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Er beschloss,  

sein Leben zu ändern,  

die Morgenstunden auszunutzen.  

Er stand um sechs Uhr auf,  

duschte, rasierte sich, kleidete sich an, 

genoss das Frühstück,  

rauchte ein paar Zigaretten,  

setzte sich an den Arbeitstisch und 

erwachte am Mittag. 

 

- Ennio Flaiano: Diario notturno. (1956). 
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0  Foreword 
 
 

Dear reader, 

 

I can see no reason for why a dissertation should not have a foreword 

encouraging the reader’s interest and guiding her and his expectations. 

Speaking of, you might have hoped for a travel guide of picturesque 

Caribbean beaches, or family recipes of delicious desserts, or even how to get 

your body shaped while sleeping. I was told there are doctoral theses on 

those topics, and in case you picked the wrong one, I promise I won’t be 

offended by your closing this document. Yet, and this I promise, too, if you go 

on reading, you will definitely learn something about shapes and sleep, about 

islands and pancakes, and you might even learn something about why you 

like pancakes most on Sundays.  

If you think ‘Chronotype’ is the newest edition of Swiss watches or a 

monoCHRONatic light source, I must disappoint you but there is no need to 

be blue about it; yet, you may want to read the General Introduction… 

Otherwise, you can skip the introductory part with clear conscience, as each 

Project provides enough detail to understand its story including a brief 

summary. At the core of this dissertation is the intent to optimize work 

schedules such that sleep-wake behaviour is as little affected as possible. The 

recurrent (or oscillating) theme is the disruption of sleep and circadian 

rhythms in shift work (if you think ‘circadian’ is the name of a celebrity’s child, 

you might also want to read the Introduction). Although most people in the 

field seem to know what circadian disruption is and agree that it has 

potentially adverse effects on health and safety, only few explicit definitions 

and even fewer measures exist.  
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Project One shows the importance of individual (i.e. chronotype) and 

operational characteristics (i.e. shift sequence) for circadian disruption, two 

crucial features often underestimated in shift work research. In Project Two, a 

new approach for quantifying circadian disruption of the sleep-wake cycle is 

proposed, involving both, individual chronotype and shift sequence. Last, 

Project Three challenges current guidelines on recommended number of 

consecutive (night) shifts applying the newly developed measure for circadian 

disruption. 

  

It is not my intent to disrupt this foreword as I could endlessly continue 

writing on it. But in your own interest, I will stop here.  

I hope reading this work will neither ruin your appetite for pancakes nor 

the desire for island travels; yet, I hope it will raise your understanding of 

individual and time–dependent differences in appetite and desire. 

 

 

Sincerely, 

 

 

Dorothee Fischer 
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1 General Introduction 
 

1.1  What are clocks (for)? 
 
As a privilege of modern times and Western industrialisation, many of us know 

the ‘jet lag malaise’ induced by fast travels across time zones. Sleepiness, 

digestion problems, and cognitive impairment are common symptoms of what 

happens when the body is not in synchrony with external time.1 Twice a year 

in several countries, we experience a ‘mini jet lag’ caused by transition into 

and out of daylight saving time that pushes us back in seasonal progression 

by four and six weeks in spring and autumn, respectively.2 Increasingly more 

of us engage in permanent or rotational shift work experiencing chronic or 

‘social jet lag’ by sleeping, eating and being active when the body is 

oppositely tuned.3 What all three phenomena have in common is the 

disruption of internal, biological rhythms, most obviously that of the daily 

sleep-wake cycle. Life is embedded into a temporal structure of light and dark, 

of warm and cold, created by the earth’s 24-h rotation, and so is our biology. 

Anticipating cyclic environmental changes, both, within a day and over the 

year, permits organisms to occupy not only spatial and social niches in 

ecology, but also temporal ones. In millions of years of evolution, all living 

organisms have evolved a mechanism enabling them to measure time and 

predict periodic changes – the circadian clock, governing behaviour and 

physiology in bacteria, plants and animals, including humans. 

The word circadian (lat. ‘circa’ – about, ‘dies’ – a day) had been coined 

by Franz Halberg to emphasise that the periodicity of the internal clock is 

‘approximately one day’ rather than precisely 24h.4 When shielded from 

environmental time cues and kept in constant conditions, the circadian clock 

‘free-runs’ generating an endogenous day that is slightly longer than 24h, 

averaging 24h 11min ± 8 min in humans.5 ‘Free-running’ refers to the 
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capability of the clock to display a self-sustained rhythm and to continue 

oscillating with an intrinsic period tau (τ) in the absence of external cues. It 

took centuries of research to proof that observed behavioural and 

physiological rhythms were endogenously generated rather than the result of 

a mere response to external periodic changes. Today, a free-running rhythm 

with a cycle deviant from 24h in constant conditions is considered one of three 

major characteristics of circadian clocks (‘self-sustainability’).A 

The human circadian clock resides in the brain few centimetres behind 

the root of the nose, in a pair of nuclei above the crossing of the optic nerves 

(‘optic chiasm’).6 The ‘suprachiasmatic nuclei’ (SCN, also used in singular 

form) are bilaterally located in the anterior part of the hypothalamus and 

comprise approximately 20.000 neurons, equalling the size of two grains of 

rice. The SCN exhibit a self-sustained rhythm in firing rate with a circadian 

period τ. If SCN tissue is cross-transplanted between two animals, the donor’s 

specific period is transmitted to the recipient, e.g., as reflected in its activity-

rest cycle.7 In order to adjust its endogenous circadian cycle length to 

precisely the 24h period of the external solar day, the SCN receives light input 

from the retina via a direct axonal pathway, the retinohypothalamic tract.8 

Unlike other vertebrates, photoreceptors in mammals are exclusively ocular,9 

although extra-retinal photoreceptors have been proposed to exist, for 

example in skin behind the human knee,10 a finding that could never be 

replicated by other research groups.11 Mice lacking all retinal photoreceptors 

known at that time (rods and cones) failed to show visual responses to light, 

but could still entrain to photic stimuli, indicating that a new non-rod, non-cone 

and non-image forming photoreceptor was responsible for entraining the 

circadian system.12 Retinal ganglion cells appeared a proper candidate, and 

A Another crucial feature of the circadian clock is ‘temperature compensation’, revealed by 
Colin Pittendrigh, a pioneer of circadian research, and his experiments on the fruit fly 
Drosophila pseudoobscura (1966). A functional clock must compensate for temperature 
differences that otherwise would accelerate or decelerate chemical processes and 
consequently alter their period. 
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studies revealed that ~1% of all retinal ganglion cells are light responsive 

expressing the photopigment melanopsin (‘intrinsically photosensitive retinal 

ganglion cells’, ipRGCs).13,14 In mice deficient of rods and cones and 

melanopsin, all responses to light are lost.15 Yet, melanopsin-knockout mice 

could still entrain to a light-dark regimen, suggesting that image- 

forming receptors may as well play a role in photic entrainment.16 The spectral 

sensitivity of ipRGCs peaks in the short wavelength range,17,18 and the action 

spectrum for light-induced melatonin suppression identified 446 – 477 nm as 

the most potent wavelength region revealing blue light as most influential for 

the circadian system.19 

The fact that the SCN oscillate endogenously raises the question for 

the underlying mechanism. How do they generate a self-sustained circadian 

rhythm? In 1971, three mutants of the fruit fly Drosophila melanogaster were 

identified (one with a long period of 28h, one with a short period of 20h, and 

one arrhythmic phenotype) that could be traced back to the same gene, 

named Per for period.20 With this the first clock gene was discovered, and 

others followed leading to the proposal of a potential molecular mechanism in 

1990: the transcriptional-translational feedback loop.21 The basic idea is that a 

gene is transcribed in the nucleus of a cell, and then translated into a protein 

at the ribosome in the cytoplasm followed by the entrance of the protein into 

the nucleus where it represses its own transcription. Finally, when the protein 

is degraded, the cycle restarts. Initially proposed as a simple negative 

feedback loop, we now know that in mammals the generation of an 

endogenous rhythm at the molecular level involves a complex network with 

interlocking circuits and several genes (i.e. Per 1, 2 and 3, Cry(ptochrome) 1 

and 2, Clk (Clock), Bmal1, Rev-erbα, and Dec 1 and 2).22,23 The SCN with its 

remarkable qualities appears the master pacemaker organising the daily 

temporal structure of bodily processes. Yet, it turned out that self-sustained 

oscillators exist in single cells throughout the body expressing similar sets of 
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clock genes though they need periodical inputs from the SCN to prevent the 

spontaneous dampening of their rhythmical activity with time.24,25  

Together, the central clock and the peripheral oscillators form a 

hierarchical circadian system regulating and modulating physiological 

properties as manifold as gene expression, hormone secretion and mental 

performance. The notion of the circadian organisation as a temporal program, 

a time-keeping system thus appears more appropriate than the idea of ‘one’ 

circadian clock. 

 

1.2 The Art of EntrainmentB 
 

In order for the organism to accurately predict and thus be prepared for 

periodic environmental changes, the circadian system needs to be 

synchronised with the external light-dark cycle as the alternation of light and 

darkness provides the most precise and reliable signal in the environment for 

time of day. Besides self-sustainability and temperature compensation, 

‘entrainability’ is another major feature (if not ‘the’ feature) of circadian clocks. 

Entrainment derives from the French word ‘entraîner’ meaning ‘carry over’ or 

‘sweep along’ in English. It describes the synchronisation of the circadian 

clock to daily environmental changes, e.g., the light-dark alternation created 

by the earth’s 24-h rotation. Yet, by simply responding to external changes, 

any time-responsive system could be passively synchronised. In contrast, 

entrainment is an active process during which the circadian system as a self-

sustaining oscillator itself assumes a specific phase relationship with an 

external rhythm that is able to reset the clock.26 Any periodic signal that can 

reset and shift the clock is called ‘zeitgeber’ (from the German word for ‘time 

giver’).27 The phase angle between two rhythms is called phase of 

entrainment Ψ and relates the reference point of an internal circadian rhythm 

with that of the external zeitgeber cycle (e.g., relative timing of core body 

B Title from: Roenneberg, Daan & Merrow, 2003.26  
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temperature minimum and dawn).26  

The slight deviations of free-running rhythms from 24h have sometimes 

led to the argument that entrainment of the clock is needed to correct for that 

deviation. Yet, constant conditions producing free-running rhythms are never 

encountered in real life, as the rotation of the earth and its non-perpendicular 

North-South axis cause daily and seasonal variability in photoperiod. Thus, 

the mechanisms behind a functional clock have evolved in a frequently 

alternating environment. Accordingly, the circadian clock is not entrained 

because its free-running rhythm is not exactly 24h but it free-runs with a 

circadian period to enable optimal functioning when entrained.26,28 

Furthermore, to serve its function, a circadian rhythm must run at the 

frequency of the earth’s rotation as well as maintain a specific phase 

relationship to the solar cycle.29 The phase of entrainment is not fixed but 

depends on several parameters: the endogenous period τ, the external 

zeitgeber period T, its light:dark ratio (photoperiod), as well as amplitude 

(strength) of the zeitgeber rhythm. Light turned out to be the predominant 

zeitgeber for circadian rhythms across the animal and plant kingdom, although 

other modalities were shown to have entraining qualities as well (e.g., 

temperature in the Squirrel monkey,30 barometric pressure in pocket mice,31 

social interaction in bats32). The dominance of sun time over social time as a 

zeitgeber in humans was shown in a large-scale online study in Germany, 

where people were asked about their sleep-wake behaviour on workdays and 

work-free days, and provided information on their geographical location.33 

Within the German time zone (GMT +1), averaged sleep timing on work-free 

days delayed from East to West by four minutes per longitude, which is 

exactly the time the earth needs to turn against the sun, or, respectively, the 

sun to rise at the next longitude.  
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1.2.1 Models of Entrainment 

Here, three major approaches will be presented that have been proposed to 

predict how circadian clocks entrain to external light:dark cycles. All three 

models are so-called ‘phase-only models’ as their only read-out is phase, and 

all three models agree that stable entrainment is reached when the difference 

between internal and external period is somehow corrected for. Yet, they 

postulate different response characteristics to do so.  

 

1.2.1.1 Non-parametric Entrainment 

Colin Pittendrigh, one of the field’s pioneers, approached entrainment by 

systematically investigating responses to transient light pulses while keeping 

animals in constant darkness.34 From his experiments, he concluded that the 

system is instantaneously shifted to a new phase when perturbated by a light 

stimulus. Thus, stable entrainment is reached when the discrete phase shift 

(Δϕ) corrects for the deviation of the endogenous cycle length (τ) from 24h (T), 

that is Δϕ = τ - T. The system’s response will depend on when the stimulus is 

given, summarised in phase response curves (PRCs) graphing the magnitude 

of a phase shift as a function of circadian phase. PRCs for brief light pulses 

are characterised by a phase delaying and a phase advancing part usually 

separated by a ‘dead zone’ where no or insignificant phase shifts are seen. 

This approach was termed non-parametric entrainment as it assumes discrete 

instantaneous phase resetting in response to transient light pulses leaving the 

oscillator itself unaltered. A PRC for light was also demonstrated in humans 

revealing a characteristic type-1 PRC.35 Type-0 and type-1 PRCs were first 

distinguished by Arthur Winfree who plotted the new phase to which an 

oscillation is reset as a function of the old phase (phase transition curves, 

PTCs).36 If the stimulus is below a critical stimulus length (i.e. < 50 sec), one 

can reset to any phase by proper choice of when the stimulus is given 

resulting in a PTC with slope of 1 (hence, type-1 resetting) (Fig. 1.1a). In 

contrast, if the stimulus exceeds the critical duration, or the system is highly 
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sensitive to the perturbation, one can reset only to a limited range of new 

phases irrespective of the old phase (resulting in a PTC with slope of 0, thus 

type-0 resetting) (Fig. 1.1b). Winfree also predicted a singularity (i.e. the 

critical stimulus given at a specific phase) that stopped the oscillation, which 

he later indeed found experimentally.36 

 

 
 

Figure 1.1. Idealised phase transition curves (PTCs) to low intensity (a) and high 
intensity stimuli (b). (a) Type-1 resetting, stimulus S < 50 sec. (b) Type-0 resetting, 
stimulus S > 50 sec. T represents the old phase at which the stimulus is given, θ 
indicates the new phase to which the rhythm is reset. Source: Winfree, 1970.36 
 

1.2.1.2 Parametric Entrainment 

A parametric approach to entrainment was proposed by Jürgen Aschoff, 

another pioneer of the circadian field, to account for effects of continuous light 

exposure rather than single light pulses.37 He postulated that stable 

entrainment was achieved by changing the clock’s velocity, and consequently 

changing phase, in order to match internal and external cycle length. Velocity 

response curves (VRCs) are estimated from PRCs and obtained similarly 

using responses to light compared with constant darkness. Essentially, 

parametric and non-parametric entrainment differs only by the nature of the 

light stimulus (i.e. transient or continuous).38 A fundamental problem that 

PRCs (and with them VRCs) face is the assumption of a stable tau and 

P(V)RC itself. This view is challenged by the observation that tau changes 

dependent on zeitgeber conditions (i.e. after-effects of entrainment,39,40 and 
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intensity of constant light41). Thus, model predictions for naturalistic 

entrainment should optimally be based on responses of synchronised 

rhythms. 

 

1.2.1.3 An Integrated Approach to Entrainment 

Roenneberg et al. have suggested a model of entrainment that is accessible 

from data under synchronised conditions.38 Their concept does not assume 

mechanisms by which internal and external cycle lengths are matched (i.e. 

phase shifts, velocity changes) but integrates effects of light at different 

internal times as formalised by a circadian integrated response characteristic 

(CIRC). The CIRC assumes that light around subjective dawn compresses the 

internal cycle (resulting in phase advance), light around subjective dusk 

expands it (leading to phase delay), and a ‘dead zone’ separates both these 

parts (Fig. 1.2). Its form is determined by two factors: the asymmetry of the 

compressing and expanding regions, and the extent of the dead zone (making 

the CIRC more or less sinusoidal). Light exposures of any form (from skeleton 

photoperiods to extended and multiple light signals) are integrated over one 

cycle, and stable entrainment is reached when τ = T, i.e. the internal period 

adjusts to the external cycle length via compression or expansion.  

 

 
 
Figure 1.2. Circadian Integrated Response Characteristic (CIRC). The response 
characteristic includes a compressing part that is followed by a dead zone and a 
subsequent expanding part. It predicts how much a given light exposure will affect 
internal cycle length at different internal times. Source: Roenneberg et al., 2010.38 
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The CIRC makes important predictions regarding the phase of entrainment. In 

case τ = T, phase of entrainment is independent of zeitgeber amplitude, 

because the proportions of compressing and expanding regions are 

symmetrical and therefore equally affected (Fig. 1.3 A and D). If τ > T, the 

phase of entrainment moves to a later external phase thereby producing an 

integrated response that compresses the internal cycle length. Accordingly, 

modelling τ < T results in an earlier phase of entrainment, as now more of the 

expanding parts need to be exposed to light. In both cases, zeitgeber strength 

will affect phase of entrainment. With increasing amplitude of the zeitgeber 

cycle, the distribution of different phases of entrainment (resulting from τ > or 

< T) within a population will become narrower. Early phases will be delayed by 

a stronger zeitgeber, as the expansion portion increases more than its 

counterpart. Similarly, late phases will be advanced due to a larger increase of 

the compressing compared with the expanding part (Fig. 1.3 B and E, C and 

F). Notably, recent studies in humans and birds have confirmed those 

predictions.42,43  
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Figure 1.3. Entrainment scenarios with different conditions (weak and strong 
zeitgeber) and varying internal cycle lengths (τ). Phase of entrainment is indicated by 
the triangles (representing internal midday, InT 12). The white arrows show the 
direction in which the CIRC has “moved” in order to achieve stable entrainment (left 
panels: compared with (A); right panels: compared with the weak zeitgeber 
condition). Source: Roenneberg et al., 2010.38 
  

 

Moreover, the CIRC predicts that two individuals with identical τ will assume 

different phases of entrainment under strong and weak zeitgeber conditions. 

Accordingly, two individuals with different τ can assume the same phase of 

entrainment under strong and weak zeitgeber conditions (Fig. 1.4). Therefore, 

it is of crucial importance that individual light exposure is concomitantly 

assessed if one aims at distinguishing between individuals who are entrained 

with a (more or less) late phase irrespective of zeitgeber conditions and those 

who are entrained late due to decreased zeitgeber strength. Circadian 

phenotypes thus differ not only from individual to individual, but also from 

environment to environment.33  
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Figure 1.4. Exemplified CIRCs illustrating how zeitgeber conditions (weak vs. strong) 
and internal cycle length (τ) interact on phase of entrainment (black dots, 
representing internal midday, InT 12). (A) External and internal midday coincide when 
both cycle lengths match. (B) If zeitgeber conditions differ appropriately, two 
individuals can assume the same phase despite different τ. Accordingly, they can 
entrain differently albeit identical τ, by proper choice of zeitgeber conditions.  
 
 

The phase of entrainment determines when physiological, behavioural and 

cognitive processes reach their peaks and troughs. Accordingly, individuals 

who entrain differently also vary in the timing of their biological functions. 

These differences are commonly called ‘chronotypes’. In view of 

industrialisation, urbanisation, and electrical lighting, the impact of zeitgeber 

strength on the phase of entrainment is of great importance, and the resulting 

variation between individuals (i.e. ‘chronotypes’) appears equally challenging 

and promising for a 24/7 society. 
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1.3 Chronotypes – not a category 
 
Various names have been appointed to chronotype, often used 

synonymously: morning and evening sleepers,44 morning (M-types) and 

evening types (E-types),44 early birds or morning larks and night owls,45,46 

morning and evening chronotypes,47 diurnal48,49 and circadian 

preferences,50,51 and diurnal and circadian types.52 They all refer to 

chronotype as a ‘circadian phenotype’,53 i.e. the behavioural manifestation of 

underlying circadian rhythms, but they differ with respect to the behaviour 

(e.g., sleep, physical activity, work hours, eating habits), which is partly due to 

how studies assess chronotype. A large body of studies demonstrates that 

chronotype reflects the relative timing of several physiological and behavioural 

processes, such as core body temperature, melatonin, cortisol, subjective 

alertness, electrodermal activity, cognitive performance, and most recently, 

clock gene expression (Per1, Per2, and Rev-erbα).44–46,54–56 According to 

circadian principles, the relative timing of events within the 24-h day depends 

on how the clock embeds itself into (entrains to) the external zeitgeber cycle. 

Thus, chronotype have been proposed to constitute the phase of entrainment 

Ψ of an individual.38,57,58 For the purpose of this dissertation, the definition of 

chronotype follows this conceptualisation. As was outlined in a previous 

section (see 1.1), the notion of a temporal multi-oscillatory system appears 

more accurately than the idea of ‘one’ circadian clock. Consequently, there is 

not ‘one’ phase of entrainment but each oscillator assumes a specific phase 

relationship with the zeitgeber rhythm. The internal phase relationships 

between different circadian outputs are not necessarily fixed, and thus, 

chronotype will vary according to the assessed (internal and external) 

rhythms. Furthermore, the rhythm of interest can be characterised by different 

parameters (e.g., maximum, minimum). It is therefore crucial to measure Ψ 

(chronotype) with respect to the outcome one is interested in.  

 



1 General Introduction 

 21 

1.3.1 Assessment of Chronotype 

Several approaches exist to determine phase of entrainment at different levels 

(single cell, organ tissue, organism; central vs. peripheral), with different 

methods (invasive, non-invasive), and in various settings (in vitro, in vivo; field 

vs. laboratory) (for an overview, see59). In real life settings, self-reported 

questionnaires and sleep logs, as well as recordings of locomotor activity 

(‘actimetry’) are most commonly used, but clock-regulated hormones (e.g., 

melatonin, cortisol) and clock gene expression can also be assessed in semi-

controlled conditions where participants collect their own samples (e.g., urine, 

saliva, buccal mucosa cells) at night under dim-light. Multiple chronotype 

questionnaires are available including the Morningness-Eveningness 

Questionnaire (MEQ),60 the Composite Scale of Morningness (CSM),61 the 

Circadian Type Questionnaire,52 and the Diurnal Type Scale (DTS),62 to name 

only some. The first und most widespread questionnaire is the MEQ 

containing 19 items with regards to habitual arising and bed times, preferred 

times of physical and mental performance, and subjective alertness after 

arising and before going to bed. The scores range from 16 to 86, with original 

cut-off values of 16 – 41: evening type, 42 – 58: neither type, and 59 – 86: 

morning type, that have later been revised to match the distributions observed 

in middle-aged people.63 Yet, several aspects are critical. The classification of 

‘intermediate’ or ‘neither types’ can result from two different response 

patterns: once by consistently ticking the intermediate box (values of 2 and 3), 

and once by choosing extreme but opposing categories (values of 0 and 4) 

eventually adding up to an intermediate overall score. Furthermore, 

chronotype as research variable aims at detecting differences in the temporal 

organisation of individuals and related variables. As such, it represents an 

internal time scale that arbitrary MEQ scores cannot be plotted on. Most 

importantly, the MEQ does not distinguish workdays from work-free days 

(e.g., “How alert do you feel during the first half hour after you wake up in the 
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morning?“). Yet, the answers might be very different, if questions were posed 

separately.  

To overcome these difficulties, Roenneberg et al. have developed the 

Munich ChronoType Questionnaire (MCTQ64) that poses simple questions 

about one’s actual sleep-wake behaviour on workdays and work-free days, 

e.g., bedtime, time when one is prepared for sleep, estimated time to fall 

asleep, wake-up time, get-up time, and use of alarm clock. Several 

parameters can be computed, such as sleep latency, sleep inertia, and sleep 

start and end. Chronotype is determined via the phase of entrainment Ψ of the 

sleep-wake rhythm with the light-dark cycle using mid-sleep on work-free days 

corrected for potential over-sleep (MSFsc) as a proxy (Fig. 1.5). Mid-sleep is 

calculated by sleep onset plus half the sleep duration (i.e. sleep from 1:00 

a.m. to 9:00 a.m. results in a mid-sleep of 5:00 a.m.). It was shown to be a 

better phase marker than sleep start or wake-up time by means of predicting 

dim-light melatonin onset (DLMO), which is considered a direct phase marker 

of the circadian clock.56,65  

 
Figure 1.5. Chronotype as phase of entrainment Ψ can be determined via several 
output rhythms (i.e. sleep-wake rhythm), which in turn can be assessed using 
different phase markers as chronotype proxies (i.e. MSFsc). 
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The correction for potential oversleep is applied to account for the finding that 

most people accumulate a certain sleep debt during their workweek due to 

early start times that they eventually compensate for by sleeping in on 

weekends (for correction algorithm, see supplemental data to Ref.33).57 The 

resulting chronotype distribution for the German population is bell-shaped and 

slightly skewed to the left, revealing that most people are in between the rare 

extremes of early and late types (Fig. 1.6).57 Most frequently, corrected mid-

sleep falls between 4:00 and 4:30 a.m. with ~35% sleeping earlier and ~50% 

sleeping later. Assessing chronotype via mid-point of sleep results in a local 

time, representing an internal time scale. The MSFsc corresponds to internal 

midnight, thus allowing for transformations between circadian and zeitgeber 

time. It also permits the calculation of chronotype from self-reported sleep logs 

and actimetry data. 

 

 
Figure 1.6. Chronotype distribution assessed with the Munich Chronotype 
Questionnaire (judged by MSFsc, data collected mainly in Germany, Switzerland, the 
Netherlands, and Austria). Source: Roenneberg et al., 2007.57 
 

 

1.3.2 Actimetry 

Actimetry is a non-invasive method to monitor human rest-activity cycles. The 

device is usually worn continuously for several days around the wrist, ankle or 

waist, and records changes in acceleration as well as orientation (dual-axis 

Chronotype (local time)
0 1 2 3 4 5 6 7 8 9 10 11 12
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accelerometer). Thus, at rest relative to the earth’s surface, the acceleration 

measured is 1 g (9.81 m/s2) upwards. The mechanical motion is converted 

into an electric signal with a dimensionless final output, simply indicating more 

or less activity. Traditionally, time series in circadian research are ‘double-

plotted’ to better visualise changes in period and phase over time. A double 

plot displays ‘time’ on both axes, yet in different solutions, with days on the 

ordinate and hours on the abscissa. The course of two subsequent days is 

shown in one row, and the last day is repeated in the next row, i.e. first row 

shows day 1 and 2, second row shows day 2 and 3, and so on. Figure 1.7 

illustrates the double plot of locomotor activity (‘actigraph’) from a shift worker 

in a rotational 3-shift system (working morning, evening, and night shift).  
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Figure 1.7. Actigraphs of a shift worker in a rotational schedule with morning, 
evening, night shifts showing raw activity data (upper panel), and extracted sleep 
bouts (green bars) and rotating working times (blue boxes) (lower panel). The data is 
double-plotted, i.e. first row contains day 1 (0 – 24h) and day 2 (24 – 48h), second 
row day 2 and day 3, third row day 3 and day 4, and so forth. 

