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Zusammenfassung

Die Expektilregression kann als eine Erweiterung der Mittelwertsregression gesehen werden,

da sie allgemeinere Eigenschaften der Verteilung einer interessierenden Größe beschreibt.

Diese Arbeit führt in die Expektilregression ein und präsentiert neue Erweiterungen bereits

existierender semiparametrischer Regressionsmodelle.

Diese Dissertation besteht aus vier zentralen Teilen. Als Erstes wird jeweils die bijek-

tive Beziehung zwischen Expektilen und der empirischen Verteilungsfunktion beziehungs-

weise Quantilen genutzt, um aus einer großen Menge dicht beieinanderliegender Expektile

die Verteilungsfunktion und Quantile zu berechnen. Sogenannte
”
Quantiles-from-expectiles“-

Schätzer werden eingeführt und mit direkten Quantilschätzern in Bezug auf E�zienz vergli-

chen. Als Zweites wird eine Methode zur Schätzung von nicht-kreuzenden Expektilkurven

entwickelt. Zudem wird der Fall betrachtet, dass man geclusterte oder longitudinale Beobach-

tungen vorliegen hat. Hierfür wird eine zufällige, individuelle Komponente eingeführt, was

zu einer Erweiterung der gemischten Modelle hin zu gemischten Expektilmodellen führt.

Als Drittes wird eine Möglichkeit vorgestellt, die
”
Quantiles-from-expectiles“-Schätzer im

Rahmen designbasierter Stichprobenverfahren zu schätzen.

Alle Methoden sind in der Open-Source-Software R implementiert und in einem R-Paket

namens expectreg verfügbar. Eine Beschreibung des Paketes expectreg ist im vierten Teil

dieser Arbeit enthalten.
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Abstract

Expectile regression can be seen as an extension of available (mean) regression models as

it describes more general properties of the response distribution. This thesis introduces

to expectile regression and presents new extensions of existing semiparametric regression

models.

The dissertation consists of four central parts. First, the one-to-one-connection between

expectiles, the cumulative distribution function (cdf) and quantiles is used to calculate the

cdf and quantiles from a fine grid of expectiles. Quantiles-from-expectiles-estimates are

introduced and compared with direct quantile estimates regarding e�ciency. Second, a

method to estimate non-crossing expectile curves based on splines is developed. Also, the

case of clustered or longitudinal observations is handled by introducing random individual

components which leads to an extension of mixed models to mixed expectile models. Third,

quantiles-from-expectiles-estimates in the framework of unequal probability sampling are

proposed.

All methods are implemented and available within the package expectreg via the open

source software R. As fourth part, a description of the package expectreg is given at the

end of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

In order to understand relationships between variables it is often useful to model these

relationships in a mathematical or, more precisely said, in a statistical way. Regression

tries to explain the behaviour of one variable by imposing a dependency on one ore more

(explanatory) variables. A common and simple procedure is to assume linear dependency

and to model the variable of interest y as a linear function of the explanatory variable x (or

x1, . . . , xk

if there is more than one). This results in classical linear regression. Unfortunately

(or fortunately) a linear dependency is not always present in nature. Therefore, to give a

good description of the data, it may be necessary to allow for nonlinear behaviour resulting in

polynomial regression or, even more flexible, semi- or nonparametric regression. Both y and

x can be seen as realisations of random variables Y and X, respectively. Often, however, the

covariate x is regarded as fixed. In general the idea in nonparametric regression is to model

y as a function of x which is only influenced by a so called error term ✏, where ✏ represents

random noise. That is we impose y = f(x) + ✏. Non- and semiparametric regression models

are described in detail for example by Hastie and Tibshirani (1990), Ruppert, Wand, and

Carroll (2003), Wood (2006), and Fahrmeir, Kneib, Lang, and Marx (2013).

Within the classical regression framework the expectation of the response y is modeled.

In some cases other approaches may appear more reasonable, namely when especially high

or low features of the data are of interest. Consider for example malnutrition of children (see

Fenske, Kneib, and Hothorn, 2011) or frontier estimation as in Schnabel and Eilers (2009a).

The former use quantile regression, the latter expectile regression to model the noncentral

parts of a response distribution. In general there are several possibilities to estimate models

which do not concentrate on the mean but on other (and often more) features of the data.

A good overview of models “beyond mean regression” can be found in the correspondingly

named paper by Kneib (2013). In this thesis we will concentrate on expectiles and expectile

regression.

1.2 Outline

This thesis consists of five chapters based on four manuscripts. Chapter 2 gives an introduc-

tion to (semiparametric) regression and expectile regression. The content of Chapters 3 to

5 basically consists of three methodological papers where new extensions of semiparametric

expectile regression are developed. Chapter 6 describes the implementation of the theoretical

concepts.

Chapter 2 provides the theoretical background for readers which are not familiar with re-

2



CHAPTER 1. INTRODUCTION

gression. The chapter starts with an introduction to linear and polynomial regression. After

describing B-splines, we switch to semiparametric regression and semiparametric expectile

regression. The interpretability of expectiles is also discussed at the end of the chapter.

Chapter 3 compares quantiles and expectiles concerning e�ciency. A method to cal-

culate quantiles from expectiles is presented to allow for a comparison on an equal level.

This connection between quantiles and expectiles becomes extremely useful when calculat-

ing the expected shortfall. In addition, non-crossing expectile curves for a single covariate

are developed. To demonstrate the usage, all procedures are accompanied by applications.

Note that this chapter is developed in joint work with Fabian Sobotka, Thomas Kneib, and

Göran Kauermann. A similar version will be published in Statistical Modelling under the

title Expectile and Quantile Regression - David and Goliath?. All authors contributed to the

general investigation of the scientific problem and were involved in writing and proofreading

the manuscript. For a detailed description and assignment please look at the first page of

Chapter 3.

In Chapter 4 non-crossing spline-based expectile estimates within an additive framework

are developed. The use of a tensor product is encouraged to get expectile sheets. We

also consider panel data, where we have longitudinal observations and extend the expectile

regression model to allow for a random intercept. Chapter 4 concludes with an application

of the newly developed estimators on data of the German Socio-Economic Panel (GSOEP).

This chapter is based on a manuscript developed jointly with Göran Kauermann. Both

Göran Kauermann and Linda Schulze Waltrup contributed to the general investigation of

the scientific problem and were involved in writing and proofreading the manuscript. For a

detailed description of the division of work please look at the first page of Chapter 4.

In Chapter 5 the estimation of quantiles from a set of expectiles is extended to samples

where elements are drawn with unequal probabilities. A simulation is presented to compare

the estimator with existing estimators in terms of bias and variance. This chapter is based

on a manuscript developed jointly with Göran Kauermann. Both Göran Kauermann and

Linda Schulze Waltrup contributed to the general investigation of the scientific problem and

were involved in writing and proofreading the manuscript. For a detailed description and

assignment please look at the first page of Chapter 5.

Chapter 6 is about the implementation of methods concerning expectiles. The estimation

techniques described in the previous chapters are implemented in the open source software

R (see R Core Team, 2014) within the R package expectreg. Chapter 6 gives descriptions

and examples of use concerning the software. It bases on a manuscript developed jointly

with Fabian Sobotka, Sabine Schnabel, Göran Kauermann, and Thomas Kneib and a former

version of the manuscript is already published as part of the thesis Semiparametric Expectile

3



CHAPTER 1. INTRODUCTION

Regression by Fabian Sobotka, who is the leading author of the paper. All authors con-

tributed to the general investigation of the underlying scientific problems and were involved

in writing and proofreading the manuscript. For a more detailed description of the division

of work please look at the first page of Chapter 6.

Chapter 7 summarizes the findings of the previous sections. The chapter ends with a

short discussion and notes on future work in the field of expectile regression.

The Appendix at the end of this dissertation includes a compendium of the notation used

during this dissertation (see Chapter A), and additional information regarding calculations

of Chapter 3 (see Chapter B). For the sake of completeness there is also a fifth manuscript

appended (see Chapter C). It is appeared in Statistics and Computing under the title On

confidence intervals for semiparametric expectile regression. In this paper asymptotic results

for the construction of confidence intervals are derived and evaluated empirically. The paper

is developed by Fabian Sobotka, Göran Kauermann, and Thomas Kneib, and in minor

parts by Linda Schulze Waltrup. All authors contributed to the general investigation of the

scientific problem and were involved in writing and proofreading the manuscript. For a more

detailed description of the division of work please look at the first page of Chapter C.
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CHAPTER 2. SEMIPARAMETRIC REGRESSION AND EXPECTILE REGRESSION

2.1 Linear and Polynomial Regression

When linear dependency between y and x is a plausible assumption, the use of a linear

regression is perfectly fine. Of course, one should also check other assumptions which are

made within the regression framework (and which will be described later). Often, however,

a linear model does not adequately describe the data. A first generalization would be to

extend the classical linear model to a polynomial regression model. In the following, a short

introduction into linear and polynomial regression is given. There are many textbooks ex-

plaining linear and polynomial regression and its extensions and generalizations in detail (see

for example Hastie and Tibshirani, 1990; Ruppert, Wand, and Carroll, 2003; or Fahrmeir,

Kneib, Lang, and Marx, 2013).

Suppose we have a response y, which we want to explain by covariate x. An example

which is often used is the rent index of Munich where y is the net rent of an apartment.

One possible explanatory variable x is the size of the apartment. If there are n apartments

observed, one gets n realizations for y and x each, i.e. we have vectors y = (y1, . . . , yn)0

and x = (x1, . . . , xn

)0. We restrict our attention to metrical variables in the following and

variables x
i

will be seen as fixed. The main idea in regression is to regard y as a function

of x where exact measurement is only disturbed by a random noise ✏, that is we have

y = f(x)+ ✏ with E(✏
i

) = 0 for all i = 1, . . . , n. We assume that for the errors ✏ it holds that

they are identically and independently distributed with same variance Var(✏
i

) = �2 for all

i = 1, . . . , n. The standard assumption in simple linear regression is, that we have a linear

function f such that

y
i

= �0 + �1xi

+ ✏
i

for all i = 1, . . . , n. (2.1)

As the parameters �0 and �1 are unknown, we need to estimate them. There are several

methods to estimate the unknown parameters like ordinary least squares (OLS), Bayes or

Maximum-Likelihood. Descriptions of all methods can be found in the textbooks mentioned

above. We will make use of OLS in the following. Defining the design matrix X and vectors

� and ✏ as

X =

0

B

B

@

1 x1

...
...

1 x
n

1

C

C

A

, � =

 

�0

�1

!

, ✏ =

0

B

B

@

✏1
...

✏
n

1

C

C

A

,
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Figure 2.1: Linear model.

we get the linear model in matrix notation as

y = X� + ✏. (2.2)

OLS means minimizing squared di↵erences. That is we obtain the estimator �̂ by minimizing

(y �X�)0 (y �X�)

with respect to �. Di↵erentiating and setting the first derivative equal to zero gives the

normal equation which can be solved for �. The solution is given as

�̂ = (X 0X)�1
X 0y (2.3)

and we also get an estimation of E(y) calculating

ŷ = X�̂ = Hy, (2.4)

where H := X (X 0X)�1 X 0. Figure 2.1 shows an example of (simulated) data with a

distinct linear trend. The Figure contains a scatterplot of the data with the straight line

resulting from ŷ = �̂0 + �̂1x. Coe�cients �̂0 and �̂1 are estimated from equation (2.3). The

di↵erence y
i

� ŷ
i

is called residuum or residual.
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Figure 2.2: Basis of the linear model. Basis B1(x) = 1 is symbolized by the dashed line and
B2(x) = x by the solid line.

The simple linear model can be extended to numerous covariates (under the assumption

that their influence can be approximated by an additive influence). If we suppose we have

k covariates one has a (n ⇥ (k + 1)) dimensional design matrix X and correspondingly a

((k + 1) ⇥ 1) dimensional vector �. To guarantee a unique solution of the minimization

problem we need X to have full rank. Analogously, estimators �̂ and ŷ for the expanded

model can be calculated from (2.3) and (2.4), respectively.

Looking again at (2.1) we notice that model (2.1) is a linear combination of 1 and x.

This is why we can view 1 and x as basis functions

B1(x) = 1 and B2(x) = x

for model (2.1). Figure 2.2 shows the two basis functions.

Turning now to model and data in Figure 2.3(a) it becomes obvious that a linear model

will not capture the features of the data adequately. We need other basis functions to obtain

a good fit. To model the observable quadratic trend we introduce covariate x2 which gets us

to the quadratic model

y
i

= �0 + �1xi

+ �2x
2
i

+ ✏
i

(2.5)

8
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(a) Quadratic model
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(b) Basis of the quadratic model

Figure 2.3: Quadratic model with corresponding basis. Basis B1(x) = 1 is symbolized by the
dashed line, B2(x) = x by the solid line and B3(x) = x

2 by the dotted line.

with basis functions

B1(x) = 1, B2(x) = x and B3(x) = x2,

which can be seen in Figure 2.3(b).

The preliminary goal was to obtain a polynomial model. Both models (2.1) and (2.5)

can be seen as a polynomial model: (2.1) is a polynomial model of degree one, the quadratic

model (2.5) corresponds to a polynomial model of degree two. As a generalization we now

define the polynomial model of degree p as

y
i

= �0 + �1xi

+ �2x
2
i

+ · · ·+ �
p

xp

i

+ ✏
i

. (2.6)

Analogously to the linear model we define the p+ 1 basis functions

B1(x) = 1, B2(x) = x, . . . , B
p+1(x) = xp,

9
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which characterize the polynomial model of degree p. The design matrix X is now given as

X =

0

B

B

@

1 x1 · · · xp

1
...

...
. . .

...

1 x
n

· · · xp

n

1

C

C

A

.

Estimations for �̂ and ŷ are obtainable through (2.3) and (2.4) with use of last-mentioned

design matrix X. Note that with the definitions of the basis functions we can rewrite model

(2.6) as

y
i

= f(x
i

) = �0B1(xi

) + �1B2(xi

) + · · ·+ �
p

B
p+1(xi

) + ✏
i

, (2.7)

which will become useful in Section 2.2.1.

2.2 Penalized Spline Regression

2.2.1 B-splines

We will now introduce a type of basis functions which allows for a very flexible modeling of

the dependency between y and x. Suppose we have K basis functions. As in equation (2.7)

we write the model as

f(x) =
K

X

j=1

u
j

B
j

(x),

with u
j

denoting the coe�cient of basis function B
j

. The definition of basis functions B
j

(so-called B-spline basis functions) will be given in this subsection.

B-splines are described in detail by de Boor (2001), Eilers and Marx (1996), and Fahrmeir,

Kneib, Lang, and Marx (2013). The principle idea is that one wants to obtain a smooth func-

tion by plugging pieces of a certain polynomial degree onto each other. For each polynomial

of degree p, we want the resulting function f to be (p � 1)-times continuous di↵erentiable.

Mathematically B-splines are defined recursively. The definition we give is the same as in

Fahrmeir, Kneib, Lang, and Marx (2013) and is di↵ering only in terms of notation from the

definition of de Boor (2001). de Boor (2001) describes the numerical properties of B-splines

and gives a detailed description of B-splines. Eilers and Marx (1996) encourage the use of

B-splines in combination with an additional simple penalty in the context of regression and

smoothing. They also give a good overview about B-splines.

10
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A B-spline basis function of degree zero is defined as

B0
j

(x) = 1[j ,j+1)(x) =

8

<

:

1, if 
j

 x < 
j+1,

0, otherwise,
(2.8)

for j = 1, . . . , K � 1 and knots 
j

. A basis function of a general B-spline of degree p � 1

can now be defined as

Bp

j

(x) =
x� 

j�p


j

� 
j�p

Bp�1
j�1 (x) +


j+1 � x


j+1 � 

j+1�p

Bp�1
j

(x). (2.9)

That means, each B-spline of degree p can be constructed from a B-spline of degree p � 1

and each B-spline of arbitrary degree can be traced back to a B-spline of degree zero. In

Figure 2.4 we plotted basis functions of various degrees. The figures were produced within the

open-source software R (see R Core Team, R Core Team 2013) using function splineDesign

(see also ?splineDesign in R) of the R package splines. For construction of a single B-

spline basis function of degree zero one needs two knots which are indicated by grey dotted

lines. Looking at the basis function of degree one, we see that we need three knots for their

construction: two outer knots and one inner knot. The next thing we notice is that the basis

function of degree one is composed of two linear pieces joining each other in the inner knot.

In general we can find that each single basis function of degree p consists of p+1 polynomial

pieces of degree p which are defined by p + 2 knots, from which p of them are inner knots.

In Figures 2.4 and 2.5 all knots are chosen to be equidistant. As we mentioned earlier, we

want a smooth construction which requires smooth connection of adjacent polynomial pieces.

B-splines fulfil that condition as their first derivatives coincide in each knot (see de Boor,

2001). Also obvious from Figure 2.4 is that with increasing degree one gets a smoother

behaviour.

Consider now more than one basis function as it is visualized in Figure 2.5. We see

that each basis function overlaps with 2p basis functions as we count p overlapping basis

function in each direction (except for basis functions near the boundary). A next thing

we may see from Figure 2.5 is that for basis functions of degree p for a given value within

the space spanned by the knots p + 1 basis functions are positive. The grey solid lines in

Figure 2.5 describe a further property of the B-spline basis functions as they visualize the

sum of the basis functions. We see that for each value within the domain (indicated by dark

dotted vertical lines) B-spline basis functions sum up to one. And we see that for a domain

consisting of eK knots, we need additionally 2p outer knots to construct a B-spline of degree

p. To cover a domain parted into eK knots, one needs K = p + eK � 1 basis functions of

11
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Figure 2.4: Single B-spline basis functions of degree p = 0, 1, 2, 3. The dotted lines correspond to
knots needed for construction.
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Figure 2.5: B-spline basis functions of degree p = 1 (left) and p = 2 (right) and their sum (grey
solid line). Knots are visualized by the dotted lines. Lines for inner knots are drawn in black
whereas for outer knots they are grey.

degree p.

B-splines have the nice feature, that the estimated coe�cients of a B-spline not only give

an estimation for function f , but also for the derivatives of f as we have

@f(x)

@x
= p

X

j

�u
j


j

� 
j�l

Bp�1
j�1 (x), (2.10)

where �u
j

= u
j

� u
j�1 (see Fahrmeir, Kneib, Lang, and Marx, 2013). A proof is given in

de Boor (2001). Equation (2.10) will become useful for defining a penalty matrix in Section

2.2.2. Constructing now the design matrix with the help of the basis functions leads to

B :=

0

B

B

@

B1(x1) · · · B
K

(x1)
...

. . .
...

B1(xn

) · · · B
K

(x
n

)

1

C

C

A

.

To get an estimation for the coe�cients u
j

and to calculate fitted values ŷ we can still use

equations (2.3) and (2.4) (by substitution of X through B and �
j

through u
j

).

13
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2.2.2 P-splines

In Subsection 2.2.1 B-splines were defined, where the definition included the positioning of

knots. A problem is, how many knots to choose and where to place them. The number

of knots influences the flexibility of the fitted curve and the curve will behave more wiggly

over parts of the domain where many knots are placed in contrast to parts where only few

knots are placed. Eilers and Marx (1996) circumvent the problem by introducing a penalty

to account for too much flexibility. This will be described in the following. The procedure

will be to place a high number of knots equidistantly over the domain and to steer the

smoothness by adding a penalization which accounts for too much deviation. Fahrmeir,

Kneib, Lang, and Marx (2013) suggest to choose a number of knots between 20 and 40.

Instead of minimizing (y �Bu)0 (y �Bu) itself, an additional penalty term is introduced.

Let K be a symmetric penalty matrix. With

(y �Bu)0 (y �Bu) + �u0Ku (2.11)

where � � 0 we get a penalized least squares criterion which is minimized with respect to u.

The amount of smoothness is now controlled by �. The problem of determining smoothing

parameter � is discussed in Section 2.2.3. Di↵erentiating (2.11) and solving the normal

equations yields

û = (B0B + �K)�1
B0y, (2.12)

which is equal to equation (2.3) for � = 0. For � 6= 0 both estimators di↵er through the

additional term �K. Fitted values ŷ are obtained by calculating

ŷ = Bû = B (B0B + �K)�1
B0y. (2.13)

The penalty matrix K is constructed such that a strong variation in the estimator f̂ is

punished. O’Sullivan (1986, 1988) proposed to use the second derivative in its capacity as a

measure for the curvature of a function as penalty term. This leads to a penalty of the form

�

Z

(f 00(z))2 dz. (2.14)

Eilers and Marx (1996) use equation (2.10) to construct a simple, but e↵ective penalty matrix

based on di↵erences of adjacent coe�cients of B-splines. They show that there exists a strong

connection between a penalization of second order di↵erences and a penalization of the second

14
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derivative. Therefore, considering a penalty term based on second order di↵erences leads to

�
K

X

j=3

(�2u
j

)2, (2.15)

where �2u
j

= u
j

� 2u
j�1 + u

j�2. We are now able to construct from (2.15) the penalty

matrix K with the help of di↵erence matrix D with dimensions (K � 2)⇥K, where

D =

0

B

B

B

B

B

@

1 �2 1 0 · · · 0

0 1 �2 1
. . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 1 �2 1

1

C

C

C

C

C

A

.

Setting now K = D0D leads to

�
K

X

j=3

(�2u
j

)2 = �u0Ku.

which gives the desired penalty (2.15). In the next subsection the selection of � is discussed

briefly.

2.2.3 Reparameterization of P-splines

One way to choose the smoothing parameter � is to reformulate the penalized spline model

as a mixed model. A simple mixed model is given by

y = X� +U� + ✏, with ✏ ⇠ N(0, �2
✏

I) and � ⇠ N(0, �2
�

I), (2.16)

where matrix U is constructed similarly to X. In a mixed model we have a parameter vector

�, which is not regarded as fixed, but random. This becomes useful when, for example, one

looks at data with repeated measurements. The mixed model allows to introduce correlations

between subjects which is obviously necessary as measurements from the same subject can

not be treated as independent observations. A random intercept, for example, allows for

a shift for each individual. In this case we have a 1 in cell (j, i) of matrix U for the

j-th observation of subject i and 0 otherwise (with j = 1, . . . , n
i

and i = 1, . . . , n). A

description of mixed models can be found in Verbeke and Molenberghs (2000) and Diggle,

Liang, and Zeger (1994). The link between P-spline regression and mixed models is described

in Ruppert, Wand, and Carroll (2003) and Fahrmeir, Kneib, Lang, and Marx (2013).
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For mixed models one obtains

(y �X� �U�)0(y �X� �U�) +
�2
✏

�2
�

� 0� (2.17)

as penalized least squares criterion in contrast to equation (2.11) for penalized splines. By

setting Z := [X U ] and v := [� �] one gets for (2.17)

(y �Zv)0(y �Zv) +
�2
✏

�2
�

� 0�. (2.18)

Remembering equation (2.11) the goal now is to obtain a partition of u into a fixed part ufix

and a random part urandom. Following Fahrmeir, Kneib, Lang, and Marx (2013) we set

u = X̃ufix + Ũurandom

and choose X̃ such that X̃ and K are orthogonal and Ũ such that Ũ 0KŨ = I. Note that

the number of rows for both X̃ and Ũ is equal to the number of elements of u which is K

whereas the number of columns depends on the rank of the penalty matrix K. With second

order di↵erences we have rank(K) = K � 2 and therefore we obtain K ⇥ 2 as dimension

for X̃ and K ⇥ (K � 2) as dimension for Ũ . A valid choice for Ũ for example is to set

Ũ = D0(DD0)�1. Considering now the penalty term u0Ku we get

u0Ku = u0
randomurandom

and for the model

y = Bu+ ✏ = B(X̃ufix + Ũurandom) + ✏ = X̌ufix + Ǔurandom + ✏

with X̌ := BX̃ and Ǔ := BŨ . Smoothing parameter � now can be determined using

equation (2.18) by setting � = �

2
✏

�

2
�
. This will be used in Section 4 where we describe how to

estimate �2
✏

and �2
�

using the Schall algorithm as proposed by Schall (1991) and for expectile

regression by Schnabel and Eilers (2009b).

2.3 Semiparametric Regression

So far, we mostly considered a single explanatory variable. The extension to numerous

explanatory variables is straightforward. The covariates with a linear e↵ect on response y
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are denoted as xpara = (x1, . . . , x
d̃

)0 and are gathered in design matrix X with

X =

0

B

B

@

1 x11 . . . x1d̃
...

...
. . .

...

1 x
n1 . . . x

nd̃

1

C

C

A

.

The nonlinear e↵ects xnonpara = (x
d̃+1, . . . , xd

)0 are gathered in design matrix B with B now

defined as B = (B
d̃+1, . . . ,Bd

) where each B
j

can be obtained as described in Subsection

2.2.1 and reparameterized as in Subsection 2.2.3. Setting Z = (X,B
d̃+1, . . .Bd

) allows to

get an estimator v̂ as

v̂ = (Z 0Z +K)�1
B0y.

Coe�cient vector v consists of a parametric part � = (�0, . . . , �
d̃

) and a nonparametric part

u
d̃+1, . . . ,ud

. Penalty matrix K needs to be redefined as

K =

0

B

B

B

B

B

B

B

B

B

B

@

0
. . .

0

�
d̃+1Kd̃+1

. . .

�
d

K
d

1

C

C

C

C

C

C

C

C

C

C

A

where the blank space needs to be filled with zeros. Each penalty term �
j

K
j

is constructed

as in Subsection 2.2.2. The term semiparametric indicates that we have a model which

contains both parametric and nonparametric parts.

2.4 Expectiles and Expectile Regression

In the previous section an introduction into ordinary least squares regression was given where

the mean of the response, given covariates, was modeled. Another, more general approach

is to not only model one single curve, but a variety of curves to additionally describe non-

central parts of the data. This is done in expectile and quantile regression. Note that both

expectile and quantile estimation are special cases of so called M-quantile estimation as

described in Breckling and Chambers (1988).

Koenker and Bassett (1978) develop the concept of quantile regression. An overview is
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given by Koenker (2005). In quantile regression one models

y
i

= q
i,↵

+ ✏
i,↵

, i = 1, . . . , n,

where ↵ 2 (0, 1) and q
i,↵

is the ↵-quantile. We need that P (✏
i,↵

 0) = ↵ holds i.e. that the

↵-quantile of ✏
i,↵

is zero. The ↵-quantile may be modeled in dependency of covariates x
i

(in

analogy to the previous sections). Defining asymmetric weights w
i,↵

as

w
i,↵

=

8

<

:

↵, for y
i

� q
i,↵

,

1� ↵, for y
i

< q
i,↵

,

allows to calculate estimates for q
i,↵

by minimizing the weighted sum of absolute di↵erences

X

w
i,↵

|y
i

� q
i,↵

| . (2.19)

As the expression in (2.19) is not di↵erentiable, linear programming is used to obtain quantile

estimates. A description can be found in Koenker (2005).

Aigner, Amemiya, and Poirier (1976) and Newey and Powell (1987) replace the L1 dis-

tance by a L2 distance which leads to a minimization problem which is di↵erentiable and

can therefore easily be solved. An ↵-expectile is defined by minimization of

X

w
i,↵

(y
i

�m
i,↵

)2 (2.20)

with respect to m
i,↵

. Weights w
i,↵

are as defined above and ↵ 2 (0, 1). Again, m
i,↵

may

depend on values x
i

. Expectile regression regained some interest in the last years as can

be seen by the increasing number of publications on expectiles like Schnabel and Eilers

(2009b), De Rossi and Harvey (2009), Sobotka and Kneib (2012), Guo and Härdle (2013)

and Sobotka, Kauermann, Schulze Waltrup, and Kneib (2013). As stated above, equation

(2.20) can be minimized by di↵erentiation but depends on weights w
i,↵

which again depend

on m
i,↵

. The remedy of this problem is to start with equal weights of 0.5 for ↵ to get a first

estimation of m̂
i,↵

. Afterwards the weights w
i,↵

can be calculated to allow for an update of

m̂
i,↵

. This procedure is iterated until convergence of the weights.

Often a so called check function is used to define quantiles (see e.g. Koenker and Bassett,

1978). The weighted sum of absolute di↵erences can be expressed as

X

⇢
↵

(y
i

� q
i,↵

)
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Figure 2.6: Check function ⇢̃ for expectiles and ⇢ for quantiles (for ↵ = 0.2)

with check function ⇢
↵

defined by

⇢
↵

(e) =

8

<

:

e↵, for e � 0,

e(↵� 1), for e < 0.

