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I. INTRODUCTION 

Feline immunodeficiency virus (FIV) was first isolated in 1986 (PEDERSEN et 

al., 1987) and has since been shown to occur worldwide, infecting domestic cats 

and wild felids (HOKANSON et al., 2000). Like human immunodeficiency virus 

(HIV), FIV is a member of the retroviridae family of viruses, genus lentivirus, and 

both viruses cause an acquired immunodeficiency syndrome (AIDS) in their 

respective hosts (NORTH et al., 1989). The two viruses share many morphologic, 

genomic, and biochemical characteristics. Of particular importance to 

chemotherapeutic studies is the close similarity between the reverse transcriptase 

(RT) of FIV and HIV (GOBERT et al., 1994) which results in in vitro 

susceptibility of FIV to many RT-targeted antiviral compounds used in the 

treatment of HIV-infected patients.  

The nucleoside reverse transcriptase inhibitor (NRTI) zidovudine is the only 

antiviral drug which has been evaluated thoroughly against FIV and is sometimes 

used in the treatment of naturally FIV-infected cats. It has been shown that it can 

have positive effects on the cat’s immunologic status and improve clinical 

condition scores in cats with stomatitis and neurological signs (HARTMANN et 

al., 1992; HARTMANN et al., 1995a). However, it can also result in dose-

dependent anemia and neutropenia (HARTMANN et al., 1995a; ARAI et al., 

2002) which can necessitate termination of therapy. Furthermore, it has been 

shown that drug-resistant mutations can develop in cats treated with zidovudine 

(MARTINS et al., 2008). To avoid drug resistance development and to achieve 

optimal suppression of virus replication, multi-agent antiviral chemotherapy, is 

the mainstay of treatment in HIV-infected humans (CLAVEL and HANCE, 

2004). Since combination treatment with most protease inhibitors (PIs) and non-

nucleoside reverse transcriptase inhibitors (NNRTIs) is likely ineffective in cats, it 

is important to assess other NRTIs with good efficacy against FIV and low 

toxicity which could be used in the treatment of FIV-infected cats.  

The purpose of the present study was to test three NRTIs, which had not been 

evaluated in feline cells before, together with six NRTIs with known anti-FIV 

activity, for their cytotoxicity in primary feline peripheral blood mononuclear 

(PBM) cells and antiviral efficacy against FIV.      
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II. LITERATURE REVIEW: IN VITRO EFFICACY OF 

ANTIRETROVIRAL COMPOUNDS AGAINST FIV 

Like HIV, FIV is a member of the lentivirus subfamily of the family Retroviridae 

(BENNETT und SMYTH, 1992) and there are several striking similarities 

between the two viruses regarding their morphological, physical, and biochemical 

characteristics as well as their clinical and hematological manifestations 

(GOBERT et al., 1994; VAHLENKAMP et al., 1995; ARAI et al., 2002; ELDER 

et al., 2010). Because these similarities allow the evaluation of the effects of 

antiviral therapy on disease pathogenesis (HAYES et al., 2000) FIV infection of 

cats has become an important animal model for HIV infection of humans 

(NORTH et al., 1989; VAHLENKAMP et al., 1995; WILLETT et al., 1997a; 

HAYES et al., 2000; MCCRACKIN STEVENSON and MCBROOM, 2001; 

BISSET et al., 2002; DIAS AS et al., 2006).  

Since the discovery of FIV in 1986 (PEDERSEN et al., 1987) many different 

antiviral compounds have been assessed for their efficacy against FIV in in vitro 

and in vivo studies. Most of these compounds are derived from human medicine 

and are used in the treatment of HIV-infected patients (HARTMANN, 2012). 

Experimental studies with antiviral compounds are generally conducted in three 

stages. In vitro experiments are usually performed first and assess the ability to 

suppress viral infection in cell or tissue culture. If good antiviral efficacy is 

demonstrated, in vivo studies might follow, such as experimental virus challenge 

studies. Eventually, promising drugs are administered to animals with well-

characterized chronic experimental retroviral infections and various parameters 

can be monitored and compared to animals from a control group (LEVY, 2000). 

Over the last 30 years, the use of combination-antiretroviral therapy has resulted 

in HIV infection, which previously was rapidly fatal, becoming a chronic but 

manageable condition (BRODER, 2010). Highly active antiretroviral therapy 

(HAART), the standard of care for HIV-infected individuals currently consists of 

three or more anti-HIV drugs. Most commonly, two of these drugs are NRTIs or a 

NRTI together with a nucleotide reverse transcriptase inhibitor (NtRTI) combined 

with a third agent from a different drug class (CIHLAR and RAY, 2010; 

TRESSLER and GODFREY, 2012). Despite this great success in human 
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medicine, no such therapy is available for cats (ZEINALIPOUR-LOIZIDOU et 

al., 2007; PALMISANO and VELLA, 2011; MOHAMMADI and BIENZLE, 

2012).  

All antiviral compounds interfere with one or more steps of the virus replication 

process. Based upon this, the drugs can be assigned to different drug classes (DE 

CLERCQ, 1995a; PALMISANO and VELLA, 2011) (fig. 1, tab. 1).  

 

Fig. 1: Replicative cycle of FIV (printed and modified with kind permission 

of Prof. K. Hartmann) 

Potential targets in the retroviral replication process for antiviral drugs include 

(DE CLERCQ, 1995a; HARTMANN, 2012; MOHAMMADI and BIENZLE, 

2012): 

 binding of virus to specific cell surface receptors 

 entry into the cell and uncoating of the virus 

 reverse transcription of viral genome 

 integration of proviral DNA into host genome  

 viral protein processing 

 virion assembly and maturation  

 virion release 
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Currently there are 26 compounds that have been formally approved by the Food 

and Drug Administration (FDA) for the treatment of AIDS and these drugs are 

generally divided into the following classes (MOHAMMADI and BIENZLE, 

2012; DE CLERCQ, 2013): 

 Reverse transcriptase inhibitors 

o Nucleoside reverse transcriptase inhibitors (NRTIs) 

o Nucleotide reverse transcriptase inhibitors (NtRTIs) 

o Non-nucleoside reverse transcriptase inhibitors (NNRTIs) 

 Protease inhibitors (PIs) 

 Entry inhibitors (EIs) 

o Fusion inhibitors (FIs) 

o Co-receptor inhibitors (CRIs) 

 Integrase inhibitors (INIs) 

Several compounds from most of these drug classes have also been assessed 

against FIV in vitro. Table 1 provides an overview of all FDA-approved 

antiretroviral compounds assessed in vitro against FIV. These are the focus of this 

doctoral thesis. 

 

Table 1: FDA-approved anti-HIV drugs and their efficacy against FIV in 

vitro (NA, not assessed) 

Drug class Compound Efficacy in vitro 
Chapter for 

references 

Nucleoside 

reverse 

transcriptase 

inhibitors 

Zidovudine Yes 1.1.2.1. 

Didanosine Yes 1.1.2.2. 

Zalcitabine (no 

longer marketed) 
Yes 1.1.2.3. 

Stavudine Yes 1.1.2.4. 

Lamivudine Yes 1.1.2.5. 

Emtricitabine Yes 1.1.2.6. 

Abacavir (licensed 

as abacavir sulfate) 
Yes 1.1.2.7. 

Nucleotide 

reverse 

transcriptase 

inhibitors 

Tenofovir (licensed 

as tenofovir 

disproxil fumarate) 

Yes 1.2.2. 
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Non-nucleoside 

reverse 

transcriptase 

inhibitors 

Nevirapine No 

1.3.2. 

Delavirdine No 

Efavirenz No 

Etravirine N/A 

Rilpivirine N/A 

Protease 

inhibitors 

Saquinavir (licensed 

as saquinavir 

mesylate) 

No 

2.2. 

Indinavir No 

Ritonavir No 

Nelfinavir (licensed 

as nelfinavir 

mesylate) 

No 

Amprenavir (no 

longer marketed) 
No 

Lopinavir Yes 

Atazanavir 

(licensed as 

atazanavir sulfate) 

Yes 

Fosamprenavir 

(licensed as 

fosamprenavir 

calcium) 

No 

Tipranavir Yes 

Darunavir No 

Fusion 

inhibitors 
Enfuvirtide No 3.1.2. 

Co-receptor 

inhibitor 
Maraviroc N/A 3.2.2. 

Integrase 

inhibitors 

Raltegravir Yes 
4.2. 

Dolutegravir N/A 

 

1. Reverse transcriptase inhibitors 

The retroviral enzyme reverse transcriptase transcribes the viral RNA into proviral 

DNA, which is subsequently integrated into the host cell’s genome (MITSUYA 

and BRODER, 1987). This is an important step in the retroviral replication cycle 

and the compounds that inhibit this step have become the cornerstone of 

successful anti-HIV therapy (CIHLAR and RAY, 2010).  

Reverse transcriptase inhibitors can be divided into three categories (DE 

CLERCQ, 2009): 

 NRTI 

 NtRTI 

 NNRTI 
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1.1. Nucleoside reverse transcriptase inhibitors 

The first drugs approved for the treatment of HIV were NRTIs and they still 

represent a vital component of the treatment regimens for HIV-infected patients 

(TRESSLER and GODFREY, 2012).  

Currently there are seven NRTIs approved by the FDA for the treatment of HIV 

infection. One of these (zalcitabine) is no longer marketed (FDA, 2014). 

1.1.1. Mechanism of action 

NRTIs are analogues of endogenous 2´-deoxynucleosides (DE CLERCQ, 2009; 

CIHLAR and RAY, 2010). Nucleosides are the building blocks of nucleic acids 

and are composed of a nitrogenous base and a five-carbon sugar (ribose or 

deoxyribose). Like natural nucleosides, NRTIs require intracellular enzymatic 

activation through three phosphorylation steps to their 5´-triphosphate form 

(nucleotide) (DE CLERCQ, 2009). In their active form, they compete with the 

endogenous nucleotides at the catalytic, i.e., substrate-binding, site of RT and are 

incorporated into the elongating proviral deoxyribonucleic acid (DNA) strand (DE 

CLERCQ, 2009; CIHLAR and RAY, 2010), thus functioning as competitive 

substrate inhibitors (DE CLERCQ, 2009). However, in comparison to the natural 

nucleotides, NRTIs lack the 3´-hydroxyl group on the deoxyribose moiety and this 

leads to strand termination as the subsequent nucleotide cannot form the next 5´-

3´ phosphodiester bond necessary to extend the DNA strand (MOHAMMADI and 

BIENZLE, 2012; TRESSLER and GODFREY, 2012). 

