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Zusammenfassung

Attosekundenpulse sind ultrakurze extrem-ultraviolette (XUV) Pulse, die durch einen
nicht-linearen, von einer nah-infraroten (NIR) Laserquelle stimulierten Anregungsprozess
erzeugt werden. Attosekundenpulse können verwendet werden, um die Elektronendynamik
eines ultraschnellen Prozesses durch die “Attosecond Streaking” Technik zu messen, mit
einer Auflösung auf der Attosekundenskala. In dieser Dissertation wird gezeigt, dass sowohl
die Erzeugung von Attosekundenpulsen als auch die Messung ultraschneller Prozesse mit-
tels Attosekundenpulse auf Fälle erweitert werden können, bei denen die Anregungs- und
Streakingsfelder von Oberflächenplasmonen generiert werden, welche bei nahinfraroten
Wellenlängen auf Nanostrukturen angeregt werden. Oberflächenplasmonen sind optische
Moden, die aus einer kollektiven Schwingung der Elektronen an der Oberfläche in Resonanz
mit einer externen Quelle entstehen.

Im ersten Abschnitt dieser Dissertation wird das Konzept der High Harmonic Genera-
tion (HHG) in plasmonisch erhöhten Feldern, wie in Ref. [Par+11] vorgeschlagen, durch
numerische Simulationen analysiert. Ein NIR Puls wird mit einem Oberflächenplasmon,
das sich in einem konischen, mit Edelgas gefüllten, Hohlleiter ausbreitet, gekoppelt. Die
Intensität des plasmonischen Feldes steigt mit der Verringerung des Durchmessers des
Hohlleiters, sodass die Felderhöhung an seiner Spitze groß genug wird, um hohe harmonis-
che Strahlung zu generieren. In Ref. [LKS13] wird nachgewiesen, dass die Herstellung von
isolierten Attosekundenpulsen mit außergewöhnlichen Zeit- und Raumstrukturen möglich
ist. Trotzdem ist deren Intensität um mehrere Größenordnungen niedriger als die, die in
Experimenten mit fokussierten Laserpulsen erreicht werden kann.

Im zweiten Abschnitt wird eine experimentelle Technik für die Abbildung plasmonischer
Oberflächenanregungen vorgeschlagen [Lup+14], wobei Attosekundenpulse verwendet wer-
den, um das Feld an der Oberfläche mittels “Momentum Streaking” der photoionisierten
Elektronen zu messen. Dieses Konzept ist eine Erweiterung der “Attosecond Streak Cam-
era” [Kie+04], welches ich “Attosecond Photoscopy” nenne. Es ermöglicht die Abbildung
eines Plasmons in Zeit und Raum während des Anregungsprozesses. Anhand von nu-
merischen Simulationen wird es gezeigt, dass die wesentlichen Parameter des plasmonischen
Resonanzaufbaus mit subfemtosekunden-Präzision bestimmt werden können.

Zuletzt wird die Methode für die numerische Lösung der Maxwell-Gleichungen disku-
tiert, mit Fokus auf das Problem der absorbierenden Randbedingungen. Neue Einsichten in
die mathematische Formulierung der Randbedingungen der Maxwell-Gleichungen werden
vorgestellt.
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Summary

Attosecond pulses are ultrashort radiation bursts produced via high harmonic generation
(HHG) during a highly nonlinear excitation process driven by a near infrared (NIR) laser
pulse. Attosecond pulses can be used to probe the electron dynamics in ultrafast processes
via the attosecond streaking technique [Gou+04], with a resolution on the attosecond time
scale. In this thesis it is shown that both the generation of attosecond (AS) pulses and
the probing of ultrafast processes by means of AS pulses, can be extended to cases in
which the respective driving and streaking fields are produced by surface plasmons excited
on nanostructures at NIR wavelengths. Surface plasmons are optical modes generated by
collective oscillations of the surface electrons in resonance with an external source.

In the first part of this thesis, the idea of high harmonic generation (HHG) in the
enhanced field of a surface plasmon proposed in [Par+11] is analyzed in detail by means
of numerical simulations. A NIR pulse is coupled into a surface plasmon propagating in a
hollow core tapered waveguide filled with noble gas. The plasmon field intensity increases
for decreasing waveguide radius, such that at the apex the field enhancement is sufficient for
producing high harmonic radiation. It is shown [LKS13] that with this setup it is possible
to generate isolated AS pulses with outstanding spatial and temporal structure, but with
an intensity of orders of magnitude smaller than in standard gas harmonic arrangements.

In the second part, an experimental technique for the imaging of surface plasmonic
excitations on nanostructured surfaces is proposed [Lup+14], where AS pulses are used to
probe the surface field by means of photoionization. The concept constitutes an extension
of the attosecond streak camera [Kie+04] to “Attosecond Photoscopy”, which allows space-
and time-resolved imaging of the plasmon dynamics during the excitation process. It is
numerically demonstrated that the relevant parameters of the plasmonic resonance buildup
phase can be determined with subfemtosecond precision.

Finally, the method used for the numerical solution of the Maxwell’s equations is
discussed, with particular attention to the problem of absorbing boundary conditions.
New insights into the mathematical formulation of the absorbing boundary conditions for
Maxwell’s equations are provided.
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1
Introduction

The imaging of a physical process evolving with a given time scale has to be performed
with a device, whose response time is smaller than that of the process under investigation.

The last decades have seen a very fast technological development in laser science and
technique, such that accessing unprecedented timescales by appropriately fast devices has
become feasible, and in some cases routine. This is for example the case of “femtochem-
istry”, where chemical reactions occurring at the femtosecond level (1 fs = 10−15 seconds)
are “filmed” by means of even shorter laser pulses. Thanks to the emergence of widely tun-
able femtosecond laser pulses it was possible to gain understanding of ultrafast physical,
chemical and biological processes.

However, while femtochemistry is able to resolve the dynamics in molecules, pure elec-
tronic motion occurs on a much shorter timescale, and therefore requires a much faster
imaging technique, on the attosecond level (1 as = 10−3 fs, see Table (1.1)).

Table 1.1: Timescales of typical physical processes.

∆E τ Imaging technique
Man walking Joule 1 s Camera

Molecular vibrations meV 100 fs Femtosecond pulses
Outer electrons in atoms 1− 20 eV 100 as Attosecond streak camera
Debye screening in metals 1− 10 eV 100 as Attosecond photoscopy
Inner electrons in atoms 10− 100 keV 100 zs - 1 as ?

Nuclear fusion d-t 10 MeV � 1 as ?

The capability of generating light sources short enough to allow the temporal investiga-
tion of sub-femtosecond dynamics is a relatively recent accomplishment, since in 2001 the
generation of an isolated pulse of sub-femtosecond duration was experimentally demon-
strated [Hen+01] for the first time. The breakthrough that set the physics community
on the way to attosecond science though, dates back to 1979, when P. Agostini [Ago+79]
discovered the phenomenon of above threshold ionization (ATI). In the experiment it was
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shown that when an atom is ionized by a strong field, the photoelectron spectrum not only
shows the expected peak corresponding to the minimum amount of photons required to
overcome the ionization potential, but also extra peaks corresponding to higher multiples
of the fundamental laser frequency. This feature of photoionization in strong field contra-
dicted the common understanding of atomic physics, according to which an electron would
gain just the amount of energy required to escape the atomic potential. The absorption of
any additional number of photons would correspond to free-free transitions, which should
have been forbidden by energy and momentum conservation.

In fact, a bound electron can gain as much energy as it is available, the probability
amplitude for the absorption of a given amount of energy depending on the external field
parameters. Moreover, it was later reported in [Pau+94] that the peak amplitudes in
the photoelectron spectrum obtained in strong field ionization do not depend on the field
intensity as I−n0 , with n the number of photons absorbed. Rather, the spectrum presents
a region where the peak amplitudes are constant over many harmonics of the fundamental
frequency. The presence of a broad “plateau” region, together with the overcoming of
the historical treatment of the photoelectric effect, set the basis for the development of a
non-perturbative theory, which shifted the “n-photon” picture paradigm towards a more
intuitive description of the time dependent dynamics.

In the same decade, another phenomenon displaying striking similarities with ATI was
discovered, namely the generation of high harmonics (HHG) in atoms irradiated with strong
laser fields. Nowadays it is widely recognized that the physical process responsible for the
ATI and HHG is the same one, an electron being ionized in a strong field and rescattering
with the nucleus. A simple semi-classical model splitting the process in a sequence of
ionization, acceleration and rescattering is able to capture the underlying physics, and will
be discussed in Chapter 2.

It was soon realized that provided that the phases of the harmonics in HHG are co-
herent, the long sequence of equal amplitude harmonic orders could correspond to a train
of pulses with attosecond duration in the time domain. As this was later demonstrated
in [Pau+01], it was also understood that for pump-probe spectroscopy spanning over time
intervals longer than the temporal spacing between two consecutive pulses, isolated at-
tosecond pulses (IAP) were required. As soon as single IAPs became available [Hen+01],
a number of applications concerning the study of subfemtosecond motion were developed,
from the imaging of valence electron motion in Krypton atoms [Gou+10] to the measure-
ment of emission delays from different bands of bulk Tungsten [Cav+07].

Recently, the curiosity of the attosecond community is focusing on ultrafast phenomena
in solids. The recent demonstration of the optical control of ultrafast electron currents in a
dielectric medium [Sch+13], is a confirmation of this interest shift. The work of this thesis
follows this direction, its aim being bringing together the attosecond world, comprising of
generation mechanism and diagnostic application, with plasmonics. Plasmonics is the field
that studies optical excitations at metal surfaces, e.g. nanospheres, nanowires, or nanos-
tructured interfaces. The word “nano” is often associated with plasmonics because of its
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capability to confine an optical field down to the nanometric scale. Plasmonic excitations
are collective oscillations of the surface electrons driven by an external field. These oscilla-
tions are typically associated with macroscopic features, most notably the aforementioned
field confinement, and field enhancement in proximity of the supporting surface. For these
reasons, surface plasmons are studied for a broad number of technological applications,
ranging from plasmonic circuitry for plasmonic-based computer chips [Ozb06], to Surface
Enhanced Raman Scattering (SERS) for biological molecule sensing [Sha+12].

Surface plasmons were first observed as “anomalies” in the reflectivity spectrum of
diffraction gratings by Wood [Woo02], in 1902, while the first theoretical understanding
occurred only in 1941, when Fano explained the dims in the spectrum as due to resonant
excitations of surface waves [Fan41]. The explanation of the grating anomalies in term of
surface plasmonic resonances was given for the first time in [Rit+68], where the optical
properties of metal surfaces were related to the microscopic theory of electronic excitations
in solids. This work set the basis for a modern understanding of surface plasmons in term
of solid state physics.

The Thesis is essentially composed of two part, as its title tries to convey, and follows
the typical dual scenario of attosecond physics, i.e. that a process generating attosecond
pulses can be time resolved by the generated AS pulses themselves. In this sense, the
first part is dedicated to the modelling and numerical analysis of HHG using plasmonic
enhancement as amplifying mechanism for the driver NIR laser. To this purpose, a plas-
monic tapered waveguide is used, where an ultrashort linearly polarized NIR laser pulse is
coupled to a plasmonic mode, which provides the necessary enhancement to produce high
harmonics in the XUV regime. This idea, first proposed in [Par+11], has the advantage
of not requiring any complex amplification chain for the driver NIR pulse, allowing to di-
rectly use commercially available lasers and keeping the repetition rate unaltered. In the
numerical analysis described in Chapter 4 it is shown that with such a technique isolated
attosecond pulses displaying outstanding temporal and spatial collimation properties can
be produced, and a comparison with standard generation techniques is discussed. It is
found that plasmonic generated pulses are weaker than traditionally generated ones, but
nevertheless their very good characteristics make them a valuable alternative in terms of
simple usage and costs.

Secondly, the application of attosecond pulses as imaging tools for surface plasmons
polaritons (SPPs) propagating on nanostructured surfaces is investigated. A new technique
called attosecond photoscopy [Lup+14] and based on a pump-probe measurement, SPP
pump with XUV IAP probe, is proposed, which allows to fully characterize the temporal
evolution of the buildup dynamics of the plasmonic resonance, using only already existing
tools of attosecond metrology. The technique can be easily extended to any kind of surface
plasmonic excitation. Recent developments of the experimental apparatuses indicate the
possibility to spatially separate the XUV and NIR pulse while keeping the attosecond-
precise synchronization. The validity of the proposed technique is checked by numerical
simulations, and it is shown to provide time- and space-resolved imaging of virtually any
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surface phenomena: by exciting a surface mode with a NIR pulse, one can tailor the
dynamics of the excitation along complex nanostructured components by simply pointing
the attosecond XUV pulse on the region of interest.

Finally, a discussion on the method for the numerical solution of Maxwell’s equations
(ME), a relevant part of the simulation work of this Thesis, is given. The most widespread
method for solving the time dependent MEs is the so called Finite-Difference Time-Domain
(FDTD) method [Taf05], which consists in the discretization of time and space via finite
differences. The electric field E and magnetic field B are computed on a staggered grid, i.e.
on two identical spatial and temporal grids which are shifted with respect to each other by
half the discretization step. Although the broad success of the method in the physics and
engineering community, few criticalities are present which mostly affect the way outwards
propagating solutions are absorbed by boundary conditions set to avoid unwanted reflection
in the simulation box. In the discussion in Chapter 6 the standard absorbing condition for
time-dependent ME, called Perfectly-Matched-Layer (PML) [Ber94], is analyzed within the
mathematical framework of Exterior Complex Scaling (ECS) [Sim79], which is known to be
a rigorous and efficient method in the numerical solution of the time dependent Schrödinger
equation (TDSE). Elaborating on the recent work of Ref. [SSM14], it is shown how an
absorbing condition can be formulated for the case of MEs, setting the basis for a rigorous
and efficient solution of the absorption problem.

The Thesis is organized as follows: in the first two chapters the fundamental concepts
of attosecond physics (Chapter 2) and ultrafast plasmonics (Chapter 3) are introduced.
In Chapter 4 the idea of plasmonic generation of attosecond pulses is analyzed from a
numerical point of view, and a thorough discussion of its strengths and limitations is
provided. Then, in Chapter 5 the attosecond photoscopy technique is introduced and its
features illustrated in details. After that, a discussion on the numerical solution of the
Maxwell’s equations, with particular regard to the mathematical formulation of absorbing
boundary conditions, is given in Chapter 6. Finally, conclusions and a concise outlook of
future perspectives are presented.



2
Attosecond Physics

In this chapter the key concepts of attosecond science are introduced.
The foundation of attosecond physics can be dated back to 1979, when in [Ago+79] the

phenomenon of above threshold ionization (ATI) was discovered. In this work it was shown
that an electron ionized from a noble gas atom via a multi-photon process experiences a
number of free-free transitions, since the number of photons absorbed is larger than what
required to overcome the ionization barrier. These findings were in contradiction with the
acknowledged understanding of atomic physics of the time, according to which an electron
would absorb only the amount of photons required to overcome the ionization potential.
Any extra “free-free transition” would violate energy and momentum conservation. The
whole misunderstanding came from the mindset towards atomic physics. Photo-absorption
was considered a sequential process of transitions towards higher energy states, which
explains the puzzlement about transitions between continuum states. In fact, it is true
that a free electron cannot gain energy and momentum in a homogeneous external field,
but it is wrong the idea that an electron absorbing an amount of energy larger than the
ionization potential is a free electron. Indeed, thinking in classical terms, the stronger the
field intensity, the higher the kinetic energy of the ionized electron.

Another feature which emerged with further investigation of the ATI [Pau+94] was the
presence of a broad plateau in the photoelectron spectrum, which contradicted the common
assumption that transition amplitudes scale as I−nl . At high laser field intensities, it was
observed that the spectral plateau extended from about twice the ponderomotive energy
2 Up, up to 10 Up. The ponderomotive energy is defined as the average kinetic energy of
an electron in quiver motion in an oscillating electric field, and is given by

Up = e2

4me

E2
0

ω2 , (2.1)

where ω is the laser frequency and I = ε0cE
2
0 the laser intensity.

Closely related to the ATI process was the observation [Fer+88] of high harmonic ra-
diation emitted by noble gas atoms irradiated by a strong field. The non-linearity of the
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electron dynamics causes the conversion of the NIR laser field into XUV radiation, whose
spectrum consists in odd harmonics of the laser frequency, with an extended plateau of
high order harmonics up to a cutoff energy Ec = Ip + 3.2Up, where Ip is the atomic ioniza-
tion potential. Before recognizing the common process responsible for both the ATI and
HHG, numerical solutions of the time dependent Schrödinger equation were able to quali-
tatively reproduce the spectral features of HHG, confirming that non-relativistic quantum
mechanics was the right framework to describe the physics of strong field ionization, but
not in the perturbation regime.

2.1 Three step model

The theory capable of explaining the essence of the physical processes described in the
previous sections is the so-called three step model, conceived independently in [Cor93;
KSK93] in 1993. Most interestingly, it is a completely classical model, which consists in
separating the electron dynamics in three steps: the ionization phase, quiver phase and
the recollision phase.

The first step occurs in the tunneling ionization regime. According to Keldish theory
[Kel65], this occurs for values of γK � 1, where the Keldysh parameter is defined as

γK =
√

Ip
2Up

=
ω
√

2meIp

eE0
. (2.2)

In the length gauge, within the dipole approximation, the Hamiltonian of the system is
given by

H = p2

2 − V (r) + E(t) · r. (2.3)

For intensities above 1014 W/cm2, the electric field is strong enough to bend the Coulomb
potential, as illustrated in Figure 2.1, such that tunneling ionization becomes possible.

Once ionized, the electron is accelerated away and then pulled back to the nucleus,
with which it recollides after every half laser period. The condition for recollision is that
the electron falls back on the ion. This requirement explains why the plateau regions
observed in the experiments are found only for linear polarizations of the driving laser,
while suppressed for circularly polarized pulses. The recollision condition can be written
as (in atomic units e = ~ = me = 1):

x(t1)− x(t0) =
∫ t1

t0
v(t)dt =

∫ t1

t0

∫ t

t0
E(t′)dt′dt != 0, (2.4)

where t0 is the time of ionization, and t1 is the recollision instant. For a cw laser field one
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Figure 2.1: Illustration of the three step model. The bending of the Coulomb potential (blue
dotted line) by a strong laser field allows an electron to tunnel out of the potential barrier.
The electron is then accelerated in the laser field, driven back and rescattered with the ion.
The trajectories of the tunneling electrons launched in the laser field are shown in the left
panel. The electrons are accelerated away and driven back to the ion after every half cycle
of the laser field. Figure reproduced from [Gag11].

has E(t) = E0 cos(ωt), thus v(t) = E0
ω

(sin(ωt)− sin(ωt0)). Therefore Eq. (2.4) becomes:

0 = E0

ω2 (cos(ωt)− cos(ωt0)) + E0

ω
sin(ωt0)(t1 − t0), (2.5)

which is a transcendental equation and must be solved numerically.

Depending on the outcome of the recollision one can have different scenarios. Let us
consider the momentum acquired by the electron in the laser field from t0 to t1, and from
t1 till the end of the pulse:

p(t1, t0) = −
∫ t1

t0
E(t)dt = A(t1)− A(t0),

p(∞, t1) = −
∫ ∞
t1

E(t)dt = −A(t0),

where the vector potential A in the Coulomb gauge is E = −∂A
∂t
.

In the case of elastic scattering the electron momentum can reverse sign at t1, thus the
final momentum is given by

pf = p(∞, t1)− p(t1, t0) = −2A(t1) + A(t0). (2.6)
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Hence the maximum momentum acquired by the electron is

pmax = max
t0
| − 2A(t1) + A(t0)| (2.7)

with t1 determined by the constraint of Eq. (2.4). Considering that the ponderomotive
energy in term of the vector potential is Up = A2

0/4, one can infer that the unconstrained
maximum kinetic energy is p2

max

2 = (3A0)2/2 = 18Up. Solving Eq. (2.7) numerically one
finds a lower value:

p2
max

2 = 10Up, (2.8)

which is in very good agreement with the observed position of the ATI spectrum cutoff.
Another possibility is that the electron recollides inelastically with the ion. In this

case the final momentum is given by p(∞, t1) + p(t1, t0) = −A(t0). Thus the maximum
photon energy radiated as a product of inelastic scattering (neglecting other effects like
inverse Bremsstrahlung) is the sum of the ionization potential and the square of the vector
potential, or in term of the pondermotive energy: Emax = Ip + 4Up. Taking into account
the recollision constraint one obtains:

Emax = Ip + 3.17Up. (2.9)

Thus, also the cutoff energy of the HHG spectrum is accurately predicted.
The three step model also explains the odd periodicity of the harmonics in HHG. Indeed,

for each laser cycle, two identical recollision events occur, after every half cycle in which the
laser field changes sign. If the recollision events are identical, the rescattering periodicity
is half the laser cycle δt = Tl/2, corresponding to a spectral spacing of δω = 2ωl, which
summed to the fundamental laser frequency gives its odd harmonics.

2.2 Attosecond pulse generation
It was soon recognized the possibility to generate sub-femtosecond XUV pulse trains from
HHG, provided that the relative harmonic phases are coherent. In order to prove such
coherence, a characterization technique called RABITT (Reconstruction of Attosecond
Beating by Interference of Two-photon Transitions) [Mul02] was developed, which allows
to determine the relative phases between subsequent harmonics. The technique consists in
letting the attosecond pulse train ionize a second target, together with a highly attenuated
NIR pulse (typically the same driver NIR pulse). The role of the NIR pulse is to “dress” the
single-photon ionization from the 2m+1-th harmonic in the pulse train with an additional
fundamental frequency ωL, which results in either the absorption or the emission of an ~ωL
photon. Thus, an even harmonic of order 2m in the spectrogram can be due to either the
absorption of the order 2m+ 1 followed by emission of an ~ωL quantum, or by absorption
of the order 2m− 1 plus a further quantum. In the absence of any process distinguishing



2.2 Attosecond pulse generation 9

the two channel relative to each even harmonic order, the resulting channel interference
determines the intensity of the 2m-th harmonic. By recording the oscillations of the even
photoelectron peaks as a function of the XUV-NIR time delay as shown in Figure 2.2, it
is possible to extract the relative phase between the neighbor odd harmonics.

Figure 2.2: In the RABITT measurement a set of discrete peaks between the odd harmonics
appears, when the dressing laser field overlaps with the attosecond pulse train. The even
peaks result from the interference between two bi-photon processes, which can be destructive
or constructive depending on the delay between the XUV and NIR fields. On the left the
delay integrated signal is shown, for a comparison of the relative magnitude of even and
odd harmonics. Figure reproduced from [Mos14].

However, in order to correctly interpret the spectroscopic data obtained in a pump-
probe experiment spanning over more than a laser period, isolated attosecond pulses are
required. For the production of an isolated attosecond pulse, the recollision process and
the consequent generation of high harmonics has to be limited to a single half-cycle of the
driving field.

The generation of an isolated attosecond pulse was first experimentally demonstrated in
2001 by the group of F. Krausz [Hen+01]. The generation mechanism consists in using such
a short femtosecond pulse (7 fs FWHM in [Hen+01]), that only one NIR peak contributes
to the emission of radiation in the range of interest. In this context, the key experimental
factors which allowed the breakthrough were the precise control of the carrier-envelop offset
(CEO) phase [Bal+03], i.e. the offset between the optical phase and the maximum of the
pulse envelope, and the development of multi-layer mirrors for the filtering of the high HHG
spectral component [Szi+94]. The importance of the CEO phase [TGB99] for few cycle
pulses is illustrated in Figure 2.3. For a long laser pulse, a shift of the phase with respect
to the envelop is irrelevant in term of HHG. But for the generation of single attosecond
pulses it is fundamental to limit the harmonic radiation bursts to a single half-cycle. For
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the extremal case of φceo = 90◦ the obtained HH spectrum corresponds to two attosecond
pulses.

2.3 Attosecond Streak Camera
Also the diagnostic tools have to be fixed in order to characterize a single attosecond pulse.
While in an attosecond pulse train (APT) the harmonic spectral peaks are well determined,
and is therefore possible to use the RABITT technique, in the case of an isolated attosecond
pulse (IAP) the spectrum in the cutoff region looks more like a continuum than a series of
odd harmonic peaks, and using a weak NIR pulse to mix the odd frequencies would not
produce any measurable effect. If indeed one would try to perform RABITT on a single
attosecond pulse, the spectrum would remain unaltered for each time delay between the
IAP and the weak NIR pulse, making any information retrieval impossible. The solution
is to strongly increase the intensity of the NIR laser pulse, so that the whole photoelectron
(PE) spectrum starts being shifted and distorted according to the time delay. The result
is that the PEs are streaked by the strong NIR field, and it is possible to reconstruct the
temporal properties of the pulse by analyzing the final momentum distribution of the PE.
This pump-probe experiment is called “attosecond streak camera” (in analogy with the
voltage driven picosecond streak camera [BLS71]) and can be thought as an arrangement
which maps photoemission time to final PE momentum. From the obtained spectrogram
(see Figure 2.4a), various informations about the NIR pulse and the attosecond pulse can
be extracted. In experiments, photoionization events follow a probability given by the
attosecond pulse intensity envelop. The initial kinetic energy of the PE is given by the
instantaneous frequency of the pulse, rather than the carrier frequency. This determines the
breadth of the streaking trace in both the time delay and the final momentum, respectively.
As it is evident from Figure 2.4a, the trace follows the time evolution of the NIR field. In
fact, each PE collected by the detector has a final momentum of

pf = pi(t)− eA(t− τ), (2.10)

where t is the ionization time and τ is the NIR-XUV delay. Thus, the centroids of the
photoelectron spectra as a function of the delay τ trace the temporal evolution of the NIR
vector potential. Attosecond streaking provides a tool for the complete characterization of
the streaking electric field, giving information not only about its intensity, but also about
its CEO phase. The theory underlying the streaking field reconstruction will be discussed
in section 5.2.

