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Introduction

1.	 Introduction

1.1	 Tumor immunology

According to the World Health Organization, cancer was the third leading 

cause of death in high-income countries in 2008 (source: WHO, list of leading 

causes of death 2008). The first and second leading cause of death were 

cardiovascular and cerebrovascular diseases, respectively. In recent years the 

therapy of infectious diseases and cardiovascular diseases strongly improved, 

thereby increasing remarkably the average life expectancy in countries with 

modern medical care. In contrast, the incidences of nearly all types of cancer 

dramatically increased in the last decades in these countries. According to 

the American Cancer Society, the increase in cancer incidences is mostly due 

to the demographic changes in Western countries (source: American Cancer 

Society, cancer facts & figures 2012). Therefore, efficient treatment of cancer 

has become one of the most important challenges for modern medicine.

Cancer always derives from a single initially harmless cell. After accumulating 

several mutations, this cell can give rise to a tumor, a process called malignant 

transformation. In order to become a tumor, tumor cells must gain certain 

abilities such as the independence from growth factors and immortalisation. In 

the past decades it became clear that in addition the tumor cells must acquire 

mechanisms to circumvent immune surveillance in order to develop to a clinically 

relevant tumor. Cancer development is thought to be a dynamic process which 

is accompanied by immunoediting. This process is divided in the three phases: 

elimination, equilibrium and escape (Dunn et al., 2002, 2004). In the first phase, 

also called immune surveillance (Burnet, 1970), potential tumor cells are recog-

nized and killed by the immune system. The second phase, the equilibrium, 

follows if some degenerated cells survived the first phase. As a consequence 

of selection imposed by the immune system these cells accumulate mutations 

and intracellular changes that promote their survival and suppress their killing. 

If one of these cells has gathered enough mutations to escape immune surveil-

lance, the final phase is reached. In this phase the selected tumor cell can grow 

and cause clinically apparent cancers (Shankaran et al., 2001).
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One of the major difficulties of cancer therapy is that all tumor cells must be 

removed and destroyed to cure a patient because even one remaining tumor 

cell can grow again to a lethal tumor. The standard treatment of cancer today 

is surgery, chemotherapy and radiation. Although these clinical methods 

became more effective in the last decades, a complete tumor remission and 

thereby associated long time survival of the patients is usually not guaranteed. 

In the last few years cancer immunotherapy has become more and more 

promising as fourth possibility of treating tumor patients. The fundamental 

idea of immunotherapy is to reprogram the immune system in order to induce 

an effective immune response against an established tumor.

In untreated tumor-bearing patients, T cells specifically directed against 

tumor cells can be found. These T cells express T cell receptors (TCRs) that 

recognize certain tumor-specific tumor-associated antigens (TAAs). TAAs are 

antigens that generally are expressed exclusively by cancer cells and not by 

other healthy tissue cells. Such antigens develop in tumor cells due to inappro-

priate protein expression or mutated proteins that generate novel epitopes 

(Williamson et al., 2006). For example, in many tumors a mutation of the cell 

cycle molecule p53 generates a novel antigen epitope which in turn is only 

presented by these tumor cells (Mayordomo et al., 1996). Indeed, cytotoxic  

T cells, specific for certain TAAs and thereby capable of tumor cell killing, can 

be found in the tumor tissue of many patients. High tumor infiltration rates 

of these cells are often associated with better survival rates of the patients 

(Naito et al., 1998). 

Nevertheless, since immune-mediated spontaneous rejections of established 

tumors are rare, TAA specific cytotoxic T cells generally fail to eliminate 

the tumor. This implies that the tumor can develop mechanisms to evade 

an effective immune response. Today, there are many mechanisms known 

to contribute to this evasion. For example, tumors can produce immuno-

suppressive cytokines such as transforming growth factor-beta (TGF-β) that 

suppresses cell-mediated immunity (Tada et al., 1991). Another way in which 

the tumor can block an anti-tumor immune response is by recruiting regula-

tory T cells (Tregs). These cells are known to suppress the function of other 
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immune cells such as cytotoxic T cells and thereby block anti-cancer immunity 

(Betts et al., 2006). Increased numbers of Tregs have been found in the blood 

and the lymph nodes of tumor patients (Colombo et al., 2007) as well as in 

the tissue of several human tumors (Betts et al., 2006). In the last years it was 

shown that high numbers of tumor-infiltrating Tregs are associated with poor 

prognosis for tumor patients (Curiel et al., 2005; Gobert et al., 2009). Thus, 

manipulating the balance between intratumoral Tregs and cytotoxic T cells 

seems to be a promising new target for cancer therapy.

The advantage of using the host immune system for destroying cancer cells 

in patients is the potential detection and elimination of even single tumor 

cells in almost every part of the human body. In contrast to chemotherapy, 

an immune system mediated tumor cell killing could be very specific and 

side effects could be reduced. However, the human immune system is very 

complex and manipulating its mode of action is challenging and could be 

dangerous. One prominent example, demonstrating the risks of immune 

therapy, is the phase 1 clinical trial of the anti-CD28 monoclonal antibody 

TGN1412. This antibody was intended for the treatment against B cell chronic 

lymphocytic leukemia and rheumatoid arthritis. After successful trials in mice 

and monkeys the antibody was used for a phase 1 trial in human volunteers. 

Instead of mild effects in healthy donors, as predicted, strong side effects 

caused by a cytokine storm were observed in all test persons (Suntharalingam 

et al., 2006). 

Nevertheless, exploiting immune regulation is very promising and has great 

potential for treating many human diseases including tumors. Currently, 

there are many immune regulating drugs in clinical trials or even on the 

market. One example are antibodies directed against cellular receptors 

that regulate cell proliferation such as cetuximab, a monoclonal antibody 

directed against epidermal growth factor receptors (EGFR). This antibody 

is used to treat colorectal cancer (Karapetis et al., 2008) and head and neck 

cancer (Bonner et al., 2010). CTLA-4 blocking antibody is another example 

for generating an effective anti-tumor immune response in patients. It 

inhibits Treg function and prevents inactivation of activated effector T cells. 

Thereby, anti-CTLA-4 antibody treatment reduced cancer progression in 
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patients with metastatic melanoma (Hodi et al., 2011; Phan et al., 2003).

Another approach of clinically applied immunotherapy is the adoptive transfer 

of T cells. Therefore, T cells from tumor-bearing patients are isolated, selected 

for tumor-specific cytotoxic T cells, expanded ex vivo and finally re-injected 

into the patient (Rosenberg et al., 1994; June, 2007). 

1.2	 Regulatory T cells and tumor immunity

1.2.1	 Regulatory T cell subsets and function

In general, there are two main subtypes of regulatory T cells (Tregs) in mice 

and humans. These two subtypes are natural Tregs (nTregs) and induced Tregs 

(iTregs). Both express forkhead box p3 (FOXP3), a transcription factor that is 

required for suppressive function. Natural Tregs develop in the thymus from 

CD4+ thymocytes. In contrast to conventional T cells, nTregs are selected in 

the thymus by high-affinity binding to a self antigens. Thus, nTregs express 

TCRs against self antigens. On the other hand, iTregs develop in the periphery 

from uncommitted conventional CD4+ T cells. This second Treg subset is a 

heterogeneous group that consists of at least three distinct subgroups. Most 

of the iTregs found in the periphery belong to the first subgroup. These cells 

develop through the conversion of conventional T cells into iTregs induced 

by TGF-β, IL-2 and APCs that express low dose of antigen in the absence of 

co-stimulatory molecules. The second subgroup of iTregs, the TR1 cells, are 

induced by high concentrations of IL-10 and secrete TGF-β and IL-10 after 

differentiation. TH3 cells represent the third subgroup. These cells seem to be 

induced by TGF-β and can be found in the mucosal immune system.

To differentiate Tregs from other T cell subsets, many cell surface markers as 

well as intracellular markers have been identified in the last decade. In mice 

the most important Treg marker is the transcription factor FOXP3 (Hori et al., 

2003). Human Tregs also express FOXP3, but in contrast to mice many human 

conventional T cells without suppressive function up-regulate FOXP3 upon 

activation (Allan et al., 2007). Beside the intracellular marker FOXP3, Tregs are 

also defined by high expression of the surface marker interleukin-2 receptor 
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α-chain (CD25), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), gluco-

corticoid-induced tumor necrosis factor receptor family-related gene (GITR) 

and lymphocyte activation gene-3 (LAG-3) as well as low expression of CD127. 

By defi nition the main function of Tregs is to regulate the function of other 

immune cells. Tregs are needed to prevent autoimmunity by eliminating self 

reactive T cells that survived thymic selection, a process called peri pheral 

tolerance (Sakaguchi, 2005). In addition, Tregs are required to prevent over-

whelming immune responses against invading pathogens. To execute all these 

tasks, Tregs have a variety of mechanisms to control other immune cells.

4) Suppression by DC/Treg interaction 

DC

Treg

T cell

CD80/86

CTLA-4

IDO

3) Suppression by metabolic disruption 

Treg T cell

IL-2CD25

T cell inactivation

TGF-β

1) Cytokine-mediated suppression

IL-35 IL-10
DC

Treg

T cell

2) Cytolysis-induced apoptosis 

Granzyme A

Granzyme B Apoptosis

Treg

Perforin

T cell

Figure 1:  Mechanisms of Treg suppression. The illustration shows the modes of Treg suppres-
sion. First, Tregs can suppress DCs and T cells by secreting inhibitory cytokines. Second, Tregs release 
granzyme A and B as well as perforin to induce apoptosis in target cells. Third, CD25 expressed on 
the surface of Tregs can bind IL-2 and thereby deplete IL-2. Since IL-2 is needed by activated T cells for 
survival depletion of IL-2 leads to T cell inactivation. Fourth, Tregs mediate suppression by interaction 
with activated DCs. CTLA-4 expressed on the surface of Tregs binds with high affi nity to the DC 
co-stimulatory receptors CD80 and CD86. Thereby T cells activation by CD80 and CD86 is blocked. 
In addition, CTLA-4 binding induces IDO expression by DCs which in turn suppresses T cells. [Figure 
is adapted from an illustration published by Vignali et al., 2008]
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The mechanisms of Treg action can be divided in four categories (Figure 1). 

First, Tregs can suppress immune cells such as dendritic cells (DCs), CD4+ and 

CD8+ effector cells by secreting inhibitory cytokines such as IL-10, IL-35 and 

TGF-β (Collison et al., 2007; Letterio and Roberts, 1998; Hara et al., 2001). 

The second mechanism of Treg-mediated immune regulation is the induced 

apoptosis via cytolysis. Such as cytotoxic T cells Tregs can express granzyme A 

and B as well as perforin (Grossman et al., 2004). Suppression by metabolic 

disruption is the third mode of Treg action. For example, Tregs express high 

amounts of interleukin-2 receptor α-chain (CD25). CD25 can bind and thereby 

deplete local IL-2. This cytokine is needed by activated effector T cells for 

survival. Thus, depleting IL-2 leads to effector T cell inactivation (Thornton and 

Shevach, 1998). Finally, suppression by targeting dendritic cells is the fourth 

mode of Treg function. Unlike the other three mentioned mechanisms, this 

mechanism requires direct cell contact between Tregs and DCs. To interact 

with DCs, Tregs express high levels of CTLA-4. This surface molecule binds 

with high affinity to the co-stimulatory molecules CD80 and CD86, both being 

expressed by mature DCs. Thereby, Tregs prevent T cell activation by blocking 

and suppressing these co-stimulatory molecules (Read et al., 2000; Cederbom 

et al., 2000) and induce indoleamine 2,3-dioxygenase (IDO) release by DCs, 

which in turn initiates apoptosis in activated T cells (Fallarino et al., 2003).

1.2.2	 Regulatory T cells in murine and human tumors 

In healthy persons Tregs are crucial for preventing autoimmune diseases and 

limiting immune responses against invading pathogens. Deficiency of FOXP3, 

a transcription factor essential for Treg development and function, induces a 

profound autoimmune-like lymphoproliferative disorder in mice and humans. 

Mice that lack FOXP3 are known as scurfy mice (Brunkow et al., 2001). Humans 

carrying a loss-of-function mutation on the FOXP3 gene suffer from a disease 

called immune dysregulation, polyendocrinopathy, enteropathy, X‑linked 

syndrome (IPEX) (Bennett et al., 2001), a rare X-linked recessive genetic 

disorder. Since FOXP3 deficiency results in Treg defects, this severe disorders 

illustrate the importance of Tregs for maintaining immune homeostasis. 

Nevertheless, due to their immune suppressive function, Tregs are often 

harmful for tumor-bearing patients. Regulatory T cells can be coopted by 
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tumor cells to escape immune surveillance. Thereby, an effective anti-tumor 

immune response is blocked and tumor development is promoted (Betts et 

al., 2006). Since more and more Treg-specific markers were found (see above) 

in the last years, a reliable identification of these cells has become possible. 

With these markers a lot of progress has been made in investigating the role 

of Tregs in cancer patients. For instance, in many tumor-bearing patients 

increased amounts of Tregs were found in the blood and the lymph nodes 

(Colombo et al., 2007) as well as in the tumor tissue itself (Betts et al., 2006). 

In further experiments the functionality of these tumor-infiltrating Tregs 

was confirmed. By isolating these cells from freshly dissected murine and 

human tumors, their suppressive nature in regard to blocking effector T cell 

proliferation in vitro was clearly shown (Curiel et al., 2004; Zhou et al., 2006). 

These findings were also confirmed in vivo. As shown by Yu and colleagues in 

murine tumors, CD4+CD25+ Tregs actively suppress the proliferation of CD8+ 

cytotoxic T cells at the local tumor site and thereby promote tumor growth 

especially in later stages of tumor progression (Yu et al., 2005). Consistent 

with the previous findings, high amounts of tumor-infiltrating Tregs are asso-

ciated with poor prognosis and predict poor survival in human ovarian carci-

noma and breast cancer (Curiel et al., 2005; Gobert et al., 2009). 

1.2.3	 Regulatory T cells as therapeutic target

According to the previously discussed findings Tregs seem to be a very prom-

ising target for anticancer therapy. Indeed, by reducing Treg function and/or 

intratumoral accumulation, therapeutic effects in tumor-bearing mice were 

observed. The therapeutic benefits of Treg depletion in tumor-bearing mice 

were first demonstrated by adoptive T cell transfer experiments in BALB/c 

athymic nude mice. Adoptively transferred CD25-depleted CD4+ cells, consid-

ered as non-Treg cells, into RL male 1 (BALB/c-derived radiation leukemia) 

tumor-bearing nude mice resulted in tumor regression. In contrast, nude 

mice treated with a non-depleted CD4+ T cell adoptive transfer died due to 

rapid tumor progression (Shimizu et al., 1999). Similar results were observed 

in tumor-bearing mice treated with an anti-CD25 monoclonal antibody. In 

these experiments, antibody-mediated CD4+CD25+ Treg depletion induced 

tumor growth retardation in murine sarcoma and melanoma (Tanaka et 

al., 2002). IL-2 immunotoxin-mediated Treg depletion is another approach 
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in mouse tumor models. This toxin mediates the depletion of all CD25+  

T cells. Breast tumor growth of tumor-bearing mice treated with IL-2 immu-

notoxin was markedly inhibited (Knutson et al., 2006). Another approach for 

reducing intratumoral accumulation of Tregs is to block the function of the 

surface receptor CCR4. The specific expression of CCR4 on Tregs makes this 

chemokine receptor a promising target for anti-tumor therapy. Indeed, CCR4 

monoclonal antibody has the potential to inhibit tumor-directed Treg migra-

tion and thereby promote anti-tumor immunity (Ishida and Ueda, 2006). 

In humans, Treg depletion can be achieved by the FDA-approved fusion 

protein Ontak (denileukin diftitox). Ontak is the human equivalent to murine 

IL-2 immunotoxin. This protein is a toxin consisting of IL-2 fused to diphtheria 

toxin. Ontak binds to all CD25+ cells via IL-2. After receptor binding the protein 

is internalized, inhibits protein synthesis and thereby induces apoptosis in all 

CD25+ cells (Foss, 2000). In patients with renal cell carcinoma (RCC) Ontak 

significantly reduced blood Treg numbers and improved tumor-specific T cell 

activation (Dannull et al., 2005). However, a significant correlation of Treg 

depletion and tumor regression was not observed. This could be due to the 

fact that activated effector T cells up-regulate CD25 expression and thereby 

become susceptible for Ontak depletion. In conclusion the Ontak effective-

ness for tumor therapy is still uncertain. 

CTLA-4 blocking antibody is another approach for generating an effective 

anti-tumor immune response in human (Hodi et al., 2011). This antibody has a 

dual effect. On the one hand it inhibits Treg function and on the other hand it 

prevents inactivation of activated effector T cells. In patients with metastatic 

melanoma anti-CTLA-4 antibody treatment reduced cancer progression. 

However, CTLA-4 blockade also induced potent autoimmune diseases such as 

dermatitis, hepatitis and hypophysitis (Phan et al., 2003). 

In contrast to anticancer therapy in mice, most therapies in humans show 

only slight effects for tumor regression and overall survival. Precise intratu-

moral Treg targeting is one of the major problems in boosting anti-tumor 

immunity in humans. In most approaches not only intratumoral Tregs are 

depleted, but also all other Tregs, which in turn evoke autoimmunity. 
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Another issue is the specificity of Treg targeting. Since precise human 

Treg markers are still missing, Treg depletion always involves the deple-

tion of other anti-tumor immunity promoting immune cells. In conclusion, 

new therapeutic approaches must be found. Beside total Treg depletion, 

preventing tumor infiltration of these cells appears to be a very prom-

ising therapeutic approach. In contrast to Treg depletion, blockade of 

Treg tumor infiltration would avoid side effects such as autoimmunity in 

treated cancer patients. 

1.2.4	 Migration pattern of regulatory T cells

The trafficking of Tregs, as for all T cell subsets, is controlled by chemokines 

and chemokine receptors. The expression of chemokines and the appropriate 

chemokine receptors are tightly regulated. The chemokine receptor expres-

sion profile of immune cells is depending on the current cellular activation 

and differentiation stage (Lanzavecchia and Sallusto, 2000). The receptor 

profile of a certain immune cell determines whether it circulates through 

the secondary lymphoid tissue and blood cycle, encounters with antigen 

presenting cells (APCs), or migrates to sites of inflammation (Rossi and Zlotnik, 

2000; Zlotnik and Yoshie, 2000). 

Compared to other immune cells, murine and human Tregs express high 

levels of the chemokine receptors CCR4 and CCR8 (Iellem et al., 2001). The 

ligands of CCR4 are the macrophage-derived chemokine (MDC) CCL22 and 

the thymus and activation regulated chemokine (TARC) CCL17. CCL1, also a 

member of the CC chemokines, as well as the virokine vMIP-I are the ligands 

for CCR8. Consistently with the chemokine receptor expression, Tregs show 

high chemotactic response to the chemokines CCL22, CCL17, CCL1 and vMIP-I 

(Iellem et al., 2001). 

1.3	 The chemokine CCL22

1.3.1	 Molecular and biologic characteristics of CCL22

In general, all chemokines carry four cysteine motifs in conserved protein 

domains. These four cysteines are essential for the 3-dimensional protein 
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shape. The word chemokine is derived from chemotactic cytokines. The 

name chemokine indicates the function of these proteins which is mediating 

specific cell migration along a certain chemotactic gradient.

The chemokine CCL22 was first described in humans by Godiska and colleagues 

in 1997 (Godiska et al., 1997). One year later the murine equivalent was found 

by Schaniel and colleagues (Schaniel et al., 1998). Murine CCL22 shares 64% 

identity and 86% similarity with human CCL22 according to protein align 

analysis (www.ebi.ac.uk). The total length of murine CCL22 is 92 amino acids 

(aa) whereas human CCL22 consists of 93 amino acids. The first 24 N-terminal 

amino acids of murine and human CCL22 represent a signal peptide that 

mediates protein secretion after ribosomal translation. In the process of 

chemokine secretion this signal peptide is cleaved off the protein and mature 

CCL22 (69 aa long in human and 68 aa in murine) with a molecular mass of 

7.8 kDa is released (Godiska et al., 1997; Schaniel et al., 1998). Beside the full 

length CCL22 protein truncated forms can be found in mice and humans. 

The serine protease CD26/dipeptidyl-peptidase IV (CD26/DPP IV) can remove 

two or four N-terminal peptides of CCL22. The shorter forms of CCL22 can no 

longer bind to CCR4, the exclusive receptor of CCL22. Thus, CCL22 cleavage 

mediates CCL22 inactivation which in turn could represent a feedback mecha-

nism of negative regulation (Proost et al., 1999). 

Initially, CCL22 was called macrophage-derived chemokine (MDC) because 

macrophages appeared to be the specific source of this chemokine. Beside 

macrophages CCL22 is expressed by monocyte-derived dendritic cells (Godiska 

et al., 1997; Schaniel et al., 1998). Expression of murine and human CCL22 was 

observed mainly in the thymus, lymph nodes, lung and spleen (Godiska et al., 

1997; Schaniel et al., 1998; Tang et al., 1999). The highest chemotactic index 

among all T cells was observed for Tregs. The chemotactic index indicates 

the number of cells migrated in response to a certain chemokine divided by 

the number of spontaneously migrated cells. Thus, Tregs represent the major 

subset of immune cells that respond to CCL22 (Iellem et al., 2001).

The DC-specific expression of CCL22 is regulated by the DC activation status. 

Immature DCs express moderate CCL22 levels. However, after maturation the 
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expression of the chemokine is up-regulated (Sallusto et al., 1999). Iellem et al. 

postulated that this Treg specifi c chemokine could mediate Treg recruitment 

to APCs in order to prevent autoimmunity against self-antigens and inhibit 

overwhelming infl ammatory immune reactions against invading pathogens 

(Iellem et al., 2001). Since chemokines mediate the migration of T cells, Treg 

tumor infi ltration is also chemokine-dependent. The Treg specifi c chemokine 

CCL22 is an abundantly expressed chemokine in many human tumors such 

as breast cancer and ovarian carcinoma (Curiel et al., 2004; Gobert et al., 

2009; Ishida et al., 2006; Yang et al., 2006). Blockade of CCL22 prevents the 

migration of human Tregs into primary human ovarian tumors of nonobese 

diabetic/severe combined immunodefi ciency (NOD/SCID) mice (Curiel et al., 

2004). Thus, CCL22 seems to mediate Treg tumor infi ltration and thereby 

represents a promising target for anti-tumor immune therapy.

1.3.2 Characteristics of CCR4, the receptor of CCL22

Like all chemokine receptors, the CC chemokine receptor CCR4 is an integral 

protein and consists of seven helical trans-membrane domains (Figure 2). 

C-terminal

G protein

Extracellular

Plasma membrane

Intracellular

N-terminal

β
γ

α

Figure 2:  Chemokine receptor structure. Chemokine receptors consist of seven trans-membrane 
domains that form three extracellular and three intracellular loops. The extracellular N-terminal end 
binds with high specifi city certain chemokines whereas the intracellular C-terminal end is G protein-
coupled and mediates signal transduction after ligand binding [Figure is adapted from an illustration 
published by Savarin-Vuaillat and Ransohoff, 2007]
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The helical receptor structure is achieved by three intracellular and three 

extracellular loops. The extracellular N-terminal end of the receptor protein 

determines chemokine binding specificity whereas the intracellular C-terminal 

end enables G protein binding and mediates signal transduction after ligand 

binding. In general, all chemokine receptors are very similar in size and bind 

chemokines with high selectivity (Power et al., 1995). 

