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Summary

Methylation of cytosines in genomic DNA is a major epigenetic factor affecting gene
expression and genomic stability [1]. Novel methods to analyse changes in DNA
methylation in individual cells were developed. Both stochastic and programmed
epigenetic changes may affect functionality throughout development, disease and
aging. To further the understanding of changes in DNA methylation in human ag-
ing and disease, which are termed ’epimutations’ throughout this thesis, a literature
review on DNA methylation in aging and disease was conducted [2]. The review fo-
cused on mechanisms linking changes in DNA methylation to aging, and on potential
therapeutic interventions.

DNA methylation status is usually obtained from pooled cells, which limits the un-
derstanding of cell-to-cell epigenomic variability and the significance of DNA methy-
lation changes which may arise from individual cells. Single-cell BS-Seq allows for
the analysis of functional states of individual cells by looking at cell-specific epige-
nomic changes [3]. Being able to identify cell-specific epigenomic variation helps
elucidate epigenomic changes in aging and degenerative diseases which may origi-
nate from a single cell such as cancer [4]. As of today, only one study is known to the
author that uses single-cell Reduced Representation BS-Seq (scRRBS) experiments
[4] besides the yet unpublished single-cell Reduced Representation Bisulfite Sequenc-
ing (scRRBS) data analysed in this [5]. A novel methodology in Bioinformatics and
statistic modeling for the analysis of DNA methylation changes in novel single cell
BS-Seq experiments was developed in this thesis. By comparing genome-wide DNA
methylation patterns of single mouse hepatocytes with total genomic liver DNA,
genome-wide epimutation rates are established, as well as epimutation rates specific
to features such as genes, intergenic regions, CpG islands and repeats.

A Bayesian Binomial Dirichlet (BD) mixture model model was derived for the ro-
bust estimation of CpG methylation levels, which gives detailed information about
the methylation rate in a region of multiple CpG positions. It provides measures of
confidence for this estimate and is able to test regions for high or low methylation
status, which facilitates the easy definition of regional epimutation events. As part
of this thesis, the R/Bioconductor package BEAT (BS-Seq Epimutation Analysis
Toolkit), a novel tool for analyzing bisulfite-converted DNA sequences, was written
and published [6]. It implements the BD mixture model and can aggregate consecu-
tive cytosines into genomic regions in order to overcome limitations of experimental
data of low genomic coverage. For each region, it calculates a posterior methylation
probability distribution which can be used for the comparison of DNA methylation
between samples. To the author’s knowledge, it is the first tool providing a rigid
statistical model for handling BS-Seq samples. It has an in-built correction for con-
version errors and is therefore perfectly suited for handling heterogeneous BS-Seq
experiments.
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1.1 Introduction

1.1.1 Biological Background

1.1.1.1 DNA methylation and chromatin structure

DNA methylation plays a major role in the modulation of gene regulation for many
organisms. In genomic DNA, cytosine bases followed by guanine (CpG) may carry
a methyl group, which influences transcriptional activity and gene expression. DNA
methylation encompasses the state of methylated CpG sites (5mC) as well as the
modification of this methylation status is described as DNA methylation in the
literature. In addition, non-CpG DNA methylation, where cytosines not following
a guanine are methylated, also exists, but is rare in mammals, except for embryonic
stem cells[7].

At the DNA level, gene expression is regulated by two basic mechanisms: DNA
methylation and modification of chromatin. Patterns of DNA methylation and chro-
matin status are known to influence each other. For instance, certain proteins, such
as the protein MeCP2, bind to CpG islands (CGIs) in a methylation-sensitive fash-
ion. The interaction of MeCP2 with the chromatin-modifying Sin3/histone deacety-
lase co-repressor complex is an exemplary evidence of the direct link and influence
between DNA methylation and chromatin modifications[8].

Consecutive regions that are rich in CpG sites, while being mostly unmethylated,
are called CpG islands. These islands tend to recruit many methylation-sensitive
transcription factors and appear to be protected from accumulating novel methy-
lation by DNA methyltransferases. CpG islands make up about 1% of the genome
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and are distributed in a non-random fashion. Most often, they are found near the
promoters of housekeeping genes[9].

CpG methylation is pervasive across the genome, with approximately 80% of mam-
malian genomes being methylated on average[10]. For the human genome, the overall
methylation percentage of CpG sites in the human genome is estimated to be 68.4%,
with the majority of the CpG islands being unmethylated [11].

The basic functions of DNA methylation and the associated chromatin modifications
are the epigenetic regulation of gene expression and the transcriptional silencing of
heterochromatin. Epigenetic changes are stable DNA modifications that are (partly)
inherited in a Lamarckian (non-Mendelian) manner. These changes have important
functions in development and reaction to environmental stimuli, as they enable
cell differentiation by allowing cells to have an individual transcriptional profile.
However, epigenetic changes may also arise due to external influences that cause
pathologies and they accumulate stochastically with age, which is associated with
several degenerative diseases, such as cancer [10].

Figure 1.1: Taken from [12], this figure shows the difference between genomic cy-
tosines and methylated cytosines (5mc). Methylation of genomic cytosines hap-
pens by enzymes known as DNA methyltransferases (DNMTs).

1.1.1.2 DNA methylation and transcription

CpG sites are sites of transcription initiation, including but not limited to those lo-
cated at or near known promoters. Their methylation status regulates gene activity
by the recruitment of methylation-sensitive transcription factors. In general, low
methylation in CGIs destabilizes nucleosomes of the chromatin and attracts tran-
scription factors and other proteins that help induce transcription of genes associ-
ated with the respective CGIs. Correspondingly, methylation of CGI sites, especially
at gene promoters, leads to transcriptional silencing and is mediated by polycomb
genes[13]. Another important function of the pervasive silencing of genomic regions
by DNA methylation is the transcriptional silencing of human endogenous retro-
viruses (HERVs) and other self-replicating repetitive DNA elements, which makes
transcriptional silencing by DNA methylation also necessary for genome stability
[14] [1]. When CpG islands do accumulate methylation due to programmed or ran-
dom processes, this often leads to gene silencing, a process which often can also be
observed in tumor cells [9]. In addition, DNA methylation of intragenic regions,
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i.e. within exons and introns can help reduce transcriptional noise, while promoter
methylation may be correlated with increased transcriptional noise [15].

1.1.1.3 Role of DNA methylation in development

DNA methylation is essential for the proper regulation of gene expression during
mammalian embryonic development in addition to its role in differentiation of adult
tissues [16]. In mammals, active changes in DNA methylation on a genome-wide
scale occur only during early development of the embryo. In mice, the paternal
genome is actively demethylated in the zygote early after fertilization, and then pas-
sively further loses methylation during cleavage. Later, it incurs de novo methylation
in the inner cell mass (ICM) of the embryo, which is thought to occur after implan-
tation of the zygote [17]. Long-term silencing of gene expression in a cell-specific
manner which enables cell- and tissue differentiation during and after development
[10]. It is known to play additional roles in development by inactivating one of the
X-chromosomes in female offspring, as well as being an underlying mechanism of
genomic imprinting. Imprinting is the monoallelic expression of a few genes in the
genome, resulting in either exclusive maternal or exclusive paternal gene expression
[18], which allows for inheritance of gene-specific traits in a parent-of-origin specific
manner and occurs, for example, in the genes H19, Igf-2 and Igf-2r, which are related
to insulin signaling. DNA methylation is the underlying mechanism that causes the
permanent silencing of one of the alleles of imprinted genes during early embryonic
development. It has been demonstrated that normal levels of DNA methylation at
imprinted genes are necessary for proper differential expression of maternal- and
paternal alleles [19].

1.1.1.4 Role of DNA methylation in aging and disease

Mammalian aging is associated with both increases and decreases in DNA methy-
lation. Age-associated changes in DNA methylation in or near gene regulatory
elements can suppress gene expression by affecting chromatin structure and DNA
binding proteins and may carry pathological consequences, including, but not lim-
ited to neurodegeneration, cancer, osteoarthritis, sensory neuropathies or autoim-
mune diseases [2][20]. In this thesis, both changes in DNA methylation associated
with aging and degenerative processes are termed ’epimutations’, while increases in
methylation due to epimutations are denoted as ’methylating epimutations’ and cor-
responding decreases are denoted as ’demethylating epimutations’. In other recent
literature, epimutations have been referred to as differentially methylated CpG din-
ucleotides (dmCpG)[21]. The frequency of epimutations may vary by tissue, genes
or other genomic regions affected [20].

The most common known patterns of age-associated changes in DNA methylation
are genome-wide hypomethylation and promoter-specific hypermethylation. For
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example, methylating epimutations in the promoter regions of tumor suppressor
genes may silence such genes, leading to an increased tendency to develop malig-
nancies. Epimutations represent potential biomarkers for diseases and degenerative
age-related processes leading to disease [2]. Novel methods and models for the
detection of epimutations and establishment of region-specific epimutation rates,
as those established in this thesis, may therefore be helpful for establishing diag-
nostics related to identifying biomarkers associated with aging and disease. Some
experimental drugs that can modify DNA methylation patterns exist, the most well-
established of which is 5-azacytidine (5-azaC), which reduces DNA methylation, and
has shown promising therapeutic efficiency in clinical trials for various cancers [2]. In
addition, age- and diease-related changes of the maintenance DNAmethyltransferase
(DNMT) DNMT1, as well as of the de-novo DNA methyltransferases DNMT3A and
DNMT3B, could potentially play a role in aging and disease [2].

Age-related changes at CpG sites have been shown to occur at clusters of corre-
lated CpG markers whose sequence is related to targets of polycomb group genes.
Functionally, several of the genes associated with aging-related changes in DNA
methylation are related to neuronal development, -differentiation and neurogenesis
[22]. The epigenetic regulation of gene expression has been found to be crucial for
brain function, especially in the mammalian central nervous system, and pathologi-
cal changes of DNA methylation are associated with a variety of neurodegenerative
diseases and age-associated neurodegeneration[23]. For example, some genes iden-
tified in [22] are also down-regulated in Alzheimer’s disease, implying a correlation
of age-related DNA methylation changes in the disease. An age-related decline in
skeletal muscle function has also been associated with age-related epimutations[21].

An association between genome-wide hypermethylation and age has been found
in a study on human male aging [21]. In this study, epimutations were mostly
observed within gene bodies related to neuronal function, and underrepresented in
promoters, while being overrepresented in the middle and at the 3’ end of genes.
Additionally, low negative correlations between the gene expression of aged muscle
cells and DNA methylation were found in general, but genes that showed intragenic
hypermethylation with age were associated with increased gene expression. The
study also suggested that a minimum threshold of epimutations were required in
order for changes in gene expression to take place [21].

1.1.2 Technical Background

1.1.2.1 Biochemistry of Bisulfite conversion

Bisulfite conversion of DNA is a reproducible method for detecting and quantifying
the methylation status of single cytosine nucleotides when used in combination with
high-throughput re-sequencing, the combination of which is called Bisulfite sequenc-
ing (BS-Seq). An accurate treatment of genomic DNA with bisulfite, as described
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in [24] for mammalian cells, leads to deamination of unmethylated cytosines in the
genome into uracil nucleotides, which are later converted into thymine residues in
further BS-seq steps. In more detail, this chemical deamination reaction can be
described as pH-dependent partial depurination [25]. When this reaction is allowed
to continue for too long, it may degrade intact DNA [25].
Some of the most crucial parameters for achieving a correct bisulfite conversion re-
action include keeping the correct acidic pH, the amount and quality of the starting
DNA before amplification, as well as the bisulfite treatment time. Excessive bisul-
fite treatment can degrade DNA, which leaves less material to be amplified and
sequenced and can therefore reduce sequence quality and genomic coverage. On
the other hand, too short bisulfite treatment may result in incomplete conversion of
unmethylated cytosines to thymine, which then results in unmethylated cytosines
falsely appearing to be methylated on a single-nucleotide level, as well as detecting
erroneously higher methylation rates in such samples [24] [26].