Furthermore, the breadth of the streaking trace, both in the energy and in the delay
domain, allows to determine the pulse duration of the attosecond pulse, and a set of
other additional informations like its chirp. Since this topic does not concern this thesis,
its discussion is omitted. The curious reader can find a comprehensive treatment of the
subject in [Cha11].
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Figure 2.3: The influence of the CEO phase on the generation of isolated attosecond pulses
is shown. The highest energy XUV photons, which determine the cutoff region of the HH
spectrum, are created from electrons launched at the peak of the electric field and recolliding
with the nucleus at the zero-crossings. For a CEO phase of 0, corresponding to a cosine
wave, the most energetic electron trajectory is launched only at one field maximum, gener-
ating a continuous of radiation in the cutoff region, which results in an isolated attosecond
pulse after appropriate spectral filtering. On the other hand, for a CEO phase of 90 de-
grees, the highest energetic trajectories are launched for two opposite values of the electric
field, generating a pair of attosecond pulses. In general, the best CEO phase optimizing
the attosecond pulse duration and intensity is somewhat bigger than 0, since this allows to
increase the electron trajectory probability. Figure reproduced from [KI09].
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Figure 2.4: The attosecond streaking measurement maps the momentum distribution at the
photoemission time due to an isolated attosecond pulse, to a final momentum distribution.
The obtained streaking spectrogram (a), composed of a sequence of streaked photoelectron
spectra for different NIR-XUV time delays, allows a complete reconstruction of the streaking
field (a), and the measurement of the temporal properties of the XUV attosecond pulse (b,
c), as its time duration and chirp. Figure reproduced from [KI09].



3
Surface Plasmon Polaritons

This chapter presents an introduction to the field of plasmonics. Plasmonics is the field
of study of electron collective oscillations at metal surfaces, which can be either localized
or propagating along an interface between two media. For the purposes of this thesis, the
main focus will be only on the latter case. Propagating surface plasmons are called Surface
Plasmons Polaritons (SPPs). The word “polariton” refers to the coupled nature of the
polarization wave of the electron density with the driving field. In general, many kinds of
polaritons exist: a field propagating through a crystal can produce mechanical oscillation
of the lattice sites, generating a phonon polariton; if the coupling involves electron-hole
pairs, for example in a semiconductor, it is called an exciton polariton. Here the focus
is on the plasmon polariton, a longitudinal electromagnetic field coupled to mechanical
oscillations of the charge density.

The electromagnetic field associated to an SPP is described by a wave propagating
along the interface between two media, whose amplitude decays exponentially with the
distance from the surface. Close to it, the plasmonic field amplitude can exceed that
of the driving field. This means not only that plasmonic excitations own enhancement
properties, but also, since the energy must be conserved, confinement properties. In fact,
enhancement and confinement are the two key factors that explain the great interest for the
field of Plasmonics. The enhancement properties are used in applications involving non-
linear effects or, combined to the sensitivity to external source conditions, for developing
bio-molecular sensors, while the confinement of the optical field is exploited to squeeze the
electromagnetic field beyond the λ/2 diffraction limit.

From a microscopical point of view, it will be shown in section 3.2 that a plasmon
polariton is a particular pole of the susceptibility χ(k, ω) of an interacting electron gas,
corresponding to a state composed of the coherent superposition of all the possible elec-
tron transitions with the same momentum transfer k. This microscopic property allows
to identify plasmons not only in solid state systems, but also in small clusters and even
in molecules [Kra+14]. SPPs are often viewed as resonances, because at the macroscopic
level their excitation is typically associated with a peak (dip) in the transmission (re-
flection) spectrum of the supporting material. Moreover, for the excitation to occur, the
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driving source must satisfy a phase matching condition with the SPP wavevector, typically
involving frequency and angle of incidence [Mai07].

The plasmonic response of a system to an external perturbation develops on a timescale
set by the plasma frequency of the material. Table 3.1 lists the plasmon frequencies of some
typical plasmonic materials. For plasma frequencies of the order of 10 eV, a rough estimate

Table 3.1: Plasmon frequencies of typical plasmonic materials. The plasmon frequency sets
the timescale of the electric response to an external stimulation. For the metals reported,
the electron response occurs on a subfemtosecond timescale. The plasmon frequencies are
given in eV.

Metal Au Ag Al Pt W Ni Cu
ωpl 9.03 9.01 14.98 9.59 13.22 15.92 10.83

based on ∆E∆t ∼ h indicates that the electronic response to an external source occurs on
a timescale shorter than 1 fs. If instead of metals we consider semiconductor materials,
the presence of an energy gap between valence and conduction bands is such that the
density of the electron-hole pairs contributing to the plasma oscillations is much smaller
than in a metal. Since the plasma frequency depends on the carrier density as ωpl ∝

√
nc,

semiconductor plasma frequencies are typically of the order of few meVs, i.e. of the same
order of magnitude of the room temperature phonon energy. Thus, with a simple estimate
of the plasma frequency, it is possible to predict that while in semiconductors the electron-
phonon coupling plays a fundamental role in the electric response, in metals the electron
dynamic timescale is well separated from the lattice one.

3.1 Classical theory of SPPs

The electromagnetic field of an SPP propagating along a surface y = 0 can be expressed
as in Eq. 3.1, where the magnetic field is assumed parallel to the surface: B = B(x, y)z.

B(x, y) = Aei(kspx−ωt)
[
e−κmyϑ(y) + eκdyϑ(−y)

]
. (3.1)

Here ϑ(y) is the Heaviside function, κm, κd are the decay lengths respectively in the material
below and above the surface, and Im {κi} = 0 is assumed for both i = m, d. The field must
be a solution of Maxwell’s equations, thus it is sufficient that it satisfies the wave equation
in both media:

−∇2B− εi
ω2

c2 B = 0, with i = m, d. (3.2)
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Substitution of expression 3.1 in the above equation gives

−k2
spp + κ2

i + εi
ω2

c2 = 0 =⇒


κd =

√
k2
spp − εd

ω2

c2 for y > 0

κm =
√
k2
spp − εm

ω2

c2 for y < 0
(3.3)

The continuity of the electric field parallel to the surface is ensured by imposing the con-
tinuity of ∂yB(x, y) across the surface. This leads to:

−κm
εm

= κd
εd
. (3.4)

Since both the κ’s are positive, Eq. (3.4) is solvable only if the dielectric constants have
opposite signs, i.e. εmεd < 0. This is the reason why plasmonic excitations typically occur
at interfaces between a metal and a dielectric medium, since for metal dielectric functions
Re {εm} < 0. The solution of Eq. (3.4) determines the plasmon wavevector

k2
spp = ω2

c2
εdεm
εd + εm

. (3.5)

In order to obtain a solution of Eq. (3.5) representing a propagating mode, the additional
condition Re {εd + εm} < 0 must be verified, which is typically satisfied by metals at optical
or NIR wavelengths. The plasmon wavevector is complex if losses in the metal are taken
into account. By setting εd = 1 and εm = ε′ + iε′′ one has, in the limit ε′′ � ε′:

kspp '
ω

c

√
ε′

1 + ε′

(
1 + i

2
ε′′

ε′(1 + ε′)

)
(3.6)

κd '
ω

c

√
− 1

1 + ε′

(
1− i

2
ε′′

1 + ε′

)
(3.7)

κm '
ω

c

√
− |ε|

2

1 + ε′

(
1 + i

2ε
′′ |ε|2 + 2ε′
|ε|2(1 + ε′)

)
(3.8)

The real part of the dispersion relation ω = ω(kspp) is illustrated in Figure 3.1 for a plas-
mon propagating at the interface between air and a perfect Drude metal, whose dielectric
function is εm(ω) = 1− ω2

pl
ω2 . The dispersion relation shows a horizontal asymptote for very

large wavevectors, where the frequency tends to the limit value of ωspp ≡ ωpl/
√

1 + εd.
Also, two regimes are clearly discernible, a first one for ckspp � ωspp called electromagnetic
or retarded one, where the dispersion relation is close to the light cone, and the second one
for ckspp � ωspp called electrostatic or non-retarded, where the dispersion relation is flat
and the plasmon frequency does not depend on the wavevector anymore.
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Figure 3.1: Dispersion relation of an SPP on a flat metal surface described by the free
electron gas model ε(ω) = 1− ω2

pl/ω2. The SPP curve lies outside the light cone, hence no
matching with a plane wave can occur.

The imaginary part of the plasmon wavevector accounts for its propagation distance
δspp = 1/Im {kspp} along the surface, and strongly depends, through the imaginary part
of the dielectric constant, on the excitation frequency ω. On gold excited at 633 nm it
amounts to ∼ 10 µm, while for a wavelength of 1 µm the propagation length is of 92 µm.
In a similar way, the quantities δi = 1/Im {κi} describe the decay of the plasmonic field in
the dielectric and its penetration in the metal. In Figure 3.2 are reported the decay length
for aluminum and silver.

3.1.1 SPPs as poles of the complex reflection coefficient

Another way to derive the physical properties of SPPs is to look at the Fresnel’s reflec-
tion and transmission coefficients. Assuming like before a TM polarized plane wave of
wavelength k0 impinging on a flat mirror at incidence angle θ, the Fresnel reflection and
transmission coefficients are given by [BW99]:

r(α) = n2β − γ
n2β + γ

, t = 2n2β

n2β + γ
, (3.9)

where α = k‖ = k0 sin θ and β = k⊥ =
√
k2

0 − α2 are the wavevector components in the
vacuum side, while γ =

√
n2k2

0 − α2 is the component inside the material perpendicular to
the interface. Assuming for simplicity that n2 = ε is real, n2 < 0 and γ becomes purely
imaginary. Thus, by analytically continuing the Fresnel coefficients to the complex plane,
poles appear in the denominator of Eq. (3.9), which correspond to SPP resonances.

The condition n2β + γ = 0 is fulfilled by αspp = k0n/
√

1 + n2, whence the dispersion
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Figure 3.2: The propagation length and penetration depth of an SPP are shown for alu-
minum and for silver. The propagation length on a flat surface δspp is given by the losses
in the metal. In Al at 500 nm wavelength, strong intrinsic absorption limits the propaga-
tion length to 2 µm. On the contrary, Ag at 1,5 µm shows a propagation length up to 1
mm. The penetration depth in the metal is typically of the order of 10-20 nm at optical
frequencies. The decay length in the dielectric material is instead of the order of half the
wavelength. Figure reproduced from [BDE03].

relation of the mode is obtained:

k‖ = ω

c

√√√√ ε(ω)
1 + ε(ω) ≡ kspp(ω). (3.10)

Eq. (3.10) also provides the matching condition which needs to be satisfied by the driving
source. In fact, the right hand side is the plasmonic wavevector supported by the material
at the frequency ω of the source. This has to be equal to the source wavevector component
parallel to the surface.

Since αspp/k0 > 1, the corresponding βspp and γspp are purely imaginary, giving rise to
a field which is evanescent away from the surface. Because of this, it exists a field gradient
perpendicular to the surface ∇⊥E⊥ 6= 0, such that the electric field lines close around the
surface. In Figure 3.3 an illustration of the SPP field lines is reported.

A crucial point is that, since kspp > k0, an SPP can never be excited by a plane wave
incident on a flat surface. This is true for every material displaying plasmonic properties
and is well illustrated in Figure 3.1: since the dispersion curve always lies out of the light
cone, the coupling with a plane wave can never occur. Thus, the fundamental problem in
SPP generation is to satisfy the condition kspp > k‖.
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Figure 3.3: Schematic representation of the SPP field lines. The white line shows the
surface position. The arrows indicate the field line strength and direction, the false-color
map illustrates the field intensity distribution.

3.2 Quantum theory of SPPs

Before discussing the various SPP excitation strategies presented in paragraph 3.3, a quan-
tum description of SPPs is provided, with the aim to illustrate how its fundamental col-
lective character manifests at the macroscopic level.

A plasmon is a collective oscillation of the electron charge density driven by an external
source, and can be described in term of the system polarization:

Pind(r, t) = (χ ∗ Eext)(r, t) =
∫
dr′

∫
dt′χ(r, r′, t, t′)Eext(r′, t′), (3.11)

where χ is the susceptibility of the considered system. On a quantum mechanical level,
the charge density induced by an external potential is given by [FW03]:

ρ̂ind(r, t) =
∫
dr′

∫
dt′χ̂(r, r′, t, t′)φ̂ext(r′, t′), (3.12)

where φext is an external potential. Assuming the potential to be a small perturbation with
respect to the ground state Hamiltonian, the system does not depend on absolute times,
but rather only on the difference t − t′, since the equilibrium steady-state system is not
modified in response to the external field. This framework is typically called linear response
theory. In the case of a non-interacting electron gas, χ ≡ χ0 contains the information about
the response of the system to an external field, and thus about its possible excitations, in
the linear response limit.

The susceptibility of a non interacting electron gas is defined as (cf. [FW03], Chap.
IX):

χ̂0(r, t; r′, t′) = −iΘ(t− t′) 〈[ρ̂(r, t), ρ̂(r′, t′)]〉 , (3.13)
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where Θ(t− t′) ensures the causality of the process. The electron density is defined as :

ρ̂(r) = −en̂(r) = −eψ̂†(r)ψ̂(r), (3.14)

where n̂ is the number density operator, ψ̂†, ψ̂ are the creation and annihilation operators
of a fermion at the position r, and the spin indexes were neglected. The operator symbols
are from now on dropped.

If the system is homogeneous, i.e. f(r, r′) = f(r − r′) for any physical observable f ,
Eq. (3.12) can be rewritten as

ρind(k, ω) = χ0(q, ω)φext(q, ω). (3.15)

To compute χ0(q, ω) let us first calculate the spatial Fourier transform χ0(q, t, t′) of Eq.
(3.13). By using the definitions

ρ(r, t) = 1
V
∑
q1

ρ(q1, t)eiq1·r,

ρ(r′, t′) = 1
V
∑
q2

ρ(q2, t
′)eiq2·r′ ,

(3.16)

one gets

χ0(q, t− t′) = −iΘ(t− t′)
V

∑
q2

〈[ρ(q1, t), ρ(q2, t
′)]〉 ei(q1+q2)·r′ . (3.17)

Since the result of Eq. (3.17) cannot depend on r′, the condition q2 = −q must be verified,
reducing Eq. (3.17) to

χ0(q, t− t′) = −iΘ(t− t′)
V

〈[ρ(q, t), ρ(−q, t′)]〉 . (3.18)

The fermion operators in the definition Eq. (3.14) are the sum of all the possible single
particle states which can be excited at the position r:

ψ†(r) =
∑

k
a†kφ

∗
k(r), ψ(r) =

∑
k
akφk(r), (3.19)

where a†k, ak are the ladder operators relative to the state k, and φk(r) can be any single
particle basis function (f.e. Wannier states, Bloch states, Kohn-Sham orbitals etc.). In the
present case, an electron gas can be represented in a basis of plane waves. With such a
choice, the density operator can be rewritten as

ρ(r) = −e
∑
kk′

a†kak′e
ik·re−ik

′·r −→ ρ(q) = F [ρ(r)](q) = −e
∑

k
a†kak+q, (3.20)
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where F is the Fourier transform operator. The charge density operator can be interpreted
as the sum of all the possible electron transitions of a given momentum q. In a homogeneous
system at equilibrium, the expectation value of the charge density operator is non-null only
for q = 0. The time dependent version of Eq. (3.20) is given by the Heisenberg equation of
motion i∂tρ = [ρ, H0], with the noninteracting Hamiltonian H0 = ∑

k εka
†
kak. This results

in ([HK09], Chap. VII)
ρ(q, t) =

∑
k
a†kak+qe

−i(εk+q−εk)t. (3.21)

As a remark, the fact that ρ satisfies the Heisenberg equation of motion for the non-
interacting Hamiltonian H0 is what defines χ0 as the susceptibility of a non-interacting
electron gas. Eq. (3.13) would otherwise be a general definition. Substitution of Eq.
(3.21) into the commutator of Eq. (3.18) gives

〈[ρ(q, t), ρ(−q, t′)]〉 =
∑
k,k′

〈[
a†kak+q, a

†
k′ak′−q

]〉
e−i(εk+q−εk)tei(εk′−εk′−q)t

=
∑

k
[fk − fk+q] e−i(εk+q−εk)(t−t′),

(3.22)

where the property
[
a†1a2, a

†
3a4

]
= δ2,3a

†
1a4 − δ1,4a

†
3a2 was used and the definition of oc-

cupation number fq = 〈nq〉 =
〈
a†qaq

〉
was employed. The function f is the Fermi-Dirac

distribution, which for zero temperature T = 0 is fk = Θ(kF − k).

Setting t− t′ = τ and calculating the Fourier transform with respect to τ , one obtains
the susceptibility of the non-interacting electron gas

χ0(q, ω) = lim
η→0+

∫ ∞
−∞

χ(q, τ)ei(ω+iη)τdτ

= lim
η→0+

1
V
∑

k

[fk+q − fk]
[ω − (εk+q − εk) + iη] ,

(3.23)

where η is a convergence factor setting the integration contour in the lower half of the
complex plane. The result in Eq. (3.23) is the so-called Lindhard’s function ([HK09], Chap.
VI). Its imaginary part describes the excitation of electron-hole pairs, where with the term
hole is meant a vacancy in the Fermi see. Using the relation limη→0

1
ω+iη = P

(
1
ω

)
− iπδ(ω),

the imaginary part of χ0 is given by

Im {χ0(q, ω)} = −π
V
∑

k
[fk − fk+q]δ(ω + εk − εk+q). (3.24)

Using Im {χ0(−q,−ω)} = −Im {χ0(q, ω)}, only the positive part of the spectrum needs
to be considered. Eq. (3.24) is different from zero for |k| < kF and |k + q| > kF , which
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Figure 3.4: An electron can be excited to a higher energetic state if the transition occurs
across the Fermi edge (left), leaving an unoccupied state, a hole, in the Fermi see. The
allowed transition corresponds to a region in the (ω−q) plane (right), where the condition
Im {χ0(q, ω)} 6= 0 is met, which for this reason is called the electron-hole pair continuum.

results in two boundary curves in the (ω − q) plane

ω = εk+q − εk = q2

2m + k · q
m

=⇒


ω+ = q2

2m + vF q

ω− = q2

2m − vF q, q > 2kF
(3.25)

where the extremal values for |k| = ±kF were used. The two parabolas are shown in Figure
3.4 and delimit an area in the (ω − q) plane where particle-hole excitations are allowed,
which for this reason is called electron-hole continuum. If ω and q fall in the electron-hole
continuum, the non-interacting electron system can be excited to states whose excitation
frequencies are given by the poles of the Lindhard’s function. By recasting Eq. (3.23) in
the form

χ0(q, ω) =
∑

k
fk

[
1

εk − εk+q + ω + iη
− 1
εk − εk+q − ω − iη

]
, (3.26)

where the limit η → 0+ is given implicitly, and considering only the positive part of the
frequency spectrum, one obtains a set of discrete poles at

ω(q) = εk − εk+q, (3.27)

for any given value of q.
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3.2.1 Random Phase Approximation (RPA)

Knowing the single particle excitations of the non-interacting system, one can proceed
with the study of the collective excitations of the interacting electron gas. Using the plane
waves basis, the Hamiltonian of the interacting electron gas in the Jellium model can be
expressed in the form

H =
∑

k
εka
†
kak + 1

2
∑

k,k′,q 6=0
Vqa

†
k+qa

†
k′−qakak′ , (3.28)

with Vq the d-dimensional Fourier transform of the Coulomb potential V (|r−r′|) = e2/|r−
r′|. The exclusion of the term q = 0 is due to the neutralizing action of the ion homogeneous
background. The Coulomb potential can be rewritten as [HK90]

HC = 1
2
∑

q
Vq(ρqρ−q − N̂), (3.29)

where the last term is the particle number operator and accounts for the ion background
subtraction. Since any collective oscillation driven by an external field is, in the linear
response theory, a perturbation of the equilibrium density, the electron density can be
expanded as ρq = 〈ρq〉+δρq, where δρq = ρq−〈ρq〉 is supposed to be a small perturbation.
With this definitions one can write

ρqρ−q = (〈ρq〉+ δρq)(〈ρ−q〉+ δρ−q)
= 〈ρq〉 〈ρ−q〉+ δρq 〈ρ−q〉+ δρ−q 〈ρq〉+ δρqδρ−q

RPA ' 〈ρq〉 〈ρ−q〉+ δρq 〈ρ−q〉+ δρ−q 〈ρq〉
' 〈ρq〉 ρ−q + 〈ρ−q〉 ρq − 〈ρq〉 〈ρ−q〉 .

(3.30)

The random phase approximation consists in neglecting the correlations of the electron
density oscillations, which is equivalent to assuming a random phase of the density fluc-
tuations, such that they average to zero. In terms of ladder operators the last line in Eq.
(3.30) can be written as:

a†1a
†
2a3a4 '

〈
a†1a4

〉
a†2a3 + a†1a4

〈
a†2a3

〉
−
〈
a†1a4

〉 〈
a†2a3

〉
. (3.31)

The susceptibility of an interacting electron gas can be written as in Eq. (3.13)

χ(q, t− t′) = −iΘ(t− t′)
V

〈[ρ(q, t), ρ(−q, t′)]〉 . (3.32)
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It is useful to define the quantity χ(k,q, t− t′), specified as

χ(k,q, t− t′) = −iΘ(t− t′)
〈[
a†kak+q, ρ(−q, t′)

]〉
⇔ χ(q, t− t′) = 1

V
∑

k
χ(k,q, t− t′).

(3.33)
To derive an expression of the susceptibility in the RPA, one can compute the time deriva-
tive of χ(k,q, t− t′):

i∂tχ(k,q, t− t′) = δ(t− t′)
〈[
a†kak+q, ρ(−q, t′)

]〉
+ iΘ(t− t′)

〈[[
H, a†kak+q

]
, ρ(−q, t′)

]〉
,

(3.34)

where the Heisenberg equation with the full interacting Hamiltonian H was used. The first
term in Eq. (3.34) gives[

a†kak+q, ρ(−q, t′)
]

=
∑
k′

[
a†kak+q, a

†
k′ak′−q

]
= a†kak − a†k+qak+q. (3.35)

To compute the inner commutator of Eq. (3.34) it is better to proceed separately with the
two terms H = H0 + HC (see [HK09], Chap. VII for details). The commutator with the
kinetic energy term yields: [

H0, a
†
kak+q

]
= (εk − εk+q)a†kak+q. (3.36)

The commutator with the Coulomb potential yields:
[
HC , a

†
kak+q

]
= 1

2
∑
q′,k′

V ′q[a†k+q′a
†
k′−qak′ak+q + a†k′+q′a

†
k′−qak+qak′ (3.37)

−a†k′+qa
†
kak+q+q′ak′ − a†ka

†
k′−qak′ak+q−q′ ]. (3.38)

Eq. (3.37) shows that the dynamics of an observable which is function of one pair of
creation and annihilation operators depends on a term which is in turn function of two
pairs of ladder operators. Thus, in order to solve Eq. (3.34), the equation of motion for
the 2 operator pair term should be derived, but it would turn out to depend on 3 operator
pairs, and so on. The result of this procedure is a hierarchy of equations where the time
derivative of an N-pair term depends on a (N+1)-pair term. Such a set of equations is called
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, and is a result frequently
encountered when dealing with the equations of motion of density matrices. The hierarchy
can be truncated by means of the random phase approximation, such that Eq. (3.37) turns
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into [
HC , a

†
kak+q

]
' 1

2
∑

q′ 6=0,k′
V ′q
[ 〈
a†k+q′ak+q

〉
a†k′−qak′ + a†k+q′ak+q

〈
a†k′−qak′

〉
+
〈
a†k′+q′ak′

〉
a†k−q′ak+q + a†k′+q′ak′

〈
a†k−q′ak+q

〉
−
〈
a†k′+qak′

〉
a†kak+q+q′ − a†k′+qak′

〈
a†kak+q+q′

〉
−
〈
a†kak+q−q′

〉
a†k′−qak′ − a†kak+q−q′

〈
a†k′−qak′

〉 ]
(3.39)

and now depends only on single creation-annihilation pairs. Recalling that the average
value of the density operator at equilibrium is non null only for zero momentum transfer〈
a†kak′

〉
= fkδk,k′ and considering that q′ 6= 0, only four of the eight terms in Eq. (3.39)

are non zero. Thus[
HC , a

†
kak+q

]
' 1

2
∑

q′ 6=0,k′
V ′q
[
fk+qδq′,qa

†
k′−qak′ + fk+qδq′,−qa

†
k′+qak′

− fkδq′,−qa
†
k′+qak′ − fkδq′,qa

†
k′−qak′

]
' 1

2(fk+q − fk)
[
Vq
∑
k′
a†k′−qak′ + V−q

∑
k′
a†k′+qak′

]

' 1
2V (fk+q − fk)Vq ρ(q),

(3.40)

where in the last passage the properties Vq = V−q and ρ(q) = ρ(−q) were used. Plugging
everything back into Eq. (3.33) one obtains

i∂tχ
RPA(k,q, t− t′) = δ(t− t′)(fk − fk+q)

+ (εk − εk+q)× iΘ(t− t′)
〈[
a†kak+q(t), ρ(−q, t′)

]〉
︸ ︷︷ ︸

=χRPA(k,q,t−t′)