 

Several parameters can be computed from actimetry data. Usually, a 

cosine wave is fitted to the raw data applying a least square approach. 

Amplitude (A), range of oscillation (RoO = 2A), mean level or mesor (a 

rhythm-adjusted mean), period (P), frequency (1/P), and phase (φ or θ) can be 

derived and used for analyses. Additionally, the centre of gravity66 can be 

calculated, a one- or poly-harmonic fit to the time series that, in case of a one-

harmonic fit, corresponds to the acrophase (peak) of the rhythm. The centre of 
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gravity thus represents a phase marker of the rest-activity cycle, and can be 

visualised as follows: if the activity times series over 24h was plotted circularly 

on a piece of paper and cut out, then the centre of gravity would be the point 

at which a pin was put through the paper to fix it to the wall without further 

movements (Fig. 1.8). Finally, sleep parameters (onset, offset, duration, mid-

point) can be extracted from actimetry by applying a two-step process 

involving a threshold-analysis and bootstrap correlation method. More detailed 

information on this process will be provided in Project Two (see 3.3.3), and a 

comprehensive description of methods assessing and analysing human 

activity and rest in situ by Roenneberg, Keller, Fischer, et al. is now in press.67  

 

 
Figure 1.8. Centre of gravity. Raw activity time series is shown over the course of 
one day (line graph, left panel). When plotted on a circle (circumference indicating 
hours, radius showing level of activity), centre of gravity indicates the time point at 
which the black shape can be fixed to the wall by a pin representing a phase marker 
of the rest-activity cycle (right panel). 

 

1.3.3 Sleep-wake Behaviour 

Given its assessment via mid-sleep on free days (MSFsc), chronotype strictly 

only represents Ψ of the sleep-wake cycle.58 The alternation of sleep and 

wakefulness is one of the most overt rhythms in humans, and one of the most 

fascinating since its true function remains to be elucidated, though it likely 

serves the preparation of our brains to function optimally during 

wakefulness.29 Several mathematical models of sleep-wake regulation have 

External time (local time)

Ac
tiv

ity
 le

ve
l

0:00 12
14:30

0

618

12:00 24:00



1 General Introduction 

 27 

been proposed, that can be classified into phenomenological models and 

physiology-based models. 

 

1.3.3.1 Phenomenological Models 

Classic phenomenological models focus on the interaction between sleep and 

circadian systems, without making assumption about linked physiological 

correlates. The first and highly influential model was proposed by Borbély68 

and later refined by Daan, Beersma and Borbély.69 In their ‘two process 

model’ of sleep, the process ‘S’ reflects a homeostatic component that 

increases with wakefulness and decreases during sleep in an exponential 

manner, while process ‘C’ represents a wake-promoting circadian drive in the 

shape of a sinusoidal curve (Fig. 1.9). The process C opposes the 

homeostatic sleep propensity by peaking few hours prior to habitual bedtime 

in entrained humans and promoting wakefulness, and reaches its trough in 

the second half of the sleep episode when most of the sleep pressure is ‘slept 

off’ to ensure longer sleep. Thereby, the circadian modulation gates the 

homeostatically controlled sleep process consolidating it at a later circadian 

phase. Similarly, some hours before sleep is initiated, the nocturnal and sleep-

promoting hormone melatonin is secreted in higher levels in the pineal gland, 

and subsequently suppresses via melatonin receptors in the SCN the wake-

promoting signal, thereby enabling sleep directly after the circadian peak for 

wakefulness.70 Kronauer et al. proposed another influential model of sleep-

wake regulation.71 Based on a van der Pol formalism, two interacting 

oscillators are coupled, one representing the self-sustained circadian 

pacemaker and the other the rest-activity cycle, successfully capturing the 

timing and duration of human sleep. The Kronauer model is still used in 

current models to represent SCN inputs, but accumulating insights into the 

neuroanatomy of sleep-wake control gave rise to mathematical models with a 

stronger physiological basis. 
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Figure 1.9. Two-process model of sleep regulation. The homeostatic process ‘S’ 
(sleep propensity) builds up during wakefulness and dissipates during sleep. The 
circadian process ‘C’ opposes the homeostatic sleep pressure by increasing the drive 
for wakefulness in a time-dependent manner. Source: Chellappa & Cajochen, 2009.72 
 

1.3.3.2 Physiological Models 

Physiology-based models specify interactions among brainstem and 

hypothalamic regions known to promote states of wakefulness, REM (rapid 

eye movement) sleep and non-REM (NREM) sleep, including their synaptic 

projections and respective neurotransmitters (for review, see73). They 

mathematically formalise current hypotheses regarding sleep-wake control, 

e.g., the ‘flip-flop switch’ that drives rapid transitions between wakefulness 

and sleep by mutual inhibition,74 and the ‘reciprocal interaction hypothesis’ 

describing how neuronal REM-on and REM-off populations generate ultradian 

NREM-REM cycles within sleep.75 The following two paragraphs briefly 

summarize brain regions, neurotransmitters and synaptic projections 

commonly included in physiological models of the sleep-wake regulatory 

network. 
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1.3.3.2.1 Sleep-wake regulating centres in the brain 

The wake-promoting populations include locus coeruleus with the 

neurotransmitter norepinephrine, serotonergic dorsal raphé nuclei, and 

histaminergic tuberomammillary neurons. Subpopulations of laterodorsal 

tegmental nucleus and pedunculopontine tegmental nucleus are considered 

both, wake and REM-promoting regions and involve the neurotransmitter 

acetylcholine. The NREM-promoting population comprises the ventrolateral 

preoptic area expressing the neurotransmitter GABA. Additionally, the 

suprachiasmatic nuclei are added to provide circadian modulation to the 

above-mentioned sleep- and wake-promoting populations. Thereby, circadian 

drive enters the models via a 24-h variation in SCN firing rate, and 

homeostatic sleep propensity is incorporated through the sleep-promoting 

population.72,73,76 

 

1.3.3.2.2 Synaptic projections among neuronal populations 

Mutually inhibitory projections between wake- and NREM-promoting regions 

reflect the “flip-flop switch” hypothesis driving rapid transitions between 

distinct states of sleep and wakefulness.74 Within sleep, transitions between 

NREM and REM sleep stages are assumed to be regulated via interactions 

between REM-on (excitatory cholinergic populations involving tegmental 

nuclei) and REM-off regions (e.g., the inhibitory monoaminergic wake-

promoting locus coeruleus), as proposed by the reciprocal interaction 

hypothesis.75 In models, these interactions are represented via excitatory 

projections from REM- to wake-promoting populations and inhibitory 

projections directed from wake- to REM-promoting areas. The SCN projects to 

locus coeruleus (wake) and tegmental nuclei (REM) (excitatory), and to the 

ventrolateral preoptic area (NREM) (inhibitory), standing for a simplified net 

effect of several indirect pathways and multiple transmitters that mediate SCN 

signalling to the sleep-wake regulating centres.73 
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Physiology-based models have been successfully applied to describe 

human sleep-wake behaviour under entrained and free-running conditions as 

well as in shift work settings.77–79 Recently, using such a physiological model, 

the mechanisms of chronotype defined as an individual’s preferred sleep-

wake schedule have been explored raising the question for homeostatic 

influences on chronotype.80,81 

 

1.3.3.3 Chronotype or Homeotype?C 

The best-documented chronotype difference is that in sleep-wake behaviour 

with evening types sleeping later than morning types. Given the here followed 

definition of chronotype as the phase of entrainment Ψ of the sleep-wake 

rhythm with the light:dark cycle and its assessment by mid-sleep on days off 

(MSFsc),58,64 homeostatic components of sleep-wake regulation might also 

influence Ψ and thus, chronotype. Studies from Valérie Mongrain’s lab at the 

Université de Montréal in Canada suggest that chronotypes may be divided 

into two subgroups: a ‘non-congruent’ subgroup comprising individuals with 

extreme, opposed chronotypes (assessed with MEQ) but overlapping, 

intermediate circadian phases (measured by dim-light melatonin onset, 

DLMO), and a ‘congruent’ subgroup with individuals showing both, extreme 

chronotypes and extreme DLMOs.82–84 In subjects with intermediate DLMO 

times, morning types showed a higher initial level and a steeper decay rate of 

slow-wave activity in the frontal derivation during NREM sleep compared with 

evening types.82 Given a similar circadian phase by means of melatonin 

onset, homeostatic parameters such as different dissipation levels of sleep 

pressure might account for the observed variation in sleep timing (i.e. 

chronotype).  

  

C Term from: Chellappa & Cajochen, 2009.69 
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A quantitative modelling study showed that chronotype (again, defined 

as preferred sleep-wake schedule) depended on the relative influences of 

homeostatic and circadian drives.81 Reducing circadian amplitude as well as 

period advanced sleep timing. Likewise, increasing homeostatic sleep 

propensity as well as the parameter representing adenosine concentration (a 

neuromodulator involved in sleep homeostasis85) caused earlier sleep times, 

whereas enhancing the homeostatic time constant for clearance and 

accumulation delayed the timing of sleep. The model thus offers potential 

mechanisms underlying the two above-describe chronotype subgroups. 

According to the model, in congruent individuals (DLMO and sleep timing are 

concordant), circadian period is assumed to cause earlier (shorter τ) or later 

sleep times (longer τ). In contrast, in non-congruent individuals (intermediate 

DLMO but advanced or delayed sleep times), differences in homeostatic 

kinetics are argued to account for morningness (shorter time constant) or 

eveningness (longer time constant).  

 When assessed via sleep-wake behaviour, chronotype seems to be 

naturally influenced by the interaction of both, circadian and homeostatic 

parameters, an assumption further underpinned by age-related changes in 

chronotype, circadian system and sleep regulation.86  

 

1.3.4  Chronotype, Age and Sex 

Chronotype is not a fixed trait, but influenced by multiple factors, such as 

genetics,48,87 light exposure (or zeitgeber strength),38,57 age, and sex (and/or 

gender).53 From childhood throughout puberty and adolescence, young 

people grow later and later with women peaking in ‘lateness’ at the age of 

19.5 years and men at around 21 years.53 After that, chronotype advances 

with increasing age (Fig. 1.10). The differences between males and females 

of 1h on average persists until the age of ~50 years. Within each age group 

(binned in years between ages 12 – 60), the distribution resembles the bell-

shape of the general population. The turning point of MSFsc from steadily 
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increasing to steadily decreasing has been suggested a biological marker for 

the end of adolescence.53 Yet, data were collected in a cross-sectional survey 

study, and cannot distinguish between an age-related effect and a cohort-

specific effect (e.g., people having become later over the past decades).53,57 A 

recent study by Crowley et al. though showed in a 2.5-year longitudinal design 

that chronotype continuously delayed during this period, providing first 

(medium-term) support for a systematic age effect.88 

 Research on human circadian rhythms and aging consistently 

demonstrated that the phase of several physiological rhythms advances with 

increasing age, as was shown for body temperature, melatonin, cortisol, and 

blood pressure with a typical phase difference of about 1 h between young 

and old subjects.89–92 Accordingly, studies examined age-related differences 

in period and amplitude of circadian rhythms, expecting older people to have 

shorter τ and shallower amplitude. However, results were mixed finding 

evidence both, in favour and against those assumptions (for a review, see93), 

leading to the hypothesis that the SCN may still generate high-amplitude 

rhythms but the downstream ability of the SCN to drive peripheral oscillators 

may attenuate with aging.94  
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Figure 1.10. Chronotype (MSFsc) is age- and sex-dependent. Grey line and dots = 
females. Black line and dots = males. Source: Roenneberg et al., 2004.53 
 

1.3.5 Chronotype & Health 

An ever-growing number of studies is finding effects of chronotype (usually 

assessed with questionnaires such as the MEQ) on physiological and 

psychological health with eveningness associating to increased risks. 

Examined outcomes range from self-reported morbidity,95 via obesity,96,97 

type-2 diabetes and cardiovascular disease,98 asthma99 to substance abuse3 

and psychiatric diseases, such as depression,100–102 bipolar103,104 and eating 

disorders.51 Several studies focused on the relationship between chronotype 

and behavioural and emotional problems in adolescents.49,105–108 Most (but 

not all49,106) of these studies control for overall sleep duration to independently 

estimate the impact of chronotype, suggesting that an evening type per se 

promotes, e.g., alcohol drinking, smoking, and lower school performance. In 

general, sleep duration appears to be independent from chronotype.57,60 

However, a striking relationship emerges if analysed separately for workdays 

and work-free days:57,109,110 the later the chronotype, the shorter sleep 

duration on workdays, and the longer sleep duration on days off suggesting a 

socially-induced sleep debt most profound in late types (Fig. 1.11).D This 
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difference is not reflected in overall sleep duration, as the averaged weekly 

amount of sleep is similar across chronotypes. Wittmann and colleagues 

suggested the concept of ‘social jetlag’ to quantify this misalignment 

calculated as the absolute difference of mid-sleep on free days and work days 

(MSF – MSW).3 They could show that alcohol drinking and smoking is likely 

due to social jetlag highest in late chronotypes. Furthermore, using mediation 

analysis, they demonstrated that only those late types who smoked and 

drinked suffered from a decreased psychological well-being, indicating that 

late types are at higher risk for emotional problems because of a socially-

induced misalignment rather than being late per se.111 In line with their 

findings, Roeser et al. developed a ‘Chronotype Academic Performance 

Model’ showing that academic performance was not related to chronotype but 

mediated by daytime sleepiness and learning motivation.108 Moreover, a 

meta-analytic investigation on chronotype, cognitive abilities and academic 

achievement revealed that evening-types had higher cognitive abilities but 

performed worse whereas the reversed pattern was found for morning-

types.112  

Taken together, adverse health- and performance-related outcomes do 

not seem to attribute to a late chronotype as such but to the higher likelihood 

of late types to experience circadian misalignment and sleep loss on school 

and workdays. This is of key importance for interventions suggesting that 

external factors (i.e. school and work start times) rather than internal factors 

(i.e. chronotype, sleep timing) should be targeted.  

 

D For those who have read the foreword (or might want to do this now): this is why 
pancakes are best on Sundays, because on free days alarm clocks are banished, internal 
and external time are in line, and so are appetite and food supply. 
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Figure 1.11. Chronotype and averaged sleep duration on workdays (filled circles) 
and work-free days (open circles). The gap widens the later the chronotype, 
indicating an increasing sleep debt. Source: Roenneberg et al., 2007.57 
 

1.4 Circadian Disruption 
 

Similar to chronotype, circadian disruption has many names, e.g., circadian 

misalignment,113 circadian desynchrony,114 and chronodisruption.115 The term 

refers to a mismatch either between external and internal time (i.e. ‘external 

desynchrony’) or among internal rhythms leading to altered internal phase 

relationships (i.e. ‘internal desynchrony’). As a consequence, physiological 

processes take place at improper times potentially impairing general body 

functions and eventually entailing adverse impacts for health, such as 

metabolic and cardiovascular diseases.116,117 Albeit circadian disruption is a 

widely used and accepted term thought to be causally involved in etiology and 

progression of several diseases, there is a lack of clear theoretical 

frameworks and quantifiable measures impeding the systematic investigation 

of its causes and consequences.118 The disruption of biological rhythms 

becomes most obvious in shift work, where the normal phase-relationship 

between sleep-wake behaviour and other circadian rhythms is disturbed. Shift 
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workers need to eat, sleep and be active at times their circadian clock tells 

otherwise. As described in the previous section, the timing of biological 

processes varies according to the phase relationship that an individual 

assumes with the external solar day. Thus, the occurrence of circadian 

disruption will depend on the phase of entrainment (i.e. chronotype) 

determining when and to what extent endogenous functions are not in line 

with exogenous demands, such as in shift work. 

 

1.4.1 Circadian Disruption in Shift Work 

Approximately 20% of the work force in industrialised countries engages in 

shift work with an increasing trend.119 Detrimental health effects are well 

documented showing an elevated risk in shift workers as compared with day 

workers for sleep disorders, gastrointestinal and metabolic pathologies (i.e. 

diabetes, obesity, metabolic syndrome, elevated cholesterol and triglycerides 

levels),120–122 cardiovascular disease (i.e. hypertension, decreased heart rate 

variability, ischemic heart disease),123–125 and also cancer (breast, colorectal, 

endometrial and prostate tumours).126–129 In 2007, the International Agency for 

Research on Cancer (IARC) classified shift work that involves circadian 

disruption as probably carcinogenic to humans (Group 2A).130 The 

classification was based on “limited evidence in humans for the 

carcinogenicity of shift-work that involves night work” and “sufficient evidence 

in experimental animals for the carcinogenicity of light during the daily dark 

period”. In six out of eight studies, epidemiological data showed modestly 

increased risks for breast cancer in female flight attendants and nurses 

working night shifts as compared with employees not engaged in night work. 

Animal experiments were carried out in nocturnal rodents examining effects of 

constant light, dim light at night, simulated chronic jet lag, or circadian timing 

of carcinogens demonstrating major increases in incidence or growth of 

tumours. Furthermore, ablation of pineal gland or reduced melatonin levels at 

night led to the same results. Eventually, these findings were congregated in 
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the ‘light-at-night’ hypothesis assuming a chain of arguments.131,132 Oxygen 

radicals can damage DNA, which in turn can cause cancer. Melatonin as an 

indolamine potentially scavenges oxygen radicals, but its synthesis during the 

dark period can be suppressed by light. Thus, reduced nocturnal melatonin 

levels due to light at night are argued to cause cancer via increased DNA 

damage by oxygen radicals.133,134 In this hypothesis, circadian disruption is 

assumed to occur through the suppressive effect of light on nocturnal 

melatonin. Besides other critical matters that are comprehensively 

summarized by Kantermann & Roenneberg,135 it does not take into account 

the crucial aspect of inter-individual differences in biological time but defines 

the biological night as the “daily dark period”.130 However, if a shift worker is 

fully adjusted to the night shift, melatonin will be high in the morning and 

daylight will potentially suppress it. Accordingly, the degree of melatonin 

suppression by light will vary with circadian phase, and hence, chronotype. 

Also, bright light exposure during the day influences the magnitude of 

melatonin suppression at night (reduction)136,137 as well as the secretion 

during the following night (increase).137,138 Thus, it might not be acute 

suppression of melatonin by dim light at night, but dim light during the day that 

leads to a reduction of nocturnal melatonin levels.135 Taken together, circadian 

disruption via light at (external) night will depend (amongst other factors) on (i) 

individual chronotype (defining internal night and timing of melatonin 

secretion), and (ii) individual light history, which in turn is co-determined by 

shift schedule. 

 

1.4.2 Sleep-Wake Behaviour in Shift Work 

Shift schedules can differ in respect to several features: duration of shift (8h 

vs. 12h), speed (number of consecutive shifts), direction (clockwise/ forward 

vs. counter-clockwise/ backward rotations), rest periods between shifts, 

distribution and number of work-free days, permanent vs. rotational, regular 

vs. irregular, and continuous vs. discontinuous (free weekends) schedules, to 
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name some.139 In view of this immense variety, ergonomic guidelines have 

been established to advise designs for shift schedules that aim at minimising 

adverse effects on health and safety of shift workers.140–142 These guidelines 

currently recommend, e.g., forward-directed rotations, avoidance of early start 

for morning shifts (not before 6 a.m.), reduction of shift duration (≤ 12h), and 

limiting number of consecutive night shifts (≤ 3). The recommendations are 

primarily based on research on sleep and sleepiness, either subjectively 

assessed via questionnaires, or objectively using actimetry and 

polysomnography. In general, different types of shifts (morning, evening, night 

shift) are differentially associated with sleep duration, quality, and architecture. 

While evening shifts (standard European transition times 2:00 p.m. – 10 p.m.) 

appear least interfering, morning and night shifts are characterized by a 

drastically shortened duration of 2 – 4 h less sleep and reductions in stage 2 

and REM sleep.143–146 Interestingly, while slow wave activity seems to be 

unaffected during sleep after the night shift, a decrease was found for sleep 

before the morning shift that correlated with the anticipation of an early 

awakening.147 Both, morning and night shifts are associated with napping due 

to higher levels of sleepiness.148–150 About one-third of employees take a nap 

in the afternoon before the first night shift as well as a late afternoon nap 

between successive night shifts. Likewise, ~33% nap in the early afternoon 

following the morning shift, soon after returning home. After the last night shift, 

it usually takes two unrestricted sleep episodes before normal levels of 

sleepiness are achieved.151 Also, electroencephalogram studies show 

involuntary short sleep episodes during the night shift summing up to ~40 min 

sleep.152 However, particular shift schedule features appear to influence these 

‘general’ sleep patterns. Delaying the morning shift start time by 1h (7 a.m. 

instead of 6 a.m.) increased sleep duration by ~30 min.153 This is a quite 

interesting finding, as people may not use the ‘extra time’ of a delayed start 

time for ‘extra sleep’. Furthermore, some studies reported longer sleep after 

the night shifts in permanent night workers as compared with rotational shift 
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workers.154,155 Yet, when sleep duration was averaged across the entire shift 

cycle, they seemed to sleep somewhat less than workers in rotational 

schedules.156 Besides schedule characteristics, inter-individual differences 

have been proposed to influence tolerance to shift work. Shift work tolerance 

can be operationalised as “the absence of problems commonly associated 

with shift work, such as digestive troubles, persisting fatigue and sleep 

alterations”.157,158 Accordingly, individuals showing longer sleep duration, 

better sleep quality and less circadian disruption are likely to be more tolerant 

to shift work.  

 

1.4.3 Individual Differences in Shift Work Tolerance 

On one hand, several studies have reported that eveningness might foster 

tolerance to shift work in general and night shifts in particular, due to higher 

quality and extended length of daytime sleep,159,160 less rigid sleep-wake 

behaviour161 and a later circadian phase delaying the fall of biological 

functions at night.162 On the other hand, several reviews have questioned the 

predictive power of individual characteristics, such as chronotype, for shift 

work tolerance, mainly based on ambiguous results in that regard and the lack 

of longitudinal data.158,161,163 However, some studies might have missed the 

very important fact that chronotype and type of shift interact on sleep-wake 

behaviour in shift workers.164 Compared with early chronotypes, late types 

suffer more on morning shifts in terms of shorter sleep duration, worse sleep 

quality and wellbeing, as well as increased social jetlag as a measure for 

circadian misalignment (for social jetlag, see 1.3.5 and Ref.3). In contrast, 

early chronotypes have greatest difficulties on night shifts as compared with 

both, morning shifts and late types. Studies, not examining chronotype 

differences separately for each type of shift, are likely to over- or 

underestimate true effects, as these are simply outweighed. Additionally, 

assessing chronotype in shift work poses a challenge to most of the 

commonly used questionnaires possibly limiting their applicability. To address 



1 General Introduction 

 40 

this difficulty, the MCTQ64 have been adapted to shift work settings, asking for 

the actual sleep-wake behaviour on each type of shift and the respective days 

off (Munich Chronotype Questionnaire for Shift-Workers, MCTQShift 165). 

Chronotype in shift workers can reliably and validly be determined via mid-

sleep on free days after evening shifts (MSFE
sc, corrected for a potential 

sleep-debt accumulated on shift days). Considering chronotype differences 

reveals huge potentials for the design of shift systems. Adapting schedules to 

individual temporal niches by reducing exposure to the most strenuous shifts 

(i.e. morning shift for late types, night shift for early ones) can increase sleep 

duration, improve quality of sleep and reduce circadian misalignment as was 

demonstrated by Vetter, Fischer, et al. in a recent intervention study that 

developed and implemented such a chronotype-adapted shift system in the 

field.166  

 

1.5  Scope of Research 
 

Circadian disruption, the mismatch of internal (i.e. chronotype) and external 

time (i.e. shift-associated working time), is one potential mechanism 

underlying shift work-associated diseases. Shift work involving circadian 

disruption was classified as probably carcinogenic to humans by the IARC in 

2007.130 Despite postulating circadian disruption as the causal link between 

shift work and diseases, the IARC did not provide a clear definition. The 

scarcity of theoretical frameworks as well as quantitative measures impedes 

the systematic investigation of its causes and consequences. Any 

quantification of circadian disruption, however, needs to take into account 

individual internal time, as otherwise true effects will be over- or 

underestimated.167 This dissertation describes three projects studying 

circadian disruption in real shift workers. In Project One, the sleep-wake 

behaviour of 35 shift workers in a 12-h rotational schedule is examined using 

the MCTQShift 165 and wrist-recorded actimetry data. The field study 
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demonstrates the importance of chronotype and shift sequence for circadian 

misalignment and sleep duration setting the groundwork for Project Two. A 

method to quantify circadian disruption of the sleep-wake cycle is proposed 

called ‘mid-sleep deviations’ that integrates two crucial aspects of sleep: 

internal time and sleep history. The measure uncovers a unique, distinct and 

chronotype-specific geometry of actimetry-based sleep-wake behaviour in 53 

shift workers. Comparison with existent measures of circadian disruption 

confirms the validity of ‘mid-sleep deviations’ and highlights its additional 

information value. In Project Three, the proposed measure of ‘mid-sleep 

deviations’ is applied to evaluate sleep log data from 97 shift workers 

employed in seven different shift schedules. The results of mixed model 

analyses challenge current guidelines on night and shift work showing that the 

number of consecutive (night) shifts beneficial for an individual depends 

strongly on chronotype.  

