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II Summary 
The neurotropic rabies virus (RABV) of the Rhabdoviridae family is the causative agent of 

rabies, a fatal zoonosis. The availability of a RABV reverse genetics system allowing the 

generation of recombinant viruses has greatly facilitated investigations on the molecular 

biology, neurotropism, and pathogenicity of RABV, as well as the establishment of 

specifically designed attenuated RABV vaccines, vectors, and neurotracers. Due to its 

neurotropism and strictly retrograde transmission via synapses, RABV has gained more and 

more attention as a valuable research tool in neural sciences. 

A severe drawback of the classic RABV reverse genetics system is the poor efficiency of virus 

rescue from cDNA, which requires intracellular co-expression of a set of three viral “helper” 

proteins (N, P, and L) and of correctly (end-)processed T7 RNA polymerase-derived viral 

RNAs. The aim of this work was to facilitate and improve the RABV rescue system with 

respect to reliability, rescue efficiency, and time consumption. In addition, the potential of 

RABV vectors for expression of small interfering RNAs was addressed for the first time. 

Following experiments revealing that RABV does not actively interfere with the cellular RNAi 

machinery, diverse RNAs were expressed from RABV mimicking natural miRNA or shRNA 

precursors. Notably, the 5’-capped and polyadenylated RABV mRNAs were not further 

processed in the cytoplasm to yield si/miRNA duplexes with knock-down activity, suggesting 

the requirement of nuclear processing by the Drosha/DCGR8 microprocessor complex. To 

generate RNAs directly cleavable by cytoplasmic Dicer, shRNAs flanked by hammerhead and 

hepatitis delta ribozymes were designed by thorough in silico analysis. Although ribozyme 

processing yielded the predicted shRNAs, these were not cleavable by Dicer, most probably 

because of the specific phosphate conformations at the RNA termini.  

In contrast to providing suitable Dicer substrates, ribozymes tested here were highly 

efficient in generating correct viral RNA ends and could be used for significant improvement 

of the RABV rescue system. Specifically, generation of an exact viral 5’-end by a 

hammerhead ribozyme and highly efficient processing of the viral 3’-end by a hepatitis delta 

virus antigenomic ribozyme variant (SC1) resulted in a 100-fold more efficient and faster 

rescue of recombinant RABV from T7 RNA polymerase-derived RNA (Ghanem et al., 2012). 

This faster and more reliable system has become a standard technique in our lab and 
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enabled us to rescue severely attenuated RABVs as well as a variety of novel vectors for 

neurotracing. 

The significant improvement of RABV rescue was a prerequisite for the following approach, 

namely, development of a single plasmid rescue system, generating a single infectious RABV 

cDNA. A completely new and unconventional system was established, which is based on the 

direct expression of “helper” proteins from the cDNA-encoded full-length antigenome-like 

RNA. To this end, picornaviral IRES elements and 2A-like sequences were integrated 

upstream of the respective ORFs in order to translate these directly from the antigenome-

like RNA, thereby superseding extra “helper” protein plasmids. Unexpectedly, cis-active 

RABV sequences, which have not been described before, were identified in the course of the 

experiments at the leader-N junction and within the N coding region. Importantly, rescue of 

RABV was achieved with RNA polymerase II promoter-driven DNA, with reasonable 

efficiency. This opens the way to the development of animal models in which RABV is 

genetically encoded and an infectious cycle induced in certain cell types. Especially for 

neurotracing, but also pathogenicity studies, such systems benefit from the virtual infinite 

number of genetic e.g. mouse models available and contribute to a gain of specificity and 

accessibility in regard to target cells. 
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1 Introduction 

1.1 Rabies virus  

1.1.1 Taxonomy 

Rabies virus (RABV) is a member of the family Rhabdoviridae which together with the 

Paramyxoviridae, the Filoviridae and the Bornaviridae constitute the order Mononegavirales 

also known as non-segmented negative strand RNA viruses (NNSV). The NNSV genome is 

tightly encapsidated by the nucleoprotein (N) into helical N-RNA structures. The N-RNA, or 

nucleocapsid (NC), is the template for genome replication and ordered transcription of sub-

genomic mRNAs (reviewed in Whelan et al., 2004) 

The family Rhabdoviridae is sub-divided into six genera: Lyssavirus, with RABV as the 

prototypical member, Vesiculovirus, Ephemerovirus, Novirhabdovirus, Cytorhabdovirus and 

Nucleorhabdovirus. Their virions have a typical bullet or rod shape in common. 

Rhabdoviridae are replicating in a broad spectrum of hosts, ranging from plants, insects, 

lower vertebrates to mammals and man (reviewed in Fu, 2005).  

The Lyssavirus genus is divided further into 7 genotypes. RABV (genotype 2) is the causative 

agent of human rabies, as the result of a zoonosis. Natural infections occur in mammals, 

mostly carnivores. The other members of the Lyssavirus genus, Lagos Bat virus (genotype II), 

Mokola virus (genotype III), Duvenhage virus (genotype IV), European bat lyssavirus 1 and 2 

(EBLV-1 and EBLV-2) (genotypes V and VI) and the Australian bat lyssavirus (ABLV) (genotype 

VII) are mostly found in bats and for some genotypes also deadly infections of humans have 

been observed.  

Various strains of RABV exist. “Street” viruses are isolated directly from infected animals or 

humans whereas “fixed” strains are generated by serial passaging in cell culture or animals, 

which often goes together with attenuation of the virus.  

The RABV SAD L16, the basis for all virus constructs in this thesis, originates from the first 

recovery of recombinant RABV from cDNA made from the fixed vaccine strain SAD B19 

(Schnell et al., 1994). SAD B19 was generated by serial passaging in baby hamster kidney 

(BHK) cells of the “street” isolate “Street Alabama Dufferin” (SAD) from a rabid dog in 

Alabama 1935 (Schneider, 1995). 
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1.1.2 Epidemiology and pathogenicity 

RABV infection of humans is a zoonosis, transmitted in the majority of cases by bites from 

rabid dogs. As RABV can replicate efficiently also in bats and most carnivore terrestrial 

mammals, exposure to wild life with endemic RABV cases entails a risk of infection with the 

virus.  

Worldwide, more than 55,000 people die of rabies every year although effective vaccines 

and post-exposure treatments are available. More than 15 million people receive such post-

exposure treatments, preventing more than 300,000 potential deaths each year (WHO, 

2011). The majority of the fatal cases are reported in rural regions in Africa and South Asia 

where RABV infection is endemic in street dogs. Exposed humans, mostly due to economic 

reasons, do not have easy access to rapid medical treatment within the first few hours after 

the bite of an infected animal. In developed countries human rabies cases are relatively rare, 

which is due to the availability of post-exposure treatment and vaccination for individuals 

with higher exposure risks, like veterinarians, medical personnel and travelers on one hand, 

and vaccination programs to eradicate RABV in domestic dogs and wild-life populations of 

e.g. foxes, on the other hand. However, as RABV has a relative broad host range, and can 

replicate also in raccoons, skunks, or bats, a complete elimination seems not to be feasible. 

Additionally, rare cases of human rabies encephalitis cases after infections with bat 

lyssaviruses (EBLV-1, EBLV-2, or ABLV) have been reported (reviewed in Banyard et al., 

2011). 

After infection with RABV, at the site of the bite or scratch, and possibly an initial but 

symptomless replication, the virus enters the nervous system at the neuromuscular junction 

(NMJ). Once in a neuron, the virus is transported in an exclusively retrograde manner from 

the periphery towards the central nervous system (CNS) (Tang et al., 1999; Ugolini, 1995). 

The transport of viruses along the axons occurs within vesicles (Klingen et al., 2008) and cell-

to cell spread is observed almost exclusively at synapses (Ugolini, 1995). One round of 

replication is required in each neuron on this way and each of these replication cycles takes 

between 1 and 2 days. The speed of retrograde transport along the axon was measured in 

vitro to be between 8 mm/d (Klingen et al., 2008) and 100 mm/d (Tsiang et al., 1991), 

however might be faster in vivo (Ugolini, 2011). Both factors contribute to the symptomless 

incubation time of the disease in dependence of the distance and neuronal connections 
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between the site of infection and the CNS. However, incubation periods up to five years 

have been reported that cannot be explained by these factors. 

To reach the CNS, RABV has developed a stealth strategy in regard to the host immune 

system. Activation of innate immunity and inflammation is efficiently suppressed by the 

virus, and due to low cytotoxicity the neuronal network remains intact (reviewed in Finke 

and Conzelmann, 2005b; Rieder and Conzelmann, 2011). 

As soon as RABV clinical symptoms appear, i.e. when the virus replicates in the CNS, the 

outcome of the disease is almost certainly (>99 %) fatal. First signs of RABV infection in 

human patients are fever and paresthesia at the wound site followed by paralysis, 

hyperactivity, hydrophobia, paranoia and coma. 

RABV strains vary greatly in their virulence and neuroinvasiveness which is associated mainly 

with differences in their surface glycoproteins (G) and results in different pathogenicity in 

vivo. RABV G is essential for spread in vitro and in vivo (Etessami et al., 2000a; Mebatsion et 

al., 1996a) and the replacement of G in RABV SN-10, an SAD L16 variant, which is 

apathogenic in mice infected in the periphery, with the G from the pathogenic RABV 

Challenge Virus Strain (CVS) or from Silver Haired Bat rabies virus 18 (SHBRV-18) restores 

virulence and neuropathogenicity in these chimeras (Finke and Conzelmann, 2005b; 

Morimoto et al., 2000). These differences in neurotropism and pathogenicity for different G 

proteins can derive from the use of different receptors during RABV infection (Dietzschold et 

al., 2008). Also different abilities to activate or repress apoptosis in neurons may play 

significant roles (Lafon, 2008; Prehaud et al., 2010). Neutralizing antibodies to G are only 

made late in RABV infection.  

Besides RABV G, also other protein functions of RABV are associated with pathogenicity. 

During RABV encephalitis little inflammation is observed and pathogenic RABV strains only 

cause a slight induction of innate immunity in mice whereas this is more pronounced for 

attenuated RABVs (Wang et al., 2005).  

1.1.3 Genome organization and virion structure of RABV 

RABV as a member of the order Mononegavirales or NNSV has an unsegmented genome of 

approximately 12 kb single stranded RNA and of negative sense. This genome comprises five 

genes in the order 3’-N-P-M-G-L-5’. From these genes the viral proteins, namely the 
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Further, it is responsible for budding of the progeny virus. Besides being involved in virus 

assembly, M also has a regulative influence on virus transcription and replication (Finke and 

Conzelmann, 2003; Finke et al., 2003; Schnellhammer, 2009). 

The G protein, a type I transmembrane protein, is the only viral protein located in the RABV 

membrane envelope. It assembles at the plasma membrane into trimeric spikes (Gaudin et 

al., 1992) and although not being essential for budding, the release of RABV particles is 

significantly increased in the presence of G (Mebatsion et al., 1996a). G plays a crucial role 

for virus entry by interaction with cellular receptors and by mediating membrane fusion. 

Until today, the nicotinic acetylcholine receptor (nAChR) (Burrage et al., 1985; Castellanos et 

al., 1997), neuronal cell adhesion molecule (NCAM) (Thoulouze et al., 1998), and p75 

neurotrophin receptor (p75NTR) (Tuffereau et al., 1998) have been described as RABV 

receptors. The G protein is essential for RABV transsynaptic spread in neurons (Etessami et 

al., 2000a). 

Altogether, the five structural proteins and the negative sense vRNA genome are part of the 

typical bullet-shaped RABV virions with a length of about 180 nm and a diameter of about 80 

nm (figure 1B / 1C).  

1.1.4 RABV replication cycle 

The RABV replication cycle can be roughly divided into 3 phases: entry, transcription and 

replication, and assembly and release of progeny virions. An overview is depicted in figure. 

2A. RABV entry is dependent on the G protein. On the cellular site, the nAChR, NCAM and 

p75NTR have been described as receptors and also other components such as gangliosides 

might be involved in RABV entry (reviewed in Lafon, 2005). Since in cell culture RABV can 

infect virtually all mammalian cells, no clear read-out to identify receptors is available. In 

vivo, e.g. in mice, the different receptors are determinants of RABV cell tropism. The nAChR 

is thought to be important to mediate high concentrations of RABV at the NMJ. Directly after 

a bite or scratch from an infected animal this enrichment at the NMJ increases the 

probability of entry into the presynaptic neuron. The p75NTR is only found in neurons, and 

mainly after axonal injury, whereas it is not present in motorneurons of the spinal cord or at 

the NMJ (reviewed in Lafon, 2005). The same authors that proposed this protein as an entry 

receptor for RABV (Tuffereau et al., 1998) showed some years later, that in vivo p75NTR is 

not essential for RABV infection (Tuffereau et al., 2007). This indicates the presence of 
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1999). Following dissociation of the M protein, the tightly packaged and supercoiled vRNP is 

released into the cytoplasm and adopts a more relaxed structure so that viral gene 

expression and replication can take place. 

An overview of RABV gene expression and replication is depicted in figure 2B. Once, the 

vRNP is released into the cytoplasm, the viral RNA-dependent RNA polymerase consisting of 

L and P starts RNA synthesis at the genomic promoter at the 3’-end of the genome, using the 

NC as a template. When RABV is recovered from cDNA a vRNP has to be reconstituted in the 

cell in order to allow expression of all viral genes ( 1.2: reverse genetics of RABV) 

There are different models to explain how the polymerase gets access to the RNA genome 

which is tightly encapsidated into an NC structure. It was proposed that the P-L polymerase 

can only access the RNA at the genome termini. The N-terminal domain of N then would 

open up concurrently with the proceeding polymerase and allow partial access to the 

template RNA (reviewed in Albertini et al., 2008). How this is triggered, however, remains to 

be solved. Phosphorylation of the N protein has been proposed to be involved. For Sendai 

virus it was shown that an excess of P protein is needed for polymerase activity, indicating 

that P can induce conformational changes of the N-RNA structure (Curran, 1996).  

Transcription always proceeds from 3’ to 5’. Initially, a 58 nts long 5’-triphosphate (5’-ppp) 

containing RNA, the so called leader RNA (le) is made. The P-L polymerase (or transcriptase) 

can either reinitiate transcription at an N transcription restart site upstream of the N gene or 

enter from outside on an extra transcriptional promoter at the leader-N gene junction. 

These two possibilities are controversially discussed (see below). 

The noncoding regions between the genes, which are arranged in the order 3’-le-N-P-M-G-L-

5’, comprise a transcription stop / polyadenylation signal for the upstream gene and a 

transcription restart signal for the downstream gene, separated by so called intergenic 

regions. Altogether these cis-active elements are also referred to as gene borders. 

Transcription stutters at the uridine stretch of the transcription stop / polyadenylation signal 

and a 3’-poly(A) tract is synthesized at the viral mRNA. With a certain probability the 

polymerase reinitiates transcription at the following transcription start site (reviewed in 

Whelan et al., 2004). The probability of reinitiation is dependent on the composition of the 

respective intergenic region (Finke et al., 2000). Thus, both the distance of a RABV gene 

towards the promoter, as well as the “strength” of its upstream gene border region, define 
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the amount of mRNA that is transcribed. This leads to a transcription gradient of the RABV 

subgenomic mRNAs. N mRNA is the most abundant RABV mRNA, whereas L mRNA is the 

least abundant. All five monocistronic RABV mRNAs are capped (Li et al., 2006; Ogino and 

Banerjee, 2007) and polyadenylated by functions of the viral polymerase, supporting the 

subsequent cap-dependent translation of viral proteins by the cellular translation machinery. 

Therefore the amounts of RABV proteins that are made is determined and regulated 

primarily at transcriptional levels. Translation initiation for the P protein occurs not only at 

the first AUG in the mRNA, but also to lower levels at in-frame downstream AUGs. 

Ribosomal leaky scanning results in shorter, N-terminally truncated, species of P, namely P2, 

P3 and P4 (and P5 and P6, respectively, dependent on the RABV strain) (Chenik et al., 1995). 

In vesicular stomatitis virus (VSV), the synthesis of leader RNA seems not to be essential for 

transcription initiation to produce the subgenomic mRNAs (Whelan and Wertz, 2002). 

Studies with VSV (Qanungo et al., 2004) and Sendai virus (SeV) (Horikami et al., 1992) 

suggest the existence of two distinct polymerase complexes, a transcriptase, consisting of P-

L and a replicase where N0, unbound to RNA, is involved. In SeV, however, N0 also 

contributes to transcription efficiency (Wiegand et al., 2007). In general, the suggested 

models for NNSV replication comprise two distinct mechanisms for N0. In the first model, N0 

in a tripartite N-P-L replicase complex mediates replication initiation at the very 3’-end, in 

contrast to transcription initiation at the leader-N gene junction of P-L. In the second model, 

an excess of N0 facilitates concurrent encapsidation of newly synthesized leader RNA thus 

triggering further elongation (reviewed in Banerjee, 2008; Curran and Kolakofsky, 2008; 

Whelan, 2008). Controversially discussed is also the stoichiometry of the respective 

transcriptase and replicase complexes.  

Replication results in production of positive sense copy-RNAs (cRNAs), or antigenomes, 

which are encapsidated concurrently during RNA synthesis into antigenomic RNPs (cRNPs). 

The cRNPs then serve as a template for the production of further vRNPs, which can serve as 

further templates for secondary transcription and replication, or which can be assembled 

into progeny virions. The promoter for RNA synthesis from the antigenome, namely the 

antigenomic promoter, is located in the 3’-region of the antigenome (or the complement of 

the 5’-region of the genome) also termed trailer region (tr). Leader and trailer are 

complementary in the terminal 11 nts and can be partially replaced by their counterpart 
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although resulting in viruses or minigenomes with different features (Collins et al., 1991; 

Finke and Conzelmann, 1997).  

Most importantly, newly synthesized vRNPs can be assembled into progeny virions. 

Assembly and budding of the progeny virions are the last steps during the replication cycle 

of RABV. The newly synthesized vRNPs are recruited by M to the cell membrane, where M 

interacts with the cytoplasmic domain of the membrane anchored G protein. The G protein 

is anchored co-translationally to the membrane of the endoplasmatic reticulum (ER) and 

transported via the Golgi network to the cytoplasm membrane. Upon accumulation of G 

protein in certain areas of the membranes, the sites of virus release are determined due to 

the recruitment of vRNP-M (Mebatsion et al., 1999). M is the key player in assembly and 

triggers the condensation of vRNPs into tightly packaged supercoiled structures. 

Furthermore, M is responsible for the formation of the typical bullet-shaped RABV particles 

and their release from the cytoplasm membrane, also termed as budding. Although G is not 

required for the budding process, its efficiency is increased in the presence of G (Mebatsion 

et al., 1996a). Also cellular proteins are involved in RABV budding and interact with the M 

(Harty et al., 1999) and P (Kern, 2012) proteins. Noteworthy, in vivo budding in neurons 

seems to occur only from postsynaptic areas of dendrites into the synaptic cleft such that 

only the presynaptic neurons are infected (Kelly and Strick, 2000; Ugolini, 1995; Ugolini, 

2008). Different explanations for this observation are discussed. One possibility might be the 

strict retrograde transport of RABV in vesicles along the axons, thus that the assembling 

virus cannot reach the axon terminals for budding. Another possibility could be the 

enrichment of G protein at the dendritic site of the neurons which raises the possibility of 

assembly in proximity to the synaptic cleft. Also the ensheathment of axons by glia cells 

might contribute to the budding exclusively from postsynaptic dendrites (reviewed in 

Callaway, 2008; Ugolini, 2011). With budding of the progeny virions from the host cell, the 

RABV infection cycle is completed and a new cycle can proceed. 
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1.2 Reverse genetics of rabies virus 

The bacteriophage Qβ was the first virus reported to be recovered completely from cDNA 

(Taniguchi et al., 1978). Amongst the first eukaryotic viruses were murine leukemia virus 

(MLV) (Lowy et al., 1980) and poliovirus (PV) (Racaniello and Baltimore, 1981), directly 

encoding for or representing an infectious positive sense RNA, respectively. Amongst all 

negative stranded RNA viruses, including viruses with segmented genomes like members of 

the Orthomyxovirus and Arenavirus as well as NNSV, or Mononegavirales, RABV was the first 

virus that was reconstituted completely from cDNA (Schnell et al., 1994).  

The generation of recombinant RABV from cDNA allows the manipulation of the genome 

sequences, from point mutations to deletions of one or more genes. Reverse genetics 

facilitated research in terms of virus biology and pathogenicity and enables the production 

of designer virus vectors, e.g. for neuronal sciences or as vaccines. Detailed information 

about reverse genetics of NNSV can be found in several recent review articles (Conzelmann, 

2004; Finke and Conzelmann, 2005a; Ghanem and Conzelmann, in press). 

1.2.1 Intracellular reconstitution of the vRNP – minigenomes 

For positive strand RNA viruses, like poliovirus, all proteins required to initiate an infectious 

cycle can be translated directly from the viral genomic RNA by the cellular machinery after 

transfection of a single RNA or cDNA. 

In contrast, for negative strand RNA viruses the minimal infectious unit is the vRNP (or cRNP) 

complex, consisting of viral genomic (or antigenomic) RNA encapsidated by N protein into N-

RNA together with the viral RNA-dependent RNA polymerase P-L (1.1.4). A 

transcriptionally active RNP is required since the viral proteins cannot be expressed from 

full-length RNA. Thus, to recover RABV from cDNA all four components have to be expressed 

in the cell in order to reconstitute the vRNP (or cRNP). From this template viral replication as 

well as expression of all virus proteins, including M and G which are necessary for RABV 

assembly (1.1.4), can occur.  

First results to reconstitute a vRNP-like structure were described for VSV defective 

interfering particles (DIs). DIs are short viral RNA genome analogues, encapsidated into 

vRNPs, and can be used to study replication and transcription. However, as they do not 

comprise the genes coding for the components of the viral life cycle they are dependent on 

 - 10 – 
 



1 - Introduction 
  

“helper” proteins. Noteworthy, many naturally occurring DIs derive from copy-back 

replication of the virus polymerase, thus containing a trailer sequence at both ends.  

DI-derived genomic RNA and proteins, purified from VSV-infected cells, were assembled 

successfully in vitro and the resulting vRNPs showed similar features like vRNPs purified 

directly from VSV infected cells (Mirakhur and Peluso, 1988). 

Further success was reported for influenza A virus, a member of the Orthomyxoviridae with 

a segmented negative oriented genome (Luytjes et al., 1989). In this work a cDNA for the 

influenza virus NS segment, in which the NS coding region was replaced with a 

chloramphenicyl transferase (CAT) reporter gene was in vitro-transcribed and assembled in 

vitro with purified influenza polymerase PB1, PB2 and PA and with the influenza 

nucleoprotein NP. Exact ends of the virus segment-like RNA were achieved by linearization 

of the cDNA and run-off transcription with bacteriophage T7 RNA polymerase (T7-pol). This 

artificial vRNP segment was then transfected into cells co-infected with influenza “helper” 

virus. Indeed, the reporter segment was encapsidated, further amplified and CAT expression 

was observed not only in the transfected cells, but also after serial passaging of the 

supernatants. 

For Sendai virus (SeV), a paramyxovirus, a minigenome containing the SeV genome ends and 

a CAT reporter gene was in vitro transcribed and transfected into SeV infected cells (Park et 

al., 1991). Again, exact genome ends were generated by linearization of the cDNA containing 

plasmid prior to the in vitro transcription. The CAT minigenome RNA was encapsidated 

intracellularly, amplified by the SeV polymerase, and packaged into progeny virions that 

could be passaged together with the full-length virus. The importance of the exact ends, 

especially the 3’-end was stressed by further similar studies with respiratory syncytial virus 

(RSV) (Collins et al., 1991) or human parainfluenza virus 3 (HPIV3) (De and Banerjee, 1993), 

both members of the Paramyxoviridae. 

Following the in vitro assembled minigenomes, the next important step was to express the 

components in the cell. A vaccinia virus that expresses T7-pol (vTF7-3) (Fuerst et al., 1986) 

was first used to express the “helper” proteins, N, P, and L, of VSV from plasmids containing 

T7 promoters in cell culture (Pattnaik and Wertz, 1990). These “helper” proteins were able 

to support replication of virus-derived DIs. Not only the “helper” proteins, but also the M 

and G proteins, could be expressed with the vaccinia virus T7-pol (vv/T7) system (Pattnaik 
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and Wertz, 1991). The expression of all 5 VSV proteins, N, P, M, G, and L, from cDNA resulted 

in not only replication but also assembly and budding of virus-derived DIs.  

For expression of plasmid-encoded virus-like RNAs, minigenomes or DIs, intracellularly in the 

vv/T7 system, new challenges appeared in regard to the genome ends, as plasmids no longer 

could be linearized before the transfection. The intracellularly transcribed RNA of a virus-like 

RNA could however be processed by a ribozyme. This was shown first for Flock House virus, 

a segmented positive strand RNA virus from the genus Nodavirus (Ball, 1992). This strategy 

also works for an NNSV, as demonstrated with VSV (Pattnaik et al., 1992). Notably, the 

ribozyme used in the work of Ball (Ball, 1992)was the self-cleaving ribozyme from tobacco 

ringspot virus (Prody et al., 1986) and due to cleavage at an internal position leaves 12 extra 

nts attached to the 3’-end of the virus RNA. Thus, this ribozyme would not be useful to 

create the exact end needed for an NNSV rescue. Therefore, Pattnaik and colleagues 

replaced this ribozyme by the hepatitis delta virus antigenomic ribozyme (HDVagRz) 

(Perrotta and Been, 1991). Cleavage of HDVagRz is not dependent on nts 5’ to the ribozyme 

sequence, thus generating an exact viral 3’-end. Noteworthy, cyclic 2’, 3’-monophosphate 

remains after ribozyme cleavage instead of the 3’-OH found in NNSV RNA (Sharmeen et al., 

1988). This, however, is well accepted by the virus machinery.  

To increase the efficiency of T7-pol dependent transcription, 3 extra G nts were included 

downstream of the T7 promoter (Pattnaik et al., 1992). These nts were removed from the 5’-

end of the virus-like RNA following viral replication whereas the importance of an exact 3’-

end was shown to be also true for rhabdoviruses.  

1.2.2 Rescue of infectious RABV from cDNA 

All the results obtained with minigenomes and DIs were steps that finally enabled the rescue 

of RABV completely from cDNA (Schnell et al., 1994). This RABV rescue system applied the 

vv/T7 system for expression of viral RNA as well as of the “helper” proteins N, P and L. 

Importantly, this system introduced the expression of positive strand RNA antigenome 

instead of negative strand RNA genome. Thus, not the vRNP was reconstituted as minimal 

infectious unit, but rather the cRNP. 

In contrast to a negative oriented RNA genome, cRNA does not comprise long stretches 

which are complementary to the mRNAs of the “helper” proteins. Therefore, problems 

deriving from long dsRNA, as inducing RNAi or IFN responses, are avoided. In addition, 
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genome-like transcripts at the gene borders comprise stretches of several U residues, likely 

to result in premature termination of the T7-pol transcription. In the antigenome-like 

transcript these are represented by stretches of A residues. Indeed, for VSV (Lawson et al., 

1995; Whelan et al., 1995) and measles virus (MeV) (Radecke et al., 1995) the use of a 

negative sense genome-like and a positive sense antigenome-like transcript were compared 

and the result was clear-cut in all cases. Only the positive approach successfully yielded 

recombinant virus. 

A major bottleneck in rescue of recombinant RABV from cDNA seems to be the 

encapsidation of the newly transcribed naked RNA by the N protein. In contrast to the 

concurrent encapsidation during replication of viral NCs, de novo encapsidation, also termed 

“illegitimate” encapsidation, is rather inefficient (and might play a greater role in regard to 

the long antigenome-like RNA than with shorter minigenomes or DIs). The genome ends are 

expected to be important for this encapsidation, as shown for VSV DIs (Pattnaik et al., 1995). 

1.2.3 Comparison of different rescue systems for RABV and other Mononegavirales 

The initial RABV rescue was relying on the vv/T7 system which guaranteed high expression 

levels of proteins and antigenome-like RNA from plasmids comprising T7 promoters. This 

system was proven to be useful for rescue of numerous members within the 

Mononegavirales. The main difficulties in those systems arise from the presence of the 

vaccinia virus vTF7-3 together with the virus rescued. 

To get rid of the vaccinia virus contamination, virus stocks were filtrated (Lawson et al., 

1995; Schnell et al., 1994) or specific inhibitors of vaccinia virus replication like AraC or 

rifampicin were applied (Whelan et al., 1995). In other systems, following the rescue, cells 

were incubated at temperatures that do not allow vaccinia virus replication (Biacchesi et al., 

2002; Biacchesi et al., 2000; Johnson et al., 2000) or supernatants were passaged to cell lines 

not permissive for vaccinia virus but for the rescued virus (Bridgen and Elliott, 1996). The 

latter was especially possible by the application of the Modified vaccinia virus Ankara (MVA) 

as a vector to deliver T7-pol (Sutter et al., 1995; Wyatt et al., 1995). Some examples for the 

application of this system are the rescue of MeV (Schneider et al., 1997), SeV (Leyrer et al., 

1998), mumps virus (Clarke et al., 2000) and rinderpest virus (Baron and Barrett, 1997), all 

belonging to the Paramyxoviridae. 

 - 13 – 
 



1 - Introduction 
  

As an alternative to vv/T7 systems, expression systems dependent on nuclear Pol-II 

promoters have been described to deliver T7-pol (Elroy-Stein and Moss, 1990; Lieber et al., 

1989). Based on these systems, cell lines, constitutively expressing T7-pol were generated. 

For rescue of RABV and other NNSV one of the most prominent cell lines is the BSR T7/5 

clone derived from BHK cells (Buchholz et al., 1999). The major problem with vaccinia virus-

free rescue systems dependent on T7-pol is that transcripts from this polymerase lack 

poly(A) tails and comprise a 5’-ppp instead of a 5’-cap structure. While this is useful to 

generation of virus antigenome-like RNAs, the lack of these elements is a problem with 

regard to efficient translation of the “helper” proteins. In vv/T7 systems enzymes of vaccinia 

virus indeed can cap and polyadenylate the T7 derived RNAs (Gershon et al., 1991). An 

encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) introduced upstream 

of the respective ORFs in the “helper” plasmids, however, can facilitate efficient cap-

independent translation in vv-free rescue systems (Elroy-Stein and Moss, 1990). Notably, the 

BSR-T7/5 cell line has a defect in IRF-3 activation (unpublished data). Therefore no IFN 

response to 5’-ppp RNAs transcribed by T7-pol or to other pathogen-associated molecular 

patterns (PAMPs) is induced. This allows to rescue RABV that cannot interfere with innate 

immunity anymore (Rieder et al., 2011), particularly, in this cell line. Other examples for T7-

pol expressing cell lines used for rescue of NNSV are BHK-T7-9 cells (Ito et al., 2003), the carp 

cell line EPC-T7 (Alonso et al., 2004) or the human embryonic kidney cell line HEK 293-3-46 

(Radecke et al., 1995). The latter is used for the rescue of MeV and expresses not only the 

T7-pol but also MeV N and P protein.  

Instead of generating a cell line stably expressing T7-pol it was also shown that the co-

transfection of an expression plasmid encoding T7-pol can support virus rescue (Paterson et 

al., 2000; Witko et al., 2006; Wu and Rupprecht, 2008).  

T7-pol dependent rescue systems have certain features in common that are of particular 

value for rescue of cytoplasmic NNSV. At first there is the mainly cytoplasmic localization of 

the T7-pol, thus the antigenome-like RNAs are synthesized already in the right compartment 

of the cell. Second is the production of uncapped and not polyadenylated RNAs, which in 

combination with ribozyme processing resemble the viral RNAs.  

Nonetheless, also the cellular nuclear DNA dependent RNA polymerase II (Pol-II) has been 

described to successfully rescue cytoplasmic NNSV like RABV (Huang et al., 2010; Inoue et 
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al., 2003), the RABV-related EBLV-1 (Orbanz and Finke, 2010), the fish rhabdoviruses, 

infectious hematopoetic necrosis virus (IHNV) (Ammayappan et al., 2010b), and viral 

hemorrhagic septicemia virus (VHSV) (Ammayappan et al., 2010a) and various members of 

the Mononegavirales like Newcastle disease virus (NDV) (Li et al., 2011) MeV and Borna 

disease virus (BDV) (Martin et al., 2006) from cDNA. In regard to BDV it has to be mentioned 

that this virus in contrast to other NNSV replicates in the nucleus of the cell. The other 

rescue systems are compromised by nuclear delivery of the antigenome RNAs and the 

synthesis of 5’-capped and 3’-polyadenylated mRNAs by Pol-II. While the poly(A) tail again is 

cleaved off in all systems by different HDVagRz, elimination of the 5’-cap structures employs 

a hammerhead ribozyme (HHRz) (Blount and Uhlenbeck, 2002) inserted into the respective 

cDNAs upstream of the virus antigenome sequences. The exact 5’-ends, however, seem to 

be less critical, as MeV and BDV could be recovered successfully from Pol-II dependent cDNA 

constructs comprising defect mutants of the HHRz and 5’-cap structures and extra 5’-

sequences were lost rapidly upon virus replication (Martin et al., 2006).  

Another nuclear polymerase, the DNA dependent RNA polymerase I (Pol-I) was shown to be 

useful for rescue of especially viruses with a nuclear replication phase, like BDV (Perez et al., 

2003) or influenza virus (Fodor et al., 1999; Neumann et al., 1999). Amongst negative strand 

RNA viruses with a strict cytoplasmic replication cycle that were rescued by Pol-I dependent 

systems are diverse members of the Bunyaviridae like Uukunemi virus (Flick and Pettersson, 

2001), crimean-congo hemorrhagic fever virus (CCHFV) (Flick et al., 2003) and rift valley 

fever virus (RVFV) (Billecocq et al., 2008; Habjan et al., 2008) or the lymphocytic 

choriomeningitis virus (LCMV) from the Arenaviridae family (Flatz et al., 2006). All have 

segmented genomes and interestingly, for ebolavirus, a filovirus and member of the NNSV 

with a strict cytoplasmic replication cycle, Pol-I dependent minigenomes were described 

(Groseth et al., 2005), whereas the recovery of full-length ebolavirus (Theriault et al., 2004; 

Volchkov et al., 2001) or the related Marburg virus (Enterlein et al., 2006) until today is 

dependent on T7-pol. 

For rhabdoviruses, no Pol-I system has been described. Although there are Pol-II dependent 

rescue systems available for the RABV strains HEP-Flury (Inoue et al., 2003) and CTN181 

(Huang et al., 2010), the approaches to recover RABV from strain SAD L16 cDNA 

independently of T7-pol have failed so far (Osakada et al., 2011). State-of the art recovery 
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1.3 Rhabdoviral vectors for neuronal tracing 

While the strict neurotropism of RABV is one of the main reasons for the pathogenicity of 

the virus, for neuroscientists it is of particular interest. Years before the existence of a 

reverse genetic system to recover recombinant RABV, this virus was already proposed as a 

possible transneuronal tracer, however with little attention, compared to alpha-

herpesviruses (Dolivo et al., 1982; Kuypers and Ugolini, 1990). However, the outstanding 

advantages of RABV as a transneuronal tracer were demonstrated in the following (Astic et 

al., 1993; Ugolini, 1995). The most important features of RABV (for detailed review see 

(Ugolini, 2010; Ugolini, 2011) are that it spreads in vivo exclusively via synapses, and in a 

strictly retrograde manner (Kelly and Strick, 2000; Prevosto et al., 2009). Virtually no 

infection of glia cells is observed in vivo, although in cell culture RABV can infect most 

mammalian cell lines. Thereby, as a replicating virus, unlike synthetic tracers, the self-

amplifying signal is not diluted out. This allows the detection of connections over three or 

more synapses. Due to the neuroprotective features of RABV, the infected neuronal network 

remains intact for a long time (Tang et al., 1999; Ugolini, 1995).  

The development of the reverse genetics system (Schnell et al., 1994) has made it possible to 

develop new tools and systems in the field of RABV mediated neuronal tracing. First it was 

possible now to express transgenes from RABV vectors and especially in neurons (Etessami 

et al., 2000b; Mebatsion et al., 1996b). G gene-deleted RABV mutants are still able to bud 

from the plasma membrane and a foreign type I transmembrane protein, provided in trans 

can redirect the RABV pseudotypes to different target cells (Mebatsion and Conzelmann, 

1996; Mebatsion et al., 1997; Mebatsion et al., 1995). Successful pseudotyping of RABV 

requires the cytoplasmic C-terminal tail of the RABV G at the C-terminus of the heterologous 

transmembrane protein (Schnell et al., 1998). Infection of neurons with a G gene-deleted 

RABV trans-complemented with its own (RABV G) glycoprotein leads to a single-round 

infection and no spread to the presynaptic neuron can occur (Etessami et al., 2000a). This, in 

combination with e.g. fluorescent proteins expressed from the RABV vector, can be used to 

stain neurons with fine structures as dendrites or synaptic microstructures (Wickersham et 

al., 2007a). 

If a neuron is infected with a single-round G gene-deleted RABV, and the RABV G is provided 

in trans in this cell, the trans-complemented RABV can retrogradely spread to the 
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presynaptic neurons that are connected to the infected cell. From the presynaptic cell no 

further spread can occur due to the lack of RABV G. This approach is known as 

“monosynaptic tracing” (Wickersham et al., 2007b). Further specificity is achieved in this 

system by pseudotyping the G gene-deleted RABV with a transmembrane protein like the 

envelope protein A (EnvA) from an avian retrovirus. The receptor for EnvA, tumor virus 

protein A (TVA), is in nature only present on avian cells and is provided in the neuron of 

interest. A combination of fluorescent proteins provided in the postsynaptic neuron, 

together with RABV G and TVA, and expressed from the RABV vector allows distinguishing 

between postsynaptic and presynaptic cells. Current approaches comprise RABV vectors not 

only expressing fluorescent proteins, but also calcium-indicators, photoreceptors or light-

activated ion channels thus allowing monitoring and/or modulation of neuronal functions.  
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1.4 RNA interference 

A small noncoding antisense RNA regulating a complementary gene was at first described for 

the C. elegans gene lin-4 playing an important role in timing of gene expression during 

development (Lee et al., 1993). Five years later, also in C. elegans, the principle of RNA 

interference (RNAi) was discovered (Fire et al., 1998). The introduction of long double-

stranded RNAs (dsRNAs) was found to inhibit the expression of a complementary gene. Soon 

RNAi mechanisms were found to exist also in vertebrates like zebrafish D. rerio (Wargelius et 

al., 1999) and mammals like mice (Wianny and Zernicka-Goetz, 2000). The different cellular 

pathways related to RNAi were studied intensively and found to result in post-transcriptional 

gene regulation with different outcomes (reviewed in Carthew and Sontheimer, 2009; 

Grimm, 2009; Li and Liu, 2011; Liu and Paroo, 2010). 

MicroRNAs (miRNAs) are encoded endogenously in distinct genomic clusters as single-

stranded RNAs containing stem-loop structures as so-called primary miRNAs (pri-miRNAs) 

(reviewed in Bartel, 2004; Cullen, 2004; Li and Liu, 2011). These 80-100 nt long pri-miRNAs 

contain a 5’-cap and a 3’-poly(A) tail. They are processed by the Drosha/DGCR8 

microprocessor complex into about 60 nt long precursor miRNAs (pre-miRNAs) comprising a 

duplex with a 3’-2 nt overhang at the cleavage site. Exported into the cytoplasm by Exportin 

5 (Lund et al., 2004), they are further processed by Dicer, an enzyme of the RNase III family, 

into RNA duplexes. One strand, the passenger strand which has the same sequence as the 

target, is removed, whereas the so-called guide strand which is complementary to the target 

site, primarily in the 3’-UTR of mRNAs, is loaded into the RISC to repress translation from this 

mRNA. MiRNAs also have been found to be expressed by certain herpes viruses (Burnside et 

al., 2006; Pfeffer et al., 2004). 

Short interfering RNAs (siRNAs) regulate the gene expression by mRNA degradation (Ngo et 

al., 1998). In the D. melanogaster RNAi pathway, dsRNA is cleaved by Dicer into shorter 

dsRNA fragments of about 22 nt (Bernstein et al., 2001). The possibility to trigger RNAi with 

21 – 22 nts short RNA duplexes, or siRNAs, was demonstated first in vitro (Tuschl et al., 

1999), later in D. melanogaster and in mammalian cell culture (Elbashir et al., 2001a; Elbashir 

et al., 2001b). SiRNAs, nowadays available commercially, have since become a common and 

valuable tool in life sciences to knock-down gene expression. Moreover, innumerable 
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approaches for the establishment of this technology for therapeutic purposes in humans 

exist (reviewed in Lares et al., 2010).  

As an alternative to premade siRNAs, RNAi can be triggered by short hairpin RNAs (shRNAs) 

which have been shown to work with comparable efficiencies as siRNAs (Paddison et al., 

2002). ShRNAs are either made synthetically (Paddison et al., 2004; Siolas et al., 2005), or 

expressed from Pol-II (Zhou et al., 2005) and Pol-III (Paddison et al., 2004) promoters. 