− (fk − fk+q)V (q)× iΘ(t− t′)
V

〈[ρ(q, t), ρ(−q, t′)]〉︸ ︷︷ ︸
=χRPA(q,t−t′)

,

(3.41)

which reduces to

(i∂t + εk − εk+q)χRPA(k,q, t− t′) = (fk − fk+q)[δ(t− t′) + Vqχ
RPA(q, t− t′)]. (3.42)
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Fourier transforming Eq. (3.42) in time yields

χRPA(k,q, ω) = fk − fk+q

ω + εk − εk+q + iη
[1 + Vqχ

RPA(q, ω)] (3.43)

χRPA(q, ω) = 1
V
∑

k
χRPA(k,q, ω) = 1

V
∑

k

fk − fk+q

ω + εk − εk+q + iη︸ ︷︷ ︸
=χ0(q,ω)

[1 + Vqχ
RPA(q, ω)]. (3.44)

Recognizing the susceptibility of the non-interacting electron gas in Eq. (3.43) one obtains
a Dyson’s like equation for the susceptibility of the interacting electron gas in RPA:

χRPA(q, ω) = χ0(q, ω) + χ0(q, ω)Vqχ
RPA(q, ω), (3.45)

which has as solution
χRPA(q, ω) = χ0(q, ω)

1− Vqχ0(q, ω) . (3.46)

From Eq. (3.46) it is clear that the poles of χRPA are given not only by the poles of χ0,
but also from the zeros of

1− Vqχ0(q, ω) = 0. (3.47)

This means that on top of single particle excitations, which are the soles possible in a
non-interacting gas, there are extra excitations arising from the Coulomb interaction. In
Figure 3.5 the solutions of Eq. (3.47) are graphically shown. While the single particle
excitation energies are slightly shifted by the interaction term, a new excitation frequency
appears at higher energy, corresponding to a collective mode of the interacting electron
gas, which is absent in the non-interacting case. The meaning of the term “collective” will
be clarified in the next section. Before turning to that, it is interesting to analyze the
eigenfrequency of the most energetic pole, in the limit of long wavelength. Let us consider
again the imaginary part of the susceptibility:

Im
{
χRPA(q, ω)

}
= Im {χ0(q, ω)}

(1− VqRe {χ0(q, ω)})2 + (VqIm {χ0(q, ω)})2 . (3.48)

The term Im {χ0(q, ω)} 6= 0 gives back the electron-hole continuum. In the case of 1 −
VqRe {χ0(q, ω)} = 0, taking the real part of χ0 by simply letting η → 0 in Eq. (3.24), one
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χ
0
(ω

) 1/V(q)

Figure 3.5: Plot of the Lindhard’s function (blue thick line) as in Eq. (3.24) as a function
of ω for a given value of q, when only a set of four single particle excitations at energies
{εa, εb, εc, εd} are allowed (dashed vertical lines). The solutions of χ0(q, ω) = 1/Vq are the
intersections with the horizontal line 1/V (q) (thick red line). The vertical dashed lines are
the poles of the Lindhard’s function, representing the only possible excitations in a non-
interacting electron gas. For the interacting case, the single particle excitation energies
are renormalized by the Coulomb interaction, but are qualitatively the same as in the non-
interacting case. A new pole at higher energy appears, which represents the eigenfrequency
of a collective oscillation mode of the interacting electron gas.

finds

1
Vq

= 1
V
∑

k

fk+q − fk

ω − (εk+q − εk) '
1
V
∑

k

fk + q · ∇kfk − fk

ω − ( k2

2m + k·q
m
− k2

2m)

' 1
Vω

∑
k

q · ∇kfk

(
1 + kq cos θ

mω

)
' q2

mω2V
2

(2π)2

∫ ∞
0

dk k2 k
∂f(k)
∂k

' − q2

mω2V
∑

k
fk '

N

V
q2

mω2 = nq2

mω2 ,

(3.49)

to first order in q. Thus, the eigenfrequency of the most energetic pole, up to order q2, is

ω2 = nq2V (q)
m

. (3.50)

Substituting the Fourier transform of the Coulomb potential in 3D and 2D in Eq. (3.50),
one retrieves the plasma frequency, which is independent of the momentum transfer q in
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Figure 3.6: Plasmon dispersion relation for 3D and 2D interacting electron gases. For
small q the plasmon curves lie outside the electron-hole pair continuum. When the re-
spective critical q is reached, the plasmon mode decays into electron-hole pairs. Figure
reproduced from [GV08].

3D, but depends linearly on q in 2D:
3D : V (q) = 4πe2

q2 −→ ω2
pl = 4πe2n

m

2D : V (q) = 2πe2

q
−→ ω2

pl = 2πe2n

m
q

(3.51)

The dispersion relation of the plasmon mode for 3D and 2D is reported in Figure 3.6.

Note that there is no contradiction with the plasma frequency of a metal surface derived
in the classical treatment and the 2D value of the plasma frequency, simply because a metal
surface is a 3D semi-infinite system, not a 2D system. In the former case, the Fourier
transform of the Coulomb potential yields

V ss
q =

∫
z<0

d3r
e2

r
eiq·r = 1

2

∫
d3r

e2

r
eiq·r = 2πe2

q2 .

Thus, the plasma frequency of the semi-infinite electron gas is ω2
pl, ss = 2πe2n

m
= ω2

pl
2 , which

is the asymptotic value of the surface plasmon dispersion relation (in the limit q � kF )
that was derived in section 3.1.
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3.2.2 Wave function of the plasmon state

The poles of Eq. (3.46) give the excitation frequencies of the interacting electron gas. It
is interesting to find an expression for the corresponding excited states, with particular
interest in the wavefunction of the plasmon state.

In order to find the states corresponding to the poles of the susceptibility χRPA, one can
start from the eigenvalue problem of Eq. (3.47), where the quantities are now operators
acting on states of the system. In principle, the ground state of the interacting electron gas
should be taken as a starting point. In the RPA framework, the interacting ground state
is replaced by the ground state of the non-interacting electron system. This corresponds
to choosing a non-interacting Hartree-Fock state constructed from a Slater determinant
of single particle wavefunctions, satisfying the Schrödinger equation with the exchange
correlation functional set to zero [Pit+07]. This is equivalent to neglecting the density
correlations described in the previous section.

It has already been shown that the only possible excitations of the non-interacting
electron gas are the electronic transitions of momentum transfer q, which in the second
quantization formalism correspond to any possible creation or annihilation of an electron-
hole pair. Thus, any excited state of the non-interacting electron gas can be written as a
superposition of creation and annihilation of an electron-hole pair

|Ψ(q)〉 = Ôq |HF 〉 =
∑

k
(xka

†
kak+q − yka

†
k+qak) |HF 〉 =

∑
k
|Φq(k)〉 , (3.52)

were the electron-hole pair basis set Φq(k) = (xka
†
kak+q − yka

†
k+qak) |HF 〉 was defined.

The normalization condition is ∑k(|xk|2 − |yk|2) = 1. The eigenvalue equation to solve in
this basis is thus: [

1− χ̂0(q, ω)V̂q
]
|Ψ(q)〉 = 0, (3.53)

which can be stated as:

|Φ(p)〉 − 1
V
∑
p′

fp
ω − εp

Vp,p′ |Φ(p′)〉 = 0, (3.54)

where Φ is a function in the particle-hole basis set, the index p indicates any possible
particle-hole pair transition and Vp,p′ = V (q)1p,p′ is a constant uniform matrix for a given
q. The substitution fp = fa−fb and εp = εa−εb were made, where a, b indicate the possible
initial and final states. Separating the creation and annihilation components in |Φ(p)〉, one
obtains two coupled equation for the xp and yp contained in |Φ(p)〉. Noting that fx = 1
and fy = −1, where the subscripts x, y refer now to the creation or annihilation part of
|Φ(p)〉, Eq. (3.54) can be cast into the coupled set of RPA equations (cf. [FW03], §50, p.
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565):

(ω − εx)x−
1
V
∑
x′
Vx,x′x

′ − 1
V
∑
y′
Vx,y′y

′ = 0,

(ω − εy)y + 1
V
∑
x′
Vy,x′x

′ + 1
V
∑
y′
Vy,y′y

′ = 0.
(3.55)

Defining X and Y as the vectors of all the possible pair creation and annihilation compo-
nents respectively, the system (3.55) can be rewritten in matrix form:(

A B
−B −A

)(
X
Y

)
= ω

(
X
Y

)
, (3.56)

where Aij = εXδij + v1ij = v1ij − εY δij, Bij = v1ij, v is the potential density V/V and 1 is
the all-ones matrix.

Before proceeding with the eigenvectors determination, it is relevant to re-calculate
the highest eigenvalue from Eq. (3.53) using Eq. (3.23) for the susceptibility of a non-
interacting electron gas. The further approximation employed is that the electron gas is
fully degenerate, so that εk − εk+q = ∆ε, for any value of k. This would correspond in
Figure 3.5 to a collapse of the vertical lines relative to the single electron-hole excitation
frequencies to a unique vertical asymptote. In this approximation it is straightforward to
show that the eigenfrequencies are given by

ω = ∆ε
√√√√1 + 2v

∆ε
∑
p

fp, (3.57)

where only the positive part of the spectrum was considered. Thus, the maximum eigen-
value, corresponding to the rightmost pole in Figure 3.5 is obtained in the case where all
the p’s refer to electron-hole pair creation, such that fp = 1 ∀p. In this case the maximum
frequency is

ωmax = ∆ε
√

1 + 2N v
∆ε , (3.58)

where N are all the possible excitations of electron-hole pairs for a given momentum
transfer q, and are thus the number of available k states of the system. For a large number
of states, Eq. (3.58) is approximated as

ω '
√

2N v∆ε =
√

2nV∆ε =
√
nV q2

m
, (3.59)

where the particle density n = N /V and ∆ε = q2/2m were used. Thus, one recovers the
plasmon frequency of Eq. (3.50) as the eigenvalue corresponding to the most energetic
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pole of χRPA. Rewriting of the system (3.55) in index notation yields

(ω −∆ε)xi − v
∑
j

(xj + yj) = 0,

(ω + ∆ε)yi + v
∑
j

(yj + xj) = 0.
(3.60)

At first, a relation between the pair creation and annihilation eigenvector elements can be
found by summing the equations in (3.60), which gives

yi = −ω −∆ε
ω + ∆εxi , ∀i. (3.61)

Substituting Eq. (3.61) into the first equation of (3.60) one gets

(ω −∆ε)xi − V
(

1− ω −∆ε
ω + ∆ε

)∑
j

xj = 0 −→ (ω2 −∆ε2)xi + 2V∆ε
∑
j

xj = 0. (3.62)

Eq. (3.62) can be satisfied in two cases: the first is for ω = ∆ε (where again the negative
part of the eigenvalue spectrum was discarded), which can occur only if the sum ∑

j xj = 0.
An orthonormalization gives eigenvectors of the form:

Xi =



1
−1
0
...
0

 , Yi = −ω −∆ε
ω + ∆ε



1
−1
0
...
0

 , (3.63)

which correspond to 2p − 2h states and are responsible for charge density oscillations
[All96]. For ω 6= ∆ε, Eq. (3.62) can be satisfied for ω = ωmax only by ∑j xj = N , which
corresponds to assuming that all the possible electron-hole states sum up coherently, giving
as resulting eigenvectors

Xpl =



1
1
1
...
1

 , Ypl = −ω −∆ε
ω + ∆ε



1
1
1
...
1

 , (3.64)

which can now be identified as the plasmon eigenvectors. The remarkable property of
the plasmon eigenfunction is thus, that it is constituted by a coherent superposition of all
the possible electron transitions for a given momentum q, typically set by the external
perturbation potential. For this very reason, the plasmon mode is called a collective mode
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and its spectral amplitude is much larger than that of any single particle excitations, such
that it is manifest at macroscopic level.

Although the physical insights provided by the random phase approximation are simple
and fascinating, the main criticality of this approach is that for long wavelength it doesn’t
prescribe any decaying mechanism for the plasmon mode, which is known to be very lossy.

3.3 Excitation of SPPs

Figure 3.7: Excitation mechanisms of SPPs: in the Otto configuration (a) the plasmonic
field at the metal-air surface is excited by frustrated total internal reflection (TIR) at the
dielectric-metal surface. Variants of this scheme are the Kretschmann configurations (b-c)
where the metallic material is not directly in contact with the TIR dielectric. In the grating
coupling (e) the plasmonic field is generated at the grooves of the diffraction grating by the
evanescent field produced according to Eq. (3.66). In (d-f-g) typical examples of near-field
coupling are shown. An SPP can be launched by the near field around a metal tip (d), by
scattering of a light wave with a surface dot or defect (f), or with an edge of the metallic
material (g). Figure reproduced from [ZMC11].
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The strategy to excite an SPP is to augment the parallel k-vector of the excitation
source, in order to achieve matching with the surface plasmon wave vector, see Figure 3.7
for an illustration. One way of “coupling” a source to an SPP is to overlay a dielectric
material on the metallic surface. Often used are the Otto [Ott68] and Kretschmann [Kre71]
configurations, which differ in the dielectric position in contact or closely above the surface.
The additional k-vector needed to satisfy the matching condition is provided by passage
through the dielectric, which enhances the parallel component by k‖ → ndielk‖, assuming
that ndiel sin θ > 1 (see Figure 3.8).

Figure 3.8: Diagram of SPP excitation in the prism coupling configuration. The passage of
the incident light through the glass “increases” the light wavevector, providing the additional
momentum ∆k necessary for the phase matching. Figure reproduced from [RZR12].

Another way is the grating coupling: the source is shone on a diffraction grating with
lattice constant a. The additional k-vector is provided by the periodicity of the grating.
In fact, the discrete translational invariance along the grating grooves “folds” the SPP
dispersion relation back into the first Brillouin zone (FBZ), making the matching possible.
The matching condition in this setup is kspp = k‖+nq, where n is the diffraction order and q
is the wave number associated to the grating periodicity. Figure 3.9 shows the effect of the
discrete periodicity on the SPP dispersion relation. Apart from the formation of Brillouin
zones, it is interesting to notice the appearance of plasmonic band gaps, originating from
the resolution of the degeneracies of the modes (n,−n) at the center of the FBZ, and
(n, n± 1) at the borders.

Yet another way is to exploit the near field localized at tips, dots or surface defects.
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Figure 3.9: Plasmonic band structure produced in the grating coupling mechanism. The
excitation of SPPs is possible also for normal incidence. The non-zero amplitude of the
grating grooves lifts the degeneracy in the crossing of the bands (n,−n) at the center of the
FBZ, and of bands (n, n± 1) at the borders. Note that the origin of the gap opening is the
same as in the band structure theory: the grating groove amplitude plays the role of the
solid periodic potential.

The intuitive reason behind this kind of coupling is that the sub-wavelength dimensions
r � λ of the considered object provide a large additional momentum ∆k ∼ 1/r compared
with the source momentum k0. A more rigorous explanation can be given by means of
the Weyl expansion [Wey19]. The spherical radiation field of a point-like source can be
expanded as:

exp(ikr)
r

= 2iπ
∫ ∞
−∞

dα

2π

∫ ∞
−∞

dβ

2π
1
γ

exp[i(αx+ βy + γ|z|)], (3.65)

where α2 + β2 + γ2 = k2 and Im {γ} > 0. Thus, the field of a point-like source contains
evanescent waves that decay away from the source with |z|. Hence, a point-like source
above an interface illuminates it with evanescent waves that can easily couple into SPP
modes.

So far the need to “augment” the source parallel k-vector was motivated with the
argument that at a given frequency, the plasmonic wave vector is always larger than the one
of the source. From a physical point of view, this can be better understood by considering
that the electron charge density perturbation δn is driven, via the Poisson’s law, by the
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divergence of the electric field δn ∝ ∇ · E. Since a plane wave is transversal, it cannot
give rise to a charge density perturbation on the surface and therefore one needs a tool,
or a configuration, to break the transversality of the source. In the prism coupling this is
provided by the total internal reflection (TIR) of the source at the dielectric interface, which
generates an evanescent wave extending to the other side of the surface. As discussed above,
an evanescent wave has a field gradient in the propagation direction satisfying ∇ · E 6= 0.
The condition is also satisfied in the grating coupling: the grating equation in fact reads

sin θn = sin θ0 + nλ/a, (3.66)

where θn is the direction of the n-th diffracted order, θ0 the incidence angle, and a the
grating periodicity. Next to a finite set of real diffraction orders | sin θn| < 1, there is also
an infinite set of complex waves, actually evanescent waves, for | sin θn| > 1, having non
null divergence. Eventually, the excitation of SPP via near field coupling automatically
satisfies the non-null divergence condition, since this is the main property of a near field!

3.4 Ultrafast plasmon dynamics
So far the properties of plasmonic fields have been discussed without addressing any time
domain property. In general, the physics of surface plasmon is well captured by studies per-
formed in the frequency domain, since the electronic properties of metals are well described
in the linear response theory. However, a precise description of the temporal behavior in
the transient excitation phase can not be given in term of spectral theory. This is even
more important in materials like semiconductors or showing strong electronic correlations,
where the metal approximation fails, and the electronic response must be treated in term
of non-equilibrium theories [Ram91]. Thus, given the importance of ultrafast plasmonics
for the potential applications in the field of all-optical based computer (see for reference
[Ozb06]), it is interesting to frame the basic properties of plasmonic temporal response, and
select some experimental tools able to access its transient dynamics. As already mentioned,
some temporal features can be deduced by spectral analysis of the plasmon resonance.

The first remark concerns the generation of pulsed SPP fields. The reflectivity spectrum
of a gold grating illuminated at normal incidence is shown in Figure 3.10. The linewidth
of the plasmonic resonance is narrow with respect to the broad band of a few cycle near
infrared (NIR) laser pulse. The grating structure acts as a bandpass, such that only a
restricted amount of frequencies are coupled into SPPs. As a consequence, excitation with
a source as short as 4 fs (cf. Figure 3.10) is expected to give rise to an SPP pulse longer than
the driver one. The generation of broadband SPP pulses is of fundamental importance for
instance for ultrafast on-chip communications, but poses major technological difficulties.
While the excitation of a monochromatic SPP can be done with very high efficiency (cf.
Figure 3.10), the generation efficiency of a broadband SPP pulse is only of few percents,
and typically the coupling mechanism has to be specifically designed for the desired SPP
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Figure 3.10: Simulation of the reflection spectrum of a gold square grating structure with the
Rigorous Coupled Wave Analysis (RCWA) method, implemented in the software package
RODIS [DD95]. The incident field is a short Ti:Sapphire laser pulse of λ = 780 nm and
pulse duration 4 fs FWHM in intensity, the grating periodicity is a = 730 nm, the width of
the grooves is d = 400 nm and the groove depth is h = 40 nm. The solid (red) curve is the
reflectivity spectrum of the grating, the dashed line (blue) is the band of the laser pulse.

mode. Moreover, the SPP propagation is affected by a strong group velocity dispersion
(GVD), given the strong dependence of the plasmon dispersion relation on the surface
dielectric function. Thus, a broadband SPP propagating on a flat interface suffers from
strong spatial and temporal dispersion as well chirping, requiring the engineering of a 2D
photonic crystal-like structured surface. An interesting example can be found in [Ash+13].

Another time dependent feature which can be deduced from the line shape of the plas-
monic resonance is the phase difference between the source and the excited SPP pulse. In
the limit of |ε′| � 1 and ε′′ � |ε′| the resonance shape function R(ω) can be approximated
by a Lorentzian curve:

R = 1− γ2
i

(ω − ωspp)2 + γ2
i

, (3.67)

where ωspp is given by inverting Formula (3.10), γi is the Ohmic loss factor and γrad is the
radiative loss factor. This is valid for flat surfaces. For propagation along a diffraction
grating a radiation loss term γrad due to the back scattering of the SPP into far field has to
be taken into account. In such cases γrad is the dominant loss term for grating with large
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Figure 3.11: Finite-Difference Time-Domain [Taf05] simulation of SPP excitation in the
Otto configuration by means of a three cycle short pulse with CEO phase of 90◦ on a gold
slab: the pulse is incident on the surface at θ = 41.5◦ (left) with respect to the normal
to the gold surface. The angle is chosen to phase match the plasmon wave vector kspp =
ndielk0 sin θ, with ndiel = 1.5. The TIR evanescent field generated during reflection (center)
excites an SPP with CEO phase equal to zero. Note that the SPP maximum intensity
(right) is reached after the reflection turning point (center).

groove depths. The subtracted quantity in Eq. (3.67) is the absolute value of

s = γi
ω − ωspp + iγi

. (3.68)

The phase change with respect to the driving source is given by:

φ = arctan
(
Re {s}
Im {s}

)
= arctan

(
γi

ω − ωspp

)
−→ φ(ω = ωspp) = π

2 . (3.69)

The phase shift for SPP excited by a short pulse is illustrated in Figure 3.11 in the Otto
configuration. The π/2-shift is clearly observable. Also surface plasmons on metal nanopar-
ticles show the same dephasing effect when resonantly excited. In Figure 3.12 a comparison
between resonant and off-resonance response is illustrated.

3.5 Standard SPP imaging techniques
Despite the difficulty posed by the non-radiative nature of SPPs, there are a number of well
developed methods for the imaging of surface plasmonic fields. Most of them concern the
characterization of the spatial distribution of the plasmonic field, with one exception based
on autocorrelation measurement of the temporal plasmonic signal, which will be presented
at the end of the section.
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Figure 3.12: Comparison of the field generated in response to a short NIR pulse excitation
of a silver nanoparticle with diameter of 80 nm. Out of resonance (left) the nanoparticle
response is synchronous with the driver field. At resonance (right), the plasmonic field is
dephased by 90◦ w.r.t. the driver pulse. Also observable is the increased time duration of
the plasmonic field and the field enhancement. Figure reproduced from [Pre+13].

For the experimental characterization of the electromagnetic field of the surface plas-
mon, the most ubiquitous technique is Scanning Near-Field Optical Microscopy (SNOM),
a scanning probe technique which allows the direct measurement of electromagnetic field
intensity near surfaces. The technique consists in placing a microscopic tip (probe) in the
vicinity of the surface field via a positive feedback technique. The probe tip, a tapered
optical fiber, couples the evanescent plasmonic field into a propagating waveguide mode,
consenting the measurement of the relative photo-current. For its similarity with the elec-
tron scanning tunneling microscope, SNOM in this configuration is often called photon
scanning tunneling microscopy (PSTM).

Another way of imaging SPPs is using fluorescence emitters as markers of the plasmonic
fields, as in Ref. [Dit+02]. Since the fluorescence signal is directly proportional to the
plasmon intensity at the place of the emitter, by covering the propagation range of the
plasmon with markers one can retrieve informations on its localization. Alternatively,
one can directly tailor the radiation losses of the plasmon into a dielectric substrate, by
exploiting the prism coupling mechanism [Dit+03]. This “leakage radiation” allows to
measure the spatial intensity profile of a plasmon, or, in different arrangements, to directly
observe the plasmon dispersion relation.

Yet another technique is called Scattered Light Imaging [DL04], where by analogy with
the grating coupling, the plasmonic field properties can be inferred by studying the plasmon
scattering from surface defects or random roughness, which convert the plasmon back into
photon.

Apart for the SNOM, the techniques mentioned above only allow for indirect measure-
ments of the SPP. In any case, the measurement of the SPP field by means of a dielectric tip
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Figure 3.13: Left side: schematics of SNOM in a typical setup for the measurement of
plasmonic fields. Figure reproduced from [Mai07]. With this technique it is possible to
image the spatial distribution of the plasmon intensity. Right side: example of imaging of
the SPP field intensity in a double slit experiment. SPPs are let propagate on gold stripes
of 2 µm section, at 2 µm distance. After emerging from the waveguide ends, they produce
the typical Young’s diffraction pattern. Figure reproduced from [ZB07].

Figure 3.14: Fluorescence imaging of SPP intensity excited on (a) a silver nano-dot (di-
ameter 200 nm, height 60 nm), and (b) a silver nano-wire (width 200 nm, height 60 nm,
length 20 µm). Figure reproduced from [Dit+02].

results in a modification of the field itself, constituting a major drawback for an otherwise
powerful technique.

It has been recently demonstrated [Cin+05; Kub+05] that a non-invasive plasmon
diagnostic tool is provided by employing the photo-electron emission microscope (PEEM)
for the plasmonic near field.

A PEEM is based on the photoemission of electrons from the metal surface. A voltage
difference system collects the emitted electrons, which form an image of the surface based
on their spatial distribution. Since photoelectron emission is increased because of the plas-
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monic field enhancement, it is possible to map the spatial distribution of the plasmonic field
intensity without perturbing the system. In experiments, the multiphoton photoemission
processes, typically two-photon photoemission (2PPE) [Sch+02], are employed, since they
are extremely sensitive to local field intensity.

In Ref. [Kub+05] it was presented an experiment combining the nanometric spatial
resolution of PEEM with an interferometric time resolved (ITR) 2PPE technique [Oga+97].
By analyzing the intensities of the field enhancement spots on a silver grating surface as a
function of the pump-probe delay time, it was possible to determine the time evolution of
the “hot spot” via the instantaneous photoemission intensity with femtosecond temporal
resolutions. The ITR-2PPE PEEM technique is one of the first experiments combining
space- and time-resolution on the nanometer and femtosecond scale, respectively. An
example of the ITR-2PPE PEEM measurement is reported in Figure 3.15

Figure 3.15: (a) Interferometric two-photon correlation of the photoemission intensity from
a distinct hot spot (A in inset). A comparison (b) of the temporal signals measured from
separate hot spots reveals different individual dynamics. Figure reproduced from [Kub+05].

