneity, the integrated bispectrum is independent of the location
(rL) of the subvolumes. Moreover, for an isotropic window function and bispectrum, the
result is also independent of the direction of k. The cubic window function eq. (2.4) is
of course not entirely spherically symmetric,1 and there is a residual dependence on k̂ in
eq. (2.11). In the following, we will focus on the angle average of eq. (2.11),

iBL(k) ≡
∫
d2k̂

4π
iB(k) =

〈(∫
d2k̂

4π
P̂ (k, rL)

)
δ̄(rL)

〉

=
1

V 2
L

∫
d2k̂

4π

∫
d3q1

(2π)3

∫
d3q3

(2π)3
B(k− q1,−k + q1 + q3,−q3)

×WL(q1)WL(−q1 − q3)WL(q3) . (2.12)

The integrated bispectrum contains integrals of three sinc functions, sinc(x), which are
damped oscillating functions and peak at |x| . π. Most of the contribution to the in-
tegrated bispectrum thus comes from values of q1 and q3 at approximately 1/L. If the
wavenumber k we are interested in is much larger than 1/L (e.g., L = 300 h−1 Mpc and
k & 0.3 h Mpc−1), then the dominant contribution to the integrated bispectrum comes
from the bispectrum in squeezed configurations, i.e., B(k − q1,−k + q1 + q3,−q3) →
B(k,−k,−q3) with q1 � k and q3 � k.

2.1.3 Linear response function

Consider the following general separable bispectrum,

B(k1,k2,k3) = f(k1,k2)P (k1)P (k2) + 2 cyclic, (2.13)

where f(k1,k2) = f(k1, k2, k̂1 · k̂2) is a dimensionless symmetric function of two k vectors
and the angle between them. If f is non-singular as one of the k vectors goes to zero, we
can write, to lowest order in q1/k and q3/k,

B(k− q1,−k + q1 + q3,−q3) = f(k− q1,−q3)P (|k− q1|)P (q3)

+ f(−k + q1 + q3,−q3)P (| − k + q1 + q3|)P (q3)

+ f(k− q1,−k + q1 + q3)P (|k− q1|)P (| − k + q1 + q3|)

= 2f(k, 0)P (k)P (q3) + f(k,−k)[P (k)]2 +O
(q1,3

k

)
.

(2.14)

1We choose the cubic subvolumes merely for simplicity. In general one can use any shapes. For example,
one may prefer to divide the subvolumes into spheres, which naturally lead to an isotropic integrated
bispectrum iBL(k).
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For matter, momentum conservation requires that f(k,−k) = 0 [126], as can explicitly be
verified for the F2 kernel of perturbation theory. We then obtain∫

d2k̂

4π
B(k− q1,−k + q1 + q3,−q3) = f̌(k)P (k)P (q3) +O

(q1,3

k

)2

, (2.15)

where f̌(k) ≡ 2f(0, k). Note that the terms linear in q1,3 cancel after angular average.
Since the window function in real space satisfies W 2

L(r) = WL(r), we have∫
d3q1

(2π)3
WL(q1)WL(−q1 − q3) = WL(q3) . (2.16)

Performing the q1 integral in eq. (2.12) then yields

iBL(k)
kL→∞

=
1

V 2
L

∫
d3q3

(2π)3
W 2
L(q3)P (q3)f̌(k)P (k) = σ2

Lf̌(k)P (k) , (2.17)

where σ2
L is the variance of the density field on the subvolume scale,

σ2
L ≡

1

V 2
L

∫
d3q3

(2π)3
W 2
L(q3)P (q3) . (2.18)

Eq. (2.17) shows that the integrated bispectrum measures how the small-scale power spec-
trum, P (k), responds to a large-scale density fluctuation with variance σ2

L, with a response
function given by f̌(k).

An intuitive way to arrive at the same expression is to write the response of the small-
scale power spectrum to a large-scale density fluctuation as

P̂ (k, rL) = P (k)|δ̄=0 +
dP (k)

dδ̄

∣∣∣∣
δ̄=0

δ̄(rL) + . . . , (2.19)

where we have neglected gradients and higher derivatives of δ̄(rL). We then obtain, to
leading order,

iBL(k) = σ2
L

d lnP (k)

dδ̄

∣∣∣∣
δ̄=0

P (k). (2.20)

Comparing this result with eq. (2.17), we find that f̌(k) indeed corresponds to the lin-
ear response of the small-scale power to the large-scale density fluctuation, d lnP (k)/δ̄.
Inspired by eq. (2.20), we define another quantity, the normalized integrated bispectrum,

iBL(k)

σ2
LP̂ (k)

. (2.21)

This quantity is equal to f̌(k) and the linear response function in the limit of kL→∞.
For the standard perturbation theory kernel

f(k1,k2) = F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(
k1

k2

+
k2

k1

)
+

2

7

(
k1 · k2

k1k2

)2

, (2.22)
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in the squeezed limit the integrated bispectrum becomes (see appendix A.2 for the detailed
derivation)

iBL(k)
kL→∞

=

[
47

21
− 1

3

d lnPl(k)

d ln k

]
Pl(k)σ2

L , (2.23)

and the response function is

f̌(k) =
47

21
− 1

3

d lnPl(k)

d ln k
. (2.24)

We shall discuss more details in section 4.2.1.

2.1.4 Integrated bispectrum of various bispectrum models

To evaluate the integrated bispectrum, we insert the bispectrum models into eq. (2.12) and
perform the eight-dimensional integral. Because of the high dimensionality of the integral,
we use the Monte Carlo integration routine in GNU Scientific Library to numerically eval-
uate iBL(k). Let us consider the simplest model of galaxy bispectrum with local-type
primordial non-Gaussianity

Bg(k1,k2,k3) = b3
1BSPT(k1,k2,k3) + b2

1b2Bb2(k1,k2,k3) + b3
1fNLBfNL

(k1,k2,k3) , (2.25)

where b1 is the linear bias, b2 is the quadratic nonlinear bias, and fNL is the parametrization
for the local-type primordial non-Gaussianity. Note that the scale-dependent bias due to
the local type non-Gaussianity [45, 106, 151] is neglected in eq. (2.25), and the latest
bispectrum model with primordial non-Gaussianity can be found in [10, 158].

The first two terms of eq. (2.25) are due to the nonlinear gravitational evolution.
Specifically, the standard perturbation theory (SPT) with local bias model predicts (see
appendix A.2 for detailed derivation)

BSPT(k1,k2,k3) = 2F2(k1,k2)Pl(k1, a)Pl(k2, a) + 2 cyclic

Bb2(k1,k2,k3) = Pl(k1, a)Pl(k2, a) + 2 cyclic , (2.26)

where Pl(k) is the linear bispectrum. For the bispectrum of local-type primordial non-
Gaussianity, we consider the local ansatz for the primordial scalar potential as [89]

Φ(r) = φ(r) + fNL[φ2(r)− 〈φ2(r)〉] , (2.27)

where φ(r) is a Gaussian field, and fNL is a constant characterizing the amplitude of the
primordial non-Gaussianity. As the density fluctuations are linked to the scalar potential
through the Poisson equation

δ(k, a) = M(k, a)Φ(k) , M(k, a) =
2

3

D(a)

H2
0 Ωm

k2T (k) , (2.28)

with D(a) and T (k) being the linear growth factor and the transfer function respectively,
in the leading order the primordial non-Gaussianity appears in matter bispectrum as

fNLBfNL
(k1,k2,k3) = 2fNLM(k1, a)M(k2, a)M(k3, a)[PΦ(k1)PΦ(k2) + 2 cyclic] , (2.29)
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Figure 2.1: Normalized integrated bispectrum in different sizes of subvolumes. The colored
lines show non-Gaussian components at different redshifts assuming fNL = 50, while the
solid and dashed lines show linear and nonlinear bias components assuming b1 = b2 = 1.
The cut-off at low-k corresponds to the fundamental frequencies of the subvolumes, 2π/L.

where PΦ(k) is the power spectrum of the scalar potential.

Figure 2.1 shows the normalized integrated bispectrum, for which we shall denote as ibL
in this section, in different sizes of subvolumes. For the parameters we assume b1 = b2 = 1
and fNL = 50. We find that contributions from late-time evolution (black solid and dashed
lines for ibL,SPT(k) and ibL,b2(k), respectively) are redshift-independent, but the ones from
primordial non-Gaussianity (colored lines at different redshifts) increase with increasing
redshift. This is due to the redshift-dependence in M(k, a). Namely, while ibL,SPT(k)
and ibL,b2(k) are independent of D(a), ibL,fNL

(k) is proportional to 1/D(a). This means
that it is more promising to hunt for primordial non-Gaussianity in high-redshift galaxy
surveys. We also find that for a given subvolume size ibL,fNL

(k) is fairly scale-independent,
as ibL,SPT(k) and ibL,b2(k). This is somewhat surprising because when k (the scale of the
position-dependent power spectrum) is large we reach the squeezed limit, and this should
be the ideal region to search for primordial non-Gaussianity. However, it turns out that
what really determines the amplitude of ibL,fNL

(k) is the subvolumes size, as we can see from
different panels in figure 2.1. One can understand this by considering the long-wavelength
mode, kl, and the short-wavelength modes, ks (ks � ks). In the squeezed limit,

BfNL
(kl, ks, ks) ∝M(kl)M

2(ks)[2PΦ(kl)PΦ(ks) + P 2
Φ(ks)]

∝∼M(kl)M
2(ks)PΦ(kl)PΦ(ks) , (2.30)
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as PΦ(k) ∝ kns−4 with ns = 0.95. Also M(k) ∝ k2 and k0 on large and small scales
respectively, hence

ibL,fNL
(k) ∝∼

kns−2
l kns−4

s

σ2
L,lM

2(ks)PΦ(ks)
∝∼
kns−2
l

σ2
L,l

, (2.31)

which is ks-independent and the amplitude of ibL,fNL
(k) is solely determined by kl, the

subvolume size. This means that to hunt for primordial non-Gaussianity, it is necessary
to use different sizes of subvolumes to break the degeneracy between ibL,fNL

(k) and the
late-time contributions.

2.2 In configuration space

2.2.1 Position-dependent correlation function

We now turn to the position-dependent two-point statistics in configuration space, i.e.
position-dependent correlation function. Consider a density fluctuation field, δ(r), in a
survey (or simulation) volume Vr. The global two-point function can be estimated as

ξ̂(r) =
1

Vr

∫
Vr

d3x δ(r + x)δ(x) . (2.32)

Similarly, we define the position-dependent correlation function of a cubic subvolume VL
centered at rL to be

ξ̂(r, rL) =
1

VL

∫
x,r+x∈VL

d3x δ(r + x)δ(x)

=
1

VL

∫
d3x δ(r + x)δ(x)WL(r + x− rL)WL(x− rL) , (2.33)

where WL(r) is the window function given in eq. (2.4). In this dissertation, we consider
only the angle-averaged position-dependent correlation function (i.e. monopole) defined
by

ξ̂(r, rL) =

∫
d2r̂

4π
ξ̂(r, rL) =

1

VL

∫
d2r̂

4π

∫
d3x δ(r+x)δ(x)WL(r+x−rL)WL(x−rL) . (2.34)

Again, while the overdensity in the entire volume δ̄ =
∫
Vr
d3r δ(r) is zero by construction,

the overdensity in the subvolume δ̄(rL) =
∫
VL
d3r δ(r) =

∫
Vr
d3r δ(r)WL(r−rL) is in general

non-zero.
The ensemble average of eq. (2.34) is not equal to ξ(r). Specifically,

〈ξ̂(r, rL)〉 =
1

VL

∫
d2r̂

4π

∫
d3x 〈δ(r + x)δ(x)〉WL(r + x− rL)WL(x− rL)

= ξ(r)
1

VL

∫
d2r̂

4π

∫
d3x′ WL(r + x′)WL(x′) ≡ ξ(r)fL,bndry(r) , (2.35)
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where fL,bndry(r) is the boundary effect due to the finite size of the subvolume. While
fL,bndry(r) = 1 for r = 0, the boundary effect becomes larger for larger separations. The
boundary effect can be computed by the five-dimensional integral in eq. (2.35). Alterna-
tively, it can be evaluated by the ratio of the number of the random particle pairs of a given
separation in a finite volume to that in an infinite volume. We have evaluated fL,bndry(r)
in both ways, and the results are in an excellent agreement.

As the usual two-point function estimators based on pair counting (such as Landy-
Szalay estimator which will be discussed in section 5.1.2) or grid counting (which will
be discussed in appendix C) do not contain the boundary effect, when we compare the
measurements to the model which is calculated based on eq. (2.34), we shall divide the
model by fL,bndry(r) to correct for the boundary effect.

2.2.2 Integrated three-point function

The correlation between ξ̂(r, rL) and δ̄(rL) is given by

〈ξ̂(r, rL)δ̄(rL)〉 =
1

V 2
L

∫
d2r̂

4π

∫
d3x1

∫
d3x2 〈δ(r + x1)δ(x1)δ(x2)〉

×WL(r + x1 − rL)WL(x1 − rL)WL(x2 − rL)

=
1

V 2
L

∫
d2r̂

4π

∫
d3x1

∫
d3x2 ζ(r + x1 + rL,x1 + rL,x2 + rL)

×WL(r + x1)WL(x1)WL(x2) , (2.36)

where ζ(r1, r2, r3) ≡ 〈δ(r1)δ(r2)δ(r3)〉 is the three-point correlation function. Because of
the assumption of homogeneity and isotropy, the three-point function depends only on the
separations |ri− rj| for i 6= j, and so 〈ξ̂(r, rL)δ̄(rL)〉 is independent of rL. Furthermore, as
the right-hand-side of eq. (2.36) is an integral of the three-point function, we will refer to
this quantity as the “integrated three-point function,” iζL(r) ≡ 〈ξ̂(r, rL)δ̄(rL)〉.

iζL(r) can be computed if ζ(r1, r2, r3) is known. For example, SPT with the local bias
model at the tree level in real space gives

ζ(r) = b3
1ζSPT(r) + b2

1b2ζb2(r) , (2.37)

where ζSPT and ζb2 are given below. Here, b1 and b2 are the linear and quadratic (nonlinear)
bias parameters, respectively. Because of the high dimensionality of the integral, we use
the Monte Carlo integration routine in the GNU Scientific Library to numerically evaluate
the eight-dimensional integral for iζL(r).
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Figure 2.2: Normalized iζL,SPT (left) and iζL,b2 (right) for L = 100 h−1 Mpc (red solid),
200 h−1 Mpc (green dashed), and 300 h−1 Mpc (blue dotted) at z = 0.

The first term, ζSPT, is given by [79, 12]

ζSPT(r1, r2, r3) =
10

7
ξl(r12)ξl(r23) + µ12,23[ξ′l(r12)φ′l(r23) + ξ′l(r23)φ′l(r12)]

+
4

7

{
− 3

φ′l(r12)φ′l(r23)

r12r13

− ξl(r12)φ′l(r23)

r23

− ξl(r23)φ′l(r12)

r12

+ µ2
12,23

[
ξl(r12) +

3φ′l(r12)

r12

] [
ξl(r23) +

3φ′l(r23)

r23

]}
+ 2 cyclic , (2.38)

where r12 = |r1−r2|, µ12,23 is the cosine between r12 and r23, ′ refers to the spatial derivative,
and

ξl(r) ≡
∫

dk

2π2
k2Pl(k)sinc(kr), φl(r) ≡

∫
dk

2π2
Pl(k)sinc(kr), (2.39)

with Pl(k) being the linear matter power spectrum. The subscript l denotes the quantities
in the linear regime. The second term, ζb2 , is the nonlinear local bias three-point function.
The nonlinear bias three-point function is then

ζb2(r1, r2, r3) = ξl(r12)ξl(r23) + 2 cyclic . (2.40)

Note that ζSPT and ζb2 are simply Fourier transform of BSPT and Bb2 respectively, as shown
in eq. (2.26).

Figure 2.2 shows the scale-dependencies of iζL,SPT and iζL,b2 at z = 0 with Pl(k) com-
puted by CLASS [94]. We normalize iζL(r) by σ2

L,l, where

σ2
L,l ≡ 〈δ̄l(rL)2〉 =

1

V 2
L

∫
d3k

(2π)3
Pl(k)|WL(k)|2 , (2.41)
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is the variance of the linear density field in the subvolume VL. The choice of this normal-
ization is similar to that of the integrated bispectrum as discussed in section 2.1.2, and we
shall discuss more details in section 2.2.4. We find that the scale-dependencies of iζL,SPT(r)
and iζL,b2(r) are similar especially on small scales. This is because the scale-dependence of
the bispectrum in the squeezed limit is (see appendix of appendix A.3)

BSPT →
[

68

21
− 1

3

d ln k3Pl(k)

d ln k

]
Pl(k)Pl(q) , Bb2 → 2Pl(k)Pl(q) , (2.42)

where k and q are the short- and long-wavelength modes, respectively. For a power-law
power spectrum without features, the squeezed-limit BSPT and Bb2 have exactly the same
scale dependence and cannot be distinguished. This results in a significant residual degen-
eracy between b1 and b2, and will be discussed in chapter 5 where we measure the integrated
three-point function of real data and fit to the models. When r is small, iζL(r)/σ2

L,l be-
comes independent of the subvolume size. We derive this feature when we discuss the
squeezed limit, where r � L, in section 2.2.4.

2.2.3 Connection to the integrated bispectrum

Fourier transforming the density fields, the integrated three-point function can be written
as

iζL(r) =
1

V 2
L

∫
d3q1

(2π)3
· · ·
∫

d3q6

(2π)3
(2π)9δD(q1 + q2 + q3)δD(q1 + q2 + q4 + q5)δD(q3 + q6)

×B(q1,q2,q3)WL(q4)WL(q5)WL(q6)ei[r·(q1+q4)−rL·(q4+q5+q6)]

=

∫
d3k

(2π)3
iBL(k)eir·k , (2.43)

and it is simply the Fourier transform of the integrated bispectrum. Similarly, the angle-
averaged integrated three-point function is related to the angle-averaged integrated bispec-
trum (eq. (2.12)) as

iζL(r) =

∫
k2dk

2π2
iBL(k)sinc(kr) . (2.44)

In chapter 5, we measure the integrated three-point function of real data, and thus we
need the model for iζL(r) in redshift space. Unlike the three-point function in real space
(eq. (2.38) and eq. (2.40)), we do not have the analytical expression for redshift-space
three-point function in configuration space. Since the integrated three-point function is
the Fourier transform of the integrated bispectrum, we compute the redshift-space inte-
grated three-point function by first evaluating the redshift-space angle-averaged integrated
bispectrum with eq. (2.12)2, and then performing the one-dimensional integral eq. (2.44).
This operation thus requires a nine-dimensional integral.

2The explicit expression of the SPT redshift-space bispectrum is in appendix A.2.
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Figure 2.3: Normalized iζL,SPT (left) and iζL,b2 (right) for L = 100 h−1 Mpc (red solid),
200 h−1 Mpc (green dashed), and 300 h−1 Mpc (blue dotted) at z = 0 evaluated from
Fourier space of a nine-dimensional integral (eq. (2.12) and eq. (2.44)). The same quantities
evaluated from configuration space of an eight-dimensional integral (eq. (2.36)) are shown
with symbols.

To check the precision of numerical integration, we compare the results from the eight-
dimensional integral in eq. (2.36) with the nine-dimensional integral eq. (2.12) and eq. (2.44)
for both iζL,SPT and iζL,b2 . As the latter gives a noisy result, we apply a Savitzky-Golay
filter (with window size 9 and polynomial order 4) six times, and the results are shown
in figure 2.3. We find that, on the scales of interest (30 h−1 Mpc ≤ r ≤ 78 h−1 Mpc,
which we will justify in section 5.1.3), both results are in agreement to within 2%. As
the current uncertainty on the measured integrated correlation function presented in this
dissertation is of order 10% (see section 5.2 for more details), the numerical integration
yields sufficiently precise results.

2.2.4 Squeezed limit

In the squeezed limit, where the separation of the position-dependent correlation function
is much smaller than the size of the subvolume (r � L), the integrated three-point function
has a straightforward physical interpretation, as for the integrated bispectrum. In this case,
the mean density in the subvolume acts effectively as a constant “background” density (see
chapter 3 for more details). Consider the position-dependent correlation function, ξ̂(r, rL),
is measured in a subvolume with overdensity δ̄(rL). If the overdensity is small, we may
Taylor expand ξ̂(r, rL) in orders of δ̄ as

ξ̂(r, rL) = ξ(r)|δ̄=0 +
dξ(r)

dδ̄

∣∣∣∣
δ̄=0

δ̄ +O(δ̄2) . (2.45)
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The integrated three-point function in the squeezed limit is then, at leading order in the
variance 〈δ̄2〉, given by

iζL(r) = 〈ξ̂(r, rL)δ̄(rL)〉 =
dξ(r)

dδ̄

∣∣∣∣
δ̄=0

〈δ̄2〉+O(δ̄3) . (2.46)

As 〈δ̄2〉 = σ2
L

3, iζL(r) normalized by σ2
L is dξ(r)/dδ̄ at leading order, which is the linear

response of the correlation function to the overdensity. Note that in eq. (2.46) there is no
dependence on the subvolume size apart from σ2

L, as shown also by the asymptotic behavior
of the solid lines in figure 2.2 for r → 0.

As iζL(r) is the Fourier transform of iBL(k), the response of the correlation function,
dξ(r)/dδ̄, is also the Fourier transform of the response of the power spectrum, dP (k)/dδ̄.
For example, we can calculate the response of the linear matter correlation function,
dξl(r)/dδ̄, by Fourier transforming the response of the linear power spectrum, which is given
in eqs. (2.23)–(2.24). In figure 2.4, we compare the normalized iζL,SPT(r) with dξl(r)/dδ̄.
Due to the large dynamic range of the correlation function, we divide all the predictions
by ξ(r). As expected, the smaller the subvolume size, the smaller the r for iζL,SPT(r) to be
close to [1/ξl(r)][dξl(r)/dδ̄], i.e., reaching the squeezed limit. Specifically, for 100 h−1 Mpc,
200 h−1 Mpc, and 300 h−1 Mpc subvolumes, the squeezed limit is reached to 10% level at
r ∼ 10 h−1 Mpc, 18 h−1 Mpc, and 25 h−1 Mpc, respectively.

2.2.5 Shot noise

If the density field is traced by discrete particles, δd(r), then the three-point function
contains a shot noise contribution given by

〈δd(r1)δd(r2)δd(r3)〉 = 〈δ(r1)δ(r2)δ(r3)〉

+

[
〈δ(r1)δ(r2)〉

n̄(r3)
δD(r1 − r3) + 2 cyclic

]
+
δD(r1 − r2)δD(r1 − r3)

n̄(r2)n̄(r3)
,

(2.47)

where n̄(r) is the mean number density of the discrete particles. The shot noise can be
safely neglected for the three-point function because it only contributes when r1 = r2,
r1 = r3, or r2 = r3. On the other hand, the shot noise of the integrated three-point
function can be computed by inserting eq. (2.47) into eq. (2.36), which yields

iζshot(r) = ξ(r)
1

V 2
L

∫
d2r̂

4π

∫
d3x

[
1

n̄(x + r + rL)
+

1

n̄(x + rL)

]
WL(x + r)WL(x) , (2.48)

where we have assumed r > 0. If we further assume that the mean number density is
constant, then the shot noise of the integrated three-point function can be simplified as

iζshot(r) = 2ξ(r)
1

VLn̄
fL,bndry(r) . (2.49)

3If δ̄ = δ̄l then σ2
L = σ2

L,l. But δ̄ can in principle be nonlinear or the mean overdensity of the biased

tracers, so here we denote the variance to be σ2
L.
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Figure 2.4: The linear response function [1/ξl(r)][dξl(r)/dδ̄] (black solid) and the nor-
malized iζL,SPT(r) for L = 100 h−1 Mpc (red dotted), 200 h−1 Mpc (green dashed), and
300 h−1 Mpc (blue dot-dashed). The light and dark bands correspond to ±5% and ±10%
of the predictions, respectively.

For the measurements of PTHalos mock catalogs and the BOSS DR10 CMASS sample,
the shot noise is subdominant (less than 7% of the total signal on the scales of interest).
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Chapter 3

Separate universe picture

Mode coupling plays a fundamental role in cosmology. Even if the initial density fluctua-
tions generated by inflation are perfectly Gaussian, the subsequent nonlinear gravitational
evolution couples long and short wavelength modes as well as generates non-zero bispec-
trum. A precise understanding of how a long-wavelength density affects the small-scale
structure formation gravitationally is necessary, especially for extracting the signal of bis-
pectrum due to primordial non-Gaussianity.

A useful way to describe the behavior of the small-scale structure formation in an
overdense (underdense) environment is the separate universe picture [13, 112, 150, 11, 147,
97, 98, 43, 44]. Imagine a local observer who can only access to the comoving distance
of the short-wavelength modes ∼ 1/kS. If there exists a long-wavelength mode such that
1/kL � 1/kS, then the local small-scale physics would be interpreted with a Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background [93]. That is, in the separate universe
picture, the overdensity is absorbed into the modified background cosmology, and the
small-scale structure formation evolves in this modified cosmology.

The separate universe picture can be proven from the general relativistic approach: one
locally constructs a frame, Conformal Fermi Coordinates, such that it is valid across the
scale of a coarse-grained universe Λ−1 (kL < Λ < kS) at all times [123, 43, 44]. In Conformal
Fermi Coordinates, the small-scale structure around an observer is interpreted as evolving
in FLRW universe modified by the long-wavelength overdensity. The separate universe
picture is restricted to scales larger than the sound horizons of all fluid components, where
all fluid components are comoving.

In the presence of δ̄, the background cosmology changes, and the position-dependent
power spectrum is affected accordingly. Since the response of the position-dependent power
spectrum to the long-wavelength overdensity, [dP (k)/dδ̄]δ̄=0, can be related to the bispec-
trum in the squeezed configurations, the separate universe picture is useful for modeling
the squeezed-limit bispectrum generated by nonlinear gravitational evolution. Not only
this is conceptually straightforward to interpret, but it also captures more nonlinear effects
than the direct bispectrum modeling, as we will show in chapter 4.

In this chapter, which serves as the basis for the later separate universe approach mod-
eling, we derive the mapping between the overdense universe in a spatially flat background
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cosmology (but with cosmological constant) to the modified cosmology in section 3.1. In
section 3.2, we show that if the background cosmology is Einstein-de Sitter, i.e. matter
dominated, then the changes in the scale factor and the linear growth factor can be solved
analytically.

3.1 Mapping the overdense universe to the modified

cosmology

Consider the universe with mean density ρ̄(t) and a region with overdensity δρ(t), then the
mean density ˜̄ρ(t) in this region is

˜̄ρ(t) = ρ̄(t)[1 + δρ(t)] . (3.1)

In this section, we shall derive the mapping of the cosmological parameters between the
fiducial (overdense) and modified cosmologies as a function of the linearly extrapolated
(Lagrangian) present-day overdensity

δL0 = δρ(ti)
D(t0)

D(ti)
, (3.2)

where D is the linear growth function of the fiducial cosmology, t0 is the present time, and
ti is some initial time at which δρ(ti) is still small. However, we shall not assume δL0 to be
small.

The mean overdensity of the overdense region can be expressed in terms of the standard

cosmological parameters, i.e. ρ̄(t0) = Ωm
3H2

0

8πG
and H0 = 100 h km s−1 Mpc−1, as

Ωmh
2

a3(t)
[1 + δρ(t)] =

Ω̃mh̃
2

ã3(t)
(3.3)

where the parameters in the modified cosmology are denoted with tilde. For the fiducial
cosmology, we adopt the standard convention for the scale factor such that a(t0) = 1.
In contrast, for the modified cosmology, it is convenient to choose ã(t → 0) = a and
δρ(a→ 0) = 0, which then leads to

Ωmh
2 = Ω̃mh̃

2 . (3.4)

We also introduce

ã(t) = a(t)[1 + δa(t)] , (3.5)

so that

1 + δρ(t) = [1 + δa(t)]
−3 . (3.6)
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Using eq. (3.5), the first and second time derivatives, represented with dots, of the scale
factor are

˙̃a

ã
= H̃ =

ȧ[1 + δa] + aδ̇a
a[1 + δa]

= H +
δ̇a

1 + δa
,

¨̃a

ã
=

¨̃a[1 + δa] + 2 ˙̃aδ̇a + aδ̈a
a[1 + δa]

=
ä

a
+
δ̈a + 2Hδ̇a

1 + δa
. (3.7)

The two Friedmann equations in the flat fiducial cosmology are(
ȧ

a

)2

= H2(t) =
8πG

3
[ρ̄(t) + ρX(t)] ,

ä

a
= −4πG

3
[ρ̄(t) + ρX(t) + 3px(t)] , (3.8)

where ρX and px are the energy density and pressure for dark energy, respectively. For the
modified cosmology, the Friedmann equations hold, but with non-zero curvature K̃ and
modified densities and scale factor as( ˙̃a

ã

)2

= H̃2(t) =
8πG

3
[˜̄ρ(t) + ρ̃X(t)]− K̃

ã2(t)
,

¨̃a

ã
= −4πG

3
[˜̄ρ(t) + ρ̃X(t) + 3p̃x(t)] . (3.9)

Before we derive the relation for the curvature K̃, let us first discuss the dark energy
component.