For expectile estimation we need to exchange check function ⇢ with ⇢̃ where ⇢̃ is given by

⇢̃
↵

(e) =

8

<

:

e2↵, for e � 0,

e2(1� ↵), for e < 0.

A plot of both functions can be seen in Figure 2.6. From Figure 2.6 we can also deduce some

properties of quantile and expectile regression. We can see, why the term in equation (2.19)

is not di↵erentiable as we see a peak at e = 0. Also, one can see that for values larger than

one, ⇢̃ takes higher values than ⇢ where the di↵erence increases with e. That shows that

expectiles are more influenced by outliers than quantiles.

Criticism passed on expectiles often concerns the lack of interpretability. There are

several remedies to circumvent this problem. First, there is the suggestion to estimate not

only one expectile curve but a whole set of them and to interpret the set of expectile curves.

Parallel expectile curves for example imply homoscedasticity. Also skewness can be detected

comparing the di↵erences between neighboring lower expectile curves and neighboring higher

expectile curves. In principle the whole distribution of the response (conditional on x) is
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  yi − ŷi   1yi≤ŷi
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Figure 2.7: Interpretation of 0.2–expectile m0.2.

described by expectiles. Second, one can transform expectiles into quantiles without loosing

e�ciency. This is shown in Section 3 where the method is described and applied. Third, there

is a sensible interpretation of expectiles as we will see in the following. The interpretation

of quantiles is quite easy. For the ↵-quantile q
↵

we have, that a proportion of 100↵% of the

data lies below q
↵

and a proportion of 100(1�↵)% of the data lies above q
↵

. At first glance

the interpretation of expectiles is not that intuitive. Nevertheless, we try to visualize the

meaning of the 0.2-expectile in Figure 2.7. Yao and Tong (1996) state, that, for given x, the

↵-expectile m
↵

is determined such that 100↵% of the mean distance between m
↵

and y is

given by the mass below it and correspondingly 100(1� ↵)% of the mean distance between

m
↵

and y is given by the mass above it. This exact property can be seen in Figure 2.7.
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Chapter 3

Expectile and Quantile Regression - David and Goliath?

This chapter is developed in joint work with Fabian Sobotka, Thomas Kneib and Göran Kauermann. The
final, definitive version of this paper will be published in Statistical Modelling by SAGE Publications India
Pvt Ltd, all rights reserved. Linda Schulze Waltrup and Göran Kauermann developed jointly the connection
between expectiles and quantiles and the monotone expectile sheets. They proposed a method to estimate
quantiles from a set of expectiles. Linda Schulze Waltrup implemented the method and ran an extensive
empirical evaluation between quantiles and expectiles and the recurrent example of the rent index of Munich.
Göran Kauermann investigated the behaviour of expectiles and quantiles in the tail. Fabian Sobotka ran the
simulation study where crossings between neighboring quantile and expectile curves were explored. Also,
the example of the expected shortfall was constructed by Fabian Sobotka. All authors contributed to the
general investigation of the scientific problem and were involved in writing and proofreading the manuscript.



CHAPTER 3. EXPECTILE AND QUANTILE REGRESSION - DAVID AND GOLIATH?

Abstract

Recent interest in modern regression modelling has focused on extending available (mean) regression

models by describing more general properties of the response distribution. A completely distribution

free approach is quantile regression where regression e↵ects on the conditional quantile function

of the response are assumed. While quantile regression can be seen as a generalization of median

regression, expectiles as alternative are a generalized form of mean regression.

Generally, quantiles provide a natural interpretation even beyond the 0.5 quantile, the median.

A comparable simple interpretation is not available for expectiles beyond the 0.5 expectile, the

mean. Nonetheless, expectiles have some interesting properties, some of which are discussed in this

paper. We contrast the two approaches and show how to get quantiles from a fine grid of expectiles.

We compare such quantiles from expectiles with direct quantile estimates regarding e�ciency. We

also look at regression problems where both, quantile and expectile curves have the undesirable

property that neighboring curves may cross each other. We propose a method to estimate non-

crossing expectile curves based on splines. In an application, we look at the expected shortfall,

a risk measure used in finance, which requires both, expectiles and quantiles for estimation and

which can be calculated easily with the proposed methods in the paper.
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3.1 Introduction

Quantile Regression allows to estimate the e↵ect of covariates on the distribution of a re-

sponse variable. The idea has been suggested by Koenker and Bassett (1978) and is well

elaborated with numerous extensions in Koenker (2005). The underlying regression model

for the ↵-quantile with ↵ 2 (0, 1) is specified as

y
i

= q
i,↵

+ ✏
i,↵

, i = 1, . . . , n

with y
i

as response variable, i = 1, . . . , n and q
i,↵

as the ↵-quantile which may depend on

covariates x
i

, say, e.g. through the linear model q
i,↵

= �(q)
0↵ +x

i

�(q)
1↵ . Unlike classical regression

where a zero mean is assumed for the residuals, in quantile regression one postulates that the

↵-quantile of the residuals ✏
i,↵

is zero, i.e. P (✏
i,↵

 0) = ↵. Estimates for q
i,↵

are obtainable

through the minimizer of the weighted L1 sum

n

X

i=1

w
i,↵

|y
i

� q
i,↵

| (3.1)

where

w
i,↵

=

8

<

:

1� ↵, for y
i

< q
i,↵

,

↵, for y
i

� q
i,↵

,

are asymmetric weights. Numerically, (3.1) can be minimized by linear programming, see

e.g. Koenker (2005).

As an alternative to quantile regression, Aigner, Amemiya, and Poirier (1976) and Newey

and Powell (1987) proposed to replace the L1 distance in (3.1) by a quadratic L2 term leading

to the asymmetric least squares

n

X

i=1

w
i,↵

(y
i

�m
i,↵

)2 (3.2)

where the minimizer m̂
i,↵

, say, is called (estimated) expectile. The expectile m
i,↵

may again

depend on covariates, e.g. through the linear expectile model m
i,↵

= �(m)
0↵ +x

i

�(m)
1↵ . Expectile

estimation is thereby a special form of M-quantile estimation (Breckling and Chambers,

1988) and expectile regression has seen some increasing interest in the last years (Schnabel

and Eilers, 2009b; Pratesi, Ranalli, and Salvati, 2009; Sobotka and Kneib, 2012; Guo and

Härdle, 2013). An overview about methods focussing on estimation procedures regarding
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more features of the data than its center (including semiparametric expectile and quantile

regression) can be found in Kneib (2013).

In this paper, we contrast quantile and expectile regression and propose some extensions

to expectile estimation to link it to quantiles. A comparison of the two routines might remind

to the story of David and Goliath just by comparing the number of citations: about 1850

for Koenker and Bassett (1978) referring to quantiles and about 100 for Newey and Powell

(1987), as of November 2013. Quantiles are certainly more dominant in the literature due to

the fact that expectiles lack an intuitive interpretation while quantiles are just the inverse

of the distribution function. Numerically, as seen by comparing (3.1) to (3.2), quantiles

“live” in the L1 world while expectiles are rooted in the L2 world. This by itself has several

consequences. Quantiles need linear programming for estimation while expectiles are fitted

using quadratic optimization. Beyond all discrepancies between quantiles and expectiles, it

is important to note that both are related in various ways. Jones (1994) shows that expectiles

are in fact quantiles of a distribution function uniquely related to the distribution of y. Yao

and Tong (1996) give a similar result by showing that there exists a unique bijective function

h : (0, 1) ! (0, 1) such that q
↵

= m
h(↵), where h(.) is defined through

h(↵) =
�↵q

↵

+G(q
↵

)

�m0.5 + 2G(q
↵

) + (1� 2↵)q
↵

(3.3)

withG(q) =
R

q

�1 y dF (y) as the partial moment function and F (y) as cumulative distribution

of y (see also De Rossi and Harvey, 2009). Note that m0.5 = E(y) = G(1). In this paper we

will make use of relation (3.3) and relate quantile estimates q̂
↵

to expectile based quantile

estimates m̂
ĥ(↵), where ĥ(.) is an estimated version of h(.) in (3.3). One of the key findings of

the paper is that estimates m̂
ĥ(↵) are numerically more demanding than quantile estimates,

but, as simulations show, they serve as quantile estimates which can be even more e�cient

than the empirical quantile q̂
↵

itself.

In quantile regression, a numerical problem in applications are so called crossing quantile

functions. These occur if for estimated quantiles one gets q̂
↵1(x) > q̂

↵2(x) for ↵1 < ↵2 for

some value x (in the observed range of the covariate), where q̂
↵

(x) = �̂(q)
0↵ + x�̂(q)

1↵ . Several

methods, algorithms and model constraints have been proposed to circumvent the problem.

Bondell, Reich, and Wang (2010) make use of linear programming. They also give a good

overview about earlier proposals including Koenker (1984), He (1997), Wu and Liu (2009)

or Neocleous and Portnoy (2008). Chernozhukov, Fernández-Val, and Galichon (2010) re-

arrange the fitted (linear) curves into a set of non-crossing curves. Schnabel and Eilers

(2013b) propose so called quantile sheets where crossings are circumvented by penalization.

The problem of crossing curves occurs in principle in the same way for expectile regres-
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sion. We demonstrate with simulations that crossing of expectiles occurs less frequently.

This implies that less attention is needed to avoid crossing expectiles compared to crossing

quantiles.

Quantile regression, as well as expectile regression, can be extended to nonparametric

functional estimation. For quantile estimation Koenker, Ng, and Portnoy (1994) proposed

spline based estimation. Bollaerts, Eilers, and Aerts (2006) make use of penalized B-splines

with an L1 penalty. Recently Reiss and Huang (2012) suggest quantile estimation based on

penalized iterative least squares (see also Yuan, 2006). For expectiles, smooth estimation

has been pursued by e.g. Pratesi, Ranalli, and Salvati (2009), and Schnabel and Eilers

(2009b). The idea of smoothing can be extended by assuming that a “set” of ↵-quantile

curves smoothly depends on both, the covariate and ↵. Using B-splines this easily allows

to incorporate non-crossing conditions, as in Bondell, Reich, and Wang (2010) for quantile

estimation. Schnabel and Eilers (2013b) propose quantile sheets based on penalized spline

smoothing, see also Schnabel and Eilers, 2014. We extend and modify these ideas.

Expectiles might not gain the popularity as quantiles, but we think they deserve their

niche. For example, Aigner, Amemiya, and Poirier (1976) constructed expectiles to estimate

production frontiers and give an additional argument for using expectiles by stating that

expectile regression is a way to treat asymmetric consequences as it places di↵erent weights

on positive and negative residuals. But there are other fields which demand for expectiles as

well, for example the field of risk measures for financial assets. Ziegel (2013) argues for the

use of expectiles as risk measure as they have desirable properties. Another frequently used

risk measure is the “expected shortfall”, which needs the calculation of both, quantiles and

expectiles. The expected shortfall is a trimmed mean, that is the mean of a random variable

conditional that its value is above (or below) a certain quantile. The expected shortfall can

be written as a function of both, the quantile and the expectile for a level ↵. Estimation of

the expected shortfall has been recently proposed by Leorato, Peracchi, and Tanase (2012) by

employing the integrated (conditional) fitted quantile regression function, see also Wang and

Zhou (2010). We extend an idea of Taylor (2008) and use the fitted quantiles and expectiles

for the estimation of the expected shortfall. This connection becomes extremely useful for

calculating the expected shortfall as it both depends on expectiles and their corresponding

quantiles (as described by Taylor, 2008).

The paper is organized as follows. In Section 3.2 we compare and contrast quantiles

and expectiles, both theoretically and simulation based. In Section 3.3 we look at quantile

and expectile regression before Section 3.4 provides extensions and examples. Section 3.5

concludes the contest of David and Goliath.
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3.2 Expectiles and Quantiles

3.2.1 Quantiles from Expectiles

Quantiles as well as expectiles uniquely define a distribution function. Let F (y) denote

the continuous distribution function of a univariate random variable Y , which for the sake

of simplicity for now is assumed to not depend on any covariates x. The distribution is

uniquely defined by the quantile function q
↵

= q(↵) = F�1(↵) for ↵ 2 (0, 1) or by the

expectile function m
↵

= m(↵) for ↵ 2 (0, 1). First we show how to numerically derive the

quantile function q(↵) from the expectile function m(↵). With other words we demonstrate

how the transfer function h(.) in (3.3) can be derived numerically, which in practice allows

to calculate the quantile function from a fitted expectile function m̂(↵), say. Note first that

expectiles are defined through

m
↵

=
(1� ↵)G(m

↵

) + ↵(m0.5 �G(m
↵

))

(1� ↵)F (m
↵

) + ↵(1� F (m
↵

))
(3.4)

which needs to be solved numerically for F (m
↵

). Let therefore 0 < ↵1 < ↵2 < . . . < ↵
L

< 1

be a dense set of knots covering the (0, 1) interval. In the following we denote m̂
l

= m̂
↵l

to simplify notation. In principle a fine grid of expectiles is all we need to estimate the

distribution function or quantiles. If the original data is still at hand, one can set m̂0 =

min{y
i

, i = 1, . . . , n} � c0 and just as well m̂
L+1 = max{y

i

, i = 1, . . . , n} + c
L+1, where c0

and c
L+1 serve as tuning parameters. In our simulations in Section 3.2.2 and in the examples

in Sections 3.2.4 and 3.4.2 we set m̂0 = m̂1 + (m̂1 � m̂2), m̂L+1 = m̂
L

+ (m̂
L

� m̂
L�1). If one

chooses ↵1 to be close to zero (and analogously ↵
L

to be close to one) then there is obviously

just a small di↵erence between the minimal expectile and the minimal observed value of the

data.

We now solve (3.4) for m̂
l

, l = 1, . . . , L, and denote the resulting estimator of the cumula-

tive distribution function with F̂
m

(.). To obtain F̂
m

(.) we estimate the distribution function

at the estimated expectiles m̂
l

through

F̂
l

:= F̂
m

(m̂
l

) =
l

X

j=1

⇣̂
j

(3.5)

for nonnegative steps ⇣̂
j

� 0, j = 1, . . . , L and ⇣̂
L+1 = 1�

P

L

l=1 ⇣̂l � 0. Making use of linear
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interpolation between adjacent values of F̂ (.) leads to

Ĝ
l

= Ĝ(m̂
l

) =
l

X

j=1

ĉ
j

⇣̂
j

with ĉ
j

= (m̂
j

� m̂
j�1)/2 and Ĝ

L+1 = m̂0.5 as (linear) constraint. This setting now allows

to calculate ⇣̂ = (⇣̂1, . . . , ⇣̂L) from a set of estimated expectiles. Details are given in the

Appendix.

Defining the linear interpolation F̂
m

(y) =
P

l

j=1 ⇣̂j + ⇣̂
j+1(y � m̂

l

)/(m̂
l+1 � m̂

l

) for y 2

[m̂
l

, m̂
l+1) allows to invert F̂

m

(.) to obtain quantile estimates based on estimated expectiles.

We define these as

m̂
ĥ(↵) = F̂�1

m

(↵).

Note that with the definition of m̂
ĥ(↵) for ↵ 2 (0, 1) we get an explicit estimate of ĥ(.) as

by-product. This is derived by interpolating ↵
l

and F̂
m

(m
l

) which defines h�1(.) and by

taking the inverse we get h(.).

We need that ⇣̂
l

� 0 which must be fulfilled since m̂
l

� m̂
l�1. Numerical inaccuracy may

yield negative values for ⇣̂
l

, in particular for ↵
l

close to 0 or 1. Estimation under the linear

constraint ⇣̂ � 0 circumvents the problem. Moreover, the estimation can get numerically

unstable which is easily eliminated by imposing a small penalty on the calculated values ⇣̂.

In fact, defining the density corresponding to F̂ (·) as f̂(·) with f̂(y) = ⇣̂
l+1/(m̂l+1 � m̂

l

) for

y 2 [m̂
l+1, m̂l

), we want f̂(·) to be ”smooth”. With other words f̂(y) � f̂(y + h) should be

small for h small. Given that f̂(·) is a step function this translates to imposing the penalty

�pen

L�1
X

l=1

 

⇣̂
l

m̂
l

� m̂
l�1

�

⇣̂
l+1

m̂
l+1 � m̂

l

!2

. (3.6)

Details are provided in the Appendix. Note that the calculation of quantiles from expectiles

is somewhat numerically demanding. As alternative there is also a more näıve way to get an

estimation for quantiles on a bases of expectiles. Efron (1991) proposed to estimate a high

number of expectiles and to count the number of observations lying below each expectile.

He calls the resulting estimates percentiles. Taylor (2008) also uses this method to estimate

quantiles from expectiles to calculate the expected shortfall. The method proposed in Efron

(1991) clearly has the advantage that it is simple and easy to perform, but, as one can

imagine, it is not very e�cient. Especially for extreme values of ↵ our method is to be

preferred as it leads to more precise estimates.
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Conclusion: From a set of expectiles we can numerically obtain the quantile function.

The method can also be applied in the regression scenario by conditioning on the explanatory

variable as will be demonstrated in the paper later.

3.2.2 Empirical Evaluation

Evidently, the resulting fitted distribution function F
m

(.) is continuous but has L + 1 non

di↵erentiable edges. In principle one can set L large to n, but this may require heavy and

numerically unstable calculations. In our experience a sequence from 0.0001, 0.001, 0.01,

0.02, . . . , 0.98, 0.99, 0.999, 0.9999 usually is su�cient for deriving the quantile in the range

between 1% and 99%, but for large sample sizes it may be sensible to choose L such that L

is proportional to n.

The procedure allows now to derive quantiles from expectiles and the question arises

how they perform in terms of e�ciency. We therefore run a small simulation study where

we estimate a number of expectiles slightly smaller than n (for example for n = 499, 459

expectiles were estimated). We simulated (a) from the standard normal distribution, (b) from

the Chi-squared distribution (df=2) and (c) from the t-distribution (df=3) with sample sizes

n = 199 and n = 499, and each simulation is replicated 1000 times. We use odd sample sizes

to guarantee unique quantiles for e.g. ↵ = 0.5. We compare our quantiles from expectiles

m̂
ĥ(↵) with ordinary quantiles for ↵ = 0.01, 0.02, 0.05, . . . , 0.95, 0.98, 0.99. The calculation of

quantiles from expectiles is part of the R package expectreg (and as all R packages available

from cran.r-project.org). Quantiles q̂
↵

are calculated using the function rq from the R

Package quantreg by Koenker (2013b). We also look at smooth quantiles denoted by q̂smooth
↵

and calculated using the method proposed by Jones (1992). For a moderate number of L,

numerical instability does not seem to be a problem within the estimation of quantiles from

expectiles. In total the simulation includes 6 ⇤ 1000 times the calculation of quantiles from

expectiles, a procedure which failed in none of the 6000 cases. Penalty (3.6) does not only

lead to a smooth distribution function and therefore to smooth quantile estimates, but also

improves the numerical stability of the calculations.

In Figure 3.1 we show exemplary for one sample of each distribution with n = 499 the

fitted transfer function h(.). The true function is provided for comparison and apparently

the fit looks acceptable. The function h itself is of secondary interest for this simulation

study but we see, that h(.) in fact can be estimated. Moreover we will need the transfer

function later in the example of Section 3.4.3 where we estimate the expected shortfall.

In Figure 3.2 we visualise the result of our simulations. Here we compare m̂
ĥ(↵) with q̂

↵

(solid lines) and, to make a fair comparison, with q̂smooth
↵

(dotted lines). As the results for
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Figure 3.1: Estimated transfer function ĥ(.) (in black) and theoretical transfer function (in grey)
for the three kind of error distributions considered here.

n = 199 and n = 499 are very similar, Figure 3.2 concentrates on n = 199. The first plot

of Figure 3.2 shows the relative RMSE (root mean squared error) of the estimated quantiles

for the standard normal distribution. Results for the Chi-squared distribution can be found

in the second plot and in the third plot findings for the student t distribution are visualized.

Results above the unit line stand in favour for expectiles and Figure 3.2 mirrors surprisingly

satisfactory performances for m̂
ĥ(↵). We notice the gain of e�ciency for the two symmetric

distributions and inner quantiles: The RMSE for quantiles from expectiles is 5 - 10% lower

than the RMSE for smooth quantiles. Not surprisingly, the di↵erence between quantiles

and smooth quantiles becomes stronger when looking at extreme quantiles. This is also

mirrored in the relative RMSE as we see that for quantiles reflecting extreme observations

the smoothing leads to an improvement. Generally it occurs that the expectile based quantile

estimators m̂
ĥ(↵) behave sound and are (for most values of ↵) more e�cient than the direct

quantile estimates q̂
↵

. This holds as well in terms of relative RMSE as in terms of relative

mean absolute error which we do not report here as the results are quite similar.

Conclusion: All in all we see, that the calculation of quantiles from a set of expectiles

is a reasonable thing to do also in terms of e�ciency. The numerical burden is of course not

ignorable.
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Figure 3.2: Relative Root Mean Squared Error RMSE(q̂
↵

)/RMSE(m̂
ĥ(↵)) (solid lines) and

RMSE(q̂smooth
↵

)/RMSE(m̂
ĥ(↵)) (dotted lines) where h(.) is estimated through ĥ(.) for di↵erent

simulation distributions and n = 199.

3.2.3 Expectiles and Quantiles in the tail

As can be seen from Figure 3.1 we have for small values of ↵ that h(↵) ⌧ ↵ and accordingly

for ↵ close to 1, (1� h(↵)) ⌧ (1� ↵) unless the distribution is heavily tailed. For instance

the ↵ = 0.01 quantile of the standard normal distribution corresponds to the h(↵) =: ↵̃ =

0.0014524 expectile. This raises the question if and how well extreme expectiles can be

estimated. To tackle this question formally we look at expectiles and quantiles in the tail of

the distribution by setting

↵ = ⇠/n (or ↵ = 1� ⇠/n) (3.7)

for some ⇠ � 1. Moreover we assume that the tails have a reasonable interpretation in that

the second order moment of the underlying distribution is finite. The expectile estimate m̂
↵̃

is defined as minimizer of (3.2) for ↵̃ = h(↵) and we get

m̂
↵̃

=
⇣

n

X

i=1

ŵ
i,↵̃

⌘�1⇣
n

X

i=1

ŵ
i,↵̃

Y
i

⌘

(3.8)

where ŵ
i,↵̃

= 1� ↵̃ for Y
i

< m̂
↵̃

and ŵ
i,↵̃

= ↵̃ for Y
i

� m̂
↵̃

. Note that (3.8) is not an analytic

definition, since the iterated weights ŵ
i

depend on the fitted value m̂
↵̃

. We simplify (3.8) by

replacing the ”fitted” weights by their ”true” weights w
i,↵̃

defined through w
i,↵̃

= 1� ↵̃ for
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Y
i

< m
↵̃

and w
i,↵̃

= ↵̃ otherwise. This allows to approximate (3.8) to

m̂
↵̃

⇡

⇣

n

X

i=1

w
i,↵̃

⌘�1⇣
n

X

i=1

w
i,↵

Y
i

⌘

. (3.9)

Note that as shown in the Appendix we have ↵̃ ⌧ ↵ for ↵ close to 0 and (1� ↵̃) ⌧ (1� ↵)

for ↵ close to 1. Therefore we find w
↵

:= E(w
i,↵

) = (1� ↵̃)↵ + ↵̃(1� ↵) ⇡ ↵, so that with

(3.7) we may approximate (3.9) through expansion to

m̂
↵̃

�m
↵̃

⇡ ⇠�1
n

X

i=1

w
i,↵̃

(Y
i

�m
↵̃

)� (3.10)

⇠�2
n

X

i=1

(w
i,↵̃

� w)
n

X

j=1

w
j

(Y
j

�m
↵̃

) + . . . . (3.11)

The first component in (3.10) has mean zero and variance

V
↵̃

:= ⇠�2



(1� ↵̃)2
n

H(q
↵

)� 2G(q
↵

)q
↵

+ q2
↵

↵
o

(3.12)

+ ↵̃2
n

�

H(1)�H(q
↵

)
��

m0.5 �G(q
↵

)
�

+ (1� ↵)q2
↵

o

�

.

Note that with the assumption of finite second order moments we have
R

q↵

�1 y2f(y)dy < 1

which implies that f(y) = o(|y|�3) for y ! �1. This in turn yields that ↵q2
↵

= o(1) and

G(q
↵

)q
↵

= o(1) so that overall V
↵̃

= o(1).

Looking at the second component in (3.11) we find that its mean equals ⇠�2↵̃(q
↵

�m0.5)

while its variance is of order O(↵̃2)O(V
↵

). Arguing that ↵̃ ⌧ ↵, see Appendix, we can

conclude that the second term in (3.11) is of ignorable asymptotic order for ↵ = ⇠/n ! 0.

The same holds by simple calculation for the remaining components not explicitly listed in

(3.10) and (3.11). Hence, we may approximate the distribution of m̂
↵̃

�m
↵̃

through

m̂
↵̃

�m
↵̃

⇡ ⇠�1
n

X

i=1

w
i,↵̃

(y
i

�m
↵̃

). (3.13)

In particular, with (3.13), we get the (asymptotic) unbiasedness E(m̂
↵̃

) = m
↵̃

. One may

even derive asymptotic normality from (3.13) by showing that higher order moments vanish.

We can therefore conclude that even for extreme expectiles, i.e. ↵̃ = h(↵) or 1� ↵̃ = 1�h(↵)

very small, respectively, we achieve asymptotic unbiasedness and normality.

We now pose the same question to quantiles, i.e. what can be said asymptotically about
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Figure 3.3: Sampling distribution of � = q̂

↵

� q

↵

(solid line) and � = m̂

↵̃

� m

↵̃

(dashed line) for
di↵erent underlying distribution functions. Top row is for ↵ = 0.999 and bottom row for ↵ = 0.99.
Left column is for normal distribution, middle column for Chi-squared (df=2) distribution and right
column for t-distribution (df=3). Vertical line indicates the mean values for both distributions.

quantile estimation in the tails of the distribution. Following Koenker and Bassett (1978)

and Koenker (2005, page 71-72) we can derive the distribution of the quantile estimate q̂
↵

as

follows. Let g
↵

(q) = 1
n

P

n

i=1 1{Yi

 q}�↵ with 1{.} as indicator function, then q̂
↵

is defined

through g
↵

(q̂
↵

) � 0 and g
↵

(q̂
↵

� �) < 0 for all � > 0. Hence

P (q̂
↵

� q
↵

 �) = P
�

n

X

i=1

1{Y
i

 q
↵

+ �} � n↵
�

= 1� P (Z
�

< n↵) (3.14)

where Z
�

is a binomial random variable with parameters Z
�

⇠ Bin
�

n, F (q
↵

+ �)
�

. Note

that F (q
↵

+ �) ⇡ ↵ + f(q
↵

)� and with (3.7) we have that the distribution of Z
�

(for small

�) converges to a Poisson distribution. As a consequence, for extreme quantiles we do not

achieve asymptotic normality and therefore unbiasedness is not guaranteed. We can easily

calculate the limit of P (q̂
↵

 q
↵

) which equals 1 � P (Z  ⇠) for Z ⇠ Poisson(⇠). For

instance for ⇠ = 1 this equals 0.26, which mirrors skewness of the distribution of extreme

quantiles. Note, of course, that we may use extreme value theory to derive the asymptotic

distribution of q̂
↵

.

We run a small simulation to study the performance of tail expectile and tail quantile

estimation, respectively. We simulate data and look at the distribution of extreme quantiles.

In Figure 3.3 we show the distribution of q̂
↵

� q
↵

(solid line) and m̂
↵̃

�m
↵̃

(dashed line) for

a sample size of n = 1000. We look at the ↵ = 0.999 (top row) and the ↵ = 0.99 (bottom

row) quantile and the corresponding expectile. We simulate from (a) a normal distribution
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Figure 3.4: Left: Quantiles and expectiles for the Munich rent data. Right: QQ-Plot quantiles vs.
quantiles from expectiles.

(left column), (b) a Chi-squared (with 2 degrees of freedom, middle column) and (c) a t-

distribution (with 3 degrees of freedom, right hand side column). The vertical line indicates

the mean value of q̂
↵

� q
↵

(solid line) and m̂
↵̃

�m
↵̃

(dashed line) which should be zero to

indicate unbiasedness. There is apparently a bias occurring for quantile estimation for ↵

close to one (or close to zero).

Conclusion: Overall we may conclude that expectile estimates behave stable even for

very small or very large values of ↵. This is of course important to know if one uses a

sequence including even extreme expectiles to estimate quantiles as suggested in the previous

subsection.

