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A Zusammenfassung 

Das Intermediärfilamentprotein Desmin ist ein wichtiger Bestandteil des extrasarkomeren 

Cytoskeletts von Muskelzellen. Ähnlich zu anderen Intermediärfilament (IF)-Proteinen bildet es 

ein dreidimensionales Filamentnetzwerk aus, das für die Struktur und Funktionalität von 

Myofibrillen eine entscheidende Rolle spielt. Mutationen im Desmin-Gen führen u.a. zu 

Desminopathien, die zu den Myofibrillären Myopathien zählen. Die klinisch und genetisch 

heterogene Gruppe dieser chronisch-progredient verlaufenden Skelett- und Herzmuskel-

erkrankungen zeigt Proteinaggregate im betroffenen Muskel als gemeinsames 

histopathologisches Merkmal, ähnlich wie bei anderen häufigen neurodegenerativen 

Erkrankungen. Desminmutantenverändernder Aufbau des Desmingerüsts führen je nach 

Mutation zu charakteristischen Desminaggregaten, die pathologisch relevant sind und eine 

Myofibrillendegeneration zur Folge haben.  

In der vorliegenden Arbeit wurden drei humanpathogene Desminpunktmutationen ausgewählt, 

die heterogene, klinische Symptome auslösen: Das Lebensalter bei Krankheitsmanifestation 

variierte zwischen dem 20. und 40. Lebensjahr. Die Skelettmuskelschwäche zeigte sich individuell 

ausgeprägt und auch familienintern mit unterschiedlichem klinischen Bild und differenzierter 

Verlaufsform. Meistens traten die Skelettmuskelerkrankungen assoziiert mit kardialer und/oder 

pulmonaler Beteiligung auf, die lebensbedrohlich verlaufen konnten. Desminopathien werden 

hauptsächlich autosomal-dominant vererbt, sodass neben dem mutierten Desminallel ein 

funktionelles Wildtyp Allel vorliegt. 

Koassemblierungsmodelle stellen diese in vivo Situation am besten dar. Für die drei untersuchten 

pathogenen Desminpunktmutationen (p.R350P, p.E413K, p.R454W) wurde bei in vitro 

Untersuchungen ein dominant negativer Effekt auf die Filamentassemblierung von Wildtyp 

Desmin beobachtet. Diese funktionell beeinträchtigende Wirkung konnte schon bei weiteren 

pathogenen Desminmutationen belegt werden (Sjoberg, Saavedra-Matiz et al. 1999, Bar, Fischer 

et al. 2005, Bar, Mucke et al. 2006, Bar, Goudeau et al. 2007, Pruszczyk, Kostera-Pruszczyk et al. 

2007, Bar, Schopferer et al. 2010, Levin, Bulst et al. 2010). Eine detaillierte Charakterisierung der 

Protein-Proteininteraktion zwischen mutiertem und Wildtyp Desminprotein fehlte bisher. In der 

vorliegenden Arbeit wird diese Fragestellung eingehend bearbeitet, basierend auf den Resultaten 

von Levin et al., wobei einzelmolekülspektroskopisch charakteristische Unterschiede in der 

molekularen Zusammensetzung von Multimeren einzelner, ausgewählter Desminmutanten 

entdeckt wurden. Ziel dieser Arbeit war die Etablierung eines Zweifarb-Ansatzes, der die 

Interaktion von pathogenen Desminmutanten simultan mit funktionellem Wildtyp 

Desminproteine in zellulärem und molekularem Kontext parallel qualitativ und quantitativ 

charakterisieren kann. Weiterhin wurden immortalisierte myogene Zelllinien etabliert, die einen 

Desmin Knockout oder eine transgene Desmin-Variante (Desmin p.R350P Knockin) enthalten.  
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Die Charakterisierung der Desminfilamentassemblierung mit heterozygot vorliegenden, 

pathogenen Desminmutanten auf Einzelmolekülebene erfolgte durch konfokale Einzelmolekül-

Spektroskopie am Fluoreszenz-Korrelations-Spektroskopie-Reader, der vor allem zur 

Charakterisierung von pathogenen Proteinaggregaten bei neurodegenerativen Erkrankungen 

Anwendung fand. Es wurde ein zweifarbiger Ansatz etabliert, der die verschiedenen 

Desminmoleküle fluoreszenzmarkiert und eine Unterscheidung von funktionellem und 

mutiertem Protein zulässt. Das im Nah-Infrarotbereich anregbare Fluorophor mKate2 zeigte sich 

zunächst neben dem bewährten grün fluoreszierenden Protein GFP als geeignetes fluoreszentes 

Fusionsprotein-Tag. Parallel zur zweifarbigen Einzelmolekülanalyse wurde die Filamentbildung 

im konventionellen und im konfokalen Fluoreszenzmikroskop untersucht.  

In dieser Arbeit wurde versucht, die molekulare und zelluläre Untersuchung aus der gleichen 

Zelllinie zu gewinnen. Aufgrund geringer transienter Transfektionsraten war dieser Ansatz 

jedoch nicht durchführbar, sodass SW-13-Zellen nur für die mikroskopische Analyse verwendet 

wurden und HEK293-Zellen aufgrund der besseren Expressionsraten für die molekularen 

Interaktionsstudien Anwendung fanden. 

Bei einem funktionellen Wildtyp Desminprotein bildete sich in den Zellen ein über das ganze 

Cytoplasma verteiltes Desmingerüst aus, das als Korrelat eines intakten Filamentgerüsts in 

Muskelzellen gewertet wurde, was eine strukturelle und funktionelle Anordnung der Myofibrillen 

zur Aufgabe hat. Die funktionelle Desminassemblierung wurde in der Anwesenheit von 

pathogenen Desminpunktmutanten gestört. Es entstanden charakteristische Desminaggregate, 

aber auch lichtmikroskopisch physiologische Intermediärfilamente, deren molekulare 

Zusammensetzung noch weitere Fragen offen ließ: (1) ob die gebildeten Aggregate ausschließlich 

aus mutierten Desminproteinen bestehen, (2) ob in noch vorhandene Intermediärfilamente 

neben Wildtyp auch mutiertes Protein integriert wird oder (3) ob nur ausschließlich Wildtyp 

Proteine Filamente bilden. 

Die heterologen aber auch homologen Protein–Protein Interaktionen in lebenden Zellen wurden 

in dieser Arbeit mit Hilfe der strahlenlosen Förster Resonanz-Energieübertragung (FRET) von 

GFP auf mKate2 beschrieben. Allerdings waren die FRET-Ergebnisse aus der 

Einzelmolekülanalyse nicht eindeutig, da die Quantenausbeute zu gering war, sodass die genaue 

Zusammensetzung der einzeln entstandenen Proteinaggregate nicht quantitativ analysiert 

werden konnte. Jedoch konnte das Interaktionspotential von mutierten mit funktionellen 

Molekülen errechnet werden. Reines Wildtyp Desmin zeigte den höchsten Wert an zweifarbig 

interagierenden großen Teilchen. Dieses Verhalten spricht für eine geordnete und physiologische 

Architektur der Desminasssemblierung. Die untersuchten Mutanten p.R350P und p.E413K 

besaßen einen niedrigeren Wert an interagierenden großen Teilchen. Dieses Resultat lässt sich 

durch die in der Mikroskopie beobachteten Desminaggregate erklären, die zwar kolokalisiert mit 

Wildtyp Desmin zweifarbig vorlagen, aber molekular gesehen wenig mit Wildtyp Molekülen 
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interagieren bzw. koassemblieren. Die dritte pathogene Punktmutante p.R454W zeigte zellulär 

keine pathologischen Auffälligkeiten hinsichtlich der Filamentassemblierung, allerdings konnte 

auch hier in der Einzelmolekülspektroskopie eine Abweichung des Interaktionspotentials mit 

Wildtyp Desmin gezeigt werden. Eine Erklärung könnte ein geringerer Einfluss der Mutante durch 

ein vermindertes Expressionsniveau der R454W Mutante in den Zellen sein oder eine besseres 

residuales Filamentbildungspotential. 

 

Die parallel durchgeführten Analysen der Filamentbildung in SW-13-Zellen ergaben 

reproduzierbare zelluläre Muster an gebildeten Filamenten und Proteinaggregaten, die sich mit 

den Ergebnissen aus der Einzelmolekülanalyse deckten. Die Zeitverlaufsanalyse über vier Tage 

zeigte 48h nach transienter Kotransfektion von Wildtyp Desmin mit mutierten Desmin-Varianten 

ein vollständig entstandenes Desminnetzwerk, das aus kolokalisierten Proteinaggregaten 

und/oder Desminfilamenten bestand. 

Die Generierung einer immortalisierten Myoblastenzelllinie erfolgte über die Isolierung von 

Myoblasten aus transgenen Mausmodellen mit entsprechenden Genom-Veränderungen. Dazu 

wurden Immortomäuse® mit einer Desmin Knockout Maus gekreuzt, um Desmin defiziente 

Myoblasten zu erhalten, die in Kultur konditionell immortalisiert sind. Die Mausmyoblasten 

enthielten neben dem immortalisierenden Gen H-2Kb -tsA58 (thermolabile mutierte Form von 

Simian Virus 40 (SV40) large T Antigen mit einem Interferon-induzierbaren murinen H-2Kb 

Promotor) einen homozygoten Knockout von Desmin. Eine fehlende Desminexpression in den 

Myoblasten konnte durch Genotypisierung bestätigt werden. 

Zwei weitere isolierte murine Myoblastenzelllinien enthielten eine in das Genom stabil integrierte 

humane R350P Desminmutation. Durch Verpaarung der Immortomäuse® mit der Destgp.Arg350Pro 

Knockin Mauslinie entstanden Myoblasten sowohl mit homozygot, als auch heterozygot 

vorliegendem Knockin der Punktmutation. Auch hier konnte der myogene Charakter der 

isolierten Zellen aufgezeigt werden. 
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B Einleitung 

1 Myofibrilläre Myopathien 

Myofibrilläre Myopathien (MFM) stellen eine Gruppe seltener, erblich bedingter Erkrankungen 

der Skelett- und Herzmuskulatur mit einem chronisch-progredienten Krankheitsverlauf dar. 

Histopathologische Kennzeichen sind Desmin-positive Proteinaggregate, Ablagerungen 

myofibrillärer Abbauprodukte sowie degenerative Veränderungen des Myofibrillengerüsts 

(Goebel and Bornemann 1993, Goebel 1997, Selcen, Ohno et al. 2004, Selcen 2011). MFM sind eine 

genetisch und klinisch heterogene Gruppe neuromuskulärer Erkrankungen, die durch Mutationen 

in folgenden Genen verursacht werden können, die myofibrilläre und extramyofibrilläre Proteine 

kodieren: 

 Myotilin (Selcen and Engel 2004), 

 Desmin (Goldfarb, Park et al. 1998, Goldfarb, Olive et al. 2008, Clemen, Herrmann et al. 

2013), 

 B-Crystallin (Selcen and Engel 2003), 

 BAG-3 (Selcen, Muntoni et al. 2009, Odgerel, Sarkozy et al. 2010), 

 FHL1 (Schessl, Zou et al. 2008), 

 Filamin-C (Kley, Hellenbroich et al. 2007), 

 Plectin (Schroder, Kunz et al. 2002) 

 Titin (Ohlsson, Hedberg et al. 2012, Pfeffer, Elliott et al. 2012), und 

 ZASP (Selcen and Engel 2005, Griggs, Vihola et al. 2007). 

 

Die Hälfte der MFM-Erkrankungen werden durch Mutationen in den oben genannten Genen 

erklärt. Die Erkrankungsursache der restlichen Betroffenen bleibt bislang noch ungelöst. Obwohl 

in den letzten Jahren neue Erkenntnisse über die Pathogenese von MFM gewonnen wurden, bleibt 

der genaue molekulare Pathomechanismus vom einzelnen Gendefekt bis zur myopathologischen 

Krankheitsmanifestation dennoch ungeklärt. Biochemische, molekular- und zellbiologische 

Methoden wie Next Generation Sequencing Technologie, Laser Mikrodissektion, proteomische 

Analysen, Tier- und Zellkulturmodelle sowie die Einzelmolekülmikroskopie ermöglichen es, neue, 

kausale MFM Gene zu identifizieren und den Pathomechanismus besser zu verstehen (Schroder 

and Schoser 2009, Olive, Kley et al. 2013).Erst kürzlich konnte eine Studie aus Großbritannien 

eine Foundermutation im Titin Gen (TTN) identifizieren, bei der mehrere Generationen mit 

hereditärer Myopathie mit früher, respiratorischer Insuffizienz (HMERF) betroffen sind. Die 

Autoren postulieren aufgrund der ähnlichen Pathogenese eine nosologische Klassifikation der 

HMERF Erkrankungen als MFM-Titinopathien, basierend auf einer TTN-Mutation (Pfeffer, Barresi 

et al. 2013). 
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Gewöhnlich werden MFM autosomal-dominant vererbt, selten X-chromosomal oder autosomal-

rezessiv. Die heute als sporadisch klassifizierten Fälle können häufig entweder durch in der 

Keimbahn hervorgerufene Neu-Mutationen oder durch die unerkannte Erkrankung der 

Vorfahren erklärt werden (Selcen 2011).  

2 Klinische Heterogenität von MFM 

Die klinischen Phänotypen Myofibrillärer Myopathien zeigen ein heterogenes Bild bezüglich der 

langsam progredienten Muskelschwäche (Selcen, Ohno et al. 2004). Klinische Unterschiede im 

Verlauf und im Schweregrad ergeben sich auch bei verwandten betroffenen Patienten innerhalb 

einer Familie. Der Beginn der Krankheitssymptome ist meist im Erwachsenenalter zu beobachten. 

Selten manifestieren sich Myofibrilläre Myopathien schon in der Kindheit oder im Jugendalter, 

dabei eher in Zusammenhang mit Mutationen in Genen, die für BAG3, FHL1, Plectin und Desmin 

kodieren (Shimizu, Takizawa et al. 1999, Pinol-Ripoll, Shatunov et al. 2009, Selcen, Muntoni et al. 

2009, Shalaby, Hayashi et al. 2009). Die klinische Symptomatik von MFM reicht von einer 

Skelettmuskelschwäche an den unteren Extremitäten bis zu anderen phänotypischen 

Muskelschwächen und –atrophien wie einer distalen Myopathie, einer Gliedergürtel-

Muskeldystrophie, einem scapuloperonealen Syndrom, einer Beteiligung isolierter 

Muskelgruppen sowie generalisierten Myopathien. In späteren Krankheitsstadien sind 

allgemeine Muskelschwäche und –Schwund von Hals und Rumpf zu beobachten (Schroder and 

Schoser 2009). Unterschiedliche kardiale oder respiratorische Muskelbeteiligungen sind ein 

bekanntes, klinisches Erscheinungsbild bei manchen Untergruppen der MFM. Als 

lebensbedrohlich oder lebensbegrenzend gelten dabei deklarative, restriktive oder hypertrophe 

Kardiomyopathien mit z.T. AV-Blockierungen mit einhergehenden Arrhythmien (Ferrer and Olive 

2008). Faziale Muskelschwäche, Schluckstörungen oder Sprechstörungen werden den 

Desminopathien, B-Crystallinopathien und Myotilinopathien zugeordnet. Respiratorische 

Insuffizienz ist häufig bei Patienten mit Filamin C-, FHL1- und BAG3-Mutationen und in 

geringerem Ausmaß bei Patienten mit Mutationen im Desmin-, B-Crystallin- oder Myotillingen 

zu finden. Des Weiteren werden Symptome beobachtet, bei denen nicht die Herz- oder 

Skelettmuskulatur betroffen ist. Dazu zählen beispielsweise angeborene Hauterkrankungen in 

Verbindung mit Muskeldystrophien bei Plectinopathien (EBS-MD, Epidermolysis bullosa simplex 

Muskeldystrophie) oder prämatur auftretende Katarakte bei B-Crystallinopathien (Vicart, Caron 

et al. 1998, Shimizu, Takizawa et al. 1999). Rigid spine Syndrom und Skoliose sind klassische 

Merkmale bei MFM-Patienten mit BAG3- oder FHL1-Mutationen. Polyneuropathien werden als 

elektrophysiologische Hinweise auf Mutationen im ZASP- oder FLNC-Gen angesehen (Schroder 

and Schoser 2009).Der heutige Stand der Wissenschaft ermöglicht noch keine kausale Therapie 

bei Myofibrillären Myopathien (Goebel, Fardeau et al. 2008).  
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2.1 Morphologische Merkmale 

Im Gegensatz zum heterogenen klinischen Bild und der genetischen Vielfältigkeit von 

Myofibrillären Myopathien zeigen die einzelnen Untergruppen in der Histopathologie 

Gemeinsamkeiten auf. Myofibrillendegeneration, Faserspaltung, pathologische Faserkaliber-

variationen, internalisierte Myonuklei, Veränderungen der Z-Scheiben- und Sarkomerstruktur, 

ein vermehrter Anteil an Fett- und Bindegewebe und die Akkumulation myofibrillärer 

Degradationsprodukte sind die wichtigsten gemeinsamen Kennzeichen. Die pathologischen 

Veränderungen in Muskelbiopsien werden durch eine Trichromfärbung von 

Muskelgewebeschnitten am besten sichtbar gemacht und zeigen anormale Fasern neben 

amorphen, granulären oder hyalinen Einschlüssen in unterschiedlicher Größe, Form und 

Farbreaktion mit Trichrom, je nach basophilem oder eosinophilem Charakter des 

Einschlussmaterials. Weitere Merkmale von betroffenem Muskelgewebe, die durch Färbungen 

mit NADH-TR, SDH und COX sichtbar gemacht werden können, sind abnormale Aktivitäten 

öxidativer Enzyme, söwie das Vörhandensein vön Vakuölen, die entweder umrandet („rimmed“) 

öder nicht umrandet („nön-rimmed“) sind und membranartiges Material einschließen (Schroder 

and Schoser 2009, Selcen 2011). 

2.2 Molekulare Pathogenese 

Die Degeneration der Myofibrillen und die damit einhergehende Degeneration der Z-Scheiben 

sowie die Ablagerung von intrazellulären, abgebauten filamentösen Material sind distinkte 

pathologische Veränderungen bei Myofibrillären Myopathien. Solche Akkumulationen von 

myofibrillären Abbauprodukten und Proteinansammlungen werden als Proteinaggregate 

bezeichnet. Deshalb zählen die MFM zu den Proteinaggregat-Myopathien (Goebel and Muller 

2006). Durch diesen Terminus entstehen Parallelen zu neurodegenerativen Erkrankungen wie 

der Alzheimer- oder Parkinson-Erkrankung, bei denen die Anhäufung fehlerhafter Proteine eine 

wichtige pathogenetische Rolle einnimmt (Olive 2009). Mithilfe der Immunhistochemie und der 

ergänzenden proteomischen Analyse wurden als Bestandteile dieser Aggregate u. a. Z-Scheiben 

und Z-Scheiben-assoziierte Proteine (Claeys, van der Ven et al. 2009), Cytoskelettproteine 

(Vrabie, Goldfarb et al. 2005), Intermediärfilamentproteine (Goebel and Bornemann 1993, 

Nakano, Engel et al. 1996), Proteine des Ubiquitin-Proteasomensystems (Janue, Olive et al. 2007), 

Chaperone (Ferrer, Carmona et al. 2005), Kinasen (Nakano, Engel et al. 1997), nukleäre Proteine 

(Vrabie, Goldfarb et al. 2005) und -Amyloidvorstufen (De Bleecker, Engel et al. 1996) gefunden. 

Normalerweise behalten neusynthetisierte Proteine ihre dreidimensionale Struktur permanent, 

wenn sie korrekt gefaltet sind. Eine Fehlfaltung funktioneller Proteine kann durch 

Einflussfaktoren wie genetische Veränderungen, posttranslationale Modifikationen oder 

oxidativen bzw. nitrosativen Stress induziert werden. Die inkorrekt gefalteten Proteine werden 

einer Proteinqualitätskontrolle intrazellulär hergestellter Proteine unterzogen: Kann die 
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Proteinkorrektur nicht durch Chaperone vermittelt werden, erfolgt die Aktivierung von 

Ubiquitin-Proteasom-System und Autophagie (induziert durch HSP70 oder Makroautophagie). 

Gelingen diesen Abbausystemen keine Reparatur, akkumulieren sich die inkorrekt gefalteten 

Proteine intrazellulär zu Proteinaggregaten (Olive 2009). 

Der molekulare Pathomechanismus wird auch in der Degeneration der Myofibrillen sichtbar. So 

konnte eine anormale Expression verschiedener Z-Scheiben-assoziierter Proteine in Muskelzellen 

von MFM Patienten nachgewiesen werden, wie z. B. von Myotilin, Desmin, Plectin oder B-

Crystallin (Selcen, Ohno et al. 2004).  

Die biophysikalischen und biomechanischen Eigenschaften der kodierten Proteine werden durch 

humanpathogene Genmutationen beeinflusst. Bei einer MFM-assoziierten Mutation im Filamin C-

Gen kann die Dimerisierung des Actin-Crosslinkerprotein Filamin C in vitro fehlschlagen und die 

Aggregatbildung begünstigt werden (Lowe, Kley et al. 2007). Biomechanische in vitro 

Untersuchungen („strain stiffening“) von primären humanen Patienten-Myoblasten mit 

Desminmutanten konnten eine erhöhte mechanische Zellsteifigkeit gegenüber Kontroll-

Skelettmuskelzellen mit Hilfe eines Zellstretchers nachweisen, was konsekutiv mechanischen 

Zellstress und zunehmende mechanische Angreifbarkeit und Muskelzell-schädigung auslöst 

(Bonakdar, Luczak et al. 2012). In vitro Assemblierungsstudien von Desmin mit Mutationen in der 

rod Domäne zeigen, dass zum einen kein Filamentnetzwerk de novo gebildet werden kann und 

zum anderen, dass gebildete, abnormale Filamentstrukturen einen Kollaps der bereits 

bestehenden Filamente auslösen und zu Desmin-positiven Proteinablagerungen bzw. zu 

Proteinaggregaten führen (Bar, Fischer et al. 2005, Bar, Mucke et al. 2005, Bar, Kostareva et al. 

2006, Bar, Goudeau et al. 2007). 

 

3 Desmin und Desminopathien 

Desminopathien sind die am häufigsten vorkommende und am besten untersuchte Untergruppe 

der Myofibrillären Myopathien. Die krankheitsverursachenden Mutationen im Desmingen 

können über das ganze Gen verteilt vorliegen. Um die humanen Myofibrillären Myopathien zu 

verstehen, ist das Verständnis der Struktur- und Funktionsweise von Desmin eine 

Grundvoraussetzung. 

3.1 Aufbau und Funktion des Intermediärfilamentproteins 

Desmin 

Desmin ist ein muskelspezifisches Intermediärfilamentprotein vom Typ III im Cytoskelett. Das 

dafür codierende humane Desmin-Gen (DES) liegt als single-copy-Gen auf dem Chromosom 2q35 

vor und besitzt eine Länge von ca. 8,3kb (Li, Lilienbaum et al. 1989). Das Desminprotein wird 

durch neun Exons codiert und besteht aus 470 Aminosäuren mit einer molekularen Masse von 
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53,5 kDa. Wie alle anderen Typ III IF-Proteine (Intermediärfilamentproteine) hat Desmin eine 

dreigeteilte Proteinstruktur: Die ca. 45 nm lange zentrale -helikal gewundene „röd“ Dömäne 

wird von nicht -helikalen flexiblen N-terminalen („head“) und C-terminalen („tail“) Dömänen 

flankiert. Die zentrale „röd“ Dömäne besteht aus drei konstant vorhandenen -Helices (coil1A, 1B 

und 2), die durch Linkerpolypeptide (L1 und L12) miteinander verbunden sind (Chernyatina, 

Nicolet et al. 2012) (siehe Abbildung 1). 

 

Abbildung 1 Proteinstruktur des humanen Desminmoleküls und molekulares Modell von dimeren 
rod Domänen. 

a Die schwarzen Segmente stellen die -helikalen coil Abschnitte im Proteinmolekül dar. Die 
Linkerpolypeptidketten sind grau dargestellt mit -helikaler (L1) und unbekannter 
Sekundärstruktur (L12). Die nicht-helikalen amino-(„head) und carböxy-(„tail“) terminalen 
Domänen sind bunt dargestellt. Zahlen stehen für die finale Aminosäureposition. b Molekulares 
Modell einer dimeren Desmin coiled-coil rod Domäne, die aufgrund der strukturellen Homologie 
zur entsprechenden Vimentin-Domäne korrespondierend dargestellt ist (Chernyatina, Nicolet et 
al. 2012). Die bis dahin bekannten pathogenen Mutationen sind farbcodiert und nach ihrer Lage 
im Protein aufgezeigt. Missense Mutation (orange), Deletion (lila) und Trunkierung (türkis) 
(Clemen, Herrmann et al. 2013). 
 
Die Assemblierung der Typ III IF-Proteinmoleküle beginnt mit einer parallelen, coiled-coil 

Aneinanderlagerung zu Dimeren, wobei die rod Domäne bei der coiled-coil-Dimerisierung durch 

den sogenannten heptad repeat (sieben Aminosäuren mit bestimmter Polarität) eine zentrale 

Rolle spielt (Burkhard, Stetefeld et al. 2001). Zwei coiled-coil Dimere lagern sich halbversetzt und 

antiparallel zu einem Tetramer zusammen. Mehrere Tetramere lagern sich spontan über die 

Zwischenstufe der Unit length filaments (ULFs), bestehend aus 32meren, zu Filamenten 

zusammen (Herrmann, Haner et al. 1996). Ausgehend von den Tetrameren kann die 

Assemblierung spontan in drei Stufen verlaufen: (1) Eine laterale parallele Anordnung von 

Tetrameren zu longitudinalen 32meren (ULF, unit length filaments), (2) die longitudinale 

Assemblierung von ULFs und kurzen Filamente zu verlängerten Intermediärfilamenten und (3) 

die finale radialverdichtete Aneinanderlagerung der Filamente zum ausgereiften IF-Gerüst (siehe 

Abbildung 2). 
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a Zwei Dimere lagern sich zum antiparallel halbversetzten Tetramer zusammen. b Laterale 
Zusammenlagerung der Tetramere unter bestimmten Assemblierungsbedingungen zu unit length 
filaments (ULFs), die aus acht Tetrameren bestehen. c1-c3 Längsausrichtung von mehreren ULFs 
zu kurzen Filamentstücken. d Radiale Verdichtung der langen Filamente zum ausgereiften 
Intermediärfilament (Clemen, Herrmann et al. 2013). 
 
 
Als essentieller Bestandteil des Filamentgerüsts in Muskelzellen spielt Desmin eine zentrale Rolle 

bei Signalübertragungsprozessen sowie bei der strukturellen und funktionellen Verankerung, 

Anordnung und Verbindung der Myofibrillen und der Zellorganellen über die Z-Scheiben. Es 

interagiert sowohl mit anderen IF-Proteinen (Synemin, Syncoilin, Vimentin), mit IF-assoziierten 

Proteinen (Plectin-Isoformen, B-Crystallin), mit sich selbst, als auch mit der extrazellulären 

Matrix über das subsarkolemmale Cytoskelett. Bei mechanischem Stress wird der Elastizität des 

Desminfilaments eine zellprotektive Rolle im quergestreiften Muskel zugeschrieben. Demnach 

kann das Desminnetzwerk mechanische Energie während der Muskelkontraktion aufnehmen 

(Price 1987, Capetanaki, Bloch et al. 2007). 

 

Abbildung 2 Schematisches Modell der cytoplasmatischen IF-Assemblierung. 
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Abbildung 3 Schematische Darstellung des Intermediärfilamentgerüsts im kardialen Muskel und 
die potentiellen Verbindungen mit unterschiedlichen Membrankompartimenten und Organellen. 

Desmin und die möglichen IF-Interaktionspartner (nicht muskelspezifisch), die die Z-Scheibe 
umgeben, sind gelb dargestellt. Desmin und die assoziierten Proteine verbinden sich sowohl 
untereinander als auch mit dem Sarkolemm, dem kontraktilen Apparat, Membrankomponenten 
und Organellen (Desmosomen im Herzmuskel), SR: Sarkoplasmatisches Retikulum; IFs: 
Intermediärfilamente; (Capetanaki, Bloch et al. 2007).
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3.2 Klinik der Desminopathien 

Desminopathien zählen, nach den bis jetzt veröffentlichten Daten, mit einer Prävalenz von fünf 

Betroffenen aus 10000 zu den seltenen Erkrankungen (engl. rare diseases). Bis Juni 2014 waren 

78 krankheitsverursachende Mutationen im DES-Gen identifiziert worden 

(http://www.LOVD.nl/DES). Desminmutationen sind nach Myotilinmutationen einer der 

häufigsten vorhandenen Gendefekte, die Myofibrilläre Myopathien auslösen (Olive, Odgerel et al. 

2011). Die Vererbung erfolgt meistens autosomal dominant, selten autosomal rezessiv. 

Sporadische Fälle oder de novo Mutationen sind ebenfalls bekannt. Der Erkrankungsbeginn ist 

von der ersten bis zur achten Lebensdekade variabel, allerdings zeigt sich bei der Mehrzahl der 

Patienten mit familiärer und sporadischer kombiniert-heterozygoter Desminmutation eine 

Krankheitsmanifestation zwischen dem 20. und 40. Lebensjahr (Schroder and Schoser 2009, van 

Spaendonck-Zwarts, van Hessem et al. 2011). In seltenen rezessiven Fällen manifestiert sich das 

klinische Bild der Desmin-assoziierten Myopathien mit kardialer Beteiligung in den ersten zehn 

Lebensjahren (Clemen, Herrmann et al. 2013). 

In einer Metanalyse von 2011 wurde zusammenfassend eine Mortalitätsrate von 26% bei einem 

Durchschnittslebensalter von 49±9,3 Jahre der Betroffenen errechnet (van Spaendonck-Zwarts, 

van Hessem et al. 2011). 

 

Skelettmuskel 

Das klinische Bild von Desmin-assoziierten Myopathien zeigt sich meistens initial durch eine 

distale Skelettmyopathie mit progressiver Symptomatik, aus der sich eine Mischform oder eine 

einzeln vorliegende proximale und distale Muskelschwäche entwickelt. Es gibt jedoch auch 

Desminmutationen, die Gliedergürtel-, skapuloperoneale und generalisierte Myopathien 

verursachen (Bar, Fischer et al. 2005, Walter, Reilich et al. 2007, Clemen, Fischer et al. 2009). 