1.1.2. Efficacy against FIV 

As FIV became an important animal model for HIV infection for the purpose of 

assessing NRTIs, all currently licensed NRTIs have been tested in feline cell 

culture for their anti-FIV efficacy. The initial studies were usually performed to 

assess the drugs’ anti-FIV activity and subsequent studies assessed their behavior 

against different FIV strains or molecular clones, drug-resistant mutants or the 

influence of different cell culture systems on antiviral efficacy (GOBERT et al., 

1994; VAHLENKAMP et al., 1995; SMITH et al., 1997; SMITH et al., 1998; 

BISSET et al., 2002; VAN DER MEER et al., 2007).  

1.1.2.1. Zidovudine 

Zidovudine (3´-azido-3´-deoxythymidine, AZT) is a thymidine analogue and was 
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first synthesized in the 1960ties (HORWITZ et al., 1964) as a potential anticancer 

agent. Mitsuya and coworkers (1985) showed for the first time its anti-HIV 

efficacy in vitro and Furman and coworkers (1986) elucidated that it acts by 

inhibiting RT through its triphosphate form (MITSUYA et al., 1985; FURMAN et 

al., 1986). In 1987 it was the first drug to be approved by the FDA for the 

treatment of HIV infection and to this day it remains an important component of 

HAART (EZZELL, 1987; TRESSLER and GODFREY, 2012).  

Since the discovery of FIV in 1986 (PEDERSEN et al., 1987), the anti-FIV 

activity of zidovudine has been assessed in numerous in vitro studies. In 1989, 

North and coworkers showed that zidovudine inhibited FIV replication in 

Crandell-Rees feline kidney (CRFK) cells (see table 2). The susceptibility of FIV 

to zidovudine was similar to that of HIV-1 (NORTH et al., 1989). In order to 

demonstrate the presence or absence of antiviral efficacy most studies report the 

50% effective concentration (EC50) which is the concentration of drug required to 

inhibit virus proliferation in cell culture by 50%. The EC50 allows comparison of 

antiviral activities. Table 2 summarizes the in vitro studies investigating the 

antiviral efficacy of zidovudine against FIV in different cell systems.  

Table 2: In vitro antiviral efficacy of zidovudine against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; RT, reverse transcriptase; PBL, peripheral 

blood lymphocytes; p24 Ag, p24 antigen; ELISA, enzyme-linked 

immunosorbent assay; PBM, peripheral blood mononuclear; pol RT-PCR, 

reverse transcription-polymerase chain reaction specific for pol region of 

FIV; ND, not determined; †
,
 
mean ± standard error;  ⃰ , mean ± standard 

deviation; 
§
, not specified) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

North et al., 

1989 

FIV 

Petaluma 
CRFK cells 5 

0.15 ± 0.02 
§
 

M 
RT activity 

Remington et 

al., 1991 

FIV 

Petaluma 
CRFK cells 4 

1.4 ± 0.4 ⃰ 

M 

Focal 

infectivity 

assay 

Tanabe-

Tochikura et 

al., 1992 

FIV 

Petaluma 
3201 cells 28 0.03 M RT activity 
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Gobert et al., 

1994 

FIV 

Petaluma 
CRFK cells 4 

0.32 ± 0.01  
†
 

M 
Focal 

infectivity 

assay FIV 

34TF10 

0.13 ± 0.01 
†
 

M 

Smyth et al., 

1994 

FIV E77 PBL 5 
0.75 ± 0.34 ⃰ 

M p24 Ag 

ELISA 
FIV-8 CRFK cells 7 

0.19 ± 0.02 ⃰ 

M 

Remington et 

al., 1994 

FIV 

Petaluma 
CRFK cells 4 

1.4 ± 0.4 ⃰ 

M 
Focal 

infectivity 

assay FIV 

34TF10 

2.0 ± 0.9 ⃰ 

M 

Medlin et al., 

1995 

FIV 

34TF10 
CRFK cells 4 0.34 M 

Focal 

infectivity 

assay 

Vahlenkamp 

et al., 1995 

FIV UT-

113 

Thymocytes 

6 

0.05 ± 0.02 
† 

M p24 Ag 

ELISA 
CRFK cells 

4.0 ± 0.52 
† 

M 

Hartmann et 

al., 1995 

FIV 

Petaluma 

CRFK cells 

10 

0.06 M RT activity 

8.63 M 
p24 Ag 

ELISA 

PBL 

0.02 M RT activity 

0.14 M  
p24 Ag 

ELISA 

Zhu et al., 

1996 

FIV 

34TF10 
CRFK cells 4 

0.3 ± 0.1 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1997 

FIV 

34TF10 
CRFK cells 4 

1.0 ± 0.3 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1998 

FIV 

34TF10 
CRFK cells 4 

1.3 ± 0.2 
† 

M 

Focal 

infectivity 

assay 

McCrackin 

Stevenson 

and 

McBroom, 

2000 

FIV Maxam 

PBM cells 7 

0.07 ± 0.02 
† 

M p24 Ag 

ELISA 
FIV pPPR 

0.03 ± 0.02 
† 

M 

Bisset et al., 

2002 

FIV 

Petaluma 
CRFK cells 8 

2.13 ± 0.83 
† 

M 
pol RT-PCR 
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Arai et al., 

2002 

FIV 

Glasgow-8 

PBM cells 

from 

infected cats 

9, 12, 15 ND RT activity 

FIV 

Bangston 

FIVBang/FeT-

J cells 

FIV 

Shizuoka 

FIVShi/FeT-J 

cells  

FIV 

Petaluma 
FL-4 cells 

FIV 

Glasgow-8 

T-cell 

enriched 

PBM cells 

 van der Meer 

et al., 2007 
FIV 113Th 

Thymocytes 

6 

0.56 ± 0.26 ⃰ 

M 

p24 Ag 

ELISA 
Dendritical 

cell-

thymocyte 

coculture 

3.67 ± 2.32 ⃰ 

M  

 

1.1.2.2. Didanosine 

Didanosine (2',3'-dideoxyinosine, ddI) is a dideoxynucleoside analogue which is 

converted to its active form dideoxyadenosin triphosphate by intracellular 

phosphorylation (PERRY and BALFOUR, 1996). In 1986, shortly after the 

discovery of zidovudine’s anti-HIV activity, Mitsuya and Broder described the 

antiviral activity of didanosine against HIV (MITSUYA and BRODER, 1986) and 

in 1991 it was the second antiretroviral drug to be approved by the FAD for the 

treatment of HIV/AIDS (FDA, 2014). Several studies have investigated its 

efficacy against FIV in vitro (table 3).  
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Table 3: In vitro antiviral efficacy of didanosine against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; RT, reverse transcriptase; PBL, peripheral 

blood lymphocytes; p24 Ag, p24 antigen; ELISA, enzyme-linked 

immunosorbent assay; †
,
 
mean ± standard error;  ⃰ , mean ± standard deviation) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

Remington et 

al., 1991 

FIV 

Petaluma 
CRFK cells 4 

2.1 ± 0.7 ⃰ 

M 

Focal 

infectivity 

assay 

Tanabe-

Tochikura et 

al., 1992 

FIV 

Petaluma 
3201 cells 28 1.1 M RT activity 

Gobert et al., 

1994 

FIV 

Petaluma 
CRFK cells 4 

1.9 ± 0.04 
† 

M 
Focal 

infectivity 

assay FIV 

34TF10 

1.1 ± 0.01
† 

M 

Smyth et al., 

1994 

FIV E77 PBL 5 
3.25 ± 0.25 ⃰ 

M p24 Ag 

ELISA 
FIV 8 CRFK cells 7 

0.97 ± 0.34 ⃰ 

M 

Remington et 

al., 1994 

FIV 

Petaluma 
CRFK cells 4 

2.1 ± 1 ⃰ M Focal 

infectivity 

assay 
FIV 

34TF10 

1.8 ± 0.6 ⃰ 

M 

Medlin et al., 

1995 

FIV 

34TF10 
CRFK cells 4 

5.5 ± 0.8 
† 

M 

Focal 

infectivity 

assay 

Zhu et al., 

1996 

FIV 

34TF10 
CRFK cells 4 

1.1 ± 0.04 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1997 

FIV 

34TF10 
CRFK cells 4 

1.9 ± 0.4 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1998 

FIV 

34TF10 
CRFK cells 4 

3.2 ± 0.5 
† 

M 

Focal 

infectivity 

assay 

 

1.1.2.3. Zalcitabine 

Like didanosine, zalcitabine (2',3'-dideoxycytidine, ddC) is a dideoxynucleoside 

analogue which is converted intracellularly to its active form 2',3'-dideoxycytidine 

triphosphate. In 1986, Mitsuya and Broder showed that it is a very potent inhibitor 
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of HIV (MITSUYA and BRODER, 1986) and after zidovudine it was the second 

drug to be tested clinically in patients with AIDS (YARCHOAN et al., 1988; 

MERIGAN et al., 1989). It was approved by the FDA in 1992 but it has not been 

marketed since December 2006 (FDA, 2014).  

Table 4: In vitro antiviral efficacy of zalcitabine against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; RT, reverse transcriptase; PBL, peripheral 

blood lymphocytes; p24 Ag, p24 antigen; ELISA, enzyme-linked 

immunosorbent assay; PBM, peripheral blood mononuclear; †
,
 

mean ± 

standard error;  ⃰ , mean ± standard deviation) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

North et al., 

1989 

FIV 

Petaluma 
CRFK cells 5 >1 M RT activity 

Gobert et al., 

1994 

FIV 

Petaluma 
CRFK cells 4 

5.7 ± 0.4 
† 

M 
Focal 

infectivity 

assay FIV 

34TF10 

2.3 ± 0.05 
† 

M 

Smyth et al., 

1994 

FIV E77 PBL 5 
0.71 ± 0.24 ⃰ 

M p24 Ag 

ELISA 
FIV 8 CRFK cells 7 

0.33 ± 0.12 ⃰ 

M 

Remington et 

al., 1994 

FIV 

Petaluma 
CRFK cells 4 

6.0 ± 1 ⃰ M Focal 

infectivity 

assay 
FIV 

34TF10 

4.7 ± 2.3 ⃰ 

M  

Medlin et al., 

1995 

FIV 

34TF10 
CRFK cells 4 

4.9 ± 0.7 
† 

M 

Focal 

infectivity 

assay 

Zhu et al., 

1996 

FIV 

34TF10 
CRFK cells 4 

4.4 ± 0.3 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1997 

FIV 

34TF10 
CRFK cells 4 

1.9 ± 0.3 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1998 

FIV 

34TF10 
CRFK cells 4 

2.0 ± 0.1 
† 

M 

Focal 

infectivity 

assay 

McCrackin 

Stevenson 

and 

McBroom, 

2000 

FIV Maxam 

PBM cells 7 

0.86 ± 0.07 
† 

M p24 Ag 

ELISA 
FIV pPPR 

1.21 ± 0.56 
† 

M 
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1.1.2.4. Stavudine 

Like zidovudine, stavudine (2',3'-didehydro-2',3'-dideoxythymidine, d4T) is a 

thymidine analogue and was first synthesized in the 1960ies (HORWITZ et al., 

1966) as a potential anticancer agent. Its efficacy against HIV was first described 

in 1987 by two working groups (BABA et al., 1987; BALZARINI et al., 1987; 

LIN et al., 1987; AUGUST et al., 1988). It was approved by the FDA for the 

treatment of HIV infection in 1994 and was an essential component of initial 

antiretroviral combination therapy. Only in recent years it has been replaced by 

better tolerated medications (MARTIN et al., 2010). Several studies have assessed 

stavudine’s anti-FIV efficacy and table 5 provides a summary.  