Shortly after the identification of CCL22 as a new chemokine Imai and 

colleagues identified CCR4 as the exclusive receptor of CCL22 (Imai et al., 

1998). Beside CCL22, the chemokine CCL17 binds to CCR4. However, the 

binding affinity of CCL17 to CCR4 is 3-fold lower than the binding affinity of 

CCL22 (Imai et al., 1998). CCR4 is specifically expressed by Tregs. Consistent 

with these data the highest chemotactic response towards CCL22 as well as 

CCL17 among all leukocytes was observed for Tregs (Iellem et al., 2001).

1.4	 Toll-like receptors

Toll-like receptors (TLRs) play a crucial role in the activation of the innate and 

adaptive immune system. TLRs belong to the receptor superfamily of pattern 

recognition receptors (PRRs). These receptors recognize highly conserved 

molecules derived from invading pathogens, also known as pathogen-asso-

ciated molecular pattern (PAMPs). PAMPs are essential for pathogen survival 

and function. Thus, PAMPs are highly conserved, and pathogens with muta-

tions in these molecular structures are usually not viable, making PAMPs 

an ideal target for pathogen recognition. Another subfamily of the PRR 

superfamily is represented by the RIG-I-like receptors (RLR). Intracellularly 

expressed retinoic-acid-inducible gene I (RIG-I) and melanoma-differentia-

tion-associated gene 5 (MDA-5) are receptors of this family.

The TLR family was identified in 1997 due to their sequence similarities with 

the Drosophila melanogaster receptor protein Toll (Medzhitov et al., 1997). 

After antigen encounter the Drosophila Toll receptor activates the produc-

tion of antimicrobial proteins. Mutations of this protein lead to high suscep-

tibility to fungi and Gram-positive bacteria (Lemaitre et al., 1996). In most 
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vertebrates ten to twelve functional TLRs can be found (Roach et al., 2005). 

 

1.4.1	 Toll-like receptors and their ligands

In human at least ten functional TLRs (TLR1 to 10) are expressed. TLR1 to TLR9 

are conserved between humans and mice although murine TLR8 and TLR10 

are not functional. Additionally, mice express TLR11, 12 and 13 which are 

missing in humans (Akira et al., 2006). The receptors TLR1, 2, 4, 5, 6, 10 and 

11 are located on the cell surface of immune cells such as macrophages and 

dendritic cells. Due to their location these receptors recognize extracellular 

PAMPs from microbial membranes such as the endotoxin lipopolysaccharide 

(LPS) or lipoproteins and lipids from fungal cell walls. 

TLR PAMP Pathogen Synthetic ligand Location

TLR1 Dimers with TLR2 extracellular

TLR2 Triacyl lipopeptides

Diacyl lipopeptides

Zymosan

Bacteria

Mycoplasma

Fungus

n.d. extracellular

TLR3 dsRNA Virus poly (I:C); poly (A:U) intracellular

TLR4 LPS

Envelope proteins

Bacteria

Virus

monophosphoryl 

lipid A

extracellular

TLR5 Flagellin Bacteria n.d. extracellular

TLR6 Dimers with TLR2 extracellular

TLR7 ssRNA, siRNA RNA virus adenosine and gua-

nosine derivative

intracellular

TLR8 ssRNA RNA virus adenosine and gua-

nosine derivative

intracellular

TLR9 CpG

DNA

Malaria hemozoin

Bacteria

DNA virus

Parasites

unmethylated 

CpG motifs

intracellular

TLR10 n.d. n.d. extracellular

TLR11 Profilin-like molecule Parasites n.d. extracellular

TLR12 n.d. n.d. n.d.

TLR13 n.d. n.d. n.d.

Table 1: Overview of all known physiologic and synthetic TLR ligands as well as cellular TLR 
locations. TLR 11, 12 and 13 is missing in humans, whereas TLR9 and TLR10 are not functional in 
mice (n.d. indicates none described). References: Alexopoulou et al., 2001; Coban et al., 2005; 
Hayashi et al., 2001; Heil et al., 2004; Hemmi et al., 2002; Kurt-Jones et al., 2000; Lund et al., 
2003; Ozinsky et al., 2000; Poltorak et al., 1998; Takeuchi et al., 1999; Yarovinsky et al., 2005.
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In contrast to the surface TLRs the receptors TLR3, 7, 8 and 9 are located intra-

cellularly in endosomal and lysosomal vesicles as well as in the membrane 

of the endoplasmatic reticulum (Roach et al., 2005). The intracellular TLRs 

recognize nucleic acids such as bacterial unmethylated CpG motifs or viral 

single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) (Akira et al., 

2006). In table 1 natural occurring and synthetic TLR ligands as well as cellular 

TLR locations are summarized. 

1.4.2	 Immune activation by Toll-like receptor ligands

After a pathogen invasion for example during bacterial infection, pathogen 

specific molecules (PAMPs) are recognized by TLRs. Ligand binding leads to 

TLR activation and thereby induces patterns of gene expression which in turn 

activate the hosts innate immune system and subsequently instructs the rise 

of an antigen specific immune reaction mediated by the adaptive immune 

system. TLR ligand binding is the first step of this signal cascade. This binding 

causes conformational changes of the receptors and dimerization with 

other activated TLRs. Thereby, adaptor proteins such as myeloid differentia-

tion primary response gene 88 (MyD88) which are crucial for signal trans-

duction are recruited. All TLRs except TLR3 utilize MyD88 for intracellular 

signal transduction. Beside MyD88 three other adaptor proteins are used for 

TLR signal transduction, the TIR-containing adapter inducing IFN-β (TRIF), 

the TRIF-related adapter molecule (TRAM) and the TIR domain-containing 

adapter molecule (TIRAP) (Kawai and Akira, 2007; Gay et al., 2006). Signal 

transduction via these adaptor proteins leads to the activation of mitogen-

activated protein (MAP) kinase complex and nuclear factor-кB (NF-кB). The 

transcription factor NF-кB in turn activates the transcription of a variety of 

pro-inflammatory cytokines such as IL-1, IL-6, IL-10 and IL-12 as well as tumor 

necrosis factor alpha (TNF-α) (Meylan et al., 2006; Moynagh, 2006). 

In addition to the MAP kinase and NF-кB signal pathway, intracellular TLRs 

can utilize a second discrete pathway for signal transduction. In this pathway 

adaptor protein recruitment leads ultimately to IFN regulatory factor (IRF) 

activation such as IRF-3, IRF-5 and IRF-7 which in turn induces type I IFN 

production (Figure 3). The IRF pathway is primarily induced after viral infec-

tion (Doyle et al., 2002; Schoenemeyer et al., 2005).
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Figure 3:  Schematic diagram of pattern-recognition receptors. The diagram shows the toll-like 
receptor and RIG-I-like receptor family. Examples of receptor ligands, cellular receptor localization, 
adapter proteins and relevant transcription factor are illustrated. Selected relevant references can be 
found in the text [Figure is based on an review of Kanzler et al., 2007].

The amount and type of secreted mediators after TLR activation determine 

the type and magnitude of the subsequent immune reaction. This in turn 

is dependent on the type and amount of invading pathogen as well as the 

cell type that is activated by a certain pathogen. Secreted cytokines such as 

IL-1, IL-6, IL-10 and IL-12 recruit other innate immune cells such as neutro-

phils and macrophages to the site of infl ammation in order to potentiate 

an ongoing immune response. In addition, TLR activation is a crucial step in 
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the activation of the adaptive immune system. For instance, immature DCs 

that recognize pathogens by TLRs start to maturate, produce co-stimulatory 

molecules such as CD80/86 and migrate to the lymph nodes where they 

initiate an antigen specific adaptive immune reaction by activating T cells 

(Shortman and Heath, 2001).

1.4.3	 Toll-like receptor ligands and anti-cancer immunotherapy

Manipulating the innate immune system could affect the progress of many 

diseases. Several different TLR ligands show promising effects for the treat-

ment of certain diseases and are used in the clinic already. TLR ligands are 

utilized for cancer, allergy and viral infection treatments. By the use of 

synthetic TLR ligands the innate immune system can be activated and a 

tumor-induced immune suppression can be abolished (Kanzler et al., 2007). 

Treating tumor-bearing mice with the TLR9 ligand CpG reduced tumor growth 

and increased overall survival (Heckelsmiller et al., 2002; Houot and Levy, 

2009; Krieg, 2008). Currently, the anti-tumoral effects of CpG in humans are 

tested in clinical trials (Weber et al., 2009; Vollmer and Krieg et al., 2009). 

The synthetic TLR7 agonist imiquimod is another example for effective 

TLR-mediated anti-cancer therapy. This TLR ligand is FDA approved and used 

in the clinic to treat superficial basal cell carcinoma and vulvar intraepithelial 

neoplasia (Chang et al., 2005; van Seters et al., 2008). In addition to TLRs 

other PRR members represent promising targets for anti-tumor therapy. For 

instance, the synthetic small RNA molecules poly (I:C) and triphosphate RNA 

activate the intracellular receptors MDA-5 and RIG-I, respectively (Gitlin et 

al., 2006; Anz et al., 2009). In tumor-bearing mice these ligands could block 

tumor development and increase overall survival (Tormo et al., 2006; Poeck 

et al., 2008). 

In addition, there is an increasing interest in using TLR ligands as adjuvants for 

existing anti-tumor therapies such as radiation, anti-tumor antigen directed 

monoclonal antibodies or cytotoxic drugs (Kanzler et al., 2007). In tumor-

bearing mice CpG could be used as an adjuvant for boosting the efficiency of 

anti-cancer vaccines (Heckelsmiller et al., 2002; Bourquin et al., 2005; Tormo et 

al., 2006; Speiser et al., 2005). In human clinical trials for using PRR agonists in 

combination with anti-cancer vaccines are under way. 
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The mechanisms by which PRR agonists promote anticancer immunity are 

complex. Activation of the adaptive immune system subsequent of innate 

immune system activation is a very important step for inducing an efficient 

anti-tumor immune reaction by PRR ligands. For instance, PRR ligands can 

cause DC maturation. Mature DCs express co-stimulatory molecules. Thereby, 

these DCs can activate CD8+ cytotoxic T cells which in turn can generate a 

potent anti-tumor immune reaction (Haring et al., 2006). Especially TLR7 

and TLR9 activation induces high levels of IFN-α produced by plasmacytoid 

dendritic cells (pDCs). IFN-α in turn initiates MHC-I expression on tumor cells 

and thereby enhances detection and killing of these cells by activated cytotoxic 

T cells (Marley et al., 1989). In addition to cytotoxic T cells natural killer cells 

seem to play an important role for PRR ligand-induced anti-tumor immunity 

(Berger et al., 2009; Bourquin et al., 2009; Sivori et al., 2004). Nevertheless, 

the precise mechanisms of PRR agonist-mediated immunotherapy are still 

unknown. In particular the role of Tregs in this therapeutic setting is rarely 

investigated. Although it is reported that ligands for TLRs and RLRs abrogate 

the suppressive function of Tregs (van Maren et al., 2008; Anz et al., 2009), 

little is known about their precise effect on Tregs in tumor-bearing mice and 

humans. Moreover, it remains unclear how TLR and RLR ligands influence 

Treg tumor infiltration. 

1.5	 Objectives

During tumor development an immunosuppressive milieu is created by the 

tumor which prevents an efficient anti-tumor immune reaction. In the last 

decade the functions of Tregs were described in great detail, and Tregs were 

identified in several human tumors as one of the key mediators of this tumor-

induced immune suppressive environment. In contrast to Treg function the 

knowledge of the mechanisms that recruit Tregs into the tumor tissue in 

order to mediate intratumoral immune suppression is still very limited.

In general, the migration of immune cells is mediated by chemokines. Thus, 

intratumoral Treg recruitment is presumably mediated by the increased 

expression of one or more chemokines. One very promising candidate is the 



19

Introduction

chemokine CCL22. This chemokine is a potent Treg attractor (Iellem et al., 

2001) and is highly expressed in many tumors (Curiel et al., 2004; Gobert et 

al., 2009; Ishida et al., 2006; Yang et al., 2006). From a therapeutic perspective, 

identifying the mechanisms that mediate Treg recruitment to the tumor tissue 

represents an attractive tool for manipulating the tumor-induced immune 

suppressive milieu. Previous experiments in our group have shown that TLR 

stimulation reduces the amount of intratumoral CCL22 and the number of 

Tregs in the tumor tissue. Since TLR ligands can induce tumor regression, 

CCL22 suppression could be an important part of this TLR ligand-mediated 

anti-tumor immune reaction. 

Since little is known about the impact of intratumoral CCL22 on tumor-induced 

Treg recruitment, tumor development, disease outcome and TLR ligand-

induced tumor therapy, this work was designed to answer the following 

questions:

u	 Which cell type produces CCL22 in the tumor tissue?

v	 What is the impact of intratumoral CCL22 on tumor growth and overall  

	 survival?

w	 What is the mechanism of TLR ligand-mediated intratumoral CCL22 

	 suppression? 

x	 Is TLR ligand-mediated intratumoral CCL22 suppression important for  

	 the TLR ligand-induced anti-tumor immune reaction?

The answer to these questions should allow a better understanding of the 

mechanisms of tumor development and growth. Thereby, promising novel 

targets for an efficient anti-cancer therapy may identified. 
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2.	 Materials & Methods

2.1	 Materials

2.1.1	 Technical equipment

Alpha Imager 					     Alpha Innotech, San Leandro, USA

Balance (LP 6209) 					     Sartorius, Göttingen, Germany

Cell culture CO2 incubator (BD 6220) 		  Heraeus, Hanau, Germany

Cell culture laminar flows 			   Heraeus, Hanau, Germany

Centrifuge 5424 					     Eppendorf, Hamburg, Germany

FACS Canto II					     BD bioscience, Heidelberg,	Germany

Gel electrophoresis systems 			   Bio-rad, Munich, Germany

LightCycler 2.0 System				    Roche, Mannheim, Germany

MiniMACS, QuadroMACS 				   Miltenyi Biotec, Bergisch Gladbach, 	

							       Germany

Mithras LB940 multilabel plate reader 		 Berthold Technologies, Bad Wildbad, 	

							       Germany

Multifuge 3L-R 					     Heraeus, Hanau, Germany

Nanodrop ND-1000 				    NanoDrop, Wilmington, USA

Neubauer hemocytometer 			   Optik Labor Frischknecht, Balgach, 	

							       Germany

pH meter 						      WTW, Weilheim, Germany

Power Supply 200/2.0 				    Bio-Rad, Munich, Germany

Refrigerators (4°C, -20°C) 				   Bosch, Gerlingen, Germany

Refrigerators (-80°C) 				    Thermo Scientific, Waltham , USA

Shaker 						      NeoLab, Heidelberg, Germany

Thermocycler T3 					     Biometra, Göttingen, Germany

Thermomixer 					     Eppendorf, Hamburg, Germany

Vortex 						      VF2 Janke & Kunkel, Staufen, Germany

2.1.2	 Chemicals, reagents and buffers

Agarose LE 						      Biozym, Hess Oldendorf, Germany

Bovine serum albumine (BSA) 			   Sigma Aldrich, Steinheim, Germany

Chloroform 						      Sigma Aldrich, Steinheim, Germany

Collagenase						      Sigma Aldrich, Steinheim, Germany

Dimethyl sulfoxide (DMSO) 			   Sigma Aldrich, Steinheim, Germany
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DNase I 						      Sigma Aldrich, Steinheim, Germany

dNTP Mix, 10 mM					     invitrogen, Carlsbad, USA

Donkey Serum					     Millipore, Billerica, USA

Dulbecco’s Phosphate buffered saline (PBS) 	 PAA, Pasching, Germany

Ethanol						      Sigma Aldrich, Steinheim, Germany

Ethylenediaminetetraacetic acid (EDTA) 	 Sigma Aldrich, Steinheim, Germany

FACSFlow, FACSClean, FACSShutdown		  BD bioscience, Heidelberg,	Germany

Isoflurane (Forene®) 				    Abbott, Zug, Switzerland

Isopropanol (100 Vol%)				    Sigma Aldrich, Steinheim, Germany

Isopropanol (70 Vol%) 				    Apotheke Innenstadt, LMU Munich

Lipofectamine™ 2000 Transfection Reagent	 invitrogen, Carlsbad, USA

MgCl2 25mM						     Fermentas, St. Leon-Rot, Germany

MolTaq DNA Polymerase				    Molzym, Bremen, Germany

O’GeneRuler™ DNA Ladder Mix			  Fermentas, St. Leon-Rot, Germany

Percoll, d=1,124 g/ml				    Biochrome, Berlin, Germany

Pfu Ultra Fusion HS					    Stratagene, Waldbronn, Germany

Sodium pyruvate 					     PAA, Pasching, Austria

Trizol reagent 					     invitrogen, Carlsbad, USA

Trypan blue 						     Sigma Aldrich, Steinheim, Germany

Trypsin (10x) 					     PAA, Pasching, Austria

Tween 20 						      Roth, Karlsruhe, Germany

MACS buffer 					     Fixation buffer for FACS samples

2 mM EDTA 						     2% PFA

2% FCS in PBS					     in PBS

ELISA assay diluent 				    ELISA wash buffer

1% BSA						      0.05% Tween 20

in PBS, pH 7.0					     in PBS

2.1.3	 Cell culture reagents, media and cytokines

2-Mercaptoethanol 				    Sigma-Aldrich, Steinheim, Germany

Dulbecco’s modified Eagle´s medium 		  PAA, Pasching, Austria

(DMEM), high glucose

Fetal calf serum (FCS) 				    GibcoBRL, Karlsruhe, Germany

L-glutamine 200mM 				    PAA, Pasching, Austria

MEM-NEAA (non-essential amino acids) 	 GibcoBRL, Karlsruhe, Germany

Roswell Park Memorial Institute (RPMI) 	 PAA, Pasching, Austria
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1640 medium

Penicillin/Streptomycin (100x) 			   PAA, Pasching, Austria

VLE RPMI 1640 medium (very low endotoxin)	 Biochrom, Berlin, Germany

4T1 medium 					    B16, CT26, Panc02 medium

10% FCS 						      10% FCS

2 mM L-glutamine 					    2 mM L-glutamine		

100 IU/ml penicillin 				    100 IU/ml penicillin

100 μg/ml streptomycin 				    100 μg/ml streptomycin

in RPMI 						      in DMEM

Meth-A medium 					    mGC8, DC2.4 medium

10% FCS 						      10% FCS

2 mM L-glutamine 					    2 mM L-glutamine		

100 IU/ml penicillin 				    100 IU/ml penicillin

100 μg/ml streptomycin 				    100 μg/ml streptomycin

2 mM sodium pyruvate				    2 mM sodium pyruvate

2 mM nonessential amino acids			   2 mM nonessential amino acids

in RPMI 						      in DMEM				  

		

T cell and DC medium				    Cryo medium

10% FCS						      50% appropriate culture medium

2 mM L-glutamine					     40% FCS

100 IU/ml penicillin					    10% DMSO

100 μg/ml streptomycin

2 mM sodium pyruvate

2 mM nonessential amino acids

0.0001% of 2-mercaptoethanol

in RPMI 1640

Cytokines and growth factors

Granulocyte-macrophage colony-	 PeproTech, Hamburg, Germany

stimulating factor (GM-CSF) 

IFN-α, mouse recombinant 		  R&D Systems, Wiesbaden, Germany

IFN-γ, mouse recombinant 		  R&D Systems, Wiesbaden, Germany

Interleukin-1b, mouse recombinant 	 PeproTech, Hamburg, Germany

Interleukin-2, mouse recombinant 	 PeproTech, Hamburg, Germany

Interleukin-4, mouse recombinant 	 PeproTech, Hamburg, Germany
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Interleukin-6, mouse recombinant 	 PeproTech, Hamburg, Germany

Interleukin-10, mouse recombinant 	 PeproTech, Hamburg, Germany

Interleukin-12, mouse recombinant 	 PeproTech, Hamburg, Germany

Disposable plastic materials for cell culture experiments were purchased from 

Corning (Corning, USA), Eppendorf (Hamburg, Germany), Falcon (Heidelberg, 

Germany), Greiner (Frickenhausen, Germany) or Sarstedt (Nümbrecht, 

Germany).

2.1.4	 Toll-like receptor ligands

CpG 1826 (CpG) 					     Coley, Massachusetts, USA

5’-TCCATGACGTTCCTGACGTT-3’

poly (I:C) 						      Amersham Bioscience, Little 

 							       Chalfont, UK

2.1.5	 Kits

Bio-Plex Cell Lysis Kit				    Bio-Rad, Munich, Germany

Cell proliferation ELISA, BrdU 			   Roche, Mannheim, Germany

CCL22 murine Cytokine ELISA sets 		  BD Bioscences, San Diego, USA

CD11c MicroBeads MACS cell separation	 Miltenyi Biotec, 

							       Bergisch Gladbach, Germany

CD4+CD25+ Regulatory T Cell Isolation Kit 	 Miltenyi Biotec, 

							       Bergisch Gladbach, Germany

CD4 Micro Beads MACS cell separation	 	 Miltenyi Biotec, 

							       Bergisch Gladbach, Germay

Foxp3 Staining Buffer Set				   eBioscience, San Diego, USA

GeneJET™ Plasmid Miniprep Kit 50 preps	 Fermentas, St. Leon-Rot, Germany

JetQuick Gel Spin Kit				    Genomed, Löhne, Germany

JetQuick PCR Purification Kit			   Genomed, Löhne, Germany

Spin Universal RNA Mini Kit			   Invitek, Berlin, Munich

Revert Aid First strand cDNA Synthesis Kit	 Fermentas, St. Leon-Rot, Germany

Light Cycler 4800 Probes Master			   Roche, Mannheim, Germany 

LS, MS and LD columns 				    Miltenyi Biotec, 

							       Bergisch Gladbach, Germany
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2.1.6	 FACS antibodies 

Description 				    Isotype 		  Clone 		 Company

B220 Pacific Blue a-mouse		 Rat IgG2a,κ	 	 RA3-6B2	 BioLegend

CD3ε FITC a-mouse 			  Ar Ham IgG		  145-2C11	 BioLegend

CD4 APC/Cy7 a-mouse		  Rat IgG2b,κ		  GK1.5	 	 BioLegend

CD8a PerCp a-mouse		  Rat IgG2a,κ	 	 53-6.7 	 BioLegend

CD11b PE a-mouse			   Rat IgG2b		  M1/70.15	 ImmunoTools

CD11c APC a-mouse		  Ar Ham IgG		  N418	  	 BioLegend

CD25 PerCp a-mouse		  Rat IgG1,λ	 	 PC61 		  BioLegend

CD49b FITC a-mouse		  Rat IgM,κ		  DX5		  BioLegend

Foxp3 eFlur®450 a-mouse		 IgG2a,κ		  FJK-16s	 eBioscience

GR1 APC/Cy7 a-mouse		  Rat IgG2b,κ	 	 RB6-8C5	 BioLegend

2.1.7	 Software

Adobe Creative Suite 				    Adobe Systems, San José, USA

BD FACSDiva						     BD Biosciences, San Diego, USA

FlowJo 						      Tree Star, Ashland, USA

GraphPad						      GraphPad Software, 

							       Inc., California, USA

Microsoft Office 					     Microsoft, Redmond, USA

2.2	 Molecular biology methods

2.2.1	 Polymerase chain reaction

The polymerase chain reaction (PCR) is a method to amplify a defined part 

of an extracted DNA sample. To define this part, two specific primers are 

needed that flank the region of interest, one upstream and one downstream 

primer. The general range of a primer is 15-30 bases, and the guanosine and 

cytosine amount should be 40-60%. The maximum size of the DNA fragment, 

which can be amplified with a standard PCR, is 10.000 bases. A PCR consists 

of several cycles. After each cycle the amount of amplified DNA is doubled.