Isolierte Skelettmuskelmyopathien sind nur bei 22% der Erkrankten identifiziert worden (van 

Spaendonck-Zwarts, van Hessem et al. 2011). Mit dem Fortschreiten der Erkrankung kommt 

Muskelatrophie und-schwäche der oberen Extremitäten und der Rumpf- und proximalen 

Beinmuskulatur hinzu. Schwächen der fazialen Muskulatur sind leicht ausgeprägt und bulbäre 

Symptome, die als Schluckbeschwerden beschrieben sind, zeigen sich im fortgeschrittenem 

Stadium der Krankheit (Goldfarb, Vicart et al. 2004). Katarakte sind eigentlich ein spezifisches 

Manifestationsmerkmal von B-Crystallinopathien, jedoch zeigte sich dieses Symptom auch in 

zwei Fällen von Desmin-assoziierten Myopathien (Olive, Goldfarb et al. 2004). 

Erhöhte Serum-Creatinkinase-(CK)-Spiegel, als Markerenzym für Schädigungen an Herz- und 

Skelettmuskeln, sind bei 57% der Betroffenen festgestellt worden (van Spaendonck-Zwarts, van 

Hessem et al. 2011). 
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Kardiale Manifestation 

Multiple Formen von kardialen Erkrankungen wie Kardiomyopathien, kardiale 

Überleitungsstörungen (CCD=cardiac conduct defects) oder Arrhythmien treten bei Dreiviertel 

aller Träger pathogener Desminmutationen auf und manifestieren sich entweder zeitlich gesehen 

davor, gleichzeitig oder nach einer Skelettmuskelschwächesymptomatik. 

Isolierte kardiale Erkrankungen sind im Zusammenhang mit einer DES-Mutation nur in 22% der 

Fälle bekannt. Der Häufigkeit nach werden Kardiomyopathien in dilatative, unspezifische, 

restriktive und arrhythmogene, rechtsventrikuläre Kardiomyopathien klassifiziert. In einer 

Kohortenstudie mit 425 Probanden konnte umgekehrt gezeigt werden, dass 1 bis 2% aller 

diagnostizierten dilatativen Kardiomyopathien, die isoliert vorlagen, durch Mutationen im DES-

Gen verursacht werden (Taylor, Slavov et al. 2007). 

Ein evidenter Geschlechtsunterschied zeigt sich bei den Kardiomyopathien: Männliche Träger der 

pathogenen Mutationen leiden öfter an kardialer Manifestation als weibliche Träger. MRT-

Aufnahmen vom Herzen werden als sensitives Diagnosehilfsmittel eingesetzt, um die fokalen, 

pathologischen kardialen Veränderungen in frühen und klinisch asymptomatischen Stadien der 

Desminopathie zu erkennen (van Spaendonck-Zwarts, van Hessem et al. 2011, Clemen, Herrmann 

et al. 2013). 

 

Respiratorische Beteiligung 

Pulmonale Erkrankungen können im Verlauf der Krankheit als lebensbedrohliche, rezidivierende 

bronchiale Erkrankung auftreten und je nach Verlaufsform nächtliche nichtinvasive Beatmung 

erforderlich machen (Olive, Goldfarb et al. 2004). Die kritische Rolle des Desminproteins im 

respiratorischen System lässt sich durch die komplexe mechanische Funktion im Diaphragma 

erklären (Boriek, Capetanaki et al. 2001). 

 

In dieser Forschungsarbeit wurden drei verschiedene pathogene Desminmutationen mit 

unterschiedlicher Lage im Desmingen ausgewählt, deren klinische Phänotypen im Folgenden 

dargestellt werden: 

 

p.R350P Desminopathie 

Erstmals wurde 2005 eine heterozygote R350P Desminmutation bei einem Indexpatienten 

identifiziert (siehe Abbildung 4) (Bar, Fischer et al. 2005). 2007 konnte bei Walter et al. das 

klinische Bild der R350P Desminopathie bei vier nicht verwandten deutschen Familien eingehend 

beschrieben werden: Molekulargenetische Untersuchungen ergaben eine heterozygote R350P 

Mutation (1049G>C) in allen betroffenen Familienmitgliedern mit manifestem klinischem 

Phänotyp. Dabei erkannte man eine große klinische Variabilität, sogar innerhalb derselben 

Familien. Das phänotypische Spektrum reichte von einer skapuloperonealem 
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Gliedergürteldystrophie bis zu einer distalen Muskeldystrophie mit oder ohne kardiale und 

respiratorische Beteiligung. Faziale Muskelschwäche, Schluckstörungen und Gynäkomastie 

waren häufig zusätzliche klinische Zeichen der Myopathie. Die erkrankten Männer trugen dabei 

ein höheres Risiko, an plötzlichem Herztod zu sterben als betroffene Frauen (Walter, Reilich et al. 

2007). 

 

Abbildung 4 Erstbeschreibung der R350P Desminmutation bei Bär et al., 2005. 

A Familienstammbaum und Segregation von R350P Desmin. II.3 repräsentiert den 
Indexpatienten, schwarz: klinisch betroffen und R350P positiv; grün: klinisch betroffen, 
Desminanalyse nicht durchgeführt; braun: klinisch nicht betroffen und R350P positiv; blau: 
klinisch nicht betroffen, R350P negativ; rot: keine Informationen bekannt; I.1 nicht betroffenes 
Individuum, Desminanalyse nicht durchgeführt. B Vergleich der Nukleotidsequenzen im 
Desmingen von PCR-amplifizierter genomischer DNA des Indexpatienten mit einer 
Normalkontrolle. Es wurde eine Missense Mutation R350P im Exon 6 des DES-Gens entdeckt (Bar, 
Fischer et al. 2005). 
 

p.E413K Desminopathie 

Im Jahr 2007 konnte in einer polnischen Familie am hoch konservierten C-Terminus der 

-helikalen rod-Domäne die DES-Mutation p.E413K als Ursache für restriktive Kardiomyopathien 

festgestellt werden. 

Drei Indexpatienten zeigten verschiedene kardiale Beeinträchtigungen, die zwischen dem 30. und 

60.Lebensjahr klinisch manifest wurden. Ein intermittierender AV Block mit Synkope erforderte 

bei allen drei Patienten die Implantation eines Schrittmachers und auftretendes Vorhofflimmern 

wurde durch Kardioversion behandelt. Die Erkrankung zeigte eine langsame Progredienz mit 

Schwierigkeiten beim Gehen und Treppensteigen, das durch eine Muskelschwäche und –atrophie 

der unteren Extremitäten hervorgerufen wurde. Bei den bereits verstorbenen 

Familienmitgliedern war anamnestisch bekannt, dass ein Mitglied (III.5) mit 30 Jahren am 

plötzlichen Herztod verstarb und vier weitere Verwandte in jungen Jahren plötzlich gestorben 

sind (Pruszczyk, Kostera-Pruszczyk et al. 2007). 
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Abbildung 5 E413K Desminmutation erstmals beschrieben bei Pruszczyk et al., 2007. 

A Stammbaum einer polnischen Familie, in der die E413K Missense-Mutation mit der Erkrankung 
segregiert. Volle Symbole: Mitglieder mit diagnostizierter restriktiver Kardiomyopathie; Symbole 
mit Punkt: Familienmitglieder, die an Herzerkrankungen gestorben sind; (+) E413K Mutation 
identifiziert, (-) E413K Mutation ausgeschlossen. B Histopathologie einer Skelettmuskelbiopsie 
des Indexpatienten (IV.2) A HE-Färbung mit kleinen roten intracytoplasmatischen 
Proteinansammlungen B Trichromfärbung der gleichen Muskelfaser mit blauen Ablagerungen. C, 
D Immunhistochemische Färbung von Desmin zeigt Desmin-positive Ablagerungen im 
Cytoplasma (C) und unterhalb des Sarkolemms (D) (Pruszczyk, Kostera-Pruszczyk et al. 2007). 
 

p.R454W Desminopathie 

Die dritte untersuchte pathogene heterozygote Desminmutation liegt in Exon 8 (c.1360C>T) und 

verursacht im Desminprotein einen Aminosäureaustausch von Arginin zu Tryptophan an Position 

454. Erstmals wurde die Mutation bei einem 15-jährigen Jungen aus Nordafrika 2005 als 

pathogen eingestuft, bei dem sich eine hypertrophe Kardiomyopathie durch Kurzatmigkeit und 

eingeschränkte körperliche Belastung bemerkbar machte. Mit 25 Jahren unterzog er sich einer 

Herztransplantation, nach der er bald darauf eine langsam progressive Muskelschwäche 

entwickelte, wobei mehr die distalen als proximalen Gliedermuskeln betroffen waren. Die 

Muskelschwäche zeigte sich beispielsweise durch ein Steppergangbild, eine bilaterale Ptose und 

faziale Muskelschwäche. Die Biopsie der betroffenen Muskeln ergab abnormale Desmin-positive 

Ablagerungen innerhalb der Muskelfasern und granuläres filamentöses Material. In der 

Familienanamnese waren keine Fälle von kardialen und muskulären Erkrankungen bekannt. 

Zusätzlich trug der Patient eine p.Q74K Mutation im Myotilingen, die als konditionell pathogen 

beschrieben wurde. Untersuchungen in vivo und in vitro konnten einen Einfluss der DES-Mutation 

auf die funktionelle Filamentbildung nachweisen (Olive, Goldfarb et al. 2005, Bar, Goudeau et al. 

2007).  

2010 wurde bei zwei Geschwistern einer weiteren Familie dieselbe R454W DES-Mutation 

gefunden, die bei beiden Betroffenen zu Herzversagen aufgrund fortgeschrittener 

Kardiomyopathie vor dem 30. Lebensjahr führte. Beim Vater der Kinder war ebenfalls eine 

A                                                                                                            B
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dilatative Kardiomyopathie bekannt. Er starb mit 31 Jahren an den Folgen einer Thromboembolie 

mit Lungeninfarkt und Herzinsuffizienz (Otten, Asimaki et al. 2010).  

3.3 Pathogenese 

Das morphologische Merkmal von betroffenen Skelett- und Herzmuskeln von Patienten mit 

Desminopathie sind pathologische Proteinaggregate (subsarkolemmale oder sarkoplasmatische 

Einschlüsse). Daneben zeigen sich in einer H&E, Gomori Trichrom oder enzymatischen Färbung 

abgerundete Muskelfasern, Fasernsplitting, Internalisierung der Nuclei, vermehrtes Binde- und 

Fettgewebe, nonrimmed oder rimmed Vakuolen neben sarkoplasmatischen Einschlüssen, 

mitochondrialen Veränderungen, rubbed out Fasern oder core-like Läsionen (siehe Abbildung 6). 

 

 

a und b Pfeile und Doppelpfeile kennzeichnen Proteinablagerungen im Sarkoplasma und im 
subsarkolemmalen Bereich. In c sind sogenannte rubbed out (Pfeilspitze) und core-like 
(Doppelpfeilspitze) Läsionen hervorgehoben (Clemen, Herrmann et al. 2013). 
 

Grundsätzlich variieren die myopathologischen Untersuchungen und Erkenntnisse innerhalb der 

Desminopathien. Die Bestandteile der pathologischen Proteinaggregate können über 

Immunhistochemie identifiziert werden. Dazu zählen Cytoskelettproteine, wie Dystrophin, 

F-Aktin, Filamin C, Myotilin, Synemin und Desmin, Hitzeschockproteine, Ubiquitin, mit der 

Alzheimer-Erkrankung assoziierte Proteine (-APP) und Cyclin-abhängige Kinasen (CDK2, p21) 

(Schroder and Schoser 2009). 

Krankheitsauslösende Mutationen findet man über das ganze DES-Gen verteilt, was sich teilweise 

mit dem weiten Phänotypenspektrum korrelieren lässt. Auffällig ist ein Mutationscluster im Exon 

6, das die C-terminale Hälfte der coil 2-Domäne kodiert. Mutationen in diesem Genabschnitt lassen 

einen isolierten Skelettmuskelphänotyp erkennen, Mutationen im head oder tail Bereich des 

Proteins verursachen Kardiomyopathien (van Spaendonck-Zwarts, van Hessem et al. 2011). 

Allerdings wird auch vön „tail“-Mutationen berichtet, von denen die wesentlichen 

Phänotypmerkmale verglichen mit Desminopathien ausgelöst durch „cöil“ Mutationen keinen 

Unterschied zeigten (Maddison, Damian et al. 2012). 

Bei heterozygot vorliegender Mutation sind in einzelnen Muskelfasern Desmin-positive 

Proteinaggregate mit den normal quergestreiften Muskelfasern assoziiert. Es ist aber noch nicht 

geklärt, ob Intermediärfilamente molekular betrachtet aus der mutierten und oder der Wildtyp-

Abbildung 6 Proteinaggregate und mitochondriale Veränderungen in Desminopathien. 
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Form gebildet werden oder die Proteinaggregate aus beiden Desminproteinen bestehen oder ob 

das mutierte Protein vom Wildtyp Desmin segregiert vorliegt.  

 

Dargestellt sind die multiplen Proteinaggregate in Gegenwart von normalen transversalen 
quergestreiften Mustern bei einem Patienten mit R350P Desminmutation (Clemen, Herrmann et 
al. 2013). 
 
 
Die gesamte exprimierte Desminmenge ist im Skelettmuskel von betroffenen MFM Patienten, 

verglichen mit Normalkontrollen, meistens unverändert. Allerdings liegt bei seltenen 

Desminmutationen ein Teil des exprimierten Proteins trunkiert vor (Clemen, Fischer et al. 2009). 

In Muskelfasern, die pathologische Proteinaggregate enthalten, liegt Desmin oxidiert und nitriert 

vor. Diese Modifikationen scheinen einen toxischen Effekt zu haben und beeinflussen auf diese 

Weise die Funktion des Ubiquitin-Proteasomsystems (UPS). Weiterhin findet man in 

Desminopathien und in Myotilinopathien erhöhte Mengen an glykosylierten, lipoxidierten und 

nitrierten Proteinen, die zu Fehlfaltungen prädestinieren und resistent gegenüber dem 

Proteinabbau über das UPS sind (Janue, Odena et al. 2007, Janue, Olive et al. 2007). Die Desmin-

positiven Proteinaggregate in Desminopathien sind mit mutiertem Ubiquitin (UBB+1) 

angereichert und kolokalisieren sowohl mit dem Autophagiemarker p62 als auch mit kleinen 

Hitzeschockproteinen. In der Histopathologie findet man bei SDH oder COX Färbungen 

Muskelareale mit erhöhter oder erniedrigter mitochondrialer Enzymaktivität (Schroder, Vrabie 

et al. 2007, Schroder and Schoser 2009). 

In vitro Assemblierungsstudien konnten zeigen, dass die meisten Desminmutanten kein 

Filamentnetzwerk de novo bilden können, sondern zu Desmin-positiven Aggregaten und 

nichtfilamentösen Strukturen ausreifen. Die meisten davon können einen Kollaps eines bereits 

vorhandenen IF-Netzwerks induzieren; manche Mutanten werden in das IF-Netzwerk integriert 

und verhalten sich somit ähnlich wie Wildtyp Desmin (Bar, Strelkov et al. 2004, Bar, Fischer et al. 

2005, Bar, Kostareva et al. 2006, Sharma, Mucke et al. 2009). 

Bei Bar et al., 2005 konnten in rekombinanten mutierten Desminproteinen vier verschiedene 

pathologische Wirkungsweisen auf die Assemblierung beobachtet werden: (1) scheinbar normale 

Filamentbildung, (2) gestörte Längsausrichtung und radiale Verdichtung, (3) verstärkte 

Abbildung 7 Immunfluoreszenzfärbung von Desmin (rot) und Syncoilin (grün) einer isolierten 
Muskelfaser bei einer Desminopathie. 
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Filamentzusammenlagerung und Aggregatbildung sowie (4) konservierte ULF Bildung, dabei aber 

Entartung der Assemblierung und Zusammenbruch zu kleinen Aggregaten. (Bar, Mucke et al. 

2005, Bar, Mucke et al. 2006). 

Biomechanische Eigenschaften der Intermediärfilamente können durch Desminmutationen 

verändert werden (siehe 3.3). Die Elastizität der Filamentnetzwerke spielt eine große 

zellprotektive Rolle bei mechanischem Stress und kann somit mechanische Energie während 

einer Muskelkontraktion ableiten. Bei mutierten Desminformen, die augenscheinlich eine 

normales Netzwerk ausbilden können, konnte untereinander ein Unterschied in den 

nanomechanischen Eigenschaften gezeigt werden, bei dem manche Desminmutante normale 

Wildtyp ähnliche Viskoelastizität zeigten und bei anderen untersuchten Formen die mechanische 

Festigkeit („strain stiffening“) bei Zugbelastung reduziert war (siehe Abbildung 8) (Kreplak and 

Bar 2009, Bar, Schopferer et al. 2010). 

 

Abbildung 8 Viskometrische und elektronenmikroskopische Untersuchungen von Koassem-
blierungen wt Desmin mit R350P Desmin. 
Dargestellt sind unterschiedliche Proteinmengenverhältnisse von Wildtyp Desmin und R350P Desmin. 25% 
der Mutante reichen aus, um die Viskosität der Wildtyp Assemblierung zu beeinflussen und dichtgepackte 
Aggregate zu bilden (Bar, Fischer et al. 2005). 

 

Elektronenmikroskopische Untersuchungen zeigten, dass einzelne Desminmutanten bei 

Koassemblierungsstudien mit Wildtyp Desmin in äquimolarer Menge einen dominant negativen 

Effekt auf die Filamentassemblierung in vitro ausüben (Sjoberg, Saavedra-Matiz et al. 1999, Bar, 

Fischer et al. 2005, Bar, Schopferer et al. 2010). 
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Abbildung 9 Filamentassemblierung von wt Desmin verglichen mit Desmin-K449T sowie 
Kopolymerisation von wt Desmin und Desmin-I451M. 

Bei äquimolarer Konzentration von Wildtyp Desmin+K449T lassen gebildete kurze ULF 
Strukturen eine Störung der Längsausrichtung erkennen, was nur heteropolymer entsteht. Ohne 
Wildtyp Desmin assembliert K449T alleine zu einem verlängerten Filamentnetzwerk. Im 
Gegensatz zur Koassemblierung von I451M mit Wildtyp Desmin, wobei laterale 
Einzelfilamentzusammenlagerung und Bündelung entstehen, hat K449T einen dominant 
negativen Effekt auf die Wildtyp-Filamentbildung. Maßstabsbalken 200 nm (Bar, Schopferer et al. 
2010) 
 

Diese Ergebnisse konnten auch von uns in Vorarbeiten einzelmolekülspektroskopisch bei der 

R350P Desminmutante bestätigt werden, wobei schon 20% der Mutante ausreichten, um einen 

dominant negativen Effekt auf das Filamentnetzwerk von Wildtyp Desmin zu erkennen (Levin, 

Bulst et al. 2010).  

 

4 Mausmyoblastenmodelle mit KI R350P Desmin und 

Desmin KO 

Etablierte stabile Zelllinien mit myogenem Differenzierungspotential waren bislang nicht 

verfügbar. Die Generierung von Zellkulturmodellen aus primären immortalisierten murinen 

Myoblasten kann diese Lücke in der Erforschung Myofibrillärer Myopathien schließen.  

Für die hier entwickelten Zelllinien wurden zwei verschiedene transgene Mausmodelle benötigt 

(siehe dazu 7.4.1):  

Myoblasten des Desmin-defizienten Mausmodells (des-/-) (Li, Colucci-Guyon et al. 1996) besitzen 

den erforderlichen Nullbackground, um in Transfektionsexperimenten von mutierten 

myofibrillären Proteinen endogenes Wildtyp Desmin als möglichen Einflussfaktor ausschließen 

zu können.  

Die transgene Maus mit einem Knockin der humanen Desminmutation p.R350P (Destg p.Arg350Pro) 

wird noch an anderer Stelle von Clemen et al. publiziert werden. Myoblasten dieses Knockin 

Modells ermöglichen eine stabile Expression einer der in dieser Arbeit untersuchten 

Desminmutationen.  

50% wt- 50% mutDes100% mutDes
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Die Desmin Knockout sowie die Desmin p.R350P Knockin Mäuse wurden von der Arbeitsgruppe 

Prof. Rolf Schröder (Universitätsklinikum Erlangen) in Kollaboration mit PD Dr. Christoph Clemen 

(Universitätsklinikum Köln) zur Verfügung gestellt. 

4.1 Immortomaus 

Für das angestrebte Zellkulturmodell wurden zwei transgene Mausmodelle mit Immortomäusen® 

verpaart, um das für die Immortalisierung verantwortliche Transgen H-2Kb-tsA58 stabil in das 

Genom der Nachzucht zu integrieren. Dieses thermolabile (33°C) immortalisierende Gen enthält 

die thermosensitive Mutante tsA58 des SV40 large T Antigens, das als Protoonkogen im Simian-

Virus 40 vorkommt. Der MHC Klasse I Promotor H-2Kb ist durch IFNkonditionell induzierbar 

(Jat, Noble et al. 1991, Morgan, Beauchamp et al. 1994).  

 

4.2 Desmin KO Maus 

Das Desmin Knockout Mausmodell wurde von Li et al. generiert. Als Background diente die 

C57Bl6-Maus.Die fertile homozygote Desmin Knockout Maus wurde als morphologisch normal 

beschrieben und lebte im Schnitt ein Jahr. Histopathologisch konnten allerdings eine zerstörte 

Muskelarchitektur und myokardiale Degeneration beobachtet werden. Es fanden sich abnormale 

Sarkomere vor allem im Diaphragma, in der Herzmuskulatur und in der glatten Muskulatur der 

Gefäßwände (Li, Colucci-Guyon et al. 1996). 

 

 

Abbildung 10 Marketing Schema der Desmin KO Maus. 

Genomische Struktur und Restriktionsstellen im Lokus des murinen Desmingens. Darstellung des 
Inaktivierungsvektors; E, EcoRI; K, KpnI; S, SalI; X, XmnI, TK: negativer Selektionsmarker 
Thymidinkinase. Der Inaktivierungsvektor wird molekularbiologisch konstruiert und besteht aus 
dem zu inaktivierenden Gen, das eine Mutation (neo-Kassette) trägt, sodass es nicht mehr 
transkribiert werden kann, bzw. das entstehende Protein inaktiv ist. Der Austausch zwischen den 
DNA-Abschnitten erfolgt durch homologe Rekombination. Bei der homologen Rekombination 
lagern sich die benachbarten Abschnitte des Gens im Vektor an die gleiche Stelle im Maus-Genom 
und werden in manchen Fällen rekombiniert (Li, Colucci-Guyon et al. 1996). 
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4.3 Desmin R350P KI Maus 

Die Desmin R350P KI Maus (Arbeitsgruppe Clemen et al.) wurde über homologe Rekombination 

in murinen ES-Zellen mit Hilfe eines Targeting Vektors generiert. Die Charakterisierung dieser 

transgenen Knockin Maus sowie deren Targeting Schema werden noch an anderer Stelle 

publiziert (siehe Abbildung 11). 

 

 

Über ein Cre/loxP System wurde das Targeting Gen mit der enthaltenen humanen Desmin-Punkmutation 
R350P über Rekombination in das Mausgenom eingebracht. Die transgene Maus wird noch an anderer 
Stelle publiziert werden (Clemen et al., persönliche Mitteilung). 

Abbildung 11 Targeting Schema der Desmin R350P KI Maus. 
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5 Konfokale Einzelmolekülspektroskopie 

Die konfokale Einzelmolekülspektroskopie macht sich die Brown´sche Molekularbewegung von 

Teilchen in einer Lösung zu Nutze und wurde als neues Verfahren aus der Fluoreszenz-

Korrelations-Spektroskopie entwickelt, um die Diffusionseigenschaften von Einzelmolekülen zu 

erfassen (Magde, Elson et al. 1972, Ehrenberg and Rigler 1974, Magde, Elson et al. 1974, Aragón 

and Pecora 1975, Ehrenberg and Rigler 1976, Eigen and Rigler 1994, Rigler 1995).  

Der dafür eingesetzte FCS-Reader stellt im Grunde ein konfokales Mikroskop dar, das die Diffusion 

von fluoreszierenden Teilchen abhängig von der Molekülgröße, Temperatur und Viskosität der 

Flüssigkeit misst. Dabei wird Laserlicht auf ein Fokusvolumen von 1fl fokussiert. Wahlweise kann 

man mit einem oder zwei Lasern mit unterschiedlichen Wellenlängen sowie mit stationärem oder 

mobilem Laserfokus messen. Die dadurch angeregten einzelnen Fluorophore in der Lösung 

senden Photonen entsprechend ihres Emissionsspektrums aus, die von einem hochempfindlichen 

Detektor erkannt werden. Über verschiedene Auswertungs-verfahren (Fluorescence correlation 

spectroscopy (FCS), Fluorescence intensity distribution analysis (FIDA) und Scanning for intensely 

fluorescent targets (SIFT)) können die Diffusionszeit, Helligkeit, Partikelzahl und Partikelgröße 

der einzelnen Teilchen berechnet werden. Bei simultaner Anregung von zwei verschiedenen 

Fluoreszenzmarkern über zwei Laser mit unterschiedlichen Wellenlängen (dual colour) und 

überlagertem Fokus erhält man Informationen über die Emission von unterschiedlich 

emittierenden Teilchen. Man kann aber auch Analysen über Interaktionen von unterschiedlich 

fluoreszierenden Partikeln machen. Ein weiterer Vorteil der konfokalen 

Einzelmolekülspektroskopie gegenüber anderen Proteinanalytikmethoden besteht darin, dass 

geringe Proteinkonzentrationen sogar im subpikomolaren Bereich erfasst werden können 

(Schwille, Bieschke et al. 1997). Eine genaue Beschreibung des Aufbaus, der Funktion und der 

einzelnen Analyseverfahren der konfokalen Einzelmolekülspektroskopie findet sich in Kapitel D 

Material und Methoden, D3. 

 

5.1 Anwendung bei neurodegenerativen Erkrankungen 

Bei neurodegenerativen Erkrankungen wie der Alzheimer- oder Parkinson-Erkrankung 

entstehen histopathologisch identifizierbare Aggregate, die meist nur in sehr geringer 

Konzentration vorliegen. Eine entscheidende Rolle in der Pathogenese von Tauopathien oder 

Synucleinopathien wird den Aggregationsprozessen niedermolekularer Proteinoligomere 

zugeschrieben. Mit Hilfe der Einzelmolekülspektroskopie konnten in den letzten Jahren die 

Entwicklung und Zusammensetzung dieser pathogenen Ablagerungen genauer untersucht 

werden. Insbesondere große, seltene und helle Teilchen lassen sich schlecht durch einen 

Fokusdurchtritt detektieren, da sie eine geringe Diffusionsgeschwindigkeit besitzen. Hier bietet 
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das Scannen der Probe (SIFT-Technik) große Vorteile und erhöht die identifizierte Teilchenzahl 

gegenüber der Messung mit einem statischen Laserfokus (Bieschke, Giese et al. 2000, Giese, 

Bieschke et al. 2000). 

Der Entstehungsprozess von Proteinaggregaten und den als pathogen angesehenen Oligomeren 

bei neurodegenerativen Erkrankungen kann in vitro mit aufgereinigten Proteinen im Zweifarb-

Ansatz (mit Hilfe rot und grün anregbarer Fluoreszenzmarker) auf Einzelmolekülebene genauer 

beschrieben werden. Die kleineren Oligomere stellen pathophysiologisch als definierte 

Aggregationszwischenform die relevante Aggregat-Spezies bei diesen Erkrankungen dar und 

können nach Fluoreszenzmarkierung in der FCS und im SIFT-Verfahren analysiert werden. 

Compound Screening von pharmakologisch interessanten Oligomermodulatoren bei 

neurodegenerativen Erkrankungen können in der konfokalen Einzelmolekülspektroskopie im 

Hochdurchsatzverfahren schnell und mit geringem Substanzverbrauch durchgeführt werden. 

2013 konnte erfolgreich ein solcher Modulator (Anle138b) identifiziert werden, der die 

Aggregatbildung pathologischer Oligomere von Prion-Proteinspezies und Synuclein in vitro 

und in vivo inhibiert (Giese, Bertsch et al. 2011, Wagner, Ryazanov et al. 2013). 

Diese erfolgreichen zweifarbigen Molekülanalysen bildeten die experimentelle Grundlage, um 

ähnliche Interaktionsstudien zwischen Wildtyp Desmin und Desminmutanten in einem 

Zellkultursystem zu etablieren. 
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C Ziele der Arbeit 

Strukturelle Veränderungen des Desmin-Intermediärfilamentgerüsts sind ein wesentliches 

histopathologisches Merkmal primärer Desminopathien. Die molekularen Ereignisse, die zur 

Fehlregulation der Desminfilamentbildung und Desminproteinaggregation führen, sind bisher 

nur unzureichend untersucht worden. 

Im Rahmen dieser Arbeit sollten drei humanpathogene Mutanten mit unterschiedlicher Lage im 

Desmingen untersucht werden (siehe Abbildung 30). Die drei Punktmutationen befinden sich im 

C-terminalen Teil von Desmin, jedoch in unterschiedlichen funktionellen Domänen des Proteins. 

Alle drei korrelieren mit unterschiedlich ausgeprägten klinischen Phänotypen (siehe 3.2) und 

zeigten außerdem ein differenziertes Filamentassemblierungsverhalten sowohl auf zellulärer als 

auch auf molekularer Ebene: R350P bildete große Aggregate aus, die hauptsächlich aus dimeren 

Proteine bestehen. E413K Desmin lag ebenfalls in Aggregaten vor, allerdings waren diese kleiner, 

zahlreicher und weit verteilt im Cytöplasma. R454W als „tail“ Punktmutatiön bildete zwar ein dem 

Wildtyp ähnliches Filamentnetzwerk aus, zeigte jedoch Veränderungen bei der Dimer- und 

Tetramerbildung auf molekularer Ebene. Diese Untersuchungen wurden sowohl 

fluoreszenzmikroskopisch als auch Einzelmolekülspektroskopisch mit Hilfe von GFP-

Desminfusionsproteinen durchgeführt (Levin, Bulst et al. 2010). 

In Patienten liegen pathogene Desminmutationen heterozygot im Skelett- und Herzmuskel vor. 

Daher ist anzunehmen, dass physiologisch-funktionelles Desmin neben mutiertem Desmin in 

Muskelzellen in vivo exprimiert wird. Die zentrale Zielsetzung der vorliegenden Arbeit war die 

Entwicklung eines geeigneten in vitro-Systems, um diese Situation zu simulieren und auf 

molekularer und zellbiologischer Ebene zu validieren. 

Neben den gut etablierten GFP-Desminvarianten sollte ein zweites geeignetes fluoreszentes 

Protein als Desminfusionstag identifiziert werden, das in Koexpressionsexperimenten im roten 

Spektralbereich angeregt werden konnte. Dieser neu zu etablierende Desmin-Fluoreszenzmarker 

sollte in innovativen Zweifarbansätzen zusammen mit GFP-Desminvarianten dazu dienen, 

Mutanten und Wildtyp-Desmin sowohl in der Fluoreszenzmikroskopie als auch in der 

Einzelmolekülspektroskopie qualitativ und quantitativ zu unterscheiden.  