Table 5: In vitro antiviral efficacy of stavudine against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; PBL, peripheral blood lymphocytes; p24 Ag, 

p24 antigen; ELISA, enzyme-linked immunosorbent assay; †
,
 
mean ± standard 

error;  ⃰ , mean ± standard deviation) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

Remington et 

al., 1991 

FIV 

Petaluma 
CRFK cells 4 

12.3 ± 3.5 ⃰ 

M 

Focal 

infectivity 

assay 

Gobert et al., 

1994 

FIV 

Petaluma 
CRFK cells 4 

5.7 ± 0.6 
† 

M 
Focal 

infectivity 

assay FIV 

34TF10 

5.9 ± 0.9 
† 

M 

Smyth et al., 

1994 

FIV E77 PBL 5 
11.60 ± 

2.23 ⃰ M p24 Ag 

ELISA 
FIV 8 CRFK cells 7 

8.92 ± 

13.38 ⃰ M 

Remington et 

al., 1994 

FIV 

Petaluma 
CRFK cells 4 

12 ± 4 ⃰ M Focal 

infectivity 

assay 
FIV 

34TF10 
21 ± 9 ⃰ M 

Balzarini et 

al., 1996 
FIV UT113 CRFK cells 6 4.0 M 

p24 Ag 

ELISA 

Zhu et al., 

1996 

FIV 

34TF10 
CRFK cells 4 9 ± 2 

† 
M 

Focal 

infectivity 

assay 
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Smith et al., 

1997 

FIV 

34TF10 
CRFK cells 4 

14.0 ± 1.9 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1998 

FIV 

34TF10 
CRFK cells 4 

13 ± 1.8 
† 

M 

Focal 

infectivity 

assay 

 

1.1.2.5. Lamivudine 

Like zalcitabine, lamivudine ((–)-2',3'-dideoxy-3'-thiacytidine, 3TC) is a cytidine 

analogue. It is structurally different in that the 3' carbon of the ribose in 

zalcitabine is replaced by a sulfur atom (COATES et al., 1992). Lamivudine’s 

anti-HIV activity was first described by Belleau and coworkers in 1989 

(BELLEAU et al., 1989) and it was licensed by the FDA for the treatment of 

HIV/AIDS in 1995 (FDA, 2014). It is a potent and well tolerated anti-HIV drug. 

The major side effect is the development of a M184V mutation in the HIV pol 

gene (RAVICHANDRAN et al., 2008). It is also active against FIV (table 6). 

Table 6: In vitro antiviral efficacy of lamivudine against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; RT, reverse transcriptase; PBL, peripheral 

blood lymphocytes; p24 Ag, p24 antigen; ELISA, enzyme-linked 

immunosorbent assay; PBM, peripheral blood mononuclear; pol RT-PCR, 

reverse transcription-polymerase chain reaction specific for pol region of 

FIV; ND, not determined; †
,
 
mean ± standard error;  ⃰ , mean ± standard 

deviation) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

Smyth et al., 

1994 

FIV E77 PBL 5 
0.17 ± 0.04 ⃰ 

M p24 Ag 

ELISA 
FIV 8 

CRFK 

cells 
7 

0.39 ± 0.13 ⃰ 

M 

Medlin et al., 

1995 

FIV 

34TF10 

CRFK 

cells 
4 0.58 M 

Focal 

infectivity 

assay 

Smith et al., 

1997 

FIV 

34TF10 

CRFK 

cells 
4 1.2 ± 0.1 

† 
M 

Focal 

infectivity 

assay 

Smith et al., 

1998 

FIV 

34TF10 

CRFK 

cells 
4 1.5 ± 0.3 

† 
M 

Focal 

infectivity 

assay 
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McCrackin 

Stevenson 

and 

McBroom, 

2000 

FIV Maxam 

PBM cells 7 

0.14 ± 0.01 
† 

M p24 Ag 

ELISA 
FIV pPPR 

0.46 ± 0.04 
† 

M 

Bisset et al., 

2002 

FIV 

Petaluma 

CRFK 

cells 
8 

2.44 ± 0.64 
† 

M 
pol RT-PCR 

Arai et al., 

2002 

FIV 

Glasgow 8 

PBM cells 

from 

infected 

cats 

9, 12, 15 ND RT activity 

FIV 

Bangston 

FIVBang/Fe

T-J cells 

FIV 

Shizuoka 

FIVShi/Fe

T-J cells  

FIV 

Petaluma 
FL-4 cells 

FIV 

Glasgow-8 

T-cell 

enriched 

PBM cells 

 

1.1.2.6. Emtricitabine  

Emtricitabine ((–)-2',3'-deoxy-5-fluoro-3'-thiacytidine, FTC) is another cytidine 

analogue and is structurally similar to lamivudine. It was developed after the 

discovery of the antiviral activity of lamivudine and was found to be very potent 

and selective against HIV (SCHINAZI et al., 1992). It was shown that treatment 

with emtricitabine versus lamivudine leads to reduced emergence of the M184V/I 

resistance mutation in antiretroviral naïve patients (MCCOLL et al., 2011). It was 

licensed by the FDA in 2003 (FDA, 2014). 
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Table 7: In vitro antiviral efficacy of emtricitabine against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; p24 Ag, p24 antigen; ELISA, enzyme-linked 

immunosorbent assay; PBM, peripheral blood mononuclear; ND, not 

determined; †
,
 
mean ± standard error) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

Smith et al., 

1997 

FIV 

34TF10 
CRFK cells 4 

0.9 ± 0.2 
† 

M 

Focal 

infectivity 

assay 

Smith et al., 

1998 

FIV 

34TF10 
CRFK cells 4 

1.0 ± 0.1 
† 

M 

Focal 

infectivity 

assay 

McCrackin 

Stevenson 

and 

McBroom, 

2000 

FIV Maxam 

PBM cells 7 

ND 
p24 Ag 

ELISA 
FIV pPPR 

0.18 ± 0.04 
† 

M 

 

1.1.2.7. Abacavir 

Abacavir ((–)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo-

pentene-1-methanol, ABC) is a guanosine analogue and was first described in 

1997 by Daluge and coworkers. It was shown to have potent and selective anti-

HIV activity equivalent to that of zidovudine in human blood lymphocyte 

cultures. It showed minimal cross-resistance with zidovudine and other approved 

HIV NRTIs and was synergistic with zidovudine and some other compounds 

(DALUGE et al., 1997). In 1998 it was approved by the FDA (FDA, 2014). Prior 

to the study reported here, it has been assessed against FIV in only one study, to 

our knowledge (table 8).  

  



II. Literature Review     25 

Table 8: In vitro antiviral efficacy of abacavir against FIV (FIV, feline 

immunodeficiency virus; EC50, 50% effective concentration; CRFK, 

Crandell-Rees feline kidney; pol RT-PCR, reverse transcription-polymerase 

chain reaction specific for pol region of FIV; ND, not determined; †
,
 
mean ± 

standard error) 

Study FIV strain Cells 
Days after 

inoculation 
EC50 

Detection 

method of 

virus 

replication 

Bisset et al., 

2002 

FIV 

Petaluma 
CRFK cells 8 

3.07 ± 1.39 
†
 

M 
pol RT-PCR 

 

1.2. Nucleotide reverse transcriptase inhibitors 

Currently there is only one FDA approved NtRTI (tenofovir disoproxil fumarate) 

which was licensed in 2001 (FDA, 2014). Since then it has become one of the 

most widely used antiretroviral drugs in HIV therapy (DE CLERCQ, 2010; 

TRESSLER and GODFREY, 2012).  

1.2.1. Mechanism of action 

Like NRTIs, NtRTIs interact with the catalytic site of RT and are incorporated 

into the elongating proviral DNA strand, subsequently causing strand termination 

(RAVICHANDRAN et al., 2008; DE CLERCQ, 2009). They compete with the 

natural nucleotides and thus also function as competitive substrate inhibitors. 

However in contrast to NRTIs, NtRTIs contain a phosphate group and therefore 

need only two intracellular phosphorylation steps to be converted into their active 

forms (BALZARINI et al., 1997; DE CLERCQ, 2009). This circumvents the first 

and often rate limiting phosphorylation step (RAVICHANDRAN et al., 2008; 

CIHLAR and RAY, 2010) and therefore offers an advantage over NRTIs. 

Currently, the only approved NtRTI for the treatment of HIV infection is 

tenofovir disoproxil fumarate (TDF), the prodrug of tenofovir ((R)-9-(2-

phosphonylmethoxypropyl)adenine, (R)-PMPA), which is a member of the 

acyclic nucleoside phosphonates (BALZARINI et al., 1997; CIHLAR and RAY, 

2010). In acyclic nucleoside phosphonates, the alkyl side chain of purines and 

pyrimidines is linked to a modified phosphate moiety and a C-P phosphonate 

linkage replaces the normal O5´-P phosphate linkage (BALZARINI et al., 1997; 
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CIHLAR and RAY, 2010). This phosphonate bond is non-hydrolyzable which 

makes it more difficult to cleave off these compounds once they have been 

incorporated at the 3´-terminal end of the elongating proviral DNA strand (DE 

CLERCQ, 2009).  

