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I 

 

Summary 

Chloroplasts are crucial for life on earth as they are able to convert the sunlight into 

chemical energy. Hence, the understanding of chloroplast biogenesis and its 

regulation is necessary to support attempts to manipulate these processes and to 

promote the search for new sources of renewable energy. Effective communication 

between the cell organelles is required as most of the proteins are encoded in the 

nucleus and transported post-translationally into chloroplasts and mitochondria, 

where they form large complexes – such as the photosystems – together with 

proteins encoded in the chloroplast genome. Signal information originating from the 

nucleus is called anterograde signaling, in contrast to the signals deriving from the 

organelles, which are known as retrograde signals.  

The prolyl-tRNA synthase 1 (prors1) mutant was identified as a very good candidate 

for research of plastid as well as mitochondria retrograde signaling pathways due to 

its impairment of organellar translation, which has been shown to be involved in 

retrograde signaling processes. In this thesis, to further investigate this pathway, a 

genetic forward screen with mutagenized prors1 mutants was performed. As marker 

for the suppression screen, luciferase was chosen and LHCB promotors were placed 

in front of it. Upon screening of 13377 plants, 360 mutants of the M3 generation were 

found to show a rescue of the luciferase expression and/or the growth performance, 

and 19 of these relaxed LHCB suppression (rls) mutants were further characterized. 

To verify the internal LHCB transcript levels, the expression of nuclear-encoded 

photosynthesis associated genes and translation of the corresponding proteins were 

measured. As it has been observed before that the prors1 mutant exhibits a retarded 

growth and strongly reduced photosystem II (PSII) performance, hence the growth 

and PSII performance of the rls mutants was investigated. Moreover, the content of 

chlorophyll a and b was detected as well as the starch amount at the end of the dark 

period and at the end of the light period. From these analyses, three rls mutants 

(rls2(1.2), rls2(3) and rls478) were chosen to identify the respective mutation 

responsible for the suppression of the prors1 phenotype. All three mutations were 

localized via positional cloning on chromosome V. With a next generation mapping 

approach (combining next generation sequencing with fine mapping), possible 

causative mutations for the rls2(3) and rls478 mutants (in AT5G36320 for rls2(3) and 

in AT5G09360 for rls478) were finally identified. 
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Zusammenfassung 

Ohne Chloroplasten wäre das Leben auf der Erde wie man es kennt nicht vorstellbar, 

denn sie wandeln die Energie des Sonnenlichts in chemische Energie um. Dabei 

spielt die Kommunikation zwischen den einzelnen Zellkompartimenten eine 

entscheidende Rolle, denn ein Großteil der Proteine wird im Zellkern kodiert und 

anschließend post-translational in die Zellkompartimente transportiert, wo sie 

zusammen mit den vor Ort kodierten Proteinen größere Einheiten wie die 

Photosysteme im Chloroplasten bilden. Der Informationsfluss vom Zellkern zu den 

Organellen wie Chloroplasten und Mitochondrien wird anterograder Signalweg 

genannt, der Signalweg von den Zellkompartimenten zurück zum Kern retrograd.  

Die prors1 Mutante ist für die Untersuchung des Translations-abhängigen 

retrograden Signalwegs hervorragend geeignet, da sie eine Beeinträchtigung der 

Translation in den Organellen vorweisen kann. Mit Hilfe eines „genetic forward 

screens“ von mutagenisierten prors1 Pflanzen sollten in der vorliegenden Arbeit neue 

Mutanten gefunden werden, die bei der Untersuchung der Translations-abhängigen 

retrograden Signalwege helfen könnten. Von den 13377 getesteten Pflanzen zeigten 

360 in der M3-Generation eine Unterdrückung des prors1 Phänotyps und somit 

bessere Werte als die Elterngeneration vor der Mutagenese. Im weiteren Verlauf 

dieser Arbeit wurden 19 dieser rls („relaxed LHCB suppression“) Mutanten 

physiologisch charakterisiert. Es wurde das Wachstum der rls Mutanten analysiert, 

und mittels der Chlorophyllfluoreszenz die Leistung des Photosystems II ermittelt. 

Neben der Bestimmung von Chlorophyll a und b wurde außerdem der Stärkegehalt 

untersucht. Darüber hinaus wurde das Expressionslevel von kernkodierten Genen, 

welche an der Photosynthese beteiligt sind, ebenso bestimmt wie der dazugehörige 

Proteingehalt. Aufgrund der Ergebnisse dieser Messungen wurden drei Mutanten 

(rls2(1.2), rls2(3) und rls478) gewählt, für welche bestimmt werden sollte, welche 

Mutation für den rls Phänotyp verantwortlich ist. Für die drei Mutanten wurde dazu 

eine Grobkartierung durchgeführt und für jede Mutante jeweils eine Region auf dem 

Chromosom V gefunden. Mittels einer Kombination aus „next generation 

sequencing“ Technologie mit bekannten Kartierungsmethoden konnte außerdem für 

rls2(3) (in einem Exon von AT5G36320) und rls478 (in einem Exon von AT5G09360) 

die mögliche Mutation identifiziert werden, welche für den rls Phänotyp verantwortlich 

zu sein scheint.   
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1. Introduction 
 
Chloroplasts and mitochondria originate from free-living prokaryotic organisms and 

became stable integrated organelles by a process called endosymbiosis (Dyall et al. 

2004). During evolution, the conversion from endosymbionts to organelles was 

accompanied by a massive transfer of genomic DNA from the organelles to the 

nucleus (Kleine et al. 2009). In nowadays plastids, merely ~5% of the chloroplast-

located proteins are encoded by the chloroplast genome, whereas the majority of 

proteins is encoded in the nucleus and is imported post-translationally into the 

chloroplast (Abdallah et al. 2000). Hence, most of the chloroplast multi-protein 

complexes including the photosystems are a mosaic of subunits encoded by both the 

nucleus and the chloroplast genome. This arrangement requires a coordinated 

expression of nuclear genes encoding plastid-localized proteins with expression of 

plastidic genes. This coordinated expression is accomplished by bidirectional 

signaling cascades that send the information from the nucleus to the organelles 

(anterograde signaling) and pathways required for signaling from plastids to the 

nucleus (retrograde signaling) (Chan et al. 2010; Enami et al. 2012; Jung and Chory 

2010; Kakizaki et al. 2009; Kleine et al. 2009; Leister 2005; Nott et al. 2006; Pesaresi 

et al. 2007; Pogson et al. 2008; Terry and Smith 2013; Woodson and Chory 2008) 

(Figure 1). Additional to their role as biochemical factories, plastids act as sensors for 

changing environmental conditions and different developmental stages to coordinate 

regulatory mechanisms.  

Hence, the communication between the plastids and the nucleus is essential during 

initial developmental stages of the plastids (biogenic control) and in the adult stage to 

react to changes in the environment (operational control) (Pogson et al. 2008). 

 

1.1 Retrograde signaling  

The first evidence for retrograde signaling (“plastid signals“) was found in two barley 

mutants with morphologically aberrant plastids that possess a defect in plastid protein 

synthesis (Bradbeer et al. 1979). This results in a down-regulation of nuclear-

encoded plastid proteins, suggesting that a plastid signal was emitted that repressed 

the nuclear expression of photosynthetic genes (Bradbeer et al. 1979). Today it is 

known that several distinct processes exist in plastids that trigger signaling pathways 

to regulate specific genes and regulons in the nucleus. To achieve this, the cytosolic 
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and plastid signaling pathways have to operate together to ensure the correct 

responses in the different cellular compartments (Fernandez and Strand 2008). 

Plastid signals are moreover responsible for the coordination of the cell cycle and 

coupling of DNA replication (Kobayashi et al. 2009). Additionally, interorganellar 

communication plays a role in other cellular processes, including intercellular 

communication via plasmodesmata (Burch-Smith et al. 2011) or the transition from 

cell proliferation to cell expansion (Andriankaja et al. 2012).  

 

 

Figure 1: Signaling networks in the plant cell. The flow of information from the nucleus 
(grey) to the organelles (green and red) is called “anterograde” signaling, whereas the plastid 
and mitochondrial signals to the nucleus are called “retrograde”. The interorganellar 
communication between chloroplasts and mitochondria is depicted as “cross-talk”. Adapted 
from Woodsen and Chory, 2008. 

 

The major “classical“ signals/pathways that are thought to mediate retrograde 

signaling include (i) the organellar gene expression, (ii) reactive oxygen species 

(ROS) and (iii) proteins. More recently, several metabolites were discussed as an 

additional class of retrograde signaling molecules (see chapter 1.1.1 – 1.1.4).  
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1.1.1 Organellar gene expression as source for retrograde signaling 

The knowledge about “developmental” plastid signals regulating early chloroplast 

biogenesis derives primarily from studies using herbicides like norflurazon or 

lincomycin that inhibit function and development of the organelle (Nott et al. 2006). 

Norflurazon is an inhibitor of phytoene desaturase and therefore of carotenoid 

biosynthesis which causes photobleaching of plants (Oelmüller et al. 1986). 

Lincomycin, on the other hand, is an inhibitor of the 70S ribosome and thus of 

plastidic (and mitochondrial) translation (Sullivan and Gray 1999). Studies using 

these herbicides demonstrated that inhibition of plastid gene expression and/or 

tetrapyrrole biosynthesis lead to down-regulation of Photosynthetic Associated 

Nuclear Genes (PhANGs), as they are sensitive to the functional state of the plastids 

(Susek et al. 1993; Larkin et al. 2003). 

By applying genetic screens in Arabidopsis thaliana, six genome uncoupled mutants 

(gun) were identified which express PhANGs, even upon photobleaching with 

norflurazon (Susek et al. 1993; Woodson et al. 2011). The genes GUN2-GUN6 

encode for proteins that play a role in tetrapyrrole biosynthesis, functioning in the 

branch point of heme and chlorophyll biosynthesis (Mochizuki et al. 2001, Larkin et 

al. 2003; Woodson et al. 2011). Moreover, the plastid gene expression (PGE) 

pathway was discovered with the help of the chloroplast translation inhibitor 

lincomycin (Sullivan and Gray 1999). From the six gun mutants, only gun1 affects the 

PGE pathway, as the mutant shows a rescue of plastid signaling after norflurazon 

and lincomycin treatment, suggesting that plastid translation is necessary for full 

LHCB transcription (Koussevitzky et al. 2007). 

 

1.1.1.1 The mutant prors1 as an alternative for research of the PGE pathway 

In earlier studies, Columbia-0 (Col-0) Arabidopsis thaliana plants were mutagenized 

with T-DNA transposons and the resulting lines were screened for plants exhibiting a 

decreased effective quantum yield (Fv/Fm) of photosystem II (PSII) (Varotto et al. 

2000). With this approach, mutations were identified that are localized in the 

5´untranslated region of the nuclear gene encoding PROLYL-tRNA-SYNTHETASE1 

(PRORS1), leading to the leaky mutants prors1-1 and prors1-2 (Pesaresi et al. 2006). 

The function of PRORS1 is crucial for plants, as all proteins encoded by the organelle 

genomes contain at least one proline residue, hence only leaky mutants survive the 

embryo stage. The PRORS1 transcript of the leaky mutants prors1-1 and prors1-2 is 
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reduced to 50% and 25%, respectively, which was found to cause a down-regulation 

of transcripts for proteins of the photosynthetic light reaction and an up-regulation of 

other chloroplast proteins (Pesaresi et al. 2006). These effects are stronger in prors1-

2 than in prors1-1, and they were moreover shown to be independent from light and 

photooxidative stress, as they are not associated with the ROS levels in leaves and 

are thus unaffected during darkness (Pesaresi et al. 2006). Interestingly, PhANGs 

are down-regulated in the double mutant prpl11mrpl11 similar to prors1-2. By 

contrast, expression of PhANGs is only slightly down-regulated in the single mutants 

prpl11 (impaired in the plastid ribosomal L11 protein) and mrpl11 (impaired in the 

mitochondrial ribosomal L11 protein). These mutants were used as controls because 

of their impairment of organellar translation either exclusively in chloroplasts (prpl11) 

or in mitochondria (mrpl11). The observed translational defect in the double mutant is 

not due to an additive effect of the single mutants, as prpl11 and prpl11mrpl11 were 

found to feature the same photosynthetic performance and thylakoid protein 

composition (Pesaresi et al. 2006). Thus, analysis of retrograde signaling induced by 

inhibition of organellar translation in the prors1 mutant is a very good alternative to 

applying inhibitors of protein synthesis. 

 

1.1.1.2 The tetrapyrrole pathway and its metabolites as signaling source and 

molecules 

The so far best characterized retrograde signaling pathway involves intermediates of 

tetrapyrrole biosynthesis. The four major tetrapyrrole molecules synthesized in the 

chloroplast are chlorophyll, heme, siroheme and phytochromobilin. Disruption of the 

tetrapyrrole pathway by e.g. the transient accumulation of the intermediated Mg-

protoporphyrin IX was described to cause a clear effect on the expression of 

PhANGs and thus on organellar gene expression (Strand et al. 2003; Pontier et al. 

2007; Zhang et al. 2011; Figure 2). 

Current studies revealed that heme is a very important signaling molecule during 

chloroplast biosynthesis (Woodson et al. 2011) and for circadian clock adjustment 

(Salome et al. 2013). Moreover, the combination of the effects from different 

metabolites (“metabolite signature”) is hypothesized to be responsible for the 

regulation of PhANGs (Pfannschmidt 2010). 

 

 



 

5 

 

 

Figure 2: Retrograde signaling from chloroplast to nucleus. Stress mediated induction of 
methylerythritol cyclodiphosphate (MEcPP) levels functions as a sensor and a 
communication signal to the nucleus to induce stress responsive genes through alteration of 
nuclear architecture and functional dynamics. Drought stress and high light inhibits the 
activity of the bifunctional phosphatase SAL1 leading to accumulation of the 
phosphonucleotide PAP in the chloroplast. PAP travels to the nucleus and induces stress 
associated gene expression. The mode of action of heme functioning as a regulator of 
expression of photosynthesis-associated nuclear genes (PhANGs) remains elusive. Under 
oxidative stress conditions, which lead to accumulation of chlorophyll precursors such as Mg-
porphyrins, a signal mediated by singlet oxygen (1O2), regulates the expression of PhANGs. 
PTM acts as a general stress sensor in the outer envelope membrane. GUN1-mediated 
response activates a protolytic mechanism where the N-terminal part of N-PTM is released. 
This N-PTM peptide travels to the nucleus and induces transcription factors. For further 
details, see text.  
P, phosphate; FC1, ferrochelatase1; PTM, plastid transmembrane transcription factor; MEP, 
methylerythritol phosphate 

 

1.1.2 Reactive oxygen species (ROS) as signaling molecules 

Stress conditions that affect the photosynthetic electron transport rate often result in 

higher ROS levels (Elstner 1991). Singlet oxygen (1O2) produced by PSII and 

superoxide anion generated by photosystem I (PSI) - which is further metabolized to 

H2O2 - are the most common ROS found in the chloroplast (Mullineaux and 
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Karpinsky 2002; Appel and Hirt 2004). ROS can cause irreversible oxidative damage 

to cells, hence plant cells had to develop pathways to convert ROS into harmless 

metabolites. However, ROS were described to act as retrograde signals themselves 

by increasing antioxidant enzyme production or by adjusting the photosynthetic 

machinery to optimize photosynthetic electron transport (Lee et al. 2007). A 

breakthrough in understanding ROS signaling was achieved by analysis of the 

fluorescent in blue light (flu) mutant, which features a strong accumulation of 

protochlorophyllide, a chlorophyll precursor excitable by light, in the dark. A posterior 

shift from dark to light leads to a rapid accumulation of 1O2 in the chloroplast, 

followed by a stop of growth and cell death (Meskauskiene et al. 2001). It is 

suggested that 1O2 is able to travel short distances and even crosses membranes 

(Skovsen et al. 2005), thus capable of acting outside the chloroplast as well (Figure 

2). Accumulation of ROS has been shown to result in major changes of nuclear gene 

expression, e.g. 1O2 accumulation in the flu mutant affects expression of ~1400 

nuclear genes (Lee et al. 2007; Galvez-Valdivieso and Mullineaux 2010). 

 

1.1.3 Proteins as signaling molecules 

Proteins functioning as signaling molecules have to translocate from the plastids 

through the cytosol to the nucleus. An example for this is the chloroplast envelope-

bound homeodomain transcription factor (PTM, Figure 2). Activation of proteolytic 

cleavage of PTM is triggered by retrograde signals, leading to detachment of the N-

terminus of the protein, which subsequently enters the nucleus where it activates the 

expression of ABI4 (Sun et al. 2011). ABI4 was found to function in regulation of 

nuclear gene expression via retrograde signaling (Koussevitzky et al. 2007). 

 

1.1.4 Metabolites acting as signaling molecules 

Metabolites involved in retrograde signaling are synthesized in the plastids and 

subsequently translocate to the cytosol and into other cellular compartments (Terry 

and Smith 2013). Recent studies focused on characterization of metabolites that 

affect nuclear gene expression including 3´phosphoadenosine 5´phospaht (PAP) and 

the isoprenoid precursor methylerythritol cyclodiphosphate (MEcPP) (Figure 2). The 

amount of the phosphonucleotide 3´phosphoadenosine 5´phospaht (PAP), which 

accumulates as response to drought and high light conditions, is regulated by the 
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SAL1 enzyme by dephosphorylation of PAP to AMP. SAL1 is located exclusively in 

chloroplasts and mitochondria, whereas PAP activates nuclear-encoded high light 

response genes (Estavillo et al. 2011). MEcPP is produced by the plastidial 

methylerythritol phosphate (MEP) pathway and activates the expression of selected 

stress response nuclear genes coding for plastid-localized proteins by alteration of 

nuclear architecture and functional dynamics (Xiao et al. 2012). 

