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Summary 
Integrins constitute a large family of obligate αβ heterodimeric transmembrane 

receptors that bind extracellular matrix proteins and counter receptors. Since integrins 

lack enzymatic activities, ligand induced signaling is induced by intracellular adaptor 

molecules. Furthermore, the intracellular adaptor molecules of the kindlin and talin 

protein family can regulate the affinity of integrins towards ligand and recruitment of 

signaling adaptors, such as integrin linked kinase (ILK) and focal adhesion kinase (FAK), 

and thus control ligand binding and downstream signaling. Integrin activation is a 

multistep process compromising large conformational changes in the entire integrin 

molecule and mechanical tensioning of the integrin ligand bond leading to stepwise 

increases of the binding strength. It has been shown that kindlin and talin proteins can 

simultaneously interact with the cytoplasmic tail of β integrin tails and that both 

proteins contribute to integrin activation. However, it remained unclear so far, if one 

of both proteins alone can mediate the entire activation processes. 

In order to analyze the influence of kindlin and talin on integrin activation and integrin 

signaling, I generated a mouse line, which allowed Cre-mediated deletion of the 

kindlin-2 gene. I also performed the phenotype analysis of conditional kindlin-2 

deletion in the skin, which is currently continued by the PhD student Marina 

Theodosiou under the supervision of Reinhard Fässler and myself. Furthermore, I 

generated two fibroblast cell lines, which allowed complete deletion of either the talin 

or kindlin proteins (Paper I). Both cell lines almost completely lost their ability to 

adhere on extracellular ligands and showed defects in integrin mediated signaling 

leading to reduced proliferation and cell survival, the latter defect was more severely 

affected in the kindlin deleted cell line. Precise analysis of integrin activation revealed 

that in contrast to talin, kindlin can initiate integrin activation in cooperation with 

ligand binding in the earliest steps of adhesion formation. Mechanistically, we could 

identify the signaling adaptor and FAK activator paxillin as a novel interaction partner 

of kindlin. Upon integrin activation, kindlin recruits paxillin as well as the previously 

known interaction partner ILK to the early adhesion complexes leading to initial 

integrin signaling, which facilitates cell spreading, proliferation and survival on 
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extracellular matrix (ECM) ligands. As a further consequence, recruitment of talin 

might be enhanced, leading to a strengthening and maturation of the adhesion and 

further spreading upon cell contraction.  

During my studies I acquired broad insights into integrin mediated signaling pathways 

and the associated adaptor proteins. I was invited to write a review about the current 

knowledge of the adaptor protein ILK (Paper II). Early research indicated that ILK 

controls formation of initial integrin mediated contacts to the ECM, cell spreading and 

actin dynamics, as well as cell signaling important for cell proliferation, survival and 

tumor development through the interaction with other proteins, most importantly 

PINCH and parvin, and through its kinase activity. However recent results showed that 

the kinase domain of ILK is non-functional, which hampers the understanding of ILK-

mediated functions. 

During my work, I was also able to contribute to other related projects, which will be 

summarized next. 

In mammalians, three highly conserved kindlin paralogues are expressed in a tissue 

specific manner. Kindlin-2 expression can be found in almost all tissues with the 

exception of the hematopoietic system, kindlin-3 is expressed in all blood cells and 

kindlin-1 expression is restricted to epithelial cells. Genetic mutations, which disrupt 

the function of kindlin-1, have been described in human patients and lead to a rare 

skin disease, termed Kindler Syndrome. This disease is characterized by skin blistering 

after birth, pigmentation defects, atrophy and an increased risk for tumor 

development. The increased risk for tumor development remained mysterious, as loss 

of integrin activation is usually associated with a decreased risk for tumor formation. 

In paper III, we analyzed the consequences of constitutive kindlin-1 deletion in mice. 

We could identify the defects in kindlin mediated integrin activation as primary cause 

for the skin blistering phenotype and show that the mutant mice also display adhesion 

defects in the intestinal epithelium leading to an ulcerative colitis-like disease, which 

was also confirmed for the human patient by an independent group. Next, we 

investigated the cancer-promoting mechanisms induced by kindlin-1 deletion (Paper 

IV). Since constitutive deletion of kindlin-1 caused early postnatal lethality due to the 

intestinal phenotype, we generated a conditional mouse line for conditional deletion 
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of kindlin-1. Indeed, mice with skin-specific deletion of kindlin-1 survived and 

developed all typical phenotypes of Kindler Syndrome including an increased risk to 

form chemically induced tumors. In addition, these mice developed a severe hair 

follicle phenotype due to a loss of epithelial stem cell homeostasis. In order to separate 

the effects of kindlin-1 deletion from the consequences resulting from reduced 

integrin activation, we compared this mouse strain with mice expressing a mutant 

integrin, which cannot interact with kindlin. In this mouse strain the integrins remain 

inactive but kindlin-1 is still present. This analysis revealed two novel mechanisms of 

kindlin-1 function for skin stem cell homeostasis, hair follicle lineage commitment, as 

well as tumor development; on the one hand, kindlin-1, but not kindlin-2, can bind to 

the cytoplasmic tail of β6 integrin and thus mediate αvβ6 integrin-mediated release of 

TGFβ from the ECM, which controls stem cell proliferation. On the other hand, 

cytoplasmic kindlin-1 can regulate the expression levels of several Wnt-ligands and 

receptors, which is essential for hair follicle development. Consequently, loss of 

kindlin-1 leads to a decreased TGFβ release and loss of stem cell quiescence, and an 

increase of Wnt-mediated β-catenin signaling, which induces stem cells to form 

aberrant hair follicles. Because both pathways are known for their high oncogenic 

potential, it is conceivable that they cooperate to promote tumor formation in the 

absence of kindlin-1 despite impaired integrin activation. 

With the cell lines I generated for my PhD thesis (see Paper I) I was able to contribute 

to the progress of several other projects in the lab, which I want to summarize next.  

Previous publications have shown that mutations in the kindlin interaction site of β 

integrins or depletion of kindlin can cause defects in integrin surface expression and in 

the maturation process of integrins. Since the cause for these observations remained 

unclear, we attempted to investigate the underlying mechanisms (Paper V). To our 

surprise, we could show that defects in recycling of internalized β1 integrin to the cell 

surface were not caused by loss of kindlin or mutation of the talin binding site in β1 

integrin. Instead, mutation of the kindlin interaction site of β1 integrin caused this 

defect. A screening for novel interaction partners of this motif revealed that this 

mutation also strongly affected binding of the endosomal protein sorting nexin 17 

(Snx17) and that this interaction was required for targeting of internalized integrins to 
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exocytotic vesicles instead of targeting to lysosomal vesicles, where the integrins are 

rapidly degraded.
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1. Introduction 

1.1. Integrin receptor family and adhesion  
The appearance of multicellular organisms during evolution introduces the necessity 

to coordinate cell-cell and cell-substratum interactions in a highly defined manner. 

These interactions need to be efficiently and specifically established as well as broken 

in order to allow dynamic reorganization of multicellular structures into organs during 

development, the formation of large scale cellular and acellular structures (e.g. vessels 

and connective tissue respectively) or the invasion of immune cells into an infected 

organ from the blood stream. This need is partially resolved by the evolution of a 

specific group of transmembrane receptors (reviewed in 14). These molecules are 

termed integrins, as they integrate (i.e. connect) extracellular ligands and the 

intracellular cytoskeleton. At the same time they allow a biochemical regulation of 

their ligand affinity, termed inside-out signaling or integrin activation (discussed in 

1.2)13, 14. 

1.1.1. Receptor subtypes  
Up to date, integrins have been identified in all multicellular organisms, where they 

form obligate heterodimeric transmembrane glycoprotein receptors composed of a 

non-covalently linked α and β subunit. The specificity of integrin function and ligand 

binding necessary for mammalian development and homeostasis is mediated through 

24 different integrin heterodimers generated by 18 α and 8 β subunits (see Fig. 1) 13.  

Integrin heterodimers can be classified into different subgroups according to their 

ligand specificity (reviewed in 13) and the evolutionary relationship of their α subunits 

(see Fig. 1)(reviewed in 14): α5-, α8-, αv- and αIIb-subunits constitute the oldest group 

of integrins, which recognize a short Arg-Gly-Asp (RGD) peptide motif  in ligands such 

as fibronectin (FN), fibrinogen or vitronectin with differing affinities and specificities. 

β5, β6 and β8 integrins can only dimerize with αv-integrin, while β3 integrin can 

dimerize with αIIb and αv subunits. The promiscuous β1 integrin not only dimerizes 

with the RGD binding α5-, αv- and α8 integrin subunits, but also with the groups of 

Leu-Asp-Val (LDV)-peptide binding α4- and α9-subunits, which appeared later during 

evolution. These receptors recognize both FN and Ig-superfamily proteins such as 
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VCAM-1.  Furthermore β1 

integrin dimerizes with a 

group of α subunits (α3, α6, 

α7) which appeared second 

in evolution and recognize 

Laminin (LN) through a 

unknown motif and the 

evolutionary youngest 

group of collagen receptors 

(α1, α2, α10, α11), which 

recognize Gly-Phe-Hyp-Gly-

Glu-Arg (GFOGER; Hyp or O 

represent Hydroxyproline) 

peptides. The latter group is 

closely related to the leucocyte-specific α subunits αD, αM, αL, αX (specific for 

Intercellular Adhesion Molecule (ICAM), Vascular Cell Adhesion Molecule (VCAM), FN), 

which dimerize with β2-subunits, and αE, which dimerizes with β7 (specific for E-

Cadherin). The collagen receptors and the leukocyte specific receptors have evolved 

by the insertion of an additional domain in their α subunits (αI-domain, see 1.2.1). 

In line with the evolutionary development of the different integrin classes, the 

expression pattern of integrins differs strongly. For example β1 integrin heterodimers 

can be found in almost all tissues, although expression of α5β1 heterodimers appears 

to be more restricted to the mesenchymal lineage and the expression of laminin-

interacting β1-heterodimers more to epithelial lineages. Similarly, the heterodimers of 

β2 and β7 integrins are restricted to the hematopoietic lineage. 

1.1.2. Biological significance  
The hierarchy in the evolutionary development of the different integrin heterodimer 

subgroups as well as the expression patterns is reflected in the severity of the null 

phenotypes in transgenic mouse models (see Fig. 2 and reviewed in 13, 15).  

Figure 1: The integrin receptor family 13. Among all possible dimeric 
combinations of the shown α- and β subunits, only 24 combinations 
are known. These combinations are indicated here by lines. These 
receptor dimers are further grouped by their ligand specificity or the 
cell types, in which they are preferentially expressed, as indicated. 
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It has been hypothesized 

that the presence of two 

distinct germ layers in 

diploblastic organisms was 

facilitated by the 

development of the two 

groups of integrins 

recognizing the germ layer 

specific ECM ligands laminin 

and fibronectin, as this 

allowed germ layer specific, 

asymmetric interactions 

with the different types of 

surrounding ECM 13. 

Embryonic development of 

the germ layers in bilateria 

is initiated with a single 

layered blastula structure, 

which forms three germ 

layers (ektoderm, endoderm 

and mesoderm) during a process called gastrulation. In line with the important role of 

the mesoderm for embryonic development, deletion of the mesoderm specific α 

subunit α5 gives rise to the earliest (embryonic day 10-11) and most severe phenotype 

observed for the deletion of a single integrin-heterodimer. The defects affect the 

posterior somitogenesis and vascular development. Because many integrin 

heterodimers expose overlapping substrate specificity and expression pattern, 

compensation can be observed. For example, the role of multiple fibronectin binding 

integrins for mesoderm development is underlined by the observation that deletion of 

both, α5 and αv integrin subunits leads to an almost complete loss of the mesoderm 

germ layer 16. In contrast, deletion of all αv-containing heterodimers allows normal 

mesodermal development, but can cause embryonic lethality due to defective 

placenta formation or perinatal lethality due to intracerebral bleeding, suggesting a 

Figure 2: Integrin deletion phenotypes; modified from 8.  
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more specialized role of αv integrins during the development of mesoderm derived 

tissues. Deletions of single LN-specific heterodimers manifest at later stages of 

development corresponding to the formation of LN-dependent epithelial tissues. 

Deletion of α3- and α6 integrin give rise to perinatal lethality caused by branching 

defects of the lung and kidney or severe delamination defects of the skin and other 

epithelia, respectively. When integrin subunits of the hematopoietic system (β2, αL, 

αM, αIIb, αE) are deleted, the resulting defects are limited to blood cells (platelet 

aggregation defects and leukocyte adhesion deficiencies). However, affected animals 

are generally viable and fertile. Finally, deletion the evolutionary youngest group of 

collagen receptors (α1, α2, α10 and α11) leads to minor phenotypical alterations 

without affecting viability or fertility, indicating a higher degree of redundancy and 

compensation. While the deletion phenotypes of single integrin heterodimers is 

restricted to the affected germ layer or organ, deletion of the central β1 integrin 

subunit, which pairs with multiple classes of integrin receptors (see Fig. 1) leads to 

combined defects and embryonic lethality at embryonic day 6.5 due to general 

adhesive defects inhibiting gastrulation. 

 Generally, integrins do not only mediate cell adhesion on specific substrates, but also 

induce cell-type and tissue specific signaling (discussed in 1.5), which control 

differentiation, proliferation and survival important for homeostasis, immune defense 

against pathogens, 

organ plasticity or 

wound healing 

processes and thus, 

integrin function is 

implicated in many 

human diseases (for 

an overview, see 

table 1) 13. For 

example, integrins have been identified as key regulators of inflammatory diseases, 

like multiple sclerosis, asthma, Crohns Disease and rheumatoid arthritis (reviewed in 

17). Furthermore, increased activity of α5β1 and αvβ3 have been connected to the 

Table 1:  Integrins and associated diseases; modified from 17. 

Integrin Associated disease 

β2 Psoriasis 

α4 Multiple sclerosis, Crohn’s disease 

α4β1 & α4β7 Asthma 

α4β7 Ulcerative Colitis 

α5β1 Renal cell carcinoma, metastatic melanoma, 
pancreatic cancer 

αvβ3 Angiogenesis & cancer, rheumatoid 
arthritis, osteoporosis 

αIIbβ3 Unstable angina, restenosis, stroke, acute 
coronary artery disease 
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development of different cancer types and αIIbβ3 function is clearly essential for 

thrombus formation and blood clotting 17-19.  

1.2. Molecular mechanisms of integrin mediated adhesion 

1.2.1. Structure of integrins  
Mayor insights into the mechanisms of integrin mediated ligand binding and ligand 

binding affinity regulation were achieved by the study of crystal structures of complete 

αvβ3, αIIbβ3 and αxβ2 ectodomains and of different integrin fragments. Furthermore, 

small angle X-ray scattering and electron microscopy (EM)-image averaging techniques 

of truncated or complete ectodomains and complete αIIbβ3 receptors embedded in 

membrane nanodiscs have contributed to the understanding of the functional 

relationship between integrin conformation and ligand binding (discussed in 

1.2.2)(reviewed in 13, 20).  

 

Figure 3: Integrin structure and domain organization. Modified from 21. The picture represents the 
structural components of αvβ3 (left) and αLβ2 integrin ectodomains. αLβ2 integrin contains an inserted 
αI-domain; the structure of PSI-domain is not resolved and is therefore indicated as dashed circle.  

Each β subunit has a typical size of approximately 700 amino acids and consists of an 

unstructured, short cytoplasmic tail, an α-helical transmembrane domain, which 

crosses the cell membrane in a skewed angle and several protein modules in the 

extracellular domains, compromising the largest proportion of the protein (compare 

Fig. 3). The membrane proximal extracellular β-tail domain appears rather flexible, is 

linked to the transmembrane domain with an unstructured linker and is consequently 

unlikely to transmit structural constraints of the transmembrane domain to the 
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extracellular space. The β-tail domain forms together with the adjacent four cysteine-

rich, Epidermal Growth Factor (EGF)-like domains the β integrin “legpiece”. All EGF 

domains are interconnected by cysteine bridges, except the most membrane distal 

EGF-1 domain to allow a high degree of conformational flexibility. The flexibility is 

highest between EGF-1- and EGF-2 (“β-knee”) and between the interface of EGF-1 and 

the adjacent plexin-semaphorin-integrin (PSI) domain. The “β-headpiece” is composed 

of the PSI-domain harboring an insertion of the hybrid domain, which in turn contains 

an inserted ligand binding β-I domain that shares similarities with the von Willebrand 

factor type A found in blood plasma. 

Similar to the β subunit, the α subunit also consists of a largely unstructured, short 

cytoplasmic domain, a transmembrane domain, which crosses the membrane in a 

perpendicular manner and several domains forming the leg-piece and head-piece 

region (Fig. 3). The linker connecting the transmembrane domain with the leg domain 

is flexible and can be cleaved in several α subunits (α3, α4, α5, α6, α7, α8, α9, αv, αE, 

αIIb) in such a way that the extracellular domains remain covalently connected via a 

disulfide bridge 22. The legpiece extends from the membrane and is composed of two 

Calf and one Thigh domain, which share structural similarities to immunoglobulin β-

sandwich folds. In contrast to the β integrin legpiece, these domains bear less 

conformational flexibility. One important mobile interface is located adjacent to the β 

knee between the Calf-1 and Thigh domain. The other mobile interface can be found 

between the Thigh and the seven bladed β-propeller of the α-headpiece domain and 

is important for ligand binding., Ligand binding in αI-containing α integrin subunits (see 

Fig. 3, right side) is exclusively mediated via an αI subdomain, which is inserted 

between blade two and three of the β-propeller. The αI subdomain shares a high 

degree of structural similarity with the βI domain of the β integrin subunit. 

Multiple  interactions between α and β subunit domains as well as the resulting specific 

conformation of each single domain contribute differently to the conformational 

transition from an inactive integrin with low ligand affinity to a fully activated integrin 

with up to 10.000 times higher affinity (αLβ2) to its ligand. 
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1.2.2. Structural mechanisms of ligand binding and affinity regulation  
The stability of protein interaction between two ligands can be controlled by regulating 

the on-rate or off-rate of ligand-receptor binding (see 1.2.6). The same methods, which 

provided insights into the structural composition of integrins, were also used to 

determine the molecular details of integrin-mediated ligand binding (reviewed in 13, 20). 

Crystal structures of integrins in complex with their ligands highlight the importance of 

specific cation coordination sites in the αI and βI domains together with further 

interaction sites with the head domains of each αxβx integrin.  

For example, the long side chain of Arg from RGD locates into a cleft formed by the β-

propeller of the α subunit 23-25, and another region of the α5 integrin β propeller can 

interact with a “synergy” region located in FN 25, 26. It is very likely that such additional 

interactions govern the different affinities observed between integrin classes with 

overlapping substrate specificity 27, 28, as α5 integrin with mutations which perturb 

interaction with the FN synergy site exposes a 50 fold lower affinity for FN and thus 

might lose its preference in FN binding over binding to other RGD-containing ligands 

25.  

High affinity ligand interaction is mediated via the coordination of a negatively charged 

Asp residue in RGD-containing ligands with a Mg2+ ion which forms the Metal Ion 

Dependent Adhesion Site (MIDAS). Interestingly, the conservative mutation of Asp to 

Glu (RGD to RGE) leads to a dramatic reduction in ligand binding, as the longer side 

chain of Glu interferes with the formation of further molecular interactions between 

ligand and integrin 29. Ligand binding of α4/α9 integrins, β2 and αEβ7 integrins and 

collagen binding integrins is mediated in a similar manner through coordination of an 

acidic ligand side chain to the MIDAS metal ion. In contrast, the molecular details of 

laminin binding remain currently unclear. The ligand binding Mg2+ cation of the integrin 

headpiece is flanked in close proximity by two further affinity regulating Ca2+ ions. 

While the Adjacent to MIDAS (ADMIDAS) Ca2+ coordination site has an inhibitory 

influence, the second Ca2+ binding site is referred to as Synergistic Metal ion Binding 

Site (SyMBS). The synergistic effect of this metal ion binding site can be explained for 

αIIbβ3 integrin by a Glu residue which coordinates simultaneously the MIDAS and 

SyMBS cation and thereby stabilizes the ligand binding competent coordination of the 
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MIDAS cation 30. Furthermore, multiple other sites in both integrin subunits can 

coordinate Ca2+ ions, which partly depends on the ligand binding status that influenes 

the overall integrin conformation. Of note, incubation of isolated integrins or integrins 

on cell surfaces with high Ca2+ concentrations (>1mM) induce lower ligand binding 

affinities, while presence of Mn2+ ions promote high affinity ligand binding. The 

underlying mechanisms remain unclear. It can be speculated that the different sizes of 

the individual metal ions stabilize different conformations of the coordinated protein 

residues. In contrast, incubation with metal ion chelators, such as EDTA or EGTA, has a 

concentration dependent influence, which leads to inactivation at intermediate 

concentrations (most likely through removal of the MIDAS Mg2+) but can also cause 

activation at higher concentrations, potentially through the removal of Ca2+ ions.  

 

Figure 4: Conformational transition from closed to open αIIbβ3 integrin. Eight individual conformational 
states of the ligand binding site are superimposed and key residues are shown as stick models. State 1 
(light grey) relates to the closed conformation and state 8 to the open conformation (dark grey); distances 
indicate overall movements between state 1 and 8. The metal ions of MIDAS and ADMIDAS are shown as 
grey spheres 30. 

Integrins have the unique property to communicate conformational changes of the 

ligand binding site over long ranges to the region of the legpiece domains through 

chemical allostery and thus regulate extracellular ligand binding from the intracellular 

space as well as report ligand binding into the intracellular space. Consequently, the 

order of conformational changes necessary to induce integrin activation can be 

described starting from the ligand binding site or reversely from the short cytoplasmic 

tails. A recent publication has revealed a plausible series of intermediate 

conformations connecting the low affinity state with closed head piece to the high 
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affinity state with extended hybrid domain 30. Of note, in this case the conformational 

changes required the presence of RGD ligand (see also Fig. 5): First, Asp of the RGD 

ligand can be bound to the low affinity resting state integrin leading to subsequent 

movements of the MIDAS and ADMIDAS coordinating residues. Most importantly, Ser-

123 residue of the α1 chain of the βI domain changes its coordination partner from the 

ADMIDAS metal ion to the MIDAS metal ion. This leads to a chain reaction of 

rearrangements in the MIDAS and ADMIDAS coordinating residues (mostly from the 

βI-α1 chain), which induces a sliding movement of the whole RGD binding site and the 

Asp residue of the RGD ligand towards the α integrin propeller and major 

rearrangements in the βI-α1 chain, which in turn promote a pistoning movement of 

the βI-α7 side chain leading to an outwards movement of the connected hybrid domain 

(see Fig. 4 for the localization of the hybrid domain and Fig. 5 for the conformational 

changes of the βI-α-helices) 30. This hybrid domain “swing-out” is an essential step for 

integrin activation and is required to stabilize the ligand interaction by decreasing the 

unbinding rate (off-rate) 31.  

A recent crystallographic study of αIIbβ3 integrin further explained several factors 

important for the increased affinity of the open conformation of αIIbβ3 towards the 

RGD ligand 1, 30: (1) the approach of the MIDAS Mg2+ to the coordinated RGD-Asp; (2) 

an increase of the positive charge potential of MIDAS Mg2+ towards the RGD Asp, 

caused by the increased distance of a MIDAS coordinating integrin Asp side chain and 

the direct linkage of the ADMIDAS and MIDAS metal cations which reduces the 

negative charge influence of another integrin Asp side chain towards the MIDAS cation; 

(3) the establishment of additional interactions of the RGD Asp-side chain to the α1-

loop backbone; and (4) the formation of a binding pocket for RGD Arg in the α subunit 

ligand binding surface. In those integrin heterodimers carrying an inserted αI-domain, 

the βI domain of the β subunit is thought to bind an invariant Glu ligand within the αI 

domain in a similar manner as described above, which propagates according shifts of 

the α1 and α7 helix of the αI domain, allowing ligand binding. However, the structural 

details of the conformational changes are slightly different, leading to bigger 

movements of the MIDAS site 32.  
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1.2.3. Integrin activation requires large conformational changes 
Previous research underlines the essential role of the hybrid domain swing out for 

integrin activation, but also suggests that different degrees of swing out might 

correspond to different degrees of affinity and overall conformations of the integrin 

heterodimer (reviewed in 13, 20, 33). 

In all published crystal structures of the complete integrin ectodomain, the proteins 

adapt a very compact shape, which is described as “bent” conformation and is 

suggested to represent the resting or inactive state of the integrin. However, it has to 

be kept in mind that those heterodimers, which were not analyzed may adopt different 

conformations in the resting state. Biophysical studies using Förster Resonance Energy 

Transfer (FRET), FRET Lifetime imaging (FLIM) (see 1.3.4) or analytical 

ultracentrifugation as well as biochemical cross linking and antibody binding studies 

(see below) are in agreement with the existence of this bent state in vitro and in vivo 

for certain integrins (for example αvβx or αIIbβ3) 31, 34, while for other integrins direct 

structural evidence is sparse (α5β1 or α4β7). Therefore, the situation remains 

controversial 2, 25, 35, 36. 

 

Figure 5: Schematic depiction of gross conformational changes in αI-less (A-C) and αI-containing integrins 
(D-E), leading to integrin activation 30. In the bent/inactive state (A,D), no ligand binding can occur due to 
the orientation and closed conformation of the headpiece, stabilized by tight interactions of the hybrid 
domain and the integrin legpiece regions. Upon integrin “priming” through intracellular cues, the integrin 
adopts an extended, ligand binding competent conformation (B,E). Ligand binding induces conformational 
changes in the headpiece, resulting in an “open” conformation and this change is coupled to the hybrid 
domain via pistoning of the βI-α7-helix (black cylinder), leading to hybrid domain swing out and 
stabilization of the “open” high affinity conformation (C,F). The contribution of integrin leg-domain 
unclasping remains unclear (streaked lines) and similar conformational changes occur in αI-domain 
containing integrin heterodimers. 

For those integrin heterodimers, which are bent in their inactive state, hybrid domain 

swing out is thought to be directly coupled to integrin extension, as the movement of 

the hybrid domain would interfere with interactions formed to the α integrin leg region 
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(see Fig. 5A,D). In the bent β integrin several interactions are formed between the α 

and the β subunits: the β integrin EGF-2/3 domains interact with the α integrin Calf-1 

domain, the β integrin tail domain interacts with the α integrin Calf-2 domain and the 

β integrin transmembrane domain interacts with the α integrin transmembrane 

domain. Altogether, this results in an unusual orientation of the integrin head domains 

towards the cell membrane, interfering with ligand interaction and constituting one 

mechanism for integrin ligand “on-rate” regulation. Indeed, it has been shown that 

integrins trapped in this conformation cannot mediate ligand binding when expressed 

on cell surfaces 31, 33. The affinities of closed, primed and fully activated αLβ2 integrin 

increase from 2mM over 3µM to 200nM 6. This three step-model of on-rate regulation 

appears very attractive for integrin heterodimers of the hematopoietic system, which 

need to be tightly regulated in their ligand binding, as “unwanted” or uncontrolled 

ligand interaction could lead to harmful blood clotting. In contrast, such a tight control 

would not be necessary for constitutive adherent cells (as fibroblasts or epithelial 

cells), which are characterized by high expression of β1 integrin heterodimers. In line, 

EM experiments have indicated that “clasped” α5β1 integrin under non-stimulatory 

cation concentrations does not adopt a bent conformation and shows high affinity to 

FN (35nM), which only slightly increases upon transition into the unclasped, active 

form (6.3nM) 36.  

The current model of integrin activation suggest that the shallow angle of the hybrid 

domain towards the βI domain in the bent state does not allow ligand binding and 

thus, unbending of the integrin is essentially required to allow high affinity ligand 

binding (switchblade-activation model; see also Fig. 5B,E) 33. However, this concept 

remains controversial, as two publications have observed ligand binding of integrins in 

a bent conformation, which lead to the suggestion of an alternative “deadbolt” 

activation model. Further experiments have disproven the suggested underlying 

molecular mechanism of this model 33 and suggested instead conformational 

intermediates between the bent and extended form (referred as “breathing”), which 

might allow ligand binding in a partially unbent integrin connected to a partial release 

of the conformational constraints of the hybrid domain. 
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1.2.4. Integrin activation can be mediated from “inside” to the 

“outside” 
The more physiological mechanism of integrin activation is thought to be induced by 

intracellular ligands of the β integrin subunit (inside-out signaling), suggesting a 

specific sequence of events during integrin activation. In order to allow such an 

activation mechanism to work, initial conformational changes are thought to be 

induced through interaction of talin and kindlin proteins with the cytoplasmic β 

integrin tails. Most likely, these interaction can lead to the disruption of several 

interactions of both integrin subunits on the intracellular side, in the transmembrane 

region and in the extracellular transmembrane region leading to the separation of both 

subunits (“unclasping”) and subsequent integrin unbending representing a “primed” 

state of intermediate affinity. Furthermore, unclasping has been shown to allow 

steeper angles for the hybrid domain swing-out leading to a decrease of the off rate 31, 

36, stabilizing ligand binding and allowing cell spreading and integrin mediated signaling 

34, 37. On the other hand, this picture is most likely not complete, since it has been 

shown that integrin unclasping is not required for high affinity (“on-rate”) ligand 

interaction 31, 36 or cell adhesion 2, 37. This suggests that interaction of talin or kindlin 

might contribute to integrin extension and affinity regulation also by other means than 

unclasping. Indeed, talin- or kindlin-mediated integrin interaction and force 

transduction through activated, ligand bound integrins has been suggested to further 

decrease the off-rate in unclasping independent ways by unclear molecular 

mechanisms, which will be discussed next. 
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1.2.5. Force generation 
As indicated above, integrin function is tightly coupled to the anchorage to the actin 

cytoskeleton and transmission of intracellular generated forces through the integrin 

onto the ECM, enabling cells to 

migrate on the ECM or to 

remodel it through firm 

interaction. Actin can principally 

generate force through two 

distinct mechanisms; via 

polymerization and molecular 

motors 38 9.  

Actin polymerizes at the leading 

edge of the cell membrane, 

which leads to force generation. 

On the one hand, the cell 

membrane is pushed forward, 

leading to membrane protrusion. 

On the other hand, the rate of 

actin polymerization exceeds the 

rate of membrane protrusion, 

which results in a retrograde 

flow of the actin towards the cell 

center, which generates force on 

proteins, which interact with the 

actin filaments. The polymerization of actin cables is initiated through an actin 

nucleating complex of Actin Related Proteins 2/3 (Arp2/3) and further binding of an 

actin monomers to the barbed end of a preexisting actin cable is favored through ATP 

hydrolysis and can be enhanced through formins leading to polymer formation (Fig. 

6A,B). As long as the polymerization rate exceeds the disassembly rate at the pointed 

ends (actin treadmilling) the actin cable grows in a directional manner (Fig 6A). The 

polymerization is tightly controlled by a complex network of proteins providing ATP-

bound actin monomers, initiating nucleation and branching, promoting elongating, 

Figure 6: Mechanisms of actin polymerization (modified from 
MBInfo Wiki). (A) Actin is assembled at higher rate at the 
barbed end as it disassembles at the pointed end, leading to 
“treadmilling” actin polymerization. (B) Arp2/3 complex leads 
to nucleation of actin filaments and actin branching, while 
formins promote actin filament growth. (C) Actin cross linking 
proteins organize different actin structures. (D) Actin capping 
proteins inhibit actin filament growth by blocking the barbed 
end and severing proteins can promote actin polymerization by 
cleaving preexisting actin filaments.  
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cross-linking between actin cables, or severing of cables by proteins such as profilin, 

Arp2/2, formins, fascin or cofilin, respectively (Fig. 6B,D). These processes are 

regulated through Rat sarcoma homologue (Rho)-GTPases like RhoA, Cell division 

control protein 42 homolog (Cdc42) or Ras-related C3 botulinum toxin substrate 1 

(Rac1) and their specific Guanosine Triphosphate Exchange Factors (GEFs) and GTPase-

Activating Proteins (GAPs), which link actin dynamics to transmembrane receptor 

signaling. The localized expression and activation of these proteins drives lamellipodial 

cell protrusion and formation of filopodia, invadopdia or membrane blebbing by 

generating force upon the cell membrane and attached cell membrane receptors 38, 39. 

Indeed, it has been shown that lamellipodial actin polymerization leads to the 

formation of a protrusive dentritic actin network, controls lateral movement of 

integrins and accumulation of active integrins at the cell periphery as well as nascent 

adhesion assembly. Conversely, integrin interaction with the dentritic actin network 

can promote the actin polymerization driven cell membrane protrusion 9, 40.  

Myosin motors constitute 

another mechanism for force 

generation through the actin 

cytoskeleton. In fibroblasts, 

myosin II forms filaments 

which undergo ATP driven 

conformational changes leading to the movement of two anti-parallel actin cables in 

opposing directions (see Fig 7). The force generated through these myosin II filaments 

in the region of the central cell body is transmitted through long bundled actin cables, 

which require α-actinin for their formation. The linkage of these cables to integrin 

adhesion sites in turn is mediated through multiple further proteins, most prominently 

α-actinin, migfillin, parvin, talin and vinculin. Force transmission through myosin 

motors to the integrins is associated with adhesion strengthening and formation of 

larger integrin clusters (see 1.2.6 for details). 

1.2.6. Models for off-rate regulation 
The abovementioned conformational changes of integrins significantly contribute to 

the overall adhesive phenotype of cells on integrin ligands. However, also other 

Figure 7: Myosin filaments (blue) promote anti-parallel actin 
cable movements (modified from MBInfo Wiki). 
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mechanisms of integrin mediated cell adhesiveness regulation have been proposed. 

The factors contributing to this can be classified according to a recent review article 6: 

Affinity regulation, valency regulation and adhesion strengthening (see Fig. 8). 

 

Affinity regulation compromises conformational changes within single integrin 

heterodimers as discussed above (1.2). Valency regulation describes changes in the 

diffusion freedom of single integrins, leading to changes in local density and geometry 

of integrin containing membrane sections. In contrast, adhesion strengthening 

describes ligand binding-dependent changes either in the local density of integrin 

receptors or the adhesive strength of single molecules through receptor interaction 

with the cytoskeleton. In the following paragraphs the contribution of these factors 

will be discussed.  

Figure 8: Valency regulation and adhesion strengthening modes 6. (A) Integrins cluster 
on the cell surface prior to ligand binding. (B) High densities of surface immobilized 
ligands or solvent multivalent ligands induce integrin clustering. (C) Detachment of 
integrins from a cortical actin network facilitates ligand induced integrin clustering 
(upper side); relaxation of the membrane tension supports integrin-ligand interaction 
through a higher contact area to surface immobilized ligands. 
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1.2.6.1. Valency regulation 

Although structural data suggests a clear mechanism for the conformation-dependent 

regulation of integrin affinity, the measurement of affinity changes on cells is difficult 

(see also 1.3.2). Multiple reports describe differences in cell adhesiveness despite an 

apparent lack of differences in the ligand binding capability 41, 42. For example, 

increased αLβ2 mediated leukocyte adhesion has been observed upon several 

intracellular activatory stimuli (e.g. PKC activation or talin overexpression) in the 

absence of increased soluble ligand binding 42. This has led to the suggestion that at 

least in some cases integrin mediated cell adhesiveness might be regulated through 

changes in the valency rather than through changes in affinity 42. This hypothesis 

requires an active redistribution of integrin heterodimers into micro- or even macro-

clusters (compare Fig. 8A) in order to increase the general adhesiveness of the affected 

cell membrane region. However, the mechanisms for such an active redistribution are 

unclear and experimental evidence remains elusive 6. For example, lipid rafts have 

been discussed to promote integrin micro clustering, but the experimental results 

were controversial. Also, no experimental evidence has been found that homotypic 

interactions of isolated integrin transmembrane domains, which have been observed 

in artificial membranes, may also occur in intact cells. Integrin clustering on multivalent 

ligands could be negatively regulated through mechanisms, which restrict the diffusion 

of single integrin receptors in the cell membrane. It has been shown that the actin 

cytoskeleton in close proximity to the cell membrane can define nano-scale membrane 

domains which limit the long range diffusion of included membrane proteins directly 

and indirectly 43, 44. Furthermore phorbolester (Phorbol-12-myristat-13-acetat; PMA) 

induced interaction of talin with αLβ2 integrin (see 1.4.3 for details) has been shown 

to increase diffusion of this leucocyte specific integrin 45. However, the release of 

integrins from cytoskeletal constraints through actin depolymerizing drugs or 

stimulation with PMA does not promote integrin clustering in the absence of a 

multivalent ligand for αLβ2 or αIIbβ3, as measured by FRET analysis (see 1.3.4 for 

details on the method) 46, 47. Interestingly, it has been shown that soluble ligand-

induced integrin clustering cannot induce integrin signaling in comparison to 

immobilized ligand induced clustering, raising the question which function might be 
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associated to soluble ligand induced clusters 48. In summary, integrin clustering on 

soluble ligands appears as a regulated process with critically depends on the presence 

of multivalent ligands, however the biological significance of this process for cell 

adhesion and integrin mediated signaling remains unclear. 

1.2.6.2. Adhesion strengthening through integrin off-rate modulation 

While the role of integrin clustering in the presence of monovalent, soluble ligands 

remains unclear, integrin clustering on surface immobilized ligands or soluble 

multivalent ligands can be readily detected 49. The driving forces of these processes 

seem to be due to the affinity regulation of single integrins, while the actin 

cytoskeleton seems to influence clustering in a rather indirect manner (see above) 6. A 

functional hierarchy has been suggested, in which the activation of integrin 

heterodimers allows their adhesion to their ligand, and the actin cytoskeleton can 

influence the extent, localization and shape of integrin clusters 6, 9. For example, 

integrin clustering can be limited to small clusters or even inhibited, if actin tethering 

to integrins or myosin dependent force transmission are inhibited 50.  

A model, which was derived from the structural data discussed above, describes the 

influence of actin cytoskeleton to adhesion strengthening as follows (see Fig. 9)1: The 

connection of a bent integrin heterodimer to the lateral movement of the actin 

cytoskeleton via kindlin or talin adaptors might induce integrin unbending through 

frictional effects.  

 

Figure 9: The integrin cycle 1. (A) In the bent conformation, integrins have low affinity for ligand and adopt 
a bulky conformation. (B) Connection of the β integrin tail to laterally moving actin cables cause integrin 
unbending (left molecule) and eventually integrin unclasping (right molecule), which promotes a high 
affinity conformation of the integrin headpiece. (C) Binding to an immobile ligand leads to force 
transduction through the integrin molecule, which stabilizes the active conformation. (D) Upon 
disassembly of the actin cytoskeleton, clasping of the integrin heterodimer is favored (left side), which in 
turn promotes hybrid domain “swing in” (right side). (E,F) The resulting conformation promotes 
dissociation of the ligand (E) and bending of the integrin (F). 
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In the bent conformation the integrin heterodimer is relatively bulky and lateral 

movement through a crowded environment will induce leg separation, if the integrin 

heterodimer is pulled only via the β integrin cytoplasmic tail (Fig. 9A,B). Once the 

integrin adopts an extended conformation the friction is reduced and ligand binding 

can occur 1. Next, ligand binding induces hybrid domain swing out, which further 

stabilizes ligand interaction through a decrease in the off-rate (Fig. 9B,C). 

In addition to this off-rate regulation model, two further modes of actin dependent 

adhesion strengthening are described which do not require hybrid domain swing out: 

catch-bonds and cyclic mechanical reinforcement. These mechanisms seem to be 

integrin subunit specific, as they occur for α5β1 and αLβ2 integrins but cannot be 

confirmed for αvβ3 or αIIbβ3 integrins 51-56. Usually the half-life time of the binding 

between two interaction partners linearly decreases with increasing pulling force 

between the partners (slip-bond). In contrast, catch-bonds describe a rather unusual 

binding mode between two interaction partners, in which an increasing pulling force 

first also decreases the interaction half-life time, but then leads to a strong increase in 

the interaction stability, which only decreases again at much higher forces. For the 

catch-bonds formed in αLβ1, molecular modeling suggest a mechanism where a pulling 

force transmitted through the ligand stiffens the connection of the αI domain MIDAS 

to the β1 MIDAS through the αI-α7 helix leading to a more efficient high affinity 

conformation induction 57. For the α5β1 integrins, experimental and molecular 

modelling data suggest that enhanced engagement of the FN synergy site under force 

might explain the observed catch bond behavior 54. In a follow-up study a further actin-

pulling force mediated mechanism is described which enhances α5 integrin affinity to 

its ligand and was termed cyclic mechanical reinforcement 55. In this case, a short 

interval of high pulling force followed by the release of this force on α5β1 integrin 

heterodimers lead to a remarkable increase of the half-life time of the ligand receptor 

bonds. Unfortunately, the underlying mechanism remains unclear. 

Taken together, actin pulling force induced hybrid domain swing out, catch-bonds and 

cyclic mechanical reinforcement reveal interesting modes to mediate out-side in 

signaling and to regulate integrin-ECM interactions. Integrin tail separation upon actin 

mediated pulling forces could be the final step in the transmission of ligand binding 
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signal into the cell. This would explain why cells usually show no, or only weak signaling 

responses upon binding of monovalent or multivalent, soluble ligands but robust 

signaling and spreading on immobile ligands only upon integrin tail separation and 

force transduction  2, 48, 58. Furthermore, all these mechanisms could contribute to the 

detachment of integrins from their ligands during cell migration, as reduced force 

transduction through integrins would lead to faster disassembly rates (see Fig. 9D-F). 

The importance of such mechanisms is underlined by experiments with cells expressing 

hyper activated integrins. Their expression leads to elongated cell morphologies and 

arrest of cell migration 9, while inhibition of acto-myosin driven force transmission 

induces weakened adhesion and integrin mediated signaling 48, 54. 

Interestingly, the mechanical tensioning of integrins through the actin cytoskeleton 

also seems to be required for the formation of large scale integrin clusters 9 and 

conversely, a spacing of extracellular ligands larger than 70nm or cell adhesion on soft 

substrates inhibits the formation of large integrin clusters and formation of catch 

bonds 54, 59. The relevance of clustering for adhesion strengthening has been described 

previously, showing that adhesive strength is determined by the amount and density 

of adhesive contacts 48, 52. Furthermore, study of single molecule dynamics in focal 

adhesions could directly show the underlying principle of adhesion strengthening in 

clusters, where integrins can undergo several cycles of ligand binding and unbinding 

within short time 60.  

1.2.6.3. Adhesion strengthening and integrin clustering 

Recently, a compelling hypothesis has been suggested, which can explain the 

interrelationship between integrin catch bond formation, clustering and signaling 5, 61, 

62: The theory is based on the observation that integrins in the cell membrane are 

surrounded by a dense environment of glycosylated proteins (glycocalyx), which 

extends from the cell membrane typically between 30-50nm (see also Fig. 10). Since 

this distance is usually larger than the length of extended integrins protruding from 
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the cell membrane (~20nm), 

initial contact formation with the 

ECM requires local removal and 

compression of the glycocalyx and 

deformation of the cell 

membrane 5, 63. Both factors 

effectively reduce the initial 

ligand-integrin interaction and 

thus the on-rate, however further 

contacts can much easier be 

formed in close proximity to the 

first contact. Consequently, 

integrins cluster around the initial 

contact as soon as the contact is stabilized through actin anchorage (see 291.2.6.2). 

However, it remains unclear, which glycocalyx thickness is required to support this 

clustering mechanism and if other mechanisms exist in parallel. The force generated 

through the compression of the surrounding glycocalyx might further contribute to 

integrin catch-bond formation. Force-mediated integrin unclasping would serve as a 

positive feed-forward signal (mechano-sensing), through the initiation of integrin 

signaling which promotes local actin assembly, stress fiber formation and recruitment 

of integrin activatory adaptor proteins such as talin. Such small clusters can be 

observed in the leading edge of protruding cells and are termed nascent adhesions.  

Interestingly, the exact mechanisms for the formation of such nascent adhesion sites 

remains unclear, as they can form independent from talin recruitment 64 but require 

the presence of ILK 65 and the polymerization of a dentritic actin network 66. The linear 

actin cable, which is connected to nascent adhesions during the clustering process 

might serve as lattice for the recruitment of talin 60, which in turn directs the insertion 

of further integrin molecules leading to the formation of slightly bigger focal complexes 

that reside at the border between lamellipodium (the zone of dentritic actin 

polymerization) and lamellum (see also Fig. 11) and require myosin II-activity 67. If 

these complexes can be stabilized long enough, they will further mature into elongated 

Figure 10: The role of glycocalyx for integrin clustering 5. The 
glycocalyx is formed by extracellular, membrane bound 
glycoproteins (blue/black sinuous lines). Integrins (red) 
cannot reach to the ECM, when the glycocalyx is too high, 
thus local exclusion or compression of glycocalyx proteins and 
a membrane deformation are required for initial contact 
formation (slow process). Once such a structure has formed, 
other integrin molecules can quickly form further ECM 
contacts in close vicinity to the initial contact.   
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integrin clusters at a higher distance away from the protruding edge of the cell, termed 

focal adhesions (FA) (see Fig. 11). 

 

The continuous actin mediated pulling force on the integrins in focal complexes and 

FAs leads to a centripetal translocation of α5β1 integrins, which are transported to the 

cell center, while αvβ3 integrins remain more static at the place of their initial insertion 

60, 68. Consequently, this leads to the formation of adhesion structures termed fibrillar 

adhesions, which are characterized by their elongated shape, localization in the cell 

center and enrichment of α5β1 integrin, ILK and tensin, while paxillin is absent 69. These 

structures have been shown to be essential for the reassembly of the underlying 

fibronectin matrix into dense, fibrillar networks, dependent on actin contractility and 

presence of ILK 65, 70, 71.  

Finally, tight actin bundling coordinated with polymerization mediated by fascin, 

Arp2/3, Mammalian Diaphanous (mDia) and Neural Wiskott–Aldrich Syndrome Protein 

(N-WASP) can lead in a cell type-specific manner to the formation of invadopodia and 

podosomes characterized by a central actin core, which is usually smaller in 

podosomes. The actin rich core of invadopodia contains integrins and associated 

adaptor proteins with the exception of vinculin, while all of these proteins are excluded 

from the central actin structure of podosomes, leading to a characteristic ring shaped 

distribution. However, both structures share the feature of delivering vesicles 

containing enzymes with degrading properties, such as matrix membrane type 1 matrix 

Figure 11: Adhesion maturation 9. Initial integrin contacts to the ECM are 
established in the lamellipodium, leading to the formation of nascent adhesions. 
Nascent adhesions are relatively short lived structures and disassemble when 
they enter the border between lamellipodium and lamellum. However, few 
nascent adhesions persist and mature into focal complexes and focal adhesions.  
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metalloprotease (MT1-MMP) or lysosomal proteins and protons. The release of the 

enzymes can lead to a localized degradation of ECM or calcified bone material, 

important for bone remodeling or cell invasion into dense ECM 38, 72, 73. 

1.2.7. Further modes of regulation 
In addition to integrin activation and adhesion strengthening, other mechanisms have 

been discovered modifying adhesion strength and integrin mediated cell migration: 

proteolytic cleavage, integrin co-receptors and integrin trafficking. 

Degradation of the surrounding ECM is a phenomenon often observed in tumor and 

immune system cells during invasion events. Integrins have been shown to localize 

degradation to sites of adhesion (see 1.2.6.3 and 74) and the resulting loss of adhesive 

stiffness promotes disassembly of integrin adhesion complexes (as discussed in 1.2.6.2 

and 75) allowing the cells to reorganize their cytoskeleton and invade the newly formed 

gap in the ECM. Furthermore, proteolytic Matrix Metalloproteinase-2 (MMP-2)-

mediated degradation of β1 integrin or proteolytic activation of αvβ3 integrin itself can 

contribute to increased motility of tumor cells 74, 76.     

Cellular adhesion to the ECM and signaling in response to ECM interaction can be 

transmitted through various cell membrane receptors 77, and is best understood for 

integrins and the family of syndecan receptors (reviewed in 78). Syndecans consist of a 

membrane spanning core protein and a large network of glycosaminglycans, which 

mediate the interaction to distantly located ECM proteins and growth factors. 

Intriguingly, many ECM ligands contain interaction sites for integrins and syndecans 

which are bound in a cooperative manner. Focal adhesion formation and cell spreading 

on FN depend on engagement of α5β1 integrin and syndecan-4, while similar 

observations have been made for αvβ3-/αvβ5 integrin with syndecan-1 on vitronectin 

and α2β1-/α6β4 integrin with syndecans on laminin. In contrast, other integrin 

heterodimers, such as α4β1 or α7β1, have been reported to function syndecan-

independent. Mechanistically, it has been suggested that Protein Kinase C (PKC)-

recruitment through the cytoplasmic tail of syndecan-4 can promote integrin mediated 

adhesion and signaling through direct effects of the PKC kinase, downstream 

formation of phosphatidylinositol (PtdIns)-4,5-bisphosphate (PtdIns-P2) and PKC-

controlled integrin internalization (for details, see 1.4.3 and 1.5.1). Furthermore, 
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syndecans have been described to assist integrin-mediated activation of cellular 

Sarcoma kinase (Src) and Focal Adhesion Kinase (FAK). 