Depending on their origin they enter at different stages into the processing pathways. The 

Pol-II derived shRNAs for example have a 5’-cap structure and a 3’-poly(A) tail and therefore, 

like pri-miRNAs, must be cleaved by Drosha/DGCR8. Pol-III transcribed shRNAs however start 

with a 5’-ppp and are designed to terminate exactly in such a way that they have a 2 nt 

overhang at their 3’-end. Therefore they resemble already the Drosha/DGCR8 products that 

only differ in having a monophospate at their 5’-end, and only have to be exported by 

Exportin 5 from the nucleus. Synthetic shRNA have a 5’-monophosphate and are delivered 

i.e. by lipofection. Once in the cytoplasm, they can be processed directly by Dicer.  

Further types of small noncoding RNAs have been described to play roles in the regulation of 

gene expression, like e.g. the Piwi-interacting RNAs (piRNAs) that are found only in the 

germline of multicellular organisms and thought to be involved in the protection from 

transposons (reviewed in Li and Liu, 2011).  

The major difference between siRNAs and miRNAs is the perfect base pairing of siRNAs in 

contrast to the latter. While miRNAs lead to a translational repression upon base-pairing 

with their target in the 3’-UTR of an mRNA, shRNAs and siRNAs result in mRNA degradation, 

making them by far more potent and the knock-down effect lasts longer.  

RNAi is an important cellular defense mechanism in insects and plants against viruses 

(reviewed in Haasnoot et al., 2007; Voinnet, 2005). Accordingly, numerous attempts are 

being made to apply this technology as an antiviral strategy in humans and life stock. On the 

other hand, viruses are being used as vectors to deliver RNAi triggers, in particular adeno-

associated virus (AAV) vectors (Tomar et al., 2003) and lentiviruses (reviewed in Couto and 

High, 2010).  
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1.5 Aims of these studies 

The aim of the first part of this thesis was to evaluate the possibilities to use RABV as a 

vector to deliver shRNAs in order to knock-down cellular target genes. Such a knock-down 

would be important especially for neurotracing and studies of brain function or virus-host 

interactions. Initial questions were whether RABV interferes with the RNAi machinery and 

whether RNAs made from a RABV vector can enter RNAi pathways. Several further attempts 

were made to achieve processing of RABV delivered shRNAs by ribozymes. Bottlenecks 

hampering either this pre-processing or more downstream steps in the RNAi pathway were 

identified. 

The second part aimed at improving the conventional RABV rescue system by the application 

of better cleaving ribozymes processing the 5’ and 3’-ends of the full-length antigenome-like 

RNA. Such improvement could ablate the obstacles related with poor recovery especially of 

attenuated RABVs. As genome ends have been described to be of special importance for 

RABV rescue, the idea was to enhance rescue efficiency by better and more efficiently 

processed ends. The better cleaving ribozymes used here were identified in part 1. 

Purpose of the third part was to establish a single infectious RABV cDNA, opening the 

possibility to generate a genetically encoded RABV. This objective was based on the finding 

that it is possible to recover recombinant RABVs comprising an internal IRES element 

(Marschalek et al., 2009) and the idea that these IRES elements could be used to direct 

expression of RABV “helper” proteins from the full-length RNA transcribed during rescue. 

The improvement of the conventional rescue system established in part 2 (Ghanem et al., 

2012) was a prerequisite for this part.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

The chemicals used for this work were obtained from Invitrogen, Merck, New England 

Biolabs, Riedel-de-Häen, Roche, Roth, and Sigma-Aldrich. The radiochemicals 32P-αCTP and 
32P-γATP were provided by Amersham Pharmacia and Hartmann Analytic. 

2.1.2 Buffers and Solutions 

Bacteria growth media 
LB 85 mM NaCl 

0.5 % (w/v) Bacto yeast extract 
1 % (w/v) Bacto tryptone 
1 mM MgSO4 

LB amp 1 x LB 
25 mg/ml Ampicillin 

LB ++ 1 x LB 
20 mM MgSO4 
10 mM KCl 

 

Agarose gels 
10x TAE 2 M Tris-HCl (pH 7.8) 

250 mM Na-acetate-trihydrate 
250 mM EDTA 

1x TAE + EtBr 200 ml 10x TAE 
1800 ml H2O 

120 µl Ethidium bromide solution 1 % (w/v) 
OG loading buffer 50 % (v/v) 10x TAE 

15 % (w/v) Ficoll 400 
0.125 % (w/v) Orange G 

10x TE 100 mM Tris-HCl (pH 7.5) 
10 mM EDTA 

Blue juice 50 % (v/v) 10x TAE 
15 % (w/v) Ficoll 400 

0.125 % (w/v) Bromphenol blue 
0.125 % (w/v) Xylenecyanol 
0.125 % (w/v) Orange G 

1 kb marker 380 µl 10x TE 
100 µl Blue juice 

20 µl 1 kb DNA ladder (NEB) 
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Western blots 
10 % APS solution 10 % (w/v)  Ammoniumpersulfate 
Jagow gel buffer 3 M Tris-HCl (pH 8.45) 

0.3 % (w/v) SDS 
Jagow anode buffer 2 M Tris-HCl (pH 8.9) 
Jagow kathode buffer 1 M Tris-HCl (pH 8.25) 

1 M Tricine 
1 % (w/v) SDS 

Protein lysis buffer 62.5 mM Tris-HCl (pH 6.8) 
2 % (w/v) SDS 

10 % (v/v) Glycerine 
6 M Urea 
5 % (v/v) β-Mercaptoethanol 

0.01 % (w/v) Bromphenol blue 
0.01 % (w/v) Phenol red 

Staining solution 50 % (v/v) Methanol 
10 % (v/v) Acetic acid 

0.1 % (w/v) Brilliant Blue 
10x Semi dry buffer 480 mM Tris-HCl (pH 8.6) 

390 mM Glycine 
0.05 % (w/v) SDS 

1x Semi dry buffer 100 ml 10x Semi dry buffer 
180 ml Methanol 
720 ml H2O 

PBS 1.37 M NaCl 
27 mM KCl 
12 mM KH2PO4 
65 mM Na2HPO4 x 2 H2O (pH 7.4) 

PBS / Tween 1 x PBS 
0.05 % (v/v) Tween 

 

  

Mini Preparation 
Flexi I 100 mM Tris-HCl (pH 7.5) 

10 mM EDTA 
200 µg/ml RNAse 

Flexi II 200 mM NaOH 
1 % (w/v) SDS 

Flexi III 3 M K-acetate 
2 M Acetic acid (pH 5.75) 
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Northern blots 
50x Phosphate buffer 250 mM Na2HPO4 x 2 H2O (pH 6.8 - 7.0) 

250 mM NaH2PO4 x H2O 
5x Phosphate buffer 10 % (v/v) 50x Phosphate buffer 
 90 % (v/v) H2O (ultra pure) 
RNA agarose gel 2 g Agarose (RNAse free) 

4 ml 50x phosphate buffer 
26,7 ml Formaldehyde (37 %) 

167,3 ml H2O (ultra pure) 
Glyoxal solution 8.8 M Glyoxal 
10x SSC 1.5 M NaCl 

150 mM Na-citrate x 2 H2O (pH 7.0) 
Zeta hybridizing buffer 250 mM Na2HPO4 x 2 H2O (pH 7.2) 

250 mM NaH2PO4 x H2O 
1 mM EDTA 
7 % (w/v) SDS 

Zeta 5 % wash buffer 8 % (v/v)  50x phosphate buffer 
1 mM EDTA 
5 % (w/v) SDS 

Zeta 1 % wash buffer 8 % (v/v)  50x phosphate buffer 
1 mM EDTA 
1 % (w/v) SDS 

 

Small RNA Northern blots 
2x Bromophenolblue 
loading buffer 

8 M Urea 
50 mM EDTA 

0.3 mg/ml Bromophenolblue 
50x Denhardt’s solution 1 % Albumin fraction V 

1 % Polyvinylpyrrolidon K30 
1 % Ficoll 400 

Hybridization solution 7.5 ml 20x SSC 
0.6 ml 1 M Na2HPO4 pH7.2  
21 ml 10% SDS  

0.6 ml 50x Denhardt's solution  
0.3 ml Sonicated salmon sperm DNA (10 mg/ml)  

Wash solution I   5x SSC 
0.1 % SDS 

Wash solution II   1x SSC 
0.1 % SDS 
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Cell culture solutions and media 
80 % Acetone 800 ml Acetone p. a. 

200 ml H2O 
PBS (5 mM EDTA) 1 x PBS (Invitrogen) 

5 mM EDTA 
DMEM 3+ 500 ml DMEM (Invitrogen) 

50  ml Fetal calf serum 
5 ml L-Gluthamine (Invitrogen) 
2 ml Pen-Strep (Invitrogen) 

GMEM 4+ 500 ml GMEM (Invitrogen) 
50  ml Fetal calf serum 

4.5 ml Tryptose-phosphate (Invitrogen) 
10 ml MEM amino acids (Invitrogen) 

2 ml Pen-Strep (Invitrogen) 
 

2.1.3 Kits 

Plasmid preparation Nucleobond Xtra Midi Macherey-Nagel 
DNA purification QIAquick PCR Purification Kit QIAGEN 

QIAquick Gel Extraction Kit QIAGEN 
RNA isolation RNeasy Mini Kit QIAGEN 
Transfection Mammalian Transfection Kit  Stratagene 
 Lipofectamine 2000 Invitrogen 
Luciferase assays Dual-Luciferase® Reporter Assay System Promega 
Northern blot Nick Translation Kit GE Healthcare 
In vitro-transcription MEGAscript® T7 Kit Ambion 
 MEGAshortscript® T7 Kit Ambion 
 

2.1.4 Enzymes 

Plasmid DNA cloning Restriction enzymes NEB, Fermentas 
DNA polymerase I, large fragment (Klenow) NEB 
Calf intestine phosphatase NEB 
T4 DNA Ligase NEB 

PCR Biopfu DNA Polymerase Biomaster 
Pfu DNA Polymerase Fermentas 
Phusion High-Fidelity DNA Polymerase Finnzymes 
Transcriptor Reverse Transcriptase Roche 

5’-labeling T4 Polynucleotide Kinase NEB 
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2.1.5 Antibodies 

antibody species application (dilution) source 
anti-actin rabbit WB (1 : 10 000) Sigma-Aldrich 
anti-GAPDH mouse WB (1 : 1 000) Abcam 
anti-GFP rabbit WB (1 : 10 000) Invitrogen 
anti-RABV G 
(HCA05/1) 

rabbit WB (1 : 10 000) custom-made, Metabion 

anti-RABV N (S86) rabbit WB (1 : 10 000) custom-made, J. Cox  
(BFAV, Tübingen) 

anti-RABV N  
(FITC-labeled) 
CentocorTM 

mouse IF (1 : 200) FDI Fujirebio Diagnostics 

anti-RABV P 
(FCA05/1) 

rabbit WB (1 : 10 000) custom-made, Metabion 

anti-RABV P (160-5) rabbit WB (1 : 50 000) S. Finke (FLI, Riems) 
anti-RABV RNP (S50) rabbit WB (1 : 25 000) custom-made, J. Cox  

(BFAV, Tübingen) 
anti-rabbit HRP goat WB (1 : 10 000) Jackson ImmunoResearch 

Laboratories 
 

2.1.6 Oligos 

DNA oligos used in this work were ordered from Metabion. Sequences are listed in the 

appendix (6.1).  

 

2.1.7 Plasmids 

Plasmids commercially available (alphabetical order) 
pCR3 Eucaryotic expression vector Invitrogen 
pEGFP-C3 CMV promoter-dependent eGFP expression Clontech 
pRL-CMV  CMV promoter-dependent Renilla luciferase  NEB 
pSUPER H1 Pol-III-driven shRNA vector 

(Brummelkamp et al., 2002) 
Oligoengine 

pTRE2hyg Tet-inducible expression vector (TET-On) Clontech 
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Plasmids kindly provided (alphabetical order) 
pCAGGS Eukaryotic expression vector with chicken-β-

actin promoter  
(Niwa et al., 1991) 

pCAGGS-P  RABV P in pCAGGS vector K. Brzozka 
pCMV- 
RL-FF-N/P 

Expression plasmid for a bicistronic mRNA 
Renilla-N/P-firefly under control of a CMV 
promoter; RABV N/P gene border is inserted 
between the coding sequences for Renilla 
and firefly luciferase. 

A. Marschalek 

pCMV-FF-PV-RL Like pCMV-RL-FF-N/P; N/P gene border 
replaced by poliovirus IRES sequence 

A. Marschalek 

pCR3-P  RABV P in pCR3 vector K. Brzozka 
pEGFP-miR23-2 Expression plasmid for eGFP with MCMV 

miR-23-2 sequence in the 3’-UTR.  
L. Dölken 

pSAD G_DsRed DsRed cloned into extra transcription unit in 
pSAD L16 (N/P gene border) 

(Klingen et al., 2008) 

pSAD L16  Full-length cDNA of RABV SAD L16 cloned 
into pBluescript 

(Schnell et al., 1994) 

pSAD PVP(bi) (or pSAD PVP) N/P gene border in pSAD L16 
replaced by poliovirus IRES  

(Marschalek et al., 2009) 

pSC6 T7-neo CMV promoter-dependent expression of T7-
pol  

(Radecke et al., 1995) 

pSDI CNPL  RABV minigenome (negative sense); CAT and 
firefly luciferase reporter genes 

(Finke et al., 2000) 

pSDI(+) (or pSDI-1plus) RABV minigenome positive 
sense 

(Schnell et al., 1994) 

pSDI-1  RABV minigenome (negative sense) (Conzelmann and Schnell, 
1994) 

psiCHECK-23-2  Dual-luciferase Reporter construct to 
measure miRNA-dependent downregulation 

L. Dölken 
(Dölken et al., 2010) 

pTIT-L  T7-pol and EMCV IRES-dependent expression 
of RABV L 

(Finke and Conzelmann, 
1999) 

pTIT-N T7-pol and EMCV IRES-dependent expression 
of RABV N 

(Finke and Conzelmann, 
1999)) 

pTIT-P  T7-pol and EMCV IRES-dependent expression 
of RABV P 

(Finke and Conzelmann, 
1999) 

pX8∂T  Plasmid comprising HDV and T7 terminator 
sequence 

(Schnell et al., 1994) 

 

The plasmids, cloned for this work, together with cloning strategies are listed in the 

appendix (6.2) 
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2.1.8 Viruses 

Viruses kindly provided (alphabetical order) 
SAD L16 Recombinant RABV, cDNA derived from strain SAD B19 (Schnell et al., 

1994) 
SAD PVP(bi)  (or SAD PVP) N/P gene border replaced by poliovirus IRES element 

(Marschalek et al., 2009) 
 

Viruses rescued in this work (alphabetical order) 
SAD EL EMCV IRES element in 5’-UTR of L gene (downstream G/L gene 

border) 
SAD EP(mono) EMCV IRES element in 5’-UTR of P gene (downstream N/P gene 

border) 
SAD G_dHH-HSmm-
SC 

shRNA against GFP (guide strand and passenger strand are replaced in 
their positions) flanked by a defect 5’-HHRz and a 3’-SC1 ribozyme in 
extra transcription unit. Ribozymes in direct proximity to shGFP. 

SAD G_dHH-SH-SC  shRNA against GFP flanked by a defect 5’-HHRz and a 3’-SC1 ribozyme 
in extra transcription unit. Ribozymes in direct proximity to shGFP. 

SAD G_eGFP eGFP in extra transcription unit between G gene and L gene, with N/P 
gene border 

SAD G_eGFP-miR23-
2 

eGFP with MCMV miR23-2 in 3’-UTR in extra transcription unit 

SAD G_HH-HSmm-
SC 

shRNA against GFP (guide strand and sense strand are replaced in 
their positions) flanked by a 5’-HHRz and a 3’-SC1 ribozyme in extra 
transcription unit. Ribozymes in direct proximity to shGFP. 

SAD G_HH-shGFP-
SC1  

shRNA against GFP flanked by a 5’-HHRz and a 3’-SC1 ribozyme in 
extra transcription unit. Spacer nts between ribozymes and shGFP. 

SAD G_HH-SH-SC  shRNA against GFP flanked by a 5’-HHRz and a 3’-SC1 ribozyme in 
extra transcription unit. Ribozymes in direct proximity to shGFP. 

SAD G_shGFP shRNA against GFP in extra transcription unit 
SAD L16 Recombinant RABV, cDNA derived from strain SAD B19 (Schnell et al., 

1994). 
SAD N100(mut)EN 
G_eGFP 

As SAD N100EN G_eGFP, but AUG at leader-N gene junction mutated 
to UUG. 

SAD N100EN 
G_eGFP  

First 100 nts of N gene and EMCV IRES inserted between leader-N 
gene junction and N gene (leader-N gene junction restored to wild-
type). EGFP in extra transcription unit between G and L. 

SAD N200(mut)EN 
G_eGFP  

As SAD N200EN G_eGFP, but AUG at leader-N gene junction mutated 
to UUG. 

SAD N200EN 
G_eGFP 

First 200 nts of N gene and EMCV IRES inserted between leader-N 
gene junction and N gene (leader-N gene junction restored to wild-
type). EGFP in extra transcription unit between G and L. 

SAD N200EN(Fse) First 200 nts of N gene and EMCV IRES inserted between leader-N 
gene junction and N gene (FseI-site at leader-N gene junction). 

SAD N2AP N/P gene border replaced by 2A-like sequence 
SAD NEN Second N gene and EMCV IRES inserted between leader-N gene 

junction and N gene (FseI-site at leader-N gene junction). 
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SAD NEN G_eGFP  Second N gene and EMCV IRES inserted between leader-N gene 
junction and N gene (leader-N gene junction restored to wild-type). 
EGFP in extra transcription unit between G and L. 

SAD NEN_EL  Bicistronic N-EMCV IRES-N gene (with wild type-like leader-N gene 
junction) and monocistronic EMCV IRES-L gene. 

SAD NEN2AP  Tricistronic N-EMCV IRES-N-2A-like-P gene (with wild type-like leader-
N gene junction)  

SAD NEN2APEL Tricistronic N-EMCV IRES-N-2A-like-P gene and monocistronic EMCV 
IRES-L gene. 

SAD NENEP  Bicistronic N-EMCV IRES-N gene (with wild type-like leader-N gene 
junction) and monocistronic EMCV IRES-P gene. 

SAD NENEPEL  Bicistronic N-EMCV IRES-N gene, monocistronic EMCV IRES-P gene 
and monocistronic EMCV IRES-L gene. 

SAD NEP(bi)EL  Derived from rescue of pCAGGS-T7_NEP(bi)_EL_SC: Bicistronic N-
EMCV IRES-P gene and monocistronic EMCV IRES-L gene. 

SAD NEP(bi)EL 1 Derived from rescue of pSAD T7-HH_NENEPEL_SC, rearranged variant: 
Bicistronic N-EMCV IRES-P gene and monocistronic EMCV IRES-L gene. 

SAD NEP(mono)EL  Monocistronic EMCV IRES-P gene and monocistronic EMCV IRES-L 
gene. 

SAD NPVN Second N gene and poliovirus IRES inserted between leader-N gene 
junction and N gene (FseI-site at leader-N gene junction). 

SAD PVP(bi)  (or SAD PVP) N/P gene border replaced by poliovirus IRES element 
(Marschalek et al., 2009). 

SAD PVP(mono) Poliovirus IRES element in 5’-UTR of P gene (downstream N/P gene 
border) 
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2.1.9 Cell lines 

Cell line Description  Medium Source 
A549  Human alveolar adenocarcinoma 

cell line 
DMEM 3+ ATCC 

A549-LR- siGFP  A549 cells stably transduced with 
a lentiviral vector to express 
shRNAs against GFP 

DMEM 3+ L.Roux (Mottet-
Osman et al., 
2007) 

A549-LR-siNGFR  A549 cells stably transduced with 
a lentiviral vector to express 
shRNAs against NGFR 

DMEM 3+ L.Roux (Mottet-
Osman et al., 
2007) 

BHK-21 Baby hamster kidney cells GMEM 4+ ATCC 
BSR T7/5 BHK-21-derived (baby hamster 

kidney) cells expressing T7-pol  
GMEM 4+ 
+ 1 M G418 
sulfate every 
second passage 

(Buchholz et al., 
1999) 

BSR-clone 13 BHK-21-derived (baby hamster 
kidney) cells 

GMEM 4+ J. Cox (BFAV 
Tübingen) 

HEK 293T Human embryonic kidney cells 
expressing SV40 T-antigen  

DMEM 3+ ATCC 

HeLa Human cervix carcinoma cells DMEM 3+ ATCC 
HEp-2 Human epidermoid (laryngeal 

squamous) carcinoma cells  
DMEM 3+ ATCC 

HEp-2-eGFP HEp-2 cells stably expressing 
eGFP 

DMEM 3+ This work 

NA  Mouse neuroblastoma cell line DMEM 3+ ATCC 
U3A-LC3-GFP U3A cell line (derived from 

human sarcoma cells HT1080) 
expressing an LC3-GFP fusion 
protein. 

DMEM 3+ L. Fragnet 

Vero African green monkey kidney cells  DMEM 3+ ATCC 
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2.2 Methods 

2.2.1 Polymerase Chain Reaction (PCR) 

With the PCR DNA fragments can be amplified for either cloning or sequencing of reverse 

transcription derived cDNA. Template specific primers which flank the DNA of interest were 

used. For cloning these primers especially were designed in order to add extra nucleotides to 

the 5´- or 3´-ends of the amplified DNA (e.g. restriction sites, de novo sequences).  

The standard PCR reaction was: 

10 - 100 ng Template DNA 
10 µl 10x polymerase reaction buffer incl. MgSO4 

3 - 10 µl DMSO 
250 nM Forward primer 
250 nM Reverse primer 

1 µl dNTPs (25 µmol each) 
2.5 U DNA polymerase 

ad 100 µl ddH2O 
 

Reactions were set up in a thermocycler with heated lid. The typical program was: 

1. 30 s 95 °C Enzyme activation  
2. 30 s 95 °C Denaturing  
3. 30 s 50 °C Primer annealing 30 x 
4. 60 s / 500 bp 72 °C Elongation  
5. 15 min 72 °C Final elongation  
6. ∞   4 °C Storage  
 

All PCR products were purified with the QIAquick PCR Purification Kit (QIAGEN) according to 

the supplier´s manual. DNA was eluted from the column using 35 µl ddH2O. 

A variation for some short fragments (<150 bp) was a PCR reaction lacking any template. In 

this case two long primers were designed to overlap in a reverse complement way in order 

to amplify the overlapping region together with specific overhangs. 

2.2.2 Agarose gel electrophoresis of DNA fragments 

The agarose gel electrophoresis was used to analyze the legth of PCR products or fragments 

derived from restriction digests. Gels contained 1 % agarose in 1x TAE or 2 % agarose for 

fragments <500 bp, respectively. 
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DNA samples were mixed at a ratio of 1:6 (v/v) with Orange G loading buffer, loaded onto 

the gels and subjected to electrophoresis at 120 – 140 V for 30 - 180 min, depending on the 

length of the fragments and the agarose concentration. The electrophoresis buffer was 1x 

TAE + EtBr. Gels were analyzed on a Biorad GelDoc System using UV light at λ=254 nm. 

2.2.3 Purification of DNA from agarose gel 

For cloning, the samples of preparative restriction digests were subjected to agarose gel 

electrophoresis. Visualized by long wavelength UV light the bands of the expected sizes were 

cut out of the gel. The QIAquick Gel Extraction Kit (QIAGEN) was used to isolate the DNA 

from the gel slice. The DNA was eluted from the column using 35 µl ddH2O. 

2.2.4 Restriction digest 

DNA was digested with restriction endonucleases from New England Biolabs (NEB) or 

Fermentas according to the manufacturer’s protocol.  

Reactions of analytical digests were performed in 20 µl total volume containing <1 µg DNA 

with 1 - 5 U restriction enzyme(s). Reactions of preparative digests, used for cloning, were 

performed in 50 µl total volume containing 3 – 5 µg DNA with 10 – 20 U restriction 

enzyme(s). 

The samples were subjected to agarose gel electrophoresis to observe the outcome of the 

digest and in the case of preparative digests to purify the fragments. 

2.2.5 Dephosphorylation of DNA 

To reduce the possibility of direct relegation, vector DNA was dephosphorylated at its 5’-

ends directly after the restriction digest. The Calf intestine phosphatase(CIP) from New 

England Biolabs (NEB) was used following the manufacturer’s instruction. 

2.2.6 Klenow – fill-in or removal of overhangs 

To generate blunt ends upon cloning DNA polymerase I, large fragment (Klenow) from NEB 

was used directly after the restriction digest. This enzyme fills in overhanging 5’-ends and 

degrades overhanging 3’-ends. The reaction accorded to the manufacturer’s protocol.  

2.2.7 Annealing of DNA oligos  

For the creation of some inserts (<100 bp) two reverse complement DNA oligos were 

designed and synthesized in order to anneal to a double stranded fragment with single 

 - 32 – 
 



2 – Materials and Methods 
  

stranded overhangs. Due to their sequence of these overhangs were compatible to “sticky 

ends” made from restriction digestions. 

The standard reaction was as follows: 

500 nM Forward DNA oligo 
500 nM Reverse DNA oligo 

2 µl NEB buffer 3 
ad 20  µl ddH2O 

 

The reactions were heated for 2 min to 95 °C and allowed to cool down to RT. The fragments 

were purified using the QIAquick PCR Purification Kit (QIAGEN).  

2.2.8 Ligation 

Ligation of DNA fragments was performed with the T4 DNA Ligase (NEB). The fragment that 

contains the bacterial origin of replication and the antibiotics resistance gene is referred to 

as the vector. Any other fragment derived from either a restriction digest of a plasmid or PCR 

product, or from the annealing of two DNA oligos, is referred to as the insert. In the standard 

reaction an insert was ligated into a vector as follows: 

1 µl purified vector  
7 µl purified insert 
1 µl 10 x T4 DNA Ligase buffer 
1 µl T4 DNA Ligase 

 

Reactions were incubated either for 1 h at RT or overnight at 16 °C. 

2.2.9 Transformation of plasmid DNA into competent bacteria 

50 µl of chemical-competent E.coli, strain XL1-Blue were thawed on ice and either a total 

ligation mix or 100 ng of plasmid DNA were added. The mixture was incubated for 15 min in 

ice, followed by a heat shock (42 °C for 2 min) and 2 min further incubation on ice. Then 200 

µl of LB++ medium were added and the bacteria were shaken at 37 °C and 800 rpm for 

another 45 min. The transformed bacteria were plated onto LB-agar plates containing 25 

mg/ml of the appropriate antibiotic. Plates were incubated at 37 °C overnight. 
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2.2.10 Preparation of plasmid DNA from bacteria  

a) Mini preparation (small scale): 

Single colonies were picked from an LB-agar plate into 1 ml LB medium containing the 

appropriate antibiotic and incubated at 37 °C overnight while shaking at 800 rpm. The 

bacteria were pelleted (14,000 rpm, 30 s, RT) and the supernatant discarded. Pellets were 

resuspended in 200 µl Flexi I buffer. For cell lysis 200 µl Flexi II were added, tubes were 

mixed gently and incubated for 5 min at RT. Then 200 µl of Flexi III were added for 

neutralization and after mixing gently the reactions were incubated for another 5 min on ice. 

The resulting debris was pelleted by centrifugation (14,000 rpm, 7 min, RT) and the cleared 

supernatant was mixed thoroughly with 400 µl pure isopropanaol in order to precipitate the 

DNA. The plasmid DNA was pelleted by centrifugation (14,000 rpm, 7 min, RT), the 

supernatant was discarded and pellets air-dried and resolved in 50 µl ddH2O.  

b) Midi preparation (medium scale): 

Single colonies were picked from an LB-agar plate into 50 - 100 ml LB medium containing the 

appropriate antibiotic and incubated at 37 °C overnight while shaking at 800 rpm. 

50 ml of the bacterial overnight culture were used for DNA preparation with the 

NucleoBond® Xtra Midi/Maxi Kit (Machery & Nagel) according to the manufacturer’s 

instructions. 

2.2.11 Sequencing of DNA 

Sequencing reactions were performed by MWG Eurofins (Martinsried, Germany) or GATC 

(Konstanz, Germany). DNA and sequencing primers were adjusted as requested by the 

respective company.  

Sequencing results were analyzed using the software DNAMAN (version 6.0 or higher). If 

necessary, abi-files were examined using the Chromas software (version 1.45). 

2.2.12 Isolation of RNA from eukaryotic cells 

a) RNeasy Kit: 

RNA from cells was isolated using the RNeasy Mini Kit (QIAGEN). 1 x 106 cells were lysed in 

350 µl RLT buffer (included in the kit) containing 1 % β-mercaptoethanol and optionally 

stored at -80 °C. RNA was purified from these lysates following the manufacturer’s protocol.  
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The RNA concentration was determined using the Nanodrop 1000 (Peqlab) and the 

extracted RNAs were stored at -80 °C. 

b) Trizol extraction 

To include also very short RNAs, e.g. miRNAs, RNA was isolated using Trizol The cells were 

detached using ice-cold PBS (5 mM EDTA) pelleted (5 min, 1500 rpm) washed in PBS and 

pelleted again. Supernatants were discarded and 4 ml Tri-reagent (Sigma-Aldrich) per g cell 

pellet were added. Optionally now the lysates were stored at – 80 °C.  

To purify the RNA from these lysates, 1/5 volume of chloroform:isoamyl alcohol (24:1) 

(Ambion) and 1/20 volume of 2M sodium acetate (pH 4.2) were added and mixed by 

pipetting until the mix was turbid-white. The mixture was transferred to an Eppendorf tube/ 

Falcon tube (depending of the volume) and centrifuged. The upper (aqueous) phase was 

transferred to a new tube and 1 volume of acidic phenol:chloroform:isoamyl alcohol 

(25:24:1) (Ambion) was added followed by a centrifugation step. Extractions were repeated 

until the white interphase (DNA and proteins) almost disappeared and the aqueous phase 

was clear. The upper (aqueous) phase was transferred to a new tube and 1 volume of 

isopropanol was added. Precipitation was allowed to occur overnight at –20°C. The next day 

the tube was centrifuged (full speed at 4°C), the supernatant was removed and the pellet 

was washed once with 70 % ethanol. The pellet was resuspended in ddH2O (nuclease free) 

and stored at -80 °C. The RNA concentration was determined using the Nanodrop 1000 

(peqlab). 

2.2.13 Reverse transcription 

Reverse transcription PCR was performed using the Roche Transcriptor RT (Roche). 

Therefore, 1 µg RNA was mixed with 0.3 M specific reverse primer, oligo dT or random 

hexamer primers in a final volume of 13 µl. After incubation at 65 °C for 10 min the reaction 

was chilled on ice to allow annealing of the primer. Then 4 µl RT buffer, 0.5 µl RNase 

inhibitor, 2 µl dNTPs and 0.5 µl Transcriptor RT were added and incubated at 55 °C for 

30 min. The reaction was heated to 85 °C for 5 min in order to inactivate the enzyme. 

2.2.14 In vitro-transcription 

The MEGAscript Kit (RABV full-length cDNAs) or the MEGAshortscript Kit (pSDI constructs) 

(Ambion) were applied for in vitro-transcription as described in the manufacturer’s 
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instructions. 10 µg of cDNA plasmids were linearized using adequate restriction enzymes and 

purified via agarose gel electrophoresis (2.2.3). For the in vitro-transcription reaction 1 µg 

of linearized and purified DNA was used. Following the reaction (37 °C, 4 h) 1 µl of Turbo-

DNase (Ambion) was added and further incubated (37 °C, 20 min) to get rid of the DNA 

template. The RNA was recovered using LiCl-precipitation (reagents provided within the 

kits). 

2.2.15 Northern blot 

The Northern blot was performed with either 2.7 µg RNA isolated from cells or 1 µg in vitro-

transcribed RNA in a total volume of 7.2 µl RNase free ddH2O. 1.8 µl glyoxal and 3 µl 5x 

phosphate buffer were added and the mix was incubated for 45 min at 56 °C. 

Before loading of the samples to a denaturing agarose gel 3 µl Blue juice were added. For 

the gel 2 g of agarose (RNA grade) were dissolved in 167.3 ml of ddH2O (ultrapure) and 4 ml 

of 50x phosphate buffer by heating and stirring. 26.7 ml of 37 % formaldehyde were added 

to the solution after cooling down to be lukewarm. A 24 cm x 20 cm gel was poured from the 

solution. 

RNA probes were loaded to the gel and electrophoresis was performed using 1x phosphate 

buffer at 25 V overnight. RNA was stained using acridine orange solution and 1x phosphate 

buffer as washing solution to visualize prominent RNAs (e.g. rRNAs) under UV light. 

To transfer the RNAs onto nylon membranes (Stratagene, GE Healthcare) the Vacu-Blot 

system (Biometra) was applied for 2 h at 100 mBar. The membrane was then air-dried and 

RNA UV-crosslinked (0.125 J). Probes were generated by radioactive labelling of specific PCR 

products (25 ng) with 32P-α-CTP using the Ready prime II Kit (GE Healthcare) according to the 

manual followed by purification with the QIAquick Nucleotide Removal Kit (QIAGEN) and a 

denaturation step (5 min, 95 °C). 

The nylon membranes were preincubated with Zeta hybridizing buffer for 10 min at 68 °C 

before the preincubation buffer was replaced by 8 ml fresh buffer containing the probe. 

Hybridising took place overnight at 68 °C. Membranes then were washed once with Zeta 

wash buffer 5 % and twice with Zeta wash buffer 1 % (in each case: 20 min, 68 °C) and 

allowed to air-dry. To detect the radioactively labeled RNAs the membranes were exposed 
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to a Phosphoscreen for 2 h up to 96 h depending on the strength of the signal. The screen 

was analyzed using a storm scanner (Molecular Dynamics; GE Healthcare).  

2.2.16 Urea polyacrylamide gel (small RNAs) 

The recipe to pour 8 M urea-PAA gels was: 

 

 

The first four components were stirred at RT until the urea was completely dissolved, then 

APS and TEMED were added and the gel was casted immediately between two glass plates 

separated by plastic spacers (standard: 15 %, 15 x 10 cm; small gel for SDI IVT: 10 %, ). 

The RNA samples were mixed with an equal volume of 2X bromophenolblue loading buffer 

and heated for 3 min to 95 °C prior to loading. 

Running Buffer was 1 x TBE and the gel was run for 4 h at 180 V. 

RNA gels were either stained with a 1 % EtBr solution (1 x TBE) to directly detect bands of 

interest under UV light, or subjected to Small RNA Northern blot. 

2.2.17 Small RNA Northern blot 

For electrophoresis of small RNAs, 30 µg of total RNA together with an equal volume of 2X 

bromophenolblue loading buffer were loaded onto a 8 M urea and 15 % polyacrylamide gel 

(2.2.16). The gel was run until the bromophenolblue reached the end of the gel. 

For transfer to Hybond-N+ membranes (Amersham) 0.5 x TBE buffer was used and the 

semidry method was applied (peqlab) for 30 min at 400 mA wrapped in one layer of 

whatman paper.  

Following the transfer the membrane was allowed to dry for about 20 min at RT. UV-

crosslinking (1200 J, 30 s) and subsequent baking of the membrane for 1 h at 80 °C were 

component 10 % gel 15 % gel 
Urea 14.4 g 14.4 g 
10 x TBE (Roth) 3 ml 3 ml 
Acrylamide 6.8 g 10.2 ml 
ddH2O (nuclease free) to 30 ml to 30 ml 
10 % APS 150 µl 150 µl 
TEMED 30 µl 30 µl 
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performed. The blotted membrane was then stored in a cylindrical glass bottle at 4 °C until 

hybridization was performed. 

The hybridization solution was prepared fresh right before the experiment. Therefore the 

sonicated salmon sperm DNA was denatured at 100 °C for 5 min and added to the pre-

heated (50 °C) solution. 

Prior to hybridization, the membrane was pre-incubated with the hybridization solution at 

50 °C for 1 h in a 100 ml cylindrical hybridization bottle under rotation. In the mean-time the 

probe was prepared.  

The standard reaction for 5’-labelling of the probe was as follows: 

1 µl 20 µM oligodeoxynucleotide (22 nts) 
5 µl 32P-γ-ATP (3000 Ci/mmol) 
2 µl 10x T4 Polynucleotide Kinase buffer (NEB) 

0.2 µl T4 Polynucleotide Kinase (NEB) 
11.8  µl ddH2O 

 

The reactions were incubated for 15 min at 37 °C and stopped by adding 30 µl of 30 mM 

EDTA (pH 8.0) to the mix. The labeled oligos were purified using a Sephadex G25 spin column 

(Roche) according to the manufacturer’s instructions and residual Polynucleotide Kinase was 

inactivated by heating to 95 °C for 1 min. 

The probe was diluted in 15 ml of pre-heated hybridization solution and added to the 

membrane, replacing the pre-hybridization solution. Hybridization took place at 50 °C 

overnight under rotation. 

The next day the hybridization solution was discarded and the membrane was washed twice 

for 10 min with 30 ml wash solution I and once for 10 min with 30 ml wash solution II (50 °C, 

under rotation). To avoid drying of the blot, the membrane was wrapped in saran and 

exposed to a phosphor-imager screen for 3 – 24 h.  

2.2.18 Computer-based RNA secondary structure predictions 

RNA secondary structure was predicted using the RNAfold software on the Vienna RNA 

server homepage (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). For comparison, 

predictions were simultaneously performed with the software DNAMAN 6.0.  
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2.2.19 Cell culture 

Mammalian, adherent growing cell lines were kept in specific growth media (see 2.1.9) and 

cell culture flasks (T25 or T75) in incubators at 37 °C and 5 % CO2. Cells were trypsinated 

using Trypsin/EDTA and split every 3-4 days at various ratios from 1:4 to 1:10 depending on 

the growth rate of each cell line. If necessary, selection drugs were added every other 

passage. All cell culture reagents were purchased from Invitrogen. 

To seed the cells for experimental use, they were detached with Trypsin/EDTA and 

resuspended in growth medium. Cell numbers/ml were calculated based on estimated cell 

numbers/flask (T25: 3x106; T75: 9.4x106) or determined using a Neubauer counting 

chamber. And the appropriate number was given into dishes or wells.  

2.2.20 Transfection 

Cells were transfected with plasmid DNA or RNA using either CaPO4 (Stratagene Mammalian 

Transfection Kit), LipofectamineTM 2000 (Invitrogen) or PEI as described by the 

manufacturers (PEI transfection followed the Lipofectamine 2000 protocol).  

a) Transfection with Lipofectamine 2000 

The standard protocol was to seed cells 12 – 16 h prior to the transfection into 6 wells (12 

wells or 24 wells, respectively) to have them at a confluency of 50 %. 1 – 5 µg of plasmid 

DNA or RNA were diluted in 100 µl DMEM (accordingly downscaled for 12 wells and 24 

wells). At the same time 2.5 µl Lipofectamine 2000 (Invitrogen) per µg of DNA or RNA were 

diluted in 100 µl DMEM. After 5 min the two dilutions were mixed incubated for another 20 

min at RT and added drop-wise onto the cells. 

A variation of this protocol was used for certain cell lines (e.g. BSR cells, BHK cells or Vero 

cells). The plasmids (1 – 5 µg / 6 well) and the Lipofectamine 2000 (2.5 µl per µg DNA) were 

diluted in 250 µl of Optimem each. After mixing both and incubation for 20 min at RT the 

growing medium of the cells was replaced by the transfection mix. The cells were incubated 

at standard conditions and 10 min after transfection 1.5 ml fresh medium was added. 

b) Transfection with PEI 

The Transfection with PEI was only suitable for the transfection of only one plasmid. The 

transfection followed the protocol for Lipofectamine 2000.  
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c) Transfection with CaPO4 

The standard protocol was to seed BSR or BSR-T7/5 cells 12 – 16 h prior to the transfection 

into 6 wells (12 wells or 24 wells, respectively) to have them at a confluency of 80 - 90 %. 1 h 

prior to the transfection the cells were washed with DMEM and 1 ml of fresh DMEM was 

given onto each well. Cells were incubated 1 h at standard conditions. During this time the 

transfection mixes were set up. 10 – 20 µg of plasmid DNA were diluted in 90 µl ddH2O and 

chilled on ice. 10 µl solution #1 from the Mammalian Transfection CaPO4 Kit (Stratagene) 

were added thoroughly mixed and chilled on ice again. Then 100 µl solution #2 were added 

and after mixing again thoroughly the mixture was incubated for 20 min at RT before it was 

added drop-wise onto the cells. Cells were returned to the incubator and washed 3.5 h post 

transfection with GMEM 4+ and 2 ml fresh GMEM 4+ was given into each well. 

2.2.21 Fixation of cells with acetone 

Cells were washed once with 1x PBS, once with cold 80 % acetone, fixed with cold 80% 

acetone for 20 min at 4°C and air dried.  

