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I 

Abstract 

A novel and interesting approach to detect microfluidic dynamics at a very small scale is given by 

optically trapped particles that are used as optofluidic sensors for microfluidic flows. These flows 

are generated by artificial as well as living microobjects, which possess their own dynamics at the 

nanoscale.  

Optical forces acting on a small particle in a laser beam can evoke a three dimensional trapping of 

the particle. This phenomenon is called optical tweezing and is a consequence of the momentum 

transfer from incident photons to the confined object. An optically confined particle shows 

Brownian motion in an optical tweezer, but is prevented from long term diffusion. A careful 

analysis of the motion of the confined particle allows a precise detection of microfluidic flows 

generated by an artificial or living source in the close vicinity of the particle. Thus, the particle can 

be used as a sensitive optofluidic detector. For this aim, several optical tweezers at different 

wavelengths are integrated into a dark-field microscope, combined with a high speed camera, to 

achieve a precise detection of the motion of the center-of-mass of the trapped particle.   

With this unique experimental system, a gold sphere is used as an optofluidic nanosensor to 

analyze for the first time the microfluidic oscillations generated by a biological sample. Here, a 

freely swimming larva of Copepods serves as the living source of flow. However, even if the 

trapping laser wavelength is off-resonant to the plasmon resonance of the flow detector, a finite 

heating of the gold nanoparticle occurs which reduces the sensitivity of detection. To increase the 

sensitivity of the optofluidic detection, a non-absorbing, dielectric microparticle is introduced as 

the optofluidic sensor for the microflows. It enables a quantitative, two dimensional mapping of 

the vectorial velocity field around a microscale oscillator in an aqueous environment. This paves 

the way for an alternative and sensitive detection approach for the microfluidic dynamics of 

artificial and living objects at a very small scale. To this aim and as a first step, an optically 

trapped microhelix serves as a model system for the mechanical and dynamical properties of a 

living microorganism. An optical tweezer is implemented for initiating a light-driven rotation of 

the chiral microobject in an aqueous environment and the optofluidic detection of its flow field is 

established. The method is then adopted for the measurement of the microfluidic flow generated 

by a biological system with similar dynamics, in this case a bacterium. The experimental approach 

is used to quantify the time-dependent changes of the flow generated by the flagella bundle 

rotation at a single cell level. This is achieved by observing the hydrodynamic interaction between 

a dielectric particle and a bacterium that are both trapped next to each other in a dual beam optical 

tweezer. This novel experimental technique allows the extraction of quantitative information on 

bacterial motility without the necessity of observing the bacterium directly. These findings can be 

of great relevance for an understanding of the response of different strains of bacteria to 

environmental changes and to discriminate between different states of bacterial activity.   

 





 

 

III 

Kurzfassung 

Eine neue und interessante Möglichkeit mikrofluidische Dynamiken auf kleinster Skala zu 

untersuchen bieten optisch gefangene Teilchen, welche als optofluidische Sensoren für 

mikrofluidische Strömungen genutzt werden. Diese Strömungen können sowohl durch künstliche 

als auch lebende Mikroobjekte mit ihren nanoskaligen Eigendynamiken erzeugt werden.  

Optische Kräfte, die innerhalb eines Laserstrahls auf ein kleines Partikel wirken, können ein 

dreidimensionales Einfangen des Partikels hervorrufen. Dieses Phenonmen wird optische Pinzette 

genannt und ist eine Folge des Impulsübertrages von einfallenden Photonen auf das gefangene 

Objekt. Ein optisch gefangener Partikel zeigt Brownsche Bewegung in einer optischen Pinzette, 

wird aber duch diese an einer weitreichenden Diffusion gehindert. Eine sorgfältige Analyse der 

Bewegung des eingefangenen Partikels ermöglicht eine präzise Detektion mikrofluidischer 

Strömungen, welche in unmittelbarer Nähe des Teilches durch eine künstliche oder biologische 

Quelle erzeugt werden. Damit kann das Teilchen als senstiver optofluidischer Detektor verwendet 

werden. Zu diesem Zweck werden mehrere optische Pinzetten mit unterschiedlichen Wellenlängen 

in ein Dunkelfeldmikroskop integriert um, verbunden mit einer Hochgeschwindigkeitskamera, 

eine genaue Erfassung der Mittelpunktsbewegung des eingefangenen Partikels zu erzielen.  

Mit diesem einzigartigen Versuchssystem wird zunächst eine Goldsphäre als optofluidischer 

Nanosensor verwendet, um erstmalig mikrofluidische Oszillationen, die durch eine biologische 

Probe erzeugt werden, zu erfassen. Hierbei dient eine frei schwimmende Larve der Copepoden als 

lebendige Strömungsquelle. Jedoch erfolgt ein endliches Heizen des Goldnanopartikels selbst 

wenn die Wellenlänge des Lasers nicht resonant zur Plasmonresonanz des Strömungsdetektors ist, 

was die Sensitivität der Detektion vermindert. Um die Empfindlichkeit der optofluidischen 

Detektion zu erhöhen, wird ein nicht absorbierendes, dielektrisches Mikropartikel als 

optofluidischer Sensor für mikrofluidische Strömungen benutzt. Dieser ermöglicht eine 

quantitative, zwei dimensionale Abbildung des vektoriellen Geschwindigkeitsfeldes um einen 

Mikrooszillator in wässriger Umgebung. Dies ebnet den Weg für eine alternative und präzise 

Detektionsmethode der mikrofluidischen Dynamiken künstlicher und lebender Objekte auf 

kleinster Skala. Dafür und in einem ersten Schritt, dient eine optisch gefangene Mikrohelix als 

Modelsystem für die mechanischen und dynamischen Eigenschaften eines lebenden 

Mikroorganismus. Eine optische Pinzette wird verwendet um eine lichtgesteuerte Drehung des 

chiralen Mikroobjekts in einer wässrigen Umgebung zu initiieren. Die optofluidische Detektion 

mit einer optisch angetriebenen Mikrohelix als Strömungsquelle wird etabliert. Diese Methode 

wird dann für die Messung der mikrofluidischen Strömung, die durch ein ähnliches biologisches 

System, ein Bakterium, generiert wird angewandt. Die experimentelle Herangehensweise wird 

genutzt, um die zeitabhängige Änderung der Strömung, die von der Rotation des Flagellenbündels 

des Bakteriums erzeugt wird, zu quantifizieren. Dies wird durch eine Beobachtung der 

hydrodynamischen Wechselwirkung zwischen einem dielektischen Partikel und einem Bakterium, 

welche nebeneinander in einer Zweistrahl-Pinzette eingefangen sind, erreicht. Die neuartige 

experimentelle Technik ermöglicht die Extraktion von quantitativen Informationen über die 

bakterielle Beweglichkeit ohne die Notwendigkeit das Bakterium direkt beobachten zu müssen. 

Diese Informationen können von hoher Bedeutung für das Verständnis der Reaktion verschiedener 

Bakterienstämme auf Umweltveränderungen und für die Unterscheidung zwischen verschiedenen 

Zuständen der bakteriellen Aktivität sein. 
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1. Introduction 

In the last few years, an ever increasing use of optical tweezers as sensitive tool for the 

manipulation and observation of isolated or few micro- and nanoobjects has been 

reported 
1-8

. Optical tweezers have been applied to exert calibrated forces on nano- and 

microparticles with a variety of applications ranging from optical stamping 
9, 10

 to 

microfabrication 
11, 12

. More recently, optically trapped gold nanoparticles and single 

molecules were shown to be sensitive detection tools for acoustic waves 
13, 14

.  

On the other hand, microfluidic flows reveal special properties and are particularly 

characterized by laminar flow. The occurrence of special physical phenomena in 

microfluidics are of high relevance for diverse scientific areas, i.e. bioanalysis, optics or 

information technology 
15

. Thus, it is of great importance to use the advantages of 

hydrodynamics at low Reynolds numbers and to push forward the development of the 

detection possibilities of microfluidic flows that result from artificial and biological 

microobjects.  

The latter reveal very complex motion behaviors at the nanoscale which cannot be 

detected easily since resolution difficulties and optical detection limits are encountered. 

Typical remedial measurements are fluorescence microscopy to investigate 

microbiological dynamics which in turn can influence the natural behavior of the 

microorganism 
16

. An analysis of the microfluidics around an oscillating micro- or 

nanobiological source offers an alternative experimental approach to the commonly used 

optical detection methods. For the realization of this idea, fluidic sensors as existing to 

date need to be fine-tuned for this specific application, since an ultrasensitive detection of 

the hydrodynamics and their detailed understanding is eminently important for this aim. 

In this work, trapped particles serve as microfluidic sensors. Through the investigation of 

their motion within the optical trap influenced by a flow field generated in their vicinity, 

conclusions can be drawn on the movement of the object responsible for the flow field. 

This can be a living microorganism with its own dynamics at the nanoscale, or an 

artificial object.  
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The final goal of this work is the analysis and characterization of the microfluidic 

dynamics generated by a single bacterial cell by using an optofluidic sensor bead trapped 

in an optical tweezer. From that, information on the bacterial mobility can be obtained 

that cannot be extracted from a common investigation with dark-field microscopy.  

In Chapter 2, the fundamental theoretical background necessary to understand this thesis 

is presented. In general, optically trapped particles are used as optofluidic sensors for 

microfluidic flows. In the first part of this Chapter, the fundamentals of optical forces 

acting on a small particle are explained. Optical trapping occurs due to momentum 

transfer from the laser beam to the confined object. In the second section, the motion of a 

trapped particle is described. The third part focuses on hydrodynamics at low Reynolds 

number, which are relevant for the regimes regarded in this work. The creeping motion 

equations are derived and the physical cause of microbiological swimming at low 

Reynolds number is discussed. Finally, the mechanical and dynamical properties of 

bacterial cells are explained. An introduction to different cell structures and to filament 

rotation as locomotion mechanism is given. 

In Chapter 3, the methods and materials used in this work are defined and characterized. 

The first section of this Chapter describes the integration of several optical tweezers at 

different wavelengths into a dark-field microscope. The optical setup was constructed for 

this thesis and in combination with a high speed camera it was possible to achieve a very 

precise detection of the performed experiments. In the second part, the chemical 

preparation of the bacteria cells that served as living sources of flow is described. For the 

measurement of the optical density of the bacteria cultures an UV/Vis spectrometer was 

used. In the next part, the preparation of the microscope glass slides is presented briefly 

and the particles used as microfluidic flow detectors are characterized. The last section 

contains information about single particle-tracking and data analysis. Fast Fourier 

transformation of the time-dependent x- and y-displacement of the flow source and of the 

optofluidic sensor is the fundamental concept of data evaluation. 

Chapter 4 contains the results that were achieved in this work and which led to the final 

aim to investigate the microfluidic dynamics of a single bacterial cell on the nanoscale.  

In section 4.1, I will show how a single gold sphere can be used as an optofluidic 

nanosensor to detect for the first time the dynamics of a microbiological sample. To avoid 
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an enhancement of thermal fluctuations in the system and thus to increase the sensitivity 

of optofluidic detection, part 4.2 seizes the idea to use a non-absorbing dielectric 

microparticle as optofluidic sensor of oscillatory flows. It allows a quantitative mapping 

of the vectorial velocity field in two dimensions around a microscale oscillator in water. 

The optofluidic method introduced in this Chapter paves the way for in-situ 

characterization of fast mixing microscale devices and for new detection methods able to 

provide location and recognition of moving sources that can be applied to both artificial 

and living microobjects with their own dynamics at the nanoscale. In a first step, an 

optically confined and rotating microhelix is used in section 4.3 to model the mechanical 

and dynamical properties of the living organism. The Chapter describes the use of an 

optical tweezer for the generation of a light-driven rotation of a chiral microobject in an 

aqueous environment. A rotating helical microstructure serves as a model system for the 

mechanical and dynamical properties of a living bacterial cell. The focus of investigation 

in this section is the establishement of the optofluidic detection method with an optically 

driven microhelix as source of flow. Finally, in part 4.4, I will report for the first time on 

a highly sensitive approach to measure and quantify the time-dependent changes of the 

flow generated by the flagella bundle rotation of a single bacterial cell. This is achieved 

by observing the interaction between a silica particle and a bacterium, which are both 

trapped next to each other in a dual beam optical tweezer. 
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2. Fundamentals 

 

In this Chapter, the fundamental theoretical background necessary to understand this 

thesis is presented. In general, optically trapped particles are used as optofluidic sensors 

for microfluidic flows that are inter alia generated by individual bacterial cells.  

In the first part of this Chapter, the fundamentals of optical forces acting on a small 

particle are explained. Optical trapping occurs due to momentum transfer from the laser 

beam to the confined object. In the second section, the motion of a trapped particle is 

described. An optically confined particle shows Brownian motion within a harmonic 

trapping potential that prevents the particle from long term diffusion. The third part 

focuses on hydrodynamics at low Reynolds number which are relevant for the regimes 

regarded in this thesis. The creeping motion equations are derived and the physical cause 

of microbiological swimming at low Reynolds numbers is discussed. Finally, the 

mechanical and dynamical properties of bacterial cells are explained. An introduction to 

different cell structures and to filament rotation as locomotion mechanism is given. 
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2.1 Optical forces  

In 1970, Arthur Ashkin published his work on the impact of light on microparticles 
1
.    

He reported about the observation that microspheres are drawn toward a laser beam axis 

and are then accelerated along the beam propagation direction (Figure 2.1 (a)). In the 

subsequent step, he implemented two counter propagating laser beams and succeeded to 

trap microspheres in the symmetry point of the lasers in 3D (Figure 2.2 (b)) 
1
.  

 

Figure 2.1: The pioneering work of A. Ashkin launched many optical tweezer applications.         

(a) microparticles are pushed along the beam propagation of a focused laser beam and are 

observed with a microscope M. (b) Two counter propagating laser beams rendered it possible to 

trap microspheres in their symmetry point in three dimensions. (Taken from  1). 

Furthermore, A. Ashkin observed that even a single strongly focused laser beam allows a 

3D trapping of microparticles 
2
. Based on Ashkin’s pioneering work 

17
, several 

experimental approaches for the implementation of so called optical traps have been 

established: the optical trap due to two counter propagating laser beams, the single beam 

gradient trap, and optical tweezers that are realized by fiber optics 
18

.  
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Different theories that describe the physical cause of the trapping phenomenon have been 

developed in literature. In general terms, optical trapping is a consequence of momentum 

transfer from light to an object. The applicability of a certain theory depends on the ratio 

between the characteristic length (radius) of the particle a and the vacuum wavelength λ 

of the trapping beam as well as on its focusing. Furthermore, the theoretical description 

depends on the light-matter interaction due to the material properties of the trapped 

object.  

Three different size regimes for the ratio between the particle radius a and the trapping 

wavelength λ are considered (Figure 2.1) 
19, 20

: 

 The Rayleigh regime:  

In this regime, the particle size has a sub-wavelength dimension with a radius          

a << 
𝜆

20
. The 1

st 
order dipole approximation of the Lorenz Mie theory can be used 

for the calculation of optical forces (Figure 2.2 (a)) 
19

.  

 The ‘Generalized Lorenz Mie theory’ (GLMT) allows for the description of 

forces acting on an optically trapped particle with a radius a at the order of λ 

(Figure 2.2 (b)) 
21

.  

 For objects with radii 𝑎 ≫ 10 𝜆, the ray or geometric optics approach can be used 

for the explanation of optical forces (Figure 2.2 (c)). This theory was already 

proposed by A. Ashkin 
2, 38.

  

 

The forces acting on an optically trapped particle do not only depend on the ratio between 

the radius of the particle and the respective trapping wavelength, but also on the physical 

interaction between the incident electromagnetic field and the trapped object due to its 

material properties. The polarizability of a material gives information about this light-

matter interaction. The polarizability 𝛼 of a particle is connected to the refractive index 𝑛 

by the dielectric (response) function 𝜀(𝜔).  
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Figure 2.2: Schematic of three particle sizes in the electromagnetic field of a focused Gaussian 

laser beam with wavelength λ: (a) Rayleigh regime a << λ/20. Optical forces can be described by 

the 1st order of the Lorenz Mie theory. (b) GLMT regime a ~ λ. Optical forces are derived from the 

assumption of a focused Gaussian beam, Fresnel diffracted on the sphere. (c) Ray optics 

regime 𝑎 ≫ 10𝜆.  In this regime, the geometrical optics approach is valid. 

 

In this thesis, optically trapped dielectric microparticles as well as gold nanoparticles 

were used as optomechanical detectors of microfluidic flow patterns. In order to 

understand the light-matter interaction between trapping beam and particle, the first 

section of this Chapter elucidates the polarizabilities of small gold and dielectric spheres.  

For the calculation of the optical forces confining a gold nanoparticle, the second part of 

this Chapter contains a summary of the Lorenz Mie theory with focus on the 1
st
 order 

(dipole) approximation. The forces are calculated in Chapter: Optical forces on a 

plasmonic nanoparticle. 

For the calculation of the optical forces acting on dielectric microparticles, the GLMT is 

needed. A summary of this theory and the calculation of the optical forces can be found in 

Chapter: Optical forces on a dielectric microparticle. 
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Polarizability of a homogeneous sphere 

The polarizability α of an object describes its reaction on an incident electric wave that 

has a frequency ω. The external electric field induces a polarization within the object. Its 

polarizability depends on:  

(1) the frequency-dependent dielectric function 𝜀(𝜔) of the object, and 

(2) the volume of the object. The polarizability volume of a sphere is 𝑉𝑠 =
4

3
𝜋𝑎3 with       

𝑎 being the radius of the sphere. 

For a homogenous, isotropic sphere in the Rayleigh regime, the polarizability 𝛼 can be 

derived from the electrostatic dipole approximation 
22, 23

. In this approximation, a static 

and uniform external electric field 𝑬 induces a dipole moment 𝒑 =  𝛼𝜀0𝜀𝑚𝑬  within the 

particle with the dielectric function of the medium 𝜀𝑚 and the vacuum permittivity        

𝜀0= 8.854 x 10
−12

 [F/m] 
23

. The polarizability 𝛼 of the sphere is then:  

𝛼 = 4𝜋𝑎3  
𝜀𝑠(𝜔)−𝜀𝑚(𝜔)

𝜀𝑠(𝜔)+2𝜀𝑚(𝜔)
                                                                                               (2.1.1) 

with the radius of the sphere a , the dielectric function of the sphere 𝜀𝑠(𝜔) and the 

surrounding medium 𝜀𝑚(𝜔) 
22, 23

. Equation 2.1.1 is of the same structure as the         

Clausius-Mossotti relation 
23

.  

The polarizability of Rayleigh spheres of certain material depends on their material 

specific response function. In this work, trapped gold and silicon dioxide particles were 

used as optofluidic detectors. Therefore the dielectric functions of these two materials 

will be discussed in the next two subchapters. 
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2.1.1.1 Response function and polarizability of a gold sphere 

When a gold structure is exposed to an incident electric field, free electrons in the            

sp-band are excited. The collective oscillation of the free electron gas and the damping 

due to collisions with the metal ions can be described by the Drude-Sommerfeld theory 
24

. 

This model derives the frequency-dependent, complex dielectric function of a gold  

sphere 𝜀𝑠(𝜔) as 
24, 25, 26

: 

𝜀𝑠(𝜔) =  𝜀∞ −
𝜔𝑝

2

𝜔2+𝑖Γ𝜔
=  𝜀′ + 𝑖𝜀′′                                                                              (2.1.2) 

with the plasma frequency 𝜔𝑝 =  
𝑁𝑒2

𝜀0𝑚𝑒
 of the resonant plasma oscillation of the free 

electron gas, the damping constant 𝛤, the electron density 𝑁, the electron mass 𝑚𝑒 and a 

correction term for the background permittivity of the lattice ions 𝜀∞. In the Drude-

Sommerfeld theory, interband transitions of electrons are neglected which also contribute 

to the dielectric function. For the experimental configurations in this work, no interband 

excitations are expected 
26

. Hence, the analytic expression given by the Drude-

Sommerfeld theory was used for the calculation of the polarizability. 

It is evident from equations 2.1.1 and 2.1.2 that the polarizability 𝛼 of a gold nanoparticle 

is wavelength dependent and complex:  

𝛼 = 𝛼′ + 𝑖𝛼′′                                                                                                               (2.1.3) 

with the real part 𝛼′ and the imaginary part 𝛼′′. 

For gold particles that do not satisfy the Rayleigh approximation, equation 2.1.1 can be 

expanded to: 

𝛼 =  
1 − 

1

10 
 (𝜀𝑠+𝜀𝑚) 𝑥2+ 𝑂(𝑥4)

(
1

3
 + 

𝜀𝑚
𝜀𝑠−𝜀𝑚

) − 
1

30
 (𝜀𝑠 + 10𝜀𝑚) 𝑥2 − 𝑖 

4 𝜋2 𝜀𝑚

3
2

3
  

𝑉

𝜆0
3 + 𝑂(𝑥4)

𝑉                                                 (2.1.4)        

with  𝑥 =  
𝜋𝑎

𝜆
, a being the radius of the particle and λ being the vacuum wavelength of the 

laser beam 
27

.  
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In this thesis, gold nanoparticles with a diameter of 60 nm and a trapping laser 

wavelength of 1064 nm were used, thus equation 2.1.1 served as a sufficient basis for the 

calculation of optical forces on the noble metal nanospheres (cp. Chapter: Optical forces 

on a plasmonic nanoparticle). 

 

2.1.1.2 Response function and polarizability of a silicon dioxide sphere 

In general, the polarizability α is a scalar for isotropic dielectric bodies 
19

. For a          

non-absorbing silicon dioxide sphere, the wavelength-dependent response function 𝜀𝑠(𝜔) 

can be estimated as:  

𝜀𝑠(𝜔) ≅  𝜀𝑠 =  𝑛𝑠𝑖𝑙𝑖𝑐𝑎
2 = 2.1                                                            (2.1.5) 

since the refractive index of silicon dioxide  𝑛𝑠𝑖𝑙𝑖𝑐𝑎
 = 1.45  can be taken as constant for a 

wavelength regime between 1 µ𝑚 < 𝜆 < 3 µ𝑚 of the incident wave 
19, 28

. The dielectric 

function for silicon dioxide is therefore real and frequency independent in this 

wavelength range. Inserting 2.1.5 in equation 2.1.1 gives the polarizability for a silicon 

dioxide sphere in the Rayleigh regime: 

𝛼 = 4𝜋𝑎3  
𝜀𝑠 (𝜔) − 𝜀𝑚 (𝜔)

𝜀𝑠 (𝜔) + 2𝜀𝑚 (𝜔)
= 4𝜋𝑎3  

𝑛 𝑟𝑒𝑙
2 − 1

𝑛 𝑟𝑒𝑙
2 + 2

                                                                (2.1.6) 

In equation 2.1.6, the relative index of refraction 𝑛𝑟𝑒𝑙 = 𝑛𝑠𝑖𝑙𝑖𝑐𝑎 𝑛𝑚⁄  with 𝑛𝑚 being the 

refractive index of the surrounding medium was used. For a silicon dioxide particle in 

water, the relative refractive index is 𝑛𝑟𝑒𝑙 =  1.45 1.33 = 1.09⁄  with 𝑛 𝑠𝑖𝑙𝑖𝑐𝑎 = 1.45 and 

𝑛 𝑤𝑎𝑡𝑒𝑟 = 1.33.    

In this work, silicon dioxide microparticles served as optofluidic sensors. Equation 2.1.6 

is valid for Rayleigh particles, but can be expanded for larger dielectric particles of 

arbitrary shape by means of a discrete-dipole approximation 
29

. 
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Lorenz Mie theory 

The interaction of light with a particle results in a momentum transfer from the light to 

the object due to absorption, scattering or emission of photons and due to the fact that 

electric dipoles are drawn toward the highest amplitude of the electromagnetic field 
19

. 

Momentum transfer is also the physical answer to question on the cause of optical 

trapping. 

The absorption and scattering of an incident planar electromagnetic wave by a 

homogenous and charge free sphere was already described by the theory of Gustav Mie, 

Ludvig Lorenz and Peter Debye finalized in 1908, the Lorenz Mie theory. In this 

theoretical approach, the planar incident electromagnetic wave is expanded in an infinite 

series of vector spherical harmonics that solve the wave equation 
22

. The scattered 

electromagnetic field and the field inside the sphere are expressed by a superposition of 

the electromagnetic normal modes of the spherical particle, each mode contribution 

weighted by a coefficient 
22

. 

Taking into account the boundary conditions, the electric field inside the sphere 𝑬𝑖 and 

the scattered electric field 𝑬𝑠 can be written as a superposition of the electromagnetic 

normal modes 𝑵𝑒,𝑙𝑛, 𝑴𝑜,𝑙𝑛 of the particle: 

𝑬𝑖 =  ∑ 𝐸𝑛 (𝑐𝑛𝑴𝑜,𝑙𝑛
∞
𝑛=1 −  𝑖𝑑𝑛𝑵𝑒,𝑙𝑛)                                                                        (2.1.7) 

𝑬𝑠 =  ∑ 𝐸𝑛 (𝑖𝑎𝑛𝑵𝑒,𝑙𝑛
∞
𝑛=1 −  𝑏𝑛𝑴𝑜,𝑙𝑛)                                                                        (2.1.8) 

The indices e and o stand for even and odd modes and  𝑛, 𝑙 ∈ ℕ. 𝐸𝑛 can be written as 

𝐸𝑛 = 𝑖𝑛𝐸𝑜 (2𝑛 + 1)/𝑛(𝑛 + 1) with 𝐸𝑜 being the peak electric field strength. 𝑐𝑛 and 𝑑𝑛 

are the coefficients for the field inside the particle. 𝑎𝑛 and 𝑏𝑛 are the scattering 

coefficients. The coefficients weight each mode in the superposition. The coefficients 𝑎𝑛 

describe the transversal magnetic (TM) modes (electric type wave) and the coefficients 

𝑏𝑛 the transversal electric (TE) modes (magnetic type wave). The corresponding internal 

and scattered magnetic fields can be calculated by taking the curl of equation 2.1.7 and 

2.1.8 
22

.  
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The first order of the normal modes of the particle (1
st
 order Lorenz Mie theory) is 

equivalent to the field radiated by an electric dipole: 

 𝐸𝑠 ≅ 𝐸1(𝑖𝑎1𝑁𝑒11 − 𝑏1𝑀𝑜11)                                                                                     (2.1.9) 

The 1
st
 order Lorenz Mie theory approximation is therefore also called dipole 

approximation 
22

. 

In the following subChapter the dipole approximation is used to calculate the optical 

forces acting on a Rayleigh sphere.  

 

2.1.1.3 Optical forces on a small particle 

In the Rayleigh scattering regime, the incident electromagnetic field of the focused 

Gaussian beam is considered to be planar. For the electromagnetic field scattered by a 

small particle, the 1
st
 order of the Lorenz Mie theory (equation 2.1.9) is valid. The          

1
st
 order of the normal modes of the particle characterize the field of a radiating dipole 

22
. 

The dipole moment can be expressed by   

𝒑(𝒓, 𝑡) = 𝜀𝑚𝛼𝑬(𝒓, 𝑡)                                                                                   (2.1.10) 

with the permittivity or dielectric function of the medium 𝜀𝑚 = 𝑛𝑚
2 𝜀0, the polarizability 

of the particle 𝛼, the refractive index 𝑛𝑚 of the medium and  𝜀0= 8.854 x 10
−12

 [F/m] as 

the vacuum permittivity 
19, 30

.  

