
 

 

 

 

 

Systematic Analysis of Lysine Acetyltransferases 
 

 

 

Dissertation  
 

zur Erlangung des akademischen Grades Dr. rer. nat. 

vorgelegt der Fakultät für Biologie der 

Ludwig-Maximilians-Universität München 

 

 

 

 

 

 

 

 

Christian Feller 
München 2014 

  



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Gutachter: Prof. Dr. Peter B. Becker 

2. Gutachter: Prof. Dr. Dirk Eick 

Dissertation eingereicht am: 16.09.2014 

Mündliche Prüfung am: 28.10.2014 



 

  



 

Eidesstattliche Erklärung 

   

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir 

selbstständig und ohne unerlaubte Hilfe angefertigt ist.  

  

München, den 15. September 2014            .................................... 

                 (Christian Feller) 

 

 

Erklärung 

Hiermit erkläre ich, dass die vorgelegte Arbeit an der LMU von Herrn Prof. Dr. 

Peter Becker betreut wurde. 

Hiermit erkläre ich, dass die Dissertation nicht ganz oder in Teilen einer anderen 

Prüfungskommission vorgelegt worden ist. Weiterhin habe ich weder an einem 

anderen Ort eine Promotion angestrebt noch angemeldet, noch versucht eine 

Doktorprüfung abzulegen. 

Die eigenen Leistungen für die in dieser kumulativen Dissertation enthaltenen 

Manuskripte sind in den Kapiteln 3.1.1, 3.2.1, 3.3.1 und 3.4.1 aufgelistet.  

 

München, den 15. September 2014            .................................... 

                 (Christian Feller) 

 

  



 

 

 



 

 

 

 

 

For my parents 

  



 

 

 



 
 

 

Table of contents 

1  SUMMARY ................................................................................................................................. 11 

2  INTRODUCTION ........................................................................................................................ 15 

2.1  The nucleosome is the basic repeat unit of chromatin ........................................................ 16 

2.2  Higher-order chromatin structures ...................................................................................... 18 

2.3  Post-translational histone modifications ............................................................................. 20 

2.3.1 Lysine acetylation .............................................................................................................. 21 

2.3.2 Lysine methylation ............................................................................................................. 30 

2.4  Dosage compensation in the fruit fly Drosophila melanogaster ......................................... 33 

3 RESULTS AND DISCUSSION ..................................................................................................... 36 

3.1  The activation potential of MOF is constrained for dosage compensation ......................... 37 

3.1.1 Summary, significance and own contribution .................................................................... 38 

3.1.2 Published manuscript ......................................................................................................... 40 

3.1.3 Supplementary data and figures ......................................................................................... 53 

3.2  Dosage compensation and the global re-balancing of aneuploid genomes ......................... 72 

3.2.1 Summary and own contribution ......................................................................................... 73 

3.2.2 Published review article ..................................................................................................... 74 

3.3  The MOF-containing NSL complex associates globally with  housekeeping                   

               genes, but activates only a defined subset .......................................................................... 83 

3.3.1 Summary, significance and own contribution .................................................................... 84 

3.3.2 Published manuscript ......................................................................................................... 86 

3.3.3 Supplementary data and figures ....................................................................................... 101 

3.4  Global and specific responses of the histone acetylome to systematic                  

              perturbation ....................................................................................................................... 114 

3.4.1 Summary, significance and own contribution .................................................................. 115 

3.4.2 Submitted manuscript ....................................................................................................... 117 

3.4.3 Supplementary data, tables and figures ............................................................................ 151 

3.4.4 Discussion on substrate specificity of lysine acetyltransferases                                                

using the examples of HAT1 and HBO1 .......................................................................... 203 

4 GENERAL CONCLUSIONS AND OUTLOOK ......................................................................... 208 

5 REFERENCES ............................................................................................................................. 213 

6 ACKNOWLEDGEMENTS .......................................................................................................... 236 

7 LIST OF ABBREVIATIONS ....................................................................................................... 238 

8 CURRICULUM VITAE ............................................................................................................... 241 

 



 
 

 

 

 

 

 

 

 

 



SUMMARY  

 

11

1  SUMMARY 

Eukaryotic genomes are packed in chromatin that comprises an ever repeating succession of 

nucleosomes with DNA wrapped around octamers of histone proteins. Dynamic regulation of 

chromatin structure enables controllable access to the underlying DNA and hence is crucial to all 

nuclear processes, including DNA transcription, replication and repair. Many interconnected 

mechanisms are in place to regulate chromatin structure. These include chemical modifications of 

histone proteins, such as lysine acetylation and methylation, which directly alter the properties of 

nucleosomes  to  form  repressive  structures  or  install  signaling  marks  for  dedicated  effector 

proteins. 

The original research described in this cumulative thesis is contained in two published articles and one 

submitted manuscript centering on histone lysine acetylation in Drosophila melanogaster. In the first 

two articles, we characterise the functions of two multi-protein complexes containing the lysine 

acetyltransferase MOF (males absent on the first). If incorporated in the male-specific lethal dosage 

compensation complex (MSL-DCC) MOF acetylates lysine 16 on histone H4 (H4.K16ac) on gene 

bodies on the male X chromosome, which is critical for the two-fold transcriptional stimulation of its 

target genes. The underlying process, dosage compensation, serves to adjust gene expression levels 

between the single male and the two female X chromosomes. Combining genome-wide mapping and 

transcriptome studies with the analysis of defined reporter loci in transgenic flies and cell lines, we 

provided evidence that MOF-mediated H4.K16ac has an inherent strong transcriptional activation 

potential, which is, however, constrained to the physiological two-fold range in the context of fly 

dosage compensation. In contrast, MOF as a component of the non-specific lethal (NSL) complex 

binds promoters of active housekeeping genes located on all chromosomes in male and female flies. 

However, transcriptional activation through the NSL complex is found only at a subset of these 

binding sites. These NSL-regulated genes are enriched for a specific core promoter sequence and 

depleted for the insulator proteins CP190 and BEAF as well as the heterochromatin protein HP1c. In 

summary, these studies describe the context-specific localization and transcriptional activation modes 

of the acetyltransferase MOF through its incorporation into two distinct multi-protein complexes. 

Histones have acquired impressive patterns of acetylation sites, where the individual abundance and 

the context of co-occurrence with other marks potentially confers very different functions. However, 

the current methodologies are too limited to systematically evaluate changes in rare and combinatorial 

modification motifs. Moreover, how different enzymes contribute to complex motifs is only poorly 

understood. In the third study, we generated a catalogue of histone acetylation and methylation motifs 

that describe the changes in response to ablation of every known or suspected lysine acetyltransferase 

and deacetylase. To achieve this goal, we first optimised liquid chromatography mass spectrometry 

workflows that enabled highly accurate and precise quantification of combinatorial histone 
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modification motifs. The comprehensiveness of the dataset not only allowed us to recognise class-

specific properties to these enzyme families but also to describe the histone modification system as an 

interconnected, flexible network that compensates the loss of an individual component. We describe 

the specific responses of the histone acetylome upon ablation of each acetyltransferase. To our surprise 

we also observed that depletion of almost every acetyltransferase triggered a systemic response that 

effectively maintained global histone acetylation levels. Finally, we documented that dosage 

compensation is not restricted to the change of the single H4.K16ac mark, but accompanied by a 

specific re-distribution of acetylation and methylation motifs. In summary, this study provides further 

evidence that chromatin pathways are highly interconnected and highlights the necessity to study the 

function of each individual component in the context of the system.  
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ZUSAMMENFASSUNG 

Eukaryotische Genome sind in einer Chromatinstruktur eingebettet. Chromatin besteht in seiner 

einfachsten Organisationsform aus einer Aneinanderreihung von Nukleosomen, in denen DNA 

spulenförmig um Oktamere aus Histonproteinen gewunden ist. Die Chromatinstruktur wird sehr 

dynamisch reguliert. Dies ist wichtig für Prozesse wie die Transkription, Replikation und DNA 

Reparatur, bei denen Faktoren kontrollierten Zugriff zur DNA benötigen. Im Zellkern existieren viele 

ineinandergreifende Mechanismen, um die Chromatinstruktur für die jeweiligen Prozesse zu 

regulieren. Dazu gehören chemische Modifikationen an den Histonproteinen, wie zum Beispiel Lysin-

Acetylierung und Lysin-Methylierung. Diese Modifikationen haben einerseits das Potenzial, direkt das 

Gleichgewicht zwischen kompakten und zugänglichen Chromatinorganisationsformen zu beinflussen. 

Zum anderen wirken Histonmodifikationen als Signale für Effektorproteine, welche wiederum 

Änderungen in der Chromatinstruktur herbeiführen oder direkt biologische Prozesse wie die 

Transkription in Gang setzen können. 

Diese kumulative Dissertation enthält zwei publizierte und einen eingereichten Originalartikel, die 

sich mit dem Thema der Histon-Acetylierung in der Fruchtfliege Drosophila melanogaster 

auseinandersetzen. In den ersten beiden Artikeln charakterisieren und vergleichen wir die Funktionen 

von zwei Multiproteinkomplexen, welche die Acetyltransferase MOF beinhalten. MOF innerhalb des 

„Dosis-Kompensations-Komplexes“ acetyliert Lysin 16 auf Histone H4 (H4.K16ac) entlang der Gene 

auf dem männlichen X-Chromosom. Diese Acetylierung ist wichtig für den Prozess der 

Dosiskompensation, bei dem durch die zweifache Stimulation der Transkription von Genen auf dem 

einzelnen männlichen X-Chromosom die „Gen-Dosis“ gegenüber den Genen auf den zwei weiblichen 

X-Chromosomen angepasst wird. In unserer Studie haben wir genomweite Lokalisations- und 

Transkriptionskartierungsmethoden mit der Analyse von definierten Reportergenen in transgenen 

Fliegen und Zellsystemen verbunden. Dies erlaubte uns festzustellen, dass zwar die MOF-vermittelte 

H4.K16-Acetylierung ein starkes Potenzial hat, die Transkription zu stimulieren, dieses Potenzial 

jedoch im Kontext der Dosiskompensation auf  eine feinjustierte zweifache Erhöhung gedrosselt ist. 

Im Gegensatz dazu fungiert MOF innerhalb des NSL-Komplexes (non-specific lethal) als Promoter-

typischer Ko-Aktivator. Der NSL-Komplex bindet Promotoren von „Haushaltsgenen“ entlang aller 

Chromosomen in männlichen sowie in weiblichen Zellen. Unsere detaillierte genombiologische-

bioinformatische Analyse zeigte allerdings, dass nur ein Teil der gebundenen Gene auch vom NSL-

Komplex reguliert werden. Diese NSL-regulierten Gene enthalten eine spezifische Promotersequenz-

Signatur und werden im Gegensatz zu den anderen gebundenen aber nicht-regulierten Genen 

tendenziell nicht von den Insulatorproteinen CP190 und BEAF sowie vom Heterochromatinprotein 

HP1c gebunden. Zusammenfassend zeigen diese beiden Studien, dass die Lokalisationen und 

Funktionen von MOF stark von den assoziierten Multiproteinkomplexen geprägt werden.  
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Histone zeigen eine hohe und beeindruckende Anzahl von Modifikationsmustern. Die individuelle 

Häufigkeit sowie das gemeinsame Auftreten mit anderen Modifikationen vermitteln 

höchstwahrscheinlich sehr verschiedene biologische Funktionen. Die technischen Möglichkeiten, um 

niedrig-abundante sowie spezielle Kombinationen von Modifikationsmustern zu detektieren und deren 

Änderungen zu quantifizieren, sind zurzeit noch sehr begrenzt. Des Weiteren ist es noch unzureichend 

verstanden, wie verschiedene Enzyme zu komplexen Modifikationsmotiven beitragen. In der dritten 

Studie haben wir umfassend katalogisiert, wie sich einfache und komplexe Acetylierungs- und 

Methylierungsmotive auf Histon-Proteinen ändern, nachdem wir systematisch jede bekannte oder 

vermutete Acetyltransferase und Deacetylase aus Drosophila-Zellen entfernt haben. Um dies zu 

erreichen, war es zuerst nötig, spezielle Protokolle der Flüssigchromatographie-Massenspektrometrie 

(LC-MS) zu optimieren, welche uns erlaubten, Änderungen in kombinatorischen Modifikations-

mustern akkurat und präzise zu quantifizieren. Der große Umfang dieses Kataloges in zwei 

Dimensionen – alle bekannten und vermuteten Enzyme gegenüber vielen Modifikationsmustern – 

erlaubte uns nicht nur, enzymklassenspezifische Eigenschaften zu erkennen und zu beschreiben, 

sondern auch das Histon-Modifikations-System als ein höchstverwobenes und flexibles Netzwerk zu 

dokumentieren, in dem der Verlust von einzelnen Komponenten systemisch kompensiert wird. Der 

überraschendste Befund war die Feststellung, dass nach dem einzelnen Entfernen fast jeder 

Acetyltransferase die Gesamtbilanz aus acetylierten und nicht-acetylierten Histonen konstant war. 

Schließlich untersuchten wir genauer, welche systemischen Auswirkungen der Prozess der 

Dosiskompensation auf die Histonmodifikationslandschaft mit sich bringt. Hier stellten wir fest, dass 

Dosiskompensation nicht nur auf dem bekannten Acetylierungssignal H4.K16ac beruht, sondern dass 

sich systemweit auch andere Acetylierungs- und Methylierungsmotive umverteilten. Die Ergebnisse 

dieser Studie erbringen weitere Hinweise, dass Chromatinregulationsmechanismen komplexe, 

miteinander verbundene Signalwege darstellen, bei denen die Funktion einzelner Komponenten im 

Kontext des Systems studiert werden sollte. 

 

 

  

 

  



INTRODUCTION  

 

15

2 INTRODUCTION 

The evolution of the eukaryotic cell is accompanied by impressive innovations that enable the 

development of highly complex multi-cellular organisms and ensure adequate responses to internal 

and external stimuli. One fascinating invention was the organisation of eukaryotic genomes into 

chromatin. Chromatin is a dynamic structure that consists of an ever repeating succession of a single 

fundamental ‘building block’, the nucleosome. In the nucleosome, DNA is wrapped around an 

octamer of four histone proteins, namely H2A, H2B, H3 and H4. Chromatin exists in a continuum of 

states that allow (euchromatin) or permit (heterochromatin) access to the underlying DNA. Many 

interconnected mechanisms determine the structure and function of chromatin and thereby regulate 

most biological processes that utilise DNA. These mechanisms include i) post-translational, chemical 

modifications at histones, ii) ATP-dependent chromatin remodelling, iii) the replacement of canonical 

histones by histone variants, iv) association of linker histones and constitutive non-histone proteins, v) 

DNA methylation, vi) non-coding RNAs and vii) the organisation of chromatin fibres within the three-

dimensional nuclear architecture. The concerted action of these mechanisms allows the 

implementation of specific genetic programs. 

In this introduction, I will primarily focus on describing post-translational histone modifications 

(PTMs) and their significance in regulating chromatin structure and transcription. After introducing 

the nucleosome and higher-order chromatin structure, I will describe post-translational modifications 

through lysine acetylation on histones, which is the main topic of my PhD studies. In addition, I will 

briefly discuss lysine methylation at histones because there is well-documented cross-talk between the 

two types of modifications. Finally, I will introduce the phenomenon of Drosophila dosage 

compensation that provides an illustrative example of how a single histone acetylation site contributes 

to the transcriptional upregulation of an entire chromosome.  
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2.1 The nucleosome is the basic repeat unit of chromatin 

The term chromatin was coined by Walther Flemming in the 1890s describing nuclear structures that 

stain strongly with basophilic dyes (Flemming 1882). Around the same time, analysing the chemical 

composition of the cell nucleus, Friedrich Miescher identified nucleic acid and Albrecht Kossel 

characterised a protein component that he termed Histon (Miescher 1871, Kossel 1884). However, it 

was not before the 1970s when experiments on  endonuclease-mediated chromatin digestion, histone 

cross-linking and electron microscopy of chromatin particles revealed the nucleosome as the 

fundamental repeat unit of chromatin (Hewish and Burgoyne, 1973; Kornberg, 1974; Kornberg and 

Thomas, 1974; Olins and Olins, 1974; Oudet et al., 1975).  

Another 20 years later, Richmond and colleagues solved the crystal structure of a nucleosome at 2.8 Å 

resolution (Figure 1, (Luger et al., 1997)). It reveals that 147 base pairs (bp) of DNA are wrapped in 

1.65 left-handed (negative) superhelical turns around an octamer of the canonical histones H2A, H2B, 

H3 and H4. Positive charges of the histone proteins contact the negatively charged phosphate 

backbone of DNA every ~10.4 bp, establishing 14 relatively weak histone-DNA contacts. The histone 

octamer is a modular assembly formed by association of two H3-H4 dimers to form an (H3-H4)2 

tetramer followed by binding of two H2A-H2B dimers on either side of the tetramer. Each histone 

consists of a globular core domain and N- and C-terminal domains (‘tails’) that protrude from the core 

particle. The globular core constitutes the characteristic histone fold domain, which is comprised of 

three α-helices separated by two loops. Interactions between the histone folds of H3 stabilise the H3-

H4 pairs whereas the H2A-H2B pairs interact with the tetramer through a homologous 4-helix bundle 

between the H2B and H4 folds. Further contacts between the H2A docking domain towards H3-H4 

and among the H2A loop 1 regions of the H2A-H2B dimers stabilise the nucleosome. Of particular 

importance is the interaction between an acidic patch at the H2A-H2B dimer with the basic patch at 

the H4 tail because it is a critical target for the regulation of nucleosome stability and chromatin 

structure through the action of chromatin remodelling enzymes and histone acetylation (discussed in 

detail in 2.3.1). 

The nucleosome is not a static particle but rather shows transient DNA breathing and ‘open 

nucleosome states’. Recent studies applying fluorescence resonance energy transfer (FRET), high-

speed atomic force microscopy (HS-AFM) and small-angle X-ray scattering (SAXS) provided 

evidence for a dynamic nucleosome where DNA reversibly dissociates, H2A-H2B dimers partially 

disrupt from the (H3-H4)2 tetramer while still associated to DNA and nucleosomes undergo 

spontaneous sliding and even complete dissociation in the absence of ATP-dependent remodelling 

(Mangenot et al., 2002; Li et al., 2005; Zlatanova et al., 2009; Andrews and Luger, 2011; Bohm et al., 

2011; Miyagi et al., 2011; Luger et al., 2012). These findings have strong implications for concepts 

how transcription factors access DNA within the context of chromatin.  
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2.2 Higher-order chromatin structures 

Nucleosomes are arranged on DNA like ‘beads on a string’ forming the primary structure of 

chromatin, called the ’10 nm fibre’. The nucleosomes are separated by linker DNA, which show 

variable length distributions typically between 10 bp and 50 bp in a context- and species-specific 

manner (Clapier and Cairns, 2009). Linker histones such as H1 and H5 bind to DNA at the entry and 

exit sites of nucleosomes and protect 20 bp of linker DNA against micrococcal nuclease. Although 

linker histones are not part of the nucleosome core particle they contribute to the secondary structure 

of chromatin, such as the 30 nm fibre described in vitro.   

Linear arrays of nucleosomes (primary structure) are proposed to fold into three-dimensional 

assemblies of higher-order structures (e.g. 30 nm fibre). Two competing models of the 30 nm fibre 

have been put forward based on in vitro experiments on reconstituted chromatin fibres and the crystal 

structure of a tetranucleosome particle (Figure 2). In the ‘one-start’ solenoid model, neighbouring 

nucleosomes interact with each other and follow a helical trajectory with six to eight nucleosomes per 

turn (Finch and Klug, 1976; Widom and Klug, 1985; Robinson et al., 2006; Routh et al., 2008; 

Kruithof et al., 2009). The two-start zigzag model proposes that two rows of nucleosomes form a two-

start helix with interactions between alternating nucleosomes (Dorigo et al., 2004; Schalch et al., 2005; 

Song et al., 2014). It should be stressed that parameters such as linker length, the size of the 

nucleosomal array and whether H1, H5 or no linker histone was used strongly favour the one or the 

other model (Routh et al., 2008; Grigoryev et al., 2009).  

In contrast to the above mentioned in vitro studies, whether higher order chromatin structures exist in 

vivo is controversially discussed (Horowitz et al., 1990; Tremethick, 2007; Maeshima et al., 2010; 

Nishino et al., 2012). Evidence supporting the existence of 30 nm fibres are currently limited to highly 

specialised cell types, including transcriptionally silent chicken erythrocytes and starfish 

spermatozides (Woodcock, 1994; Horowitz et al., 1997). In contrast, there is yet no evidence for 

higher order chromatin structures in interphase and metaphase chromosomes examining different 

species and cell types, including mitotic HeLa cells (Tremethick, 2007; Maeshima et al., 2010; 

Nishino et al., 2012). According to the recently proposed ‘polymer melt’ model, the high 

concentration of nucleosomes in the nucleus preferentially drives inter-fibre interactions so that 

individual fibres strongly interdigitate. However, the polymer melt model also predicts that 30 nm 

fibres form transiently during transitions between different chromatin condensation states such as the 

ones that may occur upon transcriptional activation (Maeshima et al., 2010). Together, these studies 

suggest that there is no uniform secondary structure of chromatin in the cell. Instead, highly dynamic 

global and local transitions in chromatin structure provide an excellent window of opportunity for 

regulatory mechanisms (Tremethick, 2007; Maeshima et al., 2010; Fussner et al., 2011) 
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Depending on the precise modification and residue, three principal modes of action are discussed. 

First, a modification may have a direct structural impact by modulating DNA-histone or nucleosome-

nucleosome interactions. Second, specific modifications or combinations thereof may constitute marks 

that are bound by proteins with structural or enzymatic activities. Third, a modification may prevent or 

promote the placement of another mark.  

2.3.1 Lysine acetylation 

Early studies linking histone acetylation to gene activity 

In the early 1960s, seminal work by Vincent Allfrey and others demonstrated that the basic, arginine-

rich histone proteins inhibit the transcription of DNA (Allfrey and Mirsky, 1962; Huang and Bonner, 

1962; Allfrey et al., 1963). In 1963, lysine acetylation was the first chemical modification described 

on histones (Phillips, 1963). One year later, after presenting evidence that lysine acetylation and 

methylation occurs after translation, Allfrey surmised: ‘Such modifications of histone structure, 

acetylation in particular, may affect the capacity of the histones to inhibit ribonucleic acid synthesis in 

vivo’ (Allfrey et al., 1964). In the 1970s, acetylated histones were found at actively transcribed 

chromatin (Sealy and Chalkley, 1978; Vidali et al., 1978). In the late 1980s, two landmark studies 

contributed by the labs of Roger Kornberg and Michael Grunstein demonstrated that nucleosomes 

repress transcription in vitro but can relieve repression when ablated in vivo (Lorch et al., 1987; Han 

and Grunstein, 1988). Acetylation was mapped to lysines on the histone termini, thereby providing the 

rationale that charge neutralization of histones decreases its affinity towards DNA and destabilises 

nucleosome-nucleosome interactions (Nelson, 1982; Hong et al., 1993). Abrogating acetylation by 

mutating individual lysine residues on H4 in yeast cells diminished the capacity to induce transcription 

(Durrin et al., 1991) while the presence of acetylation promoted the binding of transcription activators 

(Lee et al., 1993; Vettese-Dadey et al., 1996) .  

Comparing individual and combined lysine site mutations, Grunstein and co-workers derived two 

conclusions that were strongly influential to the field of chromatin biology and still dominates today’s 

reasoning of how histone acetylation regulates transcription. In these experiments performed in S. 

cerevisiae, they substituted lysine (K) residues to arginines (R), which mimics the positive charges but 

cannot be acetylated (Durrin et al., 1991). First, they discovered that the yeast GAL1 promoter is not 

sufficiently induced in mutants harbouring triple-R or tetra-R mutations whereas single KR 

substitutions of the four N-terminal lysine residues (K5, K8, K12, K16) do not diminish GAL1 

induction. Based on these observations, they concluded that individual lysine acetylation sites function 

redundantly by neutralizing the charge state on the histone H4 tail. Following this reasoning, one 

would predict that mutating all four lysines to glutamines (Q), which resembles lysine structurally and 

mimics the charge neutralization conferred by acetylation, results in increased promoter activation. 

However, Grunstein and co-workers observed a tenfold reduction in the GAL1 activity for tetra-Q 
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mutants, similar to the effects observed in triple-R mutants, suggesting that permanent charge 

neutralization alone cannot sufficiently explain the observed effects of histone acetylation in 

transcriptional activation. Second, when they compared how the mutants affect different promoters, 

they observed that the histone H4 tail is required to activate inducible gene promoters (GAL1, PHO5), 

but is less critical for rapid response genes (CUP1) and shows no effect on the expression of 

housekeeping genes (GAL4, PRC1). They concluded that the function of histone acetylation is to 

induce but not maintain transcription. Further, they speculated that specific gene promoters, such as 

CUP1, may be depleted of nucleosomes and hence require chromatin-independent induction systems 

(Durrin et al., 1991).   

Regulating transcription by histone acetylation  

Different mechanisms are discussed how histone acetylation regulates transcription. As described in 

the next section, lysine acetylation can directly influence the folding of chromatin at different levels. 

This includes compromising the stability of individual nucleosomes or interfering with the formation 

of nucleosomal fibres. Ultimately, the resulting chromatin structure is more permissive, which allows 

access of transcription factors to the underlying DNA.  

In addition to dampening the repressive effect of chromatin directly, histone acetylation can promote 

transcription by recruiting effector proteins that recognise acetylated lysines via bromodomains 

(Dhalluin et al., 1999; Filippakopoulos and Knapp, 2012; Sanchez et al., 2014). These domains are 

frequently found in many co-activators, chromatin remodelers and acetyltransferases and their 

integrity correlates with the ability to stimulate transcription. In contrast to other histone PTM binding 

motifs, such as the ones that recognise methylated lysines (chromodomain, PHD finger, tandem tudor 

domain), bromodomains often display only low affinity towards individually acetylated lysines 

(Ruthenburg et al., 2007). However, there is emerging evidence that the affinity and specificity of 

bromodomains is modulated by adjacent modifications (Filippakopoulos et al., 2012). Moreover, 

multiple acetylation sites may increase the affinity. In a thought-provoking study it was reported that 

the bromodomain 1 (BD1) of Brdt shows a high affinity towards the di-acetylated mark H4.K5acK8ac 

(KD of 22 µM), while it displayed 10 times lower affinities towards other di-acetyl combinations on 

the same H4 peptide (Moriniere et al., 2009). This tantalizing result may suggest that certain 

bromodomains read combinatorial patterns of acetylation motifs rather than individual acetylation 

marks. This reminds on a structural study that proposes a ‘helical wheel’ organization of the H4 tail 

(Baneres et al., 1994). According to this model, 100° phasing between individual amino acids of the 

H4 tail results in a positioning of the four lysines K5, K8, K12 and K16 directly next to each other. 

Such configuration may provide an excellent configuration to present modifications for combinatorial 

read-out by bromodomains. 
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Many examples are documented where histone acetylation synergistically functions with other 

chromatin modifying principles. For example, while histone acetylation recruits chromatin remodelers 

that in turn create permissive chromatin structures, additional co-activators bind to newly accessible 

acetylated lysines and further promote and maintain active transcription (Gregory et al., 1998; Reinke 

et al., 2001; Kasten et al., 2004; Devaiah and Singer, 2013). Moreover, some individual genes may 

require a rapid turnover of acetylation instead of a permanently fixed acetylation state for their 

activation (Hazzalin and Mahadevan, 2005). Lastly, histone acetylation has been shown to mark 

individual genes for rapid re-activation after mitosis (‘gene bookmarking’, (Zhao et al., 2011)).  

Regulating higher order chromatin structure by histone acetylation 

Acetylation of histone H4 provides the best-understood case for how post-translational histone 

modifications directly regulate higher-order chromatin structure. Central to this function is the 

interaction between an acidic patch at the H2A-H2B dimer with the basic patch at the H4 tail (amino 

acids 16-20) (Luger et al., 1997; Zhou et al., 2007). A special role for the H4 tail compared to the 

other histone tails was already observed early on and was contributed to bridging of adjacent 

nucleosomes, binding of linker DNA and association with H2B within the same nucleosome (Fletcher 

and Hansen, 1995; Tse and Hansen, 1997; Hansen et al., 1998; Chodaparambil et al., 2007; Kan et al., 

2009; Allahverdi et al., 2011). In a landmark study, Peterson and colleagues used a native chemical 

ligation strategy to generate nucleosomal arrays with homogenously labelled acetylated lysine 16 on 

histone H4 (H4.K16ac). These arrays inhibited the formation of inter-fibre contacts (the proposed 30 

nm fibre) and reduced nucleosome oligomerization through cross-fibre interactions (Shogren-Knaak et 

al., 2006). The concept that acetylation of H4.K16 reduces the propensity to form higher-order 

chromatin structures was reinforced by studies from the Rhodes and Nordenskiöld labs. Using very 

long nucleosomal arrays (containing 61 copies of the ‘601’ nucleosome positioning sequence instead 

of 12 copies used by Peterson and colleagues), stoichiometric concentrations of linker histone H5 and 

only 30% of acetylated H4.K16, the study by Rhodes and co-workers emphasised the dominant role of 

H4.K16ac over individual or combined H3 and H4 tail deletions (Robinson et al., 2008). Nordenskiöld 

and colleagues extended these observations by documenting that shorter nucleosomal arrays (12 

copies of 601 sequence) with mono-acetylated H4.K16ac have a stronger unfolding effect than either 

mutating or acetylating the adjacent lysines on H4 (K5, K8, K12) (Allahverdi et al., 2011).  

In comparison to acetylation on the H4 tail, our knowledge of how other histone PTMs affect higher-

order chromatin structures is rudimentary. Muir and colleagues reported that nucleosomal arrays 

modified with ubiquitylated lysine 120 on H2B also decrease chromatin compaction in a distinct but 

synergistic manner to H4.K16ac (Fierz et al., 2011). An inverse effect was reported for nucleosomal 

arrays decorated with tri-methylated H4.K20, which increased folding and required less divalent 

magnesium ions to form condensed chromatin (Lu et al., 2008). More subtle effects were observed for 
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nucleosomes with di-methylated H3.K79, which displayed altered nucleosomal surfaces and 

consequently may affect binding of effector proteins (Lu et al., 2008). Despite the importance of 

comparing the effect of different histone PTMs on chromatin folding, it should be stressed that 

additional parameters including the type and concentrations of salts and highly charged molecules 

such as polyamines greatly influence the extent of the observed effects and the susceptibility towards 

individual chemical modifications (Lu et al., 2008; Allahverdi et al., 2011; Liu et al., 2011; Korolev et 

al., 2012).   

In addition to directly affecting the folding of chromatin fibres, histone acetylation modulates the 

targeting and enzymatic activity of chromatin remodelling complexes. For example, it was proposed 

that binding of the remodeler subunit BPTF to H4.K16ac and H3.K4me3 through its bromodomain 

and PHD finger contributes to its localization at specific chromatin regions (Ruthenburg et al., 2011). 

Acetylation of H3.K56 promotes a switch in the enzymatic activity of the remodeler complex SWR-C 

to not only incorporate but also remove the histone variant H2A.Z (Watanabe et al., 2013).  

An illustrative and complicated case is the relationship between ISWI-containing complexes and 

acetylation at H4.K16. This histone mark is necessary and sufficient for the strong decondensation 

phenotype of the male X chromosome in Drosophila mutants devoid of ISWI ((Deuring et al., 2000; 

Corona et al., 2002), see also 2.4 for a detailed discussion on dosage compensation, the underlying 

process that regulates this male X-chromosome specific phenomenon). However, a series of studies 

aiming to address the underlying mechanism of this clear phenotypic observation show partly 

controversial results. While early studies demonstrated that H4.K16ac-containing peptides and mono-

nucleosomes moderately inhibited the enzymatic activity of ISWI and the ISWI-containing ACF 

complex (Clapier et al., 2001; Corona et al., 2002; Shogren-Knaak et al., 2006), this effect was not 

observed in a recent study using more physiological nucleosomal arrays containing H4.K16ac 

((Klinker et al., 2014), and see also (Nightingale et al., 2007)). The situation might be even more 

complex because ISWI is also required for the incorporation of the linker histone H1 (Lusser et al., 

2005; Maier et al., 2008), which in turn counteracts H4.K16ac mediated decondensation (Corona et 

al., 2007). Moreover, the N-terminus of ISWI resembles the basic patch of H4 and confers 

autoinhibitory functions, which is relieved by binding to the unmodified H4 tail (Clapier and Cairns, 

2012). In summary, these studies illustrate the complications of the in vitro approach in dissecting how 

individual histone modifications influence enzymatic activities on chromatin. In vivo, these 

modifications do not occur in isolation but rather co-occur with other marks along the same histone 

molecule.  

 

 



INTRODUCTION  

 

25

Lysine acetyltransferases  

Lysine acetyltransferases transfer an acetyl moiety from acetyl-CoA to the ε-amino group of a target 

lysine. Since their first isolation in the mid 1990s (Kleff et al., 1995; Brownell et al., 1996), dozens of 

lysine acetyltransferases have been identified and many characterised (Sterner and Berger, 2000; Yang 

and Seto, 2007; Aka et al., 2011). Because their activities had initially been attributed to histones only, 

they had been named histone acetyltransferases (HATs). However, with the identification of an 

increasing number of non-histone substrates, their nomenclature has been updated to lysine 

acetyltransferases (KATs) (Allis et al., 2007). It is a general notion that KATs are rather promiscuous 

enzymes that target multiple lysines on histone and non-histone substrates. Many KATs function 

within the context of multi-subunit protein complexes where accessory subunits confer genomic 

targeting and influence the substrate specificity (Lee and Workman, 2007). 

Based on their sequence homology, KATs are grouped into two main families (GNAT and MYST). In 

addition, a third class contains proteins with acetyltransferase activity that do not share sequence 

similarities with the two main families. Prominent members of this third class are the closely related 

and metazoan-specific co-activators CBP and p300 and the fungal-specific Rtt109.  

Despite their sequence divergence, all KATs contain a structurally conserved core region of a three-

stranded β-sheet and a long parallel α-helix (Yuan and Marmorstein, 2013). Latter contains four 

conserved motifs (A-D) that are important for acetyl-CoA binding. The conserved core region is 

flanked by family-specific arrangement of α-helices and β-sheets. Interestingly, although CPB/p300 

and Rtt109 do not show conservation at the sequence level, their structures show a high overall 

similarity (Wang et al., 2008a). Together, the conserved core region and the flanking segments form a 

cleft to accommodate the histone target. Both GNAT- and MYST-type KATs contain a conserved 

glutamate deep within the active centre that acts as a general base for catalysing the nucleophilic 

attack of the primary target lysine on the thioester bond of acetyl-CoA. In GNAT-type KATs, acetyl-

CoA and the histone target first form a ternary complex with the enzyme before catalysis can occur 

(bi-bi mechanism). MYST-type KATs form first an acetylated intermediate on a conserved cysteine 

before a glutamate residue facilitates the transfer of the acetyl group from the cysteine to the histone 

lysine target (ping-pong catalytic mechanism) (Yuan and Marmorstein, 2013). In contrast, p300 does 

not employ a general base but rather uses a conserved tyrosine as a general acid for catalysis. 

According to the proposed hit-and-run mechanism, the histone peptide interacts only weakly with the 

surface of p300, allowing the target lysine to enter into the pocket of the active centre. Together with 

its less apolar catalytic groove, this may explain the low degree of substrate selectivity for CBP/p300 

(Liu et al., 2008).   

The Gcn5-related N-acetyltransferase (GNAT) family is the largest group of KATs and includes the 

well-characterised enzymes HAT1 (KAT1), GCN5 (KAT2A), PCAF (KAT2B) as well as ELP3, 
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ATAC2, CDY, ECO1 (ESCO1/2) and MEC17. HAT1 acetylates lysines 5 and 12 on histone H4, 

which is considered to promote the incorporation of the histone (H3-H4)2 dimer into chaperone 

complexes and their subsequent nuclear import. For a detailed discussion on HAT1 functions and 

substrate specificity, please see 3.4.4. Yeast GCN5 has long been known as a potent transcriptional 

co-activator. GCN5 is the catalytic subunit of at least four yeast complexes (SAGA, SLIK, ADA and 

HAT-A2), two Drosophila complexes (SAGA and ATAC) and its two human paralogues GCN5L and 

PCAF incorporate into at least four mutually exclusive complexes (PCAF, STAGA, TFTC and 

ATAC) (Nagy and Tora, 2007; Spedale et al., 2012). While recombinant yGCN5 acetylates lysines 8 

and 16 on H4 and lysine 14 on H3, incorporation into multi-subunit complexes changes its substrate 

specificities (ADA: H3 lysines K18 and K23; SAGA: H3 lysines 9, 14 and 18) (Grant et al., 1999). 

The analysis of yeast gcn5 mutants confirmed the H3 target sites, albeit the reductions varied strongly 

among the individual sites and showed also decreased H3.K27ac levels (Durant and Pugh, 2006). In 

contrast, Drosophila mutants lacking GCN5 display reduced acetylation levels on lysines 9 and 14 on 

H3 and 5 and 12 on H4. However, a recent study reported that disruption of the Drosophila SAGA 

complex only reduced H3.K9ac while leaving the other acetylation sites unchanged (Mohan et al., 

2014). Interestingly, deleting murine PCAF and GCN5L causes only reduced H3.K9ac levels (Jin et 

al., 2011), which is in contrast to other studies that reported a number of other putative substrate sites 

in mammalian cells including H3.K14ac, H3.K18ac and H4 sites (Yang et al., 1996; Herrera et al., 

1997; Ogryzko et al., 1998; Zheng et al., 2013b). 

The MYST group comprises its founding members human MORF, yeast YBF2 (SAS3), yeast SAS2 

and mammalian TIP60 (Esa1 in yeast) as well as MOF, HBO1 and MOZ. MOF (males-absent on the 

first) is an exceptionally specific KAT that presumably targets only a single lysine residue, H4.K16. 

MOF’s role in transcriptional regulation is best understood in Drosophila where it is a key subunit of 

the MSL-DCC complex and essential for X chromosome dosage compensation in male flies. 

Drosophila dosage compensation provides a paradigm for transcriptional regulation by a specific 

histone acetylation site and will be discussed in detail in section 2.4. During my PhD studies, I 

contributed to the understanding of MOF’s function in a second multi-protein complex, the non-

specific lethal (NSL) complex (discussed in sections 3.1-3.4). In addition to regulating transcription, 

studies conducted in mammals pointed to MOF’s role in DNA damage repair, maintenance of 

pluripotency, autophagy, and apoptosis (Li et al., 2012; Fullgrabe et al., 2013; Yang et al., 2014). 

Whether these additional functions are exerted in the context of the human MSL, NSL or novel 

complexes and whether they require the enzymatic activity of MOF is not well understood.  

TIP60 and its yeast homolog Esa1 are the catalytic subunit of the NuA4 complex and have been 

shown to acetylate histone H4 (K5, K8, K12 and K16), H3 (K14) and H2A (K5) as well as numerous 

non-histone proteins including p53, c-myc, ATM and AR (Sterner and Berger, 2000; Sapountzi and 

Cote, 2011). TIP60 functions as a co-activator for a wide range of transcription factors, including 
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NFkB, p53 and nuclear receptors. In addition to regulating transcription, TIP60 has a central role 

during DNA damage repair. First, acetylation of the DNA damage response protein ATM stimulates 

the autophosphorylation and activation of this central kinase, leading to phosphorylation of H2A.X, 

which is a prominent DNA damage signal (Sun et al., 2005). Second, acetylation of H4 renders 

chromatin accessible and thereby promotes the association of the DNA repair machinery (Tamburini 

and Tyler, 2005; Murr et al., 2006). Third, during the late steps of repair, TIP60 acetylates 

phosphorylated H2A.X, which promotes its exchange with the non-phosphorylated H2A.X (Kusch et 

al., 2004).  

The closely related acetyltransferases MOZ and MORF have central roles during normal 

development and fusion proteins with CBP are frequently found in human leukemias. In the mouse, 

MOZ has been shown to acetylate H3.K9ac and is required for the self-renewal capacity of 

hematopoietic stem cells and the proper development of the thymus and the cardiovascular system 

(Voss et al., 2012). MORF is required for the self-renewal capacity of adult neural stem cells in the 

mouse (Merson et al., 2006; Sheikh et al., 2012) and was shown to acetylate H4 at lysines 5, 8, 12 and 

16 (Champagne et al., 1999).  

Studies on the acetyltransferase HBO1 in different experimental setups such as human cell lines and 

hbo1 null mouse mutants reported conflicting results with regard to its role during DNA replication, 

cell cycle regulation and histone substrate selection (see discussion in 3.4.4). In summary, the MYST 

family is a functionally diverse class of acetyltransferases that are implicated in the regulation of 

transcription and DNA damage repair and required for proper development.  

The two closely related acetyltransferases CBP and p300 (one member in Drosophila: dCBP/nejire) 

are ubiquitously expressed potent transcriptional co-activators that have been shown to acetylate a 

wide range of histone sites (H2A: K5; H2B: K12, K15; H3: K14, K18, K23, K27, K56; H4: K5, K8, 

K12, K16) (Bannister and Kouzarides, 1996; Ogiwara et al., 2011; Wang et al., 2013b). In addition, 

they form a platform to recruit other factors involved in transcriptional regulation, including other 

acetyltransferases (GCN5, PCAF), sequence-specific DNA-binding transcription factors (among them 

p53, c-myb, FOXO3a), general transcription factors (TFIIB) and nuclear hormone receptors (ER, AR) 

– many of these proteins are also potent acetylation substrates for CBP/p300 (Wang et al., 2013b). The 

potential of CBP/p300 to stimulate transcription seems to be context-dependent. For example, while 

genes regulated by the nuclear hormone receptor PPAR strictly depend on the HAT activity of 

CBP/p300, other CBP/p300 bound genes rely on the ‘platform’ function to recruit other activators but 

do not require the enzymatic activity of these KATs (Jin et al., 2011; Bedford and Brindle, 2012). Not 

surprisingly, cbp or p300 null mice show early embryonic lethality and their deficiencies or 

deregulation in humans contributes to cancer, neurodegenerative disorders and heart disease (Bedford 

and Brindle, 2012; Valor et al., 2013).  
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Lysine deacetylases 

Lysine acetylation is reversed by lysine deacetylases (KDACs). These enzymes are grouped based on 

sequence homology, phylogenetic analysis and co-factor dependency in four classes. The zinc-

dependent ‘classical’ deacetylases, biochemically isolated first in 1996 (Taunton et al., 1996) and 

named according their initially described substrates as histone deacetylases (HDACs) are sorted in 

class I (HDACs 1-3 and 8), class II (HDACs 4-7, 9 and 10) and class IV (HDAC 11). The NAD+-

dependent deacetylases of class II are named according their founding member silent-information 

regulator-2 (Sir2, (Imai et al., 2000; Landry et al., 2000; Smith et al., 2000)) as Sirtuins and contain 

seven members in humans (SIRT1-7). In comparison to lysine acetyltransferases, deacetylases display 

an even more relaxed substrate specificity directed against many acetyl-lysines in histones and non-

histone proteins (Feldman et al., 2012; Rauh et al., 2013). 

The class I HDACs function as classical transcription repressors that promote repressive chromatin 

structures by deacetylating all four core histones (Yang and Seto, 2008). The four mammalian class I 

HDACs (two in Drosophila: HDAC1 and 3) are homologs of the yeast transcription repressor RPD3. 

HDAC1 and HDAC2 are highly similar proteins, interact with each other and form the catalytic core 

of three well-defined multi-protein complexes (SIN3, NURD and CoREST). NURD and CoREST 

contain SANT-domain containing proteins, which bind histones and stimulate the histone deacetylase 

activity (Cunliffe, 2008). In addition, other chromatin-modifying activities and histone PTM-

recognizing proteins are integral components in these deacetylase complexes, providing the basis for 

coupling histone deacetylation with histone lysine demethylation (LSD1 within CoREST), 

nucleosome remodelling (Mi-2 within NURD) and recognition of methylated DNA (MBD2 within 

NURD) and histones (mammalian ING2 and yeast EAF3 within SIN3). HDAC3 also shows high 

sequence similarity to HDAC1/2 but contains only a single instead of two 14-3-3 phosphorylation site 

binding motifs. HDAC3 is the catalytic subunit of the N-CoR/SMRT co-repressor complexes that in 

addition also contain the lysine demethylase JMJD2A/KDM4A. In contrast to the other class I HDAC 

members, HDAC8 has not yet been found in a stable protein complex and it functions are less well 

characterised. Recent studies indicated that HDAC8 interacts with multiple components of the 

cohesion complex (Joshi et al., 2013) and it shows deacetylase activity against one cohesion subunit 

(SMC3, (Deardorff et al., 2012)).  

Mammalian class II HDACs are related to yeast Hda1 and are grouped into class IIa (HDACs 4, 5, 7 

and 9) and class IIb (HDACs 6 and 10). Class IIa HDACs contain multiple conserved phosphorylation 

motifs at their N-termini and a central deacetylase domain. These phosphorylation motifs are critical 

for the nucleocytoplasmic shuttling of these enzymes and their function as essential signal transducers 

downstream of many cytosolic signalling cascades. Vertebrate class IIa HDACs show a very low 

intrinsic deacetylase activity that is caused by a substitution of tyrosine to histidine within the catalytic 

domain (Lahm et al., 2007). In line, the catalytic activity purified from cellular HDAC4 and HDAC7 
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likely results from its association with HDAC3 (Fischle et al., 2001; Fischle et al., 2002). 

Interestingly, the single class IIa HDAC in D. melanogaster, HDAC4, does not contain this 

substitution, suggesting that the enzyme has a robust deacetylase activity in the fly. HDAC6 contains a 

tandem deacetylase domain and a C-terminal zinc finger, predominantly localises to the cytosol, where 

it deacetylates numerous proteins including α-tubulin, cortactin and HSP90. In comparison to the other 

zinc-dependent deacetylases, the functions of the vertebrate-specific class IIb HDAC10 and the highly 

conserved class IV HDAC11 are less well understood. 

Members of the sirtuin family of class III deacetylases couple lysine deacetylation with NAD+ 

hydrolysis to yield nicotinamide and O-acetyl-ADP-ribose in addition to the non-acetylated product. 

The requirement for NAD+ directly links the enzymatic activity of sirtuins to the energy status of the 

cell. In line, sirtuins have received much attention as critical regulators for metabolic processes 

including glycolysis, gluconeogenesis and fat oxidation and higher levels of SIRT1 were initially 

reported to mediate the effects of caloric restriction that increases life span in yeast, C. elegans and D. 

melanogaster. More recent studies, however, questioned the capacity of lifespan extension of SIRT1 

in flies (sir2) and worms (sir-2.1) (reviewed in (Feldman et al., 2012; Sauve and Youn, 2012)). Of 

note, while SIRT1 knockout mice show normal lifespan, SIRT6 deficient mouse mutants display 

phenotypes of accelerated aging. Sirtuins show distinct localization patterns in mammalian cells, 

where SIRT1, SIRT6 and SIRT7 are pre-dominantly found in the nucleus, SIRT2 in the cytosol, and 

SIRT3-5 in the mitochrondria (Verdin et al., 2010). In addition to their deacetylase activity, individual 

members have been suggested to remove other acyl groups including malonyl and succinyl (Du et al., 

2011). Moreover, SIRT4 and SIRT6 display ADP-ribosyltransferase activity. Indeed, until recently, no 

deacetylation reaction had been reported for SIRT4, yet a recent acetylome microarray study 

suggested multiple deacetylation targets for this enzyme (Rauh et al., 2013).  

A reoccurring theme is that KATs and KDACs regulate the enzymatic activity of each other and of 

other chromatin-modifying activities. For example, SIRT1 mediated deacetylation of SUV39H1 

increases the catalytic activity of this methyltransferase and is necessary for proper heterochromatin 

formation (Vaquero et al., 2007). Likewise, autoacetylated hMOF is deacetylated by SIRT1, which 

increases the affinity of MOF towards nucleosomes in vitro and is necessary for target gene binding in 

vivo (Lu et al., 2011). In turn, hMOF acetylates the SIRT1 inhibitor protein DBC1 to generate more 

active SIRT1 molecules. In a negative-feedback loop, SIRT1 deacetylates its own inhibitor and 

thereby restricts its activity (Zheng et al., 2013a).  
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2.3.2 Lysine methylation 

Lysine methylation is catalysed by lysine methyltransferases (KMTs, formerly: histone 

methyltransferases (HMTs)) and reversed by lysine demethylases (KDMs, formerly: histone 

demethylases (HDMs)). These enzymes add or remove up to three methyl-groups and show a high 

specificity towards the specific lysine residue and degree of methylation. All lysine methyltransferases 

require S-adenosyl methionine (SAM) as a methyl-donor and most KMTs share a specific catalytic 

domain (SET domain: Su(var)3-9, Enhancer of Zeste, Trithorax). Histone demethylases are classified 

according their catalytic mechanism in flavin adenine dinucleotide (FAD)-dependent amine oxidase, 

and Fe(II) and α-ketoglutarate-dependent dioxygenase (Smith and Denu, 2009). Genome-wide 

localization studies using chromatin-immunoprecipitation combined with microarray or deep-

sequencing (ChIP-chip, ChIP-Seq) revealed that lysine methyl marks can be grouped into active 

(H3.K4me3, H3.K36me3, H3.K79me2) and repressive (H3.K9me3, H3.K27me3, H4.K20me3) 

signatures. Because methylation does not change the positive charge state of lysines, its primary 

function is likely to recruit or oppose specific effector proteins. Those effector proteins recognise 

methylated lysines through highly dedicated protein folds, including chromodomains, PHD fingers 

and MBT domains and thereby connect lysine marks to a whole range of downstream processes 

(Taverna et al., 2007).  

Tri-methylation of lysine 4 on H3 (H3.K4me3) is a hallmark of gene promoters.  This mark may 

stimulate transcription via the recruitment and/or stabilization of the transcription factor TFIID, the 

chromatin remodeler BPTF/NURF and the H3.K9me2-demethylase PHF8 (Taverna et al., 2007; Herz 

et al., 2013). H3.K4me3 is catalysed by a single enzyme in yeast (SET1) but three enzymes in 

Drosophila (SET1, TRX, TRR) and at least six enzymes in mammalian cells (MLL1-4, SETD1A, 

SETD1B). The expansion of this family in higher eukaryotes indicates a high level of specification 

and potentially redundancy. In line with this, MLL1 pre-dominantly localises to the hox gene cluster 

and mll1 knockout mice display characteristic homeotic phenotypes (Yu et al., 1995). Compared with 

the highly specific lysine methyltransferases, the catalytic activity of many lysine demethylases is 

strongly influenced by their interacting proteins. Consequently, individual demethylases do not only 

revert specific methylation states on H3.K4 but also act on other lysine residues (for example 

KDM2B: H3.K4me3 and H3.K36me1/2, LSD1: H3.K4me2/3 and H3.K9me1/2) (Hojfeldt et al., 

2013).  

In contrast to H3.K4me3, the mono-methylated form (H3.K4me1) is not restricted to promoters but it 

is broadly distributed across the genome and enriched on the bodies of active genes and enhancers 

(Herz et al., 2013). In a recent study, Shilatifard and co-workers could demonstrate that Drosophila 

mutants lacking the responsible enzyme for H3.K4me1 (TRR) also lose the enhancer-mediated gene 

activation of the cut locus. Moreover, they observed a global decrease of the enhancer mark 

H3.K27ac. Together with previous studies that showed an interaction between the H3.K27me3-
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demethylase UTX (KDM6A) with TRR (MLL3/MLL4), these results support the model that an 

acetylation-methylation switch at H3.K27 regulates the transition from an inactive but poised to an 

active enhancer (Herz et al., 2012). 

Methylation of H3.K36 and H3.K79 is found on actively transcribed gene bodies. Similar to the 

enzymes that catalyse H3.K4 methylation, there is only a single yeast enzyme (SET2) that sets all 

three methylation states of H3.K36 whereas three Drosophila (SET2, MES-4 and ASH1) and at least 

six mammalian (SET2, ASH1L, SETMAR, NSD1-3) enzymes preferentially generate either the mono- 

and di-methylated states or the tri-methylated state, respectively. Early studies suggested that 

H3.K36me3 is recognised by the chromodomain of EAF3 to recruit the RPD3S complex, which in 

turn deacetylates histones at gene bodies and thereby supresses cryptic transcription (Carrozza et al., 

2005; Keogh et al., 2005). However, a recent report demonstrated that RPD3S still localises to genes 

in the absence of H3.K36me3 – yet it is inactive – suggesting that this mark promotes the activity 

rather than the recruitment of a deacetylase complex (Drouin et al., 2010).  