1.2.2. Efficacy against FIV 

Balzarini and coworkers (1997) showed that tenofovir ((R)-9-(2-

phosphonylmethoxypropyl)adenine, (R)-PMPA)) is a potent inhibitor of FIV in 

both CRFK cells and PBM cells. It was compared to two other antiretroviral 

compounds, including PMEA (9-(2-phosphonylmethoxyethyl)adenine), the 

prototype acyclic nucleoside phosphonate (BALZARINI et al., 1996a; 

BALZARINI et al., 1997). PMEA is a potent inhibitor of FIV and has been 

investigated more extensively in vitro regarding its anti-FIV activity and generally 

has been shown to be at least equally as potent as zidovudine (GOBERT et al., 

1994; REMINGTON et al., 1994; VAHLENKAMP et al., 1995; ZHU et al., 1996; 

SMITH et al., 1998; VAN DER MEER et al., 2007). In comparison to PMEA, 

tenofovir (R-PMPA) was less toxic in feline PBM cells and showed greater anti-

FIV efficacy (BALZARINI et al., 1997). Vahlenkamp and coworkers (1995) also 

compared tenofovir to other antiretroviral compounds, including PMEA in feline 

thymocytes and CRFK cells. The antiviral efficacy against FIV and cytotoxicity 

of both compounds were comparable, although PMEA was somewhat more toxic 

in PBM cells (VAHLENKAMP et al., 1995). 

1.3. Non-nucleoside reverse transcriptase inhibitors 

NNRTIs were the second drug category from which members were approved for 

the treatment of HIV infection. There are currently five FDA approve NNRTIs: 

nevirapine, delavirdine, efavirenz, etravirine, and rilpivirine (FDA, 2014). 

1.3.1. Mechanism of action 

Unlike NRTIs and NtRTIs, which bind to the catalytic site of RT, NNRTIs 

interact with an allosteric site of the enzyme (DE CLERCQ, 2009) and are not 

incorporated into the proviral DNA strand (RAVICHANDRAN et al., 2008). 

They are classified as non-competitive inhibitors of RT and do not require 

intracellular activation to inhibit the enzyme (RAVICHANDRAN et al., 2008; 

MOHAMMADI and BIENZLE, 2012). NNRTIs are a group of structurally 

diverse compounds that all bind a single site in the HIV RT enzyme (XIA et al., 
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2007). Five NNRTIs are currently licensed for treatment of HIV infection and 

these drugs are used in several anti-retroviral therapy regimens. Despite their 

common use, the molecular mechanism of inhibition by these drugs is not entirely 

clear (DAS et al., 2012). The interaction with the allosteric site which is located in 

close proximity to the catalytic site, leads to a number of conformational changes 

within the RT (XIA et al., 2007; DAS et al., 2012). Amongst other effects, these 

changes cause a decrease in the interaction between the DNA primer and the 

polymerase domain of the enzyme and thus, result in inhibition of virus 

replication. Additionally it has been shown that excision of an incorporated NRTI 

from the elongating proviral DNA strand is blocked in the presence of the NNRTI 

nevirapine, indicating that NNRTIs and NRTIs have complementary roles in 

inhibiting RT (DAS et al., 2012).  

Unlike NRTIs, NNRTIs are highly specific inhibitors of HIV-1 and it has been 

shown that they are not active against HIV-2 or other retroviruses, including FIV 

(AUWERX et al., 2004; RAVICHANDRAN et al., 2008). This is the case despite 

close similarity of the NNRTI binding pocket of HIV-1 RT and FIV RT. In fact, 

only four of the 20 relevant amino acids lining the binding pocket are not present 

in FIV RT (AUWERX et al., 2004). Only three of the five FDA-approved 

NNRTIs (nevirapine, delavirdine, efavirenz) have been assessed against FIV in 

vitro. In vivo studies have not been performed, presumable because of the lack of 

in vitro efficacy.   

1.3.2. Efficacy against FIV 

In a study by Auwerx and coworkers (2002) it was shown that nevirapine, 

delavirine and efavirenz, had no inhibitory activity against FIV RT, even at drug 

concentrations several orders of magnitude higher than those required for 

suppression of HIV-1 RT activity. Chimeric RT enzymes were also assessed and 

it was found that HIVp66/FIVp51 RT retained susceptibilities to all NNRTIs 

similar to the wild-type HIV-1 enzyme, and FIVp66/HIVp51 RT remained 

resistant to the NNRTIs, pointing to a minor role of the p51 subunit in terms of 

susceptibility to these RT inhibitors (AUWERX et al., 2002). These findings 

differ markedly from those reported in a previous study by Amacker and 

Hubscher (1998) who found nevirapine to be inhibitory towards both FIV RT as 

well as the chimeric FIVp66/HIVp51 RT (AMACKER and HUBSCHER, 1998). 
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In order to map the determinants of lack of susceptibility of FIV RT to NNRTIs 

effective against HIV, Auwerx and coworkers (2004) conducted another study 

and designed several chimeric HIV-1/FIV RTs. Similarly to the previous study by 

Auwerx and coworkers (2002), nevirapine and efavirenz were investigated. In 

accordance with the findings from that previous study, FIV RT was not inhibited 

by any NNRTI, even at concentrations as high as 1000 M, whereas HIV-1 RT 

was sensitive to both NNRTIs. None of the FIV-derived chimera which contained 

several amino acid fragments from HIV-1 RT gained susceptibility to the 

NNRTIs. In a second part of this study, point mutations were introduced into the 

FIV RT and the susceptibility of the mutant enzymes to nevirapine, efavirenz, and 

delavirdine was investigated. The amino acids of choice were those that were 

crucial for HIV-1 RT to maintain full sensitivity to NNRTIs but were different in 

FIV RT.  Neither of the NNRTIs showed any inhibitory activity against any FIV 

RT mutant (AUWERX et al., 2004).  

Etravirine and rilpivirine gained their FDA approval more recently in 2008 and 

2011, respectively (FDA, 2014). Neither of these two drugs has been assessed 

against FIV.  

 

2. Protease inhibitors 

Currently, there are ten PIs that have been licensed by the FDA (saquinavir 

mesylate, ritonavir, indinavir, nelfinavir, lopinavir, atazanavir sulfate, amprenavir 

[no longer marketed], fosamprenavir, darunavir, tipranavir) (FDA, 2014).  

2.1. Mechanism of action 

The retroviral protease is responsible for the processing of Gag and Gag-Pol 

polyproteins into individual structural and enzymatic proteins. These steps take 

place during virus assembly and maturation and are critical for the production of 

infectious virions (SLEE et al., 1995; ELDER et al., 2010). 

Both FIV and HIV-1 protease are homodimers which have very similar three-

dimensional structures; however, each monomer of the FIV protease is comprised 

of 116 amino acids as opposed to 99 amino acids for the HIV-1 protease and both 

enzymes share only 23% amino acid identity (ELDER et al., 2008; LIN et al., 

2010). Despite similarities between the two enzymes, it has been shown that the 
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FIV protease is specific to its respective substrates. Most of the currently 

employed anti-HIV PIs that have been tested were not effective in inhibiting FIV 

protease.  

PIs contain a hydroxyethylene scaffold which mimics the normal peptide linkage 

that would normally be cleaved within the active site of the enzyme. This linkage 

however, has been replaced with a nonhydrolyzable one and therefore PIs prevent 

the protease from carrying out its normal action (DE CLERCQ, 1995b, 2009). 

This is the mechanism of action for all but one (tipranavir) of the FDA-approved 

PIs (DE CLERCQ, 2009).  

Tipranavir is different in that it is a non-peptidic PI belonging to the class of 

sulfonamide-containing dihydropyrones. It also binds the active site of the 

protease; however it is based on a different chemical scaffold than the other PIs 

(LUNA and TOWNSEND, 2007; MUZAMMIL et al., 2007).  

A number of previous studies (POPPE et al., 1997; LARDER et al., 2000; 

RUSCONI et al., 2000) showed that tipranavir had excellent in vitro antiviral 

activity against HIV-1 laboratory strains and clinical isolates as well as HIV-1 

isolates that had become resistant to other PIs. Muzammil and coworkers (2007) 

demonstrated that tipranavir’s mode of action was different to that of other PIs in 

that it established unique favorable thermodynamic interactions with the protease 

resulting in a high binding affinity, and structurally it built a very strong hydrogen 

bond network with regions of the protease that cannot undergo mutation. 

Therefore this strong network was maintained with the mutant forms of the 

protease. Additionally, tipranavir relied on fewer water-mediated hydrogen bonds 

than the other PIs and formed direct hydrogen bond interactions which is 

considered energetically more favorable (MUZAMMIL et al., 2007). 

2.2. Efficacy against FIV 

Many compounds, some of which later became the PIs that are now FDA-

approved and are used in the treatment of HIV-infected patients today, were 

assessed during their experimental stage for their activity against the FIV 

protease. However, no potent inhibitory effect on the FIV protease could be 

detected. For example Wlodawer and coworkers (1995) assessed four different 

inhibitors containing hydroxyethyl peptidomimetics for their inhibitory activity on 

FIV as well as HIV protease. The Ki value (inhibition constant, concentration 
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required to produce half maximum inhibition of the enzyme) for all four 

compounds was between 15 to 127 times higher for FIV than HIV, indicating 

weak inhibition of the FIV protease, while they were strong inhibitors of the HIV 

protease. The authors also commented that this was in accordance with their 

previous findings where, despite testing over 30 potent HIV protease inhibitors 

with a wide variety of different structures, they were not able to identify any 

compounds that would also potently inhibit FIV protease (WLODAWER et al., 

1995).  

Slee and coworkers (1995) described the development of new pyrrolidne-

containing -keto amide and hydroxyethylamine core structures as inhibitors of 

the HIV protease. None of these structures showed significant inhibitory activity 

against the mechanistically identical FIV protease. For one of the assessed 

compounds, their research showed that additional specific residues between the 

P4 – P4´ sites (residues of the substrate at position P4 – P4´which bind to S4 – S4´ 

subsites in the active site of the enzyme) were required before FIV protease was 

able to recognize it as a substrate (SLEE et al., 1995).  

Wlodawer and coworkers (1989) and Schnolzer and coworkers (1996) also 

showed that FIV PR requires a longer substrate than HIV PR of at least eight 

amino acids. Since most PIs for HIV-1 PR are based on peptides less than seven 

amino acids, this offers an explanation for their lack of efficacy against FIV 

protease (WLODAWER et al., 1989; SCHNOLZER et al., 1996).   

Lee and coworkers (1998) proposed a structural explanation for the discrepancy 

between the inhibition of HIV and FIV protease by anti-HIV protease inhibitors. 