 

1.2 Next generation mapping 

1.2.1 Forward genetic screening 

Generally, a genetic screen is used to identify and select for individuals possessing a 

phenotype of interest in a mutagenized population and genes responsible for a 

particular phenotype are identified. Once a mutation is localized, secondary screens 

allow further dissection of the function of the identified mutation. Variations of these 

secondary screens include (i) enhancer screens, which aim at finding mutations that 

enhance the mutant phenotype and (ii) suppressor screens, which identify mutants 

that suppress (alleviate) the mutant phenotype (Page and Grossniklaus 2002). Such 

secondary screens are unbiased and therefore lead to new insights into interactions 

between the genes of interest. With the help of reporter genes, even hidden 

phenotypes are accessible for forward genetics. In these approaches, the promotor 

of a specially regulated gene is fused to a reporter gene like the firefly luciferase 

(LUC), β-glucuronidase (GUS) or green fluorescence protein (GFP). After 

mutagenesis and screening for altered expression of the reporter gene, genetically 

interesting loci can be selected and identified with further experiments 

(characterization and mapping of mutant).  

 

1.2.2 Mapping mutants 

By methods of classical genetics, a gene is located (mapped) to a chromosome 

position by crossbreeding with individuals that possess other traits, followed by 

performing statistics on the frequency of the inherited traits (Figure 3). Instead of 

phenotypic traits, today single nucleotide polymorphisms (SNPs) are markers most 

commonly used for mapping approaches, since they are very frequent between 

different varieties of organisms including the Arabidopsis thaliana accessions Col-0 

and Landsberg erecta (Ler) (Nordborg et al. 2005; Lu et al. 2012).  
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1.2.3 Positional cloning  

In a first step of mapping the locus causing a specific phenotype, the positional 

cloning approach (rough mapping) is applied. With this method, a genetic interval is 

detected, which contains the mutation of interest, by excluding all other parts of the 

genome. Therefore, PCR-based molecular markers including simple sequence length 

polymorphisms (SSLPs) and cleaved amplified polymorphic sequences (CAPS) are 

most commonly applied. These markers are widely used due to (i) their ease of 

handling, (ii) their low costs, as they are PCR-based and (iii) the fact that they are co-

dominant, i.e. they deliver information for both alleles providing the maximum 

information that can be obtained from a mapping population (Lukowitz et al. 2000).  

 

 

Figure 3: Generation of a mapping population in Arabidopsis thaliana. By crossing of 
the Col-0 accession with the Ler accession, heterozygous plants are obtained in the F1 
generation (depicted by the markers, blue and red). During meiosis in the F1 generation, 
recombination takes place. The analysis of the F2 generation (mapping population) with the 
help of markers leads to identification of the region of the mutated loci. A marker is linked to 
a mutation if no recombination event occurs between the position of the marker and the 
position of the mutation. In this case, the marker shows a homozygous pattern (red box) for 
the parental accession with the mutation in this chromosomal region.  

 

The SSLP markers take advantage of the variability of short repetitive sequences, as 

the length of the repetition differs between the accessions, which are easily 

visualized on agarose gels (Bell and Ecker 1994). CAPS markers on the other hand 

use the polymorphic restriction sites for the mapping purpose: exclusively the PCR 

fragments of one accession contain a restriction site, which is not present in the PCR 

fragments of the other accession. After digestion of the PCR products, the different 

band pattern is analyzed on agarose gels as well (Konieczny and Ausubel 1993).  



 

9 

 

1.2.4 Mapping by next generation sequencing  

One of the broad spectrums of applications of next generation sequencing (NGS) is 

its use to identify mutations. The great benefit of the next generation mapping 

approach is the simultaneously mapping and sequencing at a genome wide scale. 

Due to the low signal to noise ratio, which is based on the large number of 

unassociated polymorphisms that segregate with the causative mutation in 

mutagenized populations, further genetic analysis is required additional to the 

sequence information. Usually, the distribution and origin of polymorphisms detected 

by re-sequencing against a known genome sequence are used for the identification 

of the causative mutation (Austin et al. 2011; Blumenstiel et al. 2009; Irvine et al. 

2009; Sarin et al. 2008; Schneeberger et al. 2009; Smith et al. 2008; Srivatsan et al. 

2008; Zyrin et al. 2010). Latest methods replace the crossing of the mutant with a 

different accession (e.g. Col-0 x Ler) by a backcrossing of the mutant with their 

parental (not mutagenized) line. This is performed to reduce the unlinked 

polymorphisms, and by using the segregation ratio of unlinked und causative (linked) 

polymorphisms, the causative mutation can be mapped (Lindner et al. 2012).  

 

1.3 Aim of the thesis 

The aim of this thesis was to identify novel components of translation-dependent 

retrograde signaling pathways. For this purpose, a genetic forward screen was 

established to identify new mutants that are supposed to participate in further 

understanding of the regulation and biogenesis of the plant organelles. For the 

luminescence screen, the prors1 mutant was used, since due to its defective 

plastidial and mitochondrial translation machinery it is a good candidate for the 

research of translational-dependent retrograde signaling pathways. Furthermore, 

genetic and physiological characterization of found suppressor mutants was 

performed, including the measurement of chlorophyll fluorescence, the calculation of 

the starch content and the determination of the expression level of nuclear-encoded 

photosynthetic genes. The results of these experiments provide new insights into the 

effects caused by the mutations. Finally, the mutated genes of selected mutants were 

identified via positional cloning and analysis of next generation sequencing data. 
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2. Material and methods 

2.1 Material 

2.1.1 Chemicals and antibodies 

Standard chemicals were purchased from Roth (Karlsruhe, Germany), Sigma-Aldrich 

(Steinheim, Germany), Duchefa (Haarlem, Netherlands), Applichem (Darmstadt, 

Germany) and Serva (Heidelberg, Germany). Radioactive-labelled dCTP was 

ordered from Hartmann Analytik (Braunschweig, Germany). Primary antibodies were 

obtained from Agrisera (Vännäs, Sweden) and the secondary anti-rabbit antibody 

from Sigma-Aldrich (Steinheim, Germany). 

 

2.1.2 Plant material 

All experiments were performed on Arabidopsis thaliana plants, ecotype Columbia-0 

(Col-0) or Landsberg erecta (Ler). Previous screening of the Arabidopsis thaliana 

GABI-KAT T-DNA insertion collection for plants showing alterations in the effective 

quantum yield of PSII (ΦII) resulted in the identification of a set of mutants with 

defects in photosynthesis (Varotto et al. 2000a, 2000b; Rosso et al. 2003). In two of 

these mutants, the photosynthesis altered mutant15 (pam15) and pam18, the same 

genetic locus was found to be affected. It was identified as the 5`-untranslated region 

of the nuclear gene PROLYL-tRNA SYNTHETASE1 (PRORS1), the product of which 

acts in both plastids and mitochondria (Pesaresi et al. 2006). The prors1-2 (pam18) 

mutant, which showed the more severe phenotype, was used for this work. The 

mutants found during the screening process (see 2.3.5) were named rls (relaxed 

LHCB suppression; Table 1). The wild type accessions Col-0 and Ler of Arabidopsis 

thaliana were used as control and for crossing. The lines LHCB3pro:LUC prors1-2 and 

LHCB1.2pro:LUC prors1-2 were mutagenized for the screening and generation of the 

so-called parental lines for the rls mutants (see 2.2.1). 
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Table 1: List of mutants identified in the screen, including the respective parental line, i.e. the 
mutant prior to mutagenesis (see 2.2.1). 

name parental line 

rls2(3) 
LHCB3pro:LUC prors1-2 

rls134 

rls2(1.2) 

LHCB1.2pro:LUC prors1-2 
 

rls304 

rls316 

rls336 

rls436 

rls463 

rls478 

rls502 

rls518 

rls608 

rls615 

rls666 

rls681 

rls716 

rls744 

 

2.1.3 Oligonucleotides 

Oligonucleotides were ordered from Metabion (Martinsried, Germany) in standard 

desalted quality. They were used for positional cloning (Tables 2 - 6), for 

hybridisation probes (Table 7) and for real-time PCR (Table 8). 

 

Table 2: Genetic markers, location and respective oligonucleotides used for positional 
cloning of chromosome 1. 

name 
AGI position 

(bp) 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

F21M12 
3212189-
3212389 

GGCTTTCTCGAAATCTGTCC TTACTTTTTGCCTCTTGTCATTG 

CIW12 
9621357-
9621484 

AGGTTTTATTGCTTTTCACA CTTTCAAAAGCACATCACA 

CIW1 
18363881-
18364039 

ACATTTTCTCAATCCTTACTC GAGAGCTTCTTTATTTGTGAT 

NGA280 
20873698-
20873802 

GGCTCCATAAAAAGTGCACC CTGATCTCACGGACAATAGTGC 

NGA111 
27353212-
27353339 

TGTTTTTTAGGACAAATGGCG CTCCAGTTGGAAGCTAAAGGG 
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Table 3: Genetic markers, location and respective oligonucleotides used for positional 
cloning of chromosome 2. 

name 
AGI position 

(bp) 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

CIW2 
1194606-
1194710 

CCCAAAAGTTAATTATACTGT CCGGGTTAATAATAAATGT 

CIW3 
6402846-
6403081 

GAAACTCAATGAAATCCACTT TGAACTTGTTGTGAGCTTTGA 

CZSOD2 
12014513-
12016440 

GAATCTCAATATGTGTCAAC GCATTACTCCGGTGTCGTC 

NGA168 
16291841-
16291991 

GAGGACATGTATAGGAGCCTCG TCGTCTACTGCACTGCCG 

 

Table 4: Genetic markers, location and respective oligonucleotides used for positional 
cloning of chromosome 3. 

name 
AGI position 

(bp) 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

NGA162 
4608277-
4608383 

CTCTGTCACTCTTTTCCTCTGG CATGCAATTTGCATCTGAGG 

CIW11 
9774308-
9774486 

CCCCGAGTTGAGGTATT GAAGAAATTCCTAAAGCATTC 

CIW4 
18890837-
18891025 

GTTCATTAAACTTGCGTGTGT TACGGTCAGATTGAGTGATTC 

NGA6 
23031050-
23031192 

ATGGAGAAGCTTACACTGATC TGGATTTCTTCCTCTCTTCAC 

 

Table 5: Genetic markers, location and respective oligonucleotides used for positional 
cloning of chromosome 4. 

name 
AGI position 

(bp) 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

CIW5 
737954- 
738117 

GGTTAAAAATTAGGGTTACGA AGATTTACGTGGAAGCAAT 

CIW6 
7892624-
7892785 

CTCGTAGTGCACTTTCATCA CACATGGTTAGGGAAACAATA 

CIW7 
11524350-
11524480 

AATTTGGAGATTAGCTGGAAT CCATGTTGATGATAAGCACAA 

NGA1107 
18096137-
18096288 

CGACGAATCGACAGAATTAGG GCGAAAAAACAAAAAAATCCA 
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Table 6: Genetic markers, location and respective oligonucleotides used for positional 

cloning of chromosome 5. 

name 
AGI position 

(bp) 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

CTR1.2 
979764- 
979922 

CCACTTGTTTCTCTCTCTAG TATCAACAGAAACGCACCGAG 

MED24D 
1002257-
1002562 

GGGGGACCTTTTTCTTGATTACC GCAGAGTCTCACTCTCATCTCC 

CIW13 
1006717-
1006840 

CGAACTTGAGACCTCTTGA GCTTACCTGGAGACAGTCA 

MUK11D 
1409471-
1409873 

GGAGAAGGCTTTGTGTCTGTATC CTTTCTCTTCCACTGAATCTCCTC 

NGA158 
1698613-
1698720 

ACCTGAACCATCCTCCGTC TCATTTTGGCCGACTTAGC 

NGA225 
1507103-
1507222 

TCTCCCCACTAGTTTTGTGTCC GAAATCCAAATCCCAGAGAGG 

CIW18 
1531045-
1531179 

AACACAACATGGTTTCAGT GCCGTTTGTCTCTTCAC 

CIW16 
1566438-
1566576 

TGGTTAGATTTGCTGTT ATTCTGCATTATTAGTTGTC 

CIW14 
2174597-
2174775 

CATGATCCATCGTCTTAGT AATATCGCTTGTTTTTGC 

MOJB 
2190102-
2190275 

TGAAAGATTTTAGGAGGACAA GTAGGAGAAGGGGACAAGTT 

EMC 
2666002-
2666126 

AACAGATCGGAAAATCGTCG AATGACGACGAGACGCTCTT 

NGA249 
2770216-
2770340 

GGATCCCTAACTGTAAAATCCC TACCGTCAATTTCATCGCC 

CA72 
4254759-
4255008 

CCCAGTCTAACCACGACCAC AATCCCAGTAACCAAACACACA 

NGA151 
4669929-
4670078 

CAGTCTAAAAGCGAGAGTATGATG GTTTTGGGAAGTTTTGCTGG 

PAT1.2 
5957706-
5958411 

CATGCTTCATCATTGCCC AGCTGAAGCTCTGCCACC 

CIW8 
7485585-
7485684 

TAGTGAAACCTTTCTCAGAT TTATGTTTTCTTCAATCAGTT 

CDPK9 
7952512-
7952617 

TCAATCATTGTCCAAAACTTGG GAAACTGACTTGGAGAAGGCA 

NGA139 
8428133- 
8428314 

GGTTTCGTTTCACTATCCAGG AGAGCTACCAGATCCGATGG 

NGA76 
10418610- 
10418840 

AGGCATGGGAGACATTTACG GGAGAAAATGTCACTCTCCACC 
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PHYC.3 
14007897-
14008106 

AAACTCGAGAGTTTTGTCTAGATC CTCAGAGAATTCCCAGAAAAATCT 

SO191 
15004685- 
15004832 

CTCCACCAATCATGCAAATG TGATGTTGATGGAGATGGTCA 

CIW9 
17044001-
17044166 

CAGACGTATCAAATGACAAATG GACTACTGCTCAAACTATTCGG 

M558A.1 
23317513-
23317972 

TTTCTCGGTCTCCGATTAAC AAAGATAACCAAAGTCAGAGAT 

CIW10 
24530871-
24531007 

CCACATTTTCCTTCTTTCATA CAACATTTAGCAAATCAACTT 

ATTED.2 
24735924- 
24736585 

CGTAGACAAGGTACTGTCAACC GATAATCTCGTCTCCAAGTGTCC 

 

Table 7: Oligonucleotides used to generate specific cDNA probes for Northern blot 
analysis (see 2.2.4). 

name of 
gene 

locus 
identifier 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

LHCB1.2 AT1G29910 GACTTTCAGCTGATCCCGAG CGGTCCCTTACCAGTGACAA 

LHCB3 AT5G54270 GGAGATGGGCAATGTTGGGA TAGTTGCGAAAGCCCACGCA 

PSAK AT1G30380 ATGGTCTTCCAGCCACCAAA CGTTCAGGTGCATGAGAATA 

PSBO AT3G50820 AGACGGAAGCGTGAAGTTCA CAATCTGACCGTACCAAACC 

 

Table 8: Oligonucleotides used for real-time PCR experiments (see 2.2.4). 

name of 
gene 

locus 
identifier 

forward primer sequence reverse primer sequence 

(5’-3’) (5’-3’) 

PRORS1-2 AT5G52520 GTATCTAGTAACAGTGTCGT ATCCACAATGTTACTGTCTC 

UBIQUITIN AT4G36800 GGAAAAAGGTCTGACCGACA CTGTTCACGGAACCCAATTC 

 
2.2 Methods 

2.2.1 Plant methods 

The starting material for the genetic forward screen, a promoter-luciferase construct 

(Figure 4), was generated prior to this thesis in Prof. Leister´s lab and transformed 

into Col-0 Arabidopsis thaliana plants as described by Clough and Bent 1998. 
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Figure 4: Generation of the promotor-luciferase construct. For this purpose, the 
LHCB1.2 or LHCB3 promotor was cloned in front of the luciferase gene and fused to a 
termination sequence. LB, left border; RB, right border; LUC+, luciferase gene; term, Tnos 
termination sequence; LHCB1.2 or LHCB3 promotor, sequence of the promotor of the 
LHCB1.2 or LHCB3 gene, respectively.  
 

These pro:LUC Col-0 plants were crossed with the prors1-2 mutant to generate the 

luciferase-reporter construct in the prors1-2 mutant genetic background. The plants 

of the third generation of back-crossing (that are named pro:LUC prors1-2 in this work) 

were used as the starting plant material. 

 

2.2.1.1 Plant growth and harvesting conditions 

Arabidopsis thaliana wild type (ecotypes Col-0 and Ler) and mutant seeds were sown 

in Petri dishes on water soaked filter paper and incubated for three days at 4 °C in 

the dark to break dormancy and to synchronise germination. Plants were grown on 

soil under greenhouse controlled conditions (70-90 μE m-2 s-1, 16 h/8 h light/dark 

photoperiod) or under controlled environmental chamber (phytotrone) conditions at 

22 °C/18 °C with a 16 h/8 h light/dark photoperiod. For in vitro growth conditions, 

after sterilization with 1 ml 70 % (v/v) ethanol for 15 min and three times for 1 min in 1 

ml 95 % (v/v) ethanol, the seeds were washed three times with 1 ml ddH2O. After this 

treatment, the seedlings were grown on Murashige and Skoog medium (MS medium; 

Murashige and Skoog, 1962) containing 1 % (w/v) sucrose and 1 % (w/v) agar. All 

experiments were performed with mutant and wild type plants at the eight leaf rosette 

stage. Leaf material was collected 8 h after the start of the light period. 

