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1 INTRODUCTION  
Cancer is a leading cause of death, affecting more and more people all over the world 

(World-Health-Organization 2013). In fact, according to current data provided by the World 

Health Organization, after cardiovascular and infection diseases, cancer is the third leading 

cause of death worldwide (World-Health-Organization 2008; World-Health-Organization 

2013). Cancer is characterized by a malignant transformation of cells, enabling them to 

proliferate and give rise to primary tumors. During further cancer progression, tumor cells 

start to loosen from the primary tumor, travel through the body and eventually give rise to 

metastases, which represent the major reason for cancer-related deaths (Chaffer and Weinberg 

2011). The increasing cancer burden, especially in the economically developed countries, is 

mainly due to population aging and growth as well as to a cancer-related lifestyle, including 

cigarettes, alcohol, rich diets and physical inactivity (Sankpal et al. 2012; Maziak 2013; 

Pericleous et al. 2013; World-Health-Organization 2013). Besides environmental causes, 

genetic abnormalities as well as certain bacteria and viruses are associated with an increased 

risk to develop tumors. The first gene which was found and described to be associated with 

tumor formation was breast cancer 1 (BRCA 1) (Hall et al. 1990) in 1990. In 1994 a second 

breast cancer associated gene, BRCA 2, was described (Wooster et al. 1994) and up to now 

there are hundreds of genes known to be associated with cancer formation and progression, 

including the tumor suppressor genes p53 (Jiang et al. 2013; Akeno et al. 2014), 

retinoblastoma protein (RB) (Manning and Dyson 2012; Dick and Rubin 2013) and 

phosphatase and tensin homologue (PTEN) (Sansal and Sellers 2004; Song et al. 2012), as 

well as genes involved in cell cycle regulation like cyclins and cyclin-dependent kinases 

(CDKs) (Gallorini et al. 2012; Mishra 2013). Furthermore, there is growing evidence that also 

non-coding regions of the genome are associated with cancer formation. Small, non-coding 

RNAs with a length of approximately 18-25 nucleotides, so called micro RNAs (miRNAs), 

where recently found to play an important role in tumorigenesis and are thereby of growing 

interest for researchers aiming to identify processes involved in cancer formation and 

progression (Lujambio and Lowe 2012; Kala et al. 2013; Takahashi et al. 2014). As already 

mentioned, bacterial or viral infections can act as inducers or promoters of tumorigenesis. 

This includes infection by hepatitis B virus (HBV), which was found to be associated with the 

formation of hepatocellular carcinomas (Tan 2011; Fallot et al. 2012), human papillomavirus 

(HPV), which associates with oropharyngeal and cervical carcinomas (Amirian et al. 2013; 

Panwar et al. 2014) and Epstein-Barr virus (EBV), which was found to be involved in the 
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formation of Burkitt´s lymphoma as well as nasopharyngeal and gastric carcinomas (Iizasa et 

al. 2012; Fu et al. 2013). One example for a tumor associated bacteria, is the gram-negative 

bacterium Helicobacter pylori, which can populate the stomach and was found to be 

associated with gastric and lung cancer (Deng et al. 2013; Wroblewski and Peek 2013).  

Taken together, cancer formation can be the result of a multitude of different causative 

agents, whereby often interplay of two or more cancer promoting effects is necessary to 

enable tumor growth. During the last decades scientists obtained deeper insights into how 

different environmental and genetic processes contribute to tumorigenesis, enabling society to 

provide cancer patients with innovative and more efficient treatment strategies. However, 

deeper understanding of cancer-related processes also disclosed the huge complexity and the 

intricate interplay of numerous molecular mechanisms. This complexity, as well as the fact 

that each tumor has its very own peculiarities, makes it so far impossible to find a treatment 

strategy efficiently targeting all types of cancer at all points of tumor progression.  

 

1.1 Mechanisms in cancer progression 

As this study focuses on the role of the epithelial protein EpCAM (see 1.2), the following 

descriptions refer to the processes involved in the formation and progression of carcinomas, a 

special subtype of tumors, which derive per definition from epithelial cells. However, the 

basic steps of tumorigenesis, including formation of a primary tumor, cell scattering by 

migration and invasion, circulation of cells, homing of tumor cells to secondary sites, and 

outgrowth of metastasis, can be observed in every type of solid cancer (Vanharanta and 

Massague 2013; National Cancer Institute 2014). 

 

1.1.1 Basic steps of carcinogenesis 

Formation of metastases is the major reason for cancer related deaths. 90% of patients, 

which die because of tumor diseases, die due the effects of metastases (Chaffer and Weinberg 

2011). During the last decades scientific efforts were challenging the question how metastases 

form and which mechanisms are involved in this process. However, despite its high impact on 

prognosis and survival of patients, metastatic spread is a comparably poorly understood 

mechanism in cancer progression (Chaffer and Weinberg 2011). 

The outgrowth of a metastasis is the endpoint of a complex set of different processes, 

many of them still not finally understood. Indeed, until now not even the formation of primary 
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tumors is comprehensively elucidated. Currently there are two hypotheses (see Fig. 1.1). The 

clonal evolution model is based on the assumption that tumors form from body cells, which 

acquired a set of mutations, either by genetic predisposition, spontaneous mutation or 

environmental influences like cigarette smoke, sunlight or radiation, providing them with a 

malignant phenotype, which eventually leads to a clonal expansion of these cells. According 

to this hypothesis it is assumed that all cells of a tumor are similar and have the same abilities 

to induce cancer formation (Foulds 1954; Nowell 1976; Greaves and Maley 2012). The 

second hypothesis also assumes that normal body cells mutate to cancer cells by genetic 

alterations, enabling them to form a primary tumor. However, this hypothesis postulates that 

cells of the primary tumor fundamentally differ from each other, whereby only a small cell 

population inherits the ability to induce cancer formation. These so-called cancer stem cells 

(CSCs) or tumor-inducing cells (TICs) give rise to the other tumor cells, the so-called tumor 

bulk, which add to tumor growth and size but are not capable to induce tumor formation by 

themselves. The idea of this “cancer stem cell” hypothesis was already discussed by Virchow 

in 1881, but first evidence that such cells really exist and play a role in cancer progression 

was first published in 1994 in a study by Lapidot et al. concerning acute myeloid leukemia 

(Lapidot et al. 1994). Since then, more and more findings supported this hypothesis (Tan et 

al. 2006; O'Flaherty et al. 2012; Yu et al. 2012). Still, until now it is not completely clarified 

which one of the abovementioned hypotheses reflects the processes actually taking place in 

tumor formation, or if both scenarios exist in different subtypes of cancer. Depending on 

which hypothesis actually takes place, treatment strategies would differ. In case of the clonal 

evolution model, every cancer cell needs to be removed in order to stop cancer progression. In 

contrast, in the cancer stem cell model, only the CSCs need to be eradicated, as only these 

cells can drive cancer progression (see Fig. 1.1). 

In the next step of cancer progression, tumor cells start to loosen from the primary 

tumor bulk and migrate into the surrounding tissue. In carcinomas, this requires a basic 

modification of the cancer cells, as the epithelial cells from which the tumors derive normally 

form tight connections, including tight junctions, adherence junctions, desmosomes and hemi-

desmosomes, with neighbouring cells and the basement membrane (Chaffer and Weinberg 

2011; Tiwari et al. 2012; Guillot and Lecuit 2013). To enable cell movement, these contacts 

first have to be abrogated and cells need to undergo severe morphological and molecular 

changes. Invasive cells were found to change their phenotype from cobblestone-like to 

spindle-shaped and express a set of genes involved in extracellular matrix remodeling. In 

other words,  cells  undergo  phenotypic  changes  from  epithelial  to  mesenchymal, which  is  
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Figure 1. 1: Schematic illustration of the current cancer formation models. 

Currently, two major hypotheses attempt to explain primary tumor formation. (A) The clonal evolution model 

proposes that tumors derive from a mutated cell, which divides and thereby gives rise to other cells with the 

same abilities. Differences between cancer cells are only due to new mutations and all cells are capable of tumor 

formation. In consequence, to get rid of a tumor, all cancer cells need to be eradicated. (B) The cancer stem cell 

model hypothesizes that cells in a primary tumor significantly differ in their characteristics. In this model only a 

subtype of cells, termed cancer stem cells (CSCs) can induce tumor formation. Accordingly, only CSCs need to 

be eradicated to prevent cancer progression. (Modified picture from Laks et al. (Laks et al. 2010).) 

 

achieved in a process called epithelial-to-mesenchymal transition (EMT) (Thiery et al. 2009; 

Mathias et al. 2012; Tiwari et al. 2012) (see 1.1.2). The activation of this process in cancer 

cells often depends on EMT-inducing signals released from surrounding stromal cells (Yang 

and Weinberg 2008; Barron and Rowley 2012; Semenza 2013). Interestingly, it was found 

that cancer cells themselves can recruit stromal cells, including fibroblasts, myo-fibroblasts, 

granulocytes, macrophages, mesenchymal stem cells and lymphocytes (Chaffer and Weinberg 

2011; Hanahan and Coussens 2012). After changing their phenotype, cancer cells have the 

ability to leave the primary tumor, locally invade into the surrounding tissue and intravasate 

into the blood or lymph stream, by which they get transported to secondary sites of the 

patient´s body. The occurrence of these so-called circulating tumor cells (CTCs) was found to 

be correlated with increased metastatic burden, aggressiveness of cancer, decreased relapse 

time, decreased survival and overall bad prognosis (Chaffer and Weinberg 2011; Groot 

Koerkamp et al. 2013; Krawczyk et al. 2013; Tjensvoll et al. 2014).  

 
A                                                 B 
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Eventually, CTCs get lodged at the vascular wall of a foreign tissue, either by 

mechanical trapping, chemoattraction or site-specific adhesion (Abdel-Ghany et al. 2001; 

Brown and Ruoslahti 2004; Alix-Panabieres et al. 2008), and leave the capillary system. To 

do so, cells either extravasate and subsequently invade into the surrounding tissue, or they 

proliferate intraluminally, eventually leading to the rupture of the vascular wall (Ito et al. 

2001; Wong et al. 2002; Sahai 2007; Chaffer and Weinberg 2011). Although, tumor cells 

deriving from different organs basically display differences in their predominant 

metastasation sites (Vanharanta and Massague 2013; National Cancer Institute 2014), the 

bone marrow has emerged as common homing organ for many different cancer subtypes, 

including breast, gastric, lung and prostate carcinomas (Alix-Panabieres et al. 2008). This 

might be due to the composition of the capillaries in this tissue, which are formed by only one 

single layer of endothelial cells, making it a rather inefficient barrier (Kopp et al. 2005). After 

homing, cancer cells, which are now termed disseminated tumor cells (DTCs), need to regain 

their ability to proliferate in order to give rise to overt metastases. Therefore, processes 

involved in EMT, which were a prerequisite for the cells to reach secondary sites of the body, 

at least partially need to be reversed in a process called mesenchymal-to-epithelial transition 

(MET) (Bonnomet et al. 2010; Wendt et al. 2012). However, although a deeper knowledge 

about how DTCs regain their epithelial phenotype and re-start proliferation would provide a 

huge step towards the understanding of the metastatic process, this step in cancerogenesis 

remained so far poorly investigated. This is mainly due to the experimental challenges of 

studying dormancy and single cells in vastly larger tissues, especially as there is so far a lack 

of appropriate model systems (Goss and Chambers 2010; Chaffer and Weinberg 2011).  

Taken together, the process of carcinogenesis can be subdivided into four main parts: 

1) formation of a primary tumor; 2) single tumor cells leaving the primary tumor and invading 

into blood or lymph stream; 3) homing of tumor cells to secondary sites of the body and 4) 

outgrowth of metastases. These steps are schematically depicted in Figure 1.2. 

Globally seen, metastases formation is a highly inefficient process, as most of the 

tumor cells leaving a primary tumor die on their way to a secondary homing side or during the 

colonisation of distant organs due to stress, lack of survival signals, a hostile environment 

and/or reactions of the innate immune system (Luzzi et al. 1998; Chambers et al. 2002; 

Vanharanta and Massague 2013). However, as soon as a metastasis is formed, consequences 

are typically fatal as metastatic growth is associated with destruction of the affected organ, 

eventually leading to organ failure and usually death of the cancer patient. It is therefore 
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essential to understand the mechanisms leading to metastatic spread in order to prevent this 

process. 

 

 

Figure 1. 2: Schematic illustration of basic mechanisms involved in carcinogenesis.  

(A) Tumor formation starts with the generation of malignant cells upon single or cumulative mutations. (B) The 

transformed cell proliferates and eventually gives rise to a primary tumor. (C) Certain cells from the primary 

tumor undergo phenotypic changes enabling them to leave the primary tumor and (D) invade into the lymphoid 

or hematological system. (E) Via the blood and/or lymph stream the tumor cells (at this stage termed circulating 

tumor cells, CTCs) are transported to secondary sites of the body. (F) CTCs extravasate and invade into the 

surrounding tissue. (G) The cancer cells (at this stage termed disseminated tumor cells, DTCs) need to survive in 

the new environment. (H) In order to enable formation and outgrowth of metastases, DTCs have to adapt to the 

microenvironment and reactivate the proliferative phenotype. (Modified picture from Chaffer et al. (Chaffer and 

Weinberg 2011).) 

 

1.1.2 Epithelial-to-mesenchymal transition (EMT) 

Epithelial-to-mesenchymal transition (EMT) is a cellular process during which 

polarized epithelial cells undergo multiple biochemical changes allowing them to adopt a 

mesenchymal phenotype. This process is accompanied with a loss of epithelial markers as E-

cadherin, cytokeratins, laminin-1 and desmoplakin, an increase of mesenchymal markers like 

N-cadherin, vimentin, fibronectin and TWIST and a gain of mesenchymal morphology and 

characteristics. These characteristics include migratory and invasive capacity, increased 

resistance to apoptosis and the ability to re-model the extracellular matrix (see Fig. 1.3) 

(Kalluri and Weinberg 2009). EMT is essential in various processes including embryogenesis, 

development and tissue regeneration, but is also involved in organ fibrosis and cancer 

progression (Kalluri and Weinberg 2009; Thiery et al. 2009; Ansieau et al. 2011).  
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Figure 1. 3: Schematic illustration of epithelial-to-mesenchymal transition (EMT). 

During EMT, polarized, epithelial cells lose their epithelial phenotype and adopt a mesenchymal phenotype. This 

is associated with a loss of cell adhesions and tissue integrity, but provides the cells with mesenchymal 

characteristics like migratory and invasive capacity, and increased resistance towards apoptosis. The process is 

accompanied by a substantial change of cellular markers. Listed are here accepted markers of EMT-associated 

changes. Co-localisation of these markers defines an intermediate phenotype, marking cells that have passed 

only partly through an EMT. ZO-1, Zona occludens 1; MUC-1, mucin-1, SIP1, survival of motor neuron protein 

interacting protein 1; MMPs, matrix metalloproteinases; FOXC2, forkhead box C2. (Modified picture from 

Kalluri et al. and Tiwari et al. (Kalluri and Weinberg 2009; Tiwari et al. 2012).) 

 

1.1.2.1 EMT in development and tissue regeneration 

The process of epithelial-to-mesenchymal transition was first described in 1995 by the 

pioneer work of Elizabeth Hay in a model of chick primitive streak formation (Hay 1995). 

During development, EMT is involved in gastrulation, neural crest formation and organ 

development (Thiery et al. 2009). Thereby EMT is not irreversible. It is rather the case that 

several rounds of EMT and its reversal process, the mesenchymal-to-epithelial transition 

(MET), are necessary for the formation of specific cell types and the complex three-

dimensional structure of organs. According to these rounds of alternating EMT and MET, it is 

distinguished between primary, secondary and tertiary EMT (Thiery et al. 2009). Primary 

EMT processes are involved in gastrulation, including the formation and internalisation of 

mesodermal cells (Nakaya and Sheng 2008; Nakaya et al. 2008), and formation of the neural 

crest (Kerosuo and Bronner-Fraser 2012; Strobl-Mazzulla and Bronner 2012). Secondary and 
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tertiary EMT are amongst others essential for the formation of somites (Dale et al. 2006; 

Morales et al. 2007), palate (Ahmed et al. 2007; Dudas et al. 2007), pancreas (Villasenor et 

al. 2010), liver (Bort et al. 2006; Si-Tayeb et al. 2010) and reproductive tracts (Timms 2008), 

as well as for heart development (Nakajima et al. 2000; Person et al. 2005).  

Processes similar to EMT are also involved in tissue regeneration in form of a 

physiological response to injury. Thereby keratinocytes at the boarder of the wound 

recapitulate parts of EMT (Thiery et al. 2009), which allows them to loosen cell-cell contacts, 

become motile and remodel the extracellular matrix around them by secreting  proteases. This 

eventually re-establishes the function of the epithelial layer as mechanical and hydration 

barrier (Leopold et al. 2012). EMT is also involved in the tissue repairing process during 

postovulatory wound healing in the ovarian surface epithelium (Ahmed et al. 2006). 

Besides the essential role during development and tissue repair, EMT is also an 

important element in disease-related processes. Accordingly, it was revealed that the 

formation of myofibroblast cells, which cause excessive collagen deposition in organs, 

leading to organ failure, is mainly caused by EMT and is not as originally thought due to 

pathological activation of interstitial fibroblasts (Iwano et al. 2002; Thiery et al. 2009). 

Indeed, EMT has been identified as a cause for organ fibrosis in kidney, liver, lung, heart, eye 

and intestine (Kim et al. 2006; Zeisberg et al. 2007; Kalluri and Weinberg 2009; Thiery et al. 

2009). The involvement of EMT in carcinogenesis will be discussed in the following. 

 

1.1.2.2 EMT and cancer progression 

As already mentioned, tumor cells have different requirements throughout cancer 

progression with a phenotypic change of cancer cells from proliferative to migratory during 

metastatic spread (see 1.1.1). EMT is nowadays considered as the major process involved in 

this step of carcinogenesis (Mathias et al. 2012; Tiwari et al. 2012; Wendt et al. 2012). 

However, this was not always the case, for though EMT processes were well documented in 

cancer cells in vitro, the significance of this process for cancer progression in vivo was long 

doubted, mainly due to the lack of convincing evidence for EMT in clinical samples (Thiery 

et al. 2009). The mechanisms taking place during EMT in cancer progression are the same 

than those involved in development, including the reconstruction of the cytoskeleton, 

secretion of EMT-promoting cytokines and growth factors, remodeling of the extracellular 

matrix and disassembly of cell junctions (Moustakas et al. 2002; Zavadil and Bottinger 2005; 

Moustakas and Heldin 2012; Tiwari et al. 2012; Wendt et al. 2012). In most cases, induction 
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of EMT in malignant cells requires signaling between the cancer cells and their surrounding 

stromal cells, which provide tumor cells with a variety of cytokines and growth factors 

(Chaffer and Weinberg 2011; Tiwari et al. 2012), including fibroblast growth factor 2 

(FGF2), epidermal growth factor (EGF), hepatocellular growth factor (HGF), platelet derived 

growth factor (PDGF), insulin-like growth factor (IGF), tumor necrosis factor α (TNFα) and 

the transforming growth factor β (TGFβ) (Savagner et al. 1997; Strutz et al. 2002; Zavadil 

and Bottinger 2005; Yang et al. 2006; Lo et al. 2007; Tiwari et al. 2012). All these molecules 

are capable to activate the expression of EMT-promoting transcription factors like SNAIL, 

SLUG, TWISTs and ZEBs by activating one or more EMT-inducing pathways. This includes 

the mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3K), Wnt/β-

catenin, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB), Notch- and 

Hippo/Warts pathways (Thiery 2002; Lo et al. 2007; Medici et al. 2008; Park et al. 2008). 

Figure 1.4 provides an overview on the pathways involved in EMT and shows how they are 

interconnected. Besides growth factor signaling, also genetic modifications can lead to EMT 

induction. Fibroblast growth factor receptor 2 (FGFR2) was the first gene in which alternative 

splicing was found to be associated with activation of EMT. Here, alternative splicing of the 

third Ig-like domain results in the occurrence of two receptor isoforms, which either do or do 

not induce EMT due to different ligand-binding specificities (Savagner et al. 1994). The 

Cadherin-Associated Protein Delta 1 (CTNND1), ENAH1 and CD44 are further genes in 

which alternative splicing was found to be associated with the regulation of EMT and cancer 

progression (Keirsebilck et al. 1998; Pino et al. 2008; Brown et al. 2011). In addition, the 

RNA binding proteins epithelial splicing regulatory protein 1 and 2 (ESRP1/2) were recently 

found to inhibit EMT by promoting the splicing of the epithelial-specific forms of the 

abovementioned genes (Warzecha et al. 2009; Warzecha et al. 2010). Also DNA and histone 

modifications can contribute to EMT. One example is the DNA methylation of the E-cadherin 

promoter and its concomitantly lower expression which can be observed in nearly all 

epithelial cancers (Graff et al. 1995; Tiwari et al. 2012). In addition, proteins which are a part 

of the chromatin remodeling polycomb repression complexes (PRC) 1 and 2 were found to be 

involved in EMT. BMI-1, a part of the PRC1 (Wu and Yang 2011) activates EMT by 

repressing the tumor suppressor gene PTEN, subsequently leading to the activation of the 

PI3K pathway, stabilisation of SNAIL and downregulation of E-cadherin (Song et al. 2009). 

In contrast, EZH2, a part of the PRC2 (Schuettengruber et al. 2007), directly inhibits E-

cadherin expression by adding repressive H3K27me3 (trimethylation of lysine 27 in histone 

3) marks to its promoter region (Cao et al. 2008). 
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Figure 1. 4: Molecular pathways involved in EMT. 

Many different signaling molecules, including TGFβ, FGF, EGF and Wnt, contribute to EMT induction by 

activating specific pathways. The induced pathways are largely interconnected to accomplish their function 

(dashed arrows) and eventually activate EMT-related transcription factors like SNAIL, TWISTs and ZEBs. In 

addition, many miRNA are involved in regulating EMT by specifically repressing the expression of proteins 

involved in this process. (Picture by Tiwari et al. (Tiwari et al. 2012).) 

 

The changes during epithelial-to-mesenchymal transition provide the former epithelial 

cells with numerous new abilities. This does not only include the capacity to efficiently 

migrate and invade, but also an enhanced resistance towards apoptosis and anoikis, mitigation 

of oncogene-induced senescence, increased chemoresistance and the gain of immuno-

suppressive functions (Thiery et al. 2009; Tiwari et al. 2012). Taken together, these abilities 

enable cells to leave the primary tumor, travel through the body and survive the hostile 

environments awaiting them during metastasis formation. In addition, the increased resistance 

to chemotherapy, which is most likely due to their dormant, non-proliferating phenotype, 

renders these cells highly resistant to standard treatment regimens (Muller et al. 2005; Becker 

et al. 2007). Thereby cells which underwent EMT are one of the largest obstacles regarding 

the efficient treatment of cancer. 
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1.1.2.3 TGFβ signaling and its role in cancer progression   

Among all pathways that contribute to EMT, the transforming growth factor (TGFβ) 

pathway is one of the major and also the best examined one (Yang and Weinberg 2008; 

Wendt et al. 2012). TGFβ is an ubiquitously expressed cytokine which plays a role in many 

different cellular processes, including development, differentiation, cell growth, survival, 

migration and tissue homeostasis (Moustakas and Heldin 2012; Wendt et al. 2012). 

Furthermore, it inhibits the proliferation of epithelial, endothelial and hematopoietic cell 

lineages by arresting them in G1-phase (Sheen et al. 2013). However, because of its 

involvement in multiple cellular processes it is also implicated in several pathological 

conditions, like autoimmune and cardiovascular diseases, and cancer (Gordon and Blobe 

2008). Interestingly, TGFβ signaling in primary carcinomas is associated with tumor 

repression as it inhibits cell proliferation and induces apoptosis (Sheen et al. 2013). The effect 

of TGFβ on proliferation is due to the induction of the cyclin dependent kinase (CDK) 

inhibitors p21Cip and p15Ink4b, and the suppression of proteins correlated with enhanced 

proliferation, like c-Myc and ID-1,2,3 (Katz et al. 2013). In contrast, induction of apoptosis is 

provided upon the activation of pro-apoptotic caspases and members of the BCL2 family 

(Padua and Massague 2009). In addition, TGFβ plays a role in maintaining genomic stability 

in cancer cells and modulation of the tumor surrounding stroma (Katz et al. 2013). However, 

it is a hallmark of tumor cells in advanced stages of carcinogenesis to develop a resistance 

towards the tumor suppressive function of TGFβ, eventually transforming the signals 

provided by this cytokine into cancer-promoting ones. This functional switch is called “the 

TGFβ paradox” (Moustakas and Heldin 2012; Wendt et al. 2012) and as soon as tumor cells 

passed it, TGFβ signaling provides them with pro-survival traits including immune 

suppressive functions and the ability to stimulate angiogenesis. In addition TGFβ induces 

EMT, which provides cells with the ability to leave the primary tumor, thereby enabling 

metastatic spread (Padua and Massague 2009; Katz et al. 2013; Sheen et al. 2013). 
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Figure 1. 5: TGFβ signaling. 

TGFβ can activate SMAD-dependent and SMAD-independent pathways. For SMAD-dependent signaling, TGFβ 

binds and activates TGFβ-receptors I and II (TGFβR1/2), which subsequently activate SMAD 2 and 3 proteins 

by phosphorylation. SMAD 2/3 binds to SMAD 4 and the complex translocates into the nucleus where it 

activates TGFβ-specific genes. The pathway can be inhibited by SMAD 6/7. In addition, TGFβ can activate 

SMAD-independent signaling pathways, including the MAPK, TRAF6, PI3K and RhoA pathways. (Modified 

picture from Sheen et al.(Sheen et al. 2013).) 

TGFβ signaling starts with the activation of the TGFß receptors type I and II 

(TGFβR1/ TGFβR2), which are both transmembrane serine/threonine kinases. Thereby, TGFβ 

first binds and activates TGFβR2, which subsequently activates TGFβR1 upon 

phosphorylation. Activation of TGFβR1 then initiates canonical SMAD signaling by 

phosphorylating the receptor-associated SMADs (R-SMADs) SMAD2 and SMAD3. 

Phosphorylated SMADs then form a complex with SMAD 4. This complex translocates into 

the nucleus where it binds to SMAD-binding elements and activates TGFβ-specific genes. 

The pathway is negatively regulated by SMAD6/7 which can inhibit TGFβ signaling either by 

binding to activated TGFβR1, thereby preventing the phosphorylation of SMAD2/3, or by 

inducing the proteasomal degradation of SMAD2/3 by recruiting a specific E3 ubiquitin 

ligase (Moustakas and Heldin 2012; Sheen et al. 2013). Besides the SMAD-dependent signal 

pathway, TGFβ can also activate SMAD-independent signal mechanism, including the PI3K, 

MAPK, RhoA-ROCK and TRAF6-TAK1 pathways (Derynck and Zhang 2003) (see Fig. 1.5). 
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Regarding EMT, TGFβ signaling results in the activation of the most important EMT 

promoting transcription factors, which are the E-box binding zinc finger proteins SNAIL, 

SLUG, ZEB1 and ZEB 2, as well as the basic helix-loop-helix proteins TWIST1 and 2 (Park 

et al. 2008; Moustakas and Heldin 2012). Expression of these molecules subsequently 

activates various EMT programs, including the remodelling of the cytoskeleton, secretion of 

EMT-promoting cytokines and growth factors, like FGF2, interleukin-like EMT-inducer 

(ILEI), Wnt, Jagged, HGF and EGF, remodeling of the extracellular matrix and disassembly 

of cell junctions (Moustakas et al. 2002; Zavadil and Bottinger 2005; Moustakas and Heldin 

2012; Wendt et al. 2012) (see Fig. 1.6). SNAIL, SLUG and the ZEB proteins act as 

transcriptional repressors of E-cadherin and other proteins associated with epithelial 

phenotype and functions, like the tight junction proteins occludin and CAR (coxsackie and 

adenovirus receptor), and induce the expression of mesenchymal genes. In contrast, TWIST 1 

and 2 mainly induce expression of mesenchymal and pro-invasive genes (Vincent et al. 2009; 

Nieto 2011). Interestingly, activation of the transcription factors SNAIL and SLUG by TGFβ 

signaling, vice versa also induces the expression of TGFβ (Medici et al. 2008). In addition, it 

was found that SNAIL contributes to the upregulation of SLUG, and that induction of ZEB1 

depends on the cooperation of SNAIL and TWIST 1 (Medici et al. 2008; Taube et al. 2010; 

Dave et al. 2011). The intense cross-regulation of cytokines and transcription factors is a 

hallmark of EMT and provides a consecutive feed-forward loop allowing the ultimate 

progression into the mesenchymal phenotype (Moustakas and Heldin 2012). Figure 1.6 

provides an overview of various molecules and mechanisms, which are regulated upon TGFβ-

induced EMT, and also depicts a large number of proteins and RNAs, which were found to be 

involved in the regulation of these processes. 
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Figure 1. 6: TGFβ-dependent activation of EMT. 

TGFβ induces epithelial-to-mesenchymal transition by activating EMT-promoting transcription factors upon 

SMAD-dependent or -independent pathways. This eventually leads to activation of various EMT programs 

(beige boxes). TGFβ-induced EMT is regulated by a large subset of different proteins and RNAs (grey boxes). 

(Modified picture from Moustakas et al. (Moustakas and Heldin 2012).) 

 

 As it is such a strong and important inducer of EMT, inhibition of TGFβ signaling has 

emerged as anti-cancer therapy approach. Current strategies can be subdivided into three 

groups, i.e. prevention of TGFβ expression using antisense molecules, inhibition of the 

ligand-receptor interaction by monoclonal antibodies or ligand traps, and inhibition of the 

signaling cascade by using TGFβ receptor kinase inhibitors and aptamers (Padua and 

Massague 2009; Sheen et al. 2013). For each of these approaches several molecules, which 

are currently either in non-clinical or early clinical trials, have been developed (Sheen et al. 

2013). However, caution is needed when targeting TGFβ in cancer cells, as depletion of this 

molecule or its signaling cascade might induce mesenchymal-to-epithelial transition in certain 

cancer cells, thereby enabling the outgrowth of metastases (see 1.1.3). 
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1.1.3  Mesenchymal-to-epithelial transition (MET) 

Epithelial-to-mesenchymal transition was found to be an essential progress during 

cancer progression, enabling cells to leave the primary tumor and translocate to secondary 

sites of the body. However, for the outgrowth of metastases, tumor cells need to reverse the 

EMT process and regain their proliferative phenotype (Bonnomet et al. 2010). As during 

development, where cycles of EMT and its reversal process mesenchymal-to-epithelial 

transition (MET) allow the formation of specific tissues and cell types (Yang and Weinberg 

2008; Thiery et al. 2009), the current opinion is that the epithelial, proliferative phenotype of 

tumor cells is comparably reactivated by MET during cancer progression. Data supporting 

this idea were recently provided by Chao et al. and Dykxhoorn et al., who showed that 

metastatic outgrowth of breast cancer cells in the lungs of mice is promoted by initiation of 

the MET program and the concomitant elevation of E-cadherin levels (Dykxhoorn et al. 2009; 

Chao et al. 2010). 

In contrast to EMT, which was intensively studied in development and disease, 

relatively little is known about the induction of and the processes involved in MET (Yang and 

Weinberg 2008; Kalluri and Weinberg 2009). The best studied example for MET is the 

formation of nephron epithelium during kidney development, where mesenchymal cells start 

to polarize, develop cell adhesions and differentiate into epithelial cells, which form the 

kidney tubules (Davies 1996). This process was found to be driven by proteins like paired box 

2 (PAX2), Wilms tumor 1 (WT1) and the bone morphogenic factor 1 (BMP-1) (Rothenpieler 

and Dressler 1993; Lipschutz 1998), which was also found to be involved in the MET process 

occurring during kidney regeneration (Zeisberg et al. 2005). Studies focusing on the role of 

MET on metastatic outgrowth of cancer so far revealed that inhibition of canonical SMAD-

signaling by inhibition of SMAD2 or overexpression of SMAD7 (see Fig. 1.6) is sufficient to 

induce MET and formation of overt metastases in a breast cancer progression model 

(Papageorgis et al. 2010). Furthermore, it has been shown that overexpression of miR-200, 

which was found to prevent EMT and thereby helps to maintain epithelial integrity (Korpal et 

al. 2008; Mongroo and Rustgi 2010), enhances formation of macroscopic metastases in mice 

(Dykxhoorn et al. 2009). Also TGFβ, a master inducer of EMT in cancer cells, is suggested to 

be associated with metastatic growth. Though TGFβ downregulation might interfere with the 

formation of migrating CTCs, in DTCs already located at secondary sites such interference 

could rather lead to induction of metastatic outgrowth by activation of the MET program 

(Shipitsin et al. 2007; Wendt et al. 2012). Last but not least, as in the case of EMT, also the 
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microenvironment is discussed to induce MET in cancer cells, either by providing MET-

activating signals or simply due to the lack of EMT-promoting signals (Kalluri and Weinberg 

2009). 

Although EMT and MET in cancer cells are often depicted as two straight processes 

allowing cells to switch from the epithelial to the mesenchymal phenotype or vice versa, the 

reality seems to be more subtle and complex. In many carcinomas, cells seem to undergo only 

partly processes of EMT, resulting in cancer cells holding both epithelial and mesenchymal 

markers and thereby displaying a phenotype, which is not observable in normal tissues (Yang 

and Weinberg 2008; Saito et al. 2009; Chaffer and Weinberg 2011). This kind of 

“intermediate phenotype” might provide cancer cells with enhanced plasticity, allowing easier 

switching between a more epithelial and a more mesenchymal phenotype. As both, EMT and 

MET, have been shown to be critical steps in carcinogenesis, a better knowledge about these 

processes is mandatory to efficiently interfere with cancer progression. 
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1.2 The epithelial cell adhesion molecule (EpCAM) 

This study was performed to provide deeper insights into the specific functions of 

EpCAM during tumor formation and progression. The next chapter of the introduction 

summarizes the current knowledge on EpCAM expression and functions. 