Methylation to H3.K79 is unique in many instances. First, it is catalysed by a non-processive 

methyltransferase (DOT1L) that does not contain a SET domain but structurally is related to arginine 

methyltransferases (Min et al., 2003). Second, although there is evidence for dynamic changes of 

H3.K79me2 during the cell cycle, no demethylase is known that actively removes this mark (Nguyen 

and Zhang, 2011). Third, despite being present at all active gene bodies, only a few genes seem to 

require this mark for their activity. Instead, accumulating evidences point towards a role in DNA 

repair (via BP53 recruitment) and activation of the G1/S checkpoint (Huyen et al., 2004; Wysocki et 

al., 2005; Nguyen and Zhang, 2011).  

Di- and tri-methylated H3.K9 is a classical marker for constitutive heterochromatin found at genomic 

regions that contain repetitive DNA elements. In a self-reinforcing spreading mechanism, SUV39H1/2 

catalyse H3.K9me2/3 that is subsequently bound by HP1-α, which in turn binds and stabilises 

SUV39H1/2 at these regions. In addition, HP1 also recruits SUV420H1, which catalyses H4.K20me3 

to confer further condensation. Cells lacking the SUV39 and SUV420 enzymes display derepressed 

satellite transcription, chromosome translocation and mitotic defects (Peng and Karpen, 2009; Black et 

al., 2012; Jorgensen et al., 2013). In addition to repeat DNA silencing and genomic integrity, 

H3.K9me2 also represses genes that are covered by large megabase-scale domains found in 

differentiated but not pluripotent cells (Wen et al., 2009). Similar to the HP1-α-SUVAR39H1/2 

feedback loop at pericentric heterochromatin, these domains may be established and stabilised by a 

self-reinforcing process that involves di-methylation of H3.K9 by G9a followed by stabilization of the 

enzyme via binding of G9a to H3.K9me2 (Shinkai and Tachibana, 2011). Interestingly, in contrast to 

most other chromatin enzymes, H3.K9 methylating enzymes do not form stable multi-subunit 

assemblies but rather engage in transient interactions. For example, while the methyl-CpG binding 

protein MBD1 recruits the H3.K9 methyltransferase SETDB1 into a S-phase specific complex with 
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CAF-1 (Sarraf and Stancheva, 2004), the co-repressor KAP-1 directs SETDB1 to silence individual 

genes (Schultz et al., 2002).  

Methylation to H3.K27 is generally associated with gene repression. H3.K27me1 is found at 

constitutive heterochromatin together with H3.K9me3 yet its function is not well understood. In 

addition, low levels of H3.K27me1 are detected at active genes that presumably arise from the 

demethylation of H3.K27me2/3 by UTX or JMJD3 (Swigut and Wysocka, 2007). H3.K27me2/3 are 

prominent marks of facultative heterochromatin that are set by the polycomb repressive complex 

PRC2. ChIP-chip/Seq experiments documented several binding modes of these histone modifications 

and their respective enzymes (EZH1/2). Similar to H3.K9me2/3, these marks span extended domains 

of several 100 kb in differentiated but not pluripotent cells. In addition, individual genes (in particular 

developmental genes), intergenic regions (potentially coding for ncRNAs), subtelomeric regions and 

LTR retrotransposons are targeted by these modifications (Hawkins et al., 2010). Mechanistically, 

H3.K27me3 represses transcription by antagonizing the acetylation mark on the same residue and by 

providing a platform for the PC subunit of the PRC1 complex. Transcription repression by the PRC1 

complex is achieved by compacting nucleosomal arrays (via PSC in Drosophila and CBX in 

vertebrates) and ubiquitylation of H2A.K119 by the PRC1 subunit RING1. However, how 

H2A.K119ubi impedes transcription is not yet known . In addition, there is accumulating evidence that 

PRC1/2 interferes with the transcriptional machinery. However, whether this occurs on the level of 

RNA polymerase II recruitment, promoter-proximal release or by inhibiting mediator targeting is 

controversially discussed (Chopra et al., 2011; Margueron and Reinberg, 2011; Lehmann et al., 2012; 

Simon and Kingston, 2013). 
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2.4 Dosage compensation in the fruit fly Drosophila melanogaster 
Dosage compensation describes the process of adjusting transcription levels between the unequal 

numbers of sex chromosomes in heterogametic species. Although different species have evolved 

different strategies to balance gene expression between the sexes, they all utilise chromatin-based 

mechanisms. In mammalian females, one of the two X chromosomes is inactivated by a concerted 

step-wise process including recruitment of the polycomb silencing machinery via the long non-coding 

RNA Xist (X-inactive specific transcript) followed by the incorporation of the histone variant 

macroH2A, deacetylation of histones and DNA hyper-methylation (Wutz, 2011; Jeon et al., 2012; 

Dupont and Gribnau, 2013). In the nematode worm Caenorhabditis elegans, the dosage compensation 

complex contains components of the meiotic/mitotic condensin complex, which halves the 

transcription output of the two hermaphrodite X chromosomes (Meyer, 2005). Drosophila also employ 

a subtle but vital transcriptional adjustment, but there, dosage compensation occurs in males to double 

the transcription from the single X chromosome (Straub and Becker, 2007). Male flies have evolved a 

unique ribonucleoprotein complex that contains the activities from an acetyltransferase, an E3 ligase 

and a helicase (see below). Recent studies suggest that dosage compensation in mammals and 

nematodes involves a second mechanism, that, similar to male flies, upregulates the expression from 

the X chromosome(s) in order to balance the expression towards the autosomes (Deng et al., 2014). 

The molecular mechanisms of this newly identified principle are largely elusive and are just beginning 

to be unveiled (Deng et al., 2013).   

Research on dosage compensation in Drosophila has a long history. The geneticist Hermann Joseph 

Muller introduced the term ‘dosage compensation’ based on observations made in the 1920s and 

1930s, where the single gene copy of an eye colour marker encoded on the male’s X chromosome 

produces almost the same eye colour as the genes from the two female X chromosomes (Bridges 1922, 

Muller 1931, Muller 1950). In 1964, the cytologist Rudkin showed that the single X chromosome in 

males has a comparable ‘thickness’ to the paired female X chromosome, suggesting enhanced 

transcriptional activity in males (Rudkin 1964). One year later, Mukherjee and Beerman confirmed 

this prediction. Incubating salivary glands with tritiated uridine allowed them to observe a similar 

incorporation between the single male and the two female X chromosomes (Mukherjee and Beermann, 

1965). Detecting similar levels of activity from the X-linked gene glucose-6-phosphate dehydrogenase 

between male and male flies lend further support (Komma, 1966). Together, these experiments 

establish that a transcription-based process calibrates the gene expression output between the single 

male and the two female X chromosomes.  

Elegant genetic experiments identified the components of the molecular machinery that mediates 

dosage compensation. A series of genetic screens identified four autosomal loci that, when mutated, 

killed male but not female flies and reduced the rate of X chromosome transcription (Fukunaga et al., 

1975; Belote and Lucchesi, 1980b, a). The genes were named according to their male-specific lethal 
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phenotype, msl1, msl2, msl3 and mle (maleless). Immunological stainings of polytene chromosomes 

with sera raised against the MSL proteins demonstrated highly overlapping and almost exclusive 

localization of those factors to the X chromosome, corroborating their function to act directly on this 

chromosome. The observation that an acetylated histone isoform, H4.K16ac, also predominantly 

localised to the male X chromosome not only directly suggested a potential mechanism for how 

dosage compensation works but also provided an intuitive correlation and beautiful visualization of 

increased acetylation and transcriptional hyper-activation (Turner et al., 1992). Soon thereafter, the 

enzyme that catalysis this histone mark was identified in a genetic screen for male-lethality causing 

mutations on the X chromosome: males absent on the first (mof) encodes a gene product with a 

recognizable MYST-type acetyltransferase domain (Hilfiker et al., 1997; Gu et al., 1998) and 

specificity towards acetylating H4.K16 (Akhtar and Becker, 2000). Around the same time, two non-

coding RNAs (RNA on the X, roX1 and rox2) were found to be exclusively expressed in male cells, 

where they are only detectable at the male X chromosome (Amrein and Axel, 1997; Meller et al., 

1997). The ribonucleoprotein complex MSL-DCC, containing the five MSL proteins and two roX 

RNAs, forms only in male flies, because msl2 expression is inhibited in female cells by the action of 

the master sex regulator sex-lethal (Kelley et al., 1995; Bashaw and Baker, 1997; Kelley et al., 1997).  

The MSL-DCC binds X chromosomal active genes in a multi-step process. According to the prevalent 

model, a core complex containing MSL1 and MSL2 binds around 250 ‘high-affinity’ sites (HAS) 

located in coding regions evenly distributed across the 22 mega base pairs  of the X chromosome 

(Gelbart and Kuroda, 2009; Conrad and Akhtar, 2011; Straub and Becker, 2011). MSL1 acts as a 

scaffold to allow binding of MOF and MSL3. This results in a full MSL-DCC complex that is capable 

to spread in cis from the high affinity sites to active genes. Several factors may stimulate the spreading 

process. First, MOF mediated acetylation of H4.K16 is required for efficient spreading (Gu et al., 

1998). Second, efficient loading of the roX RNAs by the helicase activity of MLE facilitates the 

transfer of the complex from HAS to active genes (Morra et al., 2011). Third, mutating the enzyme 

that places H3.K36me3 on gene bodies lead to reduced binding of the MSL-DCC to active genes 

while its localization on HAS was not disturbed (Larschan et al., 2007; Bell et al., 2008). However, 

while an initial study suggested that MSL3 binds H3.K36me3 using its own chromodomain (Sural et 

al., 2008), subsequent structural and biochemical studies could not confirm a direct interaction 

between them. Rather, they suggested that the chromodomain of MSL3 binds H4.K20me1 (Kim et al., 

2010; Moore et al., 2010). How the MSL-DCC recognises and utilises H3.K36me3 for spreading 

remains elusive. Fourth, the precise levels of the MSL proteins are important. Excess of subunits lead 

to ectopic binding events at lower affinity sites present on the autosomes, whereas decreased MSL 

protein levels (or absence of the spreading factors MSL3 and MOF) reduced binding to active genes 

(Kelley et al., 1999; Dahlsveen et al., 2006; Straub et al., 2008). Remarkably, the MSL-DCC auto-

regulates the correct amounts of its subunits. MSL2 was recently shown to possess an E3 ligase 
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activity that marks excess subunits with polyubiquitylation and thereby promotes subsequent 

degradation by the proteasome (Villa et al., 2012). Moreover, absence of MSL2 (or MSL1) increases 

the spatial distance between HAS measured by 3D fluorescence in situ hybridization (3D-FISH) 

experiments (Grimaud and Becker, 2009). Together, these observations lead to the current model for 

selective X chromosome targeting and spreading of the MSL-DCC: Transcription from the two roX 

loci provides a seed for the self-assembly of a dosage compensated domain within the X chromosome. 

Active, dosage compensated genes are located in the interior of this domain, whereas inactive genes 

that are not bound by the MSL-DCC reside at the periphery. A gradient of MSL-DCC complexes 

originates in the core of this domain and diffuses along a gradient of high and low affinity sites 

towards the periphery. Adjusting precise complex levels restricts its targeting exclusively to the X 

chromosome (Grimaud and Becker, 2010).  

Although increased transcription from the male X chromosome was the founding observation that 

defined ‘dosage compensation’, the precise molecular mechanism that mediates ‘two-fold up’ has 

remained largely mysterious until today. High-resolution ChIP mapping of the MSL proteins and the 

H4.K16ac mark showed localised binding to the gene bodies of active genes, with a tendency to enrich 

towards the gene’s 3’ end (Smith et al., 2001; Alekseyenko et al., 2006; Gilfillan et al., 2006). Based 

on this observation, Lucchesi and colleagues suggested the model that dosage compensation occurs at 

the level of transcriptional elongation. Conceivable, local decondensation of chromatin caused by 

H4.K16ac marked nucleosomes may facilitate the transition of RNA polymerase II through an 

otherwise repressive chromatin template (Smith et al., 2001). Two recent studies largely supported this 

model by documenting increased occupancy of RNA polymerase (or nascent transcripts arising from 

it) over the gene bodies but not at the promoters (Larschan et al., 2011; Ferrari et al., 2013). Still, how 

increased acetylation of H4.K16ac brings about a fine-tuned transcriptional stimulation in the two-fold 

range has remained elusive. Interestingly, Akhtar and Becker observed early on that tethering MOF to 

a yeast promoter boosts transcription far beyond the two-fold range (Akhtar and Becker, 2000), 

indicating that additional mechanisms are in place that coordinate a fine-tuned response to arrive at the 

final ‘two-fold up’.   
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3.1.1 Summary, significance and own contribution 

 

Summary and significance  

Although it is established that acetylation of H4.K16 by MOF is required for dosage compensation, it 

is unknown how the precise two-fold stimulation is achieved. At the time when we started this project, 

the Akhtar group had recently identified a novel MOF-containing complex in male cells, the non-

specific lethal (NSL) complex, which contains two components of the nuclear pores and a number of 

poorly characterised proteins, including NSL1 and MBD-R2 (Mendjan et al., 2006). In their 

subsequent work, they demonstrated that MOF binds genome-wide to many promoters in male and 

female cells, suggesting novel roles for MOF independent of dosage compensation (Kind et al., 2008). 

The objective of this study was to compare the molecular context and effect on transcription of MOF 

in male and female flies.  

Combining affinity-purification mass spectrometry, genome-wide mapping and transcriptome studies 

and the analysis of reporter loci in transgenic flies and cell systems, we arrived at four main 

conclusions. First, in female cells, MOF resides in a similar complex as described before by the 

Akhtar group, containing NSL1, NSL2, NSL3, MBD-R2 and MCRS2, but lacking the nuclear pore 

proteins. Second, in male and female cells, the NSL complex (using MBD-R2 as a marker) binds at 

promoters of many active genes along all chromosomes. Ablation of MBD-R2 reduced transcription of 

target genes genome-wide and at a defined reporter locus, indicating that the NSL complex is a global 

transcription activator. Third, in male cells, MOF distributes dynamically between the MSL-DCC and 

NSL complex. Introducing low levels of MSL2 in female cells causes a global redistribution of MOF 

away from promoters of genes on all chromosomes towards gene bodies on the male X chromosome. 

Fourth, the strong activation potential of MOF-mediated H4.K16ac is constrained in the context of 

dosage compensation. Reconstituting the different targeting principles of MOF at defined reporter loci 

in transgenic flies revealed that MOF within the NSL complex activates transcription strongly in a 

distance-dependent manner, typical for promoter-type transcriptional activators. In contrast, MOF 

recruitment in the context of the MSL-DCC promoted a distance-independent stimulation of 

transcription in the two-fold range, reminiscent for dosage compensation. Importantly, the reporter 

locus was decorated with similar levels of H4.K16ac in both conditions, suggesting that additional 

factors constrain the strong activation potential of this histone mark. In line with these observations, 

we observed a positive correlation between the levels of H4.K16ac and the gene expression strength 

for genes in both sexes and on all chromosomes, except for the male X chromosome. Remarkably, 

depriving MSL2 in male tissue-culture cells increased the expression of the MOF-regulated reporter 

gene. These observations led us to propose the model that the MSL-DCC harnesses a strong activator 

(MOF through H4.K16ac) and dampens its activity to achieve a precise two-fold stimulation 

characteristic for dosage compensation.  
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The molecular entity that constrains the activation potential of MOF/H4.K16ac is unknown but several 

repressive chromatin components, which have previously been genetically linked to dosage 

compensation (Deuring et al., 2000; Spierer et al., 2005; Spierer et al., 2008), provide attractive 

candidates for such activities. In addition, advancing our understanding of the recently identified ‘over 

compensating males’ (ocm) gene (Lim and Kelley, 2013) and characterizing the molecular targets of 

the E3 ligase MSL2 may provide further insights (see discussion in section 4). In summary, this report 

defines an entry point to study the contribution of repressive activities to the process of dosage 

compensation, which promises to refine our understanding of the general principles that regulate 

genome balancing at the level of chromosome-wide transcription control.  

 

Own contribution 

For this study led by Dr. Matthias Prestel, I designed and performed all genomic experiments and 

contributed to the characterization of the reporter loci by ChIP-qPCR in adult male and female flies. I 

prepared the main figures 2F, 3, 4, 5 and 7, the supplementary figures S3 to S6 and contributed to the 

writing of the manuscript.  
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SUMMARY

The H4K16 acetyltransferase MOF plays a crucial
role in dosage compensation in Drosophila but has
additional, global functions. We compared the
molecular context and effect of MOF in male and
female flies, combining chromosome-wide mapping
and transcriptome studies with analyses of defined
reporter loci in transgenic flies. MOF distributes
dynamically between two complexes, the dosage
compensation complex and a complex containing
MBD-R2, a global facilitator of transcription. These
different targeting principles define the distribution
of MOF between the X chromosome and autosomes
and at transcription units with 50 or 30 enrichment. The
male X chromosome differs from all other chromo-
somes in that H4K16 acetylation levels do not corre-
late with transcription output. The reconstitution of
this phenomenon at a model locus revealed that
the activation potential of MOF is constrained in
male cells in the context of the DCC to arrive at the
2-fold activation of transcription characteristic of
dosage compensation.

INTRODUCTION

The organization of chromatin affects all aspects of gene tran-

scription. The most prominent chromatin features that can be

correlated with particular functional states are various histone

modifications. Many of these modifications affect chromatin

structure indirectly by providing binding sites for modulators of

local chromatin organization (Fischle, 2008). By contrast, the

acetylation of histone H4 at lysine 16 (H4K16ac) is known to

affect chromatin structure directly by preventing the compaction

of the nucleosomal chain into 30 nm fibers (Robinson et al., 2008;

Shogren-Knaak et al., 2006). Accordingly, targeting H4K16 acet-

ylation to a promoter in vitro or in yeast can lead to profound

derepression of transcription (Akhtar and Becker, 2000).

H4K16ac is the major modification involved in the process of

dosage compensation in Drosophila. Dosage compensation

mechanisms counteract the adverse effects of sex chromosome

aneuploidy in a variety of organisms (Lucchesi et al., 2005). In

Drosophila, like in mammals, females are characterized by two

X chromosomes, whereas males only have one X and a gene-
M

poor, degenerate Y chromosome. The halved dose of X-linked

genes in males is counteracted by elevating their transcription

levels by roughly 2-fold (Hamada et al., 2005; Straub et al.,

2005a). This subtle yet vital adjustment of gene expression

depends on the acetyltransferase MOF, which preferentially

acetylates H4K16 on the X chromosome in males (Akhtar and

Becker, 2000; Hilfiker et al., 1997; Smith et al., 2000). MOF is

part of a dosage compensation complex (DCC, also known as

male-specific-lethal [MSL] complex), a ribonucleoprotein

assembly that specifically associates with the X chromosome.

The DCC also contains the MSL proteins MSL1, MSL2, and

MSL3; the RNA helicase maleless; and two noncoding RNAs.

The DCC only forms in males due to the male-specific expres-

sion of MSL2. Targeting to the X chromosome is a multistep

process involving the recognition of a relatively low number of

high-affinity sites (HAS) or chromosomal entry sites (CES) by

MSL1–MSL2 followed by transfer to transcribed gene

sequences (reviewed in Gelbart and Kuroda, 2009; Lucchesi

et al., 2005; Straub and Becker, 2007). The phenomenon of

dosage compensation presents a unique opportunity to study

mechanisms of coregulation of genes on a chromosome-wide

scale.

Current models for dosage compensation assume that enrich-

ment of H4K16ac on the male X chromosome leads to decom-

paction of the chromatin fiber, which may facilitate transcription

elongation. However, several observations indicate that the role

of MOF in dosage compensation is more complex. First, ectopic

expression of MOF in yeast leads to a much stronger activation

of a reporter gene than the 2-fold effects that characterize

dosage compensation (Akhtar and Becker, 2000). The principles

that harness the activation potential of MOF on the male X chro-

mosome in Drosophila are unknown. Further, MOF is expressed

in male and female cells (Hilfiker et al., 1997). Low levels of MOF

can be detected at gene-rich interbands of all polytene chromo-

somes in female larvae and on male autosomes (Bhadra et al.,

2000; Kind et al., 2008). MOF was originally isolated due to the

male-specific lethality of its loss-of-function phenotype (Hilfiker

et al., 1997). However, MOF mutant females are developmentally

delayed and have a decreased fertility (Gelbart et al., 2009). Akh-

tar and colleagues recently suggested roles for MOF in gene

expression beyond dosage compensation (Kind et al., 2008).

To which extent MOF can catalyze H4K16 acetylation outside

of the context of the DCC is controversial (Gelbart et al., 2009;

Kind et al., 2008; Morales et al., 2004).

The issue is further complicated by the observation that MOF

can be part of an alternative, ‘‘NSL’’ complex that was isolated

from male tissue culture (SL2) cells or mixed-sex embryos
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Figure 1. A Model System to Study the

Sex-Specific Regulation by MOF

(A) MOF expression construct. Genomic DNA

containing the mof locus and flanking sequences

were modified by inserting a GAL4 DNA-binding

domain and a FLAG tag. GAL4-DBD, GAL4 DNA-

binding domain; CD, chromodomain; ZN, zinc

finger domain; HAT, histone acetyltransferase

domain.

(B) Reporter constructs (RC). The RC5 reporter has

five binding sites for the Gal4 activator (53UAS)

located 50 to the lacZ gene, which is controlled

by the minimal hsp70 promoter. The transforma-

tion marker mini-white is transcribed from its own

promoter. Arrows indicate the direction of tran-

scription. In the RC3 construct the lacZ gene was

inverted, such that the UAS sites reside 30 of the

lacZ gene.

(C and D) MOF activates transcription of the lacZ

(C) and mini-white (D) genes. Total RNA was iso-

lated from male (black bars) or female (open

bars) adult flies. lacZ or mini-white transcripts

were determined by RT-PCR and plotted as

enrichments over an internal gapdh1 control value.

The enrichments indicated above the bars refer to

the RNA values in the presence of MOF-Gal4 rela-

tive to the values in its absence (panels to the left).

Error bars represent mean ± SEM. See also

Figure S1.
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(Mendjan et al., 2006). In this context, MOF associates with

several poorly characterized factors with interesting domain

organization, such as the ‘‘nonspecific-lethals’’ (NSL1, NSL2,

and NSL3), dMCRS1, and MBD-R2 (Mendjan et al., 2006).

To gain more insight into the diverse molecular context of MOF

function, we affinity purified a MOF complex from female cells

that shares many subunits with the ‘‘NSL complex’’ described

by the Akhtar group, including MBD-R2. Genome-wide tran-

scriptome studies show that MBD-R2 is a general facilitator of

transcription. Combining chromatin immunoprecipitation with

probing DNA microarrays (ChIP-chip), we mapped the chromo-

some-wide interactions of MOF, MSL1 (a marker for the DCC),

and MBD-R2 (a marker for the alternative complex) in adult flies

sorted according to sex. MOF colocalizes with MBD-R2 at the 50

end of most active genes in females. In males, most of MOF is

found in the context of the DCC on the coding regions of active

X chromosomal genes. Ectopic reconstitution of the DCC in

female cells relocalizes MOF to the X chromosome, which

suggests that MOF distributes in a dynamic equilibrium between

the two complexes.

Targeting MOF via a heterologous DNA-binding domain to an

autosomal reporter locus in flies allowed contrasting the activa-

tion potential of MOF in either sex. In the context of MBD-R2 in

females, MOF was a potent activator of transcription from

nearby promoters. In the context of the DCC, this activation

was limited to 2-fold, reminiscent of dosage compensation.

Ablation of MBD-R2 and of MSL2 in tissue culture cells allowed
816 Molecular Cell 38, 815–826, June 25, 2010 ª2010 Elsevier Inc.
adjusting the relative levels of the two complexes. Interestingly,

reduction of MSL2 led to increased transcription. Taken

together, our data suggest that dosage compensation involves

a hitherto unappreciated principle that constrains the activation

potential of this acetylation mark.

RESULTS

Construction of Model Loci to Study the Sex-Specific
Regulatory Potential of MOF
To dissect the function of MOF in the context of the intact

organism, we employed fly lines bearing reporter gene loci to

which regulatory proteins can be recruited (Figure 1). One

reporter locus contains binding sites for the yeast transcription

factor Gal4 (‘‘upstream activating sequences’’; UASGal)

upstream of lacZ and mini-white genes (RC5, Figure 1B [Zink

and Paro, 1995]). Basal transcription of the lacZ gene from

a minimal promoter can be boosted by activator binding to the

UAS element. The mini-white gene, which is transcribed from

its own promoter, has been shown to be responsive to dosage

compensation in an appropriate X chromosomal context (Qian

and Pirrotta, 1995). However, chromosome-wide DCC interac-

tion studies (Straub et al., 2008) showed that the white gene

does not contain a high-affinity binding site for the DCC (HAS),

and the reporter cassette in the autosomal context only shows

background binding of MOF in both sexes (see below). A second

set of transgenic flies was generated that express MOF fused to
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a GAL4 DNA-binding domain (MOF-Gal4; Figure 1A). Crossing

reporter and activator lines leads to recruitment of MOF to the

reporter locus in the offspring.

We reasoned that the tethering site might substitute for a HAS,

which are frequently found outside of coding regions. According

to the prevalent model, these sites serve to distribute DCC to

close-by transcribed genes (Alekseyenko et al., 2008; Straub

et al., 2008). The well-defined reporter gene locus allows

studying the effects of MOF recruitment in male flies, where

MOF is part of the dosage compensation system, and in females,

where the function of MOF has not been studied yet.

We expressed MOF-Gal4 from the endogenous mof promoter

to avoid distortions due to overexpression (see Figure S1A

available online). The MOF-Gal4 transgene was functional, since

it rescued the male-specific lethality of the mof1 allele (Hilfiker

et al., 1997). The fusion protein incorporated into the DCC, as

Gal4 staining colocalized with the DCC on the male X chromo-

some as well as on a few autosomal sites (Figure S1D). Expres-

sion of MOF-Gal4 did not affect the survival or fertility of females.

The RC5 element integrated at 93B (Zink and Paro, 1995) was

stained with the Gal4 antibody in polytene chromosomes of

female and male larvae (Figures S1C, S1D, and S2A–S2D).

Binding of MOF-Gal4 to the UAS recruited the other DCC

members in males, but not in females (Figures S2A–S2D).

Taken together, these results establish the functionality of

MOF-Gal4 in our experimental setup, which enabled us to study

its impact on reporter gene transcription in the different molec-

ular contexts of male and female flies.

Different Modes of Activation by MOF in Male
and Female Flies
We tested the ability of tethered MOF to activate transcription of

the lacZ and mini-white genes in the context of the RC5

construct by quantitative RT-PCR analysis of RNA from sorted

male and female adult flies. Expression of MOF-Gal4 activated

both genes in both sexes. In males, the activation of the lacZ

gene was in the 2-fold range relative to the level in the absence

of MOF. Unexpectedly, the gene was expressed considerably

stronger in females than in males (Figure 1C). We were con-

cerned that assembly of a DCC at the UAS of RC5 in males might

sterically hinder preinitiation complex formation at the minimal

hsp70 promoter of the lacZ gene, resulting in lower expression.

Therefore, we generated the RC3 fly line in which the UAS is

placed 30 of the lacZ gene (Figure 1B). Recruitment of MOF-Gal4

to the 30 UAS led to activation of lacZ in the 2-fold range in males,

but stronger stimulation in females (Figure 1C). The mini-white

gene, whose start site is about 4.5 kb away from the tethering

site in either construct, was also induced by MOF-Gal4, with

stronger effects in females (Figure 1D). Plotting the degree of

activation of the reporter genes as a function of distance from

the UAS to the promoters shows that recruitment of MOF leads

to an approximately 2-fold activation of transcription within the

tested zone of 5 kb in males. In contrast, activation in females

was strongly distance dependent and stronger if MOF was close

to the transcription start (Figure S1B). Taken together, these

results document the activation potential of MOF in both sexes

and suggest different modes of activation. The 2-fold,

distance-independent activation in males is reminiscent of
M

a dosage compensation regime. However, in females the

distance-sensitive activation that exceeds 2-fold is more akin

to promoter-proximal activation.

As activation by MOF is thought to be based on its acetylating

function, we wondered whether different levels or distribution

patterns of the H4K16ac mark could explain the sex-specific

activation differences. We adapted a chromatin immunoprecip-

itation (ChIP) protocol for adult flies (Negre et al., 2006), which

allowed testing for the presence of regulators and the

H4K16ac mark in hand-sorted male and female flies along the

reporter using four PCR amplicons (Figures 2A–2E). Normalizing

the ChIP values to background levels of MOF binding at a region

50 of the GAPDH1 gene enabled a comparison of different chro-

matin preparations. The X chromosomal, dosage-compensated

armadillo (arm) locus served as internal control for physiological,

male-specific interaction of the DCC and H4K16 acetylation.

ChIP directed against MOF confirmed the recruitment of

similar levels of MOF-Gal4 to the tethering site in both reporter

loci and sexes (Figures 2A and 2B). Crosslinking of MOF was

reduced with increasing distance from the tethering site, but still

significant at the 30 end of the mini-white gene, 8.5 kb away from

the UAS (compare to levels at the arm locus), consistent with the

observed spreading of DCC from engineered autosomal HAS

(Alekseyenko et al., 2008). MOF recruitment was similar in both

reporter lines, although in RC5 the distance-dependent decline

was more pronounced in females. The H4K16ac levels corre-

sponded well to those of MOF-Gal4, with strong enrichments

at the site of tethering and a distance-dependent reduction. In

males, H4K16ac levels tended to spread further from the teth-

ering site (Figures 2C and 2D). In the absence of MOF-Gal4

only background levels of endogenous MOF were observable.

MSL2 was recruited to the RC3 locus by MOF-Gal4 only in

males, as expected since MSL2 is the male-specific determinant

of the DCC (Figure 2E). Binding across the locus closely paral-

leled that of MOF. The recruitment of MSL2 confirmed that

MOF functions in the context of a DCC in males, as suggested

by the polytene chromosome staining. Strikingly, in the absence

of the DCC in females, MOF catalyzed comparable levels of

H4K16ac at the reporter locus. Unexpectedly, H4K16ac levels

at the reporter genes do not correlate linearly with the corre-

sponding transcription levels, as H4K16ac is moderately higher

in males than in females (Figures 2C and 2D), yet the transcrip-

tion is significantly stronger in females (Figures 1C and 1D). By

contrast, transcription output correlated well with the number

of RNA polymerase molecules at the 50 of the lacZ gene, deter-

mined by ChIP of the integral Rpb3 subunit (Muse et al., 2007)

(Figure 2G). The levels of two other factors related to dosage

compensated chromatin, the nucleosome-remodeling ATPase

ISWI (Deuring et al., 2000) and the supercoiling factor SCF

(Furuhashi et al., 2006) were unchanged upon recruitment of

MOF (data not shown).

H4K16 acetylation appears not to be an absolute requirement

for transcription since recruitment of an intact yeast GAL4

activator (without MOF) to the RC5 reporter led to profound

activation to similar levels in both sexes without enrichment of

H4K16ac (Figures S2E and S2F).

We conclude that the contributions of H4K16ac to transcrip-

tion are highly context dependent. To further substantiate this
olecular Cell 38, 815–826, June 25, 2010 ª2010 Elsevier Inc. 817
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Figure 2. Chromatin Interactions upon MOF Recruitment

Chromatin constituents were monitored by ChIP in sorted male and female adult flies. The presence of sequences in the immunoprecipitate corresponding to four

amplicons along the reporter loci (arrows, see schematics on top) was determined by qPCR. The RC3 locus was probed in (A), (C), and (E) and the RC5 locus in (B)

and (D). Chromatin was from females or males of the reporter lines in the absence of MOF-Gal4 (light and dark gray bars, respectively) or in the presence of

MOF-Gal4 (white and black bars). Error bars represent mean ± SEM. (A) and (B) display MOF interactions at the RC3 and RC5 reporters, respectively. (C)

and (D) show the corresponding H4K16 acetylation levels. (E) MSL2 interactions were revealed at the RC3 reporter. (F) Genome-wide correlation of gene expres-

sion and H4K16ac levels in SL2 cells, using the values of Kind et al. (2008). (G) Binding of the polymerase II subunit Rpb3 50 to the lacZ gene. All ChIP experiments

were internally controlled by monitoring interactions at the X chromosomal and dosage compensated armadillo gene. Error bars represent mean ± SEM. See also

Figure S2.
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conclusion, we performed an analysis of the global relationship

between H4K16ac levels (Kind et al., 2008) and gene transcrip-

tion in Drosophila SL2 cells. We found that H4K16ac correlates

positively with transcription on all female chromosomes as well

as on the male autosomes, but this correlation was not observed

on the male X chromosome (Figure 2F). Taken together with our

earlier finding that MOF can strongly activate transcription in

yeast (Akhtar and Becker, 2000), the data suggest that H4K16

acetylation has a potential for strong transcriptional activation,

which is diminished in the context of the DCC in males where

a higher than 2-fold activation would lead to nonphysiological

overcompensation.

Identification of MOF Interactors in Female Cells
So far the data suggest that MOF can activate transcription in

two distinct settings. In male flies, MOF mainly resides in the

DCC. The molecular context in females is not known. Akhtar

and colleagues recently reported the purification of an alternative

MOF complex (the NSL complex) from mixed-sex Drosophila

embryos and the Schneider-derived Sf4 cell line, which has

male features (Mendjan et al., 2006). In order to explore the

existence of an alternative complex in female cells, we estab-

lished a Kc cell population stably expressing FLAG-tagged

MOF-Gal4. Control cells expressed only the hygromycin resis-

tance, but no tagged protein. Extracts from both cell

populations were subjected to FLAG-affinity purification, and

MOF interactors were identified by mass spectrometry. Compar-

ison of the identified peptides revealed robust scores for MOF,

MBD-R2, NSL1, NSL2, NSL3, WDS, and MCRS2 exclusively in

the MOF purification (Table S1A). These proteins had previously

been identified as MOF interactors by Mendjan et al. (2006). The

proteins Z4, Chriz/chromator, and exosome subunits that had

also been suggested to interact with MOF were retrieved in our

control purification and hence do not qualify as MOF associated

(Table S1). In further contrast to the complex described by Mend-

jan et al., we did not find nuclear pore complex components in

either purification. To rule out the possibility that substoichiomet-

ric amounts of nucleoporins escaped mass spectrometry detec-

tion, we probed for MTOR and Nup153 by western blotting but

failed to detect them in our purifications (data not shown). Our

data highlight MBD-R2, NSL1, NSL2, NSL3, WDS, and MCRS2

as subunits of one or more MOF complexes in female cells, which

may provide the molecular context for MOF function.

MBD-R2 Is a Marker of Active Genes
The alternative MOF complex was purified from female cells, but

the data of Mendjan et al. (2006) suggest that a related complex

also exists in male cells. Since MBD-R2 was the MOF interactor

with the highest score in both purifications, we provisionally term

the alternative complex the ‘‘MOF-MBD-R2’’ complex. As we

wished to follow MBD-R2 as a marker for this complex, we raised

polyclonal antibodies against MBD-R2 and confirmed their

specificity (Figures S3F–S3H). Staining of polytene chromo-

somes revealed localization of MBD-R2 at the majority of

gene-rich interbands of all larval polytene chromosomes of

both sexes (data not shown).

For high-resolution mapping, we combined ChIP with probing

tiled microarrays (ChIP-chip) (Straub et al., 2008). To distinguish
M

between the sexes, we established chromosome-wide binding

profiles in sex-sorted adult flies (Figures S3B–S3E and S6). We

found genome-wide binding of MBD-R2 in female (Figure S3E)

and male flies (Figure 3A) with a preference for genes over inter-

genic sequences (Figure S3A). In order to correlate the MBD-R2

chromosome interaction profile with gene expression, we gener-

ated the ChIP-chip profile of MBD-R2 in SL2 cells. In brief, the

majority of binding events observed in adult flies also occur in

SL2 cells (Figure S6B). We determined the transcriptional status

of those cells by Affymetrix gene expression profiling of two

biological replicates. We found that most MBD-R2-bound genes

are transcriptionally active, whereas unbound genes are rarely

transcribed (Figure 3B). MBD-R2, therefore, appears to be a

marker of active chromatin. Interestingly, the amount of

MBD-R2 loading is not directly proportional to the expression

level. Above a certain (low) expression threshold, MBD-R2

binding does not systematically increase with transcription

(Figure 3B). MBD-R2 binds the same loci in both sexes without

significant preference for any of the chromosomes (Figures 3C

and 3D). The male and female X chromosomes are bound to

roughly similar extents (compare Figure 3A and Figure S3E,

Figures 3C, 3D, 7B).

Colocalization of MOF with DCC and MBD-R2
To correlate MOF binding with either MBD-R2 or MSL1 (a marker

for the DCC), we generated binding profiles for MOF in flies of

sorted sex and for MSL1 in males. In agreement with previously

published SL2 cell profiles (Gilfillan et al., 2006), MSL1 associ-

ates almost exclusively with X chromosomal genes in male flies

(Figure S3D). Here, MOF predominantly colocalizes with MSL1.

MOF binds the autosomes in males with much lower but still

significant levels (Figure S3B), in agreement with mapping data

in SL2 cells and polytene chromosome staining (Bhadra et al.,

1999; Kind et al., 2008). By contrast, the MOF levels in female

flies were similar on all chromosomes and clearly elevated rela-

tive to male autosomes (Figure S3C, Figure 7A).

MOF binding generally correlates with both MSL1 and

MBD-R2 with interesting difference upon closer look. In the

absence of the DCC, on male autosomes and all female chromo-

somes, MOF colocalizes extensively with MBD-R2 (correlation

coefficient above 0.9, Figures 4A and 4B). Unexpectedly, most

of the MOF-bound genes on the male X chromosome recruit

both, MSL1 and MBD-R2 (Figure 4C). However, MOF correlates

highly with MSL1, whereas the association of MBD-R2 varies

(Figure 4A). An assessment of the binding profiles along the

gene bodies shows that the distributions differ (Figure 4D).

Next, we calculated the average binding signal along a window

of 4 kb around the transcriptional start site (TSS) or the transcrip-

tional termination (TT) site (Figure 4E). Avoiding complications

arising from close-by, nested, and overlapping genes in the

compact Drosophila genome, we selected nonoverlapping,

active genes with a minimal length of 2 kb. To avoid bias by

outliers, the genes were grouped according to their expression

levels. The study revealed an enrichment of MSL1 (Figure S4)

and MOF toward the 30 end of genes on the male X chromosome

(Figure 4E), consistent with previous observations in SL2 cells

(Gilfillan et al., 2006; Kind et al., 2008). In striking contrast to

MOF and MSL1, MBD-R2 is enriched toward the 50 end of genes
olecular Cell 38, 815–826, June 25, 2010 ª2010 Elsevier Inc. 819
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Figure 3. MBD-R2 Binds Active Genes Globally

(A) Chromosome-wide binding of MBD-R2 in male flies. Oligonucleotide probe signals are plotted along the major chromosomes as indicated (note that the

entire X chromosome is represented, but only parts of each autosome). Significant bound probes (tileHMM, see the Supplemental Experimental Procedures)

are marked in red. Numbers along the x axis denote the physical position along the chromosomes in megabase pairs (Mb).

(B) MBD-R2 binds active genes independent of expression level. Genes were grouped in equal-sized bins according to their expression levels (GST RNAi

expression set, see Figure 5). The ordinate depicts the signal distribution of average gene binding values in the respective groups, assessed by MBD-R2

ChIP-chip in SL2 cells.

(C) MBD-R2 binding coincides in male and female flies. Correlation of the ChIP-chip binding signal (averaged gene binding score, see the Supplemental

Experimental Procedures) of X chromosomal genes (upper panel) or autosomes (lower panel) from at least three biological replicates from both sexes. Spearman

correlation coefficient rho = 0.94 (p < 2.2e-16).

(D) ChIP-chip profiles of MBD-R2 in male and female flies along a representative X chromosomal region. The profiles are related to a gene representation at the

bottom of the panel, where genes drawn above the line are transcribed from left to right and genes below the line are transcribed from right to left. Active genes are

marked in red, inactive genes in black (Chintapalli et al., 2007). The x and y axis are denoted as in (A).

See also Figure S3.
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and peaks around the TSS (Figure 4E). In the absence of the

DCC, on all female genes and on male autosomal genes, MOF

enriches with MBD-R2 at the 50 ends.

In summary, we generated a high-resolution chromosome-

wide binding profile of MOF, MSL1, and MBD-R2 in primary fly

tissue (summarized in Figure S6B). The DCC-binding pattern is

very similar in male flies and in SL2 cells. Colocalization suggests

that MOF resides in the DCC on the male X chromosome and

with the MOF-MBD-R2 complex on all other chromosomes.

Most active genes are bound by the MOF-MBD-R2 complex,

which enriches at the 50 end of genes in the absence of DCC.

MBD-R2 Acts as a Genome-wide Transcriptional
Activator
MBD-R2 preferentially associates with the 50 ends of active

genes. Does it contribute to transcriptional activation? Unfortu-
820 Molecular Cell 38, 815–826, June 25, 2010 ª2010 Elsevier Inc.
nately, flies bearing mutant alleles of MBD-R2 die early during

development precluding a loss-of-function analysis. We thus

ablated MBD-R2 in SL2 cells by RNA interference (RNAi)

(Figure S3G) and investigated the transcriptome changes. Tran-

scription profiles were obtained from two biological replicates of

cells subjected to RNAi targeting the central and the 30 part of the

MBD-R2 transcript and controlled for nonspecific effects with

RNAi directed at glutathion-S-transferase (GST) sequences.

The transcriptomes of the two MBD-R2 RNAi samples and of

the biological replicates were highly similar, precluding off-target

effects (Figure S5). Next, we sorted all active genes in equal-

sized bins according to the MBD-R2 ChIP-chip signal. Plotting

those bins against the expression change after RNAi revealed

that the more a given gene was bound by MBD-R2, the more

its expression was reduced after ablation of the factor (Figure 5).

There was no significant difference between X and autosomes in
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this respect (data not shown). We conclude that MBD-R2 is

a transcription activator.

The DCC Integrates Activating and Restrictive
Principles
The enrichment of MBD-R2 toward the 50 ends of genes and its

global stimulation of transcription suggests a contribution of

MBD-R2 to the activation of the reporter loci. In support of this

hypothesis, we found by ChIP roughly twice as much MBD-R2

at the 50 end of the lacZ gene upon MOF recruitment in female

flies compared to males (Figure 6D). Figure 6A graphically illus-

trates the relative occupancy of MBD-R2, MSL2, and tethered

MOF (H4K16 acetylation) at the 50 lacZ site in RC5 males and

females (data from Figures 2 and 6D and not shown). MOF

recruitment and H4K16ac levels are similar in both sexes. In

females lacking MSL2, MBD-R2 accumulates to higher levels

than in males. Conceivably, here all MOF is associated with

MBD-R2. The situation is more complicated in male cells, where

MSL2 (the DCC) localizes to the tethering site in addition to

MBD-R2. Given the limited number of UAS elements, it is

possible that MBD-R2 and the MSL proteins compete for inter-

action with tethered MOF. In order to test this hypothesis, we

expressed MSL2 in females bearing the RC5 reporter, which

leads to ectopic formation of the DCC and transforms the flies

into pseudomales (Kelley et al., 1995). MSL2 was recruited to

the tethering site by ChIP, suggesting the assembly of the

DCC (Figure 6B). Strikingly, at the same time the levels of

MBD-R2 at this site were reduced to about 50%, in support

of a competition between MSL2 and MBD-R2 for MOF binding

(Figure 6D). Remarkably, measuring b-galactosidase activity

under those conditions revealed a reduction of reporter gene

expression, down to roughly 2-fold above basal levels (Fig-

ure 6E). Of note, MOF and H4K16ac levels did not change

upon MSL2 expression (data not shown). This result documents

the lower transcription activation potential of the DCC relative to

the MBD-R2 complex at the reporter locus. We tested whether

elevation of another DCC subunit, MSL1, also constrained

MOF-dependent activation. Overexpression of MSL1 in the

context of MOF-Gal4 recruitment in females does not lead to

formation of the DCC (males show reduced viability) (Chang

and Kuroda, 1998). Recruitment of MSL1 by MOF (Figure 6C)

only led to a slight reduction of MBD-R2 levels (Figure 6D), con-

comitant with a minor reduction of lacZ expression (Figure 6F).

The reduced expression of the reporter locus upon DCC

assembly in females led us to hypothesize that the DCC may

not only contain an activator (MOF) but also a ‘‘constraining prin-

ciple’’ that limits the overall activation to a 2-fold range. In order

to test this hypothesis, we resorted to SL2 cells, which contain

both the DCC and MBD-R2 complex. We cotransfected these

cells with an expression plasmid for MOF-Gal4 and plasmids

bearing UASGal-responsive luciferase reporter genes whose

transcription we monitored. The UASGal tethering site was

placed either 50 or 30 of the reporter gene in an effort to create

a situation resembling that of RC5 and RC3, respectively. In

order to selectively monitor the function of either complex alone,

we knocked down either MSL2 or MBD-R2 using two nonover-

lapping RNAi constructs. Remarkably, the luciferase expression

from both constructs increased relative to the control RNAi upon
M

ablation of MSL2, in support of the hypothesis that the DCC

restricts the activation potential of MOF activation (Figure 6G).

The increased activation may well be due to increased associa-

tion of MBD-R2 with tethered MOF, since RNAi against MBD-R2

led to a reduction of reporter gene expression (Figure 6G).

Dynamic Distribution of MOF between the DCC
and the MBD-R2 Complex
These data suggest a dynamic distribution of MOF between

DCC and MBD-R2 complexes, which depends on the relative

levels of either component. In order to test whether such a

scenario would also apply on a genome-wide scale, we gener-

ated ‘‘pseudomale’’ flies as before by ectopic expression of

MSL2 in females and generated chromosome-wide binding

profiles for MBD-R2 and MOF. Given the differential distribution

of MOF in male and female cells (Figures S3B and S3C), we ex-

pected to see a relocalization of MOF from the autosomes to the

X chromosome. Strikingly, we found this to be the case. Even

modest expression of MSL2 (and concomitant DCC assembly)

led to a significant relocalization of MOF from autosomes to

the X chromosome (Figures 7A and 7C), while the localization

of MBD-R2 did not change (Figure 7B). This result suggests

that the relative levels of the two targeting principles, MBD-R2

and DCC, determine the distribution of MOF between the X

and the autosomes.

DISCUSSION

Acetylation of H4K16ac is unique among the histone acetylation

events in that it reduces the interaction between H4 and H2A/

H2B in close-by nucleosomes and hence counteracts the

compaction of nucleosomal arrays into fibers (Robinson et al.,

2008; Shogren-Knaak et al., 2006). The large potential of

H4K16ac and of MOF, the enzyme responsible for its placement,

for regulated chromatin opening and activation of transcription

has been revealed in model systems (Akhtar and Becker,

2000). MOF was originally discovered in Drosophila due to its vital

role in dosage compensation, which so far is mainly attributed to

its H4K16 acetylation function (Akhtar and Becker, 2000; Hilfiker

et al., 1997; Smith et al., 2000). Dosage compensation involves

a subtle, 2-fold activation of transcription of most X chromosomal

genes in males. The principles that allow such precise adjust-

ment of transcription are unknown and the contribution of

H4K16 acetylation to this fine-tuning is equally mysterious.

Despite the male-specific lethality associated with MOF muta-

tions, MOF also has less prominent functions in female cells,

where it is expressed at considerable levels (Bhadra et al.,

2000; Kind et al., 2008). We have now identified an additional

molecular context for MOF function in female Kc cells by identi-

fying MOF interactors. Previously, Akhtar and colleagues had

shown the existence of a highly related complex in male cells

and mixed sex embryos (Mendjan et al., 2006). A hallmark of

this complex is the subunit MBD-R2, an uncharacterized protein

featuring similarity to methyl-CpG-binding domains and several

types of zinc fingers (Bienz, 2006). Because of the differences

between the interactors we purified and the NSL complex

described by Mendjan et al. (2006), we provisionally refer to

the MOF complex in Kc cells as the MOF-MBD-R2 complex.
olecular Cell 38, 815–826, June 25, 2010 ª2010 Elsevier Inc. 821
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Figure 5. MBD-R2 Is a Genome-wide Transcriptional Activator

Active genes (Muse et al., 2007) were grouped according to their averaged

MBD-R2 binding score and plotted against their expression change after

MBD-R2 RNAi (log2 [MBD-R2 RNAi/control RNAi]). Genes were categorized

in groups with increasing binding score as represented in the box plots. Genes

were considered ‘‘active’’ if elongating polymerase was bound significantly in

the ChIP-chip profile of Muse et al. (2007). Similar results were obtained if

genes with an expression value of at least 4 in the control samples (Affymetrix

scale) were classified as ‘‘active.’’

See also Figure S5.
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The stoichiometry of its components or the homogeneity of

assemblies they form is not known yet.

Male cells contain MBD-R2 (or NSL) complexes in addition to

the DCC, and Mendjan et al. (2006) suggested that the NSL

complex and the DCC might compete for MOF recruitment.

Biochemical studies are needed to firmly establish such a

scenario. However, our chromosome-wide profiles are indeed

consistent with a dynamic distribution of MOF between these

two complexes. The global chromosomal interaction pattern of

MOF correlates well with the association profile of MBD-R2;

conceivably, the MBD-R2 context is the only targeting determi-

nant for MOF in female cells. This targeting scenario is chal-

lenged by forced expression of MSL2 in females that leads to

ectopic DCC assembly in potential competition for MOF.

Remarkably, we observed a massive relocalization of MOF

from the autosomes to the X chromosome. This creates a situa-

tion reminiscent of male cells, where we find that MOF preferen-

tially colocalizes with MBD-R2 on autosomes, but with the DCC

on the X chromosome. We suppose that the balancing of the

genome—dosage compensation—involves a dynamic distribu-

tion of MOF between the two complexes.

Our data suggest that the two MOF complexes have different

roles in transcription. The DCC mainly localizes to gene bodies

with a 30 enrichment, which has led to the speculation that

dosage compensation regulates elongation efficiency (Alek-

seyenko et al., 2006; Gilfillan et al., 2006). MBD-R2 also activates

transcription but, in contrast to the DCC, binds active genes

globally with a 50 bias. The defined setting of our reporter gene

system revealed that, depending on context, tethering MOF

installed two different activation modes. In females, in the

context of MBD-R2, activation was variable, distance depen-

dent, and correlated with H4K16 acetylation levels as well as

enhanced polymerase loading. This scenario is akin to short-

range stimulation of transcription initiation by ‘‘promoter-

specific’’ regulators.

By contrast, transcription stimulation in males was dominated

by the DCC. Activation was in the 2-fold range and distance

independent, a scenario compatible with dosage compensation,

despite of the high H4K16 acetylation levels that correlate with

higher transcription rates in female cells. We thus hypothesized

that the activating effect of H4K16 acetylation is constrained

by an opposing principle associated with the formation of the

DCC. This hypothesis has been strengthened by several of our

results. First, a global analysis reveals that H4K16ac levels
Figure 4. MBD-R2 and MOF Colocalize on Active Genes under All Circ

(A and B) Correlation between chromosomal binding of MOF and MSL1 or MOF a

binding score per gene (see the Supplemental Experimental Procedures) of M

correlation coefficients (rho) are p < 2.2e-16.

(C) The majority of active genes on the male X are bound by MBD-R2, MOF, and

(D) Binding of MSL1, MOF, and MBD-R2 along a representative region of the X chr

to the gene representation at the bottom of the panel. All genes are active. Genes

left to right or right to left, respectively.

(E) Differential distribution of MOF and MBD-R2 across the gene bodies. Cumula

were aligned at the transcriptional start site (TSS) and transcriptional termination s

TSS and TT in a sliding window (10 bp step size, 300 bp window). For this analysis,

minimally 2 kb long, do not overlap with other genes, and are expressed. The gene

into ‘‘low’’ (black), ‘‘intermediate’’ (orange), ‘‘high’’ (blue), and ‘‘very high’’ (purple

See also Figure S4.

M

roughly correlate with transcription on all female chromosomes

and on male autosomes, but not on the male X chromosome.

Second, reduction of MSL2 levels in SL2 cells led to activation

of a reporter gene, while ablation of MBD-R2 resulted in reduced

transcription. Finally, ectopic expression of MSL2 in females

resulted in reduced levels of MBD-R2 at the reporter locus and

limited the stimulation of transcription to a 2-fold range.