They showed that there is a severe restriction of P3 and P3´ moieties in FIV 

protease due to a restriction in size of the combined S1/S3 (subsite 1/subsite 3) 

substrate binding pocket of the FIV protease in comparison to the same site in the 

HIV-1 protease (LEE et al., 1998; ELDER et al., 2010). Lee and coworkers 

(1998) showed that saquinavir, a HIV PI with a bulky aromatic group at the P3 

position, completely lost potency against FIV protease. Other PIs with large P3 

and P3´moieties are e.g. ritonavir, indinavir, and nelfinavir (LEE et al., 1998).  

In a study by Lin and coworkers (2003) it was shown that none of the potent HIV-

1 protease inhibitors saquinavir, ritonavir and nelfinavir, were good inhibitors of 

the FIV protease. Their Ki values could not be determined due to their poor 
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inhibitory activity and their poor solubility at high concentrations (LIN et al., 

2003).  

It has been shown that FIV protease behaves like the drug-resistant phenotypes of 

HIV protease (DUNN et al., 1999) as several HIV protease amino acid residues 

mutate to the structurally aligned residue found in FIV protease (SLEE et al., 

1995).  

In a recent study by Norelli and coworkers (2008), three second generation FDA-

approved PIs (lopinavir, atazanavir, tipranavir) were investigated for their in vitro 

efficacy against FIV. The binding of lopinavir and atazanavir to the FIV protease 

was limited which was related to the fact that the protease of FIV resembles the 

protease of HIV drug-resistant mutations. The binding of tipranavir however, was 

not limited. All PIs resulted in dose-dependent FIV inhibition, however only 

tipranavir’s efficacy against FIV was comparable to that against HIV (NORELLI 

et al., 2008). As mentioned above, tipranavir’s mode of action is different from 

the other anti-HIV PIs. Norelli and coworkers (2008) showed in molecular 

docking simulations that tipranavir maintains favorable energetic interactions with 

the dimeric FIV protease.  It establishes a very strong hydrogen bond network 

with FIV protease involving invariant regions of the enzyme (NORELLI et al., 

2008). These findings are in line with those for drug-resistant HIV mutants by 

Muzammil and coworkers (MUZAMMIL et al., 2007).  

In a study by Lin and coworkers (2010) high resistance of the wild-type FIV 

protease to darunavir and lopinavir was shown, and in an ex vivo infectivity assay 

it was demonstrated that replication of wild-type FIV could not be inhibited by 

these two HIV-1 PIs at any of the concentrations (up to 800 nM) investigated 

(LIN et al., 2010). Lin and coworkers (2010) also designed infectious FIV 

mutants encoding selected FIV/HIV chimeric proteases. In contrast to the FIV 

wild-type protease, the chimeric proteases showed high sensitivity to both 

darunavir and lopinavir (LIN et al., 2010).  

 

3. Entry inhibitors 

The compounds within this group are fusion inhibitors and co-receptor inhibitors. 

They interfere with different steps of viral entry into the host cell. 
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3.1. Fusion inhibitors 

Only one fusion inhibitor is currently licensed by the FAD which is enfuvirtide, 

also known as T-20. It was licensed in 2003 (FDA, 2014).  

3.1.1. Mechanism of action 

For viral entry and infection, fusion between the target cell membrane and the 

virus is a critical step in the lentivirus life cycle which in the case of FIV is 

mediated by the envelope glycoprotein 40 (gp40) (OISHI et al., 2009). Binding of 

the FIV surface (SU) glycoprotein to the cellular receptors CD134 and CXCR4 

results in a conformational change of gp40. Although the detailed mechanism of 

the virus-cell fusion process of FIV is not known, it is believed to be similar to 

that of HIV (OISHI et al., 2009). The HIV transmembrane protein gp41 contains 

functional domains consisting of a fusion peptide, heptad repeats 1 and 2 (HR1 

and 2) and a transmembrane domain (MIZUKOSHI et al., 2009). After the 

attachment of HIV to the CD4 receptor and chemokine co-receptor on the host 

cell, a conformational change in gp41 allows it to insert its hydrophobic N 

terminus into the host cell membrane (MATTHEWS et al., 2004). Subsequently, 

the HR1 and HR2 domains interact with each other which brings the viral and 

cellular membranes into close contact, allowing membrane fusion and infection of 

the target cell (MATTHEWS et al., 2004; OISHI et al., 2009).  

Fusion inhibitors are synthetic peptides derived from gp41 and block the entry of 

HIV into the host cell by binding to the HR regions of gp41 (MATTHEWS et al., 

2004). Thereby they prevent the necessary interaction between HR1 and HR2 

(MEDINAS et al., 2002; MATTHEWS et al., 2004; DE CLERCQ, 2009).  

3.1.2. Efficacy against FIV 

Currently only one fusion inhibitor (enfuvirtide, T-20) is licensed by the FDA for 

the treatment of HIV infection which is a 36-amino-acid peptide derived from the 

HR2 region of HIV gp41 (MATTHEWS et al., 2004). It has been shown that 

enfuvirtide selectively inhibits HIV-1; neither HIV-2 nor simian 

immunodeficiency virus (SIV) was susceptible (MATTHEWS et al., 2004). A 

study by Medinas and colleagues (2002) found that there was also a lack of 

activity of enfuvirtide against FIV in vitro as demonstrated by an 88,000-fold 

higher EC50 compared to that against HIV-1. Furthermore this study assessed the 

antiviral activity of 15 peptides derived from the HR2 domain of FIV gp40 and 
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showed that the peptides examined had varied antiviral activities in vitro. Several 

of the peptides exhibited good activity against FIV as demonstrated by inhibition 

of syncytium formation in a cell-cell fusion assay and inhibition of RT production 

in a FIV infectivity assay (MEDINAS et al., 2002). A number of other studies 

assessed various synthetic peptides for their anti-FIV activity and identified 

several peptides with anti-FIV activity in vitro (LOMBARDI et al., 1996; 

GIANNECCHINI et al., 2003; D'URSI et al., 2006; MIZUKOSHI et al., 2009; 

OISHI et al., 2009).  

3.2. Co-receptor inhibitors 

There is currently only one co-receptor inhibitor (maraviroc) which is FDA- 

approved for the treatment of HIV/AIDS. It was approved in 2007 (FDA, 2014). 

3.2.1. Mechanism of action 

Similar to T cell-tropic HIVs, all domestic cat FIVs use the chemokine receptor 

CXCR4 as one of their receptors for virus entry into the target cell (ELDER et al., 

2010). Binding of FIV and HIV to this cell receptor is essential for cell entry of 

both viruses (MIZUKOSHI et al., 2009). Therefore, the binding of CXCR4 

antagonists will prevent binding of the FIV major SU glycoprotein to this receptor 

and prevent infection of the target cell. In the whole cell entry process of the 

virus, this step lies between the initial attachment of the virus to the CD134 

receptor and the fusion of the virus with the cell membrane mediated by gp41 (DE 

CLERCQ, 2009; WILLETT and HOSIE, 2013). The amino acid sequence of 

feline and human CXCR4 is highly similar (94.9% sequence identity) (WILLETT 

et al., 1997b) and hence CXCR4 antagonists developed against HIV could also be 

effective against FIV (MOHAMMADI and BIENZLE, 2012). 

Macrophage-tropic HIV strains however, use a different co-receptor, namely 

CCR5 (DE CLERCQ, 2009). Unlike these HIV strains, FIV does not bind to 

CCR5. CXCR4 is the sole co-receptor of FIV (WILLETT and HOSIE, 2013). 

3.2.2. Efficacy against FIV  

The currently licensed co-receptor inhibitor (maraviroc) is a CCR5 co-receptor 

antagonist. As FIV does not bind this cell receptor, this drug has not been assessed 

against FIV.  

Egberink and colleagues (1999) showed that bicyclams, which are selective 
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inhibitors of the human chemokine receptor CXCR4, potently inhibit FIV 

replication. Inhibition of fusion and entry of FIV was clearly demonstrated in the 

presence of bicyclams. The prototype bicyclam plerixafor (AMD3100) as well as 

other bicyclam derivatives were assessed in different feline cell lines 

(EGBERINK et al., 1999). Plerixafor is not licensed as an anti-HIV drug, but is 

used in humans for stem cell mobilization (LILES et al., 2003). 

Joshi and colleagues (2005) investigated the mechanism responsible for the 

preferential replication of FIV in highly purified CD4
+
 CD25

+
 Treg cells as 

opposed to their CD4
+ 

CD25
-
 counterparts. As part of this study it was shown that 

AMD3100 in concentrations of 0.01 to 1 g/ml was able to reduce FIV replication 

in both cell types, however significantly more so in CD4
+
 CD25

-
 cells (JOSHI et 

al., 2005). 

 

4. Integrase inhibitors 

To date, two integrase inhibitors (raltegravir and dolutegravir) have been 

approved by the FDA for the treatment of HIV infection (FDA, 2014). 

4.1. Mechanism of action 

The retroviral enzyme integrase is encoded by the pol gene and is first translated 

as a large component of the polyprotein Gag-Pol. During maturation of the 

virions, protease cleaves the Gag-Pol polyprotein which results in the release of 

integrase. Integrase catalyzes the integration of double-stranded viral DNA into 

host cell DNA (ZEINALIPOUR-LOIZIDOU et al., 2007; DE CLERCQ, 2009). 

To achieve this, two catalytic reactions of integrase are necessary, 3´-end 

processing and strand transfer (3´-end joining). 3´-end processing takes place in 

the cytoplasm after reverse transcription and creates reactive 3´-hydroxyls at both 

ends of the viral DNA (SAVARINO et al., 2007; DE CLERCQ, 2009). As part of 

the pre-integration complex, the viral DNA is translocated to the nucleus, where 

the second reaction catalyzed by integrase, (strand transfer) takes place. During 

this step integrase catalyzes the insertion of both viral DNA ends into the host 

chromosome (ZEINALIPOUR-LOIZIDOU et al., 2007; DE CLERCQ, 2009). 

Once integrated, the provirus persists in the host cell genome and functions as a 

template for replication of the viral genome, leading to the formation of new 
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viruses (MOUSCADET and TCHERTANOV, 2009).  

4.2. Efficacy against FIV 

The structure of FIV integrase is similar to that of HIV-1 integrase and it has been 

shown that the catalytic site of the integrase of both viruses is almost identical 

(SAVARINO et al., 2007). Raltegravir and dolutegravir, the two FDA-approved 

integrase inhibitors, are targeted at the strand transfer reaction and efficiently 

chelate the magnesium cation required for the activity of integrase, interrupting 

the final step of strand transfer (MOUSCADET and TCHERTANOV, 2009; 

RATHBUN et al., 2014). Of these two drugs, only raltegravir has been assessed 

against FIV in vitro. Togami and colleagues (2013) showed that raltegravir had 

anti-FIV activity in two human cell lines. While FIV was less susceptible to 

raltegravir than HIV-1, the EC50 against FIV was at the nanomolar level 

(TOGAMI et al., 2013).  