1.1.2.2 Sequencing of bisulfite converted reads

Following bisulfite conversion, the converted DNA is then amplified by PCR using
strand-specific primers. Stand-specific PCR products are then either re-sequenced
by pyrosequencing or other high-throughput-sequencing methods, either directly or
after cloning. The complete process is called bisulfite sequencing (BS-Seq). Finally,
the converted amplified sequence can then be compared to an existing reference
genome. The methylation status of re-sequenced DNA can then be determined
by counting thymine residues in the converted DNA that match cytosines in the
reference genome as unmethylated cytosines, while counting matching cytosines as
methylated cytosines [24] [27]. The detailed steps of bisulfite treatment prior to se-
quencing consist of alkaline denaturation of initial DNA material, followed by bisul-
fite conversion, which also referred to as deamination in the literature, and chemical
desulfonation, neutralization and desalting of bisulfite-converted DNA, which is then
buffered and stored at -20°C. Later, the stored DNA material is then amplified using
PCR and cloned into appropriate vectors in preparation for high-throughput DNA
sequencing [28].
Several optimizations of BS-Seq method have been performed. One of them consists
of performing bisulfite conversion and PCR on agarose-embedded material to mini-
mize the loss of DNA and to keep it in single-stranded form, which empirically leads
to better bisulfite conversion results[29]. Bisulfite converted DNA can also be com-
bined with general variants of sequencing, such as high-resolution melting (HRM),
where the melting of PCR products with fluorescent nucleotides is monitored in
real-time to detect single-base changes. Methylation-sensitive HRM (MS-HRM) is
an application of this method to bisulfite converted DNA with a high accuracy of
predicting methylation levels [30]. However, specific DNA sequencing methods come
with their own issues, such as issues in differentiating the melting curves of simi-
lar primers in the case of HRM, which limits the applicability of specific variants
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[31]. Several further optimizations of BS-Seq protocols, such as in primer design
and cloning have also been used in order to improve the accuracy of the method in
general [32]. Another variant for BS-Seq with comparable accuracy as the sequenc-
ing of agarose- or paraffin-embedded DNA, is the use of degenerate primers which
fit to both cytosine and thymine residues in bisulfite treated DNA, where a cytosine
is expected in the genome, in combination with pyrosequencing [33].

In addition to BS-Seq variants, alternative sequencing methods for assessing genome-
wide methylation levels exist, which include MBD-Seq and MeDIP-Seq[34][35][30].
MeDIP-Seq avoids bisulfite treatment by immunoprecipitation with 5mC-sensitive
antibodies and resulting fragments are sequenced, after which methylation levels
can be estimated by the amount of fragments sequenced per region. Its advantage
lies in a higher sensitivity to highly methylated CpG-rich sites, which may however
also induce biases when sequencing larger regions or genomes[34]. Similarly, MBD-
seq achieves enrichment of methylated DNA fragments by precipitating DNA with
bead-immobilized recombinant versions of 5mC-binding proteins, typically MeCP2
or MBD2. MBD-Seq has drawbacks comparable to MeDIP-Seq and is most sensitive
for highly methylated sites with moderate CpG densities and shares [35].

Finally, reduced-representation BS-Seq (RRBS) currently represents the most im-
portant variant of BS-Seq for experiments with small initial amounts of DNA, such
as single-cell BS-Seq. In general, RRBS is recommended when the amount of sample
DNA and/or replicates is limited. RRBS enriches the sequencing material for those
parts of the genome that are rich in CpG sites from sample genomic DNA, which
greatly improves coverage those parts even with small amounts of initial gDNA
available (10 - 300 ng). By focusing on CpG-rich regions, most of the features of
interest such as promoters, genes and short repeats, will still be covered by sequenc-
ing. The Reduced Representation is achieved by digesting the initial DNA material
with an restriction endonuclease that cuts for a sequence specific to CpG-rich parts
of the genome. Restriction fragments resulting from the most widely used MspI di-
gest, which are typically 40-220 nt long, are then end-repaired, polyadenylated and
ligated to adapters for Illumina sequencing. Other restriction enzymes that enrich
for CpG-rich parts of the genome have been used, such as MseI or BglII, the latter
resulting in 500-600 nt long fragments. Following the procedure, fragments are then
subjected to size selection on a gel, treated with bisulfite and subjected to PCR
amplification, after which they are ready for cloning and sequencing [26][36]. RRBS
can also be combined with the embedding of sample material in paraffin or other ma-
terial in order to further improve conversion results as mentioned above[29]. Given
sufficient DNA material, RRBS can achieve a nearly complete bisulfite conversion
rate (>99.9% conversion) [36].
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1.1.2.3 Mapping of bisulfite converted reads

Figure 1.2: Taken from [37], this figure shows the mapping strategy of the alignment tool
Bismark which was used to align all BS-Seq data in this thesis. In (A), bisulfite treated
DNA sequence reads match their corresponding original genomic sequence with C->T
mismatches at genomic cytosine positions. Bismark computationally precomputes C-
>T conversions on the reference genome’s forward strand and G->A conversion for the
complementary bases on the reverse strand. Bisulfite-converted reads are converted
analogously and aligned to both converted genomic strands, after which the unique
best alignment of a bisulfite-converted read against the converted genome is accepted
if one exists, in this case on the forward strand. Subfigure (B) further illustrates the
methylation calling process from reads successfully aligned to the genome, where C/C
matches count as methylated cytosines, while C->T mismatches of genomic sequence
to mapped reads count as unmethylated cytosines, both in CpG and non-CpG (CHG,
CHH) contexts.

The process of aligning short reads to a reference genome is called mapping. In
modern high-throughput sequencing such as Illumina-based pyrosequencing, some
sequencing errors occur and must be permitted by the mapping tool. Empirically, se-
quence quality of Illumina reads deteriorates with length. For short reads in general,
the mapping tool Bowtie is one of the fastest and most memory-efficient aligners
for mapping high-throughput reads available. It uses a hash indexing algorithm
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based on the Burrows-Wheeler transformation, which consists of hashing the first
few bases of each short read into a hash value for fast matching, referred to as seed.
For each reference genome available, a Burrows-Wheeler index of all possible seeds
is precomputed and the initial assignment of a short read to a genomic position is
done via matching seeds of the short read with the genome index. This allows for
aligning over 25 million reads per CPU hour. In addition, Bowtie’s modification
of the Burrows-Wheeler algorithm allows for mismatches in the seed region which
allows for mapping reads with high sensitivity despite fast processing speeds [38].
Bisulfite converted reads can map to either forward- or reverse strands of a reference
genome, as well as to the reverse complement of either strand, respectively. When a
read maps to the reverse complement of a genomic strand, unmethylated cytosines
are indicated by G-to-A-conversion instead of C-to-T conversion. All four mapping
options need to be considered. Also, the matching of reads to the reference genome
must allow for mismatches due to the bisulfite conversion[37]. BS-Seq mapping tools
are aware of these issues and will produce counts of methylated- and unmethylated
cytosines per genomic position covered by reads, in addition to the alignment. These
include Bismark, BSMAP, RMAPBS and BS Seeker [11].
Bismark is a perl application that performs short read mapping and methylation
calling as a front-end on top of Bowtie, therefore sharing its speed and efficiency
advantages. Bismark processes both strands of the reference genome to generate
CT- and GA-converted files for the forward and reverse strands and their respective
reverse complements, as explained above. Mapping of a read to each of these 4
strands is done with parallel invocations of Bowtie. Methylation calling is performed
with Bismark’s methylation_extractor script, which can discriminate between CpG
methylation and non-CpG methylation [37].
BSMAP is based on SOAP, a different NGS mapping tool, and uses bitwise masking
and hashing based to generate seeds of 8 bits in length that allow for flexible C/T and
G/A matching in converted reads. BSMAP uses bitwise AND matching between C
(01) and T (11) and allows a user-specified degree of mismatches in order to increase
sensitivity and flexibility[39].
RMAPBS is a mapper designed exclusively for single-end BS-Seq reads which uses
an algorithm similar to that of BSMAP, but is more tolerant in case of sequence
mismatches, as it allows for partial read matches of whole reads[11].
BS Seeker, which also uses Bowtie for mapping, converts the genome to a three-
letter alphabet by changing all C to T. It also uses sequence tags specific to certain
restriction enzymes, combined with post-processing in order to reduce mapping am-
biguity. The authors of BS Seeker have demonstrated a higher speed and versatility
in comparison to other tools such as BSMAP[40].
A recent comparison of the BS-Seq mapping tools Bismark, BSMAP and RMAPBS
has shown that they all show comparable and expected genome-wide methylation
levels, as well as comparable mapping efficiencies of approximately 50-65% mappable
reads in case of standard BS-Seq experiments of high quality. In this review, Bismark
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was preferred as the mapping tool of choice since it was the fastest tools and due
to additional criteria including overall efficiency and ease of interfacing with other
software and of the extraction of methylation data [11].

1.1.3 Goals of this thesis

In this thesis, I developed a Biostatistics and Bioinformatics model and -pipeline
for estimating methylation level and status of genomic regions from BS-Seq DNA
methylation data. The novel and specific aim of the pipeline is to generate ro-
bust, position-specific methylation estimates and to provide a statistical method for
detecting epimutations from BS-Seq data even in cases where high levels of false
positive and false negative errors can be expected. This may be the case wherever
low amounts of initial DNA are available, such as in the newly-emerging single-cell
BS-Seq experiments, which require gentle bisulfite treatment to yield results, but
in turn suffer from low conversion rates with an associated increase in error rates,
which is an issue that has not been properly addressed by existing research so far.
The practical use of the model and pipeline is demonstrated by the analysis of RRBS
single-cell methylomes as a novel type of experiment and the determination of the
rate of epimutations, i.e. the frequency of differences in methylation status between
two BS-Seq samples.

1.2 DNA Methylation in Aging and Disease

In preparation of my research related to acquiring a better understanding about
DNA methylation changes and how they relate to the human aging process, I co-
authored a review on DNA methylation in aging and disease [2], which focused on
the mechanisms linking changes in DNA methylation to aging, as well as poten-
tial interventions. Changes in DNA methylation play a major role in aging and
age-related diseases, as initially mentioned in sec. 1.1.1.4. DNA hypomethylation
and hypermethylation have been observed in aging, and their pivotal roles in age-
related changes to the epigenome has been established [41]. Aging and age-related
diseases include changes in 5-methylcytosine content and are generally characterized
by genome-wide hypomethylation and promoter-specific hypermethylation. These
changes in the epigenetic landscape represent potential disease biomarkers and are
thought to contribute to age-related pathologies. However, epigenetic modifications
are reversible and are therefore a prime target for therapeutic intervention. My
paper concludes that while many interventions are possible, the most important
question remains whether stochastic age-associated changes in mammalian DNA
methylation do actively contribute to age-related diseases. This is a key question
that the novel single-cell RRBS experiments and appropriate statistical analysis of
their results, as presented in this thesis, help to address.
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1.2.1 Mechanisms of age-related DNA methylation changes

Figure 1.3: This figure, taken from [2], shows age-related changes in DNA methylation
as they are assumed to occur in current scientific literature: while the genome tends
to globally lose methylated cytosines with increasing age, which may lead to genomic
instability, some regions rich in CpG islands tend to accumulate newly methylated cy-
tosines, which may lead to promoter hypermethylation and consequently, inappropriate
silencing of genes.