 

Im Einzelnen war die Bearbeitung und Lösung folgender Teilaufgaben erforderlich: 

 Generierung geeigneter eukaryontischer Desmin-Expressionskonstrukte mit einem 

fluoreszenten Fusionstag, das im roten bzw. nah-infraroten Spektralbereich anregbar ist 

 Ausschluss einer Störung der physiologischen Desminfilamentassemblierung auf 

molekularer und zellulärer Ebene durch das neue fluoreszente Protein 

 Optimierung der Transfektion und Koexpression mit GFP-Desminvarianten 

 Überprüfung der äquimolaren Expression von beiden Expressionskonstrukten 
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 Charakterisierung und Quantifizierung der Anregbarkeit im roten bzw. nah-infraroten 

Spektralbereich 

 Überprüfung der Anregbarkeit über Förster-Resonanzenergietransfer (FRET) zur 

quantitativen Analyse der Architektur von gemischt-zweifarbigen Desmin-Multimeren, 

sowie Filamenten und Aggregat-Spezies 

 Validierung der Expression in verschiedenen Zellkultursystemen 

 Etablierung und Charakterisierung von konditionell immortalisierten murinen Zelllinien 

bestehender Desminopathie-Mausmodelle (Desmin Knockout und Knockin der humanen 

R350P Desminmutante) zur erweiterten Validierung der Resultate des Zweifarbansatzes. 

 

Diese einzigartige experimentelle Strategie auf molekularer und zellbiologischer Basis sollte dazu 

dienen, initiale molekulare Mechanismen auf der Ebene der Desmin-Multimerbildung und -

Filamentassemblierung in vitro besser zu verstehen und die Rolle pathogener Desminvarianten 

detaillierter zu definieren, die sich auf die in vivo-Situation in Patienten übertragen lassen, um 

kausale, translationale Therapieansätze zu identifizieren. 
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D Material und Methoden 

1 Chemikalien 

Alle Chemikalien besaßen die höchste kommerziell erhältliche Reinheit. Die Bezugsquellen, 

Katalognummern und genauen Sachbezeichnungen der in dieser Arbeit verwendeten 

Chemikalien sind im Methodenteil aufgeführt. 

Allgemeine Verbrauchsmaterialien (Reaktionsgefäße, Pipettenspitzen) wurden von den Firmen 

Eppendorf (Hamburg, Deutschland), Peske (Karlsruhe, Deutschland), Sarstedt (Nümbrecht, 

Deutschland) und Greiner bio-One (Kremsmünster, Österreich) bezogen.  

2 Molekulargenetische Methoden 

2.1 Polymerase-Ketten-Reaktion 

2.1.1 Prinzip der Polymerase-Ketten-Reaktion 

Für die Herstellung der in dieser Arbeit verwendeten Konstrukte wurden durch die 

Amplifizierung von Desmin cDNA, wie auch von flankierender Plasmid-DNA, DNA-Fragmente 

mittels Polymerase Ketten Reaktion (PCR) für die Subklonierung in eukaryontische 

Expressionsplasmide synthetisiert. 

 

Die Genotypisierung von Nachkommen der Maus-Zuchtlinien erfolgte über die Amplifizierung der 

genomischen DNA aus Schwanzbiopsien mittels PCR.  

Das von Mullis entwickelte Verfahren ermöglichte die exponentielle in vitro-Vervielfältigung 

(Amplifikation) definierter DNA Abschnitte (Mullis 1990). 

2.1.2 PCR-Primer 

Die verwendeten Primer wurden basierend auf in der Genbank veröffentlichten Sequenzen der zu 

untersuchenden Gene (www.ncbi.nlm.nih.gov./entrez/query.fcgi) entworfen und durch 

Metabion (Martinsried, Deutschland) synthetisiert. Für die Genotypisierung wurden spezifische 

Primer entsprechend der genomischen DNA der zu untersuchenden Mäuse entworfen bzw. 

entsprechend vorgegebener Publikationen ausgewählt (Kern and Flucher 2005). 
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PCR-Reaktionsbedingungen 

1. Standard-PCR-Mix: 

Reagenzien Volumen 

Maxima™ Höt Start Green PCR Master Mix (# K1062 ThermoScientific, Rockford IL, USA )  25 µl 

Forward Primer (50 pmol) 1 µl 

Reverse Primer (50 pmol) 1 µl 

Template DNA (1 µg/µl) 1 µl 

Wasser, Nuklease-frei (#P1193Promega, Mannheim, Deutschland) ad 50 µl 

 

2. Standard-PCR-Mix (Polymerase mit Proofreading-Funktion): 

Reagenzien Volumen 

AccuPrime™ Pfx DNA Polymerase 2,5 U/µl(#12344-024 Invitrogen Darmstadt, 

Deutschland) 
0,5 µl 

10x Pfx Accu Prime Rxn Mix 5 µl 

Forward Primer (50 pmol) 1 µl 

Reverse Primer (50 pmol) 1 µl 

Template DNA (1 µg/µl) 1 µl 

Wasser, Nuklease-frei (#P1193 Promega, Mannheim, Deutschland) ad 50 µl 

 

Die PCR wurde in einem Thermocycler (Mastercycler personal, Eppendorf) durchgeführt. Um 

zusätzlich zur Amplifikation eine neue Restriktionsschnittstelle im PCR-Produkt einzufügen, 

wurden sogenannte Mismatch-Primer mit entsprechend modifizierten Basen verwendet. 

 

Protokoll eines typischen PCR-Programms: 

 Temperatur-Bsp Zeit Zyklen 

I. Denaturierung der DNA 95°C 5 min 1 

II. Aufschmelzen der DNA-Doppelstränge (Melting) 95°C 30 sec 

30     Anlagern der Primer (Annealing) 65°C 30 sec 

    Synthese des DNA-Doppelstranges (Extension) 72°C 5 min 

III. Abschließende Extension 72°C 7 min ∞ 

 

2.1.3 Aufreinigung der PCR-Produkte 

Mittels einer Gelelektrophorese wurden die Produkte der PCR auf Ethidiumbromid-haltigen 

(0,5 µg/ml), 1%-igen Agarosegelen bei 120 V aufgetrennt. Die Gel-Bereiche mit den gewünschten 

PCR-Fragmenten wurden ausgeschnitten und die DNA mit Hilfe des NucleoSpin Extract II 

Aufreinigungskits (#740609 Macherey-Nagel, Düren, Deutschland) entsprechend dem Protokoll 

des Herstellers isoliert. 
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2.1.4 Direkte Sequenz-Analyse 

Die Sequenzierung der PCR-Produkte und Plasmid-DNA erfolgte durch die Firma Eurofins MWG 

Operon (Ebersberg, Deutschland) mit DNA-Sequenziergeräten der Firma Applied Biosystem 

(Darmstadt, Deutschland) und fluoreszenzmarkierten Didesoxy-Terminatoren nach der Sanger-

Methode. Die erhaltenen Sequenzen wurden anschließend auf potentielle Mutationen untersucht. 

Der Vergleich mit den Wildtyp-Sequenzen erfolgte computergestützt online über den Server des 

National Center for Biotechnology Information (www.ncbi.nlm.nih.gov./BLAST/). 

 

2.2 Plasmidklonierung 

2.2.1 Klonierung von Desmin-GFP Plasmiden 

Die Desmin GFP Konstrukte lagen bereits im Labor vor und wurden bei Levin et al. beschrieben 

(Levin, Bulst et al. 2010). 

In den Vektor pEGFP-N1 von BD Biosciences Clontech (Mountain View, CA, USA) wurde die 

humane Desmin-cDNA über die Restriktionsstellen AgeI und NotI einkloniert. Über ortsgerichtete 

Mutagenese wurden drei Konstrukte mit den Missensemutationen R350P, E413K und R454W als 

C-terminale GFP-Fusionsproteine generiert.  

Vorhandene Plasmidkonstrukte: 

          wt Desmin-GFP-N1 

          R350P Desmin-GFP-N1 

          E413K Desmin-GFP-N1 

          R454W Desmin-GFP-N1 

 

2.2.2 Klonierung von Desmin-mKate2 Plasmiden 

2.2.2.1 Der Expressionsvektor pmKate2-N 

Der von der Firma evrogen kommerziell erhältliche pmKate2-N Vektor (#FP182 evrogen, Moskau, 

Russland) diente als eukaryontisches Expressionsplasmid für das Fusionsprotein Desmin-mKate2 

(Shcherbo, Murphy et al. 2009). Für die Klonierung lag der Vektor durch Doppelverdau mit den 

Restriktionsenzymen XhoI und AgeI linear vor. 

2.2.2.2 Amplifikation der humanen Desmin-cDNA 

Die cDNAs von Desmin und die drei verwendeten Desminmutanten wurden aus dem im Labor 

vorhandenen Desmin-pEGFP-N1 Plasmid für Wildtyp Desmin- und den mutierten 

Desminvarianten mittels folgender Primer amplifiziert: 

Forward Primer:  XhoI_sense_mKate2:  5´-tattactcgagcgccaccatggcccaggcc-3´ 

Reverse Primer:  AgeI_as_mKate2:  5´-aatatacccggtccgagcacttcatgctgctg-3´. 
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Nach einer Gelaufreinigung und einem Doppelverdau des Inserts mit den Restriktionsenzymen 

XhoI und AgeI wurden die cDNAs von Desmin und den drei Desminmutanten mit den neu 

eingeführten Restriktionsstellen XhoI am 5´- und AgeI am 3´-Ende erzeugt.  

Erhaltene Plasmidkonstrukte: 

  wt Desmin-mKate2-N1 

  R350P Desmin-mKate2-N1 

  E413K Desmin-mKate2-N1 

  R454W Desmin-mKate2-N1 

2.2.3 Klonierung von Desmin-PSmOrange Plasmiden 

2.2.3.1 Der Expressionsvektor pPSmOrange-N1 

Der über Addgene bezogene Vektor pPSmOrange-N1 wurde über ein Material transfer agreement 

von Prof. Dr. Vladislav Verkhusha (Albert Einstein College of Medicine, New York, USA) zur 

Verfügung gestellt (Subach, Patterson et al. 2011). Für die Klonierung von Desmin-PSmOrangeN1 

wurde das Plasmid mit AgeI und XhoI verdaut und lag somit linear vor.  

2.2.3.2 cDNA von Desmin-pEGFP-N1 als Insert 

Bei dieser Klonierung wurden die gleichen Amplicons von Desmin verwendet, wie im Desmin-

mKate2 Konstrukt. 

2.2.4 Ligation 

Die Ligation der vorhandenen linearen Plasmide pmKate2-N und pPSmOrange-N1 mit den Inserts 

cDNA Desmin-wt, Desmin-p.R350P, Desmin-p.E413K und Desmin-p.R454W erfolgte mit einer T4-

DNA-Ligase (#M0202S NEB, Ipswich, MA, USA) entsprechend den Herstellerangaben bei 14-20°C 

isoliert in einer Styroporbox über Nacht.  

2.2.5 Transformation in kompetente Bakterienzellen 

Die Transformation von Desmin-mKate2 erfolgte in kompetente DH5E.coli-Bakterien von 

Invitrogen, die Transformation von Desmin-PSmOrange in Oneshot®Top10 chemically competent 

E.coli (#C4040-06 Invitrogen, Carlsbad, CA, USA). Beide Transformationen erfolgten über die 

Hitzeschockmethode bei 42°C für 45 sec.  

2.2.6 Bakterienkultur 

Die transformierten Bakterienkulturen wurden im LB- (lysogeny broth) Medium mit dem 

entsprechenden Antibiotikazusatz (Kanamycin 50 µg/ml) bei 37°C auf einem Schüttler über 

Nacht kultiviert, sodass die rekombinante DNA vervielfältigt wurde. 
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2.2.7 Isolierung der Plasmid DNA 

Die rekombinante DNA wurde mit Hilfe des QIAprep Spin Miniprep Kits (Qiagen, #27104, Hilden, 

Deutschland) aus 2 ml Bakterienkultur aufgereinigt und anschließend zur Kontrolle direkt 

sequenziert. Präparative Mengen an Plasmiden aus einer 200 ml-Bakterienkultur wurden mit 

Hilfe des NucleoBond®PC 500 Maxi Prep Kit von Macherey& Nagel, Düren, Dtl (#740574) 

extrahiert. Die Isolierung erfolgte entsprechend den Herstellerangaben. 
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3 Konfokale Einzelmolekülspektroskopie 

Um die Pathologie und den Mechanismus von kotransfizierten Desminaggregaten auf molekularer 

Ebene zu verstehen, wurde in dieser Arbeit die konfokale Einzelmolekülspektroskopie eingesetzt, 

vor allem die Fluoreszenz-Korrelations-Spektrösköpie (engl. „fluörescence correlation 

spectröscöpy“, FCS), die Fluoreszenz-Intensitäts-Verteilungs-analyse (engl. „fluörescence 

intensity distributiön analysis“, FIDA) und das Scannen nach intensiv fluoreszierenden 

Zielstrukturen (engl. „scanning för intensely fluörescent targets“, SIFT). Das theoretische Konzept 

der FCS-, FIDA- und SIFT-Methode wurde u.a. von Schwille und Giese et al. beschrieben (Schwille, 

Bieschke et al. 1997, Schwille, Meyer-Almes et al. 1997, Kask, Palo et al. 1999, Giese, Bieschke et 

al. 2000, Kask, Palo et al. 2000, Bacia and Schwille 2003). Im Folgenden soll das Prinzip der 

Messmethode und die verschiedenen Analyseverfahren dargelegt werden. 

Alle Messungen der konfokalen Einzelmolekülspektroskopie wurden auf einem Insight II Reader 

(Evotec Technologies, Hamburg, Deutschland) durchgeführt.  

3.1 Messaufbau 

Der Reader stellt im Grundaufbau ein konfokales Mikroskop dar. Es wurde Laserlicht von 488 nm 

(Argon Ionen Laser) und 633 nm (Helium Neon Laser) in ein Probenvolumen mit einem 40x 

Wasserimmersionsobjektiv hoher numerischer Apertur (1,2) (Olympus, Tokio Japan) fokussiert. 

Eine automatische Wasserpumpe von Evotec sorgte für die notwendige 

Immersionswasserzufuhr. Das Fokusvolumen in der Probe betrug ca. ein Femtoliter. Die 

Anregung erfolgte mit einer Laserleistung von 200 μW bei 488 nm und 300 μW bei 633 nm. Die 

in dem Insight II Readern verwendeten 384-Well Probenträger (#781856, Greiner bio-ONE) 

fassten pro Well ein Volumen von jeweils 20 µl. Der Laserfokus befand sich 150 μm über dem 

Glasboden des Probenträgers in der Messlösung und wurde mit einer über Spiegel mechanisch 

zuschaltbaren Videokamera optisch eingestellt. Das offene Messvolumen der konfokalen 

Einzelmolekülspektroskopie wurde aus dem Brennpunkt der beiden Laser gebildet. Der Radius 

des roten (633 nm) Fokus war etwas größer als der des grünen. Trotz einer minimalen 

Abweichung der Mittelpunkte beider Laserfoci von ca. 50 nm, bildete die optische Apparatur aber 

den grünen Laserfokus vollständig innerhalb des roten Fokus ab. Die nach Anregung der 

fluoreszierenden Partikel im Lasermessfokus emittierten Photonen wurden gegenläufig zum 

Anregungslichtweg über zwei dichroische Spiegel und eine Lochblende (engl. pinhole, 

Durchmesser 70 μm) auf zwei Einzelphötönendetektören (sög. Avalanche-Photodioden, APD) 

getrennt geleitet (siehe  

Abbildung 12). Dadurch war es möglich, das Fluoreszenzsignal in zwei Kanälen separat 

voneinander, aber parallel zueinander aufzuzeichnen und auszuwerten. Die APDs lagen bis 1000 

kHz Gesamthelligkeit (Itot) in einem Bereich, in dem sie lineare Messergebnisse lieferten. Um nicht 
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in die Totzeit der Detektoren (>3000 kHz) zu gelangen und um eine gute Auswertbarkeit der 

Messungen zu gewährleisten, sollte dieser Bereich der Gesamthelligkeit nicht überschritten 

werden. Es bestand die Wahl zwischen einem stationären und einem mobilen Fokus (engl. 

Beamscanner). Die Frequenz des mobilen Fokus betrug 50 Hz, die Länge des Scan-Pfades 100 μm 

und die Distanz des Probentischvorschubs 2000 μm. Söweit nicht anders angegeben, erfolgten 

alle Einzelmessungen über zehn Sekunden. Die Temperatur während der Messungen betrug ca. 

21°C. Über die Software FCS+Plus_Control konnten die hochpräzisen Motorsteuerungssysteme 

und Mikroschrittmotoren für den Probenträgertisch, die Positionen der Laserfoci und der 

Lochblende am Insight Reader gesteuert werden. 

 

 

 

Abbildung 12 Messaufbau des Insight Readers. 
Die Laserstrahlen (488 nm / 633 nm Wellenlänge) wurden mit einem dichroiden Spiegel vereint und in das 
Messvolumen geleitet. Das Laserlicht wurde über einen dichroiden Spiegel, der nur Licht der Wellenlänge 
488 nm und 633 nm durchlässt, reflektiert und über die Optik eines konfokalen Mikroskops in das 
Probenvolumen geleitet. Das von den angeregten Fluorophoren emittierte Signal wurde auf gleichem Wege 
zurückgeleitet, über einen zweiten dichroiden Spiegel getrennt und von zwei Photodetektoren 
aufgezeichnet. Für die Reduktion unspezifischer Hintergrundsignale wurden mehrere Filter sowie eine 
Lochblende (Pinhole) in den Strahlengang eingearbeitet. Durch Zuschalten der Beamscanner Funktion 
konnte der Fokus in gleichbleibender Höhe durch das Messvolumen mäandrieren, was die Detektion 
seltener, großer Aggregate ermöglichte. 

488 nm
Laser 

633 nm
Laser 

Dichroider Spiegel

Beamscanner
Einheit

Probenträger

Einzelphotonendetektoren
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Filter
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3.2 Einstellung und Eichung 

Vor jedem Messdurchgang wurde der Messaufbau mit Hilfe eines standardisierten Protokolls 

justiert und so für jede einzelne Messung gleichbleibende Versuchsbedingungen geschaffen. 

Für eine konstante Laserleistung benötigten die verwendeten Laser vor der Justierung eine 

Aufwärmphase von 30 min. Die Anregungsintensität der Laser im Fokus wurde über ein 

Powermeter gemessen und mittels eines manuell einstellbaren Filtersystems auf 200 µW 

Laserleistung für den Argon Laser bei 488 nm und auf 300 µW für den Helium Neon Laser bei 

633 nm justiert. Anschließend wurde die Justagelösung in ein Probenwell gegeben, die 

unkonjugiertes Alexa Fluor 488 und Alexa Fluor 647 mit bekannten konstanten Farbstoff-

parametern enthielt. Die entscheidenden Parameter zur optimalen Einstellung der Fokus-

abbildung waren CPP (engl. „cöunts per particle“), die ein Maß für die Helligkeit der einzelnen 

Farbstoffmoleküle unabhängig von der Farbstoffkonzentration darstellt, sowie die Diffusionszeit 

(Tdiff) der Farbstoffmoleküle, mit der sich die Abbildungsschärfe des Lasermessfokus bestimmen 

lässt. 

Über eine zuschaltbare Kamera wurde die Position des Laserfokus auf 150 µm oberhalb des 

Glasbodens der 384-Well-Platte eingestellt. 

Die Messzeit betrug 10 sec pro Einzelmessung. Für gescannte Messungen wurde die Länge des 

„Scan-Pfades“ auf 100 μm, die Frequenz des möbilen Fökus (Beamscanner) auf 50 Hz und die 

Distanz der Probentischvorschubs auf 2000 μm festgesetzt. Daraus resultierte eine 

Geschwindigkeit von vscan = 2000µm × 100 μm ×50 Hz = 10 mm/sec., mit die der Messfokus durch 

die Probe scannt. Alle Messungen wurden bei Raumtemperatur (RT) durchgeführt. 

3.3 Analyseverfahren 

Durch den Ein- und Austritt fluoreszenzmarkierter Partikel im Lasermessfokus wurden 

Fluoreszenzsignale im stationären oder mobilen Messfokus detektiert. Diese ließen sich durch die 

Analyseverfahren FCS (Fluorescence correlation spectroscopy), FIDA (Fluorescence intensity 

distribution analysis) und SIFT (Scanning for intensely fluorescent targets) auswerten.  

Zur Analyse der ermittelten Daten stand als Software FCSP+Plus Evaluation Software Version 2.0 

(Evotec Technologies) zur Verfügung (Evotec 2001).  

3.3.1 Autokorrelation 

Das mathematische Modell der Autokorrelation diente dazu, die Fluoreszenzsignale von Partikeln 

im Fokus von Hintergrundsignalen zu extrahieren und zu identifizieren. 

Bei Messungen mit einem stationären Fokus wird die Signalfluktuation über die Zeit durch die 

Korrelationsfunktion G(t) charakterisiert. Diese Funktion zeigt die Selbstähnlichkeit eines Signals 

zum Zeitpunkt t mit dem Signal des Zeitpunkt t+τ auf. 
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Die Messzeit der Einzelmessung wurde in sögenannten „bins“ (Zeitscheiben) mit 50 ns unterteilt. 

In diesen Zeitfenstern kann ein Photon detektiert werden oder nicht, sodass dem einzelnen bin 

der Zahlenwert 1 oder 0 zugeordnet wurde. Somit entstand eine Zahlenreihe aus 

aufeinanderfolgenden Einsen und Nullen, wobei 1 = „mindestens ein Phötön detektiert“ und 0 = 

„kein Phötön detektiert“ beschreibt, die in Zeiteinheiten vön 50 ns gemessen werden. Für die 

Autokorrelationsanalyse wurde der jeweilige Wert jeder Zeitscheibe mit dem Wert einer weiteren 

Zeit multipliziert, die in Zeitabständen aus dem Vielfachen des kleinsten Abstandes von 50 ns 

entfernt lag. Diese Zeitabstände wurden als Korrelationszeiten bezeichnet (siehe Abbildung 13). 

Über den gesamten Datensatz wurden die bins mit verschiedenen Korrelationszeiten, die sich von 

50 ns bis zu mehreren Sekunden erstreckten, multipliziert und das Ergebnis wurde konsekutiv 

für jede Korrelationszeit addiert. Mittels der entstandenen Autokorrelationsfunktion konnte 

somit zwischen einem burst und einem andauernden oder zufällig verteilten Signal unterschieden 

werden. Weiterhin erhielt man über diese Analyse Aussagen über Dauer und Häufigkeit eines 

bursts, die auf Anzahl und Diffusionszeit der emittierenden Teilchen schließen lässt. 

Zudem wurden die Werte der pro Korrelationszeit detektierten Photonen auf die mittlere 

Häufigkeit normiert. An das beschriebene Autokorrelogramm wurde eine mathematische „Fit“-

Kurve in einem iterativen Prözess angepasst (engl. „fitting“) (siehe Abbildung 13). 

 

 

 

 

 

 

 

 

 

Abbildung 13 Grundprinzip der Autokorrelations-Analyse. 

Die Zeitachse wurde in bins zu je 50 ns unterteilt. Die senkrechten Balken stellen gemessene 
Photonen dar. Beispielhafte Korrelationszeiten von 50, 100 und 150 ns sind gekennzeichnet. 
Rechts sind die gemessenen Ereignisse je Korrelationszeit aufgetragen. 
Ein burst stellt das Zeitintervall für den Durchtritt eines fluoreszierenden Partikels durch den 
Fokus dar (Evotec 2001). 
 

Aus dem Autokorrelogramm konnten verschiedene Parameter wie die durchschnittliche 

Diffusionszeit der Partikel (Tdiff), die mittlere Helligkeit der einzelnen Teilchen (CPP, engl. „counts 

per particle“) und die mittlere Partikelzahl im Lasermessfökus (N) errechnet werden. Die 

Abweichung zwischen den Autokorrelationsdaten und dem Fit wurde als Residualkurve 

dargestellt (siehe Abbildung 14B). Um die Anpassungsgüte (goodness of fit) zu überprüfen, wurde 

der Parameter Chi2 herangezogen, der sich aus der Summe der durch die erwarteten Häufigkeiten 

burst bin 
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geteilten quadrierten Differenzen zwischen den beobachteten und erwarteten (theoretischen) 

Häufigkeiten der Signale berechnet. Die Gesamthelligkeit (Itot) entspricht dabei der mittleren 

Photonenanzahl (angegeben in kHz) aus der gesamten Messzeit und geht direkt als erfasste Größe 

aus der Messung hervor. CPP berechnet sich aus der Intensität des gemessenen 

Fluoreszenzsignals pro Anzahl der Partikel. Somit ließ sich die Güte der Justage zwischen den 

verschiedenen Messtagen vergleichen. Ein weiterer Parameter, der die Eigenschaft verschiedener 

Partikel beschreibt, ist die Diffusionszeit (Tdiff). Mit Hilfe der Diffusionszeit war es möglich, die 

ungefähre Masse der gemessenen Partikel zu berechnen. Für kugelförmige Partikel gleicher 

Dichte, was den Proteinmolekülen näherungsweise entspricht, besteht dabei die Möglichkeit, die 

Größe bzw. das Molekulargewicht (MW) mit Hilfe der Formel Tdiff ~∛MW aus der 

Autokorrelationsfunktion einzuordnen. Somit entsprach beispielsweise eine Verdoppelung der 

Diffusionszeit im Vergleich zweier Partikelspezies einer achtfach größeren Masse. Im Rahmen von 

Proteinaggregationsstudien konnte somit die Anzahl der Monomere, aus denen sich ein 

Proteinaggregat zusammensetzte, näherungsweise bestimmt werden. Konkret nimmt im Verlauf 

von Aggregationsprozessen die Diffusionszeit und die CPP der Partikel zu, die Partikel- bzw. 

Teilchenzahl (N) sinken, womit ein weiterer entscheidender Parameter der FCS-Auswertung 

genannt ist. Nach Einführung einer Normalisierungskonstante entsprach die Partikelzahl (N) der 

inversen Amplitude der Autokorrelationsfunktion. 

 

 

 
A Typisches Autokorrelogramm einer FCS-Messung. Die Y-Achse zeigt die Autokorrelationswerte 
und die X-Achse die Korrelationszeiten in msec. Mit der roten Kurve ist der Fit dargestellt. B 
Qualitätskontrolle des Fits durch die Residualkurve, welche die Abweichung des 
Autokorrelogramms vom Fit darstellt. 
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Abbildung 14 Autokorrelogramm und Residualkurve einer FCS Messung. 
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Das Software Modul FCSPP Evaluation erlaubte auch, das gewonnene Fluoreszenzsignal aus der 

Messlösung nicht nur mit einer Partikelspezies zu beschreiben bzw. zu fitten, sondern auch 

verschiedene, in der Messprobe vorkommende Molekülspezies zu erkennen und zu berechnen. In 

einem sog. Mehrkomponenten-Fit lieferte die Software für jede Komponente den relativen Anteil 

an der Gesamtmenge der Partikel (in %) und eine entsprechende eigene Diffusionszeit 

(Ehrenberg and Rigler 1976, Schwille, Bieschke et al. 1997, Meseth, Wohland et al. 1999, Evotec 

2001, Bacia and Schwille 2003, Haustein and Schwille 2003). 

 

3.3.2 FIDA 

FIDA (Fluorescence Intensity Distribution Analysis) kann die spezifische Helligkeit von 

fluoreszierenden Einzelmolekülen in einer heterogenen Probe erfassen. Bei dieser Analyse wird 

die Einzelmessung im konfokalen Messaufbau in Zeitintervallen (bin) von 40 µs aufgeteilt und die 

Photonenzahl bezogen auf die bins statistisch ausgewertet. 

 

In einem Intensitätsverteilungshistogramm werden die Anzahl der pro Zeitintervall detektierten 

Photonen und die Häufigkeit dieser Ereignisse dargestellt (siehe Abbildung 15). Über einen 

anschließenden 1D FIDA-Multikomponenten-Fit ist es möglich, die einzelne Partikelspezies, die 

eine charakteristische, von den anderen Spezies zu unterscheidende Fluoreszenzintensität 

aufweist, im jeweiligen Kanal zu identifizieren. So können bei der FIDA bis zu vier Komponenten 

gleichzeitig erkannt werden, die sich in ihrer spezifischen Helligkeit qx [kHz]) und Konzentration 

im Fokus (mittlere Anzahl der Partikel im Fokus cx) unterscheiden lassen. Zusammen ergeben sie 

eine Gesamtfluoreszenzintensität Itotal, die sich folgendermaßen errechnet: 

    Itotal = I1 + I2+ I3 + …. 

      = c1q1 + c2q2 + c3q3+ …. 

 

Die in der FIDA gemessene spezifische Helligkeit qx entspricht der CPP in der 

Autokorrelationsanalyse und die spezifische Konzentration cx der Teilchenzahl N im FCS. Chi2 

dient hier, wie in der Autokorrelationsanalyse, als Qualitätswert für die Übereinstimmung der 

einzelnen Daten mit dem Fit. Der Wert von Chi2 sollte für einen guten Fit bei 1 liegen, kann jedoch 

in einer heterogenen Reaktionslösung bis zu 10 erreichen. Abweichungen vom Fit werden ähnlich 

wie in der Autokorrelationsanalyse als Residualkurve dargestellt und sollten um 0 liegen.  
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Die FIDA kann bei gescannten und ungescannten Messungen angewendet werden. In dieser Arbeit 

wurden gescannte Messungen über FIDA analysiert, um fluoreszierende größere Moleküle mit 

unterschiedlicher Intensität bzgl. der Konzentration und der spezifischen Helligkeit zu erfassen.  

Abbildung 15 Intensitätsverteilungshistogramm einer FIDA. 
Die X-Achse stellt die gemessenen Photonen pro Zeiteinheit (40 µsec) dar, die Y-Achse gibt die auftretende 
Häufigkeit des Signals wieder. In dieser Analyse wurden Moleküle mit bis zu 250 Photonen pro bin 
detektiert. 

 

Eine zweidimensionale FIDA (2D FIDA) ermöglicht die gleichzeitige Analyse der spezifischen 

Helligkeit aus dem roten und dem grünen Detektionskanal von fluoreszierenden Partikelspezies. 

Die Messmethode ergibt eine gemeinsame Statistik der Photonenzahlen aus beiden Detektoren, 

die im Zeitfenster von 40µsec erfasst werden. 

