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Zusammenfassung

Die meisten wohlbekannten Regressionsmodelle konzentrieren sich auf die Schätzung des be-
dingten Erwartungswerts gegeben einer Reihe von erklärenden Variablen. Höhere Momente
der Verteilungsfunktion werden üblicherweise als konstant angenommen. Damit verbun-
den sind typischerweise starke Annahmen wie Homoskedastizität oder eine symmetrische
Verteilungsfunktion. In der flexiblen Modellklasse der konditionalen Transformationsmod-
elle (CTMs) hingegen wird die gesamte bedingte Verteilungsfunktion direkt modelliert.
Dadurch dürfen auch höhere Momente der bedingten Verteilungsfunktion (wie Varianz,
Wölbung und Schiefe) von den erklärenden Variablen abhängen. CTMs enthalten wiederum
lineare Transformationsmodelle (z.B. proportional hazards und proportional odds Modelle)
als Spezialfall, die ein nützliches Instrument zur Datenanalyse in zahlreichen Anwendungs-
gebieten darstellen. Um einen umfassenden Literaturüberblick zu geben, wird die Entwick-
lung linearer Transformationsmodelle innerhalb der letzten 20 Jahre in der vorliegenden
Dissertation zusammengefasst und bewertet. Häufig verwendete Regressionsmodelle wer-
den aus der Transformationsmodell-Perspektive betrachtet, wodurch die gemeinsame Mod-
ellbasis dieser Regressionsmodelle verdeutlicht wird.
Der methodische Schwerpunkt dieser Arbeit liegt in der Einführung von conditionally linear
transformation models (CLTMs), die einen wichtigen Spezialfall von CTMs darstellen und
in der Erweiterung von CTMs auf zensierte Zielgrößen. Der Einfluss der erklärenden Vari-
ablen auf die ersten beiden Momente der Verteilungsfunktion ist in den vorgeschlagenen
Parametrisierungen von CLTMs interpretierbar und detailliertere Einblicke in die Modell-
struktur werden ermöglicht.
Für einige niedrig-parametrisierte CLTMs wird ein likelihood-basierter Schätzansatz
vorgestellt, der sich leicht auf beliebige Zensierungsarten erweitern lässt. Die damit verbun-
dene Maximum-Likelihood Theorie macht diesen Ansatz besonders attraktiv. Alternativ
können CLTMs durch regularisierte Optimierung unter Verwendung eines komponenten-
weisen Boosting-Algorithmus geschätzt werden. Dieser Schätzansatz ist nicht auf niedrig-
parametrisierte CLTMs beschränkt und kann für deren gesamte Bandbreite verwendet wer-
den. Insbesondere für Anwendungen in der Überlebenszeitanalyse wird die Zielfunktion
durch die Berücksichtigung von inverse probability of censoring weights auf rechtszensierte
Zielgrößen erweitert.
Die Überlegenheit von C(L)TMs im Vergleich zu weniger flexiblen Standardregressions-
modellen wurde in zwei Simulationsstudien untersucht. Außerdem wurden zwei beson-
ders wichtige Anwendungen aus dem Bereich der Biostatistik für diese Dissertation aus-
gewählt. Der Einfluss von Ultraschallmessungen auf das zukünftige Geburtsgewicht
von Neugeborenen aus der Perinatalen Datenbank Erlangen (Deutschland) wurde mit
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Hilfe niedrig-parametrisierter likelihood-basierter CLTMs analysiert. Dabei durften die
Geburtsgewichte einer beliebigen Verteilung mit fötusspezifischem Erwartungswert und
fötusspezifischer Varianz folgen. Zusätzlich wurden flexiblere C(L)TMs verwendet, um
fötusspezifische Prädiktionsintervalle für das zukünftige Geburtsgewicht zu schätzen. In der
Überlebenszeitanalyse ist die Schätzung von patientenspezifischen Überlebensfunktionen in
Abhängigkeit von Patienteneigenschaften von speziellem Interesse. Dabei ist die Verwen-
dung von CTMs besonders empfehlenswert, da die bedingte Überlebensfunktion direkt
geschätzt wird. Zur näheren Illustration wurde das Überleben von Patienten, die an chro-
nischer myeloischer Leukämie leiden unter Verwendung von CTMs analysiert.



Abstract

Most well-known regression models focus on the estimation of the conditional mean given
a set of explanatory variables. Higher moments of the distribution function are usually
assumed as constant. This typically implies strict assumptions such as homoscedasticity
or symmetry. In contrast, in the flexible model class of conditional transformation models
(CTMs), the whole conditional distribution function is modelled directly. Thereby, higher
moments of the conditional distribution (i.e. variance, kurtosis, and skewness) are allowed
to depend on explanatory variables. CTMs include linear transformation models (e.g., pro-
portional hazards and proportional odds models) as a special case, which display a powerful
tool for data analysis in various fields. To provide a broad literature overview, the devel-
opment of linear transformation models over the past twenty years is summarised in this
thesis. Frequently used regression models are reviewed from the perspective of transforma-
tion models to clarify their common model basis.
The methodological emphasis of this thesis is the introduction of conditionally linear trans-
formation models (CLTMs), which constitute an important special case of CTMs, and the
extension of CTMs to censored response variables. In the suggested parametrisations of
CLTMs, the influence of the explanatory variables on the first two moments of the distri-
bution function is interpretable, and closer insights into model structure can be gained.
For some low-parametrised CLTMs, a likelihood-based estimation approach is presented
that can be easily extended to any type of censoring. This approach is especially appealing
because the associated maximum likelihood theory comes for free. Alternatively, CLTMs
can be estimated based on regularised optimisation using component-wise boosting. This
estimation approach is not restricted to low-parametrised CLTMs and can be used for the
whole cascade of CLTMs. For applications especially in survival analysis, the target func-
tion is extended to right-censored responses by including inverse probability of censoring
weights.
The superiority of C(L)TMs in comparison to less flexible standard regression models was
shown in two simulation studies. Moreover, two applications of C(L)TMs in biostatis-
tics have been selected for this thesis. The influence of ultrasound measurements on the
future birth weight for newborns from the Perinatal Database Erlangen, Germany, has
been analysed using low-parametrised likelihood-based CLTMs. Thereby, the birth weights
were allowed to follow some arbitrary distribution with fetus-specific means and variances.
Additionally, more flexible C(L)TMs have been used to estimate fetus-specific prediction
intervals for the future birth weight. In survival analysis, the estimation of patient-specific
survivor functions that are conditional on a set of patient characteristics is of special in-
terest. The consideration of CTMs is advisable because the conditional survivor function
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can be estimated directly. As an example, CTMs have been used to analyse the survival of
patients suffering from chronic myelogenous leukaemia.
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1. Introduction

Most well-known regression models focus only on modelling the conditional mean E(Y |X =
x) of the response variable Y ∈ R given a set of explanatory variables X = x. If we look at
linear regression models, generalised linear models (GLMs, e.g., McCullagh (1984)), or more
generally at generalised additive models (GAMs, e.g., Hastie and Tibshirani (1986)), we are
free to choose the parametric response distribution from the exponential family, but we are
restricted to model influences of the explanatory variables on the conditional mean. Higher
moments of the distribution function are usually assumed as fixed. For example, in the GLM
and GAM models, the variance, skewness and kurtosis are not modelled explicitly in terms of
the explanatory variables but implicitly through their dependence on [the conditional mean]
µ (p. 507, Rigby and Stasinopoulos, 2005).

Early attempts to consider higher moments of the distribution function depending on the
explanatory variables were made by extending the linear regression model to the linear
heteroscedastic regression model (Carroll and Ruppert, 1982). Thereby, the mean and the
variance may be influenced by the explanatory variables. However, the variance is assumed
to be a parametric function of the mean responses. This link between the mean responses
and the variance is especially meaningful for heteroscedastic models, as the variance in-
creases with increasing fitted values (Carroll and Ruppert, 1982).

The idea of letting higher moments of the distribution function depend on the explanatory
variables is entirely considered in generalised additive models for location, scale and shape
(GAMLSS) (Rigby and Stasinopoulos, 2005). This general semiparametric model class for
univariate response variables displays a flexible extension of GAMs. Not only the mean, but
also the remaining parameters of the response distribution can be modelled in terms of the
explanatory variables via parametric or nonparametric smooth additive functions. Thereby,
the response distribution can be selected from a broad family of parametric distributions
for continuous or discrete responses. Highly skew or kurtotic distributions are included
as well. Hence, the distributions from the exponential family in GLMs and GAMs are
replaced by a more general family of distributions. In GAMLSS, estimation is based on
(penalised) maximum likelihood approaches (Rigby and Stasinopoulos, 2005). Mayr et al.
(2012) present a flexible approach for estimating GAMLSS using a boosting algorithm
that is able to deal with high-dimensional data, where the algorithm presented in Rigby
and Stasinopoulos (2005) has its limits. This approach also benefits from the boosting
characteristics of intrinsic variable selection and model choice.
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Nevertheless, all models mentioned so far require the definition of a parametric distribution
for the response variable. The definition of a parametric distribution might be a strong
assumption, and causes problems if the chosen distribution does not fit the given data
properly. A popular approach that makes no assumptions about the parametric distribution
of the response variable is quantile regression (Koenker, 2005). Each conditional quantile
is modelled separately in terms of the explanatory variables via linear functions (linear
quantile regression) or via additive nonparametric and smooth functions (additive quantile
regression). A boosting approach for estimating structured additive quantile regression
models is presented in Fenske et al. (2011). Due to the modelling of the conditional quantiles
in separate regression models, the logical monotonicity of the conditional quantiles is not
considered explicitly, and quantile crossing is a familiar problem associated with quantile
regression. A nonparametric estimator for conditional quantiles that avoids the problem of
quantile crossing is suggested in Dette and Volgushev (2008). Alternatively, Schnabel and
Eilers (2013) introduce quantile sheets as a new approach to estimate smooth non-crossing
quantile curves. By estimating quantile sheets, all possible quantile curves are estimated
simultaneously, and crossing quantile curves are omitted by a sheet that is monotonically
increasing with probability τ .

Closely related to estimating the conditional quantile function is the estimation of the con-
ditional distribution function because of the conditional quantile function being the inverse
conditional distribution function and vice verse. Some nonparametric kernel-based estima-
tors for the conditional distribution function have been presented in the past. For example,
Hall et al. (1999) proposed a weighted Nadaraya-Watson estimator for the conditional dis-
tribution function. Alternatively, Li and Racine (2008) proposed a new nonparametric
conditional cumulative distribution function kernel estimator that is able to deal with con-
tinuous and categorical explanatory variables. Moreover, Li and Racine (2008) suggest to
estimate the conditional quantile function by simply inverting the estimated conditional
distribution function, and Cai (2002) proposes an estimator for the conditional quantile
function based on Hall et al. (1999)’s weighted Nadaraya-Watson estimator.

The direct estimation of the conditional distribution function is an important topic because
it is closely related to the estimation of the conditional quantile function and to the esti-
mation of conditional density functions (Hall and Müller, 2003). But more importantly,
it combines the useful characteristics of GAMLSS and quantile regression discussed above.
First, the influence of the explanatory variables is not restricted to the conditional mean if
the whole conditional distribution function is modelled directly. Instead, higher moments
of the response distribution such as variance, kurtosis and skewness may be influenced by
the explanatory variables as well. This is especially important if typical assumptions such
as homoscedasticity and symmetry may be violated (Hothorn et al., 2014). Second, all
conditional quantiles are estimated simultaneously when estimating the whole conditional
distribution and problems such as quantile crossing cannot occur. In accordance with quan-
tile regression models, the explicit assumption of a parametric response distribution can be
avoided. Therefore, Hothorn et al. (2014) introduced recently the semiparametric model
class of conditional transformation models (CTMs) that hold the previously mentioned
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characteristics. In CTMs, the whole conditional distribution function is estimated directly
under rather weak assumptions. As the new methods presented in this thesis are related
to CTMs or are extensions of CTMs, a short summary of the main characteristics of the
model class is given below.

1.1. A short introduction to conditional transformation
models

Conditional transformation models (CTMs) (Hothorn et al., 2014) model the conditional
distribution function of a response Yx = (Y |X = x) depending on explanatory vari-
ables x:

P(Y ≤ y|X = x) = FY |X=x(y) = F (h(y|x)). (1.1)

The conditional distribution function is modelled in terms of the monotone transformation
function h : R → R, which depends on the explanatory variables x. Moreover, y ∈ R
denotes some arbitrary response value from the conditional response distribution, and F
denotes an absolute continuous distribution function F : R → [0, 1] with corresponding
quantile function Q = F−1. The transformation function h transforms the response values
conditionally on x, so that the transformed responses follow the distribution function F .
CTMs can be understood as the inverse of a quantile regression model, as we do not model
the conditional quantile function but we model the conditional distribution function of the
responses directly. Thereby, we are able to estimate all quantiles simultaneously in a joint
model and do not need to fit separate models for all quantiles like in quantile regression.
When CTMs are estimated, the monotone transformation function h is estimated, whereas
the continuous distribution function F is chosen a priori. A frequently used choice is
the standard normal distribution function F = Φ with corresponding quantile function
Q = Φ−1. Hence, model characteristics have to be defined in terms of characteristics of the
transformation function h.

Furthermore, Hothorn et al. (2014) suggest an additive decomposition of the conditional
transformation function h into J partial transformation functions hj(·|x) : R→ R:

h(y|x) =
J∑
j=1

hj(y|x). (1.2)

Each partial transformation function hj depends on (potentially all of) the explanatory vari-
ables x, whereby higher moments of the conditional distribution function are influenced by
the explanatory variables. The conditional transformation function h has to be monotoni-
cally increasing in y, but this does not necessarily imply that every partial transformation
function hj has to be monotonically increasing in y.
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CTMs are estimated based on regularised optimisation using component-wise boosting re-
sulting in consistent estimated conditional distribution functions (Hothorn et al., 2014). A
more thorough introduction to the estimation of CTMs is given in Chapter 3.

Using CTMs, the conditional distribution function is estimated under rather weak assump-
tions. However, two main assumptions are imposed in CTMs. Most importantly, it is
assumed that there is a monotone transformation from the unknown distribution of the
responses to the distribution function F , and that this transformation can be displayed in
terms of the bijective function h. The distribution function F is fixed and has to be chosen
a priori. Second, the additive decomposition of the conditional transformation function into
partial transformation functions in Equation (1.2) requires additivity on the scale of the
quantile function. Nevertheless, the semiparametric model class of CTMs is by far more
flexible compared to alternative standard regression models.

1.2. Scope of this work

In this thesis, we investigate several extensions and modifications of classical CTMs, and
use CTMs in two applications where their characteristics are especially beneficial. The
methodological emphasis is the introduction of conditionally linear transformation models
(CLTMs) as an important special case of CTMs, and the extension of CTMs to censored
response variables. Furthermore, the introduction of likelihood-based CTMs is an impor-
tant methodological development because it creates a broad model basis accompanied by
a unified estimation procedure. Additionally, the approach offers the advantageous char-
acteristics of maximum likelihood theory. The fundamental benefits of estimating the con-
ditional distribution function directly have already been discussed at the beginning of this
chapter.

Transformation models have been a powerful tool for data analysis in the past. Most
prominently, linear transformation models (Cheng et al., 1995) have been applied in survival
analysis because the proportional hazards, the proportional odds, and the accelerated failure
time model are important special cases of this model class. Linear transformation models
are also included as a special case in CTMs. To give a broad overview, we review the
development of linear transformation models over the past twenty years in Section 2.1.
Furthermore, we put several commonly used regression models into the light of (linear)
transformation models to clarify their importance and their wide utilisability. Thereby, one
further aim is to clarify that all mentioned regression models have a common model basis,
although they might seem different at first sight.

CTMs present a very complex and general model class that often benefits from its high flexi-
bility. Nevertheless, due to this high flexibility model interpretation can be challenging. For
example, a direct interpretation of the relationship between the explanatory variables and
certain moments of the distribution function of the response is difficult to obtain. There-
fore, we introduce conditionally linear transformation models (CLTMs) as an important
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special case of CTMs with reduced flexibility in this thesis. In CLTMs, the influence of
the explanatory variables is restricted to the conditional mean and the conditional variance
of the transformed response. In consequence, the explanatory variables’ influence on the
first two moments of the distribution function is interpretable. Additionally, the inter-
pretable parametrisations in CLTMs allow closer insights into model structure. Concerning
their complexity, CLTMs can be placed in between CTMs, which are more flexible, and
less flexible linear transformation models. We introduce a cascade of interpretable, low-
parametrised CLTMs in Chapter 2. Furthermore, the model class of CLTMs is introduced
more generally for the estimation of prediction intervals in Chapter 4. The considered
CLTMs include not only low-parametrised but also more complex models.

Estimation of C(L)TMs can be based on two fundamentally different approaches, which are
introduced in Chapter 3. Hothorn et al. (2014) presented a component-wise boosting algo-
rithm for the estimation of CTMs. This approach is adapted to the estimation of CLTMs
in Chapter 4, and to right-censored responses in Chapter 5. On the other hand, low-
parametrised CLTMs can be estimated likelihood-based, and this approach can be easily
extended to any kind of censoring. Hence, the likelihood-based approach is not restricted
to the analysis of right-censored observations, but also left-censored, doubly-censored or
interval-censored response variables can be considered. For uncensored responses, the per-
formance of likelihood-based C(L)TMs is investigated in terms of a simulation study in
Chapter 6. Additionally, likelihood-based CLTMs are used for the analysis of the con-
ditional distribution function of birth weight depending on ultrasound measurements for
newborns in the Perinatal Database Erlangen in Chapter 7.

The usage of standard regression models is often associated with rather strict assump-
tions. For example, the linear regression model implies symmetry and homoscedasticity
assumptions, and these assumptions transfer directly to functionals of the conditional dis-
tribution function. One frequently used functional of the conditional distribution function
is the determination of prediction intervals. Using the example of linear regression mod-
els again, the resulting prediction intervals are symmetric around the conditional mean,
and the interval length is constant because it is independent of the individual explanatory
variables. Hence, the prediction intervals perform poorly in the presence of heteroscedas-
ticity and skewness (Hothorn et al., 2014). In consequence, the direct estimation of the
conditional distribution function under rather weak assumptions, i.e. characteristics such
as heteroscedasticity and skewness can be identified, is very useful for the determination
of prediction intervals. Hence, CTMs have the potential to determine prediction intervals
more carefully and might outperform standard prediction intervals if higher moments of
the distribution function depend on the explanatory variables. To confirm the benefits of
estimating prediction intervals using CTMs, we analyse the future birth weight of newborns
from the Perinatal Database Erlangen, Germany, in Chapter 4. A cascade of CLTMs of
different model complexity is used to predict the future birth weight depending on a set of
ultrasound measurements, and associated fetus-specific prediction intervals are presented.
The quality of the prediction intervals is compared to prediction intervals resulting from
linear regression models and from quantile regression.
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Closely connected to the estimation of the conditional distribution function is the estimation
of the conditional survivor function in survival analysis. More precisely, an estimate of the
conditional distribution function provides directly an estimate of the conditional survivor
function. Hence, extending CTMs to deal with censored observations (especially right-
censored observations) is a very interesting and important topic. Compared to standard
regression models in survival analysis, CTMs have several important advantages. First,
most regression models used in survival analysis focus only on the estimation of hazard
functions and on summary statistics, and the conditional survivor function is seldom esti-
mated directly. Nevertheless, the estimation of patient-specific survivor functions is of spe-
cial interest in personalised medicine because individual patient risk profiles are especially
informative, and allow a better prognosis of the course of the disease (Mackillop and Quirt,
1997; Crowther and Lambert, 2014). Second, the proportional hazards model (which is the
most frequently used regression model in survival analysis) implies the strict assumption of
proportional hazards. Of course, the proportional hazards assumption can be checked and
relaxed (e.g., using residuals (Schoenfeld, 1982)), but this is usually rather circumstantial
and model diagnosis can be only performed after model estimation. In contrast, CTMs
estimate the conditional survivor function directly and flexibly, and proportional as well
as non-proportional hazard models are included as special cases in the broad model class.
In Chapter 5, we investigate CTMs for survivor function estimation. Therefore, CTMs
are extended to right-censored observations by including inverse probability of censoring
weights (e.g., Van der Laan and Robins, 2003) into the target function. The resulting cen-
sored integrated log score is minimised in terms of the component-wise boosting algorithm
presented in Hothorn et al. (2014).

1.3. Contributions

The work in this thesis has been mainly influenced by common research and vital dis-
cussions with my supervisor Torsten Hothorn, and it is partly based on collaborations
with colleagues and researchers from related special fields. Parts of this thesis are already
published or submitted as journal articles, and the remaining parts are based on yet un-
published manuscripts. The outline given below lists the titles of the manuscripts, gives a
short summary of the content, and highlights the contributions from all authors.

• Chapter 2, Chapter 3, Chapter 6 and Chapter 7:
The content of these chapters is based on the working paper

Möst, L. and T. Hothorn (2014b). Likelihood-based conditional transformation mod-
els. Working paper.

In this yet unpublished manuscript, we introduce a unified likelihood-based estima-
tion approach for low-parametrised conditional transformation models. Furthermore,
it contains a broad overview of literature on linear transformation models.
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Lisa Möst and Torsten Hothorn developed the idea of a likelihood-based estimation
approach for conditional transformation models. Lisa Möst looked through the lit-
erature on linear transformation models currently available, and reviewed commonly
used regression models from the perspective of conditional transformation models.
She furthermore performed all analyses, planned and performed all simulations, and
wrote the manuscript. Torsten Hothorn contributed to the conception and presenta-
tion of the article.

• Chapter 4:
The content of Chapter 4 is already published in

Möst, L., M. Schmid, F. Faschingbauer, and T. Hothorn (2014). Predicting birth
weight with conditionally linear transformation models. Statistical Methods in Medical
Research. To appear. DOI: 10.1177/0962280214532745.

This manuscript suggests the usage of conditionally linear transformation models for
predicting the future birth weight of newborns from the Perinatal Database Erlangen,
Germany, based on prenatal ultrasound measurements. Conditionally linear transfor-
mation models are especially useful for the determination of prediction intervals.
Lisa Möst and Torsten Hothorn introduced the model class of conditionally linear
transformation models (CLTMs) and developed the idea of using CLTMs for the de-
termination of prediction intervals. Lisa Möst conducted all analyses and preliminary
simulations, and drafted the manuscript. Torsten Hothorn extended the R add-on
package ctmDevel (Hothorn, 2013) to deal with CLTMs, and contributed to the con-
ception, the presentation and the revision of the article. Matthias Schmid contributed
to the Introduction, especially to the parts concerning medical expert knowledge, and
reviewed the literature on birth weight prediction and obstetric management. Fur-
thermore, he wrote the part of the Discussion concerning reference growth charts, and
he contributed to the conception and the revision of the article. Florian Fasching-
bauer supplied us with the Perinatal Database Erlangen and with literature on birth
weight prediction and obstetric management.

• Chapter 5:
Chapter 5 is already published in

Möst, L. and T. Hothorn (2015). Conditional transformation models for survivor func-
tion estimation. International Journal of Biostatistics. To appear. DOI: 10.1515/ijb-
2014-0006.

We suggest the direct estimation of patient-specific survival probabilities over time
using conditional transformation models in this manuscript. The proposed method-
ology is able to deal with proportional as well as non-proportional hazard settings in
survival analysis.
Lisa Möst and Torsten Hothorn developed the concept of using conditional trans-
formation models for survivor function estimation. Therefore, they extended the
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component-wise boosting algorithm for conditional transformation models to right-
censored responses by including inverse probability of censoring weights. Lisa Möst
planned and conducted the simulation study, analysed the data set of patients suffer-
ing from chronic myelogenous leukaemia, and wrote the manuscript. Torsten Hothorn
provided the necessary software (R add-on package ctmDevel (Hothorn, 2013)), and
contributed to the conception, the presentation and the revision of the manuscript.

The respective manuscripts will be cited again at the beginning of each chapter. Afterwards,
I avoid the repeated citation although there are textual matches.

1.4. Software

All analyses were carried out in the R system of statistical computing (R Core Team, 2014).
Estimation of CTMs and CLTMs using a component-wise boosting algorithm (Chapter 4
and Chapter 5) was performed using the R add-on package ctmDevel (Hothorn, 2013). The
likelihood-based estimation of C(L)TMs (Chapter 6 and Chapter 7) was performed using the
constrOptim-function from the stats-package, which is an extension of the optim-function
that is able to consider linear constraints. A more thorough summary of the used R add-on
packages for the various analyses and links to tutorial R examples can be found in each
chapter.



2. Conditional transformation models

The content of this chapter is based on Möst and Hothorn (2014).

In the past, linear transformation models have been a powerful tool for data analysis in
various fields. Most commonly, they have been used in the context of survival analysis, as
the proportional hazards model and the proportional odds model are prominent members of
this model class. Over the years, numerous ways to estimate linear transformation models
have been proposed including estimating equations, marginal likelihoods, or nonparametric
likelihoods, to name just a few. The handling of censored observations and the associated
complications in estimation have been an important topic as well. Several extensions of
the ordinary linear transformation model, e.g., to non-linear or random effects, have been
discussed extensively.

In order to give a general overview, we review the history of linear transformation models
over the past twenty years with special focus on model structure and associated estimation
strategies in this chapter. To display the large variety of transformation models, we exam-
ine several important regression models (e.g., proportional hazards (PH) and proportional
odds (PO) models, accelerated failure time (AFT) models, cumulative regression models
for ordinal responses, Box-Cox transformation models) from the perspective of (linear)
transformation models. Our aim is to clarify the common model basis of the considered
regression models, even though they might seem rather different.

Conditional transformation models (CTMs) (Hothorn et al., 2014) are a more complex
model class, which allows the estimation of the whole conditional distribution function
of a response variable given a set of explanatory variables. The model class of CTMs
includes linear transformation models as a special case. For reasons of interpretability and
manageability, we introduce low-parametrised conditionally linear transformation models
(CLTMs), which represent an important special case of CTMs that is highly relevant for
various applications. We relate CTMs, CLTMs, and linear transformation models to each
other in this chapter, and discuss the associated model characteristics and limitations.

2.1. A review of transformation models

Transformation models are a powerful tool for data analysis in various fields, and thus have
been frequently used in the past. The history of transformation models started with the
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parametric response transformations suggested by Box and Cox (1964). Due to the well-
explored nature of ordinary linear regression models, the authors proposed to transform the
response y such that a normal, homoscedastic, linear model is valid after transformation.
For this response transformation, a family of transformations depending on the parameter
λ was established:

hY (y|λ) =

{
yλ−1
λ
, λ 6= 0

log(y), λ = 0.
(2.1)

A normal distribution with mean µ and variance σ2 is assumed for the response after the
transformation. Due to the finite number of parameters, Box-Cox transformation models
can be estimated using a full likelihood approach.

Later, the introduction of linear transformation models (e.g., Cheng et al., 1995; Chen et al.,
2002) displayed an extension of the parametric Box-Cox transformation models. Instead of
specifying the transformation function hY (y|λ) up to a finite-dimensional parameter λ, the
response transformation hY (y) is left unspecified, i.e.

hY (y) = −x>β + ε, (2.2)

where ε is a random error with completely specified distribution function F . In this semi-
parametric approach for linear transformation models, the unknown, strictly increasing
response transformation hY (y) is related to linear covariate effects. The corresponding
conditional distribution function is

P(Y ≤ y|X = x) = F (hY (y) + x>β). (2.3)

As a consequence, the explanatory variables induce linear shifts of the response distribution,
and thereby only the conditional mean of the transformed response is influenced. Estimating
linear transformation models involves estimating the parameter vector β and the monotone
transformation function hY (·) : R → R. Model complexity is considerably restricted in
linear transformation models due to the avoidance of interaction terms between the response
y and the explanatory variables x. As linear transformation models include the proportional
hazards (PH) and the proportional odds (PO) model as important special cases (Doksum
and Gasko, 1990, Section 2.1.2), the response transformation function hY (y) is sometimes
also termed baseline function.

Recently, Hothorn et al. (2014) introduced conditional transformation models (CTMs),
which display an extension of linear transformation models and include the model class as
a special case. The model class of CTMs allows the estimation of the whole conditional
distribution function of a response variable Y given a set of explanatory variables X = x:

P(Y ≤ y|X = x) = F (h(y|x)). (2.4)

Thereby, h(·|x) : R→ R denotes the conditional transformation function, which is allowed
to be arbitrarily flexible, but has to be monotonically increasing in y. Model complexity is
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considerably extended, as the transformation function h depends on y and x simultaneously.
For a more detailed introduction to CTMs, see Section 1.1.

The literature on transformation models in the past twenty years is mainly dominated by
references on linear transformation models, extensions of linear transformation models (e.g.,
to non-linear or random effects) and the associated estimation techniques. Furthermore,
the handling of censored observations has been an important topic. To clarify the versatile
application area of linear transformation models, and to summarise the various estimation
strategies, we give a broad literature overview of linear transformation models hereafter.

2.1.1. Estimation strategies for linear transformation models

Concerning linear transformation models, various estimation strategies have been proposed
for the vector of regression coefficients β and the monotonically increasing response trans-
formation function hY (y) (Equation (2.2)) comprising estimating equations, partial like-
lihoods, marginal likelihoods, nonparametric likelihoods, and Bayesian approaches. The
most important strategies are summarised below, and the respective advantages and dis-
advantages are outlined shortly.

Estimating equations. The early references that deal with linear transformation models
for possibly censored responses suggest an estimation based on estimating equations. Most
approaches have in common that they suggest an estimating equation, which allows the
estimation of the parameter vector β without estimation of the response transformation
function hY (y) (Equation (2.2)). Thereby, the infinite-dimensional parameter associated
with the estimation of hY (y) is treated as a nuisance parameter, and the explicit estima-
tion of the response transformation function is avoided. Such approaches are henceforth
referred to as baseline-free. This might be of advantage if only the linear effects of the
explanatory variables on the response transformation are of interest. But the estimated
parameters β̂ can only be interpreted easily in PH and PO models, whereas interpretation
is not straightforward with a general error distribution F (Fine et al., 1998). Additionally,
e.g., in the case of survival times, the prediction of the individual survival probabilities
over time given the patient’s prognostic information requires the estimation of β and hY .
Therefore, most authors provide an additional estimating equation for hY , where hY is as-
sumed to be a non-decreasing step function with jumps at the observed failure times. The
most important estimating equation approaches are shortly summarised below.
A class of estimating functions for possibly right-censored linear transformation models is
introduced by Cheng et al. (1995). The authors derive simple estimating functions for the
parameter vector β based on the dichotomous variables {I(Yi ≥ Yj) : i 6= j, i, j = 1, . . . , n},
I denotes the indicator function. The usage of pairwise dichotomous comparisons of re-
sponse values supersedes the estimation of hY due to the monotone transformation being
rank-invariant. Nevertheless, the authors supply an estimating function for hY later, and
present procedures to predict the survival probabilities of future patients accompanied with
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pointwise and simultaneous confidence intervals (Cheng et al., 1997).
The estimates of Cheng et al. (1995) are asymptotically biased when the support of the
censoring variable is shorter than the support of the response. Therefore, Fine et al. (1998)
propose simple modifications of the estimating functions to obtain consistent estimates.
The root-finding estimating equation of Cheng et al. (1995) is furthermore replaced by a
least-squares criterion. This least-squares criterion is adapted in Fan and Fine (2013) such
that the linear transformation model might include parametric covariate transformations.
Cai et al. (2000) extend linear transformation models for independent event times to cor-
related failure time observations, i.e. to clustered failure time data. The authors present
estimating equations to estimate β and hY simultaneously, and predicting procedures for
survival probabilities. Furthermore, Cai et al. (2002) propose a linear transformation model
with random effects for clustered and possibly censored failure time data, which includes
the frailty Cox model as a special case. The distribution of the random effects is completely
specified up to a non-negative scale parameter γ. Inference for β, γ and hY is obtained
using estimating equations similar to Cheng et al. (1995) and Fine et al. (1998) based on
intra- and intercluster comparisons of failure times. The approach is extended to doubly
censored observations in Shen (2012b).
A procedure to estimate β in the presence of interval-censored data is developed in Zhang
et al. (2005). The proposed estimating equations are similar to Cheng et al. (1995) because
inference about the regression parameters is based on rank information and the estimation
of hY is avoided. A method for survival probability prediction and model checking tech-
niques for the error distribution F are considered later in Zhang (2009). The approach can
be extended to interval-censored and doubly truncated data (Shen, 2013). In econometrics,
Lee (2008) considers a general class of semiparametric transformation models with random
effects and completely known error distribution F for panel data. An estimating equation
for β is proposed by modifying the estimating equations of Cheng et al. (1995), where
weights account for dependent right-censoring that is common for panel data.
All estimation procedures mentioned so far rely on the (strong) assumption that the covari-
ates and the censoring variable are independent because the marginal Kaplan-Meier estima-
tor is used to estimate the censoring distribution. The assumption can only be relaxed for a
finite number of possible values of the covariate vector, when conditional Kaplan-Meier esti-
mators can be applied. Because this assumption is too restrictive in many applications, and
because Cox’s partial likelihood estimator does not assume independence of the covariates
and the censoring variable, Chen et al. (2002) propose a new unified estimation procedure
for the analysis of censored data using linear transformation models that avoids modelling
the censoring distribution. The proposed martingale-based estimating equations for β and
hY are easily implemented numerically. The inference procedure for linear transformation
models is reliable, and in case of the PH model the estimator is equivalent to Cox’s partial
likelihood estimator. Both martingale equations are solved alternatingly using an iterative
algorithm.
The estimating equations proposed by Chen et al. (2002) have been extended in various di-
rections afterwards. Lu (2005) considers multivariate event times including study subjects
that may experience several types of events, study subjects that experience recurrences of
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the same type of event, or clustered event times. Furthermore, the estimating equations
are adapted to the case-cohort design in Lu and Tsiatis (2006) by introducing weighted
estimating equations. Liu and Ying (2007) combine a normal transformation model and a
linear mixed effects model via latent random variables to analyse longitudinal data subject
to informative right censoring. In Lu and Zhang (2010), the estimating equations of Chen
et al. (2002) are generalised to incorporate non-linear covariate effects, what results in par-
tially linear transformation models. Parametric covariate effects as well as hY are estimated
using global estimating equations, and nonparametric covariate effects are estimated using
kernel-weighted local estimating equations. Variable selection in linear transformation mod-
els is considered by Zhang et al. (2010) who present an approach for sparse and consistent
estimation. A profiled score is derived from the estimating equations of Chen et al. (2002).
A loss function is constructed from this profiled score, and the loss function is finally min-
imised using a LASSO shrinkage penalty for β. Motivated by the PO model, Scheike (2006)
proposes martingale-based estimating functions, where the linear transformation model is
extended to baseline functions that depend on the covariates. The estimating equations
of Cheng et al. (1995) and Chen et al. (2002) can also be used to analyse left-truncated
right-censored or doubly censored observations (Shen, 2012a). Doubly censored data are
also analysed in Cai and Cheng (2004), where the error distribution F is only specified up
to a finite dimensional parameter using a Box-Cox-type family of distributions.
The estimated parameter vector β̂ resulting from the estimating equations proposed by
Cheng et al. (1995), Chen et al. (2002), and Zhang et al. (2005) is shown to be consistent
and asymptotically normal distributed. An explicit formula for the variance-covariance
matrix of the limiting distribution is given, which can be estimated consistently using the
plug-in method. Nevertheless, e.g., the estimating equations of Chen et al. (2002) are only
efficient for the PH model and loose efficiency for alternative error distributions. There-
fore, empirical likelihood inference procedures for censored survival data under the linear
transformation model are proposed by Lu and Liang (2006), Zhao (2010), Yu et al. (2011),
and Zhang and Zhao (2013). The limiting distribution of the empirical likelihood ratio
test statistic is more appropriate than the normal approximation in various situations, and
problems of under-coverage of associated confidence regions are solved.

Partial likelihood approaches. The popularity of the Cox model (Cox, 1972) is mainly
due to the easy interpretation of the regression coefficients in terms of hazard ratios, and
to simplified estimation based on the partial likelihood. The estimation of β is usually of
primary interest. The baseline hazard function is considered a nuisance parameter of high
dimensionality, and thus its estimation is omitted (see also Section 2.1.2). Therefore, Cox
(1975) proposed the partial likelihood to reduce the dimensionality in situations with many
nuisance parameters, where maximum likelihood as a general technique usually fails. If the
baseline hazard function is also of interest, an estimate can, e.g., be derived using the Bres-
low estimator (Breslow, 1972). The partial likelihood can be extended to time-dependent
regression coefficients, what can be useful to detect violations of the PH assumption. For
example, estimation is based on local partial likelihood techniques in Cai and Sun (2003),
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where local linear fitting techniques known from scatterplot smoothing are connected with
the partial likelihood. Empirical pointwise confidence intervals and simultaneous confi-
dence bands for the time-dependent coefficients based on local partial likelihood smoothing
are derived by Sun et al. (2009). The sum of a weighted negative partial log-likelihood
and an adaptive LASSO penalty is minimised by Liu and Zeng (2013) to perform vari-
able selection in semiparametric transformation models for right-censored data. The target
function includes Cox’s partial log-likelihood as a special case. A baseline-free approach
for longitudinal data is proposed by Wu et al. (2010). The authors suggest time-varying
transformation models for modelling the conditional cumulative distribution function of a
response variable. A two-step smoothing method is developed to estimate the time-varying
parameters and the approach can be extended to censored observations.

Marginal likelihood approaches. Considering the marginal likelihood yields a further
baseline-free approach. The response transformation hY is eliminated by using only the rank
order information of the responses instead of the exact response values. In Gu et al. (2005)
a class of semiparametric transformation models under interval censoring is considered,
which is more general than the linear transformation model including, e.g., frailty mod-
els, heteroscedastic hazard regression models, and heteroscedastic rank regression models.
The baseline-free estimation based on the marginal log-likelihood results in the maximum
marginal likelihood estimator (MMLE). A three-stage MCMC stochastic approximation al-
gorithm is presented for model estimation because the marginal log-likelihood usually has
no closed analytic expression, and involves integrals of high dimension. The asymptotic
properties of the MMLE are determined by Gu et al. (2014). Concerning the PO model,
Pettitt (1984) minimises a marginal likelihood based on ranks. The regression coefficients
in a semiparametric PO model are estimated using only the rank order information among
patients by Lam and Leung (2001). For this purpose, a Monte Carlo method is used to
approximate the marginal likelihood function of the rank invariant transformation of the
survival times. As an extension, a semiparametric random effects PO model to analyse
multivariate survival data with various types of dependence structures is proposed by Lam
et al. (2002). The approach covers cluster data and repeated measurements. Multivariate
normal random effects are assumed. Estimation of the regression and variance parame-
ters is achieved by maximising a marginal rank likelihood. As an extension of Gu et al.
(2005), Li et al. (2012) include a varying-coefficient component into the linear transforma-
tion model. The coefficient functions are approximated using B-splines, and estimation is
based on maximising the marginal rank log-likelihood.