 

2.2.1.2 Ethyl methanesulfonate (EMS) mutagenesis 

Seeds (500 mg each) of the lines LHCB1.2pro:LUC prors1-2 and LHCB3pro:LUC 

prors1-2 were mutagenized by incubation with 35 ml 0.2 % EMS solution (Sigma-

Aldrich, Germany) for 15 h. After 10 times washing with water, the seeds were dried. 

The LHCB1.2pro:LUC prors1-2 line was mutagenized a second time, because the 

germination rate of the mutagenized seeds dropped dramatically after six months.  
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2.2.1.3 Crossing of Arabidopsis thaliana 

Anthers in pollen recipient plants were emasculated from closed flowers by 

dissection. Stigmas in emasculated flowers were then pollinated manually (Weigel et 

al. 2006). 

 

2.2.1.4 Complementation analysis via crossing of rls mutants  

The rls mutants were grouped into 8 classes (see chapter 3.2.8), dependent on the 

observed rescue phenotype compared to their respective parental line (pro:LUC 

prors1-2) according to the following criteria: (i) the expression level of nuclear-

encoded photosynthetic genes, (ii) the maximum quantum yield of PSII (Fv/Fm) and 

(iii) the growth behavior (leaf size and color at day 21). The mutants from each class 

were crossed with each other and the F1 and F2 generation was monitored for the 

phenotype.  

 

2.2.1.5 Chlorophyll fluorescence measurements 

The chlorophyll fluorescence measurements were performed with the Dual-PAM 100 

(Walz, Germany) as described before (Pesaresi et al. 2006). The fluorescence of 

dark adapted (15 min) leaves was measured (F0), before saturation pulses (800 ms) 

of white light (6000 µmol m-2 s-1) were used to determine the maximum fluorescence 

(Fm) and the ratio (Fm-F0)/Fm = Fv/Fm. After 12 min of illumination with actinic light (80 

µmol m-2 s-1), which served to drive electron transport between PSII and PSI, the 

effective quantum yield of PSII (ΦII) and the NPQ (nonphotochemical fluorescence 

quenching) was measured. Mean values and standard deviations were calculated 

from at least six plants of each genotype. 

 

2.2.2 Molecular biology methods 

2.2.2.1 Nuclear acids extractions 

2.2.2.1.1 Genomic DNA extraction  

For extraction of genomic DNA from Arabidopsis thaliana leaves, 100 mg plant 

material was homogenized with a plastic pistil in 400 μl extraction buffer containing 

200 mM Tris-HCl (pH 7.5), 25 mM NaCl, 25 mM EDTA and 0.5 % (w/v) SDS. 

Incubation at room temperature for 10 min was followed by centrifugation for 10 min 

at 10000 g. Subsequently, 300 µl of isopropyl alcohol were added to the supernatant 
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to precipitate DNA. After 10 min of incubation and 10 min of centrifugation at 10000 

g, the pellet was washed with 70 % (v/v) ethanol. Finally, the DNA was resuspended 

in distilled water. 

 

2.2.2.1.2 Nuclear DNA extraction for next generation sequencing 

DNA used for the next generation sequencing approach was extracted according to 

Carrier et al. 2011: For the nuclei extraction, five to six gram of fresh weight of plant 

material was grinded in liquid nitrogen to a fine powder and transferred to a 50 ml 

tube before 45 ml of a sucrose-based extraction buffer (10 % NEB [100 mM Tris (pH 

8.0), 1 M KCl, 100 mM EDTA]), 550 mM sucrose, 4 mM spermidine trihydrochloride, 

1 mM spermidine tetrahydrochloride, 0.13 % (p/v) carbamic acid, 0.25 % (w/v) 

PVP40 with 2 % (v/v) -mercaptoethanol) was added. After incubation on ice for 12 

min and mixing regularly, 15 ml of the sample was filtered with a cell strainer (d: 40 

µm) into a new 50 ml tube (3 tubes in total) and 1.5 ml of Triton X-100 was added 

before the next 12 min of incubation on ice. After centrifugation at 600 g for 9 min at 

4 °C, the supernatant was discarded and 20 ml of a sucrose-based extraction buffer 

was used to resuspend the pellet. The obtained 60 ml (3 x 20 ml) were filtered into 

two new 50 ml tubes using the cell strainer, followed by a centrifugation step at 600 g 

for 9 min at 4 °C. These last three steps (filtering, centrifugation and resuspension of 

the pellet) were repeated twice until the pellet was resuspended in 2 ml of sucrose-

based extraction buffer and kept at 4 °C over night.  

 

2.2.2.1.3 Nuclear DNA purification 

The extracted nuclear DNA was purified according to Carrier et al. 2011: For this 

purpose, 4 ml of nucleus extraction buffer NEB (100 mM Tris (pH 8.0), 1 M KCl, 100 

mM EDTA) was added to the suspension of purified nuclei followed by incubation at 

55 °C for 3 h with mixing. Four ml AcK (11.5 % acetic acid, 5 M potassium acetate) 

was added and mingled for 10 min. After centrifugation at 3000 g for 10 min at 4 °C, 

the supernatant was transferred into a 50 ml tube, before 15 ml of DNA Binding 

Buffer DBB (260 mM guanidium chloride in ethanol 96 % (w/v)) and 250 µl of silica 

matrix (5 g of silicon dioxide (Sigma, S5631), mixed with 50 ml of ultrapure water and 

adjusted to a pH of 2.0) were added. In the next step, the tube was inverted for 10 

min and centrifuged at 1500 g for 2 min at 4 °C. The supernatant was discarded and 

5 ml of DNA washing solution (22.5 mM Tris pH 8.0, 160 mM AcK, 1 mM EDTA, 96 
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% (v/v) ethanol 1.7 : 1) added, incubated for 2 min for resuspending the pellet, 

followed by centrifugation at 1500 g for 2 min at 4 °C. This step was repeated once. 

The supernatant was discarded and the tube placed, without its cap, at 37 °C for 10 

min, subsequently 600 µl of water were added and incubated at 37 °C for 10 min. 

The sample was transferred into a 2 ml microtube and centrifuged at 14000 g for 3 

min at room temperature. Afterwards, the supernatant was transferred into a new 

microtube and 60 µl of 3 M NaAc and 1 ml 96 % ethanol (v/v) were added and mixed 

for 2 min before placing the tube at -20 °C for 5-10 min. Upon centrifugation at 14000 

g for 5 min, the DNA was washed with 75 % (v/v) ethanol before the pellet was 

dissolved in 120 µl ultra-pure water resulting in DNA concentrations of 500 ng to 1 

mg. Preparation and performance of the SOLiDtm sequencing of the purified DNAs 

from the F2 generation of the crosses from rls2(3) and rls478 with Ler was performed 

at the sequencing service facility of  the University of Düsseldorf. 

 

2.2.2.1.4 RNA extraction 

Leaf material of Arabidopsis thaliana equivalent to 2.5 ml of a 15 ml tube was grinded 

in liquid nitrogen with mortar and pestle. Subsequently, 15 ml of trizol reagent was 

put onto the material and incubated for 5 min at room temperature before 

centrifugation at 3320 g at 4 °C for 10 min and addition of 3 ml chloroform to the 

supernatant. After vigorous mixing for 10 sec and incubation for 5 min at room 

temperature, a centrifugation step at 3320 g at 4 °C for 15 min was performed. To the 

aqueous phase, ½ of its volume isopropanol and ½ of its volume 0.8 M sodium 

citrate/1.2 M NaCl was added and mixed gently by inversion. The incubation for 1 h 

at 4 °C was followed by centrifugation at 3320 g at 4 °C for 40 min. The pellet was 

washed with 75 % (v/v) ethanol, before resuspending in 100 µl DEPC-water (Roth, 

Germany). For the extraction of RNA used for microarray and real-time PCR 

analysis, the RNeasy Kit from QIAgen (Hilden, Germany) or “Maxwell” (Promega, 

USA), an automated RNA extraction system, was used according to the 

manufacturer´s instructions. 

 

2.2.2.2 Screening of plants for T-DNA insertion  

To screen the plants for the T-DNA insertion in the PRORS1 gene, the following 

primers were used: T-DNA PRORSII S: ATATTGACCATCATACTCATTGC and 

PRORSI screen AS: TCCGGAAAGAGGTCTGTTCC. To analyse the presence of the 
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wild type allele, PRORSI screen S: CCAAGCATGAGTTTCTCGAG and PRORSI 

screen AS primers were applied for genotyping. For the performed PCR (polymerase 

chain reaction), a standard programme was used with an annealing temperature of 

55 °C and a duration of 35 cycles (Saiki et al. 1988). 

 

2.2.2.3 Positional cloning (rough mapping) 

To generate a mapping population, the rls2(3), rls2(1.2), rls478 and rls518 mutants 

were crossed with Ler wild type plants. From the F2 generation, only plants were 

selected which displayed the same phenotype (growth, shape and leave colour) as 

their parental rls mutant, but still possessed the T-DNA insertion in both PRORS1 

alleles. From these plants, leaves of the same size were harvested and pooled 

before extracting DNA (see chapter 2.2.1.2.). As template for the PCR, DNA from the 

rls mutant (Col-0 genetic background), from Ler, from the F1 generation (as 

heterozygous control) and a pool of all plants form the F2 generation were used. 

Primer pairs used as markers for positional cloning are listed in Tables 2 to 6. 

 

2.2.2.4 Expression analysis via Northern blot and real-time PCR 

Northern blotting and hybridisation of probes were performed using standard 

procedures (Sambrook and Russel 2001). Three to 8 μg of total RNA were denatured 

for 7 min at 90 °C in loading dye (40 % (w/v) MOPS, 3.1% (v/v) formamide, 20 % 

(v/v) glycerol, 1.2 M formaldehyde; 0.05 M EDTA) and separated on a denaturing 1.2 

% (w/v) agarose gel containing 2 % (v/v) formaldehyde. Afterwards, the RNA was 

blotted onto a nylon membrane (Roche, Germany) and hybridised for 16 h at 65 °C 

(hybridisation buffer: 1.8 % (w/v) NaH2PO4 x H2O, 6.6 % (w/v) Na2HPO4 x 2 H2O, 7 % 

(w/v) SDS, 1 % (w/v) BSA, 1 mM EDTA) with cDNA probes labelled with 32P-dCTP 

using random hexamer primer and Klenow Fragment (New England Biolabs) 

reaction. Primer pairs used to generate specific cDNA probes are listed in Table 7. 

The hybridisation was followed by three times washing for 20 min at 65 °C (washing 

buffer: 1 % (w/v) SDS, 0.4 % (w/v) 0.5 M EDTA, 8 % (w/v) Na-P [74.4 % (w/v) 0.5 M 

Na2HPO4 x 2 H2O and 25.6 % (w/v) 0.5 M NaH2PO4 x H2O]). The filters were 

exposed to a phosphorimager screen and analysed by a Typhoon Variable Mode 

Imager (GE Healthcare) using ImageQuant 5.2 (GE Healthcare).   

For the real-time PCR experiments, cDNA was synthesized from 0.5 µg RNA using 

the iScript cDNA Synthesis Kit (Bio-Rad, USA) according to the manufacturer’s 
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instructions. For quantification and to determine the quality of the synthesized cDNA, 

a PCR was performed using primers of the housekeeping gene UBIQUITIN (see 

Table 8). For real-time PCR analysis, 6 µl of 1:20 diluted cDNA and specific primers 

(see Table 8) were added to iQ™ SYBR® Green Supermix (Bio-Rad, Munich). The 

thermal cycling started with an initial step at 95 °C for 3 min, followed by 40 cycles of 

10 s at 95 °C, 30 s at 55 °C and 10 s at 72 °C, after which a melting curve analysis 

was carried out. Reactions were performed in triplicate. Real-time PCR was 

monitored by using the iQ5™ Multi Color Real-Time PCR Detection System (Bio-

Rad, Germany). Relative transcript abundances were normalized with respect to the 

level of the constitutively expressed mRNA of an ubiquitin-protein ligase-like protein 

(at4g36800). The data were analyzed by using LinRegPCR (Ramakers et al. 2003) 

and according to Pfaffl (2001).  

 

2.2.3 Biochemical methods 

2.2.3.1 SDS-PAGE 

SDS-PAGE (polyacrylamide gel electrophoresis) was performed according to 

Laemmli, 1970. Gels were stained with Coomassie Brilliant Blue R250 according to 

Sambrook, 1989. For the separation of the proteins, a 12 % polyacrylamide SDS gel 

(for 10 ml: 4 ml 30% acrylamide 37.5:1, 2.5 ml 1.5 M Tris-HCl pH 8.8, 3.5 ml bidest 

water, 100 µl 10 % APS, 10 µl Temed), with SDS running buffer (25 mM Tris-HCl, 

200 mM glycine, 0.1% (w/v) SDS) was used.  

 

2.2.3.2 Preparation of leaf protein extract  

Shock frozen (liquid nitrogen) leaves were homogenized in 2 x SDS buffer (62.5 mM 

Tris-HCl (pH 6.8), 20 % (w/v) glycerine, 4 % (w/v) SDS, 100 mM DTT, 0.05 % (w/v) 

bromophenol blue). The homogenate was heated at 70 °C for 10 min and centrifuged 

10 min at 16100 g at room temperature to remove cellular debris.  

 

2.2.3.3 Immunoblot detection assay 

After SDS-PAGE electrophoresis, proteins were transferred onto a PVDF 

(polyvinylidene fluoride) membrane (Millipore, USA) using a semi-dry blotting 

apparatus (Biorad, Germany) according to Towbin et al. 1979. The transfer was 

performed by applying a current corresponding to 0.8 mA * cm-2 in transfer buffer (96 
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mM glycine, 10 mM Tris, 10% (v/v) methanol) for 1 h. After transfer to the membrane, 

proteins were detected by staining in Ponceau red (3 % (w/v) Ponceau S in 1 % (v/v) 

acetic acid) for 3-5 min and destained by washing with methanol. Subsequently, the 

membranes were blocked with TBS buffer (1 M Tris (pH 7.5), 1.5 M NaCl) containing 

3 % (w/v) milk powder for 1 h or overnight at 4 °C. After washing for 3 times 10 min 

with TBS-T (TBS buffer supplemented with 0.1 % (w/v) Tween-20), the membranes 

were incubated with specific primary and appropriate secondary antibodies as 

indicated, according to standard protocols (Sambrook et al. 1989). Detection was 

performed with Pierce ECL Western Blotting Substrate (Thermo Scientific, USA) and 

Fusion FX7 chemiluminescence and fluorescence imager (Peqlab, Germany). 

 

2.2.3.4 Determination of chlorophyll content 

The determination of chlorophyll content was carried out as described by Arnon 1949 

and Lichtenthaler 1987. In brief, shock frozen plant material was mixed with 1 ml 80 

% aceton (v/v). After incubation for 30 min on ice, the probes were centrifuged at 

10000 g for 10 min and the supernatant was transferred to a new microtube. Prior to 

the measurement at 750 nm, 647 nm and 663 nm, the probes were diluted 1:10 with 

80 % aceton (v/v).  

 

2.2.3.5 Luminescence screening and detection assay 

For luminescence screening of the plants from the M2 and the M3 generation, one 

leaf per plant was cut off, brushed with luciferin (Promega, USA) and incubated for 10 

min in the dark. For the M2 generation from the first mutagenesis, the leaves were 

scanned with the Typhoon Variable Mode Imager (GE Healthcare) using ImageQuant 

5.2 (GE Healthcare). For the M3 generation of the first and for both generations of 

the second EMS mutagenesis, the signals were detected by Fusion FX7 

chemiluminescence and fluorescence imager (Peqlab, Germany). For quantification 

of the firefly luciferase, the Luciferase Assay Kit (Promega, USA) was used according 

to the manufacturer´s instructions. 

The firefly luciferase generates light from luciferin in a multistep process. First,  

D-luciferin is adenylated by MgATP to form luciferyl adenylate and pyrophosphate 

(1.). After activation by ATP, luciferyl adenylate is oxidized by molecular oxygen to 

generate a dioxetanone ring. A decarboxylation reaction leads to an excited state of 

oxyluciferin (2.).  
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1. luciferin + ATP → luciferyl adenylate + PPi 

2. luciferyl adenylate + O2 → oxyluciferin + AMP + light 

The reaction finally emits light as oxyluciferin returns to the ground state (Shimomura 

et al. 1977), which can be detected as described.  

 

2.2.3.6 Determination of starch content 

A pool of leaves from 10 plants per rls mutant (see Table 1) and Col-0 plants as a 

control were harvested on day 28 after germination at 8 am in darkness and 10 h 

hours later after 9 hours of light exposure and frozen directly in liquid nitrogen. The 

determination of starch concentration was carried out with modifications according to 

Thormälen et al. 2012. For this purpose, 100 mg of pulverized leaf material was 

extracted three times with 250 µl 80 % ethanol (v/v): upon addition of the first 250 µl 

of ethanol, the samples were incubated for 30 min at 70 °C. After centrifugation at 

10000 g for 5 min, the supernatant was removed and the next extraction volume was 

added to the pellets for repeating the procedure twice. Subsequently, the pellets 

were dried for 30 min at 45 °C in a vacuum concentrator (Eppendorf, Germany). To 

hydrolyze the starch, 400 µl 0.1 M NaOH was added and incubated at 95 °C with 

1400 rpm shaking for 1 h. To achieve a neutral pH of 7.0, 75 µl of HCl/Acetat-buffer 

was mixed with the sample. In the next step, 110 µl aliquots supplemented with 250 

µl of the starch degradation mix (AGS-Buffer from Enzytec Starch Kit, Enzytec, 

Germany) were incubated for 1 h at 55 °C. For the starch measurement, 200 µl 

glucose determination mix (Solution#1 from Enzytec Starch Kit) was added to 50 µl 

of this solution and the samples (three technical replicates) were transferred to a 96 

well plate, and the stabilized OD340 after 10 min (= A1-value) was determined with the 

anthos reader HT-3 (Anthos Mikrosysteme Gmbh, Germany). Finally, 10 µl of 

hexokinase/glucose-9-phosphate dehydrogenase 200 U / 100 U in ammonium 

sulphate (Solution#2 from Enzytec Starch Kit) was added, and upon stabilization of 

the OD340 (after approximately 1 h), the obtained value was measured once more 

(A2- value).  For the calculation of the starch concentration, the following equation 

was used:  

∆A / (ε * d) * (V1 / V2) * (V3 / V4) / DW*1000 = µmol C6/ g DW 

∆A = (A2-A1) sample – (A2-A1) blank. ; ε =6,22; d =2,85; DW = dry weight 

V1 (AGS Buffer + neutralized aliquot [µl]) = 360; V2 (volume for C6-measurement [µl]) = 50 

V3 (pellet volume [µl]) = 475; V4 (volume for hydrolysis [µl]) = 110 
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2.2.4 Bioinformatical methods 

For evaluation of the real-time PCR, for sequencing and reading frame analyses, as 

well as for measurement of plant growth and primer design, several software tools 

were applied that are listed in Table 9. 