Each Project will be preceded by an introductory part, followed by a 

detailed description of the applied methods. Main results will be presented in 

the main text, and additional findings are provided in the respective Appendix 

enclosed at the end of each Project. The findings will be subsequently 

discussed in-depth and within the context of the current state of research.  
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2  Project One  

Sleep-wake behaviour in a 12-h rotational schedule: 
The importance of chronotype and shift sequence 
 

2.1 Brief summary 
This study explores the sleep-wake behaviour of shift workers in a fast-

forward rotational 12-h schedule, taking into account their individual 

chronotypes. Thirty-five participants at two plants at a German production site 

of BASF, a large-scale chemical company, were chronotyped using the 

Munich ChronoType Questionnaire for Shift-Workers (MCTQShift) and wore 

actimeters for two consecutive weeks in the 12-h schedule involving rest 

periods of at least 24h after each shift (6 a.m. – 6 p.m., 24 hours off, 6 p.m. – 

6 a.m., 48 hours off). Sleep and nap duration, social jetlag (a measure of 

circadian misalignment) and circadian phase markers (centre of gravity, mid-

sleep) were computed from actimetry data. For night shifts, the earlier the 

employees’ chronotype, the higher their social jetlag, the shorter they sleep, 

and the longer they nap (up to 3h). When main sleep and naps were added, 

early and late chronotypes slept approximately the same amount. Additionally, 

shift workers slept longest between day and night shift (~9h on average) 

which was more pronounced the later their chronotype. In the 12-h schedule, 

rest periods of 24h after a single day shift and 48h after a single night shift 

allow shift workers to immediately reduce their sleep debt after each shift. Via 

sleep-wake behaviour, the specific nature of the schedule may contribute to 

mitigating detrimental effects of shift work, as previously reported from 

employees working the schedule.  
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2.2 Introduction 
Shift work has been associated with various adverse effects on health, sleep 

and safety,1–3 and schedules involving 12-h shifts are no exception as 

evidenced by reports on obesity and high blood pressure,4 irregularity of the 

menstrual cycle length,5 sleep duration, vigilance and sleepiness,6,7 to name 

only few examples. The major concerns against 12-h shifts have been 

reduced alertness and fatigue, which increase the risk of accidents thereby 

threatening both, safety and operational efficiency.8 Yet, compressing the 

workweek into fewer days offers more leisure time, and therefore 12-h shifts 

are often popular with employees.9 So far, research on the effects of extended 

working hours (comparing 12-h and 8-h shifts) produced ambiguous results.10 

For almost every outcome assessed (e.g., alertness,11–13 fatigue,8,14,15 

accident rates,8,16,17 performance,18–20 physical and psychological health,21–23 

sleep,15,24 social life,20,25,26 job satisfaction,22,27,28 and sick leave and 

retention29,30) reported effects were negative, positive or neither. These 

contradictions can partly be attributed to different research designs, e.g., 

studies assessing a change from 8-h to 12-h shifts where employees are 

highly satisfied with the new schedule and may not report adverse impacts.9 

Moreover, the implementation of a new schedule often involves changes not 

only in shift duration but also regarding the number of consecutive work and 

free days,11 transition times,24 direction,31 and regularity,22 challenging the 

interpretability and comparability of the findings.  

 Among all factors influencing tolerance to extended working hours, 

several studies have pointed out the importance of shift sequence.13,32 Blocks 

of up to seven successive shifts promote the accumulation of sleep debt and 

fatigue,6,7 which in turn increase health and accident risks of employees. 

Folkard and Lombardi proposed a “Risk Index” to estimate the injury risk 

associated with a work schedule and demonstrated that a schedule’s 

composition is more critical than the absolute weekly working time.33,34 The 

overwhelming majority of schedules described in the literature involves at 
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least two consecutive shifts of the same type. In contrast, the schedule at the 

German manufacturing site of the large-scale chemical corporation BASF 

consists of one 12-h day shift, followed by 24h of free time, then one 12-h 

night shift with subsequently two days off. Previous studies found no 

differences between day work employees and shift workers in this schedule 

with respect to several outcomes. For example, shift workers did not show 

elevated injury rates, even after adjusting for job level (i.e. manual labor, 

supervisory) and type of job (i.e. production, maintenance).35 Moreover, injury 

occurrences were consistently lower in the later hours of the shift whether 

working on day or night shift and irrespective of the employees’ age. 

Oberlinner et al. observed a higher incidence of obesity, diabetes, and 

diseases of the circulatory and digestive system for shift workers as compared 

to day work employees.36 However, this did not result in an increased risk of 

premature death, which was confirmed for cancer-specific mortality in a recent 

study.37 Additionally, health status as assessed by the Work Ability Index38 

was comparable in shift and day workers.39 Given that adverse effects of shift 

work are strongly linked to disturbed sleep and wakefulness,40,41 the specific 

nature of the schedule may contribute to mitigating detrimental effects via 

sleep-wake behaviour.  

 As for sleep duration, the timing of sleep shows large inter-individual 

variation, reflecting differences in “chronotype”.42 Chronotype is defined as the 

phase of entrainment (Ψ), which represents the phase angle between the 

internal rhythm and the external zeitgeber cycle, i.e. between the sleep-wake 

rhythm and the light:dark cycle43. An individual’s chronotype can be assessed 

with the help of the Munich Chronotype Questionnaire (MCTQ)44; specifically, 

mid-sleep on free days is calculated corrected for potential over-sleep 

(MSFsc). Along with individual differences in chronotype, rhythms in melatonin 

and body temperature reach their peaks and troughs accordingly earlier or 

later.45,46 The correlation between chronotype and internal rhythms also exists 

at the molecular level, e.g., for Per1, Per2 and Rev-erbα expression profiles.47 
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Juda et al. showed that chronotype modulates sleep duration, sleep quality 

and social jetlag48 (a measure for the mismatch between internal and external 

time) in shift workers.49 While night shifts are especially strenuous for early 

chronotypes, late types are challenged by morning shifts. A similar 

chronotype-dependent pattern was most recently observed for napping 

behaviour in rotational schedules.50  

 Taking into account individual chronotype, actimetry-derived measures 

of sleep and circadian misalignment are analysed as well as circadian phase 

markers of both, the sleep-wake cycle and the activity-rest rhythm in order to 

examine sleep-wake behaviour in this 12-h schedule. 

 

2.3 Methods 

2.3.1 Study design and participants  

The study took place in May 2013 at the BASF production site in 

Ludwigshafen, Germany, in two factories with similar chemical production 

processes and workplace requirements. Participants filled out the MCTQShift 51 

the first day of the study and subsequently wore actimetry devices for two 

consecutive weeks, comprising at maximum four day shifts, four night shifts 

and eight free days. Participants did not receive financial remuneration but 

were offered individual feedback about their chronotype and actimetry data. 

All participants gave their written, informed consent, and the local ethics 

committee as well as the BASF Works Council approved instruments and 

study protocol. 

 

2.3.2 Shift Schedule 

The schedule at the BASF production site was introduced in 1992 and relies 

on a fast-forward rotation with transition times at 6 a.m. and 6 p.m. Annual 

working hours are set to 1950h and overtime is balanced by additional time 

off. A 12-h day shift is followed the next day by a 12-h night shift and two 
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successive days off before returning to day shift equalling 24h off after day 

shift and 48h off after night shift.  

Sleep sequence. The shift schedule comprises two workdays followed 

by two work-free days. Importantly, a different pattern emerges for sleep 

episodes linked to the schedule: employees start the shift sequence with 

sleep before the day shift, followed by a potentially unconstrained sleep 

episode (similar to a work-free day sleep) between day and night shift (starting 

at 6 p.m. the next day). After working the night, employees sleep during the 

day followed by a work-free day sleep before the cycle restarts with sleep 

before the day shift. The rest periods of at least 24h between each shift lead 

to an alternation of a single workday and a single free day sleep episode 

contrasting the shift schedule (see Figure 2.1 for comparison of work schedule 

with sequence of sleep episodes).  

 

 
 

Figure 2.1. Shift schedule, working hours, and sleep. In the schedule, a single 12-h 
day shift is followed by a single 12-h night shift and subsequently two days off (Day – 
Night – Free – Free). The upper boxes indicate hours worked (grey = day shift, black 
= night shift), and the slim boxes beneath show the respective sleep episodes (grey = 
day shift sleep, black = night shift sleep, white = free day sleep). Since night shift 
starts at 18:00, the sleep episode between day and night shift is potentially 
unrestricted (i.e. no alarm clock), and therefore considered free day sleep.  
 

2.3.3 Munich Chronotype Questionnaire for Shift-Workers (MCTQShift) 

The MCTQShift 51 has been adapted from the Munich ChronoType 

Questionnaire44 to determine shift workers’ chronotype in both, permanent 

and rotational schedules. It asks for simple information about the individual’s 

sleep-wake behaviour, such as bedtime, estimated time to fall asleep, wake-

up time, minutes to get up and use of alarm clocks, separately for each type of 
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Sleep
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shift and the respective free days. Mid-point of sleep on free days after 

evening shifts is used as a proxy for chronotype and corrected for potential 

sleep debt accumulated during shift days (MSFE
sc). In case the shift schedule 

does not comprise free days after evening shifts, transformation algorithms 

were proposed to estimate MSFE
sc from free days after morning and night 

shifts.  

 

2.3.4 Actimetry  

Wrist-activity was monitored using dual-axis accelerometers (Daqtix GbR, 

Uelzen, Germany) that record dynamic (motion) as well as static (gravity, i.e. 

change in position) acceleration. Data were sampled in 1s intervals and stored 

in 30s intervals. Subsequently, data were binned into 10min intervals. 

Participants could take off the device at any time and were asked to enter 

date and duration into a protocol. These times were later marked as missing 

data. Additionally, participants filled out a protocol to indicate shift days (day, 

night) and free days during the study period to account for irregularities in the 

schedule such as leave and sick days, overtime, etc. 

 

2.3.5 Data processing and statistical analyses 
Centre of gravity (CoGact)52 /acrophase was calculated from actimetry data 

using the cosinor analysis based on a least squares approach that fits a one-

harmonic cosine wave to a time-series for an activity-based marker of phase 

of entrainment (see 53 for equation).  

Sleep on- and offset were determined from actimetry data applying a 

two-step method involving a predefined threshold and a bootstrap correlation 

analysis.51,54 Based on these activity-derived sleep on- and offsets, mid-

sleeps on work and free days (MSW, MSF), MSFE
sc (chronotype proxy), main 

sleep duration, sleep debt, social jetlag48 (a measure of circadian 

misalignment) and nap duration were computed. Sleep debt was determined 
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as the absolute difference of sleep duration between work and free days 

according to the formula below: 

 

 Sleep debt = SDf
S − SDw

S  (2.1) 

where 
 
SDS

f = sleep duration of unrestricted sleep episode following shift “S” (i.e. between 
day and night shift, free day after night shift) 
SDS

w = sleep duration on workdays in shift “S” (i.e. day, night shift) 
 

Social jetlag serves as a measure of circadian misalignment48 and is 

calculated as the absolute hourly difference of mid-sleep on free and 

workdays:  

 Social jetlag = MSFS −MSW S  (2.2) 

where 
 
MSFS = mid-sleep of unrestricted sleep episode following shift “S” (i.e. between day 
and night shift, free day after night shift) 
MSWS = mid-sleep on workdays in shift “S” (i.e. day, night shift) 
 

To distinguish naps from main sleep episodes, a two-harmonic cosine fit 

analysis was conducted yielding daily cut-off values for time points below the 

activity-based MESOR (a rhythm-adjusted mean). Sleep episodes overlapping 

the range between both cut-offs were identified as main sleep, whereas sleep 

episodes outside this range were considered naps.  

Statistical analyses were conducted with ChronoSapiens54,55 and R56 

using the packages ‘car’57 and ‘ppcor’.58 Normal distribution was tested 

performing Shapiro-Wilk tests and normal Q-Q plots. In case of non-normality, 

non-parametric methods were applied such as (partial) Spearman’s rho, 

Wilcoxon signed rank test and Mann-Whitney’s U-test (which was conducted 

as a Wilcoxon rank sum test with continuity correction), indicated in 

parentheses. Additionally, an ordinary least square approach for regression 

line formulas was computed for validation of MCTQShift-based chronotype with 

actimetry results. Plots of studentized residuals and fitted values as well as 
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the non-constant variance score test provided by the package ‘car’ assured 

homoscedasticity for linear regression modelling. Given the previously shown 

relationships between chronotype and age,59 and age and sleep duration,60 

partial correlations were conducted with age and overall sleep duration as 

covariates for analysis of sleep-wake patterns. A partial correlation controls for 

other influencing parameters by removing their variation from both correlated 

variables. Overall sleep duration was calculated by the weighted arithmetic 

mean of daily sleep duration throughout the study period using the following 

equation:   

 Overall sleep duration = 
SDw

S ⋅nw
S + SDf

S ⋅nf
S

nw
S + nf

S  (2.3) 

where 
 
SDS

w = sleep duration on workdays in shift “S” (i.e. day, night shift) 
SDS

f = sleep duration of unrestricted sleep episode following shift “S” (i.e. between 
day and night shift, free day after night shift) 
nS

w = number of workdays of shift “S” 
nS

f = number of unrestricted sleep episodes following shift “S” 
 

Correcting for multiple comparisons in order to account for α – error inflation 

would have resulted in an increase of β – error probability and consequently in 

a decrease of statistical power (1-β). Given the relatively small sample size, a 

moderately conservative α-level of 0.025 is chosen and two-sided p–values 

are reported.  

 

2.4 Results 
 

2.4.1 Participants 

Out of 39 initially participating shift workers two dropped out during the study 

period indicating personal reasons, and two were excluded a posteriori due to 

missing data. Demographic information on sex, age, body mass index (BMI) 

and chronotype of the remaining sample (n = 35) is shown below in Table 1. 
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Table 2.1. Demographic description of the study sample. yrs. = years, BMI = body 
mass index, MSFE

sc = chronotype. 
 
Characteristics n (%) / mean ± std  

Sex (% male) 33 (94.3) 

Age (yrs.) 41.0 (±10.6) 

BMI 26.9 (±4.2), range 20.1 – 35.8 

MSFE
sc (local time) 03:53 (±37min), range 02:59 – 06:08 

 

2.4.2 Chronotype distribution/ MCTQShift evaluation 

Chronotype (MSFE
sc) was calculated from free days after night shifts applying 

the transformation algorithm proposed by Juda et al.51 The MCTQShift results 

were compared with both, actimetry-based calculations of chronotype and 

CoGact on free days after night shifts. Measures showed good congruency 

(Spearman’s rrho = 0.55CoGact - 0.70MSFEsc, P < 0.001; Fig. 2.2), as also 

indicated by the regression line formulas with slopes above 0.5 and intercepts 

close to zero. The sample’s chronotype distribution was positively skewed 

with only two employees considered as late types49 (MSFE
sc > 05:00, German 

time) suggesting a slight advance compared to the expected normal 

distribution (Fig. 2.3). To test for this assumption, an age- and sex-matched 

sample was generated from the German database (www.theWeP.org, date: 

10/17/2013) yielding an average of MSFsc of (mean, local time) 04:06 

(standard deviation) ± 32min. Comparing both populations revealed a 

significant advance of ~13min in the shift work sample (Wilcoxon signed rank 

test: V = 176.5, P < 0.025). 
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Figure 2.2. Evaluation of the MCTQShift -based chronotype with actimetry measures 
(white dots = actimetry-based centre of gravity (CoGact), black dots = actimetry-based 
MSFE

sc). Grey dotted line represents the 1-to-1 diagonal. Values were z-transformed 
for direct comparison of slope and intercept of regression formulas. CoGact: y = 0.62x 
– 0.0005; MSFE

sc: y = 0.80x – 0.0012. MSFE
sc = chronotype. 

 

 
Figure 2.3. Chronotype distribution of the study sample and the matched sample 
from the database (www.theWeP.org). Black bars = study sample, grey bars = 
database. MSFE

sc = chronotype. 
 

2.4.3 Sleep duration 

Across all shifts and free days, employees slept (mean ± standard deviation) 

6h 49min ± 42min. Analysing the sleep episodes according to associated work 

and free days revealed shortest sleep duration before day shifts (5h 03min ± 

53min) and ~30min more sleep after night shifts (5h 32min ± 59min). Sleep 

between day and night shift was longest with 9h 01min ± 82min, while 

employees slept approximately one hour less on free days after night shift (7h 
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49min ± 62min). Overall sleep duration was slightly higher the later the 

chronotype (rrho = 0.27, P < 0.025). 

Rank correlations with MSFE
sc showed a chronotype-dependent 

pattern: the later an individual’s chronotype, the longer sleep after night shift 

(rrho = 0.41, P < 0.01). Sixty-nine percent (n = 24) slept longer on night than 

day shifts despite the comparably early chronotype distribution. No significant 

correlation was observed for chronotype and sleep duration before the day 

shift (rrho = -0.07, P > 0.025). Yet, the later the chronotype, the higher sleep 

debt after day shift (rrho = 0.37, P < 0.025) and the lower the night shift-

associated sleep debt (rrho = -0.37, P < 0.025; Fig. 2.4 A). Almost no sleep 

debt on night shifts (i.e. < 30min) was shown by four shift workers (11%). 

When covariates age and overall sleep duration were included, partial 

correlations with chronotype were still significant for (i) sleep duration after 

night shifts (partial rrho = 0.34, P < 0.025) and (ii) sleep debt after night shifts 

(partial rrho = -0.38, P < 0.025). Yet, sleep debt after day shifts became 

independent of chronotype (partial rrho = 0.26, P > 0.025); overall sleep 

duration, in contrast, accounted for 20% of the variance independent of age 

and chronotype (partial rrho = 0.45, P < 0.01) suggesting that only shift workers 

sleeping longer in general showed greater sleep deprivation after the day 

shift. 
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Figure 2.4. Chronotype-patterns of sleep debt (A) and social jetlag (B) on day shift 
(white dots) and night shift (black dots). Both measures are calculated as the 
absolute difference between work and free days, using sleep duration and mid-sleep, 
respectively. MSFE

sc = chronotype. 
 

2.4.4 Social jetlag 

Social jetlag in the 12-h shift schedule was on average 3h 54min ± 31min, and 

was higher on night shifts than on day shifts (5h 18min ± 59min vs. 2h 33min 

± 67min, Wilcoxon signed rank test: V = 630, P < 0.001). The relationship with 

chronotype was again independent of age and overall sleep duration: the later 

an individual’s chronotype, the higher social jetlag on day shifts (partial rrho = 

0.45, P < 0.01) and the lower social jetlag on night shifts (partial rrho = -0.48, P 

< 0.01; Fig. 2.4 B). Three out of 35 employees (9%) experienced less social 

jetlag on night than day shifts. None of the covariates age and overall sleep 

duration had significant influence (partial rrho = -0.25 – 0.28, P > 0.025). 

 

2:00 3:00 4:00 5:00 6:00 7:00

0

2

4

6

8

10

MCTQ (MSFE
sc, local time)

S
oc

ia
l j

et
la

g 
(h

)
0

2

4

6

8

10

S
le

ep
 d

eb
t (

h)

A

B



2 Project One 

 54 

2.4.5 Naps 

The majority of employees (n = 24, 68%) took naps before the night shift and 

71% of them (n = 17) did so before each night shift, suggesting that taking 

naps was part of a personal routine. Nap duration was on average 1h 47min ± 

29min with mean nap onsets and offsets at 13:19 ± 50min and 15:07 ± 43min, 

respectively. Time since main sleep offset was on average 5h 37min ± 65min. 

Converted to internal time (i.e. time since MSFE
sc), employees napped in their 

subjective morning at 9:34 ± 49min after having a full night’s sleep. 

Employees taking naps were earlier chronotypes (MSFE
sc 3:44 ± 27min) 

compared with non-nappers (MSFE
sc 4:11 ± 50min) (Mann-Whitney U-test: W 

= 195, P < 0.025). Furthermore, the earlier the chronotype, the longer they 

napped independent of age and overall sleep duration (partial rrho = -0.34, P = 

0.10; the coefficient reached significance when performing a sensitivity 

analysis by excluding the maximum (3h nap) and minimum value (47min nap): 

partial rrho = -0.50, P < 0.01). When nap duration before night shifts was added 

to sleep duration after night shifts (resulting in a 24-h sleep duration), the 

previously observed correlation with chronotype disappeared (partial rrho = 

0.05, P > 0.025), as employees now slept approximately the same amount 

(Fig. 2.5). Yet, naps are often not distinctly relatable to one main sleep 

episode. Therefore, the 24-h sleep duration for the preceding main sleep 

(from day to night shift) was also calculated revealing the same pattern: rank 

correlations between chronotype and main sleep were significant (partial rrho = 

0.31, P < 0.025), but vanished for the nap-including 24-h sleep duration 

(partial rrho = 0.02, P > 0.025).  
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Figure 2.5. Naps and chronotype. The correlation of chronotype with main sleep 
after the night shift (black dots) statistically disappeared when nap duration before 
the night shift was added resulting in a 24-h sleep duration (open circles). Encircled 
data points represent participants not taking naps. MSFE

sc = chronotype.  
 

2.4.6 Continuous profiles of sleep and activity 

Daily CoGact serving as circadian phase markers for the activity-rest rhythm 

yielded a chronotype-dependent pattern throughout the study period: 

regardless of type of day (i.e. day shift, night shift, or free day), late 

chronotypes were always delayed compared with early and intermediate ones 

(rrho = 0.26day, 0.30night and 0.51day to night/0.55free day, P < 0.025) (Fig. 2.6). This 

finding clearly illustrates the link between chronotype and clock-regulated 

behaviour. Mid-sleep profiles revealed a similar pattern (rrho = 0.39night /0.64 day 

to night /0.64free day, P < 0.025); however, no differences in sleep timing before 

day shifts were observed between employees (rrho = 0.15day, P > 0.025). 

Given that the same mid-sleeps can be reached by proportionally advanced 

and delayed sleep on- and offsets, respectively (i.e. a mid-sleep of 3:00 a.m. 

can result from sleeping between 1 a.m. and 5 a.m. as well as from sleeping 

between 11 p.m. and 7 a.m.), each sleep episode was analysed in more detail 

with regards to sleep onset and duration. All four sleep episodes were 

characterised by a distinct chronotype-pattern, that is visualised with plain 

symbols in Figure 2.7. Before the day shift, employees showed indeed no 

differences neither for sleep onset nor duration (partial rrho = -0.07duration – 
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0.31onset, P > 0.025). Regarding sleep between the day and night shift (a 

potentially unrestricted sleep episode resembling a work-free day), sleep 

onset was more delayed and sleep duration longer, the later the chronotype 

(partial rrho = 0.31duration – 0.42onset, P < 0.025). After the night shift, all 

employees fell asleep at a similar time (partial rrho = 0.02, P > 0.025) but the 

later their chronotype the longer they slept (partial rrho = 0.41, P < 0.01). 

Finally, sleep onset on a free day after the night shift was again more delayed 

for later chronotypes (partial rrho = 0.59, P < 0.01) but in contrast to sleep from 

day to night shift, sleep durations did not differ (partial rrho = 0.06, P > 0.025).  

 
Figure 2.6. Continuous profiles of phase markers (centre of gravity, mid-sleep). 
White dots = early chronotypes, grey dots = intermediate types, black dots = late 
types. Cut-off values for early (<03:30, n = 10), intermediate (3:30≤ ≤05:00, n = 23) 
and late chronotypes (>05:00, n = 2) were arbitrarily chosen, but in accordance with 
previous studies.51 Please note that all analyses were based on individual data points 
and categorical data are shown for illustrative purposes only.  
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Figure 2.7. Chronotype-patterns of sleep episodes. Each of the four sleep episodes 
(before day shift, between day and night shift, after night shift, free day) is 
characterised by a distinct pattern visualised with the symbols aside. White dots = 
early chronotypes, grey dots = intermediate types, black dots = late types. Cut-off 
values for early (<03:30, n = 10), intermediate (3:30≤ ≤05:00, n = 23) and late 
chronotypes (>05:00, n = 2) were arbitrarily chosen, but in accordance with previous 
studies.51 Please note that all analyses were based on individual data points and 
categorical data are shown for illustrative purposes only. 
 

2.5 Discussion 
 
This study examined sleep-wake behaviour of shift workers in a fast-forwards 

rotating 12-h schedule regarding their individual chronotype as assessed by 

the MCTQShift.51 In the 12-h schedule, single work and free day sleep episodes 

alternate frequently and fast, and thereby shift workers can immediately 

counteract sleep deprivation. Accordingly, the longest sleep duration (~9h) 

was observed between day and night shift, especially in late chronotypes. 

Two thirds of the employees took naps before the night shift, with early types 

napping both, more frequently and extensively up to 3h. When naps and main 
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slept approximately the same duration. The majority of shift workers showed a 

higher circadian misalignment (measured by social jetlag) on night shifts than 

on day shifts, comparable to workers in 8-h shift systems49 but ~2 to 3h higher 

than in day workers.61 Yet, most participants slept on average ~30min longer 

and had lower sleep debt after night shift compared with day shift. 

Additionally, it is noteworthy that despite the narrow range of chronotypes 

within the sample, a chronotype-dependent pattern was still observed with 

later types in general suffering less from the night shift than earlier types.   

 Continuous profiles of activity-derived circadian phase markers showed 

a chronotype-stagger with late types being consistently delayed compared 

with early and intermediate ones, except for day shifts where sleep timing was 

similar across chronotypes. This finding is in line with a previous study on 

daylight saving time showing that whereas mid-sleep fully adjusted after the 

spring transition, activity behaviour as indicated by CoGact reached only partial 

or no adjustment dependent on chronotype.62 Those results indicate that 

although sleep timing can somewhat accommodate external working times, 

activity rhythms do not, at least not to the same extent.  

 Partial correlations accounting for age and overall sleep duration 

showed a significant relationship between chronotype and sleep debt for night 

shifts but not for day shifts. On night shifts mainly early types were sleep 

deprived, while on day shifts chronotype did not account for sleep debt; only 

those sleeping longer in general showed sleep deprivation. The absence of a 

chronotype effect suggests that day shift started too early for all chronotypes 

available in the sample (range MSFE
sc = 2:59 – 6:08). Although official 

transition times are 6:00 a.m. and 6:00 p.m., most participants indicated to be 

at their workplace half an hour earlier which corresponds to the observed 

~30min of less sleep before day shift than after night shift. This is consistent 

with other studies reporting shorter or longer day shift sleep according to 

advanced63 and delayed transition times,7 respectively.  
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The extended sleep duration of ~9h between day and night shift agrees with 

previous reports suggesting that sleep between day and night shift is used for 

recovery rather than preparation.63,64 The data presented here further support 

this assumption by contrasting two sleep episodes that are potentially 

unrestricted by alarm clocks, namely one on free days after night shift and the 

other from day to night shift. Only the latter one showed chronotype-

dependent sleep durations, indicating catch-up sleep in late types given that 

day shifts are more strenuous for late than for early types.49 However, early 

chronotypes also suffer more from night shifts than late ones, and 

consequently should show recovery sleep on free days after the night shift. 

Yet, when preceding naps and subsequent main sleep for night shifts were 

added, the resulting sleep durations were similar across employees. This 

suggests that extensive naps before night shifts may compensate for 

chronotype-related differences in catch-up sleep.  

 A study on sleep strategies in nurses working 12-h night shifts reported 

a similar pattern.65 Nurses taking naps at work and those who were not, did 

not differ in their total sleep duration, but revealed different napping 

behaviours: either taking a long nap during the night shift followed by a short 

daytime sleep, or dispensing the nap at work but sleeping longer afterwards. 

In the present study, most employees took naps before the night shift, and 

since more than 70% of them did so before every night shift, napping 

appeared a personal routine; yet, early chronotypes napped more likely and 

extendedly. Given the preceding full night’s sleep and the comparably early 

nap onset in the subjective morning only ~5h after main sleep offset, the 

regularity and duration of the observed naps is striking. Yet, external time of 

nap onset was around 1 p.m., assuming that participants potentially used a 

post-nutritional dip to fall asleep. 

Naps were treated as being related to the night shift because 

participants indicated so in the MCTQShift. However, time and rotational shift 

work are circular, and one could have also added the nap to the preceding 
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main sleep. In the present analyses, both approaches revealed the same 

correlative pattern suggesting that early chronotypes may nap to compensate 

a general sleep deficit.  