3.2.4 Example

To illustrate expectiles and the conversion of expectiles to quantiles we give a short example.

We apply our methods to data collected 2012 in Munich to construct the Munich rent

index. The full data set consists of 3080 observations, i.e. rented apartments in Munich,

Germany, and we here analyse the variable giving the net rent per square meter (m2) for

each apartment. For illustration we restrict our attention to apartments between 45 m2 and

55 m2 and examine the net rent per square meter for the resulting 421 apartments in the

data set of that size.

First we calculate a fine grid of sample expectiles and quantiles for the variable net rent
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per m2 and plot them in Figure 3.4 on the left. The estimated expectiles naturally form a

smooth curve while the estimated quantiles mirror some variability. In a next step we use the

set of expectiles to calculate quantiles from expectiles and plot these against the empirical

quantiles (see right part of Figure 3.4). One can notice, that the estimated quantiles for

the inner range of ↵ 2 (0, 1) nearly coincide with their empirical counterpart whereas for

extreme values of ↵ the fluctuation around the identity line becomes larger. This behaviour

is also supported by our simulation results in Section 3.2.2.

3.3 Quantile and Expectile Regression

3.3.1 The Problem of Crossing Quantiles and Expectiles

So far we have considered the simple scenario with no explanatory variables involved. We

extend this now to quantile and expectile regression, respectively. To do so, we assume a

continuous covariate x and define the quantile and expectile regression functions through

q
↵

(x) = �(q)
0↵ + x�(q)

1↵ and m
↵

(x) = �(m)
0↵ + x�(m)

1↵ . Estimation of q
↵

(x) and m
↵

(x) is carried

out using the weighted L1 sum (3.1) and the corresponding L2 version (3.2), respectively,

with q
i,↵

= q
↵

(x
i

) and m
i,↵

= m
↵

(x
i

).

A central problem occurring in quantile and expectile regression are crossing fitted func-

tions. For 0 < ↵1 < ↵2 < 1, by definition, we have q
↵1(x) < q

↵2(x) and m
↵1(x) < m

↵2(x),

respectively, for all x. This inequality can however be violated for some (observed) x values

in the fitted functions, which is called the crossing quantile or expectile problem. Several

remedies have been proposed to circumvent the problem and some of them will be used later

in the next section. Before turning to that, we want to explore empirically in simulations

how frequently one is faced with crossing quantile and expectile functions. We run a small

simulation study and count the number of crossings between neighboring fitted expectiles

and quantiles, respectively. Therefore we select a set of ↵ 2 {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8,

0.9, 0.95, 0.98, 0.99} and simulate data from the following simple linear regression setting

y = 4 + 3x+ ✏. (3.15)

The covariate x is drawn from a uniform U(�1, 1) distribution and the random error is added

from either (a) a normal N(0, 1.52), (b) a Chi-squared (df = 2) or (c) a t distribution (df

= 3), respectively. Data sets are generated with sample sizes of n = 49, 199, 499 and for

each combination of settings 1000 replications are created. A data set is then analysed by

computing the set of ↵-quantiles using the R package quantreg. For expectiles we compute

the resulting ↵̃ = h(↵) expectiles using the R package expectreg. Function h(.) is computed
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separately for each error distribution according to equation (3.3), which makes the estimates

comparable. For each data set and every generated covariate value, all neighboring pairs of

↵ and h(↵) are checked for crossing regression lines within the range of observed covariates.

expectiles
✏ ⇠ N(0, 1.52) �

2(2) t(3)
h(↵) with ↵ / n 49 199 499 49 199 499 49 199 499

0.01 - 0.02 ⇤ 21 5 ⇤ 56 1 ⇤ 49 48
0.02 - 0.05 54 2 0 207 3 0 22 35 24
0.05 - 0.1 8 0 0 44 0 0 7 18 3
0.1 - 0.2 1 0 0 4 0 0 5 5 2
0.2 - 0.5 0 0 0 0 0 0 1 0 0
0.5 - 0.8 0 0 0 1 0 0 0 0 0
0.8 - 0.9 0 0 0 5 0 0 10 3 1
0.9 - 0.95 8 0 0 19 0 0 14 11 2

0.95 - 0.98 48 2 0 42 0 0 23 27 23
0.98 - 0.99 ⇤ 27 3 ⇤ 27 1 ⇤ 53 45

quantiles
✏ ⇠ N(0, 1.52) �

2(2) t(3)
↵ / n 49 199 499 49 199 499 49 199 499

0.01 - 0.02 ⇤ 564 210 ⇤ 593 226 ⇤ 612 296
0.02 - 0.05 714 123 10 758 143 16 679 208 27
0.05 - 0.1 443 46 0 439 46 0 377 78 3
0.1 - 0.2 144 6 0 167 3 0 156 2 0
0.2 - 0.5 5 0 0 5 0 0 3 0 0
0.5 - 0.8 3 0 0 13 0 0 4 0 0
0.8 - 0.9 168 2 0 154 5 0 166 7 0
0.9 - 0.95 433 37 1 432 40 1 411 78 3

0.95 - 0.98 680 130 12 718 175 18 704 214 37
0.98 - 0.99 ⇤ 593 213 ⇤ 599 199 ⇤ 647 267

Table 3.1: Number of crossings between two neighboring expectiles / quantiles in the linear
model (3.15) from 1000 data sets, starting with ↵ = 0.01. Crossing counts are given for all ten
pairs of expectiles or quantiles, respectively, sample sizes of n = 49, 199, 499 and the three error
distributions for ✏, as defined previously. Quantiles smaller than 1/n are omitted and indicated as
⇤ in the table.

The resulting number of crossings within the 1000 replications is summarized in Table 3.1.

Not surprisingly crossings occur in the tail of the distribution and become less frequent with

increasing sample size. However, the numbers show that there are generally fewer crossings

of expectiles, in particular within the central 90% of the distribution, while for quantile

regression we obtain a large proportion of crossings for small samples even in the inner part
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of the distribution, i.e. between the 0.2 and 0.8 quantile.

Conclusion: We may conclude from the simulation that expectiles seem less vulnerable

for crossing problems than quantile estimates.

3.3.2 Non-crossing Spline Based Estimation

Several remedies have been suggested to circumvent or correct for crossing quantiles with

references given in the introduction. We here extend the idea of Bondell, Reich, and

Wang (2010) who fit non-crossing quantiles using linear programming. We pick up the

idea and generalize it towards non-crossing spline based expectile estimation. To do so, we

first present spline based quantile and expectile estimation by replacing q
↵

(x) and m
↵

(x)

with bivariate functions

q(↵, x) and m(↵, x) (3.16)

where both functions are smooth (or just linear) in direction of ↵ and smooth (or just linear)

in direction of x. The bivariate functions may be called quantile sheets or expectile sheets.

The setting (3.16) transfers the estimation exercise to bivariate smoothing, as proposed in

Schnabel and Eilers (2013b). We replace (or approximate) q(↵, x) through

q(↵, x) = [B(1)(↵)⌦B(2)(x)] a (3.17)

where B(1)(↵) is a (linear) B-spline basis set up on knots 0 < ↵1 < . . . < ↵
L

< 1 and B(2)(x)

is a B-spline basis built upon some knots 1 < . . . < 
K

covering the range of observed

values of x and a is the vector of coe�cients. If q(↵, x) is assumed to be linear in x one may

take B(2)(x) as linear B-spline and set K = 2 in this case. Let l = 1, . . . , L be the indices of

columns of B(1)(↵) and k = 1, . . . , K the indices of columns of B(2)(x). Vector a may then

be indexed by a
lk

for l = 1, . . . , L, k = 1, . . . , K and let a
l.

= (a
l1, . . . , alk)0. Non-crossing

quantiles are now guaranteed by linear constraints on the parameter vector of the form

B(2)(x)(a
l.

� a
l+1.)  0 for l = 1, . . . , L� 1 (3.18)

for all x in the observed range of the covariates. If B(2)(x) is a linear B-spline basis this

simplifies to a
lk

 a
l+1k for l = 1, . . . , L� 1 and k = 1, . . . , K. In general we can formulate

(3.18) as linear constraint by inserting for x the observed values x
i

, i = 1, . . . , n.
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Figure 3.5: Quantile and expectile sheets for normally distributed errors.

We can now fit q(↵, x) by replacing (3.1) with its multiple version

L

X

l=1

n

X

i=1

w
i,↵l

�

�y
i

�B(1)(↵
l

)⌦B(2)(x
i

) a
�

� (3.19)

which is minimized with respect to a subject to the linear constraints (3.18) using linear

programming. Alternatively, one may work with iterated weighted least squares by using the

fact that |y� q
↵

| = (
p

(y � q
↵

)2)�1(y� q
↵

)2. Schnabel and Eilers (2013b) change the weight

from w
i,↵

to w
i,↵

(
p

(y � q
↵

)2)�1 and apply iterated weighted least squares to fit function

q(↵, x).

Replacing the L1 distance in (3.19) by the L2 distance

L

X

l=1

n

X

i=1

w
i,↵l

⇣

y
i

�B(1)(↵
l

)⌦B(2)(x
i

) u
⌘2

(3.20)

gives a weighted least squares criterion which allows to estimates the expectile sheetm(↵, x) =

B(1)(↵)⌦B(2)(x) u, where again the linear constraints (3.18) need to be fulfilled. Estima-

tion can be carried out by iterative quadratic programming. See also Schnabel and Eilers

(2013a) for a (more restrictive) approach to obtain non-crossing expectile curves.

In Figure 3.5 we show exemplary for the simulation model (3.15) of the previous subsec-
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tion the resulting quantile and expectile sheets for normally distributed residuals. We use a

linear B-spline basis for x with K = 2. For every value we have increasing (or nondecreas-

ing) functions q(↵, x) and m(↵, x) in ↵. A simple visual impression shows that the quantile

sheet is more rough compared to the fitted expectile sheet. Note that we can now calculate

for each value of x a set of expectiles m̂
↵l
(x) = m̂(↵

l

, x) which allows to apply the results

of Section 3.2 to derive quantiles based on expectiles. The code for calculating the linear

non-crossing quantile curves by Bondell, Reich, and Wang (2010) is available from the home-

page of Howard Bondell (see http://www4.stat.ncsu.edu/~bondell/Software/NoCross/

NoCrossQuant.R, last date of access January 10, 2014). The programme for fitting non-

crossing expectiles is part of the R package expectreg by Sobotka, Schnabel, and Schulze Wal-

trup (2013).

Conclusion: For both, expectiles and quantiles, we can fit sheets guaranteeing non

crossing functions. Overall, the expectile sheet provides a more smooth surface compared to

the quantile sheet in particular in direction of ↵.

3.4 Extensions and Examples

3.4.1 Penalized Smooth Expectile Sheets

Following the expectile sheet m(↵, x), we may assume that m(↵, x) is smooth in x, but with-

out any parametric (linear) assumption. This can be fitted with a B-spline basis as in Section

3.3.2, but now with K being large. In order to control for a smooth and numerically stable

fit one may impose a penalty on the coe�cients in the style of penalized spline regression,

see Ruppert, Wand, and Carroll (2003, 2009). In other words we supplement (3.20) by the

quadratic penalty

�
u

u0D0Du

where D0D is an appropriately chosen penalty matrix and �
u

is the smoothing parameter

chosen data driven. We give an example in the next subsection. For a specific value of ↵ this

has been proposed in Sobotka, Kauermann, Schulze Waltrup, and Kneib (2013) for expectile

smoothing or in Bollaerts, Eilers, and Aerts (2006) for quantile smoothing where the latter

use a di↵erent penalization. The smoothing parameter �
u

can be chosen by asymmetric

cross-validation or the Schall algorithm for mixed models as described in Schnabel and

Eilers (2009b).
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Figure 3.6: Expectile sheet for the Munich rent data (left), quantiles based on ex-
pectiles, calculated for certain values of x, which are visualized by points (middle)
and non-crossing quantile smoothing splines (right). Quantiles are calculated for ↵ =
0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 0.80, 0.90, 0.95, 0.98, 0.99.

3.4.2 Rent Index of Munich

To see how the method performs in practice, we again take a look at the Munich rental

data from Section 3.2.4. As reminder, the data consists of 3080 observations, i.e. rented

apartments in Munich, Germany. We consider two variables in our example: net rent per

m2 as response and living space measured in m2 as covariate. First we perform both a

non-crossing and nonparametric expectile regression as described in Sections 3.3.2 and 3.4.1.

Our underlying model is given with the expectile sheet m(↵, living space). The smoothing

parameter �
u

was chosen automatically by using the Schall algorithm (see Schnabel and

Eilers, 2009b). The sheet resulting from the estimation procedure is shown in Figure 3.6.

As one can see there, the dependency of the two variables is obviously of non-linear na-

ture. The amount of smoothing done for the expectile sheet seems appropriate. The sheet

serves as a basis to calculate quantile estimates for certain values of x = 25, 30, . . . , 155

and ↵ = 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 0.80, 0.90, 0.95, 0.98, 0.99. We apply the algorithm

as described in Section 3.2 and obtain the mid-panel of Figure 3.6. The calculated values for

the quantiles are indicated by points which are connected by lines. All in all, the quantiles

from expectiles seem to behave well. We can see that there is a decrease in net rent per

square meter as the apartment size grows. This continues till apartments up to size 100 m2

but then net rent remains, more or less, constant. A nice feature of our conversion is that

non-crossing of quantiles is guaranteed.
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As an alternative to our expectile based analysis we apply smooth spline based quantile

fitting as described in Koenker, Ng, and Portnoy (1994) and implemented in the R package

quantreg by Koenker (2013b). Here, ↵ is kept fixed and smoothing is carried out separately

for each value of ↵ over the covariate only. Here non-crossing of quantile curves is not

guaranteed. The resulting fit is shown in the right part of Figure 3.6. All in all, spline based

quantiles exhibit similar features as the quantiles from expectiles, although the quantile

smoothing spline, due to its L1 nature, is angled. For the quantile smoothing we decided

to pick a smoothing parameter which results in a smoothness comparable to the amount of

smoothing mirrored in the second panel of Figure 3.6.

3.4.3 Expected Shortfall

Investment risks are frequently measured using the expected shortfall (ES), a stochastic

risk measure, for the lower tail defined as ES(↵) = E(Y |Y < q
↵

) for a continuous random

variable Y with ↵-quantile q
↵

. It measures the expectation given that the random variable

does not exceed a fixed value and is often applied to financial time series. A näıve estimate

would calculate the mean beyond a previously estimated quantile and would therefore be

rather ine�cient. Taylor (2008) presents a possibility to estimate the expected shortfall

using expectiles and their connection to quantiles.

Note that the ↵̃-expectile is implicitly defined through argminE
�

w
i,↵̃

(y
i

�m)2
�

so that

the expectile satisfies

1� 2↵̃

↵̃
E[(Y �m

↵̃

)I(Y < m
↵̃

)] = m
↵̃

� E(Y ) (3.21)

where, as above, ↵̃ = h(↵). That is, the expectile m
↵̃

is determined by the expectation of

the random variable Y conditional on Y < m
↵̃

. Rewriting equation (3.21) and using the

fact F (m
↵̃

) = ↵ leads to

ESlow(↵) := E(Y |Y < q
↵

) =
⇣

1 +
↵̃

(1� 2↵̃)↵

⌘

m
↵̃

�

↵̃

(1� 2↵̃)↵
m0.5 (3.22)

for the lower tail of F . Depending on whether the random variable describes a win or a loss,

we define the expected shortfall for the upper tail as ESup(↵) = E(Y |Y > q1�↵

). In order to

determine the appropriate ↵̃ to a given ↵, Taylor (2008) estimates a dense set of expectiles

and then constructs an empirical distribution function on the basis of the expectile curves.

Here we make use of the results derived in subsection 3.2.1 and estimate the distribution

function F̂
m

(.) from expectiles. As introduced in Section 3.2.1, we estimate a dense set of

expectiles (i.e. we set ↵
l

= 0.0005, 0.001, 0.005, 0.01, 0.02, . . . , 0.98, 0.99, 0.995, 0.999, 0.9995)
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Figure 3.7: Estimated expected shortfall of the CAC40 yields for ↵ = 0.01, 0.05, 0.95, 0.99. Daily
data from 1991 to 1998. Results with pointwise estimated distribution on the left, with empirical
distribution function on the right.

and compute the cumulative distribution function at each observed covariate value. The

estimated distribution allows us to conclude the ↵̃ value for a given ↵-quantile. We then

calculate the expected shortfall explicitly for certain values of ↵, e.g. ↵ = 0.01, 0.05, 0.95, 0.99.

We apply the idea and estimate the expected shortfall for a serially drawn time series

from the daily yields of the French stock index CAC40 in the time period between 1991 and

1998. All in all, there are 1860 observations / trading days and we take time t as covariate

influencing the expected shortfall. For estimation, we therefore construct the expectile sheet

m(↵, t). As basis in t we use a cubic B-spline basis with 20 inner knots to account for the

variability in time. However, in order to give a risk prediction for the next observations, we

have equidistant knots from min(t) to max(t) + 0.02(max(t)�min(t)). That way, we get an

estimated risk for the upcoming day(s), i.e. we pursue out of range prediction. To achieve

smoothness in time, we add a penalty of first order di↵erences �
u

u0D0Du to (3.20), where

Du has rows u
lk

�u
lk�1 for l = 1, . . . , L and k = 1, . . . , K. The optimal smoothing parameter

�
u

is chosen via asymmetric cross-validation, see Sobotka, Kauermann, Schulze Waltrup, and

Kneib (2013) for a more extensive description. Next, we apply the algorithm presented in

Section 3.2 to all observed covariate values and also to the added time points beyond the

data. This delivers the estimated ↵-quantile and its corresponding ↵̃-expectile. In turn we

are able to estimate the expected shortfall (3.22) for each point in time, that is sequentially

observation by observation which gathers information about the changes in the distribution.
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The result of the estimation is presented in Figure 3.7 (left part). As comparison we also

fit the expected shortfall based on the empirical distribution as suggested by Taylor (2008)

(right part of Figure 3.7). As can be seen, the volatility of the data is captured by the curves

of the expected shortfall, for gains, as well as for losses. A generalization over the range

of time can also be observed. When using the empirical distribution function on the other

hand, especially the curves for ↵ = 0.05, 0.95 tend towards overfitting. This is particularly

visible for the time of low volatility around day 1300. The small amount of prediction

incorporated by the splines turns out to be just a linear extension of the last fits. For accurate

predictions, one should aim to combine conditional autoregressive expectiles (CARE, Kuan,

Yeh, and Hsu, 2009) that are able to account for the autocorrelation in the data with the

methods introduced in this paper. Still, the example shows that an improvement in expected

shortfall estimation is possible when using the e�cient distribution estimation introduced in

Section 3.2.1.

3.5 Discussion

In this paper we looked at quantiles, as Goliath, and expectiles, as David, and explored how

their connection can be used in practice. An algorithm was presented to estimate quantiles

from a (fine) grid of expectiles. We noticed and examined properties of extreme quantiles

and expectiles and discussed the crossing issue of quantile and expectile regression. Even

so, as crossing of neighboring curves is an issue, we proposed a method to circumvent this

problem. All methods regarding expectiles which were described in detail in this paper can

be found in the R package expectreg.

Apparently, referring again to the comparison of expectiles and quantiles to David and

Goliath is undissolved. There is no final fight and research on both ends continues. It is

certainly true that quantiles are dominant in the literature but we wanted to show that

expectiles are an interesting alternative to quantiles and that their combined use is helpful,

in particular for the estimation of the expected shortfall. We also demonstrated the use

of quantile and expectile sheets as smooth variants to quantile and expectile regression,

respectively. This accommodates quite naturally the constraints of non-crossing quantile and

expectile curves and the latter allows for smooth expectile regression based on implemented

software, as mentioned above. Overall, the L2 foundation of expectiles is helpful, as it allows

to borrow penalty ideas from spline estimation and, of course, other extensions from the

regression framework are possible as well. Also, expectile regression now can be performed

without loosing interpretability, since quantiles can be estimated from expectiles.

All in all, we hope to have convinced the reader that expectiles do not immediately
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”belong in the spittoon” as Koenker (2013a) provocatively postulates. We think expectiles

provide an interesting and worthwhile alternative to the well established quantile regression.
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Chapter 4

Non-crossing Expectile Smoothing for Panel Data using

Penalized Splines

This chapter is developed in joint work with my supervisor Göran Kauermann. Göran Kauermann and
Linda Schulze Waltrup developed the concept of non-crossing additive expectile regression which allows for
the incorporation of a random intercept. Linda Schulze Waltrup implemented the method and explored the
numerical performance. The analysis of the GSOEP data was carried out by Linda Schulze Waltrup. Both
authors contributed to the general investigation of the scientific problem and were involved in writing and
proofreading the manuscript.
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Abstract

Expectile regression is a topic which became popular in the last years. It includes ordinary mean

regression as special case but is more general as it o↵ers the possibility to also model non-central

parts of a distribution. Additive semiparametric expectile models recently have been developed

and it is easy to perform flexible expectile estimation with modern software like R. Usually one

estimates a whole set of expectile curves which, in theory, should not cross each other. In practice,

however, crossing of neighboring expectile functions may occur. We discuss non-crossing expectile

curves and propose a method to circumvent crossings of neighboring functions. We also allow for

clustered observations, i.e. repeated measurements taken at the same individual. To accommodate

the resulting dependence structure among the observations we extend semiparametric expectile

estimation to semiparametric random e↵ect expectile estimation. We apply our methods to panel

data from the German Socio-Economic Panel.
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4.1 Introduction

In the regression framework, one aims to estimate the expected value of a response in de-

pendency on a set of covariates. Besides the dominant field of mean regression there are

other, more general regression approaches. Expectile regression for example contains mean

regression as special case but also o↵ers the possibility to estimate tail expectations. Expec-

tiles were introduced by Aigner, Amemiya, and Poirier (1976) and Newey and Powell (1987).

They appear as alternative to the dominating quantiles (see Koenker and Bassett, 1978 or

Koenker, 2005) and have seen some increasing interest in the last years. The two methods,

i.e. quantiles and expectiles, both uniquely define a distribution function and hence allow

for regression modeling beyond the mean. Jones (1994) and Yao and Tong (1996) derive

the mathematical relation between quantiles and expectiles, see also De Rossi and Harvey,

2009. A general comparison of the two approaches is provided in Schulze Waltrup, Sobotka,

Kneib, and Kauermann (2014).

Expectiles can be fitted with asymmetric, iterated weighted least squares (Newey and

Powell, 1987) which mirrors a L2 distance measure like in the normal distribution. This

resemblance has the great advantage that it allows to extend expectile regression in the same

way as normal regression models have been generalized in the last decades. Schnabel and

Eilers (2009b) propose expectile smoothing with penalized splines, see also Pratesi, Ranalli,

and Salvati (2009). Sobotka and Kneib (2012) use spatial smoothing in combination with

expectiles. Sobotka, Kauermann, Schulze Waltrup, and Kneib (2013) provide asymptotic

properties while Guo and Härdle (2013) propose simultaneous confidence bands for expectile

curves. Taylor (2008) uses expectiles to calculate the expected shortfall. A general overview

over expectile regression is found in Kneib (2013), see also De Rossi and Harvey (2009). In

this paper we extend smooth expectile regression to cope with clustered observations. To be

specific, we look at panel data giving the income of an individual over time and age. The

data trace from the German Socio Economic panel (Wagner, Frick, and Schupp, 2007) and

we have clustered panel based observations. For each individual in the study we include a

random e↵ect yielding a linear mixed model which is extended to expectiles.

Quantile regression for longitudinal, clustered data has been proposed in Tang and Leng

(2011), see also Leng and Zhang, 2014 or Koenker, 2004. The latter uses random e↵ects to

estimate a single quantile. We extend this to expectiles, but estimate the expectiles for a

whole range of asymmetry values ↵ 2 (0, 1), which will be labelled as an expectile sheet in

the paper. The modeling of quantile and expectile sheets has been proposed in Schnabel

and Eilers (2013b). The idea is, instead of estimating quantiles (or expectiles) for a specific

asymmetry value ↵, one fits a complete surface, the so called quantile (or expectile) sheet
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giving the value of the ↵-th quantile conditional on the covariate value x, say. The sheet is a

bivariate function which needs to be estimated from the data subject to some monotonicity

condition to avoid crossing quantiles (see also Koenker and Ng, 2005). We employ the idea

to estimate expectile sheets which depend additively on the covariates in the model.

The paper is organized as follows. In Section 4.2 we develop the theory of non-crossing

random e↵ect expectile regression. We start in Subsections 4.2.1 and 4.2.2 by describing

spline based expectile estimation of expectile sheets. Here we concentrate on one covariate

of influence. In Subsection 4.2.3 we extend the model to numerous covariates. As a last step

in Subsections 4.2.4 and 4.2.5 a random intercept will be introduced. Then we take a turn

to Section 4.3.1 where we apply our methods to the data from the German Socio-Economic

Panel. A conclusion finalizes the paper.

4.2 Modeling Smooth Expectiles

4.2.1 Spline Expectile Estimation

Let y
i

= (y
i1, . . . , yini)

0 denote a set of longitudinal or panel observations, respectively, taken

on cluster or individual i. In our example y
ij

gives the monthly income of an individual i in

panel wave j. With X
i

= (x0
i1, . . . ,x

0
ini
)0 we denote the matching matrix of covariates, where

x
ij

= (x1ij, . . . , xdij

)0 is a d dimensional vector, j = 1, . . . , n
i

and i = 1, . . . , n. For ease of

presentation, we first assume that d = 1 and let x1ij be metrically scaled. Moreover, we will

ignore for the moment that observations taken at the same individual or at the same cluster

are dependent. This corresponds in principle to unclustered data, i.e. taking n
j

⌘ 1, but it

would be conceptually and notationally misleading to restrict the subsequent presentation

to this special case. Accordingly for now we assume that y
i

is a vector and X
i

is a n
i

⇥ 1

dimensional matrix. Our interest is in the estimation of the expectile sheet m(↵, x1) which

is assumed to be a smooth function in both, covariate x1 and asymmetry value ↵ 2 (0, 1).

Defining the residual with ✏ = y�m(↵, x1), the expectile sheet m(↵, x1) is implicitly defined

through

m(↵, x1) = argminE
�

w
↵

(✏)✏2
�

, (4.1)

where

w
↵

(✏) =

8

<

:

↵ for ✏ � 0

1� ↵ for ✏ < 0.
(4.2)
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The expectation in (4.1) is thereby taken with respect to the conditional distribution of y

given x1. Note that for ↵ = 0.5 the classical smoothing model results, i.e. m(0.5, x1) =

E(y|x1). Moreover, it is easy to see that m(↵, x1) is monotone in ↵, that is m(↵1, x1) 

m(↵2, x1) for ↵1  ↵2.

Our presentation of modeling and fitting expectile sheet m(↵, x1) subsequently follows

three steps. First, we need to guarantee that the fitted function is monotone in ↵, i.e. we

need to fit non-crossing expectile functions. As a second step, we extend the model to allow

for multiple covariates. Finally, as third step, the model needs to be generalized to allow for

clustered observations.

We start by providing a numerical procedure for non-crossing expectile estimation, see

also Schulze Waltrup, Sobotka, Kneib, and Kauermann (2014). To do so, we replace function

m(↵, x1) by a spline basis representation following the theory and practice of penalized

spline smoothing, see Ruppert, Wand, and Carroll (2003, 2009). To be more specific, let

B(1)(x1) = (B1(x1), . . . , BK

(x1)) be a B-spline basis of polynomial order p built upon the

knots 11, . . . ,1(K�p+1), which cover the (observed) range of covariates x1. Moreover, let

B̃(0)(p) = (B̃1(↵), . . . , B̃M

(↵)) be a linear B-spline basis built upon the knots 0 < ↵̃1 < ↵̃2 <

· · · < ↵̃
M

< 1. We now approximate m(↵, x1) through the tensor product

m(↵, x1) =
K

X

k=1

M

X

m=1

B̃
m

(↵)B
k

(x1)ukm

(4.3)

= (B̃(0)(↵)⌦B(1)(x1))u =: B(p, x1)u, (4.4)

where u = (u11, . . . , u1K , u21, . . . , uMK

)0. The use of a linear B-spline in direction of ↵ corre-

sponds to estimating a set of expectiles for ↵̃1, . . . , ↵̃M

and use a simple linear interpolation

for the calculation of expectiles for any ↵ 2 [↵̃
m

, ↵̃
m+1]. This justifies the use of a linear

basis and mirrors the role of the number of knots M . The larger we choose M , the finer the

grid for linear interpolation. Apparently, if we choose M too large we will face a numerical

limit. Other than that the selection of M plays a minor role. Note that the selection of

the number of knots in x direction, that is K, plays a di↵erent role and more discussion is

required, which we postpone for the moment. Replacing now the expectile definition (4.1)

by its empirical version provides the weighted least squares estimate for coe�cient vector u

through

û = argmin
n

X

i=1

ni
X

j=1

M

X

m=1

w
↵m (y

ij

�B(↵
m

, x1ij)u) {yij �B(↵
m

, x1ij)u}
2 (4.5)
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with w
↵m(.) as defined subsequent to (4.2). To continue it is notationally advisable to rewrite

(4.5) in a more comprehensive matrix form. Let therefore y = 10
M

⌦ (y0
1, . . . ,y

0
n

) and B de-

noting the matrix having rows B(↵
m

, x1ij) for m = 1, . . . ,M ; i = 1, . . . , n and j = 1, . . . , n
i

.