Die gesamte Fluoreszenzrate Itotal setzt sich aus den einzelnen Intensitäten der Partikelspezies 

zusammen, die wiederum auf zwei Detektoren [grün (ch1) und rot (ch2)] aufgeteilt sind: 

    Itotal  = I1+ I2+… 

     = [I1 (ch1) + I1 (ch2)] [I2 (ch1) + I2 (ch2)] 

     = c1 *[q1 (ch1) + q2 (ch2)] + c2*[q1 (ch1) + q2 (ch2)] +… 

 

Anhand der beiden Fluoreszenzhelligkeitswerte aus beiden Detektoren und deren 

Konzentrationen können die einzelnen Spezies bestimmt werden. Die erhaltenen Rohdaten 

können in einem 2D Verteilungshistogramm dargestellt werden (Evotec 2001). 

 

3.3.3 SIFT2D (Scanning for Intensely Fluorescent Targets) 

Das Auswertungsverfahren SIFT2D ist durch die erhöhte Signalsensibilität ein wichtiges 

Softwaretool zur Analyse von hellen, großen und zweifarbigen Partikeln in subpicomolarer 

Konzentration, wie Aggregatspezies mit hochintensem Fluoreszenzsignal. Die Software SIFT2D 

beruht auf den Ergebnissen der 2D FIDA Analysen, bei welchen die gemessenen 

Fluoreszenzsignale in Zeitintervallen (bins) von 40 µsec unterteilt werden. Sie analysiert also, in 

Anzahl detektierte Photonen/bin
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wie vielen bins welche Anzahl an Photonen gemessen wurde. Sowohl kleine als auch größere 

Partikel werden aufgrund des Scannens zum selben Zeitpunkt im Fokus gemessen. Die 

hochintensen Fluoreszenzsignale von mehrfach markierten, großen Partikeln, wie 

Aggregatteilchen, erlauben als direktes Maß eine Quantifizierung ihrer Partikelkonzentration. 

Des Weiteren addiert das Programm alle gemessenen Photonen zur Gesamthelligkeit (Itotal) der 

Probe auf. Da große Partikel heller sind als kleine, kann nun die Gesamthelligkeit auf die 

spezifische Helligkeit von vier Partikeltypen aufgeteilt werden, die sich aus der Zahl der 

emittierten Photonen pro Partikelart (q) und deren Konzentration (c) zusammensetzt: 

 

Itotal = I1 + I2 + I3 + I4 = c1*q1 + c2*q2 + c3*q3 + c4*q4 

 

Diese Analyse erfolgt analog zur Autokorrelation anhand eines Fits, bei dem die Zahl der zu 

ermittelnden Partikeltypen frei gewählt werden kann und dessen Qualität sich im Wert Chi2 

widerspiegelt. 

Der limitierende Faktor von seltenen und großen Aggregatpartikeln ist deren langsame 

Diffusionsgeschwindigkeit und beruht auf der Beschaffenheit der Partikel. Für die Detektion 

dieser langsam diffundierenden, picomolar konzentrierten Teilchenart wären im stationären 

Fokus längere Messzeiten erforderlich, bis der Fokus einmal passiert würde. Der limitierende 

Faktor für die Detektion großer Aggregate, die Diffusionszeit (Tdiff), wird umgangen, indem die 

Proben gescannt gemessen werden (mobiler Fokus). Durch den mobilen Fokus kann in einer 

Intensitätsverteilung das hochintense Signal der mehrfach markierten Zielmoleküle vom 

Hintergrundsignal analytisch abgetrennt werden.  

Im Detail werden die FIDA Daten aus der SIFT 2D Analyse in einem zweidimensionalem 

Verteilungshistögramm („scatter plot“) qualitativ dargestellt, das die aufsummierten 

Photonen/bin (Photonen pro Zeitscheibe) entsprechend aus den roten und grünen 

Detektionskanälen farbkodiert für die Häufigkeit darstellt (siehe Abbildung 16). 

Ein Intensitätsschwellenbereich („threshöld“) kann definiert werden, um die Signale der wenig 

intensen Spezies wie Monomere von den hochintensen helleren Multimeren auszuschließen und 

die größeren Aggregate besser quantifizieren zu können. Das Histogramm kann in verschiedene 

Segmente n aufgeteilt werden. Anschließend werden die Signale der einzelnen Segmente 

summiert. Signale aus den Segmenten nahe der Achsen stellen einfarbige Aggregate dar, 

wohingegen Signale von zweifarbigen großen Partikel im Bereich um die Halbierende des 

Histogramms vorzufinden sind (Giese, Bieschke et al. 2000). 
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Abbildung 16 Gescannte Messung verschiedener zweifarbiger Oligomerformen in einer Probe und 
anschließende SIFT 2D Analyse. 

Schematische Darstellung der SIFT-Messung, bei der der Laserfokus durch das Probenvolumen 
mäandriert und somit das in der Probe erfasste Volumen im Vergleich zu einem stationären 
Lasermessfokus vergrößert (linkes Bild). Die SIFT2D Analyse verwendet nun die FIDA-Daten aus 
beiden Kanälen: Die Abszisse zeigt die Photonen/bin im grünen Kanal auf, die Ordinate 
entsprechend die Photonen/bin im roten Kanal. Im zweidimensionalen scatter plot wird die 
Anzahl der Bins für die erfassten Photonen mit gleichen Werten im roten und grünen Kanal in 
ihrer Häufigkeit farbkodiert dargestellt. In diesem Histogramm erscheinen also kleine bzw. 
monomere Partikel nahe dem Ursprung, einfarbige Aggregate befinden sich entlang der Achsen, 
zweifarbige Multimere liegen in der Mitte des Histogramms. In dem verwendeten System liegt der 
Maximalwert an hochintensen Signalen bei 255 Photonen pro 40 µsec. 
 
 

3.4 Proteinextraktion für die konfokale Einzelmolekül-

spektroskopie 

Für die Einzelmolekülmessungen im Insight Reader wurden transient transfizierte HEK293 Zellen 

so lysiert, dass das physiologisch vorliegende Desmin und Desminmultimere in der Zelle 

bestimmt werden konnten: 

Nach der Ernte der Zellen mit einem Zellschaber in 2 ml PBS und anschließender Gewinnung des 

Zellpellets durch Zentrifugation (4°C, 10000x g , 10 min) wurden die Pellets in einem 1% NP40 

Lysispuffer aufgeschlossen und anschließend mechanisch homogenisiert (2 ml-Spritze mit 20G-

Nadel). Zum Schluss wurde das Zellhomogenat durch Zentrifugation (4°C, 10000x g, 20 min) von 

nichtlysierten Zellbeständen befreit. 

1% NP40 Lysispuffer: 1%  40 (Nonidet P-40) 

   50mM Tris-HCl pH7,6 

   150mM NaCl 

   1mM  EDTA 

Mobiler Fokus 2D Histogramm aus SIFT 2D Analyse
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4 Photokonvertierung von PSmOrange 

Um PSmOrange als Far-Red anregbares Protein im FCS Reader von Evotec einsetzen zu können, 

muss PSmOrange stabil und ausreichend photokonvertiert sein. Dazu wurden vier 15 cm große 

Schalen mit HEK293-Zellen mit einer Konfluenz von 80% für 48 h mit PSmOrange und mit JetPEI 

transfiziert. Entsprechend der Methode der Proteinextraktion für die konfokale 

Einzelmolekülspektroskopie (siehe 3.4) wurden die Zellen in insgesamt 2 ml RIPA Puffer lysiert. 

Als Kontrolle (Mock-Transfektion) dienten HEK293-Zellen, die mit dem Transfektionsreagenz Jet 

PEI® 48 h lang behandelt wurden. 

 

Für die Photokonvertierung der orangefarbigen Form in das Far-Red Derivat wurden 1 ml 

Zelllysat in eine Quartz-Glasküvette (10x4 mm, Hellma Analytics, Müllheim, Deutschland) 

überführt, die eine Rühreinheit enthielt. Die Extraktlösung wurde mit einem CW Laser mit 532 nm 

(3 mm Strahlendurchmesser, Verdi-V5, maximale Ausgangsleistung 5 W; Coherent, Dieburg, 

Deutschland) belichtet. Die Leistung des Lasers wurde auf 0,5 Watt bzw. 1 Watt eingestellt, 

woraus sich bei einem Spotdurchmesser von 3 mm eine Laserintensität von 5 W/cm² bzw. 

10 W/cm² an der Probenlösung ergab. Die Proben wurden durch ein Kühlsystem (Chiller) an der 

Küvette auf 0°C gehalten und maximal für 70 min belichtet. Mit Hilfe eines Fluorimeters 

(Fluorolog®-3, Horiba, Kyoto, Japan) wurde die Lösung unter weiteren Rühren und Kühlen auf 

eine mögliche stattgefundene Photokonvertierung hin überprüft, indem die relevanten 

Fluoreszenzsignale (orangefarbige Form Fluoreszenzbereich 550-700 nm, Ein- und 

Ausgangsspaltbreite2 nm; Far-Red Form Fluoreszenzbereich 645-800 nm, Eingangsspaltbreite 3 

nm, Ausgangsspaltbreite 2nm) bei Anregung mit 548 nm bzw. 636 nm spektralphotometrisch zu 

verschiedenen Zeitpunkten aufgenommen wurden. Eine erfolgreiche Photokonvertierung wurde 

durch die Zunahme der Fluoreszenzintensität im Far-Red Spektrum bei gleichzeitiger 

Fluoreszenzabnahme im orangefarbigen Bereich bestätigt. 

5 Zellkultur 

Für die zelluläre und molekulare Analyse der Desminaggregate auf Einzelmolekülebene wurde 

neben der humanen embryonalen Nierenepithel-Zelllinie HEK293 die humane 

Nebennierenkarzinom Zelllinie SW-13 verwendet. Aus den HEK293-Zellen wurden 

Proteinextrakte für die Einzelmolekülspektroskopie und für den Western-Blot hergestellt. Die 

SW-13-Zellen dienten zur bildgebenden Darstellung des Desminfilamentnetzwerks im 

konventionellen Fluoreszenzmikroskop. Beide Zelllinien wurden bei 37°C und 5% CO2 in DMEM-

Medium (#E15-011 PAA Laboratories GmbH, Pasching, Österreich) kultiviert, das mit 10% fetales 

Kälberserum (#A15-101 PAA), 2 mM Glutamin (# M11-004 PAA) und 100 I.U. Penicillin/100 µg 

Streptomycin (Pen/Strep, #P11-100, PAA) supplementiert wurde. Die Zellen wurden beim 
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Splitten mit 1xPBS [Dulbecco´s PBS(10x) # H15-011 PAA] gewaschen, anschließend für einige 

Minuten bei 37°C trypsiniert (#L11-004 PAA), in Kulturmedium resuspendiert und erneut 

ausplattiert. 

5.1 Transfektion von HEK293 Zellen 

Die adhärenten Zellen HEK293 wuchsen in 10 cm Zellkulturschalen an. Bei einer Konfluenz von 

ca. 50-60% wurden die Zellen transient mit den entsprechenden Plasmiden (co-)transfiziert. Die 

Transfektion wurde durch kationische Polymere des Transfektionsreagenzes JetPEI® (# 101-10N 

Polyplus Transfection, New York, NY, USA) ermöglicht. Die Zellen wurden 48 h nach Transfektion 

geerntet und für Proteinextrakte verwendet (siehe 3.4). 

 

5.2 Transfektion von SW-13 Zellen 

Die transiente Transfektion von SW-13 Zellen, die kein endogenes cytoplasmatisches 

Intermediärfilament (IF)-System enthalten (Hedberg and Chen 1986), erfolgte mit dem 

Transfektionsreagenz X-tremeGENE9® (#06365779001, Roche). Dieses Reagenz ergab die beste 

Transfektionseffizienz in Optimierungsexperimenten der SW-13 Zellen (siehe 3.2). 

So wurden 6-Well-Platten (#657160 Greiner bio-one) mit vier Deckgläschen (10-12 mm, #P231.1, 

Roth, Karlsruhe, Deutschland) pro Well versehen, Medium vorgelegt und die SW-13 Zellen darin 

ausgesät und kultiviert. Bei einer Konfluenz von 50-60% wurden die Zellen entsprechend dem 

Herstellerprotokoll für 48 h transfiziert.  

 

5.3 Immun- und Fluoreszenzfärbung 

SW-13-Zellen wurden für die Fluoreszenz- und Immunfluoreszenzfärbung von Desmin 

verwendet, da diese durch ihre Zell- und Cytoplasmagröße bei 100facher Vergrößerung eine 

optimale Auflösung der Desminfilamente ermöglichten. 48 h nach einer transienten Transfektion 

wurden die transfizierten Zellen für die Immunfluoreszenz mit 3,7% Paraformaldehydlösung in 

1xPBS für 10 min fixiert. Es folgte eine DAPI-Färbung (4-,6-Diamidino-2-phenylindole 

dihydrochloride #D9542 Sigma, Stammlösung 5 mg/ml, Verdünnung1:1000) für je 5 min und ein 

anschließendes dreimaliges Waschen mit 1xPBS. Die Deckgläschen wurden mit Fluorescence 

Mounting Medium (Dako, Glostrup, Dänemark) auf Objektträgern eingedeckelt, 1 h bei 

Raumtemperatur getrocknet und mit Nagellack am Rand versiegelt.  

Die immortalisierten Mausmyoblasten wurden für die muskelspezifische Charakterisierung mit 

Immunfluoreszenz gefärbt (s. Anhang Antikörper). Nach der Fixierung der Zellen mit 3,7% 

Paraformaldehyd in 1xPBS wurden die Zellen in 1xPBS mit 0,1% Triton X-100 für 15 min 

permeabilisiert. Es folgte ein Waschschritt mit 1xPBS, der dreimal für 5 min wiederholt wurde. 
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Bei Raumtemperatur wurden die Zellen mit 5% Pferdeserum (Donor Horse serum # B11-124, 

PAA) in 1xPBS geblockt.  

Der erste Antikörper wurde in der Blockierlösung verdünnt und das fixierte System wurde bei 

4°C über Nacht bzw. 1-2 h bei Raumtemperatur inkubiert. Anschließend wurden die Zellen wieder 

dreimal mit 1xPBS für 5 min gewaschen. Als Zweitantikörper wurden Alexa Fluor 488- bzw. 

AlexaFluor 594-gekoppelte Antikörper in der Verdünnung 1:500 eingesetzt, für 1 h bei 

Raumtemperatur inkubiert, einmal kurz in 1xPBS gewaschen und abschließend die Zellkerne 

5 min mit DAPI angefärbt. Nach dreimaligem Waschen mit 1xPBS (5 min bei Raumtemperatur) 

wurden die Deckgläschen mit Fluorescence Mounting Medium (Dako) eingedeckt, getrocknet und 

mit Nagellack versiegelt. Die Zellen wurden mit einem Leica Axiovert 200M (Kamera Zeiss 

AxioCamHRc) Fluoreszenzmikroskop konventionell mikroskopiert. Die geeigneten Filter für die 

grüne und rote Fluoreszenz waren I3 513808 und F-46-008 ET-Set TxRed. 

 

6 Western-Blot-Analyse 

6.1 Zellaufschluss 

Für den Nachweis der transienten Desminexpression in Zellen diente ein Western-Blot von 

dialysierten Harnstoff-Zelllysaten. Dazu wurden die HEK293-Zellen für 48 h mit den einzelnen 

Desminkonstrukten (wt Desmin, R350P Desmin, E413K Desmin, R454W Desmin, wt Desmin-GFP, 

R350P Desmin-GFP, E413K Desmin-GFP, R454W Desmin-GFP, wt Desmin-mKate2, R350P 

Desmin-mKate2, E413K Desmin-mKate2 und R454W Desmin-mKate2) wie auch mit zwei 

unterschiedlich markierten Desminplasmiden kotransfiziert. Die Zellen wurden durch Abschaben 

auf Eis geerntet und anschließend bei 4°C für 5 min bei 12.000 rpm zentrifugiert. Das Pellet wurde 

in 9,5 M Harnstoff-Lösung homogenisiert und bei 37°C für 30 min zum Quellen gebracht. Nachdem 

die Zellen durch Scherungskräfte in einer 0,3 ml-Spritze mit einer 30 G-Nadel lysiert wurden, 

folgte ein Zentrifugationsschritt, um die restlichen Zellbestandteile zu entfernen. Über Nacht 

wurde der Harnstoff mit Hilfe von Dialyseröhrchen (#69570, Slide-A-Lyzer MINI Dialysis Devices, 

10K MWCO, ThermoScientific) bei 4°C entfernt. Der Überstand wurde für die SDS-PAGE Analyse 

verwendet.  

Die Gesamtproteinmenge wurde spektrometrisch über Absorption im UV-Bereich bei 280 nm 

über das Prögramm „A280 Prötein“ am Nanödröp (peqLab) gemessen. 

Die Zelllysate enthielten 20 µg Gesamtprotein und wurden mit 6x Laemmli Puffer und 

destilliertem Wasser zu einem Probenvolumen von 20 µl ergänzt. Für die Proteinauftrennung 

wurden die Probenlösungen 5 min bei 95°C denaturiert.  
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6x Laemmli Puffer: 0,05M Tris-HCl (pH 6,8) 

      0,93%  DTT  

       0,0012% Bromphenolblau 

      10% SDS 

      30% Glycerol  

 

6.2 SDS-Gel/Western-Blot 

Die Proben wurden auf ein 4-15% SDS-PAGE Gradientengel (Mini-PROTEAN®TGXTM Precast Gel; 

Bio-Rad #456-1083) geladen und die Proteine zuerst 10 min im Sammelgel bei 80 V (10 mA konst. 

pro Gel) und dann im Trenngel bei 120 V (20 mA konst. pro Gel) elektrophoretisch aufgetrennt. 

Zur Molekulargewichtsbestimmung wurde bei jedem Lauf eine Proteinstandardlösung 

aufgetragen (PageRuler Prestained Protein Ladder, #26616Thermo Scientific). Nach der 

Auftrennung wurden die Proteine auf eine Nitrocellulose-Membran (0,45 µm, #162-0115 Biorad) 

unter Verwendung eines Wet-Blottingsystems transferiert (2 h bei 110 V, 4°C).  

6.3 Ponceau S-Färbung 

Mithilfe der Ponceaufärbung (Ponceau S Solution SIGMA #P7170) wurde die Effizienz des 

Blotting-Transfers überprüft. Dazu wurde die Membran für 1-3 Minuten in der Färbelösung [0,1% 

Ponceau S in 5%iger Essigsäure (w/v)] inkubiert und die Proteine somit fixiert und reversibel rot 

angefärbt. Durch ein bis zwei Waschschritte mit destilliertem Wasser wurden die Protein-Banden 

in jeder Ladespur sichtbar. Zum Entfärben wurde die Membran zwei- bis dreimal für 10 min in 

TBS-T (1M TRIS-HCl pH 7,50, 0,8% NaCl, 0,1% Tween20) auf einem Schüttler gewaschen. 

6.4 Immunodetektion 

Für die Blockade unspezifischer Bindungsstellen wurde die Nitrocellulosemembran 2 h bei 

Raumtemperatur in Blockierungspuffer [5% Milchpulver in TBS-T (w/v)] geschüttelt. Bei 4°C und 

über Nacht erfolgte die Inkubation des primären Antikörpers [anti-Desmin, rabbit polyclonal; 

CellSignaling, Danvers, USA; anti-GFP, rabbit polyclonal Abcam, Cambridge, UK; anti-tRFP (anti-

mKate), evrogen]. Die Membran wurde wieder 3x 30 min mit TBS-T gewaschen und der 

sekundäre Antikörper anti-HRP (goat anti-rabbit, gekoppelt mit Meerettich-Peroxidase 

(horseradish peroxidase); Jackson Immuno Research, USA] eine Stunde bei Raumtemperatur 

inkubiert. Nach weiteren fünf aufeinanderfolgenden 10-minütigen Waschschritten wurde die 

Peroxidaseaktivität (HRP) und damit die Antikörpersignale mittels Lumigen-Reagenz ECL plus 

(ECL Advance Western Blotting Detection Kit, Amersham #RPN2135) visualisiert. 

Als Ladekontrolle wurde eine anti-GAPDH Färbung angeschlossen. Dazu wurde der Blot für 1 h 

bei Raumtemperatur im Erstantikörper inkubiert (anti-GAPDH, Millipore, Bilerica, USA) und nach 
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dreifachem Waschen mit TBS-T der Zweitantikörper für ebenfalls eine Stunde verwendet (anti-

mouse HRP, Dako, Glostrup, Dänemark). 

6.5 Western-Blot Stripping und erneute Detektion (Reprobing) 

Die Western-Blots wurden gestrippt, um den an Desminprotein gebundenen Antikörper zu 

entfernen und erneut mit Antikörpern gegen die fluoreszenten Tags zu färben. Das Strippen 

erfolgte in 1x ReBlot Plus Strong Antibody Stripping Solution von Millipore (#2504) für 30-45 min 

bei Raumtemperatur auf einem Schüttler. Danach wurde viermal für 5 min mit 1xPBS gewaschen. 

Anschließend wurde die Nitrozellulosemembran für 1 h mit 3% BSA in 1xPBS blockiert und 

unmittelbar wie oben beschrieben mit dem weiteren Primär- und Sekundärantikörper gefärbt. 

7 Mausmyoblastenmodell 

7.1 Versuchstiere 

Für das vorliegende immortalisierte Mausmyoblastenmodell der Desminopathie p.R350P und des 

Desmin Knockouts (Des-/-) wurden Immortomäuse® (H-2Kb-tsA58) von Charles River 

Laboratories, Luxembourg S.à.r.l. (Luxemburg) mit Desmin R350P Knockin bzw. mit Desmin 

Knockout Mäusen gekreuzt und aus isoliertem Mausmuskelgewebe immortalisierte primäre 

Mausmyoblasten isoliert, kultiviert und charakterisiert. 

7.2 Tierhaltung 

Die Mäuse wurden in Makrolonkäfigen EuroStandard Typ II long (Tecniplast Deutschland GmbH, 

Hohenpeißenberg, Deutschland) gehalten und in IVC-Racks (Individuell Ventilated Cages-Racks, 

Tecniplast Deutschland GmbH) bei gleichen Belüftungsbedingungen untergebracht. 

Weichholzgranulat von Ssniff (Lignocel Typ: FS 14, Ssniff Spezialdiäten GmbH, Soest, 

Deutschland) wurde als Käfigeinstreu verwendet. Die Labormäuse wurden unter 

gleichbleibenden äußeren Bedingungen (durchschnittlich 23°C Raumtemperatur, 45% relative 

Luftfeuchtigkeit, Lichtprogramm mit 12 Stunden dauernder Tagphase) in Gruppengrößen von 1-

5 Tieren gehalten. Zusätzlich wurden die Käfige mit roten Zuchthäuschen (aus Makrolon®), 

Nagemöglichkeiten (Hölzer) und Baumwoll-Nestels ausgestattet. Den Mäusen stand zu jeder Zeit 

und nach Belieben pelletiertes Alleinfuttermittel für Mäuse (Ssniff Spezialdiäten GmbH) sowie 

Wasser zur Verfügung. Für die Nachzucht wurden getönte Käfige (Tecniplast Deutschland GmbH) 

und Zuchtfutter Typ M Zucht (strahlensterilisiert, standardisiert; Ssniff Spezialdiäten GmbH) 

verwendet. Im Alter von 3-4 Wochen wurde der Nachwuchs abgesetzt, mit Ohrlochung markiert 

und die Geschlechter voneinander getrennt gehalten. Das gesamte Zubehör für die Tierhaltung (u. 

a. Behältnisse, Tierfutter und Wasser) wurde durch Autoklavieren sterilisiert.  
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7.3 Zucht und Genotypisierung 

7.3.1 Verpaarung 

1. Immorto x Desmin KI p.R350P human 

Die Verpaarung einer heterozygoten Immortomaus® der F5-Generation mit einer Desmin KI 

R350P Maus der F3-Generation ergab eine Nachzucht, die für die Isolierung von konditional 

immortalisierten Myoblasten geeignet war. Für eine homozygote Form der humanen 

Desminmutante R350P anstelle des entsprechenden Maus-Gens wurde Maus Nr. 51 ausgewählt 

(s. Anhang S.124).), um immortalisierte Myoblasten aus dem Muskelgewebe zu isolieren. 

Aus der gleichen Verpaarung ergab sich u.a. eine Maus, die einen heterozygoten KI der humanen 

p.R350P Desminmutante im Genom besaß und für die Myoblastenisolierung verwendet wurde. 

Zudem lag das T Antigen heterozygot vor (siehe Anhang S. 124). 

2. Immorto x Desmin KO 

Um immortalisierte Myoblasten ohne Desminfilamente zu generieren, wurden lebensfähige, 

fertile Desmin KO Mäuse aus der F3-Generation mit Immortomäusen® aus der F4-Generation 

verkreuzt. Aus einer homozygoten Desmin KO Maus mit heterozygot vorliegendem Immortogen 

wurden die Myoblasten isoliert (siehe Anhang S.125). 

 

7.3.2 Genotypisierung 

Für die Bestimmung des Genotyps einer Maus wurde die genomische DNA im Alter von 4 Wochen 

aus Schwanzbiopsien isoliert und mit spezifischen Primern amplifiziert.  

Über Nacht wurden die Schwanzpröben bei 56°C in 400 μl Tail-Buffer und 24 μl Pröteinase K 

(20 mg/ml, #P-5147 SIGMA, St.Louis, MO, USA) verdaut. Nach einer Phenol/Chloroform-

Extraktion und Isopropanol-Fällung erhielt man die genomische DNA. Das DNA-Pellet wurde nach 

zweimaligem Waschen mit 70% Ethanöl in 20 μl 5 mM Tris/HCl, pH 8,5 1 h bei 50°C unter 

Schütteln gelöst. Die DNA-Konzentration wurde spektrophotometrisch mit dem Nanodrop 

(peqLab, Erlangen, Deutschland) bestimmt. Für die PCR wurden 200-500 ng der genomischen 

DNA eingesetzt und die entsprechenden Genfragmente mit spezifischen Primern amplifiziert. 

Anschließend wurden die PCR-Produkte auf einem 1%igen Agarosegel mit 0,5 µg/ml 

Ethidiumbromid aufgetrennt.  

Tail Buffer:  1%  SDS 

10 mM Tris pH 7,5 

50 mM  EDTA 

150mM NaCl 
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Für die Immorto-PCR wurde Maxima™ Höt Start Green PCR Master Mix (ThermoScientific) 

verwendet. Es ergaben sich nach zwei PCRs mit folgendem Programm und mit den folgenden 

Primern (Kern and Flucher 2005) zwei Banden unterschiedlicher Länge in einer 

Gelelektrophorese (Wildtyp 500 bp; Immorto 300 bp). 

PCR-Programm     Spezifische Primer Immorto 

 95°C 5 min 

 

35x 

94°C 

60°C 

72°C 

20 sec 

30 sec 

1 min 

 72°C 5 min 

 20°C ∞ 

 

Die Desmin KI R350P-PCR wurde ebenfalls mit der Pölymerase Maxima™ Höt Start Green PCR 

Master Mix (ThermoScientific) durchgeführt. Bei dieser Polymerase-Ketten-Reaktion wurde die 

Anwesenheit des Transgens indirekt über den Verbleib der loxP-site aus der homologen 

Rekombination und damit über unterschiedliche Basenlängen von Wildtyp- und KI-Bande 

nachgewiesen (Wildtyp 179 bp; KI 244 bp). Eine heterozygote Maus zeigte dementsprechend eine 

Doppelbande, eine homozygote bzw. Wildtyp Maus nur eine einzelne Bande entsprechender 

Größe. 

 

PCR-Programm          Spezifische Primer Desmin R350P KI 

 95°C 5 min 

 

35x 

94°C 

65°C 

72°C 

20 sec 

30 sec 

1 min 

 72°C 5 min 

 20°C ∞ 

 

Für den Nachweis eines Knockouts von Desmin im murinen Genom wurde die Desmin KO-PCR mit 

drei spezifischen Primern und der AccuPrimeTMPfx DNA Polymerase durchgeführt. Das Desmin 

Knockout Allel war bei einer Größe von 450 bp als Bande im Agarosegel zu erwarten, Wildtyp 

Desmin bei einer Größe von 350 bp. Bei Heterozygotie des Desmin KO lag eine Doppelbande vor.  

Immorto wt-f 5´- GAT CTG CCT GAG GTG TTA CTT G-3´ 

Immorto wt-r 5´- GGA TGG CAT TAG TCA TGA C-3` 

Immorto tsA-f  5´- AGT CCT CAC AGT CTG TTC ATG ATC-3` 

Des R350Ps 5´-GCT GTA GGT TTT TAA TTC TAA AGG TGG ATA AGG G-3` 

Des R350Pas 5´-AAA CCT GGA AGC AGT TTT ACA CAA GAG GC-3` 
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PCR-Programm          Spezifische Primer Desmin KO 

 

 

 

 

7.4 Desmin KO und R350P Desmin KI H-2Kb-tsA58 Mausmyo-

blasten 

7.4.1 Isolierung von primären Mausmyoblasten und Etablierung einer 

stabilen Zelllinie 

Ziel der Verpaarung von Desmin KO- bzw. Desmin R350P KI-Mäusen mit einer Immortomaus®-

Linie war die Etablierung einer konditionell immortalisierten Myoblastenlinie mit 

entsprechendem Desmin Knockout oder R350P Knockin.  

Nachdem die entsprechenden Mäuse für die jeweiligen Myoblastenlinien ausgesucht waren, 

wurden diese sofort nach der Genotypisierung für die Isolierung von Myoblasten aus 

Muskelgewebe vorbereitet.  

Die ca. vier Wochen alten H-2Kb-tsA58 Mäuse wurden in einer mit Isofluran (Baxter, 

Unterschleißheim, Deutschland) abgesättigten Kammer schmerzlos narkotisiert und schließlich 

mit einer Überdosis des Narkotikums euthanisiert. Die Haut wurde mit 70% Ethanol desinfiziert 

und es wurde an beiden Hinterläufen seziert. Anschließend wurde der M.tibialis anterior, M. 

extensor digitorium longus und M. soleus ohne die anliegenden Sehnen steril entnommen, in 

kaltem (4°C), sterilem 1x PBS (pH 7,2) in einem 15 ml-Falkon-Röhrchen gesammelt und auf Eis 

gehalten. Die gesammelten Muskeln wurden anschließend unter Laminar Air Flow mit Hilfe 

zweier Skalpelle in einer Petrischale maximal zerkleinert. Als nächstes wurden die zerkleinerten 

Muskeln in 1,5 ml Enzymlösung (30mg Kollagenase D (#11088858001 Roche, Deutschland), 29,1 

mg Dispase II (#04942078001 Roche, Deutschland), 2,5 µl 1M Ca2Cl-Lösung in 1,5 ml 1xPBS pH 

7,2) für 25 min bei 37°C im Wasserbad inkubiert. Daraufhin wurde bei 1500 rpm für 5 min 

zentrifugiert. Der Überstand wurde verworfen, das Pellet resuspendiert und auf drei Kollagen-

beschichtete, mit 10 ml Immorto Growth Medium befüllte, 10 cm großen Zellkulturschalen 

aufgeteilt. Die Zellen wurden nach 30 min präplattiert und bei 33°C und 5% CO2 in Kultur gehalten. 