Parametric likelihood approaches. Parametric approaches for the estimation of linear
transformation models usually imply specifying hY up to a finite-dimensional parameter.
Such transformation functions are, e.g., given in Box and Cox (1964) (Equation (2.1)),
Bickel and Doksum (1981), and MacKinnon and Magee (1990). The great advantage
of parametric approaches is that model estimation can be carried out using the full log-
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likelihood function due to the limited number of parameters. Hence, no penalisation ap-
proaches, approximations, tuning parameter selection (e.g., smoothing parameters, kernel
bandwidths), etc. are needed. Although there are many suggestions for parametric trans-
formations of the response variable, every parametric family has characteristics that are
unsuitable in certain applications (MacKinnon and Magee, 1990). This is usually due to
the associated restricted flexibility of the response transformation hY .
A parametric approach for estimating linear transformation models for time-to-event data
subject to arbitrary censoring is proposed by Zhang and Davidian (2008). Thereby, base-
line survival densities are approximated by a truncated series expansion. This results in
likelihood-based inference associated with an adaptive choice of the degree of truncation.
An alternative parametric regression model for right-censored data is the transform both
sides (TBS) model, which is an extension of the Box-Cox power family (Polpo et al., 2014).
Model estimation can be either carried out by maximising the right-censored log-likelihood
function, or using Bayesian methods (see also Lin et al., 2012).
Estimation of parametric accelerated failure time (AFT) models has been, e.g., introduced
by Kalbfleisch and Prentice (1980), and Cox and Oakes (1984). Moreover, estimation of
the parametric exponential PH model (Prentice, 1973), the Weibull model (Prentice, 1973),
and the Pareto PH model (Davis and Feldstein, 1979) is also considered by Kay (1977),
and Klein and Moeschberger (2003). All models can be estimated based on a full likelihood
approach due to the finite number of parameters. For the connection of parametric AFT
and parametric PH models to linear transformation models, see Section 2.1.2.

Nonparametric likelihood approaches. If no parametric assumptions are made about the
response transformation hY , nonparametric estimation procedures have to be considered.
A nonparametric estimation has the advantage that the form of hY is not restricted, and
arbitrarily flexible forms of hY can be displayed. This flexibility usually comes at the price
of a high-dimensional parameter vector that needs to be estimated. Nevertheless, some as-
sumptions have to be imposed on the form of hY to guarantee a feasible estimation. These
assumptions turn the infinite-dimensional parameter associated with the flexible response
transformation hY into a finite number of regression parameters, and are often associated
with the selection of tuning parameters. Due to the resulting finite number of parameters,
β and hY can be estimated simultaneously.
A popular approach is to convert the nonparametric into a parametric estimation task
by considering the nonparametric maximum likelihood estimator (NPMLE). Thereby, the
transformation function hY is approximated by a non-decreasing step function with jumps
at the observed failure times. Afterwards, a full likelihood approach is used to estimate
the covariate effects β and the jump sizes hY i. Nevertheless, the number of parameters
increases with the number of distinct event times. This could cause problems during pa-
rameter estimation because direct maximisation of the likelihood might become impossible.
The NPMLE has often been considered for estimating linear transformation models: Slud
and Vonta (2004) study the large-sample consistency of NPMLEs for an unknown baseline
continuous cumulative-hazard type function; Chen and Tong (2010) extend linear trans-
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formation models by smooth varying-coefficient terms and propose an iterative algorithm
for likelihood maximisation; a semiparametric transformation frailty model for nonpropor-
tional hazards is estimated using NPMLE in Choi and Huang (2012); and the NPMLE
approach is used in linear transformation models for multivariate interval-censored data
(Chen et al., 2013), and current-status data (Zhang et al., 2013). Zeng and Lin (2007b)
propose a very general class of transformation models for counting processes including linear
transformation models, models with crossing hazards, and time-varying covariates. After-
wards, this class is further extended to dependent failure time data. Simple and stable
numerical techniques to obtain the NPMLE and a very general asymptotic theory are de-
veloped. NPMLE approaches for the PO model are considered in Bennett (1983a), Murphy
et al. (1997), Hunter and Lange (2002), and Chen et al. (2012). An efficient algorithm for
computing NPMLEs in linear transformation models is presented in Yin and Zeng (2006).
The estimation of a high-dimensional parameter is avoided because the algorithm obtains
estimates by solving a finite number of equations. This is due to a dramatic reduction of
the parameter space via a reparametrisation of the baseline function.
Furthermore, some mixed model approaches can be found in the literature, where estima-
tion is based on NPML. A semiparametric PO model with random effects is presented by
Zeng et al. (2005). The parameter vector β, the variance parameters for the multivariate
normal random effects, and the baseline odds function are obtained via NPML methods.
This approach is further generalised to semiparametric transformation models with random
effects by Zeng et al. (2008). Kosorok et al. (2004) consider a semiparametric frailty Cox
model, where the frailties follow a known one-parameter family of distributions. The re-
gression parameters, the frailty parameter, and the baseline hazard are estimated jointly. A
similar approach is suggested by Huber-Carol and Vonta (2004), who consider frailty Cox
models to account for possible heterogeneity among the population for arbitrarily censored
and truncated data. The usual gamma frailty model is generalised to multivariate failure
times by Zeng et al. (2009), where marginal linear transformation models are formulated
for each type of event. The NPMLEs are obtained using the EM-algorithm and treating
the random effects as missing data.
In addition, some further nonparametric estimation approaches are suggested: Zhao et al.
(2007) estimate the nonparametric transformation of the survival times in PH models using
local linear approximations and locally weighted least squares. The response transforma-
tion hY is estimated nonparametrically by considering the baseline hazard function as a
log-linear spline by Cai and Betensky (2003). In this approach, the spline coefficients are
treated as random effects to ensure a smooth function estimate, and estimation is based on
the integrated penalised log-likelihood. Zeng and Lin (2007a) propose an approximate non-
parametric maximum likelihood method for the AFT model with possibly time-dependent
covariates.

Bayesian approaches. Alternatively, linear transformation models can be estimated using
Bayesian approaches. Thereby, β, hY , and F are assumed to be unknown, and are asso-
ciated with appropriate prior distributions. Estimation is based on a MCMC algorithm.
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As all unknown model components are estimated simultaneously, the prediction of survival
probabilities is straightforward.
For example, Mallick and Walker (2003) propose a Bayesian semiparametric transformation
model that includes the PH, the PO, and the AFT model (Walker and Mallick, 1999) as
special cases, and can be extended to multivariate survival data using frailty models. A
multivariate normal prior is specified for β, a mixture of incomplete beta functions prior
is assumed for hY , and a Pòlya tree prior is assumed for F . A Bayesian semiparametric
PO model is introduced in Hanson and Yang (2007), where a mixture of finite Pòlya trees
prior is assumed for the baseline survival function. In Banerjee et al. (2007) the Bayesian
analysis of a class of generalised odds-rate hazards (GORH) models is considered, which
includes non-proportional hazards, PO, PH, and AFT models as special cases. The general
class of gamma frailty transformation models for multivariate survival data presented in
de Castro et al. (2014) can be understood as a multivariate extension of Banerjee et al.
(2007).

Further extensions. The error distribution F in Equation (2.2) was assumed to be com-
pletely specified so far. Although we assume F to be known throughout this thesis, we
would also like to mention approaches where the error distribution is assumed to be un-
known, or only specified up to a finite dimensional parameter ρ. In Zucker and Yang (2006),
the authors consider a family of survival models where the error distribution belongs to the
Box-Cox family of transformations depending on the one-dimensional parameter ρ. Estima-
tion is based on a pseudo-likelihood estimator or a martingale residual estimator (Yang and
Prentice, 1999). Linton et al. (2008) consider the case where the transformation function
hY is parametric, but the error distribution F and the covariate effects are nonparamet-
ric. The model is only identifiable up to a couple of normalisations under smoothness
constraints for hY , F , and the covariate effects, and monotonicity constraints for hY and
F . A nonparametric transformation model where the response transformation hY and the
error distribution F are unspecified is considered by Song et al. (2007). Estimation of the
parameter vector is based on the smoothed partial rank estimator. Khan and Tamer (2007)
propose the partial rank estimator for general forms of censoring.

In Horowitz (2009), the author deals with linear transformation models in econometrics.
Models of the form of Equation (2.2) are used in applied econometrics for the analysis of
duration data or for the estimation of hedonic price functions. If hY and F are known (up
to finite-dimensional parameters), maximum likelihood methods are used for estimation.
If hY is parametric (depending on some parameter α) and F is nonparametric, F can be
estimated based on the empirical distribution function of the residuals, and β and α can
be estimated using the generalised method of moments. The most flexible case of linear
transformation models with nonparametric hY and F is similar to semiparametric single
index models. Therefore, methods for single index models are suggested for the estimation
of β, and estimators for F and hY are additionally provided.
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Semiparametric inference methods for AFT models, where the error distribution F is left
unspecified (for more information on AFT models see Section 2.1.2) are, e.g., considered
in Prentice (1978), and Buckley and James (1979), where linear rank statistics or modified
least squares normal equations are suggested. Tsiatis (1990), Ritov (1990), and Lai and
Ying (1992) suggest rank-based procedures that are essentially derived from the partial
likelihood principle (Wei, 1992), and Jin et al. (2003) develop a broad class of rank-based
monotone estimating equations for the semiparametric AFT model.

2.1.2. Well-known regression models reviewed from the
transformation model perspective

The broad model class that is provided by transformation models could already be perceived
from our literature review. Transformation models have been applied in various fields, and
linear transformation models can be usefully extended by including random, non-linear,
or response-varying effects. Most commonly, the PH, the PO, and the AFT model are
mentioned as special cases of linear transformation models in the literature, but there
are a lot more regression models that can be reviewed from the perspective of (linear)
transformation models (Equation (2.3)). To give a more complete list, and to clarify the
common model basis of a broad range of regression models, we integrate a selection of
commonly used regression models into the transformation model context (see Figure 2.1,
Figure 2.2, and Figure 2.3 for a graphical overview).

Continuous responses

Proportional hazards (PH) model. The PH model or Cox model (Cox, 1972, 1975) is
the regression model most commonly used in survival analysis. Nevertheless, the model
class is not restricted to survival times, and might be useful for a non-negative (censored)
response variable Y in general. The Cox model can be expressed as a linear transformation
model (Doksum and Gasko, 1990)

P(Y ≤ y|X = x) =M(hY (y) + x>β),

where M denotes the minimum-extreme value distribution function, and the response
transformation equals the logarithm of the cumulative baseline hazard function, hY (y) =
log(Λ0(y)), Λ0(y) =

∫ y
0
λ0(u) du. The PH assumption is due to the fact that no interac-

tion terms between the covariates x and the response y are intended. Consequently, the
explanatory variables influence only the conditional mean of the transformed response vari-
able. This assumption can be easily relaxed by including interaction terms between x and
y into the model equation, what results in a non-proportional hazards model. Probably the
most familiar non-proportional hazards model is the Cox model with time-varying effects
(e.g., Zucker and Karr, 1990).
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Continuous
responses

Non-Proportional
Hazards Model:
F =M

Cox model:
hY (y) = log(Λ0(y))

Expon. PH Model:
hY (y) = log(λ) + log(y)

Weibull Model:
hY (y) = log(λ)+ν ·log(y)
= Weibull AFT Model

Pareto PH Model:
hY (y) = log(α · log(y/σ))

Non-Proportional
Odds Model:
F = L

Log-logistic Model:
hY (y) = α · log(y);
= Log-Logistic AFT Model

PO Model:
hY (y): baseline
log-odds

Additive Hazards
Regression
Models

Lin & Ying’s model
with fixed covariates

AFT Models:
log(y) = −x>β + ε,
ε ∼ F

Linear Location AFT
model:
µ = x>β, σ = const.

Varying location and
dispersion AFT model:
µ = x>β, 1/σ = exp(z>γ)

Exponential AFT Model:
F =M;
hY (y) = log(y), σ = 1

Weibull AFT Model:
F =M;
hY (y) = ν · log(y), β∗ = ν · β
= Weibull PH model

Log-Logistic AFT Model:
F = L;
hY (y) = p · log(y), β∗ = p · β;
= Log-Logistic Model

Log-Normal AFT Model:
F = Φ;
hY (y) = 1

σ
log(y), β∗ = β/σ

Figure 2.1.: Overview of specific transformation models with continuous response (Part I).
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Continuous
responses

Log-Normal Models:
F = Φ

Linear Log-Normal Model I:
µ = −x>β, σ2 = 1; hY (y) = log(y)

Linear Log-Normal Model II:
µ = −x>β, σ2 > 0; hY (y) = 1/σ · log(y)
= Log-Normal AFT Model

Heteroscedastic Log-Normal
Model:
µ = −x>β, σ2 = x>γ; hY (y) = 0

Box-Cox Models:
F = Φ

Box-Cox with λ = 0:
µ = −x>β; σ2 > 0; hY (y) = 1/σ log(y)
= Linear Log-Normal Model II

Box-Cox with λ 6= 0:
µ = −x>β; σ2 > 0; hY (y) = yλ−1/λ·σ

Figure 2.2.: Overview of specific transformation models with continuous response (Part II).

The PH model includes some parametric regression models as special cases. The exponen-
tial PH model with constant baseline hazard function over time results from parametrising
the response transformation via hY (y) = log(λ) + log(y), where λ denotes the parame-
ter of the exponential distribution. A monotone non-constant baseline hazard function
is assumed in the Weibull model, where the response transformation is parametrised by
hY (y) = log(λ)+ν · log(y). The Weibull scale and shape parameter are denoted by λ and ν,
respectively. Parametrising the response transformation by hY (y) = log(α · log(y/σ)) results
in the PH model with responses from the Pareto (type I) distribution, where σ and α are
the minimum and the index parameter of the Pareto distribution.

Proportional odds (PO) model. The PO model is commonly applied in survival analysis
if the hazard ratio is not constant over time (as assumed in the PH model), but the hazards
converge over time. This effect can be observed, e.g., if there is an effective cure, or the
treatment effect vanishes over time (Murphy et al., 1997). Bennett (1983a) introduces the
PO model for a continuous survival time T , but the PO model is not restricted to survival
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times and might be a useful approach for a non-negative (censored) response variable Y
in general. The PO model can be formulated in terms of a linear transformation model
(Doksum and Gasko, 1990)

P(Y ≤ y|X = x) = L(hY (y) + x>β),

where L denotes the standard logistic distribution function, and hY (y) equals the monotone
baseline log-odds. Similar to the PH model, the PO assumption results from ignoring all
interactions between the response and the explanatory variables. Therefore, the explana-
tory variables influence only the conditional mean of the transformed response. The PO
assumption can be relaxed by including interactions between x and y, what results in a
non-proportional odds model.

Log-logistic regression model. The log-logistic regression model (Bennett, 1983b) is a
special case of the PO model and is adequate for non-monotone hazard functions, where
the hazard ratio converges to unity over time. The corresponding conditional distribution
function of the response is defined via

P(Y ≤ y|X = x) = L(α · log(y) + x>β).

Hence, the unrestricted monotone response transformation function hY (y) from the PO
model is restricted to the parametric function hY (y) = α · log(y). In analogy to the PO
model, the covariates influence the location of the distribution linearly. Because there are
no interaction terms between the response and the explanatory variables, the cumulative
odds ratios are constant over time. As the log-logistic model may be a poor choice for
skewed or heavily tailed hazard functions, Singh et al. (1988) propose a generalisation of
the log-logistic model by introducing scale parameters.

Additive hazards regression models. In the PH model it is assumed that the covariate
effects act multiplicatively on some unknown baseline hazard function. An alternative to
this semiparametric multiplicative hazards model is the consideration of additive hazards
regression models (AHRMs) (an introduction is given, e.g., by Klein and Moeschberger,
2003), where the conditional hazard function is modelled as a linear combination of the
(time-dependent) covariates, i.e.

λ(t|X(t) = x(t)) = β0(t) + x(t)>β(t), (2.5)

where β(t) denotes varying coefficients that need to be estimated from the data. In contrast
to PH models, no changes in the relative risk but changes in the additive risk over time are
estimated. The best known AHRMs are Aalen’s nonparametric additive hazards model and
Lin and Ying’s additive hazards model. We consider only Lin and Ying’s model because
necessary model simplifications of Aalen’s model result in Lin and Ying’s model anyway.
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Lin and Ying (1994) propose an additive hazards regression model where the varying coeffi-
cients in Equation (2.5) are replaced by constants. Similar to the PH and the PO model, we
define Lin and Ying’s model for an arbitrary non-negative response variable Y , and consider
only response-independent covariates, what implies the conditional hazard function

λ(y|X = x) = β0(y) + x>β.

The corresponding conditional distribution function is

P(Y ≤ y|X = x) = 1− exp

(
−
∫ y

0

λ(u|x) du

)
= E(B0(y) + (x · y)>β),

where E denotes the exponential distribution function, and B0(y) =
∫ y

0
β0(u) du. Because

interactions between x and y are considered, additive hazards models do no longer belong
to the class of linear transformation models but to the model class of CTMs instead. Due to
the linear interaction terms, the explanatory variables are able to influence the conditional
mean and the conditional variance of the response. Estimation of the coefficients β is easy
if only response-independent covariates are considered, as explicit formulas exist for the
estimators and their variances (e.g., Klein and Moeschberger, 2003).

Accelerated failure time (AFT) models. AFT models are a class of parametric regression
models that is most commonly used as an alternative to PH models. The most important
difference in AFT and PH models is that the covariate effects act differently. The covariates
affect the hazard function directly in PH models, whereas the covariates have a direct effect
on the survivor function in AFT models by accelerating or decelerating the time scale.
Nevertheless, we define AFT models for a non-negative (censored) response variable Y
because AFT models are not restricted to survival times in general. The AFT model is
equivalent to a location-shift model of the log-transformed response variable, i.e.

log(y) = −x>β + ε, ε ∼ F,

where F is the common distribution function of the i.i.d. error terms ε. Hence, the response
transformation hY (y) = log(y) is completely specified in AFT models.

Two versions of the AFT model are usually distinguished:

1. Standard Linear Location AFT Model
The location parameter is modelled in terms of the covariates, i.e. µ = x>β, whereas
the scale parameter is independent of the covariates, i.e. σ = constant. For the
corresponding conditional distribution function results:

P(Y ≤ y|µ, σ) = F (1/σ · (log(y) + x>β)) = F
(

1/σ · log(y) + x>β∗
)
,

with scaled regression coefficients β∗ = β/σ.
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2. Varying Location and Dispersion AFT Model
The location and the scale parameter depend linearly on the covariates (e.g., An-
derson, 1991): µ = x>β; 1/σ = exp(z>γ). As σ has to be non-negative, the choice
of a log-linear relationship for the dispersion parameter is one (common) possibility.
Here, x and z may contain different sets of covariates. The conditional distribution
function is

P(Y ≤ y|µ, σ) = F (exp(z>γ) · (log(y) + x>β)).

The linear location AFT model belongs to the model class of linear transformation models,
whereas the varying location and dispersion AFT model can only be formulated in terms
of CTMs due to the non-linear interaction between the explanatory variables z and the
response y.
There is a variety of distribution functions F that can be used in AFT models. Never-
theless, the log-logistic model is the only parametric model with both an AFT and a PO
representation. Moreover, the Weibull model is the only model that can be parametrised as
a PH model and as an AFT model (Klein and Moeschberger, 2003), where the coefficients
β are proportional with proportionality constant ν (the scale parameter of the Weibull
distribution). The exponential model is a special case of the Weibull model (ν = 1) and
can also be parametrised in terms of a PH and an AFT model with equal parameters β. In
the following, the most important special cases of AFT models are parametrised in terms
of linear transformation models.

1. Exponential AFT model
The conditional distribution function of the exponential AFT model is

P(Y ≤ y|X = x) =M(log(y) + x>β),

where log(λ) = x>β, and λ is the inverse mean of the exponential distribution.

2. Weibull AFT model
The conditional distribution function of the Weibull AFT model is defined via

P(Y ≤ y|X = x) =M(1/σ · log(y) + x>β∗),

where β∗ = β/σ, log(λ) = x>β/σ, and ν = 1/σ. λ and ν denote the scale and the shape
parameter of the Weibull distribution.

3. Log-normal AFT model
The log-normal AFT model can be described by the conditional distribution function

P(Y ≤ y|X = x) = Φ
(

1/σ · log(y) + x>β∗
)
,

with scaled regression coefficients β∗ = β/σ. The mean µ of the log normal distribution
depends linearly on the explanatory variables, µ = −x>β, and σ denotes the standard
deviation of the log-normal distribution.
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4. Log-logistic AFT model
The conditional distribution function of the log-logistic AFT-model is

P(Y ≤ y|X = x) = L(1/σ · log(y) + x>β∗),

with scaled regression coefficients β∗ = β/σ, log(λ) = x>β/σ, and p = 1/σ. Thereby, λ
denotes the location and p denotes the scale parameter of the log-logistic distribution.

Log-normal distributed responses. For example, Manning and Mullahy (2001) review
log-models including the log-normal regression model as a special case. If the random
variable Y is log-normal distributed with parameters µ and σ2, log(Y ) is normal distributed
with parameters µ and σ2, log(Y ) ∼ N(µ, σ2). The conditional distribution function of
log-normal distributed responses can be formulated in terms of conditional transformation
models:

1. Linear log-normal model
The mean of the log-normal responses is influenced linearly by the explanatory vari-
ables, i.e. µ = −x>β, and the variance is set equal to 1, i.e. σ2 = 1. This implies the
conditional distribution function

P(Y ≤ y|X = x) = Φ(log(y)− µ) = Φ(log(y) + x>β),

where Φ is the standard normal distribution function, and hY (y) = log(y) is specified.

2. Linear log-normal model with arbitrary but fixed variance
The mean of the log-normal responses is influenced linearly by the explanatory vari-
ables, i.e. µ = −x>β, and an arbitrary non-negative but fixed variance σ2 > 0 is
assumed. The corresponding conditional distribution function is

P(Y ≤ y|X = x) = Φ(1/σ · log(y) + x>β∗),

with scaled regression coefficients β∗ = β/σ. Hence, the response transformation
function is hY (y) = 1/σ · log(y).

3. Heteroscedastic linear log-normal model
Again, the mean of the log-normal responses is influenced linearly by the explanatory
variables, i.e. µ = −x>β. Additionally, the explanatory variables have a linear
influence on the standard deviation σ, i.e. σ = x>γ. This implies a conditional
distribution function of the form

P(Y ≤ y|X = x) = Φ(log(y) · (x>γ)−1 + x>β/x>γ).

To guarantee a positive standard deviation σ, γ is subject to constrained optimisation.
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All log-normal transformation models can be extended to flexible covariate effects. Models
(1.) and (2.) obviously belong to the class of linear transformation models, whereas model
(3.) belongs to the model class of CTMs, due to the non-linear interaction between y and x.
The proposed models for log-normal responses are easily transferable to normal distributed
responses. The only difference is that the response transformation is superfluous, and log(y)
is replaced by y. In this case, model (3.) becomes the heteroscedastic linear regression
model.

Box-Cox transformation models. The parametric Box-Cox response transformations pre-
sented in Equation (2.1) result in normal distributed transformed responses, i.e. hY (Y |λ) ∼
N(µ, σ2). Accordingly, Box-Cox transformation models can be formulated in terms of linear
transformation models, where the mean µ depends linearly on the explanatory variables,
i.e. µ = −x>β, and the variance σ2 > 0 is independent of the explanatory variables:

P(Y ≤ y|X = x) =

 Φ(y
λ−1
λ·σ + x>β∗), λ 6= 0,

Φ( 1
σ
· log(y) + x>β∗), λ = 0,

with scaled regression coefficients β∗ = β/σ. Hence, in Box-Cox models the response trans-
formation is either hY (y) = (yλ−1)/λ·σ if λ 6= 0, or hY (y) = 1/σ · log(y) if λ = 0.

Ordinal responses

Count data with unbounded support. Let Y be a count variable with unbounded sup-
port, Y ∈ {0, 1, 2, . . .}, following an arbitrary count data distribution (e.g., Poisson distri-
bution, negative binomial distribution, or geometric distribution). The conditional distri-
bution function can be formulated in terms of linear transformation models

P(Y ≤ y|X = x) = F (hY (y) + x>β),

where a non-decreasing step function as well as a non-decreasing continuous function can
be chosen for hY (y), which is only evaluated at possible response values y ∈ {0, 1, 2, . . .}.
The link function F is not further specified, but it is advisable to choose a link function that
supports certain characteristics of the count data distribution such as a positive support or
possible right-skewness. The corresponding probability density function is

P(Y = y|X = x) = F (hY (y) + x>β)− F (hY (y − 1) + x>β), y > 0,

P(Y = 0|X = x) = F (hY (0) + x>β), y = 0.

The unbounded count data regression models do no longer belong to the model class of linear
transformation models but to CTMs instead if interactions between y and x are considered.
Furthermore, the model equation can be extended easily to non-linear covariate effects.
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Ordinal
responses

Count data with un-
bounded support

Hurdle Model

Poisson Model,
Neg. Bin. Model,. . .

Count data with
bounded support

Binomial Model, . . .

Cumulative
Regression Models

Non-proportional
Odds Model: F = L;
βr is category-specific

PO Model:
F = L;
β is global

Grouped Cox Model:
F =M

Figure 2.3.: Overview of specific transformation models with ordinal response.

Count data with bounded support. A typical example for a count variable with bounded
support Y ∈ {0, 1, . . . , n} is a binomial distributed random variable. In terms of linear
transformation models, the corresponding conditional distribution function can be formu-
lated as for count data with unbounded support. Nevertheless, the additional constraint

P(Y ≤ n|X = x) = F (hY (n) + x>β)
!

= 1,

has to be taken into account.

Hurdle models. In the social sciences or in econometrics, count data often suffer from
overdispersion or zero inflation (Zeileis et al., 2008). Therefore, count data extensions like
the hurdle model were introduced (Mullahy, 1986) that are able to deal with overdispersion
and an excessive number of zeros. Even though hurdle models with hurdle at zero are
most relevant in practice, the model class can be generalised to arbitrary hurdles k. A
possible parametrisation of the conditional distribution function of an overdispersed count
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variable Y ∈ {0, 1, 2, . . .} with an excessive number of zeros (k = 0) in terms of conditional
transformation models is

P(Y ≤ y|X = x) = F (h(y|x)), with

h(y|x) = h0(I(y ≤ k)|x) + h1(y|x) · I(y ≤ k) + h2(y|x) · I(y > k).

To guarantee monotonicity of the distribution function, the constraints

h0(0|x) + h2(y|x)− (h0(1|x) + h1(y|x)) ≥ 0, ∀y > k,

have to be imposed. Additionally, both transformation functions h1 and h2 have to be
monotonically increasing in y, i.e. hp1(y|x) ≥ 0 and hp2(y|x) ≥ 0. The transformation
function h0 represents the ’baseline’ covariate effects below and above the hurdle k. As
there are interactions between y and x, the hurdle model belongs to the model class of
CTMs.

Cumulative regression models for ordinal responses. McCullagh (1980) introduces cu-
mulative regression models as a general class of regression models for ordinal data. In terms
of linear transformation models, the conditional distribution function of an ordinal response
with q ordered categories Y ∈ {1, . . . , q} is defined via

P(Y ≤ r|X = x) = F (αr + x>β), (2.6)

where αr denotes the category-specific intercept for category r ∈ {1, . . . , q}. As
the response y is ordinal, the category-specific intercepts follow the constraints
α2 − α1 ≥ 0, . . . , αq − αq−1 ≥ 0, i.e. the thresholds are monotonically increasing.
The corresponding probability density function is

P(Y = 1|X = x) = F (α1 + x>β),

P(Y = r|X = x) = F (αr + x>β)− F (αr−1 + x>β), r = 2, . . . , q − 1,

P(Y = q|X = x) = 1− F (αq−1 + x>β).

A typical choice for the link function F is the distribution function of the logistic distribu-
tion, F = L, what results in the well-known PO model. The PO model has the property
that the cumulative odds ratio for observations with explanatory variables x and x̃

P(Y ≤ r|X = x)/P(Y > r|X = x)

P(Y ≤ r|X = x̃)/P(Y > r|X = x̃)
= exp((x− x̃)>β)

is independent of the category r and thus, cumulative odds ratios are proportional across
all categories. Of course, the model equation in (2.6) can be further extended, e.g., to
include non-linear covariate effects. One important generalisation is the introduction of
category-specific regression coefficients βr, what results in a non-proportional odds model



28 2. Conditional transformation models

(Peterson and Harrell, 1990).
Another important cumulative regression model results from choosing the minimum-
extreme value distribution, i.e. F = M. The respective regression model is equivalent
to the grouped Cox model, which is the discrete variant of the continuous Cox model known
from survival analysis. Similar to the above extensions of the PO model, the grouped Cox
model can be extended to non-proportional hazards and to more complex covariate effects
as well.

2.2. Conditional transformation models

Previously, we reviewed a broad range of frequently used regression models for continuous
and ordinal responses from the perspective of conditional transformation models. Our aim
was to show that all considered regression models share a common model basis, the model
basis of CTMs. In the following, we define the model class of CTMs for continuous and
ordinal responses. Afterwards, we present the very useful simplification to the model class
of conditionally linear transformation models (CLTMs), which is a special case of CTMs.
Several low-parametrised and interpretable CLTMs are presented in more detail, and the
associated model characteristics are described.

2.2.1. CTMs for continuous and ordinal responses

Most common regression models model only the conditional mean E(Y |X = x) of the
response Y as a function of the explanatory variables X = x. This assumption can be
relaxed by considering CTMs (Hothorn et al., 2014). The whole conditional distribution
function of Y is modelled in terms of the explanatory variables, and hence not only the
conditional mean but also higher moments of the distribution function may depend on
x. In this chapter, we give only a brief definition of CTMs for continuous and discrete
responses. For a more detailed introduction to CTMs for continuous responses including
model characteristics and a precise definition of the conditional transformation function h
and the distribution function F , we refer to Section 1.1 and Hothorn et al. (2014).
In CTMs, the conditional distribution function for a continuous response Y ∈ R (Equa-
tion (1.1)) and the corresponding conditional density are defined via

P(Y ≤ y|X = x) = FY |X=x(y|x) = F (h(y|x)),

fY |X=x(y|x) = f(h(y|x)) · hp(y|x), (2.7)

where f denotes the density corresponding to the distribution function F , and hp(y|x) de-
notes the first derivative of the conditional transformation function h(y|x) with respect to
y. To consider important characteristics of a conditional distribution function, the condi-
tional transformation function h(y|x) is assumed to be monotonically increasing in y and
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smooth. The monotonicity of h transfers directly to the conditional distribution function
P(Y ≤ y|X = x), which is accordingly monotonically increasing itself. Smoothness is
typically expected in the direction of the response y as well as in direction of the explana-
tory variables x. Continuous distribution functions are smooth in the response variable,
what implies smoothness in the direction of y. Furthermore, we expect similar conditional
distribution functions for similar values of the vector of explanatory variables x.

If the discrete response variable Y ∈ {c1, . . . , cq} is ordinal, i.e. the categories c1, . . . , cq are
ordered, the corresponding conditional distribution function is

P(Y ≤ ck|X = x) = F (h(ck|x)) = F (hk(x)), k ∈ {1, . . . , q} , (2.8)

where h1(·), . . . , hq(·) denote separate transformation functions for each category. The
category-specific transformation functions have to be monotonically increasing, i.e. h1(·) ≤
h2(·) ≤ . . . ≤ hq(·), to guarantee a monotonically increasing conditional distribution func-
tion. Assumptions of smoothness may be defined problem-specific, e.g., smoothing over
the response categories might be meaningful if neighbouring categories are not supposed to
differ considerably. The corresponding conditional probability density function is

P(Y = c1|X = x) = F (h1(x)),

P(Y = ck|X = x) = F (hk(x))− F (hk−1(x)), for k = 2, . . . , q. (2.9)

Of course, the conditional probabilities for the categories c1, . . . , cq have to sum up to one.
The definition of the conditional probability for the highest category cq by P(Y = cq|X =
x) = 1− F (hq−1(x)) is one possibility to take this constraint into account.

In CTMs, the distribution function F plays the role of a link function that maps the values
of the conditional transformation function on the interval [0, 1]. Hence, F is fixed and cho-
sen a priori, and we concentrate only on characteristics of the conditional transformation
function h(y|x) in the following.
As we are interested in a better interpretable model class, we introduce conditionally linear
transformation models (CLTMs), which are a special case of CTMs. Therefore, the condi-
tional transformation function in CTMs needs to be restricted. The necessary restrictions
of the conditional transformation function h(y|x) that result in the model class of CLTMs
are presented below. Additionally, several parsimonious parametrisations of the conditional
transformation function in CLTMs are discussed.

2.2.2. Conditionally linear transformation models

Model class. In its most general form, the conditional transformation function h(y|x) of
a conditional transformation model can be displayed via

h(y|x) = KY (y)⊗KX(x),
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where KY and KX denote some kernel functions for the response and the explanatory
variables, and ⊗ denotes the Kronecker product. Thereby, no further assumptions on the
kind of the relationship between the response variable and the explanatory variables are
imposed.

In CTMs, the conditional transformation function is decomposed additively into J partial
transformation functions (see Section 1.1, Hothorn et al., 2014)

h(y|x) =
J∑
j=1

hj(y|x), (2.10)

whereby additivity on the scale of the transformation function is assumed. Each partial
transformation function hj(y|x), j = 1, . . . , J , is conditional on the explanatory variables,
and may have an arbitrarily complex form in direction of the explanatory variables as well
as in direction of the response. The only restriction is that the conditional transformation
function h(y|x) has to be monotonically increasing in y. Thereby, complex relationships
between the explanatory variables and the response can be displayed, and all parameters
of the distribution function (i.e. mean, variance, skewness, and kurtosis) may depend on
the explanatory variables in CTMs.

A lack of orthogonality of the model components in CTMs constricts insights into model
structure because the model components are not separable. Hence, the high flexibility of
CTMs often ends up in models with challenging model interpretation. For example, the
effects of the explanatory variables on certain moments of the conditional distribution func-
tion are usually not interpretable. Therefore, we define less complex, low-parametrised, and
interpretable transformation models belonging to the class of conditionally linear transfor-
mation models (CLTMs), which are a special case of CTMs. In CLTMs, the conditional
part of the transformation function is restricted to linear functions of the response y:

h(y|x) = hY (y)︸ ︷︷ ︸
uncond. part

+ β0(x) + y · β1(x)︸ ︷︷ ︸
conditional part

. (2.11)

Hence, starting from the conditional transformation function for CTMs (Equation (2.10)),
we define three partial transformation functions: h1(y|x) = hY (y) describes the marginal
effects of the response, h2(y|x) = β0(x) describes the marginal effects of the explanatory
variables, and h3(y|x) = y · β1(x) describes interactions between y and x, which have to
be linear in y. Due to these restrictions, the explanatory variables may only influence the
conditional mean and the conditional variance of the transformed response (what can be
clarified by calculating means and variances in Equation (2.11)). This influence of the ex-
planatory variables is modelled in terms of the coefficient functions β0(x) causing shifts of
the distribution function, and β1(x) causing shifts and scalings of the distribution function.
Higher moments of the response distribution can be modelled in terms of the response
transformation hY (y). But in contrast to CTMs, kurtosis and skewness are not affected by
the explanatory variables because hY (y) is independent of x.
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Similar to linear transformation models (Equation (2.2)), we assume that the unconditional
part of the transformation function hY (y) has to be monotonically increasing in y. Addi-
tionally, in accordance with CTMs, the whole conditional transformation function h(y|x)
has to be monotonically increasing in y.
These restrictions lead to interpretable transformation models with a clearly specified model
structure, where the effects of the explanatory variables are separable. Hence, the effects of
the explanatory variables on the first two moments of the distribution function are inter-
pretable in CLTMs, whereas such interpretations are not possible in CTMs. Nevertheless,
interpretability comes at the price of reduced flexibility and the assumptions imposed in
CLTMs may be inadequate. Concerning their flexibility, CLTMs can be placed in between
linear transformation models (Equation (2.2)), which are less flexible because no interaction
terms between x and y are intended, and CTMs (Equation (2.10)), which are more flexible
because all moments of the distribution function may be influenced by x.
The conditional distribution function of birth weight depending on a set of ultrasound
measurements for newborns in the Perinatal Database Erlangen is analysed using CLTMs.
Therefore, the model class of CLTMs is also introduced in Chapter 4, and model charac-
teristics are discussed in detail in terms of an application.

Interpretable parametrisations of CLTMs. As stated before, we are only interested in
interpretable, parsimonious parametrisations of CLTMs. Therefore, we present a cascade
of low-parametrised CLTMs that are highly relevant in many applications. Of course, all
presented CLTMs are special cases of Equation (2.11). Depending on their complexity, the
selected CLTMs are parametrised in terms of regression coefficients or in terms of smooth
functions, and the corresponding model characteristics are summarised. For estimation
purposes, we additionally formulate the proposed CLTMs in terms of basis functions. As the
transformation function h(y|x) has to be monotonically increasing in y, the corresponding
linear constraints that have to be considered during estimation are presented. All CLTMs
are applicable to continuous and ordinal responses, and the number of covariates is set
to P , i.e. x = (x1, . . . , xP )>. The selected CLTMs are ordered with increasing model
complexity.

• CLTM A:

h(y|x) = hY (y) + β0(x) =

= hY (y) + x>β0 = α0 + α1 · y + x>β0

= blin(y)> ·α+ blin(x)> · β0

=
(
1 y

)
·
(
α0

α1

)
+
(
x1 . . . xP

)
·

β01
...
β0P

 , (2.12)
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where blin denotes linear basis functions, and the vectors α and β0 contain the cor-
responding basis coefficients. In this least flexible CLTM, the explanatory variables
induce only linear shifts of the response distribution by β0(x) = x>β0. Thereby,
the influence of the explanatory variables is restricted to the conditional mean of
the response y. As the linear interaction term y · β1(x) was cancelled, the condi-
tional variance of the response y is not affected by the explanatory variables, and
the constant variance is only influenced by the parameter α1. Moreover, the response
transformation hY (y) = α0 + α1 · y is linear in y. Therefore, higher moments of the
response distribution remain unaffected, i.e. skewness and kurtosis are not affected
by the response transformation.
The conditional transformation function has to be monotonically increasing in y,
which implies the linear constraint hp(y|x) = α1 > 0.

• CLTM B:

h(y|x) = hY (y) + β0(x) = α0 + α1 · y +
P∑
p=1

β0p(xp)

= blin(y)> ·α+ b(x1)> · β01 + . . .+ b(xP )> · β0P

=
(
1 y

)
·
(
α0

α1

)
+
(
b1(x1) . . . bm(x1)

)
·

β011
...

β01m

+ . . .+

(
b1(xP ) . . . bm(xP )

)
·

β0P1
...

β0Pm

 , (2.13)

where α0 and α1 denote regression coefficients, and β01(·), . . . , β0P (·) denote smooth
functions. In the parametrisation using basis functions, b(·) denotes a set of m
smooth basis functions, and α, β01, . . . ,β0P denote the corresponding vectors of basis
coefficients. In contrast to model CLTM A, the covariates have a flexible and smooth
effect on the conditional mean of the response by β0(x) =

∑
p β0p(xp) in CLTM B.

Similar to CLTM A, the conditional variance of the response is not affected by the
explanatory variables because the linear interaction y · β1(x) was cancelled. Hence,
the fixed variance is only influenced by the regression coefficient α1. As the response
transformation hY (y) = α0 + α1 · y is linear in y, higher moments of the response
distribution remain unaffected.
Moreover, the necessary monotonicity constraint remains hp(y|x) = α1 > 0.



2.2 Conditional transformation models 33

• CLTM C:

h(y|x) = hY (y) + β0(x) = hY (y) + x>β0

= b(y)> ·α+ blin(x)> · β0

=
(
b1(y) . . . bm(y)

)
·

α1
...
αm

+
(
x1 . . . xP

)
·

β01
...
β0P

 , (2.14)

where β01, . . . , β0P denote regression coefficients and hY (·) denotes a monotonically
increasing, smooth function. Model CLTM C belongs to the model class of linear
transformation models (Equation (2.2)). The explanatory variables induce linear
shifts of the response distribution by β0(x) = x>β0. This results in linear influences
of the covariates on the conditional mean of the transformed response hY (y). The
conditional variance of the transformed response is not influenced by the explanatory
variables because the linear interaction y·β1(x) was cancelled. Variance, skewness and
kurtosis of the response distribution are modelled independently of the explanatory
variables in terms of the response transformation hY (y).
The corresponding necessary monotonicity constraints are hp(y|x) = hpY (y) > 0.