Finally, we denote with W the diagonal weight matrix having w
↵m (y

ij

�m(↵
m

, x1ij)) on its

diagonal. Then (4.5) can be written as

û = argmin(y �Bu)0W (y �Bu) =: argminQ(u) (4.6)

with Q(u) denoting the quadratic form in (4.6). Based on (4.6) we can easily derive an

estimation routine using iterative weighted least squares. That is, we ignore the dependence

of weight matrix W on u and solve (4.6). Fixing the weights, i.e. considering weight matrix

W as given, provides the minimum of (4.6) as

û = (B0WB)�1B0Wy . (4.7)

With this tentative estimate û we now recalculate the weight matrix W and recalculate

(4.7). These two steps are repeated until convergence.

The resulting fit Bû may not necessarily be a valid expectile sheet since monotonicity

in ↵ is not guaranteed. We therefore need to impose constraints on vector u to obtain non-

crossing expectiles. Looking at (4.3) and taking advantage of the linear B-spline structure

for B̃
m

(↵), we obtain non-crossing expectile functions as long as

B(1)(x1)(um· � u
m+1·)  0 for m = 1, . . . ,M � 1 (4.8)

is guaranteed, where u
m· = (u

m1, . . . , umk

) is the corresponding subvector of u. Apparently,

(4.8) gives a set of simple linear constraints which are easily accommodated in the estimation

routine using e.g. quadratic programming for minimizing (4.6) subject to (4.8).

4.2.2 Penalization

We return now to the role of spline dimension K, i.e. the spline basis in direction of covariate

x1. We observe that the fitted curve becomes wiggled if K is too large, i.e. the model is

overparameterized and parameter estimates become unstable. We will therefore introduce

a penalty term which compromizes numerical stability with modeling flexibility. Following

the idea of penalized spline fitting in the line of Eilers and Marx (1996) we penalize r-

th order di↵erences of the neighboring elements of subvector u
m· = (u1m, . . . , uKm

)T with

m = 1, . . . ,M . Let therefore D
K

be the (K�r)⇥K dimensional di↵erence matrix, then the
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penalty on u
m· is defined through �u0

m·KK

u
m· where K

K

= D0
K

D
K

and � is the penalty

parameter. This can be written for the entire vector u through

�u0Ku,

where K = I
M

⌦K
K

. The penalty parameter � steers the smoothness of the fitted expectile

functions m̂(↵, x) where � ! 1 leads to a smooth polynomial fit. Our intention is now to

minimize the constrained penalized weighted least squares

Q(u) +
1

2
�u0Ku subject to Au � 0, (4.9)

where the linear constraints matrix A is easily constructed from (4.8).

4.2.3 Additive Expectile Estimation

We now extend the above estimation routine to incorporate multiple covariates in a struc-

tured additive framework. Let therefore x
ij

be the d dimensional covariate vector ordered

such that x1ij, . . . , x
d̃ij

are (binary) factorial covariates and x
d̃+1ij, . . . , xdij

are metrically

scaled, respectively with 1  d̃  d. We model the expectile function additively and write

the ↵-th expectile m(↵,x
ij

) as

m(↵,x
ij

) =
d

X

h=0

m
h

(↵, x
hij

) =
d̃

X

h=0

x
hij

�
h

(↵) +
d

X

h=d̃+1

m
h

(↵, x
hij

), (4.10)

where �
h

(↵) is a smooth function in ↵ and x0ij ⌘ 1 is the intercept. Apparently, model

(4.10) needs identifiability constraints, a problem which will be solved automatically within

the estimation procedure as explained below. Note that the expectile approach extends

traditional additive models (for which ↵ = 0.5) as proposed for instance in Hastie and

Tibshirani (1990) (see also Wood, 2006). Like before, we replace the smooth components by

B-splines and we define B(h)(↵, xhij

) = x
hij

B̃(0)(↵) for h = 0, . . . , d̃ and set

B(h)(↵, xhij

) = B̃(0)(↵)⌦B(h)(xhij

)

for h = d̃ + 1, . . . , d, where B(h)(.) is a K
h

dimensional B-spline basis of order p built upon

the knots 
h1, . . . ,h(Kh�p+1) covering the (observed) values of x

h

. As before B̃(0)(↵) is the
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linear B-spline basis. This allows to rewrite (4.10) to

m(↵,x
ij

) =
d

X

h=0

B(h)(↵, xhij

)u
h

.

For d̃ + 1  h  d subvector u
h

decomposes to components u
hkm

with k = 1, . . . , K
h

and

m = 1, . . . ,M . This is completely analogous to the previous section. For h = 0, . . . , d̃ we

model the expectile dependent slope parameter �
h

(↵) in (4.10) as linear interpolation of

the expectiles for the knot locations ↵1, . . . ,↵m

. Therefore for 0  h  d̃ subvector u
h

decomposes to components u
h1m with m = 1, . . . ,M . The coherent setting (4.10) allows

now to directly extend the estimation routine from the previous section. Let therefore

u = (u0
0, . . . ,u

0
d

)0 and B = (B(0), . . . ,B(d)) where B(h) is the (M ·

P

n

i=1 ni

) ⇥ (K
h

· M)

dimensional basis with rows B(h)(↵m

, x
hij

),m = 1, . . . ,M , i = 1, . . . , n and j = 1, . . . , n
i

.

With Q(u) we define

Q(u) = (y �Bu)0W (y �Bu),

where W is a diagonal weight matrix as defined in the previous section. Then we intend to

minimize the constrained penalized least squares

arg min {Q(u) +
d

X

h=d̃+1

�
h

u0
h

K
h

u
h

} subject to Au � 0, (4.11)

where K
h

are penalty matrices constructed by r-th order di↵erences and �
h

as penalty pa-

rameter steering the smoothness of component m
h

(↵, x
h

) with respect to x
h

. The constraints

matrix A can be defined as follows. As in the one-dimensional case, we want to estimate

monotone (non-crossing) expectiles. That is, we need

m(↵1,xij

) � m(↵2,xij

) (4.12)

for ↵1 � ↵2. Note that (4.12) means, we have to ensure that

d

X

h=0

m
h

(↵, x
hij

)�m
h

(↵̃, x
hij

) � 0 (4.13)
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holds for all i = 1, . . . , n. Remembering that m
h

(↵, x
hij

) = B
h

(↵
m

, x
hij

)û
h

, we again can

rewrite (4.13) as linear constraints leading to

Au � 0. (4.14)

In principle, one can now fit an additive non-crossing semiparametric expectile model.

But, as mentioned above, we have to ensure identifiability of the model and determine the

smoothing parameters appropriately. To solve both problems, we make use of a mixed model

representation of penalized splines as described for regular smoothing, i.e. for ↵ = 0.5 in

Ruppert, Wand, and Carroll (2003) and Fahrmeir, Kneib, Lang, and Marx (2013). Before

going into details in this respect we incorporate random e↵ects to accommodate the clustered

structure of the observations.

4.2.4 Random E↵ect Expectile Estimation

We extend the above model by taking into account that observations y
i

= (y
i1, . . . , yini)

0 trace

from the same individual or cluster, respectively. Following the idea of linear mixed models

we include an individual random e↵ect �
i

in the model which provides a linear shift for all

observations from the same individual, i = 1, . . . , n. Denoting with ✏
ij

= y
ij

� �
i

�m(↵,x
ij

)

the residual belonging to observation j of individual i we define the ↵-th expectile function

through

m(↵,x
ij

) = argminE
�

w
↵

(✏
ij

)✏2
ij

�

,

where the expectation is taken with respect to y
ij

but conditional on �
i

and covariates x
ij

.

We assume that �
i

is random and make use of the prior model

�
i

⇠ N(0, �2
�

) i.i.d. for i = 1, . . . , n. (4.15)

To incorporate prior distribution (4.15) in the estimation routine, we reformulate (4.15) as

penalty term in the estimating steps below, comparable to the penalization of the spline

coe�cients. Let therefore U be the indicator matrix relating the observations from the i-th

individual in vector y = 10
M

⌦ (y0
1, . . . ,y

0
n

) to the i-th individual e↵ect �
i

. We extend the

quadratic form Q(u) to

Q(u) = (y �Bu�U�)0W (y �Bu�U�) (4.16)
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with obvious definition for weight matrix W . The task is now to minimize the constrained

least squares criterion

arg min {Q(u) +
d

X

h=d̃+1

�
h

u0
h

K
h

u
h

+ �
�

� 0�} subject to Au � 0,

where �
�

= �

2
✏

�

2
�
.

4.2.5 Mixed Model Representation

Looking at the quadratic form Q(u) in (4.16) and ignoring for the moment that W depends

on the unknown parameter, we may understand Q(u) to result from the model

y | u,� ⇠ N(Bu+U�, �2
✏

W�1)

u
h

⇠ N(0, �2
h

K�
h

) i.i.d. h = d̃+ 1, . . . , d (4.17)

� ⇠ N(0, �2
�

I
n

)

with �2
h

= �

2
✏

�h
. This is in direct analogy to the link between spline fitting and linear mixed

models as extensively discussed in Ruppert, Wand, and Carroll (2003) and Kauermann,

Krivobokova, and Fahrmeir (2009). Formulation (4.17) allows to derive Maximum Likelihood

estimates based on y for parameters �2
✏

,�
h

and �
�

. The numerical calculation has been

proposed by Schall (1991), but we also refer to Schnabel and Eilers (2009b) who apply the

idea to expectile smoothing. Assuming model (4.17), we have an (unconstrained) estimate

of v = (u0,� 0)0 through

v̂ =
�

Z 0WZ +K
��1

Z 0Wy,

where Z = (B,U ) and K = K(�
h

, h = d̃+ 1, . . . , d,�
�

) is the block diagonal matrix build

from 0 matrices for entries corresponding to u
h

, h = 0, . . . , d̃ and �
h

K
h

for entries matching

to h = d̃ + 1, . . . , d and finally �
�

I
n

on its diagonal. It is now not di�cult to show that,

assuming orthogonality of the basis functions, the Maximum Likelihood estimates for �
h

and

�
�

can be approximated through

�̂2
h

=
û0

h

K
h

û
h

df
h

(�
h

)
, �̂2

�

=
�̂ 0�̂

df
�

(�
�

)
and �̂2

✏

=
(y �Zv̂)0W (y �Zv̂)

M
P

n

i=1 ni

� df
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where

df = tr
��

Z 0WZ +K
��1

Z 0WZ
�

(4.18)

and

df
h

= tr
��

Z̃ 0WZ̃ + K̃
��1

Z̃ 0WZ̃
�

h

(4.19)

with Z̃ and K̃ consisting only of the random part of the corresponding matrices Z and K,

i.e. corresponding to the non-zero diagonal of K (and Z̃ resulting from the mixed model

representation). As before, subindex h in (4.19) means that we solely extract the columns be-

longing to the h-th covariate. Analogously df
�

(�
�

) can be defined by extracting the columns

of
��

Z̃ 0WZ̃ + K̃
��1

Z̃ 0WZ̃
�

belonging to the random intercept. The mixed model repre-

sentation also implies that identifiability issues resulting from model (4.10) disappear since

we may comprehend the priors on the parameters as Bayesian priors which regularize the

estimation. In fact if �2
h

! 0 the e↵ect of a covariate is set to zero.

4.3 Example

4.3.1 Application to German Socio-Economic Panel Data

To show the applicability of our approach we consider data from the German Socio-Economic

Panel (GSOEP, see www.diw.de/soep). The GSOEP is a detailed questionnaire starting in

1984 and still ongoing. We focus our attention on data from 2003 until 2012 and look at the

monthly gross income of women living in the western part of Germany. We hope to explore

more interesting patterns for women than for men and therefore decided to concentrate on

women. Due to historical reasons there is still a gap between the amount of income in the

western part of Germany and the amount of income in the eastern part of Germany (former

GDR). Monthly gross income is reported on a yearly basis and inflation-adjusted with 2003

as reference year. We distinguish between three di↵erent levels of education measured with

the “International Standard Classification of Education” (ISCED) which originally consists

of seven levels. We use levels 0 to 2 as category “lower education”, levels 3 and 4 as “middle

education” and 5 and 6 as “higher education”. Additionally we have age as covariate where

we restrict our attention to women between 25 an 60.

As we are interested not only in mean income but also in higher and lower income we
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Figure 4.1: The relationship between adjusted income and age of highly edu-
cated women in western Germany during 2003 - 2012 using model (4.20) (left
panel) and model (4.21) (right panel). Highlighted expectiles correspond to ↵ =
0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99.

use the techniques described in the previous subsections to fit the expectile model

y
ij

= m(↵, x1ij) + ✏
ij

(4.20)

with adjusted gross income as variable of interest and age as explanatory variable. As

described before, model (4.20) ignores the special dependence structure of the data. To

account for repeated measurements we add a random shift to each women which leads to

model

y
ij

= m(↵, x1ij) + �
i

+ ✏
ij

. (4.21)

The models were fitted applying the methods described in the previous subsections. An

implementation is available within the open source software R (see R package expectreg).

In Figure 4.1 we see the results for highly educated women based on model (4.20) (left plot)

and model (4.21) (right plot). A first conclusion from the two plots is that the random

intercept captures a large amount of the variance, as the curves in the right panel lie more
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Figure 4.2: The relationship between adjusted income and age of highly educated women (left) and
women of middle education (right) in western Germany during 2003 - 2012 using model (4.21). Ex-
pectiles correspond to ↵ = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99. Ad-
ditionally the individual variance in income is visualized.

close to each other than the curves in the left panel. The right panel shows that with

increasing age also gross income increases. There seems to be phases in women’s lives where

income stagnates: approximately between 35 and 45 and for women older than 50. After

taking the panel structure into account the behaviour of all expectile curves is similar which

means that there appears only moderate di↵erence between the relationship of income and

age for women with high income (corresponding to higher expectile curves) and women with

low income (represented by lower expectile curves). The standard deviations �
✏

and �
�

are

estimated automatically using the Schall algorithm (see Section 4.2.5). For the women of

high income, �
✏

and �
�,high are estimated as �̂

✏

= 649.99 and �̂
�,high = 1384.42 which implies

that there is a strong deviation of income between di↵erent women.

To get a better impression of the relationship between income and age we extract the

expectile curves corresponding to ↵ = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80,

0.90, 0.95, 0.99 from the expectile sheet in Figure 4.1. The result can be seen in the left plot

in Figure 4.2. We also visualize the fitted individual variation based on the normal prior of

model (4.17). The right part of Figure 4.2 shows the relationship between income and age

for women of middle education. We see that for women of middle education the relationship

between age and income seems to be nearly linear or, more precisely about constant, with a

slight cutback during the years from age 35 to 45. During that specific range of age we also

saw the stagnation of income for women of high education. The variance in monthly income

between women of middle education is estimated as �̂
�,middle = 900.71 and therewith clearly

smaller than the individual variation for high-educated women. Turning the attention to
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Figure 4.3: The relationship between adjusted income and age for women of low educa-
tion in western Germany during 2003 - 2012 using model (4.21). Expectiles correspond to
↵ = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99. Additionally the individual
variance in income is visualized. The first plot shows the unconstrained fit of model (4.21) where
we observe a crossing between the 0.99 and 0.95 expectile. In the second plot the constrained,
non-crossing fit of model (4.21) can be seen.

women of lower education we see from Figure 4.3 that there seems to be an increase in

monthly income during the ages of 25 to 50. Afterwards the income is stagnating or slightly

falling, a feature which was also present for highly educated women. The variance in monthly

income between women of low education is estimated as before automatically and constitutes

�̂
�,low = 762.15. For both women of high and middle education we see a stagnation or decline

in monthly income for the ages from 35 to 45 which may be explained by a phase in women’s

live where raising of children comes to the fore. The variation in income between women

is the highest for highly educated women and declines with decreasing education. We also

looked at log(monthly income) as response which led to similar conclusions.

4.3.2 Bootstrap Confidence Bands

In a next step we will examine the certainty of the expectile curves shown in the previous

figures. Therefore we run a nonparametric bootstrap. A detailed introduction into the

bootstrap can be found in Efron and Tibshirani (1993). To do so, we draw with replacement

n women from the set of n women and estimate model (4.21) for the corresponding new

data set. To simplify numerics we regard � as fixed, that is, we ignore the variability

induced through the estimation of �. In principle, we could assess the uncertainty via

asymptotic confidence intervals as described in Sobotka, Kauermann, Schulze Waltrup, and
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Figure 4.4: The relationship between adjusted income and age for women of high education using
model (4.21). The shaded curves result from a nonparametric bootstrap with 200 bootstrap samples
generated.

Kneib (2013). Here, however, we have nhigh = 293, nmiddle = 636 and nlow = 192 which

is slightly too low to recommend the use of the asymptotic confidence intervals. Figure

4.4 shows the expectile curves for the highly educated women (see Figure 4.2) for ↵ =

0.01, 0.5, 0.99. The variability of the fit can be evaluated by looking at the shaded lines

around the 0.01, 0.5 and 0.99 expectile, respectively. Each shaded line is resulting from

one of the 200 bootstrap samples. We see that even after taking the variation within the

sampling process into account there is a strong non linear behaviour in the relationship

between monthly income and age for highly educated women. Also the change between

periods of rise in income and stagnation in income remains present.

4.3.3 Additive Expectile Estimation

To further illustrate the applicability of our method we extend model (4.21) and allow for

additional covariates. Apparently numerous variables may potentially influence the monthly

gross income of women. But for illustrative purposes we restrict our attention here to the

employment time that the women spent with the company she is working at. This leads to
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Figure 4.5: The relationship between adjusted income, age (left plot) and duration time at company
(middle plot) for women of high education in western Germany during 2003 - 2012 for model (4.22).
Expectiles correspond to ↵ = 0.20, 0.50, 0.80. Additionally the individual variance in income is
visualized (right plot).

the additive expectile model

y
ij

= m(↵,x
ij

) + �
i

+ ✏
ij

= m(↵, x1ij) +m(p, x2ij) + �
i

+ ✏
ij

, (4.22)

where y denotes adjusted gross income and x1 is the age of the female, as before, and x2 is

the employment time at the current employer. As before �
i

allows for an individual shift.

Covariates age and duration are modeled as smooth functions and the smoothing parameter

is selected as described in Subsection 4.2.5. In Figure 4.5 we see the result for high-educated

women. The variances �2
✏

and �2
�

are estimated as �̂2
✏

= 624.07 and �̂2
�,high = 1299.96 which

is slightly lower when only regarding age as covariate. We see that the relationship between

monthly income and duration time is positive for a duration up to approximately 25 years

but is decreasing afterwards. The relationship between income and age remains nearly the

same as induced by model (4.21).

4.4 Conclusion

In this paper we extended expectile sheet estimation towards clustered observations. We in-

cluded random intercepts which in combination with spline based fitting allowed for coherent

estimation. We demonstrated the applicability with a typical data example. All in all the

paper demonstrates that the use of expectiles allows to extend the model class in the same

way as mean regression models have been extended in the last decades. We also addressed
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the problem of crossing expectile curves and made a suggestion how to circumvent crossings

of neighboring expectile functions. The methods described in this paper are implemented

in the open source software R (see R Core Team, 2014) and can be found in the R package

expectreg by Sobotka, Schnabel, and Schulze Waltrup (2013).
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Chapter 5

A Short Note on Quantile and Expectile Estimation in

Unequal Probability Samples

This chapter is developed in joint work with my supervisor Göran Kauermann. Linda Schulze Waltrup
and Göran Kauermann developed in cooperation the connection between expectiles and quantiles. Göran
Kauermann proposed the estimation of weighted expectiles within the frameweork of unequal probability
sampling. Linda Schulze Waltrup proposed and explored the use of the plug-in distribution estimator. The
simulation study was run by Linda Schulze Waltrup. Both authors contributed to the general investigation
of the scientific problem and were involved in writing and proofreading the manuscript.



CHAPTER 5. QUANTILE AND EXPECTILE ESTIMATION IN UNEQUAL PROBABILITY SAMPLES

Abstract

The estimation of quantiles is an important topic not only in the regression framework, but also

in sampling theory. A natural alternative or addition to quantiles are expectiles. Expectiles as

a generalization of the mean have become popular during the last years as they not only give a

more detailed picture of the data than the ordinary mean, but also can serve as a basis to calculate

quantiles by using their close relationship. We show, how to estimate expectiles under sampling with

unequal probabilities and how expectiles can be used to estimate the distribution function. The

resulting fitted distribution function estimator can be inverted leading to quantile estimates. We

run a simulation study to investigate and compare the e�ciency of the expectile based estimator.
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5.1 Introduction

During the estimation of population parameters usually the mean is used as measure of

choice. In some cases the median as centrality parameter is preferred. A generalization of

the median is given by quantiles. Quantile estimation and quantile regression has seen a

number of new developments in the last years with Koenker (2005) as central reference. The

principle idea is thereby to estimate an inverted cumulative distribution function, generally

called the quantile function q
↵

= F�1(↵) for ↵ 2 (0, 1), where the 0.5 quantile q0.5 as median

plays a central role. For survey data tracing from an unequal probability sample with known

probabilities of inclusion Kuk (1988) shows how to estimate quantiles taking the inclusion

probabilities into account. The central idea is thereby to estimate a distribution function

of the variable of interest and invert this in a second step to obtain the quantile function.

Chambers and Dunstan (1986) propose a model-based estimator of the distribution function

which is extended in Rao, Kovar, and Mantel (1990) towards unequal probability sampling.

Bayesian approaches in this direction have recently been proposed in Chen, Elliott, and

Little (2010) and Chen, Elliott, and Little (2012).

Quantile estimation results by minimizing an L1 loss function as demonstrated in Koenker

(2005). If the L1 loss is replaced by the L2 loss function one obtains so called expectiles

as introduced in Aigner, Amemiya, and Poirier (1976) or Newey and Powell (1987). For

↵ 2 (0, 1) this leads to the expectile function m
↵

which, like the quantile function q
↵

,

uniquely defines the cumulative distribution function F (y). Expectile estimation has recently

gained some interest, see e.g. Schnabel and Eilers (2009b), Pratesi, Ranalli, and Salvati

(2009), Sobotka and Kneib (2012) or Guo and Härdle (2013). However since expectiles

lack an interpretation as simple as quantiles their acceptance and usage in statistics is less

developed than quantiles, see Kneib (2013). Quantiles and expectiles are connected in that

a unique and invertible transformation function h : [0, 1] ! [0, 1] exists so that m
h(↵) = q

↵

,

see Yao and Tong (1996) or De Rossi and Harvey (2009). This connection can be used to

estimate quantiles from a set of fitted expectiles. This idea has been used in Schulze Waltrup,

Sobotka, Kneib, and Kauermann (2014) and the authors demonstrate in simulations that

the resulting quantiles can be more e�cient than empirical quantiles, even if a smoothing

step is applied to the latter (see Jones, 1992). In this note we extend these findings and

demonstrate how expectiles can be estimated for unequal probability samples and how to

obtain a fitted distribution function from fitted expectiles.
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5.2 Quantile Estimation

We consider a finite population with N elements and continuous survey variable Y1, . . . , YN

.

We are interested in quantiles of the cumulative distribution function F (y) =
P

N

i=1 1{Yi



y}/N and define with

q
↵

= inf{argmin
q

N

X

i=1

w
↵

(Y
i

� q) | Y
i

� q |} (5.1)

the quantile function of Y (see Koenker, 2005), where

w
↵

(✏) =

8

<

:

↵ for ✏ > 0

1� ↵ for ✏  0.

Apparently the “inf” argument in (5.1) is required in finite populations to guarantee a unique

functional definition of F (y). We draw a sample from the population with known inclusion

probabilities ⇡
i

, i = 1, . . . , N and assume that ⇡
i

is positively correlated with Y
i

. Denoting

with y1, . . . , yn the resulting sample we estimate the quantile function by replacing (5.1)

through its weighted sample version

q̂
N,↵

= inf{argmin
q

n

X

j=1

1

⇡
j

w
↵,j

|y
i

� q|} (5.2)

with w
↵,j

= w
↵

(y
j

�q) as defined above. It is easy to see that the sum in (5.2) is an unbiased

estimate for the sum in q
↵

given in (5.1). Nonetheless, because we take the “arg min” we do

not obtain that q̂
N,↵

is unbiased for q
↵

. In fact, it is easily shown that q̂
N,↵

is the inverse of

the normed weighted cumulative distribution function

F̂
N

(y) :=

P

n

j=1 1{yj  y}/⇡
j

P

n

j=1 1/⇡j

using the same notation as in Kuk (1988). Note that F̂
N

(y) is not a Horvitz-Thompson

estimate and as a consequence q̂
N,↵

it is not unbiased. Nonetheless, F̂
N

(y) is a proper

distribution function, and hence it can be considered as normalized version of the Lahiri or

Horvitz-Thompson estimator of the distribution function (see Lahiri, 1951) which is denoted

66



CHAPTER 5. QUANTILE AND EXPECTILE ESTIMATION IN UNEQUAL PROBABILITY SAMPLES

by

F̂
L

(y) :=
1

N

n

X

j=1

1/⇡
j

1{y
j

 y}.

Kuk (1988) proposes to replace F̂
L

(·) with alternative estimates of the distribution function:

Instead of estimating the distribution function itself he suggests to estimate the complemen-

tary proportion Ŝ
R

(y) which then leads to the estimate F̂
R

(y) defined through

F̂
R

(y) = 1� Ŝ
R

(y) = 1�
1

N

n

X

j=1

1/⇡
j

1{y
j

> y}.

Resulting directly from these definitions we can express F̂
R

(·) in terms of F̂
N

(·) through

F̂
R

= 1�
1

N

n

X

j=1

1/⇡
j

+ F̂
L

and F̂
L

=

P

n

j=1 1/⇡j

N
F̂
N

. (5.3)

Kuk (1988) shows that, under sampling with unequal probabilities, estimation of the median

derived from F̂
R

outperforms median estimates derived from F̂
N

and F̂
L

in terms of mean

squared estimation error. Note that in the case of a simple random sample where ⇡
j

= ⇡ =

n/N the estimators F̂
N

, F̂
L

and F̂
R

coincide.

5.3 Expectile Estimation

An alternative to quantiles are expectiles. The expectile function m
↵

is thereby defined by

replacing the L1 loss in (5.1) by the L2 loss leading to

m
↵

= argmin
m

{

N

X

i=1

w
↵

(Y
i

�m)(Y
i

�m)2}. (5.4)

Note that m
↵

is continuous in ↵ even for finite populations. Moreover m0.5 equals the mean

value Ȳ =
P

N

i=1 Yi

/N . Using the sample y1, . . . , yn with inclusion probabilities ⇡1, . . . , ⇡n we

can estimate m
↵

by replacing the sum in (5.2) by its sample version, i.e.

m̂
↵

= argmin
m

{

n

X

j=1

1

⇡
j

w
↵,j

(y
j

�m)2}
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with w
↵,j

as defined above. It is easy to see that the sum in m̂
↵

is an unbiased estimate for

the sum in m
↵

. The estimate itself is however not unbiased like for the quantile function

from Section 5.2.