Besides the aforementioned mechanisms, which control integrin clustering and affinity 

modulation, the localized internalization and exocytosis as well as trafficking of 

integrin containing vesicles are important mechanisms to control integrin function, 

which just currently evolves to be understood (reviewed in 79). Recent studies indicate 

that integrin trafficking controls integrin stability, integrin distribution on the cell 

surface, and the signaling crosstalk with growth factor receptors and Rho GTPases, 

thereby affecting cell migration and tumor cell invasion directly and indirectly. 

Interestingly, inactive integrins and ligand-bound, active integrins use distinct 

trafficking routes, but the molecular mechanisms underlying their different trafficking 

are unknown. A recent publication shows that high Ca2+ concentrations in the ER and 

Golgi are required for correct folding and maintenance of integrins in an inactive 

conformation, which supposedly facilitates integrin maturation and export, while at 

the same time preventing ligand binding 80. Therefore, it appears surprising that the 

integrin activation promoting adaptors talin and kindlin are suggested to influence 

integrin recycling as well as integrin maturation in the Golgi network 81-84. In an early 

study talin deficiency correlates with retention of α5β1 integrin in the ER or Golgi 

accompanied by decreased glycosylation, indicative for a role of talin in the transport 

of this integrin through the ER and Golgi and its glycosylation. However, in a later study 

mutation of the talin interaction motif of β1 integrin as well as talin depletion leads to 

increased surface presentation and decreased internalization while no effect on 

integrin maturation can be observed 83. In the same study, the influence of the kindlin-

interacting motif and kindlin depletion is analyzed as well, leading to the suggestion 

that kindlin promotes maturation of α5β1 integrin and prevents its degradation after 

internalization and thus stabilizes surface expression. The role of kindlin on integrin 

maturation is confirmed in a further publication 84, however a study similar to the first 

one cannot confirm any direct influence of kindlin on the integrin surface expression 

or recycling 81. Instead, this work and a following publication suggest that the 

endosomal proteins Sorting Nexin 17 and 31 (SNX17 and SNX31), which bind to the 

same cytoplasmic β integrin tail motif as kindlins, favor the recycling of endocytosed 
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integrins over lysosomal degradation 81, 85. The conflicting observations might indicate 

that kindlin and talin influence integrin maturation in a cell type-specific manner. 

1.3. Methods for the measurement of integrin “activation”  
The aforementioned processes of integrin trafficking, valency regulation and integrin 

clustering as well as integrin conformational changes affect the adhesive and migratory 

behavior of cells. However, the assessment of these factors in living cells remains 

challenging and the interpretation of the resulting data can be complicated. Some of 

the most important methods to measure these processes will be discussed in the next 

paragraphs. 

1.3.1. Adhesion/Migration assays  
The probably most intuitive way to study integrin function is the measurement of cell 

adhesion, spreading and migration on integrin specific ligands (reviewed in 86, 87). While 

adhesion assays measure the ability and kinetics of cells to adhere to a specific ligand, 

spreading and migration assays can help to understand the cellular response towards 

ligand binding. It is important to note that most cell lines can generate their own matrix 

upon plating. Also, typical supplements of cell culture media, such as fetal bovine 

serum, contain soluble integrin ligands like vitronectin or FN and differing 

concentrations of integrin affinity modulating divalent cations and growth factors. 

Therefore, caution has to be used in the choice of assay conditions and the length of 

the experiment. Ideally, assays have to be performed in defined media and for 

timescales shorter than one to two hours. Also the washing conditions used to remove 

unbound cells can critically influence the outcome of the experiment and 

reproducibility and have to be considered. 

Ideally, adhesion assays are performed with variable timescales and densities of the 

integrin ligands in order to assess differences in adhesion kinetics, which can indicate 

differences in the induction and strengthening of adhesions. Adhesion strengthening 

and cell rolling caused by intermediate integrin activation can further be analyzed with 

the use of flow chambers, where a defined hydrodynamic shear stress is induced by 

pumping medium through a small channel 88. Similar assays in substrate coated 

adhesion chambers, small glass capillaries or even in cremaster muscle arterioles of 

living mice are successfully used to study adhesion strengthening and integrin-
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mediated cell rolling 89-92. However, all these assays are mostly limited to the study of 

weak, initial adhesion, as detachment of strongly adherent cells cannot be achieved 

under such conditions. Furthermore, all these assays reveal only limited insight into 

the exact mechanisms of adhesion, as the molecular mechanisms of the observed 

cellular affinity remain unclear and need to be complemented with further analysis 

methods as discussed below. Also the study of the kinetics of cell spreading and cell 

migration has similar limitations and requires complementation with further methods 

(see below). 

In order to improve the insights gained from adhesion and cell detachment assays, 

improved methods have been developed such as the spinning disc assay and probing 

of cells with ligand coated Atomic Force Microscopy (AFM) probes, coated beads in 

combination with magnetic tweezers or fluid chambers. For the spinning disc assay, 

cells are seeded on circular, ligand coated glass plates and rotated in Phosphate 

Buffered Saline (PBS) with defined speeds. By assessing the amount of detached cells 

in respect to the applied force, approximate measurement of ligated integrins and 

testing of different adhesion times and ligand densities, approximate estimations of 

the on- and off-rates of single integrins can be made. The usage of ligand-coated AFM 

probes or beads allows similar measurements in a more direct manner. By varying the 

contact time between the ligand and the cell and application and measurement of 

defined forces, rates for the interaction formation and dissociation can be estimated. 

However, also in these cases the underlying mechanisms of ligand interaction remain 

unresolved. 

1.3.2. Cellular ligand binding assays  
A more direct approach to the study of integrin activation is the analysis of the ligand 

binding ability of isolated cells. Full length ECM proteins, protein fragments or small 

molecule ligand mimetics can be used as ligands, as well as ligand mimetic antibodies 

(reviewed in 88, 93). Cells are studied after detachment from their substratum by 

incubation with their ligand in solution, and ligand binding is measured after washing 

of unligated ligands in flow cytometry using either directly fluorescence labeled ligands 

or fluorescent antibodies. Under normal conditions, however, these assays are 

relatively insensitive and mostly report the on-rate of the measured integrins 6. The 
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bent, low affinity conformation (2mM for αLβ2) should usually not allow ligand 

binding, while the extended conformation with intermediate binding affinity (3µM for 

αLβ26), which may represent the predominant conformation on non-hematopoietic 

cell lineages, binds ligand at intermediate affinity 34. The difference between 

intermediate and high affinity is integrin heterodimer-specific; it is low for α5β1 (~5.5-

fold; 36) and a bit higher for αLβ2 (~15-fold; 6). Ligand binding is sufficient to induce the 

conformational transition from intermediate to high conformation. Thus, ligand 

binding assays will usually not distinguish or underemphasize the difference between 

intermediate and low affinity conformation. Also the contribution of hybrid domain 

swing out, which is supposed to stabilize ligand binding mostly through a decrease in 

the off-rate 31, 36 cannot be measured with standard ligand binding assays 88. In order 

to circumvent these problems, recent progress has been made with flow cytometers, 

which allow the exact timed addition of ligands to the cells 88. Through variation of 

incubation times and further addition of agonists or competitors, on- and off-rates can 

be determined. However, these measurements require highly advanced machines and 

trained operating scientists.  

Similar to the binding of monovalent ligands, multivalent ligands are often used to 

measure the influence of micro-clustering on ligand binding affinity. The measurement 

of multivalent ligands typically results in higher signal intensities in comparison to 

monovalent fragments, which is interpreted as more stable binding through integrin 

clustering on these ligands 94, 95. However, the interpretation of these results is often 

further complicated by the possibility that binding of a multivalent ligand through a 

single integrin also leads to an increase in signal intensity, since the multivalent ligand 

usually harbors more fluorescence tags. In addition, the same problems as reported 

for monovalent binding assays are even more pronounced here, because the micro-

clustering of integrins should exclusively control the off-rate of ligand binding. 

Furthermore the mechanisms controlling integrin clustering in suspended cells remain 

unclear (see 1.2.6.1) and will most likely differ from the mechanisms required for 

integrin clustering on immobilized ligands (see 1.2.6.2 and 1.2.6.3). Altogether, the 

information received from ligand binding experiments is mostly limited to the on-rate 

of integrin-ligand interaction, as under the usual washing conditions ligand dissociation 

rarely occurs 88. 
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1.3.3. Activity reporting antibodies 
As an additional tool for the study of integrin activation, conformation dependent 

antibodies were generated in mice and rat, which prevalently recognize human 

integrins 93, 96. These antibodies are easy to use and can be of tremendous importance 

for the study of integrin activation, as they specifically recognize integrins in distinct 

conformations, induced by ligand binding or divalent cations (reviewed in 93, 97).  

However, care must be 

taken, as many of these 

antibodies not only 

report but also induce 

the exposure of 

activation dependent 

epitopes and thereby 

influence the activation 

status of the analyzed 

integrin. The majority of 

activation reporting 

antibodies bind to the headpiece domain of the integrin heterodimer. For example, 

12G10 antibody, which binds to the α1- and α2-helices of the βI-domain of the β1 

subunit only in the active conformation (see Fig. 12) 98, can be used to detect the 

conformational changes important for on-rate regulation 99. However, 12G10 has been 

shown to be a strong inducer of integrin ligand binding and therefore, is only of limited 

use for the study of integrin activation 99, 100. Accordingly, HUTS antibody can only bind 

to the hybrid domain after swing out and thus reports an important step for off-rate 

regulation (see Fig. 12), but also stabilizes this conformation leading to an equilibrium 

change 2, 98. In contrast to the described examples, the exact binding site and 

associated integrin conformation of many other integrin reporting antibodies is 

unknown or map to the leg regions of the integrin heterodimer, which further 

complicates the interpretation of results. For example, SNAKA51 antibody detects an 

active, extended conformation of the α5 legpiece domain important for FN assembly 

into fibrils. However, in cell stainings it preferentially labels fibrillar adhesions and 

much less FA 35, raising the question which conformation this antibody reports and 

Figure 12: Epitopes of 12G10 and HUTS-4 antibodies 4. 
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how its binding to floating cells can be interpreted. Also, since this antibody labels a 

region of the integrin heterodimer, which is quite distantly localized from the ligand 

binding site, the question remains, how exposure of the referring epitope correlates 

to ligand binding. Similarly, binding of 9EG7 and KIM127 antibody to the EGF-2 domain 

of the β1- or β2-legpiece domain, respectively, have been associated to integrin 

activation, although the understanding of the associated conformations remains 

unclear 2, 101.  

Both antibodies can only be weakly induced by 

factors which modulate integrin headpiece 

activation (ligand binding, Mn2+, Ca2+, EDTA) but 

show excellent correlation with the ability of a 

cell to adhere 102. For 9EG7 binding it has 

therefore been suggested that this reports 

integrin-“priming”, dependent on the 

separation of the integrin heterodimer leg 

domains, which render the α5β1 integrin into a 

ligand binding competent state with 

intermediate affinity of the integrin headpiece 

domain 2. In the referred publication, the 

authors further suggest that integrin bending 

would conceal the 9EG7 epitope (see Fig. 13A) 

and integrin extension could reveal it. However 

the question, if α5β1 integrin actually exists in the assumed bent state is unclear (see 

1.2.3). The same authors report that the 9EG7 epitope remains concealed in integrins 

after induction of hybrid domain swing out and in integrins which mediate cell 

adhesion and spreading. These results suggest that 9EG7 epitope also remains 

concealed in an extended conformation until the integrin leg domains are separated. 

In line, molecular modelling supports this alternative interpretation of the results and 

suggests that the 9EG7 epitope is concealed between the EGF-2 domain of the β1 

Figure 13: 9EG7 epitope exposure in bent and 
extended conformations (modified from 1, 2). 
(A) Legpiece domains of a molecular model 
of bent α5β1 integrin. The headpiece is not 
shown, α-subunits are drawn in blue shades 
and β subunits in red shades. The EGF-2 
domain is highlighted in green and an arrow 
indicates the position of 9EG7 epitope, which 
is concealed in this conformation. (B) 
Molecular model of “primed” α5β1 integrin; 
α-subunits are blue and β subunits are red. 
The arrow indicates the position of the 9EG7 
epitope, which is also not accessible. 
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subunit and the Calf-2 domain of the α5 subunit (see Fig. 13B) and only unmasked upon 

integrin unclasping (see 1.2).  

In summary, although activation reporting antibodies still constitute the most 

powerful tool to reveal changes in integrin conformations induced by intracellular and 

extracellular stimuli, care must be taken in the interpretation of the results, as 

structural data clarifying the exact nature of the bound conformation is mostly missing.  

1.3.4. Further Methods  
Since integrin activation is coupled to large conformational changes such as unbending 

and separation of the two leg domains, further methods have been developed to 

directly study these changes. Many of these methods take advantage of non-radiative 

energy transfer from an excited to a non-excited fluorophor leading to fluorescence of 

the initially non-excited fluorophor, referred to as FRET (reviewed in 10). This energy 

transfer requires that the excitation spectra of the used fluorophores do not overlap, 

while the emission spectrum of the donor fluorophor should overlap with the 

excitation spectrum of the acceptor fluorophor. Furthermore, the efficiency of this 

transfer strongly decreases with the distance between the two fluorophores allowing 

approximate distance measurements in the range of up to 10nm. While FRET 

measurements can be done with standard microscopes, differences in fluorophor 

densities and weak overlap of the excitation spectra from both fluorophores often lead 

to artifacts. In order to achieve more exact measurements, bleaching of the 

fluorescence acceptor can be used allowing end-point measurements. Alternatively, 

the decrease of fluorescence lifetime of the fluorescence donor caused by the FRET 

can be measured (Fluorescence Lifetime Imaging; FLIM), allowing multiple 

measurements at one location 10.  
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For example, fluorescence labeling of the integrin head domain and the plasma 

membrane allows direct observation of integrin bending in response to different 

stimuli using the FRET and FLIM imaging (see Fig 14B) 2, 10, 88. Similarly, the separation 

of the integrin leg domains has been studied by expressing integrin heterodimers with 

covalently tagged fluorescence markers (Fig. 14A) and integrin micro-clustering (Fig. 

14C) has been measured by analysis of FRET between individual integrin heterodimers 

10, 46, 47. In a related approach, the angle in which the β1 integrin transmembrane 

domain transverses the cell membrane, influenced by talin could be studied 103. The 

disadvantage of all these methods is that they require expression of integrins 

covalently conjugated to fluorescence tags or labeling with antibodies, which often 

compromise the function of the integrin heterodimer or cannot be used for the 

analysis of the endogenously expressed integrin. 

The distribution of integrins into adhesive structures (also discussed in 1.2.6.3) and the 

dynamics of the formation and disassembly of these structures has extensively been 

studied with fluorescence microscopy. However, due to the limitation of the resolution 

to ~200-600nm governed by the wavelength of the used light, integrin localization and 

dynamics could only be studied for ensembles of molecules. Recent advances in 

microscopy have allowed to study integrin distribution and diffusion dynamics in a sub-

Figure 14: Usage of FRET sensors for measurement of different modes of integrin 
activation 10. FRET/FLIM sensors allow the measurement of integrin unclasping (A), 
unbending (B), clustering (C) or binding of intracellular proteins (D). 
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diffraction resolution of about ~50nm using Photo-activated Localization Microscopy 

(PALM)/Stochastic Optical Reconstruction Microscopy (STORM) or Stimulated 

Emission Depletion (STED) microscopy 10. Briefly, the resolution limit of normal light 

field microscopy can be circumvented, if only single fluorescent molecules are studied 

at a time, which can be achieved through the usage of photo-switchable fluorophores. 

Although the fluorescence of these molecules still appears as a circular spot with a 

diameter of ~200-600nm (Airy-disc), the center of this airy disc, where the fluorophor 

is located, can be determined at much higher precision. Complete pictures of highly 

resolved structures can be achieved by frequent repetitions of single molecule imaging 

processes. Alternatively, the diffusional behavior of these single molecules can be 

tracked 10. Such studies allow to track the diffusion of single integrin heterodimers in 

FA sites and the reconstruction of the spatial distribution of integrin molecules inside 

and outside of FAs 5, 60, 104. Although these methods provide a clear improvement in the 

optical resolution, clustering of molecules at distances below 50nm can only be 

indirectly assessed. Another arising approach is the study of fluorescence correlation 

between lowly concentrated fluorescent molecules. This method is based on the 

principle that two interacting, fluorescently tagged proteins diffuse as a pair in and out 

of a small optical field of view, leading to the correlation of the observed fluorescence 

intensity changes. With this methods, it was recently confirmed that certain proteins 

(like ILK, Pinch or parvin) enter and leave FA sites as a complex 105 and that initiation of 

α5β1 integrin adhesion to the ECM is accompanied by the formation of a stable 

complex with first kindlin and then talin 104. However, it has to be noted that this 

method is not sensitive enough to track very short interactions and thus cannot be 

used to unconditionally exclude the possibility that such interactions occur. 

1.4. Integrin “activation” is mediated through kindlin and talin  
As already indicated above, integrin activation is usually considered as a process, which 

is initiated upon binding of intracellular adaptor proteins such as kindlins and talins to 

the β integrin cytoplasmic tail. The details of this process will be discussed next. 

1.4.1. Talin can regulate integrin-mediated adhesion 
Over ten years ago, it has been shown that the interaction of talin with integrin β-tail 

is important for integrin activation 106. In mammalian cells two talin paralogues, talin-

1 and -2 are expressed with differing tissue specificity. Interestingly, splice variants of 
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talin-2 are expressed in almost every tissue. However, full-length talin-2 is found at 

highest abundance in muscle tissues. Here, talin-2 is often co-expressed with the 

ubiquitously expressed talin-1, which is exclusively expressed as full length protein 107. 

While a big range of experiments demonstrates an important influence of talin to cell 

adhesion in vivo, only few publications directly measure integrin activation. For 

example talin-1 is essential for integrin activation in platelets 108, 109, but in muscle 

tissues which express talin-1 and talin-2 the situation is rather unclear 110: Constitutive 

deletion of talin-2 leads to a mild muscle dystrophy 110 and deletion of both talin 

paralogues in skeletal mouse muscles impairs muscle development with a similar 

severity, as compared to β1 integrin deletion. However, neither β1 integrin activation 

measured with 9EG7 binding nor adhesion of isolated cells to ECM substrates are 

affected 110 suggesting that in this tissue talin might be more important for the 

connection of integrins to the intracellular actin cytoskeleton than for integrin 

activation. This hypothesis is supported by the observation of similar effects in the 

muscles of D. Melanogaster 111-113 and C. Elegans 114. Furthermore, mutations, which 

affect talin binding to integrins do not recapitulate the developmental defects seen 

after depletion of kindlin-integrin interaction or β integrin depletion in developing 

zebra fish embryos 115. Also in vitro experiments indicate that talin function is not 

sufficient to fully activate integrins. While most experiments demonstrate that talin 

controls integrin-mediated ligand binding 108, 109, some reports indicate that talin 

depletion does not influence monovalent ligand binding of αIIbβ3 or α4β1 integrins in 

suspended cells 94, 116. Further experiments with talin depleted cells demonstrate a 

requirement for talin to stabilize initial adhesions against intracellular contraction, 

while cell adhesion and spreading are talin independent 117. Finally, experiments with 

purified full length, lipid bilayer embedded αIIbβ3 integrins showed that talin can 

induce integrin unbending and ligand binding only in a small fraction of the observed 

molecules 118.  
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1.4.2. Structural organization of talin 

 

Figure 15: Domain organization and structural model of full-length talin (modified from 119). The scheme 
shows a hypothetical structure of talin, composed of single structurally resolved sub-domains. Domains 
are indicated; F0-4 represents FERM sub-domains 0-4, R1-13 represents rod domains 1-13, DD stands for 
dimerization domain and ABD for actin binding and dimerization domain. 

The highly conserved domain structure of talin-1 and -2 (see Fig. 15) gives mechanistic 

clues for the understanding of integrin activation, clustering and actin coupling 

activities of talin (reviewed in: 119, 120). Talin is composed of a N-terminal 4.1-

protein/Ezrin/Radixin/Moesin (FERM) homology domain and long rod formed by a 

series of thirteen 4- or 5-α-helix bundles and an C-terminally located actin binding and 

dimerization domain (ABD). The rod and FERM domain are connected by a large, most 

likely unstructured flexible linker region, allowing the whole molecule to adapt a fully 

extended conformation of approximately 60nm length as well as a globular dimeric 

conformation which is considered inactive. It is well established that talin directly 

interacts with the actin cytoskeleton via actin binding sites in the FERM domain, in the 

rod domain and in the ABD and indirectly through interaction with actin binding 

adaptor proteins as vinculin. The majority of vinculin interaction sites are buried in the 

α-helix bundles and become exposed upon mechanical extension of the talin rod 

domain. Furthermore, several interaction sites for the Ras-related protein 1 (Rap1) 

GTPase effector Rap1–GTP-Interacting Adapter Molecule (RIAM) can be found in the 

rod domains. Talin binds to integrins via two integrin binding sites (IBS): the N-terminal 

FERM domain (IBS1) and the more c-terminally located IBS2, formed by two α-helix 

bundles. The FERM domain consists of four subdomains (F0,F1,F2,F3), which adopt in 

contrast to other FERM domains an extended structure. Furthermore, the F1-3 

domains harbour a series of basic amino acids which mediate binding to negatively 

charged PtdIns(4,5)P2 rich cell membranes. For the F3 phospho-tyrosine-binding like 

domain, crystal structures have been resolved in complex with the hyaluronan 

receptor laylin, PtdInsP kinase Iγ and several β integrin tails, which altogether showed 

similar but not identical binding modes resulting in different binding affinities 121. 

Furthermore, FAK and the Rac1-GEF T Lymphoma Invasion and Metastasis (TIAM1) 
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have been shown to bind the F3 domain of talin. Interestingly, the interaction surface 

of FAK and β integrin tails in F3-domain mostly overlap, suggesting that F3 subdomain 

can either bind to β integrin tails or to FAK 122. Importantly, the F3 and F2 domains have 

also been shown to interact with several negatively charged α-helix bundles of the talin 

rod domain, masking the positively charged membrane binding domains and the 

integrin interaction site 123.  

1.4.3. Mechanistic insights into talin mediated integrin activation 
Altogether, these structural features allow to understand how talin can become 

activated, bind to integrins and assist in integrin activation and clustering and finally 

contribute to 

mechanosensitive 

adhesion strengthening 

and signaling (reviewed 

in 119). In the cytosol talin 

is supposed to adopt a 

globular closed 

conformation, which 

inhibits membrane 

binding and interaction 

with integrins. The auto 

inhibitory rod domains 

not only masks the 

integrin binding site of 

the FERM domain but 

also prevents interaction 

with the cell membrane 

through its negatively 

charged surface 123. 

Several factors seem to 

cooperate in releasing talin from this auto-inhibited conformation: First, presence of 

PtdIns(4,5)P2 in the cell membrane 123, 124. Second, binding of vinculin to the rod α-helix 

Figure 16: PKC mediated activation of talin. (A) Activation of PKC 
through Ca2+ and Diacylglycerol (DAG). (modified from 7). Extracellular 
ligand binding by G-Protein Coupled Receptors (GPCR) leads to 
activation of G-proteins and Phospholipase C (PLC). PLC cleaves 
PtdIns(4,5)P2 into DAG and Inositoltrisphosphate (IP3), which activates 
Ca2+-channels of the Endoplasmic Reticulum (ER). DAG serves as 
membrane anchor for PKC. Ca2+-influx is also stimulated through Orai1 
channel involving Kindlin-3. High intracellular Ca2+ levels activate PKC. 
(B) Receptor induced signaling leads to the activation and membrane 
recruitment of Rap1, which in turn recruits and activates RIAM (MBInfo 
Wiki). The Rap1-RIAM complex recruits active talin to the cell 
membrane, leading to integrin activation. 
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bundles that interact with the FERM domain can release auto-inhibition and promote 

membrane targeting of talin. Third, membrane targeting can be mediated through 

Rap1-GTPase, which becomes activated upon protease-activated receptor (PAR) 

stimulation or through Protein Kinase C (PKC), which also explains the stimulatory 

potential of PKC activating phorbolesters mentioned above (see Fig. 16A,B). Activated 

Rap1 localizes to the cell membrane, where it forms a complex with RIAM which in 

turn can recruit talin to the cell membrane in a PtdIns (4,5)P2 dependent manner. 

Interestingly, presence of kindlin has been shown to be required for the Rap1-Riam 

mediated talin activation. However, the mechanism remains unclear 125. Both talin 

activatory pathways share dependency on the presence of PtdIns (4,5)P2 in the cell 

membrane. Fourth, talin can enhance its own activation and recruitment during early 

adhesion formation in a positive feed forward regulatory loop, as it recruits PtdInsP 

kinase Iγ, leading to the formation of more activatory PtdIns (4,5)P2. In line, depletion 

of PtdInsP kinase Iγ leads to slower recruitment of talin and vinculin to FAs 126. 

Furthermore, talin recruitment of TIAM1 could lead to increased actin polymerization 

through a localized Rac1 stimulation, which further stimulates adhesion formation and 

cell spreading. Adhesion contacts increase PtdIns(4,5)P2 levels, which raises the 

question how talin is localized to early adhesion sites or during initial cell adhesion. 

Finally, a recent publication has shown that the interaction of talin with FAK is required 

to localize talin to nascent adhesion sites. However the question how FAK was localized 

to these sites remains unclear 122.  

Once active talin has reached the cell membrane, it interacts with β integrin tails and 

promotes the dissociation of the membrane proximal interactions between the 

integrin α and β subunits (see Fig 17A-D). Talin interacts with three regions of the β 

integrin tail and the interaction with a conserved Trp…Asn-Pro-x-Tyr (W…NPxY) motif 

(see Fig. 17A) appears to be important for the interaction strength. Interestingly, talin-

1 and -2 show differences in their affinities towards β3 and β1A/β1D cytoplasmic tails 

due to differences in the interaction interfaces. This explains, why talin-1, which has a 

much lower affinity than talin-2 to the β1D isoform, cannot completely compensate 

loss of talin-2 in muscle 127. In line, phosphorylation or mutation of the Tyr in the talin 

interaction site, as well as presence of proteins which compete with talin for integrin 
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binding, such as Dedicator Of Cytokinesis 180 (Dock1) or filamin, interfere with talin 

mediated integrin activation.  

 

Figure 17: Mechanism of talin mediated integrin activation 119. (A) Talin interaction site in β1A and β3 
integrin cytoplasmic tails. (B) Crystal structure of talin in complex with the 1D tail; Asp-759 and Tyr-783 
are highlighted as key residues, important for talin mediated integrin activation and talin-integrin 
interaction respectively. (C) Model of talin mediated integrin activation: Tight interaction of the α- and β-
integrin transmembrane domains and a salt bridge between Asp-723 of the β-tail and Arg-995 of the α-
tail keeps the integrin in inactive conformation (left). Interaction of talin with the β integrin tail disrupts 
the salt bridge (middle). Next, interaction of talin with the cell membrane induces tilting of the bound β-
tail, which promotes integrin tail separation (right). (D) Crystal structure of talin-FERM domain in complex 
with auto inhibitory rod domain. 

The interaction with a membrane proximal Asp of the β tail seems to contribute to 

integrin activation (Fig. 17B,C), as this residue otherwise forms a salt bridge to the α 

subunit that stabilizes integrin hetero dimerization. Furthermore, the interaction of 

the multiple basic residues of talin FERM domain with the cell membrane assist in 

tilting the whole transmembrane domain of the β integrin, which leads to the release 
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of the interactions between the α and the β subunit in this region (Fig. 17C). The second 

IBS of talin is also essential for integrin mediated processes in vivo 128, but the 

underlying mechanisms are less clear. 

The potential to bind two integrins through IBS1, IBS2 in concert with the talin 

dimerization through ABD domain 129 suggest a role of talin as a scaffold for integrin 

clustering. In this respect it appears surprising that expression of the FERM domain 

alone can promote integrin clustering on soluble and immobilized ligands 49, 94, 124.  

Further, talin can also function as a mechanosensor as it responds to forces transduced 

through the actin cytoskeleton: a pulling force on talin leads to the exposure of cryptic 

vinculin binding sites, which in turn promotes further recruitment of vinculin. 

Consequently, talin can link several actin strands to one active β integrin tail, 

underlining the essential role of talin for the establishment of stable integrin-actin 

linkage and potential catch bond formation. Interestingly, the affinity of talin to a 

specific β integrin cytoplasmic tail can modulate the extent of this mechanosensing in 

such a way that higher affinities support better spreading, stress fiber formation and 

signaling on soft substrates 121. This could also explain, why expression of talin head 

fragments was sufficient to stimulate integrin mediated ligand binding 106 but could 

not rescue signaling defects observed in talin depleted cells 117.   

In summary, current knowledge suggests a convincing mechanism, which explains how 

talin can promote integrin activation upon intracellular signaling and eventually 

contribute to actin linkage and adhesion strengthening through integrin clustering and 

catch bond formation. However, the observations in muscle tissue and other 

conflicting data suggest that talin alone is not sufficient for integrin activation or 

clustering. Furthermore it remains unclear, how talin gets initially recruited to nascent 

integrin adhesions. 

 

1.4.4. Kindlins contribute to integrin activation via unknown 

mechanisms 
More recently, a second group of proteins essential for integrin activation has been 

identified, the kindlins. The kindlin family consists of three proteins in mammals with 

tissue specific expression pattern 130 and orthologues can be found in D. Melanogaster 
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(Fermitin1 and -2) and C. Elegans (UNC112) 131. Depletion studies in the latter two 

model organisms demonstrate integrin-mediated attachment defects in the affected 

organs 132, 133 and integrin activation defects can be observed in mice for all three 

paralogues 134-136. While the in vivo significance of kindlins for integrin mediated 

adhesion is evident, the mechanism(s) underlying kindlin-mediated integrin activation 

remain elusive. In in vitro studies, kindlin overexpression can only potentiate talin-

mediated αIIbβ3 activation but not α5β1 activation and overexpression of kindlin 

alone has no effects or even causes reduced integrin activation 137, 138. Also, interaction 

of purified kindlin with integrin tails is not sufficient to unclasp the integrin 

heterodimer interaction at the level of the cell membrane 139. One potential 

explanation for these observations might be that the high affinity of kindlin towards 

the integrin tail 115, 139 in combination with high endogenous expression levels might 

render most cell lines systems in a saturated situation in which further expression does 

not lead to further increase in integrin activation. This concept is underlined by the 

observation that minimal expression levels of kindlin-3 (~5%) are sufficient to maintain 

most integrin mediated functions, while complete deletion leads to a loss of integrin 

activation (personal communication by M Moser and 135). The situation might be 

further complicated by the observation that the influence of kindlin or talin to integrin 

activation can only be observed after agonist stimulation (e.g. PMA stimulation) in 

several cell systems 116, 140. Taken together, in vivo and in vitro studies draw a picture 

which appears paradoxically inverse to the situation observed for talin proteins: while 

all in vivo data clearly agree that kindlins are required for integrin activation, in vitro 

studies remain controversial. 

 

Figure 18: Kindlin domain structure 119. (A) Schematic representation of kindlin domains and associated 
interaction partners. (B) Model of a hypothetical kindlin structure, obtained by SAX experiments (grey hull) 
and modelling of kindlin amino acids onto structures of talin and single resolved domain structures of 
kindlin. 
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Up to date, no complete structure of kindlin has been resolved. However, fragments 

could be analysed by NMR and crystallography. Kindlins consist of a FERM domain with 

high similarities to the talin FERM, which may also adopt an elongated structure (see 

Fig. 18A,B)141, 142. Kindlins lack the long N-terminal rod domain of talins (reviewed in 119, 

131). The second major difference to talin FERM domains is the insertion of a Pleckstrin 

Homology (PH) domain into the F2-subdomain, which mediates interaction with 

phospholipids in the cell membrane and assists in integrin interaction, but it remains 

unclear if the kindlin PH domain prefers PtdIns(4,5)P2 over PtdIns(3,4,5)P3 143-145.  

Similar to talin, the interaction of the F3 subdomain of kindlin with a membrane distal 

Thr-Thr…Asn-x-x-Tyr (TT....NxxY) motif in the β integrin tail (see also Fig. 17A) 137 is 

essential for integrin activation in isolated cells and in vivo 81, 135, 136. Studies with 

mutated talin and kindlin interaction sites suggest that integrin activation requires 

binding of kindlin and talin to the same β integrin molecule. However, it remains 

unclear if this interaction needs to occur simultaneously or in a sequential manner (see 

Fig. 19) 146, 147.  

Kindlin isoforms differ 

in their β integrin tail 

binding affinities: 

kindlin-1 strongly binds 

to β1 and β6 integrin 

tails, kindlin-2 interacts 

strongly with β1 and to 

a lesser degree with β2 

and β3 tails and 

kindlin-3 seems to 

show weak binding to 

β1-tails and may prefer 

β2 tails 119, 136, 148-150. 

Mechanisms, which 

can explain these differences are emerging: A recent study shows that kindlin affinity 

to β integrin tails is modulated through the charges in the C-terminal proportion of the 

Figure 19: Different modes of co-operative integrin activation by kindlin 
and talin 11. (A) Sequential binding of kindlin or talin. (B,C) Simultaneous 
binding of kindlin and talin at the same molecule (B) or two distinct 
molecules (C) leading to Cis-co-operation or Trans-co-operation 
respectively. 
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β tail. Kindlin-2 directly binds to the COOH terminus of β1 integrin and presence of a 

positively charged Arg residue in the C-terminal proportion of β2-tails reduces the 

affinity of this interaction 115, 139. Furthermore, binding of Integrin Cytoplasmic domain- 

Associated Protein-1 (ICAP1) competes with kindlin for overlapping interaction sites in 

the integrin tail and phosphorylation of the Tyr in the NxxY motif of β integrin tails 

recognized by kindlin interferes with interaction.  

In contrast to talin, no clear mechanism is available describing how kindlins activate 

integrins. Interestingly, however, recent results 149, 151 indicate that the region, which 

links the PH-domain of kindlin to its F2 subdomain mediates interaction with ILK 134, 152, 

and that this interaction may contribute to kindlin-mediated integrin activation 143. In 

C. Elegans this interaction is proposed to mediate kindlin activation by regulating the 

ability of kindlin to interact with β integrin tails 153, 154. However, this function cannot 

be confirmed for mammalian cells, suggesting that this mechanism might be specific 

to nematodes 149, 151. Nevertheless, the interaction of ILK with the PH-domain region of 

kindlin seems to be required for the enhancement of kindlin recruitment to focal 

adhesions, kindlin mediated integrin activation and integrin signaling, although the 

mechanisms for these functions remain unclear 149, 151. ILK also interacts with lipid 

membranes through a PH domain 155, which leads to the tempting hypothesis that 

membrane interaction of kindlin fulfils a similar role as for talin. This opens the 

possibility that kindlin could unclasp integrin heterodimers in a supporting membrane 

environment in concert with ILK interaction. Furthermore, migfilin binds kindlin and 

filamin with its Lin11, Isl-1 & Mec-3 (LIM) homology domains and interaction of migfilin 

to filamin competes with the interaction of filamin to β integrin tails 156, 157. Thus, it is 

suggested that kindlin mediated recruitment of migfilin to integrins may contribute to 

integrin activation by sequestering filamin 119, 157. However, mice deleted for migfilin 

show no integrin activation defects, raising the question how relevant this interaction 

is for integrin activation 158. Similar to talin, kindlin controls integrin ligand binding 

through the induction of integrin clustering. While in one report the underlying 

mechanism remains unclear 95, in the other case 159 kindlin regulates increased 

localization of the calcium channel Orai1 to adhesion sites under shear flow conditions. 
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Consequently, increased Ca2+ influx stimulates recruitment of talin via PKC signaling 

(see also Fig. 16) and growth of the integrin clusters.  

In summary, the question if kindlin is essentially required for integrin activation 

remains controversial and mechanistic insights into the mode of kindlin mediated 

integrin activation are lacking. However, recent results showing that early adhesion 

complexes can form in the absence of talin 122 and that kindlin forms stable interactions 

with integrins in nascent adhesion sites before talin 104 question previously proposed 

models where kindlin recruitment to talin containing adhesion sites enhances integrin 

activation 119, 160. Furthermore, these results raise the question, how the signaling 

molecules FAK and paxillin become recruited to and activated at nascent adhesion sites 

in absence of talin 104, 122, 161. 

1.5. Integrin mediated signaling 

1.5.1. Overview of integrin mediated/influenced pathways  
While those integrin functions, which relate to cell adhesion, migration and 

cytoskeletal organization can be explained by the ability of integrins to mechanically 

link the intracellular actin cytoskeleton to the ECM, conversion of those interactions 

into biochemical signals requires integrin mediated signaling in response to ligand 

interaction and tension sensing 162. Because integrins lack intrinsic kinase activity, all 

these signaling processes have to be mediated by the recruitment of co-receptors as 

well as cytoplasmic adaptor and signaling proteins. The signaling outcome further 

depends on the composition of these signaling complexes, which changes over time 

and is further influenced by the size, shape and sub-cellular localization of the signaling 

complex (see also 1.2.6.3). 
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High affinity interaction of 

integrins with their ligand 

requires direct interaction of the 

short cytoplasmic β integrin tail 

with the adaptor proteins kindlin 

and talin (discussed above, 1.4) 

in a process termed integrin 

activation or inside-out signaling. 

Upon establishment of the first 

contact of such an active integrin 

with the ECM, further integrins 

and adaptor proteins are recruited to mediate integrin signaling (termed outside-in 

signaling) and firm adhesion. In several attempts to identify the participating proteins 

via mass spectrometric analysis an interaction network consisting of over 250 proteins 

has been identified, and over half of these interactions appear to be controlled via 

intracellular signaling pathways 163, 164. The resulting signals can be grouped according 

to the time of their initiation during adhesion formation into immediate (0-10 

minutes), short term (10-60 minutes) and long term effects (>60 minutes) 12. The 

immediate cellular signaling events upon integrin activation compromise a local 

increase of lipid second messengers such as phosphatidylinositol PtdIns-4,5-P2 and 

PtdIns-3,4,5-P3 and increased Tyr phosphorylation of specific substrates, which assist 

the further recruitment of proteins and thus serves as signal amplifying mechanism. 

The increase in lipid secondary messengers is regulated via recruitment of 

Phosphatitylinositol 4-phosphate 5-kinase γ (PtdInsP kinase Iγ) through talin, which in 

turn promotes further talin activation and recruitment (see also 1.4.3)126. The 

increased Tyr phosphorylation can be attributed to the paxillin dependent recruitment 

of focal adhesion kinase (FAK). FAK is a Tyr kinase which becomes activated at sites of 

active integrins and serves as a signaling platform for further kinases and signaling 

proteins, such as Src-family kinases and CRK-associated substrate (Cas) (see 1.5.1.4 and 

1.5.1.5 for details). Furthermore, the second important signaling platform of integrins 

adhesion sites is ILK, which belongs to the earliest proteins recruited to initial adhesion 

Figure 20: Consequences of integrin activation 12. 



I n t r o d u c t i o n | 55 

 

sites (see 1.5.1.2 for details). In the short term time range, cells can adopt the actin 

cytoskeleton to the newly formed adhesion sites, allowing changes in cell morphology 

and migration (as discussed in 1.2.5). Furthermore, the signals initiated during the 

immediate phase are transduced through Protein Kinase B (PKB also known as Akt), 

Glycogen Synthase Kinase (GSK), Extracellular-signal Regulated Kinases 1/2 (ERK1/2) 

and c-Jun n-terminal kinase (Jnk) activation. Finally, prolonged signal propagation 

through the latter proteins leads to changes in gene expression allowing the regulation 

of cell growth, proliferation and survival as well as adaptation to the local environment 

and differentiation. The exact mechanisms and dynamics underlying these processes, 

namely the role of kindlin, ILK, FAK, Paxillin and associated proteins will be discussed 

in detail next. 

1.5.1.1. Growth factor signaling 

As mentioned above, 

integrins lack enzymatic 

activity and thereby depend 

in their signaling capability 

on the recruitment of 

signaling adaptors. In this 

context, integrins are known 

to cooperate with growth 

factor signaling on multiple 

layers, leading to prolonged 

and enhanced signaling 

intensity of growth factor 

induced signaling (see Fig. 

21 for an overview; 

reviewed in 12, 164). On the 

other hand, growth factor 

signaling can also control 

integrin signaling by influencing integrin activation through phosphorylation of the 

integrin tails, by regulation of integrin-associated signaling proteins such as FAK, Src 

and Phosphatidyl-Inositol-4,5-bisphosphate 3-Kinase (PI3K) and by regulating the 

Figure 21: Integrin signaling and influence of growth factor 
signaling. Several exemplary signaling complexes downstream of 
integrins and influences of growth factor signaling are shown. 
Growth factor signaling has direct influence on the integrins (I), 
associated signaling adaptors (II) or indirectly feeds into 
downstream pathways (III). The biochemical responses of the 
affected pathways and the resulting phenotypical outputs are 
indicated below 12. 
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activity of downstream pathways, such as ERK, Akt, Jnk and the Rho GTPases. 

Conversely, integrins can induce specific phosphorylations on the Epidermal Growth 

Factor (EGF)-Receptor (EGFR) required for downstream signaling events and mediate 

growth-factor independent clustering of growth factor receptors, such as EGFR, 

Platelet Derived Growth Factor Receptor (PDGFR) or Fibroblast Growth Factor 

Receptor (FGFR), which leads to their activation. In addition, cooperation between 

integrin and Insulin-like Growth Factor Receptor (IGFR) signaling has been described in 

muscle homeostasis. Although the interconnection of these signaling pathways is 

complex, a few integrin associated signaling adaptors stand out as central signaling 

nodes, which will be discussed in more detail next. 

1.5.1.2. ILK 

Despite of its name (integrin linked kinase), an increasing amount of evidence shows 

that ILK does not function as a kinase (reviewed in 12, 155): Instead, the multiple 

interactions with its binding partners are supposed to regulate integrin signaling in a 

kinase-independent manner. Furthermore, the interaction with kindlin is required for 

recruitment of ILK to integrin adhesion sites. ILK consists of five tandemly arranged N-

terminal ankyrin repeats, followed by a PH-domain and a pseudo-kinase domain at the 

C-terminus. ILK exists as an obligate complex with the interaction partners of the 

PINCH family (PINCH-1/-2), which interact with the ankyrin repeats, and the parvin 

family (α,β,γ-parvin), which interact with the pseudo-kinase domain, and thereby 

forms several ILK-PINCH-parvin (IPP) complexes with different downstream signaling 

properties.  

Multiple, isotype-specific interactions of PINCH and parvin with actin modulatory 

proteins and other signaling factors are thought to orchestrate the specific 

downstream effects of the IPP complex. The IPP complex can interact with the actin 

cytoskeleton through paxillin and parvin and is directly connected to growth factors 

through a connection of PINCH to Nck2. Consequently, cells depleted of ILK show 

reduced spreading, focal adhesion site formation and maturation in concert with 

decreased responsiveness to growth factor signaling and Akt activation, however the 

mechanisms for the later processes remain obscure.  
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1.5.1.3. Kindlin 

In addition to its ability to recruit the IPP complex to integrin adhesion sites, kindlin-2 

has recently been shown to regulate Rat sarcoma (Ras) protein signaling via complex 

formation with Son Of Sevenless homolog 1 (SOS1) 165, Transforming Growth Factor β 

(TGFβ)-signaling through interaction with TGFβ Receptor type I (TβRI) and Small body 

size and Mothers Against Decapentaplegic (SMAD) 3 166 and Wingless-related 

integration site (Wnt)/β-catenin signaling through a direct interaction with β-catenin 

167. However these data remain strongly controversial, as in a later publication for 

example, the interaction with β-catenin could not be confirmed. Instead it was shown 

that kindlin-1 influences β-catenin signaling indirectly by regulating Wnt-expression 

levels 150. Also the influence on TGFβ signaling seems to be more complex, as the latter 

publication also shows that kindlin-1 mediated activation of αvβ6 integrin leads to an 

increased liberation of TGFβ and enhanced SMAD signaling 150. 

1.5.1.4. FAK 

In contrast to ILK, FAK mediates Tyr kinase activity, especially important for auto-

phosphorylation of the activation determining epitope Tyr-397 in FAK itself (an 

overview of FAK signaling functions can be found in 12). FAK consists of an N-terminal 

FERM domain, followed by a kinases domain, a proline rich linker domain and a focal 

adhesion targeting domain. In the inactive state, the FERM domain interacts with the 

substrate binding region of the kinase domain and thus blocks the kinase activity (Fig. 

22, left side). The processes necessary to initially recruit FAK to adhesion sites and its 

localized activation just emerge. There is evidence indicating that FAK signaling 

requires integrin clustering, unclasping and actin tethering, however the underlying 

mechanisms remained unclear 37, 48, 168. Now a series of publications sheds new light on 

the mechanisms required for FAK recruitment to nascent adhesion sites and its 

activation. First, the interaction between FAK and talin is required to recruit talin to 

nascent adhesion sites and not the other way around 122, excluding talin as the 
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essential adaptor for 

early FAK activation 

and recruitment. 

Second, FAK 

essentially depends on 

the interaction with 

RhoA-specific guanine 

nucleotide exchange 

factor (Rgnef) in order 

to mediate membrane 

recruitment, which 

occurs independent of 

paxillin 169, 170. Finally, a 

study using crystal structures and Small Angle X-ray scattering (SAX) structure 

determination could show how paxillin contributes to FAK activation at sites of 

clustered integrins 171 (see Fig. 22 for the following mechanism): The first important 

step of this mechanism is the enhanced recruitment of FAK to integrins through 

interaction of Paxillin with the focal adhesion targeting (FAT) domain of FAK. Upon 

integrin clustering two such recruited FAK molecules can dimerize. Importantly, the 

FAK molecules interact in trans through their FAT and FERM domains and this 

interaction is further stabilized through simultaneous paxillin interaction. This mode of 

dimerization stabilizes a conformation, where the FERM domain moves away from the 

kinase domain, allowing the trans-phosphorylation of the two FAK molecules at the 

activating Tyr-397 residue. 

Upon phosphorylation on Tyr-397 FAK can interact with Src-family kinases, leading to 

further phosphorylations in the protein, which in turn allow complex formation with 

and phosphorylation of multiple Src-Homology 2 (SH2) domain containing proteins (for 

an overview, see Fig. 21), most prominently Arp2/3, N-Wasp, P130Cas- Chicken tumor 

10 Regulator of Kinase (CRK)-DOCK complex, paxillin-protein-coupled receptor-kinase-

interacting protein (GIT)-PAK-Interactive exchange factor (PIX) complex. Actin 

dynamics are controlled by the FAK-p130Cas-Crk-DOCK and paxillin-GIT-PIX 

complexes, which lead to the activation of Rac. Also, the concerted recruitment of N-

Figure 22: Paxillin and integrin clustering mediated FAK activation. Paxillin 
residing at integrin adhesion sites (left panel) recruits FAK through 
interaction with FAK-FAT-domain. FAK kinase domain is blocked by the 
interaction with FAK-FERM domain. In the presence of integrin clusters two 
paxillin-FAK complexes can interact in trans (middle), leading to a 
conformational change which allows the FAK-kinase domain to trans-
activate the other FAK molecule at Tyr-397 through phosphorylation. 
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Wasp and Arp-2/3 complex contribute to localized actin polymerization. Furthermore, 

p130Cas and Src can induce ligand-independent phosphorylation of EGFR, and 

importantly, the activated FAK-Src complex controls downstream signaling through a 

Ras-Mitogen-activated protein kinase/ERK Kinase (MEK)-Mitogen Activated Protein 

Kinase (MAPK) pathway. Furthermore, FAK is involved in Phosphoinositidol-3-Kinase 

(PI3K)-Akt signaling by recruiting PI3K to focal adhesion sites. Consequently, cells 

depleted of FAK show defects in the initiation of nascent adhesion sites and a decrease 

in the turnover of enlarged FA sites leading to slower migration. Altogether, FAK 

activation at adhesion sites controls actin and FA dynamics as well as signaling 

pathways important for cell proliferation, survival and differentiation. Although 

current publications show a complete picture of FAK activation, the question how 

paxillin becomes recruited to nascent adhesion sites remains unclear.  

1.5.1.5. Paxillin 

Paxillin has early been described as an essential component of integrin adhesion sites 

(reviewed in 3, 172). Paxillin and its two paralogues Hydrogen peroxide-inducible clone-

5 (Hic5) and leupaxin, which differ in their tissue expression pattern, share a similar 

protein domain architecture (Fig. 24) 3. 