DNMTs, demethylases, and associated partners are dynamically shaping the methy-
lome, and their activity is changing with age, which may have an impact on DNA
methylation changes with age and therefore, also on age-related disease. Multiple
DNA-methylation-mediated silencing pathways for DNMTs exist, which includes
the Methyl-CpG binding proteins (MeCP) [42], whose expression also changes with
age. Multiple prospective mechanisms for active demethylation have been discussed,
which may have an additional impact [43]. DNMT activity has also been shown to be
regulated by the recently discovered hydroxymethylation by the ten eleven transloca-
tion (TET) family of enzymes [44]. Regulation of DNMTs by protein methylation-,
-phosphorylation, -acetylation, -SUMOylation and ubiquitination [45] [46].
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1.2.2 Associations of DNA methylation with aging and disease

Epigenetic changes have been demonstrated in a large number of CpG sites and a
diverse range of genes. Some of these changes, especially those in highly-affected
genes, have been able to predict the age of an individual with an average error of ap-
proximately 5 years [47]. It shows that epimutations are liked to age-related disease
by examples such as aberrant methylation in cancer[48], where hypermethylation of
promoter regions of oncogenes can most often be observed, as well as in Alzheimer’s
disease, Type-2-Diabetes and renal disease [49].

1.2.3 Prospective preventive and therapeutic interventions

Regarding the mitigation of age-related pathology, my paper makes a case for caloric
restriction (CR) for reducing age-related epimutations, and proposes a modulation
of DNMT activity as a possible beneficial mechanism of CR in aging [50]. Today,
therapies which focus on DNA methylation changes as mechanism are still very
few, but some prospective drugs exist. Several drugs that specifically target DN-
MTs are being tested in ongoing clinical trials for a variety of cancers. My paper
discusses some potential therapeutic interventions to age-related disease that may
work by modifying DNA methylation in the genome nucleoside analogs, which in-
clude 5-azaC, zebularine and decitabine. These drugs have been shown to be able to
reactivate tumor suppressor genes in vitro in some types of cancer [51]. Other drugs
such as procain, procainamide and hydralazine, which are known to impact DNA
methylation in a way that has been linked to treating some cancers, appear to inhibit
DNMTs. However, their mechanism is not yet fully understood [46]. Methyl donors
such as folic acid or S-adenosylmethionine, which are natural co-factors for DNA
methylation in human biochemistry, might offer gentle treatment opportunities in
diseases related to age-related changes in DNA methylation [52].

1.3 Single-Cell BS-Seq Analysis for Epimutation Rate
Estimation

Single-cell sequencing technologies constitute a new trend that allows for new genome-
related questions to be answered. It has potential to revolutionize genomics. Single-
cell DNA sequencing may uncover cell lineage relationships, while single-cell tran-
scriptomics may identify individual variation in gene expression. Single-cell BS-Seq,
as used for the experiments analysed throughout this thesis, for the first time al-
lows for the analysis of functional states of individual cells by looking at cell-specific
epigenomic changes [3]. Being able to identify cell-specific epigenomic variation is
especially important in the context of aging and degenerative diseases which may
originate from a single cell such as cancer [2][4], where it is important to make a
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difference between programmed- vs. stochastic changes in DNA methylation and
thus, in gene expression.
As of today, only one study is known to the author that uses single-cell Reduced
Representation BS-Seq (scRRBS) experiments [4], except for the yet unpublished
scRRBS data analysed in this thesis [5]. While the mentioned study is limited to
sperm and analyses the rate of demethylation, the single cells analysed in this thesis
are mouse liver cells, for which region-based methylation levels are modeled using
a Bayesian Binomial-Dirichlet model, and both demethylating- and methylating
epimutation rates are determined from these model estimates. As discussed in [2],
epimutations are associated with a diverse bandwidth of physiological effects relevant to
many diseases, of which many may originate from individual cells.

A high load of epimutations in an individual cell could seriously impedact cell func-
tion, but such epimutations would not show up in a whole-tissue analysis because
pooling individually different cells would hide many differences, as elucidated in
Fig. 1.4. Hence, only single-cell BS-Seq can uncover the true epimutation load. This
was the rationale and motivation for the following single cell BS-Seq experiments
and their analysis using Bioinformatics and statistics as described below.

Figure 1.4: Schematic view of methylation patterns in two genomic regions. Black dots
represent methylated regions while white dots represent unmethylated regions. One row
represents a single cell. The left subfigure shows two regions with an equal methylation
rate of 50% in both regions if cells are pooled. However, every individual cell shows
vastly different methylation patterns for each region. The right subfigure shows the same
for two groups of two cells each with similar methylation patterns. In both cases, the
individual variation in DNA methylation patterns cannot be detected when all cells are
pooled and sequenced together, but only from single-cell DNA methylation experiments.
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1.3.1 Specific issues of single cell BS-Seq

The most critical issue in BS-Seq experiments in general is to be able obtain a
complete bisulfite conversion of the sample DNA material, while avoiding erroneous
conversion of methylated cytosine to uracil is also important. To achieve complete
conversion, the two most critical parameters are incubation time and incubation
temperature. While maximum bisulfite conversion occurs at either 95°C incubation
temperature for a short incubation time of 1 hour, or 55°C for longer incubation of 4-
18 hours, these conditions are harsh for DNA stability, as they lead to a degradation
of 84-96% of available DNA [28]. The main issue with single-cell BS-Seq experiments,
such as those presented in this thesis, is that the current standard BS-Seq protocols,
which primarily aim for complete bisulfite conversion, have an unacceptably high
rate of DNA degradation for single-cell- and other experiments where little initial
DNA material is available per sample [29]. Other quality issues of BS-Seq are
sensitivity and reproducibility of the method, which are an important factor due to
the often small amounts of initial original DNA material available for analysis [28].

Single-cell analysis is necessary since DNAmethylation information from pooled cells
only represents average values which do not represent individual differences between
cells. such cell-specific differences are relevant in the case of random epimutations in
aging and diseases such as cancer, as well as in cell differentiation in embryonic and
adult tissues [51]. The minimum amount of DNA required for previously existing
BS-Seq protocols is 30 ng, which typically requires the use of populations of a few
thousand cells, as single cells do not supply sufficient DNA material when using
standard BS-Seq protocols [36]. Another issue affecting single-cell experiments more
seriously is the excessive DNA fragmentation induced by the bisulfite treatment,
which prevents analysis of a large portion of the treated DNA material[25]. In
theory, false conversion of 5mC to uracil is possible with prolonged or too harsh
treatment, however, the practical problem of prolonged bisulfite treatment is mostly
destruction of DNA, resulting in less sample material available for sequencing [53].

1.3.2 A statistical model for BS-Seq data

1.3.2.1 Sources of bias and variation in BS-Seq

The amount of unmethylated cytosines which are not converted by bisulfite treat-
ment is referred to as ’non-conversion-’ or ’false methylation’ rate in this thesis. This
rate depends on the completeness of bisulfite conversion, which has been expected to
be nearly complete in existing studies, but may be significantly lower for more gentle
bisulfite conversion treatment, as is needed by the single-cell BS-Seq experiments
presented here [26]. On the other hand, the erroneous conversion of 5mC residues
to uracil is referred to in this thesis as ’inappropriate conversion’. Empirically, even
under harsh conditions of a typical bisulfite treatment that leads to near-complete
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conversion, not more than 6% 5mC residues were detected as inappropriately con-
verted, i.e. unmethylated, by a study that investigated this type of error[28]. As
in genome sequencing in general, low genomic coverage, due to low mapping ef-
ficiency and/or due to insufficient DNA material, is also an issue in BS-Seq that
can increase variance and decrease reliability of experiments, an issue which can be
mitigated somewhat by replicates and modeling. Additionally, sequencing errors,
which in properly performed experiments should occur at rates substantially below
10% in Illumina sequencing, can bias the data, when occurring at cytosine residues,
increasing both fundamental error types, false methylation and inappropriate con-
version [54]. When errors in BS-Seq occur that are not corrected by appropriate
statistical modeling, empirical methylation levels even between sequencing runs of
technical replicates have in some cases been found to vary by over 100%, which may
make analysis of empirical BS-Seq data without modeling impossible in some cases
[55].

1.3.2.2 A Bayesian Binomial-Dirichlet (BD) model for BS-Seq data

For analyzing CpG methylation, a Bayesian statistical model was derived which
gives detailed information about the methylation rate in a region of multiple CpG
positions which is described below. Apart from estimating the methylation rate,
it provides measures of confidence for this estimate, it can test regions for high or
low methylation. On the basis of of these tests it is later possible to give a precise
definition of a regional epimutation event. A region-based approach was favored
over single-position analysis because single-position methylation values inevitably
display a large cell-to-cell variance of methylation at the single-position level, as
methylation rates in cell mixtures vary widely, ranging between 10% and 90% [56].
This makes the identification of regional changes in methylation levels is functionally
more relevant and statistically more robust. By comparing single position versus
region-based epimutation calling, I was able to show a reduction in false positive
and false negative methylation calling rates, as detailed under paragraph 1.3.2.5.4.

1.3.2.3 Methylation estimation and Epimutation calling

For multi-cell samples, it is assumed that all counts at a single CpG position were
obtained from pairwise different bisulfite converted DNA template strands and rep-
resent independent observations. This certainly holds in good approximation, be-
cause the number of available DNA template strands typically supersedes the read
coverage at this position by far. For single cell samples, the opposite situation is
encountered: There are at most two template DNA strands available, and for many
CpG positions this number is reduced further through DNA degradation. Multiple
reads covering one CpG position are therefore highly dependent. Multiple counts at
one position were combined to one single (non-)methylation call. For different CpG
position, these calls are then independent observations. First, fix one region, i.e.

14



Contents 1.3 Single-Cell BS-Seq Analysis for Epimutation Rate Estimation

some set of CpG positions. The number of counts at a given position is the number
of reads mapping to that position. Let n denote the total number of counts at all
CpG positions in the given region, and let k (respectively n − k) of them indicate
methylation (respectively non-methylation). Let r be the (unknown) methylation
rate at the given position. Then, assuming independence of the single counts as
mentioned above, the actual number j of counts originating from methylated CpGs
in this region follows a binomial distribution,

P (j | n, r) = Bin(j;n, r) (1.1)

Let the false positive rate p+ be the global rate of false methylation counts, which
is identical to the non-conversion rate of non-methylated cytosines. Conversely, let
the false negative rate p− be the global rate of false non-methylation counts, which
is identical to the inappropriate conversion rate of methylated cytosines. One can
find an upper bound for p+ by considering all methylation counts at non-CpG posi-
tions as false positives (resulting from non-conversion of presumably unmethylated
cytosines). Bear in mind that in single cell bisulfite experiments, the limited DNA
amount requires a particularly mild bisulfite treatment, which increases the false
positive rate relative to standard bisulfite sequencing procedures. In the literature,
false negative rates were not described, an estimate of p− = 0.01 is reported [26].
A conservative value of p− = 0.2 was chosen, which takes into account potential
errors originating from mapping artifacts or sequencing errors. Due to failed or in-
appropriate conversion, the number k of counts indicating methylation differs from
the actual number j of counts originating from methylated CpGs. Given the true
number of methylation counts j, the the observed methylation counts k are the sum
of the number m of correctly identified methylations and the number k−m if incor-
rectly identified methylations (false positives). Hence, the probability distribution
of k is a convolution of two binomial distributions,