 

Table 9: List of references for software tools used in this work. 

plant growth:  Visistore: Leister et al. 1999; Plant Physiology Biochem., 
37:671-678 

primer design: PerlPrimer  v1.1.19: Marshall 2004; Bioinformatics 20:2471-
2472. 

real-time PCR: LinReg PCR:  Ramakers et al. 2003, Neuroscience Letters 339; 
62-66; Pfaffl 2001, Nucleic Acids Res 29: e45 

sequencing: Peak Scanner™ Software Version 1.0 Applied Biosystems 
2006; CLC genomics: Workbench (http://www.clcbio.com) 

reading frame analysis: GeneRunner version 3.01 (http://www.generunner.net/) 

 

2.2.4.1 Analysis of next generation sequencing (NGS) data 

2.2.4.1.1 Analysis of sequencing data and re-sequencing 

The library preparation and the SOLiDTM sequencing (Life Technologies, USA) of the 

F2 generation from Ler crosses with rls2(3) and rls478 DNA samples (see 2.2.1.2 

and 2.2.1.3) were performed at the sequencing service facility at the Universität 

Düsseldorf. For the analysis, the files were imported into the CLC Genomics 

Workbench software (http://www.clcbio.com/products/clc-genomics-workbench/). For 

both datasets, a quality control of the single reads was performed before the reads 

were mapped to the reference genome (Tair9 annotation of Arabidopsis thaliana 

ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/).  

The following re-sequencing options were chosen to link the reads to the 

chromosomes: mismatch cost = 2; insertion cost = 3; deletion cost = 3; length fraction 

= 0.8; similarity fraction = 0.5. As this data was generated by SOLiDTM sequencing, 

the color-space alignment was used and the color error cost was set to 3. The non-

specific matches were ignored and the references not masked. For the SNP calling, 

the probabilistic variant detection plug-in beta software from CLC bio (Aarhus, 

Denmark) was used. As input, the read mapping files from the re-sequencing 

approach were applied, and following parameters were set: minimum coverage = 4; 

maximal expected variations = 2; variant probability = 90. The non-specific matches 

were ignored.  
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2.2.4.1.2 Selection and identification of the rescue locus 

The lists of single nucleotide polymorphisms (SNP) for each chromosome were 

exported to Excel (Microsoft Office 2007), and the SNPs which were derived from the 

crossing with Ler were sorted out. For this purpose, the SNP collection of Ler from Lu 

et al. 2012 (http://www.personal.psu.edu/hxm16/suppdatafile.zip) was used. In the 

next step, the SNPs originating from the EMS mutagenesis had to be separated from 

the SNPs, which were derived from other sources such as sequencing errors. Hence, 

only SNPs including changes from guanine (G) to adenine (A) or cytosine (C) to 

thymine (T) remained in the analysis, which constituted more than 98 % of EMS-

induced SNPs (Greene et al. 2003). The last filtering step was the selection of SNPs, 

which possessed coverage of 10 or higher and of which the frequency was above 90. 

Finally, the localization of the SNPs was determined with regard to their appearance 

in a locus of interest by the TAIR SeqViewer (http://www.arabidopsis.org/servlets/sv). 

Of the SNPs identified to be located in an exon, the cause of the nucleotide 

exchange was analyzed, i.e. an amino acid change or an alteration to a stop codon, 

with the help of the GeneRunner 3.01 software (http://www.generunner.net/). 
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3. Results 

Previous studies revealed that nuclear-encoded photosynthetic genes are down-

regulated in an Arabidopsis thaliana knock-down mutant (prors1-2) of the PRORS1 

gene, which encodes for the chloroplast-localized prolyl-tRNA synthetase (Pesaresi 

et al. 2006). Hence, this mutant is a good candidate for use in a genetic forward 

screen, aiming to identify new mutants suitable for the dissection of translational-

dependent retrograde signaling pathways. This project was split into three parts: the 

first part comprises the identification of relaxed LHCB suppression (rls) mutants by 

using a genetic forward luminescence screen. The second part includes the 

physiological characterization of these rls mutants by analysis of the growth 

phenotype, measurement of chlorophyll fluorescence, determination of chlorophyll a 

and b content, calculation of starch (glucose) amount, determination of the 

expression level of nuclear-encoded photosynthetic genes and the detection of 

corresponding protein levels. In the third part, the identification and localization of the 

underlying mutation via positional cloning (rough mapping) and analysis of next 

generation sequencing data (next generation mapping) from selected rls mutants was 

performed. 

 

3.1. Genetic forward screen to identify relaxed LHCB 

suppression (rls) mutants 

With the genetic forward screen, new mutants generated by EMS mutagenesis can 

be identified which have to be characterized later on. In this work, analysis of LHCB 

expression monitored by luciferase and observation of the phenotype of the 

mutagenized plants were chosen as markers. For this purpose, a promoter-luciferase 

construct was transferred into a Col-0 Arabidopsis thaliana plant (pro:LUC Col-0). 

LHCB1.2 and LHCB3 were chosen as promotors, which were cloned upstream of the 

luciferase gene (Figure 4, methods chapter 2.1). These promotors were selected, as 

the LHCB1.2 and LHCB3 transcripts were found to be down-regulated in the prors1-2 

mutant compared to Col-0 (Pesaresi et al. 2006), however the expression remained 

strong enough to ensure signal detection in the luminescence screen. The pro:LUC 

Col-0 plants were crossed with prors1-2 and the third generation was mutagenized 

with EMS. The second generation of the mutagenized plants (M2) was screened for a 

rescue of the phenotype (leaf size and colour) and a rescue of the LHCB1.2 or 
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LHCB3 expression using the luciferase marker. A schematical overview of the set-up 

of the genetic forward screen is depicted in Figure 5. 

 

 

Figure 5: Schematical overview of the genetic forward screen. A promotor-luciferase 
construct was transferred into a Col-0 plant (LHCBpro:LUC Col-0) and crossed with the  
prors1-2 mutant. The seeds of the third generation of back-crossing with prors1-2 
(LHCBpro:LUC prors1-2) were mutagenized with EMS. After selfing of the M1 generation, the 
M2 generation was screened for rescue of the luciferase signal, which was interpreted as a 
rescue of the LHCB expression, or rescue of the phenotype. 

 

3.1.2 Mutants identified by the genetic forward screen  

Plants which showed a rescue in the phenotype, i.e. dark green leaves comparable 

to the wild type and bigger rosette leaves with regard to the parental plants were 

propagated to the next generation (M3). Additionally, all plants (one rosette leaf from 

each plant) were screened for detection of the luminescence signal (see chapter 

2.2.3.5 in methods; Figure 6). Plants showing a clear luminescence signal in this 

screen were propagated as well.  

At the beginning of this thesis, detection of the luminescence signals could only be 

performed with the Typhoon Variable Mode Imager (GE Healthcare), which changed 

with the acquisition of the Fusion FX7 chemiluminescence and fluorescence imager 

(Peqlab). Both detection methods depicted clear differences in sensitivity and speed 

(Figure 6), since the sensitivity of the Fusion FX7 was found to be much higher 

concomitantly with a faster screening process, hence a second screen with the 

LHCB1.2pro:LUC prors1-2 line was performed. 



 

27 

 

A B
 

Figure 6: Luminescence screen of the M2 and M3 generation of mutagenized 
LHCBpro:LUC prors1-2 plants. One leaf per plant (25 days after germination) was brushed 
with luciferin and incubated for 10 min in the dark before detection of the luminescence 
signals. Identical leaves were used for A and B but different detection methods (scanner) 
were applied. Scanning of leaves with A: Typhoon Variable Mode Imager (GE Healthcare) 
using ImageQuant 5.2 (GE Healthcare) B: Fusion FX7 chemiluminescence and fluorescence 
imager (Peqlab).  

 

Taken together, 13377 plants were screened, from which 654 were selected in the 

first round because they either displayed a rescued luciferase signal and/or 

demonstrated a rescue in the phenotype (Table 10). 

 

Table 10: Numbers of positive tested M2 plants after luminescence screening. The rls 
mutants derived from LHCB1.2pro:LUC prors1-2 are divided into the 1st and 2nd mutagenesis 
due to their different luminescence signal detection method (see text), which explains the 
higher percentage of positive tested plants from the 2nd mutagenesis.  

M2 generation total LHCB1.2 (1
st

) LHCB1.2 (2
nd

) LHCB3 

screened  13377 4636 5621 3120 

positive tested  654 144 390 120 

positive tested [%]  4.88 3.10 6.93 3.84 

 

In the next step, seeds were harvested from all of these 654 mutants and ~ 10 seeds 

per mutant from the M3 generation were sown. All plants were screened once more 

for the luciferase signal and the phenotype was monitored for segregation as well. 

Additionally, all plants were screened for the presence of the T-DNA insertion and the 

wild type allele of the PRORS1 gene via PCR. For a characterization of the 

photosynthetic performance, the maximum quantum yield of PSII (Fv/Fm) and the 
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effective quantum yield of PSII (ΦII) were measured for at least 6 plants per mutant. 

Taken together, 360 rls mutants could be confirmed in the M3 generation (Table 11). 

 

Table 11: Numbers of confirmed mutants of the M3 generation in the luminescence 
screen. The rls mutants derived from LHCB1.2pro:LUC prors1-2 are divided into the 1st and 
2nd mutagenesis due to their different luminescence signal detection in the M2 generation. 
The analysis of the wild type allele was performed via PCR for all mutants that were 
confirmed using the luciferase screen. 

M3 generation LHCB3 
LHCB1.2 

(1
st

) 
LHCB1.2 

(2
nd

) 
total 

 % of tested 
lines in M3 
generation 

Number of confirmed mutants  61 67 232 360 55% 

Number of mutants that show 
no segregation in phenotype 
and no wild type allele  

35 44 197 276 42% 

Number of mutants that 
additionally show no 
segregation for luciferase 
signal 

5 4 30 39 6% 

 

3.2. Physiological analysis of selected rls mutants  

The aim of this part of the project was to select the most interesting rls mutants for 

further identification with the mapping approach. With the help of the screening data 

(luminescence signal and leaf size and color) and the measurement of chlorophyll 

fluorescence (calculation of PSII parameters), 19 rls mutants were selected. Two of 

them (rls2(3) and rls134) were descendants of the LHCB3pro:LUC prors1-2 mutant, 

whereas all other chosen rls mutants were derived from the LHCB1.2pro:LUC prors1-

2 mutant. Additional to the luminescence signal (resembling the expression level), the 

rosette leaf phenotype, PSII parameters, and the chlorophyll a and b content were 

determined and the amount of starch (glucose) was calculated. Moreover, the 

transcript levels of photosynthetic genes and their corresponding protein levels of the 

selected rls mutants were detected. 

 

3.2.1 The rls mutants display a broad range of LHCB expression levels 

as revealed by luciferase expression  

For quantification of the firefly luciferase expression in leaves, the Luciferase Assay 

Kit (Promega) was used and established successfully to ensure that the 
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luminescence signal correctly equates the amount of firefly luciferase protein. The 

assay was first set-up and monitored by performing a control experiment (Figure 7).  

 

 

Figure 7: Quantification of the luminescence signal in LHCB1.2pro:LUC Col-0 and 
LHCB3pro:LUC Col-0 plants. For the quantification of the firefly luciferase in the leaves, a 
Luciferase Assay Kit (Promega) and the Safire2 microplate reader (Tecan) were used. A 
dilution series from the protein extract of leaves from three individual plants was subjected to 
the analyses and the luminescence reaction was measured at three different time points after 
the start of the enzymatic assay (blue: after 0 min; orange: after 5 min; green: after 20 min; 
see methods). Since the mean value was calculated using two technical replicates, no 
standard deviation is shown.  
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For this purpose, the firefly luciferase was quantified in a dilution series (20µl 

undiluted, 1:10, 1:50, 1:100, 1:1000) of leaf protein extract from the two pro:LUC Col-0 

lines (LHCB1.2pro:LUC Col-0, LHCB3pro:LUC Col-0). The luminescence reaction was 

measured at three different time points after the start of the enzymatic assay, which 

was achieved by adding luciferin (Figure 7). With this approach, the optimal time 

point for the measurement was determined, since the enzymatic reaction takes place 

very fast and is very sensitive to light. The results clearly show that the dilution series 

of both lines depicted a very good linear correlation. Moreover, it was observed that 

the LHCB1.2pro:LUC Col-0 line showed a three times higher luminescence value 

compared to the LHCB3pro:LUC Col-0 line, which fitted to the observed difference in 

strength of the luminescence signal from the screening process (data not shown).  

After the extraction of total protein from a pool of leaves from at least 10 plants for 

three replicates of each genotype, the signals were detected with the Safire2 

microplate reader (Tecan). The amount of measured luciferase indicated the 

expression level of the LHCB transcripts. This experiment was performed for exact 

quantification of the luminescence signals, whereas in the luminescence screen the 

luminescence signals were evaluated optically (Figure 5). 

The plants with the promoter-luciferase construct inserted into Col-0 (pro:LUC Col-0 

lines) were used as the positive control (= “wild type”) for this experiment (Table 12). 

The parental lines of the rls mutants, of which the promoter-luciferase construct was 

in the prors1-2 background (pro:LUC prors1-2), showed a very low luciferase signal, 

which was almost not detectable using the scanner. Most of the rls mutants analyzed 

revealed a rescue of the relative luminescence compared to their parental line 

(pro:LUC prors1-2). However, the degree of the rescue varied considerably between 

the different mutants. While rls436 and rls478 depicted luminescence levels almost 

identical to the parental line LHCB1.2pro:LUC prors1-2, the mutants rls615 and rls621 

showed the strongest rescue with values in the range of or even above 

LHCB1.2pro:LUC Col-0 (= “wild type”) level (Table 12, marked in green and red, 

respectively). This data is in accordance with the luminescence signal strength 

observed by scanning. 
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Table 12: Summary of luciferase quantification in the parental lines and rls mutants. 
The firefly luciferase expression was quantified with a Luciferase Assay Kit (Promega) and 
the Safire2 microplate reader (Tecan). The normalized relative luminescence units (RLU) as 
well as the corresponding standard deviations (stdv) are depicted. Lines with similar low 
levels of luminescence compared to the parental line LHCB1.2pro:LUC prors1-2 are 
highlighted in green, mutants with a high luciferase level comparable to the “wild type” 
LHCB1.2pro:LUC Col-0 in red.  

line normalized RLU stdv 

LHCB3pro:LUC prors1-2 39.8 ± 4 

LHCB3pro:LUC Col-0 5740.0 ± 872 

rls2(3) 1268.1 ± 42 

rls134 705.3 ± 21 

LHCB1.2pro:LUC prors1-2 47.2 ± 2 

LHCB1.2pro:LUC Col-0 17874.4 ± 1275 

rls2(1.2) 373.6 ± 80 

rls304 9988.9 ± 1251 

rls316 7675.6 ± 2074 

rls336 8894.5 ± 681 

rls436 22.7 ± 1 

rls463 14237.0 ± 2333 

rls478 63.6 ± 22 

rls502 1722.8 ± 275 

rls518 456.1  ± 17 

rls608 10763.5  ± 962 

rls615 17250.4 ± 5681 

rls621 25765.4 ± 3055 

rls666 8887.6 ± 755 

rls681 951.9 ± 319 

rls709 3678.6 ± 481 

rls716 1918.8 ± 199 

rls744 2268.7 ± 562 

 

3.2.2.1 The rls mutants display variable growth phenotypes 

For the genetic forward screen, not only the luminescence was used as a marker, but 

also the growth phenotype and the leaf color of the plants were utilized to identify 

interesting mutants.  

Both parental lines, LHCB1.2pro:LUC prors1-2 and LHCB3pro:LUC prors1-2, 

possessed  a very similar phenotype, including a smaller size and a yellowish leaf 

color. The color of the leaves of the selected mutants varied from yellowish green 

(like the parental lines) to a darker green (like Col-0) (Figures 8, 9). Moreover, the 

leaf size of several mutants reached nearly the size of the wild type (e.g. rls478 and 

rls436), whereas others showed a phenotype comparable to the parental lines 

LHCB1.2pro:LUC prors1-2 or LHCB3pro:LUC prors1-2, including rls615, rls666 or 
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rls621. Interestingly, these results were in line with the data from the luminescence 

quantification assay (Table 12), in which the same lines were found to show the best 

(rls615 and rls621) or the least rescue (rls478 and rls436). 

 

 

Figure 8: Phenotypic analysis of rls mutants containing the LHCB1.2 promotor-
luciferase construct. The picture was taken on day 28 and includes the wild type (Col-0), 
the parental line (LHCB1.2pro:LUC prors1-2 as well as the rls mutants. 

 

In contrast to rls2(3), rls134 showed no rescue compared to the parental line 

LHCB3pro:LUC prors1-2 (Figure 9).  

