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Summary 

Neuregulin-1 (NRG1) type III is a growth factor on the surface of neurons in the peripheral 

nervous system (PNS). It is required for initial myelination of nerves by Schwann cells after 

birth and for remyelination after injury. Neuregulin-1 type III is activated by cleavage 

(shedding) in its extracellular juxtamembrane region generating a membrane-bound N-

terminal fragment (NTF) that contains a bioactive epidermal growth factor (EGF)-like domain. 

This domain signals to neighboring Schwann cells in a contact-dependent manner prompting 

the cells to initiate myelination. The β-site APP cleaving enzyme 1 (BACE1) was identified as 

the enzyme that cleaves NRG1 type III and promotes myelination. Consequently, loss of 

BACE1 cleavage results in dramatically reduced myelin sheaths around nerves in the PNS of 

BACE1 knockout mice. 

 Besides its role in myelination, BACE1, better known as β-secretase, is also involved 

in the generation of the neurotoxic amyloid β-peptide (Aβ) which is the main component of 

amyloid plaques in the brain of patients suffering from Alzheimer’s disease (AD). The Aβ 

peptide is derived through sequential cleavage of the amyloid precursor protein APP, first by 

BACE1 in the extracellular domain and subsequently by the γ-secretase in the 

transmembrane domain (TMD). Inhibition of BACE1 and γ-secretase is therefore considered 

a promising therapeutic strategy for AD. However, this approach harbors the risk of 

mechanism-based side effects due to impaired processing of substrates beside APP such as 

NRG1 type III which is not only a substrate for BACE1 but like APP is also cleaved in its 

TMD by the γ-secretase. Adding another layer of complexity, ADAM10 and ADAM17, the so-

called α-secretases of AD, also cleave NRG1 type III.  

In the first part of this study, the proteolytic processing of NRG1 type III in its 

ectodomain was investigated in detail. The precise juxtamembrane shedding sites of BACE1, 

ADAM10 and ADAM17 were determined by mass spectrometry and two novel cleavage sites 

of BACE1 and ADAM17 N-terminal of the EGF-like domain were discovered. Cleavage at 

these novel sites by ADAM17 and BACE1 results in the secretion of the EGF-like domain 

from NRG1 type III as α-sEGF and β-sEGF, respectively. Using novel monoclonal antibodies 

generated against the identified cleavage sites the processing of NRG1 type III could also be 

confirmed in primary neurons. The soluble EGF-like domains were found to be functionally 

active and induced signaling pathways required for myelination in cultured Schwann cells. 

Furthermore, β-sEGF rescued the myelination deficit in the PNS of a zebrafish model lacking 

BACE1, thereby demonstrating its activity in vivo. Using cell culture and the zebrafish model 
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the effects of BACE1- and ADAM17-mediated shedding on the activity of the soluble EGF-

like domains were carefully dissected. In contrast to published evidence, however, both the 

BACE1- as well as the ADAM17-shed sEGF were found to be equally active and to promote 

myelination in vivo. Together this suggests that NRG1 type III dependent myelination is not 

only controlled by membrane-retained NRG1 type III but also in a contact-independent 

manner via proteolytic liberation of the EGF-like domain.  

The second part of this study investigates the processing of the C-terminal fragment 

(CTF) which remains after shedding of NRG1 type III. Intramembranous cleavage of the CTF 

by the γ-secretase was previously shown to release the NRG1 intracellular domain, which 

acts as transcriptional regulator of proteins involved in neuronal maturation and brain 

plasticity. Interestingly, a mutation within the TMD of NRG1 type III is associated with an 

increased risk of schizophrenia linking γ-secretase processing of NRG1 type III to this 

neurological disorder. Using a novel antibody against the N-terminus of the NRG1 CTF it was 

possible to detect a NRG1 β-peptide that is secreted during γ-secretase cleavage and could 

potentially serve as marker for this processing. Moreover, by means of mass spectrometry, 

the precise cleavage sites within the TMD of NRG1 could be identified. Strikingly, the ɛ-like 

cleavage site was found to be located exactly at the position of the schizophrenia-associated 

mutation providing a possible mechanism for the reported interference of this mutation with 

γ-secretase cleavage. The evidence presented unambiguously establishes NRG1 type III as 

a γ-secretase substrate and provides a basis for further investigation of the mechanisms 

which link its processing to the development of schizophrenia. 

In summary and with regard to BACE1 and γ-secretase being prime targets for a 

potential AD therapy, the results of this work call for further careful investigation of the 

consequences of altered NRG1 type III signaling due to chronic treatment with inhibitors. 
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Zusammenfassung 

Als Wachstumsfaktor auf der Oberfläche von Neuronen des peripheren Nervensystems 

(PNS) ist Neuregulin-1 (NRG1) Typ III nach der Geburt essentiell für die Ausbildung der die 

Nerven umgebenden Myelinscheiden durch Schwann-Zellen sowie zur Re-myelinisierung 

nach einer Verletzung. Hierfür wird NRG1 Typ III durch proteolytische Spaltung seiner 

extrazellulären Domäne (so genanntes Shedding) durch die Protease BACE1 (engl. β-site 

APP cleaving enzyme 1) aktiviert. Dabei entsteht ein membranständiges N-terminales 

Fragment (NTF), das in kontaktabhängiger Weise durch seine bioaktive, dem Epidermalen 

Wachstumsfaktor ähnliche (engl. epidermal growth factor, EGF) Domäne die Myelinisierung 

durch benachbarte Schwann-Zellen einleitet. Folglich führt der Verlust der BACE1-

vermittelten Spaltung von NRG1 Type III in BACE1 Knockout-Mäusen zu stark reduzierten 

Myelinscheiden der peripheren Nerven.  

 Neben seiner Rolle bei der Myelinisierung ist BACE1, besser bekannt als β-

Sekretase, auch an der Bildung des neurotoxischen Amyloid β Peptides (Aβ), Haupt-

bestandteil der Amyloidplaques im Gehirn von Alzheimer-Patienten, beteiligt. Das Aβ Peptid 

entsteht durch die aufeinanderfolgende Spaltung des Amyloid-Vorläufer-Proteins APP (engl. 

amyloid precursor protein) erst durch BACE1 innerhalb der extrazellulären Domäne und 

anschließend durch die γ-Sekretase in der Transmembrandomäne (TMD). Die Hemmung 

von BACE1 und der γ-Sekretase gilt deshalb als vielversprechender Ansatz für die Therapie 

von Alzheimer. Allerdings könnte dies zu starken Nebenwirkungen führen, weil beispiels-

weise NRG1 Typ III wie APP auch von BACE1, der γ-Sekretase sowie von ADAM10 und 

ADAM17, den α-Sekretasen der Alzheimer Krankheit, prozessiert wird. 

Im ersten Teil dieser Studie wurde die proteolytische Prozessierung der Ektodomäne 

von NRG1 genauer untersucht. Mithilfe massenspektrometrischer Untersuchungen wurden 

die genauen Schnittstellen von BACE1, ADAM10 und ADAM17 in der extrazellulären 

membrannahen Region von NRG1 Typ III bestimmt und zusätzlich zwei neue Schnittstellen 

auf der N-terminalen Seite der EGF-ähnlichen Domäne identifiziert. Die proteolytische 

Spaltung von NRG1 Typ III durch ADAM17 und BACE1 an diesen zuvor unbekannten 

Stellen setzt die EGF-ähnliche Domäne von NRG1 Typ III als α-sEGF und β-sEGF frei. Mit 

neuen gegen die Schnittstellen gerichteter monoklonaler Antikörpern gelang es zudem, die 

Prozessierung von NRG1 Typ III auch in primären Nervenzellen nachzuweisen. Es wurde 

gezeigt, dass die löslichen EGF-ähnlichen Domänen funktional sind und die zur Ausbildung 

von Myelinscheiden notwendigen Signalkaskaden in Schwann-Zellen auslösen. Außerdem 
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war β-sEGF in der Lage, den Myelinisierungsdefekt im PNS eines BACE1-defizienten 

Zebrafish-Modells zu beheben, was die Aktivität von β-sEGF in vivo bestätigt. Der Einfluss, 

den das Shedding durch BACE1 und ADAM17 auf die Aktivität der löslichen EGF-ähnlichen 

Domäne hat, wurde in Zellkultur und im Zebrafish-Modell ausführlich untersucht. Im 

Widerspruch zu bisher veröffentlichten Daten wurde festgestellt, dass sowohl das von 

BACE1 als auch das von ADAM17 geschnittene sEGF gleichermaßen aktiv ist und die 

Ausbildung von Myelinscheiden fördert. Zusammengenommen deutet dies darauf hin, dass 

die von NRG1 Typ III abhängige Myelinisierung nicht nur von membrangebundenem NRG1 

Typ III gesteuert wird, sondern auch auf eine kontaktunabhängige Weise von der durch 

Proteolyse freigesetzten löslichen EGF-ähnlichen Domäne. 

Der zweite Teil dieser Studie befasst sich mit der Prozessierung des durch das 

Shedding von NRG1 Typ III entstandenen C-terminalen Fragments (CTF). Wie bereits früher 

gezeigt wurde, führt die Intramembranproteolyse des CTFs durch die γ-Sekretase zur 

Freisetzung der intrazellulären Domäne von NRG1, die an der Regulierung der neuronalen 

Reifung und der Plastizität des Gehirns beteiligt ist. Interessanterweise ist eine Mutation 

innerhalb der TMD von NRG1 Typ III mit einem erhöhten Risiko an Schizophrenie zu 

erkranken verbunden und stellt damit einen Zusammenhang zwischen der Prozessierung 

von NRG1 Typ III durch die γ-Sekretase und dieser neurologischen Erkrankung dar. Die 

Verwendung eines neuen Antikörpers gegen den N-Terminus des NRG1 CTFs ermöglichte 

es, ein NRG1 β Peptid zu detektieren, das während der Spaltung durch die γ-Sekretase 

freigesetzt wird und möglicherweise als Biomarker für diese Prozessierung dienen könnte. 

Des Weiteren konnten massenspektrometrisch die genauen Schnittstellen innerhalb der 

TMD von NRG1 identifiziert werden. Bemerkenswerterweise liegt die ɛ-ähnliche Schnittstelle 

genau an der Position der mit Schizophrenie assoziierten Mutation, was möglicherweise die 

von dieser Mutation ausgehende Beeinträchtigung der γ-Sekretase-bedingten Spaltung, über 

die früher schon berichtet wurde, erklären könnte. Die hier vorgelegten Daten zeigen 

eindeutig, dass NRG1 Typ III ein Substrat der γ-Sekretase ist und bereiten die Grundlage für 

weiterführende Untersuchungen des Zusammenhangs zwischen der Prozessierung von 

NRG1 Typ III und der Entwicklung von Schizophrenie.  

Vor dem Hintergrund, dass die Hemmung bzw. Modulation von BACE1 und der γ-

Sekretase als vielversprechende Strategie zur Behandlung der Alzheimer Krankheit gilt, 

machen die Ergebnisse dieser Arbeit deutlich, dass es weiterer Untersuchungen der 

Auswirkungen bedarf, die eine veränderte Signalübertragung von NRG1 Typ III aufgrund der 

Hemmung dieser beiden Enzyme zur Folge hätte. 
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1 Introduction 

The controlled breakdown of proteins is a fundamental physiological process. Through 

hydrolytic cleavage of their peptide bonds, proteins may either be disassembled completely 

for the sake of energy generation or reutilization of their amino acids. In addition to this non-

specific breakdown during protein turnover and digestion, proteins may also be cleaved at 

fewer, more specific sites.  

Such limited proteolysis may modify the precursor protein, for example by removing 

its signal sequence or alter its properties and activity. More than 500 proteases have been 

identified in humans (Puente et al., 2003) and the coordinated proteolytic processing of 

numerous substrates plays an important role in many pathways of intra- and intercellular 

communication (Turk et al., 2012). Through this, proteases are regulators of physiological 

processes such as inflammation, blood clogging, growth and the combat of pathogens 

(López-Otín and Bond, 2008). On the other hand deregulated protease activity, altered 

specificity towards their substrates or cleavage by proteases of pathogens (e.g. viruses), 

underlay many pathophysiological processes (Turk, 2006; López-Otín and Bond, 2008). This 

is especially relevant in cancer and viral infections but also in neurodegenerative diseases, 

like Alzheimer’s disease (Turk, 2006; Strooper, 2010). Due to their role in the etiology of 

many different diseases, proteases have emerged as important drug targets (Turk, 2006). 

However, therapeutic intervention even with inhibitors highly specific to their target protease 

still harbors the risk of severe side effects due to the fact that most proteases cleave many 

different substrates. In addition, even for well investigated proteases and important drug 

targets such as Alzheimer’s β-secretase BACE1, novel substrates are identified continuously 

(Hemming et al., 2009). Unintended co-inhibition of the cleavage of substrates that are 

unrelated to the targeted pathology may lead to severe side effects. It is therefore crucial for 

any successful therapeutic inhibition to determine the importance of the target protease for 

as many substrates as possible and to reveal its precise function in their proteolytic 

processing. 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) starts out insidiously and early symptoms such as forgetfulness or 

mild impairment of learning are often incorrectly attributed to normal aging or stress. 

However, as the disease progresses these symptoms worsen and changes in speech and 
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behavior become apparent (Förstl and Kurz, 1999). In the further course of the disease, 

cognitive impairments extend to other abilities such as recognition and coordinated 

movement until, in the final stages of AD, patients are unable to perform even the simplest 

tasks, becoming completely dependent upon caregivers (Förstl and Kurz, 1999). 

Age is the primary risk factor for AD (Querfurth and LaFerla, 2010) which is estimated 

to currently affect approx. 25 mio people worldwide (Ferri et al., 2005). With every third over 

85 years of age suffering from this most prevalent form of dementia and patient numbers 

estimated to double in the next two decades, Alzheimer’s disease constitutes one of the 

greatest challenges for the health care systems of aging societies (Wimo and Prince, 2010; 

Kiencke et al., 2011). In view of these facts there is an urgent demand for pharmacological 

interference with the mechanisms that lead to this form of neurodegeneration and even 

modest therapeutic advances in delaying the onset and progression would significantly 

reduce the global burden of the disease (Brookmeyer et al., 2007). In spite of great efforts, 

however, it is still not possible to cure or even halt AD successfully. 

1.1.1 Neuropathological hallmarks 

The typical neuropathological hallmarks of AD were first described by Alois Alzheimer over a 

hundred years ago (Alzheimer, 1907, 1911). He observed extracellular protein aggregates, 

so called amyloid plaques and neurons filled with intracellular neurofibrillary tangles (NTFs) 

in the brain of his patient Auguste D. 

1.1.1.1 Amyloid plaques 

Extracellular, neuritic amyloid plaques (Figure 1 A) are the characteristic feature of AD and 

mainly consist of amyloid β (Aβ) peptides. Ranging from 37 to 43 amino acids in length, 

these peptides are derived from the proteolytic processing of the amyloid precursor protein 

(APP) (Goldgaber et al., 1987; Kang et al., 1987). Among the different Aβ peptides, Aβ42 

and Aβ43 are especially prone to aggregation and were shown to be central to the formation 

of amyloid plaques (Iwatsubo et al., 1994). The plaques are usually surrounded by dystrophic 

neurites and have directly been associated with neurodegenerative processes in AD. 

However, there is evidence that much smaller, soluble Aβ aggregates ranging from dimers to 

oligomers are the actual neurotoxic entity responsible for neuronal dysfunction and later 

demise (Walsh et al., 2002; Haass and Selkoe, 2007). 

Proteolytic cleavage of APP is a physiological process (Haass et al., 1992; Vigo-

Pelfrey et al., 1993) and under normal conditions mainly yields Aβ40 and low levels of Aβ42. 
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A change of this ratio towards Aβ42 or an increase in the total level of Aβ accelerates AD 

pathology and leads to an earlier onset of the disease (Scheuner et al., 1996). This is 

especially evident in the rare cases of familial Alzheimer’s disease (FAD) with disease onset 

often as low as 30 years of age (Selkoe, 2001). FAD is caused predominantly by mutations 

in three genes: APP, presenilin 1 (PS1) and PS2, the latter two being part of the γ-secrease 

complex which cleaves APP (1.1.3.3). Supporting a central role of Aβ and especially Aβ42 in 

the pathology of AD, all these mutations either lead to an increase in overall Aβ production or 

favor the generation of Aβ42 (Selkoe, 1999).  

1.1.1.2 Neurofibrillary tangles 

Neurofibrillary tangles (Figure 1 B) mainly consist of a hyperphosphorylated form of the 

protein tau which physiologically stabilizes microtubules and is important for the integrity of 

axons (Drubin and Kirschner, 1986). In AD, excessive phosphorylation of tau causes the 

protein to dissociate from the microtubules and to aggregate (Goedert et al., 1992; Friedhoff 

et al., 1998). As a consequence the stability of the axonal microtubule network is thought to 

be compromised and eventually the axon and later the neuron degenerate. Previously this 

loss-of-function has been seen as the main mechanism through which tau contributes to the 

dysfunction of neurons in AD. Recently, however, evidence has emerged that strengthens an 

alternative mechanism: Hyperphosphorylated tau was found to mislocalize from the axonal 

into the somato-dendritic compartment of neurons and to mediate the (postsynaptic) toxicity 

of Aβ (Roberson et al., 2007; Ittner et al., 2010; Morris et al., 2011).  

The reasons for the hyperphosphorylation of tau are not entirely clear yet but it is 

interesting to note that unlike amyloid plaques, tau pathology is not restricted to AD but is in 

fact common to various forms of dementia (Lee et al., 2001). Also in contrast to amyloid 

plaques, the number of NTF correlates well with the loss of synapses and the severity of 

clinical symptoms and therefore is considered an important pathological marker (Braak and 

Braak, 1995; Thind and Sabbagh, 2007).  
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Figure 1. Neuropathological hallmarks of Alzheimer’s disease. A) Microscopic image of an 
amyloid plaque. The central core of the plaque is visible in the middle (brown) and consists of 
aggregated Aβ fibrils. The plaque is surrounded by dystrophic neurites that are filled with 
neurofibrillary tangles. B) Photomicrograph of neurons filled with neurofibrillary tangles. Silver-staining 
shows cortical pyramidal neurons with intracellular deposits of hyperphosphorylated tau. Pictures from 
(Sisodia and St George-Hyslop, 2002). 
 

1.1.1.3 Amyloid cascade 

The amyloid cascade hypothesis tries to reconcile the genetic and molecular findings with 

the neuropathological hallmarks of AD (Hardy and Higgins, 1992). This hypothesis suggests 

that the altered generation and subsequent aggregation of Aβ initiates a pathological 

cascade that, through downstream events such as tau dysfunction and NTF formation, 

oxidative stress and inflammation, finally leads to neuronal dysfunction and dementia. The 

failure of clinical trials designed on the basis of the amyloid cascade hypothesis as well as its 

unclear relevance for sporadic AD, however, have raised concerns as to its validity (Hardy, 

2009; Golde et al., 2011; Mullane and Williams, 2013). Nonetheless, compared to other 

hypotheses, the amyloid cascade most completely consolidates experimental observations 

and therefore remains the most widely accepted hypothesis for the etiology of AD. The 

recent identification of a mutation in APP which decreases the generation of Aβ and protects 

against AD (Jonsson et al., 2012) has further strengthened the plausibility of the amyloid 

cascade hypothesis.  

1.1.2 Processing of APP 

APP is a ubiquitously expressed type I transmembrane protein comprising a large extra-

cellular and a small intracellular domain (Figure 2), whose physiological function is currently 

not fully understood (Zheng and Koo, 2011). It is processed in a two-step fashion through a 

mechanism called regulated intramembrane proteolysis (RIP) (Brown et al., 2000) (1.2): 

First, in a process called shedding, its ectodomain is shortened by a cleavage close to its 
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transmembrane domain (TMD) and then in a second step, the remaining fragment is 

removed through proteolysis within the membrane (Figure 2). 

Generation of Aβ depends on whether APP is cleaved at the α- or β-site during 

ectodomain shedding. Cleavage at the β-site by the so called β-secretase initiates the 

amyloidogenic pathway and releases the majority of the APP ectodomain into the lumen 

(sAPPβ) while simultaneously generating the N-terminus of the Aβ peptide (Figure 2). In the 

further course of the amyloidogenic pathway, the resulting β-cleaved C-terminal fragment of 

APP (β-CTF) is cleaved by the γ-secretase complex, releasing Aβ into the luminal space and 

the APP intracellular domain (AICD) into the cytoplasm (Haass, 2004). In contrast, shedding 

by the α-secretase at the α-site located within the Aβ sequence precludes the release of Aβ 

and mediates the non-amyloidogenic pathway (Figure 2). Such cleavage liberates the slightly 

longer sAPPα from the membrane and leaves the APP α-CTF for subsequent γ-secretase 

cleavage. As a result of this pathway the smaller, non-amyloidogenic peptide p3 is released 

from the cell surface (Fluhrer et al., 2009; Lichtenthaler, 2011).  

 

 

Figure 2. Processing of APP. Schematic overview of the amyloidogenic and non-amyloidogenic 
processing of APP. Shedding by α- or β-secretase releases the ectodomain into the luminal space. 
Cleavage of the remaining membrane fragments by the γ-secretase generates the non-amyloidogenic 
p3 or the aggregation prone Aβ peptide. The intracellular domain is released into the cytosol. 
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More than 30 mutations leading to familial Alzheimer’s disease with early onset have been 

identified in APP (Cruts et al., 2012). Interestingly, these mutations cluster in three different 

regions of the APP protein, their location determining their impact on amyloid generation 

(Selkoe, 1999; St George-Hyslop, 2000): Mutations near the γ-cleavage sites (1.1.3.3) alter 

the cleavage precision of the γ-secretase thus enhancing the generation of the aggregation 

prone Aβ42 at the expense of Aβ40 (Suzuki et al., 1994). FAD mutations next to the 

shedding sites promote the processing of APP at the β-site leading to an increased overall 

amyloid production. These mutations either directly enhance β-secretase cleavage (Citron et 

al., 1992) or impair cleavage at the non-amyloidogenic α-site (Kaden et al., 2012). 

Conversely, a mutation at the β-secretase cleavage site that reduces cleavage was recently 

found to confer protection against AD (Jonsson et al., 2012). 

1.1.3 Alzheimer’s disease secretases – APP processing and beyond 

Processing of APP occurs sequentially and is mediated by proteolytic cleavages at distinct 

sites. At least three different protease activities are involved which, before their identities 

were unambiguously resolved, were referred to as α-, β- and γ-secretase relating to the order 

of their discovery. Although their precise molecular identity is now known and all of these 

proteases are involved in the cleavage of many other substrates besides APP, their original 

names are still in use (Lichtenthaler et al., 2011). 

1.1.3.1 α-Secretase 

Shedding of APP at the α-site (Figure 2, 1.1.3.3 Figure 3) is mediated by the so called α-

secretase (Esch et al., 1990). Several members of the ADAMs (a disintegrin and 

metalloproteinase) family of proteases cleave APP at this site and of those, ADAM10 and 

ADAM17 (also called TACE for tumor necrosis factor α converting enzyme) have been 

discussed most prominently as α-secretases (Buxbaum et al., 1998; Lammich et al., 1999). 

ADAM10 was identified as the main α-secretase responsible for the constitutive cleavage of 

APP in neurons (Jorissen et al., 2010; Kuhn et al., 2010). In contrast, under physiological 

conditions ADAM17 seems to be of minor importance as constitutive α-secretase but instead 

belongs to the group of regulated α-secretases whose APP shedding activity may be strongly 

enhanced pharmacologically (Lichtenthaler, 2011). 

 ADAM10 and ADAM17 are the best characterized and most closely related members 

of the ADAM family of proteases (Reiss and Saftig, 2009). Both are type I transmembrane 

proteins with large extracellular and short cytoplasmic domains. Their catalytically active 
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metalloprotease domain is located within the N-terminal portion of the extracellular domain 

and harbors a zinc-binding motif with three conserved histidine residues. Expression of both 

proteases was detected in a broad spectrum of cells and tissues. Interestingly, ADAM10 and 

ADAM17 are expressed differentially in the CNS with ADAM10 being present in neurons and 

ADAM17 being predominantly expressed by non-neuronal cells (Kärkkäinen et al., 2000; 

Marcinkiewicz and Seidah, 2000; Goddard et al., 2001). Within cells, the majority of ADAM10 

and ADAM17 is localized to the Golgi apparatus and only a smaller fraction is found at the 

plasma membrane (Lammich et al., 1999; Schlöndorff et al., 2000). 

 More than 30 membrane proteins have been identified as substrates for ADAM10 and 

ADAM17, respectively, and besides their role as α-secretases, ADAM10 and ADAM17 are 

best known for their involvement in the release of soluble factors like hormones, chemokines 

and growth-factors (Reiss and Saftig, 2009). These factors are often present as inactive, 

membrane-bound precursor proteins on the surface of cells and require proteolytic activation. 

Once cleaved, the biologically active domains are released and signal in an autocrine or 

paracrine fashion. In addition to the regulation of extracellular signaling pathways, ADAM10- 

and ADAM17-mediated shedding also triggers numerous intracellular signaling pathways by 

regulated intramembrane proteolysis (1.2). 

 Important substrates for ADAM10 include among others notch and ephrins. The 

crucial role of ADAM10 for notch signaling is demonstrated by the fact that mice lacking 

ADAM10 die at embryonic day 9.5 (E9.5) and phenocopy many notch knockout (KO) defects 

(Hartmann et al., 2002). For ADAM17, the tumor necrosis factor α (TNFα) and different 

members of the epidermal growth factor (EGF) receptor family EGFR/ErbB1 and their 

ligands (such as transforming growth factor α (TGFα), heparin-binding EGF (HB-EGF) and 

epiregulin) have been identified as important substrates. Accordingly, ADAM17 KO mice die 

perinatally and display developmental deficits reminiscent of animals lacking these factors 

(Peschon et al., 1998; Jackson et al., 2003; Sternlicht et al., 2005). Together with ADAM10, 

which through cleavage of EGF is also involved in the EGFR/ErbB1 signaling, ADAM17 has 

additionally been shown to cleave neuregulin-1 (NRG1) (1.3.3). 

In summary, both ADAM10 and ADAM17 are able to cleave a broad variety of 

different transmembrane proteins, with more substrates likely to be identified in the future. 

Besides their role in AD, these proteases therefore are involved in multiple physiological and 

pathophysiological processes such as development, signal transduction, inflammation and 

cancer (Saftig and Reiss, 2011). In this light, the long sought therapeutic strategy for AD 

involving the pharmacological activation of ADAM10 and ADAM17 to promote the non-
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amyloidogenic processing of APP (Fahrenholz, 2007) must be considered carefully and it will 

be crucial to investigate the many pathways in which these enzymes are involved for 

potential side effects (Endres and Fahrenholz, 2010; Lichtenthaler, 2011). 

1.1.3.2 β-Secretase 

The β-secretase or β-site APP cleaving enzyme one (BACE1) mediates the shedding of APP 

at the β-site (1.1.2 Figure 2, 1.1.3.3 Figure 3). Genetic ablation of BACE1 in mice completely 

prevents Aβ generation in the brain arguing for BACE1 as the principle and physiologically 

relevant β-secretase (Cai et al., 2001; Luo et al., 2001). Discovered in 1999 by five 

independent groups, BACE1 belongs to the pepsin-like family of aspartyl proteases and 

features a type I transmembrane topology (Hussain et al., 1999; Sinha et al., 1999; Vassar et 

al., 1999; Yan et al., 1999; Lin et al., 2000). Its active site is localized to the large ectodomain 

and comprises two D-T/S-G-T/S motifs characteristic of aspartic proteases (Hong et al., 

2000). Compared to other aspartic proteases, however, the active site of BACE1 is much 

larger and less hydrophobic which has severely hindered the development of small molecule 

inhibitors. In the brain, BACE1 was found to form homodimers which display a higher 

enzymatic activity than the monomeric enzyme (Westmeyer et al., 2004). 

Intracellularly, BACE1 cycles between acidic compartments of the secretory pathway 

(mainly the trans Golgi network), the plasma membrane and early endosomes, where, owing 

to its acidic pH optimum, the highest BACE1 activity is observed and Aβ generation occurs 

(Haass et al., 1993; Koo and Squazzo, 1994; Vassar et al., 1999). In the brain, BACE1 is 

transported axonally and most likely localizes to presynaptic nerve terminals in neurons 

(Sheng et al., 2003).  

BACE1 is expressed by most cell types but the highest expression and activity levels 

are found in neurons of the CNS, in motoneurons of the spinal cord and in dorsal root ganglia 

(DRG) (Sinha et al., 1999; Vassar et al., 1999; Willem et al., 2006). In contrast, BACE1 

expression in glial cells is relatively low (Bettegazzi et al., 2010). 

Consistent with its importance in nerve development (1.3.4.1) BACE1 levels peak 

during early postnatal stages when myelination occurs and rapidly decline afterwards (Willem 

et al., 2006). Interestingly, later in life BACE1 protein levels increase again in the context of 

AD. About 30% of sporadic AD cases are associated with elevated BACE1 protein but not 

mRNA levels and several translational control mechanisms were uncovered whose alteration 

might lead to increased BACE1 activity and consequently Aβ generation in AD (Willem et al., 

2009; Dislich and Lichtenthaler, 2012).  
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The idea of BACE1 inhibition as AD therapy was strongly encouraged by initial reports that 

found BACE1 KO mice to completely lack Aβ generation while at the same time displaying 

no overt phenotype (Luo et al., 2001; Roberds et al., 2001). In contrast to these initial 

reports, however, subsequent in depths analyses of BACE1 KO mice uncovered multiple 

albeit often subtle phenotypes. These include altered behavior regarding anxiety and 

exploration as well as features that are considered rodent analogs of schizophrenia such as 

deficits in social recognition, impaired memory and prepulse inhibition (Harrison et al., 2003; 

Laird et al., 2005; Savonenko et al., 2008). More dramatic phenotypic changes in some 

BACE1 KO lines include spontaneous epileptic seizures, increased neonatal lethality and 

decreased body size due to enhanced insulin sensitivity (Dominguez et al., 2005; Hitt et al., 

2010; Meakin et al., 2012). Taken together this suggests a crucial role of BACE1 not only in 

the nervous system but also in the periphery.  

Finally, it was discovered that BACE1 KO mice have severely reduced myelin 

sheaths around the nerves of the PNS (1.3.4.1.5) and also display retarded remyelination 

after nerve injury (Hu et al., 2008). While impaired myelination in the PNS was recently 

confirmed in a zebrafish model lacking BACE1 activity (van Bebber et al., 2013), myelination 

deficits in the CNS as initially reported by one group (Hu et al., 2006) were not observed 

(Willem et al., 2006). 

BACE1 has been shown to cleave many different proteins in vitro (Hemming et al., 

2009) but only few have been identified as physiological BACE1 substrates in vivo. In 

addition to APP these include among others the β-subunits 2 and 4 of voltage-gated sodium 

channels (VGSC), neuregulin-1 (NRG1), and the α-2,6 sialyltransferase (ST6Gal-1) (Dislich 

and Lichtenthaler, 2012). Overall, however, it has been difficult to associate the lack of 

proteolytic processing of these individual substrates with the phenotypes observed in BACE1 

KO mice. For example, despite being the most studied BACE1 substrate, the physiological 

consequences of BACE1-mediated APP shedding remain mostly unclear. In contrast to the 

α-secretase cleavage product sAPPα which rescues most of the phenotypes observed in 

APP KO mice (such as decreased brain and body weight, deficits in cognition and 

locomotion), the BACE1-cleaved APP ectodomain sAPPβ fails to compensate for the lack of 

full-length APP (Ring et al., 2007; Li et al., 2010). Specifically it was demonstrated that 

sAPPβ is not able to function in the APP-mediated formation of neuromuscular synapses 

during development and does not rescue postnatal lethality in APP/APLP2 KO animals (Li et 

al., 2010). Instead, sAPPβ was proposed to regulate the expression of genes such as 

transthyretin and klotho but the respective receptor(s) as well as the physiological 
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consequences of this BACE1-mediated APP function remain unclear. Overall, processing by 

BACE1 seems to be dispensable for the role of APP during development (Li et al., 2010).  

The most consistent connection between processing by BACE1 and the respective 

KO phenotype has been established for NRG1 type III, an isoform of NRG1 expressed in 

neurons of the PNS (1.3.1). The peripheral hypomyelination of BACE1 KO mice phenocopies 

mice with heterozygous levels of NRG1 type III and mice lacking its receptors in Schwann 

cells (Michailov et al., 2004; Taveggia et al., 2005). Furthermore, the uncleaved full-length 

precursor of NRG1 type III accumulates in BACE1 KO mice while the corresponding 

cleavage products are diminished (Willem et al., 2006). Together this indicates that the 

processing of NRG1 type III by BACE1 is required for proper Schwann cell myelination in the 

PNS and that a lack thereof causes the observed phenotype in BACE1 KO mice (1.3.4.1.5). 

Interestingly, NRG1 has also been identified as a risk gene for schizophrenia and its 

signaling is involved in the neuronal plasticity of the CNS (1.3.4.2). Although the molecular 

details are still unclear, abolished BACE1-dependent NRG1 processing might therefore 

establish a connection to the schizophrenia-like phenotypes observed in BACE1 KO mice. 

In summary, through the cleavage of many different substrates besides APP, BACE1 

seems to be involved in numerous processes throughout development and adulthood in both 

the nervous system and the periphery. With regard to its potential as therapeutic target this 

suggests that AD therapies based on chronic inhibition of BACE1 are likely to cause 

mechanism-based toxic side effects. Instead of completely blocking BACE1, rather a 

modulation or normalization of its activity may therefore be a more favorable intervention 

strategy (Willem et al., 2009; Vassar and Kandalepas, 2011). Indeed, already partial 

reduction of BACE1 activity resulted in strongly alleviated plaque burden and synaptic 

deficits in a mouse model of AD (McConlogue et al., 2007).  

1.1.3.3 γ-Secretase 

Following shedding at the α- or β-site, the remaining APP CTF is cleaved within its TMD by 

the γ-secretase (Steiner et al., 2008) (1.1.2 Figure 2, Figure 3). Rather than being a single 

protein, the γ-secretase is a protein complex consisting of four different transmembrane 

proteins most likely in a 1:1:1:1 stoichiometry (Sato et al., 2007). The subunits essential and 

sufficient for a functional γ-secretase complex are: Presenilin 1/2 (PS1/2), nicastrin (NCT), 

APH-1 (anterior pharynx-defective-1) a/b and PEN-2 (presenilin enhancer-2) (Edbauer et al., 

2003; Kimberly et al., 2003). The catalytic subunit presenilin (De Strooper et al., 1998; 

Herreman et al., 2000; Zhang et al., 2000) exists as two homologs in mammals, PS1 and 
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PS2 and spans the membrane nine times (Laudon et al., 2005). It belongs to the family of 

GxGD-type intramembrane aspartyl proteases (Haass and Steiner, 2002) and contains the 

characteristic active site motif YD and GxGD in its transmembrane domains TMD six and 

seven, respectively (Wolfe et al., 1999b; Steiner et al., 2000). During maturation of the 

complex PS undergoes auto-endoproteolysis and is present as a heterodimer consisting of 

an N-terminal and C-terminal fragment (NTF and CTF) in the active complex (Thinakaran et 

al., 1996; Fukumori et al., 2010). Importantly, the activity of PS and thus the γ-secretase 

depends on the assembly of the complex as PS is not fully active by itself. Nicastrin is a type 

I transmembrane protein and the largest γ-secretase component (Yu et al., 2000) whose 

ectodomain is controversially discussed to function as a substrate receptor of the γ-secretase 

complex (Shah et al., 2005; Chávez-Gutiérrez et al., 2008). The function of the seven pass 

transmembrane protein APH-1 (Fortna et al., 2004) is not well understood. It is required for 

complex formation, however, and likely acts as an assembly scaffold for the other subunits 

(Gu et al., 2003; LaVoie et al., 2003). In the model of the stepwise assembly of the active γ-

secretase complex (Kaether et al., 2006a; Spasic and Annaert, 2008), APH-1 and nicastrin 

form an initial dimeric complex that is then joined by the immature presenilin holoprotein to 

form an inactive trimer still retained in the ER (Kim et al., 2004; Capell et al., 2005). In the 

final and rate-limiting step, the immature complex then binds PEN-2, the smallest subunit. 

PEN-2 features a hairpin-like topology (Crystal et al., 2003) and its binding triggers the 

endoproteolysis of PS and stabilizes the complex (Luo et al., 2003; Prokop et al., 2004). 

Once assembled, the γ-secretase complex is transported to the plasma membrane and the 

endosomal/lysosomal compartments which are the sites of its main activity in cells (Kaether 

et al., 2006b).  

The γ-secretase processes its substrates in an unusual stepwise manner that 

involves cleavage at two major sites within their transmembrane domain (Figure 3). The 

details of this unconventional proteolytic mechanism have mostly been investigated for the 

processing of APP and notch but seem to apply for other substrates as well (Lichtenthaler et 

al., 2011). The first cleavage (called ɛ-cleavage) occurs close to the cytoplasmic border of 

the substrate’s transmembrane domain and releases the intracellular domain (ICD) of the 

substrate into the cytosol (Gu et al., 2001; Sastre et al., 2001; Yu et al., 2001; Weidemann et 

al., 2002; Kakuda et al., 2006) (Figure 3). As shown for APP, the γ-secretase then proceeds 

with a stepwise cleavage towards the N-terminus of the remaining membrane stub (Qi-

Takahara et al., 2005; Zhao et al., 2005). The detection of characteristic intermediate 

peptides suggest that at least in the case of APP, cleavage occurs after approximately every 
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third amino acid (Takami et al., 2009). Processing continues until, after cleavage at the so 

called γ-site, the substrate is short enough to be released from the membrane (Figure 3). 

Besides APP, also notch (Okochi et al., 2002), CD44 (Lammich et al., 2002), APLP1 and 

APLP2 (Eggert et al., 2004) as well as a variety of other substrates are similarly processed 

by the γ-secretase at multiple sites. This suggests that proteolysis in a stepwise manner may 

be a general mechanism employed by GxGD proteases to reduce the hydrophobicity of their 

substrates and allow their liberation from the membrane. This stepwise proteolysis and the 

fact that the intermediate cleavages are heterogeneous in nature also explain the generation 

and release of different sized peptides by the γ-secretase (e.g. Aβ37-43 in case of APP). 

With 185 mutations in PS1 and 13 in PS2, mutations in the catalytic subunits of the γ-

secretase account for the vast majority of FAD-linked mutations (Cruts et al., 2012). They all 

shift the ratio of Aβ42/Aβ40 towards the more toxic and amyloidogenic Aβ42 while usually 

leaving the total amount of secreted Aβ unchanged. 

Due to its role in the generation of Aβ, inhibition of the γ-secretase is considered a 

promising therapeutic strategy for the prevention and treatment of AD. Indeed, early studies 

in transgenic mice confirmed the potential of γ-secretase inhibitors (GSIs) in lowering brain 

Aβ levels (Dovey et al., 2001) and prompted the development and clinical evaluation of a 

variety of compounds targeting γ-secretase activity (Tomita, 2009; De Strooper et al., 2010). 

However, besides APP at least 80 additional proteins have been identified as substrates and 

through their cleavage the γ-secretase complex is involved in many different cellular 

processes ranging from the regulation of transcription, cell fate and apoptosis to the control 

of neurite outgrowth and tumorigenesis (Haapasalo and Kovacs, 2011). In this regard, the 

processing of notch (Fiúza and Arias, 2007; Kopan and Ilagan, 2009) that results in the 

release of the notch intracellular domain (NICD) into the cytosol is probably one of the most 

important physiological functions of the γ-secretase (De Strooper et al., 1999) (1.2.2). 

Generation of the NICD which subsequently translocates into the nucleus and acts as a 

transcription factor is a crucial event in the notch pathway. Loss of γ-secretase activity during 

development severely affects embryogenesis in different model organisms and results in a 

lethal phenotype indistinguishable from deficient notch signaling (Donoviel et al., 1999; 

Geling et al., 2002). As notch signaling is also required during adulthood, chronic inhibition of 

γ-secretase in later life has likewise been shown to cause a variety of toxicities that include 

gastrointestinal, skin and immune system abnormalities (Wong et al., 2004; De Strooper et 

al., 2010). The side effects resulting from the concomitant inhibition of important γ-secretase 

substrates beside APP led to the failure of γ-secretase inhibitors in clinical trials and render 
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Figure 3 Localization of the α-, β- and γ-secretase cleavage sites in APP. The cleavage positions 
of the proteases are indicated by arrows and the number of residues comprised by the Aβ peptides 
resulting from γ-cleavage is given. The transmembrane domain of APP is shaded in brown.  

 

their use as AD therapeutics unlikely (Blennow et al., 2013; Doody et al., 2013; Mullane and 

Williams, 2013).  

As an alternative to GSI treatment, γ-secretase modulators (GSM) have been 

developed (Weggen et al., 2001; Oehlrich et al., 2011). Instead of blocking γ-secretase 

cleavage, GSMs are designed to favor the generation of shorter Aβ peptides (Aβ37 and 38) 

over the generation of the aggregation prone Aβ42 while leaving the total level of Aβ 

unchanged. Unlike inhibitors, GSMs do not block the ɛ-like cleavage mediated by the γ-

secretase but only affect the precision of the γ-cleavage (Figure 3). In this way the release of 

the substrate’s ICD into the cytosol is not compromised which is especially important in the 

case of notch but may be relevant for other substrates that mediate intracellular signaling as 

well (1.2.2). Treatment with GSMs is expected to result in much less target-mediated toxicity 

compared to GSIs and different compounds are being developed (Golde et al., 2010).  

Overall, due to its numerous substrates and its various physiological functions, 

targeting γ-secretase for AD therapy has proven more complicated than initially anticipated. 

To reduce target-mediated adverse effects it will be crucial to develop potent therapeutics 

that selectively alter the processing of APP but do not affect the normal turnover of other 

substrates. It is therefore necessary to identify as many substrates as possible and to closely 

investigate their cleavage by the γ-secretase as well as the physiological relevance of said 

processing. In this context it is noteworthy that NRG1 is also a substrate of the γ-secretase 

and that its impaired intramembranous cleavage is implicated in the dysregulation of cortical 

development and schizophrenia-like phenotypes in mice (1.3.4.2). 
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1.2 Regulated intramembrane proteolysis (RIP) and proteases in 

signaling 

The processing of APP (1.1.2) represents a classical example of regulated intramembrane 

proteolysis (RIP) (Brown et al., 2000). RIP processes type I and type II transmembrane 

proteins in a sequential way involving a primary extracellular cleavage (shedding) and a 

secondary cleavage within the boundaries of the cellular membrane (Figure 4). The basic 

two-step mechanism of RIP is conserved from prokaryotes to mammals and the combination 

of shedding and intramembrane cleavage has emerged as a novel mechanism of signal 

transduction (Weihofen and Martoglio, 2003; Landman and Kim, 2004; Lal and Caplan, 

2011). 

1.2.1 Shedding mediates extracellular signaling 

Shedding, the rate-limiting first cleavage during RIP occurs in the juxtamembrane region of 

the substrate. It releases the substrate’s ectodomain into the luminal space and generates a 

shortened membrane-retained fragment (Figure 4). Shedding which is mediated by 

membrane-bound proteases, so called sheddases such as the members of the ADAM family 

of proteases and BACE1, may be triggered by ligand binding (in the case of receptor 

shedding) but may also occur ligand-independent (e.g. for precursors of signaling factors). 