• CLTM D:

h(y|x) = hY (y) + β0(x) + y · β1(x)

= α0 + α1 · y + x>β0 + (x · y)>β1

= blin(y)> ·α+ blin(x)> · β0 + (blin(y)> ⊗ blin(x)>) · β1

=
(
1 y

)
·
(
α0

α1

)
+
(
x1 . . . xP

)
·

β01
...
β0P

+

(
y · x1 . . . y · xP

)
·

β11
...
β1P

 , (2.15)

where α0, α1, β01, . . . , β0P and β11, . . . , β1P denote regression coefficients, and ⊗ de-
notes the Kronecker product. The explanatory variables influence the conditional
mean and the conditional variance of the response y because linear interactions be-
tween x and y are considered in addition. Thereby, β0(x) = x>β0 induces linear shifts
of the conditional distribution function, and hence, influences the conditional mean.
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Linear shifts and scalings of the distribution function are induced by β1(x) = x>β1,
and thus, it influences the conditional mean and the conditional variance of the re-
sponse. The response transformation hY (y) = α0 + α1 · y is linear in y, whereby
kurtosis and skewness remain unaffected.
Due to the monotonicity of h(y|x) and hY (y), the linear constraints hp(y|x) =
α1 + x>β1 > 0, and α1 > 0 have to be considered.

• CLTM E:

h(y|x) = hY (y) + β0(x) + y · β1(x)

= hY (y) + x>β0 + (x · y)>β1

= b(y)> ·α+ blin(x)> · β0 + (blin(y)> ⊗ blin(x)>) · β1

=
(
b1(y) . . . bm(y)

)
·

α1
...
αm

+
(
x1 . . . xP

)
·

β01
...
β0P

+

(
y · x1 . . . y · xP

)
·

β11
...
β1P

 , (2.16)

where β01, . . . , β0P and β11, . . . , β1P denote regression coefficients. The flexibility of
CLTM D is further increased by allowing for a monotonically increasing and smooth
response transformation function hY (y) in CLTM E. Besides their influence on the
conditional mean, the explanatory variables influence the conditional variance due to
the linear interaction term between x and y. Similar to CLTM D, β0(x) = x>β0

induces linear shifts of the distribution function, and β1(x) = x>β1 induces linear
shifts and scalings of the distribution function. Skewness and kurtosis of the response
distribution are modelled in terms of the response transformation hY (y), but these
higher moments are not affected by the explanatory variables.
The linear constraints hp(y|x) = hpY (y) + x>β1 > 0 have to be considered to guar-
antee a monotonically increasing conditional transformation function, and the linear
constraints hpY (y) > 0 have to be considered to guarantee a monotonically increasing
response transformation function.

The presented cascade of low-parametrised CLTMs CLTM A – CLTM E provides a useful
tool for data analysis. The considered CLTMs differ concerning their model complexity,
and hence, comparing the corresponding model performances can reveal important charac-
teristics of the conditional response distribution. In CLTM A – CLTM C, the explanatory
variables influence only the conditional mean, whereas the explanatory variables are addi-
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tionally able to influence the conditional variance in CLTM D and CLTM E. Skewness and
kurtosis are not influenced by the explanatory variables in all CLTMs. Nevertheless, the
monotonically increasing response transformation hY (y) is able to affect the mean, vari-
ance, kurtosis, and skewness of the response distribution in CLTM C and CLTM E. In
contrast, hY (y) is only able to affect the mean and the variance of the response distribu-
tion in CLTM A, CLTM B, and CLTM D because hY (y) = α0 + α1 · y is restricted to a
linear function. In general, the consideration of low-parametrised CLTMs is advantageous
in terms of model estimation due to the limited number of regression and basis coeffi-
cients. Likelihood-based estimation strategies for low-parametrised CLTMs are presented
in Chapter 3.

2.3. Summary

In order to give a general overview, we reviewed the development of linear transformation
models (Section 2.1), which are a powerful tool for data analysis. This overview clarified
that the model class of linear transformation models is often too restrictive, and hence,
it often needs to be adapted, e.g., by including non-linear, response-varying, or random
effects. To show the huge variety of CTMs (which are a generalisation of linear transforma-
tion models), and to clarify their applicability to continuous as well as ordinal responses, we
reviewed various commonly used regression models from the perspective of CTMs (Hothorn
et al., 2014) in Section 2.1.2. Thereby, a further aim was to clarify the common model basis,
i.e. the model basis of CTMs, that the considered regression models share, even though
they might seem rather different.
The model class of CTMs for continuous and ordinal responses was presented in Sec-
tion 2.2.1. For reasons of interpretability, we introduced the model class of CLTMs, which
constitutes an important special case of CTMs. In contrast to CTMs, the effect of the
explanatory variables on the conditional mean and the conditional variance of the trans-
formed response is interpretable, and model components are separable in CLTMs. Thereby,
a closer insight into the model structure can be gained. Although model complexity is re-
duced in CLTMs, the model class still comprises a wide range of relevant transformation
and regression models (Section 2.1.2). This statement was further underlined by the intro-
duction of a cascade of low-parametrised CLTMs with differing model complexity.
To sum up, we expect promising performances of CLTMs in various applications. The usage
of more complex CLTMs enables the practitioner to check important model assumptions
made in less flexible standard regression models. For example, the proportional hazards as-
sumption in the Cox model, or the homoscedasticity assumption in linear regression models
can be relaxed easily by considering CLTMs (see Section 2.1.2).





3. Estimation of conditional
transformation models

The content of this chapter is based on Möst and Hothorn (2014).

Conditional transformation models can be estimated based on two fundamentally different
approaches. Hothorn et al. (2014) presented a component-wise boosting algorithm for the
estimation of CTMs. By considering the respective model restrictions, this estimation ap-
proach can also be applied to CLTMs. Alternatively, we suggest likelihood-based estimation
for C(L)TMs. Both approaches are introduced in this chapter.

3.1. Estimation based on component-wise boosting

Using the component-wise boosting algorithm presented in Hothorn et al. (2014), CTMs are
estimated by regularised optimisation of a proper scoring rule for distributional and prob-
abilistic forecasts. This results in consistent estimated conditional distribution functions.
Such proper scoring rules are, e.g., the continuous ranked probability score (CRPS), which
is the integrated version of the famous Brier score, or the integrated absolute loss (Gneiting
and Raftery, 2007; Hothorn et al., 2014). A third scoring rule for distributional forecasts
is the mean integrated logarithmic score (log score), which is explained more thoroughly
because its minimisation can be performed using standard software for additive binomial
regression models.

For each observation i, we observe a response value Yi and a corresponding vector of ex-
planatory variables xi, i = 1, . . . , N . Furthermore, we define a (e.g., equidistant) grid of
response values {yι|ι = 1, . . . , n} covering their range. Our aim is to estimate the condi-
tional distribution function P(Y ≤ yι|X = xi) = F (h(yι|xi)) by estimating the conditional
transformation function h. This estimation problem can be reformulated as estimating the
probability F (h(yι|x)) of the binary event I(Y ≤ yι), I denotes the indicator function, and
can be solved by minimising the log score

LS = − 1

N · n

N∑
i=1

n∑
ι=1

I(Yi ≤ yι) log(F (h(yι|xi))) +

I(Yi > yι) log(1− F (h(yι|xi))). (3.1)
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The log score measures the mismatch between the individual empirical distribution func-
tions of subjects i = 1, . . . , N , and the corresponding probabilities of the conditional dis-
tribution function F (h(yι|xi)) resulting from the CTM in terms of the negative binomial
log-likelihood. The log score is evaluated on the grid of response values {yι|ι = 1, . . . , n}.
The log score is minimised with respect to h, what results in a consistent estimate of the
conditional transformation function ĥ (Hothorn et al., 2014).

In Hothorn et al. (2014), a component-wise boosting algorithm is presented for the effi-
cient estimation of CTMs (see Appendix B). This boosting algorithm indirectly controls
for the functional form and complexity of the estimated conditional transformation function
ĥ. A thorough and general introduction to component-wise boosting can be found, e.g.,
in Bühlmann and Hothorn (2007) and Schmid and Hothorn (2008). The characteristics
and the functionality of the boosting algorithm as well as the specification of the condi-
tional transformation function for C(L)TMs are discussed more thoroughly in Chapter 4
and Chapter 5. The component-wise boosting algorithm is adapted to the estimation of
CLTMs in Chapter 4. Furthermore, we extend the log score (Equation (3.1)) to right-
censored responses by including inverse probability of censoring weights in Chapter 5. The
component-wise boosting algorithm based on this censored log score is especially useful for
the estimation of conditional survivor functions.

The main advantages of component-wise boosting algorithms are the properties of intrin-
sic variable selection and model choice. Due to the component-wise estimation, boosting
algorithms are applicable to high-dimensional data, and very complex conditional transfor-
mation functions h that depend on many explanatory variables can be considered. Never-
theless, there is no large sample theory for boosting, and hence, p-values are not available.
Additionally, confidence intervals cannot be obtained based on large sample theory but they
can be obtained using bootstrap approaches instead, what is usually time-consuming.

3.2. Likelihood-based estimation

Our literature review in Section 2.1 clarified that multiple ways to estimate linear trans-
formation models have been suggested in the past. These various estimation strategies
had to be adapted if the model equation of linear transformation models was extended
(e.g., by the inclusion of non-linear covariate effects), or if different censoring patterns were
considered. Hence, every model extension and every censoring pattern led to necessary
modifications of the estimation algorithm. Therefore, most authors presented their own
estimation algorithms that accounted for the assumed model structure and the respective
censoring pattern. A unified estimation approach for linear transformation models is lack-
ing.
Additionally, the simultaneous estimation of the regression coefficients β and the response
transformation hY (Equation 2.2) often caused problems. Therefore, various baseline-free
approaches, where the estimation of hY is omitted, have been suggested (for a summary of
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baseline-free approaches see Section 2.1). Nevertheless, the estimation of hY is essential if
the prediction of the conditional distribution function of the response is of interest.
Therefore, we present a new unified likelihood-based estimation approach for C(L)TMs
that is able to consider conditional transformation functions of arbitrary flexibility. In this
estimation approach, covariate effects β and the response transformation hY are estimated
simultaneously. Furthermore, the approach can be easily adapted to any censoring pattern
by considering the respective censored log-likelihood function.

3.2.1. Log-likelihoods for C(L)TMs

Censoring has been an important topic in linear transformation models because well-known
models for the analysis of survival times (e.g., the PH, the PO, and the AFT model) are in-
cluded in the model class. However, it is important to note that we do not focus on survival
times in this chapter. CTMs are a useful model class for continuous or ordinal response
variables, and the response variable can be either uncensored or (arbitrarily) censored. For
example, the PH model is also not restricted to survival times. Instead, it can be very
useful for analysing the conditional distribution function of any non-negative (un)censored
response variable. Hence, the log-likelihoods introduced below are applicable to any (con-
tinuous or ordinal) response variable. Uniformly for all response variables, we considered
uncensored observations, and right-, left-, doubly-, and interval-censored responses.

The respective censoring scheme has to be carefully considered when constructing the cor-
responding log-likelihood (Klein and Moeschberger, 2003). The following cases have to be
distinguished regarding the information content that is provided:

• Exact observations provide information on the probability of the response occurring
exactly at the observed response value, i.e. the provided information equals the density
f(y|x).

• For right-censored observations, we only know that the response value is larger than
the observed right-censored response value, i.e. the provided information equals the
conditional survivor function 1− F (y|x).

• For left-censored observations, we only know that the response value is smaller than
the observed left-censored response value, i.e. the provided information equals the
conditional distribution function F (y|x).

• For interval-censored observations, we only know that the response value lies in an
interval with lower bound L and upper bound R, i.e. the provided information equals
F (R|x)− F (L|x).

First, we determine the log-likelihood functions for a continuous (censored) response vari-
able Y ∈ R using the conditional distribution function and the conditional density defined
for CTMs in Equation (2.7). Without loss of generality, multiple observations are ignored.
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• Log-likelihood for an exact observation:

l(h; y,x) = log[f(h(y|x))] + log[hp(y|x)], (3.2)

where hp(·) denotes the first derivative of the conditional transformation function with
respect to y.

• Log-likelihood for a right-censored observation:

l(h; y,x, δ) = δ · {log[f(h(y|x))] + log[hp(y|x)]}+ (1− δ) · log[1− F (h(y|x))], (3.3)

where δ = I(Y ≤ CR) denotes the right-censoring indicator, and CR denotes the
right-censoring (random) variable. The right-censoring indicator δ is equal to one for
an exact observation, and is equal to zero for a right-censored observation.

• Log-likelihood for a left-censored observation:

l(h; y,x, δ̃) = δ̃ · {log[f(h(y|x))] + log[hp(y|x)]}+ (1− δ̃) · log[F (h(y|x))], (3.4)

where δ̃ = I(Y ≥ CL) denotes the left-censoring indicator, and CL denotes the left-
censoring (random) variable. The left-censoring indicator δ̃ is equal to one for an
exact observation, and is equal to zero for a left-censored observation.

• Log-likelihood for a doubly censored observation:

l(h; y,x, δ) = δE · {log[f(h(y|x))] + log[hp(y|x)]}
+ (1− δR) · log[1− F (h(y|x))] + (1− δL) · log[F (h(y|x))], (3.5)

where δR = I(Y ≤ CR) denotes the right-censoring indicator, δL = I(Y ≥ CL)
denotes the left-censoring indicator, and δE = 1 − I(Y < CL) − I(Y > CR) denotes
the indicator for an exact observation; δ = (δE, δR, δL). Thereby, CL denotes the left-
censoring (random) variable and CR denotes the right-censoring (random) variable.
Hence, a doubly censored observation might be either left- or right-censored.

• Log-likelihood for an interval-censored observation:

l(h;R,L,x) = log[F (h(R|x))− F (h(L|x))], (3.6)

whereby the individual experiences the event of interest somewhere in the interval
(L,R], L ∈ R, R ∈ R, L < R.

If the response variable Y ∈ {c1, . . . , cq} is ordinal, the log-likelihood functions have to
be adapted accordingly by using the conditional distribution function and the conditional
probability function for ordinal responses defined in Equation (2.8) and Equation (2.9),
respectively. Without loss of generality, multiple observations are ignored.
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• Log-likelihood for an exact observation:

l(h; y,x) = log

[
q∑

k=2

I(y = ck)(F (hk(x))− F (hk−1(x))) +

I(y = c1) · F (h1(x))

]
(3.7)

• Log-likelihood for a right-censored observation:

l(h; y,x, δ) = δ · log

[
q∑

k=2

I(y = ck)(F (hk(x))− F (hk−1(x))) +

I(y = c1) · F (h1(x))

]
+

+ (1− δ) · log

{
q∑

k=1

I(y = ck) · [1− F (hk(x))]

}
, (3.8)

where δ = I(Y ≤ CR) denotes the right-censoring indicator, and CR denotes the
right-censoring (random) variable.

• Log-likelihood for a left-censored observation:

l(h; y,x, δ̃) = δ̃ · log

[
q∑

k=2

I(y = ck)(F (hk(x))− F (hk−1(x))) +

I(y = c1) · F (h1(x))

]
+

+ (1− δ̃) · log

{
q∑

k=1

I(y = ck) · F (hk(x))

}
, (3.9)

where δ̃ = I(Y ≥ CL) denotes the left-censoring indicator and CL denotes the left-
censoring (random) variable.
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• Log-likelihood for a doubly censored observation:

l(h; y,x, δ) = δE · log

[
q∑

k=2

I(y = ck)(F (hk(x))− F (hk−1(x))) +

I(y = c1) · F (h1(x))

]
+

+ (1− δR) · log

{
q∑

k=1

I(y = ck) · [1− F (hk(x))]

}

+ (1− δL) · log

{
q∑

k=1

I(y = ck) · F (hk(x))

}
, (3.10)

where δR = I(Y ≤ CR) is the right-censoring indicator, δL = I(Y ≥ CL) is the left-
censoring indicator, and δE = 1 − I(Y < CL) − I(Y > CR) is the indicator for an
exact observation; δ = (δE, δR, δL). Thereby, CL denotes the left-censoring (random)
variable and CR denotes the right-censoring (random) variable.

• Log-likelihood for an interval-censored observation:

l(h;L,R,x) = log

[
q∑

k=1

I(R = ck) · F (hk(x))−
q∑

k=1

I(L = ck) · F (hk(x))

]
. (3.11)

The individual experiences the event of interest somewhere in the interval
(L,R], L,R ∈ {c1, . . . , cq} , L < R.

Of course, mixed censoring patterns are conceivable. If a data set consists of a mixture of
exact, and left-, right- and interval-censored observations, the corresponding log-likelihood
function is the sum of the different log-likelihood contributions of each censoring pattern.
As an example, we presented the log-likelihood for doubly censored observations, which is
a mixture of exact, left- and right-censored observations.

3.2.2. Estimation strategies

In this section, a maximum likelihood approach is presented as a unified estimation ap-
proach for C(L)TMs with various censoring patterns. So far, we presented log-likelihood
functions for C(L)TMs for continuous as well as ordinal response variables, and for uncen-
sored as well as right-, left-, doubly-, or interval-censored observations in Section 3.2.1. All
log-likelihood functions depend on the conditional transformation function h(y|x), which
can be arbitrarily flexible in principle. Estimating C(L)TMs means estimating the condi-
tional transformation function h(y|x), i.e. the respective log-likelihood function has to be
maximised with respect to h.
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As we are interested in low-parametrised and interpretable CLTMs, we consider the con-
ditional transformation functions h(y|x) defined for the models CLTM A – CLTM E in
Section 2.2.2 (Equation (2.12) – Equation (2.16)). The estimation of h(y|x) is achieved by
estimating the corresponding basis coefficients. Hence, models CLTM A – CLTM E are
estimated by inserting the respective conditional transformation function h(y|x) into one
of the log-likelihood functions presented in Section 3.2.1. Afterwards, the resulting log-
likelihood function is maximised with respect to the basis coefficients α, β0, and β1. By
this, models CLTM A – CLTM E can be applied to continuous as well as ordinal response
variables, and the response variable might be uncensored, or (arbitrarily) censored.
Certain important linear constraints for CLTMs have to be considered during estimation
(see Section 2.2.2). Per definition, the conditional transformation function h(y|x) and the
response transformation hY (y) have to be monotonically increasing in y. This results in
the linear constraints hp(y|x) > 0 and hpY (y) > 0 that have to be considered. Therefore,
only optimisation algorithms that are able to handle linear constraints are appropriate for
maximising the log-likelihood.

The main challenge when estimating CLTMs is the estimation of smooth functions, i.e. the
estimation of the response transformation hY (y), or flexible covariate effects (e.g., β0(x)
in Equation (2.11)). This is due to the estimation of smooth functions being associated
with the estimation of an infinite-dimensional parameter vector. To face this problem,
we present several estimation strategies for determining the conditional transformation
function ĥ(y|x), which turn the infinite-dimensional parameter estimation task into a low-
parametrised estimation task. First, we suggest a parsimonious parametrisation of the
response transformation hY (y), or smooth covariate effects (e.g., β0(x)) in terms of frac-
tional polynomials. Alternatively, the smooth functions in the conditional transformation
function h(y|x) can be parametrised using P-splines. As a third and fourth option, we
suggest estimating CLTMs using an empirical Bayes or a full Bayesian approach. We also
focus on the associated advantages and disadvantages.

Parsimonious parametrisation using fractional polynomials. Following Royston and
Altman (1994), we first propose a parsimonious, parametric approach for the smooth
functions in the conditional transformation function of CLTMs by considering fractional
polynomials. This implies the advantage that the number of parameters, which have to
be estimated, is still low. Hence, estimation can be carried out using a full maximum
likelihood approach without further regularisation. Nevertheless, this parsimonious repre-
sentation implies limited functional forms of the smooth functions and thus, the approach
can be insufficient in some applications.

Fractional polynomials (FPs) extend the class of ordinary polynomials to a richer family
of curves by including non-positive and fractional powers (Royston and Altman, 1994;
Sauerbrei and Royston, 1999). Ordinary polynomial regression has the drawback that low
order polynomials offer only a limited family of shapes and high order polynomials may fit
poorly at extreme covariate values. Hence, FPs are useful in univariate and multivariate
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non-linear regression analysis due to their considerable flexibility (Royston et al., 1999;
Royston and Sauerbrei, 2007), and conventional polynomials are included as special cases
(Royston and Altman, 1994). In Royston and Altman (1994), the authors introduce the
class of FPs

φm(x; ξ,p) = ξ0 +
m∑
j=1

ξj · x(pj), x(pj) =

{
xpj , pj 6= 0
log(x), pj = 0

,

where m denotes the degree of the FP, p = (p1, . . . , pm)> is the vector of powers,
ξ = (ξ0, . . . , ξm)> contains the real-valued coefficients, and x(pj) denotes Box-Tidwell trans-
formations. As m and p have to be chosen a priori, the estimation of a smooth function in
terms of FPs means estimating the parameter vector ξ. FPs are a family of curves whose
powers are restricted to a predefined set of integer and non-integer values. Usually, the set
P = {−2, −1, −0.5, 0, 0.5, 1, 2, 3} of powers is used (Royston and Altman, 1994).

The choice of the degree m of the FPs is important because ,e.g., the class of FPs of degree
2 (FP(2)) is richer than the class of FPs of degree 1 (FP(1)). Higher degrees are seldom
necessary in practice, and Sauerbrei and Royston (1999) advise against it because this
may result in overcomplex and uninterpretable models. We choose FP (1) for our purpose,
which includes reciprocal, logarithmic, square-root, linear, and square transformations. The
associated set of available functional forms is quite rich, and including more powers usually
offers only slight model improvement (Royston et al., 1999).

In general, the appropriate degree and the appropriate power transformation can be selected
using the deviance or likelihood-ratio tests (Royston and Altman, 1994). To avoid the sug-
gested selection procedures for finding the most appropriate FP, we model the smooth
function in terms of an additive combination of all FP (1)-terms. For example, the condi-
tional transformation function h(y|x) of model CLTM C (Equation (2.14)) can be written
as

h(y|x) = α0 + α1 · y−2 + α2 · y−1 + α3 · y−
1
2 + α4 · log(y) + α5 · y

1
2 + α6 · y +

α7 · y2 + α8 · y3 + x>β0, (3.12)

whereby the smooth response transformation hY (y) is formulated in terms of FPs. Coeffi-
cients αj, j = 1, . . . , 8, close to or equal to zero indicate that the corresponding FP is not
able to display the functional form of hY (y). CLTM C is low-parametrised because the es-
timation of h(y|x) is associated with the estimation of the nine parameters α0, . . . , α8, and
the vector of regression coefficients β0. For CLTM C, the linear monotonicity constraints

hp(y|x) = hpY (y) = −2 · α1 · y−3 − α2 · y−2 − 1

2
· α3 · y−

3
2 + α4 ·

1

y
+

1

2
· α5 · y−

1
2 + α6 + 2 · α7 · y + 3 · α8 · y2 !

> 0 (3.13)
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have to be considered during estimation. There is only a unique solution for ĥY (y) if all
FPs are uncorrelated. Hence, if a parsimonious and interpretable estimated function is of
interest, the FPs in Equation (3.12) have to be uncorrelated first. If only an appropriate
estimated functional form (possibly with a circumstantial representation) is of interest,
uncorrelating the FPs is optional. Nevertheless, the FPs in Equation (3.12) are usually
highly correlated. Hence, their uncorrelation is important if standard errors or confidence
intervals for the basis coefficients are of interest.

Parametrisation using penalised B-spline basis functions. An alternative nonparamet-
ric approach for the smooth, non-linear functions in CLTMs is a P-spline approach, where
B-spline basis functions are used for parametrisation. The main advantage of nonparametric
regression approaches over parametric regression approaches (e.g., ordinary polynomial re-
gression, fractional polynomials) is that a richer pool of functional shapes can be displayed.
In principle, arbitrary shapes of smooth functions can be estimated in nonparametric re-
gression. Nevertheless, a penalisation term has to be added to the log-likelihood function
(Section 3.2.1) to guarantee a smooth function estimate. Hence, higher flexibility comes at
the price of a penalised maximum likelihood approach instead of a full maximum likelihood
approach. Penalised maximum likelihood approaches are associated with the selection of
smoothing parameters, which has to be conducted carefully. This can be time-consuming
especially if more than one smoothing parameter needs to be determined. Moreover, com-
pared to fractional polynomials, the number of parameters that have to be estimated in
P-spline approaches is considerably higher.

Due to their favourable numerical properties owing to their local definition, the smooth
functions in CLTMs are formulated using B-spline basis functions. For example, the B-
spline representation of the conditional transformation function h(y|x) of CLTM C (Equa-
tion (2.14)) is

h(y|x) =
D∑
d=1

αd ·Bl
d(y) + x>β0 = Bα+ x>β0, (3.14)

where Bl
d(y), d = 1, . . . , D, denote B-spline basis functions with degree l, B denotes the

B-spline design matrix, and α = (α1, . . . , αD)> denotes the vector of B-spline basis coef-
ficients. The number D of basis functions is determined by the number of (equidistant)
knots and the degree l of the basis functions. Per default, we use B-spline basis functions of
degree 3 and 20 equidistant interior knots, which results in D = 24 basis functions. Hence,
formulating hY (y) in terms of fractional polynomials is associated with the estimation of
nine regression coefficients, whereas the more flexible formulation in terms of B-spline basis
functions requires the estimation of 24 basis coefficients. Additionally, the response trans-
formation function hY (y) is assumed to be monotonically increasing. This restriction can be
considered, e.g., by using T-splines (Beliakov, 2000). T-splines are a simple transformation
of B-splines that guarantees a function estimate that is monotonically increasing if all basis
coefficients are estimated to be positive except the first coefficient, i.e. α2, . . . , α24 > 0.
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All log-likelihoods in Section 3.2.1 require the first derivative of the transformation func-
tion hp(y|x). If fractional polynomials are used to parametrise smooth functions, the first
derivative can be derived analytically, but also in case of a B-spline representation the de-
termination is straightforward. For example, hp(y|x) for model CLTM C is (Fahrmeir et al.,
2013):

hp(y|x) = hpY (y) =
∂

∂y

∑
d

αd ·Bl
d(y) = l ·

D∑
d=2

αd − αd−1

κd+l − κd
Bl−1
d (y) = B pα, (3.15)

where κ denotes the knots. In short, B p denotes the B-spline design matrix for the first
derivative hpY (y). The first derivative of the B-spline can be obtained in terms of differences
of adjacent basis coefficients, and B-spline basis functions with degree lowered by one.
Hence, the B-spline approach has the appealing property that the estimation of the basis
coefficients α̂ results in an estimate for the function itself and for its first derivative.

A smooth function estimate is guaranteed by the introduction of a roughness penalty that
prevents overfitting. A common and appropriate measure for the variability of a function is
the integral over the squared second derivative because the second derivative measures the
curvature of the function. For B-splines, the second derivative of an arbitrary function g
can be easily approximated by the second order differences of adjacent basis coefficients
(Eilers and Marx, 1996):

λ

∫
(gpp(y))2 dy ≈ λ

D∑
d=3

(∆2αd)
2 = λα>K2α, (3.16)

where ∆2αd = αd − 2αd−1 + αd−2 denotes second order differences, K2 denotes the penalty
matrix based on second differences, and λ > 0 denotes the smoothing parameter. The
smoothness penalty term (Equation (3.16)) has to be added to the log-likelihood l. This
results in the penalised log-likelihood

lp = l − λ

2
α>K2α.

For example, the uncensored penalised log likelihood function for model CLTM C (using
Equation (3.14), Equation (3.15) and Equation (3.2)) is

lp(α,β0) = log(f(Bα+ x>β0)) + log(B pα)− λ2

2
α>K2α−

λ3

2
α>K3α,

and has to be optimised with respect to the vector of basis coefficients α and the vec-
tor of regression coefficients β0. As the uncensored log-likelihood contains both h and
hp, we include the penalty matrices for second and third differences, K2 and K3, to guar-
antee a smooth function estimate for h and hp (Simpkin and Newell, 2013). In analogy
to the full maximum likelihood approach, the linear constraints hp(y|x) = B pα > 0 have



3.2 Likelihood-based estimation 47

to be considered during optimisation to guarantee a monotonically increasing conditional
transformation function. These linear constraints are also implicitly required by the log-
likelihood function, where B pα is log-transformed. If we consider a T-spline approach for
hY (y), which needs to be monotonically increasing, the basis coefficients α2, . . . , α24 have
to be non-negative in addition.

The smoothing parameter λ controls the compromise between the accurateness of the es-
timated function to the data and smoothness of the resulting function estimate. Hence, λ
has to be chosen optimally and there are many ways to do so. One common option is to
use model choice criteria, e.g., to determine λ by using (generalised) cross validation (for
an introduction to possible model choice criteria, we refer to Fahrmeir et al., 2013). If the
considered CLTM involves more than one smooth function, additional penalty terms and
smoothing parameters have to be included into the penalised log-likelihood function.

P-splines reviewed from the perspective of mixed models. An optimal selection of
the smoothing parameter λ is important, but the choice of λ via cross validation can
be circumstantial (especially for more than one smooth function). Furthermore, penalty
terms cannot be easily integrated into maximum likelihood inference theory. Therefore,
the consideration of P-splines from the perspective of mixed models is appealing. Bayesian
approaches can be used to estimate the spline coefficients and the smoothing parameter
directly from the data. In contrast to the penalised maximum likelihood approach presented
above, no roughness penalty term is considered to achieve a smooth function estimate.
Instead, an appropriate prior distribution is imposed on the basis coefficients α, which are
considered as random effects. In the empirical Bayes approach, the variance parameters
(which are the inverse smoothing parameters) are estimated by (approximate) restricted
maximum likelihood (REML) methods. For a thorough introduction to the estimation of
P-splines using mixed model approaches, we refer to Fahrmeir et al. (2004) and Fahrmeir
et al. (2013).

Full Bayesian approach. The mixed model based smoothing of splines belongs to em-
pirical Bayes approaches. The spline coefficients are considered as random effects but the
variance parameters are estimated likelihood-based, and hence, in a frequentist way. Full
Bayesian approaches are an alternative in this framework, where additional hyperpriors are
defined for the variance parameters to provide prior distributions for all unknown parame-
ters. An introduction to Bayesian P-splines using a full Bayesian approach is, e.g., given in
Lang and Brezger (2004). Both Bayesian approaches have appealing properties (Fahrmeir
et al., 2004): In the empirical Bayes approach estimates are obtained by maximising objec-
tive functions. Hence, questions about the convergence of MCMC or the sensitivity to the
choice of hyperparameters do not arise. On the other hand, in the full Bayesian approach
characteristics and functionals of posteriors can be computed without relying on large sam-
ple normality approximations. As MCMC techniques require only local computations, the
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approach is also applicable to massive data sets, where the empirical Bayes approach has
its limits.

As a proof of concept, we present an empirical evaluation of likelihood-based C(L)TMs
in Chapter 6, and analyse the birth weight of newborns from the Perinatal Database Er-
langen using likelihood-based CLTMs in Chapter 7. For the estimation of the conditional
transformation functions, we consider only the full maximum likelihood approach based on
fractional polynomials and the penalised maximum likelihood approach based on P-splines.
Although both Bayesian approaches have appealing properties, there remains one impor-
tant problem to be solved. The conditional transformation function h(y|x) does not only
imply certain smoothness conditions but has to be monotonically increasing in addition.
Hence, an appropriate prior distribution for the spline coefficients needs to consider both
smoothness and monotonicity.

3.3. Concluding remarks

As seen in the review of the literature on linear transformation models in Section 2.1,
various estimation strategies have been suggested over the years. These estimation strate-
gies include estimating equations, partial and marginal log-likelihoods, and Bayesian ap-
proaches. Remarkably, a considerable number of the proposed approaches are baseline-free
approaches, i.e. only the vector of regression coefficients β is estimated, whereas the re-
sponse transformation hY (y) is considered as a nuisance parameter of high dimensionality.
Nevertheless, this procedure becomes a dead end if conditional distribution function values
are of interest. For example, the estimation of the conditional survival probabilities over
time depending on individual patient characteristics is often of special interest in survival
analysis. Therefore, in our opinion, the simultaneous estimation of the regression coeffi-
cients β and the response transformation function hY (y) is desirable. Additionally, many
algorithms have been proposed for estimating linear transformation models, and a unified
estimation procedure is lacking. Most of the cited authors suggested and implemented new
algorithms for their extensions of the linear transformation model to specific censoring pat-
terns or to specific structures of the model equation.
Therefore, we present two estimation approaches for C(L)TMs. As the whole conditional
distribution function is modelled, the estimation of C(L)TMs is no baseline-free approach
in general, and the response transformation and covariate effects are estimated simultane-
ously. First, Hothorn et al. (2014) suggested a component-wise boosting approach for the
estimation of CTMs. This estimation approach is adapted to the estimation of CLTMs in
Chapter 4, and to right-censored response variables in Chapter 5. The extension to alter-
native censoring patterns is not straightforward, and needs further investigation. Due to
the component-wise estimation in the boosting algorithm, a complex conditional transfor-
mation function can be considered that might depend on a large number of explanatory
variables.
Second, we presented a unified maximum likelihood approach for the estimation of
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C(L)TMs, i.e. the same estimation approach can be used for all models irrespective of
the corresponding model complexity. The direct usage of the (censored) log-likelihood
for estimating transformation models has been considered very rarely in the past. The
main obstacle for directly optimising the (censored) log-likelihood was the requirement of
a simultaneous estimation of the response transformation and the covariate effects. For
example, two related approaches can be found in Ma et al. (2014) and in Crowther and
Lambert (2014). A flexible parametric approach for survival data analysis is proposed in
Crowther and Lambert (2014), where the baseline hazard function and time-dependent
effects are modelled using restricted cubic splines. Model estimation is based on the full
censored log-likelihood. Ma et al. (2014) suggest a penalised maximum likelihood approach
for the simultaneous estimation of the baseline hazard and the regression coefficients in
PH models, whereby a penalty function is used to smooth the baseline hazard estimate.
Additionally, the likelihood-based approach can be easily adapted to any kind of censor-
ing (right-, left-, doubly-, or interval-censoring) by simply considering the corresponding
censored log-likelihood. Standard optimisation algorithms that are able to consider linear
constraints (e.g., the constrOptim-function of the R base-package stats) can be used to
maximise the (censored) log-likelihood. So far, the maximum likelihood estimation ap-
proach is restricted to low-parametrised CLTMs. Its extension to more flexible C(L)TMs
would be worthwhile. Therefore, questions concerning algorithmic feasibility and identifia-
bility of model components have to be answered first.
Concerning model estimation, we presented four options for the estimation of CLTMs
and focused on the associated advantages and disadvantages. First, we suggested a low-
parametrised approach, where smooth functions are represented in terms of fractional poly-
nomials. This approach has the important advantage that no tuning parameters, e.g.,
smoothing parameters, need to be determined, but this approach can only display a limited
range of functional shapes. Hence, the parametrisation of smooth functions using B-splines
constitutes a more flexible alternative. Nevertheless, the penalised estimation of B-splines
requires the determination of smoothing parameters. This task can be especially challeng-
ing here because the estimation of CLTMs requires the determination of a two-dimensional
smoothing parameter, which is usually a computationally complex task. To complete our
list, we also suggested the estimation of CLTMs using empirical Bayes or full Bayesian ap-
proaches. One important advantage of Bayesian approaches is that smoothing parameters
are directly estimated in a data-driven way. Nevertheless, some important questions remain
to be solved, e.g., how prior distributions can include monotonicity requirements.
However, we did not aim at providing a full theory for likelihood-based conditional trans-
formation models in all its refinement. We were rather interested in putting transformation
models in perspective by showing their wide applicability. Furthermore, we structured
the tangled mass of estimation approaches that has been suggested for (linear) transfor-
mation models in the past in Section 2.1. It is important to note that the estimation of
C(L)TMs for (un)censored response variables can be considerably simplified and unified by
our likelihood-based estimation procedure. As a proof of concept, uncensored responses are
analysed using low-parametrised, likelihood-based CLTMs in Chapter 6 and Chapter 7.





4. Predicting birth weight by boosting
conditionally linear transformation
models

The content of this chapter is already published in Möst et al. (2014).

Low and high birth weight are important risk factors for neonatal morbidity and mortality.
Gynaecologists must therefore accurately predict birth weight before delivery. Most pre-
diction formulas for birth weight are based on prenatal ultrasound measurements carried
out within one week prior to birth. Although successfully used in clinical practice, these
formulas focus on point predictions of birth weight but do not systematically quantify un-
certainty of the predictions, i.e. they result in estimates of the conditional mean of birth
weight but do not deliver prediction intervals.

To overcome this problem, we introduce the model class of conditionally linear transfor-
mation models (CLTMs) (see also Chapter 2) more generally in this chapter to predict
future birth weight. Instead of focusing only on the conditional mean, CLTMs model the
whole conditional distribution function of birth weight given prenatal ultrasound param-
eters. Consequently, the CLTM approach delivers both point predictions of birth weight
and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret
measure of prediction accuracy and allow identification of fetuses subject to high prediction
uncertainty.

Using the Perinatal Database Erlangen, we analyse variants of CLTMs and compare them to
standard linear regression estimation techniques used in the past and to quantile regression
approaches. Special focus is on the quality of the associated prediction intervals, whereby
the conditional coverage of the prediction intervals and the average interval length are used
as quality criteria.

4.1. Introduction

Birth weight (BW) is among the most important risk indicators for neonatal morbidity and
mortality (McCormick, 1985; Sappenfield et al., 1987). As shown in numerous studies, high
birth weight is associated with serious maternal trauma after vaginal and surgical delivery
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and shoulder dystocia with fetal brachial plexus paralysis and/or clavicular fracture (Boulet
et al., 2003; Ecker et al., 1997), and low birth weight increases the risk of neurological and
developmental deficits during childhood (Bernstein et al., 2000; McIntire et al., 1999). The
accurate estimation of birth weight is challenging for gynaecologists who need to plan the
mode of delivery and organise obstetric management.

Fetal ultrasound examinations have become routine during the last 40 years (Scioscia et al.,
2008) and result in readily available two-dimensional measurements highly correlated with
birth weight. Most prediction formulas for birth weight incorporate biometric parame-
ters, such as biparietal diameter (BPD), fronto-occipital diameter (FOD), head circumfer-
ence (HC), abdominal transverse diameter (ATD), anterior-posterior abdominal diameter
(APD), abdominal circumference (AC) and femur length (FL). Here we focus on the sta-
tistical aspects of prediction formulas for birth weight. Our analysis is based on prenatal
ultrasound measurements recorded within seven days before delivery of N = 8, 712 babies
at the Perinatal Centre of the University Clinic Erlangen, Germany, in 2003–2011.

Statistically, the development of a prediction formula for birth weight is a regression mod-
elling task that involves the accurate estimation of ultrasound predictor effects on birth
weight:

1. Many traditional prediction formulas for birth weight have been derived by applying
linear regression models with Gaussian errors (Scioscia et al., 2008; Siemer et al.,
2008; Siggelkow et al., 2011; Hoopmann et al., 2010). Only little attention has been
given to the frequent departure of the distribution of birth weight from the normal
distribution, which could make relying on a Gaussian model suboptimal. For example,
if a high percentage of the newborns are very small, the distribution of birth weight
would not be normal but rather right skewed. A suitable approach to model birth
weight should take this skewness into account.