 

 

Figure 9: Phenotypic analysis of rls mutants containing the LHCB3 promotor-
luciferase construct. The picture was taken on day 28 and shows the wild type (Col-0), the 
parental line LHCB3pro:LUC prors1-2 and the rls mutants, which possess the LHCB3 
promotor-luciferase construct.  
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3.2.2.2 The rls mutants exhibit distinct growth performances  

After a first phenotypic analysis of the selected rls mutants, the plants were next 

investigated in regard to growth behavior and flowering time. For these 

developmental studies, the plants were monitored over a period of 50 days. Pictures 

of six plants per line were taken at five time points beginning with day 10 after 

germination on a weekly basis. For determination of growth curves, the leaf area was 

taken as parameter, which was measured and calculated with the software visistore 

(Leister et al. 1999). The plants were grown in a climate chamber under either long-

day conditions with 16 h light and 8 h dark periods or under short-day conditions with 

8 h light and 16 h dark periods. For analysis of the flowering time point, the day at 

which the first flowers emerged and the number of rosette leaves at that time point 

were noted for the plants growing under long-day conditions. For the plants growing 

under short-day conditions, no flowers had been observed during the 50 days of 

monitoring.  

Under both long-day and short-day growth conditions, LHCB3pro:LUC prors1-2 

showed even a worse growth performance than prors1-2, which itself possessed a 

delayed growth compared to wild type (Col-0) plants (Figure 10 A, B). The number of 

rosette leaves at flowering time (for prors1-2 three days and for LHCB3pro:LUC 

prors1-2 five days later than Col-0), were for both mutants ~30% reduced compared 

to the number of Col-0 rosette leaves (Figure 10 C). Interestingly, rls2(3) showed a 

rescue under both growth conditions compared to the parental line LHCB3pro:LUC 

prors1-2 and even to prors1-2, confirming the better performance in the former 

phenotypic analysis. However, rls2(3) displayed the same delay in flowering time (5 

days) as was observed for LHCB3pro:LUC prors1-2. On the contrary, rls134 

possessed no rescue in growth conditions at all, and was not even germinating under 

short-day conditions (Figure 10 B). 
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Figure 10: Growth curves and flowering time points of Col-0 , LHCB3pro:LUC prors1-2 
and its descending rls mutants under long-day and short-day conditions. The plants 
were grown in the climate chamber under 16 h light and 8 h dark (long-day conditions, A) or 
under 8 h light and 16 h dark (short-day conditions, B). Pictures of whole plants were taken 
at 5 time points and the leaf area of at least 5 plants per line was calculated using the 
software visistore. The mean values per time point and standard deviations are shown, 
except for the rls mutants grown under short-day conditions, because only 2 plants per 
mutant could be monitored over the whole time period. C: The different time points of 
emerging of flowers and the number of rosette leaves at that time point are depicted of plants 
grown under long-day conditions.  

 

For mutants deriving from the parental line LHCB1.2pro:LUC prors1-2, distinct effects 

in terms of growth and flowering time were observed as well. Due to the larger 

number of these mutants, they have been divided into several classes. The first 

group includes the rls mutants displaying the “strongest rescue effect” of growth 

behavior, i.e. the fastest growth (Figure 11). Two of them, rls436 and rls478, showed 

almost wild type behavior for the growth rate under long-day conditions (Figure 11 A), 

and also under short-day conditions a rescue compared to their parental line 

LHCB1.2pro:LUC prors1-2 was observed, although not in the range of wild type 

growth (Figure 11 B). The flowering time of these mutants was also identical to the 

wild type, although the number of rosette leaves at that time was clearly reduced.  
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Figure 11: Growth curves and flowering time points of Col-0 and rls mutants with a 
rescue compared to LHCB1.2pro:LUC prors1-2 under long-day and short-day 
conditions. The plants were grown in the climate chamber under 16 h light and 8 h dark 
(long-day conditions, A) and under 8 h light and 16 h dark (short-day conditions, B). Pictures 
of whole plants were taken at 5 time points and using the software visistore, the leaf area of 
at least 5 plants per mutant was calculated. The mean values per time point and standard 
deviations are shown. C: The different time points of onset of flowering and the number of 
rosette leaves at that time point are depicted of plants grown under long-day conditions. 

 

The second group of rls mutants deriving from the parental line LHCB1.2pro:LUC 

prors1-2 includes the mutants which showed no significant rescue effect regarding 

growth compared to the parental line (Figure 12 A, B). Additionally, the rls mutants 

from this subgroup featured a clear delay in flowering time, even when analyzed 

versus the parental line, and also exhibited less rosette leaves at the first flowering 

time point than LHCB1.2pro:LUC prors1-2. One of the mutants from this group, rls666, 

had the longest delay for onset of flowering of all rls mutants monitored (Figure 12 C).  
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Figure 12: Growth curves and flowering time points of Col-0, LHCB1.2pro:LUC prors1-2 
and rls mutants with no growth rescue under long-day and short-day conditions. The 
plants were grown in the climate chamber under 16 h light and 8 h dark (long-day conditions, 
A) and under 8 h light and 16 h dark (short-day conditions, B). Pictures of whole plants were 
taken at 5 time points and using the software visistore, the leaf area of at least 5 plants per 
mutant was calculated. The mean values per time point and standard deviations are shown. 
C: The different time points of onset of flowering and the number of rosette leaves at that 
time point are depicted of plants grown under long-day conditions. 

 

The third group is composed of the rls mutants that showed a similar growth behavior 

to their parental line LHCB1.2pro:LUC prors1-2 under long-day and a similar or even 

retarded growth behavior under short-day conditions (Figure 13). Similar to the 

second group, they exhibited a delay of onset of flowering ranging from 3 to 6 days in 

comparison to the wild type. However, the number of rosette leaves for these rls 

mutants were found to be in the same range as the leaf number of LHCB1.2pro:LUC 

prors1-2. 
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Figure 13: Growth curves and flowering time points of Col-0 and rls mutants with a 
similar performance as LHCB1.2pro:LUC prors1-2 under long-day and short-day 
conditions. The plants were grown in the climate chamber under 16 h light and 8 h dark 
(long-day conditions, A) and under 8 h light and 16 h dark (short-day conditions, B). Pictures 
of whole plants were taken at 5 time points and using the software visistore, the leaf area of 
at least 5 plants per mutant was calculated. The mean values per time point and standard 
deviations are shown. C: The different time points of onset of flowering and the number of 
rosette leaves at that time point are depicted of plants grown under long-day conditions. 
 

Taken together, three mutants were identified in the growth rate measurements that 

featured the most obvious rescue effects: rls2(3) deriving from LHCB3pro:LUC prors1-

2, and rls436 and rls478 with LHCB3pro:LUC prors1-2 as parental line. 

 

3.2.3 Internal transcript level of nuclear-encoded photosynthetic genes in 

the rls mutants  

It was described in earlier studies that the mutation of the PRORS1 gene 

(AT5G52520) results in a down-regulation of nuclear-encoded genes responsible for 

the light reactions of photosynthesis. The mRNA expression of the PRORS1 gene, 

which is a “leaky” mutation, is reduced to 25% in the prors1-2 mutant compared to 

Col-0 (Pesaresi et al. 2006). Hence, it has to be investigated that potential rescue 

effects do not result from a mere up-regulation of PRORS1 gene expression. For 

determination of the expression levels of PRORS1, PSBO, PSAK, LHCB1.2 and 

LHCB3 transcripts in the rls mutants, the RNA was extracted from a pool of at least 
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10 plants (whole leaves) at the eight rosette leave stage grown under long-day 

conditions (16 h / 8 h). The expression of the AT5G52520 transcript in the rls mutants 

and their parental lines (LHCB3pro:LUC prors1-2 and LHCB1.2pro:LUC prors1-2) was 

determined by real-time PCR (Figures 14, 15). For this purpose, the cDNA was 

synthesized from the isolated RNA using the iScript cDNA Synthesis Kit (Bio-Rad) 

and the real-time PCR was monitored by using the iQ5™ Multi Color Real-Time PCR 

Detection System (Bio-Rad) (see methods chapter 2.2.2.4). Reactions were 

performed in triplicate for each genotype. Relative transcript abundances were 

normalized with respect to the level of the constitutively expressed mRNA of an 

ubiquitin-protein ligase-like protein (AT4G36800). 

For the LHCB3pro:LUC prors1-2 originating plants, the PRORS1 transcript level of 

LHCB3pro:LUC prors1-2 itself and rls134 was not significantly altered to that of 

prors1-2. However, rls2(3) possessed a slight rescue for the PRORS1 transcript level 

(Figure 14).  

 

 

Figure 14: PRORS1 (AT5G52520) mRNA expression level in LHCB3pro:LUC prors1-2, 
rls2(3), rls134 and prors1-2. The plants were grown under long-day conditions (16 h / 8 h) 
and harvested at the 8 rosette leave developmental stage for RNA extraction (see methods 
chapter 2.2.1.4). The cDNA was synthesized from 0.5 µg RNA using the iScript cDNA 
Synthesis Kit (Bio-Rad) and real-time PCR was performed with the iQ5™ Multi Color Real-
Time PCR Detection System (Bio-Rad) (see methods chapter 2.2.2.4). Relative transcript 
abundances were normalized with respect to the level of the constitutively expressed mRNA 
of an ubiquitin-protein ligase-like protein (AT4G36800). 
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The LHCB1.2pro:LUC prors1-2 originating rls mutants featured similar mRNA levels of 

the PRORS1 transcript (Figure 15), indicating that the rescue phenotypes observed 

before are not caused by a difference in the accumulation of PRORS1 transcript.  

 

 

Figure 15: PRORS1 (AT5G52520) expression level of LHCB1.2pro:LUC prors1-2 and its 
descending rls mutants. The plants were grown under long-day conditions (16 h / 8 h) and 
harvested at the 8 rosette leave developmental stage for RNA extraction (see methods 
chapter 2.2.1.4). The cDNA was synthesized from 0.5 µg RNA using the iScript cDNA 
Synthesis Kit (Bio-Rad) and real-time PCR was performed with the iQ5™ Multi Color Real-
Time PCR Detection System (Bio-Rad) (see methods chapter 2.2.2.4). Relative transcript 
abundances of LHCB1.2pro:LUC prors1-2 (red) and the rls mutants (blue) were normalized 
with respect to the level of the constitutively expressed mRNA of an ubiquitin-protein ligase-
like protein (at4g36800). 

 

Furthermore, the PSAK (AT1G30380), PSBO (AT3G50820), LHCB1.2 (AT1G29910) 

and LHCB3 transcript (AT5G54270) levels were determined via Northern blot 

analysis (three biological replicates of each genotype; Figure 16). LHCB3pro:LUC 

prors1-2 showed a reduction of LHCB3 transcript level compared to Col-0 and 

prors1-2, concomitantly with an increase for the other three transcripts compared to 

prors1-2. Moreover, rls2(3) showed an increase of the LHCB transcripts in 

comparison to LHCB3pro:LUC prors1-2, whereas rls134 featured similar levels of all 

transcripts. LHCB1.2pro:LUC prors1-2 possessed an increased amount of the PSAK 

transcript and slightly reduced LHCB transcript levels compared to Col-0. 

Furthermore, all four transcript amounts were found to be increased in rls2(1.2), in 

contrast to rls436, rls744, rls502 and rls336 that exhibited similar levels as compared 

to LHCB1.2pro:LUC prors1-2. The mutant rls478 showed a strong rescue of the 
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LHCB3 transcript, whereas the other three genes were found to be expressed in 

similar quantities as in LHCB1.2pro:LUC prors1-2. 

 

 
 
Figure 16: LHCB1.2, LHCB3, PSAK and PSBO transcript levels from Col-0, prors1-2, 
parental lines and rls mutants. As a loading control, the methyl blue stained nylon 
membrane (M.B.) was used. The primers used to generate specific cDNA probes for 
Northern blot analysis are listed in Table 7.  

 

3.2.4 Detection of nuclear-encoded photosynthetic protein levels  

The number of proteins in the chloroplast is estimated to range between 3500 and 

4000 (Soll and Schleiff 2004), whereas plastid genomes encode only 75 to 80 

proteins (Timmis et al. 2004). Thus, most of the proteins located in the chloroplast 

are encoded in the nucleus. To verify potential changes in transcript amounts on the 

protein level, the corresponding protein quantities were determined by an immunoblot 

detection assay (see methods chapter 2.2.3.3). The plant material used was equal to 

the one applied for detection of the RNA level, i.e. a pool of at least 10 plants at the 8 

rosette leaf stage grown under long-day conditions (16 h / 8 h). The extracted total 

proteins were separated via polyacrylamide gel electrophoresis (SDS-PAGE), before 

the immunoblot detection assay was performed.  

The protein amounts of PsbO and Lhcb1 were detected for Col-0, prors1-2, the 

parental lines and their descending rls mutants (Figure 17). The mutant rls2(3) 

showed a rescue for both proteins compared to its parental line, which did however 

not reach wild type amounts, while for rls134 only the PsbO level was increased 

compared to LHCB3pro:LUC prors1-2. Moreover, rls666 comprised an even higher 
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protein amount than Col-0 for both Lhcb1 and PsbO. Almost all LHCB1.2pro:LUC 

prors1-2 descending rls mutants showed a higher PsbO protein level than their 

parental line, except rls304 and rls608. Both rls436 and rls478 possessed an 

increase in Lhcb1 protein as well. 

 

 

Figure 17: Immunoblot detection assay with LHCB1 and PSBO secondary antibodies.  
Proteins extracted from equal amounts of plant material from Col-0, the parental lines 
(LHCB1.2pro:LUC prors1-2 and LHCB3pro:LUC prors1-2) and its descending rls mutants were 
separated using SDS-PAGE and were subsequently transferred onto PVDF membrane 
before incubation with the indicated antibodies. As a loading control, the ponceau red stained 
PVDF membrane (Ponceau) was used. 

 

3.2.5 A rescue in growth performance does not always correlate with a 

rescue of PSII parameters  

The PSII performance was found to be strongly reduced in prors1-2 compared to  

Col-0 (Pesaresi et al. 2006), thus it seems conceivable to observe a potential rescue 

of the PSII parameters in the rls mutants. For this purpose, the measurement of 

chlorophyll fluorescence of dark adapted (15 min) plants was performed with the 

Dual-PAM 100 (Walz, Germany). For at least six plants per mutant the fluorescence 

of the leaves was measured (F0), before saturation pulses of white light (800ms) 

were used to determine the maximum fluorescence (Fm) and the ratio (Fm-F0)/Fm = 

Fv/Fm (maximum quantum yield of PSII). After the illumination with actinic light, the 

effective quantum yield of PSII (ΦII), the nonphotochemical fluorescence quenching 

(NPQ) and the proportion of closed PSII (1-qP) were detected (see 2.1.4).  

The drastically diminished PSII performance of prors1-2 compared to Col-0 known 

from previous studies (Pesaresi et al. 2006) was confirmed in the present 

experiments (Table 14). Interestingly, it has to be noted that LHCB3pro:LUC prors1-2 
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possessed even a worse PSII performance than prors1-2, in contrast to 

LHCB1.2pro:LUC prors1-2, for which an increased photosynthetic activity compared to 

prors1-2 was measured (Tables 14, 15). Regarding the rls mutants with 

LHCB3pro:LUC prors1-2 as parental line, values determined for rls2(3) for the 

maximum quantum yield of PSII (Fv/Fm) and the effective quantum yield of PSII (ΦII) 

reached closest to wild type values, even in comparison to all rls mutants analysed, 

and therefore featured the best rescue of all rls mutants (Table 14). Moreover, rls134 

showed a rescue compared to LHCB3pro:LUC prors1-2 and prors1-2 as well, 

although the effect was not as clear as observed for rls2(3). 

 

Table 14: Chlorophyll fluorescence measurements of dark adapted (15 min) 
LHCB3pro:LUC prors1-2 plants for calculation of PSII parameters. Six plants per mutant 
were analyzed at day 28 with the Dual-PAM 100 (Walz). The fluorescence was measured 
(F0), before saturation pulses of white light were used to determine the maximum 
fluorescence (Fm) and the ratio (Fm-F0)/Fm = Fv/Fm (maximum quantum yield of PSII). After 
illumination with actinic light, the effective quantum yield of PSII (ΦII), the non- photochemical 
fluorescence quenching (NPQ) and the proportion of closed PSII (1-qP) was detected (see 
2.1.4). The mutant showing the strongest rescue (rls2(3)) of all rls mutants is highlighted in 
red.  

name Fv/Fm ΦPSII NPQ 1-qP 

Col-0 0.819 ± 0.012 0.703 ± 0.016 0.263 ±  0.051 0.080 ± 0.026 

prors1-2 0.501 ± 0.037 0.406 ± 0.054 0.213 ± 0.157 0.203 ± 0.063 

LHCB3pro:LUC prors1-2 0.482 ± 0.015 0.302 ± 0.014 0.418 ± 0.032 0.233 ± 0.020 

rls2(3) 0.706 ± 0.020 0.566 ± 0.025 0.226 ± 0.021 0.146 ± 0.016 

rls134 0.594 ± 0.043 0.433 ± 0.026 0.284 ± 0.109 0.210 ± 0.006 

 

As mentioned above, LHCB1.2pro:LUC prors1-2 possessed a better PSII performance 

than LHCB3pro:LUC prors1-2 and prors1-2, hence the range of possible values of the 

PSII parameters for the LHCB1.2pro:LUC prors1-2 originating rls mutants was smaller 

than shown before for the mutants with LHCB3pro:LUC prors1-2 as parental line. 