Cleavage of the notch receptor (Fiúza and Arias, 2007) represents an example of ligand-

induced shedding. Binding of one of its ligands delta/jagged/serrate triggers shedding by 

ADAM10 or ADAM17 which releases the notch ectodomain and generates a membrane-

bound fragment called NEXT (notch extracellular truncated) (Brou et al., 2000; Mumm et al., 

2000). A similar ligand-induced receptor shedding was observed for the receptor tyrosine 

kinase ErbB4 (Carpenter, 2003) which is shed by ADAM17 upon binding of neuregulin-1 

(Zhou and Carpenter, 2000). Vice versa, binding to its receptor EphB (Pasquale, 2008) 

triggers the shedding of the ephrinB ligand and therefore represents an example of receptor-

induced ligand shedding (Georgakopoulos et al., 2006). In contrast, shedding of APP (1.1.2) 

seems to be independent of ligand binding and instead is regulated by intracellular signaling, 

trafficking, protease expression and activity (Sannerud and Annaert, 2009). Other examples 

of shedding events that do not require prior interaction with a ligand include the cleavage of 

many membrane-bound precursors of extracellular signals such as TNFα, Fas ligand and 

growth factors like TGFα and neuregulin-1 (Reiss and Saftig, 2009) (1.3). Through the 

processing of these factors and the release of their bioactive domains from the cell surface 
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sheddases participate in numerous paracrine and autocrine signaling pathways and 

shedding therefore has emerged as a key mechanism in many biological processes 

throughout development and adulthood. 

1.2.2 Intramembrane cleavage mediates (bi-directional) intracellular signaling 

In addition to the classical extracellular signaling, the combination of shedding and 

intramembrane proteolysis also enables both forward and reverse intracellular signaling. 

Cleavage of substrates within the boundaries of the cell membrane is catalyzed by so called 

intramembrane cleaving proteases (I-CLiPs) (Wolfe et al., 1999a) which are multi-spanning 

transmembrane proteins. The group of I-CLiPs comprises the site-2-protease (S2P) family, 

the rhomboids and the GxGD family of proteases whose name is derived from the 

characteristic GxGD active site motif common to all of its members (Haass and Steiner, 

2002; Wolfe, 2009). Besides the presenilins which are the best characterized members, the 

GxGD family also includes the signal peptide peptidase (SPP) and the SPP-like (SPPL) 

family (Fluhrer et al., 2009). 

Intramembrane proteolysis of shortened membrane proteins liberates their 

cytoplasmic domains into the cytosol which subsequently may participate in signal 

transduction within the cell. The notch pathway is the most prominent example of such RIP-

mediated intracellular forward signaling. After shedding, the remaining NEXT fragment 

undergoes intramembrane cleavage by the γ-secretase and the notch intracellular domain 

(NICD) is released into the cytosol (Schroeter et al., 1998; De Strooper et al., 1999). 

Subsequently, the NICD translocates to the nucleus where it binds to transcription factors 

and acts as “transcriptional switch” to induce the expression of target genes (Mumm and 

Kopan, 2000). Likewise, the γ-secretase generated ICD of the receptor ErbB4 (B4-ICD) was 

shown to act as transcriptional regulator in the nucleus but the precise mechanism and 

physiological consequences of this non-canonical forward signaling have yet to be 

determined (Ni et al., 2001).  

In addition to the above described forward signaling of receptor ICDs, RIP also 

mediates intracellular back signaling via the ICD of ligands (Landman and Kim, 2004). The 

notch ligands jagged and delta for example participate in the canonical forward signaling by 

binding and activating the notch receptor (Fiúza and Arias, 2007). However, jagged and delta 

themselves are subject to shedding by an ADAM protease and subsequent intramembrane 

cleavage by the γ-secretase liberates their ICDs into the cytosol (Bland et al., 2003; LaVoie 

and Selkoe, 2003; Six et al., 2003). Both ICDs reportedly act as reverse intracellular signals 
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and localize to the nucleus where the jagged ICD was found to stimulate activator protein-1 

(AP-1) mediated transcription normally inhibited by the NICD (LaVoie and Selkoe, 2003). 

Another protein that seems to be involved in both forward and reverse signaling is APP. In 

the forward signaling pathway, the APP ectodomain secreted through α-secretase shedding 

(sAPPα) (1.1.2) was found to convey neurotrophic and neuroprotective effects although the 

respective receptor(s) remain(s) to be identified (Furukawa et al., 1996; Meziane et al., 

1998). The reverse signaling pathway of APP is controversially discussed and its 

physiological implications are not well understood (Beckett et al., 2012). Nonetheless, 

reverse signaling of APP is proposed to be mediated by the AICD (1.1.2) which in analogy to 

the notch ICD was shown to act as a intracellular signal, indirectly activating the transcription 

of several target genes (Cao and Südhof, 2001, 2004). In addition, RIP also mediates the 

reverse signaling within the ErbB/neuregulin signaling pathway (1.3.3). 

In conclusion, through the combination of extracellular and intramembrane cleavage, 

RIP processes membrane proteins to release soluble peptides in different cellular 

compartments. Shedding liberates numerous soluble factors from their membrane-bound 

precursors and thereby regulates a variety of extracellular paracrine and autocrine signaling 

pathways. In addition, intramembrane proteolysis generates ICDs within the cell which 

subsequently may mediate intracellular signal transduction and regulate transcription. In 

cases where both the extracellular and intracellular domains act as a signal, RIP therefore 

allows bi-directional signaling by one substrate (Figure 4). Manipulating the “RIPping” of a 

target protein for therapy (like APP processing in case of AD) therefore harbors the risk to 

impact on the signaling of many other, unrelated proteins. This is especially relevant when 

targeting core components of RIP such as the γ-secretase that are involved in many RIP-

mediated pathways. The development of a successful AD therapy directed at the proteolysis 

of APP will therefore depend on detailed knowledge of the processing and signaling of as 

many RIP substrates as possible. 
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Figure 4. Regulated intramembrane proteolysis (RIP) allows bi-directional signaling. Shedding 
of a transmembrane protein by a membrane-bound protease (sheddase) generates a (soluble) 
ectodomain which may act as extracellular forward signal. Intramembrane cleavage of the remaining 
fragment by an intramembrane-cleaving protease (I-CLiP) liberates the intracellular domain (ICD) 
which subsequently may mediate intracellular reverse signaling. Shedding is the rate-limiting step of 
RIP and either occurs constitutively or is triggered by signals such as ligand binding. 
 

1.3 Neuregulin-1 

The growth factor neuregulin-1 was identified as one of the most important physiological 

substrates of BACE1 and abolished or reduced BACE1-mediated processing of NRG1 in 

mice causes defects in the peripheral nervous system (PNS) and probably also in the central 

nervous system (CNS) (1.1.3.2, 1.3.4.1.5). As NRG1 is also cleaved by the γ-secretase 

inducing an intracellular signal cascade (1.3.3.3), its processing represents a typical example 

of RIP-mediated signaling. 

1.3.1 The neuregulin family 

The neuregulin (NRG) gene family in vertebrates comprises four genes (NRG1-4) that 

encode the related growth factors neuregulin-1-4. While the sequences of NRG1 and NRG2 

share a higher degree of homology, NRG3 and NRG4 seem to be only distantly related to 

NRG1 (Buonanno and Fischbach, 2001). The usage of different promoters and excessive 
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splicing generates numerous NRG isoforms but almost all are synthesized as type I 

transmembrane precursor proteins and require proteolytic processing to achieve full activity. 

As a common and family defining feature, all NRGs share an epidermal growth factor (EGF)-

like domain in their extracellular portion which binds to and activates ErbB receptor tyrosine 

kinases (RTKs). The NRG EGF-like domains comprise approx. 50 residues and contain 

three pairs of conserved cysteine residues that, through the formation of disulfide bridges, 

are responsible for the domains’ typical tertiary structure and biological activity. As of yet 

there are no criteria that clearly define a neuregulin EGF-like domain. However, all NRGs 

share conserved residues within the domain that clearly distinguishes the NRG family 

members from other members of the EGF-like family such as EGF, TGFα or HB-EGF 

(Buonanno and Fischbach, 2001). As another common family feature, neuregulins 

collectively only signal through ErbB2, 3 and 4 receptors but do not activate ErbB1 (Yarden 

and Sliwkowski, 2001; Mei and Xiong, 2008). 

NRG1 is the most broadly expressed family member and has been detected during 

development and adulthood in neural cells (neurons and glia) of both the CNS and PNS, as 

well as in other organs such as the heart, liver, kidney, spleen and lung (Orr-Urtreger et al., 

1993; Wen et al., 1994). Although in contrast to NRG1 only very little is known about the 

functions of NRG2-4 their distinct temporal and spatial expression patterns suggest different 

and non-redundant roles. NRG2 is expressed in the heart during embryogenesis but later its 

expression is restricted to the brain and the spinal cord with only low levels in lung and liver 

(Busfield et al., 1997; Chang et al., 1997). In contrast, NRG3 seems to be exclusively 

expressed in the CNS and PNS during both development and adulthood (Zhang et al., 1997), 

whereas NRG4 expression is restricted to non-neural tissue and was observed in adult 

skeletal muscle and especially pancreas (Harari et al., 1999). 

1.3.2 Neuregulin-1 – A growth factor that comes in multiple isoforms 

Neuregulin-1 is the best characterized member of the NRG family and was identified in the 

early 1990s (Falls, 2003a). NRG1 is produced from the NRG1 gene located on the small arm 

of chromosome 8 (8p12-8p21) which spans approx. 1.4 megabases (Mei and Xiong, 2008). 

Being one of the largest genes in the mammalian genome, NRG1 comprises 21 exons and 

its transcription is regulated by at least nine alternative promoters (Steinthorsdottir et al., 

2004). In combination with excessive splicing this results in the generation of at least 31 

different NRG1 protein isoforms (Mei and Xiong, 2008). The first NRG1 isoforms were 

identified by several independent research groups and named according to the context of 
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their discovery: Neu differentiation factor (NDF) (Peles et al., 1992; Wen et al., 1992) or 

heregulin (HRG) (Holmes et al., 1992) as a ligand for the oncogene ErbB2/HER2/Neu, glial 

growth factor (GGF) (Goodearl et al., 1993; Marchionni et al., 1993) as a factor that induced 

proliferation of Schwann cells and acetylcholine receptor (AChR) inducing activity (ARIA) 

(Falls et al., 1993) or sensory motor neuron-derived factor (SMDF) (Ho et al., 1995) as a 

signal that enhanced the expression of acetylcholine receptors. It is now clear, however, that 

these names are not always indicating the main physiological function of the respective 

isoform as for example the physiologically relevant “glial growth factor” seems to be in fact 

SMDF rather than GGF (Falls, 2003b).  

The formal terminology, classifies the NRG1 isoforms according to their very N-

terminal sequence and divides them into six major groups (NRG1 type I-VI) (Falls, 2003b; 

Mei and Xiong, 2008) (Figure 5). The amino-terminal sequences of the type I, II, IV and V 

isoforms contain an immunoglobulin (Ig)-like domain and therefore are sometimes termed Ig-

NRG1. This domain is thought to interact with the extracellular matrix of synapses thereby 

ensuring high local concentrations of NRG1 and sustained ErbB activation (Li and Loeb, 

2001). In contrast, NRG1 type III isoforms share a cysteine-rich domain (CRD) near their N-

terminus and are referred to as CRD-NRG1. As a part of the CRD forms an N-terminal 

transmembrane domain NRG1 type III isoforms are double pass membrane proteins and 

feature a unique hairpin-like topology with both the N- and the C-terminus in the cytosol 

(Wang et al., 2001) (Figure 5, 1.3.3.2.2 Figure 6).  

Following their specific N-terminal sequences, all NRG1 isoforms contain an EGF-like 

domain in their extracellular part which is essential for the activation of ErbB receptors 

(Buonanno and Fischbach, 2001). While the N-terminal portion of the EGF-like domain is 

common to all isoforms, alternative splicing generates two different EGF C-termini (Figure 5). 

The two types of EGF-like domains, called α-type EGF and β-type EGF, therefore only differ 

in the sequence following the fifth conserved cysteine residue of the EGF-like domain 

(Holmes et al., 1992; Wen et al., 1994). Nevertheless, compared to the α-type the β-type 

EGF displays a significantly higher affinity towards ErbB receptors and is the predominant 

isoform in the brain (Meyer and Birchmeier, 1994; Wen et al., 1994). 

In most NRG1 isoforms the EGF-like domain is followed by a short juxtamembrane 

linker sequence. This so called “stalk” region is highly variable and alternative splicing 

generates three different sequences named 1, 3 and 4 (Falls, 2003b). Stalks 1 and 4 

separate the EGF-like domain from the C-terminal TMD and comprise 17 and 35 residues, 

respectively. In contrast, the stalk 3 is truncated and contains a stop codon before the TMD 
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resulting in the generation of soluble NRG1 isoforms that are secreted into the extracellular 

lumen. Finally, isoforms of NRG1 designated with 2 lack a stalk sequence and their EGF-like 

domain is directly connected to the TMD (Holmes et al., 1992; Wen et al., 1994) (Figure 5). 

Since most NRG1 isoforms are synthesized as transmembrane precursors they require 

shedding for full biological activity. Shedding occurs within the juxtamembrane region and the 

different stalk sequences not only influence the efficiency of this processing but may also 

determine which protease is able to cleave (Montero et al., 2000). After the juxtamembrane 

stalk, all membrane-bound NRG1 isoforms contain a common TMD that is followed by a C-

terminal cytoplasmic tail. This intracellular domain consists of two parts: The first part is 

encoded by exons c1-c3 and is shared by all isoforms. The second part either comprises a 

short (b-type) or a long (a-type) sequence (Figure 5), with the latter being the predominant 

splice variant of the NRG1 isoforms in the nervous system (Falls, 2003a). At least two 

important functions of the TMD and the cytoplasmic tail of NRG1 are known: The TMD and 

part of the tail seem to contain an internal signal sequence and are crucial for NRG1 type I 

(and presumably type IV-VI) to enter the secretory pathway as its N-terminus lacks a 

classical signal sequence (Liu et al., 1998; Talmage, 2008). In addition, the TMD of NRG1 is 

cleaved by the γ-secretase and the liberated a-type ICD was shown to function as a 

transcription factor (1.3.3.3).  

The terminology outlined above allows the specific designation of all NRG1 isoforms 

discovered so far. For example NRG1 III β1a refers to a type III NRG1 isoforms that contains 

a β-type EGF-like domain, a stalk region 1 and the long a-type cytosolic tail. Figure 5 

provides a schematic overview of the NRG1 exons and their combinations through 

alternative splicing that give rise to the different isoforms. Not all combinations theoretically 

possible have been identified in vivo so far. 
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Figure 5. Overview of neuregulin-1 isoforms generated by differential promoter usage and 
alternative splicing. Six different N-terminal exons define the principle types of NRG1 (I-VI). Types I, 
II, IV and V contain an N-terminal Ig-like domain while type III instead includes a cysteine-rich domain 
(CRD) which forms a TMD. All isoforms share a common core EGF-like domain which may differ at its 
C-terminus (α or β). Different juxtamembrane sequences (stalks 1, 4; no stalk: 2) connect the ecto-
domain to the TMD or terminate before (stalk 3) thereby generating soluble NRG1 isoforms. The TMD 
is followed by different intracellular domains (a- or b-type). The red line indicates the isoform NRG1 
type III β1a which was used during this study. Based on scheme from (Falls, 2003a). 
 

1.3.3 Proteolytic processing and signaling of NRG1 

Although there are many different isoforms of NRG1, they all seem to convey their 

physiological functions through a common signaling paradigm: First, the activation of the 

membrane-bound precursor by proteolytic cleavage and second, the binding of the NRG1 

EGF-like domain to ErbB receptors which subsequently are activated and mediate the further 

signaling. 

1.3.3.1 ErbB receptors 

The ErbB receptor family consists of four related receptor tyrosine kinases (Yarden and 

Sliwkowski, 2001): The EGF receptor ErbB1 (EGFR, HER1), ErbB2 (HER2, Neu) (Drebin et 

al., 1984; Schechter et al., 1984) for which no ligand is known, ErbB3 (HER3) (Kraus et al., 

1989) which is catalytically inactive and ErbB4 (HER4) (Plowman et al., 1993). All ErbB 

receptors are single pass transmembrane proteins with an extracellular receptor domain and 

an intracellular tyrosine kinase domain. Binding of a ligand’s EGF-like domain to the extra-

cellular domain of ErbB induces receptor dimerization and subsequent activation of the 

intracellular kinase domain. This leads to the auto- and trans-phosphorylation of tyrosine 

residues at the C-terminus of the ErbB dimer which then serve as docking sites for different 

adaptor proteins and enzymes that mediate the intracellular downstream signaling (Bublil 
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and Yarden, 2007). In a process that seems to require endocytosis (Yang et al., 2005), ErbB 

receptors subsequently activate two major signaling cascades, the Ras/Raf/Erk1/2 and the 

PI3K/AKT pathway. Other intracellular cascades that are activated include for example the 

mTOR pathway as well as pathways regulated by the Ca2+ dependent protein kinase C 

(PKC) (Yarden and Sliwkowski, 2001; Zhang et al., 2007).  

ErbB receptors differ in their affinity for NRG1 and in their requirement for 

dimerization (Buonanno and Fischbach, 2001). Despite serving as receptor for many growth 

factors, ErbB1 does not bind NRG1 and only participates in NRG1 signaling through hetero-

dimerization with ErbB4. Likewise, ErbB2, which does not bind any known ligands, functions 

as NRG1 co-receptor by forming heterodimers with ligand-bound ErbB3 and ErbB4. Both 

ErbB3 and ErbB4 bind NRG1 but due to its inactive cytosolic kinase domain, ErbB3 critically 

depends on heterodimerization with either ErbB2 or ErbB4. In contrast, ErbB4 is the only 

autonomous ErbB receptor that may mediate NRG1 signaling as homodimer (Mei and Xiong, 

2008).  

The many cellular growth-responses elicited by ErbB receptor signaling include 

proliferation, differentiation, changes in motility and cell survival. As the different ErbB 

receptors have numerous functions in many cell types during both development and 

adulthood a comprehensive overview is beyond the scope of this introduction but may be 

found elsewhere (Yarden and Sliwkowski, 2001). In the following only the two aspects of 

ErbB receptor signaling most relevant for the present study will be introduced briefly. 

1.3.3.1.1 ErbB4 receptor signaling in the CNS 

ErbB4 is best characterized for its role in the CNS and is expressed in many of its parts 

(Carpenter, 2003). ErbB4 receptors play crucial roles during early brain development 

including the control of radial and tangential migration, axon guidance and migration of 

neuronal crest cells (Gassmann et al., 1995; Rio et al., 1997; Golding et al., 2000). 

Furthermore NRG1-ErbB4 signaling was shown to regulate the expression of neuronal AChR 

and GABAA (γ-aminobutyric acid) receptors and to influence the levels of synaptic glutamate 

receptors including NMDA (N-methyl-D-aspartic acid) and AMPA (2-amino-3-(3-hydroxy-5-

methyl-isoxazol-4-yl)propanoic acid) receptors (Ozaki et al., 1997; Rieff et al., 1999; Liu et 

al., 2001; Li et al., 2007). Through this, ErbB4 signaling is involved in the maturation of 

synapses, the regulation of neuronal excitability and synaptic plasticity. It is for these many 

roles in neuronal development and plasticity that ErbB4 is implicated in the etiology of 

diseases such as epilepsy (Li et al., 2012; Tan et al., 2012) and schizophrenia (Mei and 
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Xiong, 2008). Indeed ErbB4 has been identified as a susceptibility gene for schizophrenia 

(Silberberg et al., 2006; Law et al., 2007; Walsh et al., 2008) and alterations in ErbB4-

mediated signaling in mice lead to behavioral phenotypes considered rodent analogs of this 

neurodevelopmental disorder (Stefansson et al., 2002). 

1.3.3.1.2 ErbB2/ErbB3 receptor signaling in the PNS 

One of the most extensively studied functions of ErbB2 and ErbB3 is their role during 

myelination in the PNS (Newbern and Birchmeier, 2010). ErbB2 and ErbB3 expressed by 

glia cells and their precursors in the PNS are crucial during early Schwann cell development 

and mice with targeted mutations in these receptors exhibit an almost complete loss of 

Schwann cell progenitors (Riethmacher et al., 1997; Morris et al., 1999; Woldeyesus et al., 

1999). In this regard, NRG1 signaling via ErbB2/3 seems to control not only differentiation 

and proliferation but also the axonal migration of Schwann cell precursors. After birth, the 

type (i.e. myelination of large caliber axon vs. formation of Remak bundle), time of onset and 

extent of myelination is determined by NRG1-ErbB2/3 signaling and targeted disruption of 

ErbB2 in Schwann cells causes hypomyelination (Garratt et al., 2000; Michailov et al., 2004; 

Chen et al., 2006) (1.3.4.1). Both receptors are also expressed during adulthood and 

therefore may be required in mature Schwann cells. However, while their ligand NRG1 is 

necessary for remyelination after injury (Fricker et al., 2011), the role of ErbB2/3 remains 

elusive as the loss of ErbB2 receptors had only minimal effects on this process (Atanasoski 

et al., 2006). 

In summary, ErbB receptor-mediated cell-cell communication during development 

and adulthood controls numerous physiological functions. Growth factor signaling especially 

via ErbB1 and ErbB2 is also prominently involved in the development of cancer and hence 

both receptors are important drug targets (Zhang et al., 2007). Among many other functions, 

ErbB4 is crucial for neuronal development and plasticity and altered ErbB4 signaling seems 

to be implied in the etiology of schizophrenia (1.3.4.2.1). Lastly, together with NRG1, ErbB2 

and ErbB3 receptors are key regulators of Schwann cell development and control 

myelination in the PNS (1.3.4.1.1). 

1.3.3.2 Extracellular cleavage and forward signaling of NRG1 

Although NRG1 isoforms are almost exclusively synthesized as transmembrane proteins, 

they were originally identified as factors in the supernatant of cancer cells that activate ErbB 

receptors on distant cells (Holmes et al., 1992; Peles et al., 1992). Such signaling requires 

the generation of a soluble, diffusible bioactive domain from the membrane-bound NRG1 and 
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indeed the ectodomains of almost all isoforms are detected as soluble peptides. Already 

upon their initial discovery it was therefore suggested that proteolytic processing may be 

responsible for the release of the EGF-like domain from the membrane (Holmes et al., 1992; 

Wen et al., 1992). It is now established that the membrane-bound forms of NRG1 are indeed 

precursor proteins that require proteolytic cleavage to gain full biological activity. Different 

proteases of the ADAM family and BACE1 have been shown to cleave NRG1 and the 

juxtamembrane region between the EGF-like domain and the TMD has been identified as the 

site where this shedding occurs (1.3.3.2.3).  

Depending on the topology of the membrane-bound precursor, shedding in the stalk 

region either results in the generation of a soluble or a membrane-tethered EGF-like domain 

(Figure 6). This difference has important implications as it is thought to enable two principally 

different signaling modes of NRG1: paracrine and juxtacrine signaling (Falls, 2003a). 

Paracrine signaling refers to communication between cells that are not in direct contact with 

each other and such contact-independent signaling therefore requires soluble, diffusible 

signaling factors. In contrast, during juxtacrine signaling the ligand remains membrane-bound 

and receptor activation requires direct contact between the signal producing and signal 

receiving cell. 

1.3.3.2.1 Paracrine signaling 

NRG1 isoforms that feature a type I membrane topology (i.e. isoforms I, II, IV-VI) are 

believed to signal in a paracrine fashion. Shedding within the stalk region liberates their N-

terminal extracellular part including the EGF-like domain into the extracellular environment 

(Figure 6). These soluble NRG1 peptides may then diffuse and act as paracrine signals 

activating ErbB receptors on distant target cells. Paracrine signaling by soluble NRG1 type I 

is crucial for a number of physiological processes including the development of the brain (Mei 

and Xiong, 2008) and heart (Meyer et al., 1997; Horiuchi et al., 2005), the formation and 

maintenance of neuromuscular synapses (Falls, 2003a) and muscle spindles (Hippenmeyer 

et al., 2002; Cheret et al., 2013). 

1.3.3.2.2 Juxtacrine signaling 

So far NRG1 type III is the only isoform that has been found to contain two TMDs and to 

feature a hairpin-like structure with both the N- and C-terminus in the cytosol (Wang et al., 

2001). In contrast to other isoforms, shedding in its juxtamembrane region generates a 

membrane-bound N-terminal fragment that presents the EGF-like domain towards the 

extracellular environment (Figure 6). Due to its membrane anchor, the EGF-like domain of  
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Figure 6. Different modes of forward signaling by neuregulin-1 after shedding. Shedding of 
NRG1 occurs in the juxtamembrane region close to the TMD and is mediated by BACE1 and 
members of the ADAM family of proteases. NRG1 isoforms I, II and IV-VI are single pass trans-
membrane proteins and shedding releases their ectodomain (sNTF) into the luminal space where it 
acts as contact-independent (paracrine) signal and activates ErbB receptor on distant cells. Shedding 
of NRG1 type III which contains two TMDs generates a membrane-bound NTF that mediates contact-
dependent (juxtacrine) signaling and activates receptor only on neighboring cells. 
 

NRG1 type III only activates ErbB receptors on cells that are in direct contact and is therefore 

considered a juxtacrine signal (Falls, 2003a). Juxtacrine signaling between axonal NRG1 

type III and ErbB2/3 receptors on Schwann cells is crucial for Schwann cell development and 

myelination in the PNS (1.3.4.1). Additionally, contact-dependent signaling by NRG1 type III 

via ErbB4 is implicated in the guidance of thalamocortical axons during brain development 

(Mei and Xiong, 2008). As ErbB-mediated NRG1 signaling seems to require endocytosis 

(Yang et al., 2005; Liu et al., 2007), an additional cleavage within the membrane-bound 

NRG1 type III NTF during or after juxtacrine receptor activation may be expected. 

1.3.3.2.3 Proteases involved in the shedding of NRG1 

The β-secretase BACE1 was identified as one of the most important physiological sheddase 

of NRG1 (Hu et al., 2006; Willem et al., 2006; Fleck et al., 2012). Full-length NRG1 

accumulates in BACE1 KO mice (Hu et al., 2006; Willem et al., 2006) and in mice treated 

with a BACE1 inhibitor (Cheret et al., 2013) while the corresponding cleavage products are 

diminished. The physiological importance of BACE1-mediated NRG1 shedding is underlined 
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by the fact that ablation of BACE1 in mice causes prominent hypomyelination of peripheral 

nerves (Hu et al., 2006; Willem et al., 2006) and muscle spindle defects (Cheret et al., 2013). 

The cognitive and behavioral alterations displayed by these animals (1.1.3.2) may likewise 

be linked to the abolished processing of NRG1 by BACE1, but the mechanistic details still 

remain elusive. The BACE1 cleavage site in the stalk region of NRG1 has been mapped both 

in vitro (Hu et al., 2008) and in living cells (3.1.2) and unanimously was found to be located 

10 residues upstream of the TMD (3.3 Figure 27). 

Prior to BACE1, ADAM17 was the first protease shown to cleave NRG1 within the 

stalk region and to release the ectodomain of several NRG1 isoforms from the membrane 

(Montero et al., 2000). Interestingly, the efficiency of ADAM17-mediated shedding varies for 

different NRG1 isoforms and seems to depend in part on the length and type of the juxtacrine 

stalk region. ADAM17 cleavage of NRG1 is strongly enhanced upon treatment with PMA 

(phorbol 12-myristate 13-acetate) and ADAM17 was found to be responsible for the 

constitutive and regulated shedding of NRG1 isoforms β1 and β2 in mouse embryonic 

fibroblasts (Horiuchi et al., 2005). Based on the observation of a peripheral hypermyelination 

in conditional ADAM17 KO mice (La Marca et al., 2011), shedding of NRG1 type III by 

ADAM17 has recently been suggested to generate a biologically inactive NRG1 fragment 

that inhibits Schwann cell myelination and counteracts BACE1-cleaved NRG1 (1.3.4.1.5). In 

contrast to BACE1, ADAM17 seems to mediate a more heterogeneous shedding in the stalk 

region of NRG1 and several different cleavage sites 13 to 21 residues upstream of the TMD 

have been identified in vitro and in living cells (4.2 Figure 49). 

Besides ADAM17, ADAM10 was identified as NRG1 sheddase but the physiological 

relevance of this cleavage is unclear. In vitro, ADAM10 cleaves NRG1 at a single site located 

18 residues upstream of the TMD (Luo et al., 2011) but may additionally utilize a site nearby 

in living cells (3.1.2). Processing by ADAM10 generates signaling competent NRG1 type I 

and type III isoforms that activate ErbB receptors similar to the BACE1-cleaved fragments. 

Nevertheless, reduced or abolished ADAM10 activity does not result in impaired NRG1-

dependent Schwann cell myelination in vitro or in vivo indicating no major role of ADAM10 as 

NRG1 sheddase in this context (Freese et al., 2009; Luo et al., 2011). 

ADAM9 and ADAM19 have also been implicated in the shedding of NRG1. However, 

while some studies found ADAM19 to cleave NRG1, albeit only within the stalk region of β-

type isoforms, (Shirakabe et al., 2001; Kurohara et al., 2004) this could not be confirmed by 

other groups (Zhou et al., 2004; Horiuchi et al., 2005). ADAM9 seems to cleave NRG1 not 

within the stalk region but N-terminal of the EGF-like domain and therefore does not release 
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a fragment capable of signaling (Shirakabe et al., 2001). No cleavage sites have been 

reported for either protease yet. 

In summary, ectodomain shedding of the membrane-bound NRG1 precursor proteins 

appears to be critical for both paracrine and juxtacrine NRG1 signaling. In addition to its 

regulation by neuronal activity (Liu et al., 2011), the (regulated) activation of NRG1 through 

proteolytic cleavage thereby adds another level of control to the signaling of NRG1 linking it 

directly to the regulated expression and activity of different sheddases. 

1.3.3.3 Intramembrane cleavage and reverse signaling of NRG1 

Reverse signaling of NRG1 type III is initiated by binding of the ErbB4 receptor or its soluble 

ectodomain to the EGF-like domain of the NRG1 type III NTF (Bao et al., 2003) (Figure 7). 

This in turn induces γ-secretase-mediated intramembrane proteolysis of the corresponding 

CTF that results in the liberation of the NRG1 intracellular domain (NRG1-ICD) into the 

cytosol. Although the mechanistic details are still unclear, experimental evidence suggests 

that the NRG1 type III NTF and CTF remain physically associated during receptor binding 

and prior to intramembrane proteolysis. Besides stimulation by ErbB4 also neuronal 

depolarization was found to trigger liberation of the NRG1-ICD linking the regulation of 

reverse signaling by NRG1 type III to synaptic activity (Bao et al., 2003, 2004).  

Once in the cytosol, the NRG1-ICD, which contains a nuclear localization sequence 

close to its N-terminus, translocates to the nucleus where it binds the zinc-finger transcription 

factor Eos (Figure 7). The NRG1-ICD-Eos complex then interacts with the Ilk1/2 site in the 

promoter of the postsynaptic density protein 95 (PSD-95) and induces upregulation of PSD-

95 expression. Besides increasing the levels of PSD-95, signaling by the NRG1-ICD also 

represses the transcription of several regulators of apoptosis resulting in reduced neuronal 

cell death in an in vitro system (Bao et al., 2003, 2004). In addition, a recent study found the 

growth and branching of cortical dendrites to critically depend on the signaling of the NRG1-

ICD and suggested the reverse signaling of NRG1 type III as a novel regulator of dendritic 

development independent of ErbB receptor kinase activity (Chen et al., 2010a). 

Apart from its role as a regulator of transcription in the nucleus, the NRG1-ICD also 

seems to control cellular functions through activation of signaling cascades in the cytosol. 

Stimulation of neurons expressing NRG1 type III with ErbB4 induces NRG1-ICD-dependent 

PI3K signaling (Figure 7) and thereby leads to an increase of nicotinic acetylcholine 

receptors along the axonal surface. Interestingly, the increase in surface receptors was not 
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due to enhanced protein synthesis but instead resulted from a redistribution of the 

intracellular receptor pool (Hancock et al., 2008). 

In comparison with the classical forward signaling, much less is yet known about the 

reverse signaling of NRG1 type III. Nevertheless the latter has emerged as an important 

regulator of synaptic maturation and plasticity and alterations in this signaling pathway are 

suggested to contribute to the development of abnormal neuroconnectivity observed in 

schizophrenia. This hypothesis is strongly supported by the presence of a schizophrenia-

linked mutation within the TMD of NRG1 that impairs γ-secretase processing and 

subsequent signaling of the NRG1-ICD and causes aberrant development of cortical neurons 

(1.3.4.2.2). 

 

 

Figure 7. Reverse signaling by neuregulin-1 type III. Shedding of NRG1 type III generates a 
membrane-bound NTF and CTF. Neuronal depolarization or ligand binding to the NTF triggers intra-
membrane proteolysis of the CTF by the γ-secretase which releases the NRG1-ICD from the 
membrane. The NRG1-ICD activates the PI3K signaling pathway in the cytosol but also translocates 
into the nucleus where it binds the transcription factor Eos. Together with Eos, the NRG1-ICD acts as 
transcriptional modulator of several genes involved in apoptosis and the development of dendrites. 
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1.3.4 Functions of NRG1 type III 

Neuregulin-1 isoforms have many essential roles in the development and maintenance of the 

central and peripheral nervous system. They also mediate critical cell-cell communication in 

a number of other organs including the heart, the lung and the breasts. In addition to its 

physiological functions, neuregulin-1 signaling is also implicated in the pathogenesis of 

diseases including schizophrenia, cancer and multiple sclerosis. Due to this multitude of 

roles a comprehensive introduction into the functions of NRG1 cannot be given within the 

scope of this work. However a detailed overview of the biological importance of NRG1 in 

development, adulthood and disease may be found in a number of excellent reviews 

(Buonanno and Fischbach, 2001; Falls, 2003a, 2003b; Mei and Xiong, 2008). In the following 

only the aspects most relevant to this study will be introduced: the role of NRG1 type III 

during myelination in the PNS and the involvement of NRG1 in the pathogenesis of 

schizophrenia. 

1.3.4.1 NRG1 type III controls myelination in the PNS 

Many of the physiological functions of NRG1 were revealed through the study of mice in 

which all or specific isoforms of NRG1 were knocked out. Mice in which all isoforms of NRG1 

are rendered non-functional (pan-NRG1 KO) die during embryogenesis at E10.5 due to 

defects in cardiac morphogenesis (Meyer and Birchmeier, 1995). These mice also display a 

severe reduction of cells descending from neural crest progenitors including Schwann cells 

and cranial sensory neurons (Meyer et al., 1997; Britsch et al., 1998). Interestingly, mice with 

all NRG1 isoforms inactivated except NRG1 type III (Ig-NRG1 KO) show a very similar 

phenotype but have a normal development of Schwann cell precursors (Meyer et al., 1997). 

Vice versa, NRG1 type III KO mice (CRD-NRG1 KO) do not suffer from defective cardiac 

morphogenesis but do display severely reduced numbers of Schwann cell precursors and 

furthermore lack functional neuromuscular synapses. Subsequent expression analysis 

revealed that NRG1 type III is particularly strongly expressed in sensory and motoneurons 

which are myelinated by Schwann cells. Together this suggested an important role of NRG1 

type III in Schwann cell development and myelination in the PNS. 

The majority of large axons in the mammalian nervous system is myelinated, i.e. they 

are surrounded by multiple layers of a lipid rich membrane, the myelin sheath (Figure 8). 

Myelination serves as electrical insulation and increases the speed at which nerve impulses 

are transmitted. At the same time the myelin sheath also supports the neurons with trophic 

factors and protects against axonal damage (Nave, 2010). Conversely, the axon provides 
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signals that regulate survival and differentiation of the myelinating cells. Myelination occurs 

during development when specialized glia cells, called oligodendrocytes in the CNS and 

Schwann cells in the PNS, wrap their membranes around axons multiple times. In contrast to 

the oligodendrocytes in the CNS which participate in the myelination of several different 

axons, myelinating Schwann cells establish a 1:1 contact with neurons and only myelinate 

one segment of a single axon (Baumann and Pham-Dinh, 2001). The thickness of the myelin 

sheath is determined by the size of the axon and directly correlates with its diameter. 

Consequently large axons are surrounded by a thick layer of myelin while smaller axons 

have thinner myelin sheaths. Small axons with diameters below 1 µm usually are not 

myelinated but instead, together with several other small caliber axons, are engulfed by non-

myelinating Schwann cells to form a so called Remak bundle (Jessen and Mirsky, 2005; 

Birchmeier and Nave, 2008) (Figure 8).  

 

 

Figure 8. Myelination of axons in the peripheral nervous system. A) Electron microscopic image 
of a sciatic nerve section from mouse. Large caliber axons (marked with A) are surrounded by myelin 
sheaths (arrow) provided by myelinating Schwann cells. Smaller axons are sorted into Remak bundles 
(dashed box). B) Higher magnification of Remak bundle from A). Non-myelinating Schwann cells 
engulf several small caliber axons to form a Remak bundle. Within the bundle, axons (A) are 
separated from each other by the cytoplasm of the Schwann cell (arrowheads). Images taken from 
(Willem et al., 2006). 
 

Three main transitions characterize the development from neural crest stem cells (NCSC) to 

mature Schwann cells. First neural crest stem cells differentiate into Schwann cell precursors 

(SCPs). In a second step these SCPs proliferate and become immature Schwann cells. 

Finally, mature Schwann cells are formed and myelination commences (Jessen and Mirsky, 

2005) (Figure 9). 
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Figure 9. Control of Schwann cell development and myelination in the PNS by neuregulin-1. 
NRG1 promotes the migration of neural crest stem cells (NCSC) towards axons and their transition 
into Schwann cell precursor cells (SCPs). Axonal NRG1 type III is essential for the survival, 
proliferation and movement of the SCPs and also controls their differentiation into immature Schwann 
cells (SCs). Immature SCs associate with several axons and determine their size based on the level of 
NRG1 type III on their surface. Large axons with high NRG1 type III levels promote the transition of 
immature SCs into myelinating SCs and become surrounded by a myelin sheath. Lower levels of 
NRG1 type III on small axons lead to the formation of Remak bundles by non-myelinating SCs. 
Modified from (Nave and Salzer, 2006). 
 

NRG1 type III, the main NRG1 isoform in the PNS, is highly expressed by neurons in the 

DRG and on the axons of motoneurons throughout Schwann cell development and 

myelination (Loeb et al., 1999; Michailov et al., 2004). Accordingly, signaling by axonal 

NRG1 type III through ErbB2/3 receptors on Schwann cells (which do not express ErbB4) 

has emerged as an important regulator of virtually all steps of Schwann cell development and 

myelination and carries out different functions at different developmental stages (1.3.4.1.1). It 

should be noted that although several studies implicated a similar role of NRG1 in the 

myelination of the CNS, a recent study clearly showed that myelination by oligodendrocytes 

is controlled in an NRG1-ErbB-independent way (Brinkmann et al., 2008). 

1.3.4.1.1 Schwann cell development depends on NRG1-ErbB2/3 signaling 

Very early during embryonal development, NRG1 inhibits neurogenesis of neural crest stem 

cells (NCSCs) and promotes their migration through the extracellular matrix towards the 

regions where peripheral ganglia form (Figure 9). The signals and mechanisms regulating 

the subsequent transition from NCSPs to Schwann cell precursors (SCPs) are still poorly 

understood but likewise seem to depend on NRG1-ErbB2/3 signaling (Jessen and Mirsky, 

2005; Woodhoo and Sommer, 2008). The Schwann cell precursors then migrate along the 

developing nerve and establish a tight association with multiple axons (Figure 9). NRG1 type 

III was shown to be crucial in this context as in mice specifically lacking this isoform, SCPs 

initially populate peripheral nerve projections normally but then undergo cell death and are 
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absent in later stages (Wolpowitz et al., 2000). In addition to this role in survival and 

proliferation NRG1-ErbB2/3 signaling is essential for the directed migration of Schwann cell 

precursors. Inhibition of ErbB receptors or deletion of NRG1 type III in zebrafish caused 

SCPs to either stop their migration or deviate from their original path (Lyons et al., 2005; 

Perlin et al., 2011). Conversely, ectopic expression of NRG1 type III in neurons of both the 

CNS and the PNS directed SCPs to aberrantly migrate into the CNS, further corroborating 

the role of NRG1 type III as instructive signal in Schwann cell migration (Perlin et al., 2011). 

The strict axon-dependence of Schwann cell precursor survival and migration during these 

early phases of development probably serves as mechanism that adjusts the number of 

SCPs to the number of axons and facilitates correct spatial orientation (Jessen and Mirsky, 

2005). 

The second transition during Schwann cell development, the differentiation of SCPs 

into immature Schwann cells, occurs late in embryogenesis and is driven by NRG1 and 

canonical Notch signaling (Jessen and Mirsky, 2005; Woodhoo et al., 2009). Immature 

Schwann cells subsequently associate with groups of axons in nerves that already acquired 

their basic structure (Jessen and Mirsky, 2005) (Figure 9). A fundamental difference between 

SCPs and (immature) Schwann cells concerns the regulation of survival: While SCPs 

depend on axon-derived signals, (immature) Schwann cells survive axon-independently via 

autocrine stimulation by secreted growth factors. The switch to an autocrine support 

mechanism allows the Schwann cells to survive after axonal damage and to provide support 

during regrowth of peripheral nerves (Jessen and Mirsky, 2005).  

1.3.4.1.2 NRG1 type III controls ensheathment fate and myelin thickness 

Shortly before and after birth immature Schwann cells differentiate into either myelinating or 

non-myelinating Schwann cells and myelination commences (Figure 9). With the transition to 

mature Schwann cells, the role or NRG1 type III changes. During Schwann cell development, 

NRG1 signaling regulates differentiation, survival and proliferation of the precursors and 

serves to adjust the number of Schwann cells. In contrast, during the process of myelination, 

NRG1 signaling controls the ensheathment fate of axons (myelinated axons vs. Remak 

bundles), determines the final phenotype of Schwann cells (myelinating vs. non-myelinating) 

and regulates the thickness of the myelin sheaths (Nave and Salzer, 2006; Birchmeier and 

Nave, 2008).  

The binary choice of whether a Schwann cell myelinates an axon or forms a Remak 

bundle is determined by the size of the respective axon. However, rather than the diameter, 
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the amount of NRG1 type III NTF on the axonal surface, being in fact a function of the 

diameter, is the key factor in this decision. Investigation of different nerves in mice revealed 

that the unmyelinated axons of sympathetic neurons express low levels of NRG1 type III 

while the strongly myelinated axons of DRG neurons express high levels (Taveggia et al., 

2005; Nave and Salzer, 2006). In line, Schwann cells attach to neurons lacking NRG1 type III 

in vitro but subsequently fail to myelinate them. Conversely, ectopic expression of NRG1 

type III in sympathetic neurons that physiologically are not myelinated induces their 

myelination (Taveggia et al., 2005). Together this demonstrates that a certain threshold level 

of NRG1 type III on axons is required to trigger Schwann cell myelination (Figure 9). 

Besides determining the type of ensheathment, NRG1 type III also regulates the 

thickness of the myelin sheath, i.e. the number of times the Schwann cell wraps its 

membrane around the axon. This was demonstrated in mice with reduced levels of NRG1 

type III (NRG1 type III +/-) which display abnormally thin myelin sheaths around peripheral 

axons (Michailov et al., 2004) (Figure 10). Importantly, this peripheral hypomyelination was 

not due to impaired development of precursor cells and Schwann cell numbers were 

unaffected. In line, transgenic mice with increased neuronal levels of NRG1 type III have 

markedly thicker myelin sheaths in the PNS (Michailov et al., 2004).  