In a previous study, Savarino and colleagues (2007) showed that three 

investigational integrase inhibitors (L-870,810; CHI1019; CHI1010) were able to 

inhibit FIV replication in feline lymphoblastoid MBM cell culture as efficiently as 

HIV-1 replication. The authors concluded that integrase inhibitors might provide a 

potential treatment option for FIV-infected cats and could potentially be combined 

with NRTIs active against FIV and therefore offer combination antiretroviral 

therapy (SAVARINO et al., 2007).  
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IV. DISCUSSION 

Over the last 30 years since the first description of HIV as the causative agent of 

AIDS (GALLO et al., 1984), 26 antiretroviral drugs from seven different drug 

categories have been developed and approved by the FDA for the treatment of 

HIV infection (DE CLERCQ, 2013; FDA, 2014), two of which are no longer used 

or marketed (DE CLERCQ, 2010; FDA, 2014).  

The ever growing number of antiretroviral drugs has made combination treatment 

possible and since the mid 1990ties its importance in the treatment of HIV/AIDS 

has been widely accepted. Highly active antiretroviral therapy (HAART) utilizes 

combination regimens of classically three antiretrovirals from different drug 

categories, and this therapy has drastically altered the course of AIDS which 

previously was an almost uniformly fatal disease to now being a chronic 

manageable one (BRODER, 2010; DE CLERCQ, 2010). The latest of the FDA-

approved antiretrovirals was licensed in 2013 and research into new drugs 

remains a continuous effort. Despite these achievements there is still a need for 

new antiretroviral drugs in order to address issues like tolerability, drug-drug 

interactions and cross-resistance amongst members of a particular drug classes 

(GHOSH et al., 2011). One example of a novel drug which is currently in 

advanced phase 2 studies is the NRTI amdoxovir, one of the compounds that was 

evaluated for its efficacy against FIV for the first time in the present study.  

As further drugs are being developed for anti-HIV therapy and given the close 

similarity between HIV and FIV it is very likely that some of these new drugs 

would be effective against FIV as well. This is particularly true for NRTIs as there 

is a striking similarity between the RT of HIV and FIV, whereas drugs from other 

drug categories such as NNRTIs and most PIs show no anti-FIV activity. This 

similarity between the two lentiviruses has resulted in FIV becoming a useful in 

vitro and in vivo animal model, especially for studying NRTIs (NORTH and 

LACASSE, 1995; DIAS AS et al., 2006; VAN DER MEER et al., 2007), and all 

currently FDA approved NRTIs have been assessed against FIV in feline cell 

culture using various different cell systems. Generally all NRTIs show anti-FIV 

activity in vitro (REMINGTON et al., 1991; GOBERT et al., 1994; SMITH et al., 

1998; MCCRACKIN STEVENSON and MCBROOM, 2001; BISSET et al., 
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2002).  

In the present study we assessed three experimental NRTIs (amdoxovir, 

dexelvucitabine and racivir) which to our knowledge had not been evaluated 

against FIV in feline cell culture before. We compared their cytotoxicity in feline 

PBM cells and antiviral efficacy to the licensed NRTIs with the goal of 

identifying additional compounds with acceptable cytotoxicity and efficacy 

profiles which could be potential novel treatment options for naturally FIV-

infected cats.  

When assessing antiretroviral compounds in vitro it has been shown that the cell 

culture system used can influence the antiviral efficacy of NRTIs (CRONN et al., 

1992; HARTMANN et al., 1995b; VAHLENKAMP et al., 1995; BALZARINI et 

al., 1996b; VAN DER MEER et al., 2007). Commonly, the fibroblastoid cell line 

CRFK is used for in vitro studies involving FIV, as this is a continuous cell line 

which some isolates of FIV have been adapted to (NORTH and LACASSE, 1995; 

SIEBELINK et al., 1995; VERSCHOOR et al., 1995; BAUMANN et al., 1998). 

For example, Vahlenkamp and coworkers (1995) described an 80-fold decrease in 

the antiviral efficacy of zidovudine when assessed in CRFK cells compared to 

thymocytes (VAHLENKAMP et al., 1995). Similarly, in another study an 

approximately 60-fold increase in the EC50 of zidovudine was detected in CRFK 

cells compared to peripheral blood lymphocytes (HARTMANN et al., 1995b). 

Van der Meer and coworkers (2007) detected a 6-fold difference in the inhibitory 

potency of zidovudine in thymocytes versus a dendritical cell-thymocyte 

coculture system. As a consequence, unjustified rejection of candidate antiviral 

drugs might occur in some cases if the cell culture system used is not taken into 

account (VAN DER MEER et al., 2007).  

Balzarini and coworkers (1988) showed for zidovudine, zalcitabine and stavudine, 

that differences in drug-modifying cellular enzymes, which are responsible for the 

conversion of the drug to its active triphosphate form, are likely responsible for 

the cell-dependent efficacies of these drugs (BALZARINI et al., 1988; 

BALZARINI et al., 1996b). For stavudine in particular it was shown that the 

intracellular conversion to its active triphosphate form by either thymidylate 

kinase and/or nucleoside diphosphate kinase is poor in CRFK cells (BALZARINI 

et al., 1996b).  
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In order to increases the predictability of the antiviral efficacy of a certain 

compound in vivo, the in vitro model system ideally should mimic the situation in 

the patient closely (PAUWELS, 2006). The natural cell tropism of FIV which is 

broader than that of HIV includes CD4
+
 and CD8

+
 lymphocytes, B cells, 

macrophages, and astrocytes (MIYAZAWA et al., 1992; SIEBELINK et al., 

1995; VERSCHOOR et al., 1995; DIAS AS et al., 2006). PBM cells contain 

lymphocytes and macrophages and are therefore also commonly used for in vitro 

studies involving lentiviruses such as HIV and FIV (HARTMANN et al., 1995b; 

MCCRACKIN STEVENSON and MCBROOM, 2001; ARAI et al., 2002; 

HERNANDEZ-SANTIAGO et al., 2007; VAN DER MEER et al., 2007). This 

cell system was also chosen for the present study.  

In the first part of the present study, the cytotoxic effect of all test compounds in 

feline PBM cells was assessed. When compared at the highest concentration 

investigated (500 M), didanosine and amdoxovir were significantly less toxic 

than abacavir. No further statistically significant differences among the test 

compounds were found. Dose-response curves showed that noticeable 

cytotoxicity was only observed at concentrations above 10 M.  

The cytotoxic effects of five of the drugs investigated in the present study, namely 

lamivudine (SMYTH et al., 1994; ARAI et al., 2002; BISSET et al., 2002) 

zidovudine (SMYTH et al., 1994; HARTMANN et al., 1995b; VAHLENKAMP 

et al., 1995; ARAI et al., 2002; BISSET et al., 2002), abacavir (BISSET et al., 

2002) didanosine (REMINGTON et al., 1991; TANABE-TOCHIKURA et al., 

1992; GOBERT et al., 1994; REMINGTON et al., 1994; SMYTH et al., 1994; 

MEDLIN et al., 1996; ZHU et al., 1996; SMITH et al., 1997; SMITH et al., 

1998), and stavudine (SMYTH et al., 1994; BALZARINI et al., 1996b), had been 

assessed in feline cell lines before. In those previous studies, the drugs showed 

low cytotoxicity, like in the present study where all investigated drugs were fairly 

non-toxic in PBM cell culture at clinically relevant plasma concentrations. 

Noticeable cytotoxic effects were only observed at doses higher than 10 M. 

Similar results for zidovudine and lamivudine were observed by Arai and 

coworkers. In that study toxicity in T-cell enriched PBM cells was observed at 

concentrations greater than 10 M for zidovudine and greater than 50 M for 

lamivudine (ARAI et al., 2002). Abacavir was the most toxic drug in the present 

study and was significantly more toxic than didanosine and amdoxovir. In a study 
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by Bisset and coworkers (2002) investigating the effects of abacavir, zidovudine, 

and lamivudine in CRFK cells, abacavir was also the most toxic NRTI. The 

concentration of drug required to inhibit cell proliferation by 50% was 22.9 µM 

for abacavir, compared with 216.8 µM for zidovudine and 170.5 µM for 

lamivudine.
 
However, the authors considered this difference and the resulting 

difference in the selectivity index not clinically relevant and claimed that this drug 

is suitable for use in cats (BISSET et al., 2002). In a study by Smyth and 

coworkers that assessed cytotoxic effects of several compounds (including 

didanosine, lamivudine, stavudine, and zidovudine) in feline lymphocytes, 

didanosine was the least toxic drug, which also corresponds to the findings in the 

present study (SMYTH et al., 1994). 

Cytotoxicity of each drug was tested at concentrations up to 500 µM in the present 

study. This is a very high concentration, which far exceeds the circulating 

concentrations that will be attained in cats when drugs are given at dosages that 

are typically administered to cats [as demonstrated for zidovudine (HARTMANN 

et al., 1995a), which is usually given at a dosage of 5 to 10 mg/kg, PO or SC, q 12 

h (LEVY et al., 2008) and results in a serum concentration of 20 to 30 M]. In 

addition, at high doses of drug, the concentration of dimethyl sulfoxide, the 

solvent for all NRTIs in the present and previous studies, was at its highest 

concentration, and is known to cause mild cytotoxic changes in feline PBM cells 

at similar concentrations (SMYTH et al., 1994). Even at these high concentrations 

of drug (500 µM) and dimethyl sulfoxide, cell viability was not completely 

suppressed by any of the test compounds in the present study. 