2. A thorough investigation of the accuracy of the prediction formulas is essential for
clinical practice because, as stated by, e.g., Scioscia et al. (2008), many prediction
formulas show the same tendency to under- and over-estimate birth weight at the
extremes, regardless of the ultrasound parameters relied upon. To assess the per-
formance of new prediction formulas, measures such as the relative percentage error
(defined as (BW−ÊW)/BW) and the absolute percentage error (defined as |BW−ÊW|/BW)

have been commonly used, where ÊW denotes estimated fetal weight (e.g., Scioscia
et al., 2008; Dammer et al., 2013; Faschingbauer et al., 2012). As the traditional
formulas for predicting birth weight estimate only the conditional mean, the afore-
mentioned performance measures focus on the quality of the point estimates for the
actual birth weight, and an appropriate measure of prediction uncertainty is missing.
An easy-to-interpret measure of prediction accuracy accompanied with some measure
of uncertainty is interval estimates that cover the true weights of newborns with a
high probability. Although it is possible to construct prediction intervals around the
point estimates obtained from the Gaussian modelling approach mentioned above,
these intervals are subject to potential bias. First, intervals obtained from Gaussian
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models are always symmetric around the conditional mean. Consequently, these in-
tervals might be suboptimal because the distribution of birth weight (and possibly
also the distribution of the residuals in linear regression) is skewed. Second, Gaussian
prediction intervals all have the same length owing to a constant residual variance
term, regardless of the ultrasound measurements. This assumption is often inappro-
priate as the prediction accuracy may depend on the actual birth weight (via the
ultrasound measurements), e.g., larger fetuses might have wider prediction intervals
than smaller fetuses.

To address these issues, we propose conditionally linear transformation models (CLTMs) as
a novel approach to predict birth weight. Instead of considering the conditional mean only
(as traditional Gaussian regression does), CLTMs model the whole conditional distribution
function of birth weight given prenatal ultrasound parameters. Consequently, each quantile
of the birth weight distribution can be predicted by a single CLTM. This implies that the
CLTM approach not only results in point predictions of birth weight (i.e. , in predictions
of the median) but additionally result in fetus-specific prediction intervals (whose bound-
aries are given, e.g., by the predicted 10% and 90% quantiles). The interval estimates
obtained from CLTMs represent an easy-to-interpret measure of prediction accuracy and
allow identification of fetuses subject to high prediction uncertainty. Moreover, interval
lengths obtained from the CLTM approach depend on individual ultrasound measurements
of each fetus. This strategy results in “personalised” prediction intervals for each fetus and
clearly provides more information than classical point predictions alone.

In Section 4.2, we review common prediction formulas for birth weight and associated
traditional methods of estimation. We also introduce the Perinatal Database Erlangen
and discuss prediction intervals for birth weight. A thorough introduction to conditionally
linear transformation models, including some comments on interpretability and estimation,
is given in Section 4.3. We present the results of the analysis of the Perinatal Database
Erlangen in Section 4.4 and discuss the results in Section 4.5.

4.2. Prediction of birth weight

4.2.1. Review of common prediction formulas for birth weight

Since the 1970s, gynaecologists have developed numerous formulas to predict birth weights
based on prenatal ultrasound measurements. Summaries of these formulas are, e.g., given in
Dudley (2005), Scioscia et al. (2008) and Siemer et al. (2008). A well-established prediction
formula commonly used in clinical practice is that proposed by Hadlock et al. (1985):

log10(ÊW) = 1.304 + 0.05281× AC + 0.1938× FL− 0.004× AC× FL,
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where biometric parameters are measured in centimetres and estimated fetal weight (ÊW)
is measured in grams. In addition to classical prediction formulas based on 2-D ultrasound
measurements, other formulas incorporate clinical parameters (Sabbagha et al., 1989) or 3-
D ultrasound measurements (Schild et al., 2008), or focus on high-risk deliveries (e.g., Hart
et al., 2010; Faschingbauer et al., 2012; Dammer et al., 2013). Choi et al. (2012) suggest
a model with spatio-temporally varying coefficients for low birth weights. Because 3-D
ultrasound measurements do not seem to improve many predictions and are poorly suited
for every-day clinical practice (Scioscia et al., 2008), we focused on routinely measured 2-D
biometric parameters in our study. The traditional prediction formulas for birth weights
that we are aware of were derived using linear regression approaches with Gaussian errors.

4.2.2. Perinatal Database Erlangen

Our analysis is based on data of N = 8, 712 singleton pregnancies with a complete ul-
trasound examination within seven days before delivery. Biometric parameters included
biparietal diameter (BPD), fronto-occipital diameter (FOD), head circumference (HC), ab-
dominal transverse diameter (ATD), anterior-posterior abdominal diameter (APD), abdom-
inal circumference (AC) and femur length (FL). Additionally, the mother’s body mass index
(BMI) was measured. In cases in which fetus growth was followed serially, we used measure-
ments only from the last examination before delivery. All ultrasound measurements were
made by experienced examiners who underwent extensive training at University Clinic Er-
langen. Birth weight was measured by the nursing staff at Erlangen University Hospital
within one hour after delivery. Children with chromosomal or structural malformations and
intrauterine deaths were excluded from analysis.

4.2.3. Prediction intervals

Since we are interested in some measure that quantifies the uncertainty of predictions for
birth weights, we considered fetus-specific prediction intervals (Mayr et al., 2012). These in-
tervals result in a range of predicted values that cover the birth weight with high probability
1− α, where α is a pre-specified error level.

A common way to define the boundaries of a prediction interval is to use the α/2 quantile
and the (1− α/2) quantile of the conditional distribution of birth weight given ultrasound
measurements:

P̂I1−α(x) =
[
q̂α/2(x), q̂1−α/2(x)

]
. (4.1)

Here, x denotes the ultrasound measurements of a new fetus, and q̂α/2 and q̂1−α/2 the α/2 and
the (1− α/2) quantile, respectively, of the corresponding conditional distribution of birth
weight. Since the estimated prediction intervals depend on the ultrasound measurements,
the interval lengths and interval borders are fetus-specific. In other words, depending on the
ultrasound measurements, accurate or inaccurate predictions can be made, which results
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in narrow or wide prediction intervals, respectively (Mayr et al., 2012). Nevertheless, the
underlying assumptions of the regression model used (e.g., normally distributed responses
and homoscedasticity for linear regression models) in Equation 4.1 influence the form of
the resulting prediction intervals. For example, the resulting prediction intervals may dif-
fer in symmetry assumptions and methods for boundary estimation. Common methods
for the calculation of prediction intervals are, e.g., linear regression or quantile regression
approaches.

4.2.4. Existing approaches for calculation of prediction intervals

If linear regression models are used for birth weight prediction, the conditional mean of birth
weight is modelled as a linear function of the (possibly transformed) prenatal ultrasound
measurements. After estimation of the model parameters, symmetric prediction intervals
are constructed around the point predictions based on the assumptions of homoscedasticity
and normality (e.g., Montgomery et al., 2012). Hence, the resulting symmetric prediction
intervals are inadequate if the birth weight’s distribution is skewed and if the residual
variance depends on ultrasound measurements.

The use of linear or additive quantile regression approaches to determine prediction inter-
vals for birth weight conveniently solves these problems. With quantile regression (Koenker
et al., 1994; Koenker, 2005), one directly estimates the boundaries of the prediction intervals
by using separate regression models for the quantiles qα/2 and q1−α/2 (Equation 4.1, Mein-
shausen, 2006). The influence of the ultrasound parameters on the respective quantiles is
assumed to be additive. Although this approach avoids any distributional assumptions,
a non-trivial problem associated with quantile regression is quantile crossing (Dette and
Volgushev, 2008). The logical monotonicity requirements of the probability p (p = q−1)
are not fulfilled, and neighbouring quantile curves may cross because they are estimated
independently.

To avoid quantile crossing (and also the aforementioned problems associated with linear
regression), we propose CLTMs to estimate intervals for the prediction of birth weight.
In contrast to quantile regression approaches, CLTMs model all conditional quantiles si-
multaneously by estimating the whole conditional distribution function, and the relevant
quantiles are extracted afterwards. Thereby, inconsistencies between neighbouring quantiles
are avoided.
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4.3. Conditionally linear transformation models

4.3.1. Model class

CLTMs are a special case of CTMs that model the conditional distribution function of
a response Yx = (Y |X = x) depending on explanatory variables x. The advantages of
modelling the conditional distribution function directly are summarised in Chapter 1, and
a short introduction to CTMs is given in Section 1.1. We used the CTM approach to model
the conditional distribution function of birth weight depending on prenatal ultrasound
measurements:

P(BW ≤ υ|X = x) = FBW|X=x(υ) = F (h(υ|x)), (4.2)

where υ ∈ R denotes some arbitrary birth weight. The transformation function h trans-
forms the birth weights conditionally on x, so that the distribution of the transformed
birth weights follows the distribution function F . As we modelled the whole conditional
distribution function, higher moments (e.g., the variance) may also depend on ultrasound
measurements. In addition, further moments of the prediction distribution of birth weight
can be modelled flexibly, e.g., kurtosis and skewness.

Nevertheless, the CTMs presented in Hothorn et al. (2014) define a very complex and gen-
eral class of transformation models, and therefore model interpretations can be challenging.
Moreover, a lack of orthogonality of the model components constricts insights into model
structure. As a consequence, direct interpretations of the relationship between the explana-
tory variables and certain moments of the distribution function of the response are difficult
to obtain because these effects usually cannot be separated. As we are interested in a more
easily interpretable version of CTMs in this application, we reduced the model complexity
by imposing restrictions on CTMs and introducing CLTMs. The model class of CLTMs
can be described by the following linear transformation conditional on x:

h(Yx|x) = Z ∼ F , with

h(Yx|x) = h0(Yx) · β(x) + α(x). (4.3)

Here, h denotes a monotone transformation function that depends on explanatory variables.
The random variable Z is a transformation of the responses Yx depending on explanatory
variables x and follows the known distribution function F . In CLTMs, we modelled only
linear functions of the transformed responses to reduce model complexity (Equation (4.3)).
Hence, we considered a flexible and possibly unknown response transformation h0(Yx) that
depends only on the response values Yx. The response transformation itself was transformed
by the explanatory variables via a linear function, where the coefficients α(x) and β(x)
depend on the explanatory variables. The coefficients α(x) induce shifts of the response
transformation h0(Yx), and the coefficients β(x) induce shifts and scalings of the response
transformation h0(Yx) depending on the respective explanatory variables.
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Owing to the restriction of the transformation function h to linear functions of the response
transformation h0(Yx), the influence of the explanatory variables x on the conditional mean
and conditional variance of the response transformation can be displayed. This follows
directly from calculating the conditional mean and conditional variance in Equation (4.3)
and solving the equation for both E(h0(Yx)|x) and V(h0(Yx)|x):

E(h0(Yx)|x) =
E(Z)− α(x)

β(x)

V(h0(Yx)|x) =
V(Z)

β(x)2
. (4.4)

If we assume that the transformed responses Z follow a standard normal distribution
Z ∼ N (0, 1), we get E(Z) = 0 and V(Z) = 1, and Equation (4.4) simplifies accordingly.
The coefficients α(x) influence only the conditional mean of the response transformation,
whereas the coefficients β(x) influence its conditional mean and its conditional variance.
The influence of the explanatory variables on the conditional mean and conditional variance
of the response transformation can be formulated in CLTMs, whereas such a formulation
cannot be given in CTMs. This difference can also be seen by looking at the conditional
quantile functions implied by CTMs and CLTMs:

QCTM(p|x) = h−1(F−1(p)|x)

QCLTM(p|x) = h−1
0

(
F−1(p)− α(x)

β(x)

)
.

For CTMs, the effect of the explanatory variables on the conditional quantile may vary
with p, whereas in CLTMs, the conditional quantile is a nonlinear transformation of a
linear function of F−1(p), where the coefficients of the latter do not depend on p.

Furthermore, we assumed additivity on the scale of the transformation function; therefore,
we decomposed the monotone transformation function h into J + 1 partial transformation
functions, given the explanatory variables (Hothorn et al., 2014, and Equation (4.3)):

Z = h(Yx|x) =
J∑
j=0

hj(Yx|x) =
J∑
j=0

(h0(Yx) · βj(x) + αj(x))

= h0(Yx) ·
J∑
j=0

βj(x) +
J∑
j=0

αj(x). (4.5)

Despite this decomposition, the random variable Z still remains a linear function of the
response transformation h0(Yx).

Prominent members of the family of linear transformation models, most importantly the
proportional hazards and the proportional odds model (Section 2.1.2), can be connected
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by restricting the above-mentioned CLTMs to the case where only shifts of the response
transformation that depend on explanatory variables are allowed:

h(Yx|x) = h0(Yx) +
J∑
j=0

αj(x) = h0(Yx) + α(x). (4.6)

In this model, the explanatory variables can only influence the mean −α(x) of the trans-
formed response h0(Yx). The transformation functions of the proportional hazards model
and the proportional odds model result if we choose a CLTM (Equation (4.5)) with β(x) ≡ 1
and an appropriate response transformation h0(Yx), which is treated as a nuisance parame-
ter in classical formulations of the proportional hazards model and proportional odds model.
For linear shift functions α(x), a unified estimation framework has been proposed by Cheng
et al. (1995).

We assumed that the response transformation h0(Yx) is unknown. In the first step, we
decomposed the response transformation into one part consisting only of linear functions
and a more complex part representing deviations from linearity:

h0(Yx) = α0 + β0 · Yx︸ ︷︷ ︸
linear part

+ h̃0(Yx)︸ ︷︷ ︸
deviations from linearity

. (4.7)

The decomposition in Equation (4.7) is reasonable because the model component h̃0(Yx)
can be used to decide whether the response variable follows a normal distribution or not, if
we additionally set the link function to F = Φ. If the model component h̃0(Yx) is missing,
we only observe a linear transformation of the conditional response, and hence we cannot
leave the class of normal distributions because the normal distribution is invariant towards
linear transformations. Consequently, by estimating the more complex deviations from
linearity h̃0(Yx), we are able to leave the class of normal distributions and model other
classes of distribution functions as well.

Combining Equation (4.7) with the definition of CLTMs in Equation (4.3) leads to

h(Yx|x) = (Yx + h̃0(Yx)) · β(x) + α(x) = Yx · βlin(x) + h̃0(Yx) · βc(x) + α(x),

where βlin(x) denotes the part of β(x) influencing the linear part of the response transfor-
mation h0(Yx), and βc(x) denotes the part of β(x) influencing the more complex deviations
from linearity h̃0(Yx).

We furthermore assumed that the more complex deviations h̃0(Yx) do not depend on any
explanatory variables; therefore, we set βc(x) ≡ 1. This is a strong assumption, but as
we are interested in an interpretable model class, this is a necessary restriction of model
complexity. The transformation function h with an unknown and decomposed response
transformation at the start results in

h(Yx|x) = Yx · βlin(x) + h̃0(Yx) + α(x).
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Then, we included the decomposition of the monotone transformation function h into J+1
partial transformation functions (Equation (4.5)):

h(Yx|x) = h̃0(Yx) + Yx ·
J∑
j=0

βj,lin(x) +
J∑
j=0

αj(x). (4.8)

We furthermore set α0(x) ≡ α0 and β0,lin(x) ≡ β0, which we already implicitly did in
Equation (4.7). By introducing the scalars α0 and β0, the transformation function h can be
decomposed into an unconditional part (not depending on any explanatory variables) and
a conditional part (depending on explanatory variables), which facilitates model interpre-
tations. The resulting structure of the monotone transformation function is still consistent
with the model class of CLTMs:

h(Yx|x) = α0 + β0 · Yx + h̃0(Yx)︸ ︷︷ ︸
unconditional part

+ Yx ·
J∑
j=1

βj(x) +
J∑
j=1

αj(x)︸ ︷︷ ︸
conditional part

. (4.9)

Hence, in this model, only the linear part of the response transformation (= Yx) may de-
pend on explanatory variables, whereas the function representing deviations from linearity
h̃0(Yx) is flexible and depends only on the response values Yx. Thereby, the explanatory
variables solely influence the mean and variance of the transformed responses. We denote
the coefficients βj,lin(x), j = 1, . . . , J (Equation (4.8)) simply by βj(x) as we no longer
need to distinguish the linear and the more complex part of the coefficient vector. In this
model, we can estimate further characteristics of the conditional distribution function of
the response (e.g., skewness and kurtosis) in terms of h̃0(Yx). Hence, we can only model
constant kurtosis and skewness in contrast to quantile regression. A possible influence of
the explanatory variables on higher moments can only be estimated in the more complex
model class of CTMs. Besides, the definition of CLTMs that was used in Chapter 2 in Equa-
tion (2.11) is equivalent to Equation (4.9). To avoid confusion, please note, that regression
coefficients, coefficient functions and response transformations were named differently. For
example, the conditional transformation function h0(Yx) is equivalent to the unconditional
transformation function hY (y) defined in Chapter 2.

By further differentiating between linear and flexible explanatory variable effects, we get:

Linear CLTM

h(Yx|x) = α0 + β0 · Yx + h̃0(Yx) + Yx ·
J∑
j=1

βj · xj +
J∑
j=1

αj · xj,

where αj and βj, j = 1, . . . , J , are regression coefficients, and therefore the explanatory
variables have a linear influence on the response transformation.
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Additive CLTM

h(Yx|x) = α0 + β0 · Yx + h̃0(Yx) + Yx ·
J∑
j=1

βj(x) +
J∑
j=1

αj(x),

where αj(x) and βj(x), j = 1, . . . , J , denote smooth functions. Hence, the explana-
tory variables have a flexible influence on the response transformation.

Introduction of specific CLTMs for the analysis of the Perinatal Database Erlangen

For the analysis, we chose six variants of CLTMs with unknown response transforma-
tion CLTM 0 (linear) and CLTM 0 – CLTM 4, in which the models are ordered with
increasing model complexity (Table 4.1). For comparison, we used the common conditional
transformation model CTM as a reference model representing the most complex modelling
approach. In general, we defined more complex CLTMs for the analysis of the Perinatal
Database Erlangen here, but some of the considered models coinside with the CLTMs de-
fined in Section 2.2.2. Such equivalences will be pointed out explicitly. To avoid confusion,
please note again that regression coefficients, coefficient functions and response transfor-
mations were named differently in Chapter 2 and Chapter 4.

CLTM 0 (linear): Linear Transformation Model

h(Yx|x) = Yx + h̃0(Yx) +
J∑
j=1

αj · xj
Equation (4.7)

= h0(Yx) +
J∑
j=1

αj · xj.

CLTM 0 (linear) is denoted Linear Transformation Model because it belongs to the class of
well-known linear transformation models (Equation (4.6)). Hence, it is equivalent to model
CLTM C defined in Equation (2.14). The transformation function h is decomposed into a
flexible function h0(Yx) depending only on the response values Yx and a part depending only
on the explanatory variables. The coefficients αj induce linear shifts of the response trans-
formation depending on the explanatory variables xj, j = 1, . . . , J . The flexible response
transformation h0(Yx) is restricted to monotone functions. The transformation function
results from a linear CLTM if we set α0 = 0, β0 = 1 and βj = 0, j = 1, . . . , J .

In the conditional distribution function of birth weight, these definitions result in fetus-
specific means that depend linearly on the ultrasound measurements. Beyond that, the
birth weights might follow some arbitrary distribution function because higher moments
are modelled flexibly. The corresponding class of distribution functions is the same for
all fetuses because the deviations from the normal distribution are not influenced by any
ultrasound measurements.
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CLTM 0: Linear Transformation Model with flexible explanatory variable effects

h(Yx|x) = Yx + h̃0(Yx) +
J∑
j=1

αj(x)
Equation (4.7)

= h0(Yx) +
J∑
j=1

αj(x).

CLTM 0 also represents a linear transformation model, but the influence of the explanatory
variables is modelled in terms of smooth functions αj(x), j = 1, . . . , J . This results in
flexible shifts of the response transformation depending on the explanatory variables. The
flexible response transformation h0(Yx) is again restricted to monotone functions. This
transformation function results from an additive CLTM if we set α0 = 0, β0 = 1 and
βj = 0, j = 1, . . . , J .

Based on CLTM 0, fetus-specific means result that depend flexibly on the ultrasound mea-
surements. Moreover, the birth weights may follow some arbitrary distribution, but the
corresponding class of distribution functions is again the same for all fetuses. Thus, model
CLTM 0 describes a very general but easy interpretable set of distributions. The explana-
tory variables have an additive influence only on the conditional mean and the response
distribution belongs to the rich set of distributions that can be generated form the normal
distribution via a monotone transformation.

CLTM 1: CLTM with linear explanatory variable effects and linear unconditional
response transformation

h(Yx|x) = α0 + β0 · Yx + Yx ·
J∑
j=1

βj · xj +
J∑
j=1

αj · xj.

This is a linear CLTM in which h̃0(Yx) is cancelled, and, therefore, the unconditional
part of the response transformation is linear in Yx. Hence, conditional on the explanatory
variables x, the whole conditional transformation function h(Yx|x) is linear in Yx. As we
cancelled the deviations from linearity h̃0(Yx), we assumed that the response has a normal
distribution function if we additionally set the link function to F = Φ in Equation (4.2).
This is due to the underlying assumption that the coefficients αj and βj, j = 0, . . . , J
influence only the mean and variance of the response. These definitions result in normal
distribution functions for all fetuses with fetus-specific means and variances that depend
on the ultrasound measurements. Hence, model CLTM 1 is equivalent to model CLTM D
defined in Equation (2.15).
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CLTM 2: CLTM with linear explanatory variable effects and unconditional response
transformation with monotone constraints

h(Yx|x) = α0 + β0 · Yx + h̃0(Yx)︸ ︷︷ ︸
uncond. trans. function

+Yx ·
J∑
j=1

βj · xj +
J∑
j=1

αj · xj.

CLTM 2 is also a linear CLTM but is more complex than CLTM 1 as the unconditional re-
sponse transformation is a flexible monotone function. Hence, model CLTM 2 is equivalent
to model CLTM E defined in Equation (2.16). We suggest that the distribution function of
the response possibly does not belong to the class of normal distributions if we additionally
set the link to F = Φ. This is due to the term describing deviations from linearity h̃0(Yx),
which is able to affect higher moments of the distribution function of the response.

Hence, the birth weights follow some arbitrary distribution function because higher mo-
ments are modelled flexibly. Nevertheless, the corresponding class of distribution functions
is again identical for all fetuses as the deviations from linearity are not influenced by any
ultrasound measurements. Moreover, fetus-specific means and variances result, and the
influence of the ultrasound measurements is modelled linearly.

CLTM 3: CLTM with flexible explanatory variable effects and linear unconditional
response transformation

h(Yx|x) = α0 + β0 · Yx + Yx ·
J∑
j=1

βj(x) +
J∑
j=1

αj(x).

This model is an additive CLTM with h̃0(Yx) = 0. Again, the unconditional response
transformation is a linear function (compare CLTM 1), and we therefore implicitly assumed
that the response follows a normal distribution. Therefore, these definitions result in normal
distribution functions for all fetuses with fetus-specific means and variances. The influence
of the ultrasound measurements was modelled flexibly.

CLTM 4: CLTM with flexible explanatory variable effects and unconditional
response transformation with monotone constraints

h(Yx|x) = α0 + β0 · Yx + h̃0(Yx)︸ ︷︷ ︸
uncond. trans. function

+Yx ·
J∑
j=1

βj(x) +
J∑
j=1

αj(x).

Also this model is an additive CLTM and is the most complex CLTM considered. Compa-
rable to CLTM 3, the influence of the explanatory variables on the linear response trans-
formation is modelled flexibly. Additionally, the unconditional response transformation is
a flexible monotone function (compare CLTM 2), in which we implicitly assumed that the
response may not follow a normal distribution.
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Hence, we assumed fetus-specific means and variances, whereby the influence of the ultra-
sound measurements was modelled flexibly. Again, birth weights for all fetuses follow some
arbitrary distribution because higher moments are modelled flexibly, but the corresponding
class of distribution functions is the same for all fetuses.

CTM: Conditional transformation model

h(Yx|x) =
J∑
j=1

hj(Yx|x). (4.10)

We define the common CTM (Hothorn et al., 2014) as our reference model because it
represents a more general and more complex model class than the considered CLTMs. The
transformation function h(Yx|x) is decomposed additively into J partial transformation
functions without any further restrictions. Thereby, we assume additivity on the scale of
the transformation function, which is fundamentally different to additive mean or quantile
regression, where additivity is assumed on the scale of the conditional mean or quantile
function. Simulation results presented in Hothorn et al. (2014) show a better performance
of CTMs compared to the parametric generalised additive models for location, scale and
shape (GAMLSS) and to nonparametric kernel estimators. Since CTMs are an alternative
to quantile regression models, the authors also compared the two approaches and assessed
that both model classes are equally flexible. Nevertheless, CTMs have the advantages of
being based on differentiable and convex proper scoring rules as risk functions that allow
relatively easy optimisation algorithms to be applied, the simultaneous estimation of all
quantiles in a joint model, and the dependency on only one hyperparameter (the number
of boosting iterations), compared to additive quantile regresssion. Based on this CTM,
we defined the model class of CLTMs and finally the special cases of CLTMs presented
above.

4.3.2. Model estimation

First, we will briefly describe the model estimation in CTMs (Equation (4.10)) and then
present the necessary adaptations for CLTMs. In Hothorn et al. (2014), a parametrisation
of the partial transformation functions hj, j = 1, . . . , J in CTMs via basis functions is
presented, and illustrates the high flexibility of the partial transformation functions in
both the response variable and the explanatory variables. For example, the j-th partial
transformation function is parametrised as follows:

hj(Yx|x) =
(
bj(x)> ⊗ b0(Yx)>

)
γj, (4.11)

where b0 is a basis along the grid of response values Yx, bj is a basis along a grid of explana-
tory variables x, and γj denotes the corresponding vector of basis coefficients. The two sets
of basis functions are connected via a Kronecker product, thereby establishing an interaction
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Table 4.1.: Overview: Relevant CLTMs (conditionally linear transformation models) and CTM (conditional
transformation model).
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surface between the basis for the response and the basis for the explanatory variables. The
basis b0 defines the functional form of the response transformation (i.e. a linear or flexible
response transformation), and the functional form of bj defines how this response transfor-
mation is influenced by the explanatory variables (i.e. the response transformation varies
linearly or flexibly with varying explanatory variables) (Hothorn et al., 2014). For example,
if one chooses linear basis functions for b0, one gets a linear response transformation, and
if one chooses B-spline basis functions for b0, one gets a flexible response transformation.
Hence, the user is free to choose a very complex and general model framework (e.g., by
choosing a B-spline basis for b0 and bj) in CTMs, which often ends up in a lack of inter-
pretability (see Subsection 4.3.1). In CTMs, one aims at obtaining an estimate for each
partial transformation function hj that is smooth in both the response and the explanatory
variables, which is achieved by imposing an appropriate penalty on the Kronecker product
of basis functions in Equation (4.11). For further details on parametrisation and penalty
specification, see Hothorn et al. (2014).

In CTMs, model estimation is based on the minimisation of the mean integrated logarithmic
score (log score)

LS = − 1

N · n

N∑
i=1

n∑
ι=1

I(BWi ≤ υι) log(Φ(h(υι|xi))) +

I(BWi > υι) log(1− Φ(h(υι|xi))), (4.12)

which is a proper scoring rule (Gneiting and Raftery, 2007; Hothorn et al., 2014). The log
score is evaluated on a grid of birth weights υ1, . . . , υn covering their range. In CTMs, the
mean integrated log score is minimised in terms of a component-wise boosting algorithm
(see Section 3.1 and Chapter B). As CLTMs are a special case of CTMs, we used the same
approach for model estimation. All we had to adapt is the parametrisation of the partial
transformation functions in Equation (4.11), which is straightforward. A derivation of the
integrated log score for survival times is given in Section 5.2.1.

The choice of the functional form of b0(Yx) and bj(x), j = 1, . . . , J (either linear or flex-
ible basis functions) depends on the definition of the conditional transformation function
h(Yx|x). As an example, we present the parametrisation of transformation model CLTM 0
given in the previous subsection. CLTM 0 can be decomposed into the unconditional
transformation function h0(Yx) that depends only on the response values, and the part
α(x) =

∑
j αj(x) that depends only on the explanatory variables. Both parts of the trans-

formation function are parametrised separately as special cases of Equation (4.11). First,
the unconditional transformation function is parametrised via

h0(Yx) =
(
1>N ⊗ b0(Yx)>

)
γ,

where 1N denotes the one-vector those length is equal to the number of observations N . As
the unconditional transformation function does not depend on any explanatory variables,
the basis functions for the explanatory variables bj(x) are replaced by 1N to maintain
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correct dimensions. The basis functions for the response variables b0(Yx) are monotonic B-
splines (i.e. T-splines, Section 3.2.2) as h0(Yx) is assumed to be a flexible monotone function
in the response values. Second, the function depending on the explanatory variables is
parametrised by the set of basis functions

αj(x) =
(
bj(x)> ⊗ 1>n

)
γj, j = 1, . . . , J,

where 1n denotes the one-vector with length n, the number of unique υ values (a hyper
parameter to the algorithm). As the functions αj(x), j = 1, . . . , J , do not depend on the
response variable, the corresponding basis functions b0(Yx) are replaced by the one-vector
to maintain correct dimensions. The basis functions bj(x), j = 1, . . . , J , are B-spline basis
functions because the explanatory variables have a flexible influence on the mean of the
transformed response in CLTM 0. The parametrisation of the other special cases of CLTMs
result accordingly.

4.3.3. Computational details

All analyses were carried out in the R system for statistical computing (version 2.15.3, R
Core Team, 2014). Model estimation in CLTMs and CTMs was carried out using the R
add-on package ctm (Hothorn, 2012). To compare our proposed transformation models
and established methods, we estimated a linear regression model, linear quantile regression
model and additive quantile regression model. To estimate the linear regression model, we
used the lm function in the stats package and fitted the linear quantile regression model
using the rq function of the quantreg package (Koenker, 2012). We used component-wise
boosting for the estimation of the additive quantile regression model (Fenske et al., 2011)
in the mboost package (Hothorn et al., 2013). A tutorial R example ex fetus CLTM.Rnw

including the code for estimating the proposed regression and transformation models, the
calculation of prediction intervals for the birth weights, and the generation of Figure 1
is publicly available in the ctm package from the R-forge repository (https://r-forge.
r-project.org/projects/ctm).

4.3.4. Evaluation of fetus-specific prediction formulas for birth weight

As we are interested in reliable prediction intervals for birth weights (see Section 4.1),
we calculated fetus-specific prediction intervals based on Equation (4.1) with a coverage
probability of 80%. A further goal was to identify the C(L)TM that described the Perinatal
Database Erlangen best among the proposed C(L)TMs in Section 4.3.1. We considered
certain aspects of model misspecification.

For the construction of prediction intervals, we considered the conditional median and the
conditional α/2 quantile and 1− α/2 quantile representing the point prediction for the birth

https://r-forge.r-project.org/projects/ctm
https://r-forge.r-project.org/projects/ctm
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weight and the boundaries of the fetus-specific prediction intervals in Equation (4.1). There-
fore, we used the well-known relationship between the conditional distribution function and
the conditional quantile function to extract the relevant quantiles:

qτ (x) = F−1
BW|X=x(τ),

where τ = {α/2, 0.5, 1− α/2} denotes the quantiles of interest, and FBW|X=x is defined in
Equation (4.2) (Mayr et al., 2012).

In the analysis of the Perinatal Database Erlangen, we used ten regression or transformation
models to estimate the median birth weight and the associated interval borders. The trans-
formation models used encompass a standard CTM and the six CLTMs [CLTM 0 (linear)
and CLTM 0 – CLTM 4] presented in Section 4.3.1. For comparison, we also considered a
linear regression model (LM), which served as a standard procedure in the past, a linear
quantile regression model, and an additive quantile regression model (LQR and AQR).

A common strategy to check the adequacy of prediction intervals is to check their coverage
probability. When we defined prediction intervals in Subsection 4.2.3, we stated that a
correctly specified prediction interval PI1−α(x) for a new set of ultrasound parameters x
covers a new observation BW with high probability 1−α. The correct measure to evaluate
prediction intervals adequately is the conditional coverage (Mayr et al., 2012). Therefore,
we checked whether for any particular combination of ultrasound measurements x about
(1− α) · 100% of the corresponding observations (BW1,x), . . . , (BWM ,x) were covered by
the prediction interval PI(x):

π̂|x = Ê(BW ∈ PI(x)|X = x) =
1

M

M∑
i=1

I {BWi ∈ PI(x)} , (4.13)

where I denotes the indicator function. The conditional coverage reflects what we really
expect from a prediction interval because the prediction interval for a specific combination
of ultrasound parameters should cover the birth weights of 80% of the fetuses with exactly
the same ultrasound measurements (Mayr et al., 2012).

In practice, the evaluation of the conditional coverage of prediction intervals is impossible
because we usually only have one observation for each combination of ultrasound parameters
x and more are needed with exactly the same combination of ultrasound measurements
(Equation (4.13)). Especially in a regression setting with continuous explanatory variables,
multiple response values for each combination of explanatory variables are unlikely to occur.
Therefore, we calculated the conditional coverage of our prediction intervals using binned
observations:

1. We used the ultrasound parameters AC and FL to divide the fetuses in the
database into categories because these two parameters are essential for the pre-
diction of birth weights (e.g., see Sabbagha et al., 1989; Faschingbauer et al.,
2012; Hoopmann et al., 2010; Scioscia et al., 2008). AC and FL were divided
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quantile-based into categories, resulting in five AC categories measured in mm
(1 : (175, 316]; 2 : (316, 331]; 3 : (331, 343]; 4 : (343, 357]; 5 : (357, 428]) and five
FL categories measured in mm (1 : (31.1, 69.6]; 2 : (69.6, 71.7]; 3 : (71.7, 73.4]; 4 :
(73.4, 75.4]; 5 : (75.4, 86.6]).

2. When we combined the five AC and five FL categories, we got 25 categories of fe-
tuses, which results in good sample sizes of at least 102 observations for all groups.
The distribution of the birth weights in the respective categories are displayed in
Figure A.3.

3. To assess the conditional coverage, we generated a training data set by randomly
choosing 90% of the fetuses in each of the 25 categories and generated a validation
data set by choosing the remaining fetuses. We then estimated CLTM 0 (linear) -
CLTM 4, CTM, LM, LQR, and AQR for the training data, and predicted the birth
weights for the validation data set for each of the models. We assessed the conditional
coverage (Equation (4.13)) for each of the regression and transformation models in
each of the 25 categories.

In addition to the conditional coverage of the prediction intervals, we also checked their
average interval lengths.

To identify the C(L)TM that described the Perinatal Database Erlangen best, we compared
the performance among all CLTMs to the performance of the CTM and the LM. We fitted
the models on a training data set and evaluated their predictive ability on an evaluation
data set. Twenty-five training and evaluation data sets were generated by choosing ran-
domly 50% of the original observations in each AC–FL category. The predictive ability was
measured in terms of the log score given in Equation 4.12, which was used to evaluate the
conditional distribution function for the whole evaluation data set and for each AC-FL cat-
egory separately. As the complexities of the C(L)TMs differed, this procedure could also be
used to reveal model misspecifications. We were able to detect missing covariate effects on
the variance (e.g., CLTM 0 against all other C(L)TMs), missing flexibility of the covariate
effects on the mean or the variance (e.g., CLTM 2 against CLTM 4), and missing flexibility
of the response transformation (e.g., CLTM 1 against CLTM 2). If even higher moments
of the conditional distribution function were affected by the explanatory variables, could
be checked by comparing all CLTMs to the CTM, and by comparing all CLTMs to the LM
if the assumption of a normal distribution with constant variance works for the database.
The out-of-sample log score cannot be calculated for the quantile regression models because
quantile crossing makes the inversion of the quantile function into a distribution function
impossible.
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4.4. Results

4.4.1. Estimated transformation and regression models

All ultrasound parameters were included as main effects in the model equations of the
regression and transformation models. One exception was the interaction between AC and
FL, which has been important in many earlier prediction formulas for birth weight (e.g.,
in Hadlock et al., 1985). Therefore, we additionally included this interaction in models
CLTM 0 (linear), CLTM 1, CLTM 2, LM, LQR and AQR; we did not include this interaction
in models CLTM 0, CLTM 3, CLTM 4 and CTM because the model estimation became
too complex.

Figure 4.1.: Birth weight prediction. Observed birth weights of 8, 712 newborns (dots) ordered with respect
to the predicted conditional mean (LM only) or median birth weight (central black line). The lower and
upper black lines display estimated 10% and 90% quantiles of birth weights, respectively. The areas in
between represent fetus-specific 80% prediction intervals. Each subplot shows the results for one of the
regression or conditional transformation models: LM, linear model; LQR, linear quantile regression; AQR,
additive quantile regression; CLTMs (CLTM 0 – CLTM 4), conditionally linear transformation models; and
CTM, conditional transformation model.
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Figure 4.2.: Out-of-sample log scores for CLTM 0 – CLTM 4, LM, and CTM based on 25 randomly chosen
evaluation data sets consisting of 4, 355 observations.

The estimates of the birth weights based on the prenatal ultrasound parameters are dis-
played in Figure 4.1. In model LM, symmetric intervals around the estimated conditional
mean with equal interval lengths for all fetuses resulted, and possible heteroscedasticity,
kurtosis, and skewness was ignored. Despite these restrictive assumptions, model LM pro-
vided satisfying and narrow intervals. We concluded that deviations from normality were
small and no strong heteroscedasticity occurred. Nevertheless, we pursued further model
improvements.

The quantile regression approaches (LQR and AQR) also provided satisfying results asso-
ciated with narrow intervals. The wiggly estimates for the interval borders were due to
the separate estimation of the quantiles. In contrast, smooth interval borders resulted for
C(L)TMs because all quantiles were estimated simultaneously.

In CLTM 0 (linear), the influence of the ultrasound parameters on the conditional mean
was modelled linearly, comparable to model LM. Owing to the unconditional transformation
function, also a possible skewness and kurtosis of the distribution of the birth weights can
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be modelled. This led to wider intervals for CLTM 0 (linear) compared to LM, especially
for extreme birth weights. In model CLTM 0, the influence of the ultrasound measurements
on the conditional mean was modelled flexibly, and thus, the corresponding fetus-specific
intervals were narrower than with CLTM 0 (linear).

In general, a flexible inclusion of the ultrasound parameters seems advisable because the
intervals with models CLTM 0, CLTM 3 and CLTM 4 were narrower than with CLTM 1
and CLTM 2. Besides, in CLTM 1 – CLTM 4, the ultrasound parameters may influence
the conditional mean and conditional variance. Hence, these models accounted for possible
heteroscedasticity induced by the ultrasound measurements.

An additional slight improvement was gained by estimating the unconditional transforma-
tion function in terms of a flexible monotone function and thus accounting for possible
kurtosis and skewness. This can be observed by direct comparison of CLTM 1 and CLTM 2
and of CLTM 3 and CLTM 4. Nevertheless, deviations from normality seemed to be small
because the associated improvements were minor.