 

All three proteins are highly similar in the occurrence of four LIM domains, which 

consist each of two zinc finger domains. It has been shown that the LIM-2/3 domains 

are important for the localization of paxillin to FAs. However, the underlying 

 Figure 23: Paxillin domain structure (modified from 3). 



I n t r o d u c t i o n | 60 

 

mechanisms remain obscure 172. Furthermore, interactions with the Protein Tyr-

Phosphatase with Pro(P)-Glu(E)-Ser(S)-Thr(T) sequence (PTP-PEST) as well as 

microtubules have been located to the paxillin LIM domains. Both interaction sites are 

thought to facilitate FA turnover 172. The three paralogues show a higher degree of 

dissimilarity in the organization of their N-terminal Leu- and Asp (LD)- rich domains, 

which are heavily phosphorylated upon integrin signaling and serve as a major 

platform for integrin associated signaling adaptors (Fig. 23)3. Prominent interaction 

partners of the LD domains include vinculin, ILK, FAK, parvin, PKL/GIT and CRK leading 

to an important influence of paxillin to the function of these interacting proteins 172. In 

detail, the paxillin N-terminus contains five highly conserved LD domains, which 

provide - despite their high degree of conservation - defined, non-overlapping 

interaction sites for interacting proteins 172. Although Hic5 and leupaxin contain only 

four of these sites many interaction partners are shared by the paxillin family 3. Besides 

the influence on FAK activation, paxillin regulates actin dynamics through Rac and Rho 

signaling 9, 12. For example, phosphorylation of paxillin on Tyr-31 and Tyr-118 by 

activated FAK-Src complex leads to the recruitment of Crk-p130Cas-Dock180 complex 

important for Rac activation and Rac-mediated actin dynamics (see also 1.2.5). 

Phosphorylation of paxillin on Ser-273 through P21-Activating Kinase 1 (PAK1) leads to 

the formation of a GIT-PIX-PAK1 complex. PAK1 can directly regulate Rac activity and 

GIT can activate the small GTPase ADP-ribosylation factor 6 (Arf6) through its Arf-GAP 

domain, which in turn can also modulate Rac activation. Altogether, paxillin constitutes 

a central signaling platform which integrates prominent integrin signaling pathways 

and leads to the activation of several Rac-stimulatory pathways, important role for cell 

spreading; however the mechanism which mediates paxillin recruitment to integrin 

adhesion sites remains unknown.  

1.5.2. Integrin signaling in anoikis and cancer 
The relevance of integrin-mediated signaling is further underlined by the influence of 

integrins on cancer progression and apoptotic cell death upon detachment from the 

ECM substrate (anoikis) (reviewed in 19): The contact of cells to their surrounding 

matrix allows proliferation and survival. Consequently, the expression of an organ and 

cell type-specific integrin profile prevents proliferation of cells in “foreign” organs. 

Therefore, it is an essential step during cancer cell development to achieve partial 
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resistance to anoikis, which facilitates migration out of the primary tumor and 

extravasation, and to achieve expression of the corresponding integrin heterodimers 

necessary to invade and allow persistent survival in novel ECM environments. 

Cell detachment initiates anoikis by reducing the anti-apoptotic integrin signaling and 

the release of cytoskeletal-associated pro-apoptotic factors that can induce the 

intrinsic apoptosis pathway and the extrinsic apoptosis pathway via the cell rounding-

dependent activation of tumor necrosis factor receptor family members. Both 

apoptosis pathways depend on the release of mitochondrial cytochrome-c through 

membrane channels induced by oligomerization of Bcl2-associated X (Bax)/ Bcl-2-

ssociated death promoter (Bad) proteins. Integrin signaling strongly affects the 

apoptosis inducing activity of Bax/Bad proteins by regulating their inhibitors B-cell 

lymphoma-2 (Bcl-2) and B-cell lymphoma-XL (Bcl-XL). Akt signaling induced through 

FAK or ILK can lead to a release of Bcl-2 and inhibition of Bad proteins. Furthermore, 

MAPK signaling controlled by ILK, FAK and integrin dependent growth factor signaling 

can inhibit apoptosis through their influence on apoptosis-stimulatory and -inhibitory 

pathways. These observations suggest that the upstream regulatory proteins have 

profound influence on anoikis. Indeed, the presence of specific integrin heterodimers 

can influence anoikis, e.g. αvβ5 integrin sensitizes while αvβ6 integrin can protect cells 

from anoikis. Also overexpression of kindlin and talin have been identified as anti-

apoptotic influence, which promotes cancer development. However, the exact 

mechanisms how kindlin and talin contribute to integrin signaling are still under 

investigation 173-176. It will be interesting for future research to identify, in which 

situations the anti-apoptotic functions of talin and kindlin are interdependent and in 

which independent of each other. 
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2. Aim of the thesis 
Integrin activation and signaling are complex multi-step processes, regulated by the 

cytoplasmic adaptor proteins kindlin and talin. The current opinion in the field points 

to an important influence of both proteins to these processes. Structural and 

biochemical data have described and explained single steps of integrin activation for 

various integrin heterodimers. The influence of kindlin and talin to β2 integrin 

activation in hematopoietic cell lines, which are mainly non-adherent, has been 

relatively well characterized. However, the influence of kindlin and talin on the 

activation of β1 integrin, the main integrin in adherent cells such as fibroblasts or 

epithelial cells, remains poorly characterized and understood. In these cells, which 

constitute the majority of all body cells, mechanistic insights are mostly available for 

the function of talins but not for kindlins. There is an ongoing controversy concerning 

the importance of kindlin function for integrin activation. It was suggested that kindlins 

rather enhance than promote integrin activation. Furthermore, recent data and own 

observations suggest that very low levels of kindlin and talin are sufficient to support 

most of their functions in vitro and in vivo questioning the interpretation of knock-

down or overexpression studies. Up to date only few publications are available, which 

could address these issues in cells lacking one of both protein families. For adherent 

cells no data with gene deletion of both activators is available. In order to resolve some 

of these gaps in our understanding, I focused my PhD project on the role of kindlin and 

talin for integrin activation and signaling in fibroblast cell lines, as a model for adherent 

cell lines.  

To allow comparative analysis of kindlin and talin functions my first aim was to 

generate two fibroblast cell lines, which allow conditional deletion of all expressed 

kindlin or talin isoforms. In order to achieve this aim, I generated a transgenic mouse 

line for conditional deletion of kindlin-2, which is currently analyzed by a further PhD 

student. The generated cell lines were used for my analyses and proved as an essential 

model system for further related projects. 

My second aim was to compare the influence of kindlin and talin to integrin activation 

and signaling in these cell lines, leading to a thorough analysis of these processes and 
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improved understanding of the individual protein functions especially in the initial 

spreading phase. 

In addition, my third aim was to improve our understanding of kindlin-mediated 

signaling functions by screening for novel interaction partners of kindlin. For this 

purpose, mass spectrometry assisted analysis of immuno-precipitations, adhesomes 

and yeast two hybrid screenings were performed. They lead to the identification of 

paxillin as a novel kindlin interaction partner. 

In parallel I was also interested in broadening my understanding of kindlin functions in 

mouse development, tumor development and the molecular mechanisms underlying 

the signaling through the most prominent kindlin interaction partner. For this purpose 

my fourth aim was to study the impact of kindlin-1 deletion on early mouse 

development and tumor development.  

Finally, together with a student fellow I wrote a review article, in which I summarized 

and discussed the current knowledge gathered by numerous laboratories on ILK. 
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3. Short summary of manuscripts 

3.1. Kindlin-2 initiates fibroblast adhesion and spreading by 

recruitment of paxillin and FAK to nascent adhesion sites. 
Moritz Widmaier, Marina Theodosiou*, Emanuel Rognoni*, Katharina Austen, 

Maik Veelders, Daniel Müller, Mitasha Bharadwaj, Zdenek Petrasek, Roy Zent, 

Reinhard Fässler. (*contributed equally) 

Integrins are αβ heterodimeric transmembrane receptors which mediate cell 

adhesion and signaling by binding to ligands of the ECM or other cells. Prior to 

ligand binding and signaling, integrins need to be activated through interaction of 

talin and kindlin proteins with the cytoplasmic tails of β integrins. This activation 

comprises allosterically linked conformational changes in the ligand binding site 

and separation of the tight interaction of the αβ heterodimer in the proximity of 

the transmembrane domains. Upon initial adhesion formation, integrins form 

clusters, which leads to adhesion strengthening and integrin signaling through the 

recruitment of adaptor proteins. Previous reports show an important influence of 

kindlin and talin to integrin-mediated cell adhesion. However it remains 

controversial how kindlins contribute to integrin activation or signaling. 

In this study, we generated two fibroblast cell lines, which lack the expression of 

talin or kindlin isoforms, respectively. Our studies revealed that both proteins are 

required to mediate cell adhesion on fibronectin (FN) and robust integrin signaling. 

In line, both cell lines showed proliferation defects and furthermore, kindlin-

deleted cells displayed survival defects. Interestingly, integrin tail separation 

measured with the 9EG7-antibody revealed that both cell lines were severely 

affected. However, ligand binding was only perturbed in kindlin-deleted cells. 

Furthermore, stimulation with Mn2+ and FN ligand, which stimulates integrin leg 

separation, partially rescued adhesion of both cell lines on FN ligand. However, 

only talin-deleted cells where able to spread. Further analysis excluded differences 

in integrin clustering between the two cell lines suggesting that kindlin can 

promote isotropic cell spreading. When we searched for the responsible protein 

that mediated this kindlin effect we identified paxillin as novel interaction partner 

of kindlin by using yeast two hybrid analysis. We show that during isotropic cell 
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spreading, kindlin recruits ILK and paxillin to nascent adhesion sites; ILK regulates 

actin dynamics and paxillin activates FAK, which in turn promotes cell spreading, 

proliferation and survival. 

Altogether, these results suggest that in fibroblasts kindlin might initiate integrin 

activation and signaling and that talin is required to enhance these processes, 

stabilize nascent adhesions and promote their maturations into FAs. 

3.2. Integrin linked kinase at a glance. 
Moritz Widmaier, Emanuel Rognoni, Korana Radovanac, Babak Azimifar, 

Reinhard Fässler. 

Integrins constitute a large family of heterodimeric transmembrane receptors, 

important for cytoskeletal dynamics and signaling in response to cell adhesion. As 

integrins lack enzymatic activity, their signaling properties rely on the recruitment 

of intracellular signaling proteins and adaptor proteins. Integrin-linked kinase (ILK) 

is one of the best described examples of these signaling adaptors, influencing actin 

rearrangement, cell polarization and survival. Furthermore, ILK has been shown to 

function in subcellular compartments which do not directly depend on integrins, 

such as cell-cell-adhesion sites, centrosomes and the nucleus. While recent 

evidence clearly showed that the proposed kinase activity of ILK is missing, many 

of the ILK-mediated functions can be explained through the ability to assemble 

many important signaling proteins into a large signaling platform. Most 

importantly, ILK requires interaction with PINCH and parvin proteins to maintain a 

stable conformation and to be protected against degradation. Furthermore, PINCH 

and parvin influence actin cytoskeleton dynamics through binding to ILK. Direct 

interaction of ILK with a complex of mDia1 and IQGAP1 directs microtubule tips to 

integrin adhesion sites, which enhances adhesion turnover. Furthermore, ILK 

interacts with many other central signaling proteins, such as paxillin, PKB/Akt, Src 

or ILKAP and might assist in integrating information into complex signaling 

activities at integrin adhesion sites. ILK is also found in other sites than adhesion. 

They include cell-cell contacts, the nucleus and centrosomes. It will be important 

to shed light on ILK’s function at these sites and to delineate how Akt and GSK3β 

are activated by ILK. 
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3.3. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal 

epithelial dysfunction.  
Siegfried Ussar, Markus Moser, Moritz Widmaier, Emanuel Rognoni, Christian 

Harrer, Orsolya Genzel-Boroviczeny, Reinhard Fässler. 

Integrins are obligate heterodimeric transmembrane receptors formed by α and β 

subunits which mediate cell attachment to extracellular ligands and downstream 

signaling important for cell migration, proliferation and survival. Integrin mediated 

ligand binding and associated signaling is controlled by interaction of the 

cytoplasmic β-tail with adaptor proteins, such as kindlins. In humans and mice, 

three kindlin isoforms are expressed (kindlin-1/-2/-3) and mutations of the human 

KINDLIN-1 gene, which is co-expressed in various epithelial tissues with kindlin-2, 

has been shown to give rise to the Kindler syndrome, characterized by defects of 

the skin, like skin detachment from the underlying basement membrane 

(blistering), skin atrophy, pigmentation defects and an increased risk to develop 

skin cancer. 

In order to gain better understanding of the underlying pathogenic mechanisms of 

Kindler syndrome, we generated a mouse line, in which the kindlin-1 gene was 

constitutively deleted. This mouse line recapitulated major phenotypes observed 

in Kindler syndrome patients, such as skin blistering and skin atrophy. However, in 

contrast to the human patients, the mice died early after birth, as they suffered 

from an ulcerative colitis-like phenotype of the intestine. Our results showed that 

reduced integrin activation due to kindlin-1 deletion renders the skin and 

especially the intestinal epithelium more sensitive to mechanical stress leading to 

local detachment of the affected epithelia and a severe inflammation. 

Interestingly, ulcerative-colitis like symptoms were also observed in Kindler 

Syndrome patients, which are, however, less severe. 

 

3.4. Kindlin-1 controls Wnt and TGF-β availability to regulate 

cutaneous stem cell proliferation. 
Emanuel Rognoni, Moritz Widmaier, Madis Jakobson, Raphael Ruppert, 

Siegfried Ussar, Despoina Katsougkri, Ralph T. Böttcher, Joey E. Lai-Cheong, 

Daniel B. Rifkin, John McGrath, Reinhard Fässler. 
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The rare human disease Kindler syndrome is caused by mutations in the human 

KINDLIN-1 gene and characterized by regional skin blistering, hyperkeratosis, 

atrophy and pigmentation defects accompanied by an increased risk for skin 

cancer development. In a previous publication we could show that constitutive loss 

of kindlin-1 expression in mice leads to cell attachment defects and early lethality 

caused by reduced integrin function in the skin and intestinal epithelium. Integrins 

are heterodimeric transmembrane receptors which can mediate adhesion and 

migration as well as signaling on ECM ligands. Their ligand binding affinity can be 

controlled by intracellular adaptor proteins such as kindlin-1 and increased 

integrin activation is associated with increased risk for cancer development. The 

contradiction of the increased cancer prevalence in Kindler syndrome patients 

despite decreased integrin function suggested that kindlin-1 controls potent, 

integrin-independent tumor promoting signaling pathways, which were unknown 

when we started the project. 

In this study, we developed a conditional deletion of kindlin-1 in keratinocytes to 

circumvent lethality. This allowed to study the role of kindlin-1 in tumor 

development. In order to distinguish between direct effects of kindlin-1 deletion 

and defects caused by loss of β1 integrin function, we compared this mouse line 

to a recently described mouse expressing a kindlin-binding deficient β1 integrin in 

keratinocytes. Our analysis revealed that kindlin-1 controls αvβ6 integrin mediated 

release of TGFβ in the skin stem cell compartment as well as expression levels of 

Wnt ligands and receptors independent of β1 integrin function. Changes in TGFβ- 

and Wnt/β-catenin signaling could be confirmed in Kindler patients as well. In 

mice, misregulation of both pathways caused overshooting skin stem cell activity, 

aberrant induction of hair follicle development and early onset of chemically 

induced tumor development. Altogether our analysis revealed that kindlin-1 

contributes to activation of β1 integrins and controls skin stem cell fate, 

proliferation and tumor development through regulation of TGFβ-release and 

Wnt/β-catenin signaling.    

 



S h o r t  s u m m a r y  o f  m a n u s c r i p t s | 68 

 

3.5. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by 

binding to the β1 integrin tail. 
Ralph Thomas Böttcher, Christopher Stremmel, Alexander Meves, Hannelore 

Mayer, Moritz Widmaier, Hui-Yuang Tseng, Reinhard Fässler. 

Integrins mediate cell adhesion to ECM ligands, cell migration and signaling 

important for survival and proliferation. These integrin functions are regulated by 

intracellular proteins, which bind directly or indirectly to the intracellular integrin 

tail domains, which control the affinity of integrins to their ligand, their 

internalization and efficient recycling to adhesion sites. Here we show that two 

FERM domain containing proteins, kindlin-2 and the SNX17 directly interact with 

the same motif in β integrin tails. However, binding occurs in different subcellular 

compartments. Interaction of kindlin-2 takes place at the plasma membrane and 

controls the affinity of integrins towards their ligand, and interaction of SNX17 

occurs in endosomes and is required to ensure recycling of internalized integrins 

back to the cell surface. In absence of SNX17 or when the interaction of SNX17 

with β integrin is perturbed, internalized integrins become quickly degraded via 

the lysosomal degradation pathway.  
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Abstract 

Integrins are α/β heterodimers that mediate cell-matrix and cell-cell adhesion. Integrins 

require an activation step prior to ligand binding, clustering and the recruitment of signalling 

and adaptor proteins to their cytoplasmic domains. Integrin activation and signalling are 

induced upon binding of talin and kindlin proteins to the β tails of integrins. Although 

kindlins are essential for integrin function their contributions to integrin activation and 

signalling are unclear.  Here we report that fibroblast cell lines lacking either talin or kindlin 

expression bind normal amounts of soluble fibronectin (FN) ligand but fail to bind the anti-β1 

integrin 9EG7 antibody and to adhere to a FN-coated substrate indicating that both talin and 

kindlin are required to shift the α5β1 integrin into the high affinity state. When the high 

affinity state is induced with Mn2+ talin-deficient but not kindlin-deficient cells show 

increased binding to soluble FN and 9EG7 and initiate adhesion to FN and isotropic spreading 

indicating that kindling can maintain a Mn2+-induced active integrin and initiate signalling. 

Mechanistically, kindlin executes these tasks by directly binding to paxillin in small integrin 

adhesion sites, which is followed by recruiting focal adhesion kinase (FAK), lamellipodia 

induction and growth and pro-survival signalling. Our findings identify two steps during FN-

induced adhesion and cell spreading that are controlled by talin and kindlin; in the first step 

talin and kindlin cooperatively activate integrins leading to FN-integrin binding and adhesion, 

and in a second step kindlin recruits paxillin and FAK to initiate spreading and signalling, 

while talin links integrins to F-actin to stabilize and mature the adhesion sites. 



Introduction 

Integrins are heterodimeric transmembrane receptors that mediate cell adhesion to the 

extracellular matrix (ECM) and to other cells 1. The consequence of integrin-mediated 

adhesion is the assembly of a large molecular network that induces various signalling 

pathways resulting in cell migration, proliferation, survival and differentiation 2. The quality 

and the strength of integrin signalling are controlled by the interaction between integrins and 

substrate-attached ligands, which in turn is controlled by the on- and off-rates of the integrin 

ligand binding process 3. The on-rate of the integrin-ligand binding reaction (also called 

integrin activation) is characterized by switching the unbound form of integrins from the 

inactive (low affinity) to the active (high affinity) state. The affinity switch is allosteric and 

proceeds in at least two major steps; the bent and clasped integrin dimer extends into an 

intermediate ligand binding affinity. This step is followed by the unclasping of the proximal 

leg domains, transmembrane domains and cytoplasmic tails of the α and β subunits, and a 

“swing-out” of the hybrid domain that connects β leg and head domains leading to full ligand 

binding affinity 1, 4. The allostery is of chemical nature and induced with the binding of the 

two adaptor proteins talin and kindlin to the β integrin cytoplasmic domain 5, 6 and requires 

the presence of divalent cations in the ligand-binding pocket 1. 

The off-rate of an integrin-ligand complex is controlled by two mechanisms, integrin 

clustering and catch bond formation between integrin and bound ligand, and is believed to be 

of equal importance as the on-rate regulation. Both off-rate mechanisms stabilize integrin-

ligand complexes and are therefore, important regulators of the duration and strength of 

adhesion and signalling 7-11. The stabilizing effect of clustered integrins is due to the increased 

probability for dissociated integrin-ligand complexes to rebind before they leave the adhesion 

site 8, 10, while catch bonds are receptor-ligand bonds whose lifetime increases with force 12-14. 

In contrast to the integrin activation model, integrin clustering as well as catch bond formation 

depend on the association of integrins with the actin cytoskeleton 10, 15, which is mediated, at 

least in part, by talins and kindlins 10, 16. 

The talin family consists of two (talin-1 and -2) and the kindlin family of three isoforms 

(kindlin-1-3), which show tissue-specific expression patterns 17, 18. They activate integrins and 

associate active integrins either directly and/or indirectly with the actin cytoskeleton 19, 20. 

Since the binding sites of talin and kindlin in β integrin cytoplasmic tails are in close 

proximity it has been proposed that talin and kindlin may bind sequentially to β tails and 

function consecutively rather than conjointly to control the on- and off-rates of the integrin 

ligand binding process 5, 21, 22. Indeed, there is experimental evidence that talin and kindlin 



fulfil non-overlapping role(s) during integrin-ligand binding. The role that the two proteins 

play is hotly debated. For example, it was shown that talin-1 activates αIIbβ3, while kindlin-3 

stabilizes the integrin-ligand complex by stimulating αIIbβ3 clustering 16. On the other hand, 

there is also experimental evidence for a primary role of talin in integrin clustering rather than 

activation 23. Further evidence demonstrates that talin is not associated with integrin tails 

during the nucleation of nascent adhesions (NAs; 24), that talin recruitment is not required for 

NAs development 25, that talin loss allows fibroblasts adhesion and isotropic spreading 26, and 

that the recombinant talin-FERM domain inefficiently induces the separation of αIIbβ3 and 

β3 subunits inserted into lipid discs 21. 

In the present paper we report the generation and characterisation of a cell model system that 

allowed a direct functional comparison of talin and kindlin for fibronectin (FN) binding 

integrins on fibroblasts. The implications of the results are discussed. 



Results 

Kindlins and talins control cell morphology, adhesion and integrin expression 

Fibroblasts express talin-1 and kindlin-2, whose deficiencies were compensated by the de 

novo expression of talin-2 and kindlin-1, respectively (Suppl. 1A). The low talin-2 and 

kindlin-1 levels were sufficient to allow adhesion and cell spreading, although to a lesser 

extent than control cells (Suppl. 1B). To prevent the compensatory upregulation of talin-2 and 

kindlin-1, we generated mice with loxP flanked (floxed; fl) talin-1 and nullizygous talin-2 

alleles or with floxed kindlin-1 and -2 alleles (TlnCtr; KindCtr; Fig.1A), isolated, immortalized 

and cloned kidney fibroblasts with comparable integrin surface levels (Suppl. 1C), and 

deleted the floxed alleles by adenovirally transducing Cre recombinase resulting in talin-1, -2 

(TlnKo) and kindlin-1, -2 (KindKo) deficient cells, respectively (Fig. 1A-C). The TlnCtr and 

KindCtr control cells showed the same morphologies and behaved the same in all experiments 

tested. Therefore, we display only one control cell line in the majority of the result panels. 

Cre-mediated deletion of talin-1 or kindlin-1/2 was efficient (Fig. 1B) and resulted in cell 

rounding, poor adhesion in a few cells (Fig. 1C) and significantly reduced proliferation rates 

(Suppl. 1D). To exclude cell passage-induced abnormalities, we used cells up to 12 passages 

after Cre-mediated gene deletions. 

To define the adhesion defects we performed plate and wash assays on different substrates 

and observed that TlnKo and KindKo cells almost completely lost adhesion on fibronectin (FN), 

laminin-111 (LN), type I collagen (COL) and vitronectin (VN). Treatment with Mn2+ induced 

a comparable increase of TlnKo and KindKo cell adhesion to FN, while adhesion to LN was 

induced in TlnKo cells only and adhesion to VN and COL in neither cell line (Fig. 1D). 

Next we used flow cytometry to determine whether changes in integrin surface levels 

accounted for the differential adhesion properties of TlnKo and KindKo cells. The experiments 

revealed that the levels of β1 and β3 were significantly reduced in KindKo and unaffected in 

TlnKo cells. The levels of α2, α3 were reduced in both cell lines, α6 was elevated in TlnKo and 

decreased in KindKo cells and the α3 levels were significantly more decreased in KindKo than 

in TlnKo cells (Fig. 1E) explaining the absent adhesion of both cell lines on COL and their 

differential adhesion behaviour on LN (Fig. 1D). Although β1 and β3 levels were 

differentially affected, α5 and αv integrins were slightly reduced but not significantly different 

between TlnKo and KindKo cells and β5 was similarly increased in TlnKo and KindKo cells (Fig. 

1E), which altogether provides an explanation why adhesion to FN was similar between TlnKo 

and KindKo cells (Fig. 1D). Likewise, the pronounced reduction of the COL-binding α2 in 



TlnKo as well as KindKo cells was in line with the severely reduced adhesion to collagen (Fig. 

1D). Since the levels of the FN binding α5β1 and αv-class integrins were similar on TlnKo and 

KindKo cells and their adhesion on FN identical we decided to perform all further experiments 

on FN. 

Integrin binding to FN requires talin and kindlin-2 

Cell adhesion and spreading on substrate bound ligands requires integrin activation, ligand 

binding, clustering and adhesion re-enforcement 3. To test whether loss of talin or kindlin 

affected integrin activation we used flow cytometry to measure binding of soluble, Cy5-

labelled wild type FN-III7-10 (FN-RGD) or an integrin-binding deficient FN-III7-10 fragment 

carrying an aspartic acid to glutamate substitution in the RGD binding motif (FN-RGE), to 

which wild type fibroblasts adhered poorly and failed to spread (Suppl. 2A). We found that 

TlnCtr and KindCtr as well as TlnKo and KindKo cells bound similar amounts of FN-RGD (Fig. 

2A). As expected, Mn2+ treatment induced a strong and comparable FN-RGD binding on 

TlnCtr and KindCtr cells. Interestingly, the strong Mn2+-induced increase of FN-RGD binding 

was slightly but not significantly different between TlnKo and TlnCtr cells, while the Mn2+-

induced increase of FN-RGD binding was significantly less pronounced on KindKo compared 

to KindCtr cells (Fig. 2A) indicating that kindlin-2 increases ligand binding affinity (on-rates) 

and/or stabilizes ligand binding in concert with Mn2+ and the FN ligand.  

It has been reported that the ligand binding affinities of clasped and unclasped α5β1 integrin 

ectodomains differ by around 5.5-fold 27. This difference in affinity is caused by combined 

effects of lower on- and higher off-rates and Mn2+ stimulation can only normalize the on-rate. 

To test whether the diminished FN-RGD binding of Mn2+-treated KindKo cells is due to an 

impaired integrin unclasping, we measured the binding of the 9EG7 antibody, which binds 

only to unclasped β1 integrins 4, 27. These measurements revealed that TlnCtr and KindCtr cells 

bound high levels of 9EG7, while TlnKo and KindKo cells almost entirely lost 9EG7 binding 

(Fig. 2B). Next we treated our cells with Mn2+ and FN to test their allosteric influence on 

9EG7 binding to the α5β1 integrin. In line with an increased FN-RGD binding by TlnKo cells 

(Fig. 2A), Mn2+ and FN treatment also induced significantly more 9EG7 binding in TlnKo 

compared to KindKo cells (Fig. 2B). These findings confirm that in contrast to talin, kindlin-2 

is sufficient to elevate Mn2+-induced binding of 9EG7 (reporting integrin unclasping) and FN-

RGD.  

In order to analyse to which extent talin and kindlin-2 impair adhesion strength to FN, we 

attached the TlnCtr, KindCtr, TlnKo or KindKo cells to ConA-coated cantilevers of an atomic 



force microscope (AFM), allowed them to contact FN-RGD- or FN-ΔRGD-coated surfaces 

for increasing time periods and then measured the forces required to disrupt binding to the FN 

fragments (Fig. 2C,D). As expected, none of the cell lines adhered to FN-ΔRGD. After a 5 s 

contact time to FN-RGD neither cell line showed significant adhesion. The force required for 

disrupting the adhesion of TlnCtr and KindCtr cells to FN-RGD averaged out at 3 nN after 

contact time of 20 s and increased to 4 and 5 nN after contact times of 20 and 120 s, 

respectively (Fig. 2C). TlnKo cells also required around 3 nN force to disrupt the adhesion to 

FN-RGD after a 20 s contact time. Interestingly, after contact times of 50 and 120 s we 

observed two TlnKo cell populations which greatly differed with respect to their adhesion 

forces; in one TlnKo population the adhesion force increased concomitantly with the contact 

times, while the second cell population showed no significant adhesion. In sharp contrast, 

KindKo cells were unable to establish a measurable adhesion to FN-RGD irrespective of the 

contact time (Fig. 2C). Although the treatment with Mn2+ enabled adhesion of KindKo cells to 

FN-RGD, the adhesion strength of TlnKo cells was significantly higher and decreased to 

background level in the presence of EDTA (Fig. 2D). The weaker adhesion strength in KindKo 

cells suggest that kindlin α5β1 integrin remains in the intermediate affinity conformation, 

which leads to reduced rates of ligand binding, and an increased off-rate, leading to weaker 

adhesion forces in the presence of Mn2+. 

Although unstimulated TlnKo and KindKo cells bound similar amounts of FN after 30 min, 

(Fig. 2A), assembly of soluble FN into fibrils, which requires the stable association of active 

α5β1 integrin to the actin cytoskeleton 28, occurred neither in TlnKo nor in KindKo cells (Fig. 

2E). As expected, re-expression of full-length, Venus-tagged talin (Tln1V) in TlnKo or GFP-

tagged kindlin-2 (K2GFP) in KindKo cells rescued 9EG7 binding, adhesion to FN and FN 

fibril assembly (Fig. 2E-G and Suppl. 2B). Importantly, however, neither overexpression of 

the talin-1 head (THD) or K2GFP in TlnKo cells, nor Tln1V or THD in KindKo cells 

significantly improved 9EG7 binding or adhesion to FN (Fig. 2F,G and Suppl. 2B). 

These results suggest that α5β1 integrins exists in an intermediate affinity (clasped/extended) 

state in untreated TlnKo and KindKo cells, that the allosteric transition into the high affinity 

(unclasped/extended) state triggered by the addition of Mn2+ and FN and monitored by 9EG7 

binding requires talin and kindlin-2, although kindlin-2 can induce a small but significant 

binding of the 9EG7 antibody as well as weak adhesion to FN measured by AFM. However, 

firm adhesion to and assembly of FN fibrils requires both talin and kindlin-2, as an elevation 

of kindlin-2 levels in TlnKo and talin levels in KindKo cells are unable to reverse the defects. 



Kindlin-2 controls spreading together with EGF 

The off-rates of integrin-ligand complexes differ between TlnKo and KindKo cells. Off-rates 

are regulated by integrin clustering, which can be induced by seeding cells on immobilized 

ligand 29. To investigate integrin clustering we plated our cell lines on FN-coated culture 

dishes or kept them in suspension and measured large scale integrin clustering by 

immunofluorescence (IF) confocal microscopy and small scale clustering by combining 

stochastic optical reconstruction microscopy (STORM) and total internal reflection 

fluorescence (TIRF) microscopy. To ensure that only surface β1 integrin was stained and 

analysed all experiments were performed without permeabilizing membrane. In line with a 

previous report 30, IF staining of suspended TlnCtr and KindCtr cells revealed aggregates of β1 

integrins in actin-containing membrane spikes, which were indistinguishable from TlnKo or 

KindKo cells, remained unaffected by Mn2+ and disappeared upon latrunculin A treatment 

(Fig. 3A; Suppl. 3A). When TlnCtr or KindCtr cells were seeded on FN, the small membrane 

spikes were lost and β1 integrins clustered together with ILK, paxillin, talin and kindlin-2 

(Suppl. 3B) in NAs and focal adhesions (FAs), whose size and frequency increased upon 

Mn2+ treatment (Fig. 3B). In contrast, the few weakly adhering TlnKo and KindKo cells were 

small and formed finely dispersed, small β1 integrin clusters over the entire cell. Mn2+ 

treatment improved adhesion of TlnKo and KindKo cells (Fig. 1D) and induced isotropic 

spreading in around 24 % TlnKo and anisotropic spreading in around 21 % KindKo cells with 

small, NA-like β1 integrin clusters enriched at the cell periphery (Fig. 3B,C). Interestingly, 

Mn2+ induced lamellipodia formation and spreading of TlnKo cells were only observed on FN 

and in the presence of EGF or serum (Fig. 3C,D). Re-expression of Tln1V in TlnKo cells or 

K2GFP in KindKo cells normalized the morphology and the FA formation of upon FN seeding 

(Suppl. 3C). These findings indicate no prominent role of talin and kindlin-2 for the formation 

of integrin micro-clusters. However, in the presence of EGF and Mn2+ kindlin-2 but not talin 

induced high affinity integrin-ligand interactions, which facilitated the formation of small, 

peripheral integrin clusters and large lamellipodia. 

STORM microscopy of Mn2+-treated KindCtr and TlnCtr cells showed β1 integrin clusters that 

were enriched in paxillin-containing FAs (acquired with diffraction limited resolution) and in 

the cell periphery. Interestingly, Mn2+-treated TlnKo and KindKo cells also displayed β1 

integrin clusters in their periphery, which were of similar size as in KindCtr cells (Fig. 3E). 

Due to the stochastic process of STORM image acquisition and the resolution of ~50 nm we 

could not resolve individual integrin molecules, and hence the β1 integrin staining-densities 

represent clusters of several β1 integrin molecules (up to four considering their 12 nm size). 



Since each β1 integrin cluster is defined through multiple signal detections and the collected 

signals per cluster were similar for all cell lines, we conclude that the number of β1 integrins 

per cluster is similar between KindCtr, TlnKo and KindKo cells (Suppl. 3D,E). To define the 

spatial organization of the integrin clusters, we determined the nearest neighbour distance 

(NND) in- and outside of adhesion sites as well as the numbers of separate integrin clusters in 

close proximity, as they can be found in FAs (Fig. 3F,G). In TlnCtr and KindCtr cells, the NND 

of β1 clusters within FAs was around ~60-80 nm (Fig. 3F), which was also found by others 

for normal fibroblasts 31-33. The NND outside of FAs was 140 nm for β1 (Fig. 3F) and the 

numbers of β1 integrin clusters per µm2 was normal in TlnKo and reduced in KindKo cells 

(Suppl. 3F), which is in line with their reduced β1 integrin surface levels (Fig.1E). In TlnCtr 

and KindCtr cells, around 28 % of the β1 clusters formed aggregates with more than six and 18 

% with 4-6 clusters in paxillin-positive FAs, while the remaining 54 % of β1 clusters 

assembled mainly in small aggregates (1-3 clusters) outside of FAs (Fig. 3E,G). Since TlnKo 

and KindKo cells lack classical FAs we analysed the spatial distribution of all β1 clusters (Fig. 

3F,G) and found no overt differences among the size or the NNDs of the cluster aggregates 

compared to TlnCtr and KindCtr cells. 

Our findings demonstrate that the size distribution of Mn2+ induced β1 integrin clusters was 

similar in control, TlnKo and KindKo cells seeded on immobilized FN, and that kindlin can 

induce NA-like adhesion sites in the cell periphery and large lamellipodia. 

Kindlin-2 binds and recruits paxillin to NAs 

Our data indicate that kindlin-2 can mediate adhesion, spreading and formation of small, NA-

like integrin clusters in lamellipodia of TlnKo cells. To identify the binding partner(s) of 

kindlin-2 that mediate this function, we performed yeast two hybrid assays with kindlin-2 as 

bait against a human cDNA library containing all possible open reading frames (ORFs). We 

identified 26 cDNAs, all of which coded for leupaxin. Immuno-precipitation of overexpressed 

GFP-tagged paxillin family members, paxillin, Hic-5 and leupaxillin in HEK-293 cells with 

an anti-GFP antibody efficiently co-precipitated FLAG-tagged kindlin-2 (K2flag) (Fig. 4A). 

Since fibroblasts express high levels of paxillin (Suppl. 4A), we performed all further 

interaction analysis with paxillin. Immuno-precipitations of GFP-tagged paxillin as well as 

kindlin-2 truncation mutants revealed that the interaction between kindlin-2 and paxillin was 

dramatically reduced in the absence of the LIM1-4, LIM2-4 or LIM3-4 domains of paxillin 

(Fig. 5B), or the PH domain (K2ΔPHGFP) or the N-terminus including the F0, F1 domains 

and the N-terminal proportion of the F2 domain excluding the PH domain of kindlin-2 



(K2NTGFP; Fig. 4C). The interaction between kindlin-2 and ILK (Montanez et al., 2009) via 

the C-terminal pseudokinase domain of ILK 34 was not affected by the deletion of the PH 

domain (Fig. 4C). Pull down experiments with recombinant kindlin-2 and the recombinant 

LIM3 domain of paxillin demonstrated that the binding is direct and Zn2+ ion-dependent (Fig. 

4D). Furthermore, expression of K2GFP in KindKo cells rescued spreading, paxillin 

recruitment to NAs and 9EG7 levels, while expression of K2ΔPHGFP failed to normalize 

spreading, paxillin recruitment to NAs and 9EG7 levels (Fig. 4E; Suppl. 4B). However, 

mature FAs of K2ΔPHGFP-rescued cells seeded for 30 or 60 min on FN and connected to a 

contractile F-actin cytoskeleton contained significant amounts of paxillin (Fig. 4E). 

These findings indicate that kindlin-2 directly binds the LIM3 domain of paxillin via the PH 

domain to recruit paxillin to NAs. 

The kindlin-2/paxillin complex promotes FAK-mediated cell spreading and survival 

Our findings revealed that kindlin-2 recruits paxillin to NAs. Paxillin in turn, was shown to 

bind, cluster and activate FAK in NAs, which leads to the recruitment of Cas130, Crk and 

Dock to the activation of Rac1 and the induction of cell spreading, and in concert with growth 

factor signals to the activation of Akt-1 and Erk-2 and the induction of cell proliferation and 

survival 35-38. We therefore hypothesized that the recruitment of paxillin and FAK by kindlin-

2 triggers the improved spreading and survival of TlnKo cells. To test this hypothesis, we 

seeded our cell lines on FN or PLL in the presence or absence of EGF and Mn2+ (Fig. 5A; 

Suppl. 5A). We found that EGF induced a similar phosphorylation of tyrosine-992 (Y992) of 

the epidermal growth factor receptor (pY992-EGFR) in FN seeded KindCtr, TlnKo and KindKo 

cells. The phosphorylation of tyrosine-397 of FAK was strongly induced after adhesion of 

KindCtr cells onto FN and further elevated after additional treatment with EGF and Mn2+ (Fig. 

5A). TlnKo cells also increased pY397-FAK levels after adhesion to FN, although 

significantly less compared to KindCtr cells (Fig. 5A; Suppl. 5A). Furthermore, TlnKo cells 

showed a stepwise increase of pY397-FAK levels to EGF and additional Mn2+ treatments and 

localized pY397-FAK to their peripheral NA-like adhesions (Fig. 5A, B; Suppl. 5A). In sharp 

contrast, FN adhesion, EGF and Mn2+ treatments of KindKo cells failed to increase pY397-

FAK levels (Fig. 5A, Suppl. 5A) and to localize pY397-FAK to peripheral membrane regions 

(Fig. 5B). Stable expression of K2GFP in KindKo cells rescued pY397-FAK levels (Fig. 5C), 

co-precipitated paxillin and FAK with K2GFP (Suppl. 5B) and co-localized K2GFP with 

paxillin and pY397-FAK in small NAs during isotropic cell spreading (Suppl. Fig. 5C), while 

stable expression of K2ΔPHGFP failed to induce pY397-FAK (Fig. 5C), to co-precipitate 



paxillin and FAK (Suppl. 5B), and to co-localize paxillin and FAK at integrin adhesion sites 

(Suppl. 5C). 

In line with previous reports showing that the paxillin/FAK complex can trigger the activation 

of p130Cas 37, and in cooperation with EGFR signalling the activation of Akt and Erk 39, 40, 

we observed pY410-p130Cas and after EGF treatment pS473-Akt and pS202/pY204-Erk1/2 

in FN seeded KindCtr and to a slightly lesser extent in TlnKo cells (Fig. 5D). In contrast, 

KindKo cells failed to activate p130Cas and responded with reduced activation of Akt and Erk 

to EGF (Fig. 5D), which provides an explanation for their reduced spreading (Fig. 3C,D), 

proliferation (Suppl. 1D) and survival rates (Suppl. 5D).  

Finally, we tested whether the impaired activity of FAK contributed to the spreading defect of 

KindKo cells by chemically inhibiting FAK activity in TlnKo cells or by overexpressing FAK 

in KindKo cells (Fig 5E-G). The experiments revealed that inhibiting FAK reduced 

lamellipodia formation and spreading of TlnKo cells to an extent that was similar to untreated 

KindKo cells (Fig. 5E). Conversely, overexpression of FAKGFP in KindKo cells resulted in a 

robust FAK activation (Fig. 5F) and significant improvement of cell spreading (Fig. 5B; 

Suppl. 5E). 

Altogether these findings show that kindlin-2 recruits paxillin to NAs, which is followed by 

the activation of FAK and cell spreading. 



Discussion 

Although talin binding to β integrin tails has been proposed to be essential and sufficient for 

integrin activation 16, 21, 41, 42 several reports indicate that, at least in non-hematopoietic cells, 

initial phases of cell adhesion and spreading can occur in the absence of talin 26, 27, 43-45. The 

molecular mechanism(s) leading to adhesion, formation of small integrin aggregates, 

formation of lamellipodia and isotropic spreading is unclear 26, 37. Candidate proteins for at 

least some of these talin-independent functions are kindlins; they are co-expressed with talin 

and their gene deletions in mice and cells severely impair integrin functions 7, 11-15. In the 

present paper we tested this hypothesis by establishing and comparing cells lacking either 

talin or kindlin expression and searching for new kindlin binding partners. 

Our experiments revealed that the co-expression of talin and kindlin is essential for fibroblast 

survival, proliferation, adhesion and cell surface expression of several integrins. Although our 

fibroblasts expressed similar levels of αv and α5 integrins before and after Cre-mediated 

deletion of talin-1/-2 (TlnKo) or kindlin-1/-2 (KindKo) and bound similarly low amounts of 

soluble FN-RGD, they were basically unable to adhere to a FN-coated substrate. The binding 

of soluble FN-RGD by our fibroblasts irrespective whether they express or lack talin or 

kindlin was in line with observations showing that α5β1 integrins, unlike β2 and β3 integrins 
46, 47, do not adopt a bent but rather an extended, clasped conformation with intermediate 

ligand binding affinity in their resting state 27, 45. The inability of TlnKo or KindKo cells to 

adhere to a FN-coated substrate indicated that unclasping of α5β1 and/or adhesion 

reinforcement are controlled by the two proteins. 

Our findings show that the 9EG7 monoclonal antibody, which binds an epitope located on the 

EGF-2 domain of the β1 subunit and accessible only upon unclasping 4, neither binds TlnKo 

nor KindKo cells indicating that talin and kindlin cooperate to unclasp and induce the high 

affinity state of α5β1 integrins.  When the talin/kindlin-dependent unclasping is bypassed with 

Mn2+ 27, 48, 49, only kindlin expressing (TlnKo) cells are able to stabilize the exposure of the 

9EG7 epitope, facilitate adhesion to FN, albeit to a lesser extent than control cells, aggregate 

integrins into small, NA-like clusters and induce lamellipodia and isotropic cell spreading. 

However, the lamellipodia have a short lifetime and retract around 45 min after cell seeding, 

which results in cell rounding. This clearly indicates that kindlin requires talin to stabilize 

membrane protrusions and to sustain cell spreading, which is in agreement with observations 

obtained with talin-2-depleted talin-1-/- cells 26, 37. Consistent with this study 26, we found that 

the talin head was unable to rescue lamellipodia formation and FA, formation in TlnKo cells 

indicating that the linkage between integrin and actin mediated by full length talin is essential 



to further strengthen the affinity state of α5β1. Strengthening of integrin-ligand bonds reduces 

bond off-rates and is thought to be mediated by integrin clustering and/or catch bond 

formation 10, 12, 14, 50. Our experiments revealed similar integrin clusters in TlnKo and KindKo 

cells suggesting that the main mechanism to reinforce integrin ligand binding occurs probably 

through the formation of catch bonds. 

In search for a mechanistic explanation for the isotropic spreading by kindlin in TlnKo cells, 

we identified paxillin as a novel and direct binding partner of kindlin-2 in NAs. The principal 

task of the kindlin-2/paxillin complex is the recruitment of FAK 51, which in turn recruits 25, 

or more likely maintains talin in NAs 24, and cooperates with the EGF receptor to induce 

signaling pathways that activate Erk and Akt to promote proliferation and survival and Arp2/3 

and Rac1 to induce actin polymerization and membrane protrusion (Fig. 6D). Interestingly, 

re-expression of a PH domain-deficient kindlin-2 (K2ΔPHGFP) in KindKo cells blocks the 

formation of NAs but enables the development of large, stress fiber-linked and paxillin-

positive FAs. This finding indicates that that paxillin supports kindlin-2-mediated 

stabilization of unclasped, activated integrins in NAs. Moreover, it also shows that FAs must 

contain a second, yet unknown protein that targets paxillin to these sites. This unknown FA 

protein must bind, like kindlin, the LIM3 domain of paxillin as this site is believed to be the 

sole FA targeting site of paxillin 52. 

While our results shed light on the role of kindlin and talin for initial α5β1 integrin activation 

and integrin signaling in fibroblasts, previous publications indicate differential requirements 

of specific integrins for kindlin and talin mediated activation 16, 30. Future research will be 

required to explain, how kindlin is recruited to NAs and how kindlin contributes to integrin 

activation, potentially in concert with ILK 34, in order to explain these differences. 

Our findings suggest a model of a stepwise activation of a5b1 integrin, in which α5β1 

integrins reside in an extended and clasped conformation with intermediate/low affinity for 

ligand (Fig. 6A). It is possible that this conformation allows fibroblasts and probably also 

epithelial cells to continuously probe the ECM with short-lived and weak contacts (Fig. 

6A,B), which would be would be deleterious for blood cells, which therefore keep their 

integrins in a bent conformation. Talin and kindlin must cooperate to induce unclasping and 

the hybrid domain swing out to shift α5β1 into the high affinity state (Fig. 6C). In this phase, 

kindlin recruits paxillin and FAK as well as ILK and induces signaling leading to cell 

spreading (Fig. 6D), while talin links the adhesion site to F-actin leading to re-enforcement of 

the integrin-ligand interactions, presumably through the formation of catch bonds (Fig. 6E). 



Clearly, kindlin is essential for integrin activation in fibroblasts and for inducing initial 

spreading. 



Figure Legends 

Figure 1: Kindlin and talin control integrin-mediated cell adhesion. (A) Scheme showing 

talin and kindlin gene modifications. Orange diamonds indicate loxP sites and rectangles 

exons; untranslated regions are marked grey. (B) Western blot of TlnKo and KindKo cells. 

Keratinocytes (Kerat.) served as control for kindlin-1 expression. (C) Bright field images of 

TlnCtr, KindCtr, TlnKo and KindKo cells (scale bar indicates 10 µm). (D) Quantification of cell 

adhesion for 30 min on indicated substrates (n=3 independent experiments, error bars indicate 

SEM). (E) Quantification of integrin surface expression levels relative to the TlnCtr and 

KindCtr cell lines (independent experiments: n=10 for β1; n=4 for β3, α5, αv; n=3 for 

remaining integrin subunits; error bars indicate SEM; significances are calculated between the 

pairs connected by brackets or between indicated cells and corresponding control cell) 

 

Figure 2: FN binding by TlnKo and KindKo cells. (A) Quantification of binding of soluble, 

fluorescently labelled FN-RGD fragment relative to the FN-RGE fragment. Binding was 

measured in the presence of 1 mM MgCl2 (Ctr) or 5 mM MnCl2 (independent experiments: 

n=10 for Kind and Tln cell lines, n=3 for pKO; error bars indicate SEM; significances are 

given for pairs connected with brackets). (B) Quantification of 9EG7 antibody binding in the 

presence of either 1 mM MgCl2 (Ctr) or 5 mM MnCl2 and 0,3 µM FN (FN+Mn2+) (n=3 

independent experiments; error bars indicate SEM; significances are calculated between Ctr 

and indicated condition). (C,D) Scatterblot analysis of adhesion forces generated through cells 

interacting with surface immobilized FN. Cells were immobilized on ConA coated AFM 

cantilevers and pressed onto FN-Fragment (RGD) or mutated fragment (ΔRGD) coated 

surfaces for varying contact times (C) and in presence of Mn2+ or EDTA (D) (each sphere 

represents one measurement; the bars indicate median values). (D) FN staining after plating 

cells on a FN-coated dish for 24 h. FN fibril assembly requires both talin and kindlin. (F) 

FACS quantification of total β1-antibody and 9EG7-antibody binding to TlnCtr and KindCtr 

cells and cells reconstituted with Tln1V, K2GFP or THD (n>3 independent experiments; 

significances are given for indicated pairs; error bars indicate SEM). (G) Indicated cell lines 

were plated on FN and after 30 min adherent cells were quantified (values are normalized to 

TlnCtr and KindCtr and rescued cell lines; n=3 independent repeats; error bars indicate SEM).  