 

1.2.1 The EPCAM gene 

The human EPCAM gene is a member of the tumor-associated antigen gene family 

GA-733 (Linnenbach et al. 1989; Szala et al. 1990; Alberti et al. 1994). The gene is located on 

chromosome 2 (location 2p21), has a size of around 17.9 kb (NCBI 2014) and is comprised of 

9 coding exons, which are transcribed into a 1.5 kb long mRNA (Balzar et al. 1999b). Exons 

1-6 encode the extracellular domain of the protein, including an epidermal growth factor 

(EGF)-like domain, a thyroglobulin (TY)-like domain and a cysteine-depleted region, as well 

as the signal peptide, which is later cleaved off from the protein, but is essential for its 

transport into the endoplasmic reticulum and the golgi-mediated transport to the cell 

membrane. The transmembrane domain of EpCAM is encoded by exon 7, and the exons 8-9 

encode the intracellular domain of the protein (see Fig. 1.7) (Schnell et al. 2013). The EPCAM 

gene is highly conserved among different species, including mouse, rat, zebrafish and human, 

showing a sequence homology of 81% between human and mouse and 98% between man and 

gorilla (Bergsagel et al. 1992; Schnell et al. 2013).  

 

Figure 1. 7: The EPCAM gene. 

The EPCAM gene (A) contains 9 exons, which encode the EpCAM protein (B) as indicated. SP, signal peptide; 

EGF, epidermal growth factor-like domain; TY, thyroglobulin-like domain; TM, transmembrane domain; ec, 

extracellular domain; ic, intracellular domain. (Modified picture from Schnell et al. (Schnell et al. 2013).) 
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Studies concerning the 5´-regulatory region of the EPCAM gene revealed a lack of a 

TATA and a CAAT box. Instead, other eukaryotic promoter elements such as initiator 

consensus sequences and GC boxes, as well as consensus binding sequences for SP-1, 

activator protein 1 (AP-1), activating protein 2 (AP-2), ETS, ESE-1 and E-pal-like 

transcription factors, which are known to play a role in epithelial specific expression, were 

detected (Behrens et al. 1991; Lee et al. 1996; McLaughlin et al. 2004). In addition, it was 

found that 177 bp of the 5´-flanking region are sufficient to obtain maximal activity of the 

promoter. In contrast, 687 bp of the 5´-flanking region are necessary to ensure epithelial 

specificity (McLaughlin et al. 2004). The expression of EpCAM was found to be impaired by 

NFκB, TNFα und INFγ (Gires et al. 2001; Gires et al. 2003) and activated by TCF/β-catenin 

(Yamashita et al. 2007).  

The only mutation of the EPCAM gene known so far is associated with an intestinal 

disease called congenital tufting enteropathy (CTE). Patients suffering from this disease show 

a homozygous G�A substitution at the donor splice site of exon 4, leading to a divergent 

EpCAM isoform, which does not localize to the plasma membrane anymore. This results in a 

dysplasia of the intestine, associated with a severe malfunction and high lethality 

(Sivagnanam et al. 2008). Similar symptoms were reported in two EpCAM knock-out mouse 

models (Guerra et al. 2012; Lei et al. 2012). Guerra et al. showed that EpCAM knock-out 

mice died soon after birth because of hemorrhagic diarrhea, due to intestinal defects, 

including intestinal tufts, villous atrophy and colon crypt hyperplasia. As all these 

abnormalities can also be observed in patients with CTE, Guerra et al. provided the first 

animal model for this disease (Guerra et al. 2012). In addition, they provided a rationale for 

the observed intestinal defects by showing that the loss of EpCAM leads to dysregulation of 

E-cadherin and β-catenin and thereby to abnormalities in the architecture and function of the 

intestine (Guerra et al. 2012). Another group found evidence that intestinal defects of EpCAM 

knock-out mice were due to an abnormal morphology of tight junctions (Lei et al. 2012). 

They showed that in normal intestines, EpCAM co-localizes and associates with claudin-7 to 

form proper cell-cell junctions. Furthermore, EpCAM was also found to form complexes with 

claudins-2, -3 and -15. In EpCAM-depleted cells, however, expression of all these proteins 

was repressed, with claudin-7 being downregulated to undetectable levels. This, in 

consequence led to the formation of morphologically abnormal tight junctions. Taken 

together, Lei et al. could show that EpCAM recruits claudins to cell-cell junctions and thereby 

contributes to the barrier function of the intestine (Lei et al. 2012). 
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1.2.2 The EpCAM protein 

As its name implicates, the epithelial cell adhesion molecule (EpCAM) is part of the 

cell adhesion molecule (CAM)-family. It consists of 314 amino acids (AA) and can be 

subdivided in three main parts: a large extracellular domain, a single transmembrane domain 

and a small intracellular domain (Balzar et al. 1999b; Gires 2008) (see Fig. 1.8). The 

extracellular domain includes the signal peptide and consists of 265 AA. The 23 AA long 

signal peptide is cleaved off by signal pepdidases in the endoplasmic reticulum. Thereby, 

signal pepdidases cut primarily between alanine 23 and glutamine 24 (Strnad et al. 1989; 

Szala et al. 1990; Chong and Speicher 2001). However, a small proportion (around 1%) of 

EpCAM becomes cleaved between AA 21 and 22 (Chong and Speicher 2001). The mature 

extracellular domain consists of 242 AA and contains two different motifs, i.e. a EGF-like 

domain between AA 27-59 and a type 1a TY-like domain between AA 66-135 (Gires 2008). 

The TY-motif is conserved in many different proteins and plays a role as tumor suppressor as 

it binds and inhibits cathepsins (Meh et al. 2005), which are involved in tumor progression 

and metastases formation (Nomura and Katunuma 2005; Tan et al. 2013). However, a role of 

EpCAM as substrate or inhibitor of cathepsins was so far not described (Schnell et al. 2013). 

In 2001, Balzar et al. reported that the cell adhesion function of EpCAM (see 1.2.5.1) is 

mediated by its EGF-like and TY-like domains, which allow for the formation of EpCAM 

tetramers (Balzar et al. 2001). Thereby the TY-like domain mediates the lateral contact, 

whereas the EGF-like domain enables the connection of EpCAM molecules from two 

different cells, the so called homophilic cell-cell adhesion (Balzar et al. 1999a; Balzar et al. 

1999b; Balzar et al. 2001). In a linear view of EpCAM´s extracellular domain, this model 

makes sense. However, TY-domains generate a 180° bend in all proteins analyzed so far 

(Molina et al. 1996; Novinec et al. 2006; Mihelic and Turk 2007). Thus, it remains somewhat 

unclear how both domains in the extracellular part of EpCAM contribute to cell adhesion. 

After the TY-like domain, there is a cystein-depleted region, followed by the 23 AA long 

single transmembrane domain of the EpCAM protein, which was shown to be associated with 

the tight junction protein claudin-7 (Nubel et al. 2009). The transmembrane domain is 

followed by the 26 AA long intracellular domain of EpCAM. This domain contains two 

putative α-actinin binding consensus sequences, which are located between the AA 290-296 

and 304-314. The binding of α-actinin was found to be essential for the adhesive function of 

EpCAM as α-actinin connects EpCAM with the actin cytoskeleton (Balzar et al. 1998). 
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Figure 1. 8: The EpCAM protein. 

EpCAM consists of 314 AA and can be subdivided in three main parts: a large extracellular domain, including 

the signal peptide, which gets cleaved off in the endoplasmic reticulum, a single transmembrane domain and 

small intracellular domain. 

 

The extracellular domain of EpCAM contains three glycosylation sites, which are 

located at the asparagine residues 74, 111 and 198 (N74, N111, N198). Various glycosylation of 

these sites result in EpCAM variants, which display different molecular weights of 34, 40 or 

42 kDa (Thampoe et al. 1988; Schon et al. 1993; Litvinov et al. 1994b). Glycosylation of N198 

was furthermore found to be important for the stability of EpCAM as mutation of this site 

from asparagine to alanine was associated with decreased overall EpCAM protein levels and 

shorter half-life time of the protein at the cell membrane (Munz et al. 2008). Glycosylation of 

EpCAM does apparently also play a role in tumor cells. It was found that EpCAM is heavily 

glycosylated in head and neck carcinoma cells, whereas it showed no or weak glycosylation in 

healthy tissues (Pauli et al. 2003). It is therefore tempting to speculate that different 

glycosylation of EpCAM is associated with the regulation of the stability and, consequently, 

of the functions of the protein in malignant and healthy tissue (Schnell et al. 2013). Figure 1.9 

depicts a detailed illustration of the EpCAM sequence and its posttranslational modifications. 
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Figure 1. 9: Amino acid sequence of EpCAM. 

Amino acid sequence of EpCAM with posttranslational modifications and putative binding motifs. Arrow, 

cleavage site of the signal pepdidase. (Modified picture from Schnell et al. (Schnell et al. 2013).)  
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1.2.3 Proteolytic cleavage and signaling of EpCAM 

Although EpCAM is studied since the late 1970s, the cleavage of EpCAM was 

discovered only recently in a study by Maetzel et al. in which the group provide evidence that 

EpCAM is cleaved upon regulated intramembrane proteolysis (RIP) and provide a mechanism 

how EpCAM signaling functions (Maetzel et al. 2009) (see Fig. 1.10). 

Juxtacrine cell-cell interactions represent one way of the induction of EpCAM 

cleavage (Denzel et al. 2009). It is believed that cell-cell contact allows for the interaction of 

EpCAM molecules on opposing cells or, alternatively, for the interaction of EpCAM with a 

yet unknown ligand. These interactions trigger a cascade of cleavage processes termed 

regulated intramembrane proteolysis. In a first step, the extracellular domain of EpCAM 

(EpEX) is cleaved off from the remaining molecule by the tumor necrosis factor alpha-

converting enzyme (TACE, ADAM17), a member of the ADAM protein family (Edwards et 

al. 2008). This is a prerequisite for the second cleavage of the c-terminal part of EpCAM 

(EpCAM-CTF), which is still an integral part of the plasma membrane. In addition, it was 

found that the soluble EpEX provides a positive feedback loop and enhances RIP of EpCAM 

in a paracrine way (Denzel et al. 2009). During the second step of RIP, EpCAM-CTF is 

cleaved by a γ-secretase complex, which contains presenilin-2 (PS-2). This results in the 

formation of cytoplasmic EpICD (the intracellular domain of EpCAM) and a small 

extracellular fragment of EpCAM, with a so far unknown function. Following the second 

cleavage, EpICD is released into the cytoplasm and forms complexes with four and a half 

LIM domains protein 2 (FHL-2) and β-catenin. Thereby FHL-2 was found to be the central 

interaction partner of EpCAM, binding to EpICD via its fourth LIM domain. As FHL-2 also 

binds β-catenin with its second and third LIM domain (Martin et al. 2002; Labalette et al. 

2004), it was hypothesized that FHL-2 is essential for EpCAM signaling as scaffold protein 

(Imrich et al. 2012). After formation, the abovementioned complex can translocate into the 

nucleus and bind the transcription factor lymphoid enhancer-binding factor 1 (Lef-1) (Barolo 

2006), which enables the activation of EpCAM-specific target genes, including genes 

involved in cell proliferation and “stemness” (Maetzel et al. 2009; Lu et al. 2010; Imrich et al. 

2012; Chaves-Perez et al. 2013) (see Fig. 1.10). 

Compared to tumor cells, EpCAM cleavage seems to occur to a much lower extend in 

normal epithelia. In addition, no EpICD signals could so far be detected in the nuclei, but only 

in the cytoplasm, of normal colon mucosa (Maetzel et al. 2009). A possible explanation for 

this are different expression levels of proteins involved in EpCAM signaling, like TACE, 
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presenilin-2 and FHL-2, in healthy and malignant tissues (Johannessen et al. 2006; Kenny 

2007; Selkoe and Wolfe 2007). Alternatively, cleavage might occur at similar rates in normal 

cells, but products might be less stable or nuclear translocation impaired.  

 

 

Figure 1. 10: Cleavage and signaling of EpCAM. 

EpCAM is cleaved upon regulated membrane proteolysis. In a first step, EpCAM gets cleaved by TACE (1), 

which leads to the release of the extracellular part of EpCAM (EpEx) and is prerequisite for the second cleavage, 

during which the C-terminal fragment of EpCAM (EpCAM-CTF) is cleaved by a presenilin-2-containing γ-

secretase complex (2). The second cleavage leads to the release of the internal part of EpCAM (EpICD) into the 

cytoplasm, where it forms complexes with FHL-2 and β-catenin, which eventually translocate in the nucleus, 

bind to Lef-1 transcription factors and activate EpCAM-specific target genes. (Modified picture from Imrich et 

al. and Maetzel et al. (Maetzel et al. 2009; Imrich et al. 2012).) 

 

Recent findings by Hachmeister et al. revealed another protein, which is involved in 

the cleavage of EpCAM (Hachmeister et al. 2013). The β-secretase-1 (BACE-1), which also 

plays a central role in the generation of the pathologic Aβ-fragment in the neurodegenerative 

Alzheimer`s disease (Vassar et al. 2009; Ghosh et al. 2012; Nalivaeva and Turner 2013), was 

discovered as new sheddase in the RIP of murine and human EpCAM. The specificity of 
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BACE-1 cleavage was assured by using combinations of overexpression of BACE-1 and 

BACE-1-specific inhibitors, resulting in a significantly increased or reduced EpCAM 

processing, respectively (Hachmeister et al. 2013). As BACE-1 has a pH optimum of 4.5, it 

was hypothesized that BACE-1-based EpCAM cleavage occurs in acidic, intracellular 

compartments (endosomes/lysosomes) after previous endocytosis of EpCAM (Hachmeister et 

al. 2013) (see Fig. 1.11).  

 

 

 

Figure 1. 11: Cleavage and processing of murine EpCAM.  

The first cleavage step in the RIP of murine EpCAM (mEpCAM) can be performed by ADAMs (left pathway) 

or BACE-1 (right pathway). Cleavage of mEpCAM by ADAMs results in the formation of soluble EpEX 

(smEpEX) and EpCAM-CTF (mCTF). The subsequent cleavage of mCTF by the γ-secretase complex leads to 

the formation of an EpCAM-Aβ-like fragment (mEp-Aβ-like) and EpICD variants (mEpICD), which become 

degraded by the proteasome. BACE-1-associated RIP requires endocytosis of EpCAM. After BACE-1 cleavage, 

cleavage products are further processed and degraded by hydrolases or the proteasome. (Picture by Hachmeister 

et al. (Hachmeister et al. 2013).) 
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Besides the involvement of BACE-1 in EpCAM cleavage, Hachmeister et al. also 

revealed that the intracellular cleavage of murine EpCAM leads to the generation of five 

different forms of EpICD as well as to mEp-Aβ-like fragments that are similar to the Aβ-

fragment of APP, which is associated with the progression of Alzheimer`s disease 

(Hachmeister et al. 2013). However, out of the five EpICD variants only one was stable 

enough to be measured in mass spectroscopy with untreated cells. Most likely this variant is 

also the one, which can be detected in western blot. All other variants could only be detected 

when cells were treated with proteasome specific inhibitors or when proteasome-free 

membrane fractions were used as a source of proteins. In line with these findings it could be 

shown that the murine EpICD is prone to degradation by the proteasome, as treatment of cells 

expressing murine EpCAM with specific proteasome inhibitors, resulted in significant 

stronger EpICD signals in western blot (Hachmeister et al. 2013). This liability to 

proteasomal degradation was also found in case of human EpICD (Maetzel et al. 2009).  

 

1.2.4 Expression pattern of EpCAM 

1.2.4.1 EpCAM expression in normal tissue 

Usually, EpCAM can only be found at the basolateral cell membrane of simple, 

pseudo-stratified and transitional epithelia, whereas it is not expressed in squamous epithelia, 

mesenchymal cells, neuroendocrine tissue, cells derived from the bone marrow and cells of 

lymphoid origin (Moldenhauer et al. 1987; Momburg et al. 1987; Schnell et al. 2013). 

Expression levels of EpCAM vary between different organs and cell types. Thereby, weak 

EpCAM expression levels can for example be found in the stomach, whereas the small 

intestine and the colon display intermediate and high levels of EpCAM, respectively 

(Moldenhauer et al. 1987). Also the different cell types of the skin vary according to their 

EpCAM expression levels, with keratinocytes and melanocytes expressing no EpCAM, 

whereas high levels of EpCAM can be found at the proliferative zone and the perspiratory 

glands (Momburg et al. 1987; Tsubura et al. 1992). Similar findings were reported for 

different organs of the male (prostate, testis) and female (ovary, cervix, uterus) genital tracts 

(Tsubura et al. 1992; Litvinov et al. 1996). Organs displaying strong EpCAM expression 

levels are, besides the colon, the gall bladder, the respiratory tract (including trachea, 

bronchia, bronchioles and alveolus) and the glands of the endocrine system, i.e. thyroid gland, 

pituitary gland and adrenal glands (Moldenhauer et al. 1987; Pauli et al. 2003). In addition, 

EpCAM is expressed in certain cells of the kidney and the pancreas as well as in cells from 
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the bile duct (Cirulli et al. 1998; Breuhahn et al. 2006; Trzpis et al. 2007b). Typically, 

EpCAM expression is present in tissues with increased numbers of proliferating and less 

differentiated cells. One example for this observation is the epithelium of the intestine in 

which an decreasing EpCAM gradient can be observed from crypts to villi, corresponding to 

high EpCAM expression in the intestinal stem cells which are located in the crypts and 

decreasing levels in the differentiated cells at the top of the villi (Balzar et al. 1999b; Schnell 

et al. 2013).  

 

1.2.4.2 EpCAM expression in stem cells and regenerating tissue 

It was postulated that EpCAM expression is essential during embryonic development 

and morphogenesis (Trzpis et al. 2007a; Trzpis et al. 2008). Indeed, EpCAM expression can 

be detected in oocytes, the two-cell state and morulas (Tarmann et al. 1990), as well as in 

human and murine embryonic stem cells (Gonzalez et al. 2009; Lu et al. 2010; Ng et al. 

2010). However, in later developmental stages EpCAM expression varies between the 

different tissues formed, whereat it is still expressed in the fetal lung, liver, pancreas, kidneys, 

skin, mammary glands and germ cells (Kasper et al. 1995; Stingl et al. 2001; Dan et al. 2006). 

In some tissues, like the pancreas, expression of EpCAM is maintained also in the adult organ 

(Cirulli  et al. 1995; Cirulli et al. 1998), whereas other cell types, like mature hepatoblasts 

entirely shut down EpCAM expression (de Boer et al. 1999). Although adult liver cells do not 

express EpCAM under normal circumstances, it was found that its expression is reactivated 

upon inflammatory liver diseases (Breuhahn et al. 2006). Furthermore, it has been shown that 

after liver damage the organ is regenerated by EpCAM-positive progenitor cells (de Boer et 

al. 1999). It was therefore postulated that re-expression of EpCAM is associated with a 

regenerative potential in the liver (Breuhahn et al. 2006). In addition, a potential role of 

EpCAM in the regulation of the stem cell phenotype in liver progenitor cells was discussed 

(Gires 2008; Yoon et al. 2011; Gires 2012). 

 

1.2.4.3 EpCAM expression in cancer cells 

EpCAM is de novo or overexpressed in the majority of malign and benign primary 

carcinomas (Went et al. 2004; Schnell et al. 2013). Especially high amounts of EpCAM can 

be found in carcinomas derived from colon, intestine, breast, lung and prostate (Litvinov et al. 

1996; Spizzo et al. 2004; Went et al. 2004; Went et al. 2006). In addition, not only the levels 

but also the location of EpCAM differs between normal and transformed cells. In healthy 
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tissues, EpCAM can be found only at the basolateral cell membranes and sometimes in the 

cytoplasm, which might be due to transport of EpCAM to the membrane, EpCAM cleavage or 

endocytic processes. In contrast, in carcinoma cells EpCAM can be detected at the whole cell 

membrane, maybe due to the loss of polarity in these cells. Additionally, strong EpCAM 

signals can also be detected in their cytoplasm and nuclei (Ralhan et al. 2010a; Ralhan et al. 

2010b; Kunavisarut et al. 2012). In most carcinomas subtypes, the overexpression of EpCAM 

correlates with enhanced cancer progression and worsened clinical outcome (see 1.2.5.3) (van 

der Gun et al. 2010). 

Despite the broad knowledge about EpCAM in primary tumors, studies dealing with the 

expression of EpCAM in CTCs, DTCs and metastases remain so far inconclusive. Kuhn et al. 

found that liver metastases deriving from colorectal cancer showed the same high EpCAM 

expression level as primary tumors (Kuhn et al. 2007). Similar findings were made by Jojovic 

et al. in large lung metastases of colon carcinomas (Jojovic et al. 1998). In contrast, Takes et 

al. showed that metastases derived from head and neck carcinomas in most cases display 

lower EpCAM levels than the cognate primary tumors (Takes et al. 2001). As EpCAM in 

these days is the most frequently used marker to retrieve CTCs from blood and detect DTCs 

in lymph nodes (see 1.2.5.3), it is assumed that those cells are also EpCAM-positive. Indeed 

there is evidence that EpCAM is expressed in the majority of DTCs in thyroid cancer 

(Ensinger et al. 2006) and in CTCs deriving from breast cancer (Tewes et al. 2009; Aktas et 

al. 2011). However, an increasing set of data, including studies from colon and breast 

carcinomas, reports on the loss of EpCAM in CTCs and DTCs (Jojovic et al. 1998; Rao et al. 

2005; Gorges et al. 2012).  
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1.2.5 Functions of EpCAM 

EpCAM was identified as tumor-associated antigen already in 1979 as it triggered a 

cancer-related immune response in mice (Herlyn et al. 1979). Until today various functions of 

EpCAM were described, including a role in cell adhesion and cell signaling, as well as a 

prognostic and therapeutic marker in carcinomas. 

 

1.2.5.1 EpCAM - the cell adhesion molecule 

EpCAM (epithelial cell adhesion molecule) obtained its name from the findings that it 

is primarily expressed in epithelial cells (see 1.2.4) and that it is involved in cell adhesion. 

Although EpCAM is structurally not related to any of the four major families of cell adhesion 

molecules (CAMs), i.e. cadherins, integrins, immunoglobulins (Ig) and selectins (Balzar et al. 

1998), its role in cell adhesion was described in studies by Litvinov et al. already in 1994. The 

group showed that overexpression of EpCAM enhances cell aggregation by the calcium 

independent formation of homophilic cell-cell contacts in cells expressing no relevant amount 

of other cell adhesion molecules. Vice versa, they also provided evidence that treatment of 

cells with an EpCAM-specific antibody inhibits the formation of intercellular contacts 

(Litvinov et al. 1994a; Litvinov et al. 1994b). Subsequent studies revealed that besides the 

extracellular domain, which enables the homophilic interaction of EpCAM molecules, also 

the intracellular of EpCAM is essential in cell adhesion as its binding to α-actinin provides the 

connection to the actin cytoskeleton (Balzar et al. 1998). However, although ectopic EpCAM 

expression was found to increase cell adhesion in cells expressing (almost) no CAMs, in 

epithelial, E-cadherin-expressing cells its influence on cell adhesion was shown to be of rather 

modulating nature. It was reported that EpCAM modulates and abrogates strong cadherin-

mediated junctions and subsequently replaces them by its own comparatively weak cell-cell 

adhesions (Litvinov et al. 1997). Phosphatidylinositol 3-kinase (PI3K) was identified as 

mediator of this process. Thereby PI3K binds to α-catenin, which connects the cadherin 

adhesion complexes to the actin cytoskeleton, and abrogates the interactions between α-

catenin and actin, resulting in contact loss of the adhesion complexes to the cytoskeleton 

(Winter et al. 2007). It was hypothesized that the substitution of the strong cell-cell contacts, 

mediated by E-cadherin, by the relatively weak cell interactions provided by EpCAM, leads to 

enhanced cell plasticity in epithelial tissues which in consequence promotes proliferation and 

cell movement during development, morphogenesis and carcinogenesis (Schnell et al. 2013). 

More recent studies revealed an effect of EpCAM on the formation and composition of tight 
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junctions (TJ). EpCAM knock-out mice displayed a strong depletion of proteins from the 

claudin family. The downregulation of these proteins, which play an essential role in the 

formation of TJ (Angelow et al. 2008), resulted in severe intestinal defects, more often than 

not leading to the death of the mice (Lei et al. 2012). Furthermore, it has been shown that 

EpCAM contributes to the formation of functional tight junctions and epithelial integrity by 

interacting with different claudin proteins (Lei et al. 2012; Wu et al. 2013). 

 

1.2.5.2 EpCAM - the cell signaling molecule 

Besides its role as cell adhesion molecule, EpCAM was also found to be involved in 

cell signaling in cancer as well as in stem cells (Imrich et al. 2012). EpCAM signaling is 

mediated by the internal part of EpCAM (EpICD), which is released upon regulated 

intramembrane proteolysis (see 1.2.3) and was found to be mandatory for the signaling 

function of the molecule (Munz et al. 2004; Maetzel et al. 2009). In carcinoma cells, EpCAM 

signaling was found to be associated with the regulation of genes involved in different cellular 

processes. Transcriptome analyses conducted in lung and colon carcinoma cell lines, which 

were treated with or without an EpCAM-specific antibody, revealed that most genes regulated 

by EpCAM signaling are involved in cell cycle regulation, proliferation, cell growth, 

apoptosis and cancer related processes. Some of the genes which were found to be induced 

upon treatment of the cells with EpCAM-specific antibody were the cell cycle activators 

LATS2 and FOSL2 and the anti-apoptotic genes GADD45 and PIM1. In contrast, expression 

of the pro-apoptotic gene DIDO1 was found to be repressed (Maaser and Borlak 2008). 

Further studies provided evidence that also the proliferation inducing genes c-Myc and cyclin 

A, D and E are upregulated upon EpCAM signaling (Maetzel et al. 2009; Chaves-Perez et al. 

2013). In addition, the fatty acid binding protein 5 (EFABP) and matrix metalloproteinase 7 

(MMP-7) were identified as EpCAM target genes (Munz et al. 2005; Denzel et al. 2012).  

In tumor cells deriving from the colon, EpCAM was found to be associated with the 

tetraspanin CD9 (Le Naour et al. 2006), a protein of the tetraspanin web, which is involved in 

many different biological processes, including cell signaling, motility and adhesion, as well as 

tumor initiation, progression and metastasis (Hemler 2001; Yunta and Lazo 2003; Hemler 

2013). It has been shown that in combination with the tetraspanin web and claudin-7, which is 

also involved in the formation of EpCAM-mediated tight junctions (see 1.2.5.1), EpCAM 

activates metastatic processes in colon carcinoma (Kuhn et al. 2007). Additionally, it was 
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found that claudin-7 induces EpCAM cleavage by associating with presenilin-2, thereby 

leading to enhanced tumor cell proliferation (Thuma and Zoller 2013). 

 A positive correlation between EpCAM and cell proliferation has been observed in a 

set of different in vitro and in vivo studies. Already in 1994, Schön et al. revealed a positive 

correlation of EpCAM expression with cell proliferation in several transformed epithelial cell 

lines. Thereby the group also showed that blocking of specific epitopes of EpCAM using 

antibodies decreases proliferation of cells (Schon et al. 1994). Two years later, Litvinov et al. 

could correlate the expression of EpCAM in cervical intraepithelial neoplasia to an increased 

expression of the proliferation marker Ki67 (Litvinov et al. 1996). Since then, increasing 

evidence from numerous different studies showed that EpCAM expression enhances 

proliferation in many different cell types, including breast, gastric and pharyngeal carcinoma 

cell lines and human embryonic kidney cells. Consequently, EpCAM depletion was correlated 

with decreased proliferation in the tested cells (Munz et al. 2004; Osta et al. 2004; Maetzel et 

al. 2009; Wenqi et al. 2009; Chaves-Perez et al. 2013).  

In embryonic stem cells (ES cells), EpCAM was found to play a role in the 

maintenance of the stem cell phenotype, whereat EpCAM knock-down was associated with a 

disturbance of ES cell characteristics in human as well as in murine stem cells (Gonzalez et 

al. 2009; Ng et al. 2010). Currently it is hypothesized that EpCAM sustains the stem cell 

phenotype by regulating stemness genes like OCT4, KLF4, SOX2 and NANOG (Lu et al. 

2010; Imrich et al. 2012).  

 

1.2.5.3 EpCAM - the prognostic and therapeutic marker 

Due to its strong de novo or overexpression in almost all cancer entities compared to 

the cognate healthy tissues (Winter et al. 2003b; Schnell et al. 2013), EpCAM until now is 

used as prognostic and therapeutic marker in cancer (Moldenhauer et al. 1987; Baeuerle and 

Gires 2007; Imrich et al. 2012). In addition, it is the most frequently used antigen to detect 

and retrieve CTCs and DTCs in cancer patients (Cohen et al. 2006; Criscitiello et al. 2010; 

Weissenstein et al. 2012). In most carcinoma types, including lung, breast, prostate, bladder 

and pancreas carcinomas, EpCAM expression is correlated with increased tumor growth, 

enhanced cancer progression, and/or shorter overall/disease free survival (Piyathilake et al. 

2000; Spizzo et al. 2004; Brunner et al. 2008; Scheunemann et al. 2008; Ni et al. 2013). Only 

in renal and thyroid carcinomas EpCAM was described to have a tumor suppressive role. In 

addition, there is a subset of cancer entities, including gastric and oral carcinomas, in which 
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tumor promoting and suppressive functions of EpCAM are described (Ensinger et al. 2006; 

Klatte et al. 2009; van der Gun et al. 2010). 

As therapeutic marker, EpCAM was already used in a set of different anti-cancer 

approaches, including the development of tumor specific antibodies (Riesenberg et al. 2001), 

the fusion of EpCAM-specific antibody fragments to toxins (Di Paolo et al. 2003; Patriarca et 

al. 2012; Flatmark et al. 2013) or the tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL) (Bremer et al. 2004a; Bremer et al. 2004b) and vaccination (Mosolits et al. 2004). 

Different chimeric (chimeric Edrecolomab), humanized (3622W94), human engineered (ING-

1) and fully humanized (Adecatumumab) EpCAM-specific antibodies with different binding 

epitopes were already developed (Imrich et al. 2012). The first EpCAM antibody, which was 

tested in humans, was Edrecolomab (Panorex). But although first clinical studies associated 

the treatment with Edrecolomab with reduced tumor recurrence and reduced death of patients 

suffering from metastasized colorectal cancer, these finding could not be reproduced in larger 

clinical trials (Riethmuller et al. 1994; Riethmuller et al. 1998; Fields et al. 2009). In addition, 

already low concentrations of EpCAM-specific high affinity antibodies, like ING-1 and 

3622W94, were associated with acute pancreatitis in clinical trials (LoBuglio et al. 1997; 

Goel et al. 2007). In contrast, the application of Adecatumumab, which displayed an 

intermediate binding affinity, only led to minor side effects, like nausea, chill, fatigue and 

diarrhea, when used in higher doses, in a clinical phase II study. Additionally, in this 

particular study the treatment with Adecatumumab was associated with a good prognosis in 

terms of overall survival in patients with EpCAMhigh metastatic breast cancer (Schmidt et al. 

2010). In 2009 the trifunctional antibody Catumaxomab (Removab) gained approval for the 

European market and is now used in the treatment of patients with malignant ascites 

(Baeuerle and Gires 2007; Munz et al. 2010). However, until now Catumaxomab is the only 

EpCAM-specific antibody, which is used in the clinics. 

 

1.2.6 EpCAM in esophageal carcinomas 

Esophageal cancer is the fifth leading cause of cancer-related deaths worldwide (World-

Health-Organization 2008). Both forms, i.e. squamous cell carcinomas deriving from normal 

squamous esophageal epithelia, as well as adenomatous cell carcinomas, deriving from 

transformed epithelial cells of the esophagus (Barrett´s esophagus), are characterized by early 

metastatic spread and intrinsic resistance to current systemic chemotherapies (Ilson 2007; 

Siewert and Ott 2007; Klein and Stoecklein 2009). In consequence, the 5-year survival rate is 
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comparably low, even if the primary tumor can be removed by surgery, which is the case in 

only around 15-20% of all patients suffering from esophageal cancer (Mariette et al. 2004; 

Klein and Stoecklein 2009). The bad overall survival rate in this type of carcinoma is also due 

to the fact that neither adjuvant nor neo-adjuvant therapies are capable of efficiently eradicate 

esophageal cancer cells (Mariette et al. 2007). 

Similarly to other squamous epithelia, EpCAM is not expressed in normal squamous 

epithelium of the esophagus, whereas in the majority of squamous esophageal carcinoma cells 

a strong de novo expression of EpCAM is observable (Winter et al. 2003b; Stoecklein et al. 

2006; Kimura et al. 2007). In a study by Stoecklein et al. it was shown that high EpCAM 

expression in squamous esophageal carcinomas correlates with decreases periods of relapse-

free and disease-specific survival of the patients (Stoecklein et al. 2006). This is in 

consistence with findings in other cancer types like pancreatic, breast and lung carcinomas 

(van der Gun et al. 2010). However, a study by Kimura et al. showed a different picture. Also 

in this particular study high EpCAM levels were associated with increased carcinogenesis, but 

EpCAM expression was also correlated with decreased cancer progression and enhanced 

patient survival (Kimura et al. 2007). In a third study by Went et al. neither a positive nor a 

negative impact of EpCAM expression on tumor grade, tumor stage or survival of patients 

could be found (Philip Went 2008). In contrast to the cells of the normal squamous 

epithelium, where no EpCAM expression can be observed, columnar epithelial cells of the 

esophagus are EpCAM-positive (Wong et al. 2006; Anders et al. 2008). However, this 

columnar epithelium does not occur in a healthy esophagus but is formed in the context of 

Barrett´s esophagus (BE), a precancerous metaplasia of the esophagus, which predisposes 

patients to esophageal adenocarcinoma (Fang et al. 2013; Spechler 2013). Although cells of 

esophageal adenocarcinomas are also EpCAM-positive, EpCAM expression could so far not 

be correlated to any prognostic impact factor in this type of cancer (Kumble et al. 1996; Philip 

Went 2008). 