We were also interested in identifying the C(L)TM that described the Perinatal Database
Erlangen best. We calculated the out-of-sample log scores based on 25 evaluation data sets
for the proposed C(L)TMs and the LM to evaluate the estimated conditional distribution
functions for new observations for the whole evaluation data set (Figure 4.2) and for each
AC–FL category separately (Figure A.1 and Figure A.2). The results were in accordance
with those in Figure 4.1: the out-of-sample log scores of CLTM 0, CLTM 3, CLTM 4, CTM
and LM were similar, whereas those of CLTM 0 (linear), CLTM 1 and CLTM 2 were clearly
higher. Hence, the inclusion of flexible covariate effects clearly improves the estimated
conditional distribution functions. On the other hand, consideration of heteroscedasticity,
deviations from the normality assumption, and higher moments depending on explanatory
variables were of minor importance, which was also supported by the good performance of
the LM.

To further illustrate important characteristics of CLTMs, we more closely examined
CLTM 4, which is the most flexible among all considered CLTMs. The influence of the
ultrasound measurements on the conditional mean and conditional variance was modelled
flexibly, and the unconditional response transformation was modelled as a flexible mono-
tone function. We assumed that the response values most likely do not follow a normal
distribution, as the following results indicated.

Low birth weights did not exactly follow a normal distribution, i.e. the resulting estimated
birth weight transformation function showed deviations from a linear function for low birth
weights (see Equation (4.7)), whereas medium and high birth weights followed a normal
distribution (Figure 4.3). Therefore, low birth weights needed to be transformed.

This conclusion can be observed clearly in normal quantile-quantile plots for original and
transformed birth weights resulting from model CLTM 4 (Figure 4.4). Low original birth
weights deviated from the normal distribution, but low transformed birth weights approx-
imately followed a normal distribution. A scatterplot showing the relationship between



72 4. Predicting birth weight by boosting CLTMs

1 2 3 4 5 6

−
6

−
4

−
2

0
2

4
6

8

Birth weight (kg)

h 0
(B

ir
th

 w
ei

gh
t)

Figure 4.3.: Estimated monotone birth weight transformation function resulting from model CLTM 4. The
dashed line symbolises the linear relationship between the birth weights and their monotone transformation.

original and transformed birth weights (Figure 4.5) revealed similar results. Medium and
high birth weights scattered unsystematically around some linear function, whereas low
birth weights deviated, which indicated that a non-linear transformation took place. More-
over, a kernel density plot (Figure 4.5) shows that the estimated density of the transformed
birth weights is in good accordance with the corresponding density of the normal distribu-
tion.

These results together indicated that those regression models that allow deviations from
the normal distribution assumption are more reliable when original data do not entirely
follow a normal distribution.

We stressed that the main advantage of CLTMs over CTMs is the improved interpretability
of the estimated effects of ultrasound measurements on moments of the distribution func-
tion of birth weights. The estimated effects of ultrasound parameters for model CLTM 4
(Figure 4.6) can be interpreted according to Equation (4.4). For almost all ultrasound
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Figure 4.4.: Normal Q-Q Plot of the original and the transformed birth weights resulting from model
CLTM 4.

Figure 4.5.: Left: Scatterplot of the original birth weights vs. the transformed birth weights resulting from
model CLTM 4. Right: Kernel density estimation of the transformed birth weights (solid line) and the
corresponding normal density (dashed line).

parameters, estimated non-linear functions α and β resulted, which suggested that the
ultrasound parameters influence both the conditional mean and conditional variance.
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Figure 4.6.: Estimated effects of ultrasound parameters on the conditional mean and conditional variance of
transformed birth weight. Solid lines represent estimated functions α̂(ultrasound parameter), and dashed

lines represent estimated functions β̂(ultrasound parameter). The corresponding values of t-statistics be-
long to the coefficients of the ordinary linear model LM. BPD, biparietal diameter; FL, femur length;
AC, abdominal circumference; HC, head circumference; FOD, fronto-occipital diameter; ATD, abdominal
transverse diameter; APD, anterior-posterior abdominal diameter; BMI, mother’s body mass index.

4.4.2. Assessing the accuracy of the prediction intervals

We assessed the accuracy and adequacy of the (fetus-specific) prediction intervals by cal-
culating the conditional coverage and average interval length as quality criteria.

The conditional coverage of the prediction intervals for the birth weights (Figures 4.7 and
4.8; Tables A.1 and A.2) is a measure to check the adequacy and correctness of estimated
prediction intervals. We were interested in how often the postulated coverage probability
of 80% was violated in the 25 AC–FL categories (defined in Subsection 4.3.4) for the ten
regression models. Moreover, the accuracy of the prediction intervals can be measured by
the average interval lengths given in Table 4.2.
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Figure 4.7.: Conditional coverage of the prediction intervals for fetuses of the 25 AC–FL categories. Points
refer to the point estimates of the conditional coverage, and error bars display corresponding Clopper-
Pearson confidence intervals. Grey reference lines symbolise the postulated 80% confidence level. Model
estimation was carried out with CLTM 0 (linear), CLTM 0, CLTM 1, CLTM 2, and CLTM 3.

Table 4.2.: Average prediction interval length. Estimation is based on models CLTM 0 (linear), CLTM 0
– CLTM 4, CTM, LM, LQR, and AQR.

Model Average interval length

CLTM 0 (linear) 1.042
CLTM 0 0.785
CLTM 1 1.132
CLTM 2 1.042
CLTM 3 0.790
CLTM 4 0.776
CTM 0.807
LM 0.777
LQR 0.764
AQR 0.755
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Figure 4.8.: Conditional coverage of the prediction intervals for fetuses of the 25 AC–FL categories. Points
refer to the point estimates of the conditional coverage, and error bars display corresponding Clopper-
Pearson confidence intervals. Grey reference lines symbolise the postulated 80% confidence level. Model
estimation was carried out with CLTM 4, CTM, LM, LQR, and AQR.
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The conditional coverage of all ten models was satisfying. The postulated coverage prob-
ability of 80% was not significantly violated by any of the suggested models in any of the
categories. The only exception was model CLTM 1 in category 1-1 (Figure 4.7). The length
of the corresponding error bars was mainly determined by the number of fetuses used for
estimation. Hence, the length of the error bars was especially high in the categories 5–1,
4–1, 1–5 and 1–4.

The smallest associated average interval lengths were found for CLTM 3, CLTM 0, LM,
CLTM 4, LQR and AQR (Table 4.2). Hence, regarding the accuracy of prediction intervals,
our new model class of CLTMs can compete with linear regression models and quantile
regression approaches.

4.5. Discussion

Although the accurate prediction of birth weight is one of the most important issues in
gynaecology, traditional prediction formulas focus on point predictions and an easy-to-
interpret, correct measure of quantifying prediction uncertainty is lacking. We therefore
aimed at finding a new model-based strategy to predict birth weights based on prenatal
ultrasound parameters, accompanied by some measure of prediction uncertainty. We intro-
duced conditionally linear transformation models (CLTMs) – a new model class that not
only results in point estimates for the median birth weight but also provides a measure of
uncertainty in terms of prediction intervals.

Birth weights at the extremes have been especially over- or under-estimated by prediction
formulas presented earlier (Scioscia et al., 2008). This could be due to the use of linear
regression models for estimation, which are not able to deal with possible heteroscedasticity,
kurtosis or skewness of the response distribution, and are accordingly inadequate in such
situations. The standard approach around this problem is the use of quantile regression
approaches as no distributional assumptions are made, but one often has to deal with the
problem of quantile crossing instead (Dette and Volgushev, 2008).

In our novel approach of estimating CLTMs, we modelled the conditional distribution func-
tion of birth weight based on ultrasound measurements. Hence, all quantiles were estimated
simultaneously, and problems such as quantile crossing were avoided. Koenker (2005) al-
ready suggested the direct estimation of the conditional distribution function via trans-
formation models as an alternative to quantile regression models. The flexibility of the
influence of the ultrasound parameters on the quantiles in CLTMs is similar to the flexible
influence in quantile regression, as the ultrasound measurement effects may vary for different
values of the conditional distribution function in CLTMs. The borders of the fetus-specific
prediction intervals arised directly from the corresponding quantile function. In contrast to
linear regression models, the fetus-specific prediction intervals showed individual interval
lengths based on the ultrasound measurements and are therefore a useful measure for indi-
vidual prediction accuracy. Moreover, the variance may depend on explanatory variables,
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and CLTMs account for possible heteroscedasticity. In addition, CLTMs can deal with
skewed distributions as higher moments of the distribution of the response (e.g., kurtosis
and skewness) can be modelled flexibly in terms of the unconditional monotone transfor-
mation function. Hence, using CLTMs instead of linear regression models is advantageous
in numerous situations, and especially in our application of predicting birth weights.

From a conceptual point of view, arose weight estimation is fundamentally different from
the construction of reference growth charts of child height and weight (Cole, 1988). Growth
curves are usually designed as screening tools for disease after birth (and also as reference
standards for group health and economic status, e.g., Wei et al. (2006)), whereas prediction
of birth weight is designed to estimate the risk of neonatal mortality and morbidity before
delivery. Consequently, although similar statistical methodology may be used for both
tasks, the CLTM approach proposed here specifically addresses the problem of birth weight
prediction but not the construction of reference growth curves.

Our results suggested that the best-performing CLTM variant is able to compete with
quantile regression and linear regression approaches in terms of conditional coverage and
average length of the prediction intervals. Although the differences to alternative meth-
ods were small, the estimation of C(L)TMs is advisable because of the aforementioned
advantages of accounting for possible heteroscedasticity, kurtosis and skewness. The dis-
tribution of the birth weights showed deviations from a normal distribution (Figure 4.4),
but the deviations were kept within certain limits. Therefore, the linear regression model
would not be the worst choice in this application, and we would expect larger differences
in favour of C(L)TMs for response variables showing more extreme deviations from nor-
mality. Consequently, our results show that prediction intervals for birth weights can be
derived from a relatively easy and stable model, since the medium and high birth weights
follow a normal distribution and only small birth weights show deviations from normality
(Figure 4.3 and Figure 4.4). This conclusion is also underlined by the good performance
of model CLTM 0 (Figure 4.2). It would have been very hard to derive such insights into
the conditional distribution of birth weights from alternative models, for example additive
quantile regression models. In general, the remarkably good performance of CTMs com-
pared to alternative modelling strategies has already been investigated in simulation studies
and numerous applications (Hothorn et al., 2013, 2014).

Interpretability in CLTMs is different than in linear and quantile regression models. In lin-
ear and quantile regression models, the influence of explanatory variables can be interpreted
as direct effects on the conditional mean or conditional quantile, respectively. In CLTMs,
in contrast, the explanatory variables influence the mean and variance of the transformed
response non-linearly (compare Equation (4.4)). Nevertheless, the effects of the explanatory
variables are interpretable in CLTMs, which is a main advantage over the more complex
model class of CTMs. Moreover, we were primarily interested in predicting birth weights
accurately, and this is accompanied by correct and precise prediction intervals.



5. Boosting conditional transformation
models for survivor function
estimation

The content of this chapter is based on Möst and Hothorn (2015).

Besides for the determination of prediction intervals, the characteristics of conditional trans-
formation models are advantageous for the estimation of conditional survivor functions. In
survival analysis, the estimation of patient-specific survivor functions that are conditional
on a set of patient characteristics is of special interest. For example, Crowther and Lambert
(2014) state that the understanding of individual patient risk profiles is of special impor-
tance in personalised medicine. In general, knowledge of the conditional survival probabil-
ities of a patient at all relevant time points allows better assessment of the patient’s risk
than summary statistics, such as median survival time. Nevertheless, standard methods for
analysing survival data seldom estimate the survivor function directly. Therefore, we pro-
pose the application of conditional transformation models (CTMs) for the estimation of the
conditional distribution function of survival time given a set of patient characteristics. We
use the inverse probability of censoring weighting approach to account for right-censored
observations. Our proposed modelling approach allows the prediction of patient-specific
survivor functions. In addition, CTMs constitute a flexible model class that is able to
deal with proportional as well as non-proportional hazards. The well-known Cox model
is included in the class of conditional transformation models as a special case. We inves-
tigate the performance of CTMs in survival data analysis in a simulation that includes
proportional and non-proportional hazards settings and different scenarios of explanatory
variables. Furthermore, we re-analyse the survival times of patients suffering from chronic
myelogenous leukaemia and study the impact of the proportional hazards assumption on
previously published results.

5.1. Introduction

The estimation of a patient’s individual survival probabilities over time is a key aspect
of survival analysis. Technically, we are interested in estimating the conditional survivor
function, i.e. the probability of surviving up to a specific time point t, conditional on
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a set of patient-specific explanatory variables. However, common regression models for
censored data seldom focus on the direct estimation of the conditional survivor function.
Instead, the models concentrate either on the estimation of hazard functions or on summary
statistics. In the omnipresent Cox proportional hazards model (Cox, 1972), the conditional
hazard function is estimated by cleverly treating the baseline hazard function as a nuisance
parameter. Only in a second step can the corresponding conditional survivor functions be
derived from this model, for example by using the Breslow estimator (e.g., Andersen et al.,
1983). Hence, if one is interested in the conditional survival probabilities, methods for the
direct estimation of the conditional survivor function are required.

Moreover, assumptions associated with common modelling strategies for survival data are
restrictive. For example, the Cox model is based on the assumption of proportional hazards,
the proportional odds model assumes constant odds ratios over time, and in the parametric
accelerated failure time model, log-transformed responses imply survival times that are,
e.g., log-normal distributed or log-logistic distributed. Although remedies are available,
such as stratified Cox models or time-varying effects (Sargent, 1997; Xu and O’Quigley,
2000; Scheike and Martinussen, 2004; Tian et al., 2005), and although model diagnos-
tics (e.g., based on Schoenfeld residuals or formal misspecification tests; Schoenfeld, 1982;
Ng’Andu, 1997) and particularly tests for the proportional hazards assumption (e.g., based
on cumulative sums of martingale-based residuals or weighted residuals; Lin et al., 1993;
Grambsch and Therneau, 1994) help to detect unrealistic assumptions, models making less
strong assumptions would be widely welcomed.

We suggest estimating the conditional distribution function of the survival time T given
a set of patient characteristics x directly in terms of conditional transformation models
(CTMs). CTMs have been presented recently in Hothorn et al. (2014) and allow the direct
and semiparametric estimation of the conditional distribution function P(T ≤ t|X = x)
under rather weak assumptions. The general model class includes both the proportional
odds model and the proportional hazards model as special cases. Nevertheless, the strict
assumptions of proportional hazards or proportional odds are relaxed in CTMs. This is
achieved by including interaction terms between the survival time and the explanatory
variables (see also Section 2.1.2). For example, the CTM framework allows for varying
explanatory variable effects on the hazard function and hence is able to estimate non-
proportional hazards as well. However, this advantage comes at the price of a more complex
model, which is not easily communicated by simple parameter estimates or even p-values.
Graphic approaches are needed to interpret the model, but we can always fall back on
the classical approach when the more flexible model suggests that it is safe to assume
proportional hazards. P -values or confidence intervals cannot be obtained based on large
sample theory but can be simulated using bootstrap approaches instead.

Transformation models play an important role in survival analysis. The one-to-one corre-
spondences between the proportional hazards and proportional odds model to linear trans-
formation models has already been established in Doksum and Gasko (1990) and Cheng
et al. (1995). Cheng et al. (1997) extended the model class to the prediction of survival
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probabilities. Chen et al. (2002) introduced a unified estimation procedure for the analysis
of censored data using linear transformation models, and Zeng and Lin (2006) proposed a
class of semiparametric transformation models to characterise the effects of possibly time-
varying covariates on the intensity functions of counting processes. For the estimation of
the crude failure probabilities of a competing risk, conditional on explanatory variables,
Fine (2001) proposed a semiparametric transformation model. These approaches are based
on generalised estimating equations. Our approach uses component-wise gradient boosting
methodology for model fitting. This approach has the advantage that it incorporates vari-
able selection and shrinkage of coefficient estimates into the model fitting process. These
regularisation techniques for regression models are necessary for the estimation of survival
probabilities because patient characteristics are often highly correlated. Hence, prediction
accuracy for the survival probabilities can usually be improved if only a subset of the
available patient characteristics is incorporated into the prediction formula. Owing to the
component-wise fitting procedure, the algorithm can deal with high-dimensional data. Van
der Vaart and van der Laan (2006) and Lee et al. (2011) also considered variable selection
in high-dimensional survival data. Lu and Li (2008) previously derived a component-wise
boosting algorithm for the analysis of survival data in terms of non-linear transformation
models.

Fully nonparametric estimation of the conditional survivor function has also been consid-
ered in the past. Making no assumptions about the form of the survivor function can be
advantageous over parametric or semiparametric approaches as the underlying assumptions
may be violated. Furthermore, nonparametric approaches can be used to check whether one
of the more restrictive parametric or semiparametric submodels provides a good fit to the
data. The well-known product limit estimator introduced by Kaplan and Meier (1958) en-
ables nonparametric estimation of the unconditional survivor function. Dabrowska (1987),
Dabrowska (1989), González Manteiga and Cadarso-Suarez (1994) and Iglesias Pérez and
González Manteiga (1999) present generalisations of the product limit estimator by in-
troducing kernel-based weights to estimate the conditional survivor function nonparamet-
rically. In the light of counting process theory, McKeague and Utikal (1990) propose a
general counting process regression model for estimating conditional survivor functions,
and Li and Doss (1995) propose a class of estimators for the conditional survivor func-
tion based on a fully nonparametric model. The usage of local linear estimators for the
conditional survivor function is suggested in Spierdijk (2008).

In contrast to kernel-based methods, tree-based approaches, and especially random forests
can be used to estimate conditional distribution functions precisely without relying on
strict model assumptions. For right-censored data, Hothorn et al. (2004) introduced a
forest aggregation scheme that produces estimates of the conditional survivor function.
The same scheme was used later by Meinshausen (2006) for uncensored observations; an
alternative forest variant (random survival forests) was introduced by Ishwaran et al. (2008).
Conditional inference forests (Strobl et al., 2007), based on an aggregation of conditional
inference trees (Hothorn et al., 2006), use the aggregation scheme introduced by Hothorn
et al. (2004) and have been shown to perform akin to other forest variants for right-censored
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data (Mogensen et al., 2012), and were used as a completely nonparametric competitor for
conditional transformation models in our study here.

Another useful alternative to the Cox model or to linear transformation models is censored
quantile regression (e.g., Powell, 1986; Chernozhukov and Hong, 2002; Honoré et al., 2002;
Portnoy, 2003; Peng and Huang, 2008; Wang and Wang, 2009; Wey et al., 2014). With this
approach, the conditional quantiles of the survival times are modelled in terms of regression
models. In contrast to our proposed CTM approach, not all conditional quantiles of the
survival times are modelled simultaneously but are instead modelled separately. Hence,
quantile crossing (Dette and Volgushev, 2008) is a potential problem of this procedure.

In order to illustrate CTMs for survival data, we checked the validity of the proportional
hazards assumption in a re-analysis of a randomised clinical trial comparing busulfan, hy-
droxyurea and interferon-α treatment of chronic myelogenous leukaemia. This trial has been
analysed earlier using a Cox model (Clayton and Cuzick, 1985; Aalen, 1988; McGilchrist and
Aisbett, 1991; Vaida and Xu, 2000). As the proportional hazards assumption is questionable
for the different treatment groups, we re-analysed the data set using the CTM approach
and allowed for non-proportional effects of the patient characteristics over time.

5.2. Conditional transformation models for survival data

In the following, T denotes a positive random variable describing the time from a well-
defined starting point to an event of interest, e.g., death or recurrence of a disease. We
consider N patients with survival times Ti, i = 1, . . . , N , and a vector of patient charac-
teristics xi = (xi1, . . . , xip). As we do not assume that all patients experience the event of
interest by the end of the study period and as some patients quit the study early, the event
times sometimes are not actual event times but rather right censored. The observed right-
censored event times T̃i are defined by T̃i = min(Ti, Ci), i = 1, . . . , N , where Ci denotes the
time under observation or censoring time. Furthermore, the event indicator δi = I(Ti ≤ Ci)
is 1 for observed event times and 0 for right-censored event times. A common assumption
is that the survival time T and the vector of explanatory variables X are independent of
the censoring time C.

The conditional survivor function S is defined as the conditional probability of being event-
free up to some time point t in terms of the conditional distribution function of the survival
times given the explanatory variables x:

S(t|X = x) = P(T > t|X = x) = 1− P(T ≤ t|X = x). (5.1)

When using CTMs, we aim at estimating the conditional distribution function of the sur-
vival times via

P(T ≤ t|X = x) = F (h(t|x)), (5.2)
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and the conditional survivor function can be calculated by the relationship given in Equa-
tion (5.1). Thereby, the conditional distribution function is modelled in terms of the mono-
tone transformation function h : R → R, which depends on the patient characteristics x.
A short introduction to CTMs can be found in Section 1.1.

To embed the well-known class of linear transformation models (Cheng et al., 1995) into
CTMs exemplarily, we reconsider the formulation of the proportional hazards (PH) model
in terms of a linear transformation model given in Doksum and Gasko (1990) (see also
Section 2.1.2). The conditional distribution function of the survival times resulting from
the Cox model can be written as

P(T ≤ t|X = x) =M(hT (t) + x>β), (5.3)

where M denotes the distribution function of the minimum-extreme value distribution,
and the transformation of the survival times hT (t) equals the logarithm of the cumulative
baseline hazard. In linear transformation models, the conditional transformation function
h is decomposed into a part depending only on the survival times hT (t) and a part depend-
ing only on the explanatory variables x>β. This strict decomposition results in the PH
assumption.

In CTMs, the PH assumption is relaxed by allowing for interactions between the survival
times and the explanatory variables in terms of the conditional transformation function
h(t|x). Furthermore, we assume additivity on the scale of the transformation function
and decompose h into J partial transformation functions, in which each hj : R → R is
conditional on x (Equation (1.2)):

P(T ≤ t|X = x) = F (h(t|x)) = F

(
J∑
j=1

hj(t|x)

)
. (5.4)

In analogy to the representation of the Cox model in Equation (5.3), we choose F =M for
the link function. In this way, we operate on the same scale of distribution functions in the
CTM and the Cox model, and hence estimations from the two approaches are comparable.
The CTM given in Equation (5.4) can be understood as a generalisation of the PH model
to more flexible non-proportional hazard functions if F is the minimum-extreme value
distribution function.

As all interaction terms between the survival time and the explanatory variables are avoided
in the Cox model (Equation (5.3)), the effects of the explanatory variables are estimated
to be constant and are not allowed to vary over time. This assumption is relaxed in the
more flexible model class of CTMs. Interaction terms between the survival time and the
explanatory variables are established in terms of the partial transformation functions hj
that depend on the survival time and on the explanatory variables simultaneously (Equa-
tion (5.4)). Hence, the effects of the explanatory variables are allowed to vary over time,
which usually results in non-proportional hazards. We not only estimate one single param-
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eter for each explanatory variable as is done in the Cox model. Instead, separate partial
transformation functions are defined for each explanatory variable, whereby a smooth pa-
rameter function over time is estimated for each group of a categorical explanatory variable.
For continuous explanatory variables, a smooth parameter surface is estimated that depends
on the survival time and on the continuous explanatory variable.
In comparison to alternative nonparametric approaches, the estimation of the conditional
survivor function is not a black box procedure in CTMs. Although the model assumptions
are weak in CTMs, a certain model structure is imposed by introducing additive partial
transformation functions. The resulting effects of the explanatory variable over time can
be interpreted and can be illustrated graphically. Hence, concerning model complexity,
semiparametric CTMs can be placed in between the less flexible semiparametric linear
transformation models (e.g., the Cox model) and more flexible nonparametric approaches.
If one is interested in better interpretable versions of CTMs, the model class of condition-
ally linear transformation models (CLTMs) introduced in Chapter 2 and Chapter 4 can be
considered. In CLTMs, the conditional transformation function h is restricted to transfor-
mation functions that are linear in the response transformation. Due to this restriction, the
explanatory variables are only allowed to influence the conditional mean and the conditional
variance of the response transformation, whereas higher moments remain unaffected. The
effects of the explanatory variables on the conditional mean and the conditional variance
are non-linear but can be interpreted in CLTMs. Further restrictions of the transformation
function are conceivable. For example, if all interaction terms between the survival time
and the explanatory variables are omitted and the effects of the explanatory variables have
to be linear, the conditional transformation function of the Cox model (Equation (5.3))
results as a special case. The Cox model can even be further restricted by choosing special
forms of the monotone response transformation hT (t). For example, the specification of
hT (t) = log(λ) + ν · log(t) results in the Weibull model (see Section 2.1.2).

5.2.1. Estimating conditional transformation models for survival data

Hothorn et al. (2014) explain thoroughly how CTMs are estimated by the minimisation of
the continuous ranked probability score (CRPS) (see Gneiting and Raftery, 2007) using a
component-wise boosting algorithm. The CRPS was chosen because it constitutes a proper
scoring rule for distributional and probabilistic forecasts (Hothorn et al., 2014). When
we estimated CTMs for survival data, we also used a component-wise boosting algorithm
to minimise an appropriate integrated loss function. First, we formulated the integrated
loss function for uncensored observations, and then we extended the loss function to right-
censored observations.

Integrated loss function for uncensored observations. In an uncensored survival data
setup, we observed the survival or event times Ti, i = 1, . . . , N , for N patients under
consideration. Furthermore, we considered a grid of time points {tι : ι = 1, . . . , n} ranging
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from the study’s starting point t1 = 0 to the study’s end point tn. Typical choices for
the grid points {tι : ι = 1, . . . , n} are equally spaced grid points or a grid composed of all
distinct survival and event times. Hence, we were able to observe the binary survival status
I(Ti ≤ tι) for each patient at each grid point; the status is 1 if the patient experienced the
event by tι and is otherwise 0.
We aimed at estimating the conditional distribution function of the event times P(T ≤
tι|X = x) = F (h(tι|x)) (see Equation (5.2)) in terms of the conditional transformation
function h, where tι denotes some arbitrary time point in the study period. This estimation
problem can be reformulated as estimating the probability F (h(tι|x)) for the binary event
T ≤ tι and is solved by minimising an appropriate loss function. We chose the logarithmic
score (or negative binomial log-likelihood) for measuring the loss between the binary event
status Ti ≤ tι and the corresponding probability F (h(tι|xi)) for N patients at a specific
time point tι:

LS(tι) = − 1

N

N∑
i=1

{I(Ti ≤ tι) log(F (h(tι|xi)))

+ I(Ti > tι) log(1− F (h(tι|xi)))} . (5.5)

Alternatively, the Brier score or the absolute error loss can be chosen as an appropriate
loss function (Hothorn et al., 2014; Gneiting and Raftery, 2007; Schemper and Henderson,
2000).
Based on the logarithmic score for one specific time point tι (see Equation (5.5)), we defined
the integrated logarithmic score over all time points, which allows estimation of the whole
conditional distribution function P(T ≤ t|X = x) in one step:

ILS = − 1

N

N∑
i=1

∫ tn

0

{I(Ti ≤ t) log(F (h(t|xi)))

+ I(Ti > t) log(1− F (h(t|xi)))} dW (t), (5.6)

where W (t) denotes a weight function for the time points. By choosing the same weight
1/n for all time points tι, ι = 1, . . . , n, we get the empirical version of Equation (5.6):

ÎLS = − 1

N · n

N∑
i=1

n∑
ι=1

{I(Ti ≤ tι) log(F (h(tι|xi)))

+ I(Ti > tι) log(1− F (h(tι|xi)))} , (5.7)

which is used as the empirical loss function in the boosting algorithm. Of course, other
weight functions W (t) for the time points are conceivable. The integrated logarithmic score
for uncensored observations was also used for the estimation of C(L)TMs in Chapter 4
(Equation (4.12)).
When the conditional distribution function is estimated, the ultimate goal is to estimate
the conditional transformation function h such that the empirical risk in Equation (5.7)
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is minimised. The minimisation of the empirical risk is equivalent to the minimisation of
the loss between the true survival status at time point tι, I(Ti ≤ tι) and the corresponding
estimated survival probability F (ĥ(tι|xi)) for all time points and all patients. In other
words, the survivor function for a specific patient Ŝ(tι|xi) = 1−F (ĥ(tι|xi)), ι = 1, . . . , n, is
estimated such that the survival probabilities fit the patient’s true survival status best.

Integrated loss function for right-censored observations. In survival analysis, we often
face right-censored survival times. We do not observe the true survival time Ti for the right-
censored patients, and only the observed survival times T̃i = min(Ti, Ci), i = 1, . . . , N , are
available. Van der Laan and Robins (2003) suggested the inverse probability of censoring
weighting (IPCW) approach, which is one way to account for right-censored observations
in model estimation, and was often used in the past (e.g., see Gerds and Schumacher,
2006; Hothorn et al., 2006). For example, Robins and Finkelstein (2000) present an IPCW
version of the Kaplan-Meier estimator and the log-rank test to account for noncompliance
and dependent censoring. Van der Laan and Robins (2003) give an IPCW example for
right-censored data with time-independent explanatory variables and censoring at random,
and suggest that the full data loss function (i.e. the integrated logarithmic score in our
case) be weighted by the inverse probability of censoring weights

ωiι =
∆(tι)

K̂(min(Ti, tι))
, (5.8)

where ∆(tι) = I(Ci > min(Ti, tι)). K̂ denotes the marginal Kaplan-Meier estimator of the
censoring distribution, K̂(t) = P̂(T > t), based on (T̃i, 1 − δi), i = 1, . . . , N , hence on the
observed survival times and the reverse censoring indicator, which is 1 for right-censored
observations and 0 otherwise. Furthermore, the censoring time Ci is set to∞ for uncensored
observations.
To calculate the IPCWs for the integrated logarithmic score in Equation (5.7) based on
Equation (5.8), we have to distinguish four different situations:

1. Uncensored observations (δi = 1) that experience the event up to tι (T̃i ≤ tι):

ωiι =
I(T̃i ≤ tι, δi = 1) ·

=∆(tι)=1︷ ︸︸ ︷
I(Ci > Ti)

K̂(Ti)
=

1

K̂(Ti)
=

1

K̂(T̃i)
.

2. Uncensored observations (δi = 1) that do not experience the event up to tι (T̃i > tι):

ωiι =
I(T̃i > tι, δi = 1) ·

=∆(tι)=1︷ ︸︸ ︷
I(Ci > tι)

K̂(tι)
=

1

K̂(tι)
.
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3. Right-censored observations (δi = 0) that experience the censoring up to tι (T̃i ≤ tι):

ωiι =
I(T̃i ≤ tι, δi = 0) ·

=∆(tι)=0︷ ︸︸ ︷
I(Ci > Ti)

K̂(NA)
= 0.

4. Right-censored observations (δi = 0) that do not experience the censoring up to tι
(T̃i > tι):

ωiι =
I(T̃i > tι, δi = 0) ·

=∆(tι)=1︷ ︸︸ ︷
I(Ci > tι)

K̂(tι)
=

1

K̂(tι)
.

The resulting weighting scheme corresponds exactly to the weighting scheme given in Graf
et al. (1999), which results in a consistent estimator (see Gerds and Schumacher, 2006). In
short, the observations are weighted by the inverse probability of not being censored up to
the event time (situation 1) or up to the specific time point under consideration (situations
2 and 4). The current survival status is unknown in situation 3; consequently these obser-
vations get zero weights. Thus, censored observations contribute to the model estimation
process up to their censoring time point, and those observations that have already been
censored are accounted for in the inverse probability of censoring weights.
We extended the empirical logarithmic score for uncensored observations given in Equa-
tion (5.7) to right-censored observations by including the weighting scheme presented above.
Hence, the empirical version of the integrated censored logarithmic score results in

ÎLSC = − 1

N · n

N∑
i=1

n∑
ι=1

{
I(T̃i ≤ tι, δi = 1) log(F (h(tι|xi))) ·

1

K̂(T̃i)

+ I(T̃i > tι) log(1− F (h(tι|xi))) ·
1

K̂(tι)

}
, (5.9)

which is used as empirical loss function in the boosting algorithm.

5.2.2. Boosting conditional transformation models for survival data

In CTMs, the conditional distribution function of uncensored responses is estimated using
component-wise boosting with penalisation (Section 3.1; for a detailed description, see
Hothorn et al., 2014). This algorithm has to be slightly modified for the estimation of right-
censored survival data. Thereby, the empirical risk given in Equation (5.9) is minimised with
respect to the transformation function h. Furthermore, the parametrisation of the partial
transformation functions hj, j = 1, . . . , J , (Equation (5.4)) has to be slightly adapted for
survival data. In component-wise boosting algorithms, regularisation is achieved by the
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application of penalised base-learners. The overall model complexity is regulated by the
number of boosting iterations M . For a thorough introduction to component-wise boosting
with smooth base-learners, see Bühlmann and Hothorn (2007) and Schmid and Hothorn
(2008).

Parametrisation of the partial transformation functions. Considering the parametrisa-
tion of the partial transformation functions in Hothorn et al. (2014), we defined for the j-th
partial transformation function:

hj(tι|x) =
(
bj(x)> ⊗ bT (tι)

>)γj, j = 1, . . . , J, (5.10)

where bT : R → RKT denotes the basis along the grid of time points tι, ι = 1, . . . , n, and
bj : χ → RKj is a basis for (a subset of) the explanatory variables x. Both sets of basis
functions are connected via a Kronecker product, whereby an interaction surface between
the survival times and the explanatory variables is established. The vector γj ∈ RKjKT

contains the basis coefficients for the established interaction surface. The basis bT defines
the functional form of the transformation of the survival times, and the functional form of
bj defines how the survival time transformation is influenced by the explanatory variables
(Hothorn et al., 2014). Hence, one usually chooses B-spline basis functions for bT , and
depending on the desired flexibility or the measurement level of the explanatory variables,
one chooses linear basis functions or B-spline basis functions for bj. In more detail, linear
basis functions are chosen for bj if x is univariate and categorical or if x is univariate and
continuous, and a linear influence is assumed. B-spline basis functions are chosen for bj if
x is univariate and continuous, and the influence might be more flexible. Additionally, bj
might depend on more than one explanatory variable, and appropriate multivariate basis
functions have to be considered. The partial transformation functions hj are typically
expected to be smooth in the first argument t and in the conditioning variable x because
continuous distribution functions have to be smooth in the response variable. Moreover,
we expect similar distribution functions for similar values of the explanatory variables.
Therefore, appropriate penalty matrices PT ∈ RKT×KT and Pj ∈ RKj×Kj are imposed
on the basis functions defined in Equation (5.10). The penalty matrix for the Kronecker
product of the basis functions is defined via PTj = (λjPj⊗1KT +λT1Kj⊗PT ), where λT ≥ 0
and λj ≥ 0 denote smoothing parameters and 1 denotes the identity matrix.
As an example, we give the partial transformation function for the explanatory variable sex
influencing the survival time transformation:

hsex(tι|sex) =
(
blin

sex(sex)> ⊗ bT (tι)
>)γsex.

As the explanatory variable sex is binary, we chose linear basis functions for blin
sex(sex), and

furthermore, we chose B-spline basis functions for bT . No penalty term Psex is specified for
the linear basis blin

sex and a smoothness penalty term based on second-order differences PT
is defined for the B-spline basis bT . The resulting interaction surface for the explanatory
variable sex and the survival time can also be understood as the separate estimation of
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a smooth survival time transformation for males and females. Hence, the difference in
the survival probabilities of males and females is allowed to vary flexibly over time and is
therefore able to display non-proportional hazards for the explanatory variable sex. For
further details on parametrisation and penalty specification, see Hothorn et al. (2014).

Component-wise boosting algorithm for conditional transformation models for survival
data. The component-wise boosting algorithm for right-censored survival data is only a
slight modification of the algorithm presented in Chapter B (Hothorn et al., 2014):

(Init) Initialise the parameters γ
[0]
j ≡ 0 for j = 1, . . . , J , the step-size ν ∈ (0, 1) and the

smoothing parameters λj, j = 1, . . . , J . Define the grid t1 < T̃(1) < . . . < T̃(N) ≤ tn.
Calculate the inverse probability of censoring weights ωiι for each grid point ι and
each observation i.
Set m = 0.

(Gradient) Compute the negative gradient of the censored log score:

Uiι := − ∂

∂h
ρ((T̃i ≤ tι,xi), h)

∣∣∣∣
h=ĥ

[m]
iι

:=

{
I(T̃i ≤ tι, δi = 1)

F p(h(tι|xi))
F (h(tι|xi))

· 1

K̂(T̃i)

− I(T̃i > tι)
F p(h(tι|xi))

1− F (h(tι|xi))
· 1

K̂(tι)

}∣∣∣∣∣
h=ĥ

[m]
iι

,

where F p(·) denotes the density of the link function F , K̂(·) denotes the marginal
Kaplan-Meier estimator of the censoring distribution and

ĥ
[m]
iι =

J∑
j=1

ĥ
[m]
j (tι|xi) =

J∑
j=1

(
bj(xi)

> ⊗ bT (tι)
>)γ [m]

j .

Fit the base-learners for j = 1, . . . , J :

β̂j = arg min
β∈RKj ·KT

N∑
i=1

n∑
ι=1

ωiι
{
Uiι −

(
bj(xi)

> ⊗ bT (tι)
>)β}2

+ β>PTjβ

with penalty matrix PTj.
Select the best base-learner

j∗ = arg min
j=1,...,J

N∑
i=1

n∑
ι=1

ωiι

{
Uiι −

(
bj(xi)

> ⊗ bT (tι)
>) β̂j}2

.
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(Update) the parameters γ
[m+1]
j∗ = γ

[m]
j∗ + ν · β̂j∗ and keep all other parameters fixed,

i.e. γ
[m+1]
j = γ

[m]
j , j 6= j∗.

Iterate (Gradient) and (Update).

(Stop) if m = M . Output the final model

P̂(T ≤ t|X = x) = F (ĥ[M ](t|x)) = F

(
J∑
j=1

ĥ
[M ]
j (t|x)

)

= F

(
J∑
j=1

(
bj(x)> ⊗ bT (t)>

)
γ

[M ]
j

)

as a function of arbitrary t ∈ R+ and arbitrary explanatory variables x.

5.2.3. Software

All analyses were carried out in the R system of statistical computing (R Core Team,
2014). CTMs were estimated using the R add-on package ctmDevel (Hothorn, 2013). To
compare the proposed CTMs for survival data with established models, we estimated Cox
models using the R add-on package survival (Therneau, 2013), calculated Kaplan-Meier es-
timators using the R add-on package prodlim (Gerds, 2013) and estimated conditional
random forests using the R add-on package party (Hothorn et al., 2006). R code for
reproducing the results of Section 5.3 (in ctmDevel/inst/empeval) and Section 5.4 (in
ctmDevel/inst/applications) is publicly available in the ctm package from the R-forge
repository (https://r-forge.r-project.org/projects/ctm).

5.3. Simulation

5.3.1. Simulation study setup

In the following simulations, we investigated the performance of CTMs in comparison to al-
ternative semiparametric (ordinary Cox model and stratified Cox model) or nonparametric
(Kaplan-Meier estimator; conditional random forests) modelling strategies in four different
simulation settings with Weibull distributed survival times. We considered different scenar-
ios of explanatory variables and proportional as well as non-proportional hazard settings.
Since the handling of censored observations is an important issue, we considered different
amounts of right-censored survival times. The censoring times were drawn independently
from uniform distributions such that 5%, 10%, 25% and 50% right-censored observations
resulted in each simulation setting.
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The true hazard function and the corresponding true survivor function for Weibull dis-
tributed survival times are

λ(t) =
c

bc
tc−1 and S(t) = exp(−b−ctc), (5.11)

where b and c denote the scale and shape parameter of the Weibull distribution, respec-
tively. The choice of parameters b and c determines whether proportional hazards or non-
proportional hazards result. The PH assumption is fulfilled if the explanatory variables
influence only the scale parameter b and the shape parameter c is fixed. If the explana-
tory variables additionally influence the shape parameter c, the PH assumption is violated,
which, e.g., results in crossing survivor functions.