P (k | j, n; p+, p−) =
k∑

m=0
P (m | j, 1− p−) · P (k −m | n− j, p+)

=
k∑

m=0
Bin(m; j, 1− p−)︸ ︷︷ ︸

=:C1
m,j

·Bin(k −m;n− j, p+)︸ ︷︷ ︸
=:C2

n−j,k−m

(1.2)

In (1.2), by convention, Bin(m; j, p) = 0 whenever m > j. Thus, given n reads, k
methylation counts, the likelihood function for r is a mixture of Bionomial distribu-

15



1.3 Single-Cell BS-Seq Analysis for Epimutation Rate Estimation Contents

tions,

P (k | n, r; p+, p−) =
n∑
j=0

P (k, j | n, r, p+, p−)

=
n∑
j=0

P (k | j, n, r, p+, p−) · P (j | n, r, p+, p−)

=
n∑
j=0

P (k | j, n, p+, p−) · P (j | n, r)

(1.1,1.2)=
n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·Bin(j;n, r) (1.3)

1.3.2.4 Parameter estimation in the BD-model

In the Bayesian approach, a prior needed to be specified for r to calculate the
posterior distribution of r. Recall the beta distribution(s), a 2-parameter family of
continuous probability distributions defined on the unit interval [0, 1],

Beta(r;α, β) ∝ rα−1(1− r)β−1 , for α, β > 0, r ∈ (0, 1) ,

It was assumed that a fraction of λm positions are essentially methylated, and that
their rate r follows a Beta(r;α = rm ·wm, βm = (1−rm) ·wm) distribution, having an
expectation value for r of αm

αm+βm
= rm. λm was set to 0.7, resembling the expected level

of mammalian genomic methylation [10]. The additional parameter wm weights the
strength of the prior relative to the strength of the likelihood. Since the confidence
into/ the knowledge about the prior distribution of methylation rates is rather weak,
the procedure should be strongly data-driven, therefore a a low wm was chosen,
wm = 0.5. A fraction of λu = 1 − λm is essentially unmethylated, and their rate is
assumed to follow a Beta(r;αu = ru · wu, βu = (1 − ru) · wu) distribution, having
an expectation value for r of αu

αu+βu
= ru, which was set to ru = 0.2 and wu = 0.5.

Thus, the prior distribution π(r) is a 2-Beta mixture distribution,

π(r;αm, βm, αu, βu, λm) =
∑

s∈{m,u}
λsBeta(r;αs, βs) (1.4)

The pragmatic reason for choosing a Beta mixture as a prior distribution is the fact
that the Beta distribution is the conjugate prior of the Binomial distribution[57],
such that for some normalizing constant Dα,β

j,n ,
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Bin(j;n, r) ·Beta(r;α, β) = Dα,β
j,n ·Beta(r; ; j + α, n− j + β) (1.5)

By virtue of Equation (1.5), the posterior distribution of r can be written down
analytically (Equation 1.7). This has the advantage that all questions on the pos-
terior distribution of r can be answered efficiently and up to an arbitrary precision.
Efficiency is an issue, because the posterior distributions for all regions needed to
be calculated, which can easily amount to millions.

P (r | k, n; p+, p−;αm, βm, αu, βu, λm)
= N−1 · P (k | n, r; p+, p−) · π(r;αm, βm, αu, βu) (1.6)

(1.3,1.4)= N−1 ·
n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·Bin(j;n, r) ·

∑
s∈{m,u}

λsBeta(r;αs, βs)

(1.5)= N−1 ·
n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m · (1.7)

 ∑
s∈{m,u}

λsD
αs,βs
j,n Beta(r; j + αs, n− j + βs)


In the above equation, N is a normalization constant,

N =
n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·

∑
s

λsD
αs,βs
j,n (1.8)

The ingredients for the construction of the posterior distribution are visualized in
Figure (Fig. 1.5). The upper bound for false methylation was estimated as p+ = 0.2,
0.51, 0.41, 0.44, 0.39 in the experiments Liver, H1, H2, H3 and H4, respectively, as
described under sec. 1.3.2.3.

1.3.2.5 Evaluation of precision, sensitivity and specificity of the BD-model in
simulation studies

1.3.2.5.1 Testing for epimutation events In order to validate the model, the
calling of epimutation events was tested on simulated data. If a highly methylated
region in the wild type sample is affected by several demethylation events, its methy-
lation rate will drop. Biologically relevant changes were expected that are called a
(demethylating) epimutation event when this region shows decreased methylation
in a test sample (i.e., in the case the single cell samples). Vice versa, a region which
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Figure 1.5: Plot of the likelihood functions for three different observations (k, n) (left),
the Beta mixture prior distribution (middle) and the corresponding three posteriors
(right). The number n of counts is set to 8, of which k = 2 (blue), k = 5 (grey) and
k = 7 (red) are methylation counts. λmwas set to 0.7 to resemble the expected level
of mammalian genomic methylation [10]. The unknown parameter p+was determined
empirically from the false non-CpG methylation, which reflects the incomplete conver-
sion rate, as follows: L1: 0.2, H1: 0.51, H2: 0.41, H3: 0.44, H4: 0.39. p−was set to 0.2
as a conservative choice. The beta mixture prior was set as described in the text.

is called sparsely methylated in the wild type sample and which shows increased
methylation in the test sample defines a (methylating) epimutation event. For each
pair (k, n), Fig. 1.14 shows the estimated methylation rate, and the corresponding
methylation calls. Note that according to the model, (strict) high methylation calls
can only be made if n ≥ 5. The number of positions with at least this coverage
however is very small, so it is not advisable to apply epimutation calling to sin-
gle positions. Instead, it was preferred to pool single position counts in regions
of appropriate size, i.e., regions containing sufficiently many CpG positions that
have a positive read count number in both the reference and the single cell sample
(“shared” CpG positions). The method has then sufficient power to reliably detect
epimutation events affecting these regions. The genome was tiled into disjoint con-
secutive regions of fixed length d, d = 50, 250, 1000, 2500 and d was finally chosen as
d = 1000, because the distribution of shared counts per region (Fig. 1.7) was most
suitable for the epimutation calling procedure. As epimutation calls were used only
for exploratory purposes, multiple testing problems were not encountered and no
need for multiple testing correction for the number of regions that were investigated
was given.
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Figure 1.6: The (relative) number of 10k regions which were called showing increased
methylation (top row) or showing decreased methylation (bottom row) as a function
of the false negative rate p− (left column) and the false positive rate (right column).
Colors indicate results for different samples. black: L1, red: H1, green: H2, blue: H3,
yellow: H4. When p− was varied, p+ was set to 0.4. When p+ was varied, p−was set to
0.2.

Figure 1.7: Left: Distribution of shared CpG positions between the livy reference and
the H1 single cell sample, using all mappable reads, for different region sizes. Right:
Distribution of shared CpG positions between the reference and the Liver single cell
sample using only reads filtered for 99% bisulfite conversion.
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Previously, genome-wide strategies for DNA methylation analysis filtered for reads
that did not show non-CpG methylation[26]. However, while this removes presum-
ably incorrect non-CpG methylation calls, it does by no means remove excessive
CpG methylation calls. Moreover, it also removes a vast number of reads. While
this is generally not a problem with fairly large amounts of genomic DNA, it is a
problem when dealing with single cells in which the impact of bisulfite-mediated
DNA degradation is much greater. Indeed, in our data, this strategy would have
removed over 90% of all mappable reads. To access the vast amount of incompletely
converted DNA, the probabilistic model was developed, allowing not only to ob-
tain more reliable methylation estimates, but also assign realistic probabilities to all
differential methylation calls.
Methylation/non-methylation counts for a single CpG position originating from a
single template DNA strand will always be prone to unavoidable errors from bisul-
fite conversion, DNA amplification and sequencing. Since false positive and false
negative methylation call rates are unequal, these errors have both a stochastic
component (noise) and a systematic component (bias). Thus, statements about
methylation states at individual CpG positions in single cell experiments are inher-
ently uncertain, and may even be misleading.
It is therefore necessary to pool evidence about methylation across multiple CpG
positions. Using an appropriate statistical model, this is also sufficient for single cell
bisulfite sequencing to answer the important question whether epimutation events
tend to occur stochastically dispersed along the genome, or if they co-occur in regions
that are simultaneously de-methylated or hyper-methylated relative to a wild type
sample. More generally, arbitrary sets of CpG positions were considered and tested
them for epimutation linkage, i.e., the fact that epimutations in these regions occur
in a coupled manner. Epimutation linkage might be due to genomic distance. Since
regular methylation marks are typically grouped in regions[58][59], it is likely that
the erasure respectively additional placement of methylation marks is also spatially
dependent.
Another important cause for epimutation linkage might be functional similarity.
E.g., CpG positions in the vicinities of a transcription factor’s binding sites might
show coupled epimutation events upon permanent activation of this transcription
factor. The larger the sets of CpG positions are, the higher the ability to detect
epimutation linkage. In other words, statistical power had to be traded against
spatial resolution for the detection of epimutation linkage.

1.3.2.5.2 Computational validation of epimutation calling robustness and sen-
sitivity To ensure that the biological differences in epimutation rates of different
genomic regions (promoters, genes, CG islands, repeats) are no artifacts of the
model parametrization (namely the false positive and false negative rates p+and
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p+ = 0.4 , p− = 0.1

p+ = 0.1 , p− = 0.2 p+ = 0.2 , p− = 0.2
p+ = 0.6 , p− = 0.2

p+ = 0.2 , p− = 0.25

Figure 1.8: Each plot shows the epidemethylation rates in different genomic regions
(red =promoters, yellow = genes, green = CG islands, blue = repeats) and for different
single cell samples (H1-H4, from left to right). Each plot was generated using different
parameters for the false positive and false negative methylation calling rates p+ and
p−(see header of the plots).

p), the whole epimutation calling procedure was ran for 5 different parameter sets
which explore extreme values of p+ and p−. The results for the epidemethylation
and epimethylation calls are shown in Fig. 1.8 and Fig. 1.9, respectively. The main
findings are: The epidemethylation rates in gene and repeat regions are consistently
higher than in promoters and CG islands, and the epimethylation rates behave
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inversely. Although the false positive rate of the calls was controlled, the non-
conversion rate p_{+} results in a reduced sensitivity in epidemethylation calling
and excessive epimethylation events in the less converted sample. This is due to the
fact that in the less converted sample, it is more difficult to distinguish increased
methylation from random fluctuations in the number of non-converted positions.

p+ = 0.4 , p− = 0.1

p+ = 0.1 , p− = 0.2 p+ = 0.2 , p− = 0.2
p+ = 0.6 , p− = 0.2

p+ = 0.2 , p− = 0.25

Figure 1.9: Each plot shows the epimethylation rates in different genomic regions (red
=promoters, yellow = genes, green = CG islands, blue = repeats) and for different
single cell samples (H1-H4, from left to right). Each plot was generated using different
parameters for the false positive and false negative methylation calling rates p+ and
p−(see header of the plots).
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1.3.2.5.3 Epimutation calling by a hidden Markov model A second strategy for
epimutation calling was considered, which resembles methods used for calling copy
number variants from SNP chip data [60]. A Hidden Markov Model[61] is trained on
the sequence of methylation / non-methylation counts along the genome. The hidden
states of the HMM can assume three values, indicating no change in methylation,
epimethylation, or epidemethylation. After learning of the HMM, the most probable
hidden state sequence (the Viterbi path) can be used to annotate the genome, i.e.,
to call epimutations. In contrast to the test-based calling of epimutation events, the
HMM model does not require a pre-defined partitioning into windows of fixed size
to achieve a sufficient statistical power. It might therefore have a better positional
resolution in detecting epimutated regions. On the other hand, the HMM-based
epimutation calls do not offer any control over the rate of false positive epimutation
calls. Control over the false positives is a desirable property if one seeks to validate
individual epimutated regions.