 The main disadvantage of 12-h shifts seems to be fatigue build-up over 

the period of work and its potential consequences for health, wellbeing, 

performance, and safety. Previous studies have argued that rest periods 

between changeovers may help to avoid excessive sleepiness and thereby 

improve sleep and sleep quality.9,13 A study by Tucker et al. compared 

alertness levels, chronic fatigue and sleep in 12-h schedules with rest periods 

of 24h vs. 72h between day and night shift and found only modest 

differences.66 They concluded that 24h off between day and night shifts might 

be sufficient to recuperate (given two preceding day shifts). Thus, providing at 

least 24h off between workdays seems to be a major advantage of this 

schedule. In general, recovery after work is strongly argued to be an 

explanatory mechanism in the relation between stressful work characteristics 

(such as long working hours) and health outcomes in the long run.67 Adverse 

health effects of 12-h shifts may partially root in a chronic situation of 

sustained physiological activation (i.e. extended working hours, blocks of 

workdays) in combination with incomplete recovery (e.g., short periods off 

work). Allowing for immediate reduction of sleep debt may therefore act as a 

contributor to the mitigation of adverse health effects in this schedule.  

 None of the reviewed studies described a rotational schedule with less 

than two consecutive shifts of the same type illustrating the uniqueness of the 

schedule. Only one study reported a permanent 12-h day or night shift 

schedule of health care workers with a single workday followed by 60h off.68 

The authors found no differences between day and night workers as to sleep 

complaints, which they explained by the nature of the schedule involving no 

successive night shifts. Yet, this result may have been confounded with the 

relatively low number of working hours per week (30h on average). Folkard 

and Lombardi demonstrated the importance of shift sequence for the relative 
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risk of accidents and injuries,33,34 and a rest period of 24h between a single 

day and a single night shift may possibly add to the fact that injury rates were 

not increased in this schedule.35  

 Several studies have argued before that the sequence and the timing of 

shifts may be more important than the actual duration of the shift.8,13 Ferguson 

and Dawson reviewed the question whether ‘twelves’ are better than ‘eights’ 

and postulate that in contrast to gender, age and domestic circumstances, 

shift pattern may impact directly on outcome measures.10 Smith et al. 

examined the change from a slowly rotating 8-h schedule to a fast 12-h roster 

with one plant first implementing a rapid 8-h rotation (2x2x3) before 

permanently working 12-h shifts.15 The 12-h schedule was superior to the 

slowly rotating 8-h system, while a within-plant comparison revealed no 

differences between the 12-h and the rapid 8-h schedule.  

 Several limitations of the present study are to mention. The chronotype 

range in the sample was quite narrow. Only two shift workers had a 

chronotype later than 5:00 a.m. which certainly impacted on the observed 

chronotype-dependent pattern; yet, based on previous literature,49,50,61 the 

same and even more pronounced results would be expected with a wider 

distribution including chronotypes from both ends. Sleep-wake behaviour was 

assessed via activity measurements and the conclusions cannot essentially 

be broadened to other outcomes such as alertness and fatigue; further studies 

are warranted to elucidate those effects as well as synthesising research 

methods such as meta-regression69 to examine the beneficial role of shift 

sequence on different outcome measures. 

 The present study emphasises the importance of both, shift sequence 

and chronotype for shift work research in general and studies on extended 

working hours in particular.  
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3 Project Two  

Mid-sleep Deviation: quantifying and visualising 

circadian disruption of the sleep-wake cycle 
 

3.1 Brief summary 
Circadian disruption is argued to be a potential mechanism underlying the 

adverse health outcomes in shift work. Although the term is commonly used, 

only few definitions and even fewer measures exist impeding the systematic 

investigation of its causes and consequences. In view of a recent study 

demonstrating that mistimed sleep disrupts the circadian regulation of the 

human transcriptome, a novel and simple method is proposed to quantify the 

extent of mistimed sleep, called ‘mid-sleep deviations’. Actimetry data over 

four weeks of 53 shift workers working in four different forwards-rotating 

schedules (55% female, age 35 ± 10 years, body mass index 26 ± 5) were 

analysed. Mid-points of sleep bouts were extracted daily and individual’s 

chronotype was determined via sleep-wake behaviour on free days after the 

evening shift. The method takes into account two crucial aspects of sleep: 

internal time (i.e. chronotype) and sleep history (i.e. prior sleep episode). By 

eliminating the time dimension, a distinctive geometry emerges identifying 

differences across individuals, shifts, and schedules. Creating density plots to 

visualise the geometry, a higher variability of sleep timing was found the later 

the chronotype. This was independent of demographic variables, shift rotation, 

and sleep duration as confirmed by multiple regression models. Comparison 

with published measures of circadian disruption (i.e. inter-daily stability and 

‘behavioural entrainment’) revealed good congruence; yet, analyses suggest 

that the concept of ‘mid-sleep deviations’ provides unique information on 

disrupted sleep-wake cycles. The less stable sleep-wake behaviour in late 
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chronotypes is argued to impact on development and prevention of diseases 

in shift workers and clinical patients, although its causes remain unclear. ‘Mid-

sleep deviations’ as a measure for circadian disruption of the sleep-wake 

cycle will help to elucidate the role of mistimed sleep-wake rhythms in health 

on an individual basis. 

 

3.2 Introduction  
 

The endogenous circadian system actively synchronises (i.e. entrains) to the 

regular 24h alternation of light and darkness generated by the earth’s axial 

rotation.1 The external light messages are conveyed from melanopsin-

expressing intrinsically photosensitive ganglion cells in the retina (ipRGCs) via 

a dedicated neuronal pathway to the suprachiasmatic nucleus (SCN) in the 

anterior hypothalamus.2,3 The SCN is considered the master pacemaker 

creating an internal reflection of the external light-dark cycle thereby 

orchestrating biological functions over 24h.4,5 At the molecular level, a 

complex machinery of transcriptional-translational feedback loops of gene 

expression6 and post-translational regulation7 generates stable circadian 

oscillations. The disruption of this fine-tuned time-keeping system is related to 

various adverse effects, such as insulin resistance and inflammation,8 

vascular events,9 and disturbance of cell cycle checkpoints and DNA repair,10 

to name only few.  

Through modern working requirements, such as rotational or 

permanent shift work, on-call duty, and overtime including weekends, internal 

clock-regulated rhythms are often in discrepancy to external social time which 

is referred to in many names, such as circadian disruption,11 circadian 

misalignment,12 circadian desynchrony13 and chronodisruption.14 The 

discrepancy between internal and external time (or as well among internal 

time-keeping systems) is especially pronounced in rotational shift workers and 

argued to be one potential mechanism underlying the well-documented health 



3 Project Two 

 64 

problems.15 These problems include obesity and diabetes16, cardiovascular 

disease,17 different forms of cancer (i.e. breast cancer,18 prostate cancer19), 

sleep disorders,20 and accident risk.21 In 2007, the International Agency for 

Research on Cancer (IARC) declared shift work involving circadian disruption 

as probably carcinogenic to humans.22 However, definition, assessment and 

quantification of circadian disruption vary from study to study, hampering 

consistent and systematic investigation of its causes and consequences.  

The majority of studies define circadian disruption via its assessment 

resulting in a binary definition as ‘present’ or ‘absent’, and lacking a 

quantification of its extent. Assessments of circadian disruption in animal 

experiments include circadian time of carcinogen exposure,23 inducing light 

shifts in jet lag protocols,24 as well as maintaining constant conditions (i.e. 

constant light (LL)).25 Other non-photic experimental manipulations of 

circadian disruption in animals involve ablation of the suprachiasmatic 

nuclei,26 pinealectomy eliminating the secretion of the nocturnal hormone 

melatonin,27 and use of mouse mutants with knocked-out clock genes.28 In 

human epidemiological studies, circadian disruption is often assessed using 

proxies, such as shift work involving night shifts and ‘light-at-night’,29 and 

occupations with frequent jet lags (e.g., pilots and flight attendants with long 

haul flights).30 In the laboratory, ‘forced desynchrony’ protocols are used to 

uncouple sleep-wake times from other circadian rhythms.31 In those protocols, 

participants are placed, i.e. on a 28-h day under dim light conditions delaying 

their permitted sleep window by 4 hours each day while other circadian 

rhythms, such as body temperature and cortisol secretion, continue oscillating 

with a period slightly deviating from 24 hours. Thus, desynchrony of the 

internal circadian system can refer to misalignment with environmental time 

(i.e. jet lag) but also to desynchronization among internal timing systems (i.e. 

forced desynchrony) potentially resulting in aberrant temporal control of 

various physiological processes.  
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Despite their intuitive validity, most of the above-described 

assessments of circadian disruption lack both, clear theoretical framework and 

objective quantification. Few exceptions are found in the literature offering 

different approaches and definitions. Rüger and Scheer11 define circadian 

misalignment as “mismatch of the circadian system with the desired 

sleep/wake cycle” (p.14) illustrating it as a continuum that ranges from 

extreme forms (i.e. blind people who are not entrained, shift work and jet lag) 

via more moderate examples (i.e. Advanced32 or Delayed Sleep Phase 

Syndrome33) to mild ones (as seen in early and late chronotypes, or after 

staying up late while studying for an exam). This summarizes general 

situations and groups where circadian disruption can occur, and accordingly 

defines circadian disruption post-hoc via the presence of symptoms. Baron 

and Reid12 basically distinguish between external (misalignment of the 

sleep/wake cycle in relation to the biological night, or misalignment of feeding 

rhythms to the sleep/wake or light/dark cycle) and internal misalignment 

(between central and peripheral rhythms). As potential causes they name 

chronotype, social jetlag, shift work, circadian rhythm disorders, disrupted 

feeding rhythm, and psychiatric disorders. It remains unclear whether some of 

the ‘potential causes’ may not actually be ‘potential consequences’ of 

circadian misalignment. Also, the concept of social jetlag34 rather reflects than 

causes circadian disruption. Vetter et al.35 build on the term ‘strain’ proposed 

in the context of stress research and define ‘circadian strain’ as individual 

response of a challenged circadian system. Depending on intensity and 

duration of the challenge, pathologies will or will not emerge. Thus, in this 

conceptual framework circadian strain does not necessarily result in adverse 

effects. Erren and co-workers defined the term ‘chronodisruption’14,36,37 as ‘the 

adverse split of a physiological nexus of internal and external times’ (p. 29137) 

being a relevant disturbance of the circadian organisation of physiology, 

endocrinology, metabolism, and behaviour. They propose to evaluate 

gradients of exposure by calculating the extent of overlap between external 
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(i.e. shift start and end times) and internal time (i.e. chronotype). This 

conceptualisation would assume constant doses of chronodisruption 

irrespective of the number of consecutive shifts. Yet, it constitutes one of few 

approaches that attempted to not only define but also quantify circadian 

disruption.  

Given the immense health burden by shift work38 and its supposed 

causal relationship with circadian disruption22, it is startling that –up to the 

author’s knowledge- there is only a negligible number of quantifications 

reported in the literature. Burch et al.39 sampled urinary 6-hydroxymelatonin 

sulfate (6-OHMS) in shift workers both, after work and after sleep, and 

evaluated the disruption of circadian melatonin production by calculating the 

sleep:work ratio of 6-OHMS concentrations. They found that risk for at least 

two symptoms of sleep disturbance, fatigue, and/or cognitive impairment was 

up to 8-fold in workers with ratios ≤ 1 and suggested that this ratio may help 

identify workers at increased risk for accidents or injuries. The inter-daily 

stability statistic40 represents the 24-h value of the Sokolove-Bushell 

periodogram41, normalised for the number of observations, and was used in 

multiple studies to assess fragmentation or disruption of activity-rest rhythms 

over time.42–44 Rea et al.45–47 suggested a measure for ‘behavioural 

entrainment’ using circular cross-correlations and phasor analysis for 

simultaneously recorded light and activity data. The resulting phasor 

magnitudes indicate how well activity-rest behaviour and actual light-dark 

exposure correspond showing that in humans and nocturnal rodents 

‘behavioural entrainment’ is reduced when exposed to rotating shift work and 

jet lag protocols, respectively. Social jetlag, a concept proposed by the 

Roenneberg group34 calculates the difference between sleep timing on work-

free days and workdays. It reflects the impact of working times on sleep 

causing an accumulated sleep debt on workdays for most people that they 

eventually need to compensate for on their days off. The resulting shift in 

sleep-wake pattern resembles the one observed for time zone travels; yet, the 
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external light-dark cycle remains (almost) unchanged, thereby coining the 

term ‘social jetlag’. Despite being reliable and well suited for day workers, the 

calculation of social jetlag poses a challenge in rotational shift workers. Fast 

rotations, as common in Europe, involve different types of shifts (i.e. morning, 

evening, night) without interruptions by days off. Since the calculation of social 

jetlag relies on the difference between each shift and its respective work-free 

day, this leads to a potential over- or underestimation of social jetlag in shift 

workers. Yet, of all described approaches, social jetlag is the only measure 

quantifying disruption of sleep timing.  

A recent study by Archer and colleagues48 used a forced desynchrony 

protocol in humans demonstrating that sleeping out of phase with melatonin 

secretion reduced the number of circadian transcripts to 1% compared with 

6.4% when sleeping in phase. They estimated the separate contribution of 

sleep and circadian rhythmicity and found that circadian-driven transcripts 

were associated with cellular metabolic and homeostatic processes, whereas 

transcripts driven by sleep alone (or by both, circadian rhythmicity and the 

sleep–wake cycle) were linked with the regulation of transcription and 

translation in particular. Importantly, melatonin profiles remained largely 

unaffected by mistimed sleep whereas the temporal organisation of clock 

gene expression, and therefore the molecular processes at the core of 

endogenous circadian rhythm generation, were altered. Thus, sleeping at the 

‘wrong’ internal time, as occurs in shift work, might have tremendous impacts 

on health and wellbeing despite no effects on the central circadian clock as 

indexed by melatonin.   

Here, a novel and simple method is proposed to estimate the degree of 

mistimed sleep, what is termed, for the purposes of this Project, ‘circadian 

disruption of the sleep-wake cycle’. The method can be used with various data 

sources, such as actimetry, melatonin, and sleep logs. It is however not 

limited to a specific type of data and can be easily transferred to sleep-

unrelated measures. Daily mid-sleeps were used to quantify how much sleep 
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timing deviates across time from (i) sleep on previous day, and (ii) internal 

time, i.e. chronotype. Although sleep times are influenced by both, a circadian 

and a homeostatic drive, the mid-point of sleep has been shown to be a good 

behavioural phase marker of the circadian clock being independent from sleep 

duration.49 Mid-sleep on free days (in shift workers: free days after evening 

shifts) corrected for potential over-sleep (MSFsc), has been used previously as 

a proxy for chronotype,50 and can be calculated from actimetry and sleep log 

data, or using a questionnaire (e.g., Munich Chronotype Questionnaire, 

MCTQ51; Munich Chronotype Questionnaire for Shift-Workers, MCTQShift 52). 

Here, chronotype is defined as the phase of entrainment Ψ of an internal 

rhythm with an external zeitgeber (time giver) cycle; specifically, as the phase 

angle between sleep-wake rhythm and light:dark cycle based on its 

assessment.53 Each internal rhythm (e.g., hormone secretion, core body 

temperature, clock gene expression) may assume a different phase 

relationship with its respective zeitgeber cycle (e.g., temperature, feeding). It 

is therefore crucial to assess chronotype with regards to the rhythm of 

interest. Furthermore, individuals may show different internal phase 

relationships, yet the peaks and troughs of melatonin, body temperature, and 

Per1, Per2 and Rev-erbα expression profiles were shown to vary with 

chronotype.54–57  

In this study, actimetry-based sleep-wake behaviour was analysed in 

53 rotational shift workers calculating the extent of mistimed sleep on 

particular days (i.e. night shifts) as well as for the entire study period. It will be 

further shown that chronotype differences seem to go beyond timing of sleep 

with a higher variability of sleep-wake behaviour the later the chronotype 

potentially impacting on development and prevention of diseases. 

 

 

 



3 Project Two 

 69 

3.3 Methods 
 

3.3.1 Study design and participants 

Actimetry data of shift workers were merged from three different studies. The 

first study took place from May 26 to June 30, 2008, at a production site of the 

global company Siemens in Cham, Germany (study site 1); the second study 

was conducted from September 15 to October 15, 2009, at a plant in Berlin, 

Germany, of the same company (study site 2); and data from the third study 

were gathered between January 30 and February 26, 2012, at a production 

site in Bochum, Germany, of the large-scale company ThyssenKrupp (study 

site 3). A total of 76 shift workers wore wrist-actimeters (n1 = 28, n2 = 23, n3 = 

25) for a period between two and four weeks. A-priori defined exclusion 

criteria (see below) were applied resulting in a final sample of 53 shift workers 

(n1 = 23, n2 = 17, n3 = 13). At the three study sites, shift workers worked in 

four shift schedules since two different ones were implemented at the plant in 

Berlin (study site 2, n2 = 9, n2: 555 = 8) leading to four (independent) 

subsamples according to schedule. All schedules were forwards rotating and 

involved 8-h shifts with standard transition times for morning (6 a.m. – 2 p.m.), 

evening (2 p.m. – 10 p.m.) and night shift (10 p.m. – 6 a.m.). Except for the 

555-schedule at study site 2, one rotation cycle was completed after 4 weeks. 

Figure 3.1 shows all four shift schedules. 
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Figure 3.1. Shift schedules at the different study sites. (A) Schedule S1 refers to 
study site 1 in Cham, schedule S2 refers to study site 2 in Berlin (with two different 
schedules worked by two independent subsamples), and schedule S3 refers to study 
site 3 in Bochum (all study sites were in Germany). Each rotation is completed after 
four weeks, except for schedule S2: 555, which is completed after three weeks. Blue 
box = morning shift (6 a.m. – 2 p.m.), orange box = evening/afternoon shift (2 p.m. – 
10 p.m.), green box = night shift (10 p.m. – 6 a.m.), white box = work-free day. (B) 
Using schedule S1 as an example, panel B illustrates how sleep episodes were 
assigned to (morning, evening, night) shifts. Sleep within rotational schedules might 
differ from sequence of workdays, i.e. sleep after the last night shift occurs in the 
morning of the first day off thereby compressing the number of ‘free day’ sleep 
episodes. The black-rimmed box marks an exemplary sequence: according to work 
schedule, two morning shifts are followed by one day off and two night shifts (S1: 
work); yet, sleep between a work-free day and the first night shift is considered ‘free 
day’ sleep, given the late start of the night shift allowing employees for sleeping in 
(S1: sleep). Likewise, sleep on first day off after a night shift takes place during the 
day and is associated with the night shift.  
 

 

3.3.1.1 Exclusion criteria 

Data of participants were excluded from analyses if (i) morning, evening and 

night shifts were present with less than two shifts of each type (n = 2), (ii) 

changes in work schedule (i.e. sick leave, vacation, overwork) exceeded the 

number of three shifts (n = 4), and (iii) data from more than three days were 

missing (n = 10). Apart from that, six participants dropped out during the study 

period indicating personal reasons and one had to be excluded due to a 

technical defect of the actimeter. An overview of the exclusion process can be 

found in the Appendix of this project (see Section 3.6.1, Table A3.1.). 

Additionally, participants were excluded from regression analyses if 

their individual values were more than three inter-quartile ranges away from 

the sample mean (smallest sample size for regression models: n = 49). 
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3.3.2 Chronotype calculation 

Chronotype was determined from actimetry data following the calculation by 

the Munich Chronotype Questionnaire for Shift-Workers (MCTQShift 52). Mid-

point of sleep on free days after evening shifts was computed corrected for a 

potential sleep debt accumulated on shift days (MSFE
sc). In case the schedule 

did comprise less than two free days after evening shifts, chronotype was 

estimated from free days after night shifts applying the transformation 

algorithm proposed by Juda et al.52 

The number of study instruments is often reduced to a minimum, and 

all variables needed for the calculation of mid-sleep deviation can generally be 

computed from one data source. However, it can sometimes be advisable to 

determine chronotype with the help of a questionnaire such as the MCTQ51 or 

MCTQShift,52 allowing a general estimation over the last weeks. For example, if 

the study period does not include free days, or sleep times on free days are 

considered outlier values (e.g., a social event keeping an early type up all 

night) impeding the reliable use of the data for chronotype calculation.  

Although chronotype as measured via sleep-wake behaviour is a 

continuous biological trait,53 it can sometimes be helpful to determine 

categories, representing early, intermediate and late types. Importantly, cut-off 

values for such categories should be either sample- or (if available) 

population-based because chronotype will depend on geographical location –

amongst other factors–,53 and a chronotype of 3:39 local time may be an early 

type in Central Europe but an intermediate type in India (relative to the 

population). Here, cut-off values for chronotype categories were calculated 

according to the sample’s inter-quartile range, resulting in 13 early (≤ Q25% = 

3:53) and 13 late types (≥ Q75% = 5:36). The terms ‘early’ and ‘late’ are 

therefore used in a correlative manner expressing differences relative to the 

sample. Please note, that all statistical analyses were based on individual 

measures and never on categorical data.  
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3.3.3 Actimetry 

Dual-axis accelerometers (Daqtix GbR, Uelzen, Germany) were used 

recording dynamic (motion) as well as static (gravity, i.e. change in position) 

acceleration from wrist-activity. Data were sampled in 1s intervals and stored 

in 30s intervals. Subsequently, data were binned into 10min intervals for 

processing and analyses. If participants took off the device, they entered date 

and duration into a protocol, and these times were later marked as missing 

data.  

To detect sleep from actimetry data, a two-step process was conducted 

that is described in more detail elsewhere.58 First, the trend in the time series 

was calculated using a centred moving average within a 24-h window. A 20%-

threshold of this trend was then applied to code values above (‘wake’) and 

below (‘sleep’) threshold resulting in new binary time series. Next, a ‘cleaning’-

procedure was performed on these new time series involving a bootstrap 

correlation analysis that generated multiple binary test series, and the one that 

correlated best with the uncleaned series defined the final sleep bout. 

Additionally, only sleep bouts between 3h and 14h were included 

ignoring naps because the interest of this study pointed at what was 

considered main sleep. However, if a sleep bout was < 3h, it was included as 

main sleep if (i) it was the only one within 24h, or (ii) it had similar sleep 

onsets (night shift) or offsets (morning shift) as the previous sleep bout in a 

block of consecutive shifts. If two sleep bouts appeared within eight hours, 

only the first one was included. In case, a sleep bout shorter than 3h did not 

fulfil any of these criteria resulting in no sleep episode at all, sleep was 

imputed from available data to ensure continuous series of mid-sleeps. 

 

3.3.3.1 Inter-daily stability and phasor magnitudes 
For comparison of mid-sleep deviation with existing measures of circadian 

disruption, inter-daily stability40 and phasor magnitudes45 were calculated from 

actimetry data. Deriving from the Sokolove and Bushell χ2-periodogram,41 
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inter-daily stability is computed from a dataset in the form of a “Buys-Ballot” 

table with K rows and P columns. Each row represents one day, and the 

number of columns is chosen according to bin size of data (i.e. 1h bins result 

in 24 columns, 10min bins in 144 columns). Each bin value and its column 

mean are compared with the overall mean of the table. Their ratio becomes 

maximal if bin value and column mean are identical, meaning that the time 

series on day i is exactly the same as on every following day. The empirical 

data series is thereby compared to a perfectly rhythmic time series indicating 

its extent of oscillatory stationarity.  

Following another approach, circadian disruption is assessed in terms 

of ‘behavioural entrainment’.45 Here, activity and light measures are compared 

using circular cross-correlations, and phasors are calculated via the resulting 

‘behavioural entrainment’-correlation functions. A phasor is a rotating vector 

representing the complex constant Aeiθ of a sinusoidal function y(t) = A sin(ωt 

+ θ) encoding amplitude and phase of an oscillation. The magnitude of a 

phasor is used to indicate the degree of ‘behavioural entrainment’ reflecting 

how strongly light levels and activity data are related. Fitting the sinusoidal 

curve over the entire study period was not meaningful resulting in too little 

between-individual variance. Thus, for the purposes of this study, the 

approach by Rea et al.45 is followed calculating phasor magnitudes for each 

individual over the period of seven days including at least two night shifts, 

while inter-daily stability was computed for the complete study period in order 

to use all available information. Both measures were then compared with the 

degree of mid-sleep deviations for the matching period. 

 

3.3.4 Imputation 

Continuous time series are needed for the computation of mid-sleep 

deviations, and missing values (i.e. daily mid-sleeps) were imputed with 

average values from available data. Missing values could occur for two 

reasons: either no sleep bout was detected following the procedures 
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described above, or it was marked as missing data in the participant’s 

protocol. Average values were calculated from matching sleep bouts, e.g., if 

mid-sleep after a night shift was missing, the average was calculated from all 

but at least two night shifts available in the individual record. In total, 37 of 

1464 observations (2.5%) across 22 shift workers (41.5%) were imputed with 

a maximum of three missing values per person. A descriptive comparison of 

the original with the imputed dataset is shown in the Appendix of this project 

(see Section 3.6.2, Figure A3.1). 

 

3.3.5 Data analyses and processing 

Sleep detection from actimetry was performed in ChronoSapiens58,59 [Version 

8.2]. Data processing, imputation and statistical analyses were done in 

STATA (Stata/SE 12.0), and plots were drawn in Prism (GraphPad Software 

6.0) and R60 using the packages “3dscatterplot” and “MASS”.61 Bivariate 

Pearson correlations were conducted (non-parametric rank correlations were 

computed in case of non-normality as indicated by Shapiro-Wilk tests) and 

multiple regression models controlling for schedule (with fastest-rotating 

schedule S3 as reference), age, gender (with female gender as reference), 

body mass index as well as number of children living in the same household 

(dichotomous factor with categories 0 = no children and 1 = one or more 

children). To meet the requirements for linear regression, Breusch-Pagan 

tests for homoscedasticity, Shapiro-Wilk tests for normal distribution of 

residuals, and calculated variance inflation factors (VIF) for multicollinearity 

were conducted. To account for multiple testing, Bonferroni-correction was 

applied resulting in an α-level of 0.006. 
To create density plots, the R commands kde2d from the package 

‘MASS’ for kernel density estimation and contour for contour line plots were 

used. Density plots consist of contour lines (also: isolines) connecting points 

where the function of two variables has the same value. Here, a two-

dimensional kernel density estimation function was applied using default 
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bandwidths determined via normal reference distribution.61 The number of grid 

points in each direction was chosen to be ‘200’ forming a 200x200 – matrix for 

the density calculation in order to get smooth contour lines. Varying this 

number (i.e. 25 to 225 in steps à 50 grid points) did not result in a change of 

pattern. The following R code was used to create density plots: 

 
#estimate kernel density 

z <- kde2d(x, y, n=200, lims=c(-15,15,-15,15)) 

 

#create density plot 

plot(y~x, xlim=c(-15,15), ylim=c(-15,15), xlab = 

expression(paste(Delta, " Chronotype")), 

ylab=expression(paste(Delta, " Day before"))) 

 

contour(z, nlevels=k, col=my.cols) 

 

 

3.4 Results 
 
The approach is exemplified with the individual data of one early (MSFE

sc = 

3:01) and one late chronotype (MSFE
sc = 7:22) from shift schedule S1 but the 

data of the total sample (n = 53) is provided when illustrating an overall effect. 