For the derivation of the optical forces acting on a sub-wavelength sized spherical 

particle, the starting point is the Lorentz force 𝑭(𝒓, 𝑡) acting on a point charge 𝑞 moving 

with a velocity 𝒗 in an electromagnetic field 

𝑭 (𝒓, 𝑡) = 𝑞 (𝑬 (𝒓, 𝑡) + 𝒗 × 𝑩(𝒓, 𝑡)).                                           (2.1.11) 

𝑬 (𝒓, 𝑡) stands for the position- and time-dependent electric field and 𝑩(𝒓, 𝑡) represents 

the position- and time-dependent magnetic field 
30

.   
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A substitution of the point charge 𝑞 in equation 2.1.11 with the dipole moment 𝒑(𝒓, 𝑡) 

(equation 2.1.10) leads to an expression for the electromagnetic force: 

𝑭 (𝒓, 𝑡) = [𝒑(𝒓, 𝑡)𝛁] 𝑬 (𝒓, 𝑡) +
𝜕𝒑(𝒓,𝑡)

𝜕𝑡
 × 𝑩(𝒓, 𝑡)                             (2.1.12) 

Applying the vector identity (𝑬𝛁)𝑬 = 𝛁 (
𝑬2

2
) − 𝑬 × (𝛁 × 𝑬) and the Maxwell equation 

𝛁 × 𝑬 = −
𝜕

𝜕𝑡
𝑩  to formula 2.1.12, it can be written as: 

𝑭 (𝒓, 𝑡) =  𝛼𝜀𝑚 (
𝛁|𝑬(𝒓,𝑡)|2

2
) +  𝛼𝜀𝑚

𝜕

𝜕𝑡
[𝑬(𝒓, 𝑡) × 𝑩(𝒓, 𝑡)]                                         (2.1.13) 

Averaging equation 2.1.13 over one period 𝑇 =
1

𝜔
  leads to a time-independent expression 

for the electromagnetic force acting on a particle in the Rayleigh scattering regime:  

 

〈𝑭(𝒓, 𝑡)〉𝑇 = 𝑭(𝒓) =
𝛼𝑛𝑚

2𝑐
 𝛁𝐼 (𝒓)                                                                              (2.1.14)                                                             

In this expression, the physical relation between the time-averaged modulus of the 

Pointing vector 〈|𝑺(𝒓, 𝑡)|〉𝑇 and the intensity 𝐼(𝒓) is used:  𝐼(𝒓) = 〈|𝑺(𝒓, 𝑡)|〉𝑇 =

𝑛𝑚𝜀0𝑐2

2
|𝑬(𝒓) × 𝑩(𝒓)| =

𝑛𝑚𝜀0𝑐

2
|𝑬(𝒓)|2. Furthermore it is assumed that the temporal 

change of the intensity vanishes
3
 
47, 48

. 

The complex polarizability 𝛼, e.g., for gold nanoparticles, can be written as 𝛼 = 𝛼′ + 𝑖𝛼′′ 

(equation 2.1.3) with the real part 𝛼′ and the complex part 𝛼′′. Using this expression, 

equation 2.1.14 reads: 

𝑭(𝒓) =
𝜀𝑚

4
[𝛼′𝛁 (�̅�(𝒓)𝑬(𝒓)) + 𝛼′′Im{∑ �̅�𝑖(𝐫)𝛁𝐸𝑖𝑖 (𝒓)}]                                       (2.1.15) 

                                                   

3
 It should be noted that this assumption is disputed in literature and an alternative approach leads 

to a different definition of optical forces (see equation 2.1.19). 
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�̅�𝑖 is the complex conjugate of 𝐸𝑖. Equation 2.1.15 is the main result of the theoretical 

deviation of an optical force, 𝑭(𝒓) acting on a Rayleigh particle with dipolar behavior. 

The force can be split into two components: 

𝑭(𝒓)𝑔𝑟𝑎𝑑 =
𝜀𝑚

4
𝛼′𝛁 (�̅�(𝒓)𝑬(𝒓))                                                                               (2.1.16) 

and 

𝑭(𝒓)𝑠𝑐𝑎𝑡 =
𝜀𝑚

4
𝛼′′Im{∑ �̅�𝑖(𝐫)𝛁𝐸𝑖𝑖 (𝒓)}                                                                   (2.1.17) 

𝑭(𝒓)𝑔𝑟𝑎𝑑   is called the gradient force (Figure 2.3). This force is conservative and depends 

on the real part of the complex polarizability 𝛼′. The gradient force acts for positive 

𝛼′ along the field intensity gradient toward the point of highest field intensity. This is the 

focal point of a focused laser beam. A strong gradient force is achieved by a strong 

focusing of the trapping beam. The force scales with the particle volume 𝛼′ ~ 𝑎3 
31

.  

𝑭(𝒓)𝑠𝑐𝑎𝑡 is the scattering force (Figure 2.3). The force is dissipative and depends on the 

imaginary part of the complex polarizability 𝛼′′. The scattering force points along the 

electric field propagation. The force scales with the scattering cross section of the 

particle, that is 〈𝐶𝑠𝑐𝑎𝑡〉 ~ 𝛼2 ~ 𝑎6 
31, 22

. 

Stable optical trapping in 3D (Figure 2.3) is achieved in case: 

𝑭(𝒓)𝑔𝑟𝑎𝑑 >  𝑭(𝒓)𝑠𝑐𝑎𝑡                                                                                               (2.1.18) 

Changing the ratio between the imaginary and real part of the polarizability of the particle 

can thus determine the final trap stiffness 
31

. In the case of gold nanoparticles, the ratio 

between the gradient and the scattering force can be tuned by varying the trapping laser 

wavelength. Furthermore, for a stable trapping, the gradient force has to be greater than 

the thermal forces acting on the particle (cp. Chapter: Diffusion). For the illustration of 

the three dimensional confinement of a gold nanoparticle in a laser trap the optical forces 

acting on the sphere were numerically simulated in Chapter: Optical forces on a 

plasmonic nanoparticle. 
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Figure 2.3: Sketch of an optically trapped particle. The gradient force acts along the field intensity 

gradient towards the point of highest field intensity. The scattering force points along the field 

propagation direction. A stable, 3D trapping is achieved in case 𝑭(𝒓)𝑔𝑟𝑎𝑑 >  𝑭(𝒓)𝑠𝑐𝑎𝑡. 

The approach as described so far (equations 2.1.16 and 2.1.17) is valid for optical forces 

acting on a gold nanoparticle, where the polarizability takes on a complex value. For the 

calculation of optical forces on a silicon dioxide bead with real polarizability, this 

description would mean that no scattering force acts on a dielectric particle which is 

wrong. Therefore, an alternative approach should be taken into account. Starting from 

equation 2.1.13 it was assumed that the temporal change of intensity is zero. This 

assumption is disputed for the presence of a scatterer, which is the spherical particle 
19

.   

If the change of momentum density is taken into account, equation 2.1.14 becomes: 

𝑭(𝒓) =
𝛼𝑛𝑚

2𝑐
 𝛁𝐼 (𝒓) + 𝛼𝑛𝑚

Δ𝑚 (𝒓)

Δ𝑡
∶=  𝑭(𝒓)𝑔𝑟𝑎𝑑 + 𝑭(𝒓)𝑠𝑐𝑎𝑡                                   (2.1.19) 

With Δ𝑚 being the change of momentum density per unit time Δ𝑡. The resulting force 

Δ𝑚 (𝒓) Δ𝑡⁄  will accelerate the particle. The total optical force is now split into a gradient 

force that is proportional to the intensity gradient and a scattering force that describes the 

momentum transfer due to scattering processes 
19

.  

So far, the derivation of the optical forces for spherical particles in the Rayleigh regime 

was discussed. The presented approach for the description of optical forces fits well for 

optically trapped gold nanoparticles.  
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However, the silicon dioxide microparticles used in this work do not match into the 

Rayleigh regime, since their size dimensions are at the scale of the trapping beam 

wavelength. A more precise theoretical approach for these particles is given by the 

GLMT or the two-component force model by A. Rohrbach and E.H.K. Stelzer 
19

. An 

explanation of the GLMT as well as a force calculation for dielectric microparticles can 

be found in Chapter: Optical forces on a dielectric microparticle. 

 

Chapter summary 

This Chapter elucidated the material specific polarizabilities for gold and silicon dioxide 

particles in the Rayleigh scattering regime. The polarizability of a gold sphere is complex, 

whereas the polarizability of a dielectric particle takes on a real value.  

The fundamentals of the Lorenz Mie theory were explained with a focus on the 1
st
 order 

dipole approximation. This approximation is sufficient for the description of the optical 

forces acting on a gold nanoparticle. For dielectric Rayleigh particles with real 

polarizability, the temporal change of intensity has to be taken into account in this 

approach. Otherwise no scattering force would act on a dielectric sphere.  

For (dielectric) particles with size dimensions at the scale of the trapping wavelength, the 

GLMT should be applied for the calculation of the optical forces. This approach is 

presented in Chapter: Optical forces on a dielectric microparticle. 
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2.2 Motion of an optically trapped particle 

In 1827, while examining grains of pollen in water under a microscope, the botanist 

Robert Brown observed small particles that performed continuous random motion.           

This discovery has since then been known as Brownian motion 
32

. The random walk of 

Brownian particles characterizes many physical phenomena like diffusion, osmosis or 

thermophoresis 
33, 34

.  

Diffusion in turn plays and important role in lots of biological processes like cell motion 

or bacterial swimming. Cell motion in a channel guided system, for example, can be 

described by a superposition of diffusion-mediated transport and a constant drift velocity 

𝑣𝑑𝑟𝑖𝑓𝑡  
35

. The drift velocity is the result of cellular polarization and self-propulsion.      

For studying biological diffusion processes fluorescence correlation spectroscopy has 

been used 
35, 36, 37

.  

The superposition of diffusion and drift is an ubiquitous physical phenomenon.                

The movement of an optically trapped particle can also be described as superposition of 

diffusive motion and constant drift velocity 𝑣𝑑𝑟𝑖𝑓𝑡 . The drift velocity arises from the 

external trapping force due to the optical tweezer.  

For the definition of diffusion processes, either a microscopic or a macroscopic approach 

can be used. The mean field approach leads to Fick’s equations that describe the spatial 

and temporal variation of inhomogeneous particle distributions 
38

. In this Chapter, the 

microscopic approach is elucidated.  

In the first part of this Chapter, the theoretical background of diffusion is explained.        

The movement of an optically trapped particle can be seen as a superposition of diffusion 

with directed motion. The second section focuses on the time-dependent displacement of 

a harmonically bound particle. Finally, in the last part the power spectrum of an 

optomechanical detector is described.  
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Diffusion 

The random and independent movement of small particles or molecules in a gas or liquid 

is called diffusion 
38

. It is a consequence of the thermal energy those particles possess. In 

his work “Annalen der Physik” 
39

 Albert Einstein already postulated that the thermal 

energy of a small particle is  𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
𝑘𝐵𝑇

2
  with 𝑘𝐵  being Boltzmann’s constant and    

𝑇 being the absolute temperature of the system. The kinetic energy of a particle with mass 

m averaged over time is 
38

 

〈𝐸𝑘𝑖𝑛〉 = 〈
𝑚 𝑣𝑖

2

2
〉 =  

𝑘𝐵 𝑇

2
                                                                                                (2.2.1) 

with = 𝑥, 𝑦, 𝑧. In a many-particle system, collisions between the particles occur. 

Collisions between molecules in a gas lead to an equalization of initial inhomogeneous 

densities. In a liquid medium, suspended small particles undergo random movement due 

to the “bombardment” of the surrounding molecules. A particle receives momentum from 

the thermal fluctuations characterized by 
𝑘𝐵𝑇

2
, but simultaneously its movement is damped 

due the viscosity of the medium 
39, 40

. The mean free path length 𝑙 ̅describes the distance a 

particle can travel between two collisions. The overall position of a particle after N 

collisions can be mathematically expressed by a three dimensional random walk with 

variable path length 
41

.  

 

2.2.1.1 Random walk 

Three basic principles distinguish a (1D) random walk 
38, 41

: 

 The single steps during a random walk are independent from each other,  

 the probability of going to the right ∆𝑥 = +𝑙  or to the left ∆𝑥 = −𝑙  at each step 

is p and q respectively with 𝑝 + 𝑞 = 1, and 

 all particles move independently from each other. 

The discrete binominal distribution 𝑊𝑁(𝑛) describes the probability that a particle steps n 

times to the right in N trials 
38, 41

: 
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 𝑊𝑁(𝑛) =  
𝑁!

𝑛!(𝑁−𝑛)!
 𝑝𝑛𝑞𝑁−𝑛                                                                                        (2.2.2) 

with the normalization 

∑ 𝑊𝑁(𝑛) = (𝑝 + 𝑞)𝑁𝑁
𝑛=0 = 1                                                                                     (2.2.3) 

with 𝑛, 𝑁 ∈ ℕ and 𝑝, 𝑞 ∈ ℚ. In case 𝑝 is finite and 𝑁𝑝 → ∞ for 𝑁 → ∞, the asymptotic 

limit of the binominal distribution (2.2.2) is the Gaussian distribution 
38, 41

: 

𝑃(𝑥) =  
1

√2𝜋 𝜎
exp  (− 

(𝑥−�̅�)2

2 𝜎2 )                                                                                     (2.2.4)     

with 𝑥 = 𝑛𝑙, �̅� =  �̅�𝑙 = 𝑁𝑝𝑙 and the standard deviation 𝜎 =  Δ𝑛𝑙 =  √𝑁𝑝𝑞 𝑙.  

The probability of finding 𝑥 between 𝑥 and 𝑑𝑥 is 𝑃(𝑥)𝑑𝑥 with 

∫ 𝑃(𝑥) 𝑑𝑥 = 1
∞

−∞
                                                                                                         (2.2.5) 

The distribution is symmetrical around the mean �̅�. The Gaussian function characterizes 

the diffusive movement of a particle. As long as no external forces act on the particle 

(𝐹𝑒𝑥𝑡 = 0), the random walk is non-biased. The probability of stepping to the right is the 

same as the probability of stepping to the left: 𝑝 = 𝑞 =
1

2
 
40

. That means successive steps 

are independent from each other. The 1D spreading of a freely diffusing particle with 

time can be described by the mean square displacement (MSD): 

〈∆𝑥2(𝑡)〉 = 2𝐷𝑡                                                                                                           (2.2.6) 

with ∆𝑥(𝑡) = 𝑥(𝑡) − 𝑥0 , the initial position of the particle 𝑥0 and the diffusion 

coefficient 𝐷 38, 42. Equation 2.2.6 implicates that the spreading for a freely diffusing 

particle increases with the square root of time 
38

. In case of short time scales 𝑡 → 0 and 

𝐹𝑒𝑥𝑡,𝑥 = 0, the motion of the particle becomes ballistic e.g., 〈∆𝑥2(𝑡)〉 ~ 𝑡2 
40

. For a 2D or 

3D system, equation 2.2.6 is 〈∆𝑟2(𝑡)〉 = 2𝑛𝐷𝑡 with 𝑛 = 2, 3, respectively. An example 

of a 2D free diffusion can be the motion of a gold nanoparticle on a fluidic lipid       

bilayer 
43

.       
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2.2.1.2 Diffusion with drift for a spherical particle 

A randomly moving particle in liquid medium explores its surrounding fast and in return 

its environment strongly alters its trajectory 
40

. As soon as an external, constant 

force 𝐹𝑒𝑥𝑡,𝑖  , 𝑖 = 𝑥, 𝑦, 𝑧 accelerates the particle (𝑎𝑖 = 𝐹𝑒𝑥𝑡,𝑖 𝑚⁄ ), it experiences a finite 

drift velocity 𝑣𝑑𝑟𝑖𝑓𝑡,𝑖 due to friction with surrounding molecules. Such an external force 

can be the restoring force 𝐹𝑒𝑥𝑡,𝑖 = 𝐹𝑟𝑒𝑠𝑡  within an optical trap.  

The overall motion of a diffusing particle exposed to an external force can be described 

by a biased random walk. With 𝜏 being the time between two collisions, it can be shown 

that the drift velocity of the particle is  
38, 41

: 

𝑣𝑑𝑟𝑖𝑓𝑡,𝑖 =  
1 

2
 𝑎𝑖  𝜏 =

1

2
  

𝐹𝑒𝑥𝑡,𝑖

𝑚
 𝜏                                                                                     (2.2.7) 

Due to the collisions, a frictional term is integrated into the equation of motion of a 

particle 
41

:  

𝑚 �̇� 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
= 𝐹𝑒𝑥𝑡,𝑖 −  𝛾 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖                                                                          (2.2.8)                                                              

where 𝛾 stands for the frictional drag coefficient. With 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖(∞) =
𝐹𝑒𝑥𝑡,𝑖

𝛾
= 𝑣𝑑𝑟𝑖𝑓𝑡,𝑖 

and equation 2.2.8 the frictional drag coefficient 𝛾 can be determined:  

𝛾 =  
2𝑚

𝜏
                                                                                                                        (2.2.9) 

Inserting 𝛾 =  
2𝑚

𝜏
, 𝐷 =  

𝑙2

2𝜏
 , 𝑣𝑖 =

𝑙

𝜏
  into equation 2.2.1 the fluctuation-dissipation theorem 

or Einstein-Smoluchowski relation can be derived 
38

: 

𝛾 ∙ 𝐷 = 𝑘𝐵 ∙ 𝑇                                                                                                          (2.2.10) 
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This equation clearly points out that friction (dissipation) and diffusion (fluctuation) are 

related for the motion of a randomly moving particle in an external force field
4
.  

A spherical particle with radius r, moving with velocity 𝑣𝑑𝑟𝑖𝑓𝑡  through viscous medium 

causes the medium to shear. The Stokes-equation (Chapter 2.3.1.3) yields the viscous 

drag on the sphere which is 𝐹 = 6 𝜋 𝜂 𝑟 𝑣𝑑𝑟𝑖𝑓𝑡 (equation 2.3.17). Here, 𝜂 stands for the 

dynamic viscosity of the medium. Taking equations 2.2.7, 2.2.9 and 2.2.10 frictional drag 

and diffusion coefficient for an spherical object can be calculated 
38

: 

𝛾𝑠𝑝ℎ𝑒𝑟𝑒 = 6 𝜋 𝜂 𝑟                                                                                                      (2.2.11)  

and  

𝐷𝑠𝑝ℎ𝑒𝑟𝑒 =  
𝑘𝐵𝑇

6𝜋𝜂𝑟
                                                                                                          (2.2.12) 

For a particle with a radius 𝑟 = 1 µ𝑚 in water (𝜂𝑤𝑎𝑡𝑒𝑟 = 10
-3 

Ns/m
2
), the drag and 

diffusion constant at 25 °C are 
38

: 

 𝛾𝑠𝑝ℎ𝑒𝑟𝑒 = 1.9 10−5 g

sec
 and  𝐷𝑠𝑝ℎ𝑒𝑟𝑒 = 0.2 

µm2

sec
.  

With increasing temperature, the value of the diffusion constant increases and the 

spreading of the particle becomes broader (equation 2.2.6). 

Furthermore, the gravitational sedimentation rate 𝑣𝑠𝑒𝑑. for a spherical particle can be 

calculated by the Svedberg equation 
38

 

𝑣𝑠𝑒𝑑. =
2𝑟2(𝜌𝑠−𝜌)𝑔

9 𝜂
                                                                                                      (2.2.13) 

 

 

                                                   

4 A similar relation can be found for the mobility of charge carriers in a semiconductor. 
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Assuming a silica glass particle with radius 𝑟 = 1 µ𝑚 and specific gravity                  

𝜌𝑠 = 2.35 g/cm3 the sedimentation rate in water with density 𝜌 = 1 g/cm3  and viscosity 

𝜂𝑤𝑎𝑡𝑒𝑟 = 10 
-3  

Ns/m
2
 is:  

𝑣𝑠𝑒𝑑. ≅  2.9 
µ𝑚

𝑠𝑒𝑐
                                                                          

 

Displacement of an optically trapped particle 

As explained in Chapter 2.1, the total optical force acting on a particle can be split into a 

gradient 𝑭(𝒓)𝑔𝑟𝑎𝑑  and a scattering force 𝑭(𝒓)𝑠𝑐𝑎𝑡. The gradient force points along the 

gradient of field intensity, toward the focal point of the objective. The trapped particle 

can be seen as harmonically bound within the trap, due to the gradient force distribution 

(Figure 2.2.1 (a)). For each dimension, the harmonicity of the potential can be written as 

𝑈(𝑥) =  𝑥2 𝜅 2⁄  with  𝜅  being the trap stiffness 
13

. Due to the scattering force which 

points along the beam propagation direction, the minimum of the harmonic potential is 

slightly below the focal point. A particle, optically confined by an optical tweezer, 

explores the harmonic trapping potential by Brownian motion but is hindered from long-

term diffusion (Figure 2.2.1 (b)) 
44

. 
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Figure 2.2.1: (a) a trapped particle can be seen as harmonically bond within the tweezer, due to 

the gradient force distribution. Furthermore, the particle explores the harmonic trapping potential 

by Brownian motion but is hindered from long-term diffusion (b). 

Within the harmonic potential, a linear restoring force  𝑭𝑟𝑒𝑠𝑡  pulls the particle toward the 

trap center 
44, 45

. This means, on the one hand, the particle is subjected to Brownian 

motion with the MSD 〈∆𝑟2(𝑡)〉 = 6𝐷𝑡 (in case of a sphere  𝐷𝑠𝑝ℎ𝑒𝑟𝑒 =  
𝑘𝐵𝑇

6𝜋𝜂𝑟
) but on the 

other hand, the particle feels the external restoring trapping force 
46

. In one dimension, the 

restoring force can be written as 𝐹𝑟𝑒𝑠𝑡 = 𝜅 𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡) with  𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡) being the 

displacement of the particle with respect to the trap center. The displacement 

 𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡) of the particle within the trap depends therefore on the temperature 𝑇 as well 

as on the trap strength 𝜅. The distribution of the particle position shows a Gaussian 

behavior with a standard deviation   

𝜎𝑥
2 =

𝑘𝐵𝑇

𝜅
                                                                                                                   (2.2.14) 

around the trap center. For room temperature 𝑘𝐵𝑇 ≅ 4 𝑧𝐽. Equation 2.2.14 is true for a 

“strong trap”. For a “soft trap”, the motion pattern of the trapped particle is similar to that 

of a freely diffusing particle 
44, 40

. In this thesis only “strong traps” with laser powers at 

the order of P = 30 mW after the objective are considered.  
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Power spectrum of an optically trapped particle 

The Langevin equation for a optically confined particle can be written as 
40, 45

 

𝛾 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑥  +  𝜅 𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡)  = 𝐹(𝑡)𝑡ℎ𝑒𝑟𝑚𝑎𝑙                                                          (2.2.15)                            

Equation 2.2.15 reveals the balance of forces between the frictional drag force 

(𝛾 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑥) plus the restoring spring force (𝜅 𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡)) and the thermal force 

(𝐹(𝑡)𝑡ℎ𝑒𝑟𝑚𝑎𝑙). Since the thermal force is randomly distributed, its average over time is 

zero and its Fourier transformation 𝐹𝐹𝑇 (𝐹(𝑡)𝑡ℎ𝑒𝑟𝑚𝑎𝑙) is constant (thermal noise) 45, 46: 

𝐹𝐹𝑇 (𝐹(𝑡)𝑡ℎ𝑒𝑟𝑚𝑎𝑙) = 𝐹(𝑓) =  √4 𝛾 𝑘𝐵𝑇                                                                 (2.2.16)               

Fourier transformation of both sides of equation 2.2.15 results in 

2𝜋𝛾 (𝑓𝑐 − 𝑖𝑓) 𝑋(𝑓) = 𝐹(𝑓)                                                                                      (2.2.17) 

with 𝑋(𝑓) being the Fourier transform of  𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡) and the characteristic frequency of 

the trap  

𝑓𝑐 =  𝜅 2𝜋𝛾⁄                                                                                                                (2.2.18) 

With equation 2.2.16 it follows that 

|𝑋(𝑓)|2 = 𝑆𝑥 (𝑓) =  
𝑘𝐵𝑇

𝛾 𝜋2(𝑓𝑐
2+𝑓2)

                                                                                (2.2.19)  

𝑆𝑥 (𝑓) is the power spectrum of the time-dependent displacement of an optically trapped 

particle 
45, 46

. 𝑆𝑥 (𝑓) denotes the distribution of thermal fluctuations over different 

frequencies 𝑓. For 𝑓 ≪ 𝑓𝑐 :  𝑆𝑥 (𝑓)  ≅  
4 𝛾 𝑘𝐵𝑇

𝜅2   and for 𝑓 ≫ 𝑓𝑐 ∶  𝑆𝑥 (𝑓) ~ 1 𝑓2⁄ .               

For the latter case, at very small time scales, the particle can be considered as freely 

diffusing and the restoring force of the harmonic potential does not have any influence on 

the power spectrum 
45

.  
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Chapter summary 

In this Chapter, the motion of a spherical particle trapped in an optical tweezer was 

explained. The particle shows a short ranged diffusive behavior within the trapping 

potential that prevents the particle from long term diffusion.  

The trap stiffness as well as the temperature determines the displacement of the particle 

with respect to the trap center. For a strong trap, the mean square displacement of the 

particle position is proportional to the invers of the trap stiffness.  

The equation of motion for a harmonically bound particle describes the force balance 

between the frictional drag force plus the restoring spring force and the thermal force.  

The power spectrum 𝑆𝑥 (𝑓) of a Brownian particle in an optical tweezer reveals a cut off 

frequency 𝑓𝑐 . For frequencies 𝑓 ≪ 𝑓𝑐  the power spectrum is proportional to  
1

𝜅2 .            

For 𝑓 ≫ 𝑓𝑐, the particle behaves as if it was freely diffusing.  
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2.3 Hydrodynamics at low Reynolds numbers 

Optomechanical methods have been used to investigate flow conditions in microfluidic 

systems 
47, 48

. A novel optical concept to read out acoustic and microfluidic oscillations on 

the nanoscale was developed by A. Ohlinger et al. 
13

. In this thesis, for the first time, the 

“nanoear” concept is extended and transferred to read out unknown microfluidic flow 

fields around living organisms. Even though the dynamics of a microorganism are on the 

nanoscale and exhibit high frequencies, the microfluidic oscillations could be detected. 

This Chapter describes the theoretical background needed to understand microfluidic 

flow. The first part focusses on the definition of the Reynolds number and its relevance 

for flow conditions. In the second sections, the equations of change during transport 

phenomena are derived. Since in this work also bacteria motility was studied, the last part 

of this Chapter explains locomotion strategies of microorganisms at low Reynolds 

numbers.  

 

Reynolds number 

For the experiments performed in this work, mainly water was used as a fluid. Water can 

be treated as incompressible. The density of water for example increases by only 0.5 % at 

a pressure increase from 1 to 100 atmospheres 
49

. Furthermore, water (and most gases 

under normal conditions) belongs to the group of Newtonian fluids. In Newtonian fluids, 

the magnitude of the shearing stress T  is proportional to the rate of shear 
𝑑𝑣𝑥

𝑑𝑦
  49

: 

𝑇 =  𝜂 
𝑑𝑣𝑥

𝑑𝑦
= 𝜂

𝑉𝑥

𝑌
                                                                                                         (2.3.1) 

with the shear viscosity 𝜂 as the constant of proportionality (Figure 2.3.1).  
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Figure 2.3.1: Sketch of a Newtonian fluid between a stationary and a moving plate. The upper 

plate moves with a velocity Vx which causes the medium to shear. The shear stress T is 

proportional to the rate of shear 𝑑𝑣𝑥 𝑑𝑦⁄  and the viscosity 𝜂. 

One of the major characteristics of a microfluidic system is the occurrence of laminar 

flow 
15, 50

. In all real flows small disturbances are present. To achieve a stable flow, those 

disturbances have to decay over time. Otherwise a steady laminar flow will convert into a 

turbulent flow. A measure for stable laminar flow is the Reynolds number (Re) 
51

.          

In 1883, Osborne Reynolds found that the transition from laminar to turbulent flow 

depends on the dimensionless number: 

𝑅𝑒 =
𝜌 𝑽 𝐿

𝜂
=  

𝑽𝐿

𝜐
                                                                                                           (2.3.2) 

where 𝑽 is the mean flow velocity, L the characteristic length in the system, 𝜂 the shear 

viscosity, and 𝜐 =
𝜌

𝜂⁄  the kinematic viscosity of the medium 
52

. For Re << 1, laminar 

flow occurs 
53

.  

Furthermore, the Reynolds number describes the ratio between inertial forces per unit 

area and viscous forces per unit area in a hydrodynamic system 
49

. The smaller the 

Reynolds number the less important are inertial forces that are needed to accelerate mass. 

At the same time, forces due to viscous shear dominate 
54, 38

.  
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Equations of change during transport phenomena 

Between two laminar fluid streams, transport phenomena can occur. Thereby mass, 

energy and momentum are exchanged until an equilibrium condition between the fluids is 

reached. The exchange mechanisms are diffusion for mass, conduction for energy and 

viscous friction for momentum exchange 
49

. In case of isothermal flows of homogenous 

media, the laws of conservation of mass and momentum are sufficient to describe the 

equations of change 
51

.  