2.2.22 Microscopy 

For fluorescence microscopy of cells a fluorescence microscope (Olympus IX 71) was used, 

using UV- or transmission light.  

2.2.23 Production of stable cell lines 

To produce stable cell lines cells were seeded into 6 well dishes the day before the 

experiment. The cells were transfected with a plasmid encoding a selection marker together 

with the cDNA of interest. 24 h post transfection the appropriate drug was administered to 

the cells. After onset of selection (48 – 72 h post transfection) the cells were detached from 

the wells with Trypsin/EDTA re-suspended in medium and serial dilutions were seeded into 

96 well plates together with the selection drug in order to generate single cell clones. Plates 

seeded with a dilution that resulted in less than 50 % of the wells containing cells were 

considered to contain these single clones in most cases. The clones were expanded and 

screened for the expression of the construct of interest. 
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2.2.24 Freezing of cells 

For long-term needs and as a backup, cells were stored in liquid N2. Cells were grown to 

confluence in T25 flasks, or T75 flasks, respectively. They were detached from the flasks 

using Trypsin/EDTA and re-suspended in medium (5 ml and 15 ml respectively). The cell 

containing medium was chilled on ice and 8 % (v/v) DMSO were added drop-wise. In 

cryotubes (Sarstedt), 1 ml at a time, the cell suspension was frozen to – 80 °C. Therefore the 

cryotubes were set into a NALGENETM Freezing container filled with isopropanol to ensure 

freezing rates of less than 1 K/min. After 24 h the cryotubes containing the frozen cells were 

transferred into an N2-storage-tank. One aliquot was thawed the next day as a control. 

2.2.25 Virus stock production 

To generate virus stocks 7.5 x 105 BSR-T7/5 cells were seeded in 8 ml DMEM 4+ into a T25 

flask. The cell suspension was directly infected with an MOI of 0.01. 72 h post infection the 

supernatants were collected and replaced by fresh GMEM 4+ to allow a second harvest after 

another 48 – 72 h. For viruses that were strongly attenuated compared to the wild type (SAD 

L16) cells were split 1:4 after the second harvest and 72 h later a third harvest could be 

obtained. Directly after the collection the supernatants were centrifuged (5 min, 4 °C, 1,600 

rpm) to get rid of the cell debris. Aliquots of the supernatants of this centrifugation step 

were frozen at -80 °C. 

2.2.26 Titration of virus  

The amount of infectious particles in a virus supernatant was determined by titration. 1.2 x 

104 BSR-T7/5 cells in 100 µl per well were seeded into 96 well plates and allowed to attach 

for at least 2 h. Frozen virus supernatants were thawed and seven serial 10-fold dilutions 

were prepared in GMEM. 100 µl of each dilution step and of the undiluted supernatant was 

added in duplicates onto the cells. 

The infected cells were grown at standard conditions for 48 h (wild type like viruses) – 96 h 

(strongly attenuated viruses). After incubation the supernatants were discarded and the cells 

fixed in acetone (2.2.21) and stained with a FITC-conjugated antibody against RABV-N 

(Centocor) for 2 h at 37 °C. 

Foci were counted from each well using non-confocal UV microscopy (Olympus IX71) and 

focus forming units per ml (ffu/ml) were calculated from these results. 
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For strongly attenuated RABV infected cells were incubated up to 96 h before they were 

fixed and stained. 

2.2.27 Generation of recombinant rabies virus (virus rescue) 

The standard protocol to reconstitute a recombinant RABV from cDNA was to transfect 10 

µg of the full-length cDNA together with 5 µg pTIT-N, 2.5 µg pTIT-P and 2.5 µg pTIT-L, into 

BSR-T7/5 cells. Therefore the CaPO4 transfection (2.2.20.3) was applied. 

72 h post transfection the supernatants were collected cleared from the cell debris by 

centrifugation (5 min, 4 °C, 2,800 rpm) and passaged onto fresh BSR cells (supernatant 

passage #1A). The transfected cells were incubated for another 72 h with fresh GMEM 4+. 

After 72 h the cells of the supernatant passage 1A were fixed with acetone (2.2.21) and 

stained with a FITC-conjugated antibody against RABV-N (Centocor) to check for the success 

of the rescue. Also 72 h after the first supernatant passage a second passage of the 

supernatants from the transfected cells was performed as described before (supernatant 

passage #1B) and the transfected cells were detached from the well using 1 ml 

Trypsin/EDTA. 250 µl were given into a new 6 well with 2 ml fresh GMEM 4+ (cell passage 1) 

and the remaining 750 µl into a T25 flask in 8 ml fresh GMEM 4+. After another 72 h the cells 

of the supernatant passage 1B and of the cell passage 1 were fixed with acetone and stained 

with Centocor. If RABV foci could be detected the supernatants from the T25 flasks were 

collected cleared from cell debris by centrifugation and aliquots were frozen at -80 °C 

(rescue harvest #1). Optionally the cells were incubated for another 72 h in fresh GMEM 4+ 

to collect the supernatants for a second harvest (rescue harvest #2). The harvests from the 

rescue were titrated (2.2.26) and used as inoculums to produce virus stocks of the newly 

generated recombinant RABV.  

For strongly attenuated RABV at the time point of the cell passage instead of splitting 750 µl 

into T25 flasks another 250 µl of the trypsinized transfected cells were given into a second 6 

well (cell passage 1A and 1B). This allowed the fixation and staining of cell passage 1A as well 

as collecting and passaging supernatants from cell passage 1B for a third time (supernatant 

passage 1C). Also the cells of the supernatant passages were incubated up to 5 d before they 

were fixed and stained. 

For cDNAs that were designed to express from one to all of the “helper” proteins the 

plasmids pTIT-N, pTIT-P or pTIT-L, were omitted in the transfection. 
 - 42 – 

 



2 – Materials and Methods 
  

2.2.28 Infection of cells 

According cell numbers were seeded in multi-well plates and directly infected in suspension 

with calculated MOIs of rapidly thawed virus stocks. 

2.2.29 Growth curves 

To determine the growth kinetics of recombinant viruses and compare it to wild type SAD 

L16 7.5 x 105 BSR-T7/5 cells were seeded into T25 flasks and allowed to attach while growing 

for at least 2 h at standard conditions. The cells then were infected with appropriate MOIs 

(0.01 for a multistep growth curve, 1 for a single step growth curve). 2 h post infection 

supernatants were discarded and replaced by 8 ml fresh GMEM 4+. After 30 min the first 

samples (t = 2.5 h post infection) were harvested in duplicates each 0.5 ml and stored at       

– 80 °C. 1 ml fresh GMEM 4+ was added to fill up the total volume of the cell medium again 

to 8 ml. Then at certain time points after the infection (from 24 h up to 144 h) samples were 

taken as described above in intervals of 24 h. The samples were titrated (2.2.26) to 

determine the amount of infectious particles at each time point. 

2.2.30 Minigenome assay 

Minigenome assays are used in order to quantify transcription and replication of RV. 10 µg 

of the minigenome cDNA together with 5 µg pTIT-N, 2.5 µg pTIT-P and 2.5 µg pTIT-L, were 

transfected with CaPO4 into BSR-T7/5 cells (2.2.20.3). 10 ng of pRL-CMV were co-

transfected for normalization and a negative control was the omission of one of the “helper” 

plasmids. 48 h post transfection the cells were harvested in passive lysis buffer (Promega). 

20 µl of each lysate were transferred into a 96 well plate and firefly and Renilla luciferase 

activity were measured within a luminometer (Berthold Lumat LB 960) using the Dual-

Luciferase® Reporter Assay System (Promega) according to the manufacturer’s instruction.  
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2.2.31 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

The recipe to pour the gels was: 

  

The separating gel was casted between two glass plates separated by plastic spacers. 

Standard was a 10 % polyacrylamide concentration and a gel size of 15 x 10 cm (large: 20 x 

20 cm). To exclude O2 and allow the complete polymerization the separating gel was 

overlaid with isopropanol. Next, the isopropanol was discarded, the stacking gel was poured 

onto the polymerized separating gel and the comb (standard: 15 pockets) was inserted. 

The gels were placed in an electrophoresis chamber (peqlab) and Jagow anode and cathode 

buffers were filled in. Protein lysates were incubated for 5 min at 95 °C and centrifuged 

shortly to pellet residual cell debris. 5 to 100 µl of protein lysates were loaded into each 

pocket. As a molecular weight marker 8 µL of Precision Plus Protein Standard (Biorad) were 

loaded directly into one pocket. Gels were run overnight at 30 – 65 V.  

2.2.32 Western blot (Semi-dry) 

After SDS-PAGE the proteins were transferred onto PVDF membranes (Millipore). First the 

stacking gel was removed and the separation gel was incubated for 5 min in 1 x semi-dry 

buffer. The PVDF membrane was to be activated in methanol. In a blotting chamber (peqlab) 

the Western blot was assembled in the following order. First 3 layers of Whatman paper 

(soaked in semi-dry buffer), above the membrane (activated) followed by the gel and 3 

layers of Whatman paper (soaked) on top. Blotting was performed for 2 h at 400 mA. 

The membranes then were blocked for 1 h at RT in PBS containing 5 % fat-free milk powder 

to reduce unspecific binding of antibodies during immunodetection.  

  

 Separating gels Stacking gel 

component 8 % 10 % 12 % 4 % 
H2O 14.6 ml 12.9 ml 11.1 ml 9 ml 
Jagow gel buffer 12 ml 12 ml 12 ml 3.5 ml 
Glycerol 2 ml 2 ml 2 ml - 
Acrylamide 7.2 ml 9 ml 10.8 ml 1.4 ml 
10 % APS 175 µl 175 µl 175 µl 116 µl 
TEMED 17 µl 17 µl 17 µl 17 µl 
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2.2.33 Immunodetection 

The membranes after performing the Western blot were taken out of the blocking solution 

and washed (3 x 10 min at RT) in PBS-Tween on a shaker. Specific primary antibodies against 

the proteins of interest were diluted in PBS (as indicated in 2.1.5) and the membranes were 

incubated in these antibody solutions overnight at 4 °C on a shaker or rolling incubator. 

Following again extensive washing (3 x 10 min at RT) in PBS-Tween the membranes were 

incubated for 2 h at RT with the appropriate secondary antibody. The HRP-conjugated 

secondary antibody was directed against the species of the primary antibody.  

After washing the membranes in PBS (3 x 10 min at RT) 1 - 3 ml of Western Lightning® Plus-

ECL substrate (PerkinElmer) were added directly onto the membrane. The 

chemiluminescence derived from the HRP and its substrate ECL immediately was detected 

either using Hyperfilm-ECL (GE Healthcare Amersham) or blots were directly scanned and 

light emission detected with the Fusion FX7 (Vilber Lourmat). 
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3.1.2 A miRNA transcribed from a RABV vector is not functional 

To check if mRNAs from RABV which are transcribed exclusively in the cytoplasm can be 

processed either to functional miRNAs or to siRNAs, I created the recombinant RABV SAD 

G_eGFP-miR23-2 expressing eGFP in an extra ORF between the G and the L gene. The 

murine cytomegalovirus (MCMV) miRNA miR23-2 sequence is located in the 3’-UTR of the 

GFP-mRNA. To measure the efficiency of miR23-2 mediated translational inhibition the 

reporter construct psiCHECK-23-2 was used (Dölken et al., 2010). This construct expresses a 

firefly luciferase from a simian virus 40 (SV40) early promoter and a Renilla luciferase from a 

Herpes simplex virus (HSV) thymidine kinase (TK) promoter with the target sequence of miR-

23-2 in the 3’-UTR of the firefly luciferase gene.  

HEK 293T cells in 6 wells were transfected with 50 ng psiCHECK-23-2, and 450 ng pCAGGS. 4 

h p.t. the cells were either infected with SAD G_eGFP-mir23-2 or with SAD G_eGFP at an 

MOI of 3. 

 

Figure 5: MiRNAs and shRNAs expressed from RABV mRNAs are not functional.  
(A) HEK 293T cells in 6 well plates were transfected with 50 ng psiCHECK-23-2 together with 450 ng of pCAGGS. 4 h p.t. the 
cells were infected with either SAD G_eGFP-miR23-2 or SAD G_eGFP (MOI=3). 48 h p.t. the GFP expression was monitored 
by fluorescence microscopy. The cells were lysed and dual-luciferase assays were performed. No difference was observed 
for FF/RL ratios between infections with both viruses. Size bar  = 500 µm. (B) HEK 293-GFP cells were infected (MOI=3) with 
SAD G_shGFP, SAD L16 or uninfected. 48 h p.i. the cells were lysed and Western blots with antibodies against RABV G, β-
actin and GFP were performed. 
 

48 h p.t. a dual-luciferase assay was performed to quantify the expression of firefly luciferase 

and to normalize using Renilla luciferase. The firefly luciferase values normalized to the 

Renilla luciferase values indicate the specific knock-down efficiency. As shown in figure 5A 
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no difference for the firefly luciferase / Renilla luciferase ratios was observed between the 

respective infections. This indicates that SAD G_eGFP-miR23-2 was not able to express 

functional miRNAs.  

Analogously to the MCMV miRNA, the sequence coding for an shRNA against GFP (shGFP) 

was inserted into the RABV full-length cDNA into the extra transcription unit between the G 

and the L gene resulting in the construct pSAD G_shGFP. The sequence for the shGFP was 

the same that is expressed in A549-LR-siGFP cells. From pSAD G_shGFP the recombinant 

RABV SAD G_shGFP was recovered. HEK 293T-GFP cells, stably expressing eGFP (a kind gift 

from Dr. Armin Baiker) were infected at an MOI of 3 with SAD G_shGFP, SAD L16, or not 

infected. 48 h p.i. the cells were lysed and the lysates subjected to Western blot analysis 

(figure 5B). No difference in eGFP protein levels were detected upon infection with SAD 

G_shGFP compared to SAD L16 infection or to un-infected cells. Therefore it was concluded, 

that shGFP expressed as RABV mRNAs are not functional. 

This outcome and the results obtained from the RABV encoded MCMV miRNA most likely 

are due to the cytosolic transcription of the RABV encoded RNAs.  

3.1.3 In vitro-cleavage of a hammerhead ribozyme 

As the cytoplasmic transcription of shGFP from a RABV vector failed to knock down GFP, 

further possibilities to express shRNAs were evaluated. It is possible, that the cytoplasmic 

RABV mRNAs cannot efficiently enter the nucleus and therefore are not processed by nucleic 

enzymes of the miRNA/shRNA pathway. In miRNAs transcribed by Pol-II in the nucleus, the 

Drosha/DGCR8 microprocessor complex cleaves off the 5’-cap structure and the 3’-poly(A) 

tail. To compensate this, one approach was to remove flanking sequences from the RABV 

encoded shRNA by adequate ribozymes. 

To cleave off the cap-structure from the shGFP a hammerhead ribozyme (HHRz) sequence 

was inserted between the RABV transcription start signal and the shGFP. As a control a 

defect HHRz (dHH), lacking some nucleotides of its stem structure was inserted. 

To test the cleavage activity of the HHRz in vitro, the RABV full-length cDNA constructs pSAD 

G_HH-shGFP, pSAD G_dHH-shGFP, and as further controls pSAD G_shGFP and pSAD 

G_DsRed, with an extra DsRed ORF instead of the hairpin structures in the extra 

transcription unit, were linearized by restriction with AflII and in vitro-transcribed.  
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fragment with the L probe. This indicates this fragment to result from premature 

termination of the in vitro-transcription, probably caused by the stem-loop structure of the 

shGFP. For all full-length constructs a slight band occurs at about 8 kb and is detected with 

the N and the L probe. This minor product of in vitro-transcription can be detected for the 

cleaved RNA of pSAD G_HH-shGFP with the L probe at 3 kb indicating to originate from 

premature termination in the L gene. With the N probe the detected cleaved RNA from this 

minor product is identical to the cleaved major fragment. 

 

3.1.4 In vitro-cleavage of HDVagRz 

As the shGFP transcribed by RABV is assumed to contain a poly(A) stretch, an option to 

process the hairpin would be to cleave off unnecessary 3’-sequences by means of an 

autocatalytic Hepatitis Delta Virus antigenomic ribozyme (HDVagRz). 

I inserted the 84 nt HDVagRz sequence (Perrotta and Been, 1991) between the shGFP 

sequence and the transcription stop signal of the additional shGFP RABV gene to generate 

the full-length plasmid pSAD G_shGFP-HDV. Analogously the construct pSAD G_HH-shGFP-

HDV was generated containing an HHRz to cleave off the cap and an HDVagRz to cleave off 

the 3’-end from shGFP. 

To test for the in vitro-cleavage activity, the constructs pSAD G_shGFP-HDV, pSAD G_HH-

shGFP-HDV and as a control pSAD L16 were linearized with MluI and in vitro-transcribed. The 

RNAs were subjected to Northern blot and radioactively labeled probes were used to detect 

N, L, or shGFP sequences. Figure 7A shows the expected pattern of fragment sizes. The un-

cleaved full-length RNA should run at 8.4 kb. Cleavage products from either the HHRz or the 

HDVagRz will be detected at 5.4 kb (N probe) or 3 kb (L probe), respectively. 

The shGFP probe is a useful tool to distinguish between successful cleavage at the HHRz 

upstream of shGFP (3 kb) and cleavage at the HDVagRz downstream of shGFP (5.4 kb). If 

both ribozymes would cleave however, the product is too small for detection in this assay (< 

0.1 kb). 

The observed outcome of this experiment was that the HDVagRz applied in this construct 

cleaves RNA with a very poor efficiency (figure 7B). With the L probe, the 3 kb RNA only is 

detected for pSAD G_HH-shGFP-HDV (left panel - lane 1) but not for pSAD G_shGFP-HDV  
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G_shGFP-HDV and pSAD G_HH-shGFP-HDV, was performed with MluI followed by a 

Northern blot. For detection of cleaved and un-cleaved RNAs an L probe was used. Again it is 

shown that the RNA derived from pSAD G_shGFP-HDV is not cleaved, or at least very 

inefficiently (figure 8B - lane 1). The new HDVagRzs, SC1 and SC2, however, cleave the RNA 

at significant higher rates (lanes 2 and 3). SC1 shows the most efficient cleavage pattern. 

They were not only functional alone, but also in combination with the HHRz (compare lanes 

2 and 3 with 5 and 6). 

3.1.6 No knock-down for virus derived shRNAs lacking 5’-cap and 3’-poly(A) 

The HHRz and SC1 were shown to cleave efficiently in vitro. Initially, the virus SAD G_HH-

shGFP-SC1, unlike SAD G_HH-shGFP, could not be rescued after numerous trials. This 

indicates a strong in vivo-activity of the SC1. In part 3.2 of this thesis a significantly improved 

rescue system of RABV is described (Ghanem et al., 2012). This improved method finally 

allowed the successful recovery of SAD G_HH-shGFP-SC1 from cDNA. This virus should 

transcribe an mRNA from which the 5’-cap and the 3’-poly(A) are cleaved off by auto-

processive ribozymes.  

 

Figure 9: No knock-down of eGFP by SAD G_HH-shGFP-SC1. 
Hep2-eGFP cells (left) or U3A LC3-GFP cells (right) were infected with SAD L16, SAD G_HH-shGFP-SC1 (MOI=3) or not 
infected. 60 h p.i. cells were lysed. Western blots with antibodies against RABV N, eGFP and β-actin (left) or GAPDH (right) 
were performed. 
 

To check if SAD G_HH-shGFP-SC1 was able to knock-down eGFP expression SAD L16, SAD 

G_HH-shGFP-SC1 (MOI=3) or no virus were used to infect either HEp-2-GFP cells or U3A LC3-

GFP cells. 60 h p.i. the cells were lysed and Western blots were performed. Using antibodies 
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against RABV N, eGFP and β-actin or GAPDH, respectively for normalization, protein levels 

could be compared. 

No significant difference in eGFP or LC3-GFP expression levels was found between SAD L16 

and SAD G_HH-shGFP-SC1 (figure 9). The same was true when eGFP expressing plasmids 

pEGFP-C3 or pCAGGS-GFP were transfected into different cell lines HEK 293T, NA or Huh7.5 

prior to infection with SAD G_HH-shGFP-SC1 (data not shown). 

3.1.7 In silico-design of the “perfectly processed” hairpin 

In the virus SAD G_HH-shGFP-SC1 the HHRz and the SC1 were inserted with spacer 

sequences to reduce interference with the hairpin structure of shGFP. The RNAs expected to 

be made and processed were lacking 5’-cap and 3’-poly(A), however resemble more the pre-

miRNAs that have to be processed by the Drosha/DCGR8 complex in the nucleus. In order to 

process a shGFP RNA resembling a direct Dicer substrate in the cytosol, these spacer 

sequences had to be removed. As RNA structures are present and functionally important in 

both ribozymes and in the shGFP sequence I wanted to evaluate the impact of these 

structures on each other. Therefore RNA secondary structure predictions were performed.  

Sequences of interest were submitted to the RNAfold software on the Vienna RNA server 

homepage (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The graphical output, as seen in 

figure 10, indicates the base pair probabiblity for each position. The results were 

crosschecked with the Software DNAMAN 6.0 (Lynnon Corporation) and the embedded 

function “secondary structure prediction”, coming to similar results (data not shown). 

Correct folding of the HHRz (figure 10A-I) is dependent on the stem loop formation. The 

secondary structure nicely indicates the special position of the C, after which the 

autocatalytic cleavage occurs (arrow). In order to process a correct 5’-end of the shGFP 

(figure 10A-II), the first four bases of the shGFP have to be identical with the four 3’-bases of 

the HHRz that are building the stem (blue line). However, upon direct linkage of the HHRz 

with the shGFP (figure 10A-III) the structure prediction shows that the stem and thereby the 

HHRz folding are impaired. Thermodynamic stability rather provides the folding of the longer 

stem within the shGFP than the four base pair stem of the HHRz. A two base pair mismatch 

at the 3’-end of the shGFP (figure 10A-IV), i.e. CC instead of GU (bold black circle), moves the 

equilibrium towards favoring the HHRz stem folding (thin black circle) over the shGFP 
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If shGFP (figure 10B-I) now is the correct substrate for Dicer, the cleavage products would be 

two annealed complementary single stranded RNAs (figure 10B-II). One of these strands will 

be incorporated into the RISC complex and induce knock-down of the target gene (figure 

10B-III). The antisense strand is shown in red here and if incorporated into RISC can base-

pair with its target, the GFP mRNA. 

In a work published by D. S. Schwarz et al. (Schwarz et al., 2003) it is shown that the strand 

that can be un-winded easier from its 5’-end will be incorporated into RISC whereas the 

other strand will be degraded. 

The introduction of the 2 base mismatches at the 3’-end of the shGFP (SHmm) (figure 10B-

IV-VI) would therefore lead to incorporation of the sense strand (blue) and the degradation 

of the antisense strand. The same outcome would result from introduction of the 

mismatches at the 5’-end of the shGFP. 

To overcome this problem, I exchanged the sense and the antisense strand of the shGFP 

(figure 10B-VI). The new hairpin, labeled HSmm, in contrast to SHmm, has the mismatch at 

the 3’-end of the hairpin (and the 5’-end of the antisense strand after Dicer cleavage) and 

thus should allow the antisense strand to enter the RISC (figure 10B-VII-IX). Secondary 

structure prediction also indicates that the HHRz is processive in the construct HHRz-HSmm 

(figure 10C-I) and should release the “perfectly processed” hairpin HSmm (figure 10C-II).  

3.1.8 In vitro-analysis of the “perfectly processed” hairpin 

To test if the cleavage activities of the two ribozymes in close proximity to the hairpin 

correlate to their predicted secondary structures the in vitro-cleavage assay was applied 

again. I generated the construct pSAD G_HH-SH-SC1, for which the 2D structure predicted a 

wrong folding of the HHRz (compare figure 10A-III). To distinguish the cleavage of HHRz and 

SC1, also constructs with a defect HHRz (dHH), lacking the first 21 nt of the HHRz, a defect 

HDVagRz (dHDV), lacking 57 nt of the 3’-end, or with both dHH and dHDV were generated. 

Similarly, the plasmid pSAD G_HH-HSmm_SC1 together with the controls containing dHH, 

dHDV, or both, were constructed. The mismatches in HSmm were predicted to allow the 

correct folding of the HHRz (compare figure 10A-VI). The eight plasmids pSAD G_HH-SH-SC1, 

pSAD G_dHH-SH-SC1, pSAD G_HH-SH-dHDV, pSAD G_dHH-SH-dHDV, pSAD G_HH-HSmm-

SC1, pSAD G_dHH-HSmm-SC1, pSAD G_HH-HSmm-dHDV, and pSAD G_dHH-HSmm-dHDV 
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were linearized with MluI and after in vitro-transcription a Northern blot with an L probe was 

performed. 

The RNAs derived from pSAD G_dHH_SH_dHDV (figure 11 - lane 1) and from pSAD G_dHH-

HSmm-dHDV (lane 5), were not cleaved, as they contained only defect ribozymes. RNAs from 

pSAD G_dHH-SH-SC1 (lane 3) and pSAD G_dHH-HSmm-SC1 (lane 7), showed the cleavage 

product at 3 kb. This indicates that the SC1 can cleave efficiently and seems not to be 

disturbed by either of the secondary hairpin structures. The RNA derived from pSAD G_HH-

SH-dHDV (lane 2), however is not cleaved. This correlates with the prediction, in which the 

HHRz cannot fold correctly in close proximity to the SH hairpin. The two mismatches in the 

reverse complement hairpin however rescue the cleavage activity of the HHRz (lane 6). 

Again this is in accordance with the in silico-predictions.  

 

Figure 11: In vitro-verification of the secondary structure predictions.  
Plasmids pSAD G_dHH-SH-dHDV, pSAD G_HH-SH-dHDV, pSAD G_dHH-SH-SC1, pSAD G_HH-SH-SC1, pSAD G_dHH-HSmm-
dHDV, pSAD G_HH-HSmm-dHDV, pSAD G_dHH-HSmm-SC1 and pSAD G_HH-HSmm-SC1 were linearized with MluI and 1 µg 
of each DNA was used for in vitro-transcription. 1 µg in vitro-transcribed RNA was used for Northern blots and fragments 
detected with radioactively labeled probes against L. Arrow indicates expected size of cleavage products. 
 

Noteworthy, the RNA from pSAD G_HH-SH-SC1 (lane 4) appears to be cleaved more efficient 

as the RNA from pSAD G_dHH-SH-SC1 (lane 3). While the same amount of cleaved fragment 

is detected for both, in lane 4 less un-cleaved fragment remains. In lane 8, the RNA derived 

from pSAD G_HH-HSmm-SC1 shows the strongest band for the cleaved product. Being about 
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twice as strong as in lane 7 where only the SC1 is functional, this indicates the activity of 

both ribozymes. 

3.1.9 No knock-down effect for RABV vector delivered siRNAs  

The full-length cDNAs tested in the in vitro-cleavage assay above were used to recover 

recombinant viruses. Again these viruses only could be rescued after significant 

improvement of the rescue system described in part 3.2 of this thesis. 

 

Figure 12: No knock-down effect for RABV vector delivered siRNAs.  
(A) Reporter construct were either pCR3-FFluc coding for the firefly luciferase, pCR3-FFluc-gfpt, having the GFP sense target 
sequence of shGFP in the 3’-UTR or pCR3-FFluc-asgfpt having the reverse complement GFP target sequence in the 3’-UTR. 
(B) HEK 293T cells in 12 wells were transfected with 100 ng of either pCR3-FFluc, pCR3-FFluc-gfpt or pCR3-FFluc-asgfpt. 10 
ng pRL-CMV for normalization and 90 ng pCAGGS were co-transfected. 4 h p.t. cells were either transfected with 250 ng 
pSUPER or pSUPER-shGFP, or infected with either SAD L16, SAD G_dHH-SH-SC1, SAD G_dHH-HSmm-SC1, SAD G_HH-SH-SC1 
or SAD G_HH-HSmm-SC1 (MOI=2). 48 h p.i. dual luciferase assays were performed. 
 

To test if the newly made viruses were able to knock down a target gene, and in order to 
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inserted either a GFP-tag or as a control an antisense GFP-tag into the 3’-UTR of the firefly 

luciferase expression unit in the CMV promoter-driven pCR3-FFluc. The GFP-tag contained 

the sequence of the sense strand of the hairpin and in sense orientation compared to the 

eGFP mRNA, enabling the correct hairpin to knock down firefly luciferase expression (figure 

12A). 

HEK 293T cells were transfected with 100 ng of pCR3-FFluc, pCR3-FFluc-gfpt or pCR3-FFluc-

asgfpt. For normalization 10 ng of pRL-CMV were co-transfected. 4 h p.t. the cells were 

either transfected with 1 µg of pSUPER-shGFP or as a control pSUPER (Brummelkamp et al., 

2002). The plasmid pSUPER allows Pol-III dependent transcription of the hairpin in the 

nucleus and the transcript can enter the miRNA microprocessor pathway (Drosha/DGCR8 

dependent). In parallel other HEK 293T cells were infected with SAD L16, SAD G_HH-HSmm-

SC or as controls with SAD G_dHH-HSmm-SC, SAD G_HH-SH-SC or SAD G_dHH-SH-SC (MOI = 

3) 4 h p.t. with the respective luciferase reporter plasmids. 48 h p.t. the cells were lysed and 

dual-luciferase assays were performed in order to measure firefly and Renilla luciferase 

expression. 

The plasmid pSUPER-shGFP that was used as a positive control was able to decrease the 

firefly luciferase expression from the construct with the sense GFP target region, by more 

than 95 % (figure 12B). In contrast, the viruses, including SAD G_HH-HSmm-SC, did not have 

any effects on the luciferase expression. No knock-down was observed.  

3.1.10 Low amounts of RNA of shGFP 

As no knock-down was observed in SAD G_HH-HSmm-SC infected cells it should be tested, if 

the HSmm hairpin is transcribed and processed upon virus infection. 

Therefore at first, NA cells were infected with SAD G_HH-HSmm-SC, SAD G_shGFP, SAD L16 

(MOI = 5) or mock-infected. Cells were lysed 48 h p.i. and RNA was isolated using Trizol. For 

comparison, 14.5 cm dishes of HEK 293T cells were transfected with 20 µg pSUPER-shGFP or 

pSUPER. In addition A549-LR-siGFP cells an as controls A549 cells were seeded into 14.5 cm 

dishes. The transfected HEK 293T cells together with un-treated A549 cells and A549-siGFP 

cells were lysed 48 h p.t or 60 h after seeded into dishes, respectively. A miRNA Northern 

blot was performed using a probe against shGFP.  
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3.2 Improved rescue for rabies virus 

In the previous experiments a poor cleavage activity of HDV was observed. As this is also the 

ribozyme that is used during RABV rescue from recombinant cDNA to generate exact 3’-ends 

of the antigenome-like RNA, also rather inefficient cleavage can be assumed. Therefore, the 

aim was to evaluate if this indeed is the case and if so, to replace HDV with the better 

cleaving SC1. 

The results shown in this part have been published in (Ghanem et al., 2012) and figures are 

adpted from the publication. 

3.2.1 HDVagRz poorly processes the 3’-end of antigenome-like RNA  

To test the cleavage activity of HDV downstream of the trailer of the full-length RABV RNA a 

smaller construct, pSDI-1 (Conzelmann and Schnell, 1994) was used.  

In this construct (figure 14A) in contrast to the full-length RABV antigenome-like transcript, 

the trailer is at the 5’-end and the leader at the 3’-end. Due to the terminal complementary 

of RABV genomes, the 10 nts directly upstream of the HDV sequence, however, are identical.  

 

Figure 14: Poor cleavage of HDVagRz in processing the 3’-end of the RABV antigenome-like RNAs.  
(adapted from Ghanem et al., 2012) (A) Plasmid pSDI-1 (Conzelmann and Schnell, JVI, 1994) was linearized using BamHI and 
in vitro-transcribed. Site of autocleavage and expected fragments are marked. (B) 1 µg RNA was loaded to a 10% UREA-PAA 
gel and stained using EtBr. Arrow indicates expected size of cleavage product. 
 

The plasmid pSDI-1 was linearized with a BamHI digestion, cutting directly 3’ of the HDV 

sequence. Following in vitro-transcription, the RNA was subjected to urea-PAA gel 

electrophoresis and bands were stained with EthBr (figure 14B). The un-cleaved RNA should 

run at about 320 nt and if the ribozyme cleaves off itself the band should run at 240 nt as 

indicated by the arrow. Only about 10 % of the RNA was cleaved. This result correlates with 
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the poor cleavage of the HDV located within the genomic RNA that was observed previously 

(3.1.4). 

3.2.2 Improved HDVagRz SC1 enhances rescue efficiency 

A correctly processed 3’-end has been shown to be necessary for rescue of NNSV. As we 

found the ribozyme downstream of the trailer to cleave poorly, it was close at hand to 

replace the inefficient ribozyme by a better one. 

I replaced the HDV sequence in the plasmid pSAD L16 with the SC1 sequence (3.1.5). 

Thereby the construct pSAD L16_SC was generated (figure 15A). 

 

Figure 15: Replacement of HDV by SC1 enhances rescue efficiency.  
(adapted from Ghanem et al., 2012) (A) Constructs pSAD L16 and pSAD L16_SC differ in their ribozymes processing the viral 
3’-end. (B) FITC-α-RABV-N staining of BSR-T7/5 cells incubated for 3 d with supernatants taken 3 d after transfection of BSR-
T7/5 cells with either 10 µg pSAD L16 or 10 µg pSAD L16_SC together with pTIT-N (5 µg), pTIT-P (2.5 µg) and pTIT-L (2.5 µg). 
Size bar = 1 mm. (C) Multistep growth curve with recombinant SAD L16 rescued from plasmid pSAD L16 or from plasmid 
pSAD L16_SC. 
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Rescue experiments were performed with both constructs pSAD L16 and pSAD L16_SC, in 

parallel and 3 d later the supernatants were passaged onto fresh cells. Following 3 d 

incubation at standard conditions, the cells of the supernatant passage were stained with a 

FITC-labeled RABV N antibody (figure 15B). While rescue of both constructs was successful, 

significantly more foci derived from infectious particles were detected in the passages from 

pSAD L16_SC. 

To show, that the increase in rescue efficiency was not due to a difference within the virus 

genome, supernatants from both rescue attempts, with pSAD L16 and pSAD L16_SC, were 

used to inoculate fresh cells and virus stocks were prepared. Both virus stocks were 

subjected to multistep growth curve experiments (figure 15C). As the improved ribozyme 

SC1, as well as the standard HDV, cleave themselves off the 3’-end of the RABV antigenome-

like RNA, the processed and rescued virus genomes are identical. Therefore it is not 

surprising that the 2 viruses are indistinguishable from their growth kinetics. 

3.2.3 Significantly improved rescue with HHRz and HDVagRz SC1 

The 5’-ends have been reported to be less critical for rescue of rhabdoviruses (Pattnaik et al., 

1992), MeV and BDV (Martin et al., 2006). However, exact 5’-ends have been shown to 

improve rescue of measles virus, BDV (Martin et al., 2006) and RABV minigenomes (Le 

Mercier et al., 2002). 

The standard full-length construct pSAD L16 contains three additional G residues upstream 

of the first nt of the RABV antigenome (figure 16A). As these Gs are important for efficient 

T7-pol transcription initiation, an HHRz was inserted between the three Gs and the RABV 

genome. As the HHRz cleaves itself off, 3’ of a C residue, and releases part of its stem 

attached to downstream sequences, the first four bases of the RABV genome now have to 

be part of this stem and the 5’-end of the HHRz has to be changed accordingly (figure 16B).  

Full-length constructs were made with or without the HHRz to process the virus 5’-end and 

with HDV or with the SC1 for improved processing of the 3’-end. For better quantification of 

the recue efficiencies a GFP gene was inserted as an extra transcription unit between the G 

and the L gene (figure 16A). 

Standard rescue transfections were performed for the constructs pSAD GFP, pSAD GFP_SC, 

pSAD T7-HH_GFP and pSAD T7-HH_GFP_SC. The expression of GFP was followed live under 
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UV light microscopy. Every upcoming focus of eGFP-expressing cells was considered to be a 

positive rescue event. The SC1 improved the rescue efficiency as well as the speed of rescue 

significantly compared to the conventional HDV (figure 16C). The same was true for the 

HHRz that was processing the 5’-end in comparison to only the T7 promoter followed by the 

3 G residues. Combining both, the HHRz and the SC1, resulted in synergistically increased 

rescue. 

 

Figure 16: Significantly improved rescue with HHRz and HDVagRz_SC.  
(adapted from Ghanem et al., 2012) (A) Constructs for quantification of rescue efficiency: pSAD eGFP, pSAD eGFP_SC, pSAD 
HHRz_eGFP and pSAD HHRz_eGFP_SC. (B) Design of HHRz with RABV starting nts ACGC as part of its stem. (C) BSR-T7/5 cells 
were transfected with 10 µg of either pSAD eGFP, pSAD eGFP_SC, pSAD HHRz_eGFP or pSAD HHRz_eGFP_SC together with 
5 µg pTIT-N, 2.5 µg pTIT-P and 2.5 µg pTIT-L. Fluorescence microscopy was used to detect successful rescue events by 
means of eGFP expression in living cells. (D) upper row: GFP positive foci in BSR-T7/5 cells infected with SAD eGFP at 
different time points post infection. Lower: size of detected focus in rescue experiments with pSAD HHRz_eGFP_SC 48 h p.t. 
The same size as a focus 48 h p.i. indicates an immediate rescue event within the first few hours upon transfection. Size bar 
= 100 µm. 
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As by counting GFP positive foci each rescue event was detected only after a certain lag of 

time, because the first rescued virus already had to spread to the neighboring cells, an 

indirect method was applied to determine the time point of these rescue events. BSR T7/5 

cells in BSR 6-well plates were infected with a low MOI (0.001) of SAD GFP virus. At 24, 48, 

and 72 h p.i. pictures of GFP positive cells were taken under UV light to set up a standard by 

which the size of a focus allowed to determine its age (figure 16D). The biggest foci detected 

in the positive rescues of pSAD T7-HH_GFP_SC at 48 h p.t. corresponded in their size to foci 

derived from infection with SAD GFP 48 h p.i. This indicates that the first rescue events must 

have happened almost instantly – or within a time frame of a few h – after transfection. 

3.2.4 Increased minigenome activity due to ribozymes 

Minigenomes of the RABV strain PV (Le Mercier et al., 2002) in an expression cassette 

between an HHRz and an HDVagRz were reported to have an increase in reporter gene 

expression compared to minigenomes with only the HDVagRz. To test if the same is true for 

SAD L16 derived minigenomes, we applied the previously described pSDI CNPL (Finke and 

Conzelmann, 1999). This bicistronic construct encodes a T7-pol-driven negative sense RNA. 

Within the 5’-end (trailer region) and the 3’-end (leader region) the minigenome contains 

two negative sense transcription units for CAT and firefly luciferase, separated by the RABV 

N/P gene border. Following transcription from the T7 promoter the 3’-end is processed by 

the HDV. 

In analogy to the RABV full-length constructs, the HHRz was inserted between the 3 G 

residues downstream of the T7 promoter in order to cleave upstream of the first nt of the 

minigenome. The HDV was replaced by the better cleaving SC1. 

Standard transfections for minigenome assays were performed with either the parental pSDI 

CNPL or pSDI T7-HH_CNPL_SC together with the N, P, and L “helper”-plasmids. For 

normalization of transfection pCMV-RL was co-transfected. As negative controls N was 

omitted. 48 h p.t. cells were lysed in PLB buffer (Promega) and a dual-luciferase assay was 

performed to determine the levels of firefly luciferase and Renilla luciferase. The values for 

firefly luciferase were normalized to their Renilla luciferase values and the ratios for 

transfections with N divided by the ratios for transfections without N were considered as 

‘fold induction’. The new minigenomes pSDI T7-HH_CNPL_SC were about five fold more 

efficient than the pSDI CNPL (figure 17).  

 - 65 – 
 



3 – Results 
  

 

Figure 17: Increased minigenome reporter gene expression due to optimized ribozymes. 
(adapted from Ghanem et al., 2012) BSR-T7/5 cells transfected with 4 µg pSDI CNPL or pSDI HHRz_CNPL_SC together with 5 
µg pTIT-N, 2.5 µg pTIT-P, 2.5 µg pTIT-L and 10 ng pRL-CMV (negative control: without N). 48 h p.t. cells were lysed and dual-
luciferase assays performed. Y-axis shows Renilla normalized values obtained with N divided by values without N as ‘fold 
induction’.  
 

The slighter increase in efficiency than observed for RABV rescue from full-length cDNA can 

be explained from the fact that from these negative sense minigenomes FFluc mRNAs can be 

made by transcription without further replication. Therefore these data indicate that for 

viral transcription in contrast to replication the genome ends are less important. 