The finding that a HAT may be programmed by association

with distinct sets of subunits is not without precedent. For

example, the catalytic activity of GCN5 is modulated depending
umstances, Except for the Male X Chromosome

nd MBD-R2 on male (A) or female (B) chromosomes. Scatter plots of averaged

BD-R2, MOF, and MSL1 on male chromosomes as indicated. All spearman

MSL1. Venn diagram of significantly bound active genes.

omosome in males (left panel) and females (right panel). The profiles are related

depicted above or below the line of physical coordinates are transcribed from

tive plots of MOF (left) and MBD-R2 (right). ChIP-binding signals along genes

ite (TT). The average binding score is plotted 2 kb bp up- and downstream of the

637 X chromosomal genes and 740 autosomal genes were selected, which are

s were grouped according to their gene expression level (Chintapalli et al., 2007)

) categories. The x axis denotes the distance to the TSS and TT in base pairs.
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Figure 6. Sex-Specific Cofactor Recruitment upon MOF Binding

(A) Schematic illustration of the relative occupancy of chromatin constituents at the 50 lacZ site in male and females. The graph summarizes data presented in

Figures 2B, 2D, and 6B and data not shown for MSL2. Displayed are the ratios of ChIP enrichment of the indicated antibodies in females (white bar) and males

(black bar). MOF or H4K16ac levels are similar in both sexes. MSL2 is only enriched in males (background levels in females). Females lacking MSL2 accumulate

more MBD-R2 than males.

(B and C) Ectopic expression of MSL2 (B) and MSL1 (C) in females leads to enrichment of the corresponding protein at the RC5 locus upon MOF recruitment

(control represents the RC5 locus in the absence of MOF-Gal4). Error bars represent mean ± SEM. Overexpressing MSL1 males could not be analyzed due

to lethality. White bars, female flies; black bar, male flies.

(D) ChIP with MBD-R2 in females expressing either MSL2 as in (B) or MSL1 (C). Tethering MOF to the lacZ reporter leads to a 2-fold enrichment of MBD-R2 in

females versus males. Expression of MSL2 (pseudomales) reduces the MBD-R2 levels. Expression of MSL1 has only a minor impact. Presentation as in (B).

(E and F) Change of lacZ induction (b-galactosidase activity) by MOF upon ectopic expression of MSL2 (E) or MSL1 (F). Presentation as in (B).

(G) Reporter gene activity in SL2 cells after ablation of MSL2 and MBD-R2. SL2 cells were treated with dsRNA against GST (control), MSL2, or MBD-R2

sequences. Three days after RNAi treatment, cells were transfected with an expression vector for Gal4-MOF and a firefly luciferase reporter furnished with UASGal

elements either 50 of the minimal thymidine kinase promoter or 30 of the firefly luciferase gene. Transfection efficiency was normalized by coexpression of a Renilla

luciferase expression plasmid.T test, two-sided and unpaired, error bars represent mean ± SEM.
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on the SAGA or ATAC context (Carre et al., 2008). While this

manuscript was revised, Conaway and colleagues reported

on a change in substrate specificity for human MOF, depending

on its residence within the MSL or NSL context (Cai et al., 2010).

It will be interesting to see whether the different complex environ-

ments also reprogram the catalytic activity of MOF in Drosophila.

In summary, our data suggest that the precise 2-fold activation

in Drosophila dosage compensation is achieved by constraining

the activation potential of H4K16 acetylation. Deciphering the

underlying mechanism will help to reveal the principles that
824 Molecular Cell 38, 815–826, June 25, 2010 ª2010 Elsevier Inc.
govern genome balancing at the level of chromosome organiza-

tion and remains as a challenge for future work.

EXPERIMENTAL PROCEDURES

Further detailed experimental procedures are described in the Supplemental

Information.

Fly Stocks

All P element constructs were injected into y1,w1118 and raised on standard fly

food.
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Figure 7. MOF Redistributes to the X Chromosome in Female Flies

Overexpressing MSL2

(A and B) Box plots present ChIP-chip signals of autosomal or X chromosomal

probes, which represent the binding of MOF (A) and MBD-R2 (B) in wild-type

(WT) females, MSL2 expressing females (pseudomales) and wild-type males.

The ordinates depict the log2-normalized values of probes. The 99% confi-

dence interval (CI) of the true difference in means between X chromosomal

and autosomal MOF binding is shown. The red line depicts the median from

all probes.

(C) Chromosome-wide difference plots of MOF binding between pseudomales

and females. The difference of oligonucleotide probe signals between pseudo-

males and females is plotted along the major chromosomes as indicated

(note that only part of the autosomes are represented). Significant (adjusted

p values < 0.05) gains are marked in red, significant losses are marked in

blue. Numbers along the x axis denote the physical position along the chromo-

somes in megabase pairs (Mb).

See also Figure S6.
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M

The RC5 reporter fly line is a gift from R. Paro and was originally published as

U/I5 in Zink and Paro (1995). Fly strains expressing Hsp70Gal4, Hsp83MSL1,

and Hsp70MSL2 are published (Chang and Kuroda, 1998; Rank et al., 2002;

Straub et al., 2005b).
Antibodies

The MOF antibody was raised in rabbit using the complete protein as antigen

(Akhtar and Becker, 2000; Morales et al., 2004). An MBD-R2 fragment

corresponding to amino acids 1–355 was expressed in E. coli BL21 cells fused

to an N-terminal GST tag, purified on glutathione beads, and used to raise

polyclonal antibodies in rabbits. Antibodies against H4K16ac were obtained

from ACTIVE MOTIF (#39167) and the GAL4 antibody from SantaCruz Biotech-

nology (sc-577). MSL1 and MSL2 antibodies were previously published

(Gilfillan et al., 2006, 2007).
RNA Quantification

Total RNA was isolated from six adult females or seven males. Flies were

frozen in liquid nitrogen, grained to powder, and suspended and purified

with Trizol (Invitrogen). cDNA was synthesized with SuperScript II Reverse

Transcriptase (Invitrogen). Quantification was performed with the real-time

PCR ABI 7000 (primer see qPCR primers). Values were normalized to

gapdh1.
ChIP-qPCR

ChIP material was quantified by real-time PCR (ABI 7000, Applied Biosys-

tems). Approximately 1 ng of the purified input DNA was used per reaction.

Depending on the antibody, 2%–5% of the ChIP material was required

per reaction. Enrichment was calculated over input. Since various chromatin

preparations of different genotypes and sexes were compared, we standard-

ized to the autosomal gapdh1 locus after input normalization. ChIP experi-

ments were performed in technical and biological replicates. Primers

used are indicated in Table S1. Each experiment was performed at least in

triplicate.
ACCESSION NUMBERS

The microarray data are located at the Gene Expression Omnibus under the

accession numbers GSE20695 (ChIP data) and GSE20744 (Affymetrix data).
SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, four tables, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article at doi:10.1016/j.molcel.2010.05.022.
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Supplemental table 
 
Table S1: Mass spectrometry data for the MOF-MBD-R2 complex purification 

 
 

protein scores MOF IP scores control IP 

MOF 2415 0 
MBD-R2 700 0 
NSL1 572 0 
NSL2 142 0 
NSL3 438 0 
Wds 232 0 
dMCRS2 212 0 
Rrp4 35 116 
Rrp6 118 463 
Rrp42 63 142 
Dis3 405 723 
Z4 61 56 
chromator 37 29 
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Table S2: Cloning primer 

 
 
 
Table S3: ChIP-qPCR primer 

 
 

cloning 
primer 

Forward reverse template clone # 

MBD-R2 CCATGGGGCCAT
ATGGATACCGCG
GAGATCGAAGC 

AACAGTTCTAGACTAG
TGCTCGCCCACAATGA
GGAAACC 

SD10773 

Mof-
FLAG-3’ 

TGCATGCTCGACT
ACAAAGACGACG
ACGACAAATAGCA
TACGGAACCTGG 

TAGGGCCCCCCGGGTT
TTTCGTTTGGAGGGGT 

genomic mof 

RsrII-GAL 
4 

ATCGGTCCGAAG
CTACTGTCTTCTA
TC 

TACGGACCGGCCGGC
GATACAGTCAA 

pAS MOF 
(Akhtar and Becker, 2000) 

KpnI-
5xUAS 

GAATGGTACCTAT
ACTCCGGCGCTC 

GAATGGTACCCTCGGA
TCCAAGCTT 

RC5 construct 
(in this paper) 

Locus Forward Reverse 

armadillo 
5’ 

CACGAACTCCATGTTATTGACTGT
C 

ATTCTGGGCTGGCATGTAACT 

lacZ 5’ GCAACTACTGAAATCTGCCAAG GTTTTCCCAGTCACGACGTT 
lacZ 3’ GCTACATGACATCAACCATATCAG 

C 
GATCCTCTAGAGTCGAGGCC 

TL lacZ 
3’ 

TGTTGAAGTGGCGAGCGATAC GGTCGGGATAGTTTTCTTGCG 

white 5’ GATCATATCATGATCAAGACATCT
AAAGGC 

GTGCATCTAGGATCAGCTTAA
AATAT 

white 3’ TGTGCGTTAGGTCCTGTTCATTG CCTGTTCGGAGTGATTAGCGT
TAC 

gapdh1 GTGACCTACGCAGAAAGCTAG GCTATTACGACTGCCGCTTTTT
C 
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Table S4: RNAi primer 
 
Construct Forward Reverse 

MBD-
R2_1 

TTAATACGACTCACTATAGG
GAGATGGAGCCACCAAGTG
TG 
 

TTAATACGACTCACTATAGGGATGT
CGGTCTGGTCATTAGATG 

MBD-
R2_2 

TTAATACGACTCACTATAGG
GATC GACGTCGCGT 
CTGTTG 

TTAATACGACTCACTATAGGGA 
GACAGGATTTGCGCAACTAT 

GST TTAATACGACTCACTATAGG 
GAGAATGTCCCCTATACTAG 
GTTA 

TTAATACGACTCACTATAGGGAGAA
CGCAT CCAGGCACAT TG 

msl2_1 TTAATACGACTCACTATAGG 
GAGAATGGCCCAGACGGCA
T AC   

TTAATACGACTCACTATAGGGAGAC
AGCGATGTGGGCATG TC 

msl2_2 TAATACGACTCACTATAGGG 
TTCCCCTGCTGCCCACAG 

TAATACGACTCACTATAGGGCTCTG
ACGGGATTGAGGTC   
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Supplemental experimental procedures 
 
Cloning procedures 

An 8 kb ApaI-XhoI fragment containing the intron-free genomic mof locus was 

isolated from clone RP98-11C13 and subcloned into the pBS-SKII. The 147 amino 

acid GAL4 binding domain (GAL4-DBD) was furnished with RsrII restriction sites via 

PCR and inserted into the unique RsrII site 111 bp downstream of the mof translation 

start site. A FLAG tag was added at the 3‟ end of the mof gene. mof was expressed 

from flanking sequences within KpnI-XhoI fragment and the 3‟ flanking gene CG3033 

was removed via PCR (see primers in supplement) (Fig. 1A). The MOF over-

expression construct was created by amplifying the hsp83 promoter and the 94 

amino acid (aa) GAL4-DBD from the hsp83/GAL4/Dorsal construct (Flores-Saaib et 

al., 2001). A mof cDNA, containing a 3‟ FLAG tag, was isolated via PCR and fused to 

the above described hsp83-GAL4-DBD amplicon in a pBluescript yielding hsp83-

GAL(94)MOF-FLAG. For P-element-mediated transformation the MOF expressing 

constructs were cloned into the SmaI site of the P-element transformation vector 

pYES (Patton et al., 1992). The RC3 reporter construct was cloned by inserting a 

5xUAS of the pUAST-vector (Brand and Perrimon, 1993) into the KpnI-SphI site. 

Subsequent digestion with KpnI allowed inserting a KpnI-BamHI hsp70-lacZ fragment 

from the pHZR vector (Gindhart et al., 1995) after blunting. 

For antibody production cDNA fragments of MBD-R2 (1-355 aa of the smaller isoform 

A) and of NSL1 (aa 562-932) were ordered from the Drosophila Genomics Resource 

Center and cloned into the pGEX 2TKN. All primers are listed in the table S2. 

The firefly reporter construct pGL3-Tkmod (Gilfillan et al., 2007) was modified as 

follows. To minimize steric promoter inhibition we introduced 214 bp of the human 

rDNA locus into the SmaI site. For the 5‟ UAS construct the KpnI-5xUAS fragment 

was amplified via PCR and added into the KpnI site (see primers in supplement). The 

3‟UAS construct was obtained by cloning the same KpnI-5xUAS PCR fragment blunt 

into the HpaI site 3‟ of the firefly luciferase gene. Details are available upon request. 

 

Stable cell lines and protein purification 

Kc cells were cotransfected with phsp83-GAL(94)MOF-FLAG and pCoHygro 

(Dignam et al., 1983; Van der Straten et al., 1989). Stable transformants were 

selected in the presence of 500µg/ml Hygromycin B. A Hygromycin B-resistant clone 

without hsp83-GAL(94)MOF-FLAG expression served as a control. Stable lines were 

expanded in roller bottles to a final density of 3x106 cells/ml.  
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Nuclear extracts were prepared based on the protocols by Dignam and Roeder 

(Dignam et al., 1983) and Heberlein and Tjian (Heberlein and Tjian, 1988). PBS-

washed Kc cells were resuspended in 5 times of the packed cell volume (PCV) 

hypotonic buffer A: (10mM HEPES pH 7.6, 15mM KCl, 2mM MgCl2, 0.1mM EDTA), 

kept on ice for 15 min and then dounced 10-15 times with a tight B pestle. Buffer B 

(50mM HEPES pH 7.6, 1M KCl, 30mM MgCl2, 0.1mM EDTA) was added immediately 

in a 1:10 ratio to obtain buffer AB. Nuclei were obtained by centrifugation and 

subsequently resuspended in one PCV of buffer AB. Nuclei were extracted by adding 

1/10 volumes of 4M (NH4)2SO4 and incubation for 15 minutes with gentle mixing 

followed by ultracentrifugation at 48,000 rpm (TLA-55) for 2 hours. The clear 

supernatant was subsequently precipitated with 0.3g freshly ground (NH4)2SO4 per 

ml supernatant. Precipitate was resuspended in HEMG150 (25mM  HEPES pH7.6, 

150mM NaCl, 12.5mM MgCl2, 0.1mM EDTA, 20% glycerol), dialysed against 

HEMG150 for 4 hours, snap-frozen and stored at -80°C. All buffers contained 1mM 

DTT, 1mM Na2S2O5 and 0.5mM PMSF. Final nuclear extracts contained additional 

protease inhibitors Leupeptin, Pepstatin and Aprotinin. 

For Anti-FLAG immunopurification 30µl of anti-FLAG M2 agarose beads (Sigma, 

A2220) were equilibrated with HEMG150 and mixed with 500µl nuclear extract for 2 

hours. Nonspecifically bound material was washed-off three times for 15 minutes with 

wash buffer (25mM HEPES pH 7.6, 150/250mM NaCl, 12.5mM MgCl2, 0.1mM EDTA, 

0.01% NP-40). Bound proteins were eluted with HEMG150 containing 0.5 mg/mL 

FLAG peptide and the soluble protein fraction collected after centrifugation. 

Mass Spectrometry – Ammoniumbicarbonate (40 mM final concentration) and 

Trypsin (sequencing grade, modified; Promega; 2 µl of 0.2 µg/µl solution) were 

added to the eluate and proteins were digested over-night at 37°C while shaking (600 

rpm).  

For protein identification probes were directly used for nano-ESI-LC-MS/MS. Each 

sample was first separated on a C18 reversed phase column (75 µm i.d. x 15 cm, 

packed with C18 PepMap™, 3 µm, 100 Å; LC Packings) via a linear acetonitrile 

gradient. MS and MS/MS spectra were recorded on an Orbitrap mass spectrometer 

(Thermo Scientific). The resulting spectra where analyzed via the Mascot™ Software 

(Matrix Science) using the NCBInr Protein Database. 

 
ß-Galactosidase assay 

To measure the expression of lacZ a -galactosidase assay was performed as 

previously described (Fitzsimons et al., 1999) with modifications. 3-6 adult flies (3-4 

days old) were collected and frozen in liquid nitrogen. Flies were grained and 
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resolved in 50 mM potassium phosphate buffer (pH 7.5) with 1 mM MgCl2. The 

protein concentration was determined according to Bradford. CPRG (Roche Cat No. 

10884308001) was used as substrate. The kinetic of this colorimetric assay 

(mOD/min) was determined with a multi-well plate absorption reader (time frame: 

minimum 20 min, interval: 20 sec, wavelength: 574 nm; BioTek PowerWave HT) at 

37°C and normalized to the protein concentration. Biological replicates were 

performed. 

 

Luciferase assay 

8x106 SL2 cells were seeded in 25 cm2 flask in 3 ml standard Schneider medium 

without serum and treated with 40 µg dsRNA (GST, msl2 or MBD-R2). After 1h, 6 ml 

Schneider medium with serum was added. Cells were incubated for 3 days and 

subsequently distributed in 6 well plates for transfection (1.5x106 per well). A plasmid 

mix was prepared, containing the activator MOF-Gal4 (MOF promoter), the UAS-

containing firefly luciferase reporter and the Renilla luciferase reporter (both tk 

promoter) for normalisation. Transfection was performed according to the Effectene 

transfection kit (Qiagen, #301427). After 2.5 days cells were harvested, lysed by 

freezing and thawing in 300 mM KCl, 50 mM HEPES pH 7.6, 0.5 mM EDTA, 0.1% 

NP40 and 1 mM DTT in the presence of protease inhibitors. 1/10 of the lysate was 

assayed for luciferase activity in a Lumat LB 9501 (Berthold), according to the 

Promega Dual-Luciferase assay Manual (#E1960). 

 

Chromatin preparation and chromatin immunoprecipitation 

Chromatin was prepared from sex-sorted adult flies. The protocol from Negre et al. 

(Negre et al., 2006) was applied with some modification: 300 mg of 3-4 days old flies 

were crushed in 5 ml A1 (60 mM KCl, 15 mM NaCl, 4 mM MgCl2, 15 mM HEPES 

(pH 7.6), 0.5% Triton X-100, 0.5 mM DTT, 10 mM sodium butyrate, protease inhibitor 

cocktail (Roche, Cat No. 04693132011)) with a final concentration of 2.35% 

formaldehyde at 18°C for 15 min. Fixation was stopped with a final concentration of 

250 mM glycine. After 3 washes with A1 the pellet was equilibrated in lysis buffer 

(140 mM NaCl, 15 mM HEPES (pH 7.6), 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-

100, 0.5% sodium deoxycholate, protease inhibitor cocktail, 0.5mM DTT). The pellet 

was suspended in lysis buffer with 0.1% SDS and 0.5% N-lauroylsarcosine and 

rotated for 10 min at 4°C. Chromatin was sonicated (Branson (microtip), 4 times at 21 

watt) in the presence of glass beads (212-300 µm) in a volume of 2 ml in 15 ml falcon 

tubes. Cell debris was removed by centrifugation and the chromatin containing 

supernatant was stored in aliquots at -80°C.  
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For chromatin immunoprecipitation (ChIP) the DNA concentration of the chromatin 

was determined and 7.5 µg of DNA was used per IP in 500 µl lysis buffer plus 250 µl 

PBS (1xPBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, protease inhibitor 

cocktail. Chromatin was pre-cleared with protein-A and -G beads at 4°C for 30 min. 

After pre-clearing an aliquot was saved for input DNA purification. Immuno-

precipitation was carried out at 4°C overnight. The amount of antibody used per ChIP 

was adjusted individually. For the pull down 30 µl protein A and G beads were used 

per ChIP at 4°C for 3 h. Beads were washed 5 times in PBS, rinsed once in EB buffer 

(10 mM Tris-Cl, pH 8.5). De-crosslinking was performed in 100 µl EB with 0.6% SDS 

and a final concentration of 0.5 µg proteinase K and RNAse A. Digest was carried 

out at 55°C for 3 h and de-crosslinking at 65°C for 6 h. ChIP and input DNA were 

purified with phenol/chloroform using MaXtract High Density tubes (Qiagen, Cat No. 

129056) and subsequent ethanol precipitation. 

Chromatin preparation of SL2 cells was performed as previously described in Straub 

et al. (2008). 

 

ChIP-chip data analysis 

ChIP-chip data analysis was essentially performed as in Straub et al. 2008. Briefly, 

input and IP DNA were amplified using the WGA kit (Sigma) according to an online 

protocol (http://www.epigenome-noe.net/researchtools/protocol.php?protid=30). 

Labeling and hybridization to NimbleGen arrays was carried out at ImaGenes (Berlin, 

Germany). We used a custom array layout (approx. 1 probe/100bases, isothermal 

selection) comprising the euchromatic part of the entire X chromosome, 5 Mb of 2L, 

2R and 3L, respectively, as well as 10 Mb of 3R. Data analysis was performed using 

R/Bioconductor (www.Rproject.org; www.bioconductor.org). Raw signals of 

corresponding biological replicates were normalized and log2 transformed using the 

„vsn‟ package (Huber et al., 2002). Averaged binding scores per gene present the 

enrichments (log2 ratio of IP and input) normalized on the gene length. Enrichment 

statistics (IP versus input signals) were computed using the „sam‟ algorithm within 

Bioconductor (Tusher et al., 2001). Fdr values of the sam statistic were determined 

using „locfdr‟ (Efron, 2007). Region summarization was performed using the HMM 

algorithm of tileHMM (Humburg et al., 2008) with the following parameters: fragment 

size of 700, maximal gap of 400, minimal length of 400 and minimal score of 0.8. 

Genes were considered „bound‟ significantly with more than 5 tileHMM „bound‟ 

probes. Hierarchical cluster analysis of the binding pattern across genes was carried 

out using the „hclust‟ package of R. p values for figure 7B were Benjamini-Hochberg 
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adjusted. All data correspond to Drosophila genome version dm2 and annotation 

version gadfly 4.3. 

 

Transcriptome analysis 

Cultivation of the male Drosophila cell line SL2 and RNA interference (RNAi) of target 

genes were carried out as described previously (Straub et al., 2005). In brief, 1.5x106 

SL2 cells were incubated with 10 µg dsRNA for 1 hour in serum-free medium. 

Sequences of primers used for dsRNA production are listed in the table S4. After 

addition of serum-containing medium cells were incubated for 7 days at 26°C before 

RNA extraction. Preparation of chromatin extracts and western blot confirmation of 

target gene knockdown has been described previously. Depletion efficiency was 

quantified using a Li-Cor Odyssey system with -tubulin as  reference. 

RNA was isolated using Trizol (Invitrogen) followed by a purification using RNeasy kit 

(Quiagen) according to the instructions of the suppliers. RNA labeling and cDNA 

hybdridization to a Drosophila Genome GeneChip 2.0 was performed by ImaGenes 

(Berlin, Germany). Two biological replicate experiments were performed with a total 

of four control RNAi (3x GST RNAi and 1x mock RNAi) and six MBD-R2 RNAi (3x 

with each dsRNA construct). Data analysis was performed using R/Bioconductor 

(www.Rproject.org; www.bioconductor.org). Intensity values were normalized, 

summarized and log2 transformed using the „gcrma‟ package (Wu and Irizarry, 

2005). Other normalization methods (vsn, quantile) were also tested and performed 

similarly. Quality control assessment was performed using the R package 

“arrayQualityMetrics” (Kauffmann et al., 2009). We did not observe significant batch 

effects of the biological replicates. The transcriptome changes are similar upon 

treatment of two distinct dsRNA constructs targeting the MBD-R2 transcripts (Figure 

S3). Thus, the expression values for the control samples and the MBD-R2 RNAi 

samples were averaged, respectively. Significant change of gene expression was 

calculated using locfdr based on a sam statistics (Efron, 2007; Tusher et al., 2001). 

Genes were considered “differentially expressed” with an fdr cutoff of 0.35. 

Alternatively, an eBayes moderated t test or a limma statistic followed my multiple 

testing correction (locfdr) gave similar results. The results are robust to various 

parameters in data analysis, as assessed by choosing varying thresholds. The 

expression data of adult flies were taken from Chintapalli et al. and analyzed using 

the same algorithms of the MBD-R2 data set. All values of the expression set data 

are log2 normalized with a theoretical dynamic range of 2exp16 (Affymetrix.com). 

http://www.bioconductor.org/
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3.2.1 Summary and own contribution 

 

In this review written by Dr. Matthias Prestel (50%), Prof. Peter Becker (25%) and myself (25%), we 

discuss the implications of the findings presented in section 3.1 in the context of general strategies to 

balance aneuploid genomes. It has been proposed before that three types of compensatory mechanisms 

are in place to respond to genome aneuploidies. According to this model, dosage compensation in 

male flies is a composite of a more general feedback or buffering principle and an additional feed-

forward mechanism exerted by the MSL-DCC. We expand this model by suggesting that the precise 

two-fold activation during dosage compensation is achieved by a balancing of counteracting activating 

and repressive activities.  

In addition to contributing to the text, I prepared the figures 1, 3 and 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSION  

 

74

3.2.2 Published review article 

 



Complex genomes are more than just the sum of their 
genes, but are rather complex regulatory systems in 
which the expression of each individual gene is a function 
of the activity of many other genes, so that the levels of 
their protein products are maintained within a narrow 
range. Such homeostasis favors the maintenance of the 
appropriate stoichiometry of subunits in multiprotein 
complexes or of components in signal transduction path­
ways, and defines the ‘ground state’ of a cell [1]. In diploid 
genomes, both alleles of a gene are usually active and this 
‘double dose’ of each gene is figured into the equation. 
Thus, deviations from diploidy, such as the deletion or 
duplication of genes or of larger chromosomal fragments 
(aneuploidy), unbalance the finely tuned expression of 
the genome. Segmental aneuploidies of this kind can 
arise from failed or faulty repair of chromosomal damage 
due to irradiation, chemical insult or perturbation of 
replication, or from illegitimate recombination during 
meiosis. Loss or duplication of entire chromosomes 
(monosomy or trisomy, respectively) can arise from non-
disjunction during cell division. Depending on the extent 
of the aneuploidy and on the genes affected, the fine 
balance of trans-acting factors and their chromosomal 
binding sites that define the gene-expression system is 
disturbed, and the fitness of the cell or organism 
challenged.

Often, aneuploidies have been associated with a variety 
of developmental defects and malignant aberrations, 

such as Down syndrome or certain breast cancers 
(reviewed in [2,3]). The phenotypes associated with 
changes in gene copy number can not only be the result 
of the deregulation of the affected gene(s), but may also 
reflect trans-acting effects on other chromosomal loci or 
even more global alterations of the entire regulatory 
system. This is particularly true if genes coding for 
regulatory factors, such as transcription factors, are 
affected (reviewed in [4,5]).

Strategies for re-balancing aneuploid genomes
Genome-wide studies in different organisms reveal that 
the expression of a substantial number of genes directly 
correlates with gene dose (the primary dosage effect) [6]. 
In other cases, the measured expression levels do not 
reflect the actual copy number, as compensatory mecha­
nisms aimed at re-establishing homeostasis take effect 
[4,5]. Imbalances due to aneuploidy may be compensated 
for at any step of gene expression from transcription to 
protein stability. Excess subunits of multiprotein 
complexes that are not stabilized by appropriate inter­
actions are susceptible to degradation (see [1] for a 
discussion of compensation at the protein level). Dosage-
compensation mechanisms at the level of transcription 
are versatile, intricate, and in no instance are they fully 
understood.

In principle, three types of compensatory responses to 
aneuploidies are recognized: buffering, feedback, and 
feed-forward, which may act individually or, more likely, 
in combination [7]. Oliver and colleagues [7] define 
buffering as ‘the passive absorption of gene dose pertur­
bations by inherent system properties’. Currently, the 
nature of this general or ‘autosomal’ buffering is un­
known, but its existence can be deduced from comparing 
gene expression to DNA copy number in healthy and 
aneuploid genomes [8-11]. The system properties 
referred to by Oliver and colleagues can be considered as 
the sum of the biochemical equilibria of the system ‘living 
cell’, which are predicted to moderate the effect of the 
reduction of one component. Apparently, the deletion of 
one gene copy (that is, a twofold reduction in gene 
expression) can be partially compensated for by 
increasing the steady-state mRNA levels originating from 

Abstract
Diploid genomes are exquisitely balanced systems of 
gene expression. The dosage-compensation systems 
that evolved along with monosomic sex chromosomes 
exemplify the intricacies of compensating for differences 
in gene copy number by transcriptional regulation.
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the remaining allele by, on average, 1.5-fold [7,11]. 
Interestingly, Stenberg and colleagues [11] observed that 
buffering appears to compensate for deficiencies better 
than for gene duplications, which leaves open the 
existence of a general sensor of monosomy that mediates 
the effect. A general buffering will also ameliorate the 
consequences of widespread mono-allelic gene expres­
sion due to parental imprinting (cases where a single 
allele is expressed, depending on whether it is inherited 
from the father or mother) [12].

In contrast to the general and nonspecific buffering just 
described, a ‘feedback’ mechanism would be defined as 
gene-specific - sensing and readjusting the levels of 
specific molecules by appropriate, specific mechanisms. 
Finally, ‘feed-forward’ anticipates the deviation from the 
norm and hence can only be at work in very special 
circumstances. Prominent examples where feed-forward 
scenarios are applicable are the widely occurring mono­
somies in the sex chromosomes of heterogametic organ­
isms (for example, the XX/XY sex-chromosome system), 
which are present in each and every cell of the species.

In contrast to aneuploidies that arise spontaneously, 
these ‘natural’ monosomies and their associated dosage-
compensation mechanisms are the products of evolution. 
Research on dosage-compensation mechanisms associa­
ted with sex chromosomes continues to uncover un­
expected complexities and intricacies. The somatic cells 
of the two sexes of the main model organisms of current 
research - mammals, nematode worms (Caenorhabditis 
elegans) and fruit flies (Drosophila melanogaster) - differ 
in that those of females are characterized by two X 
chromosomes, while those of males have one X and one 
Y chromosome (mammals and Drosophila); or one sex 
(XX) is a hermaphrodite and the males have just a single 
X and no Y chromosome (X0) (C. elegans) [13]. 
Remarkably, different dosage-compensation strategies for 
balancing gene expression from the X chromosome 
between the sexes have evolved independently in these 
three cases (Figure 1), as we shall discuss in this article. 
There is increasing evidence that in all three cases, the 
transcription of most genes on the single male X 
chromosome is increased roughly twofold [14-16]. In 
fruit flies, this upregulation of the X chromosome is 
limited to males. In mammals and worms, however, the X 
chromosomes appear to be also upregulated in the XX 
sex, which necessitates additional compensatory measures. 
In female mammals, one of the X chromosomes is 
globally silenced, whereas in hermaphrodite worms, gene 
expression on both X chromosomes is downregulated by 
about 50% (Figure 1). An emerging principle is that the 
net fold-changes of dosage compensation are not 
achieved by a single mechanism (that is, there is no 
simple switch for ‘twofold up’), but by integration of 
activating and repressive cues, as discussed later.

In what follows we summarize recent insight into the 
dosage-compensation mechanisms of the XX/XY sex 
chromosome systems, which nicely illustrate the 
evolution of global, genome-wide regulatory strategies. 
However, compensation systems of this type are not 
absolutely required for the evolution of heterogametic 
sex. Birds, some reptiles, and some other species use the 
ZW/ZZ sex-chromosome system, which does not use the 
mechanism of chromosome-wide transcriptional regula­
tion to compensate for monosomy [17-19].

Dosage compensation of sex chromosomes reveals 
the balancing capacity of chromatin
The sex chromosomes of the XX/XY system are thought 
to have originated from two identical chromosomes in a 
slow process that was initiated by the appearance of a 
male-determining gene. In order to be effective, this gene 
should be propagated only in males, which was achieved 
by evolving a Y chromosome that was specifically propa­
gated through the male germline. The necessary suppres­
sion of recombination between this ‘neo-Y’ chromosome 

Figure 1. Schematic representation of different dosage-
compensation systems. (a) Drosophila melanogaster, (b) Homo 
sapiens, (c) Caenorhabditis elegans. Combinations of chromosomes 
in the diploid somatic cells of males and females are shown. The sex 
chromosomes are symbolized by the letters X and Y, autosomes as 
A. Dosage-compensated chromosomes are colored: red indicates 
activation, blue repression. The sizes of the As indicate the average 
expression level of an autosome in a diploid cell. The sizes of the 
X chromosomes reflect their activity state (see text). The arrows 
represent the activating and repressive factors that determine the 
activity of the corresponding sex chromosome. In Drosophila (a), 
the male X chromosome is transcriptionally activated twofold in the 
male to match the total level of expression from the two female X 
chromosomes. In mammals (b), X chromosomes are hypertranscribed 
in both sexes, and to equalize X-chromosomal gene expression 
between the sexes, one of the two X chromosomes is inactivated 
in females. In C. elegans (c), males do not have a Y chromosome (O 
indicates its absence) and XX individuals are hermaphrodites. Worms 
also overexpress X-linked genes in a sex-independent manner, 
as indicated by the red-colored Xs, but subsequently halve the 
expression levels of the genes from both X chromosomes in the 
hermaphrodite (indicated by the blue Xs) to equalize gene dosage 
between the sexes.
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and the corresponding sister chromosome (which would 
become the future ‘neo-X’) favored the accumulation of 
mutations, deletions and transposon insertions, an 
erosive process that led to loss or severe degeneration of 
Y chromosomes [20-24]. The progressive erosion of the 
evolving Y left many X-chromosomal genes without a 
corresponding copy on the Y chromosome (the hemi­
zygous state). The initial consequences of gene loss on 
the Y chromosome may have been absorbed by the 
intrinsic biochemical buffering properties of the cell 
noted above [11]. However, when the majority of genes 
on the X chromosome lost their homologs on the Y 
chromosome the co-evolution of regulatory processes to 
overcome the reduced gene dose - that is, dosage-
compensation systems - increased the fitness of the 
organisms. These dosage-compensation systems are likely 
to originate in the male sex (XY or X0 in the examples 
discussed here), as it is in males that factors acting in a 
dose-dependent manner (such as transcription factors, 
chromatin constituents and components of signal-
transduction cascades) would become limiting [25,26].

A logical adaptation to ensure the survival of males 
would be the increased expression of X-chromosomal 
genes [6]. This intuitively obvious mechanism has long 
been known in Drosophila. Observing the specialized 
polytene chromosomes in larvae (which are composed of 
thousands of synapsed chromatids arising from repeated 
DNA replication without chromosome segregation), 
Mukherjee and Beermann [27] were able to directly 
visualize nascent RNA and found that the single X 
chromosome in males gave rise to almost as much RNA 
as two autosomes. Recent genome-wide expression 
analyses confirmed these early observations [28,29] and 
further genome-wide studies suggest that this mechanism 
may also operate in C. elegans and mammals [14-16]. For 
these species neither the mechanism of this chromosome-
wide regulation nor the factors involved are known.

For Drosophila, however, thanks to decades of out­
standing genetics exploring male-specific lethality, we 
know at least a few of the prominent players. Here, the 
twofold stimulation of transcription on the X chromo­
some is mediated by the male-specific assembly of a 
dosage-compensation complex (the Male-Specific-Lethal 
(MSL) complex), a ribonucleoprotein complex that asso­
ciates almost exclusively with the X chromosome 
(reviewed in [30]; Figure 2). Most subunits of the MSL 
complex are found in both sexes of Drosophila, except for 
the key protein MSL2 and the noncoding roX (RNA-on-
the-X) RNAs, which are only expressed in males (Figure 2), 
thus leading to the assembly of the MSL complex 
exclusively in male cells. The MSL complex associates 
with the transcribed regions of target genes in a multi-
step process that has been reviewed elsewhere [31-33]. 
Key to the stimulation of transcription is the 

MSL-complex subunit MOF (Males-absent-on-the-first; 
also known as KAT8, lysine acetyltransferase 8), a histone 
acetyltransferase with specificity for lysine 16 in the 
amino-terminal tail of histone 4 (H4K16ac). Acetylation 
of this residue is known to reduce interactions between 
nearby nucleosomes and leads to unfolding of nucleo­
somal fibers in vitro [34,35].

Whereas the action of the dosage-compensation 
complex in Drosophila is limited to males, in C. elegans 
and mammals the unknown factors that stimulate X-
chromosomal transcription appear to be active in the 
hermaphrodite and the female, as well as in males. If, 
however, X activation re-balances the male genome in 
these species, it follows that in the XX sex, having two 
hyperactive X chromosomes relative to the autosomes 
must be suboptimal [36]. Consequently, further compen­
sation is needed. Mammals have evolved a strategy of 
inactivating one of the female X chromosomes to achieve 
a level of X-chromosome gene expression closely resemb­
ling that from the single X in males (reviewed in [37]; 
Figure 1b). Which X is inactivated is random, and 
inactivation starts with the stable transcription of the 
long, non-coding Xist (Xi-specific transcript) and RepA 
(repeat A) RNAs from a complex genetic region on the 
future inactive X (Xi) called the X-inactivation center. 
Subsequently, Xist RNA - possibly in complex with 
undefined protein components - spreads to coat the 
entire Xi. Silencing involves the recruitment and action 
of the Polycomb silencing machinery via the Xist and 
RepA RNAs [38,39], followed by reinforcement through 
the incorporation of histone variants, removal of activat­
ing histone modifications and DNA methylation [37]. 
Remarkably, the independent evolution of nematode 
worms arrived at a very different solution to the problem. 
C. elegans equalizes the gene dose by halving the 
expression levels of genes on both X chromosomes in the 
hermaphrodite, using a large dosage-compensation 
complex containing components of the meiotic/mitotic 
condensin. The involvement of condensins may point to 
regulation at the level of chromatin fiber compaction 
([40] and references therein). The scenario shown 
schematically in Figure 1c for C. elegans suggests that 
dosage compensation in this species involves a twofold 
increase in X-linked transcription in both sexes, which is 
opposed by a twofold repression in hermaphrodites. The 
underlying mechanisms are still mysterious.

This short summary of the three very different dosage-
compensation systems reveals two common denomi­
nators. First, they all adapt factors and mechanisms, 
which are already involved in other regulatory processes, 
for the compensation task by harnessing them in a new 
molecular context. Furthermore, these factors are all 
known for their roles in modulating chromatin structure. 
It seems that chromatin can adopt a variety of structures 

Prestel et al. Genome Biology 2010, 11:216 
http://genomebiology.com/2010/11/8/216

Page 3 of 8



with graded activity states, which can be used either to 
completely switch off large chromosomal domains or to 
fine-tune transcription (either up or down) in the twofold 
range. Dosage compensation therefore integrates with 
other aspects of chromatin organization. In Drosophila, 
the male X chromosome that accumulates the H4K16 
acetylation mark is particularly sensitive to mutations in 
general chromatin organizers. Prominent among these is 
the zinc finger protein Su(var)3-7 (suppressor of varie­
gation 3-7), a heterochromatin constituent known to 
bind HP1 (heterochromatin protein 1). Normal levels of 
Su(var)3-7 are required for proper dosage compensation 
and to ensure the selective binding of the dosage-
compensation complex to the X chromosome [41-43]. 
The male X polytene chromosome bloats when 
Su(var)3-7 levels are reduced and condenses when the 
protein is in excess. These changes in chromatin 

condensation depend on a functional dosage compen­
sation complex, suggesting that the MOF-catalyzed 
acetylation of histone 4, and subsequent unfolding effect 
of H4K16ac, is constrained by as yet unknown counter­
acting factors (Figure 3a), conceivably by ones that 
promote chromatin compaction.

Selective, massive unfolding of the dosage-compen­
sated male X chromosome in Drosophila is also observed 
when the nucleosome remodeling factor (NURF) is 
inactivated [44,45]. Nucleosome remodeling by NURF 
may thus also serve to counteract excessive unfolding due 
to H4K16 acetylation. Tamkun and colleagues [46] 
suggested that NURF might achieve this task by 
maintaining sufficiently high histone H1 levels on the X 
chromosome. Clearly, the degree of chromatin compac­
tion can be adjusted by integration of unfolding and 
compacting factors.

Figure 2. The Drosophila melanogaster male dosage-compensation complex. The complex, called the MSL complex in Drosophila, consists 
of five proteins (MSL1, MSL2, MSL3, MOF, MLE) and two non-coding roX RNAs. The proteins, but not the roX RNAs, are evolutionarily conserved, 
as related proteins can be found in yeast and humans (for details see [30,68,69]). The box lists the conserved protein domains of the individual 
members of the Drosophila MSL complex and their identified functions for dosage compensation. MSL2 is the only male-specific protein subunit; all 
other subunits are present in both sexes. The two roX RNAs (see bottom of table) are also only expressed in males. The curved arrows symbolize the 
known enzymatic activities in the dosage-compensation complex. MLE is an RNA helicase that hydrolyzes ATP to effect conformational changes 
in DNA and RNA [70]. MOF is a lysine acetyltransferase with specificity for lysine 16 of histone H4. Abbreviations of the protein domains are: CXC, 
cysteine-rich domain; ZnF, zinc finger; PEHE, proline-glutamic acid-histidine-glutamic acid; HAT, histone acetyltransferase; MYST, MOZ (monocytic 
leukemia zinc finger protein), YBF2/SAS3 (something about silencing 3), SAS2 and TIP60 (60 kDa Tat-interactive protein); MRG, mortality factor on 
chromosome 4 related gene and DExH, aspartic acid-glutamic acid-x-histidine.
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Harnessing MOF for dosage compensation
Further analysis of the role of Drosophila MOF in dosage 
compensation suggests that it may affect gene expression 
by modulating the productivity of the transcription 
machinery in the chromatin context. Although MOF is 
able to acetylate non-histone substrates [47,48], its main 
substrate in the context of dosage compensation is the 
strategic H4K16. Biochemical studies showed that this 
modification interferes directly with the folding of the 
nucleosomal chain into 30-nm fibers in vitro [35,49]. 
Accordingly, H4K16 acetylation by MOF has the 
potential to counteract chromatin-mediated transcrip­
tional repression [50,51] (Figure 3a). In the simplest 
scenario, the only task of the MSL complex in Drosophila 
would be to enrich MOF on the X chromosome relative 
to the autosomes. However, studies of the effect of MOF 
in yeast or in a cell-free chromatin transcription system 
showed that H4K16 acetylation does not automatically 
increase transcription by twofold, but by many-fold [50]. 
This strong activation potential of MOF can also be 
visualized in Drosophila. We recently established Droso­
phila lines in which MOF is tethered to a β-galactosidase 
reporter gene engineered to reside on an autosome [51]. 
Sorting adult flies according to sex allowed comparison 
of MOF-dependent reporter gene stimulation in male 
flies, where MOF is part of the dosage-compensation 
complex, and in females, where its molecular context was 
initially unknown. In females, MOF recruitment 
stimulated transcription from a proximal promoter by an 
order of magnitude. The effect faded with increasing 
distance between recruitment site and transcription start 
site and therefore appears to be related to local chromatin 
opening by promoter-bound co-activators.

By contrast, the molecular context of the MSL complex 
in males restricted the activation effect of MOF to the 
twofold range reminiscent of dosage compensation, and 
this effect was observable over a distance of 5 kb [51]. 
Notably, similar H4K16 acetylation levels accompanied 
the very different activation modes in the two sexes. So it 
seems that the activation potential of H4K16 acetylation 
revealed in females is constrained in males. Ectopic 
assembly of the MSL complex in females by expression of 
MSL2 constrained the strong activation to a twofold 
range [51]. We concluded from these and further studies 
that the Drosophila dosage-compensation complex 
achieves a twofold activation of transcription by 
integrating activating and repressive principles [51].

MOF serves as an example of the principle that dosage 
compensation employs chromatin modifiers that are also 
functional in other contexts. MOF is expressed at only 
slightly lower levels in females than in males, and it also 
resides in at least one other complex in addition to the 
MSL complex. Mendjan et al. [52] first reported the 
existence of an alternative complex (the NSL complex, 

for ‘Non-Specific-Lethal’) in mixed-sex embryos and 
male cells of Drosophila, which contained a number of 
poorly characterized nuclear proteins and two 

Figure 3. Possible mechanisms for dosage compensation. 
(a) The twofold activation of the single male X chromosome in 
Drosophila could be achieved by a large, MOF-dependent activation 
of transcription through H4K16 acetylation and its counteraction 
by yet unknown factors, mediated by the dosage-compensation 
complex in males [51]. In (a,b), transcriptional level 1 refers to the 
normal regulated level of transcription from a single uncompensated 
X chromosome in females. (b) Furthermore, the twofold activation 
of the male X chromosome could be achieved by a combination 
of mechanisms: a general buffering/feedback component and a 
dedicated feed-forward mechanism (dosage compensation as 
suggested in (a)) [7]. The effects of these two processes could add 
up to the expected twofold compensation required to equalize 
the expression of X-linked genes between the sexes. (c) Precise 
transcription levels could result from negotiation between a number 
of activating and repressive factors (up and down arrows). In this 
instance, transcriptional level 1 refers to a ‘basal’ transcription state. 
This hypothetical model assumes that additional factors beyond 
those mentioned in (a) and (b) contribute to final transcription 
levels, such as male-enriched protein kinases, heterochromatin 
components, chromatin remodelers, and others (for details, see text).
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components of nuclear pores [52]. The closely related 
MOF-MBD-R2 complex, purified by us from female 
Drosophila cells [51], shares several prominent compo­
nents with the NSL complex, including WDS (Will Die 
Slowly, a homolog of mammalian WDR5 (WD repeat-
containing protein 5), dMCRS2 (microspherule protein 1), 
a forkhead-associated domain protein, and MBD-R2 (an 
uncharacterized protein harboring similarity to methyl-
CpG-binding domains) [53]. In contrast to the NSL 
complex, the MOF-MBD-R2 complex does not contain 
nuclear pore components [51].

The evidence so far suggests that the MOF-MBD-R2 
complex provides the molecular context for the strong 
activation elicited by MOF in females. Globally, MOF co-
localizes with MBD-R2 to active genes with enrichment 
towards their 5’ ends on all chromosomes in male and 
females, except for the male X chromosome (Figure 4). In 
male Drosophila cells, MOF is enriched on the X 
chromosome, where it co-localizes with MSL-complex 
components (such as MSL1) with a bias towards the 3’ 
end (Figure 4). In male Drosophila cells, MOF apparently 
distributes dynamically between the two complexes. 
Ectopic expression of MSL2 in female cells, which leads 
to assembly of a dosage-compensation complex, re­
localizes MOF from the autosomes to the X chromosome 
and from the 5’ end to the 3’ end of transcribed genes. 
The 3’ enrichment suggests that dosage compensation in 
Drosophila may act at the level of transcription 
elongation [54,55].

The earlier notion that MOF, a global activator of trans­
cription, was harnessed to balance the X-chromosomal 
monosomy in male Drosophila is supported by the fact 
that the H4K16-specific acetyltransferase activity has 
been conserved during evolution, although its biological 
function has not [56,57]. MOF (KAT8) is the best-studied 
member of the evolutionarily conserved family of MYST 
acetyltransferases (MOZ (monocytic leukemia zinc finger 
protein), YBF2/SAS3 (something about silencing 3), 
SAS2 and TIP60 (60 kDa Tat-interactive protein)). To the 
best of our knowledge, mammalian MOF is not involved 
in dosage compensation, but in regulating gene expres­
sion in more specific ways and in maintaining genome 
stability. Knock-down of human MOF impairs the signal­
ing of DNA damage via the ATM pathway in response to 
double-strand breaks, causing increased cell death and a 
loss of the cell-cycle checkpoint response [58]. Mouse 
MOF is essential for oogenesis and embryogenesis [59]. 
Loss of H4K16ac is a cancer hallmark [60] and MOF is 
deregulated in a number of diseases [61,62].

As in Drosophila, mammalian MOF resides in several 
distinct complexes. These include the MOF-MLL1-NSL 
complex, which is required for the expression of the Hox 
9a gene [63]; a complex containing the homologs of the 
Drosophila MSL3 and MSL1 that contributes to global 

H4K16 acetylation [64,65]; and a complex most closely 
related to the Drosophila NSL complex [52], containing 
human NSL1 (MSL1v1) and PHF20 (PHD finger protein 
20, the homolog of MBD-R2), in addition to other NSL 
protein homologs. This complex has attracted particular 
attention as it is not only responsible for the majority of 
H4K16ac in human cells [66], but also acetylates p53 at 
lysine 120 (K120) [66,67]. p53 in which K120 is mutated 
can no longer trigger the apoptotic pathway, yet its role 
in the cell-cycle checkpoint is not impaired. Evidently, 
the substrate specificity of human MOF and the 
physiological processes in which it is involved are largely 
determined by the molecular context of the acetyltrans­
ferase, defined by the composition of the different 
complexes. In Drosophila, however, one of the complexes 
has been adapted to serve the goal of balancing the 
genome for dosage compensation.

Negotiation for small effects
Although the mechanisms through which aneuploidies 
are compensated for are still mysterious, a number of 
overarching principles have emerged during recent years, 

Figure 4. Schematic representation of the distribution of the 
key regulators of dosage compensation on a target gene in 
Drosophila. The gene is depicted as a gray bar at the top of the 
figure, with the arrow representing the transcription start site. The 
figure is based on genome-wide binding studies of MOF, MBD-R2 
and MSL1. The upper panel shows that MBD-R2 is enriched at 
promoters (5’) on all chromosomes in both sexes, underscoring its 
function as a general transcriptional facilitator. MOF co-localizes with 
the promoter peak of MBD-R2 on all chromosomes except for the 
male X chromosome, where it is more enriched towards the 3’ end 
of the target gene as a result of its association with the dosage-
compensation complex (bottom panel). The MSL1 profile serves as a 
marker for the presence of the dosage-compensation complex [51]. 
For details see text.
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mainly through studies of the X-chromosome mono­
somies. First, there is no simple switch for ‘two-fold up’ 
or ‘two-fold down’. Optimal expression levels are nego­
tiated by opposing principles. The X-chromosomal 
expression in hermaphrodite C. elegans results from 
integration of a global, twofold increase in expression in 
both sexes and a different counteracting hermaphrodite-
specific principle, which halves the expression again 
(Figure 1c).

The first genome-wide comparison of copy number and 
transcription in Drosophila revealed that a local or 
chromosomal hemizygosity is compensated for by the 
integration of at least two different mechanisms: an 
approximately 1.5-fold compensation can be attributed to 
general buffering or feedback effects, whereas the 
remaining compensation is contributed by the evolution 
of a feed-forward mechanism involving a dedicated 
dosage-compensation complex [7] (Figure 3b). Further­
more, the twofold activation in male Drosophila is a 
composite of a much larger stimulation, which is opposed 
by a repressive principle (Figure 3a). We therefore envis­
age that adjustment of the optimal gene expression levels 
may be a consequence of negotiation between a number 
of counteracting activating and repressing principles 
(Figure 3c). The complex and layered organization of 
chromatin appears to us as an advanced equalizer with 
many levers to allow optimal tuning of the transcription 
melody.
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3.3.1 Summary, significance and own contribution 

Summary, significance and discussion with recent literature  

The NSL complex is found at a subset of active genes but what determines whether a gene is bound 

and activated by the complex was unknown. In this study, we generated new and analysed existing 

genomic data sets to unveil the determinants that target the complex and define whether it engages in 

transcriptional activation. We found that the NSL complex primarily targets the promoters of active 

housekeeping genes. There, it co-localises with WDS, the chromatin remodeler subunit NURF301, the 

H3.K4 methyltransferase trithorax and the interband protein chromator. Importantly, only a subset of 

the genes that associate with the NSL complex are regulated by it. Comparing ChIP-chip data of 

chromatin regulators and promoter DNA sequences between regulated and non-regulated genes 

revealed that the set of NSL-activated promoters are enriched for the promoter DNA motif ‘Ohler 5’ 

and depleted for the insulators CP190 and BEAF as well as the heterochromatin protein 1c (HP1c). 

Together, these results show that the capacity of the NSL complex to activate transcription is highly 

context dependent. Moreover, our study suggests that not only tissue-specific genes employ dedicated 

transcription factors, but that housekeeping genes are also regulated by distinct sets of co-activators. 

Our observation that NURF301 and trithorax co-localise with the NSL complex was surprising at the 

time because these proteins were traditionally studied for their roles in regulating very restricted gene 

sets during specific developmental programs (Ringrose and Paro, 2004; Badenhorst et al., 2005). 

However, there is accumulating evidence that, under specific conditions, trithorax and its mammalian 

homologue MLL1 interact with the NSL complex (Petruk et al., 2001; Dou et al., 2005; Zhao et al., 

2013; Tie et al., 2014). In addition, the bromodomain of the mammalian NURF301 homolog, BPTF, 

has been reported to bind H4.K16ac (Ruthenburg et al., 2011).  