 94°C 4 min 

 

30x 
94°C 

62°C 

68°C 

1 min 

45 sec 

1 min 

 68°C 5 min 

 20°C ∞ 

Des KO 1 5´-TTG GGG TCG CTG CGG TCT AGC C-3´ 

Des KO LacZ 430R 5´-GAT CGA TCT CGC CAT ACA GCG G-3´ 

Des KO 1R 5´-GGT CGT CTA TCA GGT TGT CAC G-3´ 
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7.4.2 Kultivierung konditionell immortalisierter Mausmyoblasten 

Die immortalisierten primären Mausmyoblasten wurden aus transgenen Mäusen isoliert (siehe 

3.3) und bei 33°C und 5% CO2 inkubiert. Das Simian-Virus 40 (SV-40) thermolabile Onkogen large 

tumor (T) Antigen tsA58 inhibiert Tumorsupressorgene wie p53. In immortalisierten 

Mausmyoblasten ist es stabil in das Genom der Zellen integriert und durch den murinen Promotor 

H-2Kb reguliert, der durch Interferon gamma (IFN) induziert werden kann. Die isolierten, 

kultivierten primären Zellen exprimierten das Onkogen bei 33°C und Anwesenheit von Interferon 

gamma (# PMC4031Invitrogen, Darmstadt, Deutschland) im Immorto Growth Medium (IGM) und 

ermöglichten so eine unbestimmte Zellteilungsrate (Jat, Noble et al. 1991). 

 

Immorto Growth Medium: 

DMEM      500 ml    

FCS       100 ml     

Pen/Strep (100x)   5 ml  

Mouse recombinant IFN 15 µg 

 

Die Myoblasten wuchsen auf Kollagen-beschichteten Kulturschalen. Petri-Schalen mit 10 cm 

Durchmesser wurden bei Raumtemperatur über Nacht mit Kollagenlösung (#C8919 Sigma, 

10%ige Kollagenlösung mit 0,5% Eisessig) inkubiert und danach wieder abgenommen. Die 

Kollagenlösung konnte für weitere Beschichtungen bis zu dreimal wiederverwendet werden und 

war ca. drei Monate bei 4°C haltbar.  

Bei einer Konfluenz der Zellen von 50-60% wurden die Zellen gesplittet- spätestens nach fünf 

Tagen. Um eine Kontamination mit Fibroblasten zu reduzieren, wurden die Fibroblasten ca. 1 h 

nach dem Splitten präplattiert und verworfen. Die noch nicht adhärenten Myoblasten im 

Überstand wurden auf eine neue Kollagen-beschichtete Kulturschale gegeben und weiter 

kultiviert. 



Fusionierung zu Myotuben 

Die Zellen wurden in einer beschichteten 12 Well-Platte (mit 2 Deckgläschen von 10 mm 

Durchmesser pro well) ausgesät. Bei einer Konfluenz von 80-100% kam es spontan zur 

Fusionierung der Myoblasten bzw. wurde die Fusion durch Zugabe von Fusionsmedium (in 

DMEM, 2% Pferdeserum, 2 mM Glutamin, Pen/Strep) eingeleitet. 
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E Ergebnisse 

1 Charakterisierung der fluoreszierenden Far-Red Proteine 

Zweifarbige Interaktionsstudien in der Einzelmolekülspektroskopie ermöglichen es, ungeklärte 

Fragen über Koassemblierungsvorgänge zu beantworten. Dabei wurden in einem Zellsystem 

Wildtyp Desmin und die drei Mutanten mit unterschiedlichen fluoreszenten Proteinen gelabelt, 

die jeweils über die Laser des FCS Readers angeregt werden konnten. Für einen zweifarbigen 

Ansatz wurde neben dem etablierten Fluorophor GFP ein Far-Red Fluorophor benötigt, das 

ähnlich wie GFP die Filamentbildung der Desminvarianten nicht beeinflussen durfte. Weitere 

Voraussetzung für den Einsatz als Fusionstag war, dass es bei Anregung durch die geeignete 

Wellenlänge nur gering ausbleicht und monomer vorliegt, sodass eine direkte Proportionalität 

hinsichtlich der Helligkeit des getaggten Desminkonstrukts zur Teilchenkonzentration 

gewährleistet ist. 

Für die Dualcolour-Analyse waren zwei Farbstoffe indirekt geeignet, die die genannten 

Bedingungen erfüllten. Beide Fluorophore sind etwa 23 kDa (PSmOrange) bzw. 26 kDa (mKate2) 

groß und damit ähnlich wie GFP (26,9 kDa). 

 

Photobleaching: durchschnittliche Fluoreszenzhalbwertszeit in sec; Quantenausbeute: Anzahl 
emittierter Photonen/absorbierter Photonen. 1(Shcherbo, Murphy et al. 2009) und 2(Subach, 
Patterson et al. 2011). 
 
 

1.1 PSmOrange 

Subach et al. erkannte, dass sich das konventionelle Fluoreszenzprotein mOrange mit blaugrüner 

Laserbestrahlung (458 bzw. 488 nm) zu einem Far-Red anregbaren Fluorophor 

photokonvertieren lässt (Subach, Patterson et al. 2011). Allerdings war die Photostabilität sowie 

die Far-Red Helligkeit der photokonvertierten Variante zu gering, um ein stabiles Tag daraus zu 

etablieren. Durch Mutagenese entstand aus dem mOrange Fluorophor ein stabiles 

photokonvertierbares PSmOrange.  

Protein 
Maxima(nm) 

Anregung/ Emission  
Quantenausbeute Speziesform Photobleaching 

mKate21 588/633 0,4 Monomer 71 

PSmOrange  

(Far-Red)2 
636/662 0,28 Monomer 48,5 

Abbildung 17 Physikalische Parameter von mKate2 und PSmOrange für die Einzelmolekül-
spektroskopie. 
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PSmOrange musste für die zweifarbigen, molekularen Interaktionsanalysen im FCS Reader 

photokonvertiert werden, sodass das fluoreszente Protein ein für den Insight Reader geeignetes 

Anregungsmaximum bei 633 nm erreicht. Nur so kann es als Fluoreszenztag für Desmin in der 

Einzelmolekülspektroskopie eingesetzt werden. 

Gemäß der publizierten Daten sollte die Photokonvertierung in einem Zellkultursystem, das mit 

PSmOrange transient transfiziert wurde, durch blaugrünes Laserlicht mit einer Wellenlänge von 

480 ± 40 nm und einer Leistung von 1130 mW/cm2 für eine Minute erfolgen. Dabei steigt die 

Photokonvertierungsrate mit zunehmender Laserleistung an. Die hohe Laserleistung lässt sich 

durch den energiereichen, nicht linearen, Zwei-Photonenübergang bei der Konvertierung 

erklären (siehe Abbildung 18) (Subach, Patterson et al. 2011).  

 

 

Abbildung 18 Möglicher Mechanismus der Photokonvertierung von PSmOrange zur Far-Red Form. 

Für die Photokonvertierung mit blaugrünem Laserlicht (hv) ist eine zweifache 
Photonenübertragung durch ein Oxidationsmittel (Ox) nötig. Die vorhandenen oxidierten 
Teilchen in der Lösung werden dabei reduziert (OxH) (Subach, Patterson et al. 2011). 
 

1.2 mKate2 

Als zweiter möglicher Fluorophor für die zweifarbigen Interaktionsstudien wurde mKate2 

ausgewählt. Das monomere Far-Red Fluoreszenzprotein ist dreimal heller als mKate. Durch 

Mutagenese von mKate entstand das Fluorophor mKate2, das ein pH-, und photostabileres Protein 

im Vergleich zum Ausgangsfluorophor ist (Shcherbo, Murphy et al. 2009). 

Mit seinem Anregungsmaximum bei 588 nm kann allerdings keine direkte Anregung des 

Fluoreszenzproteins im FCS Reader erwartet werden, da die Anregungsbereiche bei 488 nm und 

633 nm liegen. Deshalb wurde eine mögliche indirekte Anregung von mKate2 über FRET (Förster 

Resonanz Energie Transfer) im Rahmen dieser Arbeit überprüft: Man nutzt dabei die 

Energieübertragung, bei der die Energie eines angeregten Fluorophors- GFP- bei einer gewissen 

Nähe auf ein weiteres Fluorophor- mKate2- strahlenfrei übertragen werden kann. Der 

Energietransfer kann nur dann stattfinden, wenn zwei unterschiedlich gelabelte Moleküle 

(Desmin-GFP und Desmin-mKate2) im Zellkultursystem in gewisser Nähe miteinander 

interagieren. Abhängig von der FRET-Rate hätte sich eine detaillierte Aussage über die 

Architektur von Desminfilamentassemblierungen treffen lassen können. 
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Abbildung 19 Fluoreszenzspektren von GFP und mKate2. 
Dargestellt ist die Überlappung des Emissionsspektrums von GFP mit dem Absorptionsspektrum von 
mKate2 als Voraussetzung für einen erfolgreichen Energietransfer nach FRET. Die Spektren wurden mit 
Hilfe des Spektrumviewers von Chroma dargestellt. http://www.chroma.com/spectra-
viewer?fluorochromes=837|845&set=3&showDetails=1 (August 2014). 

 

Eine weitere Bedingung für die strahlenlose Energieübertragung ist die Überlappung des 

Emissionsspektrums von GFP mit dem Absorptionsspektrum von mKate2. Diese Voraussetzung 

wurde als gegeben angesehen. Eine direkte Anregung von mKate2 im Insight Reader mit einer 

vorhandenen Laserwellenlänge von 633 nm ist nur in geringem Umfang möglich, sodass es 

theoretisch im Zweifarbansatz nur indirekt über GFP angeregt werden sollte (siehe Abbildung 

19). 

 

3D Modell von Vimentin als Tetramer (A) und Octamer (C) von der Seite. (B) Querschnitt eines Tetramers. 
Der Abstand der Tetramerachsen dtetra beträgt 3,4 nm. (D) Der Querschnitt eines Octamers, docta beträgt 
3,2 nm (Sokolova, Kreplak et al. 2006). 

Abbildung 20 Dreidimensionales (3D) Modell von Vimentin und der Vimentinfilamentsynthese. 

http://www.chroma.com/spectra-viewer?fluorochromes=837|845&set=3&showDetails=1
http://www.chroma.com/spectra-viewer?fluorochromes=837|845&set=3&showDetails=1
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Wie bereits erwähnt, darf für eine Energieübertragung über FRET maximal ein Abstand von 10 nm 

zwischen GFP und mKate2 bestehen. Für Vimentin, das wie Desmin zu den 

Intermediärfilamentproteinen gehört und entsprechend assembliert (siehe Abbildung 2), 

konnten bei Kleinwinkel-Röntgenstreuungsmessungen (SAXS) die im nm-Bereich liegenden 

Abstände zwischen den einzelnen Molekülen in einer Assemblierung genau bestimmt werden 

(siehe Abbildung 20) (Sokolova, Kreplak et al. 2006). Die relevanten Interaktionsbereiche von 

farblich unterschiedlich markierten Desminmolekülen liegen unter dem geforderten 

Maximalabstand von 10 nm, könnten somit über FRET angeregt und in der Einzelmolekül-

spektroskopie quantitativ analysiert und charakterisiert werden (siehe Abbildung 21). 

 

 
 
 

Links ist der physiologische, bekannte Assemblierungsweg von Intermediärfilamentproteinen wie z. B. 
Vimentin oder Desmin dargestellt: parallele Dimere lagern sich halbversetzt und antiparallel zu Tetrameren 
zusammen. Bei rot und grün fluoreszenzmarkierten Molekülen könnte die Aneinanderlagerung entweder 
kombiniert zweifarbig oder einfarbig ablaufen. Es könnten auch einfarbig fluoreszierende Aggregate bei 
pathologisch vorliegender Filamentbildung entstehen (rechts). 

 

1.3 Überprüfung von GFP in der Einzelmolekülspektroskopie 

Das Verhalten von GFP im Vergleich zu Desmin-GFP in der Einzelpartikeluntersuchung wurde 

bereits bei Levin et al. ausführlich beschrieben (Levin, Bulst et al. 2010). Um eine 

Reproduzierbarkeit dieser Daten zu gewährleisten, wurde das Fluoreszenzsignal von dem Protein 

GFP im Vergleich zu Desmin-GFP noch einmal analysiert. Dabei wurden native 

Desminproteinextrakte in der FCS Analyse betrachtet. Wildtyp Desmin-GFP zeigte eine hohe 

Dimer

Tetramer

ULF 
(8x4)

Fibrillen

Abbildung 21 Hypothetisches Modell verschiedener Assemblierungsstufen von farblich unter-
schiedlich markierten Desminmolekülen. 
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Diffusionsgeschwindigkeit Tdiff (ca. 1000 µsec) wie zuvor publiziert, was im nativen Extrakt für 

ein Vorliegen hauptsächlich als Dimere spricht. Die über FIDA berechnete Partikelhelligkeit [Q] 

von Desmin-GFP lag ähnlich, wie schon zuvor publiziert wurde, bei 11 kHz (Levin, Bulst et al. 

2010). Im Vergleich dazu liegt Wildtyp Desmin-GFP im nativen Proteinextrakt bei 33 kHz. 

Abbildung 22 Diffusionszeit und Partikelhelligkeit eines monomeren grün fluoreszierenden 
Proteins (GFP) im Vergleich zu wt Desmin-GFP. 

Die vor kurzem veröffentlichen Daten (Levin, Bulst et al. 2010) waren in der vorliegenden Arbeit 
bei drei unabhängigen Messungen reproduzierbar und zeigen vergleichbare absolute Werte aus 
drei unabhängigen Messungen mit fünffachem Mäander. 
 

In der Einzelmolekülspektroskopie von fluoreszenten Teilchen wird vorausgesetzt, dass die 

Proteinkonzentration proportional zur gemessenen Gesamthelligkeit in FIDA oder FCS ist. Im 

dargestellten Graphen konnte ein homologer linearer Zusammenhang zwischen beiden Größen, 

der Diffusionszeit und der Partikelhelligkeit, bestätigt werden.  

 

Abbildung 23 Korrelationsdiagramm von GFP über 1K FIDA Fit. 

Gemessen wurden die Gesamthelligkeitswerte in einer Verdünnungsreihe von GFP bei Anregung 
im grünen Spektralbereich im Insight Reader. Es sind die Mittelwerte und Standardabweichungen 
von vier unabhängigen Messungen (je fünfmal gemessen) angegeben. Die gemessenen Werte 
liegen in der Nähe der linearen Trendlinie. 
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1.4 Verhalten von mKate2 in der Einzelmolekülspektroskopie 

Um das Verhalten von mKate2 im Insight Reader für weitere Interaktionsmessungen 

abzuschätzen, wurde mKate2 hinsichtlich Partikelhelligkeit und Korrelationsverhalten 

(Teilchenkonzentration zur Gesamthelligkeit) im nativen Extrakt charakterisiert. Wie erwartet, 

war die Partikelhelligkeit bei direkter Anregung mit rotem Laserlicht (633 nm) sehr dunkel (1,19 

kHz). Es stellte sich allerdings auch heraus, dass mKate2 im grünen Spektralbereich direkt 

anregbar ist: Bei einer 1K FIDA Fit Analyse ergab sich eine relevante Partikelhelligkeit bei 

einfarbiger Anregung mit dem grünen Laser von 3,24 kHz im grünen Kanal (siehe Abbildung 24). 

 

Abbildung 24 Direkte Anregung von mKate2 ist bei 488 nm möglich. 

Dargestellt ist die Partikelhelligkeit Q1 von mKate2 mit unterschiedlicher Anregung, errechnet 
über 1K FIDA Fit. Bei Anregung mit beiden Lasern ist mKate2 im roten und grünen 
Emissionsspektralbereich 3,34 (grüne Detektion) bzw. 3,39 (rote Detektion) kHz hell. 
Unerwarteterweise emittierte mKate2 direkt über 488 nm ein Signal von 3,24 bzw. 2,09 kHz. Die 
direkte Far-Red Anregung (633 nm) ist vernachlässigbar klein (1,19 kHz). 
 

Diese Erkenntnis stellte die FRET-Eignung von mKate2 in Frage. Daraufhin wurden Pilotversuche 

mit Zweifarbansätzen unternommen, die eine auswertbare FRETbarkeit nicht indizierten: Über 

SIFT wurden native Proteinextrakte aus kotransfizierten Wildtyp Desmin-GFP und Wildtyp 

Desmin-mKate2 zum Vergleich mit beiden Lasern (488 nm und 633 nm) und nur mit grünem 

Laser (488 nm) angeregt. Bei der Energieübertragung nach Förster erwartet man eine signifikante 

Zunahme der detektierten rot-grünen großen Teilchen bei alleiniger grüner Anregung, da mKate2 

sich über GFP durch Interaktionen zweier Wildtyp Desminmoleküle anregen und so im roten Far-

Red Kanal detektieren lässt. Diese Annahme konnte nicht bestätigt werden (siehe Abbildung 25): 

In sechs unabhängigen Versuchen war die aufsummierte Zahl an detektierten zweifarbigen 

großen Molekülen mit FRET-Anregung sogar kleiner als bei Anregung im roten und grünen 

Frequenzbereich (268< 330 nm). 
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Von sechs unabhängigen Versuchen wurden die detektierten Photonensignale von großen, rot-grünen 
Multimeren mit unterschiedlicher Anregung aufsummiert. Bei einer Anregbarkeit über FRET wäre eine 
Zunahme der zweifarbig großen Teilchen im roten Kanal erwartet worden. Es wurden sogar weniger 
zweifarbige Teilchen registriert. 

 

Für weitere Interaktionsanalysen wurde mKate2 als roter, fluoreszierender Farbstoff genutzt, 

allerdings nicht für FRET Versuche, die eine genaue Beschreibung der Architektur von 

koassemblierten Desminfilamente zugelassen hätten.  

 Wie vorher für GFP beschrieben (siehe 1.3), wurde auch hier eine Korrelationsmessung der 

Teilchenkonzentration zur Gesamthelligkeit von mKate2 durchgeführt, um eine Proportionalität 

hinsichtlich der Teilchenkonzentration zur Helligkeit zu bestätigen. Auch hier lagen die 

Mittelwerte nahe der gesetzten Trendlinie (siehe Abbildung 26). 

 

 

 
Gemessen wurden die Gesamthelligkeitswerte in einer Verdünnungsreihe von mKate2 bei 
Anregung im roten Spektralbereich im Insight Reader. Es sind die Mittelwerte und 
Standardabweichungen von vier unabhängigen Messungen (je fünfmal gemessen) angegeben. Die 
gemessenen Werte liegen in der Nähe der linearen Trendlinie. 

Abbildung 26 Korrelationsdiagramm von mKate2 über 1K FIDA Fit. 
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relative Konzentration mKate2

Abbildung 25 Fehlende Anregbarkeit von großen zweifarbigen Molekülkomplexen über FRET bei 
Kombination von GFP- und mKate2-Desminfusionsproteinen. 
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1.5 PSmOrange als alternatives Far-Red Fluorophor 

1.5.1 Photokonvertierung von PSmOrange 

Die Fluoreszenzintensität von PSmOrange (blaue Kurve) wurde im Wellenlängenbereich von 

555 nm-700 nm vor der Photokonvertierung aufgenommen (siehe Abbildung 27). Bei Anregung 

mit 548 nm zeigte das orangefarbene Proteinderivat ein Fluoreszenzmaximum bei 560 nm. 

 

Das aufgenommene Fluoreszenzspektrum im Bereich von 550-700 nm, Spaltbreite 2 nm, von 
orangefarbenem PSmOrange zeigte vor der Konvertierung einen Maximalwert bei 560 nm (blaue Kurve). 
Die photokonvertierte, Far-Red Form zeigt im orangefarbigen Wellenlängenbereich ein abgeschwächtes 
Fluoreszenzsignal um den Faktor 12 (rote Kurve). 

 

Die Photokonvertierung des orangefarbenen in das Far-Red anregbare Protein PSmOrange 

erfolgte bei 532nm. Eine erfolgreiche Photokonvertierung konnte durch Zunahme der 

Fluoreszenzintensität im Bereich des Far-Red Spektrums erkannt werden (siehe Abbildung 28). 

Dazu wurde die photokonvertierte Proteinlösung bei 636 nm angeregt und die 

Fluoreszenzspektren im Wellenlängenbereich von 645-800 nm aufgenommen. Nach der 

Photokonvertierung mit einer Laserleistung von 10 W/cm2 stieg das Fluoreszenz-

intensitätssignal über die einzelnen Belichtungszeitschritte und war nach 35 min abgesättigt. Es 

wurde ein Emissionsmaximum bei 650 nm erreicht. Dabei nahm die gemessene Fluoreszenz-

intensität zwischen unkonvertiertem (siehe Abbildung 28, rote Linie) und photokonvertiertem 

Protein (siehe Abbildung 28, rosafarbene Linie) bei 650nm um mehr als den Faktor 70 zu. Bei der 

Hälfte der Laserleistungsdichte (5 W/cm2) war erst nach 70 Minuten Belichtungszeit ein 

Maximalwert in der Fluoreszenz im Far-Red Bereich zu erkennen.  

Abbildung 27 Fluoreszenzmaximum von orangem PSmOrange liegt nach Fluoreszenzanregung   
(548 nm) bei 560 nm. 
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Die Fluoreszenzintensität (Fl. Intensity, A.U., arbitrary units) wurde im Far-Red Wellenlängenbereich (645-
800 nm, Eingangsspaltenbreite 3 nm, Ausgangsspaltenbreite 2 nm) zu unterschiedlichen Konvertierungs-
Zeitpunkten gemessen. Durch Zunahme der Intensität im Far-Red Bereich konnte eine Photokonvertierung 
detektiert werden Die Anregung erfolgte bei 636 nm, Integrationszeit 0,1 sec. Ein Signalmaximum wurde 
bei 650 nm erreicht. A zeigt die Photokonvertierung mit 5 W/cm2 und einer Laserwellenlänge von 568 nm. 
Nach 70 Minuten Belichtungszeit ist das Signal abgesättigt. Bei B wurde mit einer Laserleistung von 
10 W/cm2 und gleicher Wellenlänge konvertiert. Schon nach 35 min Belichtungszeit wurde der maximal 
erreichbare Wert an Fluoreszenzintensität erreicht. 

 

 

Nach der Absättigung wurde ein Spektrum bei einer Anregungswellenlänge von 548 nm in einem 

Spektralbereich von 555 nm-700 nm aufgenommen (Eingangsspalt 2 nm, Ausgangsspalt 2 nm). 

Dabei nahm das Fluoreszenzintensitätssignal der photokonvertierten Form im orangefarbigen 

Wellenlängenbereich um den Faktor 12 ab (rote Kurve in Abbildung 27). 

 
 
 

1.5.2 Messung im Insight Reader 

Die photokonvertierten Proteinextrakte von PSmOrange wurden anschließend in der 

Einzelmolekülspektroskopie analysiert, um es bei zweifarbigen Interaktionsstudien einzusetzen. 

In der FCS Analyse hatte der photokonvertierte Extrakt eine Helligkeit von 117,37 kHz bei einer 

Anregung von 633 nm. Dagegen ließ sich das unkonvertierte Fluorophor nicht im Far-Red Bereich 

anregen (3,1 kHz). Betrachtet man die cpp (counts per particle), also die Helligkeit pro Teilchen 

in einer ungescannten Messung, der konvertierten Far-Red Form , so war sie zu gering, um es bei 

zweifarbigen Interaktionsstudien als Farbstoff zur Quantifizierung einsetzen zu können (siehe 

Abbildung 29). 

Abbildung 28 Fluoreszenzintensitätsspektrum des Far-Red Bereichs vor und nach der Photo-
konvertierung von PSmOrange mit unterschiedlicher Laserleistung. 

A                                                        B
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Abbildung 29 Charakterisierung von Far-Red PSmOrange im Insight Reader. 

Far-red PSmOrange zeigte durch die erhöhte Gesamthelligkeit im Vergleich zur orangen 
unkonvertierten Form eine Anregung von Far-Red PSmOrange mit 633 nm 
Anregungswellenlänge im Insight Reader (117,37 kHz> 3,12 kHz, 633 nm 
Anregungswellenlänge). In einer ungescannten Messung hatte Far-Red PSmOrange im Vergleich 
zur unkonvertierten Form eine höhere, aber zu geringe Helligkeit pro Teilchen (cpp), sodass eine 
weitere Anwendung von PSmOrange in der Einzelmolekülspektroskopie bei zweifarbigen 
Desmin-Interaktionsstudien nicht zielführend war. 
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2 Überprüfung der Filamentbildung in SW-13-Zellen 

Zur Unterscheidung von Wildtyp-Desmin und Desminmutanten bei den molekularen Inter-

aktionsstudien wurden die Proteine C-terminal mit GFP bzw. mKate2 fluoreszenzmarkiert und in 

Kulturzellen kotransfiziert (siehe Abbildung 30), sodass der Einfluss von mutiertem 

(rotmarkiertem) Desmin auf das physiologische (grünmarkierte) Intermediärfilamentnetzwerk 

in vivo besser untersucht werden kann. Für die bildgebende Darstellung der Filamente wurden 

Intermediärfilament-freie SW-13-Zellen 48 h mit den jeweiligen Expressionskonstrukt von 

Desmin-GFP und Desmin-mKate2 simultan transfiziert.  

 

Abbildung 30 Schematische Darstellung von Desminprotein gelabelt mit C-terminalen GFP bzw. 
mKate2. 

Die fluoreszenten Proteine wurden C-terminal an Desmin fusioniert. Die Sternchensymbole 
stellen die Lage der in dieser Arbeit untersuchten humanpathogenen Deminmutanten dar. 
 
 
Die drei untersuchten humanpathogenen Punktmutationen im Desmingen befinden sich in 

unterschiedlichen Domänen des Desminproteins und zeigen ein heterogenes Bild hinsichtlich der 

Filamentassemblierung und Aggregatbildung. Die zugehörigen, unterschiedlich schweren 

klinischen Phänotypen wurden bereits in 3.2 ausführlich beschrieben. Das Aggregationsverhalten 

der einzelnen Mutanten wurde bereits von Levin et al. und Bär et al. auf Einzelmolekülebene und 

elektronenmikroskopisch untersucht (Bar, Goudeau et al. 2007, Levin, Bulst et al. 2010). Es 

konnte in der konventionellen Fluoreszenzmikroskopie kein Einfluss des C-terminalen GFP-Tags 

auf die Filamentbildung beobachtet werden. Diese Erkenntnis wurde in der vorliegenden Arbeit 

bestätigt. Beim Vergleich der getaggten Desminproteine (Desmin-mKate2 und Desmin-GFP) mit 

dem Immunfluoreszenz-gefärbten Desmin konnte für das C-terminale getaggte Desmin-mKate2 

ebenfalls kein Unterschied zum Immunfluoreszenz-gefärbten Desminfilamentnetzwerk erkannt 

werden (siehe Abbildung 31)
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SW-13-Zellen wurden 48 h mit den entsprechenden Desmin-Plasmiden transient transfiziert. Ungetaggtes 
Desmin (linke Spalte: Desmin IF) wurde mit einem Desmin-Antikörper gefärbt. Die Desminmutanten R350P 
und E413K bildeten ausschließlich Aggregate, wohingegen R454W ein ähnliches Filamentnetzwerk wie 
Wildtyp (wt) Desmin ausbildet. In der mittleren Spalte sind die entsprechend getaggten Versionen mit GFP  
(wt Desmin-GFP, R350P Desmin-GFP, E413K Desmin-GFP, R454W Desmin-GFP) sowie in der rechten Spalte 
mit mKate2 (wt Desmin-mKate2, R350P Desmin-mKate2, E413K Desmin-mKate2, R454W Desmin-mKate2) 
nebeneinander dargestellt. Fluoreszenzmikroskopisch ist kein Unterschied in der Filament-bildung 
zwischen getaggtem und nicht getaggtem Desminprotein zu erkennen; Maßstabsbalken 20 

3 Optimierung der Transfektionseffizienz 

Für reproduzierbare Untersuchungen der Interaktion von Wildtyp Desmin mit mutiertem Desmin 

im zweifarbigen Ansatz wurde ein transient transfiziertes Zellkultursystem durch die 

Optimierung der Transfektionsraten von HEK293- und SW-13-Zellen etabliert. Dazu wurden alle 

Zellen im Gesichtsfeld des Fluoreszenzmikroskops bei 40facher Vergrößerung gezählt, die das 

Protein exprimierten und nicht artifiziell verändert vorlagen. Es war zudem entscheidend, dass 

die Zellen bei Kotransfektionen beide transfizierten Plasmidproteine enthielten.  

  

Abbildung 31 Immunfluoreszenz- und Fluoreszenzdarstellung von Desmin und den Desmin-
mutanten. 
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3.1 Optimale Jet PEI® Transfektion von HEK293-Zellen 

Für die einzelmolekülspektroskopische Analyse der Koassemblierungsansätze wurden HEK293-

Zellen transient transfiziert und die nativ vorliegenden Proteine extrahiert. Die HEK293-Zellen 

wurden mit zwei Plasmiden im gleichen stöchiometrischen Verhältnis von 1:1 kotransfiziert. Da 

die Interaktionsanalysen im unteren Sensitivitätsbereich des Insight Readers lagen, war ein 

optimiertes Zellkultursystem die Grundvoraussetzung für signifikante Messwerte. 

Die Optimierung der Transfektionsrate von HEK293-Zellen ergab, bezogen auf eine Fläche eines 

Wells einer 6-Well-Platte, ein Verhältnis DNA/Transfektionsreagenz [µg/µl] von 2 µg DNA zu 4 µl 

JetPEI®-Lösung (siehe Abbildung 32). Dabei wurden HEK293-Zellen mit unterschiedlichen 

Verhältnissen von DNA/JetPEI transient laut den Herstellerangaben kotransfiziert. Als Plasmid-

DNA-Konstrukt wurde Wildtyp Desmin-GFP und Wildtyp Desmin-mKate2 im gleichen 

stöchiometrischen Verhältnis von 1:1 verwendet. 

Die Kotransfektionsrate bei einem Verhältnis von 2 µg DNA zu 4 µl JetPEI lag bei 100%. 