1.3.4.1.3 Signaling pathways in Schwann cells induced by NRG1 

Myelination is a complex morphogenetic event that requires a significant increase in the size 

of the Schwann cell and the synthesis of large amounts of myelin. To this end myelin-specific 

genes are upregulated in Schwann cells prior to the onset of myelination and several 

intracellular signaling pathways have been shown to be involved in their regulation.  

Activation of ErbB2/3 receptors on Schwann cells by axonal NRG1 type III triggers 

the recruitment of adaptor proteins and enzymes to the phosphorylated sites of the receptor 

(1.3.3.1). Among these, the phosphatidylinositol 3 kinase (PI3K) initiates one of the key 

signaling pathways implicated in the promotion of myelination. After its phosphorylation, PI3K 

activates the serine-threonine-specific kinase AKT (also known as protein kinase B, PKB) 

which then through a yet unknown mechanism induces transcription factors such as Oct-6, 

Krox-20 and Sox-10 (Taveggia et al., 2010). In contrast to PI3K-AKT signaling that promotes 

the transition of Schwann cells to the myelinating state, the extracellular signal-regulated 

kinase (Erk1/2) pathway (also known as MAP kinase pathway) was shown to inhibit this 

process. Activation of the Ras/Raf/Erk1/2 signaling cascade downstream of ErbB2/3 

receptors blocks the expression of myelin genes and consequently suppresses Schwann cell 
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differentiation and myelination (Harrisingh et al., 2004; Ogata et al., 2004; Syed et al., 2010). 

Together this suggests that NRG1-ErbB2/3 signaling regulates myelination via a finely tuned 

balance between these two differentially activated pathways.  

1.3.4.1.4 Juxtacrine and paracrine NRG1 signaling during myelination 

Two findings suggest that Schwann cell myelination strictly depends on a juxtacrine NRG1 

signal: First, soluble NRG1 fails to rescue myelination of neurons completely lacking NRG1 

type III in vitro (Taveggia et al., 2005). Second, only overexpression of the type III isoform 

(thought to constitute a juxtacrine signal, 1.3.3.2.2), but not of the type I isoform of NRG1 

increases peripheral myelination in mice (Michailov et al., 2004). However, the finding that 

soluble NRG1 promotes Schwann cell myelination of neurons that do not completely lack but 

instead express low levels of NRG1 type III has challenged this view. Application of soluble 

NRG1 type III (consisting of the N-terminal 296 residues including the EGF-like domain) to 

Schwann cell co-cultures of NRG1 type III +/- neurons enhanced myelination and rescued 

the hypomyelination phenotype observed otherwise (Syed et al., 2010). Similarly, 

sympathetic neurons which endogenously express very low amounts of NRG1 type III and 

therefore normally lack a myelin sheath became myelinated by Schwann cells after treatment 

with soluble NRG1 type III (Syed et al., 2010). The promyelinating effect of the paracrine 

NRG1 signal was found to be dose-dependent and involved activation of the PI3K-AKT 

cascade similarly to what is observed in Schwann cells after juxtacrine NRG1 signaling. 

Interestingly, higher doses of soluble NRG1 type III lead to the preferential activation of the 

Ras/Raf/Erk1/2 pathway and inhibited myelination (Syed et al., 2010). Together these 

observations suggest two distinct steps during Schwann cell myelination: An initial phase 

which includes radial sorting and initial ensheathment and depends on a juxtacrine NRG1 

signal from the axon; and a second phase during which the promotion of myelination may be 

stimulated by a paracrine NRG1 signal. 

1.3.4.1.5 BACE1 and ADAM17 control myelination through NRG1 type III processing 

Neuregulin-1 type III requires proteolytic activation prior to signaling and the proteases 

mediating this cleavage are therefore expected to be involved in the regulation of Schwann 

cell myelination. BACE1 is strongly expressed in sensory and motor neurons of mice around 

birth and is considered the most important sheddase of NRG1 type III in the context of PNS 

myelination (Willem et al., 2006; Fleck et al., 2012). Consequently, genetic ablation of 

BACE1 in mice leads to the accumulation of unprocessed NRG1 type III and causes severe 

hypomyelination of peripheral nerves without disturbing Schwann cell development (Hu et al., 
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2006; Willem et al., 2006) (Figure 10). The phenotype of BACE1 KO mice resembles the 

phenotype of conditional ErbB2 KO mice or mice heterozygous for NRG1 type III (Figure 10) 

and suggests that BACE1-mediated processing of NRG1 type III promotes myelination in the 

PNS. In agreement, expression of the BACE1 cleavage product NRG1 type III NTF in 

neurons of BACE1 KO mice suffices to rescue PNS hypomyelination (Velanac et al., 2012). 

However, genetic deletion of BACE1 does not completely prevent the turnover of 

NRG1 type III as evidenced by low amounts of NRG1 type III cleavage products and the 

presence of residual albeit thin myelin sheaths in BACE1 KO mice. Moreover, neuronal 

overexpression of the uncleaved NRG1 type III full-length protein caused peripheral hyper-

myelination in mice even in the complete absence of BACE1 (Velanac et al., 2012). This 

suggests that beside BACE1 also other, yet unidentified, neuronal proteases cleave NRG1 

type III in vivo and promote Schwann cell myelination. Likely candidates for such 

compensating proteases are different members of the ADAM family of proteases that cleave 

NRG1 type III similarly to BACE1, including ADAM10 and ADAM19 (1.3.3.2.3).  

 

 

Figure 10. Myelination phenotypes in the PNS of mice with altered NRG1-ErbB signaling. 
Electron microscopic images of peripheral nerves from mice with reduced levels of NRG1 type III 
(NRG1 type III +/-), deficiency in ErbB2 receptors (ErbB2 cond. -/-) and deficiency in BACE1 and 
ADAM17 (BACE1 -/- and ADAM17 cond. -/-, respectively). A lack of ErbB2 receptors and of BACE1 
leads to significantly thinner myelin sheaths around axons (arrowheads) resembling the phenotype of 
mice heterozygous for NRG1 type III. In contrast, thicker myelin sheaths are observed in mice lacking 
ADAM17. All animals except the ErbB2 KO also display defective bundling of small caliber axons into 
Remak fibers (asterisks; not shown for ADAM17 KO). Images from (Garratt et al., 2000; Taveggia et 
al., 2005; Willem et al., 2006; La Marca et al., 2011). 
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ADAM17 which also cleaves NRG1 type III has recently been proposed as a negative 

regulator of myelination. ADAM17 KO mice display increased myelin thickness in the PNS 

(Figure 10) and reduction of ADAM17 levels in neurons rescued the hypomyelination 

phenotype in NRG1 type III +/- mice (La Marca et al., 2011). The opposing effects of BACE1 

and ADAM17 on myelination were suggested to arise from the different cleavage sites in the 

stalk region of NRG1 type III utilized by these enzymes (4.2 Figure 49, 4.7 Table 8). In line, 

ADAM17 processing in vitro was shown to generate an inactive NRG1 type III EGF-like 

domain unable to induce ErbB2/3 signaling in Schwann cells (La Marca et al., 2011). 

Collectively these findings suggest that BACE1 and ADAM17 regulate Schwann cell 

myelination in the PNS through differential shedding of NRG1 type III. 

1.3.4.2 NRG1 and schizophrenia 

Schizophrenia is a mental disease characterized by an abnormal perception of reality that 

often results in permanent disability (Corfas et al., 2004). The disease typically presents with 

both positive symptoms such as hallucinations, obsessive thoughts and delusions as well as 

with negative symptoms including apathy and social withdrawal. In addition patients also 

suffer from cognitive deficits (Buonanno, 2010). Schizophrenia usually manifests itself at the 

end of adolescence and during early adulthood and in total affects approx. 0.5-1.0% of the 

adult population. Most antipsychotic drugs used for the treatment of schizophrenic patients 

are antidopaminergic and mainly alleviate positive symptoms being only moderately effective 

against negative symptoms and cognitive dysfunction (Mei and Xiong, 2008). Given these 

limitations a more detailed understanding of the underlying genetic and molecular 

mechanisms of schizophrenia is desirable in order to develop more effective therapies. 

1.3.4.2.1 NRG1-ErbB4 signaling in schizophrenia 

Schizophrenia is thought to be caused by a combination of environmental and genetic factors 

of which the latter are estimated to be at least 50% (Tsuang et al., 2001). Multiple 

susceptibility genes have been identified, however, their low penetrance indicates that 

schizophrenia is a polygenic disease with only small contributing effects by different genes. 

The neuregulin-1 gene locus was found to be associated with an increased risk for 

schizophrenia in several different populations by genome wide analysis (Harrison and 

Weinberger, 2005). Similarly, certain variants of its main receptor in the CNS, ErbB4, also 

confer a higher risk (Mei and Xiong, 2008). Hence, NRG1 is viewed as one of the most 

important susceptibility genes for schizophrenia and altered NRG1-ErbB4 signaling was 

shown to be implicated in many pathways relevant to the etiology of the disease.  
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Schizophrenia is considered to be a neurodevelopmental disease with both alterations in the 

brain’s structure and changes in the expression and signaling of neurotransmitters and their 

respective receptors. The structural alterations in the brains of schizophrenic patients which 

include enlarged ventricles and reductions in associative cortical areas are thought to be due 

to impaired neuronal migration and differentiation (Corfas et al., 2004). NRG1-ErbB4 

signaling was shown to be crucial for these processes and it is plausible that disturbed NRG1 

signaling during development could result in defective cortical connectivity leading to 

behavioral alterations. Likewise, NRG1 is involved in the regulation of neurotransmitter 

receptors in excitatory and inhibitory pathways, both of which are abnormal in schizophrenic 

patients (Buonanno, 2010). For example, decreased NRG1 signaling lead to the 

destabilization of postsynaptic AMPA receptors in hippocampal slices and caused the 

subsequent loss of NMDA currents and dendritic spines of excitatory neurons (Li et al., 

2007). Furthermore, NRG1-ErbB4 signaling also modulates neurotransmitter release of 

inhibitory interneurons (Woo et al., 2007). Besides this acute effect on neurotransmission 

NRG1 and ErB4 also regulate the expression of neurotransmitter receptors (1.3.3.1.1) and 

hence are involved in the long-term plasticity of the brain. Consequently, mice with reduced 

NRG1 levels (NRG1 +/-) present with an altered transmission in both GABAergic and 

glutamatergic pathways and display behavioral abnormalities that can partially be reversed 

by treatment with antipsychotic drugs (Stefansson et al., 2002). Together this suggests that 

aberrant NRG1 signaling contributes to the pathogenesis of schizophrenia through an acute 

dysregulation of synaptic transmission and plasticity in an already abnormally developed 

brain. 

1.3.4.2.2 NRG1 mutations in schizophrenia 

Since the discovery of the first schizophrenia-associated single nucleotide polymorphisms 

(SNPs) in the NRG1 gene in families in Iceland (Stefansson et al., 2002) many follow-up 

studies have reported similar findings in multiple populations (Harrison and Weinberger, 

2005). Most of the 80 SNPs identified so far cluster in non-coding intronic sequences in the 

5’ and 3’ region of the NRG1 gene and therefore do not lead to mutations in the NRG1 

protein that would change its processing or activity (Mei and Xiong, 2008). Instead, these 

SNPs are thought to affect splicing and expression of NRG1 and indeed altered mRNA levels 

of NRG1 isoforms have been detected in the prefrontal cortex and the hippocampus of 

schizophrenic patients (Hashimoto et al., 2003; Law et al., 2006). If these changes are also 

accompanied by altered protein levels remains unclear, however. Only very few 
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schizophrenia-associated SNPs actually generate a change in the amino acid sequence of 

the NRG1 protein and therefore could have direct functional consequences. One such 

mutation is caused by a SNP identified in families from Costa Rica and results in the 

substitution of a Valine (V) residue for a Leucine (L) (Walss-Bass et al., 2006). Interestingly, 

this V->L polymorphism is localized in the TMD region of NRG1 (3.6.2 Figure 46) and despite 

being a conservative mutation was shown to impair γ-secretase-mediated cleavage of the 

NRG1 CTF in cultured cells (Dejaegere et al., 2008). Consistently, the mutation severely 

reduces the generation of the NRG1-ICD and abolishes its nuclear signaling (Chen et al., 

2010a) (1.3.3.3). This seems to have direct functional consequences as in contrast to wild-

type NRG1 type III, the V->L mutant fails to rescue the dendritic length and branch point 

phenotype of NRG1 type III KO neurons (Chen et al., 2010a). In conclusion this raises the 

possibility that this schizophrenia-associated V->L polymorphism in NRG1 contributes to the 

disease pathology by disrupting the reverse signaling of NRG1 type III leading to deficits in 

the development of cortical dendrites and impaired neuronal connectivity. Together with the 

finding that reduced γ-secretase-mediated cleavage of NRG1 results in schizophrenia-like 

phenotypes in mice (Dejaegere et al., 2008) this calls for a closer investigation of the γ-

secretase cleavage within the NRG1 TMD as well as of the mechanism by which sequence 

alteration influence this processing. Ultimately, the cleavage products of the intramembrane 

proteolysis of NRG1 could also serve as a marker for altered overall NRG1 processing in 

schizophrenia. 
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2 Aims of the study 

The aim of this study was to investigate the proteolytic processing of NRG1 type III and the 

effects on its signaling. Two of the proteases involved in the turnover of NRG1 type III, 

BACE1 and γ-secretase, are also relevant to the etiology of Alzheimer’s disease and are 

consequently major drug targets. It is therefore crucial to determine their specific roles in the 

processing and signaling of NRG1 type III in order to preclude side effects upon therapeutic 

inhibition of these enzymes. 

NRG1 type III is an important neuronal growth factor regulating myelination in the 

peripheral nervous system. It is activated by ectodomain shedding which generates a 

membrane-retained N-terminal fragment containing its EGF-like domain that signals to 

Schwann cells and promotes myelination in a juxtacrine manner. With regard to myelination, 

BACE1, ADAM10 and ADAM17 have been shown to cleave NRG1 type III. In particular, 

cleavage by BACE1 was shown to be crucial for the promotion of myelination whereas in 

contrast ADAM17-mediated shedding was proposed to inactivate NRG1 type III thus acting 

inhibitory. This difference was attributed to slightly different cleavage positions of the 

proteases in the juxtamembrane region of NRG1 type III. However, a systematic 

characterization of the shedding sites in living cells has not been carried out so far and their 

effects on the activity of NRG1 type III remain controversial. 

Therefore, in the first part of this study the precise shedding sites of BACE1, ADAM10 

and ADAM17 were to be determined. Furthermore it was to be studied whether the 

processing of NRG1 type III allows for a paracrine signaling paradigm as has been proposed 

although evidence for the generation of a soluble signal has been missing. Finally, and with 

regard to the contradicting findings for BACE1- and ADAM17-mediated shedding, the effects 

of different cleavage sites on the ability of NRG1 type III to promote myelination were to be 

compared in a cell culture system as well as in vivo. 

The goal of the second part of this work was the detailed characterization of the 

previously reported intramembrane proteolysis of the NRG1 type III C-terminal fragment by 

the γ-secretase. Interestingly, a mutation within the transmembrane domain may link this 

processing to the development of schizophrenia. Therefore, by identifying the respective 

cleavage products as well as the precise cleavage sites, NRG1 type III was to be established 

as an unambiguous γ-secretase substrate. Furthermore the processing sites were to be 

compared to the γ-secretase cleavage sites identified for other substrates and evaluated with 

regard to the position of the schizophrenia-associated mutation.  
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3 Results 

3.1 BACE1, ADAM10 and ADAM17 are sheddases of NRG1 type III 

Neuregulin-1 type III requires proteolytic processing (shedding) in its juxtamembrane region 

in order to induce myelination. BACE1 and ADAM17 have been shown to act as 

physiologically relevant sheddases of NRG1 type III but also shedding by ADAM10 has been 

demonstrated (Montero et al., 2000; Willem et al., 2006; La Marca et al., 2011; Luo et al., 

2011). The exact cleavage positions, however, have only been investigated in vitro by 

digesting short recombinant peptides spanning the juxtamembrane region with purified 

proteases. Furthermore no systematic comparison of the cleavage sites of BACE1, ADAM10 

and ADAM17 in NRG1 type III has been performed in living cells.  

Investigation of the shedding sites in the juxtamembrane domain of NRG1 type III in 

living cells is complicated by the fact that also other regions of its ectodomain are subject to 

proteolytic processing. Wang et al. for example described cleavage of NRG1 type III close to 

its N-terminal cysteine-rich TMD. Therefore, to monitor the processing of NRG1 type III 

specifically in its juxtamembrane region and to exclude interferences by cleavages in other 

parts of the ectodomain, an N-terminally truncated construct was generated. NRG1∆NT 

comprises the entire C-terminal region, the TMD, the juxtamembrane region as well as the 

EGF-like domain of NRG1 type III β1a but lacks its N-terminus. In this way, NRG1∆NT 

constitutes a version of NRG1 type III that is exclusively subject to shedding in the 

juxtamembrane part of its ectodomain. A Flag tag immediately before the EGF-like domain 

allows isolation and subsequent mass spectrometric analysis of the domain after its release 

through shedding (Figure 11). 

Upon expression in HEK293 cells, full-length NRG1∆NT was detected in the cell 

lysate with antibodies against its C-terminus, as well as its EGF-like domain and the Flag tag. 

The diffuse western blot signal obtained with the C-terminal antibody is most likely due to the 

additional detection of the slightly smaller C-terminal fragment (CTF) that remains after 

shedding. However, due to its very similar size and its turnover by the γ-secretase this 

fragment is not easily detected and unambiguous identification of the CTF requires 

concomitant γ-secretase inhibition (Figure 13). The liberated soluble EGF-like domain 

(sEGF) was detected in the supernatant by an EGF antibody, demonstrating that NRG1∆NT 

is subject to endogenous shedding in its juxtamembrane domain (Figure 11).  
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Figure 11. NRG1∆NT is processed in its juxtamembrane region. A) Scheme depicting NRG1∆NT. 
NRG1∆NT represents an N-terminally truncated version of NRG1 type III and contains a Flag tag 
immediately upstream of the EGF-like domain that facilitates immunoprecipitation for MS analysis. 
Shedding by proteases like BACE1 and ADAMs generates a soluble EGF-like domain (sEGF), 
detectable with an EGF antibody. A C-terminal antibody detects NRG1∆NT in the cell lysate. CRD = 
cysteine-rich domain. B) NRG1∆NT is shed by endogenous proteases in HEK293 cells. Supernatants 
and lysates of cells expressing NRG1∆NT were subjected to immunoblotting with the indicated 
antibodies. The sEGF domain released by shedding of NRG1∆NT in its juxtamembrane region was 
directly detected in the supernatant. 
 

3.1.1 BACE1, ADAM10 and ADAM17 cleave NRG1 type III in the 

juxtamembrane region 

In the following NRG1∆NT was used to investigate the processing of NRG1 type III by 

BACE1, ADAM10 and ADAM17 in living cells. Inhibition of endogenous BACE1 activity (by 

the BACE1 inhibitor IV) in cells expressing NRG1∆NT decreased shedding of NRG1∆NT 

significantly as demonstrated by reduced amounts of the soluble EGF-like domain in the 

supernatant (Figure 12). In line, concurrent accumulation of the full-length precursor protein 

was also detected, albeit to a much smaller extent. The smaller effect on the full-length 

protein is most likely due to the high concentration of NRG1∆NT present in the cells. In 

contrast to the small amount of the liberated EGF-like domain which readily reflects 

decreased processing, the excess of uncleaved precursor protein causes the difference in 

processing upon BACE1 inhibition to be rather subtle (Figure 12). 

Overexpression of BACE1 increased the release of sEGF to 400-500% of the control 

(Figure 12). This dramatic increase in cleavage was also accompanied by a strong reduction 

of the full-length precursor NRG1∆NT in the cell lysate indicating that the juxtamembrane 

domain of NRG1 type III is highly sensitive to cleavage by BACE1.  
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Shedding of NRG1∆NT in the juxtamembrane region generates a membrane-retained CTF 

lacking the EGF-like domain (Figure 11). This fragment is further processed by the γ-

secretase (Bao et al., 2003) and was not observed in the experimental setup above. To 

confirm its generation, cells expressing NRG1∆T and BACE1 were treated with the γ-

secretase inhibitor DAPT. Upon inhibition by DAPT, the CTF accumulated and was observed 

as additional band on western blot, migrating below the full-length NRG1∆NT (Figure 13). 

 

 

Figure 12. BACE1 is shedding NRG1∆NT in the stalk region. Compared with control treated cells 
(DMSO) BACE1 activity in HEK293 cells expressing NRG1∆NT was reduced by treatment with the 
specific BACE1 inhibitor IV (10 µM) or increased by coexpression of BACE1. Shedding of NRG1∆NT 
was monitored by immunoblotting cell supernatants for sEGF. Expression of transfected and 
endogenous BACE1 was confirmed in lysates and isolated membranes, respectively. Note that 
endogenous BACE1 is only visible upon prolonged exposure of the western blot membrane. mat = 
mature, im = immature. Bar graph: Quantification of experiments (IV: n = 5, p<0.01; BACE1: n = 6, 
p<0.01). 
 

 

Figure 13. Shedding of NRG1∆NT generates a CTF that is cleaved by the γ-secretase. HEK293 
cells expressing NRG1∆NT and BACE1 (B1) were treated with DMSO as control or the γ-secretase 
inhibitor DAPT (10 µM). Lysates were analyzed by western blotting. 
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Besides BACE1 proteases of the ADAMs family also cleave NRG1 type III in the 

juxtamembrane region (Montero et al., 2000; La Marca et al., 2011; Luo et al., 2011). To 

confirm that NRG1∆NT similarly is subject to ADAM-mediated shedding, cells expressing the 

construct were treated with the broad-spectrum ADAM inhibitor GM6001 (Figure 14). This 

reduced shedding and liberation of the EGF-like domain into the supernatant by approx. 

40%. Combined inhibition of both BACE1 and ADAMs abolished endogenous shedding 

almost completely and caused accumulation of the full-length precursor NRG1∆NT to an 

extend that was detectable on western blot (Figure 14).  

Finally it was tested whether the two ADAM proteases most prominently implicated in 

the shedding of NRG1 type III were able to process the truncated NRG1∆NT. To this end, 

ADAM10 and ADAM17 were coexpressed with NRG1∆NT and shedding was analyzed as 

before. Ectopic expression of ADAM10 and ADAM17 lead to enhanced shedding of 

NRG1∆NT as evidenced by increased levels of the EGF-like domain detected in the 

supernatants (Figure 15). 

Although ectopic expression of ADAM10 and ADAM17 increased shedding to approx. 

140-150% of the endogenous level, this effect is small compared to the effect size observed 

for the overexpression of BACE1 (bar graphs in Figure 12, 15). This difference may indicate 

that BACE1 possesses a higher affinity to its shedding site in the juxtamembrane region of 

NRG1 type III compared to the ADAM proteases. However, as the exact amounts of 

catalytically active (mature) protease that resulted from ectopic expression were not 

determined, a quantitative statement regarding the affinity of BACE1, ADAM10 and ADAM17 

towards NRG1 type III shedding is not possible. 

The results above demonstrate that BACE1, ADAM10 and ADAM17 may act as 

NRG1 type III sheddases that cleave between its extracellular EGF-like domain and the C-

terminal transmembrane domain.  
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Figure 14. ADAM proteases contribute to the shedding of NRG1∆NT. Processing of NRG1∆NT by 
endogenous ADAM proteases in HEK293 cells was blocked by treatment with the broad-spectrum 
ADAM inhibitor GM6001 (GM, 25 µM). Combined treatment with GM and BACE1 inhibitor IV (25 µM 
and 10 µM, respectively) was used to block both ADAMs and BACE1 simultaneously and DMSO 
treatment served as control. Shedding was assessed by western blot analysis of the cell supernatants 
using an EGF antibody. Bar graph: Quantification of experiments (n = 5, p<0.001). 
 

 

Figure 15. ADAM10 and ADAM17 shed NRG1∆NT. ADAM10 (A10) and ADAM17 (A17) were 
coexpressed with NRG1∆NT in HEK293 cells and supernatants were analyzed for soluble EGF-like 
domains by immunoblotting. Ectopic expression of ADAM10 and ADAM17 was confirmed in cell 
lysates. Note that endogenous ADAM17 is only detected upon prolonged exposure of the western blot 
membrane. Bar graph: Quantification of experiments (n = 6; A10: p<0.001; A17: p<0.05). 
 

3.1.2 Shedding of NRG1 type III by BACE1, ADAM10 and ADAM17 occurs at 

close but distinct sites 

Determination of the precise shedding sites within NRG1 type III requires identification of the 

very C-terminal residue of the liberated sEGF. Since the NRG1∆NT construct possesses a 

defined N-terminus, this is possible once the mass of the liberated sEGF is known. For this 

purpose a combined immunoprecipitation mass spectrometry (IP-MS) approach was used. 
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NRG1∆NT was expressed in HEK293 cells and the sEGF domain liberated into the 

supernatant by shedding was isolated using the N-terminal Flag tag for immunoprecipitation. 

Subsequently the molecular masses of the purified peptides were determined by MALDI-TOF 

mass spectrometry. Endogenous processing of NRG1∆NT in HEK293 cells yields four 

prominent peptides that correspond to cleavages after A283, F285, Y286 and F293 in NRG1 type 

III (Figure 16, Table 1). To identify the site(s) after which BACE1-mediated cleavage occurs, 

the enzyme’s activity was either reduced by treatment with a specific inhibitor or its cleavage 

was enhanced by overexpression. Inhibition of endogenous BACE1 in NRG1∆NT expressing 

cells strongly diminished the abundance of the sEGF fragment detected in the supernatant at 

a mass of 7846.8 kDa (cleaved after F293) in comparison to the other peptide species. 

Conversely, the liberation of this sEGF fragment was greatly increased upon overexpression 

of BACE1. In fact, overexpression of BACE1 caused preferential shedding of NRG1∆NT at 

F293 to an extent that made detection of the other peptide species impossible (Figure 16). 

Together this identifies F293 as the shedding site of BACE1 in the juxtamembrane region of 

NRG1 type III β1a. 

To assess which cleavage sites originate from shedding by members of the ADAMs 

family of proteases, cells expressing NRG1∆NT were treated with the broad-spectrum ADAM 

inhibitor GM6001. Mass spectrometric analysis of the sEGF domains in the supernatant of 

these cells revealed the cleavages after A283, F285 and Y286 to be strongly reduced compared 

to the cleavage at F293 (Figure 17, Table 1). For a semi-quantitative evaluation of this effect 

the signal intensity (area below the peak in the spectrum) of each ADAM-specific peak was 

normalized to the signal intensity of the BACE1-specific peak (F293) and then compared to 

the control. This revealed broad-spectrum ADAM inhibition to reduce the cleavage after A283, 

F285 and Y286 to 20-40% of the control (Table 2). GM6001 is an unselective inhibitor of ADAM 

and MMP proteases and therefore does not allow discrimination between ADAM10- and 

ADAM17-mediated shedding. For this purpose cells were treated with inhibitors that show a 

greater specificity and preferentially inhibit either ADAM10 (GI254023X) or ADAM17 

(GL506-3). Treatment with GI254023X strongly reduced the generation of sEGF fragments 

terminating at Y286 to about 10% of the control (Figure 17, Table 2). Cleavage after F285 was 

mildly reduced (60% of control level), while cleavage after A283 was slightly increased (140%) 

compared to control conditions. In contrast, preferential inhibition of ADAM17 using GL506-3 

did not change the abundance of sEGF cleaved after Y286 but strongly impaired cleavage 

after A283 (only 30% of control). As before, cleavage after F285 was mildly reduced to 60% of 

the levels in the supernatant of control treated cells.  
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Figure 16. BACE1 cleaves NRG1 type III after F293 in the juxtamembrane region. HEK293 cells 
expressing NRG1∆NT were either treated with DMSO as control, with the BACE1 inhibitor IV (10 µM) 
or were cotransfected with BACE1 (Figure 12). Supernatants were immunoprecipitated using a Flag 
antibody and isolated sEGF peptides were analyzed by MALDI-TOF MS. The peptide corresponding 
to cleavage after F293 (red arrows) is generated by BACE1 (Table 1). Note that with overexpression of 
BACE1, the other peaks are below the detection limit. 
 

 

 

Figure 17. ADAM10 and ADAM17 shed NRG1 type III after A283, F285 and Y286. After treatment with 
the indicated inhibitors (GM6001 (GM), 25 µM; GI254023X (GI) and GL506-3 (GL), 5 µM) or DMSO as 
control, supernatants of HEK293 cells expressing NRG1∆NT were immunoprecipitated using Flag 
agarose beads and isolated sEGF peptides were analyzed by MALDI-TOF MS. Broad-spectrum 
ADAM inhibition revealed peptides terminating with A283, F285

 and Y286 (Table 1) to be generated by 
ADAMs. Selective inhibition of ADAM10 reduced cleavage after F285

 and Y286 (blue and light blue 
arrows, respectively). ADAM17 inhibition decreased cleavage mainly after A283 (purple arrows) but 
also after F285. Red arrow: BACE1 cleavage after F293. Bar graph: Representation of peak intensities 
normalized to the BACE1-specific peak (n = 3). 
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Table 1. List of peptides shed from NRG1∆NT as identified by mass spectrometry. Peptide 
sequences with corresponding protease(s) are given and observed (Obs.) peptide masses are 
compared with calculated (Calc.) masses. Italic letters indicate the Flag tag, [M+H]+ a singly charged 
peptide. 
 

 

 

Table 2. Semi-quantitative evaluation of MS data for ADAM10- and ADAM17-mediated shedding 
after A283, F285 and Y286. Peak intensities (areas) of ADAM-specific peaks were normalized to the 
signal generated by BACE1 in each spectrum (Figure 17-19, n = 3). The normalized peak intensities 
were then compared with the respective controls. Changes of cleavage (fold) under different 
conditions (inhibition, overexpression, and knockdown of ADAM10 and ADAM17) are summarized as 
follows: increased: >1.6x (↑, big arrows), mildly increased: 1.5-1.2x (↑, small arrows), unchanged: 1.1-
0.9x (→), mildly decreased: 0.8-0.5 (↓, small arrows) or decreased: 0.4x (↓, big arrows).  
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To further substantiate the results achieved by the pharmacological discrimination between 

ADAM10 and ADAM17, each protease was overexpressed in the presence of NRG1∆NT 

(Figure 18). Ectopic expression of ADAM10 strongly increased shedding of NRG1∆NT after 

F285 and Y286 (270% and 220% of control, respectively) but only moderately affected 

cleavage after A283 (150% of control). Conversely, cleavage after A283 was highly enhanced 

(670% of control) upon ADAM17 overexpression whereas shedding after Y286 was unaltered. 

Again, as with the ADAM17 inhibitor, the extent of cleavage alteration at F285 was determined 

to be in between (240% compared to control cells) (Figure 18, Table 2). 

 

 

Figure 18. Overexpression of ADAM10 and ADAM17 confirms shedding sites in NRG1 type III. 
Supernatants of cells expressing NRG1∆NT and ADAM10 or ADAM17 were analyzed as before 
(Figure 17). Ectopic ADAM10 expression enhanced cleavage after F285 and Y286 (blue and light blue 
arrows, respectively), while ADAM17 expression lead to increased cleavage after A283 (purple arrows) 
and after F285. Red arrows: BACE1 cleavage after F293. Bar graph: Representation of peak intensities 
normalized to the BACE1-specific peak (n = 3). 
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Overexpression of proteases harbors the risk of cleavage at sites that would not be used 

endogenously. Therefore in a third approach, RNA interference was used to knockdown 

endogenous ADAM10 and ADAM17 activity in HEK293 cells expressing NRG1∆NT. As 

confirmed by western blot analysis of membrane preparations both the mature and the 

immature form of either protease were efficiently reduced by the respective siRNA pool 

(Figure 19). Mass spectrometric analysis of the sEGF fragments liberated into the 

supernatant by cells with transiently reduced ADAM10 showed shedding after Y286 to be 

decreased to 10% of the levels of cells treated with control siRNA (Figure 19, Table 2). 

Notably, cleavage after A283 was not changed. In contrast, transient knockdown of ADAM17 

reduced shedding after A283 to 30% but did not affect cleavage after Y286. In line with the 

observations made using inhibitors (Figure 17) and overexpression (Figure 18), knockdown 

of either protease affected cleavage after F285 to an intermediate extent (30% and 70% of 

control for ADAM10 and ADAM17 knockdown, respectively) (Figure 19, Table 2).  

 

 

Figure 19. RNA interference confirms ADAM10 and ADAM17 shedding sites in NRG1 type III. 
HEK293 cells expressing NRG1∆NT were transfected with siRNA (10 nM) against ADAM10 (siA10) or 
ADAM17 (siA17) and a non-targeting siRNA as a control (siCtrl). A) Western blot analysis of 
membrane preparations revealed efficient downregulation of both the immature (im) and mature (mat) 
form of ADAM10 and ADAM17. B) sEGF peptides were isolated from the supernatant by Flag tag 
immunoprecipitation and analyzed by MALDI-TOF MS. Reduced ADAM10 expression affected 
cleavage after F285 and Y286 (blue and light blue arrows, respectively). In contrast, downregulation of 
ADAM17 mainly reduced cleavage after A283 (purple arrows) but also after F285. Red arrows: BACE1 
cleavage after F293. C) Bar graph representation of peak intensities normalized to the BACE1-specific 
peak (n = 3). 
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Together these data suggest a precise shedding site for BACE1 in the juxtamembrane region 

of NRG1 type III β1a and more heterogeneous sites for ADAM10 and ADAM17. BACE1 

shedding was observed specifically after F293 and thus at a site located 10 residues N-

terminal of the TMD. ADAM10-mediated cleavage mainly occurs after Y286, while ADAM17 

preferentially cleaves after A283. However in addition, both proteases share F285 as a second 

and minor cleavage site. Compared to BACE1, ADAM10 and ADAM17 therefore mediate 

shedding of NRG1 type III more distant to the TMD at sites 7 and 10 residues upstream of 

the BACE1 shedding site (Figure 20). 

 

 

Figure 20. Schematic overview of the shedding sites identified in the juxtamembrane region of 
NRG1 type III. The cleavage sites of BACE1, ADAM10 and ADAM17 are shown. Longer arrows 
indicate the preferred cleavage sites of ADAM10 and ADAM17, respectively. 
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3.2 Processing of NRG1 type III generates soluble EGF-like domains 

In contrast to all other NRG1 isoforms, shedding of NRG1 type III does not liberate the EGF-

like domain but instead generates a membrane-bound NTF that tethers the EGF-like domain 

to the cell surface. NRG1 type III therefore is considered to signal in a juxtacrine fashion only 

(Falls, 2003b; Taveggia et al., 2005). Nevertheless an initial report described the liberation of 

the NRG1 type III ectodomain which would theoretically allow for paracrine signaling (Wang 

et al., 2001). The cleavage, however, was found to be very inefficient and the identity of the 

protease as well as the site of cleavage remained elusive. Recently, the model of strictly 

contact-dependent signaling was further challenged by the observation that soluble 

recombinant NRG1 type III NTF is able to signal in vitro (Syed et al., 2010). In order to gain 

insight into the processing of NRG1 type III, specifically of its NTF, full-length NRG1 type III 

containing an N-terminal V5 tag (V5-IIINRG1) was expressed in HEK293 cells. Figure 21 

provides a schematic of V5-IIINRG1 and summarizes its processing as investigated below. 

 

 

Figure 21. Scheme depicting V5 tagged NRG1 type III (V5-IIINRG1) and its processing. Shedding 
of V5-IIINRG1 generates a membrane-bound NTF containing the EGF-like domain and a CTF. Further 
processing by ADAM17 and BACE1 releases the EGF-like domain from the membrane (α- and β-
sEGF, respectively). A site of O-linked glycosylation N-terminal of the EGF-like domain is indicated. 
The N-terminal V5 tag facilitates immunodetection of the NTF. 
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3.2.1 Cleavage by BACE1 and ADAM17 liberates the EGF-like domain of NRG1 

type III 

Western blot analysis of lysates from cells expressing V5-IIINRG1 revealed two prominent 

bands below the 148 KDa marker, indicating that full-length V5-IIINRG1 is subject to 

intensive posttranslational modifications such as glycosylation (Figure 22). Coexpression of 

BACE1, ADAM10 or ADAM17 increased shedding and lead to reduced amounts of the full-

length protein. In line with the observations made with NRG1∆NT (3.1.1), this effect was 

most pronounced for ectopic BACE1 expression. Similar to the observations above, 

increased shedding was not reflected by the accumulation of the CTF which is rapidly turned 

over by the γ-secretase. Compared to ADAM-mediated shedding, shedding by BACE1 

occurs closer to the TMD of NRG1 type III and therefore generates a smaller CTF (Figure 

20). This β-CTF was specifically detected upon overexpression of BACE1 and migrated 

slightly faster than the α-CTF resulting from ADAM10 and ADAM17 cleavage (Figure 22).  

Enhanced shedding of V5-IIINRG1 should also lead to increased levels of the NTF 

containing the EGF-like domain. However, no such accumulation could be detected using 

antibodies against the V5 tag or the EGF-like domain. To the contrary, especially BACE1 and 

ADAM17 coexpression decreased the level of NTF indicating further processing of this 

fragment. Investigation of the supernatants revealed that both BACE1 and ADAM17 indeed 

liberate the EGF-like domain from V5-IIINRG1. Indicating different cleavage sites, the soluble 

EGF-like domain liberated by BACE1 (β-sEGF) has a higher molecular weight (detected 

above the 7 kDa marker) compared to the α-sEGF generated by ADAM17 (detected between 

the 4 and 7 kDa marker) (Figure 22). Endogenous proteases also liberated α- and β-sEGF 

but to a very small extent that was difficult to detect by western blot. Similarly low amounts of 

both fragments were detected with ADAM10 coexpression which therefore does not seem to 

liberate the EGF-like domain by a novel N-terminal cleavage. 

NRG1 type III contains a serine/threonine-rich sequence immediately N-terminal of 

the EGF-like domain (Figure 26) that potentially is a site for O-linked glycosylation. Indicative 

of glycosylation and furthermore suggesting that it might contain the N-terminal 

serine/threonine-rich sequence, β-sEGF was observed as double band on western blot 

(Figure 22). To investigate this possibility, cells expressing V5-IIINRG1 were treated with 

benzyl-2-acetamido-2-deoxy-D-galactopyranoside (BG) a specific inhibitor of O-linked 

glycosylation (Alfalah et al., 1999). Incubation with BG abolished the higher-molecular weight 

band and caused β-sEGF to appear as single peptide (Figure 23). This demonstrates that a 

fraction of the β-sEGF liberated from NRG1 type III by BACE1 is O-glycosylated and 
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indicates that the respective cleavage site is located N-terminal of the serine/threonine-rich 

sequence. 

 

 

Figure 22. Processing of NRG1 type III generates a membrane-bound and a soluble EGF-like 
domain. Lysates of HEK293 cells expressing V5-IIINRG1 and BACE1 (B1), ADAM17 (A17) or 
ADAM10 (A10) were analyzed for membrane-tethered fragments by immunoblotting with the indicated 
antibodies. Note that the β-CTFs generated by BACE1 migrate slightly faster compared to the α-CTFs 
resulting from ADAM-mediated shedding. Reprobing of the membrane (dashed box) with an EGF 
antibody confirmed the NTF to contain the EGF-like domain. Expression of transfected proteases was 
controlled in the lysate. Soluble EGF-like domains of different sizes (α- and β-sEGF) were detected by 
western blot analysis of the supernatants. Diamonds denote posttranslational modifications. 
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Figure 23. The β-sEGF liberated by BACE1 cleavage of NRG1 type III is O-glycosylated. O-linked 
glycosylation in HEK293 cells expressing V5-IIINRG1 and BACE1 was blocked by treatment with 
benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BG, 4 mM). Supernatants were analyzed for β-
sEGF by immunoblotting with an EGF antibody. The diamond denotes O-linked glycosylation.  
 

3.2.2 BACE1 and ADAM17 cleave NRG1 type III at specific sites N-terminal of 

its EGF-like domain 

In addition to shedding in the juxtamembrane region, liberation of the EGF-like domain 

requires cleavage of NRG1 type III N-terminal of that domain. To identify these novel 

cleavage sites, a combined IP-MS approach similar to the one described above was used 

(3.1.2). Mass spectrometric analysis of the liberated EGF-like domains requires their isolation 

from the cell culture supernatant. As there is no antibody available that is able to immuno-

precipitate the EGF-like domain of NRG1 type III, an HA tag was inserted immediately C-

terminal of the domain (V5-IIINRG1-HA) (Figure 25 A). Protein tags may, however, impair or 

alter normal proteolytic processing especially when located close to cleavage sites. To 

exclude this possibility the construct was expressed in HEK293 cells and proteolytic 

processing was analyzed as before (Figure 24). Compared to the untagged construct V5-

IIINRG1, no difference in the generation of membrane-bound fragments from V5-IIINRG1-HA 

was observed (Figure 22, 24 A). However, the HA antibody readily detected the NTF 

comprising the EGF-like domain but did not recognize the full-length protein (not shown). 

This is most likely due to the different locations of the HA tag sequence. In the full-length 

protein the tag is located internally and therefore probably less efficiently recognized by the 

antibody. In contrast, shedding causes the tag sequence to be exposed at the C-terminus of 

the NTF thereby allowing a more efficient detection. 

Analysis of supernatants from cells expressing V5-IIINRG1-HA and BACE1 or 

ADAM17 revealed generation of HA tagged β- and α-sEGF in a very similar fashion 

compared to V5-IIINRG1 (Figure 22, 24 B). Due to the additional HA sequence, both 

fragments were detected at slightly higher molecular weights. Unlike for the untagged 

construct however, a second western blot band that migrated above the α-sEGF was noted.  
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Figure 24. An HA tag C-terminal of the EGF-like domain does not impair processing of NRG1 
type III. A) The processing of V5-IIINRG1-HA generates an NTF and CTF similar to V5-IIINRG1 
(Figure 22). V5-IIINRG1-HA was expressed in HEK293 cells with BACE1 (B1), ADAM17 (A17) or 
ADAM 10 (A10). Membrane-bound fragments were detected in the cell lysates by immunoblotting with 
the indicated antibodies. No difference in processing was observed compared to a construct lacking 
the HA tag (Figure 22). B) V5-IIINRG1-HA is processed to release α- and β-sEGF. Supernatants from 
A) were analyzed for the liberation of the EGF-like domain. An additional band (marked by a diamond) 
was observed for the HA tagged α-sEGF (compare to untagged α-sEGF in Figure 22). C) The 
additional western blot band of HA tagged α-sEGF is not due to glycosylation. sEGF domains were 
detected in supernatants from cells expressing V5-IIINRG1 with or without an HA tag. While blocking 
O-glycosylation (BG, 4 mM, Figure 23) did not abolish the additional band (indicated by a diamond) for 
α-sEGF, removal of the HA tag did. 
 

Generation of this band cannot be prevented by BG treatment (Figure 24 C) and is only 

detected upon expression of the HA tagged construct. It therefore does not represent O-

linked glycosylation as observed for β-sEGF but seems to be caused solely by the tag during 

western blot detection. However, as the shedding sites observed for V5-IIINRG1-HA are the 

same sites identified with the NRG∆NT construct (which does not contain the HA sequence), 

the tag does not seem to interfere with normal processing of NRG1 type III (3.1.2 Table 1, 

Table 3). 