Recent studies confirmed our finding of NSL complex binding to housekeeping genes in Drosophila 

cells (Lam et al., 2012) and reported the conservation of this binding mode also in mouse cells 

(Chelmicki et al., 2014; Ravens et al., 2014). Interestingly, a deeper comparison of these articles also 

reveals some noteworthy differences. First, while we reported that only a minor subset of NSL bound 

genes are down-regulated after ablating either NSL1 or MBD-R2, Akhtar and colleagues described 

that a major fraction of NSL occupied genes are regulated by the complex, as assessed by measuring 

polymerase II occupancy on target and non-target gene promoters upon depleting NSL1 or NSL3 

(Lam et al., 2012). Furthermore, Akhtar and co-workers reported that the core promoter motif ‘DRE’ 

correlates best with the capacity of the NSL complex to regulate transcription, but our analysis 

suggests that while the binding ‘strength’ of NSL1 correlates best with this motif (‘DRE’), 

transcriptional regulation by the complex is rather associated with motif ‘Ohler 5’. These 

discrepancies can be, at least in part, attributed to the different approaches to evaluate the effect on 

transcription upon NSL ablation. While we monitored directly the steady-state mRNA levels, Akhtar 

and colleagues used diminished ChIP occupancy of the RNA polymerase II subunit Rpb3 as a proxy 
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for transcriptional regulation. It is conceivable that reduced polymerase II loading at promoters may 

not always translate into a decrease of mRNA production. Likewise, monitoring steady-state mRNA 

levels may be too insensitive in cases where newly generated transcripts are outnumbered by a large 

pool of pre-existing mRNA molecules. An alternative and complementary approach would be to 

analyse the polymerase II isoform that is phosphorylated on serine 5 at its CTD along gene bodies, 

which has been documented to show an overall good correlation with gene activity measured by bulk 

mRNA levels (Kharchenko et al., 2011; Regnard et al., 2011).  

Second, while the Drosophila NSL complex primarily binds promoters (Feller et al., 2012; Lam et al., 

2012), a substantial fraction of mouse NSL binding events was additionally detected at enhancers 

(Chelmicki et al., 2014). Interestingly, while Akhtar and colleagues reported that the mouse NSL 

complex regulates key pluripotency factors in addition to housekeeping genes and that most 

transcription regulatory potential is observed from NSL sites at enhancers (Chelmicki et al., 2014), 

Tora and colleagues only observed minor intergenic binding of mouse NSL1 and no deregulation of 

pluripotency genes (Ravens et al., 2014).  This discrepancy may be in part attributed to monitoring and 

ablating different components of the NSL complex (NSL1 in Ravens et al. vs. NSL3 and MCRS2 in 

Chelmicki et al.).  

An important recent structure-function study provided strong evidence that the interaction between 

WDR5 (human homolog to the fly WDS), which is a component of many multi-protein complexes 

including the MLL1 complex and the ATAC complex (Suganuma et al., 2008; Shilatifard, 2012), is 

also a central constituent of the NSL complex that tethers NSL1 to NSL2 and is essential for 

recruitment of the complex to its target genes (Dias et al., 2014). This study also shows that WDS uses 

the same regions for interacting with NSL1 and NSL2 as it does for its interaction within the MLL1 

complex. This finding provides strong structural support that WDR5 is a shared component of the 

NSL and MLL complex rather than tethering the acetyltransferase and methyltransferase complexes to 

a super-complex, as it has been suggested before (Dou et al., 2005; Li et al., 2009).  

 

Own contribution 

Prof. Peter Becker and I conceived the project and wrote the manuscript. I performed all genomic and 

cell biological experiments, analysed the data and prepared all figures. I initiated the collaboration 

with Dr. Johannes Söding and Holger Hartmann, who performed the core promoter analysis. Dr. 

Matthias Prestel developed and characterised the NSL1 antibody and conducted most of the reporter 

gene experiments. Dr. Tobias Straub supervised the bioinformatic analysis and provided important 

scripts. 
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ABSTRACT

The MOF (males absent on the first)-containing NSL
(non-specific lethal) complex binds to a subset of
active promoters in Drosophila melanogaster and
is thought to contribute to proper gene expression.
The determinants that target NSL to specific pro-
moters and the circumstances in which the complex
engages in regulating transcription are currently
unknown. Here, we show that the NSL complex pri-
marily targets active promoters and in particular
housekeeping genes, at which it colocalizes with
the chromatin remodeler NURF (nucleosome re-
modeling factor) and the histone methyltransferase
Trithorax. However, only a subset of housekeeping
genes associated with NSL are actually activated by
it. Our analyses reveal that these NSL-activated pro-
moters are depleted of certain insulator binding pro-
teins and are enriched for the core promoter motif
‘Ohler 5’. Based on these results, it is possible to
predict whether the NSL complex is likely to regulate
a particular promoter. We conclude that the regula-
tory capacity of the NSL complex is highly context-
dependent. Activation by the NSL complex requires
a particular promoter architecture defined by com-
binations of chromatin regulators and core promoter
motifs.

INTRODUCTION

Eukaryotic organisms consist of a diversified set of highly
specialized cells. Their individual identities are determined
by the appropriate expression of cell-specific genes while a
battery of genes that are expressed in all cells maintain
general (‘housekeeping’) functions. Gene expression at

the transcriptional level is governed by an intricate inter-
play between transcription regulators and local chromatin
organization. In general, the packaging of genomes into
chromatin brings about a default state of repression, as
nucleosome assembly constantly competes with transcrip-
tion factors for promoter binding sites. Overcoming
this repression requires a concerted action of various
chromatin-modifying principles. These include ATP-
dependent nucleosome remodeling factors, which are
targeted to specific loci by DNA-bound proteins and
post-translational histone marks where they reorganize
nucleosomes to facilitate transcription (1). An example
for such an activity in Drosophila melanogaster is NURF
(nucleosome remodeling factor), whose large regulatory
subunit, NURF301, interacts with a diversity of transcrip-
tion factors and methyl marks on lysine 4 of histone H3
(H3K4me3) (2,3) (and references therein). NURF has also
been reported to bind to acetylated lysine 16 of histone H4
(H4K16ac) (2), a nucleosome modification that prevents
nucleosome–nucleosome interactions that promote the
folding of the nucleosomal fiber into more compact struc-
tures. The acetyltransferase MOF (males absent on the
first) is a major enzyme responsible for this modification
in both, Drosophila and mammalian cells (4,5).
MOF is best known for its key role in the Drosophila

dosage compensation process. It is a subunit of the dosage
compensation complex [DCC, also known as male-specific
lethal (MSL) complex], which brings about the 2-fold
transcriptional activation of genes on the single male X
chromosome to equalize expression with the correspond-
ing genes transcribed from the two female X chromosomes
(6). The DCC is constituted only in male flies and the
five protein components, MSL1, MSL2, MSL3, maleless
(MLE) and MOF, as well as the non-coding roX RNAs
are essential for male viability. According to the current
model, the DCC recruits MOF to the transcribed regions
of X-chromosomal genes. Subsequent acetylation of
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H4K16 renders chromatin more accessible and potentially
facilitates transcriptional elongation (7,8).
With the exception of MSL2, all DCC protein sub-

units are also expressed in female flies, and therefore
also serve more general, yet barely understood functions
(9). For example, the acetyltransferase MOF appears to be
involved in more global transcription regulation as it has
recently been found in an alternative complex together
with MCRS2, the WD40-repeat protein WDS (will-die-
slowly), NSL1, NSL2, NSL3 and the plant homeo
domain (PHD) protein MBD-R2 (10–12). With reference
to the dosage compensation ‘MSL complex’, this alterna-
tive MOF-containing assembly was termed ‘NSL
complex’ (for ‘non-specific lethal’), as its subunits are
essential in both sexes (10). The incorporation of MOF
into either the DCC or the NSL complex is determined
by association of MOF with the PEHE domains of the
respective MSL1 or NSL1 subunits (10). Genome-wide
mapping by chromatin immunoprecipitation (ChIP)
coupled to DNA microarrays (ChIP-chip) identified
MOF binding sites at many, but not all active promoters
in male and female cells (13). Subsequent studies revealed
that MBD-R2 colocalizes with MOF at many active pro-
moters in both sexes, suggesting that the NSL complex
recruits MOF to these sites (12). This is compatible with
a recent ChIP-Seq study (ChIP DNA analyzed by massive
parallel sequencing), which found MCRS2 and NSL1
peaks at promoters in mixed-sex 3rd instar larval
salivary glands (11).
In male cells the association of MOF with NSL subunits

is in competition with its incorporation into the DCC,
which redirects it to the transcribed regions of X chromo-
somal genes (12). However, key aspects of MOF’s target-
ing in the context of the NSL complex are unclear. What
determines the binding of the NSL complex to only a
subset of the active promoters? The available data also
are ambiguous when it comes to the role of the NSL
complex; does it activate or repress target genes, or
perhaps both? Ablating the NSL subunit MBD-R2 in
male embryonic cells resulted in a reduced expression of
many MBD-R2 target genes (12). In contrast, a similar
fraction of genes was found up- and downregulated
when MBD-R2 and NSL3 were depleted in 3rd instar
salivary glands (11).
In this study, we created novel data sets and analyzed

existing ones to compare functional interactions of NSL
subunits in different developmental tissues to better define
the targets of the NSL complex. We systematically
explored the common properties of the NSL target

genes, searching for colocalizing chromatin factors and
prevalent sequence motifs in target promoters. We
traced the NSL complex through monitoring the NSL1
subunit and found that it preferentially binds to pro-
moters of housekeeping genes, which are also approached
by the chromatin remodeler NURF and the
methyltransferase Trithorax. There, NSL1 binding correl-
ates best with the core promoter element DNA
replication-related element (DRE). However, only a
defined fraction of NSL1-bound genes are actually
regulated by the complex. Those promoters are depleted
for insulator proteins and are enriched for the
E-box-derived promoter motif ‘Ohler 5’. Our analysis pro-
vides a functional classification of housekeeping genes ac-
cording to their NSL coregulator requirements.

MATERIALS AND METHODS

Generation of the NSL1 antibody

A cDNA fragment corresponding to NSL1 amino acids
1271–1550 was Polymerase Chain Reaction (PCR)
amplified from cDNA clone #LP09056 (Drosophila
Genomics Resource Center; see Table 1) and cloned
into the pGEX2TKN. The N-terminally glutathion-S-
transferase (GST)-tagged NSL1 fragment was expressed
in Escherichia coli BL21, purified on glutathione beads
and used to raise antibodies in rabbit by a commercial
supplier.

RNA interference in S2 cells, immunoblotting and indirect
immunofluorescence

Male Drosophila S2 cell cultivation and RNA interference
(RNAi) were carried out as described before (12). Briefly,
1.5� 10 e6 cells were incubated with 10 mg dsRNA
targeted against NSL1 or GST as a control. Primer
sequences used for dsRNA production are listed in
Table 1. Cells were harvested after 6 or 7 days and pro-
cessed for RNA (see below) and protein. For every 10 e6

cells, cells were lysed for 10min in 100 ml of N-buffer
[15mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid) pH 7.5, 60mM KCl, 15mM NaCl, 0.5mM
ethylene glycol tetraacetic acid pH 8, 0.25% Triton-X,
10mM sodium butyrate, 1mM phenylmethanesulfo-
nylfluoride, 0.1mM Dithiothreitol protease inhibitor
cocktail (Roche)] on ice and the chromatin fraction was
pelleted by centrifugation. RNA for Affymetrix expres-
sion profiling was prepared as described (12). RNA
labeling and cDNA hybdridization to a Drosophila

Table 1. Primer table

Construct Forward primer sequence Reverse primer sequence

NSL1 RNAi amplicon 1 TTAATACGACTCACTATAGGGA
GCGTC CGAGCTCAAC CTTC

TTAATACGACTCACTATAGGGA
CACATGGGTGTGTTCATTAGTC

NSL1 RNAi amplicon 2 TTAATACGACTCACTATAGGGA
GATGTCGCATCAAAGTCAGAGG

TTAATACGACTCACTATAGGGA
GACTCGAGAAGAGCTCGCTGAT

GST RNAi amplicon TTAATACGACTCACTATAGGGAG
AATGTCCCCTATACTAG GTTA

TTAATACGACTCACTATAGGGAGA
ACGCAT CCAGGCACATTG

NSL1 antibody cloning CGCTCCATGGCTTTCATT
AAGTTCCCCTGGAGCACC

ATTTCTAGATTAGATGC
GTCTGCTGCGAACACCCTC
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Genome GeneChip 2.0 was performed at the Gene Center
Affymetrix Microarray Platform (Munich, Germany).
Immunoblot analysis and immunofluorescence micros-
copy (IFM) analysis was performed as described previous-
ly (14). The lamin antibody was obtained from H.
Saumweber (Berlin) and the MSL1 antibody was
described previously (15).

Reporter gene ChIP assay and luciferase reporter assay

The reporter gene ChIP assay and luciferase reporter
assay have been described before (12).

Chromatin extraction and immunoprecipitation

Chromatin extraction and immunoprecipitation were pre-
viously described (12). Briefly, chromatin extracts from
sex-sorted adult flies were prepared and the DNA concen-
tration of the extract was determined. DNA (7.5–15 mg)
were used for a single ChIP experiment. Five microliters of
anti-NSL1 serum was used in a single IP reaction. After
the precipitation and extensive washing, DNA was ex-
tracted with phenol/chloroform, ethanol precipitated and
further cleaned using the GenElute PCR clean-up kit
(SIGMA). DNA was amplified using the whole-genome
amplification kit (WGA, SIGMA). Labeling, hybridiza-
tion to customized high-resolution NimbleGen tiling
arrays (comprising the euchromatic part of the entire X
chromosome, 5 Mb of 2L, 2R and 3L, respectively, as
well as 10 Mb of 3R) (12), scanning and feature extraction
was performed by imaGenes (Berlin).

ChIP-chip data processing

ChIP-chip data analysis was performed using
R/Bioconductor (www.r-project.org; www.bioconductor
.org). Raw signals of the NimbleGen NSL1 ChIP-chip
were normalized and log2-transformed using the ‘vsn’
package (16). IP/input ratios of the modENCODE data
were scaled to a mean of zero and a standard deviation of
one. Promoter enrichments were calculated by
summarizing the probe level signals in a window of
600 bp centered at the transcriptional start site (TSS)
(FlyBase release 5.22). Promoter binding was classified
based on the bimodal distribution of binding values,
where genes within the population of lower values were
considered ‘unbound’ and genes within the population of
higher values were considered ‘bound’. Alternatively,
‘bound’ were selected based on the fdr values from the
‘locfdr’ package applied on the promoter binding values
with a fdr cutoff of <0.2. The results are robust to several
normalization methods and promoter window definitions.

Genes were classified ‘active’ when (i) their Affymetrix
expression value exceeded four (see below) and (ii) RNA
polymerase II [modENCODE profile (17)] was classified
as ‘bound’ on their promoters. A similar result was
obtained using genes which are ‘bound’ (modeled on the
bimodal distribution of the averaged binding along the
transcribed region) by the elongating polymerase [serine
2 phosphorylated RNA polymerase II, data from (18)].

Promoters were classified as ‘peaked’, ‘broad’ and ‘weak
peak’ promoters according to Hoskins et al. (19) and Ni
et al. (20). Hierarchical cluster analysis of the promoter

binding pattern was carried out using the R package
‘hclust’ and the ‘complete’ or ‘ward’ clustering approach
as indicated in the figure legends.
All available modENCODE chromatin ChIP-chip data

sets were screened for factors, which are enriched at
promoter locations (by March 2011). After initial data
quality assessment probe level binding was assessed for
promoter probes (broad: ±300 bp centered at TSS;
narrow: ±100 bp centered at TSS; upstream-biased:
�300 - TSS- +100 bp), transcriptional termination (TT)
sites (broad: ±300 bp centered at TT; narrow: ±100 bp
centered at TT; downstream-biased: -100 – TT+ 300 bp),
gene probes (probes corresponding to annotated genes
without promoter and termination probes) and intergenic
probes (defined as probes not found in previous groups).
Only ChIP-chip data sets with a clear enrichment for
promoter probes relative to gene, intergenic and termin-
ation probes were selected for this study.

Transcriptome data analysis

Transcriptome data analysis was conducted as described
previously (12). Briefly, raw signals were normalized,
summarized and log2-transformed using the ‘gcrma’
package. Significant change of gene expression was
calculated applying the ‘locfdr’ package on a ‘sam’ statis-
tics using a cutoff of fdr <0.35. Alternatively, genes with
log2 (NSL1 RNAi–GST RNAi)< (�1) were considered
‘down-regulated’. The results are robust to various par-
ameters in data analysis, as assessed by choosing varying
thresholds. All expression data set values are
log2-normalized with a theoretical dynamic range of
2exp16 (Affymetrix.com).

Housekeeping gene definition

Affymetrix expression data sets of 40 different Drosophila
tissues [GSE7763, (21)] were processed as described above
for the NSL1 transcriptome data set. For every gene, the
standard deviation was calculated across all 40 samples
(gene variation index). Filtering for active genes, the dis-
tribution of standard deviations resulted in two major
populations with the best discrimination at a standard
deviation of �1.5 (Supplementary Figure S9A and B).
Consequently, genes with a gene variation index <1.5
were considered housekeeping genes and genes with a
gene variation index >1.5 were considered differentially
regulated genes. The results are robust to different applied
thresholds. In an alternative analysis (presented in
Supplementary Figure S2E), we took the more stringent
call for housekeeping gene function according to the clas-
sification of Weber and Hurst (22). Here, active genes
which belong to either the ‘tau’ class or to the ‘breadth’
class were considered housekeeping genes.

ChIP-Seq data analysis

NSL1 ChIP-Seq and corresponding input data sets (11)
were obtained from the ArrayExpress repository
(E-MTAB-214). Sequence reads were mapped to the
Drosophila melanogaster genome (dm3) using bowtie
(23). Uninformative reads and read anomalies were filtered
out using the R package ‘SPP’ (24), resulting in 7840131
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unique NSL1 ChIP reads and 6094163 unique input reads.
Peaks were identified using SPP with the following param-
eters: ‘tag-wtd’ method, fdr=0.01, minimal distance
between detected peaks=100 bp. The input data was
used to determine statistical significance of NSL1 peaks,
resulting in the ‘peak score’.

Core promoter motif analysis

We used the 10 promoter motifs described by Ohler and
colleagues (25) to analyze promoter motif occurrences.
For every motif a log-odds weight matrix description
P of the binding sites is given, which was used to calculate
a motif score for a specific sequence. It ranges between
zero and one and measures how similar a binding site is
to the consensus. In a first step, the log-odds score for the
consensus site LC is determined by

LC ¼
Xw

i¼1
maxfPib : b 2 fA,C,G,Tgg,

where w is the motif length. The motif score given a
specific binding site starting at position k in sequence X
is calculated by

motif score ðX,kÞ ¼
1

LC

Xw

i¼1
PiXk+i�1

The motif score is the ratio of the log-odds score of the
site at position k to the log-odds score of the consensus
site. The motif score for the entire sequence X is given by
the highest motif score in the sequence:

motif score ðXÞ ¼ maxkfmotif score ðX, kÞg

For the analyses, we used a threshold of motif score
>0.3 to consider a binding site as functional. The
de novo sequence analysis algorithm will be reported else-
where (Hartmann and Soeding, manuscript in
preparation).

RESULTS

NSL1 colocalizes with MBD-R2 at many active promoters

The genomic interaction profile of MOF differs in adult
male and female flies, reflecting its incorporation into the
male-specific DCC and the general NSL complex (11,12).
We previously monitored the MBD-R2 distribution in
adult male and female flies but could not detect any sig-
nificant difference (12). Since MBD-R2 is the only NSL
complex protein which may interact with DCC members
(10) we sought to compare the genome-wide binding
pattern of the NSL complex with the potential core
subunit of the complex, NSL1. In order to compare the
NSL1 interactions in the genomes of adult male and
female flies, an antibody was raised against NSL1 and

its specificity confirmed combining RNAi with subsequent
detection by indirect immunofluorescence microscopy
(IFM) and immunoblotting (Supplementary Figure S1
and see below). The antibody was then used for
ChIP-chip experiments, where NSL1 was precipitated
from chromatin preparations from hand-sorted adult
male and female flies and the associated DNA was
amplified and hybridized to high-resolution DNA tiling
microarrays representing the X chromosome and an
equivalent amount of the autosomes. The binding profile
in male and female flies did not show any significant dif-
ferences (Supplementary Figure S2A). In addition, NSL1
was found at the same loci as MBD-R2 (Supplementary
Figure S2B), in agreement with the results of the biochem-
ical definition of both proteins as ‘NSL’ complex subunits
(10–12). The ChIP-chip profiling suggested that NSL1
globally binds target loci independent of the fly sex, con-
firming previous ChIP-qPCR analyses at selected loci (11).

Re-examination of the previously published NSL1
ChIP-Seq profiles, which had been generated from salivary
glands of mixed-sex third instar larvae (11), revealed a
systematic enrichment of NSL1 peaks at RNA polymerase
II—promoters relative to genes transcribed by RNA poly-
merases I and III (Table 2). Applying a superior peak
calling algorithm (24) to these data identified the majority
of NSL1 binding events within a window of 200 base pairs
(bp) around the annotated TSS (Figure 1A), implicating
the NSL complex in transcriptional initiation.

In order to avoid the heterogeneous salivary gland tis-
sue, which impedes a comparison of NSL binding with the
transcriptional activity and with other known promoter
binding factors, an NSL1 ChIP-chip profile was generated
from Drosophila S2 cells. These cells are commonly used in
the chromatin community because they provide a homo-
geneous biological material, a fact that allows comparing
our data to other published genomic data sets, such as the
comprehensive collection of chromatin factors and histone
modifications generated by the modENCODE consortium
with a similar ChIP-chip strategy (17).

The newly generated NSL1 ChIP-chip profile correlated
well with our previously published MBD-R2 profile (12)
as well as with the MBD-R2 profile generated by the
modENCODE consortium using a different antibody
(Supplementary Figure S2C). Therefore, in the following
we subsume the individual NSL1 and MBD-R2 profiles as
the ‘NSL complex’ binding, unless stated otherwise. We
related the NSL complex binding at promoters with the
transcriptional activity of the corresponding genes, using
the ChIP-chip profile of the elongating polymerase as a
direct readout for active transcription (18). The NSL
complex binds active genes with high preference, but
only a subset of �60–70% (depending on the threshold)
(Figure 1B, left). A similar result was obtained when

Table 2. NSL1 ChIP-Seq peaks mapped to transcript type

Transcript type MiRNA mRNA ncRNA rRNA snoRNA snRNA tRNA

Number annoted transcripts 194 22 765 189 160 249 47 314
Number NSL1 peaks mapped to transcript TSS 0 4302 14 0 1 1 5
Fraction NSL1-bound transcripts rel. to all transcripts 0 18.9 7.4 0 0.4 2.1 1.6
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Figure 1. The MOF-containing NSL complex is enriched at promoters of most housekeeping genes. (A) NSL1 peaks map close to the TSS. The
histogram displays the distance between the summit of NSL1 ChIP-Seq (11) peak and the closest TSS. Refinement of NSL1 positions relative to the
TSS compared to (11) was achieved by using an improved peak calling algorithm [SPP (24) and more precisely mapped TSSs (56)]. (B) NSL1
prevalently binds active gene promoters. Scatter plots of NSL1 promoter binding versus (i) elongating polymerase at all genes (left) (18), (ii) total
polymerase promoter occupancy at all genes (right) [modENCODE (17)]. Significant binding cutoffs of NSL1 (red) and polymerase (blue) are
indicated. The density plots on the top of each histogram depict the signal distribution of the elongating polymerase (left) and the total polymerase
(right). The density plot to the right indicates the NSL1 promoter signal distribution for all genes (black) and active genes [red, based on the
elongating polymerase II gene signal (18)], respectively. (C) The NSL complex preferentially associates with housekeeping genes (Welch two sample
t-test, P< 2.2 e�16). The boxplot depicts NSL1 binding at differentially regulated and housekeeping genes (for categorization, see ‘Materials and
Methods’ section). A similar result is gained using the available MBD-R2 ChIP-chip data sets (12). An alternative, more stringent categorization for
housekeeping genes after Hurst and colleagues (22) is shown in Supplementary Figure S2. (D) The NSL complex prevalently binds to dispersed
promoters (‘broad with peak’ and ‘weak peak’ promoters) over peaked promoters (Welch two sample t-test, P< 2.2 e�16). Density plot of NSL1
binding at genes, which were grouped according their transcriptional start site usage in ‘peaked’ promoters, ‘broad with peaked’ promoters and ‘weak
peak’ promoters using the data of (19). The window is split for NSL1-bound (right) and -unbound (left) promoters.

Nucleic Acids Research, 2012, Vol. 40, No. 4 1513

http://nar.oxfordjournals.org/cgi/content/full/gkr869/DC1


displaying gene activity as a function of polymerase pro-
moter binding (Figure 1B, right) or Affymetrix RNA ex-
pression profiling (data not shown), in agreement with
previous studies examining other markers of the NSL
complex (11,12).

The NSL complex specifically binds promoters of most
housekeeping genes

As noted above, the NSL1 profile is very similar in nuclei
of different sex and developmental stage despite significant
expression differences (Supplementary Figure S2A and D).
This indicates that the NSL complex may associate
with’housekeeping’ genes, which are equally expressed in
these diverse tissues. To test this hypothesis, we classified
genes as ‘housekeeping’ or ‘differentially regulated’ ac-
cording to their expression variation index, i.e. the stand-
ard deviation of expression, when compared between
several Drosophila tissues (21). According to this classifi-
cation the NSL complex showed a significant preference
for ‘housekeeping’ over ‘differentially regulated’ genes
(Figure 1C). The same conclusion was reached when
‘housekeeping’ genes were classified according to the
more exclusive definition of Hurst and colleagues (22)
(Supplementary Figure S2E). This conclusion is further
illustrated by a gene ontology (GO) analysis of bound
and unbound genes, which revealed that active NSL-
bound genes are enriched in housekeeping functions such
as ‘cofactor biosynthetic processes’, ‘microtubule-based
processes’, ‘protein complex biogenesis’ (Supplementary
Figure S3), whereas active genes which are not bound by
the NSL complex are enriched in categories such as ‘sen-
sory perception’, ‘cell adhesion’ and ‘tissue developmental
genes’ (Supplementary Figure S4).
Recent improvements in high-throughput RNA

profiling techniques facilitated quantitative mapping of
TSSs at base pair resolution (19,20). Whereas some pro-
moters possess well-defined TSS, where transcription reli-
ably initiates within a few base pairs (‘focused’ or ‘peaked’
promoters), many promoters show a dispersed zone of

transcription initiation of up to a few hundred base
pairs, which may be dominated by a major TSS (‘broad
promoters’) or not (‘weak peak promoter’) (20). Notably,
differentially regulated genes tend to have peaked pro-
moters whereas housekeeping genes are enriched for
broad or weak promoters (19). Concordantly, we found
that the NSL complex is strongly overrepresented at pro-
moters of the latter classes (Figure 1D).

The NSL complex activates only a specific subset of
bound genes

It has remained controversial whether NSL target genes
are activated or repressed after RNAi ablation of NSL
complex components (11–13). Akthar and coworkers
observed that similar fractions of NSL target genes were
up- or downregulated following RNAi against MOF,
NSL3 and MBD-R2 and subsequent microarray-based
transcriptome profiling (11,13). By contrast, we found
that the transcription of genes that had the NSL subunit
MBD-R2 bound was mostly reduced when MBD-R2
levels were lowered (12). However, since MBD-R2 is the
only NSL complex subunit that was suggested to interact
with components of the DCC (10), it was necessary to
exclude indirect effects. We therefore examined the expres-
sion of NSL target genes after depletion of the core
subunit of the NSL complex, NSL1.

RNAi against NSL1 in S2 cells efficiently depleted
the protein as examined by immunoblotting and IFM
(Supplementary Figure S1). Genome-wide transcriptome
profiling of the NSL1-depleted cells led to the down-
regulation of a considerable fraction of genes (Figure 2A),
most of which had been classified as ‘NSL-bound’ before
(Figure 2B). This is consistent with reporter gene assays
where the transcription brought about by tethering MOF
to a model promoter was diminished upon NSL1 deple-
tion (for details, see Supplementary Figure S5).
Importantly, the expression of the majority of NSL1
target genes was unchanged (Figure 2A), such that only
20–30% of them (depending on the threshold) required
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Figure 2. The NSL complex activates only a subset of its target promoters. (A) The histogram depicts transcriptome changes upon NSL1 depletion
in S2 cells. The overlayed modeled normal distribution (red) reveals a skew toward the population of down-regulated genes. The gene set was filtered
for active genes based on the transcriptome of control cells. (B) Proportional Venn diagram depicts genes 2-fold up- or down-regulated after RNAi
against NSL1, respectively, and NSL1-bound genes (NSL1 ChIP-chip in S2 cells). Numbers in parentheses indicate the size of the respective genes
sets. Only active genes (total polymerase promoter occupancy determined by the modENCODE consortium) represented on our custom-tailored
microarray tiling array are shown.
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NSL1 for proper expression. The same trend had been
observed earlier in the context with MBD-R2 (12) (and
data not shown). The MBD-R2 ChIP-chip profile and the
MBD-R2 RNAi transcriptome data are indeed very
similar to the NSL1 data (Supplementary Figures S2C
and S5C), arguing that they form a functional complex
bound to chromatin.

We next asked whether the genes that were activated by
the NSL complex coded for related housekeeping func-
tions. The GO classification revealed that the genes
whose expression was diminished upon NSL1 depletion
were enriched in genes involved in nucleic acid metabol-
ism, such as genes involved in transcription, RNA pro-
cessing, translation, DNA replication and DNA repair
(Supplementary Figure S6). Evidently, the NSL complex
only activates a specific subset of the many housekeeping
genes. In order to explore whether the promoters of
NSL-responsive genes could be recognized by a combin-
ation of cis-elements and trans-factors, we set out to iden-
tify chromatin proteins with genome binding profiles
related to the NSL complex and to investigate whether
the promoters regulated by NSL shared particular core
promoter motifs.

The NSL complex co-occupies target promoters
together with the chromatin remodeler NURF
and the histone methyltransferase Trithorax

The NSL1 ChIP-chip profile in S2 cells allowed a direct
comparison with the chromatin profiles recorded by the
modENCODE consortium (17), which used the same cell
line and the same profiling technique. We mined the
modENCODE data for profiles of general chromatin fac-
tors (excluding sequence-specific transcription factors)
and histone modifications, which are preferentially en-
riched at promoters (see ‘Materials and Methods’ section
for a detailed discussion on selection algorithm). We
created a pairwise correlation matrix for 23 selected pro-
tein and histone modification profiles and performed an
unsupervised hierarchical clustering to reveal the extent of
correlation with the NSL complex. We found the profiles
of the interband protein Chromator, the WD40-repeat
protein WDS, the NURF complex subunit NURF301
and the methyltransferase Trithorax highly correlated
with the NSL complex profile (Figure 3A and B;
Supplementary Figure S7). Chromator had been found
in an early NSL complex purification (10) but could not
been recovered in more recent experiments (11,12),
possibly due to more transient or indirect interaction.
Notably, 5–15% of promoters which contain NSL1,
MBD-R2, WDS, NURF301 and Trithorax lack
Chromator. The WD40-repeat protein WDS consistently
copurifies with NSL complex members (10–12) and other
chromatin complexes including the Drosophila ATAC
acetyltransferase complex (26) and mammalian MLL
methyltransferase complexes (27,28). NURF301 is the
diagnostic marker subunit of the Imitation Switch
(ISWI)-containing nucleosome remodeling factor
NURF, which stimulates transcription by remodeling
promoter nucleosomes (29,30). Trithorax was originally
described to counteract the repression of homeotic genes

by the polycomb group proteins (31–33). More recently,
genome-wide ChIP-chip studies have indicated a wide-
spread binding of Trithorax to many promoters (34,35).
The pairwise relationships between the tested factors

are further illustrated by the scatter plots depicted in
Figure 3C, which emphasize that the NSL complex,
WDS, Chromator, NURF301 and Trithorax co-occupy
target promoters at linearly proportional levels
(Figure 3C). Promoters which are strongly bound by the
NSL complex are also highly enriched for NURF301,
Chromator and Trithorax. The same strong correlation
can be seen in an unbiased analysis using all microarray
probe signals, confirming the promoter-focused analysis
described above (Supplementary Figure S7B).
Searching for factors enriched at promoters we found

the heterochromatin protein 1c (HP1c) and, consistent
with previous results (36), the insulator proteins BEAF32
and CP190 (37) enriched at housekeeping promoters
(Supplementary Figure S8). These factors localize to
minor subsets of the NSL/Chromator/NURF301/
Trithorax target promoters (Figures 3 and 5;
Supplementary Figures S7B and 11). Importantly, the
presence of BEAF32, CP190 and HP1c determines
whether the bound NSL complex functions as an activa-
tor or not (see below).

Quantitative NSL1 binding correlates best with the
DNA replication-related element

Conceivably, the association of the NSL complex and its
colocalized chromatin modifiers may be determined by a
particular core promoter architecture. Different pro-
moters are characterized by the presence and combination
of a range of sequence motifs that provide contact surfaces
for general transcription factors and, therefore, modulate
the formation of the transcription pre-initiation complex
(38–40). The core promoter sequence motifs can be clas-
sified as canonical core promoter motifs which have fixed
positions with regard to the TSS, such as the TATA box,
the MTE (motif ten element), the DPE (downstream core
promoter element) and the INR (initiator), or as motifs
with weaker positional information (Ohler 1, Ohler 5,
Ohler 6, Ohler 7, Ohler 8 and DRE) (25,41). Canonical
core promoter motifs are enriched in peaked promoters,
whereas weakly positioned motifs are characteristic of
dispersed promoters. The mechanisms of action of most
dispersed elements are unknown [with the exception of the
DRE (39)].
Since NSL1 peaks within the core promoters of genes

with dispersed transcriptional start sites (Figure 1A and
D) we investigated whether the NSL complex is associated
with a specific set of core promoter motifs. We first
characterized the core promoter motifs with regard to
their distribution at active housekeeping and differentially
regulated genes (Supplementary Figure S9). As the motifs
deviate from their defined consensus sequences in many
cases, a similarity score (motif score) was calculated for
each promoter reflecting the similarity of the sequence to
any of the ten promoter consensus motifs described by
Ohler and colleagues (25) (see ‘Materials and Methods’
section). We found that over 70% of all active promoters
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Figure 3. The NSL complex cooccupies target promoters together with the chromatin remodeler NURF and the histone methyltransferase
Trithorax. (A) Heat map visualized correlation matrix of promoter-enriched chromatin factors and histone modifications at active genes. Pairwise
Spearman correlations were calculated using only active autosomal genes. The dendrogram shows the hierarchical clustering after which the matrix
was sorted. (B) ChIP-chip profile of the indicated proteins along a representative region of the chromosome arm 2L. The gene structure is indicated
below (active genes are red). (C) Pairwise scatter plot of promoter binding for each indicated factor using only active autosomal genes. Spearman
non-parametric correlation coefficients are provided for each pair.
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can be described by these ten motifs, indicating that our
analysis is representative (Supplementary Figure S9). In
agreement with previous analyses (41–43), the promoter
motifs INR, MTE and DPE were clearly overrepresented
in differentially regulated genes, which fits their enrich-
ment at peaked promoters (Supplementary Figures S8
and S9). Accordingly, housekeeping genes are enriched
for the motifs DRE, Ohler1, Ohler 5, Ohler 6 and Ohler 7.

Being able to characterize the core promoter motifs
allowed us to examine whether there is a differential asso-
ciation of NSL with any of them. Active genes were
categorized either as NSL targets or as non-targets based
on their NSL complex promoter occupancy. As expected,
the NSL1 target genes are enriched for the housekeeping
promoter motifs DRE, Ohler 1, Ohler 5, Ohler 6 and
Ohler 7 and depleted for TATA, INR, MTE and DPE.
Consistently, when we performed de novo motif analysis
of the sequences covered by the NSL1 ChIP-Seq peaks
(11), we again obtained the same motifs (Supplementary
Figure S10). This confirms that the NSL1 peaks at core
promoter motifs are diagnostic for housekeeping genes.

Is there any correlation between the ‘strength’ of NSL1
binding and how well an underlying motif matches its
consensus sequence? In order to address this question we
used the NSL1 ChIP-Seq data set (11), which due to its
good dynamic range allowed to categorize the ChIP-Seq
peak score as a surrogate for binding ‘strength’. We
binned the ChIP-Seq peaks in equally sized groups accord-
ing to their peak score [determined by SPP, (24)] and
displayed the fraction of promoters bound by a specific
group at a given motif score (Figure 4A, left). Among the
ten tested core promoter motifs the DRE motif, and to a
lesser extent motif Ohler 7, are the only motifs with scores
that correlate with the NSL1 ChIP-Seq peak score. This
suggests that DRE-containing promoters (and those con-
taining the less abundant Ohler 7 motif) primarily contain
NSL complex targeting clues (Figure 4B).

The combination of chromatin factors and core promoter
motifs enhance the prediction of NSL-regulated promoters

Whether or not a promoter-bound transcription factor
engages in active regulation often depends on the context
of close-by cis elements and interacting factors (44). This
appears to be the case for the NSL complex, as we showed
that the complex only activates a subset of the promoters
it associates with. NSL binds with high preference to a set
of housekeeping promoter motifs and its binding
‘strength’ correlates best with the presence of the DRE
motif. Can the subset of these NSL targets whose tran-
scription is diminished after depletion of NSL (i.e. those
promoters at which the complex is functional as an acti-
vator) be distinguished at the sequence level? We grouped
active genes according to their core promoter motif class
(see ‘Materials and Methods’ section) and monitored the
transcriptome changes after NSL depletion for each
group. Strikingly, only promoters containing the core
promoter motif ‘Ohler 5’ were strongly enriched for
NSL complex functional sites (Figure 5A). We note that
‘Ohler 5’-containing promoters do not show the strongest
correlation to NSL binding strength (Figure 4B)

suggesting that quantitative differences in factor binding
are not directly translated into a functional output.
We had observed that most promoters bound by HP1c,

BEAF32 and CP190 are among those also occupied by the
NSL complex (Figure 3 and Supplementary Figure S11).
Most of the HP1c, BEAF32 and CP190 binding occur
at distinct subsets as the three factors only colocalize
at a minority of sites (Supplementary Figure S11).
Intriguingly, promoters bound by any of the three factors
HP1c, BEAF32 or CP190 are obviously underrepresented
among the genes, whose transcription is activated by the
NSL complex (Figure 5B and Supplementary Figure S11).
In summary, the data suggest that the functionality of a

promoter-associated NSL complex is modulated by posi-
tive effectors (e.g. unidentified interactors of the ‘Ohler 5’
element) and negative regulators (HP1c and the insulator
proteins BEAF32 and CP190).

DISCUSSION

In this study, we show that the NSL complex is a potential
coactivator, which binds to many active genes, but regu-
lates only a specific subset of them. In our efforts to
describe the circumstances that define complex association
and function, we considered the contributions of two
major parameters: the diverse DNA sequences around
the core promoters, which are characterized by combin-
ations of recurring sequence motifs, and the association of
chromatin regulators that have recently been mapped by
the modENCODE consortium. Combining these diverse
data sets, we were able to improve the prediction toward
whether the transcription of an NSL-bound gene is
modulated by the NSL complex. To our knowledge, this
is the first systematic study demonstrating the usefulness
of this type of data integration.

The NSL complex is a transcription cofactor dedicated to
housekeeping genes

Following our observation that the NSL complex binds to
only a subset of all active promoters, we discovered that
the target genes were mostly housekeeping genes. This was
surprising as to our knowledge so far no transcription
coregulator dedicated to housekeeping genes is known.
This may simply reflect the fact that historically the mech-
anisms underlying differential transcription regulation
received more attention. Several lines of evidence support
the conclusion that the NSL complex preferentially local-
izes to the majority of housekeeping promoters. (i) We do
not detect significant differences in the global chromatin
binding profile of NSL complex members in cells of dif-
ferent sex or developmental stage. (ii) Genes that have
NSL bound at their promoters show little expression vari-
ation among different tissues as compared to active genes
that lack the NSL complex. (iii) NSL-bound promoters
are depleted of sequence motifs known to be enriched in
genes differentially regulated during development and in
tissue homeostasis (38). (iv) GO analysis of the active
NSL-bound genes revealed an overrepresentation of
categories for housekeeping functions, whereas the
converse data set of active genes not bound by NSL
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present diverse categories including ‘developmental pro-
grams’ and ‘acute signaling’. Other chromatin constitu-
ents, like HP1c and the insulator proteins BEAF32 and
CP190 also interact preferentially with housekeeping gene
promoters, as previously shown by Ohler and colleagues
(36), but these factors bind to a much more limited
number of genes in this class. Our analysis supports the
concept of global coregulation of functionally related gene
classes by common cofactors.

The developmental regulators NURF and Trithorax
colocalize with NSL at housekeeping promoters

The extensive colocalization of the NSL complex with the
methyltransferase Trithorax and the chromatin remodeler
NURF is puzzling since those factors are best known as
regulators of transcription of very restricted sets of genes
(developmental and highly inducible genes) (30,32), and
only recently has their extensive genome-wide localization
at many active gene promoters been noticed (34,35,45,46).
Conceivably, these three complexes cooperate to regulate
the transcription of housekeeping genes at the level of
chromatin organization and/or transcription initiation.
This hypothesis is supported by previous reports of bio-
chemical or genetic interactions between components
of the three factors. A genetic interaction between the
Xenopus BPTF (the NURF301 homolog) and Xenopus
WDR5 (a homolog of the NSL subunit WDS) has been
reported (47). Furthermore, Dou et al. (27) described a
‘supercomplex’ containing the human NSL as well as the
MLL1 complexes [MLL1 is homologous to Drosophila
Trithorax].

At present it is not clear whether NURF and Trithorax-
containing complexes contribute to the targeting of the
NSL complex (or vice versa), or whether all three regula-
tors are attracted by an additional common denominator
of target promoters. None of the three complexes contains
any specific DNA-binding subunit. NURF can be re-
cruited to inducible genes via direct interactions between
the large NURF301 subunit and transcription factors,
such as the GAGA factor (29) or the ecdysone receptor
(48). However, these interactions certainly do not explain
the widespread targeting of NURF to housekeeping genes
in vivo reported here. We noted a good quantitative cor-
relation between the NSL1 binding levels and the DRE
core promoter motif score, which opens the possibility that
a DRE—recognizing factor may stimulate NSL recruit-
ment. One candidate for such a factor is DREF, which
has been isolated as a DRE binding factor (49). DREF
may also contribute to the recruitment of NURF, since an
association of DREF with NURF has been observed in a
much larger complex based on the immunoaffinity purifi-
cation of the TATA box binding protein (TBP)-related
factor TRF2 (39).
In addition to direct recruitment by DNA-binding

proteins, transcription cofactors may be tethered by spe-
cific local histone modifications through recognition
domains (50). It is likely that this principle will also con-
tribute to the observed colocalization of NSL, NURF and
Trithorax complexes. Trithorax (the Drosophila MLL1
homolog) is an enzyme that methylates histone H3 at
lysine 4 (H3K4me3), a mark that characterizes active pro-
moters (46). Interestingly, WDS, which copurifies with
NSL complexes from Drosophila and mammalian cells
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Figure 5. A combination of chromatin factors and core promoter motifs enhance the prediction of NSL transcriptional targets. (A) The core
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of the transcriptome changes after RNAi against NSL1 for groups of genes enriched for the ten core promoter motifs defined by Ohler et al. (25). In
the presented analysis only active NSL-bound genes were considered (using the modENCODE MBD-R2 data set (17), which allows the comparison
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complex (modENCODE MBD-R2 ChIP-chip profile), down-regulated after ablation of the NSL complex and bound by at least one of the three
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(27) has been shown to preferentially interact with
methylated H3K4 (28). The mammalian homolog of
NURF301 (BPTF) also recognizes mononucleosomes
marked with methylated H3K4 and acetylated H4K16ac
through its PHD finger and bromodomain, respectively
(51). Acetylation of H4K16 by MOF in the NSL
complex may, therefore, contribute to the local enrich-
ment of NURF at target promoters. Our study gives rise
to numerous testable hypotheses as to the nature of the
interaction network that leads to the observed selective
targeting of the NSL complex.

The NSL complex only regulates a subset of target
promoters

The detailed analysis of the transcriptional effects of the
NSL complex revealed that the NSL complex regulates
only a subset of bound genes. Such a situation is not
without precedent as it has been shown for a number
of transcription factors that many binding events appear
to be non-functional (44). In fact, it is a major challenge to
predict the functional sites from the interaction profiles of
single factors as functionality is frequently determined by
the local clustering of binding sites, synergism between
colocalized proteins, and recently, chromatin accessibility
(52,53). Accordingly, we favor the idea that a combination
of chromatin factors and core promoter elements deter-
mines the activity of the NSL complex at any target
promoter. An even more immediate influence of
promoter DNA on interacting proteins may be imagined
as a direct effect of a DNA sequence on the conformation
and, therefore, the activity of a bound transcription factor
has been described (54).
Alternatively, it is possible that the default state of every

chromatin-bound NSL complex is functional, but that the
realization of this potential is restricted by negative
factors. We found that the presence of either one of the
three proteins HP1c, BEAF32 or CP190 correlated with
lack of NSL1 regulation. Insulator binding proteins like
BEAF32 and CP190 are known to decrease enhancer-
promoter interactions, which may lead to decreased tran-
scriptional output. Interestingly, antagonistic roles for
BEAF32 and DREF have been suggested for some over-
lapping in vivo binding sites (55). Resolving the mechan-
istic intricacies of complex promoter regulation remains a
challenging task for future endeavors.
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Term PValue
GO:0051188~cofactor biosynthetic process 2,33E-12
GO:0031023~microtubule organizing center organization 7,03E-11
GO:0051186~cofactor metabolic process 1,40E-03
GO:0007017~microtubule-based process 1,70E-03
GO:0051297~centrosome organization 1,70E-03
GO:0009108~coenzyme biosynthetic process 3,00E-03
GO:0007098~centrosome cycle 4,50E-03
GO:0000226~microtubule cytoskeleton organization 4,90E-03
GO:0070271~protein complex biogenesis 5,80E-03
GO:0006461~protein complex assembly 5,80E-03
GO:0006732~coenzyme metabolic process 9,70E-03
GO:0016071~mRNA metabolic process 9,80E-03
GO:0043069~negative regulation of programmed cell death 9,90E-03
GO:0060548~negative regulation of cell death 9,90E-03
GO:0006397~mRNA processing 1,03E-02
GO:0022402~cell cycle process 1,17E-02
GO:0000278~mitotic cell cycle 1,17E-02
GO:0051656~establishment of organelle localization 1,50E-02
GO:0033043~regulation of organelle organization 1,55E-02
GO:0007010~cytoskeleton organization 1,82E-02
GO:0006352~transcription initiation 2,25E-02
GO:0043066~negative regulation of apoptosis 2,26E-02
GO:0022403~cell cycle phase 2,40E-02
GO:0007049~cell cycle 2,46E-02
GO:0051298~centrosome duplication 2,63E-02
GO:0007173~epidermal growth factor receptor signaling pathway 2,69E-02
GO:0000279~M phase 2,76E-02
GO:0051130~positive regulation of cellular component organization 2,99E-02
GO:0009314~response to radiation 3,30E-02
GO:0017038~protein import 3,41E-02
GO:0033365~protein localization in organelle 3,44E-02
GO:0006367~transcription initiation from RNA polymerase II promoter 4,07E-02
GO:0006605~protein targeting 4,08E-02
GO:0051640~organelle localization 4,21E-02
GO:0006733~oxidoreduction coenzyme metabolic process 4,92E-02
GO:0048477~oogenesis 5,56E-02
GO:0016044~membrane organization 5,59E-02
GO:0006366~transcription from RNA polymerase II promoter 5,62E-02
GO:0007447~imaginal disc pattern formation 5,73E-02
GO:0007052~mitotic spindle organization 5,77E-02
GO:0006468~protein amino acid phosphorylation 5,88E-02
GO:0031124~mRNA 3'-end processing 6,00E-02
GO:0007276~gamete generation 6,06E-02
GO:0019953~sexual reproduction 6,74E-02
GO:0007051~spindle organization 6,99E-02
GO:0051276~chromosome organization 7,19E-02
GO:0008156~negative regulation of DNA replication 7,27E-02
GO:0007292~female gamete generation 8,03E-02
GO:0016310~phosphorylation 8,32E-02
GO:0007349~cellularization 8,38E-02
GO:0000289~nuclear-transcribed mRNA poly(A) tail shortening 8,59E-02
GO:0000288~nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay8,59E-02
GO:0035222~wing disc pattern formation 8,77E-02
GO:0051493~regulation of cytoskeleton organization 8,77E-02
GO:0009628~response to abiotic stimulus 9,11E-02
GO:0032504~multicellular organism reproduction 9,29E-02
GO:0048609~reproductive process in a multicellular organism 9,29E-02
GO:0051301~cell division 9,52E-02
GO:0006281~DNA repair 9,65E-02
GO:0065003~macromolecular complex assembly 9,66E-02
GO:0006259~DNA metabolic process 9,70E-02
GO:0016072~rRNA metabolic process 9,70E-02
GO:0006612~protein targeting to membrane 9,70E-02
GO:0006364~rRNA processing 9,70E-02

 Supplementary Figure 3: Gene Ontology (GO) enriched biological processes of NSL complex bound genes

Gene Ontology (GO) enrichment analysis was performed for biological processes using DAVID GO SLIM  (57).
P values were derived from a Fisher Exact test using the DAVID web-implementation.
All NSL1 bound genes were compared to all active genes in S2 cells.