For the individual examples, two shift workers who were as early and as late 

as available within the same working group were picked to ensure best-

possible comparability between chronotypes. A demographic description of 

the sample can be found in the Appendix of this project (see Section 3.6.3, 

Table A3.2).  
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3.4.1 Mid-sleep Deviations: quantifying circadian disruption of sleep-

wake behaviour 
Daily mid-sleeps were extracted from actimetry data (see Section 3.3.3) and 

plotted over the course of the study period resulting in mid-sleep profiles (Fig. 

3.2).  

 

 
 
Figure 3.2. Double-plots of actimetry data over the course of 4 weeks of one early 
(MSFE

sc = 3:01) (Panel A) and one late (MSFE
sc = 7:22) (Panel B) chronotype from 

schedule S1. Double-plots show the same data twice to illustrate movements in 
activity and sleep patterns, i.e. first row displays day 1 and 2, second row day 2 and 
3, and so forth. Black bars indicate sleep bouts. (C) Daily mid-sleeps extracted from 
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actimetry data of the early (white dots, dashed line) and the late type (black dots, 
straight line). Horizontal lines indicate individual chronotype (MSFE

sc). Blue box = 
morning shift (6 a.m. – 2 p.m.), orange box = evening/afternoon shift (2 p.m. – 10 
p.m.), green box = night shift (10 p.m. – 6 a.m.), white box = work-free day. 
 

Two things can be observed: sleep timing accompanied external working 

times with large differences between morning and night shifts preventing shift 

workers from a stable sleep-wake rhythm; and, except for one day off towards 

the end of the study period, the late chronotype was always delayed 

compared with the early type, illustrating clear chronotype differences despite 

the same shift schedule. Thus, in order to quantify how much sleep times 

deviated, two variables were included: distance of sleep bout on day i from (i) 

individual chronotype (MSFE
sc), and (ii) previous day i-1. Considering only one 

variable would result in over- or underestimation, because sleep times could 

move little over several days but be far away from chronotype (i.e. 

consecutive night shifts) (Fig. 3.3, lower panel), or they could move a lot but 

eventually match chronotype (i.e. free day after night shifts) (Fig. 3.3, upper 

panel).  

 
Figure 3.3. Sleep timing (daily mid-sleeps) on four consecutive shifts in the early 
(upper panel) and the late type (lower panel). xi describes the difference between 
mid-sleep on day i and chronotype (MSFE

sc, horizontal lines), yi indicates the change 
in mid-sleep relative to the previous day. The values on the right illustrate that using 
either xi or yi would bias results. 
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The two variables are calculated according to the following equations: 

 

    Δ Chronotype: xi = MSFsc
E −MSi  (E3.1) 

    Δ Day before: yi = MSi−1 −MSi  (E3.2) 

where  
 
MSFE

sc = chronotype (mid-sleep on free days after evening shifts, corrected for over-
sleep) 
MSi = mid-sleep on day i 
MSi-1 = mid-sleep on previous day 
 

The equations account for the agreement in the circadian field that positive 

values represent phase advances and negative values indicate phase delays. 

Both variables are then plotted against each other, creating a three-

dimensional plot with ‘Δ Chronotype’ on the abscissa, ‘Δ Day before’ on the 

ordinate, and time course on the third axis (Fig. 3.4 A). Eliminating the time 

dimension results in a so-called ‘delta plot’, a four-quadrant scheme 

visualizing the interaction of ‘Δ Chronotype’ and ‘Δ Day before’ in circular, 

mainly clockwise movements (due to forwards rotation) through the four 

quadrants (Fig. 3.4 B).  
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Figure 3.4. Three- (A) and two-dimensional (B) delta plots for the early (left panels) 
and the late type (right panels). The difference values xi (‘Δ Chronotype’) and yi (‘Δ 
Day before’) are plotted on abscissa and ordinate, respectively, leading to advances 
and delays throughout the shift rotation (‘pure’ shifts in quadrants 1 and 3, and 
‘hybrid’ ones in quadrants 2 and 4). Panels B result from Panels A by eliminating the 
time dimension. 
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The deviation of any sleep bout is now quantified by determining the distance 

of its data point from the origin (Fig. 3.5). The distance is represented by the 

length of a two-dimensional vector and is calculated using Pythagoras’ 

theorem: 

 Mid-sleep deviation: 
 
MSDi

u ruuuu
=

xi
yi

⎛

⎝
⎜

⎞

⎠
⎟ = xi

2 + yi
2  (E3.3) 

where 
 
MSDi = mid-sleep deviation on day i 
xi = distance of mid-sleep on day i from chronotype (MSFE

sc, mid-sleep on free days 
after evening shifts, corrected for over-sleep) 
yi = distance of mid-sleep on day i to day before i -1 
 

 

 
 
Figure 3.5. Calculation of mid-sleep deviation. The length of a two-dimensional 
vector calculated by Pythagoras’ theorem indicates the distance of any data point to 
the origin. 
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revealed differences according to the type of shift: the early chronotype 

showed largest deviations for night shifts, while highest values were observed 
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continued impact of night shifts on the first day off for the early type, as well as 

for the late type after morning shifts, yet not to the same extent. Additionally, 

the early type showed either extreme high or very low values, whereas values 

of the late type were almost normally distributed (Fig. 3.6 B, upper panel).  

 

 
 
Figure 3.6. (A) Mid-sleep deviation values for the early (white dots, dashed line) and 
the late chronotype (black dots, straight line) throughout the work schedule. Blue box 
= morning shift (6 a.m. – 2 p.m.), orange box = evening/afternoon shift (2 p.m. – 10 
p.m.), green box = night shift (10 p.m. – 6 a.m.), white box = work-free day. (B) 
Distribution of mid-sleep deviation (MSD) values in the two individuals (upper panel) 
as well as in all early (n = 13) and all late types (n = 13) (lower panel). Early types 
showed a positively skewed distribution, while values in late types were almost 
normally distributed. 
 

Conducting regression models for the entire sample (n = 53) controlling for 

schedule, age, gender, body mass index and number of children revealed the 

same pattern: the earlier the chronotype, the higher deviations on night shifts 

and first subsequent day off (β = -0.77night / -0.53day off, P < 0.001), and the 

lower deviations on morning shifts and first respective free day (β = 0.96morning/ 

0.66day off, P < 0.001) (for full models see Appendix of this project, Section 

3.6.4, Tables A3.3 – A3.6). Also, median was lower (2.04early vs. 3.58late) but 

inter-quartile range larger (4.52early vs. 3.25late) in early than late types, 
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confirming the pattern observed in the two individuals (Fig. 3.6 B, lower 

panel).  

This procedure can be applied for both, particular days (e.g., if one was 

interested in night shifts), and complete study periods (e.g., if one wanted to 

compare work schedules). To integrate multiple vector lengths, one can use 

various modes according to data type and research setting (i.e. sum, 

maximum, average). Here, the mean was calculated to estimate the average 

effect of shift schedules on different chronotypes: 

 

 Overall mid-sleep deviations: 
 
MSDmean = MSDi

u ruuuu
i=1

n

∑  (E3.4) 

where 
 
MSDmean = averaged mid-sleep deviations over period n 
MSDi = mid-sleep deviation on day i 
 

The regression model showed that each delaying hour of chronotype was 

associated with an increase of mid-sleep deviations by ~10min (β = 0.46, P < 

0.001) (for full model see Appendix of this project, Section 3.6.4, Table A3.7). 

Additionally, a ‘window of tolerance’ was drawn based upon the relatively 

large discrepancy between sleep timing on work and free days that 33% of 

day workers experience.62 The window included all values within a range of 

±2h in both directions and the percentage of values outside this window was 

calculated (Fig. 3.7). Conducting a multiple regression revealed the same 

pattern as for the two individuals: the later the chronotype, the more data 

points were outside the window (β = 0.75, P < 0.001) (for full model see 

Appendix of this project, Section 3.6.4, Table A3.8). 
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Figure 3.7. ‘Window of tolerance’. The window covers all values within the range of 
±2h in x – and y – direction for the early (left panel) and the late type (right panel). 
MSDmean = mid-sleep deviations averaged across study period. MSDwindow = 
percentage of values outside the ‘window of tolerance’. 
 

3.4.2 ‘Of islands and pancakes’: sleep timing is more variable in late 

than early chronotypes 

The delta plots revealed characteristic shapes, so-called ‘chronotype-

contours’, that varied among early, intermediate and late types being 

differentially impacted by work shifts: early types appeared to be affected 

mainly (if not only) by the night shift resulting in large delays passing through 

quadrants 3 and 4 (Fig. 3.8, 1-13, blue box); intermediates seemed to be 

affected almost equally by morning and night shifts leading to a ‘butterfly-

shaped’ pattern, moving trough all four quadrants (Fig. 3.8, 14-40); in contrast, 

late types showed greatest deviations by the morning shift (and less by the 

night shift) yielding large advances in quadrant 1 and 2 (Fig. 3.8, 41-53, green 

box).  
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Figure 3.8. Delta plots according to chronotype. The blue box frames early types (n = 
13, MSFE

sc < 3:53), and the green box indicates late chronotypes within the sample 
(n = 13, MSFE

sc > 5:36). The individual chronotype is shown above each panel as 
local time. Asterisks mark the two individuals used previously as examples for the 
approach. Axes range from -15 to 15, with a major ticks interval of 5.  
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Interestingly, there seem to be dissimilarities between early and late 

chronotypes that go beyond the differential patterns of delays and advances in 

sleep timing according to work schedule. A rotational shift worker is not 

expected to show stable sleep-wake behaviour in a circadian manner given 

the varying shift times. Nevertheless, a shift worker could show a (more or 

less) stable rhythm with a period of one rotation cycle, and if so, the lines in 

the delta plots should overlay indicating similar sleep times for equivalent 

shifts (e.g., similar mid-sleeps for morning shifts throughout the schedule). 

Also, their days off should differ only marginally, at least if following the same 

type of workday (e.g., similar mid-sleeps on free days following morning 

shifts), illustrated by a pile of data points near the origin. Thus, stability of 

sleep times can best be inferred by recurring shifts during the study period (as 

in the fast schedule S3 where employees work not only consecutive shifts but 

also several blocks of night shifts within one rotation cycle) showing that early 

chronotypes seemed more stationary (i.e. overlaying lines and data piles near 

origin) than late types being spread out within the quadrants. 

To illustrate those differences, a simple visualisation was created of 

how dense the data of an individual were distributed, resulting in ‘density 

plots’ (Fig. 3.9). A density plot shows contour lines linking areas of equal 

density, similar to a topographic map where regions of the same altitude are 

connected with lines (for details, see Section 3.3.5). Here, the area covered by 

contour lines as an indicator for the extent of deviation, and the fragmentation 

of its shape as a marker for sleep time variance (i.e. a cohesive contour would 

suggest higher variance, as working times recur but sleep times differ widely 

leading to a ‘carpet’ of data points) are interpreted.  
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Figure 3.9. Density plots according to chronotype. The blue box frames early types 
(n = 13, MSFE

sc < 3:53), and the green box indicates late chronotypes within the 
sample (n = 13, MSFE

sc > 5:36). The individual chronotype is shown above each 
panel as local time. Asterisks mark the two individuals used previously as examples 
for the approach. Axes range from -15 to 15, with a major ticks interval of 5. Color 
code: dark blue = lowest density, dark red: highest density. Please note that data of 
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participants not working multiple blocks of (morning, night) shifts do not appropriately 
allow for inference of sleep-wake variability. Their data and density plots are not 
excluded but shown in light gray. 
 

Inspection of density plots revealed remarkable differences between 

chronotypes: all early types consistently showed a fragmented pattern of ‘data 

islands’ that slowly moved across intermediate types towards a more unified 

pattern, eventually reaching cohesive contours in late chronotypes (‘pancakes 

of data’). Figure 3.10 illustrates the differences in the extreme early and late 

types.  

 

 
Figure 3.10. ‘Of islands and pancakes’. Density plots of the earliest (blue box) and 
latest chronotypes (green box) in the sample. Fragmented patterns (‘islands’) as 
seen in the early types (green box) suggest more stable sleep-wake patterns as early 
types are mainly deviated by the night shift whereas sleep times of late chronotypes 
(blue box) are highly dispersed resulting in cohesive contours (‘pancakes’). The 
individual chronotype is shown above each panel as local time. Asterisks mark the 
two individuals used previously as examples for the approach. Axes range from -15 
to 15, with a major ticks interval of 5. Color code: dark blue = lowest density, dark 
red: highest density. Please note that data of participants not working multiple blocks 
of (morning, night) shifts were excluded only for the purposes of this graph.  
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In order to test this statistically, the ratio between median and inter-

quartile range of mid-sleep deviations was calculated as a measure for how 

variable sleep timing was across the study period: 

 

 Variability of mid-sleep deviations: MSDvar =
MSDmedian

IQR
 (E3.5) 

where 
 
MSDmdian = median of mid-sleep deviations over period n 
IQR = inter-quartile range of mid-sleep deviations over period n 
 

Please note that differential distributions of mid-sleep deviations were 

observed among early and late chronotypes as described previously (see Fig. 

3.6 B). Early types showed few extreme values resulting in lower medians but 

larger inter-quartile ranges. This would have biased the use of inter-quartile 

range or other variance measures (i.e. standard deviation) as indicator for 

variability. Thus, the proposed formula accounts for positively skewed 

distributions as found in early types with lower values indicating lower 

variability. Accordingly, in case of normal distribution, no formula is needed 

and standard measures of variance can be used.  

Regression analyses showed that variability was higher the later the 

chronotype (β = 0.85, P < 0.001) (for full model see Appendix of this project, 

Section 3.6.4, Table A3.9). Additionally, the same approach was calculated for 

sleep duration (overall sleep duration deviation, SDDmean, and variability of 

sleep duration deviation, SDDvar) in order to see if different chronotype-

contours were due to differences in sleep length (Fig. 3.11). No matching 

pattern was found, i.e. neither SDDmean nor SDDvar were significant predictors 

of a more variable sleep timing as measured by MSDvar (P > 0.05); yet 

chronotype still explained 69% of the variance (β = 0.83, P < 0.001) (for full 

model see Appendix of this project, Section 3.6.3, Table A3.10). Furthermore, 

there was no relationship between chronotype and SDDmean or SDDvar, (both r 
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= 0.01, P > 0.05) and none of the variables predicted overall mid-sleep 

deviation (MSDmean) (P > 0.05, for full model see Appendix of this project, 

Section 3.6.4, Table A3.11). 
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Figure 3.11. Delta plots for sleep duration according to chronotype. No pattern was 
observed that could explain chronotype-contours of mid-sleep delta plots, i.e. more or 
less variable sleep durations were similarly distributed within and between 
chronotype categories. The individual sleep duration (weighted average across the 
study period) is shown above each panel in hours. The blue box frames early types 
(n = 13, MSFE

sc < 3:53), and the green box indicates late chronotypes within the 
sample (n = 13, MSFE

sc > 5:36). Asterisks mark the two individuals used as prior 
examples for the approach. Axes range from -15 to 15, with a major ticks interval of 
5.  
 

Density plots are a fast and intuitive way of visualising differences across 

individuals. Moreover, they perfectly suit pre-post study designs. To illustrate 

this, additional data were analysed from participants in schedule S3 who had 

undergone the implementation of a new schedule that was adapted to the 

employees’ chronotype distribution (details of this project are described 

elsewhere, see63). In the newly implemented schedule (chronotype-adapted 

(CTA) schedule), shift workers had been assigned to one of four groups 

according to their individual chronotype resulting in two ‘extreme’ shift groups 

comprising the earliest and the latest 25% of the distribution, respectively. 

Night shifts had been abolished for the early group and morning shifts for the 

late group. Their sleep-wake behaviour was assessed using actimetry and 

sleep logs once before the implementation and once right after it. Thus, two 

density plots were created for each individual allowing for direct comparison of 

pre- and post-measurement (Fig. 3.12). Just by the area covered, one can 

immediately see that the extent of mid-sleep deviations decreased in both 

groups and the ‘islands’ disappeared for the early types; yet, late chronotypes 

still showed expanded and cohesive contours (‘pancakes’) further supporting 

the notion of a higher variability in their sleep timing. 
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Figure 3.12. Density plots in a pre-post study design. Participants from schedule S3 
took part in an intervention study where a chronotype-adapted (CTA) schedule was 
introduced abolishing night shifts for the earliest types (blue box) and morning shifts 
for the latest ones (green box).63 They wore actimetry devices and filled out sleep 
logs before and directly after the implementation allowing for comparison of both 
schedules. Please note that no actimetry data were available from late chronotypes 
in the CTA schedule, and their sleep log data are shown instead. The individual 
chronotype is shown above each panel as local time. Axes range from -15 to 15, with 
a major ticks interval of 5. Color code: dark blue = lowest density, dark red: highest 
density. 

 

3.4.3 Comparison with other measures of circadian disruption: ‘inter-

daily stability’ and ‘behavioural entrainment’ 

The concept of mid-sleep deviation was compared with two other measures 

claiming to quantify circadian disruption using actimetry measures (for details, 

see Section 3.3.3.1). The inter-daily stability40 derives from the Sokolove and 

Bushell periodogram,41 and quantifies the robustness of a circadian rhythm by 
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by the extent to which light exposure and activity data are related. Phasor 

Δ 
 D

ay
 b

ef
or

e 
(h

)
03:05 03:09 03:24 03:35 03:37

Δ Chronotype (h)

5:59 06:00 06:37 07:19

sleep log "
data

CTA: no "
night "
shifts

S3: 222

S3: 222

CTA: no "
morning 

shifts



3 Project Two 

 92 

analyses of circular cross-correlations are conducted and the phasor’s 

magnitude indicates how well light and activity measures match. First, overall 

mid-sleep deviations were correlated with inter-daily stability values and 

phasor magnitudes (Fig. 3.13 A). Both measures revealed a significant, 

negative relationship (r = -0.56IS/ -0.48phasor, P < 0.001) showing that higher 

mid-sleep deviations were associated with less robust activity rhythms and 

weaker light/activity-matching profiles (Fig. 3.13 A). As inter-daily stability and 

‘behavioural entrainment’ are coded reversely (lower values signify higher 

circadian disruption), the negative value of the correlation reflects consistency 

between the measures.  

 

 
Figure 3.13. Comparison of mid-sleep deviations with inter-daily stability values 
(white dots) and phasor magnitudes (black dots). The negative relationships indicate 
congruence between measures, as inter-daily stability and phasors are coded 
reversely, i.e. lower values reflect higher circadian disruption. 
 

 

Additionally, overall mid-sleep deviations (MSDmean), inter-daily stability, 

and phasor magnitudes were correlated with the individual chronotype 

(MSFE
sc) revealing good correlations for MSDmean and inter-daily stability: the 

later the chronotype, the higher circadian disruption (r = 0.37MSD/ -0.63IS, P < 

0.001) (Fig. 3.14). Yet, no significant relationship was found for chronotype 

and phasor magnitude (r = 0.05, P > 0.05) suggesting that two individuals (i.e. 
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opposite chronotypes) can largely differ in their day-to-day sleep-wake 

behaviour, but display similar degrees of ‘behavioural entrainment’ as long as 

they keep being active when lights are on and stop being active when lights 

are off. This finding is illustrated with two individuals from schedule S1 in 

Figure 3.15. 

 

 
Figure 3.14. Relationship of measures for circadian disruption with chronotype 
(MSFE

sc). Mid-sleep deviations (A) and inter-daily stability (B, white dots) showed 
good correlations, whereas phasor magnitudes did not relate to chronotype (B, black 
dots). 
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Figure 3.15. Double plots for light and activity (A, B), and sleep (AA, BB) in one 
early (left panels) and one late chronotype (right panels) from schedule S1. Phasor 
magnitudes are comparable between both participants indicating similar strength of 
‘behavioural entrainment’; yet, values for overall mid-sleep deviations (MSDmean), 
variability of mid-sleep deviations (MSDvar), and inter-daily stability (IS) differ 
noticeably.  
 

3.5 Discussion  
 

3.5.1 Mid-sleep deviations as a measure for circadian disruption of 
sleep-wake behaviour 

In view of an increasing number of people working in shifts, and adverse 

health consequences associated with shift work, researchers and practitioners 
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assumed underlying mechanism, that is circadian disruption.22 Here, a novel 

and simple approach is proposed to quantify circadian disruption of sleep-

wake behaviour, called ‘mid-sleep deviations’. The concept of mid-sleep 

deviations takes into account two crucial aspects of sleep in general: internal 

time (i.e. chronotype) and sleep history (i.e. previous sleep episode). 

Specifically, it calculates the distance of a particular mid-sleep from 

chronotype (using MSFE
SC as proxy52) and previous mid-sleep. The resulting 

difference values are plotted against each other allowing for determining the 

extent of mid-sleep deviation by the length of a two-dimensional vector. It 

furthermore creates unique geometric patterns, named ‘chronotype-contours’. 

The geometry of chronotype-contours can be visualised using density plots 

that calculate how dense the data are distributed resulting in coloured contour 

lines linking areas of similar density. The visualisation draws out chronotype-

specific differences: while early types seem to display a quite stationary 

rhythm with similar sleep times on equivalent shifts, late chronotypes appear 

to have a higher variability showing more irregular sleep patterns.   

Mid-sleep deviations can be (i) calculated from different data sources 

and types, such as actimetry, sleep logs, and biomarker levels, (ii) determined 

on single days (i.e. night shifts) and for entire study periods, and (iii) they are 

transferrable to various research settings, such as pre-post designs, cross-

sectional studies, field and laboratory settings, and also sleep-unrelated 

scenarios. Another strength of this method is the easy-to-catch visualisation 

provided by density plots, perfectly suitable for pre-post study designs. It 

might help to identify health risk factors and effective interventions. It might 

also help to anticipate being at risk for diseases (i.e. relapsing episodes), 

particularly in psychiatric disorders where irregular sleep timing appears a 

symptom (i.e. bipolar disorder64,65). Additionally, it can be used for evaluation 

and comparison of shift schedules when companies plan to implement a new 

system. Although chronotype determined by mid-sleep on free days (after 

evening shifts) is part of the formalism, our approach is not limited to it. 



3 Project Two 

 96 

Chronotype effectively represents a ‘baseline’ measure, and can be 

substituted by other variables depending on the data (e.g., dim light melatonin 

onset on free days, averaged reaction times).  

Mid-sleep deviations were compared with other measures of circadian 

disruption, namely inter-daily stability and ‘behavioural entrainment’. All 

measures showed good congruence indicating that although somewhat 

different in their approaches, they all reflect a shared phenomenon, at least to 

a certain extent. Yet, each measure has its pros and cons. The ‘behavioural 

entrainment’ concept relies on simultaneously measured activity and light data 

that can sometimes be difficult to assess in industry settings where devices 

are covered by working clothes (i.e. gloves) or not permitted at all due to 

safety restrictions. Furthermore, it does not reflect actual strength of 

entrainment (as the name suggests) but the extent to which light and activity 

data correspond. Let us consider two people sleeping in a room with open 

curtains. The person awakening earlier and being active earlier might not 

necessarily reflect stronger entrainment but simply an earlier phase 

relationship with the zeitgeber cycle. The term ‘behavioural entrainment’ 

should therefore be interpreted carefully. In contrast to mid-sleep deviations 

and inter-daily stability, phasor magnitudes were not related to chronotype. It 

is assumed that, e.g., some early chronotypes might have had job tasks 

allowing them to largely reduce their activity during the nightly working hours 

matching the lower light levels and resulting in relatively strong ‘behavioural 

entrainment’ despite the night shift. Given similar mid-sleep deviations of 

those early types, the finding emphasises that, although correlated, sleep-

wake rhythm and rest-activity cycle are not the same. In turn, lower 

magnitudes in late chronotypes might simply reflect a combined effect of their 

‘habitually’ delayed activity patterns and generally lower light levels during 

night shifts (consequently resulting in an overlap of higher activity and lower 

light exposure). Thus, when using phasor analysis in an industry shift work 

setting, many late chronotypes will naturally display lower correspondence 



3 Project Two 

 97 

between light exposure and activity behaviour. Yet, the approach is elegant 

and informative concerning the relationship between activity levels and actual 

light exposure, and combining both measures might further improve prediction 

of health risks.  

The inter-daily stability is computed from activity measures, and applies 

an established algorithm to calculate how rhythmic daily activity-rest patterns 

occur. The basis of the algorithm is generally used to detect periodicity in time 

series, and derivatives have been proposed to indicate oscillatory stationarity 

of rhythms (e.g., robustness index66). The usefulness of inter-daily stability 

has been demonstrated in various clinical settings with patients suffering from 

dementia where fragmentation of activity patterns frequently occurs.42–44 

However, by assuming a period of 24h, it implies a relationship with an 

external 24h-zeitgeber (i.e. daily alternation between day and night), whereas 

the actual zeitgeber (i.e. actual light exposure) might or might not have a 

period of 24h. Therefore, as Rea et al.45 pointed out, relating activity-rest 

patterns to actual light-dark exposure might be the better assessment. Both 

measures, inter-daily stability and phasor magnitudes are limited to values 

between 0 and 1, and seem to work well for differences between day working 

and shift working participants, and between healthy controls and diseased 

patients, respectively; yet, they might be less useful to distinguish within a 

population of shift workers and patients given their limited variance. 

Accordingly, phasor analysis failed to detect differences in variability of sleep 

timing between chronotypes, as magnitudes will be high as long as activity 

and light levels match.  

Although not assessed within this study, the 6-OHMS ratio proposed by 

Burch and co-workers will also be briefly discussed.39 The 6-OHMS ratio 

requires sampling and analysis of urine, which is relatively costly and labour-

intensive for both, researchers and participants. Melatonin is considered a 

robust and reliable clock output given neuronal projections between SCN and 

pineal gland.67 Yet, melatonin might not be the best way to examine the 
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degree of circadian disruption, since it was shown to be relatively unaffected 

by timing of sleep despite a disrupted circadian regulation of the human 

transcriptome.48 Probably the biggest strength of the concept of mid-sleep 

deviations consists in not being dependent on either melatonin or actimetry 

measures: the basic principle to quantify changes over time can be 

transferred to almost any kind of research setting and data. Yet, mid-sleep 

deviations rely on continuous times series. Imputation methods might help 

with this problem, but only to a limited number of missing values. Furthermore, 

fragmented sleep, several sleep episodes over 24h, or extensive naps 

probably contribute to sleep and health problems in a deteriorating or 

attenuating manner, and at least for now mid-sleep deviations cannot 

integrate several mid-sleeps on one day. Finally, similar successive mid-

sleeps (i.e. on consecutive night shifts) will result in lower values by formula 

(i.e. decreasing ‘Δ Day before’), which seems to contradict the 

recommendation for fast-rotating schedules in order to prevent accumulating 

fatigue and entrainment to the shifts.68,69 However, fast rotations involve 

frequent shift changes, which in turn are associated to reduced longevity in 

animal experiments.70 In general, mid-sleep deviations reflect known 

outcomes, such as early types having greatest problems with night shifts and 

continued impact of workdays on days off, and thus appear to be a promising 

approach to systematically examine physiological and psychological strain in 

different work schedules, clinical settings, and laboratory studies. 