If dark energy is not a cosmological constant, then there are also perturbations in dark
energy fluid, i.e. δρX = ρ̃X − ρX and δpX = p̃X − pX . In order for the separate universe
approach to work, matter and dark energy have to be comoving and follow geodesics of
the FLRW metric. Since this requires negligible pressure gradients, the separate universe
approach is only applicable to density perturbations with wavelength 2π/k that are much
larger than the dark energy sound horizon, k � H0/|cs|, where the sound speed is defined
as c2

s = δpX/δρX [36]. This means that the region with the overdensity that we consider
here has to be much larger than the dark energy sound horizon. For simplicity, in the
following we shall assume that dark energy is just a cosmological constant Λ, thereby
ρ̃Λ = ρΛ and p̃Λ = pΛ = −ρΛ.

In order to be a valid Friedmann model, the curvature has to be conserved, i.e. ˙̃K = 0.
To show this, we express the curvature using the first Friedmann equation and take the
time derivative:

˙̃K =
16πG

3
ã ˙̃a[ ˜̄ρ+ ρ̃Λ] +

8πG

3
ã2 ˙̄̃ρ− 2 ˙̃a¨̃a =

16πG

3
ã ˙̃a[ ˜̄ρ+ ρ̃Λ]− 24πG

3
ã ˙̃a ˜̄ρ− 2 ˙̃a¨̃a

=
8πG

3
ã ˙̃a[− ˜̄ρ+ 2ρ̃Λ]− 2 ˙̃a¨̃a = 2ã ˙̃a

¨̃a

ã
− 2 ˙̃a¨̃a = 0 , (3.10)
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where we use ˙̃ρΛ = 0 and the continuity equation ˙̄̃ρ = −3˜̄ρH̃.
To solve the curvature of the modified cosmology in terms of the fiducial cosmological

parameters and δL0, we express K̃ by the difference of the first Friedmann equation between
the modified and fiducial cosmologies as

K̃

a2
=

8πG

3
ρ̄δρ(1 + δa)

2 − 2Hδ̇a(1 + δa)− δ̇2
a

=
8πG

3
ρ̄
[
(1 + δa)

−1 − (1 + δa)
2
]
− 2Hδ̇a(1 + δa)− δ̇2

a , (3.11)

where we use eq. (3.6) and eq. (3.7) to represent δρ and H̃, respectively. Since the cur-
vature is conserved (eq. (3.10)), eq. (3.11) can be evaluated at an early time ti at which
the perturbations δa(ti) and δρ(ti) are infinitesimal as well as the universe is in matter
domination. In this regime, we have

H2 = H2
0 Ωma

−3 , δa = −δρ/3 , δ̇a = Hδa , (3.12)

with which we can derive

K̃

a2(ti)
=

8πG

3
ρ̄(ti)[−3δa(ti)]− 2H2(ti)δa(ti) =

5ΩmH
2
0δρ(ti)

3a3(ti)
. (3.13)

This then to express K̃ in terms of the fiducial cosmological parameters and δL0 as

K̃

H2
0

=
5

3

Ωm

a(ti)
δρ(ti) =

5

3

Ωm

D(t0)
δL0 , (3.14)

where we use the fact that in the matter dominated regime D(ti) = a(ti).
We now derive the cosmological parameters, Ω̃m, Ω̃Λ, and Ω̃K of the modified cosmology.

Note that by convention these parameters are defined through the first Friedmann equation
at t̃0 where ã(t̃0) = 1 and H̃(t̃0) = H̃0, therefore

Ω̃K = − K̃

H̃2
0

; Ω̃m =
8πG

3H̃2
0

˜̄ρ(t̃0) ; Ω̃Λ =
8πG

3H̃2
0

ρΛ . (3.15)

The cosmological parameters in the modified cosmology can be related to the ones in the
fiducial cosmology through H̃0 = H0(1 + δH), which become

Ω̃m = Ωm(1+δH)−2 , Ω̃Λ = ΩΛ(1+δH)−2 , Ω̃K = 1− Ω̃m− Ω̃Λ = 1−(1+δH)−2 , (3.16)

where we use Ωm + ΩΛ = 1 because the fiducial cosmology is flat.
Alternatively, δH can be expressed in terms of K̃ as

δH =

(
1− K̃

H2
0

)1/2

− 1 . (3.17)
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There is no solution for δH if K̃/H2
0 > 1, or equivalently δL0 > (5

3
Ωm

D(t0)
)−1. This is because

for such a large positive curvature, the universe reaches turn around before ã = 1, at which
the modified cosmological parameters are defined. In other words, this is not a physical
problem, but merely a parameterization issue under the standard convention.

Finally, we shall derive the equation for δa(t), so that the observables of different cos-
mologies can be compared at the same physical time t. Inserting the second Friedmann
equation of the fiducial and modified cosmologies into eq. (3.7) yields an ordinary differ-
ential equation for the perturbation to the scale factor

δ̈a + 2Hδ̇a +
4πG

3
ρ̄
[
(1 + δa)

−2 − (1 + δa)
]

= 0 , (3.18)

or equivalently

δ̈ρ + 2Hδ̇ρ −
4

3

δ̇2
ρ

1 + δρ
− 4πGρδρ(1 + δρ) = 0 . (3.19)

When linearizing (δρ � 1) eq. (3.19), one obtains the equation for the linear growth factor.
More generally, eq. (3.19) is exactly the equation for the interior density of a spherical
top-hat perturbation in a ΛCDM universe [138]. For a certain tout, one can numerically
calculate δa(tout) through eq. (3.18) to get ã(tout) = a(tout)[1 + δa(tout)]. Alternatively, one
can numerically evaluate ã(tout) by

tout =

∫ a(tout)

0

da

aH(a)
=

∫ ã(tout)

0

dã

ãH̃(ã)
=

∫ a(tout)[1+δa(tout)]

0

dã

ãH̃(ã)
. (3.20)

3.2 The modified cosmology in Einstein-de Sitter back-

ground

In the Einstein-de Sitter (EdS) universe we have

Ωm = 1 ; ρΛ = 0 ; H(a) = H0a
−3/2 ; a(t) =

(
3

2
H0t

)2/3

; D(t) = a(t) . (3.21)

In this section, we shall show that if the background cosmology is EdS, then the scale
factor δa(t) and the Eulerian overdensity δρ(t), as well as the linear growth factor D̃(t)
and the logarithmic growth rate f̃(t) in the modified cosmology (overdense region) can be
expressed in series of δL0.

3.2.1 Scale factor and Eulerian overdensity

In order to solve δa(t), we consider the spherical collapse model for a overdense region
[66, 126, 122]. Since the scale of this region is much smaller than the horizon size, we can
use the Newtonian dynamics and write the equation of motion of a shell of particles at
radius r̃ as

¨̃r = −GM̃
r̃2

, M̃ =
4π

3
˜̄ρ(ti)r̃

3(ti) = constant , (3.22)
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where ti is some initial time. Note that in eq. (3.22) we neglect the shell crossing, i.e. if
r̃1(ti) > r̃2(ti) then r̃1(t) > r̃2(t) for all t.

Eq. (3.22) is known as the “cycloid” and the parametric solution is

ã(θ) =
r̃(θ)

x̃
= A(1− cos θ) , t(θ) = B(θ − sin θ) , (3.23)

where x̃ is some comoving distance for the normalization. Using the Leibniz rule, one finds
that

˙̃r =
dr̃

dθ

dθ

dt
=
Ax̃

B

sin θ

(1− cos θ)
, ¨̃r = −Ax̃

B2

1

(1− cos θ)2
, (3.24)

and the equation of motion thus requires

A3x̃3

B2
= GM̃ =

4πG

3
˜̄ρ(ti)ã

3(ti)x̃
3 ⇔ A3

B2
=
H̃2

0 Ω̃m

2
. (3.25)

Note that since this region is overdense, Ω̃m − 1 = −Ω̃K > 0 and it is positively curved.
For an underdense (negatively curved) region, the similar parameterization works with cos
and sin in eq. (3.24) replaced by cosh and sinh.

To determine the constants A and B, we can write the first Friedmann equation using
the parametric solution as

H̃2 =

( ˙̃a

ã

)2

=
1

B2

(1− cos2 θ)

(1− cos θ)4
= H̃2

0

{
Ω̃m[A(1− cos θ)]−3 + (1− Ω̃m)[A(1− cos θ)]−2

}
(1− cos2 θ)

B2
=
H̃2

0

A2

{[
Ω̃m

A
− (Ω̃m − 1)

]
− cos θ

[
Ω̃m

A
− 2(Ω̃m − 1)

]
− cos2 θ(Ω̃m − 1)

}
.

(3.26)

Since eq. (3.26) is valid for all θ, the coefficient multiplied by cos θ must be zero, which
then allows us to solve

A =
1

2

Ω̃m

(Ω̃m − 1)
, B =

1

2

Ω̃m

H̃0(Ω̃m − 1)3/2
. (3.27)

One finds that eq. (3.27) indeed yields A3/B2 = H̃2
0 Ω̃m/2.

For simplicity, we define

ε =
Ω̃m − 1

Ω̃m

= 1− (1 + δH)2 =
K̃

H2
0

=
5

3
δL0 , (3.28)

so that

ã(θ) =
1

2
ε−1(1− cos θ) ; t(θ) =

3

4
t0ε
−3/2(θ − sin θ) . (3.29)

The goal is to obtain

ã(t) = a(t)[1 + δa(t)] = a(t)

[
1 +

∞∑
n=1

en[a(t)δL0]n

]
, ã(t0) = 1 +

∞∑
n=1

enδ
n
L0 , (3.30)
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we thus need to solve θ0 such that

t(θ0) = t0 =
3

4
t0ε
−3/2(θ0 − sin θ0) ⇔ θ0 − sin θ0 =

3

4
ε−3/2 . (3.31)

We perform a series expansion,

θ0 − sin θ0 =
1

6
θ3

0 −
1

120
θ5

0 + · · · =
∞∑
n=1

bnθ
2n+1
0 , (3.32)

and solve θ0 order by order. That is, for the nth order solution, we solve

4

3
ε3/2 =

n∑
k=1

bk

[
θ

(n−k+1)
0

]2k+1

, (3.33)

and θ0 = limn→∞ θ
(n)
0 . Note that in order to trust the final solution at order δmL0, the series

solution needs to be expanded to n = m + 1. In the following we choose m = 5, which
yields

θ0 = 2ε1/2
[
1 +

1

15
ε+

2

175
ε2 +

4

1575
ε3 +

43

67375
ε4 + · · ·

]
. (3.34)

Finally, we insert eq. (3.34) into ã(θ), expand in ε, replace ε with 5
3
δL0, and match with

eq. (3.30) for the coefficients en. For the first five coefficients, we get

e1 = −1

3
; e2 = − 1

21
; e3 = − 23

1701
; e4 = − 1894

392931
; e5 = − 3293

1702701
. (3.35)

Once δa(t) is known, we can use eq. (3.6) to solve the Eulerian overdensity δρ(t) =∑∞
n=1 fn[δL0a(t)]n, and the first five coefficients are

f1 = 1 ; f2 =
17

21
; f3 =

341

567
; f4 =

55805

130997
; f5 =

213662

729729
. (3.36)

While eqs. (3.35)–(3.36) are strictly valid only if the background is EdS, we find that
they are also accurate in ΛCDM background if a(t) is replaced with D(t)/D(t0), where
D(t) is the growth factor in the fiducial cosmology. In other words,

δa(t) =
∞∑
n=1

en

[
δL0

D(t)

D(t0)

]n
; δρ(t) =

∞∑
n=1

fn

[
δL0

D(t)

D(t0)

]n
. (3.37)

Figure 3.1 quantifies the performance of the EdS expansion with a(t) being replaced by
D(t)/D(t0) for δa(t), i.e. eq. (3.37). For a large range of δL0, the results of EdS expansion
agree very well with the numerical solution of the differential equation eq. (3.18). Specif-
ically, at the third (fifth) order expansion, the fractional difference is at the sub-percent
level for |δL0| ∼ 1.



36 3. Separate universe picture

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

δL0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

δ a
(t

0
)

ΛCDM Ωm =0.27 ΩΛ =0.73

ODE

expansion 1st

expansion 3rd

expansion 4th

expansion 5th

1.0 0.5 0.0 0.5 1.0

δL0

0.90

0.95

1.00

1.05

1.10

e
x
p
a
n
si

o
n
/O

D
E

expansion 1st

expansion 3rd

expansion 4th

expansion 5th

Figure 3.1: (Left) Perturbation in the scale factor in the modified cosmology, δa(t0), as
a function of δL0. The present-day scale factor is a(t0) = 1 in the background ΛCDM
universe, with Ωm = 0.27 and ΩΛ = 0.73. The black solid line shows the numerical solution
to the ordinary differential equation, eq. (3.18); the yellow solid, green dot-dashed, blue
dotted, and red dashed lines show the series solutions in EdS, eq. (3.37), at the first, third,
fourth, and fifth order, respectively. (Right) Same as the left panel, but for the ratios of
the series solutions expansion to the solution of the ordinary differential equation.

3.2.2 Small-scale growth

In this subsection, we shall iteratively solve the linear growth factor D̃(t) and logarithmic
growth rate f̃(t) in series of δL0, as eqs. (3.35)–(3.36), in the modified cosmology with the
EdS background. We consider a small-scale (short-wavelength) density perturbation in the
overdense region such that δ̃s = ρ̃/ ˜̄ρ − 1. Note that δ̃s should not be confused with the
long-wavelength density perturbation δρ of this entirely overdense region with respect to
the EdS background. Moreover, δ̃s is defined with respect to the background density of
the overdense universe ˜̄ρ instead of the EdS background ρ̄.

The small-scale growth equation for δ̃s in the modified cosmology is given by

¨̃δs + 2H̃ ˙̃δs − 4πG ˜̄ρδ̃s = 0 . (3.38)

Using

H̃2 = H̃2
0

[
Ω̃mã

−3 + (1− Ω̃m)ã−2
]

= H2
0

(
ã−3 − 5

3
δL0ã

−2

)
,

4πG ˜̄ρ =
3

2
Ω̃mH̃

2
0 ã
−3 =

3

2
H2

0 ã
−3 , (3.39)
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the growth equation can be rewritten as

¨̃δs + 2H0

(
ã−3 − 5

3
δL0ã

−2

)1/2
˙̃δs −

3

2
H2

0 ã
−3δ̃s = 0 . (3.40)

Note that although we map the overdense universe to a positively curved universe, the
curvature contribution to the Poisson equation is neglected. If K̃/H2

0 ∼ 1, the correction
in the Poisson equation becomes relevant for the small-scale modes δ̃s that are around the
horizon size. Since we are studying the subhorizon evolution of the small-scale modes,
and moreover we are mostly interested in the overdensity such that K̃/H2

0 ∼ δL0 � 1,
the correction is entirely negligible. Thus, the curvature contributes to the growth only
through the expansion rate H̃.

Replacing the time coordinate t with y = ln a(t) where a(t) is the scale factor in the
EdS background, we rewrite the growth equation as

d2

dy2
δ̃s +

[
2(1 + δa)

−3/2

(
1− 5

3
δL0[1 + δa]

)1/2

− 3

2

]
d

dy
δ̃s −

3

2
(1 + δa)

−3δ̃s = 0 , (3.41)

Thus far, all the derivations are exact. To see that eq. (3.41) makes sense, we consider the
zeroth order approximation, i.e. δL0 → 0. In this regime, δa → 0 and the growth equation
becomes

d2

dy2
δ̃(0)
s +

1

2

d

dy
δ̃(0)
s −

3

2
δ̃(0)
s = 0 , (3.42)

where the subscript (0) denotes that it is the zeroth order solution. There are two solutions

to δ̃
(0)
s , the growing mode proportional to a and the decaying mode proportional to a−3/2.

As expected, because δL0 → 0, the result is identical to the growth in the background
EdS cosmology. In the following, we shall drop the decaying mode following the standard
practice. Furthermore, we shall normalize δ̃

(0)
s to a(t) at early times, and replace it with

D̃(t) to denote the small-scale growth factor. This means D̃(0)(t) = a(t).
To solve higher order solutions, we insert the expansion of δa in terms of a(t)δL0 = eyδL0

(eq. (3.30) and eq. (3.35)) into the growth equation and obtain

d2

dy2
D̃(y) +

[
∞∑
m=0

cmδ
m
L0e

my

]
d

dy
D̃(y)−

[
∞∑
m=0

dmδ
m
L0e

my

]
D̃(y) = 0 , (3.43)

with coefficients cm and dm given by

2(1 + δa)
−3/2

(
1− 5

3
δL0[1 + δa]

)1/2

− 3

2
=

∞∑
m=0

cm[a(t)δL0]m

3

2
(1 + δa)

−3 =
∞∑
m=0

dm[a(t)δL0]m . (3.44)
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Correspondingly, we write the pure growing-mode solution in series of δL0 as

D̃ =
∞∑
n=0

gnδ
n
L0e

(n+1)y = D(t)
∞∑
n=0

gn[a(t)δL0]n (3.45)

with coefficients gn. Given our normalization, i.e. D̃(0) = a(t), g0 = 1. Thus,

d

dy
D̃(y) =

∞∑
n=0

(n+ 1)gnδ
n
L0e

(n+1)y ;
d2

dy2
D̃(t) =

∞∑
n=0

(n+ 1)2gnδ
n
L0e

(n+1)y . (3.46)

Supposed that we have solutions of D̃(y) to the (n − 1)th order, then the solution at
the nth order has to satisfy

(n+ 1)2gnδ
n
L0e

(n+1)y +
n∑

m=0

gn−mδ
n−m
L0 e(n−m+1)y [(n−m+ 1)cm − dm] emyδmL0 = 0 . (3.47)

The term δnL0e
(n+1)y factors out, and we obtain a simple algebraic relation for gn in terms

of cm and dm for 0 ≤ m ≤ n, and gm for 0 ≤ m ≤ n− 1 as

(n+ 1)2gn +
n∑

m=0

gn−m[(n−m+ 1)cm − dm] = 0 . (3.48)

Using en in eq. (3.35) to get cm and dm through eq. (3.44), we obtain the first five gn to
be

g1 =
13

21
; g2 =

71

189
; g3 =

29609

130977
; g4 =

691858

5108103
; g5 =

8682241

107270163
. (3.49)

Similar to the previous subsection, the expansion of D̃ in terms of δL0 with the coeffi-
cients (eq. (3.49)) is strictly valid in the EdS background cosmology. In order to generalize
from EdS to other cosmologies, we replace a(t) with D(t)/D(t0), so that

D̃(t) = D(t)

{
1 +

∞∑
n=1

gn

[
δL0

D(t)

D(t0)

]n}
. (3.50)

Figure 3.2 quantifies the performance of the expansion with a(t) being replaced byD(t)/D(t0)
for D̃(t), i.e. eq. (3.50). The agreement is not as good as for δa(t), nevertheless the fifth or-
der expansion gives 5% fractional differences at |δL0| ∼ 1. Note also that while for positive
δL0 the EdS expansion is always smaller than (but converging to) the numerical solution
in ΛCDM, for negative δL0 the fourth order expansion has a different trend compared to
the other orders. This is because at the nth order δnL0 dominates when |δL0| > 1, and at
the negative δL0 end the result would thus depend on the parity of the expansion order. It
is clear though the higher the expansion order, the better the agreement.
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Figure 3.2: (Left) The linear growth factor in the modified cosmology, D̃(t0) with a(t0) = 1,
in the background ΛCDM universe with Ωm = 0.27 and ΩΛ = 0.73. The black solid line
shows the numerical solution to eq. (3.40); the yellow solid, green dot-dashed, blue dotted,
and red dashed lines show the series solutions, eq. (3.50), at the first, third, fourth, and
fifth order, respectively. (Right) Same as the left panel, but for the ratios of the series
solutions to the solution of the differential equation of the small-scale growth.

With the expansions of δa(t) (eq. (3.37)) and D̃(t) (eq. (3.50)), we can finally derive
the series expansion for the logarithmic growth rate,

f(t) =
d lnD(t)

d ln a(t)
=
Ḋ(t)

D(t)

a(t)

ȧ(t)
. (3.51)

In the modified cosmology, we have (defining e0 = 1 as for g0)

f̃(t) =
˙̃D

D̃

ã
˙̃a

=
Ḋ
∑∞

n=0(n+ 1)gnδ
n
L(t)

D
∑∞

n=0 gnδ
n
L(t)

a
∑∞

n=0 enδ
n
L(t)

ȧ
∑∞

n=0 enδ
n
L(t) + a Ḋ

D

∑∞
n=0 nenδ

n
L(t)

= f

∑∞
n=0(n+ 1)gnδ

n
L(t)∑∞

n=0 gnδ
n
L(t)

∑∞
n=0 enδ

n
L(t)∑∞

n=0 enδ
n
L(t) + f

∑∞
n=0 nenδ

n
L(t)

, (3.52)

where δL(t) = δL0
D(t)
D(t0)

. Note that in the EdS background f = 1, and so eq. (3.52) can be
simplified as

f̃(t) =

∑∞
n=0(n+ 1)gnδ

n
L(t)∑∞

n=0 gnδ
n
L(t)

∑∞
n=0 enδ

n
L(t)∑∞

n=0(n+ 1)enδnL(t)
. (3.53)

Figure 3.3 shows the performance of the expansion of f̃ in the ΛCDM background. It is
not as good as for D̃, but for |δL0| ∼ 0.8 the fifth order expansion gives approximately
5% fractional difference with respect to the numerical solution of the differential equation.
One also notes the parity-feature at the negative δL0, as for D̃.
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Figure 3.3: (Left) The logarithmic growth rate in the modified cosmology, f̃(t0) with
a(t0) = 1, in the background ΛCDM universe with Ωm = 0.27 and ΩΛ = 0.73. The black
solid line shows the numerical solution to eq. (3.40); the yellow solid, green dot-dashed,
blue dotted, and red dashed lines show the series solutions, eq. (3.52), at the first, third,
fourth, and fifth order, respectively. (Right) Same as the left panel, but for the ratios of
the series solutions to the solution of the differential equation of the small-scale growth.



Chapter 4

Measurement of position-dependent
power spectrum

As introduced in section 2.1, the correlation between the position-dependent power spec-
trum,

P̂ (k, rL) =
1

VL

∫
d3q1

(2π)3

∫
d3q2

(2π)3
δ(k− q1)δ(−k− q2)WL(q1)WL(q2)e−irL·(q1+q2) , (4.1)

and the mean overdensity,

δ̄(rL) =
1

VL

∫
d3q

(2π)3
δ(−q)WL(q)e−irL·q , (4.2)

is the integrated bispectrum,

iBL(k) = 〈P̂ (k, rL)δ̄(rL)〉

=
1

V 2
L

∫
d2k̂

4π

∫
d3q1

(2π)3

∫
d3q3

(2π)3
B(k− q1,−k + q1 + q3,−q3)

×WL(q1)WL(−q1 − q3)WL(q3) , (4.3)

with VL being the size of the subvolume.
In the squeezed limit where the scale of the position-dependent power spectrum is much

smaller than the subvolume size, i.e. k � 1/L, the integrated bispectrum can be simplified
as

iBL(k)
kL→∞

=
1

V 2
L

∫
d3q

(2π)3
W 2
L(q)P (q)f̌(k)P (k) = σ2

Lf̌(k)P (k) , (4.4)

where f̌(k) = 2f(0, k) with f(k1,k2) being a dimensionless symmetric function for the
separable bispectrum, and σ2

L is the variance of the density fluctuation in VL,

σ2
L =

1

V 2
L

∫
d3q

(2π)3
P (q)W 2

L(q) . (4.5)
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An intuitive way to arrive at eq. (4.4) is to consider the expansion of the position-dependent
power spectrum in the presence of a long-wavelength density fluctuation δ̄ as

P̂ (k, rL) = P (k)|δ̄=0 +
dP (k)

dδ̄

∣∣∣∣
δ̄=0

δ̄ + . . . , (4.6)

and the leading-order correlation between P (k, rL) and δ̄ is

iBL(k) = σ2
L

d lnP (k)

dδ̄

∣∣∣∣
δ̄=0

P (k) . (4.7)

Inspired by eq. (4.4) and eq. (4.7), we define the normalized integrated bispectrum to be

iBL(k)

P̂ (k)σ2
L

, (4.8)

and it is equal to the linear response function, f̌(k) or d lnP (k)/dδ̄, in the limit of kL→∞.
In this chapter, we measure the position-dependent power spectrum and the integrated

bispectrum from N -body simulations in section 4.1, and compare with the theoretical
modeling of the measurements in section 4.2 and section 4.3. At the end of this chapter, we
shall discuss the dependence of the integrated bispectrum on the cosmological parameters
in section 4.4, and the expected constraint on the primordial non-Gaussianity using the
Fisher matrix calculation in section 4.5. We conclude in section 4.6.

4.1 N-body simulations and the estimators

We now present measurements of the position-dependent power spectrum from 160 colli-
sionless N -body simulations of a 2400 h−1 Mpc box with 7683 particles (which corresponds
to 2.29×1012M�). The same simulations are used in [47], and we refer to section 3 of [47] for
more details. In short,the initial conditions are set up using different realizations of Gaus-
sian random fields with the linear power spectrum computed by CAMB [96, 95]. We adopt
a flat ΛCDM cosmology, and the cosmological parameters are Ωm = 0.27, Ωbh

2 = 0.023,
h = 0.7, ns = 0.95, and σ8 = 0.7913. The particles are displaced from the initial grid
points using the second-order Lagrangian perturbation theory [40] at the initial redshift
zi = 19. The simulations are carried out using the Tree-PM code Gadget-2 [153], taking
only the gravitational force into account.

To construct the density fluctuation field on grid points, we first distribute all the
particles in the 2400 h−1 Mpc box onto a 10003 grid by the cloud-in-cell (CIC) density
assignment scheme. Then the density fluctuation field at the grid point rg is

δ̂(rg) =
N(rg)

N̄
− 1 , (4.9)

where hat denotes the estimated quantities, N(rg) is the fractional number of particles
after the CIC assignment at rg, and N̄ = 7683/10003 is the mean number of particles in
each grid cell.
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We then divide the 2400 h−1 Mpc box in each dimension by Ncut = 4, 8, and 20, so that
there are 64, 512, and 8000 subvolumes with a side length of 600, 300, and 120 h−1 Mpc,
respectively. The mean density perturbation in a subvolume centered at rL is

ˆ̄δ(rL) =
1

N3
grid

∑
rg∈VL

δ̂(rg) , (4.10)

where (Ngrid)3 = (1000/Ncut)
3 is the number of grid points within the subvolume. To

compute the position-dependent power spectrum, we use FFTW1 to Fourier transform δ̂(rg)
in each subvolume with the grid size (Ngrid)3. While the fundamental frequency of the
subvolume, kF = 2π/L, decreases with the subvolume size L, the Nyquist frequency of the
FFT grid, kNy = kFNgrid/2 ≈ 1.3 h Mpc−1, is the same in all cases.

The position-dependent power spectrum is then computed as

P̂ (k, rL) =
1

VLNmode

∑
k−∆k/2≤|ki|≤k+∆k/2

|δ̂(ki, rL)|2 , (4.11)

where Nmode is the number of Fourier modes in the bin [k −∆k/2, k + ∆k/2], and we set
∆k ≈ 0.01 h Mpc−1 in all cases. We choose this ∆k for all Ncut to sample well the baryon
acoustic oscillations (BAO) and thereby are able to show how the window function of the
different subvolumes damps the BAO (see figure 4.2). We follow the procedures in [78]
to correct for the smoothing due to the CIC density assignment and also for the aliasing
effect in the power spectrum. Note, however, that this correction is only important for
wavenumbers near the Nyquist frequency 1.31 h Mpc−1, and we are interested in scales
k . 0.4 h Mpc−1.

Figure 4.1 shows the position-dependent power spectrum measured from 512 subvol-

umes with L = 300 h−1 Mpc in one realization at z = 0. The color represents ˆ̄δ(rL) of each

subvolume. The positive correlation between the subvolume power spectra and ˆ̄δ(rL) is
obvious. The response of the position-dependent power spectrum to the long-wavelength
density fluctuation is clearly measurable at high significance in the simulations.

We measure the integrated bispectrum through

ˆiBL(k) =
1

N3
cut

N3
cut∑
i=1

P̂ (k, rL,i)
ˆ̄δ(rL,i), (4.12)

where P̂ (k, rL,i) and ˆ̄δ(rL,i) are measured in the ith subvolume. Further, motivated by
eq. (4.4), we normalize the integrated bispectrum by the mean power spectrum in the
subvolumes,

¯̂
PL(k) =

1

N3
cut

N3
cut∑
i=1

P̂ (k, rL,i) , (4.13)

1Fast Fourier Transformation library: www.fftw.org

www.fftw.org
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Figure 4.1: Position-dependent power spectra measured from 512 subvolumes with L =

300 h−1 Mpc in one realization at z = 0. The color represents ˆ̄δ(rL) of each subvolume.

and the variance of the mean density fluctuation in the subvolumes,

σ̂2
L =

1

N3
cut

N3
cut∑
i=1

ˆ̄δ2(rL,i) . (4.14)

Note that by construction

¯̄̂
δL =

1

N3
cut

N3
cut∑
i=1

ˆ̄δ(rL,i) = 0 . (4.15)

This quantity
ˆiBL(k)

¯̂
PL(k)σ̂2

L

, (4.16)

is the estimator of the normalized integrated bispectrum (eq. (4.8)), and is equal to the
linear response function, d lnP (k)/dδ̄, given in eq. (4.7) in the limit of kL→∞.