 

 

 

Abbildung 32 Effizienz der Kotransfektion in HEK293-Zellen 48 h nach Transfektion. 

Dargestellt sind Mittelwerte und Standardabweichungen der Transfektionsrate und -effizienz 
verschieden titrierter Verhältnisse von Menge DNA zur Transfektionslösung (µl) im HEK293-
Zellkultursystem in einem Well einer 6-Well-Platte. Auszählung der Zellen im Verhältnis zur 
Gesamtzahl an Zellen, welche kotransfiziert (+GFP/+mKate2), oder einzeln transfiziert (+GFP/-
mKate2; +mKate2/-GFP) vorlagen (n=3). Das Verhältnis 2 µg DNA/ 4 µl Reagenz zeigte die beste 
Transfektionsrate (20,30%) und Kotransfektions-effizienz simultan transfizierter Konstrukte 
(100%). 
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3.2 Optimierung der X-tremeGENE 9® Transfektion von SW-13-

Zellen 

Die fluoreszenzmikroskopische Analysen wurden in SW-13-Zellen durchgeführt, da diese Zellen 

relativ groß sind, keine endogenen Intermediärfilamente besitzen und sich die Ausbildung eines 

Filamentnetzwerks aus rekombinantem Desmin beim konventionellen Mikroskopieren gut 

beobachten lässt. Für eine optimale Transfektion der SW-13-Zellen wurden X-tremeGENE 9® und 

Lipofectamin2000 als Reagenzien ausgewählt. X-tremeGENE 9® zeigte eine 98%ige 

Kotransfektionsrate, Lipofectamin 2000 hatte eine Rate von 95,7%. Deshalb wurde 

X-tremeGENE9® als Transfektionsreagenz ausgewählt. Nach einer Titration des Mengen-

/Volumenverhältnisses von DNA zum Transfektionsreagenz, wurde das Verhältnis 1:2 als ideal 

angesehen. In diesem Beispiel fand sich die optimale Kombination für die höchste 

Proteinexpression bei geringster Zelltoxizität mit 1 µg DNA zu 2 µl Transfektionsreagenz pro 

Well einer 12-Well-Platte (siehe Abbildung 33). 

 

 DNA[µl] + XtremeGene9[µl] 

 1 µg + 2 µl 1 µg + 3 µl 1 µg + 6 µl 2 µg + 6 µl 

Transfektionsrate 10,52% 3,45% 3,35% 0,92% 

Standardabweichung 0,03 0,02 0,02 0,01 

 

Abbildung 33 Bestimmung der idealen Transfektionsrate mit verschiedenen Konzentrationen von 
X-tremeGENE 9® in SW-13-Zellen. 
Das optimale Verhältnis der DNA-Menge zum Transfektionsreagenz lag in einem Well einer 12 Well-Platte 
und bei 50% Zellkonfluenz von SW-13-Zellen bei 1 µg DNA zu 2 µl X-tremeGENE 9® bei einem Gesamt-
transfektionsvolumen von 50 µl. Aufgetragen sind die Standardabweichungen von 3 unabhängigen 
Bestimmungen der transfizierten Zellen im Verhältnis zur Zellgesamtzahl in einem konventionellen 
Fluoreszenzmikroskop bei 40-facher Vergrößerung. 
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4 Desminexpression in HEK293- und SW-13-Zellen 

Um ein äquimolares Expressionsniveau bei Kotransfektionen von HEK293- und SW-13-Zellen zu 

gewährleisten, wurde die Proteinmenge in beiden Zelllinien mit Hilfe von Western-Blots 

überprüft. Dabei war es essentiell zu bestätigen, dass die Expressionsmenge von markiertem 

Desmin mit den Fluorophoren GFP und mKate2 ähnlich zum Expressionsniveau von ungetaggtem 

Desmin ist. Weiterhin wurde überprüft, ob bei kotransfizierten Zellen die Expression von 

unterschiedlich markiertem Desmin dem stöchiometrischen Verhältnis der eingesetzten Plasmid-

DNA Menge entsprach. 

 

4.1 Transfektion von HEK293- und SW-13-Zellen mit einzelnen 

Expressionskonstrukten 

Der repräsentative Western-Blot zeigt die Proteinexpression in HEK293-Zellen, die nach 5.1 

transient mit einzelnen Konstrukten transfiziert und nach 6.1 lysiert wurden. 

Entsprechend den molekularen Massen von monomerem Desmin (53,5 kDa) und den Fusions-

proteinen (Desmin-GFP 79,5 kDa bzw. Desmin-mKate2 80,5 kDa) zeigten sich spezifische Signale 

im Immunoblot. Die Negativköntrölle („HEK“) enthielt als Lysat vön unbehandelten Zellen kein 

endogenes Desmin. Außerdem waren keine unspezifischen Bande zu beobachten (siehe 

Abbildung 34). 

 

Abbildung 34 Repräsentative Western-Blot-Analyse von HEK293-Zellen, die mit einzelnen 
Konstrukten transfiziert wurden. 
Dargestellt ist die Desminexpression von transfizierten HEK293-Zellen. Diese Proteinexpression wurde mit 
Hilfe der GAPDH-Expression normalisiert. Die rekombinante Proteinmenge aller Desmin-Konstrukte war 
vergleichbar. Es wurden weder unspezifische Banden detektiert noch besaßen diese Zellen endogen 
vorliegendes Desmin.  
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Um eine quantitative Aussage treffen zu können, wurde mit Hilfe der ImageJ Software die relative 

Expression ermittelt. Dabei wurde das Desminsignal mit Hilfe der GAPDH-Immunofärbung 

normalisiert. Die getaggten Desminvarianten zeigten außer bei Wildtyp Desmin eine geringere 

Expressionsrate im Vergleich zum unmarkierten Protein. Wildtyp-Desmin-mKate2 und die drei 

mutierten Desmin-mKate2-Formen hatten ein ähnlich hohes relatives Expressionsniveau (0,81- 

1,0). Generell kam es bei den drei unabhängig durchgeführten Western-Blot-Analysen zu sehr 

hohen Standardabweichungen.  

Es war kein signifikanter Unterschied im Expressionsniveau von ungetaggtem und getaggtem 

Desmin zu beobachten (siehe Abbildung 35). 

 

Abbildung 35 Relative Quantifizierung der Desminexpression in HEK-Zellen. 

Expression von überexprimierten Desmin in transfizierten HEK293-Zellen. Vergleich der 
relativen Expression der einzelnen Desminformen zwischen GFP- bzw. mKate2-getaggtem und 
unmarkiertem Desmin. Expressionsniveau der unterschiedlichen Desmin-mKate2-Konstrukte 
zeigt sich annähernd gleich. Die Messwerte sind als arithmetisches Mittel wiedergegeben (n=3)± 
Standardabweichung. 
 
 
Die SW-13-Zellen wurden für die mikroskopischen Untersuchungen der Desminassemblierung 

von zweifarbig markiertem Desmin verwendet. Um eine reproduzierbare Expression des 

rekombinanten Desmins in SW-13-Zellen zu gewährleisten, wurden die einzeln transfizierten 

Zellen in einer quantitativen Auswertung über eine Western-Blot-Analyse im Folgenden 

verglichen (siehe Abbildung 36 und Abbildung 37). In der Negativköntrölle („SW-13“, nur mit 

Transfektionsreagenz X-tremeGENE 9® behandelt) wurde kein endogenes Desmin detektiert. Als 

Positivkontrolle wurde ein Lysat humaner, primärer Myoblasten einer gesunden Kontrollperson 

verwendet. Die SW-13-Zelllysate, die 24 h mit dem entsprechenden Desminkonstrukten 

transfiziert wurden, zeigten alle eine spezifische Proteinbande mit entsprechendem 

Molekulargewicht. Unspezifischer Proteinabbau fand sich nicht. 
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Abbildung 36 Repräsentativer Western-Blot von transfizierten SW-13-Zellen. 
Die einzeln transfizierten SW-13-Zellen mit Desmin-, Desmin-GFP- und Desmin-mKate2 Konstrukten in 
einer Western-Blot-Analyse zeigen kein endogenes Desmin in den Zellen sowie nur eine, in der Höhe des 
Molekulargewichts zu erwartenden Bande. Die Desminexpression wurde mit Hilfe der GAPDH Expression 
normalisiert. Die Proteinmenge liegt für alle Desminkonstrukte homogen vor. 
 

Desmin wurde gegen die GAPDH Expression normalisiert. Bei der quantitativen Auswertung gab 

es signifikante (p< 0,05) bzw. sehr signifikante (p< 0,01) Expressionsunterschiede zwischen 

verschieden gelabeltem Wildtyp Desmin und R454W-Desmin.: Zwischen Wildtyp Desmin und 

Wildtyp Desmin-mKate2 zeigte sich eine signifikante Zunahme an der Desminexpression 

(p=0,004); genauso zwischen R454W Desmin und den Fusionsproteinen R454W Desmin-GFP und 

R454W Desmin-mKate2 (p=0,04 bzw. p=0,03). Eine hoch signifikante Diskrepanz war zwischen 

R454W Desmin-GFP und R454W Desmin-mKate2 zu beobachten (p= 0,01). 

 

Abbildung 37 Quantifizierung der Desminexpression in SW-13-Zellen. 
Relative Desminexpression von überexprimierten Desmin in transfizierten SW13-Zellen. Vergleich der 
relativen Quantifizierung der einzelnen Desminformen zwischen GFP- bzw. mKate2-getaggtem und 
unmarkiertem Desmin. Bei den wt Desmin bzw.R454W Desminkonstrukten war eine signifikante 
(* = p<0,05) bzw. hoch signifikante (** = p<0,01) Abweichung der relativen Desminexpression zu 
beobachten. Die Messwerte sind als arithmetisches Mittel wiedergegeben (n=3)± Standardabweichung. 
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4.2 Proteinexpression von kotransfizierten HEK293-Zellen 

Für die Einzelmolekülanalyse von zweifarbigen Koassemblierungen von Wildtyp Desmin mit 

mutiertem Desminprotein muss ein homogenes Expressionsverhältnis bei den Kotransfektionen 

gegeben sein, das heißt, es sollen bei einem kotransfizierten DNA Mengenverhältnis von 1:1 auch 

die gleichen Proteinmengen 1:1 exprimiert werden. Diese Bedingung für gleichmäßige 

Messungen in der Einzelmolekülspektroskopie wurde in Western-Blots analysiert. 

 

 

Abbildung 38 Repräsentative Western-Blot-Analyse von Lysaten kotransfizierter HEK293-Zellen. 
Vergleich der rekombinanten Proteinexpression der GFP- und mKate2-Fusionsproteine nach Transfektion 
im stöchiometrischen Verhältnis 1:1. Die Banden, die mit dem Desmin-Antikörper detektiert werden, zeigen 
die gesamte Desminproteinmenge in jedem Lysat, wogegen die Banden der anti-GFP- und anti-mKate2 
(Trip)-Färbung den jeweiligen Anteil der Fusionskonstrukte aufzeigen. Die prominente Bande in der 
Ponceau S-Färbung befindet sich auf einer Höhe von 15 kDa, korreliert mit der Gesamtproteinmenge der 
einzelnen Lysate und diente bei der Normalisierung der Immunoblot-Signale. 
 

 

Dazu wurde über die Söftware ImageJ die „integrated „density“ der einzelnen Banden in Relation 

zu einer Ponceau Bande (siehe Abbildung 38) gesetzt. Die relative Proteinexpression von 

kotransfizierten Zellen ist in Abbildung 39 wiedergegeben: So müsste die Expression mit GFP und 

mKate2 detektierten Protein gleich sein und aufsummiert die Proteinexpression an Desmin 
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ergeben. Für jedes untersuchte Zelllysat (wtDes-GFP+ wtDes-mKate2, wtDes-GFP+ R350Des-

mKate2, wtDes-GFP+ E413KDes-mKate2, wtDes-GFP+ R454WDes-mKate2, Des-GFP+mKate2) 

war kein signifikanter Expressionsunterschied zwischen der Desmingesamtmenge und den 

Fusionskonstrukten erkennbar. Als Kontrolle wurden mock-transfizierte HEK293-Lysate, die mit 

Transfektionsreagenz 48 h behandelt wurden, sowie einzeln transfizierte Zellextrakte (wtDes, 

wtDes-GFP, wtDes-mKate2) verwendet.  

 

 

Abbildung 39 Relative Proteinexpression von kotransfizierten HEK293-Zellen. 
Die Proteinexpression von kotransfizierten HEK293-Zelllysaten wurden im Vergleich zu einzeln 
transfizierten (wt Desmin, wt Desmin-GFP, und wt Desmin-mKate2) mit unterschiedlicher Immunfärbung 
(gegen Desmin, GFP und mKate2) verglichen. Die 1:1 kotransfizierten Extrakte mit Desmin-GFP und 
Desmin-mKate2 ergaben aufsummiert nicht die relative Expression an Gesamtprotein-Desmin. Es konnte 
kein signifikanter Unterschied in der Expression detektiert werden. Die Messwerte sind als arithmetisches 
Mittel wiedergegeben (n=3)± Standardabweichung. 

0

400

800

1200

1600

re
la

ti
ve

 P
ro

te
in

ex
p

re
ss

io
n

Desmin GFP mKate2



Zweifarbige Interaktionsstudien von mutiertem Desmin mit Wildtyp Desmin 74 

5 Zweifarbige Interaktionsstudien von mutiertem Desmin 

mit Wildtyp Desmin 

 

 

Abbildung 40 Schematische Darstellung des Versuchsablaufs der Interaktionsstudien. 
Aus den kotransfizierten Zellen der HEK293- und SW-13-Zelllinien wurden für in vivo Untersuchungen die 
Filamentbildung von zweifarbig markiertem Desmin in SW-13-Zellen untersucht und parallel über zwei 
unterschiedliche Lysataufschlüsse (de novo bzw. nativ) die Assemblierung in vitro in der 
Einzelmolekülspektroskopie und im Western-Blot auf molekularer Ebene charakterisiert. 

 

 

Bei Patienten mit Desminopathien liegt das Wildtyp Desminallel neben einem mutierten 

Desminallel vor, sodass neben physiologisch funktionellem, auch pathologisches Desminprotein 

gebildet wird. Diese Protein-Proteininteraktionen im Patienten können mit Hilfe von 

Interaktionsstudien von physiologischer mit pathologischer Desminform nachgeahmt werden.  

Bei bereits veröffentlichten Koassemblierungsstudien konnte bestätigt werden, dass die meisten 

Punkmutationen einen dominant negativen Einfluss auf die funktionelle Desminassemblierung 

haben. Bis dato fehlen allerdings Aussagen über den genauen Ablauf der Filamentbildung bzw. 

über die resultierende Multimer- und Filament-Architektur bei einer Mischung von Wildtyp und 

Mutante. Die gleichzeitige Veranschaulichung von farblich unterscheidbaren Wildtyp Desmin und 

mutiertem Desminprotein auf molekularer (Einzelmolekülspektroskopie) und zellulärer Ebene 

(Fluoreszenzmikroskopie, Western-Blot) stellt dabei eine neue Strategie zur Klärung der offenen 

Fragen dar.  

 

 

20.000g
5min

20.000g
5min

transfizierte Zellen

9.5 M Harnstoff 1% NP-40 RIPA Puffer

Fluoreszenz-
Mikroskopie

Native
Assemblierung

SIFT & 
FCS

De novo 
Lyse

Western 
Blot 20.000g

5minDialyse



Zweifarbige Interaktionsstudien von mutiertem Desmin mit Wildtyp Desmin 75 

5.1 Koassemblierungsanalyse in der Einzelmolekülspektros-

kopie 

Durch die theoretisch indirekte Anregbarkeit von mKate2 durch FRET über GFP im Insight Reader 

konnte auf die Architektur der Filamente bzw. Aggregate geschlossen werden. Die 

Charakterisierung des roten Farbstoffs mKate2 war Voraussetzung für zweifarbige Messungen 

auf molekularer Ebene. Es stellte sich heraus, dass die GFP und mKate2 getaggten Moleküle, die 

Dimere oder eine größere Spezies bilden, nur über direkte grüne und rote Laseranregung erkannt 

werden konnten (siehe 1.4). Dementsprechend konnte keine quantitative Aussage über die Archi-

tektur bzw. über den Anteil an physiologischen und pathologischen Desminmolekülen in den 

gebildeten Filamenten und Komplexen getroffen werden. Dagegen war der Anteil an zweifarbigen, 

interagierenden großen Teilchen bei equimolaren Mischungen aus Wildtyp Desmin und 

mutiertem Desmin in den Zellen über SIFT gut detektierbar. Die Verteilung der Photonen pro 

Zeitscheibe aus einer Messung wurde in einem 2D Histogramm farbkodiert aufsummiert. Es 

ermöglichte eine schnelle qualitative Aussage über Aggregate und Koaggregationsprozesse. 

(siehe Abbildung 41B). 

 

 

Abbildung 41 Schematische Darstellung und Beispiele von Scatter Plots repräsentativer 2D SIFT 
Analysen. 
A Die Achsen des 2D Histogramms zeigen eine aufsteigende Signalintensität der detektierten Photonen/bin 
im grünen (X-Achse) und roten (Y-Achse) Kanal. Einfarbige Monomere befinden sich in der Nähe des 
Nullpunkts, einfarbige Multimere entsprechend ihrer Intensität in der Nähe der Achsen verteilt. Mit mKate2 
markierte Partikel sind vor allem im grünen Kanal detektierbar. Zweifarbige Multimere, bestehend aus 
Desmin-GFP und Desmin-mKate2, werden in der Nähe der X-Achse und im oberen mittleren Bereich 
dargestellt. Für die Quantifizierung wurde der Ursprung (Origin) so verlegt, dass sich die zweifarbigen 
Signale von interagierenden großen Partikeln in einem definierten Abschnitt (hellblau hinterlegt) befinden. 
B Scatter Plots von aufsummierten Photonen pro bin einer Messung mit 10 sec. SIFT Analyse von 
kotransfizierten nativen HEK293-Zellextrakten zeigten bei wt-wt Interaktion die meisten zweifarbigen 
Multimere, ebenso die Interaktion zwischen wt und R454W. R350P und E413K lagen bei Koassemblierung 
mit wt Desmin als kleinere Aggregate vor.  
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Der Anteil an zweifarbigen Polymeren an der Gesamtzahl der detektierten Teilchen lag bei 

stöchiometrisch äquimolar (1:1) eingesetztem Wildtyp Desmin-GFP und Wildtyp Desmin-mKate2 

mit 17,73% bzw. 13,75% (rot-grüne bzw. grüne Anregung) im Vergleich zu koassemblierten 

mutierten Desmin mit Wildtyp-Desmin am höchsten. Die drei pathogenen Punktmutationen 

zeigten weniger zweifarbige interagierende große Spezies: So hatte R350P Desmin im Vergleich 

zu den anderen Mutanten den geringsten Anteil an zweifarbigen großen Molekülen (3,70% bzw. 

2,87%). Es ist zu vermuten, dass überwiegend pathologische Aggregate gebildet werden, die einen 

geringen Anteil an zweifarbigen großen Partikeln haben. E413K zeigte einen ähnlichen Anteil von 

interagierenden großen Molekülspezies an der Gesamtteilchenzahl (5,30% bzw. 3,96%). Die 

R454W Desminmutante hatte, mit Wildtyp-Desmin koassembliert, die meisten unterschiedlich 

markierten Interaktionsspezies anteilig an der Gesamtzahl gemessener Partikel (7,62% bzw. 

6,35%), was für das Vorliegen von physiologischen Assemblierungen spricht, jedoch in geringerer 

Menge als bei Wildtyp-Desmin. 

 

 

Abbildung 42 Anteil von zweifarbigen Multimeren an der Gesamtzahl der detektierten zweifarbigen 
Partikel. 
Der Anteil der zweifarbigen interagierenden großen Assemblierungsfragmente ist zwischen den wt 
Desminmolekülen am höchsten (17,73%). In der Interaktion mit wt Desmin zeigte R454W Desmin von den 
drei untersuchten Punktmutanten die meisten zweifarbigen Partikel (7,62%). R350P und E413K lagen nur 
zu einem geringen Teil als Assemblierungsspezies bestehend aus wt und Mutante vor (3,70% bzw. 5,30%). 
Dargestellt ist das arithmetische Mittel von drei unabhängigen Messungen mit Standardabweichung. 
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5.2 Zweifarbige Assemblierungsinteraktion von Desmin und 

mutiertem Desmin in SW-13-Zellen 

Ergänzend zur Einzelmolekülanalyse wurden die zweifarbig fluoreszierenden 

Filamentnetzwerke über in vivo Aufnahmen im Fluoreszenzmikroskop charakterisiert. Für eine 

hohe Auflösung der IF-Filamente im konventionellen Mikroskop wurden SW-13-Zellen 

verwendet, die kein endogenes Desmin aufweisen und mit zwei fluoreszent unterscheidbaren 

Desminkonstrukten transient transfiziert wurden. Für die vorhandenen unterschiedlichen 

Transfektionsschemata wurden jeweils vier repräsentative Zellen gezeigt, die die Homogenität 

der gebildeten Assemblierung im Zellsystem belegten und den typischen Filamentaufbau zeigten. 

Bei den folgenden fluoreszenzmikroskopischen Analysen konnte im Vergleich zu 

nichtmarkiertem Desmin kein Einfluss der Tags GFP und mKate2 auf die physiologische 

Filamentbildung beobachtet werden.  

Es wurden bei allen drei untersuchten kotransfizierten Desminmutanten, bei denen funktionelles 

Desmin mit GFP und mutiertes Desmin mit mKate2 markiert war, Ähnliches beobachtet: Die 

entstandenen filamentösen Aggregate bzw. Assemblierungen bestanden aus kolokalisierten, 

physiologischen (Wildtyp) und pathologischen (Mutante) Proteinen. Wildtyp-Desmin-GFP und 

Wildtyp Desmin-mKate2 bilden ein ausgestrecktes, homogenes Filamentnetzwerk im Cytoplasma 

der Zellen aus. Die Koassemblierung mit je 50% Wildtyp Desmin-GFP und R350PDesmin-mKate2 

zeigte eine Vielzahl einzelner Filamentbruchstücke, die aus beiden Desminformen bestanden und 

zum Teil nur als Proteinaggregate zu erkennen waren. Wildtyp-Desmin-GFP lag dabei nicht mehr 

als ausgebildetes Filament vor, sondern vielmehr als Filamentfasern unterschiedlicher Größe. 

E413K Desmin-mKate2 bildete vergleichsweise kleinere, punktförmige Aggregate mit einer 

geringeren Verteilung der Aggregatgrößen. R454W Desmin-mKate2 zeigte mit Wildtyp Desmin-

GFP koassemblierte, ausgeprägte Filament-netzwerke. Bei allen drei Mutanten konnte eine 

Interaktion mit dem kompletten funktionellen Wildtyp-Desminprotein in vivo erkannt werden. 

Verglichen mit dem gebildeten Filamentnetzwerk von Wildtyp Desmin-GFP und mutierten 

Desmin-mKate2-Konstrukten war bei den koassemblierten Desminfilamenten mit vertauschten 

Fluorophortags (Wildtyp Desmin-mKate2 und mutiertes Desmin-GFP) der gleiche 

kolokalisierende Effekt zu erkennen. Einzig bei der Mutation E413K Desmin-GFP mit Wildtyp 

Desmin-mKate2 lagen nur zum Teil kolokalisierende fluoreszierende Proteine und 

Proteinaggregate bei einzelnen Zellen vor. Dabei fanden sich E413K Desminproteine in 

Aggregaten und rotmarkiertes, funktionelles Wildtyp Desmin bildete Filamentfasern aus, die 

teilweise die Aggregate umgaben oder diese isoliert in das Fasernetzwerk integrierten.  

Die zweifarbig markierten, reinen Mutanten ergaben zellulär betrachtet die selben 

Filamentstrukturen, wie bei den Koassemblierungen mit Wildtyp Desmin, was den dominant 

negativen Effekt für alle drei Mutanten auf die Wildtyp Filamentbildung bestätigt: R350P formte 
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unregelmäßige Aggregate mit unterschiedlicher Größe; E413K Desmin lag als kleinere, 

punktförmige Filamentaggregate vor. R454W assemblierte ähnlich wie funktionelles Desmin zu 

einem scheinbar vollständigen regulären Filamentnetzwerk.  

Um den Einfluss der Fluorophortags auf die Filamentbildung einzuschätzen, wurde zur Kontrolle 

die in vivo Filamentbildung von GFP oder mKate2 getaggtem Wildtyp Desmin mit nicht getaggtem 

pathogenen Desminprotein untersucht. Es ergab sich kein erkennbarer Unterschied zur 

Desminassemblierung bei gemischt getaggten Desminformen, sodass wiederum weder durch GFP 

noch durch mKate2 ein Einfluss auf die Filamentbildung sichtbar war (siehe Abbildung 46). 

 



Zweifarbige Interaktionsstudien von mutiertem Desmin mit Wildtyp Desmin      79 

 
 
 

 

 

 
 
 

 
 

Dargestellt sind jeweils vier repräsentative 
Fluoreszenzbilder von SW-13-Zellen mit typischem 
Desminfilamentaufbau bzw. pathologischer 
Aggregatbildung bei koassembliertem wt- und 
mutiertem Desminprotein im Verhältnis 1:1 48 h nach 
Transfektion. A zeigt die vollständig ausgebildete 
Filamentassemblierung von zweifarbigem wt Desmin 
mit mKate2 bzw. GFP als Fluorophortag. B 
Kotransfektion von wt Desmin-GFP mit R350P 
Desmin-mKate2 ergab ein kolokalisiertes, aber nicht 
durchgängiges Filamentgerüst, sondern mehr 
Proteinaggregate mit breiterer Größen-verteilung der 
Filamentbruchstücke und Aggregate. C E413K Desmin-
mKate2 zeigte bei gleicher Proteinmenge mit wt 
Desmin-GFP kolokalisierte, zahlreich kleinere, 
punktförmige Aggregate (ca. 20-50 pro Zelle). D 
R454W Desmin-mKate2 zeigte kotransfiziert mit wt 
Desmin-GFP keinen sichtbaren Unterschied zu reinem 
wt Desmin im Intermediärfilamentaufbau. Die 
Zellkerne sind mit DAPI blau gefärbt. Maßstabsbalken 
20µm.  

Abbildung 43 SW-13 Zellen kotransfiziert mit wt 
Desmin-GFP und mutierten Desmin-mKate2 
Varianten im Verhältnis 1:1. 
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Die jeweils vier dargestellten, repräsentativen Zellen 
von kotransfizierten wt Desmin-mKate2- mit 
mutiertem Desmin-GFP-Konstrukten zeigten 
repräsentativ den zellulären Aufbau von 
Desminfilamenten und -aggregaten in SW-13-Zellen 
48 h nach Transfektion. A Wildtyp-Desmin-mKate2 
bildete mit R350P Desmin-GFP kolokalisierte, 
unterschiedlich große Proteinaggregate und 
Filamentbruchstücke. B E413K Desmin-GFP zeigte 
wenig Interaktion mit wt Desmin-mKate2. Das 
mutierte Desmin lag vorwiegend in Aggregaten vor, 
wohingegen wt Desmin konsistent ein filamentöses 
Netzwerk bildete und nur zum Teil in den Aggregaten 
lag. C R454W Desmin-GFP bildete zusammen mit wt 
Desmin-mKate2 ein filamentartiges, zusammen-
hängendes Netzwerk. Die Zellkerne sind mit DAPI 
blau gefärbt. Maßstabsbalken 20 µm.   

Abbildung 44 SW-13 Zellen kotransfiziert mit wt 
Desmin-mKate2 und mutierten Desmin-GFP 
Varianten im Verhältnis 1:1. 
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Dargestellt sind jeweils vier typische SW-13-Zellen 
48 h nach Transfektion, die koassembliertes und 
mutiertes Desmin-GFP mit mutiertem Desmin-
mKate2 im Verhältnis 1:1 enthalten. A R350PDesmin 
zeigte eine flächendeckende, kolokalisierte 
Ansammlung an Proteinaggregaten mit 
unterschiedlichen Größen sowie Filament-
bruchstücken. B E413K Desmin bildete kleinere, 
ähnlich große Proteinaggregate. C R454W Desmin 
koassemblierte mit sich selber zu einem 
ausgeprägten Filamentnetzwerk, das dem Wildtyp 
gleicht. Die Zellkerne sind mit DAPI blau gefärbt. 
Maßstabsbalken 20µm. 

 

Abbildung 45 Kotransfektion von SW-13- Zellen 
kotransfiziert mit Desminmutanten getaggt mit 
GFP bzw. mKate2 im Verhältnis 1:1. 
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A Wildtyp-Desmin-GFP kolokalisiert mit mutiertem Desmin zu einem Desminfilament, das dem 
Filamentnetzwerk des getaggten, zweifarbigen Gemisches aus wt und Mutante von Desmin entspricht: 
Wildtyp-Desmin bildet ein regelmäßiges, gleichförmiges Netzwerk aus. R350P Desmin kolokalisiert mit wt 
Desmin-GFP in großen Proteinaggregaten. E413K Desmin aggregierte zusammen mit wt Desmin-GFP zu 
gleichmäßig kleineren, punktförmigen Proteinaggregaten. R454W Desmin hatte auf wt Desmin-GFP keinen 
fluoreszenzmikroskopisch sichtbaren Einfluss. B Wildtyp Desmin-mKate2 mit mutiertem Desmin, im 
Verhältnis 1:1 gemischt, ähnelt im Gerüstaufbau dem von A. Die Desminmutanten wurde mittels 
Immunfluoreszenz gefärbt. Die Zellkerne sind mit DAPI blau gefärbt. Maßstabsbalken20µm. 

Abbildung 46 Kotransfizierte SW-13 Zellen im Verhältnis 1:1 mit getaggtem wt Desmin-GFP und 
mutiertem Desmin bzw. mit mutiertem Desmin-mKate2 und wtDesmin. 
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6 Zweifarb-Fluoreszenzmarker-Ansatz: Interaktionen von 

Desmin im Zeitverlauf 

Um eine Aussage treffen zu können, wie das pathologische und physiologische 

gemischtvorliegende Desminfilamentnetzwerk über eine gewisse Zeit entsteht und entsprechend 

vorliegt, wurde eine Zeitverlaufsanalyse der Filamentbildung von fixierten SW-13-Zellen an fünf 

verschiedenen Zeitpunkten nach der Transfektion durchgeführt. Dazu wurden die Zellen im 

Verhältnis 1:1 mit Wildtyp und mutiertem Desmin transfiziert, nach 8, 24, 48, 72, und 96 h fixiert 

und eine Zellkernfärbung mit DAPI durchgeführt. Um den Einfluss der drei untersuchten 

Mutanten auf die physiologische Assemblierung zu untersuchen, wurden die Fusionsproteine 

Wildtyp-Desmin-GFP und die Mutanten bzw. der Wildtyp mit mKate2 getaggt im Verhältnis 1:1 

wie folgt eingesetzt: 

    wt Desmin-GFP : wt Desmin-mKate2 

    wt Desmin-GFP : R350P Desmin-mKate2 

    wt Desmin-GFP : E413K Desmin-mKate2 

    wt Desmin-GFP : R454W Desmin-mKate2 

Nach 8 h konnte eine Verteilung der zunächst nur gering synthetisierten Proteine um den Zellkern 

bei allen Ansätzen erkannt werden. 24 h nach der Transfektion konnten bereits Desminfilamente 

bei reinem Wildtyp bzw. Aggregate bei Kotransfektionen mit mutiertem Desmin im Cytoskelett 

beobachtet werden. Bei allen transfizierten Desmingemischen kolokalisierte Wildtyp-Desmin mit 

dem pathologischen Protein spätestens nach 48 h. 