The PCR method was used for the amplification of specific cDNA fragments 

or genomic DNA. If a PCR product was used for cloning, the PCR primers 
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were designed to introduce restriction endonuclease recognition sites to 

facilitate specific cloning into a certain target plasmid. For this purpose 

it was vital to prevent point mutations. Thus, the polymerase PfuUltra 

(Fermentas) was used. This enzyme has a 3’ to 5’ exonuclease activity 

and thereby provides a higher fidelity than normal polymerases. For pure 

analytical purposes it was sufficient to use Moltaq (Molzym) polymerase 

which lacks proofreading activity. The composition of a standard PCR reac-

tion mix for both polymerases is shown below:

PfuUltra Polymerase								      

as required				    DNA (100 pg to 500 pg)
1x					     10x PfuUltra II Reaction Buffer
0.2 mM each dNTP			  invitrogen™ dNTP Mix (10 mM each dNTP)
0.25 µM				    upstream primer (10 µM)		
0.25 µM				    downstream primer (10 µM)
1.25 U					    PfuUltra DNA Polymerase (5 U/µl)

Moltaq Polymerase								     

as required				    DNA (100 pg to 500 pg)
1x					     10x Moltaq Reaction Buffer
10%					     PCR Enhancer Solution
1mM					     MgCl2 (25mM)
0.2 mM each dNTP			  dNTP Mix (10 mM each dNTP)
0.25 µM				    upstream primer (10 µM)		
0.25 µM				    downstream primer (10 µM)
1 U					     Moltaq DNA Polymerase (5 U/µl)

Standard PCR cycling conditions:

Function				    Duration	 Temperature			

Initial DNA Denaturation		  5 minutes 	 95°C
DNA Denaturation			  20 s		  95°C
Primer Annealing			   20 s		  65°C	     30 cycles
Primer Extension			   15 s		  72°C
Final Extension			   3 minutes	 72°C
End					     ∞	 	 4°C

After PCR reaction 1x DNA loading dye (Fermentas) was added to each sample. 

It contains two different dyes (bromophenol blue and xylene cyanol FF) for 

visual tracking of DNA migration during electrophoresis. Samples mixed with 
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loading dye were loaded on an agarose gel for length separation by gel elec-

trophoresis (see below).

2.2.2	 Polymerase chain reaction purification

If PCR products were needed for further experiments, such as molecular cloning, 

PCR products were purified by JETQuick PCR Purification Kit. Purification was 

done according to manufacturer’s protocol. In brief: 400 µl of solution H1 

were added to each sample and pipetted into a JetQuick spin column. After 

centrifugation at 12,000 g for 1 minute the flow-through was discarded and 

the column washed with 500 µl H2 solution. The column was washed twice by 

centrifugation at 12,000 g for 1 minute, and the flow-through was discarded. 

For DNA elution 40 µl pre-warmed (65-70°C) water was added to the center of 

the column followed by a final centrifugation step at 12,000 g for 2 minutes.

2.2.3	 Gel electrophoresis

Gel electrophoresis is a technique to separate and visualize DNA fragments of 

different sizes. This technique was used to analyze PCR samples. For the elec-

trophoresis a 2% agarose gel (2% agarose; 1x TAE) was used. After boiling 

the gel, 0.003% ethidium bromide was added, and the gel was poured. While 

cooling down, the gel forms a crosslinked polymer. This polymer allows the 

separation of DNA fragments due to their size. DNA is negatively charged. 

Thus, the DNA moves in an electric field from the negative pole to the posi-

tive pole. The smaller a DNA fragment, the faster it moves through the gel. 

Hence, DNA fragments of different sizes are separated. For size determination 

of the separated PCR fragments a 1 kb DNA Ladder (Fermentas - GeneRuler™ 

) was used.

2.2.4	 DNA gel extraction

The JETQuick Gel Extraction Kit was used for double-stranded DNA fragment 

purification of PCR samples after gel electrophoresis. The kit purifies DNA 

fragments of a length of 40 bp up to 20 kb. 80-95% of the fragments are 

recovered with a maximal binding capacity of 20 µg. The DNA adsorbs to 

the silica-membrane of the JETQuick spin column in high-salt buffer while 

contaminants pass through the column. The DNA is eluted in low-salt buffer 

(Vogelstein and Gillespie, 1979).
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JETQuick Gel Extraction was done according to manufacturer’s protocol. In 

brief: The appropriate DNA band was excised from an agarose gel after gel 

electrophoresis and transferred into an suitable tube. For each 100 mg gel 

slice 300 µl solution L1 was added. To solubilize the gel, the tube was incu-

bated at 50°C for 15 minutes. Then the solubilized gel was loaded into a 

JETQuick spin column and centrifuged at 12,000 g for 1 minute. The flow-

through was discarded and the column washed by adding 500 µl of recon-

stituted solution L2. Followed by another centrifugation step (12,000 g for 1 

minute) the flow-through was discarded again. Finally, the column bond DNA 

was eluted by adding 50 µl of sterile water onto the center of the silica matrix 

of the JETQuick spin column and centrifugation at 12,000 g for 2 minutes. 

Higher DNA concentration was obtained by using preheated water (65-75°C) 

as elution buffer.

2.2.5	 Molecular cloning

Molecular Cloning is a technique to integrate a specific sequence into a certain 

vector for amplification in bacteria. In order to amplify the vector and the 

integrated sequence, the cloning vector must carry an origin of replication. 

Additionally, one or more antibiotic resistances are needed for selection. In 

general, each cloning involves four steps: fragmentation (digest), ligation, 

transformation and selection.

Restriction digests

For analytical purposes 0.2-2 μg of DNA were digested with 10-20 U of one or 

two restriction endonucleases in an appropriate 1× buffer. Restriction digests 

were carried out for 1 hour at 37ºC. After digestion samples were separated 

by gel electrophoresis and extracted via gel extraction kit (see section 2.2.3) 

or directly purified by JETQuick PCR Purification Kit (see section 2.2.2). DNA 

amounts were measured by standard photometry.

Ligation

To insert a specific DNA fragment (insert) into a multiple cloning site (MCS) 

of a plasmid vector, both, the insert and the vector, were digested with one 

or two appropriate restriction endonucleases (see above). After digest and 

fragment purification the gained insert and vector were used for ligation. 
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An insert vector ratio of 3 to 1 was used. Calculation of required insert and 

vector amounts for ligation was done according following formula:

		 a: amount of vector (ng)

		 b: size of vector (bp)

		 c: size of insert (bp)

		 d: amount of insert (ng)

Ligation was performed with a T4 DNA Ligase (Fermentas) and 1x Ligation 

buffer in a total volume of 20 µl at 17°C overnight. Ligation efficiency was 

verified by bacteria transformation with 10 µl ligation product and subse-

quent antibiotic selection. To verify proper integration and correct orienta-

tion of the insert, control PCRs with appropriate primers were performed 

after positive clone amplification and subsequent vector purification by 

plasmid DNA purification (see below). Additionally, in some cases positive 

clones were analyzed by sequencing (done by mwg/operon).

Transformation

For transformation chemically competent DH5α E.coli. were used. After 

thawing the competent cells on ice, plasmid vector was added to the cells. 

Followed by heat shock at 42°C for 1 minute the cells were placed back on ice. 

Finally, the cells were plated out on LB-agarose plates. For positive cell selec-

tion LB-plates with an appropriate antibiotic in a concentration of 1:1000 

were used (usually ampicillin). If transformation was successful, colonies were 

observed after incubating the plates at 37°C for 24 hours.

2.2.6	 Plasmid miniprep

Plasmid DNA purification from bacteria was done with the GenJET™ Plasmid 

Miniprep Kit. The procedure is based on alkaline lysis of bacterial cells followed 

by adsorption of DNA onto silica in the present of high salt (Vogelstein and 

Gillespie, 1979). The GenJET™ columns contain a silica membrane that enables 

a selective absorption of plasmid DNA in high-salt buffer and an elution of 

plasmid DNA in low-salt buffer. This ensures that only DNA will be isolated 

while RNA, cellular proteins, and metabolites are discarded.

The kit guarantees a DNA recovery of 90-95% with an maximum DNA yield 

a c d=x x
b

3
1
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of 50 µg. For Plasmid DNA miniprep bacteria were amplified on an antibi-

otic-containing LB-plate, positive clones picked and proliferated in 2 ml anti-

biotic containing LB-medium for 16 hours at 37°C. Bacteria were harvested 

by centrifugation at 12,000 g for 2 minutes. The pelleted cells were resus-

pended in 250 µl Resuspension Solution, and 250 µl Lysis Solution was added. 

After thoroughly mixing the solution by inverting the reaction tube, 350 µl 

Neutralization Solution was added. For pelleting cell debris and chromosomal 

DNA, centrifugation at 12,000 g for 5 minutes was performed. The obtained 

supernatant was loaded on a GeneJET™ spin column. After another centrifu-

gation step at 12,000 g for 1 minute the flow-through was discarded and the 

column washed two-times with 500 µl Wash Solution. Each wash step was 

followed by centrifugation at 12,000 g for 1 minute. To remove residual wash 

solution, an additional centrifugation step (12,000 g, 1 minute) was performed 

before DNA was eluted by adding 50 µl pre-warmed water (70°C) to the center 

of the spin column and centrifuging the tube for 2 minutes at 12,000 g.

2.2.7	 Genomic DNA isolation

Genomic DNA was extracted from small tissue pieces cut from the tip of the 

tail of five week old mice. The tissue was lysated at 56°C in 500 µl Laird’s Buffer 

(200 mM NaCl, 100 mM Tris-HCl pH 8.3, 5 mM EDTA, 0.2% sodium dodecyl 

sulfate) containing 0.15 mg/ml proteinase K. After 24 hours the samples were 

centrifuged at 14.000 rpm for 5 minutes. The supernatants were mixed with 

the same volume of isopropanol. Through inverting 3-4 times DNA appeared 

as small white fibres. Finally, the samples were centrifuged again, the isopro-

panol was completely removed and the DNA dissolved in 100 µl water. The 

DNA was used for genotyping by PCR. Therefore, 1 µl of each lysate was used 

for a standard PCR (see methods 2.2.1). Primarily, the quality and quantity 

of DNA in each sample was verified with two primers that detect a common 

gene. In the case of a positive result a second PCR was performed to screen 

for the desired transgene. For further analyses samples were stored at 4°C.

2.2.8	 Generation of a Tet-On CCL22 expression construct

For the generation of an inducible CCL22 expression vector a Tet-On Gene 

Expression construct was used (HT1080 Cell Line & pTRE2 Vector, 1999). This 

construct enables the doxycycline-dependent expression of CCL22. It consists 
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of two elements. The fi rst element is the activator rtTA. The expression of this 

activator is regulated by the cytomegalovirus promoter CMV. This promoter 

guarantees a strong constitutive expression of rtTA in all cells carrying the 

Tet-On Gene Expression construct. The second element contains the tet 

promoter that regulates the expression of CCL22. The whole system is doxycy-

cline sensitive. Doxycycline is a member of the tetracycline antibiotics group. 

In the absence of doxycycline the activator rtTA cannot bind to the promoter 

tet. Thus, tet is silent, and the gene of interest is not expressed. In the pres-

ence of doxycycline the antibiotic binds to rtTA. That leads to a conforma-

tion change of rtTA and enables rtTA to bind to the promoter tet. Thereby, 

the promoter is activated and promotes the expression of CCL22 (Figure 4). 

After integrating CCL22 into the Tet-On Gene Expression construct, the newly 

generated rtTA-Tet-CCL22 construct was inserted into the genome of CT26 

mouse tumor cells via lentiviral transduction. 

rtTA tet CCL22CMV Promoter

tet CCL22 tet CCL22

rtTACMV Promoter rtTACMV Promoter

DoxDox

CCL22rtTA

Figure 4:  Doxycycline-dependent expression of CCL22. The construct consists of two elements. 
First, the constitutive promoter CMV that guarantees a strong expression of the activator rtTA. Second, 
the rtTA controlled tet promoter that regulates the expression of the gene of interest (CCL22). In the 
absence of doxycycline rtTA cannot activate the promoter tet. In the presence of doxycycline rtTA 
binds doxycycline. The conformation of rtTA changes. Thus, rtTA is able to bind to and thereby acti-
vate the promoter tet, that in turn promotes the expression of CCL22.
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2.2.9	 Lentiviral tumor cell transduction

To guarantee stable genomic integration of the rtTA-Tet-CCL22 construct 

(containing a puromycin selection marker) into the target cell, lentiviral 

transduction was used. Therefore, the transgene was packed into a lentivirus 

envelope. 

The recombinant lentivirus was produced by transient transfection of HEK 

293T cells using GeneJuice Transfection Reagent (Novagen). HEK 293T cells 

were transfected with a viral construct (containing rtTA under the control of 

a CMV promoter and CCL22 mRNA downstream of a Tet-responsive promoter, 

FugW backbone), VSV-G and delta 8.9 in a ratio of 10:1:10. Infectious lenti-

viruses were harvested at 72 hours post-transfection and filtered through a 

low-protein binding 0.45 µm filter flask. The filtered recombinant lentiviruses 

were packed on 20% sucrose solution and concentrated by ultracentrifuga-

tion (2 hours at 27,000 rpm). Subsequently, virus pellet was dissolved and used 

for CT26 cell transduction. 36 hours post-transduction cells were selected by 

puromycin (5 µg/ml) treatment for 72 hours. After 24 hours incubation with 2 

µg/ml doxycycline inducible CCL22 expression of these novel generated puro-

mycin selected rtTA-CCL22-CT26 cell lines were verified by ELISA. 

2.2.10	 RNA isolation

Single cell suspension RNA isolation

Total RNA was extracted from tumor-infiltrating immune cells and cultured 

cells with Trizol reagent. 0.5 to 2.0 x 106 cells per well of a 96 well plate were 

used for Trizol RNA isolation. All subsequently indicated volumes are opti-

mized for lysing cells in a 96 well format. Initially, cells were lysed directly in a 

culture dish by adding 100 µl/well Trizol. After 5 minutes incubation at room 

temperature cell lysates were transferred into a 1,5 ml Eppendorf tube, and 

20 µl chloroform was added per sample. Next, samples were mixed by hand, 

incubated for 5 minutes at room temperature and centrifuged at 12,000 g for 

15 minutes at 4°C. After centrifugation the mixture separated into a lower 

red, phenol-chloroform phase, an interphase and a colorless upper phase that 

contained the extracted RNA. The upper phase of each sample was trans-

ferred into a new tube, and RNA was precipitated by adding 0.1 ml isopropyl 

alcohol. Subsequently, after 10 minutes incubation, samples were centrifuged 
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at 12,000 g for 15 minutes at 4°C, and supernatants were discarded. Finally, 

RNA pellets were washed with 0.2 ml 75% ethanol and dissolved in 25 µl 

RNase-free water.

Tissue RNA isolation

For total RNA isolation from tissue samples the InviTrap Spin Universal RNA 

Mini Kit from Invitek was used. 20 mg of fresh tissue was grounded under 

liquid nitrogen with a mortar and pestle. The powder was transferred into 

a 1.5 ml reaction tube and mixed with 900 µl lysis solution. To remove the 

genomic DNA the tube was centrifuged at maximum speed for 2 minutes. 

The supernatant was transferred in a new reaction tube, and 500 µl 100% 

ethanol was added. This mixture was loaded on a RTA Spin Filter, incubated 

for 1 minute and centrifuged for 1 minute at 10.000 g. After discarding the 

flow-through, two wash steps were performed. The first with 600 µl Wash 

Buffer R1 and the second with 700 µl Wash Buffer R2. The last washing step 

was repeated once. To eliminate any traces of ethanol, the tube was centri-

fuged at maximum speed for 5 minutes. Afterwards, total RNA was eluted 

by adding 40 µl RNase-free water onto the filter-membrane, incubating for 2 

minutes and centrifuging for 1 minute at 10,000 g. RNA was stored at -20°C.

2.2.11	Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qRT-PCR) was used to 

quantify the relative amount of specific mRNAs in certain samples. Therefore, 

isolated total RNA was reverse transcribed in cDNA, amplified with specific 

primers and normalized to HPRT, a ubiquitous expressed gene in all cell types 

(HPRT probe-number and primer sequence: see appendices 8.2).

For reverse transcription the RevertAid First Strand cDNA Synthesis Kit 

from Fermentas was used. Synthesis was done according to manufacturer’s 

protocol. In brief: 

cDNA Synthesis

as required				    RNA (0.1 ng to 5 µg)
1 µl					     oligo (dT) primer
to 12 µl				    Water, nuclease-free
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4 µl				    5x Reaction Buffer

1 µl				    RiboLock RNase Inhibitor (20 u/μl)

2 µl				    10mM dNTP Mix

1 µl				    RevertAidTM M-MuLV Reverse Transcriptase 

 				    (200 u/μl)

After adding all components, the mixture was incubated for 60 minutes at 

42°C. The reaction was terminated by heating at 70°C for 5 minutes. After this 

incubation all mRNA fragments of the sample were transcribed into cDNA. 

This cDNA was used for further analyses by qRT-PCR.

qRT-PCR was done with Roche LightCycler 488 Probes Master. With this kit 

the following standard reaction was prepared: 

qRT-PCR									       

1.5 µl				    Water, PCR-grade
0.2 µl				    primer forward (10 µM)
0.2 µl				    primer reverse (10 µM)
5 µl				    Probes Master
0.1 µl				    Probe
3 µl				    cDNA

For specific primers and probes see appendix 8.2. Relative gene expression of 

each gene was calculated as the ratio of gene of interest mRNA and hypo-

xanthine phosphoribosyltransferase (HPRT) mRNA, both determined in the 

same sample. qRT-PCR was performed with the LightCycler 480 Instrument. 

For all runs the standard Roche protocol Mono Color Hydrolysis Probes with 

45 amplification cycles was used. 

2.3	 Immunological methods

2.3.1	 CCL22 enzyme-linked immunosorbent assay (ELISA)

To measure the amount of CCL22 in different tissues, serum or the supernatant 

of cultured cells a CCL22 ”sandwich” ELISA (R&D System) was performed. Via 

“sandwich” ELISA a sample with an unknown amount of CCL22 is immobilized 
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on a polystyrene microtiter plate using a CCL22 specifi c capture antibody. 

After the antigen is immobilized, the detection antibody is added forming a 

complex with the antigen. The detection antibody is covalently linked to the 

enzyme horseradish peroxidase (HRP). By adding an enzymatic substrate, a 

visible signal can be detected which indicates by comparing to the signal of 

a CCL22 standard dilution the quantity of CCL22 in the sample. Therefore, a 

standard dilution was prepared for each ELISA. The standard dilution consists 

of clearly determined amounts of CCL22 (from 500 pg/ml to 0 pg/ml). The 

CCL22 standard dilution was done according to Figure 5.

500 pg/ml

300µl Std. 
Dilution

+
150 pg CCL22

150µl Std. 
Dilution

150µl Std. 
Dilution

150µl Std. 
Dilution

150µl Std. 
Dilution

150µl Std. 
Dilution

150µl Std. 
Dilution

150µl Std. 
Dilution

250 pg/ml 125 pg/ml 62,5 pg/ml 31,25 pg/ml 15,63 pg/ml 7,81 pg/ml 0 pg/ml

150µl 150µl 150µl 150µl 150µl 150µl

Figure 5:  Standard dilution scheme. 500 pg/ml CCL22 was added to 300 µl standard dilution 
(donkey serum diluted 2:1 with PBS + 1% BSA). 150 µl of this fi rst solution was mixed with 150 µl 
standard dilution. Then 150 µl of this second solution was mixed with another 150 µl standard dilu-
tion and so forth. At the end eight different CCL22 standard dilutions (500 pg/ml, 250 pg/ml, 125 
pg/ml, 62.5 pg/ml, 31.25 pg/ml, 15.63 pg/ml, 7.81 pg/ml, and 0 pg/ml) were prepared. By comparing 
with this standard dilution, the unknown amount of CCL22 in a sample was verifi ed.

At the beginning of each ELISA, CCL22 capture antibody was diluted in PBS 

to a fi nal concentration of 2.0 μl/ml. 50 μl of this capture antibody solution 

per well was used to coat a 96 well microplate. The plate was sealed and 

incubated overnight at room temperature to enable binding of the antibody 

to the surface of the plate. On the next day the plate was washed three 

times with washing buffer (PBS + 0.05% Tween). To block any non specifi c 

binding sites on the surface of the plate, 150 μl blocking solution (PBS + 1% 

BSA) was added to each well. After 1 hour incubation the plate was washed 

again three times, and 50 μl sample (either pure or diluted with PBS + 1% 

BSA) or 50 μl standard dilution was added per well. 2 hours later the plate 

was washed again three times and incubated for 2 hours with 50 μl CCL22 
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detection antibody solution (diluted in PBS + 1% BSA to a final concentration 

of 50 ng/ml). By three times washing, all unbound detection antibody was 

removed. Afterwards, 50 µl enzyme solution (streptavidin HRP, diluted 1:200 

with PBS + 1% BSA) was added to each well and incubated in the absence 

of light for 20 minutes. To eliminate all unbound enzymes, the plate was 

washed again three times. Finally, 50 µl substrate solution (H2O2 diluted 1:1 

with tetramethylbenzidine) was added to each well. This substrate solution 

is converted by streptavidin HRP into a fluorescence signal. After 20 minutes 

the enzyme reaction was stopped by adding 25 µl per well stop solution (2 N 

H2SO4). Immediately after stopping the reaction, the optical density of each 

well was measured by using a microplate reader set to 450 nm + 570 nm as 

wavelength correction. The reference wavelength corrects for optical imper-

fections in the plate.

2.3.2	 Cell proliferation BrdU ELISA

Tumor cell proliferation in vitro was measured by 5’-Bromo-2’-deoxyuridine 

(BrdU) cell proliferation ELISA kit from Roche. BrdU is a pyrimidine analogue 

that incorporates into the DNA of replicating cells instead of thymidine. By 

adding an anti-BrdU-peroxidase antibody and tetramethylbenzidin (TMB) as 

substrate the amount of incorporated BrdU can be measured with an ELISA 

reader. The obtained optical density (OD value) directly correlates with the 

cell proliferation rate. We used this technique to verify the proliferation rate 

of untreated and doxycycline-treated rtTA-CCL22-CT26 tumor cells. For this 

purpose, 40.000 tumor cells were cultured in a 96 well tissue-culture plate 

for 48 hours without or with different amounts of doxycycline in cell culture 

medium. 6 to 12 hours before analyzing the proliferation rate 7.5 µM BrdU 

was added to each well. After this labeling step the plate was centrifuged 

(400 g, 7 minutes) and the labeling medium was removed. Subsequently, 

the plate was dried at 60°C for one hour. Finally, the cells were fixated by 

adding FixDenat to each well, labeled with anti-BrdU antibody and incubated 

with TMB substrate solution according to the manufacturer’s protocol. The 

reaction product was quantified in triplicates by measuring the absorbance at 

370 nm (+ 492 nm as wavelength correction) using an ELISA reader.