Figure 4.2 shows the normalized integrated bispectrum, averaged over 160 collisionless
N -body simulations at different redshifts. For clarity, no error bars are shown in this figure.
We have compared the results with a higher-resolution simulation with 15363 particles and
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Figure 4.2: Normalized integrated bispectrum averaged over 160 collisionless N -body simu-
lations with Gaussian initial conditions. From left to right are Ncut = 4 (L = 600 h−1 Mpc),
8 (300 h−1 Mpc), and 20 (120 h−1 Mpc); the blue, green, yellow, and red lines are z = 3,
2, 1, and 0, respectively. For clarity, we do not show the error bars.

starting at higher redshift (zi = 49 compared to zi = 19 for our 160 simulations). For
the scales and redshifts shown in figure 4.2, the differences are less than 1%. However, we
expect an up to 5% uncertainty in the integrated bispectrum at z = 3 (less at lower z) due
to transients which affect the bispectrum more strongly than the power spectrum [40, 111],
as well as other systematics such as mass resolution.

Since the initial conditions are Gaussian, the bispectrum is generated entirely by non-
linear gravitational evolution. We thus measure the effect of a long-wavelength density
perturbation on the evolution of small-scale structures. The wiggles visible in each panel
of figure 4.2 are due to the BAOs. The BAOs in the right panel are strongly damped
because the box size (120 h−1 Mpc) approaches the BAO scale, and the window function
smears the BAO feature [30]. Further, BAO amplitudes are larger at higher redshifts as
they are less damped by nonlinear evolution [53]. The broad-band shape of the normalized
integrated bispectrum evolves on small scales due to nonlinear evolution, leading to an
effective steepening of its slope. We now turn to the theoretical modeling of the results
shown in figure 4.2.

4.2 Bispectrum modeling

We use two different approaches to model the integrated bispectrum. In the first approach,
we model the bispectrum and compute the integral to obtain the integrated bispectrum.
In the second approach, we model the response of the small-scale power spectrum to a
long wavelength perturbation directly using the “separate universe” picture. For clarity,
we will show the comparison between model prediction and simulations only for the L =
300 h−1 Mpc subvolumes (Ncut = 8). The agreement with simulations is independent of
subvolume size as long as the subvolume size is large enough for δ̄ to be in the linear regime,
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and the window function is taken into account.
We first compute the integrated bispectrum by using a model for the bispectrum in

eq. (4.3) and perform the eight-dimensional integral. Because of the high dimensionality,
we use the Monte Carlo integration routine in GNU Scientific Library to evaluate the
angular-averaged integrated bispectrum. In the following, we consider two different models
for the matter bispectrum.

4.2.1 Standard perturbation theory

The standard perturbation theory (SPT) [17] gives the tree-level matter bispectrum as

BSPT(k1,k2,k3) = 2[Pl(k1)Pl(k2)F2(k1,k2) + 2 cyclic], (4.17)

where Pl(k) is the linear matter power spectrum, and

F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(
k1

k2

+
k2

k1

)
+

2

7

(
k1 · k2

k1k2

)2

. (4.18)

In order to normalize the integrated bispectrum, we need an expression for the mean

subvolume power spectrum
¯̂
PL(k). For this we use the linear power spectrum convolved

with the window function,

Pl,L(k) =
1

VL

∫
d3q

(2π)3
Pl(|k− q|)|WL(q)|2 , (4.19)

while the variance of the mean density fluctuation in the subvolumes is given by eq. (4.5).
Both quantities are calculated through Monte Carlo integration.

We compare the normalized integrated bispectrum measured from the simulations with
the SPT prediction in figure 4.3 (red lines). The SPT prediction is independent of redshift.
This is because the linear power spectra at various redshifts are only different by the
wavenumber-independent linear growth factor, D2(z). Therefore, the linear growth factor
cancels out in the normalized integrated bispectrum. The SPT predictions agree with
the simulations relatively well at z ≥ 1 and k . 0.2 h Mpc−1, whereas they fail at lower
redshifts as well as on smaller scales, where nonlinearities become too strong to be described
by SPT. Especially, the BAO amplitudes at k & 0.2 h Mpc−1 are affected: while the SPT
predictions are redshift-independent, the simulations show smaller BAO amplitudes at
lower redshifts.

The eight-dimensional integral in eq. (4.3) simplifies greatly if we focus on the squeezed-
limit bispectrum. In appendix A, we show (note that BSPT ≡ BSQ1,1)∫

d2Ωk̂

4π
BSPT(k− q1,−k + q1 + q3,−q3)

=

[
68

21
− 1

3

d ln k3Pl(k)

d ln k

]
Pl(k)Pl(q3) +O

[(q1,3

k

)2
]
, (4.20)
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Figure 4.3: The SPT and the F eff
2 (k1,k2) predictions for the normalized integrated bispec-

trum at different redshifts. The red solid and blue dot-dashed lines are computed by the
direct integration of the eight-dimensional integral (eq. (4.3)) with the standard F2(k1,k2)
kernel and the linear power spectrum, and F eff

2 (k1,k2) and the nonlinear power spectrum,
respectively. The green dashed lines show the squeezed-limit approximation (eq. (4.21)) to
the SPT results. The N -body simulation results are shown by the black data points with
the error bars showing the standard deviation on the mean measured from 160 simulations.

for k � q1, q3. We can then apply eq. (4.4) and perform all the integrals analytically in
the limit of kL→∞ to obtain

iBL,SPT(k) =
1

V 2
L

∫
d2Ωk̂

4π

∫
d3q1

(2π)3

∫
d3q3

(2π)3
BSPT(k− q1,−k + q1 + q3,−q3)

×WL(q1)WL(−q1 − q3)WL(q3)

kL→∞
=

[
68

21
− 1

3

d ln k3Pl(k)

d ln k

]
Pl(k)σ2

L . (4.21)

Comparing this result with eq. (4.7), we find that the linear response of the power spectrum
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in SPT is given by
d lnPl(k)

dδ̄

∣∣∣∣
SPT

=
68

21
− 1

3

d ln k3Pl(k)

d ln k
. (4.22)

The green dashed lines in figure 4.3 show the squeezed-limit approximation given in
eq. (4.21). While they are different from the full integration (red solid lines) at k .
0.2 h Mpc−1, for which the squeezed-limit approximation fails and the direct integration
is required, they agree well, with the fractional difference being less than 1.5% (1% for
L = 600 h−1 Mpc), at k & 0.2 h Mpc−1, corresponding to a value of 1/(kL) . 0.02. Thus,
the squeezed-limit is reached already with good precision for kL & 50.

Eq. (4.21) does not contain any window function effect apart from that in the vari-
ance σ2

L. While this is a good approximation for the slowly-varying part of the integrated
bispectrum, it does not capture the smearing of the BAO features due to the window func-
tion. We incorporate this effect by replacing d lnPl(k)/d ln k with appropriately convolved
forms, conv[dPl(k)/d ln k] / conv[Pl(k)], in eq. (4.21). This form is motivated by the sepa-
rate universe approach discussed in section 4.3, and provides an accurate result as shown
in figure 4.3.

4.2.2 Bispectrum fitting formula

The SPT predictions fail on smaller scales as well as at lower redshifts where nonlinearity
becomes too strong to be described by SPT. An empirical fitting formula for nonlinear
evolution of the matter bispectrum was proposed in [140] and further improved in [64]. In
short, the form is the same as the tree-level matter bispectrum, but F2(k1,k2) is replaced
by an effective kernel, F eff

2 (k1,k2), which contains nine fitting parameters, {a1, · · · a9}, to
account for nonlinearity (see eqs. 2.6 and 2.12 in [64] for details). Therefore, we use
F eff

2 (k1,k2) and compute the integrated bispectrum by performing the eight-dimensional
integral numerically with Monte Carlo integration. We use the same values of the best-
fit parameters provided in table 2 of [64], which were calibrated by fitting to simulation
results between z = 0 and z = 1.5. In contrast to the SPT formalism that uses the linear
power spectrum in eq. (4.17), the fitting formula uses the nonlinear power spectrum, for
which we use the mean power spectrum measured from the 160 simulation boxes. For
the normalization of the integrated bispectrum, we convolve the nonlinear power spectrum
with the subvolume window function as in eq. (4.19). Note that the F eff

2 fitting formula
is not specifically designed for the squeezed configuration, but instead was calibrated to a
wide range of triangle configurations of the matter bispectrum.

The blue dot-dashed lines in figure 4.3 show the normalized integrated bispectrum
computed with F eff

2 , which clearly depends on redshift. At z & 1, the F eff
2 modeling

and the simulations are in good agreement at k . 0.2 h Mpc−1. At k > 0.2 h Mpc−1,
although the F eff

2 modeling predicts larger broad-band power of the normalized integrated
bispectrum, the BAO amplitudes still agree well with the simulations. This is most obvious
for the two BAO peaks at 0.25 h Mpc−1 ≤ k ≤ 0.35 h Mpc−1. On the other hand, at
z = 0, the F eff

2 modeling predicts much larger normalized integrated bispectrum on small
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scales than measured in the simulations, so that the fitting formula does not perform much
better than tree-level perturbation theory at z = 0.

4.3 Separate universe approach

In the second approach, we compute the effects of a long-wavelength density fluctuation on
the small-scale power spectrum by treating each over- and under dense region as a separate
universe with a different background density. This approach thus neglects the finite size of
the subvolumes and is valid for wavenumbers which satisfy kL � 1 (specifically, kL & 50
for percent-level accuracy).

The power spectrum in a separate universe with an infinite-wavelength density per-
turbation, δ̄, with respect to the global flat ΛCDM cosmology can be expanded as in
eq. (4.6). Through eqs. (4.7)–(4.8), the normalized integrated bispectrum is equal to the
linear response of the nonlinear matter power spectrum at wavenumber k to δ̄:

iBL(k)

P (k)σ2
L

=
d lnP (k)

dδ̄
. (4.23)

This is not exactly true if the subvolumes for which iBL(k) is measured are not spheri-
cal. For example, since the cubic window function is anisotropic, the integrated bispec-
trum might pick up contributions from the tidal field. However, we have verified that the
anisotropy of the cubic window function has a negligible effect, by computing the dipole
and quadrupole of the integrated bispectrum through eq. (4.3). The ratios to the monopole
are less than 10−5 on the scales of interest.

A universe with an infinite-wavelength density perturbation with respect to a flat fidu-
cial cosmology is equivalent to a universe with non-zero curvature. This alters the scale
factor, Hubble rate, and linear growth as shown in chapter 3, and thus affects the power
spectrum. Say this long-wavelength overdensity is

δ̄(t) =
˜̄ρ(t)

ρ̄(t)
− 1 =

D(t)

D(t0)
δ̄(t0) , (4.24)

where ρ̄(t) is the background matter density in the fiducial cosmology, D(t) is the linear
growth factor in the same cosmology, ˜̄ρ is the background matter density in a slightly curved
universe, t0 is a reference time such that a(t0) = 1, and δ̄0 is the density perturbation at
t0. Note that as in chapter 3, we denote the quantities in the modified (curved) cosmology
with a tilde.

In eq. (4.24) and in the following of this section, we assume that δ̄(t) is small and evolves
linearly. This is justified because here we consider the subvolume to be 300 h−1 Mpc, and so

σ2
L(z = 0) ∼ 9×10−4. One can also see this in figure 4.1: |ˆ̄δ(rL)| . 0.08 in 512 subvolumes

with L = 300 h−1 Mpc of one realization at z = 0. Therefore, we shall consider the effect
on the power spectrum only to the linear order in δ̄(t), and drop δ̄n(t) for n ≥ 2.
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With this assumption, the scale factor in the modified cosmology is given by

ã(t) = a(t)

[
1− 1

3
δ̄(t)

]
. (4.25)

Since the physical coordinates are the same in two cosmologies, this implies that the
comoving coordinates of the two cosmologies are related by

x̃ =
a(t)

ã(t)
x =

[
1 +

1

3
δ̄(t)

]
x . (4.26)

What we want is to compare the observables between the fiducial and modified cosmologies,
so the quantities computed in the comoving coordinates of the modified cosmology have
to be mapped to that with respect to the comoving coordinates of the fiducial cosmology.
Specifically, in order to match to the comoving coordinates of the fiducial cosmology, we
transform the comoving coordinates in the modified cosmology as

x̌ =

[
1− 1

3
δ̄(t)

]
x̃ = cx̃ (4.27)

where c is a constant at a given time. This assures x̌ = x.
Let us now consider how the transform in the coordinates affects the two-point statistics.

Since the correlation function is a dimensionless scalar quantity, in the new coordinates
x̌ with the transformation of x̌i = cixi (for i = 0, 1, and 2) the correlation function ξ̌(x̌)
must be

ξ̌(x̌0, x̌1, x̌2) = ξ(x0, x1, x2) . (4.28)

The power spectrum is then transformed as

P̌ (ǩ0, ǩ1, ǩ2) =

∫
d3x̌ ξ̌(x̌0, x̌1, x̌2)e−i(x̌0ǩ0+x̌1ǩ1+x̌2ǩ2)

= c0c1c2

∫
d3x ξ(x0, x1, x2)e−i(c0x0ǩ0+c1x1ǩ1+c2x2ǩ2)

= c0c1c2

∫
d3x ξ(x0, x1, x2)e−i(x0k0+x1k1+x2k2)

= c0c1c2P (k0, k1, k2) = c0c1c2P (c0ǩ0, c1ǩ1c2ǩ2) , (4.29)

where we define ǩi = c−1
i ki. This makes sense because k ∼ x−1 and so ǩi ∼ x̌−1

i = c−1
i x−1

i ∼
c−1
i ki (see also appendix A of [123]).

Inserting c through eq. (4.27), we have the change in power spectrum up to the linear
order of δ̄(t) as

P̃ (k, t) →
[
1− 1

3
δ̄(t)

]3

P

(
k

[
1− 1

3
δ̄(t)

]
, t

)
=
[
1− δ̄(t)

]
P (k, t)

[
1− 1

3

d lnP (k, t)

d ln k
δ̄(t)

]
= P (k, t)

[
1− 1

3

d ln k3P (k, t)

d ln k
δ̄(t)

]
. (4.30)
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Eq. (4.30) is also known as the “dilation” effect in [97, 98], which is the consequence that the
presence of the long-wavelength overdensity perturbation slows down the local expansion
rate.

Another effect arises due to the change in the “reference density”. That is, the back-
ground density in two cosmologies are related by ˜̄ρ(t) = ρ(t)

[
1 + δ̄(t)

]
, and since power

spectrum is proportional to density squared, in the overdense universe the power spectrum
at the linear order of δ̄(t) becomes

P̃ (k̃, t)→
[
1 + δ̄(t)

]2
P̃ (k̃, t) =

[
1 + 2δ̄(t)

]
P̃ (k̃, t) . (4.31)

Combining the effects of dilation and the reference density, and using the scale factor
instead of time, the power spectrum in the presence of δ̄ is given by

P (k, a|δ̄) =
[
1 + 2δ̄(t)

]
P̃ (k, ã)

[
1− 1

3

d ln k3P (k, t)

d ln k
δ̄(t)

]
= P̃

(
k, a

[
1− 1

3
δ̄(a)

])[
1 +

(
2− 1

3

d ln k3P (k, a)

d ln k

)
δ̄(a)

]
. (4.32)

Note that this expression is only valid to linear order in δ̄.
Both P (k) and δ̄ are measured in a finite volume, described by the window function

WL. In order to take this into account, eq. (4.32) is convolved by the window function.
Note that we take the convolution after applying the derivative d ln k3P (k)/d ln k, rather
than taking the derivative of the convolved power spectrum. This is because the window
function is fixed in terms of observed coordinates (in the fiducial cosmology), i.e., it is not
subject to the rescaling of eq. (4.26). Taking the slope of the convolved power spectrum
would correspond to a window function defined in the “local” curved cosmology.

4.3.1 Linear power spectrum

For the linear power spectrum, Pl, we have

P̃l

(
k, a

[
1− 1

3
δ̄(a)

])
=

(
D̃
(
a
[
1− 1

3
δ̄(a)

])
D(a)

)2

Pl(k, a) . (4.33)

As shown in section 3.2.2 (see also appendix D of [11]), the linear growth factor is changed
following

D̃

(
a

[
1− 1

3
δ̄(a)

])
= D(a)

[
1 +

13

21
δ̄(a)

]
, (4.34)

where D(a) is the growth factor in the fiducial cosmology. The prefactor 13/21 is only
strictly valid for an Einstein-de Sitter cosmology; however, the cosmology dependence
is very mild. The fractional difference of d lnD(a)/dδ̄ between ΛCDM cosmology and
Einstein-de Sitter universe at z = 0 is at the 0.1% level.
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Putting everything together, eq. (4.32) yields for the linear response function of the
linear power spectrum

d lnPl(k, a)

dδ̄(a)
=

68

21
− 1

3

d ln k3Pl(k, a)

d ln k
. (4.35)

This result (which again is only exact for Einstein-de Sitter) matches the expression derived
from the F2 kernel given in eq. (4.22).

4.3.2 SPT 1-loop power spectrum

Expanding matter density fluctuations to third order, one obtains the so-called “SPT 1-
loop power spectrum” given by P (k, a) = Pl(k, a) + P22(k, a) + 2P13(k, a), where [17]

P22(k, a) = 2

∫
d3q

(2π)3
Pl(q, a)Pl(|k− q|, a) [F2(q,k− q)]2 , (4.36)

2P13(k, a) =
2πk2

252
Pl(k, a)

∫ ∞
0

dq

(2π)3
Pl(q, a)

×

[
100

q2

k2
− 158 + 12

k2

q2
− 42

q4

k4
+

3

k5q3
(q2 − k2)3(2k2 + 7q2) ln

(
k + q

|k − q|

)]
.

Both P22 and P13 are proportional to D4(a). Modifying the growth factor as described in
section 4.3.1, we obtain the linear response function of the SPT 1-loop power spectrum as

d lnP (k, a)

dδ̄(a)
=

68

21
− 1

3

d ln k3P (k, a)

d ln k
+

26

21

P22(k, a) + 2P13(k, a)

P (k, a)
. (4.37)

Note that this can easily be generalized to n loops in perturbation theory by using that
d lnP(n−loop)(k, a)/d lnD(a) = 2n+2. We include the window function effect by computing
conv[dP (k)/dδ̄]/conv[P (k)].

Figure 4.4 compares the linear theory and the SPT 1-loop predictions with the N -
body simulation results. The SPT 1-loop prediction captures the damping of BAOs due
to nonlinear evolution, and agrees well with the simulation results at z = 1, 2, and 3.
This is expected from the excellent performance of the 1-loop matter power spectrum at
high redshifts as demonstrated by [77]. The agreement degrades rapidly at z = 0, also as
expected. Note that comparing z = 2 and 3, the 1-loop prediction seems to agree better
with the measurements at z = 2. However, as mentioned in section 4.1, transients and
other systematics might have an impact of up to 5% on the measurements at z = 3, which
is larger than the difference shown in the top left panel of figure 4.4.

4.3.3 halofit and Coyote emulator

We now apply the separate universe approach to simulation-calibrated fitting formulae for
the nonlinear matter power spectrum, specifically the halofit prescription [152] and the
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Figure 4.4: Normalized integrated bispectrum from the N -body simulations (points with
error bars) and the linear response functions, d lnP (k, a)/dδ̄(a), computed from the sep-
arate universe approach combined with perturbation theory. The red dashed lines show
the linear theory results (eq. (4.35)), while the blue solid lines show the SPT 1-loop results
(eq. (4.37)). The agreement between the 1-loop predictions and the simulation results is
very good at z ≥ 1. Note that the difference between the normalized integrated bispectrum
and the linear response function at k . 0.2 h Mpc−1 is due to the squeezed limit not being
reached yet (see the text below eq. (4.22)).

Coyote emulator [70]. These prescriptions yield P̃ (k, a) for a given set of cosmological
parameters, so that eq. (4.32) can be immediately applied. However, the Coyote emulator
does not provide predictions for curved cosmologies, and we hence adopt a simpler approach
here.

In case of the linear power spectrum, the effect of the modified cosmology enters only
through the modified growth factor given in eq. (4.34). Correspondingly, we can approx-
imate the effect on the nonlinear power spectrum by a change in the value of the power
spectrum normalization σ8 at redshift zero,

σ8 →
[
1 +

13

21
δ̄0

]
σ8 , (4.38)
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Figure 4.5: Same as figure 4.4, but for the linear response functions computed from halofit
(red solid), the Coyote emulator (green dat-dashed), and the halo model (blue dashed).

where we have used the Einstein-de Sitter prediction. Therefore, the nonlinear power
spectrum response becomes

d lnPnl(k, a)

dδ̄(a)
=

13

21

d lnPnl(k, a)

d lnσ8

+ 2− 1

3

d ln k3Pnl(k, a)

d ln k
. (4.39)

The results of applying eq. (4.39) to halofit (red solid) and the Coyote emulator (green
dot-dashed) are shown in figure 4.5. In terms of broad-band power, the halofit prediction
provides a good match. However, the predicted BAO amplitude are larger than the mea-
surement, especially at low redshift at k & 0.3 h Mpc−1. Also, while the BAO phases
of halofit follow the SPT prediction, there are some differences with respect to the mea-
surement of the N -body simulations due to the nonlinear evolution. The Coyote emulator
performs to better than ∼ 2% over the entire range of scales and redshifts. It slightly
underpredicts the small-scale power at k > 0.3 h Mpc−1 for z ≥ 1. For redshifts z ≥ 2 and
on the scales considered, the 1-loop predictions are of comparable accuracy to the Coyote
emulator, while the latter provides a better fit at lower redshifts. Finally, note also our
previous caveat regarding transients at the end of section 4.3.2.
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4.3.4 Halo model

In the halo model (see [35] for a review), all matter is assumed to be contained within
halos with a certain distribution of mass given by the mass function, and a certain density
profile. Along with the clustering properties of the halos, these quantities then determine
the statistics of the matter density field on all scales including the nonlinear regime. N -
point functions can be conveniently decomposed into one- through N -halo pieces. In the
following, we will follow the most common halo model approach and assume a linear local
bias of the halos.

Adopting the notation of [157], the halo model power spectrum, PHM(k), is given by

PHM(k) = P 2h(k) + P 1h(k) , P 2h(k) =
[
I1

1 (k)
]2
Pl(k) , P 1h(k) = I0

2 (k, k) , (4.40)

where

Inm(k1, · · · , km) ≡
∫
d lnM n(lnM)

(
M

ρ̄

)m
bn(M)u(M |k1) · · ·u(M |km) , (4.41)

and n(lnM) is the mass function (comoving number density per interval in log mass),
M is the halo mass, bn(M) is the n-th order local bias parameter, and u(M |k) is the
dimensionless Fourier transform of the halo density profile, for which we use the NFW
profile [118]. We normalize u so that u(M |k → 0) = 1. The notation given in eq. (4.41)
assumes b0 ≡ 1. u(M |k) depends on M through the scale radius rs, which in turn is
given through the mass-concentration relation. All functions of M in eq. (4.41) are also
functions of z although we have not shown this for clarity. In the following, we adopt the
Sheth-Tormen mass function [149] with the corresponding peak-background split bias, and
the mass-concentration relation of [24]. The exact choice of the latter has negligible impact
on the mildly nonlinear scales, but does not affect the conclusion.

We now derive how the power spectrum given in eq. (4.40) responds to an infinitely
long-wavelength density perturbation δ̄, as was done for the halofit and Coyote emulator
approaches. For this, we consider the one-halo and two-halo terms separately. The key
physical assumption we make is that halo profiles in physical coordinates are unchanged
by the long-wavelength density perturbation. That is, halos at a given mass M in the
presence of δ̄ have the same scale radius rs and scale density ρ(rs) as in the fiducial
cosmology. This assumption, which is related to the stable clustering hypothesis, can be
tested independently with simulations, but we shall leave it for future work. Given this
assumption, the density perturbation δ̄ then mainly affects the linear power spectrum,
which determines the halo-halo clustering (two-halo term), and the abundance of halos at
a given mass.

We begin with the two-halo term. The response of the linear power spectrum is given
by eq. (4.35). The expression for the two-halo term in eq. (4.40) is simply the convolution
(in configuration space) of the halo correlation function in the linear bias model with
the halo density profiles. By assumption, the density profiles do not change, hence I1

1

only changes through the bias b1(M) and the mass function n(lnM). The bias bN(M)



56 4. Measurement of position-dependent power spectrum

quantifies the N -th order response of the mass function n(lnM) to an infinite-wavelength
density perturbation [115, 137]:

bN(M) =
1

n(lnM)

∂Nn(lnM)

∂δ̄N

∣∣∣
δ̄=0

. (4.42)

We then have

∂n(lnM)

∂δ̄

∣∣∣
δ̄=0

= b1(M)n(lnM) ,

∂b1(M)

∂δ̄

∣∣∣
δ̄=0

= − [b1(M)]2 + b2(M) . (4.43)

Thus,

∂

∂δ̄
I1

1 (k) =

∫
d lnM n(lnM)

(
M

ρ̄

){
[b1(M)]2 − [b1(M)]2 + b2(M)

}
u(M |k)

=

∫
d lnM n(lnM)

(
M

ρ̄

)
b2(M)u(M |k)

= I2
1 (k) . (4.44)

In the large-scale limit, k → 0, this vanishes by way of the halo model consistency relation∫
d lnM n(lnM)

(
M

ρ̄

)
bN(M) =

{
1, N = 1 ,
0, N ≥ 1 .

(4.45)

For finite k however, eq. (4.44) does not vanish. Thus, the linear response function of the
two-halo term becomes

dP 2h(k)

dδ̄

∣∣∣
δ̄=0

=

[
68

21
− 1

3

d ln k3Pl(k)

d ln k

]
P 2h(k) + 2I2

1 (k)I1
1 (k)Pl(k) . (4.46)

Note that we recover the tree-level result given in eq. (4.35) in the large-scale limit.
Strictly speaking, this expression is not consistent, since the term I2

1 implies a non-zero
b2 while in eq. (4.40) we have assumed a pure linear bias. Of course, if we allowed for
b2 in eq. (4.40), we would obtain a contribution from b3 in eq. (4.46), and so on. This
reflects the fact that the halo model itself cannot be made entirely self-consistent. Note
that in eq. (4.46) the slope is taken from the linear, not two-halo power spectrum. This is
a consequence of our assumption that halo profiles do not change due to δ̄; in other words,
having d ln k3P 2h/d ln k would imply that the profiles do change (in the sense that they are
fixed in comoving, rather than physical coordinates).

We now turn to the one-halo term. Given our assumption about density profiles, this
term is much simpler. The only effect is the change in the mass function, which through
eq. (4.42) (for N = 1) yields

∂

∂δ̄
I0

2 (k, k) = I1
2 (k, k) . (4.47)
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We thus obtain

dP 1h(k)

dδ̄

∣∣∣
δ̄=0

= I1
2 (k, k) . (4.48)

Putting everything together, we obtain

d lnPHM(k)

dδ̄

∣∣∣
δ̄=0

=
[
PHM(k)

]−1
[(

68

21
− 1

3

d ln k3Pl(k)

d ln k

)
P 2h(k) + 2I2

1 (k)I1
1 (k)Pl(k) + I1

2 (k, k)

]
.

(4.49)
The prediction of eq. (4.49) is shown as the blue dashed lines in figure 4.5. The amplitude
and broad-band shape agree with the simulations well. The main discrepancy in the halo
model prediction is the insufficient damping of the BAO wiggles.

An alternative approach to derive the halo model prediction for iBL(k) is to use higher
N -point functions [84, 97], which are decomposed into one-, . . . , N−halo terms. We now
compare eq. (4.49) with the results of [97], which were derived from the halo model four-
point function in the collapsed limit. Note that the squeezed limit is assumed in both
approaches. Their eq. (27) is

d lnPHM(k)

dδ̄

∣∣∣
δ̄=0

=
[
PHM(k)

]−1
[(

68

21
− 1

3

d ln k3P 2h(k)

d ln k

)
P 2h(k) + I1

2 (k, k)

]
. (4.50)

There are two differences to eq. (4.49): the term ∝ I2
1 is absent, and the slope is taken

from from P 2h rather than Pl. The I2
1 term is absent in eq. (4.50) as by assumption b2

was taken to be zero in the four-point function of [97]; as discussed above, its inclusion is
somewhat ambiguous given the lack of self-consistency of the halo model approach. The
different power spectrum slopes are due to the different sources of this term in the two
derivations. In our case, the assumption of unchanged halo profiles dictates the form of
eq. (4.49). In the derivation of eq. (4.50), the slope originates from the integral over the F2

kernel in the three-halo term, which proceeds as described in appendix A but involves P 2h

instead of Pl. Note however that the numerical difference between eq. (4.50) and eq. (4.49)
is only at the percent level.

4.4 Dependence on cosmological parameters

Both the matter power spectrum and (integrated) bispectrum depend on the cosmological
parameters such as Ωm, σ8, ns. However, the normalized integrated bispectrum is much less
sensitive to cosmology as the leading cosmology dependence is taken out by the normalizing
denominator.