5.4 From Expectiles to the Distribution Function

Note that both, the quantile function q
↵

and the expectile function m
↵

uniquely define a

distribution function F (.). While q
↵

is just the inversion of F (.) the relation between m
↵

and F (.) is more complicated. Following Schnabel and Eilers (2009b) and Yao and Tong

(1996) we have the relation

m
↵

=
(1� ↵)(m

↵

) + ↵
⇣

m0.5 �G(m
↵

⌘

(1� ↵)F (m
↵

) + ↵
⇣

1� F (m
↵

⌘ (5.5)

whereG(m) is the moment function defined throughG(m) =
P

N

i=1 Yi

1{Y
i

 m}/N . Formula

(5.5) relates function m
↵

to the distribution function F (.). The idea is now to solve (5.5) for

F (.), that is to express the distribution F (.) in terms of the expectile function. Apparently,

this is not possible in analytic form but we may calculate this numerically. To do so, we

evaluate the fitted function m̂
↵

at a dense set of values 0 < ↵1 < ↵2 < · · · < ↵
L

< 1

and denote the fitted values as m̂
l

= m̂
↵l
. We also define left and right bounds through

m̂0 = m̂1 � c0 and m̂
L+1 = m̂

L

+ c
L+1, where c0 and c

L

are some constants to be defined

by the user. For instance one may set c0 = m̂2 � m̂1 and c
L+1 = m̂

L

� m̂
L�1. By doing so

we derive fitted values for the cumulative distribution function F (.) at m̂
l

which we write

as F̂
l

:= F̂ (m̂
l

) =
P

l

j=1 ⇣̂l for non-negative steps ⇣̂
j

� 0, j = 1, . . . , L with
P

L

j=1 ⇣̂  1.

We define ⇣̂
L+1 = 1 �

P

L

l=1 ⇣̂l to make F̂ (.) a distribution function. Assuming a uniform

distribution between the dense supporting points m̂
l

we may express the moment function

G(.) as

Ĝ
l

= Ĝ(m̂
l

) =
l

X

j=1

ĉ
j

⇣̂
j

where ĉ
j

= (m̂
j

� m̂
j�1)/2 and Ĝ

L+1 = M̂(0.5) =
P

n

j=1(yj/⇡j)/
P

n

j=1(1/⇡j). With the steps

⇣̂
l

, l = 1, . . . , L we can now re-express (5.5) as

m̂
l

=
(1� ↵)

P

l

j=1 ĉj ⇣̂j + ↵(m̂0.5 �
P

l

j=1 ĉj ⇣̂j)

(1� ↵)
P

l

j=1 ⇣̂j + ↵(1�
P

l

j=1 ⇣̂j)
, l = 1, . . . , L,
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which is then be solved for ⇣̂1, . . . , ⇣̂L. This is a numerical exercise which is conceptually

rather straightforward. Details can be found in Schulze Waltrup, Sobotka, Kneib, and

Kauermann (2014). Once we have calculated ⇣̂1, . . . , ⇣̂l we have an estimate for the cumulative

distribution function which is denoted as F̂M

N

(y) =
P

l:m̂l<y

⇣̂
l

. We may also invert F̂M

N

(.)

which leads to a fitted quantile function which we denote with q̂M
N,↵

.

As simulations and derivations in Kuk (1988) show, F̂
R

(.) is more e�cient than F̂
N

(.)

which led to the definition of F̂
R

(.) given in (5.3). We take this relationship and apply it to

F̂M

N

(.) which yields the estimator

F̂M

R

:= 1�
1

N

n

X

j=1

1/⇡
j

+

P

n

j=1 1/⇡j

N
F̂M

N

.

In the next section we will compare the quantiles calculated from the expectile based es-

timator F̂M

R

with quantiles calculated from F̂
R

. Note that neither F̂M

R

nor F̂
R

are proper

distribution functions since they are not normed to take values between 0 and 1.

5.5 Simulations

We run a small simulation study to show the performance of the expectile based estimates.

We look at the two data sets also used in Kuk (1988). The first data set (Dwellings) contains

the two variables X, the number of dwelling units, and Y , the number of rented units, which

are highly correlated (with a correlation of 0.97), see Kish (1965). The second data set

(Villages) includes information on the population (X) and on the number of workers in

household industry (Y ) for 128 villages in India, see Murthy (1967). In the second data set

the correlation between Y and X is 0.54. In order to compare our simulation results with

the results of Kuk (1988) we choose a same sample size of n = 30 (from a total population

of N = 270 for the Dwellings data and N = 128 for the Villages data).

We compare quantiles defined by inversion of F̂
R

with quantiles defined by inversion of

F̂M

R

. In Table 5.1 we give the root mean squared error (RMSE) and the relative e�ciency

for specified quantiles. We can see that the median and for the Dwelling data also upper

quantiles derived from expectiles yield increased e�ciency.

To obtain more insight we run a simulation scenario which involves a larger sample size

of n = 100 selected from a population of size N = 1000 and N = 10000. We draw Y and

X from a bivariate log standard normal distribution with expectation µ = 0 and standard

deviation � = 1. Variables Y and X are drawn such that the correlation between the

variables is equal to 0.9. We again calculate the root mean squared error for a range of ↵
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quantiles quantiles from expectiles relative e�ciency

↵

q

MSE(q̂
R,↵

)
q

MSE(q̂M
R,↵

)

q
MSE(q̂MR,↵)

p

MSE(q̂R,↵)
D
w
el
li
n
gs

0.1 2.57 2.76 1.07
0.25 1.77 1.97 1.11
0.5 2.45 2.35 0.96
0.75 3.15 2.91 0.92
0.9 4.20 3.43 0.82

V
il
la
ge
s

0.1 5.52 6.65 1.21
0.25 11.41 10.31 0.90
0.5 12.29 11.69 0.95
0.75 16.24 15.41 0.95
0.9 13.31 18.34 1.38

Table 5.1: Comparison of mean squared error on a basis of 500 replications.
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Figure 5.1: Relative Root Mean Squared Error (RMSE) of quantiles and quantiles from expectiles
for the PPS design calculated from 500 repetitions (left: N = 1000, right: N = 10000).

values and show the relative e�ciency of the expectile based approach in Figure 5.1. For

better visual presentation we show a smoothed version of the relative e�ciency. We notice

a reduction in the root mean squared error for both cases N = 1000 and N = 10000. We

may conclude that the expectiles can easily be fitted in unequal probability sampling and

the relation between expectiles and the distribution function can be used numerically to

calculate quantiles with partly increased e�ciency.
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5.6 Discussion

In Section 5.4 we extended the toolbox of expectiles to the estimation of distribution func-

tions in the framework of unequal probability sampling. We defined expectiles for unequal

probability samples. When comparing quantiles based on F̂
R

with quantiles based on the

expectile based estimator F̂M

R

, we saw that the newly gained estimator can compete with

existing methods. The calculation of empirical expectiles is implemented in the open source

software R (see R Core Team 2014) and can be found in the R package expectreg by Sobotka,

Schnabel, and Schulze Waltrup (2013). The calculation of the expectile based distribution

function estimator F̂M

N

is also part of the R package expectreg.
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Chapter 6

expectreg: An R Package for Expectile Regression

This chapter bases on a manuscript developed in joint work with Fabian Sobotka, Sabine Schnabel, Göran
Kauermann and Thomas Kneib. A draft version of the manuscript is already published as part of the
thesis Semiparametric Expectile Regression by Fabian Sobotka, the leading author of the paper. Most of
the sections were written by Fabian Sobotka. The subsection on boosting was written by Fabian Sobotka
and Thomas Kneib and the subsection on expectile sheets was written by Sabine Schnabel. Linda Schulze
Waltrup contributed and wrote the subsections “Quadratic programming” and “Quadratic programming
CDF”. All authors contributed to the general investigation of the scientific problem and were involved in
writing and proofreading the manuscript.
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Abstract

Expectiles are a flexible least squares generalization of the mean similar as quantiles are an asym-

metric generalization of the median. They are becoming more and more popular especially in

semiparametric additive regression settings. A variety of estimation procedures including boosting

and quadratic programming is available and they are combined in the R package expectreg. It

also includes confidence intervals for the basic least asymmetrically weighted squares estimates.

Latest methods also tackle the problem of crossing expectiles which is well known from quantile

regression. Additionally, methods to compute quantiles from expectiles are described and included

in the package. All functionalities are illustrated in examples using textbook data sets as well as

those coming with expectreg.
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6.1 Introduction

In the past years, methods that aim to gather more information than a mean regression have

grown in popularity. A semiparametric method to fit more than the median is presented

by quantile regression (Koenker and Bassett, 1978). In the R package quantreg (Koenker

2013b) single regression quantiles are estimated with the use of linear programming tech-

niques. The estimation of a set of non-crossing quantiles was also proposed by Bollaerts,

Eilers, and Aerts (2006) and Bondell, Reich, and Wang (2010), but code for the procedure

is only partly available for download and not in package form. A di↵erent way to estimate

quantiles was introduced by Efron (1991). It uses a least asymmetrically weighted squares

(LAWS) approach for the estimation of linear regression curves that are then matched to

quantiles. The result of a LAWS estimation is called expectile. Before the introduction of

our package expectreg (Sobotka, Schnabel, and Schulze Waltrup, 2013) it was only possible

to estimate expectiles manually by iterating a weighted mean regression, for example with

the function lm from R or with the package mgcv (Wood, 2013). The package SemiPar

(Wand, 2013) allows for semiparametric mixed models, but not for weights. The package

VGAM (Yee, 2012) includes an option for expectile regression in the presence of the assump-

tion of a distribution for the response. However, this leads to parallel expectile curves. Thus

heteroscedasticity in the data cannot be captured and the gain of information in comparison

to a mean regression is limited.

In contrast, generalized additive models for location, scale and shape (GAMLSS) follow

a similar goal with di↵erent methods. GAMLSS were developed by Rigby and Stasinopoulos

(2005) and estimate the mean together with additional parameters of the response distri-

bution using backfitting. Alternatively, Mayr, Fenske, Hofner, Kneib, and Schmid (2012)

proposed the estimation of GAMLSS with model based boosting. For both approaches, R

packages are available: gamlss (Stasinopoulos and Rigby, 2013) and gamboostLSS (Hofner,

Mayr, Fenske, and Schmid, 2011).

Our package not only contains methods to deal with univariate expectiles, but also in-

cludes e.g. all regression methods described and introduced in Schnabel and Eilers (2009b),

Schnabel and Eilers (2014), Sobotka and Kneib (2012), Sobotka, Kauermann, Schulze Wal-

trup, and Kneib (2013) and also Schulze Waltrup, Sobotka, Kneib, and Kauermann (2014).

Hence, expectreg o↵ers regression estimates based on least squares and boosting, location-

scale models and more refined techniques to overcome crossing curves.

The package is available from the Comprehensive R Archive Network at

http://CRAN.R-project.org/package=expectreg.

The rest of the paper is organized as follows. In Section 6.2 we present definitions of
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expectiles in comparison to quantiles and the corresponding functions from the package.

Functionality for computation of theoretical expectiles as well as the estimation of sample

expectiles is provided. Afterwards we introduce expectile regression methods in Section 6.3.

We present di↵erent methods for the estimation of expectile curves and the computational

issues arrising. The possibilities to compose distribution estimates from expectiles, both uni-

variate and multivariate, are discussed in Section 6.4. Next we extend our regression methods

to additive semiparametric models and shape constraint e↵ects in Section 6.5. Section 6.6

shows the package in action for example data sets that are also included in expectreg. Fi-

nally, Section 6.7 concludes our findings by discussing general issues of expectile and quantile

regression. We also supply an outlook into future extensions of the package.

6.2 Univariate expectiles

Let Y be a continuous random variable with density f(y). Then the ↵-quantile q
↵

, ↵ 2 (0, 1)

is defined implicitly by the equation

↵ = P(Y  q
↵

) =

R

q↵

�1 f(y)dy
R1
�1 f(y)dy

=

Z

q↵

�1
f(y)dy.

This implicit definition characterizes the quantile as the partial integral of the density. A

dense set of quantiles characterizes the corresponding distribution in a mostly su�cient way.

The same holds for expectiles. The ↵-expectile m
↵

can be obtained by replacing the partially

integrated density with the partial moment function G, yielding

↵ =

R

m↵

�1 |y �m
↵

|f(y)dy
R1
�1 |y �m

↵

|f(y)dy
=

G(m
↵

)�m
↵

F (m
↵

)

2(G(m
↵

)�m
↵

F (m
↵

)) + (m
↵

�m0.5)
(6.1)

where F is the cdf, G(m) =
m

R

�1
yf(y)dy and G(1) = m0.5 is the expectation of Y .

For every given distribution with cumulative distribution function F and finite expec-

tation we can compute all theoretical ↵-expectiles. Unfortunately the solution cannot be

determined explicitly as quantiles from the inverse distribution function. By using Equa-

tion (6.1), the theoretical expectiles can be computed via a numerical procedure in R like nlm

or optimize. In addition, the integrals of partial moments of a set of commonly used dis-

tributions have an analytical solution as shown by Winkler, Roodman, and Britney (1972).

Exploiting these results and the numerical optimizations, we were able to implement R

functions calculating expectiles for the most common distributions in the package. The R
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functions minimize

h(y) =

�

�

�

�

G(y)� yF (y)

2(G(y)� yF (y)) + (y �m0.5)
� ↵

�

�

�

�

using nlm, resulting in m
↵

= argmin
z

h(z). The functions follow the regular naming con-

vention of distributions in R consisting of a letter (p,d,q,r) determining the use of the

function and an abbreviation of the name of the distribution. For example, qnorm computes

the quantiles (q) of the normal (norm) distribution. Our expectile functions extend this set

and are named accordingly starting with the letter “e”, resulting in enorm for the expectiles

of a normal distribution. An overview of the functions for distribution-expectiles is given in

Table 6.1.

Furthermore our package contains a distribution for which expectiles and quantiles coin-

cide. The distribution function is defined as

F
emq

(y;m, s) =
1

2

 

1 + sign (y �m)

s

1�
2

2 +
�

y�m

s

�2

!

with density

f
emq

(y;m, s) =
1

s

 

1

2 +
�

y�m

s

�2

!

3
2

for s > 0 and y,m 2 R. The property of e
emq

(↵;m, s) = q
emq

(↵;m, s) holds for all possible

expectations m, scalings s and all asymmetries ↵. Therefore we named it the “expectiles

meet quantiles” (emq) distribution. A special case of the family with parameters m = 0

and s =
p

2 was mentioned by Koenker (1993). For the canonical parameters m = 0

and s = 1 we get a student-t distribution with two degrees of freedom. This family of

distributions does not have finite second moments regardless of the value of the scaling

parameter s. The expectation for a random variable Y ⇠ EMQ(m, s) is E(Y ) = m. The

software provides a complete set of functions for this distribution in the common naming

conventions as mentioned above. For completeness the package contains also the numerical

determination of expectiles in the function eemq.

In order to estimate expectiles from a given sample, we exploit a similarity between the

calculation of expectiles and quantiles. For given i.i.d. observations y1, . . . , yn the ↵-quantile
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Distribution Expectile function Parameters
normal enorm m, sd
student t et df
�2 echisq df
gamma egamma shape, rate, scale
exponential eexp rate
beta ebeta a,b
uniform eunif min, max
lognormal elnorm meanlog, sdlog
emq eemq / qemq m, s

Table 6.1: List of theoretical expectile functions implemented in the package including the distri-
bution parameters.

can be determined by minimizing

S =
n

X

i=1

w
↵

(y
i

, q
↵

)|y
i

� q
↵

| (6.2)

with weights

w
↵

(y
i

, q
↵

) =

(

↵ if y
i

> q
↵

1� ↵ if y
i

 q
↵

, (6.3)

where q
↵

is the resulting ↵-quantile of the observations. The same can be achieved for ex-

pectiles using a least squares minimization criterion. Least asymmetrically weighted squares

(LAWS) is a weighted generalisation of ordinary least squares (OLS) estimation. LAWS

minimizes

S =
n

X

i=1

w
↵

(y
i

,m
↵

)(y
i

�m
↵

)2, (6.4)

with weight function w
↵

(y
i

,m
↵

) according to Equation (6.3), observations y
i

and population

expectile m
↵

for di↵erent values of an asymmetry parameter ↵ 2 (0, 1). The expectile is

fitted by alternating between a weighted least squares fit and recomputing weights until

convergence of the weights. Equal weights of w
↵

(y
i

,m
↵

) = 0.5 are obviously a convenient

starting point. They also make up the special case of OLS.

In R we are able to use the expectile functions just like quantiles. Because of their

implicit definition, the calculation of theoretical distribution expectiles is numerically more

challenging and therefore not as fast as the computation of quantiles, but the results are
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equally useful. The estimation of expectiles, on the other hand, is still a fast procedure since

it bases on a least squares fit. For univariate samples, we provide the function expectile

that returns a vector of fitted expectiles similar to the function quantile that comes with R.

The asymmetries to be computed are accordingly named probs for convenience although the

probability statement that is connected to the computed expectiles is di↵erent. In the same

manner, the functions eeplot and eenorm are pendants to the existing quantile functions.

The latter plots the results of the function enorm against those from expectile for ↵ in

steps of 0.01.

With the following example, we can show that a set of expectiles is equally appropriate

to get an impression of the distribution as a similar set of quantiles. We show expectiles

and quantiles from a standard normal distribution for selected values of ↵ between 0.01 and

0.99.

R> alpha = c(0.01,0.02,0.05,0.1,0.2,0.5,0.8,0.9,0.95,0.98,0.99)

R> plot(alpha,qnorm(alpha))

R> lines(alpha,enorm(alpha),col="red")

R> set.seed(126)

R> y = rnorm(1000)

R> quantile(y,probs=alpha)

R> expectile(y,probs=alpha)

R> qqnorm(y)

R> eenorm(y)

Both the quantiles and the expectiles from the standard normal distribution are displayed

in Figure 6.1 and show the symmetry of the distribution, its median or mean and the

variability. We can also see the satisfying quality of the estimated expectiles from a standard

normally distributed sample of size 1000. When comparing the estimated expectiles and

quantiles with their true values, as for example in Figure 6.1, we can see that the E-E plot

shows a stronger support for the normal distribution than the Q-Q plot. For the normal

distribution it is known that expectiles have a higher asymptotic relative e�ciency than

quantiles (Abdous and Remillard, 1995), hence the result is not surprising. The results of

Schulze Waltrup, Sobotka, Kneib, and Kauermann (2014) also show that, if the variance

exists, univariate expectiles can be estimated at least as e�cient as quantiles. The paper by

Schulze Waltrup, Sobotka, Kneib, and Kauermann (2014) also introduces a novel method to

obtain quantiles from expectiles. These findings further motivate the use of expectiles, also

in regression scenarios.

79



CHAPTER 6. EXPECTREG: AN R PACKAGE FOR EXPECTILE REGRESSION

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

asymmetries

va
lu
es

●

●

expectiles
quantiles

(a) enorm(alpha); qnorm(alpha)

-2 -1 0 1 2

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(b) qqnorm(y)

-2 -1 0 1 2

-2
-1

0
1

2

Normal E-E Plot

Theoretical Expectiles

S
am

pl
e 

E
xp

ec
til

es

(c) eenorm(y)

Figure 6.1: Visualisation of quantiles and expectiles from a standard normal distribution. Graph
(a) displays the theoretical quantiles and expectiles. Graphs (b) and (c) show a Q-Q plot and
an E-E plot in comparison for a sample of 1000 random numbers drawn from a standard normal
distribution.

6.3 Expectile regression

In the past years, several methods for the estimation of expectiles in semiparametric regres-

sion settings have been developed. In the least asymmetrically weighted squares approach,

expectiles are estimated separately for each asymmetry. Since that can lead to crossing

curves, location-scale models but also more flexible “sheets” have been proposed that lead

to non-crossing results. The estimation can rely on di↵erent computational concepts as least

squares, boosting and quadratic programming. All tools are introduced in this section.

6.3.1 Penalized estimation concepts

LAWS

Let us first consider a simple parametric model

y = X�
↵

+ ✏
↵

with response y, covariate matrix X and expectile m
↵

= X�
↵

and errors ✏
↵

. In an expectile

regression setting, the estimation of the regression coe�cients that minimize Equation (6.4)

can be accomplished by iteratively reweighted least squares updates

�̂
[b]

↵

= (X 0W [b�1]
↵

X)�1X 0W [b�1]
↵

y (6.5)
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where �̂
[b]

↵

is the regression coe�cient vector in the bth iteration corresponding to the model.

Note that estimation has to be iterated since the weights gathered in weight matrix W [b]
↵

=

diag(w
↵

(y1,X�̂
[b]

↵

), . . . , w
↵

(y
n

,X�̂
[b]

↵

)) also depend on the current estimates.

Next, we look at a more flexible nonlinear model

y = f
↵

(x) + ✏
↵

.

For the expectile curve f
↵

several choices for the functional form are possible. The original

proposal by Newey and Powell (1987) favored a linear model. We suggest a more flexible

functional form for the expectile curve. Schnabel and Eilers (2009b) proposed to model

expectile curves with P-splines.

The basic idea of spline smoothing is to approximate the unknown function f(x) by a

polynomial spline of degree l

f(x) =
K

X

k=1

u
k

B(l)
k

(x)

where B(l)
k

(x) are B-spline basis functions, u
k

are the corresponding amplitudes, and K

denotes the dimensionality of the basis. We can summarize this into a design matrix B

using the basis function evaluations while the amplitudes are collected in the vector of

regression coe�cients u. The form of the polynomial spline approximation crucially depends

on the number and location of the knots. To overcome this di�culty, penalized splines

use a set of K equidistant knots in combination with a smoothness penalty augmented to

the fitting criterion. A popular choice inspired by smoothing splines are penalties based

on integrated squared derivatives as in Wood (2006). However, we prefer to work with the

simpler approximation of Eilers and Marx (1996) based on di↵erences of adjacent coe�cients.

LetD denote a di↵erence matrix of order r, then the penalty matrix P = �D0D = �K yields

a penalty composed of a scalar smoothing parameter � and squared r-th order di↵erences

in the sequence of basis coe�cients, i.e., u0Pu =
P

K

k=r+1(�r

(u
k

))2 where �
r

is the r-th

order di↵erence operator. Common choices are K = 20 and r = 2. The estimation of the

regression coe�cients is now the iteration between calculating

û[b]
↵

= (B0W [b�1]
↵

B + P )�1B0W [b�1]
↵

y

and recomputing the weights as described before.
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Restricted expectiles

In theory, expectiles are as monotonous along ↵ as quantiles, but in regression scenarios

we sometimes encounter crossings of quantile or expectile curves due to sampling variation

and/or sparse data. As a consequence, He (1997) proposed restricted regression quantiles to

avoid the crossing of quantile curves. His model for computing nonparametric conditional

quantile functions takes the following location-scale form

q(x,↵) = t(x) + s(x)c
↵

. (6.6)

He (1997) introduced a three-step procedure where first the conditional median function t(x)

is determined and then in a second step the smooth non-negative amplitude function s(x)

is estimated. The third step consists of the stepwise calculation of the “asymmetry factor”

c
↵

for each ↵-quantile curve separately. The obvious advantage is that we only need mono-

tonicity in c
↵

to obtain non-crossing quantile curves. In return, we give up a large amount of

flexibility and are not able to capture all possible information in heteroscedastic scenarios. In

quantile regression, however, crossing curves are very common and the estimated restricted

quantiles might still deliver better results than the independent fits of quantiles.

Although we observe less crossings in the independent estimation of expectile curves, we

still adapted the concept of restricted quantiles to expectile regression. The loss of flexibility

might still be preferable in a scenario where a lot of crossing expectiles are observed. In the

provided algorithm, the previously described three estimation steps are matched to estimate

restricted expectiles. First the mean function t(x) is estimated as a mean regression by the

chosen computational method. Then the residuals from the first step are used to estimate

s(x) in the same way. Finally, c
↵

is estimated as regression coe�cient in the expectile

regression with response y � t(x) and covariate s(x). In this case we use the LAWS loss

function as described in the previous section.

LAWS bundle

The expectile bundle –as introduced in Schnabel and Eilers (2013a)– has strong similarities

to the restricted expectiles. It is based on the location-scale model defined in Equation (6.6)

and essentially it also follows three estimation steps. The main di↵erence lies in an addi-

tional iteration of the second and third step. In step 2, LAWS is used to fit the residual

curve s(x) optimally to all calculated expectiles. Then the asymmetry parameters c
↵

are

recomputed and both steps are repeated until convergence. For the second step and the

set of selected asymmetries ↵1 < · · · < ↵
T

, we perform an expectile regression with re-
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sponse ỹ = ((y1 �m(0.5,x1))(1), . . . , (yn �m(0.5,x
n

))(1), . . . , (y1 �m(0.5,x1))(T ), . . . , (y
n

�

m(0.5,x
n

))(T ))0, weight matrix

W = diag(w
↵1(ỹ1,m↵1), . . . , w↵1(ỹn,m↵1), . . . , w↵T (ỹn,m↵T ))

and the appropriate repetitions of design matrix B̃ = (c
↵1B, . . . , c

↵TB)0 and penalty matrix.

We then obtain an estimate for the residual function s(x) that is optimal for the selected set

of asymmetries.

Expectile sheets

A more flexible approach to expectile smoothing are the so-called expectile sheets. Every

set of expectile curves for a dense set of asymmetry parameters ↵ forms a surface over

the domain of (x,↵). With an expectile sheet, this plane is fitted directly, thus forming a

natural description of a comprehensive set of expectile curves. While in a simple LAWS

model every ↵-expectile is fitted separately, all expectile curves are modeled simultaneously

in an expectile sheet.

The sheet is the result of minimizing

S
ES

=
n

X

i=1

T

X

t=1

w
↵t(yi,m↵t)(yi �m(x

i

,↵
t

))2 (6.7)

with the weights w
↵t(yi,m↵t) as defined above and m(x,↵) is the expectile sheet.

The expectile sheet itself can be formulated as a tensor product of two B-spline bases, one

basis over x and one basis over ↵. Bivariate splines are described in detail in Section 6.5.1.

When dealing with complex datasets and a dense set of asymmetries, computation of an

expectile sheet can be costly. Therefore Schnabel and Eilers (2014) suggested to make use of

fast array algorithms for multidimensional P-spline fitting (see Currie, Durbán, and Eilers,

2006 and Eilers, Currie, and Durbán, 2006). As a consequence the construction of the

Kronecker product is avoided and this results in speeding up the calculations.

6.3.2 Computational methods and implementation

Least squares

Within the function expectreg.ls the R procedure lsfit is responsible for the estimation,

using the response (y,0(p+1))0, the design matrix (B0,
p

�P 0)0 and the weights W . Then the

weights are updated according to the resulting estimate. This process is iterated until the

weights and therefore the estimates converge.
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The function rb allows for building a penalized spline basis from a vector of covariate

observations. Therefore by default 20 equidistant knots are chosen and the penalty matrix

is created from second order di↵erences. The evaluated spline basis is obtained from the

package splines (R Development Core Team 2010). Optionally, the eigen decomposition

of the penalty matrix is used to reparameterize the basis according to Fahrmeir, Kneib, and

Lang (2004). We make use of the reparameterization to remove the intercept from the spline

basis, since there is a central intercept in the fitting function expectreg.ls. Otherwise,

setting the option center=FALSE can suppress the reparameterisation.

The package includes two algorithms to find the optimal value for the smoothing param-

eter �. Both the Schall algorithm as well as asymmetric cross-validation are introduced in

Schnabel and Eilers (2009b). The Schall algorithm (see Schall, 1991) is implemented as an

iterative procedure that measures the numerical convergence of �. The cross-validation on

the other hand uses numerical minimization methods, in this case nlm, to find the minimum

of the cross-validation score V w

g

with respect to the smoothing parameter. The score is

defined as

V w

g

=
n
P

n

i=1 w↵

(y
i

,Bû
↵

)(y
i

�Bû
↵

)2

[tr(1�H
↵

)]2

with the hat matrix

H
↵

= (W
↵

)1/2B(B0W
↵

B + P )�1B0(W
↵

)1/2. (6.8)

As defined in Schnabel and Eilers (2009b), the score utilizes the trace of the hat matrix

which is returned by the procedure lsfit. The R function rb is also able to create other

types of bases, but this will be discussed in Section 6.5.

For the least squares estimation method with asymmetric weights, asymptotic properties

are also available (see Sobotka, Kauermann, Schulze Waltrup, and Kneib, 2013):

û
↵

a

⇠ N (u
↵

,Var(û
↵

))

with

Var(û
↵

) = (B0W
↵

B + �
↵

P )�1
⇢

B0W 2
↵

B
(y �Bû

↵

)2

1� diag(H
↵

)

�

(B0W
↵

B + �
↵

P )�1 , (6.9)

where H
↵

is the generalized hat matrix as defined in Equation (6.8).