 

 

Figure 3: Integrin clustering in TlnKo and KindKo cells. (A) Confocal sections from 

suspended cells stained for β1 integrin and phalloidin. (B) Confocal images from the ventral 



side of adherent cells in the absence or presence of Mn2+ stimulation. (C) Quantifications of 

cell morphologies of Mn2+-treated TlnKo and KindKo cells seeded on FN or PLL. (D) 

Quantification of EGF- or PDGF-treated TlnKo and KindKo cells. (n=3 independent 

experiments, >100 cells were counted for each condition and experiment; error bars indicate 

SEM). (E) TIRF-STORM pictures of β1 integrin clusters (green; arrowhead) obtained from 

immunostaining of non-permeabilized cells overlaid with paxillin staining following 

permeabilization (red, normal resolution). Boxed areas show a threefold magnification, 

dashed lines indicate cell borders. (F) Binning histograms of nearest neighbour distance 

(NND) measurements (n=3 STORM images per cell line with 1400-11000 identified clusters 

for β1). The NNDs of TlnCtr and KindCtr cells were combined and subdivided into NNDs 

within paxillin-positive FAs (dark grey area) and outside of FAs (light grey area). The NND 

profiles of the total cell area in TlnKo and KindKo cell lines are shown as blue and red lines. 

(G) β1 integrin clusters with a maximal distance of 140 nm were defined as aggregates. The 

bar graphs represent the percentage of indicated integrin clusters in aggregate sizes of 1-3 

(small aggregate), 4-6 (intermediate sized aggregate), and >6 (large aggregate). 

Scale bars: (A) and (B): 10 µm; (C): 500 nm; Mn2+ indicates presence of 5 mM MnCl2. 

  

Figure 4: Kindlin binds and recruits paxillin to FA. (A) GFP-IP of cell lysates from cells 

overexpressing GFP-tagged paxillin, Hic5 and leupaxin constructs (Pxn, paxillin; Hic5; Lpx, 

leupaxin) and K2flag reveal interaction of kindlin-2 with all three paxillin family members. 

(B) GFP-IP of lysates from cells overexpressing GFP-tagged paxillin truncation mutants and 

K2flag identifies the paxillin LIM3 domain as kindlin-2-binding domain. (C) GFP-IP of 

lysates from cells overexpressing GFP-tagged kindlin-2 truncation/deletion mutants and 

Cherry-tagged paxillin (PxnCH) identify the kindlin-2 PH domain as paxillin binding domain. 

(D) Purified His-tagged paxillin-LIM3 domain pulls down recombinant kindlin-2 in a Zn2+-

dependent manner.  (E) Re-expression of K2GFP and K2ΔPHGFP in KindKo cells followed 

by paxillin and phalloidin staining. 

 

Figure 5: Kindlin-mediated paxillin induces FAK signalling and cell spreading. (A) FAK 

and EGFR activation after seeding serum-starved KindCtr, TlnKo and KindKo cells on PLL or 

FN and treating them with or without EGF and Mn2+. (B) Immunofluorescence staining of 

activated (Tyr-397 phosphorylated) FAK and filamentous actin in cells stimulated with Mn2+ 

and EGF, 30 min after seeding (FAKGFP indicates exogenous expression of FAKGFP fusion 

protein; scale bar indicates 10 µm). (C) FAK activation and total FAK levels in KindKo cells 



stably transduced with K2GFP or K2ΔPHGFP either seeded on FN or kept in suspension. 

GFP indicates similar expression of transduced GFP-tagged constructs. GAPDH levels served 

to control loading. (D) Levels of phosphorylated signalling mediators downstream of FAK in 

serum-starved or EGF-treated KindCtr, TlnKo and KindKo cells. GAPDH levels served to 

control loading. (E) Quantification of lamellipodia formation after treating TlnKo and KindKo 

cells with DMSO, the FAK inhibitor PF-228 or Latrunculin A (n=3 independent repeats; >100 

cells/condition; error bars indicate SEM; significances are given in comparison to DMSO 

control). (F) FAK activity in TlnKo and KindKo cells stably transduced with FAKGFP (n=3 

independent experiments; significances are given in comparison to untreated control; error 

bars indicate SEM). (G) Quantification of lamellipodia formation in TlnKo and KindKo cells 

stably transduced with FAKGFP (n=3 independent experiments; significances are given in 

comparison to untreated control; error bars indicate SEM). 

 

Fig. 6. Roles of talin and kindlin during inside-out and outside-in signalling of α5β1 

integrin. Integrin subunits are modelled according to Zhu et al. 53 with the α5 subunit in green 

and the β1 subunit in blue; fibronectin ligand as grey cables. (A,B) α5β1 integrin in an 

extended and clasped conformation, shows intermediate ligand binding affinity and oscillates 

between ligand unbound (A) and bound (B) states; the clasped conformation with the EGF-2 

domain of the β subunit in close contact with the calf domain of the α5 subunit prevents 

exposure of the 9EG7 epitope (highlighted in pink). Kindlin and autoinhibited talin are in the 

cytoplasm and/or kindlin is anchored with the PH domain at the plasma membrane. (C) 

Binding of kindlin and talin to the β1 tail is associated with the unclasping of the α5β1 

subunits, hybrid domain swing out, and 9EG7 epitope exposure (highlighted in pink). (D) 

Independent of talin binding to the β1 tail kindlin recruits paxillin and FAK through the 

kindlin PH domain and ILK/PINCH/parvin (IPP; not shown) through the ILK pseudokinase 

domain to induce cell spreading, proliferation and survival. (E) The α5β1 integrin is in the 

high affinity state which becomes stabilized by talin binding to the β1 tail by coupling the 

integrin to the actin cytoskeleton, which is followed by force transmission and catch bond 

formation.  



Legends to Supplemental Figures 

 

Suppl. Figure 1: (A) Western blots showing that floxed talin-1 fibroblasts activate the talin-2 

gene and floxed kindlin-2 fibroblast the kindlin-1 gene. Keratinocytes expressing high levels 

of kindlin-1 served as control for the anti-kindlin-1 antibody. GAPDH served to control 

loading. (B) Talin-1- and kindlin-2-deficient fibroblasts can induce partial spreading (bright 

field imaging, left panels) and form paxillin-positive adhesion sites (immunostaining, right 

panels) upon activation of the talin-2 or kindlin-1 gene, respectively. (C) Integrin expression 

profile of TlnCtr and KindCtr cells measured by flow cytometry and presented as histograms. 

The antibody isotype control is shown in grey. (D) Cell number increase of TlnCtr, KindCtr, 

TlnKo and KindKo cells per day; (n=12 independent experiments; error bars indicate SEM).  

Scale bars indicate 10 µM. 

  

Suppl. 2: (A) Cell spreading on FNIII-7-10-fragments. Bright field images of WT fibroblasts 

plated on FN-RGD or mutant FN-RGE immobilized to the plate surface with Tris-NTA 

coupled gold beads. (B) Western blot analysis of cell lysates from TlnKo and KindKo cells 

reconstituted Tln1V, THD or K2GFP.  

 

Suppl. 3: (A) Confocal stacks of untreated and Latrunculin A-treated KindCtr cells stained for 

β1 and with phalloidin. Although Latrunculin A treatment abrogates F-actin containing 

membrane spikes, β1-integrin aggregates prevail. (B) Confocal images of the ventral plasma 

membrane of adherent, Mn2+- and EGF-treated KindCtr, TlnKo and KindKo cells stained for 

ILK, paxillin, talin, and kindlin-2 (green) together with phalloidin (red). Formation of nascent 

and focal adhesions can be observed in KindCtr cells, while TlnKo and KindKo cells show 

small, NA-like aggregates of FA proteins (scale bar indicates 10 µm; for TlnKo and KindKo 

threefold magnifications of indicated areas are shown). (C) Confocal image of TlnKo and 

KindKo cells reconstituted with K2GFP or Tln1V, respectively. (D) TIRF-STORM image of 

β1 integrin clusters (green) overlaid with diffraction-limited resolution image of anti-paxillin 

staining (red) and single detection events of the STORM acquisition (pink); right panel 

depicts a threefold magnification of the indicated area. Green β1 integrin clusters are defined 

by multiple single detection events and likely consist of several β1 integrin molecules. (E) 

Binning histogram showing the quantification of STORM detection events per green integrin 

cluster. The β1 integrin clusters show an average of ~10 detection events and are similar 

among TlnCtr and KindCtr (Ctr), TlnKo and KindKo cells. (F) Average β1 integrin cluster density 



in STORM images expressed as clusters µm-2 (n=3 cells and images per cell line, error bars 

indicate standard deviation). 

  

Suppl. 4: (A) qPCR of paxillin (Pxn), Hic5, and leupaxin (Lpxn) from cDNAs generated 

from wild type fibroblasts (Fibrobl.), keratinocytes (Kerat.), RAW cells (RAW) and T cells 

(TC). Results are normalized to the isoform with highest expression in the respective cell 

types (n=3 independent repeats, error bars show SEM). (B) Quantification of pan-β1 integrin 

antibody and 9EG7 antibody binding to KindKo cells reconstituted with K2GFP or 

K2ΔPHGFP (n=3 independent experiments; significances are given in comparison to K2GFP 

rescue; error bars indicate SEM). 

 

Suppl. 5: (A) Densitometric quantification of western blot signals of lysates from untreated, 

EGF- and Mn2+-treated KindCtr, TlnKo and KindKo cells seeded either on FN or PLL and 

probed with anti-Tyr-397 phosphorylated FAK (pY397-FAK) antibodies (n=3 independent 

repeats; significances are calculated with respect to PLL adherent cells; error bars indicate 

SEM). (B) GFP-IP in lysates of K2GFP, K2ΔPHGFP or GFP reconstituted KindKo cells 

overexpressing Myc-tagged FAK (FAK-Myc) and Cherry-tagged paxillin (PxnCH). K2GFP 

but not K2ΔPHGFP forms a ternary complex with paxillin and FAK. (C) Localization of 

paxillin, pY397-FAK and K2GFP in KindKo cells reconstituted with K2GFP and K2ΔPHGFP 

seeded for 30 min on FN-coated circular micropatterns (diameter 30 µm; scale bar indicates 

10 µm). (D) Cell number counts 30 d after Cre-mediated kindlin-1 and kindlin-2 gene 

deletion. 70.000 KindCtr or TlnCtr cells stably expressing tamoxifen-inducible Cre were treated 

with tamoxifen for 24 h after seeding, cultured for 4 weeks before trypan blue treatment and 

counting (n=3 independent experiments; error bars indicate SEM). (E) Cell spreading area of 

TlnCtr, KindCtr, TlnKo and KindKo cells measured by image quantification (n=3 independent 

repeats are pooled; >100 cells/condition and repeat; resulting areas are shown as box-blots: 

bar indicates median, boxes and whiskers cover 50% and 90% of the results, respectively).  

 Material and Methods 
 
Mouse strains and cell lines and cell culture 

The floxed kindlin-1 (Fermt-1flox/flox), floxed talin-1 and the consitutive talin-2-null mouse 

strains have been described 41, 43, 54. The floxed kindlin-2 (Fermt-2flox/flox) mouse strain 

generated via recombinant recombination in embryonic stem cells 55 carries loxP sites 

flanking exon 15, which contains the stop codon and the polyadenylation signal of the Fermt-

2 gene. Homologous recombination and germ line transmission were verified by Southern 



blots, and the frt-flanked neo casette was removed with a transgenic mouse strain carrying a 

deleter-flipase recombinase gene. Floxed talin-1 and talin-2-null mice, and floxed kindlin-1 

and kindlin-2 mice were intercrossed to generate Tln-1flox/flox Tln-2-/- and Fermt-1flox/flox Fermt-

2flox/flox mice.  Fibroblasts were isolated from the kidneys of 21 d old animals, immortalized by 

retrovirally transducing the SV40 large T antigen, cloned and finally infected with an 

adenovirus to transduce the Cre recombinase and to generate talin-null (TlnKo) and kindlin-

null (KindKo) cells. 

All cell lines were cultured under standard cell culture conditions using DMEM supplemented 

with 8 % FCS and Penicillin/Streptomycin. 

 

Flow cytometry 

Flow cytometry was carried out using standard procedures. Fibroblasts were incubated with 

primary antibodies diluted in FACS-Tris buffered saline (30 mM Tris, pH 7.4, 180 mM NaCl, 

3.5 mM KCl, supplemented with 1 mM CaCl2, 1 mM MgCl2, 3% BSA, 0,02% NaN3) for 1 h 

on ice, or in the case of Mn2+ treatment for 1 h at 37 °C, washed twice with cold FACS-TBS 

and finally incubated with the secondary antibody for 45 min on ice. Flow cytometry was 

carried out with a FACSCantoTMII cytometer (BD Biosciences) equipped with FACS DiVa 

software (BD Biosciences). Data analysis was conducted using the FlowJo program (version 

9.4.10). 

 

Real-time polymerase chain reaction (PCR) 

Total RNA was extracted with the RNeasy Mini extraction kit (Qiagen) from cultured cells, 

cDNAs were prepared with an iScript cDNA Synthesis Kit (Biorad) and real-time PCR was 

performed with an iCycler (Biorad). Each sample was measured in triplicate and values were 

normalized to Gapdh. Primer sequences for Lpxn and Pxn were from PrimerBank 56 (Lpxn: 

26080416a1; aPxn: 114326500c2; bPxn: 22902122a1), GAPDH primers were described 

before 54 and Hic5 primers were newly designed (Hic5-fwd: 5’-ttcctttgcagcggttgttcc-3’; Hic5-

rev: 5’-ggttacagaagccacatcgtggg-3’). 

 

Antibodies and inhibitors 

The following antibodies or molecular probes were used at indicated concentrations for 

western blot (W), Immunofluorescence (IF) or flow cytometry (FACS): kindlin-1 (home 

made, 57; W: 1:5000, IF: 1.1000; kindlin-2 (MAB2617 from Millipore) W: 1:1000, IF: 1:500; 

talin (8D4 from Sigma) W: 1:1000; talin (sc-7534 from Santa Cruz) IF: 1:500; talin-1 



(ab57758 from Abcam) W: 1:2000; talin-2 (ab105458 from Abcam) W: 1:2000; GAPDH 

(6C5 from Calbiochem) W: 1:10000; Paxillin (610051 from BD Transduction Laboratories) 

W: 1:1000, IF: 1:400; integrin β1-488 (102211 from Biolegend) IF: 1:400, FACS: 1:200; 

integrin β1 (MAB1997 from Chemicon) IF: 1:50 for EM; FACS: 1:400; integrin β1-647 

(102213 from Biolegend) IF: 1:200; integrin β3-biotin (PharMingen; 553345; FACS: 1:200), 

integrin β3 (Emfret; M031-0; IF: 1:200), integrin β5 (a gift from Dean Sheppard, University 

of California, USA) FACS: 1:200; integrin β6 (10D5 from Chemicon) FACS: 1:200; integrin 

α2-FITC (554999 from BD Biosciences) FACS: 1:100; integrin α3 (AF2787 from R&D) 

FACS: 1:200; integrin α5-biotin (557446 from Pharmingen) FACS: 1:200; integrin α6-FITC 

(555735 from Pharmingen) FACS 1:100; integrin αv-biotin (551380 from Pharmingen) 

FACS: 1:200; β1-integrin 9EG7 (550531 from BD Biosciences) FACS: 1:200; fibronectin 

(AB2033 from Millipore) IF: 1:500; Tritc-Phalloidin (P1951 from Sigma) IF: 1:400; Flag-tag-

HRP (8592 from Sigma) W: 1:10000; GFP (A11122 from Invitrogen) W: 1:2000; Cherry 

(PM005 from MBL) W:1:1000; Myc (05-724 from Millipore) 1:2000; FAK (06-543 from 

Upstate) W: 1:1000; FAK phosphorylated Y397 (44624G from Biosource) W: 1:1000, IF: 

1:400; ILK (611803 from Transduction Labs) W: 1:5000; IF: 1:500; EGFR phosphorylated 

Y992 (2235 from Cell Signaling) W: 1:2000; p130 Cas (P27820 Transduction Labs) W: 

1:1000; p130 Cas phosphorylated Y410 (4011S from Cell Signaling) W: 1:1000; Akt (9272 

from Cell Signaling) W: 1:1000; Akt phosphorylated S473 (4060 from Cell Signaling) W: 

1:1000; Erk1/2 (9102 from Cell Signaling) W: 1:1000; Erk1/2 phosphorylated T202 Y204 

(4376 Cell Signaling) W: 1:1000. 

The following secondary antibodies were used: goat anti–rabbit Alexa 488 (A11008), goat 

anti–mouse Alexa 488 (A11029), goat anti–mouse Alexa 546 (A11003), goat anti–rabbit 

Alexa 647 (A21244) (all from Invitrogen) FACS: 1:500, IF: 1:500; streptavidin-Cy5 

(016170084) FACS: 1:400; goat anti–rat horseradish peroxidase (HRP) (712035150) (both 

from Dianova) W: 1:10,000), goat anti–mouse HRP (172-1011) and goat anti–rabbit HRP 

(172-1019) (both from Biorad) W: 1:10,000. 

The FAK inhibitor PF-228 (PZ0117 from Sigma) was disolved in DMSO at 10 mM and used 

at 1:2000. The actin polymerization inhibitor Latrunculin A (L5163 from Sigma) was 

dissolved in DMSO at 125 µM and used at 1:500. 

 

Constructs and transfections 

K2ΔPHGFP was cloned by PCR using the K2GFP cDNA 18 as template and the Kind2fwd 

(5’-ctcgaggaggtatggctctggacgggataag -3’, Kind2PHrev 5’-tggtcttgcctttaatatagtcagcaagtt -3’), 



Kind2PHfwd (5’-ctatattaaaggcaagaccatggcagacag -3’) and Kind2rev (5’- 

tctagatcacacccaaccactggtga-3’) primers. The two fragments containing homologous regions 

(bold nucleotides in the primer sequences) were fused by another round of amplification using 

the most 5’ and 3’ primers (Kind2fwd and Kind2rev). 

The resulting PCR product was cloned into the K2GFP vector. The N- and C-terminal 

truncation constructs of kindlin-2 were cloned by PCR using K2GFP as template and recipient 

vector for the synthetized PCR fragments. The primer sequences were: Kind2-NT-fwd 5’-

ctgtacaagtccggactc-3’, Kind2-NT-rev 5’-gcggccgcctattttgctttatcaagaagagc-3’, Kind2-CT-fwd 

5’-ctcgagctatggataaagcaaaaaccaaccaag-3’, Kind2-CT-rev 5’-gttatctagagcggccgc-3’. 

The Cre-ERT2 cDNA obtained from Thomas Wunderlich (Max Planck Institute for 

Metabolism Research, Cologne) was subcloned into the ITR-IRES-Puro-E2A-Thy1.1 vector, 

allowing puromycin selection for stable integrations. Stable expression of K2ΔPHGFP and 

FAKGFP- or Myc-FAK (a gift from Dr. Ambra Pozzi; Vanderbilt University, Nashville), and 

Cre-ERT2 cDNAs was achieved with the sleeping beauty transposase system 58. For stable 

expression of murine talin-1 and THD (amino acids1-443) the corresponding cDNAs were N-

terminally tagged with venus and cloned into the retroviral pLPCX vector. The constructs for 

GFP-tagged paxillin-LIM truncation mutants with stop codons 5’ of each LIM domain were 

generated by PCR from GFP- and Cherry-tagged α-paxillin 59 template and cloned into the 

retroviral pLPCX vector. The primer sequences were: stop codon in bold: ΔLIM1-4fwd 5’- 

caccgttgccaaatgagggtctgtggagcc -'3, ΔLIM1-4rev 5’- ggctccacagaccctcatttggcaacggtg -'3, ΔLIM2-4fwd 

5’- cagcctcttctccccatgacgctgctactactg -'3, ΔLIM2-4rev 5’- 

cagtagtagcagcgtcatggggagaagaggctg -'3, ΔLIM3-4fwd 5’- 

aagattacttcgacatgtttgcttgacccaagtgcggc -'3, ΔLIM3-4rev 5’- 

gccgcacttgggtcaagcaaacatgtcgaagtaatctt -'3, ΔLIM4fwd 5’- ggcgcggctcgtgactgtgctccgg -'3, 

ΔLIM4rev 5’- ccggagcacagtcacgagccgcgcc -'3). The cDNA of murine Hic5 was amplified 

from a cDNA derived from murine vascular smooth muscle cells, cloned into pCR2.1-TOPO 

(Invitrogen) and subcloned into pEGFP-C1 vector. Murine leupaxin cDNA (cloneID: 

5065405 from Thermo Scientific) was PCR-amplified (Lpxn-fwd: 5’- 

ctcgagcaatggaagagctggatgccttattg -3’; Lpxn-rev 5’- gaattcctactgtgaaaagagcttagtgaagc -3’) and 

subcloned into the pEGFP-C1 vector. 

To express recombinant murine kindlin-2 and paxillin-LIM3 (A473-S533) cDNAs they were 

fused with an N-terminal tandem tags consisting of 10x-Histidine followed by a SUMO3-tag 

and cloned into pCoofy17. The primer sequences for amplifying the paxillin-LIM3 domain 

were:  LIM3fwd 5’-aaccggtggagctcccaagtgc-3’ and LIM3rev 5’-ttctcgagttacgagccgcgcc-3’. 



The plasmid carrying FNIII7-10 cDNA has been described previously 60. For Y2H analysis, the 

kindlin-2 cDNA was PCR amplified using the primers K2-Bamfw: 5’-

gggatcccactgggcctaatggctctggacgggataagg-3’ and K2-Salrev: 5’-

gtgtcgacgtcacacccaaccactggtgagtttg-3’ and cloned into the pGBKT7 plasmid to obtain a 

kindlin-2 version that was N-terminally fused with Gal4-DNA binding domain. Screening of 

this construct against a human full ORF library was conducted by the Y2H protein interaction 

screening service of the German Cancer Research Center in Heidelberg. 

 

Expression and purification of recombinant proteins 

The recombinant expression of Kindlin2 and paxillin-LIM3 in E. coli Rosetta cells (Merck 

Millipore) was induced with 1 mM and 0,2 mM IPTG, respectively, at 18 °C for 24 h. After 

cell lysis and clarification of the supernatant, kindlin-2 was purified by Ni-NTA affinity 

chromatography (Qiagen). Eluate fractions containing kindlin-2 were pooled, cleaved with 

SenP2 protease and purified by size-exclusion chromatography (Superdex 200 26/60, GE 

Healthcare) yielding unmodified murine kindlin-2 and N-terminally His/SUMO3-tagged 

paxillin-LIM3-domain. 

The Alexa 647-labeled FNIII7-10 fragment was purified and fluorescence labeled as described 
61. 

 

Immunostaining 

For immunostaining, cells were cultured on plastic ibidi-µ-slides (80826 from Ibidi) coated 

with 20 µg ml-1 FN (Calbiochem). Cells were routinely fixed with 4 % PFA in Phosphate 

buffered saline (PBS; 180 mM NaCl, 3.5 mM KCl, 10 mM Na2HPO4, 1.8 mM K2H2PO4) for 

10 min at room temperature (RT) or with -20 °C cold Acetone-Methanol when indicated. If 

necessary, cells were solubilized with staining buffer (PBS supplemented with 0,1 % Tx100 

and 3 % BSA) or with -20 °C cold Methanol for kindlin-2 staining. Background signals were 

blocked by incubating cells with staining buffer for 1 h at RT in staining buffer. Subsequently, 

they were incubated with primary and secondary antibodies diluted in staining buffer in the 

dark. Fluorescent images were aquired with a LSM 780 confocal microscope (Zeiss) equiped 

with a x100/1.4 oil objective and with a DMIRE2-SP5 confocal microscope (Leica) equiped 

with a 40×oil objective using Leica Confocal software (version 2.5 build 1227). Brightfield 

images were aquired with an Axioskop (Carl Zeiss) 40× NA 0.75 objective and DC500 

camera with IM50 software (Leica). For further image analysis, z-stack projection and 

contrast adjustments imageJ (v1.47) were used. 



The super-resolution imaging was carried out by Direct Stochastic Optical Reconstruction 

Microscopy (dSTORM) 62, which is based on precise emitter localization. To induce 

reversible switching of the Alexa 647 label and to reduce photobleaching, imaging was 

performed in imaging solution (50 % Vectashield (v/v) (vector laboratories; H-1000), 50 % 

TBS (v/v; pH=8)) supplemented with 50 mM β-mercaptoethylamine (sigma-aldrich; M9768). 

dSTORM was implemented on a Zeiss Axio Observer D1 microscope with a Slider TIRF 

illumination module. The sample was excited with a 642 nm laser in a total internal reflection 

mode using the Zeiss Plan-Apochromat 100x/NA 1.46 oil TIRF objective. The emitted light 

was detected in the spectral range 660-740 nm. The images were recorded with an iXon Ultra 

DU-897U emCCD camera (Andor Technology Ltd., Belfast, UK), with its EM gain set to 

300. Additional magnification by a factor of 2.5 resulted in the pixel size of 65 nm. For each 

final image, in total 6000 frames with the exposure time of 0.1 s were recorded.  

A standard TIRF imaging of the same sample in the green channel (paxillin) was achieved by 

illumination with a 491 nm laser and detection in the spectral range 500-550 nm. 

Simultaneous dual-colour imaging of both the green and the red channels was realized with 

the Optosplit II (Cairn Research, Faversham, UK) image splitter mounted between the 

microscope and the camera. Image analysis was carried out with the imageJ plugins 

ThunderSTORM 63, Nnd_.class (Yuxiong Mao) and standard tools of imageJ. 

 

AFM-based single-cell force spectroscopy (SCFS) 

Tipless, 200 µm long V-shaped cantilevers (spring constants of 0.06 N m-1; NP-O, Bruker) 

were prepared for cell attachment as described 64. Briefly, plasma cleaned cantilevers were 

incubated in 2 mg ml-1 concanavalin A (ConA from Sigma) in PBS at 4 °C overnight. 

Polydimethylsiloxan (PDMS) masks were overlaid on glass bottoms of Petri dishes (35 mm 

FluoroDish, World Precision Instruments, US) to allow different coatings of the glass surface 
65. PDMS framed glass surfaces were incubated overnight with 50 µg ml-1 FN-RGD and 50 

µg ml-1 FN-∆RGD in PBS at 4 °C. Overnight serum-starved fibroblasts (TlnCtr, KindCtr, TlnKo, 

KindKo) grown on FN-coated (Calbiochem, USA) 24 well plates (Thermo Scientific, 

Roskilde, Denmark) to confluency of ~ 80 % were washed with PBS and detached with 0.25 

% (w/v) trypsin/EDTA (Sigma). Detached cells were suspended in single-cell force 

spectroscopy (SCFS) medium (DMEM supplemented with 20 mM HEPES) containing 1 % 

(v/v) FCS, pelleted and further resuspended in serum-free SCFS medium. Detached cells were 

left suspended in SCFS media to recover from detachment for ~1 h 66. For the activation or 

chelation assay, the detached cells were incubated in SCFS media supplemented with 0.5 mM 



Mn2+ or 5 mM EDTA, respectively, for ~1 h and SCFS was performed in the presence of the 

indicated supplement. SCFS was performed using an AFM (NanoWizard II, JPK Instruments) 

equipped with a CellHesion module (JPK Instruments) mounted on an inverted optical 

microscope (Axiovert 200 M, Zeiss, Jena, Germany). Measurements were performed at 37 

°C, controlled by a PetriDish Heater (JPK Instruments). Cantilevers were calibrated using the 

equipartition theorem 67.  

To attach a single cell to the cantilever, cell suspensions were pipetted to the region 

containing the FN-∆RGD coating. The ConA functionalized cantilever was lowered onto a 

single cell with a velocity of 10 µm s-1 until reaching a contact force of 5 nN. After 5 s 

contact, the cantilever was retracted from the Petri dish by 50 µm and the cantilever-bound 

cell was left for incubation for >10 min. For adhesion experiments, the cantilever-bound cell 

was brought into contact with the FN-∆RGD coated support at a contact force of ~2 nN for 5, 

20, 50 and 120 s and then retracted while measuring the cantilever deflection and the distance 

travelled. Subsequently, the cell adhesion to the FN-RGD coated support was characterized as 

described. In case cantilever attached cells showed morphological changes (e.g. spreading) 

they were discarded. The approach and retract velocity of the cantilever was 5 µm s-1. The 

deflection of the cantilever was recorded as force-distance curves. Adhesion forces were 

extracted from retraction force-distance curves using the AFM data processing software (JPK 

Instruments). 

 

Peptide pulldowns, recombinant protein pulldown and GFP-IP. 

Pull-downs with β1 integrin peptides were performed as described 58 and GFP-IPs were 

performed using µ-MACS anti-GFP magnetic beads (130-091-288 from Miltenyi). For 

recombinant paxillin-LIM3 pulldowns 3 µg purified LIM3 domain was incubated in 100 µl 

pulldown buffer (150 mM Tris pH 7.4, 0.4 mM MgCl2, 3.2 mM NaCl, 1 mM DTT, 0.1 % 

Tx100) with equillibrated Ni-NTA-Agarose (50 µl slurry; 1018244 from Quiagen) for 4 h at 4 

°C. After three washes 100 µl buffer containing 3 µg of purified kindlin-2 and Zn2+ or EDTA 

was added for 1 h at 4 °C to allow interaction, before the beads were washed further three 

times and remaining LIM3-kindlin-2 were eluted by boiling in 2xLaemmli buffer. 

 

Generation of FN-coated nanopatterns. 

Disc-shaped adhesive micropatterns on glass sourrounded by adhesion repellent PEG were 

produced as described previously 68 and coated with 20 µg ml-1 FN (Calbiochem) before 

usage. 



 

Spreading and adhesion assays.  

Cells were grown to 70 % confluency and then detached using trypsin/EDTA. Suspended 

cells were serum starved for at least 1 h in adhesion assay buffer (10 mM HEPES pH 7.4; 137 

mM NaCl; 1 mM MgCl2; 1 mM CaCl2; 2.7 mM KCl; 4.5 g L-1 Glucose; 3% BSA) before 

40.000 cells per well were plated out in the same buffer supplemented with 25 ng ml-1 EGF 

and 5 mM Mn2+ if indicated. Plastic ibidi-µ-slides (80826 from Ibidi) were coated with 10 µg 

ml-1 FN (Calbiochem) for adhesion or 20 µg ml-1 FN for spreading assays, 10 µg ml-1 LN 

(11243217001 from Roche), 10 µg ml-1 COL (5005B from Advanced Bio Matrix), 10 µg ml-1 

VN (07180 from StemCell) or 0,01 % Poly-L-Lysine (PLL; P4707 from Sigma) diluted in 

PBS. Seeded cells were centrifuged at 600 rpm in a Beckman centrifuge for 30 min at 37 °C 

before they were fixed with 4 % PFA in PBS and stained with Phalloidin-TRITC and DAPI. 

For cell adhesion assays, nuclear staining of the whole well was imaged using a 2.5x objective 

and cell numbers were counted using ITCN plugin for imageJ 69. For cell spreading assays 12 

confocal images of different regions of Phalloidin and DAPI stained cells were aquired using 

a Leica confocal microscope, cell spreading was quantified using imageJ. 

 

Statistical analyses. 

Experiments were routinely repeated at least three times and the repeat number was increased 

according to the effect size or sample variation. All statistical significances (*P<0.05; 

**P<0.01; ***P<0.001; n.s., not significant) were determined by two-tailed unpaired t-test. In 

the boxplot the middle line represents the median, the box ends represent the 25th and 75th 

percentiles and the whisker ends show the 5th and 95th percentiles. Statistical analysis of the 

SCFS was performed with Prism (GraphPad, La Jolla, USA). 
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Integrins are a large family of cell–
extracellular matrix (ECM) and cell–cell

adhesion molecules that regulate
development and tissue homeostasis by
controlling cell migration, survival,
proliferation and differentiation (Hynes,

2002). They are non-covalently associated

heterodimers consisting of a- and b-

subunits. On the cell surface, integrins

exist in a conformation with either high

(active) or low (inactive) ligand affinity.

Upon activation (inside-out signalling)

(Moser et al., 2009), integrins cluster and

form nascent focal adhesions, which

eventually mature into focal adhesions

(FAs) (outside-in signalling) (Legate et al.,

2009; Geiger and Yamada, 2011). Major

functions of integrins in FAs include their

ability to link the ECM to the actin

cytoskeleton and to fine tune growth

factor receptor signalling (Legate et al.,

2009).

Given that integrins lack intrinsic

enzymatic activity, their signalling crucially

depends on recruiting adaptor and signalling

proteins (Schiller et al., 2011). One of the best

described of these proteins is integrin-linked

kinase (ILK), which is directly recruited to b1

and b3 integrin cytoplasmic domains. Since

its discovery 15 years ago (Hannigan et al.,

1996), ILK has been shown to play crucial

roles in actin rearrangement, cell polarisation,

spreading, migration, proliferation and

survival (Legate et al., 2006). Despite its

predominant localisation in FAs, ILK has

also been shown to reside in cell–cell

adhesion sites, in centrosomes and in the

nucleus. Here, we summarise the functional

properties of ILK and highlight the recent

evidence demonstrating that ILK serves as a

scaffold protein rather than a kinase.

ILK and the Pinch–parvin complex
In vivo studies have revealed that ILK

is a ubiquitously expressed protein, whose

predominant function is to organise the

actin cytoskeleton during invertebrate and

vertebrate development and homeostasis. In

(See poster insert)
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Caenorhabditis elegans, the ILK orthologue
PAT-4 localises to integrins at muscle

attachment sites. Deletion of the pat-4

gene causes a ‘paralysed at two-fold-stage’

(PAT) phenotype that is characterised by
muscle detachment through defective
integrin–actin linkage and early lethality

(Mackinnon et al., 2002). In Drosophila

melanogaster, a germline deletion of ILK

leads to muscle detachment and lethality
(Zervas et al., 2001). Mice lacking ILK die

during the peri-implantation stage owing to
a failure to organise the F-actin cytoskeleton
in epiblast cells (Sakai et al., 2003). In

addition to the constitutive deletion, the
mouse ILK-encoding gene has been deleted

in several organs and cell types using the
Cre/loxP recombination system. The
outcome of these studies has been

extensively reviewed elsewhere (Rooney
and Streuli, 2011; Ho and Bendeck, 2009;

Hannigan et al., 2007; Wickström et al.,
2010b).

Structurally, ILK has three different
domains: five ankyrin repeats at the N-
terminus, followed by a pleckstrin

homology (PH)-like domain and a kinase-
like domain at the C-terminus (Chiswell

et al., 2008; Yang et al., 2009) (see poster).
Although ILK was shown to directly
interact with integrin cytoplasmic tails, it

appears that the recruitment of ILK to
integrins depends, at least in some cells, on

kindlin-2 (also known as Fermt2 and
Plekhc1) (Montanez et al., 2008; Chen

et al., 2008), a-parvin (Fukuda et al., 2009)
or paxillin (Nikolopoulos and Turner,
2001). Structural studies of ILK have

revealed, however, that the proposed
paxillin-interacting residues are buried

within a polypeptide fold and thus are not
directly accessible (Fukuda et al., 2009),
suggesting that these residues indirectly

contribute to paxillin binding. Before the
recruitment of ILK to FAs, ILK forms a

ternary complex with the two adaptor
proteins Pinch and parvin (termed the IPP

complex). Although it is not understood
how the IPP complex forms, its formation
ensures the stability of the individual

components and their faithful targeting to
the adhesion site (Zhang et al., 2002;

Fukuda et al., 2003a). Mammals have
two Pinch genes (Pinch-1 and Pinch-2;

also known as LIMS1 and LIMS2,
respectively), which encode proteins
consisting of five cysteine-rich, zinc-

binding LIM domains followed by a
nuclear export signal. The first LIM

domain of Pinch-1 and -2 binds to a
concave surface that extends from the

second to the fifth ankyrin repeat of ILK

(Chiswell et al., 2008; Yang et al., 2009)
(see poster). The three mammalian parvin
isoforms (a-, b- and c-parvin) are

composed of an N-terminal polypeptide
followed by two calponin homology (CH)
domains, the second of which binds to the
kinase-like domain of ILK (Tu et al., 2001;

Fukuda et al., 2009) (see poster). As ILK
can only bind one Pinch and one parvin
isoform at the same time (Chiswell et al.,

2008; Montanez et al., 2009), ILK is
capable of being part of several distinct
IPP complexes, each resulting in different

signalling outputs (see poster and below).

The parvin proteins can interact directly
with F-actin (Legate et al., 2006) or they
can recruit actin-binding proteins, such as

a-actinin – shown for b-parvin (Yamaji
et al., 2004) – or vinculin, an interaction
mediated through paxillin (Turner, 2000),

which has been shown for a- and c-parvin
(Yoshimi et al., 2006). In addition, they
control actin regulatory proteins such as

testicular protein kinase 1 (TESK1), which
can bind a-parvin and promote F-actin
polymerisation through phosphorylation of
cofilin (LaLonde et al., 2005). By contrast,

b-parvin regulates actin dynamics through
PAK-interactive exchange factor alpha (a-
PIX, encoded by ARHGEF6), a guanidine

exchange factor (GEF) for Rac1 and
Cdc42 (Mishima et al., 2004). Finally,
a-parvin has been shown to inhibit G-

proteins by recruiting Cdc42 GTPase-
activating protein (CdGAP, also known
as RHG31 and Kiaa1204, and encoded by

ARHGAP31) to FAs (LaLonde et al.,
2006), and to negatively regulate Rho-
associated protein kinase (ROCK)-driven
contractility in vascular smooth muscle

cells (Montanez et al., 2009).

Pinch-1 binds the Ras suppressor protein
1 (RSU1), which is important for integrin-

mediated cell adhesion and spreading
(Kadrmas et al., 2004; Ito et al., 2010).
RSU1 is a negative regulator of growth-
factor-induced Jun N-terminal kinase 1

(JNK1, also known as MAPK8)
(Kadrmas et al., 2004). Taken together
these findings suggest that the assembly of

distinct IPP complexes in a given cell,
together with the differential expression
patterns of Pinch and parvin isoforms,

provides a means for multiple alternative
signalling outputs (see poster).

Emerging functions of ILK
The most prominent subcellular
localisation of ILK is in integrin adhesion
sites. In recent years it has been reported

that ILK is also present in additional

subcellular regions and compartments
where it might exert integrin-independent
functions.

Functions in microtubule trafficking
networks

Keratinocytes, and probably other cells,

employ ILK to capture microtubule (MT)
tips to connect them to the cortical actin
network (see poster). ILK-mediated MT
capture occurs exclusively in nascent FAs

and is mediated by recruitment of the
large scaffold protein IQ-motif-containing
GTPase-activating protein 1 (IQGAP1)

(Wickström et al., 2010a). The capture of
MT tips can be achieved either directly
through binding of IQGAP1 to the MT tip

protein CLIP170 (cytoplasmic linker
protein 170; also known as CLIP1), or
indirectly through IQGAP1-mediated
recruitment of mammalian diaphanous

homolog 1 (mDia1; also known as DRF1),
which is also able to stabilise MTs. As both
IQGAP1 and mDia1 are also able to bind F-

actin, the ILK–IQGAP1–mDia1 complex
connects MTs with actin tracks at b1-
integrin-containing nascent adhesion sites

(Wickström et al., 2010a) (see poster).
Exocytotic carriers that are transported on
MT tracks require a switch from MT-based

to actin-based motility at the plasma
membrane to pass through the cortical F-
actin network and finally fuse with the
plasma membrane. Thus, the connection of

both networks by the ILK–IQGAP1–mDia1
complex at nascent adhesion sites is
essential for the exocytosis of caveolar

carriers (Wickström et al., 2010a).
Consequently, ILK not only contributes to
epithelial cell polarisation through actin

remodelling, but also through vesicular
trafficking and MT organisation.

Nuclear functions

Despite its prominent localisation in
different integrin adhesion sites, ILK has
also been observed in the nucleus of
several cell lines, including COS-1 cells

(Chun et al., 2005), MCF-7 cells (Acconcia
et al., 2007), HeLa cells and keratinocytes
(Nakrieko et al., 2008a) (see poster). The

nuclear function of ILK, however, is still
not well understood. In keratinocytes,
nuclear ILK has been shown to induce

DNA synthesis (Nakrieko et al., 2008a)
and, in MCF-7 cells, it has been found to
control the expression of the connector

enhancer of kinase suppressor of Ras3
(CNKSR3) gene (Acconcia et al., 2007). It
is known that CNKSR3 regulates the
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epithelial Na+ channel (ENaC) through
inhibition of the MAPK kinase MEK1

(Ziera et al., 2009). However, the
significance of ILK-regulated CNSKR3

expression is not understood.

It is also not well understood how ILK
translocates into the nucleus. For example,
it is not known whether the nuclear import

of ILK depends on its N-terminus
(Acconcia et al., 2007) or on a C-terminal
nuclear localisation signal (Chun et al.,

2005). The nuclear export of ILK requires
the kinase-like domain (Acconcia et al.,
2007; Nakrieko et al., 2008a) and is
apparently controlled by the nuclear

export factor CRM1, integrin-linked
kinase-associated serine and threonine
phosphatase 2C (ILKAP) and p21-

activated kinase 1 (PAK1) (Acconcia et
al., 2007; Nakrieko et al., 2008a).

Organisation of cell–cell contacts

ILK has been shown to serve as a scaffold

for promoting the formation of cell–cell
contacts (see poster) and the recruitment of
tight junction proteins (Vespa et al., 2003;
Vespa et al., 2005). Following treatment of

cultured keratinocytes with Ca2+, they
undergo differentiation. This process is
accompanied by the translocation of ILK

from FAs to cell–cell adhesion sites
(Vespa et al., 2003). This translocation is
known to require the N-terminal ankyrin

repeats (Vespa et al., 2003); however, it is
unclear whether Pinch-1 or -2 translocate
together with ILK. In contrast to these in
vitro findings, deletion of the Ilk gene

in mouse keratinocytes neither affects
cell–cell adhesion nor barrier function in
the epidermis, but severely impairs

keratinocyte migration on and adhesion to
the epidermal-dermal basal membrane
(BM), resulting in skin blistering,

epidermal hyperthickening and hair loss
(Lorenz et al., 2007; Nakrieko et al.,
2008b).

Centrosome functions

A proteomic search for new ILK-interacting

proteins identified a number of proteins,
including several centrosome- and mitotic-
spindle-associated proteins, such as a- and

b-tubulin, the tubulin-binding proteins
RUVBL1 and colonic and hepatic tumor
overexpressed gene protein (ch-TOG, also

known as CKAP5) (Dobreva et al., 2008)
(see poster). Although ILK probably binds
these proteins in an indirect manner

(Fielding et al., 2008), it colocalises with
them in centrosomes from interphase
and mitotic cells where it has an essential

role in controlling centrosome function
during mitotic spindle organisation and

centrosome clustering (Fielding et al.,
2008; Fielding et al., 2011). The
organisation of the mitotic spindle requires
the kinase Aurora A and the association of

ch-TOG with the centrosomal transforming
acidic coiled-coil-containing protein 3
(TACC3), which in turn promotes the

polymerisation and stabilisation of
centrosomal MTs (Barr and Gergely,
2007). In ILK-depleted cells, Aurora A

kinase, although active, is unable to
phosphorylate and thus activate TACC3,
resulting in disruption of mitotic spindles.
Similarly, the clustering of supernumerary

centrosomes in cancer cells is also achieved
by the TACC3–ch-TOG complex in an
ILK- and Aurora-A-dependent manner

(Fielding et al., 2011). ILK associates with
ch-TOG, but not with TACC3 or Aurora A.
Therefore, it is not clear how ILK supports

the phosphorylation of TACC3 by Aurora
A. Similarly, it is also unclear how ILK is
recruited to centrosomes. The centrosomal

localisation of ILK requires RUVBL1
expression and occurs without the known
ILK-binding partners, a-parvin and Pinch
(Fielding et al., 2008). Finally, it is also not

known why the treatment of cells with
QLT-0267, a small chemical compound that
binds to the ATP-binding site of ILK, is as

effective as siRNA-mediated depletion of
ILK in blocking the association of TACC3
with Aurora A (Fielding et al., 2008). The

mechanistic interpretation of this work is
based on the assumption that ILK acts as a
kinase, which has been disproved by genetic
and structural studies (see below). A

potential explanation for the inhibitory
effect of QLT-0267 could be an
impairment of the stability of ILK (see the

next section).

The kinase controversy
The experimental evidence that the kinase-
like domain of ILK lacks catalytic activity
is overwhelming (Wickström et al.,
2010b). Although ILK was initially

identified by Dedhar and colleagues as a
serine/threonine kinase (Hannigan et al.,
1996), it lacks several important motifs

that are conserved in most kinases (Hanks
et al., 1988) (see poster). Furthermore,
genetic studies in flies, worms and mice

have demonstrated that the putative kinase
activity is not required for development
and homeostasis (Zervas et al., 2001;

Mackinnon et al., 2002; Lange et al.,
2009). Despite this compelling evidence,
many papers have been and are still

published claiming that ILK is a bona
fide kinase, with only marginal evidence at

best.

The crystallisation of kinase-like domain
of ILK in complex with the CH domain of
a-parvin and its comparison to the kinase

domain of protein kinase A (PKA) has
provided a mechanistic explanation for why
the kinase function of ILK is not executed

(Fukuda et al., 2009). The catalytic activity
of a kinase depends on a coordinated
interplay of the N- and C-lobes and the

catalytic loop of the kinase domain with the
substrate and ATP. The N- and C-lobes and
the catalytic loop of ILK show major
differences to those of bona fide kinases

that render the ‘kinase’ of ILK non
functional: (1) The catalytic loop lacks
important acidic and positively charged

residues. The acidic residue (D166 in
PKA), which polarises the hydroxyl group
of the substrate and accepts its proton, is

replaced in ILK with the uncharged alanine
residue (A319) (Fukuda et al., 2009).
(2) The positively charged residue in
the catalytic loop (K168 in PKA),

which stabilises the intermediate state of
the phosphoryl transfer reaction by
neutralizing the negative charge of the c-

ATP phosphoryl group, is replaced in ILK
by N321 resulting in a misrouting of ATP to
the C-lobe. (3) In the N-lobe, the ATP-

binding p-loop captures ATP at a too great
distance from the active centre (10 Å),
which precludes its movement towards the

catalytic loop, and the lysine residue K220
contacts the a- and c-ATP phosphoryl
groups instead of the a- and b-phosphoryl
groups resulting in an aberrant ATP

orientation. (4) Furthermore, the C-lobe of
ILK chelates ATP with only one instead of
the expected two metal ions. The metal ion

is bound by the aspartate residue (D339) of
the DVK motif of ILK (a DFG motif in
PKA), whereas the second potential metal-

binding residue (S324) remains unoccupied.
Another divergence from bona fide
kinases is the coordination of the c-ATP

phosphoryl-group by the lysine residue
(K341) of the DVK motif of the N-lobe,
which usually is mediated by the catalytic
loop (Fukuda et al., 2009). Nevertheless,

despite this structural evidence, dissenting
views are still expressed and the
controversy rages on (Hannigan et al.,

2011).

Thermodynamic and structural analysis
of ILK mutants has revealed that the

K220A and K220M mutations, previously
described as affecting kinase function,
destabilise the global ILK structure
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(Fukuda et al., 2011), thus reducing ILK

stability and the binding of interaction

partners such as a-parvin. This observation

provides an explanation for the severe

kidney defects observed in mice which

either lack a-parvin expression or carry

K220A or K220M mutations in ILK

(Lange et al., 2009).

Redefining the role of ILK in cancer
ILK is overexpressed in many types of

cancer, and it has been reported that its

depletion or inhibition with the small

molecule inhibitor QLT-0267 inhibits

anchorage-independent growth, cell cycle

progression and invasion (Hannigan et al.,

2005). The oncogenic effects of ILK have

been attributed for the most part to the

catalytic activity of the kinase domain

resulting in the activation of protein kinase

B (PKB, also known as Akt) and glycogen

synthase kinase-3 beta (GSK3b), which in

turn regulates the stability of proto-

oncogenic b-catenin (Hannigan et al.,

2005). The recent findings showing that

mammalian ILK lacks catalytic activity

and serves as a scaffold protein in FAs of

mammalian cells (Lange et al., 2009;

Fukuda et al., 2009) raise the question of

how ILK mediates its oncogenic potential

despite this functional twist.