Besides studies in primary tumors, the prognostic impact of EpCAM in esophageal 

carcinomas was also studied in disseminated tumor cells (DTCs). Hosch et al. provided 

evidence that the occurrence of EpCAM-positive DTCs correlated with a decreased disease 

free survival of patients. Furthermore, the occurrence of EpCAM-positive cells in lymph 

nodes was associated with the decrease of both, relapse free and overall survival (Hosch et al. 

2000).  
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1.3 Aim of the present study 

Understanding the processes involved in cancer formation and progression is essential 

to provide new therapeutic approaches and drugs to efficiently treat and cure cancer patients. 

However, although enormous research efforts during the last decades provided scientists and 

physicians with a detailed understanding of these processes, numerous mechanisms of 

tumorigenesis still remain elusive. Thereby the formation and outgrowth of metastases, which 

represent the main reason for cancer related-deaths, are also the least understood mechanisms 

in the entire process of carcinogenesis.  

The epithelial cell adhesion molecule (EpCAM) is a typ I transmembrane protein, 

which can normally only be found at the basolateral membrane of selected epithelial cells. 

However, as it is overexpressed in most carcinoma types, it gained attention as prognostic and 

therapeutic cancer cell marker. Since its discovery in 1979, EpCAM was intensively studied 

and a participation of the protein in cell adhesion as well as in cell signaling was revealed. 

Despite this huge research effort, the role of EpCAM in cancer formation and progression is 

not finally disclosed. Although EpCAM expression was found to be associated with enhanced 

cancer formation and progression, increased metastatic spread and/or poor clinical outcome in 

most carcinoma types, there is also evidence that EpCAM can play a role in tumor repression. 

In some types of cancer, such as esophageal carcinomas, the influence of EpCAM expression 

on tumor progression is unclear since different studies so far provided contradictory findings. 

Furthermore, although EpCAM was extensively studied in primary carcinomas, almost 

nothing is known about its expression and role during further cancer progression, which is 

odd since EpCAM is the most commonly used antigen to retrieve and detect circulating and 

disseminated tumor cells. Indeed, there is evidence that EpCAM expression is lost during 

cancer progression; however the reason for this loss is still unknown. 

The present study was performed to learn more about the role of EpCAM in cancer 

formation, progression and metastases formation and thereby get a deeper understanding of 

processes involved in carcinogenesis. The ambition was to get an explanation for the finding 

that EpCAM expression can be associated with both, progression and repression of 

tumorigenesis, and to shed light onto the questions if and why EpCAM is downregulated at 

certain stages of carcinogenesis. To do so, squamous esophageal cancer cell lines were used 

as model system, as esophageal carcinoma is one of the most lethal cancers worldwide, 

characterized by early metastatic spread and intrinsic resistance to current systemic 
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chemotherapies (Klein and Stoecklein 2009). Furthermore, the role of EpCAM in this type of 

cancer is still under debate.  
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2 MATERIAL 

2.1 Chemicals 

Table 2. 1: List of chemicals used in the present study. 

Product Company 

3-amino-9-ethylcarbazol Sigma-Aldrich GmbH, Taufkirchen 

ABC-Kit Vectastain® Elite® PK6100 Vector Laboratories, Burlingame (USA) 

Agarose Roche, Mannheim 

Acrylamide, Protogel ultra pure Schröder Diagnostics, Stuttgart 

Anorganic salts, acids and bases Merck KGaA, Darmstadt 

Antibody dilution buffer DCS Innovative Diagnostik-Systeme GmbH 

& Co. KG, Hamburg 

Ammonium persulfate (APS) BioRad, Hercules (USA) 

Aqua dest. Braun, Melsungen 

β-Mercaptoethanol Sigma-Aldrich GmbH, Taufkirchen 

Bovine serum albumin (BSA) Sigma-Aldrich GmbH, Taufkirchen 

Brij L23 solution Sigma-Aldrich GmbH, Taufkirchen 

Bromophenol blue Serva GmbH, Heidelberg 

Calcein AM PromoKine/PromoCell GmbH, Heidelberg 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich GmbH, Taufkirchen 

DMEM (4,5g/l glucose/ with L-glutamine)  Biochrom AG, Berlin 

DMEM  (high glucose/ w/o calcium/ w/o L-

glutamine) 

Life Technologies, Carlsbad (USA) 

EDTA Carl Roth GmbH & Co.KG, Karlsruhe 

EGTA AppliChem GmbH, Darmstadt 

Eosin solution 0,5% Pharmacy Klinikum Großhadern, Munich 

FACSFlow Becton Dickinson, Heidelberg 

FACSSafe Becton Dickinson, Heidelberg 

FACSRinse Becton Dickinson, Heidelberg 

Fetal calf serum (FCS) Biochrom AG, Berlin 

Fibronectin Biochrom AG, Berlin 

Gelatine Sigma-Aldrich GmbH, Taufkirchen 

Glycine Serva GmbH, Heidelberg 
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Product Company 

Glycerol Sigma-Aldrich GmbH, Taufkirchen 

Hematoxylin Gill`s Formula H-3401 Vector Laboratories, Burlingame (USA) 

HEPES buffer (1 M) Biochrom AG, Berlin 

Hydrogen peroxide (H2O2) Merck KGaA, Darmstadt 

Kaisers glycerol gelatine Merck KGaA, Darmstadt 

Matrigel matrix Becton Dickinson, Heidelberg 

Matrigel growth factor reduced matrix Becton Dickinson, Heidelberg 

Mayers Hemalaun solution Merck KGaA, Darmstadt 

Oligonucleotides Metabion, International AG, Planegg 

Organic solvents Merck, KGaA, Darmstadt 

Paraformaldehyde Carl Roth GmbH & Co.KG, Karlsruhe 

PBS tablets Invitrogen, Karlsruhe 

PBS solution Pharmacy Klinikum Großhadern, Munich 

Penicillin Streptomycin (Pen Strep) Biochrom AG, Berlin 

Proteinase K Sigma-Aldrich GmbH, Taufkirchen 

Protein G Sepharose™ 4FastFlow GE Healthcare, Freiburg 

Propidium iodide Sigma-Aldrich GmbH, Taufkirchen 

Protease Inhibitor Cocktail Complete Roche, Mannheim 

Protease Inhibitor Cocktail Complete,  

EDTA free 

Roche, Mannheim 

Puromycin Sigma-Aldrich GmbH, Taufkirchen 

siRNAs Riboxx, Radebeul 

Sodiumdodecylsulfat (SDS) Sigma-Aldrich GmbH, Taufkirchen 

Temed BioRad, Hercules (USA) 

TGFβ 1 Sigma-Aldrich GmbH, Taufkirchen 

TissueTek® O.C.T Compound Sakura Finetek, Staufen 

Tris-(hydroxymethyl)-aminomethan (TRIS) Merck KGaA, Darmstadt 

Triton X-100 Sigma-Aldrich GmbH, Taufkirchen 

Trypan blue Biochrom AG, Berlin 

Trypsin/ EDTA Biochrom AG, Berlin 

Tween 20 Serva GmbH, Heidelberg 

Vectashield® with DAPI Biozol GmbH, Eching 
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2.2 Buffer 

2.2.1 Cell culture 

PBS: 8.0g NaCl, 0.2g KCl, 1.15g Na2HPO4, 0.2g KH2PO4 to 

1l H2O 

 

Cryopreservation medium: DMEM; 10% DMSO 

 

DMEM/10%FCS: DMEM; 10% FCS; 1% PenStrep 

 

DMEM/1%FCS: DMEM; 01% FCS; 1% PenStrep 

 

DMEM w/o calcium: DMEM w/o calcium; 1% PenStrep; stable glutamine, 

HEPES buffer 

 

2.2.2 Flow cytometry 

Flow cytometry (FC) buffer: 3% FCS in PBS 

 

Antibody solutions: 1:50 in 50µl FC buffer 

 

Propidium iodide staining solution: 1µg/ml propidium iodide (PI) in FC buffer 

 

2.2.3 Adhesion assay 

Plate coating solutions: 6µg/ml fibronectin in adhesion medium 

 0.2% gelatine in adhesion medium 

 40µl/ml matrigel in adhesion medium 

 

Cell staining solution: 2µM calcein AM/ ml cell medium w/o FCS 

 

Cell lysis buffer (2x): 4% Triton-X100 in dd. H2O  
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2.2.4 Membrane assay 

Homogenisation buffer: 0.2ml 1M MOPS (pH 7.0), 0.2ml 1M KCl, 0.2ml 100x 

complete in 19.4ml ddH2O 

 

Assay buffer: 300µl 0.5M sodium nitrate, 10µl 100x complete, 0.5µl 

20mM ZnCl2 in 689.5µl ddH2O 

 

100x complete: 1 complete protease inhibitor tablet in 500µl ddH2O 

 

Whole cell lysis buffer (10x): 2 complete protease inhibitor tablets, 1% triton-X100 in 

10ml PBS 

 

2.2.5 SDS-PAGE and western blot 

Whole cell lysis buffer (2x): 2 complete protease inhibitor tablets, 1% triton-X100 in 

50ml PBS 

 

Laemmli buffer (5x): 62.5mM TRIS pH 6.8, 2% SDS; 10% glycerol, 5% β-

mercaptoethanol, 0.001% bromophenol blue 

 

Stacking gel (4%): 13.3ml 30% acrylamide, 16.6ml 2M TRIS pH 6.8, 

0.663ml 0.5M EDTA, 69.44ml dd. H2O 

 

Resolving gel (15%): 50ml 30% acrylamide, 16,6ml 2M TRIS pH 8.9, 

0.663ml 0.5M EDTA, 32.74 ml dd. H2O 

 

Running buffer SDS-PAGE: 150g TRIS, 720g glycine, 50g SDS to 5l dd. H2O  

 

Blotting buffer (10x): 250mM TRIS, 1.26M glycerol in dd. H2O 

 

Western blot washing buffer (PBST): 8 tablets PBS, 4ml Tween-20 to 4l dd. H2O 
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2.3 Molecular kits 

Table 2. 2: List of kits used in the present study. 

Product Company 

BCA Protein Assay Pierce, Rockford (USA) 

Immobilon Western Chemiluminescent HRP 

substrate 

Millipore, Bedford (USA) 

LightCycler 480 SYBR Green I Master Roche, Mannheim  

Lipofectamine™ Life technologies, Carlsbad (USA) 

MATra transfection reagent Iba GmbH, Göttingen 

Prestained protein marker V Peqlab, Erlangen 

QiaShredder Qiagen, Hilden 

QuantiTect Reverse Transcription Kit Qiagen, Hilden 

RNeasy Mini Kit Qiagen, Hilden 

 

2.4 Antibodies 

Table 2. 3: List of primary antibodies used in the present study. 

Antibody Species Company 

FITC anti-Actin IgG1  mouse, monoclonal Santa Cruz, Dallas (USA) 

anti-CK8/18 IgG2a  mouse, monoclonal Covance Inc., New Jersey (USA) 

anti-EpCAM  

(Ber-EP4) IgG1 

mouse, monoclonal Dako Deutschland GmbH, Hamburg 

anti-EpCAM  

(C-10) IgG1 

mouse, monoclonal Santa Cruz, Dallas (USA) 

anti-EpCAM  

(VU1D9) IgG1 

mouse, monoclonal Cell Signaling Technology,  

Cambridge (UK) 

anti-EpICD  guinea pig, 

polyclonal 

Peptide Specialty Laboratories, 

Heidelberg 

anti-GFP/YFP IgG2a mouse, monoclonal Santa Cruz, Dallas (USA) 

FICT isotype mouse IgG1  mouse, monoclonal Diatech, Jesi (Italy) 

Isotype mouse IgG1 mouse, monoclonal Dako Deutschland GmbH, Hamburg 

Isotype mouse IgG2a mouse, monoclonal Sigma-Aldrich GmbH, Taufkirchen 
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Table 2. 4: List of secondary antibodies used in the present study. 

Antibody Company 

ABC-Kit Vectastain® Elite® PK6100 Vector Laboratories, Burlingame (USA) 

Alexa 488-conjugated goat-anti-mouse IgG Mobitec, Göttingen 

Biotinylated horse-anti-mouse IgG (H&L) Vector Laboratories, Burlingame (USA) 

FITC goat-anti-mouse IgG Jackson Immunoresearch,West Grove (USA) 

PO rabbit-anti-guinea pig IgG Sigma-Aldrich GmbH, Taufkirchen 

PO goat-anti-maus IgG Dako Deutschland GmbH, Hamburg 

 

2.5 Oligonucleotids          

2.5.1 qRT-PCR primer 

Table 2. 5: List of primers used in the present study. 

Primer Sequence (in 5`-3`orientation) 

FW_β-actin ATAGCACAGCCTGGATAGCAACGTAC 

BW_β-actin CACCTTCTACAATGAGCTGCGTGTG 

FW_E-cadherin  TGAGTGTCCCCCGGTATCTTC 

BW_E-cadherin  CAGTATCAGCCGCTTTCAGATTTT 

FW_EpCAM  GCAGCTCAGGAAGAATGTG 

BW_EpCAM  CAGCCAGCTTTGAGCAAATGAC 

FW_GAPDH  TGCACCACCAACTGCTTAGC 

BW_GAPDH GGCATGGACTGTGGTCATGAG 

FW_N-cadherin  TGGGAATCCGACGAATGG 

BW_N-cadherin  TGCAGATCGGACCGGATACT 

FW_RPL13A  CCTGGAGGAGAAGAGGAAAGAGA 

BW_RPL13A TTGAGGACCTCTGTGTATTTGTCAA 

FW_SLUG  AAGCATTTCAACGCCTCCAAA 

BW_SLUG GGATCTCTGGTTGTGGTATGACA 

FW_SNAIL  CCAGTGCCTCGACCACTATG 

BW_SNAIL CTGCTGGAAGGTAAACTCTGGATT 

FW_TWIST 1 GGGCCGGAGACCTAGATGTCATTGT 

BW_TWIST 1  CGCCCCACGCCCTGTTTCTT 

FW_TWIST 2  CGCGCCAGGAGGAGATTCTGAATGA 
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Primer Sequence (in 5`-3`orientation) 

BW_TWIST 2  CGCCAACGTTTCGTGGGCTGT 

FW_Vimentin  CCTTGAACGCAAAGTGGAAT 

BW_Vimentin  GACATGCTGTTCCTGAATCTGAG 

FW_ZEB1  TTACACCTTTGCATACAGAACCC 

BW_ZEB1  TTTACGATTACACCCAGACTGC 

FW_ZEB2  CAAGAGGCGCAAACAAGCC 

BW_ZEB2 GGTTGGCAATACCGTCATCC 

 

2.5.2 siRNA 

Table 2. 6: List of siRNAs used in the present study. 

siRNA Sequence 

Control (ctrl) siRNA 5`-UCGUCCGUAUCAUUUCAAU-3` 

EpCAM siRNA 5`-UGCCAGUGUACUUCAGUUG-3` 

 

2.5.3 shRNA 

Table 2. 7: List of shRNAs used in the present study. 

shRNA Sequence 

Control (ctrl) shRNA pGIPZ vector V2LHS_17672 $(Open Biosystems) 

EpCAM shRNA I pGIPZ vector V2LHS_134160 (Open Biosystems) 

EpCAM shRNA II pGIPZ vector V2LHS_235265 (Open Biosystems) 

EpCAM shRNA III pGIPZ vector V2LHS_134162 (Open Biosystems) 

            

2.6 Plasmids       

Table 2. 8: List of plasmids used in the present study. 

Plasmid Description 

141pCAG-3SIP CMV, SV40, IRES, puromycin resistance 

141pCAG/YFP YFP in 141pCAG-3SIP 

141pCAG/EpICD-YFP EpICD, YFP tagged in 141pCAG-3SIP 

141pCAG/EpCAM-YFP EpCAM, YFP tagged in 141pCAG-3SIP 
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2.7 Cell lines  

Table 2. 9: List of cell lines used in the present study. 

Cell line Description 

A549 Human non-small lung cancer cell line 

A549 - EpCAM-YFP A549 transfected with 141pCAG/EpCAM-YFP 

A549 - EpICD-YFP A549 transfected with 141pCAG/EpICD-YFP 

A549 - YFP A549 transfected with 141pCAG/YFP 

Fibroblasts* Primary human fibroblast cells 

Kyse 30 Human squamous esophageal cancer cell line 

Kyse 30 - EpCAM-YFP Kyse 30 transfected with 141pCAG/YFP 

Kyse 30 - EpICD-YFP Kyse 30 transfected with 141pCAG/EpICD-YFP 

Kyse 30 - YFP Kyse 30 transfected with 141pCAG/EpCAM-YFP 

Kyse 520high/ Kyse 520low Human squamous esophageal cancer cell line,  

cell line shows different expression levels of EpCAM 

(Kyse 520high  
� high levels of EpCAM  

(Kyse 520low  i
� low levels of EpCAM) 

Kyse 520high - ctrl shRNA** Kyse 520high transfected with pGIPZ/ctrl shRNA 

Kyse 520high - EpCAM shRNA** Kyse 520high transfected with pGIPZ/EpCAM shRNA 

Kyse 520high - EpCAM-YFP Kyse 520high transfected with 141pCAG/EpCAMYFP 

Kyse 520high – EpICD-YFP Kyse 520high transfected with 141pCAG/EpICD-YFP 

Kyse 520high - YFP Kyse 520high transfected with 141pCAG/YFP 

 

**   Cells were kindly provided by Andreas Moosmann, Helmholtz Center Munich. 

**  Cell lines were produced and kindly provided by Christiane Driemel, Universitäts- 

      klinikum Düsseldorf. 
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2.8 Consumables 

Table 2. 10: List of consumables used in the present study. 

Product Company 

3 MM Whatman paper Bender & Hobein, Munich 

6-well cell culture plate, flat bottom Nunc, Wiesbaden 

96-well cell culture plate, flat bottom Nunc, Wiesbaden 

96-well cell culture plate, round bottom Nunc, Wiesbaden 

96 magnet bar plate Iba GmbH, Göttingen 

Cell culture flasks and dishes Nunc, Wiesbaden 

Centrifugation tube 15ml/ 50ml Becton Dickinson, Heidelberg 

Centrifugation tube 1,5ml (nuclease-free) Costar, New York (USA) 

Centrifugation tube 1,5ml/ 2ml Eppendorf AG, Hamburg 

Corning® Costar® stripettes Sigma-Aldrich GmbH, Taufkirchen 

Cryomold Tissue-Tek®, Biopsy 

(10x10x5mm) 

Sakura Finetek, Staufen 

Cyto funnel with filter cards Thermo Scientific, Waltham (USA) 

Cryo tubes Becton Dickinson, Heidelberg 

FACS tubes Becton Dickinson, Heidelberg 

Glass flasks Schott AG, Jena 

Glass pipettes Costar, New York (USA) 

Glass plates Amersham Bioscience, Glattbrugg 

(Switzerland) 

Gloves sempercare latex Sempermed, Vienna (Austria) 

Gloves sempercare nitril Sempermed, Vienna (Austria) 

Immobilion-P membrane (0.45 µm) Millipore, Bedford (USA) 

Microlance 3 / 23G 1.25” Becton Dickinson, Heidelberg 

Microlance 3/ 24G 1” - Nr. 17, 0.55x25mm Becton Dickinson, Heidelberg 

Needle Microlance™ 3 Millipore, Schwalbach 

Neubauer chamber Assistent, Sondheim/Rhön 

Object slides „Super Frost” Nunc, Wiesbaden 

Parafilm American National Can, Menasha (USA) 

Pipette tips Starlab, Hamburg 

Quadriperm Sarstedt, Nümbrecht 
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Product Company 

Reagent reservoir Costar, New York (USA) 

Safe Seal Tips Professional Biozym Scientific GmbH, Hessisch 

Oldendorf 

Scalpel Feather/ PFM, Cologne 

Syringe Braun, Melsungen 

Sterile filters Millipore, Wiesbaden 

Transfection tubes Becton Dickinson, Heidelberg 

 

2.9 Equipment 

Table 2. 11: List of equipment used in the present study. 

Device Company 

Autoclave Systec 95 Systec GmbH, Wettenberg 

Blotting System Mini trans Blot BioRad, Hercules (USA) 

Camera WB750 Samsung, Seoul (South Korea) 

Cell Incubator Heraeus Holding GmbH, Hanau 

Centifuge Mikro 20 Hettich Lab Technology, Tuttlingen 

Centifuge Mikro 22R Hettich Lab Technology, Tuttlingen 

Centrifuge Rotanta 46 R Hettich Lab Technology, Tuttlingen 

ChemiDoc XRS+ imaging system BioRad, Hercules (USA) 

Confocal microscope TCS-SP2 Leica, Bensheim 

Cryostat model CM 1900 Leica, Bensheim  

Flow cytometer „FACS Calibur“ Becton Dickinson, Heidelberg 

Fluorescence microscope „Axiovert 200“ Carl Zeiss AG, Jena 

Fluorescence microscope “Olympus BX43F” Olympus, Tokyo (Japan) 

Freezer (-20°C, -80°C) Liebherr, Ochsenhausen 

Freezer (-80°C) HFU 86-450 Heraeus, Hanau 

Fridge (4°C) Liebherr, Ochsenhausen 

Light Cycler 480 System Roche, Mannheim 

Magnet stirrer with heat block Janke & Kunkel, Staufen 

Microliter pipettes Gilson Inc., Middleton (USA) 

Microplate Reader „MRX“ Dynatech Laboratories, Bad Nauheim 

Microwave Sharp Electronics GmbH, Hamburg 
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Device Company 

Multichannel pipette „Transferpette-8“ Brand GmbH, Wertheim 

Nitrogen cooling equipment Messer Cryotherm, Kirchen/ Sieg 

Phase contrast microscope “Axiovert 25” Carl Zeiss AG, Jena 

pH-meter  WTW, Weilheim 

Pipetboy® Comfort Integra Biosciences, Fernwald 

Power supply E835 Consort bvba, Turnhout (Belgium) 

Power supply E865 Consort bvba, Turnhout (Belgium) 

Precision scales Mettler, Gießen 

Safety cabinet HLB 2448 GS Heraeus Holding GmbH, Hanau 

Scales CP 4202 S Sartorius, Göttingen 

Scales Mettler PM 4600 Mettler, Gießen 

Spectrophotometer „GeneQuantPro“ GE Healthcare, Solingen 

Thermocycler Comfort Eppendorf AG, Hamburg 

Vertical electrophoresis system miniVE Hoefer, Holliston (USA) 

Vortex mixer IKA Works Inc., Wilmington (USA) 

Wallac Victor 1420 multilabel counter PerkinElmer, Waltham (USA) 

Water bath Exotherm U3e1 Julabo, Seelbach 
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2.10 Software 

Table 2. 12: List of software used in the present study. 

Software Company 

ApE Wayne Davis (University of Utah), Salt Lake 

City (USA) 

BD Cell Quest Pro Version 5.2.1 Becton Dickinson, Heidelberg 

Cell Sense Entry Version 1.8.1 Olympus, Tokyo (Japan) 

Endnote Thomson Reuters Corporation,  

New York (USA) 

GraphPad Prism 5 Graphpad Software Inc., La Jolla (USA) 

Image Lab BioRad, Hercules (USA) 

Image J Wayne Rasband (National Institutes of 

Health), Bethesda (USA) 

LAS AF Leica, Bensheim 

LightCycler® 480 SW 1.5 Roche, Mannheim 

MS Office 2007 Microsoft, Redmond (USA) 

Photoshop CS3 Adobe Systems Inc., San Jose (USA) 

Revelation  4.2.5 DYNEX Technologies Inc., Chantilly (USA) 
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3 METHODS 
3.1 Cell culture 

3.1.1 Passaging of cells 

Required reagents: 

� Dulbecco`s Modified Eagle Medium (DMEM) 

� PBS 

� Trypsin 

All cell lines were cultivated using DMEM complemented with 10% fetal bovine 

serum and 1% penicillin-streptomycin at 37°C under the atmosphere of 5% CO2. Selection 

and maintenance of stably transfected cell lines was achieved by the addition of 1µg/ml 

puromycin to the medium. For passaging, cells were split every second to third day according 

to their growth rate. For splitting, cells were washed briefly with PBS and then treated with 

3ml trypsin for 10-30min at 37°C. Subsequently, cells were diluted 1:3 to 1:10 in fresh 

medium. 

 

3.1.2 Counting of cells 

Cell numbers were determined in a Neubauer chamber using 20µl of the cell 

suspension mixed 1:1 with trypan blue to distinguish between living and dead cells. Exact 

cells numbers were calculated using the following formula: 

 

Cells/ml = 2 x (cells counted/ number of counted large squares) x 104 

 

3.1.3 Freezing and thawing of cells 

Required reagents: 

� DMEM 

� PBS 

� Trypsin 

� Cryopreservation medium (DMEM containing 10% DMSO) 
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For cryopreservation, cells were treated with trypsin as mentioned above. After 

trypsinisation 9ml DMEM were added to the cells and the suspension then transferred to a 

15ml falcon. Cells were then centrifuged for 5min at 280rcf, the supernatant was discarded 

and the cell pellet resuspended in 1.5ml freezing medium. The suspension was then 

transferred to a cryotube and stored at -80°C for short term or in liquid nitrogen for long term. 

For thawing, cryotubes were briefly incubated at 37°C. The suspension in the tube was 

mixed with 9ml fresh DMEM in a 15ml tube and centrifuged for 5min at 280rcf to remove 

DMSO from the medium. Supernatant was discarded and pellet resuspended in 15ml fresh 

DMEM. The suspension was then transferred into a fresh 75cm2 cell culture flask. 

 

3.1.4 Transfection of cells 

3.1.4.1 Transient transfection with MATra 

Required reagents: 

� DMEM 

� DMEM w/o FCS 

� PBS 

� MATra transfection reagent 

� siRNA (100pmol/µl) 

For transfection with MATra, 1x105-7x105 cells/well were plated in 6-well plates and 

grown for 24h. Transfection solution was prepared by mixing 2µl siRNA with 500µl DMEM 

w/o FCS in a transfection tube. Subsequently 2.8µl MATra were added to the mixture, the 

suspension was mixed by flicking the tube and subsequently incubated for 20min at room 

temperature. During incubation the medium on the cells was replaced by 1.5ml fresh DMEM 

containing 10% FCS. The mixture was then added to the cells and the 6-well plates were put 

on magnetic plates for 15min at 37°C to achieve transfection. Medium was changed 2h after 

transfection to remove remaining MATra. 
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3.1.4.2 Generation of stable cell lines 

Required reagents: 

� DMEM 

� DMEM w/o FCS 

� PBS 

� MATra transfection reagent 

� Expression plasmid (1-2µg) 

� Puromycin (final concentration = 1µg/ml) 

To create stable cell lines, cells were transfected with MATra as described in 3.1.4.1. 

24h after transfection, puromycin was added to the cell medium to select for cells expressing 

the resistance gene. Cells were cultivated for several weeks in the presence of puromycin and 

subsequently analyzed by flow cytometry (see 3.1.5), western blot (see 3.3.5) and/or qRT-

PCR (see 3.2.3) to ensure the expression of the transfected protein in the whole cell 

population. 

 

3.1.5 Flow cytometry 

Flow cytometry in combination with staining using antigen specific antibodies 

represents a simple method to analyze the expression of cell surface molecules. In this 

analysis antigen specific primary and secondary antibodies are used to obtain a fluorescent 

signal, which is directly proportional to the expression level of the analyzed protein. 

Furthermore, this method allows the direct measurement of YFP-positive cells and upon 

staining of cells with propidium iodide (PI) the distinction of living and dead cells. 

 

3.1.5.1 Flow cytometry analysis of membrane proteins 

Required reagents: 

� PBS 

� FC buffer 

� Specific primary and secondary antibodies 

� Propidium iodide (PI) (1mg/ml) 

Note: All centrifugation steps were performed for 5min at 280rcf and room temperature. 
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For flow cytomery analysis cells were harvested by trypsinisation, washed once with 

PBS and then incubated in primary antibody (1:50 in 50µl FC buffer) for 15min at room 

temperature. After centrifugation, the supernatant was discarded and the pellet incubated with 

secondary antibody (1:50 in 50µl FC buffer) for 15min at room temperature. Cells were then 

centrifuged and the pellet resuspended in 500µl flow cytometry buffer containing 0.5µl PI. 

Finally, samples were measured with a BD FACS-Calibur and results analyzed using the Cell 

Quest Pro (BD) software.  

 

3.1.5.2 Flow cytometry analysis of YFP expressing cells 

Required reagents: 

� PBS 

� FC buffer 

� Propidium iodide (PI) (1mg/ml) 

Note: All centrifugation steps were performed for 5min at 280rcf and room temperature. 

To analyze the expression of YFP, cells were harvested by trypsination, washed once 

with PBS and were then directly incubated in 500µl FC buffer containing 0.5µl PI. Samples 

were measured with a BD FACS-Calibur and results analyzed by using the Cell Quest Pro 

(BD) software.  

 

3.1.6 Cytospin 

Cytospin is a method to concentrate cells in suspension and coat these cells on glass 

slides for further analyses such as immunofluorescence (see 3.4.1) and immunohistochemical 

staining (see 3.4.2). 

Required reagents: 

� PBS 

Note: All centrifugation steps were performed for 5min at 280rcf at room temperature. 

For cytospins, cells were harvested, washed once with PBS, resuspended in 100µl PBS 

and pipetted into a construction consisting of a cytofunnel, filter paper, and a glass slide. Cells 

were anchored to the glass slide upon centrifugation, whilst the PBS was drained into the 

filter paper. Cytofunnel and filter paper were carefully removed from glass slides, which were 
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then dried over night at room temperature. The next day cells were fixed and stained as 

described in 3.4.2. 

 

3.1.7 TGFβ assay 

Required reagents: 

� DMEM 

� DMEM w/o FCS 

� PBS 

� TGFβ 1 

For TGFβ assays, cells were plated in 6-well plates (0.5x105 cells/ well). On the next 

day, cell medium was discarded, cells were washed twice with PBS and new medium w/o 

FCS was added. 24h later, TGFβ-1 (10ng/ml) was added to the cells for 72h. Pictures were 

taken under an Axiovert 25 microscope (Zeiss Q5) with a Samsung WB750 camera. Cells 

were then harvested and cell surface levels of EpCAM were analyzed upon flow cytometry 

(see 3.1.5.1). In addition mRNA levels of EpCAM, E-cadherin, N-cadherin and vimentin 

were assessed using qRT-PCR (see 3.2.3).  

 

3.1.8 Scratch assay 

Scratch assay is a method to analyze the migration capacity and velocity of cells. In 

this assay a wound (scratch) is set into a confluent layer of cells and closure of the scratch is 

monitored. Although being a simple assay it is mandatory to include proper controls to scratch 

assays in order to distinguish between cell migration and proliferation. 

 

3.1.8.1 Scratch assay with Kyse 520high and Kyse 520low cells 

Required reagents: 

� DMEM 

� DMEM w/o FCS 

� PBS 

For scratch assays, cells were seeded in 6-well plates and cultured to a density of 90-

100%. Culture medium was then replaced by DMEM w/o FCS and 12-24h later scratches 

were set in monolayers of cells using a sterile pipette tip. Cells were then washed thrice with 

PBS and three random sections of two scratches per cell line were marked. Pictures were 
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taken at different time points under an Axiovert 25 microscope (Zeiss Q5) with a Samsung 

WB750 camera. To assess the migration velocity, the scratch area at different time points was 

calculated using the ImageJ software. Further calculations were performed with Microsoft 

Excel. 

Calculations were the following:  

wmean  = A/a 

tmigration = (wmean (t1) - wmean (t2))/(∆t . 2) 
 
 

wmean  = mean width of the scratch (in µm) 

A  = area of the scratch (in µm2) 

a  = length (in µm) 

tmigration  = migration velocity 

wmean (tx) = mean distance of the scratch at timepoint x 

∆t  = time difference 

 

 

Figure 3. 1: Calculation of the mean width of scratches. 

Mean widths of scratches were calculated by dividing the area (A, orange) by the length (a, green) of the scratch. 

 

In parallel 0.5x105 cells/well were plated in 6-well plates to address proliferation rates. 

Cells were treated similarly to scratched cells, were harvested and cell numbers were assessed 

to rule out effects of proliferation on the closure of scratches. In addition, EpCAM levels were 

assessed in all samples using flow cytometry (see 3.1.5.1). 
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3.1.8.2 Scratch assay with siRNA transfected Kyse 30 cells 

Required reagents: 

� DMEM 

� DMEM w/o FCS 

� PBS 

� siRNA (100pmol/µl) 

� MATra transfection reagent 

Kyse 30 cells were seeded in 6-well plates and cultured to a density of 80%. Cells 

were then transfected with either EpCAM-specific or control siRNA as described in 3.1.4.1. 

12h after transfection, culture medium was replaced by medium w/o FCS and 8h later 

scratches were set with a sterile pipette tip. Cells were washed thrice with PBS and three 

random sections of two scratches per cell line were marked. Pictures were taken at the 

indicated time points under an Axiovert 25 microscope (Zeiss Q5) with a Samsung WB750 

camera. To assess the migration velocity, the scratch area at different time points was 

calculated using ImageJ software. Further calculations were performed with Microsoft Excel 

(see 3.1.8.1). Proliferation rates were assessed as abovementioned. EpCAM knock-down was 

assessed in all samples using flow cytometry (see 3.1.5.1). 