Similar to all regression functions in R, the model is handed to expectreg.ls in a
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formula object. In the following example from the data set “lidar” from the R package

SemiPar, we perform a least squares expectile regression with laws estimate to assess the

influence of the distance that laser light travels on the logarithm of the received amount

of light. We use cross-validation for choosing the smoothing parameter. The estimation

method is chosen with estimate. The parameter expectiles influences the asymmetries

which are calculated. The default setting estimates expectiles for the set ↵ 2 {0.01, 0.02, 0.05,

0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99}. Alternatively, a custom set of expectiles can be specified

in a vector. Last, there is an additional option density. If selected, a very dense set of

expectiles ↵ 2 {0.01, 0.02, . . . , 0.99} is fitted which allows for the use of expectiles in density

estimation. This will be described in Section 6.4. The covariance matrices are computed if

the option ci = TRUE is selected.

The function returns an object of class expectreg. It contains all relevant information

of the regression such as the formula, covariates and response as well as the results in form

of the fitted values ŷ
↵

, smoothing parameters � and the regression coe�cients û
↵

. Further

details of the regression results can also be obtained in a similar form as from other regression

objects, since a number of methods are available as print, resid, coef or plot. The latter

produces the content of Figure 6.3. Additionally, there is a predict method that also

accepts a data frame of new data points as long as the columns are named according to the

original data. A special summary function returns parametric e↵ects and their significances

while confint computes confidence intervals based on the asymptotics for the whole fit or,

if specified, a subset of covariates.

R> library("SemiPar")

R> data("lidar")

R> exp.l <- expectreg.ls(logratio ~ rb(range,"pspline"),

data=lidar,smooth="acv",estimate="laws")

Quadratic Programming

In this subsection we will describe and illustrate the use of the function expectreg.qp.

As expectreg.ls, function expectreg.qp allows for the estimation of a set of expectiles

given covariate(s). Assuming an additive influence of the covariates on the response, the

dependency may then be modeled linear or nonlinear. The estimation procedure within

function expectreg.qp relies on the quadratic form of the estimation problem. The problem

presented in Equation (6.4) can be seen as a quadratic programming problem which can be

solved by the R function solve.QP implemented in package quadprog (see Turlach and

Weingessel, 2013). The estimation process in general is – as described before – an iterative
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procedure. Weights are updated until convergence is reached. Instead of using lsfit we

now use solve.QP because it o↵ers an easy way to incorporate linear (inequality) constraints

on the estimator. These constraints are constructed in such a way that non-crossing of the

estimated expectiles is guaranteed. From the estimation concepts described in the previous

section, only the sheets can be used with constraints.

We use a penalized spline basis of degree two in direction of covariate x and a linear

penalized spline basis in direction of ↵. Non-crossing is ensured by adding linear constraints

on the coe�cients. We postulate that neighboring curves fulfill

m(x,↵
t

)  m(x,↵
t+1) for t = 1, . . . , T � 1.

Here, T denotes the dimensionality of the basis in direction of ↵ and x is the vector of covari-

ates. As we use function solve.QP for the estimation, linear constraints on the coe�cients

are easily incorporated.

Within the function expectreg.qp the linear spline basis in direction of asymmetry ↵

is evaluated at knots ↵1 < · · · < ↵
T

which are specified by the user. The default setting in

expectreg is T = 11 with the set of ↵ specified in the previous sections since the default

settings are the same in all estimation functions. Like with its sister expectreg.ls, in

the function expectreg.qp bases are created with the function rb. The estimation of the

smoothing parameter � can be done automatically using the algorithm by Schall (1991). As

the expectile m(x,↵) is constructed as a tensor product of B-splines (similar to 6.3.1), there

is only one smoothing parameter for each smooth function which needs to be determined.

Finally, the function expectreg.qp provides an object of class expectreg which allows

access to all further postprocessing methods.

R> exp.qp <- expectreg.qp(logratio ~ rb(range,"pspline"),

data=lidar)

Function expectreg.qp also allows for the inclusion of a random intercept. A random

intercept is useful for modeling e.g. panel data as it adds a random shift for each individuum

and therefore takes the special form of longitudinal data into account. To see how to estimate

a random intercept with expectreg.qp consider the panel data from R package plm by

Croissant and Millo (2008). The data consists of 19 observations from 1960 to 1978 and

reports (among other variables) the logarithm of real per-capita income (lincomep) and the

logarithm of real motor gasoline price (lrpmg) of 18 di↵erent countries on a yearly basis. We

can now use function expectreg.qp to estimate the smooth functional relation between log

per capita income and log gasoline price. To account for repeated measurements we also add

a random intercept resulting in a random shift in log per-capita income for each country.
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Figure 6.2: Expectile curves estimated for the Gasoline data.

R> library(plm)

R> data("Gasoline")

R> exp.qp.ri <- expectreg.qp(lincomep ~ rb(lrpmg, "pspline"),

id = Gasoline$country, data = Gasoline, smooth = c("schall"),

expectiles = c(0.2, 0.5, 0.8))

R> plot(exp.qp.ri)

The plot can be seen in Figure 6.2. In a next step we access the standard deviation of the

residuals and the standard deviation of the random intercept.

R> sqrt(exp.qp.ri$sig2)

[1] 0.1799705

R> sqrt(exp.qp.ri$tau2)

[1] 0.3389326 0.4060940

The last element of sqrt(exp.qp.ri$tau2) gives the standard deviation of the random

intercept.
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Boosting

The package also contains a fitting method that provides an alternative to least squares

fits. It combines model fitting with automatic variable selection and model choice. The

function expectreg.boost performs componentwise functional gradient descent boosting

to obtain the regression coe�cients implemented via the package mboost (see Hothorn,

Bühlmann, Kneib, Schmid, and Hofner, 2013). Bühlmann and Hothorn (2007) present a

general introduction to boosting. The basic ingredient of a boosting algorithm are suitable

base-learning procedures that are iteratively applied to the gradient vector r (“residuals”) of

the considered optimization criterion for a fixed number of iterations mstop. In the expectile

regression framework, a suitable class of base-learning procedures is given by penalized least

squares estimates

ĝ = B(B0B + �P )�1B0r = Hr,

characterized by the hat matrix H = B(B0B+�P )�1B0, see the next section for details on

the specification of the design and penalty matrices. A comparable complexity of all base-

learners avoiding estimation and selection bias is achieved when the smoothing parameters �

are chosen such that the degree of freedom df = tr(2H�H 0H) = 1 is comparable across all

base-learners (Hofner, Hothorn, Kneib, and Schmid, 2011). Note that the chosen smooth-

ing parameters do not assign a fixed amount of smoothness to the corresponding function

estimates but only to the base-learner. Since the same base-learner may be chosen several

times during the iterative fitting procedure, the ultimate function estimate can build up a

much larger complexity. The optimal number of boosting iterations is usually determined

via cross-validation techniques.

The implementation of boosting in our package completely relies on mboost, a package

that comes with various methods for model-based boosting. A family object for expectile

regression was introduced to the mboost package that holds information about the loss

function (6.4) and the corresponding gradient. The boosting functions can be handled similar

to all regression functions. An object of class mboost is returned with several methods

available. For our purposes, we chose the function gamboost for generalized additive models.

Further the method cvrisk allows to conduct a ten-fold cross validation to determine the

optimal value mstop. The mboost object can then be reduced to the first mstop iterations.

The function expectreg.boost provided in our package works as a wrapper for the

mboost functions. It ensures that expectile regression using boosting works with the same

interface as the rest of the expectile functions. Additionally it makes sure that the result

is open to the expectile methods like plot and predict. We use the set of base-learners
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(b) expectreg.qp
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(c) expectreg.boost

Figure 6.3: Expectile curves estimated using expectreg.ls, expectreg.boost (both with LAWS
estimate) and expectreg.qp for the lidar data from SemiPar.

from mboost for expectile boosting (e.g. bbs for P-splines). In Figure 6.3, the same example

as before was used. Especially the results for the 0.98 and the 0.99-expectile indicate that

smoothing works di↵erently for boosting. So in general, mstop will be chosen larger than

optimal, but can be set individually for each expectile. We expect a larger number of

iterations for extreme asymmetries while in the special case of a mean regression the optimal

fit is achieved quite early.

A function quant.boost is also available. The di↵erence between quant.boost and

expectreg.boost is the loss function. In this case Equation (6.2) and the corresponding

gradient are used. The interface and the available methods stay the same.

R> exp.boost <- expectreg.boost(logratio ~ bbs(range,"pspline"),

data=lidar,mstop=rep(500,11))

6.4 Distribution estimation from expectiles

Consider a random variable Y with distribution function F (y) = P (Y  y). A way to look at

the distribution of a random variable is via quantiles or expectiles. By definition quantiles

and expectiles uniquely define the distribution of Y . That means, if we have a given set

of expectiles, we should be able to construct the corresponding distribution function. The

following methods are introduced in Schulze Waltrup, Sobotka, Kneib, and Kauermann

(2014) and Schnabel and Eilers (2013a).
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6.4.1 Quadratic programming CDF

We will see how we can calculate the distribution function F from the expectile function

m
↵

. First, we need a (dense) set of expectiles with corresponding asymmetry parameters

↵
t

2 (0, 1) where t = 1, . . . , T and ↵1 < ↵2 < . . . < ↵
T

. In a next step we define F
t

:= F (m
↵t)

which needs to be determined from m
↵t . In particular we set

F
t

=
t

X

j=1

⇣
j

, t = 1, . . . , T

and calculate ⇣
t

from m
↵t . Note that ⇣t should be greater than zero for t = 1, . . . , T and that

P

⇣
t

should be smaller or equal one in order to guarantee that F is a distribution function.

We start with specifying F0 ⌘ 0 and define the minimal expectile as m0. (If the data from

which the expectiles were calculated is still at hand, we can set m0 as minimal observed

value of the data. As this is not always the case we implemented the former version but use

extreme expectiles as basis for the estimation: consider for example the 10�5-expectile. This

nearly corresponds to the minimal observed value.)

Remember that the partial moment is G(m) =
m

R

�1
yf(y)dy. We now replace density f

through the approximated version f̃ which is defined as

f̃(y) =

8

<

:

⇣t

m↵t�m↵t�1
, if y 2 [m

↵t ,m↵t�1),

0, else

and obtain

G̃(m
↵t) :=

m↵t
Z

�1

yf̃(y)dy =
t

X

j=1

m
↵j +m

↵j�1

2
⇣
j

.

In a next step we use the definition

m
↵

=
(1� ↵)G(m

↵

) + ↵(m0.5 �G(m
↵

)))

(1� ↵)F (m
↵

) + ↵(1� F (m
↵

))

and solve

g
t

(⇣) := m
↵t �

(1� ↵
t

)G(m
↵t) + ↵(m0.5 �G(m

↵t)))

(1� ↵
t

)F (m
↵t) + ↵(1� F (m

↵t))
= 0

subject to the constraint that ⇣
t

> 0 for t = 1, . . . , T numerically, where ⇣ is defined as
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⇣ = (⇣1, . . . , ⇣T ). We use the package quadprog (Turlach and Weingessel, 2013) to minimize
1
2

P

T

t=1 d
2
t

(⇣) within an iterative procedure (subject to the constraints mentioned above) and

obtain ⇣̃ as solution.

The procedure described above can be performed not only for population expectiles but

o↵ers as well the possibility to calculate the conditional cumulative distribution function

(cdf) of a response y for a given value of covariate x. The function cdf.qp works on an

object of class expectreg. The user can specify the covariate value where the cdf then is

estimated. It is also possible to state a vector of probabilities and obtain the corresponding

quantiles.

One of the data sets which are included in the package contains nine growth characteristics

on 6848 dutch male children and is called dutchboys. The data set therefore contains

measurements of the height and the age of the children along other variables as, for example,

a centered BMI. We restrict our attention to the 200 youngest boys of the dutchboys-data.

Suppose we want to estimate the cdf of the height of the children at a given age of 0.08 years.

First we run an expectile regression in which we ensure the estimation of extreme expectiles.

This improves the quality of the cdf which will be estimated afterwards by function cdf.qp.

If we are not only interested in the cdf but also in quantiles of the distribution, we just have

to specify the corresponding vector of probabilities within the function cdf.qp.

R> expectiles <- expectreg.ls(hgt ~ rb(age, "pspline"),

data=dutchboys[1:200,],estimate = ’laws’,

expectiles=c(0.00001, seq(0.01,0.99, by=0.01),0.99999))

R> cdf <- cdf.qp(expectiles, 0.08, qout = c(0.05,0.2,0.5,0.8,0.95))

6.4.2 Bundle density

The second distribution estimation method specializes on calculating an overall density from

an expectile regression based on a restricted or bundle estimate. In order to accomplish this

distribution estimation, Equation (6.1) is rewritten to (see Godambe, 1991)

1
Z

�1

f(y) (y,↵)dy = 0 8 (↵,m
↵

)

with the asymmetric estimating function

 (y,↵) =

(

(1� ↵)(y �m
↵

) y < m
↵

↵(y �m
↵

) y � m
↵

.
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Now we assume that m
↵t is known for a set of asymmetries ↵1 < ↵2 < . . . < ↵

T

. This

is an ill-posed problem for a bounded set of asymmetries and several densities could be

constructed from the expectiles assuming that they are consistent. Expectiles are considered

to be consistent if m
↵t > m

↵t�1 . In order to have a well-conditioned problem we constrain

the original problem and require smoothness. The conditions

X

i

'
i

 (y
i

,↵
t

) =
X

i

'
i

↵
it

= 0 8t

X

i

'
i

= 1

have to hold with ' a discrete approximation to the density f that we are looking for. The

smoothness of ' is controlled by a third order penalty. We minimize the penalized least

squares problem

S
f

=
T+1
X

t=1

(h
t

�

X

i

↵
it

'
i

)2 + �
f

X

i

(�3'
i

)2

with h a vector of length T + 1 and h = (0, . . . , 0, 1) (details on the computation can be

found in Schnabel and Eilers (2013a)).

This is the basic concept for estimating a density from a set of expectiles independent

of the estimation method. At every point of interest of the independent variable, a condi-

tional density can be determined. Estimating the density from a bundle model is especially

straightforward as only one density based on c
↵

has to be estimated. This estimate is then

shifted and scaled over the independent variable due to the used location-scale-model.

The bundle density can be estimated using the function cdf.bundle which uses as input

an object of class bundle estimated with expectreg.ls(..., estimate=’bundle’). The

cdf, density and quantiles are calculated as above based on the vector c
↵1 , . . . , c↵T and

returned.

R> exp.b <- expectreg.ls(hgt ~ rb(age, "pspline"),

data=dutchboys[1:200,],estimate="bundle",

expectiles=c(0.00001, seq(0.01,0.99, by=0.01),0.99999))

R> cdf.b <- cdf.bundle(exp.b)

Quantile bundle

The results from the bundle model and the estimated density enable us to infer a smooth

non-crossing set of quantiles. We choose a set of quantiles with the help of the density and
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express it on the scale of c
↵

. By using the location-scale model and the corresponding values

of c
↵

we can calculate quantile curves. The resulting quantiles are equally smooth and do

not show crossovers similar to expectiles from the same bundle model. This approach is

implemented in the function quant.bundle.

6.5 Semiparametric expectile regression

In an additive regression setting, we attempt to explain a response variable through the sum

of a number of covariate e↵ects. This leads to the regression model for d covariates

y = �0 + �1x1 + . . .+ �
d̃

x
d̃

+ f1(x
d̃+1) + . . .+ f

d�d̃

(x
d

) + ✏
↵

,

where x1, . . . ,x
d̃

is the parametric part and x
d̃+1, . . . ,xd

the nonparametric part. In order

to implement this model in our expectile regression functions, we have to cast all e↵ects into

a unifying framework. The vector of function evaluations f
j

is represented as the product

of a design matrix B
j

and a vector of regression coe�cients u
j

such that f
j

= B
j

u
j

. The

complete predictor ⌘ can then be written as

⌘ = �X +B1u1 + . . .+B
d�d̃

u
d�d̃

with � = (�0, . . . , �
d̃

)0 and X = (1,x1, . . . ,x
d̃

). Associated with each vector of regression

coe�cients is a quadratic penalty �
j

u0
j

P
j

u
j

that enforces smoothness of the function f
j

.

In order to use lsfit we combine the e↵ects in the following way: Matrix Z = (X,B1,

. . . ,B
d�d̃

) and vector v = (�0,u0
1, . . . ,u

0
d�d̃

)0 are the design matrix and regression coe�cients

corresponding to the model and P = diag(0,�1P 1, . . . ,�
d�d̃

P
d�d̃

) is the complete penalty

matrix. The reparameterization by Fahrmeir, Kneib, and Lang (2004) is applied as a default

to center the bases around zero since the combination of multiple design matrices which con-

tain intercepts would result in a collinear matrix Z and therefore in an ambiguous regression.

The reparameterization has the great advantage that it automatically ensures identifiability

of the functions f1(.), . . . , f
d�d̃

(.). The function expectreg.qp handles multiple covariates

in the same way as expectreg.ls.

Besides penalized splines and parametric e↵ects, there are a number of di↵erent e↵ects

that can be cast into this framework. The function rb, that constructs regression bases to fit

the remaining package functions, allows for a wide variety of covariate modeling like ridge or

random e↵ects. Additionally, construction algorithms for spatial e↵ects like tensor-product

splines, Markov random fields and kriging are included and will be presented in the following.
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Covariate e↵ects Option Type Boosting analogue
splines pspline nonlinear bbs

parametric para categorical bols

bivariate splines 2dspline spatial bspatial

Markov random field markov spatial bmrf

radial basis radial spatial -
kriging krig spatial brad

ridge ridge categorical bridge

random random random brandom

user defined special - buser

Table 6.2: Possible covariate e↵ects in an expectile regression.

6.5.1 Spatial e↵ects

Bivariate P-splines

The idea of P-splines can be extended to smoothing bivariate surfaces f(x1, x2) by considering

the tensor product basis consisting of all pairwise products B
k1k2(x1, x2) = B

k1(x1) ·Bk2(x2)

of univariate B-spline bases B
k1(x1) and B

k2(x2) in x1- and x2-direction, respectively (with

k1 2 {1, . . . , K1} and k2 2 {1, . . . , K2}). This yields the representation of a bivariate surface

as

f(x1, x2) =
K1
X

k1=1

K2
X

k2=1

u
k1k2Bk1k2(x1, x2).

Therefore the design matrix consists of all evaluations of bivariate tensor product basis

functions. The vector of regression coe�cients is a vectorized version of the coe�cient field

u
k1k2 . The penalty matrix is constructed from the Kronecker sum of the univariate penalty

matrices, i. e. P = I
K2 ⌦P 1 +P 2 ⌦ I

K1 where P 1 and P 2 are penalties for the univariate

bases that have been employed for forming the tensor product.

Markov random fields

For discrete spatial data based on regional information s 2 {1, . . . , S}, the vector of regression

coe�cients collects all distinct spatial e↵ects, i.e., �
j

= (�
j,1, . . . , �j,S)0 where �s = f(s) is

the spatial e↵ect in region s. The design matrix then simply connects an observation i with
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the corresponding spatial e↵ect f(s
a

), yielding

Z[i, a] =

(

1 if y
i

was observed in region s
a

,

0 otherwise.

The penalty matrix is chosen such that spatially adjacent regions share similar e↵ects. This

can be achieved by defining the penalty matrix P as an adjacency matrix

P [a, b] =

8

>

<

>

:

�1 a 6= b, s
a

⇠ s
b

,

0 a 6= b, s
a

⌧ s
b

,

!
su a = b,

(6.10)

where s ⇠ r denotes that the two regions s and r are neighbors and !
s

denotes the total

number of neighbors for region s. In the canonical case, two regions will be called neighbors if

they share the same border coordinates. But also the user is able to define the neighborhood

structure by passing the matrix P
j

to the function. In a stochastic interpretation, the

resulting penalty is equivalent to the assumption that � follows a Gaussian Markov random

field (see Rue and Held, 2005 for details).

The neighborhood structure can either be given to the function rb directly in the form

of the penalty matrix or by a complete map in the boundary format bnd. This is an S3 class

introduced by the package BayesX (Kneib, Heinzl, Brezger, and Sabanés Bové, 2013). An

object from the class bnd contains a list of polygons represented as a matrix of coordinates.

expectreg uses the method bnd2gra from the BayesX package to convert the polygon list

into an adjacency matrix as defined in Equation (6.10). As output method the function

drawmap is also borrowed from the same package. It provides the possibility to colour each

polygon according to a given value. Therefore a vector with the fitted regression values of

that spatial covariate is handed to the function, matching the order of the polygons / regions.

Radial bases / kriging

Continuous spatial e↵ects can be approximated by tensor product spline bases. However,

there might be spatial e↵ects that, similar to the regions, do not fit with the rectangle that

is the support of a bivariate spline basis. In that case it might be sensible to switch to a

radial basis or a spatial basis based on kriging. The knots for these bases are chosen as

a subset k1, . . . ,kK

from the covariate observations z
j1, . . . , zjn

. The value of the basis

Z for an arbitrary point x is then computed as a function B
k

(r) of the Euclidean distance

r = ||k�x||. A common choice for radial basis functions are thin plate splines that are defined

asB
k

(r) = r2 ln(r). The penalty matrix P = (B
ki(||ki

�k
j

||))
i,j

then comprises the evaluated
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distances between the knots. The same holds for the penalty matrix of kriging e↵ects. Only

the basis functions are derived from correlation functions. A popular model is defined by

Matérn correlation functions like B
k

(r,�) = exp(�|r/�|)(1 + |r/�|) for a fixed � > 0. All

these options are available in the R function rb for construction of a basis corresponding

to the introduced e↵ects. The value of � is chosen proportional to max
i,j

(||k
i

� k
j

||). For

example,

R> b <- rb(x,type="krig",center=FALSE)

will construct an evaluated kriging basis from a two-dimensional covariate x according

to the definitions above. The basis knots are chosen randomly from the observations with a

number of min(50, n). The basis object b contains the evaluated basis matrix Z, the penalty

matrix P and the value for �. In addition the values of type and center are returned.

6.5.2 Shape-constrained P-splines

The function mono presents an alternative to the penalized spline bases defined by rb.

Though constructed in the same way as described in Section 6.3.1, an additional penalty

matrix P
c

is added. The used penalty depends on the desired functional form to be esti-

mated. The available possibilities for the use of the function mono are depicted in Table 6.3.

Note that the reparameterization described before cannot be applied to this basis since the

locality and neighbourhood of the splines has to be used.

Constraint Penalty
increasing positive first di↵erences
decreasing negative first di↵erences
convex positive second di↵erences
concave negative second di↵erences
flatend local first di↵erences

Table 6.3: Available constraints P
c

that can be added to a penalized spline basis.

In the least squares estimate from expectreg.ls an additional iteration is added where

the constraint penalty �
c

1(P
c

û[b�1]
↵

< 0)P
c

is computed and added to the estimate ((6.5))

in the next iteration step. This is repeated until all constraints are met. The method

expectreg.qp already includes a constraint matrix A for monotonicity in ↵. The constraint

matrix P
c

is simply appended to A for each expectile. The package mboost also supplies

a baselearner with monotonicity constraints named bmono. In the boosting iterations the

selected e↵ect with the steepest gradient is only then included in the model if it meets the

constraints given by bmono.
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Figure 6.4: Expectile curves estimated for the lidar data using expectreg.ls, monotonously de-
creasing splines or flat e↵ects at both ends of the covariates’ support.

R> ex = expectreg.ls(logratio ~ mono(range,"decreasing"),

data=lidar)

6.6 Examples

6.6.1 Childhood malnutrition

In the following example we analyse data on childhood malnutrition in India by using ex-

pectiles. The data set contains 4000 observations in six variables. For each child we have

the subregion from India that it lives in, the age and body mass index of the child as well as

the mother and a malnutrition score for the child called “stunting”. The latter is of major

interest here and has been analysed using quantile boosting by Fenske, Kneib, and Hothorn

(2011). First, we perform a univariate analysis of this variable by computing a set of ex-

pectiles and displaying an E-E Plot to compare the distribution of “stunting” to a normal

distribution.

Then we compute a geoadditive expectile regression with stunting as response, the BMI

and the age of the child as nonlinear covariates and the region of India that the child lives in

as spatial e↵ect. The latter is modeled as a Markov random field and the spatial structure is
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passed to the function via the boundary data “india.bnd”. Since the calculation of the cross-

validation score is independent from the number of covariates, the smoothing parameters are

optimized simultaneously. Finally we chose a specific set of four expectiles to be calculated.

Due to the large data set and the high number of regions in India, these calculations will

take a few minutes. Both the data set and the regional data from India are included in the

package.

R> data("india")

R> data("india.bnd")

R> eenorm(india$stunting)

R> expectile(india$stunting)

0 0.25 0.5 0.75 1

-599.0000 -247.9259 -175.4113 -102.9477 564.0000

R> ex <- expectreg.ls(stunting ~ rb(cbmi) + rb(cage) +

rb(distH,type="markov",bnd=india.bnd),

data=india,estimate="laws",smooth="acv",

expectiles=c(0.05,0.2,0.8,0.95))

R> plot(ex)

We can see from Figure 6.5 that it is not unlikely that the marginal distribution of

stunting follows a normal distribution. The function expectile returns some key expectiles

that also show a symmetry between the 0.25 and the 0.75 expectile. The results of the

additive regression are displayed in Figures 6.6 and 6.7. The conditional distribution of

stunting is plotted separately for each covariate. The curves show both a general trend

along the covariate and the changes in variation of the response. Hence we can see that

malnutrition gets worse up to an age of 24 months and that children with a very low BMI

of 10 or with a BMI above 20 are a↵ected worst. As a final analysis we can put together a

new data set with 10 observations that combine both risks and predict the stunting values

for those observations and the di↵erent expectiles.

6.6.2 Dutch growth data

As a second example, we consider the Dutch Growth Data (van Buuren and Fredriks, 2001).

We apply two di↵erent estimators for expectiles to the data. With the resulting objects

we can now carry out the two available distribution estimations introduced in Section 6.4.

Therefore the regressions are computed for an especially dense set of expectiles. For the
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Figure 6.5: E-E Plot for the response variable “stunting” from the childhood malnutrition data.
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Figure 6.6: Results from the geoadditive expectile regression for the data on childhood malnutrition
in India. E↵ects of the nonlinear variables BMI of child and age of child in months on the response
variable stunting are shown, each for four expectiles.
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Figure 6.7: Results from the geoadditive expectile regression for the data on childhood malnutrition
in India. E↵ects of the spatial e↵ect of the regions of India on the response variable stunting are
shown, each for four expectiles. Obtained with rb(distH,"markov",bnd=india.bnd).

expectile bundle we have the option density=TRUE such that expectiles are computed in steps

of 0.01. The function expectreg.qp is provided with a custom vector of asymmetries. In

Figure 6.8 we can then see the density based on the bundle asymmetries and the cumulative

distribution function estimated at age 15. Both methods indicate a symmetric distribution

with resemblance to a normal distribution that is also displayed as a comparison to the cdf.
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Figure 6.8: Estimated expectiles (a), conditional density (b) and cumulative distribution function
(c) based on expectile bundle and sheet estimate, respectively. The latter is conditioned on a
covariate value of 15 and compared to a normal distribution (drawn in red).

R> data("dutchboys")

R> ex2 <- expectreg.ls(hgt ~ rb(age), data=dutchboys,

estimate="bundle",smooth="schall",density=TRUE)

R> plot(ex2)

R> bun <- cdf.bundle(ex2)

R> exp <- c(0.001,0.005,0.01,seq(0.02,0.98,by=0.16),0.99,0.995,0.999)

R> ex3 <- expectreg.qp(hgt ~ rb(age), data=dutchboys, expectiles=exp)

R> cdf <- cdf.qp(ex3,x=15)

R> plot(cdf$x,cdf$cdf,type="l",ylim=c(0,1))

R> lines(155:190,pnorm(155:190,m=175,sd=8),col="red")

6.7 Conclusions / future work

With expectreg we have introduced the first comprehensive package for the use of expectiles.

The package allows for the analysis of univariate distributions and data as well as highly

flexible regression scenarios. A vector of observations can easily be tackled by estimating a

set of expectiles in order to obtain a nonparametric estimate of the distribution. In most

cases, and especially for small samples, estimating expectiles is more e�cient than the use of

quantiles. This has also been shown by Schulze Waltrup, Sobotka, Kneib, and Kauermann

(2014). E-E plots also produce smoother results than their quantile counterparts while

conveying similar information. These attributes make expectiles a compelling candidate in
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a regression scenario. They combine the flexibility in modeling and the e�ciency of a least

squares mean regression with the gain of information from quantile regression. The package

expectreg provides interested R users with simple methods that have a similar structure as

existing functions for univariate data analysis and semiparametric regression.