 

2.3.1.1 Equation of continuity (Conservation of mass) 

The law of conversation of mass postulates that for an incompressible fluid, the quantity 

of fluid entering a certain volume has to be balanced by the fluid quantity leaving the 

volume 
49

: 

∫ (𝜌 𝒗)
𝑠

 𝒏 𝑑𝑆 + 
𝛿

𝛿𝑡
 ∫ 𝜌 𝑑𝑉 = 0

𝑉
                                                                              (2.3.3) 

where 
𝛿

𝛿𝑡
 ∫ 𝜌 𝑑𝑉

𝑉
 is the time rate of mass increase in a volume V, and ∫ (𝜌 𝒗)

𝑠
 𝒏 𝑑𝑆 is 

the total outward convection of mass through the volume surface S. By applying Gauss’ 

theorem to the surface integral, and taking into account that equation 2.3.3 is true for all 

kinds of volumes, the general continuity equation for nonhomogeneous fluids is 
49

:  

𝐷𝜌

𝐷𝑡
+  𝜌 𝛁 𝒗 = 0                                                                                                           (2.3.4) 

with the Eulerian derivative  

𝐷𝜌

𝐷𝑡
=

𝛿𝜌

𝛿𝑡
+  𝒗 𝛁 𝜌                                                                                                          (2.3.5) 

For steady motion 
𝛿𝜌

𝛿𝑡
= 0 and a homogenous fluid the continuity relation is: 

𝛁 𝒗 = 0                                                                                                                        (2.3.6) 
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2.3.1.2 Equation of linear momentum (Conservation of momentum) 

Newton’s law of motion postulates that the sum of external forces acting on a stationary 

fluid element is balanced by the creation of momentum within the fluid particle 
51

. On a 

fluid element, two kinds of external forces can act:  

 A long-range body force 𝑭𝑏𝑜𝑑𝑦  that is proportional to the size of the fluid element 

(e.g. gravity force or centrifugal force). 

 A short-range surface force 𝑭𝑠𝑢𝑟𝑓𝑎𝑐𝑒 . This force comes into account when 

distances are on the order of the intermolecular distance (e.g. at the contact area 

between two fluidic media) 
49

. 

The total body force acting on a continuous fluid can be written as: 

𝑭𝑏𝑜𝑑𝑦 =  ∫ 𝑩 𝜌 𝑑𝑉                                                                                                      (2.3.7) 

with the body force per unit mass 𝑩 and the body force on a fluidic particle 𝑩 𝜌 𝑑𝑉.  

The surface force acting on the fluid can be mathematically expressed by  

𝑭𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝒆𝑥  ∫ ∫ ∫ ∇ 𝑭𝑥  𝑑𝑉 + 𝒆𝑦  ∫ ∫ ∫ ∇ 𝑭𝑦  𝑑𝑉 + 𝒆𝑧  ∫ ∫ ∫ ∇ 𝑭𝑧  𝑑𝑉                   (2.3.8) 

with 𝑭𝑥 , 𝑭𝑦 , 𝑭𝑧  being the stresses acting on a fluid element. They can be expressed by the 

stress tensor 𝝈  

𝑭𝑥 =  𝒆𝑥𝜎𝑥𝑥 + 𝒆𝑦𝜎𝑥𝑦 + 𝒆𝑧𝜎𝑥𝑧                                                                                   (2.3.9) 

𝑭𝑦 =  𝒆𝑥𝜎𝑦𝑥 + 𝒆𝑦𝜎𝑦𝑦 + 𝒆𝑧𝜎𝑦𝑧                                                                                 (2.3.10) 

𝑭𝑧 = 𝒆𝑥𝜎𝑧𝑥 + 𝒆𝑦𝜎𝑧𝑦 + 𝒆𝑧𝜎𝑧𝑧                                                                                   (2.3.11) 

Due to momentum conservation, the external forces  𝑭𝑏𝑜𝑑𝑦  and  𝑭𝑠𝑢𝑟𝑓𝑎𝑐𝑒 must be equal 

to the inertial force 𝑭𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 acting on the fluid. In an isotropic and homogenous medium, 

the inertial force acting on a fluidic particle with volume δV and density ρ is given by 



Chapter 2. Fundamentals 

 

31 

𝑭𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = −𝜌 𝛿𝑉 
𝐷𝒗

𝐷𝑡
                                                                                                (2.3.12) 

with 
𝐷

𝐷𝑡
=

𝛿𝒗

𝛿𝑡
+  𝒗 𝛁 𝒗 being the Stokes operator 

51
. The inertial force on the entire 

continuous fluid is then given by the volume integral 

𝑭𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = − ∫ ∫ ∫
𝐷𝒗

𝐷𝑡
 𝜌 𝛿𝑉                                                                                     (2.3.13) 

which is true for all volumes. 

Considering that 𝑭𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝑭𝑏𝑜𝑑𝑦+ 𝑭𝑠𝑢𝑟𝑓𝑎𝑐𝑒 , the general equations of fluid motion for a 

Newtonian fluid are obtained 
49

: 

𝜌 
𝐷𝒗

𝐷𝑡
=  𝜌 (

𝛿𝒗

𝛿𝑡
+ 𝒗 ∇ 𝒗) = 𝜌𝑩 + 𝒆𝑥  [∇𝑭𝑥] + 𝒆𝑦  [∇𝑭𝑦] + 𝒆𝑧 [∇𝑭𝑧]                         (2.3.14) 

They are the Navier-Stokes equations and were derived by Claude Louis Marie Henri 

Navier in 1827. The non-linear differential equations are nontrivial and simplifications 

for specific systems are made. 

 

2.3.1.3 Simplifications of the Navier-Stokes equations 

In the case of a liquid with constant viscosity and constant density, the Navier-Stokes 

equations can be written as: 

𝜌 (
𝛿𝒗

𝛿𝑡
+ 𝒗 ∇ 𝒗) = 𝑩 − 

∇ 𝒑

𝜌
+  𝜈 ∇2 𝒗                                                                        (2.3.15) 

with 𝜈 being the kinematic viscosity and ∇ 𝒑  being the pressure gradient 
49

. 

For very small Reynolds numbers, e.g. laminar flow, the transport terms 𝒗 
𝛿𝒗

𝛿𝑥𝑖
  in the 

Navier-Stokes equations are much smaller than the diffusion terms 𝝂 
𝛿2𝒗 

𝛿𝑥𝑖
2  

49
.                 

An omission of the inertial terms and conservative external volume forces gives the 

Stokes equations for steady laminar flow 
51

: 
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∇ 𝒑 =  𝜂  ∇2 𝒗                                                                                                           (2.3.16) 

Due to the linearity of the Stokes equations, the superposition principle can be applied 

and many hydrodynamic problems can be solved 
49

. Due to the linearity and time-

independency of the Stokes equations, laminar flow shows kinematic reversibility.          

A mixture of masses between two different kind of liquid media is then solely due to 

diffusion.  

Equations 2.3.6 and 2.3.16 are the creeping motion equations. In this context, the viscous 

drag 𝐹 on a sphere with radius r, moving steadily with velocity v through a liquid, is  

 𝐹 = 6 𝜋 𝜂 𝑟 𝑣                                                                                                            (2.3.17) 

To solve the fluid motion equations, “no-slip” boundary conditions are applied.             

They implicate that the fluid velocity on the surface of a moving object is zero 
51

.         

The fluid at the surface of the object moves with the object. The creeping motion 

equations as well as the no-slip boundary conditions were used to calculate the 

microfluidic flow field around a trapped bacterial cell. 
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Locomotion of microbiological objects at low Reynolds number 

The Reynolds number of a bacterium with a characteristic length a on the micron scale 

swimming with velocity v = 30 µm/s through water (viscosity η = 10
-3 

Ns/m
2
) is about        

10
-4

 to 10
-5 

(Figure 2.3.2).  

 

Figure 2.3.2: Sketch of a swimming bacterial cell. The cell body is estimated to be spherical with 
radius a. By rotating its helical appendages, the bacterium swims with velocity v through water 

with viscosity η and density ρ.  

By rotating helical filaments, a bacterial cell can propel itself through liquid at low 

Reynolds numbers 
55

. In the low Reynolds number regime, inertial forces are negligible 

and viscous forces dominate 
56, 57

. As a consequence, the bacterium immediately stops 

coasting as soon as it stops rotating its filaments 
58

. The forward directed swimming - the 

drift of the cell - immediately ends and the bacterium undergoes Brownian motion 
38

. 

Furthermore, no reciprocal swimming motion leads to a propelling of an object at low 

Reynolds numbers. This is exemplified in the “scallop theorem” 
54, 59

. The rotation of 

helical filaments (in case of a bacterial cell) or flexible, oar-like filament motions (in case 

of a spermatozoa) is therefore a very ingenious locomotion strategy that allows 

microorganisms to swim 
59-61

.  

Chapter summary 

The preceding Chapter described the physical properties of low Reynolds number 

hydrodynamics. At small Reynolds numbers, flow fields are laminar and inertial forces 

are negligible, whereas viscous forces dominate. For isothermal and homogenous laminar 

flows, the equation of continuity and the equation of linear momentum are sufficient to 

characterize transport phenomena. The Navier-Stokes equations can be simplified to the 

linear Stokes equations for steady laminar flows. The superposition principle facilitates 

the solution of many hydrodynamic problems. Finally, physical properties of 

microbiological swimming at low Reynolds number were discussed.  
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2.4 Dynamics of bacterial cells 

In 1838, locomotion mechanisms of microorganisms were described by the naturalist 

Christian Gottfried Ehrenberg for the first time 
62

. The triggered scientific interest in the 

nature of bacterial cell movement has steadily increased and new experimental 

approaches allow scientists to investigate the phenomenon closely. Dark-field 

microscopes equipped with strong illumination sources and high numerical apertures 

rendered it possible to optically investigate single bacterial cells 
63, 64

. Also fluorescence 

microscopy has been applied to detect bacteria movement 
65, 66

.  Optical traps have been 

used, to spatially confine and manipulate microorganisms like cells or viruses 
67

.  

In this work, bacterial cell mobility is investigated. Therefore, the dynamics of living 

microorganisms in the case of peritrichous bacteria are described in this Chapter. In the 

first part, general bacterial cell structures are explained and an elucidation of filament 

rotation as bacterial locomotion mechanism is given. In the second part of this Chapter, 

the bidirectional filament rotation is related to the overall cell movement. 

 

Bacterial cell structure and filament rotation 

Cell organisms can be divided into two major groups, prokaryotes and eukaryotes 
58

. 

Bacterial cells lack intercellular compartments like a membrane enclosed nucleus or 

mitochondria and belong to the prokaryotes. The body of a bacterium is about 1 µm in 

diameter and 2 µm in length (Figure 2.4.1) 
68

. For locomotion through liquids at low 

Reynolds number, bacteria rotate thin, helical filaments that are attached to their         

body 
58, 69-71, 89-91

. A bacterial cell can have one propelling filament (monotrichous) or it 

can have multiple filaments (peritrichous) that bundle and rotate in unison 
58, 72-74

.  
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Figure 2.4.1: Bacterial cell structures: left: a monotrichous bacterium and right: a peritrichous cell. 

The monotrichous bacterium has only one propelling filament, whereas a peritrichous bacterial cell 

has multiple filaments that are synchronized and rotate in a bundle. The body length is about 2 µm 

and the filaments can reach a length of 15 µm. 

One filament is about 13-20 nm in diameter and can reach a length of 10-15 µm 
58, 68

.      

It consists of the protein flagellin that has a high flexural and torsional stiffness 
68, 75

.      

In case no external forces are present, a filament has the shape of a left-handed helix with 

a pitch of ca. 2.5 µm 
59

. The filament is connected to a flexible rotating hook. The hook in 

turn is attached to the basal body of the cell. The whole complex of filament, proximal 

hook and basal body is called flagellum (Figure 2.4.2). The flagellum undergoes rigid 

rotation with a certain frequency ω around its long axis 
58, 68

. 

 

Figure 2.4.2: Schematic sketch of a flagellum anchored in the cell body membrane and rotating at 

frequency ω. A flagellum consists of a filament and a flexible hook that is connected to the basal 

body. 

The basal body (Figure 2.4.3) serves as the motor of the flagellum and has a diameter of 

around 45-50 nm 
68

. It consists of five rings and a rod. It can furthermore be divided into 

a rotor (Figure 2.4.3, red fringe) and a stator complex (Figure 2.4.3, green fringe) 
58, 76

.         
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A proton gradient across the inner membrane allows the rotor to use the proton motive 

force Δ p as its power source 
58, 68

. 

 

Figure 2.4.3: Detailed sketch of the basal body. It consists of a rod and five rings (1-5). The stator 

uses the proton gradient over the inner membrane to convert chemical into mechanical energy by 

conformational changes of the MotA and MotB complexes. The latter anchors the stator to the 
peptidoglycon layer. The rotor rotates at the frequency ω. 

The stator complex consists of up to eleven single stator units 
76

. Each stator unit consists 

of MotA proteins with two integrated MotB proteins. The MotB proteins anchor the stator 

unit to the peptidoglycon layer 
76

. Each MotB protein contains one aspartic acid. As soon 

as a proton binds to the aspartic acid, the acid undergoes a conformational change.      

This conformational change causes a movement of the neighboring MotA proteins.       

As soon as the proton leaves the aspartic acid in the MotB complex and is transferred to 

the cytoplasm, the MotA proteins relax into their original states again. The two 

conformational changes of the whole stator unit provide two power stokes per transferred 

proton to the rotor system 
76

. The proton motive force Δ p is determined by the 

transmembrane electrical difference, Δ Ψ, and the transmembrane pH difference, Δ pH. 

At a temperature of 24 °C and for cells grown at pH = 7, Δp ≅ −170 mV 
68

. The rotation 

frequency ω of the motor is assumed to be proportional to Δ p 
68

. Instead of protons, some 

marine bacteria specimens also use sodium ions as a power source for the rotor system 
68

. 
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Bacterial motility: “Tumbling” and “running” states 

The movement of a particular bacterial specimen depends on the size and shape of the 

body as well as on the distribution of the flagella over the cell 
58, 77, 60

. In the case of a 

peritrichous flagellated bacterium, the cell body has several appendages and bidirectional 

motors drive the filaments. This implicates that the filaments can rotate either clockwise 

(CW) or counter-clockwise (CCW) with the same frequency ω (around 100 Hz) 
58, 68, 76

.   

When the motors rotate in their default CCW direction, the bacterial cell is in its 

“running” state (Figure 2.4.4 (left)). In this state, all filaments of the cell are synchronized 

in a helical bundle that rotates CCW to push the bacterium in a certain direction 
72, 78

. 

Bacterial cells like Escherichia coli swim with a velocity at the order of 30 µm/s 
54, 60

. 

The bundle rotation ω creates a strong torque  that needs to be outbalanced by viscous 

drag due to counter rotation of the cell body Ω 
38

. For E. coli the bundle rotation 

frequency ω is at the order 100 Hz and the cell body rotation frequency Ω is at the order 

of 10 Hz 
66

. The thrust generated by flagella rotation to push the bacterium forward is 

outbalanced by viscous drag due to the translation of the body. The net force on a 

bacterium, swimming with constant velocity, is therefore zero 
38

. 

For the bundle formation in the running state, two physical scenarios come into 

consideration 
59

: First, the attraction between single filaments due to hydrodynamic 

interaction and the swimming of the bacterial cell leave the appendages behind the        

body 
79, 80, 81

. The cell body rotation leads then to a passive bundle formation of the 

filaments 
82

. And second, a hydrodynamic synchronization of nearby flagella leads to a 

phase locking of their rotational motion 
83

. 
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Figure 2.4.4: A peritrichous flagellated bacterial cell can be in two distinguished states, the so 

called running state (left) and the tumbling state (right). In the running state, all flagella are in a 

bundle, which rotates CCW at the frequency ω. The bundle rotation is outbalanced by a counter 

body rotation Ω (CW).  In the tumbling state one or more flagella start to rotate CW and leave the 

bundle. No net torque is transferred to the body anymore and the bacterial cell tumbles in place. 

As soon as one or multiple flagella propels reversibly (CW), it leaves the bundle and 

undergoes a polymorphic transformation from a left- to a right-handed helical shape 
59

. 

The bacterium starts to “tumble” (Figure 2.4.4 (right)) 
68, 76

. A tumbling of a bacterial cell 

can be caused by the directional change of a single or several flagella 
65

. Under that 

circumstance, all filaments still rotate, but no net torque is created that would lead to a 

counter-rotation of the cell body. Furthermore tumbling can be caused when all flagella 

stop rotating. In both cases, the cell body performs a random movement. Tumbling events 

of bacterial cells are observed at a broad time scale - starting from several hundred 

milliseconds, to the point when cells are exclusively tumbling 
54, 66

. The running and 

tumbling behavior can be different for swarm cells 
84

. The switch between the running 

and tumbling state is a consequence of the bacterium’s reaction to environmental 

chemical stimuli, which is called chemotaxis.  

Chemotaxis is essential for every living microorganism to be able to sense and respond to 

changes in its environment, for example variations in temperature, chemical 

concentrations, oxygen content or light intensity. Bacterial cells can sense changes in the 

chemical attractant concentration and respond with a certain movement. This process is 

called chemotaxis 
63, 85, 86

.  A bacterial cell has two possibilities to adapt its movement to 

chemical stimuli: it can switch from the running state (CCW flagella rotation) to the 
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tumbling state (CW flagella rotation) or vice versa. That means the bacterium can switch 

from a forward directed movement to a state in which it tumbles in place.  

The switch between CCW and CW rotation of the flagella is elicited by the binding of the 

phosphorylated protein CheY (CheY-P) to the flagellar switch protein FliM. As soon as 

the chemotactic signaling protein CheY-P binds, the motor will run in CW direction.   

The bacterium is in a tumbling state 
68, 76

. The cell body performs a Brownian movement 

which allows the bacterium to reorient and change the swimming direction. CheY is 

phosphorylated at the chemo receptors of the bacterium near the surface. Chemical 

attractants (e.g., sugars or amino acids) in the surrounding medium also bind to those 

sensory receptors 
68

. If the bacterial cell finds itself in a region with a higher chemo 

attractant concentration, the phosphorylation of CheY is depressed and the bacterium 

likely stay in its running state 
68, 76

. Accordingly, the bacterial cell swims into the 

direction of highest attractant concentration 
66

. In general, bacteria move upwards a 

spatial gradient of chemo attractants or downwards repellent gradients 
76, 86, 76

. 

The switch between the running and tumbling state leads to an overall random movement 

of the bacterial cell (Figure 2.4.5). At low Reynolds numbers, diffusion is the dominant 

transport mechanism of nutrients in the liquid 
54

. To be able to find places with higher 

local chemo attractant concentration and to be able to “sample” the medium, the 

swimming bacterial cell has to outrun diffusion. This distance can be estimated with the 

diffusion coefficient divided by the swimming velocity and is at the order of 30 µm 

(Figure 2.4.5) 
54

. In the runs, the bacterium is subjected to rotational diffusion that arises 

from thermal energy (analogous to the translational diffusion, explained in              

Chapter 2.2.1.1). Rotational diffusion influences the straight movement of the bacterial 

cell 
38

. Assuming that the bacterium body is a sphere, the 2D mean square angular 

deviation in time t is  

〈𝜃2〉 = 4 𝐷𝑟  𝑡                                                                                                               (2.4.1) 

with the rotational diffusion coefficient 

𝐷𝑟 =
𝑘𝑇

8𝜋𝜂𝑎3                                                                                                                   (2.4.2) 
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a represents the cell body radius, 𝜂 the viscosity, k the Boltzmann constant and T the 

temperature. Typical deviations during straight swimming are 30° in 1s 
38

.  

 

Figure 2.4.5: Track of randomized bacterial motility for E. coli as a consequence of chemotaxis. 

Two dots are 0.1 s apart from each other. The running and tumbling states can be clearly 

distinguished. (Taken from 54).  

 

Chapter summary 

The dynamic behavior of peritrichous bacterial cells was described. Therefore, a detailed 

description of bacterial flagella and their rotation mechanism was given. The bidirectional 

rotation possibility of single filaments was related to flagella bundling and the overall cell 

body movement. It can be either “running” or “tumbling”. Tumbling events of bacterial 

cells are observed at a broad time scale -starting from several hundred milliseconds, to the 

point when cells are exclusively tumbling. Environmental chemical stimuli are the reason 

for the motility behavior of a bacterial cell. 
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3. Methods and Materials 

 

This Chapter describes the experimental techniques used in this work and lists the 

materials that were needed to perform the experiments. The aim of all experiments is the 

measurement of the microfluidic flow generated by an artificial or living microobject with 

very high resolution. This is realized by an optically confined particle which is used as 

optofluidic sensor. The first section of this Chapter describes the integration of several 

optical tweezers at different wavelengths into a dark-field microscope. The optical setup 

was constructed for this thesis and in combination with a high speed camera it was 

possible to achieve a very precise detection of the performed experiments. In the second 

part, the chemical preparation of the bacteria cells that served as living sources of flow is 

described. For the measurement of the optical density of the bacteria cultures an UV/Vis 

spectrometer was used. In the next part, the preparation of the microscope glass slides is 

presented briefly and the particles used as microfluidic flow detectors are characterized. 

The last section contains information about single particle-tracking and data analysis. 

Fast Fourier transformation of the time-dependent x- and y-displacement of the flow 

source and of the optofluidic sensor is the fundamental concept of data evaluation. 
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3.1 Dark-field microscopy equipped with optical tweezers 

One of the unique advantages of dark-field microscopy is that it allows for a visualization 

of noble metal nanoparticles with size dimensions below the optical diffraction limit.  

This is possible, because these particles possess scattering cross sections that exceed their 

geometric cross sections multiple times 
87, 88

. With dark-field microscopy it is also 

possible to achieve a contrast-rich, high resolution imaging of small living 

microorganisms 
64

. Dark-field microscopy equipped with optical tweezers provides 

therefore numerous experimental possibilities: Controlled plasmonic heating of gold 

nanoparticles in an optical trap, for example, has been used to fine tune the kinetics of 

DNA hybridization 
89

. Rayleigh scattering of silver nanoparticles in an optical tweezer 

was investigated to explain the correlation between plasmonic coupling in an optical trap 

and trapping stability 
90

. Furthermore, spatiotemporal tracking of an optically trapped 

gold nanoparticle allowed for a ultrasensitive detection of microfluidic and acoustic 

waves in water 
13

.  

 

3.1.1.1 Dark-field microscopy  

For dark-field microscopy, the illumination light has to enter a special condenser      

(Figure 3.1.1). In the dark-field condenser, the light passes an annular light stop and is 

then focused by an integrated lens system under a certain angle to the substrate. The angle 

under which the light is focused with respect to the substrate is determined by the 

numerical aperture (NA) of the lens system: 

𝑁𝐴 = 𝑛𝑚sin (𝛼)                                                                                                          (3.1.1) 

𝑛𝑚 is the refractive index of the surrounding medium and 𝛼 represents the half-angle of 

the focused cone of light. For dark-field illumination, it is necessary that the NA of the 

used condenser is greater than the NA of the objective used for observation: 

𝑁𝐴𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 > 𝑁𝐴𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒                                                                                        (3.1.2) 
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This condition ensures that only light scattered by the observed specimen is collected by 

the objective. If this requirement is fulfilled, a bright, contrast-rich image of the specimen 

on a dark background appears. 

In this work, an up-right microscope (Zeiss Axio Scope.A1) was used for the optical 

detection of the measurements (Figure 3.3.1). A 100 W halogen lamp covering the visible 

spectrum served as illumination source. An oil immersion condenser with high NA 

(NA=1.2, Zeiss) was used. An oil droplet on top of the condenser lens was brought into 

contact with the bottom of the microscope slide. Since the refractive index of oil       

𝑛𝑜𝑖𝑙 = 1.518 matches the refractive index of glass, two refractive surfaces are eliminated. 

The microscopy slide was mounted onto a micrometer stage that allowed a precise 

positioning of the sample. For the optical magnification of the observed specimen, a 

10x/NA=0.2 (Zeiss) air objective as well as water dipping objectives with 63x/NA=1.0 

and 100x/NA=1.0 (Zeiss) were used. Beside the direct observation through the ocular of 

the microscope, the scattered light could be detected by a digital camera (Canon EOS 

550D SLR) or a high speed 12 bit CMOS camera (PCO.dimax). The high speed camera 

provided a frame rate of 4502 fps with a 1008x1000 pixel resolution and a frame rate of 

2470 fps with a 1920x1080 pixel resolution (full HD). Furthermore, a diffraction grating 

spectrometer (Acton SP2500, Princeton Instruments) connected to a liquid nitrogen 

cooled CCD camera (PyLoN, Princeton Instruments) could be used for scattered light 

spectroscopy. The spectrometer was equipped with three different gratings                  

(150 l/mm BLZ
5
=800 nm, 300 l/mm BLZ=500 nm and 1200 l/mm BLZ=750 nm) to be 

able to perform broad spectral range measurements a well as high resolution 

measurements.  

                                                   

5 BLZ: blaze wavelength of the grating; 



 

 

44 

 

Figure 3.1.1: Sketch of a dark-field microscope. Due to the dark-field condenser, the direct 

illumination light does not enter the objective. Only light scattered by the sample is collected and 

can be detected by the cameras or the spectrometer. A micrometer stage allowed a very precise 

positioning of the substrate. 

The combination of a dark-field configuration with an optical tweezer has some 

challenge: A strongly focused laser beam is required for a stable 3D optical trap, since the 

physical cause of such a trap lies in the gradient of the optical field intensity.             

Tight focusing of a laser beam is usually achieved by high NA objectives with      

NA=1.3-1.4 
90

. The highest NA of commercially available dark-field oil condensers is 1.2 

though. Since 𝑁𝐴𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 > 𝑁𝐴𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 , an approach to overcome this hindrance has 

to be found. By using a beam expander, a sufficient laser focusing for a stable, 3D trap 

was achieved with a water dipping objective (NA=1.0). The especially for this thesis 

constructed setup allowed an integration of several optical tweezers at different 

wavelengths.  
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3.1.1.2 Optical tweezers at 1064 nm wavelength 

A continuous wave, diode-pumped solid-state laser from Cobolt Rumba with a 

wavelength λ = 1064 nm (TEM00) and maximal output power of 2 W was used to set up 

an infrared optical tweezer. The laser provides a high level of stability and is therefore 

suitable for a stable optical trap. To slightly overfill the back aperture of the used 

objective (water dipping, 100x/NA=1 or 63x/NA=1), the initial beam was expanded by a 

beam-expander (2-8x, Edmund Optics) (Figure 3.1.2 (a)). A beam splitter in the 

microscope was used to focus the trapping beam to the stage of the dark-field microscope. 

To compensate the chromatic aberration of the 1064 nm beam when focused by the 

objective, a lens (plano convex, focal length f = 997 mm) was built in the beam path in 

front of the microscope (Figure 3.1.2 (a)). The trapping beam could be coupled into the 

microscope either from the left or the right side. Alternatively to a single optical tweezer, 

a dual beam trap configuration could be used (Figure 3.1.2 (b)). Therefore, the expanded 

initial laser beam was split into two beams, using a polarizing beam splitter on which a 

lambda-half plate (PBS 1) was mounted. The power ratio between the beams was defined 

as 1 to 1. Both beams were recombined using a second polarizing beam splitter (PBS 2). 

Two mirrors (M3 and M4) allowed a precise steering of one of the two beams with 

respect to the other. Finally, the beams were focused through the objective. Two optical 

traps separated at a predefined distance could be used in the experiment. A notch filter 

blocking light at 1064 nm (StopLine 532/1064, Semrock) was implemented to avoid a 

detection of the laser beam. 
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Figure 3.1.2: A 1064 nm laser beam could be coupled into the microscope from the left side (a) or 

from the right side (b). In the second case, the expanded initial laser beam was split into two 

beams using polarizing beam splitters (PB 1 and PB 2). Two mirrors (M3 and M4) allowed a 

precise steering of one of the two beams with respect to the other.  
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3.1.1.3 Optical tweezers at 532 nm wavelength 

The beam of a continuous-wave laser operating at 532 nm (TEM00, Opus 532, purchased 

from Laser Quantum) with a maximal output power of 3 W was first expanded by a 

home-built Keplerian telescope (Figure 3.1.3). For the telescope, two plano convex lenses 

(L1 = objective lens and L2 = image lens) purchased from Thorlabs were set up with a 

distance matching the focal lengths. The objective lens had a focal length of f = 49.8 mm, 

the focal length of the image lens was f = 149.5 mm. The expanded beam was split into 

two beams of equal power by a non-polarizing cube beam splitter (BS1) (Thorlabs).     

The beams were recombined by a second cube beam splitter (BS2) and had then a defined 

distance from each other. An optical chopper system (consisting of chopper wheel and 

controller) was used to block one of the trapping beams and let the other pass with a 

certain frequency. A notch filter blocking light at 532 nm (StopLine 532/1064, Semrock) 

was mounted into the microscope to prevent a detection of the laser beams. Additionally 

to the two optical traps at 532 nm, a 1064 nm laser beam could be coupled simultaniously 

into the microscope (cp. Chapter 3.1.1.2)  

 

Figure 3.1.3: The expanded 532 nm beam was split into two beams by two cube beam splitters 

(BS1 and BS2). A chopper system allowed a blocking of one beam and let the other pass at a 

certain frequency. Furthermore, a 1064 nm laser beam could be coupled simultaniously into the 

microscope. 
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3.2 Bacterial cell preparation 

As microbiological samples, two different strains of Bacillus subtilis were used. The first 

strain was BM77, a flagellated bacterium 
91

. The second strain was BD3458, a non-

flagellated bacterium 
92

. Both B. subtilis strains are derivatives from the BD630 strain 

which has the genotype his leu met
6
 

91
. BM77 was created by transforming 

pUB110::T7T3::ComS
7
 93 into BD2711 

91, 94, 95
. The genotype of BM77 is his leu met 

comK
8
-gfp (CBL, cat

9
), multicopy comS (kan

10
) 

91
. The second strain BD3458 is also a 

derivative of BD630 
92

 with the genotype his leu met rok
11

- (spc
12

), hag
13

- (erm
14

). 

The viability of B. subtilis depends on its environmental conditions. A high motility of 

the bacillus is essential for the experiments performed in this work. The protocol for 

bacterial cell preparation that was used in this work is based on a publication of         

Ordal et al. 
96, 97

:  

Both bacteria strains (BM77 and BD3458) were grown in lysogenize broth (LB) medium 

overnight. In case of the hag strain (BD3458), the macrolide antibiotic erythromycin was 

added to the LB medium with an end mass concentration 𝜌𝑒𝑛𝑑 = 5 
µ𝑔

𝑚𝑙
. The next day, the 

bacterial solutions were diluted 1:50 with a mineral-salt-solution consisting of 50 mM 

potassium-phosphate-buffer (pH 7.0), 0.12 mM MgCl2, 1 mM (NH4)2SO4, 0.14 mM 

CaCl2, 0.01 mM MnCl2, 20 mM D-sorbitol, 0.3 mM methionine, 0.3 mM leucine and   

0.3 mM histidine. For the potassium-phosphate-buffer (pH 7.0), 122 ml of 0.1 𝑀 K2HPO4 

in ddH2O were mixed with 78 ml of 0.1 𝑀 KH2PO4 in ddH2O. Afterwards, the bacterial 

solutions were incubated at 37 °C and 300 rpm until they reached an optical density of 

OD600=0.3. At this value of the optical density, the exponential phase of bacterial growth 

begins which is the optimal phase for harvesting the cells. To determine the optical 

density, the absorbance (𝜆 = 600 𝑛𝑚) of 100 µl bacterial solution was measured with a 

                                                   

6 his leu met:  histidine, leucine and methionine resistance respectively; 
7 comS: releases comK for autostimulation; 
8 comK: competence transcription factor of B. subtilis; 
9 cat: chloramphenicol resistance; 
10 kan: kanamycin resistance; 
11

 rok: repressor protein; 
12 spc: spectinomycin resistance; 
13 hag: flagellin protein, ~20,000 subunits create one flagellum; 
14 erm: erythromycon resistance; 
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spectrophotometer every hour for each bacterial strain (see Chapter: 3.3). Averagely, the 

optical density OD600=0.3 was reached after three hours for the BM77 strain and after two 

hours for the BD3458 strain. As soon as the optical density was reached, 5 mM           

(end concentration) potassium-phosphate-buffer (pH 7.0) and 0.05% (end concentration) 

glycerin were added to the bacterial solutions, and the bacteria were again incubated at  

37 °C and 300 rpm for 15 min. In the next step, the cells were washed with chemotaxis 

medium 
96, 97

 consisting of 10mM potassium-phosphate-buffer (pH 7.0), 0.14 mM CaCl2, 

0.3 mM (NH4)2SO4, 0.1 mM EDTA (pH ca. 5.0), 5 mM sodium lactate,                    

0.05% glycerol and ddH2O. Afterwards they were subsequently separated into 90 

aliquots. After adding 10% (end concentration) glycerin to each aliquot, they were frozen 

in liquid nitrogen (T = -196 °C) and stored in the freezer at -80 °C. At this temperature, 

the bacterial strains can be preserved for several months.  

For each measurement, one aliquot was defrosted at room temperature. The bacterial 

solution was diluted with chemotaxis medium in a way that just one or two bacteria could 

be seen simultaneously in the field of view of a water dipping 100x/NA=1.0 dark-field 

objective.  
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3.3 UV/Vis spectrophotometer 

The OD of each bacterial culture was measured with a double-beam                        

UV/Vis spectrophotometer (Lambda EZ201, Perkin Elmer). As excitation source, it 

combines the spectrum of a deuterium and tungsten halogen light source and provides 

therefore a spectral range from 190 nm to 1,100 nm. By a Czerny-Turner 

monochromator, a selective excitation wavelength is chosen. A beam splitter after the 

monochromator splits the incoming light into two parts to simultaneously measure a test 

and a reference sample (baseline). After the beams passed through the media they are 

detected by photodiodes, and their light intensity is measured. 

The optical density or absorbance (A) of a medium in the beam path can be expressed by 

the Beer–Lambert–Bouguer law 

𝐴(𝜆) = − lg 𝑇(𝜆) =  − lg
𝐼(𝜆)

𝐼 0(𝜆)
= 𝑒−𝜎𝑙𝑁                                                                     (3.3.1) 

with 𝑇 being the transmittance of the tested medium, 𝐼 the light intensity after the test 

sample, and 𝐼 0 the light intensity after the reference sample. The absorbance can also be 

expressed by the exponential function of the negative product of the absorption cross 

section 𝜎 of a single absorber, the light path length 𝑙 and the density of absorbers 𝑁 in the 

test sample.  

To measure the absorbance of a bacterial cell solution, the excitation wavelength was set 

to 𝜆 = 600 𝑛𝑚. A baseline with solely LB medium was taken. Therefore 100 µl of LB 

medium were pipetted into a quartz glass cuvette with a light path length of l=10 mm 

(Hellma Analytics) and its OD was measured. Likewise, the absorbance of 100 µl 

bacterial cell solution was measured afterwards. Finally, the baseline of the LB medium 

was subtracted from the OD of the bacterial cell solution. 
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3.4 Preparation of microscope glass slides 

Square microscopical cover glasses (24x24 mm
2
, thickness: 0.19-0.23 mm) were 

purchased from Rudibert Ernst Böll e.k. Before the measurement, they were successively 

sonicated in isopropyl alcohol and ddH2O (Milli-Q water) for 15 min each. To wipe out 

liquid residues on the cover slips, they were dried with a nitrogen gun after the cleaning. 

Finally, the cover glasses were stored in wafer holders. 

 

3.5  Microfluidic flow detectors  

As microfluidic flow detectors, either gold nanoparticles or silicon dioxide microparticles 

were used. The citrate stabilized gold particles had a diameter of 60 nm. The stock 

solution was purchased from BBInternational Solutions. For the experiment, the initial 

gold particle solution (2.60x10
10

 particles/ml) was diluted with ddH2O in a way that just 

one or two particles could simultaneously be seen in the field of view of a 100x/NA=1.0 

water dipping objective. The silicon dioxide spheres had a diameter of 1.76 or 1.3 µm and 

were purchased from micro particles GmbH, Forschungs- und Entwicklungslaboratorien. 

They possess a hydrophilic anionic surface and their refractive index is n = 1.45. 

Depending on the performed experiment, the initial silicon dioxide particle concentration 

was either diluted with ddH2O or with chemotaxis medium. A final concentration was 

chosen that just one or two silica particles could be seen simultaneously in the field of 

view of the 100x water dipping objective.   
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3.6 Single particle-tracking and data analysis 

For data analysis, video files of the performed experiments were recorded. Therefore, two 

different cameras were available: either a color camera (Canon EOS 550D SLR) or a high 

speed camera (PCO.dimax). The Nyquist–Shannon sampling theorem describes the 

inevitable correlation between video sampling rate 𝑓𝑠 and bandlimit frequency 𝑓𝑚𝑎𝑥  : 

𝑓𝑚𝑎𝑥 ≤  
𝑓𝑠

2
                                                                                                                     (3.6.1) 

The minimum sampling frequency is 𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =  
𝑓𝑠

2
  and called the Nyquist            

frequency 
45, 98, 99

. Table 3.6.1 contains the frame rates that were chosen in the recorded 

videos: 

 Sampling rate Band limit 

Canon EOS 𝑓𝑠 = 60 𝐻𝑧 𝑓𝑚𝑎𝑥 = 30 𝐻𝑧 

PCO.dimax 𝑓𝑠 = 500 𝐻𝑧 

𝑓𝑠 = 1000 𝐻𝑧 

𝑓𝑚𝑎𝑥 = 250 𝐻𝑧 

𝑓𝑚𝑎𝑥 = 500 𝐻𝑧 

Table 3.6.1: Sampling rate and band limit frequency for the two different cameras: Canon EOS 

and PCO.dimax. 

In the captured video files, the spatiotemporal displacement of an optically trapped 

particle was analyzed. This was done with the particle-tracking software “video spot 

tracker” (freeware provided by CISMM: Computer Integrated Systems for Microscopy 

and Manipulation). While operating the program, the “symmetric” tracker was chosen 

which guaranties a proper tracking of the particle center, even if the particle intensity 

profile is slightly changing over time. As described by CISMM, this tracker operates by 

locating the minimum variance in concentric rings around the bead center. It sums the 

variance in circles of radius 1, 2, 3, … up to the radius setting and divides each circle’s 

radius by its circumference to provide even weights for each ring. Furthermore, the 

program allows single and multiple particle-tracking in a captured video file.  
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The program identifies the position-coordinates of the detector center in each frame of the 

video file in two dimensions. It reads out 𝑥(𝑡𝑛) and 𝑦(𝑡𝑛) for the particle position with 

𝑛 = 1 … 𝑁0 and 𝑁0 being the total amount of frames in the video. The program uses the 

particle center position in the first frame 𝑥(𝑡1), 𝑦(𝑡1) as reference point for the 

spatiotemporal development.  

The time series of the detector position 𝑥(𝑡𝑛) and 𝑦(𝑡𝑛) were analyzed separately. For 

both dimensions, the time series was projected from real to Fourier space by a one-sided 

fast Fourier analysis (FFTx and FFTy). The FFT operation is a special form of discrete 

Fourier transformation (DFT) and reduces the amount of necessary computations by an 

order of magnitude 
98, 100

. The discrete FFT is mathematically described by:  

𝐹𝑛 =  ∑ 𝑓𝑘 𝑒−𝑖𝑛Ω0(𝑘−1)𝑁0
𝑘=1                                                                                            (3.6.2) 

with Ω0 =  
2𝜋

𝑁0
  and 𝑁0 being the amount of discrete sample values 

98
. The scaling of the 

conjugate units after FFT has a step distance of 

Δ 𝑓𝐹𝐹𝑇 =
1

𝑁0∙ Δ 𝑡𝑖𝑛𝑝𝑢𝑡
                                                                                                      (3.6.3) 

with Δ 𝑡𝑖𝑛𝑝𝑢𝑡  being the step distance of the input signal, for example, Δ 𝑡𝑖𝑛𝑝𝑢𝑡 = 1 𝑚𝑠 for 

a video sampling rate 𝑓𝑠 = 1000 𝐻𝑧. In the frequency spectra, the Fourier amplitudes 

𝐴(𝐹𝐹𝑇𝑥) and 𝐴(𝐹𝐹𝑇𝑦) were observed. To achieve the best signal to noise ratio in Fourier 

space, the total amplitude 𝐴 (𝐹𝐹𝑇) was calculated as: 

𝐴(𝐹𝐹𝑇) =  √𝐴(𝐹𝐹𝑇𝑥)2 +  𝐴(𝐹𝐹𝑇𝑦)2       with                                                          (3.6.4) 

𝐴(𝐹𝐹𝑇𝑖 ) = 2 √Re𝑖
2 + Im𝑖

2 𝑁0⁄                                                                                   (3.6.5)                                                                                                           

and i being the x- or y-direction, 𝑁0 being the amount of frames, and Re and Im being the 

real and imaginary part of the FFT.              
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4. Optical driving and sensing of helical and 

biological microobjects 

 

The dynamic behavior of bacterial cells is of great interest for microbiology and 

nanomedicine. Research on the physical properties as well as locomotion strategies of 

living microorganisms to investigate their physical properties as well as their locomotion 

strategies began already more than one hundred years ago. However, a single filament 

has a diameter of just 20 nm and the flagella bundle is hard to resolve under dark-field 

illumination. This hampers a detailed and direct investigation of the dynamic behavior of 

bacterial appendages 
64, 63

. Experimental remedial measures for this problem have been 

established. For example, reducing the speed of motion of the investigated bacterium 
101

 

or labeling of the filaments with fluorescent dyes 
65, 66, 84

 or nanoparticles 
102

.  The main 

goal of this work is to find an alternative approach to the direct observation of a 

bacterial cell for the analysis of its motility. This overcomes the hindrance of fluorescent 

labeling or any other kind of cell modulation. The underlying idea is the measurement of 

the microfluidic flow generated by an optically confined bacterium by means of a sensor 

particle that is trapped in a second tweezer in the close vicinity. In this work, for the first 

time, it is demonstrated how the “nanoear” approach can be extended and applied to 

study the microflow generated by a bacterium that possesses its own dynamics at the 

nanoscale. To this aim, intermediate targets had to be understood first. Among them are 

the application of dielectric microparticles instead of plasmonic nanoparticles as 

optofluidic sensors for oscillatory flows and sensing the flow of an optically driven 

microhelix that was used to model the mechanical and dynamical properties of a 

bacterial cell. 
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4.1 Application of a plasmonic nanoparticle as optofluidic sensor for oscillations 

generated by a living microorganism 

Optical tweezers to spatially confine noble metal nanoparticles have been established for 

the first time in 1994 by Svoboda and Block 
103

. Since then their field of application has 

expanded considerably. As an example, their high sensitivity is eminently suitable to 

measure or apply tiny forces between molecules down to the piconewton range 
2, 7, 103

. 

The development of optical traps with single nanoparticles, ten years later, rendered it 

possible to investigate their single particle optical properties closely, leading to the 

development of a precise understanding of the trapping mechanism, the forces acting on 

the particles and its motion within the trap 
6
. Moreover, the wavelength range for a 

successful optical trapping of metallic nanoparticles has been investigated and     

expanded 
7
. The idea to use a single gold nanoparticle in an optical trap as a microfluidic 

flow sensor was realized by Ohlinger et al. in 2012 
13

: Here, an optically confined gold 

nanoparticle was used to readout microfluidic and acoustic oscillations in the 

surrounding. It has been observed that the Brownian motion of the trapped particle is 

disturbed, depending on the frequency, distance and intensity of the applied oscillations. 

While in this primary work the oscillations were artificially generated in the surrounding 

medium, in this Chapter, the extension to real biological samples is demonstrated. I will 

show how a single gold sphere is used as an optofluidic nanosensor to detect for the first 

time the microfluidic oscillations generated by a microbiological sample. To realize this 

task a freely swimming larva of Copepods, called Nauplius, served as living source of 

flow generated through the rhythmic strokes of its antennae. The thus created 

microfluidic flow was detected by optically tracking of a gold nanoparticle confined in 

the potential of an optical tweezer. The extracted frequencies from the motion of the gold 

nanoparticle in the optical trap were in good agreement with those obtained through a 

direct observation of their motion. Thus, our approach delivers a tool to detect the 

microfluidic oscillations produced by living animals in the vicinity of the optical trap and 

enables a non-invasive analysis of their motion.  

In the first part of this Chapter, the theoretical background of the optical forces acting on 

a plasmonic nanosensor is described. In the second part, the microbiological source of 

fluidic oscillations is characterized by its direct observation. In the main part, the 
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movement of the living organism is analyzed by optical tracking of the plasmonic flow 

detector. Finally, the Chapter is concluded and future perspectives as well as applications 

are discussed. This Chapter is based on my work published in J. Vis. Exp. 
104

. 

 

Optical forces on a plasmonic nanoparticle 

Small particles that are immersed in aqueous solution are subjected to Brownian motion 

(cp. Chapter: Diffusion). Once trapped in an optical tweezer, the particle is prevented 

from long-term diffusion and its movement is dominated by directed diffusion within the 

harmonic trapping potential (cp. Chapter: Diffusion with drift for a spherical particle).   

The harmonic potential is a consequence of the optical force distribution within the 

tweezer (cp. Chapter: Optical forces on a small particle). The total electromagnetic force 

acting on a gold nanoparticle in an optical trap can be split into two components:         

The gradient force 𝑭(𝒓)𝑔𝑟𝑎𝑑  (equation 2.1.16) and the scattering force 𝑭(𝒓)𝑠𝑐𝑎𝑡         

(equation 2.1.17). The gradient force is conservative and depends on the real part of the 

complex polarizability of the gold nanoparticle. It acts for a positive real part of the 

polarizability along the field intensity gradient toward the focal point of the focused 

trapping beam. A strong gradient force is achieved by a highly focused trapping beam. 

The scattering force is dissipative and depends on the imaginary part of the complex 

polarizability. The scattering force points along the electromagnetic wave propagation. 

Changing the ratio between the real and imaginary part of the polarizability of the gold 

nanoparticle (e.g., the ratio between the gradient and the scattering force) can thus 

determine the final trap stiffness 𝜅 
31

 (cp. Chapter: 2.1.1.3). The ratio can be tuned by 

varying the trapping laser wavelength. A stable trapping of a gold nanoparticle is thus 

strongly dependent on the wavelength of the trapping laser 
2, 7, 103

. For a stable 3D 

trapping, the gradient force has to be greater than the scattering force plus thermal forces 

acting on the particle (see Chapter: Diffusion).  

In the experiments presented in this Chapter, a trapping wavelength of λ = 1064 nm was 

chosen. And a gold nanoparticles with a diameter of D = 60 nm. The trapping wavelength 

was far red-shifted from the plasmon resonance of the gold sphere at λ ~ 530 nm.        

This implicated that the optical gradient force was dominant and the scattering force 

which originates from momentum transfer of scattered and absorbed photons was 
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minimal. At a wavelength close to the particle resonance, the scattering of becomes 

strong and the scattering force dominant. The gold nanoparticle is pushed beyond the 

focal plane and not trapped in 3D 
10, 105

.            

For an illustration of the 3D confinement of the gold nanoparticle in the optical trap, the 

optical forces acting on the sphere suspended in water were simulated numerically  

(Figure 4.1.1). The numerical aperture of the objective was NA = 1.0 and the power of 

the trapping laser P = 100 mW. Since the particle is within the Rayleigh regime, the 

condition for the electrostatic dipole approximation for the polarization of the particle 

(equation 2.1.1) is sufficiently fulfilled and retardation effects could be neglected.  

Instead of considering a planar incident wave, a paraxial Gaussian beam focused by a lens 

as proposed by  Agayan et al. 
31

 was considered. The expressions for the gradient and 

scattering force in cylindrical coordinates are 
31, 106

:   

〈𝑭𝑔𝑟𝑎𝑑〉𝑧 =  − 
𝜀0

𝜋
 𝛼′|𝑬𝟎|2𝑧 

𝑤0
4

𝑧0
2 [

1

𝑤4(𝑧)
−

2𝑟2

𝑤6(𝑧)
]  exp (−

2𝑟2

𝑤2(𝑧)
)                                    (4.1.1) 

〈𝑭𝑔𝑟𝑎𝑑〉𝑟 =  − 
2𝜀0

𝜋
 𝛼′|𝑬𝟎|2𝑟 

𝑤0
2

𝑤4 (𝑧)
 exp (−

2𝑟2

𝑤2(𝑧)
)                                                      (4.1.2) 

〈𝑭𝑠𝑐𝑎𝑡〉𝑧 =   
𝜀0

𝜋
 𝛼′′|𝑬𝟎|2  

𝑤0
2

𝑤2 (𝑧)
{𝑘𝑚 [1 −

𝑟2(𝑧2−𝑧0
2)

2(𝑧2+𝑧0
2)

2] −
𝑤0

2

𝑧0𝑤2(𝑧)
}  exp (−

2𝑟2

𝑤2(𝑧)
)               

(4.1.3) 

〈𝑭𝑠𝑐𝑎𝑡〉𝑟 =   
𝜀0

𝜋
 𝛼′′|𝑬𝟎|2  

𝑤0
2

𝑤2 (𝑧)

𝑘𝑚𝑟

𝑅(𝑧)
 exp (−

2𝑟2

𝑤2(𝑧)
)                                                       (4.1.4) 

with 𝑤2(𝑧) = 𝑤0
2[1 + (

𝑧

𝑧0
)2], 𝑅(𝑧) = 𝑧 [1 +

𝑧0

𝑧

2
] , 𝑤0being the beam radius in the focal 

plane and 𝑧0 being the focus position in z-direction along the beam axis.  

The calculated distribution of the gradient and scattering force as well as the total optical 

force that keeps the particle confined in the trap is shown in Figure 4.1.1. It is important 

to mention that for a tightly focused beam and a high numerical aperture of the objective     

(as it is the case here) the simulation model reveals some uncertainties since it is based on 

a loosely focused Gaussian beam. Nevertheless, the simulation clearly demonstrates that 
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under the chosen conditions the total force (Figure 4.1.1) favors a particle trapping close 

to the focal point. 

 

Figure 4.1.1: Simulation of the optical forces acting on a 60 nm gold nanoparticle in an optical 

trap with a wavelength of λ = 1064 nm and a power of P = 100 mW. The gradient force points into 

the direction of highest field intensity, whereas the scattering force points toward the beam 

propagation direction. Since the gradient force exceeds the scattering force, a stable optical 

confinement in 3D is achieved. The maximum total force is 0.97 pN. 

A nanoparticle captured in an optical trap is prone to directed Brownian motion           

(cp. Chapter: Displacement of an optically trapped particle). The time-dependent x- and 

y-displacement of the gold nanoparticle inside the trap can be measured by tracking the 

center-of-mass of the optofluidic sensor in each frame of a video file and reveals the time 

series for the x- and y-direction. FFT of the time series gives the amplitude-frequency 

plots for the respective directions (cp. Chapter: 3.6). While the unperturbed trapped 

nanoparticle shows Brownian motion, and thus no signal in the FFT, the addition of a 

source leads to a displacement of the sensor that can be extracted through FFT analysis.  

To detect any small external microfluidic disturbance and to achieve an enhanced signal 

to noise ratio in the frequency spectrum of the sensor particle a very stable trapping of the 

particle is required. A higher laser power implicates higher trap stiffness 𝜅 but also leads 

to heating of the nanoparticle which induces an unwanted increase of thermal fluctuations 

in the system. Although the trapping laser wavelength was chosen to be off-resonance 

with respect to the plasmon resonance of the sensor particle (λ ~ 530 nm) it still possesses 

a finite absorption cross-section at this wavelength ( λ = 1064 nm). The absorption cross-

section at λ = 1064 nm was calculated with MQMie to be                         

𝐶𝑎𝑏𝑠(1064 𝑛𝑚) ≅ 3 ∙ 10−8 µ𝑚2. For comparison, at the plasmon resonance the 
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computed absorption cross-section was 𝐶𝑎𝑏𝑠(530 𝑛𝑚) ≅ 9.8 ∙ 10−6 µ𝑚2. Thus, the laser 

power (in this case P = 100 mW) had to be optimized in such a way that heating effects 

were minimized but a sufficiently stable trapping was achieved. 

Characterization of the microbiological flow source 

A larva of Copepods was used as a biological source of microfluidic oscillations.         

The larvae of Copepods are called Nauplii and use rhythmic strokes of their antennae 

(each larva has three pairs of appendages at their head region) to swim in water 
107

                

(see Figure 4.1.2). These rhythmic strokes shall in the following serve as source of 

microfluidic flow. Any investigations on the movement of the animal so far were based 

on microscopy studies by observing and counting the antenna strokes of the Nauplius 

directly during the measurement. Due to its size  (~ 100 - 500 µm) 
108

 this often required 

measurements either one by one or the fixation of a single Nauplius to a substrate.     

 

Figure 4.1.2: The movements of several Nauplii were analyzed independently by monitoring their 

swimming behavior under dark-field illumination with a high speed camera. In this example, one 

full oscillation of the periodic motion of the main arm of the large antennae took 148 ms which 

corresponds to a frequency of around f = 7 Hz.   

Similarly, and for reference, we analyzed the movements of several Nauplii 

independently by monitoring their swimming behavior directly with a high speed camera 

(PCO.dimax) under dark-field illumination with a 10x air objective. An example is shown 

in Figure 4.1.2. One full oscillation of the periodic motion of the main arm of the large 

antennae took 148 ms, which corresponds to a frequency of around f = 7 Hz. The same 

Nauplius was observed over a longer time period of some seconds and also different 

Nauplii of the same sample were investigated. The frequencies for the swimming 

oscillation obtained from the direct observation were between fmin = 4.1 Hz and       

fmax = 7.2 Hz. The frequency and intensity of the strokes are indicators of the age, fitness, 

and environmental conditions of the animal 
109, 110

. In particular, the latter point makes a 

non-invasive investigation of such animals interesting as it allows conclusions on the 
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overall conditions of an ecosystem. An attractive way to overcome the microscopic 

approach of direct observation is to observe the activity of a Copepod larva by using an 

optically trapped gold nanoparticle as an optofluidic nanodetector, as will be described in 

the following section.      

 

Analysis of the movement of a Nauplius by optical tracking of an optically 

confined gold nanoparticle 

A schematic illustration of the experimental setup is shown in Figure 4.1.3. A Nauplius 

was swimming in water solution surrounding the optically trapped gold nanoparticle.   

The Nauplius uses rhythmic strokes of its antennae to swim in water. The fluidic 

oscillations that were generated by the animal propagated through the liquid medium and 

interacted with the optically trapped sensor. The generated microfluidic flow was 

measured by means of the displacement of an optically trapped gold nanoparticle. 

Trapping was achieved by setting up an optical tweezer at a wavelength of λ = 1064 nm 

in a dark-field microscope. The wavelength of λ = 1064 nm for the trapping laser was 

chosen to guarantee a stable confinement of the plasmonic nanodetector in the potential 

of the optical trap, as explained above 
2, 7

. The beam was focused by a 100x/NA=1.0 

water immersion objective and the trapping power was P = 100 mW. Video files were 

captured with a color camera (Canon EOS 550D SLR) at a frame rate of 60 Hz for        

ca. 15 s in a dark-field configuration 
13

 (cp. Chapter 3.1.1.2).  

 

Figure 4.1.3: Sketch of the experimental 

setup. A gold nanoparticle is trapped in an 

optical tweezer at a wavelength of             

λ = 1064 nm and detects the microfluidic 

oscillations of one Nauplius that swims in 

the water. 
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Figure 4.1.4 (a) shows a dark-field image of a gold nanoparticle that was trapped by the 

laser beam. The greenish color under dark-field illumination indicated the light scattering 

frequency of a single particle. Observing the trapped particle with a color camera ensured 

that just one plasmonic nanoparticle was confined by the focused laser.  

 

Figure 4.1.4: Optical trapping of a gold nanoparticle. (a) Dark-field image of a single trapped gold 

particle. (b) x-y-displacement of a gold nanoparticle that undergoes Brownian motion in the 

optical tweezer and is not disturbed by an external flow field. (c) x-y-displacement of the 

plasmonic nanosensor within the harmonic potential, after one Nauplius is added to the 
surrounding liquid. The microfluidic oscillations generated by the animal caused a distortion of the 

gold nanoparticle displacement in y-direction (please note the different scale bar). 

Within the harmonic trapping potential, a linear restoring force  𝑭𝑟𝑒𝑠𝑡  pulled the 

plasmonic nanoparticle toward the trap center 
44, 45

. This means on the one hand, the 

particle was subjected to Brownian motion with a MSD of 〈∆𝑟2(𝑡)〉 = 6𝐷𝑡 with 𝑡 being 

the time and 𝐷 being the temperature-dependent diffusion coefficient of a sphere 

(equation 2.2.12). On the other hand, the particle felt the external restoring trapping    

force 
46

. It can be written (in 1D) as 𝐹𝑟𝑒𝑠𝑡 = 𝜅 𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡) with  𝑥 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝑡) being the 

displacement of the particle with respect to the trap center and 𝜅 being the trap stiffness. 

The displacement of the particle within the trap depends therefore on the temperature 𝑇 as 

well as on the trap strength 𝜅. Therefore, as described above, the laser power has been 

carefully adjusted to ensure an optimal trapping. Without any external microfluidic 

source, the distribution of the particle position in x- and y-direction showed a Gaussian 
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behavior with a standard deviation 𝜎𝑖
2 ≅

𝑘𝐵𝑇

𝜅
, 𝑖 = 𝑥, 𝑦 (equation 2.2.14) around the trap 

center. Figure 4.1.4 (b) shows the measured x-y-displacement of a gold nanoparticle that 

undergoes Brownian motion in the optical tweezer and is not disturbed by an external 

flow field.  

As soon as a Nauplius was added to the surrounding medium, the time-dependent, 

periodic movement of its antennae generated a flow field that interacted with the sensor 

particle. The nanoparticle in the optical trap started to oscillate in the direction of the 

hydrodynamic interaction (in this case y-direction) up to an amplitude of Ay = 100 nm 

(Figure 4.1.4 (c)).  

Figure 4.1.5 (a) and Figure 4.1.5 (b) show the amplitude-frequency spectra of a trapped 

gold nanoparticle, as a result of the FFT analysis of the x-y-displacement maps in      

Figure 4.1.4, without (black curve) and with (red curve) a Nauplius present in the 

surrounding medium. The amplitude frequency analysis in x- and y-direction reveals zero 

amplitude when no Nauplius is present (black curves in Figure 4.1.5). Similarly, only 

weak amplitudes were obtained in the x-direction of the Fourier spectrum when the 

Nauplius was present (Figure 4.1.5 (a)). In contrast, the y-direction of the frequency 

spectrum of the sensor showed a range of frequencies with strong amplitudes           

(Figure 4.1.5 (b)). This can be explained by the relative position of the Nauplius with 

respect to the flow sensor. High amplitudes in y-direction of the frequency spectrum 

indicate that the hydrodynamic interaction between animal and detector happened mainly 

in this direction (cp. Figure 4.1.4 (c)). The broad frequency range in the y-direction can 

be explained by the fact that not only the two main antennas of the Nauplius contributed 

to the signal, but also the smaller antenna pair and other body protrusions.    
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Figure 4.1.5: Amplitude-frequency spectra of a gold nanoparticle trapped next to a swimming 

Nauplius. (a) Black curve: x-direction of the frequency spectrum of an undisturbed nanoparticle in 

the optical trap as reference (cp. Figure 4.1.4 (b)). Red curve: x-direction of the frequency 

spectrum of the gold particle trapped next to a swimming Nauplius (cp. Figure 4.1.4 (c)). Inset: 

The microfluidic oscillations generated by the Nauplius pointed mainly in y-direction. This 

explains that the Fourier transformation of the time-dependent nanoparticle position in x-direction 

did not show any strong amplitude. (b) Black curve: Frequency spectrum of the undisturbed 

reference gold particle and of the gold particle trapped next to the swimming Nauplius (red curve, 

cp. Figure 4.1.4 (c)) in y-direction. Since the microfluidic waves of the organism pointed mainly in               

y-direction (inset), increased amplitudes with local maxima over the range of 0 to 11 Hz can be 

seen in the spectrum.  

For all flow field measurements, frequency maxima at around fmin = 3.0 Hz and 

fmax = 7.2 Hz for the Nauplius movement were found (blue curve in Figure 4.1.5 (b)).  

This is in good accordance to the directly observed frequencies of the biological 

microorganism and also fits well to the expected frequency range for Nauplii of an age of 

approximately two weeks 
107, 110

.   
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Chapter summary and outlook 

In this Chapter, the approach to read out microfluidic oscillations with a single gold 

sphere as an optomechanical nanosensor was extended and applied for the first time to a 

living microorganism as source of flow. The trapping conditions e.g., trapping 

wavelength and power have been optimized to achieve ideal trapping conditions. For this, 

numerical simulations have been performed to calculate the optical forces acting on the 

nanoparticle. A larva of Copepods was used as a biological source of microfluidic 

oscillations. The flow generated by a Nauplius was measured by means of an optically 

trapped gold nanoparticle. Without any external microfluidic source, the distribution of 

the time-dependent particle position in x- and y-direction showed a Gaussian profile.      

In the amplitude-frequency plots of the optofluidic detector almost no signal could be 

seen in x-direction when the Nauplius was present. In contrast, the y-direction of the 

frequency spectrum showed a range of frequencies with strong amplitudes. This can be 

explained by the relative position of the Nauplius with respect to the flow sensor. For all 

flow field measurements, frequency maxima between fmin = 3.0 Hz and fmax = 7.2 Hz for 

the Nauplius movement were found. This is in good accordance to the directly observed 

frequencies of the biological microorganism.  

Overall, the method to detect the motion of a Nauplius by a single gold nanoparticle in an 

optical tweezer represents a non-invasive way to analyze the activity of the aquatic 

specimen without the requirement to disturb or even see the Nauplius during the 

measurement. Additionally, the direction of the microfluidic oscillations can be 

determined by analyzing the direction-dependent Fourier spectra of the time-dependent 

displacement of the nanoparticle. The optical tweezer configuration rendered it possible 

to detect even small fluidic oscillations in an aqueous solution with high sensitivity.  

Copepods are typical examples for bio indicators, because they can be found in nearly 

any water habitat 
111, 112

. Observing the activity and viability of these species from a water 

sample can thus be used to obtain information on the overall conditions of an      

ecosystem 
111

. This experimental approach could expand the current methodology for 

water analysis and could be applied to gain information about the health and the integrity 

of aquatic ecosystems. 
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4.2 Application of a dielectric microparticle as optofluidic sensor for oscillatory 

flows 

As discussed in the previous Chapter, an optically confined gold nanoparticle can be used 

for the detection of a microfluidic flow generated by a living microorganism. Even if the 

trapping laser wavelength is off-resonant to the plasmon resonance of the particle a finite 

heating of the nanoparticle occurs. This can induce an unwanted enhancement of thermal 

fluctuations in the system. To increase the sensitivity of detection, this Chapter seizes the 

idea to use a non-absorbing dielectric microparticle as optofluidic sensor of oscillatory 

flows. It allows a quantitative mapping of the vectorial velocity field in two dimensions 

around a microscale oscillator in water. The optofluidic method introduced in this 

Chapter paves the way for in-situ characterization of fast mixing microscale devices and 

for new detection methods able to provide location and recognition of moving sources 

that can be applied to both artificial and living microobjects with their own dynamics at 

the nanoscale (cp. Chapters: 4.3 Optical driving and sensing of helical microstructures in 

a fluidic environment; 4.4 Sensing the microfluidic flow generated by a single bacterial 

cell).  

In the following work, the applied laser power P to confine a dielectric detector particle 

with a diameter of D = 1.76 µm in water at a wavelength of λ = 1064 nm optically was                  

P = 26 mW, P = 30 mW, P = 110 mW and P = 127 mW. The trapping beam was focused 

by a (100x or 63x)/NA = 1.0 water immersion objective. To characterize the detector trap, 

the total electromagnetic force acting on the sensor was computed for these laser beam 

powers. The challenge of the calculation is that neither the Rayleigh approach nor the ray 

optics approach is a good approximation for the mathematical description of the optical 

force (cp. Chapter: 1). For a particle with a diameter at the same scale as the wavelength 

of the strongly focused trapping beam (as it is the case here), the extended Generalized 

Lorenz Mie theory (GLMT) has to be applied. A brief summary of the GLMT as well as 

the numerical simulation of the electromagnetic force acing on the detector particle can 

be found in the first part of this Chapter. In the second part, the source of the analyzed 

flow is described. An oscillatory microflow was generated by an optically confined 

microparticle moving in a dipole-like pattern. For this aim, the optofluidic technique was 

extended by implementing a multiple tweezers configuration at different wavelengths 

under a dark-field microscope. Two alternately chopped traps in close vicinity induce an 
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oscillation of the trapped bead between both tweezers, in the following termed as source 

of flow. In the main part of this Chapter, the vectorial velocity pattern around the dipolar 

flow source is analyzed. This is done by optical tracking of the dielectric sensor in a third 

trap that could be positioned at different points in space around the source.                   

The experimentally measured results are compared to numerical simulations of the flow 

field distribution. The comparison between numerical simulations and the measured data 

show a good agreement of the field pattern around the oscillating microsource when the 

detecting particle was located along the dipole axis, and at intermediate positions far from 

the source. Finally, the Chapter is concluded and possible applications of the presented 

technique are discussed.  

 

Optical forces on a dielectric microparticle 

In the following work, optically confined silicon dioxide (SiO2) microspheres with 

diameters at the same scale as the wavelength of the (strongly focused) trapping beam 

were used as optofluidic sensors. A generalization of the Lorenz Mie theory (cp. Chapter: 

Lorenz Mie theory) provides the possibility to calculate the electromagnetic force acting 

on a microsphere with a size dimension at the same order as the trapping wavelength    

(a ~ λ). The Generalized Lorenz Mie theory (GLMT) implicates an analytical description 

of an arbitrarily shaped incident electromagnetic wave and is not restricted to the size of 

the trapped sphere. For the description of a single beam optical trap, following 

assumption is made: The incident electromagnetic field is not considered to be planar any 

more (as it is the case in the Lorenz Mie theory). It has the shape of a focused Gaussian 

TEM00 (transversely localized) beam that is Fresnel diffracted on a homogenous      

sphere 
113, 21

. Solving Maxwell`s equations with necessary boundary conditions, the 

transversal electric (TE) and transversal magnetic (TM) Bromwich potential 
114

 in polar 

coordinates for a transversely localized incident beam can be written as infinite 

superposition according to: 

𝑈𝑇𝐸
𝑖𝑛𝑐 =  ∑ ∑

𝐸0

𝑘
𝑛
𝑚=−𝑛

∞
𝑛=1 𝑖𝑛𝐶𝑛

𝑝𝑤𝑔𝑛,𝑇𝐸 
𝑚 𝜓𝑛(𝑘𝑟)𝑃𝑛

|𝑚| (𝑐𝑜𝑠𝜃)exp(𝑖𝑚𝜑)                         (4.2.1) 

𝑈𝑇𝑀
𝑖𝑛𝑐 =  ∑ ∑

𝐸0

𝑘
𝑛
𝑚=−𝑛

∞
𝑛=1 𝑖𝑛𝐶𝑛

𝑝𝑤𝑔𝑛,𝑇𝑀 
𝑚 𝜓𝑛(𝑘𝑟)𝑃𝑛

|𝑚|
(𝑐𝑜𝑠𝜃) exp(𝑖𝑚𝜑)                        (4.2.2) 
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With 𝑛, 𝑙, 𝑝 ∈ ℕ, 𝐶𝑛
𝑝𝑤

= (2𝑛 + 1)/2𝑛(𝑛 + 1), 𝜓𝑛  being the Riccati-Bessel functions, 

𝑃𝑛
|𝑚|

 being the associated Legendre functions and 𝑔𝑛,𝑇𝐸 
𝑚  and 𝑔𝑛,𝑇𝑀 

𝑚  being the beam shape       

coefficients 
113

. The scattered transversal electric (TE) and transversal magnetic (TM) 

Bromwich potentials are then: 

𝑈𝑇𝐸
𝑠𝑐𝑎𝑡 =  − ∑ ∑

𝐸0

𝑘
𝑛
𝑚=−𝑛

∞
𝑛=1 𝑖𝑛𝐶𝑛

𝑝𝑤
𝐵𝑛

𝑚𝜉𝑛(𝑘𝑟)𝑃𝑛
|𝑚| (𝑐𝑜𝑠𝜃)exp(𝑖𝑚𝜑)                       (4.2.3) 

𝑈𝑇𝑀
𝑠𝑐𝑎𝑡 =  − ∑ ∑

𝐸0

𝑘
𝑛
𝑚=−𝑛

∞
𝑛=1 𝑖𝑛𝐶𝑛

𝑝𝑤𝐴𝑛
𝑚𝜉𝑛(𝑘𝑟)𝑃𝑛

|𝑚|
(𝑐𝑜𝑠𝜃) exp(𝑖𝑚𝜑)                       (4.2.4) 

With 𝑛, 𝑙, 𝑝 ∈ ℕ, 𝜉𝑛  being the spherical Riccati-Hankel functions, 𝑃𝑛
|𝑚|

 being the 

associated Legendre functions, 𝐴𝑛
𝑚 and 𝐵𝑛

𝑚 being the wave scattering amplitudes, 𝐸0 

being the peak electric field strength and  𝐶𝑛
𝑝𝑤

= (2𝑛 + 1)/2𝑛(𝑛 + 1) 
113

.  

The general scattering amplitudes 𝐴𝑛
𝑚 and 𝐵𝑛

𝑚 can be expressed by: 

𝐴𝑛
𝑚 =  𝑎𝑛𝑔𝑛,𝑇𝑀

𝑚                                                                                                             (4.2.5) 

𝐵𝑛
𝑚 =  𝑏𝑛𝑔𝑛,𝑇𝐸

𝑚                                                                                                              (4.2.6) 

where 𝑔𝑛
𝑚 are the beam shape coefficients 

115, 116, 117
. In the plane wave limit, as it is the 

case for the Lorenz Mie theory, the shape coefficients 𝑔𝑛
𝑚 become one and the general 

scattering amplitudes 𝐴𝑛
𝑚 and 𝐵𝑛

𝑚 are identical with the scattering amplitudes when a 

planar incident wave is assumed: 𝐴𝑛
𝑚 =  𝑎𝑛 and 𝐵𝑛

𝑚 =  𝑏𝑛 (cp. Chapter: Lorenz Mie 

theory) 
113, 114

 . The scattered fields described by the GLMT can be calculated by taking 

multiple vector derivatives of the scattered Bromwich potentials described in         

equation 4.2.2 and 4.2.3 
20, 118

. For the calculation of the total optical force acting on a 

SiO2 microparticle, the T-matrix method was applied 
119, 120

. The T-matrix is a transition 

matrix and describes the transformation of the beam shape coefficients of the incident 

wave to the beam shape coefficients of the scattered wave. From equations 4.2.5 and 

4.2.6 the T-matrix can be defined as: 

𝑻 =  (
𝑎𝑚 0
0 𝑏𝑚

)                                                                                                           (4.2.7) 
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In the GLMT the T-matrix is diagonal, for non-spherical particles it is not 
120

.  

The radiation pressure transferred from the beam to the spherical particle is proportional 

to the net momentum subtracted from the incident beam 
114

. In the GLMT, the radiation 

pressure force 𝑭(𝒓) can be split into a longitudinal component (along the beam 

propagation, z-direction) and two transverse components (x-, y-direction) 
114, 20

: 

𝑭(𝒓) =  
𝑛𝑚

𝑐
 𝐼0(𝐶𝑝𝑟,𝑥(𝒓) + 𝐶𝑝𝑟,𝑦(𝒓) + 𝐶𝑝𝑟,𝑧(𝒓))                                                        (4.2.8) 

with 𝐶𝑝𝑟,𝑖   (𝑖 = 𝑥, 𝑦, 𝑧) being the radiation pressure cross sections in the three dimensions, 

𝑛𝑚 being the refractive index of the surrounding medium, 𝐼0 being the intensity at the 

beam center, and 𝑐 being the speed of light. The radiation pressure cross sections 

𝐶𝑝𝑟,𝑖   (𝑖 = 𝑥, 𝑦, 𝑧) in turn can be expressed by the T-matrix elements (equation 4.2.7) and 

the beam shape coefficients 𝑔𝑛
𝑚 (further reading on the exact expressions for the cross 

sections can be found here: 114, 121). With this, the total electromagnetic force acting on 

a spherical SiO2 microparticle can be calculated. To this goal, a computational toolbox 

implemented in Matlab and provided by Nieminen et al. was used 
120

. In the calculation, 

the field is not expanded by means of the Bromwich potentials but by means of a more 

general set of basis-functions (vector spherical wave functions) 
120

. However, the 

formalism itself does not change.  

In this work, the applied laser power P to trap optically a SiO2 detector particle with 

refractive index n = 1.45 and diameter D = 1.76 µm in water at a wavelength of λ = 1064 

nm optically was P = 26 mW, P = 30 mW, P = 110 mW and P = 127 mW. The trapping 

beam was focused by a (100x or 63x)/NA = 1.0 water dipping objective. The total 

electromagnetic force that kept the particle in the optical trap was computed for the four 

different powers and can be seen in Figure 4.2.1. This delivered a precise determination 

of the trapping conditions for non-metallic microparticles.  
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Figure 4.2.1: Numerical simulation of the total electromagnetic force acting on a SiO2 sphere with 

a diameter of D = 1.76 µm and trapped with a strongly focused laser beam at a wavelength of 

λ = 1064 nm. The beam is focused by a water dipping objective with numerical aperture NA = 1.0. 

The optical trap has a laser power of (a) P = 26 mW, (b) P = 30 mW, (c) P = 110 mW and              

(d) P = 127 mW. 
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Characterization of the dipolar flow source 

This Chapter is based on my co-author paper published in Appl. Phys. Lett. 
122

. As source 

of an oscillatory microflow served a SiO2 sphere with a diameter of D = 1.76 μm that 

oscillated periodically in a dipole-like mode. To realize this, the beam of a continuous-

wave laser at a wavelength of λ = 532 nm was first expanded by a home-built telescope to 

slightly overfill the back aperture of a water dipping microscope objective 63x/NA = 1.0 

(cp. Chapter: 3.1.1.3). The beam was then split into two beams of equal power         

P = 60 mW and guided into the objective at a distance of 910 nm to each other. A chopper 

was used to block one of the beams and let the other pass at a time creating two 

alternating, closely spaced optical traps (Figure 4.2.2).  

 

Figure 4.2.2: Sketch of the source generating an oscillatory flow. A SiO2 microparticle with a 

diameter of D = 1.76 µm oscillated periodically in a dipole-like mode between two optical traps. 

For that the trapping beam (λ = 532 nm) was split into two beams of equal power P = 60 mW.      

A chopper was used to block one of the beams and simultaneously let the other pass creating two 

alternating, closely spaced optical traps. The oscillatory motion of the source bead could be 
described by a harmonic function of the form x =A sin(ωt), with ω = 2 π f  and amplitude A. 

The source bead was driven to oscillate between the two traps along the x-axis at a 

frequency f = 197 Hz as defined by the chopper creating an oscillatory flow around it.      

The driving frequency was chosen since it is not a multiple of 50 Hz. At the set frequency 

the oscillatory motion of the source bead, detected through the dark-field microscope, 

resembled a harmonic function of the form x =A sin(ωt), with ω = 2 π f  and the amplitude 

A = (405 ± 6) nm defined as half the separation between the two beams. The experiments 

were conducted in ddH2O water. This experimental configuration allowed a generation of 
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a 2D oscillating flow field with the dipolar oscillating SiO2 sphere acting as the flow 

source. In the following Chapter, the detector unit of the dark-field configuration will be 

introduced which is based on the optical tracking of a dielectric sensor (trapped SiO2 

sphere) in a third trap. The arrangement is designed such that the dielectric sensor can be 

positioned at different points in space around the source, thus, facilitating to create a 2D 

field map. 

 

Microscale mapping of an oscillatory flow 

This Chapter is based on the work of S. Nedev et al. published in Appl. Phys. Lett. 
122

.  

The main part of this Chapter describes the idea to use a dielectric microparticle as 

optofluidic sensor to quantitatively map the 2D oscillating flow with microscale 

resolution. For the detection of the oscillatory flow pattern, an optically trapped SiO2 

microparticle with a diameter of D = 1.76 µm was used and could be positioned at 

different points in space around the source (Figure 4.2.3). 

 

Figure 4.2.3: Schematic of the experimental setup to map the oscillatory flow around the source 

with a dielectric microparticle. For the flow field detection a SiO2 twin microparticle was trapped 

at λ = 1064 nm and positioned at different points in space around the source. 

Therefore, the beam of a second laser at a wavelength of λ = 1064 nm was set to a power 

of P = 110 mW, and was used to optically confine the sensor bead (cp. Chapter: 3.1.1.3). 
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Before the trapping beam entered the microscope, it was expanded by a beam expander 

and two mirrors in front of the microscope were used to place the sensor particle in 

different x- and y-positions around the source. Both, the source and the detector beads 

were focused by a water dipping microscope objective 63x/NA = 1.0 and illuminated by a 

dark-field condenser. The beams were focused on the same plane. Their individual 

motion was recorded via their white light Rayleigh scattering by a high-speed camera 

(PCO.dimax) at a frame rate of 1000 Hz. Analyzing the time-dependent x- and y-position 

of the sensor particle inside the detector trap rendered it possible to detect a 2D map of 

the velocity field around the oscillating source. FFT of the detector time series resulted in 

amplitude-frequency plots in x- and y-direction for each position of the detector bead  

(cp. Chapter: 3.6). The amplitude 𝐴 (𝐹𝐹𝑇𝑖) was calculated as (equation 3.6.5):  

𝐴(𝐹𝐹𝑇𝑖 ) = 2 √Re𝑖
2 + Im𝑖

2 𝑁0⁄                                                                                  

with i being the x- or y-direction, 𝑁0 being the number of frames, and Re and Im being 

the real and imaginary part of the FFT.  

Figure 4.2.4 shows a snapshot of a typical experimental video of the upper right quadrant 

with respect to the source (S) that is located at the origin. The detector bead (D) was 

placed at 60 different positions around it covering more than 16 × 16 μm
2
. 

 

Figure 4.2.4: Snapshot of a typical experimental video of the upper right quadrant with respect to 

the oscillating source bead (S) that is located at the origin. The source oscillated permanently, 

while the detector bead (D) was placed at 60 different positions around it covering more than 

16 × 16 μm2. (Taken from 122). 



 

 

74 

In the experiment, the source was oscillating permanently. 1 s after locating the detector 

at each position, 5 s frame sequences were recorded and processed with a tracking-

software (cp. Chapter: 3.6). This provided the time series of the x- and y-displacements of 

both source and sensor particle.  

The amplitude-frequency plots of the detector in x- and y-direction showed sharp peaks at 

the driving frequency for the oscillating source f = 197 Hz for both directions           

(Figure 4.2.5). The spectra shown in Figure 4.2.5 were obtained with the detecting 

particle positioned at the maximum distance from the source (as shown in Figure 4.2.4).            

The displacement of the source was ∼400 nm along the x-direction and ∼50 nm along the 

y-direction. Even at the maximum distance, clear peaks of similar amplitude at f = 197 Hz 

in both directions were observed. Since the oscillation of the source is not strictly 

harmonic, the contribution of other harmonics contained in the source appeared as 

additional peaks in the spectra. Analysis of different time ranges of the same 

measurement provided the same amplitude response, meaning that a steady state of the 

combined source and detector system was reached within 1 s. 

 

Figure 4.2.5: Amplitude-frequency plots of the detector particle in x- and y- direction. They show 

sharp peaks at the oscillating frequency of the source at f = 197 Hz. The spectra were obtained with 

the detecting particle positioned at the maximum distance from the source (as shown in           

Figure 4.2.3). Since the oscillation of the source is not strictly harmonic, the contribution of other 

harmonics contained in the source appears as additional peaks in the spectra. (Taken from 122). 

From the height of the peak at f = 197 Hz in the x- and y-direction (cp. Figure 4.2.5), the 

amplitude of the displacement of the detector particle was obtained for this frequency. 

The experimentally measured amplitude 𝐴𝑖  (𝑓 = 197 𝐻𝑧), 𝑖 = 𝑥, 𝑦 of the displacement 

of the detector bead inside the trap is directly related to the velocity of the surrounding 
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water molecules 𝑣𝑖: The frictional drag coefficient 𝛾 for a spherical object is given by 

 𝛾𝑠𝑝ℎ𝑒𝑟𝑒 = 6 𝜋 𝜂 𝑟 (equation 2.2.11) with 𝜂 being the dynamic viscosity of the medium 

and 𝑟 being the particle radius. An insertion of this expression into the equation of motion 

for a particle confined in a trapping potential with trap stiffness  𝜅:      

𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖   𝛾𝑠𝑝ℎ𝑒𝑟𝑒 +  𝜅𝐴𝑖  (𝑓) = 𝐹(𝑓)𝑡ℎ𝑒𝑟𝑚𝑎𝑙  , 𝑖 = 𝑥, 𝑦 (equations 2.2.15 and 2.2.16) 

reveals the relation between flow velocity and maximal detector displacement at the 

frequency f = 197 Hz:                                                

𝜅 𝐴𝑖 = 6 𝜋 𝑟 𝜂 𝑣𝑖                                                                                                         (4.2.9)            

A SiO2 microparticle is non-absorbing and thus heating effects due to absorption that can 

lead to changes of the viscosity were neglected, which delivers a great advantage over the 

use of metallic nanoparticles, as described in the previous Chapter. Direct heating of the 

water by the trapping laser beam is on the order of 10 K per W at the focus 
123

.             

The applied laser power to trap the detector bead was set to be 𝑃 = 110 𝑚𝑊. Thus, a 

viscosity change due to direct heating was also neglected. The dynamic viscosity of water 

was therefore considered to be constant with a value 𝜂𝑤𝑎𝑡𝑒𝑟 = 9.3 ∙ 10−4 𝑃𝑎 ∙  𝑠 ≅

0,001 𝑃𝑎 ∙ 𝑠 at 23 °C.  

To obtain the associated velocity field of the oscillatory flow from equation 4.2.9,         

the optical tweezer holding the detector was calibrated by the power spectral density 

procedure 
124, 125

 . From that, the corner frequencies and the trap stiffness in x- and y-

direction were determined (cp. Chapters: Displacement of an optically trapped particle, 

Power spectrum of an optically trapped particle). The velocity of the measured signal 

with magnitude ‖𝒗𝑒𝑥𝑝‖ =  √𝑣𝑥
2 + 𝑣𝑦

2 and the direction defined by the angle         

tan (θexp) = Ay / Ax was evaluated for each position of the detector bead. A more detailed 

description of these measurements can be found in the work of S. Nedev et al.
122

 or in the 

Appendix of this thesis. There, also the simulations of the oscillatory flow field are shown 

which are in an excellent agreement with the measured data, demonstrating the feasibility 

of the given device for the detection of flow fields. Moreover, deviations between theory 

and experiment in particular in close distances between the detector and the source 

delivered an understanding to the effect that not only incompressible flow, but also sound 

could contribute to the measured flow in the near-field. This is a very important finding 
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for optofluidic location and recognition experiments and might trigger further 

investigations in this direction, as conditions are reached which in normal circumstances 

are difficult to achieve.  

   

Chapter summary and outlook 

In this Chapter, an optofluidic method to quantitatively map a 2D oscillating flow with 

microscale resolution was demonstrated. A prerequisite for the given experimental 

configuration is that heating effects need to be avoided for an undisturbed measurement 

of the flow field. It was shown that a trapped SiO2 microparticle can be used as a highly 

precise flow field sensor.  

To characterize the detector trap, a brief summary of the GLMT was given and the optical 

force acting on the optically confined detector particle with a size dimension at the scale 

of the trapping wavelength was computed. This delivered a precise determination of the 

trapping conditions for non-metallic particles.  

The vectorial velocity field around a micro-size SiO2 particle oscillating in a dipole-like 

mode in a home built, chopper based dual tweezers configuration was mapped by optical 

tracking of a confined twin detector particle positioned at different points around the 

source. This sophisticated experimental setup was realized by setting up a multiple 

tweezers configuration at different wavelengths allowing position-dependent 

measurements. 

The experimental technique presented in this Chapter can serve as reference for an 

understanding of the fundamentals of oscillatory microflows as well as their detection by 

an optomechanical sensor particle. At small scales and low Reynolds numbers, laminar 

flow is dominant. Viscous forces that arise from shearing between velocity-isosurfaces 

dominate inertial forces. The main transport mechanism for mass is diffusion and a 

mixing in the low Reynolds number regime is not easy to realize. An oscillatory 

microflow could be very useful to mix liquids in laminar systems.  
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Furthermore, the optofluidic method introduced in this Chapter paves the way for new 

detection methods able to provide location and recognition of moving sources that can be 

applied to both, artificial and living microobjects with their own dynamics at the 

nanoscale. The latter point will be discussed in the following Chapters, where a similar 

detection method is implemented to understand the fluidic dynamics around helical 

microobjects as well as living bacteria at the nanoscale (cp. Chapters: 4.3 Optical driving 

and sensing of helical microstructures in a fluidic environment; 4.4 Sensing the 

microfluidic flow generated by a single bacterial cell).  
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4.3 Optical driving and sensing of helical microstructures in a fluidic 

environment 

One of the current efforts in engineering these days is the fabrication of  “micro-bots” that 

can mimic the motile behavior of biological microorganisms e.g., bacterial cells 
126

. 

Besides a highly precise shape at a very small scale, an accurate control mechanism is 

needed for the movement of these artificial microswimmers, both of which the following 

Chapter will focus on. Regarding the motion in the low Reynolds number regime, 

Brownian motion dominates inertial motion (see Chapters: 2.2 and 2.3) 
127

. Therefore, a 

time-reversible swimming motion does not lead to any directed movement (see Chapter: 

Locomotion of microbiological objects at low Reynolds number). Considering these 

restrictions, external magnetic fields have been used to rotate and propel ferromagnetic, 

screw-like “micro-bots” through aqueous media 
126, 128-134

. On the other hand, a light-

driven rotation of trapped microstructures can be realized in various ways. First, the use 

of Laguerre-Gaussian beams that possess on-axis phase singularity and helical phase 

fronts. In this case, the Poynting vector follows a corkscrew-like motion and orbital 

angular momentum is transferred to a trapped particle 
135, 136

. Next, spin angular 

momentum of circularly (elliptically) polarized light can be used to rotate birefringent 

particles in an optical trap 
135, 137, 138

. Furthermore, it is possible to align and rotate 

plasmonic nanorods with linearly polarized laser beams 
139, 140

. Finally, a conventional, 

non-polarized laser beam allows a simultaneous trapping and rotation of objects with 

shape anisotropy 
141

.     

The endeavor of this work is to detect the microfluidic flow field generated by a trapped 

bacterial cell in its surrounding medium by means of optomechanical sensor.         

Therefore, as a first step, an optically confined and rotating microhelix was used to model 

the mechanical and dynamical properties of the living organism. This Chapter describes 

the use of an optical tweezer for initiating a light-driven rotation of chiral microobjects in 

an aqueous environment. A rotating helical microstructure serves as a model system for 

the cork-screw motion of a living bacterial cell (see Chapter: Bacterial motility: 

“Tumbling” and “running” states). The focus of investigation is the establishement of an 

optofluidic detection method with an optically driven microhelix as source of flow. From 

that, conclusions can be drawn about what conditions have to be fulfilled for an 
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optomechanical detection of the microfluidic flow generated by a similar biological 

system e.g., a bacterium.  

In the first part of this Chapter, the microscrews used in this work are described and their 

dynamic behavior in an optical trap is characterized by direct observation. In the main 

part, the optomechanic detection method for the flow generated by an optically driven 

microhelix is established. Conclusions are drawn about the conditions that have to be 

fulfilled for a successful optofluidic sensing of the flow field around such a source. 

Finally, the Chapter is summarized and future perspectives as well as applications are 

discussed.  

 

Characterization of an optically confined microhelix 

Colloidal, screw-like microstructures, serving as the microscrews in this work, with 

length scales down to 1 µm can be fabricated with the evaporation method termed 

glancing angle deposition (GLAD) 
126, 128

. Sub-micron seeds are deposited on a wafer-

substrate. The substrate in turn is positioned in an incident vapor flux with a certain angle 

between wafer and vapor beam 
126

. A constant, azimuthal rotation of the substrate leads to 

a formation of chiral microstructures (Figure 4.3.1 (a) and (b)).  

 

Figure 4.3.1: (a) SEM image of a single silicon dioxide screw (Taken from 128). A large number 
of screws can be fabricated by physical vapor deposition GLAD (b) (Taken from 128). The 

micropropellers are detached from the wafer-substrate by sonication and individual screws can be 

seen clearly under a dark-field microscope (c). 

For the micropropellers used in this work, silicon dioxide (SiO2) beads were taken as seed 

material on the wafer. A SiO2 vapor beam was incident at ca. 85° 
128

. The shape of the 
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helical structures depends on the angular speed of the wafer (~ 0.1 rpm) as well as on the 

deposition rate (e.g., few Ångströms per second) 
126

. The SiO2 screws used here were 

fabricated by our collaborators from the Peer Fischer Group (Max-Planck-Institut für 

Intelligente Systeme, Stuttgart) and had a diameter of 530 nm and a length of 2.35 µm. 

The helical propellers were detached from the substrate by sonication and could be seen 

clearly when they were imaged by a 100x/NA=1.0 water immersion dark-field objective 

(Figure 4.3.1 (c)). It was possible to distinguish the head and the thread of the SiO2 screw 

by eye.   

The chiral microobjects were confined optically at a wavelength of λ = 1064 nm.            

The beam was focused by the same 100x/NA=1.0 water immersion objective used for 

imaging as mentioned above (see Chapter: 3.1). The linearly polarized laser beam did not 

carry angular momentum. In this configuration, stable trapping of a screw was achieved 

in 3D in water (ddH2O) with a parallel alignment of the screw to the beam propagation 

direction. Once trapped in the optical tweezer with a power of 𝑃 ≥ 50 𝑚𝑊, rotation of 

the screw could be seen by eye in about half of the experiments. By eye, the screw 

orientation always looked vertical in the trap. To investigate, the motion of a trapped 

screw was analyzed closely along with out-of-plane images of its intensity profile. 

The white light Rayleigh scattering of a vertically trapped screw under dark-field 

illumination is shown in Figure 4.3.2 (a). For direct analysis of the screw rotation, a video 

file of the optically confined microhelix was captured with a color camera (Canon EOS 

550D SLR) at a frame rate of 60 Hz for 15 s (cp. Chapter: 3.1). The center of the intense 

spot was tracked to reveal the time-dependent displacement in x- and y-direction         

(Figure 4.3.2 (b), cp. Chapter: 3.6). In case of a rotating screw, the time series showed a 

periodic oscillation for both directions with a phase shift of  𝜋 4⁄  between x and y, 

indicating an azimuthal circular motion of the trapped body. This motion behavior was 

only seen in about half of the experiments.   
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Figure 4.3.2: (a) Dark-field image of the backscattered light of a vertically trapped screw rotating 

at a certain frequency f. (b) Center-of-mass-tracking of the screw cross section revealed its time-

dependent displacement in x- and y-direction. In case of a rotating screw, the time series showed a 

periodic oscillation for the x- and y-direction with a phase shift of  𝜋 4⁄ , indicating an azimuthal 

circular motion of the trapped body.  

In order to investigate the dependence of screw rotation on orientation, the measured time 

series shown above were compared to out-of-plane images of the screw intensity profile. 

Under dark-field illumination, two distinct radial intensity profiles were distinguished 

when the image plane was slightly above the focal plane of the objective, showing the 

two possible vertical orientations of the screw in the trap (Figure 4.3.3 (a)).    

 

Figure 4.3.3: (a) Out-of-plane images of a screw under dark-field illumination for its two vertical 

orientation possibilities in the optical trap. (b) Radial intensity plots of the two distinguishable   

out-of-plane intensity profiles of a screw. When the screw showed an intensity profile as the black 

curve, it rotated in the trap. When the screw showed an intensity profile as the red curve, it did not 

rotate in the optical tweezer.  



 

 

82 

In the first case, the radial intensity profile revealed a high intensity at the origin            

(left panel in Figure 4.3.3 (a) and black curve in Figure 4.3.3 (b)). This was followed by a 

strong intensity decrease with increasing distance from the center of the spot. After an 

intensity minimum at a radius of 20 pixels, the intensity increased steadily again until it 

reached a second maximum at around 58 pixels. We interpreted the high intensity at the 

origin as a result of the thread of the screw which is in the focal plane of the objective 

(left panel in Figure 4.3.3 (a)). Instead, the broad outer intensity ring originates from the 

backscattered light off the head which is trapped slightly below the focal point of the 

objective. Taken together, these observations indicate that in the trap, the screw is aligned 

with the thread on the top and the head pointing downwards, as sketched in the left panel 

of Figure 4.3.3. Screws showing this intensity profile were observed to rotate in the 

optical trap.  

In the second case, the radial intensity profile of the trapped screw is given in the right 

panel of Figure 4.3.3 (a) and the red curve in Figure 4.3.3 (b). The overall intensity was 

diminished compared to the first case (black curve), and the valley between the inner and 

outer maxima broader and less pronounced. These results indicate that both, the head and 

the thread of the screw are trapped below the focal plane, thus, less backscattered light 

could be collected by the objective, resulting in an overall lower intensity profile.   

Screws oriented in the tweezer with the thread pointing downwards “below” the head 

tended to not show rotation in the optical trap.  

A screw is trapped in a similar way as the harmonically bound spherical particle, 

described in Chapter 2. The gradient force pulls the screw toward the highest point of 

field intensity, while the scattering force pushes it slightly below the focal plane.       

Thus, the helical thread can align either above or below the head (Figure 4.3.4).  



Chapter 4. Optical driving and sensing of helical and biological microobjects 

 

83 

 

Figure 4.3.4: Sketch of an microhelix optically confined in a focused laser beam. The gradient 
force as well as the scattering force act on the microstructure within the harmonic potential.       

The gradient force pulls the object toward the highest point of field intensity. (a) The helical thread 

can either align above the head or (b) below the head.  

As mentioned before, once trapped in an optical tweezer, a rotation of the screw was 

observed in about half of the experiments. This phenomenon occurred, when the image of 

the intensity profile of the screw (as described above) indicated an alignment of the screw 

with the head pointing downwards, i.e. the thread ‘above’ the head. The reason for the 

rotation in this particular case can be understood from the radiation pressure exerted from 

the light on the helical structure (Figure 4.3.5 (a)). Non-isotropic azimuthal scattering of 

the photons at the chiral thread creates a torque on the body. The driving force of rotation 

is thus a change of momentum of the photons when the incident radiation is reflected at 

the helical object - analogous to the rotation of a windmill. This implies that the rotation 

direction goes with the chirality of the microscrew. For a constant rotation, the optically 

induced torque must be in equilibrium with the viscous drag on the microhelix.  

In the other half of the experiments, no rotation was observed e.g., when the thread was 

aligned pointing downwards (Figure 4.3.5 (b)). The standstill of the screw is explained by 

the incident photons that are isotropically deflected off the spherical head of the screw. 

The spherical head then blocks the radiation, preventing pushing on the helix.      

However, as discussed before, this is the prerequisite for a momentum transfer to the 

thread.  
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Figure 4.3.5: Schematic of the two possible screw orientations in the optical tweezer.                  

(a) When the thread of the screw aligns above the head, non-isotropic azimuthal scattering of the 

photons at the helix leads to a torque acting on the body. The screw starts to rotate at a certain 

frequency f.  (b) The thread is aligned below the head. Incident photons are isotropically deflected 

on the sphere. The spherical head blocks the radiation, preventing a pushing of the helix. 

Furthermore, the direction of the scattering force changes below the focal plane from an inward to 

an outward direction. 

The frequency of rotation of the screw in the optical tweezer was obtained by recording a 

video file in the dark-field microscope and analyzing the time-dependent displacement of 

the center-of-mass of the screw. Taking the FFT thereof resulted in amplitude-frequency 

plots in x- and y-direction (cp. Chapter: 3.6). The amplitude 𝐴 (𝐹𝐹𝑇𝑖) was calculated as 

(equation 3.6.5):   

𝐴(𝐹𝐹𝑇𝑖 ) = 2 √Re𝑖
2 + Im𝑖

2 𝑁0⁄                                                                                  

with i being the x- or y-direction, 𝑁0 being the amount of frames, and Re and Im being 

the real and imaginary part of the FFT. The total amplitude 𝐴 (𝐹𝐹𝑇) was calculated as 

(equation 3.6.4): 

𝐴(𝐹𝐹𝑇) =  √𝐴(𝐹𝐹𝑇𝑥)2 +  𝐴(𝐹𝐹𝑇𝑦)2                                                                       

An example of an amplitude-frequency spectrum of a rotating microhelix is shown in                 

Figure 4.3.6 (a). The screw was trapped with a laser power of P = 130 mW and a 
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pronounced rotation frequency of 7 Hz was observed. Since the radiation pressure          

(as described above) is the driving mechanism of the screw rotation, the rotation 

frequency will increase linearly with the trapping laser power 
142

. Thus, the next 

investigated aspect was the dependence of the rotation frequency of an optically confined 

microhelix on the power of the trapping laser beam.  

Therefore, the power was increased gradually and a linear dependence of the microhelix 

rotation frequency and the laser power was observed (Figure 4.3.6 (b)).                 

Notably, polarization-dependent measurements did not show any influence on the screw 

rotation frequency or direction. In case of 3D trapping, neither a right- nor a left-handed 

circularly polarized laser beam had a noticeable impact on the right-handed helix motion 

compared to a linearly polarized laser beam. This is in agreement with previously-

reported observations 
142

. These findings underline and confirm the theoretical description 

of the physical cause of screw rotation in case of our experimental condition. 

 

Figure 4.3.6: (a) Amplitude-frequency plot of a rotating screw. The mean value of the rotation 

frequency (obtained from the Gaussian fit) was f = 7 Hz at a trapping laser power of P = 130 mW. 

The trapping laser power was increased gradually and a linear dependence of the screw rotation 

frequency f on the power P was observed (b).  

Optically controlled motion of the microhelices was also performed in media with higher 

viscosity than water (ddH2O). For these experiments, an aqueous D-Sorbitol      

(molecular weight: 182.17) solution with an end concentration of 2.7 mM was used.        

A power dependent series was analyzed and the results can be seen in Figure 4.3.7.   
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Figure 4.3.7: Frequency of screw rotation versus trapping laser power for a D-sorbitol solution 

with an end concentration of 2.7 mM. Due to the higher viscous drag, the rotation frequency for a 

certain power is smaller than in water (cp. Figure 4.3.6 (b)). The same holds for the slope of the 

linear dependence between rotation frequency and power.  

Due to the higher viscous drag in the D-Sorbitol solution, the rotation frequency of a 

micropropeller for a certain trapping laser power was smaller than in water                           

(cp. Figure 4.3.6 (b)). Furthermore, the slope of the linear dependence between rotation 

frequency and power was smaller when the experiments were conducted in the D-Sorbitol 

solution. This demonstrates that the torque depends not only on the laser power, but also 

on the viscosity of the medium, influencing the amplitude but also the frequency of the 

rotation. Those findings are very important for the implementation of the investigated 

technique for biological samples and imply that a careful choice and understanding of the 

medium is indispensable for a precise experimental design.   

Finally, it should be mentioned that the rotation frequency of a screw is also highly 

sensitive to its individual shape. The GLAD method produces very homogenous 

microhelices, but small damages of the single screws due to the sonication process and 

long term storage are unavoidable. Nevertheless, the given results so far reveal a light-

driven rotation of the microscrews, which allowed for the characterization of their motion 

behavior in an optical trap.  

In summary, screw rotation depends on the vertical orientation of the helix in the optical 

tweezer, on the applied trapping power, the viscosity of the surrounding medium and on 

the individual shape of the microhelix.  
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Next, the Reynolds number of the flow around a rotating microscrew as well as the torque 

that is optically induced on the microhelix are estimated.  

The Reynolds number can be calculated using equation 2.3.2. The tangential velocity of a 

screw with a radius 𝑟 = 0.265 µ𝑚 rotating with a frequency 𝑓 = 5 𝐻𝑧 is                     

𝑽𝑡 = 8.3 µ𝑚 𝑠⁄ . The kinematic viscosity of water is 𝜐𝑤𝑎𝑡𝑒𝑟 = 1.0 ∙  10−6   𝑚2 𝑠⁄  at       

20 °C. This gives a Reynolds number for the flow field of 𝑅𝑒 ≅ 2 ∙ 10−6. For a faster 

rotating microhelix e.g., 60 Hz, the Reynolds number of the surrounding flow pattern is         

𝑅𝑒 ≅ 1 ∙ 10−4. At those low Reynolds numbers, the inertial forces are zero and a 

continuous torque must be transferred to the object to maintain its rotation                          

(cp. Chapter: 2.3) 
143, 138, 142

.  

It is also possible to estimate the optically induced torque on the chiral structure 
142

:          

The cause of rotation is the non-isotropic, azimuthal scattering of photons at the helical 

structure. The momentum of a single photon is:  

𝑝 =  
ℎ𝜈

𝑐𝑤𝑎𝑡𝑒𝑟
                                                                                                                    (4.3.1) 

with Planck`s constant ℎ = 6.6 ∙ 10−34 𝐽𝑠 , the frequency 𝜈 and the speed of light in 

water 𝑐𝑤𝑎𝑡𝑒𝑟 ≅  3 4⁄  ⋅  𝑐𝑣𝑎𝑐𝑢𝑢𝑚. For a trapping wavelength 𝜆 = 1064 𝑛𝑚 the momentum 

of a single photon is:  

𝑝 ≅  4.7 ⋅  10−28 𝑁𝑠                                                                                                    (4.3.2) 

The average radiation flux in the optical tweezer is given by 
144

: 

Φ =  
𝑃

ℎ𝜈
                                                                                                                        (4.3.3) 

where 𝑃 is the power of the trapping laser beam and assumed to be 𝑃 = 100 𝑚𝑊.           

It follows that the average rate of photons is given as: 

Φ =  
0.1 𝑊

6.6∙10−34 𝐽𝑠 ∙ (3 4⁄  ∙ 2.998⋅ 108 𝑚 𝑠⁄ )/ (1064 ⋅ 10−9 𝑚)
 ≅  7 ∙ 1017 𝑠−1                          (4.3.4)                                                                     

With 4.3.2 and 4.3.4, the optical force of the photons can be estimated: 
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𝐹 ≅ 3 ∙  10−10 𝑁                                                                                                          (4.3.5) 

The angular torque 𝜏𝑧 acting on a body can be written as: 

𝜏𝑧 = 𝑟𝑥  ∙ 𝐹𝑦                                                                                                                   (4.3.6)  

where 𝜏𝑧 is the angular torque in z-direction, 𝑟𝑥  is the distance in x-direction from the 

rotation axis 𝒆𝑧 and 𝐹𝑦 is the force acting perpendicular to 𝑟𝑥  (pointing in y-direction).   

An estimation of the angle between the force of the photons 𝑭 and the rotation axis 𝒆𝑧 

gives an angle of 𝛼 = 10 °. A projection of the force 𝑭 in y-direction is then given by         

𝐹𝑦 = 𝑭  cos  (80°). With 𝑟𝑥 = 0.265 µ𝑚 and |𝑭| =  𝐹 = 3 ∙  10−10 𝑁 (equation 4.4.5), 

the optical torque on a microscrew trapped with 𝑃 = 100 𝑚𝑊 at 𝜆 = 1064 𝑛𝑚 is at the 

order of 

𝜏𝑧  ≅ 1 ∙ 10−17 𝑁𝑚                                                                                                     (4.3.7) 

The torque on the chiral body due to momentum exchange of the deflected incident 

photons is in equilibrium with the viscous drag torque acting on the rotating helix.  

 

Establishing the flow detection around an optically confined microhelix  

The focus of investigation in this Chapter is the establishment of a tool for flow detection 

around a light-driven microhelix. The flow field around a rotating microscrew was 

measured by means of a SiO2 particle (detector) with a diameter of D = 1.76 µm that was 

optically trapped in the close vicinity of a light-driven screw (source) (Figure 4.3.8).       

This was achieved by setting up a dual optical tweezers configuration, both at a 

wavelength of λ = 1064 nm (cp. Chapter: 3.1.1.2). The two beams were focused by a 

100x/NA=1.0 water immersion objective and their separation distance could be adjusted 

at the microscale. Under dark-field illumination, the white light Rayleigh scattering of the 

vertically trapped screw and the detector bead allowed for the precise optical tracking of 

both elements. 
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Figure 4.3.8: Sketch of the experimental 

configuration for the flow field measurement around 

a rotating microhelix. The microfluidic flow was 

detected by a SiO2 particle that was optically 
trapped in the close vicinity of a rotating screw. The 

distance between the two optical traps at                  

λ = 1064 nm could be adjusted at the microscale. 

 

 

The individual motion of both, the microhelix and the detector particle was recorded at a 

frame rate of 60 Hz for ca. 15 s (Canon EOS 550D SLR). The time-dependent x- and y-

position of both, the sensor and the rotating screw were analyzed (cp. Chapter: 3.6).  

After performing a FFT of the time series, amplitude-frequency plots in x- and y- 

direction were obtained for each. The Fourier amplitude 𝐴 (𝐹𝐹𝑇𝑖) was calculated using 

equation 3.6.5:   

𝐴(𝐹𝐹𝑇𝑖 ) = 2 √Re𝑖
2 + Im𝑖

2 𝑁0⁄   

with i being the x- or y-direction, 𝑁0 being the amount of frames, and Re and Im being 

the real and imaginary part of the FFT. For the final analysis of the source and the 

detector movement, the total amplitude (equation 3.6.4)  

𝐴(𝐹𝐹𝑇) =  √𝐴(𝐹𝐹𝑇𝑥)2 +  𝐴(𝐹𝐹𝑇𝑦)2      

was used to achieve a better signal to noise ratio in the frequency spectra.                                                                        

In this case, a helix was trapped with a power of 𝑃 = 127 𝑚𝑊 and it rotated at a constant 

frequency in the optical trap. The amplitude-frequency spectrum of the screw can be seen 

in Figure 4.3.9 (a). The mean value of the rotation frequency was fmean = 9.3 Hz. A sensor 

particle was trapped in the second tweezer of equal laser power at a distance of 1.5 µm 



 

 

90 

from the source trap. The frequency spectrum of the detector can be seen in                

Figure 4.3.9 (b). For this experiment, the frequency spectrum of the detector bead did not 

show any distinguished frequency, only white noise. Power and distance variations 

between the two optical tweezers did not change this outcome.  

 

Figure 4.3.9: (a) Amplitude-frequency spectrum of a rotating microscrew trapped with a power of              

𝑃 = 127 𝑚𝑊. The mean value of the rotation frequency was 9.3 Hz, evaluated from the Gaussian 

fit. (b) The frequency spectrum of the detecting microparticle trapped in the close vicinity of the 

screw did not show any distinguished frequency. 

The reason why the sensor bead could not detect the frequency of the constantly rotating 

screw is that the source generated a smooth and steady velocity field. To study this field, 

we will first investigate the velocity field around a constantly rotating sphere               

(Figure 4.3.10). As described in Chapter 2.3, for a liquid with constant viscosity and 

constant density, the general Navier-Stokes equations can be simplified to the 

homogenous Stokes equations for steady laminar flow (equation 2.3.16). The flow 

velocity 𝒗 is then described by ∇ 𝒑 =  𝜂  ∇2 𝒗 , where 𝜂  is the viscosity of the medium 

and 𝒑 represents the pressure. Taking into account no-slip boundary conditions, a 

particular solution for a rotating sphere in spherical coordinates is given by 
143

: 

𝒗 =  𝜔𝒆𝑧  ×  𝑟3  
𝒙

|𝒙|3                                                                                                     (4.3.8) 

with 𝑟 being the sphere radius and 𝜔 being the angular frequency. The velocity decay in 

the equatorial plane is inversely proportional to square of the radial distance 𝑥 from the 

sphere center (~ 1 𝑥2⁄ ). Most importantly, the velocity pattern of the flow is time-
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independent. Inserting equation 4.3.8 into the Langevin equation for an optically confined 

particle (equation 2.2.15) leads to a fixed displacement of the detector bead within the 

harmonic potential
15

 with an amplitude that depends on the angular rotation frequency 𝜔 

and on the radial distance 𝑥 to the source.  

 

Figure 4.3.10: Visualization of the 

velocity field generated by a constantly 

rotating sphere. (a) Free particles orbit 

with a constant velocity at a fixed 

distance around the source. (b) Particles 

that orbit at distinct distances from the 

source illustrate the velocity decay in the 

equatorial plane. The velocity pattern of 

the flow is steady. (Taken from 145). 

 

The example of a constantly rotating sphere can be transferred to the case of the rotating 

microscrew. The optically driven helix generates a smooth vortex around itself that leads 

to a fixed displacement of the detector bead from its equilibrium trapping position.        

As soon as the source stops to rotate, the flow sensor goes back to its equilibrium 

position. Thus, no oscillation will be detected and no amplitude in the frequency domain 

is obtained.  

However, if the rotation frequency is modulated in a periodic time-dependent way, an 

alternating velocity field around the screw should be detectable (cp. Chapter: Microscale 

mapping of an oscillatory flow). For the experimental realization of this idea, a 

modulation of the power of the source trap was implemented. To do this, a glass cover 

slide was half sputtered with gold palladium (AuPd) and brought into the beam path of 

the trapping laser and rotated at a controlled frequency.  

Without rotating the cover slip, we can investigate both cases. When the beam propagated 

through the glass side of the cover slide, the beam had a power of 𝑃1 = 102 𝑚𝑊    

                                                   

15 Thermal fluctuations neglected.  



 

 

92 

(Figure 4.3.11 (a)), while a propagation through the AuPd covered side resulted in an 

attenuated power of  𝑃2 = 63 𝑚𝑊 (Figure 4.3.11 (c)).  

A rotating screw, i.e. with the head pointing downwards was trapped with both powers. 

The time-dependent x-position of the center-of-mass of the screw was tracked and is 

shown for the first two seconds in Figure 4.3.11 (b, upper panel) for the higher laser 

power 𝑃1 and in (d, upper panel) for the lower trapping power 𝑃2. FFT analysis of the 

time-dependent x- and y-position revealed the amplitude-frequency spectra of the helix 

for both directions. The total amplitude was calculated as described above. For the 

trapping laser power 𝑃1, the mean screw rotation frequency was 𝑓𝑚𝑎𝑥(𝑃1) = 13.7 𝐻𝑧 

(Figure 4.3.11 (b), lower panel). When the substrate was turned azimuthally around 180 °, 

the laser beam propagated through the AuPd side leading to a mean screw rotation 

frequency of 𝑓𝑚𝑖𝑛(𝑃2) = 6.3 𝐻𝑧 (Figure 4.3.11 (d)). In the following experiment, the 

substrate was driven by a motor with a constant frequency 𝑓𝑚𝑜𝑑  up to 60 Hz           

(Figure 4.4.11 (e)). Since the glass substrate was half covered with AuPd, it was expected 

that a constant rotation of the substrate leads to an average screw rotation frequency of  

 〈𝑓𝑎𝑣〉𝑡 =  
𝑓𝑚𝑎𝑥 + 𝑓𝑚𝑖𝑛

2
                                   (4.3.9) 

In this example, the driving frequency of the motor was 𝑓𝑚𝑜𝑑 = 20 𝐻𝑧. The time-

dependent x-displacement of the center-of-mass of the screw can be seen in the upper 

panel of Figure 4.3.11 (f) and the amplitude-frequency plot for the screw rotation is 

shown in the lower panel. The amplitude-frequency plot for the microhelix motion 

revealed now two frequencies.  

First, the average rotation frequency  〈𝑓𝑎𝑣〉𝑡 with a mean value of  10.3 Hz. This value fits 

very well with the expected one of 

 〈𝑓𝑎𝑣〉𝑡 =  
𝑓𝑚𝑎𝑥 + 𝑓𝑚𝑖𝑛

2
=  

13.7 𝐻𝑧 + 6.3 𝐻𝑧 

2
= 10 𝐻𝑧.                                                     (4.3.10) 

Second, the frequency with which the power was modulated  𝑓𝑚𝑜𝑑 = 20 𝐻𝑧.  
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Figure 4.3.11: Sketch of the 

setup and analysis of the 
screw motion. (a) A glass 

cover slide was half 

spattered with AuPd and 

brought into the beam path 

of the trapping laser of the 

screw. The beam propagates 

through the glass side of the 

substrate and has a trapping 

power 𝑃1. (b) Upper panel: 

Position versus time for the 

screw motion for the 
seconds 0 till 2 (x-

direction). Lower panel: 

Amplitude-frequency plot  

of the screw motion with a 

mean screw rotation 

frequency of 𝑓𝑚𝑎𝑥(𝑃1) =
13.7 𝐻𝑧.  (c) The substrate 

is turned 180°. The beam 

passes the AuPd side. This 

leads to a lower trapping 

power for the source 𝑃2 . (d) 

x-position versus time for 

the screw motion (upper 

panel) and frequency 

spectrum of the source 

(lower panel) with a mean 

screw rotation frequency of 

𝑓𝑚𝑖𝑛(𝑃2) = 6.3 𝐻𝑧. (e) The 

substrate could be 

constantly driven by a rotor 
at a frequency fmod. A 

constant rotation of the 

substrate leads to an average 

screw rotation frequency. (f) 

The time-depended x-

displacement of the center-

of-mass of the screw can be 

seen in the upper panel and 

its frequency spectrum in 

the lower panel. The 

spectrum of the source 
revealed now two 

frequencies for the screw 

rotation. First, the average 

screw rotation frequency 

and second the frequency 

with which the intensity was 

modulated. In this case     

fmod = 20 Hz. 
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When the screw rotation is optically alternated with 𝑓𝑚𝑜𝑑 , the source, i.e. the screw, 

generates an oscillatory velocity field and the frequency of modulation  𝑓𝑚𝑜𝑑  is expected 

to be detectable with an optofluidic detector particle trapped in the close vicinity                      

(Figure 4.3.12 (a)).  

Thus, in the following, a detector particle was optically confined with a power of 

𝑃 = 26 𝑚𝑊 and brought close to an optically driven screw with a center-of-mass 

distance of 2.3 µm (Figure 4.3.12 (b)). The experimental parameters for the optically 

induced screw rotation were as described above, with  

𝑃1 = 102 𝑚𝑊, 𝑃2 = 63 𝑚, 𝑓𝑚𝑎𝑥(𝑃1) = 6 𝐻𝑧, 𝑓𝑚𝑖𝑛(𝑃2) = 4.2 𝐻𝑧,  𝑓𝑚𝑜𝑑 = 20 𝐻𝑧.  

The amplitude-frequency spectrum of the screw rotation, as described above and for 

reference can be seen in Figure 4.3.12 (c). As a next step the amplitude-frequency plot for 

the center-of-mass motion of the microfluidic detector has been determined              

(Figure 4.3.12 (d)). Notably, the motion of the optomechanical sensor was precisely 

following the modulation frequency  𝑓𝑚𝑜𝑑 = 20 𝐻𝑧 with which the screw rotation was 

modulated. 
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Figure 4.3.12: (a) Sketch and (b) dark-field image of a SiO2 bead trapped next to an optically 

driven screw with a center-of-mass separation distance of 2.3 µm. The amplitude-frequency 

spectrum of the screw motion can be seen in Figure (c). The screw shows the expected average 

screw rotation frequency with a mean value of 〈𝑓𝑎𝑣〉𝑡 = 10.3 Hz, along with the modulation 

frequency 𝑓𝑚𝑜𝑑 = 20 𝐻𝑧. The amplitude-frequency plot for the microfluidic detector is shown in 

Figure (d). As expected optomechanical sensor could picked up the modulation frequency at 
𝑓𝑚𝑜𝑑 = 20 𝐻𝑧. 

In the next step, the modulation frequency  𝑓𝑚𝑜𝑑  of the screw rotation was varied from 

6 Hz to 20 Hz (with the same experimental parameters). The time-dependent x- and y-

position of both, the detector and the screw were analyzed and the time series were Fast 

Fourier Transformed as described above (cp. Chapter 3.6). In Figure 4.3.13, the total 

amplitude 𝐴(𝑓𝑚𝑜𝑑) is plotted versus the modulation frequency 𝑓𝑚𝑜𝑑  for a typical 

measurement. The black squares represent the amplitude obtained from a direct 

observation of the screw 𝐴(𝑓𝑚𝑜𝑑)𝑆𝑜𝑢𝑟𝑐𝑒  and the red dots show the amplitude measured 

by the sensor particle 𝐴(𝑓𝑚𝑜𝑑)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟. The detector had a center-of-mass distance of       

2.3 µm to the source. It can be seen that with increasing modulation frequency 𝑓𝑚𝑜𝑑 , the 

amplitude 𝐴(𝑓𝑚𝑜𝑑) in the Fourier spectrum of both, the source and the detector 

decreased. The slope of decrease for the source is more significant than for the detector 

and has a local minimum at  𝑓𝑚𝑜𝑑 = 13 𝐻𝑧. This amplitude-frequency dependence was 

seen in all measurements with the same experimental settings. The ratio between the 

amplitude measured by the detector 𝐴(𝑓𝑚𝑜𝑑)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  and the amplitude obtained from the 
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direct investigation of the source 𝐴(𝑓𝑚𝑜𝑑)𝑆𝑜𝑢𝑟𝑐𝑒  was found to be within the range of 

0.25 <  
𝐴(𝑓𝑚𝑜𝑑)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟

𝐴(𝑓𝑚𝑜𝑑)𝑆𝑜𝑢𝑟𝑐𝑒
< 0.6. This finding allows an estimation of the sensitivity of the 

detector bead and it is foreseen that the detector can follow higher modulation frequencies 

more efficiently. 

 

Figure 4.3.13: Amplitude 𝐴(𝑓𝑚𝑜𝑑) versus modulation frequency  𝑓𝑚𝑜𝑑  for a single measurement. 

The modulation frequency  𝑓𝑚𝑜𝑑 was varied from 6 Hz to 20 Hz. With increasing  𝑓𝑚𝑜𝑑 , the 

amplitude in the Fourier spectrum of the source and the detector decreases, with a local minimum 

at  𝑓𝑚𝑜𝑑 = 13 𝐻𝑧.   

Besides a variation of the modulation frequency, position-dependent measurements were 

also conducted. For that, a detector particle was trapped with a power of 𝑃 = 127 𝑚𝑊 

and positioned at four distinct center-of-mass distances to the source: D1 = 1.4 µm,     

D2 = 2.8 µm, D3 = 3.3 µm and D4 = 5.3 µm (Figure 4.3.14). The microhelices were 

driven optically with  𝑃1 = 98 𝑚𝑊 and 𝑃2 = 53 𝑚𝑊. The average mean value of the 

maximum frequency of the screw rotation was 𝑓𝑚𝑎𝑥(𝑃1) = 10 𝐻𝑧 and of the minimum 

frequency 𝑓𝑚𝑖𝑛(𝑃2) = 4 𝐻𝑧. This led to an average screw rotation frequency of     

 〈𝑓𝑎𝑣〉𝑡 = 7 𝐻𝑧. In a first experiment, the power of the source trap was modulated 

at  𝑓𝑚𝑜𝑑 = 5 𝐻𝑧.  
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Figure 4.3.14: Dark-field image sequence of a position-dependent measurement of the flow 

around an optically driven microhelix (Source). A detector particle was positioned at four distinct 

distances to the source: D1 = 1.4 µm, D2 = 2.8 µm, D3 = 3.3 µm and D4 = 5.3 µm. The source 

followed the driving frequency 𝑓𝑚𝑜𝑑  and showed an average rotation frequency 〈𝑓𝑎𝑣〉𝑡. 

In figure 4.3.15 (a), the amplitude 𝐴(𝑓𝑚𝑜𝑑 = 5 𝐻𝑧)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  measured by the detecting 

particle is plotted versus the distances D1- D4. With increasing radial distance from the 

source, the magnitude of the time-dependent flow field decreased and finally vanished.  

At the distance D4, no signal was detected by the optofluidic sensor.  

For the four distances D1- D4, the modulation frequency  𝑓𝑚𝑜𝑑  of the screw rotation was 

varied from 5 Hz to 10 Hz (figure 4.3.15 (b)). For the distances D1 and D2, the same 

tendency as described above occurred: with increasing modulation frequency  𝑓𝑚𝑜𝑑 , the 

amplitude 𝐴(𝑓𝑚𝑜𝑑)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  decreased. A local minimum was present at 𝑓𝑚𝑜𝑑 = 6 𝐻𝑧.  

For the distance D3, the amplitude 𝐴(𝑓𝑚𝑜𝑑)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  is already very low and it is difficult 

to draw conclusions about the behavior for increasing modulation frequencies.    

 



 

 

98 

 

Figure 4.4.15: (a) The screw rotation was modulated with  𝑓𝑚𝑜𝑑 = 5 𝐻𝑧. The amplitude  

𝐴(𝑓
𝑚𝑜𝑑

= 5 𝐻𝑧)
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟

 obtained from the frequency spectrum of the detecting particle is plotted 

versus its distance to the source (D1-D4). It can be seen that with increasing distance, the 

amplitude decreases. (b) The modulation frequency  𝑓𝑚𝑜𝑑  was varied from 5 Hz to 10 Hz for the 

four distances to the source. For the distances D1 and D2, the amplitude 𝐴(𝑓
𝑚𝑜𝑑

)
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟

decreased 

with increasing modulation frequency and a local minimum was present at  𝑓𝑚𝑜𝑑 = 6 𝐻𝑧.  

An explanation for the decrease of the amplitude in the frequency spectrum of the screw 

𝐴(𝑓𝑚𝑜𝑑 )𝑆𝑜𝑢𝑟𝑐𝑒  and with this in the spectrum of the sensor particle 𝐴(𝑓𝑚𝑜𝑑)𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 with 

increasing modulation frequency 𝑓𝑚𝑜𝑑  could be that with increasing 𝑓𝑚𝑜𝑑 , the modulating 

excitation is not transferred instantaneously to the helix and thus a low efficiency of the 

flow field is obtained.  

It can be expected that beyond a certain modulation frequency 𝑓𝑚𝑜𝑑,𝑚𝑎𝑥  , the screw is not 

able to follow the modulation at all and the amplitude becomes zero, similar to a 

constantly rotating helix. Interesting is the observed local minimum that occurred at a 

certain modulation frequency (13 Hz or 6 Hz). For an in depths understanding of this 

finding, further power dependent experiments and simulations are performed that will 

help to identify this phenomenon. 
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Chapter summary and outlook 

This Chapter described the idea to use an optical tweezer to induce a light-driven rotation 

to microobjects with shape anisotropy in an aqueous environment. An optofluidic 

detection method has been established with an optically driven microhelix as source of 

flow. This colloidal, screw-like SiO2 microstructure, with a diameter of 530 nm and a 

length of 2.35 µm, has been fabricated with the evaporation method glancing angle 

deposition (GLAD). A stable trapping in 3D of the microhelices could be obtained with 

their alignment parallel to the beam propagation direction. Once trapped in an optical 

tweezer, a rotation of a screw was observed in about 50 % of the experiments and 

occurred only, when the head was pointing downwards. The reason for the rotation is the 

radiation pressure exerted from the light on the helical structure. The non-isotropic 

azimuthal scattering of the photons at the chiral thread generates a torque on the body 

with the rotation direction of the microscrew being the same as the direction of its 

chirality.  

The rotation frequency depends on the power of the trapping laser beam, and increases 

linearly with the laser power. Polarizability dependent measurements did not show any 

impact on the screw rotation frequency or direction in 3D.  

The Reynolds numbers of the flow around a rotating microhelix were between 10−6 and 

10−4 depending on the rotation frequency. In this low Reynolds numbers regime, the 

inertial forces are zero and a continuous torque must be transferred to the object to 

maintain its rotation. The optical torque on a microscrew trapped with a power              

𝑃 = 100 𝑚𝑊 at a wavelength 𝜆 = 1064 𝑛𝑚 is on the order of 𝜏𝑧  ≅ 1 ∙ 10−17 𝑁𝑚.        

The optically induced torque on the body is in equilibrium with the viscous drag torque 

acting on the rotating helix.  

A constantly rotating screw generated a time-independent velocity field around itself, 

which led to a constant displacement of a trapped particle. A time-dependent modulation 

had to be induced to the rotation of the microhelix, creating an alternating velocity field 

around the helix. The frequency of modulation was detectable by an optofluidic sensor.       

The modulation frequency was varied and position-dependent measurements of the flow 

around the source were conducted. A decrease in the amplitude in the Fourier spectrum of 
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the helix as well as of the detector particle with increasing modulation frequency was 

observed. 

As a future approach, it is of high interest to analyze the synchronization of multiple 

rotating microhelices which are trapped in line by means of holographic tweezers. 

Hydrodynamic coupling of parallel trapped microscrews has been already predicted 

theoretically  
83, 146

 and would be a straight forward experiment.    

Since the fabrication method of the micropropellers is not restricted to a certain material, 

nanohelices could also be made out of gold. An investigation of their optical properties by 

spectroscopy and a simultaneous optical confinement would allow new fundamental 

insights to plasmonic nanostructures.  

Moreover, the use of such microscrews as tiny drilling machines can be envisaged.      

The GLAD method allows a modulation of the surface character of the helices.                 

A headless rotating screw with a lipid-favorable surface in an optical tweezer could be 

drilled into a cell membrane, paving path for a new approach for drug delivery and DNA 

transport into a living cell.  

 

 

 

 

 

 

 

 



Chapter 4. Optical driving and sensing of helical and biological microobjects 

 

101 

4.4 Sensing the microfluidic flow generated by a single bacterial cell 

The dynamic behavior of bacterial cells is of great interest for microbiology and 

nanomedicine. Research on the physical properties as well as locomotion strategies of 

living microorganisms began more than one hundred years ago. In his work  „Über die 

Sichtbarmachung der Geisseln und die Geisselbewegung der Bakterien “ from 1909,  the 

optician Karl Reichert reported the attempt to vizualize bacterial appendages by means of 

dark-field microscopy 
63

. However, a single filament has a diameter of just 20 nm        

(cp. Chapter: 2.4) and the flagella bundle is therefore hard to resolve under dark-field 

illumination (Figure 4.4.1). This hampers a detailed and direct investigation of the 

dynamic behavior of bacterial appendages 
64, 63

. Experimental remedial measurements for 

this problem have been established. For example, reducing the speed of motion of the 

investigated bacterium 
101

 or labeling of the filaments with fluorescent dyes 
65, 66, 84

 or 

nanoparticles 
102

. For the investigation of bacterial dynamics, either the swimming 

behavior of whole cells can be investigated 
69, 86

 or the rotation of individual flagella can 

be directly observed due to labeling 
65

.  

 

Figure 4.4.1: Dark-field image of a bacterial cell (B. Subtilis) taken through a 100x/NA=1.0 water 

dipping objective. The rod-shaped cell body can be seen precisely whereas the filaments cannot be 

resolved without fluorescent labeling or staining.  The body had an average length of 2 µm and an 

average width smaller than 1µm.  

In 1987, Arthur Ashkin used optical tweezers for the manipulation of single cells 
67

.  

Since then, optical trapping of individual microorganisms has become a powerful tool to 

spatially confine them 
66

. One reason is that the method is less invasive than other 

approaches, for example, the mechanical immobilization of a cell on a solid support 
77

. 

Optical trapping of a microorganism allows for the observation of bacterial chemotaxis 

and viability by directly investigating the movement of cell in the trap 
66, 147-150

.  
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The focus of this Chapter is to find an alternative approach to the direct observation of a 

cell for the analysis of its bacterial motility. This would overcome the hindrance of 

fluorescent labeling or any other kind of cell modulation. The underlying idea is the 

measurement of the microfluidic flow generated by an optically confined bacterium by 

means of a sensor particle that is trapped in a second trap in the close vicinity         

(Figure 4.4.2). This approach is the extension to the work presented in the previous 

Chapter to a living organism. 

 

Figure 4.4.2: Sketch of the experimental concept for the measurement of the microfluidic flow 

generated by a trapped bacterium. A microparticle is optically confined in a second optical trap in 

the close vicinity and used as optofluidic sensor.  

In this thesis, it has been demonstrated, for the first time, that the nanoear approach can 

be extended and applied to study the microflow dynamics generated by a single bacterium 

at the nanoscale. In the first part of this Chapter, the dynamic properties of a bacterial cell 

in an optical tweezer are characterized. To this aim, two different strains of bacteria were 

optically confined and their motion behavior was investigated by direct observation.       

In the main part, the flow field around the living microorganism is analyzed by optical 

tracking of an optofluidic senor. Finally, the Chapter is concluded and future perspectives 

as well as applications are discussed. This Chapter is based on my paper published in                 

Appl. Phys. Lett. 
151

.  
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Characterization of a trapped bacterial cell by direct observation 

A gram-positive, rod shaped bacterium (Bacillus subtilis) with a body length of 

approximately 2 µm and a diameter of less than 1 µm was kept in a chemotaxis medium 

and chosen as microbiological source of flow (see Figure 4.4.1). Once trapped in an 

optical tweezer, the bacterium was immobilized by the optical forces of the focused beam 

and the cell body aligned parallel with the beam propagation direction (Figure 4.4.3).   

Two different strains of B. subtilis were tested
16

. The first strain was BM77                

(Figure 4.4.3 (a)), a strain that exhibited peritrichous flagellation and could perform 

chemotactic response (cp. Chapter: 2.4). This means that when the bidirectional motors of 

the filaments rotated in their default counter-clockwise (CCW) direction, the bacterial cell 

was in its “running” state. In this state, all filaments of the cell are synchronized in a 

helical bundle. It rotates CCW to push the bacterium in a certain direction 
72, 78

.             

The bundle rotation has a certain frequency ω and creates a strong torque that is balanced 

by viscous drag. The cell body counter-rotates with a certain frequency Ω 
38

. In the trap, 

the thrust generated by the flagellar rotation is balanced by the optical forces acting of the 

cell. High motility of the bacillus was essential for the measurements of the flow which 

was generated by the dynamics of the bacterium in its surrounding medium.  

The second strain was BD3458 (Figure 4.4.3 (b)), a non-flagellated bacterium 
92

.      

Lacking flagella, this bacterium was solely subjected to diffusion in the chemotaxis 

medium and to directed diffusion within the optical trap. The BD3458 strain was used for 

control measurements.  

 

                                                   

16 The protocol for the bacterial cell preparation as well as a detailed description of the chemical 
composition of the chemotaxis medium can be found in Chapter 3.2.  
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Figure 4.4.3: Schematic of a flagellated (a) and a non-flagellated (b) B. subtilis in an optical 
tweezer. (a) The bundle rotation with frequency ω creates a strong torque that needs to be 

outbalanced by viscous drag due to counter rotation of the cell body (Ω). (b) The bacterium lacks 

appendages and is therefore solely subjected to directed diffusion within the harmonic potential. 

An individual bacillus cell was trapped with laser powers between Pmin = 25 mW and       

Pmax = 40 mW at a trapping wavelength of λ = 1064 nm. The beam was focused by a 

100x/NA = 1.0 water-immersion objective. Under dark-field illumination, the 

backscattered light of the vertically trapped cell body showed precisely its profile     

(Figure 4.4.4).  

For the direct analysis of the body movement in the optical trap, a video file was captured 

with a high speed camera (PCO.dimax) at a frame rate of 500 Hz. Center-of-mass 

tracking of the body cross section in each frame of the video file revealed the time-

dependent displacement of the cell body for the x- and y-direction (cp. Chapter: 3.6).  

 

Figure 4.4.4: Under dark-field illumination, the backscattered light of the vertically trapped cell 

body showed precisely its profile. For the direct analysis of the body motion, a video file of the 

optically confined cell was captured. Center-of-mass tracking of the body cross section in each 
frame of the video revealed the time-dependent displacement of the cell body for the x- and           

y-direction. 
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The x- and y-displacement of the cell body as a function of time are shown in           

Figure 4.4.5. The two bacterial strains showed a different behavior in the optical trap:      

A periodic precession of the long body axis around the tweezer axis with a frequency     

Ω ~ 4 Hz was observed for the flagellated strain BM77 (Figure 4.4.5 (a)). FFT of the 

time-dependent x- and y-displacement showed a mean value of the body rotation 

frequency at Ω ~ 4 Hz over a range of 120 Hz (not shown here). This implicates that from 

a direct observation of the cell body, only the body rotation frequency but not the flagella 

rotation frequency could be extracted.  

The typical time series of the time-dependent position of a non-flagellated bacterial cell 

(BD3458) can be seen in Figure 4.4.5 (b). The cell body did not show any movement 

except for Brownian motion within the optical trap. 

 

Figure 4.4.5. Direct analysis of a (a) flagellated (BM77) and a (b) non-flagellated (BD3458) 

bacillus in an optical trap (black: time-dependent displacement in x-direction, red: time-dependent 

displacement in y-direction). A periodic body rotation around the long axis of the bacterial cell 

with a frequency of Ω ~ 4 Hz was observed for the flagellated cell (a). No periodic motion of the 

cell body was observed for a non-flagellated bacterium, only Brownian motion (b). 

It is reported in literature that for Escherichia coli, the bundle rotation frequency ω is at 

the order 100 Hz and the subsequent cell body rotation frequency Ω at the order of         

10 Hz 
66

. The average cell body rotation frequency of the flagellated bacilli investigated 

in this work was Ωav ~ 4 Hz. For such a body rotation frequency a flagella rotation 

frequency of below 100 Hz can be expected. However, a direct observation is not 

possible. In the next Chapter, it will be shown how an optofluidic sensor can be utilized 

for a highly sensitive detection of the flagellar rotation frequency ω of the bacillus.  
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Microfluidic characterization of a trapped bacterial cell 

The main goal of this work is the investigation of the dynamic properties of a single        

B. subtilis by its microfluidic characterization. This is experimentally realized by a 

microparticle (detector) that is trapped next to an optically confined bacterium (source). 

Therefore, a dual optical tweezers configuration at a wavelength of λ = 1064 nm was set 

up in a dark-field microscope (cp. Chapter: 3.1.1.2). The two parallel beams were focused 

by a 100x/NA=1.0 water immersion objective and had a power of P = 30 mW each.        

A single bacillus and a silicon dioxide (SiO2) particle with a diameter of D = 1.76 µm 

were trapped next to each other at a predefined distance of approximately 2 µm                 

(Figure 4.4.6 (a)). The body of the bacterium trapped with the first beam and the SiO2 

bead in the second trap were aligned at approximately the same height, since the foci of 

the two trapping beams were on the same plane in z-direction.   

The motion of the source and the detector were recorded via their white light Rayleigh 

scattering with a high-speed camera (PCO.dimax) at a frame rate of 500 Hz. Analyzing 

the time-dependent x- and y-position of the sensor particle inside the detector trap 

rendered it possible to detect the flow around the trapped bacterium. FFT of the detector 

time series resulted in amplitude-frequency plots in the x- and y-direction. The amplitude 

𝐴 (𝐹𝐹𝑇𝑖), 𝑖 = 𝑥, 𝑦 was calculated using equation 3.6.5. For the final analysis of the 

detector movement, the total amplitude as described by equation 3.6.4 was used to 

achieve a better signal to noise ratio in the frequency spectrum.                                                                         

The overall amplitude-frequency spectrum of a SiO2 bead trapped next to flagellated      

B. Subtilis can be seen in Figure 4.4.6 (b). It shows a distinguished frequency at 62 Hz. 

This frequency was present in all detector Fourier spectra when the sensor was trapped 

next to a bacillus that possessed appendages. A trapped bacterium generated an 

oscillatory microflow in its surrounding medium when it tried to swim out of the optical 

tweezer, which was then detected by the optofluidic sensor. Since the optical traps were 

aligned next to each other, a directionality of the hydrodynamic interaction between the 

trapped bacterium and the detector bead would be expected. A clear directionality, 

however, was not observed under given experimental conditions and a frequency at 62 Hz 

was almost always obtained in both the x- and y-direction.     
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Figure 4.4.6: (a) Schematic of the experimental approach for the microfluidic characterization of a 
flagellated bacterium. A single bacillus and a sensor particle are trapped next to each other at a 

fixed distance. Microfluidic oscillations are generated as the bacterium tries to swim out of the 

optical tweezer and propagate into the surrounding medium. The waves are then detected by the 

silica particle optically confined in the close vicinity. (b) Amplitude-frequency spectrum of a 

detector particle trapped next to a single, flagellated B. Subtilis. A clear peak at 62 Hz was 

observed. Inset: Dark-field image of a trapped bacillus (white arrow) next to an optically confined 

detector particle.  

Next, control measurements with non-flagellated bacilli were performed to verify that the 

detected frequency resulted from the movement of the flagella (Figure 4.4.7 (a)).             

A typical amplitude-frequency plot of a detector bead obtained when the sensor was 

trapped next to a non-flagellated bacterium is shown in Figure 4.4.7 (b). Only white noise 

could be observed over a range of 120 Hz. Thermal noise in the frequency spectrum of 

the detector was also seen when the bacterium was replaced by a second SiO2 particle. 

Without any external oscillatory source, the movement of the detector particle in the trap 

was solely subject to directed Brownian motion (see Chapter: 2.2) 
152, 153

. This affirms that 

the amplitude at 62 Hz in the frequency spectrum of the sensor was indeed specific from 

the flagellated bacillus and did not result from background vibrations or false signals 

induced by the environment or the experimental setup. The experiment was repeated and 

the results confirmed for over 30 (flagellated/non-flagellated) bacterial cells. 
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Figure 4.4.7: (a) Sketch of the control measurement with a bacillus that does not possess 

filaments. (b) The Fourier spectrum of the detector bead obtained when the sensor was trapped 

next to a non-flagellated cell showed only white noise over a range of 120 Hz.  

The movement of a bacterium was analyzed directly by measuring the time-dependent 

position of the body center in the optical trap (Figure 4.4.8 (a)). Importantly, our 

measurement setup allows a simultaneous detection of the motion of the cell body 

(through the direct observation of its time-dependent x- and y-displacement) and of the 

rotation of the flagella (through the flow field detection by the optofluidic sensor).        

This allowed a careful analysis of the activity of the bacillus over different periods of 

time.  

The direct measurement of the cell body movement of a trapped bacillus was compared to 

the measurement of its microfluidic flow by the detector particle. At the beginning of the 

measurement, the cell body rotated periodically with a frequency of Ω = 4 Hz. After 8 s, 

the bacterium stopped rotating and exhibited only random movement within the optical 

tweezer.  

The corresponding amplitude-frequency spectrum of the detector particle in the second 

trap was analyzed for different time intervals starting at t = 4 s to investigate how the 

amplitude at 62 Hz (flagella motion) is affected by changes in bacterial activity       

(Figure 4.4.8 (b)). The amplitude-frequency spectrum of the sensor between 4 s and 8 s 

showed a clear peak at 62 Hz which is attributed to the flagella bundle rotation.            

The filament rotation creates a torque causing a counter rotation of the cell body due to 

momentum conservation with Ω ~ 4 Hz (4 s - 8 s in Figure 4.4.8 (a)) 
77

. After 8 s, the 
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amplitude at 62 Hz dropped and even vanished at a later time interval (12 s – 16 s, Figure 

4.4.8 (b)), which coincides with the visible change of the overall movement of the 

bacterium in Figure 4.4.8 (a).  

Intriguingly, the signal at 62 Hz recovered between 12 s and 16 s although the cell body 

did not rotate during that time (Figure 4.4.8 (a)). This is a very important finding and 

correlates directly with the typical motion of a bacterium, as explained in the following.   

 

Figure 4.4.8: Comparison between the direct measurement of the cell body (a) and the 

corresponding frequency spectrum measured by the detector bead for different time intervals (b). 

(a) Observation of the time-dependent y-displacement of the flagellated bacterium in an optical 

trap for 24 s (black: measured data, red: fitted curve to guide the eye. The data was smoothed by a 

Savitzky-Golay filter of second polynomial order with 50 window points). A homogeneous 

rotation of the cell body of Ω ~ 4 Hz is observed during the first 8 s of the measurement. After 8 s 
the cell stopped rotating and started to move randomly in the optical trap. (b) Corresponding 

amplitude-frequency plots of the detector bead plotted for five different time intervals. A high 

peak at 62 Hz can be seen between 4s and 8s while the cell body rotates. Between 8 s and 12 s the 

amplitude was lower and correlates to a visible change of the cell movement. The peak intensity 

vanishes (12 s – 16 s) and recovers (16 s – 20 s) for different time intervals during the experiment. 

This hints at changes of the bacterial cell activity.  

The ‘”running” sate of the bacillus corresponds to an active, forward directed movement 

of the cell where all flagella are bundled and the rotation of the bundle is synchronized in 

one direction. Between the first 8 s of the experiment (Figure 4.4.8 (a)), the rotation of the 

cell body indicated that the cell was likely in a running state. On the contrary, bacteria 
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can also undergo a tumbling motion if the flagella are not bundled together. In this case, 

the cell moves randomly, which allows them to reorient and change their swimming 

direction during chemotaxis (cp. Chapter Error! Reference source not found.). The 

lagella can still be active and rotate but no strong torque is created that would lead to a 

counter-rotation of the cell body. This would correspond to the observation of random 

motion in the direct experiment while there is still rotation of the flagella (8 s – 12 s). 

“Tumbling” of bacteria is typically observed in the range of milliseconds which is clearly 

much shorter than the duration of the measurement shown in Figure 4.4.8. For B. subtilis 

it has been shown, however, that the tumbling behavior can be significantly altered and 

prolonged over a wide range between different bacteria strains to the extreme of 

chemotaxis mutants which are exclusively tumbling 
154, 155

. At the same time, stress and 

possibly photodamage caused by the infrared trapping laser could also have an impact on 

the cell activity which could thereby cause a tumbling-like situation that is likely 

observed for the bacterium in Figure 4.4.8 (a) after 8 s 
149, 156-158

. U. Mirsaidov et al. 

analyzed the effects of optical trapping on the viability of E. Coli exposed to near infrared 

laser beams. They found a decreasing viability of the cells with increasing laser power 

and exposure time 
157

. Rasmussen et al. also reported that B. subtilis shows signs of 

physiological damage after a few minutes while being trapped with a λ = 1064 nm laser at 

a laser power of only P = 6 mW 
158

. In the experiment shown here, a cell was trapped 

with a laser power of P = 30 mW at the same wavelength. Under this condition, the 

bacillus motility and vitality could be altered due to photodamage, even after a few 

seconds, which could in turn manifest in a change of the cell movement. As a 

consequence, the flagella are not bundled anymore and some of the flagella might even 

stop rotating completely.  

Taken together, our experimental approach allows a tracking of the cell body and flagella 

motion individually which enables an identification of different points of activity.         

An investigation of the cell body alone would not give any evidence to the cell vitality.   

A cell could be dead, and thus prone to Brownian motion, or in a tumbling state.          

The changes of the amplitude height corresponding to the flagellar rotation at ω = 62 Hz, 

and a recovery of the signal intensity illustrate the capability of this method to focus on 

different states of bacterial activity and to access otherwise hidden information.                



Chapter 4. Optical driving and sensing of helical and biological microobjects 

 

111 

The experimentally measured amplitude 𝐴 (𝑓 = 62 𝐻𝑧) of the detector bead inside the 

trap is directly related to the velocity of the surrounding water molecules 𝑣: The frictional 

drag coefficient 𝛾 for a spherical object is given by  𝛾𝑠𝑝ℎ𝑒𝑟𝑒 = 6 𝜋 𝜂 𝑟 (equation 2.2.11) 

with 𝜂 being the dynamic viscosity of the medium and 𝑟 being the particle radius.         

An insertion of this expression into the equation of motion for a particle confined in a 

trapping potential with trap stiffness 𝜅: 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒   𝛾𝑠𝑝ℎ𝑒𝑟𝑒 +  𝜅𝐴 (𝑓) = 𝐹(𝑓)𝑡ℎ𝑒𝑟𝑚𝑎𝑙   

(equation 2.2.15) reveals the relation between flow velocity and maximal detector 

displacement at the frequency f = 62 Hz:  𝜅 𝐴 = 6 𝜋 𝑟 𝜂 𝑣 (equation 4.2.9).                                                                                                          

Numerical simulations of the velocity field around a trapped bacillus were performed to 

find the regions with maximum flow velocity. Bacterial motion happens at very low 

Reynolds numbers due to their size in the micro- and nanometer range 
 54, 159, 59, 60

         

(cp. Chapter: 2.3). The Reynolds number of a bacterium with a characteristic length a at 

the microscale swimming with velocity V = 30 µm/s through water with dynamic 

viscosity η = 10
-3 

Ns/m
2
 is about 10

-4
 to 10

-5
. The hydrodynamics are dominated by 

viscous drag 
59

, and hydrodynamic interactions between individual filaments become 

substantial
 146

, which is also considered as one of the physical causes for the formation of 

a flagella bundle 
160, 59

. Therefore, in the simulations laminar flow of an incompressible 

fluid was assumed.  

A simple model of a bacterial cell shown in Figure 4.4.9 (a) was used to qualitatively 

retrieve the main features of more complex models. The body of the bacterium was 

estimated as an ellipsoid with two semi-axis a1 = 1.5 µm and a2 = 0.5 µm rotating clock-

wise at either f1 = 4 Hz or f1 = 0 Hz. The counter-clockwise rotating filament bundle was 

assumed to be a cylinder with a height of h = 8 µm and a radius of r = 0.1 µm rotating at 

f2 = 62 Hz.   
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Figure 4.4.9: Finite elements simulation of the flow generated by a flagellated bacterium in an 

optical trap. (a) Schematic depiction of the bacterial cell model used for the simulations.                 

(b) The color map depicts the velocity magnitude and the white arrows depict the direction of the 
velocity field for a body rotation frequency f1 = 4 Hz (clock-wise) and the frequency of the flagella 

bundle f2 = 62 Hz (counter-clockwise). The detector bead is sketched in a distance of 2µm from the 

bacterium. (c) Color map of the velocity field of the flow generated by the bacterium for a body 

rotation frequency of f1 = 0 Hz and the frequency of the flagella bundle of f2 = 62 Hz.                     

(d) x-component of the velocity field (u x) as a function of the distance (x), for 3 different z-values. 

The solid lines represent the case f1 = 4 Hz (b panel) and dashed lines represent the case f1 = 0 Hz 

(c panel). The color code correspond to the arrows in panel (b) and (c). A schematic of a               

detector particle (D = 1.76 µm) is shown at a distance of 2 µm. 

As a first approach, a stationary and axis-symmetric laminar flow was presumed to find 

regions with maximum velocity amplitudes around a trapped bacillus. The numerical 

simulations were performed with COMSOL solving the Navier-Stokes equations for 

laminar flow according to (cp. Chapter: 2.3.1.3):  

𝛁 𝒗 = 0    (equation 2.3.6)   and 

𝜌 (
𝛿𝒗

𝛿𝑡
+ 𝒗 ∇ 𝒗) = 𝑩 − 

∇ 𝒑

𝜌
+  𝜈 ∇2 𝒗    (equation 2.3.15)                                        

where 𝒗 denotes the velocity [m/s], η the dynamic viscosity of water                    

(𝜂𝑤𝑎𝑡𝑒𝑟 = 0,001 𝑃𝑎 ∙ 𝑠) and p the pressure [Pa]. In the computation, the body force per 

unit mass 𝑩 was set to be zero. 
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The result of the simulation of the velocity field generated for both cases with and 

without cell body rotation is shown in Figure 4.4.9 (b) and Figure 4.4.9 (c), respectively. 

The velocity magnitude is illustrated by the heat map and the white arrows display the 

direction of the microfluidic flow generated by the whole cell as well as the magnitude 

according to the relative arrow thickness and length. As shown in Figure 4.4.9 (b), the 

field generated by the rotating bacterial body and the rotating bundle causes the fluid to 

flow inwards at the neck region (where the tail is connected to the body) and pushed 

outwards along the swimming direction of the bacterium. A detector particle is therefore 

likely to be sufficient to sense the flow of the flagella when the cell body and the particle 

are both aligned at approximately the same height. Although in reality the forward 

propulsion comes from the bundle acting as a rotating spiral, in the simulations we 

calculate the velocity field for the stationary flow around a bacterium simply modelled as 

two rotating cylinders with an imposed laminar flow 
82

. The direction of the field 

obtained agrees with the observation that flagellated bacteria cells behave as 

hydrodynamic pushers 
59

. These results were compared to numerical calculations of the 

field generated by the rotation of the flagella bundle only (f1 = 0 Hz) in Figure 4.4.9 (c).  

In this case, the resulting field pointed mainly along the length of the cell body, while the 

net side-flow directed inwards became smaller. This corresponds to no movement of the 

cell. The velocity field in the x- and y-direction is also weaker which explains the drop in 

the amplitude height at 62 Hz for the measurement displayed in Figure 4.4.8 (b)               

(8 s – 24 s). The x-component of the velocity as a function of the particle position at the 

head region is shown in Figure 4.4.9 (d). Three different regions were compared: 0 µm, 

which corresponds to the center of the bacterium body and the particle (black line, 

indicated by the black arrow in Figure 4.4.9 (b), (c)), 1 µm which is above the center line 

(red line, indicated by the red arrow in Figure 4.4.9 (b), (c)), and -1 µm which is below 

(blue line, indicated by the blue arrow in Figure 4.4.9 (b), (c)). As shown in             

Figure 4.4.9 (d), the strongest field is observed around 1.2 µm away from the bacterium. 

Although the velocity pattern was, as a first approach, assumed to be steady, this is in 

good accordance with experimental observations. It was found that the flow field around 

the cell was still detectable when the detector particle was located 2 µm away from the 

source. However, the amplitude at 62 Hz in the frequency spectrum of the sensor 

vanished at larger distances.          
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Chapter summary and outlook 

In this work, I have shown for the first time how the optical trapping of a bacterial cell 

(source) next to an optofluidic sensor enables to draw conclusions on the motion and 

activity of the bacterium with its own dynamics at the nanoscale.   

A direct observation of the cell body displayed a rotational movement of the body in the 

active state, which goes hand in hand with the flagella rotation as revealed by the 

amplitude-frequency plot of the sensor bead. A tumbling state was characterized by 

Brownian motion of the directly observed cell body while flagella motion was still 

ongoing, as the flagella rotation was present in the frequency-amplitude map of the 

detector. A comparison with typical characteristics of the different cell states showed a 

great agreement with the experiment and demonstrates the applicability of our approach.     

A tumbling-like state of the bacterium could be confused with a dead cell when analyzing 

the cell body movement only. The capability of the optofluidic detection to focus on 

different states of bacterial activity and to access otherwise hidden information is a 

crucial finding of this work. Numerical simulations of the velocity field around a trapped 

bacillus were performed to find the regions with maximum flow velocity. Although the 

model for the simulation was simple, it supported the experimentally measured data well. 

For the detection of a frequency within a microfluidic flow field by an optically confined 

sensor, the field has to have a periodic, time-dependent component. As a future approach 

it will be very interesting to investigate the physical origin of the oscillation of the 

velocity field around a bacterial cell. Direct analysis of the cell body movement indicated 

a precession of the body long axis around the tweezer axis. This oscillation of the body 

orientation in the optical trap could lead to a periodic alternation of the microfluidic field 

at the body rotation frequency which is in turn a consequence of the flagella bundle 

rotation. It is foreseen that the filament bundle itself undergoes a precession around the 

tweezer axis and therefore generates a time-dependent velocity field at 62 Hz. While the 

amplitude at 62 Hz could be seen clearly in the frequency spectrum of the sensor particle, 

an amplitude arising from the body rotation in the lower frequency range was hard to 

resolve due to 1/f-noise. The steady flow field simulation showed a dependence of the 

flow direction around the bacterium on the body rotation. We envisage that the 

superposition of the flow field generated by the body rotation and the flow field generated 

by the filament bundle also lead to a time-dependent flow oscillation. A comparison of 



Chapter 4. Optical driving and sensing of helical and biological microobjects 

 

115 

fluorescence measurements of the flagellar rotation and the experimental approach 

presented here will give some information on the mentioned assumptions and paths the 

way for a final characterization of the microfluidic dynamics of individual bacterial cells.  

The method, to detect the flagella rotation of bacterial cells by tracking the position of a 

particle in an optical trap, renders it possible to analyze the activity of a microorganism 

on a single cell level. Splitting the laser beam into multiple beams by the use of 

diffractive optics or a liquid crystal device can be furthermore employed to generate an 

array of detector particles 
161, 162

.  

The approach presented here can likely be extended to map and image the microfluidic 

oscillations generated by single prokaryotic or eukaryotic cells with high resolution by 

moving the detector bead around the cell or using multiple sensor particles at once.  

Furthermore, it is of high interest to use holographic tweezers and trap an array of 

microscrews together with bacterial cells. The focus of investigation can then be the 

effect of hydrodynamic interaction between artificial and biological helical microobjects. 
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5. Conclusion and Outlook 

Within this work, the successful implementation of an optofluidic sensor for the 

investigation of oscillatory flows generated by artificial or biological microobjects was 

demonstrated. Different methods for an optimal and highly sensitive characterization of 

microfluidic dynamics at a very small scale were established through the employment of 

multi-tweezers configurations. Thus, artificially created flow fields arising from a dipolar 

oscillating bead moving between two alternately chopped traps and from a rotating 

microhelix have been characterized and extended to analyze the motion behavior of living 

microorganisms such as a bacterial cell.  

As a first approach, it has been shown for the first time how a single gold sphere can be 

used as an optofluidic nanosensor for the detection of microbiological dynamics. A freely 

swimming larva of Copepods served as living source of microfluidic oscillations.          

The extracted frequencies from the motion of the gold nanoparticle in the optical trap 

were in a very good agreement with those obtained through a direct observation of the 

larva motion. Thus, this approach delivered a tool to detect microfluidic dynamics 

produced by a living animal in the vicinity of the optical trap and enabled a non-invasive 

analysis of its motility. However, even if the trapping laser wavelength is off-resonant to 

the plasmon resonance of the gold nanoparticle, a finite heating of the nanoparticle 

occurs. This leads to an unwanted enhancement of thermal fluctuations in the system.  

 

To increase the sensitivity of optofluidic detection, the idea to use a non-absorbing, 

dielectric microparticle as optofluidic sensor of oscillatory flows was introduced. For a 

precise description of a focused single beam gradient trap acting on a silicon dioxide 

microsensor, the Generalized Lorenz Mie theory was employed and the T-matrix method 

allowed a computation of the optical forces on the optofluidic detector. The vectorial 

velocity field around a silicon dioxide microparticle oscillating in a dipole-like mode in a 

home built, chopper based dual tweezers configuration was mapped by optical tracking of 

a twin sensor positioned at different points around the source. This sophisticated 

experiment was realized by setting up a multiple tweezers configuration at different 
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wavelengths allowing position-dependent measurements. Deviations between theory and 

experiment in particular in close distances between the detector and the source delivered 

an understanding to the effect that not only incompressible flow, but also acoustic waves 

contribute to the measured flow in the near-field. This is a important finding for 

optofluidic location and recognition experiments and might trigger further investigations 

in this direction, as conditions are reached which in normal circumstances are difficult to 

achieve. At small scales and low Reynolds numbers, laminar flow is dominant.       

Viscous forces that arise from shearing between velocity-isosurfaces dominate inertial 

forces, the main transport mechanism for mass is diffusion, and a mixing in the low 

Reynolds number regime is not easy to realize. Thus, an oscillatory microflow is a very 

useful approach to mix liquids in laminar systems. The introduced optofluidic method 

paves the way for in-situ characterization of fast mixing microscale devices and for new 

detection methods able to provide location and recognition of moving sources that can be 

applied to both artificial and living microobjects with own dynamics at the nanoscale. 

 

A great part of this work was the development of a detection method for microfluidic 

flow fields generated by a trapped bacterial cell in its surrounding medium by means of 

optomechanical sensor. For this aim and as a first approach, an optically confined and 

rotating microhelix was used to model the mechanical and dynamical properties of a 

living microorganism, e.g. a bacterium. An optical tweezer was used for initiating a light-

driven rotation of chiral microobjects in an aqueous environment. The non-isotropic 

azimuthal scattering of the incident photons at the chiral thread created a torque on the 

body with a rotation direction of the microscrew being the same as the direction of its 

chirality. The Reynolds numbers of the flow around a rotating microhelix were between 

10−6 and 10−4 depending on the rotation frequency. In this low Reynolds numbers 

regime, the inertial forces are zero and a continuous torque must be transferred to the 

object to maintain its rotation. The focus of investigation was the establishement of the 

optofluidic detection method with an optically driven microhelix as source of flow.         

A constantly rotating screw generated a time-independent velocity field around itself, 

which led to a constant displacement of a trapped dielectric microparticle. Therefore, a 

time-dependent modulation was induced to the rotation of the microhelix, creating an 

alternating velocity field around the helix, whose frequency of modulation was 

successfully detectable by an optofluidic sensor. The modulation frequency was varied 

and position-dependent measurements were conducted. The amplitude in the Fourier 
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spectrum of the detector particle decreased with increasing modulation frequency. For an 

in depths understanding of this finding further frequency-dependent experiments and 

simulations are performed. They will help to gain insight into the dependence of 

optofluidic sensing on the detected frequency.  

  

Finally, in this work, I have shown for the first time how the optical trapping of a 

bacterial cell (source of oscillations) next to a dielectric microparticle (optofluidic sensor) 

enables to draw conclusions on the motion and activity of the bacterium with its own 

dynamics at the nanoscale. A direct observation of the cell body displayed a rotational 

movement of the body in the running state, which goes hand in hand with the flagella 

rotation as revealed by the amplitude-frequency plot of the optofluidic sensor bead.         

A tumbling state was characterized by Brownian motion of the directly observed cell 

body while flagella motion was still ongoing, detected in the frequency-amplitude map of 

the sensor. A comparison with typical characteristics of the two different cell states 

showed a great agreement with the experiment and demonstrates the applicability of our 

approach to living organisms. Moreover, in an analysis of the cell body movement alone, 

a tumbling-like state of the bacterium might be confused with a dead cell. The unique 

combination of direct observation of the bacterial cell motion with the optofluidic 

detection method addressing the flagella rotation was solely responsible for a successful 

identification of the two given states. The capability of the optofluidic detection to focus 

on different states of bacterial activity and to access otherwise hidden information is a 

crucial finding of this work. Numerical simulations of the velocity field around a trapped 

bacillus were performed to identify the regions with maximum flow velocity. As a first 

approach, in the simulations a stationary and axis-symmetric laminar flow was presumed. 

Although the model for the simulations was simple, it supported the experimentally 

measured data well. For the detection of a frequency within a microfluidic flow field by 

an optically confined sensor, the field has to have a periodic, time-dependent component.  

As a future approach, the recognition of the physical cause of the time-dependent 

oscillation of the velocity field around a bacterial cell is planned to be experimentally 

addressed. From our measurements, the direct analysis of the cell body movement 

indicated a precession of the body long axis around the tweezer axis. This oscillation of 

the body orientation in the optical trap could lead to a periodic alternation of the 

microfluidic field at the body rotation frequency which is in turn a consequence of the 
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flagella bundle rotation. It is foreseen that the filament bundle itself undergoes a 

precession around the tweezer axis and therefore generates a time-dependent velocity 

field at 62 Hz. A comparison of fluorescence measurements of the flagellar rotation and 

the experimental approach presented here will allow conclusions and paves the way for a 

final characterization of the microfluidic dynamics of individual bacterial cells. 

In summary, the experimental technique, presented in this thesis, breaks ground for an in 

depths understanding of the fundamentals of oscillatory microflows generated by an 

artificial or biological microobject and provides an alternative and sensitive method for 

the characterization of nanoscale dynamics. The approach to detect the flagella rotation of 

a bacterial cell by tracking the position of a particle in an optical trap renders it possible 

to analyze the activity of a microorganism on a single cell level without the necessity of 

observing the source directly. 

A splitting of the laser beam into multiple beams by the use of diffractive optics or a 

liquid crystal device can be furthermore employed to generate an array of detector 

particles 
161, 162

. We foresee the extension of the optofluidic detection method to map and 

image the microfluidic oscillations generated by single prokaryotic or eukaryotic cells 

with high resolution by moving the detector bead around the cell or using multiple sensor 

particles at once.  

Furthermore, the use of holographic tweezers for the trapping of an array of microscrews 

and bacterial cells allows the investigation of the hydrodynamic interaction between the 

artificial and living objects on a very small scale. This experimental approach will deliver 

a more sophisticated understanding of hydrodynamic coupling between helical 

microbiological systems.     

Taken together, this work gives a fundamental understanding on optofluidic detection 

possibilities based on multi-tweezers configurations and delivers a novel experimental 

approach for sensing the nanoscale dynamics of microorganisms.  
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Appendix 

The interested reader can find a more detailed description of the flow field measurement 

and the flow field simulations with a comparison between measured data and theory 

mentioned in the publication of S. Nedev et al. 
122 

.  

To obtain the associated velocity field of the oscillatory flow from equation 4.2.9, the 

optical tweezer holding the detector was calibrated by the power spectral density 

procedure 
124, 125

 (cp. Chapters: Displacement of an optically trapped particle, Power 

spectrum of an optically trapped particle). For the x- and y-direction, the corner 

frequencies were  

fc, x = (603.6 ± 7.9) Hz  and  

fc, y = (532.3 ± 6.7) Hz.  

With 𝑓𝑐 =  𝜅 2𝜋𝛾⁄  (equation 2.2.18), the corner frequencies yielded a trap stiffness 𝜅 for 

the corresponding directions with  

𝜅x = (6.73 ± 0.25) × 10 
−5

 N/m and  

𝜅y  =  (6.00 ± 0.23) × 10 
−5

 N/m.  

They are consistent with reported values 
125

.     

Figure A I shows the velocity field of the measured signal (black arrows) with magnitude 

‖𝒗𝑒𝑥𝑝‖ =  √𝑣𝑥
2 + 𝑣𝑦

2 and the direction defined by the angle tan (θexp) = Ay / Ax in the 

upper right quadrant with respect to the source. Corresponding error bars (of ∼9%) 

calculated through the propagation of error are shown in grey. No phase lag was found 

between the source and the detecting bead. The maximum velocity fields correspond to 

∼250 μm/s, a value of the same order of magnitude as the maximum velocity of the 

source bead e.g., ∼500 μm/s. Moreover, a strong signal was still detected when the 

detector bead was placed at (x,y) ≈ (16,16) μm. The accuracy for the direction and 

magnitude of the velocity vectors was estimated to be ∼3° and 3.5%, respectively     
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(from repeated measurements with the same detecting particle). The remaining quadrants 

(below and to the left) exhibited the same signal in a symmetric fashion within the 

experimental accuracy.  

 

Figure A I: Velocity field of the measured signal (black arrows) in the upper right quadrant with 
respect to the source. The arrows contain information of both, the direction and the magnitude of 

the flow field. The corresponding error bars (of ∼9%) calculated through the propagation of error 

are shown in grey. The experimentally obtained fluidic field is compared to the simulated field 

(orange arrows). (Taken from 122). 

Simulations of the flow field surrounding the source were performed for a better 

understanding of the measurements and its main results. For frequencies 100 Hz < f < 

200 Hz and length scales as considered here, the hydrodynamic near-field around a 

vibrating source is primarily governed by incompressible flow 
163, 164

. Therefore, the 

simulations of the velocity field around an oscillating microsphere were performed by 

solving the Navier-Stokes equations for an incompressible fluid.  

In the simulations, the model of a rigid sphere oscillating along the x-axis according to 

x = A sin (ωt) was used. The radius r of the sphere, the amplitude A, and the frequency f, 

were set to the experimental values, and the velocity of the liquid surrounding the bead 𝒗 

was evaluated at the same 60 experimental points, as shown in Figure 4.2.4. The detector 

bead was not included in the simulations. The numerical simulations were performed with 

COMSOL solving the Navier-Stokes equations for laminar flow according to                

(cp. Chapter: 2.3.1.3):  
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𝛁 𝒗 = 0      (equation 2.3.6) and 

𝜌 (
𝛿𝒗

𝛿𝑡
+ 𝒗 ∇ 𝒗) = 𝑩 − 

∇ 𝒑

𝜌
+  𝜈 ∇2 𝒗      (equation 2.3.15)                                      

where 𝒗 denotes the velocity [m/s], η the dynamic viscosity of water                    

(𝜂𝑤𝑎𝑡𝑒𝑟 = 0,001 𝑃𝑎 ∙ 𝑠) and p the pressure [Pa]. In the computation, the body force per 

unit mass 𝑩 was set to be zero. In the 2D axisymmetric model a moving mesh based on 

the arbitrary Lagrangian-Eulerian (ALE) application mode was used. The ALE mode 

enabled the representation of a free surface boundary with a domain boundary on the 

moving mesh. To simulate the water droplet, the system was embedded in a simulation 

sphere of radius 1 mm. To solve the fluid motion equations, no-slip boundary conditions 

were applied (cp. Chapter: 2.3.1.3). The maximum velocity at cos (ωt) = 1 was evaluated 

exactly at the same positions where the detector bead was placed experimentally.    

The computed fluidic field (orange arrows) is shown together with the experimental 

results (black arrows) in Figure 4.2.6. Maximum experimental deviations of the nominal 

parameters of the bead radius (r = 0.90 μm) and source amplitude (A = 411 nm) provided 

variations of 2% in the simulated velocity fields. It should be mentioned that the velocity 

of two closely spaced beads is intrinsically different from single ones due to the influence 

of the flow field of one bead to the other. The optically trapped detector particle shows a 

resistivity to the flow which is therefore slightly disturbed. The source could experience 

this disturbance as an increased viscosity. To try to account for the effect of ignoring the 

detecting bead in the simulations, the source and the detector bead were tracked in the 

experiment at the same time, attenuating the previous effect by looking at the amplitude 

of the source at each data point and normalizing the FFT detector amplitudes.  

The comparison between numerical simulations and the measured data (Figure A I) 

showed a good agreement of the field pattern around the oscillating microsource when the 

detecting particle was located along the dipole axis (at θ ≈ 0°), and at intermediate 

positions far from the source (at θ < 90°). At these positions, the revealed velocity field 

pattern resembles that of a dipole-type source in an incompressible flow. On the other 

hand, the magnitude of the measured signal was slightly larger than the numerical results 

at all positions. The largest differences between theory and experiments were found at the 

nearest points to the source (∼5 μm), and at positions perpendicular to the dipole axis    
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(at θ ≈ 90°), where numerical results presented a strong signal parallel to the dipole axis 

but the experimental field pointed perpendicular to it. These differences could be 

attributed to the finite compressibility of water (acoustic wave) which is not included in 

the simulations. The addition of the velocity field of an acoustic dipole could compensate 

for the difference in magnitude and angles which are always smaller in the numerical 

simulations compared to the experiment. Taken together, the optimal agreement between 

theory and experiment clearly demonstrate the feasibility of our experimental multi-

tweezers configuration for the detection of flow fields. Moreover, our simulations 

unraveled differences in the model when approaching small distances between source and 

detector, where maybe acoustic effects need to be taken into account to qualitatively and 

quantitatively determine the field contributions also in this distances form the source. 
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Abbreviations 

BLZ: blaze wavelength;  

cat: chloramphenicol resistance; 

CCW: Counter-clockwise; 

comK: competence transcription factor of B. subtilis; 

comS: releases comK for autostimulation; 

CW: clockwise; 

erm: erythromycon resistance; 

FFT: Fast Fourier Transformation; 

GLAD: Glancing angle deposition; 

GLMT: Generalized Lorenz Mie theory; 

hag: flagellin protein, ~20,000 subunits create one flagellum; 

his leu met:  histidine, leucine and methionine resistance respectively; 

kan: kanamycin resistance; 

MSD: Mean square displacement; 

rok: repressor protein; 

spc: spectinomycin resistance; 
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