Im Vergleich zum 24 h-Zeitpunkt konnte nach 48 h ein vollständig ausgebildetes Desmin-

filamentnetzwerk bzw. Desminaggregate bei allen Ansätzen erkannt werden.  

Bei reinem Wildtyp Desmin konnte sogar eine Zunahme des Filamentnetzwerks um das Fünffache 

der Fläche zwischen dem ersten und zweiten Tag nach Transfektion gezeigt werden.  

Bei R350P Desmin war nach 24 h eine Ausbildung von Proteinaggregaten zu sehen, die sich 48 h 

nach Transfektion hinsichtlich Anzahl, Form und Größe nicht veränderten.  

Bei Kotransfektion von Wildtyp- mit E413K Desmin-mKate2 war nach 48 h ein dominant 

negativer Einfluss der Mutante auf die physiologische Assemblierung zu erkennen, da bei diesem 

Zeitpunkt hauptsächlich punktförmige Aggregate vorlagen, die nach 24 h noch nicht zu sehen 

waren.  

R454W Desmin-mKate2 zeigte nach 48 h eine sichtbare Kolokalisation mit Wildtyp Desmin-GFP. 

Die Desminfilamente von allen Konstrukten zeigten zum 72 h- bzw. 96 h- Zeitpunkt nach 

Transfektion im Vergleich zu 48 h keinen fluoreszenzmikroskopisch sichtbaren, qualitativen 

Unterschied in Form, Häufigkeit und Größe des Desminnetzwerks. 
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Die Desminexpression lag zu allen Zeitpunkten kolokalisiert vor. Nach 8 h lagen die fluoreszierenden 
Proteine in subzellulären Strukturen vor. Nach 48 h wurde ein vollständig ausgebildetes, physiologisches 
Filamentnetzwerk sichtbar, das auch nach 72 h bzw.96 h noch persistierte und sich weder in Form, 
Häufigkeit und Größe im Zeitverlauf unterschied. Die Zellkerne sind mit DAPI blau gefärbt. Maßstabsbalken 
20 µm. 
  

Abbildung 47 Fluoreszenzmikroskopische Analyse im Zeitverlauf von kotransfiziertem wt Desmin-
mKate2 und wt Desmin-GFP im Verhältnis 1:1 im SW-13-Zellkultursystem nach 8 h, 24 h, 48 h, 72 h 
und 96 h transienter Transfektion. 

8h

24h

48h

72h

96h

wtDes-mKate2               wtDes-GFP                   überlagert           
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Die Desminexpression beider Konstrukte lag zu allen Zeitpunkten kolokalisiert vor. Nach 8 h lagen die 
fluoreszierenden Proteine in subzellulären Strukturen vor, die am ehesten Endo- und Lysosomen 
entsprachen. Nach 24 h wurden pathologische Proteinaggregate gebildet, die nach 48 h ausgeprägter in 
Form, Häufigkeit und Größe vorlagen. Nach drei bzw. vier Tagen nach Transfektion konnten diese 
Aggregate im Vergleich zum48 h-Zeitpunkt kaum unterschieden werden. Die Zellkerne sind mit DAPI blau 
gefärbt. Maßstabsbalken 20 µm. 
  

Abbildung 48 Fluoreszenzmikroskopische Analyse im Zeitverlauf von kotransfiziertem wt Desmin-
GFP und R350P Desmin-mKate2 im Verhältnis 1:1 in einem SW-13-Zellkultursystem nach 8 h, 24 h, 
48 h, 72 h und 96 h transienter Transfektion. 

R350PDes-mKate2           wtDes-GFP                überlagert           
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24h

48h

72h

96h
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Abbildung 49 Fluoreszenzmikroskopische Analyse im Zeitverlauf von kotransfiziertem wt Desmin-
GFP und E413K Desmin-mKate2 im Verhältnis 1:1 im SW-13-Zellkultursystem nach 8 h, 24 h, 48 h, 
72 h und 96 h transienter Transfektion. 
Die grün- und rotfluoreszierenden Desminproteine lagen zu allen Zeitpunkten kolokalisiert vor. Nach 24 h 
fanden sich noch keine Aggregate. Erst nach 48 h entstanden punktförmige Proteinansammlungen, die 
denen bei Transfektion der Mutante ohne wt-Konstrukt glichen. Nach drei bzw. vier Tagen Transfektion 
konnten diese Aggregate von denen des 48 h-Zeitpunkts im Wesentlichen nicht unterschieden werden. Die 
Zellkerne sind mit DAPI blau gefärbt. Maßstabsbalken 20 µm. 

8h

24h

48h

72h

96h

E413KDes-mKate2           wtDes-GFP                überlagert           



Zweifarb-Fluoreszenzmarker-Ansatz: Interaktionen von Desmin im Zeitverlauf      87 

 

Abbildung 50 Fluoreszenzmikroskopische Analyse im Zeitverlauf von kotransfiziertem wt Desmin-
GFP und R454W Desmin-mKate2 im Verhältnis 1:1 in einem SW-13-Zellkultursystem nach 8 h, 24 h, 
48 h, 72 h und 96 h transienter Transfektion. 
Die grün- und rotfluoreszierenden Desminproteine lagen stets kolokalisiert vor. Nach 24 h waren erste 
Proteinfilamente erkennbar, die nach 48 h ein flächenmäßig größeres und ausgereifteres Filamentnetzwerk 
bildeten. Nach drei bzw. vier Tagen nach Transfektion durchzog ein dem wt Desmin ähnliches 
Filamentnetzwerk die ganze Zelle. Die Zellkerne sind mit DAPI blau gefärbt. Maßstabsbalken 20 µm. 

8h

24h

48h

72h

96h

R454WDes-mKate2           wtDes-GFP                überlagert           



Immortalisierte Mausmyoblasten       88 

7 Immortalisierte Mausmyoblasten 

Nach der Isolierung der Mausmyoblasten und Kultivierung bei 33°C und 5% CO2 wurde versucht, 

die Myoblasten zu Myotuben zu differenzieren. Die Myoblasten wuchsen auf Kollagen-

beschichteten Zellkulturplatten bzw. Deckgläschen hauptsächlich in regelmäßig angeordneten 

Kolonien. Nach Austausch von Immorto Growth Medium gegen Fusionsmedium mit 2% 

Pferdeserum konnte vereinzelt eine spontane Fusion der Myoblasten zu Myotuben bei hoher 

Zellkonfluenz beobachtet werden.  

Dazu wurden folgende Myoblasten mit entsprechendem Genotyp erfolgreich isoliert und in 

höheren Passagen kultiviert: 

 

 

Maus-Nummer Vorhandener Genotyp in den Myoblasten 

 Desmingen Immortogen 

Nr. 51 

Nr. 43 

Nr. 21 

Nr. 05 

human p.R350P Knockin homozygot 

human p.R350P Knockin heterozygot 

Knockout homozygot 

- 

heterozygot 

heterozygot 

heterozygot 

homozygot 

Abbildung 51 Genotyp und Bezeichnung der isolierten immortalisierten Mausmyoblasten. 
Das heterozygot vorliegende Transgen H-2Kb-tsA58 gewährleistet eine ausreichende Immortalisierung der 
Zellen und wurde entsprechend bei der Genotypisierung bestätigt (Morgan, Beauchamp et al. 1994). 

 

 

Alle vier Zelllinien wurden unabhängig mit muskelspezifischen Proteinmarkern 

immunfluoreszent gefärbt. Für die Zelllinien Nr. 51, 43, und 05 konnten Desmin, Dysferlin, 

-Actinin und MyoD in den Myotuben nachgewiesen werden, was den myogenen Charakter der 

Zellen bestätigte. Die Desmin Knockout Zelllinie (Nr. 21) besaß, wie erwartet, kein Desmin (siehe 

Abbildung 52). 
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Abbildung 52 Immunfluoreszenzfärbung von immortalisierten Mausmyoblasten und Myotuben. 
Antikörper-Färbung verschiedener isolierter Mausmyoblasten-Linien gegen Marker der myogenen 
Differenzierung: Desmin, Dysferlin, alpha-Actinin und MyoD. Mausmyoblasten mit einem Knockin der 
humanpathogenen R350P Desminmutante in homozygoter und heterozygoter Form konnten zu Myotuben 
differenziert werden. Die Färbung mit den verwendeten muskelspezifischen Proteinmarkern war positiv 
mit Ausnahme von Desmin in der homozygoten Desmin KO-Zelllinie #21. Die Zellkerne sind mit DAPI blau 
gefärbt. Maßstabsbalken50µm. 
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F Diskussion 

1 Einsatz von Far-Red anregbaren Fluorophoren in der SIFT 

Methode 

Desminopathiepatienten mit den untersuchten pathogenen Desminmutationen p.R350P, p.E413K 

und p.R454W tragen neben dem mutierten Allel ein physiologisch funktionelles Wildtyp 

Desminallel. Die Pathomechanismen, die erst in späteren Lebensjahren zur klinischen 

Symptommanifestation führen, konnten bisher noch nicht vollständig geklärt werden. Bereits in 

früheren Veröffentlichungen wurde bei Koexpression von aufgereinigtem Wildtyp Desmin und 

mutiertem Desminprotein ein dominant negativer Einfluss der Mutante gezeigt (Bar, Fischer et al. 

2005, Bar, Mucke et al. 2006, Bar, Goudeau et al. 2007, Bar, Sharma et al. 2009). Die 

Zusammensetzung und molekulare Architektur der beobachteten, pathologischen 

Proteinansammlungen blieb bislang offen.  

Die einfarbige Einzelmolekülfluoreszenzanalyse ist eine gut etablierte Methode zur 

Charakterisierung von einzeln vorliegenden mutierten Desminproteinfilamenten 

und -aggregaten (Levin, Bulst et al. 2010). Um den pathogenen molekularen Mechanismus einer 

heterozygot vorliegenden Desminmutante neben dem funktionellen Wildtyp Desmin besser zu 

verstehen, wurde in dieser Arbeit die Methodik der Einzelmolekülfluoreszenzspektroskopie für 

in vitro Interaktionsanalysen im Zweifarbansatz erweitert. FCS und SIFT detektieren hoch-

sensitiv die entstandenen zweifarbigen Oligomere fluoreszenzmarkierter Proteine. Der dafür 

eingesetzte FCS Reader konnte schon zur Untersuchung des Aggregationsverhaltens von 

aufgereinigten Tau- und Synucleinproteinen eingesetzt werden, die eine zentrale Rolle in der 

molekularen Pathogenese der Alzheimer- bzw. Parkinsonerkrankung spielen (Bieschke, Giese et 

al. 2000, Giese, Bieschke et al. 2000, Giese, Bader et al. 2005). Allerdings wurden bei diesen 

Untersuchungen Fluoreszenzfarbstoff-gekoppelte Antikörper verwendet, um die untersuchten, 

verschiedenen Proteine durch Fluoreszenzanregung bei 488 oder 633 nm sichtbar zu machen. In 

der vorliegenden Arbeit wurde Desmin als Fusionsprotein mit fluoreszenten Proteinen in der 

Zellkultur rekombinant exprimiert und anschließend extrahiert. Der Einsatz von GFP als 

Fluoreszenzmarker wurde bei den bereits erwähnten einfarbigen Filamentcharakterisierungen 

etabliert. Für zweifarbige Einzelmolekülexperimente war neben dem validierten GFP ein Far-Red 

anregbares Fluoreszenzprotein notwendig, das idealerweise gering bleicht, monomer vorliegt 

und die Desminfilamentassemblierung nicht beeinflusst.  
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1.1 PSmOrange 

Das erste in Frage kommende Fluorophor PSmOrange konnte erfolgreich photokonvertiert 

werden, was durch Messungen im Fluorimeter bestätigt wurde. Allerdings musste die 

Laserleistung für eine Photokonvertierung im Vergleich zu den veröffentlichten Daten (Subach, 

Patterson et al. 2011) um fast das 10fache erhöht werden, um ein Fluoreszenzsignal im Far-Red 

Bereich sehen zu können. Eine generell hohe erforderliche Laserleistung lässt sich durch die nicht 

lineare, zweifache Elektronenübertragung erklären. Für die Photokonvertierung von 

exprimiertem PSmOrange in Zellextrakten war in der entsprechenden Vorrichtung ein großes 

Zellvolumen nötig, das bei der anschließenden hochsensitiven SIFT Methode nicht erforderlich 

ist.  

Eine erfolgreich durchgeführte Photokonvertierung von PSmOrange konnte in 

Zebrafischembryozellen mit einem 488 nm Laser und bei 17 bis 18 mW Leistung beobachtet 

werden (Beretta, Dross et al. 2013). Die Photokonvertierung von der orangefarbigen in das Far-

Red anregbare Protein PSmOrange erfolgte nicht wie in der Literatur angegeben bei einer 

Anregungswellenlänge von 480 ± 40 nm, bei der eine maximale Photokonvertierungsrate erreicht 

werden kann, sondern bei einer immer noch ausreichender Wellenlänge von 532 nm, um bei 

kotransfizierten GFP- und PSmOrange-getaggten Desminkonstrukten in Zelllysaten die Gefahr des 

Bleichens von GFP bei 480 nm Anregungswellenlänge über einige Minuten zu vermeiden. Die 

Messungen des photokonvertierten PSmOrange Fluorophors im Insight Reader ergaben eine zu 

geringe Helligkeit (kHz) pro Partikel, sodass die Verwendung für weitere zweifarbige 

Einzelmolekülversuche nicht sinnvoll war (siehe Abbildung 29). Die Messsensitivität von 

fluoreszenten Proteinen in Zelllysaten im FCS -Reader lag ohnehin im unteren Bereich des 

Sensitivitätsspektrums. 

Der zweifarbige Ansatz mit PSmOrange als rotfluoreszierendem Farbstoff für zweifarbige 

Interaktionsstudien wurde aufgrund der zeitaufwändigen Photokonvertierung sowie der 

geringen Helligkeit in der Einzelmolekülanalyse nicht weiter verfolgt.  

1.2 Fehlendes FRET-Potential von mKate2 

Das zweite infrage kommende Far-Red anregbare Fluoreszenzprotein, das dabei nicht direkt mit 

633 nm angeregt, sondern über FRET mittels GFP angeregt werden sollte, war mKate2. Die 

erforderliche geringe Distanz zwischen GFP und mKate2 unter 10 nm für Anregbarkeit über FRET 

ist theoretisch bei regulärer Dimerbildung von Desmin gegeben. Jedoch wurden keine 

differenzierten FRET-Signale erreicht und es stellte sich unerwarteterweise heraus, dass mKate2 

direkt im Bereich von 488 nm angeregt werden konnte. Eine direkte und indirekte Anregung 

konnte nicht mehr unterschieden werden. Ein Interaktionsnachweis von GFP-und mKate2-

getaggtem Desmin rein über FRET war deshalb nicht zielführend. Es konnte daraufhin nur der 

Anteil an zweifarbigen, großen Teilchen bestimmt werden, der keine quantitative, sondern nur 
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eine qualitative Aussage über die Zusammensetzung der Oligomere aus Wildtyp und mutierten 

Desminmolekülen zulässt.  

Ein gelungenes FRET-Experiment bei Brodehl et al .mit dem Fluorophorpärchen eCFP (enhanced 

cyan fluorescent protein) und eYFP (enhanced yellow fluorescent protein) als C-terminale Tags 

an Wildtyp Desmin und Desminmutanten zeigte kotransfiziert FRET-Signale, mit dem Ergebnis, 

dass die Desminfilamente und -aggregate heterogen aus beiden Desminvarianten bestehen 

(Brodehl, Hedde et al. 2012). Reines Wildtyp Desmin bildete Filamente mit unterschiedlicher 

Länge. Kotransfiziert mit den unterschiedlichen pathogenen Desminmutanten ergaben sich FRET 

Signale, die nur bei einer entsprechender Interaktionsnähe von einem Wildtyp-Molekül mit einem 

mutiertem Desminmolekül entstehen können. Mutiertes Desmin verhinderte je nach Mutation 

teilweise oder ganz einen funktionellen Filamentaufbau (Brodehl, Hedde et al. 2012). 

2 Verwendete Zellsysteme 

Eine homozygote Transfektion von Desmin in verschiedenen Zellsystemen als in vitro Modell 

entspricht nicht der heterozygoten in vivo Situation in betroffenen Patienten. Um den hetero-

zygoten Zustand in vitro kontrolliert nachzuahmen, musste Wildtyp Desmin endogen oder 

extrinsisch kotransfiziert neben dem mutierten Desmin vorhanden sein. Für eine Reihe von 

Desmin-Filamentuntersuchungen wurden überwiegend Mausmyoblasten (C2C12, C2.7), MCF-7 

Zellen (humane Brustkrebszellen) und SW-13-Zellen (humane Adenokarzinomzellen) verwendet, 

wobei MCF-7 und SW-13 Vimentin-negativ sind (Goudeau, Dagvadorj et al. 2001, Klauke, 

Kossmann et al. 2010, Segard, Delort et al. 2013). SW-13-Zellen sind ein ideales Zellkultursystem, 

um zu untersuchen, ob mutierte IF-Proteine physiologisch-funktionelle Filamente ausbilden 

(Munoz-Marmol, Strasser et al. 1998, Dalakas, Park et al. 2000). 

Es wurde in dieser Arbeit versucht, von dem bereits etablierten Ansatz von Levin et al. 

abzuweichen, in welchem die Desminfilamente sowohl in SW-13 als auch in HEK293-Zellen 

beschrieben und verglichen wurden. So sollte die zelluläre mit der molekularen 

Desminfilamentbildung in einem einzigen Zellsystem verglichen werden. Die 

fluoreszenzmikroskopische Auflösung der IF-Filamente erwies sich im HEK293-Zellkultur-

system aufgrund der kleineren Zellgröße als zu gering und erschwerte die Beurteilung der 

rekombinanten Filament- und Aggregatspezies. Deshalb wurden Proteinextrakte von SW-13-

Zellen in der konfokalen Einzelmolekülspektroskopie vermessen. Jedoch befanden sich zu wenig 

messbare Fluoreszenzproteine in einem SW-13-Zelllysat, sodass der bewährte Vergleich der 

Desminfilamente auf zellulärer und molekularer Ebene zwischen SW-13- und HEK293-Zellen 

fortgesetzt wurde.  

Die hier verwendeten Zellen für die zellulären, bildgebenden Daten waren SW-13-Zellen, da diese 

kein endogenes Desmin und ein vergleichsweise größeres Cytoplasma mit einer besseren 

Filamentauflösung besaßen. Für die molekularen Daten wurden HEK293-Zellen verwendet, da 
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sich diese bereits in der Fluoreszenz-Korrelations-Spektroskopie bewährt hatten und die 

ausgewerteten Daten sich mit den Filamentbildungen aus den Fluoreszenzmikroskopiebildern 

deckten (Levin, Bulst et al. 2010). In anderen publizierten Arbeiten wurden HEK293-Zellen auch 

als stabil transfizierte Zelllinien eingesetzt, um das Aggregationsverhalten verschiedener 

Desminmutanten zu charakterisieren (Wang, Klevitsky et al. 2003, Liu, Chen et al. 2006).  

Für die Einzelmolekülanalysen von aggregierten Proteinen, die eine wichtige Rolle bei 

neurodegenerativen Erkrankungen wie Morbus Parkinson oder Morbus Alzheimer spielen, wurde 

aufgereinigtes Protein verwendet, das mit AlexaFluor-gekoppelten Antikörpern 

fluoreszenzmarkiert wurde. Im Gegensatz zu den mit Antikörpern markierten Proteinen besitzt 

ein Fluoreszenzproteinfusionskonstrukt konstant einen Fluorophor, sodass ein detektiertes 

Fluoreszenzsignal auch einem Desminmolekül entspricht. Generell liegt die Messsensitivität von 

nicht-aufgereinigten Proteinen, die aus Gesamtzelllysaten stammen und neben unspezifischen 

Zellbestandteilen vorliegen, im unteren Detektionsbereich z.B. bei der Einzelmolekül-

spektroskopie.  

3 Überprüfung der quantitativen Proteinexpression 

Die rekombinante Proteinexpression der transient transfizierten Zelllinien HEK293 und SW-13 

wurde mit Hilfe von Western-Blots überprüft und densitometrisch über ImageJ semiquantitativ 

bestimmt. Generell ist die Quantifizierung über Western-Blot von mehreren Faktoren abhängig 

und kann eine hohe Schwankungsbreite bei multiplen unabhängigen Experimenten ergeben: Die 

eingesetzten primären und sekundären Antikörper können unterschiedlich spezifisch binden, 

was sich wiederum in der Fläche der detektierten Banden bemerkbar macht. Die Qualität der 

Zelllyse kann trotz gleicher Durchführung unterschiedlich effizient sein, was die extrahierte 

Proteinmenge von der Lyseart und Lysequalität abhängig macht.  

Im Western-Blot konnte bei beiden Zelllinien gezeigt werden, dass die Expression der 

Fusionsproteine Desmin-GFP und Desmin-mKate2 in einer ähnlichen Größenordnung, aber 

generell niedriger als bei Desminkonstrukten ohne fluoreszentes Proteintag ist. Diese 

Gegebenheit lässt sich möglicherweise durch eine gewisse Zelltoxizität der Fluorophore erklären: 

Bei Liu et al. wurden vier unterschiedlichen Zelllinien, die mit GFP transfiziert wurden, in einem 

Zeitraum von 96 h beobachtet. Interessanterweise fand sich eine Apoptoseinduktion durch GFP 

(Liu, Jan et al. 1999). Dieser Zusammenhang zwischen der GFP Expression und der Zellapoptose 

konnte auch beobachtet werden, als GFP intensiv über einen längeren Zeitraum in lebenden Zellen 

angeregt wurde und sich toxische Radikale bildeten (Clontech 2001). Bei mKate2 wurde noch 

keine Zelltoxizität in vitro nachgewiesen. Der Hersteller des Fluorophors schließt allerdings eine 

niedrige Toxizität in lebenden Zellen nicht aus (Shcherbo, Murphy et al. 2009). 

Die quantitative Expression von rekombinant überexprimierten Proteinen in Zelllysaten nach 

Auftrennung über SDS-PAGE kann auch über eine Coomassie Färbung des Proteingels 
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nachgewiesen werden. In der vorliegenden Arbeit konnten jedoch die entsprechenden 

Proteinbanden nicht eindeutig den Fluorophoren bzw. den Fusionskonstrukten zugeordnet 

werden, da sich die gesuchte Bande im Vergleich zur Mock-transfizierten Kontrolle nicht durch 

vermehrte Intensität aus dem Bandenmuster des Hintergrunds hervorhob. 

Der Proteinexpressionsnachweis über Western-Blot ergab Proteinbanden auf der zu erwartenden 

Höhe des bekannten Molekulargewichts. Es wurden keine unspezifischen Proteinbanden 

angefärbt, was möglicherweise auf proteolytisch abgebaute oder modifizierte Proteine hinweisen 

könnte.  

Vergleicht man die Expressionsrate von Desminproteinen in den SW-13-Zellen (siehe Abbildung 

36 und Abbildung 37), so zeigte sich eine signifikante Diskrepanz zwischen ungetaggtem Desmin 

und Desmin-mKate2 sowohl beim Wildtyp als auch bei den Mutanten. Möglicherweise lässt sich 

dieser Expressionsunterschied damit erklären, dass die Proteine auf zwei unterschiedlichen 

Nitrozellulose-Membranen aufgetrennt und miteinander verglichen wurden. Quantitativ fand 

sich jedoch kein Expressionsunterschied der Desmin-mKate2-Konstrukte in den vier 

untersuchten SW-13-Zellextrakten. 

In den HEK293-Zelllysaten konnten keine signifikant abweichenden Proteinexpressionen 

zwischen Desmin und Desmin-GFP bzw. Desmin-mKate2 gezeigt werden. Die leichte Abweichung 

im Expressionsniveau der getaggten Desminkonstrukte lässt sich möglicherweise durch die 

zeitintensivere Translation der längeren Fusionsproteine begründen, sodass deren Expression 

nach einer gewissen Zeitspanne geringer ausfällt. 

4 Qualitative und quantitative Interaktionsanalysen 

Die Charakterisierung von zweifarbigen, nativ vorliegenden Desminfilamenten auf zellulärer und 

molekularer Ebene stieß durch mehrere Aspekte an ihre Grenzen: Der Vergleich von 

funktionellem Desmin mit den drei mutierten Desminformen R350P, E413K und R454W, 

hinsichtlich zellulärem und molekularem Verhalten konnte trotz Optimierung der 

Transfektionsrate nicht aus den gleichen Zelllinien erfolgen, sondern es wurde für die 

bildgebende Darstellung SW-13 und für die einzelmolekularen Analysen HEK293-Zellen 

verwendet. Die geeigneten Fluoreszenzproteinpärchen für einen rot-grünen Interaktionsansatz 

stellten sich im Verlauf des Projekts als wenig geeignet dar, um die Architektur von zweifarbig 

markierten Filamenten detaillierter zu beschreiben und konnten deshalb nur begrenzt eingesetzt 

werden. Die Adaption der Einzelmolekülanalyse im FCS Reader an Zelllysaten erreichte ihre 

Grenzen bezüglich der Messsensitivität, da die Desminaggregationsrate und somit die Anzahl an 

detektierbaren Teilchen gering ist. Zudem musste das Signal stark genug sein, um es aus dem 

hohen Hintergrundrauschen filtern zu können. 
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4.1 Konventionelle Mikroskopie 

Da in dieser Arbeit von ca. zwanzig Zellen die nativ vorliegenden Desminassemblierungen bzw. -

aggregate bei koexistierenden Wildtyp Desmin und mutiertem Desmin dokumentiert wurden, 

können die vier ausgewählten Zellen in Abbildung 43-46 als repräsentativ angesehen werden. Im 

Folgenden werden die Desminmutante und die Wildtypform ohne ihre Fluorophortags benannt, 

da außer bei der Kotransfektion E413K mit Wildtyp Desmin kein beträchtlicher Unterschied der 

Koassemblierung bei verschieden markierten Proteinen beobachtet werden konnte. 

Der Einfluss der mutierten Desminspezies auf das funktionelle Wildtyp-Desmin konnte vor allem 

bei R350P Desmin und E413K Desmin offensichtlich erkannt werden, ungeachtet dessen, mit 

welchem Fluorophor es markiert vorlag: Bei Kopolymerisation von Wildtyp Desmin mit R350P 

Desmin lagen keine funktionellen, über das ganze Cytoplasma verteilten Desminfilamente mehr 

vor, sondern zweifarbige, kolokalisierte Aggregate neben Filamentbruchstücken. Die 

Filamentassemblierung unterschied sich bei heterozygot transfizierten Mutanten zur 

homozygoten Variante, wobei bei homozygoter Transfektion ausschließlich große Aggregate 

vorzufinden waren. Diese neue Erkenntnis bei der Mutante R350P deckt sich mit dem 

postulierten Modell von Brodehl et al. und würde dem schematischen Modell C entsprechen, bei 

welchem im Wildtyp Desmin-Netzwerk mutierte Desminmoleküle inkorporiert vorliegen (siehe 

Abbildung 53). Die heterogenen zellulären Resultate, wie sie bei R350P Desmin vorkommen, 

können den variablen Phänotyp der Erkrankung innerhalb einer betroffenen Familie mit 

R350P Desminmutation in vivo entsprechen. 

E413K Desmin-mKate2 aggregierte mit Wildtyp Desmin-GFP ebenfalls in Proteinansammlungen, 

allerdings lagen diese punktförmig und gering größenverteilt vor. Eine Kolokalisation konnte 

auch hier bestätigt werden. Demnach müsste diese Mutante dem Schemata B aus Abbildung 53 

entsprechen, da keine filamentartigen Strukturen zu beobachten waren. Bei der umgekehrten 

Markierung mit E413K Desmin-GFP und Wildtyp Desmin-mKate2 ergaben sich neben Aggregaten 

auch flächige Filamente, die nur aus Wildtyp Desmin-mKate2 bestanden und die Aggregate 

umgaben. Die Aggregate selbst bestanden sowohl aus grünmarkiertem E413K Desmin als auch 

aus rotmarkiertem funktionellem Wildtyp Desmin. Möglicherweise hatte bei dieser Kombination 

von E413K-Desmin und Wildtyp Desmin der Fluorophortag mit einer Größe von ca. der Hälfte des 

Molekulargewichts von Desmin einen Einfluss auf die Assemblierung.  

R454W-Desmin zeigt keinen zellulären Einfluss auf die Assemblierung des IF-Proteins, da 

kotransfiziert mit Wildtyp Desmin ausgeprägte IF-Filamente über das ganze Cytoplasma verteilt 

vorlagen. Diese Mutante wurde ebenfalls bei Brodehl et al. hinsichtlich der Interaktion mit 

Wildtyp Molekülen untersucht. Die Arbeitsgruppe kam ebenfalls zu dem Ergebnis, dass die 

Mutante R454W-Desmin keinen fluoreszenzmikroskopisch fassbaren Einfluss auf die 

Filamentbildung hat und zusammen mit den Wildtyp Desminmolekülen im Filamentnetzwerk 



Diskussion   96 

koassembliert (Modell A Abbildung 53). Allerdings konnte auf molekularer Ebene ein geringerer 

Anteil an physiologisch interagierenden Desminteilchen im Vergleich zu Wildtyp Desmin 

detektiert werden. 

Bei Brodehl et al. konnte mit anderen pathogenen Desminmutanten, die mit Wildtyp Desmin 

kotransfiziert wurden, auch eine Mischform aus den einzelnen postulierten 

Assemblierungsmodellen A-C gezeigt werden. Bei den in dieser Arbeit untersuchten Desmin-

Punktmutanten konnte dies nicht beobachtet werden, sondern die IF-Assemblierungen lagen 

konsistent, weitgehend wie in den Abb. 47-50 repräsentativ gezeigten Zellen vor.  