First, the methylation-/non-methylation counts in the reference and the sample had
to be pooled in identical windows of size w = 1000. This window size was chosen in
order to yield results that can be directly compared to the test-based epimutation
calling procedure. Within each window j, the total counts njref for the reference
(resp. njsam for the single cell sample) and the methylation counts kjref for the
reference (resp. kjsam for the single cell sample) was calculated, and afterward the
quantities

qjepimeth = P (rref < 0.3|kjref , n
j
ref ; p+ref , p−ref )

·P (rsam > 0.5|kjsam, njsam; p+sam, p−sam)
qjepidemeth = P (rref > 0.7|kjref , n

j
ref ; p+ref , p−ref )

·P (rsam < 0.5|kjsam, njsam; p+sam, p−sam)
qjno call = 1− qjepimeth − q

j
epidemeth (1.9)

These three probabilities were converted into the emission probabilities

pjepimeth = P (kjref , n
j
ref , k

j
sam, n

j
sam | epimethylation event) = qjepimeth

·P (kjref , n
j
ref , k

j
sam, n

j
sam)/P (epimethylation event)

pjepidemeth = P (kjref , n
j
ref , k

j
sam, n

j
sam | epidemethylation event) = qjepimeth

·P (kjref , n
j
ref , k

j
sam, n

j
sam)/P (epidemethylation event)

pjno call = P (kjref , n
j
ref , k

j
sam, n

j
sam | no call)

= qjepimeth · P (kjref , n
j
ref , k

j
sam, n

j
sam)/P (no call) (1.10)
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Here, an uninformative prior was assumed

P (epimethylation event) = P (epidemethylation event) = P (no call) = 1
3 .

The probability P (kjref , n
j
ref , k

j
sam, n

j
sam) affects all three quantities in the same

way, so it does neither influence the learning of the HMM by the standard Baum-
Welch algorithm nor the calculation of the Viterbi path. Therefore, the factor
P (kjref , n

j
ref , k

j
sam, n

j
sam) in the Equations (1.10) was ignored. The position-specific

emission probabilities are used for the training of an HMM whose hidden states
can assume one of the three epimutation states epimethylated, epidemethylated,
no call. The Baum-Welch algorithm learns the hidden state transition matrix A
and the probability distribution of the initial states π. The Viterbi path (the maxi-
mum likelihood sequence of epimutation calls) is afterward calculated based on these
parameters.

Table Tab. 1.1 shows a comparison of the test-based and the HMM-based annotation
for the epimutation calls for all four single cell samples. It is evident that HMM-
based calling is anticonservative; it systematically calls more epimutation events
than the test-based procedure. This was expected, because the HMM procedure
is not designed to keep any type 1 error levels rather than providing a good fit to
the epimutation rates observed in consecutive regions. I decided against the use of
HMMs in the specific context of single cell epimutation analysis, for a simple reason:
the basic assumption of an HMM, namely that the observations were generated from
a hidden Markov sequence, is strongly violated. The regions that have enough counts
to provide any evidence for or against an epimutation event are relatively sparse.
The hidden state sequence of the HMM is therefore not really a Markov chain
but a sequence of independent observations. This means that the HMM cannot
exploit its advantage, namely the modeling of the (putative) spatial correlation of
the epimutation rates along the genome.

1.3.2.5.4 Comparison of single position vs. region-based epimutation calling
For the sake of comparability with previous results in the literature, the epimutation
calling procedure was compared with a naive approach. Highly methylated positions
were defined as those with methylation levels > 90%, while positions with methy-
lation levels< 10% were classified as sparsely methylated. Since the coverage in the
samples is less than one, this essentially amounts to checking whether a methylation
mark is set or not. Demethylating epimutation events were then called if sparsely
methylated positions in a single cell sample were highly methylated in the wild type
(i.e. reference cell pool). Methylating epimutations are called in an analogous man-
ner. These results are given in Fig. 1.8 and Fig. 1.9. I quantitatively investigated
the false positive and false negative epimutation calling rates by a graphical model
(1.11), which for each nucleotide position consists of four binary variables: early,
reference - the true resp.the observed methylation state of this position in the refer-
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a)

Test \ HMM epidemeth. epimeth. no call row sum
epidemeth. 85198 24 4010 89232 (48.5%)
epimeth. 0 361 127 488 (0.2%)
no call 31532 2723 59766 94021 (51.17%)

column sum 116730 (63.52%) 3108 (1.69%) 63903 (34.77%) 183741 (100%)

b)

Test \ HMM epidemeth. epimeth. no call row sum
epidemeth. 64371 3 1087 65461 (39.38 %)
epimeth. 0 784 214 998 (0.6 %)
no call 29867 2663 67214 99744 (60.01 %)

column sum 94238 (56.70 %) 68515 (41.22 %) 3450 (2.07 %) 166203 (100 %)

c)

Test \ HMM epidemeth. epimeth. no call row sum
epidemeth. 49275 2 1043 50320 (34.69 %)
epimeth. 0 692 166 858 (0.59 %)
no call 28690 2561 62596 93847 (64.71 %)

column sum 77965 (53.75 %) 3255 (2.24 %) 63805 (43.99 %) 145025 (100 %)

d)

Test \ HMM epidemeth. epimeth. no call row sum
epidemeth. 41510 2 537 42049 (39.24 %)
epimeth. 0 373 98 471 (0.43 %)
no call 20080 1407 43151 64638 (60.32 %)

column sum 61590 (57.47 %) 1782 (1.66 %) 43786 (40.86 %) 107158 (100 %)
Table 1.1: Comparison of the test-based epimutation calls and the HMM-based
epimutation calls for the samples H1 (a), H2 (b), H3 (c) and H4 (d) relative to
the multi-cell reference L1.

ence sample, late, sample - the true resp. observed methylation state of this position
in the single cell sample.

early • //

��

• reference

late • // • sample

(1.11)

The graphical model gives rise to a factorization of the joint probability distribution
of (early,late,reference,sample):

P (early,late,reference,sample) = P (sample | late)·P (late | early)·P (reference | early)·P (early)
(1.12)

The factors on the right hand side of Equation (1.12) are defined in Table (Tab. 1.2).
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P (sample | late) sample = - samples = +
late = - 1− psam

+ psam
+

late = + psam
− 1− psam

−

P (reference | early) reference = - reference = +
early = - 1− pref

+ pref
+

early = + pref
− 1− pref

−

P (late | early) late = - late = +
early = - 1− r+ r+

early = + r− 1− r−

P(early)
early = - m

early = + 1−m
Table 1.2: The probability distributions on the right hand side of Equation (1.12)
are parametrized by 7 parameters: m, the average methylation rate of the se-
quences under consideration, r+ and r−, the methylating resp. demethylating
epimutation rates in these sequences, pref+ , pref− , the false methylation resp. non-
methylation call rates in the reference, and psam+ , psam− , the false methylation resp.
non-methylation call rates in the single cell sample.

A methylating epimutation occurs when early = - and late = +. A methylating
epimutation was called if reference = - and sample = +. Vice versa, a demethylating
mutation occurs when early = + and late = -. A demethylating epimutation was
called if reference = + and sample = -. The false positive rates in single position
epimethylation/ epidemethylation calling are then obtained as

FPmeth = P (reference = −, sample = +, ∼ (early = −, late = +))
FPdemeth = P (reference = +, sample = −, ∼ (early = +, late = −)) (1.13)

Figure Fig. 1.10 shows the false positive rates that are achieved with single position
epimutation calling in a large range of scenarios. The false positive rates are exceed-
ingly high, which makes single position calls useless for drawing reliable conclusions.
In particular, epimutation rates that were obtained from single position calls must
be considered way too high, e.g., a false positive epimethylation rate of 90% implies
that the epimethylation rates are over-estimated by a factor of 10. For these reasons,
single position epimutation calling is advised against.
On the other hand, a proof for the utility of the region-based epimutation calling
approach was required. It is not sensible to plot the single nucleotide false positive
/ false negative epimutation calls for regions that were identified as epimutated.
This would lead to almost the same results as in Figure Fig. 1.10, because single
nucleotide calling cannot be improved. However, it is meaningful to compare the true
methylation rate differences (late - early) of the regions that were called epimutated
with the differences of regions that were not called epimutated. This was done in
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Fig. 1.11. It can be shown that all the regions called show a true(!) difference in
methylation, and this difference is substantial. In particular, no false epimethylation
calls were obtained at all when a demethylating scenario was considered, and vice
versa. Therefore, I believe that the epimutation calling is not only biologically more
meaningful, it is also robust and reliable.

1.3.3 Methylation Analysis of mouse liver cells

1.3.3.1 Sample preparation

Underlying the Bioinformatics analysis is a novel procedure for DNA methylation
analysis of single cells using a combination of optimized bisulfite treatment and
whole genome amplification, which is described as follows [5]. Single cells were
collected from populations of mouse embryonic fibroblasts (MEFs) or hepatocytes,
under an inverted microscope by hand-held capillaries, and either frozen or imme-
diately subjected to heat DNA denaturation, followed by bisulfite treatment. The
converted DNA was subsequently subjected to whole genome amplification using
multiple displacement amplification (MDA), based on phi29 DNA polymerase and
random hexamer primers in an isothermal reaction. The bisulfite-converted, am-
plified material was then used as template for conversion-specific PCR, targeting
regions of interests, or to make reduced-representation libraries for Next Generation
Sequencing (NGS). PCR primers were designed to amplify only converted sequences,
that is, sequences in which non-methylated cytosines are replaced by thymines. To
increase specificity, a nested PCR approach was used. As positive controls, collec-
tions of 100 MEFs were used, bisulfite-treated and MDA-amplified in the same way
as the single cells, as well as 800 ng of bisulfite-treated unamplified DNA from the
same MEF population. Non-bisulfite-treated, non-amplified, genomic DNA served
as negative control to verify PCR specificity for only fully converted DNA.

Four single mouse hepatocytes (H1, H2, H3 and H4) were denatured, bisulfite-
converted and MDA-amplified according to the protocol. In parallel, 200 ng of total
genomic liver DNA was subjected to the same procedure. Amplification products
were then digested with the restriction enzyme MseI, which cuts at TTAA sites.
After digestion, a size selection (250-300bp) was performed, which limited the anal-
ysis to ~10% of the genome. An in silico digestion of the converted mouse genome
indicated that this size range would allow me to interrogate ~1.2 million CpG sites.
The size-selected DNAs from the 4 single cell samples and the liver sample were
end-repaired, A-tailed and ligated to Illumina adapters, and the completed libraries
were sequenced to 120bp on the Illumina HiSeq 2000. The first computation steps
in the pipeline following sequencing are described in sec. 1.4.0.6.
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Figure 1.10: Top panel: Epimutation calling rates as a function of the average
methylation rate m ∈ {0, 0.1, 0.2, ..., 1} of the reference region, and the false
methylation calling rate psam+ ∈ {0, 0.1, ..., 0.5} of the single cell sample. Three
epimutation scenarios were investigated: pervasive epimethylation (r+ = 0.5,
r− = 0.01, left plot), no preferential / spurious epimutations (r+ = 0.1, r− = 0.1,
middle plot), and pervasive demethylation (r+ = 0.5, r− = 0.01, right plot). The
remaining parameter were fixed at pref+ = 0.1, pref− = 0.01, psam− = 0.1. Shown are
the rates of epimethylating calls (x-axis) and the rates of epidemethylating calls
(y-axis). The different rates of false methylation calls (= non-conversion rates)
are color-coded, ranging from psam+ = 0 (red line) to psam+ = 0.5 (purple line). The
dots of the red line are labeled with their respective average methylation rates m.
Grey dotted lines connect scenarios with the same methylation rate. Note that
the scales of the three plots are not identical. Bottom panel: Assessment of false
positive epimutation calls for the same scenarios as in the top panel. Shown are
the rates of false positive epimethylation calls (x-axis) and the false positive rates
of epidemethylation calls (y-axis).