In the present study, the NRTIs amdoxovir, dexelvucitabine, and racivir were 

investigated for the first time for their cytotoxic effects in feline cells. The results 

indicated that cytotoxicity of these drugs did not differ significantly from that of 

the other test compounds, except for amdoxovir, which was significantly less 

toxic than abacavir. Low cytotoxicity in vitro, however, does not necessarily 

exclude toxicity in vivo. In a previous study on the pharmacokinetics of 

zidovudine in cats it was shown that a single IV infusion of 25 mg/kg, which 

achieved a plasma concentration of 100 M, was associated with acute, transient 

hemolysis (ZHANG et al., 2004). While in the present study only mild to 

moderate cytotoxicity was seen at concentrations of 100 M, the study by Zhang 

and coworkers showed that for zidovudine this plasma concentration is too high 
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for clinical use. A discrepancy between in vitro and in vivo toxicity has also been 

described for didanosine. It has low cytotoxicity against human cells in culture 

(and in feline PBM cells as demonstrated in the present study), yet it can cause 

acute pancreatitis and peripheral neuropathy when used at higher doses in HIV-

infected patients (DU et al., 1990; LAMBERT et al., 1990). More recently it has 

also been associated with the development of non-cirrhotic portal hypertension, a 

rare but increasingly reported serious liver complication of HIV-infected patients 

(CACHAY et al., 2011) and in January 2010 the FDA issued a safety 

announcement and updated the drug label for didanosine accordingly (CHANG et 

al., 2012). It has also been shown that didanosine treatment can cause sensory 

neuropathy (as detected by sophisticated testing methods) in experimentally FIV-

infected cats (ZHU et al., 2007), although the clinical relevance of this finding in 

cats naturally infected with FIV is not clear. Toxic effects on mitochondria in 

certain tissues have been associated with many NRTIs and this mechanism of 

mitochondrial changes appears to be involved in the development of NRTI-related 

adverse effects, although other pathophysiological mechanisms are likely to 

contribute as well (WHITE, 2001; ZHU et al., 2007). Amdoxovir also has little 

cytotoxicity against human cell lines, which corresponds with the finding for this 

drug in feline PBM cells in the present study.  

When compared with zidovudine, the other test compounds were not significantly 

more toxic. Therefore, it can be assumed that dosages that are tolerated for 

zidovudine in cats should also be tolerated for the other compounds. Zidovudine 

is usually used in cats at a dosage of 5 to 10 mg/kg every 12 hours. A 

pharmacokinetic study of zidovudine in cats showed that this dosage resulted in a 

maximum serum concentration of 20 to 30 M (HARTMANN et al., 1995a). This 

concentration did not induce noteworthy cytotoxicity in feline peripheral blood 

lymphocytes. Also in the present study, there was only minimal cytotoxicity in 

PBM cells at this concentration. Therefore, it can be assumed that this plasma 

concentration would also be safe for the other compounds evaluated in the present 

study, although pharmacological data from cats are not available for most of the 

drugs. 

In the second part of the present study, the anti-FIV efficacy of the nine test 

compounds was investigated in PBM cells. As the results of the first part of this 

study indicated that no cytotoxic effects were induced by any of the test 
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compounds up to a concentration of 10 M, this was set as the maximal 

concentration to be investigated when assessing the antiviral efficacy of the test 

compounds. In addition, 10 M is a concentration which is attained in a cat’s 

plasma when administering zidovudine at the routinely used dosage of 5 to 10 

mg/kg every 12 hours PO or SC (HARTMANN et al., 1995a). Therefore it was 

considered useful to compare the antiviral efficacy of the test compounds at this 

concentration.  

Dose response curves showed that all drugs induced a concentration-dependent 

reduction of FIV replication; however, none of the drugs achieved 50% reduction 

of virus replication at the highest concentration (10M) investigated. No 

significant difference in antiviral efficacy among the test compounds was detected 

when they were compared at the highest concentration of 10 M; therefore, all 

drugs can be considered comparable in their antiviral efficacy against FIV. The 

FDA-approved NRTIs lamivudine (SMYTH et al., 1994; MEDLIN et al., 1996; 

SMITH et al., 1997; SMITH et al., 1998; MCCRACKIN STEVENSON and 

MCBROOM, 2001; ARAI et al., 2002; BISSET et al., 2002) zidovudine (NORTH 

et al., 1989; REMINGTON et al., 1991; TANABE-TOCHIKURA et al., 1992; 

GOBERT et al., 1994; REMINGTON et al., 1994; SMYTH et al., 1994; 

HARTMANN et al., 1995b; VAHLENKAMP et al., 1995; MEDLIN et al., 1996; 

ZHU et al., 1996; SMITH et al., 1997; SMITH et al., 1998; MCCRACKIN 

STEVENSON and MCBROOM, 2001; ARAI et al., 2002; BISSET et al., 2002; 

VAN DER MEER et al., 2007), abacavir (BISSET et al., 2002), didanosine 

(REMINGTON et al., 1991; TANABE-TOCHIKURA et al., 1992; GOBERT et 

al., 1994; REMINGTON et al., 1994; SMYTH et al., 1994; MEDLIN et al., 1996; 

ZHU et al., 1996; SMITH et al., 1997; SMITH et al., 1998), stavudine 

(REMINGTON et al., 1991; GOBERT et al., 1994; REMINGTON et al., 1994; 

SMYTH et al., 1994; BALZARINI et al., 1996b; ZHU et al., 1996; SMITH et al., 

1997; SMITH et al., 1998) and emtricitabine (SMITH et al., 1997; SMITH et al., 

1998; MCCRACKIN STEVENSON and MCBROOM, 2001) have been assessed 

previously for their anti-FIV efficacy in different feline cell lines. To our 

knowledge, the present study assessed the anti-FIV activity of amdoxovir, 

dexelvucitabine and racivir for the first time.  

FIV-pPPR, a pathogenic molecular clone of FIV, was used for the infection of 

PBM cells. This clone was developed by Phillips and coworkers (1990) and is 
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derived from a FIV isolate from a cat from the San Diego, California area 

(PHILLIPS et al., 1990). This clone productively infects PBM cells, however not 

CRFK or G355-5 cells. The immunologic and neurologic abnormalities induced 

by this molecular clone have been characterized in specific pathogen-free (SPF) 

cats (PHILLIPS et al., 1996). General clinical signs associated with infection were 

lymphadenopathy, oral ulceration, rough hair coat, and conjunctivitis. During 

acute infection, plasma antigenemia, viremia, inversion of the CD4
+
 to DC8

+
 T-

cell ratio and reduced CD4
+
 cell counts can be observed. Later in infection, an 

increase in the antibody titer and decrease in viral load occurs. Specific 

neurological changes found in experimentally infected cats included hind limb 

paresis, delayed righting and pupillary light reflexes, behavioral changes, delayed 

visual and auditory evoked potentials, decreased spinal and peripheral nerve 

conduction velocities, and altered sleep patterns (PHILLIPS et al., 1996).  

McCrackin Stevenson and McBroom (2000) showed that in PBM cells, FIV-

pPPR behaves similarly to FIV-Maxam, a natural FIV isolate, and that results are 

therefore applicable to natural FIV infection (MCCRACKIN STEVENSON and 

MCBROOM, 2001). However, a first-pass virus derived from a molecular clone is 

a more homogenous viral population, compared with a natural isolate. McCrackin 

Stevenson and McBroom (2000) showed that the susceptibility to lamivudine of 

FIV-Maxam was higher than that of FIV-pPPR and concluded that results of 

studies on the susceptibility of FIV-pPPR to NRTIs might overestimate the 

resistance of FIV populations found in naturally infected cats to these drugs 

(MCCRACKIN STEVENSON and MCBROOM, 2001).  

Among the previous studies of lamivudine, zidovudine, abacavir, didanosine, 

stavudine, and emtricitabine, antiviral efficacy against FIV was demonstrated 

irrespective of the use of different cell culture systems. As mentioned above, 

considerable differences in the antiviral potency of certain drugs were observed, 

depending on the in vitro cell system in which they were assessed. When 

comparing results of different studies, the cell culture system used has to be taken 

into consideration, and comparison of a newly investigated drug with drugs of 

known in vitro efficacy (eg, zidovudine) is more useful than just comparison of 

EC50 values.  

An unexpected finding in the present study was the failure of all test compounds 

to achieve a 50% reduction in virus replication at a concentration of 10 M. In 
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previous studies, much lower concentrations were required to induce 50% virus 

inhibition (GOBERT et al., 1994; VAHLENKAMP et al., 1995; BALZARINI et 

al., 1996b; MCCRACKIN STEVENSON and MCBROOM, 2001; BISSET et al., 

2002). There are several possible explanations for this. In the present study, 

optical density (OD) readings generated by supernatants of uninfected PBM cells 

were not determined. These background OD readings were therefore not 

subtracted from the readings of the plate wells containing infected cells. This 

might have led to an underestimation of the percentage reduction in p24 antigen 

concentration achieved in plate wells treated with the test compounds and might 

explain, at least in part, why reduction of viral replication by 50% was not 

achieved. Differences in FIV strains might also partly explain this finding. 

However, McCrackin Stevenson and McBroom (2000) used both the same cell 

system and virus and found EC50 values for zidovudine, lamivudine, and 

emtricitabine that were much lower than 10 M (MCCRACKIN STEVENSON 

and MCBROOM, 2001). Gobert and coworkers (1994) made a similar 

observation; the EC50 values for zidovudine against two FIV strains detected in a 

previous study in their laboratory (REMINGTON et al., 1991) were higher than 

the values determined in the later study (GOBERT et al., 1994). They considered 

it likely that these differences were related to variations in the batches of fetal 

bovine serum used in the experiments. As mentioned above, the molecular clone 

FIV-pPPR is less susceptible to lamivudine and possibly other NRTIs than a 

natural FIV isolate (FIV-Maxam) (MCCRACKIN STEVENSON and 

MCBROOM, 2001). This could also, to some degree, account for the need of 

higher drug concentrations to reach 50% virus inhibition. However, independent 

of the system used, the outcome of the present study was that the antiviral 

efficacies of all drugs investigated were comparable. 

Ideally, a drug that is considered for in vivo testing should be effective and have 

very low toxicity. However, the limiting factor as to whether a NRTI other than 

zidovudine should be considered for in vivo testing might be the drug’s associated 

cytotoxicity rather than its ability to maximally suppress viral replication.  

A limitation of the present study was that EC50 values could not be reported for 

the test compounds because the highest drug dose investigated did not achieve a 

50% reduction of virus replication. However, comparison of the test compounds 

at the highest dose investigated was nevertheless considered useful because it 
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allowed comparison of newly investigated drugs with drugs that had been 

previously tested in feline cell cultures at a concentration which is clinically 

relevant. 