 

3.1.8.3 Fluorescence staining of Kyse 30 and Kyse 520low scratch assays 

Required reagents: 

� DMEM 

� DMEM w/o FCS 

� PBS 

Cells were seeded on glass slides located in quadriperm dishes, grown to confluency 

and culture medium was changed to DMEM w/o FCS. 12h later, a scratch was set into the cell 

monolayer, cells were washed thrice with PBS and migration was allowed for 24h in DMEM 

w/o FCS. Subsequently, cells were washed with PBS and fixed and stained as described in 

3.4.1.  
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3.1.9 Spheroid formation 

3.1.9.1 Basic spheroid formation 

Required reagents: 

� DMEM 

� 1% agarose in PBS 

� TissueTek® O.C.T Compound 

� Liquid nitrogen 

For spheroid formation assays, 96-well plates were coated with 50µl 1% agarose in PBS. 

After 1-2h, 3x104 cells were seeded per well and spheroid formation was allowed for 24-96h. 

Pictures were taken under an Axiovert 25 microscope (Zeiss Q5) with a Samsung WB750 

camera. Thereafter spheroids were harvested, embedded in Tissue-Tek and cryopreserved in 

liquid nitrogen. Samples were stored at -20°C until further processing (see 3.4.2).  

 

3.1.9.2 Spheroid invasion assay 

Required reagents: 

� DMEM 

� 1% agarose in PBS 

� TissueTek® O.C.T Compound 

� Liquid nitrogen 

For spheroid invasion assays, 96-well plates were coated with 50µl 1% agarose in PBS. 

After 1-2h, 3x104 fibroblast cells were seeded per well and spheroid formation was allowed 

for 24h. Subsequently, 1x104 Kyse 520high or Kyse 520low single cells were added to fibroblast 

spheroids and invasion was allowed for 48h and 72h. At the indicated time points spheroids 

were harvested, embedded in Tissue-Tek and frozen in liquid nitrogen. Subsequently, samples 

were stored at -20°C until further processing. 

For immunohistochemical staining, spheroids were cut, fixed and incubated with CK8/18 

or EpCAM-specific antibodies (see 3.4.2). Subsequently, pictures of stained spheroid slides 

were taken under an Olympus BX43F microscope. 
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3.1.10 Adhesion assay 

The adhesion assay is a method to test the adherence of cells to other cells or matrices. 

To analyze the role of EpCAM in cell adhesion, all adhesion assays were performed without 

calcium to prevent cell adhesion mediated by cadherins. 

 

3.1.10.1 Cell-matrix adhesion assay w/o calcium 

Required reagents: 

� DMEM (culture medium) 

� DMEM w/o FCS w/o Calcium (adhesion medium) 

� PBS 

� Matrigel (40µl/ml in adhesion medium) 

� Calcein AM (1mg/ml) 

� Lysis buffer (2% triton X-100 in dd. H2O) 

Note: All centrifugation steps were performed for 5min at 280rcf at room temperature. 

For calcium independent cell-matrix adhesion assay, cells were harvested and counted 

and the required number of cells (1x104 cells/well in a 96-well plate) was plated on 10cm 

dishes. 24h later, culture medium was discarded, cells were washed 3 times with PBS, 5ml 

fresh adhesion medium was added and cells let be grown over night. In addition, 96-well 

plates with flat bottom were coated with 50µl matrigel solution over night at 37°C. The next 

day cells were harvested, washed once with PBS and resuspended in 1-3ml adhesion medium. 

For cell staining 2µl calcein AM per ml medium were added to the cells and samples were 

incubated for 1h at 37°C. Cells were then washed twice with PBS to get rid of residual calcein 

AM, were resuspended in adhesion medium and added to 96-well plates (1x104 cells/well). 

No cells were plated in wells serving as background controls. Cell adhesion was allowed for 

2h at 37°C. Thereafter, plates were washed twice with PBS. To do so, 200µl PBS were added 

in each well of another 96-well plate. Subsequently, the sample-containing plate was put onto 

this second plate and the construction was turned around twice, whereat input control wells 

were protected from washing upon coverage with parafilm. After washing, cells were lysed 

upon the addition of lysis buffer to the wells (2x lysis buffer was used for input control wells). 

Calcein fluorescence was measured on a Wallac Victor 1420 multilabel counter at 

485nm/535nm wavelength. Further calculations were performed using Microsoft Excel. 

 



  METHODS 

56 

 

3.1.10.2 Cell-cell adhesion assay w/o calcium 

Required reagents: 

� DMEM (culture medium) 

� DMEM w/o Calcium w/o FCS (adhesion medium) 

� PBS 

� Calcein AM (1mg/ml) 

� Lysis buffer (2% triton X-100 in dd. H2O) 

Note: All centrifugation steps were performed for 5min at 280rcf at room temperature. 

For calcium independent cell-cell adhesion assays, cells were plated in 96-well plates 

with flat bottom (0.5x105 cells/well) and were grown over night in culture medium. These 

cells serve as a confluent matrix at the beginning of the assay. In parallel, additional cells, 

which were later added to the matrix-containing 96-well plates (1x104 cell/well), were plated 

in 10cm dishes and were grown over night. The next day, all cells were washed 3 times with 

PBS, and proper amounts of adhesion medium were added. 24h later, 96-well plates were 

washed once again with PBS and 50µl of fresh adhesion medium were added to each well. In 

parallel, the cells growing in 10cm dishes were harvested and counted. The required number 

of cells (1x104 cells/well) was washed once with PBS and resuspended in 1-3ml adhesion 

medium. For cell staining, 2µl calcein AM per ml medium were added to the cells and cells 

were incubated for 1h at 37°C. Subsequently, cells were washed twice with PBS to get rid of 

residual calcein AM, were resuspended in adhesion medium and added to 96-well plates 

(1x104 cells/well). No cells were plated in background control wells. Cell adhesion was 

allowed for 2h at 37°C. Thereafter, plates were washed twice with PBS. To do so, 200µl PBS 

were added in each well of another 96-well plate. Subsequently, the sample-containing plate 

was put onto this second plate and the construction was turned around twice, whereat input 

control wells were protected from washing upon coverage with parafilm. After washing, cells 

were lysed upon the addition of lysis buffer to the wells (2x lysis buffer was used for input 

control wells). Calcein fluorescence was measured on a Wallac Victor 1420 multilabel 

counter at 485nm/535nm wavelength. Further calculations were performed using Microsoft 

Excel. 
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3.2 Molecular methods 

3.2.1 Isolation of mRNA 

 For the isolation of total RNA from cells, the RNeasy Mini Kit (Qiagen) with 

QiaShredder columns (Qiagen) was used according to the manufacturer`s protocol. Isolated 

mRNA was stored at -80°C until further use. 

 

3.2.2 Reverse transcription polymerase chain reaction (RT-PCR) 

RT-PCR allows for the conversion of mRNA into cDNA, which subsequently can be 

used for cloning or qRT-PCR (see 3.2.3). The protein reverse transcriptase (RT) is used for 

this purpose.  

Directly before RT-PCR, the concentration of the total RNA utilized for each 

experiment was determined with a „GeneQuantPro“ spectrophotometer (GE Healthcare). 

Subsequently, 1µg of the total RNA was added to 2µl of gDNA wipeout buffer and the 

mixture was filled up to 14µl with RNAse free H2O. The mixture was heated up to 42°C for 

2min to ensure elimination of genomic DNA and then promptly put on ice. For cDNA 

synthesis, 1µl reverse transcriptase, 1µl primer mix and 4µl Quantiscript RT-buffer were 

added to the previous solution and the mixture was incubated for 30min at 42°C. As a last 

step, the sample was heated up to 95°C for 3min to stop the reverse transcription reaction. 

Standard reaction procedure: 

Mix 1:      Mix 2: 

total RNA   e1µg  Quantiscript RT  1µl 

gDNA wipeout buffer e2µl  Quantiscript RT-buffer (5x) 4µl 

RNAse free H2O add to 14µl  Primer mix   1µl 

� put into reaction tube at the beginning � added to mix 1 later 

        

Standard temperature settings: 

Genomic DNA elimination 02 min, 42°C  

Pause    01 min, on ice     � add mix 2 

RT-PCR reaction  30 min,  42°C 

Stop reaction   03 min, 95°C 

After reverse transcription, cDNA samples were stored at -20°C until further use. 
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3.2.3 Quantitative Real-Time PCR (qRT-PCR) 

qRT-PCR allows for the comparison of amounts of specific cDNAs across samples. 

This is e.g. important to confirm si-/sh-knock-down efficiency, or to compare amounts of 

specific mRNAs in different parts of an organism or between cell lines. 

 For qRT-PCR analyses, the LightCycler 480 SYBR Green I Master kit (Qiagen) was 

used. A mastermix was prepared according to the number of templates and samples to be 

analyzed. Each sample was analyzed in duplicates. 

Standard mastermix (per reaction): 

cDNA (from RT-PCR reaction) 01µl 

Primer mix     02µl 

SYBR Green master-mix (2x)  05µl 

ddH2O     02µl 

------------------------------------------------ 

Total      10µl 

 

Primer mix:  Consists of two highly specific primers (each 10µl of a 100µM stock), filled up 

with 180µl ddH2O.  

2x SYBR Green mastermix (Roche): Contains DNA-polymerase, SYBR-Green and reaction 

buffer. 

 

Standard reaction setup: 

Initial segregation   10 min,°95°C    

Segregation    30 sec, c95°C      

Annealing and elongation  60 sec, f72°C  � back to step 2, 45 cycles 

Cooling/Storage      f4°C 

 

Reaction data were acquired using a Light Cycler 480 device (Roche) and analyzed 

with LightCycler 480 SW 1.5 (Roche) and Microsoft Excel. 
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Calculation of different mRNA levels was based on crossing points (Cp) values, which 

depict the first cycle at which the fluorescence of a sample rises above the background level 

(Roche 2014). Calculations were performed according to Pfaffl et al., using the ∆∆Cp-method 

(Pfaffl 2001). 

Calculations were the following: 

1. Mean of 2 Cp-values:    Cp = (Cp1+Cp2)/2  

2. Standardisation to housekeeping gene:  ∆Cp = Cp - Cp(Housekeeping gene)  

3. Calculation of relative gene expression levels:   

a) Control group (was set to “1.0”):  ∆∆Cp(control) = 2-(∆Cp(control) - ∆Cp(control)) 

b) Sample group:     ∆∆Cp(sample) = 2-(∆Cp(sample) - ∆Cp(control)) 

     

 

3.3 Biochemical methods 

3.3.1 Membrane assay 

Required reagents: 

� DMEM      

� PBS (ice cold) 

� Homogenisation buffer 

� Assay buffer 

� Whole cell lysis buffer (10x)  

Note: After harvesting the cells, all steps were performed at 4°C or on ice. 

To generate samples for membrane assays, cells were plated in three 14.5cm dishes 

and allowed to grow confluent. Subsequently, cell dishes were placed on ice, cells were 

washed twice with 10ml ice cold PBS, harvested using a cell scraper and transferred to a fresh 

15ml reaction tube. Centrifugation was performed thrice for 5min at 280rcf and 4°C, whereat 

supernatant was discarded, and 5ml fresh PBS was added after each centrifugation step. After 

these washing steps, cells were homogenized in 3ml homogenisation buffer by douncing them 

10 times with a microlance 3/23G 1.25” syringe and subsequently centrifuged for 15min at 

1000rcf and 4°C to separate nuclei from the rest of the cells. The supernatant, containing 
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soluble proteins, membranes and small cell organelles, was split and transferred to two fresh 

1.5ml reaction tubes, while the pellet was discarded. Centrifugation was performed for 20min 

at 16000rcf and 4°C to pellet membranes. To wash the membranes, supernatant was 

discarded, 500µl homogenisation buffer were added to each reaction tube (not mixed) and 

samples were centrifuged again for 5min at 16000rcf and 4°C. Finally, membranes were 

resuspended in 150µl assay buffer and incubated for 16h at 4°C to prevent protein cleavage 

(0h, control samples) or 37°C to allow protein cleavage (16h samples). Directly after 

incubation, 20µl 10x lysis buffer were added to each of the samples, which were subsequently 

processed as described in 3.3.2. 

 

3.3.2 Preparation of whole cell lysates  

Required reagents: 

� Whole cell lysis buffer (2x)       

� PBS  

� Leammli buffer (5x) 

To generate samples for whole cell lysates, cells were harvested, washed once with PBS, 

and centrifuged for 5min at 280rcf and room temperature. The supernatant was discarded and 

the pellet resuspended in 2x its volume in 2x whole cell lysis buffer (instead of directly lysing 

the pellet it can also be stored at -80°C for several days). Thereafter, samples were incubated 

on a rotating platform for 10min at 4°C and subsequently centrifuged for 10min at 16000rpm 

and 4°C to remove cell debris. Supernatants, which contain solubilized proteins, were 

transferred into a fresh reaction tube and incubated on ice until subsequent processing. Protein 

concentration was determined using the BCA-assay (see 3.3.3). In a last step, laemmli buffer 

was added to the samples. These samples were heated at 95°C for 5min. Protein samples were 

stored at -20°C until further use. 
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3.3.3 Determination of protein concentration (BCA assay) 

Required reagents: 

� BCA assay kit 

Protein concentrations were determined using BCA assay kit, according to the 

manufacturer`s protocol. 1µl of the protein samples (10µl in case of membrane assays) were 

mixed with 99µl (90µl) BCA solution and absorbance at 595nm wavelength was measured 

with a spectrophotometer („GeneQuantPro“, GE Healthcare). All measurements were 

performed in duplicates. To calculate protein concentrations, a sample containing a 

determined concentration of bovine serum albumin (BSA) was used as reference, and 

background (BG) levels of BCA-only samples were subtracted.  

Calculations were performed with Microsoft Excel using the following formula: 

c(sample) = ((Aλ(sample) - Aλ(BG))/(Aλ(BSA) - Aλ(BG))) x c(BSA) 

 
cλ  = protein concentration in mg/ml 

Aλ = absorbance 

 

3.3.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Required reagents: 

� 10x SDS running buffer   

� Resolving gel 

� Stacking gel 

� APS 

� TEMED 

� ddH2O 

Resolving gel (15%)        Stacking gel (4%) 

30% acrylamide    x50ml   30% acrylamide e13.3ml 

2M TRIS pH 8.9   16.6ml   2M TRIS pH 6.8e   16.6ml 

0.5µ EDTA  tt663µl    0.5µ EDTA  tt663µl 

ddH2O   32.74ml   ddH2O   69.44ml 
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SDS-PAGE is used to separate polypeptides in a polyacrylamide gel matrix. The 

separation occurs according to the molecular weight of proteins. Treatment with SDS results 

in a coverage of proteins with negative charges such that protein size remains as the major 

parameter of separation. As a result, proteins with a smaller apparent molecular weight 

migrate faster than those with a higher apparent molecular weight. 

Standard SDS-PAGE are comprized of two different types of gels, i.e. a stacking gel, 

which collects all proteins at the border between the two gel types, and the resolving gel in 

which the proteins are actually separated. Per gel, 10ml resolving gel (15%) were mixed with 

50µl APS and 30µl TEMED, poured into the gel chamber and covered with ddH2O to ensure 

a straight surface. After polymerisation the water was discarded and 2ml of the stacking gel 

were mixed with 30µl APS and 15µl TEMED, poured and polymerized on top of the 

separation gel. Subsequently, same amounts of proteins of whole cell lysate samples (see 

3.3.2) were loaded on gels. Gel electrophoresis was conducted for 15min at 15mA and 2h at 

30mA in SDS running buffer. Afterwards, gels were used for immunoblotting (see 3.3.5). 

 

3.3.5 Immunoblotting (western blot) 

Required reagents: 

� Methanol 

� 1x blotting buffer   

� Blocking solution (5% milk in washing buffer) 

� washing buffer (PBST) 

� Specific primary and secondary antibodies 

� Primary antibody solution (3% BSA in washing buffer) 

� Secondary antibody solution (5% milk in washing buffer) 

� Chemiluminescent HRP substrate 

A wet blot system (Blotting System Mini trans Blot, BioRad) was used for 

immunoblotting. With this system, polypeptides separated in a polyacrylamide gel can be 

transferred to a polyvinylidene fluoride (PVDF) membrane. To do so, membranes were first 

incubated in methanol for 1min and then transferred into blotting buffer. After assembling the 

system, blotting was conducted for 50min at 100V and room temperature. 
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After blotting, PVDF membranes were first incubated in blocking solution for 

minimally 30min at room temperature to prevent unspecific antibody binding. After washing 

in PBST for 5min, membranes were incubated in primary antibody (diluted in 5ml primary 

antibody solution) for 1h at room temperature or over night at 4°C. Subsequently, membranes 

were washed thrice in PBST for 5min and incubated with the appropriate secondary antibody 

for 45min at room temperature (diluted in 5ml secondary antibody solution). After washing 

thrice in PBST for 5min, antigen-antibody reactions were revealed upon application of 

chemiluminescent HRP substrate (Millipore). Protein bands were detected using a ChemiDoc 

XRS+ imaging system (Biorad) and analyzed using ImageLab (Biorad) and Photoshop 

(Adobe) software. 

  

3.4 Cell labeling and staining methods  

3.4.1 Immunofluorescence  

Required reagents: 

� Methanol (-20°C) 

� PBS 

� Paraformaldehyde (PFA) 

� Horse serum  

� TRIS buffer (0.05M, pH 7.4) 

� Specific primary and secondary antibodies 

For immunofluorescence staining, cells were plated on glass slides in quadriperm 

dishes and cultured to the desired confluency. Subsequently, cells were washed thrice with 

PBS for 5min and fixed with 3.5% PFA for 10min in the dark at 4°C and 5min in the dark at 

room temperature. Cells were then washed thrice in PBS for 5min, permeabilized using ice 

cold methanol and blocked with 200µl horse serum (1:200 in TRIS buffer) for 20min at room 

temperature to prevent unspecific antibody binding. Thereafter, cells were incubated with the 

first antibody (mouse anti-EpCAM 1:1000 in 200µl TRIS buffer) for 1h at room temperature. 

After washing thrice with PBS for 5min, cells were incubated with a biotinylated anti-mouse 

antibody (1:200 in 200µl TRIS buffer) for 30min at room temperature, washed again thrice 

with PBS for 5min and stained with an Alexa 488-linked anti-biotin antibody (1:500 in 200µl 

TRIS buffer) until staining was sufficiently strong. Finally, cells were covered with 
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VectaShield containing DAPI to stain nuclei. Stainings were analyzed using a TCS-SP2 

scanning system, a DM-IRB inverted microscope and LAS AF software (Leica). 

 

3.4.2 Immunohistochemistry 

Required reagents: 

� Methanol (-20°C) 

� PBS 

� Paraformaldehyde (PFA) 

� Horse serum  

� TRIS buffer (0.05M, pH 7.4) 

� Brij solution (50% Brij in PBS) 

� Specific primary and secondary antibodies 

Spheroids (see 3.1.9) and tumor explants (see 3.5) were placed in cryomolds, embedded 

with Tissue Tek and frozen in liquid nitrogen. Frozen samples were processed to serial slices 

of 4µm thickness with a Cryostat model CM 1900 (Leica) and put on glass slides. Samples 

were frozen at -20°C until further use.  

 For immunohistochemical staining, samples were fixed in acetone for 5min at room 

temperature, followed by fixation with 3.5% PFA for 10min in the dark at 4°C and 5min in 

the dark at room temperature. Subsequently, endogenous peroxidase activity was blocked 

upon incubating the samples using 0.03% H2O2 in PBS for 10min at room temperature. 

Sections were washed twice in PBS for 5min at room temperature and incubated with horse 

serum (1:200 in 200µl TRIS buffer) for 20min at room temperature to prevent unspecific 

antibody binding. Incubation with first antibody (1:1000 in 200µl TRIS buffer) was 

performed for 1h at room temperature or over night at 4°C. After washing samples with PBS 

and Brij solution, sections were incubated with a biotinylated anti-mouse antibody (1:200 in 

200µl TRIS buffer) for 30min at RT, washed again with PBS and Brij solution, and 

subsequently incubated with a peroxidase-labeled avidin–biotin complex. Finally, cells were 

stained with amino-ethylcarbazole (AEC) as a peroxidase substrate, generating a red-brown 

staining of the antigen/antibody complexes. Counterstaining was achieved with hematoxylin 

(blue). Samples were covered with Kaiser´s glycerol gelatine and pictures were taken using a 

Olympus BX43F fluorescence microscope and CellEntry software (Olympus). 
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3.5 Mouse experiments 

Required reagents: 

� DMEM w/o FCS 

� Growth Factor Reduced BD Matrigel Matrix  

� TissueTek® O.C.T Compound 

� Liquid nitrogen 

Note: All experiments were performed with the approval of the Ethics Commission of the 

Ludwig Maximilians University Munich (Az.55.2-1-54-2532-101-07) and the Landesamt für 

Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (8.87-50.10.37.09.105).  

To analyze in vivo growth of tumors, Kyse 520 cells stably transfected with either control 

or EpCAM-specific shRNA (cell lines kindly provided by Christiane Driemel, Düsseldorf), 

were injected in 6-8 week old, male NOD SCID mice. Therefore, 5x106 cells in 100µl DMEM 

w/o FCS were mixed with 100µl Growth Factor Reduced BD Matrigel Matrix and the mixture 

injected subcutaneously in the right and left flanks of mice using a BD Microlance 3/24G 1``. 

In addition, another fraction of these cells was used for in vitro analyses such as cytospin (see 

3.1.6), immunohistochemistry (3.4.2), western blot (see 3.3.5), and qRT-PCR (see 3.2.3). 

After cell injection, mice were continuously observed for signs of tumor growth. Objective 

quantitative endpoints for the experiment were a tumor size larger than 20mm, a tumor weight 

superior to 4g and an animal weight loss superior to 20% of the initial body weight. 

According to these endpoints but no later than 28 days mice were sacrificed by isofluran 

inhalation. Formed tumors were explanted, tumor weights were assessed using a precision 

scale, and tumor tissues were embedded in Tissue Tek and frozen for immunohistochemical 

analyses (see 3.4.2). 

 

3.6 Statistical analysis 

Statistical calculations were performed using Microsoft Excel. The Student’s t-Test 

was applied to calculate the statistical significance of differences between experimental 

groups. P-values of 0.05 were considered significant. Bars and error bars in histograms 

represent mean values ± standard deviation (s.d.) of at least three independent experiments. 
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4 RESULTS 

The formation of metastases is the major reason for cancer related deaths (Sleeman 

and Steeg 2010; Stoecklein and Klein 2010; Chaffer and Weinberg 2011). Therefore, it is 

mandatory to identify and analyze mechanisms involved in this process. To form metastases, 

cancer cells need to loosen from primary tumors, invade the surrounding tissue and 

intravasate into the blood stream or the lymphatic system upon which they can be allocated to 

different parts of the body. In the next steps, these circulating tumor cells (CTCs) need to 

leave the blood or lymphatic system, settle in a secondary organ such as liver, bone or lungs, 

and resume proliferation (Chaffer and Weinberg 2011). Despite the importance of identifying 

the processes involved in the different stages of metastasis formation, so far numerous aspects 

of carcinoma progression remain unexplored. 

The epithelial cell adhesion molecule (EpCAM) is known to be overexpressed in most 

carcinomas (van der Gun et al. 2010). Its expression is correlated with increased cell 

proliferation, formation of larger primary tumors (Maetzel et al. 2009) and in the majority of 

cases a bad prognosis for cancer patients (Spizzo et al. 2004; Varga et al. 2004; Brunner et al. 

2008; van der Gun et al. 2010). Because of its strong overexpression in carcinomas, EpCAM 

is used as a marker to identify cancer cells, including CTCs and DTCs (Cohen et al. 2006; 

Criscitiello et al. 2010). However, there is evidence that EpCAM is not constantly expressed 

throughout the whole process of carcinogenesis. It rather seems that EpCAM is highly 

expressed in primary carcinomas and large metastases, whereas it appears to be 

downregulated in CTCs, DTCs and micrometastases (Jojovic et al. 1998; Rao et al. 2005; 

Gorges et al. 2012). These findings suggest a more complex role of EpCAM during the 

different stages of cancer formation and progression than assumed up to now. 

In the present study, esophageal cancer cells were used as model system to get deeper 

insights into the actual expression of EpCAM during and its influence on tumor formation and 

progression. These findings shall help to get a better understanding of the processes leading to 

formation of primary tumors and metastases. 
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4.1 Cellular systems 

4.1.1 Esophageal cancer cell lines Kyse 30 and Kyse 520 

To investigate the role of EpCAM during carcinogenesis the esophageal cancer cell 

lines Kyse 30 and Kyse 520 were used. In a first set of experiments these cell lines were 

characterized in terms of their morphology and EpCAM expression levels. 

Both cell lines showed a typical epithelial morphology (Fig. 4.1 A) and grew in 

clusters with cobblestone-like appearance (Fig. 4.1 A a-c). However, there were also obvious 

differences between the cell lines. Kyse 30 cells were larger than Kyse 520 cells, and did not 

display even cobblestone-like morphology as Kyse 520 cells, but rather included spindle 

shaped cells (compare Fig. 4.1 A a, d to b, c, e, f). Morphological differences were also 

observed within the Kyse 520 population. One subpopulation (Kyse 520-1) showed a more 

round-shaped phenotype and grew in a compacted manner (Fig. 4.1 A b, e), whereas the other 

(Kyse 520-2) showed a flattened, less compacted phenotype (Fig. 4.1 A c, f). Furthermore, 

Kyse 520-1 cells had the ability to grow in an anchorage independent way and built up cell 

piles (Fig. 4.1 A e), which were not observed in case of Kyse 520-2 and Kyse 30 cells, which 

only grew as single layers (Fig. 4.1 A d, f). 

In addition to morphology, EpCAM expression levels of each cell line were assessed 

using flow cytometry (see 3.1.5.1) and western blot analysis (see 3.3.5). In flow cytometry 

experiments EpCAM surface expression was analyzed upon incubation of cells with EpCAM-

specific as well as isotype antibodies and the measurement of the resulting fluorescence 

intensities in a FACS-Calibur flow cytometer. All cell lines displayed strong fluorescence 

signals when incubated with EpCAM-specific antibodies, showing that all cell lines contained 

high levels of EpCAM at their surfaces (Fig. 4.1 B). However, EpCAM cell surface levels 

significantly differed between the cell lines. Kyse 520-1 cells showed the highest fluorescence 

intensities of all analyzed cell lines, displaying a mean fluorescence intensity (MFI) ratio of 

288.54, whereas Kyse 30 and Kyse 520-2 cells displayed MFI-ratios of 183.78 and 56.79, 

respectively (Fig. 4.1 C). In addition to cell surface levels, total protein amounts of EpCAM 

were measured in whole cell lysates of all cell lines using western blot analysis. Western blot 

results confirmed data gained in flow cytometry analyses. Kyse 520-1 cells showed the 

strongest signals in western blot membranes upon incubation with EpCAM-specific 

antibodies. Compared to Kyse 520-1 cells, EpCAM-specific western blot signals of Kyse 30 

and Kyse 520-2 cells were only 50% and 20%, respectively (Fig. 4.1 D). Due to their different 
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EpCAM levels, Kyse 520 subpopulations from here on are referred as Kyse 520high and Kyse 

520low cells. 
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Figure 4. 1: Characterisation of esophageal cancer cell lines. 

(A) Morphology of the Kyse cell lines at different densities. Cells were plated in 6-well plates and pictures were 

taken under an Axiovert 25 microscope (Zeiss) using a Samsung WB750 camera. Bars = 250µm. (B-D) EpCAM 

levels of different Kyse cell lines. (B) Representative flow cytometry histograms. EpCAM cell surface 

expression was measured by flow cytometry with EpCAM-specific antibodies (black lined histograms) and 

isotype controls (filled histograms). (C) Mean fluorescence intensity ratios of EpCAM cell surface expression in 

different Kyse cell lines are given with standard deviations from three independent experiments. PI was used to 

exclude dead cells from analyses. (D) Total EpCAM protein levels of different Kyse cell lines in western blot. 

Whole cell lysates were prepared, equal protein amounts loaded on an SDS gel and transferred to a PVDF 

membrane. Membrane was incubated with EpCAM-specific antibodies and developed using ECL substrate. β-

actin served as control for equal protein loading. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 

 
4.1.2 Non-small cell lung cancer cell line A459 

 Besides esophageal cancer cell lines, the non-small cell lung cancer cell line A549 

was used in a set of experiments to get deeper insights into the role of EpCAM in cancer 

development and progression. Comparably to Kyse cell lines, A459 cells were characterized 

in terms of their morphology and EpCAM expression levels.  

A549 cells displayed an epithelial morphology and grew mainly in clusters (Fig. 4.2 

A). However, A549 cells have the ability to grow as single cells and formed clusters which 

were less compact compared to those of Kyse cell lines (compare Fig. 4.2 A a and Fig. 4.1 A 

a-c). Furthermore, as was seen in case of Kyse 30 cells, A549 cells sometimes showed a 

slightly spindle shaped morphology. 

EpCAM levels of A549 cells were assessed using flow cytometry and western blot 

analysis. In contrast to Kyse cell lines, A549 cells generated only weak fluorescence signals 

in flow cytometry when incubated with EpCAM-specific antibodies (Fig. 4.2 B). EpCAM-

specific MFI ratio of A549 cells was 5.33, being only around 2% of the signals generated in 

Kyse 520high cells (Fig. 4.2 C). These findings were confirmed upon western blot analysis, in 

which the EpCAM-specific western blot signal of A549 cells was apparently weaker than that 

of Kyse 520high cells (Fig. 4.2 D). 
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Figure 4. 2: Characterisation of the A549 cell line. 
(A) Morphology of A549 cells at different densities. Cells were plated in 6-well plates and pictures were taken 

under an Axiovert 25 microscope (Zeiss) using a Samsung WB750 camera. Bars = 250µm. (B-D) EpCAM level 

of A549 cells. (B) Representative flow cytometry histogram. EpCAM cell surface expression was measured by 

flow cytometry with EpCAM-specific antibodies (black lined histograms) and isotype controls (filled 

histograms). (C) Mean fluorescence intensity ratios of EpCAM cell surface expression in A549 and Kyse 520high 

cell lines are given with standard deviations from three independent experiments. PI was used to exclude dead 

cells from the analyses. (D) Total EpCAM protein levels of A549 and Kyse 520high cells in western blot. Whole 

cell lysates were prepared, equal protein amounts loaded on an SDS gel and transferred to a PVDF membrane. 

Membrane was incubated with EpCAM-specific antibodies and developed using ECL substrate. β-actin served 

as control for equal protein loading. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 

A 

B                   C 
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4.1.3 Cell lines stably overexpressing EpCAM 

Besides wildtype cells, cell lines stably overexpressing different yellow fluorescent 

protein (YFP)-fusion constructs were used in the present study to obtain further insights into 

the function of EpCAM. To create these cell lines, wildtype cells were transfected with a 

141pCAG-3SIP vector containing either the full-length EpCAM fused to YFP (EpCAM-

YFP), the intracellular part of EpCAM fused to YFP (EpICD-YFP) or YFP only (YFP), 

which served as reference and control (all constructs were cloned and kindly provided by 

Matthias Hachmeister, Head and Neck research department, Klinikum Großhadern). MATra 

transfection reagent was used to introduce the abovementioned constructs into cells (see 

3.1.4.1), which were subsequently selected to produce stable transfectants using puromycin, 

an antibiotic selecting for cells that express the resistance gene of the inserted construct (see 

3.1.4.2). After selection, all cell lines were analyzed using flow cytometry (see 3.1.5.2) and 

western blot (3.3.5) assays to ensure that cell populations stably express the gene of interest 

from the stably transfected constructs. 

Figures 4.3, 4.4 and 4.5 show the results of flow cytometry and western blot analyses 

of stably transfected A549 (Fig. 4.3), Kyse 30 (Fig. 4.4) and Kyse 520high (Fig. 4.5) cell lines. 

To see how many percent of stably transfected cells actually express YFP constructs, 

fluorescence intensity of YFP was analyzed using flow cytometry. Appropriate wildtype cell 

lines, which do not express YFP, served as controls in these experiments. In all stable 

transfectants the bulk of cells showed a YFP fluorescence signal (Fig. 4.3 A, Fig. 4.4 A, Fig. 

4.5 A, black lines histograms). In case of A549 cells, 99.48% of cells transfected with YFP, 

99.01% of cells transfected with EpICD-YFP and 98.60% of cells transfected with EpCAM-

YFP showed a fluorescence signal (Fig. 4.3 A). Similar numbers were assessed in stably 

transfected Kyse 30 cell lines. Here, 99.50% of cells transfected with YFP, 98.75% of cells 

transfected with EpICD-YFP and 99.94% of cells transfected with EpCAM-YFP displayed 

fluorescence signals (Fig. 4.4 A). In case of Kyse 520high cells, 88.53% of cells transfected 

with YFP, 83.18% of cells transfected with EpICD-YFP and 81.96% of cells transfected with 

EpCAM-YFP showed a fluorescence signal (Fig. 4.5 A). Although all three constructs were 

expressed in similar proportion of cells, expression strength of each construct differed. A549 

cells, stably expressing YFP displayed a mean fluorescence intensity of 4667. EpICD-YFP 

expressing A549 cells displayed a mean fluorescence intensity of 2277 and EpCAM-YFP 

expressing cells a mean fluorescence intensity of 2691 (Fig. 4.3 A). In case of Kyse 30 cells, 

cells transfected with YFP displayed a mean fluorescence intensity of 8372, cells transfected 
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with EpICD-YFP a mean intensity of 4687 and cells transfected with EpCAM-YFP a mean 

fluorescence intensity of 4379 (Fig. 4.4 A). Analyses of stable Kyse 520high cells revealed that 

YFP expressing cells were characterized by a YFP mean fluorescence intensity of 5038, while 

cells expressing EpICD-YFP displayed a mean fluorescence intensity of 2356 and cells 

expressing EpCAM-YFP a mean fluorescence intensity of 1038 (Fig. 4.5 A). As 

abovementioned, all YFP fluorescences were set relative to appropriate wildtype cells, which 

did not express any YFP protein and therefore served as controls (Fig. 4.3 A, Fig. 4.4 A, Fig. 

4.5 A, filled histograms).  

 

  

 

 

 

Figure 4. 3: A549 cell lines stably expressing YFP-constructs. 