2.3.3	 Cytokine assays of tissue lysates

Tissue homogenates were resuspended in lysis buffer (BioRad Laboratories) 

and centrifuged. Total protein concentration was measured by Bradford assay 
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(BioRad Laboratories). All samples were diluted to a protein concentration 

of 10 to 30 mg/ml, and CCL22 concentration was measured by ELISA (R&D 

Systems). The cytokine concentration was calculated as ng cytokine/g protein 

in the respective lysate.

2.3.4	 Flow cytometry

Flow cytometry is a technique for analyzing and counting cells suspended in 

a fluid due to their physical and chemical differences. To analyze each single 

cell, a hydrodynamically-focused stream of liquid is generated. By use of this 

liquid stream, each cell passes single file through a laser light. At the point 

where the liquid stream passes through the laser light several detectors are 

installed. The so-called Forward Scatter (FSC) is in line with the light beam and 

measures cell volume. Perpendicular to the beam several additional detectors 

are located that presents the Side Scatter (SSC). The SSC provides informa-

tion about the granularity of a cell. Furthermore, different fluorescent detec-

tors connected with optical filters can detect emitted light from fluorescent 

chemicals found attached or in the cytosol of a cell. These fluorescent dyes 

are conjugated with antibodies that binds to certain cell surface markers such 

as CD3 or cytosolic molecules such as the transcription factor FOXP3. The flow 

cytometer FACS Canto II is equipped with three different laser lights (405 

nm, 488 nm and 633 nm) to illuminate cells tagged with a variety of different 

fluorescent dyes. All flow cytometry experiments were performed on this 

flow cytometer and analyzed with FlowJo software.

Analysis of cell surface antigens

Cells were diluted at 1 x 106 to 10 x 106 in 50 µl PBS. Flourochrome-conjugated 

monoclonal antibodies directed against the antigens of interest were added at 

a concentration of 10 μl/ml. After 30 minutes incubation at 4°C in the absence 

of light, cells were washed two times with PBS and finally re-suspended in 

PBS supplemented with 2% FCS for FACS analysis. 

Analysis of intracellular antigens

For analyzing the intracellular transcription factor Foxp3, intracellular 

staining was performed by using the Foxp3 Staining Buffer Set (eBioscience). 

Initially, cell surface markers were labeled as described above. After surface 
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staining cells were centrifuged and re-suspended in fixation/permeabili-

zation reagent. The fixation reagent guarantees the fixation of all bound 

surface antibodies, whereas the permeabilization reagent permeabilizes the 

cell membrane to enable the staining of intracellular antigens. Cells were 

incubated for 30 minutes at 4°C in fixation/permeabilization reagent and 

washed twice with Perm-Buffer. After washing the cells were re-suspended in 

50 µl Perm-Buffer, and 10 µl/ml anti-Foxp3 antibody was added. Intracellular 

staining was performed for 30 minutes at 4°C in the absence of light. Finally, 

cells were washed two times with Perm-Buffer and re-suspended in PBS 

supplemented with 2% FCS for FACS analysis.

2.4	 Cell culture

2.4.1	 General culture conditions

All cell lines were cultured at 37°C and 5% CO2 in tissue culture flasks. Cell 

culture procedures were executed with sterile reagents under a laminar flow 

hood. The concentration and viability of cells was determined by trypan blue 

staining. Trypan blue is a reagent that is not absorbed by viable cell. In dead 

cells, by contrast, the dye could pass the membrane and thereby stains cells 

blue. Thus, dead cells are visible in a distinctive blue color under the micro-

scope and can be distinguished from viable cells. In order to stain death cells 

and count viable cells, 0,25% trypan blue in PBS was added in an appropriate 

dilution to cell suspensions. Cells were counted in a Neubauer hemocytometer 

under the microscope. The total number of cells per ml was calculated by multi-

plying the total cell number in one hemocytometer grid by the dilution factor 

and 104.

2.4.2	 Murine tumor cell line

4T1 breast cancer (kindly provided by Dr. M. Wartenberg, Friedrich-Schiller-

University, Jena, Germany) Colon-26 (CT26) (Cell Lines Service, Heidelberg, 

Germany), Colon-26 with inducible CCL22 expression (rtTA-CCL22-CT26), B16 

melanoma F1 (LGC Promochem, Teddington, UK), mGC8 gastric cancer (kindly 

provided by Dr. med. J. Nöckel, LIFE-Center, University Clinic, Grosshadern, 

Germany) MethA sarcoma (kindly provided by Prof. W. Zimmermann, 
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LIFE-Center, University Clinic, Grosshadern, Germany) as well as Panc02 (kindly 

provided by Prof. C. Bruns, Department of Surgery, University of Munich, 

Germany) were maintained in complete DMEM or RPMI medium as described 

above. Tumor cells were split in a 1:10 dilution two times a week. Cells were 

detached with Trypsin-EDTA (0.25%), centrifuged (400 g, 7 minutes, 4°C), 

resuspended in fresh medium and transferred to culture flasks. All tumor cell 

lines were expanded for two to three passages upon receipt, stored in liquid 

nitrogen and freshly thawed prior each experiment.

2.4.3	 Isolation of DC and T cells by magnetic cell separation

MACS (magnetic cell separation or magnetic-activated cell sorting) Technology 

from Miltenyi was used for the separation of magnetic labeled viable cells 

from lymphoid and non-lymphoid tissues.

For MACS separation cells are labeled with MACS MicroBeads which are 

superparamagnetic particles of approximately 50 nanometers in diameter 

and coated with antibodies against particular surface antigens. After cell 

labeling with these MicroBeads cells are applied on MACS columns. By a 

strong permanent magnet a high-gradient magnetic field is induced on 

the column matrix. Therefore, all labeled cells are retained in the column 

and all unlabeled cells pass through the column and can be collected. After 

removal of the column from the magnet, labeled cells can be released from 

the column and can also be collected. With MACS separation cells can be 

sorted by negative selection (= unbound fraction) and positive selection  

(= bound fraction).

Murine DC were separated from total spleen cells, lymphocytes or ex vivo 

tumor cell suspension with CD11c beads (= positive selection). Regulatory 

T cells were sorted from total spleen cells via a two-step procedure. First, 

non-CD4+ T cells were depleted by indirectly labeling with a cocktail of 

biotin-conjugated antibodies against CD8, CD14, CD16, CD19, CD36, CD56, 

CD123, TCR γ/δ and CD235a (glycophrin A) and Anti-Biotin MicroBeads 

(= negative selection). In a second step, the CD4+ flow-through fraction 

was labeled with CD25 MicroBeads for subsequent positive selection of 

CD4+CD25+ regulatory T cells. 
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In this study reagents from Miltenyi Biotec were used according to the 

manufacturer’s instructions, and all cell separations were done according to 

manufacturer’s protocol. In brief: Cells were labeled with the appropriate 

microbeads in MACS buffer for 15 minutes at 4°C and washed with MACS 

buffer. MS columns were placed in a magnet and equilibrated with 0.5 ml 

MACS buffer prior to loading the labeled cells in a volume of 0.5 ml. After 

washing the column with three times 0.5 ml MACS buffer, the column was 

removed from the magnet, and the bound fraction was eluted by flushing 

the cells in 1 ml MACS buffer through the column with the supplied plunger. 

If high purity of sorted cells was needed a second column purification step 

was performed. The purity of CD11c-sorted cells was 90% on average after 

one column purification. After a second column purification this purity was 

increased to more than 96%. 

In the case of the two-step Treg separation procedure cells were incubated 

with a biotin antibody cocktail (including CD8, CD14, CD16, CD19, CD36, CD56, 

CD123, TCR γ/δ and CD235a). After 10 minutes at 4°C anti-biotin microbeads 

and CD25-PE antibody were added and incubated for another 15 minutes 

at 4°C. Afterwards, cells were washed with MACS buffer. A LD column was 

placed in a magnet and equilibrated with 2 ml MACS buffer prior to loading 

the labeled cells in a volume of 0.5 ml. The column was washed with three 

times 1 ml MACS buffer, and the flow through was collected. In the second 

separation step these CD4+ cells were incubated with anti-PE microbeads for 

15 min at 4°C, washed with MACS buffer and applied in a volume of 0.5 ml 

onto a MS column (equilibrated with 0.5 ml MACS buffer). After washing the 

column, the column was removed from the magnet, and the bound fraction 

was eluted by flushing the cells in 1 ml MACS buffer through the column with 

the supplied plunger.

2.4.4	 Toll-like receptor ligands treatment in vitro

For in vitro cultures murine tumor-infiltrating cells of CT26, B16 and Panc02 

tumors were treated with 5 µg/ml CpG 1826 (Coley Pharmaceutical Group), 

1000 U/ml murine interferon-alpha (IFN-α) (R&D Systems), 50 ng/ml murine 

interferon-gamma (IFN-γ) (Peprotech), 10 ng/ml murine IL-1β, IL-2, IL-6, IL-10 

or IL-12 (all Peprotech), respectively.
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2.4.5	 Cell transfection

For cell transfection in vitro we cultured 1 to 4 x 104 cells per well in 96 

well plates. For one well following transfection mixture was prepared: 2.0 

to 5.0 µg plasmid was added to 10 µl Opti-MEM. The transfection reagent 

Lipofectamine 2000 was mixed with 10 µl Opti-MEM in a ratio of 5:1 to the 

amount of used plasmid DNA. Both mixtures were incubated for five minutes 

at room temperature, then combined and incubated for another 20 minutes. 

After 20 minutes the DNA and transfection reagent complex was added 

directly into the supernatant of cultured cells. Transfection efficiency was 

verified 24 hours post transfection. 

2.4.6	 Conditioned medium

Conditioned medium (CM) was produced by stimulating 5 x 105 splenocytes 

of C57BL/6 mice with 5 µg/ml CpG 1826 (Coley Pharmaceutical Group) for 

2 hours, followed by extensive washing and culture in fresh medium for an 

additional 20 hours before removal and transfer of the supernatant into stim-

ulation assays of murine tumor-infiltrating cells.

2.5	 Animal experimental procedures

2.5.1	 Animals

For this study female BALB/c and C57BL/6 mice were purchased from Harlan-

Winkelmann (Borchen, Germany). IFN-I receptor (IFNAR)-deficient mice on 

C57BL/6 background were kindly provided by Dr. Z. Waibler (Paul-Ehrlich 

Institute, Langen, Germany). Mice were 6 to 10 weeks old at the onset of 

experiments. All mice were anesthetized with isoflurane for all interventions, 

but subcutaneous (s.c.) and intraperitoneal (i.p.) injections. Animal studies 

were approved by the local regulatory agency (Regierung von Oberbayern, 

Munich, Germany).

2.5.2	 Organ and single cell preparation

Bone marrow-derived dendritic cell isolation: Femur and tibia were bilater-

ally dissected from sacrificed mice. Bones were cleaned with isopropanol, and 

bone marrow was extracted by flushing the bones with DC medium. The 
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obtained bone marrow was passed through a 40 µm cell strainer to gain 

a single cell suspension. Erythrocytes were lysed with ammonium chloride 

buffer, and remaining cells were cultured in DC medium supplemented with 

GM-CSF (20 ng/ml) and interleukin-4 (20 ng/ml). After seven days incubation 

differentiated DCs were harvested by gathering culture medium and rinsing 

culture flasks with cold PBS. 

Spleen cell isolation: Mice were sacrificed by cervical dislocation, and spleens 

were removed. To get a single cell suspension, the obtained spleens were 

passed through a 40 μm cell strainer. Next, erythrocytes were lysed by resus-

pending the cells in red blood cell lysis buffer. After 2 minutes incubation the 

lysis was stopped by washing cells with PBS. Splenocytes were kept in T cell 

medium for further experiments.

Lymph node cell isolation: Mice were sacrificed. Brachial, axillary and inguinal 

lymph nodes were collected and passed through a 40 μm cell strainer. The 

through flow (= single cell suspensions) was centrifuged and resuspended in 

T cell medium.

Tumor-infiltrating leukocytes isolation: Tumors were removed from sacrificed 

mice, mechanically disrupted and incubated with 1 mg/ml collagenase and 

0.05 mg/ml DNase (both Sigma Aldrich) at 37°C for 30 minutes. To obtain a 

single cell suspension, the tumors were passed through a 100 µm cell strainer 

followed by a 40 μm cell strainer. Suspended cells were layered on a gradient 

of 44% Percoll (upper phase) and 67% Percoll (lower phase) prior to centrifu-

gation at 800 g for 30 minutes. The leukocytes from the interphase were 

collected and used for flow cytometry analysis or cell culture. These obtained 

tumor-infiltrating immune cells typically contained 1-2% B220+ cells (B cells), 

17-20% CD11b+ cells (myeloid cells), 13-15% CD11c+ cells (DCs), 15% GR1+ 

cells (macrophages), 15% CD49b+ cells (NK cells), 5-6% CD3+CD4+ cells 

(Teffs) and 14% CD3+CD8+ cells (cytotoxic T cells). Defined by the expression 

of CD25 40% of the CD3+CD4+ fraction were Tregs (CD25+). The CD11c+ DC 

population can be subdivided in plasmacytoid DCs (pDCs) and conventional 

DCs (cDCs) according to the expression of B220. 20% of CD11c+ cells were 

pDCs (B220+) and 80% cDCs (B220-negative) (Figure 6). 
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Figure 6:  FACS analysis of tumor-infi ltrating immune cells. To verify the composition of tumor-
infi ltrating immune cells three Panc02 tumors with a size of 100 mm2 were dissected, immune cells 
isolated from the tumor tissue by Percoll density centrifugation and analyzed by FACS. (A) Cells were 
stained for different surface markers that defi ne certain cell subsets of immune cells. The percentage 
indicates the amount of cells positive for a certain marker among all cells of the live gate. (B) The ratio 
of pDCs to cDCs was determined by the expression of B220. pDCs are the B220+ cells among all 
CD11c+ cells and cDCs are the B220-negative cells of all CD11c+ cells. (C) The ratio of Teffs to Tregs 
in tumor-infi ltrating immune cells was calculated by the expression of the surface marker CD25. Teffs 
are the CD25-negative cells among CD3+CD4+ cells and Tregs are all CD25+ cells of the CD3+CD4+ 
cells. For CT26 and B16 tumors comparable cell distributions were observed among tumor-infi ltrating 
immune cells. Error bars indicate SEM. 

2.5.3 Toll-like receptor stimulation of mice

The fully PTO-modifi ed CpG oligonucleotide 1826 (5’-TCCATGACGTT-

CCTGACGTT-3’) (Coley Pharmaceutical Group) was injected subcutaneously 

(100 μg CpG in PBS per mouse). Poly (I:C) (Amersham Bioscience) was applied 

intraperitoneally (250 μg in PBS per mouse).

2.5.4 Tumor experiments

For tumor induction 0.25 x 106 (CT26 and rtTA-CCL22-CT26) or 1.0 x 106 

(B16 and Panc02) tumor cells were injected subcutaneously into the 

flank. Mice with subcutaneous rtTA-CCL22-CT26 tumors were fed with 

a normal or 25 mg/kg doxycycline-containing diet (provided by ssniff 

 Spezialdiäten GmbH, Soest, Germany). The tumor size of individual 

tumors can be expressed as the product of the perpendicular diameters 

(= tumor area) or as the squared width divided by the bisected length 
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(= tumor volume) (Euhus et al., 1986). All tumor sizes in this work were 

expressed as tumor area.

2.6	 Statistical analysis

All data are presented as mean +/- SEM and were analyzed as appropriate 

by unpaired Student’s t-test or by unpaired, one-way analysis of variance 

(ANOVA) with the Newman-Keuls multiple comparison test. Significance of 

survival time among different mouse groups was calculated by using the log-

rank test. In all analyses P < 0.05 was set as point for significance. All statistic 

calculations were done with Prism GraphPad. 
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3. Results

3.1 Source and impact of intratumoral CCL22

In this study we aimed to evaluate the impact of the chemokine CCL22 on 

anti-tumor immunity. To this aim we examined different mouse tumor models 

that allow evaluation of tumor progression in the presence or absence of 

CCL22.

3.1.1 CCL22 is expressed in murine tumors

As a fi rst step we verifi ed whether CCL22 is expressed in different subcu-

taneously established murine tumor entities in vivo. For this purpose six 

week old mice were subcutaneously injected with CT26 (colon carcinoma), 

B16 (melanoma), 4T1 (mammary cancer) or Panc02 (pancreatic cancer) tumor 

cells. After two weeks (approximate tumor size in length x width: 7 x 7 mm2) 

tumors were dissected, and CCL22 levels were determined in tumor lysates by 

ELISA (Figure 7). In all tested murine tumors substantial intratumoral levels of 

CCL22 were observed. Serum CCL22 concentrations were used as reference. 
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Figure 7:  CCL22 levels in different murine tumor lysates. Intratumoral CCL22 levels of CT26 
(n=5), B16 (n=7), 4T1 (n=5) and Panc02 (n=7) tumor homogenates were measured via ELISA. 
Intratumoral CCL22 levels are shown in comparison with serum CCL22 levels of tumor-bearing mice 
(n=4). Bars (–) indicate the mean CCL22 concentration per overall tumor protein. 
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The highest expression of CCL22 was observed in Panc02 tumors, whereas 

the lowest expression of all analyzed tumors was seen in CT26 tumors (100 

times lower than in Panc02). In the spleen and the lymph nodes of tumor-

bearing mice CCL22 levels were similar to the CCL22 levels measured in 

healthy wild-type mice. In the spleen we typically detected 50 to 60 ng 

CCL22 per g total protein and in the lymph node 300 to 500 ng CCL22 per 

g total protein.

3.1.2  Tumor cell lines do not secrete CCL22 

Since CCL22 expression was observed in all tested murine tumor lysates, we 

aimed to identify the cellular source of intratumoral CCL22. In a fi rst step 

we verifi ed whether the tumor cells secrete CCL22. Therefore, we measured 

CCL22 levels in the culture supernatants of several different murine tumor 

cell lines. Strikingly, in all tested tumor cell supernatants no CCL22 expression 

was found (Figure 8). Thus, it is unlikely that the tumor cells themselves are 

the source of intratumoral CCL22.
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Figure 8:  CCL22 levels in the culture supernatants of different tumor cell lines. Supernatants 
were analyzed for secretion of CCL22 by ELISA. CCL22 level in the supernatant of rtTA-CCL22-CT26 
tumor cells was used as positive control (for rtTA-CCL22-CT26 cell line description see methods 
part 2.2.8). Of each cell line 50.000 cells were cultured in triplicates in a 96 well plate. After two 
days CCL22 concentration in the culture supernatant was measured by ELISA. This experiment was 
repeated twice.
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3.1.3  Intratumoral dendritic cells express CCL22

Since tumor cells are probably not the source of intratumoral CCL22, we 

hypothesized that tumor-infi ltrating immune cells produce intratumoral 

CCL22. In murine tumors typically 2-4% of all cells are DCs, 2-3% are T cells, 

4% are NK cells, 1% are NKT cells and 3% are B cells (source: dissertation 

Michaela Golic, Division of Clinical Pharmacology, LMU, Munich, 2010). In 

addition, Tang and Cyster described DCs as the main producer of CCL22 in 

lymph nodes of healthy mice (Tang and Cyster, 1999). To investigate whether 

DCs are also responsible for CCL22 expression in murine tumor tissue, we 

sorted single cell suspensions of subcutaneous murine tumors for CD11c+ 

cells. CD11c is a commonly used murine DC surface marker. 
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Figure 9:  CD11c mRNA levels of sorted single cell suspensions of subcutaneous murine 
tumors. We used qRT-PCR to verify the CD11c expression of sorted single cell suspensions of subcu-
taneous murine tumors (n=5). For this purpose we measured CD11c mRNA levels of unsorted, CD11c-
depleted and CD11c-enriched B16-infi ltrating leukocytes. HPRT was used for normalization. The 
shown data are the result of two independently performed experiments. Error bars indicate SEM. P 
value of sorted CD11c+ cells was calculated relative to CD11c-depleted cells (***p < 0.001).

The purity of sorted single cell suspensions of subcutaneous murine tumors 

was confi rmed by qRT-PCR and FACS analysis. We used qRT-PCR to measure 

CD11c mRNA levels of unsorted, CD11c-depleted and CD11c-enriched cells. As 

expected, low levels of CD11c were observed in unsorted tumor-infi ltrating 
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leukocytes, whereas almost no CD11c was detected in CD11c-depleted leuko-

cytes confi rming the absence of CD11c-positive cells in this fraction. CD11c-

enriched leukocytes showed high levels of CD11c mRNA (Figure 9).

The purity of the CD11c-enriched cells was further determined by FACS 

 analysis. Therefore, isolated tumor leukocytes were stained with a CD11c anti-

body before and after CD11c MACS sort. More than 97% CD11c-positive cells 

were detected in the CD11c-enriched fraction confi rming a high purity of this 

fraction. In unsorted tumor-infi ltrating leukocytes 11.2% of the analyzed cells 

were positive for CD11c (Figure 10).
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Figure 10:  CD11c expression of unsorted and CD11c-sorted tumor-infi ltration leukocytes. 
Left panel: 11.2% of unsorted cells were CD11c-positive. Right panel: 97.8% CD11c-positive cells 
were detected after a two column MACS sort in the fraction of CD11c-enriched cells. Shown is one 
representative FACS blot.

We measured CCL22 mRNA levels in freshly isolated CD11c-sorted cells of B16 

tumors. In addition, CCL22 protein concentrations in the supernatants of ex 

vivo cultured sorted single cell suspensions of Panc02 tumors were deter-

mined by ELISA. Interestingly, CCL22 mRNA and protein were almost exclu-

sively expressed by tumor-infi ltrating CD11c+ cells (Figure 11), whereas almost 

no CCL22 was detectable in the CD11c-depleted fraction. In the unsorted 

condition only low CCL22 levels were observed. Thus, DCs appeared to be the 

exclusive producer of intratumoral CCL22.
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Figure 11:  CCL22 mRNA and protein level of sorted single cell suspensions of subcuta-
neous B16 and Panc02 tumors. Mice received subcutaneously 1.0 x 106 B16 or Panc02 tumor 
cells (n=5, respectively). After tumors reached an average size of 100 mm2 in length x width, 
tumors were resected, and single cell suspensions were prepared. Cells were sorted for CD11c+ 
cells (purity > 96%) and immediately used either for mRNA isolation (B16) or cell culture (Panc02). 
CCL22 mRNA level of B16-sorted single cell suspensions were analyzed by qRT-PCR and normalized 
to HPRT mRNA. Supernatants of cultured single cell suspensions of Panc02 tumors were collected 
after 72 hours, and CCL22 concentration was measured by ELISA. Overall mRNA levels and protein 
levels of three conditions were analyzed in triplicates: unsorted, CD11c-depleted (CD11c -) and 
CD11c-enriched (CD11c +) cells. The shown results were confi rmed by repeating the experiment 
once. Error bars indicate SEM. P values of sorted CD11c+ cells were calculated relative to CD11c-
depleted cells (*p < 0.05; ***p < 0.001).