Eq. (4.37) is useful for understanding the dependence of the response function of the
power spectrum (and thus the normalized integrated bispectrum) on cosmological param-
eters. The second term depends on the local spectral index of the matter power spectrum,
d ln k3P (k)/d ln k, which depends on the initial power spectrum tilt, ns, and the matter
and radiation densities which change the redshift of matter-radiation equality as well as
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Figure 4.6: The linear response functions computed from the SPT 1-loop power spectrum
with various cosmological parameters at z = 2. The fiducial cosmology (Ωm = 0.27,
σ8 = 0.7913, and ns = 0.95) is shown in green solid lines. The red dot-dashed (blue
dashed) lines represent the cosmologies with -5% (+5%) of the fiducial parameters, Ωm

(left), σ8 (middle), and ns (right).

the BAO scale. It also depends on the shape of BAO wiggles, and increasing the ampli-
tude of the matter power spectrum (σ8) leads to a stronger damping of the BAO feature.
Increasing σ8 further increases the last term, which is proportional to σ2

8.

Figure 4.6 shows the linear response functions, d lnP (k, a)/dδ̄(a) computed from the
SPT 1-loop power spectrum (eq. (4.37)) at z = 2 when varying cosmological parameters
by ±5%. The effects on the response functions are at the percent level or less, illustrating
the weak cosmology dependence of this observable. On the scales considered, the shift in
the BAO scale when varying Ωm leads to the relatively largest effect. We expect that the
sensitivity to changes in σ8 will be higher on smaller, more nonlinear scales.

4.5 Fisher matrix calculation

Now that we understand the behavior of the integrated bispectrum, how does it compare
with the full bispectrum in terms of measuring the cosmological parameters, particularly
the primordial non-Gaussianity? In this section, we perform the Fisher matrix calculation
(see e.g. [160] for a review) for both the full bispectrum analysis and the integrated
bispectrum technique, and compare the performances between the two methods. We shall
use the simplest primordial non-Gaussianity model as discussed in section 2.1.4, i.e.

Bg(k1,k2,k3) = b3
1BSPT(k1,k2,k3) + b2

1b2Bb2(k1,k2,k3) + b3
1fNLBfNL

(k1,k2,k3)

iBL,g(k) = b3
1iBL,SPT(k) + b2

1b2iBL,b2(k) + b3
1fNLiBL,fNL

(k) . (4.51)

The Fisher matrix of the reduced bispectrumQ(k1, k2, k3) ≡ B(k1, k2, k3)/[P (k1)P (k2)+
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2 cyclic] is given by

FQ,αβ =
∑

k1,k2,k3≤kmax

∂Q(k1, k2, k3)

∂pα

∂Q(k1, k2, k3)

∂pβ

1

∆Q2(k1, k2, k3)
, (4.52)

where (k1, k2, k3) have to form a triangle, pα ∈ [b1, b2, fNL] are the parameters we want
to constrain, and ∆Q2(k1, k2, k3) is the variance of the reduced bispectrum estimator.
Similarly, the Fisher matrix of the integrated bispectrum can be written as

FibL,αβ =
∑
L

∑
k≤kmax

∂ibL(k)

∂pα

∂ibL(k)

∂pβ

1

∆ib2
L(k)

. (4.53)

Here, we ignore off-diagonal elements of the covariance matrix of Q or ibL. In general,
nonlinear evolution generates non-vanishing covariances. This is, however, justified at high
redshift (z ≥ 2) as we show in the right panel of figure B.1.

The variance of the estimator for the integrated bispectrum is computed in appendix B.
The variance of the estimator for the bispectrum is computed [144]

∆B2(k1, k2, k3) =
πs123

k1k2k3

P (k1)P (k2)P (k3) , (4.54)

where s123 = 6, 2, 1 for equilateral, isosceles, and general triangles, respectively (we set ∆k
to be the fundamental frequency). Similar to the integrated bispectrum, we assume that
the variance of the reduced bispectrum is dominated by the numerators, so

∆Q2(k1, k2, k3) ≈ ∆B2(k1, k2, k3)

[P (k1)P (k2) + 2 cyclic]2
. (4.55)

Since galaxies are observed in redshift space, we model the redshift-space distortions by
the simple Kaiser factor, Pz = KpPr and Bz = KbBr, where the subscripts r and z denote
the real- and redshift-space quantities, and

Kp = 1 +
2

3

f

b1

+
1

5

(
f

b1

)2

, Kb = 1 +
2

3

f

b1

+
1

9

(
f

b1

)2

(4.56)

with f = d lnD/d ln a being the growth rate. The derivatives of Q and ibL with respect to
b1 thus contain the contributions from dKp/db1 and dKb/db1. The variances of the redshift-
space reduced bispectrum and the normalized integrated bispectrum with the Poisson shot
noise are then given by

∆Q2(k1, k2, k3) ≈ πs123

k1k2k3

[Pz(k1) + Pshot][Pz(k2) + Pshot][Pz(k3) + Pshot]

[Pz(k1)Pz(k2) + 2 cyclic]2

∆ib2
L(k) ≈ VL

VrNkL

[σ2
L,z + Pshot/VL][PL,z(k) + Pshot]

2

σ4
L,zP

2
L,z(k)

, (4.57)
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Figure 4.7: Two-dimensional joint 95% C.L. constraints on galaxy bias and primordial non-
Gaussianity for BOSS (left) and HETDEX (right). The survey parameters are in the top
right panel. The top left, bottom left, and bottom right panels show the joint constraints
on (b1, b2), (b1, fNL), and (b2, fNL) marginalized over fNL, b2, and b1, respectively. The blue
dashed, green solid, and red dot-dashed lines are for full bispectrum with kmin = kF =
2π/V

1/3
r , full bispectrum with kmin = kF,L = 2π/L where L is the largest subvolume size

(600 h−1 Mpc), and integrated bispectrum for six sizes of subvolumes (100 h−1 Mpc to
600 h−1 Mpc with an increment of 100 h−1 Mpc), respectively.

where Pz(k) = b2
1KpPl(k), σ2

L,z = b2
1Kpσ

2
L, and PL,z(k) = b2

1KpPL(k).

Figure 4.7 shows the two-dimensional joint 95% C.L. constraints on galaxy bias and
primordial non-Gaussianity for BOSS [4] (left) and HETDEX [71] (right). The survey
parameters and the fiducial cosmological parameters are shown in the top-right of each
panel. The blue dashed line is the full bispectrum analysis with kmin = 2π/V

1/3
r being the

fundamental frequency of the entire survey Vr; the green solid line is the full bispectrum
analysis with kmin = 2π/V

1/3
L being the fundamental frequency of the largest subvolume for

the integrated bispectrum (VL = [600 h−1 Mpc]3); the red dot-dashed line is the integrated
bispectrum with six sizes of subvolumes from 100 h−1 Mpc to 600 h−1 Mpc (with an

increment of 100 h−1 Mpc) with kmin = 2π/V
1/3
L being the fundamental frequency of the

corresponding subvolumes.

One finds that as long as kmin is set to be the fundamental frequency of the largest
subvolume, the integrated bispectrum technique gives the similar constraint on fNL com-
pared to the full bispectrum analysis.2 On the other hand, the integrated bispectrum has

2Note that the numerical results are sensitive to the choices of kmin and kmax because we count the
Fourier modes in this range. For different lines, although kmax is set to be the same, in practice we stop
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poor constraints on b1 and b2 compared to the full bispectrum analysis. In particular, in
the top-left panel the signal of integrated bispectrum has a strong degeneracy between
b1 and b2. This is somewhat expected because in figure 2.1 one finds that not only the
black solid and black dashed lines have similar scale dependences in a given subvolume,
but in different subvolumes they all have similar contribution, unlike the bispectrum of the
primordial non-Gaussianity. This thus makes it difficult to break the degeneracy between
b1 and b2 using the integrated bispectrum.

We also find that while the full bispectrum analysis and the integrated bispectrum
technique give similar constraints on fNL, the number of counted Fourier modes differ
dramatically. For example, for the BOSS parameter, the full bispectrum analysis with
kmin = 2π/V

1/3
r counts 7113 configurations of triangles, whereas the integrated bispectrum

technique counts only 54 Fourier modes. Even if kmin is set to be 2π/V
1/3
L for the full

bispectrum analysis, there are still 6730 configurations of triangles. This is a big advantage
for the integrated bispectrum technique because estimating the covariance matrix from
mock catalogs would require a large number of realizations, which will be difficult (but not
impossible) to obtain for the full bispectrum. This difference in the number of counted
Fourier modes also explains why the full bispectrum analysis has much better constraints
on b1 and b2. However, many of the triangles do not contain much more information on
fNL, so if one is interested in measuring fNL, the integrated bispectrum technique provides
an easier approach and captures most of the information.

4.6 Discussion and conclusion

In this chapter, we have demonstrated a novel method to measure the squeezed-limit bis-
pectrum. By measuring the correlation between the mean density fluctuation and the
position-dependent power spectrum, we obtain a measurement of an integral of the bispec-
trum (integrated bispectrum) without having to actually measure three-point correlations
in the data. The integrated bispectrum is dominated by the squeezed-limit bispectrum,
which is much easier to model than the full bispectrum for all configurations. This is
evidenced by figure 4.4 and figure 4.5, where we show model predictions accurate to a few
percent using existing techniques and without tuning any parameters.

A further, key advantage of this new observable is that both the mean density fluctu-
ation and the power spectrum are significantly easier to measure in actual surveys than
the bispectrum in terms of survey selection functions. In particular, the procedures de-
veloped for power spectrum estimation can be directly applied to the measurement of the
position-dependent power spectrum. Additionally, the position-dependent power spectrum
depends on only one wavenumber (at fixed size of the subvolume) rather than the three
wavenumbers of the bispectrum. Consequently, the covariance matrix also becomes easier

counting Fourier modes if k > kmax. Therefore they have different “true” kmax, and the contour area
would be affected, especially the green solid lines seem to have slightly worse constraints on fNL compared
to the red dot-dashed lines. Here, however, what we are interested in is the general properties between
different methods, so we should neglect the effect due to different kmax.
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to model.
We have measured the position-dependent power spectrum in 160 collisionless N -body

simulations with Gaussian initial conditions, and have used two different approaches, bis-
pectrum modeling and the separate universe approach, to model the measurements. All of
the approaches work well on large scales, k . 0.2 h Mpc−1, and at high redshift. On small
scales, where nonlinearities become important, the separate universe approach (section 4.3)
applied through the Coyote emulator prescription performs best at redshifts z < 2, while
the SPT 1-loop predictions perform equally well at z ≥ 2. Both show agreement to within
a few percent up to k = 0.4 h Mpc−1. Accurate predictions for the position-dependent
power spectrum on these and even smaller scales can be obtained by applying the separate
universe approach to dedicated small-box N -body simulations of curved cosmologies, as
described in section 6.2.

The normalized integrated bispectrum is relatively insensitive to changes in cosmo-
logical parameters (section 4.4), and we do not expect that it will allow for competitive
cosmology constraints. On the other hand, this property can also be an advantage: since
this observable can be predicted accurately without requiring a precise knowledge of the
cosmology, it can serve as a useful systematics test for example in weak lensing surveys. As
an example, consider eq. (4.4) applied to shear measurements. A constant multiplicative
bias 1 + m in the shear estimation contributes a factor (1 + m)3 on the left hand side
of the equation, and a factor (1 + m)4 on the right hand side. Thus, by comparing the
measured normalized integrated bispectrum with the (essentially cosmology-independent)
expectation, one can constrain the multiplicative shear bias.

The position-dependent power spectrum can also naturally be applied to the case of
spectroscopic galaxy surveys, in which case the nonlinear bias of the observed tracers
also contributes to the bispectrum and position-dependent power spectrum. Thus, when
applied to halos or galaxies, this observable can serve as an independent probe of the
bias parameters and break degeneracies between bias and growth which are present when
only considering the halo or galaxy power spectrum. We shall exploit this to measure the
nonlinear bias of the BOSS CMASS galaxies in chapter 5.

We finally use the Fisher matrix to show that if multiple sizes of subvolumes are used,
the position-dependent power spectrum captures most of the information of the local-
type non-Gaussianity contained in the full bispectrum analysis, but for much less Fourier
modes. This is a huge advantage for this novel technique as the computational requirement
for estimating the covariance matrix is largely alleviated. Consequently, the position-
dependent power spectrum provides an easier approach for hunting the primordial non-
Gaussianity for future galaxy surveys.



Chapter 5

Measurement of position-dependent
correlation function

In this chapter, we measure the position-dependent correlation function and the integrated
three-point function from real data, the SDSS-III Baryon Oscillation Spectroscopic Survey
Data Release 10 (BOSS DR10) CMASS sample [3, 6].

As introduced in section 2.2, the correlation between the position-dependent correlation
function,

ξ̂(r, rL) =

∫
d2r̂

4π
ξ̂(r, rL) =

1

VL

∫
d2r̂

4π

∫
d3x δ(r+x)δ(x)WL(r+x−rL)WL(x−rL) , (5.1)

and the mean overdensity,

δ̄(rL) =
1

VL

∫
d3q

(2π)3
δ(−q)WL(q)e−irL·q , (5.2)

is the integrated three-point function

iζL(r) = 〈ξ̂(r, rL)δ̄(rL)〉

=
1

V 2
L

∫
d2r̂

4π

∫
d3x1

∫
d3x2 ζ(r + x1 + rL,x1 + rL,x2 + rL)

×WL(r + x1)WL(x1)WL(x2) , (5.3)

where VL is the size of the subvolume. Inspired by the behavior in the squeezed-limit
where r � L, we define the normalized integrated three-point function as iζL(r)/σ2

L with
σ2
L being the variance of the fluctuations in VL. Note that when comparing the model to

the measurements, we shall divide the model by fL,bndry(r), which is given in eq. (2.35), to
correct for the boundary effect.

The integrated three-point function is simply the Fourier transform of the integrated
bispectrum

iζL(r) =

∫
k2dk

2π2
iBL(k)sinc(kr) . (5.4)
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Therefore, if we do not have the analytical expression for the three-point function, we can
first compute the integrated bispectrum and Fourier transform it to obtain the integrated
three-point function. One example is the redshift-space integrated three-point function, for
which we first evaluate the redshift-space integrated bispectrum with the explicit expression
of the SPT redshift-space bispectrum given in appendix A.2, and then apply eq. (5.4). We
also show that the precision of this operation (nine-dimensional integral in total) is within
2% on the scales of interest (30 h−1 Mpc ≤ r ≤ 78 h−1 Mpc, which we will justify in
section 5.1.3).

This chapter is organized as follows. In section 5.1 and section 5.2, we measure the
position-dependent correlation function from PTHalos mock catalogs [143, 104, 103] and
the BOSS DR10 CMASS sample, respectively. The cosmological interpretation of the
measurement is in section 5.3. We conclude in section 5.4.

5.1 Measurement of PTHalo mock catalogs

We first apply the position-dependent correlation function technique to the 600 PTHalo
mock galaxy catalogs of the BOSS DR10 CMASS sample in the North Galactic Cap (NGC).
From now on, we refer to the real and mock BOSS DR10 CMASS samples as the “obser-
vations” and “mocks”, respectively.

We use the redshift range of 0.43 < z < 0.7, and each realization of mocks contains
roughly 400,000 galaxies. We convert the positions of galaxies in RA, DEC, and redshift
to comoving distances using the cosmological parameters of the mocks. The mocks have
the same observational conditions as the observations, and we correct the observational
systematics by weighting each galaxy differently. Specifically, we upweight a galaxy if
its nearest neighbor has a redshift failure (wzf) or a missing redshift due to a close pair
(wcp). We further apply weights to correct for the correlation between the number density
of the observed galaxies and stellar density (wstar) and seeing (wsee). We apply the same
weights as done in the analyses of the BOSS collaboration, namely FKP weighting, wFKP =
[1 + Pwn̄(z)comp]−1 [56], where Pw = 20000 h−3 Mpc3, and n̄(z) and “comp” are the
expected galaxy number density and the survey completeness, respectively, provided in
the catalogs. Therefore, each galaxy is weighted by wBOSS = (wcp +wzf − 1)wstarwseewFKP.

In this section, we present measurements from mocks in real space in section 5.1.3 and
redshift space in section 5.1.4. The application to the CMASS DR10 sample is the subject
of section 5.2.

5.1.1 Dividing the subvolumes

We use SDSSPix1 to pixelize the DR10 survey area. In short, at the lowest resolution
(res=1) SDSSPix divides the sphere equally into nx = 36 longitudinal slices across the
hemisphere (at equator each slice is 10 degrees wide), and each slice is divided into ny = 13
pieces along constant latitudes with equal area. Thus, for res=1 there are nx × ny = 468

1SDSSPix: http://dls.physics.ucdavis.edu/~scranton/SDSSPix

http://dls.physics.ucdavis.edu/~scranton/SDSSPix
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Figure 5.1: Division of random samples into subvolumes with two resolutions in the RA-
DEC plane. Each colored pattern extends over the redshift direction.

pixels. In general the total number of pixels is n′x×n′y = (res nx)× (res ny) = (res)2× 468,
and in this chapter we shall set res=1024. After the pixelization, the ith object (a galaxy
or a random sample) has the pixel number (ix, iy).

We use two different subvolume sizes. To cut the irregular survey volume into subvol-
umes with roughly the same size, we first divide the random samples at all redshifts into 10
and 20 slices across longitudes with similar numbers of random samples; we then divide the
random samples in each slice into 5 and 10 segments across latitudes with similar numbers
of random samples. Figure 5.1 shows the two resolutions of our subvolumes before the red-
shift cuts. (Note that this resolution is different from the resolution of SDSSPix, which we
always set to res=1024.) Each colored pattern extends over the redshift direction. Finally,
we divide the two resolutions into three (zcut = 0.5108, 0.5717) and five (zcut = 0.48710,
0.52235, 0.55825, 0.60435) redshift bins.

As a result, there are 150 and 1000 subvolumes for the low and high resolution configu-
rations, respectively. The sizes of the subvolumes are approximately V

1/3
L = 220 h−1 Mpc

and 120 h−1 Mpc, respectively2. The fractional differences between the numbers of the
random samples in subvolumes for the low and high resolutions are within +0.68%

−0.58% and
+1.89%
−1.83%, respectively. Since the number of random samples represents the effective volume,
all subvolumes at a given resolution have similar effective volumes. We assign galaxies into
subvolumes following the division of random samples.

2The shapes of the subvolumes are not exactly cubes. For example, for the high resolution, the ratios
of square root of the area to the depth,

√
LxLy/Lz, are roughly 0.78, 1.42, 1.51, 1.28, and 0.71, from the

lowest to the highest redshift bins. The results are not sensitive to the exact shape of the subvolumes, as
long as the separation of the position-dependent correlation function that we are interested in is sufficiently
smaller than Lx, Ly, and Lz.
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5.1.2 Estimators in the subvolumes

In the ith subvolume, we measure the mean overdensity with respect to the entire NGC, δ̄i,
and the position-dependent correlation function, ξ̂i(r). The mean overdensity is estimated
by comparing the total weighted galaxies to the expected number density given by the
random samples, i.e.,

δ̄i =
1

α

wg,i
wr,i
− 1 , α ≡

∑Ns

i=1 wg,i∑Ns

i=1wr,i
=
wg,tot

wr,tot

, (5.5)

where wg,i and wr,i are the total weights (wBOSS) of galaxies and random samples in the
ith subvolume, respectively, and Ns is the number of subvolumes.

We use the Landy-Szalay estimator [91] to estimate the position-dependent correlation
function as

ξ̂LS,i(r, µ) =
DDi(r, µ)

RRi(r, µ)

(
[
∑

r wr,i]
2 −

∑
r w

2
r,i

[
∑

g wg,i]
2 −

∑
g w

2
g,i

)
− DRi(r, µ)

RRi(r, µ)

([
∑

r wr,i]
2 −

∑
r w

2
r,i)∑

g wg,i
∑

r wr,i
+ 1 ,

(5.6)
where DDi(r, µ), DRi(r, µ), and RRi(r, µ) are the weighted numbers of galaxy-galaxy,
galaxy-random, and random-random pairs within the ith subvolume, respectively, and µ is
the cosine between the line-of-sight vector and the vector connecting galaxy pairs (r1−r2).
The summations such as

∑
r wr,i and

∑
g wg,i denote the sum over all the random sam-

ples and galaxies within the ith subvolume, respectively. The angular average correlation
function is then ξ̂LS,i(r) =

∫ 1

0
dµ ξ̂LS,i(r, µ).

Eq. (5.6) estimates the correlation function assuming that the density fluctuation is
measured relative to the local mean. However, the position-dependent correlation function
defined in eq. (5.1) uses the density fluctuation relative to the global mean. These two
fluctuations can be related by δglobal = (1 + δ̄)δlocal + δ̄ with δ̄ = n̄local/n̄global−1. Thus, the

position-dependent correlation function, ξ̂i(r), is related to the Landy-Szalay estimator as

ξ̂i(r) = (1 + δ̄i)
2ξ̂LS,i(r) + δ̄2

i . (5.7)

To compute the average quantities over all subvolumes, we weight by wr,i in the corre-
sponding subvolume. For example, for a given variable gi in the ith subvolume, the average
over all subvolumes, ḡ, is defined by

ḡ =
1

wr,tot

Ns∑
i=1

giwr,i . (5.8)

Since the number of random samples in each subvolume represents the effective volume,
the average quantities are effective-volume weighted. Eq. (5.8) assures that the mean of
the individual subvolume overdensities is zero,

δ̄ =
1

wr,tot

Ns∑
i=1

δ̄iwr,i =
1

wr,tot

Ns∑
i=1

[
1

α
wg,i − wr,i

]
=
α

α
− 1 = 0 . (5.9)
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We also confirm that
¯̂
ξ(r) from eq. (5.7) agrees with the two-point function of all galaxies

in the entire survey, on scales smaller than the subvolume size. With ξ̂i(r) and δ̄i, we
estimate the shot-noise-corrected integrated three-point function in the subvolume of size
L as

iζ(r) =
1

wr,tot

Ns∑
i=1

ξ̂i(r)δ̄i − 2
¯̂
ξ(r)

(1 + α)

α

∑
r w

2
r,i∑

r n̄r,icompr,iw
2
r,i

(∑
r

1

n̄r,icompr,i

)−1
wr,i ,

(5.10)
where the second term in the parentheses is the shot noise contribution, and n̄r,i and
compr,i are the expected galaxy number density and the survey completeness, respectively,
of the random samples. Similarly, we estimate the shot-noise-corrected variance of the
fluctuations in the subvolumes of size L as

σ2
L =

1

wr,tot

Ns∑
i=1

δ̄2
i −

(1 + α)

α

∑
r w

2
r,i∑

r n̄r,icompr,iw
2
r,i

(∑
r

1

n̄r,icompr,i

)−1
wr,i , (5.11)

where the second term in the parentheses is the shot noise contribution. We find that the
shot noise is subdominant (less than 10%) in both iζ(r) and σ2

L.

5.1.3 Measurements in real space

Figure 5.2 shows the measurements of the two-point function ξ(r) from the entire survey
(top left) and the normalized integrated three-point functions (bottom panels),

iζL(r)

σ2
L

=

(
1

wr,tot

Ns∑
i=1

[
ξ̂i(r)δ̄iwr,i

]) 1

σ2
L

, (5.12)

for the subvolumes of two sizes (220 h−1 Mpc in the bottom-left and 120 h−1 Mpc in the
bottom-right panels). The gray lines show individual realizations, while the dashed lines
show the mean.

We now fit models of ξ(r) and iζL(r)/σ2
L to the measurements in 30 h−1 Mpc ≤ r ≤

78 h−1 Mpc. We choose this fitting range because there are less galaxy pairs at larger
separations due to the subvolume size, and the nonlinear effect becomes too large for our
SPT predictions to be applicable at smaller separations. For the two-point function, we
take the Fourier transform of [42]

Pg(k) = b2
1[Pl(k)e−k

2σ2
v + AMCPMC(k)] , (5.13)

where b1 is the linear bias, Pl(k) is the linear power spectrum, AMC is the mode coupling
constant, and

PMC(k) = 2

∫
d3q

(2π)3
Pl(q)Pl(|k− q|)[F2(q,k− q)]2 . (5.14)
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Figure 5.2: (Top left) ξ(r) of the mocks in real space. The gray lines show individual
realizations, while the dashed line shows the mean. The black solid line shows the best-
fitting model. (Top right) χ2-histogram of the 600 mocks jointly fitting the models to ξ(r)
and iζL(r)/σ2

L in real space. The dashed line shows the χ2-distribution with d.o.f.=36.
(Bottom left) iζL(r)/σ2

L of the mocks in real space for 220 h−1 Mpc subvolumes. (Bottom
right) Same as the bottom left panel, but for 120 h−1 Mpc subvolumes.

Hence, ξg(r) = b2
1[ξl,σv(r) + AMCξMC(r)] with

ξl,σv(r) =

∫
d3k

(2π)3
Pl(k)e−k

2σ2
veik·r , ξMC(r) =

∫
d3k

(2π)3
PMC(k)eik·r . (5.15)

We use a fixed value of σ2
v = 20.644. Varying it has only small effect on the other fitted

parameters. For the integrated three-point function, we use the SPT calculation with the
boundary effect correction, which is given by

iζL,g(r)

σ2
L

=
b1iζL,SPT(r) + b2iζL,b2(r)

σ2
L,l

+
1

fL,bndry(r)
, (5.16)



5.1 Measurement of PTHalo mock catalogs 69

where iζL,SPT(r) and iζL,b2(r) are computed from eq. (5.3) with eq. (2.38) and eq. (2.40),
respectively, and σ2

L,l is the variance of the linear power spectrum computed from eq. (2.41),
using the subvolume sizes of L = 220 and 120 h−1 Mpc and the redshift of z = 0.57. Note
that the size of the subvolumes affects the values of σ2

L,l. We determine L by first measuring
b2

1 using the real-space two-point function of the entire survey, and then find L such that
b2

1σ
2
L,l = σ2

L assuming the cubic top-hat window function3. We find that these values
(L = 220 and 120 h−1 Mpc) agree well with the cubic root of the total survey volume
divided by the number of subvolumes, to within a few percent.

We fit the models to ξ(r) and iζL(r)/σ2
L of both subvolumes simultaneously by mini-

mizing

χ2 =
∑
ij

C−1
ij (Di −Mi)(Dj −Mj) , (5.17)

where C−1 is the inverse covariance matrix computed from the 600 mocks, Di and Mi

are the data and the model in the ith bin, respectively. The models contain three fitting
parameters b1, b2, and AMC.

The models computed with the mean of the best-fitting parameters of 600 mocks are
shown as the black solid lines in figure 5.2. The best-fitting parameters are b1 = 1.971 ±
0.076, b2 = 0.58 ± 0.31, and AMC = 1.44 ± 0.93, where the error bars are 1-σ standard
deviations. The agreement between the models and the mocks is good, with a difference
much smaller than the scatter among 600 mocks. Upon scrutinizing, the difference in ξ(r)
is larger for larger separations because the fit is dominated by the small separations with
smaller error bars. On the other hand, for iζ(r)/σ2

L the agreement is good for two sizes of
subvolumes at all scales of interest. This indicates that the SPT calculation is sufficient to
capture the three-point function of the mocks in real space.

The data points in figure 5.2 are highly correlated. To quantify the quality of the fit,
we compute the χ2-histogram from 600 mocks, and compare it with the χ2-distribution
with the corresponding degrees of freedom (d.o.f.). There are 13 fitting points for each
measurement (ξ(r) and two sizes of subvolumes for iζL(r)/σ2

L) and three fitting parameters,
so d.o.f.=36. The top right panel of figure 5.2 shows the χ2-histogram. The dashed line
shows the χ2-distribution with d.o.f.=36. The agreement is good, and we conclude that
our models well describe both ξ(r) and iζL(r)/σ2

L of the mocks in real space.
Our b1 is in good agreement with the results presented in figure 16 of [62], whereas

our b2 is smaller than theirs, which is ' 0.95, by 1.2σ. This may be due to the difference
in the bispectrum models. While we restrict to the local bias model and the tree-level
bispectrum, [62] includes a non-local tidal bias [113, 9, 148] and uses more sophisticated
bispectrum modeling using the effective F2 kernel [64, 63]. In appendix D, we show that
using the effective F2 kernel and the non-local tidal bias in the model increases the value
of b2, but the changes are well within the 1-σ uncertainties. Also, the differences of the
goodness of fit for various models are negligible.

The fitting range as well as the shapes of the bispectrum may also affect the results:
the integrated correlation function is sensitive only to the squeezed configurations, whereas

3In principle, the shape of the window function also affects σ2
L,l, but we ignore this small effect.
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Figure 5.3: Same as figure 5.2 but in redshift space.

[62] includes more equilateral and collapsed triangle configurations. Understanding this
difference merits further investigations.

5.1.4 Measurements in redshift space

Figure 5.3 shows the measurements of ξ(r) (top left) and iζL(r)/σ2
L (220 h−1 Mpc in the

bottom-left and 120 h−1 Mpc in the bottom-right panels) of the mocks in redshift space.
The gray lines show individual realizations, while the dashed lines show the mean. Similar
to the analysis in section 5.1.3, we fit the models in redshift space to the measurements in
30 h−1 Mpc ≤ r ≤ 78 h−1 Mpc. In this section, we use General Relativity to compute the
growth rate, f(z) ≈ Ωm(z)0.55, which yields f(z = 0.57) = 0.751. We shall allow f to vary
when interpreting the measurements in the actual data.