To determine the exact cleavage site(s) responsible for the liberation of the EGF-like 

domain, supernatants of cells expressing V5-IIINRG1-HA (Figure 24, 25 A) were immuno-

precipitated using HA agarose. Subsequent mass spectrometric analysis of the isolated 

peptides showed that processing of V5-IIINRG1-HA by endogenous proteases in HEK293 

cells results in the generation of a soluble EGF-like domain of 8558.9 kDa (Figure 25 B, 
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Table 3). This molecular weight corresponds to an EGF-like domain comprising 68 residues, 

liberated from the full-length protein by cleavages N-terminal (after L217) and C-terminal (after 

F285) of the domain. Cleavage after F285 is the result of shedding in the juxtamembrane 

domain and was found to be mediated by ADAMs (Figure 20). The N-terminal cleavage site 

between L217 and Q218, however, has not been observed before. Proteolysis at this novel site 

which is located 16 residues N-terminal of the EGF-like domain (Figure 26) liberates a sEGF 

containing the serine/threonine-rich sequence upstream of that domain and therefore may be 

mediated by BACE1 (Figure 22, 23). Consistent with this, inhibition of endogenous BACE1 

activity (BACE1 inhibitor IV) abolished the generation of the sEGF demonstrating that ADAM 

activity is not responsible for the cleavage after L217 (Figure 25 B). Further supporting 

cleavage by BACE1, the sequence immediately upstream of the novel cleavage site 

(ETNL|QTAP) bears striking resemblance to that of the Swedish mutation of APP 

(EVNL|DAEF) (Mullan et al., 1992) (4.2 Figure 48) which is known to dramatically increase 

BACE1 affinity (Citron et al., 1992, 1995; Cai et al., 1993). Finally, coexpression of BACE1 

strongly increased cleavage after L217 and released a sEGF fragment of 76 residues (β-

sEGF76), comprising Q218 as N-terminal and F293 as C-terminal residue (Figure 25 B, Table 

3). In case of BACE1 overexpression, shedding of the full-length precursor is no longer 

mediated by endogenous ADAMs after F285 but exclusively by BACE1 after F293 which 

explains the slightly larger size of β-sEGF76 (9548.1 kDa) compared to β-sEGF68 (8558.9 

kDa) (Table 3). In contrast to western blot analysis which detected both, glycosylated and 

non-glycosylated β-sEGF (Figure 22) only a single non-glycosylated β-sEGF species was 

identified by mass spectrometry (Figure 25 B). This is explained by the fact that the 

parameters used here for MS analysis do not allow detection of glycosylated peptides and 

therefore only the fraction of non-glycosylated β-sEGF (lower band on western blot in Figure 

22) was measured.  

Next, the α-sEGF liberated from V5-IIINRG1-HA by ADAM17 (Figure 24) was 

investigated by means of mass spectrometry. ADAM17 was found to generate soluble EGF-

like domains ranging from residue L235 to A283 (α-sEGF49, 6642.2 kDa) or F285 (α-sEGF51, 

6786.1 kDa), respectively (Figure 25 C, Table 3). These fragments are derived from 

cleavage at a novel site after H234 which is located immediately N-terminal of the EGF-like 

domain (Figure 26). ADAM17 cleavage at this site liberates an EGF-like domain that does 

not contain the serine/threonine-rich stretch and explains why, unlike the β-sEGF, α-sEGF is 

not subject to O-linked glycosylation (Figure 22, 26). The positions of the two novel cleavage 

sites N-terminal of the EGF-like domain, L217 for BACE1 and H234 for ADAM17, which are 
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separated by 17 amino acid residues, are also the reason for the marked size difference 

observed for α-sEGF and β-sEGF, respectively (Figure 22).  

In contrast to the homogenous shedding by BACE1 (after F293), ADAM17-mediated 

shedding in the juxtamembrane region of NRG1 type III was found to be heterogeneous and 

to occur at both A283 and F285 (Figure 20). This explains the detection of two distinct α-sEGF 

species, α-sEGF49 and α-sEGF51, with identical N- but different C-termini. Furthermore this 

demonstrates that both the truncated NRG1∆NT and the full-length V5-IIINRG1-HA construct 

are shed in a similar manner. As detected by western blot, coexpression of ADAM10 did not 

result in the liberation of sEGF peptides above the level caused by endogenous proteases 

(Figure 22). Consistently, the mass spectra derived from supernatants of cells expressing 

both V5-IIINRG1-HA and ADAM10 did not differ from the spectra of cells expressing only the 

construct but not the protease (Figure 25 B, C). This demonstrates that ADAM10 is not able 

to liberate the EGF-like domain on its own but depends on BACE1 or ADAM17 for the N-

terminal cleavage.  

Overall the mass spectrometric analysis confirms that both BACE1 and ADAM17 are 

able to liberate the EGF-like domain of NRG1 type III by a dual cleavage. The different sizes 

of the respective soluble EGF-like domains are caused by the distinct N-terminal cleavage 

sites identified for BACE1 and ADAM17, respectively. Table 3 provides an overview of the 

different soluble EGF-like domains that were detected, including their sequences and the 

calculated and observed masses. The relative positions of the identified cleavage sites are 

depicted in Figure 26. 
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Figure 25. Novel cleavages before Q218 by BACE1 and before L235 by ADAM17 liberate the EGF-
like domain of NRG1 type III. A) Graphical depiction of V5-IIINRG1-HA. An HA tag was inserted 
immediately after the EGF-like domain of NRG1 type III to allow immunoprecipitation. B) BACE1 
cleaves NRG1 type III after L217 and releases β-sEGF. V5-IIINRG1-HA was expressed in HEK293 
cells (Figure 24) and BACE1 activity was repressed by inhibition (B1 inhibitor IV, 10 µM) or enhanced 
by overexpression. Peptides were isolated from supernatants by HA tag immunoprecipitation and 
subsequently analyzed by MALDI-TOF MS. As determined by their molecular weights (Table 3), a β-
sEGF comprising residues Q218-F285 (blue arrow) was liberated by endogenous BACE1 levels, while 
enhanced BACE1 cleavage liberated residues Q218-F293 (red arrows). [M+2H]2+

 indicates a doubly 
charged peptide. C) ADAM17 but not ADAM10 liberates α-sEGF from NRG1 type III by a novel 
cleavage before L235. Supernatants of cells expressing V5-IIINRG1-HA and ADAM17 or ADAM10 were 
analyzed as in B). ADAM17 cleavage between H234 and L235 released α-sEGF peptides L235-A283 and 
L235-F285 (purple arrows) (Table 3). In contrast, ADAM 10 coexpression yielded a soluble fragment with 
a BACE1-cleaved N-terminus and an ADAM-cleaved C-terminus (Q218-F285, blue arrow). 
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Table 3. Overview of α- and β-sEGF peptides liberated from NRG1 type III as identified by mass 
spectrometry. Peptide names include the number of residues comprised by each sEGF (excluding 
the HA tag). Corresponding proteases and peptide sequences (without residues of the EGF-like 
domain) are given and observed masses (Obs.) are compared with calculated (Calc.) masses. Italic 
letters indicate the HA tag, [M+H]+ a singly charged and the asterisk a doubly charged peptide. 
 

 

Figure 26. Graphic representation of the novel BACE1 and ADAM17 cleavage sites N-terminal 
of the EGF-like domain. Cleavage sites are indicated and the numbers of the residues after which 
cleavage occurs are given. The serine/threonine-rich sequence which is subject to O-linked 
glycosylation is underlined. 
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3.3 Neoepitope-specific antibodies detect BACE1-cleaved NRG1 type III 

fragments 

To investigate processing of NRG1 type III in greater detail and to facilitate detection of 

untagged and endogenous protein for example in primary neurons, suitable antibodies were 

required. However, only very few commercially available antibodies detect NRG1 type III and 

none are specific for processed fragments. Therefore monoclonal antibodies specific to the 

identified cleavage sites in NRG1 type III were produced.  

Two monoclonal antibodies were raised against the neoepitopes arising from BACE1-

mediated shedding in the juxtamembrane region: Antibody 10E8 against the epitope 

immediately C-terminal of the BACE1 shedding site, i.e. the N-terminus of the β-CTF 

(M294EAEE…) and antibody 4F10 against the sequence directly upstream of this site 

(…GIEF293). An additional antibody 7E6 was raised against the residues (Q218TAPK…) after 

the novel N-terminal BACE1 cleavage site. In combination, these antibodies allow detection 

and identification of β-sEGF by both its N- and C-terminal residues. Figure 27 provides an 

overview of the epitopes and NRG1 type III fragments that are recognized by the generated 

antibodies. 

 

 

Figure 27. Schematic overview of NRG1 type III cleavage sites and fragments recognized by 
novel antibodies. Cleavage sites of respective proteases are marked by arrows and α- and β-sEGF 
as well as α- and β-CTF are indicated. Epitopes recognized by the novel antibodies and the site of 
glycosylation are shown. 
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Lysates (Figure 28, 29) and supernatants (Figure 30) from cells expressing untagged NRG1 

type III were used to assess the specificity of the novel antibodies. Similar to the EGF 

antibody, 4F10 detected a NRG1 type III NTF of approx. 80 kDa in the cell lysates (Figure 

28). Due to the liberation of the EGF-like domain, total amounts of the NTF, as recognized by 

the antibody against the EGF-like domain, are strongly reduced upon overexpression of 

BACE1. Demonstrating its specificity towards the BACE1-cleaved C-terminus of the NTF, 

however, 4F10 yielded the strongest signal under this condition (Figure 28, lanes 4 and 5). 

This indicates that of the small amount of NTF still present under this condition (weak signal 

with the EGF antibody), the majority is generated by BACE1-mediated shedding (strong 

4F10 signal). In contrast, the high amount of total NTFs (strong EGF antibody signal) present 

under endogenous protease levels mainly results from ADAM- and not BACE1-mediated 

shedding (weak 4F10 signal). Its specificity for the BACE1-cleaved NTF also explains why 

enhanced shedding by overexpression of ADAM10 and ADAM17 was not detected by the 

4F10 antibody.  

 

Figure 28. Novel antibodies 4F10 and 7E6 detect BACE1-cleaved membrane-bound NRG1 type 
III fragments. Lysates of HEK293 cells expressing untagged NRG1 type III and BACE1 (B1), 
ADAM17 (A17) or ADAM10 (A10) were used for western blot analysis with the indicated antibodies. 
Membrane-bound fragments resulting from BACE1-mediated cleavage were specifically detected with 
the neo-epitope specific antibodies 4F10 and 7E6. 
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Cleavage of NRG1 type III at the novel sites N-terminal of the EGF-like domain without 

subsequent shedding in the juxtamembrane region would yield a CTF containing the EGF-

like domain (CTF+EGF, scheme in Figure 28). Although this fragment was never observed 

with antibodies against the C-terminus or the EGF-like domain of NRG1 type III, the 7E6 

antibody detected a CTF+EGF of approx. 70 kDa when BACE1 was overexpressed (Figure 

28). Its size which is larger than the size of the CTF alone (approx. 64 kDa) is in line with the 

size observed for NRG1∆NT (3.1 Figure 11) that represents an artificial, Flag tagged version 

of the CTF+EGF fragment. The presence of the CTF+EGF in the lysate indicates that at least 

in cells with a high level of BACE1 activity, N-terminal cleavage precedes shedding in a 

fraction of NRG1 type III. Compared to the NTF, however, the CTF+EGF seems to be 

present in rather small amounts. Most likely this low abundance is the reason for the 

fragment not being detected by antibodies other than the 7E6 antibody which is specific (and 

sufficiently sensitive) for the N-terminus of the CTF+EGF.  

Finally the antibody 10E8 which was raised against the N-terminus of the β-CTF was 

checked for its specificity. In the presence of comparable amounts of total CTFs (C-terminal 

antibody, Figure 29), the 10E8 antibody yielded a strong western blot signal at approx. 64 

kDa only in case of BACE1 but not ADAM10 or ADAM17 overexpression. This demonstrates 

that 10E8 is specific for the BACE1-cleaved β-CTF and indicates that under endogenous 

protease levels in HEK293 cells, a large portion of the CTFs are in fact α-CTF, generated by 

ADAM-mediated shedding. This is in line with the data obtained by mass spectrometry 

(Figure 25) which also found endogenous shedding of NRG1 type III to mainly occur at the 

ADAM site.  

As an additional confirmation of their BACE1 neoepitope specificity, none of the three 

antibodies, 7E6, 4F10 and 10E8 recognized the full-length NRG1 type III protein in cell 

lysates (Figure 28, 29). 
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Figure 29. The novel antibody 10E8 specifically detects the NRG1 type III β-CTF generated by 
BACE1 shedding. HEK293 cells expressing untagged NRG1 type III and BACE1 (B1), ADAM17 
(A17) or ADAM10 (A10) were lysed and analyzed by immunoblotting with the indicated antibodies. β-
CTFs resulting from BACE1-mediated shedding were recognized specifically by the 10E8 antibody. 
 

Supernatants of cells expressing NRG1 type III and BACE1, ADAM17 or ADAM10 were then 

used to examine the ability of the newly generated antibodies to recognize β-sEGF. Both, the 

7E6 and the 4F10 antibody detected the N- and C-terminus of β-sEGF76 released from cells 

overexpressing BACE1, respectively (Figure 30). Similar to the commercial EGF antibody 

(3.2.1 Figure 22) both antibodies also detected the O-glycosylated fraction of β-sEGF76 

(Figure 30, marked by a diamond). 

Previously, MS analysis had revealed that in contrast to BACE1 overexpression, 

endogenous proteases in HEK293 cells liberate small amounts of β-sEGF68 (not β-sEGF76) 

through N-terminal BACE1 cleavage and C-terminal ADAM-mediated shedding (3.2.2 Figure 

25, Table 3). Accordingly, the β-sEGF68 fragment may only be recognized at its N-terminus 

(BACE1-cleaved) by the 7E6 antibody but not at its C-terminus (ADAM-cleaved) by 4F10. 

Consistent with that is the detection of low amounts of β-sEGF68 with the 7E6 but not the 

4F10 antibody in supernatants of cells expressing NRG1 type III only (Figure 30, lanes 2 and 

3, long exposure). In line, ectopic expression of ADAM10 further enhanced shedding and 

lead to slightly increased levels of β-sEGF68 as detected by the 7E6 antibody (Figure 30, 

lanes 8 and 9, long exposure) in the supernatant. ADAM17 is capable of liberating the NRG1 

type III EGF-like domain independent of BACE1 cleavage (3.2.1). Consequently, the α-sEGF 

as generated by ADAM17 does not contain the BACE1-cleaved epitopes and thus cannot be 

recognized by antibodies 7E6 and 4F10. Confirming these considerations and in line with the 

MS data, overexpression of ADAM17 prevented the release of the EGF-like domain through 
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an N-terminal BACE1 cleavage and no 7E6 and 4F10 signals were observed (Figure 30, 

lanes 6 and 7, long exposure). 

 

 

Figure 30. The novel antibodies 7E6 and 4F10 recognize the β-sEGF liberated from NRG1 type 
III by BACE1 cleavage. Supernatants of HEK293 cells expressing NRG1 type III and BACE1 (B1) 
ADAM17 (A17) or ADAM10 (A10) were analyzed by western blot using the 7E6 antibody to detect the 
N-terminus and the 4F10 antibody to detect the C-terminus of β-sEGF. Both antibodies detected 
glycosylated (diamonds) and non-glycosylated β-sEGF76 liberated by a dual BACE1 cleavage. β-
sEGF68 is generated by endogenous processing or cleavage by overexpressed ADAM10 (3.2.2 Figure 
25, Table 3) and is liberated by N-terminal BACE1 cleavage (7E6 signal in lanes 2 and 3 and lanes 8 
and 9, indicated by an arrow) but not C-terminal BACE1 shedding (no 4F10 signal in lanes 2 and 3 
and lanes 8 and 9). ADAM17 liberates α-sEGF (3.2.2 Figure 25, Table 3) which is not recognized by 
BACE1 cleavage-specific antibodies. Asterisks indicate unspecific background bands. The scheme 
below depicts the detected fragments and the proteases responsible for their liberation. 
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In summary, the novel neoepitope-specific antibodies allowed the detection of both soluble 

and membrane-bound NRG1 type III fragments. At all times, the abundance of the fragments 

detected by 7E6, 4F10 and 10E8 was increased by enhanced BACE1 expression. In 

contrast, expression of ADAM10 and ADAM17 had no effect or, in case of ADAM17-

mediated α-sEGF generation, abolished the release of fragments detectable by these 

antibodies. This demonstrates that the novel antibodies are indeed specific for their 

respective neoepitopes resulting from BACE1 cleavage and do not recognize ADAM-cleaved 

sites. Furthermore, in the context of ectopic expression of NRG1 type III in stable cell lines, 

the antibodies proofed to be sensitive enough to allow detection without the need of prior 

enrichment by immunoprecipitation. Nevertheless, 7E6, 4F10 and 10E8 are also suitable as 

capture antibody during immunoprecipitation (3.4 Figure 32, 3.6.1 Figure 41). Overall, using 

the novel antibodies for western blot analysis confirmed the identified BACE1 cleavage sites 

in NRG1 type III independent of the IP-MS approach. 

 

3.4 Primary neurons process NRG1 type III to release α- and β-sEGF 

The use of stable cell lines and ectopic expression of the substrate (and the proteases) were 

the means of choice to identify cleavage sites in NRG1 type III and to generate site-specific 

antibodies. Ultimately however, the aim is to investigate the processing and cleavage of 

NRG1 type III endogenously, i.e. in cells that naturally express NRG1 type III. Neurons of the 

peripheral nervous system (PNS), especially dorsal root ganglion (DRG) cells express and 

process NRG1 type III endogenously (Michailov et al., 2004; Willem et al., 2006). However, 

the culture of DRGs is time consuming and it is difficult to obtain sufficient amounts of cell 

material for a systematic biochemical investigation. To still be able to study the processing of 

NRG1 type III by endogenous proteases in primary neuronal cells, the construct V5-IIINRG1-

HA was expressed in hippocampal neurons using lentiviral transduction. Lentiviral delivery 

ensures protein levels high enough to be detected by means of biochemistry and the HA tag 

of V5-IIINRG1-HA allows the efficient isolation of the soluble ADAM-cleaved EGF-like 

domain from the supernatant that is not recognized by the novel antibodies 4F10 and 7E6. 

Western blot analysis of lysates from hippocampal neurons expressing V5-IIINRG1-

HA revealed neuronal shedding to generate a NRG1 type III CTF and NTF, the latter 

containing the EGF-like domain (Figure 31). Inhibition of BACE1-mediated shedding (by 

treatment with the specific BACE1 inhibitor IV) reduced overall shedding as indicated by the 
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accumulation of the full-length protein and reduced levels of CTF. β-CTFs resulting from 

BACE1 shedding were specifically detected with the 10E8 antibody. Upon inhibition of 

BACE1, the 10E8 signal was completely abolished, demonstrating the high degree of BACE1 

inhibition. The remaining CTFs (as detected with the C-terminal antibody) most likely resulted 

from shedding by ADAMs, supporting the idea that under physiological conditions both 

BACE1 and ADAMs contribute to NRG1 type III shedding. Indeed, concomitant inhibition of 

both BACE1 and ADAM activity (by IV and GM6001) further reduced shedding. The residual 

turnover of NRG1 type III under this condition is probably due to incomplete ADAM inhibition 

by the inhibitor GM6001.  

To identify BACE1-cleaved NTFs among the total NTFs, a membrane previously 

incubated with an EGF antibody was reprobed with the 4F10 antibody (Figure 31). This 

confirmed that endogenous shedding of NRG1 type III indeed generates a membrane-bound 

EGF-like domain comprising the identified BACE1 shedding site as C-terminus. Production of 

this BACE1-cleaved NTF that is supposed to be the signaling active fragment in the context 

of myelination (Taveggia et al., 2005; Willem et al., 2006) was consequently abolished upon 

BACE1 inhibition (Figure 31). As the remaining NTFs arose from ADAM-mediated 

processing and therefore terminated at the ADAM cleavage sites they were not recognized 

by 4F10.  
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Figure 31. Processing of NRG1 type III in primary neurons generates a membrane-tethered and 
a soluble EGF-like domain. V5-IIINRG1-HA was expressed in hippocampal neurons using lentiviral 
transduction and cells were treated with inhibitors of BACE1 and ADAM proteases (BACE1 inhibitor 
IV, 5 µM; ADAM inhibitor GM6001, 25 µM). Cell lysates were analyzed for membrane-bound 
fragments by immunoblotting with the indicated antibodies. Of the total amounts of NTFs and CTFs 
generated by shedding, BACE1-cleaved fragments were specifically detected with the antibodies 4F10 
and 10E8. Soluble EGF-like domains were isolated from the conditioned supernatant using the HA tag 
for immunoprecipitation. Dashed boxes indicate membranes reprobed with the antibodies shown 
directly below. The asterisk indicates unspecific background bands. 
 

In HEK293 cells expressing high levels of BACE1, a CTF containing the EGF-like domain 

was observed (3.3 CTF+EGF in Figure 28). This fragment that represents an EGF-like 

domain tethered to the membrane by the C-terminus of NRG1 type III results from a single 

BACE1 cleavage after L216 (N-terminal of the EGF-like domain) without subsequent 

shedding. Although not described before, such a CTF+EGF could potentially also represent a 

signaling active fragment of NRG1 type III that binds and activates ErbB receptors in a 

juxtacrine manner. To check for its generation in primary neurons, lysates of hippocampal 
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neurons expressing V5-IIINRG1-HA were analyzed using the antibody 7E6 for immuno-

detection. However, no CTF+EGF could be detected in these cells (data not shown). The 

presence of detectable amounts of CTF+EGF therefore seems to be limited to cells 

expressing extremely high levels of BACE1 which allow a fraction of NRG1 type III to be 

cleaved N-terminal of the EGF-like domain without subsequent shedding. Together these 

results support the concept that, physiologically, the EGF-like domain of NRG1 type III is 

indeed anchored to the membrane via its NTF. 

As observed with non-neuronal cells before (3.2.1 Figure 22), also primary 

hippocampal neurons released the EGF-like domain of V5-IIINRG1-HA into the supernatant 

(Figure 31). However, due to the smaller cell number, probably lower expression level of the 

substrate as well as the fact that no proteases were expressed ectopically, detection of the 

sEGF fragments required immunoprecipitation beforehand. Using an EGF antibody for 

western blot detection two sEGF fragments corresponding to α- and β-sEGF, respectively, 

were observed above and below the 7 kDa marker (Figure 31). Inhibition of BACE1 activity 

selectively prevented generation of the slightly larger β-sEGF, whereas the smaller α-sEGF 

was abolished only upon ADAM inhibition. To further confirm the identity of the observed 

fragments, the membrane was reprobed with the 7E6 antibody. This antibody, being specific 

for the BACE1 cleavage site N-terminal of the EGF-like domain only detected the larger β-

sEGF (Figure 31) demonstrating that also in neurons the β-sEGF is liberated by cleavage at 

the novel BACE1 site. 

To further confirm processing of NRG1 type III at the identified sites, immuno-

precipitations from supernatants of hippocampal neurons expressing V5-IIINRG1-HA (Figure 

31) were performed using the BACE1 cleavage site-specific antibodies 4F10 and 7E6. In 

contrast to the antibody against the HA tag (Figure 32, upper panel), both 4F10 and 7E6 only 

isolated the larger β-sEGF but not the smaller α-EGF (Figure 32). Inhibition of BACE1 

abolished precipitation of β-sEGF by either antibody, thereby confirming that this fragment is 

generated through a dual BACE1 cleavage at the identified sites.  

Together these results demonstrate that processing of NRG1 type III by endogenous 

BACE1 and ADAM proteases in primary neurons occurs at the identified cleavage sites and 

results in the release of the EGF-like domain as β- and α-sEGF. 
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Figure 32. A dual BACE1 cleavage liberates β-sEGF from NRG1 type III in neurons. Supernatants 
of neurons expressing V5-IIINRG1-HA (Figure 31) were immunoprecipitated with the indicated anti-
bodies against the HA tag or the BACE1 cleavage sites. Isolated peptides were detected on western 
blot using an EGF antibody. The asterisk indicates unspecific background bands. 
 

3.5 The EGF-like domains released from NRG1 type III constitute a 

paracrine signal that promotes myelination 

Myelination in the PNS depends on the juxtacrine activation of Schwann cells by NRG1 type 

III signaling from adjacent axons. Mechanistically it is thought that the neuronal NRG1 type III 

NTF anchors the EGF-like domain to the axonal surface thereby allowing only contact-

dependent activation of ErbB receptors on the surface of Schwann cells (Wang et al., 2001; 

Birchmeier and Nave, 2008). In this context NRG1 type III has been shown to stimulate 

ErbB2/3 receptors, which, upon autophosphorylation, then activate the downstream PI3 

kinase signaling pathway. In the further course of the PI3K pathway the downstream effector 

kinase AKT becomes phosphorylated and finally proliferation of Schwann cells and induction 

of myelination is initiated (Newbern and Birchmeier, 2010). Soluble NRG1 type III failed to 

rescue myelination in co-cultures of NRG1 type III-/- neurons and Schwann cells, suggesting 

that NRG1 type III induces and promotes myelination only in a strictly contact-dependent 

manner (Taveggia et al., 2005). In contrast, such soluble NRG1 type III peptides recently 

were found to restore myelination of neurons with heterozygous levels of NRG1 type III 

(Syed et al., 2010). This effect was concentration-dependent and indicates that if not the 

induction, at least the promotion of myelination may be controlled by soluble NRG1 type III in 

a paracrine manner. 
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3.5.1 α- and β-sEGF activate ErbB3 receptors and initiate signaling required 

for myelination 

The above mentioned studies relied on the addition of soluble recombinant NRG1 type III 

peptides as paracrine signal. In contrast, the liberation of the EGF-like domain as α- and β-

sEGF by ADAM17- and BACE1-mediated processing of NRG1 type III (3.2) constitutes a 

cellular source of such soluble EGF-like domains. To investigate whether indeed these sEGF 

domains could act as a paracrine signal, their ability to activate and signal through ErbB3 

receptors was assessed.  

To this end, the sequences of α- and β-sEGF (containing an HA tag after the EGF-

like domain) were cloned into a vector that allows their secretion and a furin cleavage site 

was inserted directly upstream of their respective N-termini. Furin cleavage facilitates 

removal of the leader peptide and simultaneously generates the N-terminus identified for α- 

and β-sEGF, respectively. Furthermore, both constructs terminate with the residues resulting 

from BACE1 or ADAM17 cleavage and therefore are synthesized as soluble peptides that 

are secreted independently of shedding (Figure 33 A). 

Western blot analysis of conditioned supernatants from CHO wt cells expressing α- 

and β-sEGF revealed robust secretion of both peptides (Figure 33 B). The presence of a 

diffuse band at higher molecular weight indicated O-linked glycosylation of a fraction of β-

sEGF and was abolished in cells deficient in O-glycosylation (Figure 35 A, B). To further 

confirm the integrity of α- and β-sEGF, the peptides were immunoprecipitated using the HA 

tag and analyzed by MALDI-TOF MS (Figure 33 C). As deduced from the observed 

molecular weight both peptides comprised the expected sequence and were intact without 

additional undesired cleavages within the EGF-like domain (Table 4). 

Nevertheless, mass spectrometric analysis revealed that a fraction of α-sEGF was 

truncated by one residue at the C-terminus while simultaneously the N-terminus comprised 

one additional residue (Figure 33 C, Table 4). The heterogeneous N-terminus could be the 

result of an imprecise furin cleavage but the reason for this is not known. In contrast, C-

terminal truncations of peptides are observed regularly (3.6.2) and are most likely due to the 

activity of exopeptidases. Unlike α-sEGF, β-sEGF was observed as a homogenous peptide. 

Due to the high amount of material available for MS analysis, the partial O-glycosylation of β-

sEGF could be detected as multiple poorly separated peaks at higher molecular weight 

(Figure 33 C). 
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Figure 33. CHO wild-type cells produce secreted versions of α- and β-sEGF. A) Schematic 
depiction of the secreted α- and β-sEGF constructs. Both constructs are expressed using a secretion 
vector, comprise an HA tag after the EGF-like domain and the respective N- and C-termini identified 
before (3.3 Figure 27). O-glycosylation is indicated for β-sEGF. B) sEGF domains are secreted into 
the supernatant by CHO wild-type cells. Supernatants of CHO cells expressing α- and β-sEGF were 
analyzed by immunoblotting with an EGF antibody. A diffuse band at higher molecular weight indicates 
glycosylation of β-sEGF. C) Mass spectrometric analysis reveals secretion of intact α- and β-sEGF 
domains. sEGF domains of B) were isolated by HA immunoprecipitation and analyzed by MALDI-TOF 
MS. A minor fraction of α-sEGF was found to contain an additional residue at the N-terminus while 
lacking a residue at the C-terminus (indicated by an asterisk) (Table 4). Glycosylation of β-sEGF 
caused multiple peaks at higher m/z ratios.  
 

 

Table 4. Overview of α- and β-sEGF peptides secreted by CHO wt cells as identified by MALDI-
TOF MS. Peptide sequences and respective C-terminal residues are given and observed (Obs.) 
peptide masses are compared with calculated (Calc.) masses. The asterisk denotes a minor α-sEGF 
peptide with altered N- and C-termini (Figure 33). Italic letters indicate the HA tag, [M+H]+ a singly 
charged peptide. 
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In a next step, the ability of α- and β-sEGF to activate ErbB3 receptors and initiate PI3K 

downstream signaling in a paracrine fashion was assessed. Therefore, MCF-7 cells which 

express ErbB3 receptors and allow monitoring of NRG1 signaling via ErbB3 (Luo et al., 

2011) were incubated with conditioned medium containing equal amounts of α- and β-sEGF 

(Figure 34 A) or with supernatants from cells expressing a control vector. As positive control, 

MCF-7 cells were stimulated with a recombinant NRG1 EGF-like domain (0.5 nM). Both α- 

and β-sEGF lead to ErbB3 activation and initiation of the PI3K downstream signaling in MCF-

7 cells as evidenced by increased levels of phosphorylated ErbB3 and AKT in the lysate 

(Figure 34 B). Quantification and comparison of the ratios of phosphorylated and total levels 

of ErbB3 and AKT revealed that α- and β-sEGF activated receptor and signaling to a very 

similar degree. Although there was a trend towards a slightly stronger activation by α-sEGF 

this was not significant, indicating that α- and β-sEGF do not substantially differ in their ability 

to activate and signal through ErbB3 receptors (Figure 34 C). 

Apart from their size and N- and C-terminal residues, the fact that β-sEGF but not α-

sEGF may be O-glycosylated is a key difference between these signaling peptides. 

Glycosylation can affect interactions between proteins (e.g. between ligand and receptor) 

and therefore the O-linked glycosylation of β-sEGF could alter its ability to stimulate ErbB3 

receptors. To investigate this possibility α- and β-sEGF were expressed in CHO ldlD cells 

(Kingsley et al., 1986) that are deficient in O-linked glycosylation. Both constructs were 

secreted as before but as indicated by the absence of a diffuse western blot band at higher 

molecular weight, β-sEGF lacked O-glycosylation (Figure 35 A). The absence of 

glycosylation was confirmed by mass spectrometric analysis as in contrast to the β-sEGF 

from CHO wt cells no additional peaks at higher molecular weight were observed (Figure 33 

C, 35 B). 

Similar to stimulation with glycosylated β-sEGF before, stimulation of MCF-7 cells 

with non-glycosylated β-sEGF activated ErbB3 and AKT to the same extent as stimulation 

with α-sEGF (Figure 35 C). This demonstrates that O-linked glycosylation of β-sEGF does 

not significantly change its capacity to activate ErbB3 receptors and subsequent AKT 

signaling in MCF-7 cells. 
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Figure 34. α- and β-sEGF stimulate ErbB3 receptors and activate PI3K signaling in MCF-7 cells. 
A) Preparation of conditioned supernatants. Media of CHO wt cells expressing α- and β-sEGF were 
analyzed by immunoblotting and the levels of α- and β-sEGF were adjusted by dilution with medium 
from control cells. B) Stimulation of ErbB3 and AKT phosphorylation in MCF-7 cells by α- and β-sEGF. 
Supernatants from A) were used to incubate MCF-7 cells. Medium from cells expressing an empty 
vector was used as negative and treatment with a recombinant NRG1 EGF-like domain (0.5 nM) as 
positive control. Cell lysates were analyzed for (phosphorylated) ErbB3 and AKT by western blotting. 
The asterisk indicates an unspecific band. C) Quantification of phosphorylated protein/total protein 
ratio (normalized to α-sEGF; n = 3; n.s., not significant). 
 

 



Results 

78 

 

Figure 35. O-glycosylation of β-sEGF does not affect its ability to activate ErbB3 receptors and 
AKT in MCF-7 cells. A) Secretion of non-glycosylated sEGF peptides by CHO ldlD cells. α- and β-
sEGF were expressed in CHO ldlD cells deficient in O-glycosylation, supernatants were analyzed by 
immunoblotting and levels of α- and β-sEGF were adjusted by dilution with medium from control cells. 
B) Mass spectrometric analysis of β-sEGF confirms absence of glycosylation. β-sEGF was isolated 
from supernatants of A) by HA immunoprecipitation and analyzed by MALDI-TOF MS. No peaks at 
higher m/z ratios were observed (Figure 33 C). C) α-sEGF and non-glycosylated β-sEGF stimulate 
ErbB3 and AKT phosphorylation to a similar extent. MCF-7 cells were incubated with supernatants 
from A) or medium of cells expressing an empty vector as control. Treatment with a recombinant 
NRG1 EGF-like domain (0.5 nM) served as positive control. Cell lysates were analyzed for 
(phosphorylated) ErbB3 and AKT by western blotting. The asterisk indicates an unspecific band. D) 
Quantification of phosphorylated protein/total protein ratio (normalized to α-sEGF; n = 3; n.s., not 
significant). 
 

A paracrine signaling mode of NRG1 type III in the context of PNS myelination requires the 

release of soluble EGF-like domains that activate Schwann cells. In a first step it was shown 

that α- and β-sEGF as released from NRG1 type III by ADAM17 and BACE1 are able to 

stimulate ErbB3 receptors on MCF-7 cells in a paracrine manner. As MCF-7 cells express 

ErbB3 receptor endogenously they allow the investigation of sEGF induced signaling without 

the need to overexpress the receptor which could lead to artificially enhanced sensitivity 
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towards its ligand. However, MCF-7 cells are stable cancer cells and paracrine activation of 

ErbB3 signaling by α- and β-sEGF in these cells does not automatically translate to a similar 

effect in Schwann cells.  

To investigate whether α- and β-sEGF were also able to induce the signaling required 

for myelination in cells that more closely resemble the physiological target cells, purified rat 

primary Schwann cells were used. Incubation of these cells with medium containing equal 

amounts of α- and β-sEGF resulted in significantly elevated levels of phosphorylated ErbB3 

and AKT (Figure 36). In line with previous observations, α- and β-sEGF again caused very 

similar activation of receptor and downstream signaling. Finally, purified rat primary Schwann 

cells were stimulated with α-sEGF and non-glycosylated β-sEGF derived from O-

glycosylation deficient CHO ldlD cells. The abolished glycosylation did not change the ability 

of β-sEGF to activate ErbB3 signaling (Figure 36), thereby confirming the results obtained 

with MCF-7 cells.  

 

 

Figure 36. α-sEGF and β-sEGF stimulate ErbB3 receptors and AKT signaling in primary 
Schwann cells similarly and independent of glycosylation. A) Preparation of supernatants 
containing equal amounts of α-sEGF, glycosylated and non-glycosylated β-sEGF. sEGF constructs 
were expressed in wt and O-glycosylation deficient (ldlD) CHO cells. Conditioned media were 
analyzed by western blot and levels of α- and β-sEGF were adjusted by dilution with medium from 
control cells. O-glycosylated β-sEGF migrated as an additional, diffuse band of higher molecular 
weight which is abolished in CHO ldlD cells. B) Primary Schwann cells were incubated with media 
from A) or from cells expressing an empty vector as control. Incubation with a recombinant NRG1 
EGF-like domain (0.5 nM) served as positive control. Cell lysates were analyzed for (phosphorylated) 
ErbB3 and AKT by western blotting. The asterisk indicates an unspecific band. 
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Overall the results above demonstrate that both ADAM17 and BACE1 liberate a functionally 

active EGF-like domain from NRG1 type III. Both α- and β-sEGF exert NRG1 type III 

signaling in a paracrine manner and activate the signaling pathway required for myelination 

in primary Schwann cells. Although these two EGF-like domains differ in size and terminal 

residues, their ability to stimulate ErbB3 receptor signaling was found to be identical. 

Likewise, the O-linked glycosylation of β-sEGF was found to have no effect on receptor 

activation. 

3.5.2 C-terminal cleavage of sEGF by ADAM17 does not abolish signaling 

through ErbB3 receptors 

The finding that α- and β-sEGF similarly activate Schwann cells (3.5.1) suggests that both 

ADAM17- and BACE1-mediated processing of NRG1 type III promotes myelination. This is in 

conflict with observations made by other researchers (La Marca et al., 2011) who 

demonstrated an inhibitory effect of ADAM17-processed NRG1 type III on PNS myelination. 

Specifically these researcher emphasized the importance of the very C-terminal residues of 

the NRG1 type III EGF-like domain for its biological activity. In this regard it was shown that a 

recombinant EGF-like domain cleaved by BACE1 after F293 induced ErbB3 signaling in 

Schwann cells, whereas an EGF-like domain cleaved by ADAM17 after G290 did not. 

Consequently, shedding of NRG1 type III by ADAM17 was proposed to inactivate the EGF-

like domain (La Marca et al., 2011).  

The observed discrepancies regarding the signaling of ADAM17-derived EGF-like 

domains may be due to the different cleavage sites identified for ADAM17: Using 

recombinant peptides in an in vitro digest, the ADAM17 cleavage site was mapped to G290 

(La Marca et al., 2011) as opposed to A283 which was the site identified in the cellular setup 

used in this work (3.1.2).  

In a next step it was therefore investigated whether indeed the different C-terminal 

residues are responsible for the different biological activities of BACE1- and ADAM17-

cleaved NRG1 type III EGF-like domains. To this end, a construct named β-sEGF-G was 

generated which is identical to β-sEGF-F (as derived from BACE1 cleavage) but terminates 

at G290 thereby mimicking the ADAM17-cleaved C-terminus as observed by others (La Marca 

et al., 2011) (Figure 37 A). To compare the effect of the different C-terminal residues on the 

activity of the EGF-like domain, conditioned media containing similar amounts of β-sEGF-F 

and β-sEGF-G were used to stimulate MCF-7 and purified primary Schwann cells as 

described before (3.5.1). Treatment with β-sEGF-F and β-sEGF-G induced similar 
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phosphorylation of ErbB3 receptors and AKT kinases in MCF-7 cells (Figure 37 B). In 

contrast to the expected inhibitory effect of the ADAM17-generated C-terminus, β-sEGF-G 

showed a slight trend towards increased ErbB3 activation. However, this trend was found to 

be non-significant upon quantification (Figure 37 C). Confirming these results, incubation with 

β-sEGF-F and β-sEGF-G also elicited similar activation of receptor and downstream 

signaling in primary Schwann cells (Figure 38). 

 

 

Figure 37. Shedding by BACE1 and ADAM17 generates β-sEGF domains that similarly activate 
ErbB receptors and downstream signaling in MCF-7 cells. A) Preparation of supernatants 
containing β-sEGF-F and the truncated β-sEGF-G. The constructs have identical N-termini but 
comprise C-terminal residues resulting from BACE1- or ADAM17-mediated shedding (F293, BACE1 
cleavage; G290, ADAM17 cleavage) as observed by (La Marca et al., 2011). Conditioned supernatants 
from CHO wt cells expressing either construct were collected and analyzed by western blot. B) β-
sEGF-F and β-sEGF-G stimulate ErbB3 and AKT phosphorylation in MCF-7 cells. Supernatants of A) 
or medium from cells expressing an empty vector were used to incubate MCF-7 cells. Treatment with 
a recombinant NRG1 EGF-like domain (0.5 nM) served as positive control. Cell lysates were analyzed 
for (phosphorylated) ErbB3 and AKT levels by immunoblotting. The asterisk indicates an unspecific 
band. C) Quantification of phosphorylated protein/total protein ratio (normalized to β-sEGF-F; n = 3; 
n.s., not significant). 
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Figure 38. β-sEGF derived from BACE1- or ADAM17-mediated shedding similarly activates 
primary Schwann cells. A) Preparation of supernatants containing β-sEGF-F and β-sEGF-G. 
Constructs were expressed in CHO wt cells and conditioned media were analyzed for equal levels by 
western blot. B) Stimulation of primary Schwann cells with β-sEGF-F and β-sEGF-G. Schwann cells 
were incubated with media from A) and from cells expressing an empty vector. A recombinant NRG1 
EGF-like domain (0.5 nM) was used as positive control. After cell lysis the levels of (phosphorylated) 
ErbB3 and AKT were determined by immunoblotting. 
 

Together with the observations made for α-sEGF above (3.5.1) this indicates that shedding 

of NRG1 type III at either A283 or G290 does not render the EGF-like domain inactive. Instead, 

these sEGF domains which are possibly generated by ADAM17 are biologically active and 

signal through ErbB3 receptors on Schwann cells in a manner indistinguishable from the 

BACE1-cleaved β-sEGF. This result also suggests that small differences in the C-terminal 

residues of the EGF-like domain, as resulting from shedding at different sites in the 

juxtamembrane region, do not overly affect its activity. 
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3.5.3 β-sEGF is a paracrine signal in vivo and rescues hypomyelination in a 

BACE1 KO zebrafish 

The previous experiments established α- and β-sEGF as paracrine NRG1 type III signals in 

vitro. Using the activation of ErbB3 receptor and downstream signaling as readout it was 

shown that both ADAM17- and BACE1-derived sEGF activates Schwann cells in cell culture. 

However, this does not necessarily hold true for the activation of Schwann cells in vivo. 

Moreover, it is unclear whether the activation of Schwann cells by α- and β-sEGF would 

indeed initiate the entire cellular program required for subsequent myelination of neighboring 

axons by these cells in a living organism. To address these questions and to investigate the 

signaling potential of the NRG1 type III derived sEGF domains in vivo, a homozygous mutant 

BACE1 (bace1 -/-) zebrafish was used (van Bebber et al., 2013). In addition to the BACE1 

mutation, these fish express GFP under the control of the claudin k promoter which therefore 

specifically labels Schwann cells and oligodendrocytes and facilitates the visualization of 

myelination in vivo (Münzel et al., 2012) (Figure 39 A). 

Compared to the wild-type, the lack of BACE1-mediated NRG1 type III signaling in 

bace1-/- zebrafish leads to severely reduced Schwann myelination. This is evident at 3 days 

postfertilization (3 dpf) from the absence of myelin around the axons of the lateral line organ 

(Figure 39). In contrast to the strongly impaired myelination in the PNS, myelination of 

Mauthner axons by oligodendrocytes in the CNS is not affected (Figure 39). This selective 

hypomyelination in the PNS of bace1-/- zebrafish is consistent with the reduced myelination 

observed in BACE1 KO mice and supports the distinct roles of BACE1-mediated NRG1 type 

III signaling in the PNS and CNS (Willem et al., 2006; Brinkmann et al., 2008).  