3.1.4 CCL22 increases tumor growth and decreases survival

Since CCL22 is known to be a potent attractor of Tregs, a cell type described 

to promote tumor growth, we aimed to analyze the impact of intratu-

moral CCL22 levels on tumor growth and overall survival of tumor-bearing 

mice. For this purpose we generated a novel tumor cell line, specifi ed as 

rtTA-CCL22-CT26 (see methods 2.2.8. and 2.2.9). These tumor cells were trans-

duced with a rtTA-CCL22 expression construct by lentiviral transduction. In 

cells that carry this construct, CCL22 expression is induced by doxycycline. In 

the presence of doxycycline the transactivator rtTA is active and promotes 

CCL22 expression, whereas in the absence of doxycycline rtTA is inactive, and 

induced CCL22 expression is blocked. The doxycycline-mediated inducibility 
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of CCL22 expression in rtTA-CCL22-CT26 tumor cells was verifi ed in vitro and 

in vivo. After the administration of 2 μg/ml doxycycline, CCL22 expression 

was highly up-regulated in the supernatant of in vitro-cultured rtTA-CCL22-

CT26 tumor cells. The same effect was observed in vivo. In rtTA-CCL22-CT26 

tumor-bearing mice fed with a diet containing 25 mg/kg doxycycline, high 

intratumoral CCL22 levels were observed in comparison to rtTA-CCL22-CT26 

tumor-bearing mice fed with normal diet (Figure 12).
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Figure 12:  Doxycycline-dependent expression of CCL22 in vitro and in vivo. Left fi gure: 5 x 104

CT26 rtTA-CCL22-transduced tumor cells were cultured in a 96 well plate. 2 µg/ml doxycycline was 
added for 24 hours. CCL22 levels in the supernatant were measured in triplicates before and after 
doxycycline treatment. Right fi gure: Mice were subcutaneously injected with 1.0 x 105 rtTA-CCL22-
CT26 tumor cells and divided into two groups. One group was fed with a normal diet (n=7) and the 
other group with doxycycline-containing (25 mg/kg) diet (n=7). After tumors reached a size of 225 
mm2 (length x width), mice were euthanized, tumors dissected, and CCL22 level was measured in the 
tumor lysates by ELISA. These experiments were repeated several times. Shown are the results of one 
representative experiment. Error bars indicate SEM (**p < 0.01; ***p < 0.001).

We aimed to investigate whether CCL22 affects tumor growth and disease 

outcome. Therefore, we compared the tumor growth and survival rate of 

rtTA-CCL22-CT26 tumor-bearing mice with and without doxycycline-induced 

CCL22 up-regulation. Strikingly, the over-expression of CCL22 had a clear 

impact on tumor growth. Mice treated with a doxycycline diet showed a 

signifi cant faster tumor progression than mice fed with normal diet (Figure 13).
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Figure 13:  Tumor growth of rtTA-CCL22-CT26 tumors. Mice were subcutaneously injected 
with 1.0 x 105 rtTA-CCL22-CT26 tumor cells. Subsequently, mice were divided into two groups. 
One group was fed with a normal diet and the other group with doxycycline-containing (25 mg/
kg) diet (n=7). Tumor size in length x width [mm2] was measured every second day. Tumor growth 
was monitored for 30 days. These data were confi rmed by repeating the experiment once. Error 
bars indicate SEM. P value of mice fed with normal diet was calculated according to mice fed with 
doxycycline diet (***p < 0.001).

In addition to tumor growth we determined the overall survival of rtTA-CCL22-

CT26 tumor-bearing mice. Consistently with tumor progression mice with 

doxycycline-induced intratumoral CCL22 over-expression showed a lower 

survival rate compared to mice fed with normal diet (Figure 14). 

Beside tumor growth we wanted to verify if CCL22 has also an impact on 

the ability of injected tumor cells to establish a solid tumor. Therefore, we 

used the same experimental model as described above, but injected only 

5 x 104 rtTA-CCL22-CT26 tumor cells instead of 1.0 x 105 cells. This low dose 

of tumor cells is typically not suffi cient to establish a tumor in the respective 

mouse. Indeed, fi ve mice out of seven rejected the tumor one week after 

a small tumor was palpable and stayed tumor-free in the group fed with 

normal diet. However, in the group fed with doxycycline diet and thereby 



55

Results

induced CCL22 over-expression only one mouse out of seven stayed tumor-

free and survived the monitored time period of 80 days (Figure 15). These 

results indicate that intratumoral CCL22 promotes tumor development. 
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Figure 14:  Overall survival of rtTA-CCL22-CT26 tumor-bearing mice. 14 mice were subcutane-
ously injected with 1.0 x 105 rtTA-CCL22-CT26 tumor cells. Seven mice were fed with a normal diet, and 
seven mice were fed with doxycycline-containing diet. Tumor size and health conditions of mice were 
monitored for 60 days. After a tumor reached a maximum size of 225 mm2 in length x width, the corre-
sponding mouse was euthanized. One mouse in each group rejected the induced tumor and survived 
the monitored time period of 60 days. In two follow-up experiments the same trend was observed.
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Figure 15:  Overall survival of mice treated with a low dose of rtTA-CCL22-CT26 tumor cells. 
14 mice were subcutaneously injected with 5 x 104 rtTA-CCL22-CT26 tumor cells. Seven mice were 
fed with a normal diet, and seven mice were fed with doxycycline-containing diet. Tumor size and 
health conditions of mice were monitored for 80 days. After a tumor reached a maximum size of 225 
mm2 in length x width, the corresponding mouse was euthanized. The shown results were confi rmed 
in three follow-up experiments.
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Next, we aimed to exclude that doxycycline itself contributes to the  observed 

tumor progression. Therefore, we used untransduced CT26 tumor cells. Mice 

were subcutaneously injected with 1.0 x 105 CT26 tumor cells, and tumor 

growth was monitored for 30 days. In accordance with the previous experi-

ment seven mice were fed with a doxycycline-containing diet, and seven mice 

received normal diet. We observed no differences in tumor growth between 

both groups indicating that doxycycline alone has no effect on tumor growth 

(Figure 16). Thus, the tumor-promoting effect is induced by CCL22 up-regula-

tion and not by feeding mice with a doxycycline-containing diet.
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Figure 16:  Tumor growth of CT26 tumors treated with doxycycline. Mice were subcutaneously 
injected with 1.0 x 105 CT26 tumor cells. Subsequently, mice were divided into two groups. One 
group was fed with a normal diet (n=7) and the other group with doxycycline-containing (25 mg/kg) 
diet (n=7). Tumor size in length x width [mm2] was measured every second day. The experiment was 
repeated once. Error bars indicate SEM.

Finally, we verifi ed if CCL22 has a direct effect on the replication of tumor 

cells. Therefore, the in vitro proliferation rate of untreated and doxycycline-

treated rtTA-CCL22-CT26 tumor cells was measured by BrdU incorporation. 

No signifi cant differences in cell replication were seen (Figure 17, left panel). 
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Additionally, the amount of induced CCL22 was confi rmed by ELISA (Figure 17, 

right panel). In all conditions with doxycycline a high CCL22 expression was 

induced. Thus, CCL22 seems to have no direct effect on the proliferation rate 

of tumor cells. Only in the condition of tumor cells treated with the highest 

doxycycline dose a slight reduction of proliferation and CCL22 expression was 

observed indicating that high doxycycline levels could have a toxic effect. 
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Figure 17:  Proliferation rate and CCL22 expression of rtTA-CCL22-CT26 tumor cells treated 
with doxycycline. 40.000 rtTA-CCL22-CT26 tumor cells were cultured in triplicates without or with 
increasing amounts of doxycycline as indicated. Left panel: After 48 hours the cell proliferation rate 
was measured by BrdU ELISA. The optical density (OD) indicates the amount of incorporated BrdU 
into the DNA and thereby directly correlates with the replication rate of the analyzed cells (for further 
information see material and methods 2.3.2). Right panel: The amount of produced CCL22 was 
quantifi ed by ELISA in the supernatant of the cultured tumor cells collected prior BrdU ELISA. Shown 
is one of two performed experiments.

In conclusion, we identifi ed DCs as the main producer of CCL22 in murine 

tumor tissue and showed here for the fi rst time that CCL22 promotes tumor 

growth and reduces overall survival of tumor-bearing mice.

3.2 TLR-mediated intratumoral CCL22 regulation

In the previously described experiments we investigated the impact of 

intratumoral CCL22 on tumor growth and overall survival. Additionally, we 
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identified DCs as the main producer of intratumoral CCL22. Experiments 

done by Raffael Thaler and Dr. David Anz showed that the treatment of CT26 

or B16 tumor-bearing mice with the synthetic TLR9 ligand CpG significantly 

reduces intratumoral CCL22 levels. CpG and other TLR agonists are known to 

suppress tumor growth and are currently investigated for their therapeutic 

potential in humans and mice. 

TLR ligands such as CpG induce the secretion of inflammatory cytokines and 

thereby promote an anti-tumor immune response. For instance, the release of 

IFN-α after TLR activation enhances MHC-I expression on tumor cells. This in 

turn promotes cytotoxic T cell-mediated killing of these tumor cells. Overall, 

the precise mechanisms of TLR-induced tumor growth suppression are still 

not fully understood. Since CCL22 up-regulation promotes tumor growth and 

CCL22 down-regulation occurs during CpG-mediated tumor growth reduc-

tion, we hypothesized that CCL22 suppression is one of the major mechanisms 

that mediate TLR ligand-induced tumor regression. Therefore, the aim of the 

following experiments was to specify the mechanisms of TLR ligand-induced 

intratumoral CCL22 suppression and to verify the impact of this suppression 

on tumor immunity.

3.2.1	 TLR ligands suppress intratumoral CCL22

First, we aimed to extend the previously in our group observed intratu-

moral CCL22 suppression to an additional experimental model. Since the 

measured CCL22 expression of Panc02 tumors is 10 times higher than in B16 

tumors and even 100 times higher than in CT26 tumors, we wanted to verify 

if TLR ligands could also suppress Panc02 intratumoral CCL22 expression. 

Therefore, we treated B16, Panc02 or CT26 tumor-bearing mice with CpG. 

Consistent with the data from Raffael Thaler and Dr. David Anz a strong 

CCL22 down-regulation after CpG treatment in B16 and CT26 tumors was 

observed (Figure 18). Strikingly, although Panc02 tumors had the highest 

CCL22 expression of all screened subcutaneously tumor models (see Figure 7), 

TLR stimulation induced a significant suppression of intratumoral CCL22 in 

Panc02 tumors. Thus, CpG-mediated suppression was observed in all three 

tested tumor entities. 
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Figure 18:  CCL22 levels in different murine tumor lysates after CpG treatment. Mice bearing 
established tumors (7 x 7 mm2) received four injections of CpG (100 µg) at a four-day interval or 
stayed untreated. Two days after the last treatment B16 (n=6), Panc02 (n=5) and CT26 (n=10) intra-
tumoral CCL22 levels of CpG-treated mice were measured by ELISA in the tumor homogenates (black 
bars). These levels were compared with CCL22 levels of B16 (n=7), Panc02 (n=7) and CT26 (n=11) 
tumor homogenates of untreated mice (white bars). Error bars indicate SEM. P values were calculated 
relative to untreated mice (**p < 0.01; ***p < 0.001).

We also verifi ed whether intratumoral CCL22 expression is regulated by 

other TLR ligands than CpG. As shown in previous experiments by Raffael 

Thaler, the TLR3 and MDA-5 ligand poly (I:C) as well as the TLR7 ligand 

R848 suppress CCL22 in CT26 tumors. To evaluate whether other PRR 

ligands than CpG also suppress intratumoral CCL22 in murine tumors, we 

treated B16 tumor-bearing mice with the synthetic TLR3 and MDA-5 ligand 

poly (I:C). Therefore, mice with established B16 tumors received 250 μg 

poly (I:C). Two days after the injection of poly (I:C) tumors were dissected, 

and intratumoral CCL22 levels were  measured by ELISA. Like CpG, poly (I:C) 

treatment resulted in a suppression of intratumoral CCL22 in B16 tumors 

(Figure 19). This indicates that the TLR ligand-mediated CCL22 suppres-

sion is a general phenomenon and not specifi c for a certain TLR ligand or 

tumor entity.
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Figure 19:  CCL22 levels in murine B16 tumor lysates after poly (I:C) treatment. Mice bearing 
established B16 tumors (7 x 7 mm2) received one injection of poly (I:C) (250 µg) or remained untreated. 
Two days after treatment intratumoral CCL22 levels were measured by ELISA in the tumor homo-
genates of treated (n= 5; black bars) and untreated mice (n= 5; white bars). Error bars indicate SEM. 
P value was calculated relative to untreated mice (*p < 0.05).

CCL22 protein level 
of tumor leukocyte

CCL22 mRNA level 
of tumor leukocytes

ns

ns

** ** ***

*

0

1,000

2,000

3,000

4,000

C
C

L2
2 

[p
g/

m
l] 

in
 

cu
ltu

re
 s

up
er

na
ta

nt

U
ns

or
te

d

C
D

11
c 

-

C
D

11
c 

+

U
ns

or
te

d

C
D

11
c 

-

C
D

11
c 

+

0

1

2

3

C
C

L2
2/

H
P

R
T

Untreated

CpG

Figure 20:  CCL22 mRNA and protein level of sorted single cell suspensions of subcutaneous 
Panc02 tumors after CpG treatment. Mice received subcutaneously 1.0 x 106 Panc02 tumor cells 
(n=5). After tumors reached an average size of 100 mm2 in length x width, tumors were resected, 
and single cell suspensions were prepared. Subsequently, cells were sorted for CD11c (purity > 95%) 
and cultured in a 96 well plate. Triplicates of each fraction (unsorted, CD11c-depleted and CD11c-
enriched cells) were either treated with 5 µg/ml CpG (black bars) or stayed untreated (white bars). 
After 72 hours supernatants were collected, and the remaining cells were used for mRNA isolation. 
Finally, CCL22 levels in the obtained supernatants were measured by ELISA, and qRT-PCR with the 
isolated mRNA was performed to verify CCL22 mRNA expression in the cultured cells. As a reference 
gene we used HPRT. The shown data were confi rmed by repeating the experiment once. Error bars 
indicate SEM. P values of CpG-treated cells were calculated relative to untreated cells (*p < 0.05; **p 
< 0.01; ***p<0.001; ns indicates not signifi cant).
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Since we identified DCs as the main producer of intratumoral CCL22, we 

subsequently wanted to verify whether the treatment with TLR ligands can 

directly regulate the CCL22 secretion of tumor-infiltrating DCs. To answer this 

question, we used CD11c+ sorted single cell suspensions derived from subcu-

taneous Panc02 tumors. Unsorted, CD11c-depleted and CD11c-enriched intra-

tumoral leukocytes were cultured either with 5 µg/ml CpG or without CpG. 

After 72 hours the levels of secreted CCL22 in the cell culture supernatants 

were measured by ELISA. The remaining cells were used for mRNA isolation 

and subsequent qRT-PCR.

On mRNA levels we observed a significant downregulation of CCL22 mRNA after 

CpG treatment for all fractions (unsorted, CD11c-depleted and CD11c-enriched). 

However, the most striking CCL22 mRNA suppression was observed in the 

CD11c-enriched fraction. A significant CCL22 downregulation also occurred on 

protein level for cultured CD11c-enriched cells, whereas no significant changes 

were observed in the unsorted and CD11c-depleted fractions (Figure 20). These 

data show that TLR ligands can directly suppress the CCL22 secretion of DCs. 

3.2.2	 CCL22 suppression is mediated by a soluble factor

Next, we wanted to know whether CCL22 suppression is mediated by a soluble 

factor that is released by DCs or if CpG has a direct intrinsic effect on DCs 

that suppresses CCL22 production. To answer this question, we stimulated 

splenocytes with or without CpG, removed CpG after two hours by extensive 

washing with PBS and harvested the supernatants after 24 hours. We termed 

these supernatants conditioned medium (CM) as they contain inflammatory 

factors induced by TLR stimulation, but not the TLR ligand itself. If CCL22 

suppression is mediated by a soluble factor produced by DCs after TLR stimula-

tion, this factor should be present in the conditioned medium of CpG-treated 

splenocytes. To verify this assumption, we cultured tumor-infiltrating immune 

cells with the conditioned medium of untreated and CpG-treated splenocytes 

(for cell composition of isolated tumor-infiltrating immune cells see Material 

and Methods part 2.5.2). Interestingly, the CCL22 secretion of tumor-infil-

trating immune cells cultured with conditioned medium of CpG-treated 

splenocytes was significantly reduced (Figure 21). This finding indicates 

that TLR ligand-mediated CCL22 suppression is induced by a soluble factor.
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Figure 21:  CCL22 levels of tumor-infi ltrated leukocytes treated with conditioned medium. 
Tumor-infi ltrating immune cells of subcutaneous CT26, Panc02 and B16 tumors (n=5, respectively) 
were isolated ex vivo by density centrifugation and cultured in triplicates for three days with condi-
tioned medium gained from untreated splenocytes (CM) or conditioned medium obtained from 
CpG-treated splenocytes (CM CpG), respectively. Conditioned medium was obtained as described in 
the Material and Methods section. Subsequently, supernatant CCL22 levels were analyzed by ELISA. 
Shown are the representative results of two performed experiments. Error bars indicate SEM. P values 
of CM CpG-treated cells were calculated relative to CM-treated cells (**p < 0.01; ***p<0.001).

3.2.3 CCL22 suppression is mediated by IFN-α

Next, we performed stimulation experiments with several cytokines to iden-

tify the soluble factor that suppresses CCL22 secretion by tumor-infi ltrating 

DCs. Therefore, we isolated tumor-infi ltrating immune cells of freshly dissected 

subcutaneous Panc02 tumors by density centrifugation. After isolation these 

cells were cultured for three days with different recombinant cytokines that 

are typically released upon TLR stimulation. The appropriate cytokine concen-

trations were chosen according to titration experiments done by Stephan Eiber 

(Department of Clinical Pharmacology, LMU). In these experiments splenocytes 

of wild-type mice were treated with different amounts of the respective cyto-

kines and the extent of CCL22 suppression was verifi ed by ELISA. A signifi cant 

CCL22 suppression was observed at a dose of 1000 U/ml IFN-α, 50 ng/ml IFN-γ, or 

10 ng/ml IL-1β, IL-2, IL-6, IL-10 or IL-12, respectively (unpublished data). We used 

these concentrations to stimulate tumor-infi ltrating immune cells. IL-10, IL-12, 

IFN-γ	and IFN-α	stimulation induced a signifi cant CCL22 suppression. However, 

of all tested cytokines IFN-α was the most potent suppressor of CCL22 produc-

tion (Figure 22). Thus, we chose this cytokine for further investigations.
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Figure 22:  CCL22 protein level of tumor leukocytes treated with different soluble factors. 
Panc02-infi ltrating immune cells of fi ve tumor-bearing mice were treated ex vivo with different soluble 
factors as indicated or remained untreated. ELISA was used to measure CCL22 levels in the superna-
tants of triplicates after a three-day incubation. Error bars indicate SEM. P value of treated cells was 
calculated relative to untreated cells (*p < 0.05; **p < 0.01).

After identifying IFN-α as a potent CCL22 suppressor for Panc02 immune cells, 

we examined if IFN-α has the same effect on tumor-infi ltrating immune cells 

of other tumor entities than Panc02. In analogy with the previous Panc02 

experiment we cultured tumor-infi ltrating immune cells from established 

subcutaneous CT26 and B16 tumors either in the presence or absence of 

IFN-α. As shown in Figure 23 we observed a signifi cant downregulation of 

CCL22 secretion after IFN-α treatment for both tumor entities. 

Additionally, we investigated if IFN-α could also directly suppress the CCL22 

secretion of intratumoral DCs. To answer this question, we sorted tumor-infi l-

trating immune cells of dissected Panc02 tumors for CD11c and cultured both 

CD11c-enriched and CD11c-depleted fraction with or without IFN-α. Strikingly, 

IFN-α treatment of CD11c+ cells caused a clear downregulation of CCL22 secre-

tion. In contrast, untreated as well as IFN-α-treated CD11c negative cells secreted 

almost no CCL22 (Figure 24). In conclusion, these experiments showed that IFN-α 

directly suppresses CCL22 secretion of ex vivo obtained intratumoral DCs. 
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Figure 23:  CCL22 protein level of tumor leukocytes treated with IFN-α. Freshly isolated tumor-
infi ltrating immune cells of subcutaneous CT26 (n=5) and B16 tumors (n=5) were either treated with 
IFN-α (black bar) or remained untreated (white bar). After three days of incubation, supernatants 
of triplicates were collected and CCL22 protein levels in the supernatants were measured by ELISA. 
Shown are the representative data of two independently performed experiments. Error bars indicate 
SEM. P value of IFN-α-treated cells was calculated relative to untreated cells (***p < 0.001).
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Figure 24:  CCL22 protein level of CD11c-sorted tumor leukocytes treated with IFN-α. CD11c-
sorted single cell suspensions (purity > 96%) of freshly isolated Panc02-infi ltrating immune cells of 
fi ve tumor-bearing mice were either treated with IFN-α (black bar) or remained untreated (white bar). 
After an incubation of three days, CCL22 protein levels in the supernatants were measured in trip-
licates by ELISA. Shown are the representative data of two independently performed experiments. 
The CD11c-negative fraction includes B cells, T cells, NK cells and macrophages (see also material and 
method part 2.5.2). Error bars indicate SEM. P value of IFN-α-treated cells was calculated relative to 
untreated cells (**p < 0.01).
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3.2.4 TLR-induced CCL22 suppression is abrogated in IFNAR mice

To test the impact of IFN-α on TLR-mediated intratumoral CCL22 downregu-

lation, we performed in vivo tumor experiments with interferon-receptor-

type-1 defi cient (IFNAR) mice, kindly provided by Dr. Z. Waibler (Paul-Ehrlich 

Institute, Langen, Germany). IFNAR mice carry a knockout mutation in the 

coding region of the type-1-interferon-receptor. The knockout was achieved 

by integrating a neomycin cassette into exon 3 of the type-1-interferon-

receptor gene. Since these mice cannot respond to IFN-α and IFN-β (Müller 

et al., 1994), no suppression of intratumoral CCL22 should be induced by TLR 

stimulation.
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Figure 25:  Intratumoral CCL22 levels of poly (I:C)-treated B16 tumor-bearing wild-type and 
IFNAR mice. Subcutaneous B16 tumors (1.0 x 106 cells per mouse) were induced in C57BL/6 (n=10) 
or type-I-interferon-receptor knockout (IFNAR) mice (n=10). On day nine after tumor induction both 
groups were either treated with poly (I:C) (250 µg per mouse) or remained untreated. Seven days 
after poly (I:C) injection, tumors were prepared, and CCL22 levels of homogenates were measured 
by ELISA. Also the tumor growth was monitored during the entire experiment (see next fi gure). Due 
to limited mouse availability this experiment was performed once. Error bars indicate SEM. P values of 
poly (I:C)-treated mice were calculated relative to untreated mice (*p < 0.05).