Supplementary Figure 3
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Supplementary Figure 4: Gene Ontology analysis of active NSL1 unbound genes

Term PValue
GO:0007606~sensory perception of chemical stimulus 1,57E-07
GO:0055114~oxidation reduction 4,48E-07
GO:0007600~sensory perception 3,79E-06
GO:0050890~cognition 6,59E-06
GO:0007155~cell adhesion 1,49E-05
GO:0022610~biological adhesion 1,49E-05
GO:0035218~leg disc development 1,79E-05
GO:0006952~defense response 2,93E-05
GO:0048569~post-embryonic organ development 5,89E-05
GO:0035286~leg segmentation 1,03E-04
GO:0035285~appendage segmentation 1,03E-04
GO:0046942~carboxylic acid transport 1,03E-04
GO:0015849~organic acid transport 1,03E-04
GO:0006865~amino acid transport 1,35E-04
GO:0015837~amine transport 1,35E-04
GO:0007166~cell surface receptor linked signal transduction 1,41E-04
GO:0007552~metamorphosis 1,44E-04
GO:0035111~leg joint morphogenesis 1,92E-04
GO:0007444~imaginal disc development 2,05E-04
GO:0045087~innate immune response 3,64E-04
GO:0007186~G-protein coupled receptor protein signaling pathway 3,97E-04
GO:0048707~instar larval or pupal morphogenesis 3,99E-04
GO:0048563~post-embryonic organ morphogenesis 4,28E-04
GO:0007560~imaginal disc morphogenesis 4,28E-04
GO:0042742~defense response to bacterium 5,24E-04
GO:0048737~imaginal disc-derived appendage development 5,54E-04
GO:0048732~gland development 5,60E-04
GO:0009886~post-embryonic morphogenesis 6,30E-04
GO:0048736~appendage development 6,39E-04
GO:0006955~immune response 6,55E-04
GO:0035214~eye-antennal disc development 7,53E-04
GO:0035114~imaginal disc-derived appendage morphogenesis 8,79E-04
GO:0007447~imaginal disc pattern formation 9,21E-04
GO:0048565~gut development 9,88E-04
GO:0035107~appendage morphogenesis 0,00101
GO:0016052~carbohydrate catabolic process 0,00139
GO:0009617~response to bacterium 0,00175
GO:0009791~post-embryonic development 0,00192
GO:0050830~defense response to Gram-positive bacterium 0,00215
GO:0007354~zygotic determination of anterior/posterior axis, embryo 0,00215
GO:0035108~limb morphogenesis 0,00221
GO:0060173~limb development 0,00221
GO:0035110~leg morphogenesis 0,00221
GO:0007157~heterophilic cell adhesion 0,00238
GO:0007449~proximal/distal pattern formation, imaginal disc 0,00238
GO:0035220~wing disc development 0,00258
GO:0007431~salivary gland development 0,00261
GO:0035272~exocrine system development 0,00261
GO:0035120~post-embryonic appendage morphogenesis 0,00276
GO:0042067~establishment of ommatidial polarity 0,00283
GO:0010623~developmental programmed cell death 0,00378
GO:0007450~dorsal/ventral pattern formation, imaginal disc 0,00433
GO:0007610~behavior 0,00438
GO:0035215~genital disc development 0,00444
GO:0007219~Notch signaling pathway 0,00492
GO:0007366~periodic partitioning by pair rule gene 0,00509
GO:0001708~cell fate specification 0,00608
GO:0019731~antibacterial humoral response 0,00617
GO:0050877~neurological system process 0,00683
GO:0048190~wing disc dorsal/ventral pattern formation 0,00808
GO:0007362~terminal region determination 0,00834
GO:0050909~sensory perception of taste 0,00834
GO:0009954~proximal/distal pattern formation 0,00834
GO:0006006~glucose metabolic process 0,00866
GO:0006928~cell motion 0,00924
GO:0016337~cell-cell adhesion 0,00933
GO:0002165~instar larval or pupal development 0,00964
GO:0009065~glutamine family amino acid catabolic process 0,01053
GO:0006584~catecholamine metabolic process 0,01053
GO:0009636~response to toxin 0,01053
GO:0040034~regulation of development, heterochronic 0,01053
GO:0018958~phenol metabolic process 0,01053
GO:0034311~diol metabolic process 0,01053
GO:0009712~catechol metabolic process 0,01053

Term PValue
GO:0007451~dorsal/ventral lineage restriction, imaginal disc 0,01073
GO:0048598~embryonic morphogenesis 0,01169
GO:0044275~cellular carbohydrate catabolic process 0,01187
GO:0046164~alcohol catabolic process 0,01187
GO:0006508~proteolysis 0,01269
GO:0007476~imaginal disc-derived wing morphogenesis 0,01297
GO:0007494~midgut development 0,01349
GO:0009996~negative regulation of cell fate specification 0,01349
GO:0042659~regulation of cell fate specification 0,01349
GO:0010453~regulation of cell fate commitment 0,01349
GO:0010454~negative regulation of cell fate commitment 0,01349
GO:0007626~locomotory behavior 0,01432
GO:0007472~wing disc morphogenesis 0,01436
GO:0043473~pigmentation 0,01489
GO:0007164~establishment of tissue polarity 0,0158
GO:0001736~establishment of planar polarity 0,0158
GO:0007435~salivary gland morphogenesis 0,01581
GO:0022612~gland morphogenesis 0,01581
GO:0001654~eye development 0,01737
GO:0019318~hexose metabolic process 0,01837
GO:0009072~aromatic amino acid family metabolic process 0,01867
GO:0035167~larval lymph gland hemopoiesis 0,01867
GO:0006935~chemotaxis 0,01867
GO:0007469~antennal development 0,01867
GO:0007440~foregut morphogenesis 0,01867
GO:0035166~post-embryonic hemopoiesis 0,01867
GO:0007608~sensory perception of smell 0,01867
GO:0001738~morphogenesis of a polarized epithelium 0,02213
GO:0006959~humoral immune response 0,02258
GO:0008219~cell death 0,02319
GO:0016265~death 0,02319
GO:0007411~axon guidance 0,02345
GO:0035289~posterior head segmentation 0,02396
GO:0042688~crystal cell differentiation 0,02396
GO:0008587~imaginal disc-derived wing margin morphogenesis 0,02585
GO:0043067~regulation of programmed cell death 0,02652
GO:0010941~regulation of cell death 0,02652
GO:0007478~leg disc morphogenesis 0,02674
GO:0019730~antimicrobial humoral response 0,02721
GO:0042060~wound healing 0,02983
GO:0012501~programmed cell death 0,03034
GO:0009310~amine catabolic process 0,03038
GO:0006007~glucose catabolic process 0,03224
GO:0019320~hexose catabolic process 0,03224
GO:0048066~pigmentation during development 0,03293
GO:0016054~organic acid catabolic process 0,03293
GO:0046395~carboxylic acid catabolic process 0,03293
GO:0006576~biogenic amine metabolic process 0,03535
GO:0050829~defense response to Gram-negative bacterium 0,03535
GO:0006334~nucleosome assembly 0,03535
GO:0035222~wing disc pattern formation 0,03789
GO:0030030~cell projection organization 0,03796
GO:0000902~cell morphogenesis 0,03819
GO:0005976~polysaccharide metabolic process 0,03902
GO:0046365~monosaccharide catabolic process 0,03963
GO:0042386~hemocyte differentiation 0,04036
GO:0035162~embryonic hemopoiesis 0,04036
GO:0000272~polysaccharide catabolic process 0,04036
GO:0048568~embryonic organ development 0,04036
GO:0048749~compound eye development 0,04235
GO:0046667~compound eye retinal cell programmed cell death 0,04283
GO:0035161~imaginal disc lineage restriction 0,04283
GO:0009253~peptidoglycan catabolic process 0,04283
GO:0006027~glycosaminoglycan catabolic process 0,04283
GO:0000270~peptidoglycan metabolic process 0,04283
GO:0006206~pyrimidine base metabolic process 0,04283
GO:0035287~head segmentation 0,04283
GO:0035223~leg disc pattern formation 0,04283
GO:0007479~leg disc proximal/distal pattern formation 0,04283
GO:0014070~response to organic cyclic substance 0,04416
GO:0007419~ventral cord development 0,04416
GO:0043279~response to alkaloid 0,04416
GO:0006096~glycolysis 0,04557
GO:0045596~negative regulation of cell differentiation 0,0459
GO:0042981~regulation of apoptosis 0,04595
GO:0043068~positive regulation of programmed cell death 0,04734
GO:0030031~cell projection assembly 0,04734
GO:0010942~positive regulation of cell death 0,04734

Gene Ontology (GO) enrichment analysis was performed using active but NSL1 unbound genes against the
background of all active genes. DAVID GO SLIM (57) terms were used for biological processes. P values were
derived from a Fisher Exact test using the DAVID web-implementation.

Supplementary Figure 4
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Supplementary Figure 6:  Gene Ontology enrichment analysis of NSL1 RNAi downregulated genes

Term Pvalue
GO:0006259~DNA metabolic process 1,30E-05
GO:0006281~DNA repair 2,70E-04
GO:0034660~ncRNA metabolic process 9,00E-04
GO:0006412~translation 7,23E-02
GO:0033554~cellular response to stress 0,001
GO:0006399~tRNA metabolic process 0,001
GO:0006974~response to DNA damage stimulus 0,001
GO:0008033~tRNA processing 0,002
GO:0034470~ncRNA processing 0,005
GO:0006284~base-excision repair 0,006
GO:0006366~transcription from RNA polymerase II promoter 0,011
GO:0006367~transcription initiation from RNA polymerase II promoter 0,012
GO:0006351~transcription, DNA-dependent 0,014
GO:0006352~transcription initiation 0,015
GO:0032774~RNA biosynthetic process 0,016
GO:0006396~RNA processing 0,017
GO:0009451~RNA modification 0,023
GO:0006260~DNA replication 0,032

Downregulated genes (fold change < -2) were compared to all active genes (A�ymetrix log2-scale > 4). 
Gene Ontology enrichment analysis was performed using DAVID (57), testing for biological processes using the 
GO SLIM terms. P values were derived from a Fisher Exact test using the DAVID web-implementation. 
A similar result was obtained using the R/Bioconductor package GOstats (data not shown).

Supplementary Figure 6
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Supplementary Figure 8: Summary of factor and sequence occupancies across different conditions. 

Supplementary Figure 8

Factor and sequence occupancy is given relative to all genes in the D. melanogaster 
genome (FlyBase dmel5.32 annotation) (column 2), all active genes (column 3, gene activity 
measured by modENCODE polymerase II dataset), all inactive genes (column 4), all active house-
keeping genes (column 5) and all active “differentially regulated” genes (DRG, column 6). Column 7 
indicates the ratio of active genes over inactive genes, and column 8 indicates the ratio of 
active housekeeping genes over active “differentially regulated” genes. The list was sorted
according to the enrichment towards active housekeeping genes (column 8) and overrepresented
and underrepresented factors are labeled in red and green, respectively. Only modENCODE ChIP-
chip profiles were used.

% Binding to all % Binding to all Enrichment Enrichment
Active Inactive active active Active/ Housekeeping/

Genes Genes Genes Housekeeping DRG Inactive /DRG
BEAF32 17,9 33,5 1,1 39,9 17 31,7 2,3
Ohler 1 7,6 12,7 2,1 15 6,7 5,9 2,2
HP2 2 3,2 0,7 3,8 1,7 4,8 2,2
DRE 14,4 21,2 7,2 24,6 12,3 2,9 2
Ohler 5 8,6 12,1 4,7 14 7,2 2,6 2
Chromator 44,7 80,7 6 92,7 49,4 13,4 1,9
Ohler 7 10,4 15,3 5,1 17,6 9,5 3 1,9
MBD-R2 38,9 71,7 3,7 82,1 44,7 19,4 1,8
WDS 39,6 73,5 3,1 83,9 46,7 23,5 1,8
Trithorax 40,6 74,4 4,4 84,7 47,5 16,7 1,8
CP190 29 47,5 9,2 54 30,5 5,2 1,8
NURF301 42,2 77,5 4,2 87,8 51,1 18,4 1,7
Ohler 6 6 7,6 4,2 8,5 5,1 1,8 1,7
HP1c 15,5 29,1 1 32,6 20 29,1 1,6
H3K4me3 47,5 87,1 5,1 94,9 67 17,2 1,4
Su(var)3-7 1,8 2,6 1,1 2,8 2 2,4 1,4
H3K9ac 46,9 84,5 6,6 92 65,3 12,8 1,4
Nelf-E 28,8 54,9 0,9 59,3 43,3 59,6 1,4
H4K16ac 50,0 80,0 17,5 78,9 58,6 9,7 1,3
Nelf-B 30,7 58,6 0,9 62,7 47,7 62,3 1,3
CTCF 4 4,4 3,5 4,5 4,2 1,2 1,1
Ohler 8 5,8 6,8 4,7 6,9 6,6 1,4 1
TATA 9,7 8,2 11,4 7,9 8,9 0,7 0,9
E(z) 1,3 0,8 1,9 0,7 1,1 0,4 0,6
INR 18,4 15,6 21,5 12,7 23,2 0,7 0,5
H3.3 20,8 32,3 8,4 26,2 48,3 3,8 0,5
MTE 2 1,9 2,2 1,5 3 0,9 0,5
Psc 1,6 1,1 2 0,8 1,9 0,6 0,4
RING 2,9 3,3 2,4 2,4 5,8 1,4 0,4
DPE 3,6 3,4 3,8 2,5 6 0,9 0,4
Mi-2 2,6 4,7 0,3 2,9 9,2 15,8 0,3
GAF 8,3 14,8 1,4 8,6 30,7 10,6 0,3
H3K27me3 35,8 4,1 69,8 1,9 9,8 0,1 0,2
Pc 2 0,5 3,6 0,2 1,2 0,1 0,1
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Supplementary Figure 9

Supplementary Figure 9: Characterization of core promoter motifs at active genes.
(A) Histogram depicting the distribution of standard deviations of active genes across 40 Drosophila tissues (21). Normal distribution
is overlayed with a blue dashed line. (B) Same as (A) but log2 transformed standard deviations. (C) Comparison of gene expression values in housekeeping
genes (left box) and differentially regulated genes (right box). Gene expression values were taking from the log2 transformed Affymetrix control RNAi 
transcriptome dataset. (D) Core promoter motif distribution of active housekeeping genes. Heatmap presentation of motif score (columns) along active 
housekeeping genes (rows). The dendrogram to the right was generated by hierarchical clustering of gene promoters according to their motif score using 
the ‘complete’ method implemented in the R package ‘hclust’. The dendrogram above the heatmap was generated by hierarchical clustering (’ward method’) 
of the Spearman correlated motif scores. Note that 1269 of the 4523 active housekeeping genes do not show any significant signature of at least one of 
the investigated core promoter motifs. See Material and Methods for detailed information on the definition of the ‘motif score’. (E) Same as (D) but for
active differentially regulated genes. Note that 480 of the 1367 active differentially regulated genes do not show any significant signature of at least one of 
the investigated core promoter motifs. 
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Supplementary Figure 10: NSL1 peaks are centered over core promoter motifs 
characteristic for housekeeping genes

motif total number sequences sequence fraction
enriched for motif enriched for motif

DRE 1106 19.9
Ohler 1 703 12.7
Ohler 5 556 10.0
Ohler 7 510 9.2
Ohler 6 251 4.5
Ohler 8 109 2.0
INR 84 1.5
TATA 38 0.7
MTE 33 0.6
DPE 12 0.2

De-novo sequence search (Hartmann and Soeding, in preparation) of the sequence 
surrounding +/- 50 base pairs centered on the NSL1 ChIP-Seq (11) peak summit. 
Column 2 indicates the number of identified sequences containing the respective motif.
Column 3 displays the fractions of each identified motif relative to all identified motifs.

Supplementary Figure 10
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Supplementary Figure 11: HP1c and insulator binding proteins co-localize with the NSL complex at non-functional sites.
(A) Venn diagram representation of gene sets bound by the NSL complex (using the MBD-R2 ChIP-chip profile generated by the
modENCODE consortium) and heterochromatin protein 1c (HP1c), CP190 and BEAF32. (B) Venn diagram representation of 
gene sets downregulated after NSL1 RNAi and bound by the heterochromatin protein 1c (HP1c), CP190 and BEAF32.
Numbers in brackets represent the number of genes in the respective group (for clearity numbers with little information content 
are not shown). We used the modENCODE MBD-R2 data set as a proxy for the NSL complex to minimize technical variation
in the comparison with the BEAF32/CP190/HP1c datasets. Similar results were obtained using the NSL1 dataset and the 
MBD-R2 dataset (12), respectively.
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3.4.1 Summary, significance and own contribution 

 

Summary and significance 

Post-translational protein modifications (PTMs) are at the core of most regulatory systems. Histone 

proteins acquire impressive patterns of PTMs that govern all nuclear processes and often indicate or 

even cause malfunction that manifests in complexes diseases including cancer and neurodegenerative 

diseases.  

Although research in epigenetics and chromatin over the past two decades documented many, mostly 

qualitative, relationships between individual histone PTMs and the enzymes that write and erase these 

marks, a quantitative and comprehensive description of all enzyme-substrate relationships for an entire 

class of PTMs is missing but urgently needed. Such a global description of PTMs and their modifiers 

as a system will greatly facilitate our ability to develop quantitative models on chromatin pathways 

that are not only beneficial to refine our understanding of nuclear processes and their malfunction but 

also to develop new epigenetic therapies. 

In this study, we generated a quantitative and comprehensive catalogue of histone acetylation and 

methylation motifs that describe the changes in response to ablation of each single known or suspected 

lysine acetyltransferase (KAT) and deacetylase (KDAC) in Drosophila melanogaster.  

The comprehensiveness of the dataset not only allows us to define class-specific features that are 

shared among members of enzyme families but also to describe the histone modification system as a 

highly interconnected, responsive network that compensates for the loss of single components.  

Generating this catalogue first required optimization of liquid chromatography mass spectrometry 

(LC-MS) workflows. Our improved LC-MS protocol not only allowed precise and accurate 

quantification of combinatorial histone acetylation and methylation motifs, but also delivered a 

general applicable tool to identify and quantify combinatorial PTM motifs on other proteins.  We 

describe an inherent bias common to most previous histone PTM studies applying LC-MS and provide 

a resource to correct for this bias.  

Our classification of acetylation motifs according to their absolute abundances has direct implications 

on the design and interpretation of genomic experiments.  

The most surprising finding was that ablation of almost every KAT triggered a systemic response to 

effectively maintain global acetylation levels. Its widespread occurrence and observation in different 

species, including human cells, suggests this to be a fundamental, conserved principle. Considering the 

global but distinct changes to the epigenome when inhibiting individual KAT activities may be 

utilised to improve current and develop more effective epigenetic therapies.  
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Applying the methodology to another, already well-documented ‘compensatory system’ revealed that 

chromosome-wide transcriptional fine-tuning during Drosophila dosage compensation is not restricted 

to the change of a single histone PTM (H4.K16ac), but accompanied by an global yet specific re-

distribution of acetylation and methylation marks. This finding provides further evidence that a full 

understanding of the function of a single histone PTM requires to analyse it in the context of the entire 

system.  

In summary, our data not only provides a general resource for enzyme-substrate relationships to KATs 

and KDACs but it also defines a starting point to explore systematically the interconnected network 

properties of chromatin modification pathways.  

 

Own contribution 

Prof. Peter Becker and I conceived the project and wrote the manuscript. I co-developed the LC-MS 

workflow with Dr. Ignasi Forne. I performed all experiments, analysed the data and prepared all 

figures. Most peptide samples were processed by Dr. Ignasi Forne, who also performed the MS 

measurements. Prof. Axel Imhof supervised the LC-MS experiments and contributed important 

reagents. 
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3.4.2 Submitted manuscript 

 

 

Global and specific responses of the histone acetylome 

to systematic perturbation 

 

 

SUMMARY 

Regulation of histone acetylation is fundamental to the utilization of eukaryotic genomes in chromatin. 

Aberrant acetylation contributes to disease and can be clinically combated by inhibiting the 

responsible enzymes.  

Our knowledge of complex histone acetylation patterns is patchy because current methodologies do 

not permit a systematic assessment of rare and combinatorial signatures. We devised a generally 

applicable, sensitive mass spectrometry-based strategy to efficiently and quantitatively monitor 

combinatorial modifications. This was applied to generate a comprehensive inventory of acetylation 

motifs on histones H3 and H4 in Drosophila cells.  

Systematic depletion of every known or suspected acetyltransferase and deacetylase revealed specific 

alterations of histone acetylation signatures, established enzyme-substrate relationships and unveiled 

an extensive crosstalk between neighboring modifications. Unexpectedly, overall histone acetylation 

levels remained remarkably constant upon depletion of individual acetyltransferases. Conceivably, the 

acetylation level is adjusted to maintain the global charge neutralisation of chromatin and the stability 

of nuclei. 

 

 

Highlights 

 System’s view of histone modification motifs and its response to enzyme depletion  

 Extensive crosstalk between lysine acetylation and methylation 

 Global acetylation levels are maintained in response to acetyltransferase ablation  

 Global chromatin features associated with fly dosage compensation  
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INTRODUCTION 

The problem of packaging and organising complex genomes in the nuclei of cells was elegantly solved 

by the evolution of chromatin. The wrapping of DNA around octamers of histone proteins to form an 

ever-repeating succession of nucleosomes is universal among all eukaryotes. The increasing 

complexity of organisms due to the differentiation of cell types, necessitates a structural and functional 

diversification of chromatin. This is mainly achieved by post-translational, chemical modifications of 

histones.  

Currently, we know of more than 10 different types of chemical modifications (such as methylation, 

acetylation, phosphorylation) that alter the properties of amino acids in histones. Collectively, these 

modifications locally define chromatin structure and are fundamental to establishing the gene 

expression programmes that characterise healthy and diseased cells. The enzymes that reversibly 

modify histones are increasingly recognised as targets for therapeutic intervention in cancer tissue and 

neurodegenerative diseases (Dawson and Kouzarides, 2012; Graff and Tsai, 2013). 

Acetylations of histones H3 and H4 are frequent and among the best characterised post-translational 

modifications (Sterner and Berger, 2000; Kouzarides, 2007; Lee and Workman, 2007). The N-terminal 

domains of these two histones (the amino-terminal ‘tail’ domains) alone bear a dozen lysine residues 

subject to acetylation. Additional acetylation has also been reported at internal residues (Tan et al., 

2011).  

The acetylation of lysine has structural consequences: charge neutralization weakens DNA-histone and 

nucleosome-nucleosome interactions and is often correlated to unfolding of nucleosome fibres and 

gene activation (Kouzarides, 2007). Acetylated lysines may contribute to marking individual histones 

as they are recognised by bromodomains of effector proteins. Acetylation of lysines prevents their 

methylation or ubiquitylation and may therefore have secondary effects. Histone acetylation patterns 

in chromatin result from the interplay between an impressive number of dedicated lysine 

acetyltransferases (KATs) and antagonizing deacetylases (KDACs). 

In evaluating the potential of an individual acetylation mark, it is useful to know its abundance. For 

example, a highly abundant acetylation is likely to have a broad, structural function. By contrast, a rare 

acetylation might rather serve as a signal. Currently, our knowledge on the cellular copy number for 

most histone modifications is sparse.  

Different post-translational modifications (PTMs) may reside on the same histone molecule. Many 

cases have been reported where PTM combinations (PTM motifs) rather than individual marks bear 

functional meaning (Fischle et al., 2003). Top-down mass spectrometry suggests the existence of over 

200 different PTM motifs on histones – many of which involve site-specific acetylation – yet their 

exact cellular abundance remains elusive (Pesavento et al., 2008; Young et al., 2009; Jung et al., 

2013). 



RESULTS AND DISCUSSION  

 

119

Acetylated lysines may be bound by dedicated bromodomains in effector proteins. Although the 

affinity towards a single acetyl-lysine is low, multiple adjacent acetyl-lysines not only boost the 

affinity but may also tune the targeting selectivity (Ruthenburg et al., 2007; Filippakopoulos et al., 

2012). It is currently not known whether combinatorial acetylation motifs are generated by a single 

KAT or whether they require the action of multiple enzymes, with the exception of the cytoplasmic di-

acetylation of H4 at K5 and 12, which is catalysed by HAT1 (Parthun, 2012). 

Moreover, PTMs neighbouring acetylated lysines can strongly alter the affinity of bromodomains – 

and likewise the enzymatic activity of KATs and KDACs may be modulated by close-by PTMs 

(Fischle et al., 2003; Filippakopoulos et al., 2012). 

Our ability to detect low abundant histone acetylation, or acetylation as part of a PTM motif are 

currently rather limited. Traditionally, histone PTMs are detected with antibodies raised against 

appropriately modified peptides. However, recent studies alarm that antibodies raised against 

individually acetylated lysines (e.g. H4.K12ac) primarily recognise multiply-acetylated peptides (e.g. 

tetra-acetylated H4) and may display substantial off-target reactivity (Suka et al., 2001; Fuchs et al., 

2011; Rothbart et al., 2012). Moreover, antibody detection systems have a limited linear dynamic 

range, precluding a quantitative analysis. Finally, most antibodies are unable to differentially display 

acetylation in combinatorial motifs. 

Peptide modifications are commonly detected by mass spectrometry (MS), however, most current MS 

protocols are hampered by low sensitivity and dynamic range and high-level requirements for 

operating personnel and instrumentation. We optimised existing procedures and developed new 

protocols to establish a robust and generally applicable workflow for accurate and precise 

quantification of modification motifs. We applied this methodology to generate a comprehensive 

inventory of motifs involving acetylation of H3 and H4 in Drosophila cells. This database will become 

a useful tool for further studies. 

In order to learn how acetylation motives are generated we systematically assessed the effects of 

individual acute depletion of all putative KAT and KDAC enzymes in Drosophila. This effort 

identified new activities and specificities and re-defined enzyme-substrate relationships that had been 

controversial or simply unknown. To our surprise, we also uncovered a global response of the histone 

acetylome to interference with certain acetylation pathways, which suggests that the total 

concentration of histone acetylation in nuclei is subject to homeostatic control. 

Our classification of histone acetylation motifs according to their abundance, enzyme-dependence and 

their contribution to the systemic response to acute perturbation of specific acetylation reactions leads 

to testable hypotheses about their contributions to global chromosome architecture and local signalling 

events. 
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RESULTS 

Optimizing liquid chromatography mass spectrometry workflows for accurate and precise 

quantification of single and combinatorial PTMs 

Identifying and quantifying rare, combinatorial modification motifs currently poses a major analytical 

challenge. We optimised liquid chromatography mass spectrometry (LC-MS) workflows for sensitive, 

precise and accurate quantification of PTM motifs containing lysine acetylation and methylation.  

We rapidly isolated histones from cells by acid extraction and chemically acetylated all unmodified 

and mono-methylated lysines with deuterated acetic anhydride (D3AA method (Smith et al., 2003). 

The deuterated (d3) mass tag adds three Daltons to distinguish endogenous from chemical acetylation. 

This also ensures that digestion by trypsin only occurs after arginine, yielding peptides of an 

intermediate size necessary for bottom-up analysis of PTM motifs (Figure 1A). Unlike the more 

common propionylation (Garcia et al., 2007; Schotta et al., 2008; Zheng et al., 2013), chemical 

acetylation yields peptides with similar physicochemical properties to those bearing endogenous 

acetylation. This ensures comparability during the entire LC-MS workflow, including the MS 

quantification.  

We developed a generally applicable targeted MS workflow to increase the dynamic range of MSn 

measurements (see Suppl. Note 1). This was necessary because many combinatorial motifs can only 

be resolved by consecutive MS1 and MS2 scans, and four H4 di-acetyl motifs require MS1-MS2-MS3 

(see below). The targeted approach increased the precision and accuracy to quantify minor differences 

in rare and combinatorial histone PTMs (Figures 1B, C, S1, S2, S3 and Suppl. Note 1).  

Motifs containing methylated lysines in addition to acetylation displayed characteristic shifts in 

retention time (Figures 1A, S1). A systematic analysis of positional isomers (peptides with identical 

mass but PTMs at different positions) revealed some rules. A di- or tri-methyl group close to the N-

terminus of a peptide results in a lower hydrophobicity and thus earlier retention time as compared to 

when the methylation is in the middle. For example, an H3 peptide containing tri-methylated lysine 27 

(K27me3) elutes a few minutes before the same peptide bearing K36me3 (Figure S1B). Furthermore, 

tri-methylated peptides elute shortly before di-methylated ones, followed by unmethylated and, lastly, 

mono-methylated forms. This was true for all histone peptides analysed and allows a precise 

quantification of peptides carrying methylation-only or mixed acetylation-methylation motifs solely 

based on their MS1 values (Figures 1A, S1). 

Positional isomers carrying one or multiple acetylations are not separated chromatographically using 

the D3AA method. Their individual intensities can be quantified using signals generated by a high 

occurrence of targeted MS2 scans (Figures 1A, S2; Tables S1, S2). Because four of the di-acetylated 

histone H4 combinations, including H4.K5acK12ac, cannot be identified and quantified with MS1 and 

MS2 only, we optimised procedures to quantitatively read out prognostic MS3 ions and thereby 
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measured those isoforms by successive MS1-MS2-MS3 scans (Figures S2A, S2B, Suppl. Note 1.2). 

To our knowledge, this is the first direct MS-based quantification of all six histone H4 di-acetylated 

isoforms. 

To validate and benchmark the LC-MS workflow, we used synthetic peptides carrying different 

acetylation motifs at different ratios (Figure S2B, Table S3), which demonstrated a very high 

accuracy. To assess the level of precision, we performed three whole-workflow replicates starting with 

2 million KC cells each. The quantification of 45 histone motifs resulted in a median coefficient of 

variation (CV) of 5.2% (Figure 1B, Table S4). Next, we measured the level of variation for five 

independent biological replicates involving control RNAi treatments of between 2 and 8 million cells. 

Through optimising MS2 and MS3 recordings, the CVs for motifs, which require successive MSn 

measurements were similar (median CV of 10.4) to those for motifs requiring MS1 only (median CV 

of 8.9). However, the CVs of the individual histone PTMs varied between 0.8% and 35.7% (Figure 

1B, Table S4). Similar results were obtained using 75,000 to 300,000 mammalian cells (data not 

shown). The differences in CV for histone PTMs reflect their in vivo abundances, which differ in 

several orders of magnitude (Figures 1D, E) and the technical imprecision specific to any MS 

identifier (Table S4). For example, quantitation of the highly abundant H3.K27me2 motif requires 

only MS1-based quantification with highly precise MS1 quantifier (CV = 5.3%), whereas the low-

abundant H4.K8acK12ac motif requires integration from MS1, MS2 and MS3 peak areas (CV = 

35.7%). Overall, our current LC-MS workflow is able to analyse low amounts of sample and the 

sensitivity, precision and accuracy are improved over state-of-art workflows for quantifying PTM 

motifs.   

 

Correction of LC-MS signal bias  

Modifications change the physiochemical properties of peptides, which may influence several steps 

during the LC-MS workflow and thereby impair accurate quantification (Marx et al., 2013). To assess 

this phenomenon, we determined the LC-MS response factor by measuring a library of synthetic 

peptides containing acetylation and methylation motifs to H3 and normalising the proteotypic signals 

relative to the Q tag abundance (Figure 1C, Suppl. Note 2). Equimolar solutions of peptides with 

different methylation signatures display very drastic differences in the LC-MS response factor, 

corroborating a recent study by Garcia and colleagues (Lin et al., 2014). The effect is most dramatic 

for peptides containing H3.K9me3, whose Q tag normalised LC-MS response factor is 34 times lower 

than that of the K9me1 peptide. Therefore, the interpretation of the cellular abundance of K9me3 is 

underestimated by an order of magnitude if not corrected for.  

On the other hand, H3 peptides bearing K9ac or K14ac have almost identical LC-MS response factors, 

confirming that the D3AA method achieves accurate quantification of acetylation motifs.  
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In summary, experimentally determined LC-MS response factors allowed introducing a correction 

factor specific to histone motifs. Table S3 summarises these factors for a selected set of peptides. Our 

catalogue of correction factors will facilitate the interpretation of published and future PTM datasets 

for relative and absolute abundances of peptides and their PTMs. 

 

The histone acetylation motifs fall into three abundance classes 

We measured the acetylation and methylation levels of all lysines on histone H3 and H4 in Drosophila 

melanogaster KC cells and quantified 45 of over 55 motifs detected (Figure 1D, Table S4, Suppl. Note 

1.3). This included acetylation of K5, K8, K12 and K16 as well as methylation of K20 on histone H4 

and seven acetylation (K9, K14, K18, K23, K27, K36, K37) as well as five methylation sites (K4, K9, 

K27, K36, K79) on H3. We did not detect acetylation or methylation on the remaining six lysines of 

histone H4 and four lysines on histone H3. Although other lysine acetylation sites had been reported 

before (H4.K91ac, H3.K4ac, H3.K56ac, H3.K122ac), their abundance in Drosophila cells must be 

below our detection limit of approximately 0.003% or 182 histone molecules per cell, at least on 

average in an asynchronous population (see below and Suppl. Note 1.3). 

Knowledge of the cellular abundances of histone motifs facilitates the interpretation of chromatin 

maps and may contribute to developing quantitative models for the function of histone modifications. 

For example, H3.K9me3 constitutes a hallmark of repressive chromatin that covers significant regions 

of the fly and mammalian genomes (Kharchenko et al., 2011; Consortium et al., 2012). In support of 

this widespread notion, we measured K9me3 on 39% of H3 molecules, but only if we corrected for the 

differential LC-MS response (without correction: 4.2% H3.K9me3, Table S4).  

The abundances among individual acetylation motifs differ by four orders of magnitude (Figure 1D). 

Plotting the abundance distribution of the 29 histone acetylation motifs revealed three abundance 

classes. H3.K23ac is by far the most abundant acetylation (47% of H3, corresponding to 2.8 million 

molecules/cell). It is present, on average, on every second nucleosome or even on all nucleosomes if 

the arrangement was heterotypic. Eleven motifs were of intermediate abundance (1–12% of histones, 

class median: 3.7%). Most combinatorial acetylation motifs, however, are present on less than 1% of 

histones (17 motifs, class median: 0.3%). For example, the H4.K5acK8acK16ac motif is present in 

only about 7600 estimated copies per cell (for reference, a KC cell has about 6000 active gene 

promoters). It is tempting to speculate that highly abundant histone acetylation motifs contribute to 

global features of chromatin structure, whereas rare and combinatorial histone acetylation motifs 

constitute marks for bromodomain-mediated signalling.  
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The contributions of all known or suspected KAT and KDAC enzymes to histone acetylation 

motifs 

The inventory of all histone acetylation motifs serves as a point of entry to study the histone acetylome 

as a structural and regulatory system that is installed by KATs and KDACs according to cell-specific 

programmes. The properties of this system depend on the substrate specificity or redundancy of the 

enzymes. Which KATs and KDACs contribute to a specific histone acetylation motif? What are the 

global effects on the histone acetylation landscape if a single enzyme is depleted? Addressing these 

questions we systematically evaluated the contribution of every KAT and KDAC to the inventory.  

Drosophila melanogaster is particularly suited for a single gene perturbation strategy, since most 

KATs, KDACs and KAT/KDAC-associated proteins are well conserved between the fly and human 

cells, yet, the fly genome does not contain extensive KAT and KDAC paralogues, which are common 

for most mammalian genomes.  

We created and curated a list of putative acetyltransferases and deacetylases in D. melanogaster, 

including novel candidate genes coding for proteins with acetyltransferase-related domains, using 

public databases, primary research articles and cross-homology search using BLAST (Table S6). Of 

the at least 44 putative lysine acetyltransferases with recognisable KAT domains, we focused on the 

23 KATs, which are expressed in most cell types and developmental stages and thus are likely to 

constitute the most relevant determinants of Drosophila’s histone acetylation system. This list includes 

(1) the extensively studied ‘model’ KATs (GCN5/PCAF, CBP/P300, MOF, HAT1, TIP60), (2) less 

well characterised KATs (KAT6 [MOZ/MORF], HBO1, ELP3, TAF1, ATAC2), (3) a mostly 

uncharacterised class of GCN5-related KATs (NAT6, NAT9, NAT10), (4) N-terminal 

acetyltransferases suggested to also acetylate internal lysines (NAA10, NAA20, NAA30, NAA40, 

NAA50, NAA60), (5) putative acetyltransferases with no recognizable direct homologue in non-

Drosophilid species (CG5783, CG12560), (6) the acetyltransferase ECO and (7) a bi-functional 

enzyme containing a O-GlcNAcase - activity and potentially a KAT activity (MGEA5, also known as 

NCOAT or OGA).  

The D. melanogaster genome encodes five recognisable zinc-dependent lysine deacetylases of the 

HDAC class (RPD3/HDAC1, HDAC3, HDAC4, HDAC6, HDAC11) und five NAD-dependent 

Sirtuins (SIR2/SIRT1, SIRT4, SIRT6, SIRT7). With the exception of HDAC11 and SIRT7, all 

KDACs are ubiquitously expressed und analysed in our study.  

Because the majority of KATs and KDACs are not or only poorly characterised and consequently 

mutants and antibodies are lacking, we depleted KAT and KDAC proteins by RNA interference 

(RNAi) in the Drosophila model cell line KC. RNAi efficiently depletes proteins in Drosophila cell 

lines within 4 – 7 days (Zhou et al., 2014).  
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As a proof of concept we initially focused on the acetyltransferase MOF, for which well characterised 

mutants and antibodies exist. MOF levels were strongly diminished after incubating cells for 4 days 

with interfering RNAs directed against MOF transcript, and were undetectable after 5.5 days (Figures 

S4A, B). At this time H4.K16ac, the known product of MOF activity, was most strongly reduced 

(Figure S4C). The two different interfering RNAs yielded very similar results (Table S5). Because 

MOF is considered to be responsible for the majority of H4.K16ac in Drosophila and human cells 

(Smith et al., 2005; Conrad et al., 2012), we were surprised to observe that depletion of MOF in the 

female KC cell line reduced the amounts of H4.K16ac by only 40%.  

To compare the acute RNAi depletion strategy with constitutive loss of gene function, we analysed the 

status of H4.K16ac in adult flies mutated for MOF (Gu et al., 1998). Similar to KC cells, mof2 mutant 

females retained over 50% of H4.K16ac (Figure S4D). Apparently, other KATs besides MOF 

contribute to setting the H4.K16ac mark. Therefore, RNAi against MOF led to quantitatively similar 

reduction of H4.K16ac as loss-of-function mutation of the MOF gene. We conclude that RNAi is an 

appropriate method for our survey of KAT and KDAC activities.  

We next ablated each KAT and KDAC in KC cells with two distinct interfering RNAs for 5.5 days 

and measured the abundance of 22 acetylation, 6 mixed acetylation-methylation and 11 methylation 

motifs as well as the 5 unmodified peptide backbones. Using RT-qPCR, we determined a mean 

knockdown efficiency of 80% across the 31 gene knockdowns (Figure S5). Multiple biological 

replicates increased the confidence to measure even subtle differences and demonstrated a high 

reproducibility among the RNAi pairs and across replicates (Table S5, Suppl. Note 3). We observed 

no major growth and cell cycle phenotypes upon depleting individual KATs and KDACs (data not 

shown), in agreement with a previous report (Kondo and Perrimon, 2011). Notable exceptions were 

cells in which CBP, TAF1 and RPD3 were targeted, which slowed their proliferation after four days of 

RNAi (data not shown).    

The heat map in Figure 2A shows the relative changes of 24 histone acetylation motifs upon depletion 

of 23 KATs. Most KATs show a clear specificity for certain acetylation motifs, but CBP and NAA10 

contribute to many motifs. KAT depletion leads to decreased levels of 104 acetylation motifs, with 

interesting specific effects. Many relations between KATs and particular histone motifs would have 

been missed had a conventional instead of a combinatorial analysis been applied (compare Figure 2B 

with 2A). Contrary to expectation, acetylation motifs did not only decline but at the same time the 

abundances of 160 motifs increased. Detailed analysis (see below) reveals that pre-existing acetylation 

and methylation patterns modulate the substrate selectivity for further modification. 

Below, we use this dataset to i) describe the putative direct in vivo targets for KATs, ii) infer common 

properties of KATs as a class (Figure 3) and between the KATs and KDACs (Figure 4) and iii) 

describe the global changes of the histone acetylome as individual enzymes are removed from the 
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system (Figure 5). The analysis reports the response of the system to enzyme depletion, including 

primary effects reflecting direct enzyme-substrate relationship, and secondary effects for example of 

compensatory nature. To our knowledge, these 1364 individual enzyme - histone PTM relationships – 

monitoring the involvement of 23 KATs and 8 KDACs in 39 acetylation and methylation motifs – 

constitute the most comprehensive functional histone PTM dataset reported so far.  

 

Mining the database for testable hypotheses and characteristics of acetyltransferase classes 

An in-depth analysis of the data summarised in Figure 2 allows not only to shed light on controversial 

enzyme-substrate relationships but also to derive testable hypotheses about pathways that generate 

complex acetylation motifs. In Supplementary Note 4, this will be illustrated with two examples, the 

cytoplasmic HAT1 and with HBO1, substrates of which are currently debated (Suppl. Note 4 and 

Figures 3A-D).  

Mining the data underlying Figure 2 demonstrates that many KATs specifically contribute to low 

abundant and combinatorial motifs. Most KATs have a narrow yet not absolute substrate specificity, 

which is modulated by adjacent acetylation (markedly observed for HAT1, HBO1, MOF, ATAC2, 

NAT10 and MGEA5) and methylation (KAT6, HBO1, NAT10 and others). This hitherto 

unappreciated level of crosstalk between neighbouring methylation and acetylation sites (see below) 

suggests that, like bromodomain recognition of histone tails, the interactions of KATs with substrate 

peptides are sensitive to the context of specific combinatorial motifs. 

The realisation that most KATs have restricted substrate selectivity is in stark contrast to the 

widespread notion that most KATs are rather promiscuous enzymes (Sterner and Berger, 2000; 

Kouzarides, 2007; Lee and Workman, 2007). This view may have arisen by studies of the model 

acetyltransferase CBP, which, however, is a clear outlier within the KAT class (Figures 2, 3C, D). 

Loss of CBP leads to a reduction of many acetylation motifs, including acetylation at K5 and K8 of 

H4 and K14, K18, K23 and K27 on H3. Furthermore, whereas most KAT depletions reduce only a 

distinct subset of the motifs containing the putative primary target lysine, CBP RNAi reduces almost 

all H4 combinations containing acetylated K5 and K8 (Figure 3C). Evidently, CBP is a rather 

promiscuous KAT, which may explain its robust acetylation activity of many substrates in vitro 

(Sterner and Berger, 2000). Clearly, the enzymatic properties of CBP do not reflect common 

properties of KATs as a class. 

Commonly, several KATs contribute to setting a histone acetylation motif. This fundamental 

conclusion echoes the combinatorial nature of histone modifications at the level of the enzymes that 

bring it about. While on average three KATs contribute to setting an acetylation motif, one often finds 

a dominant KAT with minor contributions by others. For example, CBP depletion leads to a reduction 
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of H4.K5acK8ac by 61% whereas MGEA5 and NAA10 each contribute only 30% and 23%, 

respectively (Figure 3E). Although HAT1 is the dominant KAT that sets H4.K5acK12ac, NAA10 and 

NAA60 also contribute substantially. Figure 3F plots the cumulative contributions of all KATs, 

calculated from the extent of motif reduction upon KAT depletion to all acetylation motifs. Notably, 

several bars approximate a cumulative depletion of 100% if all KAT RNAi effects are summed up 

(median = 113%, mean = 129%), suggesting that our systematic KAT depletion approach captures the 

majority of the cell’s acetylation events. Cases were the cumulative contributions stay below 100% 

may be explained by functional redundancy between enzymes: the effect of an individual knockdown 

is underestimated because an alternative HAT takes over. For several rare and highly combinatorial 

motifs the cumulative contributions add up to more than 100%, which points to potential contributions 

of KDACs to the steady-state levels of acetylation motifs.  

 

The relaxed specificity of deacetylases restricts the levels of rare, combinatorial motifs  

The immediate reversibility that endows acetylation marks with regulatory potential requires strong 

deacetylase activities. Unlike KATs, KDACs are characterised by relaxed substrate specificity. 

Depletion of any of the eight commonly expressed KDACs increased the levels of many H4 and most 

H3 acetylation motifs in a similar way (Figure 4A). RPD3 is by far the dominant deacetylase in KC 

cells, and its depletion leads to strong gains of those rare, combinatorial motifs on H4 that bear 

regulatory potential.  

Overall, motifs with multiple acetylation sites increase stronger than individually acetylated motifs. 

For example, di-acetylated H3.K9acK14ac increases more than 4 fold after ablation of RPD3. At the 

same time, the levels of the highly abundant H3.K14ac mark were only marginally increased by 20% 

whereas the ubiquitous H3.K23ac mark was not affected at all. We also did not detect any new 

acetylation of the lysines of the H3 and H4 tails that were not acetylated in unperturbed KC cells. In 

no case did the overall acetylation increase upon KDAC depletion lead to saturation and massive 

accumulation of even a simple motif (Figure 4B and Table S5).  

 

The system’s response to KAT deprivation effectively maintains global histone acetylation levels  

Contrary to wide-held expectations we observed that the levels of many histone motifs increased if 

cells are deprived of histone acetyltransferases (Figure 2A). To explore this phenomenon more 

systematically, we summed up all gains and losses of the individual H3 and H4 acetylation motifs. To 

our surprise, we found that cells have balanced or even higher histone acetylation levels when depleted 

for most individual lysine acetyltransferases (Figures 5A and S6B). Ablation of only three KATs 

(KAT6, NAA10 and GCN5) lead to the expected significant reduction of global histone H3 and H4 

acetylation. For a major group of 17 KATs, among them CBP and HBO1, the depletion did not change 



RESULTS AND DISCUSSION  

 

127

the cell’s total number of acetylated histone H3 and H4 peptides relative to non-acetylated peptides 

significantly, despite the fact that the abundance of some ‘primary’ acetylation motifs (the presumed 

direct products of KAT activity) were severely reduced. These losses were accompanied by gains in 

other, some times unrelated motifs (Figure 5B). We arrived at a similar conclusion when we counted 

the total number of acetyl groups instead of the number of acetylated peptides (Figure S6B). 

Losses of acetylation are not only accompanied by gains within the same histone tail, as might have 

been expected, but also by gains on the other histone (Figures 2A, 5B). A prominent case is the 

depletion of CBP, where a reduction of the acetylation motifs from H4 (H4.K5ac and H4.K8ac) and 

H3 (H3.K14ac, H3.K18ac and H3.K18acK23ac) go along with an increase in H4.K12ac, 

H3.K9me2K14ac and H3.K23ac. Very often the acetylation gains are close to those sites that loose 

acetylation (Figures 2A, 5B), leading us to speculate that the system strives to compensate local 

charge imbalances upon KAT removal.  

For a number of enzymes (NAT6, GC5783, NAA40 and TAF1) we do not detect any loss of 

acetylation upon depletion, but only gains (Figure 2A). These enzymes may not be KATs after all, or 

may strictly depend on cofactors that are not present in KC cells. Moreover, some KATs may only 

acetylate non-histone proteins (Sterner and Berger, 2000; Choudhary et al., 2009). Conceivably, the 

losses and gains in acetylation motifs upon perturbation of KATs reflect the response of a system that 

strives to compensate structural perturbations. 

 

The methylation response to KAT depletion allows their functional classification 

Depletion of most KATs lead to global changes in histone methylation marks. Hierarchical clustering 

of the methylation responses upon KAT deprivation revealed a clear grouping of KATs (Figure 6A). 

Many KAT depletions led to a substantial reduction of H3.K36me2/3, a mark associated with 

transcribed chromatin, as well as to a massive increase in the repressive H3.K27me3 mark, which 

indicates polycomb repression. This response is well expected for those KATs that are known 

transcription co-activators (GCN5, CBP, TIP60). The similarity of the response scored upon ablation 

of MGEA5 suggests that this poorly characterised KAT also function as a transcription activator. 

Interestingly, the putative acetyltransferases CG5783 and NAT6 are the only enzymes whose absence 

is accompanied by a substantial increase of K36me2. Similar, loss of NAA40 is accompanied with a 

severe reduction of the repressive K9me2 mark. These results suggest that CG5783, NAT6 and 

NAA40 may confer repressive functions.  
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Primary and secondary contributions of KATs to mixed acetylation/methylation motifs 

For PTM motifs involving both, acetylation and methylation, it is difficult to conclude about the 

individual contribution of candidate enzymes. Figures 6B and 6C exemplify this challenge for KAT6 

and HBO1.  

Cells lacking KAT6 have reduced levels of H3.K14ac only in the context of tri-methylated lysine 9. 

Because H3.K9me3 alone is not reduced under these conditions, it is reasonable to assume that KAT6 

directly acetylates K14ac on a tri-methylated K9 substrate. A similar argument can be made to 

conclude that KAT6 does not acetylate K14 if K9 is acetylated or mono-/di-methylated. The 

recognition of K14ac by antibodies may be modulated by adjacent methylation. By contrast, cells 

deprived of HBO1 not only reduce the H3.K9me3K14ac motif, but also the K9me3 mark alone, a 

secondary effect that may confuse the analysis of HBO1 substrates by other means.  

 

Modulation of substrate specificity by molecular context 

Acetyltransferases are commonly found in complexes with associated proteins, which may target the 

enzyme to specific chromosomal loci and fine-tune substrate selectivity. Variation in associated 

complex subunits may harness a KAT activity for cell-specific and developmental functions. This is 

well illustrated using the case of MOF, which is found in two distinct multi-protein complexes. In the 

context of the ubiquitous NSL (MBDR-2) complex MOF regulates housekeeping genes as a classical 

transcription co-activator (Feller et al., 2012; Lam et al., 2012). In male somatic cells, MOF 

additionally associates with the so-called male-specific-lethal (MSL) proteins to form the dosage 

compensation complex (MSL-DCC). The MSL-DCC compensates the X chromosome monosomy by 

an increased transcription output, which involves MOF-dependent H4.K16 acetylation of transcribed 

gene sequences (Prestel et al., 2010a).  

In order to determine whether the protein complex environment modulates MOF’s substrate selectivity 

we monitored changes in histone acetylation motifs after depleting male or female cells of MOF or of 

the diagnostic subunits of the NSL and MSL-DCC complex. RNA interference targeting MOF 

expression led to a reduction of H4.K16ac by about 40% in female cells or 60% in male cells (Figures 

7A, S4D). MOF depletion in KC cells has to be seen against a robust increase of the almost three-fold 

more abundant H4.K12ac and additional gains in H3K9- and K14-containing acetylation motifs, 

leading to overall elevated levels of H3 and H4 acetylation. Likewise, H4.K16 loss in male S2 cells 

was accompanied by a clear increase in H4.K12ac and H4.K5ac. Ablation of the MSL-DCC subunit 

MSL1 in male cells essentially mirrored this effect (with less crosstalk to H4.K5ac), indicating that 

most MOF effects in S2 cells are mediated by the MSL-DCC. By comparison, interference with the 

NSL complex through ablation of its core subunit NSL1 only modestly affected H4.K16ac levels. 

Interestingly, we detected a strong decrease of H3.K27ac in both cell types and of H4.K5ac in female 
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cells lacking NSL1, but not MSL1 (Figure 7A, B). These findings illustrate the male-specific 

acetylation of H4.K16 over and above a lower, more general level. They also suggest that the NSL 

complex affects histone acetylation independent of MOF.  

 

X chromosome dosage compensation is accompanied by global redistribution of acetylation and 

methylation marks 

Due to the specific dosage compensation mechanism, male Drosophila cells contain more H4.K16ac 

than female cells (Figure 7C, D). In light of the observed global balancing of total acetylation levels 

(Figure 5) we wondered whether such chromosome-wide regulation had any consequences for the 

acetylation system as a whole. We, therefore, compared histone acetylation and methylation motifs in 

male and female cells as well as in male cells lacking MOF. Remarkably, male and female cells 

showed similar total histone acetylation levels, if all H3 and H4 acetylation motifs were summed up 

(Figure 7C). However, the distribution of acetyl groups between motifs in male cells differs 

dramatically from that of female cells, and the differences are due to MOF (Figures 7C, D, see also 

Table S4). Male cells displayed twice the amount of H4.K16ac, but reduced levels of several other 

acetylation motifs including H4.K5ac, H4.K12ac and H3.K14ac as compared to female cells. 

Conversely, depletion of MOF in male S2 cells reduced H4.K16ac and increases H4.K5ac, H4.K12ac 

and H3.K14ac to levels found in female cells.  

Comparing methylation signatures between male and female flies indicate that dosage compensation 

correlates with an increased abundance of the repressive K27me3 mark as well as increased 

H3.K36me2/3 (Figure 7E). Abolishing dosage compensation in S2 cells by ablation of MOF converts 

the methylation pattern to a one that resembles females. Together, these results indicate that the 

evolution of dosage compensation not only boosted the levels of H4.K16 acetylation, but also 

triggered a network of secondary effects that may be interpreted as adaptations of the system to a 

global change in acetylation state. 

 

The global response of the histone modification system upon MOF depletion is conserved 

between Drosophila and human cells  

One of the surprise findings of our study is that a reduction of H4.K16 acetylation, which is thought to 

be a histone mark with unique structural implications, led to an inevitable increase of acetylation at the 

neighbouring K12. The robustness of the effect suggests K12ac may structurally compensate for a loss 

of K16ac. Since H4.K16 acetylation is thought to affect the basic properties of the chromatin fibre, 

such an effect should be observable in other species as well. To test this prediction we deprived human 

cells of MOF. In mammalian cells, MOF preferentially associates with subunits of the NSL complex, 
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but its substrate specificity is still under debate (Cai et al., 2010; Chelmicki et al., 2014). The ablation 

of MOF in HeLa cells not only reduced its supposed primary product, H4.K16ac, but also increased 

acetylation of the adjacent lysine 12, in striking resemblance to the effect in Drosophila (Figures 7F, 

S4F). Moreover, similar to female flies, where MOF functions as a global transcriptional co-regulator, 

human cells lacking MOF showed increased levels of H3.K9me2 and K27me3, while K9me3 and 

K36me3 are reduced (Figure 7G). 

These results suggest that the global response of the system of histone modifications that we observed 

through our comprehensive, quantitative study of the acetylation motifs after depletion of critical 

enzymes, is a conserved feature of higher eukaryotic nuclei.  

 

DISCUSSION 

Although lysine acetylation was the first chemical modification described for histones already more 

than 50 years ago, our knowledge of the contributions of acetylation to the complex, combinatorial 

histone modification system is still superficial. Optimising LC-MS workflows and correcting for its 

inherent detection bias we generated a comprehensive inventory of all acetylation sites and many 

combinatorial motifs for histones H3 and H4 in an asynchronous population of Drosophila cells. Some 

highly abundant motifs may contribute to the general structure of chromatin, whereas rare, often 

combinatorial, motifs may transmit regulatory signals via bromodomain adaptor proteins. 

Knowing the abundance of acetylation sites helps designing and interpreting genomic experiments, 

distinguishing rate-limiting from saturating components in a chromatin pathway and assessing the 

dynamic turnover of acetylation motifs (Waterborg, 2002; Zheng et al., 2013).  