To determine whether β-sEGF indeed acts as a paracrine NRG1 type III signal 

promoting myelination in vivo and therefore could compensate the lack of BACE1-processed 

NRG1 type III, in vitro transcribed β-sEGF mRNA was injected into bace1-/- zebrafish 

oocytes. At 3 dpf, myelination of lateral line axons in bace1-/- zebrafish injected with β-sEGF 

was assessed using immunofluorescence microscopy and compared to control injected fish 

(Figure 39). In a total of 5 independent clutches that were used for injections, expression of 

β-sEGF lead to a partial rescue of PNS hypomyelination in 24 out of 63 bace1-/- zebrafish. In 

contrast, none of the 189 control fish (11 independent clutches) showed rescued myelination 

of the lateral line axons (Table 5). 
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Figure 39. β-sEGF liberated from NRG1 type III by a dual BACE1 cleavage promotes PNS 
myelination in vivo. A) The claudin k:GFP zebrafish line allows visualization of myelination in vivo. 
Schematic dorsal view of a claudin k:GFP zebrafish larvae (3 dpf) with GFP-labeled myelin around 
Mauthner axons (CNS, dotted arrows) and lateral line axons (PNS, arrows). B) β-sEGF rescues 
myelination in the PNS of bace1-/- zebrafish. Shown are dorsal views of wt (top), uninjected bace1-/- 
(middle) and β-sEGF mRNA injected bace1-/- (bottom) zebrafish larvae (3 dpf). Middle: Myelination of 
the lateral line axons in the PNS of bace1-/- zebrafish is severely reduced to absent (compare arrows 
in other panels). In contrast, myelination of Mauthner axons (dotted lines) in the CNS is not affected. 
Bottom: Injection of β-sEGF mRNA partially rescues hypomyelination in the PNS of bace1-/- zebrafish. 
Scale bar, 100 µm. 
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3.5.4 An ADAM17-cleaved C-terminus does not abolish the signaling activity 

of sEGF in vivo. 

The results obtained from the experiments in vitro (3.5.2) suggest no significant difference in 

the paracrine signaling activity of sEGF domains derived from BACE1- or ADAM17-mediated 

processing of NRG1 type III. In contrast, shedding by ADAM17 was shown to inhibit 

myelination in vivo, supposedly by generating an inactive membrane-tethered EGF-like 

domain (La Marca et al., 2011).  

Therefore in a next step the bace1 -/- zebrafish model was used to test in vivo, 

whether a C-terminus generated by ADAM17 would abolish the ability of sEGF to promote 

myelination as a paracrine signal. To allow comparison with the BACE1-cleaved β-sEGF, two 

constructs were generated that are identical to β-sEGF but mimic ADAM17 shedding after 

either G290 (β-sEGF-G, La Marca et al., 2011) or A283 (β-sEGF-A, this work).  

Three different clutches of bace1-/- zebrafish eggs were injected with the constructs 

and analyzed for myelination at 3 dpf. Similar to the rescue observed with β-sEGF, both 

β-sEGF-G and β-sEGF-A partially rescued hypomyelination in 12 out of 49 and 27 out of 72 

bace1-/- zebrafish (Table 5). Since the expression levels of the different constructs after 

mRNA injection were not quantified the extent of the rescue effects cannot be compared in a 

quantitative fashion. Nevertheless, the fact that both β-sEGF-G and β-sEGF-A rescued hypo-

myelination indicates that sEGF domains act as paracrine promyelinating signals in vivo, 

independently of their C-termini being generated by BACE1- or ADAM17-mediated shedding. 

 

 

Table 5. β-sEGF domains derived from BACE1- and ADAM17-mediated shedding promote 
myelination in vivo. Summary of rescue experiments in bace1-/- zebrafish. Number of bace1-/- 
zebrafish with partial rescue out of the total number of zebrafish analyzed is shown. In addition to β-
sEGF (Figure 39) also β-sEGF constructs with truncated C-termini (β-sEGF-G290 and β-sEGF-A283, 
see 3.5.2 for details) were assessed for their myelination promoting potential in bace1-/- zebrafish. 
Regardless of their very C-terminal residues, all constructs partially rescued the hypomyelination 
phenotype. 
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3.6 NRG1 type III is a substrate for regulated intramembrane proteolysis 

by the γ-secretase 

Shedding of NRG1 type III results in the generation of membrane-bound NTFs and CTFs 

(3.2). Both fragments are transmembrane proteins and as such could be subject to 

processing by intramembrane cleaving proteases (1.2.2). The members of the SPP/SPPL 

family of proteases were shown to mediate intramembrane proteolysis of proteins with type II 

topology and are therefore candidate proteases for the cleavage of the type II oriented NRG1 

type III NTF. Similarly, the CTF, possessing a type I topology, is a putative substrate for the 

γ-secretase complex which exclusively cleaves transmembrane proteins of this orientation 

(Fluhrer et al., 2009). So far nothing is known about intramembrane processing of the NRG1 

type III NTF. In contrast, it has indeed been demonstrated that the CTF is turned over by the 

γ-secretase and that this processing liberates the ICD of NRG1 type III into the cytosol (Bao 

et al., 2003). However, the respective cleavage sites within the TMD of NRG1 type III remain 

unknown. Likewise it is not known whether γ-secretase cleavage also liberates the N-

terminal part of the CTF from the membrane. 

3.6.1 Processing of NRG1 type III by the γ-secretase releases a NRG1 

β-peptide 

Besides liberating the substrate’s ICD into the cytosol, intramembrane cleavage by the γ-

secretase also generates short, soluble fragments that are secreted into the luminal space 

(1.1.2 Figure 2). The N-terminus of such fragments is generated by cleavage during the 

preceding shedding step and fragments shed by BACE1 at the β-site are therefore called β-

peptides (e.g. amyloid β-peptide, Aβ or notch β-peptide, Nβ). In analogy to the Aβ peptides 

generated during APP processing, intramembrane proteolysis of the BACE1-cleaved NRG1 

type III CTF hence is expected to release NRG1 β-peptides (NRG1-β) (Figure 40).  
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Figure 40. Scheme illustrating the generation of NRG1 β-peptides from NRG1 type III. Shedding 
of NRG1 type III by BACE1 produces a CTF that is further processed by the γ-secretase complex. 
This releases the ICD into the cytosol and liberates a NRG1 β-peptide. Both the BACE1-cleaved CTF 
and the β-peptide are recognized by the BACE1 cleavage site-specific antibody 10E8. 
 

The monoclonal antibody 10E8 selectively recognizes the N-terminus of the BACE1-

generated NRG1 type III β-CTF and therefore was used to identify such NRG1 β-peptides 

(3.3 Figure 27, Figure 40). In a first step, NRG1 type III was transiently expressed with or 

without BACE1 in HEK293 cells and lysates and supernatants were analyzed for β-CTFs and 

secreted NRG1 β-peptides, respectively. Western blot detection with an antibody against the 

C-terminus confirmed increased turnover of NRG1 type III upon BACE1 coexpression 

(Figure 41). Simultaneously, this lead to increased amounts of BACE1-cleaved β-CTFs, as 

detected by the 10E8 antibody. In line, immunoprecipitation with 10E8 revealed low amounts 

of NRG1-β in the supernatant from cells with endogenous BACE1 expression but strongly 

increased amounts upon enhanced BACE1 expression. Treatment with the γ-secretase 

inhibitor DAPT prevented the generation of the NRG1 β-peptides and caused accumulation 

of the CTFs in the cell lysate (Figure 41, left panel). This demonstrates that the identified β-

peptides were indeed generated in a γ-secretase-dependent manner. In addition to 

pharmacological inhibition, a catalytically inactive γ-secretase mutant PS1 D385N (PS1DN) 

was used to confirm the generation of NRG1-β by γ-secretase-mediated intramembrane 

cleavage. Similar to DAPT treatment the inactive γ-secretase mutant abolished turnover of 

the NRG1 type III CTF and secretion of the NRG1 β-peptide (Figure 41, right panel). 
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Figure 41. γ-Secretase-dependent generation and release of a NRG1 β-peptide from NRG1 type 
III. Wild-type HEK293 cells (left panel) or cells stably expressing either wild-type PS1 (PS1wt) or the 
dominant-negative PS1 D385N mutant (PS1DN) (right panel) were transfected with NRG1 type III and 
additionally with or without BACE1 to increase shedding. The specific inhibitor DAPT (5 µM) was used 
to inhibit γ-secretase in wild-type cells. Cell lysates were analyzed by immunoblotting with the 
indicated antibodies. β-peptides were isolated from conditioned supernatants by immunoprecipitation 
with the BACE1 cleavage site-specific 10E8 antibody prior to western blot detection. The asterisk 
denotes an unspecific band. 
 

While the BACE1 shedding site constitutes the N-terminus of the NRG1 β-peptide, its C-

terminus is defined by the site at which the γ-secretase cleaves the NRG1 type III β-CTF 

within the membrane. To determine the precise cleavage site(s), also referred to as the γ-site 

(1.1.3.3), NRG1-β was immunoprecipitated from the supernatants of cells expressing NRG1 

type III as before and then subjected to mass spectrometric analysis.  

Of note, the NRG1 β-peptide requires reduction prior to its analysis by MS. In its 

unreduced state the β-peptide contains an additional cysteine residue which seems to be 

linked to C311 (the only cysteine of the β-peptide) via a disulfide bridge. This cysteinylation 

adds 119 Da to the actual mass of the β-peptide and is removed by DTT treatment (Figure 

42). Spontaneous cysteinylation of unpaired cysteine residues has been reported before 

(Gadgil et al., 2006) and in case of the NRG1 β-peptide may result from the reaction with free 

cysteine contained in the cell culture medium.  
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Figure 42. The NRG1 β-peptide is subject to cysteinylation. A) Unreduced NRG1 β-peptides 
contain an additional cysteine residue. NRG1 β-peptides were isolated from the supernatant of 
HEK293 PS1wt cells expressing NRG1 type III and BACE1. Without reduction (-DTT) MS analysis 
revealed a mass shift of +119 Da for the β-peptide. Reduction prior to analysis (+DTT) abolishes 
cysteineylation. B) Comparison of the cysteinylated and non-cysteinylated NRG1 β-peptide. The 
additional cysteine residue is indicated in the sequence and observed masses (Obs.) are compared 
with calculated (Calc.) masses. [M+H]+ indicates a singly charged peptide. C) Scheme depicting the 
position of the cysteinylation within the NRG1 β-peptide. The TMD of NRG1 type III is underlined and 
the γ-secretase cleavage site (as identified in Figure 43) is shown (arrow). Cysteinylation of the 
residue C311 is indicated. 
 

Mass spectrometric analysis identified a peptide with a molecular mass of 2395.1 kDa which 

corresponds to a γ-secretase cleavage site between L314 and L315 in the TMD of NRG1 type 

III (Figure 42, 43). Accordingly, the NRG1 β-peptide liberated by cleavage at this site 

comprises 21 residues (NRG1-β21) (Table 6). Enhanced shedding upon overexpression of 

BACE1 increased generation of this peptide and revealed additional but minor cleavage 

products (Figure 43, Table 6). These are most likely caused by the heterogeneous nature of 
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the γ-secretase cleavage within the membrane and are in line with similar observations that 

have been made for other substrates such as APP and notch (Gu et al., 2001; Okochi et al., 

2002). Analysis of supernatants from cells treated with DAPT or expressing a catalytically 

inactive γ-secretase mutant (PS1DN) revealed no signals confirming again the γ-secretase 

dependence of β-peptide secretion (Figure 43). The position of the γ-secretase cleavage site 

in the TMD of NRG1 type III is depicted in 3.6.2 Figure 46. 

In summary these data confirm the β-CTF of NRG1 type III as substrate for the γ-

secretase complex. Furthermore they identify L314 as the main γ-cleavage site within the C-

terminal transmembrane domain of NRG1 type III. Processing at this site releases a NRG1 

β-peptide from the membrane that may be detected with the novel 10E8 antibody. 

 

 

 

Figure 43. γ-Secretase cleavage after L314 in the TMD of NRG1 type III liberates the NRG1 β-
peptide. NRG1 type III was expressed in HEK293 cells stably expressing wild-type PS1 (PS1wt, left 
panels) or the inactive mutant D385N (PS1DN, right panels). After immunoprecipitation of the 
supernatants with the 10E8 antibody, isolated peptides were analyzed by MALDI-TOF MS. γ-
Secretase cleavage yielded a peptide of 2395.1 Da corresponding to cleavage of NRG1 type III after 
L314 (Table 6). Enhanced shedding by coexpression of BACE1 strongly increased the abundance of 
this peptide and additional but minor peptides were detected. Inhibition of the γ-secretase with DAPT 
(5 µM) or expression of the inactive mutant prevented generation of the β-peptide. 
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Table 6. List of β-peptides liberated from NRG1 type III by γ-secretase cleavage. Peptide names 
include the number of residues comprised by each peptide. The C-terminal residues and the peptide 
sequences are given and observed masses (Obs.) are compared with calculated (Calc.) masses. 
[M+H]+ indicates a singly charged peptide. 
 

3.6.2 γ-Secretase cleavage at the ɛ-site liberates the ICD of NRG1 type III 

As revealed by investigation of the processing of APP and notch, γ-secretase mediates 

multiple cleavages within the TMD of its substrates. In addition to the γ-cleavages, which 

define the C-terminus of the secreted peptides, additional intramembrane cleavages occur 

(summarized for APP in Steiner et al., 2008; for notch, in Schroeter et al., 1998; Okochi et 

al., 2002). The most C-terminal of these occurs close to the cytoplasmic border of the 

membrane at the so called ɛ-site (1.1.3.3). It liberates the ICD of the substrate into the 

cytosol and is thought to be the earliest cleavage mediated by the γ-secretase. Although γ-

secretase-dependent generation of a NRG1 ICD has been shown (Bao et al., 2003), the ɛ-

cleavage site responsible for its liberation is not known.  

ICDs are rapidly turned over within the cytosol and are difficult to detect (Edbauer et 

al., 2002). Therefore, a well characterized cell-free γ-secretase assay (Fukumori et al., 2006) 

was used to generate NRG1 ICDs for subsequent mass spectrometric analysis. To this end 

the construct FNRG∆C-HA was designed to comprise an N-terminal Flag tag followed by a 

short extracellular part, the TMD, a short intracellular part as well as a C-terminal HA tag 

(Figure 44 A). C-terminal degradation of FNRG∆C-HA (most likely by an exopeptidase) 

which was originally observed (not shown) was blocked by insertion of two proline residues 

directly after the HA tag at the C-terminus of the construct. Truncation of the intracellular 

domain of NRG1 type III was necessary since this domain (approx. 64 kDa) is too large to 
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allow MALDI-TOF MS analysis. Facilitating its use in the in vitro assay, the short extracellular 

domain of FNRG∆C-HA allows γ-secretase cleavage without prior shedding. 

In a first step, the γ-secretase assay was performed using membranes from cells 

expressing wild-type γ-secretase (PS1wt) and FNRG∆C-HA. Western blot analysis of the 

soluble assay fraction revealed de-novo generation of NRG1 ICD(∆C), while the 

corresponding membrane-bound NTF was detected in the insoluble fraction (Figure 44 B). 

Inhibition of the γ-secretase with the specific inhibitor L-685,458 or incubation at 4°C 

abolished the generation of both fragments. Likewise, performing the assay with membranes 

of cells expressing an inactive γ-secretase (PS1DN) did not result in the generation of the 

NRG1 ICD(∆C) (or the NTF) but in the accumulation of uncleaved FNRG∆C-HA (Figure 44 

B). This confirms that the NRG1 ICD(∆C) is indeed generated by a γ-secretase-mediated 

cleavage.  

 

 

Figure 44. γ-Secretase cleavage generates the NRG1 type III ICD in a cell-free assay. A) 
Schematic depiction of the cell-free γ-secretase assay. Membranes containing the truncated construct 
FNRG∆C-HA are incubated and processing by the γ-secretase generates a soluble HA tagged 
ICD(∆C) and a Flag tagged NTF. After ultracentrifugation, the ICD(∆C) is present in the soluble 
fraction (S100) while the insoluble NTF remains in the pellet (P100). B) The cell-free γ-secretase 
assay generates a NRG1 type III ICD. FNRG∆C-HA was expressed in cells stably expressing either 
wild-type PS1 (wt) or a dominant-negative PS1 mutant (DN) and isolated cell membranes were used 
for the in vitro assay at indicated temperatures. As control, the inhibitor L-685,458 (1 µM) was used to 
block γ-secretase activity. After the assay, the insoluble (P100) and soluble (S100) assay fractions 
were separated and analyzed by immunoblotting with the indicated antibodies. 
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To identify the ɛ-cleavage site within the TMD of NRG1 type III, ICD(∆C) fragments were 

isolated from the soluble assay fraction using the HA tag. Free cysteine residues were 

blocked by alkylation and peptides were analyzed by MALDI-TOF MS. A major peptide of 

3030.4 Da was detected which corresponds to an ɛ-cleavage site between C321 and V322 

(residue are numbered according to the full-length NRG1 type III) (Figure 45, Table 7). 

Additional peptides generated by cleavages after V322 and A324 were observed but their 

abundance was very low. These minor cleavages most likely arise from heterogeneous γ-

secretase cleavage at the ɛ-site (also observed for APP, Fukumori et al., 2006) or are the 

result of N-terminal truncations by an exopeptidase. No peptides were detected when the in 

vitro assay was performed in the presence of a γ-secretase inhibitor, at 4°C or when a PS1 

loss-of-function mutation (PS1DN) was expressed (Figure 45).  

 

 

Figure 45. The NRG1 ICD is released by γ-secretase cleavage N-terminal of V322 at the ɛ-site in 
the TMD of NRG1 type III. Membranes of cells expressing FNRG∆C-HA and wild-type (PS1wt) or an 
inactive (PS1DN) γ-secretase were used for the in vitro γ-secretase assay at indicated temperatures. 
The inhibitor L-685,458 (1 µM) was added to block γ-secretase activity. The soluble assay fractions 
were immunoprecipitated with HA agarose and isolated ICDs were analyzed by MALDI-TOF MS. 
Processing at the ɛ-site by the γ-secretase released a major peptide of 3030.4 Da corresponding       
to cleavage between C321 and V322 (residue numbers according to the full-length NRG1 type III)       
(Table 7).  
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Table 7. List of ICD peptides liberated from FNRG∆C-HA by the γ-secretase. Peptide names 
include the N-terminal residue of each ICD according to the residue numbers of the full-length NRG1 
type III. The peptide sequences are given and observed masses (Obs.) are compared with calculated 
(Calc.) masses. Note that two proline residues were added to the C-terminus of FNRG∆C-HA to 
prevent degradation. Asterisk: Due to alkylation with IAA prior to MS analysis the mass of each 
peptide is increased by 58.0 Da per cysteine residue. Italic letters indicate the HA tag, [M+H]+ a singly 
charged peptide. 
 

Together these data demonstrate that the BACE1-cleaved NRG1 type III β-CTF is a 

substrate for intramembrane proteolysis by the γ-secretase. In analogy to other substrates 

like APP or notch, γ-secretase mediates a dual cleavage within the C-terminal TMD of NRG1 

type III at a central γ- and a C-terminal ɛ-cleavage site (Figure 46). While cleavage at the γ-

site occurs after L314 and releases a NRG1 β-peptide into the lumen, the ɛ-cleavage takes 

place after C321 and liberates the ICD into the cytosol. Interestingly, cleavage at the ɛ-site 

localizes precisely to a position where a valine to leucine substitution is associated with an 

increased susceptibility to schizophrenia (Walss-Bass et al., 2006) (1.3.4.2.2). 

 

 

Figure 46. Schematic overview of the γ-secretase cleavage sites within the TMD of NRG1 type 
III. The positions of the γ- and the ɛ-cleavage sites are indicated and the numbers of the residues after 
which cleavage occurs are given. The BACE1 shedding site is depicted for orientation. The asterisk 
marks the position at which a valine to leucine substitution is associated with an increased risk of 
schizophrenia. 
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4 Discussion 

The growth factor NRG1 type III is a key regulator of myelination in the PNS and controls 

both the development of Schwann cells as well as the process of ensheathment (Nave and 

Salzer, 2006; Birchmeier and Nave, 2008) (1.3.4.1). Besides the coordinated temporal 

expression of NRG1 type III on neurons and its receptor ErbB2/3 on glia cells, proteolytic 

processing of NRG1 type III has emerged as an important control mechanism in this context 

(Hu et al., 2006; Willem et al., 2006; Taveggia et al., 2010; La Marca et al., 2011; Fleck et al., 

2012) (1.3.4.1.5). Shedding of neuronal NRG1 type III by BACE1 (and possibly ADAM10 and 

other proteases) generates a membrane-bound NRG1 type III NTF which activates ErbB2/3 

receptors on adjacent Schwann cells in a juxtacrine manner and promotes ensheathment 

and myelination (Taveggia et al., 2005; Hu et al., 2006; Willem et al., 2006; Velanac et al., 

2012). In contrast to the cleavage by BACE1, processing by ADAM17 was found to render 

NRG1 type III inactive and to inhibit Schwann cell myelination (La Marca et al., 2011). The 

opposing effects of BACE1- and ADAM17-mediated shedding were suggested to be due to 

the different shedding sites of these proteases in the stalk region of NRG1 type III. Despite 

their proposed importance, the shedding sites in NRG1 type III have only been determined 

in vitro so far. Furthermore evidence suggests that in contrast to previous assumptions 

myelination in the PNS does not entirely depend on juxtacrine signaling by NRG1 type III but 

may also be promoted by a soluble, paracrine signal (Syed et al., 2010). However, 

the mechanism that would liberate such a soluble EGF-like domain from NRG1 type III 

remained elusive.  

In the present study the proteolytic processing of NRG1 type III was investigated in 

detail and it was found that the EGF-like domain of NRG1 type III is liberated. Furthermore, 

the capacity of the liberated EGF-like domain to promote myelination in a paracrine manner 

was characterized in vitro and in vivo.  

In addition to ectodomain cleavage, NRG1 type III is a known substrate for intra-

membrane proteolysis of its CTF by the γ-secretase (Bao et al., 2003). This processing 

generates an NRG1-ICD whose nuclear signaling is involved in the maturation of cortical 

neurons and seems to be impaired by a schizophrenia-linked mutation within the TMD (Bao 

et al., 2004; Dejaegere et al., 2008; Chen et al., 2010a) (1.3.4.2.2). The current study 

provides an initial characterization of the γ-secretase cleavage in the C-terminal TMD of 

NRG1 type III and identifies a small soluble β-peptide that is released into the extracellular 

space upon this processing.  
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4.1 NRG1 type III is shed by BACE1, ADAM10 and ADAM17 

Almost all isoforms of NRG1 are synthesized as transmembrane proteins but were 

discovered as soluble growth factors (1.3.2) (Figure 47). Immediately upon their discovery it 

was therefore suggested that proteolytic processing liberates the NRG1 ectodomain from the 

membrane and that such a cleavage would occur in the stalk region between the EGF-like 

domain and the TMD (Holmes et al., 1992; Wen et al., 1992). Soon after, several processing 

sites in the juxtamembrane regions of the α2, β1, β2 and β4 NRG1 isoforms isolated from 

CHO cells were identified using Edman degradation in combination with mass spectrometry 

(Lu et al., 1995b).  

 

 

Figure 47. Comparison of juxtamembrane sequences from different NRG1 isoforms. The amino 
acid sequences of NRG1 isoforms containing the α- or β-type EGF-like domain in combination with 
different stalk types are shown. The dashed line indicates the end of the core sequence of the EGF-
like domain and the asterisk denotes a stop codon. The sequences were assembled from the 
UniProtKB database (accession number P43322) and from (Wen et al., 1994; Lu et al., 1995b). 
 

Of all the proteases implicated in the processing of NRG1 type III within its stalk region 

(1.3.3.2.3), BACE1 is the least controversial. The juxtamembrane region of the NRG1 

isoform β1 was shown to be cleaved by BACE1 in different (primary) cells (Willem et al., 

2006; Velanac et al., 2012; Cheret et al., 2013) and recombinant peptides of the β1 stalk are 

readily processed by purified BACE1 in vitro ((Hu et al., 2008), own observation). In line, the 

absence of BACE1 leads to increased levels of full-length NRG1 type III and reduced 

amounts of the corresponding CTF and NTF in vivo (Hu et al., 2006; Willem et al., 2006). 

Furthermore a robust phenotype is associated with the lack of BACE1-mediated shedding of 

NRG1 type III as the ablation of BACE1 in both mice and zebrafish leads to severe 
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myelination defects in the PNS (Hu et al., 2006; Willem et al., 2006; van Bebber et al., 2013). 

Together this leaves little doubt that BACE1 is indeed a physiologically relevant sheddase of 

NRG1 type III. 

Chronologically, ADAM17 was the first sheddase reported for NRG1. One study 

found ADAM17 in CHO cells to efficiently cleave the isoforms β4 and to a lesser extent α2, 

while the β2 stalk was relatively resistant to processing (Montero et al., 2000). Although this 

indicates an important role of the length of the linker region for ADAM17-mediated shedding, 

the authors also suspected additional, yet unknown parameters within that region to 

determine the cleavage efficiency. In addition, ADAM17 was reported to constitute the 

inducible protease activity that mediates enhanced NRG1 shedding after PMA treatment 

(Montero et al., 2000). Despite the finding that the β2 isoform is only poorly processed by 

ADAM17, another study found this protease to be responsible for the constitutive cleavage of 

NRG1 isoforms β1 and β2 in mouse embryonic fibroblasts (Horiuchi et al., 2005). In support 

of this, knockdown of ADAM17 in HEK293 cells transfected with the β1 isoform of NRG1 type 

I significantly reduced its shedding (Luo et al., 2011). Experimental evidence for the ability of 

ADAM17 to cleave within the stalk sequence of the NRG1 isoform β1 in a cell-free system is 

contradicting. While one study observed ADAM17-mediated cleavage of a recombinant 

peptide (comprising the entire EGF-like domain until the TMD) within the stalk region (La 

Marca et al., 2011), another study using a shorter peptide (spanning only the stalk region) 

failed to do so (Luo et al., 2011). Likewise, in vitro cleavage assays conducted in the course 

of the present study also failed to detect ADAM17 cleavage of recombinant NRG1 peptides 

(not shown). 

No physiological function for ADAM10-mediated shedding of NRG1 type III is known 

as of yet. Mice expressing a dominant-negative mutant of ADAM10 do not display an NRG1 

type III related phenotype in the PNS  (Freese et al., 2009) and knockdown of ADAM10 in 

co-cultures of Schwann cells and DRGs does not result in altered myelination (Luo et al., 

2011). However, on the level of processing the data are controversial: siRNA-mediated 

reduction of ADAM10 in HEK293 cells transfected with the β1 isoform of NRG1 strongly 

reduced shedding (Luo et al., 2011) but this was not observed for endogenous α2 and β2 

NRG1 isoforms in U373 cells (Freese et al., 2009). Likewise no altered shedding of these 

isoforms was detected in mice expressing high levels or an inactive mutant of ADAM10. The 

contradicting results particularly for the isoforms β1 and β2 are startling because both 

isoforms contain the sequence to which the cleavage site of ADAM10 was mapped (Luo et 
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al., 2011) and only differ in eight residues. Therefore reduced ADAM10 levels should affect 

their shedding similarly (Figure 47, 4.2 Figure 49). 

In the present study a truncated version of NRG1 β1a type III was used to investigate 

shedding by BACE1, ADAM10 and ADAM17 in living cells. The stalk region β1 of NRG1 type 

III was readily cleaved by cellular levels of BACE1 and ADAMs as evidenced by decreased 

shedding upon inhibition with BACE1 and ADAM inhibitors. Furthermore, knockdown of 

ADAM10 and ADAM17 differentially affected the shedding sites confirming the contribution of 

endogenous ADAM10 and ADAM17 to the shedding of NRG1 type III in stable cell lines. 

Consistently, overexpression of the three proteases increased shedding, an effect that was 

most pronounced for BACE1. 

The higher cleavage efficiency of BACE1 compared to the ADAMs could be due to a 

higher affinity of BACE1 towards its shedding site in the juxtamembrane sequence. However, 

it could also result from BACE1 being more efficiently overexpressed in HEK293 cells than 

ADAM10 or ADAM17 which are often retained in the immature and inactive form after 

transfection. The exact amounts of catalytically active (mature) proteases were not 

determined and quantifying the affinity of BACE1, ADAM10 and ADAM17 towards their 

shedding sites would require an in vitro assay. Hence, the setup used in this study is not 

suitable to determine the precise extent to which each protease contributes to the shedding 

of NRG1 type III or to determine which is the most relevant physiologically. Such an 

investigation furthermore would require endogenous BACE1, ADAM10 and ADAM17 activity 

but optimally also endogenous NRG1 type III substrate preferably in primary cells. Also, as 

cell types differ in the expression of specific enzymes, different proteases may be the 

principal and physiological relevant sheddases of NRG1 type III in different cell types. In 

order to determine the latter in primary cells, a carefully controlled RNAi-mediated knock-

down approach or the use of conditional knockout animals would be required. While this has 

not yet been done systematically, the analysis of BACE1 KO mice indicates that at least 

during early development in the context of myelination, BACE1 is the main physiological 

sheddase of NRG1 type III in neurons of the PNS (Hu et al., 2006; Willem et al., 2006).  
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4.2 The sheddases BACE1, ADAM10 and ADAM17 cleave NRG1 type III 

at distinct sites 

Besides the identity of the NRG1 type III sheddase, the positions of the respective cleavage 

sites which determine the C-terminus of the bioactive NRG1 type III NTF have recently 

attracted considerable attention. This is because compared to the shedding sites of BACE1 

and ADAM10, the site utilized by ADAM17 has been proposed to have an opposing effect on 

the signaling capability of NRG1 type III (La Marca et al., 2011) (1.3.4.1.5). During this study, 

the precise shedding sites of BACE1, ADAM10 and ADAM17 were determined under cellular 

conditions using an N-terminally truncated construct of NRG1 type III and a combined IP-MS 

approach. BACE1 was found to cleave the β1 stalk of NRG1 type III after F293 at a site 

located ten residues upstream of the TMD which confirms previous results obtained in in vitro 

cleavage systems ((Hu et al., 2008), own observations).  

As of yet no clear consensus sequence for BACE1 processing sites could be 

determined (Stockley and O’Neill, 2008). However, comparison of the reported cleavage 

sites in known BACE1 substrates indicates that BACE1 has a preference for bulky and 

hydrophobic residues like leucine and phenylalanine at the P1 position (Stockley and O’Neill, 

2008) (Figure 48). The shedding site of BACE1 in the β1 stalk of NRG1 type III features a 

phenylalanine at this position and also contains residues at P3 (I291), P2 (E293), P4’ (E297) and 

P5’ (E298) which are present in other substrates as well (Figure 48). Interestingly, NRG3 

comprises a juxtamembrane sequence highly homologous to the NRG1 β1 isoform and 

therefore most likely is also cleaved by BACE1 at the same position (Figure 48) ((Hu et al., 

2008), own observations). In summary, considering the primary sequence, it is conceivable 

that the identified cleavage site in the β1 stalk of NRG1 type III indeed constitutes a high-

affinity shedding site for BACE1. Of note, the juxtamembrane sequences of the other 

membrane-bound NRG1 isoforms β2 and β4 do not contain similar or comparable sites (4.2 

Figure 47) and therefore may not be subject to BACE1-mediated shedding. The β2 isoform 

has recently been shown to be insensitive to BACE1 cleavage in vitro (Cheret et al., 2013) 

but a comprehensive and systematic investigation of the shedding of different stalk isoforms 

has not been published as of yet and overall the physiological relevance of the different 

stalks in the NRG1 protein isoforms is unclear. 
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Figure 48. Alignment of cleavage site sequences of different BACE1 substrates. The amino acid 
sequences surrounding the BACE1 cleavage site (from the N-terminal P5 to the C-terminal P5’ 
position) in different substrates are given. The alingment is colored according to the BLOSUM62 score 
and was modified from (Stockley and O’Neill, 2008). 
 

In contrast to BACE1, the shedding sites of ADAM10 and ADAM17 within the stalk of NRG1 

seem to be heterogeneous (Lu et al., 1995b; La Marca et al., 2011) (Figure 49). Initial 

investigations of the juxtamembrane processing of different NRG1 stalk isoforms indicated 

ADAM cleavage sites in a region of approx. four to eight residues downstream of the EGF-

like domain (Lu et al., 1995b; Montero et al., 2000) (Figure 49). The respective region 

features the sequence NYMASFY which is contained in all β isoforms of NRG1, regardless of 

their stalk (1,2,3 or 4) or their N-terminal sequence (types I-VI) (1.3.2 Figure 5, 4.1 Figure 

47). One study showed that shedding of NRG1 β1, β2 and β4 (the latter two not containing 

the BACE1 cleavage site) in CHO cells occurs mainly after NYVMA but also after NYVM and 

NYVMASF (Lu et al., 1995b). While this report could not assign specific cellular protease(s) 

to the different cleavages, in vitro assays with recombinant proteases were later used to 
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propose specific cleavage sites for ADAM10 and ADAM17 respectively (La Marca et al., 

2011; Luo et al., 2011) (Figure 49). During the present study, selective inhibitors, RNAi and 

overexpression were employed to identify the ADAM10 and ADAM17 shedding sites in the β-

isoform of NRG1 in HEK293 cells.  

This revealed that ADAM17 cleaves mainly after A283 and to a minor extent after F285 

(numbers according to the NRG1 β1a type III isoform) in the NYVMASFY sequence (Figure 

49). These sites are identical with the shedding positions reported in CHO cells (Lu et al., 

1995b) and therefore suggest that in fact ADAM17 is responsible for the observed cleavage 

of NRG1 in these cells. Similar to the heterogeneous cleavage pattern observed in living 

cells, recombinant ADAM17 also processed a NRG1 peptide at two distinct sites in vitro (La 

Marca et al., 2011), namely after Y286 and G290. The residue Y286 still lies within the 

NYVMASFY sequence that is present in all NRG1 β isoforms and indeed seems to be the 

site of ADAM-mediated shedding. However, cleavage close to or after this residue was 

assigned to ADAM10 rather than ADAM17 in both living cells and in vitro ((Luo et al., 2011), 

this study) (Figure 49). By contrast, the second cleavage site G290 is positioned downstream 

of the NYVMASFY sequence, close to the BACE1 site F293 and cleavage after G290 has not 

been reported by other groups. Of note, another study used a similar assay but could not 

observe any ADAM17 cleavage within the recombinant NRG1 peptide (Luo et al., 2011).  

While the controversial findings in vitro cannot readily be explained, the differences 

between the ADAM17 cleavage sites identified in living cells and in vitro may be due to the 

different experimental setups. Unlike under cellular conditions where ADAM17 and its 

substrate NRG1 are present as transmembrane proteins on the cell surface, these proteins 

are diffusible reaction partners in the in vitro setup. Firstly, this could prevent both the 

enzyme and the substrate from adopting their native confirmation but secondly could also 

alter their correct spatial orientation during proteolysis. It is conceivable that these artificial 

conditions potentially allow cleavage at sites that are not used under cellular conditions. With 

regard to possible artificial cleavages in vitro it is interesting to note that cleavage by 

ADAM17 in this system was reported to inactivate the NRG1 EGF-like domain and to abolish 

its signaling via ErbB3 receptors (La Marca et al., 2011). Such inactivation could be caused 

by undetected additional proteolytic cleavages inside the EGF-like domain which would 

explain the observed differences in signaling. It is therefore important to carefully monitor all 

cleavage events and to detect not only some but all resulting peptide fragments by mass 

spectrometry. 

 



Discussion 

102 

ADAM10-mediated shedding of NRG1 type III in HEK293 cells was found to occur mainly 

after Y286 but cleavage was also detected after F285. Both residues are within the NYVMASFY 

sequence of NRG1 β isoforms and in close vicinity of the sites of ADAM17-mediated 

proteolysis (Figure 49). Confirming the results from HEK293 cells, cleavage after F285 was 

also observed in CHO cells (Lu et al., 1995b) and likewise was assigned to ADAM10 in vitro 

(Luo et al., 2011). In contrast, the adjacent Y286 has not been previously reported as 

ADAM10 shedding site (Figure 49). While the conflicting results derived from cell-based and 

in vitro systems may be explained by the different reaction conditions, there is currently no 

definite explanation for the inconsistencies of the cellular setups. A possible explanation 

could be that Y286 in fact is the initial cleavage site of ADAM10 under cellular conditions and 

that the peptides ending with F285 arise from further processing of the initial fragments by an 

exopeptidase which cleaves off Y286 independent of ADAM10. Such an exopeptidase-

processed fragment would accumulate in the supernatant of cells expressing the NRG1 

construct over time and a shortened collection period might therefore possibly facilitate the 

identification of the genuine ADAM10 cleavage site (a similar phenomenon was described for 

the ADAM10 cleavage of APP (Kuhn et al., 2010)).  

A long-standing argument concerns the question of a specific cleavage site motif that 

determines cleavage by either ADAM10 or ADAM17 as amino acid exchanges at ADAM 

cleavage sites often do not abolish or alter cleavage of the substrate (Sisodia, 1992; Caescu 

et al., 2009). Together with the fact that multiple proteins may be cleaved by different ADAMs 

(Gall et al., 2009) this lead to the perception that ADAMs in general lack a specific cleavage 

site sequence (Janes et al., 2005) or cleave their substrates in a specific distance to the 

plasma membrane (Sisodia, 1992).  

In addition to the investigation of cleavage sites in natural substrates, peptide libraries 

were used to deduce the amino acid preferences of ADAM10 and ADAM17 around cleavage 

sites but it was not possible to identify specific sequences (Caescu et al., 2009). Overall, the 

cleavage site sequence requirements of ADAM10 and ADAM17 seem to be fairly similar to 

one another. Based on peptide screening, both proteases prefer alanine and serine residues 

at two positions upstream (P2 position) and an alanine residues immediately before (P1 

position) the cleavage site. The only major difference was found for the P1’ position 

immediately downstream of the cleaved peptide bond. Here, ADAM17 prefers small, 

hydrophobic residues, with valine being found most frequently. In contrast, ADAM10 favors 

larger residues, most frequently leucine, but also aromatic residues like tyrosine (Caescu et 

al., 2009). However, comparison of cleavage sites in natural substrates reveals great 
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diversity in cleavage sequences and to date it is not possible to predict the cleavage sites of 

ADAM10 or ADAM17 in novel substrates. 

Cleavage after A283 as identified during the present study fits well with the substrate 

sequence preference of ADAM17 (Figure 49) which favors alanine residues at P1 and valine 

residues at P3. Additionally, ADAM17 cleaves several substrates which possess serine 

residues immediately C-terminal to the cleavage site as is the case in the NRG1 stalk 

(Caescu et al., 2009) (Figure 49). Despite lacking an alanine at P1, also the minor cleavage 

site after F285 assigned to ADAM17 features residues preferred by this enzyme at the P3, P2 

and P2’ positions. The same cleavage site was also found to be utilized by ADAM10 in this 

study and in vitro (Luo et al., 2011) and it fits this enzyme’s requirement equally well. 

 

 

Figure 49. Overview of the shedding sites in the juxtamembrane region of the NRG1 β1 isoform 
reported for ADAM10 and ADAM17. The cleavage positions of ADAM10 and ADAM17 as identified 
by different studies in cell-based or in vitro cleavage systems are indicated by arrows. Large arrows 
denote major, small arrows minor cleavage sites. Numbering of the amino acid residues is based on 
the NRG1 β1a type III isoform and the BACE1 cleavage site is given for orientation. The data are 
taken from the present study and (Lu et al., 1995b; La Marca et al., 2011; Luo et al., 2011). 
 



Discussion 

104 

In contrast, Y286 which was observed as the main ADAM10 shedding site in the present work 

is not surrounded by any residues that are preferred by ADAM10 in peptide library 

screenings (Caescu et al., 2009) (Figure 49). It is noteworthy, however, that betacellulin is 

also cleaved by ADAM10 after a phenylalanine and tyrosine residue (Caescu et al., 2009) 

indicating that these still allow shedding. The finding of close and, in case of F285, even 

identical shedding sites for ADAM10 and ADAM17 within the NRG1 β isoform may be 

explained by the fact that these enzymes share fairly similar cleavage site requirements and 

are able to cleave some substrates at the same peptide bond (e.g. APP at the α-site (Caescu 

et al., 2009)). In contrast to the BACE1 shedding site which is only present in isoforms with 

the stalk 1, the ADAM shedding sites are present in all isoforms of NRG1 with a β-type EGF-

like domain. It could therefore be speculated that ADAM10 or ADAM17 represent the main 

sheddases of NRG1 isoforms lacking the stalk region 1, however, this has not been 

investigated yet. 

In summary, when compared to the shedding site of BACE1, the exact positions of 

ADAM-mediated shedding in the β isoforms of NRG1 remain somewhat controversial. 

Nonetheless there is now substantial evidence that both ADAM10 and ADAM17 cleave at 

close sites within the MASFY sequence located immediately C-terminal of the β-type EGF-

like domain and 17-21 residues upstream of the TMD of NRG1. Consequently, shedding of 

NRG1 at the α-site occurs in greater distance to the cell membrane than shedding at the β-

site (only ten residues upstream of the TMD) and hence represents an inversion of the 

situation found for the shedding of APP (1.1.2 Figure 2, Figure 49). 

In addition to the shedding in stable cells, the processing of NRG1 type III was also 

investigated in primary hippocampal neurons. Using inhibitors and novel neoepitope-specific 

antibodies against the identified cleavage site, endogenous BACE1 was found to similarly 

shed NRG1 type III after F293 in neurons. Due to the heterogeneity of their shedding, 

currently no ADAM cleavage site-specific antibodies are available and therefore the identified 

shedding sites of ADAM10 and ADAM17 could not be confirmed by this approach. 

Nevertheless, treatment with inhibitors revealed that under endogenous protease levels both 

BACE1 and ADAMs contribute to the shedding of ectopically expressed NRG1 type III in 

neurons. Although it was not possible to quantify their relative contributions this suggests that 

in the absence of BACE1, the reduced shedding of NRG1 type III may at least be partially 

compensated by ADAMs and vice versa. If this holds true in vivo, such compensatory 

shedding by ADAMs could explain the residual myelination observed in BACE1 KO mice (Hu 

et al., 2006; Willem et al., 2006; Velanac et al., 2012).  
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Although no systematical analysis regarding the identity of a compensating protease has 

been published as of yet, the findings reported by others (Horiuchi et al., 2005; Luo et al., 

2011) and in the present work (3.5) suggest both ADAM10 and ADAM17 as possible 

candidates. In contrast, the reported inactivation of NRG1 type III by ADAM17-mediated 

cleavage (La Marca et al., 2011) would exclude this protease from such a role and instead 

implies that ADAM17 activity actually exacerbates the hypomyelination observed in BACE1 

KO mice. Given the limitations of the latter study (discussed in 4.2, 4.7), however, 

inactivation of NRG1 type III by ADAM17 remains controversial and the observed effects on 

myelination in ADAM17 KO mice could be independent of NRG1 type III proteolysis (4.7). 

4.3 BACE1 and ADAM17 cleave NRG1 type III at novel N-terminal sites 

In addition to the shedding that takes place C-terminal of the EGF-like domain of NRG1 type 

III, this study discovered novel proteolytic cleavage sites N-terminal of that domain. 

Proteolytic processing of NRG1 type III at these sites liberates the EGF-like domain from the 

membrane-anchored NTF and generates soluble EGF-like domains (sEGF) of different sizes. 

Using mass spectrometry and site-specific antibodies, BACE1 was found to cleave NRG1 

type III after L217 liberating the larger β-sEGF while ADAM17, through cleavage after H234, 

generates the smaller α-sEGF. The novel BACE1 cleavage site upstream of the EGF-like 

domain strongly resembles the β-site in APP with the Swedish mutation (APPswe) (Mullan et 

al., 1992) which comprises the residues NL instead of KM directly before the cleaved peptide 

bond (4.2 Figure 48). BACE1 displays a dramatically enhanced affinity to the mutant 

cleavage site in APPswe leading to increased Aβ production and subsequently early-onset 

AD (Citron et al., 1992, 1995; Cai et al., 1993). In addition, the novel BACE1 site in NRG1 

type III features a glutamine at P1’ a residue which is similarly present at this position in 

several other BACE1 substrates (4.2 Figure 48). Based on the sequence it is therefore likely 

that BACE1 indeed has a high affinity towards the identified cleavage site and may also 

efficiently cleave NRG1 type III after L217 in vivo.  