To verify this hypothesis, we subcutaneously injected B16 tumors into 

 IFNAR and wild-type C57BL/6 mice. Both mice strains share the same 

 genetic background. After a solid tumor was established, mice of both 

strains were either treated with the TLR3 and MDA-5 ligand poly (I:C) 
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or stayed untreated. We monitored tumor growth every second day and 

measured intratumoral CCL22 levels after dissecting the tumors 16 days 

after tumor induction. 
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Figure 26:  Tumor growth of poly (I:C)-treated B16 tumor-bearing wild-type and IFNAR 
mice. Subcutaneous B16 tumors were induced in C57BL/6 wild-type (n=10) as well as IFNAR mice 
(n=10), and poly (I:C) treatment was done as described above. Tumor growth in length x width 
[mm2] was measured continuously for 16 days after tumor injection. Error bars indicate SEM. P values 
were calculated relative to untreated mice (***p < 0.001, ns indicates not signifi cant).

Consistent with previous reports, poly (I:C) leads to a signifi cant tumor 

growth reduction in wild-type mice compared to untreated tumor-bearing 

wild-type mice. The tumor growth of IFNAR mice was accelerated compared 

to wild-type mice (Figure 26). However, this observation is a known effect 

in IFNAR mice. Since IFN-α is involved in many anti-tumoral immune regu-

lations such as anti-angiogenesis, cell differentiation, tumor cell apop-

tosis as well as DC maturation, survival and antigen cross-presentation 
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IFN-α-unresponsiveness leads to increased tumor growth in IFNAR mice 

(Tarhini et al., 2012; Kirkwood et al., 2002; Wang et al., 2007; Paquette et 

al., 1998; Krown et al., 1984). 

Strikingly, the TLR ligand-mediated suppression of intratumoral CCL22 

was not only abrogated in IFNAR mice, but even increased (Figure 25). 

Furthermore, no anti-tumoral therapeutic effect of TLR treatment was seen 

in tumor-bearing IFNAR mice (Figure 26). In summary, these results indi-

cate that IFN-α is a key mediator in TLR ligand-induced intratumoral CCL22 

suppression. Additionally, CCL22 suppression could contribute to the thera-

peutic effects of TLR ligands. 

3.2.5	 CCL22 contributes to TLR-mediated anti-tumor immunity

The previously described tumor experiment in IFNAR mice showed that IFN-α 

mediates the PRR-induced CCL22 suppression in tumor-bearing mice. In addi-

tion, the therapeutic effect of poly (I:C) treatment was abrogated in IFNAR 

mice. However, the contribution of CCL22 suppression blockade to this effect 

is very unclear since a type-1-interferon-receptor knockout influences many 

pathways in tumor-bearing mice. To evaluate the contribution of CCL22 

suppression to the PRR-induced anti-tumor immune reaction, we performed 

an additional TLR stimulation tumor experiment with the novel generated 

rtTA-CCL22-CT26 tumor cell line (see Materials and Methods part 2.2.9). 

As shown in Figure 12, by feeding rtTA-CCL22-CT26 tumor-bearing mice with 

doxycycline, intratumoral CCL22 was up-regulated. We assumed that this 

up-regulation would abrogate TLR-mediated suppression of CCL22. Since in 

this experiment only the CCL22 suppression is blocked, the exclusive impact 

of CCL22 in CpG-induced tumor therapy could be elucidated. 

We injected mice with 2.5 x 105 rtTA-CCL22-CT26 tumor cells subcutaneously. 

Overall 56 mice received tumors. 28 mice were fed with normal diet, and 28 

mice were fed with doxycycline-containing diet. Three weeks after tumor 

induction 14 mice of each group were treated three times every third day 

with CpG. Tumor growth in length x width [mm2] was monitored continu-

ously for 32 days after tumor injection.
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As expected in the group with no induced CCL22 over-expression (= fed 

with normal diet), CpG treatment resulted in a clear tumor growth reduc-

tion compared to untreated mice. Strikingly, in the group with doxycycline-

induced CCL22 over-expression the CpG treatment had only a very poor 

therapeutic effect (Figure 27). 
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Figure 27:  Tumor growth of CpG-treated rtTA-CCL22-CT26 tumor-bearing mice. BALB/c 
mice were inoculated with subcutaneous rtTA-CCL22-CT26 tumors and fed with a normal (n=28) or 
doxycycline-containing (n=28) diet. On day 21 after tumor induction both groups were either treated 
three times at a three-day interval with CpG (100 µg per mouse) or remained untreated. For each 
group the mean tumor growth of untreated and CpG-treated mice is shown. Tumor size [mm2] was 
measured every second day. Shown are the combined data of three independently performed experi-
ments. Error bars indicate SEM. P value of CpG-treated mice fed with normal diet was calculated 
relative to untreated mice fed with normal diet and CpG-treated mice fed with doxycycline diet (*p 
< 0.05, ns indicates not signifi cant).
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After the tumor growth of all mice was monitored for 32 days, we wanted 

to verify if the doxycycline-induced over-expression of CCL22 indeed blocked 

the CpG-mediated CCL22 suppression in the tumors. Therefore, the mice 

were sacrificed, tumors dissected and CCL22 levels were measured in the 

obtained tumor lysates. As expected in mice fed with a normal diet, CpG 

treatment significantly reduced intratumoral CCL22 expression (Figure 28 

A, white and black bar on the left). However, in mice fed with doxycycline 

no significant difference in intratumoral CCL22 expression was observed 

between CpG-treated and untreated mice (Figure 28 A, white and black bar 

on the right). Thus, the doxycycline-induced CCL22 over-expression efficiently 

compensated the CpG-mediated CCL22 suppression in the tumor tissue. In 

summary, these results show that by blocking the TLR ligand-induced intra-

tumoral CCL22 suppression, the TLR ligand-caused anti-tumor immunity is 

significantly reduced. Thus, the suppression of intratumoral CCL22 is impor-

tant for TLR ligand-mediated anti-tumor immunity. 

3.2.6	 Suppression of intratumoral CCL22 reduces intratumoral Treg numbers

As mentioned above the chemokine CCL22 attracts Tregs. Consistent with 

the suppression of CCL22 after TLR stimulation previous experiments done 

by Dr. David Anz have shown that TLR stimulation also selectively reduces 

the amount of intratumoral Tregs. Since doxycycline-induced CCL22 

over-expression compensates TLR ligand-induced CCL22 suppression, we 

hypothesized that thereby also the reduction in Treg tumor infiltration 

is abolished. To verify this assumption, we used flow cytometry to deter-

mine the amount of intratumoral Tregs. These levels were compared with 

the corresponding intratumoral CCL22 levels measured by ELISA. For this 

experiment we used the same mouse groups as described in the last result 

subsection (see part 3.2.5). 
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Figure 28:  Intratumoral CCL22 and Treg levels of mice bearing rtTA-CCL22-transduced 
CT26 tumors. Mice with subcutaneous rtTA-CCL22-CT26 tumors were fed with a normal (n=28) or 
doxycycline-containing (25 mg/kg) diet (n=28). On day 21 after tumor induction both groups were 
either treated three times at a three-day interval with CpG or remained untreated. One day after the 
last injection, tumors were prepared. (A) CCL22 levels of homogenates were measured by ELISA, and 
(B) intratumoral levels of Tregs were analyzed by fl ow cytometry. Tregs were defi ned as FoxP3+ cells 
of CD3+CD4+ cells of the live gate. Shown are the combined data of three independently performed 
experiments. Error bars indicate SEM. P values were calculated relative to untreated mice (*p < 0.05; 
**p < 0.01).

As expected the CpG-mediated intratumoral CCL22 suppression (Figure 28 A, 

white and black bar on the left) led to a signifi cant decrease of intratumoral 

Treg counts in tumor-bearing mice (Figure 28 B, white and black bar on the 

left). In contrast, the levels of other T cell subsets such as CD8+ cytotoxic T cells 

were not altered (data not shown). However, consistent with the unchanged 

intratumoral CCL22 levels of CpG-treated doxycycline fed mice, also the 

amount of intratumoral Tregs remained unchanged (Figure 28 B, white and 

black bar on the right). Thus, in mice fed with doxycycline CpG treatment 

failed to reduce intratumoral Treg numbers. Figure 29 shows a representa-

tive FACS blot of each group. In conclusion, blockade of TLR ligand-mediated 

CCL22 suppression abolished the reduction of intratumoral Tregs and by this 

mean eventually abrogated the therapeutic effect of TLR stimulation. 
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Figure 29:  Intratumoral Treg levels of CpG and untreated mice bearing rtTA-CCL22-CT26 
tumors. Mice with subcutaneous rtTA-CCL22-CT26 tumors were fed with a normal (n=28) or doxy-
cycline-containing (25 mg/kg) diet (n=28). On day 21 after tumor induction both groups were either 
treated three times at a three-day interval with CpG or remained untreated. One day after the last 
injection, tumors were prepared and analyzed by FACS. The indicated numbers represent the percent 
of Tregs, defi ned as FOXP3+ cells, among CD3+CD4+ cells of the live gate. Shown is one representa-
tive FACS blot of each group.

3.3 Mouse models to verify the function of CCL22 in tumors

The experiments shown previously illustrated the impact of intratumoral 

CCL22 over-expression. For these experiments we used a tumor cell line with 

inducible CCL22 expression. However, as shown in part 3.1.2, not the tumor 

cells are the main producer of CCL22 in vivo, but tumor-infi ltrating DCs. To 

further investigate the impact of intratumoral CCL22, we decided to use 
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two different approaches. First, we generated a novel mouse line with DC 

specific CCL22 over-expression to verify the impact of increased DC-produced 

CCL22. Secondly, we used a newly generated CCL22 KO mouse line (National 

Institutes of Health) to investigate the effect of CCL22 depletion on tumor 

development and tumor growth.

3.3.1	 Generation of a transgenic mouse with inducible DC-specific CCL22 

	 expression 

To generate a novel mouse line with inducible DC-specific CCL22 over-expres-

sion, two different mouse lines were needed, one mouse line transgenic for 

the construct CD11c-rtTA and one transgenic for TRE-CCL22. The CD11c-rtTA 

mouse was kindly provided by Dr. Leo Lefrancois (Connecticut, USA), and 

the TRE-CCL22 mouse was newly generated in cooperation with Dr. Marlon 

Schneider (Genzentrum, LMU). 

In the CD11c-rtTA mouse CD11c regulates the expression of the tet-On 

advanced transactivator (rtTA). CD11c is a promoter sequence specifically 

active in dendritic cells. Thus, rtTA should be only expressed in DCs. In the 

TRE-CCL22 mouse the tetracycline response element (TRE) regulates the 

expression of CCL22. The activator element rtTA can bind the antibiotic doxy-

cycline. The antibiotic binding leads to a conformation change of rtTA. This 

conformation change enables rtTA to bind to the promoter TRE which in turn 

is activated and initiates CCL22 expression. Hence, in a dendritic cell containing 

both constructs, CD11c-rtTA and TRE-CCL22, there are two possible scenarios. 

In the absence of doxycycline, TRE-mediated expression of CCL22 is blocked 

(Figure 30), whereas in the presence of doxycycline TRE activates expression of 

CCL22 (Figure 31). In all other cells CD11c is not active, and the activator rtTA 

is not expressed. Thus, in these cells CCL22 expression is not induced in the 

presence of doxycycline. 
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Figure 30:  The CC11c-rtTA-TRE-CCL22 system in the absence of doxycycline. Shown is a DC 
bearing both constructs, CD11c-rtTA and TRE-CCL22. The expression of the activator element rtTA is 
mediated by the DC specifi c CD11c promoter. rtTA in turn activates the expression of the TRE regu-
lated gene of interest (CCL22). However, in the absence of doxycycline the activator rtTA is unable to 
bind to TRE, and CCL22 expression is blocked.
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Figure 31:  The CC11c-rtTA-TRE-CCL22 system in the presence of doxycycline. Doxycycline 
binds to rtTA and thereby facilitates a conformation change of the activator. This change enables rtTA 
to bind to TRE and activates DC-specifi c CCL22 over-expression. 
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TRE-Tight CCL22 Vector

The first step in establishing a doxycycline inducible CCL22 expression system 

was to integrate the cDNA sequence of murine CCL22 into a pTRE-Tight Vector 

provided by Clontech (Cat. # 631059). CCL22 was cloned downstream of the 

TRE promoter to enable TRE regulated expression of CCL22. We used the PCR 

primers CCL22-For-NotI and CCL22-Rev-SalI (for sequence see appendices 8.1) 

for cloning the murine CCL22 cDNA into the pTRE-Tight vector. After positive 

clone selection via ampicillin and plasmid amplification, obtained plasmids 

were verified by sequencing. In all tested plasmids correct CCL22 cDNA integra-

tion was observed. Additionally, no mutations in CCL22 or the flanking region 

of CCL22 were detected (for sequencing data see appendices section 8.3).

 

pTRE-Tight CCL22 transgenic mouse

The next step was the generation of a transgenic mouse. Mouse genera-

tion was done by Dr. Marlon Schneider (Genzentrum - LMU). The TRE-CCL22 

segment was cut out of the pTRE-Tight-CCL22 vector by ApaLI digest. This 

segment was used for microinjection. In this procedure an elusion of the 

segment was injected into the pronuclei of fertilized eggs. Injection was done 

at the stage of development when mammalian ova have two pronuclei, one 

from each gamete, which will later fuse to form the diploid nucleus. The 

fertilized eggs were obtained from donor mice. After microinjection the eggs 

were transferred to the oviducts of pseudopregnant foster mothers. The 

offspring resulted from these injected eggs were screened for the transgenic 

TRE-CCL22 construct by PCR using the primer pair TRE-F/TRE-R (sequence: see 

appendices 8.1). Overall, we identified one male mouse to carry the transgene. 

This founder animal was crossed with female CD11c-rtTA mice. The offspring 

were screened for both transgenes by PCR with the primer pairs TRE-F/TRE-R 

and rtTA-F/rtTA-R (sequence: see appendices 8.1). Double positive mice are 

heterozygous for both, pTRE-CCL22 and CD11c-rtTA (CD11c-rtTA-CCL22 mice).

Characterization of the CD11c-rtTA-CCL22 mouse

After the identification of double transgenic mice, these mice were used for 

further characterization. To verify if the transgene was integrated correctly 

into the mouse genome, the transgenic sequence was analyzed by sequencing 

using the primer pTRE-Seq-For and pTRE-Seq-Rev. In all analyzed mice correct 
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TRE-CCL22 cDNA integration was observed. Only in the multiple cloning site 

downstream of the CCL22 sequence a base transition (C κ	T) was detected. 

However, this point mutation does not affect the functionality of the 

TRE-CCL22 segment (for sequencing data see appendices section 8.4). Next, 

we analyzed the expression of the rtTA transactivator in CD11c-rtTA-CCL22 

mice RNA was isolated from splenocytes of wild-type and rtTA transgenic 

mice, transcribed in cDNA and used for qRT-PCR (probe-number and primer 

sequence: see appendices 8.2). The PCR confi rmed a high rtTA expression in 

all analyzed CD11c-rtTA-CCL22 mice compared to wild-type mice (Figure 32).
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Figure 32:  rtTA Expression level of splenocytes. Shown is the expression of rtTA in the spleen of 
two wild-type and two rtTA transgenic mice. The expression was measured by qRT-PCR using Roche 
probe number 80 and normalized with the ubiquitous expressed mRNA of HPRT. The representative 
data of two performed experiments are shown. Error bars indicate SEM. P value was calculated rela-
tive to wild-type mice (***p < 0.001)

Subsequently, the inducibility of CCL22 was checked. Therefor, an in vitro and 

an in vivo assay was performed. For the in vitro experiments spleens from 

wild-type, TRE-CCL22 and CD11c-rtTA-CCL22 mice were isolated. Whole sple-

nocytes and sorted DCs were cultured both in the absence and in the presence 

of doxycycline. 48 hours later CCL22 levels were measured in the supernatant 

by ELISA. As expected no CCL22 induction was observed for splenocytes and 

CD11c-sorted DCs in wild-type and CCL22 transgenic mice. However, also in 

the CD11c-rtTA-CCL22 double transgenic mice no induction was detected in 

the supernatant of splenocytes and DCs alone (Figure 33 and Figure 34).
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Figure 33:  CCL22 expression in the supernatant of cultured splenocytes after 48 hours. The 
inducible CCL22 expression by doxycycline of wild-type, TRE-CCL22 transgenic and CD11c-rtTA-CCL22 
double transgenic splenocytes was compared. For each group splenocytes were isolated from fi ve 
mice and cultured in triplicates for 48 hours. In each case the expression level of the untreated condi-
tion was set to 100%, and the appropriate doxycycline-treated condition was set in relation to it. The 
experiment was repeated twice.
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Figure 34:  CCL22 expression in the supernatant of cultured DCs after 48 hours. The induc-
ible CCL22 expression by doxycycline of wild-type, CCL22 transgenic and CD11c-rtTA-CCL22 double 
transgenic DCs was compared. DCs were isolated by sorting splenocytes for CD11c (purity >90). For 
every group DCs were isolated from three mice and cultured in triplicates for 48 hours. In each case 
the expression level of the untreated condition was set to 100%, and the appropriate doxycycline-
treated condition was set in relation to it. The described experiment was repeated twice.
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Figure 35:  CCL22 expression level in lymph nodes, spleen, lung and serum of wild-type and 
CD11c-rtTA-CCL22 transgenic mice. To measure doxycycline-mediated CCL22 induction, both 
wild-type (n=8) and CD11c-rtTA-CCL22 transgenic mice (n=8) were separated into two groups. One 
group received doxycycline enriched diet (25 mg/kg) and the other group normal diet. Mice were 
sacrifi ced after one week, and chemokine levels were measured by ELISA. In each case the expression 
level of the untreated condition was set to 100%, and the appropriate doxycycline-treated condition 
was set in relation to it. The illustrated results were confi rmed in two follow-up experiments.

For measuring CCL22 induction, in vivo wild-type and CD11c-rtTA-CCL22 trans-

genic mice were fed with a doxycycline-containing diet as well as a normal 

diet. After one week all mice were sacrifi ced, and the CCL22 levels in serum, 

lung, spleen and lymph nodes were measured by ELISA. In case of a functional 

CD11c-rtTA-CCL22 system double transgenic mice should show an induction 
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of CCL22 expression after doxycycline treatment. No induction in lung, spleen 

and lymph nodes was detectable (Figure 35).

Taking together the in vitro and in vivo data, both approved no functional 

CCL22 induction in double transgenic mice, the integrated TRE-CCL22 element 

seems not to be activated by doxycycline. Due to correct rtTA expression 

(Figure 32) and precise integration of the TRE-CCL22 sequence (see appen-

dices section 8.4) the most likely reason for missing induction seems to be the 

integration site of the TRE-CCL22 element. As a result of random genomic 

integration of the transgene in the process of generating a transgenic mouse, 

the transgene can integrate into a silenced region of the mouse genome. 

To solve this problem, two more TRE-CCL22 transgenic mouse founder were 

generated. However, similar to the first founder, no CCL22 induction was 

observed. Therefore, we decided to simplify the transgenic approach. To 

circumvent the problems mentioned above, we intended to generate a new 

mouse line with DC specific CCL22 expression without inducibility.

3.3.2	 Generation of a transgenic mouse with a stable non-inducible DC- 

	 specific CCL22 expression 

Since the CD11c-rtTA-CCL22 mouse showed no inducible CCL22 over-expres-

sion, a new transgenic mouse approach was established. To simplify the tissue 

specific CCL22 expression system, we excluded the rtTA-dependent induc-

ible expression system. Instead CCL22 should be expressed directly under 

the control of the DC-specific promoter CD11c. In such an expression system 

CCL22 is produced permanently and specifically by all CD11c+ DCs. 

To achieve the DC specific CCL22 expression, we used a 5.5-kb fragment that 

contained the 5’ region of the mouse CD11c gene (kindly provided by Dr. 

Thomas Brocker, Munich, Germany). The CD11c segment was cloned into a 

pBSbluescript vector that contained a rabbit beta-globin gene fragment. This 

fragment contained a multiple cloning site and provided the transgene with 

an intron and a polyadenylation signal. CCL22 was cloned into the multiple 

cloning site by using the restriction enzyme EcoRI. Therefore, CCL22 cDNA was 

amplified with the two PCR primers CCL22-EcoRI-for and CCL22-EcoRI-rev (for 

primer sequence see appendix 8.1), cut with EcoRI and ligated with the EcoRI 
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digested pBSbluescript vector. After positive clone selection via ampicillin and 

plasmid amplifi cation, obtained plasmids were verifi ed by sequencing. In the 

plasmids of all tested clones CCL22 sequence was integrated correctly.

In a next step the functionality of the newly generated CD11c-CCL22 construct 

was verifi ed in vitro. Therefore, we used the immortalized DC cell line DC2.4. 

Similar to primary DCs DC2.4 express high levels of CD11c (Figure 36). However, 

in contrast to primary DCs, this immortalized cell line lacks CCL22 production. 

Thus, this cell line is well suited to test the functionality of the CD11c-CCL22 

fragment. We used Lipofectamine 2000 Transfection Reagent to transfect 

DC2.4. 24 hours post transfection CCL22 levels were measured in the super-

natant of the cultured cells (Figure 37). Compared to untransfected cells we 

observed high CCL22 levels in the supernatant of CD11c-CCL22 transfected 

cells indicating that the new transgenic construct is functional in DCs. 
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Figure 36:  CD11c expression of DC2.4 cells. Left panel: CD11c-stained DC2.4 cells. Right panel: 
DC2.4 cells mixed with non-CD11c-expressing cells (here: Panc02 tumor cells) to exclude unspecifi c 
binding of the CD11c antibody. DC2.4 cells were mixed with Panc02 cells in a ratio of 10 to 1. 87% of 
the analyzed cells were positive for CD11c, refl ecting the initial ratio of Panc02 and DC2.4 cells. Cells 
were analyzed in triplicates. Shown is one representative FACS blot of each condition.

Since the functionality of the CD11c-CCL22 construct was proved in vitro, we 

started to generate the CD11c-CCL22 transgenic mouse. Mouse generation 

by microinjection (as described above) was done by Dr. Marlon Schneider 
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(Genzentrum - LMU). The injected transgenic cassette was cut out of the 

pBSbluescript vector with the restriction enzymes NotI and XhoI resulting 

in a 6,5-kb long fragment. The generation of the CD11c-CCL22 transgenic 

mouse line is still in progress, and fi rst offspring is expected at the beginning 

of next year (2013). After establishing the new mouse line and verifying DC 

specifi c CCL22 over-expression in vivo, these mice should be used for tumor 

experiments. Thereby, the impact of CCL22 on tumor development and tumor 

growth should be illustrated in a DC-specifi c setting.
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Figure 37:  CCL22 expression of DC2.4 transfected cells. The CD11c-CCL22 construct was 
transiently integrated into DC2.4 cells. The plasmid integration was done by transfection with 
Lipofectamine 2000 Transfection Reagent. 24 hours before (= untransfected) and 24 hours after 
transfection the CCL22 levels in the cell culture supernatant of triplicates were measured via ELISA. 
Error bars indicate SEM. P value was calculated relative to untransfected cells (**p < 0.01).