One possibility is that ILK controls the

activity of oncogenes, such as PKB by

controlling their subcellular localisation.

For example, the ILK-binding partners a-

and b-parvin induce the recruitment of PKB

to the plasma membrane where PKB

mediates its oncogenic activity (Fukuda

et al., 2003b; Kimura et al., 2010). An

alternative possibility is that ILK and ILK-

interacting protein(s) regulate oncogenic

kinases by controlling the activity of

phosphatases. This has been shown for

Pinch-1, which binds to and inhibits

protein phosphatase 1a (PP1a) resulting in

sustained PKB phosphorylation and activity

(Eke et al., 2010). Consequently, reducing

the amounts of the IPP complex in FAs will

concomitantly result in an increased PP1a
activity and decreased PKB function. It is

also conceivable that ILK exerts its

oncogenic function through its ability to

cluster supernumerary centrosomes in

cancer cells, thereby preventing their

genomic instability and death (Fielding

et al., 2011). Finally, ILK might also

promote oncogenesis by regulating gene

expression in the nucleus or by modulating

the assembly of ECM proteins, as shown for

fibronectin (Wu et al., 1998), which has

been reported to affect cancer development

and invasion (Akiyama et al., 1995).

Outlook and perspectives
ILK research has been significantly

advanced in the past years by the
resolution the long-lasting debate
regarding the catalytic activity of ILK and

by identifying novel functions for ILK,
many of which occur outside of FAs.
However, most of the emerging functions
of ILK (e.g. in the nucleus, at cell–cell

adhesion sites and in the centrosome) have
only been studied in cultured cells thus far
and still await confirmation in vivo.

In addition, several basic functions of
ILK in FAs are still unresolved, including
the mechanism(s) of the recruitment of ILK
to FAs, the role of ILK in FA maturation

and as a potential stretch sensor (Bendig
et al., 2006), and the turnover and
modifications of ILK, to name a few.

Whether the recruitment of ILK to FAs
occurs through a direct association with the
integrin cytoplasmic domains or indirectly,

e.g. through binding to kindlins (Montanez
et al., 2008) or paxillin (Nikolopoulos and
Turner, 2001) is currently unclear. In this

regard, it is also not known whether ILK
binds or associates with all b-integrin
tails or whether this association is more
selective. A co-crystallisation of the kinase-

like domain of ILK with b-integrin tails
should help to answer some of these
questions. Similarly, a structural analysis

of the predicted PH domain of ILK would
clarify whether it adopts a classical PH fold,
as predicted in the original publication

(Hannigan et al., 1996), or a different
motif, whose function would then have to
be determined. Zebrafish studies point to a
stretch-sensing function for ILK in

cardiomyocytes (Bendig et al., 2006). This
observation raises the question of whether
mechanical stress sensing by ILK is

restricted to cardiomyocytes or whether it
also occurs in other cells, and of how ILK is
executing this function at the molecular

level. Finally, it will be important to re-
evaluate the role of ILK in cancer. Ideally,
these experiments should be performed in

an unbiased manner with tumour models in
mice (e.g. colon cancer and mammary
cancer models) that lack ILK expression,
and are complemented by sophisticated in

vitro studies with cells derived from the
tumours.

It is obvious that despite the rapid

progress in ILK research, many questions
are still unanswered. Recent advances in
imaging and proteomics combined with

genetics, cell biology and biochemistry

will make the years to come exciting for all

ILK aficionados.
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Abstract

Kindler Syndrome (KS), characterized by transient skin blistering followed by abnormal pigmentation, skin atrophy, and skin
cancer, is caused by mutations in the FERMT1 gene. Although a few KS patients have been reported to also develop
ulcerative colitis (UC), a causal link to the FERMT1 gene mutation is unknown. The FERMT1 gene product belongs to a family
of focal adhesion proteins (Kindlin-1, -2, -3) that bind several b integrin cytoplasmic domains. Here, we show that deleting
Kindlin-1 in mice gives rise to skin atrophy and an intestinal epithelial dysfunction with similarities to human UC. This
intestinal dysfunction results in perinatal lethality and is triggered by defective intestinal epithelial cell integrin activation,
leading to detachment of this barrier followed by a destructive inflammatory response.
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Introduction

Kindler Syndrome (KS; OMIM:173650) is a rare, recessive

genodermatosis caused by mutations in the FERMT1 gene

(C20ORF42/KIND1) [1,2]. KS patients suffer from varying skin

abnormalities that occur at distinct phases of their life [3]. Skin

blisters develop and disappear after birth, followed by skin

atrophy, pigmentation defects and finally skin cancer. The severity

of the individual symptoms varies extensively among individual

patients. FERMT1 mutations are distributed along the entire gene

and can give rise to different truncated Kindlin-1 proteins [4].

Interestingly, the different courses of the KS cannot be linked to

mutations within specific regions of the FERMT1 gene [3]

suggesting that additional environmental and/or genetic factors

contribute to the disease course.

Kindlin-1 belongs to a novel family of cytoplasmic adaptor

proteins consisting of three members (Kindlin-1-3) [5]. Kindlins

are composed of a central FERM (band 4.1, ezrin, radixin,

moesin) domain, which is disrupted by a pleckstrin homology (PH)

domain. They localize to cell-matrix adhesion sites (also called

focal adhesions, FAs) where they regulate integrin function. In line

with the role of Kindlins in integrin function, keratinocytes from

KS patients and Kindlin-1-depleted keratinocytes display impaired

cell adhesion and delayed cell spreading [6,7]. The mechanism

how Kindlin-1 regulates integrin function is not understood and

controversial. Kindlin-2 (Fermt2) and Kindlin-3 (Fermt3) were

shown to bind to the membrane distal NxxY motif of b1 (Itgb1)

and b3 (Itgb3) integrin cytoplasmic domains. This binding, in

concert with Talin (Tln1) recruitment to the membrane proximal

NPxY motif, leads to the activation (inside-out signaling) of b1 and

b3 class integrins enabling them to bind to their ligands. Following

ligand binding, Kindlin-2 and Kindlin-3 stay in matrix adhesion

sites where they link the ECM to the actin cytoskeleton by

recruiting ILK and Migfilin (Fblim1) to FAs (outside-in signaling).

Consistent with this adaptor function of Kindlins, keratinocytes

from KS patients and keratinocytes depleted of Kindlin-1 display

impaired cell adhesion and delayed cell spreading [6,7].

Importantly, however, Kindlin-1 was reported to have different

properties than Kindlin-2 and -3, since it was shown to bind like

Talin to the proximal NPxY motif of b1 integrin tails [6].

The Kindlins have a specific expression pattern. Kindlin-1 is

expressed in epithelial cells, while Kindlin-2 is expressed almost

ubiquitously. They are both found at integrin adhesion sites and/

or cadherin-based cell-cell junctions. Kindlin-3 is exclusively

expressed in hematopoietic cells, where it controls a variety of

functions ranging from integrin signaling in platelets [8] to

stabilizing the membrane cytoskeleton in mature erythrocytes [9].

Although the FERMT1 gene is expressed in epithelial cells of

almost all tissues and organs [5], only abnormalities of the skin and

the oral mucosa are associated with KS. Recently it has been

reported, however, that some KS patients also develop ulcerative

colitis (UC) [4,10,11], which together with Crohn’s disease belongs

to idiopathic inflammatory bowel disease.

UC usually occurs in the second or third decade of life, although

the incidence in pediatric patients is steadily rising [12,13]. UC is

restricted to the colon and is characterized by superficial

ulcerations of the mucosa. It is currently believed that the mucosal

ulcerations are triggered by the release of a complex mixture of

inflammatory mediators leading to severe inflammation and

subsequent epithelial cell destruction [12]. In line with this

paradigm a large number of murine colitis models occur when the

innate or adaptive immune response is altered [12]. Genetic

linkage analysis in man led to the identification of several

susceptibility loci [14,15].
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In line with the UC disease course most of the KS patients

develop their first UC symptoms in adulthood. Interestingly,

however, one of them suffered from a severe neonatal form of UC

and was diagnosed with a null mutation in the FERMT1 gene

after developing trauma-induced skin blistering [10]. Since only a

few KS patients were reported to develop intestinal symptoms, it is

currently debated whether UC development in these patients is

directly linked to FERMT1 gene mutations or secondarily caused

by a microbial infection or an abnormal inflammatory response.

In this study we directly investigated the role of Kindlin-1 in

vivo by generating mice carrying a constitutive null mutation in

the Kindlin-1 gene. We demonstrate that Kindlin-1 deficient mice

develop skin atrophy and a lethal intestinal epithelial dysfunction,

resembling the reported UC in KS patients. The intestinal

epithelial dysfunction is caused by defective intestinal epithelial

integrin activation leading to extensive epithelial detachment

followed by a severe inflammatory reaction.

Results

Loss of Kindlin-1 Leads to a Lethal Intestinal Epithelial
Dysfunction

To unravel the consequences of loss of Kindlin-1 in vivo, we

established a mouse strain with a disrupted Fermt1 gene, leading to a

complete loss of Kindlin-1 mRNA and protein (Figure 1A–C).

Heterozygous Kindlin-1 mice (Kindlin-1+/2) had no phenotype and

were fertile. Kindlin-1-deficient mice (Kindlin-12/2) were born with

a normal Mendelian ratio (29.6% +/+; 44.1% +/2; 26.3% 2/2;

n = 203 at P0) and appeared normal at birth. Two days postnatal

(P2), all Kindlin-12/2 mice analyzed so far were dehydrated

(Figure 1D), failed to thrive (Figure 1E) and died between P3-P5

(Figure 1E). Blood glucose and triglyceride levels of Kindlin-12/2

mice were normal suggesting a normal absorption of nutrients in the

small intestine (Figure S1). Their urine showed an increased

osmolarity and protein content further pointing to severe dehydra-

tion (Figure 1F, Figure S2A and B). Histology of Kindlin-12/2

kidneys at P3 revealed normal morphology of glomeruli and tubular

systems (Figure S2C). Thus, these findings suggest that the peri-natal

lethality is not caused by a renal dysfunction.

Figure 1. Loss of Kindlin-1 results in early postnatal lethality. (A) The Fermt1 gene was disrupted by replacing the ATG start codon
containing exon 2 with a neomycin resistance cassette. (B) Kindlin-1 mRNA levels were determined by PCR from cDNAs derived from P3 kidneys. (C)
Loss of Kindlin-1 protein was confirmed by western blotting in colonic IEC lysates. (D) Pictures from newborn (P0) and two day old mice (P2). Scale
bars represent 5mm. (E) Weight curve of Kindlin-12/2 (n = 8) and control littermates (+/+; n = 8; +/2; n = 9) where a � indicates when mice died. ***
indicates a P-value ,0.0001. Error bars show standard deviations. (F) Osmolarity of P2 Kindlin-12/2 and control (+/+) urine (n = 3 per genotype). Error
bars show standard deviations. *** indicates a P-value ,0.0001.
doi:10.1371/journal.pgen.1000289.g001

Author Summary

Mutations in FERMT1, coding for the Kindlin-1 protein,
cause Kindler Syndrome in humans, characterized by skin
blistering, atrophy, and cancer. Recent reports showed
that some Kindler Syndrome patients additionally suffer
from ulcerative colitis. However, it is unknown whether
this is caused by loss of Kindlin-1 or by unrelated
abnormalities such as infections or additional mutations.
We ablated the Fermt1 gene in mice to directly analyze the
pathological consequences and the molecular mode of
action of Kindlin-1. Kindlin-1–deficient mice develop a
severe epidermal atrophy, but lack blisters. All mutant
mice die shortly after birth from a dramatic, shear force-
induced detachment of intestinal epithelial cells followed
by a profound inflammation and organ destruction. The
intestinal phenotype is very similar to, although more
severe than, the one observed in Kindler Syndrome
patients. In vitro studies revealed that impaired integrin
activation, and thus impaired adhesion, to the extracellular
matrix of the intestinal wall causes intestinal epithelial cell
detachment. Therefore, we demonstrate that intestinal
epithelial cells require adhesive function of integrins to
resist the shear force applied by the stool. Furthermore, we
provide evidence that the colitis associated with Kindler
Syndrome is caused by a dysfunction of Kindlin-1 rather
than by a Kindlin-1–independent event.

Loss of Kindlin-1 Causes IEC Dysfunction
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Next we analyzed whether skin abnormalities caused the

perinatal lethality. Although Kindlin-12/2 mice showed features

of KS like skin atrophy and reduced keratinocyte proliferation

(Figure 2A and B), adhesion of basal keratinocytes to the basement

membrane (BM) was unaltered (Figure 2A and Figure S3).

Histology of backskin sections from different developmental stages

revealed normal keratinocyte differentiation (Figure S4), normal

development of the epidermal barrier (Figure S5A and Figure 2C

and D), and comparable epidermal thickness at E18.5 and P0

(Figure S5B). In line with the progressing proliferation defect

quantified by the number of keratinocytes positive for the cell cycle

marker Ki67 (Mki67), a reduction of the epidermal thickness was

first observed at P1 (Figure S5B). Interestingly despite the mild in

vivo phenotype, Kindlin-12/2 keratinocytes displayed severe

adhesion and spreading defects in culture (Figure S6A and B)

further indicating that Kindlin-12/2 keratinocytes from mouse

and man display similar defects [7].

These results indicated that another defect is responsible for

their perinatal lethality. When the stomach and the intestine of

Kindlin-12/2 mice were examined, they were swollen and filled

with milk and gas (Figure 3A) suggesting severe intestinal

dysfunction might be the cause of death. The presence of milk

in the stomach together with the normal histology of the oral and

esophageal mucosa suggested that the lethality is not caused by

impaired feeding (Figure S7). At P2, the terminal ileum and colon

were shortened and swollen and strictures were evident in the

distal colon, which are signs of acute inflammation (Figure 3B). By

P3, when the majority of mutant mice were dying, more than 80%

of the colonic epithelium was detached (Figure 3C and Figure

S8A–C), became apoptotic (Figure S9) and infiltrated by

macrophages, granulocytes (Mac-1; Itgam staining) and T cells

(Thy staining) (Figure 3D). The shortened colon was neither a

consequence of increased apoptosis, which was only seen in

detached epithelium, nor a result of reduced intestinal epithelial

cell (IEC) proliferation (Figure S9).

The epithelial detachment and severe inflammation extended

into the ileum (Figure 3C). In contrast, the proximal small intestine

(duodenum and jejunum) had no evidence of IEC detachment or

inflammation (Figure 4). The phenotype of Kindlin-12/2 mice for

the most part phenocopied the intestinal disease observed in the

patient with a complete loss of Kindlin-1[10].

Kindlin-1 Is Required for Intestinal Epithelial Cell
Adhesion

To define the cell type affected by loss of Kindlin-1 we localized

Kindlin-1 in the normal intestine by immunostaining. Similar to

the situation in man [4], Kindlin-1 is present throughout the

cytoplasm of IECs of the colon and at the basolateral sites of both

IECs of the colon (Figure 5A) and the small intestine (Figure 5B).

The anti-Kindlin-1 polyclonal antibody produced some weak

unspecific background signals in the intestinal mesenchyme of wild

type and Kindlin-12/2 mice (Figure 5B). Kindlin-2 was

exclusively found in cell-cell contacts and did not change its

distribution in the absence of Kindlin-1 (Figure 5C and D). Focal

adhesion (FA) components such as Talin and Migfilin as well as

Figure 2. Atrophy and reduced proliferation in Kindlin-12/2 skin. (A) H&E stainings from P3 backskin show severe epidermal atrophy in
Kindlin-12/2 mice. The BM is indicated by a dashed line and separates the epidermis (e) from the dermis (d). sc: stratum corneum. Scale bar indicates
50 mm. (B) Percentage of Ki67-positive interfollicular keratinocytes, indicating proliferating cells, at different ages (n = 7 per genotype). Error bars
show standard errors of the mean. (C) Kindlin-2 (red; co-stained with a6 integrin (a6 int; in green) and E-cadherin (green, co-stained with Collagen IV
(Coll IV) in red) staining of P3 backskin sections. Nuclei are shown in blue. Scale bar indicates 10 mm. (D) FITC-Lucifer yellow stain of P3 backskin
overlaid with DIC. Lack of lucifer yellow dye penetration shows normal skin barrier in Kindlin-12/2 mice. Scale bar indicates 50 mm.
doi:10.1371/journal.pgen.1000289.g002

Loss of Kindlin-1 Causes IEC Dysfunction
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filamentous actin (F-actin) were expressed normally in Kindlin-12/2

colonic epithelium that was still adhering to the BM (Figure 5C and

data not shown).

Next we determined the time point when mutant mice began

developing intestinal abnormalities. At E18.5 the ileum and colon

of Kindlin-12/2 mice were histologically normal and electron

microscopy revealed an intact epithelium and basement mem-

brane (BM) (Figure 6A). Shortly after birth (P0), wild-type and

Kindlin-12/2 mice began to suckle and accumulated milk in their

stomachs. Within the first hours after birth nursed Kindlin-12/2

mice contained colostrum in the intestinal lumen and displayed

extensive epithelial cell detachment (Figure 6B; see Colon P0)

without infiltrating immune cells (Figure 6B and C) in the distal

colon. No epithelial detachment occurred when Kindlin-12/2

mice were delivered by Caesarean section and incubated in a

heated and humidified chamber for up to 7 hours (Figure 6B

Colon CS) indicating that mechanical stress applied by stool

caused IEC detachment. However, inflammatory infiltrates were

clearly visible between the detached epithelial cells and the

underlying mesenchyme at around 12 hours after birth in fed mice

(Figure 6B; see Colon P0.5) and further increased during the

following day (Figure 6D). The steady immune cell infiltrate was

accompanied with increased expression of the proinflammatory

cytokines TNF-a (Tnf) and IL-6 (Il6) and a reduction in goblet cell

mucins (Figure 6D and E). The wide range of TNF-a and IL-6

expression levels in Kindlin-12/2 mice likely reflects the different

severities of inflammation at the time tissues were prepared.

Although inflammation extended into the ileum at P2 and P3

(Figure 3B and C), the epithelial cells of the ileum were never

detached suggesting that Kindlin-12/2 mice develop a so-called

backwash ileitis caused by stool ‘‘washed back’’ from the colon into

the ileum [13]. These analyses revealed that the epithelial

detachment begins at P0 in the distal parts of the colon and

subsequently expands proximally.

Kindlin-1 Controls Activation of Integrins
An important question is how Kindlin-1 deficiency leads to

detachment of intestinal epithelial cells. One potential explanation

could be loss of support by a disrupted BM as reported for skin of

KS patients [1,2,3]. Moreover, it is known that BM digestion and

epithelial detachment in inflammatory bowel disease (IBD) can be

triggered via the secretion of MMPs by epithelial and/or

infiltrating immune cells [17]. This possibility could be excluded,

since Kindlin-12/2 mice at P1 showed a continuous BM with all

major components present, both in areas of the colon where IECs

were still adherent as well as in areas where IECs were detached

(Figure 7A). Interestingly, also the skin of Kindlin-12/2 mice

showed a normal BM distribution by immunostaining (Figure S3).

An alternative explanation for the IEC detachment could be a

reduction of integrin levels, or a dysfunction of integrins, similar to

that reported for Kindlin-3-deficient platelets [8] and Kindlin-2-

deficient primitive endoderm [18]. The normal distribution of b1

integrin (Figure 7B) and the comparable levels of b1 and av (Itgav)

Figure 3. Severe inflammation and epithelial detachment in
Kindlin-12/2 colon. (A) Opened abdomen with intestine from P2
mice. Arrowheads indicate air in the stomach and small intestine of
Kindlin-12/2 mice. bl; bladder. Scale bar represents 5 mm. (B) Whole
gut preparations from P2 mice. Scale bar represents 5 mm. Arrowhead
indicates a stricture in the distal colon. The caecum is highlighted with a
red circle and the colon is marked with a green line. (C) H&E staining of
P3 colon and ileum. Kindlin-12/2 mice show complete absence of
colonic epithelium (e), exposure of the submucosa to the intestinal
lumen (lu) and severe inflammation in colon and ileum. Scale bar
represents 50 mm. (D) Macrophage and granulocyte infiltrations in P3
colon shown with Mac-1 staining in green. T-cell infiltrates in P3 colon
shown with Thy1.2 staining in green. Fibronectin (FN) is stained in red.
Scale bar represents 50 mm.
doi:10.1371/journal.pgen.1000289.g003

Figure 4. Normal duodenum and jejunum in Kindlin-12/2 mice. H&E stainings of (A) P1 and (B) P3 duodenal and jejunal sections reveal a
normal histology of the Kindlin-12/2 small intestine. Scale bar represents 50 mm.
doi:10.1371/journal.pgen.1000289.g004
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integrins (Figure 7C and D and data not shown) excluded a defect

in expression and/or translocation of integrins to the plasma

membrane. Flow cytometry of primary IECs with the monoclonal

antibody 9EG7, which recognizes an activation-associated epitope

on the b1 integrin subunit, showed significantly reduced binding

(Figure 8A) suggesting that loss of Kindlin-1 decreases activation

(inside-out signaling) of b1 integrins. Primary keratinocytes from

Kindlin-12/2 mice also showed normal localization (Figure S10A)

and surface expression of b1 integrins (Figure S10B). Interestingly,

9EG7 staining revealed reduced, although not statistically

significant, activation of b1 integrins in these cells (Figure S10C).

Since it is difficult to culture and maintain primary murine

IECs, we depleted Kindlin-1 in a human colon carcinoma cell line

(HT-29) using RNAi (HT-29siKind1; Figure 8B) to show that

integrin-mediated cell adhesion and shear stress induced detach-

ment were also perturbed in a colon cell line. HT-29siKind1 cells

were unable to adhere to Fibronectin (FN; Fn1) and showed

strongly reduced adhesion to Laminin-332 and Collagen IV

(Figure 8C) and easily detached from FN upon exposure to low

(0,5dyn/cm2) as well as high shear stress (up to 4dyn/cm2; Figure

S11). The remaining adhesion to Laminin-332 and Collagen IV is

likely mediated by other Laminin- and Collagen-binding receptors

on colonic epithelial cells such as a6b4 integrins (Itga6,Itgb4) and

discoidin domain receptors [19,20], which are both known to

function independent of Laminin and Collagen binding b1

integrins [21].

These findings indicate that (i) loss of Kindlin-1 impairs integrin

activation, which compromises adhesion of colonic epithelial cells,

that (ii) Kindlin-2 cannot rescue Kindlin-1 loss in colonic epithelial

cells, and that (iii) the residual IEC adhesion to Laminin and

Collagen is suspended by shear forces exerted for example, by the

feces.

It has been reported that Kindlin-1 associates with the

membrane proximal NPxY motif of b1 and b3 integrins [6]. This

observation, however, is in contrast with observations made with

Kindlin-2 and -3, both of which bind the membrane distal NxxY

motifs of b1 and b3 integrins to trigger their activation [8,18,22].

To explore the mechanism whereby Kindlin-1 induces integrin

activation, we performed pull down experiments with recombinant

GST-tagged cytoplasmic b integrin tails in IEC and keratinocyte

lysates. The results confirmed that Kindlin-1 associated with the

cytoplasmic domains of b1 and b3 (Figure 8D). Since substitutions

of the tyrosine residues in the proximal NPxY motifs with alanine

(b1Y788A; b3Y747A) allowed Kindlin-1 binding, while tyrosine to

alanine substitutions in the distal NxxY motif of b1 and b3 integrin

tails (b1Y800A; b3Y759A) abolished Kindlin-1 binding, we

conclude that the binding and functional properties are conserved

among all Kindlins. This was further confirmed with direct

binding assays, which showed that the recombinant His-tagged C-

terminal FERM domain of Kindlin-1 (aa 471–677) containing the

phosphotyrosine binding (PTB) motif bound GST-tagged b1 but

not the Y800A mutated b1 integrin cytoplasmic tail (Figure 8E).

It is well established that Talin can induce activation of

integrins, and for a long time it was believed that it is sufficient for

the execution of this task. This important function of Talin was

discovered by overexpressing Talin or its FERM domain in CHO

cells stably expressing the human platelet integrin aIIbb3 (Itga2b,

Itgb3) [23], which shifted the inactive conformation of aIIbb3

integrin to a high affinity state, as demonstrated by increased

binding of the PAC1 antibody recognizing activation associated

epitopes on aIIbb3 integrin (Figure 8F). In contrast to Talin,

overexpression of Kindlin-1 failed to trigger activation of aIIbb3

integrin in these cells (Figure 8F). Interestingly, as described for

Kindlin-2 [18,22], overexpression of both the Talin FERM

domain and Kindlin-1 doubled PAC1 binding when compared

with cells expressing only the Talin FERM domain (Figure 8F).

The synergism between Talin and Kindlin-1 depends on a

Kindlin-1 and b integrin tail interaction, as a PTB mutant of

Figure 5. Kindlin-1 localization in mouse intestine. (A) Immunofluorescence staining of Kindlin-1 in neonatal colon. Arrows indicate BM. (B)
Immunofluorescence staining of P1 ileum for Kindlin-1. Arrows indicate the BM. (C) Immunofluorescence staining of P1 colon for Kindlin-2, Migfilin, F-
actin (red), a6 integrin (a6 int; green) and Laminin-332 (LN332; green). (D) Immunofluorescence staining of colon for Kindlin-2 (green) and E-cadherin
(E-cad; red). All scale bars represent 10 mm.
doi:10.1371/journal.pgen.1000289.g005
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Kindlin-1 (QW611/612AA) failed to bind b integrin tails

(Figure 8G) and the synergistic effect with Talin was lost

(Figure 8F). These findings suggest that Kindlin-1 is not sufficient

for integrin activation but is required for inducing Talin-mediated

integrin activation. This notion was confirmed with CHO cells, in

which endogenous Kindlin-2 levels were depleted by RNAi

Figure 6. Progressive epithelial dysfunction in Kindlin-12/2 mice. (A) Normal morphology of IECs and BM at E18.5. Shown are H&E stainings
of the ileum and colon and electron microscopy pictures at 120006 magnification from the colon. The boxed enlargement shows the BM, e:
epithelium. Arrows point to the BM. (B) Colonic IEC (e) detachment at P0 (Colon P0, around 5–6 hours after birth) that becomes infiltrated by immune
cells around 12 hours after birth (Colon P0.5). In mice delivered by Caesarean section (CS) and kept unfed for 7 hours no epithelial cell detachment
can be observed. Arrows indicate blister. (C) IEC detachment but no macrophage (Mac-1) and granulocyte (GR-1) infiltrations at P0 (Mac-1 and GR-1 in
green; Perlecan (Perl) indicating BM in red). Arrows indicate IEC detachment. (D) Immune cell infiltrations in the lumen of the colon and floating
epithelial sheets (e) in the colonic lumen at P1. PAS staining shows reduced goblet cell mucins in Kindlin-12/2 colonic epithelium. Scale bars in A, B
and D represent 50 mm and in C 10 mm. (E) Median of Real Time PCR results from whole colon mRNA at E18.5 (n = 2 per genotype) and P1 (n = 5 per
genotype) for TNF-a and IL-6. Error bars show range. The P value was determined using a Mann-Whitney test.
doi:10.1371/journal.pgen.1000289.g006
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(Figure 8H). Furthermore, overexpressing Talin failed to induce

integrin activation in these cells, but expression of Kindlin-1

restored this function (Figure 8I).

These findings show (i) that Kindlin-1 and -2 require Talin for

integrin activation, (ii) that Talin requires Kindlins for integrin

activation, and (iii) that Kindlin-1 and Kindlin-2 have redundant

functions in vitro as both Kindlin-1 and -2 are recruited to FAs

where they exert similar functions on integrin cytoplasmic tails.

However, in vivo this is not the case as Kindlin-2 is recruited to

cell-cell contacts in IECs and apparently does not compensate

Kindlin-1 loss.

Discussion

In the present study we show that a null mutation in the Fermt1

gene gives rise to skin atrophy and an acute and fulminant,

neonatal intestinal epithelial dysfunction. We demonstrate that the

primary defect is a loss of the intestinal epithelial barrier that

secondarily leads to inflammatory cell infiltrates and the

development of a severe colitis. Furthermore, we show that loss

of the intestinal epithelial barrier is caused by a severe adhesion

defect of intestinal epithelial cells to the underlying BM, which in

turn is caused by the inability of integrins to become activated and

to bind BM components. It is possible that in addition to defective

integrin activation and epithelial detachment, Kindlin-1 exerts

other yet unidentified functions that could contribute to the

phenotype in Kindlin-12/2 mice.

Kindler syndrome (KS) is thought to be primarily a skin disease

with a disease course that is characterized by epidermal atrophy

and followed by epidermal blistering, pigmentation defects and

skin cancer. The complex disease syndrome is difficult to diagnose

at the disease onset due to similarities with other forms of skin

blistering diseases (also called epidermolysis bullosa; EB) that are

caused by mutations in keratin and BM genes [24]. Recent case

reports showed that KS may involve more organs than only the

skin, as several KS patients also suffer from intestinal symptoms.

One patient with a severe form of KS developed a severe postnatal

UC. Interestingly, this patient was diagnosed with a null mutation

in the FERMT1 gene after developing trauma-induced skin

blistering [10]. In line with this severe UC case of KS, we found

that the null mutation of the Fermt1 gene in mice also leads to a

dramatic and lethal intestinal epithelial dysfunction very shortly

after birth. Lethality is usually not seen in KS patients, which is

most likely due to the immaturity of the murine intestine at birth,

making it more vulnerable to injury [25].

The intestinal epithelial dysfunction of Kindlin-1-deficient mice

is characterized by flat and superficial ulcerations in the colon, as

the epithelium detaches from an intact BM. The defects begin in

the rectum and extend along the entire colon finally leading to a

severe pancolitis. The ulcerations and epithelial cell detachments

are restricted to the colon, although the ileum shows signs of a

secondary inflammation at later stages of the disease. In vitro

studies with primary IECs from Kindlin-12/2 mice and Kindlin-

1-depleted HT-29 cells showed that the cell detachment is caused

by impaired activation of integrins leading to weak adhesion of

IECs to the underlying BM. Mechanistically Kindlin-1 requires

direct binding to the b1 and b3 integrin cytoplasmic domains to

promote the activation of the two integrin subfamilies. These

biochemical and functional properties are conserved among the

three members of the Kindlin family. Kindlin-2-mediated binding

and activation of b1 and b3 integrins critically support the

attachment of endoderm and epiblast cells to the underlying BM

in peri-implantation embryos [18], while Kindlin-3 plays a central

role for the activation of platelet integrins [8]. The findings of this

report also demonstrate that Talin function crucially depends on

the activity of Kindlin-1. Depletion of Kindlin-2 (the only Kindlin

expressed in CHO cells) completely prevents overexpressed Talin

from activating integrins. Re-expression of either Kindlin in

Kindlin-2-depleted CHO cells, however, recovers the ability of

Talin to trigger the activation of integrins. It will be important to

next investigate how Kindlins become activated and why Kindlin-

2 is unable to take over the function of Kindlin-1 in Kindler

Syndrome and Kindlin-1-deficient mice.

Figure 7. Normal BM composition and integrin localization in P1 colon. (A) Electron micrograph at 120006 magnification shows
detachment of colonic IECs from the BM at P1. Arrows point to the BM. The boxed enlargement shows the BM, e: epithelium. Cryo-sections from the
colon of P1 Kindlin-1+/+ and Kindlin-12/2 mice stained for Collagen IV (Coll IV), Laminin-332 (LN332) and Perlecan. The staining of them shows a
normal distribution and localization in Kindlin-12/2 colon. Scale bar represents 10 mm. (B) b1 integrin staining of P1 colon. Arrows indicate the BM.
Scale bar represents 10 mm. (C) Western blot from IECs for b1 integrin. (D) b1 and av integrin FACS profile on primary IECs.
doi:10.1371/journal.pgen.1000289.g007
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The conclusion that the observed phenotype is triggered by IEC

detachment rather than by a primary inflammatory defect in

Kindlin-1 deficient mice is based on the observation that epithelial

cell detachment always occurred prior to immune cell infiltration.

We would therefore, argue that the detachment of IECs resembles

an intestinal wound, which secondarily triggers a strong wound

healing response leading to immune cell infiltrates and release of a

cytokine storm. In line with this hypothesis, epithelial cell

detachment and induction of inflammatory reactions can be

completely prevented when Kindlin-1 pups are delivered by

Caesarian section and subsequently incubated in a humidified and

temperature controlled chamber. Mechanical stress applied by the

colostrum is likely inducing the detachment of the weakly adhering

epithelial cells in the colon. The vast majority of mouse models

reported to develop colitis so far have an abnormal immune system

[12,26]. This fact as well as the identification of several susceptibility

loci in human patients [14,15] led to the conclusion that defects in

the immune system are of central importance for UC development.

Severe adhesion defects of IECs leading to a massive wound

response may represent an alternative etiology for UC development.

Although adhesion is severely compromised in the colon of

Kindlin-1-deficient mice, they are born without skin blisters. This

is in line with KS patients, who are also born without skin blisters

even when they are delivered by the vaginal route but develop

blisters postnatally at trauma prone sites. Interestingly, Kindlin-1

deficient mice did not show defective adhesion of basal

keratinocytes to the BM even after application of mechanical

stress. The different severity of the adhesion defect in skin and

Figure 8. Kindlin-1 association with b integrins is required for Talin-mediated integrin activation. (A) Kindlin-1 IECs display significantly
reduced 9EG7 binding (active b1 integrin). The 9EG7 binding was quantified by subtracting background (BG) values from mean fluorescence intensity
(MFI) values and normalized to total b1 integrin expression (n = 8 mice per genotype). Error bars show standard deviations. (B) Western blot from HT-
29 cells expressing a control siRNA or a siRNA directed against hKindlin-1 (siKind1) for Kindlin-1 and Kindlin-2. GAPDH was used to show equal
loading. (C) Adhesion assay of control and Kindlin-1-depleted HT-29 cells on the indicated substrates (n = 5). Shown are mean values, error bars show
standard errors of the mean. Coll IV, Collagen IV; FN, Fibronectin; LN332, Laminin-332; PLL, Poly-L lysine. (D) Kindlin-1 pull-down from IEC lysates using
GST-tagged cytoplasmic b integrin tails. (E) Direct interaction of Kindlin-1 with b1 integrin cytoplasmic tails. His-tagged Kindlin-1 C-terminus was co-
precipitated with GST-tagged b1 integrin cytoplasmic tails, but not with GST alone or an Y800A mutant form of b1 integrin. (F) Quantification of
aIIbb3 integrin activation, as measured by activation specific antibody PAC1 in CHO cells using flow cytometry (n = 9). Shown are mean values, error
bars show standard deviations. (G) Pull-down with GST-tagged cytoplasmic b3 integrin tail from CHO cells transiently transfected with the indicated
EGFP-constructs. (H) Western blot of CHO cells 24 hours after transfection with the indicated siRNAs. (siSCR: scrambled; siKind2_1 and siKind2_2:
Kindlin-2 specific siRNAs) (I) Quantification of aIIbb3 integrin activation in CHO cells transfected with the indicated cDNA constructs and/or siRNAs
(n = 8). Shown are mean values, error bars show standard deviations.
doi:10.1371/journal.pgen.1000289.g008
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colon could be reflected by the functional properties of the distinct

set of integrins expressed in the two organs and the absence of

classical hemidesmosomes in intestinal epithelial cells [27].

Another pronounced skin defect in Kindlin-1-deficient mice as

well as KS patients is skin atrophy, which seems to be due to

reduced proliferation of interfollicular keratinocytes. This finding

raises several questions; first, regarding the mechanism underlying

the molecular control of cell proliferation by Kindlin-1. The

mechanism is unknown and could result from a diminished cross

talk between integrin and growth factor signaling. Second, it is also

unclear how a molecular player that supports proliferation is

giving rise to cancer at a later stage. It is possible that the

localization of Kindlins in different cellular compartments, i.e. cell-

matrix adhesion sites, cell-cell adhesion sites and in certain

instances in the nucleus, equips them with different functions that

become evident at different time points in life.

Kindlin-1 and -2 are co-expressed in epidermal cells as well as

epithelial cells of the colon. Interestingly, we found that Kindlin-2

cannot compensate Kindlin-1 function in vivo, neither in the colon

nor in skin. Since Kindlin-2 normally localizes to cell-cell

adhesions in both cell types and does not translocate to integrin

adhesion sites in mutant intestinal and epidermal epithelial cells, it

is unable to compensate for the loss of Kindlin-1, although both

Kindlins are capable of performing the same tasks at the integrin

tails ex vivo and in vitro [27]. Hence, a therapeutic strategy to

reroute some of the Kindlin-2 from cell-cell to the integrin

adhesion sites may represent a promising approach to prevent

ulceration in KS patients with severe UC.

Materials and Methods

Mouse Strains
The Kindlin-12/2 mice were obtained by replacing the ATG-

containing exon 2 with a neomycin resistance cassette (detailed

information on the cloning of the targeting construct can be

obtained from Faessler@biochem.mpg.de). The construct was

electroporated into R1 embryonic stem (ES) cells (passage 15) and

homologous recombination was verified with southern blots.

Genomic DNA was digested with EcoRV, blotted and then

hybridized with a 59 probe or digested with BglII, blotted and

hybridized with a 39 probe (Figure 1A). Targeted ES cells were

injected into blastocysts and transferred into foster mice. Mice

were housed in a special pathogen free mouse facility. All animal

experiments have been approved by the local authorities.

Histology, Immunohistochemistry, and
Immunfluorescence Stainings

For H&E stainings intestinal segments were either PFA fixed

and embedded in paraffin, or frozen on dry-ice in cryo-matrix

(Thermo). Immunhistochemistry of paraffin embedded sections

was carried out as previously described [5]. Sections of 8 mm

thickness were prepared and stained following routine protocols.

Cryo sections were fixed in 4% PFA/PBS except for the Kindlin-1

staining where sections were fixed with 1:1 methanol/acetone at

220uC. Subsequently tissue sections were blocked with 3% BSA/

PBS, incubated with primary antibodies in a humidity chamber

over night at 4uC, with fluorescently labeled secondary antibodies

for 1 h at RT and finally mounted in Elvanol. Pictures were taken

with a Leica DMIRE2 confocal microscope with a 1006 or 636
NA 1.4 oil objective.

GST-Pull Downs
Recombinant GST-b1, b1Y788A, b1Y800A, b3, b3Y747A,

b3Y759A cytoplasmic tails were expressed and purified from E.coli

under non denaturing conditions. 5 mg of recombinant tails were

incubated with 500 mg IEC lysate (in 50 mM Tris pH 7.4,

150 mM NaCl, 1 mM EDTA, 1% Triton-X-100) overnight.

GST-constructs were precipitated with glutathione beads (Nova-

gen). Subsequent western blots were probed for Kindlin-1 and

GST.

Antibodies
A polyclonal peptide antibody against Kindlin-1 was raised

against the peptide YFKNKELEQGEPIEK as previously de-

scribed [5].

The following antibodies were used at the given concentration

indicated for western blot (W), immunoprecipitation (IP), immun-

fluorescence (IF), immunhistochemistry (IHC): Kindlin-1 (W:

1:5000, IF cells: 1:200, IF tissue: 1:1000), Kindlin-2 (W: 1:1000,

IF cells 1:200, IF tissue: 1:200), E-cadherin (Cdh1; Zymed, W:

1:5000), Migfilin (W: 1:5000, IF cells 1:100, IF tissue: 1:100),

GAPDH (Chemicon; W: 1:10000), phalloidin Tritc (Sigma; IF

cells: 1:800, IF tissue: 1:800), Mac-1 (EuroBioscience; IF tissue:

1:100), GR-1 (Ly6g; eBioscience; IF tissue: 1:100), Thy1.2

(PharMingen; IF tissue: 1:100), GST (Novagen; W: 1:10000),

His (CellSignaling; W: 1:1000), PAC1 (BD; FACS: 1:100), a6

integrin (Itga6; PharMingen; IF tissue: 1:100), CollagenIV (a gift

from Dr. Rupert Timpl; IF tissue: 1:100), Laminin-332 (a gift from

Dr. Monique Aumeilley; IF tissue: 1:200), Perlecan (Hspq2; a gift

from Dr. Rupert Timpl; IF tissue: 1:100), b1 integrin (Chemicon;

WB: 1:3000, IF tissue: 1:600), 9EG7 (PharMingen; FACS: 1:100),

EGFP (Abcam; WB: 1:10000), b1 integrin (PharMingen; FACS:

1:200), av integrin (PharMingen; FACS: 1:200). Keratin10 (Krt10;

Covance; IHC: 1:600 ), Keratin14 (Krt14; Covance; IHC: 1:600 ),

Loricrin (Lor; Covance; IHC: 1:500 ) Ki67 (Dianova; IHC: 1:50),

cCaspase3 (CellSignaling, IHC: 1:100).

Caesarean Section
Pregnant mice were sacrificed by cervical dislocation when

embryos were at E18.5–E19 of gestation. The uterus was removed

and cut open. Embryos were taken out and the umbilical cord was

cut. Mice were subsequently dried and kept in an incubator at

37uC and high humidity.

Real Time PCR
Total RNA from whole colons was extracted with a PureLink

Micro to Midi RNA extraction kit (Invitrogen) following the

manufacturers instructions. cDNA was prepared using the iScript

cDNA Synthesis Kit (Biorad). Real Time PCR using a Sybr Green

ready mix (Biorad) was performed in an iCycler (Biorad). Each

sample was measured in triplicates and values were normalized to

GAPDH. Following primers were used; TNFa fwd: AAAATTC-

GAGTGACAAGCCTGTAGC, TNFa rev: GTGGGTGAG-

GAGCACGTAG. IL-6 fwd: CTATACCACTTCACAAGTCG-

GAGG IL-6 rev: TGCACAACTCTTTTCTCATTTCC. RT-

PCR for Kindlin-1 and GAPDH was performed as previously

described [5].

Isolation of IECs
Neonatal mouse intestine was removed and flushed with 1 ml

PBS. The intestine was longitudinally cut open, rinsed with PBS

and incubated for 40 min. in IEC isolation buffer (130 mM NaCl,

10 mM EDTA, 10 mM Hepes pH 7.4, 10% FCS and 1 mM

DTT) at 37uC on a rotor. The epithelium was shaken off and

pelleted by centrifugation at 2000rpm for 5 min. For WB analysis

cells were washed once with PBS and subsequently lysed. For flow

cytometry cells were washed once with PBS and trypsinized with
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26 trypsin (GIBCO) for 10 min. at 37uC. Trypsin was inactivated

with DMEM containing 10%FCS. A single cell suspension was

prepared by passing cells through a cell strainer (BD).

Isolation of Keratinocytes
Primary keratinocytes were isolated from P3 mice as described

previously [28]. Cells were cultured on a mixture of ColI

(Cohesion) and 10 mg/ml FN (Invitrogen) coated plastic dishes

in keratinocyte growth medium containing 8% chelated FCS

(Invitrogen) and 45 mM Ca2+.

Flow Cytometry
IEC’s and keratinocytes were stained with 9EG7 antibody in

Tris buffered saline [29]. For the PAC1 binding assay CHO cells

were stained for 40 min. at RT as described previously [23]. Cells

were gated for viability by excluding propidium iodide-positive

cells. CHO cells transfected with EGFP-tagged constructs were

additionally gated for highly EGFP-positive cells. Measurements

were performed with a FACS Calibur (BD) and data evaluation

was done with FlowJo software.

Constructs
The EGFP-Kindlin-1 expression plasmid was previously

described [5]. The cDNA encoding His-Kindin-1 C-terminus (aa

471–677) was amplified by PCR and cloned into the pQE-70

vector (Qiagen). The Kindlin-1 PTB mutation QW611/612AA

was introduced with a site directed mutagenesis kit (Stratagene)

following the manufacturers recommendations. All EGFP con-

structs were cloned into the pEGFP-C1 vector (Clontech) and

subsequently sequenced. EGFP-Talin head was previously de-

scribed [8].

Cell Culture
CHO and HT-29 cells were maintained in DMEM containing

penicillin/streptomycin, non-essential amino-acids and 10% or

20% FCS, respectively (GIBCO). Cells were transfected with 2 mg

of each DNA in six well plates using Lipofectamine 2000 following

the manufacturers’ instructions (Invitrogen).

RNAi
To deplete Kindlin-1 constitutively from HT-29 cells, an

shDNA corresponding to the cDNA sequence GTAAGT

CCTGGTTTATACA of hKindlin-1 and a control cDNA with

the sequence AGCAGTGCATGTATGCTTC were cloned into

the pSuperRetro vector (OligoEngine). Viral particles were

prepared as described previously [30]. HT-29 cells were infected

and subsequently selected with 2mg/l puromycin. Transient

knockdown of Kindlin-2 from CHO cells was achieved by

transfection of the siRNAs; Kind2_1: GCCUCAAGCUCUU-

CUUGAUdTdT and Kind2_2: CUCUGGACGGGAUAAG-

GAUdTdT, and a control siRNA (purchased from Sigma) using

Lipofectamine 2000 (Invitrogen), following the manufacturers

instructions. Cells were harvested and assayed 24 hours after

transfection.

Adhesion Assay
The adhesion assays were performed as previously described

[29], using 40000 cells per well in serum free DMEM (HT-29) or

MEM (primary keratinocytes).

Osmolarity
Osmolarity was measured from 50 ml urine using an Osmomat

030 from Gonotec.

X-Gal Barrier Assay
Embryonic skin barrier formation was determined as previously

described [31].

Shear Stress Assay
Slides with a 1 mm diameter (ibidi BioDiagnostics) were coated

overnight with 5 mg/ml FN and then blocked with 1% BSA.

100.000 cells were seeded onto the slides and incubated for

2.5 hours in a cell culture incubator. Cells were subsequently

exposed to increasing amounts of shear force in two minute

intervals (as indicated in the Figure S11) and pictures were taken

every second.

Co-Immunoprecipitation
CHO cells were transiently transfected with the indicated EGFP

constructs. Approximately 1mg of protein lysate was immunopre-

cipitated using the mMACS Epitope Tag Protein Isolation Kit for

EGFP tags (Miltenyi Biotec) following the manufacturers instruc-

tions.

Electron Microscopy
Electron microscopy was performed as previously described

[29].

Statistical Analysis
Analyses were performed with GraphPad Prism. If not

mentioned otherwise in the figure legends, Gaussian distribution

of datasets was determined by a D’Agostino & Pearson omnibus

normality test. If samples were not Gaussian distributed a Mann-

Whitney test was performed. Gaussian distributed samples were

either compared with a one way ANOVA and a Tukey’s multiple

comparison post test or an unpaired two-tailed t-test.

Supporting Information

Figure S1 Normal triglyceride and glucose levels in the blood of

P3 Kindlin-12/2 mice. Triglyceride (n = 7 per genotype) and

glucose (n = 5 per genotype) levels from total blood at P3. The

differences are statistically insignificant. Shown are mean values,

error bars show standard deviations.

Found at: doi:10.1371/journal.pgen.1000289.s001 (0.5 MB TIF)

Figure S2 Normal kidney morphology in Kindlin-12/2 mice.

(A) Coomassie stained gel of 10 ml urine from P2 and P3 control

and Kindlin-12/2 mice. (B) Quantification of total protein in urine

from Kindlin-1+/+, Kindlin-1+/2 and Kindlin-12/2 mice at P1

(n = 14/7/6) and P3 (n = 20/20/9). Error bars show standard

deviation. (C) H&E staining of P3 Kindlin-1+/+ and Kindlin-12/2

kidneys. Kindlin-12/2 kidneys do not show altered glomeruli and

collecting duct morphology. Scale bar represents 200 mm.

Enlargements show glomeruli (A1, A3) and collecting ducts (A2,

A4). Scale bar represents 50 mm.

Found at: doi:10.1371/journal.pgen.1000289.s002 (8.6 MB TIF)

Figure S3 Normal BM composition and deposition in P3

Kindlin-12/2 backskin. P3 backskin of wild type and Kindlin-

12/2 mice was stained for the BM components Laminin-332

(LN332; red), Collagen IV (Coll IV; red) and Fibronectin (FN; red)

and co-stained with a6 or b4 integrin marking (green) the basal site

of basal keratinocytes. The stainings reveal no differences in BM

deposition and composition or a6 and or b4 integrin localization

between control and Kindlin-12/2 littermates. Scale bar indicates

30 mm.

Found at: doi:10.1371/journal.pgen.1000289.s003 (9.8 MB TIF)
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Figure S4 Normal skin differentiation. P3 backskin of control

and Kindlin-12/2 mice was stained for epidermal differentiation

markers Keratin14, Keratin10 and Loricrin (red) and co-stained

with a6 integrin (green) to mark basal keratinocytes. The stainings

show no difference in the differentiation pattern of Kindlin-12/2

keratinocytes. Scale bar indicates 10 mm.