A549 cells were transfected with different YFP constructs and selected using puromycin. After selection, cells 

were analyzed using flow cytometry and western blot. (A) Flow cytometry analysis of stable A549 cell lines. 

YFP fluorescence of stable cell lines (black lines histograms) was assessed using flow cytometry. Appropriate 

wildtype cell lines (filled histograms), which did not express any YFP protein, served as control and were used 

to set the gates M1 and M2. PI was used to exclude dead cells from the analyses. (B) Western blot analysis of 

stably transfected A549 cell lines. Whole cell lysates were prepared, equal amounts of proteins were separated in 

an SDS gel and proteins transferred to a PVDF membrane. Subsequently, membranes were incubated with YFP-

specific antibodies and detected using ECL substrate.  
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Figures 4.3 B, 4.4 B, and 4.5 B show the results of western blot analyses. Equal 

protein amounts of whole cell lysates from A549 (Fig. 4.3 B), Kyse 30 (Fig. 4.4 B) and Kyse 

520high cells (Fig. 4.5 B), stably transfected with YFP, EpICD-YFP or EpCAM-YFP, were 

loaded on SDS gels and subsequently blotted on PVDF membranes. Membranes were then 

incubated with YFP-specific antibodies and signals were detected using a ChemiDoc XRS 

imaging system (BD). Expected molecular weights of the stably expressed proteins were 26.9 

kDa (YFP), 30.9 kDa (EpICD-YFP) and 61.9 kDa (EpCAM-YFP). A549, Kyse 30, and Kyse 

520high cell lines each showed only one band at the expected positions. No additional or 

unspecific bands were detected in any of the tested cell lines (Fig. 4.3 B, Fig. 4.4 B,            

Fig. 4.5 B).    

 

 

 

Figure 4. 4: Kyse 30 cell lines stably expressing YFP-constructs. 

Kyse 30 cells were transfected with different YFP constructs and selected using puromycin. After selection, cells 

were analyzed using flow cytometry and western blot. (A) Flow cytometry analysis of stable Kyse 30 cell lines. 

YFP fluorescence of stable cell lines (black lines histograms) was assessed using flow cytometry. Appropriate 

wildtype cell lines (filled histograms), which do not express any YFP protein, served as control and were used to 

set the gates M1 and M2. PI was used to exclude dead cells from the analyses. (B) Western blot analysis of 

stable transfected Kyse 30 cell lines. Whole cell lysates were prepared, equal amounts of proteins were separated 

in an SDS gel and proteins transferred to a PVDF membrane. Subsequently, membranes were incubated with 

YFP-specific antibodies and detected using ECL substrate.  
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Figure 4. 5: Kyse 520high cell lines stably expressing YFP-constructs. 

Kyse 520high cells were transfected with different YFP constructs and selected using puromycin. After selection, 

cells were analyzed using flow cytometry and western blot. (A) Flow cytometry analysis of stable Kyse 520high 

cell lines. YFP fluorescence of stable cell lines (black lines histograms) was assessed using flow cytometry. 

Appropriate wildtype cell lines (filled histograms), which do not express any YFP protein, served as control and 

were used to set the gates M1 and M2. PI was used to exclude dead cells from the analyses. (B) Western blot 

analysis of stable transfected Kyse 520high cell lines. Whole cell lysates were prepared, equal amounts of proteins 

were separated in an SDS gel and proteins transferred to a PVDF membrane. Subsequently, membranes were 

incubated with YFP-specific antibodies and detected using ECL substrate.  
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4.2 EpCAM is cleaved in esophageal cancer cell lines 

As published in 2009 by Maetzel et al., EpCAM is proteolytically cleaved in HCT-8 

and FaDu cells by TACE and presenilin-2 (Maetzel et al. 2009). Here, cleavage of EpCAM 

was assessed in esophageal carcinoma cell lines. To do so, membrane assays (see 3.3.1) were 

performed in conjunction with subsequent western blot using Kyse 30 and Kyse 520high cells, 

stably overexpressing EpCAM-YFP (see 4.1.3). Stable cell lines were used instead of 

wildtype cells because YFP-tagged cleavage products of EpCAM can be visualized more 

reliably in western blot than cleavage products of wildtype EpCAM. Especially EpICD, with 

a size of only 4 kDa, is small and labile so that it can hardly be detected in western blot. 

Membranes from Kyse 30 and Kyse 520high cells were purified as described in 3.3.1 and 

incubated for 16h at 4°C (0h samples) or 37°C (16h samples). Protein concentrations were 

assessed using BCA assay (see 3.3.3), and equal protein amounts were loaded on SDS gels 

and subsequently transferred to a PVDF membrane (see 3.3.5). The membrane was incubated 

with YFP-specific antibodies in combination with HPR-coupled secondary antibody to detect 

YFP-tagged EpCAM cleavage products. Expected molecular weights of potential EpCAM 

cleavage products were ~33 kDa (CTF-YFP), 30.9 kDa (EpICD-YFP) and 26.9 kDa (YFP). 

Full-length EpCAM-YFP was expected to display an apparent molecular weight of 61.9 kDa. 

 

 

 

Figure 4. 6: EpCAM is cleaved in Kyse 30 and Kyse 520high cells. 

Human esophageal cancer cell lines Kyse 30 and Kyse 520high, stably overexpressing EpCAM-YFP, were used 

for membrane assay and subsequent western blotting to analyze EpCAM cleavage. Shown are representative 

blots of Kyse 30 (A) and Kyse 520high (B) samples, incubated with YFP-specific antibody in combination with 

HPR-coupled secondary antibody. 

A                    B 
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For Kyse 30 cells only a double-band at the expected height of EpCAM-YFP could be 

detected in lanes containing 0h samples (Fig. 4.6 A, 0h samples). However, in lanes 

containing 16h samples, three additional bands, at sizes between 20 and 35kDa, were 

detectable. These additional bands were located at the expected positions of CTF-YFP, 

EpICD-YFP and YFP (Fig. 4.6 A, 16h sample). The appearance of a double band at the 

position of EpCAM-YFP is most likely due to the appearance of different EpCAM 

glycosylation isoforms (see 1.2.2). 

Similar findings were made for Kyse 520high cells. One single band at the expected 

position of EpCAM-YFP could be detected in lanes containing 0h samples (Fig. 4.6 B, 0h 

samples), whereas lanes containing 16h samples, displayed two additional bands, at sizes 

between 20 and 35kDa. These additional bands appeared at the expected positions of CTF-

YFP and EpICD-YFP (Fig. 4.6 B, 16h sample). 

 

4.3 EpCAM increases proliferation in esophageal cancer cell lines 

EpCAM is a known inducer of proliferation in different cell types and cancer entities 

(Munz et al. 2004; Maetzel et al. 2009). Therefore it was tested if EpCAM also impacts on 

proliferation of esophageal cancer cell lines. To do so, in a first set of experiments Kyse 

520high esophageal cancer cells were transfected with either a control or an EpCAM-specific 

siRNA. To ensure that effects on cell proliferation are not only due to treatment with siRNA, 

in a second set of experiments proliferation levels of Kyse 520high and Kyse 520low 

subpopulations, expressing different amounts of EpCAM (see 4.1.1), were compared. 

 

4.3.1 Knock-down of EpCAM decreases proliferation in esophageal cancer cells 

To test if depletion of EpCAM has an influence on cell proliferation, Kyse 520high cells 

were transiently transfected with either a control (ctrl) or an EpCAM-specific siRNA using 

the MATra transfection system (see 3.1.4.1). After transfection, equal cell numbers were 

plated in 6-well plates and cells were allowed to grow for 72h in medium containing 10% 

FCS (normal condition) or 1% FCS (serum starvation). EpCAM knock-down efficiency and 

proliferation rates were assessed using flow cytometry (see 3.1.5.1) and cell counting (see 

3.1.2).  
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Figure 4.7 sums up the results of three independent experiments. Transfection with 

EpCAM-specific siRNA led to an average EpCAM knock-down of 51% in the Kyse 520high 

cells (Fig. 4.7 A-B). Cell numbers were reduced to 71% when cultured with 10% FCS and 

58% when cultured with 1% FCS in EpCAM-depleted cells compared to ctrl siRNA 

transfected cells. Although in both cases proliferation was decreased, observed differences 

were only significant when assays were performed in the presence of 1% FCS (Fig. 4.7 C). 

 

 

 

Figure 4. 7: EpCAM knock-down decreases proliferation in Kyse520high cells.  

EpCAM expressing Kyse 520high cells were transiently transfected with either a ctrl or an EpCAM-specific 

siRNA using the MATra transfection system, equal cell numbers were plated in 6-well plates and cells grown for 

72h in medium containing 10% or 1% FCS. Knock-down efficiency and relative proliferation rates were 

assessed using flow cytometry and cell counting. (A) Representative flow cytometry graphs. EpCAM cell 

surface expression was measured by flow cytometry with EpCAM-specific antibodies (black lined histograms) 

and isotype controls (filled histograms). (B) Relative mean fluorescence intensity ratios of EpCAM cell surface 

expression in Kyse 520high cells treated with ctrl siRNA or EpCAM-specific siRNA are given with standard 

deviations of three independent experiments. Controls are set to “1.0”. (C) Relative cell numbers of Kyse 520high 

cells treated with either ctrl or EpCAM-specific siRNA. Shown are mean values with standard deviations of 

three independent experiments. Controls are set to “1.0”. P-values:   *p < 0.05; ** p < 0.01; *** p < 0.001. 

 

A                        B        
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4.3.2 Kyse 520high cells proliferate faster than Kyse 520low cells 

SiRNA-mediated knock-down of EpCAM in Kyse 520high cells resulted in a decrease 

of proliferation. To ensure that effects on proliferation were not only due to siRNA treatment, 

the proliferation of Kyse 520 subpopulations (Kyse 520high and Kyse 520low) was analyzed in 

an independent set of experiments. Kyse 520 subpopulations share the same genetic 

background and only differ in their EpCAM expression. Hence, potential differences in 

proliferation of both cell lines can be attributed to EpCAM and associated effects. To analyze 

proliferation, equal numbers of Kyse 520high and Kyse 520low cells were plated in 6-well 

plates and grown for 72h in the presence of 1% FCS. EpCAM levels and proliferation rates 

were assessed using flow cytometry and cell counting. 

 

  

Figure 4. 8: Kyse 520high cells proliferate faster than Kyse 520low cells. 

Equal numbers of EpCAM expressing Kyse 520high and Kyse 520low cells were plated in 6-well plates and grown 

for 72h in the presence of 1% FCS. Cell numbers were counted and EpCAM levels were assessed using flow 

cytometry. (A) Representative flow cytometry graphs are displayed. EpCAM cell surface expression was 

measured by flow cytometry with EpCAM-specific antibodies (black lined histograms) and isotype controls 

(filled histograms). (B) Relative mean fluorescence intensity ratios of EpCAM cell surface expression in Kyse 

520high and Kyse 520low cells are given with standard deviations of three independent experiments. Controls are 

set to “1.0”. (C) Relative cell numbers of Kyse 520high and Kyse 520low. Shown are mean values with standard 

deviations of three independent experiments. Controls are set to “1.0”. P-values: *p < 0.05; ** p < 0.01; *** p < 

0.001. 

A                          B        
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Flow cytometry data confirmed data already acquired in 4.1.1, demonstrating 5-fold 

higher EpCAM surface levels in Kyse 520high compared to Kyse 520low cells (Fig. 4.8 A-B). 

Counting of cell numbers revealed that Kyse 520high cells generated 4-fold more progeny than 

Kyse 520low cells, which showed on average only 25% of cell numbers counted for Kyse 

520high cells (Fig. 4.8 C). 

 

4.4 EpCAM expression enhances tumor growth in vivo 

Besides enhancing proliferation, EpCAM expression was also associated with formation 

of larger tumors in in vivo mouse model (Maetzel et al. 2009). To test if EpCAM has the same 

effect in esophageal carcinomas, esophageal cancer cells expressing different levels of 

EpCAM were injected into 6-8 week old, male NOD SCID mice and tumor growth was 

monitored. Kyse 520 cells, which were stably transfected with either a control (ctrl) or an 

EpCAM-specific shRNA (cells were produced and kindly provided by Christiane Driemel, 

Düsseldorf) served as model system in this experiment. After ensuring a potent EpCAM 

knock-down, 5x106 cells from each stable cell line were mixed 1:1 with matrigel, injected into 

the right (ctrl shRNA) and left (EpCAM shRNA) flanks of the mice (see 3.5) and tumor 

formation was allowed for a maximum of 28 days. Tumors formed were explanted and 

analyzed in terms of size and EpCAM expression levels.  

Figure 4.9 sums up the results of the experiment. Before injecting into mice, EpCAM 

levels of ctrl and EpCAM shRNA stable transfectants were analyzed using qRT-PCR (Fig. 4.9 

A), western blot (Fig. 4.9 B) and cytospin (Fig. 4.9 D a, c). EpCAM mRNA level was reduced 

to 5% in Kyse 520 cells stably transfected with EpCAM-specific shRNA compared to control 

cells, representing a knock-down efficiency of 95% at mRNA level (Fig. 4.9 A). Protein 

levels of EpCAM were assessed using western blot analysis as well as cytospin with 

subsequent immunohistochemistry. For western blot, equal protein amounts of ctrl and 

EpCAM shRNA stable transfectants were loaded on an SDS gel, and transferred to a PVDF 

membrane, which was incubated with EpCAM-specific antibodies. No EpCAM signal could 

be detected in lanes containing protein of EpCAM shRNA stable transfectants after an 

exposure time of 60 sec, whereas a strong, specific signal could be seen in the lane containing 

the sample of ctrl shRNA transfected cells (Fig. 4.9 B). Results from western blot could be 

confirmed also in cytospin analysis. Here, Kyse 520 cells stably transfected with EpCAM-

specific shRNA displayed a much weaker staining intensity compared to ctrl shRNA 

transfected cells, when incubated with EpCAM-specific antibodies (Fig. 4.9 D a, c). 



  RESULTS 

80 

 

After confirming EpCAM knock-down efficiency in EpCAM shRNA stable 

transfectants, stable cell lines were injected into the right and left flanks of five NOD-SCID 

mice and tumor growth was allowed for a maximum of 28 days. Tumors formed were 

explanted and analyzed in terms of size and EpCAM expression. Figure 4.9 C displays the 

tumor weight of all tumors formed. For both cell lines, tumors had formed in four out of five 

mice. However, mean weights of the tumors significantly differed, from 0.39g to 0.14g for 

ctrl and EpCAM shRNA stable transfected cells lines, respectively. In addition to assessing 

tumor weights, EpCAM expression of the explanted tumors was analyzed using 

immunohistochemistry (see 3.4.2). Tumors derived from ctrl shRNA transfected cells showed 

an overall strong expression of EpCAM, reflecting the high levels of EpCAM of cells initially 

injected into mice (Fig. 4.9 D a-b). However, tumors derived from EpCAM shRNA stable 

transfectants displayed an unexpectedly high expression of EpCAM, which was in contrast to 

the low EpCAM levels cells measured before injection into the mice (Fig. 4.9 D c-d). This 

potential discrepancy was investigated in further detail upon a more precise comparison of 

EpCAM levels of ctrl and EpCAM shRNA transfected cells before injection, using cytospins, 

with those of their corresponding tumor explants. To do so, EpCAM expression was classified 

in four levels: no EpCAM expression (0), weak EpCAM expression (1), intermediate EpCAM 

expression (2) and strong EpCAM expression (3). Figure 4.9 E displays EpCAM levels of the 

different samples. In case of ctrl shRNA transfected cells, 0% of tumor cells in cytospin and 

0.20% of tumor cells in the explants showed no EpCAM expression, 13.30% and 10.80% of 

cells displayed a weak, 45.20% and 52.40% an intermediate, and 41.50 and 36.60% a strong 

expression of EpCAM (Fig. 4.9 E, left panel). Hence, EpCAM levels before and after 

injection revealed no significant difference. However, in case of EpCAM shRNA stable 

transfectants, 35.50% of tumor cells in cytospin and 11.70% of tumor cells in the explants 

displayed no expression of EpCAM, 51.70% and 38.80% of cells showed a weak, 10.90% and 

40.30% an intermediate, and 1.90% and 9.20% a strong expression of EpCAM (Fig. 4.9 E, 

right panel). These results were suggestive of a positive selection of EpCAM expressing cells 

in vivo. 

 

 



  RESULTS 

81 

 

 

 

  

 

 

 

Figure 4. 9: EpCAM expression is correlated to tumor growth in vivo. 

Kyse 520 cells were stably transfected with either a ctrl or an EpCAM-specific shRNA and injected into the 

flanks of 6-8 week old NOD-SCID mice. Tumors formed were explanted and analyzed in terms of size and 

EpCAM expression. (A) EpCAM levels of ctrl shRNA and EpCAM shRNA stable transfectants were assessed 

using qRT-PCR with EpCAM-specific primers. β-Actin served as housekeeping gene. Controls are set to “1.0”.  

(B) EpCAM protein levels of ctrl and EpCAM shRNA stable transfected cells were analyzed in western blot 

with EpCAM-specific antibodies in combination with HRP-conjugated secondary antibody. Shown are 

expression levels of EpCAM in ctrl and EpCAM shRNA treated cells before inoculation into mice. β-Actin 

served as control for equal sample loading. (C) Five NOD-SCID mice were injected with ctrl or EpCAM shRNA 

stable transfectants in the right and left flanks, respectively. Tumor growth was allowed for a maximum of 28 

days and weight of tumors was assessed and is given in gram. (D) EpCAM expression was assessed by 

immunocytochemistry in cytospins of ctrl and EpCAM-specific shRNA stable transfectants and by 

immunohistochemistry after xenotransplantation using EpCAM-specific antibodies. Bars (cytospin) = 200µm, 

bars (explants) = 50µm. (E) EpCAM expression was quantified in cytospins and tumor explants. Staining ranged 

from 0-3, which represents negative (0), weak (1), intermediate (2), and strong expression (3). Shown are 

percentages of tumor cells classified from 0–3.  

A             B        C   
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4.5 Reduction of EpCAM correlates with mesenchymal traits 

4.5.1 EpCAM is downregulated in migrating cells 

The experiments presented so far revealed that EpCAM expression correlated with 

increased proliferation and tumor formation in esophageal cancer cell lines. These findings 

are in line with already published data, demonstrating the role of EpCAM in proliferation and 

tumor formation in different cancer entities (Munz et al. 2004; Maetzel et al. 2009). However, 

there is increasing evidence for a dynamic expression of EpCAM throughout the various 

stages of carcinogenesis, and it appears that EpCAM is downregulated in a proportion of 

CTCs, DTCs and small metastases (Jojovic et al. 1998; Rao et al. 2005; Gorges et al. 2012). 

These findings lead to the question, what are the reasons and advantages of EpCAM 

downregulation in these cells.  

At different stages of carcinogenesis, cells need to switch and/or adapt phenotype to 

allow for further cancer progression. In the first step of cancer formation, cells need to have 

an epithelial, proliferating phenotype to give rise to a primary tumor. Later, cells have to 

adopt a mesenchymal phenotype, allowing them to loosen from the primary tumor, and invade 

into the blood or lymph system and disseminate. This phenotypic switch is termed epithelial-

to-mesenchymal transition (EMT). However, in order to enable outgrowth of metastases, this 

phenotypic change needs to be reversed in a process called mesenchymal-to-epithelial 

transition (MET) to reactivate the epithelial, proliferative characteristics of cancer cells. 

One major result of EMT is the generation of migrating cells with a mesenchymal 

phenotype. Therefore, the expression of EpCAM was monitored during the migration of Kyse 

30 and Kyse 520low cells in scratch assay experiments (see 3.1.8). In these experiments, cells 

were plated on glass slides, grown to confluency, a scratch was set into the cell monolayer 

and migration of cells was allowed for 24h. Subsequently, cells were washed with PBS and 

stained with EpCAM-specific antibody in combination with fluorescence-coupled secondary 

antibodies (see 3.4.1). Samples were analyzed using a TCS-SP2 confocal microscope (Leica).  

Figures 4.10 and 4.11 sum up the results of the experiments. Scratching of cells led to 

formation of wounds in the cell monolayers as well as to disruption of cells at the borders of 

the scratches. To close these wounds, cells started to loosen from neighbouring cells and 

migrated into the wounded area. Figure 4.10 a-c shows a part of the scratch where so far no 

migration had occurred. Cells in this area displayed the typical EpCAM staining pattern of 
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epithelial cells, mainly characterized by a strong staining at plasma membranes (Fig. 4.10 a-

c). This pattern was also observed in all cells, which did not migrate. However, in migrating 

cells, the staining pattern of EpCAM was changed. Strong EpCAM signals at the plasma 

membranes were lost and fluorescence signals were detected in the cytoplasm rather than at 

cell membranes. In addition, cells furthest away from the initial scratch displayed lowest 

EpCAM staining (Fig. 4.10 d-m, Fig. 4.11). Changes in staining patterns between migrating 

and non-migrating cells were found in both, Kyse 30 and Kyse 520low cells. 
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Figure 4. 10: Migrating Kyse 30 cells downregulate EpCAM expression.  

Kyse 30 cells were plated on glass slides, grown to density and scratches were set in confluent monolayers. After 

allowing migration for 24h, cells were washed with PBS, and stained with EpCAM-specific antibody in 

combination with Alexa488-coupled secondary antibody. Subsequently, cells were embedded with Vectashield, 

containing DAPI for nuclear staining. Shown are microphotographs of Kyse 30 cells taken under a TCS-SP2 

confocal microscope (Leica). 

 

 

 

Figure 4. 11: Migrating Kyse 520low cells downregulate EpCAM expression.  

Kyse 520low cells were plated on glass slides, grown to density and scratches were set in confluent monolayers. 

After allowing migration for 24h, cells were washed with PBS, and stained with EpCAM-specific antibody in 

combination with Alexa488-coupled secondary antibody. Subsequently, cells were embedded with Vectashield, 

containing DAPI for nuclear staining. Shown are microphotographs of Kyse 520low cells taken under a TCS-SP2 

confocal microscope (Leica). 
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4.5.2  Downregulation of EpCAM is associated with increased migration velocity and 

gain of mesenchymal markers 

Previous experiments revealed that migrating cells were characterized by weaker 

EpCAM staining than non-migrating cells, pointing towards a downregulation of EpCAM in 

migrating cells. Therefore, in a next set of experiments the impact of EpCAM expression on 

migration velocity was addressed. For these experiments two model systems were used. On 

the one hand, Kyse 30 cells were transiently transfected with either control or EpCAM-

specific siRNA. On the other hand, naturally occurring Kyse 520high and Kyse 520low cells 

were included in the experiment. Scratch assays were performed to analyze the migration 

velocity of these cells (see 3.1.8). It is important to mention that in these experiments it was 

crucial to add proper controls in order to distinguish between cell migration and proliferation. 

In addition, experiments were performed under 0% FCS to minimize proliferative effects. 

 

4.5.2.1 Kyse 30 cells migrate faster and show increased vimentin levels upon depletion 

of EpCAM 

Kyse 30 cells were transfected with either control or EpCAM-specific siRNA (see 

3.1.4.1). To measure the efficiency of EpCAM knock-down, EpCAM levels were assessed at 

mRNA and protein levels using qRT-PCR (see 3.2.3) and flow cytometry (see 3.1.5.1), 

respectively. On average, EpCAM was downregulated to 15% at mRNA (Fig. 4.12 F) and 

52% at cell surface level (Fig. 4.12 A-B) in Kyse 30 cells transfected with EpCAM-specific 

siRNA compared to ctrl cells. Relative cell proliferation rates were assessed by counting cell 

numbers of the proliferation controls, which were grown under similar conditions as the 

scratched cells. No significant difference could be observed between proliferation rates of ctrl 

and EpCAM-depleted Kyse 30 cells when cultured w/o FCS (Fig. 4.12 C).  

Figure 4.12 D-E displays the results of cell migration analyses. Representative pictures 

(Fig. 4.12 D), as well as mean migration velocity data (Fig. 4.12 E), show that cells 

transfected with EpCAM-specific siRNA migrated faster and closed scratches earlier 

compared to cells transfected with ctrl siRNA. Consequently, the mean migration velocity of 

EpCAM-depleted cells was 3.02-fold higher than that of control cells.  
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Figure 4. 12: Scratch assays with siRNA transfected Kyse 30 cells. 

Kyse 30 cells were transiently transfected with either control or EpCAM-specific siRNA, and used in scratch 

assays under restrictive conditions (0% FCS). (A) Representative flow cytometry graphs. EpCAM cell surface 

expression was measured by flow cytometry with EpCAM-specific antibodies (black lined histograms) and 

isotype controls (filled histograms). (B) Relative mean fluorescence intensity ratios of EpCAM cell surface 

expression in Kyse 30 ctrl siRNA and EpCAM siRNA cells are given with standard deviations from three 

independent experiments. Controls are set to “1.0”. (C) Control and EpCAM siRNA transfected cells were 

seeded at equal numbers and cell numbers were determined after completion of the experiments. Shown are 

mean relative numbers normalized to control treated cells from three independent experiments. Controls are set 

to “1.0”. (D) Confluent layers of control and EpCAM siRNA transfected cells were scratched and closure of the 

scratch was assessed over time. Microphotographs were taken at the indicated time points. Bar = 250µm. (E) 

Relative migration velocities of control and EpCAM siRNA transfected cells are given as mean values from 

three independent experiments with standard deviations. Controls are set to “1.0”. (F) Levels of EpCAM, E-

cadherin, N-cadherin and vimentin mRNAs were assessed by qRT–PCR with GAPDH as a reference gene. 

Shown are normalized relative mRNA levels standardized to ctrl siRNA transfected Kyse 30 cells from three 

independent experiments. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 
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Besides assessing cell numbers and migration velocities, mRNA levels of selected 

epithelial and mesenchymal markers were measured using qRT-PCR. The epithelial marker 

E-cadherin showed a relative mRNA level of 91% in EpCAM-depleted cells compared to 

control cells, whereas mesenchymal markers N-cadherin and vimentin showed relative 

mRNA levels of 72% and 263% in cells transfected with EpCAM-specific siRNA compared 

to ctrl siRNA transfected cells (Fig. 4.12 F). 

 

4.5.2.2 Kyse 520low cells migrate faster and show higher levels of mesenchymal markers 

than Kyse 520high cells 

To ensure that differences in migration velocity and EMT marker expression are not 

due to siRNA treatment in general, naturally occurring Kyse 520high and Kyse 520low cells 

were used in scratch assays under restrictive conditions (0% FCS), and migration velocity and 

levels of epithelial and mesenchymal markers were assessed.  

EpCAM levels of Kyse 520high and Kyse 520low cells were assessed at mRNA and 

protein level using qRT-PCR (see 3.2.3) and flow cytometry (see 3.1.5.1), respectively. Kyse 

520low cells displayed on average 26% of EpCAM mRNA (Fig. 4.13 F) and 14% of EpCAM 

cell surface levels (Fig. 4.13 A-B) compared to Kyse 520high cells. Proliferation rate was 

assessed by counting cells of the proliferation controls after completion of scratch assays. On 

average Kyse 520high cells showed a more than 4-fold higher cell number compared to Kyse 

520low cells (Fig. 4.13 C).  

Figure 4.13 D-E shows the results of cell migration analyses. Representative pictures 

(Fig. 4.13 D) as well as mean migration velocity data (Fig. 4.13 E) show that Kyse 520low 

cells migrated faster and closed scratches earlier, compared to Kyse 520high cells. Migration 

velocity of Kyse 520low cells on average was 2.86-fold higher than that of Kyse 520high cells.  

Similarly to siRNA transfected Kyse 30 cells, mRNA levels of several EMT markers 

were assessed in Kyse 520high and Kyse 520low cells using qRT-PCR. The epithelial marker E-

cadherin showed comparable mRNA levels in both cell lines. In contrast, mRNA levels of 

mesenchymal markers N-cadherin and vimentin were 206.85-fold and 257.83-fold higher on 

average in Kyse 520low compared to Kyse 520high cells (Fig. 4.13 F). 
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Figure 4. 13: Scratch assays with Kyse 520high and Kyse 520low cells. 

Kyse 520high and Kyse 520low cells were used in scratch assays under restrictive conditions (0% FCS). (A) 

Representative flow cytometry graphs. EpCAM cell surface expression was measured by flow cytometry with 

EpCAM-specific antibodies (black lined histograms) and isotype controls (filled histograms). (B) Relative mean 

fluorescence intensity ratios of EpCAM cell surface expression in Kyse 520high and Kyse 520low cells are given 

with standard deviations from three independent experiments. Controls are set to “1.0”.  (C) Kyse 520high and 

Kyse 520low cells were seeded at equal numbers and cell numbers determined after completion of the 

experiments. Shown are mean relative numbers normalized to Kyse 520high cells from three independent 

experiments. Controls are set to “1.0”. (D) Confluent layers of Kyse 520high and Kyse 520low cells were scratched 

and closure of the scratch was assessed over time. Microphotographs were taken at the indicated time points. Bar 

= 250µm. (E) Relative migration velocities of Kyse 520high and Kyse 520low cells are given as mean values from 

three independent experiments with standard deviations. Controls are set to “1.0”. (F) Levels of EpCAM, E-

cadherin, N-cadherin and vimentin mRNAs were assessed by qRT–PCR with GAPDH as a reference gene. 

Shown are normalized relative mRNA levels standardized to Kyse 520high cells from three independent 

experiments. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 
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4.5.2.3 Migration velocity is enhanced in Kyse 520low cells transfected with EpCAM-
specific siRNA 

After comparing Kyse 520high and Kyse 520low cells in terms of migration velocity and 

EMT marker levels, it was tested if the observed differences can be further amplified when 

Kyse 520low cells are treated with an EpCAM-specific siRNA (see 3.1.4.1). To ensure 

efficient EpCAM knock-down, EpCAM levels were assessed on mRNA and protein level 

using qRT-PCR (see 3.2.3) and flow cytometry (see 3.1.5.1), respectively. On average, 

EpCAM was downregulated to 26% at mRNA (Fig. 4.14 F) and 54% on cell surface level 

(Fig. 4.14 A-B) in Kyse 520low cells transfected with EpCAM-specific siRNA compared to 

ctrl cells. Relative cell proliferation rates were assessed by counting cell numbers of the 

proliferation controls after completion of the scratch assays. Cell numbers were decreased by 

26% in Kyse 520low transfected with EpCAM siRNA, compared to ctrl cells when cultured 

w/o FCS (Fig. 4.14 C).  

Figure 4.14 D-E displays the results of cell migration analyses. Representative pictures 

(Fig. 4.14 D) as well as mean migration velocity data (Fig. 4.14 E) show that cells transfected 

with EpCAM-specific siRNA migrated faster and closed the scratches earlier compared to 

cells transfected with ctrl siRNA, whereat the mean migration velocity in EpCAM-depleted 

cells was 2.79-fold higher than that of control cells.  

Besides assessing cell numbers and migration velocities, mRNA levels of selected 

epithelial and mesenchymal markers were measured using qRT-PCR. The epithelial marker 

E-cadherin showed a relative mRNA level of 74% in EpCAM-depleted cells compared to 

control cells, whereas mesenchymal markers N-cadherin and vimentin showed relative 

mRNA levels of 94% and 163% in cells transfected with EpCAM-specific siRNA compared 

to ctrl siRNA transfected cells (Fig. 4.14 F). 
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Figure 4. 14: Scratch assays with siRNA transfected Kyse 520low cells. 

Kyse 520low cells were transiently transfected with either control or EpCAM-specific siRNA, and used in scratch 

assays under restrictive conditions (0% FCS). (A) Representative flow cytometry graphs. EpCAM cell surface 

expression was measured by flow cytometry with EpCAM-specific antibodies (black lined histograms) and 

isotype controls (filled histograms). (B) Relative mean fluorescence intensity ratios of EpCAM cell surface 

expression in Kyse 520low ctrl siRNA and EpCAM siRNA cells are given with standard deviations from three 

independent experiments. Controls are set to “1.0”. (C) Control and EpCAM siRNA transfected cells were 

seeded at equal numbers and cell numbers were determined after completion of the experiment. Shown are mean 

relative numbers normalized to control treated cells from three independent experiments. Controls are set to 

“1.0”. (D) Confluent layers of control and EpCAM siRNA transfected cells were scratched and closure of the 

scratch was assessed over time. Microphotographs were taken at the indicated time points. Bar = 250µm. (E) 

Relative migration velocities of control and EpCAM siRNA transfected cells are given as mean values from two 

independent experiments with standard deviations. Controls are set to “1.0”. (F) Levels of EpCAM, E-cadherin, 

N-cadherin and vimentin mRNAs were assessed by qRT–PCR with GAPDH as a reference gene. Shown are 

normalized relative mRNA levels standardized to ctrl siRNA transfected Kyse 520low cells from three 

independent experiments. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 
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4.5.3 Kyse 520 cells with lower levels of EpCAM show higher invasion capacity  

Besides migration capacity, the ability to invade into tissues is a known characteristic 

of metastatic cells (Moustakas and Heldin 2012; Tiwari et al. 2012). In order to assess the 

impact of EpCAM expression on the ability of cells to invade, Kyse 520high and Kyse 520low 

cells were used in spheroid invasion assay (see 3.1.9.2). In this assay, primary human 

fibroblast cells were seeded on hardened agarose in 96-well plates and spheroid formation 

was allowed for 24h. Subsequently, Kyse 520high or Kyse 520low cells were added to spheroids 

and invasion was allowed for 48 and 72h. At the indicated time points, spheroids were 

harvested, frozen in liquid nitrogen, processed to 4µm thick sections, and used for 

immunohistochemical analyses (see 3.4.2). Cells were stained with either EpCAM- or 

cytokeratin (CK) 8/18-specific antibodies (red stainings) to obtain protein-specific staining. 

These stainings allowed discrimination between Kyse 520 and fibroblast cells, since fibroblast 

cells do neither express EpCAM nor the epithelial marker CK8/18, whereas Kyse 520 cells 

express both proteins. After staining with specific antibodies, spheroid sections were 

counterstained using hematoxylin (blue staining) to visualize nuclei and cytoplasm of all cells. 