Since the importance of the CEO phase has been mentioned in Chapter 2, it is interest-
ing to report the method proposed in Ref. [Irv+06] to analyze the photoemission spectrum
of a gold surface when an SPP is excited onto it. It was shown that for short enough plas-
mon pulses, the photoelectron spectrum is strongly dependent on the CEO phase (see
Section 2.3) of the SPP wave-packet, which is in turn dependent, although phase shifted
according to the resonance line shape, on the CEO phase of the driver pulse. However,
since the coupling mechanism in general acts as a band pass filter on the spectrum of the
excitation source, CEO phase effects on SPP tend to be weaker than in optical pulses.
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3.6 Plasmonics in attosecond physics

The attempt to apply attosecond metrology to the imaging of surface plasmons has been
carried out as an extension of the aforementioned time resolved photoemission microscopy,
with a pump-probe experiment performed as in the attosecond streak camera (ASC) setup,
where an XUV attosecond pulse releases photoelectrons in the probe field of the plasmon
near field. So far conceptual setups have been investigated, where localized plasmon reso-
nances act as photoelectron sources in stead of gas atoms.

The biggest physical difference with the ASC is in the streaking regime. In ASC, the
electric field streaking a photoelectron released from an atom can be considered spatially
homogeneous, since it extends over a region far bigger than the typical atomic scale. There-
fore, the photoelectron experiences the electric field for the entire pulse duration, and its
final momentum is given by Eq. (2.10), which is reported here for the reader’s convenience:

pf = pi(t)− A(t− τ).

Here t is the photoionization time. On the contrary, the near-field of an LSPR is highly
inhomogeneous, with strong field gradients extending over a nanometric region. In this
regime the interaction can be “instantaneous”, in the sense that photoelectrons experience
a sudden “kick” in the plasmonic field and leave immediately the high field region. In this
case the final photoelectron momentum is given by:

pf = pi(t)− E(t− τ). (3.70)

The discriminating parameters determining the streaking regime are the pulse cycle TL and
the pulse duration τL, which have to be compared with the time a photoelectron interacts
with the streaking field. Equivalently, one can compare the typical displacement of the
photoelectron with the spatial extension of the LSPR field. If the interaction time τint
is larger then the pulse duration, the photoelectron experiences the entire streaking field,
and the regime is called “ponderomotive”. If on the other hand τint is much smaller than
the laser cycle, the regime is said “instantaneous”. The streaking regimes are reported
in Figure 3.16. Thus, when using plasmonic fields created by sharp nanoscale structures
the streaking can be instantaneous, because of the strongly localized field. An example
of this streaking regime is reported in [Sto+07]. There, an attosecond pump-probe mea-
surement is combined with a PEEM, in order to create a nanometer-scale attosecond-time
resolution imaging technique. The technique proposed in [Sto+07] requires a very com-
plex experimental setup, and its demonstration is, to the author knowledge, not yet been
performed.

Nevertheless, the imaging of LSPR on metal nanoparticles via the standard attosecond
streaking setup was proposed and numerically simulated in Ref. [SK11]. Since in the
setup a time-of-flight (TOF) detector is employed, it is not possible to spatially resolve
the streaked photoelectrons. Therefore, differently from streaking in atoms, the recorded
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Figure 3.16: The streaking regime is determined by the interaction time of a photoelectron
in the streaking field. If τint is longer than the laser pulse duration τL (a), the streaking
is said to be ponderomotive, while in the opposite regime, for τint much shorter than the
laser cycle TL it is instantaneous (c). An intermediate regime can also be identified (b),
for interaction times longer than the laser cycle, but shorter than the laser pulse duration:
TL < τint < τL. Figure reproduced from [KKV12].

Figure 3.17: Schematics of the attosecond nanoplasmonic-field microscope (left). The NIR
pulse excites the plasmonic field on a surface with random defects (a), which acts as the
streaking field in instantaneous regime. The PEEM is able to collect electrons with nanome-
ter resolution, allowing for the spatio-temporal imaging of the surface plasmonic response
(c-f). Figures reproduced from [Sto+07].
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spectra contains contributions from different photoelectron initial positions, and thus of
different surface field intensities. As a result, the streaking spectrogram is smeared out by
the superposition of photoelectrons accelerated in different regions of the spatially depen-
dent plasmonic field. As shown in Figure 3.18, the smearing effect increases proportionally
to the nanoparticle radius.

Figure 3.18: Attosecond streaking in the plasmonic field on a gold nanoparticle of diameter
10 nm (above) and 100 nm (below). The red lines show the contribution of the photoelectron
trajectories launched at the poles of the nanosphere. It is observable a severe distortion
of the streaking spectrogram already for very small radii. For larger nanoparticles, the
streaking trace is smeared out. Figures reproduced from [SK11].

A final example of attosecond physics with plasmonic fields regards the streaking of
photoelectrons emitted from metal nanotips. In this case, both the photoemission pro-
cess and the streaking process have shown striking similarities with those observed in the
standard setup involving gas atoms.

It was shown in [KSH11; Wac+12] that photoelectrons emitted in the plasmonic field
undergo similar acceleration and recollision with the surface as in the gas case (cf. Figure
3.19), in such a way that the semiclassical three step model can be used to describe the
underlying physical process. One of the reasons of this similarity is that the near field in-
duced at the tip by the driving NIR pulse is not at resonance, and therefore the excursion
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of the photoelectron is smaller than the near field decay length. Thus, the photoelectron
acceleration occurs in the ponderomotive regime (cf. Figure 3.16), as in the case of photoe-
mission from atoms. It has also been predicted that photoelectron rescattering at nanotip

Figure 3.19: Left side: Above Threshold Photoemission (ATP) spectra from a metal nanotip
at different field intensities. Right side: the photoelectron density map shows the trajectories
of the rescattering electrons. Figures reproduced from [Wac+12].

would produce high harmonic radiation [Cia+14]. A fundamental difference with HHG
from gas atoms is that even harmonics can be produced in this configuration, since the
semi-infinite 1D geometry of the tip allows only one rescattering process per laser cycle.

The above threshold photoemission (ATP) from metal tips can also be used to per-
form streaking experiments. In Ref. [Wim+14] a spectrogram of a single-cycle terahertz
fields produced in a light-induced air plasma was obtained by streaking the photoelectrons
emitted from the nanotip under illumination of a NIR pulse. In Figure 3.20 the resulting
streaking spectrogram is reported. It is interesting to observe how the imaging of the THz
field was obtained by using exactly the same principle of the attosecond streaking tech-
nique, this time with the NIR as a pump field for the photoelectrons, and the generated
THz field as a probe.

In Chapter 5 a new technique called Attosecond Photoscopy [Lup+14] is presented,
which allows to perform the attosecond streaking of SPPs. The idea is to use a NIR pulse
as a pump for the excitation of SPPs on a nanostructured surface, and attosecond pulses
for ultrashort photoemission. With this technique it is possible to resolve sub-cycle features
and the transient excitation phase of the SPP, which has not yet been demonstrated with
the techniques discussed so far.
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Figure 3.20: Streaking spectrogram of tip-emitted photoelectrons in a THz field produced in
a light-induced air plasma. Figures reproduced from [Wim+14].



4
A Plasmon Enhanced Attosecond

Extreme Ultraviolet Source

This Chapter is largely based on the work published in [LKS13]. Attosecond (AS) pulse
sources are employed in the observation of electron dynamics at the time scales of atomic
valence electrons. Such sources are mostly based on high harmonic emission from gases and
are employed, for example, in attosecond streaking experiments of photoelectrons ionized
in atoms [Dre+02; Rem+06], and solid surfaces [Cav+07].

AS pulse generation is an extremely non-linear frequency up-conversion process of the
fundamental NIR driver pulse, which imprints its time-structure onto the harmonic radia-
tion. The physical features of the process are described in Chapter 2. The classical three-
step model [Cor93; KSK93] describes the physics of high harmonic emissions in terms of
three sequential phases: ionization, quiver motion and recollision. The model predicts that
in case of a recollision process resulting in the recombination of the electron with the ion,
high harmonic radiation is emitted up to a maximal photon energy of ~ωc = Ip + 3.2Up,
where Ip is the ionization potential of the gas and Up = e2

4me
E2

0
ω2 is the driver ponderomotive

potential of a laser of amplitude E0 and frequency ω.
The non-linearity of the process is such that the highest part of the harmonic spectrum

is produced only around the maxima of the NIR pulse, such that bursts of high frequency
radiation as short as 67 attoseconds can be produced [Zha+12]. It also sets strict require-
ments on the pump intensity needed to obtain photons of the desired energy. For XUV
photon energies & 40 eVwith Ti:sapphire NIR pulses at 800 nm wavelength, intensities &
W/cm2are needed.

The time-locking of the AS pulse to the NIR pulse allows to perform pump-probe
experiments by controlling the relative time delay with a precision of ten attoseconds. In
attosecond pump-probe experiments with delays beyond the laser half-period, one needs to
use isolated single AS pulses, which are typically generated by using optical pulses which
are so short, that only one field maximum effectively contributes to the generation of the
desired photon energies [Bal+03]. Alternative techniques like polarization gating [Sol+06],
where the laser polarization is manipulated in order to suppress high harmonic generation
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for all but one field peak, are rather complex to use in spectroscopic experiments. In any
case, while few femtosecond lasers at 80 MHz repetition rate are commercially available
[Rau+08], the amplification required to reach the intensity of & 1014 W/cm2reduces the
repetition rate to few kHz.

In this chapter a technique based on plasmonic enhancement for the generation of XUV
attosecond pulses is proposed. Its main advantage is that the amplification mechanism is
provided by the plasmonic field enhancement, which allows to directly use a commercial
laser system as driving source, thus keeping the original high repetition rate.

4.1 Bow-tie structures for plasmonic enhanced HHG
A first generation mechanism based on plasmonic enhancement was proposed in [Kim+08].
A NIR laser pulse excites a localized surface plasmon resonance (LSPR) on a bow-tie shaped
plasmonic structure exposed to a jet of Argon gas. In the middle of the structure (cf. Figure
4.1 for the illustration of the geometry) the intensity enhancement of 103 is such that the
threshold intensity value for HHG can be reached with commercially available laser pulses
of intensity I0 = 1011W/cm2. With this HHG setup, the authors of [Kim+08] claimed

Figure 4.1: Experimental setup for XUV harmonic generation using the plasmonic en-
hancement of LSPR on bow-tie gold structures. The polarization of the laser field is set
parallel to the horizontal symmetry axis of the structure. The intensity enhancement factor
is > 104 at the apex of each triangle, while in the gap region between the triangles is 102.
The achieved intensity is enough to trigger HHG from Argon atoms. Figure reproduced
from [Kim+08].
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to observe harmonics up to the 17th order, a finding which was later debated (see Section
4.9). By illuminating a matrix of bow-tie nanostructures, the intensity of the produced
harmonics can be boosted by constructive interference of radiation from multiple emitters.
Nevertheless, the low coupling efficiency of the NIR laser with the LSPR of the plasmonic
structure make the harmonic yield rather low.

4.2 Tapered plasmonic waveguides for HHG
To improve the low coupling efficiency of the laser field with the plasmonic resonance, in
[Par+11] a new geometry was proposed, capable of bringing the coupling efficiency to nearly
100 %. The “amplification” scheme consists in the excitation of a cylinder Surface Plasmon
Polariton (cySPP) by focusing a laser pulse into a tapered waveguide. As the plasmonic
field propagates towards the narrow end of the waveguide, its wavelength decreases, while
the field intensity increases. The experimental setup is shown in Figure 4.2. With this
enhancement mechanism, in [Par+11] it was reported the detection of extreme ultraviolet
(XUV) radiation up to the 43rd harmonic order in Xenon gas (see section 4.9). In a
following theoretical study [Cho+12], attosecond time structure was found in the response
of an isolated atom to the plasmon field.

In this Chapter, an analysis of the macroscopic XUV harmonic propagation is presented,
in order to determine whether the high harmonics emitted from the gas atoms add up to
form a usable beam with time structure of an isolated AS pulse. It was indeed found
that the time structure of the generated XUV radiation is that of an isolated AS pulse.
Furthermore, being generated by a single plasmonic mode, the pulse shows a very clean
spherical wavefront and a good collimation degree, besides being stable under variation of
the driver pulse duration and incidence angle.

On the other hand, the emission through the narrow end of the tapered waveguide
is severely diffracted, while a well collimated attosecond beam propagates in the reverse
direction. Moreover, the beam intensity of the generated AS pulse is several orders of
magnitude smaller than what found in the original experiment in [Par+11], in agreement
with what predicted theoretically in [Ras13].

We compare the “plasmon enhanced attosecond XUV source” (PEAX) to standard AS
pulses produced from gas harmonic sources. Despite the significantly lower yield of the
PEAX, the extremely clean spatial profile and the high repetition rate make it an attractive
alternative source to standard gas harmonics for high resolution imaging.

The strategy to perform the numerical analysis of the described experimental setup
is the following: (i) at first Maxwell’s equations are solved numerically for the plasmonic
response of the tapered waveguide to the driver NIR pulse, (ii) then the atomic response to
the so generated plasmonic field is calculated by solving the time-dependent Schrödinger
equation (TDSE) for a set of atoms covering the highest enhancement region of the plas-
monic field and eventually (iii) the waveguiding effect on the harmonic propagation is
studied by solving the Maxwell equations for the collection of radiating dipole sources.
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Figure 4.2: Experimental setup for XUV attosecond pulse generation using plasmonic en-
hancement. A cylindrical plasmon polariton (cySPP) is excited at the opening of a tapered
waveguide, whose decreasing radius in the propagation direction squeezes the cySPP, caus-
ing a strong enhancement of its field intensity. The “amplified” field is sufficient to trigger
high harmonic generation (HHG) in the gas atoms filling the waveguide. The emitted XUV
radiation combines to form an isolated attosecond pulse which propagates through the nar-
row end of the waveguide, while the rest of the NIR radiation is filtered or diffracted. Figure
reproduced from [Par+11].

4.3 Analysis of cylinder plasmon polaritons

Let us start with the boundary value problem of a metal cylinder embedded in a dielectric
material and assume a fixed wavelength of 800 nm, at which the silver dielectric constant
is εAg = −24.9 + 1.86i. At first, the imaginary part of the metal dielectric constant is
neglected.
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The dispersion relation of the propagating cySPP is obtained by setting to zero the
determinant of the matrix of the electromagnetic field amplitudes obtained from applying
the continuity boundary conditions at the cylinder radius R ([Str41], Chap. XI):[

1
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Km(v)

] [
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Here u = κ1R = k0R
√
n2
eff − εm, v = κ2R = k0R

√
n2
eff − εd, with neff = h/k0. Propagating

solutions correspond to neff >
√
εd.

Differently from the planar case, for a mode of order m it is in general not possible to
isolate a transverse electric or magnetic mode, except in the case m = 0, where the TE
(left brackets content) and TM mode (right brackets content) are decoupled. In the limit
of very large cylinder radius k0R � 1 the effective refractive index neff tends to the flat
surface case for any value of m:

neff,m = εdεm
εd + εm

, ∀m. (4.2)

In the case of m = 0 the dispersion relation (4.1) simplifies for the TM case to

εm
u

I ′0(u)
I0(u) = εd

v

K ′0(v)
K0(v) , (4.3)

In the limit of very small cylinder radius k0R � 1, assuming that the metal dielectric
constant is large but of finite value, both v, u� 1. This approximation is valid at optical
wavelengths, but fails for instance at micro waves. In the limit of small arguments Eq.
(4.3) reduces to

εm
2 −

εd
v

1
v(log v

2 + γ) , (4.4)

where γ = 0.57721 is the Euler-Mascheroni constant and the relations I ′0(v) = I1(v),
K ′0(u) = −K1(u) were used. After redefinition of γ̃ = eγ = 1.781, Eq. (4.4) can be cast
into the form

ξ log ξ = η, ξ =
(
γ̃v

2

)2
, η = γ̃2εd

εm
. (4.5)

A first inspection of Eq. (4.5) shows that since η < 0, the solution must be in the interval
0 < ξ < 1. Moreover, the function ξ log ξ has an absolute minimum of −1/e, and is zero for
ξ = 0 and ξ = 1. Thus, the solutions of Eq. (4.5) can be two, provided that the condition
(4.6) is verified:

η > −1
e
−→ εd

|εm|
< e−(2γ+1) = 0.116. (4.6)

For a silver waveguide at a wavelength of 800 nm, the condition is well satisfied. The
solution of Eq. (4.5) can be expressed in term of continuous fractions, which can be
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approximated for |η| � 1 as follows:

ξ = η

log η
log η

log η
...

' η

log |η| . (4.7)

Thus, up to logarithmic accuracy, the propagation constant of the plasmonic mode m = 0
is given by:

neff =
√√√√εd − 1

k2
0R

2
2εd

εm
(
log

√
−εm/εd − γ

) , (4.8)

which is similar to what obtained in [Sto04], but is accurate up to values k0R = 1, as
shown in Figure 4.3. It is interesting to notice that this mode exists for any radius R of
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Figure 4.3: Comparison of the exact expression of the effective propagation index neff =
h/k0 for the mode m = 0 (blue thick line), with expression (4.8) (red) and the expression
derived in [Sto04] (green). The agreement for small cylinder radii is confirmed. Although
expression (4.8) seems to accurately approximate the exact propagation index for any values
of R, at large radius Eq. (4.8) tends to √εd (dashed line) instead than to the flat surface
index value of (4.2).

the cylinder and its propagation wavelength is proportional to the cylinder radius. It is
called the nanowire mode, since it is the only one that does not experience any cut-off for
R → 0. The behavior of higher order modes is reported in Figure 4.4. As observable in
Figure 4.4, there is finite value of the cylinder radius where the modes m > 0 have a cutoff
in the propagation constant, which corresponds to the turning point at which the mode
is reflected along the waveguide axis. Therefore, high order mode cannot be focused to
arbitrary small scales.
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Figure 4.4: Dispersion relations of cySPP modes propagating on a metal cylinder. While
the axially symmetric m = 0 mode propagates for arbitrary values of R, all the higher
modes experience an increasingly greater cutoff radius. For large values of R all the modes
approach the value

√
εdεm/(εd + εm) (black dashed line), while at the cutoff radius the prop-

agation index is √εd (grey dashed line).

4.3.1 Propagation in hollow waveguides

The propagation constants of the cySPP propagating in a hollow metallic waveguide is
obtained by exchanging the values of the dielectric constants in Expression (4.1). For
the mode m = 0 the same approximation proposed in the previous subsection can be
performed, which gives as result:

ξ log ξ = η, η = γ̃2εm
εd

. (4.9)

In this case η < −1 and the propagation condition (4.6) is not satisfied. Thus, the mode
m = 0 has no propagating solution for arbitrarily small cylinder radii. This fact is valid
also for higher order modes, as reported in Figure 4.5. As it can be observed, it exists a
manifold of solutions for each plasmonic mode repeating with a characteristic periodicity
approaching a common value for increasing R. The reason is that since all the solutions
lay in the region neff < εd, the variable v is imaginary and therefore the modified Bessel
function of the first kind turns into an ordinary Bessel function, whose oscillatory behavior
gives rise to a multiplicity of solutions.

Although Figure 4.5 indicates that no cySPP can be focused at arbitrary low waveguide
radius, the situation changes when considering the imaginary part of the metal dielectric
function. In this case the propagation index neff becomes a complex number, thus a
clear distinction between propagating and evanescent modes is no longer possible. In
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Figure 4.5: Dispersion relation of cySPP propagating in a hollow metal cylinder. All the
modes experience a cutoff radius Rcutoff,mn. For large values of R all the modes approach the
value

√
εdεm/(εd + εm) (black dashed line). For neff <

√
εd, each mode m shows a manifold

of solutions, arising from the oscillatory behavior of the Bessel function Im(iv) = Jm(v).

Ref. [NH94] was observed that the cutoff region in the ideal case is resolved by a return
to propagation for cylinder radii of nanometric size. In any case, from Figure 4.5 it can be
inferred that the cutoff radius for the m = 1 mode is Rcutoff,1 ' 200 nm.

In the present case of study, the linear polarization of the source pulse required for
HHG breaks the otherwise axial symmetry of the cylinder waveguide. Thus, the cySPP
excited by a linearly polarized NIR pulse must show an opposite charge distribution at its
maxima, a condition which is fulfilled only by the m = 1 mode.

It is interesting to comment on the matching condition of the NIR pulse with the m = 1
mode. In Figure 4.6 an equivalent of the dispersion relation diagram for a flat surface (see
Figure 3.1) obtained for an aluminum hollow waveguide is reported. Differently from the
flat surface case, the dispersion relation of a cySPP in a hollow waveguide crosses the
light line for all the waveguide radii reported. This ensures the plasmon wavevector phase
matching with the source NIR pulse wavevector without particular requirements on the
coupling setup.

4.4 Geometry of the tapered waveguide
Numerical optimization of the tapered waveguide was performed by comparing the field
enhancement obtained in different geometries and NIR pulse durations. The plasmonic field
generated by the driver NIR pulse was computed with MEEP [Osk+10], an open source
C++ library implementing the finite-difference time-domain (FDTD) method [Taf05].
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Figure 4.6: Dispersion relation for cySPP of order m = 1 propagating in a hollow cylinder
of dielectric constant given by ε(ω) = 1− ω2

p

ω(ω+iγ) . The plasmon frequency is plotted versus
β = Re {neff} k0 (a) and α = Im {neff} k0 (b). The values of the parameters are ωp = 15.5
eV, γ = 0.6 eV and εd = 2.16. Also shown are the light line (dot-dashed) and the flat
surface plasmon line (dotted). The values assumed for the waveguide radius are given in
figure. Figure reproduced from [NH94].

It was found that an elliptic cross section at fixed axis ratio provides a higher field
enhancement at the waveguide tip, which is related to the deeper penetration of the plas-
monic field toward the tip of the waveguide. The geometry is shown in figure 4.7. The
ratio between the minor axis b and major axis a of the ellipse is b/a = 0.25. Similar to
reference [Par+11], we chose for our simulations a 9 µm long silver cone and opening angles
of 14 and 3.5 degrees along the major (x) and minor (y) axis of the ellipse, respectively.
These parameters uniquely define the waveguide geometry. We assume a 5 fs FWHM
Gaussian driver pulse at wavelength λ0 = 800 nm, beam waist w0 = 2.5 µm, and focused
intensity I0 ≈ 4× 1011 W/cm2. The focus is at the large opening of the tapered waveguide
(see Fig. 4.8). One finds that the coupling is rather robust with respect to variations of
the focus position by ±1 µm, causing intensity changes of less than 5% in peak plasmon
intensity. An enhancement factor of ∼ 500 in peak intensity is found for an eccentricity
value of ε = 0.25. For ε = 0.5, as used in Ref. [Par+11], the enhancement is reduced by
about a factor 3. A similar dependence on ellipticity was reported in [Cho+12], where
pulse durations between 4 and 10 fs were investigated.

Since the peak field is reached at the surface, any surface roughness could introduce
modifications of the exact maxima. This however does not invalidate the analysis, since
harmonics produced in proximity of the waveguide surface will be absorbed in the metal,
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Figure 4.7: Geometry of the tapered nanoplasmonic waveguide. The laser polarization is
along the minor axis of the waveguide cross-section. The length of the waveguide is 9 µm,
the major axis at the larger opening is a = 2.2 µm, the size of the opening at the waveguide
apex along the minor axis is d = 25 nm. The eccentricity of the cross-section is b/a = 0.25.
Figure reproduced from [Par+11].

while the dominant contribution coming from the central region is less subject to sub-
wavelength structures of the waveguide.

Further optimization of the cone geometry allows for even weaker driver pulses, keeping
in mind that ultimately the field inside the waveguide is limited by electric breakdown.
Ref. [Par+11] claims that silver can sustain much higher fields than expected, most likely
because of the few femtosecond duration of the employed pulse [Ple+05]. In our work we
neglect the incoherent radiation emitted by photo-ionized silver atoms.

4.5 Waveguiding of XUV pulses by the waveguide
In MEEP [Osk+10], the dielectric function must be of the form

ε(ω) = ε∞ −
ω2
p

ω(ω − iγ0) +
∑
n

fnω
2
n

ω2
n − ω2 + iωγn

(4.10)

for algorithmic reasons. In the visible region, the parameters which best fit the dielectric
constant of silver are taken from Ref. [Rak+98a]. As for the XUV range, which is relevant
for the HHG process, the Drude-Lorentzian modeling reproduces the frequency dependency
of the dielectric function poorly. It was given preference to an accurate fit of the imaginary
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Figure 4.8: Plasmonic field distribution in the xz-plane at peak plasmon field of
2 × 1014W/cm2. The calculation is performed with the Finite-Difference Time-Domain
(FDTD) method. The upper panel shows the normal incidence case, the lower the oblique
case. Polarization is in y-direction perpendicular to the plane and independent of the in-
cidence angle, which in the lower panel is of 7 degrees in the zx-plane parallel to the inner
cone surface. A remarkable property of PEAX is that the XUV harmonic beam is emitted
in the direction of the cone axis for any incidence angle. This is due to the symmetry of
the m = 1 mode, which is excited irrespective of the angle of incidence. Figure reproduced
from Ref. [LKS13].

part of the dielectric response against the data taken from [HGD93], since it was found
that the real part of the dielectric response has little influence on the propagation of the
harmonic radiation inside the waveguide. By changing the real part of the fitted dielectric
function by a factor of 4 (cf. Fig. 4.9), a change in the signal intensity by less than 15% is
observed, while the time-structure remains unaffected, as shown in Figure 4.10.