Acetyltransferases were the first histone modifying enzymes to be cloned, yet the substrate specificity 

of some KATs has remained controversial or even not known (Lee and Workman, 2007; Yuan and 

Marmorstein, 2013). Traditionally, identifying KAT substrates involved testing the acetylation status 

of selected lysines with antibodies, whose specificities have recently been questioned. Further 

problems arise from relating the apparent KAT substrate specificities determined in vitro to their 

physiological activities, which are commonly modulated by the molecular environment of the multi-

subunit complexes they reside in. Remarkably, we found that most KATs display a narrow, yet not 

absolute, substrate specificity in cells, which is influenced by adjacent modifications. This contrasts 

common perceptions of rather promiscuous KAT activities that originate from the prominent 

characterisation of a few ‘model’ enzymes with relaxed substrate selectivity, such as CBP, which is a 

clear outlier of the class of KATs in this respect.  

Our catalogue of the quantitative changes in histone acetylation and methylation motifs in response to 

ablating all known or suspected acetyltransferases and deacetylases allowed to re-evaluate 
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controversial enzyme-substrate relationships and to discover putative primary targets of 

uncharacterised KATs. This database can be further mined to derive testable hypotheses about the 

functional crosstalk between histone modifying enzymes and the assignment of KATs and KDACs to 

cellular pathways and disease states.  

Surprisingly, we found that ablation of many KATs not only reduced acetylation of its putative 

primary target but also led to acetylation gains at secondary sites, such that the global level of histone 

acetylation in cells were maintained. Our survey of the secondary effects upon KAT depletion serves 

as point of entry to study the intertwined regulatory network of histone modifications as a system. 

Related phenomena that suggest ‘compensation’ of a modification loss by corresponding gains on 

other proteins have occasionally been observed before. Analysing the phospho-proteome of a 

collection of yeast kinase and phosphatase mutants, Aebersold and colleagues reported a similar 

number of gains and losses in phosphorylation sites across all mutants together (Bodenmiller et al., 

2010). Voss and colleagues found that reduced levels of H3.K14ac in hbo1 knockout mice were 

accompanied by increases in H4.K16ac and to a lesser extent in H4.K5ac and H3.K9ac (Kueh et al., 

2011). Ge and co-workers made similar findings for cbp/p300 double deletion lines, which displayed 

increased levels of H3.K23ac and H3.K9me1K14ac (Jin et al., 2011). These related findings in several 

species may point to a fundamental, conserved principle.  

Conceivably, the loss of a particular acetylation motif evokes a compensatory acetylation of a 

different, but functionally redundant motif by another KAT. The reciprocal responses between 

H4.K12ac and H4.K16ac (HBO1, MOF) and involving H4.K5 and H4.K8 (CBP) support such a view. 

However, particularly critical alterations in acetylation, such as losses in highly abundant, structural 

acetylation motifs, or of motifs with very specific functions during organismal development may not 

be compensated for (Voss and Thomas, 2009). 

Considering histone modifying complexes as components of a system that satisfies local functional 

heterogeneity as well as global structural constraints, sudden perturbation may trigger feedback 

regulation to attenuate the impact. In this respect, global charge distribution and neutralisation comes 

to mind. Histone acetylation significantly diminishes the total number of positive charges in 

chromatin. We speculate that ablating KATs triggers a homeostatic re-adjustment of global charge to 

maintain the stability of chromatin according to polyelectrolyte theory (Clark and Kimura, 1990). In 

support of this hypothetical function, Kurdistani and colleagues reported a correlation between the 

global acetylation levels and the intracellular pH levels (McBrian et al., 2013).  

The fact that lysines can be modified with several mutually exclusive chemical groups constitutes a 

basic principle of functional crosstalk between diverse modification-based signalling pathways. 

Further crosstalk is evident at the level of the modification enzymes, which are sensitive to pre-set 

modifications on histone tails. Monitoring lysine methylation and mixed acetylation-methylation 
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motifs enabled us to identify new candidates, where a pre-set methylation mark may promote (KAT6: 

H3.K9me3  K14ac) or inhibit (NAA10: H3.K9me2 --| K14ac) acetylation. Moreover, we observed 

that ablating individual KATs led to dramatic reduction (GCN5: H3.K79me2) or increase (CBP: 

H3.K27me3) in methylation sites. Reciprocal correlations between the loss of histone lysine 

methyltransferases and altered histone acetylation have been documented before (Plazas-Mayorca et 

al., 2010; Sinha et al., 2010). Our study suggests that crosstalk among lysine acetylation and 

methylation is widespread and must be considered within the system of a comprehensive modification 

landscape. 

The targeting and substrate selectivity of a KAT may be tuned by associated cofactors. Using the 

example of MOF, which resides in two distinct complexes with non-overlapping function (the MSL 

dosage compensation complex and the NSL transcription co-activator complex), we show that while 

the primary targets are similar across cell types and species (with notable quantitative differences), 

secondary effects are strongly influenced by the associated co-factors. Depletion of the NSL complex, 

but not the MSL complex, caused a massive reduction of the enhancer mark H3.K27ac, in interesting 

coincidence with the recent mapping of the human NSL complex to enhancers (Chelmicki et al., 

2014). We cannot distinguish whether NSL subunits direct MOF’s enzymatic activity towards K27 or 

whether the NSL complex regulates another KAT that acetylates H3.K27ac. It has also been suggested 

that MOF within the NSL complex acetylates K5 and K8 in addition to K16 (Cai et al., 2010), yet 

although we detect reduced amounts of H4.K5ac in female cells lacking NSL1, this is not observable 

for MOF depletions in S2, KC or HeLa cells.  

Ablation of MOF activity in the context of the dosage compensation complex led to the expected 

reduction of H4.K16ac, but surprisingly, this was associated with a pronounced increase in the 

neighbouring H4.K12ac. Since the only known function of H4.K16 acetylation is to hinder the folding 

of the nucleosome fibre, we conclude that acetylation of lysine 12 can also fulfil this function to some 

extent. Interestingly, the depletion of the dosage compensation system further affected the recovery of 

distinct methylations. H3.K36me3, a mark that is placed co-transcriptionally and thus marks active 

genes was significantly reduced. Considering that the dosage-compensated chromatin amounts to less 

than 2% of the genome, our finding of massively increased, MSL-DCC-dependent bulk H3.K36me2/3 

levels suggests that this mark almost saturates the nucleosomes along X chromosomal, dosage 

compensated genes. The high density may contribute to the observed genomic spreading capability of 

the MSL-DCC, which involves recognition of H3.K36me3 by MSL3 (Larschan et al., 2007). 

Furthermore, depletion of MOF in male cells triggered a co-depletion of the repressive H3.K9me3 and 

H3.K27me3 levels, leading us to speculate that repressive chromatin attenuates the powerful activation 

potential of H4.K16 acetylation to arrive at the balanced levels that characterise dosage compensation 

(Prestel et al., 2010b).  Our results define a point of entry into a quantitative assessment of the 
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epigenetic principles that enable the chromosome-wide transcriptional fine-tuning in vital processes, 

such as dosage compensation. 

KAT and KDAC inhibitors are considered promising therapeutic agents in the combat against 

complex diseases including cancer and neurological disorders. Our work shows that depleting single 

KAT activities leads to complex alterations of the epigenome, of which we monitored the reduction of 

bona fide primary substrates, the global re-distribution of acetyl groups to secondary sites and changes 

to methylation of histones. Increased knowledge of the systemic response of the chromatin 

modification network will be required for a more targeted utilization of drugs in a clinical setting. 
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EXPERIMENTAL PROCEDURES 

Cell Lines and RNAi 

Cultivation of KC and S2 cells and RNAi were carried out essentially as described before (Feller et al., 

2012). For detailed information, see Supplemental Experimental Procedures.  

LC-MS for histone PTM quantification 

Acid extracted, chemically acetylated and trypsinised histone peptides were separated on a HPLC C18 

analytical column and electrosprayed into an LTQ-Orbitrap Classic. MS was operated in a targeted 

mode and data was analysed with Thermo Xcalibur, Excel and R.  

Detailed information can be found in the Supplementary Notes 1 and 2 and in the Supplemental 

Experimental Procedures.  

 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes six figures, five Supplementary Notes, seven tables and 

Supplemental Experimental Procedures. 
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FIGURE LEGENDS 

 

Figure 1. Optimised liquid chromatography mass spectrometry (LC-MS) workflow for precise 

and accurate quantification of PTM motifs 

(A) Overview of the LC-MS workflow. D3AA method exemplified for H3 PTM isoform with four 

highly abundant modifications: H3.K9me3K14acK23acK27me2. (1) Chemical acetylation by d6-

acetic anhydride transfers a deuterated (d3)-acetyl group to free lysines. (2) The subsequent trypsin 

digestion yields peptides of intermediate size. (3) Lysine methylation induces characteristic shifts in 

retention time, which allows quantification only based on MS1 spectra. Shown are ion intensity traces 

of the parent ions from the H3.K9-R17 peptide. To aid visualisation, intensities among retention time 

segments are scaled on the intensity of the third segment: Original intensities of the first and second 

segments are 6.3 and 3.1 fold higher. (4) The positional isomers with permutations of the lysine 

acetylation sites (H3.K9ac and H3.K14ac), require successive quantification using MS1 of double-

charged parent ions (left) and MS2 of single-charged fragment ions (right).  

(B) High precision quantification for 45 histone motifs in technical and biological replicate 

experiments. We determined the median coefficient of variations (CV) of 4.9% for three technical 

whole-workflow replicates using 2 million Drosophila KC cells (left), and CVs of 10.4% and 8.9% 

across five biological replicates for motifs which require successive MS1-MS2 or MS1-MS2-MS3 

(centre, n=20) or MS1-only (right, n=25). The 45 histone motifs are shown in (D) and Table S4. 

(C) LC-MS response correction factor improves accuracy for motifs containing lysine methylation 

sites. Synthetic peptides to acetylation and methylation modifications for H3_K9R17 peptide were 

individually chemically acetylated, trypsinised and measured by LC-MS. To derive the LC-MS 

response correction factor (right), raw values for the proteotypic peptide (left) were divided by raw 

values for the quantification tag (grey hexamer, centre) and   signals for the H3.K9me1 peptide. 

Quantified synthetic peptides were obtained from JPT Peptide Technologies GmbH (Berlin).  

(D) Abundance for histone PTM motifs after applying LC-MS response correction factor. Low 

(yellow), intermediate (orange) and high (red) abundance classes of histone acetylation motifs are 

indicated. Motifs containing no acetyl group are indicated in white. See Tables S4, S5 and Suppl. Note 

1.3 for full dataset and variation estimates. 

(E) Same as (D) for motifs where the LC-MS response correction factor had only intermediate 

confidence.  

See Figures S1-S3. 
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Figure 2. Global and specific response to comprehensive perturbation of acetyltransferases 

(A) Heat map displaying relative changes in abundance of 28 PTMs involving lysine acetylation in 

response to RNAi depletion of 23 KATs in KC cells. The first eight KATs are sorted according to the 

systematic listing by (Allis et al., 2007), the subsequent ones according to their sub-classes, including 

GCN5 related KATs (NATs) and N-terminal acetyltransferases (NAAs). Relative changes are 

normalised on control RNAi and log2 scaled. Only significant changes are shown (p < 0.05, two-sided 

unpaired t test).  

(B) Relative reductions of acetylation at individual lysines upon RNAi as in (A) cumulating all motifs 

containing the corresponding lysine. This illustrates the best-case outcome of a conventional analysis 

with hypothetical antibodies recognizing individual acetylated lysines with high specificity.  

See Figures S5 and S6. 

 

 

Figure 3. Most acetyltransferases have a narrow yet not absolute substrate specificity, which is 

modulated by the context of adjacent modifications  

Statistical significance for all data in (A-F) was assessed with two-sided unpaired t test (p < 0.05) on 

log2 (target RNAi/ctr RNAi).  

(A) Quantification example of the histone H4 acetylation motifs for HBO1 RNAi. Statistically 

significant gains (red) and losses (blue) are indicated. Error bars display SEM (n=8).  

(B) Scheme visualising the interdependence of combinatorial H4 motifs. HBO1-depleted cells display 

a highly selective reduction (blue arrows) of two acetylation motifs. Blue arrows point to significantly 

changed motifs (two-sided unpaired t test, p < 0.05). 

(C,D) Quantification example and scheme as in (A) and (B), showing that CBP depletion reduces most 

H4 motifs containing acetylated lysine 5 or 8 (n=7).  

(E) Cumulative contributions of KATs, which significantly (two-sided unpaired t test, p < 0.05) 

contribute to H4.K5acK8ac and H4.K5acK12ac.  

(F) Cumulative contributions from all KAT depletion experiments reveals functional redundancy and 

points to the contribution of deacetylases. Cumulative KAT contribution was calculated from the 

extent of motif reduction upon KAT depletion filtered for statistically significant decreases (two-sided 

unpaired t test, p < 0.05).  
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Figure 4. KDACs generally show broad substrate specificity, and RPD3 dominates H4 de-

acetylation 

(A) KDACs display broad substrate specificity. Heat map showing relative changes of acetylation 

motif abundance in response to KDAC depletions, normalised to control RNAi and log2 scaled. Only 

significant changes are shown (p < 0.05, two-sided unpaired t test on log2 (KDAC/ctr)).  

(B) Global increase of histone H3 and H4 acetylation upon depletion of any HDAC and Sirtuin. 

Relative changes of total H3, H4 and combined H3 and H4 acetylation levels normalised to control 

RNAi are shown. Significance was assessed on log2 (KDAC/ctr) using two-sided unpaired t test 

(p<0.05). RNAi to RPD3 and HDAC6 cause stronger gains in acetylation on H4 compared to H3. 

Error bars indicate SEM (for n>2) or minimal and maximal value (for n=2). See Table S5 for number 

of replicates (n = 2 - 6). 

 

Figure 5. KAT deprivation induces and redistributes acetylation, which balances global histone 

acetylation levels  

(A) KAT depletion may lead to globally reduced (blue), balanced (grey), or increased (red) acetylation 

levels. Shown is the global histone acetylation score, calculated by summing up all acetylation motifs 

on H3 and H4, and normalised to control RNAi. Statistically significant changes were assessed using a 

two-sided unpaired t test (p<0.05) on log2 (KAT/ctr) Error bars indicate SEM (for n>2) or minimal 

and maximal value (for n=2). See Table S5 for number of replicates (n = 2 - 5). 

(B) Selective re-distribution of acetyl groups to specific secondary sites. Total loss (blue) and gain 

(red) of individual histone acetylation motifs are shown for cells deprived of CBP and HBO1. The 

contributions of the major motif changes of H3 or H4 acetylation are shown (filtered for significant 

changes, p< 0.05, two-sided unpaired t test).  

See Figure S6. 

 

Figure 6. Depletion of KATs and KDACs triggers a systemic alteration of the histone methylome 

(A) Reorganisation of histone methylation sites after KAT deprivation. Heat map displays relative 

changes after KAT RNAi normalised to control RNAi. Only significant changes are shown (p < 0.05, 

two-sided unpaired t test.). Dendrograms were generated by unsupervised hierarchical clustering using 

the ‘ward’ algorithm on a Euclidean distance matrix. The H3.K27me2 and H3.K79me1 motifs did not 

change significantly in any KAT RNAi and therefore were not integrated in the heat map.  

(B-C) Comparative analysis of acetylation-only, methylation-only and mixed acetylation-methylation 

motifs facilitates prioritization of putative KAT targets and identifies acetylation-methylation 
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crosstalk. Significantly reduced (blue) and increased (red) motifs are indicated (two-sided t test, p < 

0.05). Error bars indicate SEM (n=3 for KAT6, n=4 for HBO1). 

 

Figure 7: X-chromosome dosage dosage compensation is accompanied by global redistribution 

of acetylation and methylation marks 

(A) The MOF-containing MSL-DCC complex dominates the NSL complex for acetylation of H4.K16. 

Female KC or male S2 cells were depleted of MOF, MSL1 or NSL1, and the relative abundance of the 

indicated H4 acetylation (red box) was expressed relative to control cells that were treated with 

interfering RNAs directed against GST and GFP.  

(B) Similar type of experiment as in (A), probing the effect of NSL1, MSL1 or MOF depletion on 

H3.K27ac levels.  

(C) Global histone acetylation levels are similar between male S2 and female KC cells, but the 

distribution of individual sites differs. Cumulative bar plots summing up total levels of individual 

histone motifs.  

(D) Similar experiment as in (A), revealing the re-distribution of acetyl groups upon MOF depletion in 

S2 cells  

(E) Similar experiment as in (A), revealing that MOF depletion correlates with increased H3.K9me3, 

H3.K27me3 and H3 K36me2/3. Error bars in A, B, D and E indicate SEM (n=3 for NSL1 in S2 and 

Kc and MOF in S2; n=4 for MOF in Kc (for H3) and n=11 for MOF in Kc (on H4) and 

minimal/maximal values for MSL1 (n=2). 

(F) Similar experiment as in (D), except that MOF was ablated in Hela cells. 

(G) Similar experiment as in (E), except that MOF was ablated in Hela cells. Error bars in F and G 

represent SEM (n=4). 

Statistical significance between control – target RNAi and S2 – KC are indicated by asterisks (two-

sided t test, p < 0.05).  

See Figure S4. 
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Supplementary Figure 3. MS1 and MS2 spectra for the quanti�cation of H3 motifs.
(A-C) MS1 spectra of H3.T3R-8 peptide, with no modi�cation (A), H3.K4me1 (B) and H3.K4me2 (C). (D, E, G) MS1 spectra of H3.K9-R17 peptide, with H3.K9me2/3 ± K14ac (D),  
unmodi�ed-, mono- and di-acetylated H3.K9-R17 peptides (E) and H3.K9me1 ± K14ac (G). (F) MS2 on mono-acetylated H3.K9-R17 is required to distinguish H3.K9ac and H3.K14ac.
Insert to diagnostic y7 ion pairs is shown in Figure 1A (panel 4).  (H) MS1 spectrum of  H3.K18-R26 peptide. (I) MS2 on mono-acetylated H3.K18-R26 is required to distinguish 
H3.K18ac and H3.K23ac. Insert shows diagnostic b2 ion pair. Note that signals around 299.20 were 10x enhanced. (J-L) Spectra for H3.Y54-R63 peptide. Robust identi�cation of 
unmodi�ed H3.K56 but not acetylated H3.K56ac in histones from KC cells (J), although synthetic TQL peptides to H3.K56ac (K) produce at least similar signals to unmodi�ed 
H3.K56 TQL peptides (L).  (M-Q) MS1 spectra of H3.K27-R40 peptide, with unmodi�ed- and mono-acetylated isoforms of the non-methylated peptide (M), H3.K27me1 (N), 
H3.K27me2 ± K36ac and H3.K27me3 (O) , H3.K36me2/3 ± K27ac (P), H3.K27me2K36me1 (Q). (R-T) MS2 on mono-acetylated H3.K27-R40 is required to distinguish H3.K27ac, 
H3.K36ac and H3.K37ac. Full MS2 spectrum (T) and diagnostic b3 (R) and y11 (S) ion pairs are shown. (U-W) MS1 spectra of H3.E73-R83 peptide, with unmodi�ed (U), 
mono-methylated (V) and di-methylated (W) H3.K79. The insert in W shows minute signals for H3.K79me3 that elutes shortly before H3.K79me2. (Y, X) Robust signals for 
unmodi�ed H3.K64 and H3.K121, but no signal for acetylated isoforms are detected. 
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Supplementary Figure 4: Cells lacking MOF still retain substantial levels of H4.K16ac. 
(A) Representative example of quantitative immuno blot analysis probing for MOF protein levels during a four to seven days time-course RNAi experiment in female Kc cells. 
Lamin protein levels served as a loading control. (B) Quanti�cation of immuno blot signals from (A) using LI-COR (Biosciences). (C) Quantitative LC-MS analysis of mono-acetylated 
H4 motifs during a time-course RNAi experiment using two independent MOF RNAi constructs. Values were normalized to control RNAi. Error bars show maximum and minimum
from two di�erent RNAi constructs targeting MOF. (D) Quantitative LC-MS analysis of mono-acetylated H4 motifs in adult female (black) and 3rd instar larvae male (grey) mof2 
mutants. Error bars represent SEM from 8 (female) and 3 (male) independent biological replicates. The increase of H4.K12ac and the decrease of H4.K16ac is statistically signi�cant
(p < 0.05 using unpaired two-sided t test). (E) Quanti�cation of immuno blot analysis targeting MOF, NSL1 (NSL complex) and MSL1 (MSL-DCC complex) in Kc and S2 cells after 5.5
days of RNAi using LI-COR (Biosciences). Error bars represent SEM of at least three biological replicates. (F) ECL-based immuno blot analysis of RNAi experiment to target hMOF in
HeLa cells for 2.5 days using three di�erent siRNA constructs (lanes 2-4), a pool of 3 MOF siRNA constructs (lane 5) and a luciferase sequence as control. 
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Supplementary Figure 5: Quanti�cation of mRNA levels after KAT and KDAC RNAi.
Bar plots show results of RT-qPCR measurements after RNAi of indicated KATs and KDACs, normalised to control RNAi and gapdh. Error bars show minimal/maximal value
from two di�erent dsRNA RNAi constructs targeting the same KAT/KDAC gene (see Table S7 for RNAi and RT-PCR primers). In cases where only a single dsRNA RNAi construct
was used, the replicate experiment was performed on another day. 
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SUPPLEMENTARY NOTES 

 

Supplementary Note 1: LC-MS workflow 

1.1 Improved sensitivity, precision and accuracy to quantify positional isomers containing 

lysine acetylation  

We streamlined the histone extraction protocol to enable rapid processing of many samples (see 

Supplemental Experimental Procedures). The low requirement of starting material (typically 1 - 5 x 

106 KC cells) allowed a cost-effective RNAi strategy and histone preparation without chromatographic 

enrichment. The direct extraction of histones from cells, rather than from nuclei or chromatin reduced 

preparation time and did not require usage of deacetylase inhibitors. Commonly used deacetylase 

inhibitors such as sodium butyrate alter the native histone acetylation pattern by inhibiting different 

deacetylases of the HDAC class with different efficiencies (Thorne et al., 1990; Fraga et al., 2005; 

Karmodiya et al., 2012). Our procedure aims at minimising the risk of altering the native histone 

acetylation pattern during sample preparation. 

Histones were chemically acetylated using d6-deuterated acetic anhydride rather than propionylated to 

harmonise the physiochemical properties between the endogenously acetylated and non-acetylated 

lysines. This ensures similar properties during the LC-MS workflow, including comparable 

interactions during pre-LC (similar hydrophobicity, tube interactions etc.), LC (positional isomers co-

elute and hence are electrosprayed at the same acetonitrile concentration) and MS (similar ‘matrix 

effects’ during ionization, fragmentation, MS acquisition), which results in improved accuracy among 

positional isomers. For example, using equimolar solutions of positional isomers from di-acetylated 

H4.G4-R17 peptides resulted in very similar ratios (Figure S2B). Furthermore, positional isomers for 

H3 peptides differing only in their site of acetylation display very similar LC-MS response correction 

factors (Table S3).  

We developed a targeted MS protocol on a standard hybrid linear ion trap Orbitrap instrument (LTQ 

Orbitrap Classic) but the MS strategy can be implemented on different mass spectrometers capable of 

MS3 fragmentation. The general rationale is to iteratively acquire full or targeted survey scans (MS1) 

combined with targeted MS2 or MS3 spectra during the entire peptide elution or scheduled for pre-

defined retention time windows (see Figure S1A for an example of scheduled RT windows). The 

scheduled spectra were recorded using a reduced window (e.g. MS1 acquisition window from 270 to 

505 during the first retention time schedule) and less MS2/MS3 were scheduled. This improved the 

quantification of the MS identifier eluting within narrow LC peaks (e.g. H3.K9me2/3) through 

achieving a higher number of scans. We noted, however, that a few MS identifiers showed 

considerable shifts in their retention time within consecutive LC runs (in particular the non-methylated 

H3.K9R17 identifier with more than 5 minutes shift). Note that most of the data presented in the 
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current study was therefore acquired without retention-time scheduling. In contrast to previously 

developed targeted MS strategies (Schmidt et al., 2008; Gallien et al., 2012a; Gallien et al., 2012b; 

Peterson et al., 2012; Jaffe et al., 2013; Tang et al., 2014) our emphasis was on the high-precision 

quantification of combinatorial PTM motifs. To increase the MS duty cycle, MS1 scans were recorded 

within the Orbitrap at low resolution (7500 at 400 m/z) after accumulating 100,000 ions over a 

maximum time of 500 ms. To increase the precision and sensitivity for MS2 and MS3, enhanced zoom 

scans were acquired within the ion trap targeting the first, second and third isotope, setting a target 

value to 50,000 and accumulating for a maximal time of 100 ms. WideBand activation was performed 

to improve fragmentation for MS2 of the H3K27R40_1Ac (m/z = 522.97 ± 0.8) and H4G4R17_3Ac 

(m/z = 721.92 ± 0.7) identifier and for MS3 of the H4G4R17_2Ac_y12 (m/z = 1215 ± 2) identifier. 

The targeted strategy enhanced the precision, reduced the interference and yielded a high density of 

scans.  

To determine how many cells are required for high-precision analysis, we collected three times 1, 2 

and 4 x 106 cells for a LC-MS dose-response experiment. The median coefficient of variation (CV) 

across 45 histone motifs was 9% for the 1 million starting cell sample and around 5% for the 2 and 4 

million cell samples (Table S4 and data not shown). We therefore used 2 to 4 million cells for most 

experiments. Notably, although we obtained sufficient MS signals and reliable motif ratios even with  

2 x 105 KC cell equivalents and 2 x 104 mammalian cell equivalents if diluted down from cell 

suspensions, we did not succeed to robustly start with less than 1 x 106 KC cells due to varying sample 

loss during various centrifugation steps and acid extraction.  

 

1.2 Successive MS1-MS2-MS3 to quantify combinatorial motifs of the di-acetylated histone H4 

positional isomers 

The abundance of peptides with two out of four acetylations cannot be resolved with MS1 and MS2 

analysis alone, because the set of linear equations for these motifs cannot be mathematically solved (as 

noted before by Phanstiel et al. 2008). One possible solution is to separate these positional isomers by 

chromatography (Young et al., 2009; Leroy et al., 2012). Potential drawbacks of this strategy include 

sample-to-sample variation in chromatographic separation of the positional isomers, uneven matrix 

and acetonitrile effects due to different retention times and high operating skills required for 

elaborated chromatography systems.  

We developed an easy to implement strategy involving iterative loops of targeted MS1-MS2-MS3 

scans. To increase the dynamic range of MS3 acquisition, we performed enhanced zoom scans in the 

ion trap, targeting an increased window centred on the second isotope of the di-acetylated MS2 

fragment ions – but excluding the mono-acetylated precursor ions – and applying WideBand 

activation to increase the efficiency of fragmentation. Note that the second isotope of the MS2 y12 ion 
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that is subjected to MS3 (theoretical mass: 1215.7096) is often at least as strong as the first isotope 

(see Figure S1A second panel zoom in). Although a number of MS3 fragment ions could potentially 

be analysed, we focused on the b10 ion pairs because this gave most reproducible results. The b10 

ions with two acetyl groups represent H4.K8acK12ac (theoretical m/z = 867.469) and b10 ions with a 

single acetyl-group represents H4.K8acK16ac and H4.K12acK16ac (theoretical m/z = 870.492). Note 

that fragmentation of the water loss ion through WideBand activation shifted the observed spectra by -

18 Dalton (see Figures S2A, S2C). Supplementary Table S2 details the formulas that are used to 

calculate the motif abundances for the di-acetylated isoforms.  

Theoretically, the b10 MS3 fragment ion with two acetyl groups (theoretical m/z = 870.492) may 

interfere with the y8 MS3 fragment ion harbouring a single acetyl group (theoretical m/z = 870.516). 

To test for this, we recorded MS3 scans for a synthetic peptide (H4.K8acK12ac) for which we only 

expect signals for the b10 MS3 fragment ion with two acetyl groups (expected m/z at 849) and the y8 

MS3 fragment with a single acetyl group (expected m/z at 855). The MS3 signal intensities for the b10 

ion are dominant over the y8 ion (40400 vs 1526, b10/y8 > 0.96), demonstrating the usability of the 

b10 ion for quantification. Alternatively, one may use the b8 MS3 classifier pair (theoretical m/z at 

739.41 and 742.43) yet we observed less accurate results using synthetic peptides and overall less 

signal and more varying results with most biological samples.  

To test for accuracy, we performed sets of experiments where we mixed synthetic peptides containing 

di-acetylated H4 motifs in different ratios and measured their abundances via LC-MS. The 

representative experiment in Figure S3B shows that the measured ratios are close to the expected ones, 

verifying the MS3-based assay and demonstrating high accuracy.  

In summary, we introduce an easy to implement and robust LC-MS workflow which resolves the 

abundance of PTMs within complex positional isomers. The assay is general applicable and might be 

useful to pinpoint acetylation sites within clusters of any protein.  

 

1.3 Detection and quantification of H3 and H4 histone acetylation motifs  

Histones are basic proteins with clusters of lysines close to the N-terminal ‘tail’ domains. The goal of 

this study was to monitor the acetylation status of any lysine on the canonical histones H3 and H4 with 

a particular focus to probe for potential combinatorial motifs. Because we chemically acetylated 

lysines which are not acetylated in the cell, peptides from endogenously acetylated and non-acetylated 

lysines co-elute during chromatography. This procedure not only has the advantage of increasing the 

precision (see above), but also to increase the confidence in the identification of low abundant 

acetylation sites. Although the MS signals of low abundant acetylation sites often display more 

imprecise masses than high-signal MS identifiers, precise co-elution (or slight shift towards later 

retention times) is a good indication for the existence of an acetylation site (see below for examples 
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including H3.K27me2K36ac, H3.K36me2/3K27ac) whereas the absence of co-elution is a strong 

indication for the absence of an acetylation site (see H4.K20ac and H3.K56ac below). A slight shift 

towards later retention times for endogenously acetylated histones compared to chemically d3-

acetylated histones is caused by the slightly decreased interaction of the deuterated (d3) moieties with 

the C18 column (Goodlett et al., 2001).  

We robustly detected MS1 masses corresponding to the mono-, di-, tri- and tetra-acetylated isoforms 

of the H4.G4-R17 peptide from KC cell histone preparations (Figure S2A). MS2 and MS3 peptide 

sequencing of histones from KC cells enabled the identification and quantification of all positional 

isomers on this peptide with one exception (H4.K5acK16ac). Although we detected synthetic peptides 

to H4.K5acK16ac and accurately determined their abundance in mixtures of synthetic di-acetylated 

H4.G4-R17 peptides (Figure S2B), the low abundance of this motif together with the more 

complicated formula to derive this motif (see Table S2) did not allow its reliable quantification in KC 

cell samples. We therefore do not display the abundance values for this motif. Moreover, to keep the 

other di-acetylated H4.G4-R17 motifs independent of H4.K5acK16ac, we did not artificially correct 

for omitting H4.K5acK16ac. Therefore, if we sum up the abundances of all fifteen quantified H4.G4-

R17 motifs, we only approximate but do not exactly arrive at 1.  

Although we detect all histone H4 peptides in their unmodified form, we did not identify any 

acetylation to lysines K31, K44, K59, K77, K79 and K91 (Figure S2). Acetylation at H4.K20ac has 

been detected in plants (Zhang et al., 2007) and recently also in human cancer cells (Zheng et al., 

2013; Tang et al., 2014). In contrast, we fail to detect H4.K20ac in Drosophila cells. Of note, in a few 

histone preparations from adult flies we detected a MS1 mass at m/z = 279.1940 which is very close to 

the theoretical mass of H4.K20ac (m/z = 279.1927). Its very low signal intensity did not allow MS2 

analysis. Importantly, because the peaks that may indicate H4.K20ac did not co-elute with (or elute 

slightly after) the peaks of the unmodified H4.K20-R23 peptide, we conclude that we are currently 

unable to detect H4.K20ac in Drosophila cells.  

Similar to H4.K20ac, we also did not detect acetylated H4.K91. H4.K91ac has been found in yeast and 

mammalian cells and is associated with histone maturation in the cytoplasm (Ye et al., 2005; Yang et 

al., 2011). Figure S2G shows the existence of a high-signal triple charged MS1 spectrum for the 

unmodified H4.K79R92 peptide, yet we do not detect any signal for the acetylated isoform at a similar 

retention time. 

Consecutive MS1-MS2 analysis on histone H3 peptides identified acetylation to lysines 9, 14, 18, 23, 

27, 36 and 37 in the combinations detailed in Table S4. Figure S3 documents the MS1 and MS2 

spectra. Co-elution of H3.K27me2K36ac, H3.K36me2K27ac and H3.K36me3K27ac with the 

unmodified isoforms H3.K27me2, H3.K36me2 and H3.K36me3 provides high confidence in the 

identification of these motifs. The b3 and y11 fragment ion pairs derived from targeting the mono-



RESULTS AND DISCUSSION  

 

162

acetylated H3.K27-R40 peptide revealed that while most acetylation is, as expected, on lysine 27 

(0.20% of all H3 motifs corresponding to estimated 12000 molecules/cell), there was also detectable 

acetylation on lysine 36 (0.058% of H3 motifs or estimated 3500 molecules/cell; for calculations see 

below). Moreover, we detected minute amounts of acetylation on lysine 37 (0.003% of H3 motifs or 

estimated 182 molecules/cell, Figure S3R-T). Although the signals of the 

MS2_K27R40_y4_K36ac_579 identifier reporting on H3.K37ac is above background, the current 

number of replicates within the RNAi dataset did not allow its high-confidence quantification. We 

therefore display only 28 out of 29 acetylation motifs for the KAT and KDAC RNAi datasets. Using 

the motif abundance of H3.K37ac, we estimate that our lowest detection limit is at around 0.003% or 

estimated 182 molecules per cell for those motifs that require consecutive MS1 and MS2 analysis. 

Motifs that require solely MS1 analysis likely have lower detection limits (including H4.K20ac, 

H3.K56ac).  

We did not detect the long hydrophobic peptide H3.F84-R116 and thus cannot interrogate acetylation 

to lysine H3.K115. Furthermore, although we robustly detected all other unmodified H3 peptides, we 

did not detect acetylation to lysines K4, K56, K64, K79 and K122 (Figure S3). 

Acetylation of H3.K56 is high in yeast cells and very low in mammalian cells (see (Drogaris et al., 

2012) and references therein). Using antibodies to detect H3.K56ac, Tyler and colleagues reported that 

deprivation of SIR2 in Drosophila S2 cells increased the levels of H3.K56ac (Das et al., 2009). We 

did not detect H3.K56ac in KC cells treated with control RNAi or RNAi targeting SIR2 (Figure S3J). 

We also did not detect this modification in S2 cells. Measuring synthetic peptides of unmodified and 

acetylated K56 yielded strong signals for both isoforms, arguing that our LC-MS approach is capable 

to detect acetylated K56ac if present on synthetic peptides (Figures S3K, L).  

Acetylation of H3.K64 and H3.K122 was recently observed in mammalian cells (Tropberger et al., 

2013; Di Cerbo et al., 2014), but similar to H3.K56ac, we detected the unmodified but not acetylated 

isoforms in histones from KC cells (Figure S3X, Y).  

We detected methylation at lysine 20 of H4 and lysines K4, K9, K27, K36 and K79 of H3 (Table S4 

and Figure S2, S3). Although occasionally we observed a mass corresponding to a mono-methylated 

H3.K9-R17 peptide, which elutes 3 minutes after H3.K9me1 and thus might be H3.K14me1, MS2 

analysis did not confirm the identity of H3.K14me1. The same applies to MS1 masses, which may 

indicate mono-methylation at the H3.K18-R26 peptide. MS2 analysis targeting this parent ion did not 

yield any fragment ion that would indicate the presence of the mono-methylated H3.K18-R26 peptide.  

Apart from the methyllysine-containing motifs detailed in Figure 1D, E and Table S4, we also 

detected low levels of H3.K36me1, H3.K27me1K36me1 and minute amounts of H3.K79me3. Under 

our conditions, H3.K36me1 elutes very close to the positional isomer of the more dominant 

H3.K27me1 (Figure S1B) and in some samples H3.K36me1 (m/z = 528.3226) co-eluted with 
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acetylated K27ac from the histone variant H3.3, which lead to an interference with its second isotope 

at m/z = 528.3157. We therefore currently cannot reliably report H3.K36me1 throughout all KAT and 

KDAC RNAi samples. We also excluded H3.K27me1K36me1 for a high-confidence comparative 

analysis, because its measured abundance varied substantially even throughout control RNAi samples. 

Similar to other di- and tri-methyl pairs, H3.K79me3 elutes shortly before H3.K79me2 (Figure S1A, 

lowest panel in schedule 4). Because of its very low signal intensity and the observed variability 

across control RNAi samples, we excluded H3.K79me3 for a high-confidence quantitative analysis. 

We estimated the abundance of H3.K79me3 in KC cells to be below 0.2% (Figure S3W), supporting 

that, similar to human DOT1L but unlike to yeast Dot1, D. melanogaster DOT1 almost exclusively 

generates H3.K79me1/2.  

In this study, we do not report on the methylation states of H4.K20 and H3.K4. Although we robustly 

identified the more hydrophobic un-methylated und mono-methylated states to each of these peptides 

(Figure S2D-F, S3A,B), H3.K4me2 showed much lower signal intensities and the me3 states of each 

peptide are only occasionally detected. Reliable quantification of these small hydrophilic peptides 

would require additional or alternative peptide purification strategies. To not compromise 

quantification of the other 45 histone PTM motifs, we excluded the analysis of the H3.T3-R8 and 

H4.K20-R23 peptides.  

 

Calculation of motif abundance and estimation of cellular copy number 

To calculate the relative abundance of a histone motif, its specific peak intensity (area under curve of 

each MS chromatogram) was divided by the sum of all peak intensities of motifs that contribute to a 

peptide (See Table S2). For example, the relative abundance of H3.K14ac was calculated by 

multiplying the fraction of MS2 identifiers that distinguish H3.K14ac from H3.K9ac 

(MS2_K9R17_y7_K14ac_728 / (MS2_K9R17_y7_K14ac_728 + MS2_K9R17_y7_K14noAc_731) 

with the fraction of the non-methylated but mono-acetylated MS1 signals relative to all MS1 signals 

for the H3.K9-R17 peptide (H3.K9-R17_1Ac / (H3.K9-R17_noPTM + H3.K9-R17_1Ac + H3.K9-

R17_2Ac + H3.K9-R17_K9me1/2/3 ± K14ac). Of note, any other modification that occurs on this 

motif but was not quantified in this study will cause an underestimation of the abundances for the 

quantified motifs. This includes, for instances, the phosphorylation sites at H3.S10 and H3.T11 – 

which would require alternative purification strategies – as well as PTMs that have not yet been 

identified.  

We attempted to determine the exact cell copy number of all histone molecules and specific histone 

acetylation and methylation motifs by spiking-in highly purified, precisely quantitated synthetic 

peptides (TQL-spiketide, JPT Berlin) into known quantities of KC cells. However, as described below, 

we observed already strong variations in the abundance of the Q tag dissociated by trypsin digestion 
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from different proteotypic peptides, which complicates its faithful accurate quantitative interpretation. 

Moreover, we observed strong variations of the LC-MS response throughout replicate experiments 

with cells and spike-in TQL-peptide mixes. Lastly, we observed ion suppression effects when we 

titrated the number of cells against the concentration of TQL synthetic peptides, or vice versa.  

Because of the technical problems described above, we estimated the number of histone motifs per cell 

assuming i) a D. melanogaster genome size of 196 mega base pairs (Mb) for females and 170 Mb for 

males (http://flybase.org/reports/FBsp00000001.html), ii) an average nucleosome repeat length of 197 

base pairs (Becker and Wu, 1992), iii) a minimal pool of free histones while most histones are 

organised as nucleosomes (Loyola et al., 2006) and iv) equal number of cells in G1 (n=2) and G2 

(n=4) phase. Accordingly, multiplying the relative abundances measured in this study with 5 969 543 

and 5 177 664 million histone molecules of a diploid female or male cell, respectively, the estimated 

abundance for the rare H3.K37ac motif is around 182 molecules per female cell whereas the high 

abundant H3.K23ac motif is present on approximately 2.8 million histone molecules. 

 

Supplementary Note 2: Introducing an LC-MS response factor to increase the accuracy of 

histone PTM quantification 

Post-translational modifications can have a substantial impact on several steps of the LC-MS 

workflow – including column interactions during liquid chromatography and ionization and 

fragmentation within the mass spectrometer – and can therefore severely bias accurate quantitation 

between different PTMs signatures of the same peptide (Schotta et al., 2008; Farley and Link, 2009; 

Marx et al., 2013). For the current study, we needed to know accurate relative abundances to reliable 

interpret the abundance levels in the light of their roles as high abundant structural motifs or rare 

motifs with signalling character.  

As expected, the D3AA method applied in this study reduced the inherent bias in MS signals for 

motifs that contain a single or multiple acetylations as the only PTM. Measuring defined amounts of 

different synthetic di-acetylated H4.G4-R17 peptides recovered the expected ratios (see above and 

Figures S2B, C). Furthermore, we observed very similar LC-MS response factors among positional 

isomers of H3 peptides that contain lysine acetylation as the only PTM (Table S3).  

In contrast, we observed dramatically different MS signals when we measured the same amount of 

peptides that differed in their methylation status. A similar observation has been made before by 

Jenuwein and colleagues who observed up to 5 fold differences when comparing the raw MS signals 

among synthetic peptides to H4.K20me1/2/3 and the unmodified H4.K20-R23 peptide (Schotta et al., 

2008). We measured synthetic peptides to methylation motifs that contain methylated K9, K27, K36 

and K79. The most dramatic effect was measured between the different methylation states of lysine 9, 
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where the raw MS signals of the H3.K9me3 peptide was 50-fold less than the raw MS signals for the 

H3.K9me1 motif (Table S3, column 5).  

Some of the differences might be due to different initial peptide concentrations, which may vary in a 

peptide-specific manner due to peptide processing workflows between the quantitation of peptides (at 

JPT, Berlin) and their digestion with trypsin (in our laboratory). For example, the exact quantitation of 

the TQL-synthetic peptide by fluorescence might be influenced by the physicochemical properties of 

the peptide sequence including their modification pattern. Furthermore, peptides with different 

physicochemical properties, such as the ones with different methylation states, might be differentially 

affected by peptide loss during the early pre-LC workflows, including insufficient resuspension and 

different interactions with the tube walls.  

To test for this ‘pre-LC error’, we measured the MS signals of the Q tag, which is cleaved off the 

proteotypic peptide by trypsin digestion. Indeed, we observed substantial differences in the Q tag 

signals between experiments with different TQL-synthetic peptides (Figure 1C, middle panel). 

Normalising the MS signals of the proteotypic peptides by the MS signals of the Q tag not only 

reduced the variation between replicate measurements by two-fold (compare the SEM between 

columns 4 and 6 in Table S3) but also yielded more similar LC-MS response correction factors among 

motifs that differ only in their site of acetylation. For example, while the LC-MS response correction 

factors without applying the Q tag normalisation differed markedly between H3.K9ac (3.92), 

H3.K14ac (1.62) and H3.K9acK14ac (2.26), applying the normalisation with the Q tag signals 

converged the LC-MS response correction factors (H3.K9ac: 1.46, H3.K14ac: 1.46 and 

H3.K9acK14ac: 1.58). In addition, the Q tag normalisation also reduced the overall differences 

between the highest and lowest LC-MS response correction factor (e.g. H3.K9me3 before Q tag 

normalisation: 50.49, after Q tag normalisation: 34.17).  

Theoretically, the accuracy of the LC-MS response factors for motifs that elute during different 

retention times can be increased by measuring them in the background of the endogenous histone 

sample. However, because we observed a dose-dependent interference between the synthetic spike-in 

peptides with their co-eluting endogenous counterpart, we did not proceed with this strategy, which is 

also the reason why we refrained from using the spike in peptides for absolute quantitation.  

Application of the LC-MS response correction factor had a significant impact on estimating the 

cellular copy number of histone acetylation and methylation motifs (Table S4). For example, without 

applying the LC-MS response correction factor, we estimated that H3.K27ac is found on 0.7% of H3 

molecules (estimated 41,000 molecules/cell). This number is unexpectedly high, considering that this 

dynamic mark is preferentially detected at active enhancers (> 10,000) (Kharchenko et al., 2011; 

Yanez-Cuna et al., 2014). If we correct for the LC-MS bias, we arrive at a 3.5 times lower number for 

H3.K27ac (0.2% or estimated 12,000 molecules/cell). By contrast, we underestimated the abundance 
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of the repressive H3.K9me3 mark by almost ten-fold (4.2% vs. 39%). Combining the numbers for the 

cellular abundance, genome-wide occupancy and half-live allows deriving testable quantitative models 

on genome organisation and function.  

Application of the LC-MS response correction factor did not change the conclusions of most KAT and 

KDAC RNAi experiments, with a few notable exceptions (Figure S6 and Table S5). While H3.K14ac 

appeared to be elevated in many KAT depletion experiments without applying the LC-MS correction 

factor, this trend was weaker when correcting for the LC-MS bias. Another example is the depletion of 

HBO1, that appeared to cause a moderate reduction of H3.K9me2K14ac (85% of control), which was 

not observable anymore after applying the correction factor (98% of control).   

 

Supplementary Note 3: Experimental design and statistical analysis  

During the course of this study, we continuously developed the LC-MS protocol while expanding the 

scope of KAT and KDACs and histone motifs to be analysed. Therefore, the current manuscript 

summarises datasets that were generated using different LC-MS workflows and different KC cell 

batches grown and harvested during different months and years (time span from 2012 to 2014). As a 

consequence, we observed technical and biological variations, which we addressed by normalising 

KAT/KDAC RNAi samples within each ‘batch’ to their corresponding control RNAi samples (Tables 

S4, S5 and see below).  

We aimed to ablate each KAT and KDAC with two distinct non-overlapping RNAi constructs (Table 

S7) in at least two independent biological experiments for each RNAi construct. For most RNAi 

experiments, we used two dsRNA sequences from the Drosophila RNAi Screening Center (DSRC, 

Harvard). Those constructs have an average size of 500 base pairs and are widely used in genome-

wide RNAi screens. For some genes, we designed new RNAi constructs using the NEXT-RNAi 

platform (www.nextrnai.org) because there was only a single RNAi construct at DSRC (e.g. MGEA5) 

or we expected an insufficient knockdown or elevated off-target reactivity when using short DSRC 

constructs (e.g. NAA10 < 250 bp). Because of their short mRNA size or unfavourable sequence 

composition, we could only target NAT9, NAA40, CG12560 and SIRT6 with a single dsRNA 

construct.  

For most RNAi experiments, we observed an overall high similarity of the responses that are caused 

by different dsRNA constructs targeting the same KAT or target gene (Table S5). However, this was 

not the case for each one dsRNA-CBP and dsRNA-TIP60 construct, which were therefore not 

incorporated in the analysis (see note in Table S5).  

While many KAT RNAi samples where acquired during three different ‘replicate batch groups’ (see 

Table S5), some KAT RNAi samples were acquired in fewer batches (e.g. MGEA5: 3 biological 

replicates in the ‘C’ batch; NAT10: 2 biological replicates each in the ‘B’ and ‘C’ batch). In some 
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cases, we conducted several independent RNAi experiments with the same batch of cells yet on 

different days or weeks. For example, we conducted two independent RNAi experiments each with the 

single NAA40_1 RNAi construct during times of the ‘A’ batch (NAA40_1_1_A and NAA40_1_2_A) 

and the ‘B’ batch (NAA40_1_1_B and NAA40_1_2_B).  

Normalisation to control RNAi samples within each batch was necessary because, while most histone 

motifs did not show major differences in their abundance across the different batches, some motifs 

showed considerable variation. For example, while the abundance of H4.K5ac was similar across the 

batches ‘A’ to ‘E’ (3.38%, 3.42%, 3.75%, 3.15% and 3.38%), the abundance values scattered stronger 

for H4.K12ac (6.95%, 8.20%, 7.66%, 5.98% and 8.03%). Because our interest was primarily in the 

relative change of a motif comparing a KAT/KDAC RNAi with its control (GST RNAi, GFP RNAi, 

EGFP RNAi or mock), this normalisation step reduced biological variation across paired groups of 

KAT/KDAC and control RNAi (= samples between ‘batches’) and thereby increased statistical power 

to detect minor differences. Although we note that some motif abundances systematically varied more 

than others, we currently suspect not only technological reasons (such as noise within LC-MS signals 

due to different quantitation requirements, see Table S2) but also biological explanations, such as the 

time we kept cells in culture or environmental conditions. For example, we observed varying levels of 

H4.K12ac and H3.K18acK23ac in cells, which were either kept for very short or extended periods of 

time in culture (preliminary observation, samples not used during this study). Similarly, we suspect 

altered serum conditions to be responsible for some batch-to-batch variations.  

We excluded MS values for histone motifs that we either did not measure in a particular sample or in 

case the MS values were not reliable. For example, we did not measure histone H3 motifs of samples 

within batch ‘A’. Common sources for non-reliable MS values were low MS signals due to technical 

shortcomings at the LC or MS, interference with other ions (sometimes caused by problems with the 

LC gradient) or ion suppression effects. In case we identified a problem with a single MS identifier 

(e.g. the early eluting MS1_K9R17_K9me3 identifier, which reports on the H3.K9me3 motif), we 

excluded all motifs of this peptide (H3.K9-R17), even if individual motifs, which elute at later 

retention times, appeared fine (H3.K9me1 and acetylated K9 and K14). However, in many cases, other 

peptides were not affected (e.g. H3.R18-K26) and thus remained in the analysis. In these special cases 

where we could not reliably identify peptides, we did not calculate summarised values (e.g. global 

acetylation score).  

 

Supplementary Note 4: Mining the database to derive testable hypotheses and shed light into 

controversial enzyme-substrate relationships 

HAT1 is the well-known cytoplasmic HAT that renders histone H4 competent for nucleosome 

assembly by acetylation at lysines 5 and 12. Up to now, current methodology did not allow measuring 
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the di-acetylated motif per se (see Suppl. Note 1.2). Our analysis shows that the main effect of HAT1 

knockdown is a reduction of the H4.K5acK12ac mark (Figure 2A). Interestingly, it also reveals a 

reduction of K5ac, but not of K12ac. Together with in vitro data on recombinant HAT1 that 

demonstrates efficient acetylation of unmodified and pre-acetylated templates on either positions 5 or 

8 yet not on other sites or combinatorial motifs (K12ac, K5acK12ac, K8acK16ac; Makowski et al. 

2001), this leads us to hypothesise that HAT1 first acetylates H4 at K5, releases a fraction of H4.K5ac 

to the cellular histone pool and di-acetylates another fraction to produce H4.K5acK12ac. Notably, we 

detect a minor decrease of the tri-acetylated H4.K5acK8acK12ac upon HAT1 depletion, which 

suggests that HAT1 further acetylates K8 on a small fraction of its di-acetylated product. This is in 

line with previous reports indicating that cytosolic H4 bound to chaperones is not only acetylated at 

lysines 5 and 12, but that a minor acetylation of K8 can be detected as well (Verreault et al., 1996).   

The physiological substrates of HBO1 are controversially discussed. Whereas some groups report 

HBO1 as the major H4 acetyltransferase with specificity for K5, K8 and K12, others found that 

inactivation of the hbo1 gene in mice did not cause a decline of H4 acetylation, yet led to dramatic loss 

of H3.K14ac (Miotto and Struhl, 2010; Kueh et al., 2011; Lalonde et al., 2013). Indeed, HBO1 

ablation in Drosophila affects H4.K12ac levels only very modestly, if the values of all motifs 

including this mark are combined (as if one used an antibody that does not differentiate H4.K12ac-

containing motifs) (Figure 2B). However, monitoring individual motifs reveals that HBO1-lacking 

cells show a moderate reduction of mono-acetylated H4.K12, but a severe loss of the di-acetylated 

H4.K8acK12ac motif (Figures 2A, 3A, 3B). One of the possible scenarios to explain this finding is 

that HBO1 initially acetylates H4.K12 and then further acetylates K8 on a fraction of its first 

acetylation product.  