Since there is no baryonic acoustic oscillation feature on the scales we are interested in,
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Figure 5.4: Correlation matrix estimated from 600 mocks in redshift space. The figure
shows σ2

L and iζL(r)/σ2
L of 220 h−1 Mpc subvolumes from bin 0 to 13, σ2
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L of

120 h−1 Mpc subvolumes from bin 14 to 27, and ξ(r) from bin 28 to 40.

we model the redshift-space two-point correlation function as

ξg,z(r) = b2
1 [ξl,σv(r) + AMCξMC(r)]K , (5.18)

where ξl,σv(r) and ξMC(r) are given in eq. (5.15) and

K ≡ 1 +
2

3
β +

1

5
β2 , (5.19)

is the Kaiser factor with β ≡ f/b1 [80]. As we do not include the subdominant term
proportional to b2 in the two-point function, it only gives constraint on b1, which we
can then use to break the degeneracy with b2 in the integrated three-point function. We
find that this simple modeling yields unbiased b1 and fulfills the demand. We calculate the
redshift-space integrated three-point function by first evaluating the integrated bispectrum
using SPT at the tree level (the explicit expression of the redshift-space bispectrum is given
in appendix A.2), compute its one-dimensional Fourier transform, as eq. (5.4), and then
correct for the boundary effect. The σ2

L of the mocks in redshift space agrees with b2
1K σ2

L,l

to percent level. The redshift-space models thus contain, as before in real space, the three
fitting parameters, b1, b2, and AMC. We then simultaneously fit ξ(r) and iζL(r)/σ2

L of
both subvolumes by minimizing eq. (5.17). Figure 5.4 shows the correlation matrix (Cij in
χ2, normalized by

√
CiiCjj) estimated from the 600 mocks in redshift space. Because we

normalize the integrated three-point function by σ2
L, the covariance between iζL(r)/σ2

L and
σ2
L is negligible. On the other hand, the covariances between iζL(r)/σ2

L and ξ(r), between
ξ(r), and between iζL(r)/σ2

L for two sizes of subvolumes are significant.
The models computed with the mean of the best-fitting parameters of 600 mocks are

shown as the thick solid lines in figure 5.3. The best-fitting parameters are b1 = 1.931 ±
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0.077, b2 = 0.54 ± 0.35, and AMC = 1.37 ± 0.82. The agreement between the models and
the measurements in redshift space is as good as in real space.

Again, our b1 is in good agreement with the results presented in figure 16 of [62], whereas
our b2 is smaller than theirs, which is ' 0.75, but still well within the 1-σ uncertainty. As
noted in section 5.1.3, the adopted models of the bispectrum are different. In appendix D,
we show that using the effective F2 and G2 kernels and the non-local tidal bias in the
model increases the value of b2. However, the changes are within the uncertainties, and the
goodness of the fit is similar for different models. Thus, in this paper we shall primarily
use the SPT at the tree level with local bias for simpler interpretation of the three-point
function, but also report the results for the extended models.

5.2 Measurement of the BOSS DR10 CMASS sample

We now present measurements of the position-dependent correlation function from the
BOSS DR10 CMASS sample4 in NGC. The detailed description of the observations can be
found in [3, 6]. Briefly, the sample contains 392,372 galaxies over 4,892 deg2 in the redshift
range of 0.43 < z < 0.7, which corresponds to the comoving volume of approximately
2 h−3 Gpc3. We also weight the galaxies by wBOSS to correct for the observational system-
atics. We follow section 5.1.1 to divide the observations into subvolumes. However, the
observations have their own set of random samples, which are different from the ones of the
mocks (the random samples of the mocks have slightly higher n̄ and different n̄(z)), so we
adjust the redshift cuts to be zcut = 0.5108, 0.5717 and zcut = 0.48710, 0.52235, 0.55825,
0.60435 for the two resolutions, respectively. The resulting properties of subvolumes of the
observations and mocks are similar.

The mocks are constructed to match the two-point function of the observed galaxies,
but not for the three-point function. Hence there is no guarantee that the three-point
function of mocks agrees with the observations. We can test this using our measurements.

The measurements of ξ(r) and iζL(r)/σ2
L from the observations are shown as the solid

lines in figure 5.5. The measurements are consistent visually with the mocks within the
scatter of the mocks5; and we shall quantify the goodness of the fit using χ2 statistics later.

To quantify statistical significance of the detection of iζL(r)/σ2
L and the goodness of fit,

we use the mean of the mocks as the model (instead of the model based on perturbation
theory used in section 5.1.4), and fit only the amplitudes of iζL(r)/σ2

L, ξ(r), and σ2
L to

the observations and the 600 mocks by minimizing eq. (5.17). Specifically, we use Oi(r) =
AiO

mock
i (r) as the model, where O1(r) = iζL(r)/σ2

L, O2(r) = ξ(r), and O3 = σ2
L, with the

amplitudes A1, A2, A3.
Table 5.1 summarizes the fitted amplitudes. The 1-σ uncertainties and the correlations

are estimated from the 600 mocks. Since we normalize iζL(r) by σ2
L, the correlation between

4Catalogs of galaxies and the random samples can be found in http://www.sdss3.org.
5These measurements of iζL(r)/σ2

L are done for one effective redshift. We compare iζL(r)/σ2
L of the

observations and mocks in different redshift bins in appendix E, finding that the observations and mocks
are consistent at all redshift bins to within the scatter of the mocks.

http://www.sdss3.org
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Figure 5.5: Measurements of the BOSS DR10 CMASS sample (black solid lines). The gray
lines show individual mocks in redshift space and the dashed line shows the mean of mocks.
(Top left) ξ(r), (Bottom left) iζL(r)/σ2

L for 220 h−1 Mpc subvolumes, and (Bottom right)
iζL(r)/σ2

L for 120 h−1 Mpc subvolumes. (Top right) χ2-histogram of the 600 mocks jointly
fitting the three amplitudes to ξ(r) and iζL(r)/σ2

L in redshift space. The dashed line shows
the χ2-distribution with d.o.f.=38. The χ2 value measured from the BOSS DR10 CMASS
sample is 49.3.

A1 and A3 is small. On the other hand, A2 and A3 are correlated significantly because σ2
L

is an integral of the two-point function [eq. (2.41)].

Comparing the BOSS DR10 CMASS sample to the mean of the mocks, we find that
iζ(r)/σ2

L is 1-σ lower, ξ(r) is unbiased (by construction of the mocks), and σ2
L is 2-σ higher.

It is intriguing that σ2
L of the observations is larger than the mean of the mocks because

it measures an integral over the two-point function. Presumably, this happens because
σ2
L also includes contributions from very small separations (including stochasticity at zero

separations), for which the mocks were not optimized. We find A1 = 0.89 ± 0.12, i.e., a
7.4σ detection of the integrated three-point function of the BOSS DR10 CMASS sample.
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A1 A2 A3

1-σ error 0.12 0.03 0.04
best-fit (DR10) 0.89 1.02 1.08

(A1, A2) (A1, A3) (A2, A3)
corr 0.34 0.09 0.36

Table 5.1: Results of fitting the amplitudes: A1 is iζL(r)/σ2
L, A2 is ξ(r), and A3 is σ2

L.
(Left) The 1-σ uncertainties of the amplitudes estimated from the mocks, and the best-
fitting amplitudes of BOSS DR10 CMASS sample with respect to the mean of the mocks.
(Right) The correlation coefficients of the amplitudes.

In order to assess the goodness of fit, we use the distribution of χ2, a histogram of
which is shown in the top right panel of figure 5.5. In total there are 41 fitting points (13
fitting points for ξ(r) and two sizes of subvolumes for iζL(r)/σ2

L, and two fitting points
for σ2

L) with three fitting parameters, so d.o.f.=38. The χ2 value of the observations is
49.3, and the probability to exceed this χ2 value is more than 10%. Given the fact that
the mocks are constructed to match only the two-point function of the observations, this
level of agreement for both the two-point and integrated three-point correlation functions
is satisfactory.

5.3 Interpretation for the measurement of the inte-

grated three-point function

What can we learn from the measured iζL(r)/σ2
L? In section 5.1.4, we show that the pre-

diction for iζL(r)/σ2
L based on SPT at the tree-level in redshift space provides an adequate

fit to the mocks to within the scatter of the mocks; thus, we can use this prediction to
infer cosmology from iζL(r)/σ2

L. Note that any unmodeled effects in the integrated three-
point function such as nonlinearities of the matter density, nonlocal bias parameters, and
redshift-space distortions beyond the Kaiser factor, will tend to bias our measurement of
cosmological parameters based on iζL(r). We will discuss caveats at the end of this section.

Since the linear two-point and the tree-level three-point functions are proportional to
σ2

8 and σ4
8, respectively, and σ2

L is proportional to σ2
8, the scaling of the redshift-space

correlation functions is

ξg,z(r) = b2
1K

[
ξfid
l,σv(r)

(
σ8

σ8,fid

)2

+ AMCξ
fid
MC(r)

(
σ8

σ8,fid

)4
]
,

iζL,g,z(r)

σ2
L

=
iζfid
L,g,z(r)

b2
1σ

2
L,lK

(
σ8

σ8,fid

)2
1

fL,bndry(r)
, (5.20)

where “fid” denotes the quantities computed with the fiducial value of σ8. Note that
ξMC(r) is proportional to σ4

8 because it is an integral of two linear power spectra (see
eq. (5.14)). Since ξl,σv(r) dominates the signal, the parameter combinations b1σ8 and
K = 1 + 2β/3 + β2/5 are degenerate in the two-point function. That is, the amplitude of
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baseline eff kernel tidal bias both
b2 0.41± 0.41 0.51± 0.41 0.48± 0.41 0.60± 0.41

Table 5.2: Best-fitting b2 and their uncertainties for BOSS DR10 CMASS sample for the
extended models. The detailed description of the extended models is in appendix D.

the two-point function measures only (b1σ8)2 + 2
3
(b1σ8)(fσ8) + 1

5
(fσ8)2. This degeneracy

can be lifted by including the quadrupole of the two-point function in redshift space. See
[130, 164, 131, 19] for the latest measurements using the BOSS DR11 sample.

As for the three-point function, figure 2.2 shows that the b3
1 and b2

1b2 terms are com-
parable for b1 ≈ b2. This means that, at the three-point function level, the nonlinear
bias appears in the leading order, so the amplitude of the three-point function measures
a linear combination of b1 and b2. This provides a wonderful opportunity to determine
b2. The challenge is to break the degeneracy between b2, b1, f , and σ8. For this purpose,
we combine our results with the two-point function in redshift space and the weak lensing
measurements of BOSS galaxies. We take the constraints on b1σ8(z = 0.57) = 1.29± 0.03
and f(z = 0.57)σ8(z = 0.57) = 0.441 ± 0.043 from table 2 of [130]. To further break
the degeneracy between b1, f , and σ8, we take the constraint on σ8 = 0.785 ± 0.044 from
[114, 117], where they jointly analyze the clustering and the galaxy-galaxy lensing using the
BOSS DR11 CMASS sample and the shape catalog from Canada France Hawaii Telescope
Legacy Survey.

We assume Gaussian priors on b1σ8, fσ8, and σ8 with the known covariance between
b1σ8 and fσ8. The cross-correlation coefficient between b1σ8 and fσ8 is −0.59, as shown in
figure 6 of [130]. We then run the Markov Chain Monte Carlo with the Metropolis-Hastings
algorithm to fit he model eq. (5.20) to the observed iζ(r)/σ2

L. We find b2 = 0.41 ± 0.41,
and the results for the extended models are summarized in table 5.2.

The value of b2 we find is lower than the mean of the mocks, bmock
2 = 0.54± 0.35. The

difference is mainly due to two reasons. First, the amplitude of the integrated three-point
function of the observations is lower than that of the mocks by 10% (A1 = 0.89 ± 0.12).
Second, the priors from the correlation function and lensing constraint b1 to be close to
2.18, which is larger than that of the mocks, bmock

1 = 1.93. Thus, it requires a smaller b2

to fit the three-point function. The argument is similar for the extended models. Note,
however, that the nonlinear bias of the data is still statistically consistent with the mocks.

Let us conclude this section by listing three caveats regarding our cosmological inter-
pretation of the measured integrated three-point function.

1. The models we use, eq. (5.20), are based on tree-level perturbation theory, the lowest
order redshift-space distortion treatment, as well as on the local bias parametrization.
While this simple model describes the mocks well, as shown in section 5.1.3 and 5.1.4,
we discuss in appendix D that using the effective F2 and G2 and the non-local tidal
bias brings b2 closer to that of [62]. We, however, find similar goodness of fit for
various models, and thus we cannot distinguish between these models.

2. Covariances between the integrated three-point function, monopole and quadrupole
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two-point function, and weak lensing signals are ignored. This can and should be
improved by performing a joint fit to all the observables.

3. The cosmology is fixed throughout the analysis, except for f and σ8. In principle,
marginalizing over the cosmological parameters is necessary to obtain self-consistent
results, although the normalized integrated three-point function is not sensitive to
cosmological parameters such as Ωm as shown in figure 4.6.

These caveats need to be addressed in the future work.

5.4 Discussion and conclusion

In this chapter, we have reported on the first measurement of the three-point function
with the position-dependent correlation function from the SDSS-III BOSS DR10 CMASS
sample. The correlation between the position-dependent correlation function measured
within subvolumes and the mean overdensities of those subvolumes is robustly detected at
7.4σ.

Both the position-dependent correlation function and the mean overdensity are easier
to measure than the three-point function. The computational expense for the two-point
function is much cheaper than the three-point function estimator using the triplet-counting
method. In addition, for a fixed size of the subvolume, the integrated three-point function
depends only on one variable (i.e., separation), unlike the full three-point function which
depends on three separations. This property allows for a useful compression of information
in the three-point function in the squeezed configurations, and makes physical sense because
the integrated three-point function measures how the small-scale two-point function, which
depends only on the separation, responds to a long-wavelength fluctuation, as introduced
in chapter 4. As there are only a small number of measurement bins, the covariance matrix
of the integrated three-point function is easier to estimate than that of the full three-point
function from a realistic number of mocks. We have demonstrated this advantage in this
chapter.

Of course, since this technique measures the three-point function with one long-wavelength
mode (mean overdensity in the subvolumes) and two relatively small-wavelength modes
(position-dependent correlation function), it is not very sensitive to the three-point func-
tion of other configurations, which were explored in [62].

We have used the mock galaxy catalogs, which are constructed to match the two-
point function of the SDSS-III BOSS DR10 CMASS sample in redshift space, to validate
our method and theoretical model. We show that in both real and redshift space, the
integrated three-point function of the mocks can be well described by the tree-level SPT
model. However, the nonlinear bias which we obtain from the mocks is higher than that
reported in [62]. This is possibly due to the differences in the scales and configurations of
the three-point function used for the analyses. As discussed in section 5.3, any unmodeled
nonlinear effects in the redshift-space integrated three-point function of CMASS galaxies
will tend to bias b2, and will bias this parameter differently than the measurement of [62].



5.4 Discussion and conclusion 77

Taking the mean of the mocks as the model, and treating the amplitudes of two- and
three-point functions as free parameters, we find the best-fit amplitudes of iζ(r)/σ2

L, ξ(r),
and σ2

L of the CMASS sample. With respect to the mean of the mocks, the observations
show a somewhat smaller iζ(r)/σ2

L (A1 = 0.89 ± 0.12) and larger σ2
L, while the ensem-

ble two-point function ξ(r) matches the mocks. Given that the mocks are generated to
match specifically the two-point function of the BOSS DR10 CMASS sample within a cer-
tain range of separations, the level of agreement between the observations and mocks is
satisfactory.

Finally, by combining the integrated three-point function and the constraints from the
anisotropic clustering (b1σ8 and fσ8 in [130]) and from the weak lensing measurements (σ8

in [117]), we break the degeneracy between b1, b2, f , and σ8. We find b2 = 0.41±0.41 for the
BOSS DR10 CMASS sample. The caveat of this result is that our model, eq. (5.20), relies
on a rather simple model in redshift space as well as on the local bias parametrization. We
leave the extension of the model to improved bias and redshift-space distortion modeling
(especially in light of the comparison with the results in [62]) for future work.

In summary, we have demonstrated that the integrated three-point function is a new
observable which can be measured straightforwardly from galaxy surveys using basically
the existing and routinely applied machinery to compute the two-point function, and has
the potential to yield a useful constraint on the quadratic nonlinear bias parameter. More-
over, since the integrated three-point function is most sensitive to the bispectrum in the
squeezed configurations, it is sensitive to primordial non-Gaussianity of the local type (see
section 2.1.4 and section 4.5 for more details), thereby offering a probe of the physics
of inflation. We plan to extend this work to search for the signature of primordial non-
Gaussianity in the full BOSS galaxy sample.
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Chapter 6

The angle-averaged squeezed limit of
nonlinear matter N-point functions
and separate universe simulations

In the previous chapters, we have introduced the position-dependent two-point statistics
and shown the measurements from N -body simulations and observations. In this chapter,
we shall generalize the study to the angle-averaged squeezed limit of nonlinear matter
N -point functions, and demonstrate how to use the “separate universe simulations” to
address this issue. Specifically, we consider the case of the squeezed limit such that there
is a hierarchy between two large wavenumbers k and k′, and N − 2 small wavenumbers
k1, · · · ,kn. The configuration is sketched in figure 6.1.

The squeezed limit of matter N -point functions has been the subject of a large body
of work in the context of the so-called “consistency relations” for the large-scale structure
[85, 127, 39, 83, 166, 165, 84, 38, 37, 120, 15, 73, 121]. The contributions to N -point
functions in the squeezed limit are ordered by the ratio of wavenumbers ki/k, which is
assumed to be much less than one. The lowest order contributions, up ∝ (ki/k)−1 when
the N -point function is written in terms of the overdensity δ, are fixed by the requirement
that a uniform potential perturbation as well as a uniform velocity (boost) do not lead to
any locally observable effect on the density field, as demanded by the equivalence principle
[85, 127, 166, 44]. They are also referred to as “kinematic contributions”.

The next order contribution, ∝ (ki/k)0, is the lowest order at which a physical cou-
pling of long- and short-wavelength modes happens. More precisely, the contributions at
this order correspond to the impact of a uniform long-wavelength density or tidal per-
turbation. When considering equal-time N -point functions and subhorizon perturbations
ki � aH, the kinematic contributions disappear, and the physical (ki/k)0 contributions
are the leading contribution to the N -point function in the squeezed limit.

In this chapter, we disregard tidal fields, which leads us to first angle-average over the
N − 2 small momenta (wavenumbers) in the N -point function. Specifically, we consider
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~k1

~k2

~kn

~k

~k0 = ¡~k ¡
nX

i=1

~ki

Figure 6.1: Sketch of the squeezed-limit configuration of N -point functions considered in
this chapter. k1, · · · ,kn denote the long-wavelength modes which are spherically averaged
in eq. (6.1), while k and k′ denote the small-scale modes which are allowed to be fully
nonlinear.

SN−2 defined through

SN−2(k, k′; k1, · · · , kN−2) ≡
∫
d2k̂1

4π
· · ·
∫
d2k̂N−2

4π
〈δ(k)δ(k′)δ(k1) · · · δ(kN−2)〉′c (6.1)

where k̂i are unit vectors and 〈δ(k1) · · · δ(kN)〉′c denotes the nonlinear connected matter N -
point function with the momentum constraint (2π)3δD(k1 + · · ·+ kN) dropped. Note that
the momentum constraint fixes k′ in terms of k and k1, . . . ,kN−2. We now let k1, . . . , kN−2

go to zero, and normalize the result by the nonlinear power spectrum P (k) and the linear
power spectra Pl(k1) · · ·Pl(kN−2) to obtain a dimensionless quantity:

RN−2(k) = lim
ki→0

SN−2(k, k′; k1, · · · , kN−2)

P (k)Pl(k1) · · ·Pl(kN−2)
. (6.2)

Note that in this limit, spatial homogeneity enforces k′ = −k + O(ki/k), so that (for
statistically isotropic initial conditions) the right-hand-sight of eq. (6.2) depends only on
k.

In appendix F (see also [165]), we show that Rn(k) correspond exactly to the power
spectrum response functions, which quantify the change in the nonlinear matter power
spectrum to an infinite-wavelength density perturbation. These response functions are
defined as the coefficients of the expansion of the power spectrum in the linearly extrapolated
initial overdensity δL0:

P (k, t|δL0) =
∞∑
n=0

1

n!
Rn(k, t)

[
δL0D̂(t)

]n
P (k, t) , (6.3)

where P (k, t|δL0) is the nonlinear matter power spectrum at time t in the presence of
a homogeneous (infinite-wavelength) density perturbation, and D̂(t) is the linear growth
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factor normalized to unity today. We have set R0(k, t) = 1 by definition. Thus, by
measuring Rn, we measure the angle-averaged squeezed limit (eq. (6.2)) of the nonlinear
matter (n + 2)-point function. For n = 1, the response R1 describes the angle-averaged
squeezed-limit bispectrum, as discussed in chapter 2 and chapter 4.

Independently of the derivation of eqs. (6.2)–(6.3), we also present accurate measure-
ments of Rn for n = 1, 2, 3 using N -body simulations which do not rely on approximations
in section 6.2. Specifically, we resort to N -body simulations with an external homoge-
neous overdensity imposed via the separate universe approach described in chapter 3. A
flat FLRW universe with a homogeneous overdensity is exactly equivalent to a different,
curved FLRW universe, so that N -body simulations in this modified cosmology provide,
in principle, the exact result for the response functions Rn(k). This in turn corresponds to
the exact (in the limit of infinite volume and resolution) measurement of the squeezed-limit
N -point function (eq. (6.2)). The measurements of R1(k) are presented in [97]. We shall
extend to n = 2 and 3.

Many semi-analytical approaches to nonlinear large-scale structure assume that non-
linear matter statistics can be described as a unique function of the linear matter power
spectrum, i.e. the power spectrum of initial fluctuations linearly extrapolated to a given
time. In the context of consistency relations, this approximation has been studied in
e.g. [165, 84]. This ansatz is motivated by the fact that in Einstein-de Sitter (flat matter-
dominated universe), and to a very good approximation in ΛCDM, the perturbation theory
predictions factorize into powers of the linear growth factor and convolutions of products
of the initial matter power spectra and time-independent functions. Another way to phrase
this ansatz is that nonlinear large-scale structure only depends on the normalization of the
fluctuations at a given time, and not on the growth history.

In the context of squeezed-limit N -point functions, this ansatz can be tested quanti-
tatively by comparing the outputs of separate universe simulations at a given time with
simulations in which the initial amplitude of fluctuations is rescaled to match the linear
power spectrum at the same time. The difference between these “rescaled initial ampli-
tude” simulations and the separate universe simulations corresponds to the error made in
the ansatz of assuming that the linear power spectrum at a given time uniquely describes
nonlinear large-scale structure at the same time. For n = 1, it is studied in [98] and found
that the two simulations differ in the nonlinear regime. A closely related test using the
matter bispectrum is shown in [120]. We shall study this comparison in more detail and
for n = 1, 2 and 3 in section 6.4.

This chapter is organized as follows. In section 6.1, we develop semi-analytic predictions
for the power spectrum response. In section 6.2, we describe the methodology of performing
the separate universe simulations. In section 6.3, we compare the measurements from N -
body simulations to the semi-analytic predictions. In section 6.4, we compare the rescaled
simulations to the separate universe simulations. We conclude in section 6.5.



82
6. The angle-averaged squeezed limit of nonlinear matter N-point functions

and separate universe simulations

6.1 Power spectrum response

We define the n-th order response function Rn(k) of the power spectrum as the n-th
derivative of the power spectrum with respect to the linearly extrapolated (or Lagrangian)
overdensity δL, normalized by the power spectrum. The definition, consistent with eq. (6.3),
is

Rn(k, t) =
1

P (k)

dnP (k, t|δL)

d [δL(t)]n

∣∣∣∣∣
δL=0

, (6.4)

where δL(t) ≡ δL0D̂(t). In the following, we will frequently suppress the time argument for
clarity. Analogously, one can define the power spectrum response functions with respect to
the fully evolved (or Eulerian) nonlinear overdensity δρ. Since we can expand the nonlinear
overdensity in powers of δL with known coefficients via the spherical collapse (see chapter 3),
the n-th order Eulerian response function is given by a sum of Rm with m ≤ n. Motivated
by the relation eq. (6.2), we mainly consider the Lagrangian response functions. In the
remainder of this section, we develop semi-analytic models for the response functions based
on the separate universe picture.

6.1.1 Separate universe picture

The idea of absorbing an infinitely-wavelength overdensity perturbation δρ into the back-
ground modified (curved) cosmology is extensively discussed in chapter 3, and the response
of the power spectrum to the overdensity is also discussed in chapter 4 (but restricted to
the linear order). In this section, we shall first summarize results, and generalize the study
to higher order response, i.e. n > 1.

Because of the overdensity, the expansion slows down, and the overdense region behaves
as a universe with positive curvature. The scale factor in the modified cosmology can be
written as

ã(t) = a(t) [1 + δa(t)] , (6.5)

where the quantities in the modified cosmology are denoted with a tilde. Since the physical
distance is the same in both cosmologies, eq. (6.5) implies the change of the comving
distance to be

x̃ =
a(t)

ã(t)
x = [1 + δa(t)]

−1 . (6.6)

Furthermore, due to mass conservation, the fractional difference in the scale factor is related
to the overdensity δρ by

1 + δρ(t) = [1 + δa(t)]
−3 . (6.7)

Using the separate universe picture, we consider the matter power spectrum in this
patch just as that of a region with no homogeneous overdensity but properly modified
cosmology. The modification of the cosmology is such that the shape of the linear power
spectrum is unchanged, since the ratio of photon, baryon, and cold dark matter densities
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is unmodified; moreover, the transfer function parameters are unchanged: Ω̃mh̃
2 = Ωmh

2

and Ω̃bh̃
2 = Ωbh

2. Thus, only the growth of structure is affected.
The power spectrum that enters in the response given by eq. (6.4) is defined with

respect to the background density and comoving coordinates of the fiducial cosmology.
Hence, the power spectrum calculated for the modified cosmology has to be mapped to
that with respect to the background density and comoving coordinates of the fiducial
cosmology. As discussed in chapter 4, this mapping yields the “reference density” and
“dilation” contributions to the response. These can be calculated exactly at any scale k
to any given order given the nonlinear matter power spectrum in the fiducial cosmology.
That is, we do not need to run N -body simulations to calculate these effects. They are
thus merely “projection effects”, unlike the effect of the modified cosmology on the growth
of structure, which requires simulations in order to provide an accurate estimate.

Let us denote the power spectrum for the modified cosmology as P̃ (k̃). Then, the
reference density effect simply rescales the power spectrum as,

P (k)
ref. density

= (1 + δρ)
2 P̃ (k) , (6.8)

where the argument of P̃ (k) is not modified. The dilation effect due to the change in the
coordinates given by eq. (6.6) implies k → k̃ = (1 + δa)k and changes the power spectrum
by (see chapter 4 for detailed derivation)

P (k)
dilation

= (1 + δa)
3 P̃ ([1 + δa] k) . (6.9)

Putting the two together and using eq. (6.7) yields

P (k) = (1 + δρ) P̃ ([1 + δa]k) , (6.10)

where all quantities are evaluated at some fixed time t. Note that one prefactor of (1 + δρ)
cancels, since the effect of the increased density is partially canceled by the corresponding
decrease in physical volume. As derived in chapter 3, for an Einstein de-Sitter fiducial
universe (and to high accuracy in ΛCDM) δa(t) and δρ(t) have series solutions of the form

δa(t) =
∞∑
n=1

en

[
δL0D̂(t)

]n
, δρ(t) =

∞∑
n=1

fn

[
δL0D̂(t)

]n
, (6.11)

where D̂(t) = D(t)/D(t0) is the fiducial growth factor normalized to one at the epoch t0 to
which we extrapolate δL0 = δL(t0). Note that the values of en and fn are given in eq. (3.35)
and eq. (3.36), respectively.

The third contribution to Rn comes from the effect of the modified cosmology on the
growth of structure, which as mentioned above is the physical contribution which requires
N -body simulations for an accurate measurement. We thus define a set of growth-only
response functions Gn(k) which isolate the nontrivial effect of the long-wavelength pertur-
bation on the growth of small-scale structure,

Gn(k) ≡ 1

P (k)

dnP̃ (k)

dδnL

∣∣∣∣
δL=0

. (6.12)
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That is, Gn are defined as Rn without the contributions from the reference density and
dilation given by eq. (6.10). This definition is an extension of the similar decomposition for
n = 1 shown in [147, 84, 15, 98]. Thus, the formula for the power spectrum (with respect
to global coordinates) in the presence of a long-wavelength overdensity is given by

P (k|δL) = (1 + δρ)

[(
1 +

∞∑
n=1

1

n!
Gn(k̃)δnL

)
P (k̃)

]
k̃=(1+δa)k

. (6.13)

Clearly, by the Leibniz rule, at any given order n the total or “full” response Rn(k),
eq. (6.4), is composed of the functions Gm(k) and the numbers em, fm with 1 ≤ m ≤ n,
where the em multiply derivatives of Gl(k) and P (k) with respect to k (up to the nth

derivative). Specifically, the first three full response functions are given by

R1(k) = f1 + e1
kP ′(k)

P (k)
+G1(k) , (6.14)

R2(k)

2
= f2 + e2

kP ′(k)

P (k)
+ e2

1

k2P ′′(k)

2P (k)
+
G2(k)

2
+ f1e1

kP ′(k)

P (k)

+ f1G1(k) + e1
kP ′(k)

P (k)
G1(k) + e1kG

′
1(k) , (6.15)

R3(k)

6
= f1G1(k)e1

kP ′(k)

P (k)
+ f3 +

G3(k)

6
+ e3

kP ′(k)

P (k)
+ f1

G2(k)

2
+ f1e2

kP ′(k)

P (k)

+ f1e
2
1

k2P ′′(k)

2P (k)
+ f2G1(k) + f2e1

kP ′(k)

P (k)
+ (f1e1 + e2)kG′1(k) + e2

1

k2G′′1(k)

2

+ e1k
G′2(k)

2
+ e2

1

kP ′(k)

P (k)
kG′1(k) + e3

1

k3P ′′′(k)

6P (k)
+ 2e1e2

k2P ′′(k)

2P (k)

+ e1
kP ′(k)

P (k)

G2(k)

2
+G1(k)

(
e2
kP ′(k)

P (k)
+ e2

1

k2P ′′(k)

2P (k)

)
, (6.16)

where the primes denote derivatives with respect to k.