The high harmonics were let propagate in the same FDTD code used for the plasmonic
response, but with a sampling spacing of 2.5 nm, well below the characteristic wavelength of
800 nm of the driver plasmon in the waveguide and below the relevant harmonic wavelength
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Figure 4.9: Dielectric functions used for the simulation of high harmonic propagation. The
imaginary part (left, blue circles) is well approximated by a Lorentzian shape (blue line).
The fit (right, red line) of the real values (circles) is comparatively poor. The deliberately bad
fit (dashed red line) was used for checking the robustness of the simulation. Experimental
data from [HGD93].
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Figure 4.10: Comparison of the electric field amplitudes measured far from the waveguide,
in the backwards direction, simulated using different fit of the real part of the dielectric
function for the XUV range. In both cases the same Zr filter for the removal of the low
harmonics was employed.

of ∼ 27 nm. The dipole responses of the gas atoms were calculated by solving the time-
dependent Schrödinger equation with the irECS method [Scr10] using a single-electron
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model with the ionization potential of Argon. In these calculations fluorescence is not
included, which would contribute incoherently to XUV radiation. The harmonic generation
process is strongly dependent on the driver pulse intensity: from 2×1014 W/cm2to 1×1014

W/cm2the harmonic yield near the cutoff photon energy of ∼ 60 eVdrops by ∼ 3 orders
of magnitude. For this reason the region of calculation of the atomic dipole responses was
limited to the volume where the total field intensity exceeds 1014 W/cm2, corresponding
to an active volume Va = ∆x×∆y ×∆z ≈ 240× 60× 500 nm3

The harmonic emission occurs also for coupling of the driver NIR pulse over a range
of incidence angles. For θ = 7◦ with respect to the polarization (y) axis, the plasmonic
enhancement is reduced by a factor 4, which can be compensated by an increase of the
input filed intensity.

The far field distribution of the harmonic radiation was computed by means of the
Kirchhoff integral using the plasmonic field at the surface z = 2.5 µmfrom the smaller
waveguide aperture as source. The Kirchhoff formula for monochromatic waves is

E(ξ, k) =
∫
S
dS

[
E(S) ∂

∂n

(
eik·s

|s|

)
− eik·s

|s|
∂E

∂n

]
, (4.11)

where S(x, y) is the 2D source surface taken from the FDTD simulation, ξ is the observation
point and s = ξ− x, with x ∈ S. The validity of this procedure was verified by comparing
the guiding effect of a wedge-shaped waveguide on the harmonic propagation, where the
translational symmetry reduces the problem to 2 dimensions. It was found that beyond the
cutting distance of 2.5 µmfurther guiding of the XUV radiation is very small. On the other
hand, a comparison with the “free” propagation, where the waveguide has been artificially
removed, shows that the XUV intensity is enhanced by a factor 4, as shown in Figure 4.11.
A Zirconium-like filter was used to remove only the fundamental and lower harmonics from
the generated harmonic spectrum. Figure 4.12 shows the angular distribution of harmonic
emission out of the wide side of the cone for a range of harmonic frequencies at oblique
driver incidence.

The incident intensity was adjusted to obtain a maximum plasmonic field near the
waveguide tip of 2 × 1014 W/cm2. As can be clearly observed in Figure 4.12, the spatial
divergence decreases with increasing photon energy, were the divergence is defined as the
full-width half maximum (FWHM) in the XUV intensity. The normal incidence case with
equally adjusted peak intensity gives results similar to oblique incidence. The reason is to
be found in the single mode nature of the plasmonic field, whose topology in its maximal
value region is insensitive to the angle of incidence.

An analysis of the attosecond beam propagation through the waveguide smaller aper-
ture shows that in this case the funnel causes diffraction rather than collimation. The last
point could be tested in the full three dimensional case by using the electric field at the
waveguide smaller aperture as source surface for the Kirchhoff diffraction integral. The
spatial profile of the harmonics is shown in Figure 4.13.

Although the XUV power is comparable in forward and backward emission, the beam
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Figure 4.11: Comparison of the electric field amplitudes measured far from the waveguide
larger aperture in the backwards direction, for different wave-guiding conditions. In all
cases the same Zr filter was employed.

divergence is 35◦ in y-direction, such that the resulting harmonic beam is hard to focus for
experimental use. In a simulation of the XUV harmonic propagation without the waveg-
uide, forward and backward beams are nearly identical, demonstrating that diffraction
and collimation is due to the waveguide presence, and not to the plasmonic field topology
induced by the waveguide shape.

4.6 PEAX temporal characterization
Since the active volume Va of HHG is smaller than the driving laser wavelength, the phase
matching of the harmonics is not an issue. Geometrically induced phase shifts are naturally
included in the simulation. With negligible dephasing between driver and harmonics across
Va, harmonic intensities grow quadratically with the gas density. The atomic dispersion is
also expected to remain small, and, if needed, may be controlled by choosing a target gas
suitable for a given harmonic wavelength.

In Table 4.1 the parameters of the XUV-AS pulses are obtained at gas pressure of 0.3
bar (density 7.8·1018 cm−3), a value typically used in standard HHG. To check the influence
of the atomic species on the spectrum of the HH radiation produced by the plasmonic field,
Argon, Neon and Xenon were considered.

Details of the spectral structures for the different atomic species are reported in Figure
4.14. Despite the peculiarity of the exciting inhomogeneous plasmonic field, the spectra in
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Figure 4.12: Angular distribution of harmonic radiation for the photon energies reported
in the inset legend. At oblique incidence with driver polarization along y, the x-distribution
of the harmonics is asymmetric (left panel), while it remains symmetric in the y-direction
(right panel). The spatial profiles of the harmonics are taken in the far field, at 1 mm
distance from the waveguide large opening in the backward plasmon propagation direction.
The black line is the sum of all the harmonics above 45 eV , and therefore gives a measure of
the AS pulse collimation angle. Taking as reference the FWHM of the XUV pulse intensity,
the beam divergence is about 5◦ in both x- and y-directions. Thus, the projection of the
AS pulse on the plane orthogonal to the waveguide axis is a circle centered on the axis,
despite the elliptic cross-section of the waveguide and the oblique incidence of the driver
NIR pulse. Figure reproduced from [LKS13].

Table 4.1: Harmonic beam characteristics for oblique incidence PEAX and a standard
harmonic source using a Gaussian beam (see text for parameters). Yields and photon
fluxes are integrated over the beam divergence angles.

PEAX Gauss
Gas Ne Ar Xe Ar

ωγ (eV) 53 45 45 45
∆t (as) 250 300 250 300

Rep. Rate 80 MHz 3 kHz
γ/pulse 0.94 · 10−3 6.7 · 10−3 0.94 · 10−3 3 · 104

γ/s 7.6 · 104 5.4 · 105 6.5 · 104 9 · 107

Divergence 5◦ 1◦
Va (µm3) ∼ 4× 10−3 ∼ 16
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Figure 4.14: Spectrum of the harmonic radiation produced by different atomic species. The
thicker lines show the part of the spectrum which must be kept to produce an isolated AS
pulse with maximum photon yield.

Figure 4.14 closely resemble the single-atom responses. For the driver intensity of 2× 1014

W/cm2, Argon shows a cutoff similar to Neon, but an order of magnitude larger spectral
intensity, while Neon has a higher cutoff and lower spectral intensity. These characteristics
reduce the achievable high harmonic yield for both Neon and Xenon, a feature which affects
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in the same way the PEAX and the standard gas harmonic source.
The PEAX harmonics above 45 eVform an isolated AS pulse. Because of the rapid

decay of the spectral intensity with harmonic energy, the AS pulse central frequency nearly
coincides with the lower cutoff frequency of the harmonics. The pulse contrast, defined as
the energy ratio between the main pulse and any satellite pulses, is satisfactory with 85%
of the energy in the main pulse.

4.7 PEAX spatial properties
The AS pulse emerging from the backwards propagation direction has a perfectly spherical
wavefront (cf. Fig. 4.15). The deviation from the spherical shape remains below the central
XUV wavelength over the whole front. This can be ascribed to the very small and well-
defined generation volume, which is a consequence of the excitation of the single plasmonic
mode m = 1.
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Figure 4.15: Spatial shape of the XUV AS pulse wavefront. The color map shows the part
exceeding half the peak intensity. The black line indicates the position of a circle having
as center the waveguide tip, and radius the distance of observation. The inset figures show
sections of the wavefront taken for two different radii. The dashed lines show the position
of the cuts and the spherical front, in the color map and in the insets, respectively. Figure
reproduced from [LKS13].

Differently from standard gas harmonics, this attosecond source distinguishes itself
for the clean wavefront, which allows to focus the pulse without compromising its time
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structure. Moreover, the AS pulse is emitted on the cone axis, while the reflected driver
and lower harmonics are emitted into wider angles with a modulated intensity profile
(cf. Fig. 4.12). This is particularly useful because it permits a simple geometric separa-
tion of the incident driver pulse from the harmonic pulse. The remaining on-axis reflected
driver pulse and low harmonics can be filtered out by standard multilayer mirrors. Fur-
thermore, a shorter driver pulse of 4 fs and equal intensity brings no extra advantage: the
AS pulse duration and divergence remain the same, while the pulse intensity is ∼ 20%
less. Similarly, the pulse parameters are not improved by exciting the cylinder plasmon at
normal incidence, because the higher field enhancement is compensated by a reduction of
the active volume Va, as it can be observed in Figure 4.8.

4.8 Comparison with standard gas harmonics
In Table 4.1, the rightmost column contains the pulse parameters for a standard harmonic
source, simulated with our numerical techniques for benchmarking the PEAX. A Gaussian
beam of 4 fs FWHM pulse duration and tight focus of w0 = 1 µmin a gas jet with peak
intensity equal to the peak plasmonic intensity of 2 × 1014 W/cm2was used. The HHG
active volume, given by the prolate ellipsoid with w0 as minor axis and the Rayleigh length
zr = 3.9 µmas major axis, is three orders of magnitude bigger than in the PEAX. In the
present configuration, the PEAX source produces slightly longer pulses with larger beam
divergence. For photon energies of ∼ 45 eV and at the given gas pressure, the photon yield
per shot is almost 7 orders of magnitude larger compared to PEAX. This corresponds to
a difference of a bit more than 3 orders of magnitude in field strength, which is consistent
with the ratio of the active volumes of the two sources.

Since no amplification chain is required for a PEAX source, the repetition rate remains
that of the oscillator, near 100 MHz, reducing the difference in the photon fluxes with the
standard source to less than 500. With an active volume of sub-wavelength dimension,
the gas density can be increased by many orders of magnitude before phase matching and
coherence problems arise. Assuming tenfold pressure for the PEAX, photon flux could
be boosted by 2 orders of magnitude, basically equaling the standard harmonic source
performances. Moreover, a further increase of the XUV pulse power could be achieved
by using a rasterized arrangement of many PEAX sources as in Ref. [Par+13], which
is possible thanks to the high quality of the attosecond pulse spatial profile. In such an
arrangement, interference between the emission from different tapered waveguides could
be utilized for phase-matching.

On the other hand, the volumes for coherent gas harmonic generation in the standard
configuration, and consequently the power of the AS pulse, can be significantly larger than
what assumed in the previous comparisons. It is demonstrated (see Ref. [Gou+08]) that
phase matching can be maintained over about 1 mm propagation length at a beam cross
section of few hundred µm2, giving an active volume, and thus an output power of about
3-5 orders of magnitude larger than in the PEAX. In table 4.2 the experimental parameters
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given in Ref. [Gou+08] are compared with the simulated values of the PEAX.

Table 4.2: Attosecond beam parameters for state-of-the-art standard harmonic generation
[Gou+08], compared to the parameters used for benchmarking the PEAX source..

Experimental Theoretical
Atom Neon Argon

I0 (W/cm2) 5× 1014 2× 1014

ωγ(eV ) 80 45
∆ t (as) 100 250
Rep- Rate 3 kHz 3 kHz

γ/s 1011 9× 107

Power PXUV ∼ 1µW 0.65 nW
Va ∼ 10−1 mm3 16 µm3

This last consideration can be generalized to all the proposed high harmonic generation
schemes based on plasmonic enhancement: since the required intensity is achieved in an
active volume of sub-wavelength scale, the amount of obtainable photon fluxes is limited
compared to the much larger diameter and phase matching length which can be realized
in a standard generation scheme.

4.9 Discussion and experimental issues
We illustrated the advantages of PEAX sources in term of beam collimation, pulse front
quality, and high repetition rate, which can be used for spatio-time-resolved surface spec-
troscopy [Sto+07].

From an experimental point of view, PEAX sources should be quite feasible, since
no pulse amplification chain is needed. Moreover, the intrinsic geometrical separation of
higher from lower harmonics can be exploited to simplify the experimental setup. The
main difficulty is the rather low yield to be expected from a PEAX source. Also, the high
harmonic generation for the bow-tie shaped nano-devices reported in Ref. [Kim+08], has
not so far seen independent verification.

A first severe criticism was formulated in 2012, when in Ref. [Siv+12] it was shown that
the observed XUV emission was not a coherent process, but rather a multi-photon atomic
line emission (ALE) process. The main criticism was related to the conversion efficiency
of the laser power into harmonics: in [Kim+08] it is reported to be of the same order of
magnitude as in standard harmonic generation, where however the conversion volume is 8
orders of magnitude bigger. It was argued that the ratio between the conversion efficiency
of nano-HHG and gas HHG should scale as:

Cnano

Cconv
= Rnano

Rconv

(
Vnano
Vconv

)2 (Fnano

Fconv

)2
∼ 10−8. (4.12)
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where Rnano/Rconv = 105 is the repetition rate ratio, Vnano/Vconv = 10−8 is the volume ratio,
and the phase matching factor F 2

conv = 10−3 is used, which in the plasmonic case is set to
F 2
nano = 1.
In the response in Ref. [Kim+12], it was agreed that bow-ties HHG is not a viable

technique, and the focus should be shifted to the tapered waveguide technique discussed
in this Chapter, where the enhancement volume is 2 orders of magnitude bigger than in
the bow-ties case.

Following a reasoning similar to what leads to Eq. (4.12), in Ref. [Ras13] it was
further shown that by comparing the conversion efficiencies in Refs. [Kim+08]-[Par+11]
with those achievable in the cavity-enhancement HHG framework [Cin+12], it is possible
to extrapolate the absolute power of the high harmonic radiation.

In table 4.1 the PEAX characterization obtained with Xenon, which is used in Ref.
[Ras13], and Argon, which is used in our work [LKS13], are compared. The comparison of
the PEAX characterization performed with Xenon to what obtained in Ref. [Ras13] shows
that the values are correct within one order of magnitude. The difference is probably due
to the small guiding effect provided by the waveguide in the backward direction. What is
puzzling is that the theoretical prediction contained in this Chapter and the one in Ref.
[Ras13] are 5 orders of magnitude smaller than what extrapolated for the experimental
results reported in Ref. [Par+11]. As a final remark, during the review of Ref. [LKS13],
in Ref. [Siv+13] it was established that in the bow-ties case the HHG signal is a factor
10−3 weaker than the signal from multi-photon ALE.

Since the bow-ties plasmonic device and the nanoplasmonic tapered waveguides inves-
tigated in this work are closely related, the perspectives of this last technique are not very
encouraging at the moment. However, the higher enhancement volume with respect to
bow-ties structures and the guiding effect in the backward direction may narrow the gap
in terms of power with standard harmonic generation. If we add to this the excellent spa-
tial properties, the weak dependence on the incidence angle in the funnel, and the absence
of any amplification chain, the PEAX sources can compete with the standard ones in term
of practicality and affordability.



5
Attosecond Photoscopy of Surface

Excitations

This Chapter is largely based on Ref. [Lup+14]. From using SPPs for AS pulse genera-
tion the attention is now shifted to a scheme for probing the SPP dynamics by mean of
AS pulses. Surface plasmons are widely used in many cross-disciplinary fields for their
properties of light confinement in the vicinity of metallic supports. In this context, the
nanoplasmonic branch is a promising candidate for the development of plasmonic based
all-optical processors, since the field confinement property can combine the high opera-
tional speed of photonics (PHz scale) with the miniaturization provided by electronics (nm
scale) [Ozb06]. In this sense, it is interesting to investigate the temporal transient prop-
erties of the surface electron excitation. Although the plasmon lifetime can be deduced
from the plasmonic resonance width observable in the reflection or transmission spectrum,
the formation process of the resonant oscillation cannot be studied in the framework of
frequency analysis.

In this Chapter an experimental proposal based on the attosecond streak camera (ASC)
[Kie+04] is presented, which aims to image the transient dynamics of a plasmonic mode.
The ASC technique was already successfully applied to solid surfaces in [Cav+07] for the
measurement of electron transport times in tungsten. The attosecond streak camera is
a two-color pump-probe scheme, where a weak XUV-AS pulse ionizes electrons from the
solid, and a collinear, few-cycle (∼ 5 fs FWHM) NIR pulse serves as the probe, which
accelerates the XUV photo-electrons after their escape from the solid.

The excitation of two counter-propagating SPPs on a grating structure is considered.
A time-delay controlled arrangement of NIR and XUV beams is used to excite the SPPs
and to emit photoelectrons which move in the plasmonic field. The temporal structure of
the plasmonic field is reflected in the photoelectron spectrum. In principle it is possible to
spatially separate the pump and the probe beams, allowing the imaging of plasmonic modes
in different surface regions, thus providing spatio-temporal information. To distinguish
this arrangement from standard attosecond streaking experiments, this setup was named
“Attosecond Photoscopy”.
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5.1 Experimental setup
Isolated AS pulses are produced from high harmonic radiation emitted by noble gases
irradiated with few-cycle carrier envelope phase (CEP) stabilized NIR laser pulses [Hen+01;
Cav+07; Cor93; AD04]. The generated high harmonic radiation co-propagates with the
NIR pulse. The pulses are focused onto the grating structure with a two part mirror
composed of a XUV multilayer mirror in the inner part, designed to reflect only the highest
part of the harmonic spectrum, and a broadband NIR mirror in the outer part. This
arrangement allows to produce an isolated AS pulse, timed with a precision of . 10 as to
the NIR pulse.
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Figure 5.1: Proposed experimental arrangement for performing attosecond photoscopy of
surface plasmon excitations. A cloud of photoelectrons ionized by the XUV AS pulse is
accelerated in the SPP fields, which are in turn excited by a short NIR pulse. Attosecond
precise control of the time delay between the NIR and XUV pulses enables the determination
of the SPP transient properties. Figure reproduced from [Lup+14].

The experimental setup is illustrated in Figure 5.1. The NIR and XUV beams propagate
along the direction orthogonal to the grating plane, which is referred to as y-direction, with
polarizations along the grating grooves, in the x-direction. In the NIR focus two SPPs
are excited, counter-propagating along x with polarizations along y. Although at normal
incidence only one of the two plasmonic branches, the bright mode [Bar+96], is visible
with plane waves, the tight focusing of the NIR pulse allows the coupling with the second
branch, the “dark” mode (cf. Figure 5.8).

The photoelectrons emitted by the XUV-AS pulse are then collected by a detector in
the y-direction. Following [Cav+07], the resulting spectrogram of final momenta recorded
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as a function of the time delay between NIR and XUV pulses, is a convolution of the photo-
emission process with electron acceleration by the surface fields. Depending on the time
delay between the driving NIR pulse and the XUV-AS pulse, the plasmonic field recorded
by the emitted photoelectrons differs in amplitude and phase, leading to a modulation of
the kinetic energy distribution in the photoscopic spectrogram. It will be shown in Sec.
5.2 that the plasmonic field contribution is given only at the time and position of the
photoelectron emission.

With this technique, it is possible to resolve in the time domain the energy gap between
dark and bright plasmonic modes, which appears in the spectrogram as a “transition” from
the bright ωb to the dark ωd mode frequencies. This feature is measurable in the proposed
setup thanks to the attosecond resolution.

In the following the properties of the photoscopic spectrogram are studied using a
classical analytical model and its predictions are compared with numerical solutions of the
electron dynamics in the plasmonic field together with a Monte Carlo simulation of the
photoemission process. In the end, it is shown how the plasmonic field at the surface can
be recovered from the spectrogram analysis.

5.2 Theory of attosecond photoscopy

Typical streaking setups in attosecond metrology use atoms or molecules, which can be
considered point-like electron sources with respect to the laser wavelength. Hence it is
possible to use the dipole approximation: A(r, t) ' A(t). The canonical momentum along
the pulse polarization is conserved, P(t) = Pi, which can be rewritten as p(t) + e

c
A(t) =

pi+ e
c
A(ti), where |pi| =

√
2m(Exuv −Wf ) is the initial momentum of the electron released

at time ti.
As A(t→∞) = 0, the measured final momentum is

pf = pi + a(ti), (5.1)

where the constants were absorbed into the new quantity a = e
c
A.

The spectral width of the XUV-AS pulse is reflected in the initial electron distribution
ne = ne(pi, ti). For simplicity Gaussian distributions in time and momentum are assumed,
centered around time t0 and momentum p0, respectively, with t0 the time of XUV peak
intensity on the target. The time-integrated final momentum distribution is

σ(pf ) =
∫ ∞
−∞

dti ne(pi, ti) =
∫ ∞
−∞

dti ne(pf − a(ti), ti), (5.2)

where Eq. (5.1) was inserted into the initial electron distribution dependence over pi. The
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spectrogram at varying time delay τ becomes

σ(pf , τ) =
∫ ∞
−∞

dti ne(pf − a(ti), ti − τ). (5.3)

From this, the NIR pulse can be reconstructed via a Center-Of-Energy (COE) analysis of
the average momentum of the streaking spectrogram:

〈p〉(τ) =
∫∞
−∞ dpf pf σ(pf , τ)∫∞
−∞ dpf σ(pf , τ) . (5.4)

If the detector collects only the photoelectrons emitted along the laser polarization, the
vector quantities in Eq. (5.4) become scalar. Taking ne(pi, ti) = N(p0, dp) × N(t0, dt) as
initial distribution, where N(a, b) is a Gaussian distribution of mean value a and variance
b, the integral gives

〈p〉(τ) =
∫ ∞
−∞

dti e
− (ti−t0+τ)2

2∆t2xuv

∫ ∞
−∞

dp p e
−

(p−p0−a‖(ti))
2

2σ2
p

=
∫ ∞
−∞

dti (p0 − a‖(ti))e
− (ti−t0+τ)2

2∆t2xuv '︸︷︷︸
∆txuv�2π/ωL

p0 − a‖(t0 − τ),
(5.5)

where it was defined p = pf,‖. From Eq. (5.5) is clear that averaging the streaking spectro-
gram yields the vector potential of the NIR pulse. The vector potential reconstruction is
possible only if ∆txuv is much smaller than the optical period of the NIR, which is guaran-
teed by the ultrashort duration of the AS pulse. Thus, the attosecond streaking technique
works as a mapping of time into momentum distribution, which consents to follow the time
evolution of the probe field (see Figure 5.2). On top of that, the photoemitted electrons
bear the imprint of the temporal structure of the XUV AS pulse. Thus, an analysis of the
spread of the streaked photoelectron distribution allows to characterize the features of the
AS pulse itself, for example its bandwidth and chirp.

The streaking technique can be generalized to inhomogeneous systems. Previous work
on attosecond streaking on metal nanoparticles [SK11] showed that for increasing radius,
the photoelectron spectrogram is smeared out by the overlap of photoelectron trajecto-
ries ionized by the XUV in different regions of the plasmonic field. As a consequence,
the field retrieved with Eq. (5.5) is distorted by the local plasmonic field acting on the
photoelectrons. Thus if one wants to apply this method to plasmonic excitations on ex-
tended objects, it must be considered that the surface plasmon acting as the streaking
field not only is spatially inhomogeneous but also propagates along the surface. There-
fore, one needs to include the position dependence into the initial electron distribution:
ne(pi, ti) → ne(ri,pi, ti). According to the Liouville theorem, the evolution of the distri-
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Figure 5.2: The attosecond streak camera (ASC) is an experimental technique mapping the
time of photoionization into final momentum of the streaked photoelectron. If the streaking
field is zero (green horizontal lines) the final momentum distribution recorded by the detector
is the time integral of the unperturbed initial distribution. In case of non null electric field,
the photoelectron distribution is shifted and distorted by the streaking field. The sequence of
time-delayed final momentum distributions form the streaking spectrogram, which permits
the characterization of both the streaking field, and the XUV-AS pulse. Figure reproduced
from [Kie+04].

bution function is governed by

D

Dt
ne(ri,pi, ti) = 0, (5.6)

where D/Dt is the convective derivative, i.e. the derivative along the particle trajectories
Dt = ∂t + pi

mi
· ∇i. Eq. (5.6) is formally solved by ne(ri(t),pi(t), t) = ne(ri,pi, ti), i.e. the

photoelectron distribution function is constant along the photoelectron trajectories. Thus,
the problem reduces to solving each single photoelectron trajectory in the plasmonic field.
In order to find the trajectory, the momentum of the electrons accelerated in the plasmon
field is needed, which is given by

p(t) = pi − e
∫ t

−∞
E(r(t′), t′) dt′. (5.7)

5.3 Low-speed approximation
Let us derive an approximation to solve Eq. (5.7). The carrier photon energy of the XUV-
AS pulses considered here is 80 eV, thus the average initial speed of a photoelectron can
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be estimated to be vi ∼ 5 nm/fs. For a driving NIR laser pulse of 4 fs duration and
5µm focal spot, the excited plasmonic field duration can be assumed to not exceed a few
tens of femtoseconds. In this time interval, the photoelectrons move in the plasmonic field
by less than 100 nm. Since the additional velocity change due to the acceleration in the
plasmonic field is small compared to the initial velocity, and the plasmonic evanescent field
extension is of the order of the NIR wavelength (800 nm), the photoelectron position can be
approximated by r(t′) ' ri in Eq. (5.7). Thus, E(r(t′), t′) ' E(ri, t′), where ri = r(t = ti).
This is the zero order approximation of the Taylor series:

E(r(t), t) ' E(ri, t) + ∂E
∂r(t)

∣∣∣∣∣
r(t)=ri

(r(t)− ri) + . . . ,

which is equivalent to neglecting the transport effects in the vector potential time deriva-
tive:

d

dt
A(r(t), t) = (∂t + v · ∇r) A(r(t), t) ' ∂tA. (5.8)

The integral equation (5.7) now reads:

p(t) = pi + e

c
[A(ri, t)−A(ri, ti)] . (5.9)

Assuming A(ri, t→∞)→ 0, the position corrected version of Eq.(5.1) is obtained:

pf = pi + e

c
A(ri, ti). (5.10)

Since the photoelectron detector does not provide any spatial resolution, the photoscopic
spectrogram is the integral over time and space covered by the XUV focal spot on the
grating surface:

σ(pf , τ) =
∫
R3
d3ri

∫ ∞
−∞

dti ne(ri,pf − a(ri, ti), ti − τ). (5.11)

Since the spatial or temporal integral of a propagating pulse is negligible (exactly zero in
free space, valid as long as the polarization is orthogonal to the propagation direction),
the average momentum is independent of the time-delay. In order to extract the time
information from the photoscopic spectrogram, one has to analyze the momentum variance

S(τ) =
∫
dpf |pf |2 σ(pf , τ)∫
dpf σ(pf , τ) − |〈pf〉|2, (5.12)

where 〈pf〉 was defined in Eq. (5.4).
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5.4 Approximation of the photoelectron distribution
function

The photoemission process can be regarded as instantaneous, because the XUV pulse
duration is short compared to the NIR period and its interaction with the solid is weak.