Interestingly, none of the LHCB1.2pro:LUC prors1-2 descending rls mutants showed a 

strong rescue, including rls436 and rls478, which featured a growth behavior similar 

to the wild type as shown before (Figure 8). Moreover, some mutants (rls621, rls304, 

rls463, rls502) even depicted reduced PSII performance values than observed for 

LHCB1.2pro:LUC prors1-2. However, rls2(1.2), rls615 and rls518 showed the best and 

slightly enhanced – although not strongly increased compared to LHCB1.2pro:LUC 

prors1-2 – PSII activity.  
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Table 15: Chlorophyll fluorescence measurements of dark adapted (15 min) 
LHCB1.2pro:LUC prors1-2 descending plants for calculation of PSII parameters. Six 
plants per mutant were measured at day 28 with the Dual-PAM 100 (Walz). The fluorescence 
of leaves was measured (F0), before saturation pulses of white light were used to determine 
the maximum fluorescence (Fm) and the ratio (Fm-F0)/Fm = Fv/Fm (maximum quantum yield of 
PSII). After illumination with actinic light, the effective quantum yield of PSII (ΦII), the non- 
photochemical fluorescence quenching (NPQ) and the proportion of closed PSII (1-qP) was 
detected. The rls mutants are listed according to the Fv/Fm values descending. The parental 
line is highlighted in blue and rls436 and rls478, which showed the best growth performance, 
are highlighted in green. 

name Fv/Fm ΦPSII NPQ 1-qP 

Col-0 0.819 ± 0.012 0.703 ± 0.016 0.263 ±  0.051 0.080 ± 0.026 

prors1-2 0.501 ± 0.037 0.406 ± 0.054 0.213 ± 0.157 0.203 ± 0.063 

LHCB1.2pro:LUC prors1-2 0.568 ± 0.065 0.413 ± 0.066 0.224 ± 0.083 0.204 ± 0.005 

rls2(1.2) 0.593 ± 0.060 0.417 ± 0.044 0.267 ± 0.084 0.221 ± 0.026 

rls615 0.591 ± 0.046 0.450 ± 0.028 0.119 ± 0.090 0.211 ± 0.021 

rls518 0.588 ± 0.040 0.408 ± 0.039 0.395 ± 0.104 0.200 ± 0.016 

rls436 0.587 ± 0.020 0.451 ± 0.046 0.219 ± 0.127 0.164 ± 0.031 

rls336 0.585 ± 0.009 0.409 ± 0.016 0.245 ± 0.045 0.228 ± 0.035 

rls666 0.584 ± 0.038 0.413 ± 0.031 0.296 ± 0.059 0.204 ± 0.020 

rls478 0.574 ± 0.012 0.433 ± 0.026 0.203 ± 0.063 0.216 ± 0.039 

rls709 0.567 ± 0.048 0.408 ± 0.025 0.350 ± 0.097 0.202 ± 0.016 

rls716 0.565 ± 0.026 0.419 ± 0.011 0.326 ± 0.105 0.241 ± 0.113 

rls744 0.552 ± 0.036 0.378 ± 0.043 0.235 ± 0.060 0.245 ± 0.027 

rls666 0.548 ± 0.030 0.368 ± 0.033 0.366 ± 0.127 0.236 ± 0.062 

rls621 0.514 ± 0.019 0.371 ± 0.013 0.166 ± 0.024 0.220 ± 0.026 

rls304 0.507 ± 0.017 0.362 ± 0.041 0.255 ± 0.033 0.197 ± 0.070 

rls463 0.505 ± 0.028 0.341 ± 0.025 0.295 ± 0.090 0.224 ± 0.034 

rls502 0.492 ± 0.009 0.355 ± 0.026 0.162 ± 0.040 0.220 ± 0.044 

rls316 0.473 ± 0.038 0.363 ± 0.023 0.325 ± 0.059 0.102 ± 0.063 

rls608 0.477 ± 0.033 0.333 ± 0.019 0.269 ± 0.159 0.203 ± 0.063 

 

3.2.6 Most of the identified rls mutants display a rescue in chlorophyll 

content  

As the phenotypic analysis revealed a yellowish appearance for several rls mutants, 

in the next step the chlorophyll amount was investigated. For the determination of 

chlorophyll a (chl a) and chlorophyll b (chl b) content, pigments were extracted from 

Col-0, prors1-2, LHCB3pro:LUC prors1-2, LHCB1.2pro:LUC prors1-2 and rls mutant 

leaves. The extracts of six plants per genotype were photometrically measured at 

750 nm, 647 nm and 663 nm (see methods chapter 2.2.3.4). The ratio from chl a and 

chl b (= chl (a/b)) and their sum (= chl (a+b)) was calculated as well.  
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Both rls mutants originating from LHCB3pro:LUC prors1-2 (rls2(3) and rls134) 

contained a similar amount of chl a and chl b, which was found to be ~40% reduced 

compared to Col-0 (Table 16). The ratio chl (a/b) was in the range of the wild type, 

however the sum chl (a+b) of these rls mutants was approximately half of the Col-0 

content. Moreover, rls2(3) and rls134 showed a slight rescue of chl a and chl b 

content compared to LHCB3pro:LUC prors1-2 in terms of chl a and chl b amount as 

well as in regard to chl (a+b). Interestingly, the chl (a/b) ratio did not differ 

significantly in any mutant analyzed (compared to Col-0). 

 

Table 16: Determination of chlorophyll a (chl a) and chlorophyll b (chl b) content of the 
rls mutants descending from the LHCB3pro:LUC prors1-2 line. From 6 plants per 
genotype, the absorption of chl a, chl b was measured at 750 nm, 647 nm and 663, and their 
ratio chl (a/b) and their sum chl (a+b) was calculated. The mutant showing the strongest 
rescue for the maximum quantum yield (Fv/Fm), rls2(3), is highlighted in red.  
 

name 
chl a 

[µg/mg] 
chl b 

[µg/mg] 
chl (a b) chl (a+b) 

Col-0 0.681 ± 0.05 0.215 ± 0.02 3.1 ± 0.3 0.89 ± 0.07 

prors1-2 0.302 ± 0.03 0.106 ± 0.01 2.8 ± 0.3 0.41 ± 0.04 

LHCB3pro:LUC prors1-2 0.341 ± 0.07 0.113 ± 0.05 3.0 ± 0.6 0.45 ± 0.11 

rls2(3) 0.368 ± 0.07 0.126 ± 0.03 2.9 ± 0.2 0.50 ± 0.11 

rls134 0.355 ± 0.10 0.125 ± 0.04 2.8 ± 0.3 0.48 ± 0.15 

 

For the LHCB1.2pro:LUC prors1-2 derived plants, the parental line itself showed an 

unusual chlorophyll phenotype, as it possessed a lower chl a but a higher chl b 

content than prors1-2, although the sum chl (a+b) was almost equal to prors1-2 

(Table 17). The analyzed rls mutants depicted distinct chlorophyll features: the 

majority of them showed an increase in the amounts of both chl a and chl b, hence 

suggesting a rescue effect, including rls478 and rls436, for which a rescue of the 

growth performance – but not of PSII activity – has been detected before. The mutant 

rls615 featured the highest chl a and chl b contents of all tested rls mutants, however 

the ratio chl (a/b) was – as for nearly all other mutants with increased chlorophyll 

content – prors1-2 like. Only for rls681, rls744, rls2(2.1) and, interestingly, for rls478, 

a slight increase in the chl (a/b) ratio was measured. On the other hand, some 

mutants including rls666 and rls502 possessed an unaltered or even decreased 

chlorophyll content, especially regarding chl b. Finally, for rls336 and rls608, a 

decrease in the chl (a/b) ratio was observed.  
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Despite these distinct patterns in chlorophyll content of the LHCB1.2pro:LUC prors1-2 

derived rls mutants, it has to be noted that rls615 and rls518, which featured a slight 

rescue for the PSII performance (Table 15), showed also a rescue for the chl (a+b) 

content (Table 17). However, to make the situation more complex, rls2(1.2) 

possessed a clearly reduced chl (a+b) amount compared to the other two mentioned 

mutants, although their PSII performance was found to be nearly identical (Table 15). 

Hence, this suggests that the two parameters of PSII activity and chlorophyll content 

are not as directly related as expected.  

 

Table 17: Determination of chlorophyll a (chl a) and chlorophyll b (chl b) content of the 
rls mutants descending from the LHCB1.2pro:LUC prors1-2 line. From 6 plants per 
genotype, chl a, chl b, their ratio chl (a/b) and their sum chl (a+b) was measured at 750 nm, 
647 nm and 663 nm, and afterwards the content calculated. The rls mutants are listed 
according to the chl (a+b) values descending. The parental line is highlighted in blue and 
rls436 and rls478, which showed the best growth performance, are highlighted in green. 

name 
chl a 

(µg/mg) 
chl b 

(µg/mg) 
chl (a/b) chl (a+b) 

Col-0 0.681 ± 0.05 0.215 ± 0.02 3.1 ± 0.3 0.89 ± 0.07 

prors1-2 0.302 ± 0.03 0.106 ± 0.01 2.8 ± 0.3 0.41 ± 0.04 

LHCB1.2pro:LUC prors1-2 0.286 ± 0.04 0.135 ± 0.02 2.3 ± 0.2 0.42 ± 0.60 

rls615 0.518 ± 0.06 0.192 ± 0.01 2.7 ± 0.3 0.71 ± 0.07 

rls518 0.456 ± 0.10 0.169 ± 0.03 2.7 ± 0.2 0.62 ± 0.13 

rls478 0.434 ± 0.06 0.154 ± 0.01 2.8 ± 0.2 0.59 ± 0.06 

rls716 0.424 ± 0.09 0.160 ± 0.04 2.6 ± 0.3 0.58 ± 0.12 

rls681 0.430 ± 0.09 0.132 ± 0.03 3.2 ± 0.4 0.56 ± 0.09 

rls436 0.410 ± 0.08 0.147 ± 0.02 2.7 ± 0.3 0.55 ± 0.10 

rls304 0.400 ± 0.11 0.138 ± 0.03 2.8 ± 0.4 0.54 ± 0.14 

rls621 0.387 ± 0.05 0.154 ± 0.03 2.5 ± 0.4 0.54 ± 0.08 

rls709 0.386 ± 0.07 0.160 ± 0.03 2.4 ± 0.3 0.54 ± 0.09 

rls608 0.392 ± 0.08 0.142 ± 0.03 2.0 ± 0.3 0.53 ± 0.10 

rls744 0.402 ± 0.06 0.133 ± 0.03 3.0 ± 0.4 0.53 ± 0.08 

rls316 0.376 ± 0.04 0.135 ± 0.02 2.7 ± 0.3 0.51 ± 0.05 

rls2(1.2) 0.368 ± 0.07 0.127 ± 0.02 2.8 ± 0.1 0.49 ± 0.09 

rls463 0.335 ± 0.07 0.137 ± 0.02 2.4 ± 0.4 0.47 ± 0.08 

rls666 0.330 ± 0.07 0.111 ± 0.02 2.9 ± 0.3 0.44 ± 0.09 

rls336 0.278 ± 0.02 0.169 ± 0.04 1.6 ± 0.5 0.44 ± 0.05 

rls502 0.298 ± 0.04 0.123 ± 0.01 2.4 ± 0.2 0.42 ± 0.06 

 

3.2.7 The starch (glucose) content of rls mutants shows a high variation 

The glucose produced during photosynthesis is stored mainly as starch ((C6H10O5)n); 

hence starch functions as an energy storage system for the plants and constitutes 

another – more indirect – parameter for photosynthetic activity and plant viability. For 
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determination of the starch content of Col-0, the parental lines and the rls mutants, 

the leaves were harvested at two different time points: at 8 am at the end of the dark 

period as indication of the amount of glucose/starch used during the night as energy 

source, and at 6 pm (nine hours after light exposure) for determination of the 

production rate of starch upon photosynthetic activity. From pools of at least 10 

plants (whole leaves) per genotype, the starch was extracted and hydrolyzed before 

three replicates for each genotype were quantified (methods chapter 2.2.3.6). For the 

quantification, a stabilized OD340 after 10 min (= A1-value) was determined with the 

anthos reader HT-3 (Anthos Mikrosysteme Gmbh), before an enzyme mix of 

hexokinase/glucose-9-phosphate dehydrogenase was added. Upon the stabilization 

of the OD340 (after approximately 1 h), the obtained value was measured once more 

(A2- value) and the starch calculation was calculated.  

The measurement revealed that the relative difference of starch content of the two 

harvesting time points from LHCB3pro:LUC prors1-2 was similar to Col-0, although 

the overall starch amount was clearly reduced (Figure 18 A). By contrast, prors1-2 

and LHCB1.2pro:LUC prors1-2 showed no difference for both harvesting time points, 

however the general amount was drastically diminished with regard to the starch 

content of Col-0 as well (Figure 18 B). Additionally, the starch amount of 

LHCB3pro:LUC prors1-2 after the dark period was reduced compared to prors1-2 and 

LHCB1.2pro:LUC prors1-2, and the content after 9 h light exposure was higher than 

the content in prors1-2 and LHCB1.2pro:LUC prors1-2 (Figure 17 A, B). For the 

LHCB3pro:LUC prors1-2 descending plants, rls2(3) showed a rescue compared to the 

parental line for both measurements, whereas rls134 possessed less starch than 

LHCB3pro:LUC prors1-2 (Figure 18 A), once more corroborating previous results 

regarding a rescue phenotype of rls2(3). The rls mutants derived from 

LHCB1.2pro:LUC prors1-2 were grouped into three subfamilies: the first group 

includes mutants that feature a similar starch content as Col-0 (rls304) or produced 

more starch than Col-0 during light exposure, when the starch amount at the end of 

the day was calculated proportionally to the content determined at the beginning of 

illumination (Figure 18 B; rls316, rls436, rls666, rls716). Hence, mutants from this 

subgroup – interestingly including rls436 – depict a clear rescue phenotype. The rls 

mutants with a slighter, however still detectable rescue effect, are summarized in the 

next group (Figure 18 C). Part of this group is rls478, for which a strong starch 

generation during illumination was observed, although the starch content after the 
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dark period was low. The last subgroup contains rls mutants with a lower starch 

content than the parental line LHCB1.2pro:LUC prors1-2, and thus with no rescue 

phenotype (Figure 18 D; rls2(1.2), rls336, rls463, rls608, rls615, rls621, rls744).  

 

 

Figure 18: Determination of glucose content at the end of dark period (8 am, solid 
bars) and after 9 h of light (6 pm, scattered bars). The plants were grown under long-day 
conditions (16 h light 8 h dark) and harvested at day 28. From a pool of at least 10 plants, 
three technical replicates were measured (see methods). A: Glucose content of Col-0 
(green), prors1-2(yellow), rls2(3), rls134 (light blue) and their parental line LHCB3pro:LUC 
prors1-2 (dark blue). B: Glucose content of Col-0 (green), prors1-2 (yellow), LHCB1.2pro:LUC 
prors1-2 (red) and rls mutants showing wild type behavior, especially regarding the ratio 
between the two time points (lilac). C: Glucose content of Col-0 (green), LHCB1.2pro:LUC 
prors1-2 (red) and rls mutants showing a slight rescue (lilac). D: Glucose content of Col-0 
(green), LHCB1.2pro:LUC prors1-2 (red) and rls mutants (lilac) with less starch than their 
parental line LHCB1.2pro:LUC prors1-2. 
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Thus, it can be concluded that once more rls2(3), rls436 and rls478 are good 

candidates for containing interesting rescue mutations, however, for rls304 a strong 

rescue effect regarding starch synthesis was observed as well.   

 

3.2.8 Crossing of rls mutants to analyze complementation 

So far, several rls mutants proved to be good candidates for possessing mutations 

causing a rescue effect. To determine if the different rls mutants do not comprise the 

same mutations, which were responsible for their respective rescue phenotypes, the 

rls mutants were crossed with each other. For this approach, the 19 rls mutants were 

grouped into 8 classes (Table 18), and mutants within one class were controlled for 

complementation via crossing. By sorting the mutants into subgroups, the number of 

crossings was reduced from 171 to 23. The parameters used for classification 

included (i) the expression level of nuclear-encoded photosynthetic genes, (ii) the 

maximum quantum yield of PSII (Fv/Fm) and (iii) the growth behavior (leaf size and 

color at day 21). For none of the resulting F1 and F2 generations of the crossings, a 

complementational phenotype was observed, suggesting that none of the mutants 

contained the same allele for one of the rescue mutations.  

 

Table 18: Grouping of rls mutants. The rls mutants were grouped into 8 classes, 
dependent on whether they showed a rescue (+) compared to their parental line (pro:LUC 
prors1-2) or not (0). The parameters used for classification were the expression of nuclear-
encoded photosynthesis genes, the maximum quantum yield of PSII (Fv/Fm) and the growth 
performance. 

class 1 2 3 4 5 6 7 8 

expression of 
photosynthetic genes 
(nucleus) + + + + 0 0 0 0 

photosynthesis  
Fv/Fm + + 0 0 + + 0 0 

growth performance + 0 + 0 + 0 + 0 

number of mutants 1 1 1 4 2 4 1 5 

 
rls2(3) rls615 rls478 rls316 rls436 rls134 rls681 rls304 

    
rls608 rls518 rls2(1.2) 

 
rls463 

    
rls621 

 
rls336 

 
rls502 

    
rls716 

 
rls666 

 
rls709 

    
 

   
rls744 
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3.2.9 Summary of characterization data of rls mutants showing different 

rescue phenotypes  

To get an overview of the different rescue phenotypes of the rls mutants presented in 

this chapter compared to their parental lines (LHCB3pro:LUC prors1-2 and 

LHCB1.2pro:LUC prors1-2), the obtained results are summarized in Table 19 and 20. 

The data used for this evaluation included the growth curves, the maximum quantum 

yield (Fv/Fm), the sum of chlorophyll a and b (chl (a + b)), the starch content and the 

expression level of the LHCBs (Northern blots).  