As mentioned above, single-agent therapy is no longer recommended for the 

treatment of HIV/AIDS for a number of reasons, one being the development of 

drug-resistant mutations of the virus. Mutations as a result of treatment with 

various NRTIs have been described in HIV-infected individuals (LARDER et al., 

1989; FITZGIBBON et al., 1992; RICHMAN, 1995; SCHUURMAN et al., 1995; 

KURITZKES, 1996). As antiviral therapy in FIV-infected cats is still uncommon, 

there is much less information available for FIV. Zidovudine is the only 

antiretroviral drug that has been assessed thoroughly for its anti-FIV activity in 

vitro as well as in vivo and it has been shown that drug-resistant mutants develop 

both in vitro (REMINGTON et al., 1991; SMITH et al., 1998; MCCRACKIN 

STEVENSON and MCBROOM, 2001) and in naturally FIV-infected cats treated 

with zidovudine for over five years (MARTINS et al., 2008). It would be 

advantageous to have additional drugs available which have proven effective and 

safe in vitro and which could be evaluated in vivo for their use as an alternative to 

zidovudine in cats with viral resistance to this drug or for the use in combination 

with zidovudine in an attempt to delay the development of drug-resistant mutants.  

There are well known adverse effects of zidovudine treatment in cats, such as 

development of dose-dependent non-regenerative anemia and neutropenia, which 

can necessitate cessation or interruption of zidovudine therapy (HARTMANN et 

al., 1992; HARTMANN et al., 1995a; ARAI et al., 2002). In the treatment of 

HIV/AIDS it has been shown that combination treatment allows reduction of 

individual drug dosages which can limit the toxic side effects (DE CLERCQ, 

2009). This could be a further advantage of combination treatment in FIV-infected 

cats, in addition to delaying the development of drug-resistant viral mutations. 

The combination of two or three NRTIs against FIV has been assessed in two 

studies (ARAI et al., 2002; BISSET et al., 2002). Bisset and coworkers (2002) 

showed that FIV replication in CRFK cells can be inhibited in a synergistic 

manner by the combined usage of zidovudine, lamivudien and abacavir (BISSET 

et al., 2002).  

Arai and coworkers (2002) showed that the combination of zidovudine and 
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lamivudine had additive to synergistic effects against FIV in primary PBM cells, 

however not in chronically infected cell lines. In a second, in vivo part of that 

study chronically FIV-infected cats were initially treated with a high dose of 20 

mg/kg/drug PO every 12 hours which had to be lowered to 10 mg/kg/drug every 

12 hours after 4 weeks due to the development of side effects (anemia, fever). The 

total length of treatment was 8 weeks. Despite the relatively high doses, compared 

to what is routinely used for zidovudine in the field, this combination treatment 

regimen did not result in statistically significant differences in either the FIV load 

in PBM cells, anti-FIV antibody titer, CD4/CD8 ratio, or CD4
+
 and CD8

+
 cell 

counts compared to the control group. The authors concluded that 

zidovudine/lamivudine combination treatment in chronically FIV-infected cats is 

not as effective as in HIV-infected patients (ARAI et al., 2002). It is however 

known from previous studies of naturally FIV-infected cats that even lower doses 

of zidovudine monotherapy can have beneficial clinical effects such as 

improvement of stomatitis, and clinical condition scores (HARTMANN et al., 

1992; HART and NOLTE, 1995; HARTMANN et al., 1995a) and reduced 

severity of neurological signs (LEVY et al., 2008). The experimentally infected 

cats in the study by Arai and coworkers (2002) however did not show any 

abnormal clinical signs prior to combination treatment (ARAI et al., 2002) and 

therefore, it is impossible to draw any conclusions as to whether this drug 

combination, despite not improving virological or immunological parameters, 

might have beneficial clinical effects like previously described for zidovudine 

monotherapy.  

Although it is difficult to make recommendations about clinical treatment based 

only on in vitro data, the findings of the present study have suggested that further 

investigation of didanosine in the treatment of cats naturally infected with FIV is 

warranted. In a study assessing cytotoxic effects of 18 antiviral agents on feline 

lymphocytes, didanosine had  the least toxicity (SMYTH et al., 1994), 

corresponding to the findings in the present study. In addition, only one of the 

other eight NRTIs tested in the present study had greater in vitro efficacy than 

didanosine. The combined profile of low cytotoxicity and relative efficacy, 

compared with characteristics of other NRTIs used in the assays performed in the 

present study, suggests that didanosine might be an interesting candidate drug for 

further in vivo testing either as a sole agent or in combination with zidovudine. In 
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fact, monotherapy with didanosine (33 mg/kg, PO, every 24 hours from 6 to 12 

weeks after infection) in neonatal kittens infected with FIV resulted in 

improvements in multiple variables, compared with findings in untreated kittens, 

including reduction in plasma viral load, significant improvement in the animals’ 

neurobehavioral performance, and attenuation of neuroinflammation (ZHU et al., 

2009). There is also support for treatment of HIV-infected humans with a 

combination of zidovudine and didanosine, which resulted in an overall reduction 

in mortality rate of 32%, compared with results following zidovudine 

monotherapy (DELTA COORDINATING, 2001). Logical next candidates for in 

vivo testing of potential novel treatments for FIV-infected cats would include the 

three newly evaluated NRTIs, amdoxovir, dexelvucitabine, and racivir.  

 

The results of the present study indicate that amdoxovir, dexelvucitabine, and 

racivir have acceptable cytotoxicity profiles in feline PBM cells, compared with 

those of other NRTIs licensed for the treatment of HIV in humans. However, their 

anti-FIV efficacies were less (albeit not significantly) than those of five of the six 

FDA-approved NRTIs (didanosine, emtricitabine, lamivudine, stavudine, and 

zidovudine) that they were compared to. On the basis of the data obtained in the 

present study, amdoxovir, dexelvucitabine, and racivir appear to be safe treatment 

options for future studies investigating their potential use in FIV-infected cats.  
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V. SUMMARY 

The purpose of the study reported here was to compare the antiviral efficacy 

against feline immunodeficiency virus (FIV) and cytotoxicity in feline peripheral 

blood mononuclear (PBM) cells of 9 nucleoside reverse transcriptase inhibitors 

(NRTIs), three of which had not been evaluated against FIV in feline cells before. 

PBM cells were isolated from the blood of three specific pathogen-free (SPF) 

cats.  

The cytotoxic effects of the test compounds were determined by colorimetric 

quantification of a formazan product resulting from bioreduction of a tetrazolium 

reagent by viable PBM cells. Each compound was tested in 12 concentrations 

ranging from 0.001 to 500 M. Uninfected cells from one SPF cat were used in 

these assays. PBM cells (from all three SPF cats) were infected with the molecular 

clone FIV pPPR and the antiviral efficacy of the test compounds was assessed 

using a FIV p24 antigen capture enzyme-linked immunosorbent assay. Each 

compound was tested in 5 concentrations ranging from 0.1 to 10 M. 

Cytotoxic effects in feline PBM cells were observed only at concentrations over 

10 M for all 9 NRTIs. Comparison of the cytotoxic effect at the highest 

concentration investigated (500 M) revealed that didanosine and amdoxovir 

were significantly less toxic than abacavir. As no cytotoxicity was noted up to a 

concentration of 10 M, this was set as the highest concentration for the second 

part of this study investigating the anti-FIV efficacy of the test compounds. All 

drugs induced a dose-dependent reduction of FIV replication. When compared at 

the highest concentration investigated, there was no significant difference in the 

antiviral efficacy among the test compounds. The EC50 could not be determined as 

none of the test compounds achieved 50% viral inhibition.  

The evaluated NRTIs had low cytotoxicity against feline PBM cells and appear to 

be safe options for further in vivo evaluation for the treatment of FIV-infected 

cats. There was no evidence suggesting that the newly evaluated compounds 

would be superior to the existing NRTIs for reducing the FIV burden of infected 

cats.  
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VI. ZUSAMMENFASSUNG 

Das Ziel der vorliegenden Studie war es, die antivirale Wirksamkeit gegen das 

feline Immunschwächevirus (FIV) und die Zytotoxizität in felinen mononukleären 

Zellen des peripheren Blutes von neun nukleosidischen Reverse-Transkriptase-

Inhibitoren (NRTI) zu vergleichen. Die in vitro Wirksamkeit gegen FIV von drei 

dieser NRTI war zuvor noch nicht in felinen Zellen untersucht worden. Die 

mononukleären Zellen des peripheren Blutes wurden aus dem Vollblut von drei 

spezifisch-pathogenfreien (SPF) Katzen gewonnen.  

Der zytotoxische Effekt der Testmedikamente wurde durch die kolorimetrische 

Quantifikation eines Formazanprodukts nachgewiesen, das bei der Bioreduktion 

eines Tetrazoliumreagenz durch lebende mononukleären Zellen des peripheren 

Blutes entsteht. Jedes Medikament wurde in zwölf Konzentrationen untersucht, 

die von 0,001 bis 500 M reichten. Für diese Versuche wurden nicht-infizierte 

Zellen einer SPF Katze verwendet. Mononukleären Zellen des peripheren Blutes 

(aller SPF Katzen) wurden mit dem molekularen Klon FIV pPPR infiziert und die 

antivirale Wirksamkeit der Testmedikamente mithilfe eines FIV-p24-Antigen 

Enzyme-Linked Immunosorbent Assay nachgewiesen. Jedes Medikament wurde 

in fünf Konzentrationen untersucht, die von 0,1 bis 10 M reichten.  

Bei allen neun NRTI wurde ein zytotoxischer Effekt in felinen mononukleären 

Zellen des peripheren Blutes nur bei Konzentrationen über 10 M festgestellt. Der 

Vergleich des zytotoxischen Effekts in der höchsten untersuchten Konzentration  

(500 M) zeigte, dass Didanosin und Amdoxovir signifikant weniger toxisch 

waren als Abacavir. Da bis zu einer Konzentration von 10 M kein zytotoxischer 

Effekt feststellbar war, wurde diese Konzentration als die höchste für den zweiten 

Teil dieser Studie festgelegt, in dem die Wirksamkeit gegen FIV untersucht 

wurde. Alle Medikamente führten zu einer dosisabhängigen Reduktion der FIV-

Vermehrung. Bei einem Vergleich der höchsten eingesetzten Konzentrationen 

aller Testmedikamente konnte kein signifikanter Unterschied in deren antiviraler 

Wirksamkeit festgestellt werden. Die 50 % effektive Konzentration konnte nicht 

bestimmt werden, da keines der Testmedikamente die Virusreplikation zu 50 % 

einschränkte.  

Die getesteten NRTI hatten geringe Zytotoxizität in felinen mononukleären Zellen 
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des peripheren Blutes und scheinen sichere Kandidaten für die weitere in vivo 

Untersuchung zur Therapie von FIV-infizierten Katzen darzustellen. Es gab 

keinen Hinweis darauf, dass die Medikamente, die hier zum ersten Mal untersucht 

wurden, die Viruslast von FIV-infizierten Katzen besser senken würden als die 

existierenden NRTI.   
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