The package also provides a number of possible solutions for problems faced in expectile

regression. A single expectile curve can be interpreted, but its interpretation is not as

intuitive as the interpretation of a single quantile curve. This can be handled in di↵erent

ways. First of all, by default a set of eleven expectiles is estimated in each regression. Hence,

a relatively complete picture of the conditional distribution of the response is drawn and

therefore a clear gain of information is visible. We also included the implementation of two

approaches to compute quantiles from a set of expectiles which allows for the calculation of

interpretable quantiles with an e�cient estimate. As there might be issues with performing a

quantile regression, we provide the possibility to obtain expectiles and subsequently calculate

the interpretable quantiles from one of the two distribution estimation methods. This can

be very helpful, since there are a number of disadvantages when regression quantiles are

to be estimated in R. Since quadratic penalties are not easily combinable with the linear

programming techniques used in quantile regression, the spatial e↵ects described in this

paper are not available.

Another issue that mainly a↵ects quantile regression is the problem of crossing estimates.

While the estimates should be monotonously increasing with the chosen asymmetry, it is

possible in practice that quantiles as well as expectiles cross due to sampling variation.

However, simulations have shown that expectiles are less likely to cross than quantiles (see

Schulze Waltrup, Sobotka, Kneib, and Kauermann, 2014). In addition, for quantiles and

expectiles non-crossing estimates have been proposed and a non-crossing expectile estimation

procedure is included in expectreg. An implementation of non-crossing quantiles can be

found in the R package quantregGrowth (see Muggeo, Sciandra, Tomasello, and Calvo,

2013).

Despite all the functionality that is already available, we do not regard expectreg as

finished. As mentioned before, the restricted expectiles and the bundle are yet to be im-

plemented with the boosting algorithm. In the more distant future we aim on including

interactions in the models in order to model spatio-temporal e↵ects. A follow-up package

including risk measures based on expectiles, like the expected shortfall (ES) is also planned.
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7.1 Summary

This thesis started with an introduction to semiparametric expectile modeling. We also

o↵ered an interpretation for expectiles in Section 2.4. Additionally there is the possibility

to calculate quantiles from expectiles. In Chapter 3 we used the one-to-one connection be-

tween expectiles and the distribution function and quantiles and the distribution function to

calculate quantiles from a set of expectiles. Simulations indicate, that there is no loss in e�-

ciency. We saw, that the connection between quantiles and expectiles and the computation

of quantiles from expectiles became extremely useful when using the expected shortfall as

risk measure. Although estimated regression expectiles tend to cross less often than regres-

sion quantiles, crossing of neighboring expectile curves may occur. Therefore we introduced

a method to estimate non-crossing expectiles in Chapter 4. We also saw that the L2 nature

of expectiles easily allows for common generalizations known from mean regression as the

incorporation of a random intercept within an additive framework. The method was accom-

panied by an application: The random intercept was motivated by panel observations from

the German Socio Economic Panel data. In Chapter 5 the estimation of expectiles within

the context of unequal probability sampling was introduced. We used the expectiles to esti-

mate the distribution function and its inversion which led to quantiles. The quantiles from

expectiles were compared with benchmark methods. An implementation of the methods can

be found within the open source software (R Core Team, 2014). The R package expectreg

by Sobotka, Schnabel, and Schulze Waltrup (2013) is a collection of the implementation of

numerous methods regarding expectiles. The function for the estimation of quantiles from

a set of expectiles and the additive expectile regression with a random intercept are part of

the R package expectreg (next to many other methods). A description of the R package

expectreg was given in Chapter 6.

All in all, we saw during this thesis that due to its L2 nature expectile regression is easily

extended and generalized in the same way as mean regression. The L2 nature is also the

reason why the result of an expectile regression, as well as for mean regression, is influenced

by outliers.

7.2 Discussion and Outlook

As each chapter is provided with an own discussion we focus on some points which have not

been mentioned yet.

Although there exist first extensions and generalizations of expectile regression further

research needs to be done. Model selection and variable selection for example have not been
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considered yet. A first approach to variable selection is provided by the asymptotic confidence

intervals described in Sobotka, Kauermann, Schulze Waltrup, and Kneib (2013), but to our

knowledge measures for the goodness of fit of an expectile model have not been evaluated yet.

The estimation of quantiles from expectiles described in Chapter 3 relies on the assumption of

a piecewise linear density and therefore may be further optimized. Also the mixed expectile

model described in Chapter 4 needs to be extended further. The non-crossing condition

presented in the same chapter is a rather loose one and other, more strict non-crossing

conditions are easily integrated as long as they can be formulated as a linear constraint

on the coe�cients. In fact, as we are facing a quadratic optimization problem in expectile

regression, all kinds of constraints regarding e.g. shape or monotonicity can be incorporated

rather quick as long as they can be formulated as linear constraint on the coe�cients. A

numerical issue concerning expectiles is the computation time. When estimating a set of

many expectiles for a large dataset the computation of expectile estimates, especially for

expectile sheets as described in Chapter 4, can be time consuming. One possibility to speed

things up could be to use an array formulation as proposed in Currie, Durbán, and Eilers

(2006) (see also Schnabel and Eilers, 2014).

Maybe the most important task for further research is to even more encourage and

distribute the use of expectiles. The argument most often used against expectiles is their

lack of interpretability. As we saw in the introductory Chapter 2 and also in the remainder

of this thesis, there are many approaches o↵ering an interpretation of expectiles and also the

interpretation of a single expectile curve is possible. We hope that this thesis will make a

small contribution to the spread of expectile regression as data analysis tool.
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Notation

↵ asymmetry parameter

m
↵

↵–expectile

m(↵, x) expectile sheet

q
↵

↵–quantile

q(↵, x) quantile sheet

n sample size

y response

y response vector

x covariate

d̃ number of linear e↵ects

d̃+ 1, . . . , d index of nonlinear e↵ects

x covariate vector

X parametric design matrix

� vector of parametric coe�cients

B B-spline basis matrix

u vector of coe�cients for B-spline basis

Z general basis matrix

v general vector of coe�cients

U design matrix of random e↵ects

� vector of coe�cients for random e↵ects

✏ residuals



APPENDIX A. NOTATION

�2
✏

variance of errors

�2
�

variance of random intercept

⇢
↵

check function

w
↵

weights

W matrix of weights

D matrix of di↵erences

K = D0D penalty matrix

� penalty parameter

P = �K penalty matrix

⌘ linear predictor

A constraint matrix enforcing non-crossing conditions

F (.) cumulative distribution function

f(.) probability density function

G(.) partial moment function

h(.) transfer function between expectiles and quantiles

⇣̂ estimated steps of distribution function

⇡ probability of inclusion
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Appendix to Chapter 3

Relation of ↵ and ↵̃ for ↵ ! 0

We assume that y has finite second moments, then with (3.3)

↵

↵̃
=

� ↵m0.5 + 2↵G(q
↵

) + ↵(1� 2↵)q
↵

� ↵q
↵

+G(q
↵

)
. (B.1)

Since the nominator and denominator both tend to zero for ↵ ! 0 we apply the rule of de

l’Hospital. Observing that ↵q
↵

= o(1) for ↵ ! 0 we get

lim
↵!0

↵

↵̃
= lim

↵!0
�

f(q
↵

)(q
↵

�m0.5) + ↵

↵
> 1. (B.2)

Hence ↵̃ < ↵ for ↵ ! 0. Note that since f(q
↵

) = o
�

|q
↵

|

�3
�

which follows due to the ex-

istence of second order moments, we find again that nominator and denominator of (B.2)

converge to zero for ↵ ! 0. Assuming now that f(q
↵

) is proportional to |q
↵

|

�3 for ↵ ! 0

which is required to guarantee finite second order moments, we get, again with the rule of

de l’Hospital applied to (B.2), that lim
↵!0

↵/↵̃ = const � 1, while if f(q
↵

) is proportional to

|q
↵

|

�(3+�) for some � > 0 we get with the same arguments that lim
↵!0

↵/↵̃ = 1.
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Estimation of F̂
m

(.)

Let 0 < ↵1 < · · · < ↵
L

< 1 be a dense set of knots covering (0, 1) and containing 0.5

and define with l0 the index with ↵
l0 = 0.5. First note, that equation (3.4) for ↵

l0 gives

a redundant information as it states that m0.5 = m0.5. That is to say, that we need an

additional constraint. This is found by observing that

m0.5 =

Z 1

�1
y dF (y) =

m
L

+m
L+1

2
+

L

X

l=1

(c
l

� c
L+1)⇣l (B.3)

with the approximation of F (.) from section 3.2.1. Remembering the definition of the ex-

pectiles (3.4), we define function g
l

(.) by

g
l

(⇣
l

, . . . , ⇣1) = m
l

�

(1� ↵
l

)G
l

(⇣
l

, . . . , ⇣1) + ↵
l

(m0.5 �G
l

(⇣
l

, . . . , ⇣1))

(1� ↵
l

)F
l

(⇣
l

, . . . , ⇣1) + ↵
l

(1� F
l

(⇣
l

, . . . , ⇣1))
for l = 1, . . . , L.

(B.4)

We now need ⇣1, . . . , ⇣L such that g
l

⌘ 0 which in principle can be seen as a root finding

problem. We implemented a version where we minimize the sum of squares of g
l

(⇣) under

certain restrictions: We face the minimization problem

min
⇣1,...,⇣L

S (⇣1, . . . , ⇣L) = min
⇣1,...,⇣L

L

X

l=1

(g
l

(⇣
l

, . . . , ⇣1)
2) (B.5)

under the constraints that ⇣
l

� 0 and
P

L

l=1 ⇣l  1 which is solved by Newton’s method in

optimization and also implemented in the R package “expectreg” by Sobotka, Schnabel,

and Schulze Waltrup (2013). Penalty parameter �pen, which ensures numerical stability and

smoothness of the distribution function, may be set equal to the squared empirical variance

of the data from which the expectiles are estimated. In our simulations we set �pen equal

to 5 times the squared empirical variance of the data (for each of the three distributions

considered and for both sample sizes n = 199 and n = 499).
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On Confidence Intervals for Semiparametric Expectile Re-

gression

This manuscript is developed by Fabian Sobotka, Göran Kauermann and Thomas Kneib and in minor parts
by Linda Schulze Waltrup. It is appeared asOn confidence intervals for semiparametric expectile regression in
Statistics and Computing. The asymptotic results were derived in joint work by Göran Kauerman, Thomas
Kneib, Fabian Sobotka and Linda Schulze Waltrup. The corresponding sections were written by Göran
Kauermann and Thomas Kneib. Fabian Sobotka implemented the confidence intervals, ran the simulation
study and applied the results within the example. All authors contributed to the general investigation of
the scientific problem and were involved in writing and proofreading the manuscript.



APPENDIX C. ON CONFIDENCE INTERVALS FOR SEMIPARAMETRIC EXPECTILE REGRESSION

Abstract

In regression scenarios there is a growing demand for information on the conditional distribution of

the response beyond the mean. In this scenario quantile regression is an established method of tail

analysis. It is well understood in terms of asymptotic properties and estimation quality. Another

way to look at the tail of a distribution is via expectiles. They provide a valuable alternative

since they come with a combination of preferable attributes. The easy weighted least squares

estimation of expectiles and the quadratic penalties often used in flexible regression models are

natural partners. Also, in a similar way as quantiles can be seen as a generalization of median

regression, expectiles o↵er a generalization of mean regression. In addition to regression estimates,

confidence intervals are essential for interpretational purposes and to assess the variability of the

estimate, but there is a lack of knowledge regarding the asymptotic properties of a semiparametric

expectile regression estimate. Therefore confidence intervals for expectiles based on an asymptotic

normal distribution are introduced. Their properties are investigated by a simulation study and

compared to a bootstrap-based gold standard method. Finally the introduced confidence intervals

help to evaluate a geoadditive expectile regression model on childhood malnutrition data from

India.
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C.1 Introduction

C.1.1 Expectiles

Recent interest in modern regression modeling has focused on extending available model

specifications beyond mean regression by describing more general properties of the response

distribution. For example, Rigby and Stasinopoulos (2005) proposed regression models for

location, scale and skewness where separate predictors can be specified for various parameters

of a response distribution. A completely distribution free approach is quantile regression

(Koenker and Bassett, 1978) where regression e↵ects on the conditional quantile function

of the response are assumed. Combining models for a large set of quantiles then allows to

characterize the complete conditional distribution of the response.

Quantile regression for the ↵-quantile with ↵ 2 (0, 1) relies on the regression specification

y
i

= ⌘
i,↵

+ ✏
i,↵

, i = 1 . . . , n, (C.1)

where ⌘
i,↵

is a (quantile-specific) predictor and ✏
i,↵

are independent error terms. Instead of

imposing the usual mean regression model assumption that E(✏
i,↵

) = 0, quantile regression

relies on the assumption that for the quantile function Q holds that Q
✏i,↵(↵) = 0, i.e. the

↵-quantile of the error distribution is zero. This implies that the conditional quantile of

the response y
i

is given by the predictor ⌘
i,↵

. Note that no specific distribution is assumed

for the error terms or responses and that in particular the error distribution may di↵er

between individuals. Estimation of quantile specific predictors now relies on minimizing the

asymmetrically weighted absolute residuals criterion
P

n

i=1 wi,↵

|y
i

� ⌘
i,↵

| with weights

w
i,↵

= w
i,↵

(⌘
i,↵

, y
i

) =

8

<

:

↵, for y
i

� ⌘
i,↵

1� ↵, for y
i

< ⌘
i,↵

.
(C.2)

A computationally attractive alternative to quantile regression is expectile regression,

where absolute residuals are replaced with squared residuals yielding the fit criterion

n

X

i=1

w
i,↵

(y
i

� ⌘
i,↵

)2

with weights as defined in (C.2). The underlying assumption in regression model (C.1) is

that the ↵-expectiles m
↵

of the error terms are zero. They are implicitly defined by m
↵

=
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argmin
m

E [w
↵

(m, y)(y �m)2]. Least asymmetrically weighted squares (LAWS) estimation

of expectiles dates already back to Newey and Powell (1987) but recently re-gained interest

in the context of semiparametric or geoadditive regression (see for example Schnabel and

Eilers, 2009b; Sobotka and Kneib, 2012). Expectile estimation is thereby a special form of M-

quantile estimation, see Breckling and Chambers (1988), Jones (1994). One of the advantages

of expectile regression is that estimation basically reduces to (iteratively) weighted least

squares fits since the optimality criterion is di↵erentiable with respect to the regression e↵ects

while linear programming routines have to be used in case of quantile regression. This is of

particular relevance when considering more flexible regression specifications as for example in

geoadditive regression. The e↵ects included here depend on a quadratic penalty for smooth

estimates which can easily be included in a least squares estimation procedure. Further,

when using expectiles (or quantiles) we try to get a complete picture of the conditional

distribution of the response while at the same time avoiding a parametric specification for

the distribution. To achieve this, we need to consider a set of expectiles or quantiles. In this

scenario, a single estimate would not hold more information than the mean. Therefore we

regard the reduced interpretability of expectiles as non-critical. Nevertheless, the estimation

e�ciency of expectiles and the interpretability of quantiles could be combined, if wished for,

since Efron (1991) already proposed a method to obtain quantiles from a set of expectiles.

In summary, point estimates for expectile regression are easily derived for simple as well

as complex models but their statistical properties are not yet well understood. In contrast,

confidence intervals and significance tests for quantile regression have been studied exten-

sively in the literature, relying for example on asymptotic considerations, the connection of

quantiles to ranks or on bootstrap procedures (Koenker, 2005; Kocherginsky, He, and Mu,

2005; Buchinsky, 1998). In this paper, we derive asymptotic properties of expectile regression

estimates and use them to construct corresponding confidence intervals. We continue the

work of Newey and Powell (1987) by introducing a correction for the asymptotic results and

extending them to semiparametric regression models. Further we determine the empirical

properties of the asymptotic results. Therefore we state bootstrap-based confidence inter-

vals as a computationally demanding gold standard for comparison with confidence intervals

relying on asymptotic normality. Pointwise bootstrap percentile intervals have already been

considered in Sobotka and Kneib (2012). However, the empirical properties were not de-

termined and the method proved to be impractical for larger data sets due to the highly

increased computational costs.
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C.1.2 Geoadditive Expectile Regression

The need for our methodological innovations has arisen during a large-scale application on

childhood malnutrition in developing countries where the impact of a large set of covariates

should be assessed with respect to their impact on the nutritional status of children. Ex-

ploring not only the conditional mean but also extreme parts of the conditional distribution

is of particular interest in this application since it allows to determine specific determinants

of severe malnutrition by modeling lower expectiles. A comparable application is considered

in Fenske, Kneib, and Hothorn (2011) who use boosting to estimate regression quantiles

in a high-dimensional additive quantile regression model, but spatial e↵ects could not be

included and confidence intervals are not provided. For the assessment of estimation un-

certainty they apply cross-validation in combination with the stability selection procedure

recently proposed by Meinshausen and Bühlmann (2010). In this paper we use an extended,

geoadditive model specification as introduced by Kammann and Wand (2003). The model

definition combines parametric and nonlinear e↵ects as well as spatial e↵ects from geostatis-

tics like kriging and can therefore be seen as a highly general semiparametric mixed model.

For our application the geoadditive specification yields

⌘
i,↵

= (csex, . . . , car)0
i

�
↵

+ f1,↵(cage
i

) + f2,↵(cfeedi

) (C.3)

+f3,↵(mbmi
i

) + f4,↵(mage
i

) + f5,↵(medu
i

)

+f6,↵(medupart
i

) + fspat,↵(districti)

where �
↵

corresponds to parametric e↵ects of categorical covariates such as gender of the

child (csex) or household-specific asset indicators (e.g. presence of a car), f1,↵,. . . ,f6,↵ are

nonlinear e↵ects of the continuous covariates age of the child in months (cage), duration

of breastfeeding in months (cfeed), body mass index of the mother at birth (mbmi), age of

the mother at birth (mage) and education years of the mother and the mother‘s partner

(medu,medupart) modeled via penalized splines and fspat,↵ is a spatial e↵ect corresponding

to a Gaussian Markov random field.

The rest of this paper is structured as follows: Section C.2 presents results on the asymp-

totic normality of expectile regression estimates in simple parametric models and for semi-

parametric extensions relying on penalized estimation. Required nonlinear and spatial e↵ects

are introduced alongside. Section C.3 uses these asymptotic results to derive confidence

intervals and also proposes bootstrap-based alternatives. Simulations and results for the

childhood malnutrition data are presented in Section C.4. The final Section C.5 summarizes

the findings.
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C.2 Asymptotics for Least Asymmetrically Weighted Squared Er-

ror Estimates

In the following, we assume that n metric observations y1, . . . , yn are given. For the underly-

ing unknown distribution we require the existence of second moments. Further, all inverted

matrices are assumed to have full rank.

C.2.1 Parametric Models

We start our considerations with a simple, parametric model ⌘
i,↵

= x0
i

�
↵

and study the

asymptotic behaviour of

�̂
↵

= argmin
�↵

n

X

i=1

w
i,↵

(�
↵

)(y
i

� x0
i

�
↵

)2.

where w
i,↵

(�
↵

) := w
i,↵

(⌘
i,↵

, y
i

). Let �0
↵

be the true parameter vector implicitly defined

through

0 =
n

X

i=1

(

(1� ↵)

Z

x

0
i�

0
↵

�1

�

y � x0
i

�0
↵

�

f(y|x
i

)dy (C.4)

+↵

Z 1

x

0
i�

0
↵

�

y � x0
i

�0
↵

�

f(y|x
i

)dy

)

.

To avoid complexities arising from the dependence of the weights on the parameter vector,

let for the moment w0
i,↵

= w
i,↵

�

�0
↵

�

be the “true” weights and define �̂
0

↵

as the minimizer

of

�̂
0

↵

= argmin
�↵

n

X

i=1

w0
i,↵

(y
i

� x0
i

�
↵

)2 (C.5)

which can easily be derived explicitly as

�̂
0

↵

=

 

n

X

i=1

w0
i,↵

x
i

x0
i

!�1 
n

X

i=1

w0
i,↵

x
i

y
i

!

. (C.6)

Since the weights are considered as fixed we end up with standard weighted regression and

obtain the following result:

Lemma 1. The least asymmetrically weighted squares estimate with fixed weights is asymp-
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totically normal, i.e.

�̂
0

↵

a

⇠ N
⇣

�0
↵

,Var(�̂
0

↵

)
⌘

. (C.7)

with covariance matrix

Var(�̂
0

↵

) =

 

n

X

i=1

$0
i,↵

x
i

x0
i

!�1(
n

X

i=1

x
i

x0
i

Var
�

$0
i,↵

(y
i

� x0
i

�
↵

)
�

)

 

n

X

i=1

$0
i,↵

x
i

x0
i

!�1

(C.8)

with $0
i,↵

= E(w0
i,↵

) = (1� ↵)P (y
i

< x0
i

�0
↵

) + ↵P (y
i

� x0
i

�0
↵

).

Proof. With fixed weights, it is easy to show that

E(w0
i,↵

y
i

) = (1� ↵)

Z

x

0
i�

0
↵

�1
yf(y|x

i

)dy + ↵

Z 1

x

0
i�

0
↵

yf(y|x
i

)dy,

which, combined with the implicit definition of the expectile (C.4), yields

E

 

n

X

i=1

w0
i,↵

x
i

y
i

!

=
n

X

i=1

$0
i,↵

x
i

x0
i

�0
↵

Applying standard expansion techniques to the weights in the first component in (C.6) yields

 

n

X

i=1

w0
i,↵

x
i

x0
i

!�1

=

 

n

X

i=1

$0
i,↵

x
i

x0
i

!�1

+O
p

�

n�1
�

,

so that we can extract the asymptotically leading components in (C.6) through

�̂
0

↵

� �0
↵

=
�

P

n

i=1$
0
i,↵

x
i

x0
i

��1 �P
n

i=1$
0
i,↵

x
i

�

y
i

� x0
i

�0
↵

��

+O
p

(n�1).

This shows that E(�̂
0

↵

) = �0
↵

+ O(n�1) and the variance of the weighted least squares

estimate with fixed weights equals (C.8). With the variance being of order O(n�1), we

obtain �̂
0

↵

� �0
↵

= O
p

(n�1/2) which, together with (C.9), yields the asymptotic normality

(C.7).

The next step in our consideration is to replace weights w0
i,↵

= w
i,↵

(�0
↵

) in (C.5) by its

estimate ŵ0
i,↵

= w
i,↵

(�̂
0

↵

), that is we allow the weights to depend on the parameter estimate.
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Theorem 1. The least asymmetrically weighted squares estimate with estimated weights is

asymptotically normal, i.e.

�̂
↵

a

⇠ N
⇣

�0
↵

,Var(�̂
0

↵

)
⌘

. (C.9)

A proof is available under the assumptions stated in the beginning. It is provided in

the appendix and follows a similar line of thought as in Newey and Powell (1987). The

inner component (C.8) of the variance in (C.7) and (C.9), respectively, can easily be derived

analytically, but the analytic form is hard to estimate. We therefore suggest to replace

Var($0
i,↵

(y
i

� x0
i

�0
↵

)) by its empirical version

(w0
i,↵

)2
⇣

y
i

� x0
i

�̂
0

↵

⌘2
. (C.10)

Apparently, replacing (C.10) with its fitted version by substituting �0
↵

with its estimate �̂0
↵

will lead to down-biased estimates since fitted squared expectile residuals underestimate the

variance, like in classical regression. We therefore need to adjust (C.10) when applying its

fitted version. From mean regression we already know that without further assumptions for

the distribution of the residuals we have

Var
��

y
i

� x0
i

�̂
0

↵

� 

= Var
��

y
i

� x0
i

�0
↵

� 

(1� h
ii

)

with h
ii

being the ith diagonal element of the hat matrix H , say. For expectile regression

we obtain the generalized hat matrix H↵ =
�

h↵

ij

�

ij

with

h↵

ij

= w0
i,↵

x0
i

✓

n

X

k=1

w0
k,↵

x
k

x0
k

◆�1

x
j

,

that coincides with the OLS hat matrix for ↵ = 0.5, i.e. H = H0.5. Therefore we use (C.10)

but estimate the variance with the adjusted fitted residuals

(ŵ
i,↵

)2

⇣

y
i

� x0
i

�̂
0

↵

⌘2

1� h↵

ii

, (C.11)

where ŵ
i,↵

= w
i,↵

(�̂
↵

).
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C.2.2 Semiparametric Models

Now we extend the results from the previous section to semiparametric regression models

with generic predictor

⌘
i,↵

= x0
i

�
↵

+
d�d̃

X

j=1

f
j,↵

(x
i(d̃+j)) = x0

i

�
↵

+
d�d̃

X

j=1

b0
ij

u
j,↵

where x0
i

�
↵

summarizes usual parametric, linear e↵ects of x1, . . . , x
d̃

while f1,↵(.), . . . , f
d�d̃,↵

(.)

represent generic semiparametric e↵ects of covariates x
d̃+1, . . . , xd

. These may for example

stand for nonlinear e↵ects of continuous covariates or spatial e↵ects as in our application (also

compare equation (C.3)) but may also correspond to more complex terms such as varying

coe�cients or interaction surfaces (see Fahrmeir, Kneib, and Lang, 2004, for more details on

available model terms). Each of the generic regression terms can then be expanded in terms

of basis functions, yielding a representation as f
j,↵

(x
i(d̃+j)) = b0

ij

u
j,↵

where b
ij

comprises the

basis function evaluations while u
j,↵

is a vector of basis coe�cients.

To enforce specific properties of the resulting estimates such as smoothness, estimation

then typically relies on penalized fit criteria. In case of expectile regression, this yields

n

X

i=1

w
i,↵

(⌘
i,↵

)(y
i

� ⌘
i,↵

)2 +
d�d̃

X

j=1

�
j,↵

u0
j,↵

K
j

u
j,↵

.

where �
j,↵

� 0, j = 1, . . . , d� d̃ are smoothing parameters and K
j

are appropriate penalty

matrices.

The two relevant examples of semiparametric model terms in the context of our ap-

plication are penalized splines and Gaussian Markov random fields. The former enables

estimation of nonlinear e↵ects f
j,↵

(x
d̃+j

) of a single continuous covariate x
d̃+j

and relies on

a basis expansion in terms of B-splines in combination with a di↵erence penalty for the

basis coe�cients. Therefore, in this case b0
ij

= (B1(zi), . . . , BK

(z
i

)) where B1, . . . , BK

is a

K-dimensional B-spline basis and K
j

= D0D with a di↵erence matrix D. The penalty

u0
j,↵

K
j

u
j,↵

then consists of the sum of all squared di↵erences of adjacent coe�cient se-

quences and penalizes large variation in the function estimate (compare Eilers and Marx,

1996). Gaussian Markov random fields allow to estimate spatial e↵ects based on geograph-

ical data. Suppose that each individual observation pertains to one region s
i

from a fixed

set of regions S = {1, . . . , S}. Then the design vector b
ij

is an S-dimensional indicator

vector with a one at the position of the region of observation i and zeros otherwise while

the vector of coe�cients u
j,↵

simply collects all potential spatial e↵ects. The penalty matrix
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should enforce spatial smoothness and therefore has the structure of an adjacency matrix

such that the penalty u0
j,↵

K
j

u
j,↵

consists of all squared di↵erences between spatial e↵ects

of neighboring regions (see Rue and Held, 2005, for details).

In any case, the estimates in semiparametric expectile regression models for fixed smooth-

ing parameters can always be written as

v̂
↵

=

 

n

X

i=1

z0
i

w
i,↵

z
i

+ P

!�1 
n

X

i=1

z0
i

w
i,↵

y
i

!

where v
↵

= (�0
↵

,u0
1,↵, . . . ,u

0
d�d̃,↵

)0 and z
i

= (x0
i

, b0
i1, . . . , b

0
i(d�d̃))

0 collect all regression coef-

ficients and design vectors, respectively, and P = blockdiag(0,�1,↵K1, . . . ,�
d�d̃,↵

K
d�d̃

) is

the complete penalty matrix.