 

3.5.2 Higher circadian misalignment in late types 

Analyses revealed that each delaying hour of chronotype was associated with 

a 10min increase in mid-sleep deviations indicating greater circadian 

disruption the later chronotype. There is a large body of studies investigating 

the role of chronotype and circadian misalignment for physiological and 

psychological health.12 In evening types, studies found a 2.5 times higher 

likelihood to subjectively report poorer general health,71 greater risk for 
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asthma,72 a 2.5-fold increase in type II diabetes and a 1.3-fold increase in 

hypertension prevalence,73 poorer glycaemic control in a sample of patients 

with type II diabetes,74 greater risk for obesity,75 greater body fat among a 

sample of participants with bipolar disorder,76 and higher cigarette and alcohol 

consumption as well as lower physical activity.77 Additionally, evening type 

was associated with higher cognitive ability but lower academic 

achievement.78 With regards to psychiatric illnesses, multiple studies focused 

on development and severity of affective disorders (i.e. major depression,79–81 

seasonal affective disorder,82 bipolar disorder83,84). These studies 

demonstrated that ‘having’ a late chronotype (usually assessed via MEQ) was 

associated with, i.e. higher depression scores, severer symptoms and shorter 

relapse intervals.  

Most of the studies controlled for overall sleep duration, concluding that 

chronotype had an impact above and beyond sleep length. Yet, as shown by 

several studies, late types sleep less on workdays and sleep longer on 

weekends thereby compensating for a work-related sleep debt.49,62,85 This 

results in similar overall sleep durations for early and late types studies have 

controlled for, despite differences in sleep on work and free days, as reflected 

by social jetlag. Social jetlag in turn has been associated with a higher 

likelihood of being a smoker, consuming alcohol and caffeinated beverages,34 

a 33% increase in risk of being obese with every hour of social jetlag (when 

already having weight problems),62 and a higher risk for depressive 

symptoms86 as well as cardiovascular problems.87 These findings revisit 

previously reported results and raise the question if chronotype effects are 

rather mediated by circadian misalignment. 

Accordingly, several studies proposed circadian misalignment as 

potential mechanism for physiological and psychological impairments, either 

arguing that eveningness itself is a form of circadian misalignment (e.g., late 

types are reported to have shorter phase angles, and therefore sleep at an 

earlier circadian phase55,57,88) or suggesting a higher probability for late 
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chronotypes to experience misalignment. Yet, only few studies accounted for 

a measure of circadian disruption. One recent study included circadian 

misalignment assessed as self-reported habitual bedtime earlier or later than 

preferred bedtime, and found that both, late chronotype and ‘misaligned’ 

bedtimes were independent predictors of shorter disease-free intervals of 

metastatic breast cancer.89 Levandovski and colleagues examined separate 

contributions of chronotype and social jetlag to depression.86 They conducted 

rank correlations with depression scores assessed by Beck’s depression 

inventory (BDI) within three categories of chronotype (early, intermediate, late) 

and social jetlag (≤2h, 2-4h, >4h), respectively, and found significant 

relationships for social jetlag and BDI in each chronotype group, but only one 

significant correlation for chronotype and BDI in the lowest social jetlag 

category. This finding suggests a greater role for social jetlag than chronotype 

in the prevalence of depression symptoms, but the analyses could not exclude 

chronotype as an independently contributing factor.  

There are several, substantial problems to separate the unique 

contributions of chronotype and circadian misalignment in observational 

studies, and these aspects are symptomatic for most (epidemiological) 

research on chronotype and circadian misalignment. First, when deciding on 

artificial categories cut-off values are crucial, and if unfortunately chosen, 

results are biased in a way that might obscure true effects. Second, using 

continuous statistical methods (rather than mean comparisons) that control for 

the influence of a third variable (i.e. partial rank correlations) would more 

appropriately allow for elucidating the distinct contributions of social jetlag and 

chronotype to prevalence of diseases. Third, and most importantly, the fact 

that in the study by Levandovski et al. only 81 early and intermediate types 

experienced more than 2h of social jetlag whereas 296 late types did so, 

suggests such a strong relationship between chronotype and social jetlag, that 

statistical control of chronotype is no longer possible as it relies on sample 

values (meaning that if all variance in the moderate and high social jetlag 
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groups comes from late types, no reliable statement can be made for early 

and intermediate types). Accordingly, this is a general and essential problem 

when examining separate contributions of chronotype and circadian 

misalignment (i.e. social jetlag). If there are no early chronotypes suffering 

from a significant amount of social jetlag in the real world, it will never be 

possible to tell from observational studies that social jetlag (rather than 

chronotype) is the ‘true’ factor contributing to these disorders because only 

eveningness ever comes along with high social jetlag. Consequently, 

experimental studies would be needed clearly facing serious ethical issues. In 

the end, it is possible that social jetlag would indeed account for all 

‘chronotype-related’ inter-individual variance of disorders, such as depression. 

Thus, adverse health effects in late types could be explained assuming 

socially induced sleep deprivation and circadian misalignment rather than 

being a late chronotype per se. Despite statistical challenges, including a 

measure for circadian misalignment, such as mid-sleep deviations, social 

jetlag, or ‘behavioural entrainment’, will always improve validity of predictions. 

 

3.5.3 Higher variability of sleep-wake behaviour in late chronotypes 

Numerous studies have compared early and late chronotypes with regards to 

multiple outcomes. With respect to sleep-wake behaviour, eveningness was 

associated with higher90 or equal sleep need,85 slower increase in sleep 

pressure during extended wakefulness,91 later bedtimes and wake-up times 

(especially on weekends),92,93 shorter sleep on weekdays and longer duration 

on weekends achieved by later wake times,85,93 difficulty in initiating sleep and 

greater daytime sleepiness,94 and more frequent naps and poorer sleep 

quality.93 The majority of these studies were based on self-assessments using 

questionnaires to evaluate sleep habits and complaints. The results are 

somewhat circular as chronotype is assessed by questions asking for sleep-

wake behaviour, and basically describe what is used to define chronotype. 

Moreover, many of the reported differences, e.g., poorer sleep and daytime 
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sleepiness, may as well result from the discrepancy between clock-regulated 

sleep-wake behaviour and social requirements, as was described previously 

in the discussion. Some of these studies also reported more irregular sleep-

wake schedules85,90,92,93,95 that again, might be explainable by a greater 

discrepancy between work and free days in late types leading to a higher 

variability in bedtime, arising time, and sleep duration due to external 

constraints. Thus, it is unclear from these studies whether sleep-wake 

behaviour is intrinsically or artificially more variable. Likewise, this study 

cannot resolve the question.  

Here, the more variable sleep timing in late chronotypes seemed 

causal for their higher mid-sleep deviations. This finding was further supported 

by the negative relationship between chronotype and inter-daily stability 

suggesting that late chronotypes might not be per se misaligned, but display a 

less stable sleep-wake behaviour resulting in higher circadian disruption. To 

date, it is unclear whether irregular sleep-wake behaviour constitutes a 

positive or negative factor. On one hand, studies report that both, 

eveningness and flexibility in sleeping at unusual hours help adaptation to 

(night) shift work.96,97 On the other hand it is reported as risk factor for or 

symptom of (psychiatric) diseases (i.e. bipolar disorder64). Identifying what 

causes sleep-wake variability will help clarifying its role in development and 

prevention of diseases. Here, several potential exogenous and endogenous 

explanations are proposed.  

 

3.5.3.1 Exogenous causes: Differences in light exposure 

Chronotypes might differ in both, degree and regularity of light exposure. 

Goulet et al.98 examined daily light exposure in morning-type and evening-

type individuals, and found hat morning-types were exposed to more bright 

light (> 1000 lux) and more light in the morning in relation to external time. 

Yet, when analysed in relation to circadian phase (as indexed by DLMO), 

these differences vanished except for individuals with very early or very late 
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DLMOs, whose profiles of light exposure differed largely. The authors 

hypothesized that these individuals might have shorter or longer circadian 

periods, respectively, and a phase-delaying profile of light exposure in 

morning types and a phase-advancing profile in evening-types might be 

needed to ensure stable entrainment to the 24h day. Accordingly, a later 

phase does not necessarily imply weaker entrainment as there is a natural 

variation in phase of entrainment within species.99 Yet, since the invention of 

the Edison bulb in 1879, electrical lighting allows us to work around the clock, 

and consequently alters circadian synchronisation of the internal clock to the 

natural light:dark cycle by reducing zeitgeber (time cue) strength.100 Less 

daylight in the morning and artificial light during dark hours delays the phase 

of entrainment in humans, as predicted by circadian entrainment theory100 and 

evidenced by laboratory101,102 as well as field studies103. Thus, later sleep on- 

and offset times might indeed reflect weaker entrainment due to a (possibly 

self-selected) low-contrast zeitgeber cycle. Accordingly, weaker entrainment 

might account for higher variability of sleep-wake behaviour in late types, at 

least in those with delayed phases because of a reduced zeitgeber strength. 

Similarly, a more irregular light exposure might as well produce varying sleep-

wake times, potentially due to differences in lifestyle as Monk and colleagues 

reported lower lifestyle regularity in evening types.104 

 

3.5.3.2 Endogenous causes: Differences in clock properties 

Support for endogenous causes comes from a study chronotyping mice via 

median of activity (MOA).105 The authors calculated the Qp statistic,66 an 

index of oscillatory stationarity almost identical to the inter-daily stability 

calculated in this study, and found that mice with a later MOA also had less 

robust activity rhythms. Among potential intrinsic factors, reduced amplitude of 

the circadian oscillator might account for higher variability in behaviour via 

greater susceptibility to phase-shifting stimuli, such as light signals.  
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In 1978, Reinberg and colleagues related the amplitude of several 

circadian rhythms (e.g., oral temperature) to magnitude of phase-shift after 

night work.106 They found a negative correlation, i.e. the smaller the 

amplitude, the greater the phase shift, concluding that a small amplitude of 

certain circadian rhythms might promote the individuals’ ability to phase-shift 

easily. A laboratory study compared individuals previously identified as either 

behaviourally resistant or sensitive to sleep deprivation by psychomotor 

vigilance test performance.106 During a 38h continuous wakefulness protocol, 

reduced amplitude of diurnal rhythms in blood-gene expression was observed 

in resistant subjects suggesting that lower susceptibility to sleep deprivation 

might be promoted by less stable circadian rhythms. 

Brown et al. used human dermal fibroblasts to examine chronotype 

differences assessed with the MEQ.108 They found that transcriptional period 

length was weakly associated with behavioural phase concluding that other 

factors might influence chronotype as well. Amongst four individuals with 

‘normal’ (~24.5h) period length but opposing chronotypes (two morning and 

two evening types), amplitude of Rev-erbα transcription rhythm was lower in 

the morning types. Mathematical modelling showed that reducing general 

amplitude of the circadian oscillator and decreasing sensitivity of light-

signalling pathways, respectively, resulted in phase advance. They further 

conducted a phase-shifting experiment using a chemical agent and observed 

that as expected lower amplitudes resulted in larger phase shift magnitudes 

as shown by phase response curves. Their results suggest that a weaker 

oscillator is more susceptible to phase-shifting stimuli, possibly explaining a 

higher variability in sleep timing; yet, they also found that a weaker oscillator 

(by modelling and by observation in (only) Rev-erbα transcription) was 

associated with an earlier chronotype contrasting the more variable sleep-

wake behaviour that was found here in late types.  

Phillips et al. probed the mechanisms of chronotype using a 

physiologically based mathematical model of the sleep-wake regulatory brain 
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network.109 They defined chronotype by preferred sleep-wake schedule, and 

examined how sleep-wake patterns could be affected by changing model 

parameters. In agreement with Brown and colleagues,108 they found that 

reducing circadian drive (lower general amplitude) thereby increasing 

homeostatic force resulted in an earlier phase of the sleep-wake behaviour. 

Furthermore, they demonstrated that two subgroups observed in a previous 

empirical study98 could be explained by differing mechanisms: subjects whose 

dim light melatonin onset (DLMO) did not track their chronotype could be 

described by differences in homeostatic kinetics (i.e. time constant of 

clearance and accumulation of forebrain adenosine) with later types having 

slower kinetics, whereas subjects whose DLMO tracked their chronotype 

could be explained by differences in circadian period τ with later types having 

longer τ.  

Overall, mathematical modelling shows that reducing circadian 

amplitude thereby mimicking a weaker oscillator results in phase advance. 

However, in none of these models did a weaker oscillator result in greater 

cycle-to-cycle variation of sleep-wake behaviour, leaving it still open what 

causes the higher variability observed in late types. 

 

3.5.4 Limitations, outlook, and conclusions 

Daily mid-sleep times were extracted from actimetry and no information on 

use of alarm clocks was available. Therefore, a potential impact by self-

imposed early awakening on results cannot be excluded. Yet, for participants 

who additionally filled out sleep logs indicating use of alarm clocks, no 

differences between chronotypes were found regarding frequency of use (data 

not shown). Future studies are warranted to reveal predictive strength of mid-

sleep deviations for health and safety outcomes, and to elucidate the role of 

sleep-wake variability for development and prevention of diseases. 

Mid-sleep deviations offer a simple and promising measure for 

circadian disruption of sleep-wake behaviour. In view of increasing rates of 
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people in shift work, it might help to systematically investigate causes and 

consequences of disrupted rhythms on an individual basis. The study 

emphasises the importance of chronotype for examining circadian disruption, 

as the interaction of both, internal and external time will determine who is 

affected when and to what extent. 
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3.6 Appendix 

3.6.1 Exclusion process 
 
Table A3.1. Number of excluded participants according to criteria and subsamples.  
 

Exclusion criteria Subsampl

e 

according 

to study 

site and 

schedule 

Initial 

sampl

e size 
Drop

-out 

< 2 

shifts 

of each 

type 

(M,E,N

) 

Change

s in 

schedul

e (> 3 

days) 

Missin

g data 

(> 3 

days) 

Technica

l defect 

Final 

sampl

e size 

S1 28 - - 1 4 - 23 

S2 12 - - 1 2 - 9 

S2: 555 11 - 1 1 1 - 8 

S3: 222 25 6 1 1 3 1 13 

total 76 6 2 4 10 1 53 
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3.6.2 Descriptive comparison of original and imputed dataset 

 

 
 
Figure A3.1. Boxplots with median and inter-quartile range are shown before 
(‘original data’) and after (‘imputed data’) imputation of missing values. For details on 
imputation process, see Section 3.3.4. 
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3.6.3 Sample description 
 
Table A3.2. Descriptive information of total sample and according to chronotype 
categories (early, intermediate, late). Chronotype categories were chosen according 
to inter-quartile range of the sample. MSFE

sc = mid-sleep on free days after evening 
shift, corrected for over-sleep. sd = standard deviation. BMI = body mass index. No 
significant differences are observed between early, intermediate, and late types 
regarding age, body mass index, and sleep duration (one-way anovas, P > 0.05). 
Groups differed with respect to chronotype (F = 111.02, P < 0.001), gender and 
number of participants not having children (χ2, P < 0.05). 
 

 Total sample 

(n = 53) 

Early 

(n = 13) 

Intermediate  

(n = 27) 

Late 

(n = 13) 

Chronotype 

(MSFE
sc) 

4:56 ± 91min  

(1:31 – 8:59) 

3:16 ± 37min  

(1:31 – 3:53) 

4:43 ± 32min 

(3:54 – 5:34) 

7:04 ± 53min  

(5:42 – 8:59) 

Age (years, 

mean ± sd, 

range) 

35 ± 9.61  

(19 – 55) 

35.31 ± 8.71 

(21 – 47) 

35.81 ± 10.35 

(19 – 55) 

33 ± 9.31  

(19 – 48) 

Gender (% 

female) 

54.72 53.85 62.96 38.46 

BMI (mean ± 

sd, range) 

26.19 ± 4.90  

(19 – 47) 

28.79 ± 7.13  

(21 – 47) 

25.02 ± 3.60 

(19 – 35) 

26.03 ± 3.85  

(20 – 34) 

Children (% 

without) 

60.38 46.15 74.07 58.35 

Total sleep 

duration 

(hours, mean 

± sd, range) 

7.14 ± 0.63 

(5.49 – 8.61) 

6.94 ± 0.73 

(5.40 – 8.13) 

7.09 ± 0.64 

(5.49 – 8.61) 

7.29 ± 0.66 

(6.23 – 8.42) 
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3.6.4 Full description of regression models 

In this section, full regression models are described including standardised (β) 

and unstandardised (b) estimates for all parameters entered into the model. 

They are listed as referenced in the main text. All models included the 

covariates age, body mass index, gender, number of children (living in the 

same household) and schedule. The latter three were entered as categorical 

predictors, coded as follows: gender 0 = female, 1 = male; number of children 

0 = no children, 1 = one or more children; schedule 1 = S3: 222 (fastest 

rotation), 2 = S1, 3 = S2, 4 = S2: 555. The adjusted R2 value accounts for the 

number of predictors in the model such that it only increases if a predictor 

improves (the unadjusted) R2 more than would be expected by chance. It is 

therefore considered the more appropriate effect size. P-values were tested 

against Bonferroni-corrected α – level of 0.006 due to multiple comparisons. 
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Table A3.3. Regression model for mid-sleep deviation on night shifts. Please note 
that four participants (MSFE

sc = 3:07 / 4:42 / 7:13 / 8:59) displayed outlier values 
(more than three inter-quartile ranges away from the sample mean) and were 
therefore excluded from regression analyses. n = sample size. MSFE

sc = mid-sleep 
on free days after evening shift, corrected for over-sleep. BMI = body mass index. se 
= standard error. 
 

F (df) P R2 Adjusted R2 n 

8.99 (8,40) < 0.001 0.64 0.57 49 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

-0.76 0.10 -7.38 0.000 -0.77 

Age 0.02 0.02 1.41 0.168 0.17 

Gender 0.64 0.39 1.62 0.113 0.23 

BMI 0.01 0.03 0.24 0.813 0.03 

Children -0.61 0.35 -1.73 0.091 -0.22 

Schedule      

S1 0.07 0.43 0.15 0.882 0.02 

S2 1.18 0.57 2.06 0.046 0.32 

S2: 555 0.81 0.49 1.64 0.108 0.22 

Constant 8.77 1.09 8.02 0.000  
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Table A3.4. Regression model for mid-sleep deviation on free days after night shifts. 
n = sample size. MSFE

sc = mid-sleep on free days after evening shift, corrected for 
over-sleep. BMI = body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

4.93 (8,44) < 0.001 0.47 0.38 53 

     

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

-0.55 0.13 -4.32 0.000 -0.53 

Age 0.04 0.02 1.80 0.079 0.25 

Gender 0.56 0.51 1.10 0.279 0.18 

BMI -0.001 0.04 -0.03 0.977 -0.003 

Children -0.82 0.47 -1.75 0.087 -0.26 

Schedule      

S1 -0.46 0.56 -0.82 0.415 -0.15 

S2 0.87 0.73 1.19 0.241 0.21 

S2: 555 0.74 0.66 1.13 0.265 0.17 

Constant 6.84 1.41 4.87 0.000  
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Table A3.5. Regression model for mid-sleep deviation on morning shifts. Please note 
that two participants (MSFE

sc = 8:20 / 8:59) displayed outlier values (more than three 
inter-quartile ranges away from the sample mean) and were therefore excluded from 
regression analyses. n = sample size. MSFE

sc = mid-sleep on free days after evening 
shift, corrected for over-sleep. BMI = body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

34.06 (8,42) < 0.001 0.86 0.84 51 

     

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.95 0.06 15.81 0.000 0.96 

Age -0.003 0.01 -0.32 0.754 -0.02 

Gender -0.18 0.22 -0.80 0.426 -0.07 

BMI 0.01 0.02 0.35 0.732 0.02 

Children -0.01 0.20 -0.06 0.949 -0.004 

Schedule      

S1 -0.40 0.24 -1.66 0.103 -0.15 

S2 0.20 0.31 0.65 0.517 0.06 

S2: 555 -0.52 0.29 -1.82 0.076 -0.14 

Constant -0.64 0.64 -1.00 0.323  
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Table A3.6. Regression model for mid-sleep deviation on free days after morning 
shifts. Please note that the individual study period of five participants comprised no 
free days after morning shifts reducing the sample size to n = 48. n = sample size. 
MSFE

sc = mid-sleep on free days after evening shift, corrected for over-sleep. BMI = 
body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

6.38 (8,39) < 0.001 0.57 0.48 48 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.62 0.11 5.60 0.000 0.66 

Age -0.004 0.02 -0.20 0.843 -0.03 

Gender 0.67 0.44 1.53 0.135 0.23 

BMI 0.03 0.03 0.94 0.352 0.11 

Children -0.50 0.44 -1.15 0.258 -0.17 

Schedule      

S1 0.42 0.52 0.81 0.422 0.15 

S2 1.39 0.67 2.08 0.044 0.36 

S2: 555 0.82 0.60 1.36 0.181 .021 

Constant -0.96 1.29 -0.74 0.465  
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Table A3.7. Regression model for overall mid-sleep deviation (MSDmean). Please note 
that two participants (MSFE

sc = 4:42 / 8:20) displayed outlier values (more than three 
inter-quartile ranges away from the sample mean) and were therefore excluded from 
regression analyses. n = sample size. MSFE

sc = mid-sleep on free days after evening 
shift, corrected for over-sleep. BMI = body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

4.86 (8,42) < 0.003 0.48 0.38 51 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.17 0.04 3.73 0.001 0.46 

Age 0.01 0.001 -0.20 0.180 0.20 

Gender 0.33 0.17 1.92 0.062 0.31 

BMI 0.01 0.01 1.04 0.303 0.13 

Children -0.21 0.16 -1.31 0.197 -0.20 

Schedule      

S1 -0.39 0.20 -2.00 0.051 -0.37 

S2 0.27 0.25 1.06 0.297 0.19 

S2: 555 -0.09 0.23 -0.39 0.700 -0.06 

Constant 1.98 0.50 3.97 0.000  
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Table A3.8. Regression model for ‘window of tolerance’ for MSDi. The window 
included all values within a range of ± 2h and the percentage of values outside this 
window was calculated. Please note that one participant (MSFE

sc = 8:20) displayed 
an outlier value (more than three inter-quartile ranges away from the sample mean) 
and was therefore excluded from regression analyses. n = sample size. MSFE

sc = 
mid-sleep on free days after evening shift, corrected for over-sleep. BMI = body mass 
index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

7.86 (8,43) < 0.001 0.59 0.52 52 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.07 0.01 7.00 0.000 0.75 

Age 0.003 0.002 1.59 0.120 0.20 

Gender 0.05 0.04 1.37 0.178 0.20 

BMI 0.0006 0.003 0.23 0.819 0.02 

Children -0.06 0.03 -1.92 0.062 -0.25 

Schedule      

S1 -0.07 0.04 -1.75 0.087 -0.28 

S2 -0.01 0.05 -0.26 0.796 -0.04 

S2: 555 -0.04 0.04 -0.83 0.409 -0.11 

Constant 0.21 0.10 1.98 0.054  
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Table A3.9. Regression model for variability of mid-sleep deviations (MSDvar). Please 
note that two participants (MSFE

sc = 6:30 / 7:13) displayed outlier values (more than 
three inter-quartile ranges away from the sample mean) and were therefore excluded 
from regression analyses. n = sample size. MSFE

sc = mid-sleep on free days after 
evening shift, corrected for over-sleep. BMI = body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

7.55 (8,42) < 0.001 0.59 0.51 51 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.16 0.02 7.60 0.000 0.85 

Age -0.001 0.004 -0.34 0.737 -0.04 

Gender -0.13 0.08 -1.66 0.105 -0.25 

BMI -0.0004 0.006 -0.07 0.941 -0.008 

Children -0.003 0.07 -0.04 0.971 -0.004 

Schedule      

S1 -0.31 0.09 -3.43 0.001 -0.57 

S2 -0.29 0.11 -2.55 0.015 -0.41 

S2: 555 -0.29 0.10 -2.87 0.006 -0.40 

Constant 1.01 0.22 4.70 0.000  
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Table A3.10. Regression model for variability of mid-sleep deviations (MSDvar) 
including two additional predictors regarding deviations and variability of sleep 
duration (SDDmean and SDDvar). Please note that two participants (MSFE

sc = 6:30 / 
7:13) displayed outlier values (more than three inter-quartile ranges away from the 
sample mean) and were therefore excluded from regression analyses. n = sample 
size. MSFE

sc = mid-sleep on free days after evening shift, corrected for over-sleep. 
SDDmean = overall sleep duration deviation. SDDvar = variability of sleep duration 
deviation. BMI = body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

5.99 (10,40) < 0.001 0.60 0.50 51 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.15 0.02 7.08 0.000 0.83 

SDDmean 0.09 0.10 0.96 0.345 0.21 

SDDvar 0.07 0.08 0.91 0.366 0.20 

Age -0.001 0.004 -0.37 0.712 -0.05 

Gender -0.12 0.08 -1.46 0.153 -0.22 

BMI 0.0003 0.006 0.05 0.960 0.005 

Children -0.009 0.07 -0.12 0.908 -0.02 

Schedule      

S1 -0.29 0.09 -3.06 0.004 -0.53 

S2 -0.25 0.12 -2.04 0.048 -0.36 

S2: 555 -0.25 0.11 -2.24 0.031 -0.34 

Constant 0.46 0.61 0.75 0.459  
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Table A3.11. Regression model for overall mid-sleep deviations (MSDmean) including 
two additional predictors regarding deviations and variability of sleep duration 
(SDDmean and SDDvar). Please note that two participants (MSFE

sc = 4:42 / 8:20) 
displayed outlier values (more than three inter-quartile ranges away from the sample 
mean) and were therefore excluded from regression analyses. n = sample size. 
MSFE

sc = mid-sleep on free days after evening shift, corrected for over-sleep. 
SDDmean = overall sleep duration deviation. SDDvar = variability of sleep duration 
deviation. BMI = body mass index. se = standard error. 
 