1.3.3.2 Statistics on methylation estimation in mouse BS-Seq data

This section provides basic statistics about the length distribution of the parts of the
reads that could be mapped after trimming, and investigates the number of CH and
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Figure 1.11: Validation of the region based epimutation calling procedure by sim-
ulation. The parameter settings were as follows: All false conversion rates were
set to a relatively high level of 0.2 (to generate a statistically challenging situa-
tion). The methylation rates m for each region were chosen from {0.1, 0.7, 0.9}
with equal probability, to roughly mimic the real situation in the genome. Two
scenarios were considered: A demethylating scenario (left, r+ = 0.01, r− = 0.5)
and a methylating scenario (right, r+ = 0.5, r− = 0.01). The red density curve
shows the methylation differences of those regions that were called epidemethy-
lated (left) respectively epimethylated (right). The black density curve shows the
methylation differences of the regions that were not called epimutated. Impor-
tantly, there never were epimutation calls in the false direction, i.e., regions were
never called epimethylated (epidemethylated) in the left (right) scenario.

CG positions present in these reads. Since the read length distributions are rather
tight (Fig. 1.12), the absolute numbers of CH and CG positions are reported, with-
out scaling them to relative frequencies. Relative frequencies would assume only
a few discrete numbers and would be difficult to present as histograms, because
any binning of the histogram bars can easily produce discretization artifacts. The
relative abundance of CG and CH positions does not resemble that in the mouse
genome, which is due to the library preparation by Reduced Representation Bisul-
fite Sequencing (RRBS). The distribution of the methylated CG positions per read
resembles that of the total CG positions per read, whereas the distribution of methy-
lated CH position per read has a substantially lower mean than the distribution of
total CH positions per read. This is in agreement with the expectation of a high
CG methylation rate and a low CH methylation rate.
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Figure 1.12: Descriptive statistics for the reads from the Liver reference. The
median lengths of the mapped parts of the reads were 30, 47, 48 and 55 in the
different samples. Frequency of CG (left) and CH (right) positions per read, for
the total number of positions (black) and for the the number of positions that
were called methylated (red). Dotted lines: corresponding maximum likelihood
fits for a mixture of binomial distributions with their means equal to the empirical
mean of the distribution. The mixture is taken over the distribution of the total
read lengths. Compared to the idealized distribution, the empirical distributions
are over-dispersed, i.e., their variance is higher than in the binomial fit. This can
be explained by the fact that CH resp. CG positions do not occur independently.

Figure 1.13: CG and CH read statistics of the single sample experiments. Colors
and lines are the same as in Fig. 1.12.
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1.3.3.3 Epimutation calling in mouse BS-Seq data

1.3.3.3.1 Methylation statistics derived from read counts For each region un-
der consideration, an individual posterior distribution P (r | k, n, p+, p−) is obtained.
With this posterior at hand, it is an easy task to calculate the expected methylation
rate r̂ in the corresponding region,

r̂ =
ˆ 1

0
r · P (r | k, n, p+, p−) dr (1.14)

It is customary to provide a Bayesian measure of uncertainty of this estimate, a so-
called credible interval. A credible interval is an interval which contains the estimate
(r̂) and in which a prescribed probability mass of the posterior is located. One can
construct a 90% credible interval [m,M ] as the shortest interval containing r̂ such
that P (r ∈ [n,M ] | k, n, p+, p−) = 0.9. Moreover, a region is called highly methylated
if

P (r > 0.7 | k, n, p+, p−) > c (1.15)

for some stringency level c which was set to 0.75 here. The false negative methylation
calling rates were set to p− = 0.1 for all samples, and the false positive calling rates
were determined by p+ = 1 − CH methylation rate for each sample separately. A
region is said to show increased methylation if

P (r > 0.5 | k, n, p+, p−) > c

Analogously, a region is called sparsely methylated if

P (r < 0.3 | k, n, p+, p−) > c

and a region with decreased methylation satisfies

P (r < 0.5 | k, n, p+, p−) > c (1.16)

By definition, any highly methylated region has increased methylation, and every
sparsely methylated region shows decreased methylation. For c > 0.5, high and
sparse methylation calls are mutually exclusive. Regions that are neither highly nor
sparsely methylated are called ambiguous.
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Figure 1.14: Illustration of the the results of the statistical modeling applied to re-
gions of size d = 1000 in the Liver sample. In each plot, n (on the x-axis) denotes
the total number of counts mapping to that region, of which k (on the y-axis)
are counts indicating methylation. Left: Using the Liver-specific estimates of the
false positive rate p+ = 0.2 and the false negative rate p− = 0.1 and the methy-
lation prior in Equation (1.4), for each admissible pair (k, n) a methylation rate
estimate r̂ from equation (1.14) was obtained. Colors correspond to methylation
rate, ranging from deep blue (zero methylation) to deep red (full methylation).
Middle: The red respectively blue area defines the pairs (k, n) which satisfy the
criteria for high respectively sparse methylation. Right: The red respectively blue
area defines the pairs (k, n) which satisfy the criteria for increased respectively
decreased methylation. Note that strict methylation calls are only made when at
least n = 5 counts were observed.

The time-critical step is the calculation of the region-specific posterior distribution
P (r | k, n, p+, p−), and the quantities related to it (Equations 1.14-1.16). Since k
and n vary for each region, and the number of regions is large, a lot of time was saved
by pre-calculating all required quantities for a set of values n = 1, ..., 45, k = 0, ..., n.
The statistics for, on average, 80% of all regions can then be looked up and do
not need to be re-computed. The running times for d = 250, 500, ... on the mouse
genome took less than a minute plus t = 25 min for the pre-computing of each of
the five samples, which did not vary substantially with region size.

1.3.3.3.2 Robustness of methylation estimation (computational validation) The
accuracy of the methylation rate estimates were compared when using 1k or 10k re-
gions. This revealed that the methylation rate distributions estimated from 1k and
10k regions that contain at least 30 counts are virtually identical (Figure Fig. 1.15 a)
and therefore can be assumed to correctly reflect the true methylation rate distribu-
tion. Figure Fig. 1.15 c) confirms this by plotting the methylation rate estimate of
each 1k region with at least 30 counts against the estimate of the corresponding 10k
region. The apparent bias towards lower methylation estimates can be explained
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by the fact that (rather rare) highly methylated 1k regions are compared to larger
10k regions in which this high methylation rate is averaged with 9 other 1k regions
likely to have lower methylation rates. However, 1k regions containing a minimum
number of 5 counts (the minimum number to cast a strict methylation call according
to the standard parameter choice, see Figure Fig. 1.14), the methylation rate esti-
mates are still dominated by sampling variance . The erratic bars at methylation
values larger than 0.2 indicate that using 1k regions for methylation rate estimation
might be unstable (Figure Fig. 1.15 b). For 10k regions with a least 5 counts, the
corresponding rate distribution resembles that for minimum 5 counts. Therefore, I
decided to use windows of size 10k for the analyses.
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a)

b)

c)

Figure 1.15: Comparison of methylation rate estimates for regions of size 1k and
10k. a) Methylation rate distribution for regions having at least 5 counts, for
regions of size 1k (left) and of size 10k (right). b) Methylation rate distribution
for regions having at least 30 counts, for regions of size 1k (left) and of size 10k
(right). c) Scatter plot comparing the methylation rate estimate for a region of
size 1k and minimum 30 counts (x-axis) with the methylation rate estimate for
the 10k region in which the 1k region is contained (y-axis). The few (<50) points
having larger estimates than 40% methylation rate were omitted from the plot.
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Furthermore, I systematically explored the dependence of the methylation calling
procedure on the estimates on the false positive and false negative rates p+ and p−.
An increased false negative rate makes the identification of (truly) demethylated
regions more difficult. I therefore expected and observed a decrease in the number
of regions that are called methylated (Figure Fig. 1.6, bottom left). On the other
hand, the probability of a region with high methylation counts to be truly highly
methylated is even increased, given a larger false negative rate . Therefore, the
number of regions called methylated increases with p−(Figure Fig. 1.6, top left). The
opposite reasoning applies to the false positive rate p+. It becomes more difficult to
detect methylated regions, as they might be due to false positive methylation counts.
The number of regions called methylated therefore decreases with p+ (Figure Fig. 1.6,
top right). Conversely, the number of regions called unmethylated increases with
with the false positive rate, because low methylation count numbers become less
likely (Figure Fig. 1.6, bottom right).

It is evident from Figure Fig. 1.6 that the methylation calls vary considerably with
p+ and p−. A wrong estimate of these critical parameters could potentially bias the
analysis. However, there is no reason to believe that the estimates for p+and p− are
incorrect. The false negative rate was set to 0.2, although it is probably much lower.
As one can see from Figure Fig. 1.6, this hardly affects both increased and decreased
methylation calls. The false positive rates were estimated by the CH methylation
rate, because CH methylation is practically absent in mammals [62]. Since there
are hundreds of thousands of CH (non-)methylation calls, the p+ estimate is very
precise.

1.3.3.3.3 Robustness against false positives (experimental validation) The
non-conversion of unmethylated cytosines was the largest source of systematic errors
(false positives). In order to verify that the model corrects for this error, a mixture
of mouse liver DNA was split into two aliquots and carried out two bisulfite conver-
sions with different (high and low) conversion efficiency. I.e., apart from different
conversion times, the two aliquots were treated and processed identically. In total,
94,376,609 (326,183,300) reads were obtained from the high (low) conversion sam-
ple, 20,033,321 (36,149,298) of which could be successfully mapped to the genome,
corresponding to a mapping efficiency of 21,22% (11,08%). The higher coverage for
the low conversion sample was expected as a consequence of the lower DNA degra-
dation. The false positive rates were estimated from CH-conversion as described
before, which led to p+ = 0.1242 (87.58% BS-conversion) for the high conversion
sample and p+ = 0.5710 (42.90% BS-conversion) for the low conversion sample.

Error-corrected methylation rate estimates give a better agreement between the two
samples and have a more realistic distribution than empirical methylation rates (the
number of methylation counts divided by the total number of counts in a region).
Figure SFig. 1.16 shows the distribution of the empirical methylation rates and a
scatter plot comparing the estimates for 10k regions with sufficiently many (≥10)
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methylation counts in both samples. It is evident that the low conversion sample
is strongly biased towards high empirical methylation rates; there are almost no
regions with less than 50% methylation counts.

a) b)

c) d)

Figure 1.16: The distribution of the empirical methylation rates for the high con-
version (a) and the low conversion (b) sample c) Distribution of the differences
of the empirical methylation rates d) Distribution of the differences of the model
estimated methylation rates

Fig. 1.17 shows the two “transfer functions” which convert observed methylation
rates into the methylation rate estimates for the low and the high conversion sample.
Most importantly, regions in the low conversion sample with an empirical methy-
lation rate as high as 50% are estimated to have a low methylation rate (<10%).
This is intuitive because one expects to see at least around 57.10% of the counts
methylated due to false positives alone.