A recent study reported that a substitution of alanine by threonine at the P2’ position 

of the β-site in APP (A673T) reduces BACE1 cleavage and conveys protection against AD 

(Jonsson et al., 2012) (4.2 Figure 48). Of note, the novel BACE1 cleavage site in NRG1 type 

III also contains a threonine residue at P2’ which therefore could have an inhibitory effect on 

BACE1-mediated cleavage (4.2 Figure 48). It remains to be seen whether the substitution of 
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the respective threonine by an alanine residue in NRG1 type III would indeed allow an even 

more efficient cleavage by BACE1 and would promote the generation of β-sEGF.  

In contrast to BACE1 which cleaves NRG1 type III 19 residues upstream of its 

bioactive domain, ADAM17-mediated processing takes place after H234 located within the 

sequence GTSHLIKC directly at the border of the EGF-like domain (3.3 Figure 27). Except 

for the two residues SH directly before the cleaved peptide bond, the identified site is 

exclusively surrounded by residues known to be favored by ADAM17 (Caescu et al., 2009), 

indicating that it might indeed be a genuine cleavage site.  

Further support for the identified BACE1 and ADAM17 cleavage sites comes from the 

different glycosylation observed for α- and β-sEGF, respectively. BACE1 cleaves NRG1 type 

III upstream of a serine/threonine-rich stretch and consequently includes this site of potential 

O-linked glycosylation into β-sEGF. By contrast, α-sEGF does not contain this site because 

ADAM17 cleavage occurs downstream of the S/T sequence (3.3 Figure 27). In agreement, 

only β-sEGF but not α-sEGF was found to be subject to O-linked glycosylation.  

The finding that ADAM10 in contrast to ADAM17 is not able to cleave within the 

GTSHLIKC sequence may be explained by the fact that most residues surrounding the 

cleavage site after H234 are not well tolerated by ADAM10. Consequently, enhanced 

expression of ADAM10 in HEK293 cells did not increase the amount of soluble α-sEGF but 

rather caused the generation of β-sEGF68 which is N-terminally cleaved by BACE1 but 

terminates at the ADAM10 shedding site (3.2.2 Table 3). In conclusion, ADAM10 seems not 

capable of liberating the EGF-like domain of NRG1 type III on its own but depends on either 

BACE1 or ADAM17 for the N-terminal processing.  

Mass spectrometric analysis of the soluble EGF-like domains liberated from the full-

length NRG1 type III in principle confirmed the shedding sites determined previously with the 

truncated construct NRG1∆NT. However it also revealed a minor inconsistency regarding the 

contribution of BACE1 and ADAM10 to the shedding in HEK293 cells. According to the MS 

analysis shedding of the truncated construct occurred to an almost similar extent after F293 

and Y286 and was mediated by endogenous BACE1 and ADAM10, respectively (3.1.2 Figure 

16-19). In contrast, the β-sEGF68 generated from the full-length NRG1 type III by 

endogenous levels of these proteases exclusively terminated after F285, the minor shedding 

site of ADAM10 in the truncated construct NRG1∆NT (3.2.2 Figure 25). No β-sEGF species 

with a C-terminus resulting from BACE1- or ADAM10-mediated shedding after F293 or Y286 

could be detected and overexpression of BACE1 was required to shift shedding to the 

BACE1 site F293 and to generate β-sEGF76. In agreement, the site-specific antibody 4F10 did 
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not detect any sEGF species resulting from endogenous BACE1-mediated shedding of full-

length NRG1 type III but did so only after overexpression of BACE1. At the same time, 

however, membrane-bound NRG1 NTFs resulting from BACE1 shedding were clearly 

detected in the cell lysates by the 4F10 antibody demonstrating that shedding by BACE1 did 

in fact occur. 

Several different reasons could account for these conflicting observations. First and 

foremost both approaches, the identification of shedding sites using the truncated construct 

NRG1∆NT as well as the confirmation of the latter sites in the full-length NRG1 type III 

construct by means of western blotting and mass spectrometry are not quantitative. It is 

therefore not possible to determine the absolute extent of BACE1- and ADAM10-mediated 

shedding of the two constructs and to compare the results quantitatively. Furthermore the 

different topologies of the truncated (Nout/Cin) and the full-length (Nin/Cin) constructs could 

impact on the shedding by BACE1 and ADAM10. This would of course also implicate that 

NRG1 type I (Nout/Cin) and NRG1 type III (Nin/Cin) are subject to differential shedding by these 

proteases which has not been reported yet. Given that in the absence of its descending 

counterpart β-sEGF76 (C-terminus F293) in the supernatant, the BACE1-shed precursor NRG1 

NTF (C-terminus F293) was still found in the lysate, the most likely explanation for the 

observed discrepancy is that after BACE1 shedding and prior to its release from the 

membrane via N-terminal cleavage, the C-terminus of the EGF-like domain was further 

truncated until F285, possibly by ADAM10-mediated cleavages. Under endogenous protease 

levels in HEK293 cells this truncation of the NRG1 NTF seems to occur to a large extent as 

no β-sEGF76 fragments with BACE1-shed C-termini were detected. This could be due to the 

relatively low levels of BACE1 in HEK293 cells because enhanced BACE1 expression 

caused a robust generation of β-sEGF76. Similarly, the higher protein levels of BACE1 in 

hippocampal neurons clearly lead to the generation of β-sEGF76. In contrast to the full-length 

NRG1 type III, the ectodomain of the truncated NRG1∆NT is immediately released from the 

membrane upon initial shedding. Its C-terminus therefore is not available as substrate for 

subsequent truncations by membrane-bound proteases such as ADAM10 and the liberated 

domains contain C-termini reflecting the initial shedding by both BACE1 and ADAM10.  

Although the outlined hypothesis remains unverified it constitutes a plausible 

explanation for the observed discrepancies in the shedding pattern of type I and type III 

oriented NRG1 proteins in cell culture.  
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4.4 Sequential order of C-terminal shedding and N-terminal cleavage 

The model described above assumes a sequential order of a primary shedding that 

generates a membrane-bound NTF and a subsequent N-terminal cleavage releasing the 

EGF-like domain from said NTF. The order of the proteolytic processing has implications on 

the mode of juxtacrine signaling by NRG1 type III (Figure 50). A primary shedding event 

leads to the EGF-like domain being anchored to the membrane via the NTF which currently 

is the widely assumed juxtacrine signal (1.3.3.2) (Figure 50 A). By contrast, if the N-terminal 

processing were to precede shedding, a CTF comprising the EGF-like domain (CTF+EGF) 

would remain (Figure 50 B). Compared to the NTF such a CTF+EGF fragment presents the 

EGF-like domain towards the luminal space in a reverse orientation.  

It is important to note that the order of cleavage has not been determined yet and 

cannot be deduced from the experiments presented in this study. A respective investigation 

would require an elaborate pulse-chase setup and furthermore depend on antibodies to the 

EGF-like domain and the N- and C-terminus of NRG1 type III that are suitable for IP. The 

available western blot data, however, show that under endogenous protease levels in both 

stable and primary cells the processing of NRG1 type III leads to the accumulation of an NTF 

that contains the EGF-like domain. By contrast, the CTF+EGF was only observed in BACE1 

overexpressing HEK293 using the 7E6 antibody against the N-terminal BACE1 cleavage 

site. The antibody against the NRG1 type III C-terminus was not sensitive enough to detect 

this fragment indicating that it is present in rather small amounts and its generation depends 

on high levels of BACE1.  

Although the actual order of cleavage cannot be ascertained, together with the data 

from the literature (Taveggia et al., 2005; Velanac et al., 2012) this supports the model in 

which the juxtacrine signaling of NRG1 type III is exerted by the EGF-like domain contained 

in the NTF generated by shedding (Figure 50 A). 
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Figure 50. Scheme depicting the presentation of the EGF-like domain during juxtacrine 
signaling of NRG1 type III according to the order of cleavage events. A), B) Depending on the 
order of shedding and N-terminal cleavage, the bioactive EGF-like domain is anchored to the 
membrane by the NTF or the CTF of NRG1 type III. Note that the actual sequential order of the 
cleavage events is currently unknown. 
 

4.5 Generation of soluble NRG1 type III EGF-like domains in neurons 

Analysis with the neoepitope-specific antibodies 7E6 and 4F10 (3.3 Figure 27) revealed that, 

similar to HEK293 cells with enhanced BACE1 expression, neurons transduced with NRG1 

type III generate β-sEGF76 by a dual BACE1 cleavage at the identified shedding and N-

terminal sites. The lack of antibodies prevented a similar confirmation of the N-terminal 

ADAM17 cleavage site in NRG1 type III but the ADAM-dependent generation of a smaller α-

sEGF not detectable with either of the BACE1 neoepitope-specific antibodies strongly 

suggests the utilization of this site in neurons as well. However, as of now the release of α-

sEGF by another protease besides ADAM17 via cleavage at a site distinct from the BACE1 

site cannot be ruled out completely. 

The unambiguous identification of the protease(s) that in addition to BACE1 process 

NRG1 type III in neuronal cells would either require knockdown of the candidate proteases or 

the use of neurons derived from respective knockout animals. In this regard it would also be 

desirable to ascertain the cleavage sites in NRG1 type III and the sequences of the sEGF 

peptides using neuronal supernatants for mass spectrometric analysis. However, due to the 

relatively low expression of the substrate in neurons and the lower cell number compared to 

HEK293 cells it was not possible to obtain enough material for the IP-MS approach so far. 
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In order to assess the physiological importance of the novel N-terminal cleavages it will be 

necessary to investigate the processing of endogenous NRG1 type III, ideally in vivo. 

However, several technical limitations have prevented such an analysis to date. Acquiring 

sufficient amounts of material for western blot or mass spectrometry has proven to be one of 

the major obstacles in this regard. Lysates of mouse brains as well as of isolated sciatic 

nerves did yield western blot signals with the antibody to the C-terminus of NRG1 (not 

shown). However, as this antibody recognizes the NRG1 a-type C-terminal tail it is not 

specific for the type III isoform. Consequently, while the full-length NRG1 type III may be 

identified on western blot by its larger molecular weight, it is not possible to distinguish the 

CTFs of different isoforms. Likewise, the BACE1 cleavage site-specific antibody 4F10 

detected NTFs in the analyzed lysates (not shown) but their size strongly indicates that they 

arise from the shedding of NRG3 instead of NRG1. This is explained by the fact that NRG3 is 

strongly expressed in the nervous system and harbors a juxtamembrane sequence identical 

to the sequence upstream of the BACE1 site in the NRG1 stalk (4.2 Figure 48). Therefore, 

like NRG1, NRG3 will likely be shed by BACE1 as well and its NTF comprising the identical 

C-terminal residues will be recognized by the 4F10 antibody.  

In addition, neither analysis with the 10E8 nor with the 7E6 antibody yielded specific 

signals from mouse brain homogenates. This is particularly puzzling in the case of 10E8 

which recognizes the BACE1-cleaved NRG1 β-CTF. Provided that the BACE1 cleavage site 

was mapped correctly, shedding of any transmembrane isoform of NRG1 β1 (type I-VI) by 

BACE1 should result in a β-CTF detectable by this antibody. The reason for the failure of the 

10E8 antibody to detect endogenous β-CTFs on western blot is currently not known. 

Possible explanations include the rapid turnover of this fragment by the γ-secretase resulting 

in a very low abundance under steady-state conditions. Support for this explanation comes 

from experiments in cell culture which showed that inhibition of the γ-secretase by DAPT 

results in strong 10E8 signals. Moreover IP experiments with the 10E8 antibody indicate that 

its affinity towards its epitope is only moderate (not shown). As the C-terminal antibody does 

detect NRG1 CTFs (sum of α- and β-CTFs) this could mean that the 10E8 antibody is just 

not sensitive enough. Alternatively, the inability of the 10E8 antibody to detect endogenous 

NRG1 β-CTFs could be due to an N-terminal truncation of this fragment after BACE1 

shedding. Such a truncation, possibly mediated by an exopeptidase, would result in the 

removal of the residues recognized by the 10E8 antibody and could explain the absence of 

10E8 western blot signals in the presence of signals for the CTF by the C-terminal antibody. 
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Analysis of cultured cortical and hippocampal neurons for processing of endogenous NRG1 

type III yielded similar results: Detection of full-length NRG1 and CTFs was possible with the 

C-terminal antibody but the NTF detected with 4F10 most likely arose from shedding of 

NRG3 (not shown). This illustrates another major obstacle for the analysis of endogenous 

NRG1 type III: As of yet, no antibody specific for the type III isoform is available which 

renders its identification difficult and causes the need to work with N-terminal tags. Although 

cultured DRG neurons are described to express high levels of NRG1 type III (Taveggia et al., 

2005) western blot analysis of lysates and supernatants of these cells likewise did not yield 

specific signals with the novel neoepitope antibodies (not shown). In all cases described 

above also performing IPs of the respective fragments prior to western blot analysis did not 

lead to improved detection. The lack of antibodies for immunofluorescence (IF) constitutes 

another limitation regarding the analysis of endogenous NRG1 type III and its processed 

fragments. Both commercial as well as home-made antibodies against NRG1 type III were 

found not to be suitable for the detection of the endogenous protein by means of 

immunofluorescence microscopy (not shown). 

Taken together, although its existence is likely and ectopically expressed NRG1 NTF 

compensates for the lack of NRG1 type III in vivo (Velanac et al., 2012) it is so far not 

possible to unambiguously demonstrate the existence of endogenous NRG1 type III NTF by 

means of WB, MS or microscopic analysis. Likewise it is currently not possible to detect 

soluble EGF-like domains generated by the processing of endogenous NRG1 type III. The 

development of sensitive antibodies specific for the N-terminal sequence of the type III NRG1 

isoform and its processed fragments will be crucial in order to successfully address this 

issue. 

4.6 Activity of soluble NRG1 type III EGF-like domains 

The experimental evidence provided in the present study shows that the soluble EGF-like 

domains liberated from NRG1 type III constitute a paracrine promyelinating signal that 

induces ErbB3 receptor phosphorylation and subsequent AKT downstream signaling in MCF-

7 cells and primary Schwann cells. Activation of the PI3K/AKT pathway in response to NRG1 

type III triggers the transcription of several myelin genes and is a key event in the transition 

of Schwann cells into the myelinating state (1.3.4.1.3). Importantly, the findings of the 

present work are in agreement with another study that found soluble NRG1 type III peptides 

to stimulate Schwann cells in a paracrine manner and to promote myelination in Schwann 
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cell-DRG co-cultures (Syed et al., 2010). The authors of this study used recombinant 

peptides consisting of the entire N-terminus of NRG1 type III and the EGF-like domain 

terminating with the stalk isoform 3 before the TMD. Similar to the result presented here, 

treatment of primary Schwann cells with the recombinant soluble NRG1 peptides caused 

robust phosphorylation of ErbB2 and ErbB3 receptors as well as activation of AKT. In 

addition to the promyelinating PI3K/AKT pathway the authors also investigated the activation 

of the Ras/Raf/Erk1/2 cascade in response to soluble NRG1 type III. The latter pathway 

which is known to inhibit myelination was not activated by low doses of the soluble NRG1 

type III peptides that already sufficed to activate the PI3K pathway. However, higher doses of 

the soluble peptides induced the Ras/Raf/Erk1/2 pathway and lead to an inhibition of 

myelination in Schwann cell-DRG co-cultures (Syed et al., 2010). A similar differential 

activation of the two pathways was observed for a peptide that comprised only the EGF-like 

domain and the stalk region of NRG1. Although the precise mechanism is currently elusive 

this suggests that stimulation of ErbB receptors on Schwann cells by the EGF-like domain of 

NRG1 leads to a dose-dependent activation of opposing intracellular signaling cascades that 

either promote or inhibit myelination (1.3.4.1.3). 

It is currently unknown whether sufficiently high concentrations of the α- and β-sEGF 

peptides investigated in this study would also activate the inhibitory Erk1/2 signaling. As no 

recombinant peptides of these fragments are available, no experiments concerning such 

dose-dependent effects were conducted. However, the finding that different recombinant 

versions of the NRG1 EGF-like domain (EGF-like domain only, EGF-like domain with N-

terminus of NRG1 type III) caused activation of AKT and Erk1/2 at low and high 

concentrations respectively (Syed et al., 2010), renders a similar effect of α- and β-sEGF 

highly likely. 

The vast majority of mature NRG1 isoforms are highly glycosylated (carbohydrate 

content approx. 40%) and contain both N- and O-linked carbohydrates (Burgess et al., 1995; 

Lu et al., 1995a, 1995b; Cabedo et al., 2004). At least 11 serine and threonine residues were 

identified as potential sites of O-linked glycosylation, most of which are located immediately 

upstream of the EGF-like domain in the serine/threonine-rich linker region of NRG1. The 

overall glycosylation pattern seems to be similar for all NRG1 isoforms (Lu et al., 1995a) and 

several of the putative O-glycosylation sites are present N-terminal of the EGF-like domain in 

NRG1 type III. In contrast to the smaller α-sEGF, the larger β-sEGF as liberated from NRG1 

type III by BACE1, contains this serine/threonine-rich sequence and was found to be subject 

to O-linked glycosylation. The soluble ectodomains of NRG1 isoforms containing an Ig-like 
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domain are known to bind to components of the extracellular matrix, an interaction which 

serves to locally increase their concentration and modulates their ability to activate ErbB 

receptors (Li and Loeb, 2001). As protein-bound carbohydrates could potentially participate 

in receptor interactions, the effect of O-linked glycosylation on the activity of β-sEGF was 

investigated. When compared to α-sEGF which is not subject to glycosylation, the 

glycosylated and non-glycosylated form of β-sEGF displayed similar activation of both ErbB3 

receptors and AKT signaling in MCF-7 and primary Schwann cells. Thus O-linked 

glycosylation at the N-terminus of β-sEGF does not significantly alter its ability to activate and 

signal through ErbB3 receptors.  

It is, however, important to note that the β-sEGF used in the present study consisted 

of both glycosylated and non-glycosylated species. Additionally, owing to the nature of 

detection and readout (western blot quantification) no truly quantitative comparison can be 

made. Together this implies the risk that a rather subtle effect of glycosylation on the activity 

of β-sEGF may have remained undetected. Still, the results are in line with previous findings 

of a similar stimulatory effect of both glycosylated and non-glycosylated forms of NRG1 on 

the growth of NIH3T3 cells (Lu et al., 1995a). Likewise, glycosylation has no effect on the 

principal structure of the NRG1 ectodomain and the EGF-like domain because no difference 

in the secondary and tertiary folding features were observed for glycosylated and non-

glycosylated NRG1 (Lu et al., 1995a). In addition to O-linked glycosylation at least two sites 

of N-linked glycosylation located near the N-terminus of NRG1 type III were reported (Lu et 

al., 1995a). However, neither α- nor β-sEGF was found to be N-glycosylated (not shown) and 

it is therefore unlikely that such glycosylation would influence the activity of the soluble EGF-

like domain. 

4.7 Similar activities of ADAM17- and BACE1-cleaved soluble EGF-like 

domains 

The experiments conducted in the course of this study indicate similar biological activities of 

α- and β-sEGF with regard to paracrine activation of ErbB receptors. Furthermore, β-sEGF 

peptides with C-termini mimicking either BACE1- or ADAM17-mediated shedding similarly 

were able to rescue hypomyelination in a BACE1 KO zebrafish model in vivo. Although no 

major difference seems to exist between these soluble peptides it is possible that, due to the 

nature of the readout (western blot quantification), more subtle differences in their activities 

remained undetected. 
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Nevertheless, the finding that BACE1 and ADAM17 generate active EGF-like domains from 

NRG1 type III is in sharp contrast with a recent study that claimed an inhibitory effect of 

ADAM17-processed NRG1 type III on myelination in the PNS (La Marca et al., 2011). 

Specifically this study claimed that the hypermyelination observed in the PNS of ADAM17 

KO mice is due to the NTF resulting from ADAM17-mediated shedding after Y286 and G290 in 

the juxtamembrane region of NRG1 type III. According to the model proposed by this report, 

shedding by ADAM17 inactivates the EGF-like domain and generates an NRG1 type III NTF 

that is unable to activate ErbB receptors on Schwann cells in a juxtacrine fashion (suppl. 

Figure 9 in (La Marca et al., 2011)). Consequently, while ablation of BACE1 leads to much 

less active NRG1 type III NTFs and results in hypomyelination, knockout of ADAM17 

reduces the amount of inactive NRG1 type III fragments and causes increased myelination. 

In agreement, a recombinant NRG1 type III peptide digested with BACE1 in vitro induced 

AKT signaling when applied to Schwann cells while in contrast after digestion with ADAM17 

no AKT phosphorylation was observed. Moreover, a NRG1 type III NTF terminating at H288 

(between the ADAM17 cleavage sites identified by the authors) failed to rescue myelination 

when expressed in a Schwann cell-DRG co-culture of NRG1 type III KO neurons (La Marca 

et al., 2011). 

The reasons for the observed discrepancies regarding the impact of the very C-

terminal residues of the EGF-like domain on its activity are currently unclear. However, there 

are several aspects that are worth noting: Possible reasons that could account for the 

different shedding sites identified for ADAM17 in NRG1 type III have already been discussed 

above (4.2). Interestingly, a systematic comparison of the activities of different NRG1 

fragments reported so far reveals only a minor overall effect of the C-terminal residues on the 

ability of the EGF-like domain to induce signaling (Table 8). Regardless of the identity of the 

sheddase mediating the cleavage, NRG1 EGF-like domains terminating at M282, A283, S284, 

F285, G290 and F293 (numbers according to the NRG1 β1a type III isoform) were found to 

stimulate receptor phosphorylation (and AKT signaling) in a paracrine fashion in vitro by 

different independent studies (Table 8). With regard to juxtacrine signaling the membrane-

anchored NRG1 type III NTFs ending with F285 and F293 equally activated ErbB3 receptors 

and AKT in vitro. Additionally, the NRG1 EGF-like domains terminating with A283, G290 and 

F293 were found to be active paracrine signals in vivo during this study (3.5.4). 

Taken together, none of the investigated C-terminal residues of the EGF-like domain 

of NRG1 abolished its signaling activity. In fact, inactivation of the EGF-like domain due to 

shedding at specific sites within the stalk region of NRG1 type III was only reported once (La 
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Marca et al., 2011) and may be due to additional albeit undetected cleavages within the 

EGF-like domain itself (4.2). Even if not complete, such additional cleavages during the in 

vitro digest would significantly reduce the amount of functional EGF-like domains and could 

easily account for the observed inability of the assay solution to activate AKT signaling in 

Schwann cells. The reason for the failure of the NRG1 type III NTF terminating after H288 to 

rescue myelination of NRG1 type III KO neurons in vitro (La Marca et al., 2011) is currently 

unclear. However, a final evaluation of this observation is not possible as it was not 

controlled whether BACE1-cleaved NRG1 type III NTF (described to be active) was able to 

rescue the hypomyelination phenotype in that particular experimental paradigm. 

 

 

Table 8. Comparison of reported activities of NRG1 β1 EGF-like domains comprising different 
C-termini. The different C-terminal amino acid sequences of the EGF-like domains generated by 
shedding are given. The experimental setup and read-out parameter(s) used by the respective study 
are indicated. Numbering of the amino acid residues is based on the NRG1 β1a type III isoform. The 
data are taken from the present study and (Lu et al., 1995b; La Marca et al., 2011; Luo et al., 2011). 
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Depending on which cleavage site was determined, the sites of BACE1 and ADAM17-

mediated shedding are separated by minimal three or maximal 11 residues (4.2 Figure 49). 

The close vicinity specifically of the ADAM17 site after G290 to the BACE1 site after F293 

renders inactivation of the EGF-like domain due to a reduced length of the C-terminus 

unlikely. All the more as EGF-like domains containing shorter C-termini were found to be 

active (Table 8) and reduced length (truncation beyond F285) even correlated with slightly 

increased ErbB3 activation in vitro (not shown). Truncation of residues important for the 

biological activity of the EGF-like domain due to ADAM17-mediated shedding also seems 

unlikely as all cleavage sites reported so far are outside the core of the EGF-like domain (4.1 

Figure 47, 4.2 Figure 49). Specifically the sites identified as “inhibitory”, Y286 and G290, are 

located nine and 13 residues downstream of the 6th cysteine residue critical for the EGF-like 

domain’s structure and function.  

In addition to altered NRG1 type III signaling, the observed inhibitory effect of 

ADAM17 on PNS myelination could also be mediated by changes in the proteolysis of 

substrates other than NRG1 type III. A prime candidate for such a substrate outside the 

NRG1 type III signaling pathway is notch. Although canonical notch signaling promotes the 

development of SCPs to mature Schwann cells, its non-canonical signaling inhibits 

myelination (Woodhoo et al., 2009). Increased levels of NICD in Schwann cells block the 

upregulation of positive regulators of myelination such as Krox20 and delay the onset of 

myelination in vivo. In agreement, inactivation of notch promotes myelination and leads to 

significantly thicker myelin sheaths around nerves in mice. Moreover, in the adult, increased 

notch signaling contributes to demyelination after nerve injury (Woodhoo et al., 2009). 

Overall notch therefore seems to be a negative regulator of myelination and reduced 

proteolysis and subsequent signaling by the NICD is expected to result in hypermyelination 

of the PNS.  

The question whether the shedding of notch is mainly mediated by ADAM17 is still 

controversial. On the one hand, only ADAM10 but not ADAM17 KO mice display a classical 

notch phenotype (1.1.3.1). On the other hand, ADAM17 was identified as main notch 

sheddase in several cell lines in vitro (Brou et al., 2000). In general the extent to which each 

protease participates in the proteolysis of notch seems to be strongly context-dependent 

(Bozkulak and Weinmaster, 2009). It is therefore conceivable that the ablation of ADAM17 

contributes to reduced notch signaling and consequently results in increased myelination in 

ADAM17 KO mice in a manner independent of NRG1 type III. While it is tempting to attribute 

the myelination phenotype of ADAM17 KO mice to such altered notch signaling, it must be 
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noted that hypermyelination in these mice was found to be neuron-autonomous and NICD 

levels in Schwann cells were reportedly unaltered (La Marca et al., 2011). 

Another ADAM17 substrate important in the process of myelination is the p75 

neurotrophin receptor (p75NTR) expressed by both neurons and Schwann cells (Weskamp et 

al., 2004; La Marca et al., 2011). Signaling of the nerve growth factor (NGF) and the brain 

derived neurotrophic factor (BDNF) through p75NTR is a positive regulator of myelination and 

its inhibition results in thinner myelin sheaths in vivo (Cosgaya et al., 2002; Buser et al., 

2009). Importantly, shedding of the p75NTR receptor is impaired in Schwann cells of ADAM17 

KO mice (La Marca et al., 2011) and consequently the increased level of p75NTR could be 

responsible for the observed hypermyelination. Besides p75NTR, neurotrophin signaling in the 

context of myelination is mediated through Trk receptors (Cosgaya et al., 2002) which also 

are among the substrates of ADAM17 (Reiss and Saftig, 2009). Independent of NRG1 type 

III, altered processing of Trk receptors could therefore also be involved in the abnormal 

myelination observed in ADAM17 KO mice although this has not been investigated yet.  

In summary, given that besides NRG1 type III several other substrates of ADAM17 

are important regulators of myelination it seems likely that their altered processing 

contributes to the reported hypermyelination in ADAM17 KO mice. Especially considering the 

discussed discrepancies in the shedding of NRG1 type III and its effect on myelination it 

seems advisable to much more closely investigate the role of these other substrates in the 

context of hypermyelination upon ablation of ADAM17. Eventually this may lead to alternative 

models that are less dependent on the processing of NRG1 type III and thereby resolve 

some of the current discrepancies. 

4.8 Partial rescue of myelination in a BACE1 KO zebrafish by β-sEGF 

and its C-terminally truncated variants 

The finding that β-sEGF itself and β-sEGF variants with C-termini corresponding to ADAM17-

mediated shedding similarly rescue the myelination in a BACE1 deficient zebrafish model 

strongly argues for a promyelinating effect of both BACE1- and ADAM17-cleaved NRG1 type 

III. In addition this demonstrates that the EGF-like domain liberated from NRG1 type III by a 

dual proteolytic cleavage constitutes an active soluble signal that promotes myelination in a 

paracrine manner in vivo. 

It is evident that none of the investigated β-sEGF peptides completely rescued the 

hypomyelination of the BACE1 KO zebrafish larvae (3.5.4 Table 5). The only partial rescue is 
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mainly caused by two complementary mechanisms inherent to the experimental setup: 

Firstly, the mRNA encoding the β-sEGF peptides is injected into a single cell during very 

early zebrafish larvae development. As the larvae develops, the initial amount of mRNA per 

cell decreases upon every cell division leading to a dilution effect that results in a 

progressively lower expression of the ectopic protein in individual cells with time. Secondly, 

the degradation of the injected mRNA by cellular enzymes also contributes to the reduced 

expression of the ectopic protein over time. Together these mechanisms account for the fact 

that the extent of the rescue observed in this experimental setup inversely correlates with the 

time between injection and analysis. In case of the rescue of myelination in the BACE1 KO 

zebrafish, analysis was performed rather late, at three days post fertilization. At this point in 

time the β-sEGF was no longer detectable in the lysates of the injected fish by western blot 

analysis (not shown) indicating a low expression of the peptide. The fact that in spite of its 

low abundance β-sEGF still lead to a marked rescue of the hypomyelination in BACE1 KO 

zebrafish indicates that this peptide is a potent promyelinating paracrine signal. 

The global expression of a growth signal such as the NRG1 EGF-like domain harbors 

the risk of toxic side effects. Toxicity affecting normal development of the zebrafish larvae 

was indeed observed upon initial injections of β-sEGF mRNA. To avoid such toxic effects, 

the amount of injected mRNA was carefully titrated down to a level that still allowed the 

partial rescue of the hypomyelination phenotype but at the same time did not interfere with 

normal development of the larvae. It is furthermore known that neuronal overexpression of 

NRG1 type III in both the CNS and PNS of zebrafish causes Schwann cells to bypass their 

natural boundaries and aberrantly migrate into the CNS (Perlin et al., 2011). However, the in 

vivo rescue experiments of the present study were designed to assess the ability of the 

soluble NRG1 EGF-like domain to promote myelination in the PNS. Its ability as an 

instructive signal for the directed migration of Schwann cells was not investigated and the 

readout which is based on the immunofluorescent labeling of myelin is not suited for the 

detection of single Schwann cells in the BACE1 KO zebrafish larvae. Therefore, although the 

universal presence of β-sEGF in the injected larvae renders misguidance of migrating 

Schwann cells highly likely, it remains unknown whether similar to the NRG1 type III full-

length protein also the soluble EGF-like domain causes migration of Schwann cells into the 

CNS. If indeed upon β-sEGF expression Schwann cells entered the CNS of the larvae they 

did so without substantially participating in myelination as no overt changes in the 

myelination of central nerves were detected. 
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In contrast to the in vitro experiments where the extent of ErbB3 and AKT phosphorylation 

served as readout, the effect of β-sEGF on myelination in the BACE1 KO zebrafish was not 

rated by its extent but only by its occurrence, i.e. a larvae was either judged to be (partially) 

rescued or not. This method of analysis precludes any quantitative comparison of the 

different β-sEGF peptides that were tested. However, it allows the statement that the 

different C-terminal residues resulting from shedding by BACE1 or ADAM17 do not abolish 

the biological activity of the EGF-like domain with regard to paracrine ErbB3 activation. 

Therefore, according to the results of this study, the length of the sEGF C-terminus does not 

affect the domain’s ability to signal through ErbB3 receptors and to promote myelination in 

vitro or in vivo.  

Similar to the C-termini, the different N-termini of α- and β-sEGF did not significantly 

alter ErbB3 activation in cell culture. However, whether like β-sEGF, also α-sEGF is able to 

promote myelination in vivo remains unknown as only EGF-like domains containing a 

BACE1-cleaved N-terminus (i.e. β-sEGF peptides with different C-termini) were investigated 

in the BACE1 KO zebrafish model. The reason for this lies in the generally much lower 

secretion of α-sEGF compared to β-sEGF, a phenomenon that was first observed in HEK293 

cells (not shown). It is currently not known why transfection with similar amounts of α- and β-

sEGF constructs results in the secretion of much less α-sEGF than β-sEGF peptides into the 

supernatant of cultured cells. However it is likely that a difference in secretion efficiency 

rather than expression causes this phenomenon as equal levels of the peptides were 

detected in cell lysates (not shown). Unfortunately, the mechanism and determinants of such 

differential secretion remain elusive so far. The difficulties in achieving a high level of 

secretion for α-sEGF in the cell culture system in combination with the requirement of an 

initial as high as possible secretion in the BACE1 KO zebrafish model lead to the decision to 

focus on the analysis of β-sEGF peptides only. Another reason for the selection of the 

different β-sEGF peptides over α-sEGF was that only the C-terminal residues of the EGF-like 

domain were reported to affect the signaling of NRG1 type III while the prior cell culture 

experiments indicated no such effect of the N-terminus. 
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4.9 Physiological importance of the soluble NRG1 type III EGF-like 

domains 

It is important to note that the results obtained in the zebrafish model do not establish 

paracrine signaling by NRG1 type III via its soluble EGF-like domain as the sole or most 

important regulator of myelination under physiological conditions. It has already been 

convincingly shown that the membrane-tethered NRG1 type III NTF is able to signal through 

ErbB3 receptors on Schwann cells and to promote myelination in a juxtacrine manner 

(Taveggia et al., 2005). Moreover, the inability of soluble NRG1 EGF-like domains to rescue 

myelination of neurons completely devoid of NRG1 type III (NRG1 type III -/-) argues for an 

essential role of juxtacrine signaling by membrane-retained NRG1 type III (Taveggia et al., 

2005; Syed et al., 2010). On the other hand it has become apparent that different species of 

soluble NRG1 EGF-like domains are able to strongly enhance myelination of neurons with 

reduced levels of NRG1 type III (NRG1 type III +/-) and even lead to the ensheathment of 

physiologically non-myelinated axons (Syed et al., 2010). In contrast to the previous reports, 

the current study provides evidence that such soluble EGF-like domains are indeed 

generated from the full-length precursor NRG1 type III under cellular conditions. A model that 

tries to reconcile these findings proposes a first phase during which the initiation and onset of 

myelination is dependent on the juxtacrine signaling of NRG1 type III, while in a second 

phase the promotion of myelination may be mediated by paracrine signals (Syed et al., 2010) 

(4.10 Figure 51). The rescue of myelination in the BACE1 KO zebrafish by β-sEGF is in 

accordance with this model which also implies that in vivo another protease partially 

compensates for the loss of BACE1-mediated shedding and provides enough membrane-

bound NRG1 type III NTF for the (juxtacrine) initiation of myelination. In the later phase, 

however, the relative low abundance of this juxtacrine signal is not sufficient to sustain the 

promotion of myelination resulting in a global hypomyelination of the PNS (van Bebber et al., 

2013). The ectopically expressed β-sEGF would therefore not initiate but only promote the 

already ongoing process of myelination. Since so far mainly established on the basis of in 

vitro data, definite proof of this two-phase model in vivo would require similar experiments in 

NRG1 type III KO animals which have not been reported yet. 

Another question that currently remains unresolved regards the overall physiological 

importance of paracrine NRG1 type III signaling for the process of myelination in the PNS. 

The paracrine promotion of Schwann cell myelination in the BACE1 KO zebrafish model by 

ectopically expressed β-sEGF does not necessarily translate into the physiological context. 
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Morevoer, the applied experimental approach does not allow for an estimation of the extent 

to which paracrine and juxtacrine signaling contribute to myelination, respectively. 

Clarification of the question whether paracrine signaling is crucial for peripheral myelination 

under physiological conditions would require the expression of an N-terminally uncleavable 

NRG1 type III protein in a knock-in animal. Unimpaired PNS myelination in this setup would 

then indicate that, physiologically, juxtacrine signaling of NRG1 type III is not only required 

but also sufficient for normal myelination. By contrast, reduced myelination would suggest a 

requirement of the N-terminal cleavage in NRG1 type III and the liberation of the EGF-like 

domain, however, could also be due to other, unknown shortcomings of the experimental 

paradigm. Unfortunately so far it has not been possible to engineer an NRG1 type III NTF 

that is no longer subject to proteolysis. Attempts to abolish cleavage at the N-terminal 

cleavage sites by altering their sequences using site-directed mutagenesis were not 

successful (not shown) which is in agreement with the ability of BACE1 and especially 

ADAM17 to cleave within a very diverse set of cleavage site sequences. Furthermore 

experimental evidence suggests the existence of additional, yet so far unidentified proteolytic 

cleavage sites located closer to the N-terminal TMD of the NRG1 type III NTF (Wang et al., 

2001). Cleavage at such sites would liberate a large portion of the ectodomain including the 

EGF-like domain of NRG1 type III which in turn could again act as a paracrine signal. 

Generation of a membrane-bound NRG1 type III EGF-like domain that cannot be released 

from the membrane by proteolysis and represents a truly exclusive juxtacrine signal therefore 

would probably require the use of an artificial membrane anchor like for example the GPI 

anchor. The highly artificial features of such a construct, however, would counteract the 

attempt to experimentally mimic physiological myelination. Given these technical obstacles it 

therefore seems currently impractical to determine the exact contribution of juxtacrine and 

paracrine signaling to myelination in vivo. 
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4.10 Hypothetical model of NRG1 type III-regulated myelination in the 

PNS 

Since several aspects are controversial or even entirely unclear, a model describing the 

regulation of myelination in the PNS by NRG1 type III signaling must remain speculative. 

Nevertheless it is possible to combine the available experimental data into a hypothetical 

model in which the α- and β-NTF generated through shedding of NRG1 type III by ADAM17 

and BACE1 represent juxtacrine signals on the surface of neurons (Figure 51). Contact-

dependent interaction of the β-NTF with ErbB receptors of Schwann cells in close vicinity 

causes receptor auto-phosphorylation and downstream signaling leading to the initiation of 

myelination. During this initial phase of myelination the myelinating Schwann cells strictly 

depend on the presence of a membrane-tethered NRG1 EGF-like domain on the neuronal 

surface. The strict requirement of a juxtacrine signal during onset of myelination may be 

explained by the need of a reliable spatial cue for the Schwann cells in order to correctly 

orient themselves towards the axon. Following the initiation, the growth of the myelin sheath 

during the second phase of myelination may then also be further promoted by the 

membrane-bound β-NTF. While the results of this study imply a similar role for α-NTF, others 

have reported that the α-NTF resulting from ADAM17-mediated shedding of NRG1 type III 

has an inhibitory effect on both onset and promotion of myelination (La Marca et al., 2011) 

(Figure 51). Thus, by competing with BACE1 for the shedding of NRG1 type III and the 

generation of an active NTF, ADAM17 would act as a regulatory brake on myelination in the 

peripheral nervous system. 

In addition to shedding and through further cleavages N-terminal of the EGF-like 

domain of NRG1 type III, ADAM17 and BACE1 generate α- and β-sEGF, respectively. 

Although these soluble EGF-like domains comprise different N- and C-terminal residues and 

also differ in their glycosylation, both similarly activate ErbB receptors on Schwann cells and 

promote myelination as paracrine signals.  
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Figure 51. Hypothetical model of NRG1 type III signaling during myelination in the PNS. 
Shedding by ADAM17 and BACE1 generates α- and β-NTF, respectively. β-NTF acts as juxtacrine 
signal, stimulates ErbB receptors on neighboring Schwann cells and initiates myelination. The role of 
ADAM17-cleaved α-NTF is controversial but it was suggested that it is unable to activate Schwann 
cells and therefore inhibits myelination. Further cleavages of the α- and β-NTF by ADAM17 and 
BACE1 generate α- and β-sEGF that both promote myelination through ErbB receptor activation in a 
paracrine fashion. While the initial phase of myelination depends on juxtacrine signaling, the 
subsequent promotion of myelin growth is mediated by both, juxtacrine and paracrine signaling. 
 

According to this model the two key differences between juxtacrine and paracrine signaling 

of NRG1 type III are: Only juxtacrine signaling by the NTF is able to mediate both, onset and 

further promotion of myelination. In contrast, the paracrine signaling of the soluble EGF-like 

domain can solely promote but not initiate this process. However, while the ADAM17-

generated juxtacrine signal α-NTF reportedly inhibits myelination (La Marca et al., 2011), the 

analogous α-sEGF resulting from further ADAM17 cleavage acts as a promyelinating signal 

(this study). Although backed by reported experimental data, this difference between α-NTF 

and α-sEGF remains one of the less plausible aspects of the proposed model.  
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It must also be noted that evidence for this model in vivo is scarce. As the N-terminal 

cleavages by BACE1 and ADAM17 have only been observed in vitro so far it remains 

possible that the soluble EGF-like domains are not generated during physiological 

myelination but exclusive juxtacrine signaling of NRG1 type III is sufficient. In this regard, 

detection of α-sEGF or β-sEGF peptides in vivo would be needed to demonstrate the 

necessity of paracrine signaling by NRG1 type III. It is also possible that physiologically the 

cleavages N-terminal of the EGF-like domain do not occur before but only after binding of the 

domain to ErbB receptors. In this scenario, signaling by NRG1 type III would be entirely 

contact-dependent whereas the identified additional cleavages would merely serve to release 

the bound EGF-like domain from its membrane anchor after receptor binding and would 

allow internalization of the receptor by the Schwann cell. Proof for this model would require 

the detection of liberated EGF-like domains bound to ErbB receptors in vivo or abolished 

signaling upon the expression of an uncleavable NRG1 type III construct. 

4.11 Intramembrane cleavage of NRG1 type III by the γ-secretase 

4.11.1 γ-Secretase mediates a dual cleavage within the TMD of NRG1 

The CTF generated by the shedding of NRG1 type III represents a type I transmembrane 

protein and is a substrate for the γ-secretase complex (Figure 52). Indeed, intramembrane 

cleavage of the NRG1 type III CTF by the γ-secretase has been observed by different groups 

(Bao et al., 2003; Dejaegere et al., 2008) and the resulting NRG1-ICD has been implicated 

as a transcriptional regulator of different (synaptic) proteins, in dendritic development and in 

the activation of the PI3K signaling pathway (1.3.3.3). The identification of a schizophrenia-

associated mutation in the TMD of NRG1 (Walss-Bass et al., 2006) which seems to inhibit 

processing by the γ-secretase (Dejaegere et al., 2008) has additionally spiked interest in the 

intramembrane processing of the NRG1 CTF and its functional implications regarding 

neuronal development and the occurrence of schizophrenia-like symptoms in mice 

(Stefansson et al., 2002; O’Tuathaigh et al., 2006; Boucher et al., 2007; Karl et al., 2007; 

Chen et al., 2010b; Duffy et al., 2010). The actual sites of γ-secretase cleavage within the 

NRG1 TMD, however, have remained elusive so far as has the mechanism by which the 

schizophrenia-linked V->L mutation impairs this cleavage. Importantly, since the NRG1 gene 

only contains a single exon encoding for a TMD, all membrane-bound isoforms of NRG1 

share the same TMD sequence and are similarly processed by the γ-secretase complex. 
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Consequently, mutations within the TMD should in principle affect the turnover of the CTFs of 

all NRG1 isoforms in a similar manner. 