Moreover, any possible effect of electron transport in the solid is discarded and only
the photoelectrons coming from the first few layers of material are taken into account, an
assumption consistent with what reported in [Nep+12]. Furthermore, the photoelectron
spatial distribution along the grating surface is a replica of the XUV pulse intensity profile.
Thanks to these considerations ne can be factorized as:

ne(ri,pi, ti − τ) ' gx(xi)ne(pi)δ(yi − ys)δ(ti − τ − t0), (5.13)

where ys is the grating surface average position and gx is the shape function of width wx
of the XUV focal spot.

The last point needing discussion concerns the nature of the angular dependence of
the photoemission. For simplicity one can take into consideration only the two extremal
cases where the initial momenta are either all orthogonal to the grating plane, or are all
emitted in random directions. The conjecture behind this reasoning is that the actual
physical situation falls between the two cases of unidirectional or isotropic photoemission,
and has to be determined in a measurement without NIR field. It will be later shown that
the unidirectional case can be “filtered out” from the isotropic one by choosing a proper
measurement geometry, and that for either distribution, the reconstructed times closely
reproduce the actual dynamics.

5.4.1 Unidirectional distribution of the photoelectrons

A unidirectional initial distribution can be expressed as ne(pi) = ne(pi n̂s), where pi = |pi|
and n̂s is the direction perpendicular to the grating plane. Substitution into Eq. (5.11)
gives

σ(pf , τ) =
∫ ∞
−∞

dxi gx(xi)ne (pf − n̂s · a(xi, t0 − τ)) ,

where n̂s indicates the surface normal. In proximity of the grating, the plasmonic field is
mostly perpendicular to the surface, hence the quantity n̂s · a = ay is approximately equal
to the entire potential aspp. Computation of the variance in Eq. (5.12) for a Gaussian
distribution of the initial electron momenta yields

S(τ) = ∆p2 +
∫ ∞
−∞

dxi gx(xi)a2
spp(xi, t0 − τ). (5.14)
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5.4.2 Isotropic distribution of the photoelectrons
For the case of isotropic XUV photo-electron emission, the initial distribution can be
written as: ne(pi) = 1

π
ne(pi) = 1

π
ne(|pf − a|), where pi = |pi| was used. Also, |a| � |pf |

is assumed to approximate |pf − a| ' pf − a · θ̂, where θ is the angle between the final
momentum and the surface normal. The spectrogram can be now cast into

σ(pf , τ) = 1
π

∫ ∞
−∞

dxi gx(xi)ne(pf − a · θ̂). (5.15)

A lengthy but straightforward calculation for the angular integrations leads to the expres-
sion

S(τ) = ∆p2 + 1
π

∫ ∞
−∞

dxi gx(xi)|a(xi, τ)|2. (5.16)

In any case, measuring the variance of the photoscopic spectrogram by use of Eqs. (5.14)
or (5.16) provides direct access to the space-averaged vector potential a2 at the surface
in the direction of the photoelectron detector. The vector potential |a|2 = a2

x + a2
spp also

includes ax, the NIR field incident on the grating surface.

5.5 Numerical simulation of the photoscopic spectro-
gram

As in Chapter 4, simulations of the plasmonic field were performed using MEEP [Osk+10].
The properties of the grating material were included by modeling the optical constants
with Drude and Lorentz response functions as given in Eq. (4.10), with parameters taken
from [Rak+98a]. A test of the goodness of the employed numerics is reported in Appendix
A. We assumed a NIR pulse of temporal Gaussian profile, with 4 fs FWHM duration
at a central wavelength of 800 nm. The grating parameters were optimized for maximal
absorption of the NIR pulse. Beam waists of NIR and XUV were 5 and 10 µm, respectively.

The XUV photoemission is modeled by a Monte Carlo process, where the random
ejection time, position and momentum are assigned according to the relative unidirectional
or isotropic probability distribution described in Sec. 5.4. The electrons final momenta
are calculated solving the Lorentz equations in the plasmonic field, for the corresponding
initial conditions generated in the Monte Carlo simulation.

The key point is to understand whether the result of the low-speed approximation con-
tained in Eq. (5.16), is accurate or not. Since it is possible to directly access the simulated
plasmonic field, it can be checked whether the variance of the numerically simulated pho-
toscopic spectrogram is in good agreement with Eq. (5.16) computed using directly the
FDTD field.

The spectrogram variance obtained with the Monte Carlo simulation is compared in
Fig. 5.3 with the space integral of the squared vector potential along the y-direction from



5.5 Numerical simulation of the photoscopic spectrogram 73

the FDTD simulation. We assumed isotropic initial momentum distribution and a time-of-
flight (TOF) detector of acceptance angle 5◦ centered around the direction perpendicular
to the grating.
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Figure 5.3: The figure shows a comparison of the momentum variance calculated from the
spectrogram in the filtered isotropic emission case of photoelectron streaked by the FDTD
field, and the integral of the superficial potential squared

∫
|ay|2 calculated directly from

the FDTD dataset. The offset of the momentum variance is due to the XUV pulse band-
width. The perfect overlap of the curves proves the validity of the theoretical model and in
particular of the low-speed approximation, cf. Sec. 5.3. Figure reproduced from [Lup+14].

It is worth noting that the variance calculated from the Monte Carlo simulation directly
images the integral of the surface plasmonic field squared, without further assumptions or
approximations from the theory.

The results are analogous for the unidirectional emission, meaning that the agreement
is robust with respect to the angular distribution of the photoelectrons. Therefore, knowl-
edge of the precise photoelectron spectrum of the grating is not crucial for the proposed
experiment.

In Fig. 5.4 the calculated photoscopic spectrograms for a unidirectional and isotropic
initial electron distribution are compared. In the isotropic case the contributions of both
the parallel and perpendicular components of the total field are captured. To identify their
origins, the recording process was simulated by using a time-of-flight (TOF) spectrometer
placed respectively at normal and grazing incidence incidence w.r.t. the grating surface.
The resulting “filtered” spectrograms are shown in Fig. 5.5. With an angular resolved
TOF measurement, it is possible to isolate the parallel component, dominated by the NIR
pulse reflected at the surface, from the perpendicular one, containing the excited plasmonic
field. Note that the unidirectional case, showing only the plasmonic contribution, can be
obtained by appropriate measurement also in the case of isotropic emission.
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Figure 5.4: Photoscopic spectrograms obtained with a unidirectional (left) and isotropic
(right) photoelectron distribution, with solid lines representing the relative variances.

For these reasons, the imaging of the fields in the isotropic case provides an in situ
diagnosis of both the plasmonic field and the driving NIR pulse at the surface, allowing
the possibility to investigate the distortion of the NIR pulse undergoing reflection on the
grating surface.

5.6 Analytic model for the SPP field on a grating
A model for the excited plasmonic field has to be defined in order to extract the buildup-
and life-times, as well as the bright and dark mode contributions to the photoscopic spec-
trogram. The field envelope is assumed to be a Gaussian: aspp = exp[iϕ] exp[−ϕ2/2ω2

sppT
2],

with ϕ = ksppx − ωsppt. There are two counter-propagating SPP wave-packets, each con-
taining a bright ωb and a dark ωd frequency. In the chosen configuration both the bright
and the dark mode can be excited at frequencies ωb and ωd, respectively. Here “bright”
and “dark” refer to the coupling properties of the modes: with plane waves only the bright
mode would be excited, and thus visible, but thanks to the k-vector dispersion of the tightly
focused beam also the dark mode contributes to the spectrogram (cf. sec. 5.7). As shown
in Figure 5.6, the two frequencies are well separated. Each counter-propagating plasmonic
wavepacket contains both. In addition, a term describing the ringing of a localized mode
excited in the focus of the NIR pulse is added (see [GV+99]). This term can be dominant
for very deep gratings, but in the present configuration is smaller than the propagating
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Figure 5.5: Photoscopic spectrograms at perpendicular (left) and grazing (right) electron
emission. The filtering is performed by simply setting a TOF detector at 90◦ and 0◦ degrees
with respect to the grating plane. The solid lines are the relative momentum variances,
with which one can retrieve plasmonic and NIR field, respectively. Figure reproduced from
[Lup+14].

components. The contributions of each mode m = b, d to the plasmonic wavepacket are

P (±)
m = eiϕ±me

−
ϕ2
±m

2ω2
mT

2
m , (5.17)

with the phase of the propagating plasmon

ϕ±m = ±kmx− ω(t− tm) (5.18)

and
P (0)
m = cos(ωm(t− tm)) e−x2/2w2

nir , (5.19)

for the localized excitation.

Buildup and decay are assumed to obey a simple rate equation where a Gaussian-shaped
buildup of width σ is depleted by decay at a constant rate τ :

ḟ(t) = e−
t2

2σ2 − 1
2τ f(t). (5.20)



76 5. Attosecond Photoscopy of Surface Excitations

Figure 5.6: Fourier transform of the momentum variance of the photoscopic spectrogram
calculated according to Eq. (5.16) on the dataset obtained from the FDTD calculation, with
parameters given in sec. 5.5.

The resulting time-distribution is

f(t, σ, τ) =
∫ t

0
e−

t′2
2σ2 e−

t−t′
2τ dt′

= e
σ2−4τt

8τ2

[
1− erf

(
σ2 − 2τt
2
√

2τσ

)]
. (5.21)

With these assumptions, the complete field is parametrized by

ay(x, t) =
∑
m=b,d

f(t−tm, σm, τm)

×
{
am

[
P (+)
m −P (−)

m

]
+ cmP (0)

m

}
. (5.22)

In practice, it is found that the bright mode decays so fast that its propagation can be
neglected in the spectrogram variance, which allows to set ab ≡ 0.

The buildup time of each mode is defined as ξm = σm
√

ln(2), the half-width half-
maximum of the Gaussian function in Eq. (5.21), which permits a direct comparison with
the NIR pulse FWHM duration.

It is found that the dark mode plasmon duration T has a measurable effect only during
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the generation phase, when counter-propagating SPPs have not separated yet and form a
standing wave. Since this process is superposed by the bright mode, it cannot be reliably
retrieved from the fit. On the other hand, T is only weakly correlated with the dynamical
parameters ξm, τm and ωm. A conservative lower bound of T can be set to the diameter of
the NIR spot size, and upper bound to that size plus the plasmon propagation during the
excitation. The dynamical parameters for variations of T are shown in Table 5.1 over the
range of [10, 20] fs (FWHM).

Table 5.1: Buildup-, life-time, and frequency of the bright and dark modes as obtained by
fitting Eq. (5.16) with the parameterization (5.22), for a range of plasmon durations Tm.
Times in fs, frequencies in eV, TFWHM = 2

√
ln 2T .

T 6 7 8 9 10 11 12 Var
TFWHM 9.99 11.66 13.32 14.99 16.65 18.32 19.98
ξb 1.933 1.964 1.987 2.004 2.016 2.025 2.031 5 %
τb 3.285 3.137 3.031 2.964 2.924 2.903 2.896 13 %
ξd 5.941 5.649 5.430 5.286 5.202 5.160 5.149 15 %
τd 34.18 34.41 34.57 34.63 34.62 34.57 34.47 < 1 %
ωb 1.613 1.615 1.616 1.617 1.617 1.616 1.615 < 1 %
ωd 1.645 1.645 1.645 1.645 1.645 1.645 1.645 < 1 %

The amplitudes of the respective plasmon modes are the remaining fitting parameters,
which are not reported here, since the relevant free parameters in this study are the ex-
citation buildup times ξb, ξd, the plasmon decay times τb, τd and the plasmon frequencies
ωb, ωd for the bright and dark modes, respectively. The result of the fitting procedure for
T = 15 fs (FWHM) is shown in Fig. 5.7.

5.7 Origin of the dark and bright modes
The values of the bright and dark mode frequencies are ~ωb = 1.65 eV and ~ωd = 1.62 eV,
which are consistent with the plasmonic band gap of 14 nm given in Ref. [Rop+07].

It is interesting to comment on the origin of the bright and dark frequencies. In Fig-
ure 5.8 the plasmonic band structure of the grating is displayed. A plane wave at normal
incidence would be able to couple only with the upper branch of the structure. However,
the NIR source pulse is a tightly focused Gaussian pulse having a non-zero ∆k spectral
width, besides the ∆ω bandwidth. Thus, the dark mode that would be otherwise impos-
sible to excite, becomes visible due to k-components non-orthogonal to the grating plane.
The coupling area is shown as a black rounded box in Fig. 5.8.

The result of the large beam divergence is that the excitation spectrum is not simply
a cut of Fig. 5.8 at θ = 0, but a convolution of the reflectivity with the angular spectrum
of the Gaussian pulse. Thus, also the dark mode becomes visible. In Fig. 5.9 is reported
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Figure 5.7: Best fit optimization of the plasmonic field model parameters against the vari-
ance of the photoscopic spectrogram in the filtered isotropic case. In the inset the errorless
values of the relevant parameters as reported in Table 5.2.

a comparison between the reflectivity spectrum of the grating calculated for a normal
incident plane wave and Gaussian beam of FWHM spot size of 4 µm. The pulse duration
is 4 fs FWHM for both cases. The extra peak appearing in Fig. 5.9 is consistent with the
dark mode frequency obtained from the best fit optimization.

5.8 Results
In Table 5.2 the results for the buildup- and life-times obtained with T = 15 fs (FWHM)
are reported. The plasmon pulse duration T has little influence on the variance, because
of the spatial integration. Variations in the range between 10 and 20 fs have only a small
effect on buildup and decay times. With a variation of about 0.7 fs, the effect is largest on
the bright and dark mode decay times, due to their overlapping. For any given value of T
in this interval, the buildup and decay times extracted from the FDTD surface field and
from the spectrogram variance are in good agreement.

The plasmonic field enhancement can be evaluated from the comparison of the NIR vs.
the plasmonic field in the two spectrograms shown in Figure 5.5. In the present case, it is
∼ 1. From the spectrogram at grazing direction, the NIR pulse duration is ∆tfwhm = 4.5 fs,
in good agreement with the 4.6 fs from the FDTD code. This measurement constitutes an
in situ diagnosis of the distortions of the NIR pulse while being reflected from the grating.

Summarizing, this method allows to image the plasmonic field of SPPs, using only al-
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Figure 5.8: SPP excitation mechanism on a gold grating. When the excitation source is an
ultrashort tightly focused Gaussian beam, the wave-vector and frequency broad bands allow
coupling with the dark mode even at normal incidence. The beam divergence for a FWHM
spot size of 5 µm at 800 nm is about 5◦.
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Figure 5.9: Comparison between the reflectivity spectra of the grating structure illuminated
respectively with a plane wave and a Gaussian beam.

ready existing equipments typical of attosecond metrology. The technique can be easily
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Table 5.2: Best fit optimization of the carrier frequency ωm, buildup time ξm and lifetime
τm against the numerically simulated data. The cases of isotropic emission with perpen-
dicular detection (“filtered”), unidirectional emission, as well as values extracted directly
from the FDTD calculation are shown. (Times in fs. Frequencies in eV), table taken from
[Lup+14].

Filtered Isotropic Unidirectional FDTD
ξb 2.07 2.06 2.01
τb 3.0 3.1 2.96
ξd 6.6 6.2 5.3
τd 32.5 33.3 34.6
ωb 1.61 1.62 1.62
ωd 1.65 1.65 1.65

extended to any kind of surface plasmonic excitation, by suitably reformulating the analyt-
ical model for the plasmonic field. Recent developments of the experimental apparatuses
indicates the possibility to spatially separate the XUV and NIR pulse while keeping the
attosecond precise synchronization. In this scenario, this technique could provide time and
space resolved imaging of virtually any surface phenomena: by exciting a surface mode
with the NIR pulse in some region, one can follow the dynamics of the excitation along
complex nanostructured components by simply pointing the attosecond XUV pulse on the
region of interest. The basic parameters important for the chosen configuration can then be
determined by controlling the relative pulse delay. This allows the extraction of parameters
such as buildup- and life-times. Within the same experiment, also an in situ diagnostics
of the driver NIR pulse can be performed.



6
Modeling and Simulation of SPPs

In the previous chapters the excitation of plasmonic fields in the different configurations
were calculated by numerically solving the Maxwell’s equations in presence of an external
source. In matrix form they read:

∂φ

∂t
= ∂

∂t

(
E
H

)
=
(

0 ε−1∇×
−µ−1∇× 0

)(
E
H

)
+
(
−ε−1J

0

)
= D̂ φ+ S (6.1)

where the constitutive relations D = εE, B = µH were used. ε and µ are respectively
the dielectric and magnetic permittivity tensors, and contain the physical properties of the
system under consideration. For frequency dependent dielectric and magnetic functions, it
is more convenient to use a set of additional time dependent equations for the polarization
P and magnetization M of the system, assuming a Drude-Lorentzian dependence of the
form [Osk+10]:

ε(ω) = ε∞ −
ω2
pl

ω2 + iωγ
+

N∑
i=1

fiω
2
i

ω2
i − ω2 − iωγi

, (6.2)

where the first (Drude) term refers to the interacting free-electron gas response, and the
additional (Lorentz) terms are usually employed for the modeling of interband transitions.
Such a form corresponds to a set of time domain equations for each term in the dielectric
function given by [Osk+10]

∂2Pi

∂t2
+ γi

∂Pi

∂t
+ ω2

i P = fiω
2
i E, (6.3)

for the Lorentz term and by [Osk+10]

∂2PD

∂t2
+ γ

∂PD

∂t
= ω2

plE, (6.4)

for the Drude term. Then, the dielectric function is set to ε = ε∞ in Eq. (6.1) and
the polarization term P = PD + ∑

i Pi is added as source term in Eq. (6.1). The same
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procedure must be performed also for the magnetization term. Such implementation is
more convenient when solving the Maxwell’s equations in the time domain, since it avoids
Fourier transforming the fields in the whole space at each time step.

The solutions of Eq. (6.1) were obtained using MEEP [Osk+10], an open-source li-
brary which implements the Finite-Difference Time-Domain (FDTD) scheme for Maxwell’s
equations. In the FDTD method, both the time and space derivatives are computed on a
staggered grid, in which the fields E and H are stored at grid positions shifted in space
and time with respect to each other of ∆t/2 and (∆x,∆y,∆z)/2. This grid, reported in
Figure 6.1, is called the “Yee lattice” and allows to derive a numerical scheme that ensures
second order accuracy of the first order derivatives as well as remaining explicit (for a
comprehensive treatment, see [Taf05]).

Figure 6.1: In the FDTD method, both time and space derivatives are computed on a
staggered grid, in which the fields E and H are stored at grid positions shifted in space and
time with respect to each other of ∆t/2 and (∆x,∆y,∆z)/2. Here the 3D spatial grid with
relative position of the electromagnetic field components is shown.

The solution propagating outside the simulation box is absorbed by boundary layers
called Perfectly Matched Layers (PML) [Ber94], which allow for negligible reflection of the
solution inside the simulation box. The reason why absorbing layers are needed is that
asymptotic solutions of the wave equation are oscillating functions which decay slowly
with r as r(1−d)/2, with d the dimension of the problem. Thus, either a truncation of the
simulation box would produce reflection, or a remapping of the outer region would increase
the oscillation frequency in a way that it would not be resolved by the grid anymore.

The idea behind the PML is to define an absorbing region by complex stretching the
spatial coordinates. The result is that in this domain the outgoing oscillating solution
becomes exponentially decaying, without affecting the solution in the unstretched region.
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6.1 Limitations of PMLs
PMLs typically fail when the simulation box contains materials which are not invariant
with respect to the PML stretching direction. This happens because the solution is no
longer separable in the coordinates and the standard formulation of the PMLs is not valid
anymore [Joh10]. Unfortunately, one of the most common problem in plasmonics, the
excitation of SPPs on diffraction gratings, falls exactly into this category. The reason is
that a grating is not translation invariant in the direction of propagation of the SPP, in
fact it owns a discrete translation invariance, whose discreteness is given by the grating
periodicity. As a result, back coupling of the surface wave to the far field in the PML
region generates incoming waves which grow exponentially.

This problem is the object of investigation of this chapter, together with a mathemat-
ical foundation of the absorbing properties of complex scaling in the case of Maxwell’s
equations, which, to the knowledge of the author, is lacking. The PML method is analyzed
using a spectral decomposition and compared with the exterior complex scaling (ECS)
method. The ECS was proposed in [Sim79] as an extension of the complex scaling method
first established in [BC71] for Schrödinger operators and applied in general to the scaling
of dispersive equations. Both methods can be derived through analytical continuations
from unitary transformations. It is shown that the methods are mathematically and nu-
merically distinct: ECS is a complex stretching that rotates the Schrödinger operator’s
spectrum into the complex plane, whereas PML is a complex gauge transform which shifts
the Maxwell operator’s spectrum in the complex plane.

6.2 Exterior Complex Scaling (ECS)
In this paragraph the method exposed in Ref. [SSM14] for building absorbing boundaries
of equations of the form

i
∂

∂t
φ[t](x) = D̂φ[t](x) (6.5)

is illustrated. It contains the necessary concepts required to implement mathematically
rigorous absorbing conditions for Maxwell’s equations. In Eq. (6.5), φ is a multi-component
wavefunction, and D̂ is a linear differential operator. The system Eq. (6.1) can be cast as
in Eq. (6.5) by defining the 6× 6 Maxwell’s differential operator:

ÔM = iD̂ = i

(
0 ε−1∇×

−µ−1∇× 0

)
(6.6)

In the domain F the solution of Eq. (6.5) must remain unmodified by the absorption oc-
curring in the boundary domain x 6∈ F . The idea is to convert the indefinitely propagating
solution in the outer region to an exponentially decaying form by continuing it into the
positive complex plane for x 6∈ F . Let the analytically continued solution be labeled by a
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complex number η. For the new equation with exponentially decaying asymptotic solution

i
∂

∂t
ψη[t](x) = Dηψη[t](x), (6.7)

one requires that:
φ[t](x) = ψη[t](x) for x ∈ F, ∀t. (6.8)

For this, a transformation can be constructed, such that it is unitary for real values of η
and respects Eq. (6.8). For complex η an asymptotically decaying solution can be obtained
such that (6.8) is maintained.

To arrive at the scaled equation (6.7) one can proceed in successive steps. At first, let
us introduce a unitary scaling Uλ that leaves the solutions invariant on F for real values
of λ. The exterior real scaling for instance is the transformation [SSM14]

(Uλψ)(x) = eλΘF (|x|)/2ψ(zλ(x)), zλ(x) := x

|x|

∫ |x|
0

dreλΘF (r), (6.9)

with
ΘF (|x|) = 0 for x ∈ F, ΘF (|x|) > 0 for x 6∈ F. (6.10)

The transformation Uλ is unitary for all real values of λ. The choice of ΘF is important only
for the numerical problem, but in principle can also be discontinuous. The discontinuous
function ΘF (|x|) = 1 for x 6∈ F will be used, which leads to analytically simple scaling.
With this, one can define the self-adjoint scaled operator Dλ := UλDU

−1
λ and show its

analyticity w.r.t. λ.
After that, Eq. (6.7) must be solved in the spectral domain and shown that ψλ[t](x)

is an analytic function of λ. Then the solution can be analytically continued to complex
values η = λ+ iθ and one can conclude that ψη[t](x) does not depend on η for x ∈ F .

Finally, the stability of the time dependent problem must be ensured. For this, it is
sufficient that the spectrum of the discrete representation of D is in the lower half of the
complex plane, so that ψη[t](x) does nowhere grow exponentially in time.

As an example, let us consider the one dimensional advection equation, D̂ = −i∂x. The
scaled spectral eigenfunctions are [SSM14]

wλ(x, k) ∼ exp[ikeλΘF (x)x]. (6.11)

The solution of Eq. (6.7) in term of the spectral expansion for the case of global scaling
can be shown to be (see [SSM14] for the derivation)

ψλ[t](x) =
∫
dke−λwλ(x, k)e−ie−λktψ̃[0](k). (6.12)

If in the unscaled solution ψ[t] propagates outwards, then the scaled solution at fixed time
t decays exponentially with |x|. However, for inwards propagating terms this procedure
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will cause an exponential growth in time, because k sin(θ) reverse its signs for the negative
part of the spectrum of D̂. Thus, while a rotation of the spectrum of an angle θ is a good
solution for the scaling of the Laplace operator, it does not produce the desired effect for
the advection operator, and in general for those operator whose spectrum covers the entire
real axis.