Fig. 1.18 shows the distribution of methylation rate estimates obtained by the model
and a scatter plot comparing the estimates for 10k regions with sufficiently many
(≥10) counts in both samples. As can be seen particularly from the rate distribution
in the low conversion sample, the bias has been reduced substantially. The scatter
plot demonstrates that the agreement between the estimates has increased, as many
points now cluster not only at (1, 1), but also at (0,0). This means in particular that
regions of low methylation in the low conversion sample were correctly identified.
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a) b)

Figure 1.17: Conversion of empirical methylation rates into methylation rate es-
timates for the high conversion sample (a) and the low conversion sample (b).
Note that tuples (k, n) of k observed methylated and a total of n observed counts
are converted into one rate estimate r̂. k/n is plotted on the x-axis vs. r̂ on the
y-axis. Since two tuples (k1, n1), (k2, n2) with identical quotient kj/nj may lead
to slightly different estimates r̂j, the relation between empirical methylation rate
and estimated rate is, strictly speaking, not a function.

The implicit bias correction leads to methylation rate estimates as low as they are
almost never observed directly in the low conversion sample.

Fig. 1.18 c) still shows a bias towards high methylation values in the low conversion
sample. This is a necessary consequence of the fact that the posterior distribution
for the methylation rate r inevitably has a larger variance in the low conversion
sample, simply because of the larger errors that blur the experimental evidence.
However, one should bear in mind that the primary goal of inference is the de-
tection of epimutation events, which relies on the accurate calling of regions with
low/high methylation. Here, I exploited the advantages of the Bayesian approach in
the calling procedure for sparsely/highly methylated regions. Namely, the methyla-
tion calls are not based on a point estimate (like the methylation rate estimate r̂ in
Equation 1.14), they are formulated as conditions on the full posterior distribution
(Equations 1.15 and 1.16). They implicitly account for a higher variance in the pos-
terior distributions of r for the low conversion sample. Thus, methylation calls in the
low conversion sample are automatically more conservative. Fig. 1.16 demonstrates
that the agreement between high/low respectively increased/decreased methylation
calls is satisfactorily high.

1.3.3.4 Additional single-cell experiments

In addition to the single-cell samples H1-H4, six additional single hepatocyte sam-
ples were sequenced and analyzed. Basic statistics for them are shown in Tab. 1.3,
corresponding to the description for the main samples H1-H4 in . The reference cell
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a) b)

c) d)

Figure 1.18: The distribution of the (model-based) methylation rate estimates for
the high conversion (a) and the low conversion (b) sample c) Distribution of
the differences of the estimated methylation rates d) Scatter plot comparing the
empirical methylation rates for regions having at least 10 counts in both samples.

pool used for these samples was also L1. Plots of all epimutation rates including
these samples are shown in Fig. 1.19.

Sample Bisulfite Total Mapped Unique
conversion rate reads reads CpG positions

H5 58,13% 129,471,967 2,328,930 126,570
H6 57,09% 128,263,779 2,259,116 131,242
H7 54,00% 131,379,837 2,712,605 213,542
H8 57,82% 129,313,949 7,189,642 213,638
H9 56,54% 117,318,027 3,737,191 132,270
H10 56,31% 132,060,126 5,7109,21 209,971

Table 1.3: General statistics of RRBS of 6 additional hepatocytes. Table format
corresponds to Table 2 in the main text.

38



Contents 1.3 Single-Cell BS-Seq Analysis for Epimutation Rate Estimation

Rate of demethylating epimutations Rate of methylating epimutations

Figure 1.19: Genome-wide demethylating (left) and methylating (right) epimuta-
tion rates for the 6 additional cells as shown in Table 3. For each feature, samples
shown from left to right are: H5, H6, H7, H8, H9, H10. Figure corresponds to
Figure 2 a-d) for samples H1-H4 in the main text.

1.3.3.5 Results and discussion of biological results

Using the model, methylation data from the four single cells H1, H2, H3 and H4,
DNA methylation patterns were compared with that of the liver tissue sample L1
as reference. Epimutation rates were 1.9 % - 4.7% for demethylating events and
0.2% - 1 % for methylating events (Tab. 1.4). Demethylating events were more
common than methylating events, perhaps due to errors generated by DNMT1 in
the propagation of methylation patterns during cell division. The analysis reveals
demethylating epimutations being enriched in gene bodies and repeat regions while
promoter regions are much more stable than the rest of the genome. Conversely,
methylating epimutations are homogeneously distributed across the genome. This
high propensity for repeats and gene bodies to accumulate demethylating epimuta-
tions could arise because such genomic features are highly methylated and therefore
more prone to accumulate demethylating epimutations. Such events could occur as
errors in the activity of DNMT1 in propagating DNA methylation patterns. This
finding is in accordance with prior observations of mammalian methylomes in aging,
which found that most aberrant changes in coding regions consist of demethyla-
tion, with aberrant methylation occurring mostly in CGIs and promoters [63]. As
expected, epimutation events are distributed heterogeneously among chromosomes,
pointing toward a stochastic mechanism, similar to DNA sequence mutations (data
not shown). While only four cells were analyzed, these results also indicate consid-
erable cell-to-cell variation. To my knowledge, this is the first procedure that is able
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to accurately analyze DNA methylation patterns at a single-cell resolution. The
main new insight that can be derived from the analyses is that at 0.2-4.7% DNA
epimutation rate is 2-3 orders of magnitude higher than the DNA sequence mutation
rate [64]. This finding is in accordance with recent results suggesting that sponta-
neous transgenerational epigenetic changes in the Arabidopsis thaliana methylome
are three orders of magnitude more frequent than DNA mutations [65][66]. The high
propensity of accumulating demethylating epimutations, particularly in repetitive
elements, is in keeping with recent findings suggesting an age-dependent global hy-
pomethylation of transposed elements such as Alu elements [67] [41]. The presented
single-cell bisulfite Reduced Representation approach can be applied not only to ba-
sic research on phenotypic diversity within organs and tissues in relation to disease
states, but also to improve diagnostic and prognostic assays that sample very small
numbers of cells from affected areas of diseased tissues. One major clinical applica-
tion is to assess DNA methylation patterns in promoter regions of tumor suppressor
genes in circulating tumor cells [68]. I anticipated that having access to such sensi-
tive technology will radically change the way biomedical science is practiced, shifting
emphasis from average endpoints towards the description of cell populations, tissues
and organs through their individual parts at single-cell resolution.

Sample Positions Fully methylated Fully unmethylated Epimethylation (%) Epidemethylation (%)
H1 12,635 57 12,268 27 (0.21) 596 (4.71)
H2 11,333 162 10,682 84 (0.74) 431 (3.83)
H3 7,417 150 6,808 81 (1.09) 186 (2.50)
H4 4,150 28 4,034 14 (0.33) 79 (1.90)

Table 1.4: Results from methylation analysis per sample, all reads, model-adjusted.
The first column shows the number of common CpG positions overlapping between
the reference L1 and each of the samples, followed by two columns showing the
amount of these positions detected as fully methylated and -unmethylated, respec-
tively, by our model. The last two columns show the number of positions with
epimethylation and epidemethylation and the epimutation rates, respectively.

1.4 The BEAT R/Bioconductor Package

As part of this thesis, I wrote and published the R/Bioconductor package BEAT (BS-
Seq Epimutation Analysis Toolkit) and a corresponding Bioinformatics Applications
Note [6]. BEAT implements the Bayesian-Dirichlet mixture model and can aggregate
consecutive cytosines into genomic regions with a minimum coverage threshold in
order to overcome the aforementioned limitations in the estimation of methylation
rates. It can precompute and re-use model-adjusted values of empirical data sets,
call epimutations and generate related statistics. BEAT represents a novel tool
for analyzing bisulfite-converted DNA sequences. For each region, it calculates a
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posterior methylation probability distribution which can be used for the comparison
of DNA methylation between samples. The BEAT package delivers methods for
the estimation of methylation levels, methylation status and for calling epimutation
events in a two-sample comparison. To the author’s knowledge, it is the first tool
providing a rigid statistical model for handling BS-Seq samples. It has an in-built
correction for conversion errors and is therefore perfectly suited for handling BS-Seq
samples with possibly different BS-conversion rates.

1.4.0.6 Data preprocessing, quality control

FastQ data was first subjected to quality control by FastQC 0.10[69] to identify
overrepresented sequences and low-quality ends. Several overrepresented sequences
per sample were identified. Foreign sequence at the start or end of a read was
treated as adapter contamination and clipped from the ends of all reads using cu-
tadapt 1.0[70]. Using a Phred score of 20 as minimum quality threshold, ends
of all reads were trimmed accordingly using the FASTX-Toolkit 0.13 (available
at http://hannonlab.cshl.edu/fastx_toolkit/, accessed 10/04/2012). Mapping and
methylation calling was then performed on all quality-corrected reads using the
BS-methylation caller bismark 0.7.3[37] with the alignment tool Bowtie2 2.0[71].
Mapping options were standard, apart from an option for non-directional libraries,
allowing a single mismatch in each seed region identified by Bowtie2 and permissive
mismatch handling by allowing a decrease in 1.5 sequencing score points per base.
Mapped reads were postprocessed by removing PCR duplicates (multiple, identi-
cal reads) using samtools 0.1.18 [72]. Annotation-specific results were generated
by a genome-wide survey of promoter-, gene-, repeat regions and CGIs based on
the mapped position of CG sites. Genome-wide promoter regions were obtained
from the 2012 revision of the Eukaryotic Promoter Database (EPD), annotating a
total of 9773 promoters[73], the current RepeatMasker annotation (Smit, AFA, Hub-
ley, R & Green, P. RepeatMasker Open-3.0. 1996-2010, unpublished, available at
http://www.repeatmasker.org, accessed 10/04/2012) was used to determine repeti-
tive elements, and the 2012 UCSC annotations for mm10 were used to discern CGIs
and genes for mapped reads[74].

1.4.0.7 Verification of preprocessing and mapping accuracy using BLAST

To test for biases related to preprocessing and read mapping, I used BLAST+[75]
to perform local alignments of randomly sampled reads. In order to simulate
methylation-aware mapping, C-to-T and G-to-A conversions were done on both
query sequence and the mm10 reference genome and cross-aligned accordingly for
both strands. Average mapping efficiency from Bismark, which was 10.7% for single-
cells, was compared with BLAST results and found to be as good or better. BLAST
could map 6.8% of reads with the standard parameter settings (6.2% if only hits
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with a maximum of 4 mismatches was allowed.) The higher mapping yield of Bis-
mark/Bowtie2 in comparison to BLAST could be due to Bismark’s seed-match map-
ping strategy, the use of FASTQ-scores, and the ability to tolerate missing bases,
shown in the sequence as N’s[71]. For further investigation, I BLASTed some ran-
domly chosen reads that were previously unmapped by both BLAST and Bismark
against the nucleotide collection to find the closest match from mouse sequence or
any contaminating DNA. I concluded that low mapping efficiency results from lower
sample quality and not from biases in the preprocessing or mapping. The compa-
rably low yield using a local alignment also means that trimming and clipping of
read borders cannot improve the mapping yield from the data further. To test for
biases related to preprocessing and read mapping, I used BLAST+[71] to perform
local alignments of randomly sampled reads. In order to simulate methylation-aware
mapping, C-to-T and G-to-A conversions were done on both query sequence and the
reference genomes and cross-aligned accordingly for both strands. Average mapping
efficiency from Bismark was compared with BLAST results and found to be as good
or better, as follows: BLAST could map 6.8% of reads in this fashion and 6.2% if
hits were limited by allowing a maximum of 4 mismatches.
The fact that an even lower mapping yield from BLAST, as compared to Bis-
mark/Bowtie2, was observed, could be attributed to its lack of a seed-match map-
ping strategy, lack of awareness of FASTQ-scores, inability to tolerate N’s and
BLAST’s inexact matching algorithm. To investigate the potential origin of unmap-
pable sequences, BLAST queries of some random previously unmapped sequences
against the nucleotide collection were made to find the closest match. Some of
the matches to the reads were bacteria such as Leptosphaeria, matches to human
and ape DNA (suggesting reads with degenerated mouse sequence) and phage X174
(whose DNA was used for spike-in material). Therefore, this demonstrated that
low mapping efficiency stems from base-calling quality and is not due to biases in
preprocessing or mapping options or software. The comparably low yield using a
local alignment also means that trimming and clipping of read borders could not
have been improved further to yield better results from the data.