Found at: doi:10.1371/journal.pgen.1000289.s004 (8.4 MB TIF)

Figure S5 Normal skin development. (A) Normal X-Gal staining

in E17 Kindlin-12/2 embryos indicating normal barrier formation

during development. Scale bar indicates 5 mm. (B) H&E staining

of back skin from control and Kindlin-12/2 littermates of different

age. In Kindlin-12/2 mice the epidermal (e) thickness at E18.5

and P0 is normal but clear epidermal atrophy is seen at P1. Scale

bar indicates 50 mm. (d): dermis.

Found at: doi:10.1371/journal.pgen.1000289.s005 (8.5 MB TIF)

Figure S6 Altered adhesion and spreading of Kindlin-12/2

keratinocytes. (A) Adhesion assay of control and Kindlin-12/2

keratinocytes on LN332, Laminin-332; Coll IV, Collagen IV; FN,

Fibronectin; PLL, Poly-L lysine (n = 3). Shown are mean values,

error bars show standard error of the mean. (B) Cell area

measured upon spreading on 5 mg/ml Fibronectin at the indicated

time-points using MetaMorph software (n = 30 cells per genotype

from 3 independent experiments). Shown are mean values, error

bars show standard deviation (*** p,0.0001).

Found at: doi:10.1371/journal.pgen.1000289.s006 (0.8 MB TIF)

Figure S7 Oral and oesophageal mucosa in Kindlin-12/2 mice.

Histology of the oral mucosa and the oesophagus of P3 Kindlin-

1+/+ and Kindlin-12/2 mice did not reveal an abnormal

morphology. Scale bar represents 50 mm.

Found at: doi:10.1371/journal.pgen.1000289.s007 (8.1 MB TIF)

Figure S8 Progressive epithelial loss in Kindlin-12/2 colons. (A)

Quantification of the extent of intact colonic epithelium at P1 and

P3 (n = 3 per genotype and age). Error bars show range. (B)

Overview of an H&E picture of a P3 control and Kindlin-12/2

colon. The Kindlin-12/2 colon shows a complete absence of

colonic epithelium (black arrowheads), while the epithelium in the

caecum is still present (white arrowheads). Scale bars show

500 mm. (C) Magnifications of the boxed areas shown in B.

Found at: doi:10.1371/journal.pgen.1000289.s008 (7.7 MB TIF)

Figure S9 Normal IEC proliferation but detachment induced

apoptosis . P1 colons from wild type and Kindlin-12/2 mice were

DAB stained for cleaved Caspase-3 to determine apoptosis and

Ki67 stained to show proliferating IECs. Apoptosis occurs in

detached epithelium of Kindlin-12/2 mice. In areas of still

adhering epithelium the number of proliferating IECs is similar

between wild type and Kindlin-12/2 mice. Scale bar indicates

50 mm.

Found at: doi:10.1371/journal.pgen.1000289.s009 (8.7 MB TIF)

Figure S10 b1 integrin activation in Kindlin-12/2 keratino-

cytes. (A) Immunofluorescence staining for b1 integrin (green) and

Laminin-332 (LN332; red) from P3 backskin shows normal

localization of b1 integrin in Kindlin-12/2 backskin. (B) FACS

quantification of b1 integrin expression of freshly isolated control

and Kindlin-12/2 keratinocytes at P2 shows unaltered b1 integrin

expression on basal keratinocytes. Error bars show range (n = 4)

(C) 9EG7 FACS quantification of these keratinocytes shows no

significant reduction in b1 integrin activation. Error bars show

range (n = 4).

Found at: doi:10.1371/journal.pgen.1000289.s010 (8.0 MB TIF)

Figure S11 Shear induced detachment of Kindlin-1 depleted

HT-29 cells. Control and Kindlin-1 depleted HT-29 (siKind1)

cells were plated on Fibronectin-coated flow chamber slides and

exposed to increasing shear forces as indicated in the figure.

Control cells did not detach from the matrix while Kindlin-1

depleted cells were unable to resist low or high shear forces

(compare lane 1 (0dyn/cm2) with lane 2 (0,5dyn/cm2). Scale bar

indicates 50 mm.

Found at: doi:10.1371/journal.pgen.1000289.s011 (9.0 MB TIF)
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Figure S1 

 

Normal triglyceride and glucose levels in the blood of P3 Kindlin-1−/− mice. Triglyceride (n = 7 

per genotype) and glucose (n = 5 per genotype) levels from total blood at P3. The differences are 

statistically insignificant. Shown are mean values, error bars show standard deviations. 

 

  



Figure S2 

 

Normal kidney morphology in Kindlin-1−/− mice. (A) Coomassie stained gel of 10 µl urine from P2 and P3 

control and Kindlin-1−/− mice. (B) Quantification of total protein in urine from Kindlin-1+/+, Kindlin-1+/− 

and Kindlin-1−/− mce at P1 (n = 14/7/6) and P3 (n = 20/20/9). Error bars show standard deviation. (C) H&E 

staining of P3 Kindlin-1+/+ and Kindlin-1−/− kidneys. Kindlin-1−/− kidneys do not show altered glomeruli and 

collecting duct morphology. Scale bar represents 200 µm. Enlargements show glomeruli (A1, A3) and 

collecting ducts (A2, A4). Scale bar represents 50 µm. 

  



 

Figure S3 

 

Normal BM composition and deposition in P3 Kindlin-1−/− backskin. P3 backskin of wild type and Kindlin-

1−/− mice was stained for the BM components Laminin-332 (LN332; red), Collagen IV (Coll IV; red) and 

Fibronectin (FN; red) and co-stained with α6 or β4 integrin marking (green) the basal site of basal 

keratinocytes. The stainings reveal no differences in BM deposition and composition or α6 and or β4 

integrin localization between control and Kindlin-1−/− littermates. Scale bar indicates 30 µm. 

  



Figure S4 

 

Normal skin differentiation. P3 backskin of control and Kindlin-1−/− mice was stained for epidermal 

differentiation markers Keratin14, Keratin10 and Loricrin (red) and co-stained with α6 integrin (green) to 

mark basal keratinocytes. The stainings show no difference in the differentiation pattern of Kindlin-1−/− 

keratinocytes. Scale bar indicates 10 µm. 

  



Figure S5 

 
 

Normal skin development. (A) Normal X-Gal staining in E17 Kindlin-1−/− embryos indicating normal 

barrier formation during development. Scale bar indicates 5 mm. (B) H&E staining of back skin from 

control and Kindlin-1−/− littermates of different age. In Kindlin-1−/− mice the epidermal (e) thickness at 

E18.5 and P0 is normal but clear epidermal atrophy is seen at P1. Scale bar indicates 50 µm. (d): dermis. 

  



Figure S6 

 

Altered adhesion and spreading of Kindlin-1−/− keratinocytes. (A) Adhesion assay of control and Kindlin-

1−/− keratinocytes on LN332, Laminin-332; Coll IV, Collagen IV; FN, Fibronectin; PLL, Poly-L lysine (n = 3). 

Shown are mean values, error bars show standard error of the mean. (B) Cell area measured upon 

spreading on 5 µg/ml Fibronectin at the indicated time-points using MetaMorph software (n = 30 cells 

per genotype from 3 independent experiments). Shown are mean values, error bars show standard 

deviation (*** p<0.0001). 

  



Figure S7 

 

Oral and oesophageal mucosa in Kindlin-1−/− mice. Histology of the oral mucosa and the oesophagus of 

P3 Kindlin-1+/+ and Kindlin-1−/− mice did not reveal an abnormal morphology. Scale bar represents 50 µm. 

  



Figure S8 

 

Progressive epithelial loss in Kindlin-1−/− colons. (A) Quantification of the extent of intact colonic 

epithelium at P1 and P3 (n = 3 per genotype and age). Error bars show range. (B) Overview of an H&E 

picture of a P3 control and Kindlin-1−/− colon. The Kindlin-1−/− colon shows a complete absence of colonic 

epithelium (black arrowheads), while the epithelium in the caecum is still present (white arrowheads). 

Scale bars show 500 µm. (C) Magnifications of the boxed areas shown in B. 

  



Figure S9 

 

Normal IEC proliferation but detachment induced apoptosis . P1 colons from wild type and Kindlin-1−/− 

mice were DAB stained for cleaved Caspase-3 to determine apoptosis and Ki67 stained to show 

proliferating IECs. Apoptosis occurs in detached epithelium of Kindlin-1−/− mice. In areas of still adhering 

epithelium the number of proliferating IECs is similar between wild type and Kindlin-1−/− mice. Scale bar 

indicates 50 µm. 

  



Figure S10 

 

β1 integrin activation in Kindlin-1−/− keratinocytes. (A) Immunofluorescence staining for β1 integrin 

(green) and Laminin-332 (LN332; red) from P3 backskin shows normal localization of β1 integrin in 

Kindlin-1−/− backskin. (B) FACS quantification of β1 integrin expression of freshly isolated control and 

Kindlin-1−/− keratinocytes at P2 shows unaltered β1 integrin expression on basal keratinocytes. Error bars 

show range (n = 4) (C) 9EG7 FACS quantification of these keratinocytes shows no significant reduction in 

β1 integrin activation. Error bars show range (n = 4). 

  



Figure S11 

 

Shear induced detachment of Kindlin-1 depleted HT-29 cells. Control and Kindlin-1 depleted HT-29 

(siKind1) cells were plated on Fibronectin-coated flow chamber slides and exposed to increasing shear 

forces as indicated in the figure. Control cells did not detach from the matrix while Kindlin-1 depleted 

cells were unable to resist low or high shear forces (compare lane 1 (0dyn/cm2) with lane 2 

(0,5dyn/cm2). Scale bar indicates 50 µm. 
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Kindler syndrome (KS) is an autosomal-recessive disease caused by 
loss-of-function mutations in the FERMT-1 gene, which encodes 
Kindlin-1. The skin is the principal affected organ in individuals with 
KS and displays trauma-induced blisters, photosensitivity, pigmenta-
tion defects and increased risk for malignancies1,2.

The Kindlins belong to a family of evolutionary conserved proteins,  
which are found primarily at cell-matrix adhesion sites, where they 
bind the cytoplasmic tail of β subunit–containing integrins and 
increase integrin affinity for ligands (also called integrin activation)3–5.  
In addition, they are also present at cell-cell adhesion sites, in the 
cytoplasm and in the nucleus, where their functions are unknown6,7. 
Epidermal and hair follicle (HF) keratinocytes express Kindlin-1 
and Kindlin-2. However, despite their striking sequence similarity, 
Kindlin-1 and Kindlin-2 cannot compensate for each other, indicating 
that they have specialized functions3,8.

Epidermal keratinocytes express several integrins, most notably 
members of the β1 subunit–containing subfamily9. Keratinocytes of the 
HF bulge express high levels of β1 and αvβ6 integrin10. The HF bulge 
harbors dormant stem cells (SCs) that periodically become activated 
to sustain the hair cycle11,12. The alternation of bulge SC activation 
and dormancy is regulated by a tight interplay of antagonistic signal-
ing pathways. SC dormancy is achieved by bone morphogenic protein 
(BMP) and TGF-β signaling, whereas SC activation is elicited by shut-
ting down BMP and TGF-β signaling and activating canonical Wnt–
β-catenin signaling. Perturbations of these cell growth–regulating  
signaling pathways or of integrin signaling can profoundly alter 
SC homeostasis and tumor incidence13–16. It has been shown, for 

example, that increased integrin expression or activity is associated 
with an increased risk for squamous cell carcinoma16–18. Conversely, 
loss of β1 subunit–containing integrin expression in skin (M. Sibilia, 
Medical University of Vienna, Austria, personal communication) or 
other tissues such as the mammary gland markedly reduces tumor 
susceptibility19. Moreover, it has been shown recently that Kindlin-2 
can stabilize β-catenin and induce Wnt signaling in certain tumor cell 
lines20. It is therefore enigmatic why patients with KS suffer from an 
increased tumor risk2,21,22 despite Kindlin-1 loss and compromised 
integrin functions in their keratinocytes3,23,24. This discrepancy sug-
gests that Kindlin-1 harbors potent tumor-suppressor function(s) in 
keratinocytes that operate independently of the abundant and onco-
genic β1-class integrins. In this study we identified oncogenic signal-
ing pathways that are tightly controlled by Kindlin-1.

RESULTS
Kindlin-1 loss in epidermis and HFs leads to KS-like defects
To circumvent the lethal ulcerative colitis of a constitutive Fermt-1 
gene ablation3, we efficiently deleted the Fermt-1 gene in keratino-
cytes by breeding mice with floxed Fermt-1 with Keratin-5 (K5)-
Cre transgenic mice25 (resulting in Kind1-K5 mice; Fig. 1a–c and 
Supplementary Fig. 1a–c). Kindlin-1 loss persisted and did not 
affect Kindlin-2 expression in these mice (Supplementary Fig. 1b). 
Heterozygous Kind1-K5 mice or mice with homozygous floxed Fermt-1  
used as control strains had no apparent phenotype. Homozygous 
Kind1-K5 mice were born within the expected Mendelian ratio, were 
fertile and gained weight normally (Supplementary Fig. 1d).

1Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany. 2Department of Dermatology, King Edward VII Hospital, Windsor, 
UK. 3St. John’s Institute of Dermatology, King’s College London (Guy’s Campus), London, UK. 4New York University, Langone School of Medicine, New York,  
New York, USA. Correspondence should be addressed to R.F. (faessler@biochem.mpg.de).

Received 14 November 2013; accepted 3 February 2014; published online 30 March 2014; doi:10.1038/nm.3490

Kindlin-1 controls Wnt and TGF-β availability to  
regulate cutaneous stem cell proliferation
Emanuel Rognoni1, Moritz Widmaier1, Madis Jakobson1, Raphael Ruppert1, Siegfried Ussar1,  
Despoina Katsougkri1, Ralph T Böttcher1, Joey E Lai-Cheong2,3, Daniel B Rifkin4, John A McGrath3 &  
Reinhard Fässler1

Kindlin-1 is an integrin tail binding protein that controls integrin activation. Mutations in the FERMT-1 gene, which encodes for 
Kindlin-1, lead to Kindler syndrome in man, which is characterized by skin blistering, premature skin aging and skin cancer of 
unknown etiology. Here we show that loss of Kindlin-1 in mouse keratinocytes recapitulates Kindler syndrome and also produces 
enlarged and hyperactive stem cell compartments, which lead to hyperthickened epidermis, ectopic hair follicle development 
and increased skin tumor susceptibility. Mechanistically, Kindlin-1 controls keratinocyte adhesion through b1-class integrins 
and proliferation and differentiation of cutaneous epithelial stem cells by promoting avb6 integrin–mediated transforming 
growth factor-b (TGF-b) activation and inhibiting Wnt–b-catenin signaling through integrin-independent regulation of Wnt ligand 
expression. Our findings assign Kindlin-1 the previously unknown and essential task of controlling cutaneous epithelial stem cell 
homeostasis by balancing TGF-b–mediated growth-inhibitory signals and Wnt–b-catenin–mediated growth-promoting signals.
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The first histologic phenotype emerged at around postnatal day 
(P) 21 in the back skin of Kind1-K5 mice, with basement membrane 
splitting, small blisters at the dermal-epidermal junction and aberrant 
accumulation of F-actin and cell-cell adhesion proteins at the basal 
side of basal keratinocytes (Fig. 1d,e and Supplementary Fig. 1e). We 
also observed the same defects in mice expressing Kindlin binding–
deficient β1 subunits in keratinocytes (Fig. 1a) due to substitutions 
of T788 and T789 to alanine in the β1 subunit cytoplasmic domain 
(TTAA-K5 mice)26, indicating that they are caused by malfunction-
ing β1-class integrins (Fig. 1f). The blisters and basement membrane 
defects triggered a regenerative response with granulocyte, monocyte 
and T cell infiltrates in the dermis of the back skin of Kind1-K5 and 
TTAA-K5 mice (Supplementary Fig. 1f–h).

At P60, Kind1-K5 mice showed progressive melanin deposits, first in 
the tail and then in the entire back skin (Fig. 1g,h and Supplementary 
Fig. 1i), resembling poikiloderma in KS. At around 3 months of age, 
Kind1-K5 mice developed an irregular hair coat with small patches 
of densely clustered hair (Fig. 1b) that increased in size with age and 
appeared as meanders on the shaved back skin (Fig. 1c). At 6–8 months 
of age, Kind1-K5 mice began to lose hair, and patches with dense hair and 
alopecia alternated on their hair coat (Supplementary Fig. 1j). TTAA-K5 
mice developed neither pigmentation defects nor densely packed hairs 
(Fig. 1b,c,e). Kind1-K5 mice also developed areas of atrophy next to 
areas of hyperkeratosis in the tail and back skin, whereas TTAA-K5 mice 
displayed hyperkeratotic areas only (Fig. 1e and Supplementary Fig. 2a).  
Although the number of Ki67-positive cells was higher in the epider-
mis of Kind1-K5 and TTAA-K5 mice compared to control littermates 
(Supplementary Fig. 2b–d), keratinocyte differentiation and apoptosis 
were unaffected in both mouse strains (Supplementary Fig. 2e–i).

These results show that Kindlin-1 deletion in the mouse epidermis 
recapitulates human KS and additionally induces an aberrant hair 
coat, which does not develop in TTAA-K5 mice, indicating that the 
aberrant hair coat is caused by Kindlin-1–specific and β1 class– and 
inflammation-independent mechanisms.

Kindlin-1 loss disturbs the hair cycle and induces ectopic HFs
Back skin histology of 6-month-old Kind1-K5 mice revealed two dif-
ferent HF abnormalities: (i) areas with isolated and densely packed 
HFs (Fig. 1g) separated by 1–15 interfollicullar epithelium (IFE) cells 
compared to the 37 ± 10 (mean ± s.d., n = 4 mice per genotype) IFE 
cells observed between control HFs, and (ii) HFs with multiple hair 
shafts and bulges that clustered together and contained hair strands 
exiting the skin through a single hair canal (Fig. 1h).

A detailed hair cycle analysis revealed that HF morphogenesis and 
the first hair cycle proceeded normally in the skin of Kind1-K5 mice 
(Supplementary Fig. 3a). At P50, HFs from control and Kind1-K5 mice 
entered telogen (resting phase of the hair cycle). Whereas HFs from con-
trol mice remained in a long telogen until P80 before a new hair cycle was 
initiated (Supplementary Fig. 3a), HFs from Kind1-K5 mice immediately 
re-entered anagen (growth phase of the hair cycle) (Fig. 2a–c), which was 
visible by the formation of a hair germ and the expression of the transcrip-
tion factor CCAAT displacement protein (CDP)27. We never observed pre-
mature anagen induction in TTAA-K5 mice (Supplementary Fig. 3b).

Whole-mount staining of the tail epidermis at P80 showed HFs 
from control mice with prominent sebaceous glands, normal-sized 
Keratin-15 (Krt-15)-positive bulges and small hair germs with few 
CDP+ cells (Fig. 2d). The tail skin of Kind1-K5 mice contained small 
ectopic HFs originating from pre-existing HFs and the IFE (Fig. 2d,e). 
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Ectopic HF- and IFE-derived HFs were also 
present in the back skin of Kind1-K5 mice 
and expressed the dermal papilla marker alka-
line phosphatase (Supplementary Fig. 3c,d).  
Of note, whereas HF numbers increased after 
P50 in the back skin of Kind1-K5 mice, their 
number began declining after 1 year of age 
(Supplementary Fig. 3i).

These findings show that Kindlin-1 defi-
ciency leads to a premature onset of anagen, the formation of ectopic 
HFs in the IFE and from pre-existing HFs and a decline in HF numbers  
at old age.

Kindlin-1 regulates cutaneous epithelial SC homeostasis
The ectopic HFs in Kind1-K5 mice pointed to a perturbed SC home-
ostasis. The epidermis contains different SC populations that reside 
in different niches11. Whereas bulge SCs express CD34, Krt-15,  
nephronectin (Npnt)28 and high levels of α6 integrin (Fig. 3a), reliable 
mouse IFE SC markers are still missing11,29. Immunostaining revealed 
higher numbers of CD34+ bulge cells in back skin (Supplementary 
Fig. 3e) and enlarged Krt-15+ bulges in tail whole mounts of  
Kind1-K5 mice at P80 compared to controls (Fig. 3b and 
Supplementary Fig. 3f). Krt-15+ cells were also present in the 
infundibulum and IFE of Kind1-K5 mice (Fig. 3b) but were not 
present in control mice. Npnt expression expanded into the seba-
ceous gland, the infundibulum and the outer root sheath (Fig. 3b,c),  
and Npnt mRNA levels were higher in FACS-sorted bulge and 
infundibulum–junctional zone cells of Kind1-K5 mice compared to 
controls (Supplementary Fig. 3h). Also, the leucine-rich repeats and 
immunoglobulin-like domains 1 (Lrig1)-positive SC population of the 
infundibulum–junctional zone30 extended toward the infundibulum 
and lower hair shaft of back and tail skin HFs of Kind1-K5 mice  
(Fig. 3d and Supplementary Fig. 3g).

Despite normal hair cycles and hair counts until P50 (Supplementary 
Fig. 3a,i), FACS quantifications of keratinocytes from mouse skin 
at P40 revealed significantly more SCs in the bulge, upper isthmus 
and infundibulum–junctional zone of Kind1-K5 mice compared to 
controls (Fig. 3e,f). A time-course analysis showed that the expan-
sion of the SC compartments was already visible at P21, peaked at 
P50–P80 and then began declining to become markedly smaller in 
12-month-old Kind1-K5 mice (Fig. 3g and Supplementary Table 1).  

In line with normal hair coat development, SC subpopulations 
were unaffected in TTAA-K5 mice, at least until 1 year of age 
(Supplementary Fig. 3j).

To test whether elevated proliferation caused the enlarged bulges, 
we performed BrdU label-retaining cell (LRC) assays. After 10 days of 
chase, significantly more bulge cells were BrdU+ in tail whole mounts 
of Kind1-K5 mice compared to controls, whereas after 32 days,  
70 days and 5.5 months, significantly fewer bulge cells were BrdU+ in 
Kind1-K5 mice (Fig. 3h,i).

These findings demonstrate that Kindlin-1 deficiency elevates cuta-
neous epithelial SC proliferation, numbers and compartments in a β1 
class–independent manner.

Kindlin-1 triggers avb6 integrin–mediated TGF-b release in skin
To determine whether Kindlin-1 loss alters integrin surface levels,  
we analyzed integrin profiles on primary keratinocytes using FACS. 
The levels of β1 and β4 integrin subunits were slightly lower and the 
levels of β5 and β8 integrin subunits were slightly higher in cells from 
Kind1-K5 mice compared to controls. Detection of β3 integrin subunits 
was not evident in either genotype. We also noted clearly elevated β6 
subunit levels in Kindlin-1–deficient keratinocytes (Fig. 4a), as were 
Itgb6 (encoding the β6 integrin subunit) mRNA levels in FACS-sorted 
cutaneous SCs (Supplementary Fig. 4a). Immunostaining showed β6 
subunit expression extending from the bulge and outer root sheath to 
the infundibulum and IFE of Kind1-K5 mice (Fig. 4b).

Next we investigated β6 subunit–dependent cell spreading and focal 
adhesion formation. Although keratinocytes from Kind1-K5 mice 
spread normally on fibronectin, they displayed severely impaired 
adhesion, spreading, clustering of paxillin in focal adhesion-like 
structures and assembly of F-actin stress fibers when plated on sur-
faces coated with αvβ6-specific antibodies or αv-specific peptidomi-
metic cyclic RGD (cRGD) (Fig. 4c,d and Supplementary Fig. 4b,c),  
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Figure 2  Premature anagen induction and 
ectopic HF development in skin from Kind1-K5 
mice. (a) H&E-stained back skin sections of 
P56 mice. (b) Immunostaining of HFs from P56 
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note, there is ectopic HF growth in the IFE of 
Kind1-K5 mice. (e) Ectopic HF outgrowth from 
a pre-existing HF of tail whole mount skin in a 
6-month-old Kind1-K5 mouse stained for CDP 
(green) and DAPI (blue). Scale bars, 50 µm (a,b); 
100 µm (d,e). Bu, bulge; SG, sebaceous  
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indicating that αvβ6 integrins in keratinocytes from Kind1-K5 mice 
are nonfunctional. We confirmed the αvβ6 specificity of these defects 
by treating keratinocytes from control mice with the β6-blocking anti-
body 10D5, which phenocopied the spreading defects of Kindlin-1– 
deficient cells on cRGD surfaces (Supplementary Fig. 4d).

Active αvβ6 integrins can release TGF-β from the latency asso-
ciated protein (LAP)31, which in turn suppresses the proliferation 
of bulge SCs10,12,32,33. We tested αvβ6-dependent TGF-β release by 
seeding keratinocytes together with transformed mink lung epithelial 
cells (tMLECs), which are able to report TGF-β–induced luciferase 
on a latent TGF-β binding protein-1 (LTBP-1)–LAP–TGF-β1–rich 
matrix34 (Fig. 4e). Keratinocytes from control mice efficiently 
induced the luciferase reporter, which could be inhibited with the 
αvβ6 blocking antibody 10D5 or the TGF-β neutralizing antibody 
1D11. In sharp contrast, keratinocytes from Kind1-K5 mice were 

unable to release TGF-β, confirming that their αvβ6 integrins are 
nonfunctional (Fig. 4e). In line with this in vitro result, TGF-β signal-
ing was also severely impaired in bulge cells of Kind1-K5 mice in vivo, 
in which phosphorylated Smad2 and Smad3 (pSmad2/3) was detect-
able neither before nor after premature anagen induction (Fig. 4f and 
Supplementary Fig. 4g). Signaling by BMP through phosphorylation 
of Smad1, Smad5 and Smad8 (pSmad1/5/8), which also suppresses 
bulge cell proliferation35,36, was unaffected (Supplementary Fig. 4h). 
Treatment of Kindlin-1–deficient keratinocytes with soluble TGF-β1 
induced robust Smad2 phosphorylation and reduced cell prolifera-
tion (Supplementary Fig. 4e,f), indicating that TGF-β1 signals are 
efficiently transduced. The severe dysfunction of αvβ6 integrins was 
not compensated by Kindlin-2 because of the inability of Kindlin-2 
to bind β6 tails (Fig. 4g). Most notably, subjects with KS showed a 
similar TGF-β defect as Kind1-K5 mice, with elevated expression 
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of β6 subunits and reduced nuclear pSmad2/3 in large areas of basal 
epidermal keratinocytes (Fig. 4h,i), whereas pSmad1/5/8 was unaf-
fected (Supplementary Fig. 4i).

These findings indicate that Kindlin-1 is essential for β6 subunit–
containing integrin–mediated cell adhesion, cell spreading and TGF-β 
release required for SC quiescence.

Kindlin-1 curbs Wnt–b-catenin signaling in skin
Premature anagen induction, ectopic HF development and expan-
sion of SC compartments also develop in mice with elevated Wnt–β- 
catenin signaling in keratinocytes37–40, and reduced HF spacing and 
aberrant hair orientation occur in mice overexpressing the β-catenin 
cofactor Lef1 (ref. 41) or mice with increased Notch signaling42. In the 
skin of control mice, β-catenin levels were high at cell-cell junctions, 
low in the nucleus and absent at the basal side of basal keratinocytes. 
In contrast, in the epidermis of Kind1-K5 mice, β-catenin also accu-
mulated at basal sides of basal keratinocytes, in the nuclei of a large 
number of IFE cells and in catagen HFs (Fig. 5a and Supplementary 
Fig. 5d). Furthermore, Kind1-K5 mice showed β-catenin  
in the nuclei of developing hair germs during premature anagen 

induction (Supplementary Fig. 5a,b) and extended Lef1 expression 
from the normal site in hair germs to the bulge and IFE at all stages 
analyzed (Fig. 5a and Supplementary Fig. 5a,c,d). Notably, at P50, 
shortly before bulges from Kind1-K5 mice induced premature anagen, 
they showed high nuclear Lef1 levels, indicating a premature onset of 
Wnt signaling. In control mice, Lef1 was absent in telogen bulges and 
became highly expressed in the nuclei of hair germ cells and weakly 
expressed in the cytoplasm of IFE cells (Fig. 5a and Supplementary 
Fig. 5a). The numbers of nuclear Notch effector Notch intracellular 
domain (NICD)-containing cells and NICD-induced Hes1 mRNA 
levels were unaltered in hair germs and the pericortex, but both were 
higher in the IFE of Kind1-K5 mice compared to controls at all time 
points analyzed (Fig. 5b and Supplementary Fig. 5e–g).

Next we determined Wnt–β-catenin signaling by intercrossing 
Kind1-K5 and control mice with TOPgal reporter mice, which express 
β-galactosidase under a TCF-Lef–controlled minimal c-Fos promo-
tor43. In HFs from control mice, TOPgal activities were high in the 
pericortex during anagen, low during catagen and lost in telogen, 
with some residual activity in club hairs. In Kind1-K5 mice, the high 
TOPgal activity in the pericortex and bulb of anagen HFs persisted 
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throughout catagen, decreased in telogen (Fig. 5c and Supplementary 
Fig. 5i) and was strongly re-induced in the following anagen stage 
(Supplementary Fig. 5h). Furthermore, we observed a patch-like dis-
tribution of TOPgal in the IFE of Kind1-K5 mice, which was absent in 
controls (Fig. 5c). Notably, the IFE of humans with KS showed simi-
lar abnormalities in β-catenin–LEF1 expression, with weak nuclear  
β-catenin expression in the basal cell layer and a patch-like distribution  

of nuclear LEF1, whereas normal human skin contained β-catenin 
exclusively in cell-cell contacts and LEF1 in the cytoplasm (Fig. 5d 
and Supplementary Fig. 5j).

These findings demonstrate that loss of Kindlin-1 induces nuclear 
translocation of β-catenin–Lef1 in KS and mouse skin, leading to 
elevated Wnt–β-catenin signaling and premature anagen onset of HFs 
in Kind1-K5 mice.
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Kindlin-1 regulates Wnt ligand expression
To find an explanation for the increased Wnt–β-catenin signaling in 
the absence of Kindlin-1, we compared the skin transcriptome between 
healthy individuals and subjects with KS using microarray analyses. 
As we expected, FERMT-1 expression was absent in skin from subjects 
with KS, and the levels of mRNAs encoding inflammatory proteins were 
high (Fig. 5e; the complete list is given in Supplementary Table 2).  
Unexpectedly, the levels of several Wnt signaling components, most 
notably WNT5A, were high in individuals with KS compared to 
healthy individuals (Fig. 5e). Immunostaining confirmed the aber-
rant expression of WNT5A in basal keratinocytes of individuals with 
KS (Fig. 5f). Quantitative PCR (qPCR) and in situ hybridization of 
tail whole mounts from Kind1-K5 mice corroborated high Wnt5a 
mRNA levels in hair bulbs, ectopic HFs and patches of the IFE, which 
overlapped with high TOPgal activities (Fig. 5g and Supplementary  
Fig. 6a–c). qPCR of all known Wnt ligands and receptors revealed that 
the levels of several canonical (Wnt1, Wnt2b, Wnt3a and Wnt9b) and 
noncanonical (Wnt6 and Wnt2) Wnts were also significantly higher in 
keratinocytes from Kind1-K5 mice compared to controls, whereas the 
levels of Wnt4, Wnt7a, Wnt9a, Wnt10a and Wnt16 were significantly 
lower (Fig. 5g and Supplementary Table 3). The expression of several 
Frizzled (Fzd) receptors was higher in Kind1-K5 mice compared to 
controls, most notably Fzd4 and Fzd5 and to a lesser extent the Fzd 
co-receptor Lrp6. We also performed qPCR of FACS-sorted bulge cells 
and in situ hybridization of tail whole mounts from Kind1-K5 mice 
and confirmed the high Fzd4 mRNA levels and patch-like expression 
of Fzd4 in the IFE (Supplementary Fig. 6d,e).

Transfection of Kindlin-1–deficient keratinocytes with 
SuperTOPFlash reporter revealed that the elevated Wnt signaling 
was cell autonomous (Fig. 5h,i) and that Lef1 was limiting the extent 
of Wnt signaling (Supplementary Fig. 6f). Overexpression of Wnt4, 
which triggers translocation of β-catenin to cell-cell junctions, thereby 
preventing nuclear accumulation of β-catenin and Wnt–β-catenin sig-
naling44, decreased SuperTOPFlash activity in Kindlin-1–deficient  
keratinocytes compared to GFP-transfected controls (Fig. 5h).  
Overexpression of Wnt5a, which together with Lrp5 and Fzd4 effi-
ciently activates the canonical Wnt–β-catenin signaling pathway45, 
further increased the activity of the SuperTOPFlash reporter in 
Kindlin-1–deficient cells but not in control cells in which Fzd4 expres-
sion was low (Fig. 5h and Supplementary Fig. 6d,e).

Re-expression of similar quantities of Kindlin-1–GFP or the 
integrin binding–deficient Kindlin-1Q611A,W612A–GFP but not 
Kindlin-2 attenuated the increased SuperTOPFlash activities and 

levels of Wnt4 and Wnt5a in Kindlin-1–deficient keratinocytes 
(Fig. 5i and Supplementary Fig. 6g–j), indicating that inhibition of 
Wnt–β-catenin signaling is Kindlin-1 specific and does not require 
integrin binding. To exclude a role for nuclear Kindlin-1, we expressed 
Kindlin-1–GFP fused to two SV40 nuclear localization signals (NLSs) 
in Kind1-null cells. Although most of the protein localized to the 
nucleus, the elevated SuperTOPFlash activity was only partially res-
cued (Fig. 5i), probably because of Kind1-NLS-GFP spillovers into 
the cytoplasm (Supplementary Fig. 6j).

To corroborate that elevated Wnt protein secretion and high 
Wnt–β-catenin signaling underlie premature HF anagen induction 
in Kind1-K5 mice, we treated them at P49, shortly before telogen 
onset (Fig. 5j and Supplementary Fig. 7a), with IWP-2, which 
blocks Wnt protein secretion by inhibiting porcupine-mediated 
palmitylation of Wnts46, or with IWR-1, which inhibits tankyrases, 
thereby stabilizing the β-catenin destruction complex46,47. Both com-
pounds efficiently blocked premature anagen induction in Kind1-K5 
mice and decreased SuperTOPFlash activities in vitro (Fig. 5j and 
Supplementary Fig. 7a,b). In line with previous reports42, inhibition 
of Wnt signaling also reduced aberrant Notch activities in Kind1-K5 
keratinocytes in vitro and in vivo, which in turn normalized Wnt4 
levels48 (Supplementary Fig. 7c–g).

Together these findings demonstrate that Kindlin-1 inhibits Wnt–
β-catenin signaling by regulating the transcription of Wnt ligands and 
receptors in a cell-autonomous and integrin-independent manner.

Loss of Kindlin-1 increases skin tumor susceptibility
The low TGF-β levels and augmented Wnt signaling in humans 
with KS and Kind1-K5 mice are oncogenic threats49,50. To test this 
hypothesis, we used the two-stage carcinogenesis protocol and treated 
mice with 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O- 
tetradecanoylphorbol-13-acetate (TPA) for 25 weeks. Kind1-K5 
mice developed tumors earlier and had more tumors than control 
mice (Fig. 6a–c). Of note, tumor sizes were similar between Kind1-
K5 and control mice (Fig. 6d), which could be due to different skin 
lesion subtypes. Indeed, histology of the tumor lesions revealed 
that hyperkeratotic and exophytic papillomas dominated in control 
mice, whereas HF-derived trichofolliculoma-like lesions, sebaceous 
papillomas, mixed papillomas and basal cell carcinoma–like lesions 
dominated in Kind1-K5 mice (Fig. 6e and Supplementary Fig. 8a). 
In line with uncurbed Wnt signaling, we observed more cells with 
nuclear β-catenin and Lef1 expression in tumors from Kind1-K5 mice 
(Supplementary Fig. 8b–d).

Figure 5  Kindlin-1 controls Wnt–β-catenin signaling. (a) Immunofluorescence staining for β-catenin (green) in HFs (P44) (left) and the IFE (P55) 
(middle) and for Lef1 and CD34 (red) in HFs and the IFE (4 months) (right) from control and Kind1-K5 mice. Arrowheads indicate aberrant β-catenin 
(left) or Lef1 (right) localization. (b) IFE immunofluorescence staining for NICD (green) from P44 control and Kind1-K5 mice. (c) TOPgal reporter 
activity in tail HFs (left) and the IFE (right) from 3-month-old control and Kind1-K5 mice. Arrowheads indicate HFs with abnormal TOPgal activity. 
β-gal, β-galactosidase. (d) Immunofluorescence staining of human skin from control individuals and individuals with KS for β-catenin (left) and LEF1 
(right). (e) Skin gene expression profile of NHS (n = 3) and KS (n = 3) assessed with microarray and shown as a volcano plot. Genes with at least twofold 
change in KS were plotted according to the log2 fold change (x axis) and the log10 P value (y axis), unpaired two-tailed t test. (f) Immunofluorescence 
staining for WNT5A (green) in the skin of control individuals and individuals with KS. (g) Volcano plot of the qPCR-determined gene expression profile 
of keratinocytes from control and Kind1-K5 mice. Mean expressions relative to Gapdh of Wnt ligands (circle, red) and receptors (triangle, green) were 
plotted according to the log2 fold change (x axis) and log10 P value (y axis) (n = 3 biological replicates per genotype; the ± s.e.m. values are listed 
in Supplementary Table 3). (h) Transient overexpression of GFP, Wnt4 and Wnt5a in floxed keratinocytes (WT) and Kindlin-1–deficient keratinocytes 
previously treated with adenovirus expressing Cre recombinase (KO) expressing the TOPFlash reporter. Values are corrected for the Renilla control and 
are represented as mean ± s.e.m. fold increase relative to WT cells (n = 5 WT and KO biological replicates). *P < 0.05, **P < 0.01, unpaired two-tailed 
t test. (i) TOPFlash reporter activity in KO cells stably re-expressing Kindlin-1–GFP, integrin binding–deficient Kindlin-1Q611A,W612A–GFP (Kind1-QW/AA-GFP),  
NLS-tagged Kindlin-1–GFP or Kindlin-2–GFP. Values are corrected for the Renilla control, are represented as fold increase relative to WT cells and 
are reported as mean ± s.e.m. (n = 21 WT and KO; n = 13 Kind1-GFP; n = 9 Kind1-QW/AA-GFP; n = 5 Kind1-NLS-GFP and Kind2-GFP; all biological 
replicates). NS, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, unpaired two-tailed t test. (j) H&E staining of control and Kind1-K5 mice at 1 d 
(P50) and after treatment (P56) with the indicated Wnt inhibitor. Nuclei are stained with DAPI (blue) (a,b,d,f). All scale bars, 50 µm.
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A single DMBA treatment induced more 
and slightly larger tumors in Kind1-K5 mice 
compared to controls (Fig. 6f–i), indicating 
that the hyperproliferative state of keratino
cytes in Kind1-K5 mice was sufficient to promote tumor development. 
Furthermore, the tumors in the Kind1-K5 mice originated primarily 
from HFs and sebaceous glands containing hyperactive SCs.

DISCUSSION
Loss-of-function mutations in the FERMT-1 gene cause KS, which 
is characterized by skin blistering at birth, premature skin aging, 
pigmentation defects and increased incidence of skin cancer. The 
ability of Kindlin-1 to activate integrins and link them to the F-actin 
cytoskeleton explains the development of skin blisters and basement 
membrane splitting followed by an inflammatory response. However, 
the notion that skin tumor development is promoted by hyper
active integrins and inhibited by compromised integrins indicates 
that Kindlin-1 loss activates oncogenic functions, inhibits tumor- 
suppressor functions or both. The task of this study was to identify 
such pathway(s).

Deletion of Kindlin-1 in skin epithelial cells with the K5-Cre driver 
line leads to small skin blistering, basement membrane defects, 

chronic skin inflammation, progressive pigmentation defects and skin 
atrophy and is hence similar to KS. Unexpectedly, Kind1-K5 mice also 
develop enlarged cutaneous epithelial SC compartments, hyperactive  
bulge SCs, distorted HF cycles and ectopic HFs (Supplementary 
Fig. 8e). In line with high SC proliferation, treatment with both 
DMBA and TPA as well as with DMBA only induces a significantly 
higher tumor incidence and tumor burden in Kind1-K5 mice. 
Moreover, the majority of the tumors are basal cell carcinoma–  
and trichofolliculoma-like lesions, suggesting that the tumors  
originate predominantly from HF bulge SCs.

In search for a mechanistic explanation for the dysregulated SC 
and tumor cell proliferation in Kind1-K5 mice, we identified two 
Kindlin-1–regulated signaling pathways with opposing functions on 
bulge SC quiescence (Fig. 6j). Kindlin-1 binding to the cytoplasmic 
tail of β6 subunit–containing integrin51 triggers αvβ6 integrin bind-
ing to the RGD motif of LAP, thereby liberating TGF-β and inducing 
TGF-β receptor signaling and cutaneous epithelial SC quiescence. 
These findings are supported by a report showing that loss of β6  
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Figure 6  Loss of Kindlin-1 increases skin tumor 
incidence. (a–e) Two-stage carcinogenesis  
(n = 26 control mice and n = 23 Kind1-K5 
mice). (a–c) Tumor incidence (P value by log-rank  
test) (a), burden (P value by Wilcoxon t test) (b) 
and skin lesions per animal (reported as  
mean ± s.d., P value by Mann-Whitney U test)  
after 25 weeks of treatment (c). ***P < 0.001.  
(d) Tumor growth reported by diameter shown 
in a boxplot, where the whisker ends are at the 
1.5-interquartile range, and the middle lines 
represent the median. NS, not significant; 
P values by Mann-Whitney U test. (e) The 
percentage of skin lesion subtypes from 
control (n = 25 lesions) and Kind1-K5 (n = 47 
lesions) mice that were staged by histology and 
immunofluorescence analysis (Supplementary 
Fig. 8a). (f–i) One-stage carcinogenesis with 
DMBA (n = 10 control mice and n = 10 Kind1-
K5 mice monitored as in a–d). (f–i) Tumor 
incidence (P value by log-rank test) (f), skin 
lesion number (P value by Wilcoxon t test) (g), 
frequency (reported as mean ± s.d., P value by 
Mann-Whitney U test) (h) and size (reported 
as boxplot, where the whisker ends are at the 
1.5-interquartile range, and the middle lines 
represent the median; P value by Mann-Whitney 
U test) (i). NS, not significant. *P < 0.05,  
***P < 0.001. (j) Molecular functions of 
Kindlin-1. In normal cells (left), Kindlin-1 
activates β1-class integrins and αvβ6 integrin 
to facilitate adhesion and TGF-β liberation 
from LAP, respectively. Free TGF-β activates 
TGF-β receptors (TβRI/II), leading to nuclear 
translocation of pSmad2/3, which promotes SC 
quiescence. In Kindlin-1–deficient cells (right), 
activation of β1-class integrins and αvβ6 is 
impaired, leading to adhesion defects and loss 
of TGF-β–mediated SC quiescence. In addition, 
dysregulated Wnt ligand expression leading to 
elevation of Wnt5a levels leads to canonical 
Wnt–β-catenin signaling through the Lrp5/6–
Fzd4 complex. Wnt5-Prom, Wnt5 promotor.
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subunit–containing integrin impairs TGF-β signaling and elevates 
bulge SC activity in vivo32.

Despite the sequence similarities of Kindlin-1 and Kindlin-2  
(ref. 52) and their expression in keratinocytes from control and Kind1-
K5 mice, Kindlin-2 can only partially compensate for Kindlin-1 at β1 
subunit–containing integrin adhesion sites. Furthermore, Kindlin-2  
is unable to bind β6 subunit tails, which prevents it from releas-
ing TGF-β1 and suppressing SC proliferation. Interestingly, other  
TGF-β isoforms such as TGF-β2 activate HF stem cells by antagoniz-
ing BMP in the bulge53. In contrast to LAP1, however, LAP2 lacks 
the αvβ6-binding RGD motif54, and hence the release of TGF-β2 and 
BMP signaling are not affected by Kindlin-1 loss.

It is particularly interesting that high Kindlin-1 levels have also been 
associated with high TGF-β1 signaling in metastatic breast cancers55. 
Although it was not investigated how Kindlin-1 regulates TGF-β1 
signaling, this observation, together with our findings, suggests that 
different tumor stages may benefit from different Kindlin-1 levels: 
in early stage tumors, low TGF-β signaling supports tumor growth, 
whereas in late stage tumors, high TGF-β signaling promotes the 
epithelial-to-mesenchymal transition and metastatic progression56.  
If this is the case, subjects with KS suffering from an increased tumor 
risk may be protected from metastasis.

We also found elevated Wnt–β-catenin signaling in cutaneous epi-
thelial cells of Kind1-K5 mice and the epidermis of subjects with KS, 
which is inevitably associated with a high tumor risk and severe SC 
and hair cycle defects13,50. The defect leads to ectopic HF formation 
and aberrant hair cycling and is due to aberrant expression of several 
Wnt ligands, most notably Wnt5a, which probably act in an auto-
crine manner. Notably, chemical compounds that inhibit Wnt protein 
secretion or Wnt–β-catenin signaling prevent the hair cycle and Wnt 
signaling defects in keratinocytes from Kind1-K5 mice.

Wnt5a is best known for the ability to activate the noncanonical 
Wnt signaling pathway. However, Wnt5a can also elicit canonical 
Wnt–β-catenin signaling. The decision of which signaling pathway is 
induced is dictated by the type of cell surface receptor to which Wnt5a 
is binding: Wnt5a binding to the Ror2 receptor tyrosine kinase inhib-
its the transcriptional activity of β-catenin and thus canonical signal-
ing, whereas Wnt5a binding to Fzd4 and the Lrp5/6 co-receptors leads 
to β-catenin stabilization and canonical Wnt signaling45. Interestingly, 
Wnt–β-catenin signaling can activate Notch42, which is also elevated 
in keratinocytes from Kind1-K5 mice and may contribute at least  
in part to the Kind1-K5 mouse phenotype, for example, by suppress-
ing Wnt4 expression48 and the recruitment of β-catenin to cell-cell 
junctions44. Clearly, the dysregulated expression of Wnt proteins and 
their receptors in Kind1-K5 mice strongly suggests that Kindlin-1 
safeguards the skin and HFs against an overshooting activation of 
the important and at the same time potentially harmful canonical 
Wnt–β-catenin signals.

In summary, our results show that Kindlin-1 loss results in a com-
bination of defects caused by the dysregulation of distinct pathways: 
the compromised β1 integrins impair adhesion and induce an inflam-
matory response, the impaired TGF-β liberation from LAP leads to 
HF SC hyperproliferation, and the increased Wnt signaling abrogates 
the resting phase of the hair cycle, expands the SC compartments 
and, together with impaired TGF-β signaling and inflammation, con-
tributes to the increased tumor risk. The high epithelial SC activity  
eventually leads to SC exhaustion and skin atrophy later in life, 
which is another hallmark of KS. It is also conceivable that the abil-
ity of Kindlin-1 to shuttle between integrin sites, where it mediates 
adhesion, migration and TGF-β release, and the cytoplasm, where it 

curbs Wnt–β-catenin signaling, may also contribute to physiologic 
SC homeostasis and hair development (Fig. 6j); mobilization of bulge 
SCs has little or no integrin-ligand engagement and therefore uses 
Kindlin-1 to prevent Wnt–β-catenin signaling and their activation. 
Once activated bulge SCs move to the hair germ, they engage integrins 
to ensure downward growth and therefore have less Kindlin-1 in the 
cytoplasm to inhibit Wnt–β-catenin signaling.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Mouse strains. The conditional Fermt-1flox/flox mice carry a loxP-flanked  
ATG-containing exon 2 (Supplementary Fig. 1a) and were generated by 
electroporation of R1 embryonic stem cells using standard procedures57. 
Homologous recombination was verified with Southern blots, and positive 
embryonic stem cell clones were used to generate chimeric mice. Mice were 
crossed with transgenic mice carrying a deleter-flp recombinase to remove 
the neomycin cassette and with mice carrying deleter-Cre (to confirm the 
null phenotype) or K5-Cre transgenes, respectively58. For all animal studies, 
transgenic mice were backcrossed eight times to C57BL/6 mice. The TTAA-K5 
transgenic mice were obtained through an intercross of mice carrying alanine 
substitutions of T788 and T789 in the cytoplasmic domain of β1 integrin26 
with Itgb1-floxed mice and K5-Cre transgenic mice. The TOPgal Wnt reporter 
mice43 were intercrossed with Kind1-K5 mice. For all in vivo experiments, gen-
ders were distributed randomly between the genotypes. Mice were housed in a 
special pathogen-free mouse facility, and all animal experiments were carried out 
according to the rules of and approved by the government of Upper Bavaria.