Figures 4.15 and 4.16 display the results of these experiments. As can be seen in 

CK8/18 (Fig. 4.15) and EpCAM stained (Fig. 4.16) sections, almost no cancer cells could be 

found within fibroblast spheroids after 48 and 72h when Kyse 520high cells were added. 

Instead of infiltrating the spheroid, Kyse 520high cells formed a ring around the fibroblast 

spheroids. Only some single Kyse 520high cells could be found centered in fibroblast spheroids 

(Fig. 4.15 a-d, Fig. 4.16 a-d). In contrast, when Kyse 520low cells were added to the spheroids, 

high amounts of EpCAM- or CK8/18-positive cells were detected within fibroblast spheroids 

after 48 and 72h (Fig. 4.15 e-h, Fig. 4.16 e-h).  

A detailed look at CK8/18 and EpCAM staining intensities disclosed similar levels of 

CK8/18 in Kyse 520high and Kyse 520low in all cancer cells of one slide (Fig. 4.15). Similarly, 

EpCAM expression was steady in Kyse 520high cells throughout samples (Fig. 4.16 a-d). 

However, in case of Kyse 520low cells, EpCAM staining intensity differed between cells 

within one spheroid section. Cells, which located at the rim of spheroids, showed a stronger 

EpCAM staining compared to those, which located further inside the spheroid (Fig. 4.16 e-h). 
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Figure 4. 15: CK8/18 staining of spheroid cryo-sections. 

Kyse 520high and Kyse 520low cells were used in spheroid invasion assays. Primary fibroblast cells were grown 

for 24h on agarose-coated 96-well plates to allow spheroid formation. Subsequently, Kyse 520high or Kyse 520low 

cells were added and invasion was allowed for 48 and 72h. At the indicated time points, spheroids were 

harvested, frozen, cut, and stained using immunohistochemistry. Shown are pictures of cryo-sections incubated 

with CK8/18-specific antibodies (red) and counterstained using hematoxylin (blue). 

 

 

 

Figure 4. 16: EpCAM staining of spheroid cryo-sections. 

Kyse 520high and Kyse 520low cells were used in spheroid invasion assays. Primary fibroblast cells were grown 

for 24h on agarose-coated 96-well plates to allow spheroid formation. Subsequently, Kyse 520high or Kyse 520low 

cells were added and invasion was allowed for 48 and 72h. At the indicated time points spheroids were 

harvested, frozen, cut, and stained using immunohistochemistry. Shown are pictures of cryo-sections incubated 

with EpCAM-specific antibodies (red) and counterstained using hematoxylin (blue). 
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4.6 EpCAM is decreased upon induced EMT 

The abovementioned experiments demonstrated that cells with lower EpCAM levels 

migrate faster, invade more efficiently into spheroids, and display increased amounts of 

mesenchymal markers. These effects could be observed in cells in which EpCAM was 

depleted using siRNA (see experiments with Kyse 30 and Kyse 520low cells transfected with 

ctrl or EpCAM-specific siRNA) as well as in cells, which naturally show different EpCAM 

expression levels (see experiments with Kyse 520high and Kyse 520low cells). As already 

mentioned, one process during which cells change their phenotype from epithelial to 

mesenchymal, is the epithelial-to-mesenchymal transition (EMT). Therefore, the effects of an 

induced EMT on the expression levels of EpCAM were analyzed upon treatment of cells with 

TGFβ (see 3.1.7), a known inducer of EMT. 

 

4.6.1 TGFβ treatment of A549 cells 

A549 cells were used as control cell line in TGFβ assays, because they are known to 

exhibit TGFβ-induced EMT (Kim et al. 2007). Therefore, A549 cells represented the ideal 

cell line to test if and how TGFβ treatment affects EpCAM expression. For TGFβ assay, cells 

were plated on 6-well plates and grown under restrictive conditions (0% FCS) for 24h. 

Subsequently, TGFβ was added for 72h. Cells were then analyzed in terms of their 

morphology, EMT marker expression and EpCAM expression levels.  

Figure 4.17 sums up results of TGFβ assays conducted with A549 cells. As can be 

seen in Figure 4.17 A, A549 cells changed their morphology when treated with TGFβ. 

Without TGFβ treatment, cells showed a cobblestone-like, epithelial morphology and grew in 

clusters, whereas they showed a spindle-shaped, mesenchymal morphology and grew as 

single cells when TGFβ was added to the culture medium. Besides morphology, also mRNA 

levels of typical EMT markers were altered when cells were treated with TGFβ. As expected, 

the mRNA level of the epithelial marker E-cadherin displayed an average decrease to 4%, 

whereas levels of mesenchymal markers N-cadherin and vimentin on average were increased 

3.97-fold and 2.83-fold, in TGFβ treated cells compared to control cells, which were treated 

with buffer only (Fig. 4.17 B). 

After ensuring that TGFβ treatment induced EMT in A549 cells, mRNA and cell 

surface levels of EpCAM were assessed upon qRT-PCR and flow cytometry, respectively. 
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Compared to control cells, cell surface and mRNA levels of EpCAM were decreased to 44% 

and 16% in TGFβ treated cells, respectively (Fig. 4.17 B-D).  

 

 

  

 

Figure 4. 17: Induction of EMT results in downregulation of EpCAM in A549 cells.  

A549 cells were treated with TGFβ or buffer only for 72h. Subsequently, morphology, mRNA levels of selected 

EMT markers, and mRNA and cell surface levels of EpCAM were analyzed. (A) Shown are microphotographs 

of cells treated with or w/o TGFβ taken under a Axiovert 25 microscope (Zeiss) using a Samsung WB750 

camera. Bars = 250µm. (B) Levels of EpCAM, E-cadherin, N-cadherin and vimentin were assessed upon qRT-

PCR with specific primers. RPL13A served as a housekeeping gene for standardisation. Shown are mean relative 

mRNA expression level normalized to untreated cells from three independent experiments with standard 

deviations. (C) EpCAM cell surface expression was assessed by flow cytometry with EpCAM-specific antibody 

(black lined histograms) and isotype control antibody (filled histograms). Shown are representative results from 

three independent experiments. (D) Relative mean fluorescence intensity ratios of EpCAM cell surface 

expression in cells treated with or w/o TGFβ are given with standard deviations from three independent 

experiments. Controls are set to “1.0”. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001.  

A 

 B 
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4.6.2 TGFβ treatment of esophageal cancer cell lines  

After ensuring that TGFβ treatment induces EMT by using A549 cells (see 4.6.1), in a 

next step TGFβ assays were performed with esophageal cancer cell lines Kyse 30 and Kyse 

520low. To do so, cells were plated in 6-well plates and grown under restrictive conditions (0% 

FCS) for 24h. Subsequently, TGFß was added for 72h, and cells analyzed in terms of their 

morphology, EMT marker levels and EpCAM expression. 

 

4.6.2.1 Effects of TGFβ treatment in Kyse 30 cells 

Figure 4.18 sums up the results of the TGFβ assays conducted with Kyse 30 cells. 

Similar to A549 cells, a drastic morphological change of Kyse 30 cells was observed upon 

TGFβ treatment. Without TGFβ, cells showed a cobblestone-like, epithelial morphology and 

grew in clusters, whereas they showed a spindle-shaped, mesenchymal morphology and grew 

as single cells when TGFβ was added (Fig. 4.18 A). Besides morphological changes also 

mRNA levels of typical EMT markers were altered upon TGFβ treatment. The mRNA level 

of the epithelial marker E-cadherin was increased 1.91-fold on average when cells were 

treated with TGFβ. Even stronger upregulation was observed for mesenchymal markers N-

cadherin and vimentin, which on average showed 7.82-fold and 3.36-fold increased mRNA 

levels in TGFβ treated cells compared to control cells, which were treated with buffer only 

(Fig. 4.18 B).  

Similar to A549 cells, EpCAM levels were changed upon TGFβ-induced EMT in 

Kyse 30 cells. However, in contrast to A549 cells in which mRNA and cell surface levels of 

EpCAM were decreased after TGFβ treatment (Fig. 4.18 B-D), in Kyse 30 cells only cell 

surface levels of EpCAM were decreased, whereas mRNA levels revealed slightly increased. 

On average, EpCAM mRNA levels were increased 1.42-fold (Fig. 4.18 B), whereas cell 

surface levels were decreased to 53% (Fig. 4.18 D). 
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Figure 4. 18: Induction of EMT results in a loss of EpCAM in Kyse 30 cells.  

Kyse 30 cells were treated with TGFβ or buffer only for 72h. Subsequently, morphology, mRNA levels of 

selected EMT markers, and mRNA and cell surface levels of EpCAM were analyzed (A) Shown are 

microphotographs of cells treated with or w/o TGFβ taken under a Axiovert 25 microscope (Zeiss) using a 

Samsung WB750 camera. Bars = 250µm. (B) Levels of EpCAM, E-cadherin, N-cadherin and vimentin were 

assessed upon qRT-PCR with specific primers. GAPDH served as a housekeeping gene for standardisation. 

Shown are mean relative mRNA expression level normalized to untreated cells from three independent 

experiments with standard deviations. (C) EpCAM cell surface expression was assessed by flow cytometry with 

EpCAM-specific antibody (black lined histograms) and isotype control antibody (filled histograms). Shown are 

representative results from three independent experiments. (D) Relative mean fluorescence intensity ratios of 

EpCAM cell surface expression in cells treated with or w/o TGFβ are given with standard deviations from three 

independent experiments. Controls are set to “1.0”.  P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 
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4.6.2.2 Effects of TGFβ treatment in Kyse 520low cells 

Figure 4.19 sums up the results of TGFβ assays conducted with Kyse 520low cells. In 

contrast to A549 and Kyse 30 cells, Kyse 520low cells displayed no morphological changes 

when treated with TGFβ. Cells showed a cobblestone-like, epithelial morphology and grew in 

clusters no matter if cultured with TGFβ or buffer only (Fig. 4.19 A). Although there were no 

obvious morphological changes, mRNA levels of typical EMT markers were altered in Kyse 

520low cells when treated with TGFβ. On average, levels of mesenchymal markers N-cadherin 

and vimentin were increased 1.65-fold and 8.13-fold in TGFβ treated cells compared to 

control cells (Fig. 4.19 B). However, the epithelial marker E-cadherin showed almost no 

regulation and displayed average mRNA levels of 98% compared to control cells.  

Comparably to Kyse 30 cells, TGFβ treatment of Kyse 520low cells resulted in a 

reduction of EpCAM at cell surface but not on mRNA level. On average, EpCAM cell surface 

levels were decreased to 47% (Fig. 4.19 D), whereas mRNA levels were not regulated (Fig. 

4.19 B).  
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Figure 4. 19: Induction of EMT results in a loss of EpCAM in Kyse 520low cells.  

Kyse 520low cells were treated with TGFβ or buffer only for 72h. Subsequently, morphology, mRNA levels of 

selected EMT markers, and mRNA and cell surface levels of EpCAM were analyzed (A) Shown are 

microphotographs of cells treated with or w/o TGFβ taken under a Axiovert 25 microscope (Zeiss) using a 

Samsung WB750 camera. Bars = 250µm. (B) Levels of EpCAM, E-cadherin, N-cadherin and vimentin were 

assessed upon qRT-PCR with specific primers. GAPDH served as a housekeeping gene for standardisation. 

Shown are mean relative mRNA expression level normalized to untreated cells from three independent 

experiments with standard deviations. (C) EpCAM cell surface expression was assessed by flow cytometry with 

EpCAM-specific antibody (black lined histograms) and isotype control antibody (filled histograms). Shown are 

representative results from three independent experiments. (D) Relative mean fluorescence intensity ratios of 

EpCAM cell surface expression in cells treated with or w/o TGFβ are given with standard deviations from three 

independent experiments. Controls are set to “1.0”. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 
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4.7 Overexpression of EpCAM is not sufficient to prevent effects of TGFβ 

Previous experiments showed that treatment with TGFβ, which drives cells to undergo 

EMT, led to a decrease of EpCAM at least at cell surface level (see 4.6). This finding rose the 

question if, vice versa, an overexpression of EpCAM can prevent effects of TGFβ. To answer 

this question, TGFβ assays were performed with A549 and Kyse 30 cells stably 

overexpressing different YFP constructs (see 4.1.3). A549 and Kyse 30 cells were used 

because these cell lines showed the strongest reaction upon TGFβ treatment in previous 

experiments. Cell morphology and mRNA levels of EMT markers were used as readout. 

 

4.7.1 EpCAM overexpression does not prevent TGFβ-induced EMT in A549 cells 

A549 cells stably transfected with YFP (control cell line), EpICD-YFP or EpCAM-

YFP were used in TGFβ assays (see 3.1.7), and cell morphology and mRNA levels of EMT 

markers were assessed. As already seen for wildtype cells (Fig. 4.17 A), A549-YFP cells 

showed a cobblestone-like, epithelial morphology and grew in clusters when treated with 

buffer only. However, when treated with TGFβ, cells changed their morphology towards a 

spindle-shaped, mesenchymal phenotype and grew as single cells (Fig. 4.20 A a, d). These 

morphological changes comparably occurred in EpICD-YFP and EpCAM-YFP stably 

overexpressing A549 cell lines when cells were treated with TGFβ (Fig. 4.20 A b-c, e-f).  

The analysis of mRNA levels of typical EMT markers using qRT-PCR (see 3.2.3) 

revealed an average decrease of E-cadherin to 3%, as well as an 11.08-fold and 3.15-fold 

average increase of N-cadherin and vimentin in YFP overexpressing cells treated with TGFβ 

(Fig. 4.20 B). Similar regulations of EMT markers were found in EpICD-YFP and EpCAM-

YFP overexpressing A549 cells when treated with TGFβ. Epithelial marker E-cadherin was 

decreased to 5% and 12% in A549 EpICD-YFP and A549 EpCAM-YFP overexpressing cells, 

respectively. Mesenchymal markers N-cadherin and vimentin were increased 13.71-fold and 

2.82-fold in A549 EpICD-YFP, and 7.26-fold and 2.46-fold in A549 EpCAM-YFP cells (Fig. 

4.20 B). Besides, EpCAM mRNA levels were decreased to 13% in YFP and EpICD-YFP 

overexpressing cells upon TGFβ treatment. Only in EpCAM-YFP overexpressing cells 

EpCAM mRNA level remained almost unchanged when cell were treated with TGFβ, 

showing 88% of the mRNA level in untreated cells (Fig. 4.20 B).  
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Figure 4. 20: EpCAM overexpression does not prevent effects of TGFβ in A549 cells. 

A549 cells stably overexpressing YFP, EpICD-YFP or EpCAM-YFP construct were treated with TGFβ for 72h. 

(A) Cell morphology was analyzed in cells grown with or w/o TGFβ. Shown are microphotographs taken under 

an Axiovert 25 microscope (Zeiss) using a WB750 camera (Samsung). Bars = 250µm. (B) MRNA levels of 

EpCAM and EMT markers E-cadherin, N-cadherin and vimentin were assessed in cells treated with and w/o 

TGFβ using qRT-PCR. RPL13A served as a house-keeping gene for standardisation. Shown are mean relative 

mRNA expression levels normalized to untreated cells from two independent experiments with standard 

deviations. (C) To directly compare the regulation of EMT markers upon TGFβ treatment, values of TGFβ 

treated cells (displayed in B) were set relative to each other. Shown are mean relative mRNA expression levels 

normalized to YFP expressing A549 cells from two independent experiments with standard deviations. P-values: 

*p < 0.05; ** p < 0.01; *** p < 0.001. 

 

In a next step, EMT marker levels of TGFβ treated samples were directly compared to 

analyze the influence of EpCAM and EpICD overexpression on TGFβ treatment. To do so, 

mRNA data of TGFβ treated cells were set relative to each other, whereby YFP 

overexpressing cells served as control group. For E-cadherin, relative mRNA levels were 

1.43-fold higher in EpICD-YFP and 3.08-fold higher in EpCAM-YFP expressing cells 

compared to YFP expressing cells. In case of N-cadherin, relative mRNA levels were 1.25-

fold higher in EpICD-YFP and 34% lower in EpCAM-YFP cells compared to levels in YFP 

cells. Relative mRNA levels of vimentin were 11% lower in EpICD-YFP and 22% lower in 

EpCAM-YFP cells compared to YFP cells. However, it must be noted that none of the 

displayed differences was significant (Fig. 4.20 C). 

 

4.7.2 EpCAM overexpression does not prevent TGFβ-induced EMT in Kyse 30 cells 

Kyse 30 cells stably transfected with YFP (control cell line), EpICD-YFP or EpCAM-

YFP constructs were used in TGFβ assays (see 3.1.7). Cell morphology and mRNA levels of 

different EMT markers were analyzed after 72h of treatment. As already seen in wildtype 

cells (Fig. 4.18 A), Kyse 30 YFP cells without any treatment showed a mainly cobblestone-

like, epithelial morphology and grew in clusters. However, when treated with TGFβ, cells 

changed their morphology towards a spindle-shaped, mesenchymal phenotype and grew as 

single cells (Fig. 4.21 A a, d). These morphological changes comparably occurred in EpICD-

YFP and EpCAM-YFP stably overexpressing Kyse 30 cells when treated with TGFβ (Fig. 

4.21 A b-c, e-f).  
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The analysis of mRNA levels of typical EMT markers using qRT-PCR (see 3.2.3), 

revealed a slight (1.54-fold) increase of the epithelial marker E-cadherin as well as a strong 

increase of the mesenchymal markers N-cadherin (12.79-fold) and vimentin (24.92-fold) in 

TGFβ treated Kyse 30 YFP cells when compared to untreated cells (Fig. 4.21 B). Similar 

regulations of EMT markers were observed in case of EpICD-YFP and EpCAM-YFP 

overexpressing Kyse 30 cells. MRNA levels of the epithelial marker E-cadherin were slightly 

increased 1.66-fold and 1.22-fold in Kyse 30 EpICD-YFP and Kyse 30 EpCAM-YFP 

overexpressing cells, respectively. Mesenchymal markers N-cadherin and vimentin were 

increased 17.16-fold and 45.41-fold in Kyse 30 EpICD-YFP, and 9.26-fold and 28.39-fold in 

Kyse 30 EpCAM-YFP overexpressing cells (Fig. 4.21 B). As already seen in Kyse 30 

wildtype cells, EpCAM mRNA levels were not significantly changed upon TGFβ treatment in 

stable Kyse 30 cells. Compared to untreated cells, EpCAM mRNA levels in TGFβ treated 

cells were upregulated 1.20-fold, 1.64-fold, and 1.41-fold in Kyse 30 YFP, Kyse 30 EpICD-

YFP, and Kyse 30 EpCAM-YFP overexpressing cells, respectively (Fig. 4.21 B).  

In a next step, EMT marker levels of TGFβ treated samples were directly compared to 

analyze the influence of EpCAM and EpICD overexpression on TGFβ treatment. To do so, 

mRNA data of TGFβ treated cells were set relative to each other, whereby YFP 

overexpressing cells served as control group. In case of E-cadherin, relative mRNA levels 

were similar in EpICD-YFP and 21% lower in EpCAM-YFP overexpressing cells compared 

to YFP overexpressing cells. For N-cadherin, relative mRNA levels on average were 1.39-

fold higher in EpICD-YFP and 31% lower in EpCAM-YFP cells compared to YFP cells. 

Relative mRNA levels of vimentin were on average 1.93-fold higher in EpICD-YFP and 1.17-

fold higher in EpCAM-YFP cell lines compared to YFP cells. However, it must be noted that 

none of the displayed differences was significant (Fig. 4.21 C). 
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Figure 4. 21: EpCAM overexpression does not prevent effects of TGFβ in Kyse 30 cells. 

Kyse 30 cells stably overexpressing YFP, EpICD-YFP or EpCAM-YFP construct were treated with TGFβ for 

72h. (A) Cell morphology was analyzed in cells grown with or w/o TGFβ. Shown are microphotographs taken 

under an Axiovert 25 microscope (Zeiss) using a WB750 camera (Samsung). Bars = 250µm. (B) MRNA levels 

of EpCAM and EMT markers E-cadherin, N-cadherin and vimentin were assessed in cells treated with and w/o 

TGFβ using qRT-PCR. GAPDH served as a house-keeping gene for standardisation. Shown are mean relative 

mRNA expression levels normalized to untreated cells from two independent experiments with standard 

deviations. (C) To directly compare the regulation of EMT markers upon TGFβ treatment, values of TGFβ 

treated cells (displayed in B) were set relative to each other. Shown are mean relative mRNA expression levels 

normalized to YFP expressing Kyse 30 cells from two independent experiments with standard deviations. P-

values: *p < 0.05; ** p < 0.01; *** p < 0.001. 

 

4.8 How does EpCAM sustain the epithelial/ proliferative phenotype? 

The experiments presented so far, showed that EpCAM expression in esophageal 

carcinoma cells correlates with increased cell proliferation in vitro as well as with formation 

of larger tumors in in vivo mouse model. In contrast, EpCAM was found downregulated in 

migrating cells, and cells with lower EpCAM levels showed functional traits of EMT, such as 

faster migration velocity, higher invasion capacity and increased levels of mesenchymal 

markers. These findings support the notion that EpCAM plays an active role in sustaining the 

epithelial, proliferative phenotype of cells. Following studies aimed at understanding the 

mechanisms underlying this function of EpCAM in esophageal carcinoma.  

 

4.8.1 Analysis of the signaling function of EpCAM 

EMT can be induced via various pathways. One of the most common ones is the TGFβ 

signaling pathway (see 1.1.2.3), in which TGFβ binds and activates its receptors, 

subsequently leading to activation of SMAD proteins, and increased expression of 

transcription factors, like SNAIL, SLUG, TWISTs and ZEBs. These transcription factors 

eventually induce the expression of mesenchymal markers, like N-cadherin and vimentin, and 

the repression of epithelial markers like E-cadherin. To test if this pathway is activated upon 

EpCAM depletion, A549 and Kyse 30 cells were transiently transfected with control or 

EpCAM-specific siRNA, and mRNA levels of transcription factors involved in EMT were 

analyzed using qRT-PCR (see 3.2.3). To ensure that the TGFβ pathway in principle can be 

activated in the selected cell lines, mRNA levels of the abovementioned transcription factors 

were assessed after activating the TGFβ pathway upon the addition of TGFβ for 72h (see 

3.1.7). 
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4.8.1.1 EpCAM depletion does not activate the TGFβ pathway in A549 cells 

A549 cells were cultivated with or w/o TGFβ for 72h, and mRNA levels of EpCAM 

and selected transcription factors were assessed using qRT-PCR. Figure 4.22 A sums up the 

acquired data. EpCAM mRNA levels were decreased to 21% of EpCAM levels found in 

control cells, when cells were treated with TGFβ (similar EpCAM downregulation could 

already be observed in 4.6.1). In contrast, mRNA levels of transcription factors were mainly 

increased upon addition of TGFβ. Levels of SNAIL, SLUG and ZEB-1 showed an average 

increase of 1.80-fold, 8.85-fold and 2.14-fold, respectively, reflecting the activation of the 

TGFβ pathway (Fig. 4.22 A). Only TWIST-1 mRNA levels were decreased by 29% when 

cells were treated with TGFβ. Levels of TWIST-2 and ZEB-2 mRNA remained below 

detection limit. 

Knowing that the TGFβ pathway can be activated in A549 cells, in the next step these 

cells were transfected with either control or EpCAM-specific siRNA (see 3.1.4.1). EpCAM 

knock-down efficiency and mRNA levels of selected transcription factors were assessed 72h 

after transfection using flow cytometry and qRT-PCR. EpCAM levels were on average 

decreased to 20% at mRNA (Fig. 4.22 D) and 57% at cell surface (Fig. 4.22 B-C) level, 

respectively, displaying efficient EpCAM knock-down. MRNA levels of most transcription 

factors were found decreased in EpCAM siRNA transfected cells. Levels of SLUG, TWIST-

1, ZEB-1 and ZEB-2 were reduced to 45%, 89%, 55% and 26%, respectively, in EpCAM 

depleted cells compared to control cells. Only mRNA levels of SNAIL were slightly 

increased (1.16-fold) in EpCAM depleted cells. TWIST-2 remained below detection limit 

(Fig. 4.22 D).  
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Figure 4. 22: EpCAM knock-down does not induce the TGFβ pathway in A549 cells. 

(A) A549 cells were cultivated with or w/o TGFβ for 72h and mRNA levels of EpCAM and selected 

transcription factors involved in the TGFβ pathway were assessed using qRT-PCR with specific primers. 

RPL13A served as a house-keeping gene for standardisation. Shown are mRNA expression level normalized to 

untreated cells from one experiment. (B-D) A549 cells were transiently transfected with either control or 

EpCAM-specific siRNA. 72h after transfection, EpCAM knock-down efficiency as well as mRNA level of 

transcription factors were analyzed. (B) EpCAM cell surface expression was assessed by flow cytometry with 

EpCAM-specific antibody (black lined histograms) and isotype antibody (filled histograms). Shown are 

representative results from three independent experiments. (C) Relative mean fluorescence intensity ratios of 

EpCAM cell surface expression in cells transfected with ctrl or EpCAM-specific siRNA are given with standard 

deviations from three independent experiments. Controls are set to “1.0”. (D) MRNA levels of EpCAM and 

transcription factors involved in TGFβ pathway were assessed upon qRT-PCR with specific primers. RPL13A 

served as a house-keeping gene for standardisation. Shown are mean relative mRNA expression levels 

normalized to ctrl cells from three independent experiments with standard deviations. P-values: *p < 0.05; ** p < 

0.01; *** p < 0.001. n.d.; not detectable. 
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4.8.1.2 EpCAM depletion does not activate the TGFβ pathway in Kyse 30 cells 

Kyse 30 cells were cultivated with or w/o TGFβ for 72h, and mRNA levels of EpCAM 

and selected transcription factors were assessed using qRT-PCR. Figure 4.23 A sums up the 

acquired qRT-PCR data. EpCAM mRNA level was increased 1.51-fold, compared to EpCAM 

level found in control cells, when cells were treated with TGFβ (similar EpCAM upregulation 

could already be observed in 4.6.2.1). Levels of selected transcription factors were increased 

7.01-fold (SNAIL), 5.92-fold (SLUG), 1.65-fold (TWIST-1) and 1.27-fold (TWIST-2) in 

TGFβ treated cells compared to control cells, displaying the activation of the TGFβ pathway 

in Kyse 30 cells when treated with TGFβ. Levels of ZEB-1 and ZEB-2 remained below 

detection limit (Fig. 4.23 A). 

Knowing that the TGFβ pathway can be activated in Kyse 30 cells, in the next step 

these cells were transfected with either a control or an EpCAM-specific siRNA (see 3.1.4.1). 

EpCAM knock-down efficiency, as well as mRNA levels of selected transcription factors, 

was assessed 72h after transfection using flow cytometry and qRT-PCR. EpCAM levels were 

on average decreased to 8% at mRNA (Fig. 4.23 D) and 26% at cell surface level (Fig. 4.23 

B- C), respectively, displaying efficient EpCAM knock-down. MRNA levels of transcription 

factors were found to be similar or decreased in EpCAM siRNA transfected cells compared to 

control cells. Mean mRNA levels were 73% (SNAIL), 91% (SLUG), 83% (TWIST-1), 46% 

(TWIST-2) and 83% (ZEB-1), respectively, in EpCAM-depleted cells. ZEB-2 remained 

below detection limit (Fig. 4.23 D).  
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Figure 4. 23: EpCAM knock-down does not induce the TGFβ pathway in Kyse 30 cells. 

(A) Kyse 30 cells were cultivated with or w/o TGFβ for 72h and mRNA levels of EpCAM and selected 

transcription factors involved in TGFβ pathway were assessed using qRT-PCR with specific primers. GAPDH 

served as a house-keeping gene for standardisation. Shown are mRNA expression level normalized to untreated 

cells from one experiment. (B-D) Kyse 30 cells were transiently transfected with either control or EpCAM-

specific siRNA. 72h after transfection, EpCAM knock-down efficiency as well as mRNA level of transcription 

factors were analyzed. (B) EpCAM cell surface expression was assessed by flow cytometry with EpCAM 

specific antibody (black lined histograms) and isotype antibody (filled histograms). Shown are representative 

results from three independent experiments. (C) Relative mean fluorescence intensity ratios of EpCAM cell 

surface expression in cells transfected with ctrl or EpCAM-specific siRNA are given with standard deviations 

from three independent experiments. Controls are set to “1.0”. (D) MRNA levels of EpCAM and transcription 

factors involved in TGFβ pathway were assessed upon qRT-PCR with specific primers. GAPDH served as a 

house-keeping gene for standardisation. Shown are mean relative mRNA expression levels normalized to ctrl 

cells from three independent experiments with standard deviations. P-values: *p < 0.05; ** p < 0.01; *** p < 

0.001. n.d.; not detectable. 
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4.8.2 Analysis of the adhesive function of EpCAM 

EpCAM was characterized as a cell adhesion molecule by Litvinov et al. already in 

1994 (Litvinov et al. 1994a; Litvinov et al. 1994b). Experiments presented so far, revealed 

that reduction of EpCAM expression provides cells with increased migratory and invasive 

capacities. To find out if this is due to reduced cell adhesion, adhesion assays were performed 

with siRNA transfected Kyse 30 cells, as well as with Kyse 520high and Kyse 520low cells. 

Adhesion assays were performed either on a surface consisting of matrigel, which mimics the 

extracellular matrix (cell-matrix adhesion assays, see 3.1.10.1) or on a surface consisting of a 

dense cell monolayer (cell-cell adhesion assay, see 3.1.10.2). To ensure that the strong cell 

contacts provided by cadherins, which are calcium-dependent cell adhesion molecules, do not 

overlay possible effects of EpCAM knock-down, all adhesion assays were performed without 

calcium. This included the use of calcium-free medium and the absence of FCS. 

 

4.8.2.1 Cell adhesion is not weakened in EpCAM-depleted Kyse 30 cells 

Kyse 30 cells were transiently transfected with either a ctrl or an EpCAM-specific 

siRNA (see 3.1.4.1), and used in adhesion assays (see 3.1.10). To ensure EpCAM knock-

down, cell surface levels of EpCAM were assessed using flow cytometry (see 3.1.5.1). As 

depicted in Figure 4.24 A-B, EpCAM levels showed an average decrease to 49% in cells 

transfected with EpCAM-specific siRNA compared to ctrl siRNA transfected cells.  

SiRNA treated cells were used for cell-matrix and cell-cell adhesion assays. In cell-

matrix adhesion assays, cells were added to matrigel-coated 96-well plates and adhesion was 

allowed for 2h (see 3.1.10.1). As shown in Figure 4.24 C, on average 7.27% of ctrl siRNA 

and 11.67% of EpCAM siRNA transfected cells were able to attach to the matrigel-matrix 

within 2h. These numbers display that on average EpCAM siRNA transfected cells adhered 

1.49-times better than ctrl siRNA transfected cells (Fig. 4.24 D). 

For cell-cell adhesion assays, transfected cells were first plated on 96-well plates to 

form a dense monolayer, and subsequently additional cells were allowed to adhere for 2h (see 

3.1.10.2). This setting led to four possible combinations: ctrl siRNA cells plated on ctrl 

siRNA cells, ctrl siRNA cell plated on EpCAM siRNA cells, EpCAM siRNA cells plated on 

ctrl siRNA cells and EpCAM siRNA cells plated on EpCAM siRNA cells. The results of 

these experiments are depicted in Figure 4.24 E-F, whereat the caption beneath the diagrams 

describes the cells, which were used as a feeder layer and the labeling above the graphs 
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depicts the cells, which were subsequently added. On average 11.26% and 10.87% of the ctrl 

siRNA treated cells were able to adhere to ctrl and EpCAM siRNA transfected cells 

respectively, whereas 15.81% and 14.55% of EpCAM-depleted cells were able to adhere to 

ctrl and EpCAM siRNA transfected cells within 2h (Fig. 4.24 E). Putting these numbers in 

relation to each other shows that adhesion efficiency was slightly higher when ctrl cells 

adhered to EpCAM-depleted cells (1.17-fold), when EpCAM-depleted cells adhered to ctrl 

cells (1.55-fold), and when EpCAM-depleted cells adhered to EpCAM-depleted cells (1.52-

fold) compared to the setting when ctrl cells adhered to ctrl cells (Fig. 4.24 F). It must be 

noted here that ctrl cells represent the cells with the highest EpCAM expression and, 

furthermore, that none of the observed differences was significant. Hence, EpCAM knock-

down did not significantly and measurably influence adhesion of Kyse 30 cells to matrix, nor 

to each other. 
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Figure 4. 24: Adhesion assays with siRNA transfected Kyse 30 cells. 

Kyse 30 cells were transiently transfected with either a ctrl or an EpCAM-specific siRNA, and subsequently 

used in adhesion assays to analyze the function of EpCAM as cell adhesion molecule in esophagel cancer cells. 

(A) EpCAM cell surface expression was assessed by flow cytometry with EpCAM-specific antibody (black lined 

histograms) and isotype control antibody (filled histograms). Shown are representative results from three 

independent experiments. (B) Relative mean fluorescence intensity ratios of EpCAM cell surface expression in 

cells transfected with ctrl or EpCAM-specific siRNA are given with standard deviations from three independent 

experiments. Controls are set to “1.0”. (C-D) Amounts of adherent cells in cell-matrix adhesion assays. (C) 

Mean percentages of adherent cells transfected with ctrl or EpCAM-specific siRNA are given with standard 

deviations from three independent experiments. Numbers were calculated relative to input. (D) Relative mean 

values of adherent cells transfected with ctrl or EpCAM-specific siRNA are given with standard deviations from 

three independent experiments. Controls are set to “1.0”. (E-F) Amounts of adherent cells in cell-cell adhesion 

assays. (E) Mean percentages of adherent cells transfected with ctrl or EpCAM-specific siRNA are given with 

standard deviations from three independent experiments. Numbers were calculated relative to input cells. (F) 

Relative mean values of adherent cells transfected with ctrl or EpCAM-specific siRNA are given with standard 

deviations from three independent experiments. Controls are set to “1.0”. P-values:   *p < 0.05; ** p < 0.01; *** 

p < 0.001. 
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4.8.2.2 EpCAM depletion impacts on cell-matrix but not cell-cell adhesion in Kyse 520 
cells 

Besides siRNA transfected Kyse 30 cells, Kyse 520high and Kyse 520low cells were 

used in adhesion assays (see 3.1.10) to obtain a better understanding about the role of EpCAM 

as an adhesion molecule in esophageal cancer cells.  