Regarding the LHCB3pro:LUC prors1-2 derived lines, the summary clearly 

demonstrates that rls2(3) features a rescue phenotype for all parameters determined, 

except for the LHCB transcript expression level, whereas rls134 showed a rescue 

only for the PSII performance (Table 19). This makes rls2(3) an ideal candidate for 

further investigation, especially for the identification of the mutation responsible for 

this rescue phenotype.  

 

Table 19: Summary of physiological characterization of Col-0, prors1-2, LHCB3pro:LUC 
prors1-2, rls2(3) and rls134. The behavior of the rls mutants compared to LHCB3pro:LUC 
prors1-2 is depicted: like Col-0 = ++, rescue effect = +, similar to LHCB3pro:LUC prors1-2 = 0. 
The rls2(3) mutant is marked in red. 

name growth 
PSII 

(Fv/Fm) 
chlorophyll 
chl (a + b) 

starch 
LHCB  

expression 

Col-0 ++ ++ ++ ++ ++ 

LHCB3pro:LUC prors1-2 0 0 0 0 0 

rls2(3) + + + + + 

rls134 0 + 0 0 0 

prors1-2 + 0 0 0 0 

 

Two of the LHCB1.2pro:LUC prors1-2 originating rls mutants (rls436 and rls478) 

possessed a strong growth rescue leading to a wild type (Col-0) like growth. 

Moreover, rls436 and rls518 showed a rescue phenotype for all parameters tested, 

except for LHCB mRNA expression, in contrast to rls478 that exhibited a retarded 

PSII performance. Hence, this makes rls478 an ideal candidate for the mapping 

approach to identify the mutation which is responsible for wild type like growth 

without featuring the same PSII performance. Another mutant showing a strong 

specific rescue effect was rls304, which comprised a wild type like starch content. 

However, the only other rescue phenotype observed referred to the chlorophyll 

content, thus this mutant was not chosen for further analysis.  
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Table 20: Summary of rescue phenotypes for LHCB1.2pro:LUC prors1-2 originating rls 
mutants. The behavior of the rls mutants compared to LHCB1.2pro:LUC prors1-2 is depicted: 
like Col-0 = ++, rescue effect = +, similar to LHCB3pro:LUC prors1-2 = 0. The strongest 
effects (like Col-0= ++) are marked in dark green. The two lines with a growth performance 
comparable to Col-0 are highlighted in light green. 

name growth 
PSII 

(Fv/Fm) 
chlorophyll 
chl (a + b) 

starch 
LHCB 

expression 

Col-0 ++ ++ ++ ++ ++ 

prors1-2 0 0 0 0 0 

LHCB1.2pro:LUC prors1-2 0 0 0 0 0 

rls2(1.2) 0 + 0 0 0 

rls304 0 0 + ++ 0 

rls316 0 0 + + + 

rls336 0 + 0 0 0 

rls436 ++ + + + 0 

rls463 0 0 0 0 0 

rls478 ++ 0 + + + 

rls502 0 0 0 + 0 

rls518 + + + + 0 

rls608 0 0 + 0 + 

rls615 0 + + 0 + 

rls621 0 0 + 0 0 

rls666 0 + 0 + 0 

rls681 + 0 + 0 0 

rls709 0 0 + 0 0 

rls716 0 0 + + + 

rls744 0 0 + 0 0 

 

3.3 Towards the identification of mutations responsible for the 

rescue phenotypes of rls2(3) and rls478 

Another aim of this thesis was the genetic localization of the mutation which is 

responsible for the respective rls phenotype. For this purpose, the lines rls2(3) and 

rls478 were chosen, as they showed the best rescue effect for the measured PSII 

parameter Fv/Fm or featured wild type like growth curves, respectively. To identify the 

chromosome to which the rescue mutation is linked, rough mapping was carried out. 

This approach was also conducted for rls2(1.2). Additionally, to precisely localize the 

mutation, next generation sequencing with subsequent bioinformatic analyses was 

performed for the mutants rls2(3) and rls478. 
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3.3.1 Rough mapping of rls2(3), rls2(1.2) and rls478 

To link the suppression mutation to one specific chromosome, a positional cloning 

approach was realized for the rls2(3), rls2(1.2) and rls478 mutants. For this purpose, 

the respective rls mutants were crossed with the Ler accession. In the resulting F2 

generation, plants were selected, which displayed the same phenotype (growth, 

leave shape and color) as their rls mutant parent. These plants were additionally 

analyzed with regard to the prors1-2 T-DNA insertion via PCR, to ensure that only 

plants containing both mutations were selected for mapping. Leaves with the same 

size from at least 80 plants from this subset were pooled and DNA was extracted.  

Positional cloning takes advantage of the natural polymorphisms between the various 

Arabidopsis thaliana accessions. The Ler accession was chosen for crossing with the 

rls mutants, because crossing of Col-0 (in this case the background of the rls 

mutants) and Ler is most commonly used for mapping approaches, and therefore a 

variety of markers are already known for this constellation (Chang et al. 1988; 

Konieczny and Ausubel 1993; Hardtke et al. 1996; Pingli Lu et al. 2012). For this 

study, only simple sequence length polymorphism (SSLP) markers (downloaded from 

The Arabidopsis Information Research (Tair) homepage: 

http://www.arabidopsis.org/servlets/Search?action=new_search&type=marker) were 

applied: the nucleotide repeats possess a different length in the respective 

Arabidopsis thaliana accessions; hence they can be easily detected and 

distinguished by PCR (Lukowitz et al. 2000). As homozygous controls, both parental 

lines used to generate the mapping populations, i.e. the rls mutant and the Ler wild 

type, were used. The F1 generation was utilized as the heterozygous control, which 

therefore displayed two signals, one resembling the Col-0 accession (the rls mutant) 

and one the Ler accession. The F2 generation should generally be heterozygous as 

well, with the exception of the region where the mutation is located: this is supposed 

to be homozygous for the mutation, because no recombination is thought to occur in 

this region (Figure 3). Most of the PCRs and the agarose gel electrophoreses were 

performed under my supervision by Bachelor students Max Fürst (rls2(3)) Peter Hagl 

(rls2(1.2)) and Jasmin Waldow (rls478). 
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Figure 19: Positional cloning (rough mapping) to identify the rescue mutation of rls2(3) 

using SSLP markers for chromosomes I, II and III. For each chromosome I, II and III, 

the separated PCR-products are depicted on the left side, whereas the right side includes the 
markers and their respective position. For the positional cloning (see methods 2.2.2.3), 
isolated DNA from leaves of Ler and rls2(3) (as homozygous control), of the F1 generation 
(as the heterozygous control) as well as of the pool of the F2 generation was used for the 
analyses of the SSLP markers via PCR.  
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Figure 20: Positional cloning (rough mapping) to identify the rescue mutation of rls2(3) 

using SSLP markers for chromosomes IV and V. For each chromosome IV and V, the 

separated PCR-products are depicted on the left side, whereas the right side includes the 
markers and their respective position. For the positional cloning, isolated DNA from leaves of 
Ler and rls2(3) (as homozygous control), of the F1 generation upon crossing of both (as the 
heterozygous control) as well as of the pool of the F2 generation was used for the analyses 
of the SSLP markers via PCR. The region identified as location of the mutation is marked by 
a red box. 
 

For the rls2(3) mutant, the rough mapping approach revealed that the mutation is 

located on chromosome V, as applying the markers PHYC.3 (position: 14007897bp) 

and CIW9 (170044001bp) depicted a homozygous signal (Figure 20). Moreover, the 

marker So191 (15004685bp) that is located in between these markers showed the 

homozygous pattern as well. These data allowed linking the mutation to a 3 mb 
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(megabase) region near the centromere at the lower arm of chromosome V. To 

confirm this and to narrow down the region at chromosome V, more markers were 

used for this chromosome than for the others (Figures 19, 20). 

 

 
Figure 21: Positional cloning (rough mapping) to identify the rescue mutation of  

rls2(1.2) using SSLP markers for chromosomes I, II and III. For each chromosome I, II 
and III, the separated PCR-products are depicted on the left side, whereas the right side 
includes the markers and their respective position. For the positional cloning, isolated DNA 
from leaves of Ler and rls2(1.2) (as homozygous control), of the F1 generation upon crossing 
of both (as heterozygous control) as well as of the pool of the F2 generation was used for the 
analyses of the SSLP markers via PCR. The region identified as potential location of the 
mutation is marked by a red box. 
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Figure 22: Positional cloning (rough mapping) to identify the rescue mutation of  

rls2(1.2) using SSLP markers for chromosomes IV and V. For each chromosome IV and 

V, the separated PCR-products are depicted on the left side, whereas the right side includes 

the markers and their respective position. For the positional cloning, isolated DNA from 
leaves of Ler and rls2(1.2) (as homozygous control), of the F1 generation upon crossing of 
both (as heterozygous control) as well as of the pool of the F2 generation was used for the 
analyses of the SSLP markers via PCR. The region identified as potential location of the 
mutation is marked by a red box. 
 

 

For the rls2(1.2) mutant, chromosome I, II and IV could be excluded as mutation 

sites (Figures 21, 22). On chromosome III however, the marker CIW11 (9774308bp) 

showed a homozygous signal when using DNA from the F2 generation as template, 

but as the signal was very weak, it was not possible to draw an unambiguous 

conclusion (Figure 21). On chromosome V, the region around the marker So191 
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(15004685bp), where the mutation was mapped for rls2(3), could be excluded, 

whereas the markers nga249 (2770216bp), nga151 (4669929bp) and nga139 

(8428136bp) located at the upper arm of chromosome V showed a weak 

homozygous signal (Figure 22). Although the data indicate that the mutation is most 

likely located on this region on chromosome V, more regions have to be considered 

and analyzed in more detail to clearly identify the rescue mutation of rls2(1.2). 

 

 

Figure 23: Positional cloning (rough mapping) to identify the rescue mutation of  

rls478 using SSLP markers for chromosomes I, II and III. For each chromosome I, II 
and III, the separated PCR-products are depicted on the left side, whereas the right side 

includes the markers and their respective position. Isolated DNA from leaves of Ler and 
rls478 (as homozygous control), of the F1 generation upon crossing of both (as 
heterozygous control) as well as of the pool of the F2 generation was used for the analyses 
of the SSLP markers via PCR.  
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Figure 24: Positional cloning (rough mapping) to identify the rescue mutation of  

rls478 using SSLP markers for chromosomes IV and V. For each chromosome IV and 

V, the separated PCR-products are depicted on the left side, whereas the right side includes 

the markers and their respective position. For the positional cloning, isolated DNA from 
leaves of Ler and rls478 (as homozygous control), of the F1 generation upon crossing of 
both (as the heterozygous control) as well as of the pool of the F2 generation was used for 
the analyses of the SSLP markers via PCR. The region identified as location of the mutation 
is marked by a red box. 
 

 

When investigating the mapping population of rls478, chromosomes I, II, III and IV 

could be excluded, as all tested markers from these chromosomes clearly showed 

heterozygous signals (Figures 23, 24). Moreover, the rescue mutation for the rls478 

mutant was found to be linked to a 2 mb large region at the upper arm of 
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chromosome V, located between the markers nga249 (2770216bp) and Ca72 

(4254759bp) (Figure 24). CIW14 (2174597bp), a marker close to nga249 at the 

telomeric site, showed a tendency towards homozygocity as well, whereas the 

adjacent marker MED24D (1002257bp) gave a clear heterozygous signal. A similar 

situation was observed for the centromeric site. Generally, all markers from the lower 

arm of chromosome V gave relatively weak signals, however they appeared rather 

heterozygous than homozygous. For the only marker available for the telomeric 

region of the lower arm from chromosome V CIW10 (24530871bp), no signal was 

detected with the rough mapping approach. 

Summing up, it can be concluded that the mutated loci of rls2(3), rls2(1.2) and rls478 

responsible for the rescue were successfully localized to certain chromosomal 

regions via positional cloning. However, for rls2(1.2), further markers have to be used 

in the future to unambiguously clarify the localization. Interestingly, all mutations were 

found to be most probably linked to chromosome V, although to different regions. 

 

3.3.2 Using next generation sequencing to fine map rls2(3) and rls478 

In this thesis, the next generation sequencing technology was used to perform the 

fine mapping, as this allows conducting the mapping with the information obtained 

from the SNPs detected in the respective sequence; hence the sequence information 

is already in hand. The mutants rls2(3) and rls478 were chosen for fine mapping 

because (i) they could be clearly linked to one specific region at chromosome V via 

rough mapping, which simplifies the fine mapping approach, and (ii) both mutants 

showed a very interesting rescue, rls2(3) in regard to the PSII parameters (Fv/Fm) and 

rls478 concerning the growth behavior (like Col-0). Another benefit of analyzing these 

two rls mutants was that they originate from the two different pro:LUC prors1-2 lines: 

rls2(3) from LHCB3pro:LUC prors1-2 and rls478 from LHCB1.2pro:LUC prors1-2. Thus, 

it was expected that the promoter-luciferase constructs could be mapped with this 

approach as well, which was so far impossible by positional cloning or genome 

walking 

 

3.3.2.1 SOLiDTM sequencing of rls2(3) and rls478 

Genomic DNA isolated of both F2 generations from the mapping population of rls2(3) 

and rls478 was sent for SOLiDTM sequencing to the sequencing service facility at the 
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Universität Düsseldorf (see methods chapter 2.2.4.1). For rls2(3), more than 88 

million single reads and for rls478, more than 114 million single reads resulted from 

the sequencing run (Table 21).  

 

Table 21: The output of the SOLiDTM sequencing (Life Technologies) for rls2(3) and 
rls478. The read number was in range (100000000 reads ± 25 %). 

mutant 
number of 

reads 
number of 

mapped reads  
mean depth genome coverage 

rls2(3) 88297875 37873634 22 97% 

rls478 114042728 57427747 33 97% 

 

All bioinformatical analyses of the sequencing data was performed with the CLC 

Genomics Workbench software (www.CLCbio.com). In the following course of this, 

the reads were mapped to the Arabidopsis thaliana genome,  

which was downloaded from the Tair homepage 

(ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/). The low 

number of mapped reads resulted from the heterozygous DNA from the F2 

generation used for the experiment. Approximately half of the reads were mapped to 

the Col-0 genome (Tair9), and the other reads were found to be mapped to the Ler 

genome (data not shown). However, the sequencing depth and genome coverage 

was still high enough to perform fine mapping (Table 21). 

 

3.3.2.2 Detection and filtering of SNPs for rls2(3) and rls478 mutants 

The determination of SNPs (named also SNP calling) was performed with the 

probabilistic variant plug in from the CLC genomics workbench (see methods chapter 

2.2.4.1.1). The number of SNPs per chromosome was found to correlate with the 

respective size (length in bp), except for chromosome V (Tables 22, 23): the amount 

of SNPs of the rls2(3) data detected for chromosome V was reduced to the number 

of SNPs for chromosome IV, although chromosome IV is 30% smaller (shorter) than 

chromosome V. For the rls478 dataset, the number of SNPs determined for 

chromosome V, was merely ~ 10% of the expected number for this chromosome, 

deduced from the data of the other four chromosomes. 

 

 
 
 



 

60 

 

Table 22: SNP calling for the rls2(3) mutant. The analysis was performed with the CLC 
genomics workbench (CLC bio). The number of the SNPs correlated to the chromosome size 
(length), except for chromosome V. The ratio between SNPs, which were derived from the 

crossing of the wild type accessions Col-0 with Ler and EMS induced SNPs is for all 
chromosomes ~ 6:4. 

chromosome 
number of 

SNPs 
number of Ler-

SNPs 
number of EMS-induced 

SNPs 

I 89147 54242 (61%) 34905 (39%) 

II 24855 15441 (62%) 9414 (38%) 

III 59579 36357 (61%) 23222 (39%) 

IV 61458 35794 (58%) 25664 (42%) 

V 60100 36986 (61%) 23114 (39%) 

 

The low number of SNPs at chromosome V might be due to a very low recombination 

rate during meiosis for this chromosome. The sequence data showed that 

chromosome V was almost homozygous for the rls478 mutant, and for rls2(3) there 

was a clear tendency to the Col-0 sequence for chromosome V. A reason for this 

could be that both mutation sites, the T-DNA insertion in the PRORS1 gene and the 

rescue mutation, are located on chromosome V and were found to be linked; hence 

the selection of the mapping population was excluding plants with recombination 

events at chromosome V, because they were selected to contain both mutations (see 

methods chapter 2.2.4.1.2).  

 

Table 23: SNP calling for the rls478 mutant. The analysis was carried out with the CLC 
genomics workbench (CLC bio). The number of the SNPs correlated to the chromosome size 
(length), except for chromosome V. Chromosome V was found to be ~ 90 % identical to the 

Col-0 sequence, which explains the low SNP number and the turned around ratio (3:7) 
between SNPs, which were derived from the crossing of the wild type accessions Col-0 with 
Ler and EMS induced SNPs.  

chromosome 
number of 

SNPs 
number of Ler-

SNPs 
number of EMS-induced 

SNPs 

I 83180 52278 (63 %) 30902 (37 %) 

II 43887 29233 (67 %) 14654 (33 %) 

III 53664 34219 (64 %) 19445 (36 %) 

IV 52265 31840 (61 %) 20425 (39 %) 

V 8051 2520 (31 %) 5531 (69 %) 

 

To distinguish between the SNPs derived from the crossing of the rls mutants with 

Ler and the EMS-induced SNPs, the SNP collection for Ler from Lu et al. 2012 

(http://www.personal.psu.edu/hxm16/suppdatafile.zip) was used. The ratio between 

the Ler SNPs and EMS-induced SNPs was for all chromosomes approximately 6:4, 
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except for chromosome V of rls478 (see Tables 22, 23). Because of a sequence 

identity of ~ 90% of the sequence of chromosome V from the rls478 mapping 

population and the Col-0 sequence, the ratio of the SNPs was in this case found to 

be 3:7. 