F (df) P R2 Adjusted R2 n 

4.05 (10,40) < 0.007 0.50 0.39 51 

 

Variable b se t P > | t | β 

Chronotype 

(MSFE
sc) 

0.16 0.05 3.54 0.001 0.45 

SDDmean 0.19 0.21 0.88 0.384 0.22 

SDDvar 0.04 0.18 0.25 0.806 0.06 

Age 0.01 0.008 1,55 0.129 0.23 

Gender 0.33 0.18 1.86 0.070 0.31 

BMI 0.02 0.01 1.14 0.261 0.14 

Children -0.22 0.16 -1.36 0.182 -0.21 

Schedule      

S1 -0.31 0.21 -1.54 0.133 -0.30 

S2 0.39 0.27 1.41 0.166 0.28 

S2: 555 0.04 0.25 0.14 0.886 0.02 

Constant 1.16 1.32 0.88 0.387  
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4 Project Three  

Challenging current guidelines for night and shift 

work 
 

4.1 Brief summary 
Current European guidelines on night and shift work give several 

recommendations for the design of shift schedules aiming at the reduction of 

adverse effects on health, safety, and social life. Accordingly, slow rotations 

and more than three consecutive night shifts should be avoided. Yet, analyses 

considering individual characteristics, such as chronotype, are missing but will 

potentially add to existing guidelines. Here, the effects of single shift 

sequences were examined taking into account individual chronotype. Ninety-

seven employees (31% female, age 36 ± 10 years, body mass index 26 ± 5) 

working in seven different rotating shift schedules filled out sleep logs daily 

over the course of at least four weeks. Sleep duration on work and work-free 

days, and a new measure quantifying circadian disruption of the sleep-wake 

cycle (‘mid-sleep deviations’) were calculated from sleep logs. Mixed-effects 

regression models and rank correlations were conducted to compare different 

numbers of consecutive (morning, evening, night) shifts. Results show an 

interaction effect between type of shift, chronotype, and number of successive 

shifts: with more night shifts (i.e. 2 vs. 4 night shifts), both, mid-sleep 

deviations and the difference between sleep duration on work and work-free 

days increased for early and decreased for late chronotypes, indicating an 

improved circadian alignment in late types when exposed to more than two 

night shifts in a row. The findings suggest that the number of consecutive 

shifts beneficial for an individual depends strongly on chronotype. The results 

of this study are intended to serve a science-based evaluation and 
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optimisation of current shift work guidelines, particularly with regard to 

individual internal time. 

 

4.2 Introduction 
 
Work schedules can have dramatic effects on sleep timing and sleep duration, 

especially in rotating shift schedules where employees have not only one, but 

several working times to cope with. In order to reduce adverse effects on 

health, social life, and safety, current European guidelines on night and shift 

work compile several recommendations for the design of shift schedules.1–4 

These guidelines advise, for example, quickly and forward rotating shift 

schedules, avoiding an early start of the morning shift, and limiting the number 

of successive night shifts to three or less. In general, recommendations root in 

evidence from field and laboratory studies, such as start of morning shifts 

preferably after 6 a.m.,5,6 and forward direction of rotating schedules, as 

circadian rhythms were shown to adjust ~50% faster to phase delays than 

phase advances7 (although recent studies suggests that counter-clockwise 

rotations might not be as harmful as early research indicated8). Yet, taking 

into account individual characteristics influencing adaptation to (night) shift 

work might optimise guidelines. Among these, individual chronotype appears 

an important factor for ‘shift work tolerance’ (i.e. absence of adverse effects) 

as it was shown to modulate cognitive performance, sleep duration and social 

jetlag (a measure for circadian misalignment) in rotational shift workers.9,10 

Late chronotypes perform better, sleep longer and experience less social 

jetlag on night shifts compared with early chronotypes. Furthermore, previous 

analyses with a newly developed measure of mistimed sleep (‘mid-sleep 

deviations’, see Section 3 Project Two) revealed a higher variability of sleep-

wake behaviour in late than early chronotypes potentially enhancing their 

adaptation to not only late working times but (rotational) shift work in general. 

A higher variability in sleep timing could also play a role when evaluating 
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effects of rotation speed as a faster adaptation to varying working times might 

mitigate negative outcomes, such as fatigue and sleep problems.11,12 Yet, 

determination of rotation speed is especially challenging in irregular shift 

schedules where each type of shift has its own periodicity (e.g., 6 morning, 2 

evening, 3 night shifts). Detailed analyses of shift sequences (i.e. blocks of 

consecutive workdays) within a schedule would allow for evaluating the 

number of consecutive shifts beneficial for an individual, and possibly add to 

current ergonomic guidelines. Such analyses are missing, particularly with 

regard to individual internal time, i.e., chronotype.  

Here, single shift sequences were examined with regards to individual 

chronotype and sleep-wake behaviour comparing different numbers of 

consecutive shifts. Based on previous studies, it was hypothesised that 

increasing the number of consecutive night shifts would strengthen adverse 

effects in early types but foster adaptation in late types; in turn, a higher 

number of morning shifts was expected to impact negatively on sleep-wake 

behaviour in late types while having positive influence in early ones. 

 

4.3 Methods 

4.3.1 Study design and shift schedules 

Sleep log data were merged from three different studies including seven 

different schedules in total. First study with schedule ‘S1’ took place in 2008 

(Cham, Germany), second study was conducted in 2009 involving schedule 

‘S2’ (Berlin, Germany), and the third study was carried out in 2012 (Bochum, 

Germany) accompanying the implementation of a new chronotype-adapted 

shift system (‘CTA schedule’). In the original system, all employees worked 

the same fast-forward rotating schedule (‘S3: 222’), while in the new system 

shift workers were assigned to one of four groups according to their individual 

chronotypes with each group working a different sequence of shifts (resulting 

in four schedules ‘S3: E1/E2/L1/L2’). The earliest quarter of the chronotype 
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distribution at study site 3 was assigned to shift group ‘Early 1’ (S3: E1), the 

middle 50% to groups ‘Early 2’ (S3: E2) and ‘Late 1’ (S3: L1), and the latest 

25% worked in group ‘Late 2’ (S3: L2) (for more details, please see13). While 

E2 and L1 experienced only modest alterations to their schedule, E1 and L2 

comprising the most extreme chronotypes also had the largest changes: night 

shifts in E1 and morning shifts in L2 were completely abolished.  

Overall, analyses included three subsamples (Cham: n1 = 34, Berlin: n2 

= 23, Bochum: n3 = 40) adding up to 97 shift workers in total, with repeated 

measures at study site 3 before, after and during implementation of the new 

CTA schedule (n3:E1 = 14, n3:E2 = 10, n3:L1 = 6, n3:L2 = 10). All schedules were 

forwards-rotating, involved 8-h shifts, and had standard European transition 

times (morning shift: 6 a.m. – 2 p.m., evening /afternoon shift: 2 p.m. – 10 

p.m., night shift: 10 p.m. – 6 a.m.). Figure 4.1. illustrates the different 

schedules analysed in Project Three. 

 

 
Figure 4.1. Rotational shift schedules. Participants’ data were merged from three 
independent subsamples (S1, S2, S3) in seven different forwards-rotating schedules. 
Please note that shift workers in subsample S3 experienced a change of shift 
system: the original ‘S3: 222’ schedule was replaced with a chronotype-adapted 
system where each group worked a different schedule according to employees’ 
chronotype (‘S3: E1/E2/L1/L2’). Thus, shift workers’ data from study site S3 were 
paired with each participant working schedule ‘S3: 222’ followed by one of the four 
CTA schedules (E1, E2, L1, or L2). 
 

4.3.2 Chronotype calculation 
Following the calculations of the Munich Chronotype Questionnaire for Shift-

Workers (MCTQShift 14), participants’ individual chronotype was determined 

from sleep logs using mid-sleep on free days after evening shifts (corrected 

for potential over-sleep) as a proxy (MSFE
sc). In case there were less than two 
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free days after evening shifts reported in the sleep log, a transformation 

algorithm proposed by Juda et al.14 was applied to estimate chronotype from 

free days after night shifts.  

 

4.3.3 Sleep logs 

In order to increase statistical power for mixed-effects regression analyses 

(see 4.3.5), sleep log data were used given that sample size was almost 

doubled compared to actimetry data. Shift workers filled out sleep logs daily 

for a period of 4 weeks (S1, S2) and 12 weeks (S3, three time points à 4 

weeks once before, once directly after, and once at the end of the new CTA 

schedule, see 4.3.1), respectively. They reported time of preparing to fall 

asleep, minutes required to fall asleep (sleep latency), time of awakening, 

time of getting up, and use of alarm clocks, as well as whether the respective 

day at wake-up was a work-free day or a workday (morning, evening, night 

shift). Daily sleep durations and mid-points of sleep were used to calculate (i) 

difference in sleep duration between workdays and work-free days 

(‘differential sleep duration’), and (ii) ‘mid-sleep deviations’, a newly developed 

method to determine circadian disruption of the sleep-wake cycle (for details, 

see previous Section 3 Project Two).  

Differential sleep duration was assessed because most people tend to 

accumulate a certain sleep debt during the workweek that they eventually 

compensate for on their work-free days by sleeping in.15–17 The resulting 

discrepancy between sleep duration on workdays and sleep duration on work-

free days thus reflects socially induced sleep deprivation. Comparing absolute 

sleep duration on workdays without considering sleep on days off will 

potentially miss effects in individuals with different levels of sleep need. The 

difference of sleep duration on workdays and days off (‘differential sleep 

duration’ or ‘Δ sleep duration’) was calculated as the absolute difference 

between averaged sleep duration for successive workdays and sleep duration 

on first subsequent day off according to the following formula: 
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 Δ Sleep duration = 
SDi

w

i=1

n

∑
nw

− SDj
f  (E4.1) 

where 
 
SDw

i = sleep duration on workday i (i.e. morning, evening or night shift) 
nw = number of successive workdays (i.e. sequence of shifts framed by days off) 
SDf

j = sleep duration on first free day j after n workdays 
 

 

Please note, that differential sleep duration was only calculated if participants 

woke up without using an alarm clock on their days off as indicated in the 

sleep logs. 

Mid-sleep deviations were calculated via the length of a two-

dimensional vector using Pythagoras’ theorem where variable xi is the 

difference between mid-sleep on day i and individual chronotype (MSFE
sc), 

and variable yi is the distance between mid-sleep on day i and previous mid-

sleep (for more details, see previous Section 3 Project Two): 

 

    Δ Chronotype: xi = MSFsc
E −MSi  (E4.2) 

    Δ Day before: yi = MSi−1 −MSi  (E4.3) 

 Mid-sleep deviation: 
 
MSDi

u ruuuu
=

xi
yi

⎛

⎝
⎜

⎞

⎠
⎟ = xi

2 + yi
2  (E4.4) 

where  
 
MSFE

sc = chronotype (mid-sleep on free days after evening shifts, corrected for over-
sleep) 
MSi = mid-sleep on day i 
MSDi = mid-sleep deviation on day i 
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4.3.4 Shift sequences 

In order to account for the fact that shift schedules may be neither fast nor 

slow rotating but often involve sequences of different numbers of consecutive 

shifts (i.e. schedule S2 comprises six morning shifts [days off], and two 

evening shifts followed by three night shifts), schedules were divided into 

blocks of consecutive workdays considered as ‘shift sequences’. Thus, a shift 

sequence (i) is framed by days off, (ii) can comprise different types of shifts, 

and (iii) can be of varying length. Splitting the seven schedules into blocks of 

successive workdays results in 14 different shift sequences that were further 

clustered according to the number of consecutive shifts before the first free 

day (i.e. all sequences that end on two night shifts before days off were 

grouped together). Reducing the number of sequences by clustering was 

applied to ensure adequate regression modelling increasing statistical power 

and facilitating interpretation. Finally, eight units of shift sequences resulted: 

sequences ending on two (2M), four (4M), or six morning shifts (6M); two (2E) 

or four evening shifts (4E); and two (2N), three (3N), or four night shifts (4N). 

Figure 4.2. illustrates the approach. 
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Figure 4.2. Shift sequences. (A) Each schedule was divided into ‘shift sequences’, 
blocks of consecutive workdays framed by days off, i.e. schedule S2 consisted of 
three such sequences. (B) Fourteen different sequences emerged from the seven 
schedules and were grouped according to the type of shift before the next free day 
(morning = blue boxes, evening = orange boxes, night shift = green boxes). (C) 
Because fourteen sequences were too many to be entered into the regression model, 
they were further clustered by the number of consecutive shifts, i.e. sequences 4, 5, 
and 6 were combined into the unit of two successive evening shifts (‘2 E’). 
 

4.3.5 Data set structure and statistical analyses 

Longitudinal shift work data from field studies pose several challenges to 

statistical analyses: missing values, nested data structure (subjects within 

shift groups within shift schedules), and complex variance-covariance 

patterns. Mixed models provide a flexible approach to explicitly model those 

situations. Here, both, fixed and random effects were specified to analyse shift 

sequences with regards to sleep-wake behaviour. First, indicator variables 

were created to mark start, end and length of each sequence (i.e. 2 night 
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shifts). Next, sequences of the same type of shift but different numbers of 

consecutive shifts (i.e. 2, 3, and 4 night shifts) were combined into one single 

factor (i.e. night shift factor). Thus, the reference group comprised all entries 

not being part of the respective sequences (see Table 4.1). Separate mixed 

models were computed for each type of shift (morning, evening, night shift). 

Sequence factors, chronotype as well as their interaction term were entered 

as fixed effects with shift schedule, age, gender, body mass index, overall 

sleep duration, time of sunrise and photoperiod as covariates. Random effects 

were specified for subjects and sequences to allow both, random intercepts 

and random slopes. No assumptions were made about the variance-

covariance matrix, therefore chosen to be ‘unstructured’ in the model. In case 

fixed effects or covariates were non-significant, they were removed from the 

model and analysis was re-conducted. For analyses of differential sleep 

duration, Spearman’s rho rank correlations were conducted to account for 

non-normality as confirmed by Shapiro-Wilk tests. Data processing and 

analyses were done in STATA (Stata/SE 12.0), and plots were drawn in Prism 

(GraphPad Software 6.0) and idraw (Indeeo Inc., 2.4). 
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Table 4.1. Exemplified data structure for mixed model analyses. First three columns 
contain information on subject, shift schedule and type of shift (morning (M), evening 
(E), night (N) shift) with multiple measures per subject. For each shift sequence, a 
column was created representing an indicator variable for start and end of respective 
sequence (i.e. night shift sequences 8, 9, 11, and 13, see Fig. 4.2). Finally, in the last 
column, all (i.e. night) shift-related sequences were grouped into one single 
sequence factor (i.e. ‘night shift factor’), with cipher ‘1’ = two consecutive night shifts, 
‘2’ = three consecutive night shifts, ‘3’ = four consecutive night shifts, and ‘0’ = 
reference observations. The single sequence factor was then entered into the 
regression model. 
 

Subject Schedule 
Type of 

shift 
Seq. 8 Seq. 9 Seq. 11 Seq. 13 

Seq.factor 

‘Night shift’ 

1 S1 - 0 0 0 0 0 

1 S1 N 1 0 0 0 1 

1 S1 N 1 0 0 0 1 

1 S1 - 0 0 0 0 0 

… … … … … … … … 

2 S3: 222 - 0 0 0 0 0 

2 S3: 222 E 0 1 0 0 0 

2 S3: 222 E 0 1 0 0 0 

2 S3: 222 N 0 1 0 0 1 

2 S3: 222 N 0 1 0 0 1 

2 S3: 222 - 0 0 0 0 0 

… … … … … … … … 

3 S2 - 0 0 0 0 0 

3 S2 E 0 0 1 0 0 

3 S2 E 0 0 1 0 0 

3 S2 N 0 0 1 0 2 

3 S2 N 0 0 1 0 2 

3 S2 N 0 0 1 0 2 

3 S2 - 0 0 0 0 0 

… … … … … … … … 

4 S3: L2 - 0 0 0 0 0 

4 S3: L2 N 0 0 0 1 3 

4 S3: L2 N 0 0 0 1 3 

4 S3: L2 N 0 0 0 1 3 

4 S3: L2 N 0 0 0 1 3 

4 S3: L2 - 0 0 0 0 0 

… … … … … … … … 
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4.4 Results 
Analyses of evening shift sequences revealed no significant effects regarding 

differential sleep duration and mid-sleep deviations, respectively. Except for 

section 4.4.1, they were therefore excluded from the main Results part, but 

can be found in the Appendix of this project (see 4.6). Table 4.2 shows 

demographic information of the sample. 

 
Table 4.2. Demographic description of total sample and according to study site 
subsamples (S1, S2, S3). MSFE

sc = mid-sleep on free days after evening shift, 
corrected for over-sleep. sd = standard deviation. BMI = body mass index. 
Subsamples differed with respect to age and gender (F/χ2, P < 0.05). 
 

 Total sample 

(n = 97) 

S1 

(n = 34) 

S2  

(n = 23) 

S3 

(n = 40) 

Chronotype 

(MSFE
sc) 

4:33 ± 73min  

(2:35 – 8:37) 

4:59 ± 78min  

(2:40 – 8:37) 

4:28 ± 67min  

(2:43 – 6:20) 

4:14 ± 65min  

(2:35 – 7:19) 

Age (years, 

mean ± sd, 

range) 

36.24 ± 10.23  

(21 – 57) 

29.42 ± 8.12 

(21 – 47) 

36.96 ± 8.34 

(25 – 52) 

39.93 ± 10.48  

(21 – 57) 

Gender (% 

female) 

31.27 61.76 34.78 2.50 

BMI (mean ± 

sd, range) 

26.04 ± 4.65  

(18 – 47) 

24.47 ± 5.04  

(20 – 41) 

25.87 ± 3.16 

(20 – 32) 

27.08 ± 4.98  

(18 – 47) 

Children (% 

without) 

51.54 52.94 47.83 52.50 

Total sleep 

duration 

(hours, mean 

± sd, range) 

6.95 ± 0.73 

(5.11 – 8.61) 

6.94 ± 0.73 

(5.40 – 8.13) 

6.73 ± 0.68 

(5.11 – 8.10) 

7.07 ± 0.73 

(5.16 – 8.61) 
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4.4.1 Sequence description  

Each shift sequence was plotted as a function of sleep duration and mid-sleep 

deviations showing a systematic relationship: the longer sleep duration, the 

lower mid-sleep deviations (Fig. 4.3). Participants slept longest and showed 

lowest deviations on evening shift sequences (sleep duration = 8h2E / 7h 

51min4E, mid-sleep deviations = 1h 7min2E / 51min4E). On morning shift 

sequences, mid-sleep deviations were decreased but shift workers slept less 

than on night shift sequences (morning shift sequences: sleep duration = 5h 

22min2M / 5h 36min4M / 5h 14min6M, mid-sleep deviations = 1h 56min2M / 1h 

39min4M / 1h 43min6M). Interestingly, only night shift sequences differed 

according to number of consecutive shifts with higher numbers of night shifts 

relating to increased sleep durations and lower mid-sleep deviations (sleep 

duration = 5h 33min2N / 6h 03min3N / 6h 24min4N, mid-sleep deviations = 4h 

19min2N / 4h 11min3N / 3h 35min4N). 

 

 
Figure 4.3. Shift sequences according to sleep duration and mid-sleep deviations. 
Average values across all participants are shown for respective sequences. n = 
number of participants. 
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4.4.2 Sleep duration between work and work-free days 

Differences in sleep duration between workdays and days off were analysed 

separately for morning and night shift sequences (for evening shift sequences, 

see Appendix of this project, 4.6.1). Positive rank correlations were observed 

for morning shift sequences irrespective of the number of consecutive shifts: 

the later the chronotype, the larger the difference between sleep duration on 

morning shifts and subsequent day off (up to 8 hours difference, r = 0.12 – 

0.53) (Fig. 4.4). Increasing the number from two to four successive morning 

shifts did not affect differential sleep duration (r = 0.532M vs. 0.534M, P > 0.05). 

When working six morning shifts in a row, correlation weakened to non-

significance (r = 0.12, P > 0.05) indicating that later chronotypes might have 

slept longer on average thus needing less catch-up sleep on their day off 

(compared with two or four successive morning shifts). Yet, only eleven 

participants worked the shift sequence of six successive morning shifts. 

Analyses of night shift sequences revealed negative rank correlations: the 

earlier the chronotype, the larger the gap between sleep duration on night 

shifts and first day off irrespective of the number of night shifts worked in a 

row (r = -0.24 – -0.73, P < 0.05). The correlation got stronger with a higher 

number of consecutive night shifts (r = -0.242N vs. -0.734N, P < 0.05). This 

finding indicates that working more than two successive night shifts worsened 

the situation of early types but improved the one of late types in terms of sleep 

duration and deprivation. 
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Figure 4.4. Difference in sleep duration on workdays and work-free days (‘Δ sleep 
duration’) for morning (2,4,6 M, left panels) and night shift sequences (2,3,4 N, right 
panels). Equations of trend lines and explained variance (R2) are shown above each 
panel. 
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The lack of change in differential sleep duration from two to four 

morning shifts as well as the relatively large change from two to four night 

shifts can result from various patterns of sleep duration on workdays and 

work-free days. It might be that increasing the number of consecutive morning 

shifts decreased (or increased) both, sleep duration on workdays and days off 

leaving differential sleep duration unaffected. Likewise, a stronger relationship 

between chronotype and differential sleep duration when working a higher 

number of successive night shifts could stem from a possibly shortened sleep 

duration on free days while sleep on night shifts might have remained 

unchanged.  

Sleep duration was therefore analysed separately on workdays and 

work-free days for each morning and night shift sequence. In general, less 

sleep on workdays was associated with longer sleep durations on days off 

(Fig. 4.5). With regards to morning shift sequences, sleep duration on both, 

workdays and work-free days, remained almost constant when increasing the 

number of consecutive morning shifts from two to four shifts. Yet, the 

weakened correlation for six successive morning shifts appeared to be based 

on one participant in this subsample, a chronotype of 5:37 (MSFE
sc, German 

time) who slept only 5 h on first day off despite a very short sleep duration on 

the six preceding morning shifts of 3.52 h on average (Fig. 4.5, panel ‘6 M’). 

Regarding night shift sequences, increasing the number of successive night 

shifts showed indeed that the later the chronotype, the longer sleep on 

workdays (r = 0.613N / 0.574N, P < 0.05) and the shorter sleep on work-free 

days (r = -0.373N / -0.384N, P < 0.05), suggesting that sleep deprivation 

diminished in late types but increased in early types. 

Finally, regression line formulas were equated and solved for night shift 

sequences ‘2N’ and ‘4N’ revealing that a chronotype of ≥ 3:49 can potentially 

benefit from an increased number of consecutive night shifts with regards to 

differential sleep duration. 
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Figure 4.5. Sleep duration on workdays (morning shift = blue symbols, night shift = 
green symbols) and work-free days (yellow symbols) for morning (2,4,6 M, left 
panels) and night shift sequences (2,3,4 N, right panels). Straight line = trend on 
workdays, dotted line = trend on work-free days. The black box in the lower left panel 
(‘6 M’) frames one participant (MSFE

sc = 5:37) in this subsample potentially biasing 
the relationship. 
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4.4.3 Mid-sleep deviations 

With regards to circadian disruption of the sleep-wake behaviour measured by 

the concept of mid-sleep deviations, mixed models were conducted separately 

for morning and night shift sequences (for evening shift sequences, see 

Appendix of this project, 4.6.2). Regarding morning shift sequences, 

chronotype had no significant influence on mid-sleep deviations 

(unstandardized coefficient, b = 0.06, P > 0.05) (Table 4.3). Mid-sleep 

deviations decreased when working two and four consecutive morning shifts, 

respectively, as compared with reference group (i.e. no morning shift 

sequences); yet, the decrease was smaller for four than two successive 

morning shifts (b = -3.442M vs. -2.344M, P < 0.05). The sequence of six 

consecutive morning shifts did not reach significance (subsample size: n = 

11). Most importantly, significant interaction terms were observed: mid-sleep 

deviations increased the later the chronotype, but this increase declined as 

the number of consecutive shifts was raised (b = 0.772M*chronotype vs. 

0.554M*chronotype, P < 0.05).  
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Table 4.3. Mixed-effects regression model for morning shift sequences (2, 4, 6 
consecutive morning shifts (M)). Please note that covariates age, gender, body mass 
index, overall sleep duration, time of sunrise, and photoperiod had no significant 
model contribution and were thus removed. The covariate ‘shift schedule’ lost its 
significance when re-conducting the analysis but is reported here, as each model 
was re-conducted only once. Estimate = unstandardised regression coefficient. Se = 
standard error. CI = confidence interval. S1 / S2 / S3 = shift schedules from different 
study sites (see 4.3.1). 
 

CI (95%) 

Variable Estimate Se t P > | t | Lower 

bound 

Upper 

bound 

Intercept 3.10 1.93 1.61 .107 -0.67 6.88 

Chronotype 

(MSFE
sc) 

0.06 0.43 0.14 .890 -0.78 0.90 

2 M -3.44 0.69 -4.98 .000 -4.79 -2.08 

4 M -2.34 0.73 -3.21 .001 -3.76 -0.91 

6 M -1.49 2.39 -.632 .534 -6.18 3.20 

2 M * 

chronotype 

0.77 0.15 5.29 .000 0.49 1.06 

4 M * 

chronotype 

0.55 0.15 3.55 .000 0.24 0.85 

6 M * 

chronotype 

0.33 0.59 0.56 .577 -0.83 1.49 

S1 -0.35 1.15 -0.31 .760 -2.61 1.91 

S2 0      

S3: 222 0.21 1.05 0.20 .838 -1.84 2.27 

S3: E1 -1.57 1.05 -1.50 .134 -3.63 0.48 

S3: E2 -0.26 1.05 -0.25 .802 -2.32 1.80 

S3: L1 0.06 1.06 0.06 .953 -2.01 2.13 

S3: L2 1.32 1.05 1.26 .209 -0.74 3.38 
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Conducting the mixed model for night shift sequences showed similar effects. 

Again, chronotype had no significant influence (b = 0.07, P > 0.05) (Table 

4.4). Mid-sleep deviations increased when working consecutive night shifts as 

compared with reference group (i.e. no night shift sequences), and the 

increase was larger the higher the number of consecutive shifts (b = 8.032N 

vs. 8.483N vs. 9.324N, P < 0.05). Additionally, significant interaction effects 

were observed indicating that mid-sleep deviations decreased the later the 

chronotype, and even more so when working a higher number of consecutive 

night shifts (b = -0.912N*chronotype vs. -0.963N*chronotype vs. -1.164N*chronotype, P < 

0.05).  
Table 4.4. Mixed-effects regression model for night shift sequences (2, 3, 4 
consecutive night shifts (N)). Please note that none of the covariates age, gender, 
body mass index, shift schedule, overall sleep duration, time of sunrise, and 
photoperiod contributed significantly and were therefore removed from the model. 
Estimate = unstandardised regression coefficient. Se = standard error. CI = 
confidence interval. S1 / S2 / S3 = shift schedules from different study sites (see 
4.3.1). 
 