Simulation 1 In the first simulation setting, we considered the simple data setting of two
treatment groups G1 and G2, which differed with respect to their survival probabilities.
The survival times were Weibull distributed with b1 = 1 and c1 = 3 for treatment group G1
and b2 = 1.5 and c2 = 3 for treatment group G2. Moreover, we included a non-informative
continuous covariate x. Since the shape parameters were identical, the corresponding sur-
vivor functions followed the PH assumption (Figure 5.1). This could also be recognised
by rewriting the conditional Weibull distribution in terms of the Cox linear transformation
model (Equation (5.3)). The conditional Weibull distribution resulted from Equation (5.11)
by inserting the scale parameter b = βG + βx ·x, where βG = 1 for G1 and βG = 1.5 for G2,
and the shape parameter c = γG + γx · x with γG = 3 for both treatment groups. Since x
was non-influential, βx = γx = 0:

1− S(t|G, x) = 1− exp(−(βG + βx · x)−γG−γx·x · tγG+γx·x)

=
γx=βx=0, γG=3

1− exp(− exp(−3 · log(βG) + 3 · log(t)))

= M(hT (t) + β̃G),

where hT (t) = 3 · log(t) and β̃G = −3 · log(βG). This setting could be perfectly fitted using a
Cox model as there was no interaction term between the treatment group G and the survival
time t (i.e. the PH assumption was fulfilled), and G had a linear influence. We sampled
NG = 200 survival times T from the respective Weibull distribution for each treatment
group and identical NG = 200 independent x-values were chosen on an equidistant grid on
[0, 1] for the treatment groups.

Simulation 2 In analogy to Simulation 1, the survival probabilities differed for treatment
groups G1 and G2, and the continuous explanatory variable x was non-informative. The
parameters of the Weibull distributed survival times were b1 = 1.5 and c1 = 3 for treat-
ment group G1 and b2 = 1 and c2 = 1 for treatment group G2. Since the scale and the
shape parameters were treatment specific, the PH assumption was violated (Figure 5.1).
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Again, this could be clarified by writing the conditional Weibull distribution in terms of
Equation (5.3):

1− S(t|G, x) = 1− exp(−(βG + βx · x)−γG−γx·x · tγG+γx·x)

=
βx=γx=0

1− exp(− exp(−γG · log(βG) + γG · log(t))),

where βG = 1.5 for G1 and βG = 1 for G2, and γG = 3 for G1 and γG = 1 for G2. Since
there is an interaction term between G and t, the PH assumption was violated. We sampled
NG = 200 survival times for each treatment group from the respective Weibull distributions.
The independent and identical NG = 200 x-values were chosen on an equidistant grid on
[0, 1] for the treatment groups.

Simulation 3 The survival times differed with respect to the treatment group G and with
respect to the continuous explanatory variable x in simulation setting 3. The survival times
were Weibull distributed with scale parameters b1 = exp(1/4+x) for treatment group G1 and
b2 = exp(1 + x) for treatment group G2. The x-values were chosen equidistantly on [0, 1].
The shape parameters c1 = c2 = 3 were identical, which resulted in the PH assumption.
Again, the connection to the Cox model could be established in terms of Equation (5.3).
We inserted b = exp(βG +βx ·x) for the scale parameter, where βG = 1/4 for G1 and βG = 1
for G2, βx = 1, and c = 3:

1− S(t|G, x) = 1− exp(− exp(−3 · (βG + x) + 3 · log(t)))

= M(hT (t) + x̃>β̃),

where β̃ = (β̃G β̃x)
> and x̃ = (G x)>. More precisely, the parameters of the linear

transformation model were β̃G = −3/4 for G1 and β̃G = −3 for G2, β̃x = −3 and hT (t) =
3 · log(t). Hence, the simulation setting could be perfectly analysed using a Cox model as
there were no interactions between the explanatory variables and the survival time, and G
and x had a linear influence. First, we chose NG = 300 x-values by defining an equidistant
grid on [0, 1] for the treatment groups. Afterwards, we sampled 300 survival times from the
Weibull distributions with parameters b1 and c for treatment group G1 and 300 survival
times from the Weibull distributions with parameters b2 and c for treatment group G2.

Simulation 4 In analogy to Simulation 3, the survival probabilities were influenced by G
and x. But this time, we chose a non-proportional hazards setting by keeping the scale
parameter b = exp(1/2) fixed and letting the shape parameter depend on the explanatory
variables: c1 = 2 + x2 for treatment group G1 and c2 = 2.5 + x2 for treatment group G2.
More general, the shape parameter c is c = γG +γx(x) with γG = 2 for G1 and γG = 2.5 for
G2 and a non-linear function in x, γx(x) = x2. Hence, the shape parameters differed only
slightly for the treatment groups and were mainly influenced non-linearly by x. Again, the
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Figure 5.1.: Simulation: True survivor and hazard functions for treatment groups G1 and G2 based on
Weibull distributed survival times. Proportional hazards setting (Simulation 1): b1 = 1, c1 = 3 (for G1)
and b2 = 1.5, c2 = 3 (for G2); Non-proportional hazards setting (Simulation 2): b1 = 1.5, c1 = 3 and
b2 = 1, c2 = 1.

conditional Weibull distribution of the survival times could be displayed as a conditional
transformation model:

1− S(t|G, x) = 1− exp

(
− exp

(
−1

2
· γG −

1

2
x2 + γG · log(t) + x2 · log(t)

))
.

As there were interactions between the explanatory variables and the survival time, the
PH assumption was violated. We first chose NG = 300 x-values by defining an equidistant
grid on [0, 2]. In this simulation setting, the x-values varied on [0, 2] instead of [0, 1], which
resulted in a wider range of shape values c. Afterwards, 300 survival times were sampled
from the Weibull distributions with parameters b and c1 for treatment group G1 and 300
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survival times were sampled from the Weibull distributions with parameters b and c2 for
treatment group G2.

5.3.2. Model estimation

We estimated the conditional survival curves for the treatment groups G1 and G2 and the
continuous covariate x, S(t|G, x), using a CTM, an ordinary Cox model, and conditional
random forests in all four simulations. In the Cox model, the hazard function was mod-
elled via λ(t|G, x) = λ0(t) exp(βG · G + βx · x), where λ0(t) denotes the baseline hazard.
In the CTM, a partial transformation function for each explanatory variable was defined,
h(t|G, x) = hG(t|G) + hx(t|x), in which the influence of the explanatory variables was al-
lowed to vary over time.
Separate Kaplan-Meier estimators can only be obtained for categorical explanatory vari-
ables. As x was non-influential in simulations 1 and 2, treatment-specific Kaplan-Meier
estimates were additionally provided.
A non-proportional hazards setting was considered in simulations 2 and 4. Therefore, we
additionally estimated a stratified Cox model with treatment-specific baseline hazard func-
tions: λ(t|G, x) = λG(t) · exp(βx · x).
The flexibility of CTMs can be restricted to the flexibility of a Cox model by consider-
ing a conditionally linear transformation model (CLTM) (Section 2.2.2 and Section 4.3.1;
Möst et al. (2014)). We avoided all interactions between the explanatory variables and the
survival time and assumed linear influences for G and x in the corresponding conditional
transformation function: h(t|G, x) = hG(1|G) + hx(1|x) + hT (t|1) = βG ·G+ βx · x+ hT (t).
Hence, the CLTM and the Cox model could be considered as semiparametric alternatives,
in which both models assumed proportional hazards.

Simulation 1 The conditional survivor functions were estimated using a CTM, a CLTM,
an ordinary Cox model, the Kaplan-Meier estimator, and conditional random forests.
Thereby, the treatment-specific Kaplan-Meier estimator could be understood as a non-
parametric alternative to conditional random forests, in which the Kaplan-Meier estimator
was expected to perform better as the non-informative explanatory variable x was ignored.
The CLTM and the Cox model were semiparametric alternatives that were expected to
perform comparably well, as both approaches profited from the PH assumption. The CTM
was expected to perform slightly worse, as it was more flexible, but the additional flexibility
was not necessary.

Simulation 2 In this non-proportional hazards setting, the conditional survivor func-
tions were additionally estimated using a stratified Cox model. As x was non-informative,
treatment-specific Kaplan-Meier estimators were obtained as both a nonparametric and
a predominant alternative to conditional random forests. The CLTM and the ordinary
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Cox model were expected to perform comparably poorly, as the underlying PH assumption
was violated. In contrast, the stratified Cox model and the CTM were expected to perform
comparably well, as treatment-specific baseline hazards and a time-varying treatment effect
were allowed, respectively.

Simulation 3 We estimated the conditional survivor functions S(t|G, x) using a CTM,
a CLTM, a Cox model, and conditional random forests. As the chosen simulation setting
could be perfectly fitted using a Cox model, the CLTM and the Cox model were expected to
perform best. Conditional random forests and the CTM were expected to perform slightly
worse due to the additional superfluous flexibility. In general, the identification of the linear
influence of x is difficult for conditional random forests, as the linear function has to be
approximated by a step function.

Simulation 4 The conditional survivor functions were estimated using a CTM, a CLTM,
an ordinary Cox model and a stratified Cox model, and conditional random forests. As the
PH assumption was violated the Cox model, and the CLTM should perform comparably
poorly. The stratified Cox model was expected to perform slightly better, but neverthe-
less, it only assumed treatment-specific baseline hazards and still ignored the interaction
between the survival time and x. Conditional random forests were able to account for non-
proportional hazards in G and x by searching for adequate split points in the explanatory
variables. Therefore, this method should outperform both Cox models and the CLTM.
However, conditional random forests had difficulties in identifying the non-linear influence
of x, which had to be approximated by a step function. The CTM was expected to outper-
form all alternative models including conditional random forests, as non-linear interactions
between both explanatory variables and the survival time could be considered.

5.3.3. Model evaluation

We aimed at evaluating the goodness of the CTM, the CLTM, the Cox model (both ordinary
and stratified), the Kaplan-Meier estimator, and conditional random forests for estimat-
ing the survivor functions of treatment groups G1 and G2 in all four simulation settings.
Therefore, we used the out-of-sample uncensored log score (Equation (5.7)) and the mean
absolute deviation (MAD) between the true and the estimated survivor functions as quality
criteria.

For the evaluation, we drew 1, 000 new observations for each treatment group. In simula-
tions 1 and 2, we simply drew 1, 000 new observations from the Weibull distributions with
parameters b1 and c1, and b2 and c2, respectively. In simulations 3 and 4, we defined 1, 000
x-values by determining an equidistant grid on [0, 1] and [0, 2], respectively. Afterwards, we
drew a new Weibull distributed survival time depending on the shape and scale parameter
induced by each x-value.
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Based on these new observations, we calculated separate uncensored log scores for the two
treatment groups. As an example, we describe the calculation of the uncensored log score
for treatment group G1: We compared the true survivor status I(Tl ≤ tι) for each new
survival time and corresponding x-value, (Tl, xl), l = 1, . . . , 1, 000, for treatment group
G1 along a grid of time points tι with the corresponding estimated survival probabilities
π(tι|G1, xl). Thereby, the estimated conditional survival probabilities π(tι|G1, xl) resulted
from the CTM, the CLTM, the Cox model (ordinary or stratified), or conditional random
forests. The survival probabilities π(tι|G1) were only treatment specific for the Kaplan-
Meier estimator in simulations 1 and 2. The grid of time points tι consisted of all new
survival times Tl, l = 1, . . . , 1, 000. The uncensored log score for treatment group G2 was
calculated analogously.

In addition, we calculated the MAD of the estimated survival curves and the true Weibull
distribution functions for each treatment group separately. Thereby, we also considered the
grid of 1, 000 x-values xl, l = 1, . . . , 1, 000, and the grid consisting of the 1, 000 new survival
times for each treatment group, tι, ι = 1, . . . , 1, 000:

MAD(Gk) =
1

1, 000 · 1, 000

1,000∑
l=1

1,000∑
ι=1

|p(tι|Gk, xl)− π(tι|Gk, xl)|, (5.12)

where p denotes the true survival probabilities and π denotes the estimated survival prob-
abilities. Furthermore, k ∈ {1, 2} denotes the index for the two treatment groups and
l = 1, . . . , 1, 000 is the index for the new observations for each treatment group. In the sim-
ulation settings 1 and 2, the true survival probabilities p(tι|Gk, xl) reduced to p(tι|Gk) as x
was non-informative. For reasons of interpretability, the MAD values and the uncensored
log scores were multiplied by 100.

This procedure was repeated for B = 100 simulated data sets. We calculated mean values
of the resulting 100 MADs or uncensored log scores for the different treatment groups and
the different estimation techniques.

Simulation 1 All estimation approaches yielded similar results. The calculated mean
MADs (Table 5.1; Figure 5.2) were small for all model approaches and indicated that
the estimated survivor functions were in good accordance with the true Weibull survivor
functions. Only for 50% censored observations did the MADs grow larger throughout. The
Cox model, the CLTM and the Kaplan-Meier estimator performed slightly better because
the Cox model and the CLTM profited from the PH assumption and the Kaplan-Meier
estimator ignored the non-informative explanatory variable x. Nevertheless, the uncensored
log score was the more interesting quality criterion, as it evaluates how well the estimation
techniques are able to predict the survivor status of new observations. Again, all four
estimation approaches yielded similar results (Table 5.2; Figure 5.3). All uncensored log
scores grew larger with an increasing amount of censored observations.
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Table 5.1.: Simulation 1: Mean absolute deviations between true and estimated survival curves for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 2.87 2.96 3.45 6.18
CLTM 2.43 2.51 3.02 5.97

G1 Cox 2.41 2.54 3.23 6.64
Kaplan-Meier 2.41 2.51 3.21 6.63
Cforest 2.59 2.67 3.34 6.74
CTM 2.71 2.80 3.58 6.98
CLTM 2.37 2.48 3.30 6.84

G2 Cox 2.30 2.42 3.29 6.88
Kaplan-Meier 2.28 2.38 3.24 6.71
Cforest 2.50 2.57 3.33 6.64

Table 5.2.: Simulation 1: Out-of-sample uncensored log score based on 1, 000 new observations for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 50.52 50.58 50.82 52.27
CLTM 50.39 50.45 50.68 52.02

G1 Cox 50.40 50.47 50.78 52.41
Kaplan-Meier 50.42 50.50 50.89 52.66
Cforest 50.46 50.54 50.93 52.75
CTM 50.54 50.63 50.97 52.79
CLTM 50.47 50.58 50.89 52.70

G2 Cox 50.39 50.48 50.79 52.52
Kaplan-Meier 50.45 50.55 50.92 52.75
Cforest 50.49 50.60 50.95 52.74

Simulation 2 The MADs of the CTM, the stratified Cox model, the Kaplan-Meier es-
timator, and conditional random forests were similar throughout, whereas the ordinary
Cox model and the CLTM clearly yielded higher MADs (Table 5.3; Figure 5.4). The
only exception was the MADs for 50% censored observations, where all models had higher
MADs. Moreover, the MADs for conditional random forests were most variable and the
Kaplan-Meier estimator performed better, as it profited from ignoring x. The uncensored
log scores gave similar results (Table 5.4; Figure 5.5). Again, the log scores for the CTM,
the stratified Cox model, the Kaplan-Meier estimator, and conditional random forests were
similar, whereas the ordinary Cox model and the CLTM clearly yielded higher values. One
exception was the throughout larger uncensored log scores for 50% censored observations.



98 5. Boosting CTMs for survivor function estimation

5% censoring 10% censoring 25% censoring 50% censoring

●

●

●●

●●

●
●
● ●● ●

●

● ●

●

●

●

●●
●●

●

●

●

●

● ●

●

●
●●

●
●●●

● ●

0

5

10

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

Model

M
ea

n 
M

A
D

Treatment Group G1

5% censoring 10% censoring 25% censoring 50% censoring

●

●

●

●

●

●

●

●●●●

●

●
●
● ●

●

●● ●
●

●

●

●

●●

●
●

●

●●

●
●
●

●
●●

● ● ●
●

●
●

●
●

0

4

8

12

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

Model

M
ea

n 
M

A
D

Treatment Group G2

Figure 5.2.: Simulation 1: Boxplot of the treatment-specific mean MAD values based on B = 100 sim-
ulations for the conditional transformation model (CTM), the conditionally linear transformation model
(CLTM), the Cox model (Cox), the Kaplan-Meier estimator (KM), and conditional random forests (Cfor-
est). 5%, 10%, 25%, and 50% of right-censored observations were observed.

Table 5.3.: Simulation 2: Mean absolute deviations between true and estimated survival curves for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 2.60 2.74 3.31 6.34
CLTM 8.14 8.08 8.27 10.26

G1 Cox 9.02 8.56 7.45 7.31
Kaplan-Meier 2.58 2.74 3.43 6.84
Cforest 2.39 2.50 3.19 6.64
Stratified Cox 4.16 4.07 4.19 5.85
CTM 3.15 3.41 5.03 10.99
CLTM 7.60 8.20 9.80 14.30

G2 Cox 9.58 10.25 12.00 16.51
Kaplan-Meier 2.55 2.88 4.83 11.15
Cforest 2.34 2.64 4.63 10.96
Stratified Cox 4.85 5.51 8.15 14.58



5.3 Simulation 99

5% censoring 10% censoring 25% censoring 50% censoring

●

●

●

●●●
●
●

●

● ●
●●
●
●●

●

●●●
●
●●●
●●
●●●

●

●
●●●

●

● ●
●

●
●

●

●

●
●
●●

●

●
●●
●
●●
●

●

● ●
●●●●

●

●●●

●

●

●
●●

●

● ●●●
●●

●●●

●
●●●●
●
●

●●●

●●

●

●

●
●

●

●● ●

●

●
●

●

●

50

52

54

56

58

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

Model

M
ea

n 
Lo

g 
S

co
re

Treatment Group G1

5% censoring 10% censoring 25% censoring 50% censoring

●
●

●●●

●●

● ●●●●●●

●

●●● ●

●

●●●

●

●●

●

●

●

●●●

●

●●
●
●

●

●

●
●
●●● ●●●●

●
●
●

●

●●
●
●●●

●
●●

●●
●

●
●

●●●

●●●

●
●
●

●
● ●●●

●

●

● ●●

●

●

●

●
●

●

●
●

●

50.0

52.5

55.0

57.5

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

C
TM

C
LT

M

C
ox K
M

C
fo

re
st

Model

M
ea

n 
Lo

g 
S

co
re

Treatment Group G2

Figure 5.3.: Simulation 1: Boxplot of the out-of-sample mean uncensored log scores based on 1, 000 new
observations for each treatment group and B = 100 simulations for the conditional transformation model
(CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), the Kaplan-Meier
estimator (KM), and conditional random forests (Cforest). 5%, 10%, 25%, and 50% of right-censored
observations were observed.

Table 5.4.: Simulation 2: Out-of-sample uncensored log score based on 1, 000 new observations for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 50.43 50.51 50.79 52.30
CLTM 53.12 53.14 53.41 55.06

G1 Cox 53.07 52.87 52.46 52.87
Kaplan-Meier 50.46 50.54 50.91 52.66
Cforest 50.42 50.50 50.89 52.67
Stratified Cox 50.89 50.90 51.06 52.03
CTM 50.75 50.92 51.65 55.46
CLTM 53.47 53.85 55.13 60.09

G2 Cox 54.63 55.21 57.04 63.12
Kaplan-Meier 50.52 50.70 51.53 55.45
Cforest 50.48 50.66 51.47 55.37
Stratified Cox 51.63 52.08 53.84 59.87
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Figure 5.4.: Simulation 2: Boxplot of the treatment-specific mean MAD values based on B = 100 sim-
ulations for the conditional transformation model (CTM), the conditionally linear transformation model
(CLTM), the Cox model (Cox), the Kaplan-Meier estimator (KM), conditional random forests (Cforest),
and the stratified Cox model (Cox.Strata). 5%, 10%, 25%, and 50% of right-censored observations were
observed.

Simulation 3 The Cox model and the CLTM approach performed almost equally well in
the proportional hazards setting. The mean MADs (Table 5.5; Figure 5.6) and the out-of-
sample uncensored log scores (Table 5.6; Figure 5.7) were similar for the Cox model and
the CLTM, whereas the CTM was associated with slightly higher MADs and uncensored
log scores. Conditional random forests performed worst because conditional random forests
and the CTM were not able to profit from the PH assumption. Additionally, conditional
random forests had difficulties in identifying the linear influence of x.

Simulation 4 The CTM performed better than all alternative modelling approaches, as
it showed lower MADs for all amounts of censoring than the CLTM, the Cox model, the
stratified Cox model, and conditional random forests (Table 5.7; Figure 5.8). Additionally,
the CTM approach was associated with the smallest mean uncensored log scores (Table 5.8;
Figure 5.9) because the CTM approach is the only approach that was able to account for
the non-linear influence of x on the shape parameter of the Weibull distribution adequately.
The Cox model and the CLTM performed worse owing to the PH assumption. As the non-
proportionality of hazards was mainly induced by x, the stratified Cox model performed
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Figure 5.5.: Simulation 2: Boxplot of the out-of-sample mean uncensored log scores based on 1, 000 new
observations for each treatment group and B = 100 simulations for the conditional transformation model
(CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), the Kaplan-Meier
estimator (KM), conditional random forests (Cforest), and the stratified Cox model (Cox.Strata). 5%,
10%, 25%, and 50% of right-censored observations were observed.

Table 5.5.: Simulation 3: Mean absolute deviations between true and estimated survival curves for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 1.88 1.90 2.46 4.42

G1 CLTM 1.67 1.69 2.28 4.37
Cox 1.60 1.67 2.44 5.17
Cforest 4.04 4.42 5.52 8.51
CTM 1.97 2.06 2.71 5.07

G2 CLTM 1.74 1.78 2.43 4.81
Cox 1.67 1.75 2.50 5.10
Cforest 3.93 4.01 4.45 6.43

only slightly better than the ordinary Cox model in terms of the mean uncensored log score.
Conditional random forests performed better than both Cox models and the CLTM as the
approach can account for non-proportionality in G and x, but performed worse than the
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Table 5.6.: Simulation 3: Out-of-sample uncensored log score based on 1, 000 new observations for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 38.96 38.99 39.21 40.08

G1 CLTM 38.90 38.92 39.13 39.98
Cox 38.93 38.97 39.25 40.44
Cforest 40.03 40.31 41.20 44.22
CTM 40.99 41.05 41.34 42.60

G2 CLTM 40.95 40.99 41.30 42.54
Cox 40.86 40.91 41.20 42.40
Cforest 41.74 41.82 42.17 44.00
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Figure 5.6.: Simulation 3: Boxplot of the treatment-specific mean MAD values based on B = 100 sim-
ulations for the conditional transformation model (CTM), the conditionally linear transformation model
(CLTM), the Cox model (Cox), and conditional random forests (Cforest). 5%, 10%, 25%, and 50% of
right-censored observations were observed.

CTM owing to the non-linear influence of x on the shape parameter. Again, conditional
random forests had difficulties in identifying the non-linear influence of x.
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Figure 5.7.: Simulation 3: Boxplot of the out-of-sample mean uncensored log scores based on 1, 000 new
observations for each treatment group and B = 100 simulations for the conditional transformation model
(CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), and conditional
random forests (Cforest). 5%, 10%, 25%, and 50% of right-censored observations were observed.

Table 5.7.: Simulation 4: Mean absolute deviations between true and estimated survival curves for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 2.48 2.55 3.36 6.67
CLTM 5.09 5.12 5.60 7.79

G1 Cox 5.75 5.82 6.43 8.71
Cforest 4.34 4.42 4.92 7.14
Stratified Cox 5.67 5.72 6.24 8.44
CTM 2.38 2.46 3.26 5.78
CLTM 4.47 4.51 4.96 6.83

G2 Cox 5.27 5.30 5.67 7.29
Cforest 3.82 3.85 4.29 6.26
Stratified Cox 5.32 5.39 5.90 7.66
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Table 5.8.: Simulation 4: Out-of-sample uncensored log score based on 1, 000 new observations for each
treatment group. The reported values are mean values over B = 100 simulations.

Censoring
Treatment group Model

5% 10% 25% 50%
CTM 49.23 49.28 49.64 51.29
CLTM 50.59 50.64 51.03 52.66

G1 Cox 50.95 51.04 51.57 53.45
Cforest 50.71 50.78 51.20 52.97
Stratified Cox 50.01 50.10 50.47 52.02
CTM 49.23 49.28 49.55 50.66
CLTM 50.21 50.25 50.46 51.46

G2 Cox 50.44 50.46 50.67 51.68
Cforest 50.56 50.62 50.96 52.19
Stratified Cox 49.78 49.81 50.01 51.04
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Figure 5.8.: Simulation 4: Boxplot of the treatment-specific mean MAD values based on B = 100 simu-
lations for the conditional transformation model (CTM), the conditionally linear transformation model
(CLTM), the Cox model (Cox), conditional random forests (Cforest), and the stratified Cox model
(Cox.Strata). 5%, 10%, 25%, and 50% of right-censored observations were observed.

5.4. Chronic myelogenous leukaemia data

Curative bone marrow transplantation is feasible for only a minority of patients with chronic
myelogenous leukaemia. Therefore, drug-based chemotherapy remains a treatment of cen-
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Figure 5.9.: Simulation 4: Boxplot of the out-of-sample mean uncensored log scores based on 1, 000 new
observations for each treatment group and B = 100 simulations for the conditional transformation model
(CTM), the conditionally linear transformation model (CLTM), the Cox model (Cox), conditional random
forests (Cforest), and the stratified Cox model (Cox.Strata). 5%, 10%, 25%, and 50% of right-censored
observations were observed.

tral interest. The standard chemotherapy has long been with the cytostatic drugs busulfan
(BUS) or hydroxyurea (HU). In a multicentre, randomised study, Hehlmann et al. (1994)
have shown that treatment with the drug interferon-α (IFN-α) significantly prolongs sur-
vival compared to treatment with BUS, and survival times after treatment with IFN-α or
HU were not significantly different. Within the scope of the study, 516 eligible patients
were recruited in 57 study centres from 1983 to 1991. For 507 of the 516 patients, complete
data on sex, age and a prognostic score distinguishing between low, intermediate and high
risk groups (Hasford et al., 1998) are available. Of the 507 patients, 132 random patients
were treated with IFN-α, 182 were treated with BUS and 193 were treated with HU. Ninety
patients were right-censored mainly due to bone marrow transplantation during the first
chronic phase, and 417 patients died during the study period (Herberich and Hothorn,
2012).
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5.4.1. Model estimation

Herberich and Hothorn (2012) analysed the treatment effects using a frailty Cox model
(McGilchrist and Aisbett, 1991) with Gaussian frailties for the 57 study centres. Fur-
thermore, age, sex, treatment and risk group were included as linear predictors. In our
re-analysis of the CML data set, the main goals were to check the validity of the PH as-
sumption in Cox models, which have been used for analyses in the past (e.g., Herberich
and Hothorn, 2012). Moreover, we were interested in possible interactions between the
explanatory variables treatment, risk group, sex and age. More precisely, we were inter-
ested in whether the superiority of the IFN-α treatment found in former studies (e.g.,
Hehlmann et al., 1994) is present in all risk groups. Additionally, treatment effectiveness
might differ between men and women and patients of different age in the different risk
groups. Therefore, we fitted five models to the CML data, in which the PH assumption
and the considered interaction terms differed. The random effect for the study centres was
excluded in all models for the purpose of model comparison, as we found its variance to be
negligibly small.

First, we estimated an ordinary Cox model with linear influences for the explanatory vari-
ables treatment, risk group, sex and age:

λ(tι|x) = λ0(tι) · exp(βtr · xtr + βrisk · xrisk + βsex · xsex + βage · xage),

where λ0(·) denotes the baseline hazard function and proportional hazards were assumed.
To account for possible interactions between the categorical explanatory variables treat-
ment, risk group and sex, we estimated an additional Cox model that included all two-time
interactions between treatment, risk group and sex, and their three-time interaction. Again,
all influences were assumed to be linear:

λ(tι|x) = λ0(tι) · exp(βtr · xtr + βrisk · xrisk + βsex · xsex + βage · xage +

βtr:risk · xtr:risk + βtr:sex · xtr:sex + βrisk:sex · xrisk:sex +

βtr:risk:sex · xtr:risk:sex).

As the Cox model assumed proportional hazards for all patient characteristics, we alter-
natively used a CTM for data analysis. In the CTM, the PH assumption was relaxed by
allowing for flexible influences of each explanatory variable over time:

h(tι|x) = htr(tι|tr) + hrisk(tι|risk) + hsex(tι|sex) + hage(tι|age).
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We defined separate partial transformation functions for treatment, risk group, sex and age
that were specified in terms of basis functions:

htr(tι|tr) =
(
blin

tr (tr)> ⊗ bT (tι)
>)γtr,

hrisk(tι|risk) =
(
blin

risk(risk)> ⊗ bT (tι)
>)γrisk,

hsex(tι|sex) =
(
blin

sex(sex)> ⊗ bT (tι)
>)γsex and

hage(tι|age) =
(
bage(age)> ⊗ bT (tι)

>)γage.

In other words, we fitted a separate function over time for each treatment, for each risk
group and for each sex. For the age effect, we estimated a bivariate interaction surface
depending on age and the survival time.
In analogy to the Cox model, the CTM was extended to include interaction terms. Nev-
ertheless, we always consider interactions between the survival time and the explanatory
variables in CTMs. Therefore, the three-time interaction term between treatment, risk
group and sex cannot currently be considered in CTMs. Furthermore, the number of two-
time interactions should be restricted, which is why we chose to consider only the most
interesting interaction between treatment and risk group:

h(tι|x) = htr:risk(tι|tr:risk) + hsex(tι|sex) + hage(tι|age).

In contrast to the previous CTM, where three separate functions over time were estimated
for each treatment and for each risk group, respectively, we estimated nine separate func-
tions over time for all treatment–risk group combinations. By including the treatment–risk
group interaction, we investigated whether different treatments should be considered de-
pending on the specific risk group.

As a further comparative method, we analysed the CML data using conditional random
forests. This nonparametric method is also able to relax the PH assumption and is able to
consider interactions between the explanatory variables. More precisely, the method grew a
survival tree by searching for significant split points in the explanatory variables treatment,
risk group, sex and age. The estimated survival probabilities for the patients were obtained
afterwards based on conditional Kaplan-Meier estimators for the observations in the final
leaves. The bootstrap aggregation of conditional survival trees, which is performed when
using conditional random forests as well, results in stable predictions of survival probabilities
(Hothorn et al., 2004).

5.4.2. Model evaluation

In the previous section, we described the estimation of a Cox model, a Cox model with
interactions, a CTM, a CTM with interactions, and conditional random forests. The eval-
uation of the five different models served two main goals. First, we were interested in
the validity of the PH assumption. The PH assumption could be checked by comparing
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the performance of the Cox models to the performance of CTMs and conditional random
forests, as the PH assumption was relaxed in the latter two approaches. Moreover, we were
interested in possible interactions between the explanatory variables treatment, risk group,
sex and age. Thereby, all possible interactions could be considered in conditional random
forests. All interactions between the categorical explanatory variables treatment, risk group
and sex were considered in the Cox model with interactions. Owing to the higher flexibility,
we only considered the treatment – risk group interaction in the CTM with interactions.
Hence, the importance of interactions could be investigated by comparing the models with
interactions to their counterparts without interactions, and by comparing the models with
interactions among each other.

The model performance was quantified by calculating the out-of-sample censored log score
given in Equation (5.9). For the evaluation we used the following procedure:

1. Generate B = 100 bootstrap samples by randomly sampling n = 507 observations
with replacement from the patients in the CML data set. The resulting data sets are
estimation data sets.

2. The corresponding evaluation data sets consist of all observations that have not been
selected for the estimation data set.

3. For each bootstrap sample b = 1, . . . , 100:

a) Estimate the five different models based on the estimation data set.

b) Predict the survival probabilities for the patients in the evaluation data set over
a grid of time points.

c) Calculate the out-of-sample censored log score (Equation (5.9)) based on the
predicted survival probabilities, the grid points over time and the inverse proba-
bility of censoring weights. Separate out-of-sample censored log scores result for
the five model approaches.

4. Compare the B = 100 out-of-sample censored log scores for the five model approaches.

Two important characteristics of the above procedure have to be noted. The inverse proba-
bility of censoring weights (IPCWs) and a grid of time points were needed when calculating
the censored log score. Thereby, the grid of time points was fixed for all bootstrap data
sets and consisted of all event and censoring times of the CML patients. The IPCWs were
calculated beforehand for all patients in the CML data set over the grid of time points
defined above. When we selected the patients for the estimation and the evaluation data
set, we also selected their respective IPCWs.

The boxplots of the out-of-sample censored log scores for the five different models revealed
that the PH assumption is problematic for the CML data when only the main effects
treatment, risk group, sex and age are considered (Figure 5.10). The CTM, the CTM with
interactions, and conditional random forests (i.e. the models that relax the PH assumption)
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showed lower out-of-sample censored log scores than the Cox model. Nevertheless, the non-
proportional hazards of the main effects seem to be induced by disregarding interaction
terms, as the Cox model with interaction terms performed as well as the CTM, which
ignored all interaction terms but assumed non-proportional hazards. Nevertheless, the out-
of-sample censored log scores for the CTM, the CTM with interactions and conditional
random forests were similar. Hence, the inclusion of the treatment–risk group interaction
in the CTM did not lead to model improvement. All interactions between explanatory
variables could be considered in conditional random forests, but the model’s predictive
performance was not superior. Hence, the inclusion of interaction terms is unimportant for
models that allow for non-proportional hazards.
Through comparisons of models including CTMs, we found that the PH assumption is not
violated for a Cox model with interactions. Hence, the best model to analyse the CML
data is a Cox model that includes interaction terms between the categorical main effects.
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Figure 5.10.: Out-of-sample censored log scores for the Cox model (Cox), the Cox model with interactions
(Cox (Int)) the CTM (CTM), the CTM with interactions (CTM (Int)), and conditional random forests
(Cforest) for 100 bootstrap evaluation data sets.

5.5. Discussion

The direct estimation of the survivor function in survival data analysis is of special interest,
as the reliable prediction of patient-specific survivor functions allows a better prognosis of
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the course of disease (Mackillop and Quirt, 1997). We propose the use of conditional
transformation models (CTMs) to directly estimate the conditional survivor function of
the survival times given a set of patient characteristics.

The well-known Cox model is the regression model most commonly used in survival analysis
(Cox, 1972). One important restriction of the Cox model is the proportional hazards
assumption. Of course, several strategies deal with or identify non-proportional hazards
for some of the explanatory variables. For example, if non-proportional hazards for a
categorical variable are identified, the estimation of a stratified Cox model with separate
baseline hazard functions for the subgroups is frequently used. Speculation about the
validity of the proportional hazards assumption in the Cox model becomes superfluous
when the CTM approach is used, because the proportional hazards assumption is relaxed
and can be checked easily by graphic comparisons.

In our simulation, we investigated the performance of the CTM in cases of proportional
hazards and non-proportional hazards and compared the performance to that of the CLTM,
the (ordinary or stratified) Cox model, the Kaplan-Meier estimator, and conditional ran-
dom forests. We measured the performance in terms of the correspondence of true and
estimated survival probabilities for new observations. In the simulation settings with infor-
mative binary treatment group and non-informative continuous explanatory variable, the
CTM was able to keep up with the alternative methods in the case of proportional haz-
ards. In the case of non-proportional hazards, the CTM clearly outperformed the ordinary
Cox model and the CLTM and delivered results equally as good as those of the stratified
Cox model, the Kaplan-Meier estimator, and conditional random forests. In the simulation
settings with informative binary treatment group and informative continuous explanatory
variable, the CTM performed almost as well as the ordinary Cox model and the CLTM
in the proportional hazards setting. In the non-proportional hazards setting, the CTM
outperformed all alternative models, as it is the only method that was able to consider
non-proportionality induced non-linearly by a continuous explanatory variable. One fur-
ther advantage of the CTM was that owing to the imposed smoothness penalty, smooth
estimated survival curves resulted, which is more realistic than the step functions resulting
from the Cox model, the Kaplan-Meier estimator, and conditional random forests. More-
over, the results of the simulation study showed that the CTM can handle up to 50% of
right-censored observations without heavier losses in the quality of the resulting estimates
compared to the alternative approaches.

Furthermore, we used the CTM approach to analyse survival times of patients suffering
from chronic myelogenous leukaemia to check the PH assumption that has been implied
when using Cox models in the past. Furthermore, we were interested in the importance
of interactions between the considered explanatory variables. Therefore, the out-of-sample
performances of a Cox model, a Cox model with interactions, a CTM, a CTM with in-
teractions, and conditional random forests were compared. Our analysis revealed that the
violated PH assumption for the main effects treatment, risk group, sex, and age was mainly
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induced by ignoring important interactions between the main effects. Furthermore, we
would like to stress that models were checked without an extensive analysis of residuals.

The handling of right-censored observations is a main topic in survival analysis. In CTMs,
the IPCW approach has been used to account for right-censored observations. The inte-
grated Brier score or log score for right-censored observations are well-established scoring
rules for model assessment and comparison, but, to the best of our knowledge, they have
not yet been used as risk functions for model estimation. In the IPCW approach, the obser-
vations are reweighted by the inverse probability of remaining uncensored up to a specific
time point. In CTMs, this probability is calculated in terms of the marginal Kaplan-Meier
estimator of the censoring distribution. Hence, the weights are calculated based on observed
data and, more importantly, it is assumed that the censoring mechanism does not depend
on any explanatory variables. Especially the dependency of the censoring distribution on
(some of) the explanatory variables would be a worthwhile extension and needs further in-
vestigation (Gerds and Schumacher, 2006). Nevertheless, Hothorn et al. (2014) showed the
consistency of the conditional transformation function h in CTMs, which transfers to CTMs
for survival data as we only adapted the weighting scheme to account for right censoring.
Mackenzie (2012) previously estimated survival curves with dependent left-truncated data
using Cox’s model and inverse probability weighting. Thus, it would be interesting whether
and how the suggested approach extends to left-truncated or interval-censored data.

Basically, three main assumptions are made when estimating CTMs for survival data. First,
by assuming that the transformation function h exists, we assume that there is a monotone
transformation from the unknown survival time distribution to the link function F . Second,
h is decomposed additively into partial transformation functions, whereby additivity on
the scale of the transformation function is assumed. Third, the event times and the right-
censoring times are assumed to be independent, which is a strong but common assumption
in survival data analysis. The data analyst should be aware of these model assumptions as
they might be violated.





6. Empirical evaluation of
likelihood-based CTMs

The content of this chapter is based on Möst and Hothorn (2014).

As a proof of concept, we estimated likelihood-based C(L)TMs (Section 3.2) for uncensored
responses, and compared their performance to the performance of a standard regression
model. More precisely, we compared some of the CLTMs proposed in Section 2.2.2 to
a more flexible CTM, and to the Cox model in three simulation settings. We considered
uncensored survival times T1, . . . , TN ≥ 0 throughout, and the conditional survival time dis-
tribution was influenced by a continuous explanatory variable x in each simulation setting.
In Simulation 1, we considered Weibull distributed survival times that followed the PH as-
sumption. The transformation function in Simulation 1 was extended to a non-proportional
hazards setting in Simulation 2. As the survival time distribution function was unknown in
Simulation 2, we furthermore considered a non-proportional hazards setting with Weibull
distributed survival times in Simulation 3. In order to test two of the proposed estima-
tion strategies in Section 3.2.2, CLTMs were parametrised using fractional polynomials and
using T-splines.