 

 

Abbildung 53 Vergleichendes Modell der Filament- und/oder Aggregatbildung bei homozygot und 
heterozygot transient transfizierten Desminmutanten in Kulturzellen. 
Brodehl et al. postulieren, dass bei heterozygot transfiziertem Desmin-Genotyp die Desminfilamente anders 
assemblieren als bei homozygot vorliegenden Desminmutanten. Die Auswirkungen bei Koexpression der 
Desminmutante können folgendermaßen beobachtet werden: A Reine Filamentbildung, Inkorporation von 
mutierten und Wildtyp-Molekülen in die gleichen Filamente. B Nur Aggregate entstehen, die aus gemischten 
Wildtyp- und mutierten Molekülen bestehen. C Aggregate und Filamente werden von kolokalisierten 
mutierten und Wildtyp-Desminmolekülen in einer Zelle gebildet. D Aggregate und Filamente befinden sich 
gleichzeitig in derselben Zelle, Wildtyp-Desmin bildet Filamente und mutiertes Desmin liegt unabhängig 
davon in Aggregaten vor. Die hier untersuchten Desminmutanten sind mit Kardiomyopathien assoziiert 
(Brodehl, Hedde et al. 2012). 

 

 

In der Zeitverlaufsanalyse beobachteten wir 8 h nach Transfektion der SW-13-Zellen mit Wildtyp 

Desmin-GFP und mutiertem Desmin-mKate2 eine Lokalisation der fluoreszenzmarkierten 

Proteine um den Zellkern. Dies spricht für eine Aufnahme der DNA über Endo- und Lysosomen, 

jedoch gegen eine frühe Proteinsynthese in den Ribosomen (Coonrod, Li et al. 1997). Nach 24 h 

wurden die Filamente noch nicht vollständig in ihrer Größe gebildet. Erst nach 48 h konnten 
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komplett ausgereifte Filamente und Aggregate beobachtet werden. Eine Inkorporation von 

Wildtyp Desmin in das mutierte Desmingerüst konnte zu allen Zeitpunkten beobachtet werden, 

auch noch 96 h nach Transfektion. 

4.2 Quantitative SIFT Analyse 

Der heterogene, pathogene Molekularmechanismus von mutiertem Desmin konnte noch nicht 

geklärt werden. Ein dominant negativer Effekt der drei untersuchten Desminmutanten R350P, 

E413K und R454W auf das funktionelle Desminnetzwerk konnte bereits im Elektronenmikroskop 

bewiesen werden. Allerdings wurden hier aufgereinigte Proteine untersucht, bei denen die 

physiologischen, umgebenden Zellbedingungen fehlten. Deshalb wurden in dieser Arbeit Zellen 

ohne endogenes Desmin verwendet, die Desmin transient exprimieren.  

Das Desminfilament stellt ein komplexes Geflecht dar, das die Muskelfasern in quergestreiften 

Muskelzellen organisiert. Um die veränderte molekulare Beschaffenheit des Filamentnetzwerks 

bei vorliegendem mutierten Desminprotein in Anwesenheit von funktionellem Wildtyp Desmin 

beschreiben zu können, wurden die rot und grün fluoreszenzmarkierten Desminformen in vitro 

exprimiert und in der Einzelmolekülanalyse im Hochdurchsatzverfahren untersucht. Eine 

Aussage über die detaillierte Architektur von entstandenen Desminfilamenten und –aggregate 

konnte jedoch nicht getroffen werden. Die verwendeten Fluorophore mKate2 und PSmOrange 

lieferten in Anwesenheit von GFP nicht auswertbare Daten: PSmOrange zeigte eine zu geringe 

Partikelhelligkeit wie auch mKate2, das sowohl direkt als auch indirekt über FRET wenig angeregt 

werden konnte. Die roten Fluorophor erwiesen somit eine limitierte Anwendung in der 

Einzelmolekülspektroskopie auf. Zudem stieß die Methodik an ihre Grenzen, da zu wenig 

detektierbare Aggregate in einem Zelllysat bei ebenso geringer Transfektionsrate vorhanden 

waren. Der Anteil der interagierenden großen Desminmoleküle an der Gesamtzahl der 

detektierten Teilchen konnte allerdings über die Einzelmolekülanalyse bei rotgrüner 

Fluoreszenzanregung bestimmt werden (siehe Abbildung 42). 

Wildtyp Desmin zeigte den höchsten Anteil mit 17,73% an interagierenden Teilchen. Dies spricht 

für das Vorliegen von funktionellem Desmin als ausgebildete Filamente mit hoher molekularer 

Interaktion von farblich unterschiedlich markierten Molekülteilchen. Außerdem scheint die 

Architektur geordneter zu sein, da der Anteil an zweifarbigen Spezies hier am höchsten war. 

R350P Desmin zeigte den geringsten Anteil mit 3,70%. Der geringe Anteil erklärt das 

überwiegende Vorliegen von pathologischen Aggregaten, bei dem mutierte Desminpartikel kaum 

mit Wildtyp Desminteilchen interagieren. Die beobachteten Filamentbruchstücke von R350P 

Desmin mit Wildtyp Desmin in SW-13-Zellen scheinen aus wenig koassemblierten R350PDesmin 

und Wildtyp zu bestehen, da sonst der zweifarbige Anteil an großen Molekülen höher wäre.  

E413K Desmin-mKate2 und Wildtyp Desmin-GFP hatten einen Anteil an zweifarbig 

interagierenden größeren Molekülen von 5,30%. Der etwas erhöhte Wert gegenüber R350P 
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Desmin lässt sich durch das reine Vorliegen von zweifarbigen, kolokalisierten Aggregaten 

erklären. Dies lässt auf mehr Interaktionspotential zwischen der Mutante E413K und der 

Wildtypform des Desminproteins schließen. 

Den am wenigsten ausgeprägten Phänotyp hinsichtlich der klinischen, zellulär filamentösen und 

molekularen Beschaffenheit besitzt p.R454W Desmin. In Anwesenheit von 50% Wildtyp 

Desminmolekülen assemblierte R454W Desmin nach wie vor zu einem Filamentnetzwerk, 

allerdings zeigt sich, molekular betrachtet, bei der Anteilsbestimmung der interagierenden 

zweifarbigen großen Partikel ein Unterschied zu reiner Wildtyp -Filamentbildung: Der errechnete 

Wert war bei 7,62% und lag somit signifikant unter dem Wert von Wildtyp Desmin. Dies spricht 

für das Vorliegen physiologischer Assemblierungen, jedoch in geringerer Menge. Der schwache 

Einfluss auf die Filamentbildung könnte durch ein geringeres Expressionsniveaus der 

Desminmutante oder durch eine zellprotektiven Funktion von Chaperonen erklärt werden (Bar, 

Goudeau et al. 2007). Generell spricht der geringere prozentuale Anteil der zweifarbigen großen 

Partikel bei den kotransfizierten Desminmutanten für eine geringere Ordnung der Filamente. 

5 Möglicher Einsatz der immortalisierten Mausmyoblasten 

Die isolierten Mausmyoblasten aus Desmin defizienten (-/-) Mäusen wie auch aus Mäusen mit 

einem Knockin der humanpathogenen R350P Desminvariante (heterozygot, homozygot) können 

aufgrund eines eingebauten Immortalisierungsgens in den Mäusen zeitlich relativ unbegrenzt in 

Kultur gehalten werden. Dieses immortalisierende Gen H-2Kb -tsA58 (thermolabile mutierte Form 

vön Simian Virus 40 (SV40) „large T Antigen“ mit einem Interferön-induzierbaren murinen H-2Kb 

Promotor) unterdrückt zum größten Teil das Tumorsupressorprotein p53, wodurch keine 

geregelten Zellzyklen mehr ablaufen können. Im Gegensatz dazu können sich normalerweise 

primäre Muskelzellen 10-30 mal in vitro verdoppeln (Hauschka, Linkhart et al. 1979). 

Ähnlich den p53 defizienten Fibroblasten, wird die Zellseneszenz nicht erreicht und die G1-Phase 

des Zellzyklus blockiert. Bei einem p53 Knockout von Mausfibroblasten wurden Passagen 

erreicht, die über den Wert 50 hinausgingen (Harvey, Sands et al. 1993). 

Die Immortomäuse® zeigten über das Projekt hinweg eine gute Lebensfähigkeit, allerdings mit 

einer eingeschränkten Fertilität der Weibchen. Dieses Phänomen konnte auch bei p53 defizienten 

weiblichen Mäusen beobachtet werden, die Tumorwachstum nach einer gewissen Lebensdauer 

zeigten (Donehower 1996). 

Morgan et al. erzeugten bereits 1994 konditionell immortalisierte myogene Zelllinien mit einem 

Dystrophin-Defizit (Morgan, Beauchamp et al. 1994). Muses et al. hatten es sich 2011 zur Aufgabe 

gemacht, stabil transfizierbare und aus Stammzellen gewonnene murine Zelllinien mit dem 

Immortogen H-2Kb-tsA58 zu etablieren. Die daraus entstandene Dystrophin-defiziente Zelllinie 

H2K 2B4 soll als Vorteil einen umfangreicheren Charakter als Muskelstammzellen gegenüber der 

proliferierten, myogenen Zelllinie von Morgan et al. besitzen (Muses, Morgan et al. 2011).  
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Neben myogenen immortalisierten H-2Kb-tsA58 Zellen konnten aus der Immortomaus® u.a. auch 

Hepatozyten, Stromazellen, epitheliale Zellen und Osteoklasten-Vorläuferzellen isoliert werden 

(Chambers, Owens et al. 1993, Rops, van der Vlag et al. 2004, Matsuo, Koizumi et al. 2006, Amano, 

Handa et al. 2011, Istvanffy and Oostendorp 2013). 

Die steuerbare Differenzierung von Myoblasten zu Myotuben durch Austausch des 

Wachstumsmediums gegen ein Fusionsmedium (DMEM mit 5% Pferdeserum ohne IFN), konnte 

in der vorliegenden Arbeit nicht beobachtet werden (Muses, Morgan et al. 2011). Es wurde eher 

eine sporadische und spontane Fusionierung beobachtet. So stellt sich die Frage, ob der 

ausgehende Membrandefekt in den isolierten immortalisierten Dystrophin defizienten 

Myoblasten für eine Differenzierung zu Myotuben von Vorteil ist. Dafür spricht, dass bei der 

myogenen Differenzierung normalerweise eine regulierte Verminderung eines 

membranständigen Proteins (αVβ3 Integrin) auftritt. Dagegen konnte gezeigt werden, dass eine 

Induktion von Dysferlin durch Dexamethason die Mausmyoblastenfusion in vitro verbessert 

(Blaschuk, Guerin et al. 1997, Belanto, Diaz-Perez et al. 2010).  

Möglicherweise sind die isolierten murinen Desmin-defizienten und R350P Desmin Knockin 

Myoblasten in einem späteren myogenen Zellstadium, in dem sie nur bei einer gewissen Zelldichte 

zu mehrkernigen Myotuben fusionieren. 

Durch simultane Transduktion von humanen Myoblasten mit Telomerase- und CDK4- (Cyclin 

abhängige Kinase 4) exprimierenden viralen Vektoren konnten Muskelstammzellen aus Patienten 

mit verschiedenen neuromuskulären Krankheiten immortalisiert werden, die ähnlich lang in 

Kultur gehalten werden konnten wie die hier entstandenen H-2Kb-tsA58 immortalisierten 

Mausmyoblasten (Mamchaoui, Trollet et al. 2011). 

Bei diesen Myoblasten könnte für eine Ausdifferenzierung zu Myotuben eine Transduktion mit 

MyoD-exprimierenden Viren hilfreich sein, die die myogene Differenzierung induzieren können 

(Lattanzi, Salvatori et al. 1998, Larsen, Pettersson et al. 2011). Über das temperaturabhängige 

large T Antigen könnte ebenso die Zelldifferenzierung kontrolliert und verbessert werden 

(Langley, Ramirez et al. 2003). 

Die murinen Myoblasten mit dem Desmin Knockout könnten künftig experimentell als neues 

Zellkulturmodell einsetzt werden, wenn endogenes Desmin ausgeschlossen sein soll, aber 

myogene Eigenschaften erforderlich sind. Eine transiente Transfektion ist bei dieser Zelllinie 

möglich. Mason et al konnten bei immortalisierten, kardialen Endothelzellen eine Transfektions-

rate von 40% erreichen (Mason 2001). Das etablierte murine Desmin Knockout Zellkulturmodell 

könnte künftig auch für Studien der myogenen Differenzierung in vitro genutzt werden oder für 

Interaktionsstudien von kotransfizierten humanen Desmin-Varianten mit Kofaktoren während 

der Myoblastenproliferation oder Myotubendifferenzierung. 



Fazit und Ausblick   100 

G Fazit und Ausblick 

Die Charakterisierung der pathologischen molekularen Mechanismen parallel zu zellulären 

Phänotypen bei heterozygoten Desminmutation in vitro trägt zum Grundverständnis der Patho-

genese von Desminopathien bei. Um die Fragen zu beantworten, welche pathogene Rolle 

mutiertes Desminprotein in der Zelle spielt und wie es sich auf funktionelles Wildtyp-Desmin 

auswirkt, wurden Koassemblierungsanalysen durchgeführt, die neue Erkenntnisse brachten: Das 

eingesetzte rote fluoreszente Protein zeigte sich erst im Verlauf der Experimente in der 

Einzelmolekülanalyse als weniger geeignet, um die molekulare Architektur bei koexistierenden 

Wildtyp- und mutierten Desminproteinen zu beschreiben. Vielmehr müsste dafür ein anderes, 

besser geeignetes Fluorophor, insbesondere mit höherer Quantenausbeute eingesetzt werden, 

um signifikante Aussagen treffen zu können. Dagegen konnte die Interaktion der einzelnen 

untersuchten humanpathogenen Mutanten mit funktionellem Wildtyp-Desmin in der 

Einzelmolekülspektroskopie charakterisiert werden, die sich jeweils quantitativ unterschied. Die 

gewonnenen Erkenntnisse deckten sich mit den entsprechenden mikroskopischen Daten, die bei 

den Mutanten eine variable Filamentbildung oder Aggregation zeigten. 

Die Einzelmolekülspektroskopieanalyse hat sich in den letzten Jahren als wichtige 

Hochdurchsatzmethode für die Untersuchung des molekularen Pathomechanismus von Faktoren 

durchgesetzt, die mit pathologischer Proteinaggregation bei neurodegenerativen Erkrankungen 

assoziiert sind. Es zeigte sich in der vorliegenden Arbeit, dass die Messung von nicht-

aufgereinigten Desminproteinen in Zelllysaten in der Einzelmolekülspektroskopie zur Analyse 

einzelner molekularer Partikel an die Grenzen der Messsensitivität und Datenauswertbarkeit 

stieß. Die Verwendung aufgereinigter Proteinspezies könnte die Aussagekraft der 

Interaktionsexperimente künftig verbessern. 

Des Weiteren wäre dann auch ein effektives Screening von potentiellen antiaggregativen 

Substanzen mit Hilfe der Einzelmolekülspektroskopie denkbar. So könnten Subtanzen funktionell 

getestet werden, die gezielt pathologische Proteinoligomere auflösen können (Fiorino, Eiden et 

al. 2012). Entsprechende translationale Therapiekonzepte zur Anwendung am Patienten liegen 

aber noch in weiter Ferne. 

Über Lasermikrodissektion konnten Proteine in den MFM assoziierten Proteinaggregaten im 

Skelettmuskel identifiziert werden, die am Proteinabbau (Ubiquitin-Proteasom-System, 

Autophagie) beteiligt sind. Die Dysfunktion in der Proteinqualitätskontrolle und des 

Proteinabbausystems über das UPS und den Autophagieweg scheinen eine wichtige pathogene 

Rolle bei allen Formen der Myofibrillären Myopathien zu spielen (Kley, Maerkens et al. 2013). Ein 

Eingriff in fehlregulierten Proteinqualitätskontrollsystemen könnte eine weitere 

Therapiemöglichkeit darstellen. So zeigte eine Überexpression des Proteins Bcl-2 in Mäusen eine 

physiologische Verbesserung bei Desmin-assoziierten Kardiomyopathien (Weisleder, Taffet et al. 
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2004). Die Induktion von molekularen Chaperonen, wie Hitzeschockproteinen, könnte ein 

innovativer therapeutischer Ansatz sein, der die Qualitätskontrollmechanismen unterstützt und 

antiaggregativ wirkt. (Co-) Inducer von Hitzeschockproteinen wie z. B. Arimoclomol wirken auch 

gegen zusätzliche pathologische Mechanismen wie oxidativen Stress (Kalmar, Lu et al. 2014). 

Um die frühen Phasen der Krankheit zu untersuchen, ist es essentiell, weitere Mausmodelle zu 

generieren, die die pathogene Desminmutationen im Genom anstelle des Wildtyp-Allels tragen 

und deren Pathophysiologie relevant für die humane Pathogenese ist. Über einen Gentransfer 

oder über den Virus-vermittelten Einbau von Desminmutationen könnten solche Mausmodelle 

mit jeweiliger Desminmutante entstehen (Kostareva, Sjoberg et al. 2008, Joanne, Chourbagi et al. 

2013). Tiermodelle, die möglichst genau die humane Pathophysiologie abbilden, sind von sehr 

großer Bedeutung, um in präklinischen Studien relevante Aussagen über den Nutzen neuerer 

translationaler Therapiestrategien zu treffen und eine Verbesserung der Lebensqualität der 

betroffenen Patienten zu erreichen. 
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I Anhang 

1 Abkürzungsverzeichnis 

Abkürzung Bedeutung 

Abb. Abbildung 

BAG3 Bcl-2 Associated Athanogene 3 

Bcl-2 B-Zellenlymphom 2 

bp Basenpaar/e 

bzw. beziehungsweise 

Bsp. Beispiel 

°C Grad Celsius 

ca. circa 

Ch1, Ch2 Kanal 1, Kanal 2 

CK Creatin-Kinase 

cm Zentimeter 

COX Cytochrom C Oxidase 

CO2 Kohlenstoffdioxid 

cpp Counts per particle 

DAPI 4',6-Diamidino-2-phenylindol 

Des Desmin 

DMEM

  

Dulbeccö’s Mödified Eagle Medium 

DNA Deoxyribonucleic acid (Desoxyribonukleinsäure) 

dNTP Desoxynukleosid-Triphosphat 

DTT Dithiothreitol 

EBS-MD Epidermolysis bullosa simplex mit Muskeldystrophie 

ECL Enhanced Chemiluminescene 

EDTA Ethylendiamin-Tetraacetat 

EM Elektronenmikroskopie 

EtOH Ethanol 

1K FIDA One component fluorescence intensity distribution analysis 

2K FIDA Two components fluorescence intensity distribution analysis 

FCS Fluorescence-correlation-spectroscopy 

FCS Fetal Calf Serum 

FHL1 Four and a half LIM Domain Protein 1 

fl Femtoliter 
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Abkürzung Bedeutung 

FLN C Filamin C 

FRET Förster Resonanz Energie Transfer 

GAPDH Glycerinaldehyd-3-Phosphat-Dehydrogenase 

h Stunde 

HCl Salzsäure 

H&E Hämatoxylin und Eosin 

HRP Horseradish Peroxidase 

HMERF Hereditäre Myopathie mit früher respiratorischer Insuffizienz 

IF Intermediärfilament/e 

IF Immunfluoreszenz 

IFN Interferon gamma 

IHC Immunhistochemie 

Itot Gesamthelligkeit [kHz] 

kb Kilobasen 

kDa Kilodalton 

kHz Kilohertz 

KI Knockin 

KO Knockout 

LMU Ludwig-Maximilians-Universität 

M Mol [mol/l] 

MFM Myofibrilläre Myopathie 

mg/ml Milligramm pro Milliliter 

MHC Major Histocompatibility Complex 

ml Milliliter 

min Minute(n) 

mM millimolar 

mut mutiert 

MW Molecular weight 

µg Mikrogramm 

µm Mikrometer 

µW Mikrowatt 

NADH-TR Nicotinamid-Adenin-Dinukleotid Tetrazolium Reduktase 

nm Nanometer 

ns Nanosekunde 

NaCl Natriumchlorid 
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Abkürzung Bedeutung 

PAGE Polyacrylamidgelelektrophorese 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction (Polymerase-Ketten-Reaktion) 

Pen Penicillin 

PFA Paraformaldehyd 

RIPA Radioimmunoprecipitation assay 

RNA Ribönucleic acid (Ribönukleinsa ure) 

rpm Rötatiöns per minute 

RT Raumtemperatur 

SDH Succinat-Dehydrogenase 

SDS Sodium dodecyl sulfate 

sec Sekunde(n) 

SIFT 2D Scanning för intensely fluörescent targets twö dimensiön 

Strep Streptömycin 

SV40 Simian Virus 40 

Tab. Tabelle 

TBST Tris buffered saline with Tween 

Tg Transgen 

Tris Tris-(hydroxymethyl)-aminomethan 

u.a. unter anderem 

UK United Kingdom 

ULF Unit length filaments 

UPS Ubiquitin-Proteasom-System 

USA United States öf America 

u.v.m. und viele(s) mehr 

V Völt 

WB Western-Blot 

wt Wildtyp 

W/cm2 Watt pro Quadratzentimeter 

ZASP Z-band Alternatively Spliced PDZ-motif Protein/LDB3 

z.B. zum Beispiel 

z.T. zum Teil 
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2 Antikörper 

 

Antigen  Produktbezeichnung Wirts-

spezies 

Klon Produktnr. Hersteller Verdünnung 

Primäre Antikörper 

Actinin 

Monoclonal Anti-α-Actinin 

(Sarcomeric) antibody 

produced in mouse 

Maus monoclonal 

 

A7811 Sigma-

Aldrich 

IF 1:100 

Desmin 
Monoclonal Mouse anti-

Human Desmin 

Maus Monoclonal M 0760 DAKO IF 1:100 

Desmin 
Desmin antibody Kaninchen Polyclonal 4024 Cell 

Signaling 

WB 1:100 

IF 1:25 

Dysferlin Dysferlin antibody Kaninchen Polyclonal GTX15108 Genetex IF 1:50 

GAPDH 

Anti-Glyceraldehyde-3-

Phosphate Dehydrogenase 

Antibody 

Maus Monoclonal MAB374 Millipore WB 1:500 

GFP Anti-GFP antibody Kaninchen Polyclonal ab6556 Abcam WB 1:1000 

MyoD MyoD antibody (M-318) Kaninchen Polyclonal sc-760 Santa Cruz  

t-RFP Anti-tRFP antibody Kaninchen Polyclonal AB234 evrogen WB 1:1000 

Sekundäre Antikörper 

Maus 
anti-mouse HRP Ziege Polyclonal 115-035-

146 

dianova WB 1:15000 

Maus 

IgG/M/A 

Rabbit Anti-Mouse 

Immunoglobulins/HRP 
Kaninchen 

Polyclonal P0260 Dako WB 1:10000 

Kaninchen 
Anti-rabbit IgG, HRP-

linked Antibody 

Ziege Polyclonal 7074 Cell 

Signaling 

WB 1:5000 

Maus IgG 

Alexa Fluor® 488 F(ab')2 

Fragment of Goat anti-

Mouse IgG (H+L) 

Ziege  A-11017 Invitrogen IF 1:500 

Kaninchen 

IgG 

Alexa Fluor® 488 Goat 

anti-Rabbit IgG (H+L) 

Ziege  A-11008 Invitrogen IF 1:500 

Maus IgG 

Alexa Fluor® 594 Goat 

anti-Mouse IgG (H+L), 

highly cross-adsorbed 

Ziege  A-11032 Invitrogen IF 1:500 

Kaninchen 

IgG 

Alexa Fluor® 594 Goat 

anti-Rabbit IgG (H+L) 

Ziege  A-11012 Invitrogen IF 1:500 

http://www.abcam.com/gfp-antibody-ab6556.html
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3 Stammbäume der transgenen Mäuse 

Aus der Verpaarung von transgenen Mäusen mit Immortomäusen® gab es relevante 

Nachkommen, aus denen immortalisierte primäre Myoblasten isoliert wurden (rot umrandete 

Tiere).VP: Verpaarung; ZK: Zuchtkäfig. 

3.1 Stammbaum Desmin Knockout Maus 

 

 

F1

ZK 1 

DKo25
Dko26

5

12

2. Wurf  14.3.2011  

4

1. Wurf  14.3.2011  

C57Bl6  C57Bl6  

ZK 2 

14 16 18 20

5

7 9 11 13

3

1

1. Wurf  10.3.2011  

3 5

4

6 8 10

6

22 24 26 28

7

7 9 11 13

ZK 8

F2 heterozygothomozygot wtDesmin KO:

Desmin Knockout

F2
10

30

1. Wurf  13.5.2011  

32

9

15

ZK 8
61

14

40 42

11

17 19

2. Wurf  3.6.2011  

12   16

34 36 38
13

21 23 25 27

3. Wurf  25.6.2011  

16

44 46

15

29 31 33 35

4. Wurf  5.8.2011  

39 4137

ZK 17

21

54 56

20

49 51 53 55

5. Wurf  12.11.2011  

57
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F3

ZK 17
3441

19

48 50

18

45 47

1. Wurf  1.10.2011  

5243

21

54 56

20

51 53

2. Wurf  12.11.2011  

49 55 57

ZK 23
35

VP 29.2.2012  

39

27

64 66

26

65 67

1. Wurf  7.4.2012  

63

25

60 62

24

61

1. Wurf  8.4.2012  

59 58

29

70 72

28

71 73

2. Wurf  13.5.2012  

69 75 77

F4

35

78 80

34

91 93

4. Wurf  22.9.2012  

89 95 97 82 84 86
ZK 36 1.Versuch

ZK 36 1.Versuch

ZK 3368 70

ZK 36 2.Versuch

F5

ZK 33
6873

38

88 90

37

101

1. Wurf  2.12.2012  

5299

70
ZK 30

5865

19

72 74

31

81 83

1. Wurf  16.7.2012

7679

62

25

72 7460 7685 87
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3.2 Stammbaum Desmin Knockin 

 

 

Desmin R350P KI

Desmin R350P Knockin

F1

ZK1 

DKi35 DKi24 DKi25

2 

1 5

3

2 4 6 8

1. Wurf 24.9.2010 

4

12 14 1610 18 203

heterozygothomozygot wt

5

22 24 26 28 30

2. Wurf 16.10.2010 

8

15 17 19 21

7

7 9 11 13

F2 10

32 34 36

9

23 25 27

2. Wurf 18.12.2010 1. Wurf  24.12.2010 

ZK6 

F2

42 44

12

38 4037 39

11

29 31 33 35

1. Wurf 11.2.2011 

46 48

ZK15 

54 56

17

50 5249

16

41 43 45 47

1. Wurf 14.6.2011 

70

21

66 6873

20

65 67 69 71

3. Wurf 12.8.2011 

62

19

58 6059

18

51 53 55 57

2. Wurf 15.7.2011 

6361 64



Anhang   122 

 

 

 

 

ZK22 

F3

90 92

27

86 88

26

85 87

1. Wurf 6.2.2012 

VP 23.3.2012 

ZK 26 ZK 29 VP 23.3.2012 

98 100

32

94 96

30

89 91 10293 95 97

31

99 101 103 105 107

1. Wurf 13.4.2012 

108 110

33

104 106 112

1. Wurf 14.4.2012 

ZK36

F4
38

118

37

113 115

1. Wurf 18.12.2012 

114 116107

117 119

ZK39VP 12.2.13

40

120 122

1. Wurf 18.3.2013 

124 126

F5

43

128 130 132 134

42

125 127

2. Wurf 24.7.2013 

41

121 123

136
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3.3 Stammbaum Immortomaus® 

 

 

1. Wurf 5.3.2010 

Immorto H-2Kb tsA58

F1

1 

2 

1 3 5 7

3

2 4 6 89 10 12

4 

11 13 15 17

5

14 16 18 20

6

22
24

26
28 30

3. Wurf 9.5.2010 
2. Wurf 1.4.2010 

ZK 7

1. Wurf 20.9.2010 

8 

21 23 25 27

9

32 34 3629 31

F2

6

2. Wurf 11.12.2010 

10 

33 35 37

11

38

19

immorto heterozygothomozygot wt

1. Wurf 28.2.2011F3

ZK39 

42 

49 51

43

42 44 46 48 50

45 

55 57 59

46

52 54 56

2. Wurf 25.3.2011 

19

47 53

32

58

ZK8 

31 38

1. Wurf 9.2.2011

40 

41 43

41

40 42 44 4639 45

ZK 44

47 

63 65

48

60 62 64 6661 67

3. Wurf 16.4.2011

68

6. Wurf 7.8.2011

54 

89

55

86 8887 90

5. Wurf 16.7.2011

52

80 82 84

ZK53 VP 10.8.2011

ZK59 
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3.4 Verpaarung Immortomaus® x Desmin R350P Knockin 

 

F4

60 6461

ZK53 VP 10.8.2011

1. Wurf 30.8.2011

56 

93 95

57

92 94 96 9891 97 99 101 100 58

102 104 106 108 110

2. Wurf 23.9.2011

60 

105 107103 109

3. Wurf 9.10.2011

ZK61 VP 22.11.2011

67 

127 129125

2. Wurf 3.1.2012F5
64

126 128 130

1. Wurf 16.12.2011

F1
2 

1 5

3

2 4 6 8

1. Wurf 3.12.2010 

16 18

3

21

VP 10.11.2010 

Immorto

ZK1 

7 9 11

4 

13 17

5

10 12 14 16 1815 19 21 23 20

2. Wurf 26.12.2010 

Desmin R350P KI

immorto

Desmin Ki

Immorto x

Desmin R350P Knockin

heterozygothomozygot wtDesmin

R350P KI

Immorto H-2kb tsA58 heterozygothomozygot wt
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3.5 Verpaarung Immortomaus® x Desmin Knockout 

 

F1

86 88125

VP 23.3.2012 

ZK 8 

32 34

9

28 3026

1. Wurf 31.3.2012 

11

38 403631

10

27 2925

2. Wurf 2.4.2012 

39

12

35 3733 4541 43

3. Wurf 11.5.2012 

ZK 14 

50 52

16

46 48

1. Wurf 1.8.2012 

15

47

18

58 605659

17

55 5753 6361

2. Wurf 13.8.2012 

F2

54 49 51

Desmin KO:

Immorto x Desmin Knockout

F1

ZK 8

heterozygothomozygot wt

116 33

Immorto H-2kb tsA58 heterozygothomozygot wt

43 106 108

ZK 2
103 48

ZK 3

6 

2

5

1 3 5 7

1. Wurf 16.12.2011 

9 11

110

ZK 5 VP 23.1.2012  

7 

4

8

13 15 17 19 21

1. Wurf 2.3.2012 
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