CI (95%) 

Variable Estimate Se t P > | t | Lower 

bound 

Upper 

bound 

Intercept 1.48 0.48 3.10 .002 0.54 2.41 

Chronotype 

(MSFE
sc) 

0.07 0.10 0.70 .784 0.07 0.47 

2 N 8.03 0.69 11.59 .000 6.60 9.47 

3 N 8.48 0.60 14.26 .000 7.31 9.65 

4 N 9.32 1.20 7.74 .000 6.91 11.72 

2 N * 

chronotype 

-0.91 0.13 -6.97 .000 -1.19 -0.64 

3 N * 

chronotype 

-0.96 0.13 -7.62 .000 -1.21 -0.71 

4 N * 

chronotype 

-1.16 0.26 -4.51 .000 -1.68 -0.65 
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In summary, mixed-effects models showed a three-way interaction 

effect: a higher number of consecutive morning shifts (i.e. 2 to 4) decreased 

mid-sleep deviations the later the chronotype, whereas increasing the number 

of successive night shifts (i.e. 2 to 4) enhanced mid-sleep deviations the 

earlier the chronotype (Fig. 4.6). 

 

 
Figure 4.6. Mid-sleep deviations for morning (A) and night shift sequences (B) 
according to chronotype. Average values (± standard deviation) are shown. Please 
note: 1) Values for sequence of six morning shifts (panel A, straight blue line) were 
based on eleven participants only and model estimate was non-significant. Thus, the 
numeric decrease cannot be interpreted meaningfully. 2) Regression analyses were 
always based on individual data and grouped data (early, intermediate, late 
chronotype groups) are shown for illustrative purposes only. Cut-offs were chosen 
according to inter-quartile range of the sample (early chronotypes: MSFE

sc < 3:43, n = 
23; intermediate types: 3:43 ≤ MSFE

sc ≤ 5:31, n = 50; late types: MSFE
sc > 5:31, n = 

24). 

 

4.4.4 Deriving predictions from statistical modelling 

Using the unstandardised estimates from the mixed-effects models allows for 

predicting mid-sleep deviations on varying shift sequences. Here, six different 

exemplified sequences are modelled, each consisting of a block of six 

consecutive workdays in a forward rotation. For example, the sequence ‘222’ 

in Figure 4.7 represents two morning shifts followed by two evening shifts and 

subsequently two night shifts. Values are estimated assuming different 

chronotypes, ranging from very early to very late ones (MSFE
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sequence, as everyone has a ‘beneficial’ and a ‘less beneficial’ type of shift to 

work (i.e. morning shifts for late and night shifts for early types). Working a 

relatively high number of morning shifts and no night shifts (i.e. ‘600’ and 

‘420’) enlarges the differences between chronotypes with late types showing 

drastically increased mid-sleep deviation values. Similarly, working no 

morning shifts but up to four night shifts in a row (i.e. ‘024’ and ‘042’) 

enhances mid-sleep deviations immensely for early types. Furthermore, 

differences in mid-sleep deviations according to sequence are greatest for 

early types as mid-sleep deviations are very low on morning shifts but 

extremely large when working at night. Late chronotypes in contrast show 

relatively small mid-sleep deviations on night shifts but not as small as early 

types on morning shift (i.e. the earliest chronotype of 2:00 a.m. shows a 

difference of 4.12 (h) between smallest and largest value, while this difference 

is only 2.21 (h) for the latest chronotype of 8:00 a.m.). Finally, model 

estimates were used to determine a cut-off value for MSFE
sc that is ‘late 

enough’ to enable lower mid-sleep deviations on night shift sequences than 

on morning shift sequences. Calculations revealed that a shift worker would 

need to be as late as 7:00 a.m. to benefit from working at night compared with 

morning shifts (Fig. 4.7, red line). 
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Figure 4.7. Model predictions for mid-sleep deviations on varying shift sequences 
according to chronotype. Shift sequences consist of six workdays with n morning, n 
evening, and n night shifts (i.e. ‘600’ indicates six morning, zero evening, and zero 
night shifts). Values are modelled for different chronotypes (i.e. 2:00 (early type), 4:00 
(intermediate), 6:00 and 8:00 a.m. (late types)). The red line represents the MSFE

sc 
cut-off value of 7:00 a.m. when working night shifts involves less mid-sleep 
deviations than working morning shifts. 
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chronotype (by 13 minutes with each hour delayed). Only 11 participants 

worked the shift sequence of six successive morning shifts limiting its results’ 

reliability. Working this sequence first seemed to reduce sleep deprivation and 

circadian misalignment the later the chronotype. However, further analyses 

revealed one participant potentially biasing results towards a positive effect. 

This participant (MSFE
sc = 5:37) showed very short sleep duration on morning 

shifts, and also very short sleep on day off whilst indicating no use of alarm 

clock in the sleep log. Thus, the noticeably decreased sleep duration of 5 h on 

the first work-free day might itself reflect an adverse effect of a higher number 

of consecutive morning shifts in late chronotypes.  

Increasing the number of consecutive night shifts from two to four also 

revealed chronotype-specific effects: sleep duration decreased after night 

shifts and increased on first work-free day for early types, indicating 

accumulated sleep debt. In contrast, night shift sleep lengthened and sleep on 

day off shortened the later the chronotype (reaching almost identical sleep 

durations). Additional calculations suggested that already a chronotype of ≥ 

3:49 a.m. (German local time) might profit from an increased number of night 

shifts in terms of getting more sleep. Please note, that such cut-off values 

should be treated carefully and only with respect to a reference population as 

seasonal variations and geographical location are influencing factors for 

sleep-wake behaviour and chronotype.18 A higher number of consecutive 

night shifts (i.e. 2 vs. 4) also reduced mid-sleep deviations the later the 

chronotype (by 15 minutes with each hour delayed) while drastically 

increasing the extent of mistimed sleep in early types.  

Model estimates for different numbers of successive morning, evening, 

and night shifts were used to simulate various shift sequences each consisting 

of six consecutive workdays. Predicted values showed a chronotype cut-off of 

≥ 7:00 a.m. (German local time) to potentially benefit from sequences 

comprising night shifts rather than sequences entailing morning shifts. In 

Germany, only ~7% of the population displays an MSFsc later than 7:00 a.m.15 
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Again, such cut-off values should be interpreted and applied only relative to a 

reference population including information on season, longitude, and latitude.  

Current European guidelines recommend that shift workers should 

generally not work more than three night shifts in a row. The data on sleep-

wake behaviour presented here suggest that the number of consecutive shifts 

beneficial for an individual strongly depends on chronotype. Accordingly, early 

chronotypes seem to better avoid more than two successive night shifts 

whereas late chronotypes potentially profit from four night shifts worked in a 

row. Current research often compares consecutive night shifts with non-night 

shifts or days off,19,20 and only few studies examine the impact of varying 

numbers of successive shifts revealing ambiguous results. In a pooled 

analysis, the risk of a negative occurrence (i.e. accident, injury) was 

approximately 6% higher on the second night, 17% higher on the third night, 

and 36% higher on the fourth night.21 This finding was also true for morning 

shifts, although to a weaker extent: the average risk was about 2% higher on 

the second morning, 7% higher on the third morning, and 17% higher on the 

fourth morning shift than on the first day. A recent case-control study 

confirmed those results in an inpatient care staff sample where injury risk was 

almost 3-fold higher for three or more consecutive night shifts.22 A laboratory 

study on simulated night work (0:00 – 8:00 a.m.) found that melatonin 

production decreased progressively over three consecutive night shifts.23 

Because light intensity was low (50 lux at eye level) and the decrease was 

progressive, authors concluded that direct melatonin suppression by exposure 

to light at night was probably not a significant factor. Barton and co-workers 

examined the question of an optimum number of night shifts and showed a 

clear positive, but indirect effect of consecutive night shifts on health and well-

being as assessed with the Standard Shiftwork Index.24 With more night shifts 

worked, sleep duration and sleep quality increased which were in turn strong 

predictors of self-reported psychological and physiological health. Several 

studies indicated better adaptation to night shifts on the fourth night shift as 
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demonstrated by improvements in cognitive performance at night.25–27 A 

recent study by Chang and colleagues examined two independent samples of 

nurses working 2 and 4 consecutive night shifts, respectively.28 Nurses were 

tested during the day after (2 vs. 4) night shifts applying a test battery of 

questionnaires and cognitive performance tests. Those working two 

successive night shifts showed poorer performance directly after the night 

shift and lacked learning effects on a visual attention test compared with 

nurses working four successive night shifts. The authors suggested that 

rotating night shifts too quickly might impede attention-related performance. 

Yet, they tested nurses at the end of a night shift block not examining what 

happened after the second night shift in nurses regularly working four nights in 

a row. It would have been interesting to study in a within-subject design 

whether increases in performance were due to a chronic adaptation effect (i.e. 

no difference in performance after second and fourth night), or due to an acute 

effect by lengthening the night shift block (i.e. worse performance after second 

than fourth night). Overall, literature suggests that extended blocks of 

consecutive shifts (≥ 4) foster adaptation, increase sleep duration and 

enhance cognitive performance,25–29 whereas fast rotations (< 4 consecutive 

shifts) appear to reduce accumulation of sleep debt, decrease on-shift fatigue 

and sleepiness, and lower risk of injuries;21,30,31 results that are somewhat 

contradictory.  

A possible explanation might be inter-individual variation in the ability to 

tolerate circadian misalignment and inappropriate phasing (trying to stay 

awake or go to sleep when the circadian clock dictates otherwise).29 Workers 

who prefer night shifts in prolonged blocks may be able to overcome circadian 

misalignment in a relatively short time while workers who opt for stand-alone 

night shifts may have more difficulties overcoming those problems. 

Chronotype as well as age appear reasonable candidates for such individual 

differences. Härmä et al. accompanied the change from a continuous 

backward rotation (four consecutive shifts of morning, night, and evening 



4 Project Three 

 145 

work) to a very quickly forward rotating schedule (one shift of morning, 

evening, night work) and found positive effects on sleep-wake behaviour, 

sleepiness, and psychomotor performance, which were more pronounced in 

older shift workers.32 Given that chronotype advances with age,33 the here 

presented results of early types benefitting most from short blocks of 

consecutive shifts agree with their findings.  

Several limitations need to be mentioned. First, sleep log data 

constitute subjective assessments susceptible to recall errors and perception 

biases. Yet, comparison with available actimetry data (as some participants 

filled out sleep logs and wore actimeters) revealed good congruence 

confirming validity of subjective sleep log entries (data not shown). Second, 

shift sequences were determined as blocks of consecutive workdays framed 

by days off, following a distinct, non-explorative, a-priori defined approach. 

This approach was chosen to enhance comparability between sequences 

assuming ‘wash-out’ effects by work-free days in-between. Sequences might 

be defined otherwise in future studies; yet, similar results would be expected. 

Furthermore, slow rotations usually involve longer periods (e.g., 3 weeks) on 

each shift before a change is instituted. Thus, sequences analysed here are 

essentially quickly rotating sequences and future studies are warranted to 

compare those with blocks of more than 6 consecutive shifts. Third, shift 

sequences involving three night shifts and six morning shifts should be 

interpreted with carefulness as sample size was limited (n3N = 19, n6M = 11). 

Fourth, only sleep timing and duration was assessed not allowing for 

ascertaining what happened during sleep (e.g., ultradian rhythmicity of 

NREM/REM sleep cycles). Last, sleep-wake behaviour is one of many factors 

in shift work. A specific number of night (or morning) shifts might be beneficial 

in terms of sleep but detrimental with regards to other aspects, such as social 

and family life, alertness and fatigue during working time, financial 

remuneration, production requirements, etc. Further research is needed to 

clarify interactions between those variables and number of consecutive shifts. 
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Most importantly, future studies should include individual chronotype as not 

doing so might average out meaningful effects. 

 In summary, the results presented here demonstrate a clear 

chronotype-effect on number of consecutive shift beneficial for an individual’s 

sleep-wake behaviour. Translating those findings into real-world applications 

for the design of shift schedules implies both, challenges and potentials. On 

one hand, considering individual characteristics, such as chronotype, will 

increase complexity not only of shift schedules, but also of logistics, personnel 

management, wage and salary administration, occupational medical care, and 

so forth. On the other hand, following the principle “one size fits all” in order to 

minimise negative impacts of shift work may have reached its limit, and 

individualisation of schedules using chronotype differences appears promising 

to further optimise shift systems by matching individual temporal niches 

(internal time) with occupational ones (external time). In view of an increasing 

percentage of people working in shifts and the associated health burden, 

managing higher complexity for the sake of healthier schedules seems worth 

thinking about. 
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4.6 Appendix 

4.6.1 Sleep duration between workdays and work-free days on evening 

shift sequences 
 

 
Figure A4.1. Analyses of sleep duration on evening shift sequences (2 and 4 E). 
Black symbols = difference in sleep duration on workdays and work-free days. 
Orange symbols = averaged sleep duration on consecutive evening shifts. Yellow 
symbols = sleep duration on first work-free day after evening shifts (yellow symbols). 
Straight line = trend on workdays, dotted line = trend on work-free days.  
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4.6.2 Mid-sleep deviations on evening shift sequences 

 
Table A4.1. Mixed-effects regression model for evening shift sequences (2 and 4 
consecutive evening shifts (E)). Please note that none of the covariates age, gender, 
body mass index, shift schedule, and overall sleep duration contributed significantly 
and were therefore removed from the model. Estimate = unstandardised regression 
coefficient. Se = standard error. CI = confidence interval. S1 / S2 / S3 = shift 
schedules from different study sites (see 4.3.1). 
 

CI (95%) 

Variable Estimate Se t P > | t | Lower 

bound 

Upper 

bound 

Intercept 1.80 1.63 1.11 .268 -1.39 4.98 

Chronotype 

(MSFE
sc) 

0.33 0.37 0.87 .387 -0.42 1.09 

2 E -0.36 0.82 -0.44 .659 -1.96 1.24 

4 E -0.35 0.94 -0.37 .709 -2.19 1.49 

2 E * 

chronotype 

-0.26 0.18 -1.43 .154 -0.62 0.10 

4 E * 

chronotype 

-0.39 0.19 -1.99 .056 -0.78 -0.01 
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Praktisch alle Organismen dieser Erde weisen eine innere Uhr auf, die sie in 

die Lage versetzt, auf äußere Veränderungen nicht nur zu reagieren, sondern 

diese zu antizipieren und entsprechende Anpassungen vorzunehmen. Hierfür 

ist der Wechsel von Tag und Nacht das zuverlässigste und dominanteste 

Signal für Tages- und Jahreszeit (sog. ‚Zeitgeber’). In modernen Zeiten wird 

dieser natürliche Rhythmus herausgefordert durch Arbeits- und 

Familienanforderungen, Freizeitgestaltung und Lebensstil. Künstliches Licht 

ermöglicht es uns rund um die Uhr zu arbeiten und sprichwörtlich die ‚Nacht 

zum Tage’ zu machen. Das Missverhältnis von innerer, biologischer Zeit (z.B. 

Schlaf-Wach-Zyklus) und äußerer, sozialer Zeit (z.B. Arbeitszeit) wird als 

circadiane Disruption bezeichnet und begünstigt potentiell Entstehung und 

Verlauf diverser Krankheiten, wie Herz-Kreislauf-Erkrankungen, metabolische 

und psychiatrische Störungen. Am deutlichsten wird das Missverhältnis von 

‚Körperzeit’ und Arbeitszeit am Beispiel der Schichtarbeit: Schichtarbeiter – ob 

in permanenten oder rotierenden Modellen – essen, trinken, schlafen und sind 

aktiv zu Zeiten, an denen ihr Körper eigentlich auf das Gegenteil eingestellt 

ist. Welche Zeiten nun für einen einzelnen Menschen von Vor- oder Nachteil 

für die Gesundheit sind, darüber entscheidet auch der sogenannte Chronotyp. 

Der individuelle Chronotyp repräsentiert die circadiane Phasenlage der 

inneren Uhr, d.h. die zeitliche Einbettung biologischer Rhythmen in den 

gegebenen Tag-Nacht-Verlauf. Die Unterschiede dieser zeitlichen Einbettung 

können enorm sein zwischen Individuen und im Falle des Schlaf-Wach-

Verhaltens bis zu 12 Stunden betragen: wenn eine Person aufsteht, geht die 

andere gerade zu Bett. Diese Spanne gilt auch dann (und dann erst recht), 

wenn keine äußeren Restriktionen Einfluss ausüben, wie Wecker oder soziale 

Veranstaltungen. Aus der Existenz solcher inter-individuellen Unterschiede 

der inneren Uhr des Menschen lässt sich schlussfolgern, dass es auch 
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individuelle Unterschiede gibt, welche Arbeitszeiten potentiell belastend und 

gesundheitlich problematisch sind und damit eine circadiane Disruption 

darstellen. Schichtarbeit mit circadianer Disruption wurde 2007 von der 

Internationalen Agentur für Krebsforschung (IARC) als wahrscheinlich 

krebserzeugend für den Menschen eingestuft. Obwohl damit angenommen 

wird, dass circadiane Disruption der kausale Zusammenhang zwischen 

Schichtarbeit und Krankheiten sei, wurde keine klare Definition von der IARC 

vorgenommen. Neben der theoretischen Einbettung fehlen auch quantitative 

Messungen, wodurch die systematische Untersuchung der Ursachen und 

Folgen von circadianer Disruption erheblich erschwert wird. Eine solche 

Quantifizierung, wie auch immer geartet, muss jedoch die innere Uhr und den 

individuellen Chronotyp des Menschen berücksichtigen, da andernfalls 

signifikante Effekte über- oder unterschätzt würden.  

Die vorliegende Dissertation beschäftigt sich mit der Erfassung und 

Untersuchung circadianer Disruption im Kontext reeller Schichtarbeit. In 

Projekt Eins wird das Schlaf-Wach-Verhalten von 35 Schichtarbeitern in 

einem 12-h Schichtmodell untersucht. Die Ergebnisse verdeutlichen, wie 

wichtig der individuelle Chronotyp und die spezifische Schichtabfolge für 

circadiane Disruption und Schlafdauer sind und legen den Grundstein für das 

nächste Projekt. In Projekt Zwei wird eine neue Methode vorgestellt zur 

Quantifizierung circadianer Disruption des Schlaf-Wach-Verhaltens. Die 

Methode, genannt ‚mid-sleep deviations’, integriert zwei entscheidende 

Aspekte: Innenzeit und vorangegangene Schlafepisode. Die Anwendung 

dieses Ansatzes offenbart eine distinkte und neuartige Geometrie im Schlaf-

Wach-Verhalten von 53 Schichtarbeitern. In Projekt Drei werden bestehende 

Leitlinien zur Gestaltung von Nacht- und Schichtarbeit mithilfe der ‚mid-sleep 

deviations’ neu untersucht. Statistische Analysen (‚mixed effects models’) der 

Daten von 97 Schichtarbeitern aus sieben verschiedenen Schichtsystemen 

zeigen, dass die Anzahl aufeinanderfolgender (Nacht-)Schichten, die bislang 

als empfehlenswert betrachtet wird, stark vom individuellen Chronotyp 
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abhängt. Im Folgenden ist jedes der drei Projekte noch einmal ausführlicher 

dargestellt. 

 

Projekt Eins  
„Schlaf-Wach-Verhalten in einem rotierenden 12-h Schichtsystem: Die 

Bedeutung von Chronotyp und Schichtabfolge“ 
 
Die Studie untersucht unter Berücksichtigung des individuellen Chronotyps 

das Schlaf-Wach-Verhalten von Schichtarbeitern in einem schnell-vorwärts 

rotierenden 12-h Schichtsystem (Tagschicht: 6:00 – 18:00, 24 Stunden frei, 

Nachtschicht: 18:00 – 6:00, 48 Stunden frei). Fünfunddreißig Schichtarbeiter 

des deutschen Chemie-Konzerns BASF füllten den Münchner Chronotyp 

Fragebogen für Schichtarbeiter aus und trugen kontinuierlich für zwei Wochen 

ein Aktimetrie-Messgerät am Handgelenk. Schlaf- und Nickerchendauer, 

sozialer Jetlag (ein Maß für circadiane Disruption) und circadiane 

Phasenmarker (Schlafmitte, ‚Aktivitätsschwerpunkt’) wurden aus den 

Aktimetrie-Daten berechnet. Je früher der Chronotyp eines Mitarbeiters, desto 

höher der soziale Jetlag, kürzer die Schlafdauer und länger das 

vorausgehende Nickerchen (bis zu 3h) an Nachtschichttagen. Wurden 

Nickerchen und Hauptschlaf-Dauer zusammen betrachtet, schliefen alle 

Chronotypen ungefähr gleich lang. Alle Mitarbeiter, jedoch insbesondere 

späte Chronotypen, schliefen am längsten zwischen Tagschicht und 

Nachtschicht (~9h im Durchschnitt). Der untersuchte 12-h Schichtenplan der 

BASF stellt insofern ein besonderes Modell dar, als Ruhephasen von 

mindestens 24 Stunden nach jeder Arbeitsschicht vorgegeben sind. Dadurch 

können die Schichtarbeiter ein aufkommendes Schlafdefizit unverzüglich nach 

jeder Schicht kompensieren. In vorherigen Studien wurden hinsichtlich 

verschiedener Gesundheitsvariablen keine Unterschiede zwischen der Tag- 

und der Schicht-arbeitenden Belegschaft der BASF gefunden. Die spezifische 
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Schichtabfolge des BASF Modells könnte über das Schlaf-Wach-Verhalten 

potentiell zur beobachteten Krankheitsminimierung beitragen.  

 

 

Projekt Zwei 
„Mid-Sleep Deviation: Quantifizierung und Visualisierung circadianer 
Disruption des Schlaf-Wach-Zyklus“ 
 

Circadiane Disruption ist ein potentieller Mechanismus für negative 

Auswirkungen auf die Gesundheit im Kontext von Schichtarbeit. Obwohl der 

Begriff weit verbreitet ist, existieren nur wenige Definitionen und 

Quantifizierungen, wodurch die systematische Untersuchung von Ursachen 

und Folgen der circadianen Disruption erschwert wird. Eine kürzlich 

erschienene Studie konnte zeigen, dass ‚Schlaf zur falschen Zeit’ die 

circadiane Regulation des menschlichen Transkriptoms stark beeinträchtigt. In 

Projekt Zwei wird eine neue Methode vorgestellt, die sogenannten ‚mid-sleep 

deviations’, die das Ausmaß eines solchen Schlafes ‚zur Unzeit’ in eine 

numerische Größe überführt. Aktimetrie-Daten von 53 Schichtarbeitern aus 

vier verschiedenen vorwärts-rotierenden 3-Schicht-Systemen (55% weiblich, 

35  ± 10 Jahre, Bodymass Index 26 ± 5 kg/m2) wurden analysiert. Der 

individuelle Chronotyp wurde auf Aktimetrie-Basis bestimmt und die täglichen 

Schlafmitten (als circadiane Marker des Schlaf-Wach-Verhaltens) über einen 

Zeitraum von zwei bis vier Wochen extrahiert. Die Methode der ‚mid-sleep 

deviations’ integriert zwei wichtige Aspekte des Schlafes: Innenzeit 

(‚Chronotyp’) und Schlafhistorie (‚vorangegangene Schlafepisode’). Beide 

Aspekte werden in Relation zueinander gesetzt und enthüllen so eine 

charakteristische und chronotyp-spezifische Geometrie des Schlaf-Wach-

Verhaltens in Schichtarbeit. Um diese Geometrie weiter zu veranschaulichen, 

wurde die Dichte der Datenpunkte berechnet und mit farbigen Konturlinien 

visualisiert (‚density plots’). Sowohl Berechnung als auch grafische 
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Darstellung der ‚mid-sleep deviations’ deuten darauf hin, dass späte 

Chronotypen ein variableres Schlaf-Wach-Verhalten aufweisen als frühe 

Chronotypen, statistisch unabhängig von demografischen Variablen, 

Schichtrotation und durchschnittlicher Schlafdauer. Der Vergleich mit zwei 

existenten Messungen circadianer Disruption (‚inter-daily stability’ und 

‚behaviorales entrainment’) zeigte eine gute, generelle Übereinstimmung; 

jedoch legen weitere Analysen nahe, dass ‚mid-sleep deviations’ zusätzliche 

Informationen über die Störung von Schlaf-Wach-Zyklen bereithalten. Die 

Methode der ‚mid-sleep deviations’ als Maß für die circadiane Disruption des 

Schlaf-Wach-Verhaltens dient potentiell dazu, die Rolle von gestörten Schlaf-

Wach-Rhythmen für Krankheitsentstehung und –verlauf auf individueller Basis 

zu bestimmen.  

 

 

Projekt Drei 
„Überprüfung gegenwärtiger Leitlinien zu Nacht- und Schichtarbeit“ 

 
Aktuelle europäische Leitlinien zu Nacht- und Schichtarbeit umfassen mehrere 

Empfehlungen für die Gestaltung von Schichtenplänen, die wiederum darauf 

abzielen, negative Auswirkungen für Gesundheit, Sicherheit und Sozialleben 

zu verringern. Entsprechend sollten u.A. langsame Rotationen und mehr als 

drei aufeinanderfolgende Nachtschichten vermieden werden. Bislang fehlen 

detaillierte Analysen dieser Leitlinien, die individuelle Merkmale wie Chronotyp 

explizit berücksichtigen. In der vorliegenden Studie werden darum die Effekte 

einzelner Schichtabfolgen im Lichte des individuellen Chronotyps bewertet.  

Siebenundneunzig Schichtarbeiter aus sieben verschiedenen vorwärts-

rotierenden Schichtsystemen (31% weiblich, 36  ± 10 Jahre, Bodymass Index 

26 ± 5 kg/m2) führten Schlaftagebuch über einen Zeitraum von vier bis zwölf 

Wochen. Aus diesen Angaben wurden die Schlafdauer an Arbeits- und freien 

Tagen sowie ‚mid-sleep deviations’, ein in Projekt Zwei entwickeltes Maß für 
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die circadiane Disruption des Schlaf-Wach-Verhaltens, berechnet. In 

Regressionsmodellen mit gemischten Effekten (‚mixed effects models’) 

wurden unterschiedliche Anzahlen konsekutiver (Früh-, Spät-, Nacht-) 

Schichten statistisch analysiert. Die Ergebnisse zeigen einen 

Interaktionseffekt zwischen Chronotyp, Art und Anzahl der Schichten: mit 

einer größeren Zahl aufeinanderfolgender Nachtschichten (z.B. 2 vs. 4 

Nachtschichten) nahmen sowohl ‚mid-sleep deviations’ als auch 

Schlafdeprivation für frühe Chronotypen zu, wohingegen sich beide Variablen 

bei späten Chronotypen verringerten. Ein gegenteiliger Effekt wurde für 

Frühschichten beobachtet. Diese Befunde legen nahe, dass die Anzahl 

konsekutiver Schichten, die aus ergonomischer Sicht als empfehlenswert 

betrachtet werden kann, stark vom individuellen Chronotyp abhängt. Die 

Ergebnisse der vorliegenden Studie dienen dazu, bestehende Schichtarbeits-

Leitlinien insbesondere im Hinblick auf die biologische Innenzeit zu evaluieren 

und zu optimieren.  

 

 