6.1.2 Linear power spectrum predictions

We now evaluate eq. (6.13) for the simplest case, i.e., the response of the linear matter
power spectrum. In linear theory, the growth is scale-independent and given by the linear
growth factor. Thus, the growth-only response functions are scale-independent and just
described by the linear growth factor in the modified cosmology D̃(t),

Glinear
n =

1

D2

dn(D̃2)

dδnL

∣∣∣∣
δL=0

. (6.17)

As for δa(t) and δρ(t), D̃ also has the perturbative expansion in powers of δL as

D̃(t) = D(t)

{
1 +

∞∑
n=1

gn

[
δL0D̂(t)

]n}
. (6.18)
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Thus, for an Einstein-de Sitter fiducial universe (and to high accuracy in ΛCDM), the
linear response functions are simply constants. Inserting the values of gn from eq. (3.49),
we obtain {

Glinear
n

}
n=1,··· ,4 =

{
26

21
,

3002

1323
,

240272

43659
,

197919160

11918907

}
. (6.19)

eq. (6.13) evaluated for the linear matter power spectrum Pl(k, t) then becomes

Pl(k, t|δL) = [1 + δρ(t)]

(
D̃(t)

D(t)

)2

Pl,fid([1 + δa(t)]k, t) . (6.20)

Inserting the series expansions, we obtain

Pl(k, t|δL0) =

(
1 +

∞∑
n=1

fn[δL0D̂(t)]n

)(
1 +

∞∑
n=1

gn

[
δL0D̂(t)

]n)2

× Pl,fid

([
1 +

∞∑
n=1

en[δL0D̂(t)]n

]
k, t

)
. (6.21)

Eq. (6.21) allows for a consistent expansion in δL0. Specifically, dnPl(k)/dδnL0 is given by
the n-th order coefficient in this expansion, multiplied by n!.

6.1.3 Nonlinear power spectrum predictions

Beyond the linear matter power spectrum, the growth coefficients Gn will become scale-
dependent functions Gn(k). Consider now what standard perturbation theory (SPT) pre-
dicts. The power spectrum prediction is given by a series

P SPT(k) = Pl(k) + P 1−loop(k) + P 2−loop(k) + · · · , (6.22)

where P n−loop scales as [Pl]
n. In an Einstein-de Sitter universe, one can show (e.g., [17])

that the time- and scale-dependence of each order in perturbation theory factorizes, so
that one can write

P SPT(k, t) = D̂2(t)Pl(k, t0) + D̂4(t)P 1−loop(k, t0) + D̂6P 2−loop(k, t0) + · · · , (6.23)

where P n−loop(k, t0) is a convolution of n factors of Pl(k, t0) with time-independent co-
efficients. While eq. (6.23) is only strictly correct in Einstein-de Sitter, it is used very
commonly for ΛCDM as well, since departures from the exact result are typically of order
1% or less, and since it simplifies the calculation significantly. Various variants of SPT,
such as the renormalized perturbation theory (RPT) [41], share the same property.

Eq. (6.23) allows for a very simple evaluation of the growth-only response: as discussed
above, the shape of the linear power spectrum in the modified cosmology is unchanged,
and hence P̃ SPT(k̃) can be simply evaluated by replacing the fiducial D̂(t) in eq. (6.23)
with the modified one, eq. (6.18). This is equivalent to assuming that the entire late-time
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cosmology dependence of the nonlinear matter power spectrum enters through the linear
growth factor [165, 84, 15]. In section 6.4, we shall test this prescription to all orders in
SPT calculations by performing simulations with a rescaled initial power spectrum.

Apart from the SPT calculation, we can also apply this approximation to any prescrip-
tion that maps a given linear power spectrum to a nonlinear one. In particular, we will
show results for halofit [152]. In this case, where the dependence on the linear growth
factor is not explicit, we instead compute the derivative with respect to the normalization
of the linear power spectrum,

d

dD̃
→ dσ̃8

dD̃

d

dσ̃8

, (6.24)

which at the redshift considered yields the equivalent change of the linear matter power
spectrum. This leads to

Dnd
nP (k)

dD̃n
→ σn8

dnP (k)

dσ̃n8
. (6.25)

We use a five-point stencil with a step size of 0.75% in σ8 to compute numerically the
derivatives with respect to σ8. In conjunction with the change of the linear growth factor
eq. (6.18), this allows us to compute the growth-only response Gn(k) for perturbation
theory as well as fitting formulae of the nonlinear matter power spectrum.

6.1.4 Halo model predictions

In section 4.3.4, we have derived the linear response of the power spectrum under the
halo model framework, in which all matter is assumed to be contained within halos with
a certain distribution of mass (given by the mass function) and density profile. In this
section, we shall focus on generalizing the derivation to higher order responses for the halo
model approach.

Adopting the notation in section 4.3.4, the halo model powe spectrum, PHM, is given
by

PHM(k) = P 2h(k) + P 1h(k) , P 2h(k) =
[
I1

1 (k)
]2
Pl(k) , P 1h(k) = I0

2 (k, k) , (6.26)

where

Inm(k1, · · · , km) ≡
∫
d lnM n(lnM)

(
M

ρ̄

)m
bn(M)u(M |k1) · · ·u(M |km) , (6.27)

and n(lnM) is the mass function (comoving number density per interval in log mass),
M is the halo mass, bn(M) is the n-th order local bias parameter, and u(M |k) is the
dimensionless Fourier transform of the halo density profile, for which we use the NFW
profile. One can find more details in section 4.3.4.

To derive how the power spectrum given in eq. (6.26) responds to a homogeneous
(infinitely long-wavelength) density perturbation δL, we consider the one-halo (P 1h) and
two-halo (P 2h) terms separately. The key physical assumption we make is that halo profiles
in physical coordinates are unchanged by δL. That is, halos at a given mass M in the
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presence of δL have the same scale radius rs and scale density ρ(rs) as in the fiducial
cosmology. We will discuss this assumption later in this section. Given this assumption, the
density perturbation δL then mainly affects the linear power spectrum, which determines
the halo-halo clustering (two-halo term), and the abundance of halos at a given mass.

For the two-halo term, as the response of the linear power spectrum is derived in
eq. (6.21), the remaining task is to consider the effect on I1

1 . By the assumption that the
density profile does not change in the presence of δL, I1

1 only changes through the bias
b1(M) and the mass function n(lnM). The bias bN(M) quantifies the N -th order response
of the mass function n(lnM) to δL:

bN(M) =
1

n(lnM)

∂Nn(lnM)

∂δNL

∣∣∣
0
, or

∂Nn(lnM)

∂δNL

∣∣∣
0

= bN(M)n(lnM) . (6.28)

Thus,

∂N

∂δNL
I1

1 (k)
∣∣∣
δL=0

=

∫
d lnM

(
M

ρ̄

)
∂N

∂δNL
[b1(M)n(lnM)]

∣∣∣
δL=0

u(M |k) = IN+1
1 (k) . (6.29)

Note that in the large-scale limit, k → 0, this vanishes for N ≥ 1 by way of the halo model
consistency relation

IN1 (k) =

∫
d lnM n(lnM)

(
M

ρ̄

)
bN(M) =

{
1, N = 1 ,
0, N > 1 .

(6.30)

For finite k eq. (6.29) does not vanish, we thus have

I1
1 (k, t|δL0) =

∞∑
n=0

1

n!
In+1

1 (k, t)[D̂(t)δL0]n . (6.31)

Thus, the two-halo term in the presence of δL0 becomes

P 2h(k, t|δL0) =

(
1 +

∞∑
n=1

fn[δL0D̂(t)]n

)(
1 +

∞∑
n=1

gn

[
δL0D̂(t)

]n)2

(6.32)

×

(
∞∑
n=0

1

n!
In+1

1 (k, t)[D̂(t)δL0]n

)2

Pl,fid

([
1 +

∞∑
n=1

en[δL0D̂(t)]n

]
k, t

)
.

Note that we recover the tree-level result given in eq. (6.21) in the large-scale limit, where
only n = 0 of the third term in eq. (6.32) survives. Note also that in eq. (6.32) the
dilation effect only enters in the linear, not 2-halo, power spectrum. This is a consequence
of our assumption that halo profiles do not change due to the long-wavelength density
perturbation.

For the one-halo term, due to our assumption about density profiles, the only effect is
the change in the mass function, which through eq. (6.28) becomes

∂N

∂δNL
I0

2 (k, k) = IN2 (k, k) , (6.33)
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and thus

P 1h(k, t|δL0) =
∞∑
n=0

1

n!
In2 (k, k, t)[D̂(t)δL0]n . (6.34)

Putting one-halo and two-halo terms together, we obtain

PHM(k, t|δL0) =

(
1 +

∞∑
n=1

fn[δL0D̂(t)]n

)(
1 +

∞∑
n=1

gn

[
δL0D̂(t)

]n)2

×

(
∞∑
n=0

1

n!
In+1

1 (k, t)[D̂(t)δL0]n

)2

Pl,fid

([
1 +

∞∑
n=1

en[δL0D̂(t)]n

]
k, t

)

+
∞∑
n=0

1

n!
In2 (k, k, t)[D̂(t)δL0]n . (6.35)

The contribution ∝ In+1
1 (for n > 0) is numerically much smaller than the other terms (see

also the discussion in section 4.3.4). Since it is much smaller than the overall accuracy of
the halo model description, we will neglect it in the following. This yields

PHM(k, t|δL0) =

(
1 +

∞∑
n=1

fn[δL0D̂(t)]n

)(
1 +

∞∑
n=1

gn

[
δL0D̂(t)

]n)2

×
(
I1

1 (k, t)
)2
Pl,fid

([
1 +

∞∑
n=1

en[δL0D̂(t)]n

]
k, t

)

+
∞∑
n=0

1

n!
In2 (k, k, t)[D̂(t)δL0]n . (6.36)

Explicitly, the first and second order full response functions are given by

RHM
1 (k) =

[
f1 + 2g1 + e1

d lnPl(k, t)

d ln k

]
P 2h(k, t) + I1

2 (k, k, t)

RHM
2 (k) =

[
2f2 + 2f1g1 + (f1 + 2g1)e1

d lnPl(k, t)

d ln k
+ 2g2

1 + 4g2

+ 2e2
d lnPl(k, t)

d ln k
+ e2

1

1

P

d2Pl(k, t)

d(ln k)2

]
P 2h(k, t) + I2

2 (k, k, t) . (6.37)

We also derive the growth-only response functions in the halo model approach. Since
the halo profiles are assumed fixed in physical coordinates, this means that we need to
rescale the halo model terms, Inm, accordingly. Following our discussion in section 6.1.1,
we have k̃ = (1 + δa)k, where k̃ is the comoving wavenumber with respect to the modified
cosmology. We then obtain

Inm

∣∣∣
growth only

(k̃1, · · · , k̃m) = Inm

∣∣∣
physical

(
k1

1 + δa(t)
, · · · , km

1 + δa(t)

)
. (6.38)
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Inserting this into eq. (6.35) and performing a series expansion of δa in δL then allows us to
derive the growth-only response functions GHM

n (k). Note that the NFW profile we assume
is uniquely determined by the scale radius rs(M) for a halo of mass M , which enters the
coefficients defined in eq. (6.27) in the combination krs(M). Thus, it is easily possible to
include a dependence of the scale radius rs(M), or equivalently the halo concentration, on
the long-wavelength density in a similar way. We will leave this for future work.

Quantitatively, the main contribution of the rescaling eq. (6.38) is from the one-halo
term ∝ In2 (k, k), i.e. the term in the last line of eq. (6.36). The rescaling of the other
instances of Inm only changes the response at the sub-percent level and we will neglect
them in the following. We then obtain for the growth-only contribution to the halo model
power spectrum

PHM(k, t|δL0)
growth only

=

(
1 +

∞∑
n=1

gn

[
δL0D̂(t)

]n)2 [
I1

1 (k, t)
]2
Pl,fid(k, t)

+
∞∑
n=0

1

n!
In2 [A(δL0, t) k,A(δL0, t)k, t] [D̂(t)δL0]n , (6.39)

where

A(δL0, t) =

(
1 +

∞∑
n=1

en[δL0D̂(t)]n

)−1

. (6.40)

6.2 Separate universe simulations

To test our semi-analytical models of the power spectrum response to the homogeneous
overdensity, particularly for the growth of structure due to the change of the cosmology,
we run separate universe simulations and measure the power spectrum response func-
tions directly. In this section, we describe the details for performing the separate universe
simulations. We shall first introduce the straightforward modifications, cosmological pa-
rameters and the initial conditions, and then the non-trivial choices, comoving or physical
coordinates.

For usual N -body codes, one needs to specify the cosmological parameters at present
time and the output time tout normally specified by the scale factor. As discussed in
chapter 3, in the presence of the overdensity δL0, the cosmological parameters at ã(t̃0) = 1
are modified as

H̃0 =H0(1 + δH) , Ω̃m = Ωm(1 + δH)−2 , Ω̃Λ = ΩΛ(1 + δH)−2

Ω̃K = 1− (1 + δH)2 , δH =

(
1− K̃

H2
0

)1/2

− 1 ,
K̃

H2
0

=
5

3

Ωm

D(t0)
δL0 . (6.41)

For the output time, because we want to compare the simulations at the same physical
time, we need to determine the corresponding scale factor in the modified cosmology such
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that ã(tout) = [1 + δa(tout)]. We can numerically solve the ordinary differential equation of
δa in the modified cosmologies eq. (3.18); alternatively we can numerically evaluate ã(tout)
by

tout =

∫ a(tout)

0

da

aH(a)
=

∫ ã(tout)

0

dã

ãH̃(ã)
=

∫ a(tout)[1+δa(tout)]

0

dã

ãH̃(ã)
. (6.42)

In order to generate the initial conditions for N -body simulations of the modified cos-
mologies, we need the linear power spectrum at the initial redshift. The initial power
spectrum has to be generated for the cosmology [Ω̃m, Ω̃Λ, H̃0] with the same amplitude of
the primordial scalar curvature perturbation As as for the fiducial cosmology. Since the
transfer function only involves the physical matter and radiation densities quantified by
Ω̃mH̃

2
0 and so on, it is identical in the modified and fiducial cosmologies. Therefore, the

linear power spectra differ only through the difference in the linear growth factor. We use
CAMB [96, 95] to compute the power spectrum of the fiducial cosmology at z = 0, and
rescale it by [

D̃(ãi)
D̃(ã = 1)

D(a = 1)

]2

, (6.43)

where ãi is the scale factor for which the initial conditions are generated.1 Next, we
generate a Gaussian realization of the density field following the initial power spectrum.
The positions and velocities of the particles are computed by the second-order Lagrangian
perturbation theory [40].

Given a fixed box size for the fiducial cosmology, there are two reasonable choices for
the box sizes of the modified cosmologies. Either we match the respective comoving box
sizes, i.e. the box size is 500 h̃/h in units of h̃−1 Mpc comoving, or we choose the box
sizes such that their physical sizes coincide with that of the fiducial simulation at one
specific output time tout, i.e. 500 h̃a(tout)/[hã(tout)] in units of h̃−1 Mpc comoving. The
former choice is adequate if we are interested in the power spectrum response functions
at the same comoving wavenumber, i.e. without the “dilation” effect. By using the mean
density of the separate universe cosmology as the reference density when computing the
power spectrum, we are further removing the “reference density” effect and are left with
the growth-only response. The results of these simulations are presented in section 6.3.1.

In order to measure the full response functions, we run simulations for which we match
the physical box size. We focus on two different output times tout corresponding to z = 0
and z = 2 in the fiducial cosmology. As the physical size can only be matched at one
specific time, we have to run a new set of simulations for each output time. The results of
these simulations are presented in section 6.3.2.

1In order to recover the correct linear power spectrum at low redshifts, we compute the growth functions
(D and D̃) without taking radiation into account. This is because N -body codes do not include the effect
of cosmological radiation. In our procedure, we also neglect the effect of curvature on the transfer function
at very low wavenumbers k ∼

√
|K|, since terms of similar order are neglected in the Poisson equation

used in N -body codes. For sub-horizon box sizes these effects are completely negligible.
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Finally, we summarize the common features for the separate universe simulations.
All simulations are gravity-only simulations and are carried out using the Tree-PM code
Gadget-2 [153]. The starting redshift is z = 49 (ai = 0.02), and the particle load for each
simulation is 5123. For the fiducial cosmology (δL0 = 0), we choose a flat ΛCDM cosmol-
ogy with cosmological parameters consistent with the current observational constraints:
Ωm = 0.27, h = 0.7, Ωbh

2 = 0.023, ns = 0.95, σ8 = 0.8, and a comoving box size of
500 h Mpc−1.

We simulate separate universes corresponding to the linearly-evolved present-day over-
densities of δL0 = 0, ±0.01, ±0.02, ±0.05, ±0.07, ±0.1, ±0.2, ±0.5, ±0.7, and ±1. Then,
for the separate universes, the Hubble constant and the curvature fraction vary between h̃:
0.447 to 0.883 and Ω̃K : −2.45 to 0.372, respectively. The physical densities Ω̃mh̃

2, Ω̃Λh̃
2,

and Ω̃bh̃
2 as well as ns and the amplitude of the primordial curvature power spectrum

remain the same.

6.3 Results of separate universe simulations

For the power spectrum computation, we first estimate the density contrast δ(x) on a
10243 grid using the cloud-in-cell mass assignment scheme, then apply a Fast Fourier
transform, and angular average the squared amplitude |δk|2. The density contrast δ(x) =
ρ(x)/ρ̄ − 1 describes the overdensity with respect to the reference density ρ̄. When we
are interested in the growth-only response function, ρ̄ is equal to the mean density of the
separate universe. When we compute the full response function, ρ̄ is equal to the mean
density of the fiducial cosmology. Similarly, for the growth-only response, distances are
measured using the comoving coordinates of the respective cosmology2, whereas, for the full
response, the power spectrum is always measured in comoving coordinates of the fiducial
cosmology.

We only report results up to a maximum wavenumber of 2 h−1 Mpc. A convergence
study with simulations with 8 times lower mass resolution shows differences in G1, G2 and
G3 of only 1 (3) to 5 (10) percent at z = 0 (z = 2) up to that wavenumber, where the
deviations increase from the linear response function to the higher-order response functions.
The results for the full response functions R1, R2 and R3 are converged to an even better
degree. We therefore expect that the simulation results presented here converge to a sub-
percent to a few percent level.

In order to compute the first three response functions, we fit a polynomial in δL to the
fractional difference in the measured power spectrum ∆k(δL) ≡ P (k|δL)/P (k|δL = 0) − 1
for each k-bin. For the fit, we only include results from separate universe simulations
with |δL(tout)| ≤ 0.5 and use a polynomial with degree 6 to be unbiased from higher-
order response functions. As the random realization of the initial density field is the same
across different δL values, the corresponding power spectra are strongly correlated. By
considering the ratio, or the relative difference, of two power spectra a large fraction of
the noise cancels. However, for the same realization, the measured fractional differences

2Note, however, that the unit of length is always h−1Mpc, where h corresponds to the fiducial cosmology.
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∆k(δL) are still correlated over δL. As the number of realizations (16) is not large enough
to reliably estimate the covariance between different δL values, we cannot include this
correlation in the polynomial fitting. Instead, we construct quasi-decorrelated samples
of ∆k(δL) by randomly choosing a realization for each δL value. Fitting many of those
subsamples allows for a robust error estimation of the derived response functions.

6.3.1 Growth-only response functions

Figure 6.2 shows the first three growth-only response functions measured from the simu-
lations at z = 0 (left column) and z = 2 (right column). These correspond to the fully
nonlinear squeezed limit bispectrum (three-point function), trispectrum (four-point func-
tion) and five-point function. The small wiggles in the growth-only response functions
result from the damping of the baryon acoustic oscillations (BAO), which depends on the
amplitude of density fluctuations and thus on δL.

Let us compare the simulation results to the theoretical predictions discussed in sec-
tion 6.1. On sufficiently large scales, the perturbation theory predictions are the most
accurate, as expected. At high redshift, the 1-loop predictions best describe the results
overall. The 1-loop predictions also show a BAO damping effect. At z = 0, the growth-only
response is captured best by the halofit prescription (in case of G1) or the halo model (in
case of G2, G3). We see that the halofit prescription describes the simulation results of the
linear response well at both redshifts, but performs significantly worse for the higher-order
response functions. The BAO damping effect is essentially absent in both halofit and halo
model predictions. Overall, none of the models is able to accurately describe the simulation
data in the nonlinear regime, with discrepancies at z = 0 ranging from 20% in the best
case to a factor of several. These discrepancies are not surprising given that we are looking
at scales beyond the validity of perturbation theory and at higher N -point functions for
which the semi-analytical approaches were not tuned.

The halo model prediction does not asymptote exactly to the linear result in the k → 0
limit. This is because the one-halo term asymptotes to a white noise contribution in this
limit, and since the one-halo term contributes to Gn due to the dependence of the halo
mass function on δL (section 6.1.4), this induces a correction to the linear prediction which
contributes on large scales. Physically, this occurs because the halo model does not enforce
momentum conservation of the matter density field. This issue can be fixed by introducing
a “mass compensation scale” [116].

The halo model predictions can be tuned to better match the simulation results by
allowing for a dependence of the halo profiles on the long-wavelength density, which is
expected on physical grounds (see also [98]). Specifically, if the scale radius of halos at
fixed mass increases in the presence of a long-wavelength density perturbation, this lowers
the peak in the response and thus could lead to better agreement with the simulations
results.
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Figure 6.2: The first three growth-only response functions of the power spectrum measured
from the separate universe simulations at z = 0 (left) and z = 2 (right). The error bars
show the statistical error derived by random resampling of the data (see text). For data
points apparently without error bars, the statistical error is smaller than the size of a dot.

6.3.2 Full response functions

We now turn to the results for the full response functions, i.e. including the “dilation” and
“reference density” effects. The results of the simulations and the model predictions are
shown in figure 6.3. The oscillations in the response functions can be traced back to the
BAOs in the power spectrum. The BAOs propagate to the response functions primarily by
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Figure 6.3: The first three full response functions of the power spectrum measured from
the separate universe simulations at z = 0 (left) and z = 2 (right).

the “dilation” effect, which yields derivatives of the power spectrum with respect to k (see
eqs. (6.14)–(6.16)). The 1-loop perturbation theory predictions describe the simulation
results accurately up to k ≤ 0.15 h−1 Mpc and k ≤ 0.3 h−1 Mpc at z = 0 and z = 2,
respectively. As the other theoretical models do not include the damping of the BAOs in
the nonlinear power spectrum, they predict oscillations in the response functions which
are too large. To improve the accuracy of those models around the BAO scale, one would
need to put in the BAO damping by hand. In the nonlinear regime, none of the models is
able to reproduce the simulation data. In principle, one could build a hybrid model for the
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Figure 6.4: The first three Eulerian response functions of the power spectrum measured
from the separate universe simulations (data points) at z = 0 (left) and z = 2 (right). The
lines show the corresponding linear combinations of the Lagrangian response functions
using the fn coefficients derived for the Einstein-de Sitter universe (see eq. (6.44) and
eq. (3.36)).

full response by combining an accurate prediction of the nonlinear power spectrum of the
fiducial cosmology and the growth-only response functions Gn(k) discussed in the previous
section. However, we do not pursue this approach.

6.3.3 Eulerian response functions

So far, we have always considered the response to the linearly-extrapolated initial (La-
grangian) overdensity δL. We now consider the corresponding response to the evolved
nonlinear (Eulerian) overdensity δρ. Using the expansion derived for the Einstein-de Sitter
universe, eq. (3.36), we find

REulerian
1 (k) = R1(k) ,

REulerian
2 (k) = R2(k)− 2f2R1(k) ,

REulerian
3 (k) = R3(k)− 6f2R2(k) + 6

(
2f 2

2 − f3

)
R1(k) . (6.44)

In figure 6.4, we compare the directly measured Eulerian response functions with the appro-
priate linear combinations of the measured Lagrangian response functions. The agreement
is excellent as expected, especially at high redshift at which the ΛCDM universe is very
well approximated by the Einstein-de Sitter universe.

Interestingly, the higher-order Eulerian response functions are much smaller than in
the Lagrangian case. That is, the response of the nonlinear matter power spectrum to a
uniform nonlinear final-time density δρ is close to linear. This is most likely due to the fact
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that the growth-only response functions are subdominant compared to the rescaling and
reference density contributions, especially at higher order. In this case, eq. (6.10) implies
a close to linear scaling with δρ.

6.4 Simulations with rescaled initial amplitudes

All models for the growth-only response functions that we have presented in section 6.1
and section 6.3.1 are based on the approximation that we can trade the effect of δL for an
appropriate change to the linear growth factor (or equivalently, the linear power spectrum).
But how well does this approximation work?

To investigate how well the effect of a homogeneous overdensity on the growth of
structure can be modeled by a change in the amplitude of the linear power spectrum, we
additionally run a set of simulations for which we always assume the fiducial cosmology
but vary the amplitude of the initial power spectrum. Specifically, for each δL0 value for
which we simulate a separate universe, we also simulate the fiducial cosmology with the
initial power spectrum amplitude multiplied by D̃(t0)2/D(t0)2, where D̃(t0) is the linear
growth factor in the corresponding separate universe cosmology.

Using these “rescaled-amplitude simulations”, we can explicitly test the approximation
that δL effects the growth of structure only through the change in the linear growth factor
on all scales including the nonlinear regime.

6.4.1 Comparison to separate universe simulations

In figure 6.5, we show the growth-only response functions measured from two different
sets of simulations. In case of G1, this comparison was also shown in figure 6 of [98],
and our results agree with theirs.3 The rescaled-amplitude simulations all assume the
fiducial cosmology but vary the amplitude of the linear power spectrum used to initialize
the simulations so as to match the linear power spectrum in the modified cosmology at the
given output times [eq. (6.18) and eq. (6.24)]. On linear scales, these simulations thus agree
with the separate universe simulations by construction. As the simulations share the same
random realization of the initial density, the sample variance (noise in the upper panels)
gets vastly reduced when considering the difference of the measured response functions,
∆Gn = Grescaled

n − Gseparate
n . This is shown in the lower subpanels of figure 6.5, where we

have divided ∆Gn by the corresponding linear growth-only response, i.e. the prediction in
the k → 0 limit.

The differences seen in figure 6.5 are caused by the different growth history, which is not
captured by the rescaling of the initial amplitude. Following the discussion in section 6.1.3,
the commonly used SPT approach factorizing the growth factor and scale dependence
assumes at all orders that a long wavelength density perturbation enters exclusively through
the modified linear growth. Thus, even when calculated to all orders, the best that this

3Note that the in [120] a different comparison is performed using the time derivative of the nonlinear
power spectrum in simulations of the fiducial cosmology.
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SPT calculation could do is to reproduce the rescaled amplitude result in figure 6.5, which
deviates from the actual response at z = 0 by 10% at k ' 0.5 h−1 Mpc and 20% at
k ' 1 h−1 Mpc for G1, and significantly worse for the higher-order response functions. At
z = 2 on the other hand, the rescaled-amplitude G1 matches the separate universe response
to better than 10% even beyond k = 1 h−1 Mpc, and for G2, G3 performs significantly
better as well.

There are two possible explanations for these discrepancies in the SPT context. First,
using the SPT kernels derived for an Einstein-de Sitter universe (which have time-independent
coefficients), with the ΛCDM linear growth factor replacing the Einstein-de Sitter a(t),
could become highly inaccurate for ΛCDM at higher orders. Note that the same issue
exists for a fiducial flat Einstein-de Sitter universe, since for δL 6= 0 the quantity Ωm/f

2

is no longer 1 (d(Ωm/f
2)/dδL = −5/21 [15]; see also the discussion in [120]). There is no

indication of such a strong effect at low orders in perturbation theory, where this approx-
imation typically performs to better than a percent [17]. Furthermore, it is found in [15]
that a cancellation in the curvature contribution to the growth integral suppresses this
effect. Finally, it is shown in [98] that the growth-only response of the power spectrum to
a change in the Hubble constant while keeping Ωmh

2 fixed follows the separate universe
response very closely (figure 6 there). If the much larger discrepancies between separate
universe response and rescaled amplitude response were due to the cosmology dependence
of the SPT kernels, one would not expect this to be the case. Nevertheless, we do not
claim to be able to rigorously exclude this possibility.