3.2.5 Application of the improved system to generate new recombinant RABV.  

The new RABV rescue system has proven to be much more efficient and faster, than the 

previous system. Numerous recombinant RABV could be rescued. For instance several 

viruses used in Part 3.1 of this thesis (3.1.6 3.1.9) could only be rescued with the 

improved system whereas rescue failed with the “old” system. Many new attenuated viruses 

could be rescued easily for use in basic research about RABV biology as well as for use as 

neuronal tracers. Table 1 provides an overview about recombinant RABV that were 

recovered from cDNA with the new system. Almost all viruses that were generated in part 3 

of this thesis, many of them also being strongly attenuated exclusively used the improved 

RABV cDNA vector (exceptions are specified).  
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Table 1: Novel recombinant RABV recovered with improved rescue system. 
 

recombinant RABV system comments 

new old 

SAD eGFP + + eGFP in extra transcription unit 

SAD ΔG eGFP + + eGFP in extra transcription unit 
G gene deleted 

SAD ΔG mcherry + + mcherry in extra transcription unit 
G gene deleted 

SAD ΔG GCamP3 + n.d. GCamP3 in extra transcription unit 
G gene deleted 

SAD ΔG GCamP5 + n.d. GCamP5 in extra transcription unit 
G gene deleted 

SAD ΔG ChR2 + n.d. ChR2 in extra transcription unit 
G gene deleted 

SAD ΔG tm-tomato + n.d. tm-tomato in extra transcription unit, 
G gene deleted 

SAD ΔG mito-TurboGFP + n.d. mito-TurboGFP in extra transcription 
unit, G gene deleted 

SAD ΔM/ΔG mcherry + n.d. mcherry in extra transcription unit 
M and G gene deleted 

SAD ΔP G_eGFP + n.d. eGFP in extra transcription unit 
P gene deleted 

SAD ΔP N_eGFP + n.d. P gene replaced by eGFP gene 

SAD G_shGFP-SC1 + - viruses used in Part 3.1 of this thesis 
containing internal SC1 

SAD G_shGFP-SC2 + - viruses used in Part 3.1 of this thesis 
containing internal SC2 

SAD N2AP + n.d. N/P gene border replaced by 2A-like 
sequence (see part 3.3) 

SAD NENEPEL + - RABV comprising 3 internal EMCV IRES 
elements (see part 3.3) 
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3.3 Single infectious cDNAs of rabies virus 

A genetically encoded RABV, finally resulting in an inducible “RABV-on mouse” would open 

the wide field of mouse genetics, including knock-out mice and various tissue specific Cre 

recombinase expressing mouse lines, for new approaches in synaptic tracing with RABV 

vectors in neuronal sciences or for studies on RABV biology, spread and pathogenesis. The 

development of such a valuable research tool has been precluded so far by distinct features 

of RABV biology. 

For all NNSV neither the genome nor the antigenome is infectious per se and to rescue RABV 

from cDNA the vRNP has to be reconstituted in the cell. Thus not only the RABV full-length 

antigenome-like RNA has to be provided, but also the RABV N protein, encapsidating this 

RNA into NCs and the RNA-dependent RNA polymerase P-L. Altogether 4 plasmids have to 

be present in the cell, hampering approaches of genetically encoded systems.  

Although the RABV rescue system has been improved as described in part 3.2 of this thesis 

(Ghanem et al., 2012), it is still dependent on T7-pol. Pol-II dependent rescue systems have 

been reported for the RABV strains HEP-Flury (Inoue et al., 2003) and CTN181 (Huang et al., 

2010). For the strain SAD L16, however, this has not been established so far.  

In order to assess the possibility of generating a genetically encoded RABV the aim of the 

following studies was to develop rescue systems which depend on less than the 

conventional 4 plasmids, and with the final goal of ideally only one plasmid, a single-

infectious RABV cDNA. Further, rescue from this infectious cDNA clone should be 

independent of T7-pol, allowing expression in various tissues and from different promoter 

systems. 

3.3.1 SAD EP(mono) – P protein translated from full-length antigenomic RNA is sufficient 

for rescue without P “helper” plasmid. 

For rescue of recombinant RABV in the conventional systems, the 3 “helper”-plasmids pTIT-

N, pTIT-P and pTIT-L are necessary together with the full-length RABV cDNA. In these pTIT 

plasmids, T7-pol dependent transcription occurs from a T7 promoter. The transcripts are un-

capped and for supporting translation initiation an EMCV IRES element is inserted upstream 

of the ORFs (Finke and Conzelmann, 1999). 
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Picornaviral IRES elements replacing the RABV N/P gene border have been shown not only to 

be tolerated within the RABV genome but also to facilitate translation of the P protein from 

a bicistronic N-IRES-P gene (Marschalek et al., 2009). With the aim of providing “helper” 

proteins directly translated from the RABV antigenome-like RNA instead of providing them in 

trans, the question arose whether these IRES elements sufficiently initiate translation of P 

protein from full-length antigenomic RNA, thus allowing to omit the P “helper” plasmid for 

recovery of recombinant RABV from cDNA. To address this question, rescue experiments 

were performed. 

In the previously described virus SAD PVP the N/P gene border is replaced by a poliovirus 

IRES (figure 18A). Thus the virus instead of terminating transcription after the N gene, 

continues and transcribes a bicistronic mRNA. Translation of the P ORF is dependent on the 

PV IRES. A new cDNA, pSAD T7-HH_PVP(mono)_SC, was constructed analogously to the 

pSAD PVP (labeled pSAD PVP(bi) for differentiation) but with the PV IRES downstream of the 

N/P gene border. The idea behind this construct was to use the IRES element only for rescue 

of the antigenome RNA but to have the viral mRNA translated cap-dependently. As the 

“helper” proteins are translated dependent on an EMCV IRES, also this IRES element was 

tested, in the construct pSAD T7-HH_EP(mono)_SC. It was assumed that SAD PVP(mono) and 

SAD EP(mono) in contrast to SAD PVP(bi) would benefit from having the wild type-like 

transcriptional gradient regarding their N and P mRNAs. Notably, from now on all full-length 

RABV cDNA constructs were generated based on the improved cDNA pSAD T7-HH_L16_SC 

shown in part 3.2 of this work thus comprising the HHRz to process the 5’-end and the 

improved SC1 to process the 3’-end of the antigenome-like RNA (exceptions are mentioned 

individually). 

First 10 µg of the 3 constructs pSAD T7-HH_PVP(bi)_SC, pSAD T7-HH_PVP(mono)_SC or pSAD 

T7-HH_EP(mono)_SC were transfected into BSR T7/5 cells using CaPO4. As controls, un-

transfected cells were infected with SAD L16 (MOI=1) or not. 48 h p.t. the cells were lysed 

and subjected to Western blot analysis. Whereas from constructs pSAD T7-HH_PVP(bi)_SC 

and pSAD T7-HH_PVP(mono)_SC only little P was made, the EMCV IRES in pSAD T7-

HH_EP(mono)_SC was directing translation of significantly increased amounts of P protein 

from the full-length antigenomic RNA (figure 18B). 
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Figure 18: SAD PVP(bi), SAD PVP(mono) and SAD EP(mono) – different levels of P protein translated from full-length 
antigenomic RNA.  
(A)In SAD L16 (I) all genes are separated by gene borders (V) containing the transcription stop signal (black box), an 
intergenic region (IGR – shaded box) and the transcription start signal (white arrow). In SAD PVP(bi) (II) the N/P gene border 
(VI)is replaced by the PV IRES. In SAD PVP(mono) (III) the PV IRES is inserted downstream of the N/P gene border (VII). In 
SAD EP(mono) (IV) the EMCV IRES is inserted downstream of the gene border (VIII). (B) Western blot of BSR-T7/5 cell lysates 
48 h p.t. of 10 µg pSAD EP(mono), pSAD PVP(mono) or pSAD PVP(bi). Controls were BSR-T7/5 cells infected with SAD L16 
(MOI=1) or uninfected. Boxes: P: polivirus IRES, E: EMCV IRES, IGR: intergenic region. 
 

To evaluate if the levels of P protein translated directly from the full-length RNA were 

sufficient to rescue the respective viruses, standard rescue experiments were performed 
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3.2 of this thesis (exceptions are mentioned individually). BSR T7/5 cells in 6-well plates were 

transfected with 10 µg of either pSAD T7-HH_PVP(bi)_SC, pSAD T7-HH_PVP(mono)_SC or 

pSAD T7-HH_EP(mono)_SC together with 5 µg pTIT-N and 2.5 µg pTIT-L using CaPO4. 2.5 µg 

of pTIT-P were co-transfected or not. Although viruses could be rescued successfully from all 

constructs, only SAD EP(mono) could be rescued without additional P “helper” plasmid 

(table 2). This reflects the higher levels of P protein present in the cells upon transfection of 

pSAD T7-HH_EP(mono)_SC in contrast to the poliovirus IRES containing constructs. 

 

Table 2: EMCV IRES allows rescue without P “helper” plasmid. 
 

 +N +P +L 1. 
Pass. 
(3d) 

2. 
Pass. 
(6d) 

Transf. 
Cells 
(6d) 

pSAD EP(mono) + + + 3/8 5/8 8/8 

+ - + 2/10 3/10 5/10 

pSAD PVP(bi) + + + 2/2 2/2 2/2 

+ - + 0/4 0/4 0/4 

pSAD PVP(mono) + + + 4/6 5/6 6/6 

+ - + 0/7 0/7 0/7 

 

3.3.2 SAD N2AP – Expression of 2 proteins from 1 ORF. 

By making use of picornavirus 2A-like elements, 2 proteins can be translated from a single 

ORF. The upstream protein carries the 2A-like sequence at its C-terminus whereas the 

downstream protein begins with an N-terminal proline. In contrast to an IRES element no de 

novo-translation initiation takes place at the 2A-like sequence.  

The RABV N/P gene border together with the N 3’-UTR and the P 5’-UTR were replaced by a 

cDNA sequence from the picornavirus Thosea asigna virus coding for a 2A-like sequence 

resulting in pSAD N2AP (figure 19A). Standard rescue experiments were performed in BSR 

T7/5 cells with pSAD T7-HH_N2AP_SC and “helper” plasmids pTIT-N, pTIT-P and pTIT-L. 

Recombinant virus could be generated successfully from cDNA. Stocks were made from the 
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virus SAD N2AP. Multistep growth curves revealed the RABV SAD N2AP to be attenuated 

compared to the wild-type SAD L16 (figure 19B).  

 

Figure 19: SAD N2AP – Expression of 2 proteins from 1 ORF.  
(A) In SAD N2AP the 2A-like sequence was inserted in-frame between the N-ORF and the P-ORF, replacing the N/P gene 
border and untranscribed flanking sequences. Box 2: 2A-like sequence. (B) Multistep growth curve for SAD N2AP in 
comparison to SAD L16 indicates attenuation. (C) BSR-T7/5 cells were infected with either SAD L16, SAD N2AP (MOI=1) or 
uninfected. WB of cell lysates 48 h p.i. The red circle indicates residual read-through translation product. 
 

To analyze the amounts of viral protein expression, BSR T7/5 cells were infected with either 

SAD L16, SAD N2AP (MOI = 1) or left un-infected. 48 h p.i. the cells were lysed and Western 
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distinct proteins (N-2A and P) from one ORF. Nevertheless, compared to SAD L16 the 

expression of P was reduced. 
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generated by inserting the cDNA sequences of the EMCV IRES downstream of the G/L gene 

border into the 5’-UTR of the L gene directly upstream of the L ORF (figure 20A). 

 

Figure 20: SAD EL – EMCV IRES upstream of the L gene.  
(A) Genome organization of SAD EL: translation of L from primary transcript and monocistronic EL mRNA in virus life cycle. 
Box E: EMCV IRES. (B) Multistep growth curve for SAD EL in comparison to SAD L16. BSR-T7/5 cells in T25 flasks were 
infected with MOI=0.01. 
 

Again standard rescue experiments were performed with pSAD T7-HH_EL_SC together with 

pTIT-N and pTIT-P. The “helper”-plasmid pTIT-L, coding for the L protein, was either co-

transfected or not. The virus SAD EL could be rescued together with N, P and L and was 

viable. Noteworthy it could also be rescued when the pTIT-L was omitted (table 3) indicating 

the EMCV IRES to initiate the translation of L protein from the full-length RNA at sufficient 

levels. 

 

Table 3: EMCV IRES allows rescue without L “helper” plasmid. 
 

 +N +P +L 1. 
Pass. 
(3d) 

2. 
Pass. 
(6d) 

Transf.Cells 
(6d) 

pSAD EL + + + 0/4 3/4 4/4 

+ + - 0/4 2/4 3/4 
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SAD EL was recovered from rescue experiments and virus stocks were produced. Multi-step 

growth curves were performed by infecting BSR T7/5 cells with either SAD L16 or SAD EL 

(MOI = 0.01). SAD EL was attenuated compared to SAD L16 most probably due to the 

additional IRES sequences (figure 20B) assumed to result in lower L levels than for SAD L16. 

3.3.4 SAD EN: N expression but no rescue – double N gene catches on. 

As demonstrated for the P and the L proteins, it was attempted to translate the RABV N 

protein directly from the full-length RNA by means of IRES elements. Directly downstream of 

the leader sequence and upstream of the AUG of the N ORF an FseI restriction site was 

created followed by insertion of either the EMCV IRES (SAD EN – figure 21A-I) or the PV IRES 

(SAD PVN – figure 21A-II). As the IRES elements with their extensive secondary structure 

were thought to possibly interfere with functions of the leader RNA, a GFP gene was 

inserted between the FseI site and the EMCV IRES as a Spacer (SAD GFPEN – figure 21A-III), 

thus, resulting in a bicistronic GFP-IRES-N gene. Several standard rescue experiments were 

performed in BSR T7/5 cells transfected with pSAD T7-HH_EN_SC, pSAD T7-HH_PVN_SC or 

pSAD T7-HH_GFPEN_SC together with pTIT-P, pTIT-L in the presence or absence of pTIT-N. 

However, none of these experiments resulted in rescue of a viable virus (table 4). 

As it was demonstrated for the N-IRES-P RABVs (3.3.1) that an IRES element downstream 

of the N gene is well tolerated a similar approach was applied for the N protein. By inserting 

a complete N ORF via the FseI site directly upstream of the EMCV IRES in pSAD T7-

HH_EN_SC, or the PV IRES in pSAD T7-HH_PVN_SC respectively, the constructs pSAD T7-

HH_NEN_SC or pSAD T7-HH_NPVN_SC were generated (figure. 21A-IV and V). These should 

result in viruses transcribing a bicistronic N-IRES-N mRNA. The first N ORF (N1) should be 

translated cap-dependently, whereas expression of the second (N2) should be dependent on 

the IRES element. The IRES dependent N2 should be translated directly from the naked full-

length RNA during rescue. 

Again standard rescue experiments were performed and together with pTIT-P, pTIT-L and 

pTIT-N both viruses SAD NEN and SAD NPVN could be recovered from their cDNA constructs. 

Most importantly, SAD NEN, but not SAD NPVN, could be rescued in the absence of the N 

“helper” plasmid (table 4) which is most likely due to the higher activity of the EMCV IRES. 

To compare levels of N protein expressed from the different plasmid constructs, 5 µg of 

pTIT-N, pSAD T7-HH_EN_SC, pSAD T7-HH_PVN_SC, pSAD T7-HH_GFPEN_SC, pSAD T7-
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HH_NEN_SC, pSAD T7-HH_NPVN_SC or as control pSAD T7-HH_L16_SC were transfected into 

BSR T7/5 cells in 6-wells using Lipofectamine 2000. 48 h p.t. the cells were lysed and 

Western blot was performed. N protein was detected using the S50 antibody (α-RVN, α-RVP) 

(figure 21B). Whereas the highest N levels were observed for pTIT-N (lane 1), reasonable 

amounts were made for all constructs containing the EMCV IRES, namely pSAD T7-

HH_EN_SC (lane 3), pSAD T7-HH_GFPEN_SC (lane 5) and pSAD T7-HH_NEN_SC (lane 6). As it 

was observed for the P protein before ( 3.3.1) the PV IRES was not able to translate 

substantial levels of N protein from the full-length construct (lane 4 and lane 7). 

Interestingly, a very tiny band of N protein was observed even for the construct pSAD T7-

HH_L16_SC, deriving most probably from leaky ribosomal scanning and translation initiation 

at the N-AUG (lane 8). Noteworthy, the defect of the constructs pSAD EN and pSAD GFPEN 

to give rise to viable viruses is not due to defects in N expression. 

 

Figure 21: SAD EN sufficient N expression but no rescue – double N gene catches on. 
(A)Constructs to translate N from an IRES: pSAD EN (I), pSAD PVN (II), pSAD GFPEN (III), pSAD NEN (IV), pSAD NPVN (V). 
Boxes: E: EMCV IRES, P: poliovirus IRES. (B) WB of BSR-T7/5 cells 48 h p.t. of 10 µg of either pSAD EN, 10 µg pSAD PVN, pSAD 
GFPN, pSAD NEN or pSAD NPVN. As controls 5 µg pTIT-N or cells were not transfected. (C) Multistep growth curve of SAD 
NEN and SAD NPVN in comparison with SAD L16. BSR-T7/5 cells were infected with MOI=0.01. 
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Stocks were grown from successful rescue approaches of SAD NEN and SAD NPVN. BSR T7/5 

cells were infected with either of the two viruses or SAD L16 to determine growth kinetics in 

a multistep growth curve (figure 21C). SAD NEN and SAD NPVN were slightly attenuated 

compared to SAD L16. However, their growth kinetics was indistinguishable, indicating most 

N protein during virus life cycle to be made from the first N gene in both viruses, as the IRES 

element did not seem to have a major influence.  

3.3.5 Significance of cis-active N sequences 

Although all constructs were translating the same amount of N protein from their primary 

full-length transcript, only pSAD T7-HH_NEN_SC but not pSAD T7-HH_EN_SC or pSAD T7-

HH_GFPEN_SC could be rescued. This indicated the existence of cis-active sequences within 

the N gene, important for RABV viability. To further analyze this I constructed the plasmids 

pSAD T7-HH_N100EN_SC(Fse) (figure 22A-I) and pSAD T7-HH_N200EN_SC(Fse) (figure 22A-

II). Both had the FseI restriction site at the leader-N gene junction followed by either the 5’-

100 nts or the 5’-200 nts of the N gene, again followed by the EMCV IRES and the second and 

full N gene. Rescue attempts revealed that only pSAD T7-HH_N200EN_SC(Fse) but not pSAD 

T7-HH_N100EN_SC(Fse) could be rescued (table 4).  

Now multiple evidence indicated the importance of cis-active sequences within the N gene, 

although for RABV such sequences were described to occur only in the leader and trailer 

regions and in the intergenic regions. Therefore it was not unlikely that also the FseI 

restriction site at the leader-N gene junction might play a role and attenuates the RABV SAD 

N200EN(Fse). 

To test this possibility, I removed these 8 nts restoring the wt sequence. Additionally I 

inserted an eGFP gene in an extra transcription unit between the G and the L gene. The 

resulting new constructs were pSAD T7-HH_N100EN G_eGFP_SC (figure 22A-III) and pSAD 

T7-HH_N200EN G_eGFP_SC (figure 22A-IV). Again standard rescue experiments were 

performed. Both viruses could be recovered from cDNA (table 4). SAD N100EN G_eGFP 

however was hard to detect in the supernatant and eGFP positive foci were only detected 6 

d after passaging (figure 22B). When the plasmid pTIT-N was omitted in the rescue 

transfection, both constructs pSAD T7-HH_N100EN G_eGFP_SC as well as pSAD T7-

HH_N200EN G_eGFP_SC lead to the successful rescue of viruses (table 4).  
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Table 4: EMCV IRES allows rescue without N “helper” plasmid. 
(* Only single positive cells, no virus recovered) 

 +N +P +L 1. 
Pass. 
(3d) 

2. 
Pass. 
(6d) 

Transf. 
Cells 
(6d) 

3. 
Pass. 
(9d) 

Transf. 
Cells 
(9d) 

pSAD EN  + + + 0/8 0/8 (2)/8* n.d. n.d. 

 - + + 0/5 0/5 0/5 n.d. n.d. 

pSAD PVN  + + + 0/12 0/12 0/12 n.d. n.d. 

 - + + 0/12 0/12 0/12 n.d. n.d. 

pSAD GFPEN  + + + 0/10 0/10 (4)/10* n.d. n.d. 

 - + + 0/6 0/6 0/6 n.d. n.d. 

pSAD NEN  + + + 4/4 4/4 4/4 n.d. n.d. 

 - + + 2/5 2/5 2/5 n.d. n.d. 

pSAD NPVN  + + + 4/4 4/4 4/4 n.d. n.d. 

 - + + 0/4 0/4 0/4 n.d. n.d. 

pSAD N100EN(Fse) + + + 0/11 0/11 0/11 n.d. n.d. 

 - + + 0/5 0/5 0/5 n.d. n.d. 

pSAD N200EN(Fse) + + + 2/8 6/8 7/8 n.d. n.d. 

 - + + 0/4 0/4 0/4 0/4 1/4 

pSAD N100EN G_eGFP + + + 0/8 2/8 6/8 n.d. n.d. 

 - + + 0/5 0/5 6/9 n.d. n.d. 

pSAD N200EN G_eGFP + + + 0/8 1/8 8/8 n.d. n.d. 

 - + + 0/5 0/5 6/9 n.d. n.d. 

pSAD NEN G_eGFP + + + 2/3 3/3 3/3 n.d. n.d. 

 - + + 0/4 0/4 3/8 n.d. n.d. 

pSAD N100(mut)EN G_eGFP + + + n.d. n.d. 2/4 n.d. n.d. 

 - + + n.d. n.d. 4/4 n.d. n.d. 

pSAD N200(mut)EN G_eGFP + + + n.d. n.d. 4/4 n.d. n.d. 

 - + + n.d. n.d. 4/4 n.d. n.d. 
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The differences in viability observed for SAD N100EN(Fse) and SAD N100EN G_eGFP, 

underline the importance of cis-active sequences at the leader-N gene junction for RABV 

viability. Moreover, the obvious difference in fitness between SAD N100EN G_eGFP and SAD 

N200EN G_eGFP further emphasized the importance of sequences within the N-coding 

region. To first exclude the possibility of small inhibitory N-peptides being expressed from 

the N100 or N200 sequence directly downstream the leader, the first AUG of N100 or N200, 

respectively, was mutated to UUG thereby constructing the plasmids pSAD T7-

HH_N100(mut)EN G_eGFP_SC (figure 22A-V) and pSAD T7-HH_N200(mut)EN G_eGFP_SC 

(figure 22A-VI). Again standard rescue experiments as well as rescue experiments without 

pTIT-N were performed and from both constructs recombinant viruses could be recovered 

with or without pTIT-N (table 4). The virus SAD N100(mut)EN G_eGFP grew very slowly and 

made very small foci visible significantly later than others (figure 22B). 

To compare the growth kinetics of the viruses with different sequences following the leader, 

a single-step growth experiment was performed. BSR T7/5 cells were infected with SAD 

N100EN G_eGFP, SAD N200EN G_eGFP or SAD NEN G_eGFP and in addition with SAD 

N100(mut) G_eGFP or SAD N200(mut) G_eGFP (MOI=1). Also SAD N200EN(Fse), the virus 

still containing the FseI sequence after the leader, SAD GFP and SAD L16 were included as 

controls. Cells infected with viruses expressing eGFP were monitored for eGFP expression 24 

h and 48 h p.i. (figure 22D). 48 h p.i. the supernatants were collected and titrated (figure 

22C). To compensate for the growth difference that was observed already for the foci size 

(figure 22B), titrations for SAD L16 were fixed after 2 d whereas titrations for SAD 

N200EN(Fse) were fixed after 4 d. Titrations for viruses expressing eGFP were monitored 

daywise for eGFP expression and fixed when foci were big enough for detection, but before 

the onset of secondary spread. For SAD N200EN G_eGFP a modest attenuation (about 1.5 

log steps) in growth kinetics was observed in comparison to SAD eGFP and SAD NEN G_eGFP. 

Also the eGFP expression was reduced compared to the latter ones. Viruses comprising only 

100 nts of the N gene were slightly more attenuated as indicated by comparison of SAD 

N100EN G_eGFP with SAD N200EN G_eGFP. SAD N100EN G_eGFP was growing lower titers 

and also significantly less eGFP was expressed 24 h p.i. The same was true for viruses with 

the UUG mutation as indicated by comparison of SAD N200(mut)EN G_eGFP with SAD 

N200EN G_eGFP. The combination of both attenuating factors, 100 instead of 200 nts of the 
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N gene following the leader and the UUG mutation, however, as observed for SAD 

N100(mut)EN G_eGFP lead to a severe  

 

Figure 22: N sequences have a cis-active function. 
(A) Genome organization of new constructs: (I) pSAD N100EN(Fse), (II) pSAD N200EN(Fse), (III) pSAD N100EN G_eGFP, (IV) 
pSAD N200EN G_eGFP, (V) pSAD N100(mut)EN G_eGFP, (VI) pSAD N200(mut)EN G_eGFP. Box E: EMCV IRES. (B) Comparison 
of foci after titration. The cells were photographed 48 h p.i. under UV-light. Size bar = 100 µm.  (C) Single-step growth curve 
of different N-sequence mutants. BSR-T7/5 cells were infected with SAD N100EN G_eGFP, SAD N200EN G_eGFP, SAD NEN 
G_eGFP, SAD G_eGFP, SAD 100(mut)EN G_eGFP, SAD N200(mut)EN G_eGFP, SAD N200EN(Fse) or SAD L16 (MOI=1). 48 h 
p.i. supernatants were taken and titrated. (D) EGFP expression was monitored during infection for single-step growth curve 
24 and 48 h p.i. under UV light. Size bar = 100 µm. 
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reduction in virus viability. This virus was found to have titers more than 10,000-fold 

reduced and no eGFP was observed 24 and 48 h p.i. These results correspond with the fact 

that we could not recover SAD N100EN(Fse). This RABV construct also has only 100 nts of the 

N gene and due to the FseI site a disruption at the leader-N gene junction. 

Together these data indicate that cis-active sequences that have not been described yet are 

important for RABV viability. It can be concluded that parts of these sequences are located 

directly at the leader-N gene junction, and more downstream within the N gene. 

3.3.6 Combining IRES elements and 2a-like sequences – towards an infectious RABV 

cDNA clone 

As RABV constructs were already successfully created that could be rescued either without 

“helper” plasmids for P (3.3.1), L (3.3.3) or N (3.3.4, 3.3.5), and virus constructs that 

express two proteins from one ORF, using 2A-like sequences (3.3.2), the next step was to 

combine these approaches with the final goal to omit all “helper”-plasmids for the virus 

rescue. Namely, to generate a single infectious RABV cDNA clone.  

The first step was to generate the construct pSAD T7-HH_NEN_EL_SC. This new construct 

was purposed to translate both N and L directly from the full-length RNA (figure 23-I). 

Importantly, in contrast to pSAD T7-HH_NEN_SC, pSAD T7-HH_NEN_EL_SC lacked the FseI 

site at the leader-N gene junction due to the cloning strategy applied (For details see 

Materials and Methods). 

 

Figure 23: Combining IRES elements and 2A-like sequences – towards the infectious clone.  
Genome organization of SAD NEN EL (I), SAD NEN2AP (II), SAD NENEP (III) and of the two single infectious clones SAD 
NEN2APEL (IV) and SAD NENEPEL (V). Boxes: E: EMCV IRES, 2: 2A-like sequence. 
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In standard rescue experiments, this construct yielded recombinant virus SAD NEN_EL either 

when co-transfected with pTIT-N, pTIT-P and pTIT-L, and also if only pTIT-P was co-

transfected. This demonstrates the possibility to replace two “helper” plasmids (pTIT-N and 

pTIT-L) by the insertion of IRES elements upstream of the respective genes in the full-length 

RABV cDNA (table 5). 

 

Table 5: Combination of IRES elements and 2A-like sequences – the infectious clone. 
 

 +N +P +L 1. 
Pass. 
(3d) 

2. 
Pass. 
(6d) 

Transf. 
Cells 
(6d) 

3. 
Pass. 
(9d) 

Transf. 
Cells 
(9d) 

pSAD NEN_EL (I) + + + 2/2 2/2 2/2 n.d. n.d. 

 - + - 0/2 0/2 2/2 n.d. n.d. 

pSAD NEN2AP (II) + + + 4/4 4/4 4/4 n.d. n.d. 

 - - + 3/4 4/4 4/4 n.d. n.d. 

pSAD NENEP (III) + + + 2/4 3/4 3/4 n.d. n.d. 

 - - + 0/2 0/2 1/2 1/2 2/2 

pSAD NEN2APEL (IV) - - - 1/22 5/22 13/22 4/14 8/14 

 + - - 2/7 2/7 2/7 2/7 3/7 

 - + - 0/7 1/7 3/7 3/7 4/7 

 - - + 1/7 1/7 5/7 4/7 5/7 

 + + + 6/7 7/7 7/7 7/7 7/7 

pSAD NENEPEL (V) - - - 4/9 4/9 9/9 n.d. n.d. 

 + - - 0/3 2/3 3/3 3/3 3/3 

 - + - 0/3 0/3 3/3 3/3 3/3 

 - - + 0/3 0/3 0/3 0/3 1/3 

 + + + 3/3 3/3 3/3 n.d. n.d. 
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The next step was to equip the NEN approach together with IRES elements or a 2alike 

sequence in order to support the translation of N and P. The constructs pSAD T7-

HH_NEN2AP_SC (figure 23–II) and pSAD T7-HH_NENEP_SC (figure 23-III), for viruses with a 

tricistronic NEN2AP mRNA or a bicistronic NEN mRNA together with a monocistronic EP 

mRNA, were generated. For pSAD T7-HH_NENEP_SC it was expected that the N protein and 

the P protein will be translated independently from their own upstream EMCV IRES 

elements. For pSAD T7-HH_NEN2AP_SC, however, only the IRES element upstream of the 

second N gene will provide translation initiation. As a single ORF, N2AP, will be translated 

and, directed by the 2A-like sequence, this translation will result in two distinct proteins: 

N2A and P. For both constructs during cloning the FseI site downstream of the leader was 

deleted and the sequence leader-N-AUG was restored to wild-type like. 

The plasmids pSAD T7-HH_NENEP_SC and pSAD T7-HH_NEN2AP_SC were co-transfected 

with either all of the three “helper” plasmids or only pTIT-L into BSR T7/5 cells using CaPO4. 

Together with the three “helper” plasmids all four constructs yielded recombinant viruses 

namely SAD NENEP and SAD NEN2AP (table 5), indicating their viability. Moreover, when 

pTIT-N and pTIT-P were omitted in the transfection mix and only pTIT-L was supplied, SAD 

NENEP and SAD NEN2AP could be successfully rescued. This demonstrates translation of the 

N and P protein directly from their full-length antigenome-like RNAs. 

The ultimate step was to replace all three “helper” plasmids by cis-active sequences. The 

plasmids pSAD T7-HH_NEN2APEL_SC and pSAD T7-HH_NENEPEL_SC were constructed 

(figure 23-IV and V). Again the FseI site at the leader-N gene junction was restored to wild-

type. 

After transfection into BSR T7/5 cells using CaPO4 both constructs resulted in the recovery of 

viable viruses. Most importantly, both constructs could be rescued without co-transfection 

of any “helper” plasmids (table 5). These constructs were the first single infectious cDNA 

clones of an NNSV demonstrating the successful replacement of all “helper” plasmids by 

introducing cis-active sequences into the viral cDNA (and genomes). 

The rescue of SAD NENEPEL with about 50 % of experiments being positive after the first 

passage of supernatant was significantly more efficient than the rescue of SAD NEN2APEL 

where this ratio of positive rescues was only seen 6 d p.t. in the transfected cells and 

supernatants were tested positive at lower ratios (table 5). Co-transfection of either of the 
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“helper” plasmids had no significant impact on rescue efficiencies. However when all 3 

“helper” plasmids were co-transfected the efficiency was increased for both, SAD NENEPEL 

and SAD NEN2APEL. This indicated that the ratio of “helper” proteins made from the 

infectious clones is not the cause of lower rescue efficiencies. 

3.3.7 Infectious cDNA clones as “helper” plasmids 

Rescue of recombinant RABV depends on production of “helper” proteins on one hand and 

the individual attenuation of the respective constructs, due to introduced changes to the 

viral genome, on the other hand. In regard to the rescue efficiencies of the single infectious 

RABV cDNA clones it was therefore necessary to distinguish between their respective 

expression of “helper” proteins during rescue and other attenuating factors that result in 

different growth kinetics and viability of the rescued viruses. 

Therefore a standard RABV cDNA, pSAD T7-HH_GFP_SC, was rescued using either of the 

infectious cDNA clones or the standard pTIT-NPL-mix to supply the “helper” proteins. Rescue 

transfections were performed in BSR T7/5 cells using CaPO4. 10 µg pSAD T7-HH_GFP_SC was 

co-transfected with either 5 µg pTIT-N, 2.5 µg pTIT-P and 2.5 µg pTIT-L, or with 10 µg pSAD 

T7-HH_NEN2APEL_SC or pSAD T7-HH_NENEPEL_SC, respectively. 

UV microscopy allowed the monitoring of the GFP expression resulting from successful 

recovery of SAD GFP virus. The infectious cDNA clone pSAD T7-HH_NENEPEL_SC performed 

nearly as good as the pTIT-NPL-mix to rescue SAD GFP, whereas SAD GFP was recovered with 

a certain delay from its cDNA after transfection of pSAD T7-HH_NEN2APEL_SC as “helper” 

plasmid (table 6). 

 

Table 6: Infectious clones as “helper” plasmids. 
 

„helper“ plasmid(s) 1d 2d 3d 4d 5d 6d 7d 8d 9d 

pTIT-N/P/L 0/3 3/3 3/5 3/3 3/3 5/5 3/3 n.d. 2/2 

pSAD NENEPEL 0/3 1/3 4/5 3/3 3/3 5/5 3/3 n.d. 2/2 

pSAD NEN2APEL 0/3 0/3 0/5 1/3 3/3 4/5 3/3 n.d. 2/2 
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3.3.8 SAD NEN2APEL – a virus with a tricistronic mRNA 

The viruses successfully recovered from the single infectious cDNA clones were used to 

produce virus stocks in order to analyze their growth behavior and to determine their degree 

of attenuation.  

To determine the growth kinetics, BSR T7/5 cells were infected with either SAD NEN2APEL or 

SAD L16 (MOI = 0.01) and multistep growth experiments were performed resulting in growth 

curves. SAD NEN2APEL was strongly attenuated, only growing to titers reduced about 2 log 

steps in comparison to the wild-type virus (figure 24A). To look for sequence stability, SAD 

NEN2APEL was passaged on BSR T7/5 cells by transferring the supernatant every 4 – 5 days 

onto fresh cells. In total, the virus was passaged 17 times. The passaged virus (SAD 

NEN2APEL pass) together with the original SAD NEN2APEL was subjected to deeper analysis. 

For Western blot analyses, BSR T7/5 cells were infected with SAD NEN2APEL, SAD NEN2APEL 

pass, SAD NEN2AP, SAD N2AP, SAD NEN, SAD EL, or SAD L16 (MOI = 0.05). 96 h p.i. the cells 

were lysed and WB was performed using antibodies against RABV N (S86), RABV P (FCA) or 

β-actin (figure 24B). For SAD L16, SAD NEN and SAD EL the N protein was detected at 50 kD 

(left panel – lanes 3, 6 and 7). In SAD N2AP the N protein is made by translation from the 

N2AP ORF. After release from the ribosome, the N protein therefore comprises the C-

terminal 2A peptide sequence. It clearly runs higher than wild-type N (lane 4). SAD NEN2AP 

as well as SAD NEN2APEL expresses two different N proteins. From their first N gene normal 

N is made by cap-dependent translation. Translation of protein from the second N gene 

depends on the EMCV IRES. This product of the second gene again has the C-terminal 2A-tag. 

Therefore the two N products can be easily distinguished (lanes 1, 2 and 4).  

The P gene of RABV from strain SAD L16 produces full length RABV P (P1), and minor 

amounts of P2, P3 and P4, truncated products that derive from translation initiation at the 

second, third and fourth in-frame AUG by ribosomal leaky scanning. For SAD L16, SAD NEN 

and SAD EL P2 can be detected being slightly smaller than P1 (right panel – lanes 3, 6 and 7). 

The P protein in SAD N2AP, SAD NEN2AP and SAD NEN2APEL (lanes 1, 2, 4 and 5) is 

translated from the N2AP or NEN2AP mRNA. Its translation starts with the AUG from the N 

gene. Therefore no P2 can be made and detected. 
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Figure 24: SAD NEN2APEL – a closer look. 
(A)Multistep growth curve for SAD NEN2APEL in comparison to SAD L16.BSR-T7/5 cells in T25 flasks were infected with 
MOI=0.01. (B) BSR-T7/5 cells were infected with SAD NEN2APEL, SAD NEN2APEL(pass), that was passaged 17 times, SAD 
NEN2AP, SAD N2AP, SAD NEN, SAD EL SAD L16 (MOI=0.05) or uninfected. 96 h p.i. the cells were lysed and protein levels 
were detected by WB using anti-N and anti-P antibodies. (C)From 50 percent of the cells infected in (B) total RNA was 
isolated. Northern blot analysis using radioactively labeled probes against the N and P gene were used to detect genomic 
and subgenomic RNA fragments.  
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To analyze the RNA species made from SAD NEN2APEL, BSR T7/5 cells were infected with 

SAD L16, SAD N2AP, SAD NEN2AP, SAD NEN2APEL or the passaged SAD NEN2APEL pass (MOI 

= 0.05). 96 h p.i. the cells were lysed and total RNA was isolated. RNA was used for Northern 

blot analysis and radioactively labeled probes against the N gene or the P gene were 

generated and used to incubate the membranes. With the N probe for RNA from SAD L16 

infected cells, the SAD NEN2APEL genome comprises >10 kb. The monocistronic N mRNA 

runs at about 1.5 kb (left panel – lane 1). This corresponds to the length of the N gene and 

about 300 nts of poly(A). With the P probe the P mRNA is detected at about 1.2 kb 

corresponding to 900 nts of the P gene together with 300 nts poly(A) (right panel – lane 1). 

For SAD N2AP (both panels – lane 3) neither of these mRNAs is detected with the N probe 

and P probe, however the N2AP mRNA is detected at about 2.5 kb reflecting 1.25 kb of the N 

gene, the small 2A-like sequence (60 nt), the P gene (0.9 kb) and the poly(A) tail. In addition, 

a second prominent band is detected with the N probe, running at 4 kb that however is not 

seen with the P probe. 

SAD NEN2AP and SAD NEN2APEL express their N and P proteins from a tricistronic mRNA 

that is detected with the N and P probe at about 4.5 kb. The genomes of these viruses are 

clearly detected at a higher size due to the additional N gene (both panels – lanes 4, 5 and 

6). 

No rearrangements were detected for the passaged SAD NEN2APEL pass compared to the 

un-passaged virus.  

3.3.9 SAD NENEPEL – recombination has occurred 

SAD NENEPEL, one of the viruses generated from the single infectious cDNA clones, was also 

subjected to deeper analysis. 

BSR T7/5 cells in 6-wells were infected with SAD NENEPEL, SAD NEN, SAD EP, SAD EL and 

SAD L16 (MOI = 0.5). As additional controls, SAD NEN2APEL, SAD NEN2AP and SAD N2AP 

were used for infection with the same MOI. 48 h p.i. the cells were lysed and total RNA was 

isolated. The RNAs were subjected to Northern blot analysis and RNA fragments were 

detected using an N probe (figure 25A). 

For SAD NEN2APEL, as well as for SAD NEN2AP (lanes 1 and 7) again the 4.5 kb tricistronic 

NEN2AP mRNA was detected ( compare to figure 24C). The bicistronic NEN mRNA could 
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be detected in SAD NEN infected cells at about 3.5 kb (figure 25A - lane 3) as it was expected 

from the design and sequence of the construct. However for this virus a shorter fragment of 

about 1.6 kb was also detected, corresponding in size to the monocistronic N mRNA that was 

seen for SAD EP, SAD EL and SAD L16 (lanes 4, 5 and 8). N mRNA of this size was not 

expected to be made by SAD NEN. Finally, for SAD NENEPEL, the pattern of fragments 

differed significantly from what was expected (lane 2). At first, the bicistronic NEN mRNA as 

in SAD NEN at about 3.5 kb was not present. In contrast, the most prominent band detected 

was an mRNA running slightly below 3 kb. Secondly, the genome of SAD NENEPEL appeared 

to be smaller than the one detected for SAD NEN2APEL. This again is in disagreement with 

the expectations. 

As from the Northern blot analysis SAD NENEPEL appeared not to be what it should be, 

additional viruses were recovered from several independent rescue experiments with the 

single infectious cDNA pSAD T7-HH_NENEPEL_SC. The virus which was recovered originally 

and detected to have the “wrong” pattern of RNA fragments (compare figure 25A – lane 

2) was named SAD NENEPEL 1, the newly rescued viruses SAD NENEPEL 2 – 7. Stocks from all 

SAD NENEPEL viruses and SAD L16 were used to infect BSR T7/5 cells (MOI = 0.5). 48 h p.i. 

the cells were lysed and total RNA was isolated. The RNAs were subjected to Northern blot 

analysis and RNA fragments were detected using an N probe or a P probe (figure 25B). 