 

Supplementary Note 5: Homeostatic control of acetylation levels upon deprivation of KATs 

To determine whether deprivation of KATs reduces the global acetylation levels of histones, we 

calculated a ‘global H3 + H4 acetylation score’ and compared it between cells lacking a specific KAT 

and cells treated with control RNAi constructs (Figure 5A and Table S5, column 59). The ‘global H3 

+ H4 acetylation score’ is calculated by summing up all fractional acetylation events observed on the 

four histone peptides that are subject to acetylation (H4.G4-R17, H3.K9-R17, H3.K18-R26 and 

H3.K27-R40). For example, depletion of CBP in the CBP_2_3_C experiment (targeting CBP with the 

CBP_2 RNAi construct, using the third biological replicate experiment in the batch ‘C’) displayed a 

relative ‘global H3 + H4 acetylation score’ of 96% (Table S5, row 74, column 59). In other words, the 

cumulative acetylation on the four acetylated peptides (H4.G4-R17, H3.K9-R17, H3.K18-R26 and 

H3.K27-R40) was reduced by only 4% relative to control RNAi. This value is derived by dividing the 

‘global H3 + H4 acetylation score’ for CBP_2_3_C of 100.57 (see row 74, column 117) by the mean 
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of the ‘global H3 + H4 acetylation score’ for the control RNAi samples from the ‘C’ batch, which has 

a value of 105.02 (Table S5, row 266, column 117). The ‘global H3+H4 acetylation score’ (column 

117) is the sum of the ‘global acetylation score for H4’ (column 115) and the ‘global acetylation score 

for H3’ (column 116). The ‘global acetylation score for H4’ represents the fraction of histone H4 

peptides that is acetylated, which is 27.14% for the CBP_2_3_C sample. The ‘global acetylation score 

for H3’ is the sum of all fractional acetylation events on the three acetylated H3 peptides (19.78% for 

H3.K9-R17, 53.59% for H3.K18-R26, and 0.06% for H3.K27-R40, total of 73.43%).  

To calculate the % total acetylation change that is contributed by individual motifs (Figure 5B), we 

scaled the relative change of each KAT RNAi/ctr RNAi experiment (filtered for significant losses, 

using unpaired two-sided t test on log2 ratios) to the relative abundance of each motif in KC cells. 

This was done to circumvent the batch effects between different ‘replicate batch groups’ (see Suppl. 

Note 3).  
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Inventory for KATs and KDACs in Drosophila  

A list of putative KATs and KDACs was generated using public databases (FlyBase, ENSEMBL, 

HIstome (Histone Info Database – ACTREC), HomoloGene), primary research articles, reviews and 

cross-homology search using BLAST. Gene expression data was obtained from FlyBase (FlyAtlas, 

modENCODE tissue expression data, modENCODE temporal expression data, modENCODE cell line 

expression data).  

 

Fly stocks, crosses and handling 

Flies were raised on standard cornmeal/yeast medium at 18°C - 22°C. OregonR yw flies were used 

and considered wildtype. The mof2 allele is described in (Gu et al., 1998) and the MOF(+) rescue 

transgene is published in (Prestel et al., 2010). Because we did not observe phenotypic effects for 

female mof2/mof2 mutants under our culturing conditions, we maintained them as stable stocks and 

used directly 20 - 50 females either 1 day or 2 - 4 days old for histone PTM analysis. Hemizygous 

male mof2 mutants are lethal at the larval stages, as described earlier (Gu et al., 1998), and therefore 

cannot be analysed at the adult stages of development. MOF(+)/CyO-GFP flies were generated and 

those males were crossed to homozygous female virgins mof2/mof2; +/+ to obtain mof2/y; +/CyO-

GFP hemizygous male mutants. GFP fluorescence was used to sort male third-instar larval mof2 

mutants.  

 

Cell line cultivation and RNA interference (RNAi) 

Cultivation of KC and S2 cells and RNAi were carried out essentially as described before (Feller et al., 

2012). Briefly, cells were grown in T75 or T175 flasks, washed in PBS and 1.5 million cells were 

transferred to each well of a 6-well plate. Cells were treated with 10 µg dsRNA for 60 min in 1 ml 

serum-free medium. After addition of 2 ml serum-containing medium (10% FCS), cells were 

incubated for 5.5 days before harvest. Primer sequences used for RNAi are described in Table S7. We 

used S2 cells of the ‘L2-4’ subtype, which were obtained from Dr. Patrick Heun (MPI Freiburg, 

Germany). 

Human HeLa Kyoto cells were grown in DMEM medium containing 10% FCS and 1% 

penicillin/streptomycin at 37°C and 5% CO2. Cells were transfected with siRNAs using 

oligofectamine (Invitrogen) according to the manufacturer’s instructions. Growth medium was 

exchanged every day and cells were harvested for histone PTM analysis after 2.5 days. Primer 
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sequences used for RNAi are described in Table S7 and have been published in (Taipale et al., 2005) 

and (Smith et al., 2005).  

 

RT-qPCR experiments 

Total RNA was prepared from KC cells using Trizol followed by the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s protocol. 600 ng of total RNA was reverse transcribed using random 

primers and the SuperScript III kit (Life Technologies). Real-time PCR was performed with a Roche 

480 light cycler using the second derivative method for quantification. Primer sequences are described 

in Supplementary Table S7. 

 

Immuno blotting 

Quantification of immunoblots was performed using the LI-COR system (Biosciences). The lamin 

antibody was obtained from Harald Saumweber (Berlin) and the MOF antibody was described before 

(Prestel et al., 2010) 

 

Extraction of histones from Drosophila tissue and cell lines and peptide processing 

Third-instar male larvae were extensively washed in PBS, collected in microcentrifuge tubes, flash 

frozen in liquid nitrogen and stored at -80°C. Adult female flies were processed in the same manner 

but the washing step was omitted. Frozen tissue was homogenised in A1 buffer (15mM HEPES pH 

7.6, 60 mM KCl, 15 mM NaCl, 4 mM MgCl2, 0.5% Triton, 0.5mM DTT, protease inhibitor (Roche)), 

centrifuged and the pellet was resuspended in 0.2 M sulphuric acid. Acid extraction and all 

downstream steps were essentially done as with tissue culture cells, as follows. 

KC and S2 cells were harvested and collected by centrifugation, washed once with PBS and pellets 

were flash frozen in liquid nitrogen and stored at -80°C. Frozen cell pellets were suspended in 0.2 M 

sulphuric acid and histones and other acid-soluble proteins were extracted overnight and precipitated 

with 26% TCA. After two to five washes with cold acetone, the histone pellet was resuspended in 

SDS-PAGE loading buffer. If necessary, pH was adjusted with 1 µl of 1 M Tris pH 8.0. Histones were 

separated by SDS-PAGE on 15% polyacrylamide gels, stained with Colloidal Blue Staining Kit 

(Invitrogen) and bands corresponding to histones H3 and H4 were excised from the gels.  

Gel pieces containing histones were washed twice with water, twice with 100 mM ammonium 

bicarbonate (ambic) and incubated in 50 mM ambic/50% acetonitrile for 3 times 10 min while shaking 

at 37°C for destaining. Gel pieces were successively dehydrated by incubating once with 100 mM 

ambic, once with 20 mM ambic and 3 times with acetonitrile. Histones were chemically acetylated 
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with d6-deuterated acetic anhydride (99% D, Sigma) for 45 min at 37°C (pH was monitored to be pH 

7-8). After acetylation, histones were washed 4 times with 100 mM ambic and thrice with acetonitrile 

followed by overnight trypsin (Promega) digestion at 37°C. Tryptic peptides were extracted twice with 

70% acetonitrile/0.25% TFA and twice with acetonitrile, vacuum concentrated and resuspended in 

0.1% TFA. Histone peptides were desalted using C18-StageTips (Rappsilber et al., 2003), eluted in 

80% acetonitrile/0.25% TFA, vacuum concentrated, reconstituted in 0.1% TFA and stored at 4°C 

(short) or -20°C (long).  

 

Processing of TQL spiketides and calculation of LC-MS response correction factor (LCF) 

Purified, isotopically labelled and quantified SpikeTides TQL were purchased from JPT Peptide 

Technologies GmbH (Berlin). 1 nmol of peptides was resuspended in 80% 100 mM ambic, 18% 

acetonitrile and 2% DMSO, followed by two rounds of 1 min vortexing, 3 min sonication and 15 min 

shaking at 25°C. Chemical acetylation and trypsinisation was carried out as described above. Each 

TQL proteotypic peptide was measured in replicates in different concentrations (1, 5 and 15 pmol) 

using the same LC parameters but acquiring MS1 scans only.  

The LC-MS response correction factor (LCF) was calculated by dividing the raw MS signals for the 

proteotypic peptide per pmol (column 5) by the raw MS signals for the Q tag which was followed by 

scaling to the motif that has the highest signal among all motifs for a given peptide. We experienced 

technical problems for individual motifs from the H3.K27-R40 and H3.E73-R83 synthetic peptides 

and therefore can only report LCFs with moderate confidence for those motifs. 

 

LC-MS workflow and peak integration 

Tryptic peptides were injected in two different HPLC systems from Dionex depending on the batch: 

Samples from replicate batch ‘A’ were separated on an Ultimate and replicate batches ‘B’ to ‘D’ were 

separated on an Ultimate 3000 RSLCnano. Peptides were separated with a gradient from 5-60% 

acetonitrile in 0.1% formic acid over 40 min at 300 nl/min on a C18 analytical column (75 µm i.d. ×15 

cm, packed in-house with Reprosil Pur C18 AQ 2.4 µm; Doctor Maisch). The effluent from the HPLC 

was directly electrosprayed into an LTQ-Orbitrap Classic mass spectrometer (Thermo Fisher 

Scientific). MS was operated in a targeted setup (see Suppl. Note 1). Typical MS conditions were 

spray voltage, 1.5 kV; no sheath and auxiliary gas flow; heated capillary temperature, 200°C; MS1 

resolution of 7500 (at 400 m/z); normalised collision-induced dissociation energy 35% (MS2) and 

45% (MS3); activation q = 0.25; and activation time = 30 ms. 

LC-MS data was quantified using the Xcalibur software package (Thermo Fisher Scientific, version 

2.2) based on the area of the peak from the extracted ion chromatogram. A processing method was 
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built using the Xcalibur Processing Setup including the mass-to-charge range and the expected 

retention time (see Table S1). Further parameters were: Peak detection: Genesis; trace: mass range; 

smoothing points: 3, S/N threshold: 0.5. The identities of the MS quantifiers were verified by MS2 

spectra of the natural occurring forms and their corresponding synthetic peptides (JPT Berlin). All 

chromatograms were manually verified in Quan Browser and re-integrated where necessary. 

Typically, this involves baseline adjustment and adjustments to integrate the identical retention time 

across the d0/d3 pair (i. e. endogenous vs. chemical acetylation). Peak integration was optimised to 

yield the maximal co-eluting chromatogram of the d3/d0 pair. The spectra from suspicious 

chromatograms (e.g. if peaks with similar m/z were eluting close-by) were manually inspected, and, if 

necessary, m/z integration range was adjusted (if possible) or MS quantifier were excluded (see Suppl. 

Note 3).  

 

Data analysis and statistical analysis 

After peak integration, the data was exported into an Excel spread sheet and data summarisation and 

statistical analysis was performed in Excel and R. The relative abundance was calculated according to 

the formulas provided in Table S2. Each sample was normalised to control RNAi samples within the 

same biological replicate batch (for details and justification: see Suppl. Note 3) and ratios were log2 

scaled. We applied a two-sided unpaired t test over the log2 ratios of relative changes from all target 

RNAi samples (e.g. HAT1) for a specific motif (e.g. H4.K5acK12ac) relative to all control RNAi 

samples within the same replicate batch. Because we considered the purpose of this study in the 

discovery of changed histone motif abundances upon KAT and KDAC RNAi and we expected only 

moderate differences, we did not apply a conservative filter by adjusting the p--values by their FDRs. 

Nevertheless, for convenience of the individual reader, Table S5 provides all MS raw signals, relative 

and total abundance values to all RNAi samples as well as summarised tables, which report on the 

mean changes of every KAT/KDAC RNAi (unfiltered) and raw and adjusted p values (two-sided 

unpaired t test, p values were adjusted per KAT/KDAC RNAi across all motifs according to 

Benjamini and Hochberg; p-value adjustment was performed in R). This table might be used to 

discover a potential change of a histone motif upon an individual KAT knockdown and to evaluate its 

significance considering the number of replicates and technical and biological variation. 

  



Table S1: List MS quantifier 

MS identifier theoretical m/z
charge 
state sequence 

typical 
retention 
time [min] 

XIC 
range 
(min) 

XIC 
range 
(max) 

MS1_T3R8_NoPTM 375.224 2 TKQTAR 17 375.07 375.37

MS1_T3R8_K4me1 382.233 2 TKme1QTAR 18.2 382.08 382.38

MS1_T3R8_K4me2 366.722 2 TKme2QTAR 16.8 366.57 366.87

MS1_T3R8_K4me3 373.730 2 TKme3QTAR 16.4 373.58 373.88

              

MS1_K9R17_noPTM 496.292 2 KSTGGKAPR 20.7 496.14 496.44

MS1_K9R17_1Ac 494.783 2 K(ac?)STGGK(ac?)APR 20.7 494.63 494.93

MS1_K9R17_2Ac 493.274 2 KacSTGGKacAPR 20.7 493.12 493.42

MS1_K9R17_K9me1 503.301 2 Kme1STGGKAPR 25.8 503.15 503.45

MS1_K9R17_K9me1_K14ac 501.792 2 Kme1STGGKacAPR 25.8 501.64 501.94

MS1_K9R17_K9me2 487.793 2 Kme2STGGKAPR 17.65 487.64 487.94

MS1_K9R17_K9me2_K14ac 486.284 2 Kme2STGGKacAPR 17.65 486.13 486.43

MS1_K9R17_K9me3 494.801 2 Kme3STGGKAPR 17.55 494.65 494.95

MS1_K9R17_K9me3_K14ac 493.291 2 Kme3STGGKacAPR 17.55 493.14 493.44

MS2_K9R17_y7_K14ac_728 728.41 2 TGGK14acAPR 20.7 727.91 728.91

MS2_K9R17_y7_K14noAc_731 731.43 2 TGGK14APR 20.7 730.93 731.93

              

MS1_K18R26_noPTM 538.837 2 KQLATKAAR 38 538.69 538.99

MS1_K18R26_1Ac 537.328 2 K(ac?)QLATK(ac?)AAR 38 537.18 537.48

MS1_K18R26_2Ac 535.819 2 KacQLATKacAAR 38 535.67 535.97

MS2_K18R26_b2_K18ac_299 299.17 2 K18acQ 38 298.67 299.67

MS2_K18R26_b2_K18noAc_302 302.19 2 K18Q 38 301.69 302.69

              

MS1_K27R40_noPTM 523.651 2 KSAPSTGGVKKPHR 40 523.55 523.75

MS1_K27R40_1Ac 522.643 2 KSAPSTGGVKKPHR_1Ac 40 522.54 522.74



MS1_K27R40_K27me1 528.323 2 Kme1SAPSTGGVKKPHR 41.6 528.17 528.47

MS1_K27R40_K27me2 517.983 2 Kme2SAPSTGGVKKPHR 35.1 517.83 518.13

MS1_K27R40_K27me2_K36ac 516.975 2 Kme2SAPSTGGVKacKPHR 35.1 516.83 517.13

MS1_K27R40_K27me3 522.655 2 Kme3SAPSTGGVKKPHR 34.8 522.51 522.81

MS1_K27R40_K36me2 517.983 2 KSAPSTGGVKme2KPHR 37.4 517.83 518.13

MS1_K27R40_K36me2_K27ac 516.975 2 KacSAPSTGGVKme2KPHR 37.4 516.83 517.13

MS1_K27R40_K36me3 522.655 2 KSAPSTGGVKme3KPHR 37.4 522.51 522.81

MS1_K27R40_K36me3_K27ac 521.647 2 KacSAPSTGGVKme3KPHR 37.4 521.50 521.80

MS1_K27R40_K27me2K36me1 522.655 2 Kme2SAPSTGGVKme1KPHR 36.9 522.51 522.81

MS2_K27R40_b3_K27ac_329 329.18 2 K27acSA 40 328.68 329.68

MS2_K27R40_b3_K27NoAc_332 332.21 2 K27SA 40 331.71 332.71

MS2_K27R40_y4_K37NoAc_582 582.36 2 K37PHR 40 578.83 579.83

MS2_K27R40_y4_K37ac_579 579.33 2 K37acPHR 40 581.86 582.86

MS2_K27R40_y5_K27NoAc_752 752.47 2 K36(ac?)K37(ac?)PHR 40 751.97 752.97

MS2_K27R40_y5_K27ac_755 755.49 2 K36K37PHR 40 754.99 755.99

              

MS1_E73R83_noPTM 690.866 2 EIAQDFKTDLR 53.2 690.72 691.02

MS1_E73R83_K79me1 697.874 2 EIAQDFKme1TDLR 55.4 697.72 698.02

MS1_E73R83_K79me2 682.365 2 EIAQDFKme2TDLR 47.5 682.22 682.52

MS1_E73R83_K79me3 689.373 2 EIAQDFKme3TDLR 47.3 689.22 689.52

              

              

MS1_K20R23_noPTM 280.705 2 KVLR 23.2 280.56 280.86

MS1_K20R23_K20me1 287.712 2 Kme1VLR 31.50 287.56 287.86

MS1_K20R23_K20me2 272.203 2 Kme2VLR 18 272.05 272.35

              

MS1_G4R17_noPTM 725.957 2 GKGGKGLGKGGAKR 41 725.81 726.11

MS1_G4R17_1Ac 724.446 2 GKGGKGLGKGGAKR_1Ac 41 724.30 724.60

MS1_G4R17_2Ac 722.934 2 GKGGKGLGKGGAKR_2Ac 41 722.78 723.08

MS1_G4R17_3Ac 721.422 2 GKGGKGLGKGGAKR_3Ac 41 721.27 721.57



MS1_G4R17_4Ac 719.911 2 GKacGGKacGLGKacGGAKacR 41 719.76 720.06

MS2_G4R17_1Ac_y5_K16ac_530 530.31 2 GGAK16acR 41 529.81 530.81

MS2_G4R17_1Ac_y5_K16NoAc_533 533.33 2 GGAK16R 41 532.83 533.83

MS2_G4R17_1Ac_y7_K16K12.1Ac_760 760.46 2 GK12(ac?)GGAK16(ac?)R 41 759.96 760.96

MS2_G4R17_1Ac_y7_K16K12.0Ac_763 763.48 2 GK12GGAK16R 41 762.98 763.98

MS2_G4R17_1Ac_y12_K16K12K8.1Ac_1217 1217.73 2 GGK8GLGK12GGAK16R_1Ac 41 1217.23 1219.23

MS2_G4R17_1Ac_y12_K16K12K8.0Ac_1220 1220.76 2 GGK8GLGK12GGAK16R 41 1220.26 1222.26

MS2_G4R17_2Ac_y5_K16.1Ac_530 530.31 2 GGAK16acR 41 529.81 530.81

MS2_G4R17_2Ac_y5_K16.0Ac_533 533.33 2 GGAK16R 41 532.83 533.83

MS2_G4R17_2Ac_y7_K16K12.2Ac_757 757.43 2 GK12acGGAK16acR 41 756.93 757.93

MS2_G4R17_2Ac_y7_K16K12.1Ac_760 760.46 2 GK12(ac?)GGAK16(ac?)R 41 759.96 760.96

MS2_G4R17_2Ac_y7_K16K12.0Ac_763 763.48 2 GK12GGAK16R 41 762.98 763.98

MS2_G4R17_2Ac_y12_K16K12K8.2Ac_1214 1214.71 2 GGK8GLGK12GGAK16R_2Ac 41 1214.21 1216.21

MS2_G4R17_2Ac_y12_K16K12K8.1Ac_1217 1217.73 2 GGK8GLGK12GGAK16R_1Ac 41 1217.23 1219.23

MS2_G4R17_3Ac_y5_K16ac_530 530.31 2 GGAK16acR 41 529.81 530.81

MS2_G4R17_3Ac_y5_K16NoAc_533 533.33 2 GGAK16R 41 532.83 533.83

MS2_G4R17_3Ac_y7_K16K12.2Ac_757 757.43 2 GK12acGGAK16acR 41 756.93 757.93

MS2_G4R17_3Ac_y7_K16K12.1Ac_760 760.46 2 GK12(ac?)GGAK16(ac?)R 41 759.96 760.96

MS2_G4R17_3Ac_y12_K16K12K8.3Ac_1211 1211.69 2 GGK8acGLGK12acGGAK16acR 41 1211.19 1213.19

MS2_G4R17_3Ac_y12_K16K12K8.2Ac_1214 1214.71 2 GGK8GLGK12GGAK16R_2Ac 41 1214.21 1216.21

MS3_G6R17_2Ac_b10_2Ac_867 867.47 2 GGK8acGLGK12acGGA 41 848.47 849.97

MS3_G6R17_2Ac_b10_1Ac_870 870.49 2 GGK8(ac?)GLGK12(ac?)GGA 41 851.99 852.99

 

 

 

 

 



Column Headers 

MS identifier: name of the MS identifier, containing MS scan type (MS1, MS2 or MS3); target peptide (first and last amino acid); PTM type and 
position (e.g. MS1_K9R17_K9me1: MS1 is sufficient to determine mono-methylation on lysine 9) and for MS2/MS3: y/b fragment ion assignment 
and m/z (e.g. MS2_K9R17_y7_K14ac_728: MS2 on K9R17 peptide that reports on y7 fragment ion (which has m/z of 728) is necessary to 
determine acetylation on lysine 14) 

theoretical m/z: theoretical mono-isotopic mass /charge 

charge state: charge state of MS identifier 

sequence: target peptide sequence 

retention time [min]: typical retention time in minutes 

XIC range [min/max]: mass/charge range used for chromatographic peak integration (minimal and maximal value). Note that for individual MS 
quantifier, the XIC range was adjusted to avoid integration of interfering peaks (e.g. MS1_K27R40_noPTM/1Ac: interfering peak at m/z = 523.79 at 
similar retention time) 

Abbreviations 

Kac  - lysine acetylation 

Kme1  - lysine mono-methylation 

Kme2  - lysine di-methylation 

Kme3  - lysine tri-methylation 

noPTM - peptide without PTM, hence all lysines are chemically (d3)-acetylated 

 



Table S2: Calculations to derive motif abundance from MS quantifier  
 
 
Motifs at histone H4  
 

H4.G4R17_noPTM = 
୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 

 
 

H4.K5ac = 
୑ୗଵ_ృర౎భళ_భఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * (1 -  

୑ୗଶ_ృర౎భళ_భఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_భఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళ,୑ୗଶ_ృర౎భళ_భఽౙ_౯భమ_ేభలేభమేఴ.బఽౙ_భమమబሻ

 ) 

 
 
 

H4.K8ac = 
୑ୗଵ_ృర౎భళ_భఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 *  

 
 

( 
୑ୗଶ_ృర౎భళ_భఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళ

௦௨௠ሺ୑ୗଶ_ృర౎భళ_భఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళ,୑ୗଶ_ృర౎భళ_భఽౙ_౯భమ_ేభలేభమేఴ.బఽౙ_భమమబሻ
  - 

୑ୗଶ_ృర౎భళ_భఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_భఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ,୑ୗଶ_ృర౎భళ_భఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయሻ

  ) 

 
 

H4.K12ac = 
୑ୗଵ_ృర౎భళ_భఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 *  

 

( 
୑ୗଶ_ృర౎భళ_భఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ

௦௨௠ሺ୑ୗଶ_ృర౎భళ_భఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ,୑ୗଶ_ృర౎భళ_భఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయሻ
  - 

୑ୗଶ_ృర౎భళ_భఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_భఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ,୑ୗଶ_ృర౎భళ_భఽౙ_౯ఱ_ేభలొ౥ఽౙ_ఱయయሻ

   ) 

 
 

H4.K16ac = 
୑ୗଵ_ృర౎భళ_భఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 *   

୑ୗଶ_ృర౎భళ_భఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_భఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ,୑ୗଶ_ృర౎భళ_భఽౙ_౯ఱ_ేభలొ౥ఽౙ_ఱయయሻ

   

 
 
 

H4.K5acK8ac = 
୑ୗଵ_ృర౎భళ_మఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * 

୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళሻ

  

 



 

H4.K5acK12ac = 
୑ୗଵ_ృర౎భళ_మఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * 

 

 ((1 - 
୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ

௦௨௠ሺ୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ,୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_బఽౙ_ఴళబሻ
 * 

୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర,୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళሻ

) –  

 
୑ୗଶ_ృర౎భళ_మఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ

௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ఱ_ేభలొ౥ఽౙ_ఱయయሻ
  - 

୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళሻ

  ) 

 
 

H4.K5acK16ac = 
୑ୗଵ_ృర౎భళ_మఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 *(( 

୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర,୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళሻ

 * 

(
୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ

௦௨௠ሺ୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ,୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_బఽౙ_ఴళబሻ
 -1 ) + 

୑ୗଶ_ృర౎భళ_మఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ఱ_ేభలొ౥ఽౙ_ఱయయሻ

  )) 

 
 
 

H4.K8acK12ac = 
୑ୗଵ_ృర౎భళ_మఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * 

 

 
୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ

௦௨௠ሺ୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ,୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_బఽౙ_ఴళబሻ
 * 

୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర,୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళሻ

) 

 
 

H4.K8acK16ac = 
୑ୗଵ_ృర౎భళ_మఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * ((

୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభర,୑ୗଶ_ృర౎భళ_మఽౙ_౯భమ_ేభలేభమేఴ.భఽౙ_భమభళሻ

 * 

 

(1 - -
୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ

௦௨௠ሺ୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_భఽౙ_ఴలళ,୑ୗଷ_ృల౎భళ_మఽౙ_ౘభబ_బఽౙ_ఴళబሻ
) - 

୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళሻ

  )) 

 
 

H4.K12acK16ac = 
୑ୗଵ_ృర౎భళ_మఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 *  

 
୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళ

௦௨௠ሺ୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.బఽౙ_ళలయ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళలబ,୑ୗଶ_ృర౎భళ_మఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళሻ
   

 



H4.K5acK8acK12ac = 
୑ୗଵ_ృర౎భళ_యఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * (1 - 

୑ୗଶ_ృర౎భళ_యఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_యఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ,୑ୗଶ_ృర౎భళ_యఽౙ_౯ఱ_ేభలొ౥ఽౙ_ఱయయሻ

  ) 

 

H4.K5acK8acK16ac = 
୑ୗଵ_ృర౎భళ_యఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * 

 

 (
୑ୗଶ_ృర౎భళ_యఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ

௦௨௠ሺ୑ୗଶ_ృర౎భళ_యఽౙ_౯ఱ_ేభల౗ౙ_ఱయబ,୑ୗଶ_ృర౎భళ_యఽౙ_౯ఱ_ేభలొ౥ఽౙ_ఱయయሻ
  - 

୑ୗଶ_ృర౎భళ_యఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_యఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళఱళ,୑ୗଶ_ృర౎భళ_యఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళలబሻ

  ) 

 
 

H4.K5acK12acK16ac = 
୑ୗଵ_ృర౎భళ_యఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 *  

 

(
୑ୗଶ_ృర౎భళ_యఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళఱళ

௦௨௠ሺ୑ୗଶ_ృర౎భళ_యఽౙ_౯ళ_ేభలేభమ.భఽౙ_ళఱళ,୑ୗଶ_ృర౎భళ_యఽౙ_౯ళ_ేభలేభమ.మఽౙ_ళలబሻ
  - 

୑ୗଶ_ృర౎భళ_యఽౙ_౯భమ_ేభలేభమేఴ.యఽౙ_భమభభ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_యఽౙ_౯భమ_ేభలేభమేఴ.యఽౙ_భమభభ,୑ୗଶ_ృర౎భళ_యఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభరሻ

 ) 

 
 

H4.K8acK12acK16ac = 
୑ୗଵ_ృర౎భళ_యఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
 * 

୑ୗଶ_ృర౎భళ_యఽౙ_౯భమ_ేభలేభమేఴ.యఽౙ_భమభభ
௦௨௠ሺ୑ୗଶ_ృర౎భళ_యఽౙ_౯భమ_ేభలేభమేఴ.యఽౙ_భమభభ,୑ୗଶ_ృర౎భళ_యఽౙ_౯భమ_ేభలేభమేఴ.మఽౙ_భమభరሻ

  

 

H4.K5acK8acK12acK16ac = 
୑ୗଵ_ృర౎భళ_రఽౙ

௦௨௠ሺ୑ୗଵ_ృర౎భళ_౤౥ౌ౐౉,୑ୗଵ_ృర౎భళ_భఽౙ,୑ୗଵ_ృర౎భళ_మఽౙ୑ୗଵ_ృర౎భళ_యఽౙ୑ୗଵ_ృర౎భళ_రఽౙሻ
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Motifs at histone H3 
 
H3.K9R19_noPTM  =   

୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 
 
H3.K9ac =   

୑ୗଵ_ేవ౎భళ_భఽౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 

*     
୑ୗଵేవ౎భళ౯ళ_ేభర౤౥ఽౙ_ళయభ	

௦௨௠ሺ୑ୗଵేవ౎భళ౯ళ_ేభర౤౥ఽౙ_ళయభ,୑ୗଵేవ౎భళ౯ళ_ేభర౗ౙ_ళమఴሻ
 

 
 
H3.K14ac =   

୑ୗଵ_ేవ౎భళ_భఽౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 

*     
୑ୗଵేవ౎భళ౯ళ_ేభర౗ౙ_ళమఴ	

௦௨௠ሺ୑ୗଵేవ౎భళ౯ళ_ేభర౤౥ఽౙ_ళయభ,୑ୗଵేవ౎భళ౯ళ_ేభర౗ౙ_ళమఴሻ
 

 
 
 
H3.K9me1K14ac  =   

୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 
 
H3.K9me2K14ac  =   

୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			
 

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 
 
 
H3.K9me3K14ac  =   

୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			
 

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 



 
 
H3.K9me1  =   

୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభరొ౥ఽౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 
 
H3.K9me2  =   

୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభరొ౥ఽౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 
H3.K9me3  =   

୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభరొ౥ఽౙ	

௦௨௠ሺ୑ୗଵ_ేవ౎భళ_౤౥ౌ౐౉,୑ୗଵ_ేవ౎భళ_భఽౙ,୑ୗଵ_ేవ౎భళ_మఽౙ	,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛యేభర౗ౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛మేభర౗ౙ,			

୑ୗଵేవ౎భళ౤౥ౌ౐౉	

	୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౤౥ఽౙ,୑ୗଵ_ేవ౎భళ_ేవౣ౛భేభర౗ౙሻ	
      

 
 

H3.K18R26_noPTM  =  
୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉	

௦௨௠ሺ୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉,୑ୗଵ_ేభఴ౎మల_భఽౙ,୑ୗଵ_ేభఴ౎మల_మఽౙ			
      

 
 

H3.K18ac =  
୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉	

௦௨௠ሺ୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉,୑ୗଵ_ేభఴ౎మల_భఽౙ,୑ୗଵ_ేభఴ౎మల_మఽౙ			
     *     

୑ୗଵ_ేభఴ౎మల_ౘమ_ేభఴ౗ౙ_మవవ	

௦௨௠ሺ୑ୗଵ_ేభఴ౎మల_ౘమ_ేభఴ౗ౙ_మవవ,୑ୗଵ_ేభఴ౎మల_ౘమ_ేభఴొ౥ఽౙ_యబమሻ			
      

 
 

H3.K23ac =  
୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉	

௦௨௠ሺ୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉,୑ୗଵ_ేభఴ౎మల_భఽౙ,୑ୗଵ_ేభఴ౎మల_మఽౙ			
     *     

୑ୗଵ_ేభఴ౎మల_ౘమ_ేభఴొ౥ఽౙ_యబమ	

௦௨௠ሺ୑ୗଵ_ేభఴ౎మల_ౘమ_ేభఴ౗ౙ_మవవ,୑ୗଵ_ేభఴ౎మల_ౘమ_ేభఴొ౥ఽౙ_యబమሻ			
      

 
 

H3.K18acK23ac =  
୑ୗଵ_ేభఴ౎మల_మఽౙ	

௦௨௠ሺ୑ୗଵ_ేభఴ౎మల_౤౥ౌ౐౉,୑ୗଵ_ేభఴ౎మల_భఽౙ,୑ୗଵ_ేభఴ౎మల_మఽౙ			
      

 
 

H3.K27R40_noPTM =  
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 



H3.K27ac =  
୑ୗଵ_ేమళ౎రబ_భఽౙ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
     * 

 

 (1 – average ((
୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౤౥ఽౙ_ళఱమ	

୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౤౥ఽౙ_ళఱమ,୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౗ౙ_ళఱఱሻ			
),( 

୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౤౥ఽౙ_యయమ	

୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౤౥ఽౙ_యయమ,୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౗ౙ_యమవሻ			
)) 

 
 

H3.K36ac =  
୑ୗଵ_ేమళ౎రబ_భఽౙ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
     * 

 

average ((
୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౤౥ఽౙ_ళఱమ	

୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౤౥ఽౙ_ళఱమ,୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౗ౙ_ళఱఱሻ			
),( 

୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౤౥ఽౙ_యయమ	

୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౤౥ఽౙ_యయమ,୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౗ౙ_యమవሻ			
))   

 

* ( 
୑ୗଵ_ేమళ౎రబ_౯ర_ేయల౗ౙ_ఱఴమ	

୑ୗଵ_ేమళ౎రబ_౯ర_ేయల౗ౙ_ఱళవ,୑ୗଵ_ేమళ౎రబ_౯ర_ేయలొ౥ఽౙ_ఱఴమሻ			
) 

 
 
 

H3.K37ac =  
୑ୗଵ_ేమళ౎రబ_భఽౙ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
     * 

 

average ((
୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౤౥ఽౙ_ళఱమ	

୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౤౥ఽౙ_ళఱమ,୑ୗଵ_ేమళ౎రబ_౯ఱ_ేమళ౗ౙ_ళఱఱሻ			
),( 

୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౤౥ఽౙ_యయమ	

୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౤౥ఽౙ_యయమ,୑ୗଵ_ేమళ౎రబ_ౘయ_ేమళ౗ౙ_యమవሻ			
))   

 

* (1 -  
୑ୗଵ_ేమళ౎రబ_౯ర_ేయల౗ౙ_ఱఴమ	

୑ୗଵ_ేమళ౎రబ_౯ర_ేయల౗ౙ_ఱళవ,୑ୗଵ_ేమళ౎రబ_౯ర_ేయలొ౥ఽౙ_ఱఴమሻ			
) 

 
 
 



H3.K27R40_K27me1 =  
୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 

H3.K27R40_K27me2 =  
୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 

H3.K27R40_K27me3 =  
୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 

H3.K27R40_K36me2 =  
୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 

H3.K27R40_K36me3 =  
୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 
H3.K27R40_K27me2K36me1 =  

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      



 
 
H3.K27R40_K27me2K36ac =  

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 
 
H3.K27R40_K36me2K27ac =  

୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 
 
H3.K27R40_K36me3K27ac =  

୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙ	

௦௨௠ሺ୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉,୑ୗଵ_ేమళ౎రబ_భఽౙ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛భ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేమళౣ౛య,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛య୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయలౣ౛భ			
      

 
୑ୗଵ_ేమళ౎రబ_౤౥ౌ౐౉	

୑ୗଵ_ేమళ౎రబ_ేమళౣ౛మేయల౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛మేమళ౗ౙ,୑ୗଵ_ేమళ౎రబ_ేయలౣ౛యేమళ౗ౙሻ			
      

 
 

H3.E73R83_noPTM  =  
୑ୗଵ_ుళయ౎ఴయ_౤౥ౌ౐౉	

௦௨௠ሺ୑ୗଵ_ుళయ౎ఴయ_౤౥ౌ౐౉,୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛భ,୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛మ			
      

 
 

H3.E73R83.K79me1  =  
୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛భ	

௦௨௠ሺ୑ୗଵ_ుళయ౎ఴయ_౤౥ౌ౐౉,୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛భ,୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛మ			
      

 

H3.E73R83.K79me2  =  
୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛మ	

௦௨௠ሺ୑ୗଵ_ుళయ౎ఴయ_౤౥ౌ౐౉,୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛భ,୑ୗଵ_ుళయ౎ఴయ_ేళవౣ౛మ			
      

 
 



Supplementary Table 3:  LC‐MS response correction factor (LCF) 

 

H3 motif 
LCF 

(applied) 
LCF 

(measured) 

LCF (prior to 
Q tag 

normali-
sation) comment 

    

H3.K9K14_noPTM 1.5 ND ND 

estimation of applied 
LCF based on 
averaged K9ac/K14ac 

H3.K9me1 1.0  1.00  ±  0.12   1.00 ± 0.27   
H3.K9me2 7.0  6.84  ± 0.76 11.44 ± 4.00   
H3.K9me3 34.0 34.17 ± 4.28 50.49 ± 5.82   
H3.K9ac 1.5   1.46 ± 0.48   3.92 ± 0.71   
H3.K14ac 1.5   1.46 ± 0.17   1.62 ± 0.35   
H3.K9acK14ac 1.5   1.58 ± 0.17   2.26 ± 0.31   
    

H3.K18K23d3_noPTM 1.0 ND ND 

estimation of applied 
LCF based on 
averaged 
K18ac/K23ac 

H3.K18ac 1.0 1.23 ± 0.22 0.54 ± 0.05   
H3.K23ac 1.0 1.00 ± 0.09 1.00 ± 0.48   
H3.K18acK23ac 1.5 1.43 ± 0.24 0.51 ± 0.01   
    
H3.K27d3_noPTM 1 ND ND   
H3.K27me1 11 11.13 ± 2.49 15.84 ± 20.615 low quality Q tag signal
H3.K27me2 3  3.33 ± 0.61 1.79 ± 1.65   
H3.K27me3 4  4.18 ± 0.12 2.64 ± 2.36   
H3.K27ac 1 ND ND   
H3.K36me1 1      1 ± 0.25 1.00 ± 0.20   
H3.K36me2 1 1.06 ± 0.73 5.91 ± 0.69   
H3.K36me3 1 0.89 ± 0.02 1.51 ± 0.37 low quality Q tag signal
H3.K27me2K36me1 2 2.34 ± 1.03 7.82 ± 1.68   
    
H3.K79d3_noPTM 1 ND ND   
H3.K79me1 2 2.01 ± 0.03 1.49 ± 0.12   
H3.K79me2 1 1.00 ± 0.03 1.00 ± 0.09   
H3.K79me3 2 2.02 ± 0.00 1.67 ± 0.10   
 

Note: Shown are mean values from replicate experiments. Where applicable, SEM is shown. 



Table S4: Histone PTM inventory for KC and S2 cells 

motif 

%  
abun-
dance 

KC prior 
to LCF 

%  
abun-
dance 

KC 

Estimated 
molecules 
/ diploid 

female cell

%  
abun-
dance 

S2 

Estimated 
molecules 
/ diploid 
male cell 

% CV 
(tech.) 

% CV 
(bio.) 

H4.K5ac 3.44 
3.44 ± 
0.08 2.1E+05 

2.45 ± 
0.13 1.3E+05 1.92 6.66 

H4.K8ac 3.09 
3.09 ± 
0.20 1.8E+05 

3.15 ± 
0.37 1.6E+05 5.50 8.59 

H4.K12ac 7.27 
7.27 ± 
0.35 4.3E+05 

6.24 ± 
0.04 3.2E+05 2.23 6.70 

H4.K16ac 3.29 
3.29 ± 
0.12 2.0E+05 

8.44 ± 
0.06 4.4E+05 0.70 4.52 

H4.K5acK8ac 0.59 
0.59 ± 
0.05 3.5E+04 

0.58 ± 
0.05 3.0E+04 3.41 3.41 

H4.K5acK12ac 4.50 
4.50 ± 
0.30 2.7E+05 

2.89 ± 
0.23 1.5E+05 3.51 10.88 

H4.K8acK12ac 0.80 
0.80 ± 
0.09 4.8E+04 

1.14 ± 
0.45 5.9E+04 22.23 35.73 

H4.K8acK16ac 0.41 
0.41 ± 
0.07 2.5E+04 

0.58 ± 
0.35 3.0E+04 25.09 24.66 

H4.K12acK16ac 0.79 
0.79 ± 
0.04 4.7E+04 

1.48 ± 
0.12 7.7E+04 5.16 5.66 

H4.K5acK8ac 
K12ac 0.62 

0.62 ± 
0.06 3.7E+04 

0.55 ± 
0.04 2.8E+04 6.71 9.90 

H4.K5acK8ac 
K16ac 0.13 

0.13 ± 
0.01 7.6E+03 

0.19 ± 
0.01 9.6E+03 19.24 17.15 

H4.K5acK12ac 
K16ac 0.25 

0.25 ± 
0.03 1.5E+03 

0.45 ± 
0.04 2.3E+04 10.40 30.02 

H4.K8acK12ac 
K16ac 0.32 

0.32 ± 
0.04 1.9E+04 

0.49 ± 
0.04 2.5E+04 1.72 15.78 

H4.K5acK8ac 
K12acK16ac 0.30 

0.30 ± 
0.06 1.8E+04 

0.57 ± 
0.09 2.9E+04 21.58 9.66 

H3.K9ac 0.96 
0.41 ± 
0.04 2.5E+04 

0.21 ± 
0.01 1.1E+04 11.43 11.23 

H3.K14ac 25.63 
10.98 ± 

0.98 6.6E+05 
6.55 ± 
0.24 3.4E+05 14.30 1.79 

H3.K9acK14ac 1.10 
0.47 ± 
0.06 2.8E+04 

0.27 ± 
0.01 1.4E+04 16.86 12.94 



H3.K9me1K14ac 5.52 
1.60 ± 
0.21 9.5E+04 

1.49 ± 
0.08 7.7E+04 12.98 7.99 

H3.K9me2K14ac 1.93 
3.72 ± 
0.33 2.2E+05 

5.02 ± 
0.14 2.6E+05 19.82 7.69 

H3.K9me3K14ac 0.48 
4.44 ± 
0.31 2.6E+05 

5.48 ± 
0.84 2.8E+05 25.98 12.15 

H3.K18ac 2.41 
2.34 ± 
0.09 1.4E+05 

2.71 ± 
0.24 1.4E+05 2.18 4.00 

H3.K23ac 48.56 
47.19 ± 

0.83 2.8E+06 
44.99 
± 0.74 2.3E+06 1.25 3.48 

H3.K18acK23ac 5.76 
8.40 ± 
0.28 5.0E+05 

8.62 ± 
0.41 4.5E+05 3.96 4.42 

H3.K27ac 0.69 
0.20 ± 
0.03 1.2E+04 

0.25 ± 
0.04 1.3E+04 3.02 13.12 

H3.K36ac 0.20 
0.058 ± 

0.01 3.5E+03 
0.09 ± 
0.002 4.8E+03 7.42 10.98 

H3.K37ac 0.011 
0.003 ± 
0.0004 1.82E+02 

0.005 
± 

0.001 2.5E+02 17.53 18.80 

H3.K27ac 
K36me2 0.09 

0.026 ± 
0.004 1.5E+03 

0.03 ± 
0.01 1.4E+03 21.97 13.99 

H3.K27ac 
K36me3 0.26 

0.075 ± 
0.003 4.5E+03 

0.06 ± 
0.001 3.1E+03 2.44 26.60 

H3.K27me2 
K36ac 0.79 

0.22 ± 
0.05 1.3E+04 

0.55 ± 
0.04 2.8E+04 11.61 16.46 

H3.K9me1 10.42 
3.00 ± 
0.35 1.8E+05 

3.56 ± 
0.27 1.8E+05 10.85 10.22 

H3.K9me2 10.31 
19.98 ± 

1.63 1.2E+06 
20.01 
± 0.31 1.0E+06 33.79 8.06 

H3.K9me3 4.18 
38.60 ± 

2.16 2.3E+06 
44.9 ± 
1.75 2.3E+06 35.81 8.81 



H3.K27me1 7.14 
22.53 ± 

1.82 1.3E+06 
21.97 
± 0.67 1.1E+06 2.89 8.69 

H3.K27me2 41.69 
36.25 ± 

1.63 2.2E+06 
32.47 
± 0.17 1.7E+06 0.88 5.32 

H3.K27me3 29.29 
33.88 ± 

0.93 2.0E+06 
36.88 
± 0.71 1.9E+06 0.34 6.16 

H3.K36me2 1.18 
0.34 ± 
0.03 2.0E+04 

0.61 ± 
0.01 3.2E+04 4.85 11.68 

H3.K36me3 3.81 
1.10 ± 
0.08 6.6E+04 

1.55 ± 
0.01 8.0E+04 4.67 9.66 

H3.K27me2 
K36me1 3.59 

2.05 ± 
0.33 1.2E+05 

2.65 ± 
0.12 1.4E+04 20.54 11.76 

H3.K79me1 20.12 
33.46 ± 

0.86 2.0E+06 
35.67 
± 1.29 1.8E+06 3.92 7.50 

H3.K79me2 8.73 
7.26 ± 
0.49 4.3E+05 

6.66 ± 
0.06 3.4E+05 2.62 14.55 

H4.G4R17 
noPTM 74.04 

74.04 ± 
1.20 4.4E+06 

70.17 
± 0.95 3.6E+06 0.29 0.80 

H3.K9R17 
noPTM 39.48 

16.80 ± 
1.19 1.0E+06 

12.51 
± 0.71 6.5E+05 12.24 8.86 

H3.K14R26 
noPTM 43.27 

42.06 ± 
1.10 2.5E+06 

43.68 
± 0.84 2.3E+06 0.66 3.99 

H3.K27R40 
noPTM 11.20 

3.25 ± 
0.34 1.9E+05 

2.89 ± 
0.09 1.5E+05 0.99 11.33 

H3.E73R83 
noPTM 71.15 

59.28 ± 
1.14 3.5E+06 

57.66 
± 1.23 3.0E+06 3.71 4.81 

 

Notes 

- % CV for technical replicates (column 6) was derived from 3 whole-workflow 
replicates using 2 million KC cells 

- % CV for biological replicates (column 7) was derived from 5 biological replicates 
(using ‘C’ batch control RNAi dataset) 

- KC dataset: average of 6 biological ‘replicate batches’ (batch A-E and technical 
whole-workflow replicate); S2 dataset: average of 3 biological replicates. ‘±’ indicates 
SEM. For estimation of cellular copy number: see Suppl. Note 1.3. 



Supplementary Table 6: List of Drosophila melanogaster KATs and KDACs  

 

Putative KATs analysed in this study 

Name used 
in this 
study 

Nomenclature 
by Allis et al. Synonyms (D. mel, human) 

HAT1 KAT1   
GCN5 KAT2 hPCAF (KAT2A), hGCN5 (KAT2B) 
CBP KAT3 dNEJIRE (CG15319), hCBP (KAT3A), hP300 (KAT3B) 
TAF1 KAT4 TAF250 
TIP60 KAT5 PLIP (splice variant) 
KAT6 KAT6 dENOK, KAT6A (MYST3/MOZ), KAT6B (MYST4/MORF) 
HBO1 KAT7 dCHAMEAU, MYST2 
MOF KAT8 MYST1 
ELP3 KAT9   
ATAC2 KAT14* hCSRP2BP 
NAT6   CG8481, hFUS2 
NAT9   CG11539 
NAT10   CG1994, hALP, hKRE33 
NAA10   CG11989 (ARD1, VNC) 
NAA20   CG14222 
NAA30   CG11412 
NAA40   CG7593 
NAA50   SAN (CG12352), NAT5, MAK3 
NAA60   HAT4 
CG5783    

CG12560   
ECO   ESCO1/2 
MGEA5   OGA (CG5871), MEA5, NCOAT 
 

Putative KDACs analysed in this study 

Name used 
in this 
study 

Nomenclature 
by Allis et al Synonyms (D. mel, human) 

RPD3   CG7471, hHDAC1/2 
HDAC3   CG2128 
HDAC4   CG1770, hHDAC4/5/7/9 
HDAC6   dHDAC2 (CG6170), hHDAC10 
SIR2   CG5216, hSIRT1 
SIRT2   CG5085 
SIRT4   CG3187  
SIRT6   CG6284  
 

 



Putative KATs not analysed in this study 

Name  Comments 

CLOCK (CG7391) 
restricted expression pattern (preferentially late developmental stages), 
not expressed in KC cells 

CG31493 
restricted expression pattern (male accessory gland), not expressed in 
KC 

CG31730  restricted expression pattern (testis‐specific), not expressed in KC 

CG31851  restricted expression pattern (testis‐specific), not expressed in KC 

CG32319  restricted expression pattern (testis‐specific), not expressed in KC 

CG1894  restricted expression pattern, not expressed in KC cells 

CG17681  restricted expression pattern, not expressed in KC cells 

CG9486  restricted expression pattern, not expressed in KC cells 

CG15766  restricted expression pattern, not expressed in KC cells 

CG18607  restricted expression pattern, not expressed in KC cells 

CG34010  restricted expression pattern, not expressed in KC cells 

CG15628  restricted expression pattern, not expressed in KC cells 

CG14615  restricted expression pattern, not expressed in KC cells 

CG31248  restricted expression pattern, not expressed in KC cells 

CG10659  restricted expression pattern, not expressed in KC cells 

CG10476  restricted expression pattern, not expressed in KC cells 

CG18606  restricted expression pattern, not expressed in KC cells 

CG13759  restricted expression pattern, not expressed in KC cells 

DAT1 (CG3318)  Dopamine N acetyltransferase 

SAT1 (CG4210)  spermidine/spermine N1‐acetyltransferase 1 

GNPNAT1 (CG1969)  glucosamine‐phosphate N‐acetyltransferase 1 
 

Putative KDACs not analysed in this study 

Name  Comments 

HDAC11 (dHDAC‐X, 
CG31119)  restricted expression pattern, not expressed in KC cells 

SIRT7 (CG11305)  restricted expression pattern, not expressed in KC cells 
 

 

Notes 

- Column 2 indicates new nomenclature to histone lysine acetyltransferases according 
to: Allis, C.D., Berger, S.L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., 
Reinberg, D., Shi, Y., Shiekhattar, R., et al. (2007). New nomenclature for chromatin-
modifying enzymes. Cell 131, 633-636. 

- The name KAT14 was introduced after the initial publication by Allis et al. 2008 
(Suganuma, T., Gutierrez, J.L., Li, B., Florens, L., Swanson, S.K., Washburn, M.P., 
Abmayr, S.M., and Workman, J.L. (2008). ATAC is a double histone acetyltransferase 
complex that stimulates nucleosome sliding. Nature structural & molecular biology 15, 
364-372.) 