The other possibility, more likely in our opinion, is that the discrepancy between
rescaled amplitude and full separate universe simulations is due to effective non-perfect
fluid terms, such as pressure and anisotropic stress, in the dark matter fluid [14]. The
effective fluid properties depend on highly nonlinear small scales which are not described
by the Euler-Poisson system. Their value can depend on the growth history (as well as
the power spectrum shape) thus leading to a discrepancy between rescaled amplitude and
separate universe simulations. Assuming this interpretation is correct, figure 6.5 explicitly
shows the breakdown of SPT on nonlinear scales as effective pressure, anisotropic stress
and sound speed need to be included. Separate universe simulations can be used to mea-
sure the response of these effective terms to a long-wavelength overdensity, which is crucial
when modeling (N > 2)-point functions. The results shown in figure 6.5 are analogous
to what has been found for the mass function of halos which is a key ingredient in the
halo model description of the nonlinear matter density field. The mass function shows
departures from being a simple function of the linear matter power spectrum at the 5–10%
level [163, 20].

In an Einstein-de Sitter cosmology with scale-invariant initial power spectrum Pl(k) ∝
kn, there is only one characteristic spatial scale at any given time, which corresponds to
the scale at which the density field becomes order 1 [124]. Let us denote this wavenumber
as kNL(t). Then, the response functions have to follow a universal function of k/kNL(t), i.e.
Gm(k, t) = Gm(k/kNL) (keeping the index of the initial power spectrum fixed). Thus, in
this specific case, separate universe simulations and rescaled-amplitude simulations will give
exactly the same result when compared at fixed k/kNL. The departures shown in figure 6.5
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can thus be seen as a consequence of the ΛCDM background and the departure from scale-
invariance of the initial power spectrum. It would be interesting to disentangle the two
effects, e.g. by performing separate universe simulations in ΛCDM with scale-invariant
initial conditions. We leave this for future work, but point out that when plotting the
differences shown in the lower panel of figure 6.5 as a function of k/kNL, we still find a
factor of several difference in the z = 0 and z = 2 results.

6.5 Discussion and conclusion

In this chapter, we described in detail the procedure for performing N -body simulations
with the separate universe technique. Using the separate universe simulations, we compute
the response of the nonlinear matter power spectrum to a homogeneous overdensity super-
imposed on a flat FLRW universe. The response functions we computed give the squeezed
limits of the 3-, 4-, and 5-point functions, in which all but two wavenumbers are taken to
be small and are angle-averaged. By virtue of the separate universe technique, we reach
an unprecedented accuracy of these nonlinear matter N -point functions.

The response function consists of three parts: changing the reference density with
respect to which the power spectrum is defined; rescaling of comoving coordinates; and the
effect on the growth of structure. The former two effects can be calculated trivially, whereas
the third one requires separate universe simulations. We have compared the simulation
results with analytical and semi-analytical results, in particular standard perturbation
theory (SPT), the empirical fitting function halofit, and the halo model, finding that SPT
typically yields the best results at high redshifts. The fitting function and halo model, while
qualitatively describe the trends seen in the response functions, give a poor quantitative
description on nonlinear scales.

A fundamental assumption of all of the analytical and semi-analytical methods used in
this chapter, including standard perturbation theory at any order, is that nonlinear matter
statistics at a given time are given solely by the linear power spectrum at the same time,
and do not depend on the growth history otherwise. As was done in [98] for the response
function for n = 1, we were able to test this assumption for n = 2 and 3 quantitatively
by comparing the separate universe simulations with simulations with a rescaled initial
power spectrum amplitude. We find that this assumption fails at the level of 10% at
k ' 0.2 − 0.5 h−1 Mpc for 5- to 3-point functions at z = 0. The failure occurs at higher
wavenumbers at z = 2. In the context of SPT, this may signal a breakdown of the perfect
fluid description of the dark matter density field at and beyond these wavenumbers. In
other words, even if computed to all orders, SPT (and its variants such as RPT [41])
fails to describe the nonlinear structure formation beyond these wavenumbers. Therefore,
our results yields a quantitative estimate for the scales at which effective fluid corrections
become important in the bispectrum and higher N -point functions, and at which one
should stop trusting pure SPT calculations.

Finally, we point out that the approach presented here can be augmented to mea-
sure more general squeezed-limit N -point functions, by including the response to long-
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wavelength tidal fields and by considering the response of small-scale n-point functions in
addition to the small-scale power spectrum considered here.
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Figure 6.5: Comparison of the growth-only response functions G1, G2, G3 (top to bottom)
measured at z = 0 (left column) and z = 2 (right column) from one realization of the
separate universe simulations and from the same realization simulated by varying the
initial amplitude. The bottom subpanels show the difference, ∆Gn = Grescaled

n − Gseparate
n ,

divided by the response of the linear matter power spectrum, Glinear
n .



Chapter 7

Summary and outlook

In this dissertation, we have proposed and developed in detail a new observable, position-
dependent power spectrum, to extract the squeezed-limit bispectrum of the large-scale
structure by measuring the correlation between the position-dependent two-point statis-
tics and the mean overdensity in the subvolumes of a survey volume. Since this new tech-
nique requires essentially measurements of the two-point statistics and mean overdensity,
it sidesteps the complexity of the traditional three-point function estimation.

The correlation between the position-dependent two-point statistics and the mean over-
density can be regarded as how the small-scale structure formation responds to a long-
wavelength mode. In chapter 3, we have shown that the long-wavelength overdensity
compared to the scale of interest can be absorbed into the background cosmology, and
the small-scale structure formation evolves in the corresponding modified cosmology. This
separate universe approach thus provides an intuitive way to model the squeezed-limit bis-
pectrum, i.e. the response of the small-scale power spectrum to a long-wavelength mode.

In chapter 4, we have measured the position-dependent power spectrum from cosmologi-
cal N -body simulations, and compared the measurements to different theoretical modeling.
In particular, we have shown that it is not only straightforward to combine the separate
universe approach with various power spectrum models, but the separate universe approach
also describes nonlinearity in the squeezed-limit bispectrum due to gravitational evolution
better than the traditional approach based on the perturbation theory. This would enable
us to measure the primordial non-Gaussianity in the large-scale structure because we must
distinguish the primordial signal from the contamination due to the late-time contribution
that we have computed precisely in this dissertation.

In chapter 5, we have reported on the first measurement of the three-point function
with the position-dependent correlation from the SDSS-III BOSS DR10 CMASS sample.
Since the integrated three-point function of a given subvolume size depends on only one
separation (unlike the full three-point function which depends on three separations), the
covariance matrix, which is necessary for the statistical interpretation of the cosmological
information, can be well estimated with 600 PTHalos mock catalogs. This allows the
detection of the amplitude of the three-point function of the BOSS CMASS galaxies at
7.4σ, which can be turned into the constraint on the nonlinear bias b2 = 1.30± 0.54 when
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combining with the anisotropic clustering and the weak lensing signal.
We have generalized the study of the response of the small-scale power spectrum to

m long-wavelength overdensities in chapter 6. This response can be linked to the angle-
average squeezed-limit (m+ 2)-point function, where two modes have wavenumbers much
larger than the other ones. We have used separate universe simulations, where N -body
simulations are performed in the presence of a long-wavelength overdensity by modifying
the cosmological parameters, to test the separate universe approach on fully nonlinear
scales to the unprecedented accuracy. We have also tested the standard perturbation
theory hypothesis that the nonlinear n-point function is completely predicted by the linear
power spectrum at the equal time. We have found the discrepancies of 10% at k '
0.2− 0.5 h Mpc−1 for five- to three-point functions at z = 0, suggesting that the standard
perturbation theory fails to describe the correct dynamics of collisionless particles beyond
these wavenumbers, even if it is calculated to all orders in perturbations.

While the topic of chapter 6 seems somewhat academic because even measuring the
three-point function from galaxy surveys is already challenging at the moment, the idea of
separate universe simulations can largely alleviate the computational resources for studying
nonlinearities in the squeezed-limit n-point functions. That is, we do not need to perform
N -body simulations with a huge volume to simulate the mode coupling between long and
short wavelength modes. As nonlinearity due to gravitational evolution is the dominant
contamination for extracting the primordial non-Gaussianity from the large-scale structure
bispectrum, being able to accurately model the gravity induced bispectrum is currently the
most important challenge in this field. We can better construct and test the models for
the squeezed-limit bispectrum with separate universe simulations.

The quantum origin of all the structures we observe today is one of the most amazing
ideas in history of physics. Such a bold claim requires careful investigations and validations.
Upcoming galaxy surveys contain data with unprecedented amount and quality, which
allow critical tests of this paradigm. The soon-to-be-public BOSS DR12 CMASS sample
contains approximately 50% more observed galaxies and volume than the DR10 sample. We
have used the Fisher matrix to show that the BOSS DR12 CMASS sample can potentially
constrain the local-type primordial non-Gaussianity to be σ(fNL) ∼ 17 (95% C.L.). Thus,
we plan to apply in the near future the same technique to the BOSS DR12 CMASS sample,
and obtain better constraints on the nonlinear bias, as well as on the logarithmic growth
rate and the primordial non-Gaussianity.



Appendix A

Tree-level redshift-space bispectrum

In this appendix, we summarize the tree-level redshift-space bispectrum following [141, 17].

A.1 Mapping between real and redshift space

In redshift space, the observed radial position of an object (galaxy) is the combination of
the Hubble flow and its peculiar velocity, which is known as redshift-space distortion. The
mapping between the real-space position x and the redshift-space position s is

as = ax +
ṽ‖(x)

H
x̂‖ or s = x− fu‖(x)x̂‖ , (A.1)

where x and s are in the comoving coordinates, x̂‖ is the line-of-sight direction, ṽ‖ = ṽ · x̂‖
is the line-of-sight component of the physical peculiar velocity field, u = −ṽ/(Hf) is the
rescaled peculiar velocity field, and H = aH = a′/a is the conformal Hubble parameter
with prime being the derivative with respect to conformal time

τ =

∫ t

0

dt′

a(t′)
. (A.2)

The density fluctuation in redshift space, δs(s), is related to the real-space one, δ(x),
by mass conservation, i.e.

[1 + δs(s)]d3s = [1 + δ(x)]d3r . (A.3)

Since the Jacobian, J(x) = d3s/d3r, is known exactly through eq. (A.1), the redshift-space
density fluctuation can be written as

δs(s) =
1 + δ(x)

J(x)
− 1 =

δ(x) + f∇‖u‖(x)

J(x)
, (A.4)
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where J(x) = 1− f∇‖u‖(x) and ∇‖ ≡ d/dr‖. In Fourier space, the redshift-space density
fluctuation is

δs(k) =

∫
d3s δs(s)e−ik·s =

∫
d3s

δ(x) + f∇‖u‖(x)

J(x)
e−ik·[x−fu‖(x)x̂‖]

=

∫
d3r

[
δ(x) + f∇‖u‖(x)

]
eifk‖u‖(x)e−ik·x , (A.5)

where k‖ = k · x̂‖. Note that in eq. (A.5) the only approximation is the plane-parallel
approximation, and so it describes the fully nonlinear density fluctuation in redshift space.
The term in the square brackets describes the so-called “squashing effect”, i.e. the increase
of the clustering amplitude due to infall into the gravitational potential [80]; the term in
the exponent encodes the “Finger-of-God effect” which erases power due to the velocity
dispersion along the line-of-sight [75].

To proceed, we define the divergence of the rescaled peculiar velocity field as θ̃(x) ≡
∇ · u(x), and so ∫

d3r u‖(x)e−ik·x =
−ik · x̂‖
k2

θ̃(k) =
−iµk
k

θ̃(k)∫
d3r ∇‖u‖(x)e−ik·x =

(
k · x̂‖
k

)2

θ̃(k) = µ2
kθ̃(k) , (A.6)

where µk ≡ k · x̂‖/k = k‖/k is the cosine of the angle between k and the line-of-sight. We
then perturbatively expand eifk‖u‖(x) and use eq. (A.6) to get

δs(k) =

∫
d3r e−ik·x

[
δ(x) + f∇‖u‖(x)

]{ ∞∑
n=0

[
ifk‖u‖(x)

]n
n!

}

=

∫
d3r e−ik·x

∫
d3q

(2π)3

[
δ(q) + fµ2

q θ̃(q)
]
eiq·x

×

[
1 +

∞∑
n=1

(ifµkk)n

(n)!

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3(

−iµq1
q1

)
θ̃(q1) · · ·

(
−iµqn

qn

)
θ̃(qn)ei(q1+···+qn)·x

]
=
[
δ(k) + fµ2

kθ̃(k)
]

+
∞∑
n=2

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[
δ(q1) + fµ2

q1
θ̃(q1)

]
[δD]n

× (fµkk)n−1

(n− 1)!

µq2
q2

θ̃(q2) · · · µqn
qn
θ̃(qn) , (A.7)

where [δD]n ≡ (2π)3δD(k− q1 − · · · − qn).
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A.2 Redshift-space kernel

To obtain δs(k), we need to solve the velocity divergence. Since we are interested in scales
smaller than the Jeans length, we shall treat dark matter and baryons as pressureless fluid.
Moreover, as the peculiar velocity is much smaller than the speed of light and the scales
of density fluctuations are much smaller than the horizon size, the system can be treated
by Newtonian dynamics. The equations of the system are (see, e.g. [77])

δ′ +∇ · [(1 + δ)v] = 0 ,

v′ + (v · ∇) v = −H−∇φ ,
∇2φ = 4πGa2ρ̄δ , (A.8)

where v = dx/dτ = ṽ is the peculiar velocity field in the comoving coordinate with con-
formal time and is equivalent to the physical peculiar velocity field, φ is the peculiar
gravitational potential from density fluctuations and ρ̄ is the mean density. Combining
eq. (A.8) and the Friedmann equation (i.e. 4πGρ̄(τ) = 3

2
H2Ωm(τ)), the continuity equa-

tion (the first line in eq. (A.8)) and the Euler equation (the second line in eq. (A.8)) in
Fourier space can be written as

δ′(k, τ) + θ(k, τ) = −
∫

d3k1

(2π)3

∫
d3k1

(2π)3
[δD]2

k · k1

k2
1

δ(k2, τ)θ(k1, τ) ,

θ′(k, τ) +Hθ(k, τ) +
3

2
H2Ωm(τ)δ(k, τ) = −

∫
d3k1

(2π)3

∫
d3k1

(2π)3
[δD]2

k2(k1 · k2)

2k2
1k

2
2

θ(k1, τ)θ(k2, τ) ,

(A.9)

where θ ≡ ∇ · v is the comoving velocity divergence. Note that θ = −aHfθ̃.
To proceed further, we assume that the universe is Einstein de-Sitter, i.e. Ωm(τ) = 1

and a(τ) ∝ τ 2. Then, δ and θ can be solved perturbatively as [58, 65]

δ(k, τ) =
∞∑
n=1

an(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nF
unsym
n (q1, · · · ,qn)δl(q1) · · · δl(qn) ,

θ(k, τ) = −
∞∑
n=1

a′(τ)an−1(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nG
unsym
n (q1, · · · ,qn)δl(q1) · · · δl(qn) ,

(A.10)

where δl is the linear density field, F unsym
n and Gunsym

n are the (unsymmetrized) kernels of
eq. (A.9), and the recursion relation can be found in [76, 17]. Strictly speaking, eq. (A.10)
is only valid in Einstein de-Sitter universe, but a good approximation is to replace a = D
and a′ = D2Hf (see appendix B.3 in [139]), where D is the linear growth factor and
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f = d lnD/d ln a is the logarithmic growth rate, and eq. (A.10) can be written as

δ(k, τ) =
∞∑
n=1

Dn(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nF
unsym
n (q1, · · · ,qn)δl(q1) · · · δl(qn) ,

θ̃(k, τ) =
∞∑
n=1

Dn(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nG
unsym
n (q1, · · · ,qn)δl(q1) · · · δl(qn) .

(A.11)

One can then define

δn(k, τ) = Dn(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nF
unsym
n (q1, · · · ,qn)δl(q1) · · · δl(qn) ,

θ̃n(k, τ) = Dn(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nG
unsym
n (q1, · · · ,qn)δl(q1) · · · δl(qn) (A.12)

such that δ(k, τ) =
∑∞

n=1 δn(k, τ) and θ̃(k, τ) =
∑∞

n=1 θ̃n(k, τ), and thus δn and θ̃n are the
nth order in linear density field.

For observation, however, one cannot probe dark matter directly, but only the biased
tracers (e.g. halos or galaxies). Let us assume that the halo (galaxy) density fluctuations
can be parametrized by the local bias model as [59]

δh(x) =
∑
n=0

bn
n!
δn(x) , (A.13)

where bn are local bias parameters and b0 assures 〈δh〉 = 0. On the other hand, because of
the conservation of mass and momentum, we assume that the halo peculiar velocity field
is identical to the underlying matter peculiar velocity field, i.e. θ̃h = θ̃ (see e.g. [26]).1 The
redshift-space halo density fluctuations can thereby be written as

δh,s(k) =
∞∑
n=1

∫
d3q1

(2π)3

∫
d3q2

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]n[δh(q1) + fµ2
q1
θ̃(q1)]

× (fµkk)n−1

(n− 1)!

µq2
q2

θ̃(q2) · · · µqn
qn
θ̃(qn) . (A.14)

1Note however, that using N -body simulations [8] recently shows the evidence for linear statistical halo
velocity bias which remains constant with time, as predicted by the peak model [50, 49]. It is argued
in [8, 21] that the Euler equation has to be modified to correctly describe the coevolution between dark
matter and halos.
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Combining eqs. (A.11)–(A.14), one can expand δh,s(k) as

δh,s(k) = [b1δ1(k) + fµ2
kθ̃1(k)]

+

{[
b1δ2(k) +

b2

2

∫
d3q

(2π)3
δ1(q)δ1(k− q) + fµ2

kθ̃2(k)

]

+

∫
d3q1

(2π)3

∫
d3q2

(2π)3
[δD]2[b1δ1(q1) + fµ2

q1
θ̃1(q1)](fµkk)

µq2
q2

θ̃1(q2)

}
+ · · · , (A.15)

for which we expand up to the second order of δl.

For simplicity, one may define the redshift-space kernel Zn(q1, · · · ,qn) such that

δh,s(k, τ) =
∞∑
n=1

Dn(τ)

∫
d3q1

(2π)3
· · ·
∫

d3qn
(2π)3

[δD]nZn(q1, · · · ,qn)δl(q1) · · · δl(qn) (A.16)

with

Z1(qi) = b1 + fµ2
qi

Z2(q1,q2) = b1F2(q1,q2) +
b2

2
+ fµ̃2G2(q1,q2) +

fµ̃q̃

2

[
µq1
q1

(b1 + fµ2
q2

) +
µq2
q2

(b1 + fµ2
q1

)

]
,

(A.17)

where µ̃ = q̃ · x̂‖/q̃ with q̃ = q1 + · · · + qn at the nth order, and Fn and Gn are the
symmetrized kernels and obtained by taking the mean of all possible permutations of the
unsymmetrized kernels. Eqs. (A.16)–(A.17) are the main results of this appendix.

The redshift-space halo bispectrum is defined as

〈δh,s(k1)δh,s(k2)δh,s(k3)〉 = (2π)3δD(k1 + k2 + k3)Bh,s(k1,k2,k3) . (A.18)

Using the redshift-space kernels, one obtains the leading order terms as

Bh,s(k1,k2,k3) = 2[Z1(k1)Z1(k2)Z2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] , (A.19)

in which we use the fact that Z2(−k1,−k2) = Z2(k1,k2) and δl is Gaussian so that
〈δl(k1)δl(k2)〉 = (2π)3δD(k1 + k2)Pl(k1) and 〈δnl 〉 = 0 for odd n.

It is useful to separate Bh,s into four categories: the linear squashing terms (SQ1)
which are proportional to F2(k1,k2); the second-order squashing terms (SQ2) which are
proportional to G2(k1,k2); the nonlinear bias terms (NLB) which are related to b2; the
damping terms (FOG) due to the velocity dispersion which are not related to F2(k1,k2),
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G2(k1,k2), and b2. That is, Bh,s = BSQ1 +BSQ2 +BNLB +BFOG such that

BSQ1(k1,k2,k3) = b3
1

3∑
i=1

βi−1BSQ1,i(k1,k2,k3) ,

BSQ2(k1,k2,k3) = b3
1β

3∑
i=1

βi−1BSQ2,i(k1,k2,k3) ,

BNLB(k1,k2,k3) = b2
1b2

3∑
i=1

βi−1BNLB,i(k1,k2,k3) ,

BFOG(k1,k2,k3) = b4
1β[BFOG,1(k1,k2,k3) + βBFOG,2(k1,k2,k3) + βBFOG,3(k1,k2,k3)

+ β2BFOG,4(k1,k2,k3) + β2BFOG,5(k1,k2,k3) + β3BFOG,6(k1,k2,k3)] ,
(A.20)

where β = f/b1. The explicit expressions are: for SQ1,

BSQ1,1(k1,k2,k3) = 2[F2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] ,

BSQ1,2(k1,k2,k3) = 2[(µ2
1 + µ2

2)F2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] ,

BSQ1,3(k1,k2,k3) = 2[µ2
1µ

2
2F2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] ; (A.21)

for SQ2,

BSQ2,1(k1,k2,k3) = 2[µ2G2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] ,

BSQ2,2(k1,k2,k3) = 2[(µ2
1 + µ2

2)µ2G2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] ,

BSQ2,3(k1,k2,k3) = 2[µ2
1µ

2
2µ

2G2(k1,k2)Pl(k1)Pl(k2) + 2 cyclic] ; (A.22)

for NLB,

BNLB,1(k1,k2,k3) = Pl(k1)Pl(k2) + 2 cyclic ,

BNLB,2(k1,k2,k3) = (µ2
1 + µ2

2)Pl(k1)Pl(k2) + 2 cyclic ,

BNLB,3(k1,k2,k3) = µ2
1µ

2
2Pl(k1)Pl(k2) + 2 cyclic ; (A.23)
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for FOG,

BFOG,1(k1,k2,k3) = kµ

(
µ1

k1

+
µ2

k2

)
Pl(k1)Pl(k2) + 2 cyclic ,

BFOG,2(k1,k2,k3) = 2

[
kµµ1µ2

(
µ2

k1

+
µ1

k2

)
Pl(k1)Pl(k2) + 2 cyclic

]
,

BFOG,3(k1,k2,k3) = kµ

(
µ3

1

k1

+
µ3

2

k2

)
Pl(k1)Pl(k2) + 2 cyclic ,

BFOG,4(k1,k2,k3) = 2

[
kµµ2

1µ
2
2

(
µ1

k1

+
µ2

k2

)
Pl(k1)Pl(k2) + 2 cyclic

]
,

BFOG,5(k1,k2,k3) = kµµ1µ2

(
µ3

2

k1

+
µ3

1

k2

)
Pl(k1)Pl(k2) + 2 cyclic ,

BFOG,6(k1,k2,k3) = kµµ3
1µ

3
2

(
µ2

k1

+
µ1

k2

)
Pl(k1)Pl(k2) + 2 cyclic . (A.24)

Note that in eqs. (A.21)–(A.24) we shall simplify the notations µn = µkn and µ̃ = µ for
clarity.

A.3 Tree-level redshift-space integrated bispectrum

in the squeezed-limit

Let us define the integrated bispectrum of each component as

iBX,i(k) =
1

V 2
L

∫
d2k̂

4π

∫
d3qa
(2π)3

∫
d3qb

(2π)3
BX,i(k− qa,−k + qa + qb,−qb)

×WL(qa)WL(−qa − qb)WL(qb) , (A.25)

where X refers to SQ1, SQ2, NLB, or FOG. We numerically evaluate all the components
of the integrated bispectrum through eq. (A.25) and eqs. (A.21)–(A.24). Figure A.1 shows
the ratios of the components at z = 0 with L = 200 h−1 Mpc. The left and middle
panels of figure A.1 show iBX,j(k)/iBX,1(k) for X=SQ1, SQ2, NLB, and FOG with j = 2
and 3; the right panel shows iBX,1(k)/iBSQ1,1(k) for X=SQ2, NLB, and FOG. We find
that the ratios become quite scale-independent for k & 0.5 h Mpc−1, indicating that
all components have very similar scale-dependencies when the squeezed limit is reached
(k � 1/L = 0.005 h Mpc−1). Note that in principle the ratios depend on the window
function and the power spectrum. Fortunately, the anisotropy of the window function can
be neglected in the squeezed limit.

To understand the similar scale-dependences for different terms of the tree-level redshift-
space integrated bispectrum in the squeezed limit, let us now consider the three wavenum-
bers to be k1 = k − qa, k2 = −k + qa + qb, and k3 = qb for the k-configuration of
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Figure A.1: Ratios of the components of the tree-level redshift-space halo bispectrum at
z = 0 with L = 200 h−1 Mpc, and the line-of-sight direction is ẑ. Left and middle panels:
iBX,j(k)/iBX,1(k) for X=SQ1, SQ2, NLB, and FOG, and j = 2 and 3. Right panel:
iBX,1(k)/iBSQ1,1(k) for X=SQ2, NLB, and FOG.

the integrated bispectrum. In the squeezed limit, where k � qa, qb, we can expand all
quantities in series of (qa/k) and (qb/k), and in the leading order (up to (qa,b/k)0) we get

k1 = k
(

1− µak
qa
k

)
, k2 = k

(
1− µak

qa
k
− µbk

qb
k

)
, k3 = qb ,

Pl(k1) = Pl(k)

[
1− qaµak

k

d lnPl(k)

d ln k

]
, Pl(k2) = Pl(k)

[
1− qaµak + qbµbk

k

d lnPl(k)

d ln k

]
,

Pl(k3) = Pl(q3) , F2(k1,k2) = 0 , G2(k1,k2) = 0 ,

F2(k1,k3) =
5

7
− kµbk − qaµab

2qb
+

2

7
µ2
bk , F2(k2,k3) =

3

14
+
kµbk − qaµab

2qb
+

2

7
µ2
bk ,

G2(k1,k3) =
3

7
− kµbk − qaµab

2qb
+

4

7
µ2
bk , G2(k2,k3) =

−1

14
+
kµbk − qaµab

2qb
+

4

7
µ2
bk ,

µ1 = µk +
qaµakµk − qaµa

k
, µ2 = −µk +

qaµak + qbµbk − qaµaµk − qbµbµk
k

, µ3 = −µb ,
(A.26)

where µk = k̂ · x̂‖, µa = q̂a · x̂‖, µb = q̂b · x̂‖, µbk = q̂b · k̂, and µab = q̂a · q̂b. The redshift-space
bispectrum can then be expanded in series of (qa/k) and (qb/k) as (at the leading order up
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to (qa,b/k)0)

BSQ1,1,sq = Pl(k)Pl(qb)

[
13
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8

7
µ2
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d lnPl(k)

d ln k
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bk
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,
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BNLB,1,sq = Pl(k)Pl(qb)[2] ,
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d lnPl(k)
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, (A.27)

where µk = k̂ · x̂‖. Note that eq. (A.27) is independent of qa, so we can simplify the
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integrated bispectrum as

iB(k) =
1

V 2
L

∫
d2k̂

4π

∫
d3qa
(2π)3

∫
d3qb

(2π)3
B(k− qa,−k + qa + qb,−qb)

×WL(qa)WL(−qa − qb)WL(qb)

k�qa,qb=
1

V 2
L

∫
d2k̂

4π

∫
d3qb

(2π)3
B(k− qa,−k + qa + qb,−qb)W

2
L(qb) , (A.28)

where we use the fact that∫
d3qa
(2π)3

WL(qa)WL(−qa − qb) = WL(qb) . (A.29)

If the window function is isotropic, we can angular average both k̂ and q̂b over eq. (A.27)
and obtain
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(A.30)

Using eq. (A.30), the integrated bispectrum can further be simplified as

iB(k)
k�qa,qb= Pl(k)σ2

l,LHX(k) , (A.31)

where σ2
l,L = 1

V 2
L

∫
dqb
2π2 q2

bPl(qb)W
2
L(qb) and HX(k) corresponds to the terms of the four

categories in the square brackets in eq. (A.30). For ns = 0.95, in the squeezed limit
d lnPl(k)
d ln k

∼ ns − 4 = −3.05. Plugging in the value of d lnPl(k)
d ln k

, we find that the analytical
(eq. (A.30)) and numerical (figure A.1) results agree well.



Appendix B

Variance of the integrated
bispectrum estimator

In this section we compute the variance of the integrated bispectrum estimator. In a
survey/simulation with volume Vr, we first estimate the mean overdensity and the position-
dependent power spectrum in the jth subvolume with volume VL by

ˆ̄δj =
1

NrL

∑
l∆r∈VLj

δr,l , P̂j(k) =
1

VLNkL

∑
|lkFL|∈k±∆k/2

δkj,lδ
∗
kj,l , (B.1)

where NrL is the number of meshes in VLj, ∆r = (VL/NrL)1/3 is the mesh size, δr,l is the
discrete density fluctuation field at the integer vector l, NkL is the number of Fourier modes
in (k −∆k/2, k + ∆k/2) of VL, kFL = 2π/L is the fundamental frequency of VL, and δkj
is the local Fourier transformation of the density fluctuation field in the jth sub-volume.
The estimated integrated bispectrum is then

ˆiBL(k) =
1

N3
cut

N3
cut∑
j=1

ˆ̄δjP̂j(k) , (B.2)

where N3
cut = Vr/VL is the number of subvolumes.