3.3.3 CCL22 gene knockout mouse

Beside the tissue specifi c over-expression of CCL22 the role of this chemokine 

for tumor immunity should be verifi ed by using a CCL22 gene knockout mouse 

(CCL22 KO). Therefore, we ordered a up to now undescribed CCL22 KO mouse 

from the NIH (National Institutes of Health) founded non-profi t Knockout 

Mouse Project (www.komp.org). The CCL22 gene knockout was realized by 

replacing the CCL22 genomic coding region by homologous recombination. 

CCL22 was exchanged by a reporter (lacZ) plus selection (neomycin) frag-

ment. Mice genotyping was done by PCR with two primer pairs, one primer 
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pair specifi c for the selection fragment ( NeoinF and NeoinR) and one pair 

specifi c for the coding region of CCL22 (TDF and TDR; for primer sequences 

see appendix 8.1). With these two primer pairs we were able to distinguish 

between wild-type, heterozygous and CCL22 KO homozygous mice.
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Figure 38:  CCL22 levels in spleens, lungs, lymph nodes, peyer’s patches and Sera of CCL22 
KO mice. 6 week old wild-type (n=2), CCL22 KO heterozygous (n=2) and CCL22 KO homozygous 
mice (n=2) were sacrifi ced and spleen, lung, lymph nodes (LN), Peyer’s patches (PP) and serum 
were obtained. The obtained organs were lysed, and CCL22 levels in the lysates and the sera were 
measured by ELISA. Shown are the representative results of two independent experiments. Error 
bars indicate SEM. P values were calculated relative to wild-type mice (**p < 0.01, ***p<0.001, nd 
indicates not detectable).

Since the CCL22 KO mouse line was newly generated, the fi rst upcoming 

experiment was to verify the functionality of the CCL22 knockout. Therefore, 
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we dissected spleens, lungs, lymph nodes, Peyer’s patches and sera from 

wild-type, CCL22 KO heterozygous and CCL22 KO homozygous mice. 

Subsequently, we measured CCL22 protein levels in organ lysates and sera 

by ELISA. Indeed, no CCL22 was detectable in all analyzed lysates and in the 

serum of CCL22 homozygous knockout mice. 

In addition, a significant intermediate down-regulation in spleens, lungs 

and sera of heterozygous CCL22 KO mice compared to wild-type mice was 

observed (Figure 38). We also measured CCL17 levels in CCL22 KO mice by 

ELISA. Since CCL17 is the only CCR4 ligand apart from CCL22, we wanted 

to exclude that the lack of CCL22 in CCL22 KO mice is compensated via 

up-regulated CCL17 expression. However, no differences in CCL17 levels 

were observed between wild-type and CCL22 KO mice (data not shown). In 

summary, the newly generated CCL22 knockout mice completely lack CCL22 

expression. 

Since DCs are the main source of intratumoral CCL22, tumors from CCL22 

KO mice are expected to lack CCL22. This in turn should lead to reduced 

amounts of tumor-infiltrating Tregs and thereby reduced tumor growth in 

CCL22 KO mice. However, the accuracy of this hypothesis needs to be verified 

in upcoming tumor experiments.
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4.	 Discussion

The mechanisms by which tumor cells create a suppressive environment to 

escape from an anti-tumor immune reaction are complex and poorly under-

stood. However, recent studies have shown that recruitment of certain 

immune cells of the innate and adaptive immune system can help the tumor 

to establish an immunosuppressive milieu. In this context one very impor-

tant cell type are regulatory T cells. Increased amounts of Tregs in cancer 

patients as well as the suppressive characteristics of Tregs support a role for 

these cells in cancer-induced immunosuppression. 

Indeed, in the last decade several reports have associated high Treg tumor 

infiltration with increased tumor progression and decreased patient 

survival. In breast carcinoma high Treg tumor infiltration predicts aggres-

sive tumor growth and poor patient survival (Bohling and Allison, 2008; 

Bates et al., 2006). A negative impact of Tregs on patient survival is also 

reported for lung, pancreas, gastric, liver and ovarian carcinoma (Petersen 

et al., 2006; Woo et al., 2001; Liyanage et al., 2002; Mizukami et al., 2008; 

Hiraoka et al., 2006; Kobayashi et al., 2007; Gao et al., 2007; Curiel et al., 

2004). Nevertheless, the effects of Tregs on tumor progression could vary 

in different tumor entities (Faget et al., 2011). In B cell lymphoma or head 

and neck carcinoma higher Treg numbers correlate with better outcome for 

tumor patients (Tzankov et al., 2008; Badoual et al., 2006). Overall, in the 

majority of reports intratumoral Tregs are associated with a poor prognosis 

for cancer patients.

The trafficking of immune cells into the tumor tissue is regulated by the 

intratumoral expression of different chemokines. Identifying the chemo-

kines involved in this trafficking is very important in order to establish 

targets for immunotherapy. Since the chemokine CCL22 is a potent attractor 

of Tregs, this chemokine could be involved in Treg tumor infiltration and 

thereby inducing intratumoral immunosuppression.
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4.1	 DCs are the main producer of intratumoral CCL22

We observed high levels of the chemokine CCL22 in tumor lysates of murine 

colon carcinoma, melanoma, mammary cancer and pancreatic cancer. In 

analogy to mice high CCL22 expression levels in several human tumors have 

been reported. For instance, immunohistochemical analyses of primary breast 

tumor sections revealed high intratumoral CCL22 levels in tumor patients 

(Anz et al., 2011; Gobert et al., 2009). Furthermore, high intratumoral CCL22 

expression was observed in human Hodgkin lymphoma, B cell non-Hodgkin 

lymphoma, gastric cancer and ovarian carcinoma (Ishida et al., 2006; Yang et 

al., 2006; Mizukami et al., 2008; Curiel et al., 2004). Although many reports 

of intratumoral CCL22 expression can be found in the literature, there are 

still controversies about the cellular source of intratumoral CCL22. Several 

authors argue that tumor cells are the main source of intratumoral CCL22 

in humans and mice. Only few reports convincingly identified tumor cells as 

CCL22 producers. Here, human breast cancer cells were shown to produce 

CCL22 in vitro and in vivo (Anz et al., 2011; Faget et al., 2011). However, in 

human breast cancer not only tumor cells but also DC-shaped infiltrating 

immune cells produce remarkable amounts of CCL22 (Anz et al., 2011; Gobert 

et al., 2009). In ovarian cancer tumor cells together with macrophages were 

hypothesized to be the source of intratumoral CCL22 (Curiel et al., 2004). 

In contrast to these reports we observed no CCL22 expression by tumor cell 

lines in vitro. It is reported that murine and human DCs are the most potent 

producers of CCL22 in healthy subjects (Tang and Cyster, 1999; Vulcano et al., 

2001). Additionally, beside other chemokines such as CCL16, CCL17, CCL18 and 

CX3CL1 intratumoral DCs can produce CCL22 (Raman et al., 2007). Thus, we 

hypothesized that DCs could be the main producer of intratumoral CCL22. 

Indeed, we identified intratumoral murine DCs as the exclusive source of 

CCL22 in the tumor tissue. For our experiments we used CD11c as a DCs marker 

since CD11c is expressed on all defined DC subsets in mice. We observed very 

high CCL22 mRNA and protein expression levels in DC from freshly dissected 

tumors. In contrast, CCL22 was barely expressed in the DC-depleted fraction. 

After DC depletion no CCL22 production by tumor cells or other immune cells 

was detected in tumor single cell suspensions indicating that intratumoral DCs 
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are the exclusive CCL22 producers in murine cancer. Unlike previous reports 

our findings demonstrate that tumor cells do not produce CCL22. In this study 

we investigated the CCL22 expression profile of melanoma and pancreatic 

cancer. In other tumor types the situation could be different. In conclusion, 

our findings show that CCL22 expression by tumor cells is not a common char-

acteristic of all tumor types, but rather an acquired property of certain tumor 

types such as breast cancer. Furthermore, DCs could have an important role in 

establishing an immunosuppressive tumor microenvironment and could serve 

as target for tumor immunotherapies. 

4.2	 CCL22 affects tumor growth and survival

As previously described, high intratumoral CCL22 expression is observed in 

many different tumor types in humans and in mice. According to this frequent 

occurrence of CCL22 in different types of tumors, we hypothesized that this 

chemokine could influence tumor development and growth. In healthy 

subjects CCL22 has been reported to be a very selective and potent Treg 

attractor (Iellem et al., 2001). Consistent with these findings, the only known 

receptor for CCL22, which is CCR4, is highly expressed on Tregs compared to 

other T cell subtypes (Imai et al., 1998). Thus, intratumoral CCL22 could be 

involved in Treg recruitment into the tumor tissue. 

Indeed, in several publications a dependency between intratumoral CCL22 

expression and Treg infiltration was observed. For instance, in a non-obese 

diabetic/severe combined immunodeficiency (NOD/SCID) mouse model 

human ovarian tumors which are known to express high levels of intratu-

moral CCL22 were highly infiltrated by adoptively transferred human Tregs. 

After treating these mice with an anti-CCL22 antibody, a significant decrease 

in Treg tumor infiltration was observed, whereas the migration of other  

T cell subtypes was not affected (Curiel et al., 2004). In human gastric cancer 

samples flow cytometry analyses of single cells, derived from tumor tissues, 

revealed a significant correlation between the frequency of intratumoral 

CCL22 and tumor-infiltrating Tregs (Mizukami et al., 2008). 
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We and other groups have observed high intratumoral levels of the potent 

Treg attractor CCL22 in several types of tumors. However, until now 

the impact of CCL22 expression on tumor growth and overall survival is 

completely unknown. In this study we used a novel generated murine tumor 

cell line with inducible intratumoral CCL22 expression to investigate the 

exclusive effect of CCL22 on tumor progression. With this rtTA-CCL22-CT26 

tumor cell line we showed that an induced over-expression of CCL22 in the 

tumor tissue of tumor-bearing mice significantly promotes tumor growth. In 

addition, the overall survival of these mice was reduced compared to mice 

with low intratumoral CCL22 expression. Furthermore, presence of CCL22 

allowed tumor development even if suboptimal doses of tumor cells were 

injected. Thus, we showed here for the first time a direct impact of intratu-

moral CCL22 on tumor development, growth and overall survival supporting 

a role for CCL22 in cancer-induced immunosuppression. These findings indi-

cate that CCL22 could be a promising target for new anti-cancer drugs. 

Antagonizing CCL22 with antibodies or siRNA could have the potential to 

promote anti-tumor immunity.

4.3	 IFN-α induces TLR-mediated CCL22 suppression

As described earlier, in previous studies done by Dr. David Anz we observed a 

significant suppression of intratumoral CCL22 after TLR treatment of tumor-

bearing mice (unpublished data). We observed this suppressive effect in T-cell 

lymphoma, colon carcinoma, melanoma and pancreatic cancer with different 

TLR ligands such as CpG (TLR9), poly (I:C) (TLR3 and MDA-5) and R848 (TLR7). 

These findings indicate that intratumoral CCL22 regulation by TLR ligands is 

a general phenomenon and not specific for a certain TLR ligand or tumor 

entity. However, the precise impact of this regulation and the mechanism 

that induces CCL22 suppression are unclear. 

In general, TLR ligand binding leads to TLR activation. Thereby, the expres-

sion of many different genes is induced in a complex signalling cascade. 

One very abundantly induced cytokine, especially after TLR3, 4, 7 or 9 and 

RLR activation, is IFN-α (Iwasaki et al., 2004; Hertzog et al.; 2003). Strikingly, 
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we identified this cytokine to be the main mediator of TLR ligand-induced 

CCL22 suppression. We observed a highly suppressive effect of IFN-α on 

CCL22 secretion of freshly isolated intratumoral leukocytes. We saw the same 

effect after treating intratumoral DCs, the exclusive source of intratumoral 

CCL22 in murine melanoma and pancreatic cancer as shown above, with IFN-α 

indicating that IFN-α directly affects DCs. Additional to IFN-α we observed 

a significant CCL22 suppression after stimulating tumor-infiltrating immune 

cells with IL-10, IL-12 or IFN-γ. However, previous work done by Raffael Thaler 

(Department of Clinical Pharmacology, LMU) showed that the CpG-mediated 

suppression of CCL22 is not abolished in IL-10, IL-12 or IFN-γ knockout mice 

(unpublished data), indicating that these cytokines alone are not responsible 

for the TLR-induced suppression of CCL22.

In conclusion, our findings indicate that TLR stimulation initiates IFN-α 

expression by DCs themselves and other immune cells, and IFN-α in turn 

directly suppresses CCL22 secretion in intratumoral DCs. In addition to 

these ex vivo experiments we confirmed the impact of IFN-α on CCL22 

suppression after TLR activation in IFNAR mice. In TLR ligand-treated 

IFNAR mice, which lack a functional type I interferon receptor, the effect 

of IFN-α was abrogated, and thereby also the suppression of intratumoral 

CCL22 was abolished. Indeed, the TLR ligand-induced decrease of intra-

tumoral CCL22 expression was not only blocked in IFNAR mice, but even 

increased. As shown by Vulcano et al. and Penna et al. the stimulation 

with certain TLR ligands such as LPS could induce the CCL22 expression 

of in vitro differentiated DCs (Vulcano et al., 2001; Penna et al., 2002). In 

IFNAR mice this in vitro observation could be responsible for the measured 

increase of CCL22 expression after poly (I:C) treatment. Since the suppres-

sive effect of IFN-α on CCL22 expression is abrogated in IFNAR mice, the 

impact of TLR-induced CCL22 induction seems to prevail in these mice. Due 

to limited available numbers of IFNAR mice we could verify the effect of 

only one TLR stimulus on CCL22 suppression in tumor-bearing IFNAR mice. 

Since we wanted to analyze the contribution of IFN-α to TLR-mediated 

CCL22 suppression we used poly (I:C), a TLR ligand that is known to induce 

strong IFN-α production in mice (Matsumoto and Seya 2008), for these 

limited experiments. However, the effect of CpG and other TLR ligands on 
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CCL22 suppression in IFNAR remains to be elucidated and should be veri-

fied in follow-up experiments.

In this study we have demonstrated for the first time that TLR-mediated 

CCL22 suppression is IFN-α-induced. The effects of IFN-α are very diverse. 

Initially discovered as an antiviral protein, many studies have revealed the 

impact of IFN-α in modulating the innate and adaptive immune reaction in 

response to a variety of pathogens (Theofilopoulos et al., 2005). IFN-α can 

induce anti-angiogenesis, immune regulation, cell differentiation and apop-

tosis in different types of human tumors (Tarhini et al., 2012; Kirkwood et al., 

2002). Especially DCs respond to IFN-α treatment. Several studies revealed an 

INF-α-promoting effect on the polarization, maturation, survival and antigen 

cross-presentation of DCs which in turn enhances anti-cancer therapy (Tarhini 

et al., 2012; Kirkwood et al., 2002; Wang et al., 2007; Paquette et al., 1998; 

Krown et al., 1984). Minasian and others have revealed that IFN-α could have 

a beneficial effect in the therapy of human cancers such as renal cell cancer 

and melanoma (Minasian et al., 1993; Kirkwood et al., 2002; Takaoka et al., 

2003; Melichar et al., 2012). Compatible with these reports our finding also 

indicates a pro-therapeutic effect of INF-α in tumor treatment. This aspect 

could be considered in order to find new fields of application and identifying 

appropriate cancer patient subsets for IFN-α treatment. Since only a very small 

cancer patient cohort profits of an INF-α therapy and so far a predictor of 

response has not been found CCL22 could possibly serve to select appropriate 

cancer patient subsets (Tarhini et al., 2012; Kirkwood et al., 2012). Our results 

imply that patients with high intratumoral CCL22 levels could have a higher 

benefit from IFN-α therapy. Thus, in this study we revealed new aspects for 

an IFN-α-mediated anti-cancer therapy.

4.4	 CCL22 suppression is an important component of TLR-  
	 initiated tumor regression

In the past few years many new approaches for anti-cancer immunotherapy 

were developed, one of these are synthetic TLR ligands. With TLR ligands 

the innate immune system can be activated and the tumor-induced immune 
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suppression attenuated (Kanzler et al., 2007). The TLR9 ligand CpG, for 

instance, reduces tumor growth and increases overall survival of tumor-

bearing mice (Heckelsmiller et al., 2002; Houot and Levy, 2009; Krieg, 2008). 

Beside the broadly described therapeutic effects and prospects of TLR ligands 

in literature the precise mechanisms that mediate TLR-induced anti-tumor 

immunity are still poorly understood. As described above we observed a 

significant suppression of intratumoral CCL22 after TLR treatment of tumor-

bearing mice. In consideration of the tumor-growth-promoting effects of 

CCL22 we observed in this study, intratumoral CCL22 suppression could be an 

important component of TLR-initiated tumor regression. 

In this study we were able to abolish the therapeutic effect of TLR treat-

ment by preventing CpG-induced intratumoral CCL22 suppression. This was 

achieved by CCL22 over-expression in the tumor tissue of tumor-bearing 

mice. Thus, we demonstrated for the first time that CCL22 has a direct effect 

on TLR-mediated immunotherapy. According to our results, the suppres-

sion of CCL22 is therefore an important mechanism for TLR-induced tumor 

regression. Additionally, by counterbalancing the intratumoral suppres-

sion of CCL22 in TLR ligand-treated tumor-bearing mice, no decrease in 

intratumoral Treg levels was observed.

In previous experiments done by Dr. David Anz and Dr. Viktor Kölzer it was 

shown that TLR treatment not only reduces tumor-associated CCL22 levels, 

but also decreases the number of tumor-infiltrating Tregs (unpublished 

data). In addition, we and others observed a clear correlation between 

intratumoral CCL22 and Treg levels in the tumor tissue (Mizukami et al., 

2008). Furthermore, in several studies a promoting impact of tumor-asso-

ciated Tregs on tumor progression has been reported. These findings indi-

cate that intratumoral CCL22 mediates Treg tumor infiltration and thereby 

increases tumor progression. Thus, the benefit of TLR-induced CCL22 

suppression is potentially mediated through an inhibition of Treg immi-

gration into the tumor. Figure 33 schematically illustrates the proposed 

mechanism of TLR ligand-induced tumor-associated CCL22 suppression 

and the assumed effects on tumor progression. 
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Regulatory T cells

Tumor cells

Dendritic cells

Cytotoxic T cells

TLR ligand Tumor regression

IFN-α secretion Reduced Treg
tumor in�ltration
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produced CCL22
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Figure 39:  Overview of the proposed mechanisms in this study. This illustration shows the 
proposed mechanism of TLR ligand-mediated tumor regression. TLR stimulation activates IFN-α	secre-
tion by immune cells such as DCs. Via autocrine or paracrine signalling IFN-α suppresses CCL22 
expression. This in turn blocks CCL22-mediated Treg recruitment into the tumor tissue. Thereby, 
the number of intratumoral Tregs is reduced, and Treg-induced immune suppression is abolished. 
Cytotoxic T cells are no longer suppressed and can actively kill tumor cells, whereby an anti-tumor 
immune reaction is induced.

4.5 CCL22 is a promising anti-tumor drug target

Manipulating the immune system has become a very promising approach for 

anti-tumor therapy in the last years. Many potential new targets have been 
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identified. However, new therapeutic approaches such as patient vaccination 

with tumor-specific antigens or adoptive T cell transfer of tumor antigen-

specific cytotoxic T cells fail in the majority of cases to cure cancer patients 

due to tumor escape strategies. One of the major problems in this purpose is 

tumor-induced immune suppression. Therefore, circumventing this immune 

suppression is a very important step in achieving an efficient anti-tumor 

therapy. For this purpose Tregs seem to be a target with good prospects. 

These cells are known to mediate immune suppression and are associated with 

poor prognosis for cancer patients in many tumor entities. Indeed, in many 

experiments the therapeutic effects of Treg depletion or blockage in cancer 

patients have been confirmed. For instance, the depletion of Tregs by anti-

CD25 depletion antibody enhanced a vaccine-mediated anti-tumor immunity 

in cancer patients (Dannull et al., 2005; Onizuka et al., 1999; Shimizu et al., 

1999). The dual use of CTLA-4 blocking antibody and CD25 depletion anti-

body also showed promising results for abolishing tumor-induced immune 

suppression (Sutmuller et al., 2001). In patients with metastatic melanoma 

ipilimumab, a CTLA-4 blocking antibody, improved overall survival (Hodi et 

al., 2011). 

However, in these approaches not only intratumoral Tregs are depleted or 

blocked, but also all other Tregs which in turn often caused autoimmunity. 

In addition, Treg depletion always involves the depletion of other anti-tumor 

immunity promoting immune cells such as cytotoxic T lymphocytes since 

precise Treg surface marker are still missing. For instance, CD25 depletion 

antibody also depletes cytotoxic T lymphocytes which up-regulate CD25 after 

activation (Phan et al., 2003; Jones et al., 2002). To minimize side effects, new 

approaches must be investigated. One very promising alternative would be 

the blockade of intratumoral Treg infiltration. By blocking the infiltration of 

Tregs into the tumor, only the intratumoral immune suppressive effect of 

these cells would be abrogated and not their important function as suppres-

sors of autoimmunity. In this study we showed that the chemokine CCL22 

seems to have this potential. This chemokine is a very specific and potent Treg 

attractor (Iellem et al., 2001). As shown above CCL22 is up-regulated in colon 

carcinoma, melanoma, mammary cancer and pancreatic cancer. Furthermore, 

high intratumoral CCL22 expression is associated with increased Treg tumor 
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infiltration (Mizukami et al., 2008). In addition, we showed here for the first 

time that CCL22 can accelerate tumor growth and reduce overall survival in 

tumor-bearing mice. 

Beside Treg recruitment to the tumor tissue, CCL22 could have additional 

unknown tumor-promoting effects. By blocking the function of this chemo-

kine, these effects could be abrogated and anti-tumor immunity promoted. 

Therefore, the development of a CCL22 blocking antibody for further in 

vivo experiments will be the next step to verify this assumption. In addition, 

CCR4 and CCL22 KO mice could deliver further insights into the mechanism 

of CCL22-mediated Treg tumor infiltration and the tumor-promoting effect 

of CCL22. Since CCR4 is the exclusive receptor of CCL22 in CCR4 KO mice a 

CCL22-mediated cell migration is block. Thus, in these mice less Tregs should 

be present in the tumor tissue which in turn would confirm that CCL22 is 

involved in the attraction of Tregs into tumors. Furthermore, CCL22 KO mice 

could be used to analyze additional effects of CCL22 on tumor growth in 

more detail. We identified DCs and not tumor cells as the producer of intra-

tumoral CCL22. Thus, in CCL22 KO mice no CCL22 should be expressed in the 

tumor tissue and therefore the tumor-promoting effect of CCL22 would be 

blocked. This in turn should result in a decrease of tumor growth. Since CCR4 

and CCL22 KO mice as well as a CCL22 blocking antibody were not available 

until the end of my thesis these experiments still needs to be done. Taken 

together, the results of previous experiments and of this study illustrate that 

the chemokine CCL22 could be a promising target for anti-tumor therapy. 

In conclusion, investigating the function of intratumoral CCL22 seems to have 

the potential to improve the outcome of current anti-tumor therapies. With 

the presented results we were able to gain new insights into this field and 

provided the basis for further experiments aiming to find new anti-cancer 

drugs.





Summary
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5.	 Summary

An effective anti-cancer therapy requires that the tumor-induced immune 

suppressive environment is abolished. Without bypassing this suppressive 

milieu, most immunotherapies show only poor benefits for cancer patients. 