SAD NENEPEL 1 in figure 25A was shown to transcribe an mRNA which is running at about 3 

kb instead of the expected bicistronic NEN mRNA (3.5 kb). This product again was detected 

using the N probe (figure 25B - left panel, lane 6). The same was true for all the viruses 

except for SAD NENEPEL 2 (lane 1), which was the only one showing the correct pattern. For 

SAD NENEPEL 3, SAD NENPEL 6 and SAD NENEPEL 7 both bands were visible with the N 

probe, the correct 3.5 kb and the 3 kb mRNA (lanes 2, 4 and 5). Additionally all SAD NENEPEL 

independently on the correct size of the NEN mRNA made smaller RNA fragments, running 

slightly higher than the monocistronic N mRNA from SAD L16 (lane 7). One possibility is that 

they derive from premature termination in the EMCV sequences downstream the first N 

gene, during either transcription, or replication. To a lesser extent, they can also be detected 

in SAD NEN2APEL infected cells ( compare figure 25A). For SAD NENEPEL 6 infected cells 

(figure 25B) - left panel, lane 4) also a fragment is detected, that corresponds in size to the 

monocistronic N mRNA. 
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Figure 25: SAD NENEPEL – recombination observed.  
(A)BSR-T7/5 cells were infected with SAD NENEPEL, SAD NEN, SAD EP, SAD EL, SAD NEN2APEL, SAD NEN2AP, SAD N2AP SAD 
L16 (MOI=0.05) or uninfected. 96 h p.i. the cells were lysed and total RNA was isolated. Northern blot analysis using 
radioactively labeled probes against the N and P gene were used to detect genomic and subgenomic RNA fragments. (B)SAD 
NENEPEL 2 – SAD NENEPEL 7 from 6 new rescues was used to infect BSR-T7/5 cells and total RNA was isolated. RNA in 
comparison to RNA from SAD NENEPEL 1 and SAD L16 was subjected to Northern blot analysis. Radioactively labeled probes 
against the N and P gene were used to detect genomic and subgenomic RNA fragments. (C) Possible recombination events 
coming from SAD NENEPEL (middle): recombination between the two N genes would lead to SAD NEP(mono)EL (upper row) 
recombination between the EMCV IRES would lead to SAD NEP(bi)EL (lower row). (D) Multistep growth curve for viruses 
from individual rescues with pSAD NENEPEL: SAD NENEPEL 1, 2 and 3 in comparison to SAD L16. BSR-T7/5 cells were 
infected with MOI=0.01. (E) Different phenotypes in foci size observed for titrations of (D). Size bar = 100 µm. 
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monocistronic EP mRNA was visible as well (lanes 5 and 6). For SAD NENEPEL 3, 4, and 5 (5 

was excluded from the picture with the N probe due to RNAse contamination) only traces of 

the correct EP mRNA were detected, whereas SAD NENEPEL 1 did not show a signal at the 

correct size (lane 7). More interestingly, with the P probe also a band at 3 kb was detected 

for all viruses but for SAD NENEPEL 2. In combination with the pattern obtained with the N 

probe, this strongly indicates that some recombination events have occurred resulting in the 

viruses SAD NENEPEL 1, 3, 4, 5, 6, and 7. Especially the lack of monocistronic EP mRNA for 

SAD NENEPEL 1 hints to the expression of a bicistronic 3 kb NEP mRNA. This virus can result 

from a recombination event between the EMCV IRES upstream the second N gene and the 

EMCV IRES upstream the P gene (figure 25C – at bottom). Therefore SAD NENEPEL 1 appears 

rather to be SAD NEP(bi)EL 1. In principal also an additional recombination between the two 

N genes could have happened. This however would result in a monocistronic N mRNA and a 

monocistronic EP mRNA (figure 25C – at top). This might have happened in SAD NENEPEL 6, 

for which both of these fragments are detected (left panel – lane 4 and right panel – lane 5). 

Therefore this virus stock appears to be a mix of SAD NEP(mono)EL and SAD NEP(bi)EL. Also, 

in regard to the pattern observed for SAD NEN infected cells (figure 25A – lane 3), this 

possibility is likely, as together with the bicistronic NEN mRNA a shorter fragment is detected 

at the size of the monocistronic N mRNA.  

Whereas SAD NENEPEL 2 seems to be the only un-recombined virus and SAD NEP(bi)EL 1 

seems to be the prototype of a recombined virus all the other virus stocks seemed to consist 

rather of mixtures of the recombined and the un-recombined variant. SAD NEP(mono)EL was 

detected only in rescue No. 6 and only as part of a mixture.  

To determine the influence of the recombined sequences on the growth kinetics, BSR T7/5 

cells were infected with SAD NEP(bi)EL 1 (aka SAD NENEPEL 1), as the recombined prototype, 

SAD NENEPEL 2, as the un-recombined variant, SAD NE(NE)PEL 3, as a mixture of both 

viruses, or SAD L16 (MOI = 0.01) in order to do a multiple-step growth curve (figure 25D). 

The un-recombined SAD NENEPEL 2 was strongly attenuated in comparison with the wild 

type SAD L16. The recombined variant, SAD NEP(bi)EL 1 was growing significantly better, 

indicating a positive influence of the recombination event on the virus vitality. Figure 25E 

shows a detail from fixed cells after the titration of the growth curves. 48 h p.i. SAD NENEPEL 

2 made significant smaller foci compared to SAD L16, whereas the recombination in SAD 
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NEP(bi)EL 1 seemed to rescue this phenotype. For SAD NE(NE)PEL 3, the assumed mixture of 

virus stocks, indeed two different types of foci were detected, small ones resembling SAD 

NENEPEL 2 and bigger ones, resembling SAD NEP(bi)EL 1.  

3.3.10 SAD NENEPEL - recombination most probably on plasmid level 

There are 3 possible explanations where and when the recombination for SAD NENEPEL has 

occurred, at plasmid level (before or after transfection into the cells), during T7 dependent 

transcription, or during replication of the rescued virus. 

To address the latter possibility, the un-recombined virus, SAD NENEPEL 2, should be 

passaged multiple rounds and progeny virus checked for recombination events. Despite of 

displaying the correct pattern of RNA fragments (figure 25B), the presence of already 

recombined sub-species in the virus stock could not be excluded so far. Therefore, single 

virus clones were isolated by serial dilution. Virus stocks were diluted to 20 ffu, 10 ffu or 5 

ffu per 10 ml (figure 26A). For each dilution step, a complete 96 well plate containing BSR 

T7/5 seeded 24 h in advance was infected with 100 µl, resulting in calculated approximately 

20, 10 or 5 infected wells per 96 well plate. 4 d p.i. in each single well the cells were 

detached using trypsin and 75 % from each well were transferred into 24 wells while the 

remaining 25 % were incubated for another 4 d in the 96 wells. Then the cells in the 96 well 

plates were fixed and stained using a FITC-conjugated anti-N antibody. In the 96 well plate 

infected with calculated 10 ffu / 10 ml, 5 wells were positive, in the plate infected with 

calculated 5 ffu / 10 ml 3 were positive. For differentiation they were labeled as clone 1 – 

clone 8, respectively. The corresponding 24 well cultures were expanded to 6 wells. Then 

after 3 d the supernatants were stored at – 80 °C and the cells were lysed and total RNA was 

extracted.  

At the same time 1 ml of the supernatant from 5 of the single virus clones was used to infect 

fresh BSR T7 cells in 6 wells. These cells were referred to as passage 1 (P1). 5 d p.i. 1 ml of 

the supernatants from P1 was passaged to new cells (P2) the remaining was stored at – 80 

°C. The cells from P1 were detached using PBS-EDTA and 75 % were pelleted and total RNA 

was isolated. 25 % were grown further 5 d (P1*). Then from P1* and P2 total RNA was 

isolated as well, whereas the supernatants from P2 were partially stored at – 80 °C and 

passaged further. The scheme of passaging is shown in figure 26B. 

 
 - 90 – 

 





3 – Results 
  

with SAD NENEPEL 2, one passaged SAD NENEPEL 2 single virus clone (SAD NENEPEL 2 pass), 

SAD NEP(bi)EL 1, SAD L16, SAD NEN, SAD EP and SAD EL, at an MOI of 0.05 or were left un-

infected. 96 h p.i. the cells were detached using PBS-EDTA and the suspension was divided 

into 2 halves. One half was lysed in WB buffer for analysis of the protein expression and the 

other half was used to isolate total RNA.  

 

Figure 27: Unrecombined SAD NENEPEL – a closer look. 
(A) BSR-T7/5 cells were infected with SAD NENEPEL 2(5.1) a single clone isolated from SAD NENEPEL 2 or SAD NENEPEL 
pass, virus passaged for 12 weeks at MOI=0.05. As controls the cells were infected with the same MOI with the recombined 
SAD NENEPEL 1, SAD NEN, SAD EP, SAD EL, SAD L16 or not infected.96 h p.i. total RNA was isolated. Northern blot analysis 
using radioactively labeled probes against the N and P gene were used to detect genomic and subgenomic RNA fragments. 
(B) 50 per cent of the infected cells from (A) were lysed and used for Western blot. Anti-P and anti-N antibodies were used 
to detect viral proteins.  
 

1 µg of the RNAs was subjected to Northern blot analysis using N and P probes (figure 27A). 

With both probes, SAD NENEPEL 2 pass and the input virus SAD NENEPEL 2 were 

indistinguishable (left and right panel – lanes 2 and 3). As expected, their genomes were 

significantly larger than the genome of SAD NEP(bi)EL 1 (both panels – lane 1). The bi-
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cistronic NEN mRNA was detected at the correct height analogously to SAD NEN (left panel – 

lane 5). SAD NEN itself also appeared to be a mixture of 2 viruses with a recombination 

event having occurred between the 2 N genes. In this virus the correct bi-cistronic NEN 

mRNA was detected in addition to a mono-cistronic N mRNA, corresponding in size to the N 

mRNA of SAD L16 (left panel – lane 4). With the N probe also 2 genome bands were detected 

for SAD NEN. The smaller one, likely to result from recombination, was running at the same 

height as the SAD L16 genome, whereas the un-recombined genome was running 

significantly higher due to its double N gene. With the P probe for the SAD NENEPEL 2 virus 

and for SAD NENEPEL 2 pass (lanes 2 and 3) but not for the recombined virus SAD NEP(bi)EL 

1, the monocistronic EP mRNA was detected running at the correct height, as seen for SAD 

EP (lane 6). The virus SAD EP(mono) was transcribing significantly larger amounts of mRNA 

compared to SAD L16. An N-EP mRNA was detected with both probes for SAD EP(mono) 

infected cells. This is assumed to result from read-through of the virus polymerase during 

transcription and is often seen as well for SAD L16. Due to the high-transcription phenotype 

of SAD EP(mono), however it was more prominent. This N-EP read-through mRNA was 

running at the same position as the bicistronic NEP mRNA from the recombined virus SAD 

NEP(bi)EL 1. 

Proteins expressed by the viruses were examined by Western blot analysis. Using the RABV 

N antibody (f 27B - left panel) it was observed that N protein levels varied between the 

viruses. SAD NENEPEL 2 and SAD NENEPEL 2 pass made significantly less protein (lanes 3 and 

4) than SAD L16 (lane 2). The recombined variant SAD NEP(bi)EL 1 (lane 1) made levels of N 

protein comparable to the wild-type. Using the P antibody (right panel) a difference in ratio 

between P1 and P2 was observed for the viruses. While SAD L16 (lane 2), as well as the other 

viruses with a wild-type-like P gene (SAD NEN and SAD EL) make significantly more P1 than 

P2, for viruses translating their P from an EMCV virus this seems to be reversed. The 

recombined variant SAD NEP(bi)EL 1 was shown to transcribe only a bicistronic NEP mRNA 

and all the P protein must be translated from the EMCV IRES (lane 1). For SAD EP(mono) 

(lane 6), as well as the viruses SAD NENEPEL 2 and SAD NENEPEL 2 pass (lanes 3 and 4) this 

effect seems to be less prominent, but still the levels of P2 equal the P1 levels. The latter 3 

viruses with their monocistronic EP mRNA therefore seem to initiate translation of P not only 

via the EMCV IRES, but also cap-dependently. 

 - 93 – 
 



3 – Results 
  

3.3.12 Failure of Pol-II dependent rescue of infectious RABV cDNA clones  

The previous experiments were performed in BSR T7/5 cells and the transcripts from the 

infectious RABV cDNAs produced by the T7-pol in the cytoplasm. To try to recover the 

viruses SAD NENEPEL and SAD NEN2APEL in a Pol-II dependent manner the following 

different constructs were newly made (figure 28): pCAGGS-T7-HH_NEN2APEL_SC and 

pCAGGS-T7-HH_NENEPEL_SC (I), comprising the chicken β-actin promoter that is widely used 

for high level protein expression. pCR3-HH_NEN2APEL_SC and pCR3-T7-HH_NENEPEL_SC (II), 

comprise the immediate early CMV promoter. In pTre2hyg-T7-HH_NEN2APEL_SC and 

pTre2hyg-T7-HH_NENEPEL_SC (III), as TetOn constructs, the minimal CMV promoter was 

fused to a binding site of the Tet repressor. Due to cloning strategies or vector design all 

constructs initially have retained the T7 promoter between the Pol-II promoter and the HHRz 

processing the viral 5’-end. This allows control rescue experiments in BSR T7/5 cells to 

guarantee the integrity of the single infectious RABV cDNA clones. As a further control, 

pTre2hyg-HH_NEN2APEL_SC (IV) was constructed, lacking the T7 promoter.  

 

 

Figure 28: No Pol-II dependent rescue from infectious RABV cDNA clones. 
(A) Constructs used to compare Pol-II and T7-pol dependent rescue: pCAGGS-T7-HH_NENEPEL_SC and pCAGGS-T7-
HH_NEN2APEL_SC (I), pCR3-HH_NENEPEL_SC and pCR3-HH_NEN2APEL_SC (II), pTre2hyg-T7-HH_NENEPEL_SC and 
pTre2Hyg-T7-HH_NEN2APEL_SC (III), pTre2hyg-HH_NEN2APEL_SC (IV) 
 

Rescue experiments with all constructs were first performed in BSR T7/5 cells. Recombinant 

viruses were successfully generated for all constructs, except for pTre2hyg-

HH_NEN2APEL_SC (table 7). This showed that the cDNAs were intact, but indicated that  
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Table 7: Approaches for Pol-II dependent rescue of infectious clones. 
 

 Cell line Positive rescues 

pCAGGS-T7-NEN2APEL BSR-T7/5 15/19 
BSR 0/13 
HEK 293T 0/5 
Hep2 0/3 
Vero 0/3 

pCAGGS-T7-NENEPEL BSR-T7/5 8/13 
BSR 0/13 
HEK 293T 0/5 
Hep2 0/3 
Vero 0/3 

pCR3-T7-NEN2APEL BSR-T7/5 2/2 
BSR 0/2 
HEK 293T 0/2 

pCR3-T7-NENEPEL BSR-T7/5 4/4 
BSR 0/8 
HEK 293T 0/7 
HeLa 0/4 

pTre2Hyg-NEN2APEL BSR-T7/5 0/2 
BSR 0/2 

pTre2Hyg-T7-NEN2APEL BSR-T7/5 2/2 
BSR 0/2 

pTre2Hyg-T7-NEN2APEL BSR-T7/5 4/4 
BSR 0/4 

pCAGGS-T7-NENEPEL  
+ pSC6-T7neo 

NA 2/4 
BHK-21 0/4 
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successful rescue into virus still was dependent on the T7 promoter. To determine the 

possibility of T7-pol independent rescue from the Pol-II promoters, various cell lines, BSR, 

BHK-21, HEK 293T, NA, Hep2 and Vero cells were transfected with the different constructs 

using either CaPO4, Lipofectamine 2000, or PEI. None of the transfections led to the 

successful recovery of recombinant RABV (table 7). 

Although RABV can grow on all of the used cell lines, cellular restriction factors like an intact 

IFN system may turn an already inefficient rescue into a rescue that is impossible. To 

determine if this is the case, 5 µg pCAGGS-T7-HH_NENEPEL_SC were co-transfected with 2 

µg pSC6 T7-neo, a plasmid expressing the T7-pol, into NA cells using Lipofectamine 2000. 

SAD NENEPEL could be recovered from cDNA in the presence of T7-pol (table 7). These 

results indicated that the failure of virus rescue dependent on the Pol-II promoters is not due 

to the choice of cell lines but to the nuclear DNA promoters. 

3.3.13 Failure of Pol-II dependent rescues due to lack of protein expression – convicting 

the ribozymes 

To find out the reason for the inability of the infectious cDNA clones to be rescued via Pol-II 

promoters, the construct pCR3-HH_NENEPEL_SC and as controls pCR3-P or pCAGGS-P were 

transfected in either BSR T7/5 cells or HEK 293T cells using Lipofectamine 2000. As further 

controls cells were left untransfected. 48 h p.t. the cells were lysed and Western blots were 

performed. Using an antibody against RABV P it was obvious that P protein was made from 

pCR3-HH_NENEPEL_SC in BSR T7/5 cells, but not in HEK 293T cells (figure 29B - lane 3) and 

that the expression pattern was comparable to that of pTIT-P (lane 6) that has only the T7 

promoter. This was not due to a defect of the CMV promoter in HEK 293T cells, as from 

pCR3-P the P protein was expressed even higher than in BSR T7/5 cells (lane 4). Similar 

results were obtained when transfecting pCAGGS-T7-HH_NENEPEL_SC or pTre2Hyg-T7-

HH_NENEPEL_SC (not shown). Substantial amounts of proteins were only detected when the 

respective RNAs were transcribed by T7-pol, but not when transcribed from Pol-II 

promoters. 

To narrow down the reason for the lack of protein expression, two new smaller constructs 

were made, pCR3-HH_NEP(mono) and pCR3-HH_NPVP(bi) (figure 29A-IV). Both contain the 

CMV immediate early promoter followed by the T7 promoter. Downstream of the T7 

promoter there is the cDNA coding for an HHRz and about one third of the RABV antigenome 
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either the transcribed RNA is degraded, or not exported adequately from the nucleus. In Pol-

II dependent cellular mRNAs the 5’-cap structure and the 3’-poly(A) tail are responsible for 

RNA stability, as well as for export into the cytoplasm. In the full-length constructs, however, 

due to processing of the RABV genomic RNA ends by ribozymes, both are cleaved off. To test 

the influence of ribozymatic end-processing on protein expression from RABV full-length 

cDNAs 4 new constructs were generated, all based on the pCAGGS plasmid and all consisting 

of the RABV cDNA for SAD EP(mono). They differed in regard to the ribozyme sequences at 

the 5’ and 3’-end of the RABV cDNA. The first construct, pCAGGS-T7-SAD NEP(mono) (figure 

29A-V) comprises the T7 promoter, followed by three G residues followed by the SAD 

EP(mono) cDNA and the HDV ribozyme, shown to cleave poorly in vitro (3.1.4). pCAGGS-

T7_SAD NEP(mono)_SC (VI) containes the SC1 ribozyme instead of HDV. pCAGGS-T7-HH_SAD 

NEP(mono) (VII) comprises the T7 promoter followed by an HHRz processing the 

antigenomic 5’-end. pCAGGS-T7-HH_SAD NEP(mono)_SC (VIII), in analogy to the Pol-II full-

length RABV constructs tested so far, comprises both the HHRz and SC1. HEK 293T cells were 

transfected with 5 µg of either pCAGGS-T7_SAD NEP(mono), pCAGGS-T7_SAD 

NEP(mono)_SC, pCAGGS-T7-HH_SAD NEP(mono) or pCAGGS-T7-HH_SAD NEP(mono)_SC, 

using PEI, or were left untransfected. 48 h p.i. the cells were lysed and subjected to Western 

blot analysis. Antibodies against RABV P, RABV N and β-actin were used to detect levels of 

the respective proteins. The construct without a 5’-HHRz and with the poor cleaving HDV at 

the 3’-end, pCAGGS-T7_SAD NEP(mono) was expressing substantial amounts of P protein 

(figure 29C – at top - lane 1). When, however, either the 5’-cap or the 3’-poly(A) tail were 

cleaved off due to an HHRz (lane 3) or the better cleaving SC1 (lane 2), levels of RABV P 

translated from the respective full-length RNAs were significantly reduced. The combination 

of both ribozymes (lane 4), completely abolished expression of RABV P. Interestingly, due to 

the Pol-II promoter upstream of the RABV sequences, the N protein was translated cap-

dependently from these constructs (figure 29C – middle) as could be seen with the anti-

RABV N antibody. As for the P protein, the N expression pattern depended on the 5’ and 3’-

end processing ribozymes.   
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3.3.14 Pol-II dependent infectious RABV cDNA clones - deconstructing the construction 

The construct pCAGGS-T7_SAD NEP(mono), lacking a 5’-processing HHRz and containing only 

the inefficiently cleaving HDV sequence to process the 3’-end resulted in substantial 

amounts of P protein expression upon transfection and nuclear Pol-II dependent 

transcription. Due to the Pol-II mediated capping of the transcripts also N protein was made. 

In order to express also the L protein from that construct, the EMCV IRES sequence was 

inserted downstream of the G/L gene border and upstream of the RABV L gene AUG. 

Thereby the construct pCAGGS-T7_NEP(mono)EL was generated (figure 30-I). The same was 

done for pCAGGS-T7_SAD NEP(mono)_SC, resulting in pCAGGS-T7_NEP(mono)EL_SC (II). The 

latter construct was expected to result in significantly less N, P and L proteins expressed 

from the full-length RNA due to the better cleaving SC1. However, more antigenome-like 

RNAs having the correct 3’-ends were anticipated.  

 

Figure 30: Pol-II-dependent single infectious cDNAs.  
Genome organization of pCAGGS-T7_NEP(mono)EL (I), pCAGGS-T7_NEP(mono)EL_SC (II), pCAGGS-T7_NEP(bi)EL (III) and 
pCAGGS-T7_NEP(bi)EL_SC (IV). Note that all constructs comprise neither a 5’-HHRz nor an IRES element upstream of the N 
ORF. E: EMCV IRES, IGR: intergenic region. 
 

To test if recombinant virus could be recovered from these constructs, dependent on the 

cellular Pol-II, 5 µg of either pCAGGS-T7_NEP(mono)EL or pCAGGS-T7_NEP(mono)EL_SC 

were transfected into HEK 293T cells or into BHK-21 cells. From pCAGGS-T7_NEP(mono)EL, 

one single rescue experiment out of 12 was successful in HEK 293T cells (table 8). For 

pCAGGS-T7_NEP(mono)EL_SC all rescue attempts failed. In BHK-21 cells also no virus could 

be recovered from any construct. Most probably this was due to the lower transfection 

efficiency that was observed for this cell line with the reporter construct pCAGGS-eGFP (not 

shown). These results show that it is indeed possible to recover recombinant RABV from a 
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single infectious cDNA clone dependent on Pol-II transcription. However, this system 

appears to be very inefficient.  

SAD NEP(mono)EL the virus recovered from pCAGGS-T7_NEP(mono)EL should resemble the 

virus SAD NENEPEL 2 (3.3.6 3.3.9) in all features but the second N gene and thus a 

slightly smaller genome. Therefore, like SAD NENEPEL 2, SAD NEP(mono)EL is assumed to be 

attenuated. As the recombined SAD NEP(bi)EL 1 was found to grow significantly better 

(3.3.9) constructs that could give rise to such a virus were generated. The plasmids 

pCAGGS-T7_NEP(bi)EL (figure 30-III) and pCAGGS-T7_NEP(bi)EL_SC (IV), with the better 

cleaving SC1, were made by replacing the N/P gene border by an EMCV IRES sequence. 

Therefore these viruses should transcribe a bicistronic NEP mRNA. In order to translate the L 

protein from full-length RNAs, again the EMCV IRES sequence was inserted downstream of 

the G/L gene border and upstream of the L gene AUG.  

 

Table 8: Pol-II dependent rescue of infectious clones. 
 

 Cell line 1.Pass 
(3d) 

2.Pass 
(7d) 

3.Pass 
(11d) 

pCA-T7-NEP(mono)EL 293T 0/12 1/12 1/12 
BHK-21 0/12 0/12 0/12 

pCA-T7-NEP(mono)EL_SC 293T 0/12 0/12 0/12 
BHK-21 0/12 0/12 0/12 

pCA-T7-NEP(bi)EL 293T 0/12 2/12 2/12 
BHK-21 0/12 0/12 0/12 

pCA-T7-NEP(bi)EL_SC 293T 0/6 7/12 6/12 
BHK-21 0/12 0/12 0/12 

 

Both constructs pCAGGS-T7_NEP(bi)EL and pCAGGS-T7_NEP(bi)EL_SC were transfected into 

either HEK 293T or BHK-21 cells. In BHK-21 cells again all rescue attempts failed. With 

pCAGGS-T7_NEP(bi)EL, 2 out of 12 rescue experiments in HEK 293T cells resulted in 

successful recovery of SAD NEP(bi)EL (table 8). With pCAGGS-T7_NEP(bi)EL_SC, however, 
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more than 50 per cent of the rescue approaches in HEK 293T were positive. This again 

demonstrates the importance of the precise 3’-end for RABV RNAs. The benefits from better 

processed 3’-ends seem to overweigh the disadvantages of lower protein expression in this 

case. 

Northern blot and Western blot analyses with SAD NEP(bi)EL and SAD NEP(mono)EL 

revealed, that indeed the former virus translates the N and P proteins from a bicistronic NEP 

mRNA, whereas the latter virus expresses both proteins from monocistronic mRNAs, 

respectively (data not shown). Also the better growth kinetics of SAD NEP(bi)EL, in 

comparison with SAD NEP(mono)EL, was again confirmed experimentally (not shown).  

3.3.15 Pol-II dependent rescue of SAD L16 – a 2-plasmid system 

The rescue of RABV from a single infectious cDNA clone apparently faces the dilemma that 

either large amounts of proteins are made from primary transcripts with mainly in-precise 

RNA ends or that most of the ends are precise, on the expense of significantly lower 

expression of “helper” proteins. To solve this, a 2-plasmid system could be the method of 

choice. The cDNA to be rescued can be optimized for this purpose, thus having the wild type 

or wild type-like genome sequence (e.g. SAD L16) and more importantly, efficiently 

processed genome ends. The second plasmid, expressing the “helper” proteins, on the other 

hand, can lack 5’ and 3’-ribozyme sequences.  

To check the feasibility of such a 2-plasmid system, RABV full-length cDNA constructs 

pCAGGS-T7_L16 (lacking the 5’-HHRz and with HDV to process the 3’-end), pCAGGS-

T7_L16_SC (lacking the 5’-HHRz but with SC1 to process the 3’-end) and pCAGGS-T7-

HH_L16_SC (comprising the 5’-HHRz and the 3’-SC1) were made comprising all the cDNA 

sequence of RABV SAD L16 and differing only in the flanking ribozyme sequences. To test for 

different promoters, also pCR3-HH_L16_SC (comprising the 5’-HHRz and the 3’-SC1) was 

constructed. 

5 µg of either of the 4 plasmids pCAGGS-T7_L16, pCAGGS-T7_L16_SC, pCAGGS-T7-

HH_L16_SC or pCR3-HH_L16_SC were co-transfected together with 5 µg pCAGGS-

T7_NEP(mono)EL into HEK 293T cells or BHK-21 cells, using the CaPO4 based ProFection® 

mammalian transfection system (Promega). Supernatants were passaged onto fresh cells 

after 3 d, 7 d and 11 d to identify positive rescue events. Indeed RABV could be rescued from 

virtually all transfections (table 9). Thus the efficiency of Pol-II dependent RABV rescue from 
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cDNA could be increased by the application of the 2-plasmid system. Notably, constructs 

with a 5’-HHRz sequence and a 3’-SC1 sequence appeared to be the most efficient, whereas 

pCAGGS-T7_L16, lacking the 5’-HHRz and only comprising the poorly cleaving 3’-HDV 

showed a reduced rescue efficiency. Noteworthy, the size of the foci after passaging of the 

supernatants and staining by a FITC-labeled anti-RABV N antibody indicated that the vast 

majority of the rescued virus indeed was SAD L16 (not shown). However, the presence of 

contaminating residual SAD NEP(mono)EL, derived from the “helper” construct cannot be 

excluded. 

 

Table 9: Pol-II dependent rescue of SAD L16 – 2-plasmid system. 
 

pCA-SAD NEP(mono)EL 
+  1.Pass 

(3d) 
2.Pass 
(7d) 

3.Pass 
(11d) 

pCA-T7_L16 293T 0/2 0/2 1/2 
BHK-21 0/2 0/2 0/2 

pCA-T7_L16_SC 293T 0/4 3/4 3/4 
BHK-21 0/4 0/4 0/4 

pCA-T7-HH_L16_SC 293T 2/4 3/4 4/4 
BHK-21 0/4 0/4 0/4 

pCR3-HH_L16_SC 293T 0/2 2/2 2/2 
BHK-21 0/2 0/2 0/2 

 

In summary, these experiments provided proof-of-principle that RABV can be rescued from 

single infectious cDNA clones. Moreover, recovery was possible utilizing the endogenous 

cellular Pol-II for transcription of RABV. These achievements provide the basis for further 

development and improvement of constructs that can be used for generating animal models 

with genetically encoded RABV expression. 
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4 Discussion 

4.1 Rabies virus vectors delivering RNAs 

The aim of these studies was to evaluate the possibilities to use RABV, a cytoplasmic RNA 

virus, as a vector to deliver shRNAs for gene knock down. 

In brief, although it was not possible in this work to knock-down specific genes by RABV 

delivered shRNAs, bottlenecks of the RABV system that are responsible could be determined 

experimentally. Moreover, it was possible to recover viable recombinant RABV containing an 

internal ribozyme cassette which was shown to process an shRNA of interest in vitro and in 

vivo. Indeed, knowledge gained from ribozyme cleavage assays in this part was a 

prerequisite for the improvement of the RABV rescue system described in the second part of 

this thesis. The main reasons for the failure of RABV–encoded and ribozymatically processed 

shRNAs to knock down genes are most likely the low Ievels of the processed product, 

mismatches that had to be introduced to allow cleavage by the ribozymes, and the chemistry 

of 5’ and 3’-ends generated by the ribozymes. This will be discussed in the following 

chapters.  

4.1.1 Biological limitations of RABV vectors for the delivery of shRNAs. 

Retroviruses (Barton and Medzhitov, 2002), lentiviruses (An et al., 2003), baculoviruses (Ong 

et al., 2005) adenoviruses (Krom et al., 2006) and AAV (Tomar et al., 2003) have been used 

as vectors to deliver shRNAs in cell culture and in vivo so far. RABV as an NNSV has certain 

disadvantages in terms of siRNA or miRNA delivery. For RNA viruses, with the exception of 

retroviruses, the application as a vector to deliver shRNAs has not been demonstrated so far 

and no RNA virus at all has been described to encode any miRNAs. 

Importantly, RNAi is a major cellular defense mechanism in insects and plants against 

different viruses and many viruses have evolved anti-RNAi functions (reviewed in Haasnoot 

et al., 2007; Voinnet, 2005). Also for mammalian viruses mechanisms to block RNAi are 

known, examples are the HIV Tat protein (Bennasser et al., 2005) or Vaccinia virus E3L and 

influenza A virus NS1 (Delgadillo et al., 2004; Li et al., 2004), the latter two however were 

tested only in insect and plant systems. Most recently, Ebola virus VP30, VP35 and VP40 
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have been described to interfere with the RNAi machinery (Fabozzi et al., 2011) as the first 

anti-RNAi function in a mammalian NNSV. 

For RABV no such inhibition of RNAi is known and neither did we observe an anti-RNAi 

function experimentally. The A549-LR-siGFP cells, expressing an shRNA against eGFP, in our 

hands, were still able to knock-down eGFP significantly when infected with RABV. In 

addition, it has been shown that siRNAs can be used to inhibit RABV replication in cell 

culture and in vivo in mice (Brandao et al., 2007; Gupta et al., 2012; Halbach, unpublished 

results; Israsena et al., 2009; Sonwane et al., 2011). This is true for many NNSV members. 

The first human pathogenic virus that was inhibited with siRNAs was RSV (Bitko and Barik, 

2001). For morbilliviruses very recently the upcoming of escape mutations upon treatment 

with siRNAs was detected and analyzed. This indicates that a rather weak or no viral function 

against the RNAi machinery is present (Holz et al., 2012). 

The second obstacle of RABV as an NNSV is its RNA genome together with the fact that it 

only replicates in the cytoplasm. During replication the genome is transcribed into 

antigenome and vice versa. Both RNAs are encapsidated into helical NC structures during 

replication, thus inhibiting any formation of secondary structures as hairpins. This is 

underlined by our findings that it is possible to generate RABV containing intra-genomic 

ribozymes. Although some of these viruses were difficult to rescue and could only be 

generated by the improved rescue system, once their genomes were packaged accurately, 

the ribozymes did not impair growth and viability. Most likely this is because in an NC 

structure these ribozymes could not fold any more. 

RABV mRNAs have, similar to Pol-II transcripts, a 5’-cap structure and a 3’-poly(A) tail. For 

Pol-II derived miRNAs or shRNAs both are cleaved off by Drosha/DGCR8. This, however, 

takes place in the nucleus and therefore cannot be expected for RABV mRNAs. Indeed, as 

shown in this thesis, RABV transcribing an eGFP mRNA with the miRNA 23-2 from MCMV in 

the 3’-UTR could not produce functional miRNAs as revealed by a reporter system. The same 

was true for an shGFP hairpin transcribed from an extra gene in a RABV vector. No knock-

down activity of GFP was observed for this verified sequence when it was delivered by RABV. 

Most probably this is due to the inaccessibility of the Drosha/DGCR8 complex for the 

cytoplasmic virus derived mRNA and vice versa. Several approaches to target the RABV RNAs 

to the nucleus failed and are not shown in this work. 
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Unlike for cellular (or retrovirus) and DNA virus derived miRNAs and shRNAs, the possibility 

to transcribe RABV RNAs from different promoters is not given. RABV has only two 

mechanism of RNA synthesis, one mechanism to make 5’-capped and 3’-polyadenylated 

mRNAs from transcription start sites in the RABV intergenic regions and one mechanism to 

replicate the genome and antigenome starting from the genomic or antigenomic promoter 

in the genome termini, respectively. Transcripts from the latter two start with a 5’-ppp and 

terminate with a 3’-OH, however the genome ends are essential for the viability and 

manipulation like introducing hairpins would destroy the promoters and not be tolerated. 

In summary, although having an RNA genome no miRNAs so far have been reported to be 

made by any RNA virus. RABV was not observed to interfere with the RNAi machinery, as is 

reported for several other viruses. However, the major disadvantage of RABV as a 

cytoplasmic RNA virus for shRNA or miRNA delivery seems to be the lack of processing by 

nuclear enzymes. Therefore the next approach was to deliver shRNAs that resemble 

cytoplasmic intermediates of the miRNA or shRNA pathway.  

4.1.2 Approaches to deliver Dicer substrates by RABV vectors – ribozymes 

As RABV delivered shRNA precursors could not be processed by nuclear enzymes of the 

miRNA or shRNA pathway we aimed at producing RABV transcripts resembling Dicer 

substrates. In the miRNA pathway, mostly Pol-II transcribed pri-miRNAs are processed by the 

nuclear Drosha/DGCR8 complex into about 60 nts long pre-miRNA hairpins that contain now 

a 3’- 2 nts overhang at the cleavage site. Exported into the cytoplasm by Exportin 5 (Lund et 

al., 2004), they are further processed by Dicer into RNA duplexes from which one strand, the 

passenger strand, that has the same sequence as the target, is removed, whereas the so-

called guide strand being antisense to the target site (which is located primarily in the 3’-UTR 

of mRNAs) is loaded into the RISC to repress translation from this mRNA (reviewed in Bartel, 

2004; Cullen, 2004; Li and Liu, 2011).  

Short hairpin RNAs have either been made synthetically (Paddison et al., 2004; Siolas et al., 

2005) or expressed from Pol-II (Zhou et al., 2005) and Pol-III (Paddison et al., 2004) 

promoters. Depending on their origin they enter into the processing pathways at different 

stages. The Pol-II derived shRNAs for example have a 5’-cap structure and a 3’-poly(A) tail 

and therefore, like pri-miRNAs, must be cleaved by Drosha/DGCR8. Pol-III transcribed 

shRNAs however start with a 5’-ppp and are designed to terminate exactly in such a way that 
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they have a 2 nt overhang at their 3’-end upon hairpin formation. Therefore, they resemble 

already the Drosha/DGCR8 products that only differ in having a monophospate at their 5’-

end, and only have to be exported by Exportin 5 from the nucleus. Synthetic shRNA have a 

5’-monophosphate and are delivered i.e. by lipofection. They, once in the cytoplasm, directly 

can be processed by Dicer.  

The first approach to achieve RABV delivered Dicer substrates was to cleave off the 5’-cap 

and the 3’-poly(A) tail by cis-active ribozymes. For removal of the 5’-cap an HHRz was chosen 

that has been shown to produce an exact 5’-end for rescue of measles virus and BDV (Martin 

et al., 2006). HHRzs were first described as autocatalytic RNAs in plant viroids (Buzayan et 

al., 1986; Hutchins et al., 1986; Prody et al., 1986). All HHRz share structural similarities like 

the presence of three stems and a catalytic pocket. Cleavage produces a cyclic 2’, 3’-

monophosphate at the cleaved off ribozyme end and a 5’-OH at the processed RNA (Birikh et 

al., 1997; Uhlenbeck, 1987; van Tol et al., 1990).  

In vitro-tests conducted in this work with the HHRz revealed its functionality and efficiency 

as we observed about 90 % of the RNA to be processed. The HHRz was placed in an 

orientation that allowed its correct folding and cleavage in RABV mRNAs (or in the 

antigenome). Although during rescue of the virus the antigenome-like RNA transcribed by 

T7-pol initially lies naked in the cytoplasm before its encapsidation by N protein, it was 

possible to generate recombinant RABV containing the HHRz sequence. The rescue of this 

critical virus did not seem to be impaired significantly in comparison with wild-type virus. 

This might indicate a lower in vivo-activity of the ribozyme. However in the second part of 

this thesis, it is shown that an HHRz processing the 5’-end of the antigenome-like RNA in vivo 

significantly increases the rescue efficiency and minigenome activity (Ghanem et al., 2012). 

Also as shown in part 3 of this thesis, IRES mediated translation from a Pol-II transcript 

decreased significantly, dependent on the ribozymes. These findings emphasize the in vivo-

activity of the ribozyme although not allowing a direct quantitative comparison with the in 

vitro-activity.  

Analogously to the 5’-cap structure the 3’-poly(A) tail should be cleaved off from the RABV 

derived mRNA by a ribozyme. Therefore an HDVagRz was applied. The HDVagRz was 

discovered as a self-cleaving RNA sequence in the Hepatitis Delta virus antigenome. The 
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cleavage reaction it produces a cyclic 2’, 3’-monophosphate at the processed RNA and a 5’-

OH at the cleaved off ribozyme end (Sharmeen et al., 1988). 

The HDVagRz I tested first was the 84 nt “core” sequence that has been used to process the 

3’-end of the antigenome-like RNA in the first rescue system for RABV developed in our lab 

(Schnell et al., 1994). This “core” sequence initially was reported to be the HDVagRz 

(Perrotta and Been, 1991), however in more recent publications longer sequences are 

considered to constitute the HDVagRz (Perrotta and Been, 1998; Perrotta et al., 1999). The 

initial “core” sequence was abbreviated in this work as HDV and the two newer versions we 

chose, “supercut 1” (SC1) and “supercut 2” (SC2) as we found both to cleave significantly 

better in vitro. 

The HDVagRzs again were inserted in an orientation that allowed cleavage to occur (either in 

the antigenome or) in the viral mRNAs generated from the extra transcription unit between 

the G and the L gene. Interestingly, RABV containing internal SC1 or SC2 could only be 

rescued after the significant improvement of the rescue system (Ghanem et al., 2012) shown 

in the second part of this thesis. This strongly indicated the in vivo-activity of SC1 and SC2. A 

further proof was the significantly increased rescue efficiency itself, which depended on the 

replacement of HDV with SC1 to process the 3’-end of the RABV antigenome-like RNA.  

In summary, evidence was provided that it is possible to generate recombinant RABV 

containing diverse ribozymes within their genome. These ribozymes may interfere with virus 

rescue, when they cleave the naked full-length RABV RNA. Once the full-length RNAs are 

encapsidated by N protein and rescued into virus, however, the ribozymes can only fold in 

the virally transcribed mRNAs, but not in the tightly packaged RABV N-RNA genome or 

antigenome.  

4.1.3 Limits derived from the ribozyme cassette – the perfectly processed hairpin  

For initial studies evaluating the HHRz cleavage properties spacer sequences were 

introduced between the HHRz and the shRNA. To become Dicer substrates, however, the 

shRNAs have to be processed with an exact 5’-end. This was also confirmed experimentally. 