DMBA and TPA tumor experiment. Cutaneous two-stage chemical carcino-
genesis was performed as previously described59 using topical applications of 
100 nmol (25 µg) DMBA (Sigma) in 100 µl of acetone and twice weekly applica-
tions of 10 nmol (6.1 µg) TPA (Sigma) in 200 µl of acetone or only acetone for 
25 weeks. The tumor model was terminated after 25 weeks of TPA promotion 
because of the critical skin health condition of Kind1-K5 mice. For tumor experi-
ments, control animals were treated with acetone or TPA only. For all animal 
studies, 7-week-old mice were randomized after genotyping, and sample size 
was estimated by nonparametric Wilcoxon test (U test). The number and size of 
tumors were recorded once per week after the start of promotion (week 0). All 
mice were euthanized at the end of the experiment. Skin lesions were analyzed 
by histology and graded as described previously59–61.

Subjects with KS. Individuals with KS gave their informed written consent under 
protocols approved by St. Thomas’ Hospital Ethics Committee (COREC number 
06/Q0702/154), and the study was conducted according to the Declaration of 
Helsinki Principles. For immunofluorescence (IF) analysis, biopsies were taken 
from age- and site-matched controls (NHS) and subjects with KS with the fol-
lowing mutations: KS patient 1 (3-year-old Indian girl; homozygous nonsense 
mutation +/+ p.Glu516X) and KS patient 2 (22-year-old Panamanian woman; 
homozygous nonsense mutation +/+ p.Arg271X).

RNA for microarray analysis was isolated from upper-arm biopsies taken 
from three subjects with KS; KS patient A, a 22-year-old Omani woman with the 
homozygous nonsense mutation +/+ p.Arg271X; KS patient B, a 7-year-old Indian 
girl with the homozygous nonsense mutation +/+ p.Try616X; and KS patient C,  
a 19-year-old Omani woman with the nonsense mutation +/+ p.Try616X. Control 
skin RNA was isolated from four age-, site- and sex-matched biopsies.

Gene expression microarray. Total RNA was extracted using the RNeasy 
Fibrous Tissue Mini kit (Qiagen), and quantity and quality were measured 
on a Nanodrop spectrophotometer (Nanodrop, Wilmington, DE, USA). For 
whole-genome Illumina expression analysis, total RNA from each skin biopsy 
was hybridized to an Illumina Human-Ref-6 v2 BeadChip expression array 
(Illumina, San Diego, CA, USA). The Illumina HumanRef-6 v2 BeadChips were 
scanned with an Illumina Bead Array Reader confocal scanner.

The microarray data analysis was performed using Illumina’s BeadStudio 
Data Analysis Software (Illumina). The expression signals for all genes from 
each individual were grouped in KS and NHS and averaged. In order to identify 
statistically significant differentially regulated genes, a prefiltering set was deter-
mined for significantly higher (≥2-fold change) and lower (≤0.5-fold change) 
expression intensity between KS and NHS skin samples. Bonferroni’s correction 
was applied to each P value to obtain an adjusted P value to identify differentially 
expressed mRNAs with high statistical significance (Supplementary Table 2). 
The microarray data have been submitted to NCBI under the GEO accession 
number GSE47642.

FACS analysis. FACS analysis and sorting was performed as previously 
described62. A suspension of primary keratinocytes in FACS-PBS (PBS with 

1% BSA) was incubated for 1 h with primary antibodies on ice and then washed 
twice with FACS-PBS. Cell viability was assessed by 7-aminoactinomycin labeling 
(BD Biosciences) or ethidium monoazide staining (Invitrogen). FACS analysis  
was carried out using a FACSCantoTMII cytometer (BD Biosciences) and cell 
sorting with an AriaFACSII high-speed sorter (BD Biosciences), both of which 
were equipped with FACS DiVa software (BD Biosciences). Purity of the sorted 
cells was determined by post-sort FACS analysis and typically exceeded 95%. 
Integrin surface FACS analysis of primary keratinocytes was carried out as pre-
viously described63. Data analysis was conducted using the FlowJo program 
(version 9.4.10).

Real-time PCR and Notch target gene inhibition. Total RNA from total skin 
or FACS-sorted keratinocytes was extracted with the RNeasy Mini extraction 
kit (Qiagen) following the manufacturer’s instructions. For Notch target gene  
inhibition analysis, cells were plated on  fibronectin- and collagen I–coated six-
well plates (1.2 × 106 cells per well) and were treated the next day with 2.5 µM  
N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT; 
Selleckchem, S2215) in full keratinocyte growth medium (KGM) for 24 h before 
total RNA isolation. cDNA was prepared with an iScript cDNA Synthesis Kit 
(Biorad). Real-time PCR was performed with an iCycler (Biorad). Each sample 
was measured in triplicate, and values were normalized to Gapdh. The PCR 
primers used are listed in Supplementary Table 4.

Antibodies and inhibitors. The following antibodies or molecular probes were 
used at the indicated concentrations for western blot (W), IF, immunohisto-
chemistry (IHC) or flow cytometry (FACS): Kindlin-1 (home made3; W: 1:5,000, 
IF of tissue: 1:1,000), Kindlin-2 (Sigma; K3269; W: 1:1,000), talin (Sigma; 8D4; 
W: 1:1,000), GAPDH (Calbiochem; 6C5; W: 1:10,000), phalloidin–Alexa 488 
(Invitrogen; A12379; IF tissue: 1:500; IF of cells: 1:800), integrin αM (Mac-1) 
(eBioscience; M1/70; IF of tissue: 1:200), GR1 (Ly6g) (eBioscience; RB6-8C5; IF 
of tissue: 1:200), CD4 (PharMing; H129.19; IF of tissue: 1:200), CD19 (PharMing; 
1D3; IF of tissue: 1:200), integrin αx (CD11c) (BD Bioscience; HL3; IF of tissue: 
1:200), desmoplakin (Fritzgerald Industries International; 20R-DP002; IF tissue: 
1:500), integrin α6 (Itga6) (PharMingen; GoH3; IF of tissue: 1:200, FACS: 1:500), 
laminin-332 (a gift from M. Aumailley, University of Cologne, Germany; IF of 
tissue: 1:500), Keratin-10 (Krt-10) (Covance; PRB-159P; IHC: 1:600), Keratin-15 
(Krt-15) (a gift from R. Grosschedl; MPI Immunobiology, Freiburg, Germany; 
IF: 1:500), Lef1 (a gift from R. Grosschedl, MPI Immunobiology, Freiburg, 
Germany; IF of tissue: 1:500), Loricrin (Lor) (Covance; PRB-145P; IF: 1:500), 
Ki67 (Dianova; M7249; IHC: 1:100), cleaved caspase-3 (Asp175, cCaspase3) 
(Cell Signaling; 9661; IF of tissue: 1:200), CD34 (BD Bioscience; RAM34;  
IF of tissue: 1:200, FACS: 1:100), Sca1 (BioLegend; D7; IF of tissue: 1:200, FACS: 
1:200), Lrig1 (R&D Systems, AF3688; IF: 1:500), BrdU (Abcam; ab6326; IF: 
1:500), Keratin-5 (Krt-5) (Covance; PRB-160P; IF: 1:1,000), Keratin-6 (Krt-6) 
(Covance; PRB-169; IF: 1:500), CDP (Santa Cruz; sc-13024; IF: 1:500), integrin 
β1 (BD Biosciences; Ha2/5; FACS: 1:200), integrin β3 (BD Bioscience; 2C3.G2; 
FACS: 1:200), integrin β4 (BD Biosciences; 346-11A; FACS: 1:200), integrin β6 
CH2A1 (Itgb6) (a gift from S. Violette, Biogen Idec; IF of mouse tissue: 1:500), 
integrin β6 (Itgb6) (Chemicon; 10D5; IF of human tissue: 1:200, FACS: 1:200, IF of 
cells: 1:500), integrin β5 (Itgb5) (a gift from D. Sheppard, University of California, 
USA; FACS: 1:200), integrin β8 (Itgb8) (Santa Cruz; sc-25714; FACS: 1:200), pax-
illin (BD Bioscience; 610051; IF: 1:500); pSMAD2/3 (Santa Cruz, sc11769; IF: 
1:200), pSmad2 (Millipore; AB3849; W: 1:2,000), total Smad2/3 (Santa Cruz; 
sc-8332; W: 1:1,000), pSMAD1/5/8 (Millipore; AB3848; IF of tissue: 1:200), Sox9 
(a gift from M. Wegner, University of Erlangen, Germany; IF of tissue: 1:500), 
trichohyalin (AE15) (Abcam; ab58755; IF of tissue: 1:500), activated Notch1 
(NICD) (Abcam, ab8925; IF of tissue: 1:200) and pan-laminin (Sigma; L9393; 
IF of tissue: 1:500). The following secondary antibodies were used: goat anti– 
rabbit Alexa 488 (A11008), goat anti–human Alexa 488 (A11013), goat 
anti–mouse Alexa 488 (A11029), donkey anti–goat Alexa 488 (A11055), goat 
anti–guinea pig Alexa 594 (A11076), goat anti–mouse Alexa 546 (A11003),  
goat anti–rabbit Alexa 546 (A11010) (all from Invitrogen; FACS: 1:500, IF: 1:500), 
streptavidin-Cy5 (Dianova; 016170084; FACS: 1:400), goat anti–rat horseradish 
peroxidase (HRP) (Dianova; 712035150; W: 1:10,000), goat anti–mouse HRP 
(172-1011) and goat anti–rabbit HRP (172-1019) (all from Biorad; W: 1:10,000). 
For mouse monoclonal primary antibodies the M.O.M. (Mouse on Mouse) kit 
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(Vector Labs) was used according to the manufacturer’s protocol. Mast cells were 
stained for mast cell heparin with avidin-FITC (Invitrogen; 43-4411; IF of tissue: 
1:100) as previously described64. Nuclei were stained with DAPI (Sigma).

The Notch signaling inhibitor DAPT (Selleckchem; S2215) was dissolved 
in ethanol at 25 µg µl−1. The Wnt inhibitors IWP-2 (Calbiochem; 681671) 
and IWR-1 (Sigma; I0161) were dissolved in DMSO at 2.5 µg µl−1 (IWP-2) or  
10 µg µl−1 (IWR-1).

BrdU labeling. The LRC assay was performed as previously described27. Briefly, 
10-day-old mice were injected four times with 50 mg kg−1 body weight BrdU 
every 12 h to label mitotic cells, and then mice were maintained for the indicated 
chase periods. To determine LRCs per HF bulge, tail epidermal whole mounts 
were prepared, z projections were acquired using a Leica SP5 confocal micro-
scope (20× objective), and BrdU-positive cells were counted from ≥30 HFs per 
animal from different whole mounts.

Cell culture. The TGF-β reporter cell line tMLEC and LTBP1–TGF-β matrix–
producing CHO-LTBP1 cells were used as described previously34. Primary 
keratinocytes were isolated at P21 or at the indicated time points as described 
previously65. To generate clonal keratinocyte cell lines, primary cells from  
Fermt-1flox/flox mice were spontaneously immortalized, single clones were 
picked, and Kindlin-1 ablation was induced by transient transfection with an 
adenovirus expressing Cre recombinase. Keratinocytes were cultured in KGM 
containing 8% chelated FCS (Invitrogen) and 45 µM Ca2+ in a 5% CO2 humidi-
fied atmosphere on plastic dishes coated with a mixture of 30 µg ml−1 collagen I 
(Advanced BioMatrix) and 10 µg ml−1 fibronectin (Invitrogen).

Inhibition of premature anagen induction and increased Notch signaling. At 
telogen onset (P49), back skin of control and Kind1-K5 mice was shaved, and 
100 µl of 200 µM IWR-1 or IWP-2 (diluted in PBS) was subcutaneously injected 
every 24 h into a marked skin region. 100 µl DMSO diluted in PBS was used 
for control experiments. At P56, the treated back skin was isolated, sectioned 
and stained with H&E. Ten serially sectioned HFs per animal were counted.  
To analyze Notch signaling, back skin sections were stained for NICD, and 
NICD-positive nuclei were quantified.

Constructs and transfections. Wnt4 expression constructs were gifts from  
A. Kispert (University of Hannover, Germany), and the human β-catenin expres-
sion construct was a gift from J. Behrens (University of Erlangen, Germany). Human 
WNT5A (ID18032), LEF1 (ID16709), pHes1-luc (ID43806), SuperTOPFlash 
(ID17165) and FOPFlash (ID12457) reporter plasmids were purchased from 
Addgene. The pEGFP-C1 expression vector was acquired from Clontech.

GFP-tagged Kindlin-1, Kindlin-2 and Kindlin-1–QWAA expression con-
structs were described previously3, and the Kindlin1-NLS construct was gener-
ated by fusing SV40 NLS motifs to the N terminus of Kindlin-1. The expression 
cassettes were driven by a CAG promotor and flanked by two inverted terminal 
repeat sites recognized by sleeping beauty transposase 100× (SB100×)66 and tran-
siently co-transfected with the SB100× vector in a 1:1 ratio using Lipofectamine 
2000 (Invitrogen) following the manufacturer’s instructions. After two passages, 
cells stably expressing the GFP fusion protein were FACS sorted for equal expres-
sion levels, which was further confirmed by western blotting.

Histology and immunostainings. Small pieces from back skin were either fixed 
in paraformaldehyde (PFA) and embedded in paraffin or frozen on dry ice in 
cryo-matrix (Thermo) and sectioned. Tail skin whole mounts were prepared and 
immunostained as described27. Immunohistochemistry (H&E, DAB, Oil Red O, 
alkaline phosphatase (AP) and β-gal) of skin sections and tail whole mounts and 
immunofluorescence staining of tissue sections were carried out as described25. 
To better visualize the blue β-gal stain, the epidermal whole mount was overlaid 
with a grayscale image. Immunostaining of human skin sections for β6 integrin 
followed published protocols67.

HF bulge sizes were quantified in epidermal tail whole mounts stained for 
Krt-15, and z projections were collected with a confocal microscope using  
a 20× objective. The length and diameter of a Krt-15–positive bulge area was 
measured with the ImageJ software (version 1.41n), and bulge volumes were 
calculated using the circular cylinder formula (v = π × r2 × h, where v is the 

volume, r is the radius, and h is the height). The HF numbers were quantified 
in serial sections of comparable back skin regions from at least three mice per 
genotype and the indicated ages. HFs per 10× objective field of H&E-stained 
sections were counted. HFs in anagen and early HF development were staged 
as described previously68,69.

Images were collected by confocal microscopy (DMIRE2 or SP5, Leica) with a 
10×, 20× numerical aperture (NA) 1.4 or 40× oil objective using Leica Confocal 
software (version 2.5 build 1227) or by bright field microscopy (Axioskop, Carl 
Zeiss with a 10× NA 0.3, 20× NA 0.5 or 40× NA 0.75 objective) and DC500 
camera with IM50 software (Leica).

In situ hybridization. Antisense riboprobes for mouse Fzd4 (SpeI-EcoRI frag-
ment of mouse FZD4 3′ untranslated region), Wnt5a (gift from I. Thesleff, 
University of Helsinki, Finland) and Hes1 (gift from R. Kageyama, Kyoto 
University, Japan) were synthesized with T7 RNA polymerase (New England 
BioLabs) and DIG (digoxigenin) RNA Labeling Mix according to the manufac-
turer’s instructions (Roche). Isolated tail skin epidermis was fixed in 4% PFA in 
PBS, washed in PBS for 5 min twice and then washed twice for 15 min in PBS 
with 0.1% active diethylpyrocarbonate followed by 15 min equilibration in 5× 
saline-sodium citrate (SSC). Samples were first prehybridized for 1 h at 58 °C in 
50% formamide, 5× SSC and 40 µg ml−1 salmon sperm DNA, then hybridized 
for 16 h at 58 °C with 400 ng ml−1 of DIG-labeled probe in prehybridization mix 
and washed twice for 30 min in 2× SSC at room temperature, followed by a 60-
min wash at 65 °C in 2× SSC and then a 60-min wash at 65 °C in 0.2× SSC. The 
tissues were washed in Tris-buffered saline (TBS) for 5 min three times, blocked 
in 0.5% blocking reagent (Roche) in 0.1% Tween 20 and TBS (TBST) for 90 min 
at room temperature and then incubated in 1:5,000-diluted anti-DIG AP (Roche) 
in 0.5% blocking reagent in TBST at 4 °C overnight. After three 60-min washes  
in TBST, tissues were incubated in NTMT (100 mM NaCl, 100 mM Tris,  
pH 9.5, 50 mM MgCl2 and 0.1% Tween 20) for 10 min at room temperature. 
Color was developed using BM Purple AP substrate precipitating reagent 
(Roche) at 37 °C. The reaction was stopped for 15 min with TE buffer (10 mM 
Tris and 1 mM EDTA, pH 8.0), and samples were mounted with 70% glycerol.

Peptide pulldowns. Pulldowns were performed with β1 WT tail peptide (HDRR
EFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKYEGK-OH), β1 scrambled  
peptide (EYEFEPDKVDTGAKGTKMAKNEKKFRNYTVHNIWESRKV 
AP-OH), β6 WT tail peptide (HDRKEVAKFEAERSKAKWQTGTNPLYRGST
STFKNVTYKHREKHKAGLSSDG-OH) and β6 scrambled peptide (KTDHAV
QGDKKLSHKKNRGTSKATFPKVRHYETEEWAALESGYGSRTFKNSR-OH). 
All peptides were desthiobiotinylated. Before use, peptides were immobilized 
on 35 µl Dynabeads MyOne Streptavidine C1 (10 mg ml−1; Invitrogen) for  
3 h at 4 °C.

Keratinocytes were lysed on ice in Mammalian Protein Extraction Reagent 
(Thermo Scientific), and 1 mg of cell lysate was incubated with the indicated 
peptides for 4 h at 4 °C. After three washes with lysis buffer, the beads were 
boiled in SDS-PAGE sample buffer, and the supernatant was loaded on 8%  
SDS-PAGE gels.

Preparation of avb6 antibody–coated coverslips. Antibody coating was carried 
out as described70. Briefly, glass slides (24 mm × 24 mm; Menzel) were sterilized, 
coated with collagen I (Advanced BioMatrix) for 1 h at 37 °C, air dried, covered 
with nitrocellulose dissolved in methanol and air dried again. Slides were incub
ated with αvβ6-specific antibody (10D5; 10 µg ml−1; Chemicon) diluted in PBS 
overnight at 4 °C in a humidity chamber, washed once with PBS and blocked 
with 1% BSA for 1 h at room temperature.

Generation of dense gold nanoarrays functionalized with cRGD. In a typical 
synthesis, 7 mg ml−1 of polystyrene154-block-poly(2-vinylpyridine)33 (PS154-b-
P2VP33; Polymer Source) was dissolved at room temperature in p-xylene (Sigma) 
and stirred for 2 d. Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4·3H2O; 
Sigma) was added to the block co-polymer solution (1 HAuCl4 per 2 P2VP units) 
and stirred for 2 d in a sealed glass vessel. Glass coverslips (Carl Roth) were 
cleaned in a piranha solution for at least 2 h and rinsed extensively with MilliQ 
water and dried under a stream of nitrogen. Micellar monolayers were prepared 
by dip coating a glass coverslip into previously prepared solutions with a constant 
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velocity equal to 24 mm min−1. The dip-coated glass slides were exposed to 
oxygen plasma (150 W, 0.15 mbar, 45 min; PVA TEPLA 100 Plasma System). To 
prevent nonspecific protein adsorption or cell binding, the glass background was 
covalently modified with silane-terminated polyethylene glycol (PEG; molecular 
weight 2,000) (ref. 71). Thiol-terminated cRGD was synthesized as described 
before72. The gold nanoparticles were then functionalized with this ligand by 
incubating the PEG-functionalized substrates in 100 µl of a 50 µM aqueous 
solution. The substrates were then rinsed thoroughly, incubated overnight with 
water and finally dried with nitrogen.

Spreading assay. A single-cell suspension with 1.0 × 105 cells per well in a six-well 
plate was plated in serum-free KGM (1% BSA and 1% penicillin-streptomycin) 
on fibronectin-coated glass coverslips (10 µg ml−1 fibronectin in PBS for 1 h at 
room temperature) or the indicated substrates for 3 h at 37 °C. Cells were imaged 
by a bright-field Axiovert 40 CFL microscope (20× objective; Carl Zeiss) and a 
CV640 camera (Prosilica) before fixation in 4% PFA-PBS and immunostaining 
with the indicated antibodies. The spreading area was quantified after staining 
with phalloidin–Alexa 488 (Invitrogen) with an AxioImager Z1 microscope  
(20× objective; Carl Zeiss) using the ImageJ software (Version 1.41n).

TGF-β stimulation assays. Keratinocytes were starved for several hours and 
stimulated with 5 ng ml−1 recombinant human TGF-β1 (PEROTech) in serum-
free KGM for the indicated times, lysed and analyzed by western blotting.  
TGF-β–modulated proliferation was determined in 70% confluent kerati-
nocytes that were cultured in six-well plates, incubated for 8 h with 10 µM  
5-ethynyl-2′-deoxyuridine (EdU; Invitrogen) and the indicated concentrations 
of TGF-β1 and analyzed with the Click-iT EdU Alexa Fluor488 Flow Cytometry 
Assay kit (Invitrogen).

TGF-β release assay. TGF-β release was determined as described34. Briefly, 
CHO-LTBP1 cells were seeded (5.0 × 104 cells per well) for 48 h in a 96-well 
plate in triplicates to deposit an LTBP1–TGF-β–rich matrix. Cells were then 
detached with PBS and 15 mM EDTA, and the remaining LTBP1–TGF-β–rich 
matrix was washed twice with PBS and incubated with keratinocytes (2.0 × 104 
cells per well) and tMLEC cells (1.5 × 104 cells per well) in a 100 µl final volume 
either in the absence or presence of αvβ6 integrin–blocking antibody (10D5;  
20 µg ml−1; Chemicon) or TGF-β neutralizing antibody (1D11; 15 µg ml−1;  
BD Biosciences). The amount of released TGF-β was measured after 16–24 h 
using a Bright Glo luciferase kit (Promega).

Wnt and Notch reporter assay. Cells were plated on fibronectin- and collagen I– 
coated 12-well plates (6.0 × 105 cells per well) before transient transfection with 
0.5 µg of pHes1-luc, SuperTOPFLASH or SuperFOPFLASH reporter, the indi-
cated expression plasmid and 50 ng thymidine kinase–driven Renilla (Promega) 
for controlling the transfection efficiency. The total amount of transfected plas-
mid DNA was kept constant at 1.5 µg per well using the pEGFP-C1 expression 
vector as a transfection control (Clontech). After 24 h (Wnt reporter) or 48 h 
(Notch reporter), luciferase activity was analyzed with a Dual Luciferase reporter 
assay system (Promega). To determine the effect of Wnt or Notch signaling, cells 
were treated with the indicated inhibitor 18 h after transfection, and luciferase 
activity was measured 24 h later.
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Supplementary Table 1 P-values for relative amount of SC subpopulations over time analyzed 

by FACS (see Fig. 3g). P-values were calculated with unpaired t-test. Bu, bulge; UI, upper 

isthmus; IJ, interfundibulum junctional zone. 

 

 

Age 
N (animal number) SC compartment 

Control Kind1-K5 Bu IJ UI 
21 d 4 3 P= 0.0004 P= 0.0146 P= 0.9161 
24 d 5 3 P= 0.0008 P= 0.3161 P= 0.0082 
28 d 5 3 P= 0.0047 P= 0.0874 P= 0.1014 
40 d 5 3 P= 0.0008 P< 0.0001 P= 0.0302 
44 d 3 3 P= 0.0009 P= 0.0004 P= 0.0182 
50 d 5 3 P= 0.0004 P= 0.0032 P= 0.2708 
55 d 3 3 P= 0.0012 P< 0.0001 P= 0.0452 
80 d 7 4 P< 0.0001 P< 0.0001 P= 0.0003 

4 months 4 3 P= 0.2501 P= 0.0074 P= 0.0010 
6 months 8 5 P= 0.0863 P= 0.4542 P= 0.0047 

>11 months 4 3 P= 0.2265 P= 0.0232 P= 0.3730 
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Supplementary Table 2 Microarray data with significant gene expression changes of ≥ 2 fold. First sheet 

shows all genes sorted by the difference score. In the following sheets genes are divided in the indicated 

categories (Wnt signaling; Inflammation and Wound healing; Proliferation and Cell cycle; Metabolism). 

N, NHS skin; K, KS skin; AVG, average; DiffScor, difference score. 
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Supplementary Table 3 Wnt ligand and receptor transcript analysis. qPCR of primary 

keratinocytes for Wnt ligands and Wnt receptors reported as mean ± SEM expression relative to 

Gapdh (n= indicated biological replicates). P-values were calculated with unpaired t-test. ND, 

not determined. 

 

Gene 
Symbol 

Control Kind1-K5 Log2 fold 
change 

P-value n 
mean SEM mean SEM 

Wnt1 0.496 0.089 1.50 0.089 1.649 0.001 3 
Wnt2 0.506 0.053 1.494 0.053 1.578 2 × 10-4 3 
Wnt2b 0.785 0.039 1.215 0.039 0.633 0.001 3 
Wnt3 ND  ND  ND   
Wnt3a 0.813 0.054 1.187 0.054 0.550 0.008 3 
Wnt4 1.562 0.095 0.438 0.095 –2.088 3 × 10-5 4 
Wnt5a 0.024 0.003 1.976 0.003 6.400  2 × 10-10 3 
Wnt5b 0.99 0.162 1.012 0.162 0.033 0.885 4 
Wnt6 0.366 0.032 1.634 0.032 2.167 1 × 10-5 3 
Wnt7a 1.200 0.057 0.800 0.057 –0.589 0.007 3 
Wnt7b 1.263 0.158 0.737 0.158 –0.822 0.078 3 
Wnt8a ND  ND  ND   
Wnt8b ND  ND  ND   
Wnt9a 1.220 0.131 0.780 0.131 –0.667 0.017 3 
Wnt9b 1.000 0.256 2.090 0.256 1.067 0.500 3 
Wnt10a 1.408 0.122 0.591 0.122 –1.300 0.009 3 
Wnt10b 0.877 0.074 1.124 0.074 0.3611 0.077 3 
Wnt11 1.107 0.193 0.893 0.193 –0.021 0.326 4 
Wnt16 1.209 0.087 0.791 0.087 –0.622 0.027 3 

 
Fzd1 1.064 0.242 0.936 0.242 –0.216 0.721 4 
Fzd2 1.065 0.243 0.935 0.243 –0.180 0.726 3 
Fzd3 0.364 0.010 1.636 0.010 2.169 6 × 108 3 
Fzd4 0.378 0.145 1.623 0.145 2.482 0.001 4 
Fzd5 0.858 0.123 1.142 0.123 0.433 0.153 4 
Fzd6 0.942 0.106 1.058 0.106 0.173 0.468 4 
Fzd7 0.642 0.124 1.358 0.124 1.128 0.015 3 
Fzd8 0.743 0.134 1.257 0.134 0.813 0.035 4 
Fzd9 0.766 0.066 1.234 0.066 0.694 0.007 3 
Fzd10 0.983 0.048 1.017 0.048 0.050 0.640 3 
Lrp5 1.024 0.079 0.976 0.079 –0.071 0.681 4 
Lrp6 0.840 0.048 1.160 0.048 0.470 0.003 4 
Ror1 0.690 0.086 1.310 0.086 0.933 0.036 3 
Ror2 0.682 0.135 1.318 0.135 1.302 0.067 4 
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Supplementary Table 4  List of qPCR oligonucleotides. 

 

Gene Symbol PCR primer 
Gapdh Fw: TCCTGCACCACCAACTGCTTAGC  

Rev: TGGATGCAGGGATGATGTTCTGG 
Npnt Fw: ATTGATGAATGTGCGACTGG 

Rev: CTGCTACACTGGTGCTGTCC 
Itgb6 Fw: ATGGGGATTGAGCTGGTCTG 

Rev: GACAGGTGGGTGAAATTCTCC 
Lef1 Fw: TCTGGCTACATAATGATGCCCA 

Rev: GGACATGCCTTGCTTGGAGTT 
Wnt1 Fw: CGACTGATCCGACAGAACCC 

Rev: CCATTTGCACTCTCGCACA 
Wnt2 Fw: CCTCCGAAGTAGTCGGGAATC 

Rev: GCAGGACTTTAATTCTCCTTGGC 
Wnt2b Fw: AACATCCATTACGGTGTTCGC 

Rev: CCTGTGCGTCGGAAGTCTG 
Wnt3a Fw: AATTTGGAGGAATGGTCTCTCGG 

Rev: CAGCAGGTCTTCACTTCACAG 
Wnt4 Fw: GTCAGGATGCTCGGACAACAT 

Rev: CACGTCTTTACCTCGCAGGA 
Wnt5a Fw: GGACCACATGCAGTACATTGG 

Rev: CGTCTCTCGGCTGCCTATTT 
Wnt5b Fw: TCCTGGTGGTCACTAGCTCTG 

Rev: TGCTCCTGATACAACTGACACA 
Wnt6 Fw: GCAAGACTGGGGGTTCGAG 

Rev: CCTGACAACCACACTGTAGGAG 
Wnt7a Fw: TGAACTTACACAATAACGAGGCG 

Rev: GTGGTCCAGCACGTCTTAGT 
Wnt7b Fw: CTTCACCTATGCCATCACGG 

Rev: TGGTTGTAGTAGCCTTGCTTCT 
Wnt9a Fw: GGCCCAAGCACACTACAAG 

Rev: AGAAGAGATGGCGTAGAGGAAA 
Wnt9b Fw: CAGAGAGGCTTTAAGGAGACGG 

Rev: CCTGGGGAGTCGTCACAAG 
Wnt10a Fw: CAGATCGCCATCCATGAGTG 

Rev: ACCGCAAGCCTTCAGTTTACC 
Wnt10b Fw: ATCGCCGTTCACGAGTGTC 

Rev: GGAAACCGCGCTTGAGGAT 
Wnt11 Fw: ATGCGTCTACACAACAGTGAAG 

Rev: GTAGCGGGTCTTGAGGTCAG 
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Wnt16 Fw: GCAGGCTGTCGCCAAGTTA 
Rev: GTCTGCCTCTGGTCTTTTTCTC 

Fzd1 Fw: GAGTTCTGGACCAGTAATCCGC 
Rev: ATGAGCCCGTAAACCTTGGTG 

Fzd2 Fw: CTTCTCGCAAGAGGAGACTCG 
Rev: GTGGTGACCGTGAAGAAAGTG 

Fzd3 Fw: TGATGAGCCATATCCCCGACT 
Rev: GCCTATGAAATAGCGAGCAAATG 

Fzd4 Fw: AACCTCGGCTACAACGTGAC 
Rev: GGCACATAAACCGAACAAAGGAA 

Fzd5 Fw: GAGTCACACCCACTCTACAACA 
Rev: CGGAATCGTTCCATGTCAATGAG 

Fzd6 Fw: TAATGGACACTTTTGGCATC 
Rev: ATCCAATGTCTCTTGGGACT 

Fzd7 Fw: GACCAAGCCATTCCTCCGTG 
Rev: CAGGTAGGGAGCAGTAGGGTA 

Fzd8 Fw: CCGCTGGTGGAGATACAGTG 
Rev: CGGTTGTAGTCCATGCACAG 

Fzd9 Fw: CGCACGCACTCTGTATGGAG 
Rev: GCCGAGACCAGAACACCTC 

Fzd10 Fw: CATGCCCAACCTGATGGGTC 
Rev: GCCACCTGAATTTGAACTGCT 

Lrp5 Fw: ACGTCCCGTAAGGTTCTCTTC 
Rev: GCCAGTAAATGTCGGAGTCTAC 

Lrp6 Fw: TGCAAACAGACGGGACTTGAG 
Rev: CGGGGACAATAATCCAGAAACAA 

Ror1 Fw: AACCCTTGATGAGCCGATGAA 
Rev: CAGCGGATACTGGGAGGTG 

Ror2 Fw: AAGTGGAAGATTCGGAGGCAA 
Rev: CTTCAGCCACCGCACATTG 
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ART I C L E S

Sorting nexin 17 prevents lysosomal degradation of β1
integrins by binding to the β1-integrin tail
Ralph Thomas Böttcher1,2, Christopher Stremmel1,2, Alexander Meves1,3, Hannelore Meyer1,3, Moritz Widmaier1,
Hui-Yuan Tseng1 and Reinhard Fässler1,4

Integrin functions are controlled by regulating their affinity for ligand, and by the efficient recycling of intact integrins through
endosomes. Here we demonstrate that the Kindlin-binding site in the β1-integrin cytoplasmic domain serves as a molecular switch
enabling the sequential binding of two FERM-domain-containing proteins in different cellular compartments. When β1 integrins
are at the plasma membrane, Kindlins control ligand-binding affinity. However, when they are internalized, Kindlins dissociate
from integrins and sorting nexin 17 (SNX17) is recruited to free β1-integrin tails in early endosomes to prevent β1-integrin
degradation, leading to their recycling back to the cell surface. Our results identify SNX17 as a β1-integrin-tail-binding protein
that interacts with the free Kindlin-binding site in endosomes to stabilize β1 integrins, resulting in their recycling to the cell
surface where they can be reused.

Integrins are the main family of adhesion molecules mediating cell
interactions with the extracellular matrix1 (ECM). A hallmark of
integrins is their ability to tune their affinity for ligand by shifting their
extracellular domain between different conformations. Key molecules
that increase ligand-binding affinity are the FERM (4.1, ezrin, radixin,
moesin)-domain-containing proteins Talins and Kindlins2,3. Talins
bind the membrane-proximal NPxY motif of β-integrin cytoplasmic
tails and Kindlins the membrane-distal NxxY motif and the adjacent
threonine residues4–9.
Increasing evidence indicates that integrin trafficking through the

endosomal pathway affects their function, cell surface distribution,
signalling through integrin-associated growth factor receptors and
the turnover of ECM proteins such as fibronectin10,11. In contrast
to the well-established mechanisms for integrin recycling10,12–14,
the mechanisms for integrin degradation are not well understood.
Fibronectin-bound α5β1 integrin was recently shown to be internalized,
sorted into multivesicular endosomes and degraded in lysosomes in
a ubiquitin- and endosomal sorting complex required for transport
(ESCRT)-dependent manner15.

Here, we identified the FERM-domain-containing protein SNX17 as
a β1-tail-binding protein that, following β1-integrin internalization and
Kindlin dislodgement, is recruited to the free β1 tails in early endosomes
to prevent β1-integrin degradation by lysosomes.

1Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany. 2These authors contributed equally to this work. 3Present
addresses: Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA (A.M.); Institute of Medical Microbiology, Immunology and Hygiene, Technical
University Munich, 81675 Munich, Germany (H.M.).
4Correspondence should be addressed to R.F. (e-mail: Faessler@biochem.mpg.de)

Received 22 December 2011; accepted 10 April 2012; published online 6 May 2012; DOI: 10.1038/ncb2501

RESULTS
β1-integrin TT788/789AA and Y795A substitutions cause
peri-implantation lethality in mice
Thr 788 and 789 and Tyr 795 in the β1-integrin tail are required for
binding Kindlins6,9,16. To investigate their significance in vivo they
were substituted with alanines in mice. Although mice heterozygous
for the mutation were normal, their intercross failed to produce
live homozygous offspring (TT/AA: + /+: 35%, (TT/AA)/+: 65%,
(TT/AA)/(TT/AA): 0%,N =100; Y795A:+/+: 33%, (Y795A)/+:67%,
(Y795A)/(Y795A): 0%, N = 100). Timed mating revealed severely
malformed or resorbed embryos (Fig. 1a,b and Supplementary
Fig. S1a) at embryonic day (E) 7.5 (+/+: 25%, (TT/AA)/+: 53%,
(TT/AA)/(TT/AA): 17%, resorbed: 5%, N = 36) characterized by
defects in cell polarity, laminin111 deposition and cavitation (Fig. 1b).
As the defects of the β1 TT/AA and β1 Y795A were identical, we mainly
show results for β1 TT/AAmice and cells.
Embryoid bodies generated from embryonic stem (ES) cells

derived from littermate wild-type (β1 wt) and homozygous TT/AA
(β1 TT/AA) blastocysts confirmed the in vivo findings. After 2–4
days in suspension culture, β1 wt ES cells developed embryoid
bodies consisting of an outer primitive endoderm layer, a basement
membrane and an undifferentiated core, which converted into a
layer of pseudo-stratified primitive ectoderm and a central cavity
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Figure 1 The β1-TT/AA-integrin tail mutation leads to severe defects.
(a) Bright-field images of E7.5 embryos with and without implantation
chamber. Wild type, wt. (b) Left and central panels show whole-mount
pictures of E7.5 embryos stained for β1 integrin (red) and laminin111
(green). Nuclei were counterstained with DAPI (blue). Right panels show
haematoxilin and eosin (HE) staining of E7.5 embryo sections. em,
embryo; de, decidua; ac, amniotic cavity; am, amnion; al, allantois; ch,
chorion; ec, ectoplacental cone; fg, foregut; hg, hindgut; ex, exocoelomic
cavity. (c) Western blot for β1 integrin, Talin-1, Kindlin-1, Kindlin-2
and actin of embryonic stem (ES) cell lysates, including a control

lane for Kindlin-1 from a wt keratinocyte lysate. (d) Expression of
integrin subunits on ES cells determined by FACS (mean± s.d.; n = 4;
∗P= 0.0134, ∗∗P= 0.0011, ∗∗∗P< 0.0001). (e) Integrin activation on
ES cells measured by 9EG7 binding and corrected for total β1-integrin
expression (mean±s.d.; n=4; ∗∗∗P=0.0003). (f) Expression of β1-integrin
mRNA in ES cells measured by quantitative real-time PCR (n = 2).
(g) Adhesion assay of ES cells on different substrates (mean±s.d.; n =3;
∗∗P<0.01 and ∗∗∗P<0.005). P values, Student’s t -test; ns, not significant.
Scale bars, 100 µm. Uncropped images of blots are shown in Supplementary
Fig. S6.

on day 4–6 (Supplementary Fig. S1b). In contrast, β1 TT/AA ES cells
formed compact aggregates covered by a discontinuous basement
membrane and few endoderm cells, which lost their polarizedβ-catenin,
E-cadherin and F-actin distribution, and lacked a central cavity
(Supplementary Fig. S1b,c).
β1 TT/AA ES cells adhered less to feeder cells (Supplementary

Fig. S1d) and had reduced levels of the mature (relative molecular
mass, 125,000; Mr125K) β1 integrin, whereas Kindlin-2 and Talin-1
expression were normal (Fig. 1c). Fluorescence-activated cell sorting
(FACS) analysis confirmed reduced β1-integrin surface levels to about
40% in β1 TT/AA ES cells and revealed decreased levels of α5 and α6
integrins, whereas β3 and αv levels were unaffected (Fig. 1d). Kindlin-2
binding to the β1-integrin tail is required for activating the 9EG7
epitope in ES cells7. The level of 9EG7 antibody binding to β1 TT/AA
was reduced after adjusting to total β1 levels but could be normalized
to wt levels with manganese (Fig. 1e). The reduced β1-TT/AA-integrin
levels were not due to insufficient messenger RNA transcription,
as we detected increased β1-integrin mRNA transcript levels in β1
TT/AA ES cells (Fig. 1f). ‘Plate-and-wash’ adhesion assays revealed
a significantly diminished level of attachment of β1 TT/AA ES cells to
ECM substrates (Fig. 1g). Similar results were observed in β1 Y795A
ES cells (Supplementary Fig. S1e–g).
To determine whether the reduced level of β1 TT/AA and β1

Y795A surface expression occurs in other cell types, we characterized
fibroblasts expressing β1 wt, β1 TT/AA or β1 Y795A integrins.

We generated β1-null fibroblasts from floxed β1 parental cells re-
expressing either β1 wt, β1 TT/AA or β1 Y795A complementary
DNAs. We also isolated fibroblasts from β1 flox/wt and β1 flox/TT/AA
littermates and deleted the floxed alleles by adenoviral Cre transduction
(Supplementary Fig. S2a,b). Fibroblasts from both cell systems behaved
similarly in all assays. Fibroblasts expressing β1 TT/AA or β1 Y795A
integrins showed a reduced level of β1 surface expression despite
increased mRNA levels (Supplementary Fig. S2c–f and data not
shown). Immunoblotting showed a reduced expression level of the
mature (Mr125K) β1-TT/AA-integrin polypeptide, whereas the level
of immature form (Mr105K) was increased when compared with
cells expressing β1 wt (Supplementary Fig. S2g). In line with our ES
cell results, we observed significantly less 9EG7 antibody binding to
β1-TT/AA-expressing fibroblasts (Supplementary Fig. S2h).
These findings show that the TT/AA or Y795A β1 tail substitutions

reduce β1 cell-surface levels and suggest defects in integrin processing
or turnover.

The distal NxxY motif and the adjacent TT788/789 control
β1-integrin turnover
Surface levels of transmembrane proteins are controlled by the
synthesis rate, maturation and export of the polypeptide to the cell
surface, internalization, recycling and degradation. To determine
whether the TT/AA substitutions alter β1-integrin maturation in the
secretory pathway, β1-wt- and β1-TT/AA-expressing fibroblasts were
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Figure 2 TT788/789 regulate β1 recycling and degradation. (a) Pulse-chase
analyses of β1-integrin maturation in cells expressing wt or β1 TT/AA
integrins. Cells were collected and analysed by immunoprecipitation after
metabolic labelling with [35S]methionine/cysteine and chased for the
indicated time points. Maturation curves show immature β1 integrin as a
percentage of the total β1 integrin (right) and were drawn from densitometric
scans of the autoradiograms (left). (b) Quantification of β1-integrin
internalization in β1-wt- and β1-TT/AA-expressing cells by capture-ELISA
(mean± s.d.; n = 4). (c) Quantification of β1-integrin recycling in β1-wt-
and β1-TT/AA-expressing fibroblasts by capture-ELISA (mean±s.d.; n =5;
∗P< 0.05 and ∗∗P< 0.01). (d) Western blot analysis of β1-wt- and
β1-TT/AA-expressing cells treated with either proteasome (MG132) or

lysosome inhibitor (chloroquine) for 20 h. Actin served as a loading control.
(e,f) Degradation of cell-surface integrins was determined by biotinylating
cell-surface proteins and incubating for the indicated time points, followed
by biotin pulldown and western blot analysis (e) or quantification by
capture-ELISA (f) (mean± s.d.; n = 4; ∗∗∗P< 0.0001). (g) Lysosomal
inhibition by bafilomycin prevents degradation of β1 TT/AA integrin.
Degradation was measured by surface biotinylation and incubation of the
cells for 14 h in the presence or absence of bafilomycin. (h) Degradation
of β1-integrin mutants (wt, TT/AA, Y783A and Y795A) was determined by
biotinylating cell-surface proteins and incubating for 0 h and 15h, followed
by biotin pulldown and western blot analysis. All P values, Student’s t -test.
Uncropped images of blots are shown in Supplementary Fig. S6.

pulse labelled with [35S]methionine/cysteine. Owing to the higher
β1-TT/AA-integrin mRNA levels, β1 TT/AA cells expressed more
immature β1 integrin in the initial pulse-labelling phase; however, the
immature,Mr105K-sized β1-integrin polypeptide disappeared in both
cell types with the same kinetics, indicating that the TT/AA mutation
does not affect the initial processing of the β1 polypeptide (Fig. 2a).
The increased ratio between the Mr105K- and the Mr125K-sized β1
polypeptides in β1 TT/AA fibroblasts and the increased persistence
of the Mr125K β1 wt polypeptide indicated marked differences in
β1 TT/AA turnover. As integrin turnover is affected by intracellular
trafficking, we compared β1 wt and β1 TT/AA internalization and
recycling by surface labelling with cleavable biotin. Whereas β1 wt
and β1 TT/AA integrins internalized with the same kinetics, the TT/AA
substitutions showed a decreased recycling rate back to the plasma
membrane (Fig. 2b,c). The similar time constant at the start of recycling
together with the significantly different plateaux of recycled β1 wt and

β1 TT/AA integrins indicates that the recycling machinery is normal
whereas the number of recycling integrins (reflected by the different
plateaux) is lower in β1-TT/AA-expressing cells.
To determine whether reduced recycling of β1 TT/AA to the cell

surface results from increased degradation, we treated β1 wt and
β1 TT/AA fibroblasts with the lysosomal inhibitor chloroquine or
the proteasomal inhibitor MG132. Lysosome inhibition rescued the
mature β1 TT/AA to wt levels and stabilized the corresponding
α5 subunit, whereas proteasome inhibition had no effect on β1
TT/AA and α5 stability (Fig. 2d). We also determined the degradation
kinetics of the surface β1 integrins by surface labelling of β1 wt
and β1 TT/AA cells with biotin, followed by the measurement of
biotinylated proteins after pulldown with streptavidin beads and
immunoblotting or capture enzyme-linked immunosorbent assay
(ELISA).Whereas β1 wt was slowly degraded with an estimated half-life
of over 20 h, degradation of β1 TT/AA occurred quickly with a 4–5 h
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Figure 3 Kindlin-2-dependent regulation of β1-integrin surface levels.
(a) β1 surface expression in β1-wt- and β1-TT/AA-expressing fibrob-
lasts after overexpression of Kindlin-2–eGFP determined by FACS
(mean ± s.d.; n = 11; ∗∗∗P < 0.0001; ns, not significant). (b) β1
surface levels in control (Kind (f/f)) and Kindlin-1 and -2 double
null (Kind(−/−)) fibroblasts determined by FACS (mean± s.d.; n = 3;
∗∗∗P< 0.0001). (c) Western blot analysis of cell lysates from platelets,
keratinocytes and Kind (−/−) fibroblasts with antibodies against the three
Kindlin family members. Actin and GAPDH served as loading control.
(d,e) Quantification of β1-integrin internalization (d) and recycling (e) in

β1 wt and β1 TT/AA cells with and without Kindlin-2–eGFP overexpression
by capture-ELISA (mean± s.e.m.; n = 8 (d) and n = 10 (e)). (f,g) Quan-
tification of surface β1-integrin stability in Kindlin-2–eGFP-overexpressing
(f) and Kind(−/−) cells (g). Degradation of cell-surface β1 integrin was
determined by biotinylating cell-surface proteins and incubating for the
indicated time points, followed by capture-ELISA (mean± s.d.; n = 4
(f); n = 3 (g); ns, not significant). (h) β1-integrin mRNA expression
in Kindlin-2–eGFP-overexpressing fibroblasts measured by quantitative
real-time PCR (n=2). All P values, Student’s t -test. Uncropped images of
blots are shown in Supplementary Fig. S6

half-life (Fig. 2e,f). This was specific to β1 integrin as the degradation
rates of β3 integrin and the transferrin receptor (Tfr) were similar
in both cell types (Fig. 2e). Furthermore, bafilomycin rescued the
degradation of biotinylated β1 TT/AA, confirming that the instability of
β1 TT/AA results from lysosomal degradation (Fig. 2g). To determine
whether the β1-tail NxxY motifs are also required for β1-integrin
stability, we expressed β1 Y783A and β1 Y795A integrins in β1-null
cells. Biotinylated β1 protein was detectable after 15 h in β1-wt- and
β1-Y783A-expressing cells, but was almost completely degraded in
β1-TT/AA- and β1-Y795A-expressing cells (Fig. 2h).
These experiments indicate that the TT788/789 and distal NxxY

sequence control turnover of surface β1 integrins.