We can rewrite eq. (B.1) using the window function Wrj,l (Wrj,l = 1 if l∆r ∈ VLj and
0 otherwise) as

ˆ̄δj =
1

NrL

∑
l∆r∈Vr

δr,lWrj,l =

(
kF
2π

)3
1

VL

∑
mkF∈Vk

δ∗k,mWkj,m ,

δkj,l = (∆r)3
∑

m∆r∈VLj

δr,me
−i(m−nsj)·lML =

(
kF
2π

)3

einsj ·lML

∑
nkF∈Vk

δk,L−nWkj,n , (B.3)

where Vk is the Fourier volume of Vr with the fundamental frequency kF = 2π/V
1/3
r =

2π/Lr, Mr = ∆rkF = 2π/NrL,1 with NrL,1 = N
1/3
rL being the mesh number of Lr,
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ML = ∆rkFL = MrNcut, L = lNcut, and exponential term of δjk,l reflects the phase of
the local Fourier transform (which will then be canceled out when computing the local
power spectrum P̂j(k)). We shall use the capital letters to denote the integer vector mul-
tiplied by Ncut. Wki,l is the window function in Fourier space, which can be written as

Wki,l = (∆r)3
∑

m∆r∈Vr

Wri,me
−im·lMr = WL(lkF )e−ilkF rLi , (B.4)

where WL(k) = VL
∏2

i=0 sinc(kiL/2) is the window function of VL. Eq. (B.4) is true in
the continuous limit, i.e. kF → 0. Namely, there is a slight difference between the dis-
crete Fourier transform of the window function and WL(k). However we shall ignore this
difference and use the continuous limit in the derivation for simplicity.

Combining the above equations, the integrated bispectrum can be estimated as

ˆiBL(k) =

(
kF
2π

)9
1

V 2
LNkL

∑
|j|∈k±∆k/2

∑
(l,m,n)∈Vk

δ∗k,lδk,J−mδ
∗
k,J+nWL(l)WL(m)WL(n)

× 1

N3
cut

N3
cut∑
i=1

e−i(l+m+n)kF ·rLi . (B.5)

Here, to simplify the notation, we drop all the fundamental units (∆r and kF ) of the integer
vectors in the summation and the window function. We find that the pth axis of rLi (rL is
the center of the ith subvolume) is rLip,p = (ip + 1/2)L with ip being the order of the ith

subvolume in the pth axis, hence the last term of eq. (B.5) can be simplified as

N3
cut∑
i=1

e−i(l+m+n)kF ·rLi =
2∏
p=0

(−1)lp+mp+np
sin[(lp +mp + np)π]

sin[(lp +mp + np)π/Ncut]
. (B.6)

Eq. (B.6) is non-zero only if lp +mp + np = Ncutsp with sp being an integer, and the value
is (−1)s0+s1+s2N3

cut for even Ncut and N3
cut for odd Ncut. We shall assume odd Ncut for

simplifying the notation, but the results (variance of the estimator) would be identical for
both cases, as we will show later. We can thus rewrite eq. (B.6) as

N3
cutδ

K
l+m+n,sNcut

= N3
cutδ

K
l+m+n,S , (B.7)

where δKa,b is the Kronecker delta and S ≡ sNcut. Finally, the estimator of the integrated
bispectrum becomes

ˆiBL(k) =

(
kF
2π

)9
1

V 2
LNkL

∑
|j|∈k±∆k/2

∑
(m,n)∈Vk

∞∑
s=−∞

δ∗k,S−m−nδk,J−mδ
∗
k,J+n

×WL(S−m− n)WL(m)WL(n) . (B.8)
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Eq. (B.8) is an unbiased estimator because

〈 ˆiBL(k)〉 =

(
kF
2π

)9
1

V 2
LNkL

∑
|j|∈k±∆k/2

∑
(m,n)∈Vk

∞∑
s=−∞

〈δ∗k,S−m−nδk,J−mδ∗k,J+n〉

×WL(S−m− n)WL(m)WL(n)

=
1

V 2
LNkL

∑
|j|∈k±∆k/2

∫
d3q1

(2π)3

∫
d3q2

(2π)3
B(+q1 + q2,JkF − q1,−JkF − q2)

×WL(q1)WL(q2)WL(−q1 − q2)

=
1

NkL

∑
|j|∈k±∆k/2

iB(JkF ) = iB(k) , (B.9)

where we replace the discrete Fourier transform with the continuous one as [k3
F/(2π)3]

∑
m∈Vk →∫

d3q/(2π)3. Note that only s = 0 contributes to 〈 ˆiBL(k)〉.
Replacing the discrete Fourier transform with the integral form, the variance of the

integrated bispectrum estimator can be computed by

〈[ ˆiBL(k)− 〈 ˆiBL(k)〉]2〉 = 〈[ ˆiBL(k)]2〉 − [〈 ˆiBL(k)〉]2

=

(
kF
2π

)18
1

V 4
LN

2
kL

∑
|j1,j2|∈k±∆k/2

∞∑
s1,s2=−∞

∫
d3q1

(2π)3
· · ·
∫

d3q4

(2π)3

〈δ(k1 − q1)δ(−k1 − q2)δ(q1 + q2 − g1)δ(k2 − q3)δ(−k2 − q4)δ(q3 + q4 − g2)〉
×WL(q1)WL(q2)WL(g1 − q1 − q2)WL(q3)WL(q4)WL(g2 − q3 − q4) , (B.10)

where kn = JnkF and gn = SnkF . We shall assume that the dominant component of the
six-point function is the disconnected part, and thus the only non-zero component has the
wavenumber combinations as1

k1−q1−k2−q4 = 0 , −k1−q2 + k2−q3 = 0 , q1 + q2−g1 + q3 + q4−g2 = 0 . (B.12)

This gives three delta functions as

(2π)9δD(k1 − k2 − q1 − q4)δD(−k1 + k2 − q2 − q2)δD(g1 + g2) . (B.13)

The last delta function in eq. (B.13) requires g1 = −g2 or s1 = −s2. This means that even
if even Ncut has a parity term (−1)s, it would be canceled because s1 = −s2.

1Note that another seemingly non-zero component has the wavenumber combinations as

k1 − q1 + k2 − q3 = 0 , − k1 − q2 − k2 − q4 = 0 , q1 + q2 − g1 + q3 + q4 − g2 = 0 . (B.11)

However, this requires k1 = −k2 or j1 = −j2. Since we count only the independent Fourier modes, only
half of the Fourier space is counted (or only the hemisphere is considered), and so it is impossible to have
j1 = −j2.
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With the above results, the variance of the integrated bispectrum estimator is given by
(g = SkF = sNcutkF )(
kF
2π

)3
1

V 4
LN

2
kL

∑
|j1,j2|∈k±∆k/2

∞∑
s=−∞

∫
d3q1

(2π)3

∫
d3q2

(2π)3
P (k1 − q1)P (−k1 − q2)P (q1 + q2 − g)

×WL(q1)WL(q2)WL(g − q1 − q2)WL(k1 − k2 − q1)WL(−k1 + k2 − q2)WL(−g + q1 + q2) .
(B.14)

Note that eq. (B.14) is non-zero only if k1 = k2 or j1 = j2, so the variance of the integrated
bispectrum estimator can be simplified as (k = JkF = jNcutkF )

1

VrV 4
LN

2
kL

∑
|j|∈k±∆k/2

∞∑
s=−∞

∫
d3q1

(2π)3

∫
d3q2

(2π)3
P (k− q1)P (−k− q2)P (q1 + q2 − g)

× |WL(q1)|2|WL(q2)|2|WL(g − q1 − q2)|2 , (B.15)

where we replace k3
F/(2π)3 with Vr. To proceed further, let us consider the sum over s.

Since g = sNcutkF = skF,L, we replace the discrete sum with the integral as

∞∑
s=−∞

P (q− g)|WL(g − q)|2 →
(
kF,L
2π

)−3 ∫
d3g

(2π)3
P (q− g)|WL(g − q)|2

=

(
kF,L
2π

)−3

V 2
Lσ

2
L = V 3

Lσ
2
L , (B.16)

where σ2
L = 1

V 2
L

∫
d3q

(2π)3
P (q)|WL(q)|2 is the variance of the fluctuation in the volume VL.

Finally, the variance of the integrated bispectrum estimator is simply

1

VrV 4
LN

2
kL

∑
|j|∈k±∆k/2

V 3
Lσ

2
L

[∫
d3q

(2π)3
P (k− q)|WL(q)|2

]2

=
VL

VrN2
kL

σ2
L

∑
|j|∈k±∆k/2

[PL(k)]2 =
VL

VrNkL

σ2
L[PL(k)]2 , (B.17)

where PL(k) = 1
VL

d3q
(2π)3

P (k−q)|WL(q)|2 is the convolved power spectrum of the subvolume
VL. Note that the previous derivation ignores the shot noise contribution. If the shot noise
is Poisson like, i.e. Pshot = n̄−1 with n̄ being the number density of the discrete particles,
then it is trivial to add back as

VL
VrNkL

[
σ2
L +

Pshot

VL

]
[PL(k) + Pshot]

2 . (B.18)

For the normalized integrated bispectrum, we assume that the variance is dominated by
the bispectrum term instead of the normalization which contains PL(k) and σ2

L, and so its
variance is

VL
VrNkL

[
σ2
L + Pshot

VL

]
σ4
L

[PL(k) + Pshot]
2

P 2
L(k)

. (B.19)
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Figure B.1: Correlation matrices measured from 160 dark matter N -body simulations
at z = 0 (left) and 2 (right) for Ncut = 4 (bin 0 to 47 in the axis labels), 6 (bin 48
to 79), 8 (bin 80 to 103), 12 (bin 104 to 119), which correspond to 600, 400, 300, and
200 h−1 Mpc, respectively. The bottom half and top half of the correlation matrices show
the unnormalized and normalized integrated bispectrum.

Figure B.1 shows the correlation matrices measured from 160 dark matter N -body
simulations at z = 0 and 2. The details of the simulations are given in section 4.1. There are
four subvolume sizes: 600 (bin 0 to 47 in the axis labels), 400 (bin 48 to 79), 300 (bin 80 to
103), and 200 h−1 Mpc (bin 104 to 119). The bottom (top) half of the correlation matrices
is the unnormalized (normalized) integrated bispectrum. We find that the cross-correlation
between different subvolumes is much smaller than that within the same subvolumes. This
is expected because different subvolumes have different long-wavelength modes, which are
uncorrelated. At z = 2 the correlation matrices are more diagonal than at z = 0 because
of the smaller nonlinearity. We also find that the normalization largely diagonalizes the
correlation matrices, particularly at z = 2 where the off-diagonal components nearly vanish.
Note that there are stripes, which are more obvious in the normalized integrated bispectrum
at z = 2, across the diagonal elements of the cross covariances between different sizes of
subvolumes. This is because these components have the same short-wavelength modes,
i.e. the scales of the position-dependent power spectrum. Consequently, the correlation is
stronger.

Figure B.2 shows the square root of the variances of the normalized integrated bispectra
at z = 0 (left) and 2 (right). The data points are measured from simulations, and the solid
lines are computed using eq. (B.19) with the linear power spectrum and zero shot noise.
We find that on large scales as well as at high redshift, the agreement between simulations
and analytical calculation is good. The agreement between the data points and the solid
lines confirm our calculation of the variance of the integrated bispectrum estimator.
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Figure B.2: Square root of the variances of the normalized integrated bispectrum at z = 0
(left) and 2 (right). The data points show the measurements from the simulations and the
solid lines show eq. (B.19) with the linear power spectrum and zero shot noise.



Appendix C

Testing the integrated three-point
function estimator with Gaussian
realizations and the local bias model

We shall demonstrate that our integrated three-point function estimator is unbiased. To
do this, we first generate the matter density field, δm(r), by Gaussian realizations1 with
Pl(k) at z = 0 for the volume Vr of 1200 h−3 Mpc3 and a mesh size of 4 h−1 Mpc. We then
compute a mock “halo” density field using the local bias model via

δh(r) = b1δm(r) +
b2

2

[
δ2
m(r)−

∑
r∈Vr δ

2
m(r)∑

r∈Vr 1

]
, (C.1)

where we set b1 = 3 and b2 = 1, and
∑

r∈Vr denotes a sum over grid cells in the entire
volume. Note that

∑
r∈Vr δh(r) = 0. We then divide the entire volume Vr into Ns = 123 =

1728 subvolumes VL of 100 h−3 Mpc3 and Ns = 63 = 216 subvolumes VL of 200 h−3 Mpc3.
The two-point function in the subvolumes and the integrated three-point function are
estimated by

ξh(r, rL) =

∑
x+r,x∈VL δh(x + r)δh(x)∑

x+r,x∈VL 1
, iζL,h(r) =

Ns∑
i=1

ξh(r, rL)δ̄h(rL) , (C.2)

where δ̄h(rL) is the mean halo overdensity in the subvolume centered at rL. Note that
the denominator in the estimator of ξh(r, rL) takes the boundary effect into account so
〈ξh(r, rL)〉 = ξh(r) without fL,bndry(r). This means that the theoretical model of the
integrated three-point function computed by eq. (2.36) has to be divided by fL,bndry(r).
Since δm(r) is Gaussian, the only contribution to the three-point function is from the
nonlinear bias term, and so the estimated integrated three-point function is exactly given

by
iζL,b2

(r)

fL,bndry(r)
.

1Since δm(r) follows the Gaussian statistics, it is possible that δm(r) < −1, which is unphysical.
However, as we only compute the power spectrum without Poisson sampling the density field, this effect
can be neglected.
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Figure C.1: The normalized integrated three-point functions of the mock halo density
field with b1 = 3 and b2 = 1. The left and right panels are for VL = 100 h−3 Mpc3 and
200 h−3 Mpc3, respectively. The data points show the mean of 300 Gaussian realizations,
and the error bars are the variances of the mean (but note that the data points are highly
correlated). The blue dashed and red solid lines are the theoretical models (iζL,b2) without
and with [fL,bndry(r)]−1, respectively.

Figure C.1 shows the normalized integrated three-point functions of the mock halo
density field with b1 = 3 and b2 = 1 from 300 Gaussian realizations. The measurements are

in excellent agreement with
iζL,b2

(r)

fL,bndry(r)
. This test gives us the confidence that our estimator

is unbiased.



Appendix D

Effects of effective F2 and G2 kernels
and non-local tidal bias

In this appendix, we show how the inferred value of b2 changes when extending our baseline
model for the bispectrum based on SPT at the tree level with local bias to the model used
in the analysis of [62].

Their model replaces F2 and G2 in eq. (A.17) with “effective” kernels, F eff
2 [64] and

Geff
2 [63], which are calibrated to match the nonlinear matter bispectrum in of N-body

simulations. Their model also adds a non-local galaxy bias caused by tidal fields [113, 9,
148] to Z2, i.e.,

Z2 → Z2 +
1

2
bs2

[
(k̂1 · k̂2)2 − 1

3

]
, (D.1)

where bs2 = −(4/7)(b1 − 1). We use this model to compute the integrated three-point
function, and find b2 of the mocks in real and redshift space by performing a joint fit with
the two-point function as described in section 5.1.3 and 5.1.4.

Table D.1 summarizes the results. The “baseline model” refers to the model based on
SPT and local bias. The “eff kernel” refers to the model with F eff

2 , Geff
2 , and local bias.

The “tidal bias” refers to the model with F2, G2, local bias, and tidal bias. Finally, “both”
refers to the model with F eff

2 , Geff
2 , local bias, and tidal bias.

Both the effective kernels and the non-local tidal bias result in a larger nonlinear bias,
which is in better agreement with [62]. The changes of the best-fitting nonlinear bias,
however, are still within the 1 − σ uncertainties, and all the results are consistent with
[62]. We also calculate the goodness of the fit for all the models in both real and redshift
space by comparing the mean of the mocks and the best-fitting models, as well as the χ2-
distribution. We find that all models perform equally well; thus, we shall primarily use the
simplest model, i.e. the SPT at the tree level with local bias for modeling the three-point
function, but also report the results for the extended models.
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r-space b1 b2

baseline 1.971± 0.076 0.58± 0.31
eff kernel 1.973± 0.076 0.62± 0.31
tidal bias 1.971± 0.076 0.64± 0.31

both 1.973± 0.076 0.68± 0.31

z-space b1 b2

baseline 1.931± 0.077 0.54± 0.35
eff kernel 1.933± 0.077 0.65± 0.35
tidal bias 1.932± 0.077 0.60± 0.35

both 1.933± 0.077 0.71± 0.35

Table D.1: Best-fitting values of b1 and b2 and their uncertainties for mock catalogs,
obtained using different models of the bispectrum in real space (left) and redshift space
(right).



Appendix E

Comparison for iζ(r)/σ2L of BOSS
DR10 CMASS sample and PTHalo
mock catalogs in different redshift
bins

The BOSS DR10 CMASS sample and the mocks have different sets of random samples
with slightly different n̄(z), hence the properties of the observations and the mocks may
not agree well in all redshift bins. Moreover, as mentioned in [117], the CMASS sample
is flux-limited, and thus the observed galaxies statistically have larger stellar masses at
higher redshift (see figure 1 in [117]). This may cause redshift evolution of the bias, and so
the correlation functions. We shall measure iζ(r)/σ2

L as a function of redshift to test this.
The measurements in the subvolumes are mostly the same as introduced in section 5.1.2,

except that we now measure α(zj) as a function of redshift bin zj, and the average is done
in the individual redshift bin. Namely,

α(zj) =

∑
i∈zj wg,i∑
i∈zj wr,i

=
wr,zj
wg,zj

, ḡ(zj) =
1

wr,zj

∑
i∈zj

giwr,i . (E.1)

This assures that δ̄(zj) = 0 for all redshift bins.
Figure E.1 and figure E.2 show iζ(r)/σ2

L at different redshift bins for 220 and 120 h−1 Mpc
subvolumes, respectively. We find no clear sign that iζ(r)/σ2

L of the observations has differ-
ent redshift evolution relative to the mocks. Thus, it is justified to study iζ(r)/σ2

L using one
effective redshift for the BOSS DR10 CMASS sample. With the upcoming DR12 sample
with a larger volume, the redshift evolution of iζ(r)/σ2

L can be better studied.
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L of BOSS DR10 CMASS sample and PTHalo mock
catalogs in different redshift bins
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Figure E.1: iζ(r)/σ2
L of 220 h−1 Mpc subvolumes in different redshift bins. The redshift

bins increase from left to right, with the redshift cuts quoted in the beginning of section 5.1
and section 5.2.
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Figure E.2: Same as figure E.1, but for 120 h−1 Mpc subvolumes. The redshift bins increase
from top left to bottom right.



Appendix F

Squeezed-limit N-point functions and
power spectrum response

In this appendix, we prove the relation between the power spectrum response and the
squeezed limit N -point functions, as discussed in chapter 6. We only consider equal-
time N -point functions, to which there are no boost-type contributions from kinematic
consistency relations. Further, we assume that the long-wavelength modes are well inside
the horizon, removing gauge-dependent terms present for horizon-scale modes.

We first expand the power spectrum as a function of the linearly extrapolated initial
overdensity δL0 as

P (k, t|δL0) =
∞∑
n=0

1

n!
Rn(k, t)

[
δL0D̂(t)

]n
P (k, t) , (F.1)

where Rn(k, t) are response functions with R0(k, t) = 1. At the same order in derivatives,
that is at the same order in ki/k of the squeezed-limit N -point function, the power spectrum
will also depend on the long-wavelength tidal field which can be parametrized through

Kij(k) ≡
(
kikj
k2
− 1

3
δij

)
δ(k) . (F.2)

As here we consider only the angle-averaged long-wavelength modes, the long-wavelength
tidal field contributions drop out.

In the following, we will suppress the time argument for clarity. The definition of Sn is
given by

Sn(k, k′; k1, · · · , kn) ≡
∫
d2k̂1

4π
· · ·
∫
d2k̂n
4π

〈δ(k)δ(k′)δ(k1) · · · δ(kn)〉′c , (F.3)

where the prime denotes that the factor (2π)3δD(k + k′ + k1···n) is dropped and k1···n =∑n
i=1 ki. We consider the limit

lim
ki→0

Sn(k, k′; k1, · · · , kn)

P (k)Pl(k1) · · ·Pl(kn)
, (F.4)
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which means that all |ki| are taken to zero. In this limit, spatial homogeneity enforces
k′ = −k + O(ki/k), so that (for statistically isotropic initial conditions) the right-hand-
side of eq. (F.4) only depends on k.

In order to prove Rn(k) is equivalent to eq. (F.4), we first note that since we are
interested in the limit ki → 0, we can replace δ(ki) in eq. (F.3) with the linear density field
δL(ki). We further transform ki into configuration space, writing

Sn(k; k1, · · · , kn) =

∫
d2k̂1

4π
· · ·
∫
d2k̂n
4π

n∏
i=1

∫
d3xi e

ixi·ki 〈δ(k)δ(k′)δ(x1) · · · δ(xn)〉′c

=
n∏
i=1

∫
d3xi e

ixi·kiS̃n(k, x1, · · · , xn) , (F.5)

where

S̃n(k;x1, · · ·xn) ≡
∫
d2x̂1

4π
· · ·
∫
d2x̂n
4π

〈δ(k)δ(k′)δ(x1) · · · δ(xn)〉′c . (F.6)

Note that the angle average is a linear operation and thus commutes with the Fourier
transform; in other words, the k-space angle average of the Fourier transform of a function
is the Fourier transform of the x-space angle average of the same function.

Now consider the limit ki → 0, which implies that xi →∞ in the argument of S̃n. Then
S̃n(k) describes the modulation of the small-scale power spectrum P (k,0) measured around
x = 0 by n spherically symmetric large-scale modes (recall that k′ ≈ −k). This statement
can be formalized by introducing an intermediate scale RL such that 1/k � RL � |xi| ∼
1/ki and defining δ(k)→ δRL

(k) to be the Fourier transform within a cubic volume of size
RL around x = 0. Then, δRL

(k) = δ(k) + O(1/(kRL)), while the long-wavelength modes
are constant over the same volume with corrections suppressed by kiRL. The corrections
we expect in the end are thus of order ki/k. To lowest order in these corrections, S̃n(k)
can be written as

lim
ki→0

: S̃n(k;x1, · · · , xn) =

∫
d2x̂1

4π
· · ·
∫
d2x̂n
4π

〈P (k,0)δL(x1) · · · δL(xn)〉′c . (F.7)

Inserting the expression for the local power spectrum from eq. (F.1), we obtain

lim
ki→0

: S̃n(k;x1, · · · , xn) =
∞∑
m=0

1

m!
Rm(k)P (k)

∫
d2x̂1

4π
· · ·
∫
d2x̂n
4π
〈δmL (0)δL(x1) · · · δL(xn)〉′i−0 .

(F.8)
Here, the subscript i−0 indicates that only contractions between 0 and xi are to be taken,
since the left-hand-side of eq. (F.8) is defined through the connected correlation function
(all other contractions would contribute to the disconnected part of 〈δ(k)δ(k′)δ(x1) · · · δ(xn)〉).
Since all density fields in the correlator in eq. (F.8) are linear, limiting to the contractions
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between 0 and xi then constrains m = n. Therefore,

lim
ki→0

: S̃n(k;x1, · · · , xn) =
1

n!
Rn(k)P (k)n!

n∏
i=1

∫
d2x̂i
4π

ξL(xi)

= Rn(k)P (k)
n∏
i=1

∫
d3ki
(2π)3

eixi·kiPL(ki) . (F.9)

Here, ξL and PL denote the linear matter correlation function and power spectrum, respec-
tively. Going back to Fourier space then immediately yields that for ki → 0,

Sn(k; k1, · · · , kn) = Rn(k)P (k)
n∏
i=1

PL(ki) +O
(
ki
k
,
ki
kNL

)
, (F.10)

where kNL is the nonlinear scale. Finally, we can show that

Rn(k) = lim
ki→0

Sn(k; k1, · · · , kn)

P (k)PL(k1) · · ·PL(kn)
. (F.11)

This provides the connection between the response functions Rn(k) and the angle-
averaged matter (n + 2)-point function eq. (F.3) in a certain limit squeezed limit (since
ki � k). Note that no assumption about the magnitude of k has been made, i.e. this value
can be fully nonlinear. In the following, we illustrate eq. (F.11) at tree level in perturbation
theory for the cases n = 1 (three-point function) and n = 2 (four-point function).

F.1 Tree-level result: n = 1

At tree-level for n = 1 we obtain

lim
ki→0
S1(k; k1)

tree−level
= 2 lim

k1→0

∫
d2k̂1

4π
[F2(k,k1)Pl(k) + F2(−k− k1,k1)Pl(|k + k1|)]Pl(k1) .

(F.12)
Eq. (F.11) then yields

R1(k)
tree−level

=
2

Pl(k)
lim
k1→0

∫
d2k̂1

4π
[F2(k,k1)Pl(k) + F2(−k− k1,k1)Pl(|k + k1|)] (F.13)

with

F2(k1,k2) =
5

7
+

1

2
µ

(
k1

k2

+
k2

k1

)
+

2

7
µ2 , (F.14)

where µ is the cosine of k1 and k2. The term µ/2(k/k1) is problematic as we are sending
k1 → 0. Using that

|k + k1| = k
[
1 + qµ+O(q2)

]
, q =

k1

k

Pl(|k + k1|) = Pl(k)

[
1 +

d lnPl(k)

d ln k
qµ+O(q2)

]
, (F.15)
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the sum of the two IR-divergent terms in eq. (F.13) becomes

1

2

{
µ
k

k1

Pl(k) +
−(k + k1) · k1

|k + k1|k1

Pl(|k + k1|)
}

=
1

2
Pl(k)

[
−µ2d lnPl(k)

d ln k
− 1

]
+O(q) .

(F.16)

As expected, the divergent pieces have canceled. We have dropped terms of order k1/k
which are irrelevant in the limit we are interested in. We finally obtain

R1(k)
tree−level

= 2

∫ 1

−1

dµ

2

[
10

7
− 1

2

(
µ2d lnPl(k)

d ln k
+ 1

)
+

4

7
µ2

]
= 2

[
10

7
− 1

6

d lnPl(k)

d ln k
− 1

2
+

4

21

]
=

47

21
− 1

3

d lnPl(k)

d ln k
. (F.17)

Eq. (F.17) agrees with the linear prediction for R1 shown in chapter 6, with f1, e1, and g1

computed in chapter 3 assuming Einstein-de Sitter universe.

F.2 Tree-level result: n = 2

At n = 2, we have

Sn(k; k1, k2) =

∫
d2k̂1

4π

∫
d2k̂2

4π
〈δ(k)δ(k′)δ(k1)δ(k2)〉′c

k1,k2→0
=

∫
d2k̂1

4π

∫
d2k̂2

4π

{
6
[
F3(k,k1,k2)Pl(k) + F3(−k− k12,k1,k2)Pl(|k + k12|)

]
+ 4
[
F2(−k1,k + k1)F2(k2,k + k1)Pl(|k + k1|)

+ F2(k1,k + k2)F2(−k2,k + k2)Pl(|k + k2|)
]}

Pl(k1)Pl(k2) ,

(F.18)

where F3 is the symmetrized third-order perturbation theory kernel, and the unsym-
metrized form can be found in [65]. Both F 2

2 and F3 contain formally IR-divergent terms
up to O[(q1,2)2] where q1,2 = k1,2/k for k1,2 → 0 which cancel in the end, so we should
expand the power spectrum to O[(k1,2)2] to obtain the consistent result at order O[(q1,2)0].
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We have

Pl(|k + k1|) = Pl(k)

[
1 +

(
q1µ1 +

q2
1

2
[1− µ2

1]

)
k

Pl(k)

dPl(k)

dk
+
q2

1µ
2
1

2

k2

Pl(k)

d2Pl(k)

dk2
+O(q3

1)

]
Pl(|k + k1 + k2|) = Pl(k)

[
1 +

(
[q1µ1 + q2µ2] +

1

2

[
q2

1(1− µ2
1) + q2

2(1− µ2
2)

+ 2q1q2(µ12 − µ1µ2)
]) k

Pl(k)

dPl(k)

d ln k

+
1

2

(
q2

1µ
2
1 + q2

2µ
2
2 + 2q1q2µ1µ2

) k2

Pl(k)

d2Pl(k)

dk2
+O[(q1,2)3]

]
,

(F.19)

where µ1,2 is the cosine of k and k1,2, and µ12 is the cosine of k1 and k2. The leading order
terms are

R2(k)
tree−level

=

∫
d2k̂1

4π

∫
d2k̂2

4π

1

147

[
(628 + 324µ2

1 + 112µ2
12 − 280µ1µ2µ12

+ 380µ2
2 + 656µ2

1µ
2
2 − 56µ2

2µ
2
12)

+ (−273µ2
1 + 147µ1µ2µ12 − 336µ2

2

− 483µ2
1µ

2
2 + 63µ2

2µ
2
12)

k

Pl(k)

dPl(k)

dk

+ 147µ2
1µ

2
2

k2

Pl(k)

d2Pl(k)

dk2

]

=
8420

1323
− 100

63

k

Pl(k)

dPl(k)

dk
+

1

9

k2

Pl(k)

d2Pl(k)

dk2
. (F.20)

Eq. (F.20) also agrees with the linear prediction in chapter 6, with ei, fi, gi (i = 1, 2),
computed in chapter 3 assuming Eistein-de Sitter universe, are inserted.
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