RABV transcribed shRNAs containing spacer sequences between the HHRz and the shGFP 

failed to induce RNAi. 
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To produce an exact end, the 5’-end of the sequence of interest has to be inserted 

immediately downstream of the cleavage site of the HHRz. The sequence following the 

cleavage site (the 5’-end of interest) also has to build a duplex with the 5’-end of the 

ribozyme, forming one of the ribozyme’s stem structures. Therefore, the 5’-end of the HHRz 

has to be manipulated to allow this base pairing. The same HHRz core sequence was chosen 

and the shGFP sequence introduced directly downstream the cleavage site. The 5’-end of the 

HHRz was changed to allow base pairing with the 4 nts downstream of the cleavage site. 

RNA secondary structure predictions, however indicated, that despite of the antiparallel 

design of the HHRz 5’-end, the sequence downstream the cleavage site (being at the same 

time the 5’-end of the shGFP) would rather base pair with its counterpart at the 3’-end of 

the shGFP. Therefore, the HHRz was predicted not to fold correctly in this construct. In vitro-

cleavage assays confirmed these predictions and the respective RABV transcribing this 

construct, SAD G_HH-SH-SC1, was not able to induce gene knock-down in vivo.  

Knowing now that the HHRz could not process the 5’-end of shGFP due to the direct 

proximity to the hairpin on one hand and the need for exact processing on the other hand, 

not many possibilities remained. One option was the introduction of mismatches into the 

hairpin close to its end. Computational analyses predicted a correct folding for the HHRz if, 

at positions 3 and 4 from the 5’-end of the shGFP, mismatches were introduced. The HHRz 

should cleave and release a shGFP containing 2 mismatches. These mismatches, however 

give rise to two new major problems. 

First, the HSmm due to its mismatches will most likely, after Dicer cleavage, enter the fate of 

miRNAs that often contain mismatches instead of siRNAs with their perfect complementary. 

Regarding RNAi it has been shown in D. melanogaster and in C. elegans that only a few 

molecules of dsRNA are sufficient for a significant knock-down of a target gene (Fire et al., 

1998; Kennerdell and Carthew, 1998). This self-amplification of the RNAi trigger, due to 

mRNA degradation makes siRNAs by far more potent than miRNAs (and the knock-down 

effect lasts longer). In contrast, miRNAs only lead to a translational repression upon base-

pairing with their target in the 3’-UTR of an mRNA. 

The second critical point is that, assuming Dicer will cleave the hairpin, the resulting RNA 

duplex will now thermodynamically be more unstable at the 5’-end of the progenitor 

hairpin. For miRNAs a functional asymmetry has been described, in a way that the strand of 
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the duplex, that is un-winded easier from its 5’-end will be incorporated into RISC, while the 

other strand is degraded (Khvorova et al., 2003; Krol et al., 2004; Schwarz et al., 2003). 

Therefore the strand derived from the 5’-end of the hairpin would be incorporated into RISC. 

This strand, however, is the passenger strand having the sense GFP sequence and not the 

desired guide strand with the antisense GFP sequence.  

The first drawback of generating rather a miRNA instead of siRNA due to the mismatches has 

to be accepted as otherwise no efficient processing by the HHRz can be achieved. The latter 

problem, in regard to the thermodynamic stability, I intended to overcome by a little trick. 

The sense and antisense strand of the shGFP simply were exchanged in their position in the 

hairpin. In the new construct the antisense strand was now positioned at the 5’-end of the 

hairpin whereas the sense strand was located at the 3’-end. Again mismatches were 

introduced. Now, however, not the nts 3 and 4, counted from the 5’-end, were mutated, but 

their counterparts at the 3’-end of the hairpin (the sense strand). Again the correct folding of 

the HHRz was predicted due to the mismatches. The hairpin set free after processing by the 

ribozymes now has the antisense strand at the 5’-end and 2 mismatches. A hypothetic RNA 

duplex after Dicer cleavage will now be more unstable and easier to unwind from the 5’-end 

of the antisense strand. Therefore this strand now would be incorporated into RISC. ShRNAs 

usually have the sense strand (passenger strand) at their 5’-end and the antisense strand 

(guide strand) at their 3’-end. This is also labeled as “R-type” shRNA, as the loop is at the 

right hand side. It has been shown, however, that “L-type” shRNAs (left handed loop), where 

sense and antisense strand are interchanged, have similar knock-down efficiencies (Harborth 

et al., 2003). The new hairpin design in contrast to “SH”, because of its complementary and 

the mismatches was labeled “HSmm”. In silico secondary structure predictions indicated 

correct folding of the HHRz in this construct and were confirmed by in vitro-cleavage assays 

with mutated and un-mutated HHRz and SC1.  

For the 3’-end no such structure predictions were possible with the applied software 

algorithms. The HDVagRz is by far more complex and tertiary structures like pseudoknots 

play a role for its activity (Perrotta and Been, 1991; Wadkins et al., 1999). However in vitro-

experiments demonstrated efficient cleavage of SC1 when fused directly downstream to the 

shGFP in constructs with (HSmm) or without (SH) mismatches. This might be facilitated by 
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the fact that the shGFP in order to be a Drosha/DGCR8 product or a Dicer substrate was 

designed with a 2 nts 3’-overhang.  

Briefly, by a combination of theoretical thoughts on design, secondary structure predictions 

and in vitro-cleavage analysis solutions were found to overcome the natural limits of RABV in 

delivery of shRNAs. Initially, the HHRz was not able to cleave due to incorrect folding. This 

was solved by introducing mismatches into the hairpin. Those mismatches resulted in 

predicted incorporation of the wrong strand into RISC. To overcome this problem, sense and 

antisense strand of the hairpin were exchanged (from SH to HSmm). 

4.1.4 The “perfectly processed” hairpin fails to knock-down its target gene in vivo – 

possible reasons  

Recombinant RABV SAD G_HH-HSmm-SC1 transcribing the ribozyme cassette with the 

“perfectly processed” hairpin containing two mismatches (HSmm) could be recovered from 

cDNA. However, this virus, like all constructs tested before, failed to knock down its target 

gene. Neither in a dual luciferase system with a firefly luciferase reporter, comprising a GFP-

sequence-tag in the 3’-UTR, nor in infected GFP expressing cells (not shown), any reduction 

of reporter gene expression upon virus infection was observed. The positive control, 

pSUPER-shGFP, where shGFP is transcribed from a nuclear Pol-III promoter, showed that the 

reporter system was susceptible to silencing. 

To find possible reasons for the lack of knock-down activity, a miRNA-Northern blot was 

performed and showed that significantly less small RNAs were made from SAD G_HH-HSmm-

SC1 than from pSUPER-shGFP. For pSUPER-shGFP two bands were detected, the band for the 

transcribed hairpin and a lower one that should reflect the products of Dicer cleavage. With 

the high transcription rate from pSUPER, obviously more RNA is made than can be processed 

by the RNAi machinery. In A549-LR-siGFP cells, that make the same hairpin as pSUPER-

shGFP, but at lower levels, most of the RNA is processed by Dicer. For the RABV transcribed 

RNA it is obvious, that only very low levels of “perfectly processed” RNA hairpins are made 

by the ribozyme cassette. Visible bands running at a higher level reflect most probably RNA 

species where only one or none of the ribozymes were active. The ribozyme-processed 

bands however are only detected at the length of the hairpin state, indicating that this 

hairpin is not further processed by Dicer. 
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In summary this shows that the “perfectly processed” hairpin is indeed processed by 

ribozymes in vivo, although at very low levels. However, this ribozymatically processed 

hairpin is not further cleaved by Dicer. Together these two observations, low levels of 

product processed by the ribozymes and lack of further processing by Dicer, seem to be the 

main cause for the failure of the RABV SAD G_HH-HSmm-SC1 to knock down genes. 

4.1.5 Low levels of the “perfectly processed” hairpin – A question of transcription 

efficiency?  

There are several possible explanations for the presence of too low amounts of the 

“perfectly processed” hairpin, HSmm,. Either the overall levels of the RABV mRNA HH-

HSmm-SC1 are too low due to inefficient transcription or degradation, or the HH-HSmm-SC1 

containing mRNA is not processed at efficient rates into HSmm. There are some hints that 

incomplete processing of HH-HSmm-SC1 into HSmm indeed plays a role. In the miRNA 

Northern blot for SAD G_HH-HSmm-SC1 infected cells, fragments were detected running 

significantly higher than HSmm. These fragments however can be excluded to be mRNAs 

that cannot enter the gel because of their large size and therefore were neither detected in 

SAD G_shGFP infected cells. It is possible, that these higher bands represent RNA fragments 

in which only one of the ribozymes was active. This problem will be difficult to address, 

reasons might be a difference between the observed in vitro-cleavage and the in vivo-activity 

of the ribozymes. For ribozymes transcribed by T7-pol (mainly “naked” RNA) it has been 

shown that in vitro and in vivo-cleavage efficiencies are comparable (Chowrira et al., 1994). 

This was also confirmed in this thesis, as discussed above (4.1.2). Poor in vivo-cleavage as 

suggested by the miRNA Northern blot could, however, derive from proteins associated with 

the RABV mRNAs. Cellular mRNAs transcribed by Pol-II are rather tightly packaged into 

cellular RNPs by proteins responsible for many steps, from splicing, nuclear export, 

protection against RNases to translation and degradation. Although the RABV transcription 

machinery is more simple and splicing, or nuclear export, do not play a role, it is most likely 

that cellular proteins will be attached to the viral mRNAs. However, the protein composition 

interacting with the virus transcripts is completely unknown. Therefore cellular proteins 

might bind the RABV mRNA and thereby interfere, at least partially, with correct folding of 

the ribozymes.  
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Low ratios of processed HSmm may at least partially derive from low levels of the RABV 

transcribed mRNA HH-HSmm-SC1. RABV transcription starts at the 3’-end of the genome and 

proceeds to the 5’-end by transcribing a 5’-ppp leader RNA and 5’-capped and 

polyadenylated mRNAs in the order 3’-leader-N-P-M-G-L-5’. After each gene that is 

transcribed, the polymerase stalls and reinitiates with a certain probability. The efficiency of 

reinitiation is dependent on the sequence and length of intergenic regions and the 

respective transcription start signals (Finke et al., 2000).  

The HH-HSmm-SC1 construct is transcribed from an extra gene located between the G and 

the L gene of the RABV vector. The N/P gene border was introduced upstream of this extra 

gene to guarantee efficient re-initiation of transcription downstream of the G gene. This 

transcription start signal was shown to be very efficient (Finke et al., 2000) and the 

transcription unit between G and L is widely used for high level gene expression. For VSV it 

has been shown, however, that introducing genes more proximal or distal to the virus 

genome promoter increases or decreases gene expression, respectively (Wertz et al., 1998). 

This reflects a steep transcription gradient in which most transcripts are made from genes at 

the most proximal position.  

Therefore more transcripts of HH-HSmm-SC1 should be expected if the extra gene would be 

introduced more upstream in the RABV genome. One possibility would be to introduce it 

downstream of the P gene. Theoretically even more transcripts could be expected if the 

extra gene would be inserted directly downstream of the leader. In part 3 of this thesis, 

however, it was shown, that extra sequences at the RABV leader-N gene junction and within 

the N coding region influence RABV viability (3.3.5). As RABVs with mutations in this 

region were severely attenuated, it can be excluded that a shRNA located downstream of 

the leader will be tolerated. This problem could be addressed by RABV constructs similar to 

SAD N200EN described in part 3.  

Low transcription rates of RABV mRNA HH-HSmm-SC1 may not only result from the relative 

downstream position between the G and the L gene within the RABV genome, but also from 

the hairpin structures within the ribozymes and the shGFP itself. During RABV replication 

these sequences seem to be tolerated well due to the direct encapsidation into N-RNA 

structures. However during RABV mRNA transcription the folding might interfere with the 

virus polymerase function and lead to premature termination of transcription. This was 
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observed during in vitro-transcription which, however, cannot be compared to RABV 

transcription. As growth kinetics and final titers of the shRNA containing RABV were similar 

to wild-type SAD L16 (not shown), transcription attenuation by the hairpin (which should 

affect expression of the downstream L) is unlikely. Also degradation is likely to occur, when 

5’-cap structures and 3’-poly(A) tail are cleaved off from the transcripts.  

4.1.6 The “perfectly processed” hairpin – not so perfect to be a Dicer substrate?  

Not only were the shRNAs made from the RABV vector at low levels, there also appeared to 

be a block in further processing by Dicer. Whereas in A549-LR-siGFP cells also the levels of 

shGFP were relatively low, it was obvious that most of these Pol-III transcribed hairpins were 

further processed by Dicer. In cells infected with SAD G_HH-HSmm-SC1, this was not the 

case. To find possible explanations for this lack of Dicer cleavage one has to compare the 

features of the shGFP derived from Pol-III transcription in A549-LR-siGFP cells and the 

“perfectly processed” hairpin HSmm. 

In A549-LR-siGFP cells the shGFP is transcribed from the human class III Pol-III promoter H1 

(Mottet-Osman et al., 2007). Class III Pol-III promoters like H1 or U6 are widely used for the 

intracellular delivery of shRNAs as they have the advantage of an exact transcription start 

and termination at 5 thymidines in a row (Brummelkamp et al., 2002; Paddison et al., 2002). 

Also some endogenous miRNAs are made from Pol-III promoters (Borchert et al., 2006). 

These transcripts in contrast to Pol-II derived miRNAs have no flanking sequences and 

therefore will not depend on processing by Drosha/DGCR8 (Zeng and Cullen, 2005). Short 

hairpin RNAs, like miRNAs, are exported from the nucleus by Exportin 5 (Yi et al., 2003). For 

Exportin 5, direct interaction with Dicer has been shown (Bennasser et al., 2011; Lund et al., 

2004). It is conceivable that this interaction also plays a role in the direct loading of the 

miRNA/shRNA to Dicer. The RABV derived HSmm is made in the cytoplasm and does not 

utilize the Exportin 5 pathway. 

Another difference between shGFP and HSmm are the 2 mismatches, introduced to facilitate 

the ribozyme folding. They are thought to play a role in the further fate of the duplex after 

processing by Dicer as discussed above (4.1.3). 

The most important differences however, are the 5’- and 3’- ends of HSmm generated by the 

ribozymes. The HHRz after processing leaves a 5’-OH and the HDVagRz a cyclic 2’, 3’-

monophosphate at the hairpin RNA. Today it becomes inceasingly clear that the ends play a 
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crucial role in binding to shRNAs/miRNAs and in determining the cleavage site. The current 

model, derived from in vitro-assays and the crystal structure of Giardia Dicer, was that the 

3’- end of shRNAs/miRNAs, a 2 nt overhang ending with a hydroxyl group, is recognized by 

the PAZ-domain of Dicer and fixed to measure 22 nt, the distance between the PAZ domain 

and the cleavage site (Macrae et al., 2006; Starega-Roslan et al., 2011; Vermeulen et al., 

2005). A more recent work (Park et al., 2011) has shown with both, using recombinant 

human Dicer and in D. melanogaster, that the RNAs 5’-end, a monophosphate for cellular 

miRNAs or synthetic shRNAs, is important to the same extent for recognition and processing 

by Dicer. A 5’-pocket was identified, that is highly conserved in all analyzed species, but 

Giardia Dicer. For Pol-III derived shRNAs, comprising 5’-ppp, it is still unclear whether they 

can bind to the 5’-pocket, or if the triphosphate has to be hydrolized to monophosphate. 

Anyway, they are being processed by Dicer and are effective in knock-down.  

Altogether, most probably the 5’-OH, and the cyclic 2’, 3’-monophosphate are structurally 

not compatible with Dicer requirements for a 5’-monophosphate and 3’-OH. Furthermore, 

the mismatches that had to be introduced to allow the ribozymatic processing of HSmm 

might constitute an additional impairment in regard to the induction of knock-down. 

Therefore processing by ribozymes, as described here, does not seem to be the strategy of 

choice in order to produce Dicer substrate-like RNAs. 

4.1.7 Future approaches - circumventing Dicer?  

It becomes more and more clear that it is not feasible to deliver a Dicer substrate by a 

ribozyme cassette. The data obtained in this thesis therefore are in agreement with recent 

findings in the RNAi field. Future approaches thus have to apply completely new strategies. 

One remaining option could be the direct processing of two antiparallel short RNAs, resulting 

in an siRNA duplex. Of course there will be major difficulties with this strategy. First, to 

generate two short RNAs instead of one hairpin, 4 internal ribozymes instead of 2 have to be 

introduced into the RABV genome. The two internal ribozymes were already challenging 

with respect to the recovery of recombinant RABV. Second, the transcription efficiency most 

likely will be impaired as well by four ribozymes. The relatively low amounts of the “perfectly 

processed” hairpin HSmm are considered to be due to factors such as premature 

termination of RABV transcription, degradation of cleaved products and partially 

malfunction of the ribozymes in context of a RABV mRNA, as discussed above. In a construct 
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with 4 ribozymes instead of 2, all these problems most probably will accumulate. An option 

to deal with this could be the delivery of the two strands required for an siRNA duplex by 2 

separate RABV vectors, each transcribing and processing one strand by 2 ribozymes. This 

system will then depend on coinfection with these two RABV vectors.  

For both systems delivering siRNA duplexes, by either one or two RABV vectors, it is an 

important question, weather the ribozyme derived ends will allow the strands to enter RISC. 

What has been studied so far with modified ends in siRNA is partially controversial. It was 

shown that conjugated Alexa-488 was tolerated in the sense strand at both ends and in the 

antisense strand at the 5’-end, but not at the 3’-end (Harborth et al., 2003). In another work, 

amino-modifications of siRNA ends were tolerated at all positions, but the antisense 5’-end 

(Chiu and Rana, 2002). A clear advantage arising from the siRNA duplex strategy is that it 

allows the duplexes with a perfect match, as no mismatches have to be introduced in order 

to allow processing by the ribozymes. 

A variation of the “perfectly processed” hairpin, HSmm might also be an option to 

circumvent Dicer. The shRNAs I used contain a stem of 21 nt, the sequence of the anti-GFP 

shRNAs that were approved to function in the stably transduced A549-LR-siGFP cells, as well 

as with transient transfection the pSUPER-shGFP plasmid. The use of hairpins longer or 

shorter than 21 nts has been proposed by different groups.  

Synthetically synthesized hairpins with a 29-mer stem have been shown to be slightly more 

efficient than hairpins with a 19-mer stem (Siolas et al., 2005). They are dependent on Dicer 

cleavage and therefore could not be delivered adequately from our ribozyme cassette. In the 

same work it was shown that the 19-mers are not cleaved effectively by recombinant human 

Dicer in vitro. Although being less potent than 29-mers they show a knockdown phenotype 

and therefore must be incorporated into RISC. In a more recent study this was analyzed 

further and the existence of a certain group of short shRNAs (sshRNAs) is proposed (Ge et 

al., 2010b). They find ssRNAs with stems shortened to a minimum of 16 or 17 nts and 

minimal loops of 2 – 4 nts (dependent on base pairing of the adjacent 5’ and 3’- nt) also not 

to be processed by Dicer in vitro, but to be as potent as comparable siRNAs in cell culture. 

The main difference to the 19-mers from the Siolas study, an R-type shRNA, is that Ge et al. 

also interchanged the position of sense and antisense strand. By comparison of conventional 

R-type and exchanged L-type sshRNAs the L-type appears to be more efficient. If indeed no 
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Dicer cleavage is involved, this would make sense, because the hairpin still has to be un-

wound and if the antisense strand is at the 5’-end, the only end that can be un-winded, it is 

more likely to enter RISC. Notably, the in vivo-Dicer activity or the presence of another 

duplex-specific endonuclease cannot be excluded. Also did they observe that certain 

sshRNAs could dimerize and these dimers then were cleaved by Dicer. This dimerization 

however was not a prerequisite for knock-down activity. Interestingly they also analyzed 

diverse modifications of their L-type sshRNAs. Modifications of the phosphate-backbone 

were tolerated at the 5’-end of the antisense strand as well as the 3’-end of the sense 

strand. Longer disulfide-containing groups conjugated to the 3’-end of the hairpin were 

accepted as well, whereas they abolished the knock-down function, when conjugated to the 

5’-end (Ge et al., 2010a). 

As it was possible to recover recombinant RABV expressing ribozyme-comprising mRNAs in 

this thesis, another interesting idea is to directly use the ribozymes in order to cleave and 

thereby destroy target mRNAs. Trans-splicing as the first ribozymatic reaction has been 

observed for the T. thermophilae group I intron (Been and Cech, 1986; Inoue et al., 1985) 

and was shown to be useful to specifically repair defect mRNAs (Sullenger and Cech, 1994). 

For a trans-cleaving HHRz it is in principle possible to target any RNA sequence by Watson-

Crick base pairing of flanking sequences (Haseloff and Gerlach, 1988). The same is true for 

HDVagRz and other ribozymes. Numerous applications in vitro and in vivo have been 

proposed for ribozymes targeting mostly mRNAs (reviewed in Mastroyiannopoulos et al., 

2010; Scherer and Rossi, 2003). Although established more than 10 years before RNAi, the 

ribozyme technique never gained the similar impact. Reasons might be that the target sites 

are more dependent on mRNA structure and that no algorithm is available allowing the 

prediction of a good target sequence. For their identification empirical screens have to be 

done that are time-consuming, whereas for siRNAs this is not necessary. Also effects on their 

target genes seem to be rather moderate compared to the potency of RNAi.  

In conclusion, whatever construct will be considered to get a new try, in vitro-analyses of 

Dicer cleavage or ribozyme processing with synthetic RNAs or in vivo-tests for knock-down, 

after microinjection into the cytoplasm, can be of advantage to evaluate the probability of 

success. 
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4.2 Improved rescue for rabies virus 

Efficient rescue of RABV from cDNA is dependent on the formation of correct genome ends 

of the T7-pol derived antigenome-like RABV full-length RNA. As we found the 3’-terminal 

HDV ribozyme to cleave very inefficiently in the first part of this work, the aim was to replace 

the HDV sequence by the better cleaving SC1 sequence and thereby improving the rescue 

efficiency. Since SC1 indeed improved the rescue system significantly, we also applied an 

HHRz to process the 5’-end of the RABV cRNA. Together, the HHRz and the better cleaving 

SC1 improved the efficiency of RABV rescue by more than 100-fold and made it a faster and 

more reliable system (Ghanem et al., 2012). 

4.2.1 Ends are important 

The initial RABV rescue system already was dependent on an HDVagRz to process the 3’-end 

of the T7-pol transcribed RABV cRNA (Schnell et al., 1994). The sequence applied in this 

system was labeled HDV in the first part of this thesis and found to have a poor cleavage 

activity in vitro. As flanking sequences may play an important role in the activity of the 

ribozyme, in vitro-cleavage assays were performed with the HDV sequence at its position 

downstream of the 3’-end of the RABV cDNA. For these experiments the minigenome 

construct pSDI-1 (Conzelmann and Schnell, 1994) was applied as it was easier with this 

shorter construct than with a full-length RABV cDNA to distinguish between cleaved and un-

cleaved RNAs. The results, correlating with the cleavage activity of HDV inserted artificially 

between the G and the L gene, indicated poor cleavage activity for HDV also when it was 

located downstream of the RABV sequences.  

The importance of the genome ends during rescue of NNSV from cDNA has been 

demonstrated initially for VSV DIs (Pattnaik et al., 1992). Constructs with diverse 3’-ends 

were tested and although those with incorrect 3’-ends could be encapsidated into N-RNA, no 

rescue was possible. Therefore it is very likely that RABV cRNAs with incorrect ends compete 

with those being correctly processed for encapsidation by N protein. The increased rescue 

efficiency from pSAD L16_SC compared to pSAD L16 underlines this hypothesis.  

Studies with a ribozyme cassette comprising negative oriented RABV minigenomes indicated 

also an influence of the 5’-end, although this seems to be less important than the 3’-end (Le 

Mercier et al., 2002). The classical RABV rescue system contains, like various other systems 

dependent on T7-pol, three extra G residues directly downstream of the T7 promoter and 
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upstream of the 5’-end of the RABV antigenome. These G residues are important for 

efficient transcription initiation from the T7 promoter. Their beneficial effect in regard to 

transcription seems to overweigh their negative effect in regard to a precise 5’-end. Upon 

viral replication the extra G residues were shown to be removed (not copied) by the viral 

polymerase (Martin et al., 2006; Pattnaik et al., 1992). Indeed, was it also possible in the 

third part of this work (3.3.13, 3.3.13) to rescue RABV from Pol-II dependent constructs 

lacking HHRz sequences for processing the 5’-ends. 

However, the importance of a correct RABV cRNA 5’-end was supported by the results 

obtained in this thesis, as the insertion of an HHRz significantly improved the rescue from 

pSAD T7-HH_L16 compared to pSAD L16. Generation of a correctly processed 5’-end by 

HHRz resulted in a 10-fold increase in recue efficiency and the impact is therefore as strong 

as the application of SC1 in comparison to HDV for the 3’-end. In the work of Le Mercier et 

al. (Le Mercier et al., 2002) only a 3-fold increase in luciferase activity was observed when 

correct 5’-ends were generated with an HHRz. This difference can be explained by the fact 

that the majority of the luciferase activity obtained for the negative oriented minigenome 

depends rather on viral transcription than on viral minigenome replication. And the 

promoter for this viral transcription is located in the leader at the 3’-end (whereas the 

incorrect 5’-end only plays a role during replication, when the viral polymerase terminates 

there by a yet unknown mechanism at either the correctly or incorrectly processed end).  

The negative orientated minigenome pSDI HH_CNPL_SC, in comparison to pSDI CNPL also 

showed an increase in firefly luciferase activity by only about 5-fold. This is a much smaller 

difference than the significant improvement of more than 100-fold observed for pSAD T7-

HH_L16_SC compared to pSAD L16. As mentioned above, it was shown for VSV DIs, that they 

can be encapsidated by N protein although they do not replicate. Additionally, it might be 

the case that for RABV transcription of subgenomic mRNAs the requirement of exact ends is 

not as strict as for replication of viral genomes (or minigenomes).  

4.2.2 Significantly improved rescue with HHRz and HDVagRz_SC 

The new rescue system developed in this part, allowed the recovery of recombinant RABV 

that were severely attenuated. Some examples are SAD G_HH-HSmm-SC1 and other RABV 

containing 2 internal ribozymes, that were used in part one of this thesis. These constructs 

are severely attenuated during rescue, as the internal ribozymes can cleave the naked cRNA 
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transcript. They could only be rescued in the improved system, whereas several rescue 

experiments with the classical rescue system failed. RABV containing IRES elements or 2A-

like sequences from part 3 of this work are attenuated in their growth kinetics and therefore 

of course also difficult to rescue. Some of these viruses, although being attenuated could be 

generated also with the classical rescue system (Marschalek et al., 2009), however, these 

rescue experiments were more time consuming and less reproducible. The new rescue 

system has allowed us not only to recover severely attenuated RABV constructs, moreover, 

it gains substantial time while recovering new recombinant RABV. Some examples are G 

gene deleted RABV clones (SAD ΔG) expressing fluorophores like eGFP or mCherry and which 

can be used for example for mono- or polysynaptic neuronal tracing. Derivatives of these 

fluorescent proteins contain specific tags, relocalizing them to distinct intracellular 

compartments, like turbo-mito-GFP (mitochondria) or mem-tomato (plasma membrane). 

Also proteins that can be used for functional assays could be successfully expressed from the 

new RABV vectors. G deleted RABV expressing calcium-indicators (GCamp3 and GCamp5) 

and channelrhodopsin 2 (ChR2c) were readily recovered. Although many of these 

recombinant RABV might have been rescued with the classical system, their recovery has 

been facilitated considerably by the improvements shown here. 

As numerous rescue systems for NNSV that are used today go back to the initial RABV 

system, the poor cleaving HDV “core” ribozyme is still widely used. Therefore also rescue 

systems for other members of the Mononegavirales might benefit from the improved rescue 

system.  
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4.3 Single infectious RABV cDNA clones 

RABV is being rescued from cDNA clones since almost 20 years (Schnell et al., 1994) and the 

system has been improved significantly (Ghanem et al., 2012) as described here. The 

availability of a highly efficient system allowed the addressing of the question if it is possible 

to generate cells genetically encoding RABV. Such cells could represent a basis for the 

development of mouse lines conditionally expressing infectious RABV. 

4.3.1 RABV rescue dependent on IRES elements 

For the recovery of recombinant RABV from cDNA, one has to provide the full-length cDNA 

from which antigenome-like RNA is transcribed into the cytoplasm. This newly made RNA is, 

however, not infectious per se. Since neither plus-sense nor minus-sense RNA of RABV can 

be translated to provide the “helper” proteins N, P and L, extra expression plasmids are 

necessary. Only upon encapsidation by the N protein into NCs and association of these NCs 

with the RABV polymerase P-L into a vRNP is the viral RNA infectious. Therefore at least 4 

plasmids have to be introduced into the cell. Transcription of all 4 plasmids is usually 

dependent on T7-pol that can be either transiently provided by an additional plasmid or viral 

vectors like vaccinia virus, or be stably expressed by certain cell lines (for review see 

(Ghanem and Conzelmann, in press)). As a first step towards a genetically encoded RABV this 

work addressed the possibility of simplifying the rescue system by reducing the numbers of 

plasmids needed for rescue.  

For influenza virus, a segmented negative stranded RNA virus from the family 

Orthomyxoviridae such a simplification in terms of a single plasmid system recently has been 

demonstrated (Zhang et al., 2009). To reconstitute an infectious influenza virus cycle, the 8 

genome segments have to be delivered together with 4 proteins of the vRNP, the 

nucleoprotein NP and the tripartite polymerase PB1, PB2 and PA. In the initial rescue 

systems this was achieved by simultaneous delivery of 12 plasmids, 4 expressing the proteins 

and 8 delivering the segmented genome RNA (Fodor et al., 1999; Neumann et al., 1999). By 

using ambisense strategies, where a Pol-I promoter transcribes the negative orientated 

genome segment and a Pol-II promoter from the other direction transcribes an mRNA to 

generate the proteins, this was reduced to 8 plasmids (Hoffmann et al., 2000; Hoffmann and 

Webster, 2000). Zhang et al. fused these 8 plasmids to a single plasmid of approximately 24 

kb from which they were able to rescue recombinant influenza virus. 
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For RABV rescue, the antigenome must be transcribed as naked RNA to reconstitute the 

virus together with N, P and L. This means the antigenome-like RNA has already the 

orientation of mRNAs, thus an ambisense strategy is not helpful. The fusion of the three 

“helper” plasmids, coding for N, P and L, in one plasmid together with the cDNA for the full-

length RNA would result in a single plasmid of at least 24 kb, the same size as the influenza 

single rescue plasmid. The genome comprises about 12 kb, the L gene about 6.5 kb, the N 

gene about 1.5 kb and the P gene about 1 kb. Additionally promoter and termination 

sequences together with sequences for amplification and selection in bacteria would be 

necessary. The major difficulty, however, would not be the size, but rather the duplication of 

about 75 % of the sequences, as there would be two N genes, two P genes and two L genes, 

one of each as part of the genome and the other as expression unit for the “helper” 

proteins. This is expected to result in extensive recombination between the plasmid 

sequences in bacteria. Therefore, another approach using regulative elements on RNA basis, 

the IRES element was explored to overcome this problem. 

Recently, the successful replacement of RABV gene borders by diverse picornaviral IRES 

elements has been demonstrated (Marschalek et al., 2009). There it was shown first that 

these internal IRES elements were tolerated in the viral genome. Further, as the gene border 

and thereby the transcriptional stop/restart signals were replaced by IRES elements, the 

translation of the downstream gene was dependent on the respective IRES element. 

Different IRES elements could therefore direct the relative levels of protein translated from 

the downstream ORF. In regard to expression of “helper” proteins these IRES elements were 

expected to also translate proteins from the downstream ORF from the naked full-length 

antigenome-like RNA directly after transcription, as this RNA has the same orientation as 

mRNAs. Once the genome is packaged into helical N-RNA, this should not be the case 

anymore, due to the loss of IRES secondary structures. 

The translation of protein from an ORF with the support of an upstream IRES element indeed 

was confirmed. Transfection of only pSAD T7-HH_PVP(bi)_SC, the full-length cDNA for a 

RABV in which the NP gene border is replaced by the poliovirus IRES, resulted in expression 

of low levels of P protein as indicated in Western blot experiments. The replacement of the 

NP gene border in RABV results in translational regulation of gene expression instead of 

transcriptional regulation. As we did not aim primarily to influence the natural transcription 
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gradient, the construct pSAD T7-HH_PVP(mono)_SC was created. In contrast to pSAD T7-

HH_PVP(bi)_SC, in this construct, the poliovirus IRES does not replace the NP gene border 

but is located in the 5’-UTR of the P gene. As this does not lead to a bicistronic N-PV-P mRNA 

but to a monocistronic PV-P mRNA, the abbreviations “bi” or “mono” were chosen. Like 

pSAD T7-HH_PVP(bi)_SC, pSAD T7-HH_PVP(mono)_SC was able to translate P protein at low 

levels when transfected into BSR-T7/5 cells. As the P levels still were low, other IRES 

elements were tested. The EMCV IRES was found to result in the highest levels of P protein 

translated directly from the full-length transcript.  

More interesting in regard to a simpler rescue system was the question if these P levels were 

sufficient to rescue the virus. And indeed they were. Transfection of pSAD T7-

HH_EP(mono)_SC, together with only pTIT-N and pTIT-L, but omitting pTIT-P was sufficient 

to rescue the RABV SAD EP(mono) from cDNA. This demonstrated that a cis-active sequence, 

namely the EMCV IRES, can direct the translation of P protein in amounts sufficient for 

rescue and therefore supersedes the use of an extra P plasmid. The full-length plasmids 

pSAD T7-HH_PVP(bi)_SC and pSAD T7-HH_PVP(mono)_SC, however, comprising the 

poliovirus IRES, did not provide similar amounts of P protein and therefore could not be 

rescued without pTIT-P. When pTIT-P was co-transfected, recombinant RABV successfully 

could be recovered from these cDNAs. 

The next step was to transfer this principle to the other two genes of RABV that need to be 

expressed during rescue, N and L. For the L gene this was working readily, by introducing an 

EMCV IRES downstream of the GL gene border into the 5’-UTR of L. The resulting cDNA 

construct, pSAD T7-HH_EL(mono)_SC could be rescued by co-transfection of only pTIT-N and 

pTIT-P, but without pTIT-L. Due to a lack of L antibodies, the levels of L protein translated 

directly from the full-length RNA could not be determined. As L is at the most promoter 

distal (5’-end) position in the NNSV context, the least mRNA is made. Moreover, viruses have 

been made containing two additional transcription units between the G and the L gene, 

probably reducing the already low amounts of L mRNA, without significantly attenuating the 

virus (unpublished data). Thus it is thought that already low amounts of L protein are 

sufficient for supporting virus replication and transcription.  

When an EMCV IRES element was introduced upstream of the N gene, directly between the 

RABV antigenome leader and the AUG of the N gene (pSAD T7-HH_EN_SC), it was able to 
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mediate translation of significant amounts of N protein from the full-length RNA. Strikingly, 

however, no RABV could be rescued from pSAD T7-HH_EN_SC. In pSAD T7-HH_EN_SC the 

EMCV IRES with its intensive secondary structure is in close proximity to the antigenomic 

leader sequence at the 5’-end of the newly transcribed RNA. To exclude that the leader-

proximal IRES has a negative effect on virus replication, an eGFP ORF was inserted as a 

spacer between the leader and the EMCV IRES. As no gene border was inserted, this would 

result in a bicistronic GFP-IRES-N mRNA transcribed by the virus. The construct pSAD T7-

HH_GFPEN_SC still was able to provide sufficient amounts of N protein translated from the 

N-ORF on the full-length RNA, but again could not be rescued, neither with nor without 

providing N in trans. The same was true when instead of the eGFP, an extra RABV P ORF was 

inserted (data not shown). As indicated by these results and confirmed by later experiments, 

cis-active sequences at the leader-N gene junction, as well as within the N coding region play 

a critical role for virus viablitiy. This is discussed below (4.3.5). In order to retain an 

authentic leader-N gene junction, a virus with a bicistronic N-IRES-N gene (SAD NEN) was 

constructed. This construct has the first N gene (N1) directly downstream of the leader, 

followed by the EMCV IRES and a second N gene (N2). In contrast to pSAD T7-HH_EN_SC, 

pSAD T7-HH_NEN_SC could be rescued readily into viable virus. Moreover, this rescue was 

possible by co-transfecting only pTIT-P and pTIT-L. 

The major implication from these results is that it was demonstrated that each “helper” 

protein can be omitted by the use of cis-active sequences in the antigenome-like RNAs.  

4.3.2 RABV dependent on 2A-like sequences 

Another regulatory element allowing protein expression from bicistronic or multicistronic 

mRNAs is the 2A-like sequence. 2A-like sequences have been found in many genera of the 

Picornaviridae (Luke et al., 2008). They are cis-active hydrolase elements and their 

mechanism is the co-translational separation of the upstream peptide chain together with 

the C-terminal 2A-like peptide and the downstream peptide chain together with an N-

terminal proline derived from the 2A-like sequence. By a ribosomal skipping mechanism the 

peptide bond is not made, while translation goes on (Donnelly et al., 2001a; Donnelly et al., 

2001b). In some picornaviruses this mechanism is present instead of the classical 2A-

protease to separate the viral proteins 2A and 2B.  
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In the present work the RABV NP gene border was replaced by the Thosea asigna virus 2A-

like sequence (Donnelly et al., 2001a). During construction, an XmaI restriction site, coding 

for amino acids proline and glycine, was created at the N C-terminus upstream of the 2A-like 

sequence. SAD N2AP could be rescued from cDNA, representing the first RABV whose 

replication is dependent on a 2A-like sequence. This virus (SAD N2AP) made a bicistronic 

N2AP mRNA as observed in Northern blots and from this mRNA the proteins N-2A and P are 

made during translation. As mentioned before, the majority of the 2A-like sequence remains 

at the C-terminus of the N protein (N-2A). The P protein translated from N2AP starts with an 

N-terminal proline. N-2A could be clearly distinguished from N in Western blot by its MW, 

for proline-P that was not the case. 

Most probably, the 2A-tag at the C-terminus of the N protein is the main reason for the 

attenuation observed for SAD N2AP in comparison with SAD L16. There are reports on the 

failure to recover a RABV with an N-GFP fusion protein (C-terminal GFP fusion) (Koser et al., 

2004) and although the 2A-like tag is significantly smaller, it might be only due to the 

improved rescue system that SAD N2AP could be rescued successfully. In principle, however, 

it was demonstrated that C-terminal tags of N are tolerated, although attenuating the virus. 

The N-terminal proline of P might also play a minor role for the attenuated phenotype 

observed. However, recombinant RABV with N-terminal GFP fusions have been generated 

and shown to be viable (Brzózka et al., 2005). It is worth to mention that this N-terminally 

GFP-tagged P-protein was not able any more to prevent the induction of IFN. Shorter N-

terminal tags to the P-protein, however, do not impede this important function since a Flag-

P can still abolish the induction of IFN (Martina Rieder, personal communication). 

Additionally, BSR-T7/5 cells, in which SAD N2AP was rescued and tested for growth kinetics, 

have a defect in IFN induction, therefore this cannot play a role.  

In wild-type RABV (SAD L16) not only the full-length P protein is expressed from the P gene 

(P1), but, due to a ribosomal leaky scanning mechanism and translation initiation at more 

downstream in-frame AUGs, also minor amounts of N-terminally truncated P proteins (P2, 

P3, P4) are made. Although some of these minor P proteins have been described to interact 

with promyelytic leukemia (PML) protein (Blondel et al., 2002) or to interfere with IFN 

induction (Marschalek et al., 2012), their overall impact and function in the RABV life cycle is 

not clear. As translation of the bicistronic N2AP-mRNA of SAD N2AP exclusively starts at the 
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N-AUG, these smaller P products cannot be made and are not detected in Western blot 

experiments (3.3.8). Their lack might also contribute to the attenuated phenotype of SAD 

N2AP compared to SAD L16. 

A negative effect on the virus fitness may also result from the fact that in SAD N2AP the N 

and P protein are synthesized in equimolar amounts from a single mRNA. The transcriptional 

gradient observed by NNSV as RABV is thought to be the only possibility for the virus to 

regulate relative expression levels of viral proteins. For BDV it was shown that a distinct ratio 

of N to P protein is important (Schneider et al., 2003). 

In terms of providing “helper” proteins from the antigenome-like RNA, the 2A-like sequence 

alone is not useful, as it allows two proteins to be made from one ORF, but not internal 

translation initiation like an IRES element. If however, the 2A-like sequence is combined with 

an upstream IRES element, it has the advantage of translating two proteins dependent on 

only one IRES element.  

4.3.3 Combination of IRES elements and 2A-like sequences – single infectious cDNA 

clones  

To provide all “helper” proteins through cis-active sequences in the genome instead of co-

transfecting plasmids and to achieve the goal of a single infectious cDNA, many 

combinations of IRES elements and 2A-like sequences were tested during my work. Two 

cDNA constructs, pSAD T7-HH_NEN2APEL_SC and pSAD T7-HH_NENEPEL_SC fulfilled the 

criteria, namely to allow rescue from a single cDNA clone. From both plasmids, when 

transfected alone into BSR-T7/5 cells, recombinant RABV could be recovered without 

providing any “helper” plasmids in trans. In the following chapter, the features of both 

approaches and a comparison of their advantages and disadvantages are provided. 