To overcome this problem, in PMLs each spectral function is separately scaled by a
k-dependent factor. For scaling of −i∂x one replaces in (6.9) eλΘF /2 → 1 + λ/kΘF . A
spectral shift by λ results in:

wλ(x, k) ∼ Uλe
ikx = eik(1+λ/kΘF (x))x = ei(k+λΘF (x))x. (6.13)

For λ = iθ all spectral functions decay equally with e−θx, irrespective of their direction.
The key effect is due to the k-dependent sign change, which ensures that both the pos-
itive and negative parts of the spectrum are simultaneously exponentially damped. The
transformation Uλ in Eq. (6.13) is a local gauge transform

(Uλφ)(x) = eiλΘF (x)xφ(x), (6.14)

thus being unitary for real values of λ. Let us compute the effect of the new transformation
on D = −i∂x. On functions in the domain of the scaled operator χ ∈ D(Dλ) = UλD(D),
the action of Dλ is

Dλχ = eiλΘF (x)xDe−iλΘF (x)xχ = [D − λΘF (x)]χ. (6.15)

By choosing χ ∈ D(Dλ), δ-like contributions at the border ∂F were excluded. Upon ana-
lytic continuation to λ→ iθ, the gauge transformation resulting from the PMLs approach
shifts the spectrum in the lower half of the complex plane σ(Dλ) = k − iθ, instead than
rotating it like in the ECS case.

In higher dimensions, the action of Uλ on the eigenfunction exp{ikx} is given in a
similar way by:

Uλe
ikx = eikxeiλ(x+y+z). (6.16)

One can define a ~λ = (λx, λy, λz), so that

Uλe
ik·x = ei

~λ·x eik·x and ∇ −→ ∇+ i~λ. (6.17)

6.3 Scaling of Maxwell’s equations

Before proceeding with the scaling, let us find a simpler form of Maxwell’s operator Eq.
(6.6). In the simple case of space-independent dielectric and magnetic tensor, by defining
the new basis {E,H} −→

{
F+ = E√

ε
+ i H√

µ
,F− = E√

ε
− i H√

µ

}
, the Maxwell’s operator can
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be written in diagonal form (
ic∇× 0

0 −ic∇×

)
, (6.18)

where c = 1/√εµ is the speed of light. The quantities (F+,F−) are the Riemann-Silberstein
vectors [Sil07]. The curl operator ∇× is an antisymmetric differential operator of the form 0 −∂z ∂y

∂z 0 −∂x
−∂y ∂x 0

 . (6.19)

By employing the spin-1 Pauli matrices

σx =

0 0 0
0 0 −i
0 i 0

 , σy =

 0 0 i
0 0 0
−i 0 0

 , σz =

0 −i 0
i 0 0
0 0 0

 (6.20)

and with the notation ~σ = (σx, σy, σz), the Maxwell’s problem can be written in the
compact notation:

∂tF± = ±c ~σ · ∇F± − J. (6.21)

In this form the physical meaning of the Riemann-Silberstein vector emerges naturally: the
two component F± correspond to the electromagnetic field whose helicity, the projection
of the spin on the wavevector, is ±1.

In the previous section it was shown that a PML approach for the setup of absorbing
boundaries corresponds to a gauge transformation of the differential operator under con-
sideration. In applying the same concept to Maxwell’s equations one must consider that
the equations are invariant under gauge transformation of the form eiλφ(x) up to a ± sign
w.r.t. each helicity component. Thus, a scaling with eiλΘF (x)x of F+ must be followed by a
scaling with e−iλΘF (x)x of F−.

In one dimension, in Cartesian coordinates, one can set x as the propagation direction,
E = Eŷ and H = H ẑ. Furthermore, the norm of the electric and magnetic fields must be
the same E = H = f(x). It is easy to show that the Maxwell’s problem for F+ reduces to

∂F+

∂t
= σx∂xF+ =

0 0 0
0 0 −i
0 i 0


0

1
i

 ∂xf(z) =

0
1
i

 ∂xf(x) = ∂xF+. (6.22)

An analogous result, but with reversed signs, holds for F−. Thus, the one dimensional
Maxwell’s problem can be rewritten as

∂

∂t

(
F+
F−

)
=
(
∂x1 0
0 −∂x1

)(
F+
F−

)
(6.23)
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Let us now perform the scaling of the Maxwell’s operator. For illustration purposes, the
effect of a simple gauge transform as in Eq. (6.15) is calculated, with the result:

Ôλ = UλÔU
−1
λ =

(
∂x + iλΘF (x) 0

0 −∂x − iλΘF (x)

)
= Ô −

(
λ 0
0 −λ

)
ΘF (x). (6.24)

Thus, taking a complex λ, for simplicity η = iλ, the spectrum of the right polarized
component is shifted above the real axis, while the other below it, as reported in Fig. 6.2
(left). This is to illustrate the effects of violating the symmetry properties of the equations
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Figure 6.2: Spectrum of the scaled Maxwell operator in one dimension obtained with trans-
formation Eq. (6.23) (left) and with transformation Eq. (6.25) (right). While a scalar
gauge transformation of the derivative operators leads to the wrong scaling, respecting the
gauge symmetry of the Riemann-Silberstein vectors ensures the correct exponential decay
of both (F+,F−) components simultaneously.

to scale. If the left polarized component F− is instead scaled with the term e−iλΘF (x)x, the
complex scaling transformation becomes

Uλ =
(
eiλΘF (x)x 0

0 e−iλΘF (x)x

)
, (6.25)

which upon application to Ô yields

Ôλ = Ô −
(
ηΘF (x) 0

0 ηΘF (x)

)
= Ô − ηΘF (x)1. (6.26)

The result of such scaling is reported in Figure 6.2 (right): now both components have
their spectrum in the lower half of the complex plane, thus ensuring the desired exponential
decay in the scaling region.
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6.4 Numerical implementation of 1D scaling

The implementation of the scaling of Maxwell’s equations is performed in a finite-element
(FE) code named tRecX (time-dependent Recursive indeX) [Scr+14], which has been de-
veloped with the purpose of solving equations of the type 6.27:

i
∂

∂t
φ[t](x) = Ĥφ[t](x). (6.27)

The code automatically creates a recursive index structure which allows handling of com-
plex operators by simply defining them in a string.

The Hamiltonian for the Maxwell equation in 1d is H = iσx∂x. A source term of the
kind f(x)g(t)d̂ is employed, where d̂ is the polarization direction. For the determination
of the absorption performances, a source with finite support in the time domain was used,
like the cosine square function:

g(t) = E0s2(t− t0) cos(ω(t− t0) + φCEO),

sn(t) =


cosn

(
πt

Tn

)
for |t| < Tn

2

0 for |t| > Tn
2

,

Tn = πτ

2 arccos
(
2−1

2n
) .

(6.28)

The time propagation and absorption in the outer region is shown in Figure 6.3. The
dashed vertical lines mark the boundaries of the absorbing regions, which are implemented
according to Eq. (6.26). The absorption performances can be tested by varying the param-
eters relevant for the absorbing region, e.g. the number of discretization coefficients NC,
the absorbing region width ` and the absorption strength |η|. The width ` can be set equal
to one wavelength, which is typically the minimum required in FDTD codes [Osk+10],
while obtaining yet very good absorption performances. In Figure 6.4 the amount of re-
flection from the boundaries of the absorbing region is reported as a function of the number
of discretization coefficients and of the absorption strength. The amount of reflection is
calculated as the ratio between the norm of the reflected wavefunction and the norm of
the wavefunction incident on the absorbing boundaries. A further improvement of the
absorption performance can be achieved by employing infinite range basis functions in
the absorbing region, as described in [Scr10], which is implemented by using Laguerre’s
exponentials. The comparison with the finite range basis is given in Figure 6.5.
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Figure 6.3: Propagation of the e.m. field in the computational box at different time stamps.
The source term is localized at the center of the computational box, has a Gaussian spatial
profile of σ = 1 and oscillates in time according to Eq. (6.28). A pair of opposite waves
maintaining the temporal profile of the source propagate towards the absorbing regions,
marked with dashed lines, where they are absorbed with no reflection.
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Figure 6.4: The absorption performances of the absorbing boundaries are quantified by the
ratio of the norm of the reflected wavefunction and the norm of the incident one. The
amount of reflection is reported for fixed absorption strength of |η| = 5 and varying number
of discretization coefficients (left) and for fixed number of discretization coefficients (see
legend) and varying absorption strength (right). In the former case it was set ` = 5, in the
latter ` = 1.
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Figure 6.5: Reflection for varying absorption strength for different basis function type in
the scaling region. An improvement of the absorption performances for small absorption
strength with infinite range gauge scaling is observed.

6.5 Maxwell’s equations in two dimensions
In dimensions greater than 1, some of the concepts elucidated in the previous section need
to be generalized. It can be shown [BB96] that the wavefunction φ = (F+,F−) transforms
according to:

φ′(r′, t) =
(
C 0
0 C†

)
φ(r, t), (6.29)

where C is a three dimensional unitary matrix. The previously discussed one dimensional
problem can easily be seen as a particular case of the more general one. Any multi-
dimensional scaling transformation must be of the form of Eq. (6.29).

The definition of a matrix C capable of extending the absorption performances of the
1D case to 2D is the object of current investigation.



7
Conclusions

The aim of this work was to investigate possible extensions of attosecond physics into
the field of plasmonics. The study of plasmonic excitations of both localized (LSPR) and
propagating (SPP) type is interesting for a variety of multidisciplinary research fields, given
the many technological applications which were demonstrated in the last years.

In this Thesis, ultrafast plasmonics as a mechanism for generating attosecond pulses
was the first subject under consideration. The exploitation of plasmonic enhancement for
HHG in tapered waveguides, introduced in [Par+11], was the object of extensive numer-
ical study. In the setup used in our investigation, a NIR laser pulse of 800 nm carrier
wavelength and 5 fs pulse duration (FWHM) is tightly focused into the large aperture of a
silver tapered waveguide. The linearly polarized laser field couples to a cylindrical surface
plasmon polariton (cySPP) with almost 100 % conversion efficiency, which propagates till
its cutoff radius near the apex of the waveguide. The field intensity enhancement of more
than two orders of magnitude allows to generate HHG from the noble gas filling the waveg-
uide. Since the enhancement volume has sub-wavelength dimensions, no phase matching
of the XUV harmonics is required.

It is shown that isolated attosecond pulses can be generated in the plasmonic enhance-
ment volume, and that the best collimation properties are obtained for pulses propagating
backwards along the waveguide cone. The symmetry of the single plasmonic mode re-
sponsible for the field enhancement is imprinted in the perfectly spherical wavefront of
the attosecond beam, which makes it very useful for experimental applications. However,
because of the small size of the active volume for HHG, the intensity of the attosecond
pulse is ultimately smaller than what usually obtained with traditional setups. Therefore,
plasmon enhanced attosecond extreme ultraviolet (PEAX) sources should be considered
as an alternative in term of usability and affordability.

In the present work was also investigated the possibility of extending attosecond streak-
ing experiments to the imaging of surface plasmon polaritons (SPPs) propagating on nanos-
tructured surfaces. The technique has already been applied to solid Tungsten, and was
proven to be capable of determining with attosecond precision the transport properties of
photoelectrons inside the solid [Cav+07; Nep+12].
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Here, a new technique called “attosecond photoscopy” was proposed, which can be
used to probe the dynamics of surface plasmon excitations in the time domain, allowing
a retrieval of the transient buildup time of the excitation. The technique is based on the
attosecond streak camera and consists in a pump-probe experiment, where the pump is
the plasmonic field excited by a NIR pulse. The collinear XUV attosecond pulse acts
as a probe, releasing electrons into the plasmonic field, whose final momentum contains
the contribution of the accelerating field at the time and position of photoemission. It is
shown that the parameters of the streaking plasmonic field can be determined with sub-
femtosecond resolution from the analysis of the momentum variance of the photoscopic
spectrogram. The setup is thought for normal incidence of both pulses, but as soon as
spatial separation of the XUV from the NIR is experimentally available, attosecond photo-
scopy can be performed for time- and space-imaging of any surface excitation. One excites
a surface mode with the NIR pulse, and tailors in situ the dynamics of the plasmonic
excitation on the supporting surface by shining the XUV attosecond pulse on the region
of interest. This could prove of fundamental importance for the study of plasmonic based
all-optical circuitry, where the interaction of the propagating plasmonic signal with the
components of the chip needs to be carefully determined.

The last topic treated in this Thesis regards the absorbing boundary conditions of
Maxwell’s equations. The rigorous operatorial formulation of the standard perfectly matched
layer (PML) approach first derived in [SSM14] was presented, and its application to the
numerical solution of Maxwell’s equations was discussed. While a successful implementa-
tion of the theory in the 1D case was demonstrated, its extension to higher dimension will
be the object of future investigation. The aim is to solve the problems of the standard
PMLs when applied to the absorption of SPPs propagating on nanostructured surfaces.

Speaking more generally, the study of plasmonic phenomena within the framework of
attosecond science is one obvious step for extending attosecond metrology from atoms and
molecules to solid state systems. In this sense the study of optical excitations on metal
surfaces can be thought as a benchmark for the proposed attosecond photoscopy technique,
since the properties of metals are well captured in the random phase approximation, which
is intrinsically an equilibrium theory. Thus, it would be very fascinating to apply the
attosecond photoscopy to the study of surface optical excitations of systems which cannot
be described with simple theories, like strongly correlated materials, or systems which are
driven out of equilibrium, accessing thus the ultrafast dynamics of non-linear phenomena.



A
Check of the numerics for the

attosecond photoscopy technique

The experimental transmission spectrum of the grating structure shown in Figure A.1 is
compared with the one obtained with our simulation tools. The spectra shown in Figure

Figure A.1: Grating structure of Ref. [Rop+05], used for benchmarking our numerics.

A.2 cast some suspects on the validity of our simulations. The discrepancies however can

Figure A.2: Comparison among transmission spectra of grating structure reported in Fig.
A.1, obtained with the RCWA method and the FDTD method.
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be explained with the imperfection of the grating used in the experiments, or with the fact
that the FDTD method uses an interpolation of the gold dielectric function taken from
[Rak+98b], while the RCWA method uses the tabulated dielectric function from [Pal98].

To figure out the last objection a calculation of the reflectivity spectrum of the grating
used in our experimental setup was performed using the RCWA and FDTD method, both
with the gold dielectric function taken from Rakic’s paper. The comparison is reported
in Fig. A.3. Figure A.3 shows that the numerics is good, and any difference between

Figure A.3: Comparison of reflectivity spectra of the grating structure obtained with the
RCWA method and the FDTD method

the experimental data and the simulations can be attributed to either imperfection of the
experimental samples or to differences of the dielectric function taken from [Rak+98b].



Bibliography

[AD04] P. Agostini and L. F. DiMauro. “The physics of attosecond light pulses”.
en. In: Reports on Progress in Physics 67.6 (June 2004), pp. 813–855. issn:
0034-4885. doi: 10.1088/0034-4885/67/6/R01.

[Ago+79] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. Rahman. “Free-Free
Transitions Following Six-Photon Ionization of Xenon Atoms”. In: Physical
Review Letters 42.17 (Apr. 1979), pp. 1127–1130. issn: 0031-9007. doi: 10.
1103/PhysRevLett.42.1127.

[All96] P. B. Allen. “From Quantum Mechanics to Technology”. In: ed. by Z. Petru,
J. Przystawa, and K. Rapcewicz. Springer, Berlin, 1996, pp. 125–141.

[Ash+13] B. Ashall, J. F. López-Barberá, E. McClean-Ilten, and D. Zerulla. “Highly
efficient broadband ultrafast plasmonics”. EN. In: Optics Express 21.22 (Nov.
2013), p. 27383. issn: 1094-4087. doi: 10.1364/OE.21.027383.

[Bal+03] A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, et al.
“Attosecond control of electronic processes by intense light fields”. In: Nature
421 (2003), p. 611.

[Bar+96] W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles. “Physical origin
of photonic energy gaps in the propagation of surface plasmons on gratings”.
In: Physical Review B 54.9 (1996), pp. 6227–6244. doi: 10.1103/PhysRevB.
54.6227.

[BB96] I. Bialynicki-Birula. “PhotonWave Function”. In: Progress in Optics 36 (1996),
pp. 245–294. issn: 00796638. doi: 10.1016/S0079-6638(08)70316-0.

[BC71] E. Balslev and J. M. Combes. “Spectral properties of many-body Schrödinger
operators with dilatation-analytic interactions”. In: Communications in Math-
ematical Physics 22.4 (Dec. 1971), pp. 280–294. issn: 0010-3616. doi: 10.
1007/BF01877511.

[BDE03] W. L. Barnes, A. Dereux, and T. W. Ebbesen. “Surface plasmon subwave-
length optics.” In: Nature 424.6950 (2003). Ed. by J. Servaes, pp. 824–830.

[Ber94] J.-P. Berenger. “A perfectly matched layer for the absorption of electromag-
netic waves”. In: Journal of Computational Physics 114.2 (1994), pp. 185–200.
issn: 0021-9991. doi: 10.1006/jcph.1994.1159.

[BLS71] D. Bradley, B. Liddy, and W. Sleat. “Direct linear measurement of ultrashort
light pulses with a picosecond streak camera”. In: Optics Communications
2.8 (Jan. 1971), pp. 391–395. issn: 00304018. doi: 10.1016/0030-4018(71)
90252-5.

http://dx.doi.org/10.1088/0034-4885/67/6/R01
http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1364/OE.21.027383
http://dx.doi.org/10.1103/PhysRevB.54.6227
http://dx.doi.org/10.1103/PhysRevB.54.6227
http://dx.doi.org/10.1016/S0079-6638(08)70316-0
http://dx.doi.org/10.1007/BF01877511
http://dx.doi.org/10.1007/BF01877511
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1016/0030-4018(71)90252-5
http://dx.doi.org/10.1016/0030-4018(71)90252-5


96 BIBLIOGRAPHY

[BW99] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propa-
gation, Interference and Diffraction of Light. 7th. Cambridge University Press,
1999. isbn: 0521642221.

[Cav+07] A. L. Cavalieri, N Müller, T. Uphues, V. S. Yakovlev, A Baltuska, et al.
“Attosecond spectroscopy in condensed matter.” In: Nature 449.7165 (Oct.
2007), pp. 1029–32. issn: 1476-4687. doi: 10.1038/nature06229.

[Cha11] Z. Chang. Fundamentals of Attosecond Optics. 2011. isbn: 1420089374.
[Cho+12] J. Choi, S. Kim, I.-Y. Park, D.-H. Lee, S. Han, et al. “Generation of isolated

attosecond pulses using a plasmonic funnel-waveguide”. In: New Journal of
Physics 14.10 (2012), p. 103038.

[Cia+14] M. F. Ciappina, J. A. Pérez-Hernández, T. Shaaran, M. Lewenstein, M.
Krüger, et al. “High-order-harmonic generation driven by metal nanotip pho-
toemission: Theory and simulations”. In: Physical Review A 89.1 (Jan. 2014),
p. 013409. issn: 1050-2947. doi: 10.1103/PhysRevA.89.013409.

[Cin+05] M. Cinchetti, A. Gloskovskii, S. Nepjiko, G. Schönhense, H. Rochholz, et al.
“Photoemission Electron Microscopy as a Tool for the Investigation of Optical
Near Fields”. In: Physical Review Letters 95.4 (July 2005), p. 047601. issn:
0031-9007. doi: 10.1103/PhysRevLett.95.047601.

[Cin+12] A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, et al. “Direct
frequency comb spectroscopy in the extreme ultraviolet”. In: Nature 482.7383
(2012), pp. 68–71.

[Cor93] P. Corkum. “Plasma perspective on strong field multiphoton ionization”. In:
Physical Review Letters 71.13 (Sept. 1993), pp. 1994–1997. issn: 0031-9007.
doi: 10.1103/PhysRevLett.71.1994.

[DD95] B. Dhoedt and D. Delbeke. “RODIS”. 1995.
[Dit+02] H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, et al. “Fluo-

rescence imaging of surface plasmon fields”. In: Applied Physics Letters 80.3
(Jan. 2002), p. 404. issn: 00036951. doi: 10.1063/1.1435410.

[Dit+03] H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg.
“Efficiency of local light-plasmon coupling”. In: Applied Physics Letters 83.18
(Oct. 2003), p. 3665. issn: 00036951. doi: 10.1063/1.1625107.

[DL04] R. A. Depine and S. Ledesma. “Direct visualization of surface-plasmon bandgaps
in the diffuse background of metallic gratings”. In: Optics Letters 29.19 (2004),
p. 2216. issn: 0146-9592. doi: 10.1364/OL.29.002216.

[Dre+02] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, et al.
“Time-resolved atomic inner-shell spectroscopy”. In: Nature 419.6909 (Oct.
2002), pp. 803–807.

http://dx.doi.org/10.1038/nature06229
http://dx.doi.org/10.1103/PhysRevA.89.013409
http://dx.doi.org/10.1103/PhysRevLett.95.047601
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1063/1.1435410
http://dx.doi.org/10.1063/1.1625107
http://dx.doi.org/10.1364/OL.29.002216


BIBLIOGRAPHY 97

[Fan41] U. Fano. “The Theory of Anomalous Diffraction Gratings and of Quasi-
Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)”. In: Journal
of the Optical Society of America 31.3 (Mar. 1941), p. 213. issn: 0030-3941.
doi: 10.1364/JOSA.31.000213.

[Fer+88] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, et al. “Multiple-
harmonic conversion of 1064 nm radiation in rare gases”. In: Journal of
Physics B: Atomic, Molecular and Optical Physics 21.3 (Feb. 1988), pp. L31–
L35. issn: 0953-4075. doi: 10.1088/0953-4075/21/3/001.

[FW03] A. L. Fetter and J. D. Walecka. Quantum Theory of Many-particle Systems.
2003. Chap. IX. isbn: 0486428273.

[Gag11] J. Gagnon. “Attosecond Electron Spectroscopy”. PhD thesis. 2011.
[Gou+04] E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, et

al. “Direct Measurement of Light Waves”. In: Science 305 (2004), pp. 1267–
1269.

[Gou+08] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, et al.
“Single-Cycle Nonlinear Optics”. In: Science 320.5883 (2008), pp. 1614–1617.
doi: 10.1126/science.1157846.

[Gou+10] E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, et al. “Real-
time observation of valence electron motion”. In: Nature 466.7307 (2010),
p. 739. doi: 10.1038/nature09212.

[GV+99] F. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-
Rios, et al. “Localized surface plasmons in lamellar metallic gratings”. In:
Lightwave Technology, Journal of 17.11 (Nov. 1999), pp. 2191–2195. issn:
0733-8724. doi: 10.1109/50.803010.

[GV08] G. Giuliani and G. Vignale. Quantum Theory of the Electron Liquid. 2008.
isbn: 0521527961.

[Hen+01] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, et al.
“Attosecond metrology.” In: Nature 414.6863 (Nov. 2001), pp. 509–13. issn:
0028-0836. doi: 10.1038/35107000.

[HGD93] B. Henke, E. Gullikson, and J. Davis. “X-Ray Interactions: Photoabsorption,
Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92”. In:
Atomic Data and Nuclear Data Tables 54.2 (July 1993), pp. 181–342. issn:
0092640X. doi: 10.1006/adnd.1993.1013.

[HK09] H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Prop-
erties of Semiconductors. World Scientific, 2009, p. 469. isbn: 981283883X.

[HK90] H. J. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic
Properties of Semiconductors. World Scientific, 1990. isbn: 9810200242.

http://dx.doi.org/10.1364/JOSA.31.000213
http://dx.doi.org/10.1088/0953-4075/21/3/001
http://dx.doi.org/10.1126/science.1157846
http://dx.doi.org/10.1038/nature09212
http://dx.doi.org/10.1109/50.803010
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1006/adnd.1993.1013


98 BIBLIOGRAPHY

[Irv+06] S. Irvine, P Dombi, G. Farkas, and A. Elezzabi. “Influence of the Carrier-
Envelope Phase of Few-Cycle Pulses on Ponderomotive Surface-Plasmon Elec-
tron Acceleration”. In: Physical Review Letters 97.14 (Oct. 2006), p. 146801.
issn: 0031-9007. doi: 10.1103/PhysRevLett.97.146801.

[Joh10] S. G. Johnson. Notes on Perfectly Matched Layers (PMLs). Tech. rep. 2010.
[Kel65] L. V. Keldysh. “Ionization in the field of a strong electromagnetic wave”. In:

Soviet Phys. JETP 20.5 (1965), p. 1307.
[KI09] F. Krausz and M. Y. Ivanov. “Attosecond physics”. In: Reviews of Modern

Physics 81.1 (2009), pp. 163–234. issn: 0034-6861. doi: 10.1103/RevModPhys.
81.163.

[Kie+04] R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, et
al. “Atomic transient recorder.” In: Nature 427.6977 (Feb. 2004), pp. 817–21.
issn: 1476-4687. doi: 10.1038/nature02277.

[Kim+08] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, et al. “High-harmonic gener-
ation by resonant plasmon field enhancement”. In: Nature 453.7196 (2008),
pp. 757–760.

[Kim+12] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, et al. “Kim et al. reply”. In:
Nature 485.7397 (2012), E1–E3.