Kindlin-2 regulates β1 surface levels by controlling β1-integrin
mRNA levels
As the TT788/789 and the membrane-distal NxxY motif in β1 integrin
tails are required for Kindlin binding6,9,16, we investigated whether

disrupting this interaction was responsible for the reduced β1 TT/AA
surface levels, recycling and stability. As reported, overexpression of
Kindlin-2–eGFP inβ1 wt cells significantly increasedβ1-integrin surface
levels17, but not in β1-TT/AA-expressing fibroblasts, probably because
their mRNA levels are already upregulated (Fig. 3a). Conversely,
β1-integrin surface levels were significantly diminished in fibroblasts
lacking the kindlin-1 and -2 genes (Fig. 3b,c). Despite increased β1 sur-
face levels in Kindlin-2-overexpressing cells, internalization, recycling
(Fig. 3d,e) and stability of surface β1 integrins were normal (Fig. 3f).
Furthermore, the degradation of surface β1 integrins was unchanged in
fibroblasts lacking Kindlin-1 and -2 (Fig. 3g). Instead, the β1-integrin
mRNA levels were increased in Kindlin-2–eGFP-overexpressing cells
(Fig. 3h). Internalization and recycling assays could not be performed
with cells lacking Kindlin-1 and -2, as their adhesion to ECM substrates
was very weak and cells were lost during the assays. Collectively, these
data show that Kindlin-2 increases β1-integrin surface expression
primarily by upregulating β1-integrinmRNA levels.
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SNX17 interacts with the TT788/789–Y795 motif of the β1
cytoplasmic domain
To understand how TT788/789 and the membrane-distal NxxY
motif regulate recycling, stability and surface expression of β1
integrins, we screened for new β1-tail-interacting protein(s) using
stable isotope labelling by amino acids in cell culture18 (SILAC)
followed by pulldown experiments with synthesized full-length β1 wt,
β1 TT/AA cytoplasmic domain or scrambled peptides (to identify
nonspecific interactors) and mass-spectrometry-based proteomics19.
Among proteins with high light-to-heavy isotope ratios indicative
for specific binding, were known β1-tail-interacting proteins such as
Talin-1, Talin-2, Kindlin-2, Dab2 and ILK, and also SNX17 (Fig. 4a
and Supplementary Table S1). Only four of these proteins failed to bind
when compared with a β1-TT/AA-integrin tail, and of those Kindlin-2
and SNX17 showed the highest ratios (Fig. 4a). SNX17 belongs to
the sorting nexin (SNX) family of adaptor proteins whose hallmark
is a phox-homology (PX) domain known to mediate association
with phosphatidylinositol-3-monophosphate (PtdIns(3)P)-enriched
endosomes20. Similarly to Talin and Kindlin, SNX17 contains a FERM
domain with a QWmotif in the F3 subdomain required in Talin and
Kindlin for binding the β1 tail7,20,21. SNX17 has been implicated in
endocytic trafficking of transmembrane proteins including low-density
lipoprotein receptor family members LDLR and LRP1 (refs 22–24),
P-selectin25 and APP (ref. 26).
Consistent with the proteomic data, SNX17 and Kindlin-2 were

readily detected in peptide pulldowns with β1 wt but not with
β1 TT/AA, β1 Y795A, α5 or scrambled peptides (Fig. 4b). To
determine whether SNX17 directly interacts with the β1-integrin
tail, we performed integrin-tail-peptide-pulldown experiments with
recombinant wt GST–SNX17 or GST–SNX17 with a mutated QW
motif (GST–SNX17QW/AA). These experiments revealed that SNX17
binds directly to β1 wt but not β1 TT/AA, β1 Y795A or scrambled
peptides and showed that the interaction is specific because a QW
mutation in the F3 subdomain of SNX17 abolished binding (Fig. 4c).
SNX17 and Kindlin-2 share the binding site on the β1-integrin tail
and compete for β1-integrin-tail binding in vitro (Supplementary
Fig. S3a). However they do not co-localize in living cells, indicating
that they interact with the β1 tail in different subcellular compartments
(Fig. 4d). Co-localization studies in living cells revealed that SNX17
partially overlapped with the early endosomal antigen-1 (EEA1),
an early endosome marker, as well as with the Tfr, a recycling
endosomemarker (Fig. 4e, and Supplementary Fig. S3b). No significant
co-localization was observed with the lysosomal acid membrane
protein 1 (Lamp1) and Rab7 (Fig. 4f and Supplementary Fig. S3c,d).
Owing to the lack of suitable antibodies, we employed live-cell
microscopy to show co-localization of eGFP-tagged SNX17 with
antibody-labelled internalized β1 integrins (Fig. 4g) and with α5
integrin–eGFP (Supplementary Fig. S3e). We also observed co-
localization of SNX17–eGFP with β1 TT/AA-positive endosomes
(Supplementary Fig. S3f), which is probably due to the binding
of the PX domain to endosomal lipids. 9EG7 antibody labelling
revealed the presence of active β1 wt integrins in focal adhesions but
not in SNX17–eGFP-positive endosomes (Supplementary Fig. S3g),
suggesting that SNX17-bound β1 integrins are in a low-affinity
state. To demonstrate interactions of the endogenous proteins, we
surface labelled β1 integrins, enriched the endosomal β1-integrin

pool by inhibiting recycling with primaquine27 and co-precipitated
labelled β1 wt integrins with endogenous SNX17 (Fig. 4h). The
interaction was lost in cells expressing β1 TT/AA integrins (Fig. 4h).
These findings show that SNX17 is a β1-integrin-tail-binding protein,
that the interaction occurs in endosomes and that the SNX17 and
Kindlin-binding site overlap.

SNX17 is required for β1-integrin recycling and stabilization
To determine whether SNX17 regulates β1-integrin trafficking and/or
degradation we depleted SNX17 by short interfering RNA (siRNA)
transfection or by short hairpin RNA (shRNA) retroviral expression
(shSNX17-1 and shSNX17-2). SNX17 depletion decreased the mature
β1-integrin pool in whole-cell lysates (Fig. 5a) and reduced the β1
wt surface levels by 40% (Fig. 5b). Bafilomycin treatment rescued
the mature β1-wt-integrin pool, indicating enhanced lysosomal
degradation in SNX17-depleted cells (Fig. 5a). Immunoblotting and
capture ELISA of surface-biotinylated β1 integrins from control (shCtr)
and SNX17-depleted fibroblasts confirmed that β1 wt integrins were
degraded in the absence of SNX17 (Fig. 5c,d and Supplementary
Fig. S4a). The increased β1-integrin degradation was specific, as the
stability of the Tfr and of the SNX17-binding-deficient β1 TT/AA
integrin were unaffected by SNX17 downregulation (Fig. 5c and
Supplementary Fig. S4b). Expression of shRNA-resistant wt SNX17
restored stability and β1-integrin surface levels in SNX17-depleted
cells, whereas SNX17QW/AA did not (Fig. 5d–f and Supplementary
Fig. S4a). Similarly to β1 TT/AA cells, β1-wt-integrin internalization
was normal in SNX17-depleted cells (data not shown), whereas
recycling to the cell surface was significantly impaired (Fig. 5g).
Thus, SNX17 promotes recycling of β1 integrins and prevents
their degradation.
To monitor β1 wt trafficking in control and SNX17-depleted cells

and β1 TT/AA trafficking along the endocytic pathway, we labelled
surface β1 integrins with an antibody before internalization. At
10min after internalization, β1 wt- and β1 TT/AA-positive puncta
were evenly distributed in the cytoplasm and localized to the early
endosomal compartment (Supplementary Fig. S4c). At 30min, the
internalized β1 wt signal level in control cells was reduced, indicating
that β1 wt efficiently recycled to the cell surface. In contrast,
β1 TT/AA and β1 wt in SNX17-depleted cells co-localized with
Lamp1-positive lysosomes (Supplementary Fig. S4c), supporting the
observation that the β1-tail/SNX17 interaction prevents routing of β1
integrin into the lysosome.
To investigate whether SNX17 controls recycling or degradation

of β1 integrins, we performed recycling assays of β1 wt in
SNX17-depleted cells and of β1 TT/AA in the presence and
absence of bafilomycin. Bafilomycin treatment rescued the recycling
rates and the surface levels of β1 TT/AA and β1 wt in SNX17-
depleted cells (Fig. 5h and Supplementary Fig. S4d,e). Moreover,
internalized β1 TT/AA and β1 wt in SNX17-depleted cells no
longer accumulated in the late endosome/lysosome compartments
30min after internalization (Supplementary Fig. S4c). These findings
were corroborated by substituting all lysine residues of the α5
and β1 tails with arginines (β1 8xKR±TT/AA; α5 4xKR) to inhibit
ubiquitylation and ESCRT-mediated lysosomal degradation. The
lysine to arginine substitutions did not affect integrin internalization
(data not shown). However, expression of the β1 8xKR+TT/AA
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Figure 4 SNX17 requires TT788/789 for β1-integrin-tail binding. (a) Scatter
plot of β1-wt-tail peptide versus scrambled-peptide pulldown results. The
log2 SILAC ratio of proteins identified with at least 2 unique peptides in
each mass spectrometry run is plotted as the forward pulldown (x axis)
against the reverse labelling pulldown (y axis). Specific interaction
partners show inverse ratios between forward and reverse experiment,
grouping them into the upper left quadrant. Red dots indicate those
proteins that failed to bind to the β1-TT/AA-tail peptide in a separate
experiment. (b) Western blot showing Talin-1, Kindlin-2 and SNX17
binding to the biotinylated peptides indicated. Wcl, whole-cell lysate.
(c) Streptavidin-bead pulldown assay with the indicated biotinylated
β1-integrin cytoplasmic tail peptides and recombinant GST-tagged SNX17
or a GST-tagged SNX17QW/AA. (d) SNX17–mCherry-expressing cells
were transfected with Kindlin-2–eGFP and fluorescence distribution was

determined in living cells by spinning-disc confocal microscopy. Stills
of movies are shown. (e,f) Immunostaining of SNX17–eGFP-expressing
cells with EEA1 (e) and Lamp1 (f) antibodies. Nuclei were counterstained
with DAPI (blue). Correlation coefficient 0.300 ± 0.116 (EEA1),
−0.457 ± 0.141 (Lamp1); mean± s.d.; n = 44 (e); n = 25 (f).
(g) Localization of endogenous β1 integrin after surface labelling
with an anti-β1-integrin antibody and internalization for 15min in
SNX17–eGFP-expressing cells. The fluorescence intensity was determined
in living cells by spinning-disc confocal microscopy. A still of a movie is
shown. (h) Co-immunoprecipitation of endogenous β1 integrin and SNX17
from β1-wt- and β1-TT/AA-expressing cells pre-treated with or without
primaquine. Wcl, whole-cell lysate. Scale bars, 20 µm. In d–g, lower
panels show an enlargement of the area indicated by the white rectangle.
Uncropped images of blots are shown in Supplementary Fig. S6.

together with α5 4xKR rescued the instability and recycling rates
induced by the TT/AA mutation (Fig. 5i,j). Expression of the β1
8xKR+TT/AA along with the α5 wt was not sufficient to fully stabilize
the TT/AA mutation, indicating that ubiquitylation of either the
α5 or the β1 subunit can mediate α5β1 degradation (Fig. 5i). Thus,
SNX17 primarily functions to prevent β1-integrin degradation and not
β1-integrin recycling.

SNX17 is an important regulator of integrin-mediated
cell functions
As Kindlin and SNX17 share the β1-tail-binding site, mutations in
this site affect Kindlin- and SNX17-mediated functions. To determine
whether SNX17 influences integrin-mediated functions, we analysed
cell spreading and migration in SNX17-depleted cells. Indeed, β1-
TT/AA- and β1-Y795A-expressing cells and SNX17-depleted fibroblasts
did not spread to the same extent as β1 wt cells (Fig. 6a and
Supplementary Movie S1) and were less motile in single-cell migration

assays (Fig. 6b and Supplementary Movie S2). Scratch-wound assays
confirmed the decreased cell velocity of β1-TT/AA-expressing and
SNX17-depleted cells and indicated a higher persistence when
compared with β1 wt fibroblasts (Fig. 6c). Fibroblasts lacking β1
integrins barelymigrated under these conditions (Fig. 6b,c). Expression
of shRNA-resistant wt SNX17 in SNX17-depleted cells rescued the
spreading and migration defects, whereas SNX17QW/AA did not
(Fig. 6a,b). Despite these differences, focal adhesion size and F-actin
distribution were not significantly altered in cells expressing β1 TT/AA
integrins or lacking SNX17 (Supplementary Fig. S5). Interestingly,
expression of β1 8xKR±TT/AA+ α54xKR restored cell spreading
but not cell migration (Fig. 6d,e). Thus, SNX17 modulates several
integrin-mediated functions in fibroblasts.

DISCUSSION
The present study identified a spatiotemporally controlled series of
β1-integrin/protein interactions in which the TT788/789 and the
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Figure 5 Depletion of SNX17 reduces surface levels of β1 integrins.
(a) Western blot analysis of control (siCtr) or two siSNX17-transfected cells
(siSNX17-1 and siSNX17-2) treated with or without bafilomycin for 20 h.
Actin served as loading control. (b) Quantification of β1 surface levels in
control and SNX17-depleted cells determined by FACS (mean±s.d.; n =9;
∗∗∗P<0.0001). (c,d) Degradation of cell-surface integrins was determined
by biotin pulldown and western blot analysis (c) or capture-ELISA (d)
(mean± s.d.; n = 5). SNX17 levels in the shSNX17-2 knockdown cell
line were restored by re-expressing either siRNA-insensitive wt SNX17 or
SNX17QW/AA. (e) Western blot analysis of cell lysates derived from the
indicated β1-integrin-expressing and SNX17-depleted cells. SNX17 levels
were restored in the SNX17-depleted cell lines by re-expressing either
siRNA-insensitive wt SNX17 or SNX17QW/AA. (f) β1-integrin surface levels
in SNX17-depleted cells were restored by re-expressing siRNA-insensitive

wt SNX17 but not with SNX17QW/AA (mean±s.d.; n=3; ∗∗P=0.0079; ns,
not significant). (g) Quantification of β1-integrin recycling in SNX17-depleted
cells by capture-ELISA (mean± s.e.m.; n = 7; ∗∗∗P< 0.0008). Note the
strong reduction in the level of β1-integrin recycling after SNX17 depletion.
(h) β1-integrin recycling is restored to wt levels in β1 TT/AA cells treated with
bafilomycin. The quantity of biotinylated β1 integrin remaining within the
cells was determined by capture-ELISA using β1-integrin-specific antibodies
(mean± s.e.m.; n = 3). (i) Quantification of the stability of cell-surface
β1 integrins by capture-ELISA. The indicated cell lines were surface
biotinylated and incubated under starving conditions (mean±s.d.; n =3).
(j) Quantification of β1-integrin recycling determined by capture-ELISA.
Cells express either α5 wt and β1 wt or α5β1 with K> R-mutant tails
(mean±s.e.m.; n=4). All P values, Student’s t -test. Uncropped images of
blots are shown in Supplementary Fig. S6.

membrane-distal NxxY motif of the β1-integrin tail control the
functions of β1 integrins at the plasma membrane and subsequently
their sorting from early endosomes back to the plasma membrane.
Kindlins bind these motifs with the F3-FERM subdomain and the
plasma membrane with the PH domain and promote β1-integrin
activity and linkage to actin dynamics28,29. Following internalization,
β1 integrins release Kindlins from their tails and are transferred
into early endosomes where the free Kindlin-binding site recruits
SNX17, which prevents β1-integrin routing to lysosomes (Fig. 6f).
Thus, the consecutive usage of the Kindlin-binding site first by
Kindlins at the plasma membrane and then by SNX17 at early

endosomes could couple integrin function with integrin quality
control. If so, one would predict that a major role of integrin
internalization and recycling is to sort functional integrins for re-use
and non-functional integrins (for example, damaged by actomyosin-
mediated tension) for degradation.
SNX17 is a member of the SNX family of proteins, which contain a

PX domain that serves as a phosphoinositide-binding motif to aid SNX
recruitment to phosphoinositide-enriched endosomal membranes30.
SNX17 harbours the characteristic PX domain at the amino terminus
and a FERM domain at the carboxy terminus, which binds NPxY
motifs with its phosphotyrosine (PTB)-related F3 subdomain20. The
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Figure 6 SNX17 is required for β1-integrin function. (a) Quantification
of spreading area of the indicated cell lines (mean± s.e.m. of
two independent experiments, n = 40 cells). (b) Quantification of
single-cell migration velocity of the indicated cell lines extracted from
time-lapse microscopy recordings by single-cell tracking (mean± s.d.
of three independent experiments, n = 82 cells; ∗∗∗P< 0.0001; ns,
not significant). (c) Migration analysis of β1 wt, β1 (−/−), β1 TT/AA
and SNX17-depleted cells in a scratch assay by time-lapse video
microscopy. The movement of individual cells into the wound was
followed using cell-tracking software and representative trajectories
are shown (left panels). The speed (distance migrated per minute;
upper right) and persistence of migration of cells (lower right) were
quantified from the track plots (means±s.d. of 52 cells analysed in six
individual wounds of two independent experiments; ∗∗∗P< 0.0001; ns,
not significant). (d) Quantification of spreading area of the indicated

cell lines (mean±s.e.m. of two independent experiments, n =40 cells).
(e) Quantification of single-cell migration velocity of the indicated cell
lines extracted from time-lapse microscopy recordings by single-cell
tracking (mean± s.d. of three independent experiments, n = 60 cells;
∗∗∗P< 0.0001; ∗P< 0.0325). All P values, Mann–Whitney U -test.
(f) Model of serial Kindlin and SNX17 binding to the β1-integrin
cytoplasmic domain to regulate integrin affinity and trafficking. Kindlins
bind the β1-integrin tail with their FERM domain and to PIP2/PIP3
in the plasma membrane (red) with their PH domain to regulate the
ligand affinity of integrins. Following integrin internalization, Kindlins
are dislodged and SNX17 is recruited to the unoccupied Kindlin-binding
site in the β1 tail in endosomes to prevent β1-integrin degradation and
to promote their recycling back to the cell surface. The β1-tail/SNX17
interaction in endosomes is supported by the interaction of the SNX17
PX domain with PtdIns(3)P enriched in endosomal membranes (blue).

recruitment of SNX17 to NPxY motifs was shown to be required for
turnover of several transmembrane proteins including the low-density
lipoprotein receptor22,23 (LDLR), LDLR-related protein 1 (LRP1;
refs 24,31), P-selectin25,32 and the amyloid precursor protein (APP;
ref. 26). However, whether SNX17 promotes their trafficking to
the plasma membrane or prevents their degradation is still unclear.
We found that inhibition of lysosomal degradation restored β1
TT/AA recycling rates, indicating that the primary function of
SNX17 binding to β1-integrin tails is to prevent their degradation
rather than to promote recycling (Fig. 6f). How SNX17 inhibits
lysosomal degradation of β1 integrin is unclear and needs to be
addressed in future. One possibility is that SNX17 prevents integrin
sorting into inner vesicles of multi-vesicular bodies, a pre-requisite
for degradation by the lysosome, for example by recruiting a

deubquitinase that removes ubiquitin moieties from integrin tails
required to interact with components of the ESCRT machinery33.
Alternatively, it is possible that SNX17 prevents access of the ESCRT
machinery to β1 integrins.
The lethality of the β1 TT/AA and distal Y795A mice results

from a combination of functional impairments including defective
integrin activation, abnormal actin dynamics and decreased integrin
recycling. The reduced adhesion, spreading and migration of SNX17-
depleted cells indicate that β1 functions are severely impaired when
their degradation rate is not controlled by SNX17. The reduced
β1-TT/AA-integrin surface levels may also affect other functions
including surface expression and signalling of growth factor receptors,
co-internalization and re-secretion of fibronectin, and maybe other
ECM proteins11,34. �
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METHODS
Methods and any associated references are available in the online
version of the paper at www.nature.com/naturecellbiology

Note: Supplementary Information is available on the Nature Cell Biology website
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METHODS
Mouse strains. The targeting constructs with the β1-integrin threonine-to-alanine
mutation in positions 788 and 789 (β1 TT/AA) and the tyrosine-to-alaninemutation
in position 795 (β1 Y795A) were generated as previously described35. All animal
studies were approved by the Regierung von Oberbayern.

Antibodies. The following antibodies were used for western blotting (WB) and
immunofluorescence (IF): actin (A-2066, Sigma; 1:3,000 for WB), β1 integrin
(MAB1997, MB1.2, Chemicon; 1:400 for IF), β3 integrin (04-1060, EP2417Y,
Millipore; 1:1,000 for WB), β-catenin (C2206, Sigma; 1:800 for IF), E-cadherin
(13-1900, ECCD-2, Zymed; 1:200 for IF), laminin111 (ab30320, Abcam: 1:400
for IF), EEA1 (610457, BD Transduction Laboratories; 1:100 for IF), GAPDH
(CB1001, 6C5, Calbiochem; 1:5,000 for WB), Kindlin-2 (K3269, Sigma; 1:1,000
for WB), Lamp1 (provided by L. Huber, Medical University Innsbruck, Austria;
1:100 for staining), paxillin (610051, 349, BD Transduction Laboratories), SNX17
(10275-1-AP, Proteintech; 1:1,000 for WB), Talin-1 (T3287, 8d4, Sigma; 1:1,000 for
WB), Tfr (13-6,800, H68.4, Invitrogen, 1:1,000 for WB) and ubiquitin (3936, P4D1,
Cell Signaling; 1:1,000 for WB). Kindlin-1 (1:5,000 for WB), Kindlin-3 (1:5,000 for
WB) and β1-integrin (1:10,000 for WB) antibodies used for western blotting are
home-made36,37. Phalloidin (A12379 and A22287, Molecular Probes; 1:400 for IF)
was used to stain F-actin. DAPI (Sigma) was used to stain nuclei.

The following antibodies were used for flow cytometry: β1-integrin PE (102207,
HMβ1-1, BioLegend; 1:400), β1-integrin biotin (555004, Ha2/5, BD Pharmingen;
1:400), β1-integrin 9EG7 (550531, 9EG7, BD Pharmingen; 1:100), β3-integrin PE
(12-0611, 2C9.G3, eBioscience; 1:400), β4-integrin PE (MCA2369, 346-11A, Serotec;
1:400), α2-integrin FITC (554999, Ha1/29, BD Pharmingen; 1:400), α5-integrin PE
(557447, 5H10-27, BD Pharmingen; 1:400), α5-integrin biotin (557446, 5H10-27,
BD Pharmingen), α6-integrin PE (555736, GoH3, BD Pharmingen) and αv-integrin
PE (551187, RMV-7, BD; 1:400).

Plasmids and constructs. Point mutations into the β1-integrin (TT788/789AA,
Y783A, Y795A, 8xKR (K752R, K765R, K768R, K770R, K774R, K784R, K794R,
K798R), 8xKR+TT788/789AA), α5-integrin (4xKR (K1022R, K1027R, K1038R,
K1042R)) and SNX17 (QW360/361AA) cDNA were introduced by site-directed
mutagenesis. For stably expressing the β1-integrin cDNAs (wt, TT788/789AA,
Y783A, Y795A, 8xKR, 8xKR+TT/AA), the human α5 integrin (wt, 4xKR, α5–eGFP)
and the mouse SNX17 (wt, Flag-tagged, eGFP-tagged and mCherry-tagged),
we used the retroviral expression vector pCLMFG or pLZRS. For recombinant
expression of GST-tagged SNX17, wt SNX17 and SNX17QW360/361AA, cDNA
was cloned into the pGEX-6P-1 vector (GE Healthcare). Lamp1–mRFP and
Rab7–mRFP vectors were obtained from J. Norman (Beatson Institute, Glasgow,
UK), and Rab5a–GFP was provided by L. Huber (Medical University Innsbruck,
Austria) and transiently expressed by transfection with Lipofectamine 2000
(Invitrogen).

For stably depleting SNX17 expression, shRNA target sequences were introduced
into the pSuper.Retro vector (OligoEngine) to produce retroviral particles: 5′-
GTACATGCAAGCTGTTCGG-3′ (shSNX17-1), 5′-GATTGTGCTCAGAAAGAGT-
3′ (shSNX17-2).

To obtain a GFP-tagged Kindlin-2, the Kindlin-2 cDNA (ref. 36) was ligated
in frame with the GFP using sequence- and ligation-independent cloning38. The
CAG promoter, GFP fusion and SV40 polyA were flanked by ITR elements; thus,
co-transfection of this construct with a sleeping beauty SB100x expression vector39

resulted in transposase-mediated genomic integration of this DNA sequence.

Cell lines. Heterozygous β1 TT/AA mice were intercrossed with homozygous
β1-floxed mice and mouse embryonic fibroblasts were isolated from E9.5 embryos,
immortalized with the SV40 large T antigen and cloned before deletion of the floxed
β1-integrin allele by adenoviral Cre transduction. Disruption of the β1 allele and
expression of the β1 TT/AA were checked by PCR. To generate β1-null rescue cell
lines, β1 wt or β1 mutant variants were virally re-expressed in β1-null fibroblasts
derived from floxed β1 parental cells.

Fibroblasts homozygous for floxed kindlin-1 and -2 genes were isolated from
kidneys of 21-day-old double-floxed mice (whose generation will be described
elsewhere), immortalized as described above and cloned. To obtain Kindlin-1 and
-2 double-null cells, the floxed kindlin alleles were removed by adenoviral Cre
transduction.

Transient and stable transfection/transduction. Cells were transiently trans-
fected with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
protocol. To generate stable cell lines, VSV-G pseudotyped retroviral vectors
were produced by transient transfection of HEK293T (human embryonic kidney)

cells. Viral particles were concentrated from cell culture supernatant as described
previously40 and used for infection.

Embryo isolation and histological analysis. For whole-mount analysis, staged
embryos (E6.5 to E9.5) were dissected in ice-cold PBS. For histological analysis,
decidua swellings were isolated, fixed in 4%paraformaldehyde (PFA) and embedded
in paraffin. Sections were stained with haematoxilin and eosin or antibodies as
indicated.

Whole-mount immunohistochemistry. Embryoswere dissected in cold PBS and
fixed in 4% PFA for 2 h at 4 ◦C. Samples were incubated in 0.5% NP-40/PBS for
20min and in PBSST (0.1% Triton X-100 and 5% BSA in PBS) for 2 h at 4 ◦C
and then incubated with the primary and secondary antibody, both overnight at
4 ◦C. Nuclei were stained with DAPI solution for 30min. Finally, embryos were
dehydrated by increasingmethanol concentrations, cleared in benzyl alcohol/benzyl
benzoate (1:2) and imaged with a confocal microscope (DMIRE2; Leica) using Leica
Confocal Software (version 2.5 Build 1227). After imaging, embryoswere rehydrated
for genotyping.

ES cells and embryoid bodies. ES cells were isolated and cultured as previously
described41. Embryoid bodies were generated as described previously41.

Metabolic labelling. Cells were grown overnight to 80% confluency and incubated
for 30min at 37 ◦C in methionine/cysteine-free labelling media containing 10%
dialysed FBS. For pulse labelling, the cells were incubated for 30min at 37 ◦C
in labelling medium containing [35S]methionine/cysteine (200 µCi/10 cmplate,
EasyTag Express 35S Protein Labeling Mix, PerkinElmer). After labelling, the cells
were either immediately collected (time 0) or chased for 4 h, 8 h and 22 h in regular
growth medium containing 10% FBS. Cells were lysed in immunoprecipitation
buffer (50mM Tris–HCl (pH 7.5), 150mM NaCl, 1% Triton X-100, 0.1% sodium
deoxycholate, 1mM EDTA and protease inhibitors) and cleared by centrifugation.
For β1 immunoprecipitation, lysates were first incubated with β1 antibodies for 1 h
on ice followed by incubation with protein G Sepharose (Sigma) for 2 h at 4 ◦C with
gentle agitation. After several washes with lysis buffer, proteins were eluted from the
beads by boiling with Laemmli sample buffer and subjected to SDS–PAGE. The gels
were fixed, dried and exposed to film.

Turnover of surface integrins. The half-life of surface proteins was determined
by biotinylation. Briefly, fibroblasts were grown to 80% confluence, washed twice
in cold PBS and surface biotinylated with 0.2mgml−1 sulpho-NHS-LC-biotin
(Thermo Scientific) in PBS for 45min at 4 ◦C. Following washes with cold PBS,
the cells were incubated in regular growth medium for 0, 5, 10 and 15 h at 37 ◦C.
Cells were lysed in immunoprecipitation buffer and biotinylated proteins were
pulled down with streptavidin–Sepharose (GE Healthcare). After three washes
with lysis buffer, samples were analysed by SDS–PAGE and western blotting. For
capture-ELISA, cells were lysed in a low volume of lysis buffer (75mMTris, 200mM
NaCl, 7.5mM EDTA and 7.5mM EGTA, 1.5% Triton X-100, 0.75% Igepal CA-630
and protease inhibitors).

Integrin-trafficking assays. Integrin-trafficking assays were performed as de-
scribed previously42.

Capture ELISA. Maxisorb 96-well plates (Life Technologies) were coated
overnight with anti-β1-integrin antibody (MAB1997, Chemicon; 1:250) in
carbonate buffer at 4 ◦C. Unspecific binding was blocked by 5% BSA in PBS/0.1%
Tween-20 (PBS-T) for 1–2 h at room temperature before adding 50 µl cell lysate
for incubation overnight at 4 ◦C to capture integrins. Following extensive washes
with PBS-T, plates were incubated with streptavidin–HRP in 1% BSA in PBS-T
for 1 h at 4 ◦C. Biotinylated β1 integrin was detected after several washing steps by
chromogenic reaction with ABTS peroxidase substrate (Vector Laboratories).

Selective immunoprecipitations. Selective isolation of β1 integrins on the cell
surface and in endocytic vesicles was achieved by cell-surface immunoprecipitation.
Cell-surface β1 integrins of live cells were labelled with a rabbit anti-β1-integrin anti-
body (home-made; 1:1,500) for 1 h on ice. After two washes with ice-cold PBS to re-
move unbound antibody, cells were incubated for 20min inmediumwith orwithout
0.5mMprimaquine to inhibit integrin recycling to the cell surface42. Cells were then
washed twice with PBS, lysed in immunoprecipitation buffer and cleared by centrifu-
gation.β1-integrin immune complexeswere pulled downby incubationwith protein
G Sepharose (Sigma) for 2 h at 4 ◦C with gentle agitation. After several washes with
lysis buffer, proteins were subjected to SDS–PAGE and western blot analysis.
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SILAC-based peptide pulldowns. Pulldowns were performed as described
previously43 with β1 wt cytoplasmic tail peptides (758–598: HDRREFAKFEKEKM-
NAKWDTGENPIYKSAVTTVVNPKYEGK-OH), β1 TT/AA tail peptide (HDR-
REFAKFEKEKMNAKWDTGENPIYKSAVAAVVNPKYEGK-OH), β1 Y795A tail
peptide (HDRREFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKAEGK-OH), a
scrambled peptide (EYEFEPDKVDTGAKGTKMAKNEKKFRNYTVHNIWESRK-
VAP-OH) and α5 peptide (KLGFFKRSLPYGTAMEKAQLKPPATSDA-OH). All
peptides were desthiobiotinylated. Before use, peptides were immobilized on 75 µl
Dynabeads MyOne Streptavidine C1 (10mgml−1, Invitrogen).

After cell-lysate generation and incubation with tail peptides, proteins were
eluted and precipitated as described previously43. The protein pellet was dissolved
in SDS–PAGE sample buffer and separated on a 4–15% gradient SDS–PAGE gel.
The gel was stained with Coomassie blue using the GelCode Blue Safe Protein Stain
reagent (Thermo Scientific) and used for mass analysis.

Expression and purification of recombinant proteins. Plasmids encoding
GST–SNX17 or GST–SNX17QW/AA were transformed into BL21(DE3) Arctic
Express Escherichia coli, and protein expression was induced with 1mM IPTG.
Afterwards, cells were pelleted, lysed and centrifuged. Supernatants were incubated
with glutathione Sepharose beads (GST-binding resin, Novagen) and GST-tagged
proteins were eluted according to the manufacturer’s instruction.

Plasmid coding for His-tagged Kindlin-2 was transformed into BL21 T1 pRARE
bacteria. Supernatants were generated as described above, incubated with His-Select
Ni Affinity gel (Sigma) and His-tagged Kindlin-2 was eluted and subjected to gel
filtration for further purification.

For pulldowns, synthetic peptides were immobilized on 20 µl Dynabeads MyOne
Streptavidine C1 (10mgml−1, Invitrogen) for 3 h at 4 ◦C, incubated with 2% BSA
in Mammalian Protein Extraction Reagent (Thermo Scientific) for 30min to block
unspecific binding before adding 50 ng recombinant GST-tagged SNX17 protein
and further incubation on a rotator for 2 h at 4 ◦C. For competition experiments,
50 ngGST–SNX17 and 500 ngHis–Kindlin-2 or 500 ng BSAwere incubated with the
tail peptides for 3 h at 4 ◦C. After three washes with RIPA buffer, proteins were eluted
from the beads by boiling with 80 µl SDS–PAGE sample buffer for 5min, separated
by SDS–PAGE gel and blotted with SNX17 antibody.

Quantitative PCR. RNA was isolated from cells using the RNeasy mini
kit (Qiagen) and 1 µg of total RNA was transcribed into cDNA using the
iScriptcDNA Synthesis kit (Bio-Rad). Quantitative PCR assays were per-
formed with the iCycleriQ (Bio-Rad) using SYBR green and the follow-
ing primers: β1 integrin-forward (5′-atgccaaatcttgcggagaat-3′), β1 integrin-
reverse (5′-tttgctgcgattggtgacatt-3′), β3 integrin-forward (5′-ccacacgaggcgtgaact
c-3′), β3 integrin-reverse (5′-cttcaggttacatcggggtga-3′), GAPDH-forward (5′-
tcgtggatctgacgtgccgcctg-3′), GAPDH-reverse (5′-caccaccctgttgctgtagccgtat-3′).

Immunofluorescence microscopy. For immunostaining, cells were cultured
on glass coated with 10 µgml−1 fibronectin (Calbiochem). For the detection of
endosomes, cells were fixed with 4% PFA/PBS for 15min on ice, washed with PBS
and permeabilized with 0.01% saponin/PBS for 10min on ice. Cells were blocked
with 3% BSA/PBS for 1 h followed by incubation with the primary antibody in
3% BSA/0.01% saponin/PBS overnight at 4 ◦C and secondary antibodies for 1 h
at room temperature in the dark. All other staining was performed as described
previously44.

To determine the endocytic trafficking of β1 integrins from the cell surface
by surface labelling, cells were washed with cold PBS and incubated with
an anti-β1-integrin antibody (102202, HMβ1-1, BioLegend; 1:400) for 30min
on ice. Surface-bound antibody was allowed to internalize for different times
at 37 ◦C in regular growth medium. At each time point, the samples were
washed with cold PBS and the remaining antibody at the cell surface was
removed by two acid washes (0.2M acetic acid/0.5M NaCl/PBS) for 2min on

ice. Subsequently, the cells were fixed, permeabilized and stained as described
above.

Images were collected at room temperature by confocal microscopy (DMIRE2;
Leica) with a×63/1.4 objective using the Leica Confocal Software (version 2.5, build
1227) or collected with an AxioImager Z1 microscope (Zeiss) with a ×63/1.4 oil
objective.

Time-lapse videomicroscopy of cell spreading andmigration. Cell spreading
and single-cell migration assays were done as described previously44. Cell spreading
was also measured with cells seeded on fibronectin-coated glass slides, fixed with
4% PFA at 37 ◦C at indicated time points and stained with phalloidin–Alexa488 for
F-actin. Images were taken with an AxioImager Z1 microscope (Zeiss, Germany)
with a ×20 objective and the spreading area was calculated using MetaMorph 7
(Molecular Devices) imaging software.

For single-cell migration, the acquired images were analysed using the manual
tracking plugin of ImageJ and the Chemotaxis and Migration Tool (v2.0) of the
QWT project.

Cell-wounding assays were performed with confluent monolayers of cells
cultured in fibronectin-coated 6-well dishes. Cells were serum-starved overnight
before wounds were applied with a 200 µl plastic micropipette followed by thorough
washing with PBS. Wound closure was imaged in serum-free medium at 15min
intervals overnight. The acquired images were analysed using the manual tracking
plugin of ImageJ and the Chemotaxis andMigration Tool (v2.0) of the QWTproject.

Images of live cells were recorded at 37 ◦C and 5%CO2 on a Zeiss Axiovert 200M
(Zeiss, Germany) equippedwith×10/.3,×20/.4 and×40/.6 objectives, amotorized
stage (Märzhäuser) and an environment chamber (EMBL Precision Engineering)
with a cooled CCD (charge-coupled device) camera (Roper Scientific). Image
acquisition and microscope control were carried out with MetaMorph software
(Molecular Devices).

Statistics. Statistical analysis was performed using the GraphPad Prism software
(version 5.00, GraphPad Software). Statistical significance was determined by the
unpaired t -test or Mann–Whitney U -test as indicated. Results are expressed as the
mean± s.d. unless indicated otherwise.
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Figure S1 Defects of β1 TT/AA and β1 Y795A ES cells. (a) Brightfield images 
of E7.5 embryos without implantation chamber. (b) Upper panels show 
brightfield images of EBs on the 5th day of suspension culture. Lower panels 
show cryo-sections of EBs on the 5th day of suspension culture stained for 
β1 integrin (red) and laminin111 (green). Nuclei were counterstained with 
DAPI (blue). (c) Cryo sections of EBs on the 5th day of suspension culture 
stained for β-catenin, E-cadherin, F-actin and laminin111. Nuclei were 

counterstained with DAPI (blue). (d) ES cell colonies on feeder cells. (e) 
Expression of integrin subunits on ES cells determined by FACS (mean ± 
SD; n=5; ***p (student’s t-test)≤0.0005; ns=not significant). (f) Integrin 
activation on ES cells measured by 9EG7 binding and corrected for total β1 
integrin expression (mean ± SD; n=5; **p (student’s t-test)=0.0043; ns=not 
significant). (g) Expression of β1 integrin mRNA in ES cells measured by qRT-
PCR (n=2). Scale bar, 100 µm (a, b, d), 50 µm (c).
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Figure S2 Characterization of fibroblasts expressing β1 TT/AA integrin. (a, 
b) Scheme depicting the generation of β1 wt and β1 TT/AA fibroblasts. β1 
wt and β1 TT/AA fibroblasts were either obtained by retroviral expression 
of β1 variants in β1 null cells (a) or by immortalization of fibroblasts 
from mouse embryos (b). (c, d) Surface expression of different α and β 
integrin subunits on β1 wt and β1 TT/AA fibroblasts determined by FACS 
(mean ± SD; n=6 (c); n=4 (d); *p (student’s t-test)<0.05, **p (student’s 

t-test)=0.0022, ***p (student’s t-test)<0.0001; ns=not significant). (e, 
f) β1 integrin mRNA levels determined by qRT-PCR (mean ± SD; n=3 
with two independent cDNAs; *p (student’s t-test)=0.015, **p (student’s 
t-test)=0.0032). (g) Western blot analysis of fibroblast cell lines with 
antibodies against β1 integrin and actin. (h) β1 integrin activation 
measured by 9EG7 binding and corrected for β1 integrin expression (mean 
± SD; n=4; **p (student’s t-test)=0.0097).
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Figure S3 SNX17 localization in fibroblasts. (a) Streptavidin-bead pull-
down assay with a biotinylated wild-type β1 integrin cytoplasmic tail 
peptide and recombinant GST-tagged SNX17 and His-tagged Kindlin-2. (b) 
Immunostaining of SNX17-EGFP expressing cells for Tfr (red). Nuclei were 
counterstained with DAPI (blue) (correlation coefficient 0.032 ± 0.121; 
mean ± SD of 13 cells analyzed). (c, d) SNX17-EGFP expressing cells were 
transfected with Lamp1-mRFP (c) and Rab7-mRFP (d) and the fluorescence 
distribution was determined in living cells by spinning disk confocal 
microscopy. Stills of movies are shown (correlation coefficient Rab7-mRFP 

-0.454 ± 0.106; mean ± SD of 15 cells analyzed). (e) Distribution of SNX17-
mCherry and α5 integrin-EGFP in living cells determined by spinning disk 
confocal microscopy. A still of a movie is shown. (f) Distribution of β1 TT/
AA integrins in SNX17-EGFP expressing cells after surface labeling with an 
anti-β1 integrin antibody and internalization for 15 min. Cells were fixed, 
stained and the fluorescence was determined with confocal microscopy. 
(g) Localization of active β1 integrins after surface labeling with a 9EG7 
antibody and internalization for 15 min in SNX17-EGFP expressing cells. The 
fluorescence was determined with confocal microscopy. Scale bars, 20 µM.
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Figure S4 SNX17 regulates β1 integrin surface levels. (a) Stability of 
surface β1 integrin in the indicated cell lines determined by surface 
biotinylation followed by capture-ELISA (mean ± SD; n=3). SNX17 
levels were restored in SNX17-depleted cells by re-expressing either 
siRNA-insensitive wt SNX17 or SNX17QW/AA. (b) SNX17-depleted β1 
TT/AA expressing cells were surface biotinylated and incubated for the 
indicated time points, before biotinylated proteins were pulled-down with 
streptavidin-sepharose and analyzed by western blotting. (c) Localization 
of endogenous β1 integrin after surface labeling with an anti-β1 integrin 
antibody and internalization for 10 and 30 min in β1 wt, β1 TT/AA and 

SNX17-depleted cells, respectively treated with or without bafilomycin. 
Cells either expressed Rab5a-GFP or were fixed and stained with antibodies 
against Lamp1. Nuclei were counterstained with DAPI (blue). Scale bar, 20 
µM. (d) Bafilomycin normalizes the recycling of β1 wt in SNX17-depleted 
cells. The quantity of biotinylated β1 integrin remaining within the cells 
was determined by capture-ELISA using β1 integrin specific antibodies 
(mean ± s.e.m.; n=3). (e) Quantification of β1 surface levels by FACS in 
indicated cell lines treated for 8 h with and without bafilomycin (mean ± 
SD; n=3; *p (student’s t-test)=0.0133, ***p (student’s t-test)<0.0006; 
ns=not significant).
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Figure S5 Focal adhesions and the actin cytoskeleton are not affected 
in β1 TT/AA, β1 Y795A and SNX17-depleted cells. β1 wt, β1 TT/AA, β1 
Y795A and SNX17-depleted β1 wt cells were stained with an antibody 

against paxillin (red) and fluorescently labelled phalloidin to visualize 
F-actin (green). Nuclei were counterstained with DAPI (blue). Scale bar, 
50 µM.
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Figure S6 Full scans of the key immunoblots. Boxes indicate cropped images used in the figures and numbers indicate the molecular weight.
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Figure S6 continued
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Figure S6 continued
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Supplementary Movie 1 Time-lapse video recording of spreading β1 (-/-), β1 wt β1 TT/AA, and SNX17-depleted cells on FN (pictures taken every 10 min, 
imaging period 4 hrs).

Supplementary Movie 2 Time-lapse video recording of migrating β1 wt, β1 TT/AA, SNX17-depleted cells (shSNX17) and SNX17-depleted cells rescued with 
wild-type SNX17 (shSNX17 + SNX17) on FN (pictures taken every 10 min, imaging period 6 hrs).

Supplementary Table 1 List of β1 interactors from the SILAC-based β1 wt tail peptide versus scrambled peptide pull-down. 
List of the proteins that showed an increased binding (>2.0 fold) to the β1 wt tail peptide against the scrambled peptide. Protein names, gene names, SILAC-
ratios and intensities are listed.
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Figure S1 Defects of β1 TT/AA and β1 Y795A ES cells. (a) Brightfield images 
of E7.5 embryos without implantation chamber. (b) Upper panels show 
brightfield images of EBs on the 5th day of suspension culture. Lower panels 
show cryo-sections of EBs on the 5th day of suspension culture stained for 
β1 integrin (red) and laminin111 (green). Nuclei were counterstained with 
DAPI (blue). (c) Cryo sections of EBs on the 5th day of suspension culture 
stained for β-catenin, E-cadherin, F-actin and laminin111. Nuclei were 

counterstained with DAPI (blue). (d) ES cell colonies on feeder cells. (e) 
Expression of integrin subunits on ES cells determined by FACS (mean ± 
SD; n=5; ***p (student’s t-test)≤0.0005; ns=not significant). (f) Integrin 
activation on ES cells measured by 9EG7 binding and corrected for total β1 
integrin expression (mean ± SD; n=5; **p (student’s t-test)=0.0043; ns=not 
significant). (g) Expression of β1 integrin mRNA in ES cells measured by qRT-
PCR (n=2). Scale bar, 100 µm (a, b, d), 50 µm (c).
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Figure S2 Characterization of fibroblasts expressing β1 TT/AA integrin. (a, 
b) Scheme depicting the generation of β1 wt and β1 TT/AA fibroblasts. β1 
wt and β1 TT/AA fibroblasts were either obtained by retroviral expression 
of β1 variants in β1 null cells (a) or by immortalization of fibroblasts 
from mouse embryos (b). (c, d) Surface expression of different α and β 
integrin subunits on β1 wt and β1 TT/AA fibroblasts determined by FACS 
(mean ± SD; n=6 (c); n=4 (d); *p (student’s t-test)<0.05, **p (student’s 

t-test)=0.0022, ***p (student’s t-test)<0.0001; ns=not significant). (e, 
f) β1 integrin mRNA levels determined by qRT-PCR (mean ± SD; n=3 
with two independent cDNAs; *p (student’s t-test)=0.015, **p (student’s 
t-test)=0.0032). (g) Western blot analysis of fibroblast cell lines with 
antibodies against β1 integrin and actin. (h) β1 integrin activation 
measured by 9EG7 binding and corrected for β1 integrin expression (mean 
± SD; n=4; **p (student’s t-test)=0.0097).
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Figure S3 SNX17 localization in fibroblasts. (a) Streptavidin-bead pull-
down assay with a biotinylated wild-type β1 integrin cytoplasmic tail 
peptide and recombinant GST-tagged SNX17 and His-tagged Kindlin-2. (b) 
Immunostaining of SNX17-EGFP expressing cells for Tfr (red). Nuclei were 
counterstained with DAPI (blue) (correlation coefficient 0.032 ± 0.121; 
mean ± SD of 13 cells analyzed). (c, d) SNX17-EGFP expressing cells were 
transfected with Lamp1-mRFP (c) and Rab7-mRFP (d) and the fluorescence 
distribution was determined in living cells by spinning disk confocal 
microscopy. Stills of movies are shown (correlation coefficient Rab7-mRFP 

-0.454 ± 0.106; mean ± SD of 15 cells analyzed). (e) Distribution of SNX17-
mCherry and α5 integrin-EGFP in living cells determined by spinning disk 
confocal microscopy. A still of a movie is shown. (f) Distribution of β1 TT/
AA integrins in SNX17-EGFP expressing cells after surface labeling with an 
anti-β1 integrin antibody and internalization for 15 min. Cells were fixed, 
stained and the fluorescence was determined with confocal microscopy. 
(g) Localization of active β1 integrins after surface labeling with a 9EG7 
antibody and internalization for 15 min in SNX17-EGFP expressing cells. The 
fluorescence was determined with confocal microscopy. Scale bars, 20 µM.
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Figure S4 SNX17 regulates β1 integrin surface levels. (a) Stability of 
surface β1 integrin in the indicated cell lines determined by surface 
biotinylation followed by capture-ELISA (mean ± SD; n=3). SNX17 
levels were restored in SNX17-depleted cells by re-expressing either 
siRNA-insensitive wt SNX17 or SNX17QW/AA. (b) SNX17-depleted β1 
TT/AA expressing cells were surface biotinylated and incubated for the 
indicated time points, before biotinylated proteins were pulled-down with 
streptavidin-sepharose and analyzed by western blotting. (c) Localization 
of endogenous β1 integrin after surface labeling with an anti-β1 integrin 
antibody and internalization for 10 and 30 min in β1 wt, β1 TT/AA and 

SNX17-depleted cells, respectively treated with or without bafilomycin. 
Cells either expressed Rab5a-GFP or were fixed and stained with antibodies 
against Lamp1. Nuclei were counterstained with DAPI (blue). Scale bar, 20 
µM. (d) Bafilomycin normalizes the recycling of β1 wt in SNX17-depleted 
cells. The quantity of biotinylated β1 integrin remaining within the cells 
was determined by capture-ELISA using β1 integrin specific antibodies 
(mean ± s.e.m.; n=3). (e) Quantification of β1 surface levels by FACS in 
indicated cell lines treated for 8 h with and without bafilomycin (mean ± 
SD; n=3; *p (student’s t-test)=0.0133, ***p (student’s t-test)<0.0006; 
ns=not significant).

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 



S U P P L E M E N TA RY  I N F O R M AT I O N

WWW.NATURE.COM/NATURECELLBIOLOGY� 5

Figure S5 Focal adhesions and the actin cytoskeleton are not affected 
in β1 TT/AA, β1 Y795A and SNX17-depleted cells. β1 wt, β1 TT/AA, β1 
Y795A and SNX17-depleted β1 wt cells were stained with an antibody 

against paxillin (red) and fluorescently labelled phalloidin to visualize 
F-actin (green). Nuclei were counterstained with DAPI (blue). Scale bar, 
50 µM.
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Figure S6 Full scans of the key immunoblots. Boxes indicate cropped images used in the figures and numbers indicate the molecular weight.
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Figure S6 continued
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Figure S6 continued
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Supplementary Movie 1 Time-lapse video recording of spreading β1 (-/-), β1 wt β1 TT/AA, and SNX17-depleted cells on FN (pictures taken every 10 min, 
imaging period 4 hrs).

Supplementary Movie 2 Time-lapse video recording of migrating β1 wt, β1 TT/AA, SNX17-depleted cells (shSNX17) and SNX17-depleted cells rescued with 
wild-type SNX17 (shSNX17 + SNX17) on FN (pictures taken every 10 min, imaging period 6 hrs).

Supplementary Table 1 List of β1 interactors from the SILAC-based β1 wt tail peptide versus scrambled peptide pull-down. 
List of the proteins that showed an increased binding (>2.0 fold) to the β1 wt tail peptide against the scrambled peptide. Protein names, gene names, SILAC-
ratios and intensities are listed.

© 2012 Macmillan Publishers Limited.  All rights reserved. 
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