6.1. Simulation study setup

Simulation 1. In the first simulation setting, we considered Weibull distributed survival
times satisfying the PH assumption. The distribution function for Weibull distributed
survival times is

F (t) = 1− exp(−b−c · tc), (6.1)

where b and c denote the scale and the shape parameter, respectively. The choice of param-
eters b and c determines whether proportional or non-proportional hazards result. The PH
assumption is fulfilled if the explanatory variables influence only the scale parameter b and
the shape parameter c is fixed. If the shape parameter c is influenced by the explanatory
variables, the PH assumption is violated.
Hence, we let the scale parameter b depend on the continuous explanatory variable x,
b = exp(0.5 · x), and chose a fixed shape parameter c = 3. The corresponding conditional
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Weibull distribution function (Equation (6.1)) can be rewritten in terms of a conditional
transformation model:

P(T ≤ t|X = x) = 1− exp(− exp(0.5 · x)−3 · t3)

= 1− exp(− exp(−1.5 · x+ 3 · log(t)))

= M(hT (t) + β0 · x) =M(h(t|x)), (6.2)

with survival time transformation hT (t) = 3 · log(t), regression coefficient β0 = −1.5, and
M denotes the distribution function of the minimum-extreme value distribution. Hence,
the resulting CLTM is a classical linear transformation model CLTM C (Equation (2.14)),
and the PH assumption is fulfilled because there is no interaction term between x and t
in Equation (6.2). We generated B = 100 data sets with N = 500 observations using
the following procedure: First, we defined an equidistant grid x = (x1, . . . , x500) on the
interval [1, 2]. Afterwards, we sampled randomly Weibull distributed survival times with
scale parameters bi = exp(0.5 · xi), i = 1, . . . , 500, and fixed shape parameter c = 3. The
procedure was repeated 100 times, i.e. all data sets had equal x-values but different survival
times T1, . . . , T500.

Simulation 2. To generate a non-proportional hazards setting, we extended the condi-
tional transformation function of Simulation 1 (Equation (6.2)) by a linear interaction term
between t and x:

h(t|x) = 3 · log(t)− 1.5 · x+ 2 · x · t, (6.3)

i.e. the survival time transformation hT (t) and β0 remained unchanged, and the coefficient
of the linear interaction term was set to β1 = 2. The PH assumption was no longer valid
due to the linear interaction term between t and x, i.e. the influence of the explanatory
variable x varied over time. Moreover, the associated survival times were no longer Weibull
distributed but followed some unknown distribution function. Therefore, the survival times
had to be simulated using root-finding techniques. The conditional distribution function of
the survival times is

P(T ≤ t|X = x) =M(3 · log(t)− 1.5 · x+ 2 · x · t) ∼ U, (6.4)

where U is uniformly distributed on [0, 1]. B = 100 data sets with N = 1, 000 observa-
tions were generated by first defining the explanatory variable values x1, . . . , x1,000 via an
equidistant grid on the interval [1, 2]. The survival times T1, . . . , T1,000 were simulated by
first sampling uniformly distributed random variables U1, . . . , U1,000 ∼ U [0, 1], and solving
the equation (which is based on Equation (6.4)) for Ti, i = 1, . . . , 1, 000, afterwards:

M−1(Ui) + 1.5 · xi − 3 · log(Ti)− 2 · xi · Ti
!

= 0,

where M−1 denotes the quantile function of the minimum-extreme value distribution.
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Simulation 3. As the survival time distribution was unknown in Simulation 2, we sim-
ulated another non-proportional hazards setting with Weibull distributed survival times.
Hence, we chose a fixed scale parameter b = exp(2), and the shape parameter depended lin-
early on x, c = 2 · x. As the continuous explanatory variable x was chosen equidistantly on
[1, 3], the shape parameter c varied on [2, 6]. The conditional Weibull distribution function
(based on Equation (6.1)) can be written in terms of a conditional transformation model:

P(T ≤ t|X = x) = 1− exp(− exp(2)−2·x · t2·x)
= 1− exp(− exp(−4 · x+ 2 · x · log(t)))

= M(β0 · x+ β1 · x · log(t)), (6.5)

with regression coefficients β0 = −4 and β1 = 2. Due to the interaction term between x
and t, the PH assumption was violated. Moreover, there was no survival time transfor-
mation hT (t) in this simulation setting, and the interaction term between x and t was not
linear but more complex because of the log-transformed survival time. Hence, the model
presented in Equation (6.5) belongs to the more flexible model class of CTMs. We gener-
ated B = 100 data sets with N = 2, 000 observations by first defining an equidistant grid
x = (x1, . . . , x2,000) on the interval [1, 3]. The corresponding Weibull distributed survival
times were sampled randomly afterwards with fixed scale parameter b = exp(2) and shape
parameters ci = 2 · xi, i = 1, . . . , 2, 000.

6.2. Model estimation

For model analysis, we used four CLTMs with different model complexities and parametri-
sations, a more flexible CTM, and the Cox model. The corresponding six estimation pro-
cedures are described in more detail below.

6.2.1. CLTM: Parametrisation using fractional polynomials

The survival time transformation function hT (t) was parametrised using fractional polyno-
mials of degree 1 (Section 3.2.2). In model CLTM C.1 (which is a special case of model
CLTM C (Equation (2.14))), the linear interaction term between x and t was ignored,
whereas the linear interaction term was included in model CLTM E.1 (which is a special
case of model CLTM E (Equation (2.16))):

• CLTM C.1:

h(t|x) = hT (t) + β0 · x =

α0 + α1 · t−2 + α2 · t−1 + α3 · t−0.5 + α4 · log(t) + α5 ·
√
t+ α6 · t+

α7 · t2 + α8 · t3 + β0 · x. (6.6)
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• CLTM E.1:

h(t|x) = hT (t) + β0 · x+ β1 · x · t =

α0 + α1 · t−2 + α2 · t−1 + α3 · t−0.5 + α4 · log(t) + α5 ·
√
t+ α6 · t+

α7 · t2 + α8 · t3 + β0 · x+ β1 · x · t. (6.7)

Estimation of CLTM C.1 involved the estimation of the parameters α = (α0 . . . α8)> and β0,
and the estimation of CLTM E.1 additionally involved the estimation of β1. The conditional
transformation functions (Equation (6.6) and Equation (6.7)) yielded the uncensored log-
likelihoods (Equation (3.2)):

• CLTM C.1: l(α, β0) =
N∑
i=1

log(f(hT (ti) + β0 · xi)) + log(hpT (ti))

• CLTM E.1: l(α, β0, β1) =
N∑
i=1

log(f(hT (ti) +β0 ·xi+β1 ·xi · ti)) + log(hpT (ti) +β1 ·xi).

Following the definitions for linear transformation models (Equation (2.2)), the survival
time transformation function hT (t) has to be monotonically increasing, i.e. hpT (t) > 0.
Furthermore, the first derivative of the conditional transformation function, hp(t|x), needs
to be strictly positive because it is log-transformed in the log-likelihood function. This led
to the following linear constraints for models CLTM C.1 and CLTM E.1 that had to be
considered during estimation:
CLTM C.1:
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As the parametrisation of models CLTM C.1 (10 parameters) and CLTM E.1 (11 pa-
rameters) was parsimonious, estimation could be based on the maximisation of the full
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log-likelihood function using an optimisation algorithm that is able to consider linear con-
straints. We used the constrOptim-function from the R base-package stats (R Core Team,
2014) for optimisation.

6.2.2. CLTM: Parametrisation using T-splines

Alternatively, the monotonically increasing survival time transformation function hT (t) can
be parametrised using T-splines (Beliakov, 2000, Section 3.2.2). In short, we parametrised

hT (t) = Bt ·α,

whereby Bt ∈ RN×k denotes the design matrix of the T-spline basis functions, and α ∈ Rk

denotes the vector of the corresponding basis coefficients. The estimation of hT (t) involved
estimating k = 24 parameters, α1, . . . , α24. Furthermore, T-splines inherit the B-spline
characteristic that the first derivative can be displayed using the same vector of basis
coefficients but adapted basis functions (Section 3.2.2):

hpT (t) = B p
t ·α.

To guarantee smooth function estimates for hT (t) and hpT (t), we included the penalty ma-
trices K2 and K3 based on second and third differences (Section 3.2.2) into the uncensored
log-likelihood function (Simpkin and Newell, 2013, Equation (3.2)):

• CLTM C.2: lp(α, β0) =
N∑
i=1

log(f(Bt(ti) ·α+ β0 · xi)) + log(B p
t(ti) ·α)

blablablablablabblabbla −λ2
2
·α>K2α− λ3

2
·α>K3α,

• CLTM E.2: lp(α, β0, β1) =
N∑
i=1

log(f(Bt(ti) ·α+ β0 · xi + β1 · xi · ti))

blablablablablabblabblablablab + log(B p
t(ti) ·α+β1 ·xi)− λ2

2
·α>K2α− λ3

2
·α>K3α,

where the linear interaction term was ignored in CLTM C.2, and the linear interaction term
was included in CLTM E.2.

To guarantee a monotonically increasing function estimate ĥT (t), the T-spline coefficients
α2, . . . , α24 have to be positive (α1 remains unrestricted), and hp(t|x) needs to be positive
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in addition. This resulted in the linear constraints:
CLTM C.2: 
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We used the constrOptim-function from the R base-package stats (R Core Team, 2014) for
optimisation under linear constraints.

6.2.3. CTM

For reasons of comparison, we also fitted a CTM (Equation (1.2)), where the conditional
transformation function is more flexible compared to CLTMs. In general, the conditional
transformation function is able to display more complex functional relationships between
t and x. Therefore, the conditional transformation function is estimated in terms of a
bivariate smooth surface depending on t and x:

h(t|x) = (bx(x)> ⊗ bT (t)>) ·α = Bt,x ·α.

Thereby, bx(x) denotes a set of B-spline basis functions for the continuous explanatory vari-
able x, and bT (t) denotes a set of T-spline basis functions for t. Both sets of basis functions
are connected via the Kronecker product, whereby an interaction surface is established (for
additional information on the estimation of CTMs, we refer to Hothorn et al., 2014). In
short, Bt,x denotes the design matrix of the interaction surface. The interaction surface
is monotonically increasing in the direction of t (due to the T-spline basis functions) and
unrestricted in the direction of x. Both sets of basis functions depended on 24 basis coeffi-
cients, what resulted in 242 = 576 basis coefficients that had to be estimated. Furthermore,
the first derivative hp(t|x) could be established via

hp(t|x) = (bx(x)> ⊗ bpT (t)>) ·α = B p
t,x ·α,
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where bpT (t) denote the first derivatives of the T-spline basis functions. To guarantee
smoothness of h(t|x) and hp(t|x), we defined the penalty matrices K2 and K3 (Hothorn
et al., 2014):

K2 = (Kx ⊗ IKT2
+ IKx ⊗KT2) and K3 = (Kx ⊗ IKT3

+ IKx ⊗KT3),

where Kx is the penalty matrix based on second differences for bx, KT2 is the penalty matrix
based on second differences and KT3 is the penalty matrix based on third differences for
bT , respectively, and I denotes the identity matrix. The penalty matrices K2 and K3 were
associated with smoothing parameters λ2 ≥ 0 and λ3 ≥ 0. All in all, the corresponding
penalised uncensored log-likelihood function (Equation (3.2)) is

lp(α) =
N∑
i=1

log(f(Bt,x(ti, xi) ·α)) + log(B p
t,x(ti, xi) ·α)− λ2

2
·α>K2α−

λ3

2
·α>K3α.

In analogy to the previous models, there were certain linear constraints that had to be
considered during estimation. First, the bivariate surface Bt,x had to be monotonically
increasing in the direction of t. As the basis functions bT are T-spline basis functions,
all basis coefficients α1, . . . , α576 needed to be positive except the first, the 25th, the 49th
coefficient, etc. As the surface is unrestricted in the direction of x, every first coefficient in
x-direction was excluded from the constraints. Moreover, the first derivative B p

t,x had to be
positive, and all necessary linear constraints could be summarised to:
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Again, constrained optimisation was performed using the constrOptim-function from the
R base-package stats (R Core Team, 2014).

6.2.4. Cox model

The Cox model is a semiparametric alternative to CLTMs, which relies on the PH assump-
tion. The conditional hazard function was specified via

λ(t|x) = λ0(t) exp(β0 · x),
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where λ0(t) denotes the baseline hazard function and the explanatory variable x had a
linear influence. Cox models were estimated using the coxph-function from the R add-on
package survival (Therneau, 2013).

Simulation 1. In the first simulation setting, we estimated CLTMs CLTM C.1, CLTM E.1,
CLTM C.2 and CLTM E.2, a CTM and the Cox model.

Thereby, we expected models CLTM C.1 and CLTM C.2 to perform slightly better than
models CLTM E.1 and CLTM E.2, respectively, as models CLTM E.1 and CLTM E.2 in-
clude the superfluous liner interaction term between t and x. Nevertheless, we expected
models CLTM E.1 and CLTM E.2 to perform acceptably well, and the parameter β1 of the
superfluous interaction term was expected to be estimated close to zero. The comparison
of CLTM C.1 to CLTM E.1, and CLTM C.2 to CLTM E.2 is important because we usually
do not know the true structure of the transformation function. Therefore, we expected to
get acceptable model estimates even if a too complex transformation function was used,
and that the true structure of the transformation function was identified by the model.
Moreover, we were interested in comparing CLTM C.1 to CLTM C.2, and CLTM E.1 to
CLTM E.2, respectively, to compare the parametrisation of hT (t) using fractional polyno-
mials to a T-spline parametrisation.

The CTM is more complex than the considered CLTMs, but the additional flexibility was
superfluous in Simulation 1. Therefore, we expected the CTM to perform slightly worse
than all CLTMs.

The Cox model was expected to perform best (and comparably well as CLTM C.1 and
CLTM C.2, which offer the same model structure) because the PH assumption was fulfilled
in Simulation 1 and hence, it perfectly fitted the given data setting.

Simulation 2. The non-proportional hazards setting in Simulation 2 was estimated using
the proposed CLTMs, a CTM, and the Cox model.

As the linear interaction term between t and x was necessary in this simulation setting, we
expected CLTM E.1 and CLTM E.2 to perform better than CLTM C.1 and CLTM C.2,
respectively. Again, the comparison of a parametrisation of hT (t) using fractional poly-
nomials to a parametrisation using T-splines was of interest because the parametrisation
using fractional polynomials is more parsimonious.

The CTM was expected to perform slightly worse than CLTM E.1 and CLTM E.2 because
CLTM E.1 and CLTM E.2 assumed the true structure of the conditional transformation
function, and hence, the additional flexibility of the CTM was superfluous. Nevertheless,
the CTM was expected to perform better than CLTM C.1 and CLTM C.2 because the
necessary linear interaction term was ignored in the CLTMs, whereby proportional hazards
were assumed.
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The Cox model was assumed to perform as worse as models CLTM C.1 and CLTM C.2
because the PH assumption was violated, and proportional hazards were assumed mislead-
ingly in these models.

Simulation 3. The Weibull distributed survival times with non-proportional hazards were
estimated using the proposed CLTMs, a CTM, and the Cox model.

CLTM E.1 and CLTM E.2 were expected to perform ordinarily because the assumed struc-
ture of the conditional transformation function did not fit exactly the true structure of the
conditional transformation function. Both models assumed a survival time transformation
hT (t) that was not necessary, and they assumed a linear interaction term between t and x
but the interaction was more complex. Nevertheless, both models were expected to per-
form quite well because the nonlinearity of the interaction term was expected to be partly
balanced by the estimation of hT (t).
CLTM C.1, CLTM C.2 and the Cox model were expected to perform comparably, and worse
than models CLTM E.1 and CLTM E.2. In all three models the interaction term between
t and x was completely ignored, and a superfluous survival time transformation function
hT (t) was included. Thereby, proportional hazards were assumed misleadingly.

The CTM is the only model that is able to estimate the interaction term between x and
log(t) due to its higher flexibility and thus, the CTM was expected to perform best. The
comparison of all considered models was expected to indicate that the assumed model
structure was too restrictive in all CLTMs, and that a more complex model approach was
needed.

6.2.5. Determination of smoothing parameters

The estimation of CLTM C.2, CLTM E.2 and the CTM (i.e. the models based on a T-
spline parametrisation) involved the determination of the smoothing parameters λ2 and λ3.
This was a challenging task because the simultaneous determination of a two-dimensional
smoothing parameter is associated with a computationally extensive grid search. Never-
theless, Simpkin and Newell (2013) found no eminent difference in the performance of a
sequential and a simultaneous selection of smoothing parameters for derivative estimation.
Therefore, the authors recommend a sequential selection of the smoothing parameters due
to reasons of computational efficiency.

Hence, our smoothing parameter selection process followed a sequential determination of
the smoothing parameters, i.e. we first searched for the optimal λ2 while keeping λ3 fixed,
and searched for λ3 while keeping λ2 at its optimal value afterwards:

1. Generate B = 25 training data sets and one evaluation data set with N = 5, 000
observations using the respective data generating process in Section 6.1. Due to model
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complexity, the training and evaluation data sets consisted of N = 1, 000 observations
for model CTM.

2. Determination of λ2 (while keeping λ3 fixed, e.g., λ3 = 50):

a) Define a grid of possible values for λ2:
Gλ2 = {0.001; 0.01; 0.1; 1; 10; 50; 100; 500; 1, 000; 5, 000}.

b) For each λ2 in Gλ2 :

i. Estimate the respective model for each training data set, what results in
estimated models M̂1, . . . , M̂25.

ii. Predict the survival probabilities for the observations in the evaluation data
set using the estimated models M̂1, . . . , M̂25 over a grid of time points con-
sisting of all survival times in the evaluation data set.

iii. Evaluate the predicted survival probabilities using the uncensored log score
(Equation (3.1)):

LS = − 1

N ·N

N∑
i=1

N∑
ι=1

I(Ti ≤ tι) log(M(ĥ(tι|xi))) +

I(Ti > tι) log(1−M(ĥ(tι|xi))), (6.8)

where T1, . . . , T5,000 denote the survival times from the evaluation data set,
t1, . . . , t5,000 is the grid of time points consisting of all unique survival times

from the evaluation data set, andM(ĥ(tι|xi)) denotes the estimated condi-
tional survival probability for observation i at time point tι. This results in
25 out-of-sample uncensored log scores LS1, . . . , LS25.

iv. Calculate the mean out-of-sample uncensored log score LS = 1
25

25∑
i=1

LSi.

c) The optimal value for λ2 is the value in Gλ2 with the smallest corresponding
mean out-of-sample uncensored log score.

3. Determination of λ3 (while keeping λ2 at its optimal value):

a) Define Gλ3 = {1; 10; 100; 500; 1, 000; 2, 500; 5, 000; 7, 500; 10, 000}.

b) The optimal value of λ3 is determined in analogy to λ2 using the same training
and evaluation data sets.
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6.3. Model evaluation

6.3.1. Estimated regression coefficients and response transformations

The true response transformation function hT (t) and the true regression coefficients β0

and β1 are known in all three simulation settings. Furthermore, the model components
are separable in the Cox model and in all CLTMs, whereas the model components are
inseparable in the CTM. A graphical approach was used to compare the estimated regression
coefficients β̂0 and β̂1, and the estimated survival time transformations ĥT (t) and the first
derivatives ĥpT (t) to their true counterparts for models CLTM C.1, CLTM C.2, CLTM E.1,
CLTM E.2, and for the Cox model. Thereby, our aim was to evaluate how well the various
models were able to estimate the specific model components.
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Figure 6.1.: Simulation 1: Boxplots of the estimated regression coefficients β̂0 for models CLTM C.1,
CLTM C.2, CLTM E.1, CLTM E.2, and the Cox model for B = 100 simulated data sets. The dashed
reference line indicates the true value β0 = −1.5.
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Figure 6.2.: Simulation 1: Boxplots of the estimated regression coefficients β̂1 for models CLTM E.1 and
CLTM E.2 for B = 100 simulated data sets. The dashed reference line indicates the true value β1 = 0.

Simulation 1. The regression coefficient β0 was estimated in all considered models. The
estimated coefficients β̂0 for the B = 100 simulated data sets were very similar for the Cox
model and for CLTM C.1 and CLTM C.2 (Figure 6.1). This was not surprising because the
same model complexity was assumed in all three models, but the corresponding estimation
procedures differed. The Cox model was estimated based on a partial likelihood approach
(Cox, 1975), whereas CLTM C.1 and CLTM C.2 were estimated based on a full likelihood
approach. The estimates were close to the true value β0 = −1.5. The estimated coefficients
β̂0 resulting from CLTM E.1 and CLTM E.2 varied symmetrically around −1.5, but the
variance was higher than in models CLTM C.1 and CLTM C.2 due to the higher complexity
of the conditional transformation function h(t|x).
Additionally, the superfluous regression coefficient β1 was estimated in CLTM E.1 and
CLTM E.2. Nevertheless, both models were able to identify the true structure of the con-
ditional transformation function, and the estimated coefficients β̂1 varied symmetrically
around and were close to zero (Figure 6.2).
The estimated survival time transformation functions ĥT (t) based on the B = 100 simulated
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Figure 6.3.: Simulation 1: Estimated survival time transformations ĥT (t) for B = 100 simulated data sets
for models CLTM C.1, CLTM C.2, CLTM E.1, and CLTM E.2. The true survival time transformation
hT (t) = 3 · log(t) is displayed in black.
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Figure 6.4.: Simulation 1: Estimated first derivatives of the survival time transformations ĥpT (t) for B = 100
simulated data sets for models CLTM C.1, CLTM C.2, CLTM E.1, and CLTM E.2. The true first derivative
of the survival time transformation hpT (t) = 3/t is displayed in black.

data sets resulting for CLTM C.1, CLTM C.2, CLTM E.1 and CLTM E.2 are compared
to the true survival time transformation function hT (t) = 3 · log(t) in Figure 6.3, and the
corresponding estimated first derivatives ĥpT (t) are compared to the true first derivative
hpT (t) = 3/t in Figure 6.4. For all four models, the estimated survival time transformation
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functions were very close to the true transformation function. Nevertheless, there occurred
some inconsistencies for CLTM C.1 and CLTM E.1 for small survival times. This was
most probably due to the fractional polynomials t−2 and t−1 reaching high values for small
survival times. This caused instabilities for values at the lower boundary of the estimated
function, which furthermore might indicate lacking flexibility of the fractional polynomials.
Hence, the B-spline representation of the survival time transformation is more stable. Iden-
tical results could be observed for the first derivative of the survival time transformation.
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Figure 6.5.: Simulation 2: Boxplots of the estimated regression coefficients β̂0 for models CLTM C.1,
CLTM C.2, CLTM E.1, CLTM E.2, and the Cox model for B = 100 simulated data sets. The dashed
reference line indicates the true value β0 = −1.5.

Simulation 2. Due to the same underlying model complexity, the estimated regression
coefficients β̂0 for the B = 100 simulated data sets were almost identical for CLTM C.1,
CLTM C.2, and the Cox model (Figure 6.5). Nevertheless, the estimates were considerably
biased because a PH setting was assumed by the three models, and the linear interaction
term between t and x was ignored. In contrast, the estimated coefficients β̂0 resulting from
CLTM E.1 and CLTM E.2 were only very slightly negatively biased and close to the true
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Figure 6.6.: Simulation 2: Boxplots of the estimated regression coefficients β̂1 for models CLTM E.1 and
CLTM E.2 for B = 100 simulated data sets. The dashed reference line indicates the true value β1 = 2.

value β0 = −1.5 because the linear interaction term was considered. Again, the higher
model complexity of CLTM E.1 and CLTM E.2 was associated with more variable esti-
mates. Moreover, the estimated regression coefficients β̂1 resulting from CLTM E.1 and
CLTM E.2 were relatively close to the true value β1 = 2, and only slightly positively biased
(Figure 6.6).
Considering the estimated survival time transformation functions ĥT (t) and their first
derivatives ĥpT (t), CLTM C.1 and CLTM C.2 were not able to estimate the true shape
of the survival time transformation properly (Figure 6.7 and Figure 6.8), which was due
to the wrong structure of the underlying conditional transformation function. In contrast,
CLTM E.1 and CLTM E.2 were able to display the true shape of the survival time transfor-
mation, whereby the inconsistencies for the parametrisation using fractional polynomials
remained.

Simulation 3. The Cox model and all CLTMs assumed a wrong structure of the condi-
tional transformation function. None of the considered models (except for the more flexible
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ĥ T
(t

)

Figure 6.7.: Simulation 2: Estimated survival time transformations ĥT (t) for B = 100 simulated data sets
for models CLTM C.1, CLTM C.2, CLTM E.1, and CLTM E.2. The true survival time transformation
hT (t) = 3 · log(t) is displayed in black.
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Figure 6.8.: Simulation 2: Estimated first derivatives of the survival time transformations ĥpT (t) for B = 100
simulated data sets for models CLTM C.1, CLTM C.2, CLTM E.1, and CLTM E.2. The true first derivative
of the survival time transformation hpT (t) = 3/t is displayed in black.

CTM) is able to estimate a non-linear interaction between t and x. Therefore, all estimated
coefficients β̂0 were considerably biased (Figure 6.9). Nevertheless, at least the considera-
tion of a linear interaction seemed to be of advantage because the estimates resulting from
CLTM E.1 and CLTM E.2 were less heavily biased. Nevertheless, the estimated regression
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Figure 6.9.: Simulation 3: Boxplots of the estimated regression coefficients β̂0 for models CLTM C.1,
CLTM C.2, CLTM E.1, CLTM E.2, and the Cox model for B = 100 simulated data sets. The dashed
reference line indicates the true value β0 = −4.

coefficients β̂1 for the linear interaction in CLTM E.1 and CLTM E.2 differed considerably
from the regression coefficient for the true non-linear interaction, β1 = 2 (Figure 6.10).
Due to the wrong structure of the conditional transformation function, the estimated sur-
vival time transformations and their first derivatives varied considerably from their true
counterparts (Figure 6.11 and Figure 6.12). Actually, there was no unconditional survival
time transformation in Simulation 3. Nevertheless, a survival time transformation function
was estimated in all CLTMs because the models tried to capture the nonlinearity of the
interaction between t and x. The estimated functions for CLTM E.1 and CLTM E.2 showed
a better fit compared to CLTM C.1 and CLTM C.2, as ĥT (t) and ĥpT (t) were close to zero
for higher survival times.
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Figure 6.10.: Simulation 3: Boxplots of the estimated regression coefficients β̂1 for models CLTM E.1 and
CLTM E.2 for B = 100 simulated data sets. The dashed reference line indicates the true value β1 = 2.

6.3.2. MADs and out-of-sample uncensored log scores

So far, we evaluated only the CLTMs and the Cox model graphically and we focused on the
accuracy of the estimated model components. Now, we additionally consider two measures
to quantify the model performance of all six models that focus on the estimated conditional
distribution function of the survival times.

First, we calculated the mean absolute deviation (MAD) between the true and the estimated
conditional distribution functions. A separate MAD-value was calculated for each of the
B = 100 data sets and for each model CLTM C.1 – CLTM E.2, the CTM, and the Cox
model. As an example, we consider one of the data sets and one specific model strategy:
For each x-value xi, i = 1, . . . , N , we predicted the distribution function values over a grid
of time points. This grid of time points consisted of all observed survival times tι, ι =
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Figure 6.11.: Simulation 3: Estimated survival time transformations ĥT (t) for B = 100 simulated data sets
for models CLTM C.1, CLTM C.2, CLTM E.1, and CLTM E.2. The true survival time transformation
hT (t) = 0 is displayed in black.
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Figure 6.12.: Simulation 3: Estimated first derivatives of the survival time transformations ĥpT (t) for
B = 100 simulated data sets for models CLTM C.1, CLTM C.2, CLTM E.1, and CLTM E.2. The true first
derivative of the survival time transformation hpT (t) = 0 is displayed in black.

1, . . . , N , in the data set. The predicted probabilities were compared to the corresponding
probabilities from the true distribution function by calculating mean absolute deviations:

MAD =
1

N ·N

N∑
i=1

N∑
ι=1

|p(tι|xi)− π(tι|xi)|,
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where p(tι|xi) denotes the probability for the i-th individual at time point tι from the
true distribution function, and π(tι|xi) =M(ĥ(tι|xi)) denotes the corresponding estimated
probability. Thereby, the grid of x-values {x1, . . . , xN} is the grid we defined for data
generation, i.e. is an equidistant grid on [1, 2] in Simulation 1 and Simulation 2, and an
equidistant grid on [1, 3] in Simulation 3. A small MAD value is desirable and indicates a
good model fit.

To evaluate the predictive ability of the considered models, we calculated the uncensored
log score for a set of new observations. N = 2, 000 new observations were generated using
the respective data generating process (Section 6.1), i.e. we first defined an equidistant grid
of N = 2, 000 x-values, {x1, . . . , x2,000}, on [1, 2] (Simulation 1 and Simulation 2), or on
[1, 3] (Simulation 3), and sampled the corresponding survival times afterwards. For each
new survival time and corresponding x-value, (Tl, xl), l = 1, . . . , 2, 000, the true survivor
status I(Tl ≤ tι) was compared to the corresponding estimated value of the conditional
distribution function, M(ĥ(tι|xl)), resulting from one of the considered models. The com-
parison took place along a grid of time points {tι|ι = 1, . . . , 2, 000} consisting of all new
survival times T1, . . . , T2,000 in terms of the uncensored log score (Equation (6.8)). Again,
one out-of-sample uncensored log score resulted for each of the B = 100 data sets, and for
each considered model. A small out-of-sample uncensored log score is desirable because it
indicates a good predictive ability of the considered model.

Simulation 1. The mean MAD values for the B = 100 data sets of Simulation 1 reflected
exactly our previous expectations of model performance (Figure 6.13). CLTM C.1 and
CLTM C.2 performed best because they assumed the true structure of the transformation
function. Although the Cox model assumed the same model structure, it showed very
slightly higher MAD values. This might be due to the estimation of hT (t) as a step function,
whereas a smooth function estimate results for CLTM C.1 and CLTM C.2. Slightly higher
MAD values resulted for CLTM E.1 and CLTM E.2 due to the higher complexity of the
conditional transformation function. Nevertheless, both models performed remarkably well
because they were able to identify the true structure of the conditional transformation
function. The highest MAD values resulted for the CTM because the higher model flexibility
was superfluous in this simulation setting. Nevertheless, the resulting MAD values were
still low and indicated a good model performance.

The predictive ability of the models was measured in terms of the out-of-sample uncensored
log score for N = 2, 000 new observations. The resulting out-of-sample uncensored log
scores for the different models confirmed the conclusions that were drawn for the MAD
values (Figure 6.14).

Simulation 2. The model performance measured in terms of MADs reflected exactly our
previous expectations (Figure 6.15). CLTM E.1 and CLTM E.2 showed the lowest MAD
values because the corresponding conditional transformation function included the linear
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Figure 6.13.: Simulation 1: Boxplots of the mean MAD values based on B = 100 simulated data sets for
the Cox model (Cox), conditionally linear transformation models CLTM C.1, CLTM C.2, CLTM E.1 and
CLTM E.2, and for the conditional transformation model (CTM).

interaction between t and x and thus, the true structure of the conditional transformation
function was assumed. The Cox model, CLTM C.1 and CLTM C.2 performed clearly
worse due to the underlying PH assumption that was violated in Simulation 2. The more
flexible CTM is also able to model non-proportional hazards. Hence, it performed better
than CLTM C.1 and CLTM C.2, but worse than CLTM E.1 and CLTM E.2 due to the
superfluous additional model complexity.

Comparing the out-of-sample uncensored log scores for the different models resulted in the
same conclusions that were presented for the MAD values (Figure 6.16).

Simulation 3. The MADs for the Weibull distributed survival times with non-proportional
hazards in Simulation 3 were in very good accordance with our previous expectations (Fig-
ure 6.17). As we investigated a non-proportional hazards setting, the highest MADs resulted
for the Cox model, CLTM C.1 and CLTM C.2. CLTM E.1 and CLTM E.2 at least included
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Figure 6.14.: Simulation 1: Boxplots of the out-of-sample uncensored log scores for N = 2, 000 new
observations and B = 100 simulated data sets for the Cox model (Cox), conditionally linear transformation
models CLTM C.1, CLTM C.2, CLTM E.1 and CLTM E.2, and for the conditional transformation model
(CTM).

a linear interaction between t and x and hence, the according MADs were clearly smaller.
Nevertheless, the CTM is the only model that is able to account for a non-linear interaction
between t and x and thus, the corresponding MADs were the smallest.

The same results could be derived from the out-of-sample uncensored log scores for the
different models (Figure 6.18). Nevertheless, the CLTMs based on fractional polynomials,
i.e. CLTM C.1 and CLTM E.1, showed higher out-of-sample uncensored log scores and a
clearly higher variability compared to the CLTMs based on T-splines. This is most proba-
bly due to the fractional polynomials t−2 and t−1 that reach high values for small survival
times. These inconsistencies seem to be worse for wrongly defined conditional transforma-
tion functions because the variability is especially high for CLTM C.1. Additionally, the
superiority of the CTM is recognisable more clearly in terms of out-of-sample uncensored
log scores.
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Figure 6.15.: Simulation 2: Boxplots of the mean MAD values based on B = 100 simulated data sets for
the Cox model (Cox), conditionally linear transformation models CLTM C.1, CLTM C.2, CLTM E.1 and
CLTM E.2, and for the conditional transformation model (CTM).

6.4. Summary

The likelihood-based estimation of low-parametrised C(L)TMs has been suggested in Sec-
tion 3.2. As a proof of concept, we compared the performance of several likelihood-based
C(L)TMs with differing model complexity to the performance of the Cox model in a simula-
tion study. We considered three different simulation settings for uncensored survival times
with proportional and non-proportional hazards.
Our simulation results indicate that CLTMs are a flexible model class that is able to deal
with proportional as well as non-proportional hazards. In the proportional hazards setting,
the C(L)TMs assuming proportional hazards and the Cox model showed almost identical
results. However, in the non-proportional hazards setting, the C(L)TMs clearly outper-
formed the Cox model because the PH assumption can be relaxed easily. Moreover, we
were able to show that the true structure of the conditional transformation function could
be identified by comparing C(L)TMs with different model complexities. The regression
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Figure 6.16.: Simulation 2: Boxplots of the out-of-sample uncensored log scores for N = 2, 000 new
observations and B = 100 simulated data sets for the Cox model (Cox), conditionally linear transformation
models CLTM C.1, CLTM C.2, CLTM E.1 and CLTM E.2, and for the conditional transformation model
(CTM).

coefficients and the survival time transformation were estimated accurately in CLTMs if
the true structure of the conditional transformation function was assumed.
To test two of the proposed estimation strategies presented in Section 3.2.2, we parametrised
the survival time transformation hT (t) in CLTMs using fractional polynomials and
T-splines. Both parametrisations performed satisfyingly. Nevertheless, the T-spline
parametrisation turned out to be more stable at the lower boundary of the survival time
transformation function.
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Figure 6.17.: Simulation 3: Boxplots of the mean MAD values based on B = 100 simulated data sets for
the Cox model (Cox), conditionally linear transformation models CLTM C.1, CLTM C.2, CLTM E.1 and
CLTM E.2, and for the conditional transformation model (CTM).
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Figure 6.18.: Simulation 3: Boxplots of the out-of-sample uncensored log scores for N = 2, 000 new
observations and B = 100 simulated data sets for the Cox model (Cox), conditionally linear transformation
models CLTM C.1, CLTM C.2, CLTM E.1 and CLTM E.2, and for the conditional transformation model
(CTM).



7. Predicting birth weight with
likelihood-based conditionally linear
transformation models

The content of this chapter is based on Möst and Hothorn (2014).

The conditional distribution function of birth weight (BW) depending on the ultrasound
parameters biparietal diameter (BPD), fronto-occipital diameter (FOD), head circumfer-
ence (HC), abdominal transverse diameter (ATD), anterior-posterior abdominal diameter
(APD), abdominal circumference (AC), and femur length (FL), as well as the maternal
body mass index (BMI) has already been analysed in Chapter 4. Thereby, C(L)TMs of
different model complexity were considered for the analysis, and estimation was based on a
component-wise boosting algorithm. Accordingly, a thorough introduction to birth weight
prediction, references on literature covering birth weight prediction formulas used in the
past, and a description of the Perinatal Database Erlangen can be found in Chapter 4.
In this chapter, we re-analysed the Perinatal Database Erlangen using likelihood-based,
low-parametrised CLTMs. Therefore, we considered models CLTM A – CLTM E proposed
in Section 2.2.2. Parameter estimation was based on a full maximum likelihood approach.
Thereby, the link function was set to the standard normal distribution function, F = Φ,
because birth weights are usually assumed to be normal distributed (see Chapter 4). As
all birth weights were observed, model estimation was based on the maximisation of the
uncensored log-likelihood for continuous responses given in Equation (3.2).

7.1. Specific CLTMs for analysing the Perinatal Database
Erlangen

When considering models CLTM A – CLTM E (Section 2.2.2) for the analysis of the Peri-
natal Database Erlangen, we estimated the distribution function of birth weight conditional
on the ultrasound measurements and the maternal BMI. Thereby, all ultrasound parameters
and the maternal BMI were considered as main effects, and we additionally considered the
linear interaction between AC and FL because this interaction turned out to be important
in the past (see Chapter 4, and Möst et al., 2014). Similar to our proceeding in Chapter 4,
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the interaction term was only allowed to influence the conditional mean but not the con-
ditional variance of birth weight. In model CLTM B, a smooth interaction term between
AC and FL would require the estimation of a smooth bivariate surface. Hence, we ignored
the interaction due to reasons of model complexity. Usually, the relationship between birth
weight and ultrasound measurements is analysed using ordinary linear regression models
(references can be found in Möst et al., 2014, and Chapter 4), whereby normal distributed
birth weights are assumed. Therefore, we also considered an ordinary linear regression
model LM for reasons of comparison. The models are presented in more detail below, and
they are ordered with increasing model complexity. Important model characteristics and
assumptions are summarised.

LM: Linear regression model. Birth weight depends linearly on the ultrasound measure-
ments:

BW = β0 + βBPD · BPD + βFL · FL + βAC · AC + βHC · HC + βFOD · FOD +

βATD · ATD + βAPD · APD + βBMI · BMI + βAC:FL · AC · FL + ε,

where ε denotes a normal distributed error term with mean zero and variance σ2. In
model LM, we assumed normal distributed birth weights, a constant variance term σ2 that
is independent of the ultrasound measurements, and linear influences of the ultrasound
measurements on the conditional mean of birth weight.

CLTM A. Model CLTM A (Equation (2.12)) is the transformation model analogon to
model LM because the assumed model complexity is identical. The conditional transfor-
mation function is

h(BW|x) = α0 + α1 · BW + β0,BPD · BPD + . . .+ β0,BMI · BMI + β0,AC:FL · AC · FL.

As we chose F = Φ for the link function, the expectation of h(BW|x) is zero, and the
effects of the ultrasound measurements on the conditional mean E(BW|x) can be rewritten
as

E(BW|x) = (−α0−β0,BPD·BPD−...−β0,BMI·BMI−β0,AC:FL·AC·FL)/α1.