[KKV12] F. Kelkensberg, A. F. Koenderink, and M. J. J. Vrakking. “Attosecond streak-
ing in a nano-plasmonic field”. en. In: New Journal of Physics 14.9 (Sept.
2012), p. 093034. issn: 1367-2630. doi: 10.1088/1367-2630/14/9/093034.

[Kra+14] C. M. Krauter, J. Schirmer, C. R. Jacob, M. Pernpointner, and A. Dreuw.
“Plasmons in molecules: microscopic characterization based on orbital tran-
sitions and momentum conservation.” In: The Journal of chemical physics
141.10 (Oct. 2014), p. 104101. issn: 1089-7690. doi: 10.1063/1.4894266.

[Kre71] E. Kretschmann. “Die Bestimmung optischer Konstanten von Metallen durch
Anregung von Oberflächenplasmaschwingungen”. In: Zeitschrift für Physik
241.4 (Aug. 1971), pp. 313–324. issn: 1434-6001. doi: 10.1007/BF01395428.

[KSH11] M. Krüger, M. Schenk, and P. Hommelhoff. “Attosecond control of electrons
emitted from a nanoscale metal tip.” In: Nature 475.7354 (July 2011), pp. 78–
81. issn: 1476-4687. doi: 10.1038/nature10196.

[KSK93] K. C. Kulander, K. J. Schafer, and J. L. Krause. “Dynamics of short-pulse
excitation, ionization and harmonic conversion”. In: Proceedings of the Work-
shop, Super Intense Laser Atom Physics (SILAP) III, edited by B. Piraux
(Plenum, New York) (1993).

[Kub+05] A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, et al. “Femtosecond imaging
of surface plasmon dynamics in a nanostructured silver film.” In: Nano letters
5.6 (June 2005), pp. 1123–7. issn: 1530-6984. doi: 10.1021/nl0506655.

http://dx.doi.org/10.1103/PhysRevLett.97.146801
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1038/nature02277
http://dx.doi.org/10.1088/1367-2630/14/9/093034
http://dx.doi.org/10.1063/1.4894266
http://dx.doi.org/10.1007/BF01395428
http://dx.doi.org/10.1038/nature10196
http://dx.doi.org/10.1021/nl0506655


BIBLIOGRAPHY 99

[LKS13] M. Lupetti, M. F. Kling, and A. Scrinzi. “Plasmon-Enhanced-Attosecond-
Extreme Ultraviolet Source”. In: Physical Review Letters 110.22 (May 2013),
p. 223903. issn: 0031-9007. doi: 10.1103/PhysRevLett.110.223903.

[Lup+14] M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi. “Attosecond Photoscopy
of Plasmonic Excitations”. In: Physical Review Letters 113.11 (Sept. 2014),
p. 113903. issn: 0031-9007. doi: 10.1103/PhysRevLett.113.113903.

[Mai07] S. A. Maier. Plasmonics: Fundamentals and Applications. Springer, 2007.
isbn: 9780387331508.

[Mos14] R. Moshammer. http://www.mpi-hd.mpg.de/pfeifer/page.php?id=145. 2014.
[Mul02] H. G. Muller. “Reconstruction of attosecond harmonic beating by interference

of two-photon transitions”. In: Appl. Phys. B 74 (2002), S17.
[Nep+12] S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D. Menzel, et al.

“Attosecond Time-Resolved Photoemission from Core and Valence States of
Magnesium”. In: Physical Review Letters 109.8 (Aug. 2012), p. 087401. issn:
0031-9007. doi: 10.1103/PhysRevLett.109.087401.

[NH94] L. Novotny and C. Hafner. “Light propagation in a cylindrical waveguide with
a complex, metallic, dielectric function”. In: Physical Review E 50.5 (Nov.
1994), pp. 4094–4106. issn: 1063-651X. doi: 10.1103/PhysRevE.50.4094.

[Oga+97] S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle. “Optical Dephasing in
Cu(111) Measured by Interferometric Two-Photon Time-Resolved Photoe-
mission”. In: Physical Review Letters 78.7 (Feb. 1997), pp. 1339–1342. issn:
0031-9007. doi: 10.1103/PhysRevLett.78.1339.

[Osk+10] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, et al.
“Meep: A flexible free-software package for electromagnetic simulations by
the FDTD method”. In: Computer Physics Communications 181.3 (2010),
pp. 687–702.

[Ott68] A. Otto. “Excitation of nonradiative surface plasma waves in silver by the
method of frustrated total reflection”. In: Zeitschrift für Physik A Hadrons
and Nuclei 216.4 (1968), pp. 398–410.

[Ozb06] E. Ozbay. “Plasmonics: merging photonics and electronics at nanoscale di-
mensions.” In: Science 311.5758 (2006), pp. 189–193. issn: 1095-9203. doi:
10.1126/science.1114849.

[Pal98] E. D. Palik. Handbook of Optical Constants of Solids. Academic Press, 1998,
p. 999. isbn: 0080533787.

[Par+11] I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, et al. “Plasmonic generation
of ultrashort extreme-ultraviolet light pulses”. In: Nature Photonics 5.11 (Oct.
2011), pp. 677–681. issn: 1749-4885. doi: 10.1038/nphoton.2011.258.

http://dx.doi.org/10.1103/PhysRevLett.110.223903
http://dx.doi.org/10.1103/PhysRevLett.113.113903
http://dx.doi.org/10.1103/PhysRevLett.109.087401
http://dx.doi.org/10.1103/PhysRevE.50.4094
http://dx.doi.org/10.1103/PhysRevLett.78.1339
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1038/nphoton.2011.258


100 BIBLIOGRAPHY

[Par+13] I.-Y. Park, J. Choi, D.-H. Lee, S. Han, S. Kim, et al. “Generation of EUV
radiation by plasmonic field enhancement using nano-structured bowties and
funnel-waveguides”. In: Ann. Phys. 525.1 (2013), p. 87.

[Pau+01] P. M. Paul, E. S. Toma, P Breger, G Mullot, F Auge, et al. “Observation of a
train of attosecond pulses from high harmonic generation.” In: Science (New
York, N.Y.) 292.5522 (2001), pp. 1689–1692. issn: 0036-8075. doi: 10.1126/
science.1059413.

[Pau+94] G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, and H. Walther. “Plateau in
above threshold ionization spectra”. In: Physical Review Letters 72.18 (May
1994), pp. 2851–2854. issn: 0031-9007. doi: 10.1103/PhysRevLett.72.2851.

[Pit+07] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. “Theory of
surface plasmons and surface-plasmon polaritons”. en. In: Reports on Progress
in Physics 70.1 (Jan. 2007), pp. 1–87. issn: 0034-4885. doi: 10.1088/0034-
4885/70/1/R01.

[Ple+05] A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg. “Femtosecond laser near-
field ablation from gold nanoparticles”. In: Nature Physics 2.1 (Dec. 2005),
pp. 44–47. issn: 1476-0000. doi: 10.1038/nphys191.

[Pre+13] J. S. Prell, L. J. Borja, D. M. Neumark, and S. R. Leone. “Simulation of
attosecond-resolved imaging of the plasmon electric field in metallic nanoparti-
cles”. In: Annalen der Physik 525.1-2 (Feb. 2013), pp. 151–161. issn: 00033804.
doi: 10.1002/andp.201200201.

[Rak+98a] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski. “Optical
properties of metallic films for vertical-cavity optoelectronic devices”. In: Appl.
Opt. 37.22 (1998), pp. 5271–5283. doi: 10.1364/AO.37.005271.

[Rak+98b] A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski. “Optical
Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices”. In:
Applied Optics 37.22 (Aug. 1998), p. 5271. issn: 0003-6935. doi: 10.1364/
AO.37.005271.

[Ram91] J. Rammer. “Quantum transport theory of electrons in solids: A single-particle
approach”. In: Rev. Mod. Phys. 63 (4 1991), pp. 781–817. doi: 10.1103/
RevModPhys.63.781.

[Ras13] M. B. Raschke. “High-harmonic generation with plasmonics: feasible or un-
physical?” In: Annalen der Physik 525.3 (2013), A40–A42. issn: 1521-3889.
doi: 10.1002/andp.201300721.

[Rau+08] S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, et al. “Controlled wave-
forms on the single-cycle scale from a femtosecond oscillator”. In: Optics Ex-
press 16.13 (2008), p. 9739. issn: 1094-4087. doi: 10.1364/OE.16.009739.

http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1103/PhysRevLett.72.2851
http://dx.doi.org/10.1088/0034-4885/70/1/R01
http://dx.doi.org/10.1088/0034-4885/70/1/R01
http://dx.doi.org/10.1038/nphys191
http://dx.doi.org/10.1002/andp.201200201
http://dx.doi.org/10.1364/AO.37.005271
http://dx.doi.org/10.1364/AO.37.005271
http://dx.doi.org/10.1364/AO.37.005271
http://dx.doi.org/10.1103/RevModPhys.63.781
http://dx.doi.org/10.1103/RevModPhys.63.781
http://dx.doi.org/10.1002/andp.201300721
http://dx.doi.org/10.1364/OE.16.009739


BIBLIOGRAPHY 101

[Rem+06] T. Remetter, P. Johnsson, J. Mauritsson, K. Varju, Y. Ni, et al. “Attosecond
electron wave packet interferometry”. In: Nature Physics 2.5 (2006), p. 323.
doi: 10.1038/nphys290.

[Rit+68] R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm. “Surface-Plasmon Reso-
nance Effect in Grating Diffraction”. In: Physical Review Letters 21.22 (Nov.
1968), pp. 1530–1533. issn: 0031-9007. doi: 10.1103/PhysRevLett.21.1530.

[Rop+05] C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, et al. “Femtosecond
light transmission and subradiant damping in plasmonic crystals”. In: Physical
Review Letters 94.11 (2005), p. 113901.

[Rop+07] C. Ropers, T. Elsaesser, G. Cerullo, M. Zavelani-Rossi, and C. Lienau. “Ul-
trafast optical excitations of metallic nanostructures: from light confinement
to a novel electron source”. In: New Journal of Physics 9.10 (2007), p. 397.

[RZR12] G. Ruffato, G. Zacco, and F. Romanato. “Innovative Exploitation of Grating-
Coupled Surface Plasmon Resonance for Sensing”. en. In: ed. by K. Y. Kim.
InTech, Oct. 2012. Chap. 17. isbn: 978-953-51-0797-2. doi: 10.5772/2633.

[Sch+02] O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, et al. “Time-
resolved two photon photoemission electron microscopy”. In: Applied Physics
B 74.3 (Feb. 2002), pp. 223–227. issn: 0946-2171. doi: 10.1007/s003400200803.

[Sch+13] A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, et al.
“Optical-field-induced current in dielectrics.” In: Nature 493.7430 (Jan. 2013),
pp. 70–4. issn: 1476-4687. doi: 10.1038/nature11567.

[Scr+14] A. Scrinzi, J. Liss, A. Zilinski, and V. Majety. “tRecX - time-dependent re-
cursive indexing code”. In: (unpublished) (2014).

[Scr10] A. Scrinzi. “Infinite-range exterior complex scaling as a perfect absorber in
time-dependent problems”. In: Physical Review A 81.5 (2010), pp. 1–10. issn:
1050-2947. doi: 10.1103/PhysRevA.81.053845.

[Sha+12] B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne.
“SERS: Materials, applications, and the future”. In: Materials Today 15.1-
2 (Jan. 2012), pp. 16–25. issn: 13697021. doi: 10.1016/S1369-7021(12)
70017-2.

[Sil07] L. Silberstein. “Elektromagnetische Grundgleichungen in bivektorieller Be-
handlung”. In: Annalen der Physik 327.3 (1907), pp. 579–586. issn: 00033804.
doi: 10.1002/andp.19073270313.

[Sim79] B. Simon. “The definition of molecular resonance curves by the method of
exterior complex scaling”. In: Physics Letters A 71.2-3 (Apr. 1979), pp. 211–
214. issn: 03759601. doi: 10.1016/0375-9601(79)90165-8.

[Siv+12] M. Sivis, M. Duwe, B. Abel, and C. Ropers. “Nanostructure-enhanced atomic
line emission”. In: Nature 485.7397 (2012), E1–E3.

http://dx.doi.org/10.1038/nphys290
http://dx.doi.org/10.1103/PhysRevLett.21.1530
http://dx.doi.org/10.5772/2633
http://dx.doi.org/10.1007/s003400200803
http://dx.doi.org/10.1038/nature11567
http://dx.doi.org/10.1103/PhysRevA.81.053845
http://dx.doi.org/10.1016/S1369-7021(12)70017-2
http://dx.doi.org/10.1016/S1369-7021(12)70017-2
http://dx.doi.org/10.1002/andp.19073270313
http://dx.doi.org/10.1016/0375-9601(79)90165-8


102 BIBLIOGRAPHY

[Siv+13] M. Sivis, M. Duwe, B. Abel, and C. Ropers. “Extreme-ultraviolet light gener-
ation in plasmonic nanostructures”. In: Nature Physics 9.5 (2013), pp. 304–
309.

[SK11] F. Süssmann and M. F. Kling. “Attosecond nanoplasmonic streaking of local-
ized fields near metal nanospheres”. In: Physical Review B 84.12 (2011).

[Sol+06] I. J. Sola, E Mevel, L Elouga, E Constant, V Strelkov, et al. “Controlling at-
tosecond electron dynamics by phase-stabilized polarization gating”. In: Na-
ture Physics 2.5 (2006), p. 319. issn: 1745-2473. doi: 10.1038/nphys281.

[SSM14] A. Scrinzi, H. Stimming, and N. Mauser. “On the non-equivalence of perfectly
matched layers and exterior complex scaling”. In: Journal of Computational
Physics 269 (July 2014), pp. 98–107. issn: 00219991. doi: 10.1016/j.jcp.
2014.03.007.

[Sto+07] M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz. “Attosecond
nanoplasmonic-field microscope”. In: Nature Photonics 1.9 (2007), p. 539.
doi: 10.1038/nphoton.2007.169.

[Sto04] M. Stockman. “Nanofocusing of Optical Energy in Tapered Plasmonic Waveg-
uides”. In: Physical Review Letters 93.13 (Sept. 2004), p. 137404. issn: 0031-
9007. doi: 10.1103/PhysRevLett.93.137404.

[Str41] J. A. Stratton. Electromagnetic theory. Mcgraw Hill Book Company, 1941.
[Szi+94] R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz. “Chirped multilayer

coatings for broadband dispersion control in femtosecond lasers”. In: Optics
Letters 19.3 (Feb. 1994), p. 201. issn: 0146-9592. doi: 10.1364/OL.19.
000201.

[Taf05] A. Taflove. Computational Electrodynamics: The Finite - Difference Time -
Domain Method. 3rd ed. Artech House, 2005. isbn: 0890067929.

[TGB99] G. Tempea, M. Geissler, and T. Brabec. “Phase sensitivity of high-order har-
monic generation with few-cycle laser pulses”. In: Journal of the Optical So-
ciety of America B 16.4 (Apr. 1999), p. 669. issn: 0740-3224. doi: 10.1364/
JOSAB.16.000669.

[Wac+12] G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, et al. “Electron
rescattering at metal nanotips induced by ultrashort laser pulses”. In: Phys-
ical Review B 86.3 (July 2012), p. 035402. issn: 1098-0121. doi: 10.1103/
PhysRevB.86.035402.

[Wey19] H. Weyl. “Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter”.
In: Annalen der Physik 365.21 (1919), pp. 481–500. issn: 00033804. doi:
10.1002/andp.19193652104.

http://dx.doi.org/10.1038/nphys281
http://dx.doi.org/10.1016/j.jcp.2014.03.007
http://dx.doi.org/10.1016/j.jcp.2014.03.007
http://dx.doi.org/10.1038/nphoton.2007.169
http://dx.doi.org/10.1103/PhysRevLett.93.137404
http://dx.doi.org/10.1364/OL.19.000201
http://dx.doi.org/10.1364/OL.19.000201
http://dx.doi.org/10.1364/JOSAB.16.000669
http://dx.doi.org/10.1364/JOSAB.16.000669
http://dx.doi.org/10.1103/PhysRevB.86.035402
http://dx.doi.org/10.1103/PhysRevB.86.035402
http://dx.doi.org/10.1002/andp.19193652104


BIBLIOGRAPHY 103

[Wim+14] L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, et al.
“Terahertz control of nanotip photoemission”. In: Nature Physics 10.6 (May
2014), pp. 432–436. issn: 1745-2473. doi: 10.1038/nphys2974.

[Woo02] R. Wood. “On a remarkable case of uneven distribution of light in a diffraction
grating spectrum”. In: Philos. Mag. 4 (1902), pp. 396,402.

[ZB07] R. Zia and M. L. Brongersma. “Surface plasmon polariton analogue to Young’s
double-slit experiment.” In: Nature nanotechnology 2.7 (July 2007), pp. 426–
9. issn: 1748-3395. doi: 10.1038/nnano.2007.185.

[Zha+12] K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, et al. “Tailoring a 67 at-
tosecond pulse through advantageous phase-mismatch”. In: Opt. Lett. 37.18
(2012), pp. 3891–3893.

[ZMC11] D. Zhang, L. Men, and Q. Chen. “Microfabrication and applications of opto-
microfluidic sensors.” en. In: Sensors (Basel, Switzerland) 11.5 (Jan. 2011),
pp. 5360–82. issn: 1424-8220. doi: 10.3390/s110505360.

http://dx.doi.org/10.1038/nphys2974
http://dx.doi.org/10.1038/nnano.2007.185
http://dx.doi.org/10.3390/s110505360


104



Acknowledgments

I would like to thank my supervisor Prof. Armin Scrinzi for giving me the opportunity to
conduct my research in a prestigious university such as the LMU Munich. In these three
and a half years he always patiently guided my work, granting me the freedom to go after
my personal interests and to work independently. For this, I am very grateful.

My thanks go also to my second supervisor Prof. Norbert Mauser, for covering the
mathematical aspects of the numerical simulations performed in this thesis and extending
my work in the form of a Co-tutelle between the Fak. Physik at LMU München and the
Fak. Mathematik at Univ. Wien. Being a member of the Viennese FWF “doctoral school
on nonlinear PDEs” was a very positive exchange experience and an invaluable occasion
of further personal development.

I am also grateful for the continuous funding of my thesis by the FWF (Austrian Science
Foundation), the SFB “Vienna Computational Materials Laboratory” (project No. F41),
where my 2 PhD advisors jointly lead the subproject “dynamical correlated systems”, and
by the MAP (Munich-Center for Advanced Photonics) project.

Another special thank go to Prof. Thorsten Uphues and Julia Hengster, for giving
me the possibility through their experimental expertise, to let my work on “Attosecond
Photoscopy” become real. Thorsten’s curiosity and enthusiasm for physics have been very
stimulating throughout our scientific collaboration.

I am also very thankful to Prof. Matthias Kling, for providing useful insights and
advices during the first part of my work, and also for assuming the role of coordinator of
the International Max Planck Research School (IMPRS) of Advance Photon Science.

This brings me to thank all the people involved in the school, in primis the other
coordinators Dr. Nicholas Karpowicz and Dr. habil. Vladislav Yakovlev, and the wonderful
secretary Mrs. Wild. Meeting all the people from the school was a real privilege, and a
great source of fun too. Further thanks go to Ass. Prof. Hans Peter Stimming for the
advices on numerics and to Viennese collegues of the SFB VICOM and the FWF doctoral
school for the frequent exchanges we had.

Surviving the bureaucracy would have been impossible without Mrs. Stefanie Preuss
(Univ. Wien) and Mrs. Ute Tobiasch (LMU), who kindly helped me in all aspects of
administration.

Also, I would like to thank my officemates and colleagues for sharing our everyday
life and giving each other support. A special thanks goes to Alejandro and Andreas for
helping me with the “Zusammenfassung”, and to Kalle, for the huge amount of IT advices
I received from him.

Staying abroad would have been much less enjoyable if it weren’t for my friends of the
IMPRS school and the MCC association. So, thank you for all the amazing time we spent
together!

I ringraziamenti finali vanno alla mia famiglia. Anche se non accetteranno mai la



106

distanza che ci separa, mi hanno sempre sostenuto in tutte le mie scelte. Infine, ringrazio
la mia ragazza Giulia per tutto l’amore e l’affetto che mi dona ogni giorno. Senza di lei, la
mia vita non sarebbe così vivace.



Mattia Lupetti
Address Lindwurmstraße 169,

80337,Munich, Germany

Telephone +49 176 30 711 778

Email Mattia.Lupetti@physik.uni-muenchen.de

Date of Birth 6 August 1987

Place of Birth Montegranaro (FM), Italy

Education
2011 PhD Candidate, joint project between the Ludwig-Maximilians-Universität

(München, Germany) and theUniversitätWien (Vienna, Austria).

Modeling and simulation of the interplay of ultrashort XUV pulses with surface optical

excitations.

2011

2009
Laurea Magistrale in Fisica,Università di Pisa, Pisa, Italy.
110/110 cum laude

Equivalent of MSc. Focus on Plasma Physics, Solid State Physics, Photonics, Fluid

Mechanics.

2011

2010
Internship, LULI, École Polytechnique, Paris, France.
Investigation of the influence of surface wave excitation at metal surfaces on laser-solid

energy transfer in a regime of interest for inertial confinement fusion and fast ignition.

2009

2006
Laurea in Fisica,Università di Pisa, Pisa, Italy.
110/110 cum laude

Equivalent of BSc. Major: Physics.

Scholarships & Fellowships

Study
2012 Fellow of IMPRS-APS,MPI für Quantenoptik, Garching, Germany.

InternationalMax Planck Research School of Advanced Photon Science

2011

2010
Erasmus scholarship,Université Paris XI, Paris, France.

2009

2006
SIF Scholarship, Società Italiana di Fisica, Pisa, Italy.
``Progetto lauree scientifiche'', 3-years scholarship funded by the Italian Physical Society.

Languages

Italian Mother tongue C2

English Fluent C1/C2

German Fluent C1

French Fluent B2/C1



Computer skills

Development
Languages C, C++, Python,Matlab Web HTML, CSS, JavaScript

Frameworks Django VCS Git

Office and Tools

Operating

Systems

Ubuntu, Linux, MacOS,

Windows

Office OpenOffice/LibreOffice,

Microsoft Office, iWork

Graphics Gimp, Inkscape Editing TEX, LATEX

Scientific activity & Awards

Book

contribution

M. Lupetti and A. Scrinzi (2015). Attosecond XUV Pulses and Surface Plasmon

Polaritons: TwoCase Studies. In: Kitzler, M. and Gräfe, S., ed. Ultrafast dynamics

driven by intense light pulses. From atoms to solids, from lasers to intense X-rays.

Springer Series on Atomic, Optical, and Plasma Physics. In publication.

Publication M. Lupetti, J. Hengster, T. Uphues andA. Scrinzi. Phys. Rev. Lett. 113, 113903 (2014).

Publication M. Lupetti, M. F. Kling and A. Scrinzi. Phys. Rev. Lett. 110, 223903 (2013).

Conference

Presentation

Attosecond Photoscopy: Imaging the Excitation of Surface Plasmon Polaritons.

M. Lupetti. International Conference on Free Electron Lasers and Attosecond

Light Sources (AttoFEL 2014), UCL, London, UK.

Invited

Presentation

Attosecond Photoscopy: Imaging the Excitation of Surface Excitations. M. Lupetti.

GRKColloquium, Hamburg University, Germany.

Best Poster

Prize

High Power Laser-Grating Interaction. M. Lupetti, A. Macchi, C. Riconda. Interna-

tionalWorkshop on Laser-Plasma Interaction at Ultra-High Intensity, Dresden,

Germany.

Interests

Cooking Mediterranean cuisine.

Literature Science Fiction (American 50s-70s), History, Geopolitics, Comics.

Sport Soccer, Volleyball, Hiking.

Extra

Participation to the "app@night" of the LMU Entrepreneurship Center. 2 days

event about the creation and development of a smartphone app.

Participation to the "DataCrunch2015" of the LMU Entrepreneurship Center.

Workshop on data science, predictivemodeling andmachine learning.


	Zusammenfassung
	Summary
	Introduction
	Attosecond Physics
	Three step model
	Attosecond pulse generation
	Attosecond Streak Camera

	Surface Plasmon Polaritons
	Classical theory of SPPs
	SPPs as poles of the complex reflection coefficient

	Quantum theory of SPPs
	Random Phase Approximation (RPA)
	Wave function of the plasmon state

	Excitation of SPPs
	Ultrafast plasmon dynamics
	Standard SPP imaging techniques
	Plasmonics in attosecond physics

	A Plasmon Enhanced Attosecond Extreme Ultraviolet Source
	Bow-tie structures for plasmonic enhanced HHG
	Tapered plasmonic waveguides for HHG
	Analysis of cylinder plasmon polaritons
	Propagation in hollow waveguides

	Geometry of the tapered waveguide
	Waveguiding of XUV pulses by the waveguide
	PEAX temporal characterization
	PEAX spatial properties
	Comparison with standard gas harmonics
	Discussion and experimental issues

	Attosecond Photoscopy of Surface Excitations
	Experimental setup
	Theory of attosecond photoscopy
	Low-speed approximation
	Approximation of the photoelectron distribution function
	Unidirectional distribution of the photoelectrons
	Isotropic distribution of the photoelectrons

	Numerical simulation of the photoscopic spectrogram
	Analytic model for the SPP field on a grating
	Origin of the dark and bright modes
	Results

	Modeling and Simulation of SPPs
	Limitations of PMLs
	Exterior Complex Scaling (ECS)
	Scaling of Maxwell's equations
	Numerical implementation of 1D scaling
	Maxwell's equations in two dimensions

	Conclusions
	Check of the numerics for the attosecond photoscopy technique
	Bibliography
	Acknowledgments