In order to escape from the host immune system, the tumor capitalizes on 

the protective immune mechanism of the host. One cell type involved in this 

process are regulatory T cells. Increased amounts of regulatory T cells in cancer 

patients as well as the suppressive characteristics of these cells support an 

important role for regulatory T cells in cancer-induced immunosuppression. 

The aim of this study was to investigate the role of the chemokine CCL22 in 

tumor-induced immune suppression. In previous studies we demonstrated that 

in murine cancer high levels of CCL22 are expressed. Since CCL22 specifically 

attracts regulatory T cells, we hypothesized that intratumoral CCL22 expres-

sion is one of the mechanisms used by tumors to escape the host immune 

system.

In contrast to breast cancer in which CCL22 is expressed by tumor cells, we 

identified intratumoral dendritic cells as the main producers of tumor-asso-

ciated CCL22 in melanoma and pancreatic cancer. By using a murine colon 

cancer tumor cell line with inducible CCL22 expression, a clear impact of 

intratumoral CCL22 on tumor genesis was observed. In mice tumor growth 

was increased and overall survival decreased after induction of intratumoral 

CCL22 indicating that high intratumoral CCL22 levels are associated with poor 

prognosis. 

Treating tumor-bearing mice with immune activating Toll-like receptor (TLR) 

ligands reduces tumor growth and increases overall survival. In previous 

studies of our group it was shown that TLR activation suppresses intratu-

moral CCL22 expression. We demonstrated here for the first time that this 

TLR ligand-induced reduction of intratumoral CCL22 is mediated by IFN-α, a 

cytokine released by immune cells after TLR stimulation. Furthermore, when 

suppression of intratumoral CCL22 was counterbalanced by using a tumor 
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cell line with inducible CCL22 expression, the therapeutic benefit of TLR 

ligands in mice was abolished. In addition, the previously described reduction 

of intratumoral regulatory T cell numbers by TLR activation was reversed. 

These results indicate that TLR ligands lead to tumor regression at least 

partially by suppressing intratumoral CCL22 expression which in turn blocks 

the infiltration of immunosuppressive regulatory T cells into the tumor. Thus, 

CCL22 suppression is a crucial part of TLR-induced tumor regression.

In conclusion, this study illustrates the important role of CCL22 in tumor 

development and clinical outcome. CCL22 represents an essential chemokine 

in recruiting regulatory T cells into the tumor tissue and inducing an immune 

suppressive tumor environment. Thus, targeting this chemokine by treating 

cancer patients with IFN-α or CCL22-blocking antibody could be a promising 

approach for an efficient anti-cancer immunotherapy. 
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6.	 Zusammenfassung

Für eine effektive Anti-Tumor-Therapie ist es erforderlich das immunsuppres-

sive Milieu des Tumors außer Kraft zu setzen. Ohne eine Aufhebung dieses 

suppressiven Milieus zeigen die meisten Immuntherapien nur geringe Erfolge 

in der Bekämpfung von Tumorerkrankungen. Um einer effektiven Immunre-

aktion zu entgehen, macht sich der Tumor bestimmte Schutzmechanismen des 

Immunsystems zunutze. Eine Zellart, die an diesem Prozess beteiligt ist, sind 

regulatorische T Zellen. Erhöhte Zahlen an regulatorischen T Zellen in Tumor-

patienten, sowie die immunsuppressiven Eigenschaften dieser Zellen, deuten 

darauf hin, dass regulatorische T Zellen entscheidend zu der Etablierung eines 

immunsuppressiven Tumormileus beitragen.

Das Ziel dieser Doktorarbeit war es, den Einfluss des Chemokins CCL22 

auf die tumor-induzierte Immunsuppression zu erforschen. In Vorarbeiten 

unserer Arbeitsgruppe konnten wir zeigen, dass in murinen Tumoren CCL22 

in erhöhtem Maße exprimiert wird. Da CCL22 effektiv regulatorische T Zellen 

anlockt, vermuteten wir, dass die tumorassoziierte CCL22-Expression entschei-

dend an der Entstehung eines immunsuppressiven Tumormilieus beteiligt ist. 

Im Gegensatz zu Brusttumoren, in denen die Tumorzellen selbst CCL22 produ-

zieren, konnten wir im murinen Melanom und Pankreaskarzinom dendritische 

Zellen als die Hauptproduzenten von intratumoralem CCL22 identifizieren. 

Mit Hilfe einer murinen Kolontumorzelllinie, die induzierbar CCL22 produ-

ziert, wurde ein klarer Zusammenhang zwischen intratumoralem CCL22 und 

Tumorwachstum beobachtet. Nach Induktion der CCL22-Produktion war das 

Tumorwachstum in Mäusen beschleunigt und das Gesamtüberleben signifi-

kant verringert. Diese Daten verdeutlichen, dass hohe CCL22 Konzentrationen 

im Tumor mit einer schlechten Prognose verbunden sind.

Eine Behandlung von tumor-tragenden Mäusen mit Toll-like-Rezeptor-

Liganden, die eine aktivierende Wirkung auf das Immunsystem haben, führt 

zu einer Tumorregression und steigert das Gesamtüberleben der behandelten 

Mäuse. Frühere Experimente unserer Arbeitsgruppe demonstrierten, dass 
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TLR-Liganden die Expression von tumor-assoziiertem CCL22 supprimieren und 

die Infiltration von regulatorischen T Zellen in den Tumor reduzieren. In der 

vorliegenden Arbeit konnte erstmalig gezeigt werden, dass die TLR-Liganden-

induzierte CCL22-Reduktion durch IFN-α, ein Zytokin, das Immunzellen nach 

TLR-Stimulation sezernieren, vermittelt wird. Durch die Verwendung von 

Tumorzellen mit induzierbarer CCL22-Expression konnte des Weiteren belegt 

werden, dass eine Aufhebung der TLR-vermittelten CCL22 Suppression den 

therapeutischen Effekt von TLR-Liganden abschwächt. Darüber hinaus wurde 

die TLR-induzierte Reduktion von tumorinfiltrierenden, regulatorischen  

T Zellen durch die Antagonisierung der CCL22-Suppression aufgehoben. Diese 

Ergebnisse deuten darauf hin, dass die TLR-Liganden-induzierte Tumorregres-

sion teilweise durch eine Suppression der intratumoralen CCL22 Expression 

vermittelt wird, die wiederum die Tumorinfiltration von immunsuppressiven, 

regulatorischen T Zellen verringert. Die Suppression von tumorassozi-

iertem CCL22 ist somit ein entscheidender Bestandteil der TLR-induzierten 

Tumorregression.

Die Erkenntnisse dieser Arbeit verdeutlichen die wichtige Rolle von CCL22 

bei der Tumorentstehung sowie der Prognose von unterschiedlichen Tumor

entitäten. CCL22 ist ein Chemokin, das entscheidend an der Rekrutierung 

von regulatorischen T Zellen in den Tumor und dadurch an der Etablierung 

eines immunsuppressiven Tumormilieus beteiligt ist. Aus diesem Grund 

könnten neue Therapieansätze, die spezifisch auf eine Regulierung von intra-

tumoralem CCL22 ausgelegt sind, einen entscheidenden Beitrag im Kampf 

gegen Krebs leisten. Ein vielversprechender Ansatz ist somit zum Beispiel die 

Behandlung von Tumorpatienten mit IFN-α oder einem CCL22-blockierenden 

Antikörper.
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8.	 Appendices

8.1	 PCR primer list

All primers were obtained from Metabion (Planegg, Germany) or Eurofins 

MWG (Ebersberg, Germany).

CCL22-For-EcoRI		  5’-ATTAGAATTCATGGCTACCCTGCG-3’

CCL22-For-EcoRI		  5’-ATTAGAATTCCTAGGACAGTTTATG-3’

CCL22-For-NotI		  5’-ATT AGC GGC CGC ATG GCT ACC CTG CGT GTC-3’

CCL22-Rev-SalI		  5’-ATT AGT CGA CCT AGG ACA GTT TAT GGA GTA 

G-3’

pTRE-Seq-For 		  5’-AGG CGT ATC ACG AGG CCC TTT CGT-3’

pTRE-Seq-Rev		  5’-TAT TAC CGC CTT TGA GTG AGC TGA-3’

pTRE-tight-Rev		  5’-CGC CTT TGA GTC AGC TGA TAC CGC TCG CCG-3’

TRE-F				    5’-TAG GCG TGT ACG GTG GGA G-3’

TRE-R				   5’-CTC TAC AAA TGT GGT ATG GC-3’

rtTA-F				   5’-CAA TCG AGA TGC TGG ACA GG-3’

rtTA-R				   5’-CAG CAG GCA GCA TAT CAA GG-3’

TDF				    5’-GCCCTTAGTAGTGTCTGCTTTC-3’

TDR				    5’-GCTCCTTGTTAGCAAGTCAGC-3’

NeoinF			   5’-TTCGGCTATGACTGGGCACAACAG-3’

NeoinR			   5’-TACTTTCTCGGCAGGAGCAAGGTG-3’

8.2	 Quantitative real-time PCR primer list

All primers were obtained from Metabion (Planegg, Germany) or Eurofins 

MWG (Ebersberg, Germany). Primers and probes were designed by using the 

online Roche Assay Design Center.

RT-PCR-CCL22-For		  5’-tct tgc tgt ggc aat tca ga-3’

RT-PCR-CCL22-Rev		  5’-gag ggt gac gga tgt agt cc-3’

Roche Probe for CCL22	 #84

RT-PCR-CD11c-For		  5’-atg gag cct caa gac agg ac-3’

RT-PCR-CD11c-Rev		  5’-gga tct ggg atg ctg aaa tc-3’

Roche Probe for CD11c	 #20
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RT-PCR-rtTA-For		  5’-ctt ttc ggc ctg gaa cta atc-3’

RT-PCR-rtTA-Rev		  5’-gcc gct ttc gca ctt tag-3’

Roche Probe for rtTA	 #80

RT-PCR-HPRT-For		  5’-gga gcg gta gca cct cct-3’

RT-PCR-HPRT-Rev		  5’-ctg gtt cat cat cgc taa tca c-3’

Roche Probe for HPRT	 #69

8.3	 Sequencing data of pTRE-Tight CCL22 vector

Primer for Sequencing: pTRE-Seq-Rev; CCL22 sequence is shown in blue letters. 

Clone 1

5’-CGTTTTCTGGGTGAGGCAAAAAAACAGAGCCAAATGCGCAAAAACGATA-

AGGGGCGGACACCGAATGGTGGATTACTCCATACTCTCCGTTTTCAATATT-

TATTGAAGCATTTATCAGGCTTATTGTCTCCATGAGCGGATACATATTT-

GAATGTATTTAGAAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCC-

GAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATA-

AAAATAGGCGTATCACGAGGCCCTTTCGTCTTCACTCGAGTTTACTCCCTAT-

CAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGA-

ACGATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTT-

TACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGT-

GATAGAGAACGTATGTCGAGTTTATCCCTATCAGTGATAGAGAACGTATGTC-

GAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGGTAGGCGTGTACG-

GTGGGAGGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTG-

GAGAATTCGAGCTCGGTACCCGGGGATCCTCTAGTCAGCTGACGCGTGCTAGC-

GCGGCCGCATGGCTACCCTGCGTGTCCCACTCCTGGTGGCTCTCGTCCTTCTT-

GCTGTGGCAATTCAGACCTCTGATGCAGGTCCCTATGGTGCCAATGTGGAAGA-

CAGTATCTGCTGCCAGGACTACATCCGTCACCCTCTGCCATCACGTTTAGT-

GAAGGAGTTCTTCTGGACCTCAAAATCCTGCCGCAAGCCTGGCGTTGTTTT-

GATAACCGTCAAGAACCGAGATATCTGTGCCGATCCCAGGCAGGTCTGGGT-

GAAGAAGCTACTCCATAAACTGTCCTAGGTCGACGATATCTCTAGAGGATCATA-

ATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCA-

CACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTT-

GTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCA-

CAAATAAAGCATTTTTTTCACTGCCTCGAGCTTCCTCGCTCACTGACTCGCTGC-

GCTCGTCGTCGCTGCGGCAGACCGG-3’
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Clone 2

5’-CAGGGCGTTTTTCTGGTGAGGCAAAAATACGGAAGGCAAATGCG-

CAAAAGAATACGGCGACACGTAATGTGATACTCATACTCTCTTTTGCAC-

TATATTGAGCAATTTATCAAGGCTAATGTCTCATGAGCGGATACATATTC-

GATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCC-

GAAAAGTGCCACCTGACGTCTAAGAAAGCCATTATTATCATGACATTA-

ACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCACTCGAGTT-

TACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGT-

GATAGAGAACGATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTC-

GAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGT-

GATAGAGAACGTATGTCGAGTTTATCCCTATCAGTGATAGAGAACGTATGTC-

GAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGGTAGGCGTGTACG-

GTGGGAGGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTG-

GAGAATTCGAGCTCGGTACCCGGGGATCCTCTAGTCAGCTGACGCGTGCTAGC-

GCGGCCGCATGGCTACCCTGCGTGTCCCACTCCTGGTGGCTCTCGTCCTTCTT-

GCTGTGGCAATTCAGACCTCTGATGCAGGTCCCTATGGTGCCAATGTGGAAGA-

CAGTATCTGCTGCCAGGACTACATCCGTCACCCTCTGCCATCACGTTTAGT-

GAAGGAGTTCTTCTGGACCTCAAAATCCTGCCGCAAGCCTGGCGTTGTTTT-

GATAACCGTCAAGAACCGAGATATCTGTGCCGATCCCAGGCAGGTCTGGGT-

GAAGAAGCTACTCCATAAACTGTCCTAGGTCGACGATATCTCTAGAGGATCATA-

ATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCA-

CACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTT-

GTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCA-

CAAATAAAGCATTTTTTTCACTGCCTCGAGCTTCCTCGCTCACTGACTCGCTGC-

GCTCGTCGTACGCTGCGGCAGACCGT-3’

8.4	 Sequencing data of pTRE-CCL22 mouse

Primer for Sequencing: pTRE-Seq-Rev; TRE promoter sequence is shown in 

green letters, CCL22 sequence in light blue letters, MCS in black letters and 

SV40polyA sequence in blue letters. The observed transition point mutation 

(C → T) is part of the MCS and is indicated by a red letter.

pTRE-CCL22 mouse

5’-CTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTAT-

CAGTGATAGAGAACGATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTAT-
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GTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTAT-

CAGTGATAGAGAACGTATGTCGAGTTTATCCCTATCAGTGATAGAGAACGTAT-

GTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGGTAGGCGTGTAC-

GGTGGGAGGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTG-

GAGAATTCGAGCTCGGTACCCGGGGATCCTCTAGTCAGCTGACGCGTGCTAGC-

GCGGCCGCATGGCTACCCTGCGTGTCCCACTCCTGGTGGCTCTCGTCCTTCTT-

GCTGTGGCAATTCAGACCTCTGATGCAGGTCCCTATGGTGCCAATGTGGAAGA-

CAGTATCTGCTGCCAGGACTACATCCGTCACCCTCTGCCATCACGTTTAGT-

GAAGGAGTTCTTCTGGACCTCAAAATCCTGCCGCAAGCCTGGCGTTGTTTT-

GATAACCGTCAAGAACCGAGATATCTGTGCCGATCCCAGGCAGGTCTGGGT-

GAAGAAGCTACTCCATAAACTGTCCTAGGTCGACGATAT T TCTAGAGGAT-

CATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCA-

CACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTT-

GTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCA-

CAAATAAAGCATTTTTTTCACTGCCTCGAGCTTCCTCGCTCACT-3’
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8.5	 Abbreviations

A

APC 		  Antigen-presenting cell

aa		  Amino acid

B

bp		  Base pairs

BrdU		  5’-Bromo-2’-deoxyuridine

C

CCL		  Chemokine (C-C motif) ligand

CCR 		  Chemokine receptor

cDNA 		 Copy-desoxyribonucleic acid

CpG 		  Oligonucleotide with cytosine-(phosphate)-guanine motifs

CTLA-4	 T lymphocyte-associated antigen 4

D

cDC		  Conventional dendritic cell

DC		  Dendritic cell

DMEM 	 Dulbecco's modified Eagle´s medium

DMSO 	 Dimethyl sulfoxide

DNA 		  Desoxyribonucleid acid

ds 		  Double-stranded

pDC		  Plasmacytoid dendritic cell

E

EDTA 		 Ethylenediamine-tetraacetic acid

EGFR		  Epidermal growth factor receptors

ELISA 		 Enzyme-linked immunosorbent assay

F

FACS 		  Fluorescent-activated cell sorting

FCS 		  Fetal calf serum
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FITC 		  Fluorescein isocyanate

Foxp3 	 Forkhead box p3

FSC 		  Forward scatter

G

GITR		  Glucocorticoid-induced TNF receptor family-related gene

H

HET		  Heterogenous

HPRT		  Hypoxanthine-guanine phosphoribosyltransferase

HRP		  Horseradish peroxidase

I

IFN-α		  Interferon-alpha

IFN-β		  Interferon-beta

IFN-γ	 	 Interferon-gamma

IFNAR 	 Interferon-receptor-type-1

IL 		  Interleukin

ip 		  Intraperitoneally

IRF		  IFN regulatory factor

K

kb		  Kilo base pairs

KO		  Knockout

L

LacZ		  β-Galactosidase Enzym

LAG-3		 Lymphocyte activation gene-3

LN		  Lymph node

LPS 		  Lipopolysaccharid

M

MACS 	 Magnetic-activated cell sorting

MAP		  Activation of mitogen-activated protein
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MCS		  Multiple cloning site

MDA-5 	 Melanoma differentiation associated gene 5

MHC 		  Major histocompatibility complex

mRNA 	 Messenger ribonucleic acid

MyD88 	 Myeloid differentiation primary response gene 88

N

nd 		  Not determined

NEAA 	 Non-essential amino acids

NF-кB 		 Nuclear factor-кB

NK cell	 Natural killer cell

NKT cells	 Natural killer T cell

ns 		  Not significant

O

OD		  Optical density

P

PAMP 	 Pathogen-associated molecular pattern

PBS		  Dulbecco’s Phosphate buffered saline

PCR 		  Polymerase chain reaction

PE 		  Phycoerythrin

PerCP 		 Peridinin chlorophyll protein

PP 		  Peyer’s patches

PFA 		  Paraformaldehyde

PRR 		  Pattern-recognition receptor

Q

qRT-PCR 	 Quantitative real-time PCR

R

RCC		  Renal cell carcinoma

RIG-I 		  Retinoic acid-inducible gene-I

RLR		  RIG-I-like receptors
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RPMI 		 Roswell Park Memorial Institute

RNA 		  Ribonucleic acid

RT 		  Room temperature

S

sc		  Subcutaneous 

SEM 		  Standard error of the mean

ss 		  Single-stranded

SSC 		  Sideward scatter

T

Teff		  T effector cell

TGF-β	 	 Transforming growth factor-beta

TH cell 	 T-helper cell

TIR 		  Toll/IL-1 receptor

TIRAP		 TIR domain-containing adapter molecule

TLR		  Toll-like receptors

TMB		  Tetramethylbenzidin

TNF		  Tumor necrosis factor

TRAM		 TRIF-related adapter molecule

Treg 		  Regulatory T cell

TRIF 		  TIR-containing adapter inducing IFN-α

		

V

VLE 		  Very low endotoxin

W

wt		  Wild-type 



124

Appendices

8.6	 Publications

8.6.1	 Original publications

Zoglmeier C, Bauer H, Nörenberg D, Wedekind G, Bittner P, Sandholzer N, 

Rapp M, Anz D, Endres S, Bourquin C. (2011). CpG blocks immunosuppression 

by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 

2011 Apr 1;17(7):1765-75.

Anz D, Mueller W, Golic M, Kunz WG, Rapp M, Koelzer VH, Ellermeier J, Ell-

wart JW, Schnurr M, Bourquin C, Endres S. (2011). CD103 is a hallmark of 

tumor-infiltrating regulatory T cells. Int J Cancer. 2011 Nov 15;129(10):2417-26.

Anz D*, Rapp M*, Eiber S, Koelzer VH, Thaler R, Haubner S, Nagel S, Golic M, 

Bauernfeind F, Wurzenberger C, Radtke-Schuller S, Noessner E, Hornung V, 

Scholz C, Mayr D, Rothenfusser S, Endres S, Bourquin C. Suppression of CCL22 

by Toll-like receptor agonists inhibits cancer growth in a type I interferon de-

pendent manner. Manuscript in preparation 2013. 

*Anz D. and Rapp M. contributed equally to this work.

8.6.2	 Oral presentations

Rapp M. A novel doxycycline inducible chemokine over-expressing tumor 

model. 5th Annual Retreat, Graduiertenkolleg 1202, Sylvensteinsee, Germa-

ny, 2010

Rapp M. CCL22 - a potential mediator in tumor-induced immunosuppression 

6th Annual Retreat, Graduiertenkolleg 1202, Schloss Fürstenried, Germany, 

2011

Rapp M. TLR agonists prevent Treg infiltration of tumors by specifically inhib-

iting migration of regulatory T cells. LMU-Harvard Young Scientists’ Forum, 

München, Germany, 2011

Rapp M. Suppression of CCL22 by TLR agonists inhibits cancer growth in a 

type I interferon dependent manner. 7th Annual Retreat, Graduiertenkolleg 

1202, Frauenchiemsee, Germany, 2012



125

Appendices

8.6.3	 Poster presentations

Anz D, Rapp M, Scholz C, Endres S, Kirchner T, Bourquin C, Mayr D. In breast 

cancer a high ratio of tumor-infi ltrating intraepithelial CD8+ to FoxP3+ cells 

is unique for the medullary subtype. World Immune regulation Meeting IV, 

Davos, Switzerland, 2010

Anz D, Mueller W, Golic M, Kunz WG, Rapp M, Koelzer VH, Ellermeier J, Ell-

wart JW, Schnurr M, Bourquin C, Endres S. CD103 is a hallmark of tumor-

infiltrating regulatory T cells. World Immune regulation Meeting V, Davos, 

Switzerland, 2010

Wiedemann G, Rapp M, Kriegl L, Mayr D, De Toni E, Gülberg V, Endres S, Anz 

D. Regulatory T cell-attracting chemokines in hepatocellular carcinoma. Falk 

symposium, Hamburg, Germany, 2012

Rapp M, Haubner S, Nagel S, Wiedemann G, Mayr D, Eiber S, Rothenfusser S, 

Bourquin C, Endres S, Anz D. CCL22 in murine and human tumors is derived 

from tumor-infi ltrating macrophages and dendritic cells. China Tregs 2012 

Conference, Shanghai, China, 2012



126

Appendices

8.7	 Acknowledgements

First I would like to thank Prof. Dr. med. Stefan Endres for giving me the op-

portunity of working in the Division of Clinical Pharmacology as a member of 

the Graduiertenkolleg "Oligonukleotide in Zellbiologie und Therapie".

I also would like to gratefully and sincerely thank Dr. med. David Anz and 

Prof. Dr. med. Dr. rer. nat. Carole Bourquin for providing me with such an 

interesting research project and letting me participate in planning and imple-

mentation. Their constant personal encouragement and scientific input were 

truly inspiring.

Last but not least, I thank my fellow doctoral students and co-workers for all 

their help and support during the last three year.