SAD NENEPEL was a combination of SAD NEN, SAD EP, and SAD EL. The N protein was made 

from a bicistronic NEN mRNA in which the N1 ORF was followed by an EMCV IRES and the N2 

ORF. P and L were made from monocistronic EP and EL mRNAs. Altogether, three EMCV IRES 

elements were applied to translate sufficient amounts of N, P and L protein from the primary 

full-length transcript in order to rescue this virus. From pSAD T7-HH_NENEPEL_SC, virus was 

found to be rescued fast, compared to pSAD T7-HH_NEN2APEL_SC, however, a significant 

percentage of rescued viruses possessed re-arranged genomes. The origin of these 

recombinations will be discussed in an extra chapter ( 4.3.4). The un-recombined viruses 
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rescued from pSAD T7-HH_NENEPEL_SC, like SAD NENEPEL 2, were found to be severely 

attenuated. This attenuation may contribute to the swift emergence of the recombined (and 

fitter) virus variants.  

One attenuating factor could be the genome length of SAD NENEPEL. The sequences of the 

extra N gene and the three additional EMCV IRES elements sum up to about 2.5 kb. 

However, this cannot be the major cause of attenuation, as RABV vectors have been 

generated containing additional genes of similar size without significant attenuation. 

Strikingly, SAD NEP(bi)EL 1, the virus rescued from pSAD T7-HH_NENEPEL_SC after a 

recombination event was found to be less attenuated than SAD NENEPEL 2, the 

unrecombined variant. The second N gene of SAD NENEPEL 2, which is not present in SAD 

NEP(bi)EL 1, is, however, not considered to be a major cause of the attenuation observed. 

SAD NEN, with the bicistronic N-IRES-N mRNA was not attenuated significantly. Most likely, 

this is because the bulk of N protein was made from the N1 gene, as observed for SAD 

NEN2AP (where both N genes can be distinguished by their size, due to the N-2A made from 

the second N gene). The second major difference between both viruses is that SAD NEP(bi)EL 

transcribes a bicistronic N-IRES-P mRNA whereas SAD NENEPEL 2 transcribes a 

monocistronic IRES-P mRNA. Therefore, the IRES elements upstream of the respective 

monocistronic genes are a possible explanation for the severe attenuation. SAD EL, 

transcribing a monocistronic IRES-L mRNA was already attenuated by about 2 log steps. The 

same was true for SAD EP(mono) with the monocistronic IRES-P mRNA (data not shown). 

Differences observed in growth kinetics between the slightly attenuated SAD NEP(bi)EL and 

the severely attenuated SAD NEP(mono)EL (compared to SAD L16), which both were rescued 

from Pol-II dependent single infectious RABV cDNA clones (3.3.14 3.3.15), support this 

hypothesis. Whether the secondary structure of the EMCV IRES interferes with cap-

dependent translation from the monocistronic mRNAs, or yet unknown, but impotant, cis-

acting sequences in the 5’-UTR of the respective mRNAs were disrupted, remains unclear. 

Further studies are required to pinpoint the reason for these phenotypic differences. It is 

easy to imagine, however, that attenuating factors of e.g. SAD EP(mono) and SAD EL 

accumulate in SAD NENEPEL 2.  

SAD NEN2APEL was a combination of the bicistronic NEN approach with the N2AP approach 

and from the virus thus a tricistronic NEN2AP mRNA was made. From this mRNA three 
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proteins N, N-2A, and P are made. L is made from a monocistronic EL mRNA. During rescue 

from pSAD T7-HH_NEN2APEL_SC by translation from the full-length RNA, almost exclusively 

N-2A is made but only background levels of N. This indicates that N-2A is also able to support 

rescue similar to untagged N. Background levels of untagged N protein may derive from 

translation initiation at the AUG of N1 and are also observed upon transfection of pSAD T7-

HH_L16_SC. as neither a 5’-cap structure nor an IRES element is present upstream of N1, 

these background levels, however, appear not sufficient to rescue SAD L16 without providing 

pTIT-N in trans or, in our case, providing N-2A from the EMCV IRES. 

Rescue from pSAD T7-HH_NEN2APEL_SC was less efficient and delayed not only in 

comparison with rescue from pSAD-L16 but also with rescue from pSAD T7-HH_NENEPEL_SC. 

Recombinant variants of SAD NEN2APEL were not found. The virus SAD NEN2APEL was also 

attenuated significantly if compared to SAD L16, although growing slightly better than the 

un-recombined SAD NENEPEL 2. Reasons responsible for this attenuation most likely 

resemble the reasons found to be responsible for SAD EL (discussed above) and SAD N2AP 

(4.3.2). Regarding factors discussed to be responsible for the attenuation of SAD N2AP, 

however, only the lack of minor P products (P2, P3, P4) and the proline at the N-terminus of 

P are expected to play a major role. Authentic N protein is made from the N1 ORF at 

substantial amounts and significantly less is found to be made from the N2 ORF as N-2A. 

Noteworthy, the distinct N products allow a direct comparison of the efficiencies of cap-

dependent translation and EMCV IRES dependent translation. Not only derive both N 

products from the same mRNA, moreover, they are detected with the same antibody. 

Rescue efficiencies from both single infectious RABV cDNAs pSAD T7-HH_NENEPEL_SC and 

pSAD T7-HH_NEN2APEL_SC were found to be reduced compared to the standard rescue 

system. For pSAD T7-HH_NENEPEL_SC, however, only about 50 % of rescue experiments 

were positive, and at significantly later time points compared to standard SAD L16 rescue. 

Rescue experiments with pSAD T7-HH_NEN2APEL_SC failed even more often. As discussed 

above, both viruses were attenuated in their growth kinetics compared with SAD L16. 

Rescue efficiency of the single infectious cDNA clones does, however, not only depends on 

the growth kinetics of the recombinant RABV recovered, but also on the quality, amount, 

and ratio of “helper” proteins directly expressed from these cDNAs.  
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To determine the ability of the single infectious cDNA clones to serve as “helper” plasmids, a 

standard RABV cDNA pSAD T7-HH_GFP_SC was co-transfected with either of the infectious 

cDNA clones or with the standard mix of pTIT-N, pTIT-P, and pTIT-L “helper” plasmids (NPL-

mix). The GFP positive foci of SAD GFP allowed the detection of rescue elements in live cells. 

Using pSAD T7-HH_NENEPEL_SC as a “helper” plasmid, rescues were almost as efficient as 

with the NPL-mix. This relatively efficient rescue is not surprising, as for both pSAD T7-

HH_NENEPEL_SC and the pTIT “helper” plasmids all proteins are translated via the EMCV 

IRES. In standard rescue experiments, the NPL-mix contains pTIT-N, pTIT-P and pTIT-L in a 

ratio of 2:1:1 (see Materials and Methods) and a different ratio of proteins expressed from 

pSAD T7-HH_NENEPEL_SC may account for the slight decrease in efficiency observed 

(compared to the NPL-mix). 

Using pSAD T7-HH_NENE2APEL_SC as “helper” plasmid, also all rescue experiments resulted 

in successful recovery of recombinant SAD GFP, however, a delay of several day was 

observed. This indicates that from this plasmid the composition of “helper” proteins 

expressed is less efficient. Reasons therefore might be as well the N-2A protein or the 

proline-P. 

4.3.4 SAD NENEPEL - recombination on plasmid level or during rescue 

Rescue experiments with the RABV single infectious cDNA pSAD T7-HH_NENEPEL_SC often 

resulted in a mixture of genetically different viruses. While only from one experiment (SAD 

NENEPEL 2) exclusively the un-recombined virus corresponding to the cDNA construct was 

recovered, most virus stocks contained minor fractions of SAD NENEPEL together with 

recombined variants. The most prominent rearrangement could be seen in SAD NEP(bi)EL 1. 

For this virus, in Northern blot experiments, neither the bicistronic N-IRES-N mRNA nor the 

monocistronic IRES-P mRNA were detected. Instead of that, a bicistronic N-IRES-P mRNA was 

made. Therefore it was concluded that a recombination between the EMCV IRES separating 

the two N genes and the EMCV IRES upstream of the P gene had occurred. A recombination 

between the two N sequences (N1 and N2) would result in SAD NEP(mono)EL, a virus 

transcribing a monocistronic N mRNA and a monocistronic IRES-P mRNA. Indeed, this virus 

could be detected as well in the virus stock SAD N(EN)EPEL 6, however only in a mixture with 

SAD NENEPEL (the brackets indicate the presence of either of the two viruses in the stock). 

Upon several repetitions of the rescue experiments with pSAD T7-HH_NENEPEL_SC, it came 
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out that SAD NEP(bi)EL was detected at the highest rates. Most probably, this is due to the 

increased growth kinetics of this virus (final titers only reduced about 1 log(10) compared to 

SAD L16), allowing it to outgrow the severely attenuated SAD NENEPEL (titers reduced by 

about 3 log(10)).  

There are theoretically 3 possible explanations where and when the recombination for SAD 

NENEPEL has occurred. The first possibility would be during replication of the virus. For RABV 

as a member of the Mononegavirales this is not very likely to occur and was for a long time 

excluded in the text books. So far only one publication has indicated the possibility of 

recombination events in wild type RABV (Liu et al., 2011). For some other members of the 

Mononegavirales recombination has been described (Chare et al., 2003; Schierup et al., 

2005) but most of these publications rely on sequencing data. A more recent work suggested 

that many recombined sequences in databases could be artificially generated by template 

switching during PCR (Song et al., 2011). However, in rare cases, e.g. for RSV, recombination 

has been demonstrated to occur experimentally (Spann et al., 2003).  

The critical point in addressing the question of recombination during RABV replication was 

to isolate only un-recombined virus clones and exclude a contamination with recombined 

virus (below detection levels of the radioactive probes). To address this, single virus clones 

were isolated by serial dilutions down to titers that were only able to infect a few (5 -10) 

wells from a 96-well dish. Briefly, none of the SAD NENEPEL single virus clones (isolated from 

SAD NENEPEL 2) showed any recombination. Therefore contamination of the inoculating 

virus stock with recombined virus could be excluded. When a mixed virus stock (e.g. SAD 

N(EN)EPEL 3) was chosen as an inoculum for the isolation of single virus clones, the outcome 

was always a distinct progeny virus of either one or the other type (data not shown). This 

also confirms the usability of the approach. More interestingly, when single virus clones 

isolated from SAD NENEPEL 2 were passaged over several weeks, no recombination was 

observed to occur. This strongly indicates that the genomic rearrangements have happened 

prior to virus rescue. Formally, these experiments do not exclude the possibility of 

recombination during RABV replication. However, it is very unlikely that the high frequency 

of recombination observed in rescue experiments derives from recombining viruses.  

A second possible cause for the genomic rearrangements is a recombination event on RNA 

level in the cell, directly during the rescue, or prior to it. Template switching, or copy-choice 
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recombination, is a common mechanism of RNA recombination, where the transcribing 

polymerase during transcription “jumps” from one template to another. Thereby, an RNA, 

comprising information from both templates, is transcribed, as observed for many positive 

stranded RNA viruses (Arnold and Cameron, 1999; Cheng and Nagy, 2003; Kim and Kao, 

2001) but also during reverse transcription of retroviruses (Huber et al., 1989). Most 

importantly, the ability of template switching has been demonstrated in vitro for T7-pol 

(Rong et al., 1998). During transcription of RABV antigenome-like RNAs from the cDNA 

construct pSAD T7-HH_NENEPEL_SC, the double N gene and the EMCV IRES repeats might 

have an influence on the fidelity of T7-pol. Interestingly, for retroviral vectors expressing 

proteins from artificial multicistronic RNAs it was observed that the EMCV IRES was a 

recombinational hot-spot (Duch et al., 2004). Although the retroviral template switching 

during reverse transcription cannot be compared to T7-pol transcription, IRES structures 

seem to be prone to recombination in various systems. Another mechanism of RNA 

recombination was described for poliovirus as non-replicative recombination (Gmyl et al., 

1999). This mechanism was not dependent on transcription by the poliovirus polymerase, 

but rather on cleavage and re-ligation by unknown proteins or RNA structures. Notably, the 

poliovirus IRES with its intensive secondary structures was again detected as a hot-spot for 

the observed rearrangements.  

The third and most plausible explanation for the rearrangements observed, is recombination 

at plasmid level in bacteria. Due to the long repetitive sequences, as N1 and N2 or the 3 

EMCV IRES elements, recombinations are likely to occur during amplification of the plasmids 

in bacteria. For some full-length constructs during cloning more than 98 per cent of the 

bacterial plasmid minipreps were recombined as observed in restriction digestions. Although 

all cDNA constructs used for transfections were checked by adequate restriction digestion 

and sequencing, the presence of a small fraction of recombined plasmid (below the 

detection levels by agarose gel electrophoresis) cannot be excluded. It is clear that the un-

recombined virus SAD NENEPEL 2 is strongly attenuated and the recombination resulting in 

SAD NEP(bi)EL 1 enhances the viral fitness by magnitudes. Threrefore, even after a small 

contamination, due to the better fitness, viral replication will rapidly result in higher 

amounts of the recombined variant. 

 - 130 – 
 



4 – Discussion 
  

The latter two possibilities, recombination on RNA or DNA level, prior to the rescue would 

imply the presence of significant amounts of un-recombined pSAD T7-HH_NENEPEL_SC, as 

from the recombined pSAD T7-HH_NEPEL_SC plasmids (or from its RNA transcript) no N 

protein could be made. Therefore in contrast to the rescue of un-recombined virus this 

rescue per definition would be not from a single infectious cDNA clone but from 2 cDNAs or 

RNAs. 

Genomic rearrangements were also observed for SAD NEN. Here, in Northern blot 

experiments, together with the correct genome, a smaller genome was detected and 

together with the expected bicistronic mRNA a smaller monocistronic mRNA was found. This 

indicates a recombination event between the two N ORFs. The same recombination event 

was detected also in some rescue experiments of SAD NENEPEL. 

Interestingly, for SAD NEN2APEL none of such drastic rearrangements were detected 

although two EMCV IRES elements and two complete N genes were present as well. This can 

be explained by the fact that a recombination between the two N ORFs would rather 

attenuate the virus than contribute to its fitness. SAD NEN2APEL can produce the wild type 

N from the N1 ORF whereas SAD N2APEL would only encode the N-2A protein. The possible 

gain of fitness of the shorter genome thus seems not to compensate for the loss of the 

untagged wild-type N protein.  

4.3.5 Cis-active signals in the N gene. 

While RABV SAD NEN was recovered successfully from cDNA (3.3.4), the cDNA constructs 

pSAD T7-HH_EN_SC and pSAD T7-HH_GFPEN_SC failed to be rescued into virus. These 

results strongly suggested the presence of cis-active sequences at the RABV leader-N gene 

junction or within the N gene which are important for viability. Interestingly, it was shown 

for the closely related VSV, that the N gene could be transferred to more distal positions of 

the genome (Wertz et al., 1998). For RABV, however, no such rearranged viruses have been 

described yet. Moreover, and in correlation with these results, serious attempts to generate 

a RABV with an N-terminally tagged N protein failed (Stefan Finke, personal communication).  

To identify important cis-active sequences, I truncated the N1 gene in pSAD T7-HH_NEN_SC 

to retain the first 100 or 200 nts of the N sequence. Thereby the constructs pSAD T7-

HH_N100EN_SC(Fse) and pSAD T7-HH_N200EN_SC(Fse), respectively, were generated with 

short N-fragments downstream of the leader followed by the EMCV IRES and the complete 
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N2 gene. Noteworthy, these initial constructs, like pSAD T7-HH_NEN_SC or pSAD T7-

HH_EN_SC, comprised an FseI restriction site as an artifact from cloning directly at the 

leader-N gene junction. SAD N200EN(Fse) but not SAD N100EN(Fse) could be rescued from 

the respective cDNA, indicating that essential cis-acting sequences are located between nts 

100 and 200 of the N gene. New reporter constructs were generated with an additional GFP 

gene inserted between the G and the L gene and most importantly, in which the FseI site at 

the leader-N gene junction was restored to wild type. Strikingly, from both new constructs, 

pSAD T7-HH_N100EN G_eGFP_SC and pSAD T7-HH_N200EN G_eGFP_SC, recombinant RABV 

could be rescued. This indicates that not only the sequences between nts 100 and 200 of the 

N gene are important for RABV viability, but also sequences located directly at the leader-N 

gene junction. However, also the importance of sequences between N100 and N200 was 

emphasized by (1) the slight difference in growth kinetics between SAD N100EN G_eGFP and 

to SAD N200EN G_eGFP, (2) significantly smaller foci and (3) reduced eGFP expression in the 

former virus. 

As all mutants tested so far comprised a functional AUG at the authentic position of either 

the N100 or N200 sequence, the production of small peptides was possible from this N1 

position. As no stop-codon was included at the end of the N100 or N200 fragment, 

termination should occur in the EMCV IRES sequence. Thus, hypothetically, peptides were 

made from the respective viruses with the same N-terminal sequences, but different length 

and C-termini. To evaluate an influence of such peptides on the virus the N1 AUG at the 

leader-N gene junction, was mutated to UUG in order to exclude the production of any 

peptides from these mini-ORFs. The constructs pSAD T7-HH_N100(mut)EN G_eGFP_SC and 

pSAD T7-HH_N200(mut)EN G_eGFP_SC differed from pSAD T7-HH_N100EN G_eGFP_SC and 

pSAD T7-HH_N200EN G_eGFP_SC in only a single nucleotide. Both viruses were, however, 

growing slower than their respective (AUG comprising) variants. This indicates that peptides 

are not the cause for the attenuated growth kinetics observed for N100 comprising viruses 

compared to N200 comprising viruses. SAD N100(mut)EN G_eGFP, the virus with the 

mutation at the leader-N gene junction and only 100 instead of 200 nts of N, was found to 

be severely attenuated (10.000-fold). In comparison, RABV with only 100 nts of N, but an un-

mutated leader-N gene junction (SAD N100EN G_eGFP) or RABV with 200 nts of N, but the 

UUG mutation downstream of the leader (SAD N200(mut)EN G_eGFP), had a milder growth 

defect. These data correlated with the failure of pSAD T7-HH_N100EN_SC(Fse) to be rescued 

 - 132 – 
 



4 – Discussion 
  

into viable virus. This construct also comprises only 100 nts of the N coding region upstream 

of the EMCV IRES and due to the FseI site has a disrupted leader-N gene junction. These 

results all together strongly suggest that two distinct cis-active functions, one at the leader-N 

gene junction, and one within the N coding region (N100 – N200) are important for RABV 

viability.  

The infections with high MOIs and the monitoring of eGFP expression indicate rather a 

defect in gene expression for SAD N100(mut)EN G_eGFP virus but also, less prominent, for 

SAD N200(mut)EN G_eGFP. Indeed, at the leader-N gene junction, the RABV polymerase is 

discussed to initiate transcription of subgenomic mRNAs. RABV minigenomes, only 

comprising the terminal leader and trailer sequences and an internal reporter gene (but 

lacking the correct leader-N gene junction or N-internal sequences), do not show severe 

defects in reporter gene expression upon co-transfection with the “helper” plasmids 

expressing N, P and L. If, however, these minigenomes are passaged onto fresh cells (by co-

transfection of expression plasmids for RABV M and G), they are rapidly lost upon 

coinfection with SAD L16 (Finke and Conzelmann, 1999). This indicates that these artificial 

minigenomes (unlike defective interfering particles (DIs) from other NNSV) do not perform 

all steps of the RABV life cycle in an optimal way. Initial experiments with RABV 

minigenomes comprising an intact leader-N gene junction together with N sequences 

indicate that this defect can be rescued partially. Additionally, the negative influence of the 

FseI restriction site, disrupting the leader-N gene junction, could be confirmed (not shown). 

Why these sequences are important and which functions of the virus life cycle are impaired 

in their absence remains unclear and has to be studied further. 

4.3.6 Pol-II dependent rescue – single infectious cDNA clones vs 2-plasmid systems 

In this work, evidence was provided, that pSAD T7-HH_NENEPEL_SC and pSAD T7-

HH_NEN2APEL_SC, indeed were single infectious RABV cDNA clones. Their expression is, 

however, still dependent on T7-pol. 

As we aimed at generating a genetically encoded RABV, other promoters than T7 were 

tested. Therefore the full-length RABV cDNAs for SAD NENEPEL and SAD NEN2APEL were 

cloned together with flanking ribozyme sequences into either of the Pol-II expression vectors 

pCAGGS, pCR3 or pTre2hyg. The pCAGGS plasmid with the chicken-β-actin promoter (Niwa 

et al., 1991) is commonly being used for high level protein expression. The pCR3 plasmid 
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(Invitrogen) contains the immediate early CMV promoter and the plasmid pTre2hyg 

(Clontech) contains a minimal CMV promoter together with an upstream binding site for the 

Tet-repressor. In cell lines stably expressing the Tet repressor, e.g. TetOn cells, transcription 

from this plasmid is inhibited. Upon the addition of doxicycline, which sequesters the Tet-

repressor, transcription will start. For all these constructs Pol-II dependent RABV rescue 

failed. Different cell lines were tested, namely, BSR cells, BHK-21 cells, HEK 293T cells, NA 

cells, and Vero cells, but in all cell lines the outcome remained the same. It has to be 

mentioned that all constructs except for pTre2Hyg-HH_NEN2APEL_SC contained a T7 

promoter and thus could be tested in T7 cells for their integrity. As in T7 cells recombinant 

RABV could be recovered from all constructs but pTre2Hyg-HH_NEN2APEL_SC, we could 

exclude rearrangements of the plasmids to be the reason for the failure of rescue. Also was 

it possible to recover recombinant RABV from pCAGGS-T7-HH_NENEPEL_SC in NA cells, 

when the T7 polymerase was provided by co-transfection of the plasmid pSC6-T7neo. 

Western blot experiments, after transfection of the infectious RABV cDNA clones into 

different cell lines, revealed that proteins were only expressed from these constructs when 

they were transcribed by the cytoplasmic T7-pol, but not by the Pol-II promoters present in 

all these constructs. Most likely this contributes the reason for the failure of Pol-II 

dependent RABV rescue from these cDNAs. 

To identify the reason for this lack of Pol-II dependent protein expression, and to exclude 

e.g. incorrect splicing of the transcripts, various shorter constructs were tested in diverse cell 

lines. The plasmids pCR3-HH_NEP(mono) and pCR3-HH_NPVP(bi) comprise both the CMV 

promoter and the T7 promoter, followed by the HHRz sequence and the cDNA coding for the 

first part of the RABV antigenome (from leader until the end of the P gene). In pCR3-

HH_NEP(mono) an EMCV IRES is inserted between the P transcription start signal and the P 

ORF. In pCR3-HH_NPVP(bi) the NP gene border is replaced by the poliovirus IRES. In BSR-T7 

cells transfected with these plasmids, substantial amounts of RABV P protein were made 

from pCR3-HH_NEP(mono) and significantly less from pCR3-HH_NPVP(bi). In HEK 293T cells 

however, and in BSR cells (not shown) for none of the transfected constructs expression of 

RABV P was observed. The results obtained with these shorter cDNA constructs excluded 

incorrect splicing to be the reason for the lack of Pol-II expression, as RABV P and N (not 

shown) both can be expressed from Pol-II promoters. The intention behind the bicistronic 
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construct was to examine the influence of the RABV transcription stop and start signals on 

Pol-II dependent expression. Due to the lower activity of the PV IRES compared to the EMCV 

IRES, however, already in BSR-T7/5 cells, P expression levels were found to be low. 

Another major difference between e.g. pCR3-P and pCR3-HH_NEP(mono) is the HHRz, 

processing the 5’-end of the mRNA made from the latter. Therefore the influence of the 

HHRz and of the HDVagRz on Pol-II dependent protein expression from RABV cDNA clones 

was tested. Therefore 4 new cDNA constructs were made, all based on the pCAGGS vector, 

as pCAGGS-P was found to express significant higher levels of RABV P than pCR3-P. The full-

length cDNA for SAD_EP(mono) (3.3.1) was inserted into the vector with 4 different 

combinations of ribozymes, namely either an HHRz at the 5’-end or not and either a 3’-HDV 

(poorly cleaving) or a 3’-SC1 (better cleaving). Strikingly, from pCAGGS-T7_SAD NEP(mono), 

lacking the 5’-HHRz and comprising the 3’-HDV, substantial amounts of RABV P were made 

upon transfection into HEK 293T cells. Moreover, as the transcripts now comprised a 5’-cap, 

RABV N was directly translated (superseding an IRES element). When, however, either the 5’ 

or the 3’-end were processed efficiently by the respective ribozymes, expression levels 

decreased significantly. The processing of both ends, as seen for pCAGGS-T7-HH_SAD 

NEP(mono)_SC, resulted in a complete block of protein expression.  

The export of mRNAs from the nucleus into the cytoplasm is one of the major steps in mRNA 

surveillance. Starting co-transcriptionally the pre-mRNA is 5’-capped, spliced, processed at 

the 3’-end and polyadenylated. Numerous proteins, amongst these also factors involved in 

nuclear export, assemble with the mRNA during the biogenesis (reviewed in Kohler and Hurt, 

2007). Quality control occurs during all steps of this complex mRNP formation (reviewed in 

Fasken and Corbett, 2005). MRNAs lacking a poly(A) tail are not exported into the cytoplasm 

(Hilleren et al., 2001). Also the 5’-cap structure is essential for mRNA export (Cheng et al., 

2006). As both ends of the transcripts are reported to be essential for mRNA export from the 

nucleus, most likely, the residual protein expression observed upon transfection of either 

pCAGGS-T7_SAD NEP(mono)_SC or pCAGGS-T7-HH_SAD NEP(mono), where only one 

ribozyme is present, does rather represent the percentage of incomplete ribozymatic 

cleavage in vivo, than residual export of processed RNAs. This hypothesis is strengthened by 

the fact that for pCAGGS-T7-HH_SAD NEP(mono) residual amounts of N protein are 
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detected. Efficient translation of N protein from this construct can only occur if a 5’-cap is 

present (and not cleaved off).  

As from pCAGGS-T7_SAD NEP(mono) substantial amounts of RABV N and P protein were 

made upon transfection into HEK 293T cells (Pol-II dependent), the intent was also to 

directly express the L protein from this construct. Therefore, analogously to SAD EL (3.3.3), 

an EMCV IRES sequence was inserted upstream of the L ORF in pCAGGS-T7_SAD NEP(mono) 

and pCAGGS-T7_SAD NEP(mono)_SC resulting in pCAGGS-T7_NEP(mono)EL and pCAGGS-

T7_NEP(mono)EL_SC, respectively. Although from the latter less protein was expected to be 

made, the idea was that this disadvantage was compensated by the better processed 3’-end. 

Rescue experiments were performed with both plasmids and the recombinant RABV SAD 

NEP(mono)EL could be recovered after transfection of pCAGGS-T7_NEP(mono)EL into HEK 

293T cells. This provides evidence, that indeed Pol-II dependent rescue from a single 

infectious RABV cDNA is possible. 

The efficiency of this rescue system was, however, found to be low. Only 1 out of 12 

transfection experiments with pCAGGS-T7_NEP(mono)EL was successful. For pCAGGS-

T7_NEP(mono)EL_SC, all approaches failed, most likely due to the lower amounts of “helper” 

proteins translated directly from the full-length RNA. In BHK-21 cells neither of the 

constructs could be rescued, probably because the transfection efficiency (as determined by 

a pCAGGS-eGFP reporter construct) was reduced significantly (not shown). 

Pol-II dependent rescue from single infectious RABV cDNA clones in this work was found to 

have two distinct requirements which seem to be diametrically opposed. One requirement is 

the expression of sufficient amounts of “helper” proteins, translated either cap-dependent 

(RABV N from pCAGGS-constructs) or IRES-dependent (N-IRES-N, IRES-P and IRES-L). The 

second important point is the delivery of an antigenome-like RNA, comprising precise 3’ and 

5’-ends, which can be efficiently encapsidated into viral NCs. 

To distinguish between these two demands, a 2-plasmid rescue system was developed. In 

this system, the “helper” proteins were expressed by pCAGGS-T7_NEP(mono)EL. As the 

second plasmid (the cDNA that should be rescued), the cDNA of RABV SAD L16 was cloned 

into the pCAGGS vector comprising different ribozymes to process the 5’ and 3’-ends of the 

full-length transcripts. Additionally, to test different Pol-II promoters, pCR3-HH_L16_SC was 

made comprising the SAD L16 full-length cDNA with the flanking 5’-HHRz and the 3’-SC1, in 
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the vector pCR3. For rescue, equal amounts of pCAGGS-T7_NEP(mono)EL and either of the 

SAD L16 cDNAs were transfected into HEK 293T cells or BHK-21 cells. Strikingly, almost all 

transfections resulted in successful recovery of recombinant SAD L16. Formally, the 

simultaneous rescue of SAD NEP(mono)EL cannot be excluded, and the existence of virus 

mixtures in supernatants was not followed further. However, the significant differences in 

efficiency compared to transfections of only pCAGGS-T7_NEP(mono)EL, together with 

phenotypes of the foci upon staining with FITC-labeled RABV N-antibodies, indicate that 

almost exclusively SAD L16 was recovered from these experiments. The fastest and most 

efficient rescue was achieved with pCAGGS-T7-HH_L16_SC, comprising the HHRz and SC1. 

From pCAGGS-T7_L16, lacking the 5’-HHRz and comprising the 3’-HDV, rescues were delayed 

and only partially successful. This emphasizes the need of the RABV RNAs for precise ends 

also in Pol-II dependent systems. Rescue attempts in the inefficiently transfected BHK-21 

cells failed and rescues with the weaker CMV promoter were slightly delayed, indicating the 

importance of sufficient transcription of antigenome-like RNA. It was discussed above, in 

regard to the cap-dependent translation of the RABV N protein, that rather the unprocessed 

full-length RNAs are exported to the cytoplasm. Therefore it might be the case that full-

length transcripts with precise ends (which can be rescued far better) are only trans-located 

to the cytoplasm due to eventual failure of mRNA quality control mechanisms, (or e.g. during 

cell division). This however remains to be analyzed further. Noteworthy, this was the first 

rescue of RABV from strain SAD L16 in a Pol-II dependent manner. Numerous attempts to 

rescue this virus from Pol-II promoters together with Pol-II dependent “helper” proteins 

failed, as seen in our hands (not shown) and by others (Osakada et al., 2011; Stefan Finke, 

personal communication). 

Alltogether, the 2-plasmid rescue system has the advantage, that one plasmid can be 

optimized for efficient delivery of “helper” proteins, whereas the second construct can 

deliver the best RABV antigenome-like RNA. The higher efficiency of this system, compared 

to the 1-plasmid system, derives, however, not only from the precise genome ends of the 

SAD L16 constructs. SAD L16, importantly, can replicate and grow significantly better than 

SAD NEP(mono)EL. Thus, I intended to rescue a RABV with better growth kinetics (than SAD 

NEP(mono)EL) also from a 1-plasmid system. As such a virus, that still had to comprise IRES 

elements to translate the P and L protein from the RNA transcript, SAD NEP(bi)EL was 

chosen. This RABV, identified as the outcome of a recombination event upon rescue from 
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pSAD T7-HH_NENEPEL_SC, was found to grow significantly better and was only attenuated 

about 1 log(10) in titer compared to SAD L16 (3.3.9 4.3.4). Therefore the plasmids 

pCAGGS-T7_NEP(bi)EL (3’-HDV) and pCAGGS-T7_NEP(bi)EL_SC (3’-SC1) were made, both 

comprising a bicistronic N-IRES-P gene. Indeed, this resulted in significantly increased rescue 

efficiencies (compared to the monocistronic IRES-P constructs).  

Remarkably, for pCAGGS-T7_NEP(bi)EL_SC about 50 % of rescue experiments resulted in 

successful recovery of recombinant RABV in HEK 293T cells. For pCAGGS-T7_NEP(bi)EL, the 

efficiency was lower, indicating that between these constructs, the advantage of more RNAs 

comprising a precise 3’-end overweighs the disadvantage of lower levels of “helper” proteins 

expressed. 

To summarize, in this work, evidence was provided, that it is indeed possible to rescue RABV 

from single infectious cDNAs. A prerequisite was the significant improvement of the RABV 

rescue system by generating precise 5’ and 3’-ends (figure 31A). T7-pol dependent single 

infectious cDNAs, expressing the RABV N, P and L proteins directly from the antigenome-like 

transcripts (by supporting IRES elements or 2A-like sequences) were the next step (figure 

31B). For T7-pol-independent rescue, as a further bottleneck, (most likely) the export of Pol-

II transcribed antigenome-like RNAs from the nucleus was impaired upon ribozymatic 

procession. To achieve efficient and reproducible RABV rescue two different strategies were 

applied. To rescue RABV from a Pol-II-dependent single infectious RNA, only the 3’-end but 

not the 5’-end was processed to allow a minimum of “helper” protein expression. Secondly, 

a RABV with better growth kinetics than the first generation infectious clones was used 

(figure 31C). As an alternative to Pol-II dependent single infectious cDNA clones, a 2-plasmid 

rescue system was developed, allowing the simultaneous improvement of both plasmids, 

one for “helper” protein expression and one to be rescued, to their respective needs (figure 

31D). 
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The success of these attempts depends on the expression levels achieved with the 

genetically encoded systems, and it is unclear so far, whether these are sufficient in regard 

to “helper” protein expression and antigenome-like RNA transcription.  

A more knowledge-based approach therefore would be to further optimize the systems 

developed in this work before they are brought to the next step. To do so, different 

procedures are conceivable, dependent on the systems. Within the 2-plasmid system, one 

would expect that the plasmid expressing the “helper” proteins can be optimized the most. 

As only RABV N, P, and L have to be provided, additional RABV sequences could be deleted, 

thus shortening the plasmid. Additionally, one could integrate an optimal Kozac sequence 

(instead of the leader-N gene junction) upstream of the N-ORF to increase expression of this 

protein. Furthermore it could be an option to test IRES elements others than used in this 

work, thereby varying the ratios between the provided “helper” proteins. In doing so, no 

influence on the viability of the recombinant RABV has to be considered, as the virus RNA is 

made from the second plasmid.  

For the single infectious cDNAs other possibilities of improvement exist. It was found that 

SAD NEP(bi)EL grows significantly better than SAD NEP(mono)EL. This indicates that for 

RABV, the monocistronic IRES-P mRNA is problematic. Therefore, one could try to construct 

a RABV transcribing a bicistronic G-IRES-L mRNA (e.g. SAD GEL(bi)) and compare its growth 

kinetics with that of SAD EL. Alternatively, spacer sequences could be inserted into the 5’-

UTRs of IRES comprising monocistronic mRNAs. In regard to these 5’-UTRs, another option 

could be the restoration of wild-type-like RABV sequences, upstream of the respective IRES 

elements, as these were partially disrupted during cloning. A more time-consuming 

approach is the serial passaging of e.g. SAD NEP(bi)EL in the cell line in which it is intended to 

encode a RABV genetically (e.g. MEFs, NA cells). One could expect the emergence of 

adaptive mutations, specifically increasing the virus viability in the respective cell line. 

Identification (and characterization) of these mutations is conceivable to contribute also to 

the rescue efficiency. The balance between the demands for precise ends on one hand and 

the efficient expression of “helper” proteins on the other hand is another important task to 

adjust the system. For the 3’-end an HDVagRz with an intermediate cleavage activity, such as 

SC2 (3.1.5) could improve the system. Additionally, for generation of an exact 5’-end the 

use of an inducible HHRz, or riboswitch, should be examined. Such inducible ribozymes have 
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been reported to cleave dependent on a ligand drug, like theophylline or flavin 

mononucleotide (Soukup and Breaker, 1999). Also in mammalian cells some of these are 

reported to be functional (Auslander et al., 2010; Kumar et al., 2009).  