EpCAM cell surface levels were assessed using flow cytometry (see 3.1.5.1). As 

depicted in Figure 4.25 A-B, Kyse 520low cells on average displayed more than 4-fold lower 

EpCAM surface levels than Kyse 520high cells.  

Kyse 520high and Kyse 520low cells were used for cell-matrix and cell-cell adhesion 

assays. In cell-matrix adhesion assays, cells were added to matrigel coated 96-well plates and 

adhesion was allowed for 2h. As shown in Figure 4.25 C, on average 20.37% of Kyse 520high 

and 8.15% of Kyse 520low cells were able to attach to the matrigel matrix within 2h. These 

numbers show that on average Kyse 520low cells adhered 2.38-times worse than Kyse 520high 

cells (Fig. 4.25 D). 

For cell-cell adhesion assays, cells were first plated on 96-well plates to form a dense 

monolayer, and subsequently additional cells were allowed to adhere for 2h (see 3.1.10.2). 

This setting led to four possible combinations:  Kyse 520high cells plated on Kyse 520high cells, 

Kyse 520high cell plated on Kyse 520low cells, Kyse 520low cells plated on Kyse 520high cells, 

and Kyse 520low cells plated on Kyse 520low cells. The results of these experiments are 

depicted in Figure 4.25 E-F, whereat the caption beneath the diagrams describes the cells, 

which were used as a feeder layer and the labeling above the graphs depicts the cells, which 

were subsequently added. On average, 2.66% and 7.15% of the Kyse 520high cells were able to 

adhere to Kyse 520high and Kyse 520low cells, respectively, whereas 7.56% and 7.95% of Kyse 

520low cells were able to adhere on Kyse 520high and Kyse 520low cells within 2h (Fig. 4.25 E).  

Putting these numbers relative to each other shows that adhesion efficiency was higher 

when Kyse 520high cells adhered to Kyse 520low cells (2.25-fold), when Kyse 520low cells 

adhered to Kyse 520high cells (3.09-fold), and when Kyse 520low cells adhered to Kyse 520low 

cells (2.64-fold) compared to the setting when Kyse 520high cells adhered to Kyse 520high cells 

(Fig. 4.25 F). However, it must be noted here that none of the differences was significant. 

Hence, EpCAM did not significantly and measurably influence adhesion of Kyse 520 cells to 

each other. 
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Figure 4. 25: Adhesion assays in Kyse 520high and Kyse 520low cells. 

Kyse 520high and Kyse 520low cells were used in adhesion assays to analyze the function of EpCAM as an 

adhesion molecule in esophagel cancer cells. (A) EpCAM cell surface expression was assessed by flow 

cytometry with EpCAM-specific antibody (black lined histograms) and isotype control antibody (filled 

histograms). Shown are representative results from three independent experiments. (B) Relative mean 

fluorescence intensity ratios of EpCAM cell surface expression in Kyse 520high and Kyse 520low cells are given 

with standard deviations from three independent experiments. Controls are set to “1.0”. (C-D) Amounts of 

adherent cells in cell-matrix adhesion assays. (C) Mean percentages of adherent Kyse 520high and Kyse 520low 

cells are given with standard deviations from three independent experiments. Numbers were calculated relative 

to input. (D) Relative mean values of adherent Kyse 520high and Kyse 520low cells are given with standard 

deviations from three independent experiments. Controls are set to “1.0”. (E-F) Amounts of adherent cells in 

cell-cell adhesion assays. (E) Mean percentages of adherent Kyse 520high and Kyse 520low cells are given with 

standard deviations from three independent experiments. Numbers were calculated relative to input. (F) Relative 

mean values of adherent Kyse 520high and Kyse 520low cells are given with standard deviations from three 

independent experiments. Controls are set to “1.0”. P-values: *p < 0.05; ** p < 0.01; *** p < 0.001. 
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5 DISCUSSION 

Cancer is one of the leading causes of death worldwide, affecting more and more people 

(Jemal et al. 2011; Are et al. 2013). Enormous research efforts during the last decades led to a 

more detailed understanding of the processes which are involved in cancer formation and 

progression, and provided tumor patients with innovative and more efficient treatment 

strategies. However, many mechanisms of tumorigenesis are still poorly or not at all 

understood. Cancer progression mainly starts with only one or a few single cells, which gather 

mutations enabling the cells to escape from cellular regulatory mechanisms related to cell 

proliferation, apoptosis and growth control. The mutated cells can thereby proliferate 

indefinitely and eventually give rise to a primary tumor. As a next step, single cells of the 

primary tumor start to loosen and migrate away from the tumor bulk, invade into the blood or 

lymph system and thereby translocate within the body of the cancer patient. Eventually, the 

cells settle at a secondary site in the body where they again start to proliferate and thereby 

give rise to metastases, which represent the main cause of cancer related deaths (Sleeman and 

Steeg 2010; Stoecklein and Klein 2010) (see 1.1.1). To be able to efficiently treat and cure 

cancer, it is mandatory to have a detailed understanding of all the processes and mechanisms 

taking action during all the different stages of carcinogenesis, including the role of cancer 

related proteins. 

One of the proteins known to be involved in cancer formation and progression is the 

epithelial cell adhesion molecule (EpCAM). EpCAM was initially discovered as tumor 

antigen in 1979 as it induces the selection of specific antibodies upon immunisation of mice 

with colon carcinoma cells (Herlyn et al. 1979). Further studies revealed that EpCAM has an 

apparent molecular weight of 37-42 kDa, can be glycosylated (Gottlinger et al. 1986a; 

Gottlinger et al. 1986b), and consists of three major domains, i.e. a large extracellular domain, 

a single transmembrane domain as well as a small intracellular domain (Balzar et al. 1999b; 

Gires 2008). EpCAM was described to be a cell adhesion molecule in 1994 (Litvinov et al. 

1994b; Litvinov et al. 1997), while more recent studies revealed a role in cell signaling. The 

internal part of EpCAM (EpICD) can be shed from the rest of the molecule upon proteolytic 

cleavage (Maetzel et al. 2009) and form a complex with FHL-2 and β-catenin proteins 

(Martin et al. 2002; Labalette et al. 2004). Subsequently, this complex can translocate into the 

nucleus and bind to Lef-1, which enables the activation of EpCAM-specific genes like the 

oncogenic transcription factor c-myc, the cell cycle related protein cyclin-D1 and the 
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epidermal fatty acid binding protein (EFABP) (Munz et al. 2004; Maetzel et al. 2009; 

Chaves-Perez et al. 2013). Compared to normal tissue, in which EpCAM expression can only 

be found at the basolateral side of plasma membranes of simple, unstratified epithelia 

(Momburg et al. 1987; Litvinov et al. 1996), EpCAM is de novo or highly overexpressed in 

almost all carcinoma types (Zorzos et al. 1995; Litvinov et al. 1996). Its strong expression in 

cancer compared to appropriate healthy tissues is also the reason why EpCAM became an 

important prognostic and therapeutic marker (see 1.2.5.3) (Munz et al. 2010; van der Gun et 

al. 2010). Besides its role as prognostic marker and in therapy, EpCAM is nowadays also the 

most frequently used antigen to detect and retrieve circulating (CTCs) and disseminated 

tumor cells (DTCs) (Cohen et al. 2006; Criscitiello et al. 2010; Imrich et al. 2012). However, 

although EpCAM is a well-characterized protein, which already has been used in therapeutic 

approaches (Gires and Bauerle 2010; Munz et al. 2010), its role in cancer formation and 

progression is still not finally understood (van der Gun et al. 2010). This is especially true in 

case of CTCs, DTCs and metastases (see 1.2.4.3). Recent findings of our cooperation partners 

in Düsseldorf provided evidence that in case of esophageal carcinomas EpCAM is not 

constantly expressed throughout the various stages of carcinogenesis, but rather shows a 

dynamic expression. Thereby, primary tumors displayed high EpCAM expression levels, 

whereas the majority of cognate disseminated tumor cells (DTCs) revealed to be EpCAM-

negative (Driemel et al. 2013). Similar observations were already published by other groups, 

including a study by Jojovic et al., describing that large metastases formed by colon cancer 

cells showed similar staining patterns as primary tumors, while small metastases displayed a 

loss of EpCAM (Jojovic et al. 1998). In addition, in a comparative study of primary tumors 

and their cognate CTCs, EpCAM expression was found to be 10-fold less in CTCs than in 

tumors (Rao et al. 2005). This led to the postulation that EpCAM expression might be 

downregulated upon epithelial-to-mesenchymal transition (EMT) (Jojovic et al. 1998), an 

essential process in carcinogenesis during which cells change their phenotype from epithelial 

to mesenchymal, enabling them to loosen cell contacts and leave their surroundings (see 

1.1.2). In contrast, other studies correlated enhanced migration and invasion of cells to high 

EpCAM levels. One example for this is a study by Osta et al.. The group showed that 

downregulation of EpCAM in breast cancer cells is associated with decreased cell migration 

and invasion. This led to the assumption that, in case of breast carcinomas, high EpCAM 

expression is associated with increased metastasis (Osta et al. 2004). Additional studies in 

prostate and colon carcinomas also provided data about a correlation between EpCAM and 

increased cell invasion and metastasis (Lin et al. 2012; Ni et al. 2013). 
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In order to understand how EpCAM contributes to the formation and progression of 

carcinomas and why it is downregulated or lost at selected stages of carcinogenesis, the 

effects of EpCAM expression and depletion were analyzed in a set of diverse assays, whereat 

esophageal cancer cells were used as a model system. The results of these experiments will be 

subsequently discussed. 

 

5.1 EpCAM expression correlates with increased proliferation and 

formation of larger tumors 

Since an increased proliferation rate is one of the major hallmarks of EpCAM 

expressing carcinoma cells, the influence of EpCAM on proliferation was also analyzed in 

esophageal cancer cells. Experiments with esophageal Kyse 520 carcinoma cells, which were 

transfected with either a control or an EpCAM-specific siRNA, as well as trials with Kyse 

520high and Kyse 520low cells, revealed that cells displaying lower levels of EpCAM 

proliferated less than their counterparts expressing higher levels of EpCAM (see Fig. 4.7 and 

4.8). These results are in line with former findings of our own and other groups, which 

revealed that EpCAM expression is correlated to increased proliferation in colon, pharynx, 

breast, gastric, lung and pancreatic cancer cells (Munz et al. 2004; Osta et al. 2004; Maetzel 

et al. 2009; Wenqi et al. 2009; Hase et al. 2011; Thuma and Zoller 2013). EpCAM induces 

proliferation via its function as signaling molecule. This function depends is in great parts on 

regulated intramembrane proteolysis and the release of the intracellular domain EpICD, which 

eventually leads to activation of genes like cyclin D1 and c-Myc (Maetzel et al. 2009; 

Chaves-Perez et al. 2013). Presumably, this signaling cascade is also active in esophageal 

cancer cells, since experimental data evidenced that EpCAM becomes cleaved and EpICD is 

formed in Kyse 30 and Kyse 520 cells (see 4.2). However, so far no differences in c-Myc or 

cyclin D1 mRNA levels could be observed when comparing Kyse 520 cells transfected with a 

ctrl or an EpCAM-specific siRNA, or Kyse 520high and Kyse 520low cells (data not shown). It 

is therefore possible that EpCAM regulates a different set of genes in esophageal cancer cells. 

In any case, further experiments are necessary to elucidate how exactly EpCAM signaling 

induces proliferation in esophageal carcinomas. 

A second finding of these experiments was that effects on proliferation were more 

pronounced when cells were cultured under restrictive conditions (see Fig. 4.7), indicating 

that in case of esophageal cancer EpCAM expression has a larger influence in cells growing 
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under adverse conditions, such as the lack of nutrition. This assumption is supported by 

former findings of our group showing that effects of EpCAM overexpression in HEK 293 

cells are more pronounced under restrictive conditions (Munz et al. 2004). Indeed, an absence 

of nutrition can be found in primary tumors and large metastases, lacking proper angiogenesis 

and results in the prevention of further tumor growth and progression (Hiratsuka 2011; Leite 

de Oliveira et al. 2011; Barzi and Lenz 2012). It is therefore tempting to speculate that the 

expression of EpCAM enables cancer cells to survive such conditions until proper nutrition 

supply is warranted again. However, more experimental data need to be provided to 

strengthen this hypothesis, including data from other cancer entities grown under non-

restrictive and restrictive condition, such as lack of nutrition or hypoxia. 

Besides increasing proliferation rates, EpCAM was also found to lead to formation of 

larger tumors in vivo, when esophageal cancer cells are injected subcutaneously into 

immunodeficient mice (see 4.4). Compared to cells which were stably transfected with a ctrl 

shRNA, tumors formed from cells stably transfected with an EpCAM-specific shRNA were 

on average 2.78 times smaller (0.39g compared to 0.14g, see Fig. 4.9 C). Similar observations 

were made by our cooperation partners in Düsseldorf, who injected Kyse 520 cells, naturally 

occurring as two subpopulations with different EpCAM levels (Kyse 520high and Kyse 

520low), into the flanks of NOD/SCID mice, resulting in the formation of tumors with average 

weights of 0.35g (Kyse 520high cells) and 0.14g (Kyse 520low cells) (Driemel et al. 2013). In 

addition, a former study of our own group demonstrated that human embryonic kidney cells 

(HEK 293), stably transfected with an EpCAM-overexpressing construct, led to formation of 

larger tumors in vivo when subcutaneously injected into NOD/SCID mice, than cells stably 

transfected with a control construct, which barely generated tumors in vivo (Maetzel et al. 

2009).  

In contrast to tumor size, tumor occurrence in vivo was not influenced by expression of 

EpCAM in esophageal tumor cells in the present study. In both groups tumors formed in four 

out of five mice, independently of the EpCAM levels of injected cells (see Fig. 4.9 C). 

However, when comparing the EpCAM levels of cells before injection with those of their 

cognate tumor explants, a discrepancy was found for cells stably transfected with EpCAM-

specific shRNA (see Fig. 4.9 D-E). In contrast to ctrl shRNA transfected cells, displaying 

similar percentages of cells expressing no, low, intermediate and high levels of EpCAM in 

tumor cells before injection and tumor explants, relative numbers of cells expressing 

intermediate and high levels of EpCAM were substantially increased in tumors formed from 
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EpCAM-depleted cells compared to the corresponding cells before injection into mice (see 

Fig. 4.9 D-E). Furthermore, none of the tumors formed by EpCAM-depleted cells was found 

to be EpCAM-negative, but all tumors showed a certain level of EpCAM expression. These 

findings suggest a positive selection of EpCAM-expressing cells during cancer formation and 

growth. Cells expressing high levels of EpCAM seem to have a selection advantage, possibly 

due to increased proliferation rates and/or survival features, and thereby are able to overgrow 

the population of cells, which express EpCAM at low levels or do not express EpCAM at all. 

However, another explanation for the abovementioned findings could be that basically only 

EpCAM-positive, but not EpCAM-negative cells are capable to induce the formation of 

esophageal carcinomas. As a consequence, this would imply that epithelial cells of the 

esophagus, which do not express EpCAM, could never trigger tumor formation. At present, 

using shRNA or siRNA does not allow for the generation of true knock-out cells, which do 

not express EpCAM at all. Thus, a definite answer on the actual contribution to tumor 

formation, especially concerning the absolute necessity of EpCAM expression for this 

process, cannot be given. In this respect, further experiments should be conducted to address 

the point, whether EpCAM increases tumor formation or whether it is indispensible. To 

provide a complete knock-out, the EpCAM gene should be destroyed, using either TALENs 

(Morbitzer et al. 2011; Sun and Zhao 2013) or a CRISPR/Cas system in forthcoming studies 

(Cho et al. 2013; Sampson et al. 2013). 

So far, all results from in vitro and in vivo experiments, i.e. the positive correlation of 

EpCAM expression with increased proliferation rates, formation of larger tumors, and the 

obvious in vivo selection for EpCAM-positive cells during tumor growth, support the findings 

from Stoecklein et al. and Went et al., describing EpCAM as a tumor-promoting protein in 

esophageal cancer, correlated with bad prognosis for survival of patients (Went et al. 2004; 

Stoecklein et al. 2006). This is in line with findings in numerous other cancer entities, 

including lung (Kubuschok et al. 1999; Piyathilake et al. 2000), breast (Gastl et al. 2000; Osta 

et al. 2004; Spizzo et al. 2004), prostate (Poczatek et al. 1999; Zellweger et al. 2005; Ni et al. 

2013), bladder (Brunner et al. 2008), and pancreas (Li et al. 2007; Fong et al. 2008; 

Scheunemann et al. 2008) carcinomas, in which EpCAM expression is correlated with 

carcinogenesis, tumor progression, metastases formation and/or shorter survival. However, 

although in the majority of carcinomas EpCAM seems to be associated with cancer formation 

and progression, there are some cancer entities, i.e. renal (Seligson et al. 2004; Went et al. 

2005; Klatte et al. 2009) and thyroid (Ensinger et al. 2006; Ralhan et al. 2010a) carcinomas, 

in which the expression of EpCAM is associated with a protective role. In addition, there are 
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cancer types, including gastric (Songun et al. 2005; Deveci and Deveci 2007; Scheunemann et 

al. 2009), ovarian (Kim et al. 2003; Heinzelmann-Schwarz et al. 2004; Spizzo et al. 2006) 

and colorectal (Basak et al. 1998; Gosens et al. 2007; Kuhn et al. 2007) carcinomas, for 

which contradictory studies report on both, a protective and a cancer promoting role of 

EpCAM, as reviewed by van der Gun et al. in 2010 (van der Gun et al. 2010). As already 

mentioned (see 1.2.6), this is also the case for esophageal cancer, as a study by Kimura et al., 

in contrast to studies by Stoecklein et al. and Went et al., described EpCAM as tumor-

associated antigen, which is inversely correlated with tumor progression, stimulates an 

immunological response against cancer cells, increases cell adhesion, and suppresses 

formation of metastases (Kimura et al. 2007). Maybe a closer look at the various stages of 

carcinogenesis would provide an explanation for these contradictory findings, as it might be 

that the presence of EpCAM has different effects during the diverse stages of carcinoma 

progression. One possible explanation could be that EpCAM expression enhances cancer cell 

proliferation and thereby is associated with tumor growth, but prevents cell migration, maybe 

by the formation of cell-cell contacts (see 1.2.5.1). Indeed, our collaboration partners provided 

evidence supporting this hypothesis. On the one hand, they have shown that high EpCAM 

expression on DTCs is associated with increased occurrence of metastases and reduced 

overall survival of patients. On the other hand, they found that most of the DTCs were 

actually EpCAM-negative, although these cells derived from primary tumors expressing high 

amounts of EpCAM (Driemel et al. 2013). This supports the notion that EpCAM is important 

for the growth of primary tumors and outgrowth of metastases, whereas it is dispensable 

during migration and invasion of metastasising cells. To learn more about why EpCAM is 

downregulated in certain carcinoma cells, another set of experiments was performed using 

esophageal cancer cells as model system (see 4.5 - 4.7). The results of these experiments will 

be subsequently discussed. 

 

5.2 Loss of EpCAM leads to traits of EMT in esophageal cancer cells 

Besides a necessity for proliferation, migration and invasion of cells are essential 

processes during cancer progression and were therefore analyzed in the present study. By 

using Kyse 30 and Kyse 520low esophageal cancer cells in scratch assays and subsequently 

staining them with a combination of EpCAM-specific and fluorochrome-coupled antibodies, 

it was found that migrating cells display a different EpCAM staining pattern compared to 

their non-migrating counterparts (see 4.5.1). Non-migrating cells basically displayed a strong 
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membranous EpCAM staining, with only few fluorescence signals detectable inside the cell 

(Fig. 4.10, Fig. 4.11). Thereby they reflected the typical EpCAM staining pattern that was 

already observed in various other carcinoma cells (Denzel et al. 2009; Maetzel et al. 2009; 

Lee et al. 2012). However, this staining pattern was completely changed in migrating cells. 

Here, EpCAM fluorescence signals were mainly located in the cytoplasm, whereas 

membranous staining was almost or totally lost (Fig. 4.10 d-m, Fig. 4.11). Furthermore, a 

correlation between EpCAM-specific staining intensity and cell migration could be observed, 

with fluorescence signals being weaker, the further cells had migrated (Fig. 4.10 d-m, Fig. 

4.11). This redistribution and loss of fluorescence signals mirrors a change in EpCAM 

location and expression, apparently essential to allow cells to migrate. Additional experiments 

should be performed to ascertain if overexpression of EpCAM can interfere with or even 

prevent cell migration. 

The obvious changes in EpCAM distribution and expression raised the question how 

EpCAM is downregulated in migrating cells. The obtained data suggested a stepwise 

regulation, whereat in a first step EpCAM is removed from the membrane and relocated into 

the cytoplasm, and in a second step EpCAM expression is modulated at the protein and, 

eventually, at the transcriptional level. A recent study from our group provided new data 

about the regulation of murine and human EpCAM upon RIP. Hachmeister et al. reported that 

not only TACE but also BACE-1 is capable to cleave EpCAM (see 1.2.3). However, as 

BACE-1 is a sheddase with a pH optimum of 4.5, it is not active at the cell membrane but in 

acidified cell components such as endosomes and lysosomes (Hachmeister et al. 2013). The 

finding that BACE-1 can cleave EpCAM thus raised the hypothesis that localisation and 

degradation of EpCAM are partly regulated by endocytosis. Indeed, our group was able to 

identify specific interactions of EpCAM with proteins associated with clathrin-dependent and 

-independent endocytosis in a SILAC (stable isotope labeling by/with amino acids in cell 

culture) interaction study in murine cells (unpublished data). Among the identified interaction 

partner were the clathrin light chain A (CLTA) and clathrin heavy chain 1 (CLTC) proteins, 

as well as the adaptor proteins AP2A1 and AP2B1, subunits of the adaptor-protein complex 

AP-2, which mediates the interaction between clathrins and the target molecules (Traub 2005; 

McMahon and Boucrot 2011). In addition, flotillin 1 and flotillin 2, which play a role in 

clathrin-independent endocytosis (Banning et al. 2011; Zhao et al. 2011), were identified as 

potential EpCAM interaction partners. Endocytosis would provide a further layer of 

complexity to the processes, which are involved in EpCAM regulation. Additionally, as 

endocytosis is a comparatively fast and reversible process (Conner and Schmid 2003; 
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Sigismund et al. 2008; El-Sayed and Harashima 2013), it would enable a quick and reversible 

turnover of EpCAM at the cell membrane. This, in consequence, would allow a fast adaption 

of EpCAM cell surface levels to new environmental and functional requirements. However, 

further experiments are mandatory to provide evidence if and how endocytosis of EpCAM 

occurs. As regulation of EpCAM expression could be due to various processes, including 

EpCAM promoter silencing, regulation of EpCAM-specific transcription factors, and 

activation of EpCAM-specific miRNAs, additional experiments are necessary to reveal the 

actual mechanism(s) of EpCAM downregulation in migrating cells. 

After finding that EpCAM is redistributed and subsequently downregulated in migrating 

cells, scratch assays were performed with siRNA transfected Kyse 30 cells to investigate if 

forced downregulation of EpCAM enhances migration of cells (see 4.5.2.1). Indeed, it was 

found that EpCAM depletion using an EpCAM-specific siRNA led to an increase of cell 

migration velocity, confirming the findings obtained in immunofluorescence staining 

experiments (Fig. 4.12 D-E). Besides the induction of cell migration, upregulation of the 

mesenchymal marker vimentin could be observed in EpCAM depleted cells when compared 

to control cells (see Fig. 4.12 F), pointing towards a phenotypic change of cells from an 

epithelial to a mesenchymal phenotype. To ensure that effects on cells were not only due to 

transfection with siRNA, experiments were repeated with esophageal Kyse 520high and Kyse 

520low cells, which represent naturally occurring variants of one single cell line having the 

same genetic background but differing in their EpCAM expression levels (see 4.5.2.2). 

Indeed, experiments performed with Kyse 520 variants confirmed data obtained in scratch 

assay experiments with siRNA transfected Kyse 30 cells. Compared to Kyse 520high cells, 

Kyse 520low cells showed a significantly higher migration velocity as well as much higher 

mRNA levels of the mesenchymal markers N-cadherin and vimentin (see Fig. 4.13 D-F). 

These differences could be further amplified when Kyse 520low cells were transfected with an 

EpCAM-specific siRNA (see 4.5.2.3). As in Kyse 30 cells, EpCAM-depleted Kyse 520low 

cells showed an enhanced migration velocity and increased mRNA levels of vimentin, 

compared to control cells (see Fig. 4.14 D-F). Furthermore, mRNA levels of E-cadherin were 

slightly decreased in EpCAM-depleted cells (see Fig. 4.14 F). Taken together, these data led 

to the assumption that Kyse 520high and Kyse 520low cells not only display two subpopulations 

with different EpCAM expression levels, but actually represent an epithelial (Kyse 520high) 

and a more mesenchymal (Kyse 520low) cell type, depending on the expression level of 

EpCAM. This hypothesis was further confirmed by an experiment performed to analyze the 

invasive capacity of cells expressing different levels of EpCAM. Kyse 520high and Kyse 
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520low cells were thereby added to fibroblast spheroids and invasion of the cancer cells was 

monitored (see 4.5.3). Again, Kyse 520low cells displayed a more mesenchymal phenotype 

characterized by massive invasion into fibroblast spheroids, whereas invasion of Kyse 520high 

cells was almost not observable (see Fig. 4.15, Fig. 4.16). Tumor cells with different 

capacities, concerning epithelial and mesenchymal characteristics, were also described for the 

case of tumor-inducing cells (TICs). In 2011, Biddle et al. reported on two distinct TIC 

subpopulations. One TIC population was characterized as CD44high/EpCAMhigh (termed ESA-

1 for epithelial specific antigen in this study) and displayed an epithelial phenotype, including 

high proliferation rates. The second TIC population displayed a CD44high/EpCAMlow cell 

surface phenotype and showed mesenchymal characteristics such as higher levels of 

mesenchymal markers vimentin and TWIST, reduced expression of epithelial markers E-

cadherin and involucrin, slow proliferation rates and a high migratory ability (Biddle et al. 

2011). Furthermore, Biddle and colleagues observed that CD44high/EpCAMhigh cells can 

switch their phenotype to CD44high/EpCAMlow and vice versa, indicating a high plasticity of 

these cell populations (Biddle et al. 2011). It is conceivable that such a plasticity and trans-

differentiation of TIC populations is central to cancer progression, particularly to processes of 

metastases formation. 

After finding that EpCAM downregulation led to a phenotypic change from epithelial to 

mesenchymal, it was tested if vice versa induction of EMT led to a decrease of EpCAM 

expression. Therefore, cells were treated with TGFβ, a known inducer of EMT (Moreno-

Bueno et al. 2009) (see 4.6). To examine effects of TGFβ treatment, the non-small lung 

cancer cell line A549, which is known to react to this kind of treatment (Kasai et al. 2005; 

Kim et al. 2007), was used as a control along with esophageal cancer cell lines Kyse 30 and 

Kyse 520 in the assay. In summary, TGFβ treatment led to induction of EMT, revealed by 

morphologic changes, reduced mRNA levels of the epithelial marker E-cadherin and/or 

increased mRNA levels of the mesenchymal markers N-cadherin and vimentin, in all three 

cell lines (see 4.6.1, 4.6.2.1, 4.6.2.2). However, in case of Kyse 520 cells, only Kyse 520low 

(see 4.6.2.2) but not Kyse 520high cells (data not shown) showed a reaction upon TGFβ 

treatment.  

In all cell lines, which showed signs of EMT a downregulation of EpCAM was 

observed. However, whereas in A549 cell, which showed the most prominent reaction to the 

treatment with TGFβ, EpCAM levels were decreased on both, mRNA and cell surface level 

(see Fig. 4.17 B-D), in Kyse 30 and Kyse 520low cells EpCAM downregulation was observed 
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at cell surface levels only, while mRNA levels remained constant (Kyse 520low cells, see Fig. 

4.19 B-D) or were even slightly increased (Kyse 30 cells, see Fig. 4.18 B-D). The reason(s) 

for these differences remain(s) so far unknown. One possibility is that A549 cells react faster 

to TGFβ treatment and thereby showed a more complete change of phenotype. This is 

supported by the findings that A549 cells not only showed an upregulation of mesenchymal 

markers, but also a substantial decrease of the epithelial marker E-cadherin, which was not 

observed in any of the Kyse cell lines. Furthermore, A549 cells showed the most drastic 

change in cell morphology (see Fig. 4.17 A). If this assumption is true, EpCAM 

downregulation at mRNA level should also be observable in Kyse cells when treated with 

TGFβ for a longer time period. However, first experiments to verify this hypothesis remained 

so far inconclusive. Another option to test this hypothesis is to perform TGFβ treatment in 

A549 cells for a shorter time period to see if EpCAM downregulation under these 

circumstances is only observable at the cell surface, but not the mRNA level. 

A second possible explanation for the abovementioned finding is that EpCAM 

regulation upon EMT induction fundamentally differs in A549 and Kyse cells. From what 

could be observed in the experiments, EpCAM seems to be regulated at the transcriptional 

level in A549 cells, whereas regulation takes place at the post-transcriptional and/or 

posttranslational level in Kyse cells. This means that in A549 cells EMT-dependent EpCAM 

depletion is due to either a change of the chromatin structure in the EPCAM gene or to 

changes of proteins involved in EPCAM gene transcription, eventually leading to a decrease 

of EpCAM mRNA levels. In contrast, regulation of EpCAM in Kyse cells is either due to 

impaired EpCAM translation, which could be the result of specific miRNAs´ activity, an 

insufficient transport of the EpCAM protein to the cell membrane or a decreased half-life time 

of EpCAM at the membrane. From what is known so far, none of the mentioned possibilities 

can be excluded. It is known that EpCAM expression can be regulated at the epigenetic level 

by DNA methylation of the EPCAM promoter region at exon 1 (Spizzo et al. 2007; Tai et al. 

2007; van der Gun et al. 2011) as well as by reduction of activating histone marks in the 

EPCAM gene (Lu et al. 2010; van der Gun et al. 2011). Other studies report that proteins such 

as ZEB-1 (Vannier et al. 2013), tumor necrosis factor α (TNFα) (Gires et al. 2001), the 

chromatin-remodeling factor Smarcd3/Baf60c (Jordan et al. 2013) and the tumor suppressor 

p53 (Sankpal et al. 2009), as well as miRNAs like miR-26a, miR-101 (Bao et al. 2012a; Bao 

et al. 2012b) and miR-118 (Ji et al. 2011), are involved in EPCAM gene regulation. Using 

miRNA prediction tools, 46 (http://www.microrna.org) and 32 (http://www.microrna.gr/ 

microT-CDS) miRNAs showing a high probability to bind specifically to EpCAM mRNA 
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could be found, respectively. However, so far no study could confirm a direct binding of any 

miRNA to the mRNA of EpCAM. Findings from other studies revealed that glycosylation of 

EpCAM is associated with the stability of EpCAM at the membrane, whereby glycosylation 

of asparagin 198 was found to have a stabilising effect (Munz et al. 2008). Furthermore, a 

recent study from our group provided a more detailed insight into the processing of EpCAM 

in humans and mice. Hachmeister et al. could show that EpCAM gets not only cleaved by 

TACE but also by BACE-1 (Hachmeister et al. 2013) a sheddase with a pH optimum of 4.5 

that is active in endosomes and lysosomes (Venugopal et al. 2008). Therefore it is tempting to 

speculate that EpCAM can also be regulated by endocytosis and subsequent cleavage by 

BACE-1 in endosomes and lysosomes (Hachmeister et al. 2013). It is essential to find out 

how exactly EpCAM is downregulated during EMT, and whether or not the mechanisms of 

downregulation vary in different carcinoma types, as these findings not only provide a more 

complete picture of EpCAM but also generate insights into processes that occur during EMT. 

The knowledge about mechanisms underlying the formation of metastases is mandatory in 

order to interfere with this driving, lethal process of carcinogenesis. 

After finding that EpCAM levels were reduced, at least on cell surface, it was analyzed 

if an overexpression of EpCAM could weaken or even prevent the effects of TGFβ induced 

EMT. To do so, cell lines stably transfected with different EpCAM constructs were used in 

another set of TGFβ experiments. As A549 and Kyse 30 cells showed the strongest effects of 

EMT induction, these cell lines were also used for the additional TGFβ assays. However, this 

time the cells were overexpressing either YFP-tagged full length EpCAM (EpCAM-YFP), 

YFP-tagged EpICD (EpICD-YFP) or a control construct (YFP). As in previous experiments 

cell morphology and EMT marker levels were analyzed to rate the effects of TGFβ treatment 

(see 4.7). The use of different EpCAM overexpression constructs allowed for the 

discrimination of effects mediated by the adhesive and the signaling function of EpCAM. 

Effects would be due to the adhesive function of EpCAM if they can only be observed in cells 

expressing EpCAM-YFP, but not in cells expressing EpICD-YFP, whereas effects due to the 

signaling function of EpCAM should be observed in EpCAM-YFP and EpICD-YFP 

overexpressing cells. However, findings from the experiments were rather disappointing, as 

neither overexpression of EpICD nor full length EpCAM could prevent or significantly 

influence TGFβ induced changes in A549 and Kyse 30 cells. Basically almost no differences 

could be observed between TGFβ treated control cells and TGFβ treated cells overexpressing 

EpCAM constructs in term of cell morphology and EMT marker regulation (see Fig. 4.20, 

Fig. 4.21). Only in A549 cells, overexpression of EpCAM-YFP correlated with a slightly 
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reduced downregulation of E-cadherin as well as with a slightly lower upregulation of N-

cadherin and vimentin after addition of TGFβ compared to control cells (see Fig. 4.20 C), 

meaning that full length EpCAM in this cell line could somewhat dampen the effects of 

induced EMT. As no differences were found between the A549 cells overexpressing YFP and 

those which overexpressed EpICD-YFP, observed effects are most likely due to functions of 

full-length EpCAM. Although the effects of EpCAM on induction of EMT in A549 cells were 

only marginal, it should be asked why EpCAM had an effect in A549 but not in Kyse 30 cells. 