Based on the investigation of multiple substrates, the cleavage mechanism of the γ-

secretase suggests at least two distinct cleavage sites or regions within the TMD of NRG1 

(1.1.3.3): An initial ɛ-like cleavage close to the cytosolic border which liberates the NRG1-

ICD and a subsequent γ-like cleavage in the middle of the TMD. The latter cleavage should 

lead to the liberation of the CTF’s N-terminus and, in analogy to the processing of APP, to 

the generation of a soluble fragment called NRG1 β-peptide or NRG1 p3-like peptide 

depending on whether the preceding shedding was mediated by BACE1 or ADAMs, 

respectively (Figure 52). However, the large size of the cytosolic domain of NRG1 and the 

lack of suitable antibodies for its immunoprecipitation render the mass spectrometry-based 

identification of the NRG1-ICD and the respective ɛ-like cleavage site challenging. Detection 

of the NRG1 β-peptide and determination of the γ-like cleavages likewise depend on the 

availability of suitable antibodies.  

 

 

Figure 52. Scheme depicting the proposed dual regulated intramembrane proteolysis of NRG1 
type III. Shedding and N-terminal cleavage generates two membrane-bound fragments: The CTF is 
processed by the γ-secretase complex and a small NRG1 β-peptide or p3-like peptide (depending on 
whether BACE1 or an ADAM mediated the shedding) is released into the lumen. Simultaneously the 
C-terminal tail is liberated from the membrane as ICD. After the release of the EGF-like domain and 
possibly further processing by another as of yet unidentified protease (indicated by “?”), a short N-
terminal fragment (NTF’) remains in the membrane. This NTF’ is a potential substrate for 
intramembrane proteolysis by SPPLs which would result in the liberation of a luminal C-peptide and an 
intracellular N-ICD. 
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The current study used a C-terminally truncated, HA tagged NRG1 construct in a cell-free in 

vitro assay, as well as the novel antibody 10E8 to overcome these difficulties. This approach 

lead to the identification of the ɛ-like cleavage site after C321 and the γ-like cleavage site after 

L314 in the TMD of NRG1, respectively (3.6.2 Figure 46).  

No consensus recognition sequence of the γ-secretase has been found to date. 

Instead, different features of the TMD and the intracellular part of the CTF (Hemming et al., 

2008) as well as the length of the remaining extracellular sequence (Struhl and Adachi, 

2000) seem to determine whether cleavage by the γ-secretase occurs. However, comparison 

of the ɛ-like cleavage sites identified in known γ-secretase substrates indicates a preference 

for valine at the P1’ position and cleavage between two and four residues upstream of the C-

terminal membrane border (Figure 53). The identified ɛ-like cleavage site between C321 and 

V322 is located five residues upstream of the membrane border and fits well with these 

observations. In addition to the main cleavage after C321 minor ɛ-like cleavage sites were 

determined between V322 and V323 and A324 and Y325 and thus more closely to the cytosolic 

membrane surface. Such additional but minor ɛ-like cleavage sites are also observed for 

other γ-secretase substrates (indicated for APP in Figure 53). However, since the sequential 

order of the ɛ-like cleavages in NRG1 is not known, it is also possible that these cleavages 

result from an exopeptidase activity that truncates the ICD subsequent to its initial generation 

after C321. 

Compared to the ɛ-like site, there is an even greater heterogeneity in the position of 

the γ-like cleavage site within the TMD of different γ-secretase substrates (Figure 53). In 

addition, besides a main γ-like site located in the middle of the TMD, almost always several 

minor cleavage sites are found ranging from the middle to nearly the N-terminal border of the 

TMD. In APP for example the main γ-like cleavage that gives rise to the Aβ40 peptide occurs 

12 residues away from both ends of the TMD (1.1.3.3 Figure 3, Figure 53). However, the γ-

secretase mediates multiple additional cleavages at positions around this site in APP that 

generate Aβ peptides of different length (Wang et al., 1996). Comparison of known γ-

secretase substrates reveals that the main γ-like site is usually located in a region between 

11 and 15 residues upstream of the cytosolic and between eight and 12 residues 

downstream of the luminal membrane border, respectively (Figure 53). APLP2 seems to 

constitute an exception from this observation as its main γ-like site was found to be very 

close (six residues) to the N-terminus of the TMD. However, due to uncertainties in the 

prediction of the exact length of its TMD it is possible that the γ-like site is in fact located 11 

residues away from the N-terminal TMD border (Hogl et al., 2011). 
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Figure 53. Comparison of identified cleavage sites in the TMD of different γ-secretase 
substrates. The sequences of the substrates’ TMDs are shown and the γ-like (green) and ɛ-like (blue) 
cleavage sites are indicated (arrows). Smaller arrows denote the most prominent minor cleavage sites 
while the multiple less prominent sites were omitted for clarity. The valine residue present at the P1’ 
position of the ɛ-like cleavage site in most of the substrates is underlined. Artificial mutations at this 
position that lead to impaired ɛ-like cleavage in Notch1 and ErbB4 are indicated. The asterisk denotes 
a schizophrenia-associated mutation in the TMD of NRG1 that also impairs this cleavage. Data from 
(Fortini, 2002) and the following studies were used for figure assembly: APP (Gu et al., 2001; Sastre et 
al., 2001), APLP2 (Gu et al., 2001; Hogl et al., 2011), Notch1 (Schroeter et al., 1998; Huppert et al., 
2000; Okochi et al., 2002, 2006), ErbB4 (Ni et al., 2001; Lee et al., 2002; Vidal et al., 2005), CD44 
(Okamoto et al., 2001; Lammich et al., 2002), NRG1 (Walss-Bass et al., 2006; Dejaegere et al., 2008) 
and this study.  
 

The main γ-secretase cleavage site identified in NRG1 (between L314 and L315) is 11 and 12 

residues away from the luminal and cytosolic end of the TMD, respectively, and thus in very 

good agreement with the observations made for other substrates. Of note, a similar γ-like 

cleavage between two leucine residues was reported for APLP2 (Hogl et al., 2011) and γ-

cleavages with a leucine residue at the P1’ position were also found in the TMD of Notch1 

(Okochi et al., 2002) and CD44 (Lammich et al., 2002). The additional minor γ-secretase 

cleavage sites identified in NRG1 (3.6.1 Table 6) cluster around the main site after L314 with 
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the exception of the site after T306 which is located only three residues downstream of the 

luminal membrane interface. Again it is not known whether this reflects genuine cleavage by 

the γ-secretase or results from the truncation of a longer peptide by an exopeptidase. 

Alternatively this cleavage may also be caused by the overexpressed BACE1 protease which 

was previously shown to truncate Aβ peptides after their initial generation (Fluhrer et al., 

2003).  

A minor caveat to the present investigation is the exclusive use of in vitro systems for 

the determination of the γ-secretase cleavage sites. However, difficulties in the detection of 

the NRG1 β-peptide and ICD have so far rendered the confirmation of the identified sites in 

primary cells or in vivo impossible. Nevertheless, the employed in vitro assays have long 

been established and faithfully reproduce processing by the γ-secretase (Pinnix et al., 2001; 

Fukumori et al., 2006). Together with the fact that the identified γ-secretase cleavage sites in 

the TMD of NRG1 are in good agreement with the sites found in other substrates it is highly 

likely that they indeed represent genuine γ-secretase cleavage positions that are also used in 

vivo. 

4.11.2 Liberation of a β-peptide from the NRG1 type III CTF by the γ-secretase 

Cleavage of the NRG1 type III β-CTF by the γ-secretase generates a NRG1 β-peptide that is 

released from the membrane into the luminal space (4.11.1 Figure 52). Depending on the 

exact position at which the cleavage occurs, β-peptides ranging from 12 to 22 residues in 

length are liberated with NRG1-β21 being by far the most prominent species. Despite this 

heterogeneity, the NRG1 β-peptides appear as a single band on western blot, with an 

additional but very weak band migrating slightly above (3.6.1 Figure 41). As of yet it is 

unclear whether this additional band represents a β-peptide of bigger size. However, the 

finding that also a synthetic recombinant peptide appears as double band on western blot 

(not shown) argues against this assumption. Alternatively, the hydrophobic nature of the 

NRG1 β-peptides could cause residual structures in a fraction of the peptides even under the 

denaturing conditions of the SDS-PAGE that would result in a different migration behavior. 

Comparison of the hydropathy indices (Kyte and Doolittle, 1982) of different Aβ peptides with 

the NRG1-β21 peptide indicates that the latter is indeed highly hydrophobic (Table 9). 

Although comprising only half as many residues, NRG1-β21 is approx. 2.8 times more 

hydrophobic in nature compared to Aβ42 and still twice as hydrophobic as Aβ42 containing 

the arctic FAD mutation (E22G) which enhances the hydrophobicity of the Aβ peptide and 

causes increased aggregation (Nilsberth et al., 2001). 
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Further support for the likeliness of NRG1 β-peptides to form aggregates comes from the 

high Zagg value (Tartaglia and Vendruscolo, 2008) calculated for the NRG1-β21 peptide 

(Table 9). The Zagg value predicts the aggregation propensity of an unfolded peptide and 

indicates that compared to Aβ42, NRG1-β21 has an even higher tendency to aggregate. 

Indeed, upon western blot detection both recombinant and NRG1 β-peptides isolated from 

the supernatant of cells cause a signal at the 16 kDa marker (not shown) indicative of 

aggregation. Whether these aggregates are already formed within the cell or upon secretion 

and whether their formation is of any physiological significance is currently unknown. 

Alternatively they could also constitute an artifact arising during sample preparation prior to 

electrophoresis. 

 

 

Table 9. Predicted hydrophobicities and aggregation propensities of the NRG1 β-peptide and 
different Aβ species. The amino acid sequences of the different peptides are shown and the 
hydropathy index as well as the Zagg value is listed for each peptide. A higher number indicates an 
increased hydrophobicity and a higher tendency to aggregate, respectively. The hydropathy index was 
calculated according to (Kyte and Doolittle, 1982) and the aggregation propensity was predicted using 
the zyggregator tool (Tartaglia and Vendruscolo, 2008). Further details are given in (5.2.6). 
 

In contrast to the concomitantly produced ICDs, much less is known about the physiological 

functions of β-peptides. In fact, with the exception of Aβ, none of the β-peptides have been 

investigated in detail and their properties and cellular importance remain completely elusive. 

Thus they could potentially represent anything from a signaling molecule to a pure byproduct 

generated during the removal of membrane proteins by intramembrane proteolysis. 

Most familial AD-associated mutations in PS1 alter the cleavage precision of the γ-

secretase at the γ-like site and cause an increase in the generation of Aβ42 (Selkoe, 2001). 
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Similarly, several FAD PS1 mutations shift the ratio of the notch β-peptides Nβ21 and Nβ25 

towards the longer species (Okochi et al., 2002). It is tempting to speculate that such a 

change in cleavage precision which might reflect an impaired processivity of the mutant γ-

secretase is a common phenomenon of FAD PS1 mutations and therefore applies to all γ-

secretase substrates including NRG1. Comparing the ratios of the NRG1 β-peptides 

generated by cells harboring different PS1 FAD mutations with the respective profiles of Aβ 

and Nβ could help determining if the underlying mechanism is indeed of general nature. 

In addition to mutations in PS1, several FAD mutations in APP close to the γ-like site 

but also around the ɛ-like site cause an increase in the production of the longer Aβ42 

(Selkoe, 2001; Cruts et al., 2012). Given that the schizophrenia-associated mutation in the 

TMD of NRG1 is located at the ɛ-like site it will be interesting to examine if this mutation 

similarly affects the profile or amount of the secreted NRG1 β-peptides. If this is the case, 

such alterations could in theory be used as biomarker for the presence of the schizophrenia-

associated mutation or for changes in the turnover of NRG1 in general. However, it is 

currently unknown whether like Aβ also NRG1 β-peptides are present in blood and CSF in 

concentrations sufficient for the detection by ELISA (enzyme-linked immunosorbent assay), 

MS or WB analysis. In order to be able to distinguish between the different NRG1 β-peptide 

species such detection would also depend on antibodies specific towards the respective C-

termini of these peptides which are currently not available. Moreover, although the antibody 

10E8 is specific for the N-terminus of the NRG1 β-peptide generated by BACE1-mediated 

shedding and hence should recognize β-peptides generated by the γ-secretase from all 

NRG1 isoforms, detection of endogenous NRG1 β-peptides has not been possible so far. 

The reasons for this are currently unclear but could include the removal of the β-peptide’s 

neoepitope by exopeptidases. Furthermore, the successful detection of β-peptides in the 

supernatants of primary hippocampal neurons transduced with NRG1 type III (not shown) 

indicates that endogenously the concentration of these peptides is rather low and not 

sufficient to be detected by the 10E8 antibody. In this regard it will be interesting to 

investigate whether NRG1 β-peptides are detectable in mice during embryonic and early 

postnatal development when both BACE1 and its substrate NRG1 are highly expressed 

(Meyer et al., 1997; Willem et al., 2006). 

Another interesting, yet completely open question concerns the existence of a NRG1 

peptide analogous to the p3 peptide of APP (Lichtenthaler et al., 2011) (1.1.2). Such a NRG1 

p3-like peptide should particularly be generated in cells with low BACE1 expression in which 

ADAM10 or ADAM17 constitutes the main sheddase of NRG1. Cleavage of the NRG1 α-CTF 
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by the γ-secretase should then release p3-like peptides featuring the ADAM cleavage sites 

as N-termini. Again, the generation of antibodies specific to these neoepitopes or against 

regions downstream of the ADAM or BACE1 cleavage sites will be necessary to identify such 

peptides. 

In summary this study adds NRG1 to the growing list of γ-secretase substrates for 

which the precise γ-like cleavage sites have been identified. Comparison of the cleavage 

sites of different substrates offers the exciting possibility to better understand the mechanism 

of γ-secretase-mediated processing, its sequence requirements and also allows to 

investigate if the observed parameters can be generalized. Due to its secretion and hence its 

assumed presence in blood and CSF, the NRG1 β-peptide has the potential to serve as 

biomarker for altered γ-secretase processing for example due to PS1 mutations. 

Furthermore, it could also be used as readout for abnormal cleavage of NRG1 in the context 

of schizophrenia-associated mutations in NRG1. Except for the V->L mutation in the TMD, 

most of these mutations are non-coding (1.3.4.2.2) and therefore will most likely not change 

the proteolytic processing of NRG1 by the γ-secretase. However, the β-peptide could still be 

an indicator of decreased or elevated NRG1 levels due to disease-linked mutations in 

general and independent of the specific isoform. All of this will of course depend on the 

generation of specific antibodies and the establishment of sensitive methods like ELISAs to 

reliably determine the level of NRG1 β-peptides. 

4.11.3 Generation of a NRG1-ICD by the γ-secretase 

A significant body of evidence implicates altered signaling by NRG1 in the aetiology of 

schizophrenia (Mei and Xiong, 2008) (1.3.4.2). Indeed, many schizophrenia-linked SNPs are 

present in the NRG1 gene, mostly in non-coding regions towards the 5’ and 3’ end (Mei and 

Xiong, 2008). These mutations are expected to either change the splicing of NRG1 or affect 

its level of expression and several studies have reported altered NRG1 mRNA levels in the 

brain of schizophrenic patients (Hashimoto et al., 2003; Law et al., 2006) (1.3.4.2.2). In 

addition to the hypothesis that aberrant NRG1 forward signaling through ErbB4 receptors is 

causative for or contributes to the pathology of schizophrenia (1.3.4.2.1), recently an 

alternative mechanism relying on the reverse signaling pathway of NRG1 (1.3.3.3) has been 

proposed. This alternative model is mainly based on two observations: Firstly, the ICD of 

NRG1 generated through γ-secretase processing was found to act as a transcriptional 

regulator of synaptic proteins and also affects the levels of AMPA receptors (Bao et al., 2003, 

2004; Hancock et al., 2008). Secondly, a schizophrenia-associated SNP was identified in the 
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TMD of NRG1 that leads to a valine to leucine exchange and impairs cleavage by the γ-

secretase (Walss-Bass et al., 2006; Dejaegere et al., 2008). Together with the finding that 

reduced γ-secretase cleavage of NRG1 leads to a schizophrenia-like phenotype in mice 

(Dejaegere et al., 2008) and the observation that the V->L mutation impairs dendritic 

development of neurons in vitro (Chen et al., 2010a), this is taken as indication that reduced 

generation of the NRG1-ICD contributes to the pathogenesis of schizophrenia. 

Interestingly, as determined by the present study, the V->L mutation is indeed located 

exactly at the ɛ-like γ-secretase cleavage site in the TMD of NRG1 (4.11.1 Figure 53). 

Provided that the mechanism of γ-secretase processing as identified for APP, i.e. initial 

cleavage at the ɛ-like site and subsequent cleavage at the γ-like site, also applies to other 

substrates, this could therefore in fact explain the impaired turnover and subsequent 

accumulation of the NRG1 CTF harboring this very mutation. Although the exchange of a 

valine for a leucine is of very conservative nature and only adds one additional CH2 group to 

the original residue, such subtle changes at the P1’ position have been shown to impair the 

ɛ-like cleavage of other γ-secretase substrates before. For instance, substitution of the valine 

residue at P1’ of the ɛ-like site in Notch1 with leucine, lysine or glycine strongly impaired 

γ-secretase cleavage and reduced the generation and subsequent signaling of the NICD in 

cell culture (Schroeter et al., 1998; Huppert et al., 2000) (4.11.1 Figure 53). Further 

supporting a critical role of this valine residue at P1’ for an efficient γ-secretase cleavage, 

mice homozygous for the V->G mutation in Notch1 die at E10.5 and display alterations 

resembling the Notch1 KO phenotype (Huppert et al., 2000). Impaired γ-secretase-mediated 

processing due to a conservative mutation at the P1’ position of the ɛ-like site has likewise 

been reported for ErbB4. Here, substitution of the valine residue by an isoleucine also 

diminished γ-secretase cleavage and almost completely abolished generation of the ErbB4 

ICD (Vidal et al., 2005) (4.11.1 Figure 53). Importantly, the mutations mentioned above did 

not alter the expression levels of the Notch1 and ErbB4 holoproteins, their shedding or the 

abilities of the respective ICDs to regulate the transcription of their target genes. This 

indicates that the observed effects are indeed solely due to impaired γ-secretase processing 

and stresses the critical importance of the residue at P1’ of the ɛ-like cleavage site for the 

efficient generation of ICDs.  

The ɛ-like cleavage site in APP is also localized immediately upstream of a valine 

residue (Sastre et al., 2001) (4.11.1 Figure 53). However, in contrast to Notch1 and ErbB4 

this residue seems to be of minor importance for an efficient ɛ-like cleavage and liberation of 

the ICD from APP. Deleting the residues around this site or exchanging them for alanine 
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residues only modestly affected the overall Aβ generation and cleavage precision of the γ-

secretase (Murphy et al., 1999). Similarly, although decreasing the generation of Aβ42, 

substitution of the valine residue at the P1’ position of the ɛ-like cleavage site for a 

phenylalanine did not alter the overall Aβ level (Lichtenthaler et al., 1999). Finally and in 

direct contrast to Notch1, mutation of this valine to a glycine did not impair the generation of 

AICD suggesting that the ɛ-like cleavage in APP is not dependent on a valine at the P1’ 

position (Sastre et al., 2001). The effects of more conservative mutations, to isoleucine or 

leucine as in Notch1 and ErbB4, have not been investigated yet but it is unlikely that such 

mutations would yield different results.  

In summary, the importance of the specific residues surrounding the ɛ-like site for 

efficient γ-secretase cleavage seems to strongly vary from substrate to substrate. This is in 

agreement with the observation that the γ-secretase has only loose primary sequence 

requirements and that efficient processing depends on a broad range of factors such as 

length and structure of both the ectodomain and the TMD of the respective substrate. 

Nevertheless the presence of the schizophrenia-associated V->L mutation directly after the ɛ-

like site in NRG1, together with the fact that such V->L mutations at the same position impair 

γ-secretase cleavage of other substrates, support the idea that reduced NRG1-ICD 

generation indeed contributes to the pathogenesis of schizophrenia. 

It must be noted, however, that the observed reduction in γ-secretase cleavage of the 

NRG1 V->L mutant is much smaller compared to the effects reported for the respective 

mutation in ErbB4 and Notch1 (two-fold compared to at least nine-fold) (Schroeter et al., 

1998; Huppert et al., 2000; Vidal et al., 2005; Dejaegere et al., 2008). Moreover, there are 

currently no data available that confirm the effect of this mutation in vivo and directly connect 

it to the occurrence of schizophrenia-like behavior. So far the importance of the intra-

membrane cleavage of NRG1 in the context of altered behavior and memory has been 

limited to the study of mice heterozygous for a deletion of the whole TMD of NRG1 (NRG1 

TM HET mice) (Stefansson et al., 2002; O’Tuathaigh et al., 2006; Duffy et al., 2010). Aside 

from the fact that the obtained results remain in part controversial (Karl et al., 2011), the 

NRG1 TM HET mice do not primarily model the consequences of reduced NRG1-ICD 

generation due to a mutated TMD. Rather, these animals represent a heterozygous knockout 

of all membrane-bound NRG1 isoforms. Accordingly, mice homozygous for the NRG1 TMD 

deletion genotype die in utero and phenocopy Ig-NRG1 KO animals (Stefansson et al., 

2002). It is therefore debatable if these mice represent a suitable model to investigate the 

effect of reduced NRG1 intramembrane cleavage and ICD generation in the context of 
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schizophrenia-like symptoms. Unequivocally linking the V->L NRG1 mutant to such a 

phenotype in vivo will require the generation of a knock-in mouse and its careful investigation 

with regard to impaired γ-secretase cleavage of NRG1, reduced NRG1-ICD signaling and 

accompanying behavioral alterations indicative of schizophrenia-like symptoms. In order to 

evaluate the potential of the NRG1 β-peptide as a biomarker for impaired γ-secretase 

processing of NRG1 (4.11.2) it will furthermore be necessary to determine whether the V->L 

exchange after the ɛ-like site also affects cleavage at the γ-like site and whether this only 

alters the amount or also the profile of the secreted β-peptides. 

Taken together, NRG1 is now one of the few γ-secretase substrates for which both 

the γ-like and ɛ-like cleavage sites have been identified. The identification of the ɛ-like site in 

particular enables the generation of antibodies specific for the N-terminus of the NRG1-ICD. 

Such neoepitope antibodies may be used to detect this signaling molecule endogenously 

within the cell and the nucleus, thereby abolishing the need to work with tagged ICD 

constructs. Certainly this will assist in the further investigation of the NRG1-ICD’s role 

regarding intracellular signaling, transcriptional regulation and neuronal development. The 

finding that NRG1, like Notch1 and ErbB4, is cleaved by the γ-secretase directly N-terminal 

of a valine residue at the ɛ-like site supports the hypothesis that this residue may indeed be 

important for efficient ICD generation. It could also explain the impaired turnover of the 

NRG1 V->L mutant CTF, although further research is clearly needed to unequivocally 

determine the precise effect of this mutation on the generation of the NRG1 β-peptide and 

ICD as well as the ensuing cellular consequences. 

4.12 Outlook 

4.12.1 Ectodomain processing and forward signaling of NRG1 type III 

It is now well established that BACE1 regulates myelination in the PNS through the cleavage 

of NRG1 type III. Although many aspects regarding the mechanism of Schwann cell 

myelination have been elucidated, several open questions remain. For instance, different 

lines of evidence suggest that in addition to the juxtacrine signaling of axonal NRG1 type III a 

paracrine signaling pathway exists that promotes myelination. However, the physiological 

significance of this novel pathway is unclear and so far no soluble EGF-like domains of 

NRG1 type III have been detected in vivo. Likewise, provided that only juxtacrine signaling 

occurs, it is unclear how ErbB receptor internalization and deactivation would be facilitated 
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without another cleavage event that liberates the EGF-like domain from the membrane. In 

order to address these questions in vivo the generation of sensitive antibodies that 

specifically detect the type III isoform of NRG1 will be crucial. Similarly, further investigation 

of the identified ADAM cleavage sites as well as the chronological order of cleavage depends 

on the availability of site-specific antibodies that are able to immunoprecipitate the cleaved 

NRG1 type III fragments. Future analyses of NRG1 type III signaling in vivo will also require 

the use of KO animals. With regard to the role of the soluble EGF-like domain for example, 

overexpression of α- and β-sEGF fragments in a NRG1 type III KO zebrafish could shed light 

onto its ability not only to promote but also to initiate myelination in the PNS. The use of KO 

animal models will also be required to investigate the compensatory proteolytic mechanisms 

that are responsible for the residual myelination in BACE1 KO mice. In this perspective it is 

urgent to much closer investigate the role of ADAM17 in the processing of NRG1 type III and 

in the regulation of myelination in general. Given the controversy in the literature, the 

confirmation of the hypermyelination phenotype of ADAM17 KO mice by independent groups 

is strongly needed. Furthermore, analysis of BACE1/ADAM17 and BACE1/ADAM10 double 

KO animals would certainly help elucidating the contributions of these different enzymes to 

myelination in vivo. Although technically challenging, the generation and analysis of such 

double or even triple conditional KO animals will likely be key to the identification of the 

compensating protease.  

Another open question reaching beyond the scope of the present study concerns the 

differential regulation of NRG1 type I and type III signaling within a single neuron: By 

mechanisms that are still largely unclear axonal NRG1 type III facilitates Schwann cell 

myelination, while NRG1 type I controls the formation of muscle spindles at the axon terminal 

of proprioceptive sensory neurons (Birchmeier and Nave, 2008). It has been argued that the 

different modes of signaling by type I (exclusively paracrine) and type III (only juxtacrine) 

mediate these distinct functions but the finding of paracrine NRG1 type III signaling raises 

doubts as to the validity of this concept. Instead, differential temporal expression or spatial 

localization could be responsible for the distinct functions of NRG1 type I and type III, 

respectively, but this has not been investigated so far.  

4.12.2 Intramembrane proteolysis and reverse signaling of NRG1 type III 

The processing of the NRG1 type III ectodomain generates two fragments that remain 

membrane-bound after the liberation of the EGF-like domain: a CTF with a large intracellular 

tail and a short N-terminal fragment (NTF’, not to be confused with the NTF that still contains 
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the EGF-like domain) (4.11.1 Figure 52). It is now well established that the CTF undergoes 

intramembrane cleavage by the γ-secretase complex and both the γ-like and the ɛ-like 

cleavage sites have been identified. 

There is also good evidence that the ICD generated through this processing serves 

as intracellular signal and has physiological significance with regard to transcriptional 

regulation and neuronal development. The presence of a mutation which impairs γ-secretase 

cleavage at the ɛ-like site and which is linked to an increased risk of schizophrenia 

furthermore implies a function of the NRG1-ICD relevant to the pathogenesis of this disease. 

However, aside from these descriptive and correlative findings, many mechanistic details 

remain elusive. For example it is unclear how exactly the binding of the EGF-like domain, 

which is presented by the NRG1 type III NTF to ErbB receptors, stimulates γ-secretase 

processing of the CTF. Likewise it is unknown whether only the type III or also other isoforms 

of NRG1 mediate this kind of reverse signaling and if this is of any physiological relevance. 

More detailed analyses and the detection and investigation of NRG1-ICD signaling in vivo 

will be required to address these points. The generation of sensitive and cleavage site-

specific antibodies will be crucial for this endeavor.  

Another aspect that requires further investigation concerns the mechanism by which 

the NRG1 CTF is processed by the γ-secretase. Although the concept of initial ɛ-like 

cleavage and subsequent γ-like cleavage seems universal, this has not been proven for any 

other substrate besides APP. It would therefore be interesting to analyze the γ-secretase 

processing of NRG1 with regard to intermediate cleavage sites by means of mass 

spectrometry as was done for APP (Takami et al., 2009). Similarly, the mechanism by which 

the schizophrenia-associated V->L mutation impairs γ-secretase cleavage must be evaluated 

much more carefully. So far, only an accumulation of the mutant NRG1 CTF has been 

observed (Dejaegere et al., 2008). However, does the leucine residue only impair the ɛ-like 

cleavage and the generation of the ICD, while the γ-like cleavage remains unaffected? Or 

are the two cleavages coupled and the V->L substitution subsequently also leads to a 

reduced β-peptide generation? Finally, does this mutation, or FAD mutations in PS1, alter the 

cleavage precision of the γ-secretase within the TMD of NRG1? Answering these questions 

will require careful measurement of the β-peptide levels by WB or ELISA and mass 

spectrometric determination and subsequent comparison of the ratios between the different 

NRG1 β-peptide species. 

The detection of endogenous NRG1 β-peptides (and ICDs) constitutes another 

challenge that must be met in future studies. Most likely this will require the use of (primary) 
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cells that highly express both NRG1 and BACE1 and furthermore will depend on the 

availability of antibodies that are more sensitive than the 10E8 antibody used in this study. 

Alternatively it might be necessary to generate antibodies against internal sequences of the 

β-peptide or, in case ADAMs are the main sheddases, to focus on the detection of the NRG1 

p3-like peptide. The ability to detect fragments resulting from γ-secretase processing of 

endogenous NRG1 will also be crucial in order to establish the physiological relevance of the 

schizophrenia-linked V->L mutation. Convincingly the latter can only be achieved by carefully 

analyzing a V->L knock-in mouse for altered NRG1 CTF turnover and phenotypes 

considered rodent analogs of schizophrenic symptoms.  

Finally, until now, the cellular fate of the NRG1 type III NTF’ which is generated 

through the liberation of the EGF-like domain and possibly another shedding event remains 

completely unknown. The fact that the NTF’ is a type II transmembrane protein suggests that 

it could be a substrate for intramembrane processing by SPPL proteases (4.11.1 Figure 52). 

As only a few substrates for these proteases have been identified so far it will be interesting 

to investigate if the N-terminal TMD of NRG1 type III is indeed cleaved by SPPLs and 

whether this occurs in a manner comparable to other substrates like TNFα. If in fact both 

TMDs were subject to intramembrane proteolysis this would identify NRG1 type III as the first 

reported protein to undergo dual RIP by both the γ-secretase and members of the SPPL 

family, respectively (4.11.1 Figure 52). 

4.12.3 NRG1 type III and Alzheimer’s disease therapy 

Taken together, the proteolysis of NRG1 type III by both γ-secretase and BACE1 is of 

physiological significance. However, many of the reported phenotypes resulting from 

abolished or altered NRG1 type III signaling may be due to deficits during development and 

much less is known about the consequences in adult organisms. Given that the γ-secretase 

and BACE1 are prime targets for a potential AD therapy it will be crucial to investigate the 

consequences of altered NRG1 type III signaling due to chronic treatment with γ-secretase or 

BACE1 inhibitors during adulthood. Such investigations will require the long-term treatment 

of animal models with γ-secretase and BACE1 inhibitors and the generation of conditional 

BACE1 KO animals. The phenotypes observed upon impaired proteolysis of NRG1 type III 

during adulthood may likely differ from the phenotypes so far reported using conventional KO 

mice. However, they constitute the potential unwanted side effects of an AD therapy based 

on the chronic inhibition of γ-secretase and BACE1 and therefore should be taken very 

seriously. 
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5 Material and methods 

5.1 Material 

5.1.1 Laboratory equipment and chemicals 

All experiments were performed using standard laboratory equipment. Chemicals were 

purchased from Merck, Roth and Sigma with analytical grade p.a. unless otherwise stated. 

The composition of solutions and buffers is stated above the respective method. 

5.1.2 Primer 

Whenever possible oligonucleotide primers were designed according to the following 

parameters which were assessed using the CLC Main Workbench 6.6 software (CLC bio): 

The length of the primers was chosen to be at least 18 bp and, in case of overhanging ends, 

primers contained at least 15 bp complementary to the template. Primers were designed to 

have a GC content of 40-60% and similar melting temperatures (Tm between 55 and 80°C). 

A maximum of four similar consecutive bases was allowed, 3’ ends were chosen to contain 

two or three G’s or C’s and care was taken to avoid 3’ complementarity. The primers for site-

directed mutagenesis (5.2.1.2) were designed following the manufacturer’s instructions. 

Finally, the absence of prominent internal secondary structures (such as hairpins) was 

confirmed and primers were ordered at Sigma or Thermo Scientific. Table 10 provides the 

names, numbers and sequences of the oligonucleotide primers used during this study. 

 

Table 10 

 

continues on the following page 
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Table 10 

 

continues on the following page 
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Table 10. List of oligonucleotide primers. For each primer the name, the internal number (pXX) and 
the nucleotide sequence is given. 
 

5.1.3 Plasmids 

The vectors and constructs used in the present study are listed in Table 11 which also details 

their construction. The NRG1 isoform designated NRG1 type III corresponds to the isoform 

NRG1 type III β1a (GenBank: AF194438.1) from rattus norvegicus. This sequence was used 

throughout the entire study. The NRG1 isoform designated NRG1 type I corresponds to the 

NRG1 type I β1a (EMBL-Bank: AY995221) from rattus norvegicus. 

 

Table 11 

 

continues on the following page 
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Table 11 

 

continues on the following page 
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Table 11 

 

continues on the following page 
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Table 11. Overview of plasmids and constructs. The list provides each construct’s name and 
number as well as details of its construction. The numbering of the amino acid residues in the 
description of the cDNA is based on the NRG1 β1a type III isoform and the primers are given with their 
respective numbers (pXX, 5.1.2 Table 10). The constructs designated only with a number but not with 
a name were not used in the experiments described in the result section but represent intermediate 
steps during cloning. Most of them were, however, used in other (pilot) experiments not detailed in this 



Material and methods 

144 

work. *The suboptimal furin cleavage site RAVRSL after the secretion signal sequence in pSecTag2A 
was optimized to RARRSV. **Affiliations: Dr. D. Edbauer, German Center for Neurodegenerative 
Diseases, DZNE, Munich; Dr. M. Willem & M. Voss, Adolf-Butenandt-Institute, Biochemistry, Ludwig-
Maximilians-University, Munich. 
 

5.1.4 Inhibitors 

Table 12 lists the inhibitors used during this work. All compounds were dissolved in DMSO 

and stored as specified by the provider. Cells were treated at the indicated concentrations for 

12-24 h under standard cell culture conditions (5.2.2.1). 

 

Table 12 

 

continues on the following page 
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Table 12. List of inhibitors. The inhibitors used in this study are listed with their abbreviated or brand 
name as well as with the full name of the compound (if known). Each inhibitor’s target and the 
concentration used for treatment is given. *Affiliation: Dr. B. Schmidt, Technical University of 
Darmstadt. 
 

5.1.5 Cell lines 

The different continuous cell lines used in this study were cultivated as described in 5.2.2.1 

and are listed below (Table 13).  

 

Table 13 

 
continues on the following page 
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Table 13. List of continuous wild-type and transgenic cell lines. The overview provides the name, 
a brief description, the resistance gene as well as the culture medium of each cell line. Where 
applicable, the American Type Culture Collection (ATCC) number of the cell line or a reference is 
given. A more detailed description of the culture media can be found below (5.2.2.1). 
 

5.1.6 Antibodies 

The following monoclonal and neoepitope-specific antibodies were generated in collaboration 

with Dr. Elisabeth Kremmer (Institute of Molecular Immunology, Helmholtz Center, Munich) 

by immunization with the respective peptides: 4F10, rat, SFYKHLGIEF; 10E8: mouse, 

MEAEELYQKR; 7E6: mouse, QTAPKLSTS. All primary antibodies as well as antibody 

coated agarose beads used in this study are provided in Table 14. The secondary antibodies 

used for immunodetection are listed in Table 15. 

 

Table 14 

 

continues on the following page 
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Table 14. List of primary and agarose conjugated antibodies used in this study. For each 
antibody the name, the antigen and the type are given. The dilution used for western blotting or 
immunoprecipitation is indicated. *Affiliations: Dr. M. Willem, Adolf-Butenandt-Institute, Biochemistry, 
Ludwig-Maximilians-University, Munich; Dr. E. Kremmer, Institute of Molecular Immunology, Helmholtz 
Center, Munich. 
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Table 15. List of secondary antibodies. Each antibody is listed with its name, epitope and type. 
Additionally the dilution used for immunodetection is indicated. 
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5.2 Methods 

5.2.1 Molecular biology and recombinant DNA techniques 

5.2.1.1 Polymerase chain reaction (PCR) 

Polymerase chain reactions were performed using the primers and cDNA plasmids described 

in 5.1.2 & 5.1.3 and typically set up as follows. 

 

 10 μl  Pwo-buffer (10x, PeqLab) 

 1 μl  dNTP-Mix (10 mM, Roche) 

 1 μl  forward primer (100 pmo/µl) 

 1 μl  reverse primer (100 pmo/µll) 

 20 ng template DNA 

 1 μl  Pwo-DNA-Polymerase (1 U/µl, PeqLab) 

 Ad 100 μl  ddH2O 

 

All PCR reactions were prepared on ice and performed in a pre-heated thermocycler (“hot-

start”) using the following program. 

 

    Cycles  Temperature  Duration 

Initial denaturation  1  95°C   5 min 

Amplification   30  

Denaturation    95°C   30 sec 

Annealing    55°C   30 sec 

Extension    72°C   250 bp/min 

Final extension  1  72°C   10 min 

Storage   1  4°C   ever 

 

If necessary, the annealing temperature was adjusted to the melting temperature of the 

primers (usually starting 5°C below the respective Tm). The PCR product was purified by 

subjecting the entire PCR sample to agarose gel electrophoresis and gel extraction as 

described below (5.2.1.5). 
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5.2.1.2 Site-directed mutagenesis (SDM) 

In order to introduce specific mutations and to delete or insert multiple amino acids into a 

cDNA construct, the QuickChange Site-Directed mutagenesis protocol (Agilent) was used. 

The site-directed mutagenesis primers were designed following the manufacturer’s 

suggestions and are listed in 5.1.2 Table 10. A typical site-directed mutagenesis PCR 

reaction was set up as follows. 

 

 5 µl  Cloned Pfu reaction buffer (10x, Agilent) 

 50 ng  template DNA 

 1.3 µl  forward primer (10 pmol/µl) 

 1.3 µl  reverse primer (10 pmol/µl) 

 1 μl  dNTP-Mix (10 mM, Roche) 

 1 µl PfuTurbo Polymerase (2.5 U/µl, Agilent) 

 Ad 50 µl ddH2O  

 

All PCR reactions were prepared on ice and performed in a pre-heated thermocycler 

(“hot-start”) using the following program. 

 

     Cycles  Temperature  Duration 

Initial denaturation  1  95°C   30 sec 

Amplification   12-18*   

Denaturation    95°C   30 sec 

  Annealing    55°C   1 min 

Extension    68°C   500 bp/min 

Final extension  1  68°C   10 min 

Storage    1  4°C   ever 

*Point mutations: 12 cycles; single amino acid exchange: 16 cycles; multiple amino acid 

deletions or insertions: 18 cycles 

 

Following the PCR 1 µl of Dpn I restriction enzyme (20 U/µl, NEB) was directly added to the 

reaction and the sample was mixed and incubated at 37°C for 1.5 h in order to digest the 

parental (non-mutated) cDNA. Afterwards 1 µl of the digest was used to transform chemically 

competent E.coli DH5α as described in 5.2.1.8 with the exception that only 50 µl of 

competent bacteria per sample were used. After incubation on an LB agar plate containing 
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the appropriate antibiotic for selection, six single clones were picked and their DNA was 

isolated using the NucleoSpin Plasmid kit (Macherey-Nagel) (“Miniprep”, 5.2.1.9). The 

presence of the desired mutation was confirmed by sequencing (5.2.1.10). 

5.2.1.3 Enzymatic restriction of DNA 

All restriction enzymes, reaction buffers and additives were obtained from Fermentas, Roche 

or New England Biolabs (NEB) and were used according to the manufacturer’s instructions. 

For analytical purposes 10 µl of a small-scale plasmid preparation (“Miniprep”, 5.2.1.9) and 

for preparative restrictions (for subsequent ligations) 17 µl of a cleaned up PCR product 

(5.2.1.5) or 1 µl (≈ 1 µg DNA) of a large-scale plasmid preparation (“Maxiprep”, 5.2.1.9) were 

incubated with 1-5 U of the respective enzyme(s) in the appropriate reaction buffer. 

Restrictions were performed in a final volume of 20 µl for at least 2 h at the temperature 

specified by the enzyme’s manufacturer.  

5.2.1.4 Dephosphorylation of DNA 

To prevent re-ligation of the linearized DNA plasmid (especially when restriction was 

performed with a single enzyme) the terminal phosphate at the 5’ end was removed through 

treatment with alkaline phosphatase. 3 µl of 10x rAPid reaction buffer and 1 U of rAPid 

alkaline phosphatase (1 U/µl, both Roche) were directly added to a preparative restriction 

sample (20 µl, 5.2.1.3) which was then adjusted to a total volume of 50 µl with ddH2O. 

Dephosphorylation was performed for 1 h at 37°C and the DNA was purified via gel 

electrophoresis and gel extraction afterwards (5.2.1.5). 

5.2.1.5 Agarose gel electrophoresis and gel extraction of DNA 

TAE buffer 40 mM Tris/HCl pH 8.0, 20 mM NaAcetat, 2 mM EDTA in ddH2O, pH 
8.0 

 
DNA loading buffer 10x 100 mM Tris pH 9.0, 10 mM EDTA, 50% glycerol, 0.5% Orange G in 

ddH2O, pH 9.0 
 

DNA was separated and analyzed using agarose gel electrophoresis with 0.8-2.0% agarose 

gels (depending on the size of the DNA fragment). Agarose was dissolved in TAE buffer by 

heating and supplemented with 0.3 µg/ml ethidium bromide prior to casting of the gel. The 

DNA samples were mixed with loading buffer and electrophoresis was performed in TAE 

buffer at a constant voltage of 120 V using the 100 bp or 1 Kb DNA Ladder (both Invitrogen) 

as standard. After electrophoresis the DNA was visualized under UV light and, if required, 

separated DNA fragments were cut from the agarose gel and subsequently purified using the 
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Nucleo Spin Extract II kit (Macherey-Nagel). Purification was done according to the 

manufacturer’s instructions with the following modifications: 400 µl of the buffer NT were 

used to dissolve the agarose slice without determining its weight and the DNA was eluted 

with 80 µl ddH2O. 

5.2.1.6 Ligation 

After purification via agarose gel electrophoresis DNA fragments were ligated into linearized, 

dephosphorylated vectors using the T4 DNA ligase (5 U/µl, Thermo Scientific). Without 

determining the DNA concentrations, 2 µl of the vector and 8 µl of the insert as eluted after 

agarose gel extraction (5.2.1.5) were incubated with 5 U T4 DNA ligase in a final volume of 

20 µl containing the T4 DNA ligase buffer (Thermo Scientific). Ligations were performed for 

at least 2 h at RT and 5 µl of the ligation sample were used to transform competent E.coli 

(5.2.1.8). 