In summary, new working single and double plasmid Pol-II dependent RABV rescue systems 

have been developed in this work, which pave the way for genetically encoded RABV animal 

model systems, and which provide promising options for optimization.  
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6 Appendix 

6.1 List of oligo sequences 

Oligos made for this work (numerical order) 
AG 8 

 

5’-CTAGCGGTACCCGAACGGCATCAAGGTGAACTTCAAGAGAGTTCACCTTGATGCCGTT 
CTTTTTGGAAAGC-3’ 

AG 9 5’-GGCCGCTTTCCAAAAAGAACGGCATCAAGGTGAACTCTCTTGAAGTTCACCTTGATGCC 
GTTCGGGTACCG-3’ 

AG 10 5’-CTAGCGGTACCCTGATGAGGCCGAAAGGCCGAAACTCCGTAAGGAGTCCCCGAACGG 
CATCAAGGTGAACTTCAAGAGAGTTCACCTTGATGCCGTTCTTTTTGGAAAGC-3’ 

AG 11 5’-GGCCGCTTTCCAAAAAGAACGGCATCAAGGTGAACTCTCTTGAAGTTCACCTTGATGCC 
GTTCGGGGACTCCTTACGGAGTTTCGGCCTTTCGGCCTCATCAGGGTACCG-3’ 

AG 12 
 

5’-CTAGCGAATTCAAACAACAAAGGGGCTGATGAGGCCGAAAGGCCGAAACTCCGTAAG 
GAGTCCCCCAAATAGAAATATAAAAG-3’ 

AG 13 5’-GTACCTTTTATATTTCTATTTGGGGGACTCCTTACGGAGTTTCGGCCTTTCGGCCTCATC 
AGCCCCTTTGTTGTTTGAATTCG-3’ 

AG 16 5‘-CCCCGGACCGCGAGGAGGTGGAGATGCCATGCCGACCCAACACTTTTCCAAAAAGAAC 
GGCATC-3‘ 

AG 17 5‘-GGGCCCGGGGCTAGCGGCGCCCAACATAGGGGCTGATGA-3‘ 
AG 18 5‘-GGGCCCGGGGCTAGCGGCGCCGCTAGCGGTACCCGAACG-3‘ 
AG 19 5‘-CCCGCGGCCGCCTCCCTTAGCCATCCGAG-3‘ 
AG 24 5’-CCCGCGGCCGCTGGCTCTCCCTTAGCCATCCGAG-3’ 
AG 25 5’-CCCGCGGCCGCGTACCTGGCTCTCCCTTAGCCATCCGAGTGGACGACGTCCT-3’ 
AG 26 5’-CCCGCTCAGCGGTGGCAGCAGCCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGG 

ATCCCCGCTGGCTCTCCCTTAGCCATCCGAG-3’ 
AG 27 5’-GGGAAGCTTGATATCGAATTCCT-3’ 
AG 29 5’-GGCGCTAGCGAATTCAATCAACATAGTTCCTGATGAGGCCGAAAGGCCGAAACTCCGT 

AAGGAGTC-3’ 
AG 30 5’-GGCGCTAGCGAATTCAATCAACATAGAACCTGATGAGGCCGAAAGGCCGAAACTCCGT 

AAGGAGTC-3’ 
AG 31 5’-ATAGCTAGCCCGAAACTCCGTAAGGAGTCGAACGGCATCAAGGTGAACTTCAAGAGA 

GTTCACCTTGA-3’ 
AG 32 5’-ATAGCTAGCCCGAAACTCCGTAAGGAGTCGTTCACCTTGATGCCGTTCTTCAAGAGAG 

AACGGCATCA-3’ 
AG 33 5’-GGTCGGUCCGCGUGGUGGTGGUGUTGCCUTGCCGUCCCAAGAACGGCATCAAGGTG 

AACTCTCTTGAA-3’ 
AG 34 5’-GGTCGGUCCGCGUGGUGGTGGUGUTGCCUTGCCGUCCCAAGTGGACCTTGATGCCG 

TTCTCTCTTGAA-3’ 
AG 35 5’-GGGCTGCAGGGTACCGGCGCGCCTAATACGACTCACTATAGGGTTTAAACGCGTCTGA 

TGAGGC-3’ 
AG 36 5’-AGGGTTTAAACGCGTCTGATGAGGCCGAAAGGCCGAAACTCCGTAAGGAGTCACGCT 

TAACAACCAGATC-3’ 
AG 37 5’-GGGCCTAGGGTTATACAGGGC-3’ 
AG 53 5’-ATAGCTAGCACCATGGTGAGCAAGGGCGAG-3’ 
AG 54 5’-TATGCGGCCGCTCAGTTATCTAGATCCGG-3’ 
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AG 55 5’-GATCCCCGAACGGCATCAAGGTGAACTTCAAGAGAGTTCACCTTGATGCCGTTCTTTTT 
GGAAA-3’ 

AG 56 5’-AGCTTTTCCAAAAAGAACGGCATCAAGGTGAACTCTCTTGAAGTTCACCTTGATGCCGT 
TCGGG-3’ 

AG 63 5’-GGGATCGATGTTAACCATGGTGAGCAAGGGCGAG-3’ 
AG 64 5’-TATCCTAGGGCGCCTCAGTTATCTAGATCCGG-3’ 
AG 87 5’-GGGCCTAGGAAAGGCTCCCGATTTAA-3’ 
AG 88 5’-CCCTACGTAATGCCCGGGTGAGTCACTCGAATATGT-3’ 
AG 89 5’-ATACCCGGGGAAGGTAGAGGCTCTTTACTAACATGCGGCGACGTTGAGGAAAACCCA 

GGACCAATGAGCAAGATCTTTGTC-3’ 
AG 90 5’-CCCTACGTAGGAGGTTCATTT-3’ 
AG 93 5’-AGGGGTTTAAACGGCCGGCCCGAATTAATTCCGGTTAT-3’ 
AG 94 5’-ATCTGGCCGGCCTGTAGGGGTGTTACATTTTTGCTTTGCAATTGACAATGTCTGTTTTTT 

CTTTGATCTGGTTGTTAAGCGT-3’ 
AG 95 5’-AGAGGCCGGCCCCCATCAGACGCACAAAACCA-3’ 
AG 96 5’-ATCCACGATAATCTCAGGCTTCAAAGAGACCACCTGATTATTGACTTTGAATACAATCT 

TGTCGGCATGATAACAATCTGTGA-3’ 
AG 97 5’-CTATCCTAGGGTTATACAGGGCTTTTTCAAATCTTTGATGGCAGGGTACTTGTACTCAT 

ATTGATCCACGATAATCTCAGGCT-3’ 
AG 110 5’-AGGGTTTAAACGCGTCTGATGAGGCCGAAAGGCCGAAACTCCGTAAGGAGTCACGCT 

TAACAAATAAACAACAA-3’ 
AG 111 5’-AGGTCGGACCGCGAGGAGGT-3’ 
AG 131 5’-ATATGGCCGGCCATGGATGCCGACAAGATT-3’ 
AG 132 5’-ATATGGCCGGCCTTATGAGTCACTCGAATA-3’ 
AG 159 5’-ATATGGCCGGCCATGGTGAGCAAGGGCGAGG-3’ 
AG 160 5’-ATATGGCCGGCCTCAGTTATCTAGATCCGGT-3’ 
AG 162 5’-ATGAACCTCCTACGTAAGA-3’ 
AG 163 5’-ATATAGCGCTTATGGCCGGCCTTGAAGTAAGTCTCAGGTTG-3’ 
AG 164 5’-CCTTCAGCGCTCAGAATCT-3’ 
AG 165 5’-ATATGGCCGGCCTTATGTACTCATATTGATCCA-3’ 
AG 166 5’-ATATGGCCGGCCTTAGCGCTCATGCCTGACAAA-3’ 
AG 170 5’-ATATAGATCTGGCCGGCCGAATTCGAAGTTGAATAACAAAATGC-3’ 
AG 171 5’-CGCCAGATCTTTACAATTTGGACTTTCCG-3’ 
AG 196 5’-AGGTCGGACCGCGAGGAGGTGGAGATGCCATGCCGACCCACGCTTAACAACCAGATC 

-3’ 
AG 197 5’-ACGCTTAACAACCAGATCAAAGAAAAAACAG-3’ 
AG 208 5’-ATATGGGCCCAATAACCGTCCATTTACATG-3’ 
AG 223 5’-ATATTCGAACCATCCCAAACCGAATTAATTCCGGTTATTTTCC-3’ 
AG 225 5’-CTATCTCACCATGGTTGGGCG-3’ 
AG 226 5‘-GTATAACCCTAGGAAAGGC-3‘ 
AG 227 5’-TATTTCGAAATGGATATACACAATCCGTAG-3’ 
AG 259 5’-TGTAGGGGTGTTACATTTTTGCTTTGC-3’ 
AG 260 5’-GCAAAAATGTAACACCCCTACATTGGATGCCGACAAGATTGTATTC-3’ 
 

Oligos kindly provided 
AM 9 5’-GAATTCGCTAGCATCAGACGCACAAAACCAAG-3’ A. Marschalek 
AK 70 5’-TCGGGCGCCTTAGCAAGATGTATAGCG-3’ A. Kern 
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6.2 List of plasmids and cloning strategies 

Plasmids cloned for this work (alphabetical order) 
pCAGGS-dHH-HSmm-SC1 A template-less PCR reaction with the primers AG 32 and AG 

34 amplified a fragment comprising an inverse shGFP with 2 
mismatches together with a shortened 5’-HHRz and 3’-
HDVagRz sequences up to the RsrII-site (Ribozymes in direct 
proximity to the shGFP). The product was digested with NheI 
and RsrII and ligated into the equally digested vector pCAGGS-
HH-shGFP-SC1. 

pCAGGS-dHH-SH-SC1 A template-less PCR reaction with the primers AG 31 and AG 
33 amplified an shGFP fragment with a shortened 5’-HHRz 
and 3’-HDVagRz sequences up to the RsrII-site (Ribozymes in 
direct proximity to the shGFP). The product was digested with 
NheI and RsrII and ligated into the equally digested vector 
pCAGGS-HH-shGFP-SC1. 

pCAGGS-GFP The eGFP-ORF was cut out from pEGFP-C3 by a digestion with 
NheI followed by Klenow fill-in and a further digestion with 
XmaI. The insert was ligated into the vector pCAGGS which 
was digested with SacI and after a Klenow fill-in further 
digested with XmaI. 

pCAGGS-HH_SH_SC1 A template-less PCR reaction with the primers AG 31 and AG 
33 amplified an shGFP fragment with a shortened 5’-HHRz 
and 3’-HDVagRz sequences up to the RsrII-site (Ribozymes in 
direct proximity to the shGFP). In a second PCR this fragment 
was prolonged by further HHRz sequences using the primers 
AG 29 and AG 33. The product was digested with NheI and 
RsrII and ligated into the equally digested vector pCAGGS-HH-
shGFP-SC1. 

pCAGGS-HH-HSmm-SC1 A template-less PCR reaction with the primers AG 32 and AG 
34 amplified a fragment comprising an inverse shGFP with 2 
mismatches together with a shortened 5’-HHRz and 3’-
HDVagRz sequences up to the RsrII-site (Ribozymes in direct 
proximity to the shGFP). In a second PCR this fragment was 
prolonged by further HHRz sequences using the primers AG 
30 and AG 34. The product was digested with NheI and RsrII 
and ligated into the equally digested vector pCAGGS-HH-
shGFP-SC1. 

pCAGGS-HH-shGFP-SC1 An SacII-NheI fragment comprising the shGFP with a 5’-HHRz 
and a 3’-SC1 seperated by spacer sequences was cut out from 
pSAD G_HH-shGFP-SC1 and ligated into the equally digested 
vector pCAGGS. 

pCAGGS-N_eGFP The eGFP ORF was PCR-amplified from pEGFP-C3 and 
prolonged by the RABV N/P gene border and adequate 
restriction sites using primers AG 63 and AG 64. The PCR 
product was digested with ClaI and AvrII and ligated into the 
vector pCAGGS-NPM(inv) which was digested with BstBI and 
XbaI. 
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pCAGGS-NEP(bi)M In a PCR reaction a fragment of the RABV N gene together 
with the N-3’-UTR was amplified from pSAD L16. Using the 
primers AG 226 and AG 227 the fragment was prolonged by 
RABV P-5’-UTR sequences. The PCR product was digested with 
SwaI and BstBI and ligated into the equally digested vector 
pCAGGS-NEP(mono)M.  

pCAGGS-NEP(mono)M A fragment comprising the EMCV IRES and the RABV P gene 
up to the NcoI-site was PCR-amplified from pTIT-P. The 
primers AG 223 and AG 225 prolonged this fragment by the 
5’-UTR of the RABV P gene upstream of the IRES element and 
adequate restriction sites. The PCR product was digested with 
BstBI and NcoI and ligated into the equally digested vector 
pCAGGS-NPM(inv). 

pCAGGS-NPM(inv) An AvrII-SnaBI fragment was cut out from pSAD L16 and 
ligated into the equally digested vector pCAGGS. 

pCAGGS-T7_L16  The RABV full-length cDNA together with flanking sequences 
(5’-T7 promoter and 3’-HDV and T7 terminator sequences) 
was cut out from pSAD L16 with PstI and SpeI. This fragment 
was ligated into the vector pCAGGS which was digested with 
NsiI and NheI. 

pCAGGS-T7_L16_SC  The RABV full-length cDNA together with flanking sequences 
(5’-T7 promoter and 3’-SC1 and T7 terminator sequences) was 
cut out from pSAD L16_SC with PstI and SpeI. This fragment 
was ligated into the vector pCAGGS which was digested with 
NsiI and NheI. 

pCAGGS-T7_NEP(bi)EL  A 4 kb fragment was cut out of pSAD T7-HH_EP(bi)_SC by a 
digestion with SwaI followed by a partial digestion with AsuII. 
As a vector for the ligation, pCAGGS-T7_NEP(mono)EL was 
digested with SwaI and AsuII. 

pCAGGS-T7_NEP(bi)EL_SC  A 4 kb fragment was cut out of pSAD T7-HH_EP(bi)_SC by a 
digestion with SwaI followed by a partial digestion with AsuII. 
As a vector for the ligation, pCAGGS-T7_NEP(mono)EL_SC was 
digested with SwaI and AsuII. 

 pCAGGS-T7_NEP(mono)EL  An AsuII-RsrII fragment was cut out from pSAD T7-HH_EL_SC 
and ligated into the equally digested vector pCAGGS-T7_SAD 
NEP(mono). 

pCAGGS-
T7_NEP(mono)EL_SC  

An AsuII-RsrII fragment was cut out from pSAD T7-HH_EL_SC 
and ligated into the equally digested vector pCAGGS-T7_SAD 
NEP(mono)_SC. 

pCAGGS-T7_SAD 
NEP(mono)_SC 

A SwaI-AflII fragment of the RABV full-length cDNA was cut 
out from pSAD T7-HH_EP(mono)_SC and ligated into the 
equally digested vector pCAGGS-T7_L16_SC. 

pCAGGS-T7-HH_L16_SC The RABV full-length cDNA together with flanking sequences 
(5’-T7 promoter and HHRz, and 3’-SC1 and T7 terminator 
sequences) was cut out from pSAD T7-HH_L16_SC with PstI 
and SpeI. This fragment was ligated into the vector pCAGGS 
which was digested with NsiI and NheI. 

pCAGGS-T7- A KpnI-SpeI fragment comprising T7 promoter, the HHRz 
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HH_L16_SC_T7T_pA sequence, the RABV full-length cDNA, the SC1 and the T7 
terminator sequence, was cut out from pSAD T7-HH_L16_SC 
and ligated into the KpnI and NheI digested vector pCAGGS.  

pCAGGS-T7-
HH_NEN2APEL_SC  

A PmeI-RsrII fragment comprising the SAD NEN2APEL full-
length cDNA with 5’-HHRz sequences and parts of the 3’-SC1 
sequences, was cut out from pSAD T7-HH_NEN2APEL_SC and 
ligated into the equally digested vector pCAGGS-T7-
HH_L16_SC_T7T_pA. 

pCAGGS-T7-
HH_NENEPEL_SC  

A PmeI-RsrII fragment comprising the SAD NENEPEL full-
length cDNA with 5’-HHRz sequences and parts of the 3’-SC1 
sequences, was cut out from pSAD T7-HH_NENEPEL_SC and 
ligated into the equally digested vector pCAGGS-T7-
HH_L16_SC_T7T_pA. 

pCAGGS-T7-HH_SAD 
NEP(mono) 

A SacII-SwaI fragment was cut out from pCAGGS-T7-
HH_L16_SC and ligated into the equally digested vector 
pCAGGS-T7_SAD NEP(mono). 

pCAGGS-T7-HH_SAD 
NEP(mono)_SC 

An AscI-RsrII fragment was cut out from pSAD T7-
HH_EP(mono)_SC and ligated into the equally digested vector 
pCAGGS-T7-HH_L16_SC. 

pCAGGS-T7-SAD NEP(mono)  A SwaI-AflII fragment of the RABV full-length cDNA was cut 
out from pSAD T7-HH_EP(mono)_SC and ligated into the 
equally digested vector pCAGGS-T7_L16. 

pCR3-FFluc An Acc65I–NotI fragment was cut out from pCMV-RL-NP-FF 
and ligated into the equally digested pCR3 vector. 

pCR3-FFluc-asgfpt The firefly luciferase ORF was PCR-amplified from pCR3-FFluc 
and prolonged in the 3’-UTR by a GFP-tag using primers AG 59 
and AG58 and digested with KpnI and NotI followed by 
ligation into the similarly digested vector pCR3-FFluc. 

pCR3-FFluc-gfpt  The firefly luciferase ORF was PCR-amplified from pCR3-FFluc 
and prolonged in the 3’-UTR by a GFP-tag using primers AG 59 
and AG57 and digested with KpnI and NotI followed by 
ligation into the similarly digested vector pCR3-FFluc. 

pCR3-HH_NEP(mono)  A PmeI-XcmI fragment comprising the HHRz and the cDNA of 
the upstream part of SAD EP(mono) up to the XcmI-site in the 
P gene was cut out from pSAD T7-HH_EP(mono)_SC. The 
insert was ligated into the vector pCR3-P which was digested 
with KpnI and after Klenow fill-in with XcmI. 

pCR3-HH_NPVP(bi)  A PmeI-XcmI fragment comprising the HHRz and the cDNA of 
the upstream part of SAD PVP(bi) up to the XcmI-site in the P 
gene was cut out from pSAD T7-HH_PVP(bi)_SC. The insert 
was ligated into the vector pCR3-P which was digested with 
KpnI and after Klenow fill-in with XcmI. 

pCR3-T7-
HH_L16_SC_T7T_pA  

A KpnI-SpeI fragment comprising T7 promoter, the HHRz 
sequence, the RABV full-length cDNA, the SC1 and the T7 
terminator sequence, was cut out from pSAD T7-HH_L16_SC 
and ligated into the KpnI and XbaI digested vector pCR3.  

pCR3-T7-HH_NEN2APEL_SC  A PmeI-Eco47III fragment comprising the HHRz and the SAD 
NEN2APEL cDNA up to the Eco47III-site in the L gene was cut 
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out from pSAD T7-HH_NEN2APEL_SC and ligated into the 
equally digested vector pCR3-T7-HH_L16_SC_T7T_pA.  

pCR3-T7-HH_NENEPEL_SC A PmeI-Eco47III fragment comprising the HHRz and the SAD 
NENEPEL cDNA up to the Eco47III-site in the L gene was cut 
out from pSAD T7-HH_NENEPEL_SC and ligated into the 
equally digested vector pCR3-T7-HH_L16_SC_T7T_pA.  

pSAD dstart-EN_SC  A fragment comprising the EMCV IRES and 5’-parts of the N 
gene was PCR-amplified from pTIT-N and prolonged by 
adequate restriction sites using primers AG 93 and AG 37. The 
PmeI and AvrII digested product was ligated into the equally 
digested vector pSAD T7-HH_L16_SC. Thereby the HHRz and 
RABV leader sequence were deleted. 

pSAD G_dHH-shGFP Annealing of oligos AG 10 and AG 11. The oligolinker was 
cloned with NheI / NotI as extra transcription unit in pSAD 
G_DsRed 

pSAD G_HH-shGFP 
 

Annealing of oligos AG 12 and AG 13. The oligolinker was 
cloned with NheI and Acc65I into pSAD G_shGFP. 

pSAD G_HH-shGFP-HDV An HHRz-shGFP-HDV comprising fragment was PCR-amplified 
from pX8δT-HH-shGFP-HDV and prolonged by adequate 
restriction sites using primers AG 17 and AG 19. The PCR 
product was digested with NheI and NotI and ligated into the 
equally digested vector pSAD G_DsRed. 

pSAD G_HH-shGFP-SC1 An HHRz-shGFP-SC1 comprising fragment was PCR-amplified 
from pX8δT-HH-shGFP-HDV, modified in the HDVagRz 
sequence, and prolonged by adequate restriction sites using 
primers AG 17 and AG 24. The PCR product was digested with 
NheI and NotI and ligated into the equally digested vector 
pSAD G_DsRed. 

pSAD G_HH-shGFP-SC2 An HHRz-shGFP-SC2 comprising fragment was PCR-amplified 
from pX8δT-HH-shGFP-HDV, modified in the HDVagRz 
sequence, and prolonged by adequate restriction sites using 
primers AG 17 and AG 25. The PCR product was digested with 
NheI and NotI and ligated into the equally digested vector 
pSAD G_DsRed. 

pSAD G_shGFP 
 

Annealing of oligos AG 8 and AG 9. The oligolinker was cloned 
with NheI / NotI as extra transcription unit in pSAD G_DsRed 

pSAD G_shGFP-HDV An shGFP-HDV comprising fragment was PCR-amplified from 
pX8δT-shGFP-HDV and prolonged by adequate restriction 
sites using primers AG 18 and AG 19. The PCR product was 
digested with NheI and NotI and ligated into the equally 
digested vector pSAD G_DsRed. 

pSAD G_shGFP-SC1 An shGFP-SC1 comprising fragment was PCR-amplified from 
pX8δT-shGFP-HDV, modified in the HDVagRz sequence, and 
prolonged by adequate restriction sites using primers AG 18 
and AG 24. The PCR product was digested with NheI and NotI 
and ligated into the equally digested vector pSAD G_DsRed. 

pSAD G_shGFP-SC2 An shGFP-SC2 comprising fragment was PCR-amplified from 
pX8δT-shGFP-HDV, modified in the HDVagRz sequence, and 
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prolonged by adequate restriction sites using primers AG 18 
and AG 25. The PCR product was digested with NheI and NotI 
and ligated into the equally digested vector pSAD G_DsRed. 

pSAD GFP The eGFP ORF from pEGFP-C3 was PCR-amplified with primers 
AG 53 and AG 54 and cloned with NheI and NotI into pSAD 
G_DsRed to replace the DsRed ORF. 

pSAD GFP_SC An AvrII–RsrII fragment was cut out from pSAD eGFP and 
ligated into the equally digested backbone of pSAD L16_SC 

pSAD HHRz_GFP  A PstI–AvrII fragment was cut out from pSAD T7-HH_L16 and 
ligated into the equally digested backbone of pSAD eGFP. 

pSAD HHRz_GFP_SC An AvrII–RsrII fragment was cut out from pSAD eGFP and 
ligated into the equally digested backbone of pSAD T7-
HH_L16 SC. 

pSAD L16_SC  A fragment was cloned with RsrII and SpeI from pX8δT_SC 
into pSAD L16. 

pSAD T7-HH RVL-utr-fse-
eco47III_SC  

A fragment from the template pSAD L16 spanning from the 
SnaBI site until the 5’-UTR of the L gene was PCR-amplified 
and prolonged by adequate restriction sites using primers AG 
162 and AG 163. The PCR product was digested with SnaBI 
and Eco47III and ligated into the equally digested vector pSAD 
T7-HH_L16_SC. Thereby the 5’-third of the L gene was 
deleted. 

pSAD T7-HH_ G_eGFP-
miR23-2_SC 

PCR with oligos AG 53 and AG 208 to amplify EGFP with 
mir23-2 in 3’-UTR from pEGFP-miR23-2. Digestion of PCR 
product with NheI / PspOMI and ligation with NheI and NotI 
digested vector pSAD T7-HH_eGFP_SC. 

pSAD T7-HH_ G_HH-shGFP-
SC1_SC 

A SnaBI-Eco47III fragment was cut out from pSAD G_HH-
shGFP-SC1 and ligated into the equally digested vector pSAD 
T7-HH_L16_SC. 

pSAD T7-HH_ G_HH-SH-
SC1_SC 

An NheI-NotI fragment was cut out from pCAGGS-HH-SH-SC1 
and ligated into the equally digested vector pSAD T7-
HH_GFP_SC. 

pSAD T7-HH_EL_SC  A fragment spanning the EMCV IRES and the 5’-third of the L 
gene was PCR-amplified from pTIT-L and prolonged by 
adequate restriction sites using the primers AG 93 and AG 
164. The PCR product was digested with FseI and Eco47III and 
ligated into the equally digested vector pSAD T7-HH RVL-utr-
fse-eco47III_SC.  

pSAD T7-HH_EN_SC  Primers AG 36 and AG 94 were used in a template-less PCR 
reaction. The resulting fragment comprising HHRz and RABV 
leader sequences together with adequate restriction sites was 
digested with PmeI and FseI and ligated into the equally 
digested vector pSAD dstart-EN_SC.  

pSAD T7-HH_EP(bi)_SC An SwaI-SnaBI fragment was cut out from pCAGGS-NEP(bi)M 
and ligated into the equally digested vector pSAD T7-
HH_L16_SC. 

pSAD T7-HH_EP(mono)_SC A fragment comprising the EMCV IRES and RABV P gene was 
PCR-amplified from pTIT-P and prolonged by adequate 
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restriction sites using the primers AG 93 and AK 70. The 
product was digested with PmeI and NarI. As vector for the 
ligation, pSAD T7-HH_N_eGFP_dP_SC was digested with HpaI, 
followed by Klenow fill-in and further digestion with NarI. 

pSAD T7-HH_G_dHH-HSmm-
dHDV_SC 

A fragment was cut out from pCAGGS-dHH-HSmm-SC1 by 
digestion with RsrII, Klenow fill-in and further digestion with 
NheI. As a vector pSAD T7-HH_GFP_SC was digested with NotI 
and after Klenow fill-in further digested with NheI. 

pSAD T7-HH_G_dHH-HSmm-
SC1_SC 

An NheI-NotI fragment was cut out from pCAGGS-HH-HSmm-
SC1 and ligated into the equally digested vector pSAD T7-
HH_GFP_SC. 

pSAD T7-HH_G_dHH-SH-
dHDV_SC 

A fragment was cut out from pCAGGS-dHH-SH-SC1 by 
digestion with RsrII, Klenow fill-in and further digestion with 
NheI. As a vector pSAD T7-HH_GFP_SC was digested with NotI 
and after Klenow fill-in further digested with NheI. 

pSAD T7-HH_G_dHH-SH-
SC1_SC 

An NheI-NotI fragment was cut out from pCAGGS-dHH-SH-SC1 
and ligated into the equally digested vector pSAD T7-
HH_GFP_SC. 

pSAD T7-HH_G_HH-
HSmm_SC1_SC 

An NheI-NotI fragment was cut out from pCAGGS-HH-HSmm-
SC1 and ligated into the equally digested vector pSAD T7-
HH_GFP_SC. 

pSAD T7-HH_G_HH-HSmm-
dHDV_SC 

A fragment was cut out from pCAGGS-HH-HSmm-SC1 by 
digestion with RsrII, Klenow fill-in and further digestion with 
NheI. As a vector pSAD T7-HH_GFP_SC was digested with NotI 
and after Klenow fill-in further digested with NheI. 

pSAD T7-HH_G_HH-SH-
dHDV_SC 

A fragment was cut out from pCAGGS-HH-SH-SC1 by digestion 
with RsrII, Klenow fill-in and further digestion with NheI. As a 
vector pSAD T7-HH_GFP_SC was digested with NotI and after 
Klenow fill-in further digested with NheI. 

pSAD T7-HH_GFPEN_SC  The eGFP gene was PCR-amplified and prolonged by FseI-sites 
from pEGFP-C3 using primers AG 159 and AG 160. The PCR 
product was digested with FseI and inserted into the equally 
linearized vector pSAD T7-HH_EN_SC. 

pSAD T7-HH_L16 A fragment between the 5’-end of the RABV full-length cDNA 
and the AvrII restriction site in the N gene was PCR-amplified 
and prolonged by HHrz sequences with primers AG 36 and AG 
37. The PCR product was further prolonged in a second PCR 
with primers AG 35 and AG 37 and cloned with PstI and AvrII 
into pSAD L16. 

pSAD T7-HH_L16_SC  A fragment between the 5’-end of the RABV full-length cDNA 
and the AvrII restriction site in the N gene was PCR-amplified 
and prolonged by HHrz sequences with primers AG 36 and AG 
37. The PCR product was further prolonged in a second PCR 
with primers AG 35 and AG 37 and cloned with PstI and AvrII 
into pSAD L16_SC. 

pSAD T7-
HH_N(nostop)_xma_dP_SC  

A fragment of the N ORF, starting with the AvrII-site and 
lacking the stop codon was PCR-amplified from pSAD L16 and 
prolonged by restriction sites using primers AG 87 and AG 88 
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and digested with AvrII and SnaBI following ligation into the 
equally digested vector pSAD T7-HH_L16_SC. 

pSAD T7-HH_N_eGFP_dP  An AvrII-SnaBI fragment comprising parts of the RABV N gene 
followed by an eGFP gene and parts of the RABV M gene, was 
cut out from pCAGGS-N_eGFP and ligated into the equally 
digested vector pSAD T7-HH_L16_SC.  

pSAD T7-HH_N100(mut)EN 
G_eGFP_SC  

A PmeI-FseI fragment was cut out from pSDI(+) N100(mut)-
NP-FFluc and ligated into the equally digested vector pSAD T7-
HH N100EN_G_eGFP_SC. 

pSAD T7-HH_N100EN 
G_eGFP_SC 

A PmeI-FseI fragment comprising the HHRz and leader 
sequences and the first 100 nts of N was cut out from pSDI(+) 
N100-NP-FFluc and ligated into the equally digested vector 
pSAD T7-HH_NEN G_eGFP_SC. 

pSAD T7-
HH_N100EN_SC(Fse) 

The first 100 nts of the RABV N gene were PCR-amplified and 
prolonged by FseI-sites from pSAD L16 using primers AG 131 
and AG 165. The PCR product was digested with FseI and 
inserted into the equally linearized vector pSAD T7-
HH_EN_SC. 

pSAD T7-HH_N200(mut)EN 
G_eGFP_SC  

A PmeI-FseI fragment was cut out from pSDI(+) N200(mut)-
NP-FFluc and ligated into the equally digested vector pSAD T7-
HH N100EN_G_eGFP_SC. 

pSAD T7-HH_N200EN 
G_eGFP_SC 

A SwaI-SwaI fragment comprising downstream parts of the 
upstream N200 sequence, the EMCV IRES and upstream parts 
of the second N gene was cut out from pSAD T7-
HH_N200EN_SC(Fse) and ligated into the SwaI-linearized 
vector pSAD T7-HH_eGFP_SC.  

pSAD T7-
HH_N200EN_SC(Fse) 

The first 200 nts of the RABV N gene were PCR-amplified and 
prolonged by FseI-sites from pSAD L16 using primers AG 131 
and AG 166. The PCR product was digested with FseI and 
inserted into the equally linearized vector pSAD T7-
HH_EN_SC. 

pSAD T7-HH_N2AP_SC  A fragment spanning the P gene and parts of the M gene until 
the SnaBI-site was PCR-amplified and prolonged by the 2A-like 
sequence and restriction sites using primers AG 89 and AG 90. 
The PCR product was digested with XmaI and SnaBI and 
ligated into the equally digested vector pSAD T7-
HH_N(nostop)_xma_dP_SC. 

pSAD T7-HH_NEN 
G_eGFP_SC  

A SwaI-SwaI fragment comprising downstream parts of the 
first N gene, the EMCV IRES and upstream parts of the second 
N gene was cut out from pSAD T7-HH_NEN_SC and ligated 
into the SwaI-linearized vector pSAD T7-HH_eGFP_SC.  

pSAD T7-HH_NEN_EL_SC A SwaI-SwaI fragment was cut out from pSAD T7-HH_NEN_SC 
and ligated into the SwaI-linearized vector pSAD T7-
HH_EL_SC.  

pSAD T7-HH_NEN_SC  The RABV N gene was PCR-amplified and prolonged by FseI-
sites from pSAD L16 using primers AG 131 and AG 132. The 
PCR product was digested with FseI and inserted into the 
equally linearized vector pSAD T7-HH_EN_SC. 
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pSAD T7-HH_NEN2AP_SC  A SwaI-SwaI fragment was cut out from pSAD T7-HH_NEN_SC 
and ligated into the SwaI-linearized vector pSAD T7-
HH_N2AP_SC. 

pSAD T7-HH_NEN2APEL_SC  A SnaBI-Eco47III fragment was cut out from pSAD T7-
HH_EL_SC and ligated into the equally digested vector pSAD 
T7-HH_NEN2AP_SC. 

pSAD T7-HH_NENEP_SC  A SwaI-SwaI fragment was cut out from pSAD T7-HH_NEN_SC 
and ligated into the SwaI-linearized vector pSAD T7-
HH_EP(mono)_SC. 

pSAD T7-HH_NENEPEL_SC  A SnaBI-Eco47III fragment was cut out from pSAD T7-
HH_EL_SC and ligated into the equally digested vector pSAD 
T7-HH_NENEP_SC. 

pSAD T7-HH_NPVN_SC  The RABV N gene was PCR-amplified and prolonged by FseI-
sites from pSAD L16 using primers AG 131 and AG 132. The 
PCR product was digested with FseI and inserted into the 
equally linearized vector pSAD T7-HH_PVN_SC. 

pSAD T7-HH_PVN_SC  A fragment comprising the poliovirus IRES sequence was PCR-
amplified from pCR3-RL-PV-FF and prolonged by RABV N 
sequences with primers AG 95 and AG 96. In a second PCR 
further RABV N sequences and adequate restriction sites were 
added using primers AG 95 and AG 97. The product was 
digested with FseI and AvrII and ligated into the equally 
digested vector pSAD T7-HH_EN_SC. Thereby the EMCV IRES 
was replaced by the PV IRES.  

pSAD T7-HH_PVP(bi)_SC An AvrII-SnaBI fragment was cut out from pSAD PVP(bi) and 
ligated into the equally digested vector pSAD T7-HH_L16_SC. 

pSAD T7-HH_PVP(mono)_SC A fragment comprising the poliovirus IRES and RABV P gene 
was PCR-amplified from pSAD PVP(bi) and prolonged by 
adequate restriction sites using the primers AM 9 and AK 70. 
The product was digested with NheI, followed by Klenow fill-in 
and further digestion with NarI. As vector for the ligation, 
pSAD T7-HH_N_eGFP_dP_SC was digested with HpaI, 
followed by Klenow fill-in and further digestion with NarI. 

pSDI N100-NP-FFluc(Fse)  An FseI-N100-FseI fragment was cut out from pSAD T7-
HH_N100EN_SC(Fse) and ligated into the FseI-linearized 
vector pSDI(+)-NP-FFluc. 

pSDI N200-NP-FFluc(Fse)  An FseI-N200-FseI fragment was cut out from pSAD T7-
HH_N200EN_SC(Fse) and ligated into the FseI-linearized 
vector pSDI(+)-NP-FFluc. 

pSDI(-) HHRz_CNPL_SC  The RABV minigenome sequence from pSDI CNPL was PCR-
amplified and prolonged by HHRz sequences using the 
primers AG 110 and AG 196. The resulting fragment was 
digested with PmeI and RsrII and ligated into the equally 
digested vector pSDI(+). 

pSDI(+) HH/SC A fragment from pSDI(+) was PCR-amplified and prolonged by 
HHRz and HDV sequences with primers AG 36 and AG 111 . 
The PCR product was further prolonged by a second PCR with 
primers AG 35 and AG 111 to add further HHRz sequences 
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and restriction sites. The product was digested with PstI and 
RsrII and ligated into the equally digested vector pX8δT_SC. 

pSDI(+) N100(mut)-NP-FFluc  The ATG at the leader-N gene junction was mutated to TTG in 
pSDI(+) N100-NP-FFluc in a mutagenesis PCR using the 
primers AG 259 and AG 260. 

pSDI(+) N100-NP-FFluc  A fragment comprising the leader sequences and the most 
upstream 100 nts of the N gene was PCR-amplified and 
prolonged by adequate restriction sites from template pSAD 
L16 using the primers AG 197 and AG 165. The PCR product 
was digested with Tth111I and FseI and ligated into the 
equally digested vector pSDI(+) N200-NP-FFluc(Fse). Thereby 
the leader-N gene junction was restored to wild-type. 

pSDI(+) N200(mut)-NP-FFluc  The ATG at the leader-N gene junction was mutated to TTG in 
pSDI(+) N200-NP-FFluc in a mutagenesis PCR using the 
primers AG 259 and AG 260. 

pSDI(+) N200-NP-FFluc  A fragment comprising the leader sequences and the most 
upstream 200 nts of the N gene was PCR-amplified and 
prolonged by adequate restriction sites from template pSAD 
L16 using the primers AG 197 and AG 166. The PCR product 
was digested with Tth111I and FseI and ligated into the 
equally digested vector pSDI(+) N200-NP-FFluc(Fse). Thereby 
the leader-N gene junction was restored to wild-type. 

pSDI(+)-NP-FFluc  A fragment comprising the N/P gene border and the firefly 
luciferase gene was PCR-amplified and prolonged with 
restriction sites from the template pSDI CNPL using primers 
AG 170 and AG 171. The PCR product was digested with BglII 
and ligated into the BglII-linearized vector pSDI(+) HH/SC.  

pSUPER-shGFP The oligos AG 55 and AG 56 were annealed and the oligolinker 
was ligated into the BglII and HindIII digested vector pSUPER. 

pTre2hyg-HH_NEN2APEL_SC  A PmeI-NotI fragment comprising the SAD NEN2APEL full-
length cDNA with 5’-HHRz sequences and with 3’-SC1 and T7 
terminator sequences, was cut out from pSAD T7-
HH_NEN2APEL_SC and ligated into vector pTre2Hyg which 
was digested with MluI, and after Klenow fill-in with NotI. 

pTre2hyg-T7-
HH_NEN2APEL_SC  

An AscI-NotI fragment comprising the SAD NEN2APEL full-
length cDNA with 5’-HHRz and T7 promoter sequences and 3’-
SC1 and T7 terminator sequences, was cut out from pSAD T7-
HH_NEN2APEL_SC and ligated into the MluI and NotI digested 
vector pTre2Hyg. 

pTre2hyg-T7-
HH_NENEPEL_SC  

An AscI-NotI fragment comprising the SAD NENEPEL full-
length cDNA with 5’-HHRz and T7 promoter sequences and 3’-
SC1 and T7 terminator sequences, was cut out from pSAD T7-
HH_NENEPEL_SC and ligated into the MluI and NotI digested 
vector pTre2Hyg. 

pX8δT_SC pX8δT was linearized with BamHI and used as a template in a 
PCR with primers AG 26 and AG 27. The PCR product was 
cloned with HindIII and EspI into the vector pX8δT. 

pX8δT-HH-shGFP-HDV A fragment comprising the shGFP and a 5’-HHRz together with 
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a spacer sequence was PCR-amplified from pSAD G_HH-shGFP 
and prolonged by a 3’-spacer sequence and sequences from 
the HDV ribozyme using primers AG 16 and AG 17. The PCR 
product was digested with XmaI and RsrII and ligated into the 
equally digested vector pX8δT. 

pX8δT-shGFP-HDV A fragment comprising the shGFP and a 5’-HHRz together with 
a spacer sequence was PCR-amplified from pSAD G_ shGFP 
and prolonged by a 3’-spacer sequence and sequences from 
the HDV ribozyme using primers AG 16 and AG 18. The PCR 
product was digested with XmaI and RsrII and ligated into the 
equally digested vector pX8δT. 
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6.3 List of abbreviations 

SI units and chemical formulas are not included. 

% per cent 
α anti- 
Δ delta-, deletion 
λ lambda, wave length  
µ micro- 
A adenine 
AAV adeno-associated virus 
ABLV australian bat lyssavirus 
Amp ampicillin 
APS ammonium persulfate 
AraC cytosine arabinoside 
ATP adenosine-triphosphate 
AUG Startcodon 
BDV Borna disease virus  
bp base pair 
BSA bovine serum albumin 
°C degree Celsius 
C Cytosine 
c centi- 
C. elegans  Caenorhabditis elegans 
CAT chloramphenicol acetyltransferase 
CCHFV crimean-congo hemorrhagic fever virus  
cDNA complementary DNA 
ChR2c channel-rhodopsin  
CNS central nervous system 
cRNP complementary ribonucleoprotein 
C-terminal  Carboxyterminal 
CTP cytosine-triphosphate 
CVS challenge virus strain 
d Day 
D. rerio  Danio rerio 
dd H2O double distillated water 
DGCR8 microprocessor complex subunit 
dHDV defect hepatitis delta virus antigenomic ribozyme 
dHH defect hammerhead ribozyme 
DI defective interfering (particle) 
DMEM Dulbecco´s modified eagle medium 
DMSO dimethyl sulfoxide 
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DNA deoxyribonucleic acid 
dNTP Deoxyribonucleotide 
ds- double strand 
E EMCV IRES 
E3L vaccinia virus protein 
EBLV european bat lyssavirus 
ECL enhanced chemiluminescence 
EDTA ethylenediaminetetraacetic acid 
(e)GFP (enhanced) green fluorescent protein 
EMCV encephalomyocarditis virus  
EMCV encephalomyocarditis virus IRES 
EnvA envelope protein A  
ER endoplasmatic reticulum  
EtBr ethidium bromide 
ffu focus forming unit 
FITC fluorescein isothiocyanate 
G Glycoprotein 
G Guanine 
GCamp3, (-5) calcium indicator 
GMEM Glasgow modified eagle medium BHK-21 1x 
h Hour 
HDV hepatitis delta virus antigenomic ribozyme „core“ sequence 
HDV hepatitis delta virus 
HDVagRz hepatitis delta virus antigenomic ribozyme  
HHRz hammerhead ribozyme 
hPIV3 human parainfluenza virus 3  
HRP horse radish peroxidase 
HSmm short hairpin RNA against GFP, certain construct 
HSV herpes simplex virus 
IF immuno fluorescence 
IFN Interferon 
IHNV infectious hematopoetic necrosis virus  
IRES internal ribosome entry site 
IRF-3  interferon regulatory factor 3 
kb Kilobase 
L polymerase (large subunit) 
LB Luria Bertani 
LCMV lymphocytic choriomeningitis virus  
le Leader 
M Molar 
M matrix protein 
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m milli- 
MCMV murine cytomegalovirus 
MeV measles virus 
min Minute 
miRNA micro RNA 
MLV murine leukemia virus  
MOI multiplicity of infection 
mRNA messenger RNA 
MVA modified vaccinia virus Ankara  
N Nucleoprotein 
n nano- 
N0 soluable N protein 
nAChR nicotinic acetylcholine receptor  
NC Nucleocapsid 
NCAM neuronal cell adhesion molecule  
NDV Newcastle disease virus  
NGFR nerve growth factor receptor 
NMJ neuromuscular junction  
NNSV non-segmented negative strand RNA virus 
NP influenza virus nucleoprotein 
NPL-mix “helper” plasmid mastermix  
NS1 influenza virus non-structural protein 1 
nt Nucleotide 
N-terminal Aminoterminal 
OG gel loading dye, orange 
ORF open reading frame 
32P radioactive phosphorus isotope 
P Phosphoprotein 
p.i. post infection 
p.t.  post transfection 
p75NTR p75 neurotrophin receptor  
PA, PB1, PB2 influenza virus polymerase 
PAZ polyubiquitin Associated Zinc finger 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PEI Polyethyleneimine 
pH potential hydrogenii 
piRNA Piwi-interacting RNA 
PLB passive lysis buffer 
PML promyelytic leukemia  
Pol-I DNA dependent RNA polymerase I 
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Pol-II DNA dependent RNA polymerase II 
Pol-III DNA dependent RNA polymerase III 
poly(A) Polyadenylate 
ppp Triphosphate 
pre-miRNA precursor miRNA 
pri-miRNA primary miRNA 
PV poliovirus IRES 
PV Poliovirus 
RABV rabies virus 
RISC RNA-induced silencing complex 
RNA ribonucleic acid 
RNAi RNA interference 
RNP Ribonucleoprotein 
rpm rounds per minute 
RSV respiratory syncytial virus 
RT room temperature 
SAD Street Alabama Dufferin 
SC(1/2) hepatitis delta virus antigenomic ribozyme „supercut“ (1/2) 
SDS sodium dodecylsulfate 
SeV sendai virus 
SH short hairpin RNA against GFP, certain construct 
shGFP short hairpin RNA against GFP 
shRNA  short hairpin RNA 
siRNA short interfering RNA 
SSC saline-sodium citrate 
sshRNA short shRNA 
SV40 simian virus 40 
T Temperature 
T7-pol T7 RNA polymerase 
TAE tris acetat-EDTA 
TE tris-EDTA 
TK thymidin kinase 
tr Trailer 
TRE Tet repressor  
Tris Tris(hydroxymethyl)-aminomethan 
TVA tumor virus protein A 
U Unit 
U Uracil 
UTR untranslated region 
UV Ultraviolet 
v/v volume per volume 
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VHSV viral hemorrhagic septicemia virus  
VP30, VP35, 
VP40 

ebola virus proteins 

vRNP viral ribonucleoprotein 
VSV vesicular stomatitis virus 
vTF7-3 vaccinia virus expressing T7-pol 
vv/T7 vaccinia virus expressing T7-pol system 
w/v weight per volume 
WB Western blot 
WHO World health organization 
x Times 
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