A possible explanation for this might be the diverse strategies for EpCAM downregulation. 

Maybe downregulation strategies of A549 cells, targeting the EPCAM gene are not efficiently 

working on the exogenous EpCAM construct. This assumption is supported by the finding 

that EpCAM mRNA levels were not significantly decreased in A549 cells overexpressing 

EpCAM-YFP when treated with TGFβ (see Fig. 4.20 B). This effect should also be visible in 

EpICD overexpressing cells, however, primers used for qRT-PCR analyses bind on a part of 

the EpCAM mRNA which is not present in the EpICD construct. In contrast, strategies to 

deplete EpCAM in Kyse 30 cells might also efficiently work in case of the exogenous 

EpCAM. However, due to technical limitations cell surface levels of EpCAM could not be 

detected, making it impossible to draw a final conclusion. To address this question, 

experiments should be repeated using an experimental setting in which mRNA, total protein, 

and cell-surface levels of EpCAM can be assessed. 

Taken together, experiments discussed in the last two chapters revealed the role of 

EpCAM in esophageal cancer cells and provided an explanation for the finding that EpCAM 

is downregulation during certain stages of carcinogenesis. It could be shown that expression 

of EpCAM is associated with increased proliferation of esophageal cancer cells, as well as 

with formation of larger tumors and a positive selection of cells in NOD/SCID mouse model. 

In contrast, EpCAM depletion provides cells with a more mesenchymal phenotype 

accompanied with increased migratory and invasive potential, and increased levels of 

mesenchymal markers. During induction of EMT, EpCAM was found to be downregulated. 

Although EpCAM overexpression alone is not sufficient to prevent effects of induced EMT, 

EpCAM should not be considered as a mere protein that is downregulated during EMT. 

Rather EpCAM plays an active role in sustaining the epithelial phenotype in esophageal 

cancer cells. This hypothesis is also supported by in vivo findings of our collaboration 

partners. By analysing DTCs from esophageal cancer patients, they could correlate high levels 

of EpCAM on these cells with an increased occurrence of lymph node metastases. However, 

they also found that the majority of DTCs was actually EpCAM negative, although the cells 
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derived from primary tumors, which were characterized by a high expression of EpCAM 

(Driemel et al. 2013). These data underlined the significance of EpCAM expression during 

the outgrowth of primary tumors and metastases, as well as the finding that EpCAM depletion 

is necessary to provide cells with a mesenchymal phenotype, allowing them to metastasize. 

The next chapter will concentrate on the molecular mechanisms underlying the distinct 

functions of EpCAM during carcinogenesis. 

 

5.3 The mechanism behind – How does EpCAM sustain the epithelial 

phenotype? 

From what is known about EpCAM until now, there are two possibilities how it could 

sustain the epithelial phenotype of cells. On the one hand, EpCAM-specific signaling might 

lead to the induction or shut-down of one or more specific pathways. On the other hand, cell 

contacts formed by the extracellular part of EpCAM could belt cells together and thereby 

prevent migration and invasion.  

The TGFβ pathway is an important and well characterized pathway involved in cancer 

related EMT (Willis and Borok 2007; Tiwari et al. 2012) (see 1.1.2.3). To analyze if EpCAM 

plays a role in regulating this pathway, mRNA levels of key players involved in this 

pathways, i.e. the transcription factors SNAIL, SLUG, TWIST-1, TWIST-2, ZEB-1 and ZEB-

2, were assessed in A549 and Kyse 30 cells, transfected with either a control or an EpCAM-

specific siRNA (see 4.8.1). To ensure the functionality of the pathway in the cell lines used, 

activation of the pathway was tested upon treatment with TGFβ. Experiments revealed an 

induction of the TGFβ pathway in both, A549 and Kyse 30 cells, demonstrated by increased 

mRNA levels of SNAIL, SLUG and ZEB-2 in A549 cells (see Fig. 4.22 A), and increased 

levels of SNAIL and SLUG in Kyse 30 cells (see Fig. 4.23 A), respectively. However, 

although the TGFβ pathway was shown to be functional in A549 and Kyse 30 cells, no 

activation could be observed upon EpCAM depletion with a specific siRNA, revealing that 

EpCAM downregulation is not associated with activation of the TGFβ pathway in these cell 

lines (see Fig. 4.22 B-D, Fig. 4.23 B-D).  

 Besides the TGFβ pathway, many other processes are known to be associated with 

activation and progression of EMT. Other well known pathways are the mitogen-activated 

protein kinase (MAPK) pathway (Grotegut et al. 2006; Tiwari et al. 2012), the 
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phosphoinositide 3-kinase (PI3-K) pathway (Grille et al. 2003; Xia et al. 2008) and the Notch 

signaling pathway (Sahlgren et al. 2008). However, all these pathways eventually lead to the 

induction and expression of SNAIL transcription factor, which could never be observed in 

case of EpCAM knock-down experiments, making it unlikely that EpCAM sustains the 

epithelial phenotype of cells by suppressing one of these pathways. Recently, also cyclin D1, 

a known target of EpCAM signaling (Chaves-Perez et al. 2013), was found to play a role in 

EMT, whereby downregulation of cyclin D1 led to an increased expression of mesenchymal 

genes and enhanced cell migration (Tobin et al. 2011). But although it is tempting to 

speculate that EpCAM sustains the epithelial phenotype by activating cyclin D1, this is not 

likely as downregulation of cyclin D1 also induces SLUG expression (Tobin et al. 2011), 

which was never observed in the course of EpCAM downregulation.  

Other important factors which are regulated during EMT are matrix metalloproteinases 

(MMPs) and extracellular matrix proteins. These proteins, which play a role in altering cell-

matrix and cell-cell interactions through modulation of integrin- and cadherin functions 

(Berrier et al. 2000), are known to be activated upon hepatocyte growth factor (HGF)- and 

TGFβ signaling (Moustakas and Heldin 2012; Tiwari et al. 2012) and also play a role in 

sustaining EMT upon activation of positive feedback loops (Radisky et al. 2005; Billottet et 

al. 2008; Thiery et al. 2009). Indeed, matrix metalloproteinase 7 (MMP7) was found to be a 

target of EpCAM, whereat EpICD signaling activates MMP7 gene expression (Denzel et al. 

2012). It was shown that EpCAM and MMP7 were most prominently expressed at the leading 

edges of head and neck carcinomas. This appears consequential as these parts of the tumor 

represent the sites of most prominent tissue remodeling (Denzel et al. 2012). The substrate 

spectrum of MMP7 includes proteins such as collagen, vitronectin, proteoglycans and 

fibronectin. Additionally, MMP7 is involved in the proteolytic shedding of ectodomains, 

whereby it regulates the biological functions of membrane proteins such as heparin-binding 

epidermal growth factor precursor (proHB-EGF), membrane-bound Fas ligand (FasL) and E-

cadherin (Ii et al. 2006). Taken together, MMP7 was found to promote tumor cell 

proliferation and invasion, as well as apoptosis of cells adjacent to tumor cells, thereby 

promoting cancer growth and progression (Shiomi and Okada 2003; Ii et al. 2006; Chen et al. 

2013). Upregulation of MMP7 by EpCAM appears to contradict the findings of this study, 

which provided evidence that EpCAM is involved in sustaining the epithelial phenotype of 

cells and prevents cell migration and invasion. However, as already mentioned, in certain 

types of cancer, including breast, prostate and colon carcinomas, EpCAM expression was also 

found to be associated with increased tumor invasion and migration (Osta et al. 2004; Sankpal 
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et al. 2009; Lin et al. 2012; Ni et al. 2013). These functions could be mediated by the 

EpCAM-associated expression of MMP7 (Denzel et al. 2012). However, it remains to be 

elucidated if EpCAM-mediated expression of MMP7 also plays a role in esophageal 

carcinomas. 

Another expanding field is the regulation of EMT by miRNAs. By now, several 

miRNAs are known to be involved in this process, including the miR-200 family (Gregory et 

al. 2008; Korpal et al. 2008; Park et al. 2008), miR-34a (Kim et al. 2011a) and miR-192 (Kim 

et al. 2011b), which are found to inhibit EMT, as well as the EMT promoting miRNAs miR-

155 (Kong et al. 2008), miR-10 (Ma et al. 2007) and miR-27 (Zhang et al. 2011). EpCAM 

downregulation was already associated with regulation of miRNAs. Kandalam et al. showed 

in 2012 that in Y79 retinoblastoma cells, depletion of EpCAM correlates with downregulation 

of miRNAs in the 17-92 miRNA cluster, which is involved in cell viability, proliferation and 

invasion (Kandalam et al. 2012). Still, to find out if EpCAM sustains the epithelial phenotype 

by regulating miRNAs, further experiments are necessary. One approach could make use of a 

set of miRNA arrays, comparing the miRNA levels of control and EpCAM-depleted cells as 

well as those of control and EpCAM-overexpressing cell lines. In combination with qRT-PCR 

candidate validation, such arrays might provide sound data about EpCAM-regulated miRNAs. 

 EpCAM is not only known as cell signaling molecule but also as protein mediating 

homophilic cell-cell adhesions (see 1.2.5.1). By keeping cells in contact, EpCAM could 

prevent cell scattering, migration and invasion, and thereby sustain the epithelial phenotype. 

To analyze if EpCAM depletion correlates with a loss of cell adhesion in esophageal cancer 

cells, Kyse 30 cells transfected with a control or an EpCAM-specific siRNA, as well as Kyse 

520high and Kyse 520low cells, were compared in cell adhesion assays (see 4.8.2). Obtained 

experimental data showed no correlation of EpCAM expression to cell-cell adhesion in Kyse 

30 (see Fig. 4.24 E-F) and Kyse 520 cells (Fig. 4.25 E-F). These results were rather 

unexpected as EpCAM was described and acknowledged as cell-cell adhesion molecule 

already in 1994 (Litvinov et al. 1994a; Litvinov et al. 1994b). However, adhesive function of 

EpCAM was demonstrated by overexpressing the protein in cells which actually showed no 

EpCAM expression. Only in these cells, EpCAM-mediated formation of intercellular 

contacts, cell aggregation and homotypic cell sorting, as well as EpCAM-associated 

suppression of invasive growth was undoubtedly documented (Litvinov et al. 1994b). In 

1997, another study concerning the adhesive function of EpCAM was published, this time 

showing that EpCAM expression leads to modulation and abrogation of E-cadherin-mediated 
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cell-cell contacts (Litvinov et al. 1997). Later it was found that EpCAM abrogates E-

cadherin-mediated cell adhesions without the involvement of β-catenin, by indirectly 

disrupting the link between α-catenin and F-actin (Winter et al. 2003a). Still, also in these 

studies experiments were performed in murine fibroblast L-cells, showing no endogenous 

expression of E-cadherin and EpCAM, or in immortalized mammary epithelial HBL-100 cells 

line, which express E-cadherin but still are EpCAM-negative. This makes it difficult to judge 

if the findings of these studies reflect the processes in epithelial cancer cell lines or are just 

side-products of exogenous EpCAM expression in actually EpCAM-negative cells. However, 

even if EpCAM influences cadherin-mediated cell adhesion also in the esophageal cancer 

cells used in this study, this should not play any role as all cell adhesion assays were 

performed w/o calcium, meaning that cell adhesions formed by the calcium dependent 

cadherins, including E-cadherin, were annihilated anyway. One possible explanation for the 

missing link between EpCAM depletion and a loss of cell adhesion in the majority of the 

performed experiments could be that downregulation of EpCAM was not efficient enough, 

whereby remaining EpCAM molecules were sufficient to maintain cell-cell adhesion. This 

hypothesis would be easy to prove by performing cell adhesion assays with epithelial cells in 

which EpCAM is entirely knocked out. If EpCAM indeed plays an essential role as adhesion 

molecule, this should lead to a strong impairment of cell adhesion. Other proteins which 

might interfere with this experiment are members of the carcinoembryonic antigen related cell 

adhesion molecules (CEACAM) protein family, which belong to the Immunoglobulin (Ig) 

superfamily (Pavlopoulou and Scorilas 2014). As they are able to form cell adhesions in a 

calcium independent way (Beauchemin and Arabzadeh 2013; Tchoupa et al. 2014) they may 

mask potential effects of EpCAM depletion. Of course, a second possible explanation for the 

findings in this assays could be that EpCAM only plays a minor or no role as cell adhesion 

molecule in (a subset of) epithelial carcinoma cells. However, findings from the second part 

of the adhesion assay experiments provided evidence that this is rather unlikely. Besides the 

impact of EpCAM on cell-cell adhesion, also a potential influence of the protein on cell-

matrix adhesion was investigated. Thereby, it was observed that EpCAM significantly 

enhanced cell-matrix adhesion in Kyse 520 cells, whereat on average twice as many Kyse 

520high than Kyse 520low cells showed adhesion to a matrigel matrix (Fig. 4.25 C-D). 

However, as already seen in case of cell-cell adhesion, EpCAM depletion had no influence on 

cell-matrix adhesion of siRNA transfected Kyse 30 cells (Fig. 4.24 C-D). Further experiments 

are essential to definitely ensure or reject the role of EpCAM as cell adhesion molecule in 
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epithelial cells and to get insights into how EpCAM modulates cell contacts provided by other 

cell adhesion molecules. 

Unfortunately, none of the experiments performed in the current study was sufficient to 

definitely explain how EpCAM sustains the epithelial phenotype in cells. So far it could be 

shown that EpCAM is most likely not involved in the regulation of the TGFβ pathway and 

that partial downregulation of EpCAM does not impair cell-cell and not always interferes with 

cell-matrix adhesion. Therefore, more research effort is necessary to understand not only what 

EpCAM does in the cells, but also how this is realized.  
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5.4 Conclusion 

EpCAM is a well-characterized tumor-associated protein (Imrich et al. 2012; Patriarca 

et al. 2012), which is overexpressed in most carcinomas and primarily correlated with a bad 

prognosis (van der Gun et al. 2010). However, although the function of EpCAM is well 

characterized in primary tumors, so far little is known about its role during alternative stages 

of carcinogenesis, such as detachment of tumor cells from the primary cancer, migration and 

invasion of circulating and disseminated tumor cells, and metastatic outgrowth of cells at 

secondary sites of the body. Furthermore, there is evidence that EpCAM is not stably 

expressed during all processes of cancer formation and progression, but is rather 

downregulated in CTCs, DTCs and small metastases (Jojovic et al. 1998; Rao et al. 2005; 

Driemel et al. 2013). The aim of the current study was to find out how EpCAM expression 

and repression influence tumor formation and progression during the different stages of 

carcinogenesis to provide a better understanding of processes essential for cancer 

development and, thus, treatment. 

Initial experiments performed during this study revealed that EpCAM is cleaved in 

esophageal cancer cells (see 4.2) as it has already been shown for HCT-8, FaDu and EpCAM 

overexpressing HEK 293 cells (Maetzel et al. 2009), implying that EpCAM is functional as 

cell signaling molecule also in the tested esophageal cell lines. Indeed, further experiments 

provided evidence that EpCAM expression is associated with enhanced proliferation in the 

these cells, as downregulation of EpCAM led to decreased proliferation rates (see 4.3.1). 

Same findings were made when comparing Kyse 520high and Kyse 520low cells, whereby Kyse 

520low cells displayed substantial lower cell proliferation rates compared to Kyse 520high cells 

(see 4.3.2). Furthermore, strong expression of EpCAM was associated with the formation of 

larger tumors and the provision of a selection advantage in vivo (see 4.4). Despite these 

promoting effects, EpCAM was found to be redistributed into the cytoplasm and eventually 

downregulated in migrating cells (see 4.5.1). Based on this finding, further experiments were 

performed in which the effects of a downregulation of EpCAM were assessed. It was shown 

that low levels of EpCAM correlate with higher cell migration rates (see 4.5.2), enhanced 

invasive capacity (see 4.5.3) and increased levels of mesenchymal markers (see 4.5.2). 

Experiments including TGFβ treatment of cells revealed furthermore a downregulation of 

EpCAM in cells forced to undergo EMT (see 4.6), an essential process in carcinoma 

progression (Chaffer and Weinberg 2011). In addition it could be shown that overexpression 

of EpCAM alone is not sufficient to prevent the effects of TGFβ induced EMT (see 4.7). 
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Taken together, the experiments reported here revealed a positive correlation of 

EpCAM expression with cell proliferation and tumor growth of esophageal cancer cells in 

vitro and in vivo. These findings are in line with experimental data correlating EpCAM to 

tumor growth and progression in esophageal carcinomas as well as other cancer types. 

However, it could also be shown that downregulation of EpCAM alone is sufficient to induce 

mesenchymal traits, including enhanced migratory and invasive capacity as well as increased 

levels of mesenchymal markers. Thus, EpCAM must be considered as a molecule 

substantially participating in sustaining the epithelial phenotype of cells. However, 

experiments performed so far could not reveal the molecular mechanism(s) underlying this 

finding, providing only evidence that regulation of the TGFβ pathway by EpCAM signaling 

(see 4.8.1) and EpCAM-mediated cell adhesion (see 4.8.2) do not seem to be involved in this 

process.  

Based on the findings of this study the following model was postulated. High levels of 

EpCAM are of importance during proliferative phases of carcinogenesis, such as initial 

growth of the tumor and outgrowth of metastases. However, downregulation of EpCAM is 

essential to allow for a more quiescent and dormant state of cells, required during phases of 

circulation and dissemination, to enable cells to detached and migrate away from the primary 

tumor, and to foster the migration and invasion of cells into the surrounding tissues (Fig. 5.1).  

For the first time, this study provides a rationale for the observed differences in EpCAM 

expression during the various steps of carcinogenesis, including findings in esophageal cancer 

patients, in which the majority of DTCs was found to be EpCAM-negative, despite primary 

tumors expressing high levels of EpCAM (Driemel et al. 2013). Furthermore, these findings 

provide an explanation for the dual role of EpCAM in certain cancer types, including 

esophageal carcinomas (van der Gun et al. 2010). Although EpCAM expression often 

correlates with proliferation of cancer cells and tumor growth, the recently identified role in 

maintaining an epithelial phenotype suggests that EpCAM expression can also be 

advantageous for cancer patients, as it inhibits migration and invasion of cells and thereby 

hinders metastatic spread. The other way round, interfering with EpCAM signaling or 

shutting down EpCAM expression by using therapeutic drugs, may not only result in slower 

cell proliferation, but also in induction of mesenchymal phenotype, in the worst case leading 

to metastatic spread. It is therefore mandatory to understand how EpCAM sustains the 

epithelial phenotype and inhibits mesenchymal changes. If adhesive functions play a major 

role in this process, one could think about targeting EpCAM signaling rather than EpCAM 
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expression itself, to slow down proliferation while preserving cell adhesion. If signaling of 

EpCAM is responsible for a sustained epithelial phenotype, it would be essential to identify 

exact pathways involved in this process to be able to develop therapeutics that selectively 

target pathways leading to enhanced proliferation, but do not interfere with the maintenance 

of the epithelial phenotype. Anyways, the dual function of EpCAM should be considered in 

new therapeutic approaches, which include EpCAM as target molecule. 

 

Figure 5. 1: Schematic representation of EpCAM levels throughout tumor progression. 

In normal epithelium, EpCAM expression is low or absent and possibly contributes to low level of proliferation 

in cells close to the basal membrane and to tissue integrity. During tumor formation, EpCAM levels are strongly 

increased and contribute to cell proliferation. In locally and distantly disseminating tumor cells, EpCAM is 

substantially reduced and allows for migration and invasion. Disseminated tumor cells that have settled in distant 

organs to form micrometastases re-express EpCAM strongly to provide proliferative signals 

 

Besides therapeutic implications, findings in this study also question the role of 

EpCAM as marker for the retrieval of CTCs and DTCs. As EpCAM seems to be frequently 

downregulated or even lost in migrating cells, it is likely that many CTCs and DTCs loose 

EpCAM expression. Indeed, in line with our findings, our collaboration partners could 

demonstrate that the majority of DTCs, deriving from primary esophageal carcinomas, which 

expressed high levels of EpCAM, is EpCAM negative (Driemel et al. 2013). There is 

increasing evidence that circulating and disseminated tumor cells escape the standard 

capturing methods due to EpCAM downregulation (Thurm et al. 2003; Rao et al. 2005; 

Gorges et al. 2012), eventually leading to misinterpretation of CTC and DCT numbers. To 

reliably detect and capture CTCs and DTCs from patients, it is mandatory to develop novel 

platforms, which do not only depend on EpCAM, but include other epithelial and also 
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mesenchymal cell surface markers. Indeed, such a system was recently published by Pecot et 

al. (Pecot et al. 2011), while other groups follow another road and working on completely 

label free methods for CTC detection (Cima et al. 2013; Fischer et al. 2013). 

Finally, it is essential to point out that the findings of this study are most likely not 

restricted to EpCAM. Special attention should also be paid to other cancer markers associated 

with tumor growth and progression, including cluster of differentiation (CD) 133 (Irollo and 

Pirozzi 2013), CD155 (Sadej et al. 2014) and CC-motiv-chemokin-receptor 5 (CCR5) 

(Gonzalez-Martin et al. 2012), as their role in cancer could be more complex as it appeared at 

the first glance. As the current study revealed, it is essential to ask for the role of proteins not 

only at a single particular stage in cancer progression, but throughout the entire process of 

tumorigenesis. A lack of consideration of the alternating phenotype of cancer cells may lead 

to failure of therapeutic strategies, incorrect assessment of cases and, in the worst case, to 

death of cancer patients. That is why, although this study could provide new insights in the 

role of EpCAM during carcinogenesis, showed for the first time that EpCAM actively 

contributes to the maintenance of the epithelial phenotype and provided an explanation for its 

occasionally dual role in cancer development and progression, further research on EpCAM is 

absolutely mandatory. As a next step, special focus should be set on revealing the molecular 

mechanisms that underlie the distinct functions of EpCAM, to find out how EpCAM can be 

most efficiently used in anti-tumor therapies and to learn more about the mechanisms 

involved in carcinogenesis. To do so, the establishment of a total EpCAM knock-out cell line 

is essential. In combination with appropriate wild-type cells, knock-out cell lines can 

subsequently be used in all abovementioned experiments, including cell-cell and cell-matrix 

adhesion assays, various signaling studies and in vivo assays, and should be able to provide 

scientists with more clear data than it was possible so far. Besides revealing by which 

mechanisms EpCAM influences cells, the regulation of EpCAM itself is another important 

field of research. As already mentioned, our group could recently provide data which suggest 

a regulation of EpCAM upon endocytosis (Hachmeister et al. 2013). Therefore, a set of 

experiments, including studies with inhibitors specific for clathrin-dependent and/or clathrin-

independent endocytosis, should be conducted to ensure that cells actually endocytose 

EpCAM. Additionally, experiments with labeled EpCAM should be performed in order to 

assess if endocytosis of EpCAM only leads to degradation of the protein or if it also regulates 

EpCAM signaling and/or turnover at the cell membrane, as it was observed in case of 

epithelial growth factor receptor (EGFR) (Sigismund et al. 2008) and TGFβ-receptors (Di 

Guglielmo et al. 2003).  
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6 SUMMARY  

Cancer is one of the leading causes of death worldwide, affecting more and more people. 

Although enormous research efforts during the last decades led to a more detailed 

understanding of processes involved in cancer formation and progression, and provided 

patients with innovative and more efficient treatment strategies, many mechanisms of 

tumorigenesis are still poorly understood.  

The single span transmembrane protein EpCAM is a well-characterized tumor-

associated antigen, which is overexpressed in the vast majority of carcinomas, and correlates 

with enhanced tumor growth, tumor progression and bad prognosis. Due to these 

characteristics, EpCAM is used as a prognostic and therapeutic marker, and is currently the 

most important marker to detect circulating (CTCs) and disseminated (DTCs) tumor cells in 

cancer patients. The tumor-promoting role of EpCAM is mainly due its signaling function, 

whereat it activates proteins involved in proliferation, like c-Myc and cyclin D1. However, 

EpCAM expression is not in all cases correlated with cancer progression. In thyroid and renal 

carcinomas EpCAM was shown to play a tumor suppressive role maybe due to its function as 

cell adhesion molecule. Furthermore, controversial findings in oral, gastric, colorectal and 

esophageal carcinomas associated EpCAM with tumor suppression and progression, pointing 

towards a dual role of EpCAM in these cancer types. Although the expression and function of 

EpCAM were intensively studied in cell lines and primary tumors, little is known about its 

role at alternative stages of carcinogenesis, including the generation of circulating tumor cells, 

invasion of cancer cells into their surrounding tissue and formation of metastases. In addition, 

it was found that EpCAM expression is not stable during carcinoma progression but 

downregulation of EpCAM could be observed in CTCs, DTCs and small metastases.  

To find an explanation for the opposing roles of EpCAM in cancer formation and to 

identify the outcome of EpCAM downregulation during selective stages of carcinogenesis, 

effects of EpCAM expression and depletion were studied in esophageal cancer cells. Thereby, 

EpCAM was found to correlate with increased proliferation and the formation of larger 

tumors. Furthermore, cells expressing high levels of EpCAM seem to have a selection 

advantage in vivo. However, in migrating cells, EpCAM was found to be downregulated and 

specific EpCAM depletion induced mesenchymal traits in the esophageal cancer cells, 

including enhanced migratory and invasive capacity, as well as increased levels of 

mesenchymal markers. Taken together, it was shown that EpCAM expression actively 
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sustains the epithelial phenotype and downregulation of EpCAM is necessary to provide cells 

with mesenchymal characteristics.  

This study for the first time provides a rationale for the observed downregulation of 

EpCAM at selective stages of carcinogenesis, and the contradictory findings which associate 

EpCAM expression with tumor suppression and progression in different types of carcinoma. 

Further research is necessary to elucidate the molecular mechanisms behind these findings. 
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7 ZUSAMMENFASSUNG (German summary) 

Krebserkrankungen stellen weltweit eine der häufigsten Todesursachen dar und betreffen 

von Jahr zu Jahr immer mehr Menschen. In den letzen Jahrzehnten wurden die Prozesse, die 

an der Krebsentstehung und am Verlauf der Krankheit beteiligt sind, immer besser 

verstanden. Zudem konnte Patienten mit immer neuen und effektiveren Behandlungs-

strategien geholfen werden. Trotz dieser bedeutenden Fortschritte, sind viele Mechanismen 

der Tumorgenese und -progression noch immer wenig verstanden.  

Das epithelial exprimierte Transmembranprotein EpCAM ist ein gut charakterisiertes, 

tumorassoziiertes Molekül, das in der Mehrheit der Karzinome überexprimiert vorliegt. Seine 

Expression ist meist mit erhöhtem Tumorwachstum, einem schnelleren Krankheitsverlauf und 

einer schlechteren Prognose verbunden. EpCAM wird als prognostischer und therapeutischer 

Marker eingesetzt und ist derzeit der wichtigste Marker zur Isolierung und Detektion 

zirkulierender und disseminierter Tumorzellen in Patienten. Die tumorfördernde Rolle von 

EpCAM beruht hauptsächlich auf dessen Funktion als Signalmolekül, wobei es Proteine wie 

c-Myc und cyclin D1 aktiviert, die an der Zellproliferation beteiligt sind und diese aktiveren 

und verstärken. EpCAM ist jedoch nicht in allen Fällen mit dem Fortschreiten der 

Tumorerkrankung verbunden. In Karzinomen der Schilddrüse und der Nieren konnte vielmehr 

eine tumorhemmende Wirkung von EpCAM gezeigt werden, was eventuell auf dessen Rolle 

als Zelladhäsionsmolekül zurückzuführen ist. Studien, die sich mit Karzinomen in Mund, 

Magen, Darm und Speiseröhre beschäftigten, kamen zu widersprüchlichen Ergebnissen in 

Bezug auf EpCAM und assoziierten das Molekül in diesen Karzinomtypen sowohl mit der 

Förderung als auch mit der Hemmung von Karzinomentstehung und -progression, was auf 

eine duale Rolle von EpCAM in der Tumorgenese hindeutet. Obwohl die Eigenschaften und 

Funktionen von EpCAM in Primärtumoren und Zelllinen intensiv studiert wurden, ist wenig 

über dessen Rolle in weiteren Stadien der Tumorprogression bekannt. Es gibt jedoch 

Hinweise darauf, dass EpCAM nicht in allen Stadien der Karzinogenese gleichermaßen 

exprimiert wird. Stattdessen konnte, im Vergleich zu Primärtumoren, eine verminderte 

Expression in zirkulierenden und disseminierten Zellen, sowie in kleineren Metastasen 

beobachtet werden.  

Um die teilweise widersprüchlichen Funktionen von EpCAM während der 

Karzinomentstehung und -progression besser zu verstehen und die Folgen einer verminderten 

EpCAM Expression in bestimmten Phasen der Karzinogenese zu identifizieren, wurden die 
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Effekte der EpCAM Expression und deren Hemmung in Speiseröhrenkrebszellen untersucht. 

Dabei konnte gezeigt werden, dass die Expression von EpCAM mit einer erhöhten 

Proliferationsrate, sowie der Bildung größerer Tumore einhergeht. Zudem wurden Hinweise 

darauf gefunden, dass Zellen, die EpCAM stark exprimieren, in vivo einen Selektionsvorteil 

besitzen. Dennoch wurde in migrierenden Zellen eine Verminderung der EpCAM Expression 

beobachtet und eine spezifische Hemmung der EpCAM Expression induzierte mesenchymale 

Eigenschaften, wie erhöhte Migrations- und Invasionsfähigkeit, sowie eine Erhöhung 

mesenchymaler Marker. Zusammenfassend konnte gezeigt werden, dass EpCAM aktiv zur 

Erhaltung des epithelialen Phänotyps in Zellen beiträgt und eine Verminderung der EpCAM 

Expression notwendig ist um die Ausbildung mesenchymaler Eigenschaften zu ermöglichen. 

Diese Studie gibt somit erstmals eine Erklärung für die beobachtete Verminderung der 

EpCAM Expression während selektiver Phasen der Karzinogenese und die scheinbar 

widersprüchlichen Funktionen von EpCAM als tumorförderndes und -hemmendes Molekül. 

Weitere Untersuchungen sind notwendig um die, diesen Ergebnissen zugrunde liegenden, 

molekularen Mechanismen aufzuklären.  
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APPENDIX 

ABBREVATIONS 

 

°C   degree celsius 

A   adenine 

aa   amino acids 

APS   ammoniumpersulfate 

ATP    adenosine triphosphate 

bp   base pairs 

BSA   bovine serum albumin 

C   cytosine 

cDNA   complementary DNA 

CK   cytokeratin 

CTCs   circulating tumor cells 

C-term   C-terminus 

CTF   C-terminal fragment 

ctrl   control 

ddH2O   double distilled water 

DMEM  Dulbecco`s Modified Eagle Medium 

DMSO   dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

dNTP   deoxyribonucleotide triphosphate 

DTCs   disseminated tumor cells 

ECL   enhanced chemiluminescence 

EDTA   ethylene diamine tetraacetic acid 

EMT   epithelial to mesenchymal transition 

EpCAM  epithelial cell adhesion molecule 

EpICD   intracellular domain of EpCAM 

GFP   green fluorescent protein 

FACS    fluorescence activated cell sorting 

FC   flow cytometry 

FCS   fetal calf serum 

g   gram 



  ABBREVATIONS 

140 

 

G    guanine 

h   hour 

H2O   water 

IH   immunohistochemistry 

IF   immunofluorescence 

KH2PO4  potassium dihydrogen phosphate 

KCl   potassium chloride 

kDa   kilo Dalton 

l   litre 

M   molar 

mA   milli ampere 

max   maximal 

mg   milligram 

µg   microgram 

MET   mesenchymal to epithelial transition 

min   minute 

ml   millilitre 

µl   microlitre 

mM   millimolar 

µM   micromolar 

MOPS 3-(N-Morpholino)propanesulfonic acid, 4-Morpholine-

propanesulfonic acid 

mRNA   messenger RNA 

n   nano 

NaCl   sodium chloride  

Na2HPO4  disodium hydrogen phosphate 

n.d.   not detectable 

nm   nanometre 

N-term   N-terminus 

OD   optical density 

PAGE   polyacrylamide gelelectrophoresis 

PBS   phosphate buffered saline 

PBST   PBS + Tween-20 

PCR   polymerase chain reaction 
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PI   propidium iodide 

PFA   paraformaldehyde 

PVDF   polyvinylidene fluoride 

qRT-PCR  quantitative Real Time PCR 

rcf   relative centrifugal force 

RIP   regulated intramembrane proteolysis 

RNA   ribonucleic acid 

rpm   revolutions per minute 

RT   reverse transcriptase 

RT-PCR  reverse transcription PCR 

SDS   sodium dodecyl sulfate 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gelelectrophoresis  

shRNA  short hairpin RNA 

SILAC   stable isotope labeling by/with amino acids in cell culture 

siRNA   small interfering RNA 

T   thymidine 

TEMED  N,N,N`,N`-Tetramethylendiamin 

TGFβ   transformimg growth factor β 

TRIS   tris(hydroxylmethyl)aminomethane 

Triton X-100  polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether 

Tween-20  polyoxyethylen(20)-sorbitan-monolaurat 

UV   ultraviolet 

V   volt 

v/v   volume per volume 

WB   western blot 

w/o   without 

w/v   weight per volume 

YFP   yellow fluorescent protein 

ZnCl2   zinc chloride 

α   alpha 

β   beta 

∆   delta 
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