 

3.3.2.3 Identification of EMS-induced SNPs possibly responsible for the rls 

phenotypes of mutants rls2(3) and rls478 

In order to reduce the number of SNPs, which could be responsible for the rls 

phenotype, more filtering steps were performed. To separate the EMS-induced SNPs 

from other SNPs, e.g. sequencing errors, only SNPs including changes from guanine 

(G) to adenine (A) or cytosine (C) to thymine (T) remained in the analysis, which are 

known to constitute more than 99 % of EMS-induced SNPs (Green et al. 2003). In 

the last filtering step, only SNPs were selected with a coverage of > 10 and a 

frequency of > 90%, meaning that the SNP is covered by 10 sequencing reads or 

more and 9 out of 10 nucleotide transitions are identical. 

 

Table 24: Description and localization of EMS-induced SNPs as possible candidates 
for the rls phenotype of rls478. Depicted are the candidates, which showed a coverage of 
> 10 (the SNP is covered from 10 sequencing reads or more), a frequency of 100 % of the 
mutated allele, and whether the SNP is located in a coding region leading to an amino acid 
change. The nucleotide change was either from cytosine (C) to thymine (T) or guanine (G) to 
adenine (A). The most likely candidate for causing the rls478 phenotype is highlighted in red.  

chromosome 

reference 
position 

(bp) 
nucleotide 

change 
amino acid 

change locus 

1 6790420 C/T Ala/Val AT1G19640  

3 15142935 G/A Ala/Thr AT3G43148  

4 12087278 C/T Ser/Leu AT4G23060  

4 12087281 C/T Ala/Val AT4G23060  

4 17276567 G/A Ala/Thr AT4G36630  

4 9227408 G/A Asp/Asn AT4G16330  

4 2715173 C/T His/Tyr AT4G05310 

5 2906927 C/T Glu/stop AT5G09360  

5 14327194 G/A Gln/Gln AT5G36320  

 

After these filtering steps, 115 candidate SNPs (chromosome I = 30; II = 5; III = 8; 

IV = 46; V = 26) remained for rls478. Regarding the localization of the SNPs, first it 

was determined whether they were located to a gene. Second, if localization to a 

gene was observed, it was analyzed whether they located to an exon or an intron. 
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The SNPs which were located in an exon were subsequently analyzed if they were 

responsible for an amino acid change. The resulting candidate SNPs, potentially 

including the one responsible for the rls phenotype of rls478, are listed in Table 24. 

All of them were found to be located in an exon and led to an amino acid change. 

Out of these candidates, the SNP at position 2906927 was the only SNP located in 

the region of chromosome V, which was previously identified with the rough mapping 

approach (Figure 24). This mutation is located in the 5th of 6 exons of gene 

AT5G09360 and results in a stop codon instead of a glutamic acid. AT5G09360 

encodes for the LACCASE14 (LAC14) gene, which belongs to the laccase gene 

family (Cai et al. 2006; Turlapati et al. 2011). Hence, this mutation is the best 

candidate to be responsible for the rls phenotype of rls478. 

For rls2(3), 126 candidate SNPs (chromosome I = 26; II = 19; III = 12; IV = 39; V = 

30) remained after the filtering steps mentioned above. In Table 25, all candidates 

are listed which were located in an exon and led to a codon change.  

 

Table 25: EMS induced SNPs and their localization as possible candidates for the rls 
phenotype of rls2(3). Depicted are the candidates which showed a coverage higher than 10 
(the SNP is covered from 10 sequencing reads or more), a frequency of 90 % of the mutated 
allele, and where the SNP is located in a coding region leading to an amino acid change. The 
nucleotide change occurred either from cytosine (C) to thymine (T) or guanine (G) to adenine 
(A). The most likely candidate for causing the rls2(3) phenotype is highlighted in red.  

chromosome 

reference 
position 

(bp) 
nucleotide 

change 
amino acid 

change locus 

4 17361415 G/A Gly/Arg AT4G36860   

4 9227408 G/A Asp/Asn AT4G16330  

4 12087281 C/T Ser/Leu AT4G23060 

4 12087278 C/T Ala/Val AT4G23060   

4 8980228 C/T Arg/Cys AT4G15780  

5 2906927 C/T Glu/Glu AT5G09360  

5 1097774 C/T Thr/Ile AT5G04050  

5 4896800 G/A Val/Ile AT5G15110  

5 14327194 G/A Gln/stop AT5G36320  

 

Only one of these SNPs was found to be located in the region on chromosome V, 

which was determined by rough mapping (Figure 20). This candidate SNP at position 

14327194 leads to a stop codon instead of a glutamine and is located in the exon of 

the AT5G36320 gene. AT5G36320 encodes for an ECA1 gametogenesis-related 

family protein with an unknown function. These mapping results make the mutation in 



 

63 

 

the AT5G36320 gene the most likely candidate to be responsible for the rls 

phenotype of rls2(3). However, this mapping data has to be confirmed via 

complementation experiments in the future. 
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4. Discussion 
 
During evolution, the conversion from endosymbiont to the organelle was 

accompanied by a massive genomic transfer from the organelles to the nucleus. 

Therefore, signaling pathways evolved to mediate the communication between the 

cell compartments (Kleine et al. 2009). Today, most of the organelle-located proteins 

are encoded in the nucleus (Abdallah et al. 2000); hence the signaling pathways from 

the organelles to the nucleus (retrograde signaling), which deliver information about 

the developmental stage of the organelles or environmental influences are crucial for 

plants to react accordingly (Pogson et al. 2008).  The prors1-2 mutant is a very good 

candidate for research of the translation-dependent retrograde signaling pathways, 

due to its reduced organelle translation in both chloroplasts and mitochondria 

(Pesaresi et al. 2006) without the need of applying herbicides such as lincomycin or 

norflurazon.  

From a genetic screen of mutagenized prors1-2 mutants performed in this study, 19 

rls (relaxed LHCB suppression) mutants were selected for further physiological 

characterization. The two mutants showing the most interesting phenotypes (rls2(3) 

and rls478) were mapped to localize the respective suppression mutation, which play 

most likely a role in the translation-dependent signaling process. The mutant rls2(3) 

possessed the best PSII performance of all 654 measured mutants, which is almost 

equal to wild type (Col-0) level. However, this mutant could not convert the energy 

generated by photosynthesis into growth, as its growth performance remained 

retarded compared to Col-0 (Figure 9), especially under short-day conditions (Figure 

10 B). The very strong rescue effect in PSII activity for rls2(3) with regard to its 

parental line LHCB3pro:LUC prors1-2 might be due to the strong rescue of the 

LHCB1.2 transcript and presumably other transcripts compared to LHCB3pro:LUC 

prors1-2 (Figure 16). However, as the other tested transcripts showed no (PSAK and 

PSBO) or just a slight (LHCB3) rescue in expression (Figure 16), the assumption can 

be drawn that this is not the only reason for the increase in PSII performance of 

~40% (Table 26). 

The mutants rls478 and rls436 both feature wild type like growth rates including the 

same time point of flowering, therefore they possess the best growth rescue of the 19 

selected rls mutants compared to their parental line (LHCB1.2pro:LUC prors1-2) 

(Figure 11). Interestingly, in regard to the PSII performance, both mutants show no 
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rescue compared to LHCB1.2pro:LUC prors1-2, especially rls478, which has an even 

worse performance than rls436 (Table 15). Nevertheless, these mutants feature 

differences in the starch content: whereas the amount of starch determined for rls436 

is almost at the wild type level, the starch content of rls478 is much lower than the 

wild type (Figure 17 B and C). The strongly reduced amount of starch measured at 

the end of the dark period for rls478 leads to the hypothesis that all the energy 

produced by the mutant is used directly for plant growth, therefore the mutant is not 

capable of storing the energy in form of starch during the day as other mutants like 

rls436. Due to these data, rls2(3) (descending from LHCB3pro:LUC prors1-2) and 

rls478 (descending from LHCB1.2pro:LUC prors1-2) were chosen as candidates for 

the identification of their suppression mutation.  

 
 
Table 26: Summary of physiological rescue phenotypes of rls2(3), rls478 and rls436 
compared to their parental lines. The behavior of the rls mutants compared to their 
parental mutants LHCB3pro:LUC prors1-2 and LHCB1.2pro:LUC prors1-2  is depicted: like Col-
0 = ++, rescue effect = +, similar to LHCB3pro:LUC prors1-2; LHCB1.2pro:LUC prors1-2  = 0.  

name growth PSII  starch 
LHCB  

expression 

LHCB3pro:LUC prors1-2 0 0 0 0 

rls2(3) + + + + 

LHCB1.2pro:LUC prors1-2 0 0 0 0 

rls436 ++ + + 0 

rls478 ++ 0 + + 

 

4.1 Are LACCASE14 and AT5G36320 possible candidates for 

suppression mutations? 

4.2.1 LACCASE14 (LAC14), the best candidate for the suppression 

mutation of rls478 

The fine mapping of the mutation causing the observed rescue effects in rls478 

revealed a nucleotide exchange from C to A at position 2906927 bp on chromosome 

V, causing an amino acid change from glutamic acid to a stop codon in the 5th exon 

of the LAC14 gene (AT5G09360). This position was additionally located with the 

rough mapping approach (Figure 24; region from 2174597 bp to 4254759 bp) for 

rls478.  
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LACCASES are multi-copper containing glycoprotein oxidases, for which the 

physiological and biochemical role in higher plants is mostly unknown. Copper is a 

crucial trace element required in redox-mediated physiological processes, and its 

levels were found to affect plant growth and development (Burkhead et al. 2009). 

Moreover, copper is known to function as a cofactor for several plant enzymes, 

including plastocyanin, cytochrome c oxidases and ethylene receptors (Burkhead et 

al. 2009). It was additionally proposed that LACCASES play a role in lignification 

(LaFayette 1999; Ranocha et al. 2002; Cesarino et al. 2012) or in functioning as 

redox mediators in maize (Galuszka et al. 2005). However, although 17 members of 

the LACCASE gene family were detected in Arabidopsis thaliana (McCaig et al. 

2005), only for one of these the physiological function is known: TRANSPARENT 

TESTA 10 (LAC15/TT10) is involved in mediating flavonoid polymerization, leading to 

seed coat colour/maturation, although without any clear determination of substrates 

and products (Pourcel et al. 2005). For two others LACCASES, LAC4 and LAC17, 

there is evidence that they contribute to constitutive lignification in Arabidopsis 

thaliana stems (Berthet et al. 2011). 

The LAC14 gene is one of two Arabidopsis thaliana LACCASE genes that lack the 

cis copper response elements in the promotor region, which leads to the assumption 

that LAC14 is not directly regulated by copper levels (Turlurpati et al. 2011). 

Furthermore, LAC14 belongs to the subgroup of LACCASES with a low redox 

potential. LAC14 was found to be mainly expressed in reproductive organs, although 

it was detected in low levels in all tissues. LAC14 possesses the longest N-terminal 

signal peptide (length 33 residues; average 25) of all 17 family members and 

contains 9 predicted glycosylation sites. The in silico expression pattern of LAC14 

revealed an up-regulation in roots and shoots after cold stress (4 °C) and an up-

regulation merely in roots after osmotic stress (mannitol) and salt stress (Turlurpati et 

al. 2011). Moreover, upon drought (16 day old seedling 15 min dry airstream) and 

oxidative (10 µM methyl viologen) stress conditions, LAC14 was found to be down-

regulated in the shoots. Generally, LAC14 - together with LAC16 - seems to be 

regulated in an early response pathway to stress conditions (Turlurpati et al. 2011).  

From the mapping results and from previous studies of LAC14, it is reasonable that 

the mutation in LAC14 is responsible for the suppression of the prors1-2 mutation 

leading to the phenotype of rls478. To confirm this assumption in future experiments, 

it is required to complement the LAC14 gene in rls478 with the wild type gene.  
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4.2.2 The AT5G36320 gene as a candidate for the suppression mutation 

of rls2(3) 

For determination of the mutation causing the phenotype of the second candidate 

chosen for the mapping approach, the only SNP remaining after filtering (see 3.3.2.3) 

is located in the AT5G36320 gene. The respective mutation leads to a stop codon 

and is located in the region of chromosome V at position 14327194 bp (Figure 20), 

which was also mapped by rough mapping. The gene AT5G36320 is 356 bp long, 

consists of merely one exon and codes for a ECA1 gametogenesis related family 

protein, similar to all neighboring genes from AT5G36310 to AT5G36550. However, 

no data regarding the exact physiological function is available for AT5G36320 to 

date. From the mapping data, this gene includes most likely the causative mutation of 

the rls2(3) phenotype, although it has to be noted that the mutation is located in a 

highly repetitive region of the chromosome (in close proximity to the centromere), and 

it can therefore not be excluded that it represents a mapping artifact. 

  

4.2 Is there a link between the prors1-2 mutation and the 

potential suppression mutations caused by a reduced 

recombination frequency of chromosome V? 

The evolutionary importance of meiosis for allelic shuffling, which is caused by 

crossing-over events and gene conversion is undisputed. For Arabidopsis thaliana, 

less than 10 crossing-over events per meiosis are estimated (Salome et al. 2012; Lu 

et al. 2012; Giraut et al. 2011; Toyota et al. 2011), however relatively little is known 

about gene conversion rates (Innan et al. 2002; Yang et al. 2012). Generally, the 

frequency of crossing-over (= recombination) between two locations depends on their 

distance. By observing the recombination frequency (with the help of markers), the 

distance (linkage disequilibrium) between two locations can be calculated (Sturtevant 

1913; Haldane 1956). Gene conversions are ignored for mapping approaches and 

treated as genotyping errors (Yang et al. 2012). The linkage disequilibrium in 

Arabidopsis thaliana decays within 50 kb (Nordborg et al. 2000).  

The recombination frequency of chromosome V for both mapping populations of 

rls2(3) and rls478 was much lower than expected, leading to strongly reduced 

numbers of SNPs. A reason for this could be the distorted segregation ratios, which 
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differ considerably from the Mendelian expectation for three of the five chromosomes 

in Arabidopsis thaliana. Chromosomes II and V are Col-0 dominant, whereas 

Chromosome IV is Ler dominant (Salome et al. 2012; Giraut et al. 2011; Yang et al. 

2012). The underlying reason for this is still unclear. The data of this project suggest 

that there is only evidence for chromosome V to be Col-0 dominant, (Tables 22, 23), 

due to the reduced number of SNPs for this chromosome. The most likely reason for 

the observed Col-0 dominant segregation for chromosome V is a linkage between 

the prors1-2 mutation and the suppression mutations. The gene prors1-2 is located at 

the lower arm of chromosome V at position 21311063 bp (Figure 25).  

 

 
 

Figure 25: Locations of mutations on chromosome V. The exact positions true to scale 

for lac14 (2906426 bp), AT5G36320 (14326901 bp) and prors1-2 (21311063 bp) are shown. 
 

Crucial for determination of mapping mutations is the selection of the mapping 

population from which pool the DNA will be sequenced. For this study, the selection 

was based on the visual phenotype of the suppression mutants rls2(3) and rls478 

and the presence of the prors1-2 allele, analyzed via PCR. All plants which fulfill 

these requirements were selected to represent the mapping population. If the two 

respective mutations are linked, which seems possible as they are both located on 

chromosome V, then only plants are selected which include both mutations; hence 
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plants with no or strongly reduced recombination events between the two mutation 

sites are selected for the mapping population. This would lead to the drastically 

reduced number of SNPs on chromosome V.  

 

4.3 Outlook on SNP Ratio Mapping (SRM) 

Former mapping approaches rely on the recovering of homozygotes or backcrossing, 

which leads to difficulties if lethal or poorly transmitted mutations are mapped (Austin 

et al. 2011; Blumenstiel et al.2009; Irvine et al. 2009; Sarin et al. 2008; Schneeberger 

et al. 2009; Smith et al. 2008; Srivatsan et al 2008; Zyrin et al. 2010). Second-site 

modifiers in a complex genetic/transgenic background, as in this project, are 

problematic as well. In the SNP ratio mapping approach (SRM), the mutant is 

backcrossed to the non-mutagenized parent, leading to a segregation ratio of 

unlinked SNP, created by EMS mutagenesis, of 1:3 in a pool of the whole mapping 

population (Lindner et al. 2012). By selecting only mutant individuals in the F1 of the 

second backcrossing, the causative (linked) SNP is enriched and segregates in a 

ratio of 1:1. A calculated 50-fold sequence coverage should be sufficient to 

distinguish between a 1:3 and 1:1 ratio. The peak of the causative SNP (peak size 

~0.5) should have a “round form”, as the peak size of the neighbouring SNPs is 

between 0.5 and 0.25. By statistical testing of the neighbouring SNPs (possessing an 

expected recombination rate) from SNPs segregating 1:1, the causative SNP can be 

distinguished from other SNPs segregating 1:1, as they are located in regions 

displaying unusual segregation ratios, including the highly repetitive centromeric 

regions (Lindner et al. 2012). With SRM, the mapping of the suppression mutation in 

a complex genetic background is easier and faster than by other NGM methods, as 

the EMS mutagenized SNPs do not have to be filtered from the SNPs that derive 

from crossing of different accessions. However, problems might occur if the mutation 

of interest is in a region with unusual segregation ratios, e.g. in proximity to the 

centromere and telomere. To solve this problem, an improved maximum likelihood 

algorithm (iML) can be applied, by which a high genotyping accuracy can be 

achieved for organisms without a fully sequenced reference genome. Additionally, 

incorrect SNP calls, resulting from repetitive genomic regions, can be efficiently 

prevented (Dou et al. 2012). In the future, the mapping of mutations will be much 

faster and more efficiently with the help of next generation sequencing technologies.   
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