1.4.0.8 A sample run of BEAT

The BEAT package can be used for estimating the true methylation levels of BS-
Seq samples and for the calling of epimutations, which are differences in methylation
states of a region in the genome. The input for the package BEAT consists of count
data in the form of counts for unmethylated and methylated cytosines per genomic
position, which are then grouped into genomic regions of sufficient coverage in or-
der to allow for low-coverage samples to be analyzed. Methylation rates of each
region are then modeled using the BD-model in order to adjust for experimental
bias. Pooling single CG counts into regions can be done with the function positions
to regions, which reads a comma separated file (CSV) and outputs a data.frame.
The latter is the input to the BEAT model, which is accessed via the core func-
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tion generate_results. It was assumed that all counts at a single CG position were
obtained from pairwise different bisulfite converted DNA templates, representing
independent observations. Some of the most important parameters of the model are
the false positive and false negative conversion rates. With the resulting estimates
of methylation levels and methylation status from the model, which are returned as
a data.frame, the function epimutation calls can then determine epimutation differ-
ences between two samples and compute rates for demethylating and methylating
epimutations.
The package BEAT expects as input one csv per sample with counts for unmethy-
lated and methylated cytosines per genomic position. Such data can be obtained
from the output of BS-Seq mapping tools such as bismark[37], followed by sim-
ple script-based data processing. BS-Seq data for methylated- and unmethylated
counts per genomic position needs to be formatted into a data.frame object with
the columns: ’chr’, ’pos’, ’meth’ and ’unmeth’ (signifying chromosome name, chro-
mosomal position, as well as methylated and unmethylated cytosine counts at that
chromosomal position).

1.4.0.8.1 Reading input files # Set working path
localpath <- system.file(’extdata’, package = ’BEAT’)
# Load sample data. Alternatively, sample data is available via command: data(BEAT)
positions <- read.csv(file.path(localpath, "sample.positions.csv"))
head(positions)
chr pos meth unmeth
1 chr1 100001310 1 0
2 chr1 100002648 0 1
3 chr1 100002688 0 1
4 chr1 100002802 1 0
5 chr1 100004564 0 1
6 chr1 100004606 0 1

1.4.0.8.2 Configuration and parameters BEAT can process multiple samples at
a time. For each sample specified under ’sampNames’, the package BEAT reads this
data frame from a csv from the working directory, which is specified by the parameter
’localpath’. The sample should be called <samplename>.positions.csv and should
contain the aforementioned csv under the name ’positions’. Result samples written
by BEAT will have the names <samplename>.results.RData. A distinction is made
between two samples whose methylation status is compared against that of the
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reference. For each sample, the assignment of reference or non-reference status to
samples is done via the vector ’is.reference’, which is indexed by the ’sampNames’
vector and contains one TRUE entry for the reference and one to many FALSE
entries for samples to be compared against the reference. The example data set
contains two samples, one named ’reference’ for a reference consisting of a mixture
of cells, and one named ’sample’ for a single-cell sample to be compared against the
reference.

# Set sample names and prefix of data files
sampNames <- c(’reference’,’sample’)
# Set reference vs. non-ref status per sample
is.reference <- c(TRUE, FALSE)

For the modeling part of BEAT, Bisulfite conversion rates have to be specified per
sample using the vector ’convrates’, which is indexed by ’sampNames’. These con-
version rates need to be specified manually by the user. Practically, for mammalian
somatic cell samples, these rates can be estimated for each sample by looking at the
non-CpG methylation rate per sample and using the inverse value as estimated CpG
methylation rate, because non-CpG methylation in these types of cells is expected
to be near zero. For example, if non-CpG methylation in a sequenced sample was
measured to be 0.1 then BS-conversion rate for that sample would be set to 0.9
when near-zero non-CpG methylation can be expected, as is the case in somatic
mammalian cells.

# Set BS-conversion rate per sample
pplus <- c(0.2, 0.5)
convrates <- 1 - pplus

The aforementioned values are then set in a parameter object, which is used through-
out the further work ow in this package. It provides the following additional options:

• 1-convrates represents the fraction of unmethylated counts that are falsely
called as methylated due to incomplete BS-conversion. This parameter is also
referred to as ’pplus’ in the statistical model.

• ’pminus’ represents the fraction of methylated counts that are falsely called as
unmethylated.

• ’regionSize’ is the size of regions into which genomic positions are grouped. In
single cells, the number of positions with sufficient coverage for reliable statisti-
cal predictions may be very small. Therefore, the pipeline applies epimutation
calling to regions instead of single positions. Single positions are pooled into
regions of appropriate size, i.e., regions containing sufficiently many CpG po-
sitions that have a positive read count number in both the reference and the
single cell sample. The method has then sufficient power to reliably detect
epimutation events affecting these regions.
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• After pooling CG positions to regions, there may still be regions with low
count numbers that do not allow for reliable downstream analysis. Regions
with less than ’minCounts’ counts will be removed from further processing,
potentially saving significant processing time in further analysis steps.

The following parameters are of minor importance, for a standard analysis, they can
be left at their pre-set values.

• ’verbose’ is an option that prints additional information during computation
when set to TRUE.

• ’computeRegions’ is an option that will recompute the regions from given
positional input if set to TRUE; otherwise, it will depend on existing region
samples already present in the ’localpath’ directory (sample names ending in
regions.RData).

• ’computeMatrices’ is an option that will recompute the model data from given
regions if set to TRUE; otherwise, it will depend on existing model output
samples already present in the ’localpath’ directory (sample names ending in
convMat.RData and results.RData.

• ’writeEpicallMatrix’ is an option that can be set to TRUE to generate epimu-
tation calling output in the form of matrices (one row per genomic position,
output format is CSV).

# Create parameter object
params = makeParams(localpath, sampNames, convrates, is.reference, pminus =
0.2, regionSize = 10000, minCounts = 5)

1.4.0.8.3 Pooling CG positions into regions The supplied methylation counts
for individual CG positions are grouped into regions by BEAT for modeling ac-
cording to the specified ’regionSize’ and ’minCount’ parameters. The function po-
sitions to regions takes as input the samples as csv objects located under <sample-
name>.positions.csv in the working directory, as discussed above. The output of
the function is a list of data.frames of resulting counts per genomic regions. Each
data.frame object contains a list of genomic regions covered by the given samples,
consisting of the columns: ’chr’, ’start’, ’stop’, ’meth’, ’unmeth’ (signifying chromo-
some name, start of region by chromosomal position, end of region by chromosomal
position, as well as methylated- and unmethylated cytosine counts at that chromo-
somal position). Additionally, the output for each individual sample is saved in the
working directory under <samplename>.regions.<regionSize>.<minCounts>.RData,
with samplename, regionSize and minCounts replaced by the sample name and the
respective parameters given.

# Pool CG positions into genomic regions
positions_to_regions(params)
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Sample: reference.positions.csv regionSize: 10000 minCounts: 5
Processed reference.positions.csv, yielding 16728 regions of 10000 nt 5
Sample: sample.positions.csv regionSize: 10000 minCounts: 5
Processed sample.positions.csv, yielding 15948 regions of 10000 nt
# Model methylation levels and -status
results <- generate_results(params)
Sample: reference Generating conversion matrix...
Adding methylation states and 9 matrices...
Sample: sample Generating conversion matrix...
Adding methylation states and 9 matrices...

1.4.0.8.4 Calling epimutations Finally, epimutations are called by comparing two
results objects from the previous step. The function ’epimutation calls’ compares one
sample to a reference sample. A methylating epimutation is called for each genomic
region common to both samples when it was called as unmethylated in the refer-
ence and as methylated in the other sample by the model. Accordingly, the region
is called as demethylating epimutation when called as methylated in the reference
and as unmethylated in the other sample. Epimutation rates are then computed as
the frequency of epimutation events in relation to the total regions shared between
each sample and the reference. The resulting epimutations are saved as data.frames,
for each sample one object for methylating epimutations and one for demethylating
epimutations in the working directory as RData objects. Each data.frame object
contains a list of genomic regions covered by the given samples, consisting of the
columns: ’chr’, ’pos’, ’endpos’, ’meth’, ’unmeth’, ’methstate’, signifying chromo-
some name, start of region by chromosomal position, end of region by chromosomal
position, methylated- and unmethylated cytosine counts at that chromosomal po-
sition and the methylation state, which is 1 for methylated positions and -1 for
unmethylated positions.

# Call epimutations
epiCalls <- epimutation_calls(params)
Statistics for sample: sample (min. coverage: 5 reads/site)
Total shared CG sites(=regions!) between sample and reference/CTRL: 14492
Median CG sites of these total shared regions (REFERENCE): 23
Median CG sites of these total shared regions (SINGLE CELL): 13
Control has 10164 fully methylated and 967 fully unmethylated sites
Methylating Epimutation Rate: 0.00283
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Demethylating Epimutation Rate: 0.47661
Total Epimutation Rate: 0.47944
Fully meth in single: 606, Fully unmeth in single: 9985
Written epi-methylation calls to matrix: sample.methEpicalls.10000.5p+=0.5p-=0.2.RData
Written epi-demethylation calls to matrix: sample.demethEpicalls.10000.5p+=0.5p-
=0.2.RData

1.4.0.9 Summary statistics and visualization of the results

Fig. 1.20 graphically illustrates the output of BEAT by showing methylation esti-
mates and epimutation calls for a sample of regions.

Table of Abbreviations

5mC 5’-methyl-cytosine, methylated cytosine
BS-Seq Bisulfite sequencing
CpG Cytosine followed by guanine, the most frequent genomic nucleotide combina-
tion in which methylated cytosines are observed
CG see CpG
CGI CpG island
DNMT DNA methyltransferase
RRBS Reduced Representation Bisulfite sequencing
scRRBS single-cell Reduced Representation Bisulfite sequencing
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Figure 1.20: a) Methylation estimates and epimutation calls on a DNA segment. For all regions
with sufficient read coverage, the black curves show the methylation estimates for a single
cell sample (top), a reference sample (bottom), and their difference (middle). Regions with
methylating epimutations are marked in red, while regions with demethylating epimutations
are marked in blue. Samples used for our analysis in this paper were obtained from neuronal
cells of young mice (data unpublished). b) Scatter plot of methylation estimates of a multi-
cell reference sample (x-axis) versus those of a sample (y-axis) for all common regions with
sufficient coverage. Each dot represents a single region that is covered by both samples. Red
dots indicate methylating epimutations in the sample, while blue dots indicate demethylating
epimutations in the sample. Four dots representing exemplary regions with epimutations at the
corresponding boundary value ranges for demethylating- and methylating epimutations have
been annotated with their values of methylated (k) and total (n) counts. Note that there
exists no boundary line separating the red respectively the blue region, because our Bayesian
model assigns different methylation estimates to tuples (k1,n1), (k2,n2) with equal empirical
methylation level k1/n1=k2/n2.
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