5.2.1.7 Preparation of competent bacteria 

Transformation buffer 50 mM CaCl2, 10 mM PIPES, pH 6.6, 15% glycerol in ddH2O, sterile 
filtered 

 
LB medium 1% Bacto Tryptone, 0.5% yeast extract (both Becton Dickinson), 

17.25 mM NaCl in ddH2O, pH 7.0, autoclaved at 1.2 bar, 120°C for 20 
min 

 

Chemically competent Escherichia coli (E.coli) DH5α cells were prepared using a modified 

calcium chloride method. 3 ml of LB medium were inoculated with E.coli and incubated (2-3 

h, 37°C, agitation) until an optical density of OD600 = 0.2 was reached. Subsequently this pre-

culture was used to inoculate 200 ml of LB medium which were again incubated to an OD600 

of 0.2. Afterwards the bacterial culture was divided into 50 ml aliquots and chilled on ice for 

10’. From now on all subsequent steps were performed at 4°C. The bacteria were collected 

by centrifugation (10’, 2000 g at 4°C) and each pellet was resuspended in 25 ml of ice-cold 

transformation buffer. The suspensions were incubated on ice for 20’, centrifuged again (10’, 

2000 g at 4°C) and finally each pellet was resuspended in 2.5 ml ice-cold transformation 

buffer. The bacteria were divided into 100 µl aliquots and then immediately frozen in liquid 

nitrogen and stored at -80°C until use. 
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5.2.1.8 Transformation of bacteria 

LB medium 1% Bacto Tryptone, 0.5% yeast extract (both Becton Dickinson), 
17.25 mM NaCl in ddH2O, pH 7.0, autoclaved at 1.2 bar, 120°C for 20 
min 

 
LBAMP medium   LB medium supplemented with ampicillin (100 µg/ml, Roth) 
 
LB agar plates LB medium supplemented with agar (15 g/l, Becton Dickinson), 

autoclaved at 1.2 bar, 120°C for 20 min. If desired, ampicillin was 
added after cooling. 

 

An aliquot (100 µl) of chemically competent E.coli DH5α (5.2.1.7) was thawed on ice and 5 µl 

of a standard ligation (5.2.1.6) or 20-50 ng plasmid were added. The suspension was mixed 

gently, incubated on ice for 20’ and then heat shocked for 30’’ at 42°C. After chilling on ice 

for 2’, 500 µl LB medium (w/o AMP) were added and the bacteria were incubated for 30’ 

(37°C with agitation). 50 µl and 300 µl of the suspension were spread onto pre-warmed 

LBAMP agar plates using glass beads and the plates were incubated o/n at 37°C. Clones were 

selected by picking single, separated colonies from the plates and 3 ml of LBAMP medium 

were inoculated for subsequent isolation of DNA (5.2.1.9). Positive clones were identified by 

analytical digest (5.2.1.3) and sequencing (5.2.1.10). 

5.2.1.9 Plasmid DNA preparation 

LBAMP medium   LB medium (5.2.1.8) supplemented with ampicillin (100 µg/ml, Roth) 
 

Small scale, analytical plasmid preparation (“Miniprep”) 

For analytical purposes small amounts of plasmid DNA were purified from transformed 

bacteria using the NucleoSpin Plasmid kit (Macherey-Nagel). The respective E.coli clone 

was grown in 3 ml of LBAMP medium o/n (37°C with agitation) and 1.5 ml of the suspension 

were used for DNA isolation following the manufacturer’s instructions. Plasmid DNA was 

eluted twice (with 2x 25 µl of buffer AE after 3’ incubation at RT) and was used for analytical 

restriction digest (10 µl) or sequencing (30 µl). 

 

Large scale, preparative plasmid preparation (“Maxiprep”) 

To obtain plasmid DNA amounts sufficient for further cloning or transfection of eukaryotic 

cells, the NucleoBond Xtra Maxi EF plasmid purification kit (Macherey-Nagel) was used. 300 

ml of LBAMP medium were inoculated with 10 µl of an E.coli culture remaining from a previous 

small scale plasmid preparation or directly with a clone picked from a selection plate. After 

o/n incubation (37°C with agitation) the bacteria were harvested by centrifugation (15’, 6000 
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g at 4°C) and plasmid DNA was isolated according to the manufacturer’s instructions. The 

DNA was dissolved in 400 µl of endotoxin-free H2O (provided with the kit) by incubation o/n 

at 4°C and the concentration and purity were determined by UV spectrophotometry using a 

NanoPhotometer (Implen). The DNA concentration was usually adjusted to 1.0-1.5 µg/µl and 

aliquots were kept at 4°C and -20°C for short-term and long-term storage, respectively. 

5.2.1.10 Sequencing of DNA 

DNA sequencing reactions were performed by GATC Biotech AG using Sanger sequencing 

on the 3730xl DNA analyzer (Applied Biosystems). The sequencing data were analyzed with 

the CLC Main Workbench 6.6 software (CLC bio). 

5.2.2 Cell culture methods 

5.2.2.1 Cultivation of continuous cell lines 

PBS 140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, 2.7 mM KCl in 
ddH2O, pH 7.4, autoclaved at 1.2 bar, 120°C for 20 min 

 
Trypsin-EDTA   0.05% Trypsin, 0.53 mM EDTA-4Na (Gibco) 
 
Penicillin/Streptomycin   5000 U/ml penicillin, 5 mg/ml streptomycin (100x, Gibco) 
 
Standard medium Dulbecco’s modified Eagle’s medium (DMEM) high glucose + 

GlutaMAX (Gibco) supplemented with 10% fetal calf serum (Sigma) 
and 1% penicillin/streptomycin 

  
Selection media   Standard medium supplemented with 200 µg/ml zeocin (Gibco)  

 
Medium with NEAA Standard medium supplemented with non-essential amino acids 

(NEAA) solution (100x, Gibco) 
 
Stable cell lines (5.1.5 Table 13) were cultured in the appropriate medium using a standard 

incubator set to 37°C, 5% CO2 and 95% relative humidity. For passaging and propagation, 

cells were washed once with PBS and incubated with trypsin solution until the cell layer 

detached from the culture dish. Cells were collected in standard medium, pelleted by 

centrifugation (5’, 1000 g at RT) and resuspended in fresh medium. The cell suspension was 

then transferred to new culture dishes (containing appropriate medium) to achieve the 

desired dilution. 
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5.2.2.2 Cryopreservation of cell lines 

Freezing medium  Fetal calf serum (Gibco) supplemented with 10% DMSO (Sigma) 
 

Cells were collected from a 10 cm culture dish grown to 90% confluency as described above 

(5.2.2.1). The cell pellet was carefully resuspended in 1.5 ml of freezing medium and two 

times 0.75 ml of the suspension were transferred into micro cryotubes (Sarstedt). Cells were 

frozen at -80°C using an isopropanol cryo 1°C freezing container (Nalgene) and stored in 

vapor phase nitrogen.  

Cells were thawed by placing the cryotube in a water bath (37°C) and then 

immediately diluted in 10 ml of culture medium. After centrifugation (5’, 1000 g at RT), the 

cells were resuspended in standard culture medium (5.2.2.1) and transferred to a culture 

dish. If required, medium was supplemented with antibiotics as soon as cell growth was 

apparent. 

5.2.2.3 Primary Schwann cell culture 

Trypsin solution   2.5% trypsin in dH2O (both Gibco) 
 
Collagenase solution  1.0% collagenase (Worthington) in dH2O (Gibco) 
 
D-medium Dulbecco’s modified Eagle’s medium (DMEM) high glucose, 

supplemented with 10% fetal bovine serum, 1% penicillin/strepto-
mycin and 2 mM glutamine (all Gibco) 

 
Poly-L-lysine solution  1.0% poly-L-lysine hydrobromide (Sigma) in dH2O (Gibco) 
 
Ara-C Cytosine-β-arabino furanoside hydrochloride (Ara-C, Sigma) in dH2O, 

sterile filtered 
 
Forskolin 2 mM forskolin (Sigma) in 100% EtOH 
 

Primary Schwann cells were provided by Dr. Alessio Colombo and Dr. Stefan F. 

Lichtenthaler (German Center for Neurodegenerative Diseases, DZNE, Munich) and were 

prepared as described previously (Einheber et al., 1997). Briefly, sciatic nerves were isolated 

from Sprague-Dawley rats (postembryonic day 3) and collected in ice-cold Leibovitz’s L-15 

medium (Gibco). After centrifugation (3’, 100 g at 4°C), the supernatant was decanted and 8 

ml of pre-warmed L-15 medium as well as 1 ml of pre-warmed collagenase and trypsin 

solution were added to the isolated nerves. The sample was mixed gently, incubated for 30’ 

at 37°C and then spun for 10’ (800 g at RT). The pellet was washed twice with 10 ml of D-

medium and cells were dissociated mechanically by careful pipetting. Approx. 4x105 cells 

were seeded into 6 cm culture dishes coated with poly-L-lysine and cultured in D-medium 
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using a standard incubator set to 37°C, 5% CO2 and 95% relative humidity. On the following 

day the cells were washed twice with HBBS (Gibco) and incubated for two days with D-

medium containing 10 µM Ara-C to eliminate proliferating cells. After two washes with HBBS 

the Schwann cells were recovered for two days in D-medium and on day 6 fibroblasts were 

eliminated using complement-mediated cellular cytotoxicity. To this end the cells were 

washed once with HBBS and once with D-medium containing 20 mM HEPES (Gibco) and 

then incubated for 10’ to 15’ with D-medium containing 20 mM HEPES and 40 µl of α-Thy1.1 

antibody (Serotec). Subsequently 400 µl of complement rabbit serum (Calbiochem) were 

added and the cells were again incubated for 30’ to 40’. Afterwards the Schwann cells were 

cultured in D-medium containing 2 µM forskolin and 10 µg/ml pituitary extract (Sigma) to 

allow proliferation. The medium was replaced every other day and proliferation was stopped 

one day before the experiment. 

5.2.2.4 Primary neuron culture 

Poly-D-lysine solution  1.5% poly-D-lysine hydrobromide (Sigma) in 0.1 M borate buffer 
 

Borate buffer 40 mM boric acid, 10 mM Na2B4O7 in ddH2O, pH 8.5, autoclaved at 
1.2 bar, 120°C for 20 min  

 
HBSS 140 mM NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 5.6 mM glucose, 0.44 

mM KH2PO4, 1.3 mM CaCl2, 1 mM MgSO4, 4.2 mM NaHCO3 in 
ddH2O, autoclaved at 1.2 bar, 120°C for 20 min 

 
Trypsin solution   0.08% trypsin (Gibco) in HBSS 
 
Neuronal medium Neurobasal medium with 2% B27 supplement, 1% 

penicillin/streptomycin and 2 mM L-glutamine (all Gibco) 
 

Primary hippocampal neurons were provided by Benjamin Schwenk and Dr. Dieter Edbauer 

(German Center for Neurodegenerative Diseases, DZNE, Munich) and were prepared as 

described previously (Edbauer et al., 2010). Briefly, hippocampi were isolated from 

embryonic day 18 Sprague-Dawley rat embryos, washed four times with ice-cold HBSS and 

incubated in trypsin solution for 15’ at 37°C. Afterwards hippocampi were washed again four 

times with pre-warmed HBSS and neurons were dissociated mechanically by careful 

pipetting. Approx. 1x106 neurons/well were seeded in 6 well culture plates coated with poly-

D-lysine and equilibrated with neuronal medium. Hippocampal neurons were cultivated using 

a standard incubator set to 37°C, 5% CO2 and 95% relative humidity. 
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5.2.2.5 Transient transfection 

Cells were grown to a confluency of approx. 70-90% in the absence of antibiotics. Liposome-

mediated transient transfections were done using Lipofectamine2000 (LFA, Invitrogen) 

following the manufacturer’s instructions but the amount of DNA and volume of LFA was 

adjusted (Table 16). Both DNA and LFA were separately diluted in OptiMEM + GlutaMAX 

(Gibco) and incubated for 5’ at RT. Afterwards the solutions were combined, incubated again 

for 20’ at RT and then added dropwise to the cells. The medium was changed after 12-24 h 

and the cells were used to condition supernatant and/or were lysed within the following 12 to 

60 h. 

 

 
 

Table 16. Amount of cDNA and volumes of medium, Lipofectamine2000 and OptiMEM for 
transient transfections. 

 

5.2.2.6 Production of lentivirus 

OptiMEM+FCS   OptiMEM + GlutaMAX (Gibco) supplemented with 10% FCS (Sigma) 
 
Packaging medium Dulbecco’s modified Eagle’s medium (DMEM) high glucose + 

GlutaMAX (Gibco) supplemented with 10% FCS (Sigma), 1% 
penicillin/streptomycin, non-essential amino acids (both Gibco) and 
1.3% BSA (Sigma) 

 

Production of lentiviral particles was done in cooperation with Benjamin Schwenk and Dr. 

Dieter Edbauer (German Center for Neurodegenerative Diseases, DZNE, Munich) using a 

modified third-generation packaging system (Tiscornia et al., 2006). Three different vectors, 

namely a lentiviral expression construct, psPAX2 and pVSVg (5.1.3 Table 11) were 

combined to produce VSVg pseudotyped lentiviral particles. HEK293FT cells of a low 

passage number which had never reached confluency were used as packaging cell line and 

5.5x106 cells were plated per 10 cm culture dish 24 h prior to transfection. For each virus 

three 10 cm dishes were transfected using Lipofectamine2000 (Invitrogen) following the 

manufacturer’s instruction. The transfection mixture was prepared by diluting 108 µl of LFA in 

4.5 ml of OptiMEM + GlutaMAX (Gibco) and, after 5’ of incubation at RT, combining this 
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solution with 4.5 ml of OptiMEM containing the lentiviral plasmids (Table 17). After mixing, 

the solution was again incubated at RT for 20’ during which the HEK293FT cell medium was 

replaced by 5 ml of OptiMEM+FCS. Finally, 3 ml of the transfection mix were added dropwise 

to each plate and the cells were incubated for 24 h. Afterwards the medium was aspirated 

and 10 ml of packaging medium were added to the cells which then were incubated for 

another 24 h. After collection, the conditioned medium was centrifuged (10’, 600 g at RT) and 

passed through a sterile PES membrane filter (pore size: 0.45 µm, VWR International). The 

lentiviral particles were isolated by ultracentrifugation (2 h, 112500 g at 4°C) and the virus 

pellet was resuspended in 160 µl neurobasal medium (Gibco). Aliquots of the virus were 

stored at -80°C until usage. 

 

 

Table 17. Amount of plasmids for the production of lentivirus. 
 

5.2.2.7 Lentiviral transduction 

Neuronal medium Neurobasal medium with 2% B27 supplement, 1% penicillin/strepto-
mycin and 2 mM L-glutamine (all Gibco) 

 

Lentiviral transduction of primary neuronal cells was done in cooperation with Benjamin 

Schwenk and Dr. Dieter Edbauer (German Center for Neurodegenerative Diseases, DZNE, 

Munich). Primary hippocampal neurons were cultivated in 6 well plates (approx. 1x106 

cells/well, 2.5 ml neuronal medium) and transduced after five to six days in culture. Prior to 

transduction 1 ml of medium was removed from each well and kept in the incubator. The 

desired amount of lentivirus (2-5 µl/well) was added to the cells which were then incubated 

for 8 h. Afterwards the medium was aspirated and replaced by 1 ml of the previously 

withdrawn medium mixed with 1 ml of fresh neuronal medium. Neurons were allowed to 

recover for 48 h before the medium was removed and 1.5 ml of fresh neuronal medium 

(containing inhibitors) were added and conditioned for 12-24 h.  
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5.2.2.8 Inhibitor treatment and conditioning of supernatant 

Medium    Standard medium (5.2.2.1) 
 

For inhibitor treatment the cell culture medium was replaced with fresh, pre-warmed medium 

supplemented with inhibitors of the appropriate concentration (5.1.4 Table 12) or DMSO as 

control. Cells in 10 cm culture dishes were incubated with 6.5 ml medium and 2.5 ml and 1.5 

ml medium were used for cells in 6 cm dishes and 6 well plates, respectively. Treatment was 

usually initiated when cells reached a confluency of 90-100% or 12-24 h after transfection 

and lasted for 8-24 h. Afterwards conditioned medium and cells were collected (5.2.2.10) and 

analyzed as described (5.2.3). 

5.2.2.9 RNA interference experiments 

ADAM10 & control siRNA siGENOME siRNA, human ADAM10; control: siGENOME Non-
Targeting siRNA Pool #1; used at 10 nM (both Thermo Scientific) 

 
ADAM17 & control siRNA On-TARGETplus SMARTpool ADAM17, human ADAM17; control: 

ON-TARGETplus Non-Targeting pool; used at 15 nM (both 
Dharmacon) 

 
Medium without antibiotics Standard medium (5.2.2.1) without penicillin/streptomycin  
 
Poly-L-lysine solution  0.1 mg/ml poly-L-lysine hydrobromide in PBS (5.2.2.1) 

 

RNAi experiments in HEK293 cells were carried out in 10 cm culture dishes using reverse 

transfection with Lipofectamine2000 (Invitrogen). The siRNA and 45 µl of Lipofectamine2000 

were each diluted in 750 µl Optimem + GlutaMAX (Gibco) and incubated for 5’ at RT. 

Afterwards the solutions were combined and incubated for another 20’ at RT. 5 ml of 

standard medium without antibiotics were transferred to a 10 cm dish coated with poly-L-

lysine and the transfection mix was added. HEK293 cells from a 90-100% confluent 10 cm 

dish were then split 1:3.5 or 1:4.5 into the prepared dish and incubated for 24 h after which 5 

ml of fresh medium (no antibiotics) were added. If necessary, cDNA was transfected 45-50 h 

after the reverse transfection following the protocol described before (5.2.2.5), except only 5 

µg of DNA and 13 µl of Lipofectamine2000 were used. Prior to transfection the medium was 

replaced by 10 ml of fresh medium (no antibiotics) and the cells were incubated for 24 h after 

transfection. For conditioning, the medium was exchanged again and conditioned 

supernatant and cells were collected after another 20-24 h. 
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5.2.2.10 Collection of conditioned supernatant and cell harvest 

PBS 140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, 2.7 mM KCl in 
ddH2O, pH 7.4, autoclaved at 1.2 bar, 120°C for 20 min 

 

For the collection of supernatant and cells, culture vessels were put on ice and the medium 

was aspirated and immediately supplemented with Protease Inhibitor Cocktail (Sigma). 

Remaining cells and debris were removed by centrifugation (10’, 5500 g at 4°C) and the 

medium was either analyzed immediately or stored at -20°C. The cell monolayer was 

washed once with ice-cold PBS and cells were collected in no more than 1 ml of PBS 

(depending on the size of the culture vessel) using a cell scraper. The suspension was 

transferred to a plastic tube, cells were pelleted by centrifugation (5’, 1000 g at 4°C) and 

either lysed immediately or stored at -80°C until further analysis. 

5.2.3 Protein biochemistry 

5.2.3.1 Preparation of total cell lysate 

Lysis buffer 20 mM sodium citrate pH 6.4, 1 mM EDTA, 1% Triton X-100 in 
ddH2O, supplemented with Protease Inhibitor Cocktail (Sigma) 

 

To prepare total lysates, cell pellets obtained from 10 cm dishes were resuspended in 0.8-1.2 

ml of lysis buffer and 500-800 µl and 100-300 µl of lysis buffer were used for pellets from 6 

cm dishes and 6 well plates, respectively. The cell suspension was incubated for 30’ at 4°C 

(with agitation) to ensure complete lysis. Nuclei and undissolved cell debris were removed by 

centrifugation (15’, 10000 g at 4°C). The lysate was analyzed immediately or stored at -80°C. 

5.2.3.2 Measurement of protein concentration 

The protein concentration of lysates was determined using the Uptima BC Assay Protein 

Quantitation kit (Interchim). The assay was performed in a 96 well plate following the 

manufacturer’s instruction and typically 2-5 µl of lysate were used. Serial dilutions (0.2-2.0 

µg/µl) of bovine serum albumin (BSA, provided with the kit) served as standard and after 

incubation (30’ at 37°C) absorbance was measured at 562 nm using an ELISA reader 

(PowerWave XS, BioTek). 
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5.2.3.3 Preparation of cell membranes 

Hypotonic buffer 10 mM Tris pH 7.4, 1 mM EDTA, 1 mM EGTA in ddH2O, 
supplemented with Protease Inhibitor Cocktail (Sigma) 

 
Laemmli sample buffer (4x) 0.25 M Tris pH 6.8, 8% SDS, 40% glycerol, 1% DTT, bromphenol blue 

in ddH2O 
 

For the detection of endogenous BACE1, ADAM10 and ADAM17 in HEK293 cells, cell 

membrane fractions were prepared. Cells from a 10 cm dish were resuspended in 1.2 ml 

hypotonic buffer, incubated on ice for 10’ and disrupted by passing the suspension through a 

needle (gauge 23, 0.6 mm, 1 ml syringe) for 10 times. Intact cells, nuclei, large organelles 

and cytoskeleton compounds were removed by centrifugation (15’, 1000 g at 4°C) and the 

post nuclear supernatant was spun again (30’, 17000 g at 4°C) to pellet membranes. The 

membrane pellet was resuspended in 100-140 µl of 4x laemmli sample buffer for 5’ at 95°C 

(with agitation) and 5-10 µl were used for SDS-PAGE and immunoblot analysis (5.2.3.5 & 

5.2.3.6). 

5.2.3.4 Immunoprecipitation (IP) for western blot analysis  

STEN buffer 50 mM Tris pH 7.6, 150 mM NaCl, 2 mM EDTA, 0.2% NP-40 in ddH2O 
 
Laemmli sample buffer (4x) 0.25 M Tris pH 6.8, 8% SDS, 40% glycerol, 1% DTT, bromphenol blue 

in ddH2O 
 

Prior to IP, the conditioned supernatant was pre-cleared with 2-5 µl/ml (at least 20 µl) of 

Protein G Sepharose (PGS 4 Fast Flow, GE Healthcare) for at least 1 h at 4°C (overhead 

rotation). The PGS was pelleted by centrifugation (5’, 2000 g at 4°C) and the cleared 

supernatant was transferred to fresh tubes. An appropriate amount of the respective antibody 

(5.1.6 Table 14) was added and the sample was incubated o/n at 4°C (overhead rotation). 

Usually 10-20 µl/ml of non-purified antibody solution (hybridoma supernatant) were added 

while purified antibodies were used at a concentration of 1 µg/ml. After antibody binding, 25-

50 µl of PGS were added, incubated for at least 3 h at 4°C (overhead rotation) and 

subsequently collected by centrifugation (5’, 2000 g at 4°C). In case the antibody was 

provided as agarose bead conjugate, 15-30 µl of the suspension were added to the cleared 

supernatant, similarly incubated o/n and also collected by centrifugation. The beads were 

washed 1x with 1 ml STEN buffer and 1x with 1 ml ddH2O (collected each time by 

centrifugation: 5’, 1000 g at 4°C) and the remaining liquid was thoroughly removed using a 

syringe (1 ml) equipped with a gauge 27 needle (0.4 mm). Washed beads were either stored 

at -20°C or eluted immediately. For elution the beads were resuspended in 35 µl 4x laemmli 
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sample buffer and incubated for 5’ at 95°C. After centrifugation (5’, 17000 g at RT) the 

supernatant was analyzed by SDS-PAGE and immunoblotting (5.2.3.5 & 5.2.3.6). 

5.2.3.5 SDS Polyacrylamide gel electrophoresis (SDS-PAGE) 

Stacking gel buffer  0.5 M Tris, 0.4% SDS in ddH2O, pH 6.8 
 
Separating gel buffer  1.5 M Tris, 0.4% SDS in ddH2O, pH 8.8 
 
Acrylamide   40% Acrylamide-bismethylenacrylamide (37.5:1, Serva) 
 
Laemmli sample buffer (4x) 0.25 M Tris pH 6.8, 8% SDS, 40% glycerol, 1% DTT, bromphenol 

blue in ddH2O 
 
Tris-glycine buffer  25 mM Tris, 190 mM glycine, 0.1% SDS in ddH2O 
 
Tris-tricine buffer  100 mM Tris, 100 mM Tricine, 0.1% SDS in ddH2O 
 

Proteins were separated under denaturizing conditions using discontinuous SDS-PAGE. 

Polyacrylamide gels (LxWxD 7.0 cm x 8.3 cm x 1.5 mm) were cast using the Mini-PROTEAN 

system (BIORAD) and consisted of a stacking gel (4% acrylamide) and a separating gel (8-

14% acrylamide, depending on the size of the protein to be separated). The preparation of 

an 8% polyacrylamide gel is exemplified in Table 18. Prior to loading, laemmli sample buffer 

was added to the protein solutions and the samples were heated to 95°C for 5’. After cooling, 

equal amounts of protein were loaded into the wells of the gel and 10 µl of the SeeBlue Plus2 

Prestained Standard (Invitrogen) served as molecular weight standard. Electrophoresis was 

performed in Tris-glycine buffer using the Mini-PROTEAN system (BIORAD) and applying 50 

V before and 120 V after the proteins migrated into the separation gel. Small proteins (> 10 

kDa) were separated with precast gradient Tricine Protein Gels (10-20%, 1 mm, Novex) in 

Tris-tricine buffer using the XCell SureLock Mini-Cell system (Novex). 
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Table 18. Composition of a separating (8%) and stacking (4%) gel for 
SDS-PAGE. Volumes of the ingredients are indicated for one mini-gel of 1.5 
mm thickness. 

 

5.2.3.6 Western blotting and immunodetection 

Transfer buffer    25 mM Tris, 190 mM glycine in ddH2O 
 
PBS 140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, 2.7 mM KCl in 

ddH2O, pH 7.4, autoclaved at 1.2 bar, 120°C for 20 min 
 
I-Block solution   0.2% Tropix I-Block (Applied Biosystems), 0.1% Tween20 in PBS  
 
TBS-T buffer 140 mM NaCl, 2.68 mM KCl, 24.76 mM Tris, 0.3% Triton X-100 in 

ddH2O, pH 7.6 
 

After separation by SDS-PAGE proteins were transferred onto membranes using the 

tank/wet Mini Trans-Blot cell system (BIORAD). Polyvinylidene fluoride membranes (PVDF, 

0.45 µm, Immobilon-P Transfer Membrane, Millipore) were used for proteins separated with 

handcast gels (8-14% acrylamide) and were activated beforehand with isopropanol followed 

by three washes with dH2O. Proteins from precast gradient gels (10-20% acrylamide) were 

transferred onto nitrocellulose membranes (0.45 µm, Protran BA 85, GE Healthcare) and 

membranes of both types were equilibrated in transfer buffer for 5’ prior to blotting. Western 

blotting was performed in transfer buffer at a constant current of 400 mA for 1 h using the 

Mini Trans-Blot cell system (BIORAD). Upon completion of the transfer and prior to blocking, 

proteins transferred to nitrocellulose membranes were additionally denatured by boiling the 

membrane in PBS for 5’. After cooling to RT the nitrocellulose membranes, as well as the 

PVDF membranes, were blocked in I-Block solution for 1 h at RT or o/n at 4°C (with 

agitation).  
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Transferred proteins were detected and identified using immunodetection and enhanced 

chemiluminescence (ECL). To this end, blocked membranes were incubated with primary 

antibodies (5.1.6 Table 14) diluted in I-Block solution o/n at 4°C (with agitation). After 

removal of the antibody solution the membranes were washed three times in TBS-T buffer 

(10’ each, at RT, with agitation) and subsequently incubated with a horseradish peroxidase 

(HRP) coupled secondary antibody (5.1.6 Table 15) specific for the species of the primary 

detection antibody. Secondary antibodies were diluted in I-Block solution as well and 

membranes were incubated for 1 h at RT (with agitation), again followed by three washes in 

TBS-T (as before). For ECL detection, the membranes were incubated in 2 ml of HRP 

substrate (ECL, GE Healtchcare or ECL Plus, Thermo Scientific) for 1’ at RT and signals 

were captured with X-ray films (Super RX Medical X-Ray, Fujifilm) which subsequently were 

developed using an automated film developer (CAWOMAT 2000 IR, CAWO). Alternatively, 

western blot signals were acquired with the Luminescent Image Analyzer LAS-4000 

(Fujifilm). Densitometric quantification of western blot signals was done using the Multi 

Gauge software v3.0 (Fujifilm). 

5.2.3.7 Stripping of gels 

Stripping buffer   62.5 mM Tris pH 6.7, 2% SDS, 100 mM β-mercaptoethanol in ddH2O 
 
TBS-T buffer 140  mM NaCl, 2.68 mM KCl, 24.76 mM Tris, 0.3% Triton X-100 in 

ddH2O, pH 7.6 
 
I-Block solution   0.2% Tropix I-Block (Applied Biosystems), 0.1% Tween20 in PBS  
 

To remove previous antibodies and to allow for redecoration with different antibodies, 

membranes were incubated in stripping buffer for up to 1 h at 50°C (with agitation). 

Afterwards the membranes were washed three times with TBS-T (10’ each, at RT, with 

agitation) and were blocked again with I-Block solution for at least 1 h at RT. 

5.2.3.8 Preparation of sEGF domains and phosphorylation assay 

RIPA-PP buffer 20 mM Tris pH 7.4, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% NP-
40, 0.5% Na-desoxycholat, 0.05% Triton X-100 in ddH2O 
supplemented before use with 10 mM NaF, 1 mM Na-orthovanadate, 
Phosphatase Inhibitor Cocktail (PhosSTOP, Roche) and Protease 
Inhibitor Cocktail (Sigma) 

 
PBS 140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, 2.7 mM KCl in 

ddH2O, pH 7.4, autoclaved at 1.2 bar, 120°C for 20 min 
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Constructs encoding soluble EGF-like domains (sEGF) (5.1.3 Table 11) were transfected into 

CHO wt and CHO ldlD cells (5.1.4 Table 13) seeded in 10 cm culture dishes as described 

before (5.2.2.5). 8 h after transfection the medium was aspirated and 8 ml of fresh medium 

were added and conditioned for 24 h. The collected supernatants were cleared of cell debris 

by centrifugation (5’, 1000 g at RT) and the initial concentrations of the soluble EGF-like 

domains were determined by immunodetection. Afterwards, medium of control cells was 

used to adjust and equalize the sEGF concentrations by dilution. Equal levels were 

controlled by immunodetection again and adjusted supernatants were either used 

immediately for stimulation or stored at -20°C. 

MCF-7 or primary Schwann cells to be used for the phosphorylation assay were 

seeded in 6 well culture plates or 6 cm dishes and stimulated upon reaching a confluency of 

approx. 60-80%. In case of Schwann cells, proliferation was stopped one day prior to the 

phosphorylation assay. For stimulation, the culture medium was removed, 1.5-2.5 ml of 

medium containing the adjusted sEGF domains were added carefully and the cells were 

incubated for 30’. Incubation with 0.5 nM recombinant EGF-like domain (NRG1-β1, 396-

HB/CF, R&D Systems) served as positive control and medium of cells expressing an empty 

vector was used as negative control. Afterwards the culture vessels were placed on ice, the 

cells were washed once with ice-cold PBS and 200-300 µl of RIPA-PP buffer were distributed 

onto the cell layer. After 5’ of incubation on ice, the cells were collected into sample tubes 

using a cell scraper and the suspension was further incubated on ice for 15’ to ensure 

complete lysis. Insoluble cell debris was removed by centrifugation (30’, 17000 g at 4°C) and 

the total cell lysate was analyzed for ErbB3 and AKT phosphorylation using western blotting 

and immunodetection. 

5.2.3.9 Cell-free γ-secretase assay 

Homogenization buffer 0.25 M sucrose, 10 mM HEPES pH 7.4 in ddH2O, supplemented with 
1x complete Protease Inhibitor Cocktail (Roche) 

 
Assay buffer 150 mM sodium citrate pH 6.4, 5 mM 1,10-phenantroline in ddH2O, 

supplemented with 4x complete Protease Inhibitor Cocktail (Roche) 
 
Lysis buffer 20 mM sodium citrate pH 6.4, 1 mM EDTA, 1% Triton X-100 in 

ddH2O, supplemented with Protease Inhibitor Cocktail (Sigma) 
 
Laemmli sample buffer (4x) 0.25 M Tris pH 6.8, 8% SDS, 40% glycerol, 1% DTT, bromphenol blue 

in ddH2O 
 

The cell-free γ-secretase assay used to generate the NRG1 intracellular domain (ICD) in 

vitro was modified from a protocol published previously (Fukumori et al., 2006). HEK293 cells 
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harvested from a 10 cm culture dish were resuspended in 750 µl of homogenization buffer 

and disrupted by passing the suspension through a needle (gauge 23, 0.6 mm, 1 ml syringe) 

for 15 times. Nuclei and cell debris were removed by centrifugation (10’, 1000 g at 4°C) and 

the post nuclear supernatant was transferred to fresh tubes and centrifuged again (1 h, 

100000 g at 4°C) to pellet cell membranes. The membrane pellet was resuspended in 100 µl 

of assay buffer by pipetting and then incubated at 37°C (with agitation) for up to 3.5 h. As 

control, the assay was either performed at 4°C or the γ-secretase inhibitor L-685,458 (5.1.4 

Table 12) was added at a final concentration of 1 µM. The reaction was terminated by 

cooling the samples on ice and membranes (P100) and supernatant (S100) were separated 

by centrifugation (1 h, 100000 g at 4°C). To solubilize the membranes, the P100 pellet was 

resuspended in 200 µl of lysis buffer, laemmli sample buffer was added and the sample was 

incubated at 95°C for 5’. After centrifugation (5’, 17000 g at RT) the solubilized membranes 

were analyzed by SDS-PAGE and immunoblotting. The soluble membrane fraction S100 

containing the NRG1 ICD was either also subjected to SDS-PAGE immediately or further 

processed for mass spectrometric measurement by reduction and alkylation (5.2.4.3). 

5.2.4 Mass spectrometry 

5.2.4.1 Immunoprecipitation for mass spectrometric analysis (IP-MS) 

IP-MS buffer 10 mM Tris pH 8.0, 140 mM NaCl, 5 mM EDTA in ddH2O, sterile 
filtered, then supplemented with 0.1% Octyl-β-D-glucopyranoside 
(Sigma) 

 

Immunoprecipitation of samples to be analyzed by mass spectrometry was done similar as 

described before (5.2.3.4) with the following modifications: In order to allow for a small 

elution volume only 10-15 µl of antibody conjugated agarose beads and 20-30 µl of PGS 

were added for precipitation. After collection, beads were washed three times with 1 ml IP-

MS buffer and three times with 1 ml ddH2O and, after removal of residual liquid, were stored 

at -20°C or immediately processed for mass spectrometric analysis (5.2.4.4). 

5.2.4.2 NRG1 β-peptide reduction prior to MS 

NRG1 β-peptides were immunoprecipitated from cell supernatant as described above 

(5.2.4.1). 30 µl of 75 mM DTT were added to the agarose beads and reduction was 

performed for 1 h at 30°C (with agitation). After centrifugation (1’, 17000 g at RT) the DTT 

solution was aspirated from the beads and evaporated using a centrifugal evaporator (15’ at 

45°C). The remaining dried protein was solubilized in 15 µl of the matrix used for mass 
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spectrometry (5.2.4.4). The agarose beads were eluted as described (5.2.4.4) and both 

samples were analyzed by mass spectrometry. 

5.2.4.3 NRG1 ICD reduction and alkylation prior to MS  

ABC buffer    250 mM NH4HCO3 pH 8.0 in ddH2O 
 
DTT    1 M DTT in ddH2O 
 
IAA solution 100 mM 2-Iodacetamide (IAA) in 50 mM ABC buffer, prepared 

immediately before use, protected from light 
 
Cysteine solution 100 mM cysteine in 50 mM ABC buffer, prepared immediately before 

use 
  
IP-MS buffer 10 mM Tris pH 8.0, 140 mM NaCl, 5 mM EDTA in ddH2O, sterile 

filtered, then supplemented with 0.1% Octyl-β-D-glucopyranoside 
(Sigma) 

 

NRG1 ICD was generated in vitro using the cell-free γ-secretase assay as described above 

(5.2.3.9). The S100 assay fraction was adjusted to a final concentration of 50 mM NH4HCO3 

by addition of ABC buffer and a pH strip was used to confirm the solution’s pH was between 

7.5 and 8.5. For reduction, DTT was added to a final concentration of 5.5 mM and the 

sample was incubated for 45’ at 37°C (with agitation). Afterwards IAA was added (10.5 mM 

final concentration) and alkylation was performed for 45’ at 37°C (with agitation) in the dark. 

Excess IAA was quenched by 16 mM cysteine for 5’ at RT (with agitation). Irreversible 

alkylation of the proteins’ free SH groups generates S-carboxyamidomethylcysteine 

(CAM, -CH2CONH2) residues which prevent any further modification and add a specific mass 

of 57.02 Da per modified cysteine to the proteins’ molecular weights. For immuno-

precipitation, 1 ml of IP-MS buffer was added to the sample and precipitation was performed 

as described before (5.2.4.1). 

5.2.4.4 MALDI-TOF MS analysis 

Matrix 0.3% trifluoroacetic acid, 40% acetonitrile in ddH2O, saturated with α-
cyano-4-hydroxycinnamic acid  

 

To elute the precipitated peptides (5.2.4.1) 15-20 µl of the matrix solution were added to the 

agarose beads, the sample was mixed gently and incubated at RT for 5’. Afterwards the 

beads were pelleted by centrifugation (1’, 17000 g at RT) and 1-2 µl of the supernatant were 

directly transferred to the wells of the target plate (Assay sample plate, 96 well, coat, Applied 

Biosystems). The samples were allowed to dry at RT and sample spotting was repeated if 

necessary. After complete drying, the peptides were analyzed by MALDI-TOF mass 
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spectrometry using a Voyager DE STR (Applied Biosystems) mass spectrometer in the lab of 

Dr. Imhof (Center for Protein Analysis, Ludwig-Maximilians-University, Munich). All samples 

were measured with the mass spectrometer set to linear mode and samples containing small 

peptides (1000-5000 Da) were additionally analyzed in reflector mode. In general the preset 

parameters of the spectrometer were used and grid voltage and delay time were set to 90-

95% and 100-300 ns for the linear mode and 60-65% and 150-250 ns for the reflector mode, 

respectively. Molecular masses were calibrated with the calibration mixture 2 of the 

Sequazyme Peptide Mass Standards Kit (Applied Biosystems) and the data were analyzed 

using Data Explorer 4.3 (Applied Biosystems) and GPMAW 5.02 (Lighthouse data) software. 

5.2.5 Zebrafish techniques 

5.2.5.1 General 

E3 media  5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4 in 
ddH2O 

 

Zebrafish were provided and all zebrafish experiments were conducted by Dr. Frauke van 

Bebber and Dr. Bettina Schmid (German Center for Neurodegenerative Diseases, DZNE, 

Munich). All zebrafish were raised at 28°C in E3 media supplemented with methylene blue 

(10-15%) to prevent the growth of mold and were staged as previously described (Kimmel et 

al., 1995). Zebrafish of either sex were used for this work and all experiments were 

performed in accordance with animal protection standards of the Ludwig-Maximilians-

University Munich and have been approved by the government of Upper Bavaria. In addition 

to the AB wt strain the transgenic claudin k:GFP zebrafish line was used in which the 

Schwann cell promoter claudin k drives the expression of a membrane-bound GFP (Münzel 

et al., 2012). To analyze the activity of soluble NRG1 EGF-like domains in vivo, this line was 

crossed with BACE1 mutant zebrafish (bace1-/-) (van Bebber et al., 2013) resulting in 

transgenic claudin k:GFP zebrafish lacking endogenous BACE1 activity. 

5.2.5.2 mRNA injections and imaging 

The mRNAs coding for the different NRG1 EGF-like domains were synthesized in vitro using 

the mMessage mMACHINE kit (Ambion) following the manufacturer’s instructions. The 

mRNA was injected into fertilized eggs (one-cell stage) at a concentration of 425 ng/µl which 

was determined by titration in order to minimize toxic effects. Three days postfertilization (3 

dpf) the zebrafish larvae were anesthetized with triacine (0.016%) and oriented in 2% 

methylcellulose on coverslips. Images were acquired using an LSM510 META inverted 
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confocal microscope (Zeiss) and assembled in Photoshop 8.0 (Adobe Systems). Contrast 

and brightness were adjusted with ImageJ. 

5.2.6 Calculation of hydrophobicity and aggregation 

The hydrophobicity and aggregation propensity of the NRG1 β-peptide and different Aβ 

species were calculated using web-based software tools. The hydropathy index number is a 

measure for the hydrophobic or hydrophilic properties of a peptide and was calculated with 

the tool PeptGen available at http://hcv.lanl.gov/content/sequence/PEPTGEN/ 

Explanation.html. The PeptGen algorithm assigns the Kyte-Doolittle hydropathy index (Kyte 

and Doolittle, 1982) to every amino acid residue of a given sequence and subsequently 

calculates the average for the whole peptide. The intrinsic aggregation propensity (Zagg) of 

peptides was predicted using the sequence-based software Zyggregator (Tartaglia and 

Vendruscolo, 2008; Tartaglia et al., 2008) available at http://www-vendruscolo.ch.cam.ac.uk/ 

zyggregator-all.php after registration. The calculation was performed for a pH value of 7. 

5.2.7 Statistical analysis 

The data obtained from western blot quantification were normalized and the respective 

control was set to 1.0 or 100% as indicated in the figures. All statistical data are represented 

as mean +/- standard deviation (SD) and the number of experiments is given in each figure. 

Statistical analysis was done using the two-tailed unpaired Student’s t-test and results were 

considered significant for p-values below 0.05 (* p<0.05, ** p<0.01, *** p<0.0001). 

Calculations were performed with EXCEL 2010 (Microsoft). 
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8 Abbreviations 

3 dpf   3 days postfertilization  

Aβ   Amyloid β-peptide  

AChR   Acetylcholine receptor  

AD   Alzheimer’s disease  

ADAM  A disintegrin and metalloproteinase  

AICD  Amyloid precursor protein intracellular domain 

AMPA   2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid)   

APH-1  Anterior pharynx-defective-1  

APP  Amyloid precursor protein  

ARIA   Acetylcholine receptor inducing activity   

B4-ICD  ErbB4 intracellular domain  

BACE1 β-site APP cleaving enzyme 1 

CNS   Central nervous system   

CRD   Cysteine-rich domain   

CTF   C-terminal fragment 

DRG   Dorsal root ganglia   

EGF   Epidermal growth factor   

EGFR   Epidermal growth factor receptor 

ELISA  Enzyme-linked immunosorbent assay 

Erk   Extracellular signal-regulated kinase 

FAD  Familial Alzheimer’s disease   

GABA   γ-Aminobutyric acid   

GGF   Glial growth factor  

GSI   γ-Secretase inhibitors   

GSM  γ-Secretase modulator   

HRG   Heregulin  

ICD   Intracellular domain   

IP-MS   Immunoprecipitation mass spectrometry   

KO  Knockout  

MALDI-TOF  Matrix-assisted laser desorption/ionization time of flight mass spectrometry 

MAPK  Mitogen-activated kinase   

MS   Mass spectrometry   
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NCSC   Neural crest stem cell   

NCT   Nicastrin    

NDF  Neu differentiation factor  

NEXT   Notch extracellular truncated    

NICD   Notch intracellular domain   

NMDA   N-Methyl-D-Aspartic acid  

NRG1  Neuregulin-1   

NRG1-ICD  Neuregulin-1 intracellular domain  

NTF   N-terminal fragment  

o/n  Overnight 

PEN2  Presenilin enhancer-2   

PI3K   Phosphatidylinositol 3 kinase 

PKB or AKT  Protein kinase B    

PNS   Peripheral nervous system  

PS  Presenilin  

PSD-95 Post synaptic density protein 95   

RIP   Regulated intramembrane proteolysis  

RTK   ErbB receptor tyrosine kinase  

sAPP   Soluble amyloid precursor protein 

sEGF   Soluble EGF-like domain   

SCP   Schwann cell precursor   

siRNA  Small interfering RNA 

SMDF   Sensory motor neuron-derived factor   

ST6Gal-1  α-2,6 sialyltransferase 

TACE  Tumor necrosis factor α converting enzyme  

TGFα   Transforming growth factor α  

Tm  Melting temperature 

TMD   Transmembrane domain 

TNFα  Tumor necrosis factor α  

VGSC  Voltage-gated sodium channel  

wt   Wild-type  
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