Theorem 2. For fixed smoothing parameters, the penalized least asymmetrically weighted

squares estimate is asymptotically normal, i.e.

v̂
↵

a

⇠ N
�

v0
↵

,Var(v̂0
↵

)
�

where v0
↵

is defined in analogy to �0
↵
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↵
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i
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!�1

. (C.12)

The covariance matrix of the penalized estimate has the typical sandwich form arising

from the inclusion of the penalty in the estimation objective.

As before, the residual terms y
i

� z0
i

v0
↵

in equation (C.12) can be replaced by empirical

terms in order to estimate the variance, where in close analogy to (C.11) we divide the fitted

version
�

y
i

� z0
i

v̂0
↵

�2
by its generalized hat matrix entry

1� w0
i,↵

z0
i

✓

n

X

j=1

w0
j,↵

z
j

z0
j

+ P

◆�1

z
i

. (C.13)

Of course, in practice the smoothing parameters will have to be determined jointly with

the regression coe�cients to obtain a data-driven amount of smoothness. A REML estimate
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based on the Schall algorithm (Schall, 1991) has been adapted to expectiles by Schnabel

and Eilers (2009b). In our simulations and the example, we will use asymmetric cross-

validation adapted for geoadditive expectile regression in Sobotka and Kneib (2012). The

grid search over the smoothing parameter for the minimal cross-validation score is widened

to an r-dimensional grid. The score itself is defined as

V w

g

=
n
P

n

i=1 wi,↵

(y
i

� ⌘
↵,i

)2

[tr(1�H↵)]2

and the score is therefore independent from the number of functions r. The method is

computationally demanding but accurate. We use the more accurate possibility to gain

reliable informations on the confidence interval performance.

C.3 Confidence Intervals

C.3.1 Asymptotic Confidence Intervals

Equation (C.12) together with the correction (C.13) provides us with the asymptotic co-

variance matrix of the complete estimate v̂
↵

and therefore the covariance matrix of specific

coe�cient vectors of interest can immediately be obtained by extracting the appropriate sub-

blocks. For example, for the variance of the estimated function evaluation f̂
j,↵

(x
i(d̃+j)) =

b0
ij

u
j,↵

, we obtain

Var(f̂
j,↵

(x
i(d̃+j))) = b0

ij

Var(û
j,↵

)b
ij

where Var(û
j,↵

) is the block of Var(v̂
↵

) corresponding to û
j,↵

. Together with the asymptotic

normality of the least asymmetrically weighted squares estimate, this yields the following

confidence interval for the true function evaluation f
j,↵

(x
i(d̃+j)):

CI(f̂
j,↵

(x
i(d̃+j))) =



f̂
j,↵

(x
i(d̃+j))± z1�a

2

q

Var(f̂
j,↵

(x
i(d̃+j)))

�

where z1�a
2
= ��1(1� a

2) is the (1� a

2)-quantile of the standard normal distribution. Note

that a particular amount of undercoverage is inevitable since we work with normal but not

t-distribution quantiles.
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C.3.2 Bootstrap Confidence Intervals

A further possibility to fit pointwise (1�a)-confidence intervals to expectile regression curves

can be created with large computational expense. By conducting a nonparametric bootstrap,

the distribution of the estimated expectiles can be approximated. At first, B bootstrap

samples (y,X)⇤
b=1,...,B are drawn from the original data set. The expectiles are fitted in-

dependently for all B samples resulting in a bootstrapped sample m
↵

(x⇤
i,1), . . . ,m↵

(x⇤
i,B

)

from the unknown distribution of the true expectile m
↵

(x
i

). According to Efron and Tib-

shirani (1993) for a number of bootstrap replications B � 1000 we can construct bootstrap

percentile intervals from m
↵

(x⇤
i,1), . . . ,m↵

(x⇤
i,B

) with su�cient quality. This holds under

the assumption that the empirical distribution formed by the observations (y
i

, x
i

)
i=1,...,n, is

a good estimate for the unknown true distribution. The resulting pointwise intervals are

therefore constructed from the (a2B)-th and the ((1 � a

2)B)-th element of the sorted set of

the expectile estimates for each of the e↵ects f
j

from the Bootstrap samples and i = 1, . . . , n:

CI(f̂ ⇤
j,↵

(x
i

)) =
h

f̂
j,↵

(x⇤
b1,i

)(a2B) ; f̂j,↵(x
⇤
b2,i

)((1�a
2 )B)

i

.

An alternative would be to construct bootstrap-t-intervals. This would require an addi-

tional nonparametric bootstrap inside every previously drawn bootstrap sample to estimate

the variance of the expectiles. In consequence this method would take a lot of time or proces-

sor cores when used on large data sets. Therefore we restrict our analyses to the bootstrap

percentile intervals.

C.4 Empirical Evaluation

C.4.1 Simulation Study

After introducing two estimation approaches for expectile regression confidence intervals, an

asymptotic and a numerical method, their merits and disadvantages will now be investigated

in terms of a simulation study. The data structures considered in the simulation study are

linear on the one hand, mixed and additive nonlinear on the other in order to simulate

di↵erent data scenarios. We will also investigate numerical properties of the estimation

approaches in terms of computing time.
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Design

The models used for the simulations are defined as

y = 0.75 + 0.9x1 + ✏ (C.14)

y = 3x3 + 3 exp(�x2
1)

| {z }

fp-spline(x1)

+✏ (C.15)

y = x2
1

|{z}

fp-spline(x1)

+sin(8x2 � 4) + 2 exp(�(16x2 � 8)2)
| {z }

fp-spline(x2)

+✏ (C.16)

where ✏ follows either a normal distribution N(0, 32), a beta distribution or the so called

“expectiles-meet-quantiles” (emq) distribution with distribution function

F
µ,s

(✏) = 0.5

 

1 + sign(✏� µ)

s

1�
2

2 +
�

✏�µ

s

�2

!

with expectation µ = 0 and scaling parameter s =
p

2 (The variance itself is not finite

regardless the value of s). The latter distribution has the desirable property that quantiles

and expectiles coincide (see Koenker, 2005, p. 67) for all parameters µ 2 R and s > 0.

Also, due to the non-existing second moments a key assumption for the asymptotic results

is violated. Here, we can examine the importance of the assumption. Note that both the

normal and the “emq” distribution are homoscedastic while the beta distribution is variance

heteroscedastic with Beta(0.5x1, 3x1) for models (C.14) and (C.15) and Beta(0.5x1, 3x2) for

model (C.16). The true expectiles of the above distributions are obtained by numerically

solving

↵ =
G(m

↵

)�m
↵

F (m
↵

)

2(G(m
↵

)�m
↵

F (m
↵

)) + (m
↵

�m0.5)

where F is the cumulative distribution function, G(m
↵

) =
R

m↵

�1 y dF (y) is the partial moment

function and G(1) = m0.5 is the expectation of y.

The binary covariate x3 is drawn from a B(1, 0.5) distribution. The values of the contin-

uous covariates x1 and x2 are equally spaced over their domains [0; 3] and [0; 1], respectively.

Therefore we have the same positions in every simulated data set where the confidence in-

tervals are evaluated. The corresponding functions are modeled as cubic penalized splines

with second order di↵erence penalty and 20 inner knots.
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(c) Linear e↵ect of x1

Figure C.1: Exemplary data and fitted asymptotic confidence intervals for one simulated data set
with n = 500 observations and N(0, 32) distributed errors.
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Figure C.1 visualizes simulated data for one replication to give an impression of the

functional form of the e↵ects considered. Based on sample sizes of n = 100, 250, 500 and

1000, we generated 1000 simulation replications for each of the 36 di↵erent data structures

arising from the combination of (i) the model (linear, mixed and additive), (ii) the error

distribution (normal, beta, emq), and (iii) the sample size. For each data set, we applied the

two di↵erent approaches for the estimation of confidence intervals introduced in the previous

section, i.e. asymptotic normality and bootstrap percentiles to determine confidence intervals

for expectiles with asymmetries ↵ 2 {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99}.

The asymptotic normality was used to estimate confidence intervals from the regression

coe�cients obtained from least asymmetrically weighted squares (LAWS). The same is true

for the bootstrap percentile intervals.

All simulations have been implemented using expectreg (see Sobotka, Schnabel, and

Schulze Waltrup, 2013), a package for R (R Development Core Team, 2010). The pack-

age also contains expectile functions for several distributions including those used in the

simulations.

Performance measures

For the measurement of the quality of the results we evaluate the true expectile curve at

the covariate values x1,i and x2,i. Then the number of times the true expectile is covered by

the interval are counted. Also the intervals will be compared according to their width. We

therefore measure the coverage of the confidence intervals for h = 1, 2 at a given covariate

value x
h,i

as

\Cover(CI(f̂
j,↵

(x
h,i

)) =
1

1000

1000
X

k=1

1{f̂j,↵(xh,i)2CI(f̂ [k]
j,↵(xh,i))}

,

the maximum width of all confidence intervals at all fixed x
h,i

max \Width(CI(f̂
j,↵

(x
h,i

))) = max
k

(f̂ [k]
j,↵,U

(x
h,i

)� f̂ [k]
j,↵,L

(x
h,i

))

and for a compact measure the mean coverage along the covariate x
h

, h = 1, 2

\Cover(CI(f̂
j,↵

(x
h

))) =
1

1000n

n

X

i=1

1000
X

k=1

1{f̂j,↵(xh,i)2CI(f̂ [k]
j,↵(xh,i))}

(C.17)
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as well as the mean interval width

\Width(CI(f̂
j,↵

(x
h

))) =
1

1000n

n

X

i=1

1000
X

k=1

f̂ [k]
j,↵,U

(x
h,i

)� f̂ [k]
j,↵,L

(x
h,i

) . (C.18)

Here, f̂ [k]
j,↵

denotes the expectile estimate for the j-th e↵ect in the k-th simulation run.

Further, the upper or lower end of the interval is indicated by U and L, respectively. In

order to get a better hold of the actual quality of the confidence intervals we guarantee

identifiability of the expectiles in the additive model by centering f̃
j,↵

(x
i

) = f
j,↵

(x
i

)� f̄
j,↵

.

Results

The first observation we can make is that the desired confidence level of 95% cannot be

guaranteed for all situations. None of the introduced methods shows that quality. The best

results are achieved for the special case of a mean regression (↵ = 0.5) and for covariate

values near x̄. The larger the asymmetry (↵ ! 0 or ↵ ! 1) and the nearer to the edge of

the covariates’ support, the higher the probability that the confidence level will not be met.

The former is displayed in Table C.1, the latter is exemplary shown for the beta distribution

in Figure C.2. In addition, calculating the mean coverage for all covariates, as defined in

Section C.4.1, results in the simulated coverage probabilities shown in Table C.1. Results

for n = 250 and the width of the confidence intervals are available on request.

We also investigate the average width of the confidence intervals. Apparently, for sym-

metrical distributions the width increases towards the boundary of the covariate support.

For the heteroscedastic scenario this needs not to be the case as the beta distribution shows.

Table C.1 shows an increasing coverage probability with growing sample size. The latter,

however, is only partly true for the emq distribution due to the infinite variance. In com-

parison, the gain in coverage probability and the decrease in interval width is stronger for

the confidence intervals constructed from the asymptotic properties. The latter is especially

important since we want the narrowest interval width possible given a proper coverage.

Analysing both measures together, the coverage (C.17) and the width (C.18), ensures that

we select intervals for which the appropriate coverage is not gained by additional interval

width.

Regarding the performance of the bootstrap percentile intervals one needs to bear in mind

the increased computational demand. In fact, one needs to fit the complete set of consid-

ered expectiles in each nonparametric bootstrap samples which is a rather time-consuming

method. After this computational burden, that can take more than an hour for a single

data set, depending on the complexity of the data, the results are however satisfactory. The
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(a) relative coverage for n = 100
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(b) relative coverage for n = 250
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(c) relative coverage for n = 500

Figure C.2: Simulation results for ↵ = 0.05 with n = 100, 250, 500 observations and Beta(0.5x, 3x)
distributed errors. The relative coverage frequency for both methods along the covariate is shown.
The method of asymptotic normality is plotted in red, the LAWS bootstrap percentile intervals in
black and dotted.
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n = 100
error F

emq

(0,
p

2) N(0, 32) Beta(0.5x1, 3x1)
↵ boot asympt boot asympt boot asympt

0.01 0.358 0.345 0.706 0.715 0.947 0.858
0.02 0.496 0.462 0.783 0.788 0.950 0.880
0.05 0.654 0.615 0.848 0.847 0.952 0.899
0.1 0.758 0.728 0.882 0.875 0.949 0.902
0.2 0.841 0.829 0.901 0.893 0.941 0.911
0.5 0.914 0.939 0.920 0.915 0.918 0.903
0.8 0.824 0.819 0.910 0.899 0.881 0.858
0.9 0.733 0.714 0.886 0.874 0.848 0.829

0.95 0.623 0.600 0.850 0.841 0.813 0.797
0.98 0.467 0.439 0.776 0.780 0.760 0.725
0.99 0.332 0.319 0.700 0.723 0.711 0.657
n = 500

error F

emq

(0,
p

2) N(0, 32) Beta(0.5x1, 3x1)
↵ boot asympt boot asympt boot asympt

0.01 0.634 0.594 0.876 0.851 0.946 0.923
0.02 0.713 0.681 0.902 0.879 0.946 0.927
0.05 0.801 0.771 0.922 0.905 0.930 0.928
0.1 0.848 0.830 0.929 0.915 0.921 0.925
0.2 0.893 0.890 0.930 0.924 0.924 0.922
0.5 0.922 0.947 0.929 0.931 0.934 0.931
0.8 0.882 0.873 0.931 0.930 0.895 0.900
0.9 0.833 0.814 0.931 0.923 0.843 0.874

0.95 0.780 0.752 0.923 0.913 0.783 0.862
0.98 0.696 0.661 0.904 0.888 0.721 0.846
0.99 0.604 0.573 0.882 0.855 0.687 0.829
n = 1000

error F

emq

(0,
p

2) N(0, 32) Beta(0.5x1, 3x1)
↵ boot asympt boot asympt boot asympt

0.01 0.714 0.665 0.937 0.879 0.929 0.934
0.02 0.790 0.734 0.939 0.905 0.933 0.937
0.05 0.858 0.802 0.932 0.919 0.921 0.939
0.1 0.897 0.843 0.932 0.926 0.911 0.934
0.2 0.919 0.890 0.936 0.932 0.923 0.927
0.5 0.925 0.942 0.946 0.935 0.947 0.934
0.8 0.889 0.888 0.942 0.931 0.912 0.910
0.9 0.876 0.846 0.933 0.926 0.824 0.894

0.95 0.856 0.808 0.930 0.915 0.697 0.888
0.98 0.783 0.741 0.913 0.898 0.603 0.873
0.99 0.708 0.681 0.884 0.877 0.563 0.861

Table C.1: Mean relative coverage frequency as defined in Equation (C.17) for the eleven asym-
metry parameters, both estimation methods and all error distributions for a sample size of
n = 100, 500, 1000.
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bootstrap intervals provide a coverage of nearly 1 � a with the limitations stated in the

beginning. Especially for small samples, the provided coverage of the bootstrap method is

better than from the asymptotic method without resulting in unreasonably wide intervals.

Also for small samples the time required to conduct the bootstrap is within a few minutes

depending on the possibilities for parallelization.

In conclusion, we can see that both methods have their merits and weaknesses. Small

samples are best tackled with bootstrap intervals and for heteroscedastic errors or large

samples we can recommend to use the asymptotic normality to construct confidence inter-

vals for the expectile curves. If the variance does not exist, we can see that the violated

assumption in the asymptotics leads to poor coverage. In simple cases, 500 observations will

su�ce. Otherwise and if extreme expectiles like ↵ = 0.01, 0.99 shall be estimated, more are

required.

C.4.2 Childhood Malnutrition in India

Malnutrition is a severe problem in developing countries. Regular surveys are therefore

conducted on national bases in order to determine risk factors for malnutrition. General

and representative studies on health and population development are done by MEASURE

Demographic and Health Surveys (DHS). Those include topics like HIV distribution, fertility

or nutrition aspects. The data can be obtained from www.measuredhs.com free of charge for

research purposes. In our case we use data on childhood malnutrition in India from the year

2001. After preprocessing and deleting observations with missing values, the data contains

24316 observations in 40 variables. In general, malnutrition of each individual i is measured

as a score Z defined as

Z
i

=
AC

i

�M

s

where AC is an anthropometric characteristic. Most of the time the weight in relation to

the age is measured for this variable. This characteristic is standardized by subtracting the

median M and dividing by the standard deviation s of the same attribute in a reference

population. While a score based on weight is also an indicator for acute malnutrition, an

insu�cient height for a child’s age, also called stunting, is a distinct indicator for chronic

malnutrition. Therefore stunting is the variable that is modeled here. The score for stunting

Z is neither normally distributed nor restricted to a certain support. In our data the value

ranges from -600 to 600. The model is inspired by Fenske, Kneib, and Hothorn (2011) and
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the predicted stunting ⌘
↵

for the ↵-expectile is modeled as

⌘
↵

=x0�
↵

+ f
↵,1(age of child) + f

↵,2(duration of breastfeeding)

+ f
↵,3(BMI of mother) + f

↵,4(age of mother)

+ f
↵,5(education years of mother)

+ f
↵,6(education years of partner) + f

↵,spat(district).

The parametric e↵ects included in x are listed in Table C.2. Further there are six nonlinear

e↵ects in the model that are fitted with a cubic P-spline basis constructed from 20 inner

knots and penalized with second order di↵erences. Also one spatial e↵ect is included as

a Markov random field. A special interest of this analysis lies in the lower tails of the

conditional distribution of Z. The expectiles for small values of ↵ will show the relation of

the covariates to the response for cases of severe malnutrition. Confidence intervals from a

nonparametric bootstrap cannot be considered here as we expect a computing time of several

weeks.

For the lower expectiles we can see that stunting gets worse if the child is later in the birth

order. This as well as the insignificance of the residence region of the mother (rural / urban) is

a result comparable to the lower quantiles computed by Fenske, Kneib, and Hothorn (2011).

The 0.8 and 0.95-expectiles show a di↵erent behaviour for these covariates. The family size is

insignificant for children that do not su↵er from stunting. For those children living in urban

areas it also has a positive e↵ect. We can support this by the 0.95-expectile of the regions

of India depicted in Figure C.4. The map shows a positive e↵ect on the nutritional status

of the children for densely populated areas. Those regions are mainly in the northeast along

the rivers Ganges and Brahmaputra. In consequence, we can assume a su�cient supply

with fresh water for these children. We can also see a relation to the e↵ects of the religion

here since most of India’s Muslims live in the densely populated areas. The inclusion of an

interaction term could be part of further research. In the additive model considered here,

an increased correlation between two covariates will just result in wider confidence intervals.

The e↵ects nevertheless show us that Muslim children su↵er from stunting less than children

from the other religions. This observation can be made throughout all expectiles and stands

in contrast to the results from Fenske, Kneib, and Hothorn (2011) whose results indicated

no di↵erence between the five religions. This might be due to the fact that no spatial e↵ect

could be included in the quantile regression model. They also performed variable selection

in the quantile regression which led to the elimination of the television indicator variable

from their model. The expectiles, however, show that the presence of a TV in a household

is an indicator for less stunting. The reason for this result is probably that the whole family
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Variable / ↵ 0.05 0.2 0.8 0.95
sex of child -2.91 -2.45 -1.35 3.52
reference: “male” (-8.63, 2.80) (-7.31, 2.41) (-6.46, 3.74) (-2.88, 9.94)
twin birth -67.53 -68.71 -72.21 -79.22
reference: “single birth” (-91.01, -44.10) (-88.25, -49.17) (-93.84, -50.59) (-112.10, -46.34)
birth order: reference: “first”
“second” -5.75 -8.81 -7.66 0.05

(-13.37, 1.87) (-15.57, -2.06) (-14.71, -0.61) (-9.03, 9.13)
“ third” -15.70 -15.82 -14.55 -7.45

(-25.28, -6.11) (-23.82, -7.82) (-23.18, -5.92) (-19.30, 4.38)
“fourth” -17.97 -17.25 -4.07 18.35

(-29.12, -6.81) (-26.64, -7.86) (-13.90, 5.74) (3.65, 33.05)
“fifth” -35.54 -33.41 -24.00 -9.91

(-47.59, -23.49) (-43.11, -23.71) (-34.18, -13.81) (-25.56, 5.72)
mother’s work -1.41 -3.48 -1.25 2.20
reference: “unemployed” (-7.81, 4.97) (-9.33, 2.36) (-7.46, 4.95) (-6.37, 10.79)
mother’s religion reference: “christian”
“hindu” -7.96 -4.91 -2.39 1.05

(-15.47, -0.46) (-10.55, 0.72) (-8.62, 3.83) (-9.44, 11.55)
“muslim” 31.23 24.27 26.51 37.91

(19.14, 43.32) (13.01, 35.53) (14.44, 38.59) (22.16, 53.66)
“sikh” 6.72 5.27 8.51 8.23

(-16.30, 29.75) (-11.46, 22.00) (-7.79, 24.82) (-15.94, 32.41)
“other” 22.82 14.49 7.77 5.41

(6.24, 39.41) (0.37, 28.61) (-7.15, 22.69) (-15.40, 26.23)
mother’s residence -1.61 -0.79 2.32 8.98
reference: “rural” (-8.34, 5.11) (-5.64, 4.04) (-2.44, 7.09) (1.99, 15.97)
# dead children: reference: “0”
“1” -5.62 -2.89 -6.18 -10.43

(-12.94, 1.69) (-8.23, 2.45) (-13.05, 0.68) (-21.28, 0.42)
“2” -3.80 -1.46 -6.05 -11.91

(-16.85, 9.24) (-12.21, 9.28) (-18.92, 6.80) (-32.28, 8.45)
“3” -15.94 -16.05 -14.93 -16.26

(-33.82, 1.92) (-31.88, -0.23) (-35.07, 5.20) (-44.51, 11.99)
electricity supply 16.71 12.65 7.73 4.77
reference: “no” (9.47, 23.95) (5.80, 19.50) (-0.35, 15.82) (-6.18, 15.72)
radio 3.47 4.51 5.58 3.52
reference: “no” (-1.80, 8.75) (0.72, 8.31) (1.44, 9.73) (-3.73, 10.78)
television 11.49 13.35 14.80 18.77
reference: “no” (4.73, 18.25) (8.57, 18.13) (9.61, 19.99) (10.50, 27.04)
refrigerator 9.73 10.63 9.29 6.93
reference: “no” (-1.18, 20.65) (2.17, 19.09) (0.20, 18.37) (10.50, 27.04)
bicycle -3.87 -3.53 -7.36 -8.83
reference: “no” (-8.80, 1.05) (-7.35, 0.28) (-12.60, -2.12) (-16.66, -1.01)
motorcycle 11.13 9.80 9.56 11.61
reference: “no” (2.26, 20.00) (2.88, 16.72) (1.91, 17.22) (0.31, 22.90)
car -10.55 1.10 4.40 11.09
reference: “no” (-38.11, 17.00) (-12.48, 14.69) (-9.45, 18.26) (-14.19, 36.38)

Table C.2: Estimated parametric e↵ects for Childhood Malnutrition data. Reference categories and
confidence intervals (↵ = 0.95) obtained by asymptotic normality are included in italics. Significant
e↵ects are set in bold.
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Figure C.3: Estimated nonlinear e↵ects and confidence intervals for the six continuous covariates
included in the model for the 0.05, 0.5 and 0.95-expectile.
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0.05

−1 10
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Figure C.4: Estimated significance indicators for the e↵ects of the Markov random field in the
regions of India for four expectiles. Green regions indicate a significant negative e↵ect on the
response while pink regions indicate a positive e↵ect.

is provided with food before the money is spent on a TV. So we can take this variable as

an indicator for wealth. Not yet mentioned was the positive influence of the presence of a

motorcycle or a refrigerator to the stunting score.

From the six continuous covariates included in the model and shown in Figure C.3 we see
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that up to an age of two years the stunting gets worse and after that there’s a consolidation.

The remaining five continuous e↵ects present less drastic changes along the covariates than

the quantiles portrayed. For increasing age, BMI and years of education of the mother we

observe a slight increase in the stunting score. Comparing both the education of the mother

and of her partner we make the same observation as Fenske, Kneib, and Hothorn (2011).

The education of the partner is less important for the nutritional status of the child. For

all continuous variables we can see a homoscedastic behaviour as the expectiles are almost

parallel throughout the support of the covariates. Also we can conclude from the expectiles

that the conditional distribution of the stunting score is right skewed. Further, the variation

in the response is substantial. This leads to wide confidence intervals to all expectiles even

with the large amount of observations. The latter is nevertheless important for the high

smoothness of the expectile curves. The analyses demonstrate several indicators that are

associated with malnutrition in India. But we can see from the lower expectiles in Figure C.4,

severe malnutrition can be found anywhere in India.

C.5 Conclusion

In this paper, we derived the asymptotic results supplementing the point estimators for

geoadditive expectiles. The asymptotic normality of the LAWS method as well as the sub-

sequent confidence intervals are an essential extension to the estimation methods introduced

e.g. in Sobotka and Kneib (2012). Our simulations and the application to the malnutrition

data have shown us that we can safely replace the computationally expensive method of

the bootstrap with the usage of the asymptotic properties. As Figure C.2 has shown, both

methods provide similar coverage for growing sample sizes.

Generally, we need to recollect that the advantages of expectile regression over mean

regression can be exploited solely when regarding a set of expectiles. As seen in Section C.4.2,

by comparing di↵erent expectiles we gain information about the distribution of the response.

The introduced confidence intervals help us by signifying the strength of the results. The

data analysis has also shown that the obtained information is comparable to a quantile

regression despite reduced interpretability. Hence, we use expectiles and gain computational

advantages and flexible geoadditive models.
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Proof of Asymptotic Normality

Proof. Note first that
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Bühlmann, P. and T. Hothorn (2007, 11). Boosting algorithms: Regularization, prediction

and model fitting. Statistical Science 22 (4), 477–505.

Chambers, R. L. and R. Dunstan (1986). Estimating distribution functions from survey

data. Biometrika 73 (3), 597–604.

Chen, Q., M. R. Elliott, and R. J. A. Little (2010). Bayesian penalized spline model-

based inference for finite population proportion in unequal probability sampling. Sur-

vey Methodology 36 (1), 23–34.

Chen, Q., M. R. Elliott, and R. J. A. Little (2012). Bayesian inference for finite population

from unequal probability sampling. Survey Methodology 38 (2), 203–214.



REFERENCES

Chernozhukov, V., I. Fernández-Val, and A. Galichon (2010). Quantile and probability

curves without crossing. Econometrica 78 (3), 1093–1125.

Croissant, Y. and G. Millo (2008). Panel data econometrics in R: The plm package. Journal

of Statistical Software 27 (2).

Currie, I. D., M. Durbán, and P. H. C. Eilers (2006). Generalized array models with

application to multidimensional smoothing. Journal of the Royal Statistical Society

B 68 (2), 259–280.

de Boor, C. (2001). A Practical Guide to Splines. New York: Springer.

De Rossi, G. and A. Harvey (2009). Quantiles, expectiles and splines. Journal of Econo-

metrics 152 (2), 179–185.

Diggle, P. J., K.-Y. Liang, and S. L. Zeger (1994). Analysis of longitudinal data. Oxford:

Oxford University Press.

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica

Sinica 1, 93–125.

Efron, B. and R. Tibshirani (1993). An Introduction to the Bootstrap. London: Chapman

and Hall.

Eilers, P. H. C., I. D. Currie, and M. Durbán (2006). Fast and compact smoothing on

large multidimensional grids. Computational Statistics & Data Analysis 50, 61–76.

Eilers, P. H. C. and B. D. Marx (1996). Flexible smoothing with B-splines and penalties.

Stat. Science 11 (2), 89–121.

Fahrmeir, L., T. Kneib, and S. Lang (2004). Penalized additive regression for space-time

data: a Bayesian perspective. Statistica Sinica 14, 731–761.

Fahrmeir, L., T. Kneib, S. Lang, and B. Marx (2013). Regression : Models, Methods and

Applications. Berlin, Heidelberg: Springer Berlin Heidelberg.

Fenske, N., T. Kneib, and T. Hothorn (2011). Identifying risk factors for severe child-

hood malnutrition by boosting additive quantile regression. Journal of the American

Statistical Association 106 (494), 494–510.

Godambe, V. P. (1991). Confidence intervals for quantiles. In V. P. Godambe (Ed.), Es-

timating functions, pp. 211–217. Oxford University Press.
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