Hence, e.g., the effect of BPD on the conditional mean, −β0,BPD/α1, can be directly com-
pared to βBPD from model LM, and both estimates were expected to be identical. Conse-
quently, the underlying model assumptions were the same as in model LM: We assumed
normal distributed birth weights because the response transformation function is linear,
i.e. hBW(BW) = α0 +α1 ·BW, and we are not able to leave the class of normal distribution
functions by linear transformations. Moreover, we assumed a constant variance σ2 for all
birth weights, which can be calculated via σ2 = V(BW|x) = 1/α2

1. Third, the influence of
the ultrasound measurements on the conditional mean of birth weight was assumed to be



7.1 Specific CLTMs for analysing the Perinatal Database Erlangen 141

linear. Model CLTM A was estimated by directly maximising the uncensored log-likelihood
(Equation (3.2))

l(α,β0) =
N∑
i=1

log(φ(h(BWi|xi))) + log(α1),

where α = (α0, α1), β0 = (β0,BPD, . . . , β0,BMI, β0,AC:FL), and φ denotes the density of the
standard normal distribution. The linear constraint α1 > 0 had to be considered during
estimation to guarantee a monotonically increasing birth weight transformation.

CLTM B. In model CLTM B (Equation (2.13)), the ultrasound measurements were al-
lowed to have a more flexible but smooth influence on the conditional mean of birth weight.
Furthermore, we assumed normal distributed birth weights, and a constant variance that
is independent of the ultrasound measurements. This resulted in the conditional transfor-
mation function

h(BW|x) = α0 + α1 · BW + β0,BPD(BPD) + . . .+ β0,BMI(BMI).

To get a parsimonious model formulation, the smooth parameter functions were
parametrised using fractional polynomials of degree 1 (see Section 3.2.2). For example,
the function β0,BPD(BPD) was parametrised via

β0,BPD(BPD) = β01,BPD · BPD−2 + β02,BPD · BPD−1 + β03,BPD · BPD−0.5 +

β04,BPD · log(BPD) + β05,BPD ·
√

BPD + β06,BPD · BPD +

β07,BPD · BPD2 + β08,BPD · BPD3,

where the coefficients of the fractional polynomial are summarised to β0,BPD =
(β01,BPD, . . . , β08,BPD). The regression coefficients in model CLTM B were estimated by
maximising the uncensored log-likelihood

l(α,β0,BPD, . . . ,β0,BMI) =
N∑
i=1

log(φ(h(BWi|xi))) + log(α1),

under the linear constraint α1 > 0.

CLTM C. In linear transformation model CLTM C (Equation (2.14)), the response trans-
formation function hBW(BW) is assumed to be smooth and monotonically increasing. Due
to this birth weight transformation, we are able to leave the class of normal distribution
functions, and the birth weights are allowed to follow some arbitrary distribution. This
distribution function is the same for all babies, but the respective means are fetus-specific
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because the conditional mean is influenced linearly by the ultrasound measurements. The
corresponding conditional transformation function is

h(BW|x) = hBW(BW) + β0,BPD · BPD + . . .+ β0,BMI · BMI + β0,AC:FL · AC · FL.

To guarantee a parsimonious model formulation, the birth weight transformation function
was parametrised using fractional polynomials similar to the smooth covariate functions in
model CLTM B:

hBW(BW) = α0 + α1 · BW−2 + α2 · BW−1 + α3 · BW−0.5 + α4 · log(BW) +

α5 ·
√

BW + α6 · BW + α7 · BW2 + α8 · BW3.

Model estimation was based on the maximisation of the log-likelihood

l(α,β0) =
N∑
i=1

log(φ(h(BWi|xi))) + log(hpBW(BWi))

under the linear constraints hpBW(BWi) > 0 ∀i. Thereby, the coefficients are summarised
to α = (α0, . . . , α8) and β0 = (β0,BPD, . . . , β0,BMI, β0,AC:FL).

CLTM D. The ultrasound measurements are allowed to influence the conditional mean
and the conditional variance of birth weight in model CLTM D (Equation (2.15)). The
birth weight transformation function is linear, whereby normal distributed birth weights
are assumed. The corresponding conditional transformation function is

h(BW|x) = α0 + β0,BPD · BPD + . . .+ β0,BMI · BMI + β0,AC:FL · AC · FL +

BW · (α1 + β1,BPD · BPD + . . .+ β1,BMI · BMI).

As the conditional transformation function has mean zero and variance one, the conditional
mean and the conditional variance of birth weight can also be written as

E(BW|x) =
−α0 − β0,BPD · BPD− . . .− β0,BMI · BMI− β0,AC:FL · AC

α1 + β1,BPD · BPD + . . .+ β1,BMI · BMI

V(BW|x) =
1

(α1 + β1,BPD · BPD + . . .+ β1,BMI · BMI)2
.

For model estimation, the log-likelihood

l(α,β0,β1) =
N∑
i=1

log(φ(h(BWi|xi))) + log(α1 + β1,BPD · BPDi + . . .+ β1,BMI · BMIi)
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had to be maximised under the linear constraints α1 > 0, and α1 + β1,BPD · BPDi + . . . +
β1,BMI · BMIi > 0 ∀i. The regression coefficients were summarised to α = (α0, α1), β0 =
(β0,BPD, . . . , β0,BMI, β0,AC:FL), and β1 = (β1,BPD, . . . , β1,BMI).

CLTM E. In analogy to model CLTM D, the ultrasound measurements are allowed to in-
fluence the conditional mean and the conditional variance of the transformed birth weights.
Moreover, in model CLTM E (Equation (2.16)), the unconditional transformation func-
tion is a smooth and monotonically increasing function. Thereby, the birth weights are
assumed to follow an arbitrary distribution function. The class of distribution functions
is the same for all babies, but the means and variances are fetus-specific. The conditional
transformation function is

h(BW|x) = hBW(BW) + β0,BPD · BPD + . . .+ β0,BMI · BMI + β0,AC:FL · AC · FL +

BW · (β1,BPD · BPD + . . .+ β1,BMI · BMI).

Similar to CLTM C, the smooth birth weight transformation function hBW(BW) is
parametrised in terms of fractional polynomials. The regression coefficients were estimated
by maximising the uncensored log-likelihood

l(α,β0,β1) =
N∑
i=1

log(φ(h(BWi|xi))) + log(hpBW(BWi) +β1,BPD ·BPDi + . . .+β1,BMI ·BMIi)

under the linear constraints hpBW(BWi) > 0 ∀i, and hpBW(BWi) + β1,BPD · BPDi + . . . +
β1,BMI · BMIi > 0 ∀i. The regression coefficients were summarised to α = (α0, . . . , α8),
β0 = (β0,BPD, . . . , β0,BMI, β0,AC:FL), and β1 = (β1,BPD, . . . , β1,BMI).

7.2. Model evaluation

To identify the CLTM that describes the Perinatal Database Erlangen best, we compared
the performance of models CLTM A – CLTM E, and the LM. Therefore, we estimated
all proposed models on a training data set, and evaluated their predictive ability on an
evaluation data set. We generated B = 50 training and evaluation data sets using the
following procedure (for a more detailed version see Section 4.3.4):

1. The ultrasound parameters AC and FL turned out to be essential for the prediction
of birth weight in the past. Therefore, we divided the fetuses in the database into 25
AC-FL categories.

2. The training data sets were generated by choosing randomly 50% of the original
observations in each AC-FL category.
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Figure 7.1.: Out-of-sample log scores for conditionally linear transformation models CLTM A – CLTM E,
and the linear model (LM) based on 50 randomly chosen evaluation data sets consisting of 4, 355 observa-
tions.

3. The remaining 50% of the original observations formed the corresponding evaluation
data set.

The predictive ability of the considered models was measured in terms of the uncensored
log score (see Equation (4.12)):

LS = − 1

N · n

N∑
i=1

n∑
ι=1

I(BWi ≤ υι) log(Φ(ĥ(υι|xi))) + I(BWi > υι) log(1− Φ(ĥ(υι|xi))),

where {υ1, . . . , υn} denotes a grid of birth weights, which was chosen to be an equidistant
grid with length n = 50 from the lowest to the highest observed birth weight. The in-
dex i denotes the observations in the evaluation data set, which consisted of half of the
original observations, i.e. N = 4, 355. The estimated conditional transformation functions
ĥ resulted from estimating models CLTM A – CLTM E on the training data set. This
procedure is useful for detecting model misspecifications because the complexities of the
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Figure 7.2.: Out-of-sample log scores for conditionally linear transformation models CLTM A – CLTM D,
and the linear model (LM) based on 50 randomly chosen evaluation data sets consisting of 4, 355 observa-
tions.

considered CLTMs differed. For example, we were able to check the assumption of normal
distributed birth weights by comparing model CLTM A to CLTM C, and model CLTM D
to CLTM E, respectively; missing effects of the ultrasound measurements on the variance
could be detected by comparing model CLTM D to model CLTM A, or model CLTM E to
model CLTM C.

Model CLTM E clearly showed the highest out-of-sample log scores and thus performed
worst (Figure 7.1). Hence, the consideration of arbitrarily distributed birth weights with
fetus-specific means and variances does not fit the given data satisfyingly. As we had ex-
pected, models LM and CLTM A showed identical results because both models impose
identical assumptions, and both models were estimated using the full log-likelihood (Fig-
ure 7.2). Moreover, models CLTM A and CLTM B performed comparably well, i.e. the
consideration of flexible influences of the ultrasound measurements on the conditional mean
of birth weight did not lead to a model improvement and hence, the consideration of lin-
ear effects is adequate. When assuming normal distributed birth weights (models LM,
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CLTM A, CLTM B, and CLTM D), the consideration of fetus-specific variances led to a
small model improvement because model CLTM D is associated with the smallest out-of-
sample log scores. Nevertheless, model CLTM C showed the smallest out-of-sample log
scores throughout. Therefore, the model assuming arbitrarily distributed birth weights
with fetus-specific means that are influenced linearly by the ultrasound measurements per-
formed best, and we advise to use model CLTM C for analysing the Perinatal Database
Erlangen.
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Figure 7.3.: Estimated birth weight transformation function ĥBW(BW) resulting from model CLTM C. The
dashed line symbolises the linear relationship between the birth weights and their monotone transformation.

As model CLTM C performed best, we present the results from the corresponding data
analysis. First, the estimated birth weight transformation function ĥBW(BW) indicated
that the birth weights do not follow a normal distribution function (Figure 7.3). If the
birth weights were normal distributed, ĥBW(BW) would have been estimated to be a linear
function. Obviously, there are deviations from the normal distribution for birth weights
at the extremes, especially for low birth weights. This was also supported by the normal
quantile-quantile plots of the original and the transformed birth weights (Figure 7.4). The
original birth weights deviated from the normal distribution for low birth weights, i.e. ,
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Figure 7.4.: Normal Q-Q plot of original and transformed birth weights resulting from model CLTM C.

the distribution of the original birth weights is not symmetric but rather right-skewed.
These deviations from the normal distribution were perfectly captured by the birth weight
transformation function ĥBW(BW) because the transformed birth weights approximately
followed a normal distribution. Moreover, we were able to analyse the linear effect of
the ultrasound measurements on the conditional mean of the transformed birth weights,
E(hBW(BW)|x) = −β0,BPD ·BPD− . . .−β0,BMI ·BMI−β0,AC:FL ·AC ·FL, in model CLTM C.
The estimated influence of all ultrasound measurements and the maternal body mass index
was positive, except for the influence of the linear interaction between AC and FL, which
was estimated to be negative. To visualise the importance of the ultrasound measurements
for explaining the transformed birth weight, we plotted the influence of each ultrasound
parameter on the conditional mean of the transformed birth weight (Figure 7.5). The
remaining ultrasound parameters were fixed at their mean values. BPD, FL and AC showed
the highest influence; ATD, APD and FOD showed an intermediate influence; and HC and
BMI were associated with the lowest influence on the conditional mean of the transformed
birth weights.

7.3. Summary

To further illustrate the likelihood-based estimation of CLTMs, we re-analysed the Perina-
tal Database Erlangen using a cascade of low-parametrised CLTMs. The results presented
in this chapter are only comparable to a limited extent to the results presented in Chap-
ter 4. The conditional distribution function of birth weights could be analysed in terms of
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Figure 7.5.: Boxplots of the estimated influence of each ultrasound parameter biparietal diameter (BPD),
femur length (FL), abdominal circumference (AC), head circumference (HC), fronto-occipital diameter
(FOD), abdominal transverse diameter (ATD), anterior-posterior abdominal diameter (APD), and the
mother’s body mass index (BMI) on the conditional mean of the transformed birth weights, E(hBW(BW)|x),
resulting from model CLTM C. The remaining ultrasound parameters were fixed at their mean values.

more complex C(L)TMs in Chapter 4 due to the estimation based on a component-wise
boosting algorithm, whereas we were only able to consider low-parametrised CLTMs, here.
Nevertheless, some of the results could be confirmed. Again, we found that the assumption
of normal distributed birth weights is not correct, and that the deviations from the normal
distribution should be considered by a suitable model. Furthermore, we found that the
assumption of a linear influence of the ultrasound measurements on the conditional mean
of birth weight is adequate, and that the conditional mean of the transformed birth weights
is most strongly influenced by the ultrasound measurements AC, FL, and BPD. The Peri-
natal Database Erlangen could be described best by a likelihood-based CLTM assuming
arbitrarily distributed birth weights with fetus-specific means.



8. Summary and outlook

In this concluding chapter, we give a general summary of the main developments of this
thesis and their importance in concrete applications. We additionally give relevant starting
points for future research. A more thorough discussion of the characteristics, advantages
and limitations of the applied methodology can be found at the end of each chapter.

Conditional transformation models (CTMs) (Hothorn et al., 2014) are a model class that al-
lows the direct estimation of the conditional distribution function. This flexible approach is
beneficial in many applications because all moments of the distribution function (i.e. mean,
variance, kurtosis, and skewness) might be influenced by the explanatory variables. In this
thesis, we extended classical CTMs in two important directions. First, we used CTMs for
the determination of prediction intervals, and second, we used CTMs for the estimation of
conditional survivor functions. This implied the extension of CTMs to censored response
variables. Concerning both topics, standard regression models that are usually used for data
analysis often suffer from their strict assumptions. To illustrate the importance of CTMs
for determining prediction intervals and for estimating conditional survivor functions, we
selected two applications from the field of biostatistics. We analysed the influence of ultra-
sound measurements on the future birth weights of newborns from the Perinatal Database
Erlangen in Chapter 4 using a cascade of interpretable conditionally linear transformation
models (CLTMs). Our method allowed the determination of individual prediction inter-
vals for the future birth weight of each baby. Such fetus-specific prediction intervals are
highly relevant in terms of individual risk analysis and in terms of organising obstetric
management. Moreover, the estimation of patient-specific survival probabilities over time
depending on individual patient characteristics is of special interest in survival analysis.
Thus, the CTM-based estimation of conditional survivor functions was examined in Chap-
ter 5 and was used to analyse the survival of patients suffering from chronic myelogenous
leukaemia.

From a methodological perspective, the important improvement in this thesis is the intro-
duction of likelihood-based conditional transformation models. So far, CTMs have been
estimated using a component-wise boosting algorithm, which implies the important advan-
tages of intrinsic variable selection and model choice. This estimation approach has also
been used for the determination of prediction intervals in Chapter 4, and has been ex-
tended to right-censored observations in Chapter 5. Nevertheless, a broad inference theory
is lacking for boosting approaches. Because there is no large sample theory, confidence
intervals and p-values can only be determined based on bootstrapping. From this perspec-
tive, a likelihood-based approach is beneficial because the large sample theory of maximum
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likelihood approaches comes for free and the associated inference theory is open to the
practitioner. We presented a likelihood-based estimation approach for low-parametrised
CLTMs in Chapter 3. For uncensored responses, the good performance of likelihood-based
C(L)TMs has been investigated in Chapter 6. Furthermore, likelihood-based CLTMs were
used for a re-analysis of the Perinatal Database Erlangen in Chapter 7. Likelihood-based
CTMs have the important advantage that they can be extended easily to any type of
censoring. Until now, the maximum likelihood approach is restricted to low-parametrised
CLTMs, and the boosting approach is the preferred method for estimating C(L)TMs with
more complex conditional transformation functions.

To increase interpretability in CTMs, we introduced the model class of CLTMs (Chapter 2
and Chapter 4) that allows the interpretation of the explanatory variable effects on the
conditional mean and the conditional variance of the transformed response. This inter-
pretability comes at the price of a restricted conditional transformation function. Hence,
one has to be aware of the restricted model complexity that might be inappropriate in some
applications. CLTMs are highly relevant in practice because they combine the increased
flexibility of conditional transformation models with interpretable model results. There-
fore, the introduction of CLTMs displays another important methodological emphasis of
this thesis.

Comparing regression and transformation models, the perspective of transformation models
is seldom taken in statistics. To stress the commonalities and to emphasis the high diversity
of transformation models, we reviewed several frequently used regression models from the
perspective of transformation models (Chapter 2). Thereby, our main aim was to show that
all mentioned regression models share the model basis of conditional transformation models.
From this awareness follows that our proposed unique likelihood-based estimation approach
can be used to estimate a wide range of commonly used regression models. Moreover, the
extension to any type of censoring is straightforward for each of the considered regression
models.

In our analysis of the Perinatal Database Erlangen (Chapter 4 and Chapter 7) and of
the patients suffering from chronic myelogenous leukaemia (Chapter 5), we considered
the topic of model choice. We estimated conditional transformation models of different
model complexity and standard regression models, which are usually less flexible. The
performance of all models was evaluated in terms of the out-of-sample (censored) log score,
which is a useful measure for the quality of estimated conditional distribution functions.
This procedure can help to identify violations of important model assumptions, e.g., the
proportional hazards assumption in the Cox model or the homoscedasticity assumption
in the linear regression model. Afterwards, there are three options how to proceed: It is
save to use the standard regression model because the strict model assumptions are not
violated; there are model extensions for the standard regression model that account for
the violated model assumptions; the flexible conditional transformation model performs
best and hence, it should be used for data analysis.
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There is a great potential of enhancements for likelihood-based C(L)TMs that is
left for future research. So far, we tested the performance of likelihood-based CTMs
for low-parametrised CLTMs and for uncensored response variables in Chapter 6 and
Chapter 7. Hence, the extension of the likelihood-based estimation approach to more
flexible C(L)TMs (such models were, e.g., considered in Chapter 4 and Chapter 5,
and in Hothorn et al. (2014)) would be worthwhile. Therefore, questions concerning
algorithmic feasibility and problems of identifiability of model components need to be
solved first. We stated that likelihood-based C(L)TMs can be easily adapted to any
type of censoring. The performance of likelihood-based C(L)TMs for censored response
variables in terms of simulation studies and suitable applications needs to be investigated
in future research. One important advantage of boosting algorithms is the intrinsic
variable selection property. How variable selection should be performed in likelihood-based
C(L)TMs is another important question. We presented four possible estimation strategies
for likelihood-based C(L)TMs including a parsimonious parametrisation using fractional
polynomials, a P-spline approach, an empirical Bayes approach, and a full Bayesian
approach in Chapter 3. Thereby, a thorough investigation of the feasibility of the empirical
Bayes approach and the full Bayesian approach was left for future research. For the wide
applicability of likelihood-based C(L)TMs, a comprehensive software interface (i.e. in
terms of an R package) is needed.
Furthermore, some questions concerning the estimation of CTMs in survival analysis
using a component-wise boosting algorithm remain to be solved (Chapter 5). For a
right-censored response variable, we included inverse probability of censoring weights into
the target function to account for the censoring pattern. Thereby, we assumed that the
censoring distribution is independent of all explanatory variables. This assumption might
be problematic (Gerds and Schumacher, 2006) and needs further investigation. Strategies
for including conditional censoring distributions into the target function would be a
worthwhile development. In contrast to the likelihood-based estimation approach that can
be extended to any type of censoring, we only considered right-censoring for the boosting
approach. Therefore, it would be interesting if and how the boosting approach extends to
other censoring or truncation mechanisms. A possible starting point is presented in Shen
(2003), where the product limit estimates of left-truncated or both left-truncated and
right-censored observations are expressed as inverse-probability-weighted averages. More-
over, Mackenzie (2012) previously estimated survival curves with dependent left-truncated
data using Cox’s model and inverse probability weighting.

In this thesis, we put transformation models into perspective by clarifying their wide appli-
cability to continuous as well as ordinal responses. The high relevance of conditional trans-
formation models was further supported by suggesting a unified likelihood-based estimation
approach. We were successful in enhancing the interpretability in CTMs by introducing
the model class of CLTMs, and the extension of CTMs to censored response variables was
a further important improvement.
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Figure A.1.: Boxplots of the out-of-sample log-scores based on 25 evaluation data sets. The log-scores were
determined for the 25 categories for abdominal circumference and femur length (AC–FL) separately. Model
estimation was carried out for CLTM 0 (linear), CLTM 0, CLTM 1, and CLTM 2.
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Figure A.2.: Boxplots of the out-of-sample log-scores based on 25 evaluation data sets. The log-scores were
determined for the 25 categories for abdominal circumference and femur length (AC–FL) separately. Model
estimation was carried out for CLTM 3, CLTM 4, CTM, and LM.
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Figure A.3.: Boxplots for the birth weights in the 25 categories for abdominal circumference and femur
length (AC–FL).
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Table A.1.: Conditional coverage for the prediction intervals of fetuses belonging to the 25 categories defined
by abdominal circumference (AC) and femur length (FL). Estimation based on the regression models CLTM
0 (lin) and CLTM 0 – CLTM 3.

AC FL CLTM 0 (lin) CLTM 0 CLTM 1 CLTM 2 CLTM 3

1 1 0.826 0.826 0.587 0.826 0.783
2 1 0.784 0.784 0.838 0.784 0.784
3 1 0.905 0.857 0.905 0.905 0.857
4 1 0.933 0.800 0.933 0.933 0.800
5 1 1.000 0.818 1.000 1.000 0.909
1 2 0.944 0.833 0.944 0.944 0.833
2 2 0.952 0.881 0.976 0.952 0.881
3 2 0.884 0.721 0.907 0.884 0.744
4 2 0.903 0.871 0.903 0.903 0.903
5 2 0.885 0.885 0.962 0.885 0.885
1 3 0.957 0.870 0.957 0.957 0.870
2 3 0.973 0.892 0.973 0.973 0.892
3 3 0.923 0.897 0.974 0.923 0.897
4 3 0.947 0.842 1.000 0.947 0.842
5 3 0.857 0.714 0.857 0.857 0.714
1 4 0.800 0.800 0.867 0.800 0.733
2 4 0.938 0.875 0.938 0.938 0.875
3 4 0.875 0.825 0.925 0.875 0.825
4 4 0.841 0.841 0.886 0.841 0.909
5 4 0.857 0.833 0.881 0.857 0.833
1 5 0.800 0.600 0.900 0.800 0.600
2 5 0.880 0.840 0.880 0.880 0.840
3 5 0.970 0.879 0.970 0.970 0.879
4 5 0.935 0.913 0.957 0.935 0.913
5 5 0.817 0.817 0.850 0.817 0.867
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Table A.2.: Conditional coverage for the prediction intervals of fetuses belonging to the 25 categories defined
by abdominal circumference (AC) and femur length (FL). Estimation based on the regression models CLTM
4, CTM, LM, LQR, AQR.

AC FL CLTM 4 CTM LM LQR AQR

1 1 0.826 0.870 0.815 0.772 0.739
2 1 0.784 0.757 0.865 0.757 0.757
3 1 0.857 0.857 1.000 0.857 0.857
4 1 0.800 0.867 0.933 0.867 0.867
5 1 0.909 0.909 0.909 0.818 0.818
1 2 0.833 0.861 0.778 0.833 0.806
2 2 0.881 0.881 0.833 0.881 0.881
3 2 0.744 0.721 0.930 0.721 0.721
4 2 0.871 0.871 0.742 0.871 0.903
5 2 0.885 0.846 0.846 0.846 0.846
1 3 0.870 0.913 0.739 0.870 0.957
2 3 0.892 0.892 0.919 0.892 0.892
3 3 0.897 0.897 0.769 0.872 0.897
4 3 0.842 0.842 0.895 0.842 0.842
5 3 0.714 0.743 0.857 0.714 0.714
1 4 0.800 0.800 0.800 0.800 0.800
2 4 0.875 0.906 0.750 0.906 0.906
3 4 0.825 0.825 0.750 0.825 0.825
4 4 0.864 0.841 0.864 0.841 0.795
5 4 0.833 0.857 0.690 0.786 0.810
1 5 0.600 0.600 1.000 0.600 0.600
2 5 0.840 0.840 0.880 0.840 0.760
3 5 0.879 0.848 0.727 0.788 0.818
4 5 0.913 0.913 0.717 0.935 0.870
5 5 0.850 0.783 0.767 0.733 0.750





B. Boosting algorithm for C(L)TMs

The component-wise boosting algorithm for conditional transformation models was intro-
duced in Hothorn et al. (2014).

(Init) Initialise the parameters γ
[0]
j ≡ 0 for j = 1, . . . , J , the step-size ν ∈ (0, 1) and the

smoothing parameters λj, j = 1, . . . , J . Define the grid υ1 < Y(1) < . . . < Y(N) ≤ υn.
Set m = 0.

(Gradient) Compute the negative gradient of the integrated log score:

Uiι := − ∂

∂h
ρ((Yi ≤ υι,xi), h)

∣∣∣∣
h=ĥ

[m]
iι

:=

{
I(Yi ≤ υι)

F p(h(υι|xi))
F (h(υι|xi))

− I(Yi > υι)
F p(h(υι|xi))

1− F (h(υι|xi))

}∣∣∣∣
h=ĥ

[m]
iι

,

where F p(·) denotes the density of the link function F , and

ĥ
[m]
iι =

J∑
j=1

ĥ
[m]
j (υι|xi) =

J∑
j=1

(
bj(xi)

> ⊗ b0(υι)
>)γ [m]

j .

Fit the base-learners for j = 1, . . . , J :

β̂j = arg min
β∈RKj ·K0

N∑
i=1

n∑
ι=1

ωiι
{
Uiι −

(
bj(xi)

> ⊗ b0(υι)
>)β}2

+ β>P0jβ

with penalty matrix P0j.
Select the base-learner

j∗ = arg min
j=1,...,J

N∑
i=1

n∑
ι=1

ωiι

{
Uiι −

(
bj(xi)

> ⊗ b0(υι)
>) β̂j}2

.

(Update) the parameters γ
[m+1]
j∗ = γ

[m]
j∗ + ν · β̂j∗ and keep all other parameters fixed,

i.e. γ
[m+1]
j = γ

[m]
j , j 6= j∗.

Iterate (Gradient) and (Update).
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(Stop) if m = M . Output the final model

P̂(Y ≤ υ|X = x) = F (ĥ[M ](υ|x)) = F

(
J∑
j=1

ĥ
[M ]
j (υ|x)

)

= F

(
J∑
j=1

(
bj(x)> ⊗ b0(υ)>

)
γ

[M ]
j

)

as a function of arbitrary υ ∈ R and arbitrary explanatory variables x. M denotes
the previously specified maximal number of boosting iterations and displays the main
tuning parameter.
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trees. Statistics in Medicine 23 (1), 77–91.

Huber-Carol, C. and I. Vonta (2004). Frailty models for arbitrarily censored and truncated
data. Lifetime Data Analysis 10 (4), 369–388.

Hunter, D. R. and K. Lange (2002). Computing estimates in the proportional odds model.
Annals of the Institute of Statistical Mathematics 54 (1), 155–168.



References 167
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Möst, L., M. Schmid, F. Faschingbauer, and T. Hothorn (2014). Predicting birth weight
with conditionally linear transformation models. Statistical Methods in Medical Research.
To appear . DOI: 10.1177/0962280214532745.

Mullahy, J. (1986). Specification and testing of some modified count data models. Journal
of Econometrics 33 (3), 341–365.

Murphy, S. A., A. J. Rossini, and A. W. van der Vaart (1997). Maximum likelihood
estimation in the proportional odds model. Journal of the American Statistical Associa-
tion 92 (439), 968–976.

Ng’Andu, N. H. (1997). An empirical comparison of statistical tests for assessing the
proportional hazards assumption of Cox’s model. Statistics in Medicine 16 (6), 611–626.

Peng, L. and Y. Huang (2008). Survival analysis with quantile regression models. Journal
of the American Statistical Association 103 (482), 637–649.

Peterson, B. and F. E. Harrell (1990). Partial proportional odds models for ordinal response
variables. Journal of the Royal Statistical Society. Series C (Applied Statistics) 39 (2),
205–217.

Pettitt, A. N. (1984). Proportional odds models for survival data and estimates using ranks.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 33 (2), 169–175.



References 171

Polpo, A., C. P. de Campos, D. Sinha, S. Lipsitz, and J. Lin (2014). Transform both sides
model: A parametric approach. Computational Statistics & Data Analysis 71, 903–913.

Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical
Association 98 (464), 1001–1012.

Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics 32 (1), 143–
155.

Prentice, R. L. (1973). Exponential survivals with censoring and explanatory variables.
Biometrika 60 (2), 279–288.

Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika 65 (1),
167–179.

R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Rigby, R. A. and D. M. Stasinopoulos (2005). Generalized additive models for location, scale
and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics) 54 (3),
507–554.

Ritov, Y. (1990). Estimation in a linear regression model with censored data. The Annals
of Statistics 18 (1), 303–328.

Robins, J. M. and D. M. Finkelstein (2000). Correcting for noncompliance and dependent
censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW)
log-rank tests. Biometrics 56 (3), 779–788.

Royston, P. and D. G. Altman (1994). Regression using fractional polynomials of continuous
covariates: Parsimonious parametric modelling. Journal of the Royal Statistical Society:
Series C (Applied Statistics) 43 (3), 429–467.

Royston, P., G. Ambler, and W. Sauerbrei (1999). The use of fractional polynomials to
model continuous risk variables in epidemiology. International Journal of Epidemiol-
ogy 28 (5), 964–974.

Royston, P. and W. Sauerbrei (2007). Improving the robustness of fractional polynomial
models by preliminary covariate tansformation: A pragmatic approach. Computational
Statistics & Data Analysis 51 (9), 4240–4253.

Sabbagha, R. E., J. Minogue, R. K. Tamura, and S. A. Hungerford (1989). Estimation
of birth weight by use of ultrasonographic formulas targeted to large-, appropriate-, and
small-for-gestational-age fetuses. American Journal of Obstetrics & Gynecology 160 (4),
854–862.



172 References

Sappenfield, W. M., J. W. Buehler, N. J. Binkin, C. J. Hogue, L. T. Strauss, and J. C.
Smith (1987). Differences in neonatal and postneonatal mortality by race, birth weight,
and gestational age. Public Health Reports 102 (2), 182–192.

Sargent, D. J. (1997). A flexible approach to time-varying coefficients in the Cox regression
setting. Lifetime Data Analysis 3 (1), 13–25.

Sauerbrei, W. and P. Royston (1999). Building multivariable prognostic and diagnostic
models: Transformation of the predictors by using fractional polynomials. Journal of the
Royal Statistical Society: Series A (Statistics in Society) 162 (1), 71–94.

Scheike, T. H. (2006). A flexible semiparametric transformation model for survival data.
Lifetime Data Analysis 12 (4), 461–480.

Scheike, T. H. and T. Martinussen (2004). On estimation and tests of time-varying effects
in the proportional hazards model. Scandinavian Journal of Statistics 31 (1), 51–62.

Schemper, M. and R. Henderson (2000). Predictive accuracy and explained variation in
Cox regression. Biometrics 56 (1), 249–255.

Schild, R. L., M. Maringa, J. Siemer, B. Meurer, N. Hart, T. W. Goecke, M. Schmid,
T. Hothorn, and M. E. Hansmann (2008). Weight estimation by three-dimensional ul-
trasound imaging in the small fetus. Ultrasound in Obstetrics and Gynecology 32 (2),
168–175.

Schmid, M. and T. Hothorn (2008). Boosting additive models using component-wise P-
splines. Computational Statistics & Data Analysis 53 (2), 298–311.

Schnabel, S. K. and P. H. C. Eilers (2013). Simultaneous estimation of quantile curves
using quantile sheets. AStA Advances in Statistical Analysis 97 (1), 77–87.

Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model.
Biometrika 69 (1), 239–241.

Scioscia, M., A. Vimercati, O. Ceci, M. Vicino, and L. E. Selvaggi (2008). Estimation of
birth weight by two-dimensional ultrasonography: A critical appraisal of its accuracy.
Obstetrics & Gynecology 111 (1), 57–65.

Shen, P.-S. (2003). The product-limit estimate as an inverse-probability-weighted average.
Communications in Statistics - Theory and Methods 32 (6), 1119–1133.

Shen, P.-S. (2012a). Analysis of left-truncated right-censored or doubly censored data with
linear transformation models. TEST 21 (3), 584–603.

Shen, P.-S. (2012b). Semiparametric mixed-effects models for clustered doubly censored
data. Journal of Applied Statistics 39 (9), 1881–1892.



References 173

Shen, P.-S. (2013). Regression analysis of interval censored and doubly truncated data with
linear transformation models. Computational Statistics 28 (2), 581–596.

Siemer, J., N. Egger, N. Hart, B. Meurer, A. Müller, O. Dathe, T. Goecke, and R. L. Schild
(2008). Fetal weight estimation by ultrasound: Comparison of 11 different formulae and
examiners with differing skill levels. European Journal of Ultrasound 29 (2), 159–164.

Siggelkow, W., M. Schmidt, C. Skala, D. Boehm, S. von Forstner, H. Koelbl, and A. Tresch
(2011). A new algorithm for improving fetal weight estimation from ultrasound data at
term. Archives of Gynecology and Obstetrics 283 (3), 469–474.

Simpkin, A. and J. Newell (2013). An additive penalty P-spline approach to derivative
estimation. Computational Statistics & Data Analysis 68, 30–43.

Singh, K. P., C. M.-S. Lee, and E. O. George (1988). On generalized log-logistic model for
censored survival data. Biometrical Journal 30 (7), 843–850.

Slud, E. V. and F. Vonta (2004). Consistency of the NPML estimator in the right-censored
transformation model. Scandinavian Journal of Statistics 31 (1), 21–41.

Song, X., S. Ma, J. Huang, and X.-H. Zhou (2007). A semiparametric approach for the
nonparametric transformation survival model with multiple covariates. Biostatistics 8 (2),
197–211.

Spierdijk, L. (2008). Nonparametric conditional hazard rate estimation: A local linear
approach. Computational Statistics & Data Analysis 52 (5), 2419–2434.

Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007). Bias in random forest vari-
able importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8,
25.

Sun, Y., R. Sundaram, and Y. Zhao (2009). Empirical likelihood inference for the Cox
model with time-dependent coefficients via local partial likelihood. Scandinavian Journal
of Statistics 36 (3), 444–462.

Therneau, T. M. (2013). Survival analysis. R package version 2.37-4. Available from:
http://CRAN.R-project.org/package=survival.

Tian, L., D. Zucker, and L. J. Wei (2005). On the Cox model with time-varying regression
coefficients. Journal of the American Statistical Association 100 (469), 172–183.

Tsiatis, A. A. (1990). Estimating regression parameters using linear rank tests for censored
data. The Annals of Statistics 18 (1), 354–372.

Van der Vaart, A. and M. J. van der Laan (2006). Estimating a survival distribution
with current status data and high-dimensional covariates. The International Journal of
Biostatistics 2 (1). Article 9.



174 References

Vaida, F. and R. Xu (2000). Proportional hazards model with random effects. Statistics in
Medicine 19 (24), 3309–3324.

Walker, S. and B. K. Mallick (1999). A Bayesian semiparametric accelerated failure time
model. Biometrics 55 (2), 477–483.

Wang, H. J. and L. Wang (2009). Locally weighted censored quantile regression. Journal
of the American Statistical Association 104 (487), 1117–1128.

Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the Cox
regression model in survival analysis. Statistics in Medicine 11 (14-15), 1871–1879.

Wei, Y., A. Pere, R. Koenker, and X. He (2006). Quantile regression methods for reference
growth charts. Statistics in Medicine 25 (8), 1369–1382.

Wey, A., L. Wang, and K. Rudser (2014). Censored quantile regression with recursive
partitioning-based weights. Biostatistics 15 (1), 170–181.

Wu, C. O., X. Tian, and J. Yu (2010). Nonparametric estimation for time-varying trans-
formation models with longitudinal data. Journal of Nonparametric Statistics 22 (2),
133–147.

Xu, R. and J. O’Quigley (2000). Estimating average regression effect under non-
proportional hazards. Biostatistics 1 (4), 423–439.

Yang, S. and R. L. Prentice (1999). Semiparametric inference in the proportional odds
regression model. Journal of the American Statistical Association 94 (445), 125–136.

Yin, G. and D. Zeng (2006). Efficient algorithm for computing maximum likelihood esti-
mates in linear transformation models. Journal of Computational and Graphical Statis-
tics 15 (1), 228–245.

Yu, W., Y. Sun, and M. Zheng (2011). Empirical likelihood method for linear transformation
models. Annals of the Institute of Statistical Mathematics 63 (2), 331–346.

Zeileis, A., C. Kleiber, and S. Jackman (2008). Regression models for count data in R.
Journal of Statistical Software 27 (8), 1–25.

Zeng, D., Q. Chen, and J. G. Ibrahim (2009). Gamma frailty transformation models for
multivariate survival times. Biometrika 96 (2), 277–291.

Zeng, D. and D. Y. Lin (2006). Efficient estimation of semiparametric transformation
models for counting processes. Biometrika 93 (3), 627–640.

Zeng, D. and D. Y. Lin (2007a). Efficient estimation for the accelerated failure time model.
Journal of the American Statistical Association 102 (480), 1387–1396.



References 175

Zeng, D. and D. Y. Lin (2007b). Maximum likelihood estimation in semiparametric re-
gression models with censored data. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 69 (4), 507–564.

Zeng, D., D. Y. Lin, and X. Lin (2008). Semiparametric transformation models with random
effects for clustered failure time data. Statistica Sinica 18 (1), 355–377.

Zeng, D., D. Y. Lin, and G. Yin (2005). Maximum likelihood estimation for the propor-
tional odds model with random effects. Journal of the American Statistical Associa-
tion 100 (470), 470–483.

Zhang, B., X. Tong, J. Zhang, C. Wang, and J. Sun (2013). Efficient estimation for linear
transformation models with current status data. Communications in Statistics - Theory
and Methods 42 (17), 3191–3203.

Zhang, H. H., W. Lu, and H. Wang (2010). On sparse estimation for semiparametric linear
transformation models. Journal of Multivariate Analysis 101 (7), 1594–1606.

Zhang, M. and M. Davidian (2008). ”Smooth” semiparametric regression analysis for arbi-
trarily censored time-to-event data. Biometrics 64 (2), 567–576.

Zhang, Z. (2009). Linear transformation models for interval-censored data: Prediction of
survival probability and model checking. Statistical Modelling 9 (4), 321–343.

Zhang, Z., L. Sun, X. Zhao, and J. Sun (2005). Regression analysis of interval-censored
failure time data with linear transformation models. The Canadian Journal of Statis-
tics 33 (1), 61–70.

Zhang, Z. and Y. Zhao (2013). Empirical likelihood for linear transformation models with
interval-censored failure time data. Journal of Multivariate Analysis 116, 398–409.

Zhao, X., X. Zhou, and X. Wu (2007). Local linear regression in proportional hazards
model with censored data. Communications in Statistics - Theory and Methods 36 (15),
2761–2776.

Zhao, Y. (2010). Semiparametric inference for transformation models via empirical likeli-
hood. Journal of Multivariate Analysis 101 (8), 1846–1858.

Zucker, D. M. and A. F. Karr (1990). Nonparametric survival analysis with time-dependent
covariate effects: A penalized partial likelihood approach. The Annals of Statistics 18 (1),
329–353.

Zucker, D. M. and S. Yang (2006). Inference for a family of survival models encompassing
the proportional hazards and proportional odds models. Statistics in Medicine 25 (6),
995–1014.





Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12.07.11, §8, Abs. 2 Pkt. .5.)
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