 



Supplementary Table 7: List of primers used in this study 

 

Primer used for RNAi 

primer name primer sequence comment 

GST_for 
TTAATACGACTCACTATAGGGAGAATGTCCCC
TATACTAG GTTA Feller et al. 2012 

GST_rev 
TTAATACGACTCACTATAGGGAGAACGCAT 
CCAGGCACATTG   

GFP_for 
TTAATACGACTCACTATAGGGTGCTCAGGTA
GTGGTTGTCG Regnard et al. 2011 

GFP_rev 
TTAATACGACTCACTATAGGGCCTGAAGTTCA
TCTGCACCA   

EGFP_for 

TTAATACGACTCACTATAGGGAGAACGTAAACGGC
CACAAGTTCAGC  

EGFP_rev 

TTAATACGACTCACTATAGGGAGATGCTGGTAGTG
GTCGGCGAG  

HAT1_1_for 
TAATACGACTCACTATAGGGACGAAAAGTACA
AGAACAACGA DRSC12298 

HAT1_1_rev 
TAATACGACTCACTATAGGGATCCATTTTCTT
CAAATCCTTTAAC   

HAT1_2_for 
TAATACGACTCACTATAGGGACATCTACTTGG
GCGTCGATT DRSC29235 

HAT1_2_rev 
TAATACGACTCACTATAGGGATCCACGAACC
ACAAGATGAA   

HAT1_3_for 
TAATACGACTCACTATAGGGGTATTCACCGTC
TTGCGTTG Next-RNAi 

HAT1_3_rev 
TAATACGACTCACTATAGGGATGAAAGGTCA
GGGCATCAT   

GCN5_1_for 
TAATACGACTCACTATAGGGAGCGAGATTCT
GAAGGAGCTG DRSC26932 

GCN5_1_rev 
TAATACGACTCACTATAGGGACACTGCATCAT
TTGTCCCAC   

GCN5_2_for 
TAATACGACTCACTATAGGGAATGAAATCGGT
GTCCGAGTC DRSC35936 

GCN5_2_rev 
TAATACGACTCACTATAGGGAATGTAGCCCG
CATAAACTGG   

CBP_1_for 
TAATACGACTCACTATAGGGACGGTGGAAAA
GTTGTCTGCT DRSC25087 

CBP_1_rev 
TAATACGACTCACTATAGGGAAATTCCTTTGC
TAATTGCCG   

CBP_2_for 
TAATACGACTCACTATAGGGAGTGGCAGTTA
GCCAACAGGT DRSC26774 

CBP_2_rev 
TAATACGACTCACTATAGGGAATTGGTCGATT
CATTACGGG   

TAF1_1_for 
TAATACGACTCACTATAGGGAGAACCAGAAG
CTTCAGCCAG DRSC36664 

TAF1_1_rev 
TAATACGACTCACTATAGGGATGCTGAGCGT
TACTTTGGTG   

TAF1_2_for 
TAATACGACTCACTATAGGGAGTCTGGGACG
GTAACGACAT DRSC36665 

TAF1_2_rev 
TAATACGACTCACTATAGGGACGTTGGGATC
CAAAGTGAGT   

TIP60_1_for 
TTAATACGACTCACTATAGGGACCTACAACTC
CGCAGACA DRSC18661 

TIP60_1_rev 
TTAATACGACTCACTATAGGGAGAACTCTGTC
ATTACGTAGAAG   



TIP60_2_for 
TTAATACGACTCACTATAGGGATTGGCAACTG
AAAAGAAGGG DRSC31332 

TIP60_2_rev 
TTAATACGACTCACTATAGGGAAAATGTTGAT
GACATGGGCA   

TIP60_3_for 
TAATACGACTCACTATAGGGCTTTATCAGCCA
AAACCCGA DRSC37670 

TIP60_3_rev 
TAATACGACTCACTATAGGGAAGCTACAACG
AAGCCAGGA   

KAT6_1_for 
TTTAATACGACTCACTATAGGGACGTCTAATG
AGGCAAAGAAAC DRSC04096 

KAT6_1_rev 
TTTAATACGACTCACTATAGGGACCGTTTTTG
CCACTTTAACC   

KAT6_2_for 
TTAATACGACTCACTATAGGGAGTATCGACTT
GTCGCCCAAT DRSC32736 

KAT6_1_rev 
TTAATACGACTCACTATAGGGAGGTGACGAG
CATGTAGAGCA   

HBO1_1_for 
TAATACGACTCACTATAGGGACATGCGAAGG
ACAAAACAG DRSC03341 

HBO1_1_rev 
TAATACGACTCACTATAGGGATTGTTATTCGC
CGGCTTAA   

HBO1_2_for 
TAATACGACTCACTATAGGGAGCTACAAAAAT
GGCCTTGGA DRSC24941 

HBO1_2_rev 
TAATACGACTCACTATAGGGAGTTTTCTCCTG
GCTGCTGAG   

MOF_1_for 
TTAATACGACTCACTATAGGGAGAATGTCTGA
AGCGGAGCTGGAAC Straub et al. 2005 

MOF_1_rev 
TTAATACGACTCACTATAGGGAGATTTCTGCT
TCTGCGGCTGC   

MOF_2_for 
TAATACGACTCACTATAGGGCTATGACTACAG
CGACCGCA  

MOF_2_rev 
TAATACGACTCACTATAGGGCAGCGACTTCTT
TTCCTTGG  

ELP3_1_for 
TAATACGACTCACTATAGGGAACAGCAGCGC
CAATGTG DRSC00448 

ELP3_1_rev 
TAATACGACTCACTATAGGGATGGTACAAGG
GCCAAAATCT   

ELP3_2_for 
TAATACGACTCACTATAGGGACGGCCTAAAG
ATCTATCCCA Next-RNAi 

ELP3_2_rev 
TAATACGACTCACTATAGGGCGCACCTTGTT
GTGGATTT   

ATAC_1_for 
TTAATACGACTCACTATAGGGAGTTTGGAAAG
CGATGATTTTAC DRSC02053 

ATAC_1_rev 
TTAATACGACTCACTATAGGGACTAGGAATG
GCCATGTCATC   

ATAC_2_for 
TTAATACGACTCACTATAGGGACGCAAGAGG
CAAACGAAAGCA Next-RNAi 

ATAC_2_rev 
TTAATACGACTCACTATAGGGAGCCGCACAT
AGGCAGGTATGGA   

NAT6_1_for 
TAATACGACTCACTATAGGGACCTAATCAACG
CAGAGTGG DRSC16429 

NAT6_1_rev 
TAATACGACTCACTATAGGGAGCGTTCGTAG
AATCCATCC   

NAT6_2_for 
TAATACGACTCACTATAGGGATATCTGTCCAC
CATCGACCA DRSC28038 

NAT6_2_rev 
TAATACGACTCACTATAGGGAGAGGCAATCA
CACATGCACT   

NAT9_1_for 
TAATACGACTCACTATAGGGAGCCCAAGTAC
CACGAGTG DRSC14325 

NAT9_1_rev 
TAATACGACTCACTATAGGGACAGCCAGTTG
ATCCAATCTG   



NAT10_1_for 
TAATACGACTCACTATAGGGGTATTTGGTATT
CATGGCCAGT DRSC18198 

NAT10_1_rev 
TAATACGACTCACTATAGGGCCTTCTTGCCCC
TGCCC   

NAT10_2_for 
TAATACGACTCACTATAGGGTGCTGAAGAAC
AAGTCCGTG DRSC35809 

NAT10_2_rev 
TAATACGACTCACTATAGGGAAAATTTCGCCA
ACAACTGG   

NAA10_1_for 
TAATACGACTCACTATAGGGACCATGCAGCA
CTGCAATC DRSC09867 

NAA10_1_rev 
TAATACGACTCACTATAGGGACCATGTCCGC
CGGATCT   

NAA10_2_for 
TAATACGACTCACTATAGGGGCTGCCCTGAA
CCTCTACAC Next-RNAi 

NAA10_2_rev 
TAATACGACTCACTATAGGGAATGGCCTTCAA
ACCCTTTA   

NAA20_1_for 
TAATACGACTCACTATAGGGAACCACGTTGC
GACCCTT DRSC19579 

NAA20_1_rev 
TAATACGACTCACTATAGGGAGAAATGTCCTC
CAGGAAACTC   

NAA20_2_for 
TAATACGACTCACTATAGGGGAGAAAGGCCT
TATCCAGGG DRSC38508 

NAA20_2_rev 
TAATACGACTCACTATAGGGGTGGTTATTTAC
GCATCGGC   

NAA30_1_for 
TAATACGACTCACTATAGGGACCAAAAGTGTC
GGAGGATGT DRSC23214 

NAA30_1_rev 
TAATACGACTCACTATAGGGACCACGTACTG
ATTGTCGTGC   

NAA30_2_for 
TAATACGACTCACTATAGGGAAATCGAGATC
GGATTGATCG DRSC30080 

NAA30_2_rev 
TAATACGACTCACTATAGGGATTTGGATTGTG
ATTGGGGTT   

NAA40_1_for 
TAATACGACTCACTATAGGGAAAGAATCCCCT
CGAATCTCT DRSC16265 

NAA40_1_rev 
TAATACGACTCACTATAGGGAGATCTCGTCCT
TGACGTAG   

NAA50_1_for 
TAATACGACTCACTATAGGGAAGCAGCATCG
AACTGGG DRSC07695 

NAA50_1_rev 
TAATACGACTCACTATAGGGATGTCGAAGTTT
CCGTCCTT   

NAA50_2_for 
TAATACGACTCACTATAGGGAAACGATAACTT
GCGACCTGC DRSC31317 

NAA50_2_rev 
TAATACGACTCACTATAGGGACTGCAGTCAC
AATCCTCCAA   

NAA60_1_for 
TAATACGACTCACTATAGGGAAGCTGTGCCA
AGAATGGTT DRSC10301 

NAA60_1_rev 
TAATACGACTCACTATAGGGACTCTTCTCGTA
GAAAAATATGG   

NAA60_2_for 
TAATACGACTCACTATAGGGAATTCCACCACC
TCTGTCGTC DRSC26416 

NAA60_2_rev 
TAATACGACTCACTATAGGGAAGCTTGTGGTA
GAACCACCG   

NAA60_3_for 
TAATACGACTCACTATAGGGGCAAAGAACAA
CATCAAAGGC Next-RNAi 

NAA60_3_rev 
TAATACGACTCACTATAGGGTAGAAACAGCG
AACGGGATT   

CG5783_1_for 
TAATACGACTCACTATAGGGAACAAGGCGGC
TACTTGG DRSC02894 

CG5783_1_rev 
TAATACGACTCACTATAGGGACTCGGGCCAT
GTGAACTG   



CG5783_2_for 
TAATACGACTCACTATAGGGAGCCTTGTTGG
AAAAGCTCTG DRSC35394 

CG5783_2_rev 
TAATACGACTCACTATAGGGAAATCCAACACT
GACGCACAG   

CG12560_1_for 
TAATACGACTCACTATAGGGAGATTGGATCC
CTGGGTCTG DRSC02174 

CG12560_1_rev 
TAATACGACTCACTATAGGGAGCAGCCCAGT
ATGTATTGTC   

ECO_1_for 
TAATACGACTCACTATAGGGACAACCTCCCG
TCCACTATT DRSC11006 

ECO_1_rev 
TAATACGACTCACTATAGGGACGCTGGCCCG
GATGTT   

ECO_2_for 
TAATACGACTCACTATAGGGACGGTCCAGAA
ATCCCCAAC VDRC13980 

ECO_2_rev 
TAATACGACTCACTATAGGGAGGTCGTCTCC
TCCGCATCAA   

MGEA5_1_for 
TAATACGACTCACTATAGGGACAGCCCCAGG
TTTCTCTTC DRSC15901 

MGEA5_1_rev 
TAATACGACTCACTATAGGGAGAGAGCCAAG
CGTGGGT   

MGEA5_2_for 
TAATACGACTCACTATAGGGAGGACGAACAG
CAAGTCAAC derivative of VDRC10644 

MGEA5_2_rev 
TAATACGACTCACTATAGGGATGGAGGGTGG
CGAGGAGGT   

RPD3_1_for 
TTAATACGACTCACTATAGGGAGGAGGAGGC
GTTCTATACC DRSC08696 

RPD3_1_rev 
TTAATACGACTCACTATAGGGAGACTAATGTG
CAGCTTAAAATC   

RPD3_2_for 
TTAATACGACTCACTATAGGGATCCTCTTCGC
GAATTTGTCT DRSC32186 

RPD3_2_rev 
TTAATACGACTCACTATAGGGACGCTTTTTGC
TGTGAGACTG   

RPD3_3_for 
TAATACGACTCACTATAGGGCGCCAAGGAGA
ACAACATTT DRSC37634 

RPD3_3_rev 
TAATACGACTCACTATAGGGCCACATTGGATC
GCTTGTAA   

HDAC3_1_for 
TTAATACGACTCACTATAGGGACGGGCGGAC
TGCATCA DRSC12352 

HDAC3_1_rev 
TTAATACGACTCACTATAGGGAACCGCCTCC
GACCACC   

HDAC3_2_for 
TTAATACGACTCACTATAGGGACGAGGATTTG
GTCCACAACT DRSC32474 

HDAC3_2_rev 
TTAATACGACTCACTATAGGGATCATTTTCTT
GTGCAGTCCG   

HDAC3_3_for 
TAATACGACTCACTATAGGGCTTCCACAGCG
ACGAGTACA DRSC32475 

HDAC3_3_rev 
TAATACGACTCACTATAGGGTGGTTGTGGTTC
AGCTTCTG   

HDAC4_1_for 
TAATACGACTCACTATAGGGATGAGCACACTA
TACGCCAGC DRSC25237 

HDAC4_1_rev 
TAATACGACTCACTATAGGGAAAATCGATAAC
ACAACCGGC   

HDAC4_2_for 
TAATACGACTCACTATAGGGAATATCGCTGCA
TTCCGTACC DRSC37980 

HDAC4_2_rev 
TAATACGACTCACTATAGGGAGTTGATCGTCT
CGGACTCGT   

HDAC6_1_for 
TAATACGACTCACTATAGGGAGGATAATCGTT
TGCCTGGAA DRSC29348 

HDAC6_1_rev 
TAATACGACTCACTATAGGGATCGCTGAGCG
TTTTTACCTT   



HDAC6_2_for 
TAATACGACTCACTATAGGGAATGACGCTGC
TGGGATCTAC DRSC38396 

HDAC6_2_rev 
TAATACGACTCACTATAGGGAATGTTCACATT
GAAGCCCCT   

SIR2_1_for 
TAATACGACTCACTATAGGGAGGATGAGTAC
CACACGGTC DRSC03435 

SIR2_1_rev 
TAATACGACTCACTATAGGGAAACGCTTTCCA
CAGCTAAAA   

SIR2_2_for 
TAATACGACTCACTATAGGGAAGGATGAGGA
CTCCAGCTCA DRSC36016 

SIR2_2_rev 
TAATACGACTCACTATAGGGAGCTCCCGTTA
GCACAATGAT   

SIRT2_1_for 
TAATACGACTCACTATAGGGATCTGGACTACT
TCGAAAAGAA DRSC15714 

SIRT2_1_rev 
TAATACGACTCACTATAGGGACCACTGCATC
GCGATTG   

SIRT2_2_for 
TAATACGACTCACTATAGGGAAGTACGAGCT
GCCACATCCT DRSC26964 

SIRT2_2_rev 
TAATACGACTCACTATAGGGACAGATCGCAAT
CCTGGAAAT   

SIRT4_1_for 
TAATACGACTCACTATAGGGAAAGGCGTGGG
CCTCTAC DRSC18290 

SIRT4_1_rev 
TAATACGACTCACTATAGGGATCCAGCGGTA
TCTCTACATC   

SIRT4_2_for 
TAATACGACTCACTATAGGGAGGCTATGTGG
TCAAGTGCCT DRSC27472 

SIRT4_2_rev 
TAATACGACTCACTATAGGGACGGAGAAGAC
CAGGAGACTG   

SIRT6_1_for 
TAATACGACTCACTATAGGGAATTGCACGGC
AACATTTACA DRSC29965 

SIRT6_1_rev 
TAATACGACTCACTATAGGGATTGCTTGTGG
GTATTGTCCA   

NSL1_1_for 
TTAATACGACTCACTATAGGGAGCGTCCGAG
CTCAACCTTC Feller et al. 2012 

NSL1_1_rev 
TTAATACGACTCACTATAGGGACACATGGGT
GTGTTCATTAGTC Feller et al. 2012 

NSL1_2_for 
TTAATACGACTCACTATAGGGAGATGTCGCAT
CAAAGTCAGAGG Feller et al. 2012 

NSL1_2_rev 
TTAATACGACTCACTATAGGGAGACTCGAGA
AGAGCTCGCTGAT Feller et al. 2012 

NSL1_3 for 
TTAATACGACTCACTATAGGG 
AGATGGCCCCAGCGCTCACA Raja et al. 2010 

NSL1_3 rev 
TTAATACGACTCACTATAGGGAGATGAACTTG
TGGCCACTGCC Raja et al. 2010 

MSL1_for 
TTAATACGACTCACTATAGGGAGAATGGAC 
AAGCGATTCAAG     

MSL1_rev 
TTAATACGACTCACTATAGGGAGACTTCGC 
TGGTTCTTTCG   

HeLa_luciferase CUUACGCUGAGUACUUCGA 
gift from Sandra Hake, LMU 
Munich 

HeLa_control1 AAUUCUCCGAACGUGUCAC 
gift from Sandra Hake, LMU 
Munich 

hMOF1 GUGAUCCAGUCUCGAGUGA Taipale et al. 2005 

hMOF2 UGCUGUACAGAAGAACUC Smith et al. 2005 

hMOF3 GGAAAGAGAUCUACCGCAA 
designed using Dharmagon 
siDesignCenter 

 

 



Primer used for RT-qPCR 

primer name primer sequence 

gapdh_cDNA_for GTGACCTACGCAGAAAGCTAG 

gapdh_cDNA_rev GCTATTACGACTGCCGCTTTTTC
HAT1_1_cDNA_for CTTTCCAGAAACTCGGCTTG 
HAT1_1_cDNA_rev TCCTCAGATGGATCCTCCAC 
HAT1_2_cDNA_for TATTCACCGTCTTGCGTTGT 
HAT1_2_cDNA_rev CTTTTTGCAGGCGTTCTAGC 
GCN5_cDNA_for GCCTGCGGATGTAGTAATGC 
GCN5_cDNA_rev CGCGACACATTAACCGGAAA 
CBP_1_cDNA_for GCGGCGGTAAGGATAACATA 
CBP_1_cDNA_rev TGGGTTTTATGTCCACAGCA 
TAF1_1_cDNA_for GAGGTAACGATGGCAAGGAA 
TAF1_1_cDNA_rev TTGCGAACTGCTTGATGAAC 
TAF1_2_cDNA_for GGGCGTTAAAAGGGAGGAT 
TAF1_2_cDNA_rev GTCCTCGGATAACTCGGTGA 
TIP60_1_cDNA_for TGTCTGATCTGGGTTTGCTG 
TIP60_1_cDNA_rev CGGGTTTTGGCTGATAAAGA 
TIP60_2_cDNA_for TTTCTCACCCTATCCGCAAG 
TIP60_2_cDNA_rev GCACTTCCTGCTCTTCCTGT 
KAT6_cDNA_for TTGCGGAGACAGTATTGCAG 
KAT6_cDNA_rev TCCGGCGAAAGCTTTAAGTA 
HBO1_1_cDNA_for AGATATACCGCAAGGGCAAA 
HBO1_1_cDNA_rev CAGGCACAGATGCTGACAGT 
HBO1_2_cDNA_for AGCCGAGCTCATCTCCATAA 

HBO1_2_cDNA_rev AGCCAAGAATTCGTCATCGT 

MOF_1_cDNA_for AGAAGGAGGACGGTCAGGAT 

MOF_1_cDNA_rev TCCACCACCTCTTTCTGCTT 

MOF_2_cDNA_for CTGGGTAGGCTGAGCTATCG 

MOF_2_cDNA_rev TTTCGCTCAGCTCCTTGATT 
ELP3_1_cDNA_for AGTGCATTGGCATCACCATA 
ELP3_1_cDNA_rev CTTCGTAAACCGATTGCACA 
ELP3_2_cDNA_for TTCGGTATGTTGCTGATGGA 
ELP3_2_cDNA_rev TAGTTTCTGGTGCCCACTCC 
ATAC2_1_cDNA_for ATGACATGGCCATTCCTAGC 
ATAC2_1_cDNA_rev CTGATGCTCCAGTGCGAATA 
ATAC2_2_cDNA_for AAAGGATACCTTGGCTGCTG 
ATAC2_2_cDNA_rev AGAATCCATGGTGTCCCAAG 
NAT6_cDNA_for TTTGTGCTCTCACACGGAAC 
NAT6_cDNA_rev CGACGAAGTGAACAGAACGA 
NAT9_cDNA_for GGAGATCTTCCACGAGGTCA 
NAT9_cDNA_rev CACTGCATACGCAGATCCAC 
NAT10_1_cDNA_for ACGCCCTGTTTTCGTATCAC 
NAT10_1_cDNA_rev TGCAAATCGTTTGGTGTGTT 
NAT10_2_cDNA_for CAGTCCTCGGACGAACCTAC 
NAT10_2_cDNA_rev AACCGTTTCCACAGTTCGAG 

NAA10_1_cDNA_for TCTGGAAGGCGTTTCTATCG 



NAA10_1_cDNA_rev GATGATCCCAAGCAAGTGGT 

NAA10_2_cDNA_for TTAGAATGTCCCTGCAAACG 

NAA10_2_cDNA_rev CAAAATAATTGCTGCGACGA 

NAA20_1_cDNA_for GATCTGCCCGGTGATAACAT 

NAA20_1_cDNA_rev GGGAAATAATGCACGCAAAT 

NAA20_2_cDNA_for CTATTGCCGGCGAGTATAGC 

NAA20_2_cDNA_rev GTCGCAACGTGGTCATCTTA 

NAA30_cDNA_for AAGCCCATAACAGCCACAAG 

NAA30_cDNA_rev CACAGCTACATCCTCCGACA 
NAA40_1_cDNA_for AAGAACTGGGCTCGCTACTT 
NAA40_1_cDNA_rev GATCCATGTCGAAGCGGAAC 
NAA40_2_cDNA_for GGCTACGTCAAGGACGAGAT 
NAA40_2_cDNA_rev TCAGCTTAGCATCGATTTGC 

NAA50_1_cDNA_for CGGCGCCTGTATATCATGAC 

NAA50_1_cDNA_rev CGGCGAAGTTCATAATGTGC 

NAA50_2_cDNA_for CGCGAACTCAAATTCACGTA 

NAA50_2_cDNA_rev GCCGCCTCTACATGTCTGTT 
NAA60_1_cDNA_for AATCGTTGCCGAAATCAAAC 
NAA60_1_cDNA_rev CTTGTCCTGCATGGGAAAAC 
NAA60_2_cDNA_for CAAAAACACGCACCAAACTG 
NAA60_2_cDNA_rev TTAAGCGCGAAATCTTGTCC 
CG5783_1_cDNA_for TTGGCAGTGTGGTGACTAGG 
CG5783_1_cDNA_rev CATCTCCGATGACGGCTTAT 
CG5783_2_cDNA_for TACAAGCAAAACTGGCCAAA 
CG5783_2_cDNA_rev ATTCCTCATATGGGGCTGTT 
CG12560_1_cDNA_for GAGCGAAAATTTGGATCGAG 
CG12560_1_cDNA_rev CGCGTAGAAAACCCAAAGAA 
CG12560_2_cDNA_for ATACGGATCCCCAAGGCTAT 
CG12560_2_cDNA_rev AGTCGCCATTCAACGATAGG 
ECO_1_cDNA_for GTGGAGAAGCGGTCACAAAG 
ECO_1_cDNA_rev AATAGTGGACGGGAGGTTGG 
ECO_2_cDNA_for GAGATCGCTAGGGAGTGCAT 
ECO_2_cDNA_rev GAAGTTATCCAACCCGGTGA 
MGEA5_1_cDNA_for GTACACGGAACTGCGTGAGA 
MGEA5_1_cDNA_rev AAGGGAGGTGACGAGCTGTA 
MGEA5_2_cDNA_for CCTGTTCTATCTGCCCTTCG 
MGEA5_2_cDNA_rev ACATTAGCGTTGCCCTTCAG 
RPD3_1_cDNA_for GTGCCCATTATCAGCAAGGT 
RPD3_1_cDNA_rev TGACGGTGAGATTGAAGCAG 
RPD3_2_cDNA_for GCGAAGATTGTCCCGTCTTC 
RPD3_2_cDNA_rev ATTCAGTTTTACGGCCGCAG 
HDAC3_1_cDNA_for CACGGGAGACATGTACGAGA 
HDAC3_1_cDNA_rev TGGTCATCAATGCCCTCCTT 
HDAC3_2_cDNA_for GATGGCCTCTTCGACTTCTG 
HDAC3_2_cDNA_rev TATGTCGCTGTGGTTGTGGT 
HDAC4_1_cDNA_for CGGACATTGTGCTGGTATCC 
HDAC4_1_cDNA_rev GTCATGAACCCAAAGCAGGC 



HDAC4_2_cDNA_for AATAGAAGGCGATGCAGACG 
HDAC4_2_cDNA_rev TCCCACTCTACCAGGTCCAC 
HDAC6_1_cDNA_for ATTCGGGATTTCGGTCTGGA 
HDAC6_1_cDNA_rev TGGACTCGAAAATGTGCTGC 
HDAC6_2_cDNA_for CGCCACTAAGGCACCTAATC 
HDAC6_2_cDNA_rev CTCAGTGGGCCAGGAAGTAG 

SIR2_1_cDNA_for CTGTGCTGCGATGAGTCAGT 

SIR2_1_cDNA_rev GTGGCGGTGGTGAAGTAGAT 

SIR2_2_cDNA_for ATACACTCGCACCCACATCA 

SIR2_2_cDNA_rev ATTTCAAACACGCACACCAA 

SIRT2_1_cDNA_for GGATTTCAGATCCCCAGGTT 
SIRT2_1_cDNA_rev GATCGAATATGGCCGTAGGA 
SIRT2_2_cDNA_for TGTCAACTTCGGGACATGAA 
SIRT2_2_cDNA_rev GCAGCTGAAACTGCAACAAA 

SIRT4_1_cDNA_for TGAAGCCGGAAATTGTCTTC 

SIRT4_1_cDNA_rev GGCCATCGCTATTGTACACC 

SIRT4_2_cDNA_for CGTGCGCTCACCTCTAGTAA 

SIRT4_2_cDNA_rev CCCACACGCATTGTTTTGT 

SIRT6_1_cDNA_for ATTGCACGGCAACATTTACA 

SIRT6_1_cDNA_rev ACGTTGCAGGGATTTTTGAC 

SIRT6_2_cDNA_for TGTGGATGTGGTTTTGTCCA 

SIRT6_2_cDNA_rev GGCTTGGACTGCTTTGTAGG 
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3.4.4 Discussion on substrate specificity of lysine acetyltransferases using the examples 

of HAT1 and HBO1 

For many lysine acetyltransferases, there is no consensus with regard to their histone target sites. As 

described before (section 2.3.1), most KATs function in the context of multi-subunit protein 

complexes, where accessory subunits are often required for a robust KAT activity and specificity 

towards distinct sites. This strong dependency on co-factors complicates the ability to measure the 

substrate specificity in vitro, which necessitates well-defined reconstituted systems matching closely 

the in vivo observed stoichiometries and protein modifications. The observed specificities vary 

strongly when using different substrates, such as histones, octamers or nucleosomes and when 

performing the reactions with different KAT sub-complexes (Grant et al., 1999; Morales et al., 2004; 

Lee and Workman, 2007).   

Previous studies characterizing the in vivo specificity to a given KAT often appear controversial. This 

may be attributed to different cellular contexts or technical limitations. Most of our current knowledge 

of KAT – substrate relationships is based on characterizations using antibodies. Antibodies raised 

against specific histone acetylation sites may show substantial lot-to-lot variations and have often been 

associated with substantial cross-reactivity (Egelhofer et al., 2011; Fuchs et al., 2011; Nishikori et al., 

2012; Rothbart et al., 2012). Moreover, in the most cases, only a few putative histone target sites were 

tested. This hampers the overall comparability between individual studies and makes it difficult to 

arrive at a comprehensive conclusion. Using the examples of HAT1 and HBO1, I discuss below the 

reported substrate specificities for these enzymes and how this relates to the data presented in section 

3.4.2. 

 

HAT1 not only di-acetylates lysines 5 and 12 on H4 to promote nuclear import of histones but it also 

contributes to H3 lysine 27 acetylation, which may provide links to its nuclear function on DNA 

repair, histone turnover and transcription. 

Histone acetyltransferase 1 (HAT1) is considered to be the main cytosolic histone lysine 

acetyltransferase (Verreault et al., 1996) and the only known KAT that generates a combinatorial 

histone PTM. Di-acetylation on lysines 5 and 12 on the newly synthesised histone H4 molecules by 

HAT1 promotes their association as H3/H4 dimers with chaperones and their subsequent nuclear 

import and chromatin assembly (Parthun, 2012). Although newly synthesised histones are marked by 

H4.K5acK12ac in most species (Ruiz-Carrillo et al., 1975; Chicoine et al., 1986; Sobel et al., 1995), it 

is less well understood how HAT1 produces this combinatorial mark and whether there are additional 

HAT1 target sites on histones. Moreover, recent studies link HAT1 to nuclear functions including 

DNA repair (Parthun, 2012) yet whether this involves different histone targets remains elusive. 
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In this study, we confirm that HAT1 is the major KAT responsible for H4.K5acK12ac. Moreover, we 

identify putative novel targets on H4 (K5ac, K5acK8acK12ac) and H3 (K27ac, K27acK36me2). 

Reduction of mono-acetylated K5 on histone H4 (H4.K5ac) is unexpected, because the majority of in 

vitro studies using recombinant HAT1 identified its main activity towards H4.K12 (Kleff et al., 1995; 

Parthun et al., 1996; Verreault et al., 1996; Dose et al., 2011). Interestingly, our observation on the 

reduction of H4.K5ac is well in line with early studies, which showed that the cytoplasmic HAT-B 

activity purified from the cytoplasm or micronuclei of Tetrahymena produces di-acetylated H4 by first 

acetylating K5 and subsequently K12 (Richman et al., 1988). In addition, our observation of reduced 

tri-acetylated H4.K5acK8acK12ac is consistent with the finding that the HAT-B activity from pie 

converts non-modified H4 into mono-acetylated, di-acetylated and tri-acetylated H4 isoforms 

(Mingarro et al., 1993). Moreover, newly synthesised histones complexed within chaperones or 

immunoprecipitated with HAT1 contain acetylated K8 but not K16 in addition to acetylated K5 and 12 

(Verreault et al., 1996; Yang et al., 2013).  

Mechanistic insights into the specificity towards the di-acetylation H4.K5acK12ac by HAT1 came 

from a series of structural and biochemical studies. Modeling the histone peptides into the crystal 

structure of HAT1 suggested that lysines 8 and 16 must remain unmodified and positively charged to 

electrostatically stabilise the acidic patch within the active site of the enzyme (Dutnall et al., 1998). 

This prediction was verified by a series of in vitro acetyltransferase assays comparing a set of pre-

acetylated histone peptides as substrates: H4 peptides di-acetylated at lysines 8 and 16 abrogated the 

KAT activity almost as efficient as di-acetylated peptides at lysines K5 and 12. In contrast, peptides 

mono-acetylated at K5 or K8 but not K12 qualified as substrates almost as efficient as the unmodified 

peptide (Makowski et al., 2001; Benson et al., 2007). These mechanistical experiments together with 

the in vivo results presented before (Yang et al., 2013) and our data suggest that after the initial 

acetylation of H4.K5, HAT1 either releases its substrate (unprocessive mode) or further modifies it to 

its major product, the di-acetylated H4.K5acK12ac. However, a minor fraction of H4.K5acK12ac is 

likely not relased until it is further processed to tri-acetylated H4.K5acK8acK12ac. 

Grunstein and colleagues challenged the paradigm that di-acetylated H4.K5acK12ac is required for 

nuclear import and proper chromatin assembly. Analysing sets of yeast histone mutants, they 

concluded that only mutants with lysine to glycine substitutions at three (K5, K8, K12) or four (K5, 

K8, K12, K16) H4 lysine positions impaired yeast viablility and chromatin maturation (Ma et al., 

1998). These findings indicate that other histone marks may contribute to the initial setup of chromatin 

– particular if the default system via H4.K5acK12ac is disturbed. In line, we observe that HAT1 RNAi 

provokes an increase of the H4 di-acetylation motif H4.K8acK16ac and several H3 acetylation motifs 

(most of them are not statistically significant, including H3.K9ac, H3.K9me2K14ac and 

K27acK36me3).  It is interesting to note that the H4.K8acK16ac peptide, which efficiently inhibited 

HAT1 activity in vitro (Makowski et al., 2001), is upregulated after HAT1 deprivation. Similarly, 
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yeast genetic experiments with histone mutants suggested that some phenotypes with H4 tail deletion 

or lysine point mutations can be rescued by manipulating the charge distribution on histone H3 

(Shahbazian and Grunstein, 2007). Moreover, acetylated H3.K14ac and H3.K23ac have been observed 

at cytoplasmic histones and as part of chaperone complexes (Jackson et al., 1976; Sobel et al., 1995; 

Tyler et al., 1999). It is tempting to speculate that in the absence of the default H4.K5acK12ac nuclear 

import signal, a compensatory system uses other H4 di-acetylation motifs or H3 acetylation motifs to 

serve as a backup strategy. 

While the cytoplasmic function of HAT1 is well described, recent attention has been devoted to its 

nuclear function. HAT1 is pre-dominantly found in the nucleus (Verreault et al., 1998; Poveda et al., 

2004; Yang et al., 2013), where it may contribute to ensure proper chromatin assembly by regulating 

the histone turnover in the wake of the DNA repair machinery (Qin and Parthun, 2002; Verzijlbergen 

et al., 2011; Yang et al., 2013). Our observation of reduced H3.K27ac, which is considered to be a 

hallmark of active enhancers, may point to a novel function of HAT1 in transcriptional regulation. 

This is further supported by the observation that cells depleted for HAT1 show reduced levels of 

histone methyl marks associated with active transcription (H3.K36me2/3) and an increase of the 

repressive mark H3.K27me3.  

 

dHBO1/Chameau: The finding that dHBO1 is responsible for most mono-acetylated H4.K12ac and 

the combinatorial motifs H4.K8acK12ac and H3.K9me3K14ac may contribute to resolve the long-

standing controversy whether HBO1 acetylates H3 or H4.  

Published reports on HBO1 are controversial with respect to its histone acetylation targets, its role on 

DNA replication and cell growth and its capacity to promote or repress transcription. Our finding that 

dHBO1 is responsible for most mono-acetylated H4.K12ac and the combinatorial marks 

H4.K8acK12ac and H3.K9me3K14ac may contribute to resolve some of the long-standing 

controversies for HBO1’s histone targets. In addition, we did not observe a significant change in the 

cell cycle or cell number, suggesting that dHBO1 is not required for proper maintenance of the cell 

cycle, DNA replication and cell growth in Drosophila KC cells.  

HBO1 was initially described as Histone acetyltransferase Binding to ORC with acetyltransferase 

activity to histones H3 and H4 (Iizuka and Stillman, 1999). However, most reports following its 

original description characterised HBO1 as either i) the major acetyltransferase responsible for histone 

H4 acetylation, ii) the major acetyltransferase for lysine 5, 8 and 12 yet not 16 on histone H4, iii) the 

major histone H3 acetyltransferase or iv) the major KAT for H3.K14ac (Doyon et al., 2006; Foy et al., 

2008; Wu and Liu, 2008; Miotto and Struhl, 2010; Kueh et al., 2011; Mishima et al., 2011; Havasi et 

al., 2013). Moreover, individual studies reported significant reduction of H3.K9ac or H3.K23ac while 

the beforehand mentioned sites remain largely unaffected (Hung et al., 2009; Saksouk et al., 2009; 
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Lalonde et al., 2013). In particular the immuno blot experiments that showed a global loss of histone 

H4 acetylation using pan-acetyl H4 antibodies are somewhat surprising taking into account that more 

than 70% of histone H4 acetylation in most human and murine cells is on position lysine 16. Notably, 

most of the mentioned reports stressed that ablation of HBO1 reduces acetylation on either H3 or H4. 

For example, Kueh et al used immuno blotting to demonstrate that hbo1 knockout mouse primary 

fibroblasts have greatly diminished H3.K14ac levels, which are accompanied by a strong increase in 

H4.K16ac and a moderate increase in H4.K5ac and H3.K9ac (Kueh et al., 2011). In contrast, Miotto 

and Struhl also used immuno blotting yet they reported that HeLa cells depleted for HBO1 show 

massively decreased acetylation on lysines 5,8 and 12 on H4, while acetylation at H4K16 and H3 stay 

almost constant (Miotto and Struhl, 2010). Although recently Cote and colleagues suggested that 

HBO1 co-exists in two different complexes in HeLa cells – where the HBO1-JADE complex 

acetylates H4 while the HBO1-BRPF1 complex acetylates H3.K23ac (and to a lesser extent 

H3.K14ac, (Lalonde et al., 2013) – others observed different putative target sites and no concomitant 

reduction of H3 and H4 acetylation in HeLa cells depleted for HBO1 (Iizuka et al., 2009; Miotto and 

Struhl, 2010).  

To my knowledge, there are only two studies which directly addressed the acetylation target sites of 

the Drosophila homologue to HBO1, Chameau: McConnell and colleagues reported that Chameau and 

CBP are required together to reduce H4.K12ac in Drosophila ovaries, whereas the individual KAT 

mutants did not affect histone acetylation levels (McConnell et al., 2012). In contrast, Miotto et al. 

reported an increase of H4K16ac on a reporter gene in HEK293 cells when Drosophila Chameau is 

targeted to it (Miotto et al., 2006).   

We found that depleting dHBO1 (Chameau) in female KC cells or mutating dHBO1 in male flies 

(unpublished preliminary results) reduced acetylation of lysine 14 on histone H3 only in the context of 

adjacently tri-methylated lysine 9 (H3.K9me3K14ac). Notably, while H3.K9me3K14ac contributes to 

only a minority of all combinations containing acetylated lysine 14 (~ 4%), the major acetylation 

isoform H3.K14ac (~ 11%) is not reduced but even increased in HBO1 depleted cells. Because, to our 

knowledge, all reports addressing HBO1 histone targets used anti-acetylation antibodies, modulation 

of complex epitopes such as the mixed acetylation-methylation motif H3.K9me3K14ac may have 

skipped previous attention. Importantly, we also observed that dHBO1 depleted cells show a reduction 

of tri-methylated K9 in the context of unmodified K14 (-17% of H3.K9me3K14). These levels are 

comparable to the reduction of H3.K9me3K14ac by 31%. These results may indicate that the observed 

reduction of acetylated K14 could be a secondary effect due to the strong global decrease of K9 tri-

methylation. This finding highlights the necessity to also examine non-target modifications at adjacent 

residues to distinguish putative primary from secondary effects.  

Our finding that dHBO1 depleted cells show reduced levels of H4.K12ac and H4.K8acK12ac are in 

agreement with previous studies which reported that HBO1 preferentially acetylates histone H4 over 
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H3. However, considering that some antibodies raised against histone H4 acetylation sites recognise 

multi-acetylated peptides more than an order of magnitude better than mono-acetylated peptides 

(Rothbart et al., 2012), our finding of reduced H4.K8acK12ac levels may indicate that the previously 

reported strong reduction of acetylated lysines 5 and 8 upon HBO1 RNAi might be interpreted with 

caution. This holds in particular true because, at least in Drosophila KC cells as well as S2 cells 

(unpublished results), dCBP is responsible for the majority of mono-acetylated K5 and K8. Finally, 

our observation that dHBO1 provokes an increase of H4.K16ac and H3.K9ac-containing motifs is in 

agreement with a previous report (Kueh et al., 2011).  
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4 GENERAL CONCLUSIONS AND OUTLOOK 

Post-translational histone modifications serve as a model to study how chemical modifications 

diversify protein functions. Because histones and their PTM-derived isoforms are abundant cellular 

biomolecules they are more easily accessible to experimentation then PTMs at most other proteins. 

Moreover, because histones are intimately engaged in organizing DNA, individual nucleosomal 

histone PTMs can be tracked spatiotemporally by determining with which region of DNA they 

associate. This often allows correlating a specific modification to a biological process. For example, 

through functional genomic approaches we know of specific individual histone modifications 

associated with DNA elements such as transcriptional enhancers and promoters.  

A further layer of complexity is introduced by the combinatorial potential of co-occurring 

modifications along the same histone molecule, the partner histones within the same nucleosomes or 

adjacent nucleosomes. There is accumulating biochemical evidence that pre-set modifications 

influence the binding and activity of chromatin-modifying activities (Fischle, 2008; Suganuma and 

Workman, 2011). In some cases, a combinatorial histone PTM motif rather than the individual marks 

may serve as the biological signal. An illustrative example is the di-acetyl motif H4.K5acK12ac, 

which is associated with nascent cytosolic histones (Sobel et al., 1995). Moreover, dedicated effector 

proteins may preferentially recognise combinatorial motifs. Examples include certain bromodomains 

that show increased affinity towards complex peptide motifs harbouring distinct acetylation patterns 

(Moriniere et al., 2009; Filippakopoulos et al., 2012) and effector proteins that contain multiple linked 

histone PTM recognizing domains (Ruthenburg et al., 2007; Patel and Wang, 2013; Rothbart et al., 

2013). However, because traditional genomic approaches depend on highly specific antibodies, which 

are, in most cases, unable to assess complex PTM motifs, new strategies are required to locate 

combinatorial motifs to functional DNA elements and biological processes. Recent advances in native 

proximity ligation assays (Koos et al., 2014), multivalent, recombinant and intracellular binder 

reagents (Haque et al., 2011; Hayashi-Takanaka et al., 2011; Hattori et al., 2013), super-resolution 

microscopy (Schermelleh et al., 2010; Sauer, 2013), and the mass spectrometry-based analysis of 

selected genomic regions (Wang et al., 2013a; Pourfarzad et al. 2013; Waldrip et al., 2014) promise 

attractive experimental strategies to fill some of the current technological gaps. Concepts and 

technologies developed to analyse combinatorial PTMs at histones are likely to also spur the progress 

towards understanding complex PTM motifs at other proteins.  

One of the next challenges is to study how different types of PTMs cross-talk on a systems level and 

under varying internal and external conditions, including perturbation scenarios. To what extent does a 

modification depend on a pre-existing mark? What are the compensatory strategies to circumvent 

compromising effects if individual PTM-modifying pathways are blocked? 
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The study presented in section 3.4 provides a first insight in the changes of histone acetylation and 

methylation patterns in response to systematically depleting every known or suspected KAT and 

KDAC. However, by analysing the changes after 5.5 days of RNAi mediated protein depletion, we 

only present a static snapshot of these events. The recent developments of specific inhibitors to KATs 

and KDACs, acute and reversible protein depletion strategies and the increasing availability of well-

characterised constitutive and conditional mutants will enable monitoring the choreography of cellular 

responses to perturbations at different time scales with potentially fascinating insights between 

different temporal stages. This will not only allow us to better discriminate primary from secondary 

effects but will also improve our understanding of how chromatin pathways are interconnected. 

Previous literature already provided a glimpse in the cross-regulation of individual chromatin-

modifying enzymes, as exemplified by their mutual protein-protein interactions (see section 2.3). 

Monitoring protein and activity levels of a panel of histone PTM modifiers when an individual 

enzyme is ablated will likely uncover more cross-regulatory potential.  

Moreover, we mainly catalogued KATs and KDACs in a single cell line, yet the substrate specificities, 

functions and cellular responses may vary across cell types, developmental stages and species and may 

dependent on induced or transient signals or specific environmental conditions. Likewise, we only 

analysed histone substrates but acetyltransferases also target non-histone proteins. Is there cross-talk 

between histone and non-histone acetylation in cells deprived of acetyltransferases? Finally, we 

restricted this study to the analysis of single gene perturbations. It will be of interest how the system of 

acetylation motifs (and other PTM systems) responds to ablating two or a set of KATs. Will we still 

detect balanced global histone acetylation levels? What will we learn about redundancy among the 

enzymes or across histone sites/motifs? Will we uncover local and global epistatic interactions?  

 

Knowledge of the abundance of histone PTMs can facilitate the design and interpretation of genomic 

and biochemical studies 

Quantitative mass spectrometry (MS) studies indicated that the default states of histones in the cell are 

highly chemically decorated rather than unmodified isoforms. Our study refines this view by using a 

panel of synthetic peptides to correct for differential MS detection bias and thereby improves the 

accurateness to quantify histone PTMs. For example, this correction procedure allowed is to describe 

that a substantial fraction of histone H3 molecules is modified by tri-methylation on lysine 9 (39% 

instead of 4% without correction), which is in line with the high occurrence of repetitive DNA 

elements within the Drosophila genome that are covered by this histone mark.  

Other marks such as the polycomb signatures (H3.K27me2/3) have traditionally been associated with 

a few developmentally regulated genes yet recent ChIP-chip/Seq studies uncovered in addition 

domains of substantial sizes (Hawkins et al., 2010). Previous mass spectrometry studies already 
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demonstrated the high abundance of this mark in mouse cells (40% and 10% of H3.K27me2/3, (Peters 

et al., 2003)), and we confirmed this finding for Drosophila cells (36% and 34% in KC cells).  

This concordance between genomic and proteomic studies is not observed for H4.K16ac in 

mammalian cells. Despite its high abundance, as judged by mass spectrometry (>30%), ChIP-chip/Seq 

studies describe very limited binding patterns for this mark, preferentially localizing to promoter and 

some putative enhancer regions (Wang et al., 2008b; Sridharan et al., 2013; Taylor et al., 2013). Thus, 

the low number of ChIP peaks may be interpreted as high local accumulation of this mark at these loci 

relative to regions in the direct vicinity. Alternatively, because histone acetylation antibodies have 

been shown to display a greatly enhanced affinity towards poly-acetylated H4 (Rothbart et al., 2012), 

the H4.K16ac-ChIP signals may preferentially report on these multi-acetylated H4 isoforms.  

In contrast to mammalian cells, H4.K16ac is of lower abundance in Drosophila male (8%) and female 

(3%) cells. Here, ChIP-chip/Seq experiments in female cells identified distinct peaks at promoters of 

active genes and at intergenic regions associated with replication regions (Kind et al., 2008; Schwaiger 

et al., 2009). Male cells showed in addition to the female H4.K16ac pattern extensive signals along 

gene bodies, which is the defining histone signature for fly dosage compensation (Gelbart et al., 2009). 

Comparing the cellular abundances of this mark between female and male cells as well as male cells 

with perturbations to the MSL-DCC allows to estimate the density of this modification along the 

dosage compensated gene bodies. Moreover, employing quantitative ChIP-MS strategies further 

refines this estimation and likely will uncover new chromatin marks associated with dosage 

compensation (unpublished results). In summary, knowing the accurate cellular abundances is helpful 

to design and interpret genomic experiments. 

Likewise, information on the cellular abundance of histone PTMs may also guide biochemical studies 

that are aimed to decipher the effect of selected modifications to the structure of chromatin. Here, 

knowing the most prevalent patterns of co-occurrence may help to select appropriate chromatin 

templates to study a selected modification in the context of its naturally co-occurring ‘partner’ 

modification(s). For example, studying the effect of H4.K16ac in the context of the highly abundant 

H4.K20me2 mark (Pesavento et al., 2008) may facilitate to resolve some of the current controversies 

on how ISWI-containing nucleosome remodelers are regulated by this acetylation mark (see 2.3.1). 

Similar, the rather moderate effects of H3.K56ac and H3.K79me on the nucleosome structure may be 

modulated in the context of the very prevalent H3.K23ac, H3.K9me3 and H3.K27me2 marks. Recent 

advances in generating nucleosomal arrays in a fast and streamlined manner, simultaneously 

characterizing many different templates in quantitative biochemical assays and monitoring the effect 

of PTM motifs on enzyme kinetics in real-time foreshadow exciting future directions to understand 

mechanistically how histone modifications modulate chromatin enzymes and structures (Dose et al., 

2011; Nguyen et al., 2014).  
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Feed-forward and feedback as compensatory responses to evolutionary-manifested and spontaneous 

perturbation 

Dosage compensation can be conceptualised as a feed-forward principle, where the system anticipates 

the genetic perturbation – that is the reduced gene dose caused by the ‘missing’ X chromosome – and 

hence had evolved a compensatory mechanism to deal with this evolutionary-manifested gene dosage 

deficiency (for a thorough discussion see section 3.2.2 and (Zhang et al., 2010)). One prediction for 

such mechanism would be to implement a single activating principle that achieves directly two-fold 

stimulation on top of the basal gene activity. Indeed, a previous study has shown that tethering MSL2 

to a reporter gene brings the expected two-fold activation characteristic for dosage compensation 

(Straub et al., 2005). In this experiment, MSL2 likely recruits the missing members of the MSL-DCC 

to reconstitute a full and functionally intact dosage compensation complex. 

In our study discussed in section 3.1 we further dissected the ‘activating principle’ by tethering MOF 

instead of MSL2. Comparing the MOF-driven reporter gene in male and female flies allowed us to 

recognise that the strong transcriptional activation potential of MOF, which is observable in female 

flies, is constrained in male flies to the two-fold range. The key experiment was depleting MSL2 in 

these cells. Under this conditions, transcription from the MOF-driven reporter gene was enhanced 

rather than reduced, arguing that MSL2 itself or an MSL2-associated factor limits the transcription 

stimulation brought by MOF. More generally, this result suggests that dosage compensation does not 

use a single principle to directly achieve ‘two-fold up’, but rather constrains a strong general activator 

(MOF/H4.K16ac) to arrive at the finely-tuned set point of two-fold activation.  

Two recent screens discovered a novel factor that may provide a candidate that constrains the activity 

of the MSL complex (Larschan et al., 2012; Lim and Kelley, 2013). Employing a genome-wide RNAi 

screen, Kuroda and colleagues identified CG3363 as the strongest repressor of the MSL-DCC activity 

on a roX2 reporter gene (Larschan et al., 2012). In a genetic screen for novel regulators of dosage 

compensation, Kelley and colleague identified the same gene, which they termed over compensating 

males (ocm), that, when mutated, caused elevated dosage compensation (Lim and Kelley, 2013). This 

feature is strikingly similar to our observation of increased transcription from the MOF-driven reporter 

gene after ablating MSL2. Not much is known about the ocm gene, which encodes a large, 250 kDa 

protein without any recognizable functional domain except for a short cysteine rich motif. Future 

studies addressing the functions of ocm are likely to also advance our understanding of balancing 

activating and repressive principles during fly dosage compensation.  

A potentially more indirect way to constrain the strong activation brought about by MOF-mediated 

hyper-acetylation of H4.K16ac is by modulating heterochromatin components. It has long been known 

that the male X chromosome is in particular sensitive to the levels of certain heterochromatin proteins. 

Reducing the dose of NURF, HP1 or the HP1-interactor Su(var)3-7 results in a strong decondensation 



GENERAL CONCLUSIONS AND OUTLOOK  

 

212

phenotype specifically at the male X chromosome (‘X bloating’) (Spierer et al., 2005; Corona et al., 

2007; Spierer et al., 2008). HP1 may directly form more repressive chromatin structures and NURF 

may promote compaction by incorporation of the linker histone H1 (Corona et al., 2007).  

The data presented in section 3.4 provides further support towards an involvement of heterochromatin 

factors for the process of dosage compensation. Comparing histone modifications between male and 

female wildtype and MOF-deprived cells allowed us to recognise that male cells contain elevated 

levels of the heterochromatin marks H3.K9me3 and H3.K27me3. Importantly, ablating MOF (and 

hence dosage compensation) in male cells re-adjusted these marks towards the levels found in female 

cells. Extending the current study from analysing bulk histones towards comparing these 

modifications in cells either containing or lacking MOF using ChIP-Seq will allow determining 

whether these heterochromatin marks are directly enriched at target genes of the MSL-DCC. In 

addition, these experiments will allow testing whether the re-distribution of heterochromatin 

components is an integral part of the feed-forward principle of dosage compensation or whether it is 

the result of a feedback mechanism.  

Many biological systems function as highly connected and responsive networks, where spontaneous 

perturbation to a single component elicits a feedback mechanism to compensate for the loss of a single 

member. The most surprising finding of the third study was the observation that depletion of almost 

every acetyltransferase resulted in a gain of acetylation at secondary sites that balanced the loss of 

acetylation at primary sites. I speculate that this phenomenon functions as a feedback mechanism to 

keep the global acetylation levels constant. Testing this hypothesis requires to identify suitable 

‘compensatory pairs’ that allow to quantify the functional consequences after depleting a single or 

both components of this pair. The system of dosage compensation may provide a suitable model to 

study this potentially ‘compensatory’ phenomenon, because of the experimental power to monitor 

quantitative changes in transcription over thousand active genes, which are all under the regime of the 

same regulatory system. We observed similar global histone acetylation levels between male and 

female cells. The strongly increased levels of H4.K16ac in male cells are ‘balanced’ by reduced levels 

of H4.K5ac, H4.K12ac and H3.K14ac, and conversely, depleting MOF restores the levels to the ones 

found in female cells. Comparative ChIP-Seq analysis for these modifications should reveal whether 

these marks are specifically depleted at dosage compensated genes. Further, manipulating the enzymes 

that modulate these modifications followed by quantifying the consequence on X-chromosomal gene 

expression should not only allow testing whether they have a role during dosage compensation but 

also provide insights into the functional significance of induced acetylation at secondary sites.  
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GNAT  GCN5-related N-acetyltransferases 

HAS  high affinity site 

HAT   histone acetyltransferase 
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KAT  lysine acetyltransferase 

kDa   kilodalton 

KDAC  lysine deacetylase 
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MORF   MRG-related factor 
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NURD   nucleosome remodelling and deacetylation 

NURF  nucleosomal remodelling factor 

OCM  over compensating males 
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PCAF   p300/CBP associated factor 

PHD   plant homeo domain 

PHF20   PhD finger protein 20 

PRC      polycomb repressive complex 

PRMT     protein arginine methyltransferase 

PTM  post-translational modification 

RPD3   reduced potassium dependency 3 

RNAi   RNA interference 

roX  RNA on the X 

RSC   remodels the structure of chromatin 

SAGA   Spt–Ada–Gcn5–acetyltransferase 

SAS2   something about silencing gene 2 
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SUMO   small ubiquitin-related modifier 

Su(var)3-9  suppressor of variegation 3-9 

SXL  sex lethal 

TIP60   Tat-interacting protein 60 

UAS  upstream  activating sequence 

WDR5  WD